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Abstract

Over the past decades, using modal logic to represent the knowledge of processes
has proven to be a powerful framework for formally reasoning about distributed
systems. Another story of success is modeling the views of processes with the
help of (chromatic) simplicial complexes. Due to the rich toolbox of combinatorial
topology, this approach has yielded many fundamental insights. However, the
connection between these two models, namely simplicial semantics for modal logic,
has been discovered only recently.
This thesis continues the structural study of simplicial semantics by changing the

standard properties of chromatic simplicial complexes. Originally, a colored vertex
is interpreted as a possible local state of the agent corresponding to that color.
Global states are certain faces of the simplicial complex, and indistinguishability
is based on the containment of vertices. We investigate three different simplicial
structures by altering simplicial complexes in the following separate ways: allowing
adjacent vertices to share the same color (polychromatic complexes), introducing
directed faces (directed complexes), and permitting parallel faces (semi-simplicial
sets).
We explore polychromatic complexes and directed simplicial complexes as mod-

els for belief. Different to knowledge, beliefs may be false. Models for belief are of
great importance when using simplicial models to reason about distributed systems
with malicious agents. In such a setting, an adversarial agent can manipulate hon-
est agents. Thus, trustworthy agents may need to make decisions based on their
beliefs.
Polychromatic complexes allow us to doxastically interpret the multiplicity of a

color within a face. Different to the original model, vertices correspond to doxastic
states of an agent. The fewer doxastic alternatives an agent has in a face, the more
plausible it becomes. If there is exactly one doxastic state, belief becomes knowl-
edge. We analyze the notion of most plausible belief, i.e., what an agent believes
when only considering adjacent faces with the lowest multiplicity of its color. The
notion of most plausible belief is often hidden in cryptographic properties of the
form: algorithm A guarantees property P with overwhelming probability. This
statement could be read as: “it is most plausible that, when using A, the property
P holds”. Lastly, we explore how an alternative interpretation of polychromatic
complexes can model quorum systems.
Directed complexes provide an intuitive framework for modeling belief, because



they preserve the interpretation of standard (undirected) simplicial complexes,
i.e., vertices still correspond to “physical” local states. Directions are assigned to
faces from the perspective of a vertex and can be either 1 or 0. We interpret 1
as being possible and 0 as being impossible. For evaluating belief, an agent only
considers adjacent facets with direction 1. Notably, our models allow for merely
introspective beliefs, as the accessibility relation is not required to be serial. This
is achieved by assigning direction 0 to all adjacent facets. Moreover, we introduce
a logic of belief and prove it to be sound and complete with respect to models
based on directed complexes. To conclude, we position our directed models within
the literature by showing them to be as expressive as one of the original variants
of simplicial models.
A novelty of simplicial semantics is that the indistinguishability relation is based

on connectivity, which implies that it inherits properties of the underlying struc-
ture. A generalization of simplicial complexes are semi-simplicial sets, which may
contain parallel faces. This indicates that there might be indistinguishability re-
lations based on higher-order connectivity, and not just on the containment of
vertices. Unlike usual notions of group knowledge, the rich structure of semi-
simplicial sets allows us to unfold relations (or synergies) among members of a
group. We refer to this construct as an agent pattern. Moreover, we introduce
an explicit representation of semi-simplicial sets and identify an indistinguisha-
bility relation for agent patterns. Our indistinguishability relation induces a new
modality, which we term synergistic knowledge. We present the logic of synergis-
tic knowledge and show its soundness and completeness with respect to models
based on semi-simplicial sets. Furthermore, we illustrate applications of our mod-
els for various settings of distributed computing. Examples include the hierarchy
of consensus and the dining cryptographers problem. Finally, we discuss a different
reading of agent patterns, which is still based on our indistinguishability relation,
inducing an additional modality that enables reasoning about group knowledge of
processes with respect to the underlying network topology.
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1 Introduction

In 1993, three independent groups (cf. Herlihy and Shavit [37], Borowsky and
Gafni [12], and Saks and Zaharoglou [47]) confirmed Chaudhuri’s [18] conjecture
on the impossibility of the asynchronous k-set agreement (cf. Herlihy and Ra-
jsbaum [36]). Each team proved the result using distinct models of distributed
computation. In this thesis, we look at the approach of Herlihy and Shavit [37],
who pioneered the use of simplicial complexes in distributed systems, through the
lens of modal logic.

Figure 1.1: Examples of simplices.

A simplex is a generalization of a triangle. Figure 1.1 shows all simplices con-
taining at most four vertices. The composition of simplices is called a simplicial
complex. Formally, given a non-empty set of vertices V, a simplicial complex is a
pair (V,S), where S is a set of non-empty subsets of V closed under set inclusion.
The elements of S are called faces. The simplicial complex in Figure 1.2 is obtained
by gluing two solid triangles along one edge. In total, it has 11 faces: four vertices,
five edges, and two triangles.
Herlihy and Shavit [37] interpret vertices as local states of processes. Each

vertex is labeled with an identifier of a process, referred to as its color, indicating
to which agent the local state belongs. Vertices sharing a face differ in colors, and
their corresponding local states are mutually compatible. In Figure 1.2, the local
states p, q, and r are compatible. However, the local states r and s are not, because
they are contained in different faces. In this context, a global state is defined as a
maximal set of mutually compatible local states, or, in simplicial terms, a facet of
the simplicial complex. The simplicial complex in Figure 1.2 contains two facets,
namely the two triangles.
Defining global states in terms of facets highlights the importance of processes’

local states rather than the system’s global state. Under this interpretation, a
process cannot distinguish between two global states if and only if its local state
is included in both. In Figure 1.2, a process inhabiting p or q cannot distinguish
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1. INTRODUCTION

between the global state composed of the vertices p, q, and r and the one con-
taining p, q, and s. As a result, this topological approach provides the necessary
machinery to carry out indistinguishability proofs in distributed systems (cf. At-
tiya and Rajsbaum [5]). Over the years, this model of computation has proven
to be powerful due to having access to strong results from combinatorial topology
(cf. Herlihy et al. [35]).

q

p

r s

Figure 1.2: A simplicial complex that consists of two solid triangles sharing the
pq-edge.

Prior to the rise of topological models, applying modal logic to describe the
knowledge of agents (or processes) throughout a computation was the gold stan-
dard of formal reasoning in distributed systems. One of the most prominent results
is the one-to-one correspondence between solving consensus and obtaining com-
mon knowledge (cf. Halpern and Moses [33]). In general, linking the solvability of
a problem to the knowledge of the participating agents has yielded many founda-
tional results (cf. Fagin et al. [20] and van Ditmarsch et al. [53]).
The standard semantics of modal logic is based on labeled graphs and is referred

to as relational semantics. The nodes of the graph are called worlds and represent
global states. An undirected edge with label a between worlds w and v means that
agent a cannot distinguish the two worlds.
Apart from connectivity, worlds have no individual meaning yet. A valuation

is a function that characterizes worlds by assigning them to a set of propositional
variables. For example, a propositional variable pa may describe a part of the local
state of agent a. Thus, if pa is assigned to a world w, agent a’s local state satisfies
the property associated with pa. We say that, at a world w, a formula ϕ is known
by agent a if and only if ϕ is true in each world that a cannot distinguish from w.
In 2018, Goubault et al. [28] discovered the link between the two approaches1,

laying the foundation for a new field of research: simplicial semantics for modal
logic. Instead of reasoning about knowledge on labeled graphs, Goubault et al. [28]
model knowledge on simplicial complexes. Each propositional variable describes
a local attribute of an agent and may only be assigned to vertices with its color.

1The subsequent journal publication is available in Goubault et al. [29].
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a0

b0

b1

a1

Figure 1.3: A simplicial complex that shows all possible input configurations of a
two-party binary consensus protocol.

The proposition p holds in a facet (global state) if and only if p was assigned to
a vertex of that facet. Consider an agent a in local state v belonging to a facet
X. Agent a knows a formula ϕ if and only if ϕ is true in all facets containing v.
Based on the groundwork of Herlihy and Shavit [37], an epistemic interpretation
of simplicial complexes in the context of distributed systems is possible.

At first, only simplicial complexes whose facets all contain as many vertices
as there are agents were studied. Such complexes correspond to settings in which
processes do not crash because every agent is present in each global state. Goubault
et al. [28] proposed a modal logic and showed its soundness and completeness with
respect to models based on this class of complexes. In addition to the standard
S5 axioms, their logic contains the locality axiom, stating that agents always know
the truth value of their own local propositions. Although processes are often
subjected to crashes, these restricted simplicial complexes can already be used to
model interesting scenarios.

Figure 1.3 shows a simplicial complex representing all input configurations of a
binary consensus protocol between two agents, a and b. Each agent proposes a
value that is either 0 or 1. After completing the protocol, the agents must agree on
one value. A vertex ai is of color a and represents that a’s input is i, and an edge
{ai, bj} is the global state where a has input i and b has input j. When agent a has
input 0, it cannot distinguish the global states {a0, b1} and {a0, b0} because their
intersection contains the vertex a0. Hence, in the facet {a0, b1}, agent a considers
it possible that b’s input is 1 or 0. In other words, agent a does not know agent
b’s input.

Goubault et al. [28] also interpreted dynamic epistemic logic (cf. van Ditmarsch
et al. [53]) on the previously mentioned type of simplicial complexes. This al-
lowed them to model task solvability as done originally by Herlihy and Shavit [37].
In the original simplicial complex framework, the usual approach for proving im-
possibility involves constructing a topological obstruction. Goubault et al. [28]
proposed the so-called logical approach, which establishes a logical obstruction by

3



1. INTRODUCTION

analyzing the knowledge agents must acquire in order to solve the task. It is im-
portant to point out that both approaches rely on the connectivity of the simplicial
complex. Subsequently, van Ditmarsch et al. [51] used the logical approach to an-
alyze additional distributed tasks. The logical approach was further extended by
Hoshino [38], Nishimura [42], and Yagi and Nishimura [54] in various ways.
In general, simplicial complexes may contain facets of arbitrary size. A facet with

fewer vertices than there are agents represents that some agents are not present
(or have crashed). Therefore, simplicial complexes are compelling structures that
are well suited for studying distributed systems that are subjected to crashes.
The simplicial complex shown in Figure 1.4 contains two facets, X and Y , each
containing a different number of vertices. The facet Y is interpreted as a global
state in which agent c is not present, because it does not contain a c-vertex.

c

bab

X
Y

Figure 1.4: A simplicial complex whose facets may be of different size.

From the epistemic standpoint, such complexes are harder to handle. If an
agent’s vertex is missing in a facet, there is no vertex to assign propositional vari-
ables to. Consequently, formulas concerning local attributes of crashed agents
might be undefined. Randrianomentsoa et al. [46] identified this problem and pro-
vided a three-valued logic, with the third value being undefined, that is sound and
complete with respect to their simplicial models. Besides facets containing different
amounts of vertices, the authors also allow arbitrary faces of the complex to repre-
sent global states. Moreover, B́ılková et al. [11] define a notion of bisimulation to
compare arbitrary simplicial complexes with respect to the proposed three-valued
logic. Lastly, the recent approach of Yang [55] avoids a three-valued logic by using
assignment operators that syntactically indicate if agents are present.
To avoid the problem of missing vertices, Goubault et al. [27, 30] suggested as-

signing propositional variables to arbitrary faces instead of vertices. Using this
method, statements about crashed agents are always defined, and every face of a
complex can be interpreted as a global state. The authors achieve further expres-
sivity by extending the language with a modal operator describing the distributed
knowledge of a group (cf. Halpern and Moses [33]). They also prove their logic to
be sound and complete. A formula ϕ is distributed knowledge among a non-empty
group of agents if and only if ϕ is true in all global states considered possible
by each of its members. The logical approach was adapted to general simplicial

4



a

b

c cX Y

Figure 1.5: A semi-simplicial set containing parallel edges.

complexes by Nakai et al. [41].

Both methods involve trade-offs. Assigning propositional variables to vertices
aligns closely with the original idea of emphasizing local states. However, using a
three-valued logic or assignment operators makes the logic more difficult to apply.
Conversely, assigning propositional variables to faces eliminates the problem, but
also shifts the focus from a local to a more global perspective. The global approach
does not require a locality axiom, but instead needs an axiom concerning the
distributed knowledge of all alive agents. Randrianomentsoa et al. [45] and, earlier,
B́ılková et al. [11] propose an alternative approach incorporating both points of
view. However, propositional variables associated with global states solely concern
the liveness of agents.

On a different note, Loreti and Quadrini [39] analyzed simplicial models similar
to the ones suggested by Goubault et al. [30] with respect to spatial logic instead
of epistemic logic. In their model, vertices represent agents instead of local states
of agents, and faces correspond to interactions or physical space. Consequently,
vertices are not colored.

Until now, the underlying structure of a simplicial model has been a standard
simplicial complex. However, another line of research that emerged in parallel is al-
tering the properties of simplicial complexes and analyzing the resulting semantics.
An example are semi-simplicial sets, which generalize simplicial complexes. Infor-
mally, a semi-simplicial set is a simplicial complex that may contain parallel faces.
That is, if two simplices share a set of vertices, they need not share a face contain-
ing those vertices. Figure 1.5 shows such a complex where two solid triangles share
two vertices, but not an edge. Goubault et al. [24, 26] and Randrianomentsoa [45]
studied these structures as models for (distributed) knowledge. Another gener-
alization of simplicial complexes are hypergraphs, which provide a more succinct
representation of simplicial complexes, and were studied by Goubault et al. [25].

5



1. INTRODUCTION

Overview of the Thesis

This thesis continues the structural study of simplicial semantics and can be di-
vided into two parts. The first part is about modeling belief on simplicial struc-
tures. As for knowledge, an agent believes ϕ if and only if ϕ is true in all pos-
sible worlds. However, unlike knowledge, belief may be false. Modeling belief
on simplicial structures is one of the open questions posed in the report from a
Dagstuhl seminar on epistemic and topological reasoning in distributed systems
by Castañeda et al. [17]. Having models for belief enables us to represent settings
in which agents may act based on their beliefs.
The second part of this thesis examines semi-simplicial sets from the global point

of view. Figure 1.5 can be interpreted as agents a and b individually not being
able to distinguish the two facets. Together, however, they can distinguish them,
because the facets do not share an ab-edge. This is different from distributed
knowledge, which dictates that the agents cannot distinguish the two states, be-
cause they cannot do so on an individual basis.

Structure of the Thesis

After a preliminary chapter, we analyze simplicial complexes where adjacent ver-
tices can share a color in Chapter 3. Such complexes enable us to define more
intricate indistinguishability relations, which can be used to model different no-
tions of belief. This chapter is based on the work:

• Christian Cachin, David Lehnherr, and Thomas Studer. Simplicial belief.
In Ulrich Schmid and Roman Kuznets, editors, Structural Information and
Communication Complexity (SIROCCO), pages 176–193. Springer Nature
Switzerland, 2025.

Such complexes allow us to model certain types of belief. However, their philo-
sophical interpretation remains open. In Chapter 4, we analyze directed simplicial
complexes as more transparent models for belief. This chapter describes a prelim-
inary version of a result that was later generalized and extended in:

• Hans van Ditmarsch, Djanira Gomes, David Lehnherr, Valentin Müller, and
Thomas Studer. Hypergraph semantics for doxastic logics. Manuscript, 2025.

In Chapter 5, we identify a new type of knowledge, called synergistic knowledge,
which allows a group of agents to know more than just the consequences of their
pooled knowledge. We analyze synergistic knowledge in detail and illustrate its
applications in practice. This chapter is based on the two works:

6



• Christian Cachin, David Lehnherr, and Thomas Studer. Synergistic knowl-
edge. In Shlomi Dolev and Baruch Schieber, editors, Stabilization, Safety,
and Security of Distributed Systems (SSS), pages 552–567. Springer, 2023.

• Christian Cachin, David Lehnherr, and Thomas Studer. Synergistic knowl-
edge. Theor. Comput. Sci., 1023:114902, 2025.

7





2 Preliminaries

Chapter Organization. We begin this chapter by defining our logical language.
As outlined in the introduction, simplicial semantics can be approached from two
perspectives: global and local. For each point of view, we present one relational
model and one simplicial model. Section 2.1 and Section 2.2 introduce the prin-
ciples of relational and simplicial models. They also provide formal definitions of
the selected models. Although more nuanced simplicial models exist, we focus on
simple models that are better suited for an introduction. Whenever relevant, we
point out how the simple models differ from the richer ones. In Section 2.3, we
identify the conditions under which the chosen relational and simplicial models
can be transformed into one another.

Let Ag be a finite set of n agents, and let Prop be a countably infinite set of
propositional variables. For p ∈ Prop and a ∈ Ag, the language L is inductively
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | □aϕ

We write ♢aϕ for ¬□a¬ϕ, and define the remaining Boolean connectives as usual.
In particular, we set ϕ∨ψ = ¬(¬ϕ∧¬ψ) and ⊥ = p∧¬p, for some fixed p ∈ Prop.
We write alive(a) for ¬□a⊥, and dead(a) for □a⊥. Throughout this work, we
assume a fixed a partition of Prop that consists of pairwise disjoint sets P1, . . . ,Pn,
and assign to each agent a ∈ Ag its own set of propositional variables Pi, which
we denote with Pa.

2.1 Relational Models

This section reviews standard concepts of relational semantics and introduces spe-
cific notions used to model both the global and local approach.

Definition 1 (Frame). A frame is a pair F = (W,R) such that:

1. W is a set of possible worlds;

2. R is a function assigning a relation Ra on W to each agent a ∈ Ag.

9



2. PRELIMINARIES

Let P be a relational property. A frame F has property P if and only if the
relation Ra satisfies P for all a ∈ Ag. For example, if Ra is reflexive for all a ∈ Ag,
then F is reflexive. Moreover, a function that assigns each world w ∈ W to a
set of propositional variables A ∈ Pow(Prop), where Pow(·) denotes the powerset,
is called a valuation. Lastly, a relational model is a frame F equipped with a
valuation V .

Definition 2 (Relational Model). A relational model is a pair M = (F, V ) such
that:

1. F = (W,R) is a frame;

2. V : W → Pow(Prop) is a valuation.

Definition 3 (⊩). Let F = (W,R) be a frame, and letM = (F, V ) be a relational
model. For all worlds w ∈ W , we define the relation M, w ⊩ ϕ by induction on
ϕ ∈ L:

M, w ⊩ p iff p ∈ V (w)

M, w ⊩ ¬ϕ iff M, w ̸⊩ ϕ

M, w ⊩ ϕ ∧ ψ iff M, w ⊩ ϕ andM, w ⊩ ψ

M, w ⊩ □aϕ iff wRav impliesM, v ⊩ ϕ, for all v ∈ W.

Let F = (W,R) be a frame, and let M = (F, V ) be a relational model. If
M, w ⊩ ϕ holds, then ϕ is said to be satisfied at the world w. A formula ϕ ∈ L is
valid in M, denotedM ⊩ ϕ, if it is satisfied at all worlds. Lastly, ϕ is said to be
valid, written ⊩ ϕ, if ϕ is valid in every relational model.

Relational models that reason about the knowledge of agents are often based on
frames where each Ra is a partial equivalence relation (symmetric and transitive).
Whenever a frame is symmetric and transitive, we write F = (W,∼) instead of
F = (W,R) to emphasize these properties. In a local model, each agent has reliable
access to its own information, meaning that it always knows the truth value of its
own local propositions. This property is called locality. It is not determined by
the structure of the frame itself, but rather by how the valuation of the model is
defined.

Definition 4 (Local Valuation). Let F = (W,∼) be a symmetric and transitive
frame. We call a valuation V : W → Pow(Prop) local if and only if, for all worlds
s, t ∈ W with s ∼a t, and all p ∈ Pa, it holds that:

p ∈ V (s) if and only if p ∈ V (t).

10



2.2. SIMPLICIAL MODELS

A local relational model is a pair M = (F, V ), where F is symmetric and
transitive, and V is local. IfM is a local relational model, we writeM, w ⊩loc ϕ
instead of M, w ⊩ ϕ for all ϕ ∈ L. Validity is defined in the same way as for
arbitrary relational models. It immediately follows from Definition 4 that such
models validate locality, i.e., for all a ∈ Ag and p ∈ Pa:

⊩loc □ap ∨□a¬p.

Lastly, for clarity and consistency, we refer to relational models that are based on
symmetric and transitive frames, but may not be local, as global relational models.
The same notational conventions used for local models apply to global models. If
M is a global model, we omit a superscript and simply write M, w ⊩ ϕ. The
models presented in this thesis either resemble local or global models, and we will
use the same notation for them.

2.2 Simplicial Models

We now introduce the standard definitions of simplicial semantics and provide
examples of the selected models.

Definition 5 (Simplicial Complex). Let V be a set of vertices. The pair C = (V,S)
with S ⊆ Pow(V) \ {∅} is called a simplicial complex if:

for each X ∈ S and each ∅ ≠ Y ⊆ X, we have Y ∈ S.

Remark 1. Herlihy et al. [35] originally defined a simplicial complex to contain
the singleton set {v} for each vertex v ∈ V. Not enforcing this is a purely cosmetic
choice.

The elements of S are called faces. A face of C that is maximal under set
inclusion is a facet, and we denote the set of C’s facets by F(C). If all facets contain
the same number of elements, the complex is pure, otherwise, it is impure. The
dimension of a face X ∈ S is given by |X| − 1, where |X| denotes the cardinality
of the set X. The dimension of a simplicial complex is the dimension of its largest
facet. Throughout this thesis, we reserve the term “pure” for simplicial complexes
with dimension |Ag| − 1. If X ⊆ Y for two faces X and Y , then X is called a
subface of Y . A coloring is a mapping χ : V→ Ag. It is called proper if it assigns a
different value to each vertex within a face, and improper otherwise. A chromatic
simplicial complex is a triple (V,S, χ) where (V,S) is a simplicial complex, and
χ is a proper coloring on V. Whenever the context is clear, we use the terms
chromatic simplicial complex, simplicial complex, and complex interchangeably.
Let C = (V,S, χ) be a complex. We say that an agent a cannot distinguish

11
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between two facets X, Y ∈ F(C) if and only if a ∈ χ(X ∩ Y ). The concept of
knowledge can be extended to arbitrary faces and non-empty groups of agents: a
group G ⊆ Ag cannot distinguish two faces X and Y if and only if G ⊆ χ(X ∩Y ),
where χ(X ∩ Y ) = {χ(u) | u ∈ X ∩ Y }. If a properly colored facet X contains an
a-vertex, then we denote that vertex as Xa.
A function assigning either vertices or facets to sets of propositional variables is

called a labeling. A simplicial model C = (C, L) is a chromatic simplicial complex
C = (V,S, χ) equipped with a labeling L.

Definition 6 (Simplicial Model). Let C = (V,S, χ) be a chromatic simplicial
complex. A simplicial model is a pair C = (C, L), where L is a labeling.

If the labeling L assigns facets to sets of proportionals variables, then C is called
a global simplicial model.

Definition 7 (⊩σ). Let C = (V,S, χ) be a chromatic simplicial complex and let
C = (C, L) be a global simplicial model. For all facets X ∈ F(C), we define the
relation C, X ⊩σ ϕ by induction on ϕ ∈ L:

C, X ⊩σ p iff p ∈ L(X)

C, X ⊩σ ¬ϕ iff C, X ̸⊩σ ϕ

C, X ⊩σ ϕ ∧ ψ iff C, X ⊩σ ϕ and C, X ⊩σ ψ

C, X ⊩σ □aϕ iff a ∈ χ(X ∩ Y ) implies C, Y ⊩σ ϕ, for all Y ∈ F(C).

Remark 2. A generalized version of global simplicial models has been introduced
by Goubault et al. [27], where the labeling, and hence the definition of the relation
⊩σ, is extended to arbitrary faces.

Global simplicial models allow us to reason about dead agents because the un-
derlying simplicial complex need not be pure (see Example 1). An agent a is
considered dead in a facet X if and only if C, X ⊩ □a⊥.

Example 1. Figure 2.1 shows an impure chromatic complex C over a set of ver-
tices V = {a, b, b′, c} that contains exactly two facets:

X = Pow({a, b, c}) \ {∅} and Y = Pow({a, b′}) \ {∅}.

The coloring of the vertices χ is determined by their names, i.e., χ(a) = a and
χ(b′) = b. Further, let Prop = {p}, and consider the global simplicial model
C = (C, L), where the labeling L is such that p ∈ L(X) and p ̸∈ L(Y ).
The agent a cannot distinguish the facets X and Y because its local state is

contained in both, i.e., a ∈ χ(X ∩ Y ). Moreover, agent c is dead in Y because Y
does not contain a vertex with color c. Thus, the following holds:

12
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ab

c

b′
X

Y

Figure 2.1: The impure chromatic simplicial complex discussed in Example 1.

• C, X ̸⊩σ □ap;

• C, Y ⊩σ dead(c), and C, X ̸⊩σ □aalive(c).

We now introduce local simplicial models. Intuitively, every propositional vari-
able describes a component of the state of a single agent. Consequently, vertices
are assigned to sets of local propositional variables. Definition 8 formalizes this
intuition: a labeling is local if and only if it assigns each local state of an agent to
a set of propositional variables that concern only that agent. A simplicial model
C = (C, L), where C is pure with dimension |Ag| − 1 and L is a local labeling, is
called a local simplicial model.

Definition 8 (Local Labeling). Let C = (V,S, χ) be a chromatic simplicial com-
plex. A labeling L : V→ Pow(Prop) is called a local labeling if and only if, for all
vertices v ∈ V:

χ(v) = a implies L(v) ⊆ Pa.

Assuming that the underlying simplicial complex is pure with dimension |Ag| −
1 is done for simplicity. Hence, all agents are always alive. Since every facet
contains a vertex of each agent’s color, we can define truth in a facet similarly
to global simplicial models (see Definition 9). Allowing the underlying simplicial
complex of a local simplicial model to be impure would make statements about
dead agents undefined. For example, what is the truth value of a local proposition
p ∈ Pa at a facet that does not contain a vertex of color a? An extension of
local simplicial models that evaluates satisfiability at arbitrary faces and whose
underlying complex may be impure was proposed by Randrianomentsoa et al. [46].
The issue of undefined propositions is addressed by using a three-valued logic, with
the third value being undefined.

Definition 9 (⊩loc
σ ). Let C = (C, L) be a local simplicial model. For all facets

13
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X ∈ F(C), we define the relation C, X ⊩loc
σ ϕ by induction on ϕ ∈ L:

C, X ⊩loc
σ p iff p ∈ L(Xa), and p ∈ Pa

C, X ⊩loc
σ ¬ϕ iff C, X ̸⊩loc

σ ϕ

C, X ⊩loc
σ ϕ ∧ ψ iff C, X ⊩loc

σ ϕ and C, X ⊩loc
σ ψ

C, X ⊩loc
σ □aϕ iff a ∈ χ(X ∩ Y ) implies C, Y ⊩loc

σ ϕ, for all Y ∈ W.

Let C = (C, L) be a local simplicial model. If C, X ⊩loc
σ ϕ is true, we say that

ϕ is satisfied at X in C. Further, ϕ is σ-valid in C, denoted by C ⊩loc
σ ϕ, if it is

satisfied at all X ∈ F(C). Moreover, ϕ is σ-valid, written ⊩loc
σ ϕ, if it is valid

in all global simplicial models. The same notational approach is used for global
simplicial models.

Example 2 shows a local simplicial model. It is straightforward to show that
local simplicial models validate locality (see Example 2), i.e., for all a ∈ Ag and
p ∈ Pa, it holds that:

⊩loc
σ □ap ∨□a¬p.

Example 2. Figure 2.2 shows a pure chromatic complex C over a set of vertices
V = {1a, 1b, 1c, 0b} that contains exactly the two facets:

X = Pow({1a, 1b, 1c}) \ {∅} and Y = Pow({1a, 1b, 0c}) \ {∅}.

The coloring of the vertices χ is determined by their names. Let Pa = {pa},
Pb = {pb}, and Pc = {pc} be the sets of local propositional variables. Consider the
local simplicial model C = (C, L), where the labeling L is as indicated by the names
of vertices, i.e., L(1c) = {pc} and L(0c) = ∅.

1b

1a

1c 0cX Y

Figure 2.2: The pure simplicial complex discussed in Example 2.

The facets X and Y are indistinguishable to agents a and b. Therefore, neither
agent knows the truth value of pc. However, the model satisfies locality because
C, X ⊩loc

σ □apa ∧□bpb ∧□cpc.
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2.3 Correspondence

This section establishes the correspondence between global (local) relational mod-
els and global (local) simplicial models. The presented definitions and results for
the global approach were originally established by Goubault et al. [27]. In the
local case, we refer to Goubault et al. [28]. Let F = (W,R) be a frame. For all
worlds w ∈ W and agents a ∈ Ag, we define:

Alive(w) = {a ∈ Ag | ∃v ∈ W.wRav}.

Moreover, if F is symmetric and transitive, we define:

[w]a = {v | w ∼a v}, Xw = {([w]a, a) | a ∈ Alive(w)}, and Sw = Pow(Xw) \ {∅}.

We begin by transforming a frame into a simplicial complex. In general, this
cannot be done in a structure-preserving way unless the frame satisfies certain
properties.
In our construction, the pairs ([w]a, a) with [w]a ̸= ∅ represent the vertices,

which reflects the idea that an agent has the same local state in two worlds if and
only if it cannot distinguish between them. Definition 10 ensures that all worlds
of the frame correspond to a simplex.

