
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
7
0
0
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
8
.
1
.
2
0
2
6

Unsupervised Object Segmentation

with Generative Models

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Adam Jakub Bielski
von Polen

Leiter der Arbeit:

Prof. Dr. Paolo Favaro

Institut für Informatik



This work is licensed under a Creative Commons “Attribution-

NonCommercial 4.0 International” license.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Unsupervised Object Segmentation

with Generative Models

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Adam Jakub Bielski
von Polen

Leiter der Arbeit:

Prof. Dr. Paolo Favaro

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 24.04.2024
Der Dekan:
Prof. Dr. M. Herwegh





Abstract

Advances in computer vision have transformed how we interact with technology, driven

by significant breakthroughs in scalable deep learning and the availability of large

datasets. These technologies now play a crucial role in various applications, from

improving user experience through applications like organizing digital photo libraries,

to advancing medical diagnostics and treatments. Despite these valuable applications,

the creation of annotated datasets remains a significant bottleneck. It is not only costly

and labor-intensive but also prone to inaccuracies and human biases. Moreover, it often

requires specialized knowledge or careful handling of sensitive information. Among the

tasks in computer vision, image segmentation particularly highlights these challenges,

with its need for precise pixel-level annotations. This context underscores the need for

unsupervised approaches in computer vision, which can leverage the large volumes of

unlabeled images produced every day.

This thesis introduces several novel methods for learning fully unsupervised object

segmentation models using only collections of images. Unlike much prior work, our

approaches are e!ective on complex real-world images and do not rely on any form

of annotations, including pre-trained supervised networks, bounding boxes, or class

labels. We identify and leverage intrinsic properties of objects – most notably, the

cohesive movement of object parts – as powerful signals for driving unsupervised

object segmentation. Utilizing innovative generative adversarial models, we employ this

principle to either generate segmented objects or directly segment them in a manner

that allows for realistic movement within scenes. Our work demonstrates how such

generated data can train a segmentation model that e!ectively generalizes to real-

world images. Furthermore, we introduce a method that, in conjunction with recent

advances in self-supervised learning, achieves state-of-the-art results in unsupervised

object segmentation. Our methods rely on the e!ectiveness of Generative Adversarial

Networks, which are known to be challenging to train and exhibit mode collapse. We

propose a new, more principled GAN loss, whose gradients encourage the generator

model to explore missing modes in its distribution, addressing these limitations and

enhancing the robustness of generative models.
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Chapter 1

Introduction

Determining exact object boundaries through image segmentation is essential for

understanding images and their context, both for humans and computer vision systems.

For humans, this ability is fundamental to recognizing objects, determining how to

interact with them, and anticipating the results of these interactions. In computer

vision, segmentation is essential for isolating and extracting meaningful information

from images by dividing them into regions that represent both di!erent classes and

individual instances of objects, as shown in Figure 1.1.

Automated image segmentation is crucial for a wide range of applications across

various fields. For example, in autonomous navigation, it enables vehicles and drones

to understand their environment by identifying obstacles and safe paths, enhancing

navigation safety. Image manipulation benefits from segmentation through techniques

such as object removal and background alteration, which are extensively used in the

entertainment and advertising industries. Augmented reality (AR) applications use

segmentation to merge digital objects with the real world, improving experiences in

games, education, and marketing. In medical image analysis, segmentation helps in

identifying and quantifying anatomical structures, aiding in diagnostics, treatment

planning, and disease monitoring, which are essential for personalized healthcare. These

instances are just a few examples demonstrating the critical role of image segmentation

in advancing technology and improving lives.

The progress in machine learning, particularly with the advent of supervised

deep learning methods powered by extensive human-annotated datasets, has greatly

advanced the field of computer vision. Despite this progress, the dependence on manual

annotation introduces significant challenges: it is costly, labor-intensive, and scales

poorly, particularly in domains that demand specialized knowledge and strict adherence

to data privacy laws, such as in medical imaging. The task of obtaining precise,

pixel-level annotations for image segmentation is especially laborious, highlighting the

ine”ciencies of supervised methods.

15



16 Chapter 1: Introduction

(a) Input image (b) Foreground/salient segmentation

(c) Instance segmentation (d) Semantic segmentation

Figure 1.1: Examples of di!erent image segmentation tasks. Image from the COCO

dataset [77].

This reliance on manual annotation raises a crucial question: Is it feasible to achieve

object segmentation in a completely unsupervised manner, leveraging only the data

available in collections of real images, without any form of manual annotation? This

question is far from trivial, given the challenges posed by data variability, semantic

ambiguity, and the crucial need for generalization across diverse scenarios.

The pursuit of unsupervised segmentation methods promises a significant leap

forward in computer vision, potentially reducing the need for expensive and time-

consuming annotation processes. This calls for the exploration of novel algorithms that

can learn from unlabeled data, similar to how humans learn to recognize and distinguish

objects without explicit instruction. Achieving this would not only streamline the

process of image segmentation but also make advanced computer vision technologies

more accessible and applicable across a wider range of fields.
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1.1 Limitations of Supervised Object Segmentation

The process of supervised object segmentation heavily depends on manually annotated

data, which not only incurs high costs and demands extensive time but also requires

specialized domain expertise. In the supervised setting, it is the pixel-level annota-

tions by humans that define what constitutes an object. This underscores another

fundamental limitation: this approach o!ers a roundabout definition of what an object

is, filtered through human perception and interpretation. However, objects exist in

the real world independently of whether they are observed or annotated by humans.

Consequently, defining objects through the lens of human annotators introduces a layer

of subjectivity and potential for error, as it depends on the annotator’s interpretation

of a static image to capture the essence of what objects are.

In contrast, humans do not require explicit guidance or direct supervision to learn

what objects are, how they are bounded, and how to interact with them or understand

their interaction with the world. This understanding develops naturally through

experience, underscoring a fundamental di!erence between how humans and supervised

computer vision systems approach object segmentation. Reflecting on our cognitive

capabilities raises a question: What properties of an object enable humans – and

potentially machines – to perceive objects?

1.2 Human Perception of Objects

Studies on object perception by Elisabeth Spelke [118, 119] suggest that infants can

perceive and track objects before they learn to interact and manipulate them. As

adults, when presented with a simple example of a scene with a block that serves an

occluder, as follows:

we will likely conclude that there is a single object behind the occluder, following the

cues of consistent texture, regular shape, or alignment of the visible parts.
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Figure 1.2: Illustration of the experiment studying object perception in infants [119]. A

single or fragmented center-occluded object is presented to infants. Upon the removal

of the occluder, the perception of an object is indeterminate between a connected object

and two object parts (a). If motion is introduced to the object behind the occluder

(b), infants perceive the moving parts as belonging to the same object, regardless of

parts alignment, texture consistency or shape regularity.

Interestingly, research suggests that this tendency to group surfaces into the simplest

possible forms through these static properties develops later in the life of an infant.

Studies by Spelke analyzed how 4-month-old infants perceive objects under occlusion,

before they can move or manipulate them. They were presented with di!erent scenarios

of the occluded scene from above, where behind the occluder block there was either a

single rod or two separated rod pieces (see Figure 1.2 (a)). Upon removing the block,

the level of surprise was measured by analyzing looking times at the object behind

the occluder. It turns out that the looking times did not di!er for both scenarios,

indicating that infants did not have a preference for either the single or separated

objects. Their perception appeared to be indeterminate between a connected object

and two object fragments, regardless of static properties such as texture, shape, or

alignment.

In another variant of the experiment, motion was introduced to the center-occluded

object in both scenarios, before the occluder was removed (see Figure 1.2 (b)). In

this setting, once the object was uncovered, infants that were shown the separated

rod found the revelation much more surprising, indicating the preference for a single

connected object. Infants perceived an occluded object as a connected unit when the

parts of the object moved together behind the occluder. Any translation of the object

in the three-dimensional space – lateral, vertical, and translation in depth – led the

infants to perceive a continuous object. Moreover, this perception was not a!ected by
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other object properties. Even when a center-occluded object was asymmetric and not

uniform in texture and color, it was perceived as connected just as strongly as a simple

shape with a uniform texture and color. In short, infants perceive parts of objects that

move together as parts of the same object.

These experiments show how the cohesive motion of object parts provides a very

strong cue to determine what an object is – stronger than texture, color, or shape

regularity. More precisely, Spelke distinguished core principles that help explain how

young children understand and perceive objects in their environment. Cohesion states

that objects are perceived as single, bounded wholes, expected to move as a unit,

maintaining its boundaries over time. Continuity suggests that objects move along

smooth, uninterrupted paths, with infants anticipating predictable motion without

spontaneous appearances or disappearances. Contact implies that objects do not exert

influence unless they physically touch, leading infants to expect that movement or

trajectory changes occur only upon collision. Solidity asserts that objects are solid

and unyielding, incapable of moving through or sharing space with other solid objects.

Finally, Persistence indicates that objects are perceived as continuously existing, even

when out of sight, leading to an expectation of their constant presence in time and

space.

Building on these foundational insights, there lies an intriguing possibility: leverag-

ing these core principles of object perception for advancing unsupervised learning in

object segmentation. By applying principles like cohesion, continuity, contact, solidity,

and persistence, we could guide machine learning models to parse visual information

in a more human-like manner, potentially reducing or even eliminating the need for

precise segmentation annotation. This approach hints at a more natural, intuitive

method of teaching AI to understand and interpret visual data, drawing inspiration

from the earliest stages of human cognitive development.

1.3 Leveraging generative models

Generative models stand as powerful tools in the field of artificial intelligence and

computer vision, capable of creating images that closely mimic the distribution of real

image sets. Their utility extends beyond mere image generation; they can be e”ciently

used to guide image manipulation processes as well.

In the context of previously stated principles of object perception, it seems plausible

to explore the use of generative models for simulating actions on objects within static

images, where motion cannot be observed. This could be exemplified by manipulating

an object’s position within an image, similar to translating it in a three-dimensional

space. Such manipulations not only test the model’s understanding of object continuity

and cohesion but also its ability to maintain realism in the context of physical laws.
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Moreover, the ability of certain generative models to evaluate the realism of synthesized

images could align with the cognitive processes humans experience in distinguishing

between expected and unexpected changes in their visual environment. This aspect

can be particularly useful in refining AI’s ability to distinguish between realistic and

unrealistic alterations in a visual scene, mirroring human perceptual development.

1.4 Thesis contributions

This thesis addresses the challenge of unsupervised object segmentation in images. We

want to emphasize that despite talking about moving objects throughout the thesis,

we develop methods that work on static images, not videos. Specifically, we focus

on salient objects, typically the main focus or point of interest for the viewer, often

associated with the image’s foreground. We develop methods to segment such objects

without relying on manual annotations – object labels, bounding boxes, landmarks,

or pre-trained object detectors and classifiers – and train segmentation models using

only collections of images. We present a method employing generative models to create

a layered scene representation through the realism of manipulated generated images.

This innovative approach enables the generation of separate background and foreground

scene components. We demonstrate how this generative model can segment real images.

Subsequently, we explore how these models can be simplified to output a segmentation

map directly for an image. We illustrate the use of generated segments as pseudo-labels

for object segmentation models and their e!ective translation to real-world images.

Finally, we introduce a model that learns salient object segmentation maps directly

from real images, utilizing methods to approximate manipulated image distributions

from adversarial training. We build upon recent advanced self-supervised image models,

showing their adaptability for powerful image representation and manipulation tasks,

such as inpainting. Lastly, to advance research on the generative models used in

this thesis, we propose a new training approach for Generative Adversarial Networks.

This method incorporates a novel loss inspired by contrastive learning literature,

taking the form of a statistical divergence between distributions. This loss o!ers

improved gradients, enabling the active pursuit of missing modes in the generated

data’s distribution.

1.4.1 Chapter outline

Chapter 2: Background. We provide a general overview of object segmentation

methods with a special focus on unsupervised object segmentation, which is the

central theme of this thesis. This includes modern self-supervised models, which many

segmentation methods are based on. Moreover, we introduce the Generative Adversarial

Networks, used extensively in our methods.
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Chapter 3: Emergence of Object Segmentation in Perturbed Generative

Models. Building on the observation that the location of objects can be perturbed

locally relative to a given background while maintaining the realism of a scene, we

introduce a method to generate separated background and foreground object compo-

nents of a scene. We train a generative model such that a composite image obtained

by overlaying a shifted foreground on the generated background yields a realistic

scene. Because the generator is unaware of the shifts in the image, it must produce

layered representations that are realistic for any such random perturbation. Levering a

layered generative model, allows to shift the foreground objects without the need for

inpainting. Finally, we train an encoder to map real images into the generated layered

representation with a corresponding mask for an object. This chapter corresponds to

the NeurIPS publication [10].

Chapter 4: Unsupervised Learning of Object Segmentation From Perturbed

Generative Models. We further explore the perturbed generative models. We

show how they can be simplified and explore di!erent ways of training a segmenter

that produces segmentation maps for real images, introducing an end-to-end training

procedure that can achieve that. We show that a segmenter trained on synthetic

composite images and their corresponding generated masks works well on real data as

well.

Chapter 5: MOVE: Unsupervised Movable Object Segmentation and De-

tection. We introduce a novel method to segment objects without any supervision.

Contrary to previous approaches, we train a segmenter directly on real images utilizing

recent state-of-the-art self-supervised features. While we still use adversarial training,

we do not need to generate the images as we utilize a powerful inpainting network based

on Masked Autoencoders. This chapter corresponds to the NeurIPS publication [11].

Chapter 6: Generative Adversarial Learning via Kernel Density Discrimina-

tion. Training Generative Adversarial Networks (GANs) involves maintaining a careful

balance between the discriminator and generator networks. However, this process

is susceptible to mode collapse, leading to less-than-optimal solutions. To overcome

this, we propose a new GAN loss method called Kernel Density Discrimination (KDD

GAN). This approach utilizes statistical divergence between kernel density estimates

of real and generated data distributions in the feature space. This is e!ective even

when the discriminator is not optimal. By doing so, we provide improved training

gradients that encourage the generator to cover previously unrepresented modes in

its distribution. The outcome is a notable enhancement in the quality of generative

models. This chapter corresponds to the publication [69].
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Chapter 2

Background

This chapter provides an overview of the fundamental concepts and techniques in object

segmentation and unsupervised learning, with an emphasis on methods that are relevant

to this thesis. It is noteworthy that supervised image segmentation methods have been

thoroughly explored for their straightforward approach in associating input images

with pixel-precise labels. However, advancements in this field also bear significance

for the unsupervised segmentation domain, which is the central interest of this thesis.

Specifically, innovations in neural network architectures, designed to produce image

masks, are potentially beneficial in an unsupervised context, despite the lack of a direct

supervisory signal.

In recent years, unsupervised learning has seen substantial advancements, driven

by developments in generative models and self-supervised learning strategies. These

approaches have begun to close the gap with their supervised counterparts, o!ering

new ways to leverage the abundance of unlabeled visual data. The focus here is

on how generative models can be used to separate real or generated images into

distinct background and foreground components, enabling e!ective object segmentation

without explicit labels. Furthermore, self-supervised learning, by utilizing inherent

data characteristics as proxy labels, has emerged as a powerful tool for learning useful

representations from unlabeled data. This chapter provides an overview of these

approaches, focusing on their application for image segmentation.

2.1 Image Segmentation Formulation

The task of image segmentation involves partitioning an image into multiple segments

that can represent semantic regions, objects, parts, or boundaries within the image.

More formally, the image segmentation task can be formulated as follows. Given an

input image I of size H →W (where H and W represent the image height and width,

respectively), the goal is to produce a segmentation map S of the same size, where

23
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each pixel in S corresponds to a semantic label or indicates the presence of an object.

Therefore, the aim is to learn a mapping

F : I ↑ S, (2.1)

based on a training dataset. This task is particularly challenging due to variations

in object appearances, scale, and occlusions, as well as the need for precise boundary

delineation.

Depending on the specific image segmentation task, pixels in S can take binary

values (e.g., for salient, or foreground object segmentation; see Figure 1.1) or a form

of one-hot encoded vector, representing belonging to one of many classes (e.g., for

semantic, instance or panoptic segmentation), among others. In this thesis, we focus

on unsupervised salient/foreground object segmentation.

In the case of supervised image segmentation, a labeled dataset is available, where

each training example consists of an input image and the corresponding output seg-

mentation map. Therefore, the mapping function F : I ↑ S is learned based on a

dataset of image-segmentation pairs {(Ii, Si)}, where i denotes the i-th sample in the

dataset, and is often cast as a pixel classification problem. In contrast, in the case of

unsupervised segmentation, which is the topic of this thesis, the only data available is

the collection of images {Ii}.

2.2 Neural Networks for Image Segmentation

Neural networks have revolutionized the field of image segmentation by providing

powerful tools for learning complex patterns and representations from visual data. This

section outlines the evolution of neural network architectures in the domain of image

segmentation.

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [67] are the backbone of many image analysis

tasks. In the context of image segmentation, CNNs excel at extracting hierarchical

features from images, which are crucial for distinguishing between di!erent semantic

regions. Early architectures like FCN (Fully Convolutional Network) [81] laid the

groundwork by demonstrating that a CNN, traditionally used for image classification,

could be adopted for pixel-wise predictions necessary for segmentation tasks.

2.2.2 Encoder-Decoder Architectures

The encoder-decoder structure is a significant advancement in segmentation networks,

designed to e”ciently capture context and spatial information. The encoder pro-

gressively reduces the spatial dimensions of the input image, abstracting high-level
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Figure 2.1: U-Net architecture illustration (with 32→32 pixels at the lowest resolution).

Each blue rectangle represents a multi-channel feature map, with the number of channels

indicated above it. The dimensions in the x-y plane are noted in the bottom left corner

of the rectangle. White rectangles symbolize duplicated feature maps, and the arrows

illustrate the various operations involved. Link to the figure: [107], Fig. 1.

semantic information. In contrast, the decoder part reconstructs the segmentation map

from the encoded features, progressively increasing the resolution to achieve pixel-level

precision [94]. U-Net [107], a notable example, introduced a symmetric architecture

with skip connections that allow the flow of information between encoder and decoder

layers (see Figure 2.1), significantly improving the accuracy of segmentation.

2.2.3 Instance Segmentation with Mask R-CNN

Mask R-CNN [42] extends the Faster R-CNN [106] object detection framework to

address instance segmentation. It combines CNNs with a region proposal method

for instance segmentation, e!ectively identifying and segmenting individual objects

in images. A mask prediction branch is added to the existing structure for object

detection, enabling simultaneous detection and segmentation of objects at the instance

level. This approach allows Mask R-CNN to output a binary mask for each instance in

addition to the class and bounding box. Mask R-CNN demonstrates high e”ciency and

accuracy in instance segmentation tasks, making it a significant model in the evolution

of neural networks for image segmentation.

