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Abstract

Advances in computer vision have transformed how we interact with technology, driven
by significant breakthroughs in scalable deep learning and the availability of large
datasets. These technologies now play a crucial role in various applications, from
improving user experience through applications like organizing digital photo libraries,
to advancing medical diagnostics and treatments. Despite these valuable applications,
the creation of annotated datasets remains a significant bottleneck. It is not only costly
and labor-intensive but also prone to inaccuracies and human biases. Moreover, it often
requires specialized knowledge or careful handling of sensitive information. Among the
tasks in computer vision, image segmentation particularly highlights these challenges,
with its need for precise pixel-level annotations. This context underscores the need for
unsupervised approaches in computer vision, which can leverage the large volumes of
unlabeled images produced every day.

This thesis introduces several novel methods for learning fully unsupervised object
segmentation models using only collections of images. Unlike much prior work, our
approaches are effective on complex real-world images and do not rely on any form
of annotations, including pre-trained supervised networks, bounding boxes, or class
labels. We identify and leverage intrinsic properties of objects — most notably, the
cohesive movement of object parts — as powerful signals for driving unsupervised
object segmentation. Utilizing innovative generative adversarial models, we employ this
principle to either generate segmented objects or directly segment them in a manner
that allows for realistic movement within scenes. Our work demonstrates how such
generated data can train a segmentation model that effectively generalizes to real-
world images. Furthermore, we introduce a method that, in conjunction with recent
advances in self-supervised learning, achieves state-of-the-art results in unsupervised
object segmentation. Our methods rely on the effectiveness of Generative Adversarial
Networks, which are known to be challenging to train and exhibit mode collapse. We
propose a new, more principled GAN loss, whose gradients encourage the generator
model to explore missing modes in its distribution, addressing these limitations and
enhancing the robustness of generative models.
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Chapter 1

Introduction

Determining exact object boundaries through image segmentation is essential for
understanding images and their context, both for humans and computer vision systems.
For humans, this ability is fundamental to recognizing objects, determining how to
interact with them, and anticipating the results of these interactions. In computer
vision, segmentation is essential for isolating and extracting meaningful information
from images by dividing them into regions that represent both different classes and
individual instances of objects, as shown in Figure 1.1.

Automated image segmentation is crucial for a wide range of applications across
various fields. For example, in autonomous navigation, it enables vehicles and drones
to understand their environment by identifying obstacles and safe paths, enhancing
navigation safety. Image manipulation benefits from segmentation through techniques
such as object removal and background alteration, which are extensively used in the
entertainment and advertising industries. Augmented reality (AR) applications use
segmentation to merge digital objects with the real world, improving experiences in
games, education, and marketing. In medical image analysis, segmentation helps in
identifying and quantifying anatomical structures, aiding in diagnostics, treatment
planning, and disease monitoring, which are essential for personalized healthcare. These
instances are just a few examples demonstrating the critical role of image segmentation
in advancing technology and improving lives.

The progress in machine learning, particularly with the advent of supervised
deep learning methods powered by extensive human-annotated datasets, has greatly
advanced the field of computer vision. Despite this progress, the dependence on manual
annotation introduces significant challenges: it is costly, labor-intensive, and scales
poorly, particularly in domains that demand specialized knowledge and strict adherence
to data privacy laws, such as in medical imaging. The task of obtaining precise,
pixel-level annotations for image segmentation is especially laborious, highlighting the
inefficiencies of supervised methods.

15
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Figure 1.1: Examples of different image segmentation tasks. Image from the COCO
dataset [77].

This reliance on manual annotation raises a crucial question: Is it feasible to achieve
object segmentation in a completely unsupervised manner, leveraging only the data
available in collections of real images, without any form of manual annotation? This
question is far from trivial, given the challenges posed by data variability, semantic
ambiguity, and the crucial need for generalization across diverse scenarios.

The pursuit of unsupervised segmentation methods promises a significant leap
forward in computer vision, potentially reducing the need for expensive and time-
consuming annotation processes. This calls for the exploration of novel algorithms that
can learn from unlabeled data, similar to how humans learn to recognize and distinguish
objects without explicit instruction. Achieving this would not only streamline the
process of image segmentation but also make advanced computer vision technologies
more accessible and applicable across a wider range of fields.
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1.1 Limitations of Supervised Object Segmentation

The process of supervised object segmentation heavily depends on manually annotated
data, which not only incurs high costs and demands extensive time but also requires
specialized domain expertise. In the supervised setting, it is the pixel-level annota-
tions by humans that define what constitutes an object. This underscores another
fundamental limitation: this approach offers a roundabout definition of what an object
is, filtered through human perception and interpretation. However, objects exist in
the real world independently of whether they are observed or annotated by humans.
Consequently, defining objects through the lens of human annotators introduces a layer
of subjectivity and potential for error, as it depends on the annotator’s interpretation
of a static image to capture the essence of what objects are.

In contrast, humans do not require explicit guidance or direct supervision to learn
what objects are, how they are bounded, and how to interact with them or understand
their interaction with the world. This understanding develops naturally through
experience, underscoring a fundamental difference between how humans and supervised
computer vision systems approach object segmentation. Reflecting on our cognitive
capabilities raises a question: What properties of an object enable humans — and
potentially machines — to perceive objects?

1.2 Human Perception of Objects

Studies on object perception by Elisabeth Spelke [118, 119] suggest that infants can
perceive and track objects before they learn to interact and manipulate them. As
adults, when presented with a simple example of a scene with a block that serves an
occluder, as follows:

we will likely conclude that there is a single object behind the occluder, following the
cues of consistent texture, regular shape, or alignment of the visible parts.
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Figure 1.2: Tllustration of the experiment studying object perception in infants [119]. A
single or fragmented center-occluded object is presented to infants. Upon the removal
of the occluder, the perception of an object is indeterminate between a connected object
and two object parts (a). If motion is introduced to the object behind the occluder
(b), infants perceive the moving parts as belonging to the same object, regardless of
parts alignment, texture consistency or shape regularity.

Interestingly, research suggests that this tendency to group surfaces into the simplest
possible forms through these static properties develops later in the life of an infant.
Studies by Spelke analyzed how 4-month-old infants perceive objects under occlusion,
before they can move or manipulate them. They were presented with different scenarios
of the occluded scene from above, where behind the occluder block there was either a
single rod or two separated rod pieces (see Figure 1.2 (a)). Upon removing the block,
the level of surprise was measured by analyzing looking times at the object behind
the occluder. It turns out that the looking times did not differ for both scenarios,
indicating that infants did not have a preference for either the single or separated
objects. Their perception appeared to be indeterminate between a connected object
and two object fragments, regardless of static properties such as texture, shape, or
alignment.

In another variant of the experiment, motion was introduced to the center-occluded
object in both scenarios, before the occluder was removed (see Figure 1.2 (b)). In
this setting, once the object was uncovered, infants that were shown the separated
rod found the revelation much more surprising, indicating the preference for a single
connected object. Infants perceived an occluded object as a connected unit when the
parts of the object moved together behind the occluder. Any translation of the object
in the three-dimensional space — lateral, vertical, and translation in depth — led the
infants to perceive a continuous object. Moreover, this perception was not affected by
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other object properties. Even when a center-occluded object was asymmetric and not
uniform in texture and color, it was perceived as connected just as strongly as a simple
shape with a uniform texture and color. In short, infants perceive parts of objects that
move together as parts of the same object.

These experiments show how the cohesive motion of object parts provides a very
strong cue to determine what an object is — stronger than texture, color, or shape
regularity. More precisely, Spelke distinguished core principles that help explain how
young children understand and perceive objects in their environment. Cohesion states
that objects are perceived as single, bounded wholes, expected to move as a unit,
maintaining its boundaries over time. Continuity suggests that objects move along
smooth, uninterrupted paths, with infants anticipating predictable motion without
spontaneous appearances or disappearances. Contact implies that objects do not exert
influence unless they physically touch, leading infants to expect that movement or
trajectory changes occur only upon collision. Solidity asserts that objects are solid
and unyielding, incapable of moving through or sharing space with other solid objects.
Finally, Persistence indicates that objects are perceived as continuously existing, even
when out of sight, leading to an expectation of their constant presence in time and
space.

Building on these foundational insights, there lies an intriguing possibility: leverag-
ing these core principles of object perception for advancing unsupervised learning in
object segmentation. By applying principles like cohesion, continuity, contact, solidity,
and persistence, we could guide machine learning models to parse visual information
in a more human-like manner, potentially reducing or even eliminating the need for
precise segmentation annotation. This approach hints at a more natural, intuitive
method of teaching Al to understand and interpret visual data, drawing inspiration
from the earliest stages of human cognitive development.

1.3 Leveraging generative models

Generative models stand as powerful tools in the field of artificial intelligence and
computer vision, capable of creating images that closely mimic the distribution of real
image sets. Their utility extends beyond mere image generation; they can be efficiently
used to guide image manipulation processes as well.

In the context of previously stated principles of object perception, it seems plausible
to explore the use of generative models for simulating actions on objects within static
images, where motion cannot be observed. This could be exemplified by manipulating
an object’s position within an image, similar to translating it in a three-dimensional
space. Such manipulations not only test the model’s understanding of object continuity
and cohesion but also its ability to maintain realism in the context of physical laws.
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Moreover, the ability of certain generative models to evaluate the realism of synthesized
images could align with the cognitive processes humans experience in distinguishing
between expected and unexpected changes in their visual environment. This aspect
can be particularly useful in refining AI’s ability to distinguish between realistic and
unrealistic alterations in a visual scene, mirroring human perceptual development.

1.4 Thesis contributions

This thesis addresses the challenge of unsupervised object segmentation in images. We
want to emphasize that despite talking about moving objects throughout the thesis,
we develop methods that work on static images, not videos. Specifically, we focus
on salient objects, typically the main focus or point of interest for the viewer, often
associated with the image’s foreground. We develop methods to segment such objects
without relying on manual annotations — object labels, bounding boxes, landmarks,
or pre-trained object detectors and classifiers — and train segmentation models using
only collections of images. We present a method employing generative models to create
a layered scene representation through the realism of manipulated generated images.
This innovative approach enables the generation of separate background and foreground
scene components. We demonstrate how this generative model can segment real images.
Subsequently, we explore how these models can be simplified to output a segmentation
map directly for an image. We illustrate the use of generated segments as pseudo-labels
for object segmentation models and their effective translation to real-world images.
Finally, we introduce a model that learns salient object segmentation maps directly
from real images, utilizing methods to approximate manipulated image distributions
from adversarial training. We build upon recent advanced self-supervised image models,
showing their adaptability for powerful image representation and manipulation tasks,
such as inpainting. Lastly, to advance research on the generative models used in
this thesis, we propose a new training approach for Generative Adversarial Networks.
This method incorporates a novel loss inspired by contrastive learning literature,
taking the form of a statistical divergence between distributions. This loss offers
improved gradients, enabling the active pursuit of missing modes in the generated
data’s distribution.

1.4.1 Chapter outline

Chapter 2: Background. We provide a general overview of object segmentation
methods with a special focus on unsupervised object segmentation, which is the
central theme of this thesis. This includes modern self-supervised models, which many
segmentation methods are based on. Moreover, we introduce the Generative Adversarial
Networks, used extensively in our methods.
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Chapter 3: Emergence of Object Segmentation in Perturbed Generative
Models. Building on the observation that the location of objects can be perturbed
locally relative to a given background while maintaining the realism of a scene, we
introduce a method to generate separated background and foreground object compo-
nents of a scene. We train a generative model such that a composite image obtained
by overlaying a shifted foreground on the generated background yields a realistic
scene. Because the generator is unaware of the shifts in the image, it must produce
layered representations that are realistic for any such random perturbation. Levering a
layered generative model, allows to shift the foreground objects without the need for
inpainting. Finally, we train an encoder to map real images into the generated layered
representation with a corresponding mask for an object. This chapter corresponds to
the NeurIPS publication [10].

Chapter 4: Unsupervised Learning of Object Segmentation From Perturbed
Generative Models. We further explore the perturbed generative models. We
show how they can be simplified and explore different ways of training a segmenter
that produces segmentation maps for real images, introducing an end-to-end training
procedure that can achieve that. We show that a segmenter trained on synthetic
composite images and their corresponding generated masks works well on real data as
well.

Chapter 5: MOVE: Unsupervised Movable Object Segmentation and De-
tection. We introduce a novel method to segment objects without any supervision.
Contrary to previous approaches, we train a segmenter directly on real images utilizing
recent state-of-the-art self-supervised features. While we still use adversarial training,
we do not need to generate the images as we utilize a powerful inpainting network based
on Masked Autoencoders. This chapter corresponds to the NeurIPS publication [11].

Chapter 6: Generative Adversarial Learning via Kernel Density Discrimina-
tion. Training Generative Adversarial Networks (GANs) involves maintaining a careful
balance between the discriminator and generator networks. However, this process
is susceptible to mode collapse, leading to less-than-optimal solutions. To overcome
this, we propose a new GAN loss method called Kernel Density Discrimination (KDD
GAN). This approach utilizes statistical divergence between kernel density estimates
of real and generated data distributions in the feature space. This is effective even
when the discriminator is not optimal. By doing so, we provide improved training
gradients that encourage the generator to cover previously unrepresented modes in
its distribution. The outcome is a notable enhancement in the quality of generative
models. This chapter corresponds to the publication [69].



22

Chapter 1: Introduction




Chapter 2

Background

This chapter provides an overview of the fundamental concepts and techniques in object
segmentation and unsupervised learning, with an emphasis on methods that are relevant
to this thesis. It is noteworthy that supervised image segmentation methods have been
thoroughly explored for their straightforward approach in associating input images
with pixel-precise labels. However, advancements in this field also bear significance
for the unsupervised segmentation domain, which is the central interest of this thesis.
Specifically, innovations in neural network architectures, designed to produce image
masks, are potentially beneficial in an unsupervised context, despite the lack of a direct
supervisory signal.

In recent years, unsupervised learning has seen substantial advancements, driven
by developments in generative models and self-supervised learning strategies. These
approaches have begun to close the gap with their supervised counterparts, offering
new ways to leverage the abundance of unlabeled visual data. The focus here is
on how generative models can be used to separate real or generated images into
distinct background and foreground components, enabling effective object segmentation
without explicit labels. Furthermore, self-supervised learning, by utilizing inherent
data characteristics as proxy labels, has emerged as a powerful tool for learning useful
representations from unlabeled data. This chapter provides an overview of these

approaches, focusing on their application for image segmentation.

2.1 Image Segmentation Formulation

The task of image segmentation involves partitioning an image into multiple segments
that can represent semantic regions, objects, parts, or boundaries within the image.
More formally, the image segmentation task can be formulated as follows. Given an
input image I of size H x W (where H and W represent the image height and width,
respectively), the goal is to produce a segmentation map S of the same size, where

23
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each pixel in S corresponds to a semantic label or indicates the presence of an object.
Therefore, the aim is to learn a mapping

F:I—S8S, (2.1)

based on a training dataset. This task is particularly challenging due to variations
in object appearances, scale, and occlusions, as well as the need for precise boundary
delineation.

Depending on the specific image segmentation task, pixels in .S can take binary
values (e.g., for salient, or foreground object segmentation; see Figure 1.1) or a form
of one-hot encoded vector, representing belonging to one of many classes (e.g., for
semantic, instance or panoptic segmentation), among others. In this thesis, we focus
on unsupervised salient/foreground object segmentation.

In the case of supervised image segmentation, a labeled dataset is available, where
each training example consists of an input image and the corresponding output seg-
mentation map. Therefore, the mapping function F' : I — S is learned based on a
dataset of image-segmentation pairs {(I;,S;)}, where i denotes the i-th sample in the
dataset, and is often cast as a pixel classification problem. In contrast, in the case of
unsupervised segmentation, which is the topic of this thesis, the only data available is
the collection of images {I;}.

2.2 Neural Networks for Image Segmentation

Neural networks have revolutionized the field of image segmentation by providing
powerful tools for learning complex patterns and representations from visual data. This
section outlines the evolution of neural network architectures in the domain of image
segmentation.

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [67] are the backbone of many image analysis
tasks. In the context of image segmentation, CNNs excel at extracting hierarchical
features from images, which are crucial for distinguishing between different semantic
regions. Early architectures like FCN (Fully Convolutional Network) [81] laid the
groundwork by demonstrating that a CNN, traditionally used for image classification,
could be adopted for pixel-wise predictions necessary for segmentation tasks.

2.2.2 Encoder-Decoder Architectures

The encoder-decoder structure is a significant advancement in segmentation networks,
designed to efficiently capture context and spatial information. The encoder pro-
gressively reduces the spatial dimensions of the input image, abstracting high-level
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Figure 2.1: U-Net architecture illustration (with 32 x 32 pixels at the lowest resolution).
Each blue rectangle represents a multi-channel feature map, with the number of channels
indicated above it. The dimensions in the x-y plane are noted in the bottom left corner
of the rectangle. White rectangles symbolize duplicated feature maps, and the arrows
illustrate the various operations involved. Link to the figure: [107], Fig. 1.

semantic information. In contrast, the decoder part reconstructs the segmentation map
from the encoded features, progressively increasing the resolution to achieve pixel-level
precision [94]. U-Net [107], a notable example, introduced a symmetric architecture
with skip connections that allow the flow of information between encoder and decoder
layers (see Figure 2.1), significantly improving the accuracy of segmentation.

2.2.3 Instance Segmentation with Mask R-CNN

Mask R-CNN [42] extends the Faster R-CNN [106] object detection framework to
address instance segmentation. It combines CNNs with a region proposal method
for instance segmentation, effectively identifying and segmenting individual objects
in images. A mask prediction branch is added to the existing structure for object
detection, enabling simultaneous detection and segmentation of objects at the instance
level. This approach allows Mask R-CNN to output a binary mask for each instance in
addition to the class and bounding box. Mask R-CNN demonstrates high efficiency and
accuracy in instance segmentation tasks, making it a significant model in the evolution
of neural networks for image segmentation.

2.2.4 Attention Mechanisms and Transformer Models

Attention mechanism, and more recently, Transformer models, have introduced a
paradigm shift across various domains of machine learning. Unlike traditional CNNs,
which process image regions with a fixed receptive field, attention-based models such as
the Vision Transformer (ViT) [28] use attention mechanism [125] to selectively focus on
different parts of the image. This approach allows the model to weigh the importance
of each part of the image according to the task at hand, enabling the modeling of
long-range dependencies and interactions between image patches. In the context of
image analysis, this capability is particularly beneficial for understanding complex
scenes and defining object boundaries more accurately. An example of leveraging
Transformer architecture for image segmentation is Maskformer [21], which combines
Transformers with a per-pixel mask loss and per-mask classification loss to efficiently
segment objects and scenes.
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2.3 Unsupervised Object Segmentation Methods

Unsupervised object segmentation methods play a crucial role when labeled data is
unavailable. These techniques focus on identifying and segmenting objects within images
by relying on the inherent structure and distribution of the data itself. This section
introduces various groups of unsupervised segmentation methods, each employing
different strategies to achieve segmentation without the need for manually annotated
data. We explore methods that utilize clustering algorithms, generative models, and
self-supervised learning techniques.

2.3.1 Clustering and Hand-crafted Methods

To avoid manual annotation, the task of interest can be cast in the unsupervised
learning framework (see [6, 33]). Early fully unsupervised methods for segmentation
relied on a form of clustering of color, brightness, local texture, or some feature encoding.
For instance, the superpixel clustering method of [1] and the mean-shift method of [23]
are some of the first segmentation approaches based on prescribed low-level statistics.

Several hand-crafted methods have been proposed to address the task of un-
supervised segmentation, particularly focusing on saliency detection, by leveraging
human-designed image features. To name a few, the discriminative regional feature
integration approach of [52] utilizes color contrast, texture, and boundary-based fea-
tures to distinguish salient objects. In a similar vein, the optimization technique for
saliency detection by [156] leverages spatial coherence and edge density as robust
background indicators. The method proposed by [74] for saliency detection relies
on dense and sparse reconstruction, using features like color uniqueness and spatial
distribution to highlight salient regions. Another approach by [51] employs Markov
chains, constructing a graph with edges defined by features such as color similarity
and spatial proximity to estimate saliency. The weighted sparse coding framework for
saliency detection [73] utilizes sparsity in feature representation, emphasizing contrast
and uniqueness. Hierarchical saliency detection by [138] incorporates multi-scale image
features, including intensity, color, and orientation, to progressively refine saliency
maps. The work of [158] introduces hierarchy-associated rich features, combining color,
texture, and location information to effectively detect salient objects. Lastly, [92]
combines different hand-crafted methods into a deep learning framework.