Definition 10 (Non-empty Frame). A frame F = (W,R) is non-empty if and
only if, for all worlds w ∈ W , there exists an agent a ∈ Alive(w).

To avoid duplicate faces, every two distinct worlds must differ in a local state.
Frames that meet this condition are called proper (Definition 11). Notice that if we
considered only local simplicial models, the condition that a ∈ Alive(w) ∩ Alive(v)
would not be needed, because all agents are assumed to be alive.

Definition 11 (Properness). Let F = (W,∼) be a symmetric and transitive frame.
We say that F is proper if and only if, for all w, v ∈ W where w ̸= v, there exists
an agent a ∈ Alive(w) ∩ Alive(v) such that w ̸∼a v.

Additionally, indistinguishability and connectivity must align in both structures.
Since connectivity on simplicial complexes is a partial equivalence relation (sym-
metric and transitive), the frame must be symmetric and transitive (Definition 12).
Definition 13 additionally imposes reflexivity on the frame. This requirement is
needed only for local models.

Definition 12 (Partial Epistemic Frame). A frame F = (W,∼) is a partial epis-
temic frame if and only if each ∼a is a partial equivalence relation.

Definition 13 (Epistemic Frame). A frame F = (W,∼) is an epistemic frame if
and only if each ∼a is an equivalence relation.
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Definition 14 describes how to transform a partial epistemic frame into a chro-
matic complex. Example 3 illustrates the construction.

Definition 14 (CF ). Let F = (W,∼) be a partial epistemic frame. We define the
chromatic simplicial complex CF = (V,S, χ):

• V = {([w]a, a) | a ∈ Ag, w ∈ W, and [w]a ̸= ∅};

• S =
⋃
w∈W Sw;

• χ(([w]a, a)) = a, for all w ∈ W and a ∈ Ag.

Example 3. Consider the set of worlds W = {w, v} and the set of agents Ag =
{a, b, c}. Further, let F = (W,∼) be the partial epistemic frame as depicted in
Figure 2.3 on the left.

w v

a, b, c a, b

a
[w]a[w]b

[w]c

[v]b

Sw
Sv

Figure 2.3: A frame F (left) and the corresponding chromatic simplicial complex
CF (right). We write [w]a instead of ([w]a, a) for readability.

We will now apply our construction to F . The set of vertices of the corresponding
simplicial complex is V = {([w]a, a), ([w]b, b), ([w]c, c), ([v]b, b)}, where

[w]a = [v]a = {w, v}, [w]b = [w]c = {w}, and [v]b = {v}.

Notice that since [v]c = ∅, there is no vertex ([v]c, c) in the set V. The set S is
obtained by building the union of the two simplices Sw and Sv. Lastly, the coloring
is as indicated by the names of vertices, i.e., χ(([u]a, a)) = a, for all a ∈ Ag and
u ∈ W with a ∈ alive(u). The corresponding chromatic simplicial complex CF is
depicted in Figure 2.3. It is the same as shown in Figure 2.1.

If the partial epistemic frame F is non-empty, then V ̸= ∅ and CF is a chro-
matic simplicial complex. This follows because S is the union of powersets that
exclude the empty set, and χ(·) is well-defined since [w]a ̸= ∅ for all vertices
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([w]a, a) ∈ V. Non-emptiness is thus required for all subsequent definitions and
lemmas. Nonetheless, the complex CF may not fully reflect the structure of a
non-empty frame.
We now show that if the partial epistemic non-empty frame F is proper in

addition, then CF preserves the structure of F . Lemma 1 states that an agent a
cannot distinguish between two worlds w and v if and only if Xw and Xv both
contain its local state.

Lemma 1. Let F = (W,∼) be a non-empty partial epistemic frame, and consider
the chromatic simplicial complex CF = (V,S, χ) as defined in Definition 14. For
all w, v ∈ W with ([w]a, a), ([v]a, a) ∈ V, it holds that:

w ∼a v iff a ∈ χ(Xw ∩Xv).

Proof. The direction from left to right is straightforward. The other direction,
follows because ∼a is a partial equivalence relation. Indeed, by assumption we
have that [w]a = [v]a. Further, since ([w]a, a), ([v]a, a) ∈ V it holds that [w]a ̸= ∅
and [v]a ̸= ∅. Thus, there exists u ∈ [w]a ∩ [v]a. By definition of V, it holds that
w ∼a u and v ∼a u. Finally, by symmetry and transitivity of ∼a, we find that
w ∼a v.

Lemma 2 demonstrates that the sets Xw are exactly the facets of CF . Finally,
Lemma 3 states that there are as many facets as worlds.

Lemma 2. Let F = (W,∼) be a proper and non-empty partial epistemic frame,
and let CF = (V,S, χ) be according to Definition 14. It holds that:

F(CF ) = {Xw | w ∈ W}.

Proof. Let X = {Xw | w ∈ W}. We first observe that by construction, for any face
Y ∈ S there exists Z ∈ X with Y ⊆ Z. Thus, we immediately obtain F(CF ) ⊆ X.
We proceed to show that X ⊆ F(CF ). Towards a contradiction, assume that there
exists Xv ∈ X such that Xv is not a facet. Thus, there exists a face Y ∈ S and
Xv ⊊ Y . By our observation, there exists w ∈ W such that Y ⊆ Xw. This implies
Xv ⊊ Xw, which contradicts the properness of F because v ̸= w.

Lemma 3. Let F = (W,∼) be a proper and non-empty partial epistemic frame.
The function:

b(w) = Xw

is a bijection.

Proof. By Lemma 2, it holds that F(CF ) = {Xw | w ∈ W} and surjectivity follows
immediately from the definition of b. Regarding injectivity, we will prove that
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b(w) = b(v) implies w = v. Assume towards a contradiction that b(w) = Xw =
Xv = b(v) for two different worlds w, v ∈ W . Thus, for all a ∈ Alive(w) = Alive(v),
we find that [w]a = [v]a, and w ∼a v (by Lemma 1). Since we assumed that w ̸= v,
the properness of F implies that there exists an agent b ∈ Alive(w) with w ̸∼b v.
This is a contradiction. Hence, we conclude that w = v, and that b is injective.

Remark 3. Given the role of properness in the previous proofs, a slightly different
formulation is: F = (W,∼) is proper if and only if, for all distinct worlds w, v ∈
W , there exists an agent a ∈ Alive(w) ∩ Alive(v) for which [w]a ̸= [v]a. Although
non-standard, this definition places greater emphasis on local states, i.e., no two
different facets of CF have the same set of vertices.

Definition 15 states how a global relational model based on a proper and non-
empty partial epistemic frame can be transformed into an equivalent global sim-
plicial model.

Definition 15. Let F = (W,∼) be a proper and non-empty partial epistemic
frame, and let M = (W,V ) be a global relational model. We construct the global
simplicial model CMglob = (CF , L) as follows:

• CF = (S,V, χ) is defined as in Definition 14;

• the labeling L is defined such that for all worlds w ∈ W and propositional
variables p ∈ Prop:

p ∈ L(Xw) iff p ∈ V (w).

Lemma 4 establishes the pointwise equivalence1 of every global relational model
M and its corresponding global simplicial model CMglob. This is achieved only if our
construction induces a bijection between the points of both models, as ensured by
Lemma 3. If there were no bijection, two distinct worlds w and v would map to
the same facet X. Consequently, if a propositional variable p is satisfied at w but
not at v, then X cannot satisfy both, which is a contradiction.

Lemma 4. Let F = (W,∼) be a proper and non-empty partial epistemic frame,
and let M = (F, V ) be a global relational model. It holds that for all formulas
φ ∈ L:

M, w ⊩ φ iff CMglob, Xw ⊩σ φ.

Proof. Follows by induction on the length of formulas and using the Lemmas 1, 2,
and 3.

1A global relational model and its corresponding global simplicial model are pointwise equivalent
if and only if the same formulas are satisfied at every world of the relational model and its
corresponding facet.
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Transforming a local relational model follows the same principle, except that
propositional variables are assigned to vertices instead of facets.

Definition 16. Let F = (W,∼) be a proper and non-empty epistemic frame, and
letM = (F, V ) be a local relational model. We construct the local simplicial model
CMloc = (CF , L) as follows:

• CF = (V,S, χ) is defined as in Definition 14;

• the labeling L is defined such that for all worlds w ∈ W , agents a ∈ Ag, and
propositional variables p ∈ Pa:

p ∈ L(([w]a, a)) iff p ∈ V (w).

As previously noted, the frame F must be epistemic to ensure that the labeling
L is well-defined. For example, let Ag = {a, b}, and consider a proper and non-
empty partial epistemic frame F = ({w},∼), where w ∼a w but w ̸∼b w. Further,
letM = (F, V ) be a local relational model such that V (w) = {p} for some p ∈ Pb.
Since [w]b = ∅, there is no b-vertex in CF , and the expression L(([w]b, b)) = p is
undefined. If F is an epistemic frame, then w ∼b w is ensured, and L(([w]b, b)) = p
becomes well-defined.

Lemma 5. Let F = (W,∼) be a proper and non-empty partial epistemic frame,
and let M = (F, V ) be a local relational model. It holds that for all formulas
φ ∈ L:

M, w ⊩loc φ iff CMloc , Xw ⊩loc
σ φ.

Proof. Follows by induction on the length of formulas and using the reflexivity of
F as well as the Lemmas 1, 2, and 3.

Transforming chromatic simplicial complexes to frames, and consequently sim-
plicial models to relational models, is less difficult. We only sketch the transforma-
tion and provide detailed constructions for similar models in subsequent chapters.
Given a chromatic simplicial complex C = (V,S, χ), the corresponding frame
F = (W,∼) is constructed as follows:

• for each facet X ∈ F(C), we define a world wX ;

• the set of worlds is given by W = {wX | X ∈ F(C)};

• wX ∼a wY if and only if a ∈ χ(X ∩ Y ).
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It is straightforward to verify that F is a proper and non-empty partial epistemic
frame. Moreover, if C is a pure chromatic complex with dimension |Ag| − 1, then
F is an epistemic frame. If C = (C, L) is a global simplicial model, we define the
valuation V such that:

p ∈ V (wX) iff p ∈ L(X).

Given a local simplicial model C = (C, L), we define the valuation V such that for
all agents a ∈ Ag and p ∈ Pa, it holds that:

p ∈ V (wX) iff p ∈ L(Xa).

Since C is assumed to be pure with dimension |Ag| − 1, it holds for every facet
X ∈ F(C) that χ(X) = Ag, which makes the expression Xa well-defined. It can be
shown that C = (C, L) and M = (F, V ), constructed as described, are pointwise
equivalent. We refer to the work of Goubault et al. [28] for a detailed proof.
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3 Polychromatic Simplicial Models

Chapter Organization. This chapter begins with an introduction to generalized
simplicial models in Section 3.1. Section 3.2 presents polychromatic models and
defines different notions of belief on them. Next, Section 3.3 analyzes knowledge
and belief gain in polychromatic models. An alternative interpretation of poly-
chromatic complexes, inducing a semantics for a somebody-knows modality, is
discussed in Section 3.4. Lastly, Section 3.5 concludes the chapter by outlining
some possible directions for future work.

The central focus of this thesis is to alter the structural properties of simplicial
complexes, and examine the resulting structures epistemically. To motivate this
approach, we shift our focus from knowledge to belief. Unlike knowledge, belief
is an epistemic notion that is non-factive, i.e., an agent can believe ϕ, despite
ϕ being false in the actual state. False beliefs arise frequently when reasoning
about Byzantine-fault-tolerant systems, i.e., systems in which agents may deviate
arbitrarily from the protocol (cf. Cachin et al. [13]). For instance, a malicious
agent may deceive an honest one by lying about its own input for a distributed
task.

Reasoning about belief on simplicial structures poses a challenge for simplicial
semantics (cf. Castañeda et al. [17, Section 4.3]). In relational models, the seman-
tics of belief are the same as for knowledge, i.e., an agent believes ϕ if and only if
ϕ is true in all worlds it considers possible. False beliefs can then be addressed by
omitting the reflexivity condition on the accessibility relation (cf. Fagin et al. [20]).
Under simplicial semantics, however, an agent’s local state must be contained in
the actual global state. Thus, for any facet X in which an agent a is alive, it is
always the case that a considers X possible, i.e., a ∈ χ(X). Therefore, if ϕ is true
in all global states that a considers possible, then ϕ is true at X. As a result, a
belief modality solely based on the inclusion of vertices is inherently factive.

One way of overcoming this problem is to introduce belief functions (cf. van
Ditmarsch et al. [52]). An agent’s belief function fa maps a facet X, in which a
is alive, to another facet Y , in which a is present as well. An agent a believes a
formula ϕ in X if and only if it knows ϕ in fa(X). Hence, belief becomes knowledge
if fa(X) = X. Figure 3.1 depicts a simplicial complex with two disconnected facets
X and Y , together with a belief function fa that maps X to Y , i.e., a believes
that it is in Y although it is in X. Consequently, a falsely believes that c is not
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present in the current global state.

b

ac ab

fa

Y
X

Figure 3.1: Despite being in X, agent a thinks that the actual state is Y .

In this chapter, we present and interpret polychromatic simplicial complexes,
i.e., complexes in which adjacent vertices may be of the same color. Such models
admit a notion of belief that satisfies the two previously mentioned conditions.
The belief studied here is based on the plausibility of states rather than on their
possibility alone. That is, an agent believes a formula ϕ if and only if ϕ is true in
all states that it deems plausible enough. Since the actual global state need not
be among them, the agent’s beliefs might be wrong.
We start by defining an agent’s plausibility relation between global states, based

on the multiplicity of its color within a state. If the color of an agent a has a lower
or equal multiplicity in a possible global state X than in another possible state
Y , then a considers X to be at least as plausible as Y . If vertices are interpreted
as doxastic states, a possible reading of our relation is that an agent a considers
worlds with fewer doxastic alternatives more plausible. Since this relation is a
wellfounded preorder, we can use the machinery of plausibility models (cf. Baltag
and Smets [7, 8]) to define various notions of belief, such as safe belief and most
plausible belief.

c

ab

a

b
X Y

Figure 3.2: A polychromatic simplicial complex that models the same situation as
the simplicial complex in Figure 3.1, but without a belief function.

An agent a most plausibly believes ϕ if and only if ϕ is true in the worlds that it
considers to be the most plausible ones. This kind of belief is often used in reliable
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distributed computing, where agents may act based on guarantees that hold true
with overwhelming probability, i.e., the states in which those guarantees hold are
the most plausible ones. For example, when communicating over authenticated
links, it is the most plausible case that if Alice receives a message m from Bob
over such a link, then m was actually sent by Bob and not by an impostor. Our
simplicial models can represent this kind of belief while taking the topology of the
model into account. The complex in Figure 3.2 depicts the same situation as the
complex in Figure 3.1, but without a belief function. When in X, a considers Y
more plausible than X because its multiplicity in X is 2 and only 1 in Y . In
this case, a considers Y to be the most plausible world and falsely believes that
c crashed. Hence, polychromatic simplicial complexes are an interesting gener-
alization of chromatic simplicial complexes that allow us to define more intricate
accessibility relations. The subsequent sections will explore this structure in detail.

3.1 Simplicial Knowledge

Definition 17 provides a generalization of the representation of a chromatic sim-
plicial complex and was first introduced by Goubault et al. [27]. It augments a
simplicial complex C = (V,S) with a set of worlds F(C) ⊆ W ⊆ S, determining
which faces are global states. Consequently, non-empty subsets of facets can now
be valid global states as well. This enables modeling scenarios where some agents
may have crashed, even when the underlying complex is pure. It is important to
note, however, that W is required to contain all facets.
Consider, for example, the augmented chromatic simplicial complex shown in

Figure 3.3. Its underlying pure simplicial complex contains only one facet, X =
{a, b, c}, and is augmented with the set Y = {a, b}. Therefore, the non-facet Y is
a global state, and since Y does not contain a c-vertex, agent c is considered dead
in Y . As a result, agent a does not know if c is alive because a ∈ χ(X ∩ Y ).

c

ab

X

Y

Figure 3.3: An augmented chromatic simplicial complex. The thick ab-edge Y
indicates that it is considered a global state.
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Definition 17 (Augmented Chromatic Simplicial Complex). The quadruple C =
(V,S, χ,W ) is an augmented chromatic simplicial complex if and only if the fol-
lowing holds:

1. S = (V,S, χ) is a chromatic simplicial complex;

2. F(S) ⊆ W ⊆ S.

The notation used for chromatic simplicial complexes extends naturally to aug-
mented chromatic simplicial complexes. For instance, if C = (V,S, χ,W ) is an
augmented chromatic simplicial complex, then F(C) denotes the set of maximal
elements of S. Similarly, stating that C is pure with dimension n means that its
underlying complex is pure and of dimension n. From this point onward, we refer
to augmented chromatic simplicial complexes as augmented complexes.
The notion of a generalized global simplicial model in Definition 18 was proposed

by Goubault et al. [27]. Our language of distributed knowledge LD extends L by
the modal operator □G for each non-empty set of agents G. It is inductively
defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | □Gϕ

where p ∈ Prop and ∅ ≠ G ⊆ Ag. Moreover, we set alive(G) ≡ □G⊤ and
deadG = □G⊥, and explicitly define an epistemic indistinguishability relation in
Definition 19 for clarity. Since we adopt the global perspective, we overload no-
tation and use ⊩σ for the satisfaction relation (Definition 20), as well as the term
σ-validity.

Definition 18 (Generalized Global Simplicial Model). A generalized global sim-
plicial model is a pair C = (C, L), where:

1. C = (V,S, χ,W ) is an augmented complex;

2. L : W → Pow(Prop) is a labeling.

Definition 19 (∼C
G). Let C = (V,S, χ,W ) be an augmented complex. For each

non-empty set of agents G, we define:

∼C
G= {(X, Y ) | X, Y ∈ S and G ⊆ χ(X ∩ Y )}.

We write X ∼C
G Y if and only if (X, Y ) ∈∼C

G.

If G = {a}, we write X ∼C
a Y and □a instead of X ∼C

{a} Y and □{a} respectively.
Note that □G is the usual notion of the distributed knowledge of a group of agents
G, which is semantically given by the intersection of the individual indistinguisha-
bility relations of group members (cf. Halpern and Moses [33]).
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Definition 20 (⊩σ). Let C = (V,S, χ,W ) be an augmented complex, and let
C = (C, L) be a generalized global simplicial model. For every face X ∈ W , we
define the relation C, X ⊩σ ϕ by induction on ϕ ∈ LD:

C, X ⊩σ p iff p ∈ L(X)

C, X ⊩σ ¬ϕ iff C, X ̸⊩σ ϕ

C, X ⊩σ ϕ ∧ ψ iff C, X ⊩σ ϕ and C, X ⊩σ ψ

C, X ⊩σ □Gϕ iff X ∼C
G Y implies C, Y ⊩σ ϕ, for all Y ∈ W.

Lemma 6 states the standard result of ∼C
G being a partial equivalence relation

(cf. Goubault et al. [27]).

Lemma 6. Let C = (V,S, χ,W ) be an augmented complex. For each group of
agents G, the relation ∼C

G is an equivalence relation on {X ∈ W | G ⊆ χ(X)} and
empty otherwise.

3.2 Simplicial Belief

We now drop the assumption that chromatic simplicial complexes are properly col-
ored. A polychromatic complex is an augmented complex whose coloring need not
be proper. We will define a well-founded preorder on the states of a polychromatic
model, which will serve as a plausibility relation (cf. Baltag and Smets [7, 8]). This
makes it possible to interpret various notions of belief on simplicial models based
on polychromatic complexes.
Lemma 6 does not hold for polychromatic complexes because ∼C

a need not be
transitive. Indeed, let V = {0, 1, 2, 3}, and consider the augmented complex C =
(V,S, χ,W ), where:

• S = {{0}, {1}, {2}, {3}, {0, 1}, {1, 2}, {2, 3}};

• W = {X, Y, Z}, where X = {0, 1}, Y = {1, 2}, and Z = {2, 3};

• χ(v) = a for all v ∈ V.

We find that X ∼C
a Y and Y ∼C

a Z, but not X ∼C
a Z. Hence, the relation ∼C

G

is not transitive. To re-establish transitivity of ∼C
G, we must require that for any

three worlds X, Y, Z ∈ W and every non-empty group of agents G:

G ⊆ χ(X ∩ Y ) and G ⊆ χ(Y ∩ Z) implies G ⊆ χ(X ∩ Z). (⋆)

Polychromatic models (Definition 21) are based on polychromatic complexes
satisfying (⋆). Due to their global nature, we overload notation and use ⊩σ for the
satisfaction relation as well (Definition 23).
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3. POLYCHROMATIC SIMPLICIAL MODELS

Definition 21 (Polychromatic Model). A polychromatic model C = (C, L) is a
pair where:

• C = (V,S, χ,W ) be a polychromatic complex satisfying (⋆);

• L : W → Pow(Prop) is a labeling.

Requiring condition (⋆) is similar to requiring a transitive accessibility relation
in certain relational models.
The multiplicity of a color within a face (Definition 22) induces for each agent

a a wellfounded relation ≤a on worlds. We call this the (a priori) plausibility
relation.

Definition 22 (Multiplicity). Let C = (V,S, χ,W ) be a polychromatic complex.
We define the multiplicity of a ∈ Ag in a face X ∈ S as:

ma(X) = |{v ∈ X | χ(v) = a}|.

For X, Y ∈ W and a ∈ Ag, we write:

X ≤a Y iff ma(X) ≤ ma(Y ).

Next, we introduce a local plausibility relation:

⊴a = ≤a ∩ ∼C
a ,

which captures the agent’s plausibility relation at a given global state. Further-
more, we write

X ≥a Y iff ma(X) ≥ ma(Y ),

and we use ⊵a and ◁a in the obvious way. The following lemma shows that ∼C
G

can be given in terms of the local plausibility relation.

Lemma 7. ∼C
a= ⊴a ∪⊵a.

Proof. Observing that ≤a is strongly connected and unfolding the definition yields

∼C
a = (≤a ∪ ≥a)∩ ∼C

a = (≤a ∩ ∼C
a ) ∪ (≥a ∩ ∼C

a ) = ⊴a ∪⊵a.

From the relation ⊵a, we get a corresponding modal operator [⊵]a, which is
referred to in the literature as safe belief (cf. Baltag and Smets [8]). This notion
of belief is sometimes also called defeasible knowledge (cf. Baltag and Renne [6]).
Our language of distributed knowledge and belief LBD extends LD by the modal
operator [⊵]a for each agent a ∈ Ag. It is inductively defined by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | □Gϕ | [⊵]aϕ

where p ∈ Prop, a ∈ Ag, and ∅ ≠ G ⊆ Ag. As usual, the dual of safe belief is
defined as ⟨⊵⟩aφ ≡ ¬[⊵]a¬φ.
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Definition 23 (⊩σ). Let C = (V,S, χ,W ) be a polychromatic complex such that
C = (C, L) is a polychromatic model. For every face X ∈ W , we define the relation
C, X ⊩σ ϕ by induction on ϕ ∈ LBD:

C, X ⊩σ p iff p ∈ L(X)

C, X ⊩σ ¬ϕ iff C, X ̸⊩σ ϕ

C, X ⊩σ ϕ ∧ ψ iff C, X ⊩σ ϕ and C, X ⊩σ ψ

C, X ⊩σ □Gϕ iff X ∼C
G Y implies C, Y ⊩σ ϕ, for all Y ∈ W

C, X ⊩σ [⊵]aϕ iff X ⊵a Y implies C, Y ⊩σ ϕ, for all Y ∈ W.

The [⊵]a-modality satisfies the S4.2 principles for alive agents.

Lemma 8. The following formulas are valid:

1. [⊵]a(ϕ→ ψ)→ ([⊵]aϕ→ [⊵]aψ);

2. alive(a)→ ([⊵]aϕ→ ϕ);

3. [⊵]aϕ→ [⊵]a[⊵]aϕ;

4. ⟨⊵⟩a[⊵]aϕ→ [⊵]a⟨⊵⟩aϕ.

Proof. Let C = (V,S, χ,W ) be a polychromatic complex satisfying (⋆), and con-
sider the polychromatic model C = (C, L). We will only show the last claim.
Assume

C, X ⊩ ⟨⊵⟩a[⊵]aϕ.

There exists Z with X ⊵a Z and

C, Z ⊩ [⊵]aϕ. (3.1)

From X ⊵a Z we get that a is alive in Z and thus Z ⊵a Z. Therefore, by (3.1) it
follows that:

C, Z ⊩ ϕ. (3.2)

Let Y be arbitrary withX⊵aY . By (⋆), we find Y ∼C
a Z. Thus we get by Lemma 7,

that Z ⊵a Y or Y ⊵a Z. In the first case, we use (3.1) to obtain C, Y ⊩ ϕ. Further
we get Y ⊵a Y from X ⊵a Y , and thus

C, Y ⊩ ⟨⊵⟩aϕ. (3.3)

In the second case, (3.3) follows immediately from (3.2). Since Y was arbitrary
with X ⊵a Y , (3.3) implies C, X ⊩ [⊵]a⟨⊵⟩aϕ.
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Plausibility models are not limited to safe belief, and can represent other notions
of belief. We start by defining the set of most plausible worlds1.

Definition 24 (Min⊴a). Let C = (V,S, χ,W ) be a polychromatic complex. For
X ∈ W and a ∈ Ag, we define:

Min⊴a(X) = {Y ∈ W | Y ∼C
a X and ∄Z ∈ W.Z ◁a Y }.

Observe that, since ≤a is wellfounded, we have Min⊴a(X) ̸= ∅ if agent a is alive
in the world X.
The polychromatic complex C, where W = F(C), given in Figure 3.4 shows a

situation with two minimal worlds. Namely, we have Y, Z ∈ Min⊴a(X). Further,
the following relations hold: Y ◁a X, Z ◁a X, Z ⊴a Y , and Y ⊴a Z.

a

ab b

b

Y

X
Z

Figure 3.4: A polychromatic complex with two minimal worlds.

The following lemma ensures that the later defined notion of most plausible
belief (see Definition 25), behaves as expected (Theorem 1).

Lemma 9. Let C = (V,S, χ,W ) be a polychromatic complex satisfying (⋆). Fur-
ther, let X ∈ W and Y ⊴a X. For each Z ∈ Min⊴a(X), we have Z ⊴a Y .

Proof. From Y ⊴a X we get X ∼C
a Y . Let Z ∈ Min⊴a(X). By definition, this

means:
∄V ∈ W.V ◁a Z (3.4)

and X ∼C
a Z. Since ∼C

a is a partial equivalence relation, we get Z ∼C
a Y . Suppose

towards a contradiction that Z ⊴a Y does not hold. Since Z ∼C
a Y holds, we must

have Z ≰a Y and thus Y <a Z. Therefore, Y ◁a Z. This contradicts (3.4), and
we conclude Z ⊴a Y .

If we let Y be X in Lemma 9, then we obtain the following instance:

Z ∈ Min⊴a(X) implies Z ⊴a X. (3.5)

We now include a new modality Ba for each agent a in our language LBD. The
resulting language is L+

BD. Definition 25 states the semantics of Ba.
1The term “worlds” instead of “faces” emphasizes that we are only referring to faces belonging
to W .
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Definition 25 (Ba). Let C = (C, L) be a polychromatic model based on the poly-
chromatic complex C = (V,S, χ,W ). For every agent a ∈ Ag, face X ∈ W , and
formula ϕ ∈ L+

BD, we define:

C, X ⊩σ Baϕ iff Y ∈ Min⊴a(X) implies C, Y ⊩σ ϕ, for all Y ∈ W.

The modality Ba models agent a’s most plausible belief. It is well-known that
Ba can be expressed in terms of the [⊵]a-modality (cf. Baltag and Smets [8] and
Stalnaker [48]). Theorem 1 states that the same is true for polychromatic models.

Theorem 1. Let C = (C, L) be a polychromatic model based on the polychromatic
complex C = (V,S, χ,W ). For all a ∈ Ag and X ∈ W with a ∈ χ(X), we find
that:

C, X ⊩σ Baφ if and only if C, X ⊩σ ⟨⊵⟩a[⊵]aφ.

Proof. For the direction from right to left, we assume C, X ⊩σ ⟨⊵⟩a[⊵]aφ. Thus,
there exists Y with X ⊵a Y and C, Y ⊩σ [⊵]aφ. Now consider an arbitrary
Z ∈ Min⊴a(X). By Lemma 9 we find Y ⊵a Z and, therefore, C, Z ⊩σ φ. This
yields C, X ⊩σ Baφ.
For the direction from left to right, we have X ∼C

a X since agent a is alive. Thus
Min⊴a(X) is non-empty and we let Y ∈ Min⊴a(X). By (3.5), we obtain Y ⊴aX. It
remains to show C, Y ⊩σ [⊵]aφ. Let Z ∈ W be such that Z ⊴a Y . Then Z ∼C

a X
by transitivity of ∼C

a . Now we find Z ∈ Min⊴a(X), for otherwise, we would find
V ∈ W with V ◁a Z, which yields V ◁a Y and thus contradicts Y ∈ Min⊴a(X).
From Z ∈ Min⊴a(X) and the assumption C, X ⊩σ Baφ, we get C, Z ⊩σ φ, which
concludes the proof.