2.2.4 Attention Mechanisms and Transformer Models

Attention mechanism, and more recently, Transformer models, have introduced a

paradigm shift across various domains of machine learning. Unlike traditional CNNs,

which process image regions with a fixed receptive field, attention-based models such as

the Vision Transformer (ViT) [28] use attention mechanism [125] to selectively focus on

di!erent parts of the image. This approach allows the model to weigh the importance

of each part of the image according to the task at hand, enabling the modeling of

long-range dependencies and interactions between image patches. In the context of

image analysis, this capability is particularly beneficial for understanding complex

scenes and defining object boundaries more accurately. An example of leveraging

Transformer architecture for image segmentation is Maskformer [21], which combines

Transformers with a per-pixel mask loss and per-mask classification loss to e”ciently

segment objects and scenes.
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2.3 Unsupervised Object Segmentation Methods

Unsupervised object segmentation methods play a crucial role when labeled data is

unavailable. These techniques focus on identifying and segmenting objects within images

by relying on the inherent structure and distribution of the data itself. This section

introduces various groups of unsupervised segmentation methods, each employing

di!erent strategies to achieve segmentation without the need for manually annotated

data. We explore methods that utilize clustering algorithms, generative models, and

self-supervised learning techniques.

2.3.1 Clustering and Hand-crafted Methods

To avoid manual annotation, the task of interest can be cast in the unsupervised

learning framework (see [6, 33]). Early fully unsupervised methods for segmentation

relied on a form of clustering of color, brightness, local texture, or some feature encoding.

For instance, the superpixel clustering method of [1] and the mean-shift method of [23]

are some of the first segmentation approaches based on prescribed low-level statistics.

Several hand-crafted methods have been proposed to address the task of un-

supervised segmentation, particularly focusing on saliency detection, by leveraging

human-designed image features. To name a few, the discriminative regional feature

integration approach of [52] utilizes color contrast, texture, and boundary-based fea-

tures to distinguish salient objects. In a similar vein, the optimization technique for

saliency detection by [156] leverages spatial coherence and edge density as robust

background indicators. The method proposed by [74] for saliency detection relies

on dense and sparse reconstruction, using features like color uniqueness and spatial

distribution to highlight salient regions. Another approach by [51] employs Markov

chains, constructing a graph with edges defined by features such as color similarity

and spatial proximity to estimate saliency. The weighted sparse coding framework for

saliency detection [73] utilizes sparsity in feature representation, emphasizing contrast

and uniqueness. Hierarchical saliency detection by [138] incorporates multi-scale image

features, including intensity, color, and orientation, to progressively refine saliency

maps. The work of [158] introduces hierarchy-associated rich features, combining color,

texture, and location information to e!ectively detect salient objects. Lastly, [92]

combines di!erent hand-crafted methods into a deep learning framework.

2.3.2 Mutual Information and Scene Decomposition

Unsupervised segmentation can also be formulated as a pixel-wise image partitioning

task. IIC [50] defines the task as a classification problem with a known number of

segment types, such that the mutual information between the predicted partitions

of transformed versions of the same image is maximized. In [98] they learn image
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clustering by maximizing mutual information between di!erent orderings of pixels in

autoregressive models. CIS [141] also utilizes mutual information between segments,

but due to the use of optical flow is only applicable to videos. The work of [110] points

out that the correct mask maximizes the inpainting error for both the background and

the foreground; however, for complex real-world datasets, there is too much ambiguity

in selecting such regions. Several methods for unsupervised scene decomposition were

proposed, including [15, 30] and [80] that use spatial or slot attention and [36–38]

that model images as a spatial mixture model to perform unsupervised segmentation.

However, these approaches have only been shown to work on simpler synthetic or

controlled datasets.

2.3.3 Generative Methods

A wide range of methods exploits generative models trained without supervision to find

a segmentation mask or to generate synthetic data to train a segmenter. In one line of

work, it is observed that a pre-trained generator of large-scale Generative Adversarial

Networks (GANs; see section 2.4) [35] contains directions in the latent space that

modify the foreground and the background independently, while keeping the content

of the image. The work of [129] finds the latent shift that acts on each pixel as one

of two a”ne operators, while [85] finds the directions that preserve the edges while

modifying the brightness.

Other methods exploit scene compositionality to generate or decompose the scene

into a layered representation. The work of [124] proposes a GAN that generates a

background and individual objects by modeling their relational structure with attention,

however, the method is shown to work only on relatively simple datasets. In [65] they

generate parts of an image with a GAN and RNN and apply restrictions on alpha

channels to avoid degenerate solutions, but their blending procedure does not encourage

resulting composite images to necessarily contain the exact generated parts. The method

of [140] uses GAN and LSTM to generate a background, a foreground with a mask, and

a transformation matrix to learn where to place the objects with a spatial transformer.

More in general, generative methods make di!erent assumptions on the information

in the object segment. For example, [18] assumes that only when the segmentation is

correct, a generative model can replace the original object with another in a realistic

manner. In [8, 97] they use generative models to solve several tasks simultaneously,

including foreground segmentation, but they rely on the assumption that a dataset of

only backgrounds is available. The works of [3, 105] build on the idea that realistic

segmentation masks would allow the copy-pasting of a segment from one region of an

image to another. They do, however, either use pre-trained object detectors as weak

supervision [105] or do not guarantee that the copied object retains a realistic context.
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Figure 2.2: The Masked Autoencoder (MAE) method uses a pre-training approach

where around 75% of image patches are randomly masked. An encoder processes the

visible patches, and after encoding, mask tokens are added. A small decoder then

reconstructs the original image. After pre-training, the decoder is removed, and the

encoder is used on full images for recognition tasks. Link to the figure: [44], Fig. 1.

All these methods require either additional assumptions, were shown to work only on

simple or synthetic datasets, or require some sort of additional supervision.

2.3.4 Self-Supervised Pre-trained Models

Self-supervised learning (SSL) has gained increased attention in the machine learning

community, particularly within the domain of computer vision. It enables models to

learn rich representation from unlabeled data by predicting part of the input from

other parts or by solving auxiliary tasks. For instance, in the context of images, earlier

deep learning SSL models learn a feature representation through autoencoding [46],

predicting the color of a grayscale image [151], solving a Jigsaw puzzle [95] or predicting

the rotation of an image [34]. Such representations, learned in an unsupervised way,

may be used to discover semantic data structure through clustering or finetuned for

downstream tasks, like image classification, object detection or segmentation.

In recent years, SSL methods have gained a significant improvement, mainly driven

by the success of contrastive learning methods [16, 19, 20, 43] and scalability of Vision

Transformers [28]. Contrastive learning aims to learn representations by maximizing

the agreement between the representation of di!erently augmented views of the same

datapoints while minimizing the agreement between views of di!erent data points.

Another approach, Masked Autoencoders (MAE) [44], applies masked modeling in

vision domain, inspired by the success of masked language models in natural language

processing. During the training a significant portion of the input image is randomly

masked and the objective is to reconstruct the masked parts (see Figure 2.2).

In the context of unsupervised image segmentation, self-supervised methods have

attracted increasing attention due to emerging properties when such models are trained

at scale. Most prominently, DINO [17] is an SSL model that utilizes knowledge distilla-

tion between a student and a teacher network, both processing di!erent augmentations

of the same image, to learn rich visual representations without labeled data. It has

been shown that the attention maps of the pre-trained DINO Vision Transformer can

group semantically meaningful regions within images, despite not using any labels or

having any direct incentive to do so. Multiple works followed that direction, finding

that DINO feature representation provides a good baseline to obtain unsupervised

image segmentation. The work of [2] explores the applicability of such features for
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DINO [17] LOST [115] TokenCut [136]

Figure 2.3: Examples of di!erent applications of DINO features and attention maps to

segment objects.

co-segmentation and finding correspondences through feature clustering. LOST [115]

designs a seed expansion strategy to obtain an object segment. DeepSpectral [84] and

TokenCut [136] propose a segmentation method based on solving the graph-cut problem

with spectral clustering (see Figure 2.3 for examples). Semantic segmentation can also

be achieved by clustering features across the dataset, as shown in DeepSpectral [84]

and STEGO [40], although careful dataset-dependent tuning might be needed for these

methods. Beyond DINO, FreeSOLO [135] uses DenseCL features [134] to obtain coarse

object masks. SelfMask [114] proposes a clustering approach that can use multiple

SSL features and evaluates all possible combinations of DINO [17], SwAV [16] and

MOCOV2 [43].

2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [35] were a breakthrough in generative

modeling, where the goal is to model the data distribution. GANs aim to solve the

problem of generating new data points that are indistinguishable from real data. They

achieve this through an adversarial framework involving two competing networks: the

generator, which creates data resembling the real distribution, and the discriminator,

which evaluates how well the generated data matches the statistical properties of the

real data distribution. Generative learning finds applications in many computer vision

tasks, such as image translation [29, 48, 100, 155], image processing [64, 68], image

restoration [99, 123, 151], text to image mapping [70, 103, 104, 147] and, more in

general, to define image priors in image-based optimization problems [86, 123].

2.4.1 Problem Formulation

The goal of Generative Adversarial Networks is to find a mapping from a known

distribution, typically a multi-variate Gaussian pz(z), to the data space pdata(x). Their
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training relies on an adversarial min-max game, in which two neural networks, a

generator (G) and a discriminator (D), are trained against each other in a zero-sum

game. The discriminator is trained to distinguish real samples x from fake ones G(z)

synthesized by the generator, while the generator is trained to fool the discriminator.

More formally, this adversarial process can be described by the following value function

V (G,D):

min
G

max
D

V (D,G) = Ex→pdata(x)[logD(x)] + Ez→pz(z)[log(1↓D(G(z)))] (2.2)

Here, x represents real data drawn from the data distribution pdata(x), and z

represents input noise variables drawn from a distribution pz(z) used by the generator

to produce data. The discriminator outputs a scalar D(x) linked to the probability

that x came from the real data rather than the generator. The generator aims to

produce data G(z) as realistic as possible to fool the discriminator.

The goal of the discriminator is to maximize V (D,G) for a given G, meaning it tries

to assign the correct labels to both real and generated data. Conversely, the generator

aims to minimize V (D,G) given the discriminator D, meaning it tries to produce data

that the current discriminator will mistakenly classify as real. This formulation involves

the adversarial training process, where both G and D improve through iterations. The

generator learns to produce more accurate representations of the data distribution,

while the discriminator becomes better at identifying subtle di!erences between real

and generated data. The equilibrium of this game is reached when G generates data

indistinguishable from real data, which corresponds to a known statistical divergence,

e.g., the Jensen-Shannon Divergence (JSD) [35].

2.4.2 Limitations and Advancements

Although GANs o!er numerous benefits, training them poses a lot of challenges in

practice. The stability of the training process relies on finding a balance between the

two networks, ensuring that neither becomes too powerful too quickly, to maintain the

adversarial dynamic. GANs are also prone to mode collapse, where the model only

captures a subset of the data distribution and fails to represent its full diversity.

GANs have continually evolved and improved through various iterations since they

were first introduced. Works such as [4] and [96] focus on training the generator to

minimize other statistical divergences that exhibit better properties compared to the

JSD in the original work. A variety of other loss functions and GAN frameworks have

been introduced, claiming better stability and quality of generated samples, e.g., [9, 39,

82, 148] One complementary line of research explores additional regularization terms

such as using a gradient penalty for the discriminator [87], consistency regularization

[149] or di!erentiable augmentations [153] to various degrees of success. Many works
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aim to address the mode collapse problem, including mini-batch discrimination and

label smoothing [108], UnrolledGAN [88] and PacGAN [78]. Another line of work

introduces image GAN models that process progressively larger images and grow in

size. Progressive GAN [54] and StyleGAN [55, 57] proved to work particularly well to

improve the stability and quality of generated images.

Training GANs on large-scale datasets is a challenging task. State of the art models

such as BigGAN [14] require a substantial amount of compute resources. Moreover,

many of them require a post-hoc processing to reduce spurious samples. [27] proposes

to tackle both issues by filtering the dataset using instance selection. They argue that

the model’s capacity is wasted on low density regions of the empirical distributions

of the data. Their results show that instance selection enables the training of better

GAN models with substantially fewer parameters and less training time.

A recent addition to this list are methods that capture more structure into the

latent representation of the discriminator through the use of Contrastive Learning

[49, 53, 145]. One such example is ContraGAN [53], where the authors introduce a

new regularization term, called 2C loss, based on the NT-Xent loss [19] used commonly

in Contrastive Learning. The introduced loss term aims at capturing the data-to-data

and data-to-class relations in the dataset.
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Chapter 3

Emergence of Object
Segmentation in Perturbed
Generative Models

In this chapter, we introduce a framework to learn object segmentation from a collection

of images without any manual annotation. Since we cannot rely on the provided labels,

we employ object properties that can help to define the object’s location. Namely, we

build on the observation that the location of object segments can be perturbed locally

relative to a given background without a!ecting the realism of a scene. In fact, if object

segments include some of the background, a small shift would reveal an unnatural

edge with the background. Similarly, if the object segments do not include the entirety

of the object, a small shift would reveal an unnatural-looking object occlusion or

discontinuation. This is related to the cohesive motion principle of object perception

described in Chapter 1.

Our approach is to first identify a powerful and general principle to define what an

object segment is and then to devise a model and training scheme to learn through that

principle. With reference to Figure 3.1, we propose to build a generative model that

outputs a background image, a foreground object, and a foreground mask. This model

is trained in an adversarial manner against a discriminator. The discriminator aims

to distinguish the composite image, obtained by overlaying the output triplet of the

generator, from real images. This training alone provides no incentive for the generator

to produce triplets with correct object segmentations. In fact, a trivial solution is

to have the same realistic image for the foreground and background and a random

mask (see Figure 3.2, first row). To address this failure, our framework introduces

the concept of learning through the perturbation of the model output. According to

our object segment definition, we could introduce a small random shift between the

33
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Figure 3.1: Illustration of the proposed architecture to learn to generate realistic layered

scene representations through G (blue path) and to learn to map images to a layered

representation through E (and G), i.e., to segment objects (green path). The layered

representation consists of three components: 1) a background image B, 2) a foreground

image F, and 3) a(n alpha matte) mask image m. A crucial component of our model is

the generation of random shifts p of the foreground object (in particular, such that

they are independent of the input vector z to G) during the training of the generator.

The generator is trained adversarially against a discriminator D. Once the generator

G is trained, the encoder E can be trained to extract z, which encodes the layered

representation.

foreground and background outputs and still obtain a realistic composite image. If this

perturbation is unknown to the generator before producing its triplet, then it is forced

to output realistic object segments (see Figure 3.2, last row). As a separate step to

retrieve the segmentation of an image, we propose to train an encoder network. The

encoder is paired with the generator so as to form an autoencoder. The encoder maps

an image to a feature vector, which is fed as input to the generator so that it outputs a

triplet that can be used to rebuild the input image. The combination of both of these

steps allows us to train the encoder to detect and segment objects in images without

any manual annotation (see the green path in Figure 3.1).

Contributions. We introduce a fully unsupervised learning approach to segment

objects. Unlike in prior work, we do not make use of object detectors, classifiers,

bounding boxes, landmarks, or pre-trained networks. To our knowledge, this is the

first such solution working on complex real images. Moreover, the proposed method

is quite general as we demonstrate it on several object categories qualitatively, and

quantitatively on the LSUN Car dataset [143] with Mask R-CNN [42] used as ground

truth as well as CUB-200 dataset with provided annotations. Although we evaluate

our approach on a dataset with a single object category at a time, our framework can
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Background Foreground Mask Composite Composite + shift

Figure 3.2: First row: Trivial solution, where the background and the foreground

are identical and any mask produces a valid composite scene. However, a random

foreground shift reveals the invalid segmentation. Second row: Trivial solution, where

the whole scene is generated in the background and the mask is always empty. Last

row: The scene after a random shift is valid only when the background generation

and the object segmentation are valid and the mask is not empty.

potentially work on mixed object collections (see Figure 3.5). We use single object

category datasets because of current GAN limitations.

3.1 Related Work

In Chapter 2 we introduce di!erent unsupervised methods for object segmentation.

Most of the methods prior to the approach described in this chapter work either on

simple datasets or utilize some sort of weak supervision, for example, object bounding

boxes or pre-trained supervised models. In contrast, this method works on real-world

images and does not make use of any form of supervision or pre-trained models.

The work that most closely relates to ours is by [105]. In this paper, the authors

build on the idea that realistic segmentation masks would allow the copy-pasting of

a segment from one region of an image to another. This remarkable principle can be

used to define what an object is. More generally, one could say that pixels belonging

to the same object should be more correlated than pixels across objects (including the

background as an object). The weak correlation between the object and background

is what allows introducing a shift without compromising the realism of the scene.

However, the weak object-background correlation means also that not all shifts yield

plausible scenes. This is why [105] study the object placement and introduce some

randomized heuristics as approximate solutions. In contrast, in our work, we avoid

heuristics by noticing that small shifts are almost always valid. The price to pay is that
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background inpainting is required. That is why we introduce a generative model that

learns to output a background and a foreground image in addition to the segmentation

mask. One important aspect of the design of unsupervised learning methods is to

avoid degenerate solutions. [105] build a compositional image generator as done by [97]

and then train a segmenter adversarially to a discriminator that classifies images as

realistic or not. A degenerate solution for the segmenter is to avoid any segmentation,

as the background looks already realistic. The authors describe two ways to avoid

this scenario: One is that the dataset of real images contains objects of interest and

therefore an empty background would be easily detected by the discriminator. The

second is that a classification loss (pre-trained on object identities) would ensure that

an object is present in the composite scene. This approach assumes some knowledge

about objects (e.g., where they are) and works well on relatively small images (28→ 28

pixels). In contrast, our approach does not require such assumptions and we show

its performance on (relatively) high resolution images. In our approach we require

that the mask has a minimum number of non-zero pixels, i.e., we learn to generate

segments with a minimum size (this avoids the degeneracy illustrated in the second row

of Figure 3.2). This is not a restriction, because we are not making assumptions on

single images, but, rather, on the distribution of the image dataset. Then, we establish

the correspondence between images and segments in a second step where we train an

encoder network. The encoder learns to map images to a suitable noise vector for the

pre-trained generator, such that it outputs background, foreground, and mask that

autoencode the input image after composition (see Figure 3.1). The design of such

generative models is only possible today thanks to the progress driven by the latest

Generative Adversarial Networks of [55], mentioned in Section 2.4, page 29, which we

exploit in this work.

3.2 Learning to Segment without Supervision

Our approach is based on two main building blocks: A generator G and an encoder E

(see Figure 3.1 for an illustration of the proposed method). The generator is trained

against a discriminator in an adversarial manner with the latest high-quality StyleGAN

(Generative Adversarial Network) by [54, 55]. G learns to generate composite scene

samples to the extent that the discriminator cannot distinguish them from real images.

