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Summary 
Tropical forests are increasingly threatened by deforestation, fragmentation, and degradation, 
primarily driven by agriculture, logging, and fire. In Western Africa, thousands of small and 
isolated forest patches persist in agriculture-dominated landscapes. Although often unprotected, 
these forests provide essential ecosystem services such as biodiversity conservation, carbon 
storage, and the supply of resources like timber and bushmeat, while also holding cultural and 
spiritual significance. Safeguarding them requires a deeper understanding of their ecological 
functioning, as well as innovative monitoring approaches and consideration of local socio-
economic realities. 
However, knowledge about the structure of these forests—an essential ecological feature—is 
limited. Forest structure determines whether a forest is composed of large versus small trees, how 
canopy layers are organized, and whether gaps dominate the canopy. Such attributes are directly 
linked to forest biomass and carbon sequestration, both of which are key indicators of ecological 
functioning. This thesis contributes to closing this knowledge gap by analyzing the structure, 
aboveground biomass (AGB), and tree species richness of tropical forest patches across Western 
Africa. The research focused on nine forest patches in Togo, Benin, Nigeria, and Cameroon, based 
on 121 forest plots with tree inventories and species identifications. 
The results revealed relatively intact forest structure and high aboveground biomass (85–260 
Mg/ha), as well as the presence of several vulnerable and endangered tree species such as Afzelia 
bipindensis and Guibourtia tessmannii. At the same time, the forest patches showed pronounced 
edge effects: degradation was most visible near the edges, while more intact zones were confined 
to the core. Structural metrics—including basal area, canopy height, species richness, complexity, 
and tree vitality—increased with distance from the edge. In highly isolated patches, edge effects 
also reduced AGB and wood density. AGB values in the studied community forests were lower 
than those in nearby officially protected areas, underscoring the importance of conservation 
measures beyond formal reserves. 
Beyond describing ecological conditions, this thesis advances methodological innovation for 
forest assessment. A terrestrial laser scanner (TLS) was tested to estimate AGB and compared 
with manual inventories. While both methods produced moderately correlating results, challenges 
remained due to sensor occlusion and the lack of species-specific wood density data. In addition, 
unmanned aerial vehicles (UAVs) equipped with LiDAR and multispectral sensors enabled fine-
scale disturbance mapping, complementing ground-based information on forest structure and 
vitality. Together, these tools demonstrate how emerging technologies can improve monitoring 
of fragmented tropical forests. 
Finally, the thesis integrates social dimensions to contextualize ecological findings. Through 328 
interviews with regular forest users, it examined local perceptions of forest integrity and forest-
related activities such as hunting and logging. Results revealed contrasting perspectives: in 
intensively used areas, degradation was often not perceived as a major concern, whereas 
communities maintaining sacred forests showed strong awareness of threats such as fire and 
illegal logging. Forests near urban centers exhibited higher exploitation pressure, and 
interviewees frequently reported declining forest areas and the disappearance of key species. 
These insights highlight the role of cultural traditions and socio-economic contexts in shaping 
both forest condition and conservation prospects. 
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Taken together, the results highlight that Western Africa’s remaining forest patches retain 
important ecological value—relatively intact structures, high biomass stocks, and threatened 
species—yet remain highly vulnerable to edge effects and human pressure. To safeguard their 
ecological and social value, this thesis recommends conservation strategies such as establishing 
buffer zones to reduce edge degradation, reconnecting fragments with habitat corridors, and 
integrating socio-economic approaches into forest management. By combining ecological 
analysis, methodological innovation, and social perspectives, the thesis advances knowledge on 
tropical forest functioning and provides tools and strategies for their sustainable management. 
 
Keywords: Aboveground biomass, Carbon, Degradation, Edge effects, Fragmentation, Forest use, 
Perceptions, Structural complexity, Tree species 
 

Résumé 
Les forêts tropicales sont de plus en plus menacées par la déforestation, la fragmentation et la 
dégradation, principalement sous l’effet de l’agriculture, de l’exploitation forestière et des 
incendies. En Afrique de l’Ouest, des milliers de petits fragments forestiers isolés subsistent dans 
des paysages dominés par l’agriculture. Bien que souvent non protégées, ces forêts fournissent 
des services écosystémiques essentiels tels que la conservation de la biodiversité, le stockage du 
carbone et l’approvisionnement en ressources comme le bois et le gibier, tout en revêtant une 
importance culturelle et spirituelle. Les protéger nécessite une compréhension approfondie de leur 
fonctionnement écologique, ainsi que des approches de suivi innovantes et la prise en compte des 
réalités socio-économiques locales. 
Cependant, les connaissances sur la structure de ces forêts — une caractéristique écologique 
essentielle — restent limitées. La structure forestière détermine si une forêt est composée 
principalement de grands ou de petits arbres, comment les strates de la canopée sont organisées 
et si les trouées dominent la couverture forestière. Ces attributs sont directement liés à la biomasse 
aérienne (BA) et à la séquestration du carbone, deux indicateurs clés du fonctionnement 
écologique. Cette thèse contribue à combler cette lacune en analysant la structure, la biomasse 
aérienne (BA) et la richesse en espèces d’arbres des fragments forestiers tropicaux d’Afrique de 
l’Ouest. La recherche s’est concentrée sur neuf fragments forestiers situés au Togo, au Bénin, au 
Nigeria et au Cameroun, à partir de 121 parcelles forestières avec inventaires d’arbres et 
identification des espèces. 
Les résultats ont révélé une structure forestière relativement intacte et une biomasse aérienne 
élevée (85–260 Mg/ha), ainsi que la présence de plusieurs espèces d’arbres vulnérables et 
menacées telles que Afzelia bipindensis et Guibourtia tessmannii. En même temps, les fragments 
forestiers ont montré des effets de lisière prononcés : la dégradation était la plus visible près des 
bords, tandis que des zones plus intactes étaient confinées au cœur des fragments. Les indicateurs 
structurels — notamment la surface terrière, la hauteur de la canopée, la richesse en espèces, la 
complexité structurale et la vitalité des arbres — augmentaient avec la distance par rapport à la 
lisière. Dans les fragments fortement isolés, les effets de lisière réduisaient également la biomasse 
aérienne et la densité du bois. Les valeurs de BA dans les forêts communautaires étudiées étaient 
inférieures à celles des zones protégées officielles à proximité, soulignant l’importance de 
mesures de conservation au-delà des réserves formelles. 
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Au-delà de la description des conditions écologiques, cette thèse fait progresser l’innovation 
méthodologique pour l’évaluation forestière. Un scanner laser terrestre (TLS, terrestrial laser 
scanner) a été utilisé pour estimer la BA et comparé aux inventaires manuels. Bien que les deux 
méthodes montrent une corrélation moderée, des difficultés subsistent en raison de l’occultation 
des capteurs et du manque de données de densité du bois spécifiques aux espèces. De plus, des 
véhicules aériens sans pilote (UAV, unmanned aerial vehicle) équipés de LiDAR et de capteurs 
multispectraux ont permis de cartographier les perturbations à fine échelle, complétant les 
informations obtenues au sol sur la structure et la vitalité forestières. Ensemble, ces outils 
démontrent comment les technologies émergentes peuvent améliorer le suivi des forêts tropicales 
fragmentées. 
Enfin, la thèse intègre des dimensions sociales pour contextualiser les résultats écologiques. 
Grâce à 328 entretiens avec des usagers de la forêt, elle a examiné les perceptions locales de 
l’intégrité forestière et les activités forestières telles que la chasse et l’exploitation du bois. Les 
résultats ont révélé des perspectives contrastées : dans les zones à forte exploitation, la 
dégradation n’était souvent pas perçue comme un problème majeur, tandis que les communautés 
maintenant des forêts sacrées montraient une forte conscience des menaces telles que les 
incendies et l’exploitation illégale. Les forêts situées à proximité des centres urbains présentaient 
une pression d’exploitation plus élevée, et les interviewés signalaient fréquemment un recul des 
surfaces forestières et la disparition d’espèces clés. Ces observations mettent en évidence le rôle 
des traditions culturelles et des contextes socio-économiques dans la détermination de l’état des 
forêts et des perspectives de conservation. 
Dans l’ensemble, les résultats montrent que les fragments forestiers restants d’Afrique de l’Ouest 
conservent une valeur écologique importante — structures relativement intactes, stocks élevés de 
biomasse et espèces menacées — mais restent très vulnérables aux effets de lisière et aux 
pressions humaines. Pour préserver leur valeur écologique et sociale, cette thèse recommande des 
stratégies de conservation telles que l’établissement de zones tampons pour réduire la dégradation 
en bordure, la reconnexion des fragments par des corridors écologiques et l’intégration 
d’approches socio-économiques dans la gestion forestière. En combinant analyse écologique, 
innovation méthodologique et perspectives sociales, la thèse fait progresser la connaissance du 
fonctionnement des forêts tropicales et fournit des outils et stratégies pour leur gestion durable. 
 
Mots-clés: Biomasse aérienne, Carbone, Complexité structurelle, Dégradation, Effets de lisière, 
Espèces d'arbres, Fragmentation, Perceptions, Utilisation des forêts 
 

Zusammenfassung 
Tropische Wälder sind zunehmend durch Abholzung, Fragmentierung und Degradierung bedroht, 
hauptsächlich verursacht durch Landwirtschaft, Holzeinschlag und Feuer. In Westafrika bestehen 
in von Landwirtschaft dominierten Landschaften noch tausende kleine und isolierte 
Waldfragmente. Obwohl diese Wälder oft ungeschützt sind, erbringen sie essenzielle 
Ökosystemleistungen wie den Erhalt der Biodiversität, die Kohlenstoffspeicherung sowie die 
Bereitstellung von Ressourcen wie Bauholz und Wildfleisch und haben gleichzeitig kulturelle 
und spirituelle Bedeutung. Ihr Schutz erfordert ein tieferes Verständnis ihres ökologischen 
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Funktionierens sowie innovative Monitoring-Ansätze und die Berücksichtigung lokaler 
sozioökonomischer Realitäten. 
Allerdings sind die Kenntnisse über die Struktur dieser Wälder — ein wesentliches ökologisches 
Merkmal — begrenzt. Die Waldstruktur bestimmt, ob ein Wald hauptsächlich aus grossen oder 
kleinen Bäumen besteht, wie die Schichten der Baumkronen (Kronendachstrukturen) organisiert 
sind und ob Lücken die Baumkronen dominieren. Diese Merkmale stehen in direktem 
Zusammenhang mit der oberirdischen Biomasse (AGB, aboveground biomass) und der 
Kohlenstoffspeicherung, die beide zentrale Indikatoren für das ökologische Funktionieren 
darstellen. Diese Dissertation trägt dazu bei, diese Wissenslücke zu schliessen, indem sie die 
Struktur, die AGB und die Artenvielfalt von Bäumen in tropischen Waldfragmenten Westafrikas 
analysiert. Die Untersuchung konzentrierte sich auf neun Waldfragmente in Togo, Benin, Nigeria 
und Kamerun, basierend auf 121 Waldparzellen mit Baum-Inventur und Artenbestimmungen. 
Die Ergebnisse zeigten eine relativ intakte Waldstruktur und eine hohe oberirdische Biomasse 
(85–260 Mg/ha), sowie das Vorkommen mehrerer gefährdeter und bedrohter Baumarten wie 
Afzelia bipindensis und Guibourtia tessmannii. Gleichzeitig wiesen die Waldfragmente 
ausgeprägte Randeffekte (edge effects) auf: Degradierung war besonders an den Waldrändern 
sichtbar, während intakte Bereiche im Kern der Fragmente lagen. Strukturmetriken — 
einschliesslich Baumgrundfläche, Kronenhöhe, Artenvielfalt, strukturelle Komplexität und 
Baumvitalität — nahmen mit zunehmender Entfernung vom Waldrand zu. In stark isolierten 
Fragmenten reduzierten die Randeffekte zusätzlich die AGB und die Holzdichte. Die AGB-Werte 
in den untersuchten Gemeinschaftswäldern lagen unter denen der nahegelegenen offiziell 
geschützten Gebiete, was die Bedeutung von Schutzmassnahmen über formelle Reservate hinaus 
unterstreicht. 
Über die Beschreibung ökologischer Bedingungen hinaus leistet diese Dissertation einen Beitrag 
zur methodischen Innovation in der Waldbewertung. Ein terrestrischer Laserscanner (TLS, 
terrestrial laser scanner) wurde zur Schätzung der AGB eingesetzt und mit manuellen Inventaren 
verglichen. Obwohl beide Methoden stark korrelierende Ergebnisse lieferten, bestanden weiterhin 
Herausforderungen aufgrund von Sensorverschattungen (occlusion) und fehlender artspezifischer 
Holzdichtedaten. Zusätzlich ermöglichten unbemannte Luftfahrzeuge (UAVs, unmanned aerial 
vehicles) mit LiDAR- und Multispektralsensoren die Kartierung von Störungen auf feiner Skala, 
wodurch die bodengestützten Informationen über Waldstruktur und Vitalität ergänzt wurden. 
Zusammen zeigen diese Technologien, wie moderne Methoden die Überwachung fragmentierter 
tropischer Wälder verbessern können. 
Schliesslich integriert die Dissertation soziale Dimensionen, um die ökologischen Ergebnisse zu 
kontextualisieren. Durch 328 Interviews mit Waldnutzenden wurden lokale Wahrnehmungen der 
Waldintegrität und waldbezogener Aktivitäten wie Jagd und Holzeinschlag untersucht. Die 
Ergebnisse zeigten kontrastierende Perspektiven: In intensiv genutzten Gebieten wurde 
Degradierung oft nicht als ernsthaftes Problem wahrgenommen, während Gemeinden, die heilige 
Wälder pflegen, ein starkes Bewusstsein für Bedrohungen wie Feuer und illegalen Holzeinschlag 
zeigten. Wälder in der Nähe städtischer Zentren waren stärkerer Nutzung ausgesetzt, und die 
Befragten berichteten häufig über rückläufige Waldflächen und das Verschwinden wichtiger 
Arten. Diese Erkenntnisse verdeutlichen die Rolle kultureller Traditionen und sozioökonomischer 
Kontexte bei der Bestimmung des Waldzustands und der Aussichten für den Naturschutz. 
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Zusammenfassend heben die Ergebnisse hervor, dass die verbleibenden Waldfragmente 
Westafrikas eine bedeutende ökologische Wertigkeit besitzen — relativ intakte Strukturen, hohe 
Biomassebestände und bedrohte Arten —, jedoch weiterhin stark anfällig für Randeffekte und 
menschlichen Druck sind. Um ihren ökologischen und sozialen Wert zu sichern, empfiehlt diese 
Dissertation Schutzstrategien wie die Einrichtung von Pufferzonen zur Reduzierung der 
Randdegradierung, die Wiedervernetzung von Fragmenten durch Habitatkorridore und die 
Integration sozioökonomischer Ansätze in die Waldbewirtschaftung. Durch die Kombination 
ökologischer Analysen, methodischer Innovationen und sozialer Perspektiven erweitert die 
Dissertation das Wissen über das Funktionieren tropischer Wälder und liefert Werkzeuge und 
Strategien für deren nachhaltige Bewirtschaftung. 
 
Stichworte: Baumarten, Degradierung, Fragmentierung, Kohlenstoff, Oberirdische Biomasse, 
Randeffekte, Strukturelle Komplexität, Wahrnehmungen, Waldnutzung 
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an adventurous mountaineering tour to the Piz Scerscen in the Grisons, I chose the unknown and 
decided to move to Bern and conduct this PhD.  
The PhD was conducted in the Land Systems and Sustainable Land Management unit at the 
Institute of Geography at the University of Bern. It was part of the SUSTAINFORESTS project 
(2021-2026), funded by the European Research Council (grant agreement No. 101001200). 
Looking back, I am grateful for this enriching experience, full of learning opportunities and 
inspiring people. These four years have passed quickly, and I am happy to present the outcome 
in this thesis. 

 



 

 10 

Summary ....................................................................................................................... iii 
Résumé .......................................................................................................................... iv 

Zusammenfassung .......................................................................................................... v 

I. Acknowledgments .................................................................................................. viii 
II. Preface .................................................................................................................... ix 

1. Introduction ............................................................................................................ 12 

1.1 Historical context ........................................................................................................ 12 

1.2 Current approaches in forest research ......................................................................... 12 

1.3 Forest research in the African context ......................................................................... 13 

1.4 Forest patches in Western Africa ................................................................................. 14 

1.5 Scientific gaps and problem statement ......................................................................... 14 

1.6 Research objectives of the PhD .................................................................................... 16 

2. Methods .................................................................................................................. 19 

2.1 Pre-fieldwork .............................................................................................................. 19 

2.2 Fieldwork .................................................................................................................... 19 

2.3 Post-fieldwork ............................................................................................................. 24 

3. Key insights and conclusions ................................................................................... 28 

3.1 Understanding ecological functioning in tropical forests .............................................. 28 

3.2 Testing new methods to improve capturing forest conditions ....................................... 29 

3.3 Integrating social perspectives and measured values of forest conditions ...................... 30 

3.4 Overall key insights ..................................................................................................... 32 

3.5 Relevance and novelty ................................................................................................. 32 

3.6 Outlook ....................................................................................................................... 33 

4. Reflections .............................................................................................................. 35 

4.1 Strengths and limitations ............................................................................................. 35 

4.2 Positionality ................................................................................................................ 35 

5. Scientific papers ...................................................................................................... 55 

5.1 Paper 1: Degradation and Fragmentation Effects on Structural Complexity in West 
African Forest Patches .......................................................................................................... 55 

5.2 Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa: 
Comparison of Manual Inventory and Terrestrial Laser Scanning ........................................ 69 

5.3 Co-authored paper 3: Tree species diversity and conservation across disturbance and 
bioregion types in forest patches outside protected areas in tropical Africa .......................... 123 

5.4 Co-authored paper 4: Integrating UAV LiDAR and multispectral data to assess forest 
status and map disturbance severity in a West African forest patch ..................................... 139 



 

11 
 

5.5 Paper 5: Perceived and Measured Forest Degradation in West Africa: Insights for 
Sustainable Forest Management .......................................................................................... 154 

6. Declaration of authorship ...................................................................................... 173 
  



 

12 
 

1. Introduction 
1.1 Historical context 
Humans began living in African tropical forests around 60,000 years ago and later colonized 
tropical forests on other continents (Lewis et al., 2015; Scerri et al., 2022). For much of history, 
people relied on forests for food, shelter, and energy (Vantomme, 2011). Early impacts included 
megafauna extinctions, such as stegodonts and gomphotheres, which altered forest structure 
(Lewis et al., 2015). The loss of such keystone species also led to changes in forest structure and 
composition (Lewis et al., 2015; Malhi et al., 2013, 2014). Around 6000 years ago, agriculture 
reduced forest cover locally (Lewis et al., 2015). These small-scale, low-impact human–forest 
interactions persist today among uncontacted tribes (Gerstner, 2019; Vantomme, 2011). 
However, most societies progressively modified forests to increase productivity for human 
benefits (Wunder, 2001). European colonization in Africa around 1800 further transformed 
forests through commercialization and systematic exploitation (Kitunda, 2025; Uzu et al., 2022). 
Most accessible forests were first logged and then converted to agriculture (Ashton & Hall, 2011; 
Knoke & Huth, 2011; Potapov et al., 2021; Wunder, 2001). Modern machinery has made 
exploitation increasingly efficient (Grigorev et al., 2020). 
Today, in the Anthropocene (Crutzen, 2002), only a fraction of tropical forest remains, facing 
compounding threats from climate change and biodiversity loss (Lewis et al., 2015). Competing 
claims complicate management: local communities depend on resources like bushmeat and 
firewood (Heinimann et al., 2017; Lewark, 2022; Neuenschwander et al., 2015), while global 
institutions push for conservation and carbon storage (Convention on Biological Diversity 
(CBD), 2021; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES), 2022; International Union for Conservation of Nature (IUCN), 2022; United 
Nations, 2015). Meanwhile, governments, corporations, and elites often prioritize short-term 
profits (Baruah, 2017; Ruiz Pérez et al., 2005). 
As resource demands grow, land-use conflicts intensify, particularly between agriculture and 
forest preservation (Günter et al., 2011). Scientists warn that tropical forests may be nearing 
ecological tipping points, shifting to savannah-like states (Malhi et al., 2014; Sullivan et al., 
2020; Zemp et al., 2017). Yet opportunities remain: up to 0.9 billion hectares of unforested land 
could support natural regeneration, aiding climate mitigation and ecosystem restoration (Bastin 
et al., 2019). These long-term and contemporary dynamics shape not only the extent of tropical 
forests but also their structure, biomass, and species richness, as well as how local people 
perceive and interact with them. 
As the uses and values of forests have shifted over time, so too have forest research questions 
and their corresponding methods (Chen et al., 2022). Early inventories focused on describing 
forest stands and estimating timber, but over time methods became increasingly systematic, 
accurate, and representative (Asrat & Tesfaye, 2013; Murtiyoso, Cabo, et al., 2024). Since the 
mid-20th century, forest research has progressively expanded from timber-focused 
measurements to broader ecological assessments, incorporating statistical design, growth and 
yield modeling, and biodiversity monitoring (Burkhart et al., 2019).  
 
1.2 Current approaches in forest research 
Recent decades have seen a rapid technological transformation of forest research. Among the 
most important advances is terrestrial laser scanning (TLS), which enables highly detailed 
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mapping of forest structure by capturing the three-dimensional spatial distribution of vegetation 
(Calders et al., 2020). TLS point clouds can be used to derive tree height, volume, and biomass, 
as well as canopy architecture and deadwood (Krisanski et al., 2021; Wilkes et al., 2023). Mobile 
and aerial systems, including UAVs and airborne laser scanning, extend point cloud acquisition 
across larger areas, while satellite missions such as ESA’s BIOMASS launched in 2025 promise 
global insights into aboveground biomass (Brede et al., 2019; European Space Agency, 2025). 
Beyond measurement, point clouds are increasingly used to build digital twins for management 
simulations (Holm & Schweier, 2024), to perform radiative transfer modeling linking structural 
and spectral data (Calders et al., 2018), and to generate synthetic forests that reduce the need for 
extensive field sampling (Feng et al., 2025). Novel UAV designs even mimic animal flight or 
perch silently in canopies, opening new opportunities for biodiversity monitoring (Chang et al., 
2020; Kirchgeorg & Mintchev, 2022; Ramezani et al., 2017). 
Each method for studying forests has strengths and limitations. Manual inventories provide 
highly accurate measurements of individual trees and ecological details, forming essential 
ground-truth data, but they are labor-intensive and restricted to small areas. TLS offers precise 
three-dimensional mapping of forest structure and biomass yet is similarly limited in spatial 
extent. UAVs allow flexible and relatively cost-effective data collection across intermediate 
scales, though dense canopies or complex terrain can constrain their use. Satellite remote sensing 
provides global and temporal coverage, but at coarser spatial resolution, making fine-scale 
structural analysis challenging. Beyond technological tools, local knowledge and perceptions 
give crucial insights into disturbances, resource use, and ecosystem dynamics that are invisible 
from remote sensing, though they may reflect subjective or culturally influenced views. 
Integrating these approaches—combining solid ground-truth data from manual inventories, TLS 
precision, UAV flexibility, satellite reach, and local ecological knowledge—offers a holistic and 
robust understanding of forest structure, biomass, species richness, and disturbance dynamics. 
This multi-scale, multi-perspective framework underpins the approach of the present study, 
linking high-resolution measurements with broader ecological patterns and local perceptions. 
 
1.3 Forest research in the African context 
Most forest research is conducted and funded in developed countries such as the USA, China, 
and in Europe (Aleixandre-Benavent et al., 2017; Aznar-Sánchez et al., 2018; Chen et al., 2022; 
Y. Song & Zhao, 2013), while tropical forests remain comparatively less studied. The Brazilian 
Amazon dominates the literature about tropical forests, with long-term studies on deforestation, 
fragmentation, and restoration (e.g., Asner et al., 2005; Fearnside, 2005; Laurance et al., 2002). 
In contrast, Africa—especially Western Africa—has been severely neglected, with only a 
handful of published studies and limited grey literature (Ashton & Hall, 2011; North et al., 2020). 
Structural barriers such as scarce funding and research capacity contribute to this gap (Ighodaro 
& Igbinedion, 2020; North et al., 2020). Here, the term Western Africa refers to both the Guinean 
forests of West Africa and the ecologically similar Lower Guinea forests extending into 
Cameroon. 
Yet African tropical forests are globally significant. They make up about 30% of the world’s 
tropical forests and differ from Amazonian and Asian forests in structure, biomass, and species 
richness (Lewis et al., 2013, 2015). For example, African forests host fewer species and trees per 
hectare but store more biomass due to longer carbon residence times. Megafauna extinction was 



 

14 
 

less severe than elsewhere, and elephants still play a key role in shaping forest composition. 
These forests are also highly vulnerable to shifting cultivation and agricultural expansion, with 
47 million hectares lost between 2003 and 2019 (Heinimann et al., 2017; Potapov et al., 2021). 
Climate change adds further uncertainty: while dieback is projected for many tropical forests, 
shifts in the West African Monsoon could even expand forest potential in parts of the Sahel, 
though sparse meteorological data limit model reliability (Lenton et al., 2008; Réjou-Méchain et 
al., 2021). 
Despite their global importance, ecological data on African tropical forests remain scarce, 
particularly regarding forest structure and biomass. This lack of baseline knowledge constrains 
both conservation strategies and climate models. Research is urgently needed as rapid population 
growth, urbanization, and economic development increase pressure on natural resources. With 
Africa’s population projected to double by 2050 , the demand for forest products and land is 
expected to intensify, making a better understanding of forest structure, biomass, species 
richness, and local perceptions of forest ecology particularly pressing (Grinin & Korotayev, 
2023). 
 
1.4 Forest patches in Western Africa 
In the last decades, Western Africa has faced very high rates of tropical deforestation (Hansen 
et al., 2013; Poorter et al., 2004; Schelhas & Greenberg, 1996) and the countries of Togo, Benin, 
Nigeria, and Cameroon are no exception. These countries host thousands of small, isolated forest 
patches in fragmented, agriculture-dominated landscapes (Wingate et al., 2022, 2024), which are 
crucial for biodiversity conservation, carbon storage, and resources such as timber and bushmeat 
(Neuenschwander et al., 2015). The persistence of these patches is uncertain, given widespread 
agricultural expansion, associated deforestation, and the lack of formal protection (Akinyemi & 
Ifejika Speranza, 2022; Mintah et al., 2024; Poorter et al., 2004). Small and primary forests are 
particularly vulnerable to large-scale land-cover change (Wingate et al., 2024). Their continued 
existence highlights the challenges of balancing environmental values with human development 
in regions under high land-use pressure (Ifejika Speranza et al., 2019). Moreover, these patches 
are often overlooked in both research and policy design (Meyfroidt et al., 2018; Mintah et al., 
2024). It is likely that larger forest blocks, such as the Congo Basin, will also become 
increasingly fragmented due to ongoing land-use changes (Fischer et al., 2021) with significant 
consequences for biodiversity and other ecosystem services (Blockhus et al., 1992). Studying 
the dynamics of fragmented landscapes in Western Africa thus provides valuable insights into 
the potential future of the Congo Basin. 
 
1.5 Scientific gaps and problem statement 
1.5.1 Understanding ecological functioning in tropical forests 
Tropical forests play a key role in global ecological functioning, supporting biodiversity, 
regulating climate, and storing large amounts of carbon (Ameray et al., 2021). Forest structure 
is an important proxy for forest resilience and integrity, as it correlates with indicators such as 
biodiversity, productivity, carbon storage, and microclimate regulation (Coverdale & Davies, 
2023). However, despite its importance, forest structure and its links to forest degradation and 
fragmentation remain insufficiently quantified in many regions, particularly in Western Africa, 
restricting our capacity to assess forest integrity and detect patterns of degradation and resilience. 



 

15 
 

Aboveground biomass (AGB) estimation represents a second major gap. Although tropical 
forests store around 80% of terrestrial aboveground carbon, with roughly half of tree biomass 
consisting of carbon (Ghazoul & Sheil, 2010), accurately estimating AGB remains challenging. 
Uncertainties are especially high in fragmented landscapes, such as those found across Western 
Africa (Araza et al., 2022). These uncertainties limit our ability to determine whether forests act 
as net carbon sinks or sources (Mitchard, 2018), despite the fact that climate models rely heavily 
on precise AGB estimations (Chave et al., 2019). 
Finally, the ecological consequences of anthropogenic disturbances on tree species compositions 
in these forests are not well understood. The spatial patterns of disturbance and edge effects 
remain largely unknown, as does their impact on alpha and beta diversity, even though these 
forests harbor near-threatened, vulnerable, and endangered species such as Anonidium mannii, 
Afzelia bipindensis, and Guibourtia tessmannii. 
 
1.5.2 Testing new methods to improve capturing forest conditions 
Monitoring tropical forests, whether large tracts or small patches, is inherently challenging due 
to their vast extent, inaccessibility, and structural complexity. Traditional approaches, such as 
manual inventories and allometric equations, are prone to systematic biases, limiting the 
accuracy of AGB estimations (Calders et al., 2022) This thesis addresses these limitations by 
advancing the use of TLS in tropical forests. For the first time in this region, TLS is 
systematically applied to not only quantify structural complexity but also to compare biomass as 
estimated by manual inventories and TLS respectively. 
At the same time, more remote sensing technologies offer promising opportunities to improve 
forest monitoring. Unmanned aerial vehicles (UAVs) have emerged as effective tools for 
assessing forest health (Ecke et al., 2022; Torresan et al., 2017), yet their potential remains 
underexplored in Western Africa. In particular, UAV LiDAR has never been combined with 
multispectral data to evaluate forest patches in this region. By fusing these datasets, this thesis 
develops an integrated disturbance index for contiguous forest areas, which can be validated 
against ground-based observations of forest degradation. This approach provides a more 
comprehensive understanding of forest conditions than ground-based surveys alone. 
 
1.5.3 Social dimensions of ecological forest conditions 
The social dimensions of deforestation and degradation—how local communities use, perceive, 
and manage forests—remain insufficiently studied, even though millions of people depend on 
tropical forests for their livelihoods (Lewark, 2022). In Western Africa, the persistence of forest 
patches directly reflects community practices, placing local people at the forefront of either 
degrading or conserving forests. Yet no comparative research has systematically examined these 
dynamics across Togo, Benin, Nigeria, and Cameroon. 
Addressing this gap is crucial, since ecological measurements and local perceptions capture 
different but complementary realities. Structural complexity, AGB, and diversity provide 
objective indicators of degradation and resilience, but they cannot reveal how forests are 
experienced, valued, or managed on the ground. Conversely, local perceptions highlight 
pressures and disturbances that may not be immediately detectable in ecological data, but they 
can be subjective, shaped by cultural and economic contexts. Linking the two perspectives 
therefore adds explanatory depth: it helps clarify mismatches (e.g., when forests perceived as 
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degraded still retain ecological integrity, or when intact-looking forests are already under 
pressure) and supports more robust, socially grounded management strategies. 
This thesis addresses these gaps by analyzing forest structural complexity along edge–core 
gradients, providing AGB data at both tree and plot levels, and examining alpha and beta 
diversity across forest patches in Western Africa. New methods are tested by comparing AGB 
estimates from manual inventories and TLS, and by integrating LiDAR and multispectral data 
from UAVs. The social dimensions are addressed by combining interview data with socio-
economic and ecological measurements, thereby embedding objectively measured forest 
conditions within the lived realities of local communities. 
 
1.6 Research objectives of the PhD 
Building on these gaps, this thesis, embedded in the interdisciplinary SUSTAINFORESTS 
project, addresses them through five corresponding papers. The research focuses on nine forest 
patches in Togo, Benin, Nigeria, and Cameroon, spanning the Guinean Savanna and the Guineo-
Congolian zone (Dinerstein et al., 2017; Tappan et al., 2016). Accordingly, the thesis is guided 
by the following research questions: 
 
1.6.1 Understanding ecological functioning in tropical forests 
Paper 1: Degradation effects on forest structure 

1. How does the stand structural complexity index (SSCI) vary with fragmentation, 
connectivity, canopy openness, tree height, basal area, number of tree stems, and tree 
species richness? 
• We expect that SSCI increases with high connectivity, low fragmentation, low 

canopy openness, a high number of tall trees, a high basal area, a high tree stem 
density, and high tree species richness. 

2. How do edge effects impact the SSCI of forest patches? 
• We expect that SSCI decreases toward forest edges. 

3. How does the in situ measured SSCI of the forest patches compare with the 
corresponding ecological reference value? 
• We expect intact forest patches where in situ measured SSCI equal the corresponding 

ecological reference value. 
 
Paper 2: Aboveground biomass in small forest patches measured with TLS 

1. What is the current AGB and carbon in the studied forest patches and how is it spatially 
distributed? 
• We expect that the amounts and spatial patterns of AGB and carbon vary across the 

forest patches, indicating environmental and disturbance gradients. 
2. Which forest characteristics correlate most with AGB? 

• We expect basal area, tree height, and wood density to correlate most with AGB. 
3. How does the AGB of these patches compare with that of other forests in the region? 

• We expect to find lower AGB in isolated forest patches as compared to larger forest 
areas, due to edge effects. 

 
Paper 3: Disturbance effects on tree species diversity 
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1. How does alpha diversity of tree communities vary in relation to both anthropogenic 
disturbances and bioregion types? 
• We expect variation in tree community-alpha diversity along the bioregion types and 

disturbance gradients. 
2. How does beta diversity vary among tree communities in forest patches across the 

Guineo-Sudanian and Guineo-Congolian bioregions? 
• Tree beta diversity increases with spatial distance between forest patches. 

3. What are the effects of disturbance intensity and bioregion type on tree stand structure in 
forest patches? 
• Tree stand parameters (e.g., tree density and basal area) are negatively correlated with 

disturbance gradients, mainly due to selective logging of timber species and forest 
fires. 

 
1.6.2 Testing new methods to improve capturing forest conditions 
Paper 2: Aboveground biomass in small forest patches measured with TLS 

4. How does AGB estimated from manual inventory compare to AGB obtained by TLS? 
• We expect that AGB obtained by TLS will show a positive correlation with AGB 

derived from manual inventories across forest patches. 
 