2.3.2 Mutual Information and Scene Decomposition

Unsupervised segmentation can also be formulated as a pixel-wise image partitioning
task. IIC [50] defines the task as a classification problem with a known number of
segment types, such that the mutual information between the predicted partitions
of transformed versions of the same image is maximized. In [98] they learn image
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clustering by maximizing mutual information between different orderings of pixels in
autoregressive models. CIS [141] also utilizes mutual information between segments,
but due to the use of optical flow is only applicable to videos. The work of [110] points
out that the correct mask maximizes the inpainting error for both the background and
the foreground; however, for complex real-world datasets, there is too much ambiguity
in selecting such regions. Several methods for unsupervised scene decomposition were
proposed, including [15, 30] and [80] that use spatial or slot attention and [36-38]
that model images as a spatial mixture model to perform unsupervised segmentation.
However, these approaches have only been shown to work on simpler synthetic or
controlled datasets.

2.3.3 Generative Methods

A wide range of methods exploits generative models trained without supervision to find
a segmentation mask or to generate synthetic data to train a segmenter. In one line of
work, it is observed that a pre-trained generator of large-scale Generative Adversarial
Networks (GANSs; see section 2.4) [35] contains directions in the latent space that
modify the foreground and the background independently, while keeping the content
of the image. The work of [129] finds the latent shift that acts on each pixel as one
of two affine operators, while [85] finds the directions that preserve the edges while
modifying the brightness.

Other methods exploit scene compositionality to generate or decompose the scene
into a layered representation. The work of [124] proposes a GAN that generates a
background and individual objects by modeling their relational structure with attention,
however, the method is shown to work only on relatively simple datasets. In [65] they
generate parts of an image with a GAN and RNN and apply restrictions on alpha
channels to avoid degenerate solutions, but their blending procedure does not encourage
resulting composite images to necessarily contain the exact generated parts. The method
of [140] uses GAN and LSTM to generate a background, a foreground with a mask, and
a transformation matrix to learn where to place the objects with a spatial transformer.
More in general, generative methods make different assumptions on the information
in the object segment. For example, [18] assumes that only when the segmentation is
correct, a generative model can replace the original object with another in a realistic
manner. In [8, 97] they use generative models to solve several tasks simultaneously,
including foreground segmentation, but they rely on the assumption that a dataset of
only backgrounds is available. The works of [3, 105] build on the idea that realistic
segmentation masks would allow the copy-pasting of a segment from one region of an
image to another. They do, however, either use pre-trained object detectors as weak
supervision [105] or do not guarantee that the copied object retains a realistic context.
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Figure 2.2: The Masked Autoencoder (MAE) method uses a pre-training approach
where around 75% of image patches are randomly masked. An encoder processes the
visible patches, and after encoding, mask tokens are added. A small decoder then
reconstructs the original image. After pre-training, the decoder is removed, and the
encoder is used on full images for recognition tasks. Link to the figure: [44], Fig. 1.

All these methods require either additional assumptions, were shown to work only on
simple or synthetic datasets, or require some sort of additional supervision.

2.3.4 Self-Supervised Pre-trained Models

Self-supervised learning (SSL) has gained increased attention in the machine learning
community, particularly within the domain of computer vision. It enables models to
learn rich representation from unlabeled data by predicting part of the input from
other parts or by solving auxiliary tasks. For instance, in the context of images, earlier
deep learning SSL models learn a feature representation through autoencoding [46],
predicting the color of a grayscale image [151], solving a Jigsaw puzzle [95] or predicting
the rotation of an image [34]. Such representations, learned in an unsupervised way,
may be used to discover semantic data structure through clustering or finetuned for
downstream tasks, like image classification, object detection or segmentation.

In recent years, SSL methods have gained a significant improvement, mainly driven
by the success of contrastive learning methods [16, 19, 20, 43] and scalability of Vision
Transformers [28]. Contrastive learning aims to learn representations by maximizing
the agreement between the representation of differently augmented views of the same
datapoints while minimizing the agreement between views of different data points.
Another approach, Masked Autoencoders (MAE) [44], applies masked modeling in
vision domain, inspired by the success of masked language models in natural language
processing. During the training a significant portion of the input image is randomly
masked and the objective is to reconstruct the masked parts (see Figure 2.2).

In the context of unsupervised image segmentation, self-supervised methods have
attracted increasing attention due to emerging properties when such models are trained
at scale. Most prominently, DINO [17] is an SSL model that utilizes knowledge distilla-
tion between a student and a teacher network, both processing different augmentations
of the same image, to learn rich visual representations without labeled data. It has
been shown that the attention maps of the pre-trained DINO Vision Transformer can
group semantically meaningful regions within images, despite not using any labels or
having any direct incentive to do so. Multiple works followed that direction, finding
that DINO feature representation provides a good baseline to obtain unsupervised
image segmentation. The work of [2] explores the applicability of such features for
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DINO [17] LOST [115] TokenCut [136]

Figure 2.3: Examples of different applications of DINO features and attention maps to
segment objects.

co-segmentation and finding correspondences through feature clustering. LOST [115]
designs a seed expansion strategy to obtain an object segment. DeepSpectral [84] and
TokenCut [136] propose a segmentation method based on solving the graph-cut problem
with spectral clustering (see Figure 2.3 for examples). Semantic segmentation can also
be achieved by clustering features across the dataset, as shown in DeepSpectral [84]
and STEGO [40], although careful dataset-dependent tuning might be needed for these
methods. Beyond DINO, FreeSOLO [135] uses DenseCL features [134] to obtain coarse
object masks. SelfMask [114] proposes a clustering approach that can use multiple
SSL features and evaluates all possible combinations of DINO [17], SwAV [16] and
MOCOV?2 [43].

2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [35] were a breakthrough in generative
modeling, where the goal is to model the data distribution. GANs aim to solve the
problem of generating new data points that are indistinguishable from real data. They
achieve this through an adversarial framework involving two competing networks: the
generator, which creates data resembling the real distribution, and the discriminator,
which evaluates how well the generated data matches the statistical properties of the
real data distribution. Generative learning finds applications in many computer vision
tasks, such as image translation [29, 48, 100, 155], image processing [64, 68], image
restoration [99, 123, 151], text to image mapping [70, 103, 104, 147] and, more in
general, to define image priors in image-based optimization problems [86, 123].

2.4.1 Problem Formulation

The goal of Generative Adversarial Networks is to find a mapping from a known
distribution, typically a multi-variate Gaussian p,(z), to the data space pgatq(z). Their



30 Chapter 2: Background

training relies on an adversarial min-max game, in which two neural networks, a
generator (G) and a discriminator (D), are trained against each other in a zero-sum
game. The discriminator is trained to distinguish real samples z from fake ones G(z)
synthesized by the generator, while the generator is trained to fool the discriminator.
More formally, this adversarial process can be described by the following value function
V (G, D):

minmax V(D, G) = By, (108 D(@)] + Eevy o log(1 - DG))] (22)

Here, x represents real data drawn from the data distribution pgu(x), and z
represents input noise variables drawn from a distribution p,(z) used by the generator
to produce data. The discriminator outputs a scalar D(x) linked to the probability
that = came from the real data rather than the generator. The generator aims to
produce data G(z) as realistic as possible to fool the discriminator.

The goal of the discriminator is to maximize V' (D, G) for a given GG, meaning it tries
to assign the correct labels to both real and generated data. Conversely, the generator
aims to minimize V' (D, G) given the discriminator D, meaning it tries to produce data
that the current discriminator will mistakenly classify as real. This formulation involves
the adversarial training process, where both G and D improve through iterations. The
generator learns to produce more accurate representations of the data distribution,
while the discriminator becomes better at identifying subtle differences between real
and generated data. The equilibrium of this game is reached when G generates data
indistinguishable from real data, which corresponds to a known statistical divergence,
e.g., the Jensen-Shannon Divergence (JSD) [35].

2.4.2 Limitations and Advancements

Although GANs offer numerous benefits, training them poses a lot of challenges in
practice. The stability of the training process relies on finding a balance between the
two networks, ensuring that neither becomes too powerful too quickly, to maintain the
adversarial dynamic. GANs are also prone to mode collapse, where the model only
captures a subset of the data distribution and fails to represent its full diversity.
GANs have continually evolved and improved through various iterations since they
were first introduced. Works such as [4] and [96] focus on training the generator to
minimize other statistical divergences that exhibit better properties compared to the
JSD in the original work. A variety of other loss functions and GAN frameworks have
been introduced, claiming better stability and quality of generated samples, e.g., [9, 39,
82, 148] One complementary line of research explores additional regularization terms
such as using a gradient penalty for the discriminator [87], consistency regularization
[149] or differentiable augmentations [153] to various degrees of success. Many works
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aim to address the mode collapse problem, including mini-batch discrimination and
label smoothing [108], UnrolledGAN [88] and PacGAN [78]. Another line of work
introduces image GAN models that process progressively larger images and grow in
size. Progressive GAN [54] and StyleGAN [55, 57] proved to work particularly well to
improve the stability and quality of generated images.

Training GANs on large-scale datasets is a challenging task. State of the art models
such as BigGAN [14] require a substantial amount of compute resources. Moreover,
many of them require a post-hoc processing to reduce spurious samples. [27] proposes
to tackle both issues by filtering the dataset using instance selection. They argue that
the model’s capacity is wasted on low density regions of the empirical distributions
of the data. Their results show that instance selection enables the training of better
GAN models with substantially fewer parameters and less training time.

A recent addition to this list are methods that capture more structure into the
latent representation of the discriminator through the use of Contrastive Learning
[49, 53, 145]. One such example is ContraGAN [53], where the authors introduce a
new regularization term, called 2C loss, based on the NT-Xent loss [19] used commonly
in Contrastive Learning. The introduced loss term aims at capturing the data-to-data
and data-to-class relations in the dataset.
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Chapter 3

Emergence of Object
Segmentation in Perturbed
Generative Models

In this chapter, we introduce a framework to learn object segmentation from a collection
of images without any manual annotation. Since we cannot rely on the provided labels,
we employ object properties that can help to define the object’s location. Namely, we
build on the observation that the location of object segments can be perturbed locally
relative to a given background without affecting the realism of a scene. In fact, if object
segments include some of the background, a small shift would reveal an unnatural
edge with the background. Similarly, if the object segments do not include the entirety
of the object, a small shift would reveal an unnatural-looking object occlusion or
discontinuation. This is related to the cohesive motion principle of object perception
described in Chapter 1.

Our approach is to first identify a powerful and general principle to define what an
object segment is and then to devise a model and training scheme to learn through that
principle. With reference to Figure 3.1, we propose to build a generative model that
outputs a background image, a foreground object, and a foreground mask. This model
is trained in an adversarial manner against a discriminator. The discriminator aims
to distinguish the composite image, obtained by overlaying the output triplet of the
generator, from real images. This training alone provides no incentive for the generator
to produce triplets with correct object segmentations. In fact, a trivial solution is
to have the same realistic image for the foreground and background and a random
mask (see Figure 3.2, first row). To address this failure, our framework introduces
the concept of learning through the perturbation of the model output. According to
our object segment definition, we could introduce a small random shift between the
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Figure 3.1: Tllustration of the proposed architecture to learn to generate realistic layered

scene representations through G (blue path) and to learn to map images to a layered
representation through E (and G), i.e., to segment objects (green path). The layered
representation consists of three components: 1) a background image B, 2) a foreground
image F, and 3) a(n alpha matte) mask image m. A crucial component of our model is
the generation of random shifts p of the foreground object (in particular, such that
they are independent of the input vector z to G) during the training of the generator.
The generator is trained adversarially against a discriminator D. Once the generator
G is trained, the encoder E can be trained to extract z, which encodes the layered
representation.

foreground and background outputs and still obtain a realistic composite image. If this
perturbation is unknown to the generator before producing its triplet, then it is forced
to output realistic object segments (see Figure 3.2, last row). As a separate step to
retrieve the segmentation of an image, we propose to train an encoder network. The
encoder is paired with the generator so as to form an autoencoder. The encoder maps
an image to a feature vector, which is fed as input to the generator so that it outputs a
triplet that can be used to rebuild the input image. The combination of both of these
steps allows us to train the encoder to detect and segment objects in images without
any manual annotation (see the green path in Figure 3.1).

Contributions. We introduce a fully unsupervised learning approach to segment
objects. Unlike in prior work, we do not make use of object detectors, classifiers,
bounding boxes, landmarks, or pre-trained networks. To our knowledge, this is the
first such solution working on complex real images. Moreover, the proposed method
is quite general as we demonstrate it on several object categories qualitatively, and
quantitatively on the LSUN Car dataset [143] with Mask R-CNN [42] used as ground
truth as well as CUB-200 dataset with provided annotations. Although we evaluate
our approach on a dataset with a single object category at a time, our framework can
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Background Foreground Composite Composite + shift

Figure 3.2: First row: Trivial solution, where the background and the foreground
are identical and any mask produces a valid composite scene. However, a random
foreground shift reveals the invalid segmentation. Second row: Trivial solution, where
the whole scene is generated in the background and the mask is always empty. Last
row: The scene after a random shift is valid only when the background generation
and the object segmentation are valid and the mask is not empty.

potentially work on mixed object collections (see Figure 3.5). We use single object
category datasets because of current GAN limitations.

3.1 Related Work

In Chapter 2 we introduce different unsupervised methods for object segmentation.
Most of the methods prior to the approach described in this chapter work either on
simple datasets or utilize some sort of weak supervision, for example, object bounding
boxes or pre-trained supervised models. In contrast, this method works on real-world
images and does not make use of any form of supervision or pre-trained models.

The work that most closely relates to ours is by [105]. In this paper, the authors
build on the idea that realistic segmentation masks would allow the copy-pasting of
a segment from one region of an image to another. This remarkable principle can be
used to define what an object is. More generally, one could say that pixels belonging
to the same object should be more correlated than pixels across objects (including the
background as an object). The weak correlation between the object and background
is what allows introducing a shift without compromising the realism of the scene.
However, the weak object-background correlation means also that not all shifts yield
plausible scenes. This is why [105] study the object placement and introduce some
randomized heuristics as approximate solutions. In contrast, in our work, we avoid
heuristics by noticing that small shifts are almost always valid. The price to pay is that
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background inpainting is required. That is why we introduce a generative model that
learns to output a background and a foreground image in addition to the segmentation
mask. One important aspect of the design of unsupervised learning methods is to
avoid degenerate solutions. [105] build a compositional image generator as done by [97]
and then train a segmenter adversarially to a discriminator that classifies images as
realistic or not. A degenerate solution for the segmenter is to avoid any segmentation,
as the background looks already realistic. The authors describe two ways to avoid
this scenario: One is that the dataset of real images contains objects of interest and
therefore an empty background would be easily detected by the discriminator. The
second is that a classification loss (pre-trained on object identities) would ensure that
an object is present in the composite scene. This approach assumes some knowledge
about objects (e.g., where they are) and works well on relatively small images (28 x 28
pixels). In contrast, our approach does not require such assumptions and we show
its performance on (relatively) high resolution images. In our approach we require
that the mask has a minimum number of non-zero pixels, i.e., we learn to generate
segments with a minimum size (this avoids the degeneracy illustrated in the second row
of Figure 3.2). This is not a restriction, because we are not making assumptions on
single images, but, rather, on the distribution of the image dataset. Then, we establish
the correspondence between images and segments in a second step where we train an
encoder network. The encoder learns to map images to a suitable noise vector for the
pre-trained generator, such that it outputs background, foreground, and mask that
autoencode the input image after composition (see Figure 3.1). The design of such
generative models is only possible today thanks to the progress driven by the latest
Generative Adversarial Networks of [55], mentioned in Section 2.4, page 29, which we
exploit in this work.

3.2 Learning to Segment without Supervision

Our approach is based on two main building blocks: A generator G and an encoder E
(see Figure 3.1 for an illustration of the proposed method). The generator is trained
against a discriminator in an adversarial manner with the latest high-quality StyleGAN
(Generative Adversarial Network) by [54, 55]. G learns to generate composite scene
samples to the extent that the discriminator cannot distinguish them from real images.
There are several important aspects that we would like to highlight. Firstly, the training
requires no correspondence between the real images and the generated scenes. It allows
us to impose constraints on the average type of generated scenes we are interested
in, rather than a per-sample constraint. For example, we expect the average scene to
have an object with a support of at least 15% — 25% of the image domain, a condition
that may not hold in each sample. Secondly, during training, we introduce a random
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shift unknown to the generator. Thus, the generator must output a background and a
foreground that can be combined with arbitrary small relative shifts and still fool the
discriminator into believing that the composite image is realistic. This is an implicit
way to define what an object is, that avoids manual labeling altogether. The second
building block in our approach is an encoder E that learns to segment images. The
encoder followed by the generator and the image composition form an autoencoder.
The encoder E maps a single image = to a feature vector z that, once fed through
the generator, yields its background B (with inpainting), its foreground object F, and
its foreground object mask m. The correspondence between images and their object
segmentation is thus obtained through the training of the encoder. In the following
sections, we explain our approach more in detail.

3.2.1 A Generative Model of Layered Scenes

Consider an M x N discrete image domain  C Z2. In our notation, we consider
only grayscale images for simplicity, but in the implementation we work with color
images. We define the representation of a scene as a layered composition of 2 elements:
a background image B : 2 — R and a foreground image F : Q — R. Although the
foreground is defined everywhere, it is masked with an alpha matte m : Q +— [0, 1] in
the image composition. The composite image Z : {2 — R is then defined at each pixel
p € as

z[p] = (1 — m[p])B[p] + m[p]F[p]. (3.1)

We define a generator G : R¥ — RM*N through a convolutional neural network
(as described in [55]) such that, given a k-dimensional input vector z ~ N(0, 1), it
outputs three components G(z) = [Gg(z), Gr(2), Gm(z)], where Gg(z) = B, Gp(z) = F
and Gp,(z) = m. The generator is then trained in an adversarial manner against
a discriminator neural network D : RM>*Y  R. Our implementation is based on
StyleGAN, which, in turn, is based on the Progressive GAN of [54], a formulation using
the Sliced Wasserstein Distance.

3.2.2 Learning through Model Perturbation

If we trained the generator with fake images according to eq. (3.1) and we assumed a
perfect training, the learned model could be a trivial solution, where the background
Gg(z) and the foreground Gp(z) are identical and realistic images, and the mask Gy, (z)
is arbitrary (see Figure 3.2, first row). In fact, there is no incentive for the generator
to learn anything more complex than that, and, in particular, to associate foreground
objects to the foreground mapping Gg(z). Even the constraint that the average value
of the segments Gy, (z) should be at least 15% — 25% is not sufficient to make the
generator mapping more meaningful. We use the constraint that foreground objects
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can be translated by an arbitrary small shift A ~ U([—0,d] x [—6,6]), with § a given
range of local shifts, and would yield still a realistic composite image. Formally, this
can be written by updating eq. (3.1) as

Z[p] = (1 —m[p + A])B[p] + m[p + AJF[p + A]. (3-2)

Now, the generator has no incentive to generate identical foreground and background
images, as a random shift would be immediately detected by the discriminator as
unrealistic. Vice versa, it has an incentive to output foreground images and masks
that include full objects. If the segments included some background or missed part of
the foreground, a small random shift A would also yield an unnatural-looking image
that the discriminator can easily detect (in particular, at the segment boundary; see
Figure 3.2, last column). Therefore, now the generator has an incentive to output
meaningful object segments. To make sure that the mask is non-empty, we impose a
hinge loss on the average mask value

Lsize = Epon(0,1,) | max {0, — Y/MN|Gr(2)[1} ] (3.3)

with a mask size parameter n > 0 and also use a loss that encourages the binarization
of the mask

Lbinary = Epon(0,1,) [ min {Gm(2), 1 — G (2)} ] (3.4)

Finally, to train the generator we minimize the following loss with respect to Gg, Gp
and Gy,

Leen = —Ezop, [D(2)] + 71 Lsize + Y2Lbinary (3.5)

with v1,72 > 0. To train the discriminator we minimize the following loss with respect
to D

Laisc = Eonpy [D(@)] = Earop, [D()] + Az, [(IVD(@)]y — 1)%] + eEanp, [D(2)?] (3.6)

where p, is the probability density function of real images x, we define = (x+ (1 —{)z
with random ¢ € [0, 1], A > 0 is the gradient penalty strength and € > 0 prevents the
discriminator output from drifting to large values, following [39] and [54].

3.2.3 Object Segmentation via Autoencoding Constraints

Once the generator has been trained, we can learn to associate background, foreground,
and segments to each image. To do that, we can train an encoder E such that it
retrieves, through the generator G, a composite image that matches the original input
(see Figure 3.1, green path). The encoder E : RM*N i R¥ maps z to E(x) € R*. Let
us define zg = (1 — G (E(z)) ) © Gg (E(z)) + Gm (E(z)) © Gr (E(z)). The loss used
to train the encoder E can be written as

2
Dfeat(xE) — Dreat (:C) 9’ (37)

£auto = Exwpz TR — I“l + Exwpz



3.8 Implementation 39

Background T
Foreground !. -, |
iv “ Q=0
Mask :' .'” ‘ >

Foreground ﬁ
=
v

w/ mask e

Composite w8

Background
Foreground

Mask

Foreground
w/ mask

Composite
image

Y

(c) cha o o (d) bird

Figure 3.3: Generated 128 x 128 pixels backgrounds, foregrounds, masks, foregrounds
with mask applied and composite images for 4 different image categories. Last two
columns in each category show generator failures, e.g., an object in the background or
an unrealistic foreground.

where the second term is a perceptual loss that uses features from the trained StyleGAN
discriminator.