There are several important aspects that we would like to highlight. Firstly, the training

requires no correspondence between the real images and the generated scenes. It allows

us to impose constraints on the average type of generated scenes we are interested

in, rather than a per-sample constraint. For example, we expect the average scene to

have an object with a support of at least 15%↓ 25% of the image domain, a condition

that may not hold in each sample. Secondly, during training, we introduce a random
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shift unknown to the generator. Thus, the generator must output a background and a

foreground that can be combined with arbitrary small relative shifts and still fool the

discriminator into believing that the composite image is realistic. This is an implicit

way to define what an object is, that avoids manual labeling altogether. The second

building block in our approach is an encoder E that learns to segment images. The

encoder followed by the generator and the image composition form an autoencoder.

The encoder E maps a single image x to a feature vector z that, once fed through

the generator, yields its background B (with inpainting), its foreground object F, and

its foreground object mask m. The correspondence between images and their object

segmentation is thus obtained through the training of the encoder. In the following

sections, we explain our approach more in detail.

3.2.1 A Generative Model of Layered Scenes

Consider an M → N discrete image domain # ↔ Z2. In our notation, we consider

only grayscale images for simplicity, but in the implementation we work with color

images. We define the representation of a scene as a layered composition of 2 elements:

a background image B : # ↗↑ R and a foreground image F : # ↗↑ R. Although the

foreground is defined everywhere, it is masked with an alpha matte m : # ↗↑ [0, 1] in

the image composition. The composite image x̄ : # ↗↑ R is then defined at each pixel

p ↘ # as

x̄[p] = (1↓m[p])B[p] + m[p]F[p]. (3.1)

We define a generator G : Rk ↗↑ RM↑N through a convolutional neural network

(as described in [55]) such that, given a k-dimensional input vector z ≃ N (0, Id), it

outputs three components G(z) = [GB(z),GF(z),Gm(z)], where GB(z) = B, GF(z) = F

and Gm(z) = m. The generator is then trained in an adversarial manner against

a discriminator neural network D : RM↑N ↗↑ R. Our implementation is based on

StyleGAN, which, in turn, is based on the Progressive GAN of [54], a formulation using

the Sliced Wasserstein Distance.

3.2.2 Learning through Model Perturbation

If we trained the generator with fake images according to eq. (3.1) and we assumed a

perfect training, the learned model could be a trivial solution, where the background

GB(z) and the foreground GF(z) are identical and realistic images, and the mask Gm(z)

is arbitrary (see Figure 3.2, first row). In fact, there is no incentive for the generator

to learn anything more complex than that, and, in particular, to associate foreground

objects to the foreground mapping GF(z). Even the constraint that the average value

of the segments Gm(z) should be at least 15% ↓ 25% is not su”cient to make the

generator mapping more meaningful. We use the constraint that foreground objects
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can be translated by an arbitrary small shift $ ≃ U([↓ω, ω]→ [↓ω, ω]), with ω a given

range of local shifts, and would yield still a realistic composite image. Formally, this

can be written by updating eq. (3.1) as

x̂[p] = (1↓m[p+$])B[p] + m[p+$]F[p+$]. (3.2)

Now, the generator has no incentive to generate identical foreground and background

images, as a random shift would be immediately detected by the discriminator as

unrealistic. Vice versa, it has an incentive to output foreground images and masks

that include full objects. If the segments included some background or missed part of

the foreground, a small random shift $ would also yield an unnatural-looking image

that the discriminator can easily detect (in particular, at the segment boundary; see

Figure 3.2, last column). Therefore, now the generator has an incentive to output

meaningful object segments. To make sure that the mask is non-empty, we impose a

hinge loss on the average mask value

Lsize = Ez→N (0,Id)

[
max {0, ε ↓ 1/MN|Gm(z)|1}

]
(3.3)

with a mask size parameter ε > 0 and also use a loss that encourages the binarization

of the mask

Lbinary = Ez→N (0,Id)

[
min {Gm(z), 1↓Gm(z)}

]
(3.4)

Finally, to train the generator we minimize the following loss with respect to GB, GF

and Gm

Lgen = ↓Ex̂→px̃ [D(x̂)] + ϑ1Lsize + ϑ2Lbinary (3.5)

with ϑ1, ϑ2 > 0. To train the discriminator we minimize the following loss with respect

to D

Ldisc = Ex̂→px̃ [D(x̂)]↓Ex→px [D(x)] + ϖEx̃→px̃ [(|⇐x̃D(x̃)|2 ↓ 1)2] + ϱEx→px [D(x)2] (3.6)

where px is the probability density function of real images x, we define x̃ = ςx+(1↓ς)x̂

with random ς ↘ [0, 1], ϖ > 0 is the gradient penalty strength and ϱ > 0 prevents the

discriminator output from drifting to large values, following [39] and [54].

3.2.3 Object Segmentation via Autoencoding Constraints

Once the generator has been trained, we can learn to associate background, foreground,

and segments to each image. To do that, we can train an encoder E such that it

retrieves, through the generator G, a composite image that matches the original input

(see Figure 3.1, green path). The encoder E : RM↑N ↗↑ Rk maps x to E(x) ↘ Rk. Let

us define xE
.
=

(
1↓Gm (E(x))

)
⇒ GB (E(x)) +Gm (E(x))⇒ GF (E(x)). The loss used

to train the encoder E can be written as

Lauto = Ex→px

∣∣∣xE ↓ x

∣∣∣
1
+ Ex→px

∣∣∣Dfeat(xE)↓Dfeat(x)
∣∣∣
2

2
, (3.7)
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Figure 3.3: Generated 128→ 128 pixels backgrounds, foregrounds, masks, foregrounds

with mask applied and composite images for 4 di!erent image categories. Last two

columns in each category show generator failures, e.g., an object in the background or

an unrealistic foreground.

where the second term is a perceptual loss that uses features from the trained StyleGAN

discriminator.

3.3 Implementation

Experimentally, we find that current GAN methods are not yet capable of generating

high-quality images from datasets of multiple categories (in a fully unsupervised

manner). Thus, we mainly demonstrate our method on datasets with single categories.

For all experiments, all the network architectures and details follow the StyleGAN [55]

if not specified in this section. We use 2 separate generators, one outputs a 3 color

channel background, while the other one has two outputs: a 3 color channel foreground

and a 1 channel mask followed by a sigmoid activation function. Both generators

take the same 512 dimensional Gaussian latent codes as input. We use mixing with a

probability of 0.9 and feed two latent codes to two parts of the generator, split by a
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Table 3.1: Ablation study for the LSUN Car dataset. The IoU is computed using Mask

R-CNN generated segmentations as ground truth. The reference IoU is computed using

masks covering the entire image as segmentation.

Setting 64 x 64 pixels 128 x 128 pixels

IoU
reference

IoU
detected
cars IoU

reference
IoU

detected
cars

(a) Default parameters 0.685 0.440 6293 0.533 0.432 7090
(b) No shift (ω = 0) 0.039 0.428 6738 0.025 0.419 7578
(c) 25% shift (ω = 0.25 · size) 0.144 0.434 6493 0.094 0.426 7259
(d) Bg contrast jitter 0.765 0.454 6089 0.673 0.436 7046
(e) No random crops 0.264 0.374 6339 0.136 0.365 7520
(f) Mask size ϑ1 = 10.0 0.733 0.443 6245 0.643 0.430 7241
(g) Min. mask size ε = 5% 0.693 0.458 6202 0.552 0.430 7256
(h) Single generator 0.550 0.446 6903 0.484 0.435 7544

randomly selected crossover point. We start the training with an initial resolution of

8→ 8 pixels and use progressive training to up to 128→ 128 pixels. We train with batch

sizes 256, 128, 64, 32 and 32 for resolutions 8→8, 16→16, 32→32, 64→64 and 128→128

respectively. For each scale the number of iterations is set to process 1,200,000 real

images. The local shift range ω described in Section 3.2.2 is resolution-dependent and

set to ω = 0.125 → resolution. For each resolution of training StyleGAN we first

resize the real image to a square image of size 1.125 → resolution and then take a

random crop of size resolution to match the shifts in the generated data. We train

the StyleGAN network on real images x and composite generated images x̂ (eq. (3.2))

by alternatively minimizing the discriminator loss (eq. (3.6)) and the generator loss

(eq. (3.5)). We set the discriminator loss parameters to ϖ = 10 and ϱ = 0.001. In

the generator loss we set ϑ1 = 2 for the minimum mask size term and ϑ2 = 2 for

the binarization term. We optimize our GAN with the Adam optimizer ([61]) and

parameters φ1 = 0, φ2 = 0.99. We use a fixed learning rate of 0.001 for all scales except

for 128→ 128 pixels, where we use 0.0015.

3.4 Experiments

We train our generative model on 4 LSUN object categories ([143]): car, horse, chair,

bird. For each dataset we use the first 100,000 images. Objects in the datasets show

large variability in position, scale and pose. We set the minimum mask size ε in eq. (3.3)

to 25%, 20%, 15% and 15% for car, horse, chair, bird datasets respectively. In

Figure 3.3 we show some examples of outputs produced by the generators from random
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Figure 3.4: Qualitative results of our approach for settings (a)-(h): generated 64→ 64

composite images, masks, and outputs of Mask R-CNN.
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samples in the Gaussian latent space. From the first to the fifth row in each quadrant:

generated background layer, generated foreground layer, generated foreground mask

layer, product between the mask and the foreground layer, and final composite image.

As can be seen, the generator is able to learn very accurate object segmentations and

texture. Also, it can be observed that the background has some residual artifacts in the

center. This is due to the limited shift perturbation range, which does not allow the

background layer to receive much feedback from the loss function during the training.

In some cases the exact separation between object and background is not successful.

This can be seen in the last two columns for each dataset.

3.4.1 Ablation study

To validate the design choices in our approach, we perform ablation experiments on the

LSUN Car dataset. We introduce the following changes to (a) the default parameters

described in Section 3.3, (b) disable the shift by setting the range of random location

shift ω = 0, (c) increase the shift to ω = 0.25→ resolution, (d) randomly jitter the

background contrast in the range (0.7, 1.3) to further prevent the background from

filling parts of objects, (e) directly resize real images to the desired resolution without

random cropping, (f) increase the strength of the mask size loss Lsize by setting its

coe”cient ϑ1 = 10, (g) set the minimum mask size parameter to a smaller value

ε = 5%, (h) use a single generator with 3 outputs for background, foreground and

mask. To evaluate the quality of the generated segments, we generate 10,000 images

and masks for each setting. We binarize our masks with a 0.5 threshold. To obtain an

approximated mask ground truth on generated composite images we run Mask R-CNN

[42, 83] pre-trained on MS-COCO [77] with a ResNet50 Feature Pyramid Network

backend. If the car is detected, we evaluate the Intersection over Union (IoU) with

the mask generated by our models on these images, defined as IoU =
|mgen↓mpred|
|mgen↔mpred|

. We

run the evaluation on 64→ 64 and 128→ 128 pixels resolution, but resize the 64→ 64

images to 128→ 128 before feeding them to Mask R-CNN. The quantitative results can

be found in Table 3.1 and the qualitative results in Figure 3.4.

Our ablation shows that the random shifts (see Section 3.2.2) are essential in our

approach. When not used (b) the object segmentation fails and the objects are often

in the background. The quality of the segmentation decreases drastically when the

random shift range does not correspond to foreground object shifts in real images. This

is illustrated by the setting (c) with large random shifts and by the setting (e), where

the real images are not randomly cropped. The additional random contrast jitter of the

generated background (d) helps separate the foreground object from the background.

A smaller value of the ε parameter to ensure the minimum mask size (g) does not have

a big impact on the results: It helps to avoid empty masks, but the mask size is mainly

determined by the realism requirement. Using a single generator (h) to produce all



3.4.2 Segmenting real images 43

Table 3.2: FID scores comparison between our proposed GAN model and the single

output (SO) GAN model.

Setting
FID

(64→ 64)

FID

(128→ 128)

SO GAN 27.807 21.665

Our GAN 31.409 30.867

outputs makes the background and the foreground too correlated, which prevents it

from learning a good layered representation.

Quality of generated images. To evaluate the quality of generated composite

images, we compute the Frèchet Inception Distance (FID [45]) using 10K real and

10K generated images composite images from our model (d). We compare it with a

standard StyleGAN producing the entire images at once, trained for the same number

of iterations. The results are presented in Table 3.2. The di!erence in the FID scores

may be explained by the more demanding constraints of our model, which may hinder

the GAN training.

Dataset with more than one object category. Although we run our experiments

on datasets containing objects of one category, we argue that our method should work

with multiple object categories when the GANs improve and are able to produce realistic

images on diverse datasets. To verify this, we train our model on a dataset consisting

of 50K images from LSUN Car and 50K images from LSUN Horse datasets. The

qualitative results are presented in Figure 3.5. Although the quality of the generated

images on such a dataset is lower, our model is still able to generate segmented scenes.

3.4.2 Segmenting real images

Finally, we train an encoder to find the segmentation of real images, as described in

Section 3.2.3. We use our best generator trained on LSUN Car 64→ 64 images with

background contrast jitter (setting (d)) and freeze its weights. We train an encoder

that produces 5 · 2 · 2 = 20 latent codes of 512 dimensions: For each of the 5 StyleGAN

scales, we get 2 separate codes for AdaIN (Adaptive Instance Normalization) layers

Figure 3.5: Generated object segments using a dataset with two object categories: cars

and horses.
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Figure 3.6: Qualitative results of segmentation on LSUN Car and CUB-200 datasets.

(a) Examples of successful segmentations. (b) Examples of failures.

Table 3.3: Segmentation results comparison. For the LSUN Car dataset, Mask R-CNN

generated segmentations from 10,000 images serve as ground truth. The IoU values are

depicted for images with detected cars versus all images, including those using empty

masks. CUB-200 comparisons employ real ground truth.

Setting
LSUN Car

(detected)

LSUN Car

(all)

CUB-200

IoU

Our method 0.540 0.479 0.380

GrabCut 0.559 0.499 0.453

Full mask 0.402 0.357 0.132

in a convolutional block and get separate codes for 2 generators (background and

foreground with mask). For the encoder, we use a randomly initialized ResNet18

network ([41]) with a 64 → 64 input without average pooling at the end and add a

fully-connected layer with a 512 · 20 = 10240 output size. We feed the codes to the

generator and minimize the autoencoder loss (eq. (3.7)). In the perceptual loss, we

use our discriminator to extract 512 → 8 → 8 spatial features on real and generated

images. We evaluate the segmentation on the first 10,000 images of the LSUN Car

dataset. We train separate encoders on chunks of 100 images as we found that it makes

the encoding more stable than training on the entire dataset. We run the training for

1000 iterations with Adam optimizer, learning rate of 0.0001 and φ1 = 0.9, φ2 = 0.999.

After training, we encode the images and feed the codes to the generator to obtain the

masks. For the approximated ground truth we run Mask R-CNN on real images and
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evaluate our segmentation with mean IoU. We also compute the IoU using the output

of the GrabCut algorithm and a naive mask covering the entire image. The results

are presented in Table 3.3. The performance of our method is capped by ambiguities

in inverting the generator with an encoder, which is an active topic of research. We

present sample segmentation results in Figure 3.6. We notice some failures, especially

in the case of small objects. We repeat the same training and evaluation procedure on

Caltech-UCSD Birds-200-2011 dataset [130], for which the segmentation ground truth

is available. We use the parameters that worked best on the LSUN Car dataset for

training both the generator and the encoders.

3.5 Discussion

We have introduced a new framework to learn object segmentation without using

manual annotation. The method is based on the principle that valid object segments,

when locally shifted relative to their background, can still yield a realistic image. The

proposed solution is based on first training a generative network to learn an image

decomposition model for a dataset of images and then on training an encoder network

to assign a specific image decomposition model to each image. It strongly relies on the

accuracy of the generative model, which today can be built with adversarial techniques.

However, this framework is quite general and can be extended. For example, the

current generative model postulates that a scene is composed only of a foreground and

a background object, but an increase of output layers could allow describing scenes with

multiple objects. In this case, the unknown number of objects and their interactions

would need to be addressed.
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Chapter 4

Unsupervised Learning of Object
Segmentation From Perturbed
Generative Models

In the previous chapter, we introduce a method that enables the generation of a layered

image representation that separates the background from the masked foreground. The

principle that shifting a segmented foreground object should yield a realistic scene

encourages the generation of correctly segmented objects. However, while we can

generate segmented objects, the fundamental problem we want to solve is object

segmentation in real images. In this chapter, we introduce an approach to learn an

object segmentation model directly from a large collection of images without any manual

annotation. The key idea is to build a synthetic training set for segmentation (i.e.,

where each sample consists of an input image and the corresponding segmentation mask)

through a generative model. This dataset is then used to train a segmentation network

in a supervised fashion. We explore and analyze a few di!erent methods, including a

single end-to-end training of both the generative model and the segmenter that can

be applied directly to real images. We demonstrate on several datasets that models

trained on the generated data are able to generalize well on real images. Most notably,

we explore training our model on a small, but diverse dataset of images. We show that

we are able to learn segmentation even when the quality of the generated images is

subpar due to GAN limitations on small diverse datasets. So the object segmentation

can still be accurate although the image generation may not be extremely realistic.

Furthermore, we update and simplify our approach by using a single conditional

generator for foreground and background, which reduces the model complexity and

size compared to the previous approach.

47
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Figure 4.1: Illustration of the proposed architecture to learn to generate realistic

layered scene representations through G and to learn to segment real images through

the segmentation network S trained on the generated composite images and masks.

The layered representation consists of three components: 1) a background image, 2) a

foreground image, and 3) a(n alpha matte) mask image. The generator is conditioned

on the background/foreground class and is run twice with the same noise z for both

classes to obtain all the components of the representation. A crucial component of our

model is the generation of random shifts $ of the foreground object (in particular,

such that they are independent of the input vector z to G) during the training of

the generator. The generator is trained adversarially against a discriminator D. The

segmentation network S is trained either with a pre-trained generator or jointly as part

of the U-Net discriminator (not shown in the illustration).

With reference to Figure 4.1, we propose to build a generative model that outputs a

background image, a foreground object, and a foreground mask, similarly to the method

of Chapter 3. This model is trained in an adversarial manner against a discriminator.

The discriminator aims to distinguish the composite image, which is obtained by

overlaying the generated background and the shifted foreground and mask, from real

images. Then, to learn to segment an image, we propose to train a segmentation network

with the generated layered representation. In other words, given a triplet background

image, foreground image, and foreground mask, the segmentation network would

be trained to map the composite image to its corresponding foreground mask. The

segmentation network can be trained either jointly end-to-end with the generative model

as part of the discriminator or separately after the generative model is trained. We

demonstrate that, provided that the generator is trained well, the segmentation network

trained with generated data also generalizes to real images. Finally, these two steps

define our fully unsupervised learning approach to segment objects. We do not make
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use of object detectors, classifiers, bounding boxes, landmarks, or pre-trained networks.