Paper 4: Integrating LiDAR and multispectral UAV data 

1. How can structural properties, derived from UAV LiDAR data and spectral vegetation 
indices from UAV multispectral imagery, be used to assess the current state of the forest? 
• Structural and spectral metrics, derived from UAV LiDAR and multispectral 

imagery, can effectively characterize spatial variation in forest condition. 
2. How can an Integrated Disturbance Index (IDI) be generated using principal component 

analysis (PCA) of correlated structural and spectral vegetation indices? 
• An Integrated Disturbance Index (IDI) generated via PCA of structural and spectral 

metrics can capture gradients of forest disturbance. 
3. How can the IDI be used to delineate low, medium, and high disturbance levels to identify 

forest areas that require immediate conservation action? 
• The IDI can reliably classify forest areas into low, medium, and high disturbance 

levels to support conservation prioritization. 
 
1.6.3 Integrating social perspectives and measured values of forest conditions 
Paper 5: Forest use and its perceptions 

1. To what extent do forest use patterns differ across forests with varying socio-cultural, 
economic, and ecological contexts? 
• Forest use is expected to be dominated by the collection of non-timber forest products 

across all sites, with minor differences possibly linked to observable site 
characteristics, such as governance rules (e.g., sacred forests) or ecological conditions 
(e.g., swamp vs. semi-deciduous forests). 

2. How do perceptions of forest use impacts differ across sites with varying socio-cultural, 
economic, and ecological contexts? 
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• Logging and fire are expected to be widely perceived as degrading forests across 
sites, while perceptions of other activities (e.g., agriculture, charcoal production, 
NTFP collection) are expected to show greater variability depending on measurable 
or describable contextual factors, such as forest type, local restrictions, and 
community norms. 

3. How are pressure on forests and perceived and measured forest degradation interrelated? 
• Forests under greater pressure of use (e.g., logging, hunting, weak governance) are 

expected to show higher measured degradation. These pressures are also likely to 
shape local perceptions, such that observable degradation corresponds with 
community perceptions.  
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2. Methods 
This thesis was conducted between 2021 and 2025. I began by reviewing the literature to identify 
knowledge gaps and become familiar with specific methods. I then participated in fieldwork to 
collect data, followed by analyzing the data and integrating the results with existing datasets such 
as satellite imagery. The findings were connected with the literature and published. Finally, I 
and the rest of the research team returned to the field communities to share results and discuss 
conclusions and potential next steps. This mixed-methods approach led to three first-authored 
and two second-authored scientific papers. 
 
2.1 Pre-fieldwork 
2.1.1 Literature review 
A large body of open access scientific knowledge is available through the internet and academic 
libraries. To familiarize myself with the topic, I conducted keyword searches using various 
platforms, including Web of Science, Scopus, Google Scholar, and the Swiss university library 
database (swisscovery.ch). A proposal was formulated, indicating the knowledge gaps and 
outlining the strategy to fill these gaps in the given PhD-period. To keep pace with scientific 
advances, I sporadically searched for new papers in my research topics. I used the reference 
management software Zotero (Digital Scholar, 2025) for reading and citing scientific texts. 
 
2.2 Fieldwork 
In 2022 and 2023, four PhD colleagues, the principal investigator, and I (consequently called 
“we”) conducted fieldwork in nine forest patches across Togo, Benin, Nigeria, and Cameroon 
(Figure 1). These sites were selected from a larger pool of 420,446 identified forest patches, 
which are formally unprotected and isolated within the agricultural landscape (Wingate et al., 
2022, 2024). The nine sites were chosen to represent different ecological and cultural contexts, 
encompassing terra firme and swamp forests, agroforestry systems, and several sacred forests, 
spanning both the Guinean Savanna and Guineo-Congolian zones. The individual sites were 
Koui, M’poti, Agou, Ewè-Adakplamè (also known as Kouvizoun sacred forest Adakplamè-
Ewè), Hlanzoun, Iko, Ikot, Mbangassina, and Ngam-Kondomeyos. 
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Figure 1 Map of the studied countries Togo, Benin, Nigeria, and Cameroon in Western Africa. 
We chose nine field study sites from 420‘446 identified forest patches, which are formally 
unprotected and isolated in the agricultural landscape (Wingate et al., 2022, 2024). Koui and 
M’poti are close to each other and shown as one dot. 
 
A range of methods were applied in and around forest patches, integrating both quantitative and 
qualitative metrics, with different methods complementing and validating each other (Figure 2). 
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Figure 2 To obtain data on the ecological conditions and underlying management dimensions 
of forest patches, various methods were applied to get more complete insights and compensate 
limitations of single methods. The methods included a) manual forest inventories, b) terrestrial 
laser scanning, c) unmanned aerial vehicles, and d) interviews with regular forest users. 
 
2.2.1 Sampling plots 
Forest inventories use well-defined sampling strategies with representative plots to generalize 
findings to the whole forest (Food and Agriculture Organization of the United Nations (FAO), 
2011). In tropical forests, where biomass and other characteristics vary greatly across space 
(Grussu et al., 2016), robust sampling is essential (Asrat & Tesfaye, 2013). Plots—small, 
spatially restricted areas—are established according to research goals, forest type, accessibility, 
and constraints such as time and budget (Food and Agriculture Organization of the United 
Nations (FAO), 2008; Grussu et al., 2016; Paul et al., 2019). For this study, we used square plots 
of 50 × 50 m, with  25 × 25 m subplots (Paper 2, Figure 2), as this size is practical to set up 
(Duncanson et al., 2021) and sufficiently representative for biomass estimations (Chave et al., 
2019). We applied a simple random sampling strategy to ensure plots were well distributed 
across each forest (Ravindranath & Ostwald, 2008), using the “random points in a polygon” 
function in a geographic information system (QGIS Development Team, 2023). To avoid spatial 
autocorrelation, we enforced a minimum distance of 50 m between sample plots in a forest. This 
setup allowed us to capture the gradient from forest edge to core. At each selected location, we 
confirmed that the plot area exhibited relatively homogeneous forest composition before data 
collection. 
 

Co-authored paper 4: Integrating UAV LiDAR and 
multispectral data to assess forest status and map 
disturbance severity in a West African forest patch

Paper 5: Perceived and Measured Forest 
Degradation: Insights for Sustainable Forest 
Management

Paper 1: Degradation and Fragmentation 
Effects on Structural Complexity in West 
African Forest Patches

Paper 2: Quantifying Aboveground Biomass in 
Tropical Forest Patches of West Africa –Terrestrial 
Laser Scanning and Manual Inventory

Co-authored paper 3: Tree species diversity and 
conservation across disturbance and bioregion types in 
forest patches outside protected areas in tropical Africa

a b

c

d
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2.2.2 Traditional forest inventory 
A forest inventory involves collecting quantitative and qualitative data on trees within a defined 
area (Asrat & Tesfaye, 2013). For this study, we included all living trees with a diameter at breast 
height (DBH) greater than 10 cm in the manual inventory. We measured i) DBH using a 
measuring tape, ii) estimated tree height using a clinometer, and iii) identified the tree species 
with the help of local botanists and national herbaria. This standardized approach aligns with 
established guidelines (Asrat & Tesfaye, 2013; Duncanson et al., 2021; Food and Agriculture 
Organization of the United Nations (FAO), 2008, 2011; Phillips et al., 2021; Ravindranath & 
Ostwald, 2008). The ecology field team typically consisted of six members. One person 
measured DBH and identified tree species, another estimated tree height, and a third recorded 
the data in a handwritten table. In addition, one team member operated the terrestrial laser 
scanner, another collected soil data, and a local guide supported the team in orienteering in the 
forest (Figure 3). Immersing oneself in the field to collect ecological data is essential for 
understanding nature, exchanging knowledge, and grounding research beyond office-based work 
(Soga & Gaston, 2025). 

 
Figure 3 The ecology field team gathered at a huge kapok tree (Ceiba pentandra) in the sacred 
forest of Koui. Photo taken by local guide from Koui (name unknown). 

 
2.2.3 Terrestrial laser scanning (TLS) 
We used a FARO Focus M70 terrestrial laser scanner, which emits laser pulses and detects 
returns from distances of up to 70 meters. While TLS does not replace traditional forest 
inventories, it provides valuable complementary data, particularly for assessing forest structure 
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and biomass (Chave et al., 2019; Newnham et al., 2015). To analyze forest structure (Figure 4a), 
we performed five single scans per plot—one in each corner and one in the center (Ehbrecht et 
al., 2017, Paper 1: Figure 2). For aboveground biomass estimation and to generate detailed three-
dimensional point clouds, we carried out multiple overlapping scans in a continuous chain in 
subplots of 25 x 25 m (Duncanson et al., 2021; Tao et al., 2021; Wilkes et al., 2017). The resulting 
point clouds (Figure 4b) were processed, co-registered, and segmented using FARO Scene 
(FARO Technologies Inc., 2023), R (R Core Team, 2024), CloudCompare (Girardeau-Montaut, 
2023), and the Python-based FSCT algorithm (Krisanski et al., 2021). TLS offers new insights 
into the complex tropical forest ecosystems, with untapped research potential, scanning protocols 
yet to be standardized, and very few studies conducted in Africa (Calders et al., 2020; Coops et 
al., 2025; Momo et al., 2018). 

a)  b)   
Figure 4 a) Black and white photo taken with the terrestrial laser scanner (TLS) in a single-scan 
approach in a corner of a plot in Ewè-Adakplamè, Benin with dense understory. b) Real-colored 
point cloud as product of the multi-scan approach in the swamp forest of Hlanzoun, Benin. 
 
2.2.4 Unmanned aerial vehicles (UAVs) 
UAVs, commonly known as drones, allow for the collection of forest data beyond plot-level 
measurements. UAVs can capture high-resolution spatial metrics across entire forest patches 
within just a few days, effectively bridging the gap between detailed ground-based inventories 
and broader satellite-based observations. In this study, we employed two UAVs (DJI, Shenzen, 
China); one equipped with a light detection and ranging (LiDAR) sensor (DJI Matrice 300 RTK) 
and the other with a multispectral sensor (DJI Phantom 4 Multispectral). Mapping fine-scale 
forest disturbance severity, by integrating LiDAR and multispectral data has rarely been 
documented for Western African forests (e.g., Iheaturu et al., 2024). 
 
2.2.5 Interviews 
The forest patches are actively managed and used by local communities, who often depend on 
the ecosystem services these forests provide. Through a large household survey (n=1956; Tabi 
Eckebil et al., submitted), we identified regular forest users (n=328) and conducted interviews 
to understand their forest uses and perceptions of forest conditions. Research assistants translated 
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responses from local languages into French or English. The perspectives of local forest users has 
only been poorly studied and understanding local realities deserves more research attention since 
it directly drives forest conservation and degradation respectively (Lewark, 2022). 
 
2.3 Post-fieldwork 
2.3.1 Data analysis and statistics 
The data used in this thesis are predominantly quantitative, enabling the application of a wide 
range of statistical analyses. All analyses were conducted in R (R Core Team, 2024), using a 
consistent statistical framework across studies. Commonly used packages included dplyr 
(Wickham et al., 2023) and tidyr (Wickham et al., 2024) for data wrangling, ggplot2 (Wickham, 
2016) for visualization, and lme4 (Bates et al., 2015) for fitting linear mixed-effects models, 
among others. These models were primarily employed to account for the non-independence of 
observations, particularly due to the nested structure of plots within individual forest patches. 
While the specific model formulations, standardized effect sizes (e.g., r-values), and significance 
levels (p-values) are detailed in the individual papers, this unified analytical approach underpins 
the synthesis of results across studies. 
 
2.3.2 Remote sensing and spatial analysis 
Thousands of satellites orbit the Earth, continuously contributing to environmental and socio-
economic data. Many satellite-derived products are open-access and readily available through 
platforms such as Google Earth Engine (Gorelick et al., 2017) making satellite imagery a key 
source of information at large spatial and temporal scales. In this thesis, I extracted key 
explanatory variables from satellite imagery, such as population density (Bondarenko et al., 
2020), a relative wealth index (Chi et al., 2022), canopy heights (Lang et al., 2023), and fire 
frequency (Chuvieco et al., 2018). In addition, I used QGIS (QGIS Development Team, 2023) 
to conduct various spatial analyses with vector and raster data, such as calculating the shortest 
distance from each plot to the forest edge and extrapolating AGB estimates from sampled plots 
to entire forest patches. Using multiple data sources and methods strengthen corresponding 
results by evening out weakness of single methods. 
 
2.3.3 Science communication 
In addition to scientific publications, we shared our research through various science 
communication formats. I produced a 20-minute film on our fieldwork in rural Western Africa 
(available at the project homepage: sustainforests.giub.unibe.ch). We also used virtual reality 
goggles (HTC Vive Pro) to enable users explore the tropical forests virtually. Hovering through 
these forests and hearing the ambient forest sounds creates an immersive experience that helps 
users connect with these remote environments. Furthermore, we published regular blog posts on 
the project homepage and contributed to newsletters such as that of the Swiss Society for African 
Studies to communicate our work beyond the academic sphere. 
Finally, we returned to the same communities where we had collected data and organized result-
exchange workshops. These included scientific presentations for academics, practitioners, and 
political representatives, as well as workshops with local communities and accessible science 
communication through public posters. We also visited primary and secondary schools to present 
our work to children—the next generation of forest and land users—and provided puzzles and 
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memory games to support playful learning and environmental awareness. In addition, we 
revisited the forests, which allowed us to ground-truth our data and critically reflect on our 
interpretations, models, and conclusions. 
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Overview of research papers 
The resulting research outputs have been submitted as five papers in corresponding journals 
(Table 1). 
Table 1 Overview of research outputs as scientific papers. Each paper contributes to one or two 
of three chapters. Chapter abbreviations: E: Understanding Ecological Functioning in Tropical 
Forests, M: Testing New Methods to Improve Capturing Forest Conditions, S: Integrating social 
perspectives and measured values of forest conditions. 
Nr Contribution 

to chapter 
Title Authors Journal Status 

1 E Degradation and 
Fragmentation Effects on 
Structural Complexity in 
West African Forest 
Patches 
 
Short: Degradation 
effects on forest structure 

Hepner, S., 
Agonvonon, G. A., 
Ehbrecht, M., 
Iheaturu, C., 
Azihou, A. F., & 
Ifejika Speranza, C. 

Biotropica Published 
(2025) 

2 E; M Aboveground Biomass in 
Seven Tropical Forest 
Patches of Western 
Africa: Comparison of 
Manual Inventory and 
Terrestrial Laser 
Scanning 
 
Short: Aboveground 
biomass in small forest 
patches measured with 
TLS 

Hepner, S., 
Agonvonon, G. A., 
Kükenbrink, D., 
Iheaturu, C., 
Azihou, A. F., 
Sinsin, B., & Ifejika 
Speranza, C. 

Annals of 
Forest 
Science 

Submitted 
(2025) 

3 E Tree Species Diversity 
and Conservation across 
Disturbance and 
Bioregion Types in 
Forest Patches outside 
Protected Areas in 
Tropical Africa 
 
Short: Disturbance 
effects on tree species 
diversity 

Agonvonon, G. A., 
Hepner, S. Iheaturu, 
C. J., Azihou, F. A., 
Sonwa D. J., 
Bisong F. E., 
Anwana E. D., 
Koudouvo K., 
Sinsin B. A., 
Fischer M. & 
Ifejika Speranza, C. 

Forest 
Ecology and 
Management 

Published 
(2025) 

4 M Integrating UAV LiDAR 
and Multispectral Data to 
Assess Forest Status and 
Map Disturbance 

Iheaturu C. J., 
Hepner S., 
Batchelor J. L., 
Agonvonon G. A., 

Ecological 
Informatics 

Published 
(2024) 
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Severity in a West 
African Forest Patch 
 
Short: Integrating 
LiDAR and multispectral 
UAV data 

Akinyemi F. O., 
Wingate V. R. & 
Ifejika Speranza, C. 

3 S Perceived and Measured 
Forest Degradation in 
West Africa: Insights for 
Sustainable Forest 
Management 
 
Short: Forest use and its 
perceptions 

Hepner, S., Tabi 
Eckebil, P. P., 
Mintah, F., Azihou, 
A. F., Sinsin, B., 
Fischer, M. & 
Ifejika Speranza, C. 

Trees, 
Forests and 
People 

Published 
(2025) 

 
The central tenet of this thesis is that the widespread deforestation and the persistence of isolated 
forest patches must be understood to allow an informed and sustainable forest management. This 
requires understanding ecological processes in tropical forest patches. Subsequently, new 
methods must be developed and tested to improve ways of capturing forest conditions. 
Additionally, the ecology of these forest patches is not an isolated natural phenomenon but is 
directly affected by peoples’ management and forest use. Therefore, the social dimension of the 
ecological forest conditions, including local perceptions must be studied as well (Figure 5), 
calling for methodological integration. 

 
Figure 5 Conceptual framework of the five papers structured into three chapters informing 
sustainable forest management. 

Understanding ecological functioning in tropical forests
Paper 1: Degradation effects on forest structure 

Paper 2: Aboveground biomass in small forest patches measured with TLS 
Paper 3: Disturbance effects on tree species diversity 

Testing new methods to improve capturing forest conditions
Paper 2: Aboveground biomass in small forest patches measured with TLS 

Paper 4: Integrating LiDAR and multispectral UAV data 

Integrating social perspectives and measured values of forest conditions
Paper 5: Forest use and its perceptions 

Informed and 
sustainable 

forest 
management
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3. Key insights and conclusions 
3.1 Understanding ecological functioning in tropical forests 
Our studies provide several insights into the ecological functioning of tropical forest patches in 
Western Africa, with a particular focus on structural complexity, biomass storage, species 
diversity, and the role of disturbances: 
 

 

 

 
Forest Structure: We confirmed that a higher stand structural complexity index (SSCI) is 
associated with lower forest fragmentation and reduced canopy openness. However, SSCI did 
not show significant relationships with connectivity, tree height, basal area, stem density, or 
species richness. Importantly, distance to forest edges strongly influenced SSCI, canopy 
openness, basal area, and tree density, highlighting the pervasive role of edge effects. 
Among the seven studied forest patches, five exhibited SSCI values close to their potential, 
indicating that they remain structurally intact. In contrast, the forests of Ewè-Adakplamè and 
Ikot scored significantly below their potential SSCI, classifying them as degraded. 
Biomass and Carbon Storage: We confirmed that aboveground biomass (AGB) and carbon 
storage vary both across and within forest patches, reflecting underlying environmental and 
disturbance gradients. AGB values were higher in formally protected and typically larger forests 
than in unprotected, smaller patches subject to stronger edge effects. Moreover, AGB increased 

Paper 1: Degradation and Fragmentation Effects on Structural Complexity in West-African 
Forest Patches 

• Structural complexity increases with distance to forest edge. 
• Edge effects are pronounced in isolated forest patches with low connectivity. 
• Spatial variation of structural complexity in forests patches indicate disturbances. 
• Structural complexity below the ecological reference indicates forest degradation. 

Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa: 
Comparison of Manual Inventory and Terrestrial Laser Scanning 

• Aboveground biomass (AGB) increases from forest edge to forest interior. 
• AGB did not correlate with tree species richness or wood density. 
• AGB in these unprotected forest patches was lower than in protected forests nearby. 

Paper 3: Tree species diversity and conservation across disturbance and bioregion types in 
forest patches outside protected areas in tropical Africa 

• Alpha diversity and stem density increase along Sudanian-Guineo-Congolian 
transects. 

• Within-forest environmental heterogeneity does not affect the stand composition. 
• Anthropogenic disturbances decrease along the forest patch edge-interior gradient. 
• Anthropogenic disturbances adversely impact tree community diversity and structure. 
• Sustainable management of the forests should include a triad zoning approach. 
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with distance from forest edges, emphasizing the importance of intact forest cores as carbon 
reservoirs. 
Our results also contribute to the debate on the link between species richness and AGB. We 
found that AGB correlates with uncorrected species richness but not with richness adjusted 
through rarefaction and extrapolation. This suggests that while diverse forests can be highly 
productive, biomass accumulation also depends on the presence of large, heavy-wooded tree 
species. 
Tree Species Diversity Patterns: Tree alpha diversity varied with both bioregion and 
anthropogenic disturbance. Diversity increased along the Sudanian–Guineo–Congolian rainfall 
gradient, confirming rainfall as a key driver of species richness. Beta diversity increased with 
spatial distance between forest patches emphasizing the need to conserve multiple patches to 
capture the full spectrum of diversity. 
Disturbances such as logging, fires, agricultural encroachment, and invasive species primarily 
reduced tree density near edges rather than directly affecting species richness. Logging pressure 
was especially evident for large trees (>50 cm DBH) near forest edges. 
Overall, the studied patches host 15–30% of the tree species found in their respective countries, 
with ~10% classified as near-threatened, vulnerable, or endangered. This highlights their 
disproportionate conservation value despite their small size. 
Disturbances and Edge Effects: Edge effects include increased wind exposure, wind throw, 
altered species composition, more frequent fires, and heightened anthropogenic pressures. These 
effects were strongest in isolated patches with little surrounding vegetation, underscoring the 
need for buffer zones and green corridors to maintain forest integrity and prevent long-term 
collapse at the landscape scale. 
Management and Conservation Implications: Our findings reveal that formal protection is 
strongly associated with higher AGB and greater structural integrity, even when enforcement is 
incomplete. Governance structures, such as defining minimum felling diameters, formalizing 
land use and management, and promoting equitable resource-sharing, are essential to maintain 
forest functions. 
 
3.2 Testing new methods to improve capturing forest conditions 

 

Paper 2: Aboveground Biomass in Seven Tropical Forest Patches of Western Africa: 
Comparison of Manual Inventory and Terrestrial Laser Scanning 

• AGB obtained from manual inventory and terrestrial laser scanning correlated 
moderately. 
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Validation of Biomass Estimates: We confirmed that AGB values derived from TLS correlate 
moderately with those obtained through manual inventory. Using both approaches provides a 
valuable cross-validation, since AGB estimation is inherently uncertain. Interestingly, in our 
study, a manual inventory conducted by three people was faster than scanning the same plots 
with a FARO Focus M70, reflecting the practical challenges of TLS in dense tropical forests. 
Multi-Sensor Forest Assessment: Structural and spectral metrics derived from UAV LiDAR 
and multispectral imagery effectively characterized spatial variation in forest condition, as 
demonstrated by the disturbance severity map of Ewè-Adakplamè. The fusion of data streams 
from LiDAR and multispectral sensors revealed aspects of forest status that neither source could 
capture alone, underscoring the importance of multi-sensor integration. 
LiDAR data showed that 95% of trees were below 20 m, while the maximum canopy height 
reached 48 m, indicating a stunted forest well below its potential height and vertical stratification. 
Meanwhile, multispectral imagery revealed low vegetation indices (e.g., GNDVI), suggesting 
stress linked to nutrient deficiency or drought. Integrating these complementary perspectives 
reduces blind spots and provides a more complete picture of forest integrity. 
Spatial Mapping and Management Applications: The resulting high-resolution disturbance 
maps highlight spatial patterns of degradation caused by logging, agricultural encroachment, and 
fires. Such maps provide essential information for targeted interventions, including enrichment 
planting in canopy gaps and establishing corridors between nearby forest fragments. This is 
particularly valuable when resources for forest management are limited and must be allocated 
efficiently. Field-based observations of anthropogenic disturbances served as ground truth to 
validate UAV-derived maps, strengthening confidence in their use for guiding conservation, 
sustainable use, and restoration measures. 
 
3.3 Integrating social perspectives and measured values of forest conditions 
 

 

Paper 5: Perceived and Measured Forest Degradation in West Africa: Insights for 
Sustainable Forest Management 

• Collection of non-timber forest products is the main forest activity. 
• Logging, fires, and agriculture are largely perceived as driving forest degradation. 
• Forest uses are similar across forests, but perceptions of forest use impacts vary. 
• Locally perceived forest degradation is not always in line with pressure on forests. 
• High socio-economic pressure is captured in increased measured forest degradation. 

Paper 4: Integrating UAV LiDAR and multispectral data to assess forest status and map 
disturbance severity in a West African forest patch 

• Fused UAV LiDAR and multispectral data to map forest status and disturbance 
severity. 

• Derived an integrated disturbance index through principal component analysis. 
• The integrated disturbance index outperformed individual sensors used alone. 
• The method can enable tailored conservation interventions, thereby optimizing 

resource allocation. 
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Forest Use Activities: Across the studied sites, the collection of non-timber forest products 
(NTFPs) was the most widespread activity, followed by hunting and logging. These dominant 
activities were consistent regardless of socio-cultural (sacred vs. non-sacred), economic (low vs. 
intermediate wealth), or ecological (semi-deciduous vs. moist forest) contexts. Importantly, 
NTFP use is not associated with large-scale forest damage, suggesting that it can support 
livelihoods while maintaining forest integrity. 
Perceptions of Degradation: Contrary to claims that the narrative of forest degradation is 
primarily a foreign construct (Amanor, 2004; Fairhead & Leach, 1996), many local forest users 
acknowledged the negative impacts of logging, fire, and agriculture. However, our results reveal 
a mismatch between forest uses that contribute to degradation and local perceptions of 
degradation. In Ikot (Nigeria), where logging and fire are widespread, these practices were not 
considered degrading—likely because they are normalized and no intact forest remains for 
comparison. By contrast, in Koui (Togo), where a sacred forest is strictly protected, the 
community expressed strong concern over potential damage, reflecting the forest’s deep cultural 
and religious significance. These cases illustrate how psychosocial factors, traditions, and 
reference points shape local perceptions of forest integrity. 
Socio-economic pressure and governance: Forests facing the highest socio-economic 
pressure—where many people exploit forest resources in a small area—showed the greatest 
values of measured degradation. Proximity to cities likely intensifies this same pressure by 
increased demand and purchasing power for these forest resources. However, the extent of 
degradation ultimately depends on governance: where management rules are effectively 
implemented, respected, and supported by communities, governance can buffer these pressures. 
Sustainable forest management in the region therefore hinges on governance systems that are 
both effective and trusted. 
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3.4 Overall key insights 
Tropical forests are structurally complex and subject to multiple interacting disturbances, making 
comprehensive assessment challenging. In this thesis, we applied complementary methods— 
manual forest inventories, TLS, UAV LiDAR and multispectral imagery, and interviews with 
local forest users—to capture ecological and social dimensions of forest structure, biomass, 
species richness, and disturbances across nine forest patches in Western Africa. While two of the 
seven papers explicitly compared single-method versus multi-method approaches, 
demonstrating the added value of methodological integration, the main goal was to leverage 
multiple approaches in combination to obtain a robust, multi-scale understanding of forest 
conditions. This integrative perspective was essential to identify patterns of edge effects, 
anthropogenic pressures, and mismatches between perceived and measured forest degradation, 
and to contextualize ecological findings within local socio-cultural realities. 
The five papers collectively examined forest structure from different perspectives: TLS captured 
detailed 3D structural complexity (e.g., SSCI), manual inventories measured tree size 
distributions, UAVs enabled high-resolution, centimeter-scale mapping of larger forest areas, 
and interviews documented local knowledge about trees, including culturally significant and 
large individuals, as well as temporal changes in forest structure over the past decade. Across 
studies, anthropogenic disturbances consistently altered forest structure, a pattern also observed 
globally, particularly in fragmented landscapes (Bentsi-Enchill et al., 2022; Chaudhury et al., 
2022; Schwartz et al., 2017). Forest structure was tightly linked to disturbances, both influencing 
and responding to the ecosystem’s disturbance regime and resilience (Mitchell et al., 2023). 
Edge effects emerged as a pervasive factor: forests near edges were less intact than cores, with 
reduced structure, lower AGB, diminished vitality, and fewer trees, particularly where local use 
was higher and natural vulnerability was greater. Fragmentation can intensify these effects, 
threatening carbon storage, successional stages, tree architecture, and wood anatomy (Nunes et 
al., 2023; Ordway & Asner, 2020; Silva Da Costa et al., 2020; Tabarelli et al., 2008). 
 
3.5 Relevance and novelty 
The relevance of this PhD lies in filling critical knowledge gaps for tropical forests in Western 
Africa, a region that remains comparatively under-studied. The findings are important because 
they both align with global observations and generate region-specific insights: they document 
biodiversity and forest structure in poorly studied landscapes, provide ground-truth data to 
improve satellite-based AGB estimates, and reveal patterns of degradation, edge effects, and 
structural complexity. In this way, the work establishes a foundation for further studies in 
Western African tropical forests, current and future analogous landscapes worldwide through a 
“space-for-time” perspective and strengthens the evidence base for informed forest policy and 
management. 
Its novelty stems from the generation of new high-resolution data and the application of 
innovative methods. By applying TLS for the first time across forests in Togo, Benin, Nigeria, 
and Cameroon, this work provides structural insights that were previously unavailable. Several 
forest patches were mapped for the first time, and some methodological approaches were 
pioneered within the project (cf. Iheaturu et al., 2025; Wingate et al., 2022, 2023, 2024). 
Together, these advances contribute both new knowledge and methodological innovation to the 
field of tropical forest research. 
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3.6 Outlook 
3.6.1 Future research 
The work conducted in this PhD has significantly advanced our understanding of the selected 
forest patches, opening an avenue for further research. 
Methods & Technology: Future steps could begin at the finest scale by climbing trees to scan 
canopies, which can reduce occlusion and provide unprecedented detail on canopy architecture, 
leaf distribution, and canopy biodiversity (D’hont et al., 2025; Lowman et al., 2013). At slightly 
larger scales, TLS captures dense point clouds near the sensor, and integrating these with data 
from UAVs (Coops et al., 2025; Terryn et al., 2022) allows sensors above and below the canopy 
to complement each other, revealing more comprehensive forest structure (Schneider et al., 
2019). Moving to even larger spatial scales, airborne laser scanning (e.g., from planes) can 
expand insights across landscapes. 
Tools for segmenting point clouds continue to improve, and future research could explore 
recently developed algorithms that promise to increase the accuracy of segmentation (e.g., 
Wielgosz et al., 2024; Wilkes et al., 2023; Xiang et al., 2024) and tailor these for African forest 
characteristics. Further research could focus on segmentation of point clouds into smaller units, 
such as individual leaves (Song et al., 2025) and tree species identification based on point clouds 
(Åkerblom et al., 2017; Puliti et al., 2025). Accurate, tree-wise point clouds could also be used 
to refine allometric equations (Clark & Kellner, 2012). 
Biomass & Carbon: A critical challenge in future research will be validating different methods 
for estimating forest AGB. Since forest AGB is never directly measured but estimated with 
varying accuracy (Réjou-Méchain et al., 2019), perfect validation data remains elusive. 
Quantifying uncertainty from start to finish is an ongoing challenge (Chave et al., 2004; Réjou-
Méchain et al., 2019). To improve the accuracy of standing carbon estimates, additional wood 
density data (Clark & Kellner, 2012) and wood carbon concentrations (Martin et al., 2018) will 
be needed. Looking ahead, it will also be important to expand carbon research beyond 
aboveground biomass to include belowground pools (roots, soils) and necromass (deadwood, 
litter), and other essential life elements such as nitrogen and phosphorus. 
Monitoring & Visualization: Based on our research, a monitoring system could be established 
to measure forest characteristics over time (e.g., Coops et al., 2025), providing insights into the 
dynamics of forest patches under various climate change and governance scenarios. Creating 
virtual forest environments based on measured data could enhance decision-making and help 
visualize forest development (Holm & Schweier, 2024; Murtiyoso, Holm, et al., 2024). 
Standardized monitoring protocols could also contribute to validating satellite imagery (Chave 
et al., 2019), such as that from the recently launched BIOMASS satellite (European Space 
Agency, 2025). 
Biodiversity & Genetics: Further topics to be explored include biodiversity, genetics, and 
economics. Biodiversity hotspots are predicted for Western African forests, but samples remain 
limited (Bâ et al., 2012; Lücking et al., 2014; Wagner, 2019). Small life forms, such as insects, 
lichens, and fungi, are essential for ecosystem functions like organic matter processing and 
nutrient cycling (Crespo-Pérez et al., 2020), yet their roles in forest fragments remain largely 
unknown. 
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Forest fragmentation and the spatial isolation of patches also affect genetic diversity. Trees have 
high genetic diversity due to their longevity, but reduced pollinator mobility limits cross-
pollination, leading to decreased diversity (Finkeldey, 2011). This diversity is often 
underestimated but is critical for adaptation to climate change (cf. Aguirre-Gutiérrez et al., 2025; 
Dawson et al., 2014; Finkeldey, 2011). 
Economics: From a socio-economic perspective, forests can be seen as a portfolio of land-use 
options (Knoke & Huth, 2011). In tropical regions, forests are often perceived as low-profit land-
use areas and converted into agriculture (Pouliot et al., 2012; Wunder, 2001). How forests can 
be managed sustainably—ecologically, socially, and economically—remains an open question 
(Knoke & Huth, 2011; Kotru & Sharma, 2011) with solutions likely to emerge locally (Garrett 
et al., 2024; Gbedomon et al., 2016). 
Resilience & Thresholds: Gaining a deeper understanding of the thresholds of resilience in 
small forest remnants remains crucial. Future studies should examine conditions under which 
regeneration becomes unlikely (Ghazoul et al., 2015), the longevity of trees and forests under 
changing land use and climate (cf. Aguirre-Gutiérrez et al., 2025), and how spatial configuration 
influences ecological pressures at the forest edge. 
 
3.6.2 Call to action 
From a social-ecological perspective, the findings of this PhD highlight the urgent need to 
integrate ecological and community considerations in forest management. Quantifying AGB and 
carbon stocks in forest patches provides a strong evidence base for initiatives such as carbon 
compensation programs, which could support both conservation and local livelihoods (Jones, 
2024; Turia et al., 2022). However, the dynamics and risks of introducing financial incentives 
must be carefully evaluated, and programs should follow standardized guidelines to ensure 
additional and sustainable carbon storage (McDonald et al., 2023). 
Interview data revealed that local perceptions and forest-use practices vary widely: communities 
maintaining sacred forests were highly aware of degradation risks, whereas areas with intensive 
resource use often undervalued forest integrity. These insights suggest that interventions—such 
as promoting non-destructive forest-related activities—should be tailored to community context, 
building on existing knowledge, traditions, and economic realities. 
The ecological findings also point to structural vulnerabilities in the forests. Edge effects, 
fragmentation, and localized degradation indicate that sustainable management should include 
measures such as establishing buffer zones, reconnecting fragmented habitats, and restoring 
degraded areas (Bastin et al., 2019; Ebreg & De Greve, 2000; Zeller et al., 2020). Integrating 
these measures with socio-economic strategies can enhance both ecological resilience and 
community engagement. Implementation will require careful planning, particularly under 
conditions of limited financial resources and governance constraints. Together, these evidence-
based recommendations demonstrate how high-resolution ecological data, innovative methods, 
and social insights can guide targeted conservation actions, ensuring the long-term preservation 
of Western Africa’s tropical forest patches. 
  

