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Summary

Tropical forests are increasingly threatened by deforestation, fragmentation, and degradation,
primarily driven by agriculture, logging, and fire. In Western Africa, thousands of small and
isolated forest patches persist in agriculture-dominated landscapes. Although often unprotected,
these forests provide essential ecosystem services such as biodiversity conservation, carbon
storage, and the supply of resources like timber and bushmeat, while also holding cultural and
spiritual significance. Safeguarding them requires a deeper understanding of their ecological
functioning, as well as innovative monitoring approaches and consideration of local socio-
economic realities.

However, knowledge about the structure of these forests—an essential ecological feature—is
limited. Forest structure determines whether a forest is composed of large versus small trees, how
canopy layers are organized, and whether gaps dominate the canopy. Such attributes are directly
linked to forest biomass and carbon sequestration, both of which are key indicators of ecological
functioning. This thesis contributes to closing this knowledge gap by analyzing the structure,
aboveground biomass (AGB), and tree species richness of tropical forest patches across Western
Africa. The research focused on nine forest patches in Togo, Benin, Nigeria, and Cameroon, based
on 121 forest plots with tree inventories and species identifications.

The results revealed relatively intact forest structure and high aboveground biomass (85-260
Mg/ha), as well as the presence of several vulnerable and endangered tree species such as Afzelia
bipindensis and Guibourtia tessmannii. At the same time, the forest patches showed pronounced
edge effects: degradation was most visible near the edges, while more intact zones were confined
to the core. Structural metrics—including basal area, canopy height, species richness, complexity,
and tree vitality—increased with distance from the edge. In highly isolated patches, edge effects
also reduced AGB and wood density. AGB values in the studied community forests were lower
than those in nearby officially protected areas, underscoring the importance of conservation
measures beyond formal reserves.

Beyond describing ecological conditions, this thesis advances methodological innovation for
forest assessment. A terrestrial laser scanner (TLS) was tested to estimate AGB and compared
with manual inventories. While both methods produced moderately correlating results, challenges
remained due to sensor occlusion and the lack of species-specific wood density data. In addition,
unmanned aerial vehicles (UAVs) equipped with LiDAR and multispectral sensors enabled fine-
scale disturbance mapping, complementing ground-based information on forest structure and
vitality. Together, these tools demonstrate how emerging technologies can improve monitoring
of fragmented tropical forests.

Finally, the thesis integrates social dimensions to contextualize ecological findings. Through 328
interviews with regular forest users, it examined local perceptions of forest integrity and forest-
related activities such as hunting and logging. Results revealed contrasting perspectives: in
intensively used areas, degradation was often not perceived as a major concern, whereas
communities maintaining sacred forests showed strong awareness of threats such as fire and
illegal logging. Forests near urban centers exhibited higher exploitation pressure, and
interviewees frequently reported declining forest areas and the disappearance of key species.
These insights highlight the role of cultural traditions and socio-economic contexts in shaping
both forest condition and conservation prospects.



Taken together, the results highlight that Western Africa’s remaining forest patches retain
important ecological value—relatively intact structures, high biomass stocks, and threatened
species—yet remain highly vulnerable to edge effects and human pressure. To safeguard their
ecological and social value, this thesis recommends conservation strategies such as establishing
buffer zones to reduce edge degradation, reconnecting fragments with habitat corridors, and
integrating socio-economic approaches into forest management. By combining ecological
analysis, methodological innovation, and social perspectives, the thesis advances knowledge on
tropical forest functioning and provides tools and strategies for their sustainable management.

Keywords: Aboveground biomass, Carbon, Degradation, Edge effects, Fragmentation, Forest use,
Perceptions, Structural complexity, Tree species

Résumé

Les foréts tropicales sont de plus en plus menacées par la déforestation, la fragmentation et la
dégradation, principalement sous 1’effet de 1’agriculture, de l’exploitation forestiere et des
incendies. En Afrique de I’Ouest, des milliers de petits fragments forestiers isolés subsistent dans
des paysages dominés par I’agriculture. Bien que souvent non protégées, ces foréts fournissent
des services écosystémiques essentiels tels que la conservation de la biodiversité, le stockage du
carbone et 1’approvisionnement en ressources comme le bois et le gibier, tout en revétant une
importance culturelle et spirituelle. Les protéger nécessite une compréhension approfondie de leur
fonctionnement écologique, ainsi que des approches de suivi innovantes et la prise en compte des
réalités socio-économiques locales.

Cependant, les connaissances sur la structure de ces foréts — une caractéristique écologique
essentielle — restent limitées. La structure foresticre détermine si une forét est composée
principalement de grands ou de petits arbres, comment les strates de la canopée sont organisées
et si les trouées dominent la couverture forestiere. Ces attributs sont directement liés a la biomasse
aérienne (BA) et a la séquestration du carbone, deux indicateurs clés du fonctionnement
écologique. Cette thése contribue a combler cette lacune en analysant la structure, la biomasse
aérienne (BA) et la richesse en especes d’arbres des fragments forestiers tropicaux d’Afrique de
I’Ouest. La recherche s’est concentrée sur neuf fragments forestiers situés au Togo, au Bénin, au
Nigeria et au Cameroun, a partir de 121 parcelles foresticres avec inventaires d’arbres et
identification des especes.

Les résultats ont révélé une structure foresticre relativement intacte et une biomasse aérienne
¢levée (85-260 Mg/ha), ainsi que la présence de plusieurs espéces d’arbres vulnérables et
menacées telles que Afzelia bipindensis et Guibourtia tessmannii. En méme temps, les fragments
forestiers ont montré des effets de lisiére prononcés : la dégradation était la plus visible prés des
bords, tandis que des zones plus intactes étaient confinées au cceur des fragments. Les indicateurs
structurels — notamment la surface terriére, la hauteur de la canopée, la richesse en espéces, la
complexité structurale et la vitalité des arbres — augmentaient avec la distance par rapport a la
lisiére. Dans les fragments fortement isolés, les effets de lisiere réduisaient également la biomasse
aérienne et la densité du bois. Les valeurs de BA dans les foréts communautaires étudiées étaient
inférieures a celles des zones protégées officielles a proximité, soulignant I’importance de
mesures de conservation au-dela des réserves formelles.



Au-dela de la description des conditions écologiques, cette thése fait progresser I’innovation
méthodologique pour 1’évaluation forestiere. Un scanner laser terrestre (TLS, terrestrial laser
scanner) a été utilisé pour estimer la BA et comparé aux inventaires manuels. Bien que les deux
méthodes montrent une corrélation moderée, des difficultés subsistent en raison de 1’occultation
des capteurs et du manque de données de densité du bois spécifiques aux espéces. De plus, des
véhicules aériens sans pilote (UAV, unmanned aerial vehicle) équipés de LiDAR et de capteurs
multispectraux ont permis de cartographier les perturbations a fine échelle, complétant les
informations obtenues au sol sur la structure et la vitalité forestieres. Ensemble, ces outils
démontrent comment les technologies émergentes peuvent améliorer le suivi des foréts tropicales
fragmentées.

Enfin, la these integre des dimensions sociales pour contextualiser les résultats écologiques.
Grace a 328 entretiens avec des usagers de la forét, elle a examiné les perceptions locales de
I’intégrité forestiere et les activités forestiéres telles que la chasse et 1’exploitation du bois. Les
résultats ont révelé des perspectives contrastées : dans les zones a forte exploitation, la
dégradation n’était souvent pas pergue comme un probléme majeur, tandis que les communautés
maintenant des foréts sacrées montraient une forte conscience des menaces telles que les
incendies et I’exploitation illégale. Les foréts situées a proximité des centres urbains présentaient
une pression d’exploitation plus élevée, et les interviewés signalaient fréquemment un recul des
surfaces forestieres et la disparition d’especes clés. Ces observations mettent en évidence le role
des traditions culturelles et des contextes socio-économiques dans la détermination de I’état des
foréts et des perspectives de conservation.

Dans I’ensemble, les résultats montrent que les fragments forestiers restants d’ Afrique de I’Ouest
conservent une valeur écologique importante — structures relativement intactes, stocks ¢levés de
biomasse et espéces menacées — mais restent trés vulnérables aux effets de lisiére et aux
pressions humaines. Pour préserver leur valeur écologique et sociale, cette thése recommande des
stratégies de conservation telles que 1’établissement de zones tampons pour réduire la dégradation
en bordure, la reconnexion des fragments par des corridors écologiques et I’intégration
d’approches socio-économiques dans la gestion forestiére. En combinant analyse écologique,
innovation méthodologique et perspectives sociales, la these fait progresser la connaissance du
fonctionnement des foréts tropicales et fournit des outils et stratégies pour leur gestion durable.

Mots-clés: Biomasse aérienne, Carbone, Complexité structurelle, Dégradation, Effets de lisiere,
Especes d'arbres, Fragmentation, Perceptions, Utilisation des foréts

Zusammenfassung

Tropische Wilder sind zunehmend durch Abholzung, Fragmentierung und Degradierung bedroht,
hauptséchlich verursacht durch Landwirtschaft, Holzeinschlag und Feuer. In Westafrika bestehen
in von Landwirtschaft dominierten Landschaften noch tausende kleine und isolierte
Waldfragmente. Obwohl diese Wiélder oft ungeschiitzt sind, erbringen sie essenzielle
Okosystemleistungen wie den Erhalt der Biodiversitit, die Kohlenstoffspeicherung sowie die
Bereitstellung von Ressourcen wie Bauholz und Wildfleisch und haben gleichzeitig kulturelle
und spirituelle Bedeutung. Thr Schutz erfordert ein tieferes Verstidndnis ihres 0kologischen



Funktionierens sowie innovative Monitoring-Ansdtze und die Beriicksichtigung lokaler
soziodkonomischer Realitéten.

Allerdings sind die Kenntnisse {iber die Struktur dieser Wélder — ein wesentliches dkologisches
Merkmal — begrenzt. Die Waldstruktur bestimmt, ob ein Wald hauptsidchlich aus grossen oder
kleinen Bédumen besteht, wie die Schichten der Baumkronen (Kronendachstrukturen) organisiert
sind und ob Liicken die Baumkronen dominieren. Diese Merkmale stehen in direktem
Zusammenhang mit der oberirdischen Biomasse (AGB, aboveground biomass) und der
Kohlenstoffspeicherung, die beide zentrale Indikatoren fiir das Okologische Funktionieren
darstellen. Diese Dissertation tridgt dazu bei, diese Wissensliicke zu schliessen, indem sie die
Struktur, die AGB und die Artenvielfalt von Baumen in tropischen Waldfragmenten Westafrikas
analysiert. Die Untersuchung konzentrierte sich auf neun Waldfragmente in Togo, Benin, Nigeria
und Kamerun, basierend auf 121 Waldparzellen mit Baum-Inventur und Artenbestimmungen.
Die Ergebnisse zeigten eine relativ intakte Waldstruktur und eine hohe oberirdische Biomasse
(85-260 Mg/ha), sowie das Vorkommen mehrerer gefahrdeter und bedrohter Baumarten wie
Afzelia bipindensis und Guibourtia tessmannii. Gleichzeitig wiesen die Waldfragmente
ausgeprigte Randeffekte (edge effects) auf: Degradierung war besonders an den Waldrdndern
sichtbar, wahrend intakte Bereiche im Kern der Fragmente lagen. Strukturmetriken —
einschliesslich Baumgrundfliche, Kronenhohe, Artenvielfalt, strukturelle Komplexitit und
Baumvitalitit — nahmen mit zunehmender Entfernung vom Waldrand zu. In stark isolierten
Fragmenten reduzierten die Randeffekte zusétzlich die AGB und die Holzdichte. Die AGB-Werte
in den untersuchten Gemeinschaftswéldern lagen unter denen der nahegelegenen offiziell
geschiitzten Gebiete, was die Bedeutung von Schutzmassnahmen {iber formelle Reservate hinaus
unterstreicht.

Uber die Beschreibung 6kologischer Bedingungen hinaus leistet diese Dissertation einen Beitrag
zur methodischen Innovation in der Waldbewertung. Ein terrestrischer Laserscanner (TLS,
terrestrial laser scanner) wurde zur Schitzung der AGB eingesetzt und mit manuellen Inventaren
verglichen. Obwohl beide Methoden stark korrelierende Ergebnisse lieferten, bestanden weiterhin
Herausforderungen aufgrund von Sensorverschattungen (occlusion) und fehlender artspezifischer
Holzdichtedaten. Zusitzlich ermdglichten unbemannte Luftfahrzeuge (UAVs, unmanned aerial
vehicles) mit LIDAR- und Multispektralsensoren die Kartierung von Stérungen auf feiner Skala,
wodurch die bodengestiitzten Informationen tiber Waldstruktur und Vitalitdt ergéinzt wurden.
Zusammen zeigen diese Technologien, wie moderne Methoden die Uberwachung fragmentierter
tropischer Wilder verbessern konnen.

Schliesslich integriert die Dissertation soziale Dimensionen, um die 6kologischen Ergebnisse zu
kontextualisieren. Durch 328 Interviews mit Waldnutzenden wurden lokale Wahrnehmungen der
Waldintegritdt und waldbezogener Aktivititen wie Jagd und Holzeinschlag untersucht. Die
Ergebnisse zeigten kontrastierende Perspektiven: In intensiv genutzten Gebieten wurde
Degradierung oft nicht als ernsthaftes Problem wahrgenommen, wihrend Gemeinden, die heilige
Wailder pflegen, ein starkes Bewusstsein flir Bedrohungen wie Feuer und illegalen Holzeinschlag
zeigten. Wilder in der Néhe stidtischer Zentren waren stirkerer Nutzung ausgesetzt, und die
Befragten berichteten héufig iiber riicklaufige Waldflachen und das Verschwinden wichtiger
Arten. Diese Erkenntnisse verdeutlichen die Rolle kultureller Traditionen und sozio6konomischer
Kontexte bei der Bestimmung des Waldzustands und der Aussichten fiir den Naturschutz.

Vi



Zusammenfassend heben die Ergebnisse hervor, dass die verbleibenden Waldfragmente
Westafrikas eine bedeutende dkologische Wertigkeit besitzen — relativ intakte Strukturen, hohe
Biomassebestinde und bedrohte Arten —, jedoch weiterhin stark anféllig fiir Randeffekte und
menschlichen Druck sind. Um ihren 6kologischen und sozialen Wert zu sichern, empfiehlt diese
Dissertation Schutzstrategien wie die FEinrichtung von Pufferzonen zur Reduzierung der
Randdegradierung, die Wiedervernetzung von Fragmenten durch Habitatkorridore und die
Integration soziodkonomischer Ansétze in die Waldbewirtschaftung. Durch die Kombination
okologischer Analysen, methodischer Innovationen und sozialer Perspektiven erweitert die
Dissertation das Wissen iiber das Funktionieren tropischer Wilder und liefert Werkzeuge und
Strategien fiir deren nachhaltige Bewirtschaftung.

Stichworte: Baumarten, Degradierung, Fragmentierung, Kohlenstoff, Oberirdische Biomasse,
Randeffekte, Strukturelle Komplexitit, Wahrnehmungen, Waldnutzung

vii



I. Acknowledgments
“We are like continents in the sea, or like trees in the forest. The mahogany and the kapok may
whisper to each other with their leaves...But the trees also commingle their roots in the darkness
underground, and the continents also hang together through the ocean’s bottom. Just so there is
a continuum of cosmic consciousness, against which our individuality builds but accidental

fences, and into which our several minds plunge as into a mother-sea or reservoir.” Adapted from
William James, ‘Essays and Lectures’ (1909)

Like almost everything in life, this PhD is the result of enabling circumstances in time and space,
shaped by the people who supported me at crucial moments. First, [ want to thank Amelie Kreuzer
for pointing out this PhD position, she set this entire journey in motion. I am deeply grateful for
the support of my family. My brother, Simon Hepner, encouraged me to think twice about the
statistical tests I applied in this work. My mother continuously supported me, even if she may not
have fully understood the point of writing hundred pages of text in four years. She also made sure
we planned regular holidays, which helped to clearing my mind and gave me the chance to explain
my research in plain Swiss German. My father, Klaus Hepner, undoubtedly sparked my curiosity
for the natural sciences. Even 30 years after university, he could still recall every plant by its Latin
name. Sadly, he left us in 2024, may he rest in peace and read this thesis from another world. My
sister, Naemi Hepner, deserves thanks for organizing family reunions and trips to beautiful natural
places. Finally, I am especially grateful to my wonderful girlfriend, Lisa Niederauer. As a
neurologist at the university hospital, she tirelessly demonstrated what true hard work looks like.
She showed patience (and even interest) during my mock presentations, let me go when I traveled
for summer schools and fieldwork, and welcomed me with open arms when I returned.

This thesis was conducted at the University of Bern, where I was fortunate to benefit from the
expertise of various institutions and individuals. The statistics consulting service and the Data
Science Lab helped me navigate challenges related to error propagation and Python scripts. [ am
grateful for the support of key people at the Institute of Geography, for example Saliba Saliba,
Marlis Rothlisberger-Zaugg, Nicole Sarbach-Schumacher, and Carmen Theler, who provided me
with a computer, a chair, and a desk, and ensured that my expenses, salary, and working hours
were properly managed.

I was fortunate to be part of the SUSTAINFORESTS team, which brought together diverse
knowledge, languages, perspectives, and cultures. I thank my colleagues, Georges Agonvonon,
Chima Theaturu, Pamela Tabi Eckebil, and Frank Mintah for mastering the art of price
negotiations in Africa and for making me reflect on certain Swiss cultural habits. Further, I want
to thank our team’s PostDocs Vladimir Wingate and Giulia Curatola Fernandez for being an
example and letting me learn from their experiences in academia and life. Special thanks go to
Chinwe Ifejika Speranza for sharing the vision of SUSTAINFORESTS, securing funding and
materials, and tirelessly reviewing half-finished manuscript drafts. The valuable feedback from
my co-authors greatly improved my scientific writing and communication. We all stand on the
shoulders of giants. Countless people before us have made it possible for me to cite knowledge
and type this text on a keyboard. Finally, I extend my gratitude to all the hospitable people in
Africa who guided us through their forests and generously shared their ways of life.

viii



IL.

Preface
From a small village in the Swiss Alps to even smaller villages in Western Africa. Like many
Swiss people, I was not particularly interested in Africa for a long time and did not think and
know much about it. However, during my master’s at the University of Lausanne, I came across
a thesis advertisement about agriculture in Cote d’Ivoire. After a quick Google search to locate
Cote d’Ivoire on the map and listening to a few songs by Magic System, I decided to go for it. I
spent a few months there, and after overcoming the initial cultural shock, I began to appreciate
the spicy food, the hospitality of the people, the lush landscapes, and the relaxed working
atmosphere. [ was into it.
That experience made it impossible to resist applying for this PhD position, which promised
exciting fieldwork in Togo, Benin, Nigeria, and Cameroon—countries one does not typically visit
as a tourist, but whose realities I was eager to explore. Of course, a PhD is not just about fieldwork.
It is an abstract and often unpredictable journey, difficult to fully grasp from the outside. During
an adventurous mountaineering tour to the Piz Scerscen in the Grisons, I chose the unknown and
decided to move to Bern and conduct this PhD.
The PhD was conducted in the Land Systems and Sustainable Land Management unit at the
Institute of Geography at the University of Bern. It was part of the SUSTAINFORESTS project
(2021-2026), funded by the European Research Council (grant agreement No. 101001200).
Looking back, I am grateful for this enriching experience, full of learning opportunities and
inspiring people. These four years have passed quickly, and I am happy to present the outcome
in this thesis.



LY S iv
ZUSAMUMICHSUSSUNG «.ceeeesaannnsssasnmsssssnmsssssnmsssnsesssn s s sssnn s s k£ 8RS k£ R RSk £ e RSk R R RS nnemss i nnnmssnnnnnns v
) B el 1 L g T L A S viii
) 0 o N ix
0 B {11 {7 1 12
1.1 Historical Context ......uviiiiiimiiimiin i ———————————————— 12
1.2 Current approaches in forest research..........ccouviiiiiiiiiin i ——— 12
1.3  Forest research in the African context .........cooviiiiiiiinnn i ————— 13
1.4  Forest patches in Western Africa........ccocniiiinnn s 14
1.5  Scientific gaps and problem statement............covviiiiiniin i ——————— 14
1.6  Research objectives of the PhD ... 16
B [ 1 N 19
2.1 Pre-fleldWOrK ...eeeeeeeeeeeeeeeeeeeieieineeineeene s ————— 19
P20 N 0 U= U 1) g 19
P20 T 1110 T (4 1) 24
3. Key inSights and CONCIUSIONS .....eeureeereeeeiiiiiiiiiennnennensessssssssssssssssssnn s s s eneesssssssssssssas 28
3.1 Understanding ecological functioning in tropical forests ............cccommmrmmmiiiiiiininnneeennan, 28
3.2  Testing new methods to improve capturing forest conditions ...........cccecuummnmemnnnnnnennnnnns 29
3.3 Integrating social perspectives and measured values of forest conditions..........c........... 30
3.4 Overall key inSights.......cccoiiiiiiiiiiiiisiinni s s 32
3.5 Relevance and NOVEILY .......cccoveiiiiiiisiissiissiiisssssssssssssssssss s s s ssssssssnssnnnnnnnnnnnnnnnnns 32
R 2N T 01115 ) < 33
N 7 1L 1) RS 35
4.1  Strengths and lmMitations..........eeeeeeeememmmmmmmmmmmmmmm i ——— 35
T N 11X (1) 11 35
RN Y4 72 1 1 el T L 55

5.1 Paper 1: Degradation and Fragmentation Effects on Structural Complexity in West
African Forest PatChes .......ccccoiiiiiiiiiniiiiiiiis s s s n s s 55

5.2 Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa:
Comparison of Manual Inventory and Terrestrial Laser Scanning ............ccccovveeemmnnniiiininnnnns 69

5.3 Co-authored paper 3: Tree species diversity and conservation across disturbance and
bioregion types in forest patches outside protected areas in tropical Africa......ccccceceeiininnns 123

5.4  Co-authored paper 4: Integrating UAV LiDAR and multispectral data to assess forest
status and map disturbance severity in a West African forest patch........cccccvvviiiiiiiiiinnn, 139

10



5.5 Paper 5: Perceived and Measured Forest Degradation in West Africa: Insights for

Sustainable Forest Management

6. Declaration of authorship....

1"



1. Introduction

1.1 Historical context

Humans began living in African tropical forests around 60,000 years ago and later colonized
tropical forests on other continents (Lewis et al., 2015; Scerri et al., 2022). For much of history,
people relied on forests for food, shelter, and energy (Vantomme, 2011). Early impacts included
megafauna extinctions, such as stegodonts and gomphotheres, which altered forest structure
(Lewis et al., 2015). The loss of such keystone species also led to changes in forest structure and
composition (Lewis et al., 2015; Malhi et al., 2013, 2014). Around 6000 years ago, agriculture
reduced forest cover locally (Lewis et al., 2015). These small-scale, low-impact human—forest
interactions persist today among uncontacted tribes (Gerstner, 2019; Vantomme, 2011).
However, most societies progressively modified forests to increase productivity for human
benefits (Wunder, 2001). European colonization in Africa around 1800 further transformed
Most accessible forests were first logged and then converted to agriculture (Ashton & Hall, 2011;
Knoke & Huth, 2011; Potapov et al., 2021; Wunder, 2001). Modern machinery has made
exploitation increasingly efficient (Grigorev et al., 2020).

Today, in the Anthropocene (Crutzen, 2002), only a fraction of tropical forest remains, facing
compounding threats from climate change and biodiversity loss (Lewis et al., 2015). Competing
claims complicate management: local communities depend on resources like bushmeat and
firewood (Heinimann et al., 2017; Lewark, 2022; Neuenschwander et al., 2015), while global
institutions push for conservation and carbon storage (Convention on Biological Diversity
(CBD), 2021; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES), 2022; International Union for Conservation of Nature (IUCN), 2022; United
Nations, 2015). Meanwhile, governments, corporations, and elites often prioritize short-term
profits (Baruah, 2017; Ruiz Pérez et al., 2005).

As resource demands grow, land-use conflicts intensify, particularly between agriculture and
forest preservation (Glinter et al., 2011). Scientists warn that tropical forests may be nearing
ecological tipping points, shifting to savannah-like states (Malhi et al., 2014; Sullivan et al.,
2020; Zemp et al., 2017). Yet opportunities remain: up to 0.9 billion hectares of unforested land
could support natural regeneration, aiding climate mitigation and ecosystem restoration (Bastin
et al., 2019). These long-term and contemporary dynamics shape not only the extent of tropical
forests but also their structure, biomass, and species richness, as well as how local people
perceive and interact with them.

As the uses and values of forests have shifted over time, so too have forest research questions
and their corresponding methods (Chen et al., 2022). Early inventories focused on describing
forest stands and estimating timber, but over time methods became increasingly systematic,
accurate, and representative (Asrat & Tesfaye, 2013; Murtiyoso, Cabo, et al., 2024). Since the
mid-20th century, forest research has progressively expanded from timber-focused
measurements to broader ecological assessments, incorporating statistical design, growth and
yield modeling, and biodiversity monitoring (Burkhart et al., 2019).

1.2 Current approaches in forest research

Recent decades have seen a rapid technological transformation of forest research. Among the
most important advances is terrestrial laser scanning (TLS), which enables highly detailed
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mapping of forest structure by capturing the three-dimensional spatial distribution of vegetation
(Calders et al., 2020). TLS point clouds can be used to derive tree height, volume, and biomass,
as well as canopy architecture and deadwood (Krisanski et al., 2021; Wilkes et al., 2023). Mobile
and aerial systems, including UAVs and airborne laser scanning, extend point cloud acquisition
across larger areas, while satellite missions such as ESA’s BIOMASS launched in 2025 promise
global insights into aboveground biomass (Brede et al., 2019; European Space Agency, 2025).
Beyond measurement, point clouds are increasingly used to build digital twins for management
simulations (Holm & Schweier, 2024), to perform radiative transfer modeling linking structural
and spectral data (Calders et al., 2018), and to generate synthetic forests that reduce the need for
extensive field sampling (Feng et al., 2025). Novel UAV designs even mimic animal flight or
perch silently in canopies, opening new opportunities for biodiversity monitoring (Chang et al.,
2020; Kirchgeorg & Mintchev, 2022; Ramezani et al., 2017).

Each method for studying forests has strengths and limitations. Manual inventories provide
highly accurate measurements of individual trees and ecological details, forming essential
ground-truth data, but they are labor-intensive and restricted to small areas. TLS offers precise
three-dimensional mapping of forest structure and biomass yet is similarly limited in spatial
extent. UAVs allow flexible and relatively cost-effective data collection across intermediate
scales, though dense canopies or complex terrain can constrain their use. Satellite remote sensing
provides global and temporal coverage, but at coarser spatial resolution, making fine-scale
structural analysis challenging. Beyond technological tools, local knowledge and perceptions
give crucial insights into disturbances, resource use, and ecosystem dynamics that are invisible
from remote sensing, though they may reflect subjective or culturally influenced views.
Integrating these approaches—combining solid ground-truth data from manual inventories, TLS
precision, UAV flexibility, satellite reach, and local ecological knowledge—offers a holistic and
robust understanding of forest structure, biomass, species richness, and disturbance dynamics.
This multi-scale, multi-perspective framework underpins the approach of the present study,
linking high-resolution measurements with broader ecological patterns and local perceptions.

1.3 Forest research in the African context

Most forest research is conducted and funded in developed countries such as the USA, China,
and in Europe (Aleixandre-Benavent et al., 2017; Aznar-Sanchez et al., 2018; Chen et al., 2022;
Y. Song & Zhao, 2013), while tropical forests remain comparatively less studied. The Brazilian
Amazon dominates the literature about tropical forests, with long-term studies on deforestation,
fragmentation, and restoration (e.g., Asner et al., 2005; Fearnside, 2005; Laurance et al., 2002).
In contrast, Africa—especially Western Africa—has been severely neglected, with only a
handful of published studies and limited grey literature (Ashton & Hall, 2011; North et al., 2020).
Structural barriers such as scarce funding and research capacity contribute to this gap (Ighodaro
& Igbinedion, 2020; North et al., 2020). Here, the term Western Africa refers to both the Guinean
forests of West Africa and the ecologically similar Lower Guinea forests extending into
Cameroon.

Yet African tropical forests are globally significant. They make up about 30% of the world’s
tropical forests and differ from Amazonian and Asian forests in structure, biomass, and species
richness (Lewis et al., 2013, 2015). For example, African forests host fewer species and trees per
hectare but store more biomass due to longer carbon residence times. Megafauna extinction was
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less severe than elsewhere, and elephants still play a key role in shaping forest composition.
These forests are also highly vulnerable to shifting cultivation and agricultural expansion, with
47 million hectares lost between 2003 and 2019 (Heinimann et al., 2017; Potapov et al., 2021).
Climate change adds further uncertainty: while dieback is projected for many tropical forests,
shifts in the West African Monsoon could even expand forest potential in parts of the Sahel,
though sparse meteorological data limit model reliability (Lenton et al., 2008; Réjou-Méchain et
al., 2021).

Despite their global importance, ecological data on African tropical forests remain scarce,
particularly regarding forest structure and biomass. This lack of baseline knowledge constrains
both conservation strategies and climate models. Research is urgently needed as rapid population
growth, urbanization, and economic development increase pressure on natural resources. With
Africa’s population projected to double by 2050 , the demand for forest products and land is
expected to intensify, making a better understanding of forest structure, biomass, species
richness, and local perceptions of forest ecology particularly pressing (Grinin & Korotayev,
2023).

1.4 Forest patches in Western Africa

In the last decades, Western Africa has faced very high rates of tropical deforestation (Hansen
et al., 2013; Poorter et al., 2004; Schelhas & Greenberg, 1996) and the countries of Togo, Benin,
Nigeria, and Cameroon are no exception. These countries host thousands of small, isolated forest
patches in fragmented, agriculture-dominated landscapes (Wingate et al., 2022, 2024), which are
crucial for biodiversity conservation, carbon storage, and resources such as timber and bushmeat
(Neuenschwander et al., 2015). The persistence of these patches is uncertain, given widespread
agricultural expansion, associated deforestation, and the lack of formal protection (Akinyemi &
Ifejika Speranza, 2022; Mintah et al., 2024; Poorter et al., 2004). Small and primary forests are
particularly vulnerable to large-scale land-cover change (Wingate et al., 2024). Their continued
existence highlights the challenges of balancing environmental values with human development
in regions under high land-use pressure (Ifejika Speranza et al., 2019). Moreover, these patches
are often overlooked in both research and policy design (Meyfroidt et al., 2018; Mintah et al.,
2024). It is likely that larger forest blocks, such as the Congo Basin, will also become
increasingly fragmented due to ongoing land-use changes (Fischer et al., 2021) with significant
consequences for biodiversity and other ecosystem services (Blockhus et al., 1992). Studying
the dynamics of fragmented landscapes in Western Africa thus provides valuable insights into
the potential future of the Congo Basin.

1.5 Scientific gaps and problem statement

1.5.1 Understanding ecological functioning in tropical forests

Tropical forests play a key role in global ecological functioning, supporting biodiversity,
regulating climate, and storing large amounts of carbon (Ameray et al., 2021). Forest structure
is an important proxy for forest resilience and integrity, as it correlates with indicators such as
biodiversity, productivity, carbon storage, and microclimate regulation (Coverdale & Davies,
2023). However, despite its importance, forest structure and its links to forest degradation and
fragmentation remain insufficiently quantified in many regions, particularly in Western Africa,
restricting our capacity to assess forest integrity and detect patterns of degradation and resilience.
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Aboveground biomass (AGB) estimation represents a second major gap. Although tropical
forests store around 80% of terrestrial aboveground carbon, with roughly half of tree biomass
consisting of carbon (Ghazoul & Sheil, 2010), accurately estimating AGB remains challenging.
Uncertainties are especially high in fragmented landscapes, such as those found across Western
Africa (Araza et al., 2022). These uncertainties limit our ability to determine whether forests act
as net carbon sinks or sources (Mitchard, 2018), despite the fact that climate models rely heavily
on precise AGB estimations (Chave et al., 2019).

Finally, the ecological consequences of anthropogenic disturbances on tree species compositions
in these forests are not well understood. The spatial patterns of disturbance and edge effects
remain largely unknown, as does their impact on alpha and beta diversity, even though these
forests harbor near-threatened, vulnerable, and endangered species such as Anonidium mannii,
Afzelia bipindensis, and Guibourtia tessmannii.

1.5.2 Testing new methods to improve capturing forest conditions

Monitoring tropical forests, whether large tracts or small patches, is inherently challenging due
to their vast extent, inaccessibility, and structural complexity. Traditional approaches, such as
manual inventories and allometric equations, are prone to systematic biases, limiting the
accuracy of AGB estimations (Calders et al., 2022) This thesis addresses these limitations by
advancing the use of TLS in tropical forests. For the first time in this region, TLS is
systematically applied to not only quantify structural complexity but also to compare biomass as
estimated by manual inventories and TLS respectively.

At the same time, more remote sensing technologies offer promising opportunities to improve
forest monitoring. Unmanned aerial vehicles (UAVs) have emerged as effective tools for
assessing forest health (Ecke et al., 2022; Torresan et al., 2017), yet their potential remains
underexplored in Western Africa. In particular, UAV LiDAR has never been combined with
multispectral data to evaluate forest patches in this region. By fusing these datasets, this thesis
develops an integrated disturbance index for contiguous forest areas, which can be validated
against ground-based observations of forest degradation. This approach provides a more
comprehensive understanding of forest conditions than ground-based surveys alone.

1.5.3 Social dimensions of ecological forest conditions

The social dimensions of deforestation and degradation—how local communities use, perceive,
and manage forests—remain insufficiently studied, even though millions of people depend on
tropical forests for their livelihoods (Lewark, 2022). In Western Africa, the persistence of forest
patches directly reflects community practices, placing local people at the forefront of either
degrading or conserving forests. Yet no comparative research has systematically examined these
dynamics across Togo, Benin, Nigeria, and Cameroon.

Addressing this gap is crucial, since ecological measurements and local perceptions capture
different but complementary realities. Structural complexity, AGB, and diversity provide
objective indicators of degradation and resilience, but they cannot reveal how forests are
experienced, valued, or managed on the ground. Conversely, local perceptions highlight
pressures and disturbances that may not be immediately detectable in ecological data, but they
can be subjective, shaped by cultural and economic contexts. Linking the two perspectives
therefore adds explanatory depth: it helps clarify mismatches (e.g., when forests perceived as
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degraded still retain ecological integrity, or when intact-looking forests are already under
pressure) and supports more robust, socially grounded management strategies.

This thesis addresses these gaps by analyzing forest structural complexity along edge—core
gradients, providing AGB data at both tree and plot levels, and examining alpha and beta
diversity across forest patches in Western Africa. New methods are tested by comparing AGB
estimates from manual inventories and TLS, and by integrating LiDAR and multispectral data
from UAVs. The social dimensions are addressed by combining interview data with socio-
economic and ecological measurements, thereby embedding objectively measured forest
conditions within the lived realities of local communities.

1.6 Research objectives of the PhD

Building on these gaps, this thesis, embedded in the interdisciplinary SUSTAINFORESTS
project, addresses them through five corresponding papers. The research focuses on nine forest
patches in Togo, Benin, Nigeria, and Cameroon, spanning the Guinean Savanna and the Guineo-
Congolian zone (Dinerstein et al., 2017; Tappan et al., 2016). Accordingly, the thesis is guided
by the following research questions:

1.6.1 Understanding ecological functioning in tropical forests
Paper 1: Degradation effects on forest structure
1. How does the stand structural complexity index (SSCI) vary with fragmentation,
connectivity, canopy openness, tree height, basal area, number of tree stems, and tree
species richness?

e We expect that SSCI increases with high connectivity, low fragmentation, low
canopy openness, a high number of tall trees, a high basal area, a high tree stem
density, and high tree species richness.

2. How do edge effects impact the SSCI of forest patches?

e We expect that SSCI decreases toward forest edges.

3. How does the in situ measured SSCI of the forest patches compare with the
corresponding ecological reference value?

e We expect intact forest patches where in situ measured SSCI equal the corresponding
ecological reference value.

Paper 2: Aboveground biomass in small forest patches measured with TLS
1. What is the current AGB and carbon in the studied forest patches and how is it spatially
distributed?
e We expect that the amounts and spatial patterns of AGB and carbon vary across the
forest patches, indicating environmental and disturbance gradients.
2. Which forest characteristics correlate most with AGB?
e We expect basal area, tree height, and wood density to correlate most with AGB.
3. How does the AGB of these patches compare with that of other forests in the region?
e We expect to find lower AGB in isolated forest patches as compared to larger forest
areas, due to edge effects.

Paper 3: Disturbance effects on tree species diversity
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1. How does alpha diversity of tree communities vary in relation to both anthropogenic
disturbances and bioregion types?
e We expect variation in tree community-alpha diversity along the bioregion types and
disturbance gradients.
2. How does beta diversity vary among tree communities in forest patches across the
Guineo-Sudanian and Guineo-Congolian bioregions?
e Tree beta diversity increases with spatial distance between forest patches.
3. What are the effects of disturbance intensity and bioregion type on tree stand structure in
forest patches?
e Tree stand parameters (e.g., tree density and basal area) are negatively correlated with
disturbance gradients, mainly due to selective logging of timber species and forest
fires.

1.6.2 Testing new methods to improve capturing forest conditions
Paper 2: Aboveground biomass in small forest patches measured with TLS

4. How does AGB estimated from manual inventory compare to AGB obtained by TLS?
e We expect that AGB obtained by TLS will show a positive correlation with AGB
derived from manual inventories across forest patches.

Paper 4: Integrating LiDAR and multispectral UAV data
1. How can structural properties, derived from UAV LiDAR data and spectral vegetation
indices from UAV multispectral imagery, be used to assess the current state of the forest?
e Structural and spectral metrics, derived from UAV LiDAR and multispectral
imagery, can effectively characterize spatial variation in forest condition.
2. How can an Integrated Disturbance Index (IDI) be generated using principal component
analysis (PCA) of correlated structural and spectral vegetation indices?
e An Integrated Disturbance Index (IDI) generated via PCA of structural and spectral
metrics can capture gradients of forest disturbance.
3. How can the IDI be used to delineate low, medium, and high disturbance levels to identify
forest areas that require immediate conservation action?
e The IDI can reliably classify forest areas into low, medium, and high disturbance
levels to support conservation prioritization.

1.6.3 Integrating social perspectives and measured values of forest conditions
Paper 5: Forest use and its perceptions

1. To what extent do forest use patterns differ across forests with varying socio-cultural,
economic, and ecological contexts?

e Forestuse is expected to be dominated by the collection of non-timber forest products
across all sites, with minor differences possibly linked to observable site
characteristics, such as governance rules (e.g., sacred forests) or ecological conditions
(e.g., swamp vs. semi-deciduous forests).

2. How do perceptions of forest use impacts differ across sites with varying socio-cultural,
economic, and ecological contexts?
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Logging and fire are expected to be widely perceived as degrading forests across
sites, while perceptions of other activities (e.g., agriculture, charcoal production,
NTFP collection) are expected to show greater variability depending on measurable
or describable contextual factors, such as forest type, local restrictions, and
community norms.