Moreover, the proposed method is quite general, as we demonstrate qualitatively on

several object categories, and quantitatively on the LSUN Car [143], CUB-200-2011

[130], Flowers102 [93] datasets as well as a small diverse saliency detection dataset

DUTS [131], containing multiple categories of objects.

Contributions. This work introduces a new approach to learning unsupervised object

segmentation models using perturbed generative models. We explore various strategies

for training a segmenter with generated layered representations, including end-to-end

training with the generative model itself. Our method proves to generalize e!ectively to

real-world images, even when the quality of generated data is subpar due to the inherent

limitations of GANs on small and diverse datasets. We evaluate our models, achieving

competitive results on several benchmarks. Additionally, we refine the generative

model’s architecture by integrating a conditional generator, which cuts the number of

model parameters by half.

4.1 Learning to Segment without Supervision

Our approach is based on training two main models: A generator G and a segmentation

network S (see Figure 4.1 for an illustration of the proposed method). In the first

model, the generator is trained against a discriminator in an adversarial manner with

a modern Generative Adversarial Network [57]. The generator G learns to generate

composite scene samples in the form of a foreground and a background layer, to the

extent that the discriminator cannot distinguish them from real images. In the second

model, we train a segmentation network S to segment images. We make use of the

generator outputs to produce composite images and corresponding objects masks pairs.

We then use these pairs to train a model that maps the composite images to the masks.

We find that if the generated distribution is close enough to that of real images, the

segmentation network is able to produce meaningful segmentations for real images as

well. In the following sections, we explain our approach more in detail.

4.1.1 A Generative Model of Layered Scenes through Model Pertur-
bation

Similarly to Section 3.2.1, we consider an M →N discrete image domain # ↔ Z2. We

define the representation of a scene as a layered composition of a background image

B : # ↗↑ R, a foreground image F : # ↗↑ R with a foreground mask m : # ↗↑ [0, 1], and

the composite image x̄ : # ↗↑ R defined at each pixel p ↘ # as

x̄[p] = (1↓m[p])B[p] + m[p]F[p]. (4.1)
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This time we define a conditional generator G : Rk → {0, 1} ↗↑ R2↑M↑N through a

Convolutional Neural Network such that, given a k-dimensional input vector z ≃
N (0, Id), it outputs two components for the background class 0, i.e., G(z, 0) =

[GB(z),Gmbg(z)] and two for the foreground class 1, i.e., G(z, 1) = [GF(z),Gm(z)].

Then, we let B
.
= GB(z), F

.
= GF(z) and m

.
= Gm(z). We discard the background mask

output Gmbg(z). The generator is then trained in an adversarial manner against a

discriminator neural network D : RM↑N ↗↑ R (see Figure 4.1). Our implementation is

based on StyleGAN2 [57].

Similarly to Section 3.2.2, we define the composite image with the foreground object

translated by a small shift $ ≃ U([↓ω, ω]→ [↓ω, ω]) as

x̂[p] = (1↓m[p+$])B[p] + m[p+$]F[p+$]. (4.2)

as well as loss terms ensuring that the mask is not empty

Lsize = Ez→N (0,Id)

[
max

{
0, ε ↓ 1

MN
|Gm(z)|1

}]
(4.3)

with a mask size parameter ε ↘ (0, 1), and a loss that encourages the binarization of

the mask

Lbinary = Ez→N (0,Id)

[
min {Gm(z), 1↓Gm(z)}

]
. (4.4)

To train the generator, we minimize the updated StyleGAN2 loss with respect to

GB, GF and Gm

Lgen = Ex̂→px̂
[log(1↓D(x̂))] + ϑ1Lsize + ϑ2Lbinary (4.5)

with ϑ1, ϑ2 > 0 and where px̂ is the probability density function of x̂ as defined via

eq. (4.2) with z ≃ N (0, Id) and $ ≃ U([↓ω, ω]→ [↓ω, ω]). To train the discriminator we

minimize the following loss with respect to D

Ldisc =Ex̂→px̃ [log(1 + D(x̂))] + Ex→px [log(1↓D(x))]

+ ϖEx→px

[
|⇐xD(x)|22

] (4.6)

where px is the probability density function of real images x and ϖ > 0 is the R1

regularization strength, as described in StyleGAN2 [57].

4.1.2 Object Segmentation Trained on Generated Data

For the generated composite image x̂ the object mask Gm(z) is one of the generator

outputs and is known (see Figure 4.1). Therefore we can train a foreground-background

segmentation network S : RM↑N ↗↑ RM↑N that maps an image x̂! to the corresponding



4.1.2 Object Segmentation Trained on Generated Data 51

mask Gm(z). To train the segmentation network, we optimize the binary cross-entropy

loss

Lseg = Ez→N (0,Id)



 1

MN

M∑

i=1

N∑

j=1

↓Gi,j

m (z) log(Si,j(x̂))



 , (4.7)

where we have used the A
i,j notation to indicate the (i, j)-th entry of the 2D array A.

We choose the U-Net [107] architecture for the segmentation network (briefly

described in Section 2.2.2, page 24) and explore three ways to train it:

1. U-Net discriminator with mask prediction. We use a U-Net discriminator

[111] and train the segmentation network as part of the discriminator. The U-Net

discriminator outputs D(x) as the global encoder output as well as Ddec(x) ↘
RM↑N as the decoder output, which is a pixel-specific measure of image realism.

The adversarial loss term for this pixel output is

Ldisc dec =
1

MN

M∑

i=1

N∑

j=1


↓ Ex̂→px̂

[
log(1↓Di,j

dec(x̂))
]

↓ Ex→px

[
log(Di,j

dec(x))
]

(4.8)

+ ϖdecEx→px

∣∣∣⇐xD
i,j

dec(x)
∣∣∣
2

2


.

We add another output channel Dseg to the U-Net decoder so that S(x)
.
= Dseg(x)

represents the predicted object mask. We optimize jointly the segmentation and

discriminator losses

Lunetdisc seg = Ldisc + Ldisc dec + Lseg. (4.9)

2. Discriminator with U-Net mask prediction. We can also omit the U-Net

discriminator output and use the decoder part only for the mask prediction. This

can be achieved by optimizing

Ldisc seg = Ldisc + Lseg. (4.10)

3. U-Net post-training with generated data. We use the pre-trained generator

to create the training data: pairs of the composite image and corresponding mask.

We use the composite image as the input and the mask as pseudo-labels to train

the segmentation network. The generator can be trained with or without the

mask prediction losses from previous methods.
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Table 4.1: Comparison of di!erent segmentation methods on the DUTS-TR and ECSSD

saliency datasets.

Setting Joint training IoU Post-training IoU FID ⇑

DUTS-TR ECSSD DUTS-TR ECSSD

(a) U-Net discriminator + mask 0.687 0.595 0.727 0.659 52.11

(b) U-Net discriminator + mask
+ cutmix

0.681 0.609 0.736 0.658 46.01

(c) Standard discriminator +
U-Net mask prediction

0.726 0.656 0.719 0.651 52.87

(d) Standard discriminator ↑
post-training only

- - 0.739 0.653 50.27

4.2 Implementation

In all experiments, the network architectures and details follow StyleGAN2 [57], except

where noted otherwise in this section. We use the conditional variant of StyleGAN2

[56] and modify it to output a 3 color channel image and a single channel mask. We

sample the generator with the same 512 dimensional Gaussian latent code, but with

di!erent conditional labels to get the outputs that we use for the background (label

0) and the foreground with the mask (label 1). We ignore the mask output for the

background and apply a sigmoid activation function to the foreground mask. This

reduces the generator model size by half compared to our previous approach, where

two separate generators are used for background and foreground generation.

We use mixing with probability 0.9 and feed two latent codes to two parts of the

generator split by a randomly selected crossover point. We set the input and generated

image resolution resolution to 64 or 128 and use a batch size of 64. The local shift

range ω described in Section 4.1.1 is set to ω = 0.125→resolution. We randomly jitter

the background and foreground contrasts in the range (0.7, 1.3) to further prevent

the background from filling parts of the foreground objects. To match the shifts in

the generated data, we first resize the center crop of the real image to a square image

of size 1.125 → resolution and then take a random crop of size resolution. We

train the StyleGAN2 network on real images x and composite images x̂ (eq. (4.2))

by alternatively minimizing the discriminator loss (eq. (4.8)) and the generator loss

(eq. (4.5)). We set the R1 regularization strength in the discriminator loss to ϖ = 0.1.

For the U-Net discriminator, we add the decoder by mirroring the encoder and use

transposed convolutions for upsampling. We then adapt the number of channels in

each layer so that the number of learnable parameters is roughly the same as that of

the single binary output discriminator. We regularize the U-Net discriminator with
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cutmix consistency [111]. In the generator loss we set ϑ1 = 5 for the minimum mask

size term and ϑ2 = 2 for the binarization term. We optimize our GAN with the Adam

optimizer [61] and parameters φ1 = 0, φ2 = 0.99. We use a fixed learning rate of 0.001.

To evaluate our U-Net mask predictor, we first resize the input image to keep

the same scale as during the training, i.e., so that the smaller side is ω = 0.125 →
resolution. Since U-Net is fully convolutional, we can run a forward pass on these

bigger images, occasionally adding reflective padding when the size of the feature maps

from concatenated skip connections does not match.

4.3 Experiments

4.3.1 Datasets

We experiment with 4 datasets of di!erent size and variety. DUTS [131], in particular,

includes multiple categories, presenting a challenge for current GAN models, which tend

to generate higher quality images with large, single-category datasets when additional

labels are not utilized.

LSUN Car [143]. This dataset exhibits a wide range in position, scale, and pose.

We utilize the first 100,000 images of the dataset for training and another 10,000 for

evaluation. As the dataset lacks segmentation annotations, we derive an approximate

mask ground truth for evaluation on generated composite images by employing Mask

R-CNN [42], [83] pre-trained on MS-COCO [77] with a ResNet50 Feature Pyramid

Network backend.

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [130]. We use the data split

from [18]: We train on 10K images, then use 1K images for the test split and 788 for

validation.

Flowers102 [93]. The dataset consists of 8,189 images of flowers and masks obtained

with an automated method specific to this dataset. We use a data split from [18]: 6,149

training images, 1,020 validation images and 1,020 test images.

DUTS [131]. The DUTS dataset stands as a significant challenge for current

generative and segmentation models, containing a wide array of objects drawn from

diverse ImageNet and SUN categories. It contains 10,553 training images and 5,019

test images.

4.3.2 Ablation study

We compare the segmentation methods described in Section 4.1.2 to determine the

most e!ective approach for using our layered generative model to segment real images.

We use the default parameters from Section 4.2 but set the minimum mask size to



54 Chapter 4: Unsupervised Learning of Object Segmentation

ε = 0.15 and train the models on the training split of the DUTS dataset. We explore

the joint generator and segmenter training in the following settings:

(a) A U-Net discriminator with mask prediction (eq. (4.9))

(b) Same as (a) with cutmix regularization [111]

(c) A standard discriminator with U-Net decoder used only for mask prediction

(eq. (4.10))

On top of that, we explore the two-step training (d) when we first train just the

generative model with a standard discriminator and then use the pre-trained generator

to synthesize composite images and pseudo ground-truth to train a U-Net segmenter.

Note, that we can apply the same approach to settings (a)-(c), by discarding the

segmenter trained jointly with the generator and training a new one utilizing only a

pre-trained generative model. In this case, we train the segmentation network for 150K

iterations with a batch size of 64 and a learning rate of 0.001, which we decrease to

0.0002 after 75K iterations.

We use the ECSSD saliency detection dataset [113] of 1K images as a validation

set and report the IoU with the corresponding saliency ground truth. We also show

the evaluation on the training set as it can be useful in the unsupervised setting. To

get a measure of the quality of the generated composite images, we compute the FID

[45] using statistics from 5K images from the training set.

Quantitative results can be found in Table 4.1. We notice that training the U-Net

discriminator jointly with its mask prediction head (settings (a), (b)) gives worse

segmentation results than training a standard discriminator (i.e., just the encoder

part) with the decoder focused solely on the mask prediction (c). In most of the

settings, using the pre-trained generative model to generate synthetic data to then

train a U-Net segmentation network shows improved results that are similar across

the settings. Only in setting (c), the segmentation model trained jointly with the

generative model which is on-par with post-training, proving to be a good choice for a

single end-to-end training. We get the best quality of generated images when using

a U-Net discriminator with cutmix consistency regularization, as shown by the lower

FID value for this setting. For this reason, for the remainder of the experiments we

choose to train a generative model with setting (b) and then use it to generate data to

separately train a segmentation model.

4.3.3 Segmentation results

We train our model on LSUN Car, Flowers102, CUB-200-2011, and DUTS datasets

and compare our results to other methods. For the CUB-200 and Flowers102 datasets,
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(a) CUB-200 (b) Flowers102

(c) LSUN Car (d) DUTS

Figure 4.2: Generated backgrounds, foregrounds, masks, foregrounds with mask applied

and composite images for 4 di!erent image datasets. Last two columns in each dataset

show generator failures, e.g., an object in the background or an unrealistic foreground.

we set the generator’s resolution to 64→ 64; for the DUTS and LSUN Car datasets, we

increase the resolution to 128→ 128. Except for LSUN Car, we train the generative

model for 1K epochs, which corresponds to 150K iterations on DUTS and CUB-200

datasets and 90K iterations for Flowers102. For the larger LSUN Car dataset we

train for 600K iterations. For CUB-200 and Flowers102 we adopt the evaluation

strategy of other methods and compute the metrics on center crops of the images.

We report intersection over union between the predicted and ground truth masks,

IoU =
|mpred↓mgt|
|mpred↔mgt|

, pixel accuracy, and Fω = (1+ω
2)Precision↑Recall

ω2Precision+Recall score with φ
2 = 0.3.

Following previous works [85], we report Fω for the saliency dataset and maxFω
1 for

Flowers and CUB-200 datasets.

1maxFω is the maximum Fω value selected from di!erent binarization thresholds
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(a) CUB-Birds

(b) DUTS-TE

(c) LSUN Car

(d) Flowers102

Figure 4.3: Qualitative (not cherry-picked) results of segmentation on CUB-200, DUTS,

LSUN Car and Flowers102 datasets. First row: segmented image. Second row:

segmentation results. Third row: ground truth segmentation.

Qualitative results of the generative model

In Figure 4.2 we show some examples of outputs produced by the generators from

random samples in the Gaussian latent space. From the first to the fifth row in

each quadrant: generated background layer, generated foreground layer, generated

foreground mask, product between the mask and the foreground layer, and final

composite image. As shown, the generator is able to learn very accurate foreground-

background segmentations and texture. In some cases, the exact separation between

object and background is not successful. This can be seen in the last two columns for
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each dataset. Simpler datasets containing one category of images, like CUB-200 and

Flowers102, show especially good results. DUTS is a relatively small dataset with a

large variety of objects, a setting that is challenging for current GAN methods. While

the quality of the generated images is worse than in the case of the other datasets, we

can still observe some meaningful foreground objects being generated. LSUN Car is a

larger dataset that does not always have a main object of interest, has a lot of outliers,

and shows a large variety in appearance, scale, pose, and position of the objects. We

are able to generate meaningful segmentations and textures of cars, but we also notice

failure cases more often.

Qualitative results of the segmentation model

We show qualitative results of our segmentation prediction for each dataset in Figure 4.3,

where the first row is a real image from the test set, the second row is our mask prediction

and the third row is the ground truth segmentation (or approximated ground truth for

LSUN Car). We can see how some discrepancies between our masks and the ground

truth may result from the learning rule that we employ: That is, in the first image

of the CUB-Birds dataset, our model selects the bird with its reflection on the water,

since probably it has learned that shifting the bird alone would not render a realistic

image. We find that we are often able to produce meaningful segmentations for the

DUTS dataset, although the quality of the generated images for DUTS is somewhat

lacking due to the small size of the dataset, the presence of multiple classes, and current

GAN limitations. There is also an inherent ambiguity in the choice of what object to

segment. Thus, our evaluation with a fixed ground truth provides a limited view on

the actual performance of our trained segmentation network. Segmentations for the

LSUN car dataset are sometimes better than the approximated ground truth that we

obtained with the supervised segmentation model [83]. The ground truth masks for

Flowers102 were also generated with automated methods and in many cases our masks

seem to be more precise.

Quantitative comparison with other methods

We compare our method with several other approaches for unsupervised segmentation.

The results are in Tables 4.2, 4.3, 4.4, and 4.5 for CUB-200, Flowers102, LSUN car,

and DUTS respectively. ReDO [18] and IEM [110] are two methods designed for

unsupervised segmentation, one relying on training a GAN to redraw object segments,

the other on maximizing the inpainting error over the two partitions of the image.

Voynov [129] and Melas-Kyriazi [85] find a direction in the ImageNet pre-trained GAN’s

latent space that can be used for background removal and then train a segmentation

network with the generated data. HS [138], wCtr [156] and WSC [73] are unsupervised
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Table 4.2: Comparison of unsupervised segmentation results on the CUB-200-2011 test

set. Methods with ε use extra data (e.g. ImageNet for unsupervised GAN training)

Method IoU Accuracy maxFω

Voynovε [129] 0.683 93.0 0.794

Voynov-Eε [129] 0.710 94.0 0.834

Melas-Kyriaziε [85] 0.664 92.1 0.783

PerturbGAN [10] 0.360 - -

ReDO [18] 0.426 84.5 -

IEM [110] 0.551 89.3 -

Ours 0.784 96.1 0.890

Table 4.3: Comparison of unsupervised segmentation results on the Flowers102 dataset.

Methods with ε use extra data (e.g. ImageNet for unsupervised GAN training)

Method IoU Accuracy maxFω

Voynovε [129] 0.540 76.5 0.760

Voynov-Eε [129] 0.804 90.4 0.878

Melas-Kyriaziε [85] 0.541 79.6 0.723

ReDO [18] 0.764 87.9 -

IEM [110] 0.789 89.6 -

Ours 0.807 90.4 0.884

Table 4.4: Comparison of unsupervised segmentation results on the LSUN car dataset.
εThere are some di!erences between test sets in each method (that is why we do not

indicate the top performance in boldface).

Method IoU Accuracy

PerturbGANε [10] 0.54 -

IEMε [110] 0.632 77.8

Ours 0.621 84.8

methods for saliency detection. We cannot directly compare the metrics on the LSUN

Car dataset since there are no published data splits for this dataset; we use 10K images

that we did not use in the training sets. In the Flowers102 dataset, the ground truth

is computed automatically from the images and its accuracy is not always high (e.g.,

we see in Figure 3.6 several cases where the ground truth mask is empty or inverted,

while our method provides a meaningful segmentation). For all datasets, we show that
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Table 4.5: Comparison of saliency detection methods on the DUTS dataset. † results

from [85]. ‡ results from [92]. ε methods use extra data (e.g. ImageNet for unsupervised

GAN training). εε initialized with a pre-trained supervised segmentation network.