--------------------------
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4. Reflections 
4.1 Strengths and limitations 
The research conducted during this PhD as part of the SUSTAINFORESTS project contributes 
valuable data to a region that is often underrepresented in scientific forest studies. The four 
countries—Togo, Benin, Nigeria, and Cameroon—are frequently overlooked in global data 
collections. Despite the challenging conditions, working in these countries and providing open-
access data for the global community is a key strength of this project. 
Strengths: A team of seven researchers, each focusing on a specialized topic, worked on the 
same forest patches within the same time frame. The complementarity of expertise was 
invaluable in understanding forest dynamics from multiple perspectives. This approach was 
supported by a wide range of methods, including manual forest inventories, TLS, UAV, 
qualitative and quantitative interviews, satellite imagery, and literature reviews. The team 
included members from both the studied countries and Switzerland, fostering an international 
and intercultural working environment that enhanced our understanding of contexts in both the 
global North and South. 
Limitations: As Heraclitus (6th-5th century BC) observed, “One cannot step into the same forest 
twice.” Forests are dynamic systems undergoing cyclical processes (Binkley, 2021; Ghazoul et 
al., 2015). A key limitation of this PhD is that field data were collected only once during the dry 
season. Aside from historical satellite imagery and interviews about past and future changes, our 
ecological dataset represents a snapshot in time, reflecting the time- and resource-intensive 
nature of fieldwork. We revisited sites during the results exchange campaign, which allowed us 
to ground-truth and reassess interpretations, but systematic long-term data remain lacking.  
Another limitation is sampling scale. We gathered data from nine forests, with an average of 
twelve plots per forest. While adequate for representation, larger datasets would improve 
statistical explanatory power (Ferretti et al., 2024), and allow for broader extrapolation. 
In terms of methods and technology, we applied cutting-edge but affordable tools for our project. 
More advanced TLS and UAV systems with higher point cloud density could have provided 
richer data in less time. Our methodological choices reflected a careful balance between financial 
constraints, expert advice, and field realities. 
Finally, gender bias must be acknowledged: 90% of interview insights are based on male 
respondents. In the studied societies, males often speak for the household, but this social pattern 
may have limited female perspectives on forest management. 
 
4.2 Positionality 
I was born and raised in Switzerland, one of the wealthiest countries on earth (Federal 
Department of Foreign Affairs (FDFA), 2024). My skin color resembles white, and I identify as 
male, both attributes are usually associated with privileges. Over the course of my life, I have 
spent just 1.5 years in tropical developing countries, with a maximum of six months during the 
fieldwork for this PhD. I am keenly aware that I cannot fully grasp the realities faced in these 
places, due to significant economic, cultural, and linguistic differences. For example, I have 
never depended on forests for my livelihood and tend to view them mainly for their aesthetic 
value. I do not fully understand the concept of Vodún, sacred forests, and the associated 
worldviews. I recognize my tendency to compare Western African forests and forest 
management practices with those in Switzerland, which is not necessarily adequate. 
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My presence in Western Africa often drew attention. People frequently assumed I was leading 
the project and associated me with money and power due to my skin color. This is 
understandable, given the historical legacy of colonization and the slow process of 
decolonization, as well as the persistent imbalances of wealth and power. I did not conduct 
interviews myself, nor was I involved in the initial negotiations with communities to avoid 
distorting the presentation of our project and the ongoing negotiations. While I appreciated 
integrating myself into local societies by adapting to customs and learning the basics of the local 
language, I am aware of my privileges, such as access to funding, mobility, and education. 
Beyond personal reflection, I also participated in workshops on positionality and the ‘theory of 
change’ (Belcher et al., 2020). In these settings, we actively examined how our own positions, 
interests, and assumptions influenced both research processes and outcomes. This collective 
engagement led to the development of a manuscript (Ifejika Speranza et al., submitted), further 
formalizing these considerations. 
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ABSTRACT 
Tropical forests face alarming rates of deforestation and degradation, driven mainly by agricultural land expansion. West 
Africa is particularly affected by widespread forest fragmentation, leaving behind isolated forest patches in an agriculture­

dominated landscape. Forest fragmentation and isolation can impact forest structural complexity, biomass, and species 

richness through various edge effects. The consequent loss of biodiversity and ecosystem services is expected to be more 

prominent in small and fragmented forests and closer to forest edges. We used terrestrial laser scanning to investigate patterns 
of forest structural complexity in 84 plots across seven forest patches in Togo, Benin, Nigeria, and Cameroon. We quantified 

forest structure using the stand structural complexity index (SSC!) and related it to tree species composition, distance to 

edge, and the modeled potential SSC! of primary forests as an ecological reference value to identify forest degradation. Spatial 

variability of SSC! within forest patches and plots indicates various areas of disturbance, ultimately accumulating to forest 
degradation. The overall trend suggests an increase in structural complexity, tree height, basal area, and tree species richness 

with increasing distance to the edge. However, these correlations were only significant for some of the forest patches analyzed. 

Comparison with the ecological reference value showed significant deviations for two forests, indicating degradation of for­

est structural integrity. Our results confirm and challenge theories of ecological dynamics in tropical forest patches in West 

Africa. Quantifying structural integrity helps to locate degradation and preserve the last remaining forest patches crucial for 
biodiversity, climate regulation, and forest products. 

RESUME 
Les forets tropicales sont confrontees a des !aux alarmants de deforestation et de degradation, principalement dus a !'expansion des 

terres agricoles. L"Afrique de l'Ouest est particulierement touchee par la fragmentation generalisee des forets, qui laisse derriere 

elle des tlots forestiers isolees dans un paysage domine par !'agriculture. La fragmentation et l'isolement des forets peuvent avoir 
un impact sur la complexite structurelle des forets, la biomasse et la richesse des especes par le biais de divers effets de lisiere. La 

perte de biodiversite et de services ecosystemiques qui en resulte devrait etre plus importante dans les petites forets fragmentees 
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et plus proches des lisieres. Nous avons utilise le scanneur laser terrestre pour etudier Jes schemas de complexite structurelle des 

forets dans 84 placeaux reparties sur sept ilots forestiers au Togo, au Benin, au Nigeria et au Cameroun. Nous avons quantifie la 
structure forestiere a !'aide de l'indice de complexite structurelle des peuplements (!CSP) et l'avons associe a la composition des es­

peces d' arbres, a la distance a la lisiere et a l'I CSP potentiel modelise des forets primaires en tant que valeur de reference ecologique 

pour identifier la degradation forestiere. La variabilite spatiale de J'indice de complexite structurelle des peuplements au sein des 

placeaux et des ilots forestiers indique diverses zones de perturbation, qui aboutissent finalement a la degradation de la foret. La 
tendance generale suggere une augmentation de la complexite structurelle, de la hauteur des arbres, de la surface terriere et de la 

richesse des especes d'arbres a mesure que !'on s'eloigne de la lisiere. Toutefois, ces correlations n'etaient significatives que pour 

certain es des ilots forestiers analysees. La comparaison avec la valeur ecologique de reference a revele des ecarts significatifs pour 
deux forets, ce qui indique une degradation de l'integrite structurelle de la foret. Nos resultats confirrnent et remettent en question 

Jes theories de la dynamique ecologique dans Jes ilots forestiers tropicale en Afrique de J'Ouest. La quantification de l'integrite 
structurelle aide a localiser la degradation et a preserver les dernieres \lots forestiers cruciales pour la biodiversite, la regulation 

du climat et Jes produits forestiers. 

1 I Introduction 

1.1 I Forest Loss, Fragmentation, and Persisting 
Patches in West Africa 

Tropical forests are being cleared at alarming rates globally 
(Schelhas and Greenberg 1996; Hansen et al. 2013; Poorter 
et al. 2021), with annual deforestation rates estimated at 0.5% 
(Achard et al. 2014). In West Africa, forests have declined to 20%-
50% of their 1900-extent (Poorter et al. 2004). Amani et al. (2021) 
identify expanding agriculture driven by human population 
growth as a primary cause. Forested areas are not only shrinking 
but also fragmented into smaller patches (Taubert et al. 2018). In 
Africa, the number of forest fragments, split from larger blocks, 
increased by 45% to 64% million between 2000 and 2010 (Fischer 
et al. 2021). This exponential increase of ever smaller forest 
fragments will soon reach a critical point where a collapse and 
complete disappearance of forest patches could occur (Taubert 
et al. 2018). Fragmentation of forest patches has negative effects 
on biodiversity due to decreased habitat area, decreased connec­
tivity, and increased edge effects (Hill and Curran 2003; Ibanez 
et al. 2014; Taubert et al. 2018). 

Nonetheless, thousands of small forest patches ( < 1000 ha) per­
sist in isolation across the landscape. In Togo, Benin, Nigeria, 
and Cameroon alone, over 400,000 patches have been detected 
(Wingate et al. 2023). These patches, ranging from 0.5 and 
1000 ha large, have at least 30% canopy cover and trees taller than 
5 m (Food and Agriculture Organization of the United Nations 
(FAO) 2016; Wingate et al. 2022). The remaining forest patches 
are vital for their ecosystem services. Local communities rely on 
forest products such as timber, fuelwood, medicinal plants, and 
bushmeat (Poorter et al. 2004), and some patches are valued 
and protected for religious purposes (Alohou et al. 2016, 2017). 
Furthermore, these forest patches are crucial for biodiversity con­
servation (Poorter et al. 2004; Lewis et al. 2015). Vulnerable tree 
species such as Afzelia africana Sm. Ex Pers. and Brachystegia 
nigerica Hoyle & A.P.D. Jones and endangered and endemic spe­
cies such as the red-bellied monkey (Cercopithecus erythrogaster 
Gray) are found only in West Africa's remaining forest patches 
(IUCN 1998, 2016, 2019; Neuenschwander et al. 2015). As long 
as these patches have an intact structure, they play important 
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roles in regulating plant and zoonotic diseases and local climates 
(Sintayehu 2018). However, knowledge about the structural char­
acteristics of forest patches in West Africa is limited. 

1.2 I Structural Complexity of Forests 

The intricate complexity of forests is crucial for their resilience 
to disturbances and their capacity to support biodiversity. Several 
indices have been developed to describe plant material distribu­
tion in three-dimensional space (Coverdale and Davies 2023). 
We use the stand structural complexity index (SSC!) to quantify 
heterogeneity in plant material distribution patterns (Ehbrecht 
et al. 2017). This index calculates the area and dimensions of free 
space between a laser scanner and the nearest plant material in 
various angles (Ehbrecht et al. 2017). SSC! increases with greater 
diversity of tree sizes and crown complementarity (see figure 1 
in Ehbrecht et al. 2021). It is time-efficient for assessing forest 
structure, and a global model of potential SSC! of primary forests 
serves as an ecological reference value (Ehbrecht et al. 2021). By 
subtracting the in situ measured SSC! from this ecological refer­
ence value, we can quantify forest structural integrity. In the ab­
sence of a clear and standardized definition of forest degradation 
(Ghazoul et al. 2015), we define forest degradation as a simplifi­
cation of forest structure compared to the ecologically potential 
forest structural complexity. Consequently, a degraded forest ex­
hibits lower biodiversity and a reduced capacity to provide eco­
system services than the environmental conditions would allow. 

Each forest stand has a unique structure shaped by environ­
mental, biological, and legacy factors (Mitchell et al. 2023). 
Structural complexity correlates well with (i) fauna! biodiver­
sity, including mammals, birds, and invertebrates, (ii) forest 
productivity, carbon storage, canopy height, greenness, and suc­
cessional stage, (iii) microclimate regulation, and (iv) species in­
teractions and animal movement (Coverdale and Davies 2023). 
Stand structural complexity is also linked to forest resilience 
to disturbances (Seidel and Ammer 2023), which is crucial for 
isolated forest fragments in West Africa. The spatial pattern of 
forest structure can indicate forest integrity, identify disturbed 
areas (Ghazoul et al. 2015), and vary between forest edge and 
forest interior. 
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1.3 I Edge Effect and Tropical Forest Structure 

Fragmentation, the division of forest blocks, causes forest patches 
to shrink and become more isolated (Harris 1984), exponentially 
increasing edge lengths and the area affected by edges. Edge ef­
fects that alter forest structure depend on contrasts with surround­
ing land cover, spatial extent, and edge age (Harper et al. 2005). 
Natural edge effects include increased air and soil temperature, 
more sunlight, increased wind exposure, more frequent fires, 
and altered species composition, which can extend several hun­
dred meters into the forest (Harper et al. 2005; Laurance and 
Peres 2006). Anthropogenic resource extraction is more pro­
nounced near edges than in the forest interior, exacerbating nat­
ural edge effects (Olupot and Chapman 2006). Unsustainable 
exploitation of forest resources decreases forest structural integ­
rity by (i) slashing and burning, which opens the forest and cre­
ates gaps, (ii) logging, which reduces plant material, (iii) targeted 
logging of specific species, hindering their reproduction, (iv) over­
hunting seed-dispersing animals, impeding the survival of corre­
sponding tree species (Peres and Palacios 2007), and (v) trampling 
and soil compaction by livestock, hampering regeneration (Faria 
et al. 2009). Tabarelli et al. (2008) report lower tree densities, re­
duced tree diversity, fewer large trees, and fewer saplings close to 
forest edges, leading to decreased stand structural complexity. 

Despite rapidly increasing fragmentation and its ecological con­
sequences (Fischer et al. 2021; Harper et al. 20 05), few studies 
have compared edge effects on forest structure (Echeverria 
et al. 2007; Nguyen et al. 2023) and the impact of distance to 
edge has not been analyzed using the well-established SSC!. 
Quantifying edge effects on forest structural complexity reveals 
the severity of fragmentation on forest structural integrity. This 
study aims to enhance our understanding of the structural com­
plexity of small, edge-influenced forest patches in West Africa 
and their links to forest degradation. We pose the following 
questions: 

1. How does the stand structural complexity index (SSC!) 
vary with fragmentation, connectivity, canopy openness, 
tree height, basal area, number of tree stems, and tree spe­
cies richness? 

We expect that SSC! increases with high connectivity, 
low canopy openness, a high number of tall trees, a high 
basal area, a high tree stem density, and high tree species 
richness but decreases with fragmentation. 

2. How do edge effects impact the SSC! of forest patches? 
• We expect that SSC! decreases toward forest edges. 

3. How does the in situ measured SSC! of the forest patches 
compare with the corresponding ecological reference value? 

We expect intact forest patches where in situ measured 
SSC! equal the corresponding ecological reference value. 

2 I Methods 

2.1 I Study Area 

Two moist semideciduous forests (1. Koui, 2. Ewe-Adakplame), 
two swamp forests (3. Hlanzoun (also known as Lokoli), 
5. Ikot), and three moist forests (4. Iko, 6. Mbangassina, 

7. Ngam-Kondomeyos) were selected across Togo, Benin, 
Nigeria, and Cameroon (Figure 1). According to (Dinerstein 
et al. 2017), the selected forest patches in Togo and Benin fall 
within the Tropical and Subtropical Grasslands, Savannas, 
and Shrublands biome, while those in Nigeria and Cameroon 
align with the Tropical & Subtropical Moist Broadleaf Forests. 
(Tappan et al. 2016) refers to the forests in Togo and Benin 
as Guinean Savanna and those in Nigeria and Cameroon as 
part of the Guineo-Congolian zone. These forests are a subset 
of those identified by Wingate et al. (2022) and contribute to 
ground truthing satellite image-based archetypes in Wingate 
et al. (2023). The seven forests allow us to answer the research 
questions along a latitudinal gradient and gain insights from 
different administrative units. 

These forest patches, surrounded by agriculture, agroforestry, 
and wetlands, have persisted since at least 1975 despite being 
formally unprotected and threatened by anthropogenic land 
use change (Table l; Hansen et al. 2013; Wingate et al. 2022). 
Forest regrowth is negligible (Potapov et al. 2022). Annual 
precipitation ranges from 1000 to 1300 mm in the Guinean 
Savanna and from 1500 to 3000 mm in the Guineo-Congolian 
zone. Annual temperatures average between 22°C and 28°C 
(Hijmans et al. 2005) and the forests are located at elevations 
of 15 to 700 m above sea level (Jarvis et al. 2008). These forests 
host over 300 different tree species, and the most frequent are 
Alstonia congensis Engl. (Apocynaceae), Coelocaryon botryoides 
Vermoesen (Myristicaceae), and Treculia africana Decne Ex 
Trecul (Moraceae). 

Most people in the surrounding areas live on < 1$ per day, 
have only basic formal education, and depend on forest prod­
ucts such as timber, fuelwood, bushmeat, and medicinal plants 
(Neuenschwander et al. 2015). Population growth is high, life 
expectancy averages 59years (United Nations, Department 
of Economic and Social Affairs (UNDESA), Population 
Division 2022), and most people work in the agricultural sec­
tor. Governance structures often face challenges from corrup­
tion (Ighodaro and Igbinedion 2020) and regional land uses are 
poorly mapped and documented. Consequently, sustainable for­
est management is rarely prioritized, maintaining high pressure 
on forest resources. 

2.2 I Data Collection 

Between September 2022 and March 2023, we established 84 
plots (50 x 50 m2) across seven forest patches, with a minimum 
separation of 50 m between plots (Figure 2). The number of sam­
pled plots per forest varied from 6 to 20, depending on forest 
patch size, forest heterogeneity, resource constraints, and secu­
rity issues. In some cases (e.g., sacred forests), access to sacred 
areas was restricted. Based on remote sensing analysis and local 
knowledge, we believe our sampling effectively captured the 
features of the studied forests. 

Five single scans (resolution: 43.7 Mpts, 0.035°/pt) were taken 
per plot using a terrestrial laser scanner (TLS, FARO M70), po­
sitioned on a tripod at the corners and center of each plot. The 
TLS emitted laser beams in 360° horizontal and 300° vertical 
directions. The laser beams reflected off plant material, such 
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FIGURE 1 I Locations of the seven selected forest patches, where forest structural integrity was assessed by measuring stand structural com­

plexity with terrestrial laser scanning. The forest patches are in the Tropical & Subtropical Grasslands, Savannas & Shrublands (light green) and 

the Tropical & Subtropical Moist Broadleaf Forests (dark green) of Togo, Benin, Nigeria, and Cameroon in Africa (marked gray in the inset map). 1. 

Ewe-Adakplame, 2. Hlanzoun, 3. Kaui, 4. Iko, 5. Ikot, 6. Mbangassina, 7. Ngam-Kondomeyos. 

as leaves, branches, and stems, and were received by the TLS 
(Figure 3). Each reflected and received laser beam is saved as a 
point with its position information. Concurrently, we surveyed 
all trees with a diameter at breast height (DBH) ~10cm, mea­
suring DBH with a tape and identifying species together with 
local botanists and national herbaria. 

2.3 I Data Analysis 

2.3.1 I Forest Structural Complexity Analysis 

In the SCENE software (version 2023.0.1, FARO Technologies 
Inc. 2023), the scan data were downsampled by a factor of 4 and 
exported in .xyz format. The stand structural complexity index 
(SSCI) was calculated by constructing polygons of open space 
around the scanner position, connecting points where plant ma­
terial reflected the laser beams. SSCI is defined as 

SSCI = MeanFrac 1n(ENLJ 

where MeanFrac refers to the mean of the fractal dimension index 
of 1280 polygons surrounding the scanner, derived from the perim­
eter and area of these polygons. ENL refers to the effective number 
of layers, quantifying 20 cm voxels filled with plant material in 1 m 
layers from the scanner to the canopy top (Ehbrecht et al. 2017). 
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The higher the number of canopy layers, the denser the canopy 
packing, and the more heterogeneous the plant material distribu­
tion, the higher is the resulting SSCI (see also Ehbrecht et al. 2016, 
2017). SSCI, canopy openness, and maximum tree height were cal­
culated using the code from Ehbrecht et al. (2017) in R (version 
2023.06.0, R Core Team 2019). In QGIS (version 3.28.7-Firenze, 
QGIS Development Team 2023) GPS positions were merged with 
SSCI values for the plots. The Shapiro-Wilk test was used in R 
to assess data distribution; correlations between SSCI and other 
forest characteristics were tested, and a one-way analysis of vari­
ances (ANOVA) was applied to determine significant differences 
between the forests. Linear mixed-effects models were applied to 
account for the random effects of the individual forests (single fac­
tor), utilizing the lme4 and lmerTest R-packages (Bates et al. 2015; 
Kuznetsova et al. 2017). Among four tested variations (fixed in­
tercept and fixed slope, fixed intercept and varying slope, varying 
intercept and fixed slope, varying intercept and varying slope) 
the model with the lowest Akaike information criterion was re­
tained (Bozdogan 1987) and model fit was assessed by Restricted 
Maximum Likelihood (REML). Ehbrecht et al. (2021) modeled a 
global distribution of potential SSCI by extrapolating values from 
279 scanned plots with various environmental datasets from other 
studies. This dataset (spatial resolution: 30arc sec), indicating the 
potential SSCI under current environmental conditions without 
human influences, served as a baseline and ecological reference 
for quantifying forest degradation. 

Biotropica, 2025 



 

60 
 

TABLE I I Characteristics of the seven forest patches studied in Togo, Benin, Nigeria, and Cameroon. The column headers without sources indicate own measurements and field observations. 

Soil 
(International 
Union of Soil 

Sciences (!USS) 
Working 

Coordinates Group World 
(WGS84, Measured Reference Base 
Latitude/ forest Nmnber Vegetation for Soil Resources Surrounding 

Nr. Country Forest name Longitude) area (ha) of plots type Governance type (WRB) 2015) landcover 

Togo Koui 0°43'12"/8°15'36" 20 6 Moist Sacred, traditionally Acrisol Settlement/ 
semideciduous protected forest Agriculture/Savanna 

forest 

2 Benin Ewe-Adakplame 2°34'12"/7°28'12" 220 18 Moist Sacred, traditionally Acrisol/Lixisol Settlement/ 
semideciduous protected forest, Agriculture/Savanna 

forest contested ownership 

3 Hlanzoun (also 2°15'36"/7°3'36" 680 20 Swamp forest Sacred, traditionally Acrisol/Gleysol/ Settlements/ 
known as Lokoli) protected forest Lixisol Agriculture/Wetlands 

4 Nigeria Iko 8°15'0"/5°35'24" 1160 14 Moist forest Community-based Acrisol Agriculture/ 
forest management Agro forestry 

5 Ikot 7°53'24"/4°39'36" 1120 11 Swamp forest Family-owned forest Acrisol/Cambisol/ Settlement/ 
Fluvisol Agriculture/Water 

6 Cameroon Mbangassina 11 °35'24"/4 °38'24" 160 7 Moist forest Family-owned forest Ferralsol Agriculture/ 
Agroforestry 

7 Ngam- 11°49'48"/3°2'24" 400 8 Moist forest Community-based Ferralsol Wetlands/ 
Kondomeyos forest management Agro forestry 
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FIGURE 2 I Sampling plots distributed in the forest ofKoui, Togo, to 

study forest structural complexity. Blue points indicate scan positions, 

white lines indicate distance to edge, pink squares symbolize study 

plots, and the orange line demarcates the forest patch. Maps of all the 

forests are available in the Data Sl. 

2.3.2 I Forest Edges Analysis 

The seven forests were either never mapped before, mapped at a 
coarse scale inadequate for forest edge analysis (spatial resolution 
of 90m by Wingate et al. 2022), or mapped using different meth­
ods years ago (Dan 2009; Houngnon et al. 2021). In Google Earth 
Engine (Gorelick et al. 2017), a supervised classification was per­
formed with Sentinel S2 imagery for the period between March 1st 
2022 and March 1st 2023 to differentiate between forest and non­
forest areas. For Iko and Ikot, Landsat 8 provided better results 
due to nearby agroforestry and plantations. The analysis achieved 
high overall accuracies (OA) of 0.92 (Kaui), 1 (Ewe-Adakplame, 
Hlanzoun), and 0.96 (Iko, Ikot). However, for Mbangassina and 
Ngam-Kondomeyos, which are embedded in agroforestry and 
wetlands, supervised classification with satellite data was inaccu­
rate (OA: 0.58, see Code Sl.3). Consequently, GPS data of a tracked 
walk along the forest edge were used to determine the forest pe­
rimeter. In QGIS (QGIS Development Team 2023), the 'shortest 
line between features' -function was employed to calculate the dis­
tance between each plot and the forest edge. 

The fragmentation index per forest was calculated by dividing 
the area within 100 m of the edge by the total forest area (Fischer 
et al. 2021). Thus, a greater area near the edge results in a higher 
fragmentation index, which ranges from O to 1. Connectivity 
was determined by assessing tree cover within a 1 km buffer sur­
rounding the forests. A higher number of trees in this buffer in­
dicates greater connectivity, signifying that the forest patch is less 
isolated. Connectivity is expressed in percent. 

2.4 I Tree Composition 

The number of trees (> 10 cm DBH) per plot was scaled up to 
a per-hectare basis for comparison purposes. The diameter at 
breast height was used to calculate total basal area for each plot, 
serving as a proxy for standing tree volume and aboveground 
biomass (Slik et al. 2010). Tree species richness was assessed by 
counting the number of different tree species per plot, adjusted 
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for the number of trees, using rarefaction and extrapolation 
methods (Chao et al. 2014) implemented in the iNEXT R-package 
(Hsieh et al. 2024). Among the 342 tree species identified across 
the seven forests, 15 (4%) were classified only to the genus level. 

3 I Results 

3.1 I Characterization and Variation of Forest 
Structure of the Seven Forest Patches in Togo, 
Benin, Nigeria, and Cameroon 

The calculated fragmentation index ranged from 0.2 in Ngam­
Kondomeyos to 0.8 in the very small (20ha) forest of Kaui, 
and the larger (220ha) but disturbed forest of Ewe-Adakplame 
(Figure Sl, panel 1). Forest fragmentation index decreased, and 
connectivity increased toward the equator and the Congo basin. 
While Kaui and Ewe-Adakplame were rather isolated in a land­
scape with few trees around the forests, Mbangassina was em­
bedded in agroforestry, and Ngam-Kondomeyos was surrounded 
by agroforestry and wetlands, leading to a high connectivity 
(Figure Sl, panel 2). The ecological characteristics of the two 
groups of climate-mediated vegetation (moist semideciduous 
forest and moist forest) and the group of soil-mediated vegeta­
tion (swamp forest) were well distinguishable (Figure Sl, panels 
3 to 9) and several parameters correlated with latitude. Kaui and 
Ewe-Adakplame had lower SSCI, higher openness, lower can­
opy height, lower maximum stem diameters, lower total basal 
area, fewer trees, and fewer tree species per plot compared with 
Ikot, Mbangassina, and Ngam-Kondomeyos. The swamp forests 
of Hlanzoun and Ikot were characterized by smaller trees ( once 
only reaching 13m height), smaller diameters, and fewer species 
(once only reaching 4 species, Figure Sl, panels 5, 6, 9). 

Stand structural complexity index correlated significantly neg­
atively with fragmentation (r= -0.86, p < 0.05), but not with 
connectivity (r=0.59, p =0.16, Figure S2). Further, SSCI and 
canopy openness had a negative correlation (t = -6.64, p < 0.001). 
No significant effects on SSCI were found for tree heights, basal 
area, number of trees per hectare, and tree species richness 
(Figure 4). Surprisingly, SSCI decreased with the number of trees 
in Mbangassina (r=-0.83, p<0.05) when analyzed by itself. 

3.2 I Impact of Edge Effect on Forest Structure, 
Tree Height, and Canopy Openness 

Across all the forests, several structural parameters were sig­
nificantly related to distance to edge (Figure 5). SSCI, basal 
area, and number of trees per hectare increased significantly, 
while canopy openness decreased toward the forest interior. No 
significant trend was found for tree height and species richness. 

For individual forests, SSCI did not increase significantly with 
distance to edge. However, Hlanzoun (n=20) showed signifi­
cant edge effects in canopy height (r= 0.62, p < 0.005) and basal 
area (r=0.56, p<0.05). Kaui (n=6) showed significantly more 
tree species richness toward the forest interior (r= 0.93, p < 0.01). 
Ewe-Adakplame (n = 18) showed a significantly higher number 
of trees toward the forest interior (r= 0.48, p < 0.05) and higher 
tree species richness close to the edge (r=-0.77, p < 0.001). Iko, 
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FIGURE 3 I The terrestrial laser scanner emits laser beams, which 
are reflected by trees and received again by the scanner, allowing de­
tailed measurements of forest characteristics. The color gradient shows 
the tree height (z-axis) from blue (0 m) to red (40 m). 

Ikot, Mbangassina, and Ngam-Kondomeyos did not show sig­
nificant edge effects. Among the seven forests, Ewe-Adakplame 
had a significantly high standard deviation of SSC! (SD= 1.2, 
p < 0.05) and SSC! ranged between 2.7 and 7.8 across this forest. 

3.3 I Comparing Measured SSCI With 
Potential SSCI 

The measured SSC! of the forest plots correlated moderately 
(r= 0.46, p < 0.00l)with the modeled and potential ecological ref­
erence value by Ehbrecht et al. (2021, Figure 6). However, Ewe­
Adakplame (Ll=-1.3, p<0.001) and Ikot (Ll=-1.7, p<0.001) 
were significantly below the ecological reference value. Measured 
SSC! ranged between 3 and 8 and thus varies more per forest than 
the modeled SSC! ranging between 5 and 8 (Figure 6). 

4 I Discussion 

4.1 I Forest Characteristics Reflect Vegetation 
Types and Biomes 

We report results from a field campaign in tropical forest 
patches across Togo, Benin, Nigeria, and Cameroon, where we 
investigated forest stand structural complexity in field plots 

using terrestrial laser scanning and traditional field inventories. 
We can confirm our hypothesis that the higher the SSC!, the 
lower the forest fragmentation index and the lower the canopy 
openness. However, the relationship between SSC! and connec­
tivity, tree height, basal area, tree stem density, and tree species 
richness is not significant, highlighting the challenges of in­
ferring and generalizing ecological functions from TLS-based 
structural metrics (Coverdale and Davies 2023). Our data align 
partially with previously published trends, such as increasing 
structural complexity with more precipitation toward the equa­
tor (Ehbrecht et al. 2021). 

However, in the secondary forest of Mbangassina, SSC! de­
creases with more trees per plot. This contradicts the basic as­
sumption behind SSC! stating that the more plant material, the 
higher the SSC! is (Ehbrecht et al. 2017). Successional stages 
and disturbance legacies may create a dense understory, cap­
tured by the TLS but excluded in the tree inventory that only 
captures trees with> 10cm DBH. Additional data on stand age, 
remnant trees, and disturbance history might help explain the 
unexpected negative relationship between SSC! and the num­
ber of trees. 

4.2 I Impact of the Edge Effect on Forest Structure 

Distance to the edge significantly affects SSC!, canopy 
openness, basal area, and number of trees, confirming our 
hypothesis of edge effects across diverse forest patches 
and management types (Harper et al. 2005; Laurance and 
Peres 2006). Our results suggest gradual edge effects within 
600 m from the forest edge, while Ordway and Asner (2020) 
report effects within 200 m, and Nguyen et al. (2023) only 
beyond 200 m. Forest edge effects are complex and vary with 
species composition, topography, and current and past envi­
ronmental conditions (Ibanez et al. 2014). 

Smaller, fragmented forests with relatively more area close to 
the edge show stronger and steeper gradients in structural pa­
rameters toward the interior. Additive effects from several edges 
(Harper et al. 2005), the form and age of edges, and the sur­
rounding landscape play important roles, which are hard to dis­
entangle (Ghazoul and Sheil 2010; Nguyen et al. 2023). In Kaui, 
Ewe-Adakplame, and Hlanzoun, at least one structural variable 
correlated with distance to edge, likely due to low connectiv­
ity and high isolation. Forests embedded in agroforestry with 
a higher connectivity (> 50%) show no significant edge effects, 
highlighting the importance of landscape connectivity (Zeller 
et al. 2020). 

Surprisingly, in Ewe-Adakplame, the number of trees increases 
toward the forest interior, while tree species richness decreases 
toward the interior. The plots close to the edge are therefore 
sparser but more diverse. Edge effects can alter tree composi­
tion, promoting pioneer species and suppressing shade-tolerant 
species (Faria et al. 2009; Harper et al. 2005). Ewe-Adakplame's 
advanced fragmentation state (Map Sl.3) and overlapping edge 
effects could explain these patterns. 

Spatial variability of SSC! is high in Ewe-Adakplame, due to 
disturbances like fire, logging, cattle trampling by livestock, 

7 of 13 



 

63 
 

t= -7.1, p < 0.001 t = -0.1, n.s. t = 0. 25, n.s. 

8 8 . "' .. r• ··"'· . .. : 
0 6 6 ... _,_. . .J. •• 
(/) -.-Ji .. ;---.------
(/) . . ~ ,. 

• :•. 4 4 .. , 
10 20 30 40 50 60 

.. . . .. . 
20 30 

. 
40 50 

. . . . . . 
Canopy openness (%) Tree heights (m) 

10 20 30 40 50 

Basal area ( m2/ha) 

t = 0.4, n.s. t = -0.18, n.s. 

8 8 Forest 

.:• .... ' . . . .. ' . . -~ . 
~~--t':. - ; -.- - - - - - - - -

• Koui 

• Ewe-Adakplame 

• lko .. : . .... 
4 "' • .. -... 

Mbangassina 

• Ngam-Kondomeyos 

• Hlanzoun 

• lkot 
200 400 600 50 100 150 
Number of trees {/ha) Tree species richness per plot 

FIGURE 4 I The relationship between stand structural complexity index (SSC!, y-axis) and canopy openness, tree heights, basal area, number 
of trees, and tree species richness (y-axis) is shown for plots across seven forest patches (colors). The characteristics of moist semideciduous forests 

(Kaui, Ewe-Adakplame), moist forests (Iko, Mbangassina, Ngam-Kondomeyos), and swamp forests (Hlanzoun, Ikot) are often clustered. n.s. indi­
cates nonsignificant relationship. 

hunting pressure on seed-dispersing animals, invasive spe­
cies (e.g., Chromolaena odorata (L.) R.M.King & H. Rob.), and 
liana infestations (Houngnon et al. 2021; field observations). 
These disturbances alter forest structure, thereby increasing 
SSC! variation. However, species loss and neophytes may also 
homogenize forest structure (Ghazoul et al. 2015). Small-scale 
disturbances may go undetected between plots, while large­
scale disturbances affecting the whole forest require tempo­
ral data. 