3. How are pressure on forests and perceived and measured forest degradation interrelated?

Forests under greater pressure of use (e.g., logging, hunting, weak governance) are
expected to show higher measured degradation. These pressures are also likely to
shape local perceptions, such that observable degradation corresponds with
community perceptions.
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2. Methods

This thesis was conducted between 2021 and 2025. I began by reviewing the literature to identify
knowledge gaps and become familiar with specific methods. I then participated in fieldwork to
collect data, followed by analyzing the data and integrating the results with existing datasets such
as satellite imagery. The findings were connected with the literature and published. Finally, I
and the rest of the research team returned to the field communities to share results and discuss
conclusions and potential next steps. This mixed-methods approach led to three first-authored
and two second-authored scientific papers.

2.1  Pre-fieldwork

2.1.1 Literature review

A large body of open access scientific knowledge is available through the internet and academic
libraries. To familiarize myself with the topic, I conducted keyword searches using various
platforms, including Web of Science, Scopus, Google Scholar, and the Swiss university library
database (swisscovery.ch). A proposal was formulated, indicating the knowledge gaps and
outlining the strategy to fill these gaps in the given PhD-period. To keep pace with scientific
advances, I sporadically searched for new papers in my research topics. I used the reference
management software Zotero (Digital Scholar, 2025) for reading and citing scientific texts.

2.2 Fieldwork

In 2022 and 2023, four PhD colleagues, the principal investigator, and I (consequently called
“we””) conducted fieldwork in nine forest patches across Togo, Benin, Nigeria, and Cameroon
(Figure 1). These sites were selected from a larger pool of 420,446 identified forest patches,
which are formally unprotected and isolated within the agricultural landscape (Wingate et al.,
2022, 2024). The nine sites were chosen to represent different ecological and cultural contexts,
encompassing ferra firme and swamp forests, agroforestry systems, and several sacred forests,
spanning both the Guinean Savanna and Guineo-Congolian zones. The individual sites were
Koui, M’poti, Agou, Ewe-Adakplame (also known as Kouvizoun sacred forest Adakplame-
Ewe¢), Hlanzoun, Iko, Ikot, Mbangassina, and Ngam-Kondomeyos.
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Figure 1 Map of the studied countries Togo, Benin, Nigeria, and Cameroon in Western Africa.
We chose nine field study sites from 420446 identified forest patches, which are formally
unprotected and isolated in the agricultural landscape (Wingate et al., 2022, 2024). Koui and

M’poti are close to each other and shown as one dot.

A range of methods were applied in and around forest patches, integrating both quantitative and
qualitative metrics, with different methods complementing and validating each other (Figure 2).
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i T i S Co-authored paper 4: Integrating UAV LiDAR and
8 8 < / multispectral data to assess forest status and map
® é ® {\ @ disturbance severity in a West African forest patch

Co-authored paper 3: Tree species diversity and
conservation across disturbance and bioregion types in
forest patches outside protected areas in tropical Africa

Paper 1: Degradation and Fragmentation
Effects on Structural Complexity in West
African Forest Patches

Paper 5: Perceived and Measured Forest Paper 2: Quantifying Aboveground Biomass in
Degradation: Insights for Sustainable Forest Tropical Forest Patches of West Africa —Terrestrial
Management Laser Scanning and Manual Inventory

Figure 2 To obtain data on the ecological conditions and underlying management dimensions
of forest patches, various methods were applied to get more complete insights and compensate
limitations of single methods. The methods included a) manual forest inventories, b) terrestrial
laser scanning, c) unmanned aerial vehicles, and d) interviews with regular forest users.

2.2.1 Sampling plots

Forest inventories use well-defined sampling strategies with representative plots to generalize
findings to the whole forest (Food and Agriculture Organization of the United Nations (FAO),
2011). In tropical forests, where biomass and other characteristics vary greatly across space
(Grussu et al., 2016), robust sampling is essential (Asrat & Tesfaye, 2013). Plots—small,
spatially restricted areas—are established according to research goals, forest type, accessibility,
and constraints such as time and budget (Food and Agriculture Organization of the United
Nations (FAO), 2008; Grussu et al., 2016; Paul et al., 2019). For this study, we used square plots
of 50 x 50 m, with 25 x 25 m subplots (Paper 2, Figure 2), as this size is practical to set up
(Duncanson et al., 2021) and sufficiently representative for biomass estimations (Chave et al.,
2019). We applied a simple random sampling strategy to ensure plots were well distributed
across each forest (Ravindranath & Ostwald, 2008), using the “random points in a polygon”
function in a geographic information system (QGIS Development Team, 2023). To avoid spatial
autocorrelation, we enforced a minimum distance of 50 m between sample plots in a forest. This
setup allowed us to capture the gradient from forest edge to core. At each selected location, we
confirmed that the plot area exhibited relatively homogeneous forest composition before data
collection.
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2.2.2  Traditional forest inventory

A forest inventory involves collecting quantitative and qualitative data on trees within a defined
area (Asrat & Tesfaye, 2013). For this study, we included all living trees with a diameter at breast
height (DBH) greater than 10 cm in the manual inventory. We measured i) DBH using a
measuring tape, ii) estimated tree height using a clinometer, and iii) identified the tree species
with the help of local botanists and national herbaria. This standardized approach aligns with
established guidelines (Asrat & Tesfaye, 2013; Duncanson et al., 2021; Food and Agriculture
Organization of the United Nations (FAO), 2008, 2011; Phillips et al., 2021; Ravindranath &
Ostwald, 2008). The ecology field team typically consisted of six members. One person
measured DBH and identified tree species, another estimated tree height, and a third recorded
the data in a handwritten table. In addition, one team member operated the terrestrial laser
scanner, another collected soil data, and a local guide supported the team in orienteering in the
forest (Figure 3). Immersing oneself in the field to collect ecological data is essential for
understanding nature, exchanging knowledge, and grounding research beyond office-based work

Awsllt

Figure 3 The ecology field team gathered at a huge kapok tree (Ceiba pentandra) in the sacred
forest of Koui. Photo taken by local guide from Koui (name unknown,).

2.2.3 Terrestrial laser scanning (TLS)

We used a FARO Focus M70 terrestrial laser scanner, which emits laser pulses and detects
returns from distances of up to 70 meters. While TLS does not replace traditional forest
inventories, it provides valuable complementary data, particularly for assessing forest structure
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and biomass (Chave et al., 2019; Newnham et al., 2015). To analyze forest structure (Figure 4a),
we performed five single scans per plot—one in each corner and one in the center (Ehbrecht et
al., 2017, Paper 1: Figure 2). For aboveground biomass estimation and to generate detailed three-
dimensional point clouds, we carried out multiple overlapping scans in a continuous chain in
subplots of 25 x 25 m (Duncanson et al., 2021; Tao et al., 2021; Wilkes et al., 2017). The resulting
point clouds (Figure 4b) were processed, co-registered, and segmented using FARO Scene
(FARO Technologies Inc., 2023), R (R Core Team, 2024), CloudCompare (Girardeau-Montaut,
2023), and the Python-based FSCT algorithm (Krisanski et al., 2021). TLS offers new insights
into the complex tropical forest ecosystems, with untapped research potential, scanning protocols
yet to be standardized, and very few studies conducted in Africa (Calders et al., 2020; Coops et
al., 2025; Momo et al., 2018).
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Figure 4 a) Black and white photo taken with the terrestrial laser scanner (TLS) in a single-scan
approach in a corner of a plot in Ewe-Adakplame, Benin with dense understory. b) Real-colored
point cloud as product of the multi-scan approach in the swamp forest of Hlanzoun, Benin.

2.2.4 Unmanned aerial vehicles (UAVs)

UAVs, commonly known as drones, allow for the collection of forest data beyond plot-level
measurements. UAVs can capture high-resolution spatial metrics across entire forest patches
within just a few days, effectively bridging the gap between detailed ground-based inventories
and broader satellite-based observations. In this study, we employed two UAVs (DJI, Shenzen,
China); one equipped with a light detection and ranging (LiDAR) sensor (DJI Matrice 300 RTK)
and the other with a multispectral sensor (DJI Phantom 4 Multispectral). Mapping fine-scale
forest disturbance severity, by integrating LiDAR and multispectral data has rarely been
documented for Western African forests (e.g., [heaturu et al., 2024).

2.2.5 Interviews

The forest patches are actively managed and used by local communities, who often depend on
the ecosystem services these forests provide. Through a large household survey (n=1956; Tabi
Eckebil et al., submitted), we identified regular forest users (n=328) and conducted interviews
to understand their forest uses and perceptions of forest conditions. Research assistants translated
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responses from local languages into French or English. The perspectives of local forest users has
only been poorly studied and understanding local realities deserves more research attention since
it directly drives forest conservation and degradation respectively (Lewark, 2022).

2.3 Post-fieldwork

2.3.1 Data analysis and statistics

The data used in this thesis are predominantly quantitative, enabling the application of a wide
range of statistical analyses. All analyses were conducted in R (R Core Team, 2024), using a
consistent statistical framework across studies. Commonly used packages included dplyr
(Wickham et al., 2023) and tidyr (Wickham et al., 2024) for data wrangling, ggplot2 (Wickham,
2016) for visualization, and /me4 (Bates et al., 2015) for fitting linear mixed-effects models,
among others. These models were primarily employed to account for the non-independence of
observations, particularly due to the nested structure of plots within individual forest patches.
While the specific model formulations, standardized effect sizes (e.g., r-values), and significance
levels (p-values) are detailed in the individual papers, this unified analytical approach underpins
the synthesis of results across studies.

2.3.2 Remote sensing and spatial analysis

Thousands of satellites orbit the Earth, continuously contributing to environmental and socio-
economic data. Many satellite-derived products are open-access and readily available through
platforms such as Google Earth Engine (Gorelick et al., 2017) making satellite imagery a key
source of information at large spatial and temporal scales. In this thesis, I extracted key
explanatory variables from satellite imagery, such as population density (Bondarenko et al.,
2020), a relative wealth index (Chi et al., 2022), canopy heights (Lang et al., 2023), and fire
frequency (Chuvieco et al., 2018). In addition, I used QGIS (QGIS Development Team, 2023)
to conduct various spatial analyses with vector and raster data, such as calculating the shortest
distance from each plot to the forest edge and extrapolating AGB estimates from sampled plots
to entire forest patches. Using multiple data sources and methods strengthen corresponding
results by evening out weakness of single methods.

2.3.3 Science communication

In addition to scientific publications, we shared our research through various science
communication formats. I produced a 20-minute film on our fieldwork in rural Western Africa
(available at the project homepage: sustainforests.giub.unibe.ch). We also used virtual reality
goggles (HTC Vive Pro) to enable users explore the tropical forests virtually. Hovering through
these forests and hearing the ambient forest sounds creates an immersive experience that helps
users connect with these remote environments. Furthermore, we published regular blog posts on
the project homepage and contributed to newsletters such as that of the Swiss Society for African
Studies to communicate our work beyond the academic sphere.

Finally, we returned to the same communities where we had collected data and organized result-
exchange workshops. These included scientific presentations for academics, practitioners, and
political representatives, as well as workshops with local communities and accessible science
communication through public posters. We also visited primary and secondary schools to present
our work to children—the next generation of forest and land users—and provided puzzles and
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memory games to support playful learning and environmental awareness. In addition, we
revisited the forests, which allowed us to ground-truth our data and critically reflect on our
interpretations, models, and conclusions.
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Overview of research papers

The resulting research outputs have been submitted as five papers in corresponding journals
(Table 1).
Table 1 Overview of research outputs as scientific papers. Each paper contributes to one or two
of three chapters. Chapter abbreviations: E: Understanding Ecological Functioning in Tropical
Forests, M: Testing New Methods to Improve Capturing Forest Conditions, S: Integrating social

perspectives and measured values of forest conditions.

Nr | Contribution | Title Authors Journal Status
to chapter

1 |E Degradation and Hepner, S., Biotropica Published
Fragmentation Effects on | Agonvonon, G. A., (2025)
Structural Complexity in | Ehbrecht, M.,
West African Forest Iheaturu, C.,
Patches Azihou, A. F., &

Ifejika Speranza, C.

Short: Degradation
effects on forest structure

2 |E;M Aboveground Biomass in | Hepner, S., Annals of Submitted
Seven Tropical Forest Agonvonon, G. A., | Forest (2025)
Patches of Western Kiikenbrink, D., Science
Africa: Comparison of Theaturu, C.,
Manual Inventory and Azihou, A. F.,
Terrestrial Laser Sinsin, B., & Ifejika
Scanning Speranza, C.
Short: Aboveground
biomass in small forest
patches measured with
TLS

3 |E Tree Species Diversity Agonvonon, G. A., | Forest Published
and Conservation across | Hepner, S. Theaturu, | Ecology and | (2025)
Disturbance and C.J., Azihou, F. A., | Management
Bioregion Types in Sonwa D. J.,
Forest Patches outside Bisong F. E.,
Protected Areas in Anwana E. D.,
Tropical Africa Koudouvo K.,

Sinsin B. A.,

Short: Disturbance Fischer M. &
effects on tree species Ifejika Speranza, C.
diversity

4 | M Integrating UAV LiDAR | Theaturu C. J., Ecological Published
and Multispectral Data to | Hepner S., Informatics (2024)
Assess Forest Status and | Batchelor J. L.,
Map Disturbance Agonvonon G. A.,
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Severity in a West Akinyemi F. O.,
African Forest Patch Wingate V. R. &

Short: Integrating
LiDAR and multispectral
UAYV data

Ifejika Speranza, C.

3 /S Perceived and Measured | Hepner, S., Tabi
Forest Degradation in Eckebil, P. P.,

Sustainable Forest A. F., Sinsin, B.,
Management Fischer, M. &

Short: Forest use and its
perceptions

West Africa: Insights for | Mintah, F., Azihou,

Ifejika Speranza, C.

Trees, Published
Forests and (2025)
People

The central tenet of this thesis is that the widespread deforestation and the persistence of isolated
forest patches must be understood to allow an informed and sustainable forest management. This

requires understanding ecological processes in tropical forest patches. Subsequently, new
methods must be developed and tested to improve ways of capturing forest conditions.
Additionally, the ecology of these forest patches is not an isolated natural phenomenon but is

directly affected by peoples’ management and forest use. Therefore, the social dimension of the
ecological forest conditions, including local perceptions must be studied as well (Figure 5),

calling for methodological integration.

Understanding ecological functioning in tropical forests
Paper 1: Degradation effects on forest structure
Paper 2: Aboveground biomass in small forest patches measured with TLS
Paper 3: Disturbance effects on tree species diversity

-

Testing new methods to improve capturing forest conditions
Paper 2: Aboveground biomass in small forest patches measured with TLS
Paper 4: Integrating LiDAR and multispectral UAV data

-

~

J

-

Integrating social perspectives and measured values of forest conditions
Paper 5: Forest use and its perceptions

-

~

Informed and
sustainable
forest
management

Figure 5 Conceptual framework of the five papers structured into three chapters informing

sustainable forest management.
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3. Key insights and conclusions

3.1 Understanding ecological functioning in tropical forests

Our studies provide several insights into the ecological functioning of tropical forest patches in
Western Africa, with a particular focus on structural complexity, biomass storage, species
diversity, and the role of disturbances:

Paper 1: Degradation and Fragmentation Effects on Structural Complexity in West-African
Forest Patches
e Structural complexity increases with distance to forest edge.

e Edge effects are pronounced in isolated forest patches with low connectivity.
e Spatial variation of structural complexity in forests patches indicate disturbances.
e Structural complexity below the ecological reference indicates forest degradation.

Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa:
Comparison of Manual Inventory and Terrestrial Laser Scanning
e Aboveground biomass (AGB) increases from forest edge to forest interior.

e AGB did not correlate with tree species richness or wood density.
e AGB in these unprotected forest patches was lower than in protected forests nearby.

Paper 3: Tree species diversity and conservation across disturbance and bioregion types in
forest patches outside protected areas in tropical Africa
e Alpha diversity and stem density increase along Sudanian-Guineo-Congolian
transects.
e Within-forest environmental heterogeneity does not affect the stand composition.
e Anthropogenic disturbances decrease along the forest patch edge-interior gradient.
e Anthropogenic disturbances adversely impact tree community diversity and structure.

o Sustainable management of the forests should include a triad zoning approach.

Forest Structure: We confirmed that a higher stand structural complexity index (SSCI) is
associated with lower forest fragmentation and reduced canopy openness. However, SSCI did
not show significant relationships with connectivity, tree height, basal area, stem density, or
species richness. Importantly, distance to forest edges strongly influenced SSCI, canopy
openness, basal area, and tree density, highlighting the pervasive role of edge effects.

Among the seven studied forest patches, five exhibited SSCI values close to their potential,
indicating that they remain structurally intact. In contrast, the forests of Ewe-Adakplame and
Ikot scored significantly below their potential SSCI, classifying them as degraded.

Biomass and Carbon Storage: We confirmed that aboveground biomass (AGB) and carbon
storage vary both across and within forest patches, reflecting underlying environmental and
disturbance gradients. AGB values were higher in formally protected and typically larger forests
than in unprotected, smaller patches subject to stronger edge effects. Moreover, AGB increased
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with distance from forest edges, emphasizing the importance of intact forest cores as carbon
TeServoirs.

Our results also contribute to the debate on the link between species richness and AGB. We
found that AGB correlates with uncorrected species richness but not with richness adjusted
through rarefaction and extrapolation. This suggests that while diverse forests can be highly
productive, biomass accumulation also depends on the presence of large, heavy-wooded tree
species.

Tree Species Diversity Patterns: Tree alpha diversity varied with both bioregion and
anthropogenic disturbance. Diversity increased along the Sudanian—Guineo—Congolian rainfall
gradient, confirming rainfall as a key driver of species richness. Beta diversity increased with
spatial distance between forest patches emphasizing the need to conserve multiple patches to
capture the full spectrum of diversity.

Disturbances such as logging, fires, agricultural encroachment, and invasive species primarily
reduced tree density near edges rather than directly affecting species richness. Logging pressure
was especially evident for large trees (>50 cm DBH) near forest edges.

Overall, the studied patches host 15-30% of the tree species found in their respective countries,
with ~10% classified as near-threatened, vulnerable, or endangered. This highlights their
disproportionate conservation value despite their small size.

Disturbances and Edge Effects: Edge effects include increased wind exposure, wind throw,
altered species composition, more frequent fires, and heightened anthropogenic pressures. These
effects were strongest in isolated patches with little surrounding vegetation, underscoring the
need for buffer zones and green corridors to maintain forest integrity and prevent long-term
collapse at the landscape scale.

Management and Conservation Implications: Our findings reveal that formal protection is
strongly associated with higher AGB and greater structural integrity, even when enforcement is
incomplete. Governance structures, such as defining minimum felling diameters, formalizing
land use and management, and promoting equitable resource-sharing, are essential to maintain
forest functions.

3.2 Testing new methods to improve capturing forest conditions

Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa:
Comparison of Manual Inventory and Terrestrial Laser Scanning
e AGB obtained from manual inventory and terrestrial laser scanning correlated
moderately.
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Paper 4: Integrating UAV LiDAR and multispectral data to assess forest status and map
disturbance severity in a West African forest patch
e Fused UAV LiDAR and multispectral data to map forest status and disturbance
severity.
e Derived an integrated disturbance index through principal component analysis.
e The integrated disturbance index outperformed individual sensors used alone.
e The method can enable tailored conservation interventions, thereby optimizing
resource allocation.

Validation of Biomass Estimates: We confirmed that AGB values derived from TLS correlate
moderately with those obtained through manual inventory. Using both approaches provides a
valuable cross-validation, since AGB estimation is inherently uncertain. Interestingly, in our
study, a manual inventory conducted by three people was faster than scanning the same plots
with a FARO Focus M70, reflecting the practical challenges of TLS in dense tropical forests.
Multi-Sensor Forest Assessment: Structural and spectral metrics derived from UAV LiDAR
and multispectral imagery effectively characterized spatial variation in forest condition, as
demonstrated by the disturbance severity map of Ewe-Adakplame. The fusion of data streams
from LiDAR and multispectral sensors revealed aspects of forest status that neither source could
capture alone, underscoring the importance of multi-sensor integration.

LiDAR data showed that 95% of trees were below 20 m, while the maximum canopy height
reached 48 m, indicating a stunted forest well below its potential height and vertical stratification.
Meanwhile, multispectral imagery revealed low vegetation indices (e.g., GNDVI), suggesting
stress linked to nutrient deficiency or drought. Integrating these complementary perspectives
reduces blind spots and provides a more complete picture of forest integrity.

Spatial Mapping and Management Applications: The resulting high-resolution disturbance
maps highlight spatial patterns of degradation caused by logging, agricultural encroachment, and
fires. Such maps provide essential information for targeted interventions, including enrichment
planting in canopy gaps and establishing corridors between nearby forest fragments. This is
particularly valuable when resources for forest management are limited and must be allocated
efficiently. Field-based observations of anthropogenic disturbances served as ground truth to
validate UAV-derived maps, strengthening confidence in their use for guiding conservation,
sustainable use, and restoration measures.

3.3 Integrating social perspectives and measured values of forest conditions

Paper 5: Perceived and Measured Forest Degradation in West Africa: Insights for
Sustainable Forest Management
e Collection of non-timber forest products is the main forest activity.

e Logging, fires, and agriculture are largely perceived as driving forest degradation.

e Forest uses are similar across forests, but perceptions of forest use impacts vary.

e Locally perceived forest degradation is not always in line with pressure on forests.

e High socio-economic pressure is captured in increased measured forest degradation.
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Forest Use Activities: Across the studied sites, the collection of non-timber forest products
(NTFPs) was the most widespread activity, followed by hunting and logging. These dominant
activities were consistent regardless of socio-cultural (sacred vs. non-sacred), economic (low vs.
intermediate wealth), or ecological (semi-deciduous vs. moist forest) contexts. Importantly,
NTFP use is not associated with large-scale forest damage, suggesting that it can support
livelihoods while maintaining forest integrity.

Perceptions of Degradation: Contrary to claims that the narrative of forest degradation is
primarily a foreign construct (Amanor, 2004; Fairhead & Leach, 1996), many local forest users
acknowledged the negative impacts of logging, fire, and agriculture. However, our results reveal
a mismatch between forest uses that contribute to degradation and local perceptions of
degradation. In Ikot (Nigeria), where logging and fire are widespread, these practices were not
considered degrading—Ilikely because they are normalized and no intact forest remains for
comparison. By contrast, in Koui (Togo), where a sacred forest is strictly protected, the
community expressed strong concern over potential damage, reflecting the forest’s deep cultural
and religious significance. These cases illustrate how psychosocial factors, traditions, and
reference points shape local perceptions of forest integrity.

Socio-economic pressure and governance: Forests facing the highest socio-economic
pressure—where many people exploit forest resources in a small area—showed the greatest
values of measured degradation. Proximity to cities likely intensifies this same pressure by
increased demand and purchasing power for these forest resources. However, the extent of
degradation ultimately depends on governance: where management rules are effectively
implemented, respected, and supported by communities, governance can buffer these pressures.
Sustainable forest management in the region therefore hinges on governance systems that are
both effective and trusted.
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3.4 Overall key insights

Tropical forests are structurally complex and subject to multiple interacting disturbances, making
comprehensive assessment challenging. In this thesis, we applied complementary methods—
manual forest inventories, TLS, UAV LiDAR and multispectral imagery, and interviews with
local forest users—to capture ecological and social dimensions of forest structure, biomass,
species richness, and disturbances across nine forest patches in Western Africa. While two of the
seven papers explicitly compared single-method versus multi-method approaches,
demonstrating the added value of methodological integration, the main goal was to leverage
multiple approaches in combination to obtain a robust, multi-scale understanding of forest
conditions. This integrative perspective was essential to identify patterns of edge effects,
anthropogenic pressures, and mismatches between perceived and measured forest degradation,
and to contextualize ecological findings within local socio-cultural realities.

The five papers collectively examined forest structure from different perspectives: TLS captured
detailed 3D structural complexity (e.g., SSCI), manual inventories measured tree size
distributions, UAV's enabled high-resolution, centimeter-scale mapping of larger forest areas,
and interviews documented local knowledge about trees, including culturally significant and
large individuals, as well as temporal changes in forest structure over the past decade. Across
studies, anthropogenic disturbances consistently altered forest structure, a pattern also observed
globally, particularly in fragmented landscapes (Bentsi-Enchill et al., 2022; Chaudhury et al.,
2022; Schwartz et al., 2017). Forest structure was tightly linked to disturbances, both influencing
and responding to the ecosystem’s disturbance regime and resilience (Mitchell et al., 2023).
Edge effects emerged as a pervasive factor: forests near edges were less intact than cores, with
reduced structure, lower AGB, diminished vitality, and fewer trees, particularly where local use
was higher and natural vulnerability was greater. Fragmentation can intensify these effects,
threatening carbon storage, successional stages, tree architecture, and wood anatomy (Nunes et
al., 2023; Ordway & Asner, 2020; Silva Da Costa et al., 2020; Tabarelli et al., 2008).

3.5Relevance and novelty

The relevance of this PhD lies in filling critical knowledge gaps for tropical forests in Western
Africa, a region that remains comparatively under-studied. The findings are important because
they both align with global observations and generate region-specific insights: they document
biodiversity and forest structure in poorly studied landscapes, provide ground-truth data to
improve satellite-based AGB estimates, and reveal patterns of degradation, edge effects, and
structural complexity. In this way, the work establishes a foundation for further studies in
Western African tropical forests, current and future analogous landscapes worldwide through a
“space-for-time” perspective and strengthens the evidence base for informed forest policy and
management.

Its novelty stems from the generation of new high-resolution data and the application of
innovative methods. By applying TLS for the first time across forests in Togo, Benin, Nigeria,
and Cameroon, this work provides structural insights that were previously unavailable. Several
forest patches were mapped for the first time, and some methodological approaches were
pioneered within the project (cf. Theaturu et al., 2025; Wingate et al., 2022, 2023, 2024).
Together, these advances contribute both new knowledge and methodological innovation to the
field of tropical forest research.
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3.6 Outlook

3.6.1 Future research

The work conducted in this PhD has significantly advanced our understanding of the selected
forest patches, opening an avenue for further research.

Methods & Technology: Future steps could begin at the finest scale by climbing trees to scan
canopies, which can reduce occlusion and provide unprecedented detail on canopy architecture,
leaf distribution, and canopy biodiversity (D’hont et al., 2025; Lowman et al., 2013). At slightly
larger scales, TLS captures dense point clouds near the sensor, and integrating these with data
from UAVs (Coops et al., 2025; Terryn et al., 2022) allows sensors above and below the canopy
to complement each other, revealing more comprehensive forest structure (Schneider et al.,
2019). Moving to even larger spatial scales, airborne laser scanning (e.g., from planes) can
expand insights across landscapes.

Tools for segmenting point clouds continue to improve, and future research could explore
recently developed algorithms that promise to increase the accuracy of segmentation (e.g.,
Wielgosz et al., 2024; Wilkes et al., 2023; Xiang et al., 2024) and tailor these for African forest
characteristics. Further research could focus on segmentation of point clouds into smaller units,
such as individual leaves (Song et al., 2025) and tree species identification based on point clouds
(Akerblom et al., 2017; Puliti et al., 2025). Accurate, tree-wise point clouds could also be used
to refine allometric equations (Clark & Kellner, 2012).

Biomass & Carbon: A critical challenge in future research will be validating different methods
for estimating forest AGB. Since forest AGB is never directly measured but estimated with
varying accuracy (Réjou-Méchain et al., 2019), perfect validation data remains elusive.
Quantifying uncertainty from start to finish is an ongoing challenge (Chave et al., 2004; Réjou-
Méchain et al., 2019). To improve the accuracy of standing carbon estimates, additional wood
density data (Clark & Kellner, 2012) and wood carbon concentrations (Martin et al., 2018) will
be needed. Looking ahead, it will also be important to expand carbon research beyond
aboveground biomass to include belowground pools (roots, soils) and necromass (deadwood,
litter), and other essential life elements such as nitrogen and phosphorus.

Monitoring & Visualization: Based on our research, a monitoring system could be established
to measure forest characteristics over time (e.g., Coops et al., 2025), providing insights into the
dynamics of forest patches under various climate change and governance scenarios. Creating
virtual forest environments based on measured data could enhance decision-making and help
visualize forest development (Holm & Schweier, 2024; Murtiyoso, Holm, et al., 2024).
Standardized monitoring protocols could also contribute to validating satellite imagery (Chave
et al., 2019), such as that from the recently launched BIOMASS satellite (European Space
Agency, 2025).

Biodiversity & Genetics: Further topics to be explored include biodiversity, genetics, and
economics. Biodiversity hotspots are predicted for Western African forests, but samples remain
limited (Ba et al., 2012; Liicking et al., 2014; Wagner, 2019). Small life forms, such as insects,
lichens, and fungi, are essential for ecosystem functions like organic matter processing and
nutrient cycling (Crespo-Pérez et al., 2020), yet their roles in forest fragments remain largely
unknown.
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Forest fragmentation and the spatial isolation of patches also affect genetic diversity. Trees have
high genetic diversity due to their longevity, but reduced pollinator mobility limits cross-
pollination, leading to decreased diversity (Finkeldey, 2011). This diversity is often
underestimated but is critical for adaptation to climate change (cf. Aguirre-Gutiérrez et al., 2025;
Dawson et al., 2014; Finkeldey, 2011).

Economics: From a socio-economic perspective, forests can be seen as a portfolio of land-use
options (Knoke & Huth, 2011). In tropical regions, forests are often perceived as low-profit land-
use areas and converted into agriculture (Pouliot et al., 2012; Wunder, 2001). How forests can
be managed sustainably—ecologically, socially, and economically—remains an open question
(Knoke & Huth, 2011; Kotru & Sharma, 2011) with solutions likely to emerge locally (Garrett
et al., 2024; Gbedomon et al., 2016).

Resilience & Thresholds: Gaining a deeper understanding of the thresholds of resilience in
small forest remnants remains crucial. Future studies should examine conditions under which
regeneration becomes unlikely (Ghazoul et al., 2015), the longevity of trees and forests under

influences ecological pressures at the forest edge.

3.6.2 Call to action

From a social-ecological perspective, the findings of this PhD highlight the urgent need to
integrate ecological and community considerations in forest management. Quantifying AGB and
carbon stocks in forest patches provides a strong evidence base for initiatives such as carbon
compensation programs, which could support both conservation and local livelihoods (Jones,
2024; Turia et al., 2022). However, the dynamics and risks of introducing financial incentives
must be carefully evaluated, and programs should follow standardized guidelines to ensure
additional and sustainable carbon storage (McDonald et al., 2023).

Interview data revealed that local perceptions and forest-use practices vary widely: communities
maintaining sacred forests were highly aware of degradation risks, whereas areas with intensive
resource use often undervalued forest integrity. These insights suggest that interventions—such
as promoting non-destructive forest-related activities—should be tailored to community context,
building on existing knowledge, traditions, and economic realities.

The ecological findings also point to structural vulnerabilities in the forests. Edge effects,
fragmentation, and localized degradation indicate that sustainable management should include
measures such as establishing buffer zones, reconnecting fragmented habitats, and restoring
degraded areas (Bastin et al., 2019; Ebreg & De Greve, 2000; Zeller et al., 2020). Integrating
these measures with socio-economic strategies can enhance both ecological resilience and
community engagement. Implementation will require careful planning, particularly under
conditions of limited financial resources and governance constraints. Together, these evidence-
based recommendations demonstrate how high-resolution ecological data, innovative methods,
and social insights can guide targeted conservation actions, ensuring the long-term preservation
of Western Africa’s tropical forest patches.
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4. Reflections

4.1 Strengths and limitations

The research conducted during this PhD as part of the SUSTAINFORESTS project contributes
valuable data to a region that is often underrepresented in scientific forest studies. The four
countries—Togo, Benin, Nigeria, and Cameroon—are frequently overlooked in global data
collections. Despite the challenging conditions, working in these countries and providing open-
access data for the global community is a key strength of this project.

Strengths: A team of seven researchers, each focusing on a specialized topic, worked on the
same forest patches within the same time frame. The complementarity of expertise was
invaluable in understanding forest dynamics from multiple perspectives. This approach was
supported by a wide range of methods, including manual forest inventories, TLS, UAV,
qualitative and quantitative interviews, satellite imagery, and literature reviews. The team
included members from both the studied countries and Switzerland, fostering an international
and intercultural working environment that enhanced our understanding of contexts in both the
global North and South.

Limitations: As Heraclitus (6"-5" century BC) observed, “One cannot step into the same forest
twice.” Forests are dynamic systems undergoing cyclical processes (Binkley, 2021; Ghazoul et
al., 2015). A key limitation of this PhD is that field data were collected only once during the dry
season. Aside from historical satellite imagery and interviews about past and future changes, our
ecological dataset represents a snapshot in time, reflecting the time- and resource-intensive
nature of fieldwork. We revisited sites during the results exchange campaign, which allowed us
to ground-truth and reassess interpretations, but systematic long-term data remain lacking.
Another limitation is sampling scale. We gathered data from nine forests, with an average of
twelve plots per forest. While adequate for representation, larger datasets would improve
statistical explanatory power (Ferretti et al., 2024), and allow for broader extrapolation.

In terms of methods and technology, we applied cutting-edge but affordable tools for our project.
More advanced TLS and UAV systems with higher point cloud density could have provided
richer data in less time. Our methodological choices reflected a careful balance between financial
constraints, expert advice, and field realities.

Finally, gender bias must be acknowledged: 90% of interview insights are based on male
respondents. In the studied societies, males often speak for the household, but this social pattern
may have limited female perspectives on forest management.

4.2 Positionality

I was born and raised in Switzerland, one of the wealthiest countries on earth (Federal
Department of Foreign Affairs (FDFA), 2024). My skin color resembles white, and I identify as
male, both attributes are usually associated with privileges. Over the course of my life, I have
spent just 1.5 years in tropical developing countries, with a maximum of six months during the
fieldwork for this PhD. I am keenly aware that I cannot fully grasp the realities faced in these
places, due to significant economic, cultural, and linguistic differences. For example, I have
never depended on forests for my livelihood and tend to view them mainly for their aesthetic
value. I do not fully understand the concept of Vodun, sacred forests, and the associated
worldviews. I recognize my tendency to compare Western African forests and forest
management practices with those in Switzerland, which is not necessarily adequate.
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My presence in Western Africa often drew attention. People frequently assumed I was leading
the project and associated me with money and power due to my skin color. This is
understandable, given the historical legacy of colonization and the slow process of
decolonization, as well as the persistent imbalances of wealth and power. I did not conduct
interviews myself, nor was I involved in the initial negotiations with communities to avoid
distorting the presentation of our project and the ongoing negotiations. While I appreciated
integrating myself into local societies by adapting to customs and learning the basics of the local
language, I am aware of my privileges, such as access to funding, mobility, and education.
Beyond personal reflection, I also participated in workshops on positionality and the ‘theory of
change’ (Belcher et al., 2020). In these settings, we actively examined how our own positions,
interests, and assumptions influenced both research processes and outcomes. This collective
engagement led to the development of a manuscript (Ifejika Speranza et al., submitted), further
formalizing these considerations.
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ABSTRACT

Tropical forests face alarming rates of deforestation and degradation, driven mainly by agricultural land expansion. West
Africa is particularly affected by widespread forest fragmentation, leaving behind isolated forest patches in an agriculture-
dominated landscape. Forest fragmentation and isolation can impact forest structural complexity, biomass, and species
richness through various edge effects. The consequent loss of biodiversity and ecosystem services is expected to be more
prominent in small and fragmented forests and closer to forest edges. We used terrestrial laser scanning to investigate patterns
of forest structural complexity in 84 plots across seven forest patches in Togo, Benin, Nigeria, and Cameroon. We quantified
forest structure using the stand structural complexity index (SSCI) and related it to tree species composition, distance to
edge, and the modeled potential SSCI of primary forests as an ecological reference value to identify forest degradation. Spatial
variability of SSCI within forest patches and plots indicates various areas of disturbance, ultimately accumulating to forest
degradation. The overall trend suggests an increase in structural complexity, tree height, basal area, and tree species richness
with increasing distance to the edge. However, these correlations were only significant for some of the forest patches analyzed.
Comparison with the ecological reference value showed significant deviations for two forests, indicating degradation of for-
est structural integrity. Our results confirm and challenge theories of ecological dynamics in tropical forest patches in West
Africa. Quantifying structural integrity helps to locate degradation and preserve the last remaining forest patches crucial for
biodiversity, climate regulation, and forest products.

RESUME

Les foréts tropicales sont confrontées a des taux alarmants de déforestation et de dégradation, principalement dus a l'expansion des
terres agricoles. LAfrique de 'Ouest est particulierement touchée par la fragmentation généralisée des foréts, qui laisse derriere
elle des ilots forestiers isolées dans un paysage dominé par l'agriculture. La fragmentation et l'isolement des foréts peuvent avoir
un impact sur la complexité structurelle des foréts, 1a biomasse et la richesse des especes par le biais de divers effets de lisiére. La
perte de biodiversité et de services écosystémiques qui en résulte devrait étre plus importante dans les petites foréts fragmentées
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et plus proches des lisiéres. Nous avons utilisé le scanneur laser terrestre pour étudier les schémas de complexité structurelle des
foréts dans 84 placeaux réparties sur sept ilots forestiers au Togo, au Bénin, au Nigéria et au Cameroun. Nous avons quantifié la
structure forestiére a I'aide de l'indice de complexité structurelle des peuplements (ICSP) et I'avons associé & la composition des es-
peces d'arbres, a la distance  la lisiere et 4 'TCSP potentiel modélisé des foréts primaires en tant que valeur de référence écologique
pour identifier la dégradation forestiere. La variabilité spatiale de I'indice de complexité structurelle des peuplements au sein des
placeaux et des ilots forestiers indique diverses zones de perturbation, qui aboutissent finalement a la dégradation de la forét. La
tendance générale suggére une augmentation de la complexité structurelle, de la hauteur des arbres, de la surface terriere et de la
richesse des especes d'arbres & mesure que I'on s'éloigne de la lisiere. Toutefois, ces corrélations n'étaient significatives que pour
certaines des ilots forestiers analysées. La comparaison avec la valeur écologique de référence a révélé des écarts significatifs pour
deux foréts, ce qui indique une dégradation de 1'intégrité structurelle de la forét. Nos résultats confirment et remettent en question
les théories de la dynamique écologique dans les ilots forestiers tropicale en Afrique de I'Ouest. La quantification de l'intégrité
structurelle aide & localiser la dégradation et & préserver les derniéres ilots forestiers cruciales pour la biodiversité, la régulation

du climat et les produits forestiers.

1 | Introduction

1.1 | Forest Loss, Fragmentation, and Persisting
Patches in West Africa

Tropical forests are being cleared at alarming rates globally
(Schelhas and Greenberg 1996; Hansen et al. 2013; Poorter
et al. 2021), with annual deforestation rates estimated at 0.5%
(Achard et al. 2014). In West Africa, forests have declined to 20%—
50% of their 1900-extent (Poorter et al. 2004). Amani et al. (2021)
identify expanding agriculture driven by human population
growth as a primary cause. Forested areas are not only shrinking
but also fragmented into smaller patches (Taubert et al. 2018). In
Africa, the number of forest fragments, split from larger blocks,
increased by 45% to 64% million between 2000 and 2010 (Fischer
et al. 2021). This exponential increase of ever smaller forest
fragments will soon reach a critical point where a collapse and
complete disappearance of forest patches could occur (Taubert
et al. 2018). Fragmentation of forest patches has negative effects
on biodiversity due to decreased habitat area, decreased connec-
tivity, and increased edge effects (Hill and Curran 2003; [bafiez
et al. 2014; Taubert et al. 2018).