Remark 4. A consequence of Theorem 1 is that the properties of the Ba-modality
follow from properties of [⊵]a such as the ones given in Lemma 8. For instance,
we find that the following is σ-valid:

Baϕ ∧ Baψ → Ba(ϕ ∧ ψ).

Our model satisfies the knowledge yields belief principle. In particular, we have
the following lemma.

Lemma 10. Let C = (C, L) be a polychromatic model based on the polychromatic
complex C = (V,S, χ,W ). For all X ∈ W , we have:

C, X ⊩σ □aφ→ [⊵]aφ and C, X ⊩σ [⊵]aφ→ Baφ.
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Proof. For the first claim, assume

C, X ⊩σ □aφ. (3.6)

Let X ⊵a Y , i.e., X ∼C
a Y and X ≥a Y . By (3.6) we immediately get C, Y ⊩σ φ

and hence, C, X ⊩σ [⊵]aφ.
For the second claim, assume

C, X ⊩σ [⊵]aφ. (3.7)

Let Y ∈ Min⊴a(X) be arbitrary. Using (3.5), we obtain Y ⊴a X. Now C, Y ⊩σ φ
follows immediately from (3.7), which yields C, X ⊩σ Baφ.

Example 4 illustrates that, as typical for preference-based semantics, our models
are non-monotone. That is, agents may drop their beliefs when learning new
information.

Example 4. Consider the set V = {1, 2, 3, 4} and a coloring χ such that:

1. χ(1) = χ(3) = a;

2. χ(2) = χ(4) = b.

Moreover, let C = (V,S, χ,W ) and Cψ = (V,Sψ, χ,Wψ) be two polychromatic
complexes given by:

S = (Pow({1, 2, 3}) ∪ Pow({3, 4})) \ {∅} and Sψ = Pow({1, 2, 3}) \ {∅}.

Figure 3.5 shows the polychromatic complexes. Further, let X = {1, 2, 3} and Y =
{3, 4}. We define W = {X, Y }, and Wψ = {X}. Consider the two polychromatic
models:

C = (C, L}) and Cψ = (Cψ, Lψ).

We choose the labeling L such that for some propositional formulas ψ, ϕ ∈ L+
BD:

C, X ⊩σ ¬ϕ ∧ ψ and C, Y ⊩σ ϕ ∧ ¬ψ.

We set Lψ(X) = L(X). The model Cψ represents the situation after the agents in
C learn that ψ is true. That is, it is the same as C but without the worlds where ψ
is false. We observe that

C, X ⊩σ Baϕ and Cψ, X ̸⊩σ Baϕ.

Hence, a only believes ϕ in X before it learns ψ. This is because removing worlds
from C can result in a new world becoming a most plausible world.
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a

ab b

a

ab

C : Cψ :

Y
X X

Figure 3.5: The polychromatic complex Cψ represents the state of affairs after the
agents in C learn that ψ is true.

In the context of properly colored augmented complexes, properness as in Def-
inition 11 is not satisfied. An example of such an augmented complex is the one
shown in Figure 3.3, where no alive agent belonging to both X and Y can dis-
tinguish them. Consequently, the definition of properness has to be adapted to
the generalized setting: there exists an agent that can distinguish between two
worlds if and only if those worlds contain the same set of alive agents. Under
this condition, augmented complexes satisfy properness. Goubault et al. [27] show
that global relational models based on non-empty partial epistemic frames satis-
fying the following axiom, can be transformed to meet the adapted definition of
properness:

alive(G) ∧ dead(GC) ∧ φ→ □G(dead(G
C)→ φ), (P)

where GC denotes the complement of G. Intuitively, P states that if two global
states have the same set of alive agents and no alive agent can distinguish between
them, then both states must satisfy the same formulas. Generalized global simpli-
cial models naturally satisfy this property. However, Lemma 11 shows that P is
no longer true for polychromatic models.

Lemma 11. P is not σ-valid for polychromatic models.

Proof. Consider the following counter-example: let C = (V,S, χ,W ) be the poly-
chromatic complex given by:

V = {1, 2, 3} and S = Pow(V) \ {∅},

where W contains only the two worlds X = {1, 2, 3} and Y = {1, 3}. Further, let
Ag = {a, b}, and assume that the vertices are colored as follows:

χ(1) = χ(2) = a and χ(3) = b.

Consider a labeling such that L(X) = {p}, and L(Y ) = ∅. Further, let C = (C, L).
For G = {a, b}. We find that

C, X ⊩σ alive(G) ∧ dead(Gc) ∧ p.
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However, we have X ∼C
G Y and C, Y ⊩σ dead(Gc) ∧ ¬p. Hence

C, X ̸⊩σ □G(dead(G
c)→ p).

Therefore, P is not valid on polychromatic models.

3.3 Knowledge Gain

An important result for simplicial models is that agents cannot gain new knowledge
along morphisms. This property is essential for showing that certain distributed
tasks are not solvable (cf. Goubault et al. [29]). We adapt the notion of a morphism
between simplicial complexes to the setting of polychromatic models. The fact that
our models are polychromatic does not matter for the definition of morphism.
Given a function f : U → V and a set W ⊆ U , we let:

f(W ) = {f(x) | x ∈ W}.

Definition 26 (Simplicial Map). Let C = (V,S) and C′ = (V′,S ′) be two simpli-
cial complexes. A simplicial map from C to C′ is a function f : V→ V′ such that
if X ∈ S then f(X) ∈ S ′.

Definition 27 (Morphism). Let (V,S) and (V′,S ′) be two simplicial complexes,
and let C = (V,S, χ,W ) and C′ = (V′,S ′, χ′,W ′) be two polychromatic complexes
satisfying (⋆). A morphism from a polychromatic model C = (C, L) to a polychro-
matic model C ′ = (C′, L′) is a function f such that:

1. f is a simplicial map from (V,S) to (V′,S ′);

2. χ′(f(v)) = χ(v) for all v ∈ V;

3. f(X) ∈ W ′ for all X ∈ W ;

4. L′(f(X)) = L(X) for all X ∈ W .

Morphisms respect the indistinguishability relation. We have the following
lemma.

Lemma 12. Let C = (C, L) and C ′ = (C′, L′) be polychromatic models based on
the polychromatic complexes C = (V,S, χ,W ) and C′ = (V′,S ′, χ′,W ′). If f is a
morphism from C to C ′, we find for all X, Y ∈ W :

X ∼C
G Y implies f(X) ∼C′

G f(Y ).
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Proof. Assume G ⊆ χ(X ∩ Y ) and let a be an element of G. There exists v ∈ V

with v ∈ X, v ∈ Y , and χ(v) = a. We find that f(v) ∈ f(X), f(v) ∈ f(Y ), and
χ′(f(v)) = a. Hence, a ∈ χ′(f(X) ∩ f(Y )).

The positive formulas are the formulas of LD where the operator □G occurs only
in its unnegated form. Formally, we use the following definition.

Definition 28 (Positive Formulas). We consider the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ
ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | □Gψ

where p ∈ Prop and a ∈ Ag. Formulas given by ψ are called positive formulas.

The result about no knowledge gain is standard (cf. Goubault et al. [29]). Note
that we are in a setting where agents may crash. However, since we adopt the
global point of view, we can employ the usual formulation of positive formulas in
the following theorem. Also, the fact that we have polychromatic models does not
matter.

Theorem 2. Let C = (C, L) and C ′ = (C′, L′) be polychromatic models based on
the polychromatic complexes C = (V,S, χ,W ) and C′ = (V′,S ′, χ′,W ′). Further,
let X ∈ W and ψ be a positive formula. If f is a morphism from C to C ′, we find
that:

C ′, f(X) ⊩σ ψ implies C, X ⊩σ ψ,

for all X ∈ W .

Proof. First we show that for a formula given by ϕ according to Definition 28, we
have:

C ′, f(X) ⊩σ ϕ iff C, X ⊩σ ϕ, (3.8)

for all X ∈ W . We proceed by induction on the structure of ϕ and distinguish:

1. ϕ is an atomic proposition p. Since f is a morphism, we have that L′(f(X)) =
L(X). Thus C, f(X) ⊩σ p iff C, X ⊩σ p.

2. ϕ is a negation or a conjunction. The claim follows immediately by I.H.

Now we proceed by induction on the structure of ψ (according to Definition 28)
and assume C ′, f(X) ⊩σ ψ. We distinguish the following cases:

1. ψ is a formula ϕ (according to Definition 28). The claim follows from (3.8).
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2. ψ is a conjunction or a disjunction. The claim follows immediately by the
induction hypothesis.

3. ψ is of the form □Gψ
′. Since C ′, f(X) ⊩σ □Gψ

′ holds, we obtain that
f(X) ∼C′

G Y implies C ′, Y ⊩σ ψ
′ for all Y ∈ W ′.

Let Z ∈ W be such that X ∼C
G Z. Since f is a morphism, we find by

Lemma 12 that
f(X) ∼C′

G f(Z) and f(Z) ∈ W ′.

Thus, C ′, f(Z) ⊩σ ψ′. By I.H., we find C, Z ⊩σ ψ′. Since Z ∈ W was
arbitrary with X ∼C

G Z, we conclude C, X ⊩σ □Gψ
′.

The previous theorem only holds for knowledge but not for belief. That is, the
operator [⊵]a cannot be included in the class of positive formulas. We have the
following lemma.

Lemma 13. There exist polychromatic models C = (C, L) and C ′ = (C′, L′) based
on C = (V,S, χ,W ) and C′ = (V′,S ′, χ′,W ′), together with a morphism f from C
to C ′, and X ∈ W such that for some agent a ∈ Ag and p ∈ Prop:

C ′, f(X) ⊩σ [⊵]ap but C, X ̸⊩σ [⊵]ap.

Proof. Consider the set V = {1, 2, 3}. We let a be an agent and set

χ(1) = χ(2) = χ(3) = a.

We let S = {{1, 2}, {2, 3}, {1}, {2}, {3}} and S ′ = {{1, 2}, {1}, {2}}. Further,
we set X = {1, 2}, Y = {2, 3}, and Z = {2}, as well as:

W = {X, Y }, L(X) = ∅ and L(Y ) = {p}

and
W ′ = {X,Z}, L′(X) = ∅ and L′(Z) = {p}.

It is straightforward to that C = (V,S, χ,W ) and C′ = (V,S ′, χ,W ′) are poly-
chromatic complexes such that

C = (C, L) and C ′ = (C′, L′)

are polychromatic models. Moreover, let f be such that f(1) = 1, f(2) = 2, and
f(3) = 2. Obviously, f is a morphism from C to C ′ and we have that f(Y ) = Z.
Finally, we obtain that:

C ′, f(Y ) ⊩σ [⊵]ap but C, Y ̸⊩σ [⊵]ap.

Besides the statement that belief gain is possible, this lemma could also be
interpreted in such a way that condition (⋆) is not strong enough or that we need
a different notion of morphism.
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3.4 Somebody Knows

We now change the interpretation of the set Ag. Instead of consisting of agents
themselves, we assume that Ag is the set of agent names. This interpretation is
rather natural in the presence of an improper coloring, because two distinct agents
can share a name. Moreover, a name can represent the type of a group. For
example, in distributed computing, we might be interested in the two names f
and c, where f stands for “faulty” and c stands for “correct”. Logics without a
fixed one-to-one correspondence between names and agents have been extensively
studied by Grove and Halpern [31] and B́ılková et al. [10]. In what follows, we
will demonstrate how polychromatic simplicial complexes provide a semantics for
a somebody-knows modality. We enrich L with the modality Sa, which reads as
somebody named a knows. This modality is similar to the somebody in-group-G-
knows modality SG studied by Ågotnes and Wáng [2], where each agent has a
unique identifier and G ⊆ Ag. Unlike Sa, the modality SG can be defined in terms
of the individual knowledge of the group members, i.e.,

SGϕ ≡
∨
a∈G

□aϕ,

because the identity of each group member is contained in the group G. Moreover,
the modality SG satisfies SGϕ→ SHϕ for G ⊆ H, which does not have a meaningful
formulation with names since our language cannot express that a specific agent is
named a.
Let C = (V,S, χ,W ) be a polychromatic simplicial complex. We define the star

of a vertex v ∈ V as:
st(v) = {X ∈ W | v ∈ X}.

The set of a-stars of a face X ∈ W is given by:

Na(X) = {st(v) | v ∈ X and χ(v) = a}.

Since F(C) ⊆ W , the set Na(X) is never empty if there is an alive agent with
name a in face X. We denote our language with LS. A simplicial named model is
a pair C = (C, L), where C is a polychromatic complex and L is a global labeling.
Notice that we no longer require (⋆). The semantics of Sa are:

C, X ⊩σ Saϕ iff ∃Y ∈ Na(X).∀Z ∈ Y.C, Z ⊩ ϕ. (3.9)

Thus, if C, X ⊩σ ¬Saϕ, then all agents in X with name a consider at least one
world possible in which ¬ϕ holds.
We can formulate (3.9) more compact with the help of truth sets. For a formula

ϕ ∈ LS and a simplicial named model C = (C, L), we denote the truth-set of ϕ as
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b a a b
X Y Z

Figure 3.6: The polychromatic complex considered in the proof of Lemma 14.

ϕC = {X ∈ W | C, X ⊩σ ϕ}. Therefore, (3.9) becomes:

C, X ⊩σ Saϕ iff ∃N ∈ Na(X).N ⊆ ϕC.

The dual ⟨Sa⟩ reads as: everyone named a considers ϕ possible. Semantically, it is
given by:

C, X ⊩σ ⟨Sa⟩ϕ iff ∀N ∈ Na(X).N ̸⊆ (¬ϕ)C.
Similar to neighborhood semantics (cf. Pacuit [43]), Lemma 14 shows that the

formula Sa(ϕ→ ψ)→ (Saϕ→ Saψ) is not σ-valid.

Lemma 14. The formula Sa(ϕ→ ψ)→ (Saϕ→ Saψ) is not σ-valid.

Proof. We will construct a counterexample. Let C = (V,S, χ,W ) be the poly-
chromatic complex shown in Figure 3.6 with W = F(C). The set of Y ’s a-stars
is: Na(Y ) = {{X, Y }, {Y, Z}}.
We define a simplicial named model C = (C, L), where L is a labeling such that

for some p, q ∈ Prop, p is only satisfied at X, Y , and q is only satisfied at Y . By
the definition of truth we have:

C, Y ⊩σ Sa(p→ q) because {Y, Z} ⊆ (p→ q)C and {Y, Z} ∈ Na(Y );

C, Y ⊩σ Sap because {X, Y } ⊆ ϕC and {X, Y } ∈ Na(Y );

C, Y ̸⊩σ Saq because qC = {Y } and for all N ∈ Na(Y ), we have N ̸⊆ {Y }.

Therefore, Sa(ϕ→ ψ)→ (Saϕ→ Saψ) is not σ-valid.

Lemma 15 states that Sa is factive. Notice that it does not matter whether the
complex is impure because C, X ⊩σ Saϕ implies the existence of an agent named a
in X knowing ϕ. In contrast, knowledge is only truthful for alive agents in models
based on impure simplicial complexes.

Lemma 15. The formula Saϕ→ ϕ is σ-valid.

Proof. Let C = (V,S, χ,W ) be a polychromatic complex and consider an arbitrary
simplicial named model C = (C, L). Furthermore, assume that C, X ⊩σ Saϕ. By
definition, there exists an a-vertex v ∈ X with st(v) ⊆ ϕC. Moreover, by definition
X ∈ st(v), and thus X ∈ ϕC, i.e., C, X ⊩σ ϕ.
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a a a a
X Y Z

Figure 3.7: The polychromatic complex considered in the proof of Lemma 17.

Remark 5. Let C = (V,S, χ,W ) be a polychromatic complex. For every two faces
X, Y ∈ W such that v ∈ X ∩ Y with χ(v) = a, we find:

st(v) ∈ Na(X) ∩Na(Y ).

Lemma 16 states that Sa satisfies positive introspection.

Lemma 16. The formula Saϕ→ SaSaϕ is σ-valid.

Proof. Let C = (V,S, χ,W ) be a polychromatic complex, and consider a simplicial
named model C = (C, L). Assume that C, X ⊩ Saϕ. By the definition of truth,
there exists st(v) ∈ Na(X) with v ∈ X and χ(v) = a such that st(v) ⊆ ϕC. Let
Y ∈ st(v). By Remark 5 we have st(v) ∈ Na(Y ). Since st(v) ⊆ ϕC, it follows that
C, Y ⊩ Saϕ. Moreover, because Y was arbitrary, we conclude that for all Z ∈ st(v),
we have that C, Z ⊩ Saϕ. Lastly, since st(v) ∈ Na(X) and st(v) ⊆ (Saϕ)

C, it follows
that C, X ⊩ SaSaϕ.

The next lemma establishes that the standard axioms B : ϕ → Sa⟨Sa⟩ϕ and
5 : ⟨Sa⟩ϕ→ Sa⟨Sa⟩ϕ are not valid.

Lemma 17. The formulas ϕ→ Sa⟨Sa⟩ϕ and ⟨Sa⟩ϕ→ Sa⟨Sa⟩ϕ are both not σ-valid.

Proof. We construct a simplicial named model that violates both formulas. Let
C = (V,S, χ,W ) be the polychromatic complex shown in Figure 3.7, with W =
F(C). The sets of a-stars are:

• Na(X) = {{X}, {X, Y }};

• Na(Y ) = {{X, Y }, {Y, Z}};

• Na(Z) = {{Z}, {Y, Z}}.

We define a model C = (C, L) such that for some p ∈ Prop, it holds that
pC = {Y }. The following is straightforward to verify:

1. C, Y ⊩σ p;

2. C, Y ⊩σ ¬Sa¬p because (¬p)C = {X,Z}, and there is no N ∈ Na(Y ) such
that N ⊆ {X,Z};
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3. Similarly, it follows that C, X ⊩σ Sa¬p and C, Z ⊩σ Sa¬p.

Since for all N ∈ Na(Y ), it holds that (¬Sa¬p)C = {Y } ̸⊇ N , we find that
C, Y ⊩σ ¬Sa¬Sa¬p, which is equivalent to C, Y ⊩σ ¬Sa⟨Sa⟩p. Thus, both formulas
are violated.

3.4.1 Modeling Quorums

A proper coloring allows us to express to which agent a local state belongs, while
an improper coloring specifies the name (or type) of the agent inhabiting that local
state. Combining both, i.e., assigning colors and names to vertices, yields more
expressive models. Let Ag be a set of n ≥ 1 agents, and let N be a set of 1 ≤ k ≤ n
names. Moreover, we assume that Ag∩N = ∅. In this setting, we can express that
an agent a has name n. A mixed complex is a quadruple C = (V,S, χ, ν) where:

• (V,S) is a simplicial complex;

• χ : V→ Ag is a proper coloring;

• ν : V→ N is an improper coloring.

We refrain from augmenting a mixed complex with a setW for simplicity. The star
of a vertex is now defined over F(C) instead of W . A mixed model is a pair C =
(C, L), where C is a mixed complex, and L is a labeling L : F(C) → Pow(Prop).
Finally, the n-stars of X ∈ F(C) are defined in terms of ν instead of χ:

Nn(X) = {st(v) | v ∈ X and ν(v) = n}.

The satisfaction relation ⊩σ can be defined on the facets of C as expected. Specif-
ically, we define:

C, X ⊩σ □Gϕ iff X ∼C
G Y implies C, Y ⊩σ ϕ, for all Y ∈ W

C, X ⊩σ Snϕ iff ∃N ∈ Nn(X).N ⊆ ϕC.

Having two modalities relying on different colorings allows us to formulate more
elaborate connections between groups of agents. Consider, for example, a mixed
model C = (C, L) with a facet X ∈ F(C) containing an a-vertex named n. If
G ⊆ Ag is a group of agents with a ∈ G, the following holds:

C, X ⊩σ

∧
a∈G

□aϕ→ Snϕ.

There are further interesting variants of the above formula, and a lot of those
statements arise frequently in distributed systems or game theory. We will look at
a specific scenario in distributed systems: quorums.
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Assume that we are given N processes (or agents). Some processes are faulty
and may deviate arbitrarily from the protocol. Processes that are not faulty are
called correct. Given an assumption on which sets of processes may jointly fail, a
(Byzantine) quorum system (cf. Malkhi and Reiter [40]) is a set of sets of processes
(called quorums) such that they pairwise intersect in at least one correct process.
Quorums are essential for the reliable transfer of information in networks, because a
process cannot receive conflicting information from two quorums. Indeed, consider
for example a decentralized payment system such as FastPay (cf. Baudet et al. [9]),
in which clients submit their transactions to servers that maintain records of all
client balances. Upon receiving a transaction, the server needs to verify whether
the client’s balance is sufficient. Once verified, the server signs the transaction and
informs the other servers about its validity. If a server receives such a message from
a quorum of servers, then it can update its state. Two transactions with the same
issuer conflict if the sum of the transfers exceeds its balance. Since we use quorum
systems, there cannot exist quorums for two conflicting transactions. Thus, double-
spending is not possible. Towards a contradiction, assume that it is possible.
Hence, there exist quorums for both transactions. Since those quorums intersect
in a correct server, this means that there exists a correct server that deemed two
conflicting transactions valid, which is a contradiction. We now formulate this
idea in mixed models.
Let N = {f, c} be the set of names, where f stands for “faulty” and c stands for

“correct”. Let Ag be the set of processes and let C be a pure mixed complex. The
complex C is pure for simplicity. Consider the two groups of processes G and H
such that both groups are elements of a quorum system Q. Consequently, they
intersect in a process with name c. Thus, for every mixed model C = (C, L) and
X ∈ F(C), it holds that

C, X ⊩σ

(∧
a∈G

□aϕ ∧
∧
a∈H

□aψ

)
→ Sc(ϕ ∧ ψ),

which captures quorum systems in an intuitive manner. Moreover, we can gen-
eralize this to arbitrary names and write Qn for a quorum system such that any
two elements of Qn intersect in a process with name n. The following would be
an axiom of our logic:(∧

a∈G

□aϕ ∧
∧
a∈H

□aψ

)
→ Sn(ϕ ∧ ψ), if G,H ∈ Qn.

Quorum systems can be further generalized to the setting in which each agent
has its own quorum system. This setting is called asymmetric trust because every
process can have its own trust assumption (cf. Alpos et al. [4]).
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3.5 Conclusion and Outlook

Polychromatic models naturally support logics of (most) plausible belief, because
the multiplicity of a color within a face can be interpreted as an inverse plau-
sibility measure, giving rise to a plausibility relation ≤a on worlds. Restricting
≤a to adjacent worlds yields a local plausibility relation ⊵a, which in turn in-
duces a modality [⊵]a. If further restricted to worlds with minimal multiplicity,
we obtain the most plausible belief modality Ba. Since a most plausible world is
a possible world, it immediately follows that most plausible belief satisfies KYB
(Lemma 10). At the same time, since the set of most plausible worlds need not
include the actual world, an agent’s most plausible beliefs may be false. Thus,
our notion of belief depends entirely on the topological structure of the complex,
while satisfying KYB without requiring additional machinery like belief functions.
In addition to providing first definitions, we also established key differences from
simplicial complexes such as the observations about non-proper models and belief
gain. Finally, we demonstrate how polychromatic complexes can serve as models
supporting a somebody-knows modality. This observation is of particular interest,
since these models do not require (⋆).
There are various ways for extending polychromatic complexes. In general,

analyzing models in which (⋆) does not hold, such as mixed models, and explor-
ing which epistemic attitudes they model is certainly worthwhile. In the con-
text of mixed models, a further study of a simplicial variant of coalition logic
(cf. Pauli [44]) appears promising.
Regarding belief, a next step is to identify relational frames equivalent to poly-

chromatic complexes, and to develop a sound and complete axiomatization of
(most) plausible belief. This requires us to better understand properness with
respect to polychromatic complexes. Furthermore, despite including a notion of
group knowledge in our logic, we only considered individual belief. Obviously,
different notions of group belief provide an interesting topic for future research. A
reasonable variant of group belief is:

X ≤G Y if and only if min{ma(X) | a ∈ G} ≤ min{ma(Y ) | a ∈ G},

from which we could define the interpretation of the modalities [⊵]G and BG as in
the individual case. Some principles of this notion of group belief are immediate,
e.g., that group belief does not imply belief of subgroups (or individual belief). A
detailed analysis of this approach, along with its relationship to existing methods,
e.g., Gaudou et al. [23], should be studied.
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4 Directed Simplicial Models

Chapter Organization. This chapter discusses directed pure simplicial complexes
as models of belief, adopting the local perspective throughout. Section 4.1 intro-
duces these structures and defines a semantics of belief over them. In Section 4.2,
a correspondence between directed simplicial models and a particular class of local
relational models is established. Next, Section 4.3 presents the logic of local be-
liefs (LLB) and proves its soundness and completeness with respect to our models.
Section 4.4 shows that our models, despite being restricted to pure complexes, are
at least as expressive as global simplicial models. Finally, Section 4.5 concludes
this chapter with a discussion of potential directions for future work.

Modeling belief on simplicial structures is challenging. Chapter 3 presented poly-
chromatic models as a potential solution, but agents having multiple doxastic local
states simultaneously remains difficult to interpret. This chapter proposes an al-
ternative approach based on directed simplicial complexes, which offer a natural
and transparent framework for modeling belief.

Formally, a directed simplicial complex is a triple (V,S, ρ) where the pair C =
(V,S) is a simplicial complex, and ρ : V × S → {0, 1} is a function that assigns
a direction to every face of C from a vertex’s perspective. If a face is assigned 1,
then it is considered possible from the perspective of that vertex, and impossible
otherwise. The function ρ is subjected to two conditions that reflect the structure
of the underlying simplicial complex. First, faces that are considered possible from
a vertex v must belong to a facet containing v. Second, ρ must be downward closed
with respect to set inclusion, i.e., whenever a face X is considered possible from
v, all of its subfaces are also considered possible.

In this chapter, we adopt the local point of view and only treat facets as global
states, even though directions are defined on arbitrary faces. This is to avoid the
introduction of a three-valued logic, and to maintain compatibility with potential
extensions to augmented complexes (see Definition 17).

Directions induce a possibility relation on facets. An agent a in facetX considers
a facet Y possible if and only if a ∈ χ(X ∩ Y ) and ρ(Xa, Y ) = 1. Since the agent
may not consider the actual world possible, this relation can be used to model
belief. Requiring agent a being contained in both X and Y preserves the principle
of knowledge-yields-belief, because every facet that is considered for belief would
also be considered when evaluating knowledge. We refrain from introducing a
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knowledge modality for simplicity.
As already mentioned, the possibility relation is able to model false beliefs.

Indeed, consider for example the simplicial complex C = (V,S) in Figure 4.1. Let
ρ be a possibility function such that ρ(a,X) = 1 and ρ(a, Y ) = 0. In this complex,
agent a considers the facet X possible, but not Y . Thus, when in Y , agent a does
not consider the actual global state and may form false beliefs. Moreover, the
possibility relation is not symmetric because a considers X possible from Y , but it
does not consider Y when in X. Consequently, directed simplicial complexes allow
us to model false beliefs, while taking the topology of the complex into account.

c

bab

c

X Y

Figure 4.1: A simplicial complex to which directions can be assigned, such that
the induced possibility relation is not reflexive or symmetric.

Another interesting feature of directed simplicial complexes is that, in contrast
to previous variants of simplicial models, the possibility relation need not be serial.
Given a directed simplicial complex C = (V,S, ρ), we can set ρ(v,X) = 0, for all
v ∈ V and X ∈ S. This allows agents to have inconsistent beliefs. Being able to
drop reflexivity, symmetry, and seriality is intriguing, making directed simplicial
complexes a structure worth studying.

4.1 Semantics

Directions take values 1 or 0, with 1 indicating possibility and 0 representing
impossibility. Given a simplicial complex C and a vertex v, the possibility function
selects a subset of the faces belonging to facets that are accessible to v via the
standard indistinguishability relation.

Definition 29 (ρ). Let C = (V,S) be a simplicial complex. A possibility function
ρ : V× S → {0, 1} is a function such that ρ(v,X) = 1 implies:

1. there exists Y ∈ F(C) such that X ⊆ Y and v ∈ Y ;

2. for all Y ⊆ X, it holds that ρ(v, Y ) = 1.

42



4.1. SEMANTICS

A simplicial complex equipped with a possibility function is called a directed
simplicial complex.

Definition 30 (Directed Simplicial Complex). The triple C = (V,S, ρ) is called
a directed simplicial complex if:

• (V,S) is a simplicial complex;

• ρ : V× S → {0, 1} is a possibility function.

If (V,S, ρ) is a directed simplicial complex and χ is a proper coloring on V, we
call C = (V,S, χ, ρ) a chromatic directed simplicial complex. However, if clear from
the context, we omit explicitly mentioning that a directed simplicial complex is
chromatic. The same notational conventions and terminologies used for simplicial
complexes are adopted in the directed setting. For instance, if C is a directed sim-
plicial complex, then F(C) denotes the facets of its underlying simplicial complex.
Similarly, a directed simplicial complex is called pure if and only if its underlying
simplicial complex is pure.
The possibility function gives rise to a possibility relation upon which a modality

for belief can be defined.