4.3 I Forest Structural Integrity 

Our data allows to assess forest structural integrity by compar­
ing measured SSC! with the potentially highest SSC! of a pri­
mary forest in the same place (Ehbrecht et al. 2021). Deviations 
between measured SSC! and ecological reference value arise 
because of model limitations or when the forests are recovering 
from disturbances. The ecological reference value has a spatial 
resolution of 30 arc sec and was built in 2020. Therefore, local 
features, such as swamps, or spatio-temporal dynamics, such as 
regeneration, are not considered or simplified. The ecological 
reference value does not account for human management, and 
we can conclude that deviations between measured SSC! and 
the model are mainly due to anthropogenic disturbances when 
found on a large spatial scale (Karam et al. 2022). Of the seven 
assessed forest patches, five have an SSC! close to their poten­
tial. This confirms our hypothesis that these forests are struc­
turally intact. 
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However, the forest of Ewe-Adakplame is significantly below 
its potential. Indeed, Ewe-Adakplame is highly fragmented 
(0.8, Map Sl.3) and not well connected (20%). Several fires re­
duced its area in the last 20years (Chuvieco et al. 2018; Wingate 
et al. 2022) with losses peaking in the last 3years (Wingate 
et al. 2024). Contested forest ownership negatively affects forest 
management and, with illegal charcoal production, increases 
pressure on forests. These issues, linked with social, economic, 
and political insecurities and open conflicts, can accelerate for­
est degradation (Kouassi et al. 2022). 

The forest of Ikot is significantly below its potential SSC!. This 
could be due to the high demand for fuelwood from the popula­
tion of the neighboring communities and the city of Eket. Half a 
million people live in the 10 km surrounding Ikot forest (World 
pop.org, 2020) and demand for fuelwood is particularly high 
because fuelwood alternatives are not fully accessible in many 
low-income societies (Ebe 2014). The deviation between mea­
sured and potential SSC! could also be explained by an overesti­
mation of the potential SSC!. Potential SSC! in the region oflkot 
is modeled with increased uncertainty (95% confidence interval 
> 1, Ehbrecht et al. 2021). 

The forests with an SSC! close to the ecological reference value 
are often not easily accessible. Inaccessibility can result from 
(i) topography, as seen in Hlanzoun and Ngam-Kondomeyos, 
where wetlands and rivers prevent easy access to the forest 
and its resources, (ii) religious restrictions, as in Kaui, where 
the sacredness of the forest is well-respected and some parts 
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FIG URE 5 I Several structural parameters, such as SSCI, basal area, and number of trees (y-axis) increase significantly with distance to the forest 
edge (x-axis) in plots across seven forest patches (colors). Canopy openness decreases significantly with distance to the forest edge. The relationship 

is not significant for tree heights and tree species richness per plot. 

are not accessible at all, and (iii) limited infrastructure, as 
in Iko and Mbangassina, where deteriorated roads and long 
distances to economic centers limit forest exploitation. These 
findings align with studies reporting higher forest integrity 
where access is restricted by topography (Freitas et al. 2010), 
religion (Lynch et al. 2018), and infrastructure (Ahrends 
et al. 2010). 

We used the ecological reference value (Ehbrecht et al. 2021) to 
assess forest structural integrity. Skewed DBH distributions, miss­
ing DBH classes, or particular thresholds in canopy openness and 
basal area can also indicate forest degradation (Vasquez-Grand6n 
et al. 2018). However, our data do not show such patterns, and 
thresholds must be set based on intact reference forests in the 
same edaphoclimatic zone. The absence of large commercially 
valuable trees near the edge suggests logging pressure (Ali and 
Wang 2021; Korom et al. 2022). However, in West Africa, large 
trees are sometimes explicitly retained, domesticated, and used for 
medicinal and religious purposes (Atindehou et al. 2022; Fairhead 
and Leach 1996; Nkouam et al. 2017), and pressure on commercial 
tree species varies with market dynamics. 

4.4 I Applying Insights From Forest Structural 
Integrity 

Our data provide ground truth for satellite remote sensing prod­
ucts. Wingate et al. (2023) grouped Kaui and Hlanzoun in an 
archetype, characterized by frequent, severe disturbances, and 
high biomass loss (2010-2018). However, our TLS analysis shows 
both forests are structurally intact, and few disturbances were ob­
served. Field data like ours are essential to validate remote sensing 
products, enabling spatial extrapolation of insights. 

Our results suggest that various governance types can man­
age forests sustainably. Community-based management (e.g., 
Ngam-Kondomeyos), family-owned (e.g., Mbangassina), and 
sacred and traditionally protected forests (e.g., Kaui) maintain 
intact forest structures. However, when governance is disre­
garded (Ewe-Adakplame) or demand and exploitation exceed 
sustainable levels (Ikot), forests degrade, independent of gov­
ernance type. 

4.5 I Study Limitations 

Forest structure can indicate disturbances and degradation. 
However, forest structure is shaped by internal dynamics (e.g., 
species competition) and perturbations of different spatio­
temporal extents (Ghazoul and Sheil 2010). Assessing full deg­
radation requires data on seedbanks and seed viability under 
future climatic scenarios (Ghazoul et al. 2015). Since our data 
were collected once, they offer limited temporal representativ­
ity given forests' daily and yearly cycles (Binkley 2021) and the 
long-term climate change. Spatial representativity is also con­
strained by natural (e.g., swamps) and religious barriers (e.g., 
sacredness). Local edaphic conditions, potentially impacting 
forest structure, were not considered. Still, our study provides 
valuable data and fills a key knowledge gap about the structural 
complexity of forest patches in West Africa. 

s I Conclusions 

Terrestrial laser scanning was applied in seven tropical forest 
patches across Togo, Benin, Nigeria, and Cameroon, alongside 
traditional forest inventory data, to enhance our understanding of 

9 of 13 



 

65 
 

Comparison of measured and potential SSCI 
Ewe-Adakplame and lkot are significantly below the potential SSCI 
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FIGURE 6 I Comparison of the potential stand structural complexity index (SSC!) used as ecological reference value on the x-axis and the in situ 
measured SSC! on the y-axis. Boxplots describe the distribution of points (plots in the field), which are both colored according to the forest. The 
dashed red line indicates where measured and potential SSC! correspond. Ewe-Adakplame (red) and Ikot (purple) are significantly below their po­
tential SSC! (red line). 

tropical forest fragmentation and ecological dynamics in this un­
derstudied region. The forests are Kaui (Togo), Ewe-Adakplame 
and Hlanzoun (Benin), Iko and Ikot (Nigeria), and Mbangassina 
and Ngam-Kondomeyos (Cameroon). Climate- and soil-mediated 
forests exhibited forest characteristics like canopy height, basal 
area, and species richness that vary by biome and latitude. 
Surprisingly, in Mbangassina, forest structural complexity cor­
related negatively with the number of trees, likely due to specific 
successional stages and legacy effects. Edge effects on canopy 
openness, tree height, basal area, and tree species richness were 
found in highly isolated forests, but not in forests that are embed­
ded in agroforestry or wetlands. Small, fragmented forests had 
steeper gradients of characteristics with distance to edge, possibly 
due to additive and overlapping edge effects. Comparison with the 
potential SSC! revealed that Ewe-Adakplame and Ikot are struc­
turally degraded, most likely because of unsustainable manage­
ment and overexploitation of forest resources. The detected edge 
effects call for connecting isolated forest patches and establish­
ing buffering zones around forests; that is, to buffer edge effects. 
Furthermore, assessing forest integrity helps prioritize conserva­
tion projects, which is increasingly important amidst rapid land 
use change and forest degradation in West Africa. Future research 
should also address the temporal aspects of forest degradation and 
socio-economic contexts driving poor forest governance and un­
sustainable management that lead to forest degradation. 
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1 Aboveground Biomass in Seven Tropical Fore st Patches of 

2 Western Africa: Comparison of Manual Inventory and 

3 Terrestrial Laser Scanning 

4 

5 Key message 

6 Aboveground biomass (AGB) increases from forest edge to forest interior in small forest patches 

7 of Western Africa. In plots of 0.25 ha, AGB did not correlate with tree species richness or wood 

8 density. AGB in these unprotected forest patches was lower than in protected forests nearby. AGB 

9 obtained from manual inventory and terrestrial laser scanning correlated moderately. 

10 

11 Abstract 

12 Context 

13 Tropical forests are disappearing and fragmenting, raising concerns about their role as biodiversity 

14 habitats and carbon sinks. In Western Africa, small, unprotected forest patches amidst agricultural 

15 lands provide vital ecosystem services like carbon storage. However, accurately measuring 

16 aboveground biomass remains challenging, and terrestrial laser scanning (TLS) might become an 

17 accurate, non-destructive method. 
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18 Aims 

19 This study explores AGB, its spatial distribution and relationships with ecological determinants, 

20 and compares AGB estimated from manual inventory with those from TLS. 

21 Methods 

22 We established 109 plots and inventoried 9591 trees across seven forests in Togo, Benin, Nigeria, 

23 and Cameroon. AGB was obtained from allometric equations using diameter and tree heights as 

24 well as from segmented point clouds. Plot-level AGB was extrapolated to the entire forest. 

25 Results 

26 AGB in forest patches ranged from 85 to 259 Mg/ha, which is lower than in nearby protected 

27 forests. Forests close to the equator have generally higher AGB, and most forests showed reduced 

28 AGB and wood density close to forest edges. AGB showed no correlation with wood density, 

29 structural complexity, and tree species richness. AGB estimations by manual inventory and TLS 

30 correlated moderately. 

31 Conclusion 

32 Our findings highlight the value of ground-based methods and the need to connect and protect 

33 forests as carbon reservoirs. 

34 

35 Keywords: Allometric equation, Automatic point cloud segmentation, Edge effects, Forest 

36 fragmentation, Tree species richness, Wood density 
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37 

38 1. Introduction 

39 1.1 Forest loss, fragmentation, and persisting patches in Western Africa 

40 Tropical forests are being cleared globally at alarming rates (Schelhas and Greenberg 1996; 

41 Hansen et al. 2013; Poorter et al. 2021). In Western Africa, more than 80% of the 1900 forest 

42 extent has been lost, mainly due to the growing human population clearing forests for agriculture 

43 (Aleman et al. 2017; Curtis et al. 2018; Amani et al. 2021; Akinyemi and Ifejika Speranza 2022). 

44 In addition to deforestation, large contiguous forests have been fragmented into numerous small 

45 patches (Taubert et al. 2018; Traore et al. 2024; Wingate et al. 2022). Between 2000 and 2010 the 

46 number of forest fragments increased by 42% in Africa (Fischer et al. 2021). Fragmented areas are 

47 particularly affected by forest loss (Dangbo et al. 2020) and remaining forest patches are 

48 vulnerable to edge effects, such as fire, desiccation, and altered species composition (Hill & 

49 Cmrnn, 2003; Ibanez et al. 2014; Laurance, 2004; Taubert et al. 2018). 

50 Despite this deforestation trend, thousands of small forest patches ( <1000 ha) persist in isolation 

51 across the Western African landscape and in Togo, Benin, Nigeria, and Cameroon alone over 

52 400,000 patches have been detected in the Guineo-Congolian forest and the Guinea Savanna zones 

53 (Wingate et al. 2023). These patches, ranging between O. 5 and 1000 ha, are characterized by trees 

54 exceeding 5 min height and a canopy cover greater than 30% (Food and Agriculture Organization 

55 of the United Nations (FAO) 2016; Wingate et al. 2022). They are crucial for biodiversity 

56 conservation and climate regulation including carbon storage and sequestration (Lewis et al. 2015). 

57 
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58 1.2Aboveground biomass (AGB) 

59 Tropical forests store the majority of ten-estrial aboveground carbon and are central to climate 

60 mitigation and biodiversity conservation (Chave et al. 2019a; Ameray et al. 2021). Aboveground 

61 biomass (AGB), largely contained in woody compartments of trees (Williams et al. 2013), is 

62 therefore a key parameter for assessing greenhouse gas emissions, timber management, and 

63 ecosystem services. International initiatives such as REDD+ (Reducing Emissions from 

64 Deforestation and forest Degradation and the role of conservation, sustainable management of 

65 forests and enhancement of forest carbon stocks in developing countries), the Kunming-Montreal 

66 Global Biodiversity Framework, and other funding schemes require robust estimates of AGB to 

67 monitor commitments and guide management (Food and Agriculture Organization of the United 

68 Nations (FAO) and United Nations Environment Programme (UNEP) 2020; Convention on 

69 Biological Diversity (CBD) 2021; International Union for Conservation of Nature (IUCN) 2022; 

70 Turia et al. 2022). 

71 In Western Africa, however, most AGB studies have concentrated on large, formally protected 

72 forest blocks or a few commercially important species (Basuki et al. 2009; Chenge and Osho 2018; 

73 Aabeyir et al. 2020; Atsri et al. 2020; Arouna et al. 2021 ). Small and unprotected forest patches 

74 remain unden-epresented, despite their abundance and ecological importance (Wingate et al. 2023). 

75 These patches are particularly exposed to edge effects, including higher tree mortality, windthrow, 

76 and fire, which can substantially reduce biomass (Laurance et al. 1997, 2000; Ordway and Asner 

77 2020; Giancola et al. 2024). Structural changes, such as reduced tree height for a given diameter 

78 (Nunes et al. 2023), and the loss of large animal seed dispersers (Lewis et al. 2015) further 

79 contribute to lower AGB compared to continuous forests. 
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80 Understanding AGB in small forest patches is therefore crucial. They may serve as analogues of 

81 the future landscape if fragmentation continues (Tabarelli et al. 2008; Taubert et al. 2018a), and 

82 their carbon dynamics will determine whether they act as persistent carbon sinks or as sources of 

83 emissions. Yet, temporal trends of AGB in these fragments remain poorly understood and 

84 contested (Wingate et al. 2023). In addition, little is known about how the biomass of these small 

85 forest patches compares with that of other nearby forests in the region, whether larger, formally 

86 protected, or similar in size and management, although this contrast is central for evaluating their 

87 role in regional carbon budgets. 

88 

89 1. 3 Challenges of quantifying aboveground biomass 

90 Quantifying AGB in tropical forests is notoriously difficult due to high species richness, variable 

91 tree allometries, and the presence of very large individuals (Hemp et al. 2017; Cazzolla Gatti et al. 

92 2022; Calders et al. 2022). While destructive harvesting remains the most accurate method 

93 (Ketterings et al. 2001), it is rarely feasible, and indirect approaches such as manual inventories 

94 and remote sensing are commonly used (Clark and Kellner 2012). However, inventorying even a 

95 single hectare of tropical forest is logistically demanding and expensive (Chave et al. 2019a; 

96 ForestPlots.net et al. 2021), and such efforts remain scarce in Western Africa (Harris et al. 2021). 

97 Satellite-derived biomass maps provide valuable regional and global coverage, but their accuracy 

98 is limited by the paucity of representative ground data and by strong structural heterogeneity in 

99 Afrotropical forests (Chave et al. 2019a; Araza et al. 2022). These limitations are particularly acute 

100 in small forest patches, which are often excluded from large-scale inventories and misclassified by 

101 coarse-resolution remote sensing products. As a result, current maps show discrepancies of more 
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102 than 150 Mg ha- 1 in Western Africa (Araza et al. 2022), and the biomass of small patches remains 

103 largely unvalidated. 

104 Emerging technologies such as terrestrial laser scanning (TLS) offer a promising complement to 

105 manual inventories. TLS captures forest structure in three dimensions, providing accurate 

106 estimates of tree size and canopy height without destructive sampling (Calders et al. 2020; Terryn 

107 et al. 2024). While TLS has been tested in temperate and Amazonian forests, its application in 

108 Western Africa is minimal and absent from Togo, Benin, and Nigeria (Momo et al. 2018, 2020). 

109 Forest patches are a particularly relevant test case, as they combine high floristic diversity, 

110 structural heterogeneity, and strong edge effects within small areas, posing both logistical 

111 challenges and opportunities for TLS validation. Moreover, comparing the AGE of these patches 

112 with other regional forests can clarify whether small remnants store carbon proportionally or show 

113 systematic differences across the landscape. 

114 To shed light on aboveground biomass and its quantification in these understudied ecosystems, we 

115 address the following questions: 

116 1. What is the current AGE and carbon in the studied forest patches and how is it spatially 

117 distributed? 

118 • H: We expect that the amounts and spatial patterns of AGE and carbon vary across the 

119 forest patches, indicating environmental and disturbance gradients. 

120 2. Which forest characteristics correlate most with AGE? 

121 • H: We expect basal area, tree height, and wood density to correlate most with AGE. 

122 3. How does the AGE of these patches compare with that of other forests in the region? 

123 • H: We expect to find lower AGE in isolated forest patches as compared to larger forest 

124 areas, due to edge effects. 
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125 4. How does AGE estimated from manual inventory compare to AGE obtained by TLS? 

126 • H: We expect that AGE obtained by TLS will show a positive correlation with AGE 

127 derived from manual inventories across forest patches. 

128 To address this knowledge gaps, we focused on seven forest patches in Togo, Benin, Nigeria, and 

129 Cameroon, spanning diverse forest types and ecological conditions. 

130 

131 1.4 Study area 

132 These patches represent both Tropical and Subtropical Grasslands, Savannas, Shrublands, and 

133 Moist Broadleafforests (Fig. l; Dinerstein et al. 2017; see Table Al for details). These remnants 

134 include semi-deciduous forests (Koui and Ewe-Adakplame), soil-mediated swamp forests 

135 (Hlanzoun, also known as Lokoli, and Ikot), and moist forests (Iko, Mbangassina, and Ngam-

136 Kondomeyos). Together, they capture a broad ecological gradient and taxonomic diversity, with 

137 frequent tree families such as Moraceae (e.g., Treculia ajhcana Decne Ex Trecul), Fabaceae (e.g., 

138 Gilberti odendron dewevrei (De Wild.) J. Leonard), and M yristicaceae (e.g., Pycnanthus angolensi s 

139 (Welw.) Warb.). 

140 Despite lacking formal protection, these forest patches have persisted since at least the 1970s, 

141 surrounded today by croplands, agroforestry systems, and wetlands (Hansen et al. 2013; Wingate 

142 et al. 2022). They span pronounced environmental gradients: mean annual precipitation ranges 

143 from 1000 to 1300 mm in Koui, Ewe-Adakplame, and Hlanzoun, and from 1500 to 3000 mm in 

144 Iko, Ikot, Mbangassina, and Ngam-Kondomeyos; mean annual temperatures lie between 23 and 

145 28 ° C (Hijmans et al. 2005). Elevations extend from 15 m above sea level in Ikot to 700 m in 

146 Ngam-Kondomeyos (Jarvis et al. 2008). Soil types predominantly include Acrisols, Lixisols, and 

147 Ferralsols, with Gleysols and Fluvisols occurring in the swamp forests (International Union of Soil 
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148 Sciences (IUSS) Working Group World Reference Base for Soil Resources (WRB) 2015). 

149 Including such ecologically diverse sites strengthens the spatial coverage of AGB assessments 

150 across Western Africa (Lewis and Pickavance 2024) and provides essential ground-truthing data 

151 for satellite-based forest archetypes (Win gate et al. 2023). 

152 [Insert Fig. I here] 

153 

154 2. Methods 

155 2.1 Data collection 

156 Between September2022 and March 2023, we installed 109 plots each measuring 50 x 50 m across 

157 seven forest patches, following plot size recommendations by Chave et al. (2004) and Duncanson 

158 et al. (2021 ). Within each patch, plots were distributed randomly, constrained by a minimum inter-

159 plot distance of 50 m, accessibility, and human security considerations. To ensure 

160 representativeness, plots were located in internally homogeneous areas (avoiding canopy gaps or 

161 abrupt changes in vegetation structure, composition, and topography). Depending on forest patch 

162 size (20-1160 ha), we installed 6-21 plots per forest to ensure representative coverage. 

163 The manual forest inventory included all trees with a diameter at breast height (DBH) :C:: 10 cm. 

164 Smaller trees, dead logs, lianas, and palms were disregarded in the manual inventory since they 

165 contribute little to AGB (Ali et al. 2019c; Atsri et al. 2020; Duncanson et al. 2021). The position 

166 of each tree was taken with a handheld GPS (Garmin GPSMAP 66i). While occasional device 

167 readings suggested a precision of around ±3 m, actual horizontal accuracy likely varied with 

168 canopy density, generally falling within the 5-10 m range (Garmin Ltd. 2025). DBH was measured 

169 with a diameter tape (0.1 cm precision), individual tree height was estimated with a clinometer, 

170 and tree species were identified with local botanists and later confirmed in national herbaria. 
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171 While various methods exist for installing subplots within a main plot (Bechtold and Scott 2005), 

172 we established a 25 x 25 m subplot in a random comer of each plot (see subplot level 1 in .f.9.9sl_ 

173 and A_g_riculture Organization of the United Nations _(f AO),. 2004).. This approach facilitated 

174 orientation in the dense forests, as two subplot sides coincided with measuring tapes from the main 

175 plot, and the four subplot comers were already marked with colored poles. Within each subplot, 

176 all trees were tagged with unique numbers and registration markers (FARO Technologies Inc. 

177 2017). We scanned the subplot with a terrestrial laser scanner (FARO M70) with 24.2 MPts, 

178 0.044°/pt, and color mode, which took ca. 4.5 min/scan. We followed a continuous chain, always 

179 scanning the markers twice to allow subsequent co-registration (Wilkes et al. 2017; Martin-Ducup 

180 et al. 2021; Tao et al. 2021). Depending on forest density, we conducted approximately 30 scans 

181 per subplot, with scan positions spaced around 6 meters apart (Fig. 2). Additionally, we took five 

182 single scans in the comer and the center of the plots to quantify the stand structural complexity 

183 index (SSCI, Ehbrecht et al. 2017; Hepner et al. 2025). Scans were only taken when there were no 

184 rain, no wind, and no moving people close to the scanner. 

185 [Insert Fig. 2 here] 

186 

187 2.2Data analysis 

188 2.2.1 Manual inventory data 

189 In total, 9,591 individual trees of369 different species were identified. 281 trees (3%) of25 genera 

190 (7%) could only be identified to the genus. To calculate AGB of these trees, the BIOMASS-

191 package (Rejou-Mechain et al. 2017) was run (see also Mo et al. 2023; Ploton et al. 2020) in R 

192 (version 2023.06.0, R Core Team, 2023). Due to the potential inaccuracy of tree heights measured 
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193 with a clinometer, we applied a local allometric model (log2, residual standard error (RSE) = 4.96 

194 m) to adjust the estimates (Rejou-Mechain et al. 2017). Species-specific wood densities from the 

195 Global Wood Density Database (Zanne et al. 2009) were assigned to 5,062 trees (53%), genus-

196 averaged densities to 3,011 trees (31%), and plot averages to 1,518 trees (16%). We applied the 

197 pantropical allometric equation by Chave et al. (2014), which is commonly used in tropical AGB 

198 studies (Cuni-Sanchez et al. 2021; Davies et al. 2021; Zemp et al. 2023, equation 1): 

199 AGBm = 0.0673 * (pD 2 H)°·976 (equation 1), 

200 where AGBm = aboveground biomass (kg) from manual inventory, p = wood density (g/cm3), D 

201 = diameter at breast height (cm), and H = tree height (m). 

202 Subsequently, a Monte Carlo test was applied to quantify error propagation and corresponding 

203 credibility at the plot level (2.5% and 97.5%, Fig. Al). AGBm was converted to carbon by the 

204 factor 45.6% (±0.2), which is the mean for tropical angiosperms (Martin et al. 2018). Species 

205 richness was standardized for differences in tree abundance among plots using individual-based 

206 rarefaction and extrapolation (Chao et al. 2014) implemented in the iNEXT R-package (Hsieh et 

207 al. 2024). Fmther, species richness was estimated from species-abundance data (stem counts per 

208 plot) with datatype = "abundance" and q = 0, providing rarefied, extrapolated, and asymptotic 

209 richness values with associated standard errors. To test the relationships between ecological 

210 determinants of aboveground biomass (AGB), including basal area, tree height, wood density, tree 

211 species richness, number of trees, SSCI, and canopy openness, we applied linear mixed-effects 

212 models. This approach accounted for the random effects of individual forests as a single factor, 

213 using the lme4 and lmerTest R packages (Bates et al. 2015; Kuznetsova et al. 2017). We evaluated 

214 four model variations: fixed intercept and fixed slope, fixed intercept and varying slope, varying 

215 intercept and fixed slope, and varying intercept and varying slope. The model with the lowest 
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216 Akaike information criterion (AIC) was retained (Eozdogan 1987) and model fit was assessed 

217 using Restricted Maximum Likelihood (REML). 

218 

219 2.2.2 Extrapolation from plot to forest 

220 We estimated forest-wide AGE by extrapolating AGEm from the 109 plots (50 x 50 m) using its 

221 relationship with canopy height. First, in QGIS (version 3.28. 7-Firenze, QGIS Development Team, 

222 2023) the minimum bounding geometry function was applied to the coordinates of individual trees 

223 to detennine the position and orientation of each corresponding 50 x 50 m plot (0.25 ha). Then, 

224 zonal statistics was used to get the mean and median of satellite-obtained canopy height (Lang et 

225 al. 2023) and normalized difference vegetation index (NDVI) of the corresponding period (Planet 

226 Labs PEC 2022) for each plot. In R (R Core Team 2023), correlations were tested between AGEm 

227 and satellite-obtained canopy height and NDVI. AGEm correlated stronger with median canopy 

228 height (r=0.8, p<0.001) than with NDVI and mean canopy height. This suggests that the median 

229 better reflects typical canopy structure by reducing the influence of rare emergent trees that may 

230 inflate the mean canopy height. 

231 As with the linear mixed-effects models to examine relationships between AGE and ecological 

232 determinants (chapter 2.2.1), we use such to analyze the relationships between AGEm and canopy 

233 height. Again, we tested four variations (fixed intercept and fixed slope, fixed intercept and varying 

234 slope, varying intercept and fixed slope, varying intercept and varying slope) of single-factor linear 

235 mixed-effects models with forests treated as the random factor (Kuznetsova et al. 2017). The model 

236 with the lowest Akaike information criterion was retained (Eozdogan 1987) and model fit was 

237 assessed by Restricted Maximum Likelihood (REML). The retained model had a varying intercept 

238 and a fixed slope and allowed to extrapolate AGEm beyond the sampled plots (equation 3): 
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239 AGBm = 33.2071 * exp(0.0504 * HeightL) (equation 3), 

240 where AGBm = aboveground biomass (Mg/ha) obtained from manual forest inventory and HeightL 

241 = median of canopy height (m) per plot obtained from (Lang et al. 2023, t=5. l, p<0.001). Based 

242 on the relationship between plot-AGBm and satellite-obtained canopy HeightL, we could 

243 extrapolate AGB from the plots to the whole forest patch using raster calculator in QGIS (QGIS 

244 Development Team 2023). The spatial resolution of the plots (50 x 50 m) was maintained and the 

245 aligned raster data could later be used to generate difference maps with the AGB map by Harris et 

246 al. (2021, r=0.6, p<0.001). 

247 In QGIS (QGIS Development Team, 2023), we used zonal statistics to sum AGB and calculate its 

248 mean and standard deviation per forest. These values then fed into the error propagation calculation 

249 for converting AGB to carbon: (equation 4, (Goodman 1960)): 

251 where iJAGB•Carbon is the standard deviation of the product of our estimated AGB and the carbon 

252 conversion factor as quantified by Martin et al. (2018}, ojGB is the variance of AGB, µ~GB is the 

253 squared mean of AGB, a~arbon is the variance of carbon (0.002), and µ~arbon is the squared mean 

254 of carbon (0.456) (Martin et al. 2018). Total AGB uncertainty per forest was calculated as 

255 (equation 5, adapted from Taylor (1997)): 

256 iJsumAGBforest = iJAGBPerPixel * 
n 

1+2•r(d) 
( equation 5), 

257 where iJsumAGBforest is the unce11ainty of the total AGB per forest, O'AGBPerPixel is the uncertainty 

258 of AGB per 50 x 50 m pixel, n represents the number of pixels per forest, and r( d) is the correlation 

259 coefficient of a pixel with its eight immediate neighboring pixels corresponding to a 50 m radius. 

260 The distance of 50 m was chosen during field data collection and applied in the analysis to avoid 

261 biases due to spatial autocorrelation. Finally, we validated extrapolated AGB by comparing it with 
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262 input plot data using a Wilcoxon test (Bauer 1972; R Core Team 2023). We compiled published 

263 AGB data from the same or nearby forests to compare isolated patches with larger, differently 

264 managed, and differently estimated forest tracts. 

265 

266 2.2.3 Terrestrial Laser Scanning (TLS) data 

267 TLS-data from 86 subplots were processed, and co-registered in SCENE (version 2023. 1.0, FARO 

268 Technologies Inc., 2023). We generated 50 point clouds, each consisting of 167 million points on 

269 average with a mean point error of 22 mm. In 36 subplots, scan registration failed due to very 

270 dense understory vegetation, hindering automatic merging of adjacent scans. In seven subplots, 

271 we did not identify tree species and therefore had no corresponding wood densities, leading to the 

272 number of 43 completely analyzed subplots. 

273 The point clouds were processed in Forest Structural Complexity Tool (FSCT), which is sensor-

274 agnostic and known for high accuracy (Krisanski et al. 2021; Boroujeni et al. 2024). We segmented 

275 the point clouds automatically in ground, leaf, and stem points, isolated individual trees, and fitted 

276 cylinder for tree volume estimation (Krisanski et al. 2021; Fig. A2). Visual inspection of the 

277 segmented point clouds was performed in CloudCompare (Girardeau-Montaut 2023). 

278 The output of FSCT was filtered by DBH ::::: 10 cm and circumference completeness index (CCI) 

279 :::::0.3 (Krisanski et al. 2021), to align with the manual inventory and reduce noise (Fig. 3). The 

280 CCI measures the completeness of a scanned circular object, such as a stem or branch. Apparent 

281 stems scanned only from one side were excluded as noise. These filters were confirmed as best fit 

282 by an analysis of Euclidean distance between the manual inventory data and FSCT output and on 

283 average 60% of the originally detected 'trees' were filtered out this way. Wood density for each 

284 FSCT subplot was derived from the manual inventory by assigning species-specific wood densities 
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285 and calculating a basal-area-weighted mean. Basal area was computed for each tree as n * (°8
H) 2 , 

2 

286 and subplot-level mean wood density was obtained by weighting species wood densities by their 

287 relative basal area contributions. This mean wood density was then applied to the TLS-derived 

288 stem volumes to convert them into subplot-level aboveground biomass (AGBus). Correlations 

289 were used to compare forest characteristics estimated by manual inventory and TLS. Analysis of 

290 variance (ANOV A) was used to detect peculiarities across forest patches. 

291 [Insert Fig. 3 here] 

292 Based on five scans per plot, we calculated the stand structural complexity index (SSCI, Ehbrecht 

293 et al. 2017). This index constructs polygons of open space around the scanner position, connecting 

294 points where plant matter reflected the laser beams. SSCI is defined as ( equation 2): 

295 SSC/ = MeanFrac 1n (£NL) (equation 2), 

296 where M eanFrac refers to the mean of the fractal dimension index of 1280 polygons surrounding 

297 the scanner, derived from the perimeter and area of these polygons. ENL refers to the effective 

298 number oflayers, quantifying 20 cm voxels filled with plant material in 1 m layers from the scanner 

299 to the canopy top (Ehbrecht et al. 2017). SSCI is powerful in quantifying the three-dimensional 

300 forest structure and high structural complexity is typically associated with greater ecosystem 

301 functioning (Coverdale and Davies 2023). 

302 

303 3. Results 

304 3.1 AGB and carbon in the seven studied forest patches 

305 Addressing research question 1, we quantified AGB and carbon in seven forest patches (Table 1). 

306 AGBm ranged from 85 Mg/ha in Ikot to 199 Mg/ha in Ngam-Kondomeyos, corresponding to 39 
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307 Mg/ha and 91 Mg/ha carbon. The smallest forest Koui ( 18 ha) stored 351 Mg AGB and the largest 

308 forest Iko (1163 ha) stored 44,812 Mg AGB. 

309 [Insert Table 1 here] 

310 

311 3.1.1 Spatial patterns of AGB within forests 

312 A linear mixed-effects model with log-transformed AGB, distance from the forest edge as a fixed 

313 effect and forest as a random intercept (lmer(log(AGB) - distance + (1 I Forest))), showed that 

314 AGBm increased toward forest interiors (t=2, p<0.005). However, distances from plot to forest 

315 edge and AGBm were significantly different between forests (A.NOVA, p<0.001, Fig. 4). Across 

316 forests, Hlanzoun (r=0.2, p<0.001), Iko (r=0.06, p<0.05), and Ikot (r=0.2, p<0.001) showed edge 

317 effects of increasing AGBm toward the forest interior. 

318 [Insert Fig. 4 here] 

319 Separate linear mixed-effects models with distance from the forest edge as a fixed effect and forest 

320 as a random intercept suggested that diameter (t=3, p<0.005), tree height (t=3, p<0.005), and 

321 wood density (t=4, p<0.001) increased toward the forest interior. Log-transformations were 

322 applied to diameter and tree height to improve model fit, while wood density was modeled on the 

323 original scale. Tested individually the forests of Hlanzoun and Ikot showed the same edge effects. 

324 For wood density alone, the relationship is significant in Koui (r=0.13, p<0.01), Iko (r=0.08, 

325 p<0.001), and Mbangassina (r=0.07, p<0.05). 

326 Wilcoxon test comparing field-estimated and extrapolated AGB per plot indicates that the 

327 extrapolation from plot to forest using satellite-obtained canopy height is accurate for Koui, Ewe-

328 Adakplame, and Hlanzoun. However, it slightly overestimates AGB in Iko and Ngam-

329 Kondomeyos, while underestimating AGB in Ikot. 
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330 

331 3.2Ecological determinants of AGB 

332 In addressing research question 2, we note that AGBm is composed of wood volume and wood 

333 density. Accordingly, we found strong correlations between AGBm and both basal area (t=6, 

334 p<0.001) and tree height (t=4.8, p<0. 001). However, AGBm did not show a significant correlation 

335 with wood density. 