Nonetheless, thousands of small forest patches (<1000 ha) per-
sist in isolation across the landscape. In Togo, Benin, Nigeria,
and Cameroon alone, over 400,000 patches have been detected
(Wingate et al. 2023). These patches, ranging from 0.5 and
1000 ha large, have at least 30% canopy cover and trees taller than
5m (Food and Agriculture Organization of the United Nations
(FAO) 2016; Wingate et al. 2022). The remaining forest patches
are vital for their ecosystem services. Local communities rely on
forest products such as timber, fuelwood, medicinal plants, and
bushmeat (Poorter et al. 2004), and some patches are valued
and protected for religious purposes (Alohou et al. 2016, 2017).
Furthermore, these forest patches are crucial for biodiversity con-
servation (Poorter et al. 2004; Lewis et al. 2015). Vulnerable tree
species such as Afzelia africana Sm. Ex Pers. and Brachystegia
nigerica Hoyle & A.P.D. Jones and endangered and endemic spe-
cies such as the red-bellied monkey (Cercopithecus erythrogaster
Gray) are found only in West Africa’s remaining forest patches
(TUCN 1998, 2016, 2019; Neuenschwander et al. 2015). As long
as these patches have an intact structure, they play important

roles in regulating plant and zoonotic diseases and local climates
(Sintayehu 2018). However, knowledge about the structural char-
acteristics of forest patches in West Africa is limited.

1.2 | Structural Complexity of Forests

The intricate complexity of forests is crucial for their resilience
to disturbances and their capacity to support biodiversity. Several
indices have been developed to describe plant material distribu-
tion in three-dimensional space (Coverdale and Davies 2023).
We use the stand structural complexity index (SSCI) to quantify
heterogeneity in plant material distribution patterns (Ehbrecht
et al. 2017). This index calculates the area and dimensions of free
space between a laser scanner and the nearest plant material in
various angles (Ehbrecht et al. 2017). SSCI increases with greater
diversity of tree sizes and crown complementarity (see figure 1
in Ehbrecht et al. 2021). It is time-efficient for assessing forest
structure, and a global model of potential SSCI of primary forests
serves as an ecological reference value (Ehbrecht et al. 2021). By
subtracting the in situ measured SSCI from this ecological refer-
ence value, we can quantify forest structural integrity. In the ab-
sence of a clear and standardized definition of forest degradation
(Ghazoul et al. 2015), we define forest degradation as a simplifi-
cation of forest structure compared to the ecologically potential
forest structural complexity. Consequently, a degraded forest ex-
hibits lower biodiversity and a reduced capacity to provide eco-
system services than the environmental conditions would allow.

Each forest stand has a unique structure shaped by environ-
mental, biological, and legacy factors (Mitchell et al. 2023).
Structural complexity correlates well with (i) faunal biodiver-
sity, including mammals, birds, and invertebrates, (ii) forest
productivity, carbon storage, canopy height, greenness, and suc-
cessional stage, (iii) microclimate regulation, and (iv) species in-
teractions and animal movement (Coverdale and Davies 2023).
Stand structural complexity is also linked to forest resilience
to disturbances (Seidel and Ammer 2023), which is crucial for
isolated forest fragments in West Africa. The spatial pattern of
forest structure can indicate forest integrity, identify disturbed
areas (Ghazoul et al. 2015), and vary between forest edge and
forest interior.
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1.3 | Edge Effect and Tropical Forest Structure

Fragmentation, the division of forest blocks, causes forest patches
to shrink and become more isolated (Harris 1984), exponentially
increasing edge lengths and the area affected by edges. Edge ef-
fects that alter forest structure depend on contrasts with surround-
ing land cover, spatial extent, and edge age (Harper et al. 2005).
Natural edge effects include increased air and soil temperature,
more sunlight, increased wind exposure, more frequent fires,
and altered species composition, which can extend several hun-
dred meters into the forest (Harper et al. 2005; Laurance and
Peres 2006). Anthropogenic resource extraction is more pro-
nounced near edges than in the forest interior, exacerbating nat-
ural edge effects (Olupot and Chapman 2006). Unsustainable
exploitation of forest resources decreases forest structural integ-
rity by (i) slashing and burning, which opens the forest and cre-
ates gaps, (ii) logging, which reduces plant material, (iii) targeted
logging of specific species, hindering their reproduction, (iv) over-
hunting seed-dispersing animals, impeding the survival of corre-
sponding tree species (Peres and Palacios 2007), and (v) trampling
and soil compaction by livestock, hampering regeneration (Faria
et al. 2009). Tabarelli et al. (2008) report lower tree densities, re-
duced tree diversity, fewer large trees, and fewer saplings close to
forest edges, leading to decreased stand structural complexity.

Despite rapidly increasing fragmentation and its ecological con-
sequences (Fischer et al. 2021; Harper et al. 2005), few studies
have compared edge effects on forest structure (Echeverria
et al. 2007; Nguyen et al. 2023) and the impact of distance to
edge has not been analyzed using the well-established SSCI.
Quantifying edge effects on forest structural complexity reveals
the severity of fragmentation on forest structural integrity. This
study aims to enhance our understanding of the structural com-
plexity of small, edge-influenced forest patches in West Africa
and their links to forest degradation. We pose the following
questions:

1. How does the stand structural complexity index (SSCI)
vary with fragmentation, connectivity, canopy openness,
tree height, basal area, number of tree stems, and tree spe-
cies richness?

« We expect that SSCI increases with high connectivity,
low canopy openness, a high number of tall trees, a high
basal area, a high tree stem density, and high tree species
richness but decreases with fragmentation.

2. How do edge effects impact the SSCI of forest patches?
« We expect that SSCI decreases toward forest edges.

3. How does the in situ measured SSCI of the forest patches
compare with the corresponding ecological reference value?

« We expect intact forest patches where in situ measured
SSCI equal the corresponding ecological reference value.

2 | Methods
2.1 | Study Area
Two moist semideciduous forests (1. Koui, 2. Ewe-Adakplame),

two swamp forests (3. Hlanzoun (also known as Lokoli),
5. Ikot), and three moist forests (4. Iko, 6. Mbangassina,

7. Ngam-Kondomeyos) were selected across Togo, Benin,
Nigeria, and Cameroon (Figure 1). According to (Dinerstein
et al. 2017), the selected forest patches in Togo and Benin fall
within the Tropical and Subtropical Grasslands, Savannas,
and Shrublands biome, while those in Nigeria and Cameroon
align with the Tropical & Subtropical Moist Broadleaf Forests.
(Tappan et al. 2016) refers to the forests in Togo and Benin
as Guinean Savanna and those in Nigeria and Cameroon as
part of the Guineo-Congolian zone. These forests are a subset
of those identified by Wingate et al. (2022) and contribute to
ground truthing satellite image-based archetypes in Wingate
et al. (2023). The seven forests allow us to answer the research
questions along a latitudinal gradient and gain insights from
different administrative units.

These forest patches, surrounded by agriculture, agroforestry,
and wetlands, have persisted since at least 1975 despite being
formally unprotected and threatened by anthropogenic land
use change (Table 1; Hansen et al. 2013; Wingate et al. 2022).
Forest regrowth is negligible (Potapov et al. 2022). Annual
precipitation ranges from 1000 to 1300mm in the Guinean
Savanna and from 1500 to 3000mm in the Guineo-Congolian
zone. Annual temperatures average between 22°C and 28°C
(Hijmans et al. 2005) and the forests are located at elevations
of 15 to 700 m above sea level (Jarvis et al. 2008). These forests
host over 300 different tree species, and the most frequent are
Alstonia congensis Engl. (Apocynaceae), Coelocaryon botryoides
Vermoesen (Myristicaceae), and Treculia africana Decne Ex
Trécul (Moraceae).

Most people in the surrounding areas live on <1$ per day,
have only basic formal education, and depend on forest prod-
ucts such as timber, fuelwood, bushmeat, and medicinal plants
(Neuenschwander et al. 2015). Population growth is high, life
expectancy averages 59years (United Nations, Department
of Economic and Social Affairs (UNDESA), Population
Division 2022), and most people work in the agricultural sec-
tor. Governance structures often face challenges from corrup-
tion (Ighodaro and Igbinedion 2020) and regional land uses are
poorly mapped and documented. Consequently, sustainable for-
est management is rarely prioritized, maintaining high pressure
on forest resources.

2.2 | Data Collection

Between September 2022 and March 2023, we established 84
plots (50 X 50 m?%) across seven forest patches, with a minimum
separation of 50 m between plots (Figure 2). The number of sam-
pled plots per forest varied from 6 to 20, depending on forest
patch size, forest heterogeneity, resource constraints, and secu-
rity issues. In some cases (e.g., sacred forests), access to sacred
areas was restricted. Based on remote sensing analysis and local
knowledge, we believe our sampling effectively captured the
features of the studied forests.

Five single scans (resolution: 43.7 Mpts, 0.035°/pt) were taken
per plot using a terrestrial laser scanner (TLS, FARO M70), po-
sitioned on a tripod at the corners and center of each plot. The
TLS emitted laser beams in 360° horizontal and 300° vertical
directions. The laser beams reflected off plant material, such
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FIGURE 1 |

A

Locations of the seven selected forest patches, where forest structural integrity was assessed by measuring stand structural com-

N

Based on Dinerstein et al. (2017)

plexity with terrestrial laser scanning. The forest patches are in the Tropical & Subtropical Grasslands, Savannas & Shrublands (light green) and

the Tropical & Subtropical Moist Broadleaf Forests (dark green) of Togo, Benin, Nigeria, and Cameroon in Africa (marked gray in the inset map). 1.

Ewe-Adakplame, 2. Hlanzoun, 3. Koui, 4. Tko, 5. Tkot, 6. Mbangassina, 7. Ngam-Kondomeyos.

as leaves, branches, and stems, and were received by the TLS
(Figure 3). Each reflected and received laser beam is saved as a
point with its position information. Concurrently, we surveyed
all trees with a diameter at breast height (DBH) >10c¢m, mea-
suring DBH with a tape and identifying species together with
local botanists and national herbaria.

2.3 | Data Analysis
2.3.1 | Forest Structural Complexity Analysis

In the SCENE software (version 2023.0.1, FARO Technologies
Inc. 2023), the scan data were downsampled by a factor of 4 and
exported in .xyz format. The stand structural complexity index
(SSCI) was calculated by constructing polygons of open space
around the scanner position, connecting points where plant ma-
terial reflected the laser beams. SSCI is defined as

SSCI = MeanFrac™END

where MeanFrac refers to the mean of the fractal dimension index
of 1280 polygons surrounding the scanner, derived from the perim-
eter and area of these polygons. ENL refers to the effective number
of layers, quantifying 20 cm voxels filled with plant material in 1m
layers from the scanner to the canopy top (Ehbrecht et al. 2017).

The higher the number of canopy layers, the denser the canopy
packing, and the more heterogeneous the plant material distribu-
tion, the higher is the resulting SSCI (see also Ehbrecht et al. 2016,
2017). SSCI, canopy openness, and maximum tree height were cal-
culated using the code from Ehbrecht et al. (2017) in R (version
2023.06.0, R Core Team 2019). In QGIS (version 3.28.7-Firenze,
QGIS Development Team 2023) GPS positions were merged with
SSCI values for the plots. The Shapiro-Wilk test was used in R
to assess data distribution; correlations between SSCI and other
forest characteristics were tested, and a one-way analysis of vari-
ances (ANOVA) was applied to determine significant differences
between the forests. Linear mixed-effects models were applied to
account for the random effects of the individual forests (single fac-
tor), utilizing the Ime4 and ImerTest R-packages (Bates et al. 2015;
Kuznetsova et al. 2017). Among four tested variations (fixed in-
tercept and fixed slope, fixed intercept and varying slope, varying
intercept and fixed slope, varying intercept and varying slope)
the model with the lowest Akaike information criterion was re-
tained (Bozdogan 1987) and model fit was assessed by Restricted
Maximum Likelihood (REML). Ehbrecht et al. (2021) modeled a
global distribution of potential SSCI by extrapolating values from
279 scanned plots with various environmental datasets from other
studies. This dataset (spatial resolution: 30arc sec), indicating the
potential SSCI under current environmental conditions without
human influences, served as a baseline and ecological reference
for quantifying forest degradation.
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TABLE1 | Characteristics of the seven forest patches studied in Togo, Benin, Nigeria, and Cameroon. The column headers without sources indicate own measurements and field observations.

Soil
(International
Union of Soil
Sciences (IUSS)
Working
Coordinates Group World
(WGS 84, Measured Reference Base
Latitude/ forest Number Vegetation for Soil Resources Surrounding
Nr. Country Forestname Longitude) area (ha) of plots type Governance type (WRB) 2015) landcover
1 Togo Koui 0°43'12"/8°15'36" 20 6 Moist Sacred, traditionally Acrisol Settlement/
semideciduous protected forest Agriculture/Savanna
forest
2 Benin Ewe-Adakplame  2°34'12"/7°28'12" 220 18 Moist Sacred, traditionally Acrisol/Lixisol Settlement/
semideciduous protected forest, Agriculture/Savanna
forest contested ownership
3 Hlanzoun (also 2715367 336" 680 20 Swamp forest Sacred, traditionally Acrisol/Gleysol/ Settlements/
known as Lokoli) protected forest Lixisol Agriculture/Wetlands
4 Nigeria Tko 8815%0"/5°35/24" 1160 14 Moist forest Community-based Acrisol Agriculture/
forest management Agroforestry
5 Tkot 7°53'24"/4°39'36" 1120 11 Swamp forest ~ Family-owned forest ~ Acrisol/Cambisol/ Settlement/
Fluvisol Agriculture/Water
6 Cameroon Mbangassina 11°35'24"/4°38'24" 160 7 Moist forest Family-owned forest Ferralsol Agriculture/
Agroforestry
73 Ngam- 11°49'48"/3°2'24" 400 8 Moist forest Community-based Ferralsol Wetlands/
Kondomeyos forest management Agroforestry




FIGURE2 |
study forest structural complexity. Blue points indicate scan positions,
white lines indicate distance to edge, pink squares symbolize study
plots, and the orange line demarcates the forest patch. Maps of all the

Sampling plots distributed in the forest of Koui, Togo, to

forests are available in the Data S1.

2.3.2 | Forest Edges Analysis

The seven forests were either never mapped before, mapped at a
coarse scale inadequate for forest edge analysis (spatial resolution
of 90m by Wingate et al. 2022), or mapped using different meth-
ods years ago (Dan 2009; Houngnon et al. 2021). In Google Earth
Engine (Gorelick et al. 2017), a supervised classification was per-
formed with Sentinel S2 imagery for the period between March 1st
2022 and March 1st 2023 to differentiate between forest and non-
forest areas. For Iko and Ikot, Landsat 8 provided better results
due to nearby agroforestry and plantations. The analysis achieved
high overall accuracies (OA) of 0.92 (Koui), 1 (Ewé-Adakplamé,
Hlanzoun), and 0.96 (Tko, Ikot). However, for Mbangassina and
Ngam-Kondomeyos, which are embedded in agroforestry and
wetlands, supervised classification with satellite data was inaccu-
rate (OA:0.58, see Code S1.3). Consequently, GPS data of a tracked
walk along the forest edge were used to determine the forest pe-
rimeter. In QGIS (QGIS Development Team 2023), the ‘shortest
line between features’-function was employed to calculate the dis-
tance between each plot and the forest edge.

The fragmentation index per forest was calculated by dividing
the area within 100 m of the edge by the total forest area (Fischer
et al. 2021). Thus, a greater area near the edge results in a higher
fragmentation index, which ranges from 0 to 1. Connectivity
was determined by assessing tree cover within a 1 km buffer sur-
rounding the forests. A higher number of trees in this buffer in-
dicates greater connectivity, signifying that the forest patch is less
isolated. Connectivity is expressed in percent.

2.4 | Tree Composition

The number of trees (>10cm DBH) per plot was scaled up to
a per-hectare basis for comparison purposes. The diameter at
breast height was used to calculate total basal area for each plot,
serving as a proxy for standing tree volume and aboveground
biomass (Slik et al. 2010). Tree species richness was assessed by
counting the number of different tree species per plot, adjusted

for the number of trees, using rarefaction and extrapolation
methods (Chao et al. 2014) implemented in the iNEXT R-package
(Hsieh et al. 2024). Among the 342 tree species identified across
the seven forests, 15 (4%) were classified only to the genus level.

3 | Results

3.1 | Characterization and Variation of Forest
Structure of the Seven Forest Patches in Togo,
Benin, Nigeria, and Cameroon

The calculated fragmentation index ranged from 0.2 in Ngam-
Kondomeyos to 0.8 in the very small (20ha) forest of Koui,
and the larger (220 ha) but disturbed forest of Ewe-Adakplame
(Figure S1, panel 1). Forest fragmentation index decreased, and
connectivity increased toward the equator and the Congo basin.
While Koui and Ewe-Adakplame were rather isolated in a land-
scape with few trees around the forests, Mbangassina was em-
bedded in agroforestry, and Ngam-Kondomeyos was surrounded
by agroforestry and wetlands, leading to a high connectivity
(Figure S1, panel 2). The ecological characteristics of the two
groups of climate-mediated vegetation (moist semideciduous
forest and muoist forest) and the group of soil-mediated vegeta-
tion (swamp forest) were well distinguishable (Figure S1, panels
3 to 9) and several parameters correlated with latitude. Koui and
Ewe-Adakplame had lower SSCI, higher openness, lower can-
opy height, lower maximum stem diameters, lower total basal
area, fewer trees, and fewer tree species per plot compared with
Tkot, Mbangassina, and Ngam-Kondomeyos. The swamp forests
of Hlanzoun and Tkot were characterized by smaller trees (once
only reaching 13m height), smaller diameters, and fewer species
(once only reaching 4 species, Figure S1, panels 5, 6, 9).

Stand structural complexity index correlated significantly neg-
atively with fragmentation (r=-0.86, p<0.05), but not with
connectivity (r=0.59, p=0.16, Figure S2). Further, SSCI and
canopy openness had a negative correlation (t =—6.64, p<0.001).
No significant effects on SSCI were found for tree heights, basal
area, number of trees per hectare, and tree species richness
(Figure 4). Surprisingly, SSCI decreased with the number of trees
in Mbangassina (r=-0.83, p<0.05) when analyzed by itself.

3.2 | Impact of Edge Effect on Forest Structure,
Tree Height, and Canopy Openness

Across all the forests, several structural parameters were sig-
nificantly related to distance to edge (Figure 5). SSCI, basal
area, and number of trees per hectare increased significantly,
while canopy openness decreased toward the forest interior. No
significant trend was found for tree height and species richness.

For individual forests, SSCI did not increase significantly with
distance to edge. However, Hlanzoun (n=_20) showed signifi-
cant edge effects in canopy height (r=0.62, p<0.005) and basal
area (r=0.56, p<0.05). Koui (n=6) showed significantly more
tree species richness toward the forest interior (r=0.93, p<0.01).
Ewe-Adakplame (n =18) showed a significantly higher number
of trees toward the forest interior (r=0.48, p<0.05) and higher
tree species richness close to the edge (r=-0.77, p<0.001). Iko,
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FIGURE 3 |
are reflected by trees and received again by the scanner, allowing de-
tailed measurements of forest characteristics. The color gradient shows
the tree height (z-axis) from blue (0m) to red (40 m).

The terrestrial laser scanner emits laser beams, which

Ikot, Mbangassina, and Ngam-Kondomeyos did not show sig-
nificant edge effects. Among the seven forests, Ewe-Adakplame
had a significantly high standard deviation of SSCI (SD=1.2,
p<0.05) and SSCI ranged between 2.7 and 7.8 across this forest.

3.3 | Comparing Measured SSCI With
Potential SSCI

The measured SSCI of the forest plots correlated moderately
(r=0.46, p<0.001) with the modeled and potential ecological ref-
erence value by Ehbrecht et al. (2021, Figure 6). However, Ewe-
Adakplameé (4=-1.3, p<0.001) and Ikot (4=-1.7, p<0.001)
were significantly below the ecological reference value. Measured
SSCI ranged between 3 and 8 and thus varies more per forest than
the modeled SSCI ranging between 5 and 8 (Figure 6).

4 | Discussion

41 | Forest Characteristics Reflect Vegetation
Types and Biomes

We report results from a field campaign in tropical forest
patches across Togo, Benin, Nigeria, and Cameroon, where we
investigated forest stand structural complexity in field plots

using terrestrial laser scanning and traditional field inventories.
We can confirm our hypothesis that the higher the SSCI, the
lower the forest fragmentation index and the lower the canopy
openness. However, the relationship between SSCI and connec-
tivity, tree height, basal area, tree stem density, and tree species
richness is not significant, highlighting the challenges of in-
ferring and generalizing ecological functions from TLS-based
structural metrics (Coverdale and Davies 2023). Our data align
partially with previously published trends, such as increasing
structural complexity with more precipitation toward the equa-
tor (Ehbrecht et al. 2021).

However, in the secondary forest of Mbangassina, SSCI de-
creases with more trees per plot. This contradicts the basic as-
sumption behind SSCI stating that the more plant material, the
higher the SSCI is (Ehbrecht et al. 2017). Successional stages
and disturbance legacies may create a dense understory, cap-
tured by the TLS but excluded in the tree inventory that only
captures trees with > 10cm DBH. Additional data on stand age,
remnant trees, and disturbance history might help explain the
unexpected negative relationship between SSCI and the num-
ber of trees.

4.2 | Impact of the Edge Effect on Forest Structure

Distance to the edge significantly affects SSCI, canopy
openness, basal area, and number of trees, confirming our
hypothesis of edge effects across diverse forest patches
and management types (Harper et al. 2005; Laurance and
Peres 2006). Our results suggest gradual edge effects within
600m from the forest edge, while Ordway and Asner (2020)
report effects within 200m, and Nguyen et al. (2023) only
beyond 200 m. Forest edge effects are complex and vary with
species composition, topography, and current and past envi-
ronmental conditions (Ibafiez et al. 2014).

Smaller, fragmented forests with relatively more area close to
the edge show stronger and steeper gradients in structural pa-
rameters toward the interior. Additive effects from several edges
(Harper et al. 2005), the form and age of edges, and the sur-
rounding landscape play important roles, which are hard to dis-
entangle (Ghazoul and Sheil 2010; Nguyen et al. 2023). In Koui,
Ewe-Adakplame, and Hlanzoun, at least one structural variable
correlated with distance to edge, likely due to low connectiv-
ity and high isolation. Forests embedded in agroforestry with
a higher connectivity (>50%) show no significant edge effects,
highlighting the importance of landscape connectivity (Zeller
et al. 2020).

Surprisingly, in Ewe-Adakplame, the number of trees increases
toward the forest interior, while tree species richness decreases
toward the interior. The plots close to the edge are therefore
sparser but more diverse. Edge effects can alter tree composi-
tion, promoting pioneer species and suppressing shade-tolerant
species (Faria et al. 2009; Harper et al. 2005). Ewe-Adakplame's
advanced fragmentation state (Map S1.3) and overlapping edge
effects could explain these patterns.

Spatial variability of SSCI is high in Ewe-Adakplame, due to
disturbances like fire, logging, cattle trampling by livestock,
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cates nonsignificant relationship.

hunting pressure on seed-dispersing animals, invasive spe-
cies (e.g., Chromolaena odorata (L.) R.M.King & H. Rob.), and
liana infestations (Houngnon et al. 2021; field observations).
These disturbances alter forest structure, thereby increasing
SSCI variation. However, species loss and neophytes may also
homogenize forest structure (Ghazoul et al. 2015). Small-scale
disturbances may go undetected between plots, while large-
scale disturbances affecting the whole forest require tempo-
ral data.

4.3 | Forest Structural Integrity

Our data allows to assess forest structural integrity by compar-
ing measured SSCI with the potentially highest SSCI of a pri-
mary forest in the same place (Ehbrecht et al. 2021). Deviations
between measured SSCI and ecological reference value arise
because of model limitations or when the forests are recovering
from disturbances. The ecological reference value has a spatial
resolution of 30arc sec and was built in 2020. Therefore, local
features, such as swamps, or spatio-temporal dynamics, such as
regeneration, are not considered or simplified. The ecological
reference value does not account for human management, and
we can conclude that deviations between measured SSCI and
the model are mainly due to anthropogenic disturbances when
found on a large spatial scale (Korom et al. 2022). Of the seven
assessed forest patches, five have an SSCI close to their poten-
tial. This confirms our hypothesis that these forests are struc-
turally intact.

However, the forest of Ewe-Adakplame is significantly below
its potential. Indeed, Ewe-Adakplameé is highly fragmented
(0.8, Map S1.3) and not well connected (20%). Several fires re-
duced its area in the last 20years (Chuvieco et al. 2018; Wingate
et al. 2022) with losses peaking in the last 3years (Wingate
et al. 2024). Contested forest ownership negatively affects forest
management and, with illegal charcoal production, increases
pressure on forests. These issues, linked with social, economic,
and political insecurities and open conflicts, can accelerate for-
est degradation (Kouassi et al. 2022).

The forest of Ikot is significantly below its potential SSCI. This
could be due to the high demand for fuelwood from the popula-
tion of the neighboring communities and the city of Eket. Halfa
million people live in the 10km surrounding Ikot forest (World
pop.org, 2020) and demand for fuelwood is particularly high
because fuelwood alternatives are not fully accessible in many
low-income societies (Ebe 2014). The deviation between mea-
sured and potential SSCI could also be explained by an overesti-
mation of the potential SSCI. Potential SSCI in the region of Tkot
is modeled with increased uncertainty (95% confidence interval
>1, Ehbrecht et al. 2021).

The forests with an SSCI close to the ecological reference value
are often not easily accessible. Inaccessibility can result from
(i) topography, as seen in Hlanzoun and Ngam-Kondomeyos,
where wetlands and rivers prevent easy access to the forest
and its resources, (ii) religious restrictions, as in Koui, where
the sacredness of the forest is well-respected and some parts

80f 13

Biotropica, 2025

63



t=2.6,p<0.05

t=-2.05,p<0.05

° Aeo ) 50 L]
B 2 N E!;SO - L] e ©°
° € 0
Bo g £ shrm
8 0 ° o 2 ‘. % |
8’ .: ] - 230 a°- L I e ) gt et
220 o o®, g 1) '.' -
§ 5 .?m'v\-.'\-' F2o 3, e 2
& ® LN
2° o.uv D) & e
] 200 400 600 0 200 400 600
t=212, p<0.05 t=203 p<0.05 K<} t=12 ns.
[=%
—— L] b L ]
T 50 £ 600 g
< w0 ; T ralte ® g '
ER TR i IS8T, =7 g .
L] L) (1]
E 30 oc.. E.’:. “6400 .‘.. o 0® . :§100 '..'
D20 . 5 =3 . 2 e ®* o0 o
a o *° £ 200 . g% I Pt s il A
a2 e o 2 *° ‘ § 5 ..-". ° v g
o
0 200 400 600 ¢ 200 400 600 'g 0 200 400 600
Distance between Distance between Distance between
plot and forest edge {m} plot and forest edge (m} plot and forest edge (m)

FIGURES5 | Several structural parameters, such as SSCI, basal area, and number of trees (y-axis) increase significantly with distance to the forest
edge (x-axis) in plots across seven forest patches (colors). Canopy openness decreases significantly with distance to the forest edge. The relationship

is not significant for tree heights and tree species richness per plot.

are not accessible at all, and (iii) limited infrastructure, as
in Tko and Mbangassina, where deteriorated roads and long
distances to economic centers limit forest exploitation. These
findings align with studies reporting higher forest integrity
where access is restricted by topography (Freitas et al. 2010),
religion (Lynch et al. 2018), and infrastructure (Ahrends
et al. 2010).

We used the ecological reference value (Ehbrecht et al. 2021) to
assess forest structural integrity. Skewed DBH distributions, miss-
ing DBH classes, or particular thresholds in canopy openness and
basal area can also indicate forest degradation (Vasquez-Grandén
et al. 2018). However, our data do not show such patterns, and
thresholds must be set based on intact reference forests in the
same edaphoclimatic zone. The absence of large commercially
valuable trees near the edge suggests logging pressure (Ali and
Wang 2021; Korom et al. 2022). However, in West Africa, large
trees are sometimes explicitly retained, domesticated, and used for
medicinal and religious purposes (Atindehou et al. 2022; Fairhead
and Leach 1996; Nkouam et al. 2017), and pressure on commercial
tree species varies with market dynamics.

4.4 | Applying Insights From Forest Structural
Integrity

Our data provide ground truth for satellite remote sensing prod-
ucts. Wingate et al. (2023) grouped Koui and Hlanzoun in an
archetype, characterized by frequent, severe disturbances, and
high biomass loss (2010-2018). However, our TLS analysis shows
both forests are structurally intact, and few disturbances were ob-
served. Field data like ours are essential to validate remote sensing
products, enabling spatial extrapolation of insights.

Our results suggest that various governance types can man-
age forests sustainably. Community-based management (e.g.,
Ngam-Kondomeyos), family-owned (e.g., Mbangassina), and
sacred and traditionally protected forests (e.g., Koui) maintain
intact forest structures. However, when governance is disre-
garded (Ewe-Adakplame) or demand and exploitation exceed
sustainable levels (Ikot), forests degrade, independent of gov-
ernance type.

4.5 | Study Limitations

Forest structure can indicate disturbances and degradation.
However, forest structure is shaped by internal dynamics (e.g.,
species competition) and perturbations of different spatio-
temporal extents (Ghazoul and Sheil 2010). Assessing full deg-
radation requires data on seedbanks and seed viability under
future climatic scenarios (Ghazoul et al. 2015). Since our data
were collected once, they offer limited temporal representativ-
ity given forests' daily and yearly cycles (Binkley 2021) and the
long-term climate change. Spatial representativity is also con-
strained by natural (e.g., swamps) and religious barriers (e.g.,
sacredness). Local edaphic conditions, potentially impacting
forest structure, were not considered. Still, our study provides
valuable data and fills a key knowledge gap about the structural
complexity of forest patches in West Africa.

5 | Conclusions
Terrestrial laser scanning was applied in seven tropical forest

patches across Togo, Benin, Nigeria, and Cameroon, alongside
traditional forest inventory data, to enhance our understanding of
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Comparison of measured and potential SSCI

Ewe-Adakplame and Ikot are significantly below the potential SSCI
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Comparison of the potential stand structural complexity index (SSCI) used as ecological reference value on the x-axis and the in situ
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dashed red line indicates where measured and potential SSCI correspond. Eweé-Adakplameé (red) and Ikot (purple) are significantly below their po-

tential SSCI (red line).

tropical forest fragmentation and ecological dynamics in this un-
derstudied region. The forests are Koui (Togo), Ewe-Adakplame
and Hlanzoun (Benin), Tko and Ikot (Nigeria), and Mbangassina
and Ngam-Kondomeyos (Cameroon). Climate- and soil-mediated
forests exhibited forest characteristics like canopy height, basal
area, and species richness that vary by biome and latitude.
Surprisingly, in Mbangassina, forest structural complexity cor-
related negatively with the number of trees, likely due to specific
successional stages and legacy effects. Edge effects on canopy
openness, tree height, basal area, and tree species richness were
found in highly isolated forests, but not in forests that are embed-
ded in agroforestry or wetlands. Small, fragmented forests had
steeper gradients of characteristics with distance to edge, possibly
due to additive and overlapping edge effects. Comparison with the
potential SSCI revealed that Ewe-Adakplame and Ikot are struc-
turally degraded, most likely because of unsustainable manage-
ment and overexploitation of forest resources. The detected edge
effects call for connecting isolated forest patches and establish-
ing buffering zones around forests; that is, to buffer edge effects.
Furthermore, assessing forest integrity helps prioritize conserva-
tion projects, which is increasingly important amidst rapid land
use change and forest degradation in West Africa. Future research
should also address the temporal aspects of forest degradation and
socio-economic contexts driving poor forest governance and un-
sustainable management that lead to forest degradation.
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Aboveground Biomass in Seven Tropical Forest Patches of
Western Africa: Comparison of Manual Inventory and

Terrestrial Laser Scanning

Key message

Aboveground biomass (AGB) increases from forest edge to forest interior in small forest patches
of Western Africa. In plots of 0.25 ha, AGB did not correlate with tree species richness or wood
density. AGB in these unprotected forest patches was lower than in protected forests nearby. AGB

obtained from manual inventory and terrestrial laser scanning correlated moderately.

Abstract

Context

Tropical forests are disappearing and fragmenting, raising concerns about their role as biodiversity
habitats and carbon sinks. In Western Africa, small, unprotected forest patches amidst agricultural
lands provide vital ecosystem services like carbon storage. However, accurately measuring
aboveground biomass remains challenging, and terrestrial laser scanning (TLS) might become an

accurate, non-destructive method.
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Aims

This study explores AGB, its spatial distribution and relationships with ecological determinants,

and compares AGB estimated from manual inventory with those from TLS.

Methods

We established 109 plots and inventoried 9591 trees across seven forests in Togo, Benin, Nigeria,
and Cameroon. AGB was obtained from allometric equations using diameter and tree heights as

well as from segmented point clouds. Plot-level AGB was extrapolated to the entire forest.

Results

AGB in forest patches ranged from 85 to 259 Mg/ha, which is lower than in nearby protected
forests. Forests close to the equator have generally higher AGB, and most forests showed reduced
AGB and wood density close to forest edges. AGB showed no correlation with wood density,
structural complexity, and tree species richness. AGB estimations by manual inventory and TLS

correlated moderately.

Conclusion

Our findings highlight the value of ground-based methods and the need to connect and protect

forests as carbon reservoirs.

Keywords: Allometric equation, Automatic point cloud segmentation, Edge effects, Forest

[fragmentation, Tree species richness, Wood density
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1. Introduction

1.1Forest loss, fragmentation, and persisting patches in Western Africa

Tropical forests are being cleared globally at alarming rates (Schelhas and Greenberg 1996;
Hansen et al. 2013; Poorter et al. 2021). In Western Africa, more than 80% of the 1900 forest
extent has been lost, mainly due to the growing human population clearing forests for agriculture
(Aleman et al. 2017; Curtis et al. 2018; Amani et al. 2021; Akinyemi and Ifejika Speranza 2022).
In addition to deforestation, large contiguous forests have been fragmented into numerous small
patches (Taubert et al. 2018; Traoré et al. 2024; Wingate et al. 2022). Between 2000 and 2010 the
number of forest fragments increased by 42% in Africa (Fischer et al. 2021). Fragmented areas are
particularly affected by forest loss (Dangbo et al. 2020) and remaining forest patches are
vulnerable to edge effects, such as fire, desiccation, and altered species composition (Hill &
Curran, 2003; Ibaiiez et al. 2014; Laurance, 2004; Taubert et al. 2018).

Despite this deforestation trend, thousands of small forest patches (<1000 ha) persist in isolation
across the Western African landscape and in Togo, Benin, Nigeria, and Cameroon alone over
400,000 patches have been detected in the Guineo-Congolian forest and the Guinea Savanna zones
(Wingate et al. 2023). These patches, ranging between 0.5 and 1000 ha, are characterized by trees
exceeding 5 m in height and a canopy cover greater than 30% (Food and Agriculture Organization
of the United Nations (FAO) 2016; Wingate et al. 2022). They are crucial for biodiversity

conservation and climate regulation including carbon storage and sequestration (Lewis et al. 2015).
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1.2 Aboveground biomass (AGB)

Tropical forests store the majority of terrestrial aboveground carbon and are central to climate
mitigation and biodiversity conservation (Chave et al. 2019a; Ameray et al. 2021). Aboveground
biomass (AGB), largely contained in woody compartments of trees (Williams et al. 2013), is
therefore a key parameter for assessing greenhouse gas emissions, timber management, and
ecosystem services. International initiatives such as REDD+ (Reducing Emissions from
Deforestation and forest Degradation and the role of conservation, sustainable management of
forests and enhancement of forest carbon stocks in developing countries), the Kunming-Montreal
Global Biodiversity Framework, and other funding schemes require robust estimates of AGB to
monitor commitments and guide management (Food and Agriculture Organization of the United
Nations (FAO) and United Nations Environment Programme (UNEP) 2020; Convention on
Biological Diversity (CBD) 2021; International Union for Conservation of Nature (IUCN) 2022;
Turia et al. 2022).

In Western Africa, however, most AGB studies have concentrated on large, formally protected
forest blocks or a few commercially important species (Basuki et al. 2009; Chenge and Osho 2018;
Aabeyir et al. 2020; Atsri et al. 2020; Arouna et al. 2021). Small and unprotected forest patches
remain underrepresented, despite their abundance and ecological importance (Wingate et al. 2023).
These patches are particularly exposed to edge effects, including higher tree mortality, windthrow,
and fire, which can substantially reduce biomass (Laurance et al. 1997, 2000; Ordway and Asner
2020; Giancola et al. 2024). Structural changes, such as reduced tree height for a given diameter
(Nunes et al. 2023), and the loss of large animal seed dispersers (Lewis et al. 2015) further

contribute to lower AGB compared to continuous forests.
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Understanding AGB in small forest patches is therefore crucial. They may serve as analogues of
the future landscape if fragmentation continues (Tabarelli et al. 2008; Taubert et al. 2018a), and
their carbon dynamics will determine whether they act as persistent carbon sinks or as sources of
emissions. Yet, temporal trends of AGB in these fragments remain poorly understood and
contested (Wingate et al. 2023). In addition, little is known about how the biomass of these small
forest patches compares with that of other nearby forests in the region, whether larger, formally
protected, or similar in size and management, although this contrast is central for evaluating their

role in regional carbon budgets.

1.3 Challenges of quantifying aboveground biomass

Quantifying AGB in tropical forests is notoriously difficult due to high species richness, variable
tree allometries, and the presence of very large individuals (Hemp et al. 2017; Cazzolla Gatti et al.
2022; Calders et al. 2022). While destructive harvesting remains the most accurate method
(Ketterings et al. 2001), it is rarely feasible, and indirect approaches such as manual inventories
and remote sensing are commonly used (Clark and Kellner 2012). However, inventorying even a
single hectare of tropical forest is logistically demanding and expensive (Chave et al. 2019a;
ForestPlots.net et al. 2021), and such efforts remain scarce in Western Africa (Harris et al. 2021).
Satellite-derived biomass maps provide valuable regional and global coverage, but their accuracy
is limited by the paucity of representative ground data and by strong structural heterogeneity in
Afrotropical forests (Chave et al. 2019a; Araza et al. 2022). These limitations are particularly acute
in small forest patches, which are often excluded from large-scale inventories and misclassified by

coarse-resolution remote sensing products. As a result, current maps show discrepancies of more
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than 150 Mg ha™ in Western Africa (Araza et al. 2022), and the biomass of small patches remains
largely unvalidated.
Emerging technologies such as terrestrial laser scanning (TLS) offer a promising complement to
manual inventories. TLS captures forest structure in three dimensions, providing accurate
estimates of tree size and canopy height without destructive sampling (Calders et al. 2020; Terryn
et al. 2024). While TLS has been tested in temperate and Amazonian forests, its application in
Western Africa is minimal and absent from Togo, Benin, and Nigeria (Momo et al. 2018, 2020).
Forest patches are a particularly relevant test case, as they combine high floristic diversity,
structural heterogeneity, and strong edge effects within small areas, posing both logistical
challenges and opportunities for TLS validation. Moreover, comparing the AGB of these patches
with other regional forests can clarify whether small remnants store carbon proportionally or show
systematic differences across the landscape.
To shed light on aboveground biomass and its quantification in these understudied ecosystems, we
address the following questions:

1. What is the current AGB and carbon in the studied forest patches and how is it spatially

distributed?
e H: We expect that the amounts and spatial patterns of AGB and carbon vary across the
forest patches, indicating environmental and disturbance gradients.