3.3 Implementation

Experimentally, we find that current GAN methods are not yet capable of generating
high-quality images from datasets of multiple categories (in a fully unsupervised
manner). Thus, we mainly demonstrate our method on datasets with single categories.
For all experiments, all the network architectures and details follow the StyleGAN [55]
if not specified in this section. We use 2 separate generators, one outputs a 3 color
channel background, while the other one has two outputs: a 3 color channel foreground
and a 1 channel mask followed by a sigmoid activation function. Both generators
take the same 512 dimensional Gaussian latent codes as input. We use mixing with a
probability of 0.9 and feed two latent codes to two parts of the generator, split by a
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Table 3.1: Ablation study for the LSUN Car dataset. The IoU is computed using Mask
R-CNN generated segmentations as ground truth. The reference IoU is computed using
masks covering the entire image as segmentation.

Setting 64 x 64 pixels 128 x 128 pixels
reference detected reference  detected
ToU ToU cars ToU ToU cars
(a) Default parameters 0.685 0.440 6293 0.533 0.432 7090
(b) No shift (6 =0) 0.039 0.428 6738 0.025 0.419 7578
(c) 25% shift (6 = 0.25 -size) 0.144  0.434 6493  0.094  0.426 7259
(d) Bg contrast jitter 0.765  0.454 6089 0.673  0.436 7046
(e) No random crops 0.264 0.374 6339 0.136 0.365 7520
(f) Mask size v; = 10.0 0.733 0.443 6245 0.643 0.430 7241
(g) Min. mask size n = 5% 0.693 0.458 6202 0.552 0.430 7256
(h) Single generator 0.550 0.446 6903 0.484 0.435 7544

randomly selected crossover point. We start the training with an initial resolution of
8 x 8 pixels and use progressive training to up to 128 x 128 pixels. We train with batch
sizes 256, 128, 64, 32 and 32 for resolutions 8 x 8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128
respectively. For each scale the number of iterations is set to process 1,200,000 real
images. The local shift range § described in Section 3.2.2 is resolution-dependent and
set to § = 0.125 x resolution. For each resolution of training StyleGAN we first
resize the real image to a square image of size 1.125 X resolution and then take a
random crop of size resolution to match the shifts in the generated data. We train
the StyleGAN network on real images x and composite generated images z (eq. (3.2))
by alternatively minimizing the discriminator loss (eq. (3.6)) and the generator loss
(eq. (3.5)). We set the discriminator loss parameters to A = 10 and € = 0.001. In
the generator loss we set v = 2 for the minimum mask size term and v, = 2 for
the binarization term. We optimize our GAN with the Adam optimizer ([61]) and
parameters 51 = 0, B2 = 0.99. We use a fixed learning rate of 0.001 for all scales except
for 128 x 128 pixels, where we use 0.0015.

3.4 Experiments

We train our generative model on 4 LSUN object categories ([143]): car, horse, chair,
bird. For each dataset we use the first 100,000 images. Objects in the datasets show
large variability in position, scale and pose. We set the minimum mask size 7 in eq. (3.3)
to 25%, 20%, 15% and 15% for car, horse, chair, bird datasets respectively. In
Figure 3.3 we show some examples of outputs produced by the generators from random
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Generated
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Mask
R-CNN

(g) Min. mask size n = 5% (h) Single generator

Figure 3.4: Qualitative results of our approach for settings (a)-(h): generated 64 x 64
composite images, masks, and outputs of Mask R-CNN.
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samples in the Gaussian latent space. From the first to the fifth row in each quadrant:
generated background layer, generated foreground layer, generated foreground mask
layer, product between the mask and the foreground layer, and final composite image.
As can be seen, the generator is able to learn very accurate object segmentations and
texture. Also, it can be observed that the background has some residual artifacts in the
center. This is due to the limited shift perturbation range, which does not allow the
background layer to receive much feedback from the loss function during the training.
In some cases the exact separation between object and background is not successful.
This can be seen in the last two columns for each dataset.

3.4.1 Ablation study

To validate the design choices in our approach, we perform ablation experiments on the
LSUN Car dataset. We introduce the following changes to (a) the default parameters
described in Section 3.3, (b) disable the shift by setting the range of random location
shift 6 = 0, (c) increase the shift to § = 0.25 x resolution, (d) randomly jitter the
background contrast in the range (0.7, 1.3) to further prevent the background from
filling parts of objects, (e) directly resize real images to the desired resolution without
random cropping, (f) increase the strength of the mask size loss Lg,e by setting its
coefficient 7y = 10, (g) set the minimum mask size parameter to a smaller value
n = 5%, (h) use a single generator with 3 outputs for background, foreground and
mask. To evaluate the quality of the generated segments, we generate 10,000 images
and masks for each setting. We binarize our masks with a 0.5 threshold. To obtain an
approximated mask ground truth on generated composite images we run Mask R-CNN
[42, 83] pre-trained on MS-COCO [77] with a ResNet50 Feature Pyramid Network

backend. If the car is detected, we evaluate the Intersection over Union (IoU) with
— ImgenMmyprea|
B ‘mgenumpred\ ’
run the evaluation on 64 x 64 and 128 x 128 pixels resolution, but resize the 64 x 64

images to 128 x 128 before feeding them to Mask R-CNN. The quantitative results can
be found in Table 3.1 and the qualitative results in Figure 3.4.

the mask generated by our models on these images, defined as IoU We

Our ablation shows that the random shifts (see Section 3.2.2) are essential in our
approach. When not used (b) the object segmentation fails and the objects are often
in the background. The quality of the segmentation decreases drastically when the
random shift range does not correspond to foreground object shifts in real images. This
is illustrated by the setting (¢) with large random shifts and by the setting (e), where
the real images are not randomly cropped. The additional random contrast jitter of the
generated background (d) helps separate the foreground object from the background.
A smaller value of the 7 parameter to ensure the minimum mask size (g) does not have
a big impact on the results: It helps to avoid empty masks, but the mask size is mainly
determined by the realism requirement. Using a single generator (h) to produce all
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Table 3.2: FID scores comparison between our proposed GAN model and the single
output (SO) GAN model.

Settin FID FID

& (64 x 64) (128 x 128)
SO GAN 27.807 21.665
Our GAN 31.409 30.867

outputs makes the background and the foreground too correlated, which prevents it
from learning a good layered representation.

Quality of generated images. To evaluate the quality of generated composite
images, we compute the Frechet Inception Distance (FID [45]) using 10K real and
10K generated images composite images from our model (d). We compare it with a
standard StyleGAN producing the entire images at once, trained for the same number
of iterations. The results are presented in Table 3.2. The difference in the FID scores
may be explained by the more demanding constraints of our model, which may hinder
the GAN training.

Dataset with more than one object category. Although we run our experiments
on datasets containing objects of one category, we argue that our method should work
with multiple object categories when the GANs improve and are able to produce realistic
images on diverse datasets. To verify this, we train our model on a dataset consisting
of 50K images from LSUN Car and 50K images from LSUN Horse datasets. The
qualitative results are presented in Figure 3.5. Although the quality of the generated
images on such a dataset is lower, our model is still able to generate segmented scenes.

3.4.2 Segmenting real images

Finally, we train an encoder to find the segmentation of real images, as described in
Section 3.2.3. We use our best generator trained on LSUN Car 64 x 64 images with
background contrast jitter (setting (d)) and freeze its weights. We train an encoder
that produces 5-2 -2 = 20 latent codes of 512 dimensions: For each of the 5 StyleGAN
scales, we get 2 separate codes for AdaIN (Adaptive Instance Normalization) layers

Figure 3.5: Generated object segments using a dataset with two object categories: cars

and horses.
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Figure 3.6: Qualitative results of segmentation on LSUN Car and CUB-200 datasets.
(a) Examples of successful segmentations. (b) Examples of failures.

Table 3.3: Segmentation results comparison. For the LSUN Car dataset, Mask R-CNN
generated segmentations from 10,000 images serve as ground truth. The IoU values are
depicted for images with detected cars versus all images, including those using empty
masks. CUB-200 comparisons employ real ground truth.

LSUN Car LSUN Car CUB-200

Setti

crHng (detected) (all) IoU
Our method 0.540 0.479 0.380
GrabCut 0.559 0.499 0.453
Full mask 0.402 0.357 0.132

in a convolutional block and get separate codes for 2 generators (background and
foreground with mask). For the encoder, we use a randomly initialized ResNet18
network ([41]) with a 64 x 64 input without average pooling at the end and add a
fully-connected layer with a 512 - 20 = 10240 output size. We feed the codes to the
generator and minimize the autoencoder loss (eq. (3.7)). In the perceptual loss, we
use our discriminator to extract 512 x 8 x 8 spatial features on real and generated
images. We evaluate the segmentation on the first 10,000 images of the LSUN Car
dataset. We train separate encoders on chunks of 100 images as we found that it makes
the encoding more stable than training on the entire dataset. We run the training for
1000 iterations with Adam optimizer, learning rate of 0.0001 and 5; = 0.9, G2 = 0.999.
After training, we encode the images and feed the codes to the generator to obtain the
masks. For the approximated ground truth we run Mask R-CNN on real images and
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evaluate our segmentation with mean IoU. We also compute the IoU using the output
of the GrabCut algorithm and a naive mask covering the entire image. The results
are presented in Table 3.3. The performance of our method is capped by ambiguities
in inverting the generator with an encoder, which is an active topic of research. We
present sample segmentation results in Figure 3.6. We notice some failures, especially
in the case of small objects. We repeat the same training and evaluation procedure on
Caltech-UCSD Birds-200-2011 dataset [130], for which the segmentation ground truth
is available. We use the parameters that worked best on the LSUN Car dataset for
training both the generator and the encoders.

3.5 Discussion

We have introduced a new framework to learn object segmentation without using
manual annotation. The method is based on the principle that valid object segments,
when locally shifted relative to their background, can still yield a realistic image. The
proposed solution is based on first training a generative network to learn an image
decomposition model for a dataset of images and then on training an encoder network
to assign a specific image decomposition model to each image. It strongly relies on the
accuracy of the generative model, which today can be built with adversarial techniques.
However, this framework is quite general and can be extended. For example, the
current generative model postulates that a scene is composed only of a foreground and
a background object, but an increase of output layers could allow describing scenes with
multiple objects. In this case, the unknown number of objects and their interactions
would need to be addressed.
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Chapter 4

Unsupervised Learning of Object
Segmentation From Perturbed
Generative Models

In the previous chapter, we introduce a method that enables the generation of a layered
image representation that separates the background from the masked foreground. The
principle that shifting a segmented foreground object should yield a realistic scene
encourages the generation of correctly segmented objects. However, while we can
generate segmented objects, the fundamental problem we want to solve is object
segmentation in real images. In this chapter, we introduce an approach to learn an
object segmentation model directly from a large collection of images without any manual
annotation. The key idea is to build a synthetic training set for segmentation (i.e.,
where each sample consists of an input image and the corresponding segmentation mask)
through a generative model. This dataset is then used to train a segmentation network
in a supervised fashion. We explore and analyze a few different methods, including a
single end-to-end training of both the generative model and the segmenter that can
be applied directly to real images. We demonstrate on several datasets that models
trained on the generated data are able to generalize well on real images. Most notably,
we explore training our model on a small, but diverse dataset of images. We show that
we are able to learn segmentation even when the quality of the generated images is
subpar due to GAN limitations on small diverse datasets. So the object segmentation
can still be accurate although the image generation may not be extremely realistic.
Furthermore, we update and simplify our approach by using a single conditional
generator for foreground and background, which reduces the model complexity and
size compared to the previous approach.

47
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Figure 4.1: Illustration of the proposed architecture to learn to generate realistic
layered scene representations through G and to learn to segment real images through
the segmentation network S trained on the generated composite images and masks.
The layered representation consists of three components: 1) a background image, 2) a
foreground image, and 3) a(n alpha matte) mask image. The generator is conditioned
on the background/foreground class and is run twice with the same noise z for both
classes to obtain all the components of the representation. A crucial component of our
model is the generation of random shifts A of the foreground object (in particular,
such that they are independent of the input vector z to G) during the training of
the generator. The generator is trained adversarially against a discriminator D. The
segmentation network S is trained either with a pre-trained generator or jointly as part
of the U-Net discriminator (not shown in the illustration).

With reference to Figure 4.1, we propose to build a generative model that outputs a
background image, a foreground object, and a foreground mask, similarly to the method
of Chapter 3. This model is trained in an adversarial manner against a discriminator.
The discriminator aims to distinguish the composite image, which is obtained by
overlaying the generated background and the shifted foreground and mask, from real
images. Then, to learn to segment an image, we propose to train a segmentation network
with the generated layered representation. In other words, given a triplet background
image, foreground image, and foreground mask, the segmentation network would
be trained to map the composite image to its corresponding foreground mask. The
segmentation network can be trained either jointly end-to-end with the generative model
as part of the discriminator or separately after the generative model is trained. We
demonstrate that, provided that the generator is trained well, the segmentation network
trained with generated data also generalizes to real images. Finally, these two steps
define our fully unsupervised learning approach to segment objects. We do not make
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use of object detectors, classifiers, bounding boxes, landmarks, or pre-trained networks.
Moreover, the proposed method is quite general, as we demonstrate qualitatively on
several object categories, and quantitatively on the LSUN Car [143], CUB-200-2011
[130], Flowers102 [93] datasets as well as a small diverse saliency detection dataset
DUTS [131], containing multiple categories of objects.

Contributions. This work introduces a new approach to learning unsupervised object
segmentation models using perturbed generative models. We explore various strategies
for training a segmenter with generated layered representations, including end-to-end
training with the generative model itself. Our method proves to generalize effectively to
real-world images, even when the quality of generated data is subpar due to the inherent
limitations of GANs on small and diverse datasets. We evaluate our models, achieving
competitive results on several benchmarks. Additionally, we refine the generative
model’s architecture by integrating a conditional generator, which cuts the number of
model parameters by half.

4.1 Learning to Segment without Supervision

Our approach is based on training two main models: A generator G and a segmentation
network S (see Figure 4.1 for an illustration of the proposed method). In the first
model, the generator is trained against a discriminator in an adversarial manner with
a modern Generative Adversarial Network [57]. The generator G learns to generate
composite scene samples in the form of a foreground and a background layer, to the
extent that the discriminator cannot distinguish them from real images. In the second
model, we train a segmentation network S to segment images. We make use of the
generator outputs to produce composite images and corresponding objects masks pairs.
We then use these pairs to train a model that maps the composite images to the masks.
We find that if the generated distribution is close enough to that of real images, the
segmentation network is able to produce meaningful segmentations for real images as
well. In the following sections, we explain our approach more in detail.

4.1.1 A Generative Model of Layered Scenes through Model Pertur-
bation

Similarly to Section 3.2.1, we consider an M x N discrete image domain § C Z2. We
define the representation of a scene as a layered composition of a background image
B: Q— R, a foreground image F : Q — R with a foreground mask m :  + [0, 1], and
the composite image z : 2 — R defined at each pixel p € 2 as

z[p] = (1 — m[p])B[p] + m[p]F[p]. (4.1)
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This time we define a conditional generator G : R¥ x {0, 1} — R2XMXN through a
Convolutional Neural Network such that, given a k-dimensional input vector z ~
N(0,1;), it outputs two components for the background class 0, i.e., G(z,0) =
[GB(2), Gmbg(2z)] and two for the foreground class 1, i.e., G(z,1) = [Gr(2z), Gm(2)].
Then, we let B = Gg(z), F = Gp(z) and m = Gy,(z). We discard the background mask
output Gupg(z). The generator is then trained in an adversarial manner against a
discriminator neural network D : RM*N 1 R (see Figure 4.1). Our implementation is
based on StyleGAN2 [57].

Similarly to Section 3.2.2, we define the composite image with the foreground object
translated by a small shift A ~ U([—d,0] x [0, ]) as

Z[p] = (1 —m[p + A])B[p] + m[p + AJF[p + A]. (4.2)

as well as loss terms ensuring that the mask is not empty

1
Lsize = Eyn(0,1,) [max {0, n— W|Gm(2)|1H (4.3)

with a mask size parameter 1 € (0, 1), and a loss that encourages the binarization of
the mask

Lyinary = Eynr(0,1,) [min {Gm(2),1—Gn(z)} ] (4.4)

To train the generator, we minimize the updated StyleGAN2 loss with respect to
Gg, Gr and Gy,

Egen = Eiij [log(l - D(j))] + 71£size + ’YZACbinary (45)

with 1,72 > 0 and where p; is the probability density function of Z as defined via
eq. (4.2) with z ~ N (0,1;) and A ~ U([—6,0] x [=6,0]). To train the discriminator we
minimize the following loss with respect to D

Laise =Bgnp; [log(1 + D(2))] + Eynp, [log(1 = D(2))]

+ AEqgep, [\VxD(x)@} (4.6)

where p, is the probability density function of real images z and A > 0 is the R1
regularization strength, as described in StyleGAN2 [57].

4.1.2 Object Segmentation Trained on Generated Data

For the generated composite image & the object mask Gy, (z) is one of the generator
outputs and is known (see Figure 4.1). Therefore we can train a foreground-background
segmentation network S : RM*N s RMXN that maps an image #a to the corresponding
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mask Gy, (z). To train the segmentation network, we optimize the binary cross-entropy
loss

M N
1 y o
Loog = Bronory | 570 20 D —Gi () log(59(2)) | (47)
i=1 j=1

where we have used the A%/ notation to indicate the (i, j)-th entry of the 2D array A.
We choose the U-Net [107] architecture for the segmentation network (briefly
described in Section 2.2.2, page 24) and explore three ways to train it:

1. U-Net discriminator with mask prediction. We use a U-Net discriminator
[111] and train the segmentation network as part of the discriminator. The U-Net
discriminator outputs D(z) as the global encoder output as well as Dgec(z) €
RM*N as the decoder output, which is a pixel-specific measure of image realism.

The adversarial loss term for this pixel output is

1 M N o
['disc,dec = m Z Z < - Ecﬁij [log(l - Dfigc (ﬁj))}

i=1 j=1

~ Eanp, [log(Di, (2))] (4.8)

.. 2
+ AdecEornp, [VaDil(@)| ) .

We add another output channel Dy, to the U-Net decoder so that S(x) = Dgeg(x)
represents the predicted object mask. We optimize jointly the segmentation and
discriminator losses

Eunetdisc,seg = Edisc + Edisc,dec + ﬁseg' (49)

2. Discriminator with U-Net mask prediction. We can also omit the U-Net
discriminator output and use the decoder part only for the mask prediction. This
can be achieved by optimizing

Ediscseg = »Cdisc + »Cseg- (410)

3. U-Net post-training with generated data. We use the pre-trained generator
to create the training data: pairs of the composite image and corresponding mask.
We use the composite image as the input and the mask as pseudo-labels to train
the segmentation network. The generator can be trained with or without the
mask prediction losses from previous methods.
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Table 4.1: Comparison of different segmentation methods on the DUTS-TR and ECSSD
saliency datasets.

Setting Joint training IoU Post-training IoU FID |
DUTS-TR ECSSD DUTS-TR ECSSD

(a) U-Net discriminator + mask 0.687 0.595 0.727 0.659 52.11
(b) U-Net discriminator + mask ) o) 0.609 0.736 0.658  46.01
+ cutmix

(c) Standard discriminator + oo 0.656 0.719 0.651  52.87
U-Net mask prediction

(d) Standard discriminator — i i 0.739 0.653 50.97

post-training only

4.2 Implementation

In all experiments, the network architectures and details follow StyleGAN2 [57], except
where noted otherwise in this section. We use the conditional variant of StyleGAN2
[56] and modify it to output a 3 color channel image and a single channel mask. We
sample the generator with the same 512 dimensional Gaussian latent code, but with
different conditional labels to get the outputs that we use for the background (label
0) and the foreground with the mask (label 1). We ignore the mask output for the
background and apply a sigmoid activation function to the foreground mask. This
reduces the generator model size by half compared to our previous approach, where
two separate generators are used for background and foreground generation.