336 AGBm and tree species richness were both low in the swamp forests (Ikot, Hlanzoun) and the moist 

337 semi-deciduous forests (Koui, Ewe-Adakplame) and high in the moist forests toward the equator 

338 (Iko, Mbangassina, Ngam-Kondomeyos). AGBm and tree species richness did not correlate (Fig. 

339 A3). AGBm correlated well with the number of tree stems (DBH>lO cm, t=2.8, p<0.01), the 

340 standard deviation of tree height (t=7.36, p<0.001) but neither with stand structural complexity 

341 (SSCI) nor with canopy openness. Interestingly, wood density is higher in shorter trees (t=-2.3, 

342 p<0.05) but no correlation was found with the number of trees, tree height variability, SSCI, nor 

343 canopy openness. 

344 

345 3.3 Comparing AGB 

346 3.3.1 Regional AGB comparison 

347 Addressing research question 3, we compared our AGB estimations of isolated forest patches with 

348 published AGB data from forests in the same region. Our AGB estimations are mostly lower than 

349 comparable forest sites in the same regions (Table 2). 

350 [Insert Table 2 here] 

351 

16 



 

86 
 

352 3.3.2 Comparing AGB from manual inventory and TLS 

353 To address research question 4, we compared manual tree inventory and TLS-data from 43 

354 subplots (25 x 25 m). 111ere were several significant, moderate correlations between forest 

355 characteristics estimated by manual inventory and TLS, such as the number of detected trees, tree 

356 height, and AGB (Table 1). Manual inventory detected more trees and estimated DBH and AGB 

357 higher and tree heights lower than TLS. 

358 [Insert Table 3 here] 

359 

360 AGB as estimated by manual inventory and TLS correlated moderately (r=0.4, p<0.01, Table 1). 

361 Manual inventory estimated AGB higher than TLS in 30 of 43 plots (Fig. 5). Differences between 

362 AGBm and AGBrLs ranged from -93% to + 136%. According to an ANOV A, the discrepancies 

363 between AGBm and AGBrLs as well as the amount of noise in TLS point clouds were evenly 

364 distributed across the forests. 

365 [Insert Fig. 5 here] 

366 

367 4. Discussion 

368 4.1 AGB and carbon in seven studied forest patches 

369 We confitm the hypothesis that amounts and spatial patterns of AGB and carbon vary across and 

370 within the forest patches, indicating environmental and disturbance gradients. AGB in the sampled 

371 forests was higher in the biome of moist broadleaf forest compared to the ones in the savanna, 

372 grasslands, and shrublands (see Fig. 1). This coincides with global gradients of precipitation and 

373 water availability, which is, besides soil fertility, elevation, and disturbances, a main driver of 
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374 AGE (Chave et al. 2019), generally leading to higher AGE toward the equator (Lewis et al. 2013). 

375 Soil water saturation in swamp forests (Hlanzoun, Ikot) appeared to act as a chronic stressor, 

376 limiting aboveground biomass and tree species richness (see also Koponen et al. 2004; Rodriguez-

377 Gonzalez et al. 2010). 

378 

379 4.1.1 Spatial patterns of AGB within forests 

380 We used AGEm for plot-to-forest extrapolation, since manual inventory covered bigger areas than 

381 TLS (see 2.1) and detected more trees than TLS (see 3.3.2). We can confirm the hypothesis that 

382 AGE varies across the different forest patches, indicating disturbance gradients. In fact, 

383 extrapolation of our plot-based measurements revealed edge effects in AGE. This is in line with 

384 literature (Chaplin-Kramer et al. 2015; Laurance et al. 1997; Mo et al. 2023; Ordway & Asner, 

385 2020) and particularly expressed in isolated forest patches such as Koui, Ewe-Adakplame, 

386 Hlanzoun, and Ikot with few trees in 1 km surrounding (connectivity< 30%, Hepner et al. 2025). 

387 Reasons can be the altered microclimate with more and stronger winds, higher temperatures, and 

388 more risk of desiccation, which leads to altered species composition and forest structure close to 

389 edges (Chaplin-Kramer et al. 2015; Laurance et al. 1997). High prevalence of anthropogenic fires 

390 also add to lower AGE close to edges (Chaplin-Kramer et al. 2015) which is the case in Koui, 

391 Ewe-Adakplame, and Iko (Chuvieco et al. 2018). These effects can affect tree architecture, which 

392 additionally decreases AGE close to forest edges (Nunes et al. 2023). 

393 Edge effects in tree diameter, tree height, and wood density were not visible in Ewe-Adakplame 

394 and Ngam-Kondomeyos. Ewe-Adakplame is likely to be too fragmented to show clear edge 

395 gradients, while Ngam-Kondomeyos has a high connectivity (=90%, Hepner et al. 2025), and 

396 surrounding trees can buffer edge effects. In four of seven forests, wood density was lower in trees 
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397 close to edges. Edges promote fast-growing, light-demanding pioneers which invest less resources 

398 in wood robustness and density and are therefore lighter-wooded (Ghazoul and Sheil 2010; Nunes 

399 et al. 2023). Tree species, exposed to a new edge, can also adapt wood structure and density to 

400 reduce desiccation risk (Silva Da Costa et al. 2020). In the swamp forest of Hlanzoun, growth rate 

401 in the forest interior is likely to be limited by chronic soil water saturation from the Hlan-river 

402 (Rodriguez-Gonzalez et al. 2010), leading to higher wood densities. Generally, flooding constrains 

403 tree growth and survival of most species strongly. However, comparable data from Western 

404 African floodplains are lacking (Y amanoshita et al. 2001; Koponen et al. 2004; Parolin and 

405 Wittmann 2010; Smith et al. 2022). 

406 

407 4.2Ecological determinants of aboveground biomass 

408 We can confirm the hypothesized con-elation between AGB and basal area, and AGB and tree 

409 height. However, despite wood density being a fundamental factor for AGB, our data show no 

410 such con-elation. Wood density and tree volume are largely uncon-elated, and control AGB 

411 independently (Phillips et al. 2019). Therefore, high wood density can compensate low wood 

412 volume and vice versa to a certain degree. High wood density is associated with slow-growing, 

413 shade-tolerant trees which invest more resources in structurally robust stems (Ghazoul and Sheil 

414 2010). Indeed, our data show higher wood density in shorter trees. However, no such con-elation 

415 was found, neither with the number of trees in a plot, SSCI, nor canopy openness. Wood density 

416 depends on several small-scale factors such as tree genetics and edaphic conditions (Phillips et al. 

417 2019). It is important to note that carbon concentration is negatively related to wood density and 

418 varies between tree species (Martin et al. 2018; Mo et al. 2024). Wood densities and con-esponding 

419 carbon concentrations of African trees are yet to be studied in more detail. 
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420 In our 0.25 ha plots, AGB did not correlate with tree species richness. This is consistent with other 

421 studies in similar plot sizes and environments (Ali et al. 2016; ForestPlots.net et al. 2021; Cuni-

422 Sanchez et al. 2021 ). However, Sullivan et al. (2017) and D_yola et al. (2022} found such correlation 

423 in smaller plots of 0.04 ha. While niche complementarity theory suggests that higher species 

424 richness enhances biomass through resource use efficiency accumulations (Ali et al. 2019a), 

425 factors like past disturbances (Mitchard, 2018) and current climate stressors may obscure the 

426 relationship between AGB and tree species richness (Yang et al. 2024). 

427 The relationship between AGB and forest structure is not entirely clear. This study found 

428 correlations between AGB and the number of trees, tree heights, and height variability, but not 

429 with stand structural complexity as defined by Ehbrecht et al. (2017). While it seems intuitive that 

430 more tree stems would correlate with higher AGB, this is not necessarily the case (Lewis et al. 

431 2013) as few large trees can offset the AGB of many small ones (Ali et al. 2019b). Lang et al. 

432 (2023) confirmed a correlation between AGB and tree height. Structurally complex forests are 

433 known to capture light more efficiently, pack canopy denser, and store more carbon (Coverdale 

434 and Davies 2023). Ali et al. (2019b) identify stand structural complexity, based on DBH and tree 

435 height variance, as a key biotic factor influencing AGB, with tree species richness contributing to 

436 AGB through greater size variability and complexity. However, Ehbrecht et al. (2021) found no 

437 correlation between SSCI and basal area, a proxy for AGB, highlighting that the bidirectional 

438 relationship between forest structural complexity and AGB requires further research (Coverdale 

439 and Davies 2023). 

440 
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441 4.3 Comparing AGB 

442 4.3.1 Regional AGB comparison 

443 Confirming our hypothesis, AGB is higher in formally protected and often larger forests as 

444 compared to the formally unprotected small forest patches, which are exposed to various edge 

445 effects. The discrepancy in the Hlanzoun forest is considerable. In fact the numbers, published by 

446 Biah et al. (2024) are two to four times higher than ours. This might be because they include trees 

447 using the DBH threshold of >5 cm, while we use > 10 cm. However, Atsri et al. (2020) show that 

448 the choice of minimum diameter size (2::5 cm or 2::10 cm) does not significantly affect AGB 

449 estimates in Togolese forests. In fact, the biggest 1 % of trees are more important than the 99% 

450 remaining smaller tress in driving tropical AGB (Ali et al. 2019b) and small trees contribute only 

451 little to biomass, especially in high AGB forests, such as tropical ones (i.e., 10% biomass 

452 contribution by trees with DBH <10 cm in a forest with AGB >175 Mg/ha, Duncanson et al. 2021; 

453 Schroeder et al. 1997). Biah et al. (2024) identified eight dominant species, while we differentiate 

454 between 30 species in the Hlanzoun swamp forest. Also, Biah et al. (2024) use a generic factor to 

455 expand stem biomass to aboveground biomass (Intergovernmental Panel on Climate Change 

456 (IPCC) 2006), with the background that swamp vegetation has its very own architecture due to 

457 chronic water logging ( e.g., more stems per tree (Rodriguez-Gonzalez et al. 2010) and fewer large 

458 diameter stems (Lewis et al. 2013)). Further, while we use a spatial resolution of 50 x 50 m, Biah 

459 et al. (2024) simplify the forest structure by assuming homogenous AGB on areas >550 ha. Our 

460 study can rely on two, correlating methods to estimate aboveground biomass, with TLS as a 

461 traceable method. Our AGE-numbers compare well to the numbers by Lewis et al. (2013), where 

462 they compare 260 forests across tropical Africa and report lower AGB in swamp forests as 
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463 compared to terra firme ones. The discrepancies show that published AGB numbers are still 

464 diverging and highlight the need for more research on AGB measurement methodologies. 

465 The AGB-map by Harris et al. (2021) generally showed good correlation with our estimations. 

466 However, in swamp forests (Hlanzoun, Ikot) and forests surrounded by agroforestry 

467 (Mbangassina, Ngam-Kondomeyos) differences ranged between -89 and +147 Mg/ha (Fig. 6). 

468 Forests are dynamic systems with AGB varying interannually and over the years (Chave et al. 

469 2019; Harris et al. 2021). 

4 70 Our study focuses on small and formally unprotected forest fragments. It is likely that edge effects, 

471 low landscape connectivity, and anthropogenic disturbances constrain the accumulation of higher 

472 AGB stocks (Laurance et al. 1997). In degraded forests, such as Ewe-Adakplame and Ikot 

473 (Houngnon et al. 2021; Hepner et al. 2025), where logging is prevalent, AGB is below its potential. 

474 [Insert Fig. 6 here] 

475 

476 4.3.2 Comparing AGB from manual inventory and TLS 

477 We can confirm that the AGB obtained by manual inventory correlates with AGB from TLS. 

478 However, manual inventory showed practical advantages over the TLS campaign, e.g., manual 

479 inventory allowed us to census forest faster (12 person-days/ha) compared to TLS (16 person 

480 days/ha) and manual inventory succeeded in all plots, while registration and segmentation of our 

481 TLS-data were only successful in 60% of the scanned plots. Tropical forests with dense and 

482 complex structures are still hard to scan and to segment automatically (Martin-Ducup et al. 2021) 

483 and objective methods to evaluate point cloud quality and accuracy for tree volume reconstruction 

484 is yet to be developed (Momo et al. 2018; Demo! et al. 2022). In some cases, leaves, lianas, and 

485 epiphytes covered the stem making it impossible to be detected correctly by TLS and only clearing 
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486 could increase point cloud quality (Burt et al. 2018). However, our data showed no evidence that 

487 AGBm and AGBrLs are more similar in open and structurally simple forests, or in the case of taller 

488 trees. Estimating AGB becomes more difficult for manual inventories and TLS when forests are 

489 denser, and trees are taller and uncertainty of AGB estimations increase with higher AGB (Fig. 

490 Al). While Demo! et al. (2022) observe better performance ofTLS in tall trees, Momo Takoudjou 

491 et al. (2018) warn about increased occlusion due to complex shapes and crown overlaps in large 

492 trees. Due to poor tree isolation in FSCT, no allometric equations were developed from TLS-data 

493 (Fig. A2b). Efforts to identify tree species from point clouds are underway (Akerblom et al. 2017; 

494 Puliti et al. 2025), but not yet reliably working, in particular in tropical forests. Currently, TLS 

495 does not replace manual inventory since species identification is required to attribute 

496 corresponding wood density, which can vary considerably. 

497 Based on the number of trees detected, we chose the manual inventory as the reference data for 

498 A GB-calculation via allometric equations. Due to a lack of species-specific allometric equations 

499 from this region (GlobAllomeTree 2024), and because region-specific allometric equations 

500 (Feldpausch et al. 2012) performed worse than the pantropical equation by Chave et al. (2014), we 

501 opted for the latter. Choosing one allometric equation simplifies reality by neglecting tree 

502 morphological plasticity (Calders et al. 2022) and induces uncertainty by limited calibration data 

503 and questionable representativity (Demo! et al. 2022). It is suggested that allometric equations 

504 perform particularly weak in dense, complex forests (Gonzalez de Tanago et al. 2018) and in large 

505 trees (Burt et al. 2018; Calders et al. 2022; Disney et al. 2018). Our data showed no correlations 

506 between tree form (DBH, height) and number of trees per plot, SSCI, and tree species richness. 

507 Still, tree allometry is likely to depend on forest stand structure and environmental conditions, 
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508 which is not captured by a single allometric equation (Loubota Panzou et al. 2021; Sullivan et al. 

509 2017). 

510 Felling and weighting trees is the only accurate method to measure AGB directly (Clark and 

511 Kellner 2012; Chen et al. 2015). However, this destructive approach is not an option in partly 

512 sacred and vulnerable small forest patches. Therefore, using more than one method to estimate 

513 biomass is adequate and balances discrepancies, strengths and weakness of each method, which 

514 are often uncritically seen as "ground truth" (Rejou-Mechain et al. 2019). Overcoming the known 

515 limitations of allometric equations (Calders et al. 2022; Rejou-Mechain et al. 2019) could be 

516 solved by new powerful (mobile) laser scanners that scan faster and therefore allow more scanning 

517 positions and reduce occlusion. New algorithms ( e.g., Xiang et al. (2024; Wielgosz et al. (2024)), 

518 which are trained on manual segmentations of these forests, could also help to overcome the 

519 bottleneck of correctly and automatically segmenting trees (Calders et al. 2022) and become less 

520 dependent on allometric equations when estimating AGB. 

521 

522 4.4Broader implications 

523 This study contributes exact estimates of AGB and carbon on a tree-scale with manual inventory 

524 and TLS. In view of climate change and fast forest fragmentation (Fischer et al. 2021), data from 

525 understudied regions with landscapes vulnerable to land cover change are urgent. In fact, accurate 

526 data of tree species richness and AGB are requested by several globally relevant organizations 

527 (e.g., Convention on Biological Diverstity (CBD), 2021; Group on Earth Observations 

528 Biodiversity Observation Network (GEO BON) & bioDISCOVERY, 2022; Intergovernmental 

529 Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2022; International 

530 Union for Conservation of Nature (IUCN), 2022; United Nations, 2015; United Nations, Climate 
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531 Change, 2024) to address planetary crises of climate change, land degradation, and biodiversity 

532 loss. Combining more than one method to estimate AGE is advisable since each method has its 

533 strengths and weaknesses. 

534 

535 4. 5 Limitations 

536 Our data are one-time estimations of AGE, based on assumptions such as the validity of a single 

537 pantropical allometric equation. Quantifying accuracy and precision of data requires direct 

538 measurements (felling and weighting trees) and replication (Clark and Kellner 2012), which was 

539 not an option in the seven forest patches, some of which are sacred and protected due to their 

540 spiritual and cultural significance. Further, our results rely on wood densities and wood carbon 

541 concentrations, which are only poorly quantified for the Western African region. Moreover, we 

542 used tree-based data of AGE, summed up in plots, located by GPS, to be extrapolated with 

543 satellite-obtained pixel-wise canopy height data. Uncertainty can be introduced by trees on the plot 

544 edge ( e.g. trunk is inside plot, but crown is outside) and inaccurate GPS-signal (usually ±3 m) and 

545 being propagated (Rejou-Mechain et al. 2019). Considering more error sources complicates 

546 definite AGE quantification (Chen et al. 2015), however some potential errors (i.e., allometric 

547 equations) can also be flattened out over the vast amount of sampled trees and plots (Rejou-

548 Mechain et al. 2019). 

549 The strong correlation between plot AGE and canopy height by Lang et al. (2023) enabled us to 

550 extrapolate AGE values across entire forests. However, potential errors may arise because the 

551 canopy height data is from 2020, while our AGE measurements were conducted two to three years 

552 later. The canopy height data show a typical standard deviation of nine meters, which is consistent 

553 across sites but slightly higher in Hlanzoun and Mbangassina compared to Ikot. Once available, 
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554 airborne LiDAR and local canopy models are likely to be more accurate than the canopy height by 

555 Lang et al. (2023) (Schwartz et al. 2023). 

556 Soil fertility can drive AGB (Ghazoul and Sheil 2010;_Ali et al. 2019<!, Ju, however, soil data on a 

557 50 m spatial resolution were not available. In a study in a fragmented landscape of Western Africa, 

558 soil characteristics was next to landscape connectivity in explaining AGB (Traore et al. 2024). 

559 Information about current and previous forest management could also explain the measured AGB 

560 (Lewis et al. 2015; Lindsell & Klop, 2013), which however is yet to be evaluated. 

561 

562 4.60utlook 

563 Further research needs to focus on i) extensively sampling wood density and carbon concentration 

564 of tropical tree species (Rejou-Mechain et al. 2019), ii) developing powerful laser scanners that 

565 reduce point cloud occlusion in complex forests (see also Abegg et al. 2017), iii) fusing point cloud 

566 data of terrestrial and aerial laser scanners to reduce occlusion in tree crowns (see Zhou et al. 

567 2023), iv) developing more accurate segmentation and tree isolation algorithms to overcome 

568 dependence on static allometric equations and to create more representative and dynamic 

569 allometric equations (Calders et al. 2022), and v) expand pool wise carbon estimations to whole 

570 carbon and elements cycles including belowground, soil, atmospheric, fungal, microbial, herbal 

571 and fauna! pools (see Ashton et al. 2012). Further field studies, such as ours, will be crucial for 

572 calibration and validation of satellite data, which are becoming increasingly important and more 

573 accurate in estimating forest AGB (Calders et al. 2022a; European Space Agency 2025). 

574 
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575 5. Conclusion 

576 Forest patches, when undisturbed, serve as important carbon reservoirs and hotspots of tree species 

577 diversity. Our results show that wood density and aboveground biomass (AGB) increase toward 

578 forest interiors, although they are not directly correlated. These edge effects are particularly 

579 pronounced in isolated forest patches, highlighting the need for ecological connectivity through 

580 buffer zones, forest corridors, and agroforestry systems around small patches to support 

581 sustainable management. Formal protection of forest patches further enhances their potential to 

582 store AGB. 

583 At the global scale, carbon maps remain uncertain, especially for swamp forests and forests 

584 embedded in agroforestry landscapes. To address this gap, this study evaluates the performance of 

585 manual forest inventory and terrestrial laser scanning (TLS) for estimating AGB in tropical forest 

586 patches. We find that manual inventory is more effective in detecting trees than TLS in tropical 

587 complex forests. By providing plot-level data from the understudied Western African region, our 

588 work supports both climate and ecological modeling efforts. 
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589 6. Appendix 

590 6.1 Tables 

591 Tt1bleA/ Characieristics of the sevenfonsts patches studied in Togo, Benin, Nigeria, and Cameroon. The column headers witho111 sources indicate o,m measurements andfield 

592 obse,vaUons. This table parrly O>'erlaps with d,e one presented in {Hepner et al. 2025} 

Nr Country Forest name Plots Coordinates Measured Number Vegetation Soil Surrounding 

. abbreviation (WGS 84 forest ofplots 001£ (International landcover 

Latitude I area (ha) Union of Soil 

Longitude) Sciences (!USS) 

Working Gro1112 

World Reference 

Base for Soil 

Resources 

(WRB) 2015) 

I Togo Koui Kou 0° 43' 12" / 18 6 !vloist semi~ Acrisol Settlement I 

8° 15' 36" deciduous Agriculture I 

forest Savanna 
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2 Benin Ewe- Ada 2° 34' 12" / 218 20 Moist semi- Acrisol / Lixisol Settlement I 

Adakplame 7° 28' 12" deciduous Agriculture I 

forest Savanna 

3 Hlanzoun Lok 2° 15' 36" / 676 20 Swamp Acrisol / Gleysol Settlements I 

(also known 7° 3' 36" forest / Lixisol Agriculture I 

as Lokoli) Wetlands 

4 Nigeria Iko Iko & Owa 8° 15' 0" / 1163 18 Moist forest Acrisol Agriculture I 

5° 35' 24" Agro forestry 

5 Ikot Eke 7° 53' 24" I 1116 12 Swamp Acrisol I Settlement I 

4° 39' 36" forest Cambisol I Agriculture I 

Fluvisol Water 

6 Cameroon Mbangassina Mbi 11° 35' 24" / 145 12 Moist forest Ferralsol Agriculture I 

4° 38' 24" Agro forestry 

7 Ngam- San 11° 49' 48" / 399 21 Moist forest Ferralsol Wetlands I 

Kondomeyos 3° 2' 24" Agro forestry 

593 Due to practical c1rcumstances dunng fieldwork, we also mcluded the two forests oflko and Ikot m N 1gena, which are slightly larger 
594 than the threshold of 1000 ha we set for small forest patches. 
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595 6.2Figures 

Aboveground Biomass with upper and lower 2.5% Credibility Intervals 
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597 Fig. Al The higher AGB {i.e. in the moist forests of the Guineo-Congolian zone, in Iko (green), Mbangassina (yellow), Ngam-

598 Kondomeyos (brown)), the higher is uncertainty of its estimation as quantified by the Monte-Carlo method 

599 
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(b) 

Fig. A2 (a) Plot point clouds (25 x 25 m) were segmented in ground, leaves, and stem points by FSCT (Krisanski et al. 2021). (b) 

Tree isolation from plot point cloud is imperfect shown by different tree IDs respectively colors assigned to one single tree. Tree 

isolation is particularly challenging in overlapping crowns 
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606 Fig. A3 Linear mixed-effects model of tree species richness and AGE (Mg/ha) per plot (0.25 ha). Swamp forests have lower tree 

607 species richness and AGE, and both increases toward the equator. When controlling for the forests, there is no significant 

608 relationship between AGE and tree species richness 
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1016 i.e. Ewe-Adakplame} and increases toward the equator. Mean AGE in the plots was often higher than mean AGE in the whole 
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Forest Area Mean AGB Mean AGB Mean carbon Total AGB per 

(ha) per plot per forest per forest forest (Mg) 
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1019 Table 2 AGE as estimated in this study by mam,al inventory is usually lower than comparable studies from nearby forests 

Forest patch AGBm AGB Description of Forest Reference 

this comparison comparison forest size (ha) 

study value 

(Mg/ha) (Mg/ha) 

Koui 116 209 Closed canopy forest 192,000 (Atsri et al. 

Fazao Malfakassa 2020) 

National Park, 13 km 

distance 

129 Dense forest m same 604,000 (Dangbo et 

ecological zone al. 2020) 

104 Sabi sacred forest, 100 240 (Lynch et al. 

km distance 2018) 

131 Kala sacred forest, 100 500 (Lynch et al. 

km distance 2018) 

Ewe- 104 829 Lama forest reserve, 75 4780 (Biah et al. 

Adakplame km distance 2024) 

Hlanzoun 108 488 Intact parts of same (Biah et al. 

Hlanzoun forest (also 2024) 

known as Lokoli swamp 

forest) 

199 Disturbed parts of same (Biah et al. 

Hlanzoun forest (also 2024) 
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1020 

Iko 188 

Mbangassina 259 

Ngam­

Kondomeyos 

207 

223 

107 

421 

401 

known as Lokoli swamp 

forest) 

Intact forests with little 729,000 (Amuyou et 

or no human al. 2022) 

disturbances Ill Cross 

River State 

Disturbed forests with 729,000 (Amuyou et 

signs of logging, fire, al. 2022) 

agriculture Ill Cross 

River State 

Belabo Sub-Divion, 4,590 (Chimi et al. 

Lorn & Djeren forest 2018) 

management unit, 200 

km distance 

Dja Biosphere Reserve, 526,000 (Djuikouo et 

100 km distance al. 2010) 

1021 Table 3 Mean and standard deviations of key parameters compared between manual forest inventory and TLS per subplot. 

1022 Correlations are mostly moderate. The p-values are expressed with asterisks(": p S 0. 05, **: p S 0. 01, ***: p S 0. 001) 

Mean (and standard deviation) Ill Manual forest inventory TLS (n trees = Speam1an 

subplots (n trees= 1,109) 897) correlation 

Number of trees 26 (±10) 21 (±13) 0.4 ** 

DBH (cm) 26 (±6) 20 (±5) 0.4 * 
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1023 

1024 
1025 

1026 

1027 

1028 

1029 

1030 

1031 

1032 

1033 

1034 

1035 

1036 

1037 

1038 

1039 

1040 

1041 

1042 

1043 

1044 

Max DBH (cm) 

Tree height (m) 

Max tree height (m) 

AGE (Mg) 

Caption of figures 

72 (±30) 

16 (±1) 

25 (±4) 

15 (±11) 

44 (±23) 

19 (±7) 

29 (±11) 

9 (±5) 

0.1 

0.5 *** 

0.7 *** 

0.4* 

Fig. I Seven forest patches were selected in the Tropical & Subtropical Grasslands, Savannas & Shrub/ands (light green) and the 

Tropical & Subtropical Moist Broad/ea/ Forests (dark green) a/Togo, Benin, Nigeria, and Cameroon, in Western Africa. I. Kaui, 

2. Ewe-Adakplame, 3. Hlanzoun, 4. Iko, 5. Ikot, 6 Mbangassina, 7. Ngam-Kondomeyos 

Fig. 2 Scan sampling strategy in plots of 50x 50m with subplot o/25 x 25 m. Distances and number of trees not to scale 

Fig. 3 Workj/ow showing the initial selection of/ores/ patches, the establishment of plots to collect data, and subsequent data 

analysis to compare AGE obtained by manual inventory and TLS respectively 

Fig. 4Maps of the forest patches showing the spatial distribution of AGE (Mg/ha) and the plots of forest inventory (white). In Koui, 

AGE was higher in the interior lying in a topographic depression with likely more water availability. In Ewe-Adakplame, the forest 

was strongly fragmented, and high AGE persisted only in the former forest interior. In Hlanzoun, AGE increased significantly 

toward the interior {r=0.1, p<O. 001), where there was more water saturation but less edge effects and accessibility. However, in 

the southern part of the forest, water saturation suppresses AGE both in the interior and along the edge, where it transitions into 

a wetland. In Ikot, AGE increased slightly toward the interior {r=0.2, p<O 001), however, visual inspection suggests that AGE 

decreased with proximity to the periodically rising Kwa Ibo River in Ikot. In Iko {r=0.06, p<0.05), Mbangassina, and Ngam­

Kondomeyos, AGE was homogenously distributed with some local decreases where humans logged in the past. Background.from 

Google Maps 

Fig. 5 Comparison of AGE estimation per plot {n=43) by manual inventory with allometric equations {x-axis,AGBm) and TLS with 

FSCT (y-axis, AGBnsJ. The red line shows where x and y-axis correspond Plots are colored according to seven forests (Ada = 

Ewe-Adakplame, Eke = Ikot, Iko and Owa = Iko, Kou = Kaui, Mbi = Mbangassina, Lok= Hlanzoun, San = Ngam-Kondomeyos) 

Fig. 6 Difference maps between Harris et al. (2021) and this study, showing AGE difference (Mg/ha) in seven Western African 

forests. Blue color means higher estimations; orange color means lower estimations by Harris et al. (2021) compared to this study. 
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1045 

1046 

1047 

1048 

1049 

1050 

1051 

White squares show plot location. Differences are low and homogenouslydistributed in Kaui. 1:;we-Adakplame. and lko. Differences 

for the whole/ores/ are notable in Hlanzoun. lkot. Mbangassina. and Ngam-Kondomeyos. Background from Google 
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1055 

1056 

1057 F,g. 3 

Field 
work 

Desk­
based Analysis 

Forest patch inventory by 
rem(j;e sensing (Wingate et al., 

2022) 

R-packa.ge '"BIOMASS'" (Rejou-
Co-registration, processing. 

segmentaticn in 
Methain etal.,2017) 

Equation 1: 

FARO Scene and FSCT 
(Ktisanski et al., 2021) 

AGBm = 0.0673 • (pD'H)'·"' 
---············-·················-··················· 

1109 trees OOH >O,lm 

Specie~ { 
specific and 

plot-avera.ged 
wood densities\ 
(Zanne et al., 

2009) 

P'oint clouds 
89 7 trees 

DBH>=0.lm, 
C0>=0.3 

Choosing AGB derived from manual fore st inventory OJ er FSCT 
(better fit with number r:Jtrees per plot) 

AGB manual and FSCT wrrelate(R=0.4, p<0.01) 

G
pyh-;;;;7 
ng~,al., f 
2023) 

VI (P'lanet \ 
2024) __:i. 

Strong, significant correlati en 
between AGB and can cpy height 

(R=0.8, p<0.001). 
Non-Ii near mixed effects mode I 
between AGB and c1:1n cpy height 

Extrapd at ion ri plot-based AGB to whole forest patch in QGIS 

Equation 3: 

AG8m = 33.2071 • exp(0.0504 • HeightL) 
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AGB as estimated by manual inventory and TLS 
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1. Introduction 

ABSTRACT 

In West and Central Africa, most forest patches lie outside protected areas and are managed by local communities 
who depend on their ecosystem services. Yet, their role in conserving tree diversity under varying bioregions and 
disturbance pressures remains poorly documented. We investigated tree community diversity and structure in 
nine forest patches across the Guineo-Sudanian and Guineo-Congolian bioregions using 121 plots (2500 m2 each) 
along edge-interior gradients. We recorded anthropogenic disturbances (wildfire, logging, agriculture, invasive 
plants, footpaths) and measured the diameter at breast height (DBH) for all trees;::: 10 cm. We identified 382 tree 
species, of which -10 % are globally threatened. Despite their small size, the patches contribute 15-33 % of 
national tree species richness in the four countries studied. Tree density and basal area were consistently lower 
than reference values from nearby protected forests, ranging from 186 to 422 stems.ha- 1 and 12.36-23.17 m2

. 

ha- 1 in the Guineo-Sudanian, and 263-476 stems.ha· 1 and 12.20-34.75 m2.ha· 1 in the Guineo-Congolian. Alpha 
diversity was higher in the Guineo-Congolian than in the Guineo-Sudanian, and beta diversity was generally high 
among forest patches. Disturbances were concentrated at forest edges and negatively affected tree structure and 
composition, irrespective of ownership. Our findings show that small, unprotected forest patches make a 
disproportionate contribution to national and regional tree diversity but remain vulnerable to disturbances. 
Strengthening customary rights and inclusive governance under "Other Effective area-based Conservation 
Measures'' (OEOY1:s), coupled with locally adapted forest zoning, could enhance both biodiversity conservation 
and community livelihoods. 

Forests play a critical role as ecosystems, supporting diverse life 
forms and providing essential services to humanity, including climate 
regulation, food, and timber (Brandon, 2014; Houghton et al., 2015). 

However, forest conservation faces significant challenges due to un­
sustainable land-use practices (Guz and Kulakowski, 2021). In tropical 
regions, deforestation has led to the fragmentation of once-continuous 
forests into numerous small forest patches (Taubert et al., 2018). 

These patches are especially prevalent in forest-agricultural landscapes 
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across West and Cencral Africa (Djagoun et al., 2022; Wingate et al., 
2022). 

The conservation of forest patches, both small and large, in 
biodiversity-rich areas like the tropics is widely recognised as crucial for 
maintaining biodiversity and ecosystem services (Arroyo-Rodriguez 
et al., 2022). Small forest patches, although often more vulnerable to 
habitat loss and biodiversity decline due to their size and isolation 
(Hansen et al., 2020a), can serve as biodiversity hotspots and provide 
critical ecosystem services, even in fragmented landscapes (Decocq 
et al., 2016; Wintle et al., 2019). Empirical studies have shown that, 
when aggregated in size, small patches may even harbour more species 
than a few large patches (Fahrig, 2020; Riva and Fahrig, 2023). 
Furthermore, a synthesis on forest biodiversity conservation in 
human-modified landscapes suggested that optimal landscape scenarios 
for forest-dwelling species should contain at least 40 % forest cover, 
with a substantial proportion composed of dispersed small forest patches 
(Arroyo-Rodriguez et al., 2020), underscoring their key role in biodi­
versity conservation. 

Globally, biodiversity, including forests and trees, remains threat­
ened (Pereira et al., 2020; Rivers et al., 2023). Thus, major targets of the 
Kunming-Monrreal Global Biodiversity Framework include ensuring 
that by 2030, at least 30 % of degraded terrescrial areas are effectively 
restored and 30 % of terrestrial areas, especially those critical for 
biodiversity and ecosystem functions and services, are effectively 
conserved, sustainably used, and managed (Convention on Biological 
Diversity, 2022). While there is evidence that conservation areas that 
combine nature protection, cultural values and sustainable use could 
offer similar potential to strictly-protected areas for animal conservation 
(Vimal et al., 2021), little is known about their tree community scruc­
ture. Moreover, in West and Central Africa, there is still limited evidence 
on the importance of small forest patches outside protected areas as 
habitats for diverse tree species. 