Method IoU Accuracy Fω

Handcrafted Methods

RBD‡ [156] - - 0.510

DSR‡ [74] - - 0.558

MC‡ [51] - - 0.529

HS‡ [138] - - 0.521

Deep Ensembles of Handcrafted Methods

SBF‡ [146] - - 0.583

USDεε‡ [150] - - 0.716

USPSεε [92] - - 0.736

Unsupervised Methods

Voynovε† [129] 0.508 88.1 0.600

Melas-Kyriaziε [85] 0.528 89.3 0.614

Ours 0.517 88.6 0.613

we outperform or match other unsupervised methods in terms of accuracy, IoU, and

Fω without relying on any models pre-trained on bigger datasets.

4.4 Discussion

We have introduced a new framework to learn foreground-background segmentation

without using manual annotation. The key idea is to use generated images of scenes

and corresponding object masks as pseudo ground-truth, which can be used to train a

segmentation network in a supervised manner. This can be done jointly with training

the layered generative model, which allows for a single end-to-end training of the

segmenter from a collection of images, or by training the segmenter separately while

using a pre-trained generator to produce a synthetic dataset. To build such a generative

model in a completely unsupervised way we propose to train a conditional generator

by using the principle that valid object segments can be locally shifted relative to

their background and still yield a realistic image. As we show in our experiments,

this principle allows a generative network to learn an image decomposition model

from a dataset of images. The quality of the generated dataset strongly relies on the

accuracy of the generative model, which we built with modern adversarial techniques.
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However, we show that even though the quality of generated composite images may be

subpar due to GAN limitations, we are still able to train accurate segmentation models

that generalize to real-world datasets. We expect that further progress in generative

modeling will improve both the layered image generation and the generalization of

segmenters trained on such synthetic datasets.



Chapter 5

MOVE: Unsupervised Movable
Object Segmentation and
Detection

In Chapters 3 and 4 we introduce methods that utilize Generative Adversarial Networks

and the cohesive motion property of objects to train unsupervised object segmentation

models from a collection of images only. Our learning rule requires shifting the predicted

object in a scene. By using a generative model to produce separate background and

foreground layers, which would later be composed into a scene, we avoid the necessity

to inpaint the background behind the object, which would otherwise be exposed if

we were to shift objects in a real image. However, relying on generating scenes with

GANs has its limitations, which become apparent in the experiments. The quality of

generated data depends on the size of the dataset, homogeneity, and objects’ alignment.

The variety of outputs may be limited due to common problems with mode collapse.

We now introduce MOVE, a novel method to segment objects without any form

of supervision. As a proxy signal, we use the movability of objects, i.e., whether they

can be locally shifted in a realistic manner. This property holds for objects in the

foreground, as they occlude all other objects in the scene. This basic idea has already

been exploited in prior work with relative success. Nevertheless, here we introduce

a novel formulation based on movability that yields a significant performance boost

across several datasets for salient object detection.

In our approach, it is not necessary to move objects far from their initial location

or to other images [3, 97] and thus we do not have to handle the context mismatch. It

is also not necessary to employ models to generate entire scenes [10, 140], which can

be challenging to train. Instead, in MOVE we rely on inpainting and show how we can

use it to our advantage to get an additional signal driving object segmentation.

61
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correct

larger

smaller

input image

inpainted  
background

shifted foreground + 
inpainted background

predicted mask foreground (no-shift) + 
inpainted background

detail: 
repeated  
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detail: 
background  
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(a) (b) (c) (d) (e)

Figure 5.1: Exploiting inpainting and movability. (a) Input image. (b) Examples of

predicted segmentation masks: correct (top), larger (middle), and smaller (bottom). (c)

Inpainted backgrounds in the three corresponding cases. (d) Composite image obtained

by shifting the foreground object in the three cases. (e) It can be observed that when

the mask is incorrect (it includes parts of the background or it does not include all of

the background), the background inpainting combined with shifting reveals repeated

patterns and mismatching background texture when compared to the original input

image or composite images obtained without shifting.

Suppose that, given a single image (Figure 5.1 (a)), we predict a segmentation

mask (one of the 3 cases in Figure 5.1 (b)). With the mask, we can remove the object

and inpaint the background (Figure 5.1 (c)). Then, we can also extract the foreground

object, randomly shift it locally, and paste it on top of the inpainted background

(Figure 5.1 (d)). When the mask does not accurately follow the outline of a foreground

object (e.g., as in the middle and bottom rows in Figure 5.1), we can see duplication

artifacts (of the foreground or of the background). We exploit these artifacts as a

supervision signal to detect the correct segmentation mask. As the inpainter, we use a

publicly available Masked AutoEncoder (MAE) [44] trained with an adversarial loss.1

Inpainting may also introduce artifacts unrelated to the incorrect segmentation mask,

which cannot be fixed and may a!ect the detection of the artifacts we are concerned

with. However, we propose methods to minimize their impact. Our segmenter uses

a pre-trained SSL ViT as a backbone (e.g., DINO [17] or the MAE encoder [44]).

We then train a neural network head based on an upsampling Convolutional Neural

1https://github.com/facebookresearch/mae/blob/main/demo/mae_visualize.ipynb

https://github.com/facebookresearch/mae/blob/main/demo/mae_visualize.ipynb
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Network (CNN). Following [114], we also further refine the segmenter by training a

second segmentation network (SelfMask [114]) with supervision from pseudo-masks

generated by our trained segmenter. Even without these further refinements MOVE

shows a remarkable performance on a wide range of datasets and tasks. In particular,

in unsupervised single object discovery on VOC07, VOC12 and COCO20K it improves

the SotA CorLoc between 6.1% and 9.3%, and in unsupervised class agnostic object

detection on COCOval2017 it improves the AP50 by 6.8% (a relative improvement of

56%), the AP75 by 2.3% (relative 55%) and the AP by 2.7% (relative 49%).

5.1 Background

In Section 2.3.4, page 28, we presented an overview of self-supervised methods and how

they can be used for unsupervised object segmentation. Most prior work based on SSL

features defines some form of clustering by either using attention maps [2, 135, 142]

or similarity graphs [114, 115, 136]. Extracting masks directly from features usually

produces coarse masks due to downsampling in Convolutional Neural Networks or

tokenization of image patches in Vision Transformers. To improve the precision of

the generated masks, either strong post-processing [7, 136] or smoothing via post-

training [84, 114, 135] is required. In contrast, MOVE learns to produce high-resolution

precise masks directly from images via our movability training rule. We use self-

supervised models as a strong backbone and as an inpainter, instead of developing

methods that extract masks from the features directly for each image. Our working

principle partly exploits observations also made by [58, 110, 141]. They point out that

the correct mask maximizes the inpainting error both for the background and the

foreground. However, using the inpainting reconstruction error as a supervision signal

may be too ambiguous to segment the entire objects precisely. Instead, we rely on the

detection of artifacts generated through shifting, which we find to provide stronger

guidance.

5.2 Method

Our objective is to train a segmenter to map a real image x ↘ RH↑W↑3, with H the

height and W the width of the image, to a mask m ↘ RH↑W of the foreground, such

that we can synthesize a realistic image for any small shifts of the foreground. The

mask allows to cut out the foreground from x and to move it arbitrarily by some ω ↘ R2

shift (see Figure 5.2, top-left). However, when the shifted foreground is copied back

onto the background, missing pixels remain exposed. Thus, we inpaint the background
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Figure 5.2: Synthetic and real images used to learn how to segment foreground objects.

We obtain the predicted mask and inpainted background from our segmenter and MAE

respectively. We train the segmenter in an adversarial manner so that the composite

image with a shifted foreground (left, top row) looks real. A discriminator is trained

to distinguish two types of real (right) from two types of fake (left) images. The fake

images consist of the composite image with a shift and a copy-paste image, obtained

by placing the shifted foreground on top of the input image. The set of real images

consists of composite images without a shift and the real images. The real images are

first autoencoded with MAE to match the artifacts of the inpainted background.

with a frozen pre-trained MAE2 and obtain b̂ (see Figure 5.3). Moreover, there is a

di!erence between the texture of b̂, which is generated from a neural network, and

the texture of the cut out foreground from x, which is a real image. To ensure more

similarity between these two textures, we synthesize x̂ϑ by extracting the foreground

from the autoencoding (AE) of the input image x shifted by ω, which we call x̌ϑ, and

by pasting it onto the background b̂.

We enforce the realism of the synthesized images x̂ϑ by using adversarial training,

i.e., by training the segmenter against a discriminator that distinguishes two sets of real

(Figure 5.2, right hand side) from two sets of fake images (Figure 5.2 left hand side).

The synthetic real image x̂ϑ=0 is obtained by composing a zero-shifted foreground with

the inpainted background; the second real image x̌ is instead simply the AE of x. The

two fake images are obtained by composing a ω-shifted foreground with either the

inpainted background b̂ or x̌, and obtain x̂ϑ and x̃ϑ respectively.

We introduce all the above synthetic images so that the discriminator pays attention

only to artifacts due to incorrect masks from the segmenter. Ideally, the segmenter

should generate masks such that the fake image x̂ϑ looks as realistic as x̌ for any

small ω. However, the discriminator might distinguish these two images because of the

2The MAE [44] we use is based on a ViT architecture and has been pre-trained in an adversarial

fashion (as opposed to the standard training with an MSE loss) to output more realistic-looking details
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Figure 5.3: (Left) The segmenter is built on top of SSL features from a frozen encoder.

To define the inpainting region for the background, the predicted mask is shifted and

combined with the unshifted mask (bottom left). For better visualization purposes we

highlight the edge of the shifted mask, but this does not appear in the actual union of

the masks. This mask union is then downsampled to the size of the tile grid via max

pooling and denoted m̂. (Right) The inpainter is based on a frozen MAE. First, it

takes all the tiles from the input image and feeds them to the MAE encoder. Second,

it takes a convex combination between the encoder embeddings and the MSK learned

embedding (but now frozen), where the convex combination coe”cients are based on

the downsampled mask m̂. Finally, this combination is fed to the MAE decoder to

generate the inpainted background.

background inpainting artifacts and not because of the artifacts due to an incorrect

segmentation (which are exposed by random shifts). To avoid this undesired behavior,

we also introduce the real image x̂ϑ=0. This image has no segmentation artifacts

for any mask, but has the same background inpainting artifacts as the fake images

(although there is no shift in x̂ϑ=0, the background inpainting creates artifacts beyond

the boundaries of the segmentation mask). Finally, to guide the discriminator to detect

repeated patterns (as those caused by incorrect masks, see Figure 5.1) instead of the

expected inpainting artifacts, we also add a fake image x̃ϑ, where the background has

the original foreground.
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The segmenter is trained only through the backpropagation from x̂ϑ. The details

of the segmentation network, the inpainting network, and the adversarial training are

explained in the following sections.

5.2.1 Segmenter

Following the recent trend of methods for unsupervised object segmentation [2, 84, 114,

115, 135, 136, 142], we build our method on top of SSL features, in particular, DINO

[17] or MAE [44] features. Thus, as a backbone, we adopt the Vision Transformer

(ViT) architecture [28]. Following the notation in [115], we split an image x ↘ RH↑W↑3

in tiles of size P → P pixels, for a total of N = HW/P
2 tiles (and we assume that H

and W are such that H/P and W/P are integers). Each tile is then mapped through a

trainable linear layer to an embedding of size d and an additional CLS token is included

in the input set (see Figure 5.3 left).

The segmenter network is a CNN that takes SSL features as input (e.g., from a

pre-trained DINO or MAE encoder), upsamples them and then outputs a mask for the

original input image. The final output is generated by applying a sigmoid function to

ensure that the mask values are always between 0 and 1. We also ensure a minimum

size of the support of the predicted mask by using

Lmin =
1

n

n∑

i=1

max


↼min ↓

∑

p

m
(i)[p]

HW
, 0


(5.1)

where n is the number of images in the training dataset, m(i) is the predicted mask

from image x
(i), p is a pixel location within the image domain, and ↼min is a threshold

for the minimum mask coverage percentage respectively (in the range [0, 1], where 0

implies that the mask is empty and 1 implies that the mask covers the whole image).

Since masks should only take binary values to clearly indicate a segment, we use a loss

that encourages m(i) to take either 0 or 1 values

Lbin =
1

n

n∑

i=1

1

HW

∑

p

min

m

(i)[p], 1↓m
(i)[p]


. (5.2)

5.2.2 Di!erentiable inpainting

Inpainting mask

The main task of MOVE is to predict a segmentation mask that can be used to

synthesize a realistic image, where the foreground object is shifted on top of the

inpainted background (see Figure 5.1 (e) top and Figure 5.2 top left). Figure 5.3 shows

how we use the predicted high-resolution mask for inpainting with MAE. Since MAE

performs inpainting by masking or retaining entire patches of P ↗ → P
↗ pixels, it is
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Table 5.1: Inpainting error for a pre-trained MAE on 5000 images from the ImageNet

validation set: Feeding a subset of tokens to the encoder (Default) vs soft-masking

before the decoder (Modified). $ is the mean squared error between the inpainted

regions for two methods

MAE Model Default Modified $

w/ GAN 0.0683± 0.0427 0.0647± 0.0398 0.0070± 0.0059

w/ MSE 0.0639± 0.0411 0.0617± 0.0390 0.0055± 0.0056

necessary to also split the segmentation mask into a grid of tiles of P ↗ → P
↗ pixels and

to map each tile to a single scalar between 0 and 1. We do that by applying a max

pooling operation within each tile and obtain a low-resoluton mask m̂, such that 1↓ m̂

does not contain any part of the predicted mask.

However, using max pooling for downsampling might result in inpainting more than

necessary due to the artifacts in the mask. To avoid such cases we apply our Lmin and

Lbin losses (eq. (5.1),(5.2)) on the downsampled mask as well. Having a binarization

loss on the mask downsampled with max pooling has an extra regularizing e!ect on

the original mask. For example, when all mask pixels in a patch have a value below 0.5,

the binarization loss on the max pooling of the mask will push only the largest value

towards 0. This creates an asymmetry when the pixels of the mask must be reduced,

which prioritizes the largest values. Eventually, however, the application of this loss

over multiple iterations will result in pushing all pixels within the patch to 0.

Modified inpainting with MAE

We feed the entire set of image tiles to the MAE encoder and obtain embeddings

↽1, . . . , ↽N . Next, for j = 1, . . . , N , we compute the convex combination between the

embeddings ↽j and the learned MSK (masked) token from MAE by using the low

res mask m̂ as ↽̂j = m̂[j] · ↽MSK + (1 ↓ m̂[j]) · ↽j . The MSK token indicates a patch

that should be reconstructed. Finally, we feed the new embeddings ↽̂j in the MAE

decoder and reassemble the output tiles back into the inpainted background image b̂

(see Figure 5.3 bottom-right). This is in contrast to the typical use of MAE, where

only the subset of “visible” tiles is fed as input to the encoder during training (see

Figure 2.2, page 28). However, such tile selection operation would make the inpainting

not di!erentiable.

Since in MOVE we feed all the patches to the encoder, it is possible that the

encoded embeddings contain information about their neighbors. In particular, there

is a risk that the unmasked encoded patches would contain information about the

masked patches. If that were the case, the decoder would be able to inpaint the
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Input Masked input MAE GAN - Def. MAE GAN - Mod. MAE MSE - Def. MAE MSE - Mod.

Figure 5.4: Comparison of MAE sparse input vs di!erentiable mask inpainting. We

show the input and masked input image in the two first columns. For MAE trained

with a GAN loss or with an MSE loss we show the reconstructed image when we feed

a sparse subset of tokens to the encoder (Def.) and when we feed all the tokens to

the encoder and mask only before feeding the embeddings to the decoder (Mod.). No

significant di!erence can be observed between these two reconstruction modalities in

terms of missing object reconstruction.

masked object even when the entire object is masked at the decoder input. We show

empirically and quantitatively that this is not the case. Using the same pre-trained

MAE, we compare the reconstruction error for the original inference vs. our modified

soft-masking inference. We run the evaluation on a subset of 5000 images from the

ImageNet validation set [25], randomly masking between 80% and 95% of the tokens.

We show the mean squared error of the intensity for intensity range [0; 1] in Table 5.1

and comparison of reconstructed images in Figure 5.4 for both MAE trained with a

GAN loss or with an MSE loss. We find that the di!erence in the inpainting error is

not significant. Moreover, we observe visually that the reconstructions through the
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Modified soft-masking (MOVE) do not show a better reconstruction of the masked

patches than in the Default case where the masked patches are not provided to MAE.

5.2.3 Adversarial training

Figure 5.2 shows how we create the images used in the adversarial training. First,

we mask the input image with the predicted mask and compose with the inpainted

background image, obtaining

x̂ϑ[p] = mϑ[p]x̌[p+ ω] + (1↓mϑ[p])b̂[p], (5.3)

where mϑ[p] = m[p + ω], ω ↘ [↓$H,$H] → [↓$W,$W ] is a 2D shift, with $ the

maximum shift range (relative to the image size). To make the inpainting artifacts in

the no-shift composite image x̂ϑ=0 more comparable to those in the shifted composite

image, we define the background inpainting region as the union between the predicted

mask and its shifted version (see Figure 5.3). Thus,

m̂ = maxpoolP (1↓ (1↓m)⇒ (1↓mϑ)). (5.4)

To improve the discriminator’s ability to focus on repeated patterns artifacts instead of

the expected inpainting artifacts, we additionally create fake images with a predicted

shifted foreground pasted on top of the autoencoded image, obtaining x̃ϑ = x̌ϑ ⇒mϑ +

x̌⇒ (1↓mϑ).

The adversarial loss for the discriminator can be written as

LadvD = ↓IExR min{0, D(xR)↓ 1}↓ IExS min{0,↓D(xS)↓ 1} (5.5)

where samples for “real” images xR are the set {x̌(i)}i=1,...,n

{x̂(i)

ϑ=0}i=1,...,n and samples

for synthetic images xS are the set {x̂(i)
ϑ
}i=1,...,n


{x̃(i)

ϑ
}i=1,...,n, with uniform random

samples ω ≃ U2([↓$H,$H ]→ [↓$W,$W ]) and IE denotes the expectation. To speed

up the convergence, we also use the projected discriminator method [109]. For the

segmenter, we use instead the standard loss computed on the composite shifted images

LadvS = ↓IEx̂ε
D(x̂ϑ). (5.6)

Finally, with ϖmin, ϖbin nonnegative hyperparameters, our optimization is the

adversarial minimization

S
↘ =argmin

S

LadvS + ϖminLmin + ϖbinLbin (5.7)

subject to D
↘ = argmin

D

LadvD. (5.8)



70 Chapter 5: MOVE: Unsupervised Movable Object Segmentation

5.3 Implementation

Except for the ablation studies, in all our experiments we use a self-supervised DINO

[17] ViT-S/8 transformer pre-trained on ImageNet [25] as an SSL feature extractor.