We use mixing with probability 0.9 and feed two latent codes to two parts of the
generator split by a randomly selected crossover point. We set the input and generated
image resolution resolution to 64 or 128 and use a batch size of 64. The local shift
range § described in Section 4.1.1 is set to 6 = 0.125 X resolution. We randomly jitter
the background and foreground contrasts in the range (0.7, 1.3) to further prevent
the background from filling parts of the foreground objects. To match the shifts in
the generated data, we first resize the center crop of the real image to a square image
of size 1.125 X resolution and then take a random crop of size resolution. We
train the StyleGAN2 network on real images = and composite images & (eq. (4.2))
by alternatively minimizing the discriminator loss (eq. (4.8)) and the generator loss
(eq. (4.5)). We set the R1 regularization strength in the discriminator loss to A = 0.1.
For the U-Net discriminator, we add the decoder by mirroring the encoder and use
transposed convolutions for upsampling. We then adapt the number of channels in
each layer so that the number of learnable parameters is roughly the same as that of
the single binary output discriminator. We regularize the U-Net discriminator with



4.3 Experiments 53

cutmix consistency [111]. In the generator loss we set y; = 5 for the minimum mask
size term and o = 2 for the binarization term. We optimize our GAN with the Adam
optimizer [61] and parameters 51 = 0, S = 0.99. We use a fixed learning rate of 0.001.

To evaluate our U-Net mask predictor, we first resize the input image to keep
the same scale as during the training, i.e., so that the smaller side is § = 0.125 x
resolution. Since U-Net is fully convolutional, we can run a forward pass on these
bigger images, occasionally adding reflective padding when the size of the feature maps
from concatenated skip connections does not match.

4.3 Experiments

4.3.1 Datasets

We experiment with 4 datasets of different size and variety. DUTS [131], in particular,
includes multiple categories, presenting a challenge for current GAN models, which tend
to generate higher quality images with large, single-category datasets when additional
labels are not utilized.

LSUN Car [143]. This dataset exhibits a wide range in position, scale, and pose.
We utilize the first 100,000 images of the dataset for training and another 10,000 for
evaluation. As the dataset lacks segmentation annotations, we derive an approximate
mask ground truth for evaluation on generated composite images by employing Mask
R-CNN [42], [83] pre-trained on MS-COCO [77] with a ResNet50 Feature Pyramid
Network backend.

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [130]. We use the data split
from [18]: We train on 10K images, then use 1K images for the test split and 788 for
validation.

Flowers102 [93]. The dataset consists of 8,189 images of flowers and masks obtained
with an automated method specific to this dataset. We use a data split from [18]: 6,149
training images, 1,020 validation images and 1,020 test images.

DUTS [131]. The DUTS dataset stands as a significant challenge for current
generative and segmentation models, containing a wide array of objects drawn from
diverse ImageNet and SUN categories. It contains 10,553 training images and 5,019
test images.

4.3.2 Ablation study

We compare the segmentation methods described in Section 4.1.2 to determine the
most effective approach for using our layered generative model to segment real images.
We use the default parameters from Section 4.2 but set the minimum mask size to
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17 = 0.15 and train the models on the training split of the DUTS dataset. We explore
the joint generator and segmenter training in the following settings:

(a) A U-Net discriminator with mask prediction (eq. (4.9))
(b) Same as (a) with cutmix regularization [111]

(c) A standard discriminator with U-Net decoder used only for mask prediction
(eq. (4.10))

On top of that, we explore the two-step training (d) when we first train just the
generative model with a standard discriminator and then use the pre-trained generator
to synthesize composite images and pseudo ground-truth to train a U-Net segmenter.
Note, that we can apply the same approach to settings (a)-(c), by discarding the
segmenter trained jointly with the generator and training a new one utilizing only a
pre-trained generative model. In this case, we train the segmentation network for 150K
iterations with a batch size of 64 and a learning rate of 0.001, which we decrease to
0.0002 after 75K iterations.

We use the ECSSD saliency detection dataset [113] of 1K images as a validation
set and report the IoU with the corresponding saliency ground truth. We also show
the evaluation on the training set as it can be useful in the unsupervised setting. To
get a measure of the quality of the generated composite images, we compute the FID
[45] using statistics from 5K images from the training set.

Quantitative results can be found in Table 4.1. We notice that training the U-Net
discriminator jointly with its mask prediction head (settings (a), (b)) gives worse
segmentation results than training a standard discriminator (i.e., just the encoder
part) with the decoder focused solely on the mask prediction (c). In most of the
settings, using the pre-trained generative model to generate synthetic data to then
train a U-Net segmentation network shows improved results that are similar across
the settings. Only in setting (c), the segmentation model trained jointly with the
generative model which is on-par with post-training, proving to be a good choice for a
single end-to-end training. We get the best quality of generated images when using
a U-Net discriminator with cutmix consistency regularization, as shown by the lower
FID value for this setting. For this reason, for the remainder of the experiments we
choose to train a generative model with setting (b) and then use it to generate data to
separately train a segmentation model.

4.3.3 Segmentation results

We train our model on LSUN Car, Flowers102, CUB-200-2011, and DUTS datasets
and compare our results to other methods. For the CUB-200 and Flowers102 datasets,
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Figure 4.2: Generated backgrounds, foregrounds, masks, foregrounds with mask applied

and composite images for 4 different image datasets. Last two columns in each dataset
show generator failures, e.g., an object in the background or an unrealistic foreground.

we set the generator’s resolution to 64 x 64; for the DUTS and LSUN Car datasets, we
increase the resolution to 128 x 128. Except for LSUN Car, we train the generative
model for 1K epochs, which corresponds to 150K iterations on DUTS and CUB-200
datasets and 90K iterations for Flowers102. For the larger LSUN Car dataset we
train for 600K iterations. For CUB-200 and Flowersl02 we adopt the evaluation
strategy of other methods and compute the metrics on center crops of the images.

We report intersection over union between the predicted and ground truth masks,

__ |mpreaNmgt| (142)Precision x Recall . 2
loU = [mpreaUmgg| B2Precision+Recall score with 5% = 0.3.

Following previous works [85], we report Fp for the saliency dataset and maxF, 51 for
Flowers and CUB-200 datasets.

, pixel accuracy, and Fjg =

'maxFj is the maximum Fjs value selected from different binarization thresholds
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Figure 4.3: Qualitative (not cherry-picked) results of segmentation on CUB-200, DUTS,
LSUN Car and Flowers102 datasets. First row: segmented image. Second row:
segmentation results. Third row: ground truth segmentation.

Qualitative results of the generative model

In Figure 4.2 we show some examples of outputs produced by the generators from
random samples in the Gaussian latent space. From the first to the fifth row in
each quadrant: generated background layer, generated foreground layer, generated
foreground mask, product between the mask and the foreground layer, and final
composite image. As shown, the generator is able to learn very accurate foreground-
background segmentations and texture. In some cases, the exact separation between
object and background is not successful. This can be seen in the last two columns for
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each dataset. Simpler datasets containing one category of images, like CUB-200 and
Flowers102, show especially good results. DUTS is a relatively small dataset with a
large variety of objects, a setting that is challenging for current GAN methods. While
the quality of the generated images is worse than in the case of the other datasets, we
can still observe some meaningful foreground objects being generated. LSUN Car is a
larger dataset that does not always have a main object of interest, has a lot of outliers,
and shows a large variety in appearance, scale, pose, and position of the objects. We
are able to generate meaningful segmentations and textures of cars, but we also notice
failure cases more often.

Qualitative results of the segmentation model

We show qualitative results of our segmentation prediction for each dataset in Figure 4.3,
where the first row is a real image from the test set, the second row is our mask prediction
and the third row is the ground truth segmentation (or approximated ground truth for
LSUN Car). We can see how some discrepancies between our masks and the ground
truth may result from the learning rule that we employ: That is, in the first image
of the CUB-Birds dataset, our model selects the bird with its reflection on the water,
since probably it has learned that shifting the bird alone would not render a realistic
image. We find that we are often able to produce meaningful segmentations for the
DUTS dataset, although the quality of the generated images for DUTS is somewhat
lacking due to the small size of the dataset, the presence of multiple classes, and current
GAN limitations. There is also an inherent ambiguity in the choice of what object to
segment. Thus, our evaluation with a fixed ground truth provides a limited view on
the actual performance of our trained segmentation network. Segmentations for the
LSUN car dataset are sometimes better than the approximated ground truth that we
obtained with the supervised segmentation model [83]. The ground truth masks for
Flowers102 were also generated with automated methods and in many cases our masks
seem to be more precise.

Quantitative comparison with other methods

We compare our method with several other approaches for unsupervised segmentation.
The results are in Tables 4.2, 4.3, 4.4, and 4.5 for CUB-200, Flowers102, LSUN car,
and DUTS respectively. ReDO [18] and IEM [110] are two methods designed for
unsupervised segmentation, one relying on training a GAN to redraw object segments,
the other on maximizing the inpainting error over the two partitions of the image.
Voynov [129] and Melas-Kyriazi [85] find a direction in the ImageNet pre-trained GAN’s
latent space that can be used for background removal and then train a segmentation
network with the generated data. HS [138], wCtr [156] and WSC [73] are unsupervised
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Table 4.2: Comparison of unsupervised segmentation results on the CUB-200-2011 test
set. Methods with * use extra data (e.g. ImageNet for unsupervised GAN training)

Method IoU Accuracy maxFjp
Voynov* [129] 0.683 93.0 0.794
Voynov-E* [129] 0.710 94.0 0.834
Melas-Kyriazi* [85] 0.664 92.1 0.783
PerturbGAN [10] 0.360 - -
ReDO [18] 0.426 84.5 -
IEM [110] 0.551 89.3 -
Ours 0.784 96.1 0.890

Table 4.3: Comparison of unsupervised segmentation results on the Flowers102 dataset.
Methods with * use extra data (e.g. ImageNet for unsupervised GAN training)

Method IoU Accuracy maxFp
Voynov* [129] 0.540 76.5 0.760
Voynov-E* [129] 0.804 90.4 0.878
Melas-Kyriazi* [85] 0.541 79.6 0.723
ReDO [18] 0.764 87.9 -

IEM [110] 0.789 89.6 -

Ours 0.807 90.4 0.884

Table 4.4: Comparison of unsupervised segmentation results on the LSUN car dataset.
*There are some differences between test sets in each method (that is why we do not
indicate the top performance in boldface).

Method IoU Accuracy
PerturbGAN* [10] 0.54 -
IEM* [110] 0.632 77.8
Ours 0.621 84.8

methods for saliency detection. We cannot directly compare the metrics on the LSUN
Car dataset since there are no published data splits for this dataset; we use 10K images
that we did not use in the training sets. In the Flowers102 dataset, the ground truth
is computed automatically from the images and its accuracy is not always high (e.g.,
we see in Figure 3.6 several cases where the ground truth mask is empty or inverted,
while our method provides a meaningful segmentation). For all datasets, we show that
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Table 4.5: Comparison of saliency detection methods on the DUTS dataset. T results
from [85]. * results from [92]. * methods use extra data (e.g. ImageNet for unsupervised
GAN training). ** initialized with a pre-trained supervised segmentation network.

Method IoU Accuracy Fg
Handcrafted Methods

RBD? [156] - - 0.510

DSR? [74] - - 0.558

MCH [51] - - 0.529

HS* [138] - - 0.521

Deep Ensembles of Handcrafted Methods

SBF?* [146] - - 0.583

USD*** [150] - - 0.716

USPS** [92] - - 0.736
Unsupervised Methods

Voynov*T [129] 0.508 88.1 0.600

Melas-Kyriazi* [85] 0.528 89.3 0.614

Ours 0.517 88.6 0.613

we outperform or match other unsupervised methods in terms of accuracy, IoU, and
Fg without relying on any models pre-trained on bigger datasets.

4.4 Discussion

We have introduced a new framework to learn foreground-background segmentation
without using manual annotation. The key idea is to use generated images of scenes
and corresponding object masks as pseudo ground-truth, which can be used to train a
segmentation network in a supervised manner. This can be done jointly with training
the layered generative model, which allows for a single end-to-end training of the
segmenter from a collection of images, or by training the segmenter separately while
using a pre-trained generator to produce a synthetic dataset. To build such a generative
model in a completely unsupervised way we propose to train a conditional generator
by using the principle that valid object segments can be locally shifted relative to
their background and still yield a realistic image. As we show in our experiments,
this principle allows a generative network to learn an image decomposition model
from a dataset of images. The quality of the generated dataset strongly relies on the
accuracy of the generative model, which we built with modern adversarial techniques.
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However, we show that even though the quality of generated composite images may be
subpar due to GAN limitations, we are still able to train accurate segmentation models
that generalize to real-world datasets. We expect that further progress in generative
modeling will improve both the layered image generation and the generalization of
segmenters trained on such synthetic datasets.



Chapter 5

MOVE: Unsupervised Movable
Object Segmentation and
Detection

In Chapters 3 and 4 we introduce methods that utilize Generative Adversarial Networks
and the cohesive motion property of objects to train unsupervised object segmentation
models from a collection of images only. Our learning rule requires shifting the predicted
object in a scene. By using a generative model to produce separate background and
foreground layers, which would later be composed into a scene, we avoid the necessity
to inpaint the background behind the object, which would otherwise be exposed if
we were to shift objects in a real image. However, relying on generating scenes with
GANSs has its limitations, which become apparent in the experiments. The quality of
generated data depends on the size of the dataset, homogeneity, and objects’ alignment.
The variety of outputs may be limited due to common problems with mode collapse.

We now introduce MOVE;, a novel method to segment objects without any form
of supervision. As a proxy signal, we use the mowvability of objects, i.e., whether they
can be locally shifted in a realistic manner. This property holds for objects in the
foreground, as they occlude all other objects in the scene. This basic idea has already
been exploited in prior work with relative success. Nevertheless, here we introduce
a novel formulation based on movability that yields a significant performance boost
across several datasets for salient object detection.

In our approach, it is not necessary to move objects far from their initial location
or to other images [3, 97| and thus we do not have to handle the context mismatch. It
is also not necessary to employ models to generate entire scenes [10, 140], which can
be challenging to train. Instead, in MOVE we rely on inpainting and show how we can
use it to our advantage to get an additional signal driving object segmentation.

61
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Figure 5.1: Exploiting inpainting and movability. (a) Input image. (b) Examples of
predicted segmentation masks: correct (top), larger (middle), and smaller (bottom). (c)
Inpainted backgrounds in the three corresponding cases. (d) Composite image obtained
by shifting the foreground object in the three cases. (e) It can be observed that when
the mask is incorrect (it includes parts of the background or it does not include all of
the background), the background inpainting combined with shifting reveals repeated
patterns and mismatching background texture when compared to the original input
image or composite images obtained without shifting.

Suppose that, given a single image (Figure 5.1 (a)), we predict a segmentation
mask (one of the 3 cases in Figure 5.1 (b)). With the mask, we can remove the object
and inpaint the background (Figure 5.1 (c)). Then, we can also extract the foreground
object, randomly shift it locally, and paste it on top of the inpainted background
(Figure 5.1 (d)). When the mask does not accurately follow the outline of a foreground
object (e.g., as in the middle and bottom rows in Figure 5.1), we can see duplication
artifacts (of the foreground or of the background). We exploit these artifacts as a
supervision signal to detect the correct segmentation mask. As the inpainter, we use a
publicly available Masked AutoEncoder (MAE) [44] trained with an adversarial loss.!
Inpainting may also introduce artifacts unrelated to the incorrect segmentation mask,
which cannot be fixed and may affect the detection of the artifacts we are concerned
with. However, we propose methods to minimize their impact. Our segmenter uses
a pre-trained SSL ViT as a backbone (e.g., DINO [17] or the MAE encoder [44]).
We then train a neural network head based on an upsampling Convolutional Neural

"https://github.com/facebookresearch/mae/blob/main/demo/mae_visualize.ipynb
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Network (CNN). Following [114], we also further refine the segmenter by training a
second segmentation network (SelfMask [114]) with supervision from pseudo-masks
generated by our trained segmenter. Even without these further refinements MOVE
shows a remarkable performance on a wide range of datasets and tasks. In particular,
in unsupervised single object discovery on VOC07, VOC12 and COCO20K it improves
the SotA CorLoc between 6.1% and 9.3%, and in unsupervised class agnostic object
detection on COCOval2017 it improves the AP35y by 6.8% (a relative improvement of
56%), the AP75 by 2.3% (relative 55%) and the AP by 2.7% (relative 49%).

5.1 Background

In Section 2.3.4, page 28, we presented an overview of self-supervised methods and how
they can be used for unsupervised object segmentation. Most prior work based on SSL
features defines some form of clustering by either using attention maps [2, 135, 142]
or similarity graphs [114, 115, 136]. Extracting masks directly from features usually
produces coarse masks due to downsampling in Convolutional Neural Networks or
tokenization of image patches in Vision Transformers. To improve the precision of
the generated masks, either strong post-processing [7, 136] or smoothing via post-
training [84, 114, 135] is required. In contrast, MOVE learns to produce high-resolution
precise masks directly from images via our movability training rule. We use self-
supervised models as a strong backbone and as an inpainter, instead of developing
methods that extract masks from the features directly for each image. Our working
principle partly exploits observations also made by [58, 110, 141]. They point out that
the correct mask maximizes the inpainting error both for the background and the
foreground. However, using the inpainting reconstruction error as a supervision signal
may be too ambiguous to segment the entire objects precisely. Instead, we rely on the
detection of artifacts generated through shifting, which we find to provide stronger
guidance.

5.2 Method

Our objective is to train a segmenter to map a real image x € REXW>3 with H the
height and W the width of the image, to a mask m € RT*W of the foreground, such
that we can synthesize a realistic image for any small shifts of the foreground. The
mask allows to cut out the foreground from x and to move it arbitrarily by some § € R?
shift (see Figure 5.2, top-left). However, when the shifted foreground is copied back
onto the background, missing pixels remain exposed. Thus, we inpaint the background
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Figure 5.2: Synthetic and real images used to learn how to segment foreground objects.
We obtain the predicted mask and inpainted background from our segmenter and MAE
respectively. We train the segmenter in an adversarial manner so that the composite
image with a shifted foreground (left, top row) looks real. A discriminator is trained
to distinguish two types of real (right) from two types of fake (left) images. The fake
images consist of the composite image with a shift and a copy-paste image, obtained
by placing the shifted foreground on top of the input image. The set of real images
consists of composite images without a shift and the real images. The real images are
first autoencoded with MAE to match the artifacts of the inpainted background.

with a frozen pre-trained MAE? and obtain b (see Figure 5.3). Moreover, there is a
difference between the texture of 13, which is generated from a neural network, and
the texture of the cut out foreground from x, which is a real image. To ensure more
similarity between these two textures, we synthesize z5 by extracting the foreground
from the autoencoding (AE) of the input image = shifted by d, which we call &5, and
by pasting it onto the background b.

We enforce the realism of the synthesized images &5 by using adversarial training,
i.e., by training the segmenter against a discriminator that distinguishes two sets of real
(Figure 5.2, right hand side) from two sets of fake images (Figure 5.2 left hand side).
The synthetic real image Zs5—¢ is obtained by composing a zero-shifted foreground with
the inpainted background; the second real image & is instead simply the AE of z. The
two fake images are obtained by composing a d-shifted foreground with either the
inpainted background b or I, and obtain zs and %5 respectively.

We introduce all the above synthetic images so that the discriminator pays attention
only to artifacts due to incorrect masks from the segmenter. Ideally, the segmenter
should generate masks such that the fake image &5 looks as realistic as & for any
small §. However, the discriminator might distinguish these two images because of the

2The MAE [44] we use is based on a ViT architecture and has been pre-trained in an adversarial
fashion (as opposed to the standard training with an MSE loss) to output more realistic-looking details
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Figure 5.3: (Left) The segmenter is built on top of SSL features from a frozen encoder.
To define the inpainting region for the background, the predicted mask is shifted and
combined with the unshifted mask (bottom left). For better visualization purposes we
highlight the edge of the shifted mask, but this does not appear in the actual union of
the masks. This mask union is then downsampled to the size of the tile grid via max
pooling and denoted . (Right) The inpainter is based on a frozen MAE. First, it
takes all the tiles from the input image and feeds them to the MAE encoder. Second,
it takes a convex combination between the encoder embeddings and the MSK learned
embedding (but now frozen), where the convex combination coefficients are based on
the downsampled mask m. Finally, this combination is fed to the MAE decoder to
generate the inpainted background.

background inpainting artifacts and not because of the artifacts due to an incorrect
segmentation (which are exposed by random shifts). To avoid this undesired behavior,
we also introduce the real image Z5—g. This image has no segmentation artifacts
for any mask, but has the same background inpainting artifacts as the fake images
(although there is no shift in Zs—g, the background inpainting creates artifacts beyond
the boundaries of the segmentation mask). Finally, to guide the discriminator to detect
repeated patterns (as those caused by incorrect masks, see Figure 5.1) instead of the
expected inpainting artifacts, we also add a fake image Zs5, where the background has
the original foreground.
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The segmenter is trained only through the backpropagation from Z5. The details
of the segmentation network, the inpainting network, and the adversarial training are
explained in the following sections.