Definition 31 (Possibility Relation). Let C = (V,S, χ, ρ) be a directed simplicial
complex, and let C = (V,S). For a ∈ Ag, we call

Posa = {(X, Y ) ∈ F(C)×F(C) | ρ(Xa, Y ) = 1},

the possibility relation of the agent a.

Lemma 18. Let C = (V,S, χ, ρ) be a directed simplicial complex. For each agent
a ∈ Ag, the relation Posa is transitive.

Proof. Let C = (V,S, χ, ρ) be a directed simplicial complex such that there exist
facets X, Y, Z ∈ F(C) and an agent a ∈ Ag such that:

ρ(Xa, Y ) = 1 and ρ(Ya, Z) = 1.

By Definition 29, ρ(Xa, Y ) = 1 implies that Xa = Ya. Therefore, it holds that
ρ(Xa, Z) = 1. Thus, the relation Posa is transitive.

Lemma 19. Let C = (V,S, χ, ρ) be a directed simplicial complex. For each agent
a ∈ Ag, the relation Posa is euclidean.

Proof. Similar to the proof of Lemma 18.

Example 5 illustrates some properties of the possibility relation.
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c′

c′′

X Y

Z

Figure 4.2: A directed simplicial complex.

Example 5. Let C = (V,S, ρ, χ) be the directed simplicial complex in Figure 4.2,
where χ is as indicated by the color of vertices and ρ is such that:

• ρ(a, Y ) = ρ(b′, Y ) = ρ(c′, Y ) = 0;

• ρ(a,X) = ρ(b,X) = ρ(c,X) = 1;

• ρ(b, Z) = ρ(c′′, Z) = 1 and ρ(a, Z) = 0.

Some example statements that are true about C are:

1. when in Z, agent a rules out Z, but considers X;

2. when in X, agent a does not consider Z possible;

3. when in Y , agent c does not deem a facet to be possible.

Thus, the relation Posa need not be reflexive, serial, or symmetric.

A directed simplicial model is a directed simplicial complex equipped with a
local valuation (see Definition 8). Since the labeling is local, we overload notation
and use ⊩loc

σ for the satisfaction relation.

Definition 32 (Directed Simplicial Model). Let C = (V,S, χ, ρ) be a pure directed
simplicial complex. The pair C = (C, L), where L is a local labeling, is called a
directed simplicial model.

Definition 33 (⊩loc
σ ). Let C = (V,S, χ, ρ) be a pure directed simplicial complex.

For a directed simplicial model C = (C, L), all facets X ∈ F(C), we define the
relation C, X ⊩loc

σ ϕ by induction on ϕ ∈ L:

C, X ⊩loc
σ p iff p ∈ L(Xa) and p ∈ Pa

C, X ⊩loc
σ ¬ϕ iff C, X ̸⊩loc

σ ϕ

C, X ⊩loc
σ ϕ ∧ ψ iff C, X ⊩loc

σ ϕ and C, X ⊩loc
σ ψ

C, X ⊩loc
σ □aϕ iff for all Y ∈ F(C), (X, Y ) ∈ Posa implies C, Y ⊩loc

σ ϕ.
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Let C = (C, L), where C = (V,S, χ, ρ), be a directed simplicial model. We write
C ⊩loc

σ ϕ, if C, X ⊩loc
σ ϕ for all X ∈ F(C). Moreover, ⊩loc

σ ϕ denotes that C ⊩loc
σ ϕ

for every directed simplicial model C.

Remark 6. Definition 33 restricts satisfiability to facets, although directions are
defined on arbitrary faces. This is done to avoid a three-valued logic, and to
maintain compatibility with potential extensions to augmented complexes (see Def-
inition 17). Using directed hypergraphs offers a more succinct representation
(cf. Gomes et al. [50]).

We refrain from interpreting the formula □a⊥ as agent a being dead, since □a⊥
can be true in a facet containing a vertex with color a. Instead, we may view agents
for which □a⊥ holds as being infinitely slow but not crashed. This interpretation
aligns well with asynchronous distributed systems, in which crashed processes and
infinitely slow ones are treated the same.
Example 6 illustrates the previously introduced notions. It also shows that

nested modalities behave as expected.

Example 6. Consider the simplicial complex depicted in Figure 4.3, and let C =
(C, L), where C = (V,S, χ, ρ), be a directed simplicial model where:

• V = {a, b, c, b′, c′};

• S = (Pow(X) ∪ Pow(Y ) ∪ Pow(Z)) \ {∅}, for X = {a, b, c}, Y = {a, b′, c},
and Z = {a, b′, c′};

• χ as indicated by the name of vertices;

• ρ is a possibility function such that:

– ρ(a,X) = ρ(a, Z) = 0 and ρ(a, Y ) = 1;

– ρ(b,X) = 1, ρ(b′, Y ) = 0 and ρ(b′, Z) = 1;

– ρ(c,X) = ρ(c, Y ) = 1 and ρ(c′, Z) = 1.

• L is such that for some p ∈ Pb we have p ∈ L(b′) and p ̸∈ L(b).

Agent a always considers Y to be the only possible facet. In X, agent c considers
both X and Y possible, and in Z, it solely considers Z. Conversely, when in X,
agent b deems only X possible, and, while being in Y or Z, it only considers Z.
It can be verified that C, X ⊩loc

σ □ap, C, X ⊩loc
σ □a¬□cp, and C, X ⊩loc

σ □a□b□cp.
Moreover, it is also the case that a falsely believes p while in X, i.e., C, X ⊩loc

σ

□ap ∧ ¬p. Lastly, since ρ(a, Y ) = 1, we find that for all ϕ ∈ L it holds that
C, Y ⊩loc

σ □aϕ→ ϕ.
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Figure 4.3: The underlying simplicial complex of the directed simplicial model in
Example 6.

4.2 Correspondence to Relational Semantics

Chapter 2 introduced the notions of local valuation (see Definition 4) and proper-
ness (see Definition 11) on symmetric and transitive frames. However, Example 5
showed that Posa need not be symmetric. Consequently, frames corresponding to
directed simplicial complexes need not be symmetric either. Thus, we must gen-
eralize these notions to frames that are not necessarily symmetric. Prior to this,
we define what local and global states mean for such frames. In fact, Definition 34
extends the concept of local and global states to arbitrary frames.

Definition 34 (Local and Global States). Let F = (W,R) be a frame. For every
world w ∈ W and agent a ∈ Ag, we define the following:

• w̃a = {v ∈ W | (w, v) ∈ (Ra ∪ R−1
a )+} ∪ {w}, where (Ra ∪ R−1

a )+ is the
transitive closure of the symmetric closure of Ra. We call (w̃a, a) the local
state of a in w;

• Xw = {(w̃a, a) | a ∈ Ag} is the global state represented by w.

Remark 7. The requirement that every local state w̃a contains the actual world w
is for technical reasons that we will address later.

The motivation for locality in the directed setting remains unchanged. A val-
uation is local if and only if it assigns the same local propositional variables to
worlds where the agent has the same local state. Again, we refer to relational
models with a local valuation as local relational models. The same notational
conventions of local models in Chapter 2 apply to local models introduced here.
It is straightforward to verify that locality is satisfied under Definition 35.

Definition 35 (Local Valuation). Let F = (W,R) be a frame. We call V : W →
Pow(Prop) a local valuation if and only if for all worlds w, v ∈ W :

w̃a ∩ ṽa ̸= ∅ implies p ∈ V (w) iff p ∈ V (v), for all a ∈ Ag and p ∈ Pa.
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Properness (Definition 36) is defined in terms of sequences of a-transitions, and
is similar to the alternative characterization proposed in Remark 3: a frame F is
proper if and only if every two distinct worlds differ in at least one agent’s local
state. The generalized definition presented here differs slightly from the standard
definition of properness. Nevertheless, both definitions coincide when evaluated
on epistemic frames (see Definition 13).

Definition 36 (Proper). Let F = (W,R) be a frame. We say that F is proper if
and only if, for all worlds w, v ∈ W with w ̸= v, there exists an agent a ∈ Ag such
that w̃a ∩ ṽa = ∅.

We show the correspondence between local relational models and directed sim-
plicial models, beginning with the more complicated direction: transforming a
relational model into a directed simplicial model.

Definition 37 (Transformation from Relational Model to Simplicial Model). Let
F = (W,R) be a proper frame, and letM = (F, V ) be a local relational model. We
construct a directed complex C = (VT ,ST , χT , ρT ) and a directed simplicial model
CT = (C, LT ) as follows:

• VT = {(w̃a, a) | w ∈ W and a ∈ Ag};

• ST =
⋃
w∈W Pow({Xw | w ∈ W}) \ {∅};

• χT ((w̃a, a)) = a for all w ∈ W and a ∈ Ag;

• ρT ((w̃a, a), Y ) = 1 if and only if there exists a facet Xv such that Y ⊆ Xv

and (w, v) ∈ Ra, and ρ
T ((w̃a, a), Y ) = 0, otherwise;

• p ∈ LT ((w̃a, a)) if and only if p ∈ V (w) and p ∈ Pa.

We will now go over the construction of the directed simplicial complex pro-
posed in Definition 37. Consider the relational structure in Figure 4.4 on the left.
Although the model has three different worlds, agent a has only one local state.
This is reflected in the fact that:

w̃Xa = w̃Y a = w̃Za = {wX , wY , wZ}.

The relational structure is equivalent to the directed simplicial complex shown
in Figure 4.4 on the right, where the possibility function is defined such that:

ρ(b1, X) = 1, ρ(b2, Y ) = ρ(a, Y ) = 1, and ρ(b3, Z) = 1.

As indicated in Remark 7, we include the actual world in every local state. This
ensures that we can transform a frame to a directed simplicial complex.
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wX wY wZ

b a, b b

a a
b1 a b2

b3

X Y

Z

Figure 4.4: A relational structure (left) where a has only one local state, and its
corresponding simplicial complex (right).

For example, consider the two-agent relational frame depicted on the left in
Figure 4.5. Under any valuation, agent b will have inconsistent beliefs in both
worlds. Since the accessibility relation Rb is empty, clearly (Rb ∪ R−1

b )+ is also
empty. However, because all agents are assumed to be alive in all facets, agent
b can actually distinguish w from v. Thus, (ṽb, b) and (w̃b, b) should represent
distinct local states. If this were not the case, b would have only one vertex in the
associated directed simplicial complex, and it would collapse into one facet. The
relations for local states are:

w̃a = ṽa = {w, v}; ṽb = {v}; and w̃b = {w}.

Indeed, we find that (ṽb, b) ̸= (w̃b, b). However, if we had not included the actual
global state, it would hold that w̃b = ∅ = ṽb, which would mean that we can-
not transform this frame to a directed complex. The directed simplicial complex
corresponding to the frame is shown in Figure 4.5 on the right. The directions are:

ρ((w̃a, a), Xv) = 1 and ρ((ṽb, b), Xv) = ρ((w̃b, b), Xw) = ρ((w̃a, a), Xw) = 0.

Lemma 20 shows that the worlds of the proper frame and its transformed com-
plex coincide.

Lemma 20. Let F = (W,R) be a proper frame, and consider C = (VT ,ST ). The
function:

b : F(C)→ W , where b(Xw) = w, for all w ∈ W

is a bijection from F(C) to W .

Proof. First, we remark that by construction of ST , it holds that:

F(C) = {Xw | w ∈ W},
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w v
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a
w̃b w̃a ṽb

Xw Xv

Figure 4.5: A relational frame (left) where agent b considers no world. On the
right is the underlying simplicial complex of the transformed frame.

We now show that b is a bijection. The mapping b is surjective, because for every
Xw, there exists w ∈ W by definition. Regarding injectivity, suppose that for
some facets Xw, Xv ∈ F(C), we have b(Xw) = b(Xv). We show that this implies
Xw = Xv. By Definition 34, Xw = {(w̃a, a) | a ∈ Ag} and Xv = {(ṽa, a) | a ∈ Ag}.
Now we claim that for all a ∈ Ag, we have that (w̃a, a) = (ṽa, a). By properness
(Definition 36), this implies that Xw = Xv. To see this, let a ∈ Ag be arbitrary.
By definition of b(·), our assumption implies that w = v. But then we have that:

w̃a = {u ∈ W | (w, u) ∈ (Ra ∪R−1
a )+} ∪ {w} (Def. 34)

= {u ∈ W | (v, u) ∈ (Ra ∪R−1
a )+} ∪ {v} (w = v)

= ṽa

i.e., (w̃a, a) = (ṽa, a) for all a ∈ Ag.

We use the following lemma to show that the associated model satisfies the
conditions of a directed simplicial model.

Lemma 21. ρT is a possibility function.

Proof. We show that ρT has the properties of a possibility function:

1. if ρT ((w̃a, a), Y ) = 1, then there exists a facet Xv such that Y ⊆ Xv and
(w, v) ∈ Ra. Since w̃a ∩ ṽa ̸= ∅, we find that (w̃a, a) = (ṽa, a) ∈ Xv;

2. for all Z ⊆ Y ⊆ Xv, we have ρ((w̃a, a), Z) = 1 by definition.

Showing that VT ,ST , and χT are well-defined is straightforward. However, the
fact that LT is well-defined is not obvious.

Lemma 22. LT is a well-defined local labeling.

Proof. We first prove that LT is well-defined, i.e., for every vertex v ∈ VT , there
is at most one element A ∈ Pow(Prop) such that LT (v) = A. Towards a con-
tradiction, assume that this is not the case. That is, there exist two elements
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A,B ∈ Pow(Prop) such that A ̸= B and A = LT (v) = B. Since A ̸= B, there
exists p ∈ Pa such that p ∈ A and p ̸∈ B. The only way that this can occur
is if there exist two worlds w, x ∈ W with w̃a = x̃a such that M, w ⊩loc p and
M, x ̸⊩loc p. If this is the case, LT would not be well-defined because

p ∈ LT ((w̃a, a)) = LT ((x̃a, a)) ̸∋ p.

However, by Definition 35, this cannot happen because V is a local valuation.
Lastly, by definition, LT is a local labeling because it only assigns elements of Pa
to vertices of the form (w̃a, a).

Corollary 1. CT is a directed simplicial model.

We now show that every relational model M and its corresponding directed
simplicial model CT are pointwise equivalent. The next lemma is crucial for this
proof.

Lemma 23. We have (w, v) ∈ Ra if and only if ρT ((w̃a, a), Xv) = 1.

Proof. We show both directions separately.

• =⇒: By definition.

• ⇐=: If ρT ((w̃a, a), Xv) = 1, then there exists Y and u ∈ W such that Xv ⊆
Y = Xu and (w, u) ∈ Ra. Since Xv is a facet, it follows that Xv = Y = Xu.
Moreover, due to Lemma 20, we have that u = v and thus (w, v) ∈ Ra.

Lemma 24. Let F = (W,R) be a proper frame, and let M = (F, V ) be a proper
relational model with a local valuation. It holds that:

M, w ⊩loc ϕ if and only if CT , Xw ⊩loc
σ ϕ.

Proof. The claim can be proven by simple induction on the length of ϕ and using
Lemma 23.

Next, we show the straightforward direction: given a directed simplicial model C,
we define a logically equivalent proper relational modelMT with a local valuation.
We take the usual approach (cf. Goubault et al. [29]).

Definition 38 (Transformation from Simplicial Model to Relational Model). Let
C = (V,S, χ, ρ) be a directed pure simplicial complex, and let C = (C, L) be a
directed simplicial model. We construct a proper frame F T = (W T , RT ) and a
local relational modelMT = (F T , V T ) as follows:

• W T = {wX | X ∈ F(C)};
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• (wX , vY ) ∈ RT
a if and only if ρ(Xa, Y ) = 1, for all a ∈ Ag and wX , vY ∈ W ;

• p ∈ V T (wX) if and only if p ∈ ℓ(v) for some v ∈ X, for all wX ∈ W .

Clearly, there is a bijection from F(C) to W T . Properness of F T follows imme-
diately because (V,S) is a simplicial complex. Showing that V T is well-defined is
straightforward. We only need to show that V T is local.

Lemma 25. V T is a local valuation.

Proof. Let wX , wY ∈ W and suppose that w̃X∩w̃Y ̸= ∅. Let a ∈ Ag and p ∈ P. We
show that p ∈ V T (wX) if and only if p ∈ V T (wY ). We use, again, the observation
that w̃X ∩ w̃Y ̸= ∅ implies w̃X = w̃Y . Hence, between wX and wY , there exists a
finite sequence of a-transitions

wX = wX0(R
T
a ∪RT−1

a )wX1(R
T
a ∪RT−1

a ) . . . (RT
a ∪RT−1

a )wXn = wY .

If wX = wY then we are done, thus assume otherwise. We prove by induction that
for all n ≥ 1, this implies that X0a = Xna. Then, by locality of C, p ∈ V T (wX) if
and only if p ∈ L(Xa) = L(Ya), if and only if p ∈ V T (wY ).
For the base case, we have either wX0R

T
awX1 , or wX1R

T
awX0 . By definition of

W T , X0 and X1 are both facets, so X0a and X1a are defined. But then, in either
case, X0a = X1a by the definitions of RT

a and ρ. For the induction step, the same
reasoning yields Xna = Xn+1a, such that X0a = Xn+1a (induction hypothesis).
Thus, V T is indeed a local valuation.

Finally, transitivity and euclideanity of each Ra follow immediately from tran-
sitivity and euclideanity of the possibility relation Posa (Lemmas 18 and 19). We
obtain the following corollary.

Corollary 2. MT is a proper relational model with a local valuation.

It remains to show that C and MT are pointwise equivalent, i.e. that the two
models satisfy the same formulas over L at each world.

Lemma 26. Let C be a directed simplicial model. It holds that

C, X ⊩loc
σ ϕ if and only ifMT , wX ⊩loc ϕ.

Proof. We show the claim by induction on ϕ. The atomic and boolean cases are
immediate. We focus on the case where ϕ = □aψ. For the left-to-right direction,
suppose C, X ⊩loc

σ □aψ. To show thatMT , wX ⊩loc □aψ, let wY ∈ W T and suppose
(wX , wY ) ∈ RT

a . By definition, this means that Y ∈ F(C) with ρ(Xa, Y ) = 1.
Then, C, Y ⊩loc

σ ψ and, by the induction hypothesis,MT , wY ⊩loc ψ. The right-to-
left direction is similar.

We combine Lemmas 24 and 26 to conclude that for each directed simplicial
model, there exists a logically equivalent proper relational model with a local
valuation, and vice versa.
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4.3 Soundness and Completeness

The local logic of belief (LLB) is a modal logic consisting of the following axioms:

all propositional tautologies (Taut)

□a(ϕ→ ψ)→ (□aϕ→ □aψ) (K)

□aϕ→ □a□aϕ (4)

♢aϕ→ □a♢aϕ (5)

pa → □apa (L+)

¬pa → □a¬pa (L−)

and the inference rules modus ponens MP and □a-necessitation □a-Nec for all
agents a ∈ Ag. We write ⊢LLB φ to denote that the formula φ ∈ L can be deduced
in our system.

A A→ B

B
(MP)

A

□aA
(□a-Nec)

Lemma 27 states that locality can be derived in LLB. It is a direct consequence
of the axioms L+ and L−.

Lemma 27. For all a ∈ Ag and p ∈ Pa, it holds that ⊢LLB □ap ∨□a¬p.

Proof.

1. p→ □ap instance of L+

2. ¬p→ □a¬p instance of L−

3. (p ∨ ¬p)→ (□ap ∨□a¬p) propositional reasoning

4. □ap ∨□a¬p propositional reasoning.

For an agent a with inconsistent beliefs, both □ap and □a¬p hold.

Remark 8. Axioms L+ and L− ensure that if □a⊤ is true in a world, then for
each p ∈ Pa, the agent a believes exclusively p or ¬p.

The proof of soundness (Lemma 28) is carried out in the usual way. To show com-
pleteness, rather than converting directed simplicial models to equivalent relational
models and proving their completeness, we construct the canonical directed sim-
plicial model directly. Our approach is similar to that used by Randrianomentsoa
et al. [46].
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Lemma 28. For every formula ϕ ∈ L it holds that

⊢LLB ϕ implies ⊩loc
σ ϕ.

Proof. If ϕ is an instance of a propositional tautology, the proof that ⊩loc
σ ϕ is

standard. We only show the statement for the axioms K,4,5, L+ , and L−. Let
C = (V,S, χ, ρ) be an arbitrary pure directed simplicial complex and let C = (C, L)
be a directed simplicial model.

1. K: let X ∈ F(C) be arbitrary and assume that C, X ⊩loc
σ □a(ϕ → ψ) and

C, X ⊩loc
σ □aϕ. Further, let Y ∈ F(C) be such that ρ(Xa, Y ) = 1. By the

definition of truth, it follows that C, Y ⊩loc
σ ϕ → ψ as well as C, Y ⊩loc

σ ϕ.
Consequently, we have that C, Y ⊩loc

σ ψ. Because Y was arbitrary, it holds
that C, X ⊩loc

σ □aψ.

2. 4: let X ∈ F(C) be arbitrary and assume that C, X ⊩loc
σ □aϕ. Additionally,

let Y ∈ F(C) be such that ρ(Xa, Y ) = 1 and let Z ∈ F(C) be such that
ρ(Ya, Z) = 1. Since ρ preserves connectivity, and with χ being a proper
coloring, we find thatXa = Ya = Za. Therefore, ρ(Xa, Z) = 1 and C, Z ⊩loc

σ ϕ
which yields C, X ⊩loc

σ □a□aϕ.

3. 5: let X ∈ F(C) be arbitrary and assume that C, X ⊩loc
σ ♢aϕ. Thus, there

exists Y ∈ F(C) such that ρ(Xa, Y ) = 1 and C, Y ⊩loc
σ ϕ. By the same

reasoning as earlier, we find that Xa = Ya. Hence, for all Z ∈ F(C) with
ρ(Xa, Z) = 1, it holds that ρ(Za, Y ) = 1, because Xa = Za. Therefore,
C, Z ⊩loc

σ ♢aϕ by definition. Since Z was arbitrary, C, X ⊩loc
σ □a♢aϕ.

4. L+: let X ∈ F(C) be such that for some pa ∈ Pa we have pa ∈ ℓ(Xa). If
there is no Y ∈ F(C) with ρ(Xa, Y ) = 1, then C, X ⊩loc

σ □apa is vacuously
true. If there exists such a Y , then, again because ρ preserves connectivity,
we find that Xa = Ya and thus pa ∈ ℓ(Ya) and C, Y ⊩loc

σ pa. Since Y was
arbitrary, we conclude that C, X ⊩loc

σ □apa.

5. L− : analogous to the case for L+.

We will now introduce the necessary machinery to show completeness.

Definition 39. Let a ∈ Ag be an agent and let Γ ⊆ L. We define:

• Γ \□a = {ϕ | □aϕ ∈ Γ};

• □aΓ = {□aϕ | □aϕ ∈ Γ};

• PaΓ = {p ∈ Pa | p ∈ Γ}.
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We denote that a formula ϕ is derivable in a normal modal logic L by ⊢L ϕ. If
ϕ is not derivable, we write ̸⊢L ϕ.

Definition 40 (Maximal Consistent Set). A set Γ ⊆ L is consistent with respect
to a normal modal logic L if and only if Γ ̸⊢L ⊥. Γ is maximal consistent regarding
L if it is consistent and none of its proper supersets are consistent. We define:

GL = {Γ ⊆ L | Γ is a maximal consistent set for L}.

Whenever clear from the context, we do not mention that a set is maximal
consistent explicitly for LLB. Specifically we will write G instead of GLLB. The
Lindenbaum Lemma (Lemma 29) is standard and used throughout our complete-
ness proof.

Lemma 29 (Lindenbaum Lemma). Any consistent set Γ ̸= ∅ of a normal modal
logic can be extended to a maximal consistent set ∆ such that Γ ⊆ ∆.

Proof. The proof is standard and is thus omitted.

As usual, global states will be described by maximal consistent stets. Defini-
tion 41 shows how exactly global states are formed.

Definition 41 (XΓ). Let Γ ∈ G. We define Γa = □aΓ ∪ PaΓ and

XΓ = {Γa | a ∈ Ag}.

In the canonical directed simplicial complex, the vertices will be given by the
set {Γa | Γ ∈ G and a ∈ Ag}, and the facets are specified by the following set
{XΓ | Γ ∈ G}.
Unlike the canonical model construction by Randrianomentsoa et al. [46], our

construction explicitly encodes the true local propositions in the vertices. Since
beliefs about local propositions are not necessarily truthful, the truth of a local
proposition p ∈ Pa is not equivalent to agent a’s belief in its truth. Therefore, the
truth value of p cannot be recovered from the set □aΓ. Consequently, omitting the
set PaΓ from □aΓ would result in an improper canonical directed simplicial model.
In order to see this, let Ag = {a} and Prop = {p, q} = Pa, and define ∆0,Γ0 ⊆ L
as follows:

∆0 = {p,¬q,□ap,□aq}
Γ0 = {¬p, q,□ap,□aq}.

Both ∆0 and Γ0 are consistent (despite agent a’s inconsistent beliefs). By the Lin-
denbaum Lemma (Lemma 29), these sets can be extended to maximal consistent
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sets ∆,Γ ∈ G. Observe that both ∆ and Γ will contain □a⊥ and, as a conse-
quence, □aϕ for all ϕ ∈ L. But then □a∆ = □aΓ = {□aϕ | ϕ ∈ L}. Now, if we
omit the local propositions Pa∆ and PaΓ from the respective vertices in the canonical
construction, then X∆ = □a∆ = □aΓ = XΓ, while clearly ∆ ̸= Γ. In fact, all local
states of the model in which agent a has inconsistent beliefs will be described by
the same local state {□aϕ | ϕ ∈ L}. We avoid this by defining Γa = □aΓ ∪ PaΓ for
all Γ ∈ G.
The next lemma ensures that there is a bijection from the set G to the set
{XΓ | Γ ∈ G}. Although seemingly trivial, it is a key result for proving Lemma 34
later.

Lemma 30. For all Γ,∆ ∈ G it holds that XΓ = X∆ if and only if Γ = ∆.

Proof. We show both directions separately:

1. =⇒: Assume that XΓ = X∆. We proceed to show that

ϕ ∈ Γ if and only if ϕ ∈ ∆

by induction on the length of ϕ.

i. Case ϕ ≡ p for a ∈ Ag and p ∈ Pa: by assumption PaΓ = Pa∆ and thus
p ∈ ∆ if and only if p ∈ Γ.

ii. Case ϕ ≡ ¬ψ: ¬ψ ∈ Γ if and only if ψ ̸∈ Γ (by maximal consistency) if
and only if ψ ̸∈ ∆ (by induction hypothesis) if and only if ¬ψ ∈ ∆.

iii. The case for ϕ ≡ ψ ∧ ψ′ is similar.

iv. Case ϕ ≡ □aψ: by assumption □aΓ = □a∆ and thus □aψ ∈ Γ if and
only if □aψ ∈ ∆.

2. ⇐=: If ∆ = Γ, then □aΓ = □a∆ and PaΓ = Pa∆ for all a ∈ Ag, which yields
the claim.

Lemma 31 states that if a set ∆ ∈ G is consistent with the beliefs of an agent
in Γ ∈ G, then that agent has the same view in ∆ as in Γ.

Lemma 31. Let Γ ∈ G. For all ∆ ∈ G with Γ \□a ⊆ ∆, it holds that

□aΓ = □a∆ and PaΓ = Pa∆.

Proof. We first show that PaΓ = Pa∆. Since Γ \ □a ⊆ ∆, we find □a⊥ ̸∈ □aΓ
due to the consistency of ∆. Because L+ and L− are axioms of LLB and Γ is a
maximal consistent set, we find that PaΓ = Pa∆. Indeed, as a consequence of Γ being
a maximal consistent set, and by L+ and L− , it holds that:

□ap ∈ □aΓ or □a¬p ∈ □aΓ for all p ∈ Pa. (⋆)
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Conditioned on □a⊥ ̸∈ □aΓ, exactly one belongs to □aΓ. Thus,

p ∈ PaΓ if and only if □ap ∈ □aΓ.

As a consequence of (⋆), we obtain PaΓ = Pa∆.
The proof that □aΓ = □a∆ is straightforward. Since 4 and 5 are axioms of LLB

and Γ,∆ ∈ G, it holds that:

1. if □aϕ ∈ □aΓ then □aϕ ∈ □a∆;

2. if □aϕ ̸∈ □aΓ then □aϕ ̸∈ □a∆.

Therefore, we conclude that □aΓ = □a∆.

We are now able to specify the canonical construction (Definition 42).

Definition 42 (Canonical Construction). The canonical directed simplicial com-
plex for LLB is a quadruple

Cc = (Vc,Sc, χc, ρc),

and the canonical directed simplicial model for LLB is a pair Cc = (Cc, Lc), such
that:

• Vc = {Γa | Γ ∈ G and a ∈ Ag};

• Sc =
⋃

Γ∈G Pow(XΓ) \ {∅};

• χc(Γa) = a;

• ρc(Γa, Y ) =

{
1 if there exists ∆ ∈ G with Y ⊆ X∆ and Γ \□a ⊆ ∆.

0 otherwise.

• p ∈ Lc(Γa) if and only if p ∈ Γa.

Using the following observations and lemmas, we prove that Cc is indeed a
directed simplicial model.

Lemma 32. (Vc,Sc) is a simplicial complex.