We take the output of the penultimate transformer block of DINO as the feature

tokens with P = 8 and feed them to the segmenter. Our segmenter is a small

upsampling convolutional neural network. It assembles the DINO features into a

grid of size H/P →W/P and processes them with 3 upsampling blocks, so that the

output matches the input image resolution. Each upsampling block first performs

a 2 → 2 nearest upsampling, followed by a 3 → 3 convolutional layer with padding,

batch normalization [47] and a LeakyReLU activation function. We add an additional

block without upsampling followed by a linear projection to 1 channel, representing

the mask. Our inpainting network is a ViT-L/16 transformer pre-trained on ImageNet

as a self-supervised Masked Autoencoder (MAE) [44] with an adversarial loss to

increase the details of the reconstructed images. For the discriminator we use the

Projected Discriminator [109] in its standard setting, but we only use color di!erentiable

augmentation. For the training we use random resized crops of size 224 with a scale in

range (0.9, 1) and aspect ratio (3/4, 4/3). We set the minimum mask area ↼min = 0.05,

the minimum loss coe”cient ϖmin = 100 and we linearly ramp up the binarization loss

coe”cient ϖbin from 0 to 12.5 over the first 2500 segmenter iterations. We use the shift

range $ = 1/8. We train the segmenter by alternatively minimizing the discriminator

loss and the segmenter losses. Both are trained with a learning rate of 0.0002 and an

Adam [61] optimizer with betas = (0, 0.99) for the discriminator and (0.9, 0.95) for the

segmenter. We implemented our experiments in PyTorch [101]. We train our model

for 80 epochs with a batch size of 32 on a single NVIDIA GeForce 3090Ti GPU with

24GB of memory.

5.4 Experiments

5.4.1 Unsupervised saliency segmentation

Datasets

We train our main model using the train split of the DUTS dataset (DUTS-TR) [131],

containing 10,553 images of scenes and objects of varying sizes and appearances. We

emphasize that we only use the images without the corresponding ground truth. For

comparison, we evaluate our approach on three saliency detection datasets: the test set

of DUTS (5,019 images), DUT-OMRON [139] (5,168 images) and ECSSD [113] (1,000

images). We report three standard metrics: pixel mask accuracy (Acc), Intersection

over Union between the predicted and ground truth mask IoU =
|mpred↓mgt|
|mpred↔mgt|

, maxFω,
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Table 5.2: Comparison to the unsupervised saliency detection methods on 3 benchmarks

Model
DUT-OMRON [139] DUTS-TE [131] ECSSD [113]

Acc IoU maxFω Acc IoU maxFω Acc IoU maxFω

HS [138] .843 .433 .561 .826 .369 .504 .847 .508 .673
wCtr [156] .838 .416 .541 .835 .392 .522 .862 .517 .684
WSC [73] .865 .387 .523 .862 .384 .528 .852 .498 .683
DeepUSPS [92] .779 .305 .414 .773 .305 .425 .795 .440 .584
SelfMask pseudoω [114] .811 .403 - .845 .466 - .893 .646 -
BigBiGAN [129] .856 .453 .549 .878 .498 .608 .899 .672 .782
E-BigBiGAN [129] .860 .464 .563 .882 .511 .624 .906 .684 .797
Melas-Kyriazi et al. [85] .883 .509 - .893 .528 - .915 .713 -
LOST [115] .797 .410 .473 .871 .518 .611 .895 .654 .758
Deep Spectral [84] - .567 - - .514 - - .733 -
TokenCut [136] .880 .533 .600 .903 .576 .672 .918 .712 .803
FreeSOLO [135] .909 .560 .684 .924 .613 .750 .917 .703 .858
MOVE (Ours) .923 .615 .712 .950 .713 .815 .954 .830 .916

LOST [115] + Bilateral .818 .489 .578 .887 .572 .697 .916 .723 .837
TokenCut [136] + Bilateral .897 .618 .697 .914 .624 .755 .934 .772 .874
MOVE (Ours) + Bilateral .931 .636 .734 .951 .687 .821 .953 .801 .916

SelfMask on pseudoω [114] .923 .609 .733 .938 .648 .789 .943 .779 .894
SelfMask on pseudoω [114]
+ Bilateral

.939 .677 .774 .949 .694 .819 .951 .803 .911

SelfMask on MOVE (Ours) .933 .666 .756 .954 .728 .829 .956 .835 .921

SelfMask on MOVE (Ours)

+ Bilateral

.937 .665 .766 .952 .687 .827 .952 .800 .917

ϑWe found that SelfMask’s maxFω metric was computed with an optimal threshold for each image

instead of the entire dataset as in other methods; we re-evaluated their model for a fair comparison

where Fω = (1+ω
2)Precision↑Recall

ω2Precision+Recall for φ
2 = 0.3; the maxFω is the score for the single

optimal threshold on a whole dataset. Additionally, we report the IoU on the test split

[18] of CUB-200-2011 (CUB-Birds) [130] dataset.

Evaluation

We train our segmenter in an adversarial manner as specified in sections 5.2 and 5.3

and evaluate it on the test datasets. We compare with other methods in Table 5.2.

Note that without any type of post-processing of our predicted masks, we surpass all

other methods by a significant margin. We also follow [114, 136] and further refine our

masks with a bilateral solver [7]. Since the bilateral solver only marginally improves
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Figure 5.5: Qualitative evaluation of MOVE on ECSSD, DUTS-TE and DUT-OMRON.

First row: input image; second row: MOVE; third row: SelfMask on MOVE; last row:

ground truth. Best viewed in color. More examples in Figures 5.8, 5.9, 5.10.

Input Ground
truth

MOVE MOVE +
bilateral

Input Ground
truth

MOVE MOVE +
bilateral

Figure 5.6: A refinement with the bilateral solver might cause the shrinking of valid

predicted masks.

or even decreases the quality of our segmentation, we conclude that our predicted

masks are already very accurate. Using the bilateral solver might also inadvertently

discard correct, but fragmented segmentations, as we show in Figure 5.6. Next, we

extract the predicted unsupervised masks from the DUTS-TR dataset and use them as

pseudo ground-truth to train a class-agnostic segmenter. We use the same architecture

(a MaskFormer [21]) and training scheme as SelfMask [114]. We then evaluate again

on the saliency prediction datasets. Without additional pre-processing our method

surpasses or is on par with the SotA across all metrics and datasets. While additional

processing with the bilateral solver seems to benefit SelfMask [114], it mostly hurts

the performance of our method. Figure 5.5 shows qualitative results of our method.

Finally, we evaluate our method on the test set of CUB-Birds dataset. Additionally, we

train our model on the train split of CUB-Birds dataset and run the same evaluation.

We present the comparison with other methods in Table 5.3 and show that we achieve
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Table 5.3: Comparison of unsupervised segmentation methods on the CUB-200-2011

test set. MOVEε was trained on the CUB-200-2011 train set, while MOVE was trained

on DUTS-TR

Method IoU

PerturbGAN [10] 0.360

ReDO [18] 0.426

IEM [110] 0.551

Melas-Kyriazi [85] 0.664

Voynov [129] 0.683

Voynov-E [129] 0.710

Deep Spectral [84] 0.769

MOVE
ε

0.814

MOVE 0.858

state-of-the-art performance. In Figures 5.8, 5.9, 5.10 we show more segmentation

results of MOVE on DUTS-TE, DUT-OMRON and ECSSD.

5.4.2 Single-object discovery

Datasets

We evaluate our trained model (see section 5.4.1) on 3 typical single-object discovery

benchmarks: the train split of COCO20K [76, 127] and the trainval splits of VOC07

[31] and VOC12 [32]. Following [22, 26, 115, 117, 126–128, 136], we report the Correct

Localization metric (CorLoc), i.e., the percentage of images in which the predicted

single bounding box matches at least one of the ground truth boxes with IoU > 0.5.

Evaluation

Since our method tends to produce a single segmentation mask for multiple objects in

the scene, we separate the objects by detecting connected components via OpenCV

[13]. We then convert the separate masks to bounding boxes and choose the biggest

one as our prediction for the given image. In Table 5.4, we compare MOVE with

other unsupervised methods and we show that just by using processed masks from our

method we achieve state-of-the-art results on all three datasets, outperforming even

methods that used their bounding boxes to train a Class Agnostic Detector (CAD). We

present qualitative results for object detection in Figure 5.7. We also follow the practice

of [115, 136] and use our predicted bounding boxes as pseudo-ground truth for training

the CAD on each of the evaluation datasets. To train the detector, we use either
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Table 5.4: Comparisons for unsupervised single object discovery. We compare MOVE

to SotA object discovery methods on VOC07 [31], VOC12 [32] and COCO20K [76, 127]

datasets. Models are evaluated with the CorLoc metric. +CAD indicates training a

second stage class-agnostic detector with unsupervised “pseudo-boxes” labels. (⇓ z)

indicates an improvement of z over prior SotA

Method VOC07 VOC12 COCO20K

Selective Search [115, 122] 18.8 20.9 16.0
EdgeBoxes [115, 157] 31.1 31.6 28.8
Kim et al. [60, 115] 43.9 46.4 35.1
Zhange et al. [115, 152] 46.2 50.5 34.8
DDT+ [115, 137] 50.2 53.1 38.2
rOSD [115, 127] 54.5 55.3 48.5
LOD [115, 128] 53.6 55.1 48.5
DINO-seg [17, 115] 45.8 46.2 42.1
FreeSOLO [135] 56.1 56.7 52.8
LOST [115] 61.9 64.0 50.7
Deep Spectral [84] 62.7 66.4 52.2
TokenCut [136] 68.8 72.1 58.8
MOVE (Ours) 76.0 (⇓ 7.2) 78.8 (⇓ 6.7) 66.6 (⇓ 7.8)

LOD + CAD[115] 56.3 61.6 52.7
rOSD + CAD [115] 58.3 62.3 53.0
LOST + CAD [115] 65.7 70.4 57.5
TokenCut + CAD [136] 71.4 75.3 62.6
MOVE (Ours) + CAD 77.1 80.3 69.1
MOVE (Ours) Multi + CAD 77.5 (⇓ 6.1) 81.5 (⇓ 6.2) 71.9 (⇓ 9.3)

the largest or all the bounding boxes (Multi) that we obtained from the connected

components analysis and after filtering those that have an area smaller than 1% of

the image. For the evaluation we take the bounding box with the highest prediction

confidence, as done in [115, 136]. We use the exact same architecture and training

scheme as our competitors for a fair comparison. Training with a single bounding box

improves the performance of our method, while training with multiple ones gives it a

significant additional boost. In Figures 5.11, 5.12, 5.13 we show more object detection

results of MOVE on VOC07, VOC12, and COCO20k.

Unsupervised class-agnostic object detection

We evaluate our unsupervised object detection model trained on COCO20K with CAD

post-training and compare it with SotA on unsupervised class-agnostic object detection.
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Figure 5.7: Qualitative evaluation of object detection of MOVE on VOC07, VOC12

and COCO20k. Red is the ground truth, yellow is our prediction. More examples in

Figures 5.11, 5.12, 5.13.

Table 5.5: Unsupervised class-agnostic object detection on MS COCO val2017. Com-

pared results are taken directly from FreeSOLO [135]

Method AP50 AP75 AP AR1 AR10 AR100

Sel.

Search [122]

0.5 0.1 0.2 0.2 1.5 10.9

DETReg [5] 3.1 0.6 1.0 0.6 3.6 12.7

FreeSOLO [135] 12.2 4.2 5.5 4.6 11.4 15.3

MOVE

(Ours)

19.0 6.5 8.2 5.7 13.6 15.9

In Table 5.5, we evaluate MOVE on COCOval2017 and report Average Precision (AP)

and Average Recall (AR), as in [135]. MOVE yields a remarkable relative improvement

over the AP SotA of 50% on average.

5.4.3 Ablation study

We perform ablation experiments on the validation split (500 images) of HKU-IS [72]

to validate the relative importance of the components of our segmentation approach.

For the ablation study, we train each model for 80 epochs on DUTS-TR. We report the

IoU in Table 5.6. Our baseline model trained with 3 di!erent seeds gives a mean IoU

0.818 with std = 0.008. Thus we only report results for a single run in all experiments.

Mask losses. We validate the importance of the mask losses: minimum mask area,

binarization, and losses on downsampled max-pooled and avg-pooled masks. We find

that the minimum area loss is necessary for our method to work, otherwise there is no

incentive to produce anything other than empty masks. Removing the binarization loss
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Table 5.6: Ablation study. Models evaluated on HKU-IS-val

Setting IoU

Baseline (shift 2 /16) 0.819

no min. mask 0.000

no binarization loss 0.774

no pooled mask losses 0.811

no shift 0.000

shift 1/16 0.751

shift 3/16 0.799

shift 4/16 0.704

disc. fake inputs: composed 0.789

disc. real inputs: x + comp. w/o shift 0.740

disc. real inputs: comp. w/o shift 0.031

disc. real inputs: xae 0.000

non-di! inpainter 0.314

MSE MAE 0.817

MAE feature extractor 0.783

ImageNet100 dataset 0.815

or mask losses on the downsampled masks makes the masks noisier, which negatively

a!ects the results.

Shift range. We evaluate di!erent ranges of the random shift ω. A small range

$ = 1/16 makes it more challenging for the discriminator to detect inconsistencies

at the border of objects. Larger shifts may cause objects to go out of the image

boundaries ($ = 3/16, 4/16) and thus reduce the feedback at the object boundary to the

segmenter. For $ = 0 (no-shift) the only possible discriminator inputs are composed

images without a shift as fake and autoencoded images as real. There is no incentive

to produce any meaningful masks in this case.

Discriminator inputs. In our baseline model, we feed both composed images with

no-shift and real images autoencoded with MAE as real samples, and composed images

with a shift and autoencoded images with copy-pasting of a predicted masked object as

fake samples for the discriminator training. We test the case disc. real x + comp.

w/o shift , where we feed to the discriminator real images without autoencoding.

In this case, the discriminator can detect the artifacts of MAE instead of focusing on

inconsistencies resulting from an incorrect mask. In disc. real xae we only feed the

autoencoded images as real. Here, the discriminator can focus on the mismatch from

the inpainting artifacts and encourages the segmenter to output empty masks, where
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no inpainting is done. If we only feed the composite non-shifted images (disc. real

comp w/o shift), the artifacts resulting from an incorrect masks cannot be fixed,

because there is no reference of what the real images look like. In disc. fake inputs:

composed we only feed the composed image as fake to the discriminator and omit the

real image with a copy-pasted predicted masked object, which slightly degrades the

performance.

Non-di!erentiable inpainter. We evaluate the use of hard thresholded downsampled

masks as input to the background inpainter. In this case the only feedback for the

masks comes from the composition of the images. We find it to be insu”cient for the

segmenter to learn any meaningful masks.

Inpainter model. We substitute the MAE trained with a GAN loss with a MAE that

was trained only to reconstruct missing patches with a Mean Squared Error (MSE) loss.

Since this model was trained to only reconstruct the missing patches and not the entire

image, we construct the inpainted background by composing the inpainted part with

the real image: m̂up = upsample16(m̂); b̂ := x⇒ (1↓ m̂up)+ b̂⇒ m̂up. Consequently, we

do not use autoencoding when creating the discriminator inputs. We find this model

to perform competitively.

Feature extractor. We train the model using the features provided by MAE encoder

instead of a separate DINO model. In this case we adapted the segmenter architecture

and added one more upsampling block, since MAE takes patches of size P = 16 (instead

DINO has P = 8). We find that with these features we are able to train a competitive

segmenter.

ImageNet100 dataset. We train our model on the ImageNet100 dataset [121], with

131,689 images from 100 randomly selected ImageNet [25] classes. Since this dataset

is much bigger than DUTS-TR, we adapt our segmenter by adding an additional

convolutional layer in each upsampling block (see section 5.3) and train the model for

8 epochs. The results are comparable to the DUTS-TR dataset.

5.5 Discussion

We have introduced MOVE, a novel self-supervised method for object segmentation

that exploits the synthesis of images where objects are randomly shifted. MOVE

improves the state of the art in object saliency segmentation, unsupervised single object

discovery, and unsupervised class agnostic object detection by significant margins. Our

ablations show that movability is a strong supervision signal that can be robustly

exploited as a pseudo-task for self-supervised object segmentation. We believe that our

approach can be further scaled by exploring di!erent architectures and larger datasets.

Despite impressive results, our method has certain limitations. Movability alone

may not su”ce to unambiguously identify an object. Indeed, the method can segment
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any combination of multiple objects. To address this we use a post-processing algorithm

to find connected components, but there is no guarantee that all objects have been

segmented. Another challenge arises when shifts do not expose artifacts against uniform

backgrounds, for example, when viewing the sky or in underwater scenes.
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Figure 5.8: Sample segmentation results on ECSSD.
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Figure 5.9: Sample segmentation results on DUTS-TE.
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Figure 5.10: Sample segmentation results on DUT-OMRON.
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Figure 5.11: Sample detection results on VOC07.
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Figure 5.12: Sample detection results on VOC12.
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Figure 5.13: Sample detection results on COCO20k.



Chapter 6

Generative Adversarial Learning
via Kernel Density
Discrimination

Generative Adversarial Networks, or GANs, have been widely successful thanks to

several breakthroughs in the design of the generator and discriminator architectures

[14, 55, 148], of the loss functions [4, 53, 145] and regularization methods [53, 82, 90, 149]

(see Section 2.4, page 29). Yet, the training of generative models is not straightforward

and can be still prone to mode collapse [79, 120, 144] or the inability to capture

long-range statistics in the data, which leads to visible artifacts [75, 148].

We introduce the Kernel Density Discrimination GAN (KDD GAN), a novel method

for generative adversarial learning. KDD GAN formulates the training as a likelihood

ratio optimization problem where the data distributions are written explicitly via (local)

Kernel Density Estimates (KDE). This is inspired by the recent progress in contrastive

learning and its relation to KDE.

One key assumption in the basic formulation of adversarial learning of [35] is that

the generator network should compete with an optimal discriminator, that is, a classifier

that can tell real from generated data apart if any of their statistics does not match.

Thus, the general wisdom is that the more powerful the discriminator is, the better

the generator trains. Given that training models with contrastive losses yields better

performance than training with cross-entropy losses [59], and that contrastive learning

can be seen as introducing Kernel Density Estimate (KDE) approximations of the data

distribution [132], we propose to train the discriminative and generative models through

a KDE approximation of the likelihood ratio loss. Moreover, this approach ensures

that the loss defines a valid statistical divergence between the distributions of the real

and generated data at all times. In contrast, the loss used to train state of the art

85
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(a) Initial state (b) Hinge loss (c) KDD loss

Figure 6.1: Illustration of the di!erence between the hinge loss and KDD

loss during the generator update. The blue and orange point clouds represent the

discriminator features of the real and fake samples. The initial positions of the samples

are shown in Fig. 6.1a. The green line in all three sub-figures represents the decision

boundary associated with the optimal linear classifier separating the two distributions

at the initial state. Fig. 6.1b and Fig. 6.1c show the updated positions of the fake

samples using the Hinge loss and KDD loss respectively. The generator update via the

KDD loss leads to a more detailed overlap.

generative adversarial networks corresponds to a known statistical divergence between

distributions of real and fake data only when at the saddle point of the min-max game.