While there are nearly 73,300 tree species globally (Cazzolla Gatri 
et al., 2022), consistent patterns of common tree species and tree species 
abundance distributions are observed across cropical continents, despite 
their distinct biogeographic, climatic, and anthropogenic histories 
(Cooper et al., 2024). On the other hand, studies have evidenced high 
turnover among tropical forests due to environmental factors such as 
rainfall, topography, and soil nutrients, which influence the spatial 
distribution of tree species (De Caceres et al., 2012; Fayolle et al., 2014a, 
b; Marshall et al., 2021; Ringelberg et al., 2023). In tropical African 
forests, Sosef et al. (2017) estimated tree species richness to be circa 
3000, and these forests exhibit high conspecific negative density 
dependence, which contributes to maintaining high tree diversity 
(Kalyuzhny et al., 2023). Despire these insights, a gap remains in un­
derstanding how geographically distinct assemblages of tree commu­
nities, hereafter bioregion types (Droissart et al., 2018), and forest 
management types influence the conservation of tree conununities 
across forest patches. 

The high demand for certain tree species and the challenges related 
to sustainable forest management in tropical Africa (Fischer et al., 2020) 
have led to the overexploitation of native forest resources, particularly 
timber trees, for local use and local and international trade (Hills et al., 
2022; Uzu et al., 2022). In addition, land-use change for agriculture 
represents a major driver of forest loss in the region, often accompanied 
by logging and wildfire (Jellason et al., 2021). Consequently, tree 
community composition and structure are shifting, particularly in the 
remaining forest patches that are shrinking in size in the landscape. This 
underscores the need for a deeper understanding of how anthropogenic 
disturbances affect both tree community-alpha and -beta diversity in 
such cropical forests. 

The responses of biodiversity to forest disturbances have been 
extensively studied (Bawd et al., 2021). However, these responses vary 
depending on the taxa examined and the methodologies used 
(Ahneida-Rocha et al., 2020). While several studies have explored the 
combined effects of various anthropogenic disturbances on tree 
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populations (Zebaze et al., 2023; Wu et al., 2025; Dossou et al., 2025), 
relatively few have investigated their impacts on tree communities as 
complex ecosystems, particularly in West and Central African forests. 
Additionally, how these effects vary across bioregions remains unclear. 
This research gap is partly due to the challenges of quantifying forest 
disturbances, which differ in intensity, frequency, and spatial distribu­
tion (Orwig et al., 2022). 

Understanding the impacts of anthropogenic disturbances on tree 
communities in tropical forests is challenging, as these disturbances 
often occur as discrete or localised events. For example, selective logging 
tends to be sporadic and patchy in tropical forests, which are also 
affected by other disturbances such as fire and agricultural expansion 
(Assede et al., 2023). To fully understand how these combined distur­
bances impact tree communities, it is essential to use methods that can 
quantify and integrate the effects of multiple disturbance types 
(DellaSala et al., 2025). 

In this study, we address how bioregions and anthropogenic distur­
bances affect tree community diversity and structure in tropical forest 
patches outside protected areas in West and Central Africa. Specifically, 
we aimed to: i) estimate the alpha diversity of tree communities in 
relation to both disturbances and bioregions; ii) assess beta diversity 
variation among tree conununities in the forest patches in the Guineo­
Sudanian and Guineo-Congolian bioregions; and iii) analyse the effects 
of disturbances and bioregion types on tree stand structure in the forest 
patches. 

It is posited that: i) variation in tree community diversity among 
forest patches will be influenced by both bioregion and anthropogenic 
disturbances; ii) tree beta diversity (measured as inverse of Jaccard 
similarity) will increase with the spatial distance between forest patches; 
and iii) cree stand parameters (e.g., density and basal area) will be 
negatively correlated with disturbance gradients, primarily due to se­
lective logging of timber crees (i.e., specific species harvested for their 
wood, Hills et al., 2022) and forest fires. 

2. Methods 

2. 1. Study area 

This study focuses on nine forest patches located outside protected 
areas across West and Central Africa, in the Guineo-Sudanian and 
Guineo-Congolian bioregions. These were Agou (Togo), Elavagnon­
Todji (Togo), Kaui (Togo), 1-0anzoun (also known as Lokoli swamp 
forest; Benin), and Kouvizoun Adakplame-Ewe, hereafter Kouvizoun 
(Benin), in the Guineo-Sudanian bioregion; and Iko (Nigeria), Ikot 
(Nigeria), Mbangassina (Cameroon), and Ngarn-Kondomeyos 
(Cameroon) in the Guineo-Congolian bioregion (Fig. la and Table 1). 
The forest patches were selected from a remote sensing-based inventory 
of tropical forest patches in West and Central Africa (Wingate et al., 
2022). In their dataset, forest patches were defined as areas with more 
than 30 % tree cover, with rrees taller than 5 m. For this study, forest 
patches with sizes ranging from 0.36 km 2 to circa 10 km2 were selected 
based on geographically distinct assemblages of cree communities 
(bioregion types) in West and Central Africa (Fig. la and Table 1). In the 
bioregions (Guineo-Sudanian and Guineo-Congolian), nine forest 
patches that are natural vegetation were selected by accounting for the 
variation in anthropogenic disturbances, mostly related to the forest 
ownership (forests with private ownership and forests that are managed 
by community organizations) (Table 1). Local communities manage 
these forest patches, which are in agricultural landscapes. Agriculture is 
the main income source of the communities and is characterized by 
slash-and-burn subsistence crop farming, teak and oil palm plantations 
in the Guineo-Sudanian bioregion, and primarily cacao, banana and oil 
pahn plantations in the Guineo-Congolian bioregion. There is high 
population growth (2.6-3 % per year) and a high agricultural expansion 
(3-7 % per year) in the study area (CUSS, 2016 ), all accelerating forest 
fragmentation and associated habitat loss for wildlife. Meanwhile, the 
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Fig. 1. Study area showing (a) the njne st'udy for<St patches in the Guineo-Sudanian and Guineo-Congolian (Upper Guinea and Lower Guinea) bioregions of tropical 
Africa. Floristic bioregions were adapted from biogeographical regionalization of tropical Africa (Droissart e.1 al., 2018). The random-sampling plot design (the. 
sample size varies across forests) is illustrated for the Mbangassina forest patch (127 .42 ha) in the Guineo-Congolian region (b). Map lines del.ineale study areas and do 
not necess(lri.ly depict accepted national bouncktries. 
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Table 1 
Characteristics of the selected forest patches outside protected areas in tropical Africa. ownership types were PCS (Private or community sacred) and CNS (Community 
non-sacred); vegetation types were dense forest, SDDF (semi-deciduous dense forest), Woodland, and YSDF (Young secondary dense forest), Bioregion classification 
follows the biog_eographical regionalization of tropical Africa (Droissatt et al., 2018), while the soil classification follows Jones et al. (2013) and Nkwunonwo et al., 
(2020), and soils were F (Ferralitic), Cs (Clayey in swamp soil), R (Rocky) and FC (Ferralitic with concretion). The mean annual rainfall data (1981-2010) were 
extracted from Karger et al. (2017). 

Country Forest" Main vegetation Ownership A<ea Bioregion Plotsb Mean distance (m) Soil Mean Mean annual 
type (ha) between Pots altitude (m) rainfall (mm) 

Togo Koui (1) Woodland PCS 35.95 Guinea- 220.12 FC 666 1653 
Sudanian 

Togo Elavagnon-Todji Woodland PCS 226.28 Guineo- 677.32 R 654 1552 
(2) Sudanian 

Togo Agou (3) SDDF PCS 1100.32 Guinea- 2108.25 R 595 1402 
Sudanian 

Benin Kouvizoun (4) SDDF PCS 276.60 Guineo- 20 994.30 177 1160 
Sudanian 

Benin Hlanzoun (5) SDDF PCS 701.56 Guineo- 20 1399.74 C, 24 1062 
Sudanian 

Nigeria lkot(6) YSDF CNS 715.71 Guineo- 12 1386.64 C, 16 2916 
Congolian 

Nigeria lko (7) Dense forest CNS 1082.31 Guineo- 19 1624.34 FC 196 2444 
Congolian 

Gamerooo Mbangassina (8) YSDF PCS 127.42 Guineo- 12 635.12 507 1590 
Congolian 

Gameroon Ngam- Dense forest CNS 381.99 Guineo- 21 1045.05 688 1610 
Kondomeyos (9) Congolian 

a value in bracket indicates forest label as in Fig. Ia 
b plots are squared and 0.25 ha each 

forests provide timber, firewood, medicinal plants, and edible fruits to 
the populations (CILSS, 2016). The climax vegetation across the selected 
forests consists of semi-deciduous dense forest in the Guineo-Sudanian 
bioregion and evergreen rainforest in the Guineo-Congolian bioregion 
(White, 1983; Houngnon et al., 2021). The mean annual rainfall varies 
between 1000-1600 mm and 1600-2900 mm per bioregion, while the 
elevation ranges from 24 to 666 m a.s.1. and from 16 to 688 m a.s.1., 
respectively, across selected forest sites (Table 1). The soils were either 
ferralitic or rocky in the climax forests, and hydromorphic clayey in the 
two swamp forests (I-Ilanzoun in the Guineo-Sudanian and Ikot in the 
Guineo-Congolian, Table 1). 

2.2. Data collection 

2.2.1. Sampling d£sign 
In total, 121 plots were established across the nine forest patches 

(Table 1). Each plot measured 50 m x 50 m, with 4-21 plots per forest, 
spaced at least 200 m apart. These plots we1e disrributed along an edge­
to-interior gradient in the forests (Table 1, Fig. 1 b). The initial design of 
establishing forest-plots according to the forest size was adapted to field 
circumstances (e.g., treeless areas within forests, rocky outcrops, con­
strained access due to sacredness, conflict, and security). Thus, the 
number of plots per forest did not directly scale with forest size due to 
varying degrees of disturbance and vegetation cover. In several patches, 
large areas were devoid of trees due to past wildfires or dominated by 
non-forest vegetation. These treeless areas were excluded from sam­
pling, as our study focused specifically on tree community structure and 
diversity. Consequently, the number of plots per forest reflects both 
forest size and the extent of tree-covered habitat (Table 1). 

2.2.2. Tree community data collection 
In each plot, the species name and the diameter at breast height 

(DBH) of all tree stems with DBH 2'. 10 cm were recorded. We collected 
and identified voucher specimens of non-identified tree species in 
herbaria located at the University of Abomey-Calavi in Benin, the Uni­
versity ofUyo in Nigeria, and the University of Yaounde I in Cameroon. 
For this study, a modified definition of tree by the IUCN's (International 
Union for Conservation of Nature) Global Tree Specialist Group (GTSG) 
was adapted, and trees were referred to as woody plants with usually a 

single stem growing to at least 2 m height and at least 10 cm of DBH, or 
if multi-stemmed, then at least one vertical stem 10 cm in DBH (Cazzolla 
Gatti et al., 2022). Tree species taxonomy followed the Angiosperm 
Phylogeny Group IV (The Angiosperm Phylogeny Group, 2016). 

2.2.3. Di.sturbwtce characterization of forest tree communities 
Before conducting a within-forest sampling, various forms of 

anthropogenic disturbances were recorded in the forest. These include 
fire outbreaks, tree logging, footpaths, agriculture, and invasive alien 
plant occurrences. We used these disturbances to establish a disturbance 
gradient in each forest (Table 2), following the methodology of 
Mohandass et al. (2017) and Dell.Sala et al. (2025). 

We calculated a disturbance index per plot through the following 
steps: (i) first, the relative impact of each disturbance type was estimated 
per plot. For each disturbance type, we considered values across all 121 
plots, and calculated the relative impact in a plot as the ratio of the value 
recorded in that plot to the maximum plot-level value observed among 
all plots (Table 2); and (ii) second, we computed the disturbance index 
for each plot by adapting the disturbance impact factor approach (Sagar 
et al., 2003; Mohandass et al., 2017). This involved summing the relative 
impacts ofall disturbance types recorded in the plot (Table 2). Although 
the disturbance variables had different units, scaling each to a relative 
value between O and 1 for each disturbance type across plots (Table 2) 
ensured comparability before summing them. 

This disturbance impact factor is a proxy for common anthropogenic 
disturbances that are assumed to affect the species composition and 
structure (Niang et al., 2024). The strength of this index lies in its ability 
to integrate multiple disturbance types, and similar approaches have 
been utilized in assessing direct human impacts on plant communities 
(Sagar and Singh, 2006; Mohandass et al., 2017). By assuming an equal 
impact of each disturbance type on tree communities, we minimized 
potential bias, as anthropogenic disturbances in tropical forests typically 
exert severe effects (Assede et al., 2023). Additionally, our focus on tree 
communities with diameters above 10 cm ensured consistency in the 
assessment: the temporal effect of disturbance does not influence the 
output of this study as it affects rree communities in the long term 
through regeneration processes (Leverkus et al., 2020; Chapagain et al., 
2021). 
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Table 2 
Estimation of the disturbance impact factor in the Kouvizoun Adakplam€!-Ewe 
forest patch. Each value in the columns (Footpath, Invasive species, Forest fire, 
and Agriculture) represents the relative impact of a specific disturbance type in 
the corresponding plot. The relative impact was calculated as the ratio of the 
observed value in the plot to the maximum value recorded across all plots (see 
Section2.2.3). Footpath was measured as the total length (in m) of human-made 
paths or trails within each plot. Tree cutting was recorded as the number of cut 
stumps observed. Invasive species, fire, and agriculture disturbances were 
recorded as the percentage of the plot area affected. The overall disturbance 
impact factor is the sum of all relative disturbance impacts recorded in each plot. 

Plot Footpath/ Tree cutting Invasive Fire Overall 
Trails- / Loppng alien s-pecies- dirturbance 

0.58 0.03 
0 0.03 

0.11 
4 0.03 
5 0.41 0.03 

0 0.03 
0.03 
0.03 

9 0.14 
10 0.08 
11 0.03 
12 0.03 
13 0.03 
14 0.03 
15 0.66 0.03 
16 0.03 
17 0.03 
18 0.03 
19 0.03 
20 0.14 

2.3. Analyses 

0 
0.02 
0.31 
0.01 
0.08 
0 
0.46 

0.38 
0.02 
0 
0.92 

0.23 
0.23 
0.23 

impact factor 

0 0.61 
0.05 0.1 
0.75 1.17 
0.01 0.05 
0.01 0.53 
0.01 0.04 

0.49 
0.03 
0.14 
0.08 
0.41 

0.75 0.8 
0.35 0.38 
0.6 1.55 
0.95 1.64 

0.8 
0.4 
0.1 

2.03 
1.06 
0.66 
0.36 
1.14 

2.3.1. Assessing drivers of anthropogenic disturbances in the forest patches 
To investigate the effect of forest patch characteristics on the 

disturbance occurrence in the forests, a generalized linear mixed-effects 
model (GLMM) was used by applying the 'lmer' function from the R 
package 'lme4' (Bates et al., 2015). The response variable was the 
quantified anthropogenic disturbance (overall disturbance impact fac­
tor) in each plot, while predictors were the distance from the centre of 
plot to the forest edge, the plot ownership, and the forest site in which 
the plot was sampled (random effect). For statistical analysis, we 
excluded the four plots from the Elavagnon-Todji forest (Table 1) due to 
insufficient replication along the edge-to-interior gradient, caused by 
limited forest cover. Similarly, the bioregion variable was not included 
in the model, as its effect was already accounted for by the forest 
variable. 

2.3.2. Forest patches' alpha diversity metrics 
The tree taxonomic diversity in the study forests was estimated using 

Hill numbers (Hill, 1973). Hill diversity was chosen for its ability to 
measure alpha diversity in ways that are easy to interpret and to facil­
itate comparisons across sites, even with unbalanced sample sizes 
(Roswell et al., 2021). Hill diversity is defined as follows: 

(1) 

where D is the Hill diversity, s the number of species, Pi the relative 
abundance of the species i (i = 1, 2, ... ,s) in the community. For q = 0, 

0n refers to the species richness (the cowit of species equally, 

regardless of their relative abundance). For q = 2, 2D refers to the 
inverse of the Simpson index and is interpreted as the effective number 
of dominant species in the community. When q = 1, Eq.l is undefined 
but its limit as q tends to 1 is the exponential of the Shannon index, 
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referred to as Shannon diversity (Chao et al., 2014): 

1D = lim 'D = exp(- tp,lofP,) 
q-l i 1 

(2) 

In this case 1 D counts the species in proportion to their abun­
dances, and is interpreted as the effective number of common species in 
the community (Hsieh et al., 2016). 

To facilitate comparison among tree community data from the nine 
forest patches, the sample completeness (Chao et al., 2014) was first 
performed (Fig. A. la and b). The coverage, which is a measure of how 
completely a community has been sampled, was chosen as it has been 
proven more effective for biodiversity comparisons between sites, rather 
than the equal sample size method (Roswell et al., 2021). The 
coverage-based standardization was done using the 'iNEXT' function 
from 'iNEXT' R package (Hsieh et al., 2016). The 'estimateD' function 
was then used to estimate three diversity metrics, namely: species 
richness, Shannon diversity and the inverse of Simpson index (Eq.1) at 
90 % equal coverage (see Fig. A. la and b ). These analyses were done by 
separating the swamp forests (Ikot and I-ilanzoun, Fig. la) from the 
non-swamp ones (i.e., climax forests) for comparison purpose, since they 
have different ecological conditions. 

2.3. 3. Tree commwiity wmposition among forest patches 
We assessed beta diversity, that is the variation in tree species 

composition between pairs of forest patches, using the Jaccard similarity 
index (Chao et al., 2005): 

A 
J=--­

A+B+C 
(3) 

where A is the number of species common to both sites, Bis the number 
of species occurring in the first site but not in the second, and C is the 
number of species occurring in the second site but not in the first. 

The Euclidean distance (d) between pairs of forest patches was 
measured using QGJS version 3.22.7 (QGJS Development Team, 2022). 
To test the relationship between beta diversity and forest isolation, we 
applied a Mantel test (Pearson correlation, 9999 permutations) between 
the Jaccard similarity and Euclidean distance matrices using the 'vegan' 
package in R (Oksanen et al., 2022). 

To assess within-forest change in tree species composition in relation 
to the disturbance and distance to forest edge, the function 'adonis' of the 
'vegan' R package (Oksanen et al., 2022) was used. The dissimilarity 
matrices were derived from Bray-Curtis distance measures (Bray and 
Cllltis, 1957). The disturbances were first categorized as high and low, 
while the variable distance to forest edge was categorized into core and 
edge. Within-forest tree assemblage in relation to these variables was 
represented by performing non-metric multidimensional scaling 
(Kruskal, 1964) on the dissimilarity matrix. 

2.3.4. Forest tree communities' structural characterization 
The tree diameter distribution in each forest patch was estimated 

using the Weibull distribution. We chose the Weibull distribution due to 
its flexibility in fitting various diameter disrribution data, particularly 
from forest patches that undergo various disturbances and ecological 
conditions (Teimouri et al., 2020). 

To assess how forest management, the spatial heterogeneity in the 
forests, and the bioregion types affected the tree species richness and the 
structure of tree communities, we applied a linear multiple regression 
analysis where nee species richness and rree stand srructural parameters 
(i.e., density, basal area, mean and maximum values ofDBH, and mean 
geometric diameter) were dependent variables. The studies by Sagar and 
Singh (2006), and Korhonen et al. (2023) indicate that these variables 
are suitable metrics to demonstrate how the anthropogenic disturbances 
observed in different plots may have influenced the stand structure of 
the tree communities. The regression's predictors were: the disturbance 
impact factor (estimated disturbance impact in each plot, Table 2), the 
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edge distance (Euclidean distance from the centre of each plot to the 
nearest edge of the forest in which the plot was sampled), the protection 
(ownership status of the plot), and the bioregion from which the plot 
was sampled (Droissart et al., 2018). We included forest-level covariates 
such as vegetation type and mean altitude to control for potential 
site-level confounding factors. 

All statistical analyses were conducted in R 4.3.2 (R Core Team, 
2023). 

3. Results 

3.1. Patterns of anthropogenic disturbances among forest patches 

Agriculture, footpaths, tree cutting and lopping, wildfire and related 
invasive alien species proliferation (mainly Chromolaena odorata (L.) R. 
M.King & H.Rob.) were the main common disturbances occurring in the 
selected forests outside protected areas. The mean disturbance impact 
varied from 0.003 to 0.95 in community non-sacred forests and from 
0.01 to 0.66 in the private or community sacred forests (Table 1). GLMM 
results indicated that anthropogenic disturbances decreased signifi­
cantly with increasing distance from the forest edge to the interior 
(p < 0.05), while plot ownership had no significant effect (Table 3). The 
low marginal R2 (0.04) suggests that fixed effects alone explained a 
small portion of the variation in disturbances. In contrast, the higher 
conditional R2 (0.48) indicates that a substantial proportion of the 
variance was explained by the model overall, highlighting the influence 
of site-level or landscape-level factors represented by the random effect 
(forest site). 

3. 2. Tree taxonomic diversity and assemblages across forest patches in the 
Guineo-Sudanian and Guineo-Congolian bioregions 

A total of 382 tree species belonging to 55 families were recorded 
across the nine forest patches in the Guineo-Sudanian and Guineo­
Congolian (Upper Guinea and Lower Guinea) transects (Table 4, Ap­
pendix Al). In the Guineo-Sudanian forests, Fabaceae, Apocynaceae, 
Malvaceae, Meliaceae, and Moraceae were the most abundant families, 
whereas Myristicaceae, Moraceae, Annonaceae, Burseraceae, and 
Dichapetalaceae dominated in the Guineo-Congolian. Dominant tree 
assemblages included Pymanthus angolensis, Desbordesia glaucescens, 
Staudtia kamerunensis, Piptadeniastro.m aftiwnwn, and Santtria trtmera in 
Guineo-Congolian sites, and Ceiba pentand.ra, Albizia gl.abenima, Alstonia 
congensis, Spondianthus preussii, Antiari.s toxicaria, and Firus spp. in 
Guineo-Sudanian sites (Table 4). 

Diversity indices (tree species richness and Shannon diversity) were 
consistently higher in the Guineo-Congolian than in the Guineo­
Sudanian bioregion (Table 4, Fig. 2a and b). Plot-level richness ranged 

Table 3 
Generalized linear Mixed Model (GLMNI) showing the effects of type of forest 
patch ownership and distance from the forest edge on the strength of anthro­
pogenic disturbances. Marg. R2 is the Marginal R2 and represents the proportion 
of variance explained by the fixed effects (Ownership and edge distance), and 
Cond. R2 is the Conditional R2

, which represents the proportion of variance 
explained by both fixed and random (forest) effects. The coefficient for the 
modality (OwnershipCNS) describes how the community- and non-sacred based 
ownership differ from the private or community-sacred one. By including the 
random intercepts for forest, forest-level covariates likely to affect the results 
were controlled by the model. 

GUvIM Model: Disturbance - Protection+ Edge distance+ (1 I Forest) 

Fixed factors Marg. Cond. Coefficient Std. 
R' R' Error vaue 

Intercept 0.04 0.48 0.31 0.17 2.92 < 0.05 
OwnershipCNS -0.15 0.28 -0.67 0.52 
Edge distance -0.0003 0.0001 -1.98 < 0.05 

(m) 

FQTest Ecology and Mamgemen.r 601 (2026) 123314 

from 14 to 22 tree species in Guineo-Sudanian climax forests and from 
36 to 49 tree species in Guineo-Congolian climax forests. Swamp forests 
showed lower tree species richness (9 and 14 species per 0.25 ha in 
I-ilanzoun and Ikot, respectively). 

3.3. Effects of disturbances and bioregions on alpha diversity in the forest 
patches 

The linear multiple regression showed that bioregional factors 
significantly influenced the tree species richness among the forest 
patches (p < 0.05; Table 5), while the effects of disturbances on tree 
species richness were not significant (p > 0.05; Table 5). Further, the 
variation in altitude and vegetation types explained the tree species 
richness across plots, with higher values in the rainforest plots than in 
the other vegetation types (p < 0.05; and Adj. R2 = 0.88; Table 5). These 
environmental effects on the tree species richness align with the 
observed differences in dominant families and assemblages (Table 4). 

3.4. Variation in tree commwiity composition among forest patches 

The similarity in tree species composition among forest patches was 
generally low (Jaccard index < 0.5), and showed no significant rela­
tionship with spatial distance between forest patches (Mantel test, r = -
0.04, p < 0.66). The similarity in tree species composition remained low 
between the swamp forests and climax forests, irrespective of their 
spatial isolation (Fig. 3). These compositional differences reflect the 
contrasting dominant assemblages (Table 4), highlighting strong 
bioregional signatures in species pools. 

For all forest patches, the Adonis tests revealed that there were no 
significant effects of the disturbance or distance from forest edge (edge 
effect) on within-forest tree community composition (p-values > 0.05; 
see appendix, Fig. A.2a and b ). 

3. 5. Effects of disturbance and bioregions on tree community structure 

For all forest patches in the Guineo-Sudanian and Guineo-Congolian 
bioregions, the curve of the probability density function was right­
skewed (shape >l, see appendix, Fig. A.3), indicating a high density 
of trees for smaller diameter classes, and fewer trees for diameter classes 
above 50 cm. On average, tree density and basal area were higher in 
Guineo-Congolian than in Guineo-Sudanian forests, and lowest in 
swamp forests (Fig. 2c and d). Compared with reference values reported 
from nearby old-growth forests, the studied patches show reduced but 
still substantial stand structure, underscoring their ecological value as 
buffers for biodiversity loss outside protected areas (Table 4 ). 

The linear multiple regression indicated that the bioregion in which 
the plot was located did not significantly explain the tree density, nor the 
basal area (p > 0.05, Table 5). This was due to confounding factors such 
as altitude and vegetation, which explained the variation in tree density 
across plots in the two bioregions (p < 0.05, Table 5). Regarding the 
variable disturbance, the regressions showed that forest disturbance 
negatively affected all structural parameters, including the tree density, 
which increased significantly along the gradient from forest edge to 

interior (p < 0.05, Table 5). 

3.6. Contribution to national. floras and threatened tree species in West 
and Central Africa 

Despite their small size, the sampled forest patches (4648.14 ha in 
total) make a disproportionately high contribution to tree conservation 
at the national scale. They harbour between 15 % and 30 % of the 
known tree flora of Togo, Benin, Nigeria, and Cameroon, and between 
5 % and 38 % of the globally threatened tree species in these countries 
(Table 6). Notably, globally threatened taxa such as Khayagrandifoliola 
(VU), Nesogordonia papaverifera (VU), Mansonia altissima var. altissima 
(EN), and Aftelia africana (VU) were locally abundant in some forest 
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Table 4 
Forest-Level structure, diversity, and dominant taxa for each patch compared to nearby primary vegetation. Tree species richness is given as the total number of species, 

with mean plot-level richness± standard error in parentheses. Shannon diversity (H'), tree density (stems.ha· 1), and basal area (m 2.ha· 1) are means± SE across plots 
(0.25 ha each). The threatened species follow the IUCN Red List categories (VU Vulnerable, EN Endangered; IUCN, 2025). 

Focerts Tree Shannon Tree Basal area Dominant tree Dominant Tiireatened species References 
(bioregion) species diversity density (m 2.ha) species family 

richness (H') (stems. 
Ira) 

Agou (GS) 70 (22 2.41 422 23.17 Tabemaem.onrona Apocynac eae; Afzel:ia africana (VU); This study 
±3.51) ± 0.26 ± 50.84 ± 03.24 pac1rysiphon; Pabaceae; Kha.ya gmndi.fo'/i.ola (VU); 

Albizia gnberrima; Apocynac eae; Vitellmia paradoxa (VU); 

V OOCOT®l afticana; Phyllanthaceae Pterocarpus erinaceus (EN) 
Margiritaria 
discoid.oo. 

Reference forest 3.96 767 27.99 Dangbo et l'i., 
(primary ± 25.58 (2020) 
vegetation) 

Elavagnon- 32 (14 2.31 186 12.36 Aubrevillea Fabaceae; Kha.ya gmndifo'/i.ola (VU) This study 
Todji (GS) ± 2.02) ± 0.15 ± 28.77 ± 02.17 kerstingii; Mdiaceae; 

Khaya Malvaceae; 
grandifoliola; Sapindaceae 
Srerculia 
tmgicantha; 
Locaniodiscus 
CUJXmi.oides 

Reference forest 4.62 679.6 25.6 Wala et al., 
(primary ± 315.9 ± 10.2 (2012) 
vegetation) 

Kaui (GS) 42 (18 2.44 245 20.45 Khaya Mdiaceae; Kha.ya grandifoli.ola (VU); This-study 
± 1.15) ± 0.10 ± 25.85 ± 04.36 grandifoliola; Moraceae; Kha.ya seney:rzlensis (VU); 

Tn1.episium Pabaceae; Lophira alata (VU); 
madagascariense; Malvaceae Pterocarpus erinaceus (EN) 
Aubrevillea 
kerstingii; 
Sterculia 
tragicantha 

Reference forest 4.62 679.6 25.6 waaetBl., 
(primary ± 315.9 ± 10.2 (2012) 
vegetation) 

Kouviz.oun (GS) 70 (18 2.43 222 17.59 Eng1£rophynon Sapotaceae; Afzel:ia africana (VU); This-study 
± 0.78) ± 0.06 ± 16.02 ± 01.43 OOloJJceolatwn; Ml'ivaceae; Nesogordonia papaverifera (VU); 

Triplochilor1 Cannabaceae; Mansonia altissima. var. alt.issiirn 
scleroxylon; Fabaceae (EN); 
Celtis pramlit Pterocarpus erinaceus (EN) 
Dialiwn guineense 

Reference forest 2.6 212.5 34.79 Bonou et al., 
(primary ± 7.02 ± 6.46 (2009); 
vegetation) Alohou et al., 

(2017) 
Hlanzoun(GS) 30 (9 1.47 350 21.74 Alstorlia congensis; Apocynac eae; This study 

± 0.46) ± 0.08 ± 25.07 ± 02.05 Spondillnthus Phyllanthaceae; 
prewsit Moraceae; 
Ficus trichcpoda; Gentianaceae 
Anthoeleista vogd.ii 

Reference forest 3.24 620 44.9 Djos-sa eta., 
(primary (2010) 
vegetation) 

lkot(GC) 38 (14 1.90 263 12.20 Coelocaryon Myrirticaceae; This study 
± 1.32) ± 0.10 ± 25.68 ± 04.76 booyoides; Rubiaceae; 

M~a cil:iata; Gentianaceae; 
Anthocleista vogel.it Burs-eraceae 
Padiylobus 
klainoo.nvs 

Reference forest 2.66 541 ± 29 34.3 Asinwa etal., 
(primary ±0.40 (2018); lgu and 
vegetation) Marchant, 

(2018) 
Iko (GC) 144(36 2.99 448 32.45 Troculio. africana; Moraceae; Cdn INl"' (VU); This-study 

± 1.54) ± 0.06 ± 22.74 ± 01.94 Tapura africana; Dichapetal.aceae; Erw.erodm.dron OOilllm.se (VU); 
Dialiwn Pabaceae; Entandnphrogma cylindricum (VU); 
pachyplryllwn; Myrirticaceae Nesogordonio. papavtrifera (VU); 
Pycnanthus Prerygoro. macrocarpa (VU); 
angolensis Pycnanthus m'icrocephalvs (VU); 

Sterculia OOlmga (VU); Term.inalia 
ivorensis (VU); GuWourria tessrmnni.i 
(EN); Mansonia alt:issima var. 

(continua:! on next page) 
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Table 4 (continued) 

Focerts 
(bioregion) 

Tree Shannon Tree 
density 
(stems. 
Ira) 

Basal area Dominant tree Dominant 
family 

lbreatened species References 
species diversity (m 2 .ha) species 
richness (H') 

altissima (El:N); Prioria balsami.fem 
(EN) 

Reference forest 2.87 714 ± 24 37.6 Asinwa etal., 
(primary ± 0.41 (2018) 
vegetation) 

Mbangassina 129 (36 3.19 333 34.20 Trilq,isium Moraceae; Afz-elia a[ric011ll (VU); Aftelia This study 
(GC) ± 1.59) ± 0.12 ±30.98 ± 02.77 mnd.Cl8(15C{lriense, Malvaceae; bipindensis (VU); Di.{}¥Jyros 

Sterculia Putrnnjivaceae; crassiflora (VU); Entandn:pluagma 
rhinqwala; Meliaceae cylindricum (VU); Kha.ya 
Drypete5 leonensis; graMifol.iol.a (VU); Nesogordonia 
Trichilia tessmannii. papawrifera (VU); Pterypa 

m.acrocarpa (VU); Sterculia oblonga 
(VU) 

Reference forest 498-573 31.7-32.4 Fobane et al., 
(primary (2024) 
vegetation) 

Ngam- 194 (49 3.51 476 34.75 Mei.ocarpidium Annonaceae; Afzelia. africOJlll (VU); Aftelia This study 
Kondomeyos ± 0.98) ± 0.03 ± 12.26 ± 01.61 oliveri.anum; Myristicaceae; bipendensis (VU); Amyyxis klainoo.rlll 
(GC) Staudtia Irvingiaceae; (VU); BaillaneUa. toxisperma. (VU); 

kamerunensi.s; Myristicaceae Caipocalyx hei.tzii (VU); Diaspyros 
Desborde.sia. 
gla.ucescens; 
P}t:na.nthus 
angol.ensi.s 

Reference forest 4.43 263 28.36 
(primary ± 28.86 
vegetation 

patches. 

4. Discussion 

4 .1. Forest disturbance characterization 

The major types of disturbance recorded in our study (selective 
logging, agricultural expansion, and wildfire) were consistent with 
trends observed across rropical Africa, where rapid population growth 
has resulted in increased agricultural pressures, often characterized by 
slash-and-burn practices, including wildfire and logging (Laurance et al., 
2014). These disturbance types were also previously identified as key 
drivers ofland-use and land-cover changes across tropical Africa (Brandt 
et al., 2018; Assede et al., 2023). The anthropogenic disturbance types 
were concenrrated at forest edges, as the GL1'-111v1 results showed a sig­
nificant decrease in distmbance intensity with increasing distance from 
the forest edge towards the forest interior. Distance to the forest edge is a 
well-known predictor of the intensity and magnitude of edge effects 
(Wilhner et al., 2022), and our findings are consistent with previous 
studies documenting pronounced edge effects in rropical forests 
(Muposhi et al., 2016; Beche et al., 2022). However, the GIMM sug­
gested that anthropogenic disturbances in the forests were further 
influenced by potential confounding factors such as land use histories or 
disturbance legacies that might have influenced the observed patterns. 