2. Which forest characteristics correlate most with AGB?

o H: We expect basal area, tree height, and wood density to correlate most with AGB.

3. How does the AGB of these patches compare with that of other forests in the region?

e H: We expect to find lower AGB in isolated forest patches as compared to larger forest

areas, due to edge effects.
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4. How does AGB estimated from manual inventory compare to AGB obtained by TLS?
o H: We expect that AGB obtained by TLS will show a positive correlation with AGB
derived from manual inventories across forest patches.
To address this knowledge gaps, we focused on seven forest patches in Togo, Benin, Nigeria, and

Cameroon, spanning diverse forest types and ecological conditions.

1.4 Study area

These patches represent both Tropical and Subtropical Grasslands, Savannas, Shrublands, and
Moist Broadleaf forests (Fig. 1; Dinerstein et al. 2017, see Table Al for details). These remnants
include semi-deciduous forests (Koui and Ewe-Adakplame), soil-mediated swamp forests
(Hlanzoun, also known as Lokoli, and Ikot), and moist forests (Iko, Mbangassina, and Ngam-
Kondomeyos). Together, they capture a broad ecological gradient and taxonomic diversity, with
frequent tree families such as Moraceae (e.g., Treculia africana Decne Ex Trécul), Fabaceae (e.g.,
Gilbertiodendron dewevrei (De Wild.) J.Léonard), and Myristicaceae (e.g., Pycnanthus angolensis
(Welw.) Warb.).

Despite lacking formal protection, these forest patches have persisted since at least the 1970s,
surrounded today by croplands, agroforestry systems, and wetlands (Hansen et al. 2013; Wingate
et al. 2022). They span pronounced environmental gradients: mean annual precipitation ranges
from 1000 to 1300 mm in Koui, Ewe-Adakplame, and Hlanzoun, and from 1500 to 3000 mm in
Iko, Ikot, Mbangassina, and Ngam-Kondomeyos; mean annual temperatures lie between 23 and
28 © C (Hijmans et al. 2005). Elevations extend from 15 m above sea level in Ikot to 700 m in
Ngam-Kondomeyos (Jarvis et al. 2008). Soil types predominantly include Acrisols, Lixisols, and

Ferralsols, with Gleysols and Fluvisols occurring in the swamp forests (International Union of Soil
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Sciences (IUSS) Working Group World Reference Base for Soil Resources (WRB) 2015).
Including such ecologically diverse sites strengthens the spatial coverage of AGB assessments
across Western Africa (Lewis and Pickavance 2024) and provides essential ground-truthing data
for satellite-based forest archetypes (Wingate et al. 2023).

[Insert Fig. 1 here]

2. Methods

2.1Data collection

Between September 2022 and March 2023, we installed 109 plots each measuring 50 x 50 m across
seven forest patches, following plot size recommendations by Chave et al. (2004) and Duncanson
etal. (2021). Within each patch, plots were distributed randomly, constrained by a minimum inter-
plot distance of 50 m, accessibility, and human security considerations. To ensure
representativeness, plots were located in internally homogeneous areas (avoiding canopy gaps or
abrupt changes in vegetation structure, composition, and topography). Depending on forest patch
size (20-1160 ha), we installed 6-21 plots per forest to ensure representative coverage.

The manual forest inventory included all trees with a diameter at breast height (DBH) > 10 cm.
Smaller trees, dead logs, lianas, and palms were disregarded in the manual inventory since they
contribute little to AGB (Ali et al. 2019¢; Atsri et al. 2020; Duncanson et al. 2021). The position
of each tree was taken with a handheld GPS (Garmin GPSMAP 66i). While occasional device
readings suggested a precision of around +3 m, actual horizontal accuracy likely varied with
canopy density, generally falling within the 5-10 m range (Garmin Ltd. 2025). DBH was measured
with a diameter tape (0.1 cm precision), individual tree height was estimated with a clinometer,

and tree species were identified with local botanists and later confirmed in national herbaria.
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While various methods exist for installing subplots within a main plot (Bechtold and Scott 2005),

orientation in the dense forests, as two subplot sides coincided with measuring tapes from the main
plot, and the four subplot corners were already marked with colored poles. Within each subplot,
all trees were tagged with unique numbers and registration markers (FARO Technologies Inc.
2017). We scanned the subplot with a terrestrial laser scanner (FARO M70) with 24.2 MPts,
0.044°/pt, and color mode, which took ca. 4.5 min/scan. We followed a continuous chain, always
scanning the markers twice to allow subsequent co-registration (Wilkes et al. 2017; Martin-Ducup
et al. 2021; Tao et al. 2021). Depending on forest density, we conducted approximately 30 scans
per subplot, with scan positions spaced around 6 meters apart (Fig. 2). Additionally, we took five
single scans in the corner and the center of the plots to quantify the stand structural complexity
index (SSCI, Ehbrecht et al. 2017; Hepner et al. 2025). Scans were only taken when there were no
rain, no wind, and no moving people close to the scanner.

[Insert Fig. 2 here]

2.2 Data analysis

2.2.1 Manual inventory data

In total, 9,591 individual trees of 369 different species were identified. 281 trees (3%) of 25 genera
(7%) could only be identified to the genus. To calculate AGB of these trees, the BIOMASS-
package (Réjou-Méchain et al. 2017) was run (see also Mo et al. 2023; Ploton et al. 2020) in R

(version 2023.06.0, R Core Team, 2023). Due to the potential inaccuracy of tree heights measured
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with a clinometer, we applied a local allometric model (log2, residual standard error (RSE) = 4.96
m) to adjust the estimates (Réjou-Méchain et al. 2017). Species-specific wood densities from the
Global Wood Density Database (Zanne et al. 2009) were assigned to 5,062 trees (53%), genus-
averaged densities to 3,011 trees (31%), and plot averages to 1,518 trees (16%). We applied the
pantropical allometric equation by Chave et al. (2014), which is commonly used in tropical AGB
studies (Cuni-Sanchez et al. 2021; Davies et al. 2021; Zemp et al. 2023, equation 1):

AGB,, = 0.0673 * (pD?H)%976 (equation 1),

where AGBm = aboveground biomass (kg) from manual inventory, p = wood density (g/cm?), D
= diameter at breast height (cm), and H = tree height (m).

Subsequently, a Monte Carlo test was applied to quantify error propagation and corresponding
credibility at the plot level (2.5% and 97.5%, Fig. Al). AGBn was converted to carbon by the
factor 45.6% (+0.2), which is the mean for tropical angiosperms (Martin et al. 2018). Species
richness was standardized for differences in tree abundance among plots using individual-based
rarefaction and extrapolation (Chao et al. 2014) implemented in the iNEXT R-package (Hsieh et
al. 2024). Further, species richness was estimated from species—abundance data (stem counts per
plot) with datatype = "abundance" and q = 0, providing rarefied, extrapolated, and asymptotic
richness values with associated standard errors. To test the relationships between ecological
determinants of aboveground biomass (AGB), including basal area, tree height, wood density, tree
species richness, number of trees, SSCI, and canopy openness, we applied linear mixed-effects
models. This approach accounted for the random effects of individual forests as a single factor,
using the Ime4 and ImerTest R packages (Bates et al. 2015; Kuznetsova et al. 2017). We evaluated
four model variations: fixed intercept and fixed slope, fixed intercept and varying slope, varying

intercept and fixed slope, and varying intercept and varying slope. The model with the lowest
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Akaike information criterion (AIC) was retained (Bozdogan 1987) and model fit was assessed

using Restricted Maximum Likelihood (REML).

2.2.2 Extrapolation from plot to forest

We estimated forest-wide AGB by extrapolating AGBy, from the 109 plots (50 x 50 m) using its
relationship with canopy height. First, in QGIS (version 3.28.7-Firenze, QGIS Development Team,
2023) the minimum bounding geometry function was applied to the coordinates of individual trees
to determine the position and orientation of each corresponding 50 x 50 m plot (0.25 ha). Then,
zonal statistics was used to get the mean and median of satellite-obtained canopy height (Lang et
al. 2023) and normalized difference vegetation index (NDVI) of the corresponding period (Planet
Labs PBC 2022) for each plot. In R (R Core Team 2023), correlations were tested between AGBn
and satellite-obtained canopy height and NDVI. AGBn correlated stronger with median canopy
height (#=0.8, p<0.001) than with NDVI and mean canopy height. This suggests that the median
better reflects typical canopy structure by reducing the influence of rare emergent trees that may
inflate the mean canopy height.

As with the linear mixed-effects models to examine relationships between AGB and ecological
determinants (chapter 2.2.1), we use such to analyze the relationships between AGBy, and canopy
height. Again, we tested four variations (fixed intercept and fixed slope, fixed intercept and varying
slope, varying intercept and fixed slope, varying intercept and varying slope) of single-factor linear
mixed-effects models with forests treated as the random factor (Kuznetsova et al. 2017). The model
with the lowest Akaike information criterion was retained (Bozdogan 1987) and model fit was
assessed by Restricted Maximum Likelihood (REML). The retained model had a varying intercept

and a fixed slope and allowed to extrapolate AGBp, beyond the sampled plots (equation 3):
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AGB,, = 33.2071 * exp(0.0504 = Height;) (equation 3),

where AGBp, = aboveground biomass (Mg/ha) obtained from manual forest inventory and Heighty,
= median of canopy height (m) per plot obtained from (Lang et al. 2023, t=5.1, p<0.001). Based
on the relationship between plot-AGBm and satellite-obtained canopy Heightr, we could
extrapolate AGB from the plots to the whole forest patch using raster calculator in QGIS (QGIS
Development Team 2023). The spatial resolution of the plots (50 x 50 m) was maintained and the
aligned raster data could later be used to generate difference maps with the AGB map by Harris et
al. (2021, r=0.6, p<0.001).

In QGIS (QGIS Development Team, 2023), we used zonal statistics to sum AGB and calculate its
mean and standard deviation per forest. These values then fed into the error propagation calculation

for converting AGB to carbon: (equation 4, (Goodman 1960)):

OAGB+Carbon = \/(0_3163 + p‘flGB)(o_g‘arban + p‘é‘arban) - (I'J'ElGB F I’l?}arban) (equation 4):

where G4¢p.carpon 1S the standard deviation of the product of our estimated AGB and the carbon
squared mean of AGB, oéarban is the variance of carbon (0.002), and uga,ban is the squared mean
of carbon (0.456) (Martin et al. 2018). Total AGB uncertainty per forest was calculated as

(equation 5, adapted from Taylor (1997)):

n &
OsumAGBforest — OAGBPerPixel * ’1+2*r(d) (equation 5),

Where Ogmacpforest 15 the uncertainty of the total AGB per forest, Gagrperpixel is the uncertainty
of AGB per 50 x 50 m pixel, 7 represents the number of pixels per forest, and r(d) is the correlation
coefficient of a pixel with its eight immediate neighboring pixels corresponding to a 50 m radius.
The distance of 50 m was chosen during field data collection and applied in the analysis to avoid

biases due to spatial autocorrelation. Finally, we validated extrapolated AGB by comparing it with
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input plot data using a Wilcoxon test (Bauer 1972; R Core Team 2023). We compiled published
AGB data from the same or nearby forests to compare isolated patches with larger, differently

managed, and differently estimated forest tracts.

2.2.3 Terrestrial Laser Scanning (TLS) data

TLS-data from 86 subplots were processed, and co-registered in SCENE (version 2023.1.0, FARO
Technologies Inc., 2023). We generated 50 point clouds, each consisting of 167 million points on
average with a mean point error of 22 mm. In 36 subplots, scan registration failed due to very
dense understory vegetation, hindering automatic merging of adjacent scans. In seven subplots,
we did not identify tree species and therefore had no corresponding wood densities, leading to the
number of 43 completely analyzed subplots.

The point clouds were processed in Forest Structural Complexity Tool (FSCT), which is sensor-
agnostic and known for high accuracy (Krisanski et al. 2021; Boroujeni et al. 2024). We segmented
the point clouds automatically in ground, leaf, and stem points, isolated individual trees, and fitted
cylinder for tree volume estimation (Krisanski et al. 2021; Fig. A2). Visual inspection of the
segmented point clouds was performed in CloudCompare (Girardeau-Montaut 2023).

The output of FSCT was filtered by DBH >10 c¢m and circumference completeness index (CCI)
>0.3 (Krisanski et al. 2021), to align with the manual inventory and reduce noise (Fig. 3). The
CCI measures the completeness of a scanned circular object, such as a stem or branch. Apparent
stems scanned only from one side were excluded as noise. These filters were confirmed as best fit
by an analysis of Euclidean distance between the manual inventory data and FSCT output and on
average 60% of the originally detected ‘trees’ were filtered out this way. Wood density for each

FSCT subplot was derived from the manual inventory by assigning species-specific wood densities
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and calculating a basal-area—weighted mean. Basal area was computed for each tree as 1 * (%)2,

and subplot-level mean wood density was obtained by weighting species wood densities by their
relative basal area contributions. This mean wood density was then applied to the TLS-derived
stem volumes to convert them into subplot-level aboveground biomass (AGB1Ls). Correlations
were used to compare forest characteristics estimated by manual inventory and TLS. Analysis of
variance (ANOV A) was used to detect peculiarities across forest patches.

[Insert Fig. 3 here]

Based on five scans per plot, we calculated the stand structural complexity index (SSCI, Ehbrecht
et al. 2017). This index constructs polygons of open space around the scanner position, connecting
points where plant matter reflected the laser beams. SSCI is defined as (equation 2):

§SCI = MeanFrac™ (PN} (equation 2),

where MeanFrac refers to the mean of the fractal dimension index of 1280 polygons surrounding
the scanner, derived from the perimeter and area of these polygons. ENL refers to the effective
number of layers, quantifying 20 cm voxels filled with plant material in 1 m layers from the scanner
to the canopy top (Ehbrecht et al. 2017). SSCI is powerful in quantifying the three-dimensional
forest structure and high structural complexity is typically associated with greater ecosystem

functioning (Coverdale and Davies 2023).

3. Results

3.1 AGB and carbon in the seven studied forest patches

Addressing research question 1, we quantified AGB and carbon in seven forest patches (Table 1).

AGBpy, ranged from 85 Mg/ha in Ikot to 199 Mg/ha in Ngam-Kondomeyos, corresponding to 39
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Mg/ha and 91 Mg/ha carbon. The smallest forest Koui (18 ha) stored 351 Mg AGB and the largest
forest Iko (1163 ha) stored 44,812 Mg AGB.

[Insert Table 1 here]

3.1.1 Spatial patterns of AGB within forests

A linear mixed-effects model with log-transformed AGB, distance from the forest edge as a fixed
effect and forest as a random intercept (Imer(log(AGB) ~ distance + (1 | Forest))), showed that
AGB;y, increased toward forest interiors (=2, p<0.005). However, distances from plot to forest
edge and AGBm were significantly different between forests (ANOVA, p<0.001, Fig. 4). Across
forests, Hlanzoun (r=0.2, p<0.001), Iko (r=0.06, p<0.05), and Ikot (r=0.2, p<0.001) showed edge
effects of increasing AGBp, toward the forest interior.

[Insert Fig. 4 here]

Separate linear mixed-effects models with distance from the forest edge as a fixed effect and forest
as a random intercept suggested that diameter (=3, p<0.005), tree height (=3, p<0.005), and
wood density (t=4, p<0.001) increased toward the forest interior. Log-transformations were
applied to diameter and tree height to improve model fit, while wood density was modeled on the
original scale. Tested individually the forests of Hlanzoun and Ikot showed the same edge effects.
For wood density alone, the relationship is significant in Koui (r=0.13, p<0.01), Iko (r=0.08,
p<0.001), and Mbangassina (+=0.07, p<0.05).

Wilcoxon test comparing field-estimated and extrapolated AGB per plot indicates that the
extrapolation from plot to forest using satellite-obtained canopy height is accurate for Koui, Ewe-
Adakplame, and Hlanzoun. However, it slightly overestimates AGB in Iko and Ngam-

Kondomeyos, while underestimating AGB in Ikot.
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3.2 Ecological determinants of AGB

In addressing research question 2, we note that AGBm is composed of wood volume and wood
density. Accordingly, we found strong correlations between AGBn, and both basal area (¢=6,
p<0.001) and tree height (t=4.8, p<0.001). However, AGBp, did not show a significant correlation
with wood density.

AGB;, and tree species richness were both low in the swamp forests (Ikot, Hlanzoun) and the moist
semi-deciduous forests (Koui, Ewé-Adakplame) and high in the moist forests toward the equator
(Iko, Mbangassina, Ngam-Kondomeyos). AGBn and tree species richness did not correlate (Fig.
A3). AGBp correlated well with the number of tree stems (DBH>10 cm, t=2.8, p<0.01), the
standard deviation of tree height (r=7.36, p<0.001) but neither with stand structural complexity
(SSCI) nor with canopy openness. Interestingly, wood density is higher in shorter trees (r=-2.3,
p<0.05) but no correlation was found with the number of trees, tree height variability, SSCI, nor

canopy openness.

3.3 Comparing AGB

3.3.1 Regional AGB comparison

Addressing research question 3, we compared our AGB estimations of isolated forest patches with
published AGB data from forests in the same region. Our AGB estimations are mostly lower than
comparable forest sites in the same regions (Table 2).

[Insert Table 2 here]
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3.3.2 Comparing AGB from manual inventory and TLS

To address research question 4, we compared manual tree inventory and TLS-data from 43
subplots (25 x 25 m). There were several significant, moderate correlations between forest
characteristics estimated by manual inventory and TLS, such as the number of detected trees, tree
height, and AGB (Table 1). Manual inventory detected more trees and estimated DBH and AGB
higher and tree heights lower than TLS.

[Insert Table 3 here]

AGB as estimated by manual inventory and TLS correlated moderately (r=0.4, p<0.01, Table 1).
Manual inventory estimated AGB higher than TLS in 30 of 43 plots (Fig. 5). Differences between
AGBp and AGBr1s ranged from -93% to + 136%. According to an ANOVA, the discrepancies
between AGBm and AGBr1Ls as well as the amount of noise in TLS point clouds were evenly
distributed across the forests.

[Insert Fig. 5 here]

4. Discussion

4.1 AGB and carbon in seven studied forest patches

We confirm the hypothesis that amounts and spatial patterns of AGB and carbon vary across and
within the forest patches, indicating environmental and disturbance gradients. AGB in the sampled
forests was higher in the biome of moist broadleaf forest compared to the ones in the savanna,
grasslands, and shrublands (see Fig. 1). This coincides with global gradients of precipitation and

water availability, which is, besides soil fertility, elevation, and disturbances, a main driver of
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AGB (Chave et al. 2019), generally leading to higher AGB toward the equator (Lewis et al. 2013).
Soil water saturation in swamp forests (Hlanzoun, Ikot) appeared to act as a chronic stressor,
limiting aboveground biomass and tree species richness (see also Koponen et al. 2004; Rodriguez-

Gonzalez et al. 2010).

4.1.1 Spatial patterns of AGB within forests

We used AGBy, for plot-to-forest extrapolation, since manual inventory covered bigger areas than
TLS (see 2.1) and detected more trees than TLS (see 3.3.2). We can confirm the hypothesis that
AGB varies across the different forest patches, indicating disturbance gradients. In fact,
extrapolation of our plot-based measurements revealed edge effects in AGB. This is in line with
literature (Chaplin-Kramer et al. 2015; Laurance et al. 1997; Mo et al. 2023; Ordway & Asner,
2020) and particularly expressed in isolated forest patches such as Koui, Ewe-Adakplame,
Hlanzoun, and Ikot with few trees in 1 km surrounding (connectivity < 30%, Hepner et al. 2025).
Reasons can be the altered microclimate with more and stronger winds, higher temperatures, and
more risk of desiccation, which leads to altered species composition and forest structure close to
edges (Chaplin-Kramer et al. 2015; Laurance et al. 1997). High prevalence of anthropogenic fires
also add to lower AGB close to edges (Chaplin-Kramer et al. 2015) which is the case in Koui,
Ewe-Adakplame, and Iko (Chuvieco et al. 2018). These effects can affect tree architecture, which
additionally decreases AGB close to forest edges (Nunes et al. 2023).

Edge effects in tree diameter, tree height, and wood density were not visible in Ewe-Adakplame
and Ngam-Kondomeyos. Ewe-Adakplamé is likely to be too fragmented to show clear edge
gradients, while Ngam-Kondomeyos has a high connectivity (=90%, Hepner et al. 2025), and

surrounding trees can buffer edge effects. In four of seven forests, wood density was lower in trees
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close to edges. Edges promote fast-growing, light-demanding pioneers which invest less resources
in wood robustness and density and are therefore lighter-wooded (Ghazoul and Sheil 2010; Nunes
et al. 2023). Tree species, exposed to a new edge, can also adapt wood structure and density to
reduce desiccation risk (Silva Da Costa et al. 2020). In the swamp forest of Hlanzoun, growth rate
in the forest interior is likely to be limited by chronic soil water saturation from the Hlan-river
(Rodriguez-Gonzalez et al. 2010), leading to higher wood densities. Generally, flooding constrains
tree growth and survival of most species strongly. However, comparable data from Western
African floodplains are lacking (Yamanoshita et al. 2001; Koponen et al. 2004; Parolin and

Wittmann 2010; Smith et al. 2022).

4.2 Ecological determinants of aboveground biomass

We can confirm the hypothesized correlation between AGB and basal area, and AGB and tree
height. However, despite wood density being a fundamental factor for AGB, our data show no
such correlation. Wood density and tree volume are largely uncorrelated, and control AGB
independently (Phillips et al. 2019). Therefore, high wood density can compensate low wood
volume and vice versa to a certain degree. High wood density is associated with slow-growing,
shade-tolerant trees which invest more resources in structurally robust stems (Ghazoul and Sheil
2010). Indeed, our data show higher wood density in shorter trees. However, no such correlation
was found, neither with the number of trees in a plot, SSCI, nor canopy openness. Wood density
depends on several small-scale factors such as tree genetics and edaphic conditions (Phillips et al.
2019). It is important to note that carbon concentration is negatively related to wood density and
varies between tree species (Martin et al. 2018; Mo et al. 2024). Wood densities and corresponding

carbon concentrations of African trees are yet to be studied in more detail.
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In our 0.25 ha plots, AGB did not correlate with tree species richness. This is consistent with other
studies in similar plot sizes and environments (Ali et al. 2016; ForestPlots.net et al. 2021; Cuni-
in smaller plots of 0.04 ha. While niche complementarity theory suggests that higher species
richness enhances biomass through resource use efficiency accumulations (Ali et al. 2019a),
factors like past disturbances (Mitchard, 2018) and current climate stressors may obscure the
relationship between AGB and tree species richness (Yang et al. 2024).

The relationship between AGB and forest structure is not entirely clear. This study found
correlations between AGB and the number of trees, tree heights, and height variability, but not
with stand structural complexity as defined by Ehbrecht et al. (2017). While it seems intuitive that
more tree stems would correlate with higher AGB, this is not necessarily the case (Lewis et al.
2013) as few large trees can offset the AGB of many small ones (Ali et al. 2019b). Lang et al.
(2023) confirmed a correlation between AGB and tree height. Structurally complex forests are
known to capture light more efficiently, pack canopy denser, and store more carbon (Coverdale
and Davies 2023). Ali et al. (2019b) identify stand structural complexity, based on DBH and tree
height variance, as a key biotic factor influencing AGB, with tree species richness contributing to
AGB through greater size variability and complexity. However, Ehbrecht et al. (2021) found no
correlation between SSCI and basal area, a proxy for AGB, highlighting that the bidirectional
relationship between forest structural complexity and AGB requires further research (Coverdale

and Davies 2023).
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4.3 Comparing AGB

4.3.1 Regional AGB comparison

Confirming our hypothesis, AGB is higher in formally protected and often larger forests as
compared to the formally unprotected small forest patches, which are exposed to various edge
effects. The discrepancy in the Hlanzoun forest is considerable. In fact the numbers, published by
Biah et al. (2024) are two to four times higher than ours. This might be because they include trees
using the DBH threshold of >5 cm, while we use >10 cm. However, Atsri et al. (2020) show that
the choice of minimum diameter size (>5 cm or >10 cm) does not significantly affect AGB
estimates in Togolese forests. In fact, the biggest 1% of trees are more important than the 99%
remaining smaller tress in driving tropical AGB (Ali et al. 2019b) and small trees contribute only
little to biomass, especially in high AGB forests, such as tropical ones (i.e., 10% biomass
contribution by trees with DBH <10 c¢m in a forest with AGB >175 Mg/ha, Duncanson et al. 2021;
Schroeder et al. 1997). Biah et al. (2024) identified eight dominant species, while we differentiate
between 30 species in the Hlanzoun swamp forest. Also, Biah et al. (2024) use a generic factor to
expand stem biomass to aboveground biomass (Intergovernmental Panel on Climate Change
(IPCC) 2006), with the background that swamp vegetation has its very own architecture due to
chronic water logging (e.g., more stems per tree (Rodriguez-Gonzalez et al. 2010) and fewer large
diameter stems (Lewis et al. 2013)). Further, while we use a spatial resolution of 50 x 50 m, Biah
et al. (2024) simplify the forest structure by assuming homogenous AGB on areas >550 ha. Our
study can rely on two, correlating methods to estimate aboveground biomass, with TLS as a
traceable method. Our AGB-numbers compare well to the numbers by Lewis et al. (2013), where

they compare 260 forests across tropical Africa and report lower AGB in swamp forests as
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compared to terra firme ones. The discrepancies show that published AGB numbers are still
diverging and highlight the need for more research on AGB measurement methodologies.

The AGB-map by Harris et al. (2021) generally showed good correlation with our estimations.
However, in swamp forests (Hlanzoun, Ikot) and forests surrounded by agroforestry
(Mbangassina, Ngam-Kondomeyos) differences ranged between -89 and +147 Mg/ha (Fig. 6).
Forests are dynamic systems with AGB varying interannually and over the years (Chave et al.
2019; Harris et al. 2021).

Our study focuses on small and formally unprotected forest fragments. It is likely that edge effects,
low landscape connectivity, and anthropogenic disturbances constrain the accumulation of higher
AGB stocks (Laurance et al. 1997). In degraded forests, such as Eweé-Adakplamé and Ikot
(Houngnon et al. 2021; Hepner et al. 2025), where logging is prevalent, AGB is below its potential.

[Insert Fig. 6 here]

4.3.2 Comparing AGB from manual inventory and TLS

We can confirm that the AGB obtained by manual inventory correlates with AGB from TLS.
However, manual inventory showed practical advantages over the TLS campaign, e.g., manual
inventory allowed us to census forest faster (12 person-days/ha) compared to TLS (16 person
days/ha) and manual inventory succeeded in all plots, while registration and segmentation of our
TLS-data were only successful in 60% of the scanned plots. Tropical forests with dense and
complex structures are still hard to scan and to segment automatically (Martin-Ducup et al. 2021)
and objective methods to evaluate point cloud quality and accuracy for tree volume reconstruction
is yet to be developed (Momo et al. 2018; Demol et al. 2022). In some cases, leaves, lianas, and

epiphytes covered the stem making it impossible to be detected correctly by TLS and only clearing
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could increase point cloud quality (Burt et al. 2018). However, our data showed no evidence that
AGBn and AGBr1s are more similar in open and structurally simple forests, or in the case of taller
trees. Estimating AGB becomes more difficult for manual inventories and TLS when forests are
denser, and trees are taller and uncertainty of AGB estimations increase with higher AGB (Fig.
Al). While Demol et al. (2022) observe better performance of TLS in tall trees, Momo Takoudjou
et al. (2018) warn about increased occlusion due to complex shapes and crown overlaps in large
trees. Due to poor tree isolation in FSCT, no allometric equations were developed from TLS-data
(Fig. A2b). Efforts to identify tree species from point clouds are underway (Akerblom et al. 2017,
Puliti et al. 2025), but not yet reliably working, in particular in tropical forests. Currently, TLS
does not replace manual inventory since species identification is required to attribute
corresponding wood density, which can vary considerably.

Based on the number of trees detected, we chose the manual inventory as the reference data for
AGB-calculation via allometric equations. Due to a lack of species-specific allometric equations
from this region (GlobAllomeTree 2024), and because region-specific allometric equations
(Feldpausch et al. 2012) performed worse than the pantropical equation by Chave et al. (2014), we
opted for the latter. Choosing one allometric equation simplifies reality by neglecting tree
morphological plasticity (Calders et al. 2022) and induces uncertainty by limited calibration data
and questionable representativity (Demol et al. 2022). It is suggested that allometric equations
perform particularly weak in dense, complex forests (Gonzalez de Tanago et al. 2018) and in large
trees (Burt et al. 2018; Calders et al. 2022; Disney et al. 2018). Our data showed no correlations
between tree form (DBH, height) and number of trees per plot, SSCI, and tree species richness.

Still, tree allometry is likely to depend on forest stand structure and environmental conditions,
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which is not captured by a single allometric equation (Loubota Panzou et al. 2021; Sullivan et al.
2017).

Felling and weighting trees is the only accurate method to measure AGB directly (Clark and
Kellner 2012; Chen et al. 2015). However, this destructive approach is not an option in partly
sacred and vulnerable small forest patches. Therefore, using more than one method to estimate
biomass is adequate and balances discrepancies, strengths and weakness of each method, which
are often uncritically seen as “ground truth” (Réjou-Méchain et al. 2019). Overcoming the known
limitations of allometric equations (Calders et al. 2022; Réjou-Méchain et al. 2019) could be
solved by new powerful (mobile) laser scanners that scan faster and therefore allow more scanning
positions and reduce occlusion. New algorithms (e.g., Xiang et al. (2024; Wielgosz et al. (2024)),
which are trained on manual segmentations of these forests, could also help to overcome the
bottleneck of correctly and automatically segmenting trees (Calders et al. 2022) and become less

dependent on allometric equations when estimating AGB.

4.4 Broader implications

This study contributes exact estimates of AGB and carbon on a tree-scale with manual inventory
and TLS. In view of climate change and fast forest fragmentation (Fischer et al. 2021), data from
understudied regions with landscapes vulnerable to land cover change are urgent. In fact, accurate
data of tree species richness and AGB are requested by several globally relevant organizations
(e.g., Convention on Biological Diverstity (CBD), 2021; Group on Earth Observations
Biodiversity Observation Network (GEO BON) & bioDISCOVERY, 2022; Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2022; International

Union for Conservation of Nature (IUCN), 2022; United Nations, 2015; United Nations, Climate
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Change, 2024) to address planetary crises of climate change, land degradation, and biodiversity
loss. Combining more than one method to estimate AGB is advisable since each method has its

strengths and weaknesses.

4.5 Limitations

Our data are one-time estimations of AGB, based on assumptions such as the validity of a single
pantropical allometric equation. Quantifying accuracy and precision of data requires direct
measurements (felling and weighting trees) and replication (Clark and Kellner 2012), which was
not an option in the seven forest patches, some of which are sacred and protected due to their
spiritual and cultural significance. Further, our results rely on wood densities and wood carbon
concentrations, which are only poorly quantified for the Western African region. Moreover, we
used tree-based data of AGB, summed up in plots, located by GPS, to be extrapolated with
satellite-obtained pixel-wise canopy height data. Uncertainty can be introduced by trees on the plot
edge (e.g. trunk is inside plot, but crown is outside) and inaccurate GPS-signal (usually 3 m) and
being propagated (Réjou-Méchain et al. 2019). Considering more error sources complicates
definite AGB quantification (Chen et al. 2015), however some potential errors (i.e., allometric
equations) can also be flattened out over the vast amount of sampled trees and plots (Réjou-
Méchain et al. 2019).

The strong correlation between plot AGB and canopy height by Lang et al. (2023) enabled us to
extrapolate AGB values across entire forests. However, potential errors may arise because the
canopy height data is from 2020, while our AGB measurements were conducted two to three years
later. The canopy height data show a typical standard deviation of nine meters, which is consistent

across sites but slightly higher in Hlanzoun and Mbangassina compared to Ikot. Once available,
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airborne LiDAR and local canopy models are likely to be more accurate than the canopy height by
Lang et al. (2023) (Schwartz et al. 2023).

50 m spatial resolution were not available. In a study in a fragmented landscape of Western Africa,
soil characteristics was next to landscape connectivity in explaining AGB (Traoré et al. 2024).
Information about current and previous forest management could also explain the measured AGB

(Lewis et al. 2015; Lindsell & Klop, 2013), which however is yet to be evaluated.

4.6 Outlook

Further research needs to focus on i) extensively sampling wood density and carbon concentration
of tropical tree species (Réjou-Méchain et al. 2019), ii) developing powerful laser scanners that
reduce point cloud occlusion in complex forests (see also Abegg et al. 2017), iii) fusing point cloud
data of terrestrial and aerial laser scanners to reduce occlusion in tree crowns (see Zhou et al.
2023), iv) developing more accurate segmentation and tree isolation algorithms to overcome
dependence on static allometric equations and to create more representative and dynamic
allometric equations (Calders et al. 2022), and v) expand pool wise carbon estimations to whole
carbon and elements cycles including belowground, soil, atmospheric, fungal, microbial, herbal
and faunal pools (see Ashton et al. 2012). Further field studies, such as ours, will be crucial for
calibration and validation of satellite data, which are becoming increasingly important and more

accurate in estimating forest AGB (Calders et al. 2022a; European Space Agency 2025).
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5. Conclusion

Forest patches, when undisturbed, serve as important carbon reservoirs and hotspots of tree species
diversity. Our results show that wood density and aboveground biomass (AGB) increase toward
forest interiors, although they are not directly correlated. These edge effects are particularly
pronounced in isolated forest patches, highlighting the need for ecological connectivity through
buffer zones, forest corridors, and agroforestry systems around small patches to support
sustainable management. Formal protection of forest patches further enhances their potential to

store AGB.

At the global scale, carbon maps remain uncertain, especially for swamp forests and forests
embedded in agroforestry landscapes. To address this gap, this study evaluates the performance of
manual forest inventory and terrestrial laser scanning (TLS) for estimating AGB in tropical forest
patches. We find that manual inventory is more effective in detecting trees than TLS in tropical
complex forests. By providing plot-level data from the understudied Western African region, our

work supports both climate and ecological modeling efforts.
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589 6. Appendix

590 6.1 Tables

591 Table A1 Characteristics of the seven forests patches studied in Togo, Benin, Nigeria, and Cameroon. The column headers without sources indicate own measurements and field

592 observations. This table partly overlaps with the one presented in {Hepner et al. 2025}

Nr | Country Forest name | Plots Coordinates | Measured | Number | Vegetation [ Soil Surrounding
& abbreviation | (WGS 84, | forest of plots | type (International landcover
Latitude /| area (ha) Union of Soil
Longitude) Sciences (IUSS)
Working Group
World Reference

Base for Soil

Resources
(WRB) 2015)
1 | Togo Koui Kou 0° 43 12" /| 18 6 Moist semi- | Acrisol Settlement  /
8°15'36" deciduous Agriculture /
forest Savanna
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593
594

2 | Benin
3

4 [ Nigeria
5

6 | Cameroon

Ewe-

Adakplamé

Hlanzoun

(also known

as Lokoli)

Iko

Tkot

Mbangassina

Ngam-

Kondomeyos

Ada

Lok

Tko & Owa

Eke

Mbi

San

2° 34 12"/

7°28 12"

2° 15" 36" /

7°3'36"

8°15'0"/

5°35'24"

7° 53" 24"/

4°39' 36"

11° 35' 24"/

4038 24"

11° 49" 48"/

3°224"

218

676

1163

1116

399

20

20

18

12

12

21

Moist semi-
deciduous
forest
Swamp

forest

Moist forest

Swamp

forest

Moist forest

Moist forest

Acrisol / Lixisol

Acrisol / Gleysol

/ Lixisol

Acrisol

Acrisol /

Cambisol /

Fluvisol

Ferralsol

Ferralsol

Settlement  /
Agriculture /
Savanna
Settlements /
Agriculture /
Wetlands
Agriculture /
Agroforestry
Settlement  /
Agriculture /
Water
Agriculture /
Agroforestry
Wetlands /

Agroforestry

Due to practical circumstances during fieldwork, we also included the two forests of Iko and Ikot in Nigeria, which are slightly larger
than the threshold of 1000 ha we set for small forest patches.
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6.2 Figures

Aboveground Biomass with upper and lower 2.5% Credibility Intervals

Forest
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Fig. Al The higher AGB (i.e. in the moist forests of the Guineo-Congolian zone, in Iko (green), Mbangassina (yellow), Ngam-

Kondomeyos (brown)), the higher is uncertainty of its estimation as quantified by the Monte-Carlo method
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600

601  Fig. A2 (a) Plot point clouds (25 x 25 m) were segmented in ground, leaves, and stem points by FSCT (Krisanski et al. 2021). (b)
602 Tree isolation from plot point cloud is impeifect, shown by different tree IDs respectively colors assigned to one single tree. Tree

603 isolation is particularly challenging in overlapping crowns

604
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605 Tree species richness per plot (0.25 ha)

606 Fig. A3 Linear mixed-effects model of tree species richness and AGB (Mg/ha) per plot (0.25 ha). Swamp forests have lower tree
607 species richness and AGB, and both increases toward the equator. When controlling for the forests, there is no significant

608 relationship between AGB and tree species richness
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Tables

Table 1 Forests vary in area, AGB per ha, carbon content, and total AGB storage. Means are accompanied by standard deviations
in brackets. AGB per hectare depends on forest type (lower in swamp forests i.e. Ikot), forest integrity (lower in degraded forests
i.e. Ewé-Adakplamé) and increases toward the equator. Mean AGB in the plots was often higher than mean AGB in the whole

Jforest since we did not sample forest gaps with tree cover <10%

Forest Area | Mean AGB | Mean AGB | Mean carbon | Total AGB per
(ha) | per plot | per  forest | per forest | forest (Mg)
(Mg/ha) (Mg/ha) (Mg/ha)
Koui 18 153 (£98) 116 (+42) 53 (£19) 1969 (+224)
Ewe-Adakplame 218 | 116 (+48) 104 (£17) 44 (+8) 22,818 (+321)
Hlanzoun 676 | 131 (£58) 108 (£31) 52 (£14) 73,006 (£1011)
Iko 1163 | 309 (£106) 188 (+41) 86 (£19) 218,849 (+£1835)
Ikot 1116 | 46 (£28) 85 (£23) 39 (£10) 94,392 (£962)
Mbangassina 145 | 293 (£134) 259 (£43) 118 (£20) 37,492 (£663)
Ngam-Kondomeyos [ 399 | 301 (£69) 207 (£28) 94 (£13) 83,051 (£713)
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Table 2 AGB as estimated in this study by manual inventory is usually lower than comparable studies from nearby forests

Forest patch | AGBy AGB Description of | Forest Reference
this comparison | comparison forest size (ha)
study value
(Mg/ha) | (Mg/ha)
Koui 116 209 Closed canopy forest | 192,000 | (Atsri et al.
Fazao Malfakassa 2020)
National Park, 13 km
distance
129 Dense forest in same | 604,000 | (Dangbo et
ecological zone al. 2020)
104 Sabi sacred forest, 100 | 240 (Lynch et al.
km distance 2018)
131 Kala sacred forest, 100 | 500 (Lynch et al.
km distance 2018)
Ewe- 104 829 Lama forest reserve, 75 | 4780 (Biah et al.
Adakplame km distance 2024)
Hlanzoun 108 488 Intact parts of same (Biah et al.
Hlanzoun forest (also 2024)
known as Lokoli swamp
forest)
199 Disturbed parts of same (Biah et al.
Hlanzoun forest (also 2024)
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1020

1021
1022

Iko

Mbangassina

Ngam-

Kondomeyos

188

259

207

223

107

421

401

known as Lokoli swamp
forest)

Intact forests with little
or no human
disturbances in Cross
River State

Disturbed forests with

signs of logging, fire,

agriculture in  Cross
River State
Belabo Sub-Divion,

Lom & Djeren forest
management unit, 200
km distance

Dja Biosphere Reserve,

100 km distance

729,000

729,000

4,590

526,000

(Amuyou et

al. 2022)

(Amuyou et

al. 2022)

(Chimi et al.