Our analysis shows that the gradients of the proposed loss are better behaved than

those of the hinge loss (as defined, for example, by [89]). We propose a KDE defined

directly in feature space, so that non-invertible features are allowed. Our method

includes a much broader set of discriminator solutions than in the binary classification

task of the original GAN formulation. In fact, in the KDE approach the features are

no longer optimized for linear separability, but for the more general discrimination of

distributions in the feature space. This can be seen clearly in Fig. 6.1 for 2D point

clouds. We call our method Kernel Density Discrimination GAN (KDD GAN).

Constributions. We propose a novel KDD loss and provide a theoretical proof

that KDD GAN converges to the unique equilibrium point, where the distribution

of generated samples matches that of real data. KDD GAN outperforms BigGAN

[14] (which we use as a backbone) on CIFAR10 [63] and Tiny ImageNet [66] by more

than 10% in the FID and IS metrics. The proposed KDD loss is flexible and when

combined with other methods as a regularizer improves the training in terms of FID

and IS on CIFAR10, Tiny ImageNet, and ImageNet 64→ 64, which has images scaled

to 64 → 64 pixels (derived from [25]). The implementation of KDD GAN is on par
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with conventional hinge loss training [89] in terms of the computational load and the

memory footprint.

6.1 Background

In attempts to address the limitations of GANs (see Section 2.4, page 29), other

kernel-based GANs have been proposed previously. [116] explore the idea of using

a non-parametric estimate of the Jensen-Shanon Divergence and use KDEs for the

purpose of training GANs. This idea is very similar to the one explored in this

work. The main di!erences are that Kernel GAN [116] computes its KDEs in the

image space and for a simpler selection of datasets; also it requires an additional

auto-encoding constraint and computing the KDEs in feature space for more complex

datasets. Alternatively, MMD-GAN [71] and its variants such as [133] explore the

idea of matching the two distributions at hand by optimizing the Maximum Mean

Discrepancy defined by the chosen kernel. Although the improved MMD introduced

in [133] bears a few similarities to our work in terms of having both attractive and

repulsive loss terms, the two frameworks are fundamentally di!erent. Our KDD-GAN

aims at matching the two distributions in the feature space defined by the discriminator,

while MMD-GAN and its variants aim at minimizing the maximum mean discrepancy

in the RKHS defined by the kernel choice.

6.2 Kernel Density Discrimination

Let Sr = {x(1)r , . . . , x
(m)
r } be a dataset of m image samples x

(i)
r ↘ Rd, which we call

real data. They are the instances of a probability density function (pdf) pr, which

we call the real data pdf. We aim to build a generative model that maps zero-mean

Gaussian samples to images, and such that they also follow the real data distribution.

To distinguish real from generated samples, we denote the dataset of generated data

by Sg, a generated image sample by xg, and the generated data pdf by pg.

We build our generative model through adversarial learning as in the pioneering

work of [35], and thus work with a discriminator network D and a generator network G.

Then, generative adversarial learning can be cast as the following bilevel optimization

problem

min
G

LG(D
↘
, G) s.t. D

↘ = argmin
D

LD(D,G), (6.1)

where the optimization in G and D is implemented as the optimization with respect to

the parameters of the neural networks implementing G and D. In the case of hinge
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loss optimization (see e.g., [89]), the losses in eq. (6.1) are defined as

LHinge
D

(D,G) =
1

|Sg|
∑

xg≃Sg

max {0, 1 +D(xg)}

+
1

|Sr|
∑

xr≃Sr

max {0, 1↓D(xr)} (6.2)

LHinge
G

(D↘
, G) =

1

|Sg|
∑

xg≃Sg

↓D
↘(xg), (6.3)

which rely on the assumption that the discriminator takes the form of

D
↘ = log pr(x)↓ log pg(x). (6.4)

In our approach, we would like instead to explicitly approximate the form log pr(x)
pg(x)

.

The main advantage of having this form is that it is a well-defined divergence between

distributions. Thus, it defines a valid gradient for the generator at all times, up to the

errors due to the chosen approximation.

We propose to approximate pr(x) and pg(x) in the definition of D(x) with Kernel

Density Estimates (KDE). The kernels are defined in feature space and the feature

mappings are estimated during training. A simple way to ensure that at the convergence

of the bi-level optimization (i.e., when the minima have been reached) the real and

fake pdfs match, is to require the invertibility of the feature mappings. Invertibility

is the same requirement of Normalizing Flows (see, e.g., [62]) and thus one would

have to follow similar restrictions in the neural architectures used to compute the

features. However, training invertible neural networks is not easy and, as we argue

here below, also not necessary. To simplify the training of the generative model, we

propose instead to use KDEs in feature space ⇀ : Rd ↑ RK defined by the last layer of

the discriminator, and to allow the feature mapping to be non-invertible. Thus, we

aim to match the push-forward measures ⇀↘pr and ⇀↘pg, which we denote by p̂
ϖ
r and

p̂
ϖ
g respectively.

We write the losses for KDD GAN explicitly as

LKDD

D (⇀, G) =
1

|Sg|
∑

xg≃Sg

max


0, 1 + log

p̂
ϖ
r (xg)

p̂
ϖ
g (xg)



+
1

|Sr|
∑

xr≃Sr

max


0, 1↓ log

p̂
ϖ
r (xr)

p̂
ϖ
g (xr)


(6.5)

LKDD

G (⇀↘
, G) =

1

|Sg|
∑

xg≃Sg

↓ log
p̂
ϖ
→

r (xg)

p̂
ϖ→
g (xg)

, (6.6)
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by approximating the push-forward measures of the pdfs pr and pg via the following

KDEs in feature space

p̂
ϖ

r (↽) =
1

|Sr|
∑

xr≃Sr

Kϱ (⇀(xr), ↽), (6.7)

p̂
ϖ

g (↽) =
1

|Sg|
∑

xg≃Sg

Kϱ (⇀(xg), ↽) (6.8)

where

Kϱ (⇀(x), ↽) =
1

Z
e

↑ϖ(x),ϱ↓
ς (6.9)

is a positive kernel that integrates to 1 in ↽, ⇁ > 0 is a temperature parameter

that relates to the spread of each kernel, |S| is the cardinality of S, and Z is the

normalization constant (this becomes irrelevant as it cancels out in the ratios in

LD(⇀, G) and LG(⇀↘
, G)). The features ⇀(x) are L2-normalized through the projection

on the unit hypersphere, i.e., |⇀(x)|2 = 1. Essentially, we assume that the features are

samples of a mixture of von Mises-Fisher (vMF) distributions, where all concentration

parameters are equal to 1/ϱ .

As mentioned above, the convergence of KDD GAN does not need the invertibility

of the feature mapping ⇀. We show this result formally in Theorem 1 and address the

invertibility in Lemma 1.

Lemma 1. Let pr and pg be two distributions over Rd. Given a positive integer K we

have that pr = pg ⇔ ↖ ⇀ : Rd ↑ RK
, p̂

ϖ
r = p̂

ϖ
g .

Proof of Lemma 1. pr = pg ↙ ↖⇀ : Rd ↑ RK
, p̂

ϖ
r = p̂

ϖ
g is trivial since {⇀(x), x ≃ pr}

and {⇀(x), x ≃ pg} are the same set when pr = pg.

Assume pr ∝= pg. Then, there exists an optimal binary classifier c, whose accuracy

is above chance level, i.e., P ({c(x) = 1, x ≃ pr}) >
1
2 . We can define a mapping

⇀(x) := c(x)1K where 1K is the vector of ones in RK . In this case, we obtain

Ex→pr [⇀(x)
T1K ] = Ex→pr [c(x)]K >

K

2 and Ex→pg [⇀(x)
T1K ] = Ex→pg [c(x)]K <

K

2 .

This implies that first moments of p̂ϖr and p̂
ϖ
g are di!erent, thus p̂ϖr ∝= p̂

ϖ
g . Therefore, by

contradiction, ↖ ⇀ : Rd ↑ RK
, p̂

ϖ
r = p̂

ϖ
g ↙ pr = pg .

Theorem 1. pg = pr is the unique equilibrium point for KDD GAN.

Proof of Theorem 1. Let us assume there exists an equilibrium point (⇀, G) such that

pr ∝= pg. Then, we have two cases: either p̂ϖr = p̂
ϖ
g or p̂ϖr ∝= p̂

ϖ
g . Let us assume p̂

ϖ
r = p̂

ϖ
g .

Then, according to Lemma 1, there exists a ϕ such that p̂
ς
r ∝= p̂

ς
g ; i.e., ⇀ is not an

equilibrium point of LKDD

D
Now, let us assume instead that p̂ϖr ∝= p̂

ϖ
g , then G is not an

equilibrium point of LKDD

G
.
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6.2.1 Improving KDE through Data Augmentation

The KDEs in eq. (6.8) are mixtures of von Mises-Fisher distributions centered around

a set of anchor points. In the KDE approximation we cannot use the entire dataset

Sr as anchor points, because it would be too computationally demanding. Instead,

at each iteration of the training procedure we sample a subset (a minibatch) and

use this as anchor points. A fundamental requirement of the KDE approximation is

that these sets should be representative of the true distributions pr or pg. However,

KDE approximations are in general very poor with high dimensional data, as they

require a very large number of anchor points. This is because only the kernels that

correspond to anchor points that are “similar” to the input sample dominate in the

KDE. However, the likelihood of finding these anchor points through uniform sampling

becomes extremely small as we grow in data dimensionality.

One way around this problem is to enrich the set of anchors using data augmenta-

tions. Provided that the chosen data augmentation does not produce samples outside

the manifold of natural images, this allows us to obtain anchor points that are close

enough to give a meaningful KDE.

For similar reasons, we use a leave one out KDE, where we remove the anchor point

from the set Sr or Sg that the KDE is being evaluated on. This avoids a bias towards

the unlikely case where we sample exactly a point in the anchor point set. We show

experimentally that these KDE implementation details are indeed quite important in

boosting the e!ectiveness of the proposed approach.

6.2.2 Loss Analysis

We analyze the impact of the proposed loss on the generator training and compare

it to the case of the standard hinge loss discriminator of [89]. For simplicity, let

us consider a discriminator for the standard loss that can be written as the inner

product DSTN(x) = ⇀(x)⇐↼, for some ↼ vector (this is updated only when we optimize

with respect to the discriminator). In the case of our KDD loss we instead use simply

DKDE(x) = ⇀(x). Suppose that the discriminator is now given and we minimize the loss

LG with respect to the generator G. In the case of a first order optimization method,

we obtain the updates for the parameters of the generator through the gradients of LG,

∂LG

∂G
=

∂LG

∂⇀

∂⇀

∂G
. (6.10)

Since in both the standard hinge loss and our loss the term φϖ

φG
is the same, we can

reduce the analysis to the study of φLG
φϖ

. We obtain:

∂LSTN
G

∂⇀
= ↼ (6.11)
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and
∂LKDD

G

∂⇀
=

1

|Sg|
∑

xg≃Sg

∂ log p̂ϖg (xg)

∂⇀
↓ log p̂ϖr (xg)

∂⇀
. (6.12)

The formulas above show that in the case of the hinge loss the gradient update results in

a constant shift, i.e., an identical shift for all samples, whereas our KDD loss increases

(resp. decreases) the likelihood of xg under p̂ϖr (resp. p̂ϖg ). A illustration of this e!ect

in 2D is shown in Fig. 6.1.

We also compare our KDD loss to the MMD loss proposed by [133]. Without loss

of generality, for a given sample x ≃ p1 we compare each term Ey→p2 [k(x, y)] in their

work to its counterpart in ours log(Ey→p2 [k(x, y)]), where p1, p2 ↘ {pr, pg} and k is a

kernel function. For the vMF kernel, we obtain

KDD:
∑

y

k(x, y)
v
k(x, v)

⇀(y), (6.13)

MMD:
∑

y

k(x, y)⇀(y). (6.14)

In both cases, the gradient is a weighted average of the samples ⇀(y). The key di!erence

is that the Improved MMD loss has a local weighting, i.e., it only depends on the

current y, and the KDD loss has a global weighting.

Empirical Analysis of the KDD Loss

In Figure 6.1, we illustrate the di!erence between the Hinge and KDD losses. We

consider two point clouds in 2D representing the real and fake push-forward distributions.

In this example, the real point cloud is designed to have two Gaussian modes, while

the fake one starts o! with one uniformly sampled square mode. We first find the

optimal linear classifier separating the two point clouds through gradient descent. The

corresponding decision boundary is represented by the green line in Figure 6.1. We

then optimize the features of the fake samples with respect to the Hinge loss and the

KDD loss. In this example we do not normalize the feature mappings, since its main

purpose is to prevent the discriminator from converging to degenerate solutions, where

the space collapses. Thus, for visualization purposes, we work with 2D features. In

this setting the vMF kernel is equivalent to a Gaussian kernel with ▷ = 1 for the KDE,

i.e., K(⇀, ↽) ′ exp↓ |ϖ⇒↼|2
2 .

The minimization of the Hinge loss simply results in translating the fake point

cloud without changing its internal structure as shown in Figure 6.1b. In contrast, the

KDD loss encourages the fake samples to head towards the closest real mode as shown

in Figure 6.1c. For both of losses, the optimization was ran using SGD [12] for 200

iterations with a learning rate of 10. 1000 samples were used for both the real and fake
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point clouds. Note that for a frozen Discriminator, updating the Generator using the

Hinge loss can result in overshooting the real point cloud, since the translation vector

is constant for all subsequent Generator updates. In fact, the optimum is to translate

the fake point cloud to infinity. This makes the Generator update with respect to

the Hinge loss less well-behaved than its KDD counterpart since the latter does not

introduce such instability.

6.2.3 Class-Conditioning Extension

We also consider training generative models subject to class-conditioning. Let us denote

with y
(i) the label corresponding to the real image x

(i)
r . Now, we are interested in the

approximation of the quantity log pr(x,y)
pg(x,y)

, which we can rewrite as

log
pr(y|x)pr(x)
pg(y|x)pg(x)

= log
pr(y|x)
pg(y|x)

+ log
pr(x)

pg(x)
. (6.15)

The second term is exactly what we used in LD(⇀, G) and LG(⇀↘
, G). Thus, we can

focus on the conditional term log pr(y|x)
pg(y|x) . By following [89], we assume the linear form

log
pr(y|x)
pg(y|x)

= y
⇐
V D(x), (6.16)

where V is a (learned) matrix that defines the embedding for the label y.

6.2.4 Regularization of the Feature Mapping

If ⇀ maps many samples to the same feature, the discrimination task would become

less e!ective. To avoid this scenario, we encourage ϕ, the feature mapping before the

normalization layer, to be as “responsive” as possible to variations around samples of

pr and pg by introducing the following additional Jacobian regularization term

LJac =
1

|Sr|
∑

x≃Sr
⋃

Sg

!x→U(Sd↔1)

∣∣∣∣
|ϕ(x+ ω$x)↓ ϕ(x)|2

ω
↓ 1

∣∣∣∣
1

(6.17)

where ω > 0 is a small scalar and $x is a random unitary direction in image space. ϕ

is defined so that ⇀ = ϕ/|ϕ|2. This regularization term computes a finite di!erence

approximation of the gradient of ϕ with respect to its input and projects it along the

random direction $x. It preserves as much as possible the volume in feature space,

but only for the data in the image distribution. In addition, this regularization term

prevents the magnification of the output gradient, which is typically associated with

a high confidence, and would make the discriminator more susceptible to adversarial

inputs. This is a stronger constraint compared to the classic gradient penalty [39],

since we are implicitly requiring orthonormality for all the rows of the Jacobian, i.e.,

⇐ϕ(x)⇐ϕ(x)⇐ = Id.
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6.2.5 KDD GAN Formulation

Finally, we can put all the terms together and define the generator and discriminator

losses via

LG/D = ϑLKDD
G/D

+ ◁LHinge
G/D

+ ϖ⇑LJac, (6.18)

where ϑ, ◁ and ϖ⇑ live in R+ → {0, 1}→ {0, 1e-5}, and where KDD and Hinge refer to

our KDD loss and the classic hinge loss used in BigGAN for both the generator and

discriminator. The training with the lone hinge loss uses ◁ = 1, ϑ = 0; the training

with the lone KDD loss uses ◁ = 0, ϑ = 1; the setting where ◁ = 1, ϑ > 0 is called

Joint training.

6.3 Implementation

Training Details

We evaluate our models on three di!erent datasets: CIFAR10 [63], Tiny ImageNet and

ImageNet 64→ 64. The Tiny ImageNet [66] dataset is a subset of the ILSVRC-2012

ImageNet classification dataset [25] consisting of 200 object classes and 500 training

images, 50 validation images and 50 test images per class. Unless specified otherwise,

we use ⇁ = 1, ω = 1e-3 and ϖ⇑ = 1e-5. Experiments using data augmentations and

the Jacobian regularization are denoted with +DA and +JacD respectively. All

experiments were ran on at most two 2080Ti or one 3090Ti NVIDIA GPUs. Using

KDD-GAN results in around 10% longer training times.

Architectures

The architecture used for our CIFAR10 experiments is the same one1 used in the

original BigGAN work by [14]. For both Tiny ImageNet and ImageNet 64→ 64, we use

the modified SA-GAN [148] architecture adopted by [27] 2. We do not use instance

selection on CIFAR10 and Tiny ImageNet as we noticed it hurts performance on smaller

datasets. For instance selection on ImageNet 64→ 64, we use a retention ratio of 50%.

We choose to train BigGAN/SA-GAN rather than StyleGAN2-ADA for their simpler

training scheme and their lesser reliance on regularization terms and implementation

tricks. This allows use to isolate the contribution of our KDD loss without requiring a

hyperparameter search for the rest of the moving pieces of the training.

1https://github.com/ajbrock/BigGAN-PyTorch/
2https://github.com/uoguelph-mlrg/instance_selection_for_gans/

https://github.com/ajbrock/BigGAN-PyTorch/
https://github.com/uoguelph-mlrg/instance_selection_for_gans/
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Figure 6.2: Sample images generated using the Joint† model trained on ImageNet

64→ 64.

Evaluation Metrics

Throughout this paper, we evaluate our generative models using Fréchet Inception

Distance (FID) [45], Inception Score (IS) [108], Density and Coverage [91]. These

metrics are computed using the original tensorflow implementation. As in [27] the real

moments used for the FID are computed using the entire dataset and not the filtered

one. For FID and IS we use 50k generated samples, for Density and Coverage, we use

10k samples for both distributions and 5 nearest neighbors. Unless specified otherwise,

the reported numbers are computed after 100k iterations for both CIFAR10 and Tiny

ImageNet and after 500k iterations for ImageNet 64→ 64. The batch size used is 64 for

Tiny ImageNet and CIFAR10 and 128 for ImageNet 64→ 64. The FID moments are

computed on the training set for all datasets. We report the performance of the best

model obtained during training.