Forest ownership type, although assumed to influence anthropogenic 
disturbance, did not significantly affect disturbance occurrence, which is 
generally high for all forests in our study. This suggests that forest 
patches outside protected areas are vulnerable to disturbance, regardless 
of ownership status. This shows that both protected and unprotected 
forests in tropical Africa are impacted by human activities, contributing 
to forest fragment shrinkage and loss (Muposhi et al., 2016; Hansen 
et al., 2020a). These results highlight the urgent need for stronger 
governance frameworks to ensure sustainable management of these 

crassiftora (VU); EntandrqJluagma 
candol.lei (VU); Entcmd.rqJluagma. 
cylindricum (VU); Entandrophragma 
uti.le (VU); Khaya gro.Mifoli.ola. (VU); 

Kha.ya ivmmsis (VU); NesogQTdonia. 
papav.ri.fera (VU); Ptery~ta 
bequa.erti.i (VU); Slerculia oblongi 

(VU); Gui.bounia tessmannii. (EN) 

Mbobda et al., 
(2018) 

forest patches, to mitigate further degradation and ease pressure on the 
remaining natural forests in the Congo basin (Hansen et al., 2020b). 
Future studies that assess disturbances over time will be essential for 
understanding how these pressures influence tree functional composi­
tion and ecosystem resilience (Bongers et al., 2009). 

4.2. Tree commwti.ty composition within forest patches 

We followed a phytogeographical gradient to assess alpha and beta 
diversity among tree communities under various disturbances in West 
and Central Africa. As hypothesized, species diversity metrics increased 
from Guineo-Sudanian to Guineo-Congolian forests. This relationship 
could be explained by the gradient in rainfall from the Guineo-Sudanian 
to the Guineo-Congolian bioregions and has been confirmed in a global 
study on vascular plants where rainfall was identified as a major driver 
of alpha diversity (Sabatini et al., 2022), which aspect is also related to 

the variation in our bioregion types (Fayolle et al., 2014a,b; Marshall 
et al., 2021; Davies et al., 2023), The climax forest patches in our study 
were more diverse than the swamp forests, likely because the tree 
communities in swamp forests are dominated by specialized species 
adapted to flooding, which results in lower diversity (Lopez and Kursa.r, 
2003). 

4.3. Variation of tree species diversity across forest patches 

Regarding beta diversity across forest patches, we hypothesised that 
tree communities would exhibit high beta diversity, with the inverse of 
Jaccard similarity increasing as the spatial distance between forest 
patches increased. This hypothesis was only partially supported: 
although tree species similarity among forest patches was generally low, 
there was no significant correlation between the Jaccard similarity (J) 
and the Euclidean distance (d). Variations in environmental factors such 
as rainfall (Ringelberg et al., 2023) and topography (De Caceres et al., 



 

132 
 

G.A. Agonvonon et al. Forest Ecology and Management 601 (2026) 123314 

(a) 
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Fig. 2. Stand-level diversity and structure across forest patches. Points show forest means; whiskers are ± SE across 0.25 ha plots. Colours denote bioregion. 
Asterisked forests (Ikot*, Hlanzoun*) are swamp habitats. Panels indicate (a) species richness (S), (b) Shannon diversity (H'), (c) tree density (stems.ha- 1), and (d) 
basal area (m2 .ha- 1). 

Table 5 

Linear multiple regressions showing the effects ofbioregions and site characteristics (disturbance and distance to forest edge) on tree stand composition and structure. 
The model in each case follows the formula: Dependent variable - Bioregion type+ Vegetation+ Altitude+ Distance to forest edge+ Disturbance. References were Guineo­
Sudanian and Rainforest respectively for the variables bioregion types and vegetation across models. 

Dependent variables 

Predictors 

Bioregion type (Guineo-Sudanian) 
Distance to forest edge 
Disturbance 
Altitude 
Vegetation (Rainforest) YSF" 

OSF1 

W' 

SDDF" 
Adj. R2 

a YSF = Young Secondary Forest; 
b OSF = Old Secondary Forest; 

' W = Woodland; 

Tree species 
richness 

Estimate 

-4.428 
-0.001 
-1.364 

0.026 
-11.803 
-9.166 
-26.765 

-16.186 
0.88 

d SDDF = Semi-deciduous Dense Forest 

Tree density (stems. 
ha) 

Estimate 

< 0.05 -4.444 0.899 
0.41 0.084 < 0.05 
0.23 -48.655 < 0.05 
< 0.05 0.103 < 0.05 
< 0.05 -110.731 < 0.05 
< 0.05 -100.759 < 0.05 
< 0.05 -196.143 < 0.05 
< 0.05 -77.442 0.06 

0.45 

Basal area (m2 .ha) Mean geometric 
diameter (cm) 

Estimate Estimate 

1.430 
0.001 
-9.502 

0.007 
-6.071 

6.381 
-15.909 
-8.704 

0.48 

0.65 
0.65 
< 0.05 
< 0.05 
0.05 
0.11 
< 0.05 
< 0.05 

3.303 
-0.002 
-3.483 
-0.001 

0.726 
3.660 
-2.011 
-0.212 

0.15 

< 0.05 
0.19 
< 0.05 
0.55 
0.62 
0.06 
0.36 
0.90 

Max DBH of non- Max DBH of timber 
timber tree (cm) tree (cm) 

Estimate Estimate 

-1.483 0.85 19.918 0.09 
0.003 0.67 -0.009 0.46 
-20.007 < 0.05 -10.539 0.15 
0.033 < 0.05 0.014 0.31 
9.815 0.22 -38.787 < 0.05 
38.215 < 0.05 -1.913 0.89 
-4.495 0.711 -54.931 < 0.05 
5.267 0.593 -55.141 < 0.05 
0.31 0.29 
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Fig. 3. Matrix showing the relationship between the similarity in tree species composition (above diagonal) and the distance between forest patches (below di­
agonal). For each forest patch, shading gradients in grey (climax forests) or blue (swamp forests) along the cells on either side of the diagonal represent the gradient 
in distance (below diagonal) and Jaccard index (above diagonal), respectively. Forests marked with an asterisk (Hlanzoun* and Ikot*) are swamp forests, while those 
without an asterisk (Agou, Elavagnon-Todji, Kaui, Kouvizoun Adakplame-Ewe, Iko, Mbangassina, and Ngam-Kondomeyos) are climax forests. 

Table 6 
Contribution of sampled patches ( 4648 .14 ha in total) to national tree floras and 
threatened tree species pools. Values in parentheses are percentages of national 
totals (BGGI, 2024; IUCN, 2025). 

Parameters Benin Togo Nigeria Camero(M) 

Samp ed area acros-s- 10 4.25 7.75 8.25 
forest patches- (ha) 

Tree species richnes-s 573 446 1280 2048 
Tree species recorded 188 138 284 299 

(32.81 %) (30.94 %) (22.19 %) (14.60%) 
Threatened tree 26 16 165 451 

species-
Threatened tree 7(26.92 %) 6(37.50%) 22 23(5.10%) 

s-pecies-recmded (13.33%) 

2012) are expected to affect the tree species distribution between the 
two bioregions (Guineo-Sudanian and Guineo-Congolian) included in 
our study. However, the absence of a significant relationship between 
Jaccard similarity and spatial distance may partially reflect the limited 
number of forest patches (nine) assessed. Furthermore, our beta di­
versity estimates did not partition total dissimilarity into turnover and 
nestedness components (Baselga, 2010), which constrains detailed 
mechanistic interpretation. 

For all forests, we did not observe a clear pattern of change in within­
forest tree species composition related to either the distance from the 
forest edge or the level of plot disturbance. This lack of a pattern may be 
attributed to the small size of the forest patches, where limited spatial 
variation could obscure potential effects. While edge effects on tree 
communities in forest patches may be subtle in the short term 
(Gom;alves-Souza et al., 2025), further research should focus on 
long-term monitoring and consider adjacent land use. Likewise, trees 
sampled in our study may have been established before the observed 
disturbances. Another plausible explanation is that soil nurrient varia­
tion within each forest, rather than distance to the edge or disturbance 
levels, could be driving tree species composition (John et al., 2007). To 
better elucidate these dynamics, future studies should explore how soil 
nurrient variations correlate with both distance from forest edge and 
disturbance gradients. Additionally, long-term monitoring of the dis­
turbances and assessing their effect on the tree community functional 
properties will conrribute to a better understanding of potential changes 
in the uee community composition (Carrefio-Rocabado et al., 2012). 
Finally, our analysis did not account for natural biotic and abiotic dis­
turbances, such as drought, insect outbreaks, or pathogen proliferation, 
which are likely to intensify with global climate change. These factors 
could be critical in shaping within-forest tree community composition 
(Seidl et al., 2017), warranting further investigation. 

10 

4.4. Tree commw1ity structure 

The effects of disturbances on uee stand suucture supported our 
hypothesis as the srructural parameters, especially uee density and basal 
area, were all negatively and significantly affected by forest disturbance. 
This is due to the selective logging of both timber and non-timber uees. 
The diameter disuibution of trees in the forest patches exhibited an 
inverse-J curve, which is characteristic of healthy forests with active 
regeneration. However, the scarcity of trees with diameters exceeding 
50 cm across the two bioregions underscores the intense logging pres­
sure on mature trees in the forests. In contrast, primary forests in the 
region typically show a higher prevalence ofuees exceeding 50 cm DBH 
(Bonou et al., 2009; Fayolle et al., 2014a,b; Adjonou et al., 2017; Akwaji 
and Onah, 2023). Although the tree communities contain a high pro­
portion of regenerating individuals, ongoing anthropogenic distur­
bances jeopardize the long-term persistence of mature size classes and 
may ultimately erode both functional diversity and overall biodiversity 
(Zambrano et al., 2020; Maua et al., 2020). 

The fact that the diameter of non-timber trees was affected by 
anthropogenic disturbances, highlights the pressure on timber resources 
in these unprotected forests. With the scarcity of timber trees, which are 
valued for their high-quality wood (Hills et al., 2022), "non-timber" tree 
species (though generally of lower wood value), are now targeted for 
uses such as charcoal production and crafting (Mensah et al., 2022). 
Together, these findings underscore how disturbances alter both struc­
ture and resource use trajectories, with implications for long-term 
functional diversity. Overall, our findings reveal that the forest edge 
effect predominantly influences tree density, with a notable increase in 
density observed as distance from the forest edge increases. This is 
consistent with various studies of edge influence on vegetation, where 
significant differences in forest suucture were reported between forest 
edge and interior (Franklin et al., 2021; Hepner et al., 2025). The spatial 
pattern observed in our study suggests that forest patches outside pro­
tected areas, already under anthropogenic pressure, may continue to 
shrink over time due to edge effects (Edwards et al., 2019; Hepner et al., 
2025). Moreover, the altitude and vegetation types significantly influ­
enced most of the assessed structural parameters. This aligns with the 
observed patterns in alpha diversity, indicating that biophysical differ­
ences play a crucial role in shaping the tree communities within these 
disturbed forest patches. We found that anthropogenic disturbance has a 
snong negative effect on the forest structural parameters. As a result, 
tree density and basal area in the studied forests were lower than the 
reference values in the nearby old-growth vegetation. Given that these 
disturbance-types are likely to persist under current management sys­
tems for forest patches outside protected areas (Edwards et al., 2019), 
assessing the impacts of other forms of disturbance (e.g., defaunation) 
on tree community functional diversity will be critical for informing 
long-term management strategies (Gardner et al., 2019). 
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4.5. Implications for tree conservation and the mana,gement of forest 
patches 

Although small, these nine forest patches collectively harbour 15 % 
of total African rree species richness (Sosef et al., 2017). This un­
derscores the conservation value of these small, isolated forest patches. 
At the national level, these forest patches contribute significantly to the 
tree flora, housing at least 30 %, 32 %, 22 %, and 15 % of the total tree 
species in Togo, Benin, Nigeria, and Cameroon, respectively (BGCI, 
2024). In terms of threatened species conservation, these patches are 
also critical, providing habitats for at least 37 %, 27 %, 13 %, and 5 % of 
the threatened tree species in these countries (Table A.l; BGCI, 2024; 
IUCN, 2025). For instance, the Kouvizoun Adakplame-Ewe forest in 
Benin is the sole habitat for species like Mansonia altissima var. alti.ssima 
(EN) and Nesogordonia papaverifera (VU) (Houngnon et al, 2021 ), which 
highlights the unique conservation value of these areas. Khaya grandi­
foliola (VU) is also abundant in the Agou forest patch in Togo. 

Despite their importance, current management frameworks fail to 
prevent severe anthropogenic disturbances, such as agricultural 
encroachment, selective logging, and wildfire across forests. Although 
the cultural protection systems associated with forests can positively 
influence their persistence (Mintah et al., 2024), our study shows that 
they are not sufficient to safeguard the long-term persistence of tree 
communities in forest patches managed by local communities. Effective 
engagement of local communities and stakeholders in management 
strategies is essential to mitigate these pressures. One potential pathway 
is the designation of these forests as "Other Effective area-based Con­
servation Measures (OECMs), as proposed by the Convention on Bio­
logical Diversity (CBD) (Hansen et al., 2020b). OECMs offer flexible 
governance models that empower local communities to manage re­
sources while ensuring conservation outcomes. Given the importance of 
these forest patches for local livelihoods, it is critical to establish 
governance structures that balance resource use with conservation 
goals. Key steps could include assessing the minimum felling diameter of 
timber trees, evaluating the sustainability of harvesting non-timber 
forest products (Sokpon and Biaou, 2002; De Mello et al., 2020), and 
promoting participatory conservation efforts, particularly for threatened 
tree species. 

Toe results showed that nearby forest patches are not necessarily 
more similar than distant ones, indicating that effective in-situ conser­
vation strategies must encompass multiple patches across different 
bioregions. Since these patches are managed by local communities, 
fostering a network of forest governance involving various stakeholders 
is crucial for their long-term persistence. Our findings of strong edge 
effects on stand structure further highlight the need for spatially 
differentiated management. In this context, local communities could 
implement a zoning approach, including core conservation areas, buffer 
zones, and resource-use areas. This could reduce edge-driven degrada­
tion while supporting local livelihoods. Unlike formal Man and 
Biosphere Reserves, which are typically applied within protected area 
frameworks, such zoning could be adapted under OECMs-type ar­
rangements to strengthen customary rights and local governance. Ex­
periences from community forest concessions in the Maya Biosphere 
Reserve, Guatemala, show that rights-based zoning can maintain forest 
cover while generating local benefits when accompanied by clear 
tenure, monitoring, and accountability mechanisms (Sundberg, 2003; 
Monterroso and Barry, 2012; Radachowsky et al., 2012). Adapting these 
lessons to the West and Central African context would mean formal 
recognition of customary tenure, co-defined conservation zones to pro­
tect interior habitats, and regulated buffer and use zones to sustain wood 
and non-timber forest products. 

Moreover, forest restoration initiatives should also prioritise 
enhancing the structural integrity of forest edges in terms of tree density, 
diversity, and composition, as this could limit further forest loss. To 
achieve a balance between biodiversity conservation and livelihoods, it 
is essential to create landscapes with at least 40 % forest cover 
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(Arroyo-Rodriguez et al., 2020). This could involve maintaining isolated 
forest patches alongside timber plantations and sustainable agricultural 
practices (Rocha-Santos et al., 2016; Arroyo-Rodriguez et al., 2020). 
Such an approach is critical to meeting the 2030 targets of the CBD 
(Convention on Biological Diversity, 2022). Engaging local communities 
in growing fast-growing tree species for timber and other uses is also 
crucial. Given the high failure rate of restoration projects, prioritizing 
the use of native and threatened species rather than the exotic ones in 
restoration efforts, can significantly improve success rates 
(Bartholomew et al., 2023). Sustainable forest management in tropical 
Africa must involve all stakeholders, including local communities, 
customary authorities, forest resource collectors, and government in­
stitutions (Uzu et al., 2022). Finally, legal frameworks that support in­
clusive governance and equitable resource-sharing are essential for the 
long-term persistence of these forest patches. 

5. Conclusions 

This study demonstrates that forests outside protected areas are 
indispensable for conserving tree diversity in West and Central Africa. 
Despite their small size, they contribute substantially to national floras 
and threatened species pools. Our findings indicate that effective con­
servation cannot rely on single sites but should instead encompass net­
works of forest patches across bioregions. Current governance 
frameworks leave these forests vulnerable to anthropogenic pressure, 
particularly logging, agriculture, and wildfire, which degrade stands and 
erode large-tree populations, especially near edges. Customary-based 
governance proved insufficient to secure the long-term persistence of 
tree communities in these forests outside protected areas. We therefore 
recommend combining (i) formal recognition of these forests as critical 
biodiversity habitats, with (ii) strengthening customary rights through 
inclusive governance, and (iii) implementing zoning approaches with 
core conservation, buffer, and resource-use areas. Embedding such 
measures into national strategies will sustain local livelihoods while 
safeguarding irreplaceable biodiversity. 

CRediT authorship contribution statement 

Georges Alex Agonvonon: Writing - review & editing,. Writing -
original draft, Methodology, Investigation, Formal analysis, Data cura­
tion, ConceptuaJization. Samuel Markus Hepner: Writing - review & 
editing, Investigation. Chima Jude Iheaturu: Writing- review & edit­
ing, Investigation. Akomian Fortune Azihou: Writing - review & 
editing, Methodology, Conceptualization. Denis Jean Sonwa: Writing­
review & editing. Francis Ebuta Bisong: Writing - review & editing. 
EnoAbasi Deborah Anwana: Writing - review & editing. Koffi Kou­
douvo: Writing - review & editing. Brice Brice Augustin Sinsin: 
Writing - review & editing, Supervision, Methodology, Conceptualiza­
tion. Markus Fischer: Writing - review & editing, Supervision, Meth­
odology, Conceptualization. Chinwe Ifejika Speranza: Writing -
review & editing, Supervision, Project administration, Methodology, 
Data curation, Conceptualization, Funding acquisition. 

Declaration of Competing Interest 

Toe authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This project has received funding from the European Research 
Council (ERC) under the European Union's Horizon 2020 research and 
innovation programme (Grant agreement No. 101001200). We are 
grateful to the local institutions and all research partners in Togo, Benin 
Republic, Nigeria, and Cameroon for support in logistics and 



 

135 
 

G.A. A,gonvonon et al. 

conrributions to organizing field data collection as well as the local 
communities armmd the study siles for granting access to the forests, 
sharing their knowledge with us and for hosting us. We thank Prof. 
Margaret Bassey and Dr. Pierre Agbani for their support in voucher 
identification. We also thank Prof. Christopher Baraloto and the Inter­
national Center for Tropical Botany (ICTB) for providing the first author 
with advanced training in cropical botany, which strengthened the 
taxonomic component of this study. We tl1ank our data collection team 
and the Land Systems and Susta.inable Land Management team members 
for their advice during discussions. Our study is pan of the SUSTAIN­
FORF.STS research project and conrributes to the Programme on 
Ecosystem Change and Society (https://pecs-science.org/) and the 
Global Land Programme (https://glp.earth/). We are also grateful to the 
anonymous reviewers for lheir thoughtful and conscructive comments, 
which substantially improved the clarity and quality of this manuscript. 

Appendix A, Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fmeco.2025.123314. 

Data availability 

Data will be made available on request. 

References 

Adjonon, K, Kl!mavo, A., Poncodji, J.K, Tchani, W., Sodjinou, F., Sebastia, MT., 
Kokutse, A.D., Kokou, K, 2017. Vegetation dynamics patterns, biodiversity 
conservation and structure of forest ecosyrternr in the Wildlife Reserve ofTogodo in 
Togo, West Africa Int. J. Dev. Res. 7, 14549-14557. 

Al-..vaji, P.I., Onah, 0.0., 2023. Porest inventory for rustainable forest management in 
crOS"s river state, Nigeria Sci. Rep. UfeSd. 4, 38-52. https://scientifk-reports. 
com/index.php/srls/artide;view/1171. 

Almeida-Rocha, J.M., Soares, I...A.S.S., Andrade, E.R, Gaioao, F.A., Caz.etta, I!., 2020. 
The impact of anthropogenic disturbances on the genetic diverrity of terrestrial 
species: a global meta-analysis. Mol. Ecol. 29. htt~://doi.org/10.1111/mec.15688. 

Alohou, E.G., Gbemavo, O.S.J.C., Mensa~ s., Ouinravi, C., 2017. Pragmencation of forest 
ecosystems and connectivity between sacred groves and forest reserves in 
Southeastern Benin, West Africa. Trop. Conserv. Sci. 10, 1-11. https://doi.org/ 
10.1177/1940082917731730. 

Arroyo-Rodr(guez, V., Ararn-Gisbert, R., Arce-Petia, N.P., Cervantes-I...6pez,. M.J., Cudney­
Val enzuel a, S.J., Gal tin-Acedo, C., Hernandez-Ruedas, M.A., San..JoS'e, M., Fahrig, L., 
2022. The importance of mmll rninforest putches foe biodiversity conservation: a 
multi-taxonomic assessment. In: Montagnini, P. (Ed.), Biodiversity I stands: Strategies­
for Conservation in Human-Dominated Environments. Springer International 
Publishing, Cham, pp. 41-60. https://doi.org/10.1007/978-3-030-92234-4_2. 

Arroyo-Rodriguez,. V., Pahrig,. L.., Tabardli, M., Watling, J.I., Tischendor~ L., 
Benchimol, M., cazetta, E., Paria, D., Lea, I.R., Melo, F.P.I..., Moeante-Filho, J.C., 
Santos, B.A., Arasa-Gisbert, R, Arce-Peria, N., Cervantes-L6pez,. M.J., Cudney­
Valenzuda, s., Galan-Acedo, C., San.Jose, M., Vieira, J.C.G., Slik, J.W.F., 
Uowakowski, A.J., Tstharntke, T., 2020. Designing optimal human-modified 
landscapes for forest biodiversity conservation. Ecd. Leet. 23, 1404-1420. https:// 
doi.org/10.111 l/ele.13535. 

Asinwa, 1.0., Olajuyigbe, S.O., Adegey,, AO., 2018. Tr,e speties diversity, composition 
and mactnre in Ogun River Wateuhtd, Southwestern Nigeria J. For. Res. Manag. 
15, tl4-1134. 

Assede, R.S.P., Omo, H., Biaou, S.S.H., Gddenhuys, C.J., Ahononga, F.C., Olinva, P.W., 
2023. Understanding drivers of land use and land cover change in Africa: a review. 
Curr. Ullldst. Ecd. Rep. 8, 62-72. https://doi.org/10.1007/s40823-023-00087-w. 

Bartholomew, D.C., Shaw, K, Rivers, M.C., Baraka, P., Kigethi, RN., Wanja, W., 
Wanjiku, C., Williamr, H.F., 2023. Overcoming the chlilenges of incorporating rare 
and threatened Dora into ecol)'stem restoration. Restor. Ecol. 31, e13849. https:// 
doi.org/10.1111/rec.13849. 

Baselga, A., 2010. Partitioning the turnover and nen.edness components of beta diversity. 
Gob. Ecol. Biogeogr. 19, 134-143. httpr://doi.org/10.11 ll/j.1466-
8238. 2009. 00490.x. 

Bates, D., M8ctier, M., Bolker, B., 2015. lmc4 Mixedeffects Model. R. 67, 1-48. https:// 
doi.oeg/10.18637 Jjss. v067.i01. 

Beche, D., Tack, A., Nentomissa, s., Warkineh, B., Lemesro, D., Rodrigues, P., Fischer, J., 
Hylander, K, 2022. Spatili variation in human disturbances and their effects on 
forest structure and biodiversity across an Afromontane forest. Land. Ecol. 37, 
493--510. https://doi.0<g/10. I007 /,10980-021-01395-4. 

BGci 2024. GobalTree Portal. Botanic Gardens Conservation International, Richmond, 
U.K. https://www.bgci.org/1,sources/bgd •databattr/global uee-portal/). Accessed 
on 10 March 2025. 

Bongers, F., Poorter, L.., Ha\vthorne, W.D., Sheil, D., 2009. The intermediate disturbance 
hypothesis appies to tropical forests, but disturbance contributes littt e to tree 

12 

FCTeSt. F.col.ogyand Management 601 (2026) 123314 

diversity. Ecd. Lett. 12, 798-805. https://doi.org/10.1111/j.1461 
0248.2009.0I :329.x. 

Bonou, W., GlH: Kekai~ R., Assogbadjo, A.I!., Ponton, H.N., Sinsin, B., 2009. . 
Qmrncterisation of Afzelin. ajriama Sm. habitat in the Lama forest rese.-ve of Benm. 
Poe. Ecd. Manas. 258, 1084-1092. https://doi.org/10. tol 6/j.foreco.2009.05.032. 

Bowd, E., Blanchard, W., McBurney, L., Lindenmayer, 0., 2021. Direct and indirect 
disturbance impacts on forest biodiversity. Ecosphere 12, e03823. https://doi.org/ 
10.1002/ecs2.3823. 

Brandon, K, 2014. Ecosystem services from tropical forests: review of current science. 
SSRN J. https://doi.otg/10.2139/ssrn.2622749. 

Brandt, M., Rasmussen, K., Hiernaux, P., Herrmann, S., Tucker, C.J., Tong. X., Tian, F., 
Mertz,. o., Kergoat, L.., Mbow, C., David, J.I..., Melocik, K.A., Dendoncker, M., 
Vincke, c., Pens'holt, R., 2018. Reduction of tree cover in West African wood.ands 
and promotion in remi-nrid furniands. Hat. Geosd. 11, 328-333. https://doi.org/ 
10.1038/s41561-018·0092-x. 

Bray, J.R., Curtis, J.T., 1957. An ordination of the up and forest communities of Southern 
Wisconsin. Ecd. Monogr. 27, 325-349. https://doi.org/10.2307/1942268. 

Carrefio-Rocabado, G., Pefia-Oaros, M., Bongers, F., Alarc6n, A., Ucona, J.-C., 
Poorter, L, 2012. Effects of disturbance intensity on species and functional diverrity 
in a uopical forest. J. Ecd. 100, 1453--1463. https://doi.org/10.1111/j.1365 
2745.2012.02015.x. 

Caz.toll a Gatti, R., Reic~ P.B., Gamarra, J.G.P., Oov..ther, T., Hui, C., Morera, A., 
8anin, J.-F., de-Miguel, S., Habuurs, G.-J., Svenning. J.-C., Serra-Diaz., J.M., 
Merow, c., F.nquist, B., Kamenecsl...-y, M., Lee, J., Zhu, J., Fang. J., Jacobs, D.F., 
Pijanowski, B., Banerjee, A., Giaquinto, RA., Alberti, G., Almeyda Zambrano, A.M., 
Alvarez-Davila, E., Araujo-Murakami, A., Avitabile, V., Aymard, G.A., Balaz.y, R, 
Barnloto, C., Barroso, J.G., Bastian, M.L., Birnbaum, P., Bitariho, R., Bogaert, J., 
Bongers, P., Bouriaud, 0., Brnncalion, P.H.S., Brearley, F.Q., Broadbent, E.N., 
Bussotti, P., Castro On Silva, W., Cesar, R.G., Cestjar, G., Ornma Moscos-o, V., 
Q1cn, H.Y.H., Cienciala, ll, Oork, C.J., Coomes, D.A., Dayanandan, S., Decuyper, M., 
Dee, L.E., Dd Aguila Pasquel, J., Derroire, G., Djuikouo, M.N.K, Van Do, T., 
Dolezol, J., DordeviC, 1.D., Rngd, J., Fayle, T.M., Fetdpausth, T.R., Fridman, J.K, 
Harris, D.J., Hemp, A., Hengeveld, G., Hecault, B., Herold, M., Ibanez, T., 
Jagodzinski, A.M., Jaroszewicz,. B., Jeffery, KJ., Johannsen, V.K, Juck~r, T., 
Kangur, A., Karminov, V.N., Kartawinata,. K, Kennard, D.K., Kepfer-RoJas, S., 
Keppel, G., Khan, M.L.., Khare, P.K, Kileen, T.J., Kim, H.S., Kujus, H., Kumar, Amit, 
Kumar, As'hwani, L..aarmann, 0., Labriere, N., Lang. M., Lewis, S.L., Lukina, N., 
Maimer, B.S., Malhi, Y., Marshall, A.R., Martynenko, O.V., Monteagudo Mendoza, A. 
1..., Ontikov, P.V., Ortit.-Malavasi, E., Pallqui Camacho, N.C., Paquette, A., Park, M., 
Parthasarathy, N., Peri, P.L, Petrondli, P., Pfautsch, S., Phillips, O.L, Picard, H., 
Piocto, 0., Poorter, L., Poulsen, J.R., Pretz.sch, H., Ramfrez.-Angulo, H., Restrepo 
Correa, z., Rodeghiero, M., Rojas Gonz.ales, R.D.P., Rolim, S.G., Rovero, P., 
Rutishauser, I!., Saiki a, P., Salas-Eljatib, C., Schepaschenko, D., Scherer-
Lorenzen, M., !ebel\ V., Silveira, M., Slik, F., Sonke, B., Souz.a, A.P., Stecel'lcz.ak, K.J., 
Svoboda, M, Tocdoumg. H., Tchebakova, N., Terborgh, J., Til-.ilonova, I!., Torres­
Lezama, A., Van Der Plas, P., VllSQuez, R., Viana, H., Vibrans, A.G., Vilanova, E., 
Vor, V.A., Wang, H.-P., Westertund, B., White, W.T., Wiser, S.K, ZawHa• 
Niedtwiecki, T., Zemagho, L.., lhn, Z.-X., Zo-Bi, LC., Uang., J., 2022. The number of 
tree species on Earth. Proc. Natl. Acad. Sci. U.S. A. 119, e21l5329119. https://doi. 
org/10.1073/pnar.211532911 9. 

a-100, A., Chaz.don, R.L.., Colwell, R.K., Shen, T., 2005. A new statistical approach for 
assessing similarity of species composition with incidence and abundance data. Ecol. 
Lett 8, 148-159. https://doi.org/10.ll 11/j. l 461-0248.2004.00707.x. 

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, l!.L.., Ma, KH., Cd.wdl, RK., Ellison, A.~., 
2014. Rarefaction and extrapolation with Hill numbers: a framework for somj:i1ng 
and estimation in species diversity studies. Ecol. Monogr. 84, 45-67. hltl)"://doi. 
org/10.1890/13 0133.1. 

Ompogain, u., Ompogain, B.P., Nepal, s., Manthey, M., 2021. Impact of disturbances on 
species diversity and regeneration of Nepa ere s~ (Shoe ea robusta) forests managed 
under different management regimes. Farth 2, 826-844. https://doi.org/10.3390/ 
earth2040049. 

CILSS, 2016. Landscapes of West Africa - A Window on a Changing World. U.S. 
Geological Survey !!ROS, 47914 252nd Sr, Garretson, SD 57030, UHITEOSTATl!S. 

C.Onvemion on Biologicli Diverrity, 2022. Kunming-Montreal Gobel Biodiversity 
Framework https:/ ;www.unep.org/rerovrces/kunming-mont1 tli "9obal · biodi ve1 
rity-tiamewo1k7'Sad soucce=l&gdid::::CjwKC'.Ajwp4ruOBhBAEiwAsdc4aAyt 
OC6qco7QmBPpG8aemRRYw:z.VOYGMXhvrdrtOEVMWH4B0qcsicRoChSUQAv0 Bw 
£1. Accessed on 02 November 2025. 

Cooper, O.LM., Le\,.,;s, S.L.., Sullivan, M.J.P., Prndo, P.I., Ter Steege, H., Barbier, N., 
Slik, P., SonkC, B., Ewango, C.l!.N., Adn-8redu, S., Affum-Baffoe, K, De Aguiar, D.P. 
P., Ahuite Reategui, M.A., Aiba, S.-1., Albuquerque, B.W., De Almeida Motor, P.O., 
Alonso, A., Amani, C.A., Do Amaral, D.D., Do Amaral, 1.L, Andrade, A., De Andrade 
Miranda, 1.P., Angoboy, J.B., Araujo-Murakami, A., Arboleda, N.C., Arr:oyo, I..., 
Ashton, P., Aymard, C., G.A, Baider, C., Baker, T.R, Balinga, MP.B., Bah1ev, H., 
Bonin, 1...P., B{mki, O.S., Banlloto, C., Barbosa, E.M., Barbosa, P.lt, Borlow, J., 
Bartin, J.-P., Beeckman, H., Begne, S., Bengone, N.N., Berenguer, I!., Berry, N., 
Bitariho, R., Boeckx, P., Bogaert, J., Bonyorna, B., Boundja, P., Bourland, N., 
Boyemba Bos-de, P., Brambach, F., Brienen, R, Burstem, D.F.R.P., Gammgo, J.l.., 
Campelo, W., Cano, A., Qirdenas, S., Gardenas L6pez, D., De Sd Corponcdo, R, 
Carrero Mdrquez, Y.A., Carvalho, P.A., casas, LF., Castellanos, H., Castilho, C.V., 
Ccr6n, C., Omi:rnan, C.A, Clave, J., Olhang, P., Olutipong, W., Oluyong, G.B., 
Cintra, B.B.L.., Oark, C.J., Coelho De Souza, P., Comiskey, J.A., Coomes, D.A., 
Cornejo Valverde, P., Cocrea, D.P., C.Osta, F.RC., Costa, J.B.P., Couteron, P., 
Culrnstt, H., Cuni-Sanchet., A, Dallmeier, F., Damasco, G., Dauby, G., Odvila, N., 
Davila Doz.a, H.P., De Al ban, J.D.T., De Assis, R.I..., De Canniere, C., De 
Haullevil\e, T., De Jesus Veiga Carim, M., Demarchi, L.O., Dexter, KG., Di Fiore, A., 



 

136 
 

G .A. Agonvonon et al. 