2018)

(Djuikouo et

al. 2010)

Table 3 Mean and standard deviations of key parameters compared between manual forest inventory and TLS per subplot.

Correlations are mostly moderate. The p-values are expressed with asterisks (*: p < 0.05, **: p < 0.01, ***: p <0.001)

Mean (and standard deviation) in | Manual forest inventory | TLS (n trees = | Spearman
subplots (ntrees = 1,109) 897) correlation
Number of trees 26 (£10) 21 (£13) 0.4 **
DBH (cm) 26 (+6) 20 (£5) 0.4*
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1038
1039

1040
1041
1042

1043
1044

Max DBH (cm) 72 (+30) 44 (+23) 0.1

Tree height (m) 16 (+1) 19 (£7) 05 4%
Max tree height (m) 25 (+4) 29 (x£11) 0.7 *x*
AGB (Mg) 15 (x11) 9 (£5) 0.4 *

Caption of figures
Fig. 1 Seven forest patches were selected in the Tropical & Subtropical Grasslands, Savannas & Shrublands (light green) and the

Tropical & Subtropical Moist Broadleaf Forests (dark green) of Togo, Benin, Nigeria, and Cameroon, in Western Afvica. 1. Koui,

2. Ewé-Adakplamé, 3. Hlanzoun, 4. Iko, 5. Ikot, 6. Mbangassina, 7. Ngam-Kondomeyos
Fig. 2 Scan sampling strategy in plots of 50 x 50m with subplot of 25 x 25 m. Distances and number of trees not to scale

Fig. 3 Workflow showing the initial selection of forest patches, the establishment of plots to collect data, and subsequent data

analysis to compare AGB obtained by manual inventory and TLS respectively

Fig. 4 Maps of the forest patches showing the spatial distribution of AGB (Mg/ha) and the plots of forest inventory (white). In Koui,
AGB was higher in the interior lying in a topographic depression with likely more water availability. In Ewé-Adakplamé, the forest
was strongly fragmented, and high AGB persisted only in the former forest interior. In Hlanzoun, AGB increased significantly
toward the interior (r=0.1, p<0.001), where there was more water saturation but less edge effects and accessibility. However, in
the southern part of the forest, water saturation suppresses AGB both in the interior and along the edge, where it transitions into
a wetland. In Ikot, AGB increased slightly toward the interior (r=0.2, p<0.001), however, visual inspection suggests that AGB
decreased with proximity to the periodically rising Kwa Ibo River in Ikot. In Iko (r=0.06, p<0.05), Mbangassina, and Ngam-
Kondomeyos, AGB was homogenously distributed with some local decreases where humans logged in the past. Background from

Google Maps

Fig. 5 Comparison of AGB estimation per plot (n=43) by manual inventory with allometric equations (x-axis, AGBy) and TLS with
FSCT (y-axis, AGBrry). The red line shows where x and y-axis correspond. Plots are colored according to seven forests (Ada =

Ewé-Adakplame, Eke = Ikot, Iko and Owa = Iko, Kou = Koui, Mbi = Mbangassina, Lok = Hlanzoun, San = Ngam-Kondomeyos)

Fig. 6 Difference maps between Harris et al. (2021) and this study, showing AGB difference (Mg/ha) in seven Western African

Jforests. Blue color means higher estimations; orange color means lower estimations by Harris et al. (2021) compared to this study.
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ARTICLEINFO ABSTRACT

Keywords: In West and Central Africa, most forest patches lie outside protected areas and are managed by local communities
Alpha diversity who depend on their ecosystem services. Yet, their role in conserving tree diversity under varying bioregions and

Anthropogenic disturbances

e disturbance pressures remains poorly documented. We investigated tree community diversity and structure in
eta diversity

ForatGateh nine forest patches across the Guineo-Sudanian and Guineo-Congolian bioregions using 121 plots (2500 m? each)

Tree community consetvatior along edge-interior gradients. We recorded anthropogenic disturbances (wildfire, logging, agriculture, invasive

Gilinieo S datifani plants, footpaths) and measured the diameter at breast height (DBH) for all trees > 10 cm. We identified 382 tree

Guineo-Congolian species, of which ~10 % are globally threatened. Despite their small size, the patches contribute 15-33 % of
national tree species richness in the four countries studied. Tree density and basal area were consistently lower
than reference values from nearby protected forests, ranging from 186 to 422 stems.ha™* and 12.36-23.17 m*
ha! in the Guineo-Sudanian, and 263-476 stems.ha"! and 12.20-34.75 m*.ha™! in the Guineo-Congolian. Alpha
diversity was higher in the Guineo-Congolian than in the Guineo-Sudanian, and beta diversity was generally high
among forest patches. Disturbances were concentrated at forest edges and negatively affected tree structure and
composition, irrespective of ownership. Our findings show that small, unprotected forest patches make a
disproportionate contribution to national and regional tree diversity but remain vulnerable to disturbances.
Strengthening customary rights and inclusive governance under “Other Effective area-based Conservation
Measures” (OECMSs), coupled with locally adapted forest zoning, could enhance both biodiversity conservation
and community livelihoods.

1. Introduction However, forest conservation faces significant challenges due to un-
sustainable land-use practices (Guz and Kulakowski, 2021). In tropical

Forests play a critical role as ecosystems, supporting diverse life regions, deforestation has led to the fragmentation of once-continuous
forms and providing essential services to humanity, including climate forests into numerous small forest patches (Taubert et al, 2018).

regulation, food, and timber (Brandon, 2014; Houghton et al., 2015). These patches are especially prevalent in forest-agricultural landscapes
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across West and Central Africa (Djagoun et al., 2022; Wingate et al.,,
2022).

The conservation of forest patches, both small and large, in
biodiversity-rich areas like the tropics is widely recognised as crucial for
maintaining biodiversity and ecosystem services (Arroyo-Rodriguez
et al., 2022). Small forest patches, although often more vulnerable to
habitat loss and biodiversity decline due to their size and isolation
(Hansen et al., 2020a), can serve as biodiversity hotspots and provide
critical ecosystem services, even in fragmented landscapes (Decocq
et al., 2016; Wintle et al., 2019). Empirical studies have shown that,
when aggregated in size, small patches may even harbour more species
than a few large patches (Fahrig, 2020; Riva and Fahrig, 2023).
Furthermore, a synthesis on forest biodiversity conservation in
human-modified landscapes suggested that optimal landscape scenarios
for forest-dwelling species should contain at least 40 % forest cover,
with a substantial proportion composed of dispersed small forest patches
(Arroyo-Rodriguez et al,, 2020), underscoring their key role in biodi-
versity conservation.

Globally, biodiversity, including forests and trees, remains threat-
ened (Pereira et al., 2020; Rivers et al., 2023). Thus, major targets of the
Kunming-Montreal Global Biodiversity Framework include ensuring
that by 2030, at least 30 % of degraded terrestrial areas are effectively
restored and 30 % of terrestrial areas, especially those critical for
biodiversity and ecosystem functions and services, are effectively
conserved, sustainably used, and managed (Convention on Biological
Diversity, 2022). While there is evidence that conservation areas that
combine nature protection, cultural values and sustainable use could
offer similar potential to strictly-protected areas for animal conservation
(Vimal et al., 2021), little is known about their tree community struc-
ture. Moreover, in West and Central Africa, there is still limited evidence
on the importance of small forest patches outside protected areas as
habitats for diverse tree species.

While there are nearly 73,300 tree species globally (Cazzolla Gatti
etal.,, 2022), consistent patterns of common tree species and tree species
abundance distributions are observed across tropical continents, despite
their distinct biogeographic, climatic, and anthropogenic histories
(Cooper et al.,, 2024). On the other hand, studies have evidenced high
turnover among tropical forests due to environmental factors such as
rainfall, topography, and soil nutrients, which influence the spatial
distribution of tree species (De Caceres et al., 2012; Fayolle etal., 2014a,
b; Marshall et al.,, 2021; Ringelberg et al., 2023). In tropical African
forests, Sosef et al. (2017) estimated tree species richness to be circa
3000, and these forests exhibit high conspecific negative density
dependence, which contributes to maintaining high tee diversity
(Kalyuzhny et al.,, 2023). Despite these insights, a gap remains in un-
derstanding how geographically distinct assemblages of tree commu-
nities, hereafter bioregion types (Droissart et al., 2018), and forest
management types influence the conservation of tree communities
across forest patches.

The high demand for certain tree species and the challenges related
to sustainable forest management in tropical Africa (Fischer et al., 2020)
have led to the overexploitation of native forest resources, particularly
timber trees, for local use and local and international wade (Hills et al.,
2022; Uzu et al,, 2022). In addition, land-use change for agriculture
represents a major driver of forest loss in the region, often accompanied
by logging and wildfire (Jellason et al, 2021). Consequently, tree
community composition and structure are shifting, particularly in the
remaining forest patches that are shrinking in size in the landscape. This
underscores the need for a deeper understanding of how anthropogenic
disturbances affect both tree community-alpha and -beta diversity in
such tropical forests.

The responses of biodiversity to forest disturbances have been
extensively studied (Bowd et al., 2021). However, these responses vary
depending on the taxa examined and the methodologies used
(Almeida-Rocha et al.,, 2020). While several studies have explored the
combined effects of various anthropogenic disturbances on tree

Forest Ecology and Management 601 (2026) 123314

populations (Zébazé et al., 2023; Wu et al., 2025; Dossou et al., 2025),
relatively few have investigated their impacts on tree communities as
complex ecosystems, particularly in West and Central African forests.
Additionally, how these effects vary across bioregions remains unclear.
This research gap is partly due to the challenges of quantifying forest
disturbances, which differ in intensity, frequency, and spatial distribu-
tion (Orwig et al., 2022).

Understanding the impacts of anthropogenic disturbances on tree
communities in tropical forests is challenging, as these disturbances
often occur as discrete or localised events. For example, selective logging
tends to be sporadic and patchy in tropical forests, which are also
affected by other disturbances such as fire and agricultural expansion
(Assede et al., 2023). To fully understand how these combined distur-
bances impact tree communities, it is essential to use methods that can
quantify and integrate the effects of multiple disturbance types
(DellaSala et al., 2025).

In this study, we address how bioregions and anthropogenic distur-
bances affect tree community diversity and structure in tropical forest
patches outside protected areas in West and Central Africa. Specifically,
we aimed to: i) estimate the alpha diversity of ree communities in
relation to both disturbances and bioregions; ii) assess beta diversity
variation among tree communities in the forest patches in the Guineo-
Sudanian and Guineo-Congolian bioregions; and iii) analyse the effects
of disturbances and bioregion types on tree stand structure in the forest
patches.

It is posited that: i) variation in tree community diversity among
forest patches will be influenced by both bioregion and anthropogenic
disturbances; ii) tree beta diversity (measured as inverse of Jaccard
similarity) will increase with the spatial distance between forest patches;
and iii) tree stand parameters (e.g., density and basal area) will be
negatively correlated with disturbance gradients, primarily due to se-
lective logging of timber trees (i.e., specific species harvested for their
wood, Hills et al., 2022) and forest fires.

2. Methods
2.1. Study area

This study focuses on nine forest patches located outside protected
areas across West and Central Africa, in the Guineo-Sudanian and
Guineo-Congolian bioregions. These were Agou (Togo), Elavagnon-
Todji (Togo), Koui (Togo), Hlanzoun (also known as Lokoli swamp
forest; Benin), and Kouvizoun Adakplame-Ewe, hereafter Kouvizoun
(Benin), in the Guineo-Sudanian bioregion; and Iko (Nigeria), Ikot
(Nigeria), Mbangassina (Cameroon), and Ngam-Kondomeyos
(Cameroon) in the Guineo-Congolian bioregion (Fig. 1a and Table 1).
The forest patches were selected from a remote sensing-based inventory
of tropical forest patches in West and Central Africa (Wingate et al,
2022). In their dataset, forest patches were defined as areas with more
than 30 % tree cover, with trees taller than 5 m. For this study, forest
patches with sizes ranging from 0.36 km? to circa 10 km? were selected
based on geographically distinct assemblages of tree communities
(bioregion types) in West and Central Africa (Fig. 1a and Table 1). In the
bioregions (Guineo-Sudanian and Guineo-Congolian), nine forest
patches that are natural vegetation were selected by accounting for the
variation in anthropogenic disturbances, mostly related to the forest
ownership (forests with private ownership and forests that are managed
by community organizations) (Table 1). Local communities manage
these forest patches, which are in agricultural landscapes. Agriculture is
the main income source of the communities and is characterized by
slash-and-burn subsistence crop farming, teak and oil palm plantations
in the Guineo-Sudanian bioregion, and primarily cacao, banana and oil
palm plantations in the Guineo-Congolian bioregion. There is high
population growth (2.6-3 % per year) and a high agricultural expansion
(3-7 % per year) in the study area (CILSS, 2016), all accelerating forest
fragmentation and associated habitat loss for wildlife. Meanwhile, the
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Fig. 1. Study area showing (a) the nine study forest patches in the Guineo. and Guineo-C (Upper Guinea and Lower Guinea) bioregions of tropical
Africa. Floristic bioregions were adapted from biogeographical regionalization of tropical Africa (Droissart et al., 2018). The random-sampling plot design (the
sample size varies across forests) is illustrated for the Mbangassina forest patch (127.42 ha) in the Guineo-Congolian region (b). Map lines delineate study areas and do
not necessarily depict accepted national boundaries.
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Table 1

Forest Ecology and Management 601 (2026) 123314

Characteristics of the selected forest patches outside protected areas in tropical Africa. Ownership types were PCS (Private or community sacred) and CNS (Community
non-sacred); vegetation types were dense forest, SDDF (semi-deciduous dense forest), Woodland, and YSDF (Young secondary dense forest). Bioregion classification
follows the biogeographical regionalization of tropical Africa (Droissart et al., 2018), while the soil classification follows Jones et al. (2013) and Nkwunonwo et al.,
(2020), and soils were F (Ferralitic), Cs (Clayey in swamp soil), R (Rocky) and FC (Ferralitic with concretion). The mean annual rainfall data (1981-2010) were

extracted from Karger et al. (2017).

Country Forest® Mainvegetation ~ Ownership ~ Area Bioregion Plots”  Mean distance (m) Soil  Mean Mean annual
type (ha) between plots altitude (m) rainfall (mm)
Togo Koui (1) ‘Woodl and PCS 35.95 Guineo- 6 220.12 FC 666 1653
Sudanian
Togo Havagnon-Todji Woodland PCS 226.28 Guineo- 4 677.32 R 654 1552
[¥3] Sudanian
Togo Agou (3) SDDF PCS 1100.32 Guineo- 7 2108.25 R 595 1402
Sudanian
Benin Kouvizoun (4) SDDF PCS 276.60 Guineo- 20 994.30 F 177 1160
Sudanian
Benin Hlanzoun (5) SDDF PCS 701.56 Guineo- 20 1399.74 Cs 24 1062
Sudanian
Nigeria Ikot (6) YSDF CNS 715.71 Guineo- 12 1386.64 Cs 16 2916
Congolian
Nigeria ko (7) Dense forest CNS 1082.31 Guineo- 19 1624.34 FC 196 2444
Congolian
Cameroon  Mbangassina (8) YSDF PCS 127.42 Guineo- 12 635.12 F 507 1590
Congolian
Cameroon Ngam- Dense forest CNS 381.99 Guineo- 21 1045.05 F 688 1610
Kondomeyos (9) Congolian

2 value in bracket indicates forest label as in Fig. 1a

® plots are squared and 0.25 ha each

forests provide timber, firewood, medicinal plants, and edible fruits to
the populations (CILSS, 2016). The climax vegetation across the selected
forests consists of semi-deciduous dense forest in the Guineo-Sudanian
bioregion and evergreen rainforest in the Guineo-Congolian bioregion
(White, 1983; Houngnon et al., 2021). The mean annual rainfall varies
between 1000-1600 mm and 1600-2900 mm per bioregion, while the
elevation ranges from 24 to 666 m a.s.l. and from 16 to 688 m ass.l,,
respectively, across selected forest sites (Table 1). The soils were either
ferralitic or rocky in the climax forests, and hydromorphic clayey in the
two swamp forests (Hlanzoun in the Guineo-Sudanian and Ikot in the
Guineo-Congolian, Table 1).

2.2, Datua collection

2.2.1. Sampling design

In total, 121 plots were established across the nine forest patches
(Table 1). Each plot measured 50 m x 50 m, with 4-21 plots per forest,
spaced at least 200 m apart. These plots were distributed along an edge-
to-interior gradient in the forests (Table 1, Fig. 1b). The initial design of
establishing forest-plots according to the forest size was adapted to field
circumstances (e.g., treeless areas within forests, rocky outcrops, con-
strained access due to sacredness, conflict, and security). Thus, the
number of plots per forest did not directly scale with forest size due to
varying degrees of disturbance and vegetation cover. In several patches,
large areas were devoid of trees due to past wildfires or dominated by
non-forest vegetation. These treeless areas were excluded from sam-
pling, as our study focused specifically on tree community structure and
diversity. Consequently, the number of plots per forest reflects both
forest size and the extent of tree-covered habitat (Table 1).

2.2.2. Tree community data collection

In each plot, the species name and the diameter at breast height
(DBH) of all tree stems with DBH > 10 cm were recorded. We collected
and identified voucher specimens of non-identified tree species in
herbaria located at the University of Abomey-Calavi in Benin, the Uni-
versity of Uyo in Nigeria, and the University of Yaoundé I in Cameroon.
For this study, a modified definition of tree by the IUCN’s (International
Union for Conservation of Nature) Global Tree Specialist Group (GTSG)
was adapted, and trees were referred to as woody plants with usually a

single stem growing to at least 2 m height and at least 10 em of DBH, or
if multi-stemmed, then at least one vertical stem 10 cm in DBH (Cazzolla
Gatti et al, 2022). Tree species taxonomy followed the Angiosperm
Phylogeny Group IV (The Angiosperm Phylogeny Group, 2016).

2.2.3. Disturbance characterization of forest tree communities

Before conducting a within-forest sampling, various forms of
anthropogenic disturbances were recorded in the forest. These include
fire outbreaks, tree logging, footpaths, agriculture, and invasive alien
plant occurrences. We used these disturbances to establish a disturbance
gradient in each forest (Table 2), following the methodology of
Mohandass et al. (2017) and DellaSala et al. (2025).

We calculated a disturbance index per plot through the following
steps: (i) first, therelative impact of each disturbance type was estimated
per plot. For each disturbance type, we considered values across all 121
plots, and calculated therelative impact in a plot as the ratio of the value
recorded in that plot to the maximum plot-level value observed among
all plots (Table 2); and (ii) second, we computed the disturbance index
for each plot by adapting the disturbance impact factor approach (Sagar
etal,, 2003; Mohandass et al., 2017). This involved summing therelative
impacts of all disturbance types recorded in the plot (Table 2). Although
the disturbance variables had different units, scaling each to a relative
value between 0 and 1 for each disturbance type across plots (Table 2)
ensured comparability before summing them.

This disturbance impact factor is a proxy for common anthropogenic
disturbances that are assumed to affect the species composition and
structure (Niang et al., 2024). The strength of this index lies in its ability
to integrate multiple disturbance types, and similar approaches have
been utilized in assessing direct human impacts on plant communities
(Sagar and Singh, 2006; Mohandass et al., 2017). By assuming an equal
impact of each disturbance type on tree communities, we minimized
potential bias, as anthropogenic disturbances in tropical forests typically
exert severe effects (Assede et al., 2023). Additionally, our focus on tree
communities with diameters above 10 cm ensured consistency in the
assessment: the temporal effect of disturbance does not influence the
output of this study as it affects ree communities in the long term
through regeneration processes (Leverkus et al., 2020; Chapagain et al,,
2021).
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Table 2

Estimation of the disturbance impact factor in the Kouvizoun Adakplamé-Ewe
forest patch. Each value in the columns (Footpath, Invasive species, Forest fire,
and Agriculture) represents the relative impact of a specific disturbance type in
the corresponding plot. The relative impact was calculated as the ratio of the
observed value in the plot to the maximum value recorded across all plots (see
Section 2.2.3). Footpath was measured as the total length (in m) of human-made
paths or trails within each plot. Tree cutting was recorded as the number of cut
stumps observed. Invasive species, fire, and agriculture disturbances were
recorded as the percentage of the plot area affected. The overall disturbance
impact factor is the sum of all relative disturbance impacts recorded in each plot.

Plot  Footpath / Tree cutting  Invasive Fire Overall
Trails / Lopping alien species disturbance
impact factor

1 0.58 0.03 0 0 0.61

2 0 0.03 0.02 0.05 0.1

3 0 0.11 0.31 075 117

4 0 0.03 0.01 0.01 0.05

5 0.41 0.03 0.08 0.01 0.53

6 0 0.03 0 0.01 0.04

7 0 0.03 0.46 0 0.49

8 0 0.03 0 0 0.03

9 0 0.14 0 0 0.14
10 0 0.08 0 0 0.08
11 0 0.03 0.38 0 0.41
12 0 0.03 0.02 075 08

13 0 0.03 0 035 038
14 0 0.03 0.92 0.6 1.55
15 0.66 0.03 0 095 164
16 0 0.03 1 1 2.03
17 0 0.03 0.23 0.8 1.06
18 0 0.03 0.23 0.4 0.66
19 0 0.03 0.23 0.1 0.36
20 1 0.14 0 0 1.14

2.3. Andlyses

2.3.1. Assessing drivers of anthropogenic disturbances in the forest patches

To investigate the effect of forest patch characteristics on the
disturbance occurrence in the forests, a generalized linear mixed-effects
model (GLMM) was used by applying the ‘Imer’ function from the R
package ‘1me4’ (Bates et al., 2015). The response variable was the
quantified anthropogenic disturbance (overall disturbance impact fac-
tor) in each plot, while predictors were the distance from the centre of
plot to the forest edge, the plot ownership, and the forest site in which
the plot was sampled (random effect). For statistical analysis, we
excluded the four plots from the Elavagnon-Todji forest (Table 1) due to
insufficient replication along the edge-to-interior gradient, caused by
limited forest cover. Similarly, the bioregion variable was not included
in the model, as its effect was already accounted for by the forest
variable.

2.3.2. Forest patches’ alpha diversity metrics

The tree taxonomic diversity in the study forests was estimated using
Hill numbers (Hill, 1973). Hill diversity was chosen for its ability to
measure alpha diversity in ways that are easy to interpret and to facil-
itate comparisons across sites, even with unbalanced sample sizes
(Roswell et al., 2021). Hill diversity is defined as follows:

R 1/1-q
D= (Zﬁ) W
i1

where D is the Hill diversity, s the number of species, p; the relative
abundance of the species i (i =1, 2,...,s) in the community. For ¢ =0,

°D refers to the species richness (the count of species equally,
regardless of their relative abundance). For ¢ = 2, 2D refers to the
inverse of the Simpson index and is interpreted as the effective number
of dominant species in the community. When g = 1, Eq.1 is undefined
but its limit as g tends to 1 is the exponential of the Shannon index,
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referred to as Shannon diversity (Chao et al,, 2014):

s
p=li D= - logp; 2
lim exv( ;p ogp) @)
In this case 'D counts the species in proportion to their abun-

dances, and is interpreted as the effective number of common species in
the community (Hsieh et al., 2016).

To facilitate comparison among tree community data from the nine
forest patches, the sample completeness (Chao et al., 2014) was first
performed (Fig. A. 1a and b). The coverage, which is a measure of how
completely a community has been sampled, was chosen as it has been
proven more effective for biodiversity comparisons between sites, rather
than the equal sample size method (Roswell et al, 2021). The
coverage-based standardization was done using the YNEXT’ function
from 9NEXT’ R package (Hsieh et al., 2016). The ‘estimateD’ function
was then used to estimate three diversity metrics, namely: species
richness, Shannon diversity and the inverse of Simpson index (Eq.1) at
90 % equal coverage (see Fig. A. 1a and b). These analyses were done by
separating the swamp forests (Ikot and Hlanzoun, Fig. 1a) from the
non-swamp ones (i.e., climax forests) for comparison purpose, since they
have different ecological conditions.

2.3.3. Tree community composition anong forest patches

We assessed beta diversity, that is the variation in tree species
composition between pairs of forest patches, using the Jaccard similarity
index (Chao et al., 2005):

A

J=— 3
A+B+C @

where A is the number of species common to both sites, B is the number
of species occurring in the first site but not in the second, and C is the
number of species occurring in the second site but not in the first.

The Euclidean distance (d) between pairs of forest patches was
measured using QGIS version 3.22.7 (QGIS Development Team, 2022).
To test the relationship between beta diversity and forest isolation, we
applied a Mantel test (Pearson correlation, 9999 permutations) between
the Jaccard similarity and Euclidean distance matrices using the *vegan’
package in R (Oksanen et al., 2022),

To assess within-forest change in tree species composition inrelation
to the disturbance and distance to forest edge, the function ‘adonis’ of the
‘vegan’ R package (Oksanen et al.,, 2022) was used. The dissimilarity
matrices were derived from Bray-Curtis distance measures (Bray and
Curtis, 1957). The disturbances were first categorized as high and low,
while the variable distance to forest edge was categorized into core and
edge. Within-forest tree assemblage in relation to these variables was
represented by performing non-metric multidimensional scaling
(Kruskal, 1964) on the dissimilarity matrix.

2.3.4. Forest tree communities’ structural characterization

The tree diameter distribution in each forest patch was estimated
using the Weibull distribution. We chose the Weibull distribution due to
its flexibility in fitting various diameter distribution data, particularly
from forest patches that undergo various disturbances and ecological
conditions (Teimouri et al., 2020).

To assess how forest management, the spatial heterogeneity in the
forests, and the bioregion types affected the tree species richness and the
structure of tree communities, we applied a linear multiple regression
analysis where tree species richness and tree stand structural parameters
(i.e., density, basal area, mean and maximum values of DBH, and mean
geometric diameter) were dependent variables. The studies by Sagar and
Singh (2006), and Korhonen et al. (2023) indicate that these variables
are suitable metrics to demonstrate how the anthropogenic disturbances
observed in different plots may have influenced the stand structure of
the tree communities. The regression’s predictors were: the disturbance
impact factor (estimated disturbance impact in each plot, Table 2), the
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edge distance (Euclidean distance from the centre of each plot to the
nearest edge of the forest in which the plot was sampled), the protection
(ownership status of the plot), and the bioregion from which the plot
was sampled (Droissart et al., 2018). We included forest-level covariates
such as vegetation type and mean altitude to control for potential
site-level confounding factors.

All statistical analyses were conducted in R 4.3.2 (R Core Team,
2023).

3. Results
3.1. Patterns of anthropogenic disturbances among forest patches

Agriculture, footpaths, tree cutting and lopping, wildfire and related
invasive alien species proliferation (mainly Chromolaena odorata (L.) R.
M.King & H.Rob.) were the main common disturbances occurring in the
selected forests outside protected areas. The mean disturbance impact
varied from 0.003 to 0.95 in community non-sacred forests and from
0.01 to 0.66 in the private or community sacred forests (Table 1). GLMM
results indicated that anthropogenic disturbances decreased signifi-
cantly with increasing distance from the forest edge to the interior
(p < 0.05), while plot ownership had no significant effect (Table 3). The
low marginal R? (0.04) suggests that fixed effects alone explained a
small portion of the variation in disturbances. In contrast, the higher
conditional R? (0.48) indicates that a substantial proportion of the
variance was explained by the model overall, highlighting the influence
of site-level or landscape-level factors represented by the random effect
(forest site).

3.2. Tree taxonomic diversity and assemblages across forest patches in the
Guineo-Sudanian and Guineo-Congolian bioregions

A total of 382 tree species belonging to 55 families were recorded
across the nine forest patches in the Guineo-Sudanian and Guineo-
Congolian (Upper Guinea and Lower Guinea) transects (Table 4, Ap-
pendix A.1). In the Guineo-Sudanian forests, Fabaceae, Apocynaceae,
Malvaceae, Meliaceae, and Moraceae were the most abundant families,
whereas Myristicaceae, Moraceae, Annonaceae, Burseraceae, and
Dichapetalaceae dominated in the Guineo-Congolian. Dominant tree
assemblages included Pycnanthus angolensis, Desbordesia glaucescens,
Staudtia kamerunensis, Piptadeniastrum africanum, and Santiria trimera in
Guineo-Congolian sites, and Ceiba pentandra, Albizia glaberrima, Alstonia
congensis, Spondianthus preussii, Antiaris toxicaria, and Ficus spp. in
Guineo-Sudanian sites (Table 4).

Diversity indices (tree species richness and Shannon diversity) were
consistently higher in the Guineo-Congolian than in the Guineo-
Sudanian bioregion (Table 4, Fig. 2a and b). Plot-level richness ranged

Table 3

Generalized Linear Mixed Model (GLMM) showing the effects of type of forest
patch ownership and distance from the forest edge on the strength of anthro-
pogenic disturbances. Marg. R is the Marginal R? and represents the proportion
of variance explained by the fixed effects (Ownership and edge distance), and
Cond. R? is the Conditional R?, which represents the proportion of variance
explained by both fixed and random (forest) effects. The coefficient for the
modality (OwnershipCNS) describes how the community- and non-sacred based
ownership differ from the private or community-sacred one. By including the
random intercepts for forest, forest-level covariates likely to affect the results
were controlled by the model.

GLMM Model: Disturbance ~ Protection + Edge distance + (1 | Forest)

Fixed factors Marg. Cond. Coefficient ~ Std. t p

R? R Error value
Intercept 0.04 0.48 0.31 0.17 2.92 < 0.05
OwnershipCNS -0.15 0.28 —0.67 0.52
Edge distance —0.0003 0.0001 -1.98 < 0.05

(m)
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from 14 to 22 tree species in Guineo-Sudanian climax forests and from
36 to 49 tree species in Guineo-Congolian climax forests. Swamp forests
showed lower tree species richness (9 and 14 species per 0.25 ha in
Hlanzoun and Ikot, respectively).

3.3. Effects of disturbances and bioregions on alpha diversity in the forest
patches

The linear multiple regression showed that bioregional factors
significantly influenced the tree species richness among the forest
patches (p < 0.05; Table 5), while the effects of disturbances on tree
species richness were not significant (p > 0.05; Table 5). Further, the
variation in altitude and vegetation types explained the tree species
richness across plots, with higher values in the rainforest plots than in
the other vegetation types (p < 0.05; and Adj. R? = 0.88; Table 5). These
environmental effects on the tree species richness align with the
observed differences in dominant families and assemblages (Table 4).

3.4. Variation in tree community composition among forest patches

The similarity in tree species composition among forest patches was
generally low (Jaccard index < 0.5), and showed no significant rela-
tionship with spatial distance between forest patches (Mantel test, r = -
0.04, p < 0.66). The similarity in tree species composition remained low
between the swamp forests and climax forests, irrespective of their
spatial isolation (Fig. 3). These compositional differences reflect the
contrasting dominant assemblages (Table 4), highlighting strong
bioregional signatures in species pools.

For all forest patches, the Adonis tests revealed that there were no
significant effects of the disturbance or distance from forest edge (edge
effect) on within-forest tree community composition (p-values > 0.05;
see appendix, Fig. A.2a and b).

3.5. Effects of disturbance and bioregions on tree community structure

For all forest patches in the Guineo-Sudanian and Guineo-Congolian
bioregions, the curve of the probability density function was right-
skewed (shape >1, see appendix, Fig. A.3), indicating a high density
of trees for smaller diameter classes, and fewer trees for diameter classes
above 50 cm. On average, tree density and basal area were higher in
Guineo-Congolian than in Guineo-Sudanian forests, and lowest in
swamp forests (Fig. 2c and d). Compared with reference values reported
from nearby old-growth forests, the studied patches show reduced but
still substantial stand structure, underscoring their ecological value as
buffers for biodiversity loss outside protected areas (Table 4).

The linear multiple regression indicated that the bioregion in which
the plot was located did not significantly explain the tree density, nor the
basal area (p > 0.05, Table 5). This was due to confounding factors such
as altitude and vegetation, which explained the variation in wee density
across plots in the two bioregions (p < 0.05, Table 5). Regarding the
variable disturbance, the regressions showed that forest disturbance
negatively affected all structural parameters, including the tree density,
which increased significantly along the gradient from forest edge to
interior (p < 0.05, Table 5).

3.6. Comntribution to national floras and threatened tree species in West
and Ceniral Africa

Despite their small size, the sampled forest patches (4648.14 ha in
total) make a disproportionately high contribution to tree conservation
at the national scale. They harbour between 15 % and 30 % of the
known tree flora of Togo, Benin, Nigeria, and Cameroon, and between
5 % and 38 % of the globally threatened tree species in these countries
(Table 6). Notably, globally threatened taxa such as Khaya grandifoliola
(VU), Nesogordonia papaverifera (VU), Mansonia altissima var. dltissima
(EN), and Afzelia africana (VU) were locally abundant in some forest
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Table 4

Forest-level structure, diversity, and dominant taxa for each patch compared to nearby primary vegetation. Tree species richness is given as the total number of species,
with mean plot-level richness + standard error in parentheses. Shannon diversity (H), tree density (stems.ha™!), and basal area (m*.ha!) are means + SE across plots
(0.25 ha each). The threatened species follow the IUCN Red List categories (VU  Vulnerable, EN  Endangered; IUCII, 2025).

Forests Tree Shannon Tree Basal area  Domi tree i Thr d species References
(bioregion) species diversity density (m®.ha) species family
richness (HY) (stems.
ha)
Agou (GS) 70 (22 2.41 422 23.17 Tabernaemontana Apocynaceae; Afzelia africana (VU); This study
+3.51) +0.26 +50.84 +03.24 pachysiphon; Fabaceae; Khaya grandifoliola (VU);
Abbizia glaberrima; Apocynaceae; Vitellaria paradoxa (VU);
Voacanga africana; Phyllanthaceae Prerocarpus erinaceus (EN)
Margaritaria
discoidea
Reference forest - 3.96 767 27.99 - - - Dangbo et al.,
(primary +25.58 (2020)
vegetation)
Havagnon- 32(14 2.31 186 12.36 Aubrevillea Fabaceae; Khaya grandifoliola (VU) This study
Todji (GS) +2.02) +0.15 +28.77 +02.17 kerstingii; Meliaceae;
Khaya Malvaceae;
grandifoliol Sapind
Sterculia
tragacantha;
Lecaniodiscus
cuparioides
Reference forest - 4.62 679.6 25.6 - - - Wala et al.,
(primary +315.9 +10.2 (2012)
vegetation)
Koui (GS) 42 (18 2.44 245 20.45 Khaya Meliaceae; Khaya grandifoliola (VU); This study
+1.15) +0.10 +25.85 +04.36 grandifoliola; Moraceae; Khaya senegalensis (VU);
Trilepisium Fabaceae; Lophira alata (VU);
madagascariense; Malvaceae Pterocarpus erinaceus (EN)
Aubrevillea
kerstingi;
Sterculia
tragacantha
Reference forest - 4.62 679.6 25.6 - - - Wala et al.,
(primary +315.9 +10.2 (2012)
vegetation)
Kouvizoun (GS) 70 (18 2.43 222 17.59 Englerophytum Sapotaceae; Afzelia africana (VU); This study
+0.78) + 0.06 +16.02 +01.43 oblanceolatuon; Malvaceae; Nesogordonia papaverifera (VU);
Triplochiton Cannabaceae; Manisonia altissima var. altissima
scleroxylon; Fabaceae (EN);
Celtis prantlii; Prerocarpus erinaceus (EN)
Dialium guineense
Reference forest - 2.6 212.5 34.79 < - < Bonou et al.,
(primary +7.02 +6.46 (2009);
vegetation) Alohou et al.,
(2017)
Hlanzoun (GS) 30 (9 1.47 350 21.74 Alstonia congensis; Apocynaceae; - This study
+0.46) +0.08 +25.07 +02.05 pondianth Phyllanth
preussii; Moraceae;
Ficus trichopoda; Gentianaceae
Anthocleista vogelii
Reference forest - 3.24 620 44.9 < - - Djossa et al.,
(primary (2010)
vegetation)
Ikot (GC) 38 (14 1.90 263 12.20 Coelocaryon Myristicaceae; - This study
+1.32) +0.10 +25.68 +04.76 botryoides; Rubiaceae;
Mitragyna ciliata; Gentianaceae;
Anthocleista vogelit, Burseraceae
Pachylobus
klaineanus
Reference forest - 2.66 541 £ 29 34.3 - - Asinwa et al.,
(primary +0.40 (2018); Igu and
vegetation) Marchant,
(2018)
Iko (GC) 144 (36 2.99 448 32.45 Treculia africana; Moraceae; Cola gigas (VU); This study
+1.54) + 0.06 +22.74 +01.94 Tapura africana; Dichapetalaceae; Englerodendron obanense (VU);
Dialium Fabaceae; Entandrgphragma cylindricum (VU);
pachyphyllum; Myristicaceae Nesogordonia papaverifera (VU);
Pycnanthus Pterygota macrocarpa (VU);
angolensis Pycnanthus microcephatus (VU);

Sterculia oblonga (VU); Terminalia
tvorensis (VU); Guibourtia tessmarii
(EN); Mansonia altissima var.

(continued on next page)
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Table 4 (continued)
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Forests Tree Shannon Tree Basal area D tree i Thr d species References
(bioregion) species diversity density (m®.ha) species family
richness (H%) (stems.
ha)
altissima (EN); Prioria balsamifera
(EN)

Reference forest - 2.87 714 £ 24 37.6 - - Asinwa et al.,
(primary +0.41 (2018)
vegetation)

Mbangassina 129 (36 3.19 333 34.20 Trilepistum Moraceae; Afzelia africana (VU); Afzelia This study
(GQ) +1.59) +0.12 +30.98 +02.77 madagascariense; Malvaceae; bipindensis (VU); Diospyros

Sterculia Putranjivaceae; crassiflora (VU); Entandrophragma

rhingetala; Meliaceae cylindricum (VU); Khaya

Drypetes leonensis; grandifoliola (VU); Nesogordonia

Trichilia tessmarnii papaverifera (VU); Pterygota
macrocarpa (VU); Sterculia oblonga
[S4Y)]

Reference forest 498-573 31.7-32.4 - - Fobane et al.,
(primary (2024)
vegetation)

Ngam- 194 (49 3.51 476 34.75 Meiocarpidium Annonaceae; Afzelia africana (VU); Afzelia This study
Kondomeyos + 0.98) +0.03 +12.26 +01.61 oliverianian; Myristicaceae; bipendensis (VU); Anopyxis klaineana
(GO) Staudtia Irvingi 3 (VU); Baillonella toxisp Uy

kamerunensis; Myristicaceae Calpocalyx heitzii (VU); Diospyros
Desbordesia crassifiora (VU); Entandrophragma
glaucescers; candollei (VU); Entandrophragma
Pycnanthus cylindricum (VU); Entandrophragma
angolensis utile (VU); Khaya grandifoliola (VU);
Khaya ivorensis (VU); Nesogordonia
papaverifera (VU); Pterygota
bequaertii (VU); Sterculia oblonga
(VU); Guibourtia tessmarmii (EN)

Reference forest - 4.43 263 28.36 - - Mbobda et al.,
(primary +28.86 (2018)
vegetation

patches. forest patches, to mitigate further degradation and ease pressure on the

4. Discussion
4.1. Forest disturbance characterization

The major types of disturbance recorded in our study (selective
logging, agricultural expansion, and wildfire) were consistent with
trends observed across tropical Africa, where rapid population growth
has resulted in increased agricultural pressures, often characterized by
slash-and-burn practices, including wildfire and logging (Laurance et al.,
2014). These disturbance types were also previously identified as key
drivers of land -use and land-cover changes across tropical Africa (Brandt
et al.,, 2018; Assede et al., 2023). The anthropogenic disturbance types
were concentrated at forest edges, as the GLMM results showed a sig-
nificant decrease in disturbance intensity with increasing distance from
the forest edge towards the forest interior. Distance to the forest edge isa
well-known predictor of the intensity and magnitude of edge effects
(Willmer et al., 2022), and our findings are consistent with previous
studies documenting pronounced edge effects in topical forests
(Muposhi et al., 2016; Beche et al,, 2022). However, the GLMM sug-
gested that anthropogenic disturbances in the forests were further
influenced by potential confounding factors such as land use histories or
disturbance legacies that might have influenced the observed patterns.