Proof. Sc is the union of powersets that do not contain {∅}. Hence, it is closed
under non-empty subsets and (Vc,Sc) is a simplicial complex.

The following observation follows directly from the definition of χc.

Observation 1. χc is a proper coloring.
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Since every facet of Cc contains at most |Ag| elements, and χ(XΓ) = |Ag| for all
Γ ∈ G, we obtain the following corollary from Lemma 30.

Corollary 3. F((C) = {XΓ | Γ ∈ G} and C is pure.

As a consequence of Lemma 31 we obtain the following corollary:

Corollary 4. If ρc(Γa, X∆) = 1, then Γa ∈ X∆.

By definition, ρc(Γa, Y ) = 1 requires the existence of a facet Y containing Γa.
Therefore, we obtain the following observation.

Observation 2. ρc is a possibility function on (Vc,Sc).

Lemma 33. Cc is a directed simplicial model.

Proof. By Lemma 32 and Observation 1 and 2, Cc is a directed simplicial complex.
Finally, by Definition 41, Lc is a local labeling. Thus, Cc is a directed simplicial
model.

The next lemma states that if an agent considers a facet possible, then all its
beliefs must be true in that facet. More formally, if □aϕ ∈ Γ and ρc(Γa, X∆) = 1,
then ϕ ∈ ∆.

Lemma 34. For all ∆,Γ ∈ G, ρc(Γa, X∆) = 1 implies Γ \□a ⊆ ∆.

Proof. Assume that ρc(Γa, X∆) = 1. By Definition 42, there exists a set Ω ∈ G
such that X∆ ⊆ XΩ and Γ \□a ⊆ Ω. By Corollary 3, both X∆ and XΩ are facets.
Since facets are maximal under inclusion, it holds that X∆ = XΩ. Finally, by
Lemma 30, we find that ∆ = Ω ⊇ Γ \□a as desired.

The last ingredient for showing the truth lemma is proving that if an agent does
not believe ϕ in XΓ, then ¬ϕ is consistent with its belief in XΓ.

Lemma 35. Let Γ ∈ G such that □aϕ ̸∈ Γ for some ϕ. The set

Γ \□a ∪ {¬ϕ}

is consistent.

Proof. The claim follows immediately from LLB being a normal modal logic. In-
deed, assume that Γ \ □a ∪ {¬ϕ} is inconsistent. Thus, there exist formulas
ϕ1, . . . , ϕm ∈ Γ \ □a and (ϕ1 ∧ . . . ∧ ϕm) → ϕ is derivable. We show that this
implies that □aϕ ∈ □aΓ:

1. (ϕ1 ∧ · · · ∧ ϕm)→ ϕ Derivable by assumption.
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2. □a((ϕ1 ∧ · · · ∧ ϕm)→ ϕ) □a-Nec.

3. □aϕ1 ∧ . . . ∧□aϕm Elements of □aΓ.

4. □a(ϕ1 ∧ . . . ∧ ϕm) Distribution of □a.

5. □aϕ K and MP (2,4).

Therefore, if (ϕ1, . . . , ϕm) → ϕ is derivable, then □aϕ ∈ □aΓ, whenever □aϕi ∈
□aΓ for i = 1, . . . ,m. However, since we assumed □aϕ ̸∈ □aΓ, this is a contradic-
tion and Γ \□a ∪ {¬ϕ} is consistent.

Given Lemmas 34 and 35, the proof of the truth lemma (Lemma 36) is straight-
forward.

Lemma 36 (Truth Lemma). Let Cc be the canonical model for LLB. For each
Γ ∈ G and each formula ϕ ∈ L we have

ϕ ∈ Γ iff Cc, XΓ ⊩loc
σ ϕ.

Proof. The proof of the truth lemma can be carried out in the usual way by
induction over the length of ϕ. We only show the case for formulas of the form
ϕ = □aψ:

• =⇒: let □aψ ∈ Γ. By Lemma 34, it holds that ψ ∈ ∆ for every accessible
world X∆. By the inductive hypothesis, we obtain Cc, X∆ ⊩loc

σ ψ. Thus, by
the definition of truth, it holds that Cc, XΓ ⊩loc

σ □aψ.

• ⇐=: we show the contrapositive. Assume that □aψ ̸∈ Γ. We need to show
that there exists a world X∆ such that:

– ρc(Γa, X∆) = 1;

– Cc, X∆ ̸⊩loc
σ ψ.

By Lemma 35, the set Γ \ □a ∪ {¬ψ} is consistent. By Lemma 29, we can
extend this set to a maximal consistent set ∆. Further, by the definition of
ρc, it holds that ρc(Γa, X∆) = 1. Finally, by the induction hypothesis, we
obtain Cc, X∆ ̸⊩loc

σ ψ and thus, Cc, XΓ ̸⊩loc
σ □aψ.

We can finally conclude the statement of completeness of LLB with respect to
directed simplicial models.

Theorem 3. For all ϕ ∈ L, it holds that

⊩loc
σ ϕ implies ⊢LLB ϕ.
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Given the back-and-forth transformation to proper relational models with a local
valuation, defined in Section 4.2, LLB is also sound and complete with respect to
the latter.

Corollary 5. The logic LLB is sound and complete with respect to the class of
local relational models based on proper, transitive, and euclidean frames.

4.4 Relation to Impure Simplicial Complexes

We now demonstrate that restricting ourselves to pure complexes does not reduce
expressivity when compared to global simplicial models (see Definition 6). The
pure extension Cp = (Vp,Sp) of a possibly impure simplicial complex C = (V,S)
is defined in Definition 43. It is obtained by adding vertices to facets such that
each facet has dimension |Ag|−1. Thus, it holds that S ⊆ Sp. Next, Definition 44
shows how to color the added vertices, and introduces a possibility function ρp

on Cp. The directions are chosen in such a way that the indistinguishability
relation of agents in C remain unchanged. If v is a vertex that was added to
a facet X while extending C, then ρ(v, Y ) = 0, for all faces Y ∈ Sp. This reflects
that the agent is present, but has inconsistent beliefs. Based on this method,
we can construct a corresponding directed simplicial model (see Definition 45)
for every global simplicial model. This is achieved by extending the underlying
complex, coloring it accordingly, adding directions as described, and choosing a
local labeling that mirrors the labeling of the global simplicial model. Since the
extended simplicial complex is pure, we do not run into any problems regarding
formulas not being defined.

Definition 43 (Cp). Let C = (V,S) be a simplicial complex. Its pure extension
Cp = (Vp,Sp) is the pure simplicial complex such that

1. for all X ∈ F(Cp) it holds that |X| = |Ag|;

2. V ⊆ Vp and S ⊆ Sp;

3. there exists a bijection:
b : F(C)→ F(Cp)

such that for all X, Y ∈ F(C) and v ∈ V:

v ∈ X ∩ Y if and only if v ∈ b(X) ∩ b(Y ).

Given a simplicial complex C, its pure extension Cp is constructed by adding
vertices to facets with a lower dimension. Vertices that are added this way are
only connected to vertices of the facet to which they were added.
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Definition 44 (Cdir). Let C = (V,S, χ) be a chromatic simplicial complex. The
corresponding directed chromatic simplicial complex Cdir = (Vp,Sp, χp, ρp) is de-
fined as follows:

• Cp = (Sp,Vp) is the pure extension of C;

• χp : Vp → Ag is a proper coloring such that χ(v) = a implies χp(v) = a for
all v ∈ V;

• ρp : Vp × Sp → {0, 1} is a function such that:

1. ρp(v,X) = 1 if and only if there exists Y ∈ F(Cp) with X ⊆ Y and
v ∈ Y ∩ b−1(Y );

2. ρp(v,X) = 1 implies ρp(v, Y ) = 1, for all Y ⊆ X.

Definition 45 (Cdir). Let C = (V,S, χ) be a chromatic simplicial complex and
let C = (C, L) be a global simplicial model. The corresponding directed simplicial
model is a pair Cdir = (Cdir, Lp), where Lp is a labeling such that:

pa ∈ L(X) if and only if pa ∈ Lp(b(X)a) for all a ∈ Ag and X ∈ F(C).

The definition of ρp implies that ρp(v, v) = 0 whenever v ∈ Vp \ V. Hence,

ρp(v,X) = 1 implies v ∈ V. (4.1)

It is straightforward to verify that ρp is a possibility function on Cp, and that χp

as well as Lp are well-defined. Thus, the corresponding directed simplicial model
Cdir is indeed a directed simplicial model. Example 7 shows the construction.

Example 7. Let C = (V,S, χ) be a simplicial complex, and let C = (C, L) be
a global simplicial model. Figure 4.6 depicts C on the left and its colored pure
extension Cp on the right. To construct the pure extension of C only one vertex
has to be added to Y ∈ F(C). The corresponding directed simplicial complex Cdir

is obtained by coloring Cp and assigning directions. Since Y is missing a vertex
with color c, the vertex v is colored accordingly. Directions are as follows:

• ρp(a, b(X)) = ρp(b, b(X)) = ρp(c, b(X)) = 1;

• ρp(a, b(Y )) = ρp(b′, b(Y )) = 1;

• ρp(c′, b(Y )) = 0.

The corresponding directed simplicial model Cdir = (Cdir, Lp) is obtained by choosing
a labeling Lp that agrees with L. That is, if p ∈ Pa is assigned to a facet X ∈ F(C)
by L, then Lp assigns p to the corresponding a-vertex of the corresponding directed
complex Cdir.
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c

b′ab

X
Y

c

a b′b

c′

b(Y)b(X)

Figure 4.6: An impure simplicial complex (left) and the corresponding colored pure
extension (right).

Finally, Lemma 37 shows the pointwise equivalence between global simplicial
models and their corresponding directed simplicial models.

Lemma 37. Let C = (V,S, χ) be a simplicial complex, and let C = (C, L) be
a global simplicial model. Consider the corresponding directed simplicial complex
Cdir = (Vp,Sp, χp, ρp), as well as the corresponding directed simplicial model Cdir =
(Cdir, Lp). It holds that for all ϕ ∈ L:

C, X ⊩σ ϕ if and only if Cdir, b(X) ⊩loc
σ ϕ.

Proof. We show the claim by induction on the length of ϕ:

1. Let ϕ ≡ p for some p ∈ Pa, where a ∈ Ag. By Definition 45:

C, X ⊩σ p iff p ∈ L(X) iff p ∈ Lp(b(X)a) iff Cdir, b(X) ⊩loc
σ p.

2. Let ϕ ≡ ¬ψ; then the claim follows by the induction hypothesis.

3. Let ϕ ≡ ψ ∧ ψ′; then the claim follows by the induction hypothesis.

4. Let ϕ ≡ □aψ. We show the direction from left to right. The other direction
is similar. If C, X ⊩σ □a⊥, then X does not contain an a-vertex, and we find
that Cdir, b(X) ⊩loc

σ □a⊥, because of (4.1). Thus, we assume that X contains
an a-vertex. By construction of Cdir, there exist facets that are considered
possible by a in b(X). Let b(Y ) ∈ F(Cdir) such that ρp(b(X)a, b(Y )) = 1.
Since ρp is a possibility function, it holds that b(X)a ∈ b(Y ). By Defini-
tion 44, b(X)a = Xa, and by Definition 43, we have that Xa ∈ Y because
Xa ∈ b(X)∩b(Y ). By assumption, it holds that C, Y ⊩σ ψ, and Cdir, b(Y ) ⊩loc

σ

ψ follows by the induction hypothesis. Therefore, Cdir, b(X) ⊩ □aψ, as de-
sired.
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4.5 Conclusion and Outlook

This chapter presented pure directed simplicial complexes as models for belief. We
introduced the logic of local belief LLB, and proved it to be sound and complete
with respect to simplicial models based on these structures. The logic LLB extends
multi-agent K45 with axioms ensuring that agents believe the actual values of their
own local propositional variables. We proved that directed simplicial models are
equivalent to local relational models based on a proper, transitive, and euclidean
frame. Additionally, we showed that impure global simplicial models can be ex-
pressed as directed simplicial models. However, this does not hold the other way
around because directed simplicial complexes capture a less constrained accessi-
bility relation. Thus, the presented directed simplicial models can be considered a
generalization of global simplicial models.

A natural next step is to direct augmented simplicial complexes as mentioned
in Remark 6, which would allow us to reason in a more detailed manner about the
local views of agents. Indeed, let V = {a, b, c} be a set of vertices that are colored
as indicated by their names, and let S = (V,S) be the solid triangle spanned by
those vertices. The only facet of S is denoted with X and we refer to its ac-edge
as Y . Furthermore, let C = (V,S, ρ, {X, Y }) be an augmented complex. We can
direct C in many ways. Specifically, we will look at two directed versions C1 and C2

shown in Figure 4.7. The thick ac-edge indicates that this edge belongs to the set
W . Both complexes are structurally equivalent. However, the difference between
C1 and C2 is that agent a assigns 1 to Y in C2, and 0 in C1. In both complexes,
agent a does not deem X possible. Therefore, in C1, agent a has inconsistent
beliefs since it does not consider a world possible, whereas in C2 it has consistent
beliefs because it considers Y possible. Thus, we can distinguish between the two
structures. If we did not allow arbitrary faces to be global states, we could not
distinguish between C1 and C2, because agent a has inconsistent beliefs in both.

c

ab

c

ab

X X

ρ(a, Y ) = 0 ρ(a, Y ) = 1
ρ(a,X) = 0

Y Y

Figure 4.7: The directed augmented simplicial complexes C1 (left) and C2 (right)
only differ in the directions that agent a assigns to the ac-edge.
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Due to augmented complexes possibly being impure, we must adapt our frame-
work to the three-valued semantics of Randrianomentsoa et al. [46]. It seems
plausible that their results transfer to our setting, since directions only restrict
the accessibility relation to a subset of the indistinguishable states. Moreover, our
construction of the canonical model closely follows the one used for three-valued
semantics. Thus, already having gained insights about directions on arbitrary
faces is valuable.
Lastly, having an intuitive and simple solution to model beliefs allows us to

investigate belief dynamics on simplicial models, thereby addressing the next open
question posed by Castañeda et al. [17]: modeling agents capable of lying and
deceiving others. Such agents occur in distributed systems where agents may
deviate arbitrarily from the protocol (cf. Cachin et al. [13]). In such settings,
agents may need to act based on their beliefs.

63





5 Multi-simplicial Models

Chapter Organization. This chapter examines semi-simplicial sets as models
for group knowledge. The concept of group knowledge in this context extends
the traditional notion of distributed knowledge and is referred to as synergistic
knowledge. Instead of studying groups of agents, we examine agent patterns,
which capture synergies among group members. Section 5.1 introduces an explicit
representation of semi-simplicial sets, as well as an indistinguishability relation for
agent patterns. In Section 5.2, the logic Syn for synergistic knowledge is presented.
Section 5.3 introduces multi-simplicial models, and shows soundness of Syn with
respect to them. Applications of synergistic knowledge to distributed computing
are showcased in Section 5.4. Next, completeness of Syn with respect to multi-
simplicial models is established in Section 5.5. An alternative interpretation of
agent patterns is discussed in Section 5.6 . Finally, Section 5.7 concludes the
chapter and outlines possible future work.

So far, we have only considered simplicial complexes that forbid parallel faces.
Simplicial complexes that may contain repeated faces are called semi-simplicial
sets. These differ from simplicial sets in that they do not admit faces containing
multiple copies of the same vertex. For an introduction to simplicial sets, as well
as a discussion of the differences between semi-simplicial sets and simplicial sets,
we refer to Friedman [22].

Figure 5.1 shows a simplicial complex C1 and a semi-simplicial set C2. The
complex C1 is obtained by gluing together two solid triangles along their ab-edge,
whereas the semi-simplicial set C2 is formed by gluing them together at their
a-vertex and b-vertex. As a result, they do not have the same ab-boundary in C2.

Interestingly, for a group of agents G, the standard notion of indistinguishability
between two faces X and Y , based on

G ⊆ χ(X ∩ Y ), (5.1)

does not offer the necessary means to differentiate between simplicial complexes
and semi-simplicial sets. Indeed, despite the different structure, every group of
agents has the same indistinguishability relation in C1 and C2. For example, the
group G = {a, b} cannot distinguish between X and Y in either C1 or C2, because
the two triangles intersect at the a- and b-vertex. This raises the question of
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a

b

c cX YC1 :

a

b

c cX YC2 :

Figure 5.1: A difference between simplicial complexes and semi-simplicial sets is
that the latter can contain multiple edges connecting the same vertices.

whether an indistinguishability relation based on higher order connectivity could
describe semi-simplicial sets better.
The first to study semi-simplicial sets as models for group knowledge were

Goubault et al. [26]. To distinguish between complexes such as C1 and C2, the
authors base the notion of a group’s indistinguishability relation on the respec-
tive boundary of simplices. Informally, for a group G ⊆ Ag, the new notion of
indistinguishability between simplices is equivalent to:

S and T have the same G-boundary. (5.2)

We denote the simplices containing the facets X and Y in Figure 5.1 with SX and
SY . In C1, we see that SX and SY have the same ab-boundary because the edge
between the a-vertex and the b-vertex belongs to both SX and SY . Thus, agents
a and b together cannot distinguish SX from SY according to (5.2). On the other
hand, the semi-simplicial set C2 contains two edges between the a-vertex and the
b-vertex, one belonging to SX and the other one belonging to SY . Therefore, the
ab-boundary of SX is not equal to the ab-boundary of SY . Consequently, agents a
and b together are able to distinguish SX from SY based on (5.2). Condition (5.2)
is equivalent to the usual notion of indistinguishability if we consider simplicial
complexes without parallel faces.
Goubault et al. [26] observe that each of their semi-simplicial set models is

equivalent modulo bisimulation to a model without parallel faces. For example, in
Figure 5.2, the semi-simplicial set model C3 is bisimilar to the generalized global
simplicial model C4, because in both models a and b together can always determine
the actual state. Consequently, the group G = {a, b} knows whether p or ¬p holds
at all times. Goubault et al. [26] indicate that other logics may describe semi-
simplicial sets more adequately, and pose the following question: Could we define
a logic that is able to capture better the global geometry of the model? Answering
that question is the main concern of this chapter.
We propose the epistemic attitude of synergistic knowledge, which is able to
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describe scenarios where a group of agents can know more than just the conse-
quences of their pooled knowledge. Instead of reasoning about what a group of
agents knows, we unfold relations within a group. Thus, the synergistic knowledge
of two seemingly equal groups need not be the same, because the agents can have
different relations in both groups. We refer to this as synergy. Moreover, unlike
the standard category-theoretic definition of semi-simplicial sets, we employ an
explicit representation of semi-simplicial sets.

C3 : C4 : a b a ba b p ¬p p
¬p

p

Figure 5.2: The semi-simplicial set model C3 and the infinite generalized global
simplicial model C4 are logically equivalent according to the notion of
indistinguishability (5.2).

Simplicial complexes with parallel faces are represented by indexing faces. For
example, to describe C2, the indexed vertices are ({a}, 1), ({b}, 1), ({c}, 1), and({c}, 2);
the indexed edges are

({a, b}, 1), ({a, b}, 2), ({a, c}, 1), ({a, c}, 2), ({b, c}, 1), ({b, c}, 2);

and the indexed triangles are ({a, b, c}, 1), ({a, b, c}, 2). With this new type of
faces comes the need for a different representation of simplicial complexes. This
is because we cannot tell if ({c}, 1) is contained in ({a, b, c}, 1) or ({a, b, c}, 2). In
order to keep track of which indexed faces are contained in which indexed faces, we
specify the simplicial structure induced by an indexed face. We call this structure
the explicit simplex. The semi-simplicial set C2 can be represented as the set
containing the two explicit simplices:1

S1 =


({a, b, c}, 1)

({a, b}, 1), . . . , ({b, c}, 1)
({a}, 1), ({b}, 1), ({c}, 1)

 and S2 =


({a, b, c}, 2)

({a, b}, 2), . . . , ({b, c}, 2)
({a}, 1), ({b}, 1), ({c}, 2)

 .

Under this representation, it is evident that ({c}, 1) is only contained in S1. Fur-
ther, it is clear that the explicit simplices S1 and S2 share an a-vertex and a b-
vertex, but not an ab-edge. Due to the different representation of our structures, we

1In the previous chapters, we could also have represented a simplicial complex as a set of
simplices. However, in the case of non-indexed faces, this was not necessary, because a face
determines its subfaces.
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5. MULTI-SIMPLICIAL MODELS

refrain from calling them semi-simplicial sets and refer to them as multi-simplicial
complexes instead.
We accomplish to differentiate between C3 and C4 by reasoning not about what

a group of agents ∅ ̸= G ⊆ Ag can distinguish, but rather about what an agent
pattern ∅ ≠ G ⊆ Pow(Ag) \ {∅} is able to distinguish. Elements of G are thought
of as relations (or synergies) among agents. Hence, G represents a group of agents
as well as their synergies. For an agent pattern G, we base indistinguishability
between two explicit simplices S and T on:

G ⊆ (S ∩ T )◦, (5.3)

where the elements of (S∩T )◦ are the colors contained in the indexed faces shared
by S and T . For example, in C1 we have that (SX∩SY )◦ is the set {{a, b}, {a}, {b}}.
Our new notion of indistinguishability (5.3) has the same structure as (5.1), which
is possible due to our explicit representation of semi-simplicial sets. Based on
(5.3), the synergistic knowledge of agent patterns differs in C3 and C4. Indeed,
since C3 contains two parallel ab-edges, the agent pattern G = {{a}, {b}} cannot
determine whether p or ¬p holds in C3. Hence, in C3 the agents need additional
synergy to identify the actual state. In C4, however, the pattern G can always
identify the current state, and thus knows if p or ¬p. This chapter introduces
our simplicial structures, presents the logic for synergistic knowledge Syn, and
examines its properties.

5.1 Multi-simplicial Structures

This section formally introduces multi-simplicial structures and shows some key
properties. Let I be a set of indices. The set of all indexed faces is:

Agsi = {(A, i) | ∅ ≠ A ⊆ Ag and i ∈ I}.

A coloring is unnecessary, since an agent’s identifier is embedded in an indexed
face. For a ∈ Ag, the pair ({a}, i) can be thought of as agent a in local state i.
Let S ⊆ Agsi. An element (A, i) ∈ S is maximal in S if and only if:

∀(B, j) ∈ S.|A| ≥ |B|.

Definition 46 (Explicit Simplex). Let ∅ ̸= S ⊆ Agsi. S is an explicit simplex if
and only if:

S1: The maximal element is unique, i.e.,

if (A, i) ∈ S and (B, j) ∈ S are maximal in S, then A = B and i = j.

The maximal element of S is denoted as max(S).
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S2: S is uniquely downwards closed, i.e., for (B, i) ∈ S and ∅ ≠ C ⊆ B:

∃!j ∈ I.(C, j) ∈ S, where ∃!j means that there exists exactly one j.

S3: S contains nothing else, i.e.,

(B, i) ∈ S and (A, j) = max(S) implies B ⊆ A.

Definition 47 (Multi-simplicial Complex). Let C be a set of explicit simplices. C
is a multi-simplicial complex if and only if the following condition is met:

C: For every two explicit simplices S, T ∈ C, if there exist A ⊆ Ag and i ∈ I
with (A, i) ∈ S and (A, i) ∈ T , then:

for all ∅ ≠ B ⊆ A and all j (B, j) ∈ S iff (B, j) ∈ T.

When clear from context, we use the termsmulti-simplicial complex and complex
interchangeably. However, the term simplicial complex is reserved and always
corresponds to the notion introduced in Definition 5. We will also refer to explicit
simplices as simplices when no ambiguity arises.
We require condition C to ensure that a complex cannot contain two different

simplices with the same maximal indexed face (Lemma 38).

Lemma 38. Let C be a complex and S, T ∈ C. We find that:

max(S) = max(T ) implies S = T.

Proof. We only show S ⊆ T , because the other direction is symmetric. Let
(A, i) = max(S) and assume that (B, j) ∈ S. Because of S3, we have B ⊆ A.
By Condition C, we conclude (B, j) ∈ T .

Whenever the context is clear, we abbreviate ({a1, . . . , an}, i) as a1 . . . ani. Ad-
ditionally, we assume I = N for examples and use a row (or a mixed row-column)
notation for explicit simplices. For example, the complex C1 in Figure 5.1 is rep-
resented as

C1 =




abc0
ab0, ac0, bc0
a0, b0, c0

 ,


abc1

ab0, ac1, bc1
a0, b0, c1


 ,

where both elements of C1 share the element ab0. The complex C2, on the other
hand, is represented as

C2 =




abc0
ab0, ac0, bc0
a0, b0, c0

 ,


abc1

ab1, ac1, bc1
a0, b0, c1


 ,
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where we can clearly distinguish between the elements ab0 and ab1. Whenever we
refer to a simplex within a complex, we write ⟨a1, . . . , ani⟩ to denote the simplex
whose maximal element is ({a1, . . . , an}, i). Lemma 38 ensures that this notation
is well-defined.

Definition 48 (Indistinguishability). Let S ⊆ Agsi, we define:

S◦ = {A | ∃i ∈ I.(A, i) ∈ S}.

An agent pattern G is a non-empty subset of Pow(Ag) \ {∅}. The set of all agent
patterns is AP. We say that G cannot distinguish between two explicit simplices S
and T if and only if G ⊆ (S ∩ T )◦.

Definition 49 (∼C
G). Let C be a complex. For G ∈ AP we define:

∼C
G= {(S, T ) | S, T ∈ C and G ⊆ (S ∩ T )◦},

and write S ∼C
G T if and only if (S, T ) ∈∼C

G.

We motivate our choice of ∼C
G as an indistinguishability relation with Lemma 39

and Lemma 40.

Lemma 39. For a complex C, the relation ∼C
G is symmetric and transitive.

Proof. Symmetry immediately follows from the fact that set intersection is com-
mutative. To show transitivity, let S, T, U ∈ C such that S ∼C

G T and T ∼C
G U ,

i.e.,

G ⊆ (S ∩ T )◦ (5.4)

G ⊆ (T ∩ U)◦ (5.5)

Let A ∈ G. Because of (5.4), there exists i with:

(A, i) ∈ S and (A, i) ∈ T. (5.6)

By (5.5), there exists j with:

(A, j) ∈ T and (A, j) ∈ U. (5.7)

From (5.6), (5.7), and Condition S2, we obtain i = j. Thus, by (5.6) and (5.7),
we get A ∈ (S ∩U)◦. Since A was arbitrary in G, we conclude that G ⊆ (S ∩U)◦,
i.e., S ∼C

G T .

Given an agent pattern G, the set G⋆ (see Definition 50) consists of the singleton
sets of agents contained in G. If S is a simplex and G⋆ ⊆ S◦, then each agent a
contained in G has a corresponding vertex ({a}, i) in S.
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Definition 50 (G⋆). Let G ∈ AP be an agent pattern, we define:

G⋆ = {{a} | ∃A ∈ G and a ∈ A}.

Lemma 40. Let C be a complex and consider a maximal set of simplices SG ⊆ C
such that for any S ∈ SG we have G⋆ ⊆ S◦. The indistinguishability relation ∼C

G

is reflexive on SG × SG and empty otherwise.

Proof. We first show reflexivity. Let S ∈ SG. For each B ∈ G, we have to show
that B ∈ (S ∩ S)◦, i.e.,

there exists i with (B, i) ∈ S. (5.8)

Let (A, i) = max(S), and let b ∈ B. Because of G⋆ ⊆ S◦, there exists l such that
({b}, l) ∈ S. By S3 we get b ∈ A. Since b was arbitrary in B, we get B ⊆ A. By
S2 we conclude that (5.8) holds and reflexivity is established.
We now show that∼C

G is empty otherwise. Let S be a simplex such that G⋆ ⊈ S◦

and let T be an arbitrary simplex. Then there exists a,A with a ∈ A ∈ G and
{a} /∈ S◦, i.e.,

for all i, ({a}, i) /∈ S. (5.9)

Suppose towards a contradiction that:

G ⊆ (S ∩ T )◦. (5.10)

Because of A ∈ G, we get A ∈ (S ∩ T )◦. Hence A ∈ S◦, i.e., there exists l with
(A, l) ∈ S. With S2 and {a} ⊆ A, we find that there exists j with ({a}, j) ∈ S.
This is a contradiction to (5.9). Thus, (5.10) cannot hold.

Corollary 6. Let C be a complex and let SG be as in Lemma 40. It holds that ∼C
G

is an equivalence relation on SG × SG.

Lemma 41 and Lemma 42 are needed to show that adding synergies to an
agent pattern makes it stronger in the sense that it can distinguish between more
simplices (Lemma 43).

Lemma 41. Let C be a complex and let S, T ∈ C. Further, let A ∈ (S ∩ T )◦ and
∅ ≠ B ⊆ A. We find B ∈ (S ∩ T )◦.

Proof. From A ∈ (S ∩ T )◦, we obtain that there exists i such that (A, i) ∈ S and
(A, i) ∈ T . From S2 we find that there exists j such that (B, j) ∈ S. Thus, by C,
we get (B, j) ∈ T and we conclude B ∈ (S ∩ T )◦.

Corollary 7. Let C be a complex, and let G be an agent pattern. Further let
A,B ⊆ Ag be such that ∅ ≠ B ⊆ A ∈ G. It holds that:

∼C
G∪{B} = ∼C

G .
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Lemma 42 (Anti-Monotonicity). Let C be a complex. For all agent patterns
G,H ∈ AP, it holds that G ⊆ H implies ∼C

H ⊆ ∼C
G.