5.2.1 Segmenter

Following the recent trend of methods for unsupervised object segmentation [2, 84, 114,
115, 135, 136, 142], we build our method on top of SSL features, in particular, DINO
[17] or MAE [44] features. Thus, as a backbone, we adopt the Vision Transformer
(ViT) architecture [28]. Following the notation in [115], we split an image z € R#*Wx3
in tiles of size P x P pixels, for a total of N = HW/P? tiles (and we assume that H
and W are such that H/P and W/P are integers). Each tile is then mapped through a
trainable linear layer to an embedding of size d and an additional CLS token is included
in the input set (see Figure 5.3 left).

The segmenter network is a CNN that takes SSL features as input (e.g., from a
pre-trained DINO or MAE encoder), upsamples them and then outputs a mask for the
original input image. The final output is generated by applying a sigmoid function to
ensure that the mask values are always between 0 and 1. We also ensure a minimum
size of the support of the predicted mask by using

1¢ m@ [p]
Lonin = ;max {emin > A (5.1)

p

where n is the number of images in the training dataset, m( is the predicted mask
from image @9 p is a pixel location within the image domain, and 6, is a threshold
for the minimum mask coverage percentage respectively (in the range [0, 1], where 0
implies that the mask is empty and 1 implies that the mask covers the whole image).
Since masks should only take binary values to clearly indicate a segment, we use a loss
that encourages m(® to take either 0 or 1 values

Lbin = % ; ﬁ g min {m(i) [p],1— m( [p]} . (5.2)

5.2.2 Differentiable inpainting
Inpainting mask

The main task of MOVE is to predict a segmentation mask that can be used to
synthesize a realistic image, where the foreground object is shifted on top of the
inpainted background (see Figure 5.1 (e) top and Figure 5.2 top left). Figure 5.3 shows
how we use the predicted high-resolution mask for inpainting with MAE. Since MAE
performs inpainting by masking or retaining entire patches of P’ x P’ pixels, it is
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Table 5.1: Inpainting error for a pre-trained MAE on 5000 images from the ImageNet
validation set: Feeding a subset of tokens to the encoder (Default) vs soft-masking
before the decoder (Modified). A is the mean squared error between the inpainted
regions for two methods

MAE Model Default Modified A
w/ GAN 0.0683 & 0.0427 0.0647 £ 0.0398 0.0070 £ 0.0059
w/ MSE 0.0639 & 0.0411 0.0617 £0.0390 0.0055 4 0.0056

necessary to also split the segmentation mask into a grid of tiles of P’ x P’ pixels and
to map each tile to a single scalar between 0 and 1. We do that by applying a max
pooling operation within each tile and obtain a low-resoluton mask m, such that 1 —m
does not contain any part of the predicted mask.

However, using max pooling for downsampling might result in inpainting more than
necessary due to the artifacts in the mask. To avoid such cases we apply our Ly, and
Lyin losses (eq. (5.1),(5.2)) on the downsampled mask as well. Having a binarization
loss on the mask downsampled with max pooling has an extra regularizing effect on
the original mask. For example, when all mask pixels in a patch have a value below 0.5,
the binarization loss on the max pooling of the mask will push only the largest value
towards 0. This creates an asymmetry when the pixels of the mask must be reduced,
which prioritizes the largest values. Eventually, however, the application of this loss
over multiple iterations will result in pushing all pixels within the patch to 0.

Modified inpainting with MAE

We feed the entire set of image tiles to the MAE encoder and obtain embeddings
&1,...,&n. Next, for j =1,..., N, we compute the convex combination between the
embeddings §; and the learned MSK (masked) token from MAE by using the low
res mask m as éj = m[j] - émsk + (1 —m[j]) - &. The MSK token indicates a patch
that should be reconstructed. Finally, we feed the new embeddings éj in the MAE
decoder and reassemble the output tiles back into the inpainted background image b
(see Figure 5.3 bottom-right). This is in contrast to the typical use of MAE, where
only the subset of “visible” tiles is fed as input to the encoder during training (see
Figure 2.2, page 28). However, such tile selection operation would make the inpainting
not differentiable.

Since in MOVE we feed all the patches to the encoder, it is possible that the
encoded embeddings contain information about their neighbors. In particular, there
is a risk that the unmasked encoded patches would contain information about the
masked patches. If that were the case, the decoder would be able to inpaint the
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Input Masked input MAE GAN - Def. MAE GAN - Mod. MAE MSE - Def. MAE MSE - Mod.

Figure 5.4: Comparison of MAE sparse input vs differentiable mask inpainting. We
show the input and masked input image in the two first columns. For MAE trained
with a GAN loss or with an MSE loss we show the reconstructed image when we feed
a sparse subset of tokens to the encoder (Def.) and when we feed all the tokens to
the encoder and mask only before feeding the embeddings to the decoder (Mod.). No
significant difference can be observed between these two reconstruction modalities in
terms of missing object reconstruction.

masked object even when the entire object is masked at the decoder input. We show
empirically and quantitatively that this is not the case. Using the same pre-trained
MAE, we compare the reconstruction error for the original inference vs. our modified
soft-masking inference. We run the evaluation on a subset of 5000 images from the
ImageNet validation set [25], randomly masking between 80% and 95% of the tokens.
We show the mean squared error of the intensity for intensity range [0;1] in Table 5.1
and comparison of reconstructed images in Figure 5.4 for both MAE trained with a
GAN loss or with an MSE loss. We find that the difference in the inpainting error is
not significant. Moreover, we observe visually that the reconstructions through the
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Modified soft-masking (MOVE) do not show a better reconstruction of the masked
patches than in the Default case where the masked patches are not provided to MAE.

5.2.3 Adversarial training

Figure 5.2 shows how we create the images used in the adversarial training. First,
we mask the input image with the predicted mask and compose with the inpainted
background image, obtaining

#s[p] = mslplE[p + 6] + (1 — ms[p])b[p), (5.3)
where ms[p] = m[p + 0], § € [-AH,AH| x [-AW,AW] is a 2D shift, with A the
maximum shift range (relative to the image size). To make the inpainting artifacts in
the no-shift composite image Z5—g more comparable to those in the shifted composite
image, we define the background inpainting region as the union between the predicted
mask and its shifted version (see Figure 5.3). Thus,

m = maxpoolp(l — (1 —m) ® (1 —my)). (5.4)

To improve the discriminator’s ability to focus on repeated patterns artifacts instead of
the expected inpainting artifacts, we additionally create fake images with a predicted
shifted foreground pasted on top of the autoencoded image, obtaining s = &5 © mgs +
hAO) (1 — m(;).
The adversarial loss for the discriminator can be written as

Lagvp = —IE;, min{0, D(zg) — 1} — IE;, min{0, —D(zg) — 1} (5.5)
where samples for “real” images x g are the set {f(i)}i:17,,,7n U{f((sio}izl,...,n and samples
for synthetic images xg are the set {:%((;Z)}izlw‘,n U{:E((;Z)}izl’wn, with uniform random
samples 0 ~ Us([-AH,AH| x [-AW, AW]) and IE denotes the expectation. To speed

up the convergence, we also use the projected discriminator method [109]. For the
segmenter, we use instead the standard loss computed on the composite shifted images

Ladvs = —IE;, D(&5). (5.6)

Finally, with Apin, Apin nonnegative hyperparameters, our optimization is the
adversarial minimization

S = arg mg,n LadVS + )\min'cmin + Abincbin (57)

subject to D* = arg mDin LadvD- (5.8)
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5.3 Implementation

Except for the ablation studies, in all our experiments we use a self-supervised DINO
[17] ViT-S/8 transformer pre-trained on ImageNet [25] as an SSL feature extractor.
We take the output of the penultimate transformer block of DINO as the feature
tokens with P = 8 and feed them to the segmenter. Our segmenter is a small
upsampling convolutional neural network. It assembles the DINO features into a
grid of size H/P x W/P and processes them with 3 upsampling blocks, so that the
output matches the input image resolution. Each upsampling block first performs
a 2 x 2 nearest upsampling, followed by a 3 x 3 convolutional layer with padding,
batch normalization [47] and a LeakyReLU activation function. We add an additional
block without upsampling followed by a linear projection to 1 channel, representing
the mask. Our inpainting network is a ViT-L/16 transformer pre-trained on ImageNet
as a self-supervised Masked Autoencoder (MAE) [44] with an adversarial loss to
increase the details of the reconstructed images. For the discriminator we use the
Projected Discriminator [109] in its standard setting, but we only use color differentiable
augmentation. For the training we use random resized crops of size 224 with a scale in
range (0.9,1) and aspect ratio (3/4,4/3). We set the minimum mask area 0y, = 0.05,
the minimum loss coefficient An,;n = 100 and we linearly ramp up the binarization loss
coefficient Ay from 0 to 12.5 over the first 2500 segmenter iterations. We use the shift
range A = 1/8. We train the segmenter by alternatively minimizing the discriminator
loss and the segmenter losses. Both are trained with a learning rate of 0.0002 and an
Adam [61] optimizer with betas = (0,0.99) for the discriminator and (0.9,0.95) for the
segmenter. We implemented our experiments in PyTorch [101]. We train our model
for 80 epochs with a batch size of 32 on a single NVIDIA GeForce 3090Ti GPU with
24GB of memory.

5.4 Experiments

5.4.1 Unsupervised saliency segmentation
Datasets

We train our main model using the train split of the DUTS dataset (DUTS-TR) [131],
containing 10,553 images of scenes and objects of varying sizes and appearances. We
emphasize that we only use the images without the corresponding ground truth. For
comparison, we evaluate our approach on three saliency detection datasets: the test set
of DUTS (5,019 images), DUT-OMRON [139] (5,168 images) and ECSSD [113] (1,000

images). We report three standard metrics: pixel mask accuracy (Acc), Intersection
[MpreaMmeg |

over Union between the predicted and ground truth mask IoU = ,
[MpreqUmgy

max Fg,
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Table 5.2: Comparison to the unsupervised saliency detection methods on 3 benchmarks

DUT-OMRON [139] DUTS-TE [131]  ECSSD [113]

Model

Acc ToU maxFg Acc ToU maxFyg Acc IoU maxFyg
HS [138] .843 433 .o61 .826 .369 .504 .847 .508 .673
wCtr [156] .838 416 .041 835 .392 522 862 .517 .684
WSC [73] .865 .387 .023 .862 .384 .528 .852 498 .683
DeepUSPS [92] 779 305 414 73 305 425 795 440 584
SelfMask pseudo* [114] .811 .403 - .845 466 - .893 .646 -
BigBiGAN [129] .856 .453 .549 878 498 .608 .899 .672 .782
E-BigBiGAN [129] .860 .464 .563 882 511 .624 .906 .684 .797
Melas-Kyriazi et al. [85] .883 .509 - .893 .528 - 915 713 -
LOST [115] 797 410 A73 871 518 .611 .895 .664 .758
Deep Spectral [84] - .B67 - - 514 - - .7133 -
TokenCut [136] .880 .533 .600 903 576 .672 918 .712 .803
FreeSOLO [135] 909 .560 .684 924 613 750 917 .703 .858
MOVE (Ours) .923 .615 712 .950 .713 .815 .954 .830 .916
LOST [115] + Bilateral .818 .489 .b78 887 572 697 916 .723 .837
TokenCut [136] + Bilateral .897 .618 .697 914 624 755 934 772 874
MOVE (Ours) + Bilateral .931 .636 734 .951 .687 .821 .953 .801 .916
SelfMask on pseudo* [114] .923 .609 733 938 .648 .789 .943 .779 .894
SelfMask on pseudo* [114] 939 .677 774 949 694 .819 .951 .803 .911

+ Bilateral
SelfMask on MOVE (Ours) .933 .666 .756 .954 .728 .829 .956 .835 .921
SelfMask on MOVE (Ours) .937 .665 .766 952 .687 .827 .952 .800 .917
+ Bilateral

*We found that SelfMask’s max Fjg metric was computed with an optimal threshold for each image

instead of the entire dataset as in other methods; we re-evaluated their model for a fair comparison

(1+8?)Precision x Recall
B2Precision+Recall
optimal threshold on a whole dataset. Additionally, we report the IoU on the test split

[18] of CUB-200-2011 (CUB-Birds) [130] dataset.

where Fg = for A% = 0.3; the max Fg is the score for the single

Evaluation

We train our segmenter in an adversarial manner as specified in sections 5.2 and 5.3
and evaluate it on the test datasets. We compare with other methods in Table 5.2.
Note that without any type of post-processing of our predicted masks, we surpass all
other methods by a significant margin. We also follow [114, 136] and further refine our
masks with a bilateral solver [7]. Since the bilateral solver only marginally improves
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Figure 5.5: Qualitative evaluation of MOVE on ECSSD, DUTS-TE and DUT-OMRON.
First row: input image; second row: MOVE; third row: SelfMask on MOVE; last row:
ground truth. Best viewed in color. More examples in Figures 5.8, 5.9, 5.10.

Input Ground MOVE MOVE + Input Ground MOVE MOVE +
truth bilateral truth bilateral

Figure 5.6: A refinement with the bilateral solver might cause the shrinking of valid
predicted masks.

or even decreases the quality of our segmentation, we conclude that our predicted
masks are already very accurate. Using the bilateral solver might also inadvertently
discard correct, but fragmented segmentations, as we show in Figure 5.6. Next, we
extract the predicted unsupervised masks from the DUTS-TR dataset and use them as
pseudo ground-truth to train a class-agnostic segmenter. We use the same architecture
(a MaskFormer [21]) and training scheme as SelfMask [114]. We then evaluate again
on the saliency prediction datasets. Without additional pre-processing our method
surpasses or is on par with the SotA across all metrics and datasets. While additional
processing with the bilateral solver seems to benefit SelfMask [114], it mostly hurts
the performance of our method. Figure 5.5 shows qualitative results of our method.
Finally, we evaluate our method on the test set of CUB-Birds dataset. Additionally, we
train our model on the train split of CUB-Birds dataset and run the same evaluation.
We present the comparison with other methods in Table 5.3 and show that we achieve
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Table 5.3: Comparison of unsupervised segmentation methods on the CUB-200-2011
test set. MOVE* was trained on the CUB-200-2011 train set, while MOVE was trained
on DUTS-TR

Method IoU
PerturbGAN [10] 0.360
ReDO [18] 0.426
TEM [110] 0.551
Melas-Kyriazi [85] 0.664
Voynov [129] 0.683
Voynov-E [129] 0.710
Deep Spectral [84] 0.769
MOVE* 0.814
MOVE 0.858

state-of-the-art performance. In Figures 5.8, 5.9, 5.10 we show more segmentation

results of MOVE on DUTS-TE, DUT-OMRON and ECSSD.

5.4.2 Single-object discovery
Datasets

We evaluate our trained model (see section 5.4.1) on 3 typical single-object discovery
benchmarks: the train split of COCO20K [76, 127] and the trainval splits of VOCO7
[31] and VOC12 [32]. Following [22, 26, 115, 117, 126-128, 136], we report the Correct
Localization metric (CorLoc), i.e., the percentage of images in which the predicted
single bounding box matches at least one of the ground truth boxes with IoU > 0.5.

Evaluation

Since our method tends to produce a single segmentation mask for multiple objects in
the scene, we separate the objects by detecting connected components via OpenCV
[13]. We then convert the separate masks to bounding boxes and choose the biggest
one as our prediction for the given image. In Table 5.4, we compare MOVE with
other unsupervised methods and we show that just by using processed masks from our
method we achieve state-of-the-art results on all three datasets, outperforming even
methods that used their bounding boxes to train a Class Agnostic Detector (CAD). We
present qualitative results for object detection in Figure 5.7. We also follow the practice
of [115, 136] and use our predicted bounding boxes as pseudo-ground truth for training
the CAD on each of the evaluation datasets. To train the detector, we use either



74 Chapter 5: MOVE: Unsupervised Movable Object Segmentation

Table 5.4: Comparisons for unsupervised single object discovery. We compare MOVE
to SotA object discovery methods on VOCO07 [31], VOC12 [32] and COCO20K [76, 127]
datasets. Models are evaluated with the CorLoc metric. +CAD indicates training a
second stage class-agnostic detector with unsupervised “pseudo-boxes” labels. (1 z)
indicates an improvement of z over prior SotA

Method vVOcCo7 VOCi12 COCO20K
Selective Search [115, 122] 18.8 20.9 16.0
EdgeBoxes [115, 157] 31.1 31.6 28.8

Kim et al. [60, 115] 43.9 46.4 35.1
Zhange et al. [115, 152] 46.2 50.5 34.8
DDT+ [115, 137] 50.2 93.1 38.2

rOSD [115, 127] 54.5 55.3 48.5

LOD [115, 128] 53.6 55.1 48.5
DINO-seg [17, 115] 45.8 46.2 42.1
FreeSOLO [135] 56.1 56.7 52.8

LOST [115] 61.9 64.0 50.7

Deep Spectral [84] 62.7 66.4 52.2
TokenCut [136] 68.8 72.1 58.8
MOVE (Ours) 76.0 (1 7.2) 78.8 (1 6.7) 66.6 (1 7.8)
LOD + CAD[115] 56.3 61.6 52.7

rOSD + CAD [115] 58.3 62.3 53.0

LOST + CAD [115] 65.7 70.4 57.5
TokenCut + CAD [136] 714 75.3 62.6
MOVE (Ours) + CAD 77.1 80.3 69.1
MOVE (Ours) Multi + CAD 77.5 (1 6.1) 81.5 (1 6.2) 71.9 (1 9.3)

the largest or all the bounding boxes (Multi) that we obtained from the connected
components analysis and after filtering those that have an area smaller than 1% of
the image. For the evaluation we take the bounding box with the highest prediction
confidence, as done in [115, 136]. We use the exact same architecture and training
scheme as our competitors for a fair comparison. Training with a single bounding box
improves the performance of our method, while training with multiple ones gives it a
significant additional boost. In Figures 5.11, 5.12, 5.13 we show more object detection

results of MOVE on VOC07, VOC12, and COCO20k.

Unsupervised class-agnostic object detection

We evaluate our unsupervised object detection model trained on COCO20K with CAD
post-training and compare it with SotA on unsupervised class-agnostic object detection.
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Figure 5.7: Qualitative evaluation of object detection of MOVE on VOC07, VOC12
and COCO20k. Red is the ground truth, is our prediction. More examples in
Figures 5.11, 5.12, 5.13.

Table 5.5: Unsupervised class-agnostic object detection on MS COCO val2017. Com-
pared results are taken directly from FreeSOLO [135]

Method AP50 AP75 AP AR1 ARlO AR100
Sel. 0.5 0.1 0.2 02 1.5 10.9
Search [122]

DETReg [5] 31 0.6 10 06 36 127
FreeSOLO [135] 12.2 42 55 46 11.4 15.3
MOVE 19.0 6.5 8.2 5.7 13.6 15.9
(Ours)

In Table 5.5, we evaluate MOVE on COCOval2017 and report Average Precision (AP)
and Average Recall (AR), as in [135]. MOVE yields a remarkable relative improvement
over the AP SotA of 50% on average.

5.4.3 Ablation study

We perform ablation experiments on the validation split (500 images) of HKU-IS [72]
to validate the relative importance of the components of our segmentation approach.
For the ablation study, we train each model for 80 epochs on DUTS-TR. We report the
IoU in Table 5.6. Our baseline model trained with 3 different seeds gives a mean IoU
0.818 with std = 0.008. Thus we only report results for a single run in all experiments.
Mask losses. We validate the importance of the mask losses: minimum mask area,
binarization, and losses on downsampled max-pooled and avg-pooled masks. We find
that the minimum area loss is necessary for our method to work, otherwise there is no
incentive to produce anything other than empty masks. Removing the binarization loss
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Table 5.6: Ablation study. Models evaluated on HKU-IS-val

Setting IoU
Baseline (shift 2 /16) 0.819
no min. mask 0.000
no binarization loss 0.774
no pooled mask losses 0.811
no shift 0.000
shift 1 /16 0.751
shift 3 /16 0.799
shift 4 /16 0.704
disc. fake inputs: composed 0.789
disc. real inputs: x + comp. w/o shift 0.740
disc. real inputs: comp. w/o shift 0.031
disc. real inputs: xqe 0.000
non-diff inpainter 0.314
MSE MAE 0.817
MAE feature extractor 0.783
ImageNet100 dataset 0.815

or mask losses on the downsampled masks makes the masks noisier, which negatively
affects the results.

Shift range. We evaluate different ranges of the random shift §. A small range
A = 1/16 makes it more challenging for the discriminator to detect inconsistencies
at the border of objects. Larger shifts may cause objects to go out of the image
boundaries (A = 3/16,4/16) and thus reduce the feedback at the object boundary to the
segmenter. For A = 0 (no-shift) the only possible discriminator inputs are composed
images without a shift as fake and autoencoded images as real. There is no incentive
to produce any meaningful masks in this case.