Forest ownership type, although assumed to influence anthropogenic
disturbance, did not significantly affect disturbance occurrence, which is
generally high for all forests in our study. This suggests that forest
patches outside protected areas are vulnerable to disturbance, regardless
of ownership status. This shows that both protected and unprotected
forests in tropical Africa are impacted by human activities, contributing
to forest fragment shrinkage and loss (Muposhi et al.,, 2016; Hansen
et al, 2020a). These results highlight the urgent need for stronger
governance frameworks to ensure sustainable management of these

remaining natural forests in the Congo basin (Hansen et al., 2020b).
Future studies that assess disturbances over time will be essential for
understanding how these pressures influence tree functional composi-
tion and ecosystem resilience (Bongers et al,, 2009).

4.2. Tree community composition within forest patches

We followed a phytogeographical gradient to assess alpha and beta
diversity among tree communities under various disturbances in West
and Central Africa. As hypothesized, species diversity metrics increased
from Guineo-Sudanian to Guineo-Congolian forests. This relationship
could be explained by the gradient in rainfall from the Guineo-Sudanian
to the Guineo-Congolian bioregions and has been confirmed in a global
study on vascular plants where rainfall was identified as a major driver
of alpha diversity (Sabatini et al., 2022), which aspect is also related to
the variation in our bioregion types (Fayolle et al.,, 2014a,b; Marshall
etal, 2021; Davies et al., 2023). The climax forest patches in our study
were more diverse than the swamp forests, likely because the tee
communities in swamp forests are dominated by specialized species
adapted to flooding, which results in lower diversity (Lopez and Kursar,
2003).

4.3. Variation of tree species diversity across forest patches

Regarding beta diversity across forest patches, we hypothesised that
tree communities would exhibit high beta diversity, with the inverse of
Jaccard similarity increasing as the spatial distance between forest
patches increased. This hypothesis was only partially supported:
although tree species similarity among forest patches was generally low,
there was no significant correlation between the Jaccard similarity (J)
and the Euclidean distance (d). Variations in environmental factors such
as rainfall (Ringelberg et al., 2023) and topography (De Cdceres et al.,
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Fig. 2. Stand-level diversity and structure across forest patches. Points show forest means; whiskers are + SE across 0.25 ha plots. Colours denote bioregion.
Asterisked forests (Ikot*, Hlanzoun*) are swamp habitats. Panels indicate (a) species richness (S), (b) Shannon diversity (1), (¢) tree density (stems.ha), and (d)

basal area (m>.ha™).

Table 5

Linear multiple regressions showing the effects of bioregions and site characteristics (disturbance and distance to forest edge) on tree stand composition and structure.
The model in each case follows the formula: Dependent variable ~ Bioregion type + Vegetation + Altitude + Distance to forest edge + Disturbance. References were Guineo-
Sudanian and Rainforest respectively for the variables bioregion types and vegetation across models.

Dependent variables Tree species Tree density (stems. Basal area (m”.ha) Mean geometric Max DBH of non- Max DBH of timber
richness ha) diameter (cm) timber tree (cm) tree (cm)
Predictors Estimate P Estimate P Estimate P Estimate  p Estimate P Estimate P
Bioregion type (Guineo-Sudanian) —4.428 < 0.05 —4.444 0.899 1.430 0.65 3.303 < 0.05 —1.483 0.85 19.918 0.09
Distance to forest edge —0.001 0.41 0.084 < 0.05 0.001 0.65 -0.002 0.19 0.003 0.67 —0.009 0.46
Disturbance —1.364 0.23 —48.655 <0.05 —9.502 <0.05 —3.483 < 0.05 —20.007 < 0.05 -10.539  0.15
Altitude 0.026 < 0.05 0.103 < 0.05 0.007 < 0.05 —0.001 0.55 0.033 < 0.05 0.014 0.31
Vegetation (Rainforest) ~ YSF* —11.803 < 0.05 -110.731 <0.05 —6.071 0.05 0.726 0.62 9.815 0.22 —38.787 < 0.05
OSF" -9.166 < 0.05 —100.759 < 0.05 6.381 0.11 3.660 0.06 38.215 < 0.05 -1.913 0.89
we —26.765 < 0.05 —196.143 < 0.05 —15.909 < 0.05 —2.011 0.36 —4.495 0.711 —54.931 < 0.05
SDDF? —16.186 < 0.05 —77.442 0.06 —8.704 < 0.05 —0.212 0.90 5.267 0.593 —55.141 < 0.05
Adj. R? 0.88 0.45 0.48 0.15 0.31 0.29
* YSF = Young Secondary Forest;
? OSF = Old Secondary Forest;
¢ W = Woodland;
4 SDDF = Semi-deciduous Dense Forest
9
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Fig. 3. Matrix showing the relationship between the similarity in tree species composition (above diagonal) and the distance between forest patches (below di-
agonal). For each forest patch, shading gradients in grey (climax forests) or blue (swamp forests) along the cells on either side of the diagonal represent the gradient
in distance (below diagonal) and Jaccard index (above diagonal), respectively. Forests marked with an asterisk (Hlanzoun* and Ikot*) are swamp forests, while those
without an asterisk (Agou, Elavagnon-Todji, Koui, Kouvizoun Adakplamé-Ewe, Iko, Mbangassina, and Ngam-Kondomeyos) are climax forests.

Table 6

Contribution of sampled patches (4648.14 ha in total) to national tree floras and
threatened tree species pools. Values in parentheses are percentages of national
totals (BGCL, 2024; IUCN, 2025).

Parameters Benin Togo Nigeria Cameroon
Sampled area across 10 4.25 7.75 8.25

forest patches (ha)
Tree species richness 573 446 1280 2048
Tree species recorded 188 138 284 299

(32.81 %) (30.94 %) (22.19 %) (14.60 %)

Threatened tree 26 16 165 451

species
Threatened tree 7(26.92 %) 6(37.50%) 22 23(5.10 %)

species recorded (13.33 %)

2012) are expected to affect the tree species distribution between the
two bioregions (Guineo-Sudanian and Guineo-Congolian) included in
our study. However, the absence of a significant relationship between
Jaccard similarity and spatial distance may partially reflect the limited
number of forest patches (nine) assessed. Furthermore, our beta di-
versity estimates did not partition total dissimilarity into turnover and
nestedness components (Baselga, 2010), which constrains detailed
mechanistic interpretation.

For all forests, we did not observe a clear pattern of change in within-
forest tree species composition related to either the distance from the
forest edge or the level of plot disturbance. This lack of a pattern may be
attributed to the small size of the forest patches, where limited spatial
variation could obscure potential effects. While edge effects on tree
communities in forest patches may be subtle in the short term
(Gongalves-Souza et al, 2025), further research should focus on
long-term monitoring and consider adjacent land use. Likewise, trees
sampled in our study may have been established before the observed
disturbances. Another plausible explanation is that soil nutrient varia-
tion within each forest, rather than distance to the edge or disturbance
levels, could be driving tree species composition (John et al., 2007). To
better elucidate these dynamics, future studies should explore how soil
nutrient variations correlate with both distance from forest edge and
disturbance gradients. Additionally, long-term monitoring of the dis-
turbances and assessing their effect on the tree community functional
properties will contribute to a better understanding of potential changes
in the tree community composition (Carreno-Rocabado et al.,, 2012).
Finally, our analysis did not account for natural biotic and abiotic dis-
turbances, such as drought, insect outbreaks, or pathogen proliferation,
which are likely to intensify with global climate change. These factors
could be critical in shaping within-forest tree community composition
(Seidl et al., 2017), warranting further investigation.
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4.4. Tree community structure

The effects of disturbances on tree stand structure supported our
hypothesis as the structural parameters, especially tree density and basal
area, were all negatively and significantly affected by forest disturbance.
This is due to the selective logging of both timber and non-timber trees.
The diameter distribution of trees in the forest patches exhibited an
inverse-J curve, which is characteristic of healthy forests with active
regeneration. However, the scarcity of trees with diameters exceeding
50 cm across the two bioregions underscores the intense logging pres-
sure on mature trees in the forests. In contrast, primary forests in the
region typically show a higher prevalence of trees exceeding 50 cm DBH
(Bonou etal., 2009; Fayolle et al., 2014a,b; Adjonou et al., 2017; Akwaji
and Onah, 2023). Although the tree communities contain a high pro-
portion of regenerating individuals, ongoing anthropogenic distur-
bances jeopardize the long-term persistence of mature size classes and
may ultimately erode both functional diversity and overall biodiversity
(Zambrano et al., 2020; Maua et al.,, 2020).

The fact that the diameter of non-timber trees was affected by
anthropogenic disturbances, highlights the pressure on timber resources
in these unprotected forests. With the scarcity of timber trees, which are
valued for their high-quality wood (Hills et al., 2022), “non-timber” tree
species (though generally of lower wood value), are now targeted for
uses such as charcoal production and crafting (Mensah et al., 2022).
Together, these findings underscore how disturbances alter both struc-
ture and resource use trajectories, with implications for long-term
functional diversity. Overall, our findings reveal that the forest edge
effect predominantly influences tree density, with a notable increase in
density observed as distance from the forest edge increases. This is
consistent with various studies of edge influence on vegetation, where
significant differences in forest structure were reported between forest
edge and interior (Franklin et al., 2021; Hepner et al., 2025). The spatial
pattern observed in our study suggests that forest patches outside pro-
tected areas, already under anthropogenic pressure, may continue to
shrink over time due to edge effects (Edwards et al., 2019; Hepner etal,,
2025). Moreover, the altitude and vegetation types significantly influ-
enced most of the assessed structural parameters. This aligns with the
observed patterns in alpha diversity, indicating that biophysical differ-
ences play a crucial role in shaping the tree communities within these
disturbed forest patches. We found that anthropogenic disturbance hasa
strong negative effect on the forest structural parameters. As a result,
tree density and basal area in the studied forests were lower than the
reference values in the nearby old-growth vegetation. Given that these
disturbance-types are likely to persist under current management sys-
tems for forest patches outside protected areas (Edwards et al., 2019),
assessing the impacts of other forms of disturbance (e.g., defaunation)
on tree community functional diversity will be critical for informing
long-term management strategies (Gardner et al., 2019).
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4.5. Implications for tree conservation and the management of forest
patches

Although small, these nine forest patches collectively harbour 15 %
of total African tree species richness (Sosef et al, 2017). This un-
derscores the conservation value of these small, isolated forest patches.
At the national level, these forest patches contribute significantly to the
tree flora, housing at least 30 %, 32 %, 22 %, and 15 % of the total tree
species in Togo, Benin, Nigeria, and Cameroon, respectively (BGCI,
2024). In terms of threatened species conservation, these patches are
also critical, providing habitats for atleast 37 %, 27 %, 13 %, and 5 % of
the threatened tree species in these countries (Table A.1; BGCI, 2024;
IUCN, 2025). For instance, the Kouvizoun Adakplamé-Ewe forest in
Benin is the sole habitat for species like Mansonia altissima var. altissima
(EN) and Nesogordonia papaverifera (VU) (Houngnon et al., 2021), which
highlights the unique conservation value of these areas. Khaya grandi-
foliola (VU) is also abundant in the Agou forest patch in Togo.

Despite their importance, current management frameworks fail to
prevent severe anthropogenic disturbances, such as agricultural
encroachment, selective logging, and wildfire across forests. Although
the cultural protection systems associated with forests can positively
influence their persistence (Mintah et al.,, 2024), our study shows that
they are not sufficient to safeguard the long-term persistence of tree
communities in forest patches managed by local communities. Effective
engagement of local communities and stakeholders in management
strategies is essential to mitigate these pressures. One potential pathway
is the designation of these forests as “Other Effective area-based Con-
servation Measures (OECMs), as proposed by the Convention on Bio-
logical Diversity (CBD) (Hansen et al.,, 2020b). OECMs offer flexible
governance models that empower local communities to manage re-
sources while ensuring conservation outcomes. Given the importance of
these forest patches for local livelihoods, it is critical to establish
governance structures that balance resource use with conservation
goals. Key steps could include assessing the minimum felling diameter of
timber trees, evaluating the sustainability of harvesting non-timber
forest products (Sokpon and Biaou, 2002; De Mello et al., 2020), and
promoting participatory conservation efforts, particularly for threatened
tree species.

The results showed that nearby forest patches are not necessarily
more similar than distant ones, indicating that effective in-situ conser-
vation strategies must encompass multiple patches across different
bioregions. Since these patches are managed by local communities,
fostering a network of forest governance involving various stakeholders
is crucial for their long-term persistence. Our findings of strong edge
effects on stand structure further highlight the need for spatially
differentiated management. In this context, local communities could
implement a zoning approach, including core conservation areas, buffer
zones, and resource-use areas. This could reduce edge-driven degrada-
tion while supporting local livelihoods. Unlike formal Man and
Biosphere Reserves, which are typically applied within protected area
frameworks, such zoning could be adapted under OECMs-type ar-
rangements to strengthen customary rights and local governance. Ex-
periences from community forest concessions in the Maya Biosphere
Reserve, Guatemala, show that rights-based zoning can maintain forest
cover while generating local benefits when accompanied by clear
tenure, monitoring, and accountability mechanisms (Sundberg, 2003;
Monterroso and Barry, 2012; Radachowsky et al., 2012). Adapting these
lessons to the West and Central African context would mean formal
recognition of customary tenure, co-defined conservation zones to pro-
tect interior habitats, and regulated buffer and use zones to sustain wood
and non-timber forest products.

Moreover, forest restoration initiatives should also prioritise
enhancing the structural integrity of forest edges in terms of tree density,
diversity, and composition, as this could limit further forest loss. To
achieve a balance between biodiversity conservation and livelihoods, it
is essential to create landscapes with at least 40 % forest cover
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(Arroyo-Rodriguez et al., 2020). This could involve maintaining isolated
forest patches alongside timber plantations and sustainable agricultural
practices (Rocha-Santos et al,, 2016; Arroyo-Rodriguez et al., 2020).
Such an approach is critical to meeting the 2030 targets of the CBD
(Convention on Biological Diversity, 2022). Engaging local communities
in growing fast-growing tree species for timber and other uses is also
crucial. Given the high failure rate of restoration projects, prioritizing
the use of native and threatened species rather than the exotic ones in
restoration efforts, can significantly improve success rates
(Bartholomew et al., 2023). Sustainable forest management in tropical
Africa must involve all stakeholders, including local communities,
customary authorities, forest resource collectors, and government in-
stitutions (Uzu et al., 2022). Finally, legal frameworks that support in-
clusive governance and equitable resource-sharing are essential for the
long-term persistence of these forest patches.

5. Conclusions

This study demonstrates that forests outside protected areas are
indispensable for conserving tree diversity in West and Central Africa.
Despite their small size, they contribute substantially to national floras
and threatened species pools. Our findings indicate that effective con-
servation cannot rely on single sites but should instead encompass net-
works of forest patches across bioregions. Cumrent governance
frameworks leave these forests vulnerable to anthropogenic pressure,
particularly logging, agriculture, and wildfire, which degrade stands and
erode large-tree populations, especially near edges. Customary-based
governance proved insufficient to secure the long-term persistence of
tree communities in these forests outside protected areas. We therefore
recommend combining (i) formal recognition of these forests as critical
biodiversity habitats, with (ii) strengthening customary rights through
inclusive governance, and (iii) implementing zoning approaches with
core conservation, buffer, and resource-use areas. Embedding such
measures into national strategies will sustain local livelihoods while
safeguarding irreplaceable biodiversity.
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ARTICLE INFO ABSTRACT

Keywords: Unmanned aerial vehicle (UAV) technologies have emerged as promising tools to improve forest ecosystem
Data fusion assessments. These technologies offer high-resolution data that can significantly enhance evaluations of forest
UAV

structure, condition, and disturbance severity. UAV sensors such as LiDAR and multispectral provide comple-
mentary information about forest attributes, capturing structural and spectral details, yet their integration for
comprehensive forest assessment remains understudied. In this paper, we explored the potential of combining
UAV LiDAR and multispectral data to assess the disturbance severity of a West African forest patch (Benin). We
developed an integrated disturbance index (IDI) that fuses structural properties from LiDAR data and spectral
characteristics from multispectral vegetation indices through principal component analysis (PCA). This allowed
us to delineate low (> 0.65), medium (0.35-0.65), and high (< 0.35) forest disturbance levels. We applied the
IDI to the 560-ha Ewe-Adakplame relict forest in Benin, West Africa, and achieved 95 % overall accuracy in
disturbance detection, outperforming both LIDAR-only (80 %) and multispectral-only (75 %) approaches. The IDI
revealed that 23 % of the forest area has experienced low disturbance, while 28 % and 49 % face medium and
high disturbance levels, respectively. These findings indicate that more than three-quarters of this relict forest
exhibits medium to high levels of disturbance, underscoring the urgent need for tailored conservation strategies
to strengthen forest resilience. This method’s ability to differentiate disturbance levels can inform resource
allocation, prioritize conservation efforts, and guide the development of site-specific management plans. The
integration of UAV LiDAR and multispectral data demonstrated here has potential for application across diverse
tropical forest patches, providing an effective means to monitor forest health, assess disturbance severity, and
support data-driven decision-making in forest conservation and sustainable management.

Integrated disturbance index
Forest | andscape restoration
LiDAR

Multispectral

Sustainable forest management

1. Introduction (hereafter status) and disturbance severity of the threatened forests. This

data can then be used to target areas for intervention, develop targeted

Anthropogenic disturbance factors such as wildfire, logging, and
agricultural expansion are driving widespread fragmentation and
degradation of topical forests across West Africa (Dago et al,, 2023).
These disturbances alter forest structure, composition, and function,
leading to a loss of biodiversity and ecosystem services (Malhi et al,,
2014). Restoration efforts like the African Forest Landscape Restoration
Initiative (AFR100) aim to reverse these negative impacts by restoring
degraded forests and enhancing forest resilience (Mansourian and Ber-
rahmouni, 2021). However, the success of such initiatives depends on
access to reliable information about the current condition and structure
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restoration approaches based on disturbance levels, and effectively
allocate resources for ecological recovery.

While traditional field assessments of forest status provide critical
localized information, they are limited in spatial coverage. Only a small
fraction of the forest area can be covered because manual field data
collection is time- and labor-intensive and is constrained by accessibility
to remote areas of dense vegetation (Butler et al., 2016; Zellweger et al.,
2014). These challenges restrict field sampling to discrete plots, further
limiting the wider characterization of forest status and the identification
of areas that have undergone disturbance. Furthermore, standardizing
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traditional field assessment methods across different regions and forest
types poses significant challenges. While standardization aims to ensure
consistency, variations in sampling protocols, measurement techniques,
and data collection practices may persist (Gschwantner et al., 2016). If
not adequately addressed, these variations can lead to data discrep-
ancies, making it challenging to compare and integrate information
from different sources.

The recent proliferation of high-resolution satellite systems presents
new opportunities to help overcome field data constraints, offering the
potential for standardized, wide-area coverage of forests (Popkin, 2016;
Rahimi et al,, 2024; Reiche et al., 2016). However, persistent data gaps,
mainly due to cloud and cloud shadow contamination in optical satellite
images, pose challenges for monitoring West African forests (Hackman
et al,, 2017). Compared to other tropical regions, West Africa has a
scarcity of publicly accessible, cloud-free, high-resolution optical and
radar data (Pospichal and Crewell, 2011). This shortage of such imagery
limits satellite-based monitoring of West African forests. Bridging this
gap with other means to acquire high-resolution data could complement
traditional field assessments in forest conservation and restoration ef-
forts (Aleman et al., 2018).

Emerging unmanned aerial vehicle (UAV) technologies offer a
promising approach to acquiring high-resolution images to complement
satellite systems and field-based methods for monitoring tropical forests.
The possibility to mount different types of sensors on UAVs (e.g., RGB
cameras, multispectral sensors, and light detection and ranging (LiDAR)
scanners) provides fine-scale spectral imagery and three-dimensional
(3D) structural data comparable to intensive traditional field-based as-
sessments (Berie and Burud, 2018). However, some pressing questions
remain regarding optimizing UAV technologies for forest monitoring
(Ecke etal., 2022), For example, what analysis techniques best integrate
disparate data streams like spectral imagery and LiDAR point clouds to
maximize ecological insight? What workflows enable scalable and
reproducible forest monitoring frameworks? Addressing these questions
through UAV applications could potentially bridge significant knowl-
edge gaps, such as characterizing the extent and levels of forest distur-
bance while providing high-quality and timely data.

Several studies have demonstrated the value of UAVs for assessing
forest structure, species composition, and condition (Ecke et al., 2022;
Wallace et al,, 2012; Zlinszky et al., 2015). For example, research has
shown the ability of UAV LiDAR to quantify various forest structural
parameters, such as canopy height, gap fractions, diameter at breast
height (DBH), canopy density, and rumple (Cao et al., 2019; Seidl et al.,
2012; Swayze et al., 2021). Additionally, passive UAV multispectral
imagery has been employed to assess forest health (Fraser and Con-
galton, 2021) and detect patterns of forest disturbance (Minarik and
Langhammer, 2016).

To date, few studies have assessed the potential of integrating UAV
LiDAR and multispectral or hyperspectral data for tropical forest as-
sessments. For example, Vaglio Laurin et al. (2014) integrated airborne
LiDAR and hyperspectral data using partial least squares regression
models with field measurements to estimate above-ground biomass in
African tropical forests, while de Almeida etal. (2021) fused UAV-borne
hyperspectral and LiDAR data to monitor diversity and structure in
restored tropical forests.

This study explored the potential of integrating UAV-based LiDAR
and multispectral data to evaluate forest status and map disturbance
severity in the Ewe-Adakplame Relict Forest (EARF) in Benin. We
employed a static approach to assess the severity of forest disturbance,
providing a snapshot of current conditions. Three specific objectives
were pursued as follows: (i) derive structural properties from UAV
LiDAR data and spectral vegetation indices (VIs) from UAV multispec-
tral imagery to assess the state of the forest; (ii) generate an Integrated
Disturbance Index (IDI) using principal component analysis (PCA) of
correlated structural and spectral VIs; and (iii) delineate low, medium,
and high disturbance levels based on the IDI to identify areas requiring
immediate conservation action.

Ecological Informatics 84 (2024) 102876

Our study goes beyond the limitations of traditional field plot sam-
pling by providing comprehensive, centimeter-level spatial coverage of
the forest from UAV data. The IDI promises a more nuanced under-
standing of forest disturbance levels, exceeding simple binary classifi-
cations. This approach can be upscaled using satellite-based LiDAR and
multispectral observations for large-scale tropical forest restoration ef-
forts during the United Nations Decade on Ecosystem Restoration
(2021-2030).

2. Materials and methods
2.1. Study site

This study was conducted in the EARF, a 560-ha semi-deciduous
forest fragment located in the Ketou District of southeastern Benin,
West Africa (Fig. 1). This remnant forest patch falls within the Guinean
region, which lies south of the Sudanian region (CILSS, 2016). The
climate is subequatorial with a bimodal rainfall pattern. The main rainy
season occurs from April to late July. This rainy season is characterized
by relatively heavy rainfall, ranging from an average of 80 mm in April
to a peak of 280 mm in July, the rainiest month. There is a shorter, less
intense rainy period from September (100 mm) to November (20 mm).
However, the average annual precipitation ranges from 900 to 1300
mm, which is lower than that typical for the Guinean region (Adomou
et al.,, 2006). The mean annual temperature ranges from 24 to 37 °C.
There is a long plant-growing season spanning 240 days. The EARF
harbors high levels of biodiversity, with about 185 vascular plant species
documented, including range-restricted species typical of Upper Guin-
ean forests (Houngnon et al., 2021). However, as with most forests in
Benin, the fragment faces significant human pressures, such as agricul-
tural expansion and illegal logging (Oloukoi et al.,, 2006), that is causing
a decrease in the size and connectivity of natural habitats, leading to a
severe loss of local biodiversity (Houngnon et al., 2021).

2.2, UAV multispectral and LiDAR data

We conducted the UAV surveys on two different dates to optimize
data quality. Multispectral data were collected during the less intense
rainy season (7-17 October 2022) when vegetation is still vibrant,
enhancing the capture of spectral signatures related to plant health.
LiDAR data, on the other hand, were collected during the dry season
(27-29 December 2022) when reduced leaf cover enables clearer
penetration of laser pulses for detailed canopy structure. The multi-
spectral data was collected using a DJI Phantom 4 Multispectral UAV
(DJI, Shenzhen, China) with real-time kinematic (RTK) with six 1/2.9”
Complementary Metal Oxide Semiconductor (CMOS) sensors for visible
and multispectral imaging. The surveys were conducted between 9 am
and 3 pm under clear, sunny skies with low wind speeds and minimal
cloud cover (less than 5 %). The UAV was flown at 150 m above ground
level (AGL) with 80 % forward overlap and 65 % side overlap, capturing
43,404 nadir images at 8 cm/pixel ground sample distance (GSD).

For the LiDAR data, we used a DJI Matrice 300 RTK (DJI, Shenzhen,
China) with a Zenmuse L1 laser scanning system. We conducted the
flights under favorable weather conditions, similar to those used for the
multispectral surveys. We used a scan mode flight pattern with 80 %
forward overlap and 65 % side overlap at an altitude of 100 mAGLand a
mapping speed of 6 m/s. The L1 system scanned at 160 kHz, recording
up to three returns per pulse and generating a point cloud with a density
of 317 4+ 114 (mean + SD) ppm?, of which 85.3 % were first returns.

2.3. Field data

Ground-based measurements were conducted in the same period as
the UAV flights to validate the UAV-derived products. Twenty sample
plots (Fig. 1) of 0.25 ha were selected using stratified random sampling
to capture varying forest conditions. All trees >10 cm DBH within each
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Fig. 1. Study area and study design. Upper left - The location of Benin Republic in West Africa (in red); bottom left - Map of Benin Republic showing the location of
EARF (red dot); Upper right - UAV multispectral and LiDAR setup over the field site, EARF; bottom right - Google Earth Image of EARF showing the 20 forest in-
ventory plot locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

plot were recorded, and tree heights were measured using a Suunto
clinometer to characterize tree height distributions.

Signs of anthropogenic disturbances (Fig. 2) were assessed per plot,
including fire (charcoal/scorch marks), logging (stumps), trails, agri-
cultural encroachment, dead trees, canopy gaps, lianas/vines, and un-
derstory density as indicators of forest disturbance.

2.4. Multispectral data processing

The raw multispectral images captured by the DJI Phantom 4 Mul-
tispectral RTK UAV in blue (475 nm), green (560 nm), red (668 nm), red
edge (717 nm) and near-infrared (NIR) (840 nm) bands were down-
loaded in georeferenced TIFF (GeoTIFF) format and referenced to the
World Geodetic System 1984 (WGS84) Universal Transverse Mercator
(UTM) zone 31 N coordinate system. These images were processed using
Agisoft Metashape Professional software (version 2.0.2, Agisoft LLC, St.
Petersburg, Russia), employing structure-from-motion (SfM) photo-
grammetry techniques to generate an orthomosaic. After photo align-
ment and dense 3D point cloud generation, a digital surface model
(DSM) was reconstructed from the point cloud, camera positions, and
orientations. Each band’s orthomosaic was radiometrically calibrated
using Metashape’s “Calibrate Reflectance” tool with the “Sun sensor”
option (Manfreda et al., 2018). No image filtering or minimum look
angle constraints were applied to preserve the structural details of the
vegetation (Anders et al.,, 2019).

2.4.1. Cadlculation of vegetation indices

To assess the health and condition of the forest canopy, we calculated
five key vegetation indices (VIs) using the raster calculator within Agi-
soft Metashape Professional software. The selected VIs include the Green
Normalized Difference Vegetation Index (GNDVI) (Gitelson and

Merzlyak, 1998), Enhanced Vegetation Index (EVI) (Jiang et al., 2007),
Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Normalized Dif-
ference Red Edge (NDRE) (Barnes et al,, 2000), and Leaf Chlorophyll
Index (LCI) (Datt, 1999). These indices were chosen based on the
available spectral bands from the multispectral imagery and their
common usage in vegetation studies (see Table 1).

These specific VIs were selected because they provide complemen-
tary information for assessing tropical forest health and disturbance
levels. For instance, GNDVI measures the contrast between the green
and NIR bands and is less affected by chlorophyll absorption than the
traditional Normalized Difference Vegetation Index (NDVI). By reducing
chlorophyll sensitivity, the GNDVI can better capture structural prop-
erties like foliage density and gap fractions related to disturbance factors
such as deforestation, fires, storms, or insect infestations that impact
forest health (Gitelson and Merzlyak, 1998). EVI complements the
GNDVI’s ability to capture structural properties in tropical vegetation by
adjusting for background influences from tropical soils and atmospheric
variation, providing a robust characterization of productivity in high-
biomass tropical forests (Huete, 2012). SAVI improves NDVI by mini-
mizing soil influences in tropical systems. Specifically, SAVI adjusts
NDVI based on soil brightness factors using an L parameter (soil
brightness correction factor) set to 0.5 for intermediate canopy density
(Huete, 1988). This minimizes the false variability introduced by con-
trasting soil hues in heterogeneous tropical landscapes. By accounting
for soil brightness, SAVI enables reliable characterization of canopy
density and condition, which are crucial for monitoring tropical forest
health.

NDRE can further enhance our understanding of vegetation stress
and deterioration by isolating the red edge band to detect early pigment
loss and leaf senescence, which is useful for mapping the gradual decline
of tropical forest canopies (Zarco-Tejada et al, 2013). Such decline
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Fig. 2. Evidence of anthropogenic disturbance in EARF: (a) A maize plot visibly encroaching into the adjacent forest, (b) A felled tree along a foot trail showing
scorch marks, (¢) A freshly cut down tree stump, probably logged for its timber, (d) Scorch marks at the base of a still-standing tree, suggesting it survived a fire.
Photo credit: Samuel Hepner and Georges A. Agonvonon.

143



C.J. Theaturu et al.

Table 1
Formulas for the VIs used.

Formula Reference

Green Normalized GNDVI (NIR - G)/(NIR +
Difference Vegetation G)
Index

Leaf Chlorophyll Index LCI

Vegetation Indices Abbreviation

(Gitelson and
Merzl yak, 1998)

(NIR - RE)/(NIR
+R)

(Datt, 1999)

Soil Adjusted Vegetation  SAVI ((NIR - R)/(NIR 4+  (Huete, 1988)
Index R+L)P*(Q+1L)

Normalized Difference NDRE (NIR - RE)/(NIR (Barnes et al.,
Red Edge + RE) 2000)

Enhanced Vegetation EVI 2.5 * ((NIR - R)/ (Jiang et al.,
Index without the blue (NIR + 2.4 * R + 2007)
band 1))

G is the green band, R is the red band, RE is the red edge band, L is the soil
brightness correction factor, and NIR is the near-infrared band.

could be in the form of a reduction in leaf area, chlorophyll content, and
overall canopy density, resulting from various stress factors like
drought, nutrient deficiency, pest infestations, or anthropogenic
disturbance factors like fire or logging. Lastly, LCI estimates chlorophyll
content, offering high sensitivity to early stages of tropical forest stress
from factors such as disease, insects, or nutrient deficiency (Daughtry
et al,, 2000). Taken together, these indices provide a more compre-
hensive view of the health and vitality of tropical forests.

2.5. LiDAR data processing

The raw LiDAR data was downloaded and imported into DJI Terra
software (version 4.1.0) for initial processing. The point cloud density
was set to 100 % to retain all points. The output coordinate system was
defined as WGS84 UTM zone 31 N before initiating the automated
calibration. The point cloud effective distance parameter was kept at
250 m, and the “Optimize Point Cloud Accuracy” option was enabled.
The cleaned point cloud was then exported in LAS (LASer) format.

LAStools software (rapidlasso GmbH, version 2023.03.30) was then
used to generate a pit-free canopy height model (CHM) from the LAS
point cloud (Khosravipour et al., 2014). First, the raw LAS point cloud
was classified into ground and non-ground returns using the lasground
algorithm. Next, a digital terrain model (DTM) representing ground
elevation was interpolated to 10 cm resolution from classified ground
returns using the las2dem algorithm. Finally, the CHM was produced by
calculating the height above ground for the first returns with the
lasheight algorithm and subtracting the DTM (Mielcarek et al., 2018) (Eq.
(1)).

CHM = Zjyet rem — DTM ¢b)

Where CHM is the canopy height model, Zg renon s the elevation of
the first return LiDAR points, and DTM is the digital terrain model
representing ground elevation.

2.5.1. Generation of forest structural metrics

We utilized LAStools to derive key canopy structural metrics iden-
tified in other studies for distinguishing forest structural conditions:
95th percentile canopy height (Hes), canopy cover density, gap fraction,
and canopy surface rumple. These canopy metrics serve as indicators of
vertical and horizontal complexity, which reflect the impacts of distur-
bances on forest ecosystems as they progress through succession and
development stages (Jucker et al,, 2018).

The Hos represents the maximum vertical stature and indicates forest
maturity and structural complexity (Parker and Russ, 2004), In intact
tropical forests, values typically exceed 30 m, while lower values signal
stunted growth from disturbances like logging (Sheffield et al., 2021).
Canopy cover density quantifies horizontal canopy closure by calcu-
lating the proportion of laser pulses reflected by vegetation above 2 m
height relative to the total number of pulses (Jennings et al., 1999).
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Dense, multi-layered intact tropical forests exhibit high canopy cover
density approaching 100 %, whereas disturbed, fragmented forests have
lower values, often below 80 % (Olsoy et al., 2014). The gap fraction
metric complements canopy cover density by quantifying vertical
porosity as the ratio of pulses penetrating through canopy gaps to the
ground (Zhao et al., 2011). Lower gap fractions below 15 % characterize
structurally complex forests with multi-strata obstructing light pene-
tration, while higher values typify disturbed, open canopies. Finally, the
rumple index measures 3D canopy surface roughness as the ratio of
canopy area to ground area, ranging from 1 for a flat, uniform canopy to
8 for a highly complex surface (Seidl et al., 2012). Intact forests exhibit
higher rumple values, typically above 3, due to their structural hetero-
geneity across multiple canopy layers, whereas severely disturbed for-
ests have lower rumple closer to 1 (Kane et al,, 2010).

2.6. Data fusion and disturbance mapping analysis

To map the disturbance severity across the forest area, we integrated
multispectral and LIDAR UAV datasets. We developed an IDI framework
(Fig. 3) to identify disturbed conditions. These disturbed conditions
were characterized by coincident low vegetation index values from the
multispectral data and reduced canopy structural metrics derived from
the LiDAR data, such as decreased canopy height and density, as well as
increased canopy gaps, when compared to the expected characteristics
of an undisturbed, intact forest canopy.

To enable this integrated analysis, we resampled the 10 cm resolu-
tion LiDAR-derived CHM to match the 8 cm resolution of multispectral
orthomosaics using nearest-neighbor interpolation in ArcGIS Pro® (Esri
Inc., Version 3.2.1). The CHM was then co-registered with the multi-
spectral bands by manually identifying 30 common ground control
points (GCPs) and applying a polynomial warp transformation for geo-
rectification (Han et al., 2019). This alignment enabled pixel-level
analysis. We calculated the five VIs — GNDVI, EVI], SAVI, NDRE, and
LCI — from the co-registered multispectral bands described in Section
2.4.1. Spearman correlation analysis assessed relationships between
LiDAR-derived canopy height and spectral VIs, identifying significant
correlations at p < 0.05. Finally, we used PCA to integrate the LiDAR and
spectral (VIs) variables into a composite disturbance index (Eq. (2)).
PCA condensed these indicators into ordered principal components
(PCs), explaining the decrease in variance. The first principal component
(PC1) explains the largest portion of the variance in the correlated
variables, making the PC1 raster an effective proxy for the IDI.
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Fig. 3. Integrated Disturbance Index (IDI) framework for mapping forest
disturbance. The framework integrates canopy structural metrics derived from
LiDAR data and spectral vitality indicators captured by vegetation indices.
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PCl = a,X; + @X, + ... + G:X,, )

Where a is the component loading or weight for each variable, X is
the original correlated variable, and n is the number of significantly
correlated variables.

The PC1 raster was classified into categorical disturbance classes
using a combination of K-means clustering and knowledge-based
reclassification. We initially tested different numbers of clusters (k = 2
to 5) in the K-means algorithm (Table S1). After visual inspection of the
resulting maps and consideration of the interpretability and practical
utility for forest management, we determined that three clusters pro-
vided a balance between simplicity and the ability to capture mean-
ingful variations in forest conditions.

The K-means clustering with k = 3 was applied to the PC1 values,
identifying natural groupings within the data. These clusters were then
reclassified into specific disturbance categories (low, medium, and high)
based on prior knowledge of the relationships between PC1 values, VI
values, and canopy structure metrics. To refine the boundaries between
disturbance classes, we examined the distribution of PC1 values within
each cluster and adjusted the thresholds to align with notable breaks or
inflection points in the data distribution. The final thresholds for the
three disturbance classes were defined as follows:

1. Low Disturbance: PC1 values >0.65
2. Medium Disturbance: 0.35 < PC1 values <0.65
3. High Disturbance: PC1 values <0.35

These thresholds were further validated through field observations
and comparison with the high-resolution UAV RGB imagery to ensure
they accurately reflected on-the-ground conditions. Areas with low PC1
values (< 0.35) were characterized by low VI values and reduced canopy
structure (e.g., low canopy heights and high gap fractions). These re-
gions were classified as high disturbance zones, reflecting severe dis-
turbances with significantly reduced vegetation cover and structural
integrity. Conversely, areas with high PC1 values (> 0.65), supported by
high VIvalues and intact canopy structure (e.g., tall canopy heights and
low gap fractions), were classified as low disturbance zones, indicating
healthy forest conditions. These zones were distinguished by their
robust vegetation cover and structural integrity. Intermediate PC1
values (0.35 < PC1 < 0.65) were classified as medium disturbance
zones, representing partial canopy damage or other disturbances that
may have impacted forest structure and health while retaining some
vegetation cover and canopy integrity.