Proof. Assume G ⊆ H. For any two simplices S and T with S ∼C
H T , we have

G ⊆ H ⊆ (S ∩ T )◦ by Definition 48 and hence, S ∼C
G T .

Lemma 43. Let C be a complex, and let H1, H2, . . . , Hn ⊆ Ag be non-empty with
n ≥ 2. We have

∼C
{H1∪H2,...,Hn} ⊆ ∼

C
{H1,H2,...,Hn}.

Proof. From Lemma 41 and Lemma 42 we find that

∼C
{H1∪H2,...,Hn} = ∼C

{H1∪H2,H1,H2,...,Hn} ⊆ ∼
C
{H1,H2,...,Hn} .

In traditional relational semantics, distributed knowledge of a set of agents is
modeled by the indistinguishability relation that is given by the intersection of
the indistinguishability relations of the individual agents. Therefore, we call the
property: ⋂

B∈G

∼C
{B} = ∼C

G (SGK)

standard group knowledge.

Lemma 44. Let C be a complex, and let G be an agent pattern. The relation ∼C
G

satisfies (SGK).

Proof. (S, T ) ∈
⋂
B∈G ∼C

{B} iff for each B ∈ G, we have B ∈ (S ∩ T )◦ iff G ⊆
(S ∩ T )◦ iff S ∼C

G T .

The following lemma captures the intuition of distributed knowledge in our
framework. The intersection of the individual indistinguishability relations of all
agents of a non-empty group G corresponds to the agent pattern consisting of
singleton sets for each agent of G.

Lemma 45. Let ∅ ≠ G ⊆ Ag and H =
⋃
a∈G{{a}}. We have:⋂

a∈G

∼C
{{a}} = ∼C

H .

Proof. (S, T ) ∈
⋂
a∈G ∼C

{{a}} iff for each a ∈ G, we have {a} ∈ (S ∩ T )◦ iff (by the

definition of H) H ⊆ (S ∩ T )◦ iff S ∼C
H T .
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5.2 Syntax

The logic of synergistic knowledge is a normal modal logic that includes a modal-
ity [G] for each agent pattern G ∈ AP. Formulas of the language of synergistic
knowledge Lsyn are inductively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [G]ϕ

where p ∈ Prop and G ∈ AP is an agent pattern. The remaining Boolean connec-
tives are defined as usual. In particular, we set ⊥ = p∧¬p for some fixed p ∈ Prop,
and we write alive(G) for ¬[G]⊥. If G is an agent pattern, then GC denotes its
complement, which is defined as:

GC = {H ∈ Pow(Ag) \ {∅} | ∄B ∈ G.H ⊆ B}.

Moreover, we define:

dead(G) =
∧
B∈G

¬alive({B}).

Notice that dead(G) ̸≡ ¬alive(G). Indeed, dead(G) expresses that for each B ∈ G,
the pattern {B} is dead, whereas ¬alive(G) is true if some {B} ⊆ G is dead. The
axiom system Syn consists of the following axioms:

all propositional tautologies (Taut)

[G](ϕ→ ψ)→ ([G]ϕ→ [G]ψ) (K)

ϕ→ [G]¬[G]¬ϕ (B)

[G]ϕ→ [G][G]ϕ (4)

alive(G)→ ([G]ϕ→ ϕ) (T)

alive(G) ∧ dead(GC) ∧ ϕ→ [G](dead(GC)→ ϕ) (P)∨
G∈AP

alive(G) (NE)

[G]ϕ→ [H]ϕ if G ⊆ H (Mono)

[G ∪ {B}]ϕ→ [G]ϕ if there exists A ∈ G and ∅ ≠ B ⊆ A (Equiv)

alive(G) ∧ alive(H)→ alive(G ∪H) (Union)

alive(G)→ alive({A ∪B}) if A,B ∈ G (Clo)

and the inference rules modus ponens MP and [G]-necessitation [G]-Nec. We write
⊢ φ to denote that φ ∈ Lsyn can be deduced in the system Syn.

A A→ B

B
(MP)

A

[G]A
([G]-Nec)

73



5. MULTI-SIMPLICIAL MODELS

Axiom NE states that there is always an alive agent pattern; Mono asserts that
an agent pattern cannot know more than its supersets; Equiv ensures that adding
already existing synergies to an agent pattern does not strengthen its knowledge;
and Union and Clo enforce standard closure properties. Lastly, the axiom P reflects
Lemma 38.

5.3 Simplicial Semantics

A complex C equipped with a labeling L : C → Pow(Prop) is a multi-simplicial
model.

Definition 51 (Multi-simplicial Model). A multi-simplicial model C = (C, L) is
a pair such that:

1. C is a complex;

2. L : C→ Pow(Prop) is a labeling.

Given the resemblance of multi-simplicial models to global simplicial models (see
Definition 6), we overload notation and use ⊩σ for satisfiability on multi-simplicial
models as well. We also predominantly use the letters S and T to refer to global
states, rather than X and Y as in the previous chapters, to emphasize that global
states are explicit simplices.

Definition 52 (⊩σ). Let C = (C, L) be a multi-simplicial model, and let S ∈ C be
an explicit simplex. We define the relation C, S ⊩σ ϕ by induction on ϕ ∈ Lsyn:

C, S ⊩σ p iff p ∈ L(S)
C, S ⊩σ ¬ϕ iff C, S ̸⊩σ ϕ

C, S ⊩σ ϕ ∧ ψ iff C, S ⊩σ ϕ and C, S ⊩σ ψ

C, S ⊩σ [G]ϕ iff S ∼C
G T implies C, T ⊩σ ϕ, for all T ∈ C.

We write C ⊩σ ϕ, if C, S ⊩σ ϕ for all S ∈ C. A formula ϕ is σ-valid, denoted by
⊩σ ϕ, if C ⊩σ ϕ for all models C. Whenever it is clear from the context we omit
the subscript σ.

Remark 9. Since a multi-simplicial complex is represented as a set of explicit
simplices, it can contain two simplices S and T with S ⊊ T . Consequently, a
multi-simplicial model based on such a complex contains subsimplices as global
states. In Chapter 3, we employed a different modeling approach to represent that
certain faces of a simplicial complex are global states. Specifically, we used the
approach by Goubault et al. [27], which augments a simplicial complex C = (V,S)
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with a set of worlds W such that F(C) ⊆ W ⊆ S. However, this is not needed
for multi-simplicial complexes because the information of the set W is contained
in their definition.

Corollary 8 is an immediate consequence of the previously introduced Corol-
lary 6. It relates the formula alive(G) to the structure of the underlying complex
in the expected way.

Corollary 8. Let C = (C, L) be a simplicial model. We find:

C, S ⊩σ alive(G) iff S ∼C
G S.

Soundness of Syn with respect to simplicial models follows as usual. We present
the proof of completeness in Section 5.5.

Theorem 4 (Soundness). ⊢ φ implies ⊩σ φ.

Proof. We only show T, P, NE, Union, Clo, Mono, Equiv, and [G]-Nec. Let
C = (C, L) be an arbitrary multi-simplicial model.

1. T: Consider a simplex S ∈ C and assume that C, S ⊩σ alive(G) and C, S ⊩σ

[G]φ. By Corollary 8, we find S ∼C
G S and thus C, S ⊩σ φ because C, S ⊩σ

[G]φ.

2. P: Consider a simplex S ∈ C with C, S ⊩σ alive(G) ∧ dead(GC) ∧ ϕ. By
assumption, G must have a unique maximal element. Indeed, towards a
contradiction, assume that it is not the case and G has the maximal elements
B1, B2, . . . , Bn. Furthermore, let:

B =
n⋃
i=1

Bi.

It is straightforward to verify that C, S ⊩σ alive({B}). However, since
B ∈ GC , by assumption, it holds that C, S ⊩σ dead({B}), which is a con-
tradiction. Additionally, by S3, the maximal element of G, say A, is the
set of all agents alive in S. Let T ∈ C be such that S ∼C

G T and assume
C, T ⊩σ dead(GC). By transitivity of ∼C

G and Corollary 8, we have that
C, T ⊩σ alive(G). Thus, by the same reasoning as before, A is the set of all
alive agents for T as well, i.e., max(S) = (A, i) and max(T ) = (A, i) for some
i ∈ I. Finally, by Lemma 38, we find that S = T , and thus C, T ⊩σ ϕ.

3. NE: Follows because simplices are not empty.
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4. Union: Consider a simplex S ∈ C and assume that C, S ⊩σ alive(G) and
C, S ⊩σ alive(H). By Corollary 8 it holds that S ∼C

G S and S ∼C
H S. By

Lemma 44 we have

∼C
G∪H=

⋂
B∈G∪H

∼C
{B}=

(⋂
B∈G

∼C
{B}

)
∩

(⋂
B∈H

∼C
{B}

)
,

and thus S ∼C
G∪H S and C, S ⊩σ alive(G ∪H).

5. Clo: Consider a world S ∈ C and assume that C, S ⊩σ alive(G), and let
A,B ∈ G. By Lemma 41 we find S ∼C

{A} S and S ∼C
{B} S, i.e., there

exist i, j ∈ I such that (A, i) ∈ S and (B, j) ∈ S. Furthermore, let (C, k) =
max(S). By S3, we find A ⊆ C as well as B ⊆ C, and thus A∪B ⊆ C. Since
S is downwards closed by S2, there exists k ∈ I such that ({A∪B}, k) ∈ S.
Hence, S ∼C

{A∪B} S and C, S ⊩σ alive({A ∪B}) by Lemma 49.

6. Mono: Follows from Lemma 42.

7. Equiv: Follows from Corollary 7.

Lastly, we show ([G]-Nec). Let ϕ ∈ Lsyn and assume that ϕ is σ-valid, i.e., for
any multi-simplicial model C = (C, L) and S ∈ C, we have C, S ⊩σ ϕ. Let
S ∈ C be arbitrary. By assumption, it holds that for all T with S ∼C

G T , we have
C, T ⊩σ ϕ. Thus, C, S ⊩σ [G]ϕ by the definition of truth. Since S was arbitrary,
we have C ⊩σ [G]ϕ. Lastly, since C was arbitrary, the formula [G]ϕ is σ-valid, i.e.,
⊩σ [G]ϕ.

5.4 Examples

The purpose of this section is to illustrate the expressivity of multi-simplicial
models. We first present a simple multi-simplicial model in Example 5.3, which
contains a subsimplex as a world. Multi-simplicial models with subsimplices as
worlds can be used to model the uncertainty about the presence of other agents.
Such scenarios are common in distributed systems where processes may crash.
Example 9 elevates the example of C2 in Figure 5.1 from two triangles to two
tetrahedrons. Lastly, Example 10 and Example 11 are of special interest because
they apply our logic to well-known concepts in distributed computing. In both
examples, synergistic knowledge can be interpreted as the knowledge that can be
obtained when being able to access the functionality provided by some service.
For example, the meaning of the agent pattern G = {{a, b, c}, {b, c}} is that i) the
agents a, b, and c can use the functionality provided by the service, and ii) the
agents b and c alone can do so as well. In Example 10, the service is a consensus
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object, which allows processes to synchronize. The pattern G represents that i)
all agents can reach consensus, and ii) b and c can reach consensus without agent
a. In Example 11, the service is a shared coin, and G represents that i) all agents
together can establish a shared coin, and ii) the agents b and c can establish a
shared coin. Moreover, Example 10 captures the idea that for some applications,
the agent pattern must include the area of the triangle and not just its edges.
Thus, Example 10 shows the difference between mutual and pairwise synergy.
Example 11 demonstrates that the patterns {{a, b}, {a, c}}, {{a, b}, {b, c}}, and
{{b, c}, {a, c}} are weaker than the pattern {{a, b}, {a, c}, {b, c}}.
Regarding notation, from now on we will omit the set parentheses for agent

patterns whenever it is clear from the context and write for example [abc, ab, ac]
instead of [{{a, b, c}, {a, b}, {a, c}}].

Example 8 (Two Agents). Let Ag = {a, b}, and consider the complex:

C =

{{
ab0
a0, b0

}
, {a0}

}
,

depicted in Figure 5.3. Notice that C contains the simplex ⟨a0⟩, which is also
included in the edge ⟨ab0⟩. Furthermore, let L be an arbitrary labeling and let C =
(C, L) be a multi-simplicial model. It is straightforward to verify that C, ⟨ab0⟩ ⊩σ

alive(a) and C, ⟨ab0⟩ ⊩σ alive(b). However, it holds that C, ⟨a0⟩, ̸⊩σ alive(b) because
{b} ̸⊆ ⟨a0⟩◦, and hence C, ⟨a0⟩ ⊩σ [b]⊥. Moreover, agent a alone does not know
whether alive(b) because agent a cannot distinguish ⟨a0⟩ from ⟨ab0⟩ due to {{a}} ⊆
(⟨a0⟩ ∩ ⟨ab0⟩)◦.

a b

Figure 5.3: A model in which a considers it possible that it is the only agent
alive. The loop indicates that the a-vertex belongs to the complex as
a subsimplex. The loop is not part of the complex.

Example 9 (Two Tetrahedrons). Consider the complex:

C =




abcd0
abc0, bcd0, acd0, abd0,

ab0, bc0, ac0, ...
a0, b0, c0, d0

 ,


abcd1

abc1, bcd1, acd1, abd1
ab1, bc1, ac1, ...
a0, b0, c0, d1


 ,
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a

b

c

d

d

Figure 5.4: Two tetrahedron sharing only the vertices a, b, and c. Dashed lines
indicate edges that are hidden from the front view. The two shades of
gray highlight the visible faces of the lower tetrahedron.

depicted in Figure 5.4. Let L be a labeling such that for some p ∈ Prop, we have that
p ∈ L(⟨abcd0⟩) and p ̸∈ L(⟨abcd1⟩). Finally, let C = (C, L) be a multi-simplicial
model. We observe that:

(⟨abcd0⟩ ∩ ⟨abcd1⟩)◦ =
({
a0, b0, c0

})◦
= {{a}, {b}, {c}}.

Without synergy, the agents a, b, and c cannot know p in ⟨abcd0⟩ because

{{a}, {b}, {c}} ⊆ (⟨abcd0⟩ ∩ ⟨abcd1⟩)◦,

and hence, the agents cannot distinguish ⟨abcd0⟩ from ⟨abcd1⟩, i.e.

C, ⟨abcd1⟩ ⊮σ [a, b, c]p.

However, the agent pattern G = {{a, b, c}} can distinguish ⟨abcd0⟩ and ⟨abcd1⟩,
and thus:

C, ⟨abcd0⟩) ⊩σ [G]p, as well as C, ⟨abcd1⟩ ⊩σ [G]¬p.

Example 10 (Consensus Number). This example demonstrates how multi-simplicial
models can be used to reason about the hierarchy of synchronization objects (cf. Her-
lihy [34]). In the asynchronous shared memory model, an n-consensus object allows
n processes to reach wait-free agreement. The consensus number of an object O is
the largest n for which it is possible to implement an n-consensus object by only
using objects of type O and atomic registers. This introduces a hierarchy on shared
memory objects because:

1. no combination of objects with consensus number k < n can implement an
object with consensus number n (cf. Herlihy [34, Thm. 1]);
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2. objects with consensus number n ≥ k can implement objects with consensus
number k (cf. Herlihy [34, Thm. 14]).

The lowest elements of this hierarchy are atomic registers with consensus number 1
(cf. Herlihy [34, Thm. 2]).

Let d be a propositional variable such that processes can only know whether d
or ¬d is the case, if they can carry out a computation that relies on objects with
a consensus number of at least k. For example, d could be computed by a smart
contract with consensus number k (cf. Guerraoui et al. [32] and Alpos et al. [3]).

Our goal is to capture this scenario by a multi-simplicial model C = (C, L). Let
Ag be the set of finitely many processes. We construct C as follows: the complex
C consists of two simplices that contain all processes and that only differ in their
maximal element, i.e., the two simplices have maximal elements (Ag, i) and (Ag, j)
with i ̸= j. The labeling L is chosen such that it assigns different values for d to
both simplices. We interpret an element {p1, . . . , pℓ} of an agent pattern G as the
processes of that element having access to objects with consensus number ℓ. For
three agents a, b, and c, the model C = (C, L) is given by the complex

C =




abc0
ab0
bc0
ac0

a0, b0, c0

 ,


abc1
ab0
bc0
ac0

a0, b0, c0




with a labeling L such that

C, ⟨abc0⟩ ⊩σ d and C, ⟨abc1⟩ ⊮σ d.

It is easy to check that ⟨abc0⟩ ∼C
ab,ac,bc ⟨abc1⟩ because the simplices only differ in

their maximal element. Thus, the agents cannot know whether d or ¬d if they have
only access to objects with consensus number 2. However,

C ⊩σ [abc]d ∨ [abc]¬d

is true which shows that, when having access to an object with consensus number 3,
the agents will always be able to determine whether d or ¬d. Furthermore, observe
that the pattern G = {{a}, {b}, {c}} represents traditional distributed knowledge
where the processes only communicate by reading and writing to atomic registers.
Lastly, since

C ̸⊩σ [G]d ∨ [G]¬d,

C captures that distributed knowledge is not sufficient in this case.
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Example 11 (Dining Cryptographers). The dining cryptographers problem, pro-
posed by Chaum [19], illustrates how a shared-coin primitive can be used by three
cryptographers (i.e., agents) to find out whether their employer or one of their
peers paid for the dinner. However, if their employer did not pay, the payer wishes
to remain anonymous. For the sake of space, we do not give a full formalization of
the dining cryptographers problem. Instead, we solely focus on the ability of agree-
ing on a coin-flip and the resulting knowledge. In what follows, we will provide
a multi-simplicial model in which the agents a, b and c can determine whether or
not their employer paid if and only if they have pairwise access to a shared coin.
Let the propositional variable p denote that their employer paid. We interpret an
agent pattern G = {{a, b}} as a and b, having access to a shared coin. Our model
C = (C, L), depicted in Figure 5.5, is given by the complex:

C =




abc0
ab0
bc0
ac0

a0, b0, c0

 ,


abc1
ab1
bc0
ac0

a0, b0, c0

 ,


abc2
ab0
bc1
ac0

a0, b0, c0

 ,


abc3
ab0
bc0
ac1

a0, b0, c0

 ,


abc4
ab1
bc1
ac0

a0, b0, c0

 ,


abc5
ab1
bc0
ac1

a0, b0, c0

 ,


abc6
ab0
bc1
ac1

a0, b0, c0

 ,


abc7
ab1
bc1
ac1

a0, b0, c0





.

The labeling L is chosen such that:

p ∈ L(⟨abc0⟩), p ̸∈ L(⟨abc1⟩), p ̸∈ L(⟨abc2⟩), p ̸∈ L(⟨abc3⟩),
p ∈ L(⟨abc4⟩), p ∈ L(⟨abc5⟩), p ∈ L(⟨abc6⟩), p ̸∈ L(⟨abc7⟩).

Consider the agent pattern G = {{a, b}, {a, c}, {b, c}}, then:

C ⊩σ [G]p ∨ [G]¬p, (5.11)

i.e., in any world, if all agents have pairwise access to shared coins, they can know
the value of p. Further, for each agent pattern H ⊊ G and each S ∈ C:

C, S ̸⊩σ [H]p ∨ [H]¬p. (5.12)

Notice that (5.12) states that there is no world, where an agent pattern H ⊊ G
can know whether p or ¬p, and hence, it is stronger than C ̸⊩σ [H]p ∨ [H]¬p.
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a

b c
ab

0
bc0

ac0

ab
1 ac1

bc1

Figure 5.5: Dining cryptographers model. In total, there are eight different ways to
form a solid triangle. For simplicity, the solid triangles are not labeled.
The simplex ⟨abc3⟩ is illustrated by the blue area, and the simplex
⟨abc7⟩ is represented by the gray area.

5.5 Completeness

To establish completeness of Syn with respect to multi-simplicial models, we take
a detour via relational models and focus on a fragment of Syn, denoted by Syn-,
which omits the axiom P. In this chapter, we adopt the global point of view. For
brevity, we will omit explicitly referring to our models as global. We first introduce
κ-models, which represent multi-agent relational models in which the property
(SGK), i.e., standard group knowledge, need not be satisfied. We can employ
the standard techniques to show that Syn- is sound and complete with respect
to κ-models. Next, we present δ-models, which are κ-models that additionally
satisfy (SGK). The proof that Syn- is complete with respect to δ-models is more
involved and requires the so-called unraveling method (cf. Halpern et al. [21] and
Van der Hoek and Meyer [49]). Once soundness and completeness of Syn- with
respect to those models is established, we show that Syn is sound and complete
with respect to proper2 δ-models. Lastly, we prove completeness of Syn with
respect to multi-simplicial models by relating them to proper δ-models.

2Properness with respect to agent patterns will be defined later. The definition follows the
same principles as Definition 11.
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5.5.1 κ-models

This section introduces a generalization of frames. Instead of reasoning about
the view of a group of agents, a pattern frame describes which agent patterns
can distinguish which worlds. Relational models based on such frames are called
pattern models. A special type of pattern frames are κ-frames. A pattern model
whose underlying frame is a κ-frame is referred to as a κ-model. After discussing
the properties of κ-models, we show that Syn- is sound and complete with respect
to κ-models.

Definition 53 (Pattern Frame). A pattern frame is a pair (W,R) such that:

1. W is a set of possible worlds;

2. R is a function assigning a relation RG to each agent pattern G ∈ AP.

The naming conventions for frames apply to pattern frames. If a frame is sym-
metric and transitive, we write F = (W,∼) instead of F = (W,R) to indicate
those properties. Throughout this chapter, if clear from context, we refer to pat-
tern frames as frames.

Definition 54 (Pattern Model). A pattern model is a pairM = (F, V ) where:

1. F = (W,R) is a frame;

2. V : W → Pow(Prop) is a valuation.

Remark 10 (Notation). We reserve capital letters for explicit simplices and low-
ercase letters for worlds. For example, S, T, and U denote explicit simplices, and
u, v, and w represent worlds of a pattern frame.

We define the satisfaction relation for pattern models as expected. We overload
notation and use ⊩ for pattern models and global relational models.

Definition 55 (⊩). Let F = (W,R) be a frame, and letM = (F, V ) be a pattern
model. For all worlds w ∈ W , we define the relation M, w ⊩ ϕ by induction on
ϕ ∈ Lsyn:

M, w ⊩ p iff p ∈ V (w)

M, w ⊩ ¬ϕ iff M, w ̸⊩ ϕ

M, w ⊩ ϕ ∧ ψ iff M, w ⊩ ϕ andM, w ⊩ ψ

M, w ⊩ [G]ϕ iff wRGv impliesM, v ⊩ ϕ, for all v ∈ W.
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Let F = (W,R) be a frame and consider the pattern model M = (F, V ). If
M, w ⊩ ϕ holds, then ϕ is said to be satisfied at the world w in M. A formula
ϕ ∈ Lsyn is valid in M, denoted byM ⊩ ϕ, if it is satisfied at all worlds w ∈ W .
Moreover, ϕ is said to be valid, written ⊩ ϕ, if ϕ is valid in every pattern model.
Definition 56 specifies what it means for an agent pattern to be alive.

Definition 56 (Alive(G)F ). Let F = (W,R) be a frame. We define:

Alive(G)F = {w ∈ W | wRGw}.

If the frame is clear from the context, we omit the subscript F and write Alive(G)
instead of Alive(G)F .
Definition 57 introduces κ-frames. Frames that need not satisfy (SGK) are some-

times referred to as pseudo-frames (cf. Ågotnes et al. [1]).

Definition 57 (κ-frame). A symmetric and transitive frame F = (W,∼) is called
κ-frame if and only if for all agent patterns G and H:

K1: Alive(G)F ∩ Alive(H)F ⊆ Alive(G ∪H)F ;

K2: Alive(G)F ⊆ Alive({A ∪B})F for A,B ∈ G;

K3: ∼H ⊆ ∼G, if G ⊆ H;

K4: ∼G ⊆ ∼G∪{B} if there exists A ∈ G with ∅ ≠ B ⊆ A;

NE: for all w ∈ W , there exists an agent pattern G such that w ∼G w.

Besides reasoning about the view of agent patterns instead of the view of a
group of agents, κ-frames are similar to the by Goubault et al. [26] introduced
generalized epistemic frames. Those frames satisfy conditions K1,K3, and NE, if G
and H were sets of agents. Property K1 ensures that for each world, there exists a
maximal alive agent pattern; K3 guarantees that an agent pattern G cannot know
more than its supersets; and, lastly, NE ensures that there are no empty-worlds,
i.e., worlds in which no agent pattern is alive.
The condition K2 forces alive(G) to be downwards closed, and K4 states that

adding subpatterns to G does not strengthen its knowledge. Nonetheless, as shown
below in Example 12, κ-frames do not necessarily satisfy (SGK). The properties
K3 and K4 together yield Lemma 46.

Lemma 46. Let F = (W,∼) be a κ-frame, and let G be an agent pattern such
that there exists A ∈ G with ∅ ≠ B ⊆ A. It holds that ∼G ⊆ ∼{B}.

Proof. By K3 and K4 we have ∼G ⊆ ∼G∪{B} ⊆ ∼{B}.
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Remark 11. Let F = (W,∼) be a κ-frame, and let G be an agent pattern as in
Lemma 46. By K3, we have ∼G = ∼G∪{B}.

Example 12. Let Ag = {a, b} and consider the κ-frame F shown in Figure 5.6.
The agents patterns {{a}} and {{b}} cannot distinguish between the worlds w1 and
w2. However, their union G = {{a}, {b}} can tell the two worlds apart. Thus, the
κ-frame F does not satisfy property (SGK).

w1 w2

{{a}}

{{b}}

Figure 5.6: The κ-frame used in Example 12 does not satisfy standard group knowl-
edge. Reflexive arrows are implicit.

Definition 58 (κ-model). A pattern modelM = (F, V ) is a κ-model if and only
if F is a κ-frame.

A formula ϕ ∈ Lsyn is κ-valid, denoted ⊩κ ϕ, if M ⊩ ϕ for all κ-models M.
Lemma 47 shows a formula that is κ-valid.

Lemma 47. Let G ∈ AP be an agent pattern such that there exists A ∈ G and
∅ ≠ B ⊆ A. The following holds:

⊩κ alive(G)→ alive({B}).

Proof. Let F = (W,∼) be a frame such that the pattern model M = (F, V ) is
a κ-model. Further, assume that M, w ⊩ alive(G). By definition, there exists a
world v ∈ W such that w ∼G v and M, v ⊩ ⊤. By symmetry and transitivity
of ∼G, we obtain that w ∼G w. By Lemma 46, it holds that (w,w) ∈∼{B}, and
therefore we find thatM, w ⊩ alive({B}).

Lemma 48 states that if M = (F, V ) is a model based on a symmetric and
transitive frame F = (W,∼), then the formula alive(G) is satisfied at a world w if
and only if that world has a reflexive arrow labeled with G.

Lemma 48. Let F = (W,∼) be a symmetric and transitive frame, and let M =
(F, V ) be a pattern model. It holds that:

M, w ⊩ alive(G) iff w ∈ Alive(G)F .

84



5.5. COMPLETENESS

Proof. We first show that

M, w ⊩ alive(G) implies w ∈ Alive(G)F .

Assume M, w ⊩ alive(G), i.e., M, w ̸⊩ [G]⊥. By the definition of truth, there
must exist v ∈ W with w ∼G v and M, v ⊩ ⊤. By symmetry, we have v ∼G w
and by transitivity we have w ∼G w. Hence, w ∈ Alive(G)F . We now show that

w ∈ Alive(G)F implies M, w ⊩ alive(G).

Assume w ∈ Alive(G)F . By definition of Alive(G)F , we have that w ∼G w. There-
fore,M, w ̸⊩ [G]⊥ by the definition of truth.

The soundness proof is straightforward.

Theorem 5 (Soundness). Syn- is sound with respect to κ-models.

Proof. We only show the cases for the axioms T, NE, Union, Clo, Mono, Equiv,
and [G]-Nec. Let F = (W,∼) be a frame such thatM = (F, V ) is a κ-model.

1. T: Consider a world w ∈ W and assume thatM, w ⊩ alive(G) andM, w ⊩
[G]ϕ. By Lemma 48 we have w ∈ Alive(G), i.e., w ∼G w. By the definition
of truth we haveM, w ⊩ ϕ.

2. NE: Let w ∈ W be arbitrary. By NE, there exists an agent pattern G such
that w ∼G w. By Lemma 48,M, w ⊩ alive(G) and thus

M, w ⊩
∨
G∈AP

alive(G).

3. Union: Assume M, w ⊩ alive(G) and M, w ⊩ alive(H). By Lemma 48,
w ∈ Alive(G) ∩ Alive(H). By K1, w ∈ Alive(G ∪ H) and by Lemma 48
M, w ⊩ alive(G ∪H).

4. Clo: Assume M, w ⊩ alive(G) and let A,B ∈ G. By Lemma 48, we have
w ∈ Alive(G). By K2, w ∈ Alive({A ∪ B}) and by Lemma 48 we obtain
M, w ⊩ alive({A ∪B}).