Discriminator inputs. In our baseline model, we feed both composed images with
no-shift and real images autoencoded with MAE as real samples, and composed images
with a shift and autoencoded images with copy-pasting of a predicted masked object as
fake samples for the discriminator training. We test the case DISC. REAL & + COMP.
W /O SHIFT , where we feed to the discriminator real images without autoencoding.
In this case, the discriminator can detect the artifacts of MAE instead of focusing on
inconsistencies resulting from an incorrect mask. In DISC. REAL x4 we only feed the
autoencoded images as real. Here, the discriminator can focus on the mismatch from
the inpainting artifacts and encourages the segmenter to output empty masks, where
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no inpainting is done. If we only feed the composite non-shifted images (DISC. REAL
COMP W/O SHIFT), the artifacts resulting from an incorrect masks cannot be fixed,
because there is no reference of what the real images look like. In DISC. FAKE INPUTS:
COMPOSED we only feed the composed image as fake to the discriminator and omit the
real image with a copy-pasted predicted masked object, which slightly degrades the
performance.

Non-differentiable inpainter. We evaluate the use of hard thresholded downsampled
masks as input to the background inpainter. In this case the only feedback for the
masks comes from the composition of the images. We find it to be insufficient for the
segmenter to learn any meaningful masks.

Inpainter model. We substitute the MAE trained with a GAN loss with a MAE that
was trained only to reconstruct missing patches with a Mean Squared Error (MSE) loss.
Since this model was trained to only reconstruct the missing patches and not the entire
image, we construct the inpainted background by composing the inpainted part with
the real image: 77, = upsample;g(1h); b:=20 (1 — 1Tp) +b0O Tup. Consequently, we
do not use autoencoding when creating the discriminator inputs. We find this model
to perform competitively.

Feature extractor. We train the model using the features provided by MAE encoder
instead of a separate DINO model. In this case we adapted the segmenter architecture
and added one more upsampling block, since MAE takes patches of size P = 16 (instead
DINO has P = 8). We find that with these features we are able to train a competitive
segmenter.

ImageNet100 dataset. We train our model on the ImageNet100 dataset [121], with
131,689 images from 100 randomly selected ImageNet [25] classes. Since this dataset
is much bigger than DUTS-TR, we adapt our segmenter by adding an additional
convolutional layer in each upsampling block (see section 5.3) and train the model for
8 epochs. The results are comparable to the DUTS-TR dataset.

5.5 Discussion

We have introduced MOVE, a novel self-supervised method for object segmentation
that exploits the synthesis of images where objects are randomly shifted. MOVE
improves the state of the art in object saliency segmentation, unsupervised single object
discovery, and unsupervised class agnostic object detection by significant margins. Our
ablations show that movability is a strong supervision signal that can be robustly
exploited as a pseudo-task for self-supervised object segmentation. We believe that our
approach can be further scaled by exploring different architectures and larger datasets.

Despite impressive results, our method has certain limitations. Movability alone
may not suffice to unambiguously identify an object. Indeed, the method can segment
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any combination of multiple objects. To address this we use a post-processing algorithm
to find connected components, but there is no guarantee that all objects have been
segmented. Another challenge arises when shifts do not expose artifacts against uniform
backgrounds, for example, when viewing the sky or in underwater scenes.
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Figure 5.8: Sample segmentation results on ECSSD.



80

Chapter 5: MOVE: Unsupervised Movable Object Segmentation

MOVE SelfMask Ground MOVE SelfMask Ground
on MOVE truth on MOVE truth

Figure 5.9: Sample segmentation results on DUTS-TE.
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Figure 5.10: Sample segmentation results on DUT-OMRON.
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Figure 5.11: Sample detection results on VOCO7.
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Figure 5.12: Sample detection results on VOC12.
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Figure 5.13: Sample detection results on COCO20k.



Chapter 6

Generative Adversarial Learning
via Kernel Density
Discrimination

Generative Adversarial Networks, or GANs, have been widely successful thanks to
several breakthroughs in the design of the generator and discriminator architectures
[14, 55, 148], of the loss functions [4, 53, 145] and regularization methods [53, 82, 90, 149]
(see Section 2.4, page 29). Yet, the training of generative models is not straightforward
and can be still prone to mode collapse [79, 120, 144] or the inability to capture
long-range statistics in the data, which leads to visible artifacts [75, 148].

We introduce the Kernel Density Discrimination GAN (KDD GAN), a novel method
for generative adversarial learning. KDD GAN formulates the training as a likelihood
ratio optimization problem where the data distributions are written explicitly via (local)
Kernel Density Estimates (KDE). This is inspired by the recent progress in contrastive
learning and its relation to KDE.

One key assumption in the basic formulation of adversarial learning of [35] is that
the generator network should compete with an optimal discriminator, that is, a classifier
that can tell real from generated data apart if any of their statistics does not match.
Thus, the general wisdom is that the more powerful the discriminator is, the better
the generator trains. Given that training models with contrastive losses yields better
performance than training with cross-entropy losses [59], and that contrastive learning
can be seen as introducing Kernel Density Estimate (KDE) approximations of the data
distribution [132], we propose to train the discriminative and generative models through
a KDE approximation of the likelihood ratio loss. Moreover, this approach ensures
that the loss defines a valid statistical divergence between the distributions of the real
and generated data at all times. In contrast, the loss used to train state of the art

85
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Figure 6.1: Illustration of the difference between the hinge loss and KDD
loss during the generator update. The blue and orange point clouds represent the
discriminator features of the real and fake samples. The initial positions of the samples
are shown in Fig. 6.1a. The green line in all three sub-figures represents the decision
boundary associated with the optimal linear classifier separating the two distributions
at the initial state. Fig. 6.1b and Fig. 6.1c show the updated positions of the fake
samples using the Hinge loss and KDD loss respectively. The generator update via the
KDD loss leads to a more detailed overlap.

generative adversarial networks corresponds to a known statistical divergence between
distributions of real and fake data only when at the saddle point of the min-max game.
Our analysis shows that the gradients of the proposed loss are better behaved than
those of the hinge loss (as defined, for example, by [89]). We propose a KDE defined
directly in feature space, so that non-invertible features are allowed. Our method
includes a much broader set of discriminator solutions than in the binary classification
task of the original GAN formulation. In fact, in the KDE approach the features are
no longer optimized for linear separability, but for the more general discrimination of
distributions in the feature space. This can be seen clearly in Fig. 6.1 for 2D point
clouds. We call our method Kernel Density Discrimination GAN (KDD GAN).

Constributions. We propose a novel KDD loss and provide a theoretical proof
that KDD GAN converges to the unique equilibrium point, where the distribution
of generated samples matches that of real data. KDD GAN outperforms BigGAN
[14] (which we use as a backbone) on CIFARI10 [63] and Tiny ImageNet [66] by more
than 10% in the FID and IS metrics. The proposed KDD loss is flexible and when
combined with other methods as a regularizer improves the training in terms of FID
and IS on CIFAR10, Tiny ImageNet, and ImageNet 64 x 64, which has images scaled
to 64 x 64 pixels (derived from [25]). The implementation of KDD GAN is on par
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with conventional hinge loss training [89] in terms of the computational load and the

memory footprint.

6.1 Background

In attempts to address the limitations of GANs (see Section 2.4, page 29), other
kernel-based GANs have been proposed previously. [116] explore the idea of using
a non-parametric estimate of the Jensen-Shanon Divergence and use KDEs for the
purpose of training GANs. This idea is very similar to the one explored in this
work. The main differences are that Kernel GAN [116] computes its KDEs in the
image space and for a simpler selection of datasets; also it requires an additional
auto-encoding constraint and computing the KDEs in feature space for more complex
datasets. Alternatively, MMD-GAN ([71] and its variants such as [133] explore the
idea of matching the two distributions at hand by optimizing the Maximum Mean
Discrepancy defined by the chosen kernel. Although the improved MMD introduced
in [133] bears a few similarities to our work in terms of having both attractive and
repulsive loss terms, the two frameworks are fundamentally different. Our KDD-GAN
aims at matching the two distributions in the feature space defined by the discriminator,
while MMD-GAN and its variants aim at minimizing the maximum mean discrepancy
in the RKHS defined by the kernel choice.

6.2 Kernel Density Discrimination

Let S, = {:E,(ﬂl), e ,x&m)} be a dataset of m image samples x,(ni) € R?, which we call
real data. They are the instances of a probability density function (pdf) p,, which
we call the real data pdf. We aim to build a generative model that maps zero-mean
Gaussian samples to images, and such that they also follow the real data distribution.
To distinguish real from generated samples, we denote the dataset of generated data
by Sy, a generated image sample by x4, and the generated data pdf by p,.

We build our generative model through adversarial learning as in the pioneering
work of [35], and thus work with a discriminator network D and a generator network G.
Then, generative adversarial learning can be cast as the following bilevel optimization
problem

mén La(D*,G) st. D" = arnginﬁp(D,G), (6.1)

where the optimization in G and D is implemented as the optimization with respect to
the parameters of the neural networks implementing G and D. In the case of hinge



88 Chapter 6: GAN via Kernel Density Discrimination

loss optimization (see e.g., [89]), the losses in eq. (6.1) are defined as

mge 1
cMinee(p @) = 5 Y max{0,1+ D(z,)}
Tg€Sy

1
+ ys | > max{0,1- D(z,)} (6.2)
" z,.€8,
Hinge *
LD, G |S‘ > —D*(ay), (6.3)
Tg€Sy

which rely on the assumption that the discriminator takes the form of

D* =logp,(z) —logpg(x). (6.4)

In our approach, we would like instead to explicitly approximate the form log 2 Tgxg

The main advantage of having this form is that it is a well-defined divergence between
distributions. Thus, it defines a valid gradient for the generator at all times, up to the
errors due to the chosen approximation.

We propose to approximate p,.(x) and py(x) in the definition of D(x) with Kernel
Density Estimates (KDE). The kernels are defined in feature space and the feature
mappings are estimated during training. A simple way to ensure that at the convergence
of the bi-level optimization (i.e., when the minima have been reached) the real and
fake pdfs match, is to require the invertibility of the feature mappings. Invertibility
is the same requirement of Normalizing Flows (see, e.g., [62]) and thus one would
have to follow similar restrictions in the neural architectures used to compute the
features. However, training invertible neural networks is not easy and, as we argue
here below, also not necessary. To simplify the training of the generative model, we
propose instead to use KDEs in feature space ¢ : R — RX defined by the last layer of
the discriminator, and to allow the feature mapping to be non-invertible. Thus, we

aim to match the push-forward measures ¢.p, and ¢.p,, which we denote by ﬁ? and

1593 respectively.

We write the losses for KDD GAN explicitly as

KDD(¢, G) = Z max{() 1+ log ¢(m)}
[EAl g|$ s, ?(x,)
-
max< 0,1 —lo pr(xr)} 6.5
| lze;g { ® 90 (@) (65)
£EPP(, ) = L g2 (0, 65)

|Sg| Tg€Sy pg ( )
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by approximating the push-forward measures of the pdfs p, and p, via the following
KDE:s in feature space

ﬁMFg%;fmmmx (67
ﬁ@=émgﬁmm&® (63)

where
o (6(2),6) = e “5 (69

is a positive kernel that integrates to 1 in &, 7 > 0 is a temperature parameter
that relates to the spread of each kernel, |S| is the cardinality of S, and Z is the
normalization constant (this becomes irrelevant as it cancels out in the ratios in
Lp(¢,G) and Lg(¢*,G)). The features ¢(x) are L?-normalized through the projection
on the unit hypersphere, i.e., |¢(x)|2 = 1. Essentially, we assume that the features are
samples of a mixture of von Mises-Fisher (vMF) distributions, where all concentration
parameters are equal to 1/7.

As mentioned above, the convergence of KDD GAN does not need the invertibility
of the feature mapping ¢. We show this result formally in Theorem 1 and address the
invertibility in Lemma 1.

Lemma 1. Let p,. and py be two distributions over R?. Given a positive integer K we
have that p, = py & V ¢: R¢ — RK,ﬁf:ﬁg.

Proof of Lemma 1. p, = py = V¢ : R? — RE p7 = ﬁg’ is trivial since {¢(z),x ~ p,}

and {¢(x),x ~ py} are the same set when p, = p,.

Assume p, # py. Then, there exists an optimal binary classifier ¢, whose accuracy
is above chance level, i.e., P({c(z) = 1,# ~ p,}) > 3. We can define a mapping
#(x) = c(x)lx where 1x is the vector of ones in RX. In this case, we obtain
B [6(@) 1) = Eomp [c@)]K > £ and Eoup, [0(0)T1k] = Bpop, e(@)]K < .
This implies that first moments of ﬁf and ﬁ? are different, thus ﬁ? #* ]3?. Therefore, by
contradiction, V ¢ : R? — RE, ﬁ‘f = ﬁg) = pr = pg L.

Theorem 1. p, = p, is the unique equilibrium point for KDD GAN.

Proof of Theorem 1. Let us assume there exists an equilibrium point (¢, G) such that
Dr 7 pg- Then, we have two cases: either ﬁ? = ﬁg or ﬁf #* ]53. Let us assume ﬁf = ﬁg.
Then, according to Lemma 1, there exists a ¢ such that p; # pg; i.e., ¢ is not an
equilibrium point of EgD D Now, let us assume instead that ]37(? % ﬁg, then G is not an

equilibrium point of Eg bb O,
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6.2.1 Improving KDE through Data Augmentation

The KDEs in eq. (6.8) are mixtures of von Mises-Fisher distributions centered around
a set of anchor points. In the KDE approximation we cannot use the entire dataset
S, as anchor points, because it would be too computationally demanding. Instead,
at each iteration of the training procedure we sample a subset (a minibatch) and
use this as anchor points. A fundamental requirement of the KDE approximation is
that these sets should be representative of the true distributions p, or p,. However,
KDE approximations are in general very poor with high dimensional data, as they
require a very large number of anchor points. This is because only the kernels that
correspond to anchor points that are “similar” to the input sample dominate in the
KDE. However, the likelihood of finding these anchor points through uniform sampling
becomes extremely small as we grow in data dimensionality.

One way around this problem is to enrich the set of anchors using data augmenta-
tions. Provided that the chosen data augmentation does not produce samples outside
the manifold of natural images, this allows us to obtain anchor points that are close
enough to give a meaningful KDE.

For similar reasons, we use a leave one out KDE, where we remove the anchor point
from the set S, or S, that the KDE is being evaluated on. This avoids a bias towards
the unlikely case where we sample exactly a point in the anchor point set. We show
experimentally that these KDE implementation details are indeed quite important in
boosting the effectiveness of the proposed approach.

6.2.2 Loss Analysis

We analyze the impact of the proposed loss on the generator training and compare
it to the case of the standard hinge loss discriminator of [89]. For simplicity, let
us consider a discriminator for the standard loss that can be written as the inner
product Dgtn(z) = ¢(2) 6, for some 6 vector (this is updated only when we optimize
with respect to the discriminator). In the case of our KDD loss we instead use simply
Dxpg(z) = ¢(z). Suppose that the discriminator is now given and we minimize the loss
L with respect to the generator G. In the case of a first order optimization method,
we obtain the updates for the parameters of the generator through the gradients of L,

ILg  OLg 9

G " 96 9G° (6.10)

Since in both the standard hinge loss and our loss the term g—g is the same, we can

reduce the analysis to the study of %. We obtain:
STN
0L,

d¢

=0 (6.11)
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and
oLEPD

9¢

1 dlogpy(x,) logpf(zy)
‘S’Z 56 9l _ (%g. (6.12)

The formulas above show that in the case of the hinge loss the gradient update results in
a constant shift, i.e., an identical shift for all samples whereas our KDD loss increases
(resp. decreases) the likelihood of z, under p? (resp. pg) A illustration of this effect
in 2D is shown in Fig. 6.1.

We also compare our KDD loss to the MMD loss proposed by [133]. Without loss
of generality, for a given sample z ~ p; we compare each term Ey.,,[k(x,y)] in their
work to its counterpart in ours log(Ey~p, [k(z,y)]), where p1,p2 € {p,,ps} and k is a
kernel function. For the vMF kernel, we obtain

KDD: Z E k @ v)qb(y), (6.13)

MMD: Zk (z,9)(y). (6.14)
Yy

In both cases, the gradient is a weighted average of the samples ¢(y). The key difference
is that the Improved MMD loss has a local weighting, i.e., it only depends on the
current y, and the KDD loss has a global weighting.

Empirical Analysis of the KDD Loss

In Figure 6.1, we illustrate the difference between the Hinge and KDD losses. We
consider two point clouds in 2D representing the real and fake push-forward distributions.
In this example, the real point cloud is designed to have two Gaussian modes, while
the fake one starts off with one uniformly sampled square mode. We first find the
optimal linear classifier separating the two point clouds through gradient descent. The
corresponding decision boundary is represented by the green line in Figure 6.1. We
then optimize the features of the fake samples with respect to the Hinge loss and the
KDD loss. In this example we do not normalize the feature mappings, since its main
purpose is to prevent the discriminator from converging to degenerate solutions, where
the space collapses. Thus, for visualization purposes, we work with 2D features. In
this setting the vMF kernel is equivalent to a Gaussian kernel with ¢ = 1 for the KDE,
i.e., K(¢,§) ox exp — lo—¢P 5'

The minimization of the Hinge loss simply results in translating the fake point
cloud without changing its internal structure as shown in Figure 6.1b. In contrast, the
KDD loss encourages the fake samples to head towards the closest real mode as shown
in Figure 6.1c. For both of losses, the optimization was ran using SGD [12] for 200
iterations with a learning rate of 10. 1000 samples were used for both the real and fake
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point clouds. Note that for a frozen Discriminator, updating the Generator using the
Hinge loss can result in overshooting the real point cloud, since the translation vector
is constant for all subsequent Generator updates. In fact, the optimum is to translate
the fake point cloud to infinity. This makes the Generator update with respect to
the Hinge loss less well-behaved than its KDD counterpart since the latter does not
introduce such instability.

6.2.3 Class-Conditioning Extension

We also consider training generative models subject to class-conditioning. Let us denote

with y® the label corresponding to the real image xg). Now, we are interested in the

approximation of the quantity log %, which we can rewrite as
log LrW@r(@) o peWl2) g pr(@) (6.15)
Pg(ylx)py(7) Py (ylz) Py()
The second term is exactly what we used in Lp(¢, G) and Lg(¢*, G). Thus, we can
focus on the conditional term log Z ;Eg'@ By following [89], we assume the linear form
pr(y"r) T
=y VD(x), (6.16)
py(yl)

where V' is a (learned) matrix that defines the embedding for the label y.

6.2.4 Regularization of the Feature Mapping

If ¢ maps many samples to the same feature, the discrimination task would become
less effective. To avoid this scenario, we encourage ¢, the feature mapping before the
normalization layer, to be as “responsive” as possible to variations around samples of
pr and p, by introducing the following additional Jacobian regularization term

1 x+ 0Ax) — o(x
Ly = 3 ’!w( ) =@y (6.17)
|| zeS,US 0 1
r g
Ax~U(SET)

where d > 0 is a small scalar and Az is a random unitary direction in image space. ¢
is defined so that ¢ = ¢/|ple. This regularization term computes a finite difference
approximation of the gradient of ¢ with respect to its input and projects it along the
random direction Ax. It preserves as much as possible the volume in feature space,
but only for the data in the image distribution. In addition, this regularization term
prevents the magnification of the output gradient, which is typically associated with
a high confidence, and would make the discriminator more susceptible to adversarial
inputs. This is a stronger constraint compared to the classic gradient penalty [39],
since we are implicitly requiring orthonormality for all the rows of the Jacobian, i.e.,
V(@) Vip(a)T = Iy,
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6.2.5 KDD GAN Formulation

Finally, we can put all the terms together and define the generator and discriminator
losses via

Layp = VEETD + L E + Ay Liac, (6.18)

where v, a and Ay live in RT x {0,1} x {0, 1e-5}, and where KDD and Hinge refer to
our KDD loss and the classic hinge loss used in BigGAN for both the generator and
discriminator. The training with the lone hinge loss uses o = 1,y = 0; the training
with the lone KDD loss uses @ = 0,y = 1; the setting where a = 1, > 0 is called
Joint training.

6.3 Implementation

Training Details

We evaluate our models on three different datasets: CIFAR10 [63], Tiny ImageNet and
ImageNet 64 x 64. The Tiny ImageNet [66] dataset is a subset of the ILSVRC-2012
ImageNet classification dataset [25] consisting of 200 object classes and 500 training
images, 50 validation images and 50 test images per class. Unless specified otherwise,
we use 7 = 1, § = 1e-3 and Ay = le-5. Experiments using data augmentations and
the Jacobian regularization are denoted with +DA and +JacD respectively. All
experiments were ran on at most two 2080Ti or one 3090Ti NVIDIA GPUs. Using
KDD-GAN results in around 10% longer training times.