2.7. Accuracy assessment

We assessed the disturbance map’s accuracy by comparing it to field
observations from 20 ground plots. In each plot, we recorded distur-
bance indicators such as signs of fire, logged tree stumps, human trail
density, agricultural encroachment, liana proliferation, dead tree den-
sity, canopy gaps, and vegetation cover. Based on these indicators, each
plot was classified into low, medium, or high disturbance (Table 2).

For each field plot, we extracted the proportions of pixels classified
as Low, Medium, and High disturbance levels from the PC1 raster and
compared these to the field-based disturbance class. For instance, a field
plot classified as high disturbance should have a higher proportion of
pixels classified as high disturbance in the PC1 raster. By aggregating
and comparing the disturbance classes within each plot to the field
reference, we evaluated the accuracy of the fused LiDAR-multispectral
dataset and the derived disturbance index.

We also compared the field-based disturbance classes with individual
LiDAR and spectral metrics to determine if the data fusion improved
disturbance detection accuracy. Accuracy metrics such as overall accu-
racy (OA), user’s accuracy (UA), and producer’s accuracy (PA) were
calculated to quantify performance against the field reference data
(Congalton and Green, 2019).

Ecological Informatics 84 (2024) 102876

Table 2
Field-based classification of disturbance levels based on the percentage of the
plot affected.

Disturbance
level

Percentage of
plot affected

Description

Low
Disturbance

<15% Minimal or no signs of disturbance, such as
the absence of fire scars, stumps, human
trails, agricultural encroachment, liana
proliferation, dead trees, and canopy gaps.
Likely represents intact or rel atively
undisturbed forest conditions.

Moderate levels of disturbance indicators,
such as scattered stumps, a few human
trails, moderate liana infestation, and some
canopy gaps. May have experienced
selective l ogging, localized agricultural
activities, or other low-to-moderate
disturbance events that have impacted the
forest structure and health to some degree.
Extensive evidence of disturbance,
including widespread fire scars, numerous
stumps, dense human trails, extensive
agricultural encroachment, heavy liana
proliferation, high densities of dead trees,
and significant canopy gaps. Likely
represents areas that have undergone severe
anthropogenic disturbances or natural
disturbances, | eading to deterioration of the
forest structure and condition.

Medium
Disturbance

15%-30 %

High
Disturbance

>30%

3. Results
3.1. Forest structural and spectral characteristics and their relationships

The LiDAR-derived CHM revealed the spatial distribution of canopy
heights across the 560-ha forest area (Fig. 4). The CHM also revealed
areas of closed tall forest canopy, lower stature vegetation, and canopy
gaps. Furthermore, the structural metrics derived from the CHM
revealed that the Hgs for the 560-ha study area was below 20 m. The
canopy cover density averaged 0.56, and correspondingly, the overall
canopy gap fraction was 0.44. Lastly, the rumple index averaged 2.54.

The VIs derived from the co-collected multispectral bands provided
complementary spectral information about the forest’s health. Fig. 5
reveals diverse spatial patterns and variability of the vegetation condi-
tions across the forest, with areas of high index values (typically >0.6)
and low index values (generally below 0.3) clearly visible. The GNDVI
ranged from —0.50 to 0.92 (Fig. Sl1a), with a high mean of 0.69 (£+0.10
standard deviation), exceeding the typical high-value threshold of 0.6.
The EVI exhibited higher variability, averaging 0.74 (+0.14) across the
full observed range of —0.29 to 0.95 (Fig. S1b), again highlighting re-
gions with values exceeding 0.6. SAVI values spanned from —0.29 to
0.63 (Fig. S1c), with a mean of 0.26 (£0.06), indicating substantial areas
below the low index benchmark of 0.3. The NDRE had a mean of 0.23
(£0.11), with values ranging from —0.50 to 0.75 (Fig. S1d), mostly
exhibiting low index values below 0.3. Lastly, the LCI had an average of
0.34 (£0.08), with a wider range of —0.81 to 0.73 (Fig. Sle), indicating
considerable areas with values below 0.3.

The correlation matrix (Fig. 6) shows the correlation coefficients ()
quantifying the relationships between CHM and the VIs. The CHM
exhibited positive correlations with all VIs. The strongest correlations
were observed with NDRE (r = 0.709), LCI (r = 0.693), and SAVI (r =
0.657). While still significant (p < 0.05), the correlations with GNDVI (r
= 0.604) and EVI (r = 0.650) were slightly weaker in comparison.

3.2. Data fusion and disturbance mapping

The PCA integrated the LiDAR and spectral VIs into a composite
disturbance index. The variable-PCA-biplot (Fig. 7a) illustrates the
contribution of each variable to the overall data variation. The scree plot

145



C.J. Theaturu et al.

1.5 Km
|

Canopy height (m)

Ecological Informatics 84 (2024) 102876

b

95th percentile
height =20 m

Fig. 4. (a) Top view of the canopy height model (CHM), with heights below 2 m removed to exclude understory vegetation and ground returns, (b) Distribution of

canopy heights above 2 m.
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Fig. 5. Spatial distribution of Vs derived from the UAV multispectral data, including (a) GNDVI, (b) EVI, (c) SAVI, (d) NDRE, and (e) LCI. Areas of healthy vegetation
are represented by dark green hues. In contrast, regions of stressed vegetation exhibit a gradient that transitions from light green to yellow and ultimately to red,
reflecting varying degrees of vegetative stress. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

146



C.J. Theaturu et al.

1.00
=
5
0.95
3
z - 0.90
o —_
)
I
e -085 5
S
i
e
-0800
s s
g S
-075 2
15
]
& |
o . -070
=
0.65

Lcl

8 o
CHM GNDVI EvI SAVI NDRE L

Fig. 6. Spearman’s correlation matrix between LiDAR and spectral metrics. The
correlation values are ranked from 0.6 to 1, where 0.6 to 0.7 means moderate
positive correlation, and 0.8 to 1 indicates a strong positive correlation. The p-
value significance levels are “*** 0.05, “*** 0,01, and “***” 0.001.

(Fig. 7b) indicates that PC1 accounted for the majority (75.7 %) of the
variance in the original disturbance metrics, while PC2 explained 23.5 %
of the variance. As shown in Fig. 7¢c, EVI, CHM, and GNDVI had the

a -

NDRE

PC2(23.5%)

10 05 0.0 05 10

PC1(75.7%)

4934
cwe 0O |
39.48
GNDVI
3455
=
EVI 2961 —
@
2468 ©
=
Y i
j =
{1482 8
NDRE
9.89
®-
0.02
PC1 pc2 PC3 PC4 PC5

Ecological Informatics 84 (2024) 102876

highest loadings and contributed most significantly to PC1, while SAVI,
NDRE, and LCIloaded more heavily onto PC2. Fig. 7d further details the
contributions of the variables specifically to PC1.

Fig. 8 shows the resulting categorical high-resolution (8 cm) distur-
bance map from the classified PC1 raster (IDI), delineating zones of
disturbance severity. Analysis of this map revealed that 49 % (275.75
ha) of the 560-ha forest fell into the high disturbance category, 28 %
(154.16 ha) was classified as medium disturbance, and the remaining
23 % (130.09 ha) was categorized as low disturbance.

3.3. Accuracy assessment

The accuracy assessment revealed that combining LiDAR and mul-
tispectral data for IDI classification achieved an OA of 95 %, out-
performing individual sensors used alone. For instance, LIDAR-derived
CHM achieved an OA of 80 %, while spectral VIs alone reached an OA of
75 %. Fig. 9a shows the confusion matrix, which highlights the align-
ment between the classified IDI and field measurements. For all distur-
bance classes, both PA and UA of the IDI exceeded 85 %. Conversely, the
LiDAR CHM exhibited lower accuracy, particularly in the medium
disturbance class, where PA and UA were 71.43 % (Fig. Ob). Similarly,
spectral VIs demonstrated lower performance in the medium distur-
bance class, with a PA of 71.43 % and UA of 62.50 %. For the high
disturbance class, spectral VIs had a PA of 62.50 % and a UA of 71.43 %
(Fig. 9¢). The proportions of pixels classified in each disturbance cate-
gory for each of the 20 field plots are provided in Table S2.

100~

Percentage of explained variance

Contributions to PC1 (%)

Fig. 7. (a) Variable PCA-biplot showing the contribution of variables in data variation, (b) Scree plot showing the percentage of explained variance by the principal
components, (¢) Contributions of the variables to the PCs, (d) Contributions of variables to PC1 in percentages. The red dashed line indicates the expected average
contribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. (a) Categorical disturbance map derived from the IDI showing high, medium, and low disturbance zones; (b) Zoomed-in disturbance maps for the 20 field
plots, highlighting localized disturbances.
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Fig. 9. Confusion matrices and performance metrics for disturbance severity classification with the different datasets: (a) IDI, (b) LIDAR CHM, (c) Spectral VIs.

4. Discussion

Our UAV LiDAR and multispectral data fusion approach showed a
strong potential for assessing the status and disturbance severity of
tropical forest fragments. By combining LiDAR-derived structural met-
rics with multispectral VIs through PCA, we achieved a comprehensive
and accurate characterization of forest disturbance. To our knowledge,
this is the first study to combine UAV LiDAR and multispectral data to
evaluate the status and disturbance severity across a West African
tropical forest.

4.1, Forest structural and spectral characteristics and their relationships

The structural properties quantified through the LIDAR-derived CHM
provided insights into the 3D structure and vertical complexity of the
forest. The relatively low Hgs (20 m) compared to the maximum height
of 48 m observed in the study area suggests a generally low overall forest
stature. While a definitive reference threshold for mature West African
forests is not available, this relatively low value suggests the overall
forest stature is generally low compared to what would be expected in a
mature undisturbed tropical forest (Vaglio Laurin et al., 2014). This low
stature likely results from the logging of large wees, which has hindered
the forest’s ability to attain its full structural complexity and vertical
stratification.

Further evidence of disturbance is reflected in the relatively open
canopy structure, with a canopy cover density of only 56 % and a high
gap fraction of 44 %. These results corroborate the findings of Dupuis
et al. (2023), who associated open, gapped canopy conditions with
anthropogenic disturbances. The average rumple index of 2.54 indicates
alow degree of canopy surface roughness, which is perceived as a sign of
disturbance. These structural characteristics suggest that past distur-
bances may have simplified vertical stratification and created a
smoothened canopy surface across this forest.

The spectral VIs offered complementary insights into forest health
and productivity interacting with structural development. The positive
correlations between canopy height and VIs like EVI, NDRE, and LCI
confirm that taller, more complex forest stands exhibit higher canopy
moisture content, chlorophyll concentrations, and photosynthetic ac-
tivity (Huete, 2012). However, the considerably low values observed in
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spectral indices like SAVI, NDRE, and LCI suggest potential deterioration
in canopy moisture, leaf pigments, and photosystems across different
parts of the forest. The low VI values observed in areas with relatively
high biomass and greenness during the less intense rainy season may
indicate localized disturbances such as selective logging, which can
impact forest structure while leaving surrounding vegetation largely
intact (Cazzolla Gatti et al., 2015).

While GNDVI is more sensitive to canopy density and adjusted
greenness, it might not always be directly proportional to canopy height.
This could explain why its relationships with canopy height were not as
strong as those observed for indices like NDRE and LCI, which are more
directly related to the canopy’s structural characteristics and biophysi-
cal properties. Previous studies have shown that canopy structure and
vertical complexity can significantly influence indices like NDRE and
LCI more than greenness-based indices like GNDVI (Huete, 2012; Zou
and Mottus, 2017). Additionally, the weaker relationships between the
indices and canopy height could be attributed to potential variability
arising from vegetation stress factors, such as moisture availability or
nutrient deficiencies, which may not be directly linked to canopy height
but can affect greenness and density measures (Vélez et al.,, 2023).

4.2. Data fusion and disturbance mapping

The disturbance characterized by the data fusion approach reflects
aspects of the tropical forest status that neither the multispectral nor
LiDAR data streams can independently capture. The intrinsic structural
properties derived from LiDAR cannot detect subtle declines in moisture
content, photosynthetic productivity, and chlorophyll concentration,
which often precede visible structural changes in vegetation (Both et al.,
2019). For instance, our results showed that using LiDAR data alone had
a UA of only 71.43 % for mapping medium disturbance areas, likely
missing early signs of stress or deterioration not yet manifested in
structural changes. Similarly, relying solely on multispectral data had a
PA of 71.43 % for medium disturbance, potentially overlooking
emerging patterns in forest structure signaling disturbance, such as
canopy thinning, gap formation, or changes in vertical complexity
(Souza et al.,, 2005). An example could be a selectively logged area
where the canopy structure has been altered, but the remaining vege-
tation may still appear spectrally similar to an undisturbed forest.
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Combining structural and spectral metrics through PCA provides a
more comprehensive understanding of forest status. Among the vari-
ables integrated into PC1 (IDI), EVI, CHM, and GNDVI exhibited the
highest loadings. Since GNDVI and EVI had slightly weaker correlations
with CHM compared to NDRE, SAVI, and LCI, which are more closely
related to structural characteristics of the canopy, they provided com-
plementary information better suited for capturing vegetation spectral
vitality. The complementary nature of these metrics enables the detec-
tion of both structural deteriorations captured by the LiDAR-derived
CHM and declining spectral vitality reflected in VIs like EVI and GNDVL

The accuracy assessment of this approach showed that it aligns more
closely with field-based observations of disturbance, indicating its
improved performance for disturbance characterizations. This inte-
grated method reveals not only canopy structural damage or pigment
loss but also serves as an indicator of potential threats to interconnected
ecological processes that regulate forest function, such as nutrient
cycling, water balance, and energy exchange. These processes are sus-
ceptible to disruptions caused by disturbances (Nepstad et al., 2008). By
identifying areas exhibiting signs of stress or deterioration through the
combined structural and spectral signals, it is possible to take manage-
ment action to prevent further decline.

4.3. Implications for sustainable forest management

The spatial patterns of forest disturbance mapped in this study pro-
vide critical information to guide sustainable forest management re-
sponses focused on conservation, sustainable use, and restoration.
Evidence from the field observation points to anthropogenic distur-
bances like timber harvesting, agricultural expansion, and uncontrolled
fires as key factors degrading forest structure and condition. These
findings align with previous studies that have highlighted the severe
implications of such disturbances for forest sustainability if not properly
managed. For instance, Barlow et al. (2016) found that anthropogenic
disturbances, particularly fire and logging, have caused widespread
degradation of Amazon forests, with negative impacts on carbon stor-
age, biodiversity, and other ecosystem services. Their study highlights
the urgent need for sustainable forest management practices to mitigate
these disturbances. Similarly, Lewis et al. (2015) reported that human
activities, such as deforestation, selective logging, and fragmentation,
are major drivers of forest degradation in the tropics, leading to signif-
icant losses in biomass and biodiversity. They emphasize the importance
of implementing conservation strategies and sustainable land-use prac-
tices to preserve the integrity of these ecosystems.

The IDI developed in this study provides a more detailed under-
standing of the forest conditions, allowing for management in-
terventions to be tailored according to disturbance severity. This
targeted approach helps avoid inadequate interventions in highly
disturbed areas and overly aggressive actions in minimally affected
areas, thereby ensuring efficient allocation of limited conservation re-
sources. The spatial detail of the IDI also allows for the identification of
disturbance agents and potential remedies, informing contextualized
sustainable forest management policies. For example, areas mapped as
high disturbance (49 % of the forest) face immediate risks of ecological
transformation away from natural forest states. In these zones, urgent
action is needed to protect the remaining habitat quality and sustain
biodiversity, carbon storage, and other ecosystem services vital for
sustainable management (Barlow et al, 2016). This calls for in-
terventions that limit further anthropogenic pressures, such as illegal
logging, which has been detected in this zone. While local community
efforts to deter such degrading activities exist in the region, they have
only partially succeeded (Abdul Aziz et al.,, 2024). This highlights the
need for additional strategies to enhance forest protection. Furthermore,
to aid the recovery of these highly disturbed areas, implementing
assisted natural regeneration through silvicultural practices could be
beneficial (Brancalion et al., 2019).

Similarly, 28 % of the forest categorized as medium disturbance
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requires continued monitoring to avoid further decline in forest vitality.
Prioritizing the conservation of proximal intact forest areas can help
buffer these partially degraded zones against encroaching edge effects
(Bakarr and Abu-Bakarr, 2022). Enrichment plantings to boost under-
story diversity could also strengthen the resilience of these forests
against potential invasive species colonization following disturbance
(Yeong et al,, 2016), For the areas mapped as low disturbance (23 % of
the forest), active conservation is needed to maintain these zones as
propagule reservoirs capable of facilitating recovery in disturbed re-
gions (Sloan et al., 2016). Conducting biodiversity surveys to map spe-
cies distributions in relation to degradation levels can inform sustainable
management plans. Co-management with government entities can
support community-based arrangements to protect suitable habitats
harboring endangered flora and fauna likely persisting in these intact
forest refugia. Connecting such refugia through habitat corridors could
enable climate-adaptive species migrations as climate change impacts
accelerate (Heller and Zavaleta, 2009), Opportunities for carbon finance
programs like REDD+ aimed at reducing emissions from deforestation
may incentivize continued conservation in these low-disturbance zones
(Andoh et al., 2022).

4.4. Limitations and future research direction

This study utilized data collected during a single period for each
sensor type (LiDAR and multispectral), which allowed us to evaluate the
current state of the forest and identify areas of concern for targeted
conservation efforts. While this snapshot provides valuable insights,
some limitations warrant discussion. First, our study did not capture
changes over time, which restricts our understanding of how the forest
evolves and recovers (i.e., forest successional pathways and dynamics).
To fully comprehend the impacts of disturbances on these pathways, a
multi-temporal approach would be essential and could be a worthwhile
direction for future research. This will involve acquiring regular UAV
LiDAR and multispectral data across wet and dry seasons over multiple
years. Such a temporal dataset would not only enhance the character-
ization of disturbance severity on forest successional pathways but also
quantify post-disturbance recovery rates. By capturing the temporal
dimension, researchers could model tropical forest stability regimes and
their responses to different disturbance types and severities, providing a
more holistic understanding of these complex ecosystem processes. This
approach would complement the findings of the present study and offer
insights into the long-term trajectories of forest recovery and resilience.

Additionally, future studies should consider employing LiDAR sen-
sors optimized for multi-return recording to expand the suite of struc-
tural variables that can be derived from the data. Since 85 % of the
LiDAR returns in this study were first pulses, the sub-canopy vegetation
structure was not fully captured, limiting the characterization of vertical
complexity within the forest profile from the canopy to the understory
layers. By leveraging multi-return LiDAR systems, additional metrics
related to the vertical distribution of vegetation elements below the
canopy could be extracted, providing a more comprehensive represen-
tation of the 3D forest structure (Hancock et al.,, 2019; Leitold et al.,
2014). This enhanced structural information could improve the ability
to assess ecosystem health and biodiversity across different vertical
strata. The sub-canopy layers play a crucial role in supporting diverse
plant and animal communities (Goetz et al., 2007). For instance, Miiller
et al. (2018) demonstrated that LiDAR-derived vertical forest structure
metrics are strong predictors of bird species richness in temperate for-
ests. Similarly, Simonson et al. (2014) found that the structural
complexity of the understory, as measured by LiDAR, was positively
associated with bat species diversity in tropical forests.

Lastly, expanding the applicability of the UAV-derived disturbance
mapping methodology to larger spatial scales is a critical next step to-
ward advancing the understanding of forest disturbance patterns. Future
research could explore integrating high-resolution satellite imagery and
airborne LiDAR data with UAV data, enabling the extrapolation of
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localized findings to national and regional levels (Lima et al., 2019).
Hyper-spectral satellites, such as the German Environmental Mapping
and Analysis Program (EnMAP) and the Italian PRecursore IperSpettrale
della Missione Applicativa (PRISMA), provide finer spectral resolution,
potentially improving the detection of subtle changes in forest health
and composition (Transon et al.,, 2018). Moreover, space-borne LIDAR
systems like Global Ecosystem Dynamics Investigation (GEDI) offer
opportunities for large-scale, 3D forest structure assessment (Dubayah
et al,, 2020). By combining GEDI’s global coverage with the fine-scale
detail from UAV-LiDAR, we could develop more robust models of for-
est structure and biomass across vast areas. This multi-scale, multi-
sensor approach can potentially improve the assessment and manage-
ment of forest resources. It could provide a more comprehensive view of
forest dynamics, from individual tree-level changes captured by UAVs to
landscape and regional patterns observed by satellites. Such integrated
methodologies would equip decision-makers with powerful tools to
implement effective conservation and restoration strategies, monitor
progress toward national and international forest management goals,
and better understand the complex interactions between local distur-
bances and larger-scale forest health trends.

5. Conclusions

This study demonstrated the effectiveness of fusing UAV LiDAR and
multispectral data to enhance tropical forest disturbance mapping. By
integrating structural metrics from LiDAR with spectral metrics through
PCA, we achieved a more comprehensive and accurate characterization
of forest disturbance compared to using either dataset alone. The
resulting IDI proved effective in delineating gradations of dis-
turbance—low, medium, and high—across the forest. This stratification
enables forest managers to implement interventions specifically tailored
to the degree of disturbance, optimizing the use of limited conservation
resources. Field observations linked the mapped disturbances to
anthropogenic drivers like logging, agriculture expansion, and fires,
informing targeted mitigation strategies. The novelty of this research
lies in the complementary integration of structural and spectral in-
dicators, providing a better understanding of tropical forest ecosystem
health. By presenting an accessible framework for fusing UAV LiDAR
and multispectral data, this study paves the way for the widespread
implementation of advanced disturbance mapping techniques. This
supports evidence-based conservation strategies crucial for safeguarding
vulnerable tropical forests in the face of accelerating global changes and
anthropogenic pressures.
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Sustainabil ity

Tropical forests face fragmentation, degradation, and conversion, leading to biodiversity loss, reduced carbon
storage, and diminished ecosystem services. While local populations depend on forest products, the intensity of
these extractions can lead to forest degradation. This paper examines the interplay between socio-economic
pressure, perceived and measured forest degradation, and the insights to be gained for informed forest
management.

A survey of 1956 respondents was conducted across seven forests in Togo, Benin, Nigeria, and Cameroon, from
which 328 forest users were identified who regularly work in one of the seven studied forests. In semi-structured
questionnaires, we asked about forest uses and perceptions of corresponding impacts on forest integrity. We
integrated spatially explicit demographic and governance data (forest pressure) with interview-based insights
(perceived degradation) and quantitative assessments of forest structural complexity (measured degradation).

Most forest users gather non-timber forest products, though hunting and logging were also important activ-
ities. Generally, forests affected by logging and fire, or conversion to agriculture, were perceived as degraded.
Further, the disappearance of large, old trees, different plant and animal species, and the loss of forested areas
were observed over the years. However, perceptions did not always reflect forest uses. The community with the
highest pressure on forests was least concerned about forest degradation, while people near strictly protected and
sacred forests were most concerned. The different relationships between local perceptions, measurable forest
degradation, and pressure on forest resources need to be considered to guide sustainable forest management and
reduce ongoing forest degradation and biodiversity loss in Western Africa.

1. Introduction much of the Western African landscape (Dangbo et al., 2020; Taubert

et al, 2018; Wingate et al., 2022). In Togo, Benin, Nigeria, and

1.1. Persistence and degradation of isolated forest patches in Western
Africa

Tropical forests are being cleared at an unprecedented pace across
the globe (Hansen et al., 2013; Poorter et al, 2021; Schelhas and
Greenberg, 1996). In Western Africa, over 80 % of the forest cover
present in 1900 has been lost, primarily due to agricultural expansion
driven by population growth (Akinyemi and Ifejika Speranza, 2022;
Aleman et al., 2017; Amani et al., 2021; Curtis et al.,, 2018). This
deforestation has, particularly in the rainforest zone, fragmented large,
continuous forests into numerous small patches that now characterize
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Cameroon alone, more than 400,000 forest patches have been identified
(Wingate et al,, 2022). These patches, while critical for biodiversity
conservation, climate regulation, and ecosystem services (Lewis et al,,
2015), face significant threats from edge effects such as fire, desiccation,
and species extinctions (Hill and Curran, 2003; Ibanez et al,, 2014;
Laurance, 2004).

Clearing rainforests not only contributes to the current ecological
crisis but also poses a significant social and economic challenge (Lewark,
2022). Millions of people live in or near tropical forests, many of whom
are among the poorest and rely on forest resources for their livelihoods
(Lewark, 2022; Lewis et al., 2015; Rietbergen, 1993). Over generations,
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forest-dependent communities have developed complex silvicultural
practices rooted in their deep connection with the forest, yet these
practices are often poorly documented and not well understood by sci-
entists and policymakers (Shanley et al., 2016). While originally sus-
tainable, many of these practices are no longer viable due to growing
pressures (Lewark, 2022). Overexploitation of forest resources, driven
by increasing demands from both rural and urban populations and
enhanced access to markets and the monetary economy, contributes to
forest degradation as well as forest loss (Lewark, 2022; Malhi et al.,,
2013).

1.2. Framing forest degradation

Forest degradation is not univocally defined, but it generally refers to
the simplification of forest structure, the reduction of biodiversity, and
the decline in the capacity of a forest to provide ecosystem services
compared with an intact reference forest (Ghazoul et al., 2015; Hepner
et al., 2025; Vasquez-Grandon et al.,, 2018). In contrast, deforestation
denotes a change in land use that results in the permanent reduction of
tree canopy cover below 10 % (Food and Agriculture Organization of the
United Nations (FAO), 2020a, 2020Db). Unlike deforestation, degrada-
tion does not necessarily involve a complete loss of tree cover; rather, it
describes the biophysical alterations caused by damaging human ac-
tivities, which may unfold over long periods and become evident only
gradually and subtly (Vdsquez-Grandén et al, 2018). Understanding
forest degradation, therefore requires not only an assessment of the
actual and reference ecological state given current environmental con-
ditions, but also attention to its social-ecological context (Schulze et al.,
2019), including how forests are used (Putz, 2011), and how local
communities perceive forest conditions (Ihemezie et al., 2021). The
social-ecological context includes the interplay of broader social, cul-
tural, political, and economic factors and drives forest conservation and
degradation, respectively (Themezie et al., 2022). In many developing
countries, a plethora of economic incentives leads people to degrade
forests (Themezie et al., 2022; Vasquez-Granddn et al., 2018), However,
intrinsic and relational values can also lead to forest conservation
(Themezie et al., 2021).

1.2.1. Forest uses and their roles in forest degradation

Forest uses often sustain livelihoods but, when unsustainable, such as
overharvesting timber, can result in forest degradation and loss (Lewark,
2022; Vasquez-Granddn et al., 2018). In multi-purpose forests, sustain-
able management depends on minimizing impacts on other uses;
otherwise, conflicting and unsustainable practices can lead to forest
degradation (Schulze et al, 2019). In Western Africa, communities
depending on forests for their livelihoods use them in diverse way-
s—including harvesting non-timber forest products, timber, fuelwood,
and charcoal, hunting bushmeat, and engaging in religious practi-
ces—often with overlapping impacts that compromise forest integrity
(Asner, 2009; Johns, 2004; Malhi et al., 2014).

Forest products are often categorized under Non-Timber Forest
Products (NTFP), which include firewood, fruits, fodder, fiber, and food
(Lewark, 2022; Prasad, 1999; Pretzsch, 2014). Alternatively, these
products are sometimes framed as Non-Wood Forest Products (NWFP),
explicitly excluding wood (Muir et al.,, 2020). Most NTFP are harvested
sustainably (Corlett, 2016), but frequent harvesting and harmful prac-
tices such as overexploitation can lead to forest degradation and local
species extinction (Johns, 2004; Rietbergen, 1993; Shanley et al., 2016).

Timber is the most widely traded and controversial forest product
(Barbier et al., 2019; Rietbergen, 1993). The selective removal of
high-value timber species, a practice known as high-grading, has several
cascading effects on forest ecosystems, including gap formation and
reduced structural complexity (Asner, 2009). Although selective logging
can provide short-term employment and income, it often facilitates
forest access, increases hunting pressure, accelerates fragmentation, and
ultimately contributes to deforestation (Johns, 2004; Lewis et al., 2015;

Trees, Forests and Pecple 22 (2025) 101061

Malhi et al., 2014).

In Sub-Saharan Africa, fuelwood and charcoal, which are the most
important energy sources (Leach and Mearns, 1993; Sola et al., 2019),
have also contributed to forest degradation and deforestation (Sedano
et al,, 2016; Williams and Anghelea, 2021). Fuelwood sourced from
forests represents a substantial biomass removal, with uncertain effects
on nutrient and carbon cycles but a possible reduction in forest flam-
mability (Malhi et al., 2014; Morton, 2007).

In recent years, fire frequency and spatial extent have increased
significantly (Malhi et al., 2014; Shlisky et al,, 2009), making it a major
driver of forest degradation in Western Africa (Dago et al.,, 2023;
Goldammer, 2016). Yet, fire has been used for millennia to manage
tropical forests (Goldammer, 2016; Tacconi et al., 2006). It is employed
to enhance soil fertility and increase crop yields, control pests and
weeds, and facilitate hunting (Amoako and Gambiza, 2022).

Forests are important sources of bushmeat and fish, which are
primary sources of protein for many subsistence societies (Brashares
etal., 2004; Lewark, 2022; Shanley et al., 2016). However, defaunation
significantly impacts forest ecosystems by breaking trophic chains and
altering plant dissemination (Lewis et al., 2015; Malhi et al.,, 2014). Fish
depletion and impacts of artisanal fishing in seasonally inundated forests
remain largely unknown in Western Africa.

Forests are also used for non-material services, such as for religious
practices. Western Africa is home to the animistic religion Vodtn
(Alohou et al., 2016). While the conservation of forests and trees is nota
central tenet of the Vodan religion (Fournier, 2011; Nyamweru and
Sheridan, 2008), there are thousands of sacred forests in Western Africa
with intact plant communities, high biodiversity, and substantial
aboveground biomass (Kossi et al., 2021; Lynch et al., 2018). However,
traditional woodcuttings and forest burnings for the religious interpre-
tation of smoke signals can also lead to forest degradation (Kokou and
Sokpon, 2006; Kossi et al., 2021). Thus, it is important to understand the
social-ecological contexts of forest degradation.

1.2.2. The social-ecological context of forest degradation

Individual use of forest resources has localized impacts, but pressures
at the forest scale are largely determined by broader socio-economic
conditions (Geist and Lambin, 2002). In many African rural areas,
livelihoods depend heavily on subsistence farming and forest products
such as fuelwood and timber, with limited market access and mecha-
nization further reinforcing this dependence (Neuenschwander et al.,
2015; Sulaiman et al., 2017; Van Vliet and Nasi, 2008).

1.2.2.1. Pressure on forests. Land and forest degradation arises from the
interaction of social, ecological, and institutional factors that together
shape human pressure on forest ecosystems. While a larger population
near forests does not always result in greater degradation (Agrawal,
1995; Wardell etal., 2003), it often does so, as higher population density
tends to increase demand for forest resources and pressure on forest
integrity (Mertens and Lambin, 2000; Mon et al., 2012; Ryan et al,,
2017; Zhao et al,, 2006). In this study, we adopt the assumption that
population size generally correlates with forest use intensity. The
number of users entering forests to extract resources directly affects the
rate of exploitation, and even when resources are renewable, additional
users raise the likelihood of exceeding the forest’s camrying capacity (De,
2012). Excessive logging and hunting can disrupt forest structure and
ecological processes, including water and carbon cycling and animal
population dynamics (Lewis et al., 2015; Malhi et al,, 2014). Infra-
structure such as roads and tools like chainsaws further accelerate
degradation by improving access and extraction efficiency (Ahrends
etal, 2010). The ecological setting modulates these dynamics. Larger
forests can buffer pressure more effectively than smaller ones, while
isolation—the ratio of forest to non-forest area in the immediate sur-
rounding (Hepner et al., 2025)—captures how unique or exposed a
forest is within its landscape context. More isolated forests often face
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higher pressure due to limited alternative resource areas. Similarly,
fragmentation—the proportion of forest area close to an edge (Fischer
et al, 2021; Hepner et al.,, 2025)—increases accessibility and vulnera-
bility, creating a feedback loop in which human use generates more
edges, which in turn attract further use (Olupot and Chapman, 2006).
Moreover, smaller and more fragmented forest patches typically have
reduced capacity to regenerate or recover from disturbances and are
more likely to disappear over time compared to larger, less fragmented
forests (Wingate et al, 2024). Finally, governance mediates how
human and ecological factors translate into actual pressure (cf. Fasona
etal.,, 2019). Governance structures—ranging from prohibited or sacred
access to family- or community-based management (Mintah et al., in
prep.)—can either restrict or enable forest use. Together, population
demand, types of use, ecological context, and governance determine
how strongly human activities shape forest degradation.

1.2.2.2. Perceived forest degradation. While forest use and resource
extraction generally lead to measurable alterations in the ecosystem,
these changes are subjectively perceived by forest users
(Fernandez-Llamazares et al., 2015). Perceptions of forest degradation
depend on socio-economic status, interests, and the perceived benefits
from forests (Hasanah et al., 2019; Themezie et al., 2022). For instance,
when land conversion from forest to non-forest generates economic
profits, users may view it as land valorization rather than degradation,
despite the objective loss of forest ecosystem services (Hasanah et al.,
2019; Themezie et al.,, 2022). Since forest changes can occur gradually
and over timescales that are difficult for people to perceive (Binkley,
2021), perceptions of degradation often deviate from measured forest
change. Communities tend to notice tangible signs such as the decline of
valuable timber species, the need to walk longer distances or purchase
timber that is no longer available nearby, lengthening dry seasons and
delayed rains, or increased time and effort needed for hunting due to
declining wildlife (cf. Hermans-Neumann et al., 2016). Yet many forms
of degradation remain unreported, including the loss of already rare
species, subtle shifts in forest structure, or changes in less valued species
that are not perceived as relevant to local livelihoods (cf. Binkley, 2021;
Food and Agriculture Organization of the United Nations (FAO), 2011).
Perceptions of degradation are particularly important among local users,
since they directly influence forest use and management (Adenle et al.,
2022; Fernandez-Llamazares et al., 2015; Tadesse and Teketay, 2017;
Tesfaye et al, 2012). While perceptions shape how people act,
measurable indicators remain essential to assess ecological change
directly.

1.2.2.3. Measured forest degradation. Forest degradation is often a slow
and subtle process, making it challenging to detect directly through
observation and remote sensing (Jiménez-Rodriguez et al,, 2022; Rey-
gadas et al,, 2019). Nevertheless, it can be assessed indirectly using
specific indicators, such as biodiversity loss, biomass decline, and
simplification of forest structural complexity (Ghazoul et al, 2015;
Hepner et al, 2025). Forest structural complexity refers to the
three-dimensional arrangement of forest and tree components and can
be measured using terrestrial laser scanning (Ehbrecht et al., 2017). It is
strongly correlated with ecosystem functioning, productivity, biodiver-
sity, and overall forest integrity (Coverdale and Davies, 2023). High
structural complexity typically indicates intact, resilient forest ecosys-
tems (Coverdale and Davies, 2023; Ehbrecht et al., 2017) with minimal
human impact (Johns, 2004; Poore, 2013; Shanley et al,, 2016; Willim
et al,, 2019), though some forest types are naturally less complex (e.g.,
tropical savanna and woodlands; Ehbrecht et al., 2021). In general,
structural complexity that is substantially lower than the natural refer-
ence for a given forest type is a key indicator of degradation (Hepner
et al, 2025). Comparing actual and reference structural complexity
provides a rapid, objective assessment of degradation.

Finally, integrating the forest’s social-ecological context, actors’
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perceptions, and objective measures such as structural complexity pro-
vides a more comprehensive understanding of forest degradation. This
integration highlights the need for management approaches that bring
these dimensions together.

1.3. Addressing degradation through sustainable forest ma

To address forest degradation and balance forest use with conser-
vation, sustainable forest management (SFM) has been proposed
(Corlett, 2016). SFM refers to “the process of managing permanent forest
land to achieve one or more clearly specified objectives of management with
regard to the production of a continuous flow of desired forest products and
services without undue reduction in its inherent values and future productivity
and without undue undesirable effects on the physical and social environ-
ment” (International Tropical Timber Organization (ITTO), 2006, p. 12).

SFM represents a compromise between different values, as defined
by various interest groups (Lewark, 2022) and can help slow forest
degradation (Knoke, 2016). However, social, economic, and ecological
sustainability often conflict (Lewark, 2022), and management decisions
cannot rely solely on objective measures such as forest structural
complexity (Ehbrecht et al.,, 2017; Hepner et al,, 2025). Effective man-
agement must also consider the perceptions of forest users, which may
diverge from measured conditions and vary across social groups
(Meijaard et al., 2013; Taddese et al., 2020).

By integrating multiple perspectives—social-ecological context, user
perceptions, and objective indicators—SFM can be both ecologically
sound and socially legitimate (Colfer, 2005; Reed, 2008). This paper
thus provides insights for SFM by comparing pressure on forests with
perceived and measured forest degradation. We examine seven forest
patches in the agricultural landscapes of Togo, Benin, Nigeria, and
Cameroon, a poorly studied region with diverse social-ecological con-
ditions, including both sacred and non-sacred sites. We pose the
following research questions and hypotheses:

1. To what extent do forest use patterns differ across forests with
varying socio-cultural, economic, and ecological contexts?

¢ H: Forest use is expected to be dominated by the collection of non-
timber forest products across all sites, with minor differences
possibly linked to observable site characteristics, such as gover-
nance rules (e.g., sacred forests) or ecological conditions (e.g.,
swamp vs. semi-deciduous forests).

2. How do perceptions of forest use impacts differ across sites with
varying socio-cultural, economic, and ecological contexts?

e H: Logging and fire are expected to be widely perceived as
degrading forests across sites, while perceptions of other activities
(e.g., agriculture, charcoal production, NTFP collection) are ex-
pected to show greater variability depending on measurable or
describable contextual factors, such as forest type, local re-
strictions, or community norms.

3. How are pressure on forests and perceived and measured forest
degradation interrelated?

¢ H: Forests under greater pressure of use (e.g., logging, hunting,
weak governance) are expected to show higher measured degra-
dation. These pressures are also likely to shape local perceptions,
such that observable degradation comresponds with community

perceptions.
2. Methods
2.1. Study site

2.1.1. Ecological characterization of forests

We selected seven forest patches in Togo, Benin, Nigeria, and
Cameroon, in the two biomes of the ‘Tropical and Subtropical Grass-
lands, Savannas, Shrublands’, and the ‘Moist Broadleaf Forests’ (Fig. 1;
Dinerstein et al., 2017; see Table Al for details). These sites include
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Fig. 1. Forest management practices of seven forest patches were studied in the Tropical & Subtropical Grasslands, Savannas & Shrublands (light green) and the
Tropical & Subtropical Moist Broadleaf Forests (dark green) of Togo, Benin, Nigeria, and Cameroon, in Africa (marked grey in the inset map). 1. Koui, 2. Ewe-

Adakplame, 3. Hlanzoun, 4. Iko, 5. Ikot, 6. Mbangassina, 7. Ngam-Kondomeyos.

semi-deciduous forests (1. Koui and 2. Ewe-Adakplame, also known as
Kouvizoun sacred forest Adakplame-Ewe), swamp forests (3. Hlanzoun,
also known as Lokoli, and 5. Ikot), and moist forests (4. Iko, 6. Mban-
gassina, and 7. Ngam-Kondomeyos), ranging from 20 to 1160 ha. Pre-
cipitation varies between 1000 and 1300 mm in Koui, Ewe-Adakplame,
and Hlanzoun, and from 1500 to 3000 mm in Iko, Ikot, Mbangassina,
and Ngam-Kondomeyos, with annual temperatures averaging between
23 and 28 °C (Hijmans et al., 2005). Common tree families in these
forests include Moraceae (e.g., Treculia africana), Fabaceae (e.g., Gil-
bertiodendron dewevrei), and Myristicaceae (e.g., Pycnanthus angolensis).
The selected forests build on previous studies (Hepner et al,, 2025;
Wingate et al., 2022, 2023, 2024), contributing to a more comprehen-
sive understanding of Western African forest patches.