5. Mono: Assume that G ⊆ H for arbitrary G,H. Let w ∈ W be arbitrary
such thatM, w ⊩ [G]ϕ. By the definition of truth, w ∼G v impliesM, v ⊩ ϕ
for all v ∈ W . By K3 we have that ∼H ⊆ ∼G, i.e., w ∼H v implies w ∼G v.
Thus,M, v ⊩ ϕ whenever w ∼H v. Therefore, it follows thatM, w ⊩ [H]ϕ.

85



5. MULTI-SIMPLICIAL MODELS

6. Equiv: Assume that for an arbitrary G, there exists a set A ∈ G with B ⊆ A.
Further, let w ∈ W be arbitrary such thatM, w ⊩ [G ∪ {B}]ϕ. Therefore,
for all v ∈ W , w ∼G∪{B} v impliesM, v ⊩ ϕ by assumption. By K4 we have
that ∼G ⊆ ∼G∪{B} and thus w ∼G v implies w ∼G∪{B} v. Hence,M, v ⊩ ϕ
whenever w ∼G v and thusM, w ⊩ [G]ϕ.

Lastly, we show G-Nec. Let ϕ ∈ Lsyn and assume ⊩κ ϕ. We need to show that
[G]ϕ is κ-valid. Let F = (W,∼) be an arbitrary κ-frame and letM = (F, V ) be
a κ-model. By assumption,M, w ⊩ ϕ for all w ∈ W . Thus, for any v ∈ W with
w ∼G v, it holds that M, v ⊩ ϕ. By the definition of truth, M, w ⊩ [G]ϕ, and
since w ∈ W was arbitrary,M ⊩ [G]ϕ. Moreover, due toM being arbitrary, [G]ϕ
is κ-valid.

We will now establish completeness of Syn− with respect to κ-models. In what
follows, we set up the usual machinery to construct the canonical model based on
maximal consistent sets (see Definition 40).

Definition 59. Let G ∈ AP and let Γ ⊆ Lsyn, we define

Γ \ [G] = {ϕ | [G]ϕ ∈ Γ}.

Definition 60 (Canonical Model). The canonical frame F c = (W c,∼c) and the
canonical modelMc = (F c, V c) for Syn− are defined as:

1. W c = {Γ ⊆ Lsyn | Γ is a maximal consistent set for Syn−} is the set of pos-
sible worlds;

2. ∼c is a function that assigns to each agent pattern G a relation

∼cG= {(Γ,∆) ∈ W c ×W c | Γ \ [G] ⊆ ∆};

3. V c : W c → Pow(Prop) is a function defined by

V c(Γ) = {p ∈ Prop | p ∈ Γ}.

Lemma 49. Let G ∈ AP and Γ ∈ W c, then

Γ ∈ Alive(G)F c iff alive(G) ∈ Γ.

Proof. We first show that

Γ ∈ Alive(G)F c implies alive(G) ∈ Γ.

Assume Γ ∈ Alive(G)F c . By Definition 56, Γ ∼cG Γ. Towards a contradiction,
assume that alive(G) ̸∈ Γ, i.e., [G]⊥ ∈ Γ by the maximal consistency of Γ. Since
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Γ ∼cG Γ, i.e., Γ \ [G] ⊆ Γ, this yields ⊥ ∈ Γ, which contradicts the consistency of
Γ. Thus alive(G) ∈ Γ. We now show that

alive(G) ∈ Γ implies Γ ∈ Alive(G)F c .

Assume alive(G) ∈ Γ. We need to show Γ ∼cG Γ. Let ϕ ∈ Γ \ [G], i.e., [G]ϕ ∈ Γ.
Since

alive(G)→ ([G]ϕ→ ϕ)

is an axiom of Syn- and by the maximal consistency of Γ, it follows that ϕ ∈ Γ,
i.e., Γ ∼cG Γ. By Definition 56, we obtain Γ ∈ Alive(G)F c .

The next lemma states that F c satisfies the properties of κ-frames.

Lemma 50. F c is a κ-frame.

Proof. We show that F c satisfies all properties of κ-frames.

1. Symmetry: Assume Γ \ [G] ⊆ ∆. We need to show ∆ \ [G] ⊆ Γ. Let
ϕ ∈ ∆ \ [G], i.e., [G]ϕ ∈ ∆. Since ∆ is a maximal consistent set, we also
have ¬¬ϕ ∈ ∆ \ [G]. Assume now towards a contradiction that ϕ ̸∈ Γ. Since
Γ is a maximal consistent set and B is an axiom of Syn-, we have ¬ϕ ∈ Γ
as well as [G]¬[G]¬¬ϕ ∈ Γ by the maximal consistency of Γ. Therefore,
¬[G]¬¬ϕ ∈ Γ \ [G] and thus ¬[G]¬¬ϕ ∈ ∆. This is a contradiction because
by assumption, we have [G]¬¬ϕ ∈ ∆. Hence, we conclude ϕ ∈ Γ which
shows that ∆ \ [G] ⊆ Γ.

2. Transitivity: Assume Γ ∼cG ∆ and ∆ ∼cG Φ. We need to show Γ ∼cG Φ. By
assumption, we have Γ \ [G] ⊆ ∆ and ∆ \ [G] ⊆ Φ. Let ϕ ∈ Γ \ [G], i.e.,
[G]ϕ ∈ Γ. Since Γ is maximally consistent and because 4 is an axiom of Syn-,
we have [G][G]ϕ ∈ Γ, and thus [G]ϕ ∈ ∆. Further, since ∆ ∼cG Φ, we have
ϕ ∈ Φ and hence Γ \ [G] ⊆ Φ.

3. K1: Assume Γ ∈ Alive(G) and Γ ∈ Alive(H). By Lemma 49 it follows that
alive(G) ∈ Γ and alive(H) ∈ Γ. Since Γ is a maximal consistent set and
Union is an axiom of Syn- it follows that alive(G ∪ H) ∈ Γ. By Lemma 49
we have Γ ∈ Alive(G ∪H).

4. K2: Assume A,B ∈ G and let Γ ∈ Alive(G). By Lemma 49 it follows that
alive(G) ∈ Γ. Since Γ is a maximal consistent set and Clo is an axiom of
Syn- it follows that alive({A∪B}) ∈ Γ by the maximal consistency of Γ. By
Lemma 49 we have Γ ∈ Alive({A ∪B}).

5. K3: Assume (Γ,∆) ∈∼cH , we need to show that (Γ,∆) ∈∼cG. Let ϕ ∈ Γ \ [G],
i.e., [G]ϕ ∈ Γ. Since Γ is maximally consistent and Mono is an axiom of Syn-

we have that [H]ϕ ∈ Γ. Since we assumed that Γ \ [H] ⊆ ∆ we have ϕ ∈ ∆.
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6. K4: Assume (Γ,∆) ∈∼cG, we need to show that (Γ,∆) ∈∼cG∪{B}. Let ϕ ∈
Γ\[G∪{B}], i.e., [G∪{B}]ϕ ∈ Γ. Since Γ is maximally consistent and Equiv
is an axiom of Syn- we have that [G]ϕ ∈ Γ. Since we assumed Γ \ [G] ⊆ ∆
we have ϕ ∈ ∆.

7. NE: Let Γ ∈ W c be arbitrary. Since Γ is maximally consistent and NE is an
axiom of Syn-, there exists an agent pattern G such that alive(G) ∈ Γ. By
Lemma 49, Γ ∼cG Γ.

The truth lemma is standard and completeness follows.

Lemma 51 (Truth Lemma). For each world Γ ∈ W c and each formula ϕ ∈ Lsyn,
it holds that:

Mc,Γ ⊩ ϕ iff ϕ ∈ Γ.

Theorem 6 (Completeness). Syn- is complete with respect to κ-models.

5.5.2 δ-models

Example 12 showed that κ-models need not satisfy the property (SGK). In what
follows, we will introduce δ-models, which are κ-models that satisfy (SGK). We
show that the system Syn- is sound and complete with respect to δ-models by
applying the unraveling method to the canonical frame F c.

Definition 61 (δ-frame). A symmetric and transitive frame F = (W,∼) is called
δ-frame if and only if for all agent patterns G and H:

K2: Alive(G)F ⊆ Alive({A ∪B})F for A,B ∈ G;

K3: ∼H ⊆ ∼G, if G ⊆ H;

K4: ∼G ⊆ ∼G∪{B} if there exists A ∈ G with ∅ ≠ B ⊆ A;

NE: for all w ∈ W , there exists an agent pattern G such that w ∼G w;

D: ∼G =
⋂
B∈G ∼{B}.

Observe that D implies K1 and thus, δ-models are κ-models.

Definition 62 (δ-model). A pattern modelM = (F, V ) is a δ-model if and only
if F is a δ-frame.

A formula ϕ is δ-valid, denoted ⊩δ ϕ, if M ⊩ ϕ for all δ-models M. Before
presenting the unraveling method, we need to introduce the notion of a history.
Given a symmetric and transitive frame F , the worlds of its unraveled frame will
be all its histories.
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Definition 63 (History). Let F = (W,R) be a frame. A history is a non-empty
and finite sequence of triples (w,G, v) where:

1. wRGv and G is maximal under set inclusion. That means, there does not
exist an agent pattern G′ with G ⊊ G′ and wRG′v;

2. if (w′, G′, v′) is the successor of (w,G, v), then v = w′.

We write ℓ(h) to denote the last world of a history h. That is, if (w,G, v) is
the last element of h, then ℓ(h) = v. Furthermore, h ∥ (ℓ(h), G, v) denotes the
extension of h with (ℓ(h), G, v). The set of all histories over a frame F is denoted
by HF . Definition 64 specifies a prefix relation →G on histories. We can use HF

and →G to define the unraveled frame (Definition 65).

Definition 64 (→G). Let F = (W,R) be a frame and let h, h′ ∈ HF . For G ∈ AP,
we define →G⊆ HF ×HF as follows:

h→G h
′ iff h′ = h ∥ (ℓ(h), U, ℓ(h′)) and G ⊆ U ∈ AP.

Definition 65 (U(F )). Let F = (W,R) be a frame. We define the unraveled
frame U(F ) = (HF , {≈G}G∈AP) where ≈G is the transitive closure of the symmetric
closure of →G, i.e., ≈G= (→G ∪ →−1

G )∗.

An unraveled model (Definition 66) is an unraveled frame equipped with a val-
uation L on histories that mirrors the valuation V of the original model.

Definition 66 (U(M)). Let F = (W,R) be a frame and consider the pattern
modelM = (F, V ). We call U(M) = (U(F ), L) such that:

p ∈ L(h) iff p ∈ V (ℓ(h)),

the unraveled model ofM.

Lemma 52 shows that histories of κ-frames are downwards closed. This is be-
cause we are requiring that for each element (w,G, v) of a history, the set G is
maximal under set inclusion (see Definition 63).

Lemma 52 (Downwards Closure). Let F = (W,∼) be a κ-frame and consider a
history h ∈ HF and let (w,U, v) be an element of h. If there exists A ∈ U with
∅ ≠ B ⊆ A, then B ∈ U .

Proof. Towards a contradiction, suppose that B ̸∈ U . Consider the agent pattern
U ′ = U ∪ {B}. Clearly U ⊊ U ′ and w ∼U ′ v because of K4. This contradicts U
being maximal under set inclusion and thus, B ∈ U .
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Lemma 53 establishes some natural properties of →G on κ-frames.

Lemma 53. Let F = (W,∼) be a κ-frame and consider h, h′ ∈ HF with h→G h
′

for some agent pattern G. The following hold:

1. if H ⊆ G, then h→H h′;

2. if there exists A ∈ G and ∅ ≠ B ⊆ A, then h→{B} h
′;

3. if h→H h′, then h→G∪H h′.

Proof. By assumption, h′ = h ∥ (w,U, v) with G ⊆ U . For the first case, we have
H ⊆ G ⊆ U and thus h →H h′ by Definition 64. For the second case, we have
{B} ⊆ U by Lemma 52 and thus h →{B} h

′ by Definition 64. Lastly, assume
h →G h′ and h →H h′, i.e., G ⊆ U and H ⊆ U . Hence G ∪ H ⊆ U by the
properties of set union, and therefore h→G∪H h′ by Definition 64.

To show that an unraveled κ-frame remains to be a κ-frame (Theorem 7), we
briefly recall the standard notion of paths generated by a relation R. Corollary 9
and Remark 13 are crucial in the proof of Theorem 7.

Definition 67 (R-path). Let R be a relation on a set X. An R-path from x1 to
xn is a sequence

τ = (x1, x2), (x2, x3), . . . , (xn−2, xn−1), (xn−1, xn)

with (xi, xi+1) ∈ R for 1 ≤ i ≤ n− 1.

The composition of a relation with itself is defined as usual.

Definition 68 (R ◦R). Let R be a relation on a set X. We define:

R ◦R = {(x, y) ∈ X ×X | There exists z ∈ X with (x, z) ∈ R and (z, y) ∈ R}.

We abbreviate the n-fold composition of R with itself as Rn.

Remark 12. Let R be relation on a set X, then there is an R-path of length n
from a to b if and only if (a, b) ∈ Rn.

Corollary 9. Let F = (W,∼) be a κ-frame. The following two are equivalent

1. (h, h′) ∈≈G;

2. there exists a (→G ∪ →−1
G )-path τ from h to h′.

For brevity we refer to (→G ∪ →−1
G )-paths as →G-paths.
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Remark 13. If F = (W,∼) is a κ-frame, then a→G-path from h to h′ implies the
existence of a ∼G-path from ℓ(h) to ℓ(h′). It follows by transitivity that ℓ(h) ∼G
ℓ(h′).

The established properties of →G enable us to show that U(F ) is a κ-frame,
which is an important step towards completeness.

Theorem 7. Let F = (W,∼) be a κ-frame. Then U(F ) is a κ-frame.

Proof. Observe that ≈G= (→G ∪ →−1
G )∗ is transitive and symmetric, because the

transitive closure of a symmetric relation is transitive and symmetric. Moreover,
NE follows because histories are not empty.

• K1: Assume (h, h) ∈≈G and (h, h) ∈≈H . By Remark 13, ℓ(h) ∼G ℓ(h) as
well as ℓ(h) ∼H ℓ(h). Due to F satisfying K1, it holds that ℓ(h) ∼G∪H ℓ(h).
Hence, h∗ = h ∥ (ℓ(h), U, ℓ(h)) with G ∪ H ⊆ U is a valid history and
(h, h∗) ∈≈G∪H . We obtain (h, h) ∈≈G∪H by symmetry and transitivity.

• K2: Assume (h, h) ∈≈G and let A,B ∈ G. By assumption and Remark 13,
ℓ(h) ∼G ℓ(h). Due to F satisfying K2, we have ℓ(h) ∼{A∪B} ℓ(h). Thus
h∗ = h ∥ (ℓ(h), U, ℓ(h)) with {A ∪ B} ⊆ U is a valid history which implies
that (h, h) ∈≈{A∪B} by symmetry and transitivity.

• K3: Assume (h, h′) ∈≈H and G ⊆ H. By Corollary 9, there must exist a
→H-path τ from h to h′. Let (s, s′) ∈ τ be arbitrary. Since F satisfies K3,
Lemma 53 implies that s ≈G s′. Therefore, τ is a →G-path and (h, h′) ∈≈G
by Corollary 9.

• K4: Assume (h, h′) ∈≈G and that there exists A ∈ G with ∅ ̸= B ⊆ A. By
Corollary 9 there exists a→G-path τ from h to h′. Let (s, s′) ∈ τ be arbitrary.
Since F satisfies K4, Lemma 53 implies that s ≈G∪{B} s

′. Therefore, τ is a
→G∪{B}-path and (h, h′) ∈≈G∪{B} by Corollary 9.

We call an R-path from x1 to xn non-redundant if and only if xi ̸= xi+2 for
1 ≤ i < n− 1. Further, we often write

τ = x1Rx2Rx3 . . . xn−1Rxn

instead of τ = (x1, x2), (x2, x3), . . . , (xn−2, xn−1), (xn−1, xn).
If a relation R is the union of another relation S and its converse, i.e., R =

S ∪ S−1, we will use S and S−1 in a path instead of R. Moreover, we say that
a →G-path has a change of direction, if (xi, xi+1) ∈→G (or (xi, xi+1) ∈→−1

G ) and
(xi+1, xi+2) ∈→−1

G (or (xi+1, xi+2) ∈→G). Lastly, we will write h ←G h′ subse-
quently instead of h→−1

G h′ for better readability.

Lemma 54 states that if two histories of a κ-frame are related under ≈G, i.e.,
h ≈G h′, then h and h′ have a common prefix.
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Lemma 54. Let F = (W,∼) be a κ-frame and consider the unraveled frame U(F ).
If (h1, hn) ∈≈G, then h1 and hn have a common prefix.

Proof. If one history is a prefix of the other, the claim follows trivially. Hence,
we assume that neither of them is a prefix of the other. Corollary 9 ensures that
there exists a →G-path τ = (h1, h2), . . . , (hn−1, hn), which we can assume to be
non-redundant. Moreover, due to our first assumption, τ must have at least one
change of direction. In order to show that a common prefix of h1 and hn exists,
we show that τ has exactly one change of direction, and that change is of the form
hi−1 ←G hi →G hi+1 with i > 1.
Let hi be the history at which the first change of direction occurs. Notice, that

this implies that i > 1. First, we observe that this change of direction cannot be
of the form hi−1 →G hi ←G hi+1, because by Definition 64, it would follow that
hi−1 = hi+1, which would contradict τ being non-redundant. Thus, the first change
of direction must be of the form hi−1 ←G hi →G hi+1. Consequently, if there was
an additional change of direction, then it would be of the form hi+k−1 →G hi+k ←G

hi+k+1 for k ≥ 1, which again contradicts τ being non-redundant. Therefore, hi is
a common prefix.

Lemma 55 states that if two agent patterns G and H cannot distinguish between
two histories, their union cannot do so as well. Together with Lemma 53 and
Lemma 54, we can state Lemma 56, which says that unraveled κ-frames satisfy
the property D.
Definition 69 specifies the meaning of two κ-models being logically equivalent.

Lemma 57 states that κ-models satisfying this notion of equivalence are pointwise
equivalent (cf. Goubault et al. [26]).

Lemma 55. Let F = (W,∼) be a κ-frame and consider the unraveled frame U(F ).
For any two agent patterns G and H, the following holds

(h, h′) ∈≈G and (h, h′) ∈≈H implies (h, h′) ∈≈G∪H .

Proof. Assume h ≈G h′ and h ≈H h′. By Lemma 54 the paths below exist:

• h′′G →G . . .→G h,

• h′′G →G . . .→G h
′,

• h′′H →H . . .→H h, and

• h′′H →H . . .→H h′.

Observe that either h′′G = h′′H or one of the histories is a proper prefix of the other.
If h′′G ̸= h′′H , let h

′′ be the longer history. If they are of the same length, fix either
h′′ = h′′G or h′′ = h′′H . We can write h and h′ as:

h = h′′ ∥ (w1, G1, w2) ∥ . . . ∥ (wn−1, Gn, wn), and
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h′ = h′′ ∥ (w′
1, G

′
1, w

′
2) ∥ . . . ∥ (w′

m−1G
′
m, w

′
m).

By Definition 65 we have G ⊆ Gi, G
′
j and H ⊆ Gi, G

′
j for all i, j ≥ 0. Thus, by

Lemma 53 and Corollary 9, we have h ≈G∪H h′.

Lemma 56. Let F = (W,∼) be a κ-frame. U(F ) satisfies D.

Proof. ≈G ⊆
⋂
B∈G ≈{B} follows directly by K3. For the other direction, let

G = {A1, . . . , An} be an agent pattern and consider the sets

B1 = {A1} and Bi = {Ai} ∪Bi−1 for 2 ≤ i ≤ n.

For 1 ≤ i ≤ n, if (u, v) ∈
⋂
B∈G ≈{B}, then (u, v) ∈≈Ai

. Applying Lemma 55
inductively yields (u, v) ∈≈Bi

. Since Bn = G, we obtain (u, v) ∈≈G.

Definition 69 (Functional Bisimulation). A function f : WM → WN , whereM = (FM, VM)
and N = (FN , VN ) are κ-models based on the κ-frames FM = (WM,∼M) and
FN = (WN ,∼N ), is a functional bisimulation if and only if:

1. Atom: for all w ∈ WM, VM(w) = VN (f(w));

2. Forth: for any agent pattern G, w ∼M
G v implies f(w) ∼N

G f(v);

3. Back: for any agent pattern G, f(w) ∼N
G v′ implies that there exists w′ with

f(w′) = v′ such that w ∼M
G w′.

Lemma 57. If f : WM → WN is a functional bisimulation, then for any formula
φ we haveM, w ⊩ φ if and only if N , f(w) ⊩ φ.

Proof. Let f be a functional bisimulation. We show the claim by induction on the
length of φ.

1. If φ ∈ Prop, then the claim follows by Atom.

2. φ ≡ ¬ϕ. Follows by the induction hypothesis.

3. φ ≡ ϕ ∧ ψ. Follows by the induction hypothesis.

4. φ ≡ [G]ϕ. We show equivalently that

M, w ̸⊩ [G]ϕ iff N , f(w) ̸⊩ [G]ϕ.

From left to right, assumeM, w ̸⊩ [G]ϕ. Hence, there exists v ∈ WM with
w ∼M

G v and M, v ̸⊩ ϕ. By Forth we have that f(w) ∼N
G f(v) and by

the induction hypothesis we have N , f(v) ̸⊩ ϕ. Therefore, it holds that
N , f(w) ̸⊩ [G]ϕ. For the other direction, assume N , f(w) ̸⊩ [G]ϕ. Hence,
there exists v′ ∈ WN with f(w) ∼N

G v′ and N , v′ ̸⊩ ϕ. By Back there exists
w′ ∈ WM such that f(w′) = v′ and w ∼M

G w′. By the induction hypothesis
we obtainM, w′ ̸⊩ ϕ and thusM, w ̸⊩ [G]ϕ.
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Let F = (W,∼) be a κ-frame and consider a κ-model M = (F, V ) as well
as its unraveled model U(M) = (U(F ), L). It is straightforward to show that
the mapping last : HF → W that maps each h ∈ HF to ℓ(h) ∈ W is a functional
bisimulation. We only show the claim for Back. Assume that w ∈ HF and v′ ∈ W
such that ℓ(w) ∼G v′. It follows that, w′ = w ∥ (ℓ(w), U, v′) with G ⊆ U is a valid
history with w′ ≈G w and ℓ(w′) = v′. Finally, we can apply Lemma 57 to the
canonical model and its unraveled model, which establishes completeness of Syn-

with respect δ-models (Theorem 8).

Theorem 8. Syn- is sound and complete with respect to δ-models.

It only remains to show completeness of Syn with respect to proper δ-models.
The next section formally defines properness, and shows how to make the unraveled
canonical model proper.

5.5.3 Properness

This section introduces the notion of properness on pattern frames. As it turns
out, the unraveled canonical model need not be proper. However, it can be made
proper by constructing a quotient model. This suffices to show that Syn is sound
and complete with respect to proper δ-models. Different to Chapter 4, we define
properness for symmetric and transitive frames.
Definition 70 specifies the maximal alive agent pattern of a world w. Two worlds

w and v are equivalent (Definition (71) if and only if they have the same maximal
alive agent pattern, and that agent pattern cannot distinguish between them. A
frame is proper (Definition 72) if and only if two worlds being equivalent implies
them being equal.

Definition 70. Let F = (W,∼) be a symmetric and transitive frame. For w ∈ W ,
we define

w = {B ⊆ Ag \ {∅} | ∃G.B ∈ G and w ∈ Alive(G)F}.

Definition 71 (≡). Let F = (W,∼) be a symmetric and transitive frame. We
define the relation ≡ on W ×W as

w ≡ v iff w = v and w ∼w v.

Definition 72 (Proper). A symmetric and transitive frame F = (W,∼) is called
proper if and only if for all w, v ∈ W , w ≡ v implies w = v. A pattern model
M = (F, V ) is proper if and only if F is proper.

To see why the unraveled canonical model is not proper, let Γ ∈ W c be a world of
the canonical frame in which only one agent, say a, is alive. It is straightforward to
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verify that such a world exists. Since F c is reflexive for alive agents, we have that
Γ ∼ca Γ. Consequently, the unraveled frame contains the two different histories
h = (Γ, {{a}},Γ) and h′ = h ∥ (Γ, {{a}},Γ). Agent a is the only agent alive in
both histories. By definition, agent a cannot distinguish between h and h′, which
violates properness.
If G is an agent pattern, we denote the set of maximal elements of G with

max(G). Notice that max(w) always contains exactly one element. Definition 73
and Lemma 58 show under which conditions symmetric and transitive frames can
be made proper. Since κ-frames are symmetric and transitive, the results carry
over to them.

Definition 73 (Mρ). Let F = (W,∼) be a symmetric and transitive frame, and
let M = (F, V ) be a pattern model. We define the frame F ρ = (W ρ,∼ρ) and the
pattern modelMρ = (F ρ, V ρ) as:

1. W ρ = W/ ≡ is the set of equivalence classes of ≡;

2. [w] ∼ρG [v] if and only if w ∼G v;

3. for any p ∈ Prop, p ∈ V ρ([w]) if and only if p ∈ V (w).

Mρ is well-defined, if for any two worlds w, v ∈ W and p ∈ Prop,

w ≡ v implies p ∈ V (w) ⇐⇒ p ∈ V (v).

Lemma 58. Let F = (W,∼) be a symmetric and transitive frame, and let M =
(F, V ) be a pattern model such thatMρ is well-defined. We find that:

1. Mρ is proper;

2. M, w ⊩ ϕ if and only if Mρ, [w] ⊩ ϕ.

Proof. In order to show thatMρ is proper, observe that [w] ≡ [v] implies w ≡ v.
Indeed, since [w] ∼ρG [v] if and only if w ∼G v, it holds that [w] = w and w ∼w v.
Hence, w and v belong to the same equivalence class, i.e., [w] = [v].
For the second claim, we show the direction from right to left by induction on

the length of ϕ. The other direction is symmetric. The base case follows because
Mρ is well-defined. The only case left is ϕ = [G]ψ. Assume Mρ, [w] ⊩ [G]ψ. We
need to show M, w ⊩ [G]ψ. Let v ∈ W be such that w ∼G v, i.e., [w] ∼ρG [v].
By the definition of truthMρ, [v] ⊩ ψ and by the induction hypothesisM, v ⊩ ψ,
which concludes the proof.

Remark 14 lists some useful properties of κ-models needed below.
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Remark 14. Let F = (W,∼) be a frame such thatM = (F, V ) is a κ-model. The
following can be shown by using the properties of κ-models and the fact that w is
maximal under subsets:

1. M, w ⊩ alive(w) andM, w ⊩ dead(wC) are always the case;

2. M, w ⊩ alive(G) ∧ dead(GC) if and only if max(G) = max(w);

3. if max(G) = max(w), then w ∼G v andM, v ⊩ dead(GC) imply w = v.

Proving soundness and completeness of Syn with respect to proper κ-models
requires us to show that proper κ-models validate P, and that the canonical model
for Syn is proper.

Lemma 59 (Soundness). Syn is sound with respect to proper κ-models.

Proof. We showed the cases for Syn- in the proof of Theorem 5. Hence, we only
need to show the case for P. Let F = (W,∼) be a proper κ-frame, and letM =
(F, V ) be a κ-model. AssumeM, w ⊩ alive(G)∧ dead(GC)∧ϕ. By Remark 14, we
find that max(G) = max(w). This implies that for any v ∈ W with w ∼G v such
thatM, v ⊩ dead(GC), we have w = v, i.e., w ≡ v and by the properness of F , it
follows that w = v. ThereforeM, v ⊩ ϕ.

The canonical model Mc for Syn is defined as in Definition 42, but worlds
are maximal consistent sets for Syn instead of Syn−. For simplicity, we do not
distinguish between the two by the means of notation.

Theorem 9. Mc is a proper κ-model.

Proof. We already showed the properties of κ-models in the proof of Theorem 6.
Hence, it suffices to show that F c is proper. Let Γ,∆ ∈ W c such that Γ ≡ ∆, i.e.,
Γ = ∆ = G and Γ ∼cG ∆. We now show Γ = ∆, i.e., for any ϕ ∈ Lsyn, ϕ ∈ Γ if
and only if ϕ ∈ ∆. We show the direction from left to right. The other direction
is symmetric. Assume that ϕ ∈ Γ. Since Γ is a maximal consistent set, it follows
by Remark 14 and Lemma 49 that alive(G) ∧ dead(GC) ∧ ϕ ∈ Γ. Furthermore,
by P, it follows that [G](dead(GC) → ϕ) ∈ Γ and thus dead(GC) → ϕ ∈ ∆. By
assumption, dead(GC) ∈ ∆ and thus ϕ ∈ ∆, because ∆ is a maximal consistent
set.

Corollary 10. Syn is sound and complete with respect to proper κ-models.

Lemma 60 below shows that the construction of Definition 73 can be applied to
the unraveled canonical model.
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Lemma 60. Let U(Mc) = (H,L) be the unraveled canonical model. For any
h, h′ ∈ H with h ≡ h′ and p ∈ Prop it holds that

p ∈ L(h) iff p ∈ L(h′).