Architectures

The architecture used for our CIFAR10 experiments is the same one' used in the
original BigGAN work by [14]. For both Tiny ImageNet and ImageNet 64 x 64, we use
the modified SA-GAN [148] architecture adopted by [27] 2. We do not use instance
selection on CIFAR10 and Tiny ImageNet as we noticed it hurts performance on smaller
datasets. For instance selection on ImageNet 64 x 64, we use a retention ratio of 50%.
We choose to train BigGAN/SA-GAN rather than StyleGAN2-ADA for their simpler
training scheme and their lesser reliance on regularization terms and implementation
tricks. This allows use to isolate the contribution of our KDD loss without requiring a
hyperparameter search for the rest of the moving pieces of the training.

'https://github.com/ajbrock/BigGAN-PyTorch/
*https://github.com/uoguelph-mlrg/instance_selection_for_gans/
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Figure 6.2: Sample images generated using the Joint} model trained on ImageNet
64 x 64.

Evaluation Metrics

Throughout this paper, we evaluate our generative models using Fréchet Inception
Distance (FID) [45], Inception Score (IS) [108], Density and Coverage [91]. These
metrics are computed using the original tensorflow implementation. As in [27] the real
moments used for the FID are computed using the entire dataset and not the filtered
one. For FID and IS we use 50k generated samples, for Density and Coverage, we use
10k samples for both distributions and 5 nearest neighbors. Unless specified otherwise,
the reported numbers are computed after 100k iterations for both CIFAR10 and Tiny
ImageNet and after 500k iterations for ImageNet 64 x 64. The batch size used is 64 for
Tiny ImageNet and CIFAR10 and 128 for ImageNet 64 x 64. The FID moments are
computed on the training set for all datasets. We report the performance of the best
model obtained during training.

Differentiable Augmentations

We use differentiable random brightness, saturation, contrast, translation and cut-out
data augmentations proposed by [153]. For all our experiments, the loss is computed
only on the non-augmented images. The augmented samples are only used for the
Kernel Density Estimation. This is an important distinction from the work by [153].

6.4 Experiments

In this section we show the quantitative results obtained on CIFAR10, Tiny ImageNet
and ImageNet 64 x 64. The best and second best values per metric are highlighted and
underlined respectively. Generated samples from one of our best models are shown in
Fig. 6.2.
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Table 6.1: Comparison of the various BigGANs trained on CIFAR10. UnCond refers
to the unconditional setting, while NoProj refers to removing the class-projection loss
term in ProjGAN [89].

Experiments T ~y FID| 1IS1 D7t C?

Hinge - - 8.761  8.835 0.966 0.851
KDD 0.05 - 8.753 9.233 0.876  0.832
KDD 1.00 - 8.422  9.155 0.868  0.849
KDD 5.00 - 8.604 8852 0.970 0.862
KDD + JacD 1.00 - 7.237 9.029 0.932 0.867
Joint 1.00 0.1 9.144 8767 0969  0.857
Joint 1.00 0.5 8.795 8920 0.922 0.855
Joint 1.00 1.0 7932 9.046 0.968 0.868
Joint 1.00 10.0 8352 9.102 0.930 0.857
KDD + NoProj 0.05 - 13.668 8274 0.722 0.711
Hinge (Uncond) - - 17.782 8120 0.692 0.686
KDD (Uncond)  0.05 - 15.828 8326  0.620  0.650

Joint (Uncond) 0.05 1.0 14.394 8532 0.662 0.712

6.4.1 Ablation Results

In Table 6.1, we perform various ablations by training BigGAN [14] on CIFAR10 for
200k iterations each. The three main loss functions used are: the hinge loss [89], the
KDD loss and the Joint loss. We study the effects of the parameters associated with
the new losses. The first set of experiments studies the effect of the temperature 7
used in the KDD loss. We observe that both high and low values of 7 are problematic.
When comparing 7 = 0.05 to 7 = 5.00, we observe a trade-off between Image Fidelity
(FID) and diversity (IS). The value of 7 determines the level of blurriness of the KDE.
Additionally, we explore the effect of the Jacobian regularization. We use a coefficient of
Av = le-5. Our KDD GAN using 7 = 1 with and without the Jacobian regularization
outperforms its BigGAN counterpart in both FID and IS. The performance gap is
bigger when adding the Jacobian regularization.

The second set of experiments looks at the effect of v during the joint training. We
observe that all joint models improve on the baseline in terms of IS. This improvement
correlates positively with v except for v = 10 where the IS stagnates. The best joint
model (v = 1) outperforms the baseline also in terms of FID. This highlights the benefit
of using the KDD loss as a regularization term. Lastly, we train our models without
the class-projection head proposed by [89] and/or without a conditional input for the
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Table 6.2: KDD GAN kernel and dimensionality choice. We evaluate the impact of
Kernel Choice and Feature Dimension on KDD GAN

Kernel Feature Dimension FID IS

vMF K =128 8.384 8.887

IQ K =128 8.375 8.901
vMF K =64 8.842 8.885
vMF K =128 8.375 8.901
vMF K =256 9.050 9.058

generator. All models obtained with v > 0 in the third block in Tab. 6.1 outperform
the BigGAN baseline in the unconditional setting. This proves that training is not
solely driven by the class-projection term in the conditional setting. The difference in
performance between unconditional KDD model and the one that is only missing the
projection head can be attributed to the slightly higher number of parameters that the
latter has since it is still using the class label as input to the generator. We additionally
examine the impact of the kernel choice and the dimension of the features on the
KDD-GAN. The results are shown in Table 6.2 We compare the vMF kernel, which is
equivalent to the RBF kernel due to the normalization used, to the IQ kernel [133]. We
observe a similar performance level on CIFAR-10 for both kernel choices. Regarding
the dimensionality K, we compare our default setting on CIFAR-10 (K = 128) to
K =64 and K = 256. Although increasing K slightly improves the IS, the best model
overall remains the default one. We can conclude from both experiments that our KDD
loss is not too sensitive to the choice of the kernel and dimension of the features as
opposed to reported observations for models such as MMD-GAN [116].

6.4.2 Generative Learning on CIFAR10

In Table 6.3, we compare the performance of different variations of our KDD GAN
with a BigGAN baseline and the numbers reported by [53] for a selection of their
best models. The KDD GAN outperforms the BigGAN baseline for both IS and
FID. Also it drastically improves its FID when using augmentations as described in
Sec. 6.2.1. Augmentation x N means that an additional N x batchsize augmented
images are used for the KDE anchor points. We observe that on CIFAR10, the amount
of augmentations correlates positively with a significant improvement of the FID. In
the case of the Jacobian regularization the results are mixed. It seems to improve the
performance of the KDD model, but it also negatively impacts performance when used
in combination with data augmentation. The Jacobian regularization may be too strict
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Table 6.3: Quantitative results on CIFAR10. The values shown below are obtained

after 100k iterations. We show the benefit of adding various augmentation factors

*

for the KDD setting. We also explore the effect of the Jacobian regularization. * are

numbers reported by [53].

Experiments FID | IS 1 D7t (G2
ContraGAN* 8.065 9.729 - -
ContraGAN + DiffAug* 7.193 9.996 - -
BigGAN + DiffAug*® 7.157 9.775 - -
BigGAN + CR* 7.178 10.380 - -
Hinge loss 8.859 8.814 0.917 0.841
KDD 8.375 8.901 0.875 0.845
KDD + DA 7.089 9.250 0.893 0.860
KDD + DA x3 6.063 9.280 0.951 0.892
KDD + DA x7 5.713 9.389 0.968 0.899
KDD + JacD 7.944 8.959 0.895 0.847

KDD + JacD + DA X7 6.713 9.333 0.9000  0.875

a requirement, as the dimension K of the gradient of ¢ is smaller than the dimension
d of the images, and perhaps a more flexible loss term could work better.

6.4.3 Generative Learning on ImageNet
Tiny ImageNet

Table 6.4 shows the performance of our models on Tiny ImageNet compared to the
SA-GAN baseline and the best models reported by [53]. The KDD GAN outperforms
the baseline for all settings. On one hand, similarly to CIFAR10, using additional
augmented images for the KDE results in a significant boost in performance. Indeed
the KDD GAN with DA x3 outperforms ContraGAN in terms of FID and IS. On the
other hand, the additional Jacobian regularization is not helpful. The only exception
being the joint training (v = 0.5) without data augmentation and the joint training
with v = 1 and data augmentation where the Jacobian regularization introduces a
slight performance boost. Note that the ContraGAN+Diff. Aug. numbers reported by
[53] were obtained twice as many iterations as the rest of the models (ContraGAN and
our experiments), putting it at an advantage.
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Table 6.4: Quantitative results on Tiny ImageNet. We compare the baseline to both
the KDD and joint trainings. We also explore the effect of adding the Jacobian
regularization on D and show the effect of using more augmentations for the density
estimation. * are numbers reported by [53].

Experiments ~v FID | IS 1 D71 C?
ContraGAN* - 27.027  13.494 - -
+ DiffAugment* -  15.755 17.303 - -
Hinge loss - 29.525  11.048 0.520 0.516
KDD - 24.022 13.204 0.658 0.613
KDD+DA - 20.204 14.100 0.673  0.663
KDD+DA x3 - 18.261 14.943 0.716 0.683
KDD+JacD - 25.504  13.215 0.597  0.595
KDD+JacD+DA - 20.717  13.787  0.630  0.645
Joint 1 25.709  13.124  0.595  0.582
Joint+DA 1 22.854  13.421  0.591  0.613
Joint+JacD 1 26.369  13.169  0.582  0.582
Joint+JacD+DA 1 21.512  13.728 0.639 0.627
Joint 0.5 24.341 13.337 0.626 0.614
Joint+DA 0.5 23.357 12918 0.619 0.621
Joint+JacD 0.5 23.854 13.251 0.651 0.617

Joint+JacD+DA 0.5 23928 13.059 0.575 0.594

ImageNet 64 x 64

Table 6.5 shows our experimental results on ImageNet 64 x 64. We compare our models
to the SA-GAN baseline and the numbers reported by [27] and [154]. For all our
trained models, we use instance selection [27] with a retention ratio of 50%.

We observe that the baseline outperforms our KDD GAN even with additional
augmentations and regularization. It is also note-worthy that in this setting, although
a small amount of data augmentation seems to help, adding more is not necessarily
beneficial. The high level of diversity in ImageNet both in terms of number of classes
and samples might be limiting the effectiveness of our density estimation given the
relatively small batch size used. Nevertheless, all joint training models outperform
the hinge-based models in terms of IS and most outperform our SA-GAN baseline in
terms of FID. Interestingly, the best model is the Jointf model where p, is estimated
using features computed during the last discriminator step. This suggests that using a
memory bank for the features might be a promising extension of this work.
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Table 6.5: Quantitative results on ImageNet 64 x64. We explore the use of augmentation,
Jacobian regularization and Joint training. { refers to a setting where the feature ¢(x;)
were computed using the weights from the previous discriminator update step. * are
numbers reported by [27].

Experiments v FID | IS 1 D1 C1
SA-GAN+IS@50%* - 9.63 31.04 1.07 0.88
FQ-BigGAN~* - 9.67 25.96 - -

Hinge loss - 10.452  32.869 1.034 0.877
KDD - 12.570  31.404 0.953  0.850
KDD+DA - 12.367 31.069 0.954  0.861
KDD+DA x3 - 14.680 27.949  0.928 0.810
KDD+JacD - 12.651  31.188  0.938  0.850
KDD+JacD+DA - 79.790 10.603 0.376  0.139
Joint 1 11.387 32471  0.991 0.872
Joint+DA 1 10.385 33.753 1.048 0.880
Joint+JacD 1 10.320 34.296 1.010 0.868
Joint+JacD+DA 1 9.702  34.619 1.062 0.892
Joint 0.5 10.544 33.447 1.017 0.879
Joint 0.5 9.450 35.648 1.070 0.897
Joint+DA 0.5 10.111 33.494 1.048 0.891
Joint+JacD 0.5 10.242 35.120 1.072 0.891

Joint+JacD+DA 0.5 10.010 34.074 1.053 0.889

6.5 Examples of Generated Images

We show non-cherry picked images generated by our Hinge loss baseline and our best
model per dataset in Figures 6.3 to 6.9. The truncation trick for sampling [14] was not
used. In all figures, each row represents a different class starting with the first class in
the top row down to the last class in the bottom row.

6.6 Discussion

One of the main challenges in the use of KDD GAN is to ensure that the anchor
points for the KDE are representative for the evaluation points. In our experiments
between Tiny ImageNet and ImageNet 64 x 64, we observe that the performance of
KDD GAN is sensitive to the anchor points set size, the number of augmentations, and
the complexity of the dataset seems to play a role as well. Also, with large datasets
the impact of samples at the tails of the distribution on the KDE approximation is
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(a) Hinge loss (b) KDD + Aug x

Figure 6.3: Samples generated using the Hinge loss model and the KDD + Aug x7
model trained on CIFARI10 (one class per row).

unclear. In general, it might be necessary to design better sampling strategies for the
anchor points used for the KDE estimation: Some options are using a memory bank or
sampling using k-NN. Another direction to evaluate is the role of the class projection
in the training. We chose to separate the category aspect from the unlabeled problem
not only because it would make KDD GAN suitable for unsupervised learning, but also
because it would not require large minibatches as the current KDE completely ignores
the class labels. It would be interesting to evaluate the performance in the case where
the loss with class labels is entirely based on the KDE. Finally, as mentioned in the
introduction, KDD GAN can be combined with other techniques and regularization
methods that are known to improve the performance of the GAN training, such as
Consistency Regularization of [149] and Differentiable Augmentation of [153]. We leave
these investigations to future work.
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Figure 6.4: Samples generated using the Hinge loss model trained on Tiny ImageNet
for the classes 181-200 (one class per row).
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Figure 6.5: Samples generated using the KDD+Aug x3 model trained on Tiny ImageNet
for the classes 181-200 (one class per row).
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Figure 6.6: Samples generated using Hinge loss model trained on ImageNet 64 x 64 for
the classes 141-160 (one class per row).
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Figure 6.7: Samples generated using Hinge loss model trained on ImageNet 64 x 64 for
the classes 501-520 (one class per row).
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Figure 6.8: Samples generated using Jointt model trained on ImageNet 64 x 64 for the
classes 141-160 (one class per row).
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Figure 6.9: Samples generated using Jointt model trained on ImageNet 64 x 64 for the
classes 501-520 (one class per row).



Chapter 7

Conclusions

In this thesis, we explored the challenging problem of unsupervised object segmentation.
We demonstrated the feasibility of training both generative models, which are capable
of generating segmented objects, and segmenter models, which can identify and
segment salient objects from real images. Notably, the methods we introduced can
be trained solely using collections of images, eliminating the need for any form of
manual annotations — such as object labels, bounding boxes, landmarks, or the use of
pre-trained supervised object detectors and classifiers.

We identified a powerful signal that can drive object segmentation: objects within
a scene move coherently, meaning all parts of an object move together. This inherent
property of physical objects can be embedded as a learning rule to steer deep neural
networks towards segmenting objects that can be moved. We demonstrated the
applicability of this principle to collections of static, still images, in which motion is not
directly observable. Through generative modeling and inpainting networks, we devised
methods to simulate realistic object displacement via local shifts. In Chapter 3, we
introduced a novel method for generating a layered scene representation, composed of
background and foreground layers, along with a corresponding mask for the foreground
object. By enforcing the constraint that the scene must remain realistic under a local
shift of the foreground, we achieved a meaningful separation between the foreground
and background. To improve our model’s capability to segment real images, we outlined
in Chapter 4 how to streamline these models and use the synthetic data to train a
competitive segmenter that performs well on real images. In Chapter 5 we departed
from relying on a generative model altogether, by adopting modern self-supervised
models as the feature backbone and as the inpainter. Inpainting the background
not only allows for local shifts of the predicted objects within real images but also
generates artifacts indicative of incorrect segmentation. We showed how to utilize it as
an additional signal driving the segmentation. Our methods heavily rely on adversarial
training to ensure the generated or modified scenes remain realistic. In an effort to
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improve this training process, we introduce in Chapter 6 a new GAN training method
with a novel loss function. This function utilizes Kernel Density Discrimination to
measure the statistical divergence between the kernel density estimates of real and fake
data distributions within the discriminator’s feature space. This results in improved
training gradients, encouraging the generator to seek missing distribution modes.

Unsupervised object segmentation has gained increasing attention in recent years.
This line of work is significant for reducing the reliance on costly, expertise-demanding
annotations and enhancing the capabilities of current object segmentation systems.
Perhaps more significantly, this approach represents a step towards the development of
more generalized artificial intelligence agents, capable of learning by simply observing
the world. Depending on the use case, there are several possible directions to continue
our work.

Semi-Supervised and Weakly Supervised Learning. While researching purely
unsupervised methods is significant beyond cost-effectiveness, in many use cases it is
possible to obtain at least some annotations with limited effort, such as using less precise
bounding boxes or fewer instance labels. Incorporating our principles for unsupervised
segmentation within a semi-supervised or weakly supervised framework could further
improve practical systems that could be deployed in real-world scenarios.

Extending Self-Supervised Learning. As shown in this thesis, desirable fea-
ture properties for object segmentation emerge from modern transformer-based self-
supervised methods. Further research investigates the improvement of such proper-
ties [24]. Merging the typical SSL learning objectives with object-aware objectives
presented in this thesis could lead to a richer feature representation.

Addressing Dataset Imposed Limitations and Object Ambiguity. Most
commonly used image datasets, including ImageNet [25], are object-centric, which
benefits many self-supervised models by allowing them to impose feature invariance
under geometric transformations. While our methods do not rely on explicit labels,
their effectiveness might still depend on such curated datasets. Exploring extensions
for multi-object discovery, possibly through object-centric slot attention models [112],
could offer a way to achieve precise yet distinct object masks

Beyond Generative Adversarial Networks. The adversarial learning framework
is desirable in our case for end-to-end learning of realistic scenes. Diffusion models
have recently surpassed GANs in generating high-quality images, but are not directly
applicable to our methods to provide the signal guiding the realism of a scene. However,
there is a recent line of work that utilizes pre-trained diffusion models to obtain a
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guiding signal towards a constrained image generation, e.g. a 3D representation [102].
Further research in this direction is needed, since these methods currently can suffer
from mode collapse and are strongly dependent on text conditioning.



110 Chapter 7: Conclusions




Bibliography

1]

2]

3]

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,
and Sabine Siisstrunk. Slic superpixels compared to state-of-the-art superpixel
methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34
(11):2274-2282, November 2012.

Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as
dense visual descriptors. ArXiv preprint, abs/2112.05814, 2021.

Relja Arandjelovi¢ and Andrew Zisserman. Object discovery with a copy-pasting
gan. ArXiv preprint, abs/1905.11369, 2019.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34" International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 214-223. PMLR, 2017.

Amir Bar, Xin Wang, Vadim Kantorov, Colorado J. Reed, Roei Herzig, Gal
Chechik, Anna Rohrbach, Trevor Darrell, and Amir Globerson. Detreg: Un-
supervised pretraining with region priors for object detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 14585-14595. IEEE, 2022.

H. B. Barlow. Unsupervised learning. Neural Computation, 1:295-311, 1989.

Jonathan T Barron and Ben Poole. The fast bilateral solver. In FEuropean
Conference on Computer Vision, pages 617-632. Springer.

Yaniv Benny and Lior Wolf. Onegan: Simultaneous unsupervised learning of con-
ditional image generation, foreground segmentation, and fine-grained clustering.
In European Conference on Computer Vision, pages 514-530. Springer, 2020.

David Berthelot, Thomas Schumm, and Luke Metz. BEGAN: Boundary equilib-
rium generative adversarial networks. ArXiv preprint, abs/1703.10717, 2017.

111



112

Bibliography

[10]

[16]

[17]

[18]

Adam Bielski and Paolo Favaro. Emergence of object segmentation in perturbed
generative models. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7254-7264, 2019.

Adam Bielski and Paolo Favaro. MOVE: Unsupervised movable object segmen-
tation and detection. Advances in Neural Information Processing Systems, 35:
33371-33386, 2022.

Léon Bottou. Online algorithms and stochastic approximations. Online learning
and neural networks, 1998.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training
for high fidelity natural image synthesis. In 7** International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina
Higgins, Matt Botvinick, and Alexander Lerchner. MONET: Unsupervised scene
decomposition and representation. ArXiv preprint, abs/1901.11390, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. Unsupervised learning of visual features by contrasting cluster
assignments. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. In 2021 IEEE/CVF International Conference on Computer Vision,
I1CCV 2021, Montreal, QC, Canada, October 10-17, 2021, pages 9630-9640. IEEE,
2021.

Mickaél Chen, Thierry Artieres, and Ludovic Denoyer. Unsupervised object
segmentation by redrawing. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on



BIBLIOGRAPHY 113

[21]

[22]

[25]

Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 12705-12716, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A
simple framework for contrastive learning of visual representations. In Proceedings
of the 37" International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 1597-1607. PMLR, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training
self-supervised vision transformers. In 2021 IEEE/CVF International Conference
on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 9620-9629. IEEE, 2021.

Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classifica-
tion is not all you need for semantic segmentation. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 17864-17875, 2021.

Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce. Unsupervised
object discovery and localization in the wild: Part-based matching with bottom-
up region proposals. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1201-1210.
IEEE Computer Society, 2015.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24:603-619, 2002.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision
transformers need registers. In The Twelfth International Conference on Learning
Representations, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25
June 2009, Miami, Florida, USA, pages 248-255. IEEE Computer Society, 20009.

Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. Localizing objects while
learning their appearance. In Furopean conference on computer vision, pages
452-466. Springer, 2010.



114

Bibliography

[27]

[28]

Terrance DeVries, Michal Drozdzal, and Graham W. Taylor. Instance selection
for gans. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In 9 International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021.

Aysegul Dundar, Karan Sapra, Guilin Liu, Andrew Tao, and Bryan Catanzaro.
Panoptic-based image synthesis. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 8067-8076. IEEE, 2020.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,
Koray Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene
understanding with generative models. In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 3225-3233, 2016.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC /voc2007 /workshop/index.html, .

M. Everingham, L. Van Gool, C. K. 1. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC /voc2012 /workshop/index.html, .

Zoubin Ghahramani. Unsupervised Learning, pages 72—112. Springer Berlin
Heidelberg, 2004.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representa-
tion learning by predicting image rotations. In 6" International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, 2018.



BIBLIOGRAPHY 115

[35]

[36]

[39]

[40]

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
adversarial nets. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672—-2680,
2014.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Harri Valpola,
and Jirgen Schmidhuber. Tagger: Deep unsupervised perceptual grouping. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 4484-4492, 2016.

Klaus Greff, Sjoerd van Steenkiste, and Jiirgen Schmidhuber. Neural expectation
maximization. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 6691-6701, 2017.

Klaus Greff, Raphaél Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher
Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerch-
ner. Multi-object representation learning with iterative variational inference. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36"
International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 2424-2433. PMLR, 2019.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. Improved training of wasserstein gans. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 57675777,
2017.

Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and
William T. Freeman. Unsupervised semantic segmentation by distilling feature
correspondences. In The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.



116

Bibliography

[41]

[46]

[47]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778.
IEEE Computer Society, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B. Girshick. Mask R-CNN.
In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Ttaly, October 22-29, 2017, pages 2980-2988. IEEE Computer Society, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 9726-9735. IEEE, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross B.
Girshick. Masked autoencoders are scalable vision learners. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 15979-15988. IEEE, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local
nash equilibrium. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 66266637, 2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504-507, 2006.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32" International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages 448-456. JMLR.org, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 5967-5976. IEEE Computer Society, 2017.

Jongheon Jeong and Jinwoo Shin. Training gans with stronger augmentations
via contrastive discriminator. In 9" International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.



BIBLIOGRAPHY 117

[50]

[51]

[53]

[54]

[55]

[56]

[57]

Xu Ji, Andrea Vedaldi, and Joao F. Henriques. Invariant information clustering
for unsupervised image classification and segmentation. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 9864-9873. IEEE, 2019.

Bowen Jiang, Lihe Zhang, Huchuan Lu, Chuan Yang, and Ming-Hsuan Yang.
Saliency detection via absorbing markov chain. In IEEFE International Conference
on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013, pages
1665-1672. IEEE Computer Society, 2013.

Huaizu Jiang, Jingdong Wang, Zejian Yuan, Yang Wu, Nanning Zheng, and
Shipeng Li. Salient object detection: A discriminative regional feature integration
approach. In 2013 IEEE Conference on Computer Vision and Pattern Recognition,
Portland, OR, USA, June 23-28, 2013, pages 2083-2090. IEEE Computer Society,
2013.

Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional
image generation. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information

Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-
ing of gans for improved quality, stability, and variation. In 6" International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 4401-4410. Computer Vision Foundation / IEEE, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen,
and Timo Aila. Training generative adversarial networks with limited data. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurlPS
2020, December 6-12, 2020, virtual, 2020.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of stylegan. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 8107-8116. IEEE, 2020.



118

Bibliography

[58]

[59]

[60]

[62]

[65]

[66]

Isinsu Katircioglu, Helge Rhodin, Victor Constantin, Jorg Sporri, Mathieu
Salzmann, and Pascal Fua. Self-supervised human detection and segmentation
via background inpainting. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, pages 1-1, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised con-
trastive learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Gunhee Kim and Antonio Torralba. Unsupervised detection of regions of interest
using iterative link analysis. In Yoshua Bengio, Dale Schuurmans, John D. Laf-
ferty, Christopher K. I. Williams, and Aron Culotta, editors, Advances in Neural
Information Processing Systems 22: 23 Annual Conference on Neural Infor-
mation Processing Systems 2009. Proceedings of a meeting held 7-10 December
2009, Vancouver, British Columbia, Canada, pages 961-969. Curran Associates,
Inc., 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3@ International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normalizing flows: An
introduction and review of current methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and
Jiri Matas. Deblurgan: Blind motion deblurring using conditional adversarial
networks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8183-8192. IEEE
Computer Society, 2018.

Hanock Kwak and Byoung-Tak Zhang. Generating images part by part with
composite generative adversarial networks. ArXiv preprint, abs/1607.05387, 2016.

Ya Le and X. Yang. Tiny imagenet visual recognition challenge. 2015.



BIBLIOGRAPHY 119

[67]

[68]

[71]

[74]

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEFE, 86(11):2278-2324, 1998.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew P. Aitken, Alykhan Tejani, Johannes Totz,
Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-resolution using
a generative adversarial network. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 105-114. IEEE Computer Society, 2017.

Abdelhak Lemkhenter, Adam Bielski, Alp Eren Sari, and Paolo Favaro. Gen-
erative adversarial learning via kernel density discrimination. arXiv preprint
arXiw:2107.06197, 2021.

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip H. S. Torr. Manigan:
Text-guided image manipulation. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 7877-7886. IEEE, 2020.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabas
Péczos. MMD GAN: towards deeper understanding of moment matching network.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
2203-2213, 2017.

Guanbin Li and Yizhou Yu. Visual saliency based on multiscale deep features.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 5455-5463. IEEE Computer Society,
2015.

Nianyi Li, Bilin Sun, and Jingyi Yu. A weighted sparse coding framework
for saliency detection. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 5216-5223.
IEEE Computer Society, 2015.

Xjaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Ming-Hsuan Yang.
Saliency detection via dense and sparse reconstruction. In IEEFE International
Conference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8,
2013, pages 2976-2983. IEEE Computer Society, 2013.



120

Bibliography

[75]

[77]

[82]

Chieh Hubert Lin, Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, and Ming-
Hsuan Yang. Infinity GAN: Towards infinite-pixel image synthesis. In International
Conference on Learning Representations, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr
Dollar. Microsoft coco: Common objects in context, 2014.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and Larry Zitnick. Microsoft coco: Common objects in
context. In ECCV. European Conference on Computer Vision, September 2014.

Zinan Lin, Ashish Khetan, Giulia C. Fanti, and Sewoong Oh. Pacgan: The power
of two samples in generative adversarial networks. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 1505-1514, 2018.

Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco:
Diverse conditional image synthesis via contrastive generative adversarial network.
In IEEFE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 16377-16386. Computer Vision Foundation /
IEEE, 2021.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahen-
dran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf.
Object-centric learning with slot attention. In Hugo Larochelle, Marc’ Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3431-3440.
IEEE Computer Society, 2015.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In IFEFE

International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pages 2813-2821. IEEE Computer Society, 2017.



BIBLIOGRAPHY 121

[83]

[38]

Francisco Massa and Ross Girshick. maskrecnn-benchmark: Fast, modular refer-
ence implementation of Instance Segmentation and Object Detection algorithms
in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark,
2018. Accessed: 05/20/2019.

Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Deep
spectral methods: A surprisingly strong baseline for unsupervised semantic
segmentation and localization. In CVPR, 2022.

Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Finding
an unsupervised image segmenter in each of your deep generative models. In
The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.
PULSE: self-supervised photo upsampling via latent space exploration of genera-
tive models. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 2434-2442.
IEEE, 2020.

Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training
methods for gans do actually converge? In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35" International Conference on Machine Learning,
ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 3478-3487. PMLR, 2018.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled gen-
erative adversarial networks. In 5% International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

Takeru Miyato and Masanori Koyama. Cgans with projection discriminator. In 6
International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In 6" International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 8, 2018, Conference Track Proceedings, 2018.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and
Jaejun Yoo. Reliable fidelity and diversity metrics for generative models. In
Proceedings of the 37" International Conference on Machine Learning, ICML


https://github.com/facebookresearch/maskrcnn-benchmark

122

Bibliography

[92]

[97]

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 7176-7185. PMLR, 2020.

Duc Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mummadi, Thi-Phuong-
Nhung Ngo, Thi Hoai Phuong Nguyen, Zhongyu Lou, and Thomas Brox. Dee-
pusps: Deep robust unsupervised saliency prediction via self-supervision. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 204214, 2019.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification
over a large number of classes. In 2008 Sizth Indian Conference on Computer
Vision, Graphics & Image Processing, pages 722-729. IEEE, 2008.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1520-1528. IEEE Computer Society, 2015.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations
by solving jigsaw puzzles. In Furopean conference on computer vision, pages
69-84. Springer, 2016.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. F-gan: Training genera-
tive neural samplers using variational divergence minimization. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 271-279, 2016.

Pavel Ostyakov, Roman Suvorov, Elizaveta Logacheva, Oleg Khomenko, and
Sergey I. Nikolenko. SEIGAN: towards compositional image generation by
simultaneously learning to segment, enhance, and inpaint. ArXiv preprint,
abs/1811.07630, 2018.

Yassine Ouali, Céline Hudelot, and Myriam Tami. Autoregressive unsupervised
image segmentation. In Furopean Conference on Computer Vision, pages 142—-158.
Springer, 2020.

Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and
Ping Luo. Exploiting deep generative prior for versatile image restoration and



BIBLIOGRAPHY 123

[100]

[101]

[102]

[103]

[104]

[105]

[106]

manipulation. In Furopean Conference on Computer Vision, pages 262-277.
Springer, 2020.

Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive
learning for unpaired image-to-image translation. In Furopean Conference on
Computer Vision, pages 319-345. Springer, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8024-8035, 2019.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion:
Text-to-3d using 2d diffusion. In The FEleventh International Conference on
Learning Representations, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38" International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 8821-8831.
PMLR, 2021.

Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative adversarial text to image synthesis. In Maria-Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of the 38™ International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
1060-1069. JMLR.org, 2016.

Tal Remez, Jonathan Huang, and Matthew Brown. Learning to segment via cut-
and-paste. In The European Conference on Computer Vision (ECCV), September
2018.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. In Corinna



124

Bibliography

[107]

[108]

[109)]

[110]

[111]

[112]

Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 91-99, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234—241.
Springer, 2015.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2226-2234, 2016.

Axel Sauer, Kashyap Chitta, Jens Miiller, and Andreas Geiger. Projected gans
converge faster. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
17480-17492, 2021.

Pedro Savarese, Sunnie S. Y. Kim, Michael Maire, Greg Shakhnarovich, and David
McAllester. Information-theoretic segmentation by inpainting error maximization.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 4029-4039. Computer Vision Foundation / IEEE,
2021.

Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-net based discriminator
for generative adversarial networks. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 8204-8213. IEEE, 2020.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun
Xiao, Carl-Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Scholkopf,
Thomas Brox, and Francesco Locatello. Bridging the gap to real-world object-
centric learning. In The FEleventh International Conference on Learning Repre-
sentations, 2023.



BIBLIOGRAPHY 125

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Jianping Shi, Qiong Yan, Li Xu, and Jiaya Jia. Hierarchical image saliency
detection on extended cssd. IEEE transactions on pattern analysis and machine
intelligence, 38(4):717-729, 2015.

Gyungin Shin, Samuel Albanie, and Weidi Xie. Unsupervised salient object
detection with spectral cluster voting. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans,
LA, USA, June 19-20, 2022, pages 3970-3979. IEEE, 2022.

Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei
Bursuc, Patrick Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with
self-supervised transformers and no labels. November 2021.

Mathieu Sinn and Ambrish Rawat. Non-parametric estimation of jensen-shannon
divergence in generative adversarial network training. In Amos J. Storkey and
Fernando Pérez-Cruz, editors, International Conference on Artificial Intelligence
and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary
Islands, Spain, volume 84 of Proceedings of Machine Learning Research, pages
642-651. PMLR, 2018.

Parthipan Siva, Chris Russell, Tao Xiang, and Lourdes Agapito. Looking beyond
the image: Unsupervised learning for object saliency and detection. In 2013
IEEFE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, June 23-28, 2013, pages 3238-3245. IEEE Computer Society, 2013.

Elizabeth S Spelke. Principles of object perception. Cognitive science, 14(1):
29-56, 1990.

Elizabeth S Spelke. What Babies Know: Core Knowledge and Composition
Volume 1, volume 1. Oxford University Press, 2022.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles
Sutton. VEEGAN: reducing mode collapse in gans using implicit variational
learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December /-9, 2017, Long Beach, CA,
USA, pages 3308-3318, 2017.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.
In European conference on computer vision, pages 776-794. Springer, 2020.



126

Bibliography

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154-171, 2013.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image prior.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 9446-9454. IEEE
Computer Society, 2018.

Sjoerd van Steenkiste, Karol Kurach, Jirgen Schmidhuber, and Sylvain Gelly.
Investigating object compositionality in generative adversarial networks. Neural
Networks, 130:309-325, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December /-9, 2017, Long Beach, CA, USA, pages
5998-6008, 2017.

Huy V. Vo, Francis R. Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez,
and Jean Ponce. Unsupervised image matching and object discovery as optimiza-
tion. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 8287-8296. Computer
Vision Foundation / IEEE, 2019.

Huy V Vo, Patrick Pérez, and Jean Ponce. Toward unsupervised, multi-object
discovery in large-scale image collections. In Furopean Conference on Computer
Vision, pages 779-795. Springer, 2020.

Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, and Jean Ponce.
Large-scale unsupervised object discovery. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 16764-16778, 2021.

Andrey Voynov, Stanislav Morozov, and Artem Babenko. Object segmentation
without labels with large-scale generative models. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38" International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 10596-10606. PMLR, 2021.



BIBLIOGRAPHY 127

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-~2011-001, California Institute
of Technology, 2011.

Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin,
and Xiang Ruan. Learning to detect salient objects with image-level supervision.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 3796-3805. IEEE Computer
Society, 2017.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In Proceedings of
the 37" International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 9929-9939. PMLR, 2020.

Wei Wang, Yuan Sun, and Saman K. Halgamuge. Improving MMD-GAN train-
ing with repulsive loss function. In 7" International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense
contrastive learning for self-supervised visual pre-training. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25,
2021, pages 3024-3033. Computer Vision Foundation / IEEE, 2021.

Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz, Anima Anandkumar,
Chunhua Shen, and Jose M Alvarez. FreeSOLO: Learning to segment objects
without annotations. In Proceedings of the IEEE/CVF Conference on Computer
Viston and Pattern Recognition, pages 14176-14186, 2022.

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and
Dominique Vaufreydaz. Self-supervised transformers for unsupervised object
discovery using normalized cut. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14543-14553, 2022.

Xiu-Shen Wei, Chen-Lin Zhang, Jianxin Wu, Chunhua Shen, and Zhi-Hua
Zhou. Unsupervised object discovery and co-localization by deep descriptor
transformation. Pattern Recognition, 88:113-126, 2019.

Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical saliency detection. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, June 23-28, 2013, pages 1155-1162. IEEE Computer Society, 2013.



128

Bibliography

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan Yang.
Saliency detection via graph-based manifold ranking. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28,
2013, pages 3166-3173. IEEE Computer Society, 2013.

Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: layered
recursive generative adversarial networks for image generation. In 5% Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Yanchao Yang, Antonio Loquercio, Davide Scaramuzza, and Stefano Soatto.
Unsupervised moving object detection via contextual information separation. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 879-888. Computer Vision
Foundation / IEEE, 2019.

Zhaoyuan Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li,
and Rong Jin. Transfgu: A top-down approach to fine-grained unsupervised
semantic segmentation. In Furopean conference on computer vision, pages 73—-89.
Springer, 2022.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in
the loop. ArXiv preprint, abs/1506.03365, 2015.

Ning Yu, Ke Li, Peng Zhou, Jitendra Malik, Larry Davis, and Mario Fritz.
Inclusive gan: Improving data and minority coverage in generative models. In
European Conference on Computer Vision, pages 377-393. Springer, 2020.

Ning Yu, Guilin Liu, Aysegul Dundar, Andrew Tao, Bryan Catanzaro, Larry
Davis, and Mario Fritz. Dual contrastive loss and attention for gans. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, October 10-17, 2021, pages 6711-6722. IEEE, 2021.

Dingwen Zhang, Junwei Han, and Yu Zhang. Supervision by fusion: Towards
unsupervised learning of deep salient object detector. In IFEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 4068-4076. IEEE Computer Society, 2017.

Han Zhang, Tao Xu, and Hongsheng Li. Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 5908-5916. IEEE Computer Society, 2017.



BIBLIOGRAPHY 129

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena.
Self-attention generative adversarial networks. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36" International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 7354—7363.
PMLR, 2019.

Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency
regularization for generative adversarial networks. In 8™ International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

Jing Zhang, Tong Zhang, Yuchao Dai, Mehrtash Harandi, and Richard I. Hartley.
Deep unsupervised saliency detection: A multiple noisy labeling perspective. In
2018 IEEFE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 9029-9038. IEEE
Computer Society, 2018.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
FEuropean conference on computer vision, pages 649-666. Springer, 2016.

Runsheng Zhang, Yaping Huang, Mengyang Pu, Jian Zhang, Qingji Guan,
Qi Zou, and Haibin Ling. Object discovery from a single unlabeled image by
mining frequent itemsets with multi-scale features. IFEE Transactions on Image
Processing, 29:8606-8621, 2020.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable
augmentation for data-efficient GAN training. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature
quantization improves GAN training. In Proceedings of the 37" International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 11376—11386.
PMLR, 2020.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In IEEFE

International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pages 2242-2251. IEEE Computer Society, 2017.



130 Bibliography

[156] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun. Saliency optimization
from robust background detection. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 201/,
pages 2814-2821. IEEE Computer Society, 2014.

[157] C. Lawrence Zitnick and Piotr Dollar. Edge boxes: Locating object proposals
from edges. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision — ECCV 2014, pages 391-405. Springer International
Publishing, 2014. ISBN 978-3-319-10602-1.

[158] Wenbin Zou and Nikos Komodakis. HARF: hierarchy-associated rich features for
salient object detection. In 2015 IEEFE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 406—414. IEEE
Computer Society, 2015.



	Introduction
	Limitations of Supervised Object Segmentation
	Human Perception of Objects
	Leveraging generative models
	Thesis contributions
	Chapter outline


	Background
	Image Segmentation Formulation
	Neural Networks for Image Segmentation
	Convolutional Neural Networks (CNNs)
	Encoder-Decoder Architectures
	Instance Segmentation with Mask R-CNN
	Attention Mechanisms and Transformer Models

	Unsupervised Object Segmentation Methods
	Clustering and Hand-crafted Methods
	Mutual Information and Scene Decomposition
	Generative Methods
	Self-Supervised Pre-trained Models

	Generative Adversarial Networks
	Problem Formulation
	Limitations and Advancements


	Emergence of Object Segmentation in Perturbed Generative Models
	Related Work
	Learning to Segment without Supervision
	A Generative Model of Layered Scenes
	Learning through Model Perturbation
	Object Segmentation via Autoencoding Constraints

	Implementation
	Experiments
	Ablation study
	Segmenting real images

	Discussion

	Unsupervised Learning of Object Segmentation From Perturbed Generative Models
	Learning to Segment without Supervision
	A Generative Model of Layered Scenes through Model Perturbation
	Object Segmentation Trained on Generated Data

	Implementation
	Experiments
	Datasets
	Ablation study
	Segmentation results

	Discussion

	MOVE: Unsupervised Movable Object Segmentation and Detection
	Background
	Method
	Segmenter
	Differentiable inpainting
	Adversarial training

	Implementation
	Experiments
	Unsupervised saliency segmentation
	Single-object discovery
	Ablation study

	Discussion

	Generative Adversarial Learning via Kernel Density Discrimination
	Background
	Kernel Density Discrimination
	Improving KDE through Data Augmentation
	Loss Analysis
	Class-Conditioning Extension
	Regularization of the Feature Mapping
	KDD GAN Formulation

	Implementation
	Experiments
	Ablation Results
	Generative Learning on CIFAR10
	Generative Learning on ImageNet

	Examples of Generated Images
	Discussion

	Conclusions
	Bibliography