Di!erentiable Augmentations

We use di!erentiable random brightness, saturation, contrast, translation and cut-out

data augmentations proposed by [153]. For all our experiments, the loss is computed

only on the non-augmented images. The augmented samples are only used for the

Kernel Density Estimation. This is an important distinction from the work by [153].

6.4 Experiments

In this section we show the quantitative results obtained on CIFAR10, Tiny ImageNet

and ImageNet 64→ 64. The best and second best values per metric are highlighted and

underlined respectively. Generated samples from one of our best models are shown in

Fig. 6.2.
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Table 6.1: Comparison of the various BigGANs trained on CIFAR10. UnCond refers

to the unconditional setting, while NoProj refers to removing the class-projection loss

term in ProjGAN [89].

Experiments ⇁ ϑ FID ⇑ IS ⇓ D ⇓ C ⇓

Hinge - - 8.751 8.835 0.966 0.851

KDD 0.05 - 8.753 9.233 0.876 0.832

KDD 1.00 - 8.422 9.155 0.868 0.849

KDD 5.00 - 8.604 8.852 0.970 0.862

KDD + JacD 1.00 - 7.237 9.029 0.932 0.867

Joint 1.00 0.1 9.144 8.767 0.969 0.857

Joint 1.00 0.5 8.795 8.920 0.922 0.855

Joint 1.00 1.0 7.932 9.046 0.968 0.868

Joint 1.00 10.0 8.352 9.102 0.930 0.857

KDD + NoProj 0.05 - 13.668 8.274 0.722 0.711

Hinge (Uncond) - - 17.782 8.120 0.692 0.686

KDD (Uncond) 0.05 - 15.828 8.326 0.620 0.650

Joint (Uncond) 0.05 1.0 14.394 8.532 0.662 0.712

6.4.1 Ablation Results

In Table 6.1, we perform various ablations by training BigGAN [14] on CIFAR10 for

200k iterations each. The three main loss functions used are: the hinge loss [89], the

KDD loss and the Joint loss. We study the e!ects of the parameters associated with

the new losses. The first set of experiments studies the e!ect of the temperature ⇁

used in the KDD loss. We observe that both high and low values of ⇁ are problematic.

When comparing ⇁ = 0.05 to ⇁ = 5.00, we observe a trade-o! between Image Fidelity

(FID) and diversity (IS). The value of ⇁ determines the level of blurriness of the KDE.

Additionally, we explore the e!ect of the Jacobian regularization. We use a coe”cient of

ϖ⇑ = 1e-5. Our KDD GAN using ⇁ = 1 with and without the Jacobian regularization

outperforms its BigGAN counterpart in both FID and IS. The performance gap is

bigger when adding the Jacobian regularization.

The second set of experiments looks at the e!ect of ϑ during the joint training. We

observe that all joint models improve on the baseline in terms of IS. This improvement

correlates positively with ϑ except for ϑ = 10 where the IS stagnates. The best joint

model (ϑ = 1) outperforms the baseline also in terms of FID. This highlights the benefit

of using the KDD loss as a regularization term. Lastly, we train our models without

the class-projection head proposed by [89] and/or without a conditional input for the
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Table 6.2: KDD GAN kernel and dimensionality choice. We evaluate the impact of

Kernel Choice and Feature Dimension on KDD GAN

Kernel Feature Dimension FID IS

vMF K = 128 8.384 8.887

IQ K = 128 8.375 8.901

vMF K = 64 8.842 8.885

vMF K = 128 8.375 8.901

vMF K = 256 9.050 9.058

generator. All models obtained with ϑ > 0 in the third block in Tab. 6.1 outperform

the BigGAN baseline in the unconditional setting. This proves that training is not

solely driven by the class-projection term in the conditional setting. The di!erence in

performance between unconditional KDD model and the one that is only missing the

projection head can be attributed to the slightly higher number of parameters that the

latter has since it is still using the class label as input to the generator. We additionally

examine the impact of the kernel choice and the dimension of the features on the

KDD-GAN. The results are shown in Table 6.2 We compare the vMF kernel, which is

equivalent to the RBF kernel due to the normalization used, to the IQ kernel [133]. We

observe a similar performance level on CIFAR-10 for both kernel choices. Regarding

the dimensionality K, we compare our default setting on CIFAR-10 (K = 128) to

K = 64 and K = 256. Although increasing K slightly improves the IS, the best model

overall remains the default one. We can conclude from both experiments that our KDD

loss is not too sensitive to the choice of the kernel and dimension of the features as

opposed to reported observations for models such as MMD-GAN [116].

6.4.2 Generative Learning on CIFAR10

In Table 6.3, we compare the performance of di!erent variations of our KDD GAN

with a BigGAN baseline and the numbers reported by [53] for a selection of their

best models. The KDD GAN outperforms the BigGAN baseline for both IS and

FID. Also it drastically improves its FID when using augmentations as described in

Sec. 6.2.1. Augmentation → N means that an additional N → batchsize augmented

images are used for the KDE anchor points. We observe that on CIFAR10, the amount

of augmentations correlates positively with a significant improvement of the FID. In

the case of the Jacobian regularization the results are mixed. It seems to improve the

performance of the KDD model, but it also negatively impacts performance when used

in combination with data augmentation. The Jacobian regularization may be too strict
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Table 6.3: Quantitative results on CIFAR10. The values shown below are obtained

after 100k iterations. We show the benefit of adding various augmentation factors

for the KDD setting. We also explore the e!ect of the Jacobian regularization. ε are

numbers reported by [53].

Experiments FID ⇑ IS ⇓ D ⇓ C ⇓
ContraGANε 8.065 9.729 - -

ContraGAN + Di!Augε 7.193 9.996 - -

BigGAN + Di!Augε 7.157 9.775 - -

BigGAN + CRε 7.178 10.380 - -

Hinge loss 8.859 8.814 0.917 0.841

KDD 8.375 8.901 0.875 0.845

KDD + DA 7.089 9.250 0.893 0.860

KDD + DA →3 6.063 9.280 0.951 0.892

KDD + DA →7 5.713 9.389 0.968 0.899

KDD + JacD 7.944 8.959 0.895 0.847

KDD + JacD + DA→7 6.713 9.333 0.9000 0.875

a requirement, as the dimension K of the gradient of ⇀ is smaller than the dimension

d of the images, and perhaps a more flexible loss term could work better.

6.4.3 Generative Learning on ImageNet

Tiny ImageNet

Table 6.4 shows the performance of our models on Tiny ImageNet compared to the

SA-GAN baseline and the best models reported by [53]. The KDD GAN outperforms

the baseline for all settings. On one hand, similarly to CIFAR10, using additional

augmented images for the KDE results in a significant boost in performance. Indeed

the KDD GAN with DA →3 outperforms ContraGAN in terms of FID and IS. On the

other hand, the additional Jacobian regularization is not helpful. The only exception

being the joint training (ϑ = 0.5) without data augmentation and the joint training

with ϑ = 1 and data augmentation where the Jacobian regularization introduces a

slight performance boost. Note that the ContraGAN+Di!.Aug. numbers reported by

[53] were obtained twice as many iterations as the rest of the models (ContraGAN and

our experiments), putting it at an advantage.
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Table 6.4: Quantitative results on Tiny ImageNet. We compare the baseline to both

the KDD and joint trainings. We also explore the e!ect of adding the Jacobian

regularization on D and show the e!ect of using more augmentations for the density

estimation. ε are numbers reported by [53].

Experiments ϑ FID ⇑ IS ⇓ D ⇓ C ⇓

ContraGANε - 27.027 13.494 - -

+ Di!Augmentε - 15.755 17.303 - -

Hinge loss - 29.525 11.048 0.520 0.516

KDD - 24.022 13.204 0.658 0.613

KDD+DA - 20.204 14.100 0.673 0.663

KDD+DA →3 - 18.261 14.943 0.716 0.683

KDD+JacD - 25.504 13.215 0.597 0.595

KDD+JacD+DA - 20.717 13.787 0.630 0.645

Joint 1 25.709 13.124 0.595 0.582

Joint+DA 1 22.854 13.421 0.591 0.613

Joint+JacD 1 26.369 13.169 0.582 0.582

Joint+JacD+DA 1 21.512 13.728 0.639 0.627

Joint 0.5 24.341 13.337 0.626 0.614

Joint+DA 0.5 23.357 12.918 0.619 0.621

Joint+JacD 0.5 23.854 13.251 0.651 0.617

Joint+JacD+DA 0.5 23.928 13.059 0.575 0.594

ImageNet 64→ 64

Table 6.5 shows our experimental results on ImageNet 64→64. We compare our models

to the SA-GAN baseline and the numbers reported by [27] and [154]. For all our

trained models, we use instance selection [27] with a retention ratio of 50%.

We observe that the baseline outperforms our KDD GAN even with additional

augmentations and regularization. It is also note-worthy that in this setting, although

a small amount of data augmentation seems to help, adding more is not necessarily

beneficial. The high level of diversity in ImageNet both in terms of number of classes

and samples might be limiting the e!ectiveness of our density estimation given the

relatively small batch size used. Nevertheless, all joint training models outperform

the hinge-based models in terms of IS and most outperform our SA-GAN baseline in

terms of FID. Interestingly, the best model is the Joint† model where p̂r is estimated

using features computed during the last discriminator step. This suggests that using a

memory bank for the features might be a promising extension of this work.
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Table 6.5: Quantitative results on ImageNet 64→64. We explore the use of augmentation,

Jacobian regularization and Joint training. † refers to a setting where the feature ⇀(xr)

were computed using the weights from the previous discriminator update step. ε are

numbers reported by [27].

Experiments ϑ FID ⇑ IS ⇓ D ⇓ C ⇓
SA-GAN+IS@50%ε - 9.63 31.04 1.07 0.88

FQ-BigGANε - 9.67 25.96 - -

Hinge loss - 10.452 32.869 1.034 0.877

KDD - 12.570 31.404 0.953 0.850

KDD+DA - 12.367 31.069 0.954 0.861

KDD+DA →3 - 14.680 27.949 0.928 0.810

KDD+JacD - 12.651 31.188 0.938 0.850

KDD+JacD+DA - 79.790 10.603 0.376 0.139

Joint 1 11.387 32.471 0.991 0.872

Joint+DA 1 10.385 33.753 1.048 0.880

Joint+JacD 1 10.320 34.296 1.010 0.868

Joint+JacD+DA 1 9.702 34.619 1.062 0.892

Joint 0.5 10.544 33.447 1.017 0.879

Joint † 0.5 9.450 35.648 1.070 0.897

Joint+DA 0.5 10.111 33.494 1.048 0.891

Joint+JacD 0.5 10.242 35.120 1.072 0.891

Joint+JacD+DA 0.5 10.010 34.074 1.053 0.889

6.5 Examples of Generated Images

We show non-cherry picked images generated by our Hinge loss baseline and our best

model per dataset in Figures 6.3 to 6.9. The truncation trick for sampling [14] was not

used. In all figures, each row represents a di!erent class starting with the first class in

the top row down to the last class in the bottom row.

6.6 Discussion

One of the main challenges in the use of KDD GAN is to ensure that the anchor

points for the KDE are representative for the evaluation points. In our experiments

between Tiny ImageNet and ImageNet 64→ 64, we observe that the performance of

KDD GAN is sensitive to the anchor points set size, the number of augmentations, and

the complexity of the dataset seems to play a role as well. Also, with large datasets

the impact of samples at the tails of the distribution on the KDE approximation is
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(a) Hinge loss (b) KDD + Aug →7

Figure 6.3: Samples generated using the Hinge loss model and the KDD + Aug →7

model trained on CIFAR10 (one class per row).

unclear. In general, it might be necessary to design better sampling strategies for the

anchor points used for the KDE estimation: Some options are using a memory bank or

sampling using k-NN. Another direction to evaluate is the role of the class projection

in the training. We chose to separate the category aspect from the unlabeled problem

not only because it would make KDD GAN suitable for unsupervised learning, but also

because it would not require large minibatches as the current KDE completely ignores

the class labels. It would be interesting to evaluate the performance in the case where

the loss with class labels is entirely based on the KDE. Finally, as mentioned in the

introduction, KDD GAN can be combined with other techniques and regularization

methods that are known to improve the performance of the GAN training, such as

Consistency Regularization of [149] and Di!erentiable Augmentation of [153]. We leave

these investigations to future work.
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Figure 6.4: Samples generated using the Hinge loss model trained on Tiny ImageNet

for the classes 181-200 (one class per row).
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Figure 6.5: Samples generated using the KDD+Aug→3 model trained on Tiny ImageNet

for the classes 181-200 (one class per row).
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Figure 6.6: Samples generated using Hinge loss model trained on ImageNet 64→ 64 for

the classes 141-160 (one class per row).
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Figure 6.7: Samples generated using Hinge loss model trained on ImageNet 64→ 64 for

the classes 501-520 (one class per row).
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Figure 6.8: Samples generated using Joint† model trained on ImageNet 64→ 64 for the

classes 141-160 (one class per row).
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Figure 6.9: Samples generated using Joint† model trained on ImageNet 64→ 64 for the

classes 501-520 (one class per row).
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Conclusions

In this thesis, we explored the challenging problem of unsupervised object segmentation.

We demonstrated the feasibility of training both generative models, which are capable

of generating segmented objects, and segmenter models, which can identify and

segment salient objects from real images. Notably, the methods we introduced can

be trained solely using collections of images, eliminating the need for any form of

manual annotations – such as object labels, bounding boxes, landmarks, or the use of

pre-trained supervised object detectors and classifiers.

We identified a powerful signal that can drive object segmentation: objects within

a scene move coherently, meaning all parts of an object move together. This inherent

property of physical objects can be embedded as a learning rule to steer deep neural

networks towards segmenting objects that can be moved. We demonstrated the

applicability of this principle to collections of static, still images, in which motion is not

directly observable. Through generative modeling and inpainting networks, we devised

methods to simulate realistic object displacement via local shifts. In Chapter 3, we

introduced a novel method for generating a layered scene representation, composed of

background and foreground layers, along with a corresponding mask for the foreground

object. By enforcing the constraint that the scene must remain realistic under a local

shift of the foreground, we achieved a meaningful separation between the foreground

and background. To improve our model’s capability to segment real images, we outlined

in Chapter 4 how to streamline these models and use the synthetic data to train a

competitive segmenter that performs well on real images. In Chapter 5 we departed

from relying on a generative model altogether, by adopting modern self-supervised

models as the feature backbone and as the inpainter. Inpainting the background

not only allows for local shifts of the predicted objects within real images but also

generates artifacts indicative of incorrect segmentation. We showed how to utilize it as

an additional signal driving the segmentation. Our methods heavily rely on adversarial

training to ensure the generated or modified scenes remain realistic. In an e!ort to

107
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improve this training process, we introduce in Chapter 6 a new GAN training method

with a novel loss function. This function utilizes Kernel Density Discrimination to

measure the statistical divergence between the kernel density estimates of real and fake

data distributions within the discriminator’s feature space. This results in improved

training gradients, encouraging the generator to seek missing distribution modes.

Unsupervised object segmentation has gained increasing attention in recent years.

This line of work is significant for reducing the reliance on costly, expertise-demanding

annotations and enhancing the capabilities of current object segmentation systems.

Perhaps more significantly, this approach represents a step towards the development of

more generalized artificial intelligence agents, capable of learning by simply observing

the world. Depending on the use case, there are several possible directions to continue

our work.

Semi-Supervised and Weakly Supervised Learning. While researching purely

unsupervised methods is significant beyond cost-e!ectiveness, in many use cases it is

possible to obtain at least some annotations with limited e!ort, such as using less precise

bounding boxes or fewer instance labels. Incorporating our principles for unsupervised

segmentation within a semi-supervised or weakly supervised framework could further

improve practical systems that could be deployed in real-world scenarios.

Extending Self-Supervised Learning. As shown in this thesis, desirable fea-

ture properties for object segmentation emerge from modern transformer-based self-

supervised methods. Further research investigates the improvement of such proper-

ties [24]. Merging the typical SSL learning objectives with object-aware objectives

presented in this thesis could lead to a richer feature representation.

Addressing Dataset Imposed Limitations and Object Ambiguity. Most

commonly used image datasets, including ImageNet [25], are object-centric, which

benefits many self-supervised models by allowing them to impose feature invariance

under geometric transformations. While our methods do not rely on explicit labels,

their e!ectiveness might still depend on such curated datasets. Exploring extensions

for multi-object discovery, possibly through object-centric slot attention models [112],

could o!er a way to achieve precise yet distinct object masks

Beyond Generative Adversarial Networks. The adversarial learning framework

is desirable in our case for end-to-end learning of realistic scenes. Di!usion models

have recently surpassed GANs in generating high-quality images, but are not directly

applicable to our methods to provide the signal guiding the realism of a scene. However,

there is a recent line of work that utilizes pre-trained di!usion models to obtain a
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guiding signal towards a constrained image generation, e.g. a 3D representation [102].

Further research in this direction is needed, since these methods currently can su!er

from mode collapse and are strongly dependent on text conditioning.
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December 3-8, 2018, Montréal, Canada, pages 1505–1514, 2018.

[79] Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco:

Diverse conditional image synthesis via contrastive generative adversarial network.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,

virtual, June 19-25, 2021, pages 16377–16386. Computer Vision Foundation /

IEEE, 2021.

[80] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahen-

dran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf.

Object-centric learning with slot attention. In Hugo Larochelle, Marc’Aurelio

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-

vances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

2020, virtual, 2020.

[81] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3431–3440.

IEEE Computer Society, 2015.

[82] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks. In IEEE

International Conference on Computer Vision, ICCV 2017, Venice, Italy, October

22-29, 2017, pages 2813–2821. IEEE Computer Society, 2017.



BIBLIOGRAPHY 121

[83] Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast, modular refer-

ence implementation of Instance Segmentation and Object Detection algorithms

in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark,

2018. Accessed: 05/20/2019.

[84] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Deep

spectral methods: A surprisingly strong baseline for unsupervised semantic

segmentation and localization. In CVPR, 2022.

[85] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Finding

an unsupervised image segmenter in each of your deep generative models. In

The Tenth International Conference on Learning Representations, ICLR 2022,

Virtual Event, April 25-29, 2022, 2022.

[86] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.

PULSE: self-supervised photo upsampling via latent space exploration of genera-

tive models. In 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 2434–2442.

IEEE, 2020.

[87] Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training

methods for gans do actually converge? In Jennifer G. Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on Machine Learning,
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Bursuc, Patrick Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with

self-supervised transformers and no labels. November 2021.

[116] Mathieu Sinn and Ambrish Rawat. Non-parametric estimation of jensen-shannon

divergence in generative adversarial network training. In Amos J. Storkey and
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