Proof. Consider two histories h, h′ of U(Mc) with h ≡ h′, i.e., h = h′ = G
and h ≈G h′. Let ℓ(h) = Γ ∈ W c and ℓ(h′) = ∆ ∈ W c. By Remark 13,
ℓ(h) ∼G ℓ(h′), i.e., Γ ∼cG ∆. We now show the direction from left to right. The
other direction is symmetric. Let p ∈ Prop with p ∈ L(h), i.e., p ∈ V c(Γ).
Since Γ is a maximal consistent set it follows by Remark 14 and Lemma 49
that alive(G) ∧ dead(Gc) ∧ p ∈ Γ. By P, [G](dead(GC) → p) ∈ Γ. Therefore,
dead(GC)→ p ∈ ∆. Lastly, by assumption and Remark 14, we have dead(GC) ∈ ∆
and since ∆ is a maximal consistent set, it follows that p ∈ ∆. Therefore,
p ∈ V c(ℓ(h′)), and by definition p ∈ L(h′).

Applying the construction in Definition 73 to the unraveled canonical model
yields the following corollary.

Corollary 11. U(Mc)ρ is proper and

U(Mc)ρ, [h] ⊩ ϕ iff U(M), h ⊩ ϕ.

By Corollary 11, we obtain that Syn is sound and complete with respect to
proper δ-models.

Corollary 12. For all ϕ ∈ LSyn, it holds that:

⊢ ϕ if and only if ⊩δ ϕ.

5.5.4 δ-translations

In this section, we show how every proper δ-model can be transformed to an
equivalent multi-simplicial model. Completeness of Syn with respect to multi-
simplicial models follows immediately. A δ-translation is a multi-simplicial model
that represents a δ-model based on a proper frame.

Definition 74 (δ-translation). Let F = (W,∼) be a δ-frame andM = (F, V ) be a
δ-model. A multi-simplicial model C = (C, L) is a δ-translation ofM if and only
if there exists a mapping T : W → C such that for all w, v ∈ W :

1. G ⊆ (T (w) ∩ T (v))◦ iff w ∼G v;

2. p ∈ L(T (w)) iff p ∈ V (w).

We present a general construction of a δ-translation for proper δ-frames, as well
as an algorithmic one for δ-models based on finite proper δ-frames.
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General δ-translation

Let F = (W,∼) be a proper δ-frame, and let M = (F, V ) be a δ-model. We
provide a general translation based on equivalence classes. The construction is
similar to the one presented in Chapter 2, where we associated equivalence classes
[w]a with vertices. In the context of group knowledge, we can map equivalence
classes of the form [w]{G}, where w ∈ W and ∅ ≠ G ⊆ Ag, to faces of an explicit
simplex. The intuition is that the set

[w]{G} = {v | w ∼{G} v} ≠ ∅,

represents the G-boundary of the explicit simplex that corresponds to w. The
explicit simplices that correspond to worlds v ∈ [w]{G} share the same G-boundary
with w. The explicit simplex induced by a world w ∈ W is of the form {(G, [w]{G}) |
[w]{G} ̸= ∅}, where G is a subset of agents alive in w. Since [w]{G} is an equivalence
class and w ∈ [w]{G}, the explicit simplices inherit closure properties of the proper
δ-frame F .

Definition 75. Let F = (W,∼) be a proper δ-frame. For w ∈ W and ∅ ≠ G ⊆ Ag,
we define:

[w]{G} = {v ∈ W | w ∼{G} v} and T (w) = {(G, [w]{G}) | [w]{G} ̸= ∅}.

We also write T = {T (w) | w ∈ W}.

Since F is a proper δ-frame, it is straightforward to show that each T (w) is an
explicit simplex (Lemma 61), and that T is a complex (Lemma 62). Moreover,
Lemma 63 states that T (·) is a bijection.

Lemma 61. For all w ∈ W , T (w) is an explicit simplex.

Proof. Since F satisfies NE, it holds that T (w) ̸= ∅, for all w ∈ W . We show that
T (w) satisfies S1, S2, and S3.

S1: Let (G, [w]{G}) ∈ T (w) and (H, [w]{H}) ∈ T (w) be two distinct maximal
elements. This immediately implies G ̸= H. By Definition 75, we obtain
that w ∈ Alive({G})∩Alive({H}). Since δ-frames satisfy K3, we obtain that
w ∈ Alive({G,H}). Moreover, by K2 we find that w ∈ Alive({G ∪ H}).
Therefore, it holds that (G∪H, [w]{G∪H}) ∈ T (w). Consequently, (G, [w]{G})
and (H, [w]{H}) cannot be maximal, which is a contradiction.

S2: Let (B, [w]{B}) ∈ T (w) and ∅ ≠ C ⊆ B. By Lemma 46, it holds that
∼{B}⊆∼{C}. By assumption, we have that w ∼{B} v, which implies that
w ∼{C} v, and thus [w]{C} ̸= ∅. Consequently, it holds that (C, [w]{C}) ∈
T (w). Uniqueness of [w]{C} follows by construction because [w]{C} is an
equivalence class.
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S3: Let max(T (w)) = (G, [w]{G}) and suppose that (H, [w]{H}) ∈ T (w) with
H ̸⊆ G. By Definition 75, we have w ∼{G} w and w ∼{H} w. Since the
δ-frame satisfies K3, we also have w ∼{G,H} w, and by K2 it holds that
w ∼{G∪H} w. As a result (G ∪ H, [w]{G∪H}) ∈ T (w), but this contradicts
(G, [w]{G}) being the maximal element of T (w).

Lemma 62. T is a multi-simplicial complex.

Proof. We need to show that T satisfies C. Let T (w), T (v) ∈ T such that (G, [w]{G}) ∈
T (w) ∩ T (v). By construction, w ∼{G} v. Therefore, by Lemma 46, we obtain
w ∼{H} v for all ∅ ≠ H ⊆ G. As a result, the explicit simplices T (w) and T (v)
share all elements of the form (H, [w]{H}), and T satisfies condition C.

Lemma 63. T (·) is a bijection.

Proof. Surjectivity follows by the construction of T . Regarding injectivity, assume
that T (w) = T (v). This implies that w ≡ v. By properness of F we obtain that
w = v.

A consequence of Lemma 63 is that the labeling introduced in Definition 76 is
well-defined.

Definition 76 (δ-labeling). Let V be a valuation on a set of worlds W . We define
the δ-labeling L on T as follows:

p ∈ L(T (w)) iff p ∈ V (w).

The last step is to show that our construction preserves the indistinguishability
relation (Lemma 64).

Lemma 64. T (w) ∼TG T (v) if and only if w ∼G v.

Proof. By definition, G is not empty. Since F satisfies D, we can assume without
loss of generality that G contains exactly one element A ⊆ Ag. It holds that
(A, [w]{A}) ∈ T (w) ∩ T (v) iff [w]{A} = [v]{A} ̸= ∅ iff w ∼{A} v.

We obtain the following corollary from Lemma 64 and Definition 76.

Corollary 13. C = (T, L), where L is the δ-labeling, is a δ-translation ofM.

Theorem 10. Let F = (W,∼) be a proper δ-frame, and consider the δ-model
M = (F, V ). Further, let C = (C, L) be a δ-translation ofM. It holds that

M, w ⊩ ϕ if and only if C, T (w) ⊩σ ϕ.

Proof. By induction on the length of formulas.
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1. Let ϕ ≡ p ∈ Prop. We have M, w ⊩ ϕ iff p ∈ V (w) iff p ∈ L(T (w)) iff
C, T (w) ⊩σ ϕ (by the definition of L).

2. Let ϕ ≡ ¬ψ. Follows by the induction hypothesis.

3. Let ϕ ≡ ψ ∧ φ. Follows by the induction hypothesis.

4. Let ϕ ≡ [G]ψ. We equivalently show

M, w ̸⊩ [G]ψ iff C, T (w) ̸⊩σ [G]ψ.

It holds thatM, w ̸⊩ [G]ψ iff there exists v ∈ W with w ∼G v andM, v ̸⊩ ψ
iff G ⊆ (T (w) ∩ T (v))◦ (Lemma 64) and C, T (v) ̸⊩σ ψ (by hypothesis) iff
C, T (w) ̸⊩σ [G]ψ by definition.

Hence, if ̸⊢ φ, then there exists a proper δ-model M (Corollary 12) such that
M ̸⊩ φ. By Corollary 13, we can construct a δ-translation C = (T, L) ofM such
that C ⊮σ φ. Thus, Syn is sound and complete with respect to multi-simplicial
models.

Corollary 14. ⊢ φ if and only if ⊩σ φ.

Algorithmic Translation for Finite Frames

Given a proper δ-frame F = (W,∼) such that W finite, Construction 1 shows how
we can algorithmically build a δ-translation of F .
We assume an arbitrary enumeration of worlds and write wi for the i-th world.

The simplicial image of a world wi under a mapping T , i.e., T (wi), is denoted by
Si. The next lemmas show that there exists a multi-simplicial complex C that
preserves the structure of the proper frame F . Let w∗

i ⊆ Ag be the maximum
set of all agents alive in wi. Construction 1 on input F first initializes a simplex
Si = {(A, i) | A ⊆ w∗

i } for each world wi (lines 3 to 5). At this point, no
two different simplices Si and Sj are connected. Throughout the transformation
(lines 6 to 16), Construction 1 glues related simplices together according to the
indistinguishability relation ∼ of the frame F . It iterates through all pairs (wi, wj)
with i < j, which suffices by the symmetry of ∼G, and checks for all G, whether
(wi, wj) ∈∼G. If so, for each B ∈ G, the pair (B, j) is replaced by the pair
(B, k) ∈ Si, where k is the smallest index such that wk ∼{B} wi. After the
replacement, the simplices Si and Sj are connected. Example 13 shows a possible
execution.
We will now prove the correctness of Construction 1. Specifically, we show

that the multi-simplicial model C = (C, L), where C is the complex returned by
Construction 1 (line 20), and L is a labeling such that p ∈ L(Si) if and only if
p ∈ V (wi), is a δ-translation ofM.
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Construction 1 δ-translation
1: Input
2: A proper δ-frame F = (W,∼)

3: Initialization
4: w∗

i = max{A ⊆ Ag | wi ∼{A} wi}
5: Si = {(A, i) | A ⊆ w∗

i } for 1 ≤ i ≤ n

6: Transformation
7: i = 1
8: j = 1
9: while wi exists do
10: j ← i+ 1
11: while wj exists do
12: for each G ∈ AP with wi ∼G wj do
13: for each B ∈ G do
14: k ← min{l | wl ∼{B} wi}
15: Sj ← Sj \ {(B, j)}
16: Sj ← Sj ∪ {(B, k)}
17: j ← j + 1
18: i← i+ 1

19:Output
20: C = {Si | wi ∈W}

Example 13. Let Ag = {a, b} and consider the proper δ-frame F = (W,∼) de-
picted in Figure 5.7. Construction 1 first initializes:

S1 =

{
ab1
a1, b1

}
, S2 =

{
ab2
a2, b2

}
, and S3 =

{
ab3
a3, b3

}
.

During the transformation phase, when i = 1 and j = 2, Construction 1 replaces
(a, 2) and (b, 2) with (a, 1) and (b, 1) since it holds that w1 ∼{a} w2 and w1 ∼{b} w2.
Moreover, it replaces (b, 3) ∈ S3 with (b, 1). Observe that if Line 14 was missing,
then, for i = 2 and j = 3, the Construction would add (b, 2) to S3 as well, which
would make it an ill-formed simplex. The resulting complex is:

C =

{{
ab1
a1, b1

}
,

{
ab2
a1, b1

}
,

{
ab3
a3, b1

}}
.

The next Lemma ensures that we can safely assume the existence of a unique
and non-empty Si for each wi throughout our proofs.
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w1 w2 w3

ab, a, b ab, a, b ab, a, b

a
b b

b

Figure 5.7: The δ-model for Example 13. Only arrows for maximal agent patterns
are shown.

Lemma 65 (Uniqueness). Let F = (W,∼) be a proper δ-frame. After the ini-
tialization of Construction 1 on input F , and after each execution of Line 16, the
following holds for all worlds wi, wj ∈ W :

1. Si ̸= ∅;

2. Si = Sj if and only if i = j.

Proof. Si ̸= ∅ follows immediately because δ-frames satisfy NE and thus, each
Si is initialized to some non-empty set. Furthermore, since each element that is
removed gets replaced, we conclude that Si ̸= ∅ for all wi ∈ W after Line 16.
For the second claim, the direction from right to left follows immediately. For the
other direction, observe that if Si = Sj, then wi = wj and wi ∼wi

wj, i.e., wi ≡ wj.
By the properness of F , it follows that wi = wj, i.e., i = j.

Since the smaller index gets precedence, some elements of a simplex may never
be exchanged. For example, the simplex S1 in Example 13 remains unchanged
throughout Construction 1. Lemma 66 shows that such simplices are well-formed.
Moreover, Lemma 67 states that replacements are final.

Lemma 66. Let F = (W,∼) be a proper δ-frame and consider Construction 1
on input F . After the initialization (lines 3 to 5), for all wj ∈ W , it holds that
(A, j) ∈ Sj iff wj ∼{A} wj.

Proof. From left to right, we have (A, j) ∈ Sj if and only if A ⊆ w∗
j . Since

wj ∼{w∗
j } wj by definition, we obtain wj ∼{A} wj by Lemma 46. Regarding the

other direction, assume wj ∼{A} wj. By the definition of w∗
j it follows that A ⊆ w∗

j

which implies that (A, j) ∈ Sj after the initialization phase.

Lemma 67. Let F = (W,∼) be a proper δ-frame and consider i, j, k ∈ N such
that i ̸= j, i ̸= k, and j ̸= k. There does not exist B ⊆ Ag such that, while running
Construction 1 on input F , (B, i) is replaced with (B, j) and (B, j) is replaced with
the pair (B, k).
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Proof. Towards a contradiction, assume that there exists such a B ⊆ Ag, i.e.,
for some Si, (B, i) is replaced with (B, j) and (B, j) is replaced with (B, k). By
assumption, i < j < k because Construction 1 replaces (B, l) with (B,m) only if
l > m. Since lines 15 and 16 are executed at least twice, there exist G,G′ ∈ AP
such that B ∈ G and B ∈ G′ with wi ∼G wj and wj ∼G′ wk. Since {B} ⊆ G and
{B} ⊆ G′, we have by K3 that wi ∼{B} wj and wj ∼{B} wk. Further, wi ∼{B} wk
follows by transitivity of ∼{B}. But this means, that i = k because (B, k) was
replaced by (B, i) prior which contradicts that i < k.

The next lemmas show that after the Construction 1, elements of C are well-
formed simplices and C is a well-formed complex preserving the indistinguishability
relation.

Lemma 68. Let F = (W,∼) be a proper δ-frame. The output C of Construction 1
on input F satisfies the following two properties:

T1: Let S ∈ C. If (A, j) ∈ S and (A, k) ∈ S, then j = k.

T2: Let wi, wj ∈ W and G ∈ AP, then:

∀B ∈ G.∃k ∈ N.(B, k) ∈ Si ∧ (B, k) ∈ Sj iff wi ∼G wj.

Proof. T1 follows by construction. Regarding T2, we start by showing the direction
from left to right. Assume that:

∀B ∈ G.∃k ∈ N.(B, k) ∈ Si ∧ (B, k) ∈ Sj.

Without loss of generality, we fix i ≤ j. We have that (B, k) ∈ Si ∩ Sj only if
there exists G′ with wi ∼G′ wj and B ∈ G′. By K3 we get wi ∼{B} wj. Since B is
arbitrary, D implies that wi ∼G wj.
For the other direction, let wi ∼G wj and letB ∈ G. By construction, (B, j) ∈ Sj

is replaced by (B, k) with k ≤ i. Let k be the smallest index such that wk ∼G wi,
i.e., if k < i, then (B, i) ∈ Si was replaced with (B, k) before. Lemma 66 ensures
that (B, k) ∈ Sk. Hence, if k < i, (B, j) ∈ Sj and (B, i) ∈ Si are both replaced
by (B, k) in the same iteration. If k = i, only (B, j) is replaced by (B, i), and
(B, i) ∈ Si at the end of the Construction due to the symmetry of ∼G and k
being minimal. By Lemma 67 there cannot be any further replacements and thus
(B, k) ∈ Si and (B, k) ∈ Sj at the end of Construction 1.

A consequence of T2 is that:

Si ∼C
G Sj if and only if wi ∼G wj. (5.13)
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Lemma 69. Let F = (W,∼) be a proper δ-frame. Let C be the output returned
by Construction 1 on input F . For each wi ∈ W , the explicit simplex Si ∈ C is
well-formed.

Proof. We show that Si satisfies S1, S2, and S3.

S1: Let (A, j) ∈ Si and (B, k) ∈ Si be two distinct maximal elements. First, we
note that A ̸= B due to T1. By T2, wi ∈ Alive({A}) and wi ∈ Alive({B}).
By K3, wi ∈ Alive({A} ∪ {B}). Further, by K2, wi ∈ Alive({A∪B}). Hence,
(A ∪B, l) ∈ Si for some l. But since A ⊊ A ∪B, this contradicts that (A, i)
is the maximal element of Si.

S2: Let (B, j) ∈ Si and ∅ ≠ C ⊆ B, we need to show that there exists a unique k
such that (C, k) ∈ Si. By Lemma 46 we have ∼{B}⊆∼{C}. Since we assume
that (B, j) ∈ Si, we get wi ∼{B} wi by T2. Due to ∼{B}⊆∼{C}, we have
that wi ∼{C} wi. Thus, by T2, there exists k ∈ N such that (C, k) ∈ Si.
Condition T1 ensures that k is unique.

S3: Let max(Si) = (B, k) and suppose that (A, j) ∈ Si for A ⊈ B. We have
wi ∼{A} wi and wi ∼{B} wi by T2. By K3, wi ∈ Alive({A}∪{B}) follows, and
by K2 we have that wi ∈ Alive({A∪B}). Therefore it holds that (A∪B, l) ∈
Si for some l which contradicts the maximality of (B, k).

Lemma 70. Let F = (W,∼) be a proper δ-frame and consider Construction 1 on
input F . The output set C = {Si | wi ∈ W} is a complex.

Proof. In order to show that C is a complex, we need to show that it satisfies
Condition C. Consider the simplices Sm, Sn ∈ C and assume that there exists
A ⊆ Ag and i with (A, i) ∈ Sm and (A, i) ∈ Sn. We need to show that for all
∅ ≠ B ⊆ A and all j ∈ N it holds that

(B, j) ∈ Sm iff (B, j) ∈ Sn.

Since Sm and Sn are arbitrary, it is enough to show only one direction. Assume
that (B, j) ∈ Sm. By T2, we have wm ∼{A} wn and by Lemma 46, it holds that
wm ∼{B} wn. Since (B, j) ∈ Sm, T2 implies wm ∼{B} wj. Further, by symmetry
and transitivity we obtain wj ∼{B} wn. Hence, it holds that j ≤ n. Therefore,
(B, j) replaced (B, n) in Sn. By Lemma 67, no more replacements of that pair can
happen during the execution of Construction 1 and we conclude (B, j) ∈ Sn.

Finally, we obtain that Construction 1 together with an appropriate labeling is
a δ-translation.
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Theorem 11. Let F = (W,∼) be a proper δ-frame, and let M = (F, V ) be δ-
model. Further, let C = (C, L) be such that C is the output of Construction 1 on
input F and L : C→ Pow(Prop) is a labeling such that:

p ∈ L(Si) iff p ∈ V (wi). (5.14)

It holds that C is a δ-translation ofM.

Proof. By Lemma 70, C is a complex. It follows from (5.13) and (5.14) that C is
a δ-translation ofM.

5.6 Communication

In this section, we will explore a different reading of agent patterns, namely as a
description of the communication happening between the agents. Let G be the
agent pattern {{a}, {b, c}}. We interpret this as the agents b and c communi-
cating with each other, but there is no communication between a and b or c. A
formula [G]ϕ will thus be interpreted as a knows ϕ and the group b, c has dis-
tributed knowledge of ϕ. We can also distinguish the patterns {{a, b}, {b, c}} and
{{a, b}, {b, c}, {a, c}}. In the first one, a and c can only communicate via b
whereas in the second one, a and c have a direct communication channel.

Definition 77 (Connected). Let C ⊆ Pow(Ag), two elements X, Y ∈ C are called
connected in C if and only if there exist Z0, ..., Zk ∈ C such that Zi ∩Zi+1 ̸= ∅ for
0 ≤ i < k and Z0 = X and Zk = Y .

Definition 78 (Connected Component). Let C ∈ AP, we call C a connected
component if and only if for any X, Y ∈ C with X ̸= Y it holds that X and Y are
connected in C. Let G ∈ AP. We call H ̸= ∅ a maximal connected component of
G if and only if H ⊆ G and there is no connected component H ′ ⊆ G such that H
is a proper subset of H ′.

We can represent an agent pattern G as the union of its maximal connected
components. Let C1, . . . , Ck be the maximal connected components of G. We
have that G =

⋃k
i=1Ci, and if X ∈ Ci and Y ∈ Cj with i ̸= j, then it holds that

X ∩ Y = ∅.
Definition 79 states how we can define an alternative indistinguishability relation

that is based on the original one in Definition 48.

Definition 79 (EG). Let G =
⋃k
i=1Ci be an agent pattern with k maximal con-

nected components Ci. Two simplices S, T ∈ C cannot be distinguished componen-
twise by an agent pattern G, denoted by S EG T , if and only if:

∃1 ≤ j ≤ k. S ∼C
Cj
T.
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We use the notation EG since this relation is used to model statements of the
form every component of G knows that. For this section, we adapt the truth
definition as follows:

C, w ⊩σ [G]ϕ iff w EG v implies C, v ⊩σ ϕ for all v ∈ C.

Let G = {{a} | a ∈ Ag}, we can read [G]ϕ as everybody knows that ϕ. By the
symmetry of ∼C and Lemma 40, we immediately obtain Lemma 71.

Lemma 71. Let G =
⋃k
i=1Ci be an agent pattern with k maximal connected

components Ci. Then EG is symmetric. Moreover, let SG ⊆ C be a maximal set
of simplices such that for any S ∈ SG we have C⋆

i ⊆ S◦ for some 1 ≤ i ≤ n. Then
the relation EG is reflexive on SG × SG.

Note that EG is not transitive. Indeed, consider the complex C in Figure 5.8
and the agent pattern G = {{a}, {b}}. Since X and Y share a b-vertex, we have
that X EG Y . By similar reasoning, we find that Y EG Z. However, since X and Z
do not intersect in any vertex, it does not hold that X EG Z.

C : a b a b
X Y Z

Figure 5.8: A complex that shows that componentwise indistinguishability need
not be transitive.

Anti-monotonicity does also not hold in general. Consider again C in Figure 5.8,
and let G = {{a}} and H = {{b}}. Although X EG Y does not hold because X
and Y do not intersect in an a-vertex, we find that X EG∪H Y due to X and Y
sharing a b-vertex, which violates anti-monotonicity. However, anti-monotonicity
does hold componentwise.

Lemma 72 (Anti-monotonicity). Let G =
⋃k
i=1Ci be an agent pattern with k

maximal connected components Ci. Let C be a connected component with Ci ⊆ C
for some 1 ≤ i ≤ k and let H = G ∪ C. We find that EH ⊆ EG.

Proof. Let C be a complex, and consider the simplices X, Y ∈ C. Combining G
with C might create a new maximal connected component. Let C be the maximal
connected component of H such that Ci ⊆ C ⊆ C. Assume that X EH Y . If
X ̸∼C

C Y , then there exists already a connected component Cj of G and H with
Cj ̸⊆ C such that X ECj

Y and the claim follows. Therefore, assume X ∼C
C Y .

By assumption, we find that X ∼C
Ci
Y because ∼C satisfies anti-monotonicity (see

Lemma 42). Therefore, X EG Y by Definition 79.
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Lemma 73 (Link). Let F,G,H ⊆ Pow(Ag) be connected components such that
F ∪G is connected and F ∪H is connected. The following formula is valid:

[G]ϕ ∧ [H]ψ → [F ∪G ∪H](ϕ ∧ ψ).

Proof. First, observe that F ∪ G ∪ H is connected. Thus, by Lemma 72, [G]ϕ
implies [F ∪G∪H]ϕ and [H]ψ implies [F ∪G∪H]ψ. Since [F ∪G∪H] is a normal
modality, we conclude [F ∪G ∪H](ϕ ∧ ψ).

Example 14 (Missing Link). Two networks G and H, each modeled as a connected
component, both know that if malicious activity is detected, certain services must
be stopped. Let mact be a propositional variable that indicates whether an intruder
has been spotted and let stop indicates that the services are disabled. Since the
procedure is known to both networks, we have

[G](mact→ stop) ∧ [H](mact→ stop) as well as [G ∪H](mact→ stop).

Suppose now that G detects malicious activity, i.e. [G]mact. Thus, G will stop
certain services, i.e. [G]stop. If the networks cannot communicate with each other,
i.e. G∪H is not connected, then H will not stop the services. Hence, G and H as
a whole are not following the security protocol, i.e. ¬[G∪H]stop, and might leave
the system in a vulnerable state. However, if a coordinating node relays messages
from G to H, then H could shut down its services as well. By Lemma 73 we find
that for some network F , such that F ∪G as well as F ∪H is connected, it holds
that

([G ∪H](mact→ stop) ∧ [G]mact)→ [F ∪G ∪H]stop.

5.7 Conclusion and Outlook

This chapter presented multi-simplicial complexes, which are an explicit represen-
tation of semi-simplicial sets. We interpreted multi-simplicial complexes from the
global point of view. The fact a that semi-simplicial set may contain parallel edges
allowed us to define a novel indistinguishability relation, which in turn gave rise
to a new modality that we call synergistic knowledge. Furthermore, we presented
the logic of synergistic knowledge Syn, and showed that it is sound and complete
with respect to models that are based on multi-simplicial complexes.
Unlike standard notions of group indistinguishability, our indistinguishability

relation is based on an agent pattern and not on a group of agents. This added de-
tail allows us to distinguish between the two models shown in Figure 5.2, thereby
addressing an open question posed by Goubault et al. [26]. Furthermore, it al-
lowed us to identify an alternative interpretation of an agent pattern. This led to
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an indistinguishability relation called componentwise indistinguishability, which is
not necessarily transitive. An axiomatization of componentwise knowledge would
exclude axiom 4 and present an interesting logic to explore in the context of multi-
simplicial models.

B

S

B

S

updatep ≤ o
deal

p > o
¬deal

p ≤ o
deal

Figure 5.9: Without accessing a buyer-seller smart contract, the buyer B and the
seller S do not know whether a trade can happen. We can represent
the model after accessing the smart contract by removing the parallel
edge that corresponds to the global state which is not the case.

Another direction for future research is exploring the notion of synergy in dis-
tributed computing, particularly for tasks where agents must commit to certain
roles. For example, a smart contract that matches buyers and sellers can be seen
as a synergistic primitive involving two parties, which is similar to the consensus
number object in Example 10. The synergy arises from the fact that a seller cannot
sell without a buyer, just as a buyer cannot buy without a seller. This task, there-
fore, inherently requires two different roles: buyer and seller. The multi-simplicial
model depicted on the left in Figure 5.9 illustrates how our models can capture
such tasks. In this scenario, the buyer B offers an amount o, while the seller S
offers a product at price p. On their own, neither agent can determine whether a
transaction is possible, i.e., whether p ≤ o (i.e., deal) or p > o (i.e., no deal). Only
after querying the previously mentioned smart contract, they know if an exchange
can take place. Lastly, it is also interesting to analyze this from a dynamic stand-
point in which we update the model by removing simplices. In this example, after
querying the smart contract, we could eliminate one edge depending on the values
of o and p. Figure 5.9 shows an update for the model on the left, in the case that
p ≤ o. Investigating updates that eventually transform models with parallel faces
to standard simplicial complexes is a promising next step.
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6 Conclusion

This thesis continued the structural study of simplicial semantics. It explored
simplicial complexes that may contain adjacent vertices of the same color, directed
faces, or parallel faces. While doing so, different notions of belief were studied,
and a new notion of group knowledge was established. Moreover, modeling quorum
systems with polychromatic complexes, as well as reasoning about the topology of a
network in semi-simplicial sets, showed how generalizations of simplicial complexes
can be used to formally reason about distributed systems.
Due to the infancy of the field, there are many things to be studied. As outlined

at the end of each chapter, we can further refine the presented structures, or look
at them from a different angle. For example, the study of polychromatic complexes
and semi-simplicial sets followed the global approach. An analysis from the local
point of view is much needed in order to understand these structures better. On
the other hand, looking at directed complexes from the global perspective might
simplify future extensions.
Besides shifting perspectives, we identify three lines of future work. First, based

on our investigations of belief from the global and local point of view, a fruitful
direction is to explore the open question posed by Castañeda et al. [17]: How
can we reason about malicious agents on simplicial complexes? Second, a ques-
tion from the Dagstuhl report (cf. Castañeda et al. [17]) that remains open is an
intuitive philosophical interpretation of polychromatic complexes with respect to
distributed systems. Lastly, there is no semantics based on simplicial sets that
epistemically interprets degeneracy maps, i.e., that gives meaning to faces con-
taining multiple copies of the same subface. This thesis serves as an entry point
to all three lines of research.
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[1] Thomas Ågotnes and Yı̀ N. Wáng. Resolving distributed knowledge. Artif.
Intell., 252:1–21, 2017.
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