2.1.2. Socio-economic characterization of forest communities

Most people living in the areas surrounding these forests earn less
than $1 per day, have limited formal education, and rely on forest re-
sources such as timber, fuelwood, bushmeat, and medicinal plants (Food
and Agriculture Organization of the United Nations (FAO) & United
Nations Environment Programme (UNEP), 2020; Neuenschwander
etal,, 2015). Based on the Relative Wealth Index (Chi et al., 2022), these
communities are economically modest, ranging from -0.6 in Mbangas-
sina to 0.3 in Ikot. While this does not indicate extreme poverty (-1), it is
typical for low- and middle-income countries and affects daily life:
residents may have limited access to household assets, reliable elec-
tricity, transportation, clean water, sanitation, and waste management
(Chi et al., 2022; Rutstein and Johnson, 2004).

These socio-economic conditions contribute to a high pressure on
forests, which is further amplified by (i) rapid population growth
(United Nations, Department of Economic and Social Affairs (UNDESA),
Population Division, 2022), (ii) economic inequalities (Goers et al,,
2012), (iii) widespread corruption in governance structures (Ighodaro
and Igbinedion, 2020), and (iv) insecure land tenure, poor mapping and
documentation of land uses, and resulting land disputes (Ewane et al.,
2015; Kouassi et al., 2022). Consequently, sustainable forest manage-
ment is rarely prioritized.

Forest governance and ownership vary across sites, and we differ-
entiate four types based on rules of access and use (Mintah et al., in
prep.). These rules define who can enter the forest and what activities
are permitted within it, both of which strongly influence degradation

dynamics.

Type 1 comresponds to forests where both access and use are
completely prohibited due to sacredness, as in Koui. Women are not
allowed to enter at all, and only initiated men may enter on explicit
invitation to perform religious rituals; otherwise, no one enters or
uses the forest.

Type 2 represents partially sacred forests, where some areas are
restricted (completely protected) and others are accessible for
limited use. On certain days, no one may enter the forest, but for
most of the year, men and women, including non-initiated in-
dividuals, can access non-sacred parts, while sacred sections remain
strictly protected (e.g., Ewé-Adakplame, Hlanzoun).

Type 3 encompasses family-managed forests, where access and use
are controlled by individual family lineages. Only family members
can enter and manage their plots according to lineage-specific rules
(e.g., Ikot, Mbangassina).

Type 4 corresponds to community-managed forests, which are
generally the most accessible: members of the local community are
allowed to enter and use forest resources according to communal
rules (e.g., Iko, Ngam-Kondomeyos).

In practice, these classifications are not absolute: not all users comply
fully with customary rules, and governance arrangements may change
over time. Ownership disputes are rare, occurring only in Ewe-
Adakplame, where they indirectly weaken compliance with access and
use regulations as belief systems evolve. Day-to-day governance and
enforcement largely depend on local institutions, customary arrange-
ments, and their interplay with formal government structures.

Most people in these communities work in agriculture, which con-
stitutes the dominant land use surrounding these forest patches, along
with croplands and agroforestry systems. These land-use patterns
interact with forest governance: sacred and community-managed forests
tend to have stricter rules on clearing or logging (Kossi et al., 2021),
whereas family-owned forests may experience more variable land-use
pressure depending on family practices (see also Nath et al., 2018).
Despite the lack of strong formal protection, these forest patches have
persisted since atleast 1975, surrounded by croplands, agroforestry, and
wetlands (Hansen et al., 2013; Wingate et al., 2022).
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2.2, Datua collection

Between September 2022 and March 2023, we conducted a house-
hold survey with 1956 randomly selected households in 22 villages near
the seven forests in Togo, Benin, Nigeria, and Cameroon, based on
Cochran’s sample size for an unknown population size (Cochran, 1977).
From this sample, 328 individuals (15 %) reported that they regularly
use the forest and are familiar with its current condition. We therefore
administered our questionnaire to these respondents (see Supplemen-
tary Information for the questionnaire).

Surveys were carried out by members of our research team, sup-
ported by assistants from local universities and forest ministries, using
the software Epicollect5 (Aanensen et al., 2009). Interviews were con-
ducted in local languages and later translated into English. Questions
were typically posed in a closed-ended format with predefined answer
options, followed by open-ended prompts that allowed respondents to
elaborate freely (Table 1). To ensure clarity, the concept of forest
degradation was translated into practical interview questions (e.g.,
disappearance of tree species) and distinguished from deforestation,
which was assessed through questions on forest area or canopy cover
change. All respondents were informed about the purpose of the survey
and gave their consent to participate.

The final sample of 328 respondents represented 17 ethnic groups,
with up to six ethnic groups per forest (Table 2). Age ranged from 20 to
65 years, with most interviewees being over 40 and having lived near
the forests for more than a decade (Figs. Al and A2). Only 9 % of re-
spondents were women, reflecting local norms where men typically
speak for the household. Most respondents reported subsistence uses of
forest resources (fuelwood, wild foods, medicinal plants), while some
also mentioned commercial activities such as bushmeat and timber
sales.

Table 1

Examples from the questionnaire with alternating closed-ended and open
questions. Closed-ended questions offered predefined answers (shaded grey),
while open questions allowed free elaboration (white background). Questions
1-4 focus on forest degradation (e.g., impacts of logging, species disappearance),
while questions 5-6 address deforestation (forest area change). The question-
naire is available as supplementary information.

Questions Answers
1. What is the impact of logging on forest
integrity? « Strong negative impact
o Low negative impact
« No impact
o Low positive impact
o Strong positive impact

2. Explain the impact of logging

Eg., lesstrees

E.g., hotter temperatures

Eg., it is forbidden to log trees
E.g., the forest becomes more open

3. Do you know any tree species that

disappeared? o Yes
e No
4. Which tree species disappeared?
e Eg., Mahogany
e Eg., Iroko

5. Did the forest area change in the last 10
years?

.

Yes, it increased
Yes, it decreased
No, it did not change

.

.

6. Explain your answer about the forest area
change in the last 10 years. E.g., Forest area changed due to

logging and farming.

E.g. The forest boundaries remain

the same.
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2.3. Data analysis

All interview data were cleaned in Microsoft Excel (Microsoft Cor-
poration, 2024) and analyzed using R (R Core Team, 2024). Given the
varying number of interviews per forest, we primarily worked with
relative values.

2.3.1. Pressure on forests

Population pressure on finite resources is a key contextual factor for
quantifying pressure on forests (Francesconi et al.,, 2022). To capture
this, we developed a composite indicator of forest pressure for each site
based on the following equation and suited to isolated and formally
unprotected forest patches:

Pressure on forests = Iso * Pop + Frag = Users + Gov « Harm (1)

where:

» Iso (isolation) = ratio of forest to non-forest area withina 10 km
buffer surrounding each forest (Hepner et al., 2025), describing
how isolated the forest patch is in the landscape. Forests with few
surrounding trees are assumed to experience higher pressure
(Table 3).
Pop (population density) = population living within 10 km of the
forest (Bondarenko et al,, 2020) divided by forest area (ha),
reflecting the local demand on forest resources.
Frag (fragmentation) = ratio of forest area within 100 m of the
edge to total forest area (Fischer et al.,, 2021; Hepner et al., 2025),
as edge areas are generally easier to access and exploit (Olupot and
Chapman, 2006).
Users = population that regularly uses the forest divided by forest
area (ha), based on household surveys in the corresponding com-
munities (Garekae et al.,, 2017; Jha et al., 2022; Pinheiro et al,
2016; Sambrook et al., 1999).
Gov (governance) = one of four classes based on accessibility and
user rules (Mintah et al,, in prep.): 1 = prohibited access & sacred,
2 = partial access & sacred, 3 = family-based management, 4 =
community-based access.
e Harm (harmful activities) = proportion of users engaged in
potentially environmentally harmful activities (logging and
hunting).

The weights (Iso, Frag, Gov) amplify or buffer human pressures.
Higher Iso values indicate greater isolation, where forests are sur-
rounded by less tree cover and thus represent rarer, more sought-after
resources in the landscape. Higher Frag values denote greater frag-
mentation, where a larger proportion of forest area lies close to edge-
s—zones that are more accessible, ecologically exposed, and often the
first to be exploited (Olupot and Chapman, 2006). Gov represents access
regulation, with lower values corresponding to restricted or sacred ac-
cess and higher values to more open, community-based use. Together,
these factors modulate the strength of human pressure: isolation can
concentrate demand, fragmentation enhances accessibility, and gover-
nance determines the degree to which access is controlled or extraction
permitted.

The model follows an additive logic in which human pressure results
from the combined influence of population density, user intensity, and
harmful activities. Each of these factors is weighted multiplicatively by
its corresponding modifier (Iso, Frag, Gov) to reflect that the impact of
human presence depends on ecological and institutional context.
Multiplication can yield zero values after min-max normalization,
which is acceptable and meaningful, as it represents minimal pressure
under favorable conditions (e.g., low population or restricted access and
use).

We explored alternative weighting schemes to check the robustness
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Table 2
Respondents’ characteristics for each studied forest community.
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Forest Respondents interviewed (n) Villages interviewed (n) Ethnicities interviewed (n) Males : femal es interviewed ( %)
Koui 3 1 1 100:0

Ewe-Adakplame 11 2 2 100:0

Hlanzoun 35 3 3 71: 29

ko 176 4 Es) 93:7

Ikot 80 6 1 95:5

Mbangassina 14 4 6 85:15

Ngam-Kondomeyos 2 1 1000

9

of results. The chosen configuration, with Iso and Frag ranging from 0 to
1 and Gov from 1 to 4, was retained as it provided realistic gradients of
pressure and reflects the mediating role of governance in how social and
ecological factors translate into actual forest use. Empirical evidence
shows that governance, while operating through diverse pathways and
impacts, often weighs more heavily on forest outcomes than de-
mographic or biophysical drivers, through its effects on enforcement,
tenure, and institutional capacity (Fischer et al., 2020; Nolte et al.,
2013). The higher weighting assigned to harmful users (1-4) acknowl-
edges their disproportionately direct impact on forest integrity
compared to broader population presence or general forest users.

To ensure comparability across forests and reduce the influence of
differences in scale and units, we applied a min-max normalization
(range 0-1) to the Pop, Users, and Harm variables before applying the
equation (Table 4). The equation builds on similar approaches inte-
grating demographic and spatial data with insights from household in-
terviews (Garekae et al.,, 2017; Jha et al., 2022; Pinheiro et al,, 2016;
Sambrook et al,, 1999), Iso was extracted in Google Earth Engine
(Gorelick et al., 2017) within a 10 km buffer around each forest, chosen
asareasonable walking distance for carrying forest products. Population
within 10 km of each forest was derived from spatially explicit census
data (Bondarenko et al., 2020) in QGIS (QGIS Development Team,
2023). Forest areas were delineated from forest/non-forest classifica-
tions of satellite imagery (Hepner et al, 2025). Variables for regular
forest users and harmful activities (logging and hunting) were informed
by household surveys in corresponding communities.

After calculating Eq. (1), we compared the resulting pressure values
across the seven forests to facilitate site-level interpretation (Table 5).
Finally, we assessed the relationship between forest pressure and both
perceived and measured degradation using a Pearson correlation test (R
Core Team, 2024).

2.3.2. Determination of forest uses

Respondents were individuals who regularly work in the forest. They
were asked to report their main forest activities, including the collection
of NTFPs, hunting, logging, fishing, religious practices, and other uses.
Multiple activities could be selected. Activities considered illegal, such
as charcoal production, were not asked about directly, but perceptions
of their impacts were captured elsewhere in the survey. A heat map was
then generated to visualize the distribution of activities across the
different forest sites.

2.3.3. Perceptions of forest use impacts and degradation

Respondents were asked to classify the perceived impact of specific
forest uses on forest integrity using five categories, ranging from ‘strong
negative’ to ‘strong positive’ impact. The relative contributions of ‘low
negative’ and ‘strong negative impact’ to the whole spectrum were used
to define ‘perceived degradation’. To determine whether perceptions
differed significantly across communities and users’ main activities, we
applied a G-test (Agresti, 2007), which is a likelihood-ratio test for
categorical data assessing the independence of variables in contingency
tables, implemented via the DescTools package (Signorell, 2025). In
addition, respondents reported observed signs of degradation, for
example the loss of certain species.

2.3.4. Measured forest degradation

Forest uses may impact forest integrity and contribute to measurable
forest degradation. To define measured degradation, we relied on the
difference between actual and reference stand structural complexity as
presented in Hepner et al. (2025; Table A2). In that framework, forest
degradation and fragmentation are related to structural complexity,
with reference values derived from the potential structural complexity
modeled by Ehbrecht et al. (2021). This model extrapolates structural
attributes from primary forests and predicts the maximum stand struc-
tural complexity index (SSCI) achievable under the specific edaphocli-
matic conditions of a given location in the absence of human
interference. The predictions are spatially explicit at 30 arcseconds
(~100 m) resolution, so that each forest patch in our study has its own
reference value reflecting local potential conditions.

This reference represents the most complex forest structure achiev-
able under current natural conditions without human interference and
thus serves as a benchmark for ecological integrity. Actual stuctural
complexity was quantified using the SSCI, which captures the hetero-
geneity in the three-dimensional distribution of plant material based on
terrestrial laser scans (Ehbrecht et al., 2017).

Forest integrity and degradation are therefore expressed along a
continuous range, represented by the difference between actual and
reference SSCI values. Negative differences indicate structural simplifi-
cation relative to the potential reference—i.e., degradation—while
values closer to zero suggest higher integrity. For interpretative pur-
poses, we classify stands with substantially negative deviations as
degraded and those within the expected reference range as intact. In this
study, “intact forest” refers specifically to stands that are not structurally
degraded relative to the modeled reference SSC; it does not necessarily
imply a pristine or old-growth state, nor does it encompass other
ecological dimensions such as biodiversity or ecosystem functioning,
which are beyond the scope of this analysis.

3. Results
3.1. Forest uses

The seven forest patches are managed in non-industrial, predomi-
nantly manual ways, with minimal use of small machinery like chain-
saws. Most people collect non-timber forest products (NTFP, 50 %),
while hunting (15 %) and logging (13 %) are also important activities
(Fig. 2). Main activities did not differ significantly across forests. In the
swamp forest of Hlanzoun, fishing (26 %) is a key activity, while in the
sacred forest of Koui, eco-guardian duties (‘Others’, 67 %) and religious
activities (33 %) are important.

NTFP primarily include fuelwood, along with fruits and medicinal
plants. The “Others” category includes mainly agricultural activities (46
%), and to a minor degree, trading of forest products, and work as eco-
guard. Hunters mainly target mammals, such as small antelopes (e.g.,
Duiker: Cephalophus sp.) and rodents (e.g., rat: Thryonomys sp.), but also
birds and snakes.

While most people do not actively plant trees, roughly 30 % of re-
spondents plant trees (mainly in Ngam-Kondomeyos, Ewe-Adakplame,
and Ikot). These respondents plant economically valuable species
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Table 3

Factors (a, ¢, d) exert pressure on a forest area (b). Pressure intensity is modulated by three weights: Iso (0-1; 0 = embedded within surrounding forests, 1 = isolated in a treeless landscape), Frag (0-1; 0 = low frag-

mentation, 1 = high fragmentation with extensive edge areas), and Gov (1-4; 1 = limited accessibility and use, 4 = high accessibility and use).
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Table 4
Min-max normalization (0-1) was applied to allow comparison of socio-
ecological variables across different forest sites.

Forest Pop: a/b: min-max  Users: ¢/b: min- Harm: e/c: min-
normalized max normalized max normalized

Koui 0.38 0.99 0.00

Ewe- 0.30 0.21 0.89
Adakpl ame

Hlanzoun 0.10 0.22 0.42

ko 0.00 1.00 0.35

Tkot 1.00 0.38 1.00

Mbangassina 0.23 0.50 0.35

Ngam- 0.02 0.00 0.54
Kondomeyos

Table 5

Weighted factors are summed up for the final indicator of forest pressure with a
theoretical range of 0 (minimal pressure) to 6 (maximal pressure).

Forest Iso * Frag * Gov * Sum of indicators: forest
Pop Users Harm pressure
Koui 0.26 0.79 0.00 1.05
Ewe-Adakpl ame 0.25 0.17 1.78 2.19
Hlanzoun 0.08 0.11 0.84 1.03
ko 0.00 0.33 1.41 1.74
Tkot 0.76 0.11 3.00 3.87
Mbangassina 0.09 0.23 1.05 1.37
Ngam- 0.00 0.00 218 2.18
Kondomeyos

Dominance of Main Activities by Forest

e - -

Hunting
Percentage (%)
2
‘Z_ Legging 80
< ©
§ Others
3 =
0
Fishing
Religion

Forest

Fig. 2. The heat map shows the seven forests on the x-axis and six different
main activities on the y-axis. Multiple answers were allowed. Most forest users
(n 328) collect non-timber forest products (NTFP) across all the forests. In the
prohibited access, sacred forest of Koui, Togo, logging, hunting, and fishing are
forbidden. The respondents who ticked ‘Others’® explained that they work in
agriculture, as traders of forest products, and as eco-guardians. In Iko, Mban-
gassina, and Ngam-Kondomeyos, religion was not mentioned as a forest activ-
ity. Main activities did not significantly differ across forests.

outside of forests, such as palms for palm wine production (e.g., Raphia
vinifera), fruit trees (e.g.,, Irvingia gabonensis), and timber trees (e.g.,
Tectona grandis). Some also plant trees to mark land boundaries.

3.2. Perceptions of forest use impacts and signs of degradation

Perceptions of forest use impacts differ significantly (p < 0.001)
across forests. In total, two-thirds of the interviewees perceive logging
(61 %) and fire (60 %) as having a strong negative impact on the forests
(Fig. 3). Agriculture (35 %) is also perceived negatively by about one-
third of respondents, while charcoal production, fuelwood extraction,
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Fig. 3. Respondents of seven forests (n = 328) were asked about their perception (five classes) of six different activities, which can impact and eventually degrade
forests. Activities such as logging and fire are mostly perceived as having a negative impact (red, on top) on forests, as compared to fuelwood and NWEP collection
(dark grey and green, below). Note that fire is not a forest use directly, but its practice facilitates other uses, such as logging, agriculture, and hunting. Communities
on the left side of the x-axis (e.g., Koui) frequently report strong negative impacts across forest uses as compared to those on the right side of the x-axis (e.g., Ikot).
Perceived impacts of forest practices differ significantly across forests (p < 0.001).

and NTFP collection are widely regarded as having little or no impact. In negative impacts. In the two swamp forests of Hlanzoun and Ikot, most

Koui, two of three respondents perceive strong negative impacts from respondents do not perceive any of the uses as having strong negative

logging, fire, agriculture, and charcoal production. In Ewe-Adakplame, effects. In [kot, 42 % of respondents even consider agriculture to have a

however, logging is mostly perceived as having only low to moderate positive impact, reflecting the central role of farming in local
8
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livelihoods. Perceptions of impacts do not differ significantly across
respondents’ main activities.

Beyond these perceptions, respondents also reported concrete signs
of degradation. Across all sites, the most cited indicators were the
disappearance of large, old trees (78 %), the loss of valuable timber
species such as Milicia excelsa, Khaya grandifolia, and Diospyros sp. (71
%), and the disappearance of wildlife such as forest elephants (Lox-
odonta cyclotis), lions (Panthera leo), and chimpanzees (Pan troglodytes)
(78 %). These signs were reported by the majority in nearly every forest.
Respondents frequently associated these changes with logging, farming,
and hunting, noting that timber and bushmeat have become harder to
access and more costly.

Some signs of degradation were site-specific. In the Cameroonian
forests of Ngam-Kondomeyos (89 %) and Mbangassina (64 %), invasive
plants were a notable concern, whereas they were hardly mentioned
elsewhere. Insect decline was reported by fewer respondents overall (26
%), but was pronounced in Koui (66 %), Mbangassina (64 %), and
Ngam-Kondomeyos (50 %).

In addition to signs of degradation, the loss of forest area was also
mentioned. In Eweé-Adakplame and Ngam-Kondomeyos, all respondents
(100 %) reported a decrease in forest area, while in Hlanzoun, only 29 %
did so, with many perceiving no change (37 %) or even expansion (34
%). In Ikot, some respondents likewise reported stability (16 %) or an
increase (24 %).

Taken together, communities most often perceive logging and fire as
the most harmful uses, and report signs of forest degradation in the form
of tree and animal losses, with variation across sites reflecting social-
ecological conditions such as livelihood reliance on agriculture, re-
strictions on forest use, and ecosystem type.

3.3. Pressure on forests and perceived and measured forest degradation

The relationship between pressure on forests and perceived im-
pacts of forest uses shows no statistically significant correlation (Fig. 4).
Descriptively, however, communities with high pressure, that is, large
populations in relation to the forest area and many loggers and hunters,
do not perceive their forest uses as degrading (e.g., Ikot swamp forest,
Nigeria), whereas communities with lower pressure and stricter re-
strictions express greater concern about degradation (e.g., Koui sacred
forest, Togo).

Trees, Forests and Pecple 22 (2025) 101061

When contrasting pressure and measured degradation on forests,
there is a strong, negative, and significant correlation (Fig. 5). Most
forests have low pressure and remain intact. However, Eweé-Adakplame
and Ikot have a high pressure, with for example, more than 50 % of the
forest users engaged in logging and hunting. In these two cases, forest
structure is significantly below its potential and therefore the two forests
are considered as degraded.

When contrasting perceived and measured degradation, no
consistent pattern emerges (Fig. 6). In some cases, perception aligns
with measured degradation (e.g., Ewe-Adakplame), while in others it
does not (e.g, Ikot, low perceived degradation but high measured
degradation).

Taken together, only pressure on forests and measured degradation
correlate, while pairs involving perceived degradation do not. The three
dimensions converge in some forests (e.g., Ewe-Adakplameé) but diverge
in others (e.g., Ikot, Koui). These patterns suggest that, despite broad
similarities in forest uses across sites, perceptions vary with socio-
economic conditions and local governance, influencing how commu-
nities recognize and report degradation.

4. Discussion
4.1. Forest uses and forest degradation

Forest activities range from extractive uses, such as hunting and
logging (Fig. 2), to conservation practices like the maintenance of sacred
forests. As expected from our first hypothesis, the collection of NTFPs is
the most widely conducted activity among forest users, followed by
hunting and logging. Despite socio-cultural (e.g., sacred vs. non-sacred),
economic (e.g., low vs. intermediate wealth), and ecological (e.g., semi-
deciduous vs. moist forest) differences between the studied forest sites,
the dominant activities of forest users do not differ significantly. Some
forests (e.g., Eweé-Adakplame and Ikot) are located near cities, where
communities have comparatively higher economic resources; these sites
also show more logging and hunting, with consequences on measured
forest degradation. Hunters provide communities with bushmeat
(except in Koui), a vital protein source in rural Africa (Benjamin-Fink,
2019), often tied to cultural values (Dounias and Ichikawa, 2017).

Forest uses and management are shaped by (i) cultural habits (Fa
etal,, 2002; Van Vliet and Nasi, 2008), (ii) available technologies (Putz

Perceived Degradation vs. Pressure
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/
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Fig. 4. Perceived degradation does not correlate with pressure on the forest.
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Fig. 5. Strong, negative, and significant correlation between forest pressure and measured degradation. Pressure reflects the intensity of forest use, and measured
degradation denotes the gap between observed and potential forest structure, with lower (more negative) values indicating greater degradation.
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Fig. 6. Perceived and measured forest degradation do not correlate. In the top left corner (e.g., Hlanzoun) and bottom right corner (e.g., Ewe-Adakplame), perceived
and measured forest degradation match. However, in the bottom left corner (e.g., Ikot) and top right corner (e.g., Koui), perceived and measured forest degradation

do not match.

et al,, 2000), (iii) governance (Kishor and Belle, 2004; Zoysa and Inoue,
2008), (iv) livelihood alternatives (Banerjee and Madhurima, 2013; De,
2012), and (v) market dynamics (Lewark, 2 ). Uses often overlap:
charcoal production requires prior logging, fire facilitates logging,
agriculture, and hunting. These overlapping uses have reciprocal
ecological consequences: intensive logging can displace wildlife and
reduce hunting success, while heavy hunting can deplete
seed-dispersing animals, affecting future timber availability (Lewis
et al., 2015). In Koui’s sacred forest, religious practices prohibit
extractive uses such as fishing, hunting, and logging.

Although most people engage in extractive uses, only few actively

10

restore formerly forested areas by planting trees, mainly in Ngam-
Kondomeyos, Ewe-Adakplame, and Ikot. Cultivating fruit trees can
attract wildlife, promoting seed dispersal and indirectly supporting
bushmeat hunting (Levis et al, 2018). Tree planting can decrease
pressure on forests by providing nearby timber or fruits
(Hermans-Neumann et al., 2016), but it requires secure land tenure
(Shepherd et al.,, 1993), which is often contested (Kouassi et al., 2022).
Forest use patterns can also change over time due to workforce migra-
tion (Lewark, 2022) or the introduction of new actors with greater
financial power. For example, a Beninese forest has seen the introduc-
tion of honey production and ecotourism by an NGO (Gbedomon et al,,

164



S. Hepner et al
2016).
4.2. Perceptions of forest use impacts and signs of degradation

Perceptions of the impacts of forest uses differ across sites but not
across respondents’ main activities. Logging and fire are widely
perceived as strongly degrading forests (about 60 % of respondents),
reflecting shared environmental awareness, while perceptions of agri-
culture, charcoal production, and NTFP collection vary across sites,
influenced by forest type, customary restrictions, and community
norms. Although respondents’ activities (e.g., eco-guardians, hunters, or
NTFP collectors) did not significantly affect perceptions, it remains
plausible that such roles shape awareness, as individuals more involved
in forest protection may perceive threats differently.

Respondents largely perceived forest area loss over recent years,
partly due to fire, which is supported by remote sensing (Aleman et al.,
2017; Chuvieco et al,, 2018; Hansen et al,, 2013; Wingate et al., 2022,
2024). However, forest decline is not limited to outright loss: forests are
often degraded before they disappear completely, a process that may not
be visible to outsiders or detectable from satellite imagery (lheaturu
et al,, 2025). For example, respondents reported little change in forest
area in Hlanzoun between 2010 and 2020, whereas Biah et al. (2024)
indicate that much of the intact forest has been degraded. The negative
impacts of forest uses are alsoreflected in the disappearance of large, old
trees, both in the sampled forests and in surrounding areas (Atindehou
etal, 2022). Fewer large, old trees also contribute to a decline in forest
structural complexity and aboveground biomass (Ali et al., 2019; Ali and
Wang, 2021).

Similarly, the absence of large animals can limit aboveground
biomass, as many large-bodied vertebrates disperse large-seeded trees
that store a substantial share of carbon; their loss can reduce forest
carbon stocks by up to ~3 % (Chanthorn et al.,, 2019; Lewis et al., 2015).
Our results suggest that most large animals have disappeared from all
the sampled forests. Large animals and top predators are typically the
first species to be displaced and extirpated as human populations grow
(Chanthorn et al., 2019; Lewis et al., 2015). Large-bodied animals often
cause economic losses by feeding on crops or attacking humans and
livestock, which may explain why some of the interviewed individuals
express relief at their absence. Human-wildlife conflicts are common in
different parts of Africa, particularly where human populations and
corresponding land use expand (Benjamin-Fink, 2019).

Invasive plant species do not appear to be a major concern across the
sampled forests. It is possible that people have become accustomed to
invasive species or even utilize them for their beneficial attributes (e.g.,
Chromolaena odorata for medicinal use, Omokhua et al., 2016), and
therefore do not perceive them as symptoms of forest degradation. Still,
in Cameroon, more than 60 % of respondents considered invasive plants
problematic (e.g., Osteospermum sp.). Whether an invasive species is
perceived as delaying forest recovery or, conversely, as providing
agronomic or medicinal benefits is largely a matter of perspective and
context (Juru et al., 2024; Omokhua et al., 2016; Tchiengue et al., 2013).

Although the global decline of insect populations is a recognized
threat (Wagner et al, 2021) and deforestation is a well-established
driver of insect decline (Wagner, 2019), only a minority of re-
spondents in our case study sites reported declines in insect populations.
Interestingly, insect decline was noted in Koui (the best-protected forest
in our sample) and in Mbangassina and Ngam-Kondomeyos, which
comrespond to the most connected forests, highlighting the need for
further research and potentially reflecting differences in the environ-
mental awareness and observations of respondents. In Western Africa,
specific instances of insect decline have been documented (Dendi et al.,
2023; Olatoye et al., 2024), but data remain sparse (Wagner, 2019), and
more work is needed to disentangle the interactions between defores-
tation and degradation in shaping insect populations. By contrast, in
Zimbabwe, climate change has promoted insect outbreaks that damaged
forest trees (Mataruse et al., 2023). Other tree diseases were not
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perceived as a significant issue in the sampled forests, possibly due to
their high species diversity (Bosu et al., 2019).

4.3. Pressure on forests and perceived and measured forest degradation

Although forest uses are similar across sites, perceptions of their
impacts differ. A negative tendency—though not statistically sig-
nificant—exists between pressure (population density and proportion
engaged in logging and hunting) and perceived degradation. This
indicates that intensive forest use is not always recognized as harmful,
leading us to reject parts of the third hypothesis. Differing value prior-
ities likely explain these patterns: in Koui (Togo), sacred forests foster
relational values that outweigh utilitarian considerations (lhemezie
et al, 2021), whereas in Ikot (Nigeria), instrumental values dominate,
allowing intensive use without perceived degradation (Ihemezie et al,,
2021, 2022).

Such mismatches can create feedback loops. In high-use sites like
Ikot, resource depletion can increase value and drive further exploita-
tion. In restricted forests like Koui, spiritual and ecosystem services
reinforce traditional conservation practices. Cognitive and social
mechanisms, including shifting baseline syndrome
(Fernandez-Llamazares et al,, 2015), cognitive dissonance (balancing
the belief that the forest is well-protected with awareness of harmful
practices; Harmon-Jones & Mills (2019)), and cultural and institutional
reinforcement (Kasperson et al., 1988; Renn, 2011), further shape local
perceptions of degradation.

Measured degradation largely aligns with pressure and gover-
nance contexts. In Ewe-Adakplame and Ikot, high pressure coincides
with advanced degradation, whereas Hlanzoun and Koui maintain
higher integrity due to restricted access, and Ngam-Kondomeyos and
Mbangassina benefit from large forest areas and resource availability
outside forests. Disputes over land tenure and local conflicts can exac-
erbate pressure, as seen in Ewe-Adakplame, where forest loss is accepted
for more profitable land use (cf. Hasanah et al., 2019).

Governance is context-dependent. What effectively preserves forests
in one site (e.g., strict sacred-forest rules in Koui) may not work else-
where. Under high pressure, governance levels can erode gradual-
ly—restricted regimes can shift toward more open access (2 — 4 in Ewe-
Adakplame; 3 — 4 in Ikot)—whereas strengthening governance, such as
re-sacralization or tighter restrictions, is considerably more difficult,
particularly with the spread of Christianity and Islam (Alchou et al,,
2017; Mintah et al, 2024; Neuenschwander and Adomou, 2017).
Together, these results emphasize that forest condition emerges from a
complex interplay of ecological conditions, human pressure, gover-
nance, landscape context, and local perceptions, rather than from single
factors, even though wealth disparities may modulate pressure (higher
relative wealth index in Ewe-Adakplame and Ikot; Chi et al., (2022)).

The relationship between perceived and measured forest degra-
dation differs across sites. While in Ewe-Adakplame, perceived and
measured degradation coincide, in Ikot and Koui, perception and
measured forest degradation do not consistently align. These patterns
underscore the importance of integrating local perceptions with
ecological measurements to fully understand forest change in its social-
ecological context. While we explored the relationships between pres-
sure on forests and perceived and measured forest degradation, no
strong correlations or clear patterns emerged, likely due to the limited
sample size and the inherent complexity of social-ecological dynamics.

4.4. Implications for sustainable forest management

Forest degradation is a complex, wicked problem with no one-size-
fits-all solution that simultaneously enables livelihoods and conserves
forests (Nikolakis and Innes, 2020; Pouliot et al.,, 2012). Strong tradi-
tional management systems, such as sacred forests, can promote con-
servation, foster personal responsibility, enhance environmental
knowledge, and reduce careless behaviors (Kingbo et al., 2022
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Maleknia et al., 2024).

Respondents highlighted the need for forest guards and stronger
institutions to facilitate landscape and land-use planning (cf. Intergov
ernmental Science-Policy Platform on Biodiversity and Ecosystem Ser-
vices (IPBES), 2018; Lewis et al., 2015) and coordinate reforestation
(Kouassi et al., 2021), though corruption can undermine these efforts
(Ighodaro and Igbinedion, 2020). Region-specific socio-bioeconomies
supporting sustainable livelihoods are essential (Garrett et al., 2024).
For instance, honey production and ecotourism can generate income
without immediate forest degradation (Gbedomon et al,, 2016) and
biodiversity or carbon credits could be explored for Western African
forests (Jones, 2024).

Critically, local perceptions of degradation are central for effective
SFM. Both kot and Ewe-Adakplame experience high human pressure
and show signs of degradation, yet only Ewe-Adakplameé respondents
perceive this as such. This divergence illustrates that governance and
conservation effectiveness depend not only on ecological conditions but
also on how local users recognize and interpret forest change. Without
such recognition, attempts to halt degradation and deforestation are
unlikely to succeed.

4.5. Limitations

The extensive number of household interviews (n = 1956) represents
approximately 3 % of the population living within 10 km of the seven
studied forest patches (around 580,000 people, Bondarenko et al.,
2020). Of all the interviewed people, roughly 15 % (n = 328) answered
specific questions related to forest management practices and ecology,
indicating that they frequently enter the forest and understand its dy-
namics. While we are confident that these numbers provide represen-
tative insights (margin of error £5 % at 95 % confidence interval, Eq.
(2)), 91 % of our interviewees were male, reflecting local norms where
men are considered household heads. As forest tasks are often
gender-specific (e.g., firewood collection by women; Lewark, 2022;
Sinasson et al., 2017), some responses may reflect household-level
perspectives rather than individual experiences.

We conducted the surveys once in each village during the dry season.
Responses might differ if the same questions were asked in another
spatial and temporal setting (Rietbergen, 1993). Prior to the surveys, we
carefully reviewed question wording with local scholars experienced in
fieldwork. Nevertheless, some questions may have been phrased in ways
unfamiliar to interviewees, potentially causing misunderstandings. In-
terviews are inherently subjective, and responses—particularly
regarding individual perceptions—may depend on socio-economic and
political circumstances, as well as the specific benefits respondents
derive from the forests. Sensitive or illegal practices such as charcoal
production were not asked about directly, as these would likely have
been underreported, and our insights on this activity therefore remain
indirect. However, no obvious outliers were found during data cleaning.
Increasing the number of studied forests could provide more robust
statistical insights and reveal additional nuances between different
forest archetypes (Wingate et al., 2023).

5. Conclusion

Across all forests, the use of non-timber forest products pre-
dominates, confirming that livelihoods are closely tied to forest re-
sources despite ecological and cultural differences. Perceptions of forest
use impacts converge on logging and fire as the main drivers of degra-
dation, but their intensity and direction vary with local governance and
livelihood dependence. The expected alignment between pressure,
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perceived, and measured degradation is only partial: while physical
degradation corresponds to higher use pressure, it does not necessarily
match local perceptions. This divergence reflects how social-ecological
contexts and shifting baselines shape people’s understanding of forest
change.

Integrating these three dimensions reveals that forest degradation is
not solely an ecological process but also a social one, mediated by access,
norms, and governance. Sustainable management therefore, requires
coupling biophysical assessments of degradation with the social di-
mensions of forest use and perception. Strengthening locally embedded
governance systems—such as sacred forest protection—alongside
context-specific livelihood strategies offers pathways to balance forest
conservation and human well-being.
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Annex

Figs. A1, A2, Tables Al, A2,
Respondents Age Classes per Forest

Koul
Ewe-Adskplame %
Hianzoun
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Age class

Fig. Al. The age of respondents (1 328) spans the whole society from 20 to over 65 years old.
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Peoples Years of Experience in their Forests

Koul
Ewe-Adakplame 9% 9%
Hianzoun 9%
Percent
50
2 0
‘f ko 3% 1% 30
20
10
kot 10% 2%
Mbangassina 7%
Ngam-Kondomeyos 1% 22% 22% 1%
NA 0 1 2-5 5-10 10-20 20-50 >50

Years in corresponding Forest

Fig. A2. Most respondents (n = 328) have spent more than 10 years living close to their respective forest.

Table A1
Characteristics of the seven forests patches studied in Togo, Benin, Nigeria, and Cameroon (IIepner et al., 2025). Soil type is based on International Union of Soil
Sciences (IUSS) Working Group World Reference Base for Soil Resources (WRB) (2015).

Country Forest name Coordinates (WGS 84, Latitude ~ Vegetation type Soil Surrounding landcover
/ Longitude)
Togo Koui 0°43'12" / 8° 15 36" Moist semi- Acrisol Settlement / Agriculture /
deciduous forest Savanna
Benin Ewe-Adakplame (also known as Kouvizoun 2°34'12"/7° 28'12" Moist semi- Acrisol / Lixisol Settlement / Agriculture /
sacred forest Adakplame-Ewe) deciduous forest Savanna
Hlanzoun (also known as Lokoli) 2°15'36" /7° 3' 36" Swamp forest Acrisol / Gleysol / Settlements / Agriculture /
Lixisol Wetlands
Nigeria ko 8°15'0"/5° 35' 24" Moist forest Acrisol Agriculture / Agroforestry
Tkot 7° 53 24" / 4° 39 36" Swamp forest Acrisol / Cambisol / Settlement / Agriculture /
Fluvisol Water
Cameroon  Mbangassina 11° 35' 24" / 4° 38 24" Moist forest Ferralsol Agriculture / Agroforestry
Ngam-Kondomeyos 11°49'48" / 3° 2 24" Moist forest Ferralsol Wetlands / Agroforestry
Table A2
Ecological data describing the studied forest patches from Hepner et al. (2025). Forest structure is idered degraded in Ewe-Adakplame and Ikot, since the actual

structural complexity is significantly (***) below its potential.

Forest Actual stand 1 lexity fi stand structural Forest structural integrity (actual - reference Total Tree Species
index complexity ssci) Richness

Koui 5.3 (+0.5) 5.4 0 42
Ewe-Adakplame 4(+1.2) 53 —1.3 *** 70

Hlanzoun 5.6 (+0.8) 52 0.4 30

Tko 6.5 (+£0.9) 6.8 -0.3 143

Tkot 6.2(+1) 7Y —1.7 *** 38

Mbangassina 5.8 (+0.5) 5.8 0 129

Ngam- 6.4 (+0.4) 6.2 0.2 194

Kondomeyos
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