Din, H.H.M., Disney, M.1., Djiofack, B.Y., Djuikouo, M.-N.K, Do, T.V., Doucet, J.-L., 
Draper, F.C., Droissart, V., Duivenvoocden, J.P., Engel, J., Estienne, V., Farfan­
Rios, W., Fauset, S., Feeley, KJ., Feitosa, Y.O., Feldpausdi, T.R., Ferreira, C., 
Ferreira, J., Ferreira, L.V., Ftetcher, C.D., A ores, B.M., Fofanah, A., Poli, E.G., 
Fonty, E., Fredriksson, G.M., Fuentes, A., Galbraith, D., Gallardo Gonzaes, G.P., 
Garcia-Cabrera, K, GarCla-Villacorta, R., Gomes, V.H.F., GOmez, RZ., Gonzales, T., 
Geibel, R, Guedes, M.C., Guevara, J.E., Hakeem, K.R., Hall, J.S., Hamer, KC., 
Hamilton, A.C., Hanis, D.J., Harrison, RD., Hart, T.B., Hectoc, A., Henkel, T.W., 
Herbohn, J., Hockemba, M.B.N., Hoffman, B., Holmgren, M., Honoria Coconado, E. 
N., Huamantupa-Chuquimaco, I., Hubau, W., Imai, N., Imme, M.V., Jansen, P.A, 
Jeffery, K.J., Jimenez, E.M., Jucker, T., Junqueira, A.B., Kalamandeen, M., 
Kamdem, N.G., Kartawinata, K, Knsongo Yakusu, E., Katembo, J.M., Kearsley, E., 
Kenfack, D., Kessler, M., Khaing, T.T., Killeen, T.J., Kitayama, K, l<litgaard, B., 
labriere, N., Laumonier, Y., Laurance, S.G.W., Laurance, W.F., Laurent, F., Le, r.c., 
Le, T.T., Leal, M.E., Leiio De Mocaes Novo, E.M., Levesley, A., Ubalah, M.B., 
Licona, J.C., Lima Filho, D.D.A., LindseH, J.A., Lopes, A, Lopes, M.A., Lovett, J.C., 
Lowe, R., Lozada, J.R., Lu, X., Luambua, N.K, Luize, B.G., Maas, P., Magalhiies, J.L. 
L., Magnusson, W.E., Mahayani, N.P .D., Makana, J.-R, Malhi, Y., Maniguaje 
Rinc6n, L., Mansor, A., Manzatto, A.G., Marimon, B.S., Marimon.Junior, B.H., 
Marshall, A.R, Martins, M.P., Mbayu, F.M., De Medeiros, M.B., Mesones, I., 
Metali, F., Mihindou, V., Millet, J., Milliken, W., Mogoll6n, H.F., Molino, J.-F., 
Mohd. Said, MohdN., Monteagudo Mendoza, A., Montero, J.C., Mooce, S., 
Mostacedo, B., Mozombite Pinto, L.F., Mukul, S.A., Munishi, P.KT., Nagamasu, H., 
Nascimento, H.E.M., Nascimento, M.T., Neill, D., Nil us, R, Noronha, J.C., 
Nsenga, L., Nlifiez Vargas, P., Ojo, L., Oliveira, A.A., De Oliveira, E.A., Ondo, F.E., 
Palacios Cuenca, W., Pansini, S., Panronato, M.P., Paredes, M.R., Paudd, E., 
Pauletta, D., Pearson, R.G., Pena, J.L.M., Pennington, R. T., Peres, C.A., Permana, A., 
Petronelli, P., Pefiuda Mora, M.C., Phillips, J.P., Phillips, O.L., Pickavance, G., 
Piedade, M.T.F., Pitman, N.C.A., Plocon, P., Popel.ier, A., Poulsen, J.R, Prieto, A., 
Primack, RB., Priyadi, H., Qie, L., Quaresma, A.C., De Queiroz, H.L., Ramirez­
Angulo, H., Ramos, J.P., Reis, N.F.C., Reitsma, J., Revilla, J.D.C., Riutta, T., Rivas­
Tones, G., Robiansyah, I., Rocha, M., Rodrigues, D.D.J., Rodriguez-Renderos, M.E., 
Rovero, F., Rozak, A.H., Rudas, A., Rutishauser, E., Sabatier, D., Sagang, L.B., 
Sampaio, A.F., Samsoedin, I., Satdichanh, M., Schietti, J., Sch&lgart, J., Scuddler, v. 
V., Seuaturien, N., Sheil, D., Sierra, R, Silman, M.R., Silva, T.S.F., Da Silva 
Guimaraes, J.R, Simo-Droisrart, M., Simon, M.F., Sist, P., Sousa, T.R, De Sousa 
Farias, E., De Souza Coelho, l.., Sp'."aclden, D.V., Stas, S..M., Steinmetz, R, 
Stevenson, P.R., Stropp, J., Sukri, R.S., Sunderland, T.C.H., Suzuki, E., Swaine, M.D., 
Tang, J., Tapio, J., Tayloc, D.M., Tello, J.S., Terborgh, J., Texier, N., Theilade, I., 
Thomas, D.W., Thomas, R., Thomas, S.C., Tirado, M., Toirambe, B., De Toledo, J.J., 
Tomlinson, K.W., Torres-Lezama, A., Tran, H.D., Tshibamba Mukendi, J., 
Tumaneng, R.D., Umafia, M.N., Umurmy, P.M., Urrego Giraldo, l..E., Valderrama 
Sandoval, E.H., Valenzuda Gamarra, L., Van Andel, T.R, Van De Bult, M., Van De 
Pol, J., Van Der Heijden, G., Vasquez, R., Vela, GI.A., Venticinque, E.M., 
Verbeeck, H., Veridiano, RKA., Vicentini, A., Vieira, LC.G., Vilanova Torre, E., 
Villarroel, D., Villa Zegarra, B.E., Vleminckx, J., Von Hildebrand, P., Vos, V.A., 
Vriesendorp, C., Webb, E.L., White, L.J.T., Wich, S., Wittmann, F., Zagt, R, Zang., R., 
Zartman, C.E., Zemagho, l.., Zent, E.L., Zent, S., 2024. Com.istent patterns of 
common species across tropical tree communities. Nature 625, 728-734. https://doi. 
ocg/10.1038/ s41586-023-06820-z. 

Dartgbo, P.A., Abotsi, K.E., Adjossou, K, Hlovor, A.KO., Kokou, K, Blaser, J., 2020. Trees 
spatial pattern, diversity and distribution in sub humid mountains ecosystems in 
south-west Togo. J. Ecol. Nat. Environ. 12, 65-76. https-://doi.org/10.5897/ 
JENE2020.0821. 

Davies, R.W., RyarI, C.M., Harrison, R.D., Dexter, K.G., Ahrends, A., Te Beest, M., 
Benitez, L., Brade, T.K., Garreiras-, J.M.B., Druce, D.J., Faydle, A., Finckh, M., 
Godlee, J.L., Gonclaves, F.M., Grundy, J.M., Hoche, T., Holda, RM., Makurigwa, S., 
McNicd, J.M., Mograbi, P.J., Muchawona, A., Muhate, A., Muledi, J., Pritchard, R., 
Revermann, R, Ribeiro, N.S., Siampale, A, Carla Staver, A., Syampungani, S., 
Williams, M., Swemmer, A.M., Edwards, D.P., 2023. Precipitation gradients drive 
high tree species turnover in the woodlands of eastern and southern Africa. 
Ecography 2023, e06720. https-://doi.org/10.1111/ecog.06720. 

De Gaceres, M., Legendre, P., Valencia, R., Gao, M., Chang, L., Chuyong, G., Condit, R., 
Hao, Z., Hsieh, C., Hubbell, S., Kenfack, D., Ma, K, Mi, X., Supardi Noor, Md.N., 
Kassim, A.R., Ren, H., Su, S., Sun, I., Thomas-, D., Ye, W., He, F., 2012. The variation 
of tree beta diversity across a global network of forest pots. Glob. Ecd. Biogeogr. 21, 
1191-1202. https://doi .org/10.11 l l/j.1466-8238.2012.00770.x. 

De Mello, N.G.R, Gulinck, H., Van Den Broeck, P., Parra, C., 2020. Social-ecotogical 
sustainability of non-timber focest products: A review and theoretical considerations 
for future research. Foc. Policy Econ. 112, 102109. https://doi.org/10.1016/j. 
forpol .2020.102109. 

Decocq, G., Andrieu, E., Brunet, J., Chabrerie, 0., De Frenne, P., De Smedt, P., 
Decorichat, M., Diekmann, M., EhrmanrI, S., Giffard, B., Mifsud, E.G., HamrerI, K., 
Hermy, M., Kolb, A., Lenoir, J., Llira, J., Moldan, F., Prokofleva, I., Ros-enqvist, L., 
Varela, E., Valdes, A., Verheyen, K., Wulf, M., 2016. Ecosystem services from small 
forest patches in agricultural landscapes. Curr. For. Rep. 2, 30-44. https://doi.org/ 
10.1007 /s40725-016-0028-x. 

DdlaSala, D.A., Mackey, B., Kormos, C.F., Young. V., Boan, J.J., Skene, J.L., 
Lindenmayer, D.B., Kun, Z., Selva, N., Malcolm, J.R, Laurance, W.F., 2025. 
Measuring forest degradation via ecological-integrity indicatocs at multiPe spatial 
scales. Bid. Conserv. 302, 110939. https://doi.org/10.1016/j.biocon.2024.110939. 

DjagourI, C.A.M.S., Nago, G., Azihou, A.F., Vodouhe, F., Agli, A., Zanvo, S., Djossa, B., 
Assogbadjo, A., Sins-in, B., Gaubert, P., 2022. Assessing local knowledge on the 
diversity and abundance of bus-hmeat species and hunting pressure in the 
fragmented forest ist ands of southern Benin (Dahomey Gap). Afr. J. Ecd. 60, 
165-174. https-:/ /doi.org/10.1111/aje.12955. 

13 

FQTest Ecology and Mamgemen.r 601 (2026) 123314 

Djossa, B.A, Adomou, A.C., Sinsin, B.A., 2010. Communautes vegetales et diversite des 
chiropc:eres dansl es forets de Niaoul i et de Lokdi au Sud du BOOin. Int. J. Bid. Olem. 
Sci. 4, 2146-2159. https://doi.ocg/10.4314/ijbcs.v4i6.64977. 

Dosrou, J., Houetchegnon, T., Ouinsavi, C.A.I.N., Suinyuy, T.N., 2025. Effects of leaf 
harvesting intensity on fruiting processes in three fodder tree species in the West 
AfricarI Savarinah. For. Ecd. Mariag. 583, 122589. https-://doi.org/10.1016/j. 
foreco.2025.122589. 

Droissart, V., Danby, G., Hardy, O.J., Deblauwe, V., Hards, D.J., Jansseris, S., 
Mackinder, B.A., Blach-Overgaard, A., Sonke, B., Sose~ M.S.M., stevart, T., 
Svenning, J., Wieringa, J.J., Couvreur, T.L.P., 2018. Beyond trees: biogeographical 
regionalization oftropical Africa. J. Biogeogr. 45, 1153-1167. https://doi.org/ 
10.1111/jbi.13190. 

Edwards, D.P., Socotar, J.B., Mills, S.C., Burivalova, Z., Koh, L.P., Wilcove, D.S., 2019. 
Conservation oftropica forests-in the anthropocene. CuH. Bid. 29, RI008-RI020. 
https-://doi .org/10.1016/j.cu b.2019.08.026. 

Fahrig. L., 2020. Why do several small patches hdd more species than few large patches? 
Gob. Ecd. Biogeogr. 29, 615-628. https://doi.ocg;10.llll/geb.13059. 

Fayolle, A., Picard, N., Doucet, J.-l.., Swaine, M., Bayol, N., Befledet, F., Gourlet­
Fleury, S., 2014a. A new insight in the structure, composition and fundioning of 
central African moist forests. Foe. Ecol. Manag. 329, 195-205. https://doi.org/ 
10.1016/j.foceco.2014.06.01 4. 

Fayolle, A., Swaine, M.D., Bastin, J., Bourland, N., Comiskey, J.A., Dauby, G., Doucet, J., 
Gillet, J., Gourlet-Fteury, S., Hardy, O.J., Kirunda, B., Kouame, F.N., Pl umptre, A.J., 
2014b. Pattern!. of tree species compositiorI across tropical AfricarI forests. 
J. Biogeogr. 41, 2320-2331. https://doi.ocg/10.1111/jbi.12382. 

Fischer, R, GiesserI, l.., Giinter, S., 2020. Governance effects on deforestation in the 
tropics-: a review of the evidence. Environ. Sci. Policy 105, 84-101. https://doi.org/ 
10. 1016/j.envsci .201 9. 12.007. 

Fobane, J.L., Zekeng, J.C., Chimi, C.D., Onana, J.M., Ebanga, A.P., Tchonang, L.D., 
Makoutsing, AC.T., Mbolo, M.M., 2024. Tree community, vegetation structure and 
aboveground carbon storage in Atlantic tropical forests of Cameroon. Hdiyon 10, 
e41005. https-://doi.org/10.1016/j.hel iyon.2024.e41005. 

FranklirI, GM.A., Harper, KA., Oarke, M.J., 2021. Trends in studies of edge irifluence on 
vegetation at human-created and natural forest edges across time and s-pace. Gan. J. 
Foc. Res. 51, 274-282. https://doi.org/10.1139/cjfr-2020-0308. 

Gardner, C.J., Bicknell, J.E., Ba!dwin-Gantello, W., Struebi&, M.J., Davies, Z.G., 2019. 
Quantifyirtg the impacts of defaunation on riatural forest regeneration in a global 
meta.analysis. Nat. Commun. 10, 4590. https-://doi.org/10.1038/s41467-019-
12539-1. 

Gontalves-Souza, T., Vancirie, M.H., Sanders, N.J., Haddad, N.M., Cortinhas, L., Aase, A. 
L.T.0., de Aguiar, W.M., Aizen, M.A, Arroyo-Rodriguez, V., Baz, A., Benchimd, M., 
Bernard, E., Bertotto, T.J., Bispo, A.A., Bogoni, J.A., Boldorini, G.X., Bragagnolo, C., 
Brosi, B., Gantalice, A.S., do Garmo, RF.R, Gazeta, E., Chiardlo, A.G., de la 
Sancha, N.U., Didham, RK, Faria, D., Filgueiras, B., Figueira, J.E.C., Galviio, G.A., 
Garey, M.V., Gibb, H., G6mez-Martlnez, c., Gonzalez, E., de Gusmao, RA.F., 
Hemy, M., de Jesus, S., RI.ass, T.G., Lazaro, A., Leandro-Silva, V., de Lima, M.G., da 
Silva Lima, I., Lins-e-Silva, AC.B., Nally, RM., Magalhiies, A.R., Magnago, L.F.S., 
Mann, S., Mariano-Neto, E., Mborn, D.N.M., Mdo, F.P.L., Mutua, M.N.~ Neckel­
Ol.iveira, S., Nernl:sio, A., Nogueira, A.A., Oliveira, P.M.D.A., Plidua, D.G., Paes, L., 
de Paiva, A.B., Passamani, M., Pena, J.C., Peres, C.A., Pinho, B.X., Poris, J.-M., 
Prasniewski, V.M., ReiriiO, J., dos Santos Rocha, M., Rocha-Saritos, L., Rodal, M.J., 
Rodrigues, R.C., Safar, N.V.H., Salomiio, RP., Santos, B.A., Santos, M.N., dos 
Santos, J.P., Savilaakso, S., Schaefer, C.E.G.R., Silva, M.A.M., daSilva, P.R., Silva, R. 
J., Simonetli, M., soco-Wem:hitz, A., Stireman III, J.O., Storck-Tonon, D., 
Sziriwdski, N., Tabarelli, M., Teixeira, C.P., Totland, Q:I., Uehara-Prado, M., Vaz-de­
Mdlo, F.Z., Vasconcelos, H.L., Vieira, S.A., Oias-e, J.M., 2025. LandFrag: a dataset to 
irivestigate the effects of forest loss and fragmentation on biodiversity. Glob. Ecct. 
Biogeogr. 34, e70015. https://doi.org/10.1111/geb.70015. 

Guz, J., Kulakowski, 0., 2021. Forertsin the Anthropocene. Arin. Am. Am>c. Ge~r. 111, 
869-879. https: / / d oi. org/10.1080 /24694452. 2020.1813013. 

Hansen, A.J., Burns, P., Ervin, J., Goetz, S.J., Hansen, M., Venter, 0., Watson, J.E.M., 
Jantz, P.A., Vimig. Al..S., Barnett, K, Pillay, R., Atkinson, S., Supp.es, C., Rodrfguez­
Buritica, S., Armenteras, D., 2020a. A pd icy-driven framework for conserving the 
best of Earth's remaining moist tropcal forests. Nat. Ecct. Evol. 4, 1377-1384. 
https-:/ /doi .org/10.1038/s41559-020-1274-7. 

Hansen, M.C., Wang. L., Song, X.-P., Tyukavina, A., Turubanova, S., POCapov, P.V., 
Stehman, S.V., 2020b. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574. 
https-:/ /doi.org/10.1126/sciadv.aax8574. 

Hepner, S., Agonvonon, G.A., Ehbrecht, M., Iheaturu, C., Azihou, A.F., lfejika 
Speranza, C., 2025. Degradation and fragmentation effects on structural compexity 
irI West-African forest i:E.tches. Biotropica 57, e70012. https://doi.org/10.1111/ 
btp.70012. 

Hill, M.O., 1973. Diversity and evenriess: a uriifyirtg notation arid its com.equences. 
Ecdogy 54, 427-432. https://doi.ocg/10.2307 /1934352. 

Hills, R, Barstow, M., Rivers, M., 2022. The red list of timber trees. Botanic Gardens 
Conservation International, Descanso House, 199 Kew Road, Richmond, Surrey, 
TW9 3BW, UK 

Houghton, RA., Byers, B., Nassikas, A.A., 2015. A rde for tropcal forests in stabilizing 
atmospheric CO2. Nat. Qim. Change 5, 1022-1023. https-://doi.org/10.1038/ 
ncl imate2869. 

Houngnon, A., Adomou, A.G., Gosiing, W.D., Adeonipekun, P.A., 2021. A Olecki. Vase. 
Plants EweAdakpame Relic For. Benin West Afr. PK 175, 151-174. https://doi.org/ 
10.3897 /phytokeys.175.61467. 

Hsieh, T.C., Ma, KH., Chao, A., 2016. iNEXT: an R package for rarefaction and 
extrapd. ation of species diversity ( H ill numbers). Methods Ecol. Evol. 7, 
1451-1456. https:/ /doi.org/1 O. l l 11/2041-210X.12613. 



 

137 
 

G .A. Agonvonon et al. 

Igu, N.I., Marchant, R, 2018. Rorirtic comporition and diversity of freshwater !.\--vamp 
forests in the Niger Barin of Nigeria. Open J. For. 8 567-584. https-://doi.org/ 
10.4236/ojf. 2018.84035. 

IUCN, 2025. The IUCN Red List of Threatened Species. Version 2025-1. Accessed on 10 
March 2025. (https://www.iucmedlist.org/. 

Jellason, N.P., Robinson, R.J., Oiapman, A.S., Neina, D., Devenish, A.J., Po, J.Y., 
Adolp-1, B., 2021. A systematic review of drivers and constraints on agricultural 
expanrion irI sub-Saharan Africa. Land 10,332. https-://doi.org/10.3390/ 
I andl 0030332. 

John, R., Dailing. J.W., Harms, K.R., Yavitt, J.B., Stallard, RF., Mirabdlo, M., Hubbdl, S. 
P., Valencia, R., Navarrete, H., Vallejo, M., Foster, RB., 2007. Soil nutrients 
influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. U. S. A. 
104, 864-869. https-://doi.org/10.1073/p-ias.0604666104. 

Jones, A., Breuning-MadS'en, H., BrOS'rord, M., Dampha, A., DeckerS', J., Dewitte, 0., 
Gallali, T., Hallett, S., Jones, R, Kilasara, M., Le Roux, P., Micheli, R., Montanarella, 
L., Spaargaren, o., Thiombiano, L., Ranst, E. van, Yemefack, M., Zougmore, R.B., 
2013. Soil Adas of Africa. 

Kalyuzhriy, M., Lake, J.K., Wright, S.J., Ostling. A.M., 2023. Pervasive within-species 
spatial repulsion among adult tropical trees. Science 381, 563-568. https://doi.org/ 
10.1126/sci ence. adg7021. 

Karger, D.N., BrurI, P., Zimmermann, N.E., 2017. Oimatologies at High resolution for the 
Earth Land Surface Areas. 

Korhonen, A., Vuorilampi, H., Katavisto, 0., Immonen, A, Hamberg. L., 2023. Tree 
regeneration potential in urban spruce-dominated forests is shaped by management 
history. For. Ecd. Manag. 541, 121082. https-://doi.org/10.1016/j. 
foreco.2023.121082. 

Kruskal, J.B., 1964. Nonmetric multidimenrional scaling: a numerical method. 
Psychornetrika 29, 115-129. https://doi.org/10.1007 /BF02289694. 

Laurance, W.F., Sayer, J., Gassman, KG., 2014. Agricultural exparirion and its impacts on 
tropical nature. Trends Ecol. Evol. 29, 107-116. https://doi.org/10.1016/j. 
tree.2013.12.001. 

Leverkus, A.B., Polo, I., Baudoux, C., Thom, S., Gustafsson., L, de Gasas, R.R, 2020. 
Reril ience impacts of a secoridary disturbance: meta-analyris of savage logging 
effects on tree regeneration. J. Ecol. 109. https://doi.org/10.1111/1365 
2745.13581. 

Lopez, O.R., Kursar, T.A., 2003. Does flood tolerance exp ain tree species distribution in 
tropical season<Ily flooded habitats? Oecologia 136, 193-204. https://doi.org/ 
10.1007 /s00442-003-1259- 7. 

Marshall, C.A.M., Wieringa, J.J., Hawthorne, W.D., 2021. An interpolated 
biogeographical framework for tropical Africa uring pant species distributions arid 
the p-lyrical environment. J. Biogeogr. 48, 23-36. https://doi.org/10.1111/ 
jbi.13976. 

Maua, J.0., MugatsiaTringalia, H., Cheboiwo, J., Odee, D., 2020. Population structure 
and [egeneration rtatus of woody species in a remriant trnpical forest: a case study of 
South Nandi forest, Kenya. Gob. Ecd. Conserv. 21, e00820. https://doi.org/ 
10.1016/j.gecco.2019.e00820. 

Mbobda, RB.T., Zapfack, L., Noumi, V.N., Funwi, F.P., ChristianZekeng, J., Ngoma, L.R., 
Banoho, LP.RK., Tagnang, N.M., Yonkeu, A.F.N., Votio, M.C.T., Boris, N., Djomo, C. 
C., 2018. Diversity, structure and carbon storage potential of the Oja wildlife reserve 
vegetation cover. J. Biodivers. ehviron. Sci. 5, 180-199. 

Mensah, KR., Damriyag. I..., Kwabena, N.S., 2022. Analyris of charcoal production with 
recent developments in Sub-Sahara Africa: a review. Afr. Geogr. Rev. 41, 35-55. 
https-://doi. org/10.1080/19376812.2020.1846133. 

Mintah, F., Pamela, T.E.P., Oberlack, C., Speranza, C.I., 2024. Why do forests persist and 
re-emerge amidst tropical deforertation pressures? Archetypes of governance and 
impact pathways. For. Policy Econ. 169, 103352. https://doi.org/10.1016/j. 
forpol .2024.103352. 

Mohandass, D., Gampbell, M.J., Hughes, A.C., Mammides, C., Davidar, P., 2017. The 
effect of altitude, patch rize and disturbance on !ol)ecies richness and denS'ity oflianas 
in montane forest patches. Acta Oecologica 83, 1-14. https://doi.org/10.1016/j. 
actao. 2017.06.004. 

Monterroso, I., Barry, D., 2012. Legitimacy of forest rights-: the underpinriings of the 
forest tenure reform in the protected areas of Peten, Guatemala. Conserv. Soc. 10, 
136-150. https-:/ /doi.org/10. 4103/0972-4923. 97486. 

Muposhi, V.K., Oiademana, T.C., Gandiwa, R., Muboko, N., 2016. Edge effects-: impact of 
anthropogenic activities on vegetation structure and diversity in westerrI Umfurudzi 
Park, Zimbabwe. Afr. J. Ecol. 54, 450-459. https-://doi.org/10.1111/aje.12300. 

Nian&, F., Marcharid, P., Sambou, B., Fenton, N., 2024. Exp.oring the effects of forest 
management on tree diversity, community comporition, population structure and 
carbon stocks in sudaniarI domain of Seneg<I, West Africa. For. Ecol. Manag. 559, 
121821. https-://doi.org/10.1016/j. foreco. 2024.121821. 

Nkwunonwo, U.C., Okeke, F.L, Ebinne, R.S., Oiiemelu, N.E., 2020. Free, open, 
quantitative arid adaptable digital soil map data and database for Nigeria. Data Brief. 
31, 105941. https://doi.org/10.1016/j.dib.2020.105941. 

Okranen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R, 
O'Hara, RB., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., 
Bedward, M., Bolker, B., Borcard, D., Garvalho, G., Chirico, M., De Gaceres, M., 
Durarid, S., Heloisa Beatriz Aritoriiazi, H., Fitz.John, R, Friendly, M., Fumeaux, B., 
Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E., 
Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., 2022. vt-gan: Commuriity Ecology 
Package. 

Orwig. D.A., Aytward, J.A., Buckley, H.L., Case, B.S., Ellison, A.M., 2022. Land-use 
history impacts spatial patterns and comporition of woody pant species across a 35-
hectare temperate forest pot PeerJ 10, e12693. https://doi.org/10.7717/ 
peerj.12693. 

14 

FQTest Ecology and Mamgemen.r 601 (2026) 123314 

Pereira, H.M., Rosa, I.M.D., Martins, I.S., Kim, H., Leadley, P., Popp, A., Van Vuuren, D. 
P., Hurtt, G., Anthoni, P., Arneth, A., Baisero, D., Chapin-Kramer, R, Chini, L., Di 
Fulvio, F., Di Marco, M., Ferrier, S., Fujimori, S., Guerra, C.A., Harfoot, M., Harwood, 
T.D., Hasegawa, T., Haverd, V., Havlfk, P., Hellweg, S., Hilbers, J.P., Hill, S.L.L., 
Hirata, A., Hoskins, A.J., Humpeni:ider, F., Janse, J.H., Jetz, W., Johnson, J.A., 
Krause, A., Leclere, D., Matsui, T., Meijer, J.R., Merow, C., Obsersteirier, M., Ohashi, 
H., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A.M., Settele, J., 
Sharp, R, Stehfest, E., Strassburg. B.B.N., Takahashi, K., Talluto, M.V., Thuiller, W., 
Titeux, N., Visconti, P., Ware, C., Wolf, F., Alkemade, R., 2020. Global trends in 
biodiverrity and ecosystem services from 1900 to 2050. https://doi.org/10.1101/20 
20.04. 14.031716. 

QGIS Development Team, 2022. QGIS Geographic Information System. QGIS 
Association. (https://qgis.org/). 

R Core Team, 2023. R: A language and Envirnnment f(){ Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. (https-://www.R-project. 
org/). 

Radachowsky, J., Ramos, V.H., McNab, R, Baur, R.H., Kazakov, N., 2012. Forest 
concessions in the Maya Biosphere Reserve, Guatemala: a decade later. For. Ecol. 
Manag. 268, 18-28. https:/ /doi.org;l0.1016/j.foreco.2011.08.043. 

Ringel berg, J.J., Koenen, E.J.M., Sauter, B., Aebli, A., Rando, J.G., Iganci, J.R., De 
Queiroz, LP., Murphy, D.J., Gaudeul, M., Bruneau, A., Luckow, M., Lewis, G.P., 
Miller, J.T., Simon, M.F., Jord1io, L.S.B., Morales, M., Bailey, C.D., Nageswara-
Rao, M., Nicholls, J.A., Loiseau, 0., PenningtorI, RT., Dexter, KG., Zimmermarin, N. 
E., Hughes, C.E., 2023. Preci{:itation is the main axis of tropical pant phylogenetic 
turnover across space arid time. Sci. Adv. 9, eade4954. https://doi.org/10.1126/ 
sciadv.ade4954. 

Riva, F., Fahrig. L., 2023. Obstruction of biodiverrity conservation by minimum patch 
size criteria. Conserv. Biol. 37, e14092. https-://doi.org/10.1111/cobi.14092. 

Rivers, M., NewtorI, A.C., Oldfield, S., Global Tree AsseSS1Y1ent Contributors, 2023. 
Scientists' warning to humanity on tree extinctions. Plarits Peope Planet 5, 466-482. 
https-://doi .org/10.1002/l)R)3.10314. 

Rocha-Saritos, L, Pessoa, M.S., Cassano, C.R., Talora, D.C., Orihuela, R.LI..., Mariario­
Neto, R., Morante-Filho, J.C., Faria, D., Cazetta, E., 2016. The shrinkage of a forest: 
landscape-scale deforestatiorI leading to overall changes irI local forest structure. 
Biol. Conserv. 196, 1-9. https://doi.org/10.1016/j.biocon.2016.01.028. 

Roswell, M., Dushoff, J., Winfree, R., 2021. A conceptual guide to measuring species 
diversity. Oikos 130, 321-338. https-:/ /doi.org/10.1111/oik.07202. 

Sabatini, F.M., Jimenez.-Alfaro, B., Jandt, U., Oiycry, M., Piel d, R., Kesst er, M., Lenoir, J., 
Schrodt, F., Wi!.er, S.K., Arfin Khan, M.A.S., Attorre, F., Gayuela, L., De Sanctis, M., 
Dengl.er, J., Haider, S., Hatim, M.Z., Indreica, A., Jansen, F., Pauchard, A., Peet, R.K, 
Petffk, P., Pillar, V.D., Sandel, B., Schmidt, M., Tang, Z., Van Bodegom, P., 
Vassilev, K, Vidle, C., Alvarez-Davila, E., Davidar, P., Dolezal, J., Hefault, B., Gal.in­
de-Mera, A., Jimenez, J., Kambach, s., Kepfer-Rojas, s., Kreft, H., Lezama, F., 
Li.nares-Palornirio, R., Monteagudo Mendoza, A, N'Dja, J.K, Phillips, O.L, Rivas­
Torres, G., Sklernii', P., Speziale, K, Strohbach, B.J., V8.squez Martinez, R, Wang, H.­
F., Wesche, K, Brudhei.de, H., 2022. Global patterns of vascular pant alpha 
diversity. Nat. Commun. 13, 4683. htt~//doi.org;10.1038/s41467-022-32063-z. 

Sagar, R., Raghubanshi, A.S., Singh, J.S., 2003. Tree species comporition, dispersion and 
diversity along a dirturbarice gradient in a dry tropical. forest region of India. For. 
Ecol. Manag. 186, 61-71. https-://doi.org/10.1016/S0378-1127(03)00235-4. 

Sagar, R, Singh, J.S ., 2006. Tree density, basal area and species diverrity in a disturbed 
dry tropical forest of northern India: im(Xications for conservation. Envir. Conserv 
33, 256-262. https-://doi.org/10.1017 /S0376892906003237. 

Seidl, R, Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano~ G., Wild, J., 
Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotriuk, V., Mairota, P., 
Svoboda, M., Fabrika, M., Nagd, T.A., Reyer, C.P.O., 2017. Forest disturbances 
under climate change. Nat. Oim. Oiange 7, 395-402. https://doi.org/10.1038/ 
ncl imate3303. 

Sokpon, N., Biaou, S.H., 2002. The use of diameter dirtributions in smtained-use 
management of remnant forerts in Benin: case of Basril a forest reserve in North 
Benin. For. Ecol. Manag. 161, 13--25. htt~//doi.ocg/10.1016/S0378-1127(01) 
00488-1. 

Sosef, M.S.M., Danby, G., Blach-Overgaard, A., Van Der Burgt, X., Gatarino, I..., 
Darnen, T., Deliauwe, V., Dessein, S., Dransfield, J., Droissart, V., Duarte, M.C., 
Engledow, H., Fadeur, G., Figueira, R, Gereau, R.R., Hardy, O.J., Harris, D.J., De 
Heij, J., Janssens, S., J<lomberg. Y., Ley, A.C., Mackinder, B.A., Meerts, P., Van De 
Poel, J.L., Sonke, B., Ste\'art, T., Stoffel en, P., Svenning. J.-C., Sepulchre, P., Zaiss, R, 
Wieringa, J.J., Couvreur, T.L.P., 2017. Ex(Xoring the floristic diversity of tropical 
Africa. BMC Bid. 15, 15. https://doi.org/10.1186/s12915-017-0356-8. 

Sundberg. J., 2003. ConservatiorI and democratization: constituting citizenship in the 
Maya Biosphere Reserve, Guatemala. Political Geogr. 22, 715-740. https://doi.org/ 
10.1016/S0962 -6298( 03)00076-3. 

Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Miiller, M.S., ROdig. E., 
Wiegand, T., Huth, A., 2018. Gobal. patterns oftropical forertfragmentation. Nature 
554, 519-522. https-://doi.org/10.1038/nature25508. 

Teimouri, M., Doser, J.W., Firiey, A.O., 2020. ForestFit: An R package for modding P.ant 
size dirtributions. ehviron. Model. Softw. 131, 104668. http;-://doi.org/10.1016/j. 
envsoft.2020.104668. 

The Angiosperm Phylogeny Group, 2016. An update of the Angiosperm Phylogeny Group 
classiflcatiorI for the orders and families of flowering pants: APG IV. Bot. J. Linn. 
Soc. 181, 1-20. https-://doi.org/10.1111/boj.12385. 

Uzu, J., Bettinger, P., Siry, J., Mei, B., 2022. Timber business in West Africa: a review and 
outlook. Int. For. Rev. 24, 240-256. https://doi.org/10.1505/ 
146554822835629578. 

Vimal, R, Navarro, L.M., Jones, Y., Walt F., Le Moguedec, G., Rejou•Me<:hain, M., 2021. 
The global distribution of protected areas management rtrategies and their 



 

138 
 

  

G .A. Agonvonon et al. 

compementarity for biodiven.ity co1u-ervation. Bid.. Conserv. 256, 109014. https:/ / 
doi .org/10.1016/j. biocon.2021.109014. 

Wala, K, Woegan, A.Y., Borozi, W., Donrma, M., Atato, A., Batawila, K., Akpagana, K, 
2012. Assesmi.ent of vegetation Hructure and human impacts in the protected area of 
Aiedjo (TQl&O). Afr. J. Ecol. 50, 355-366. httpS'://doi.ocg/10.1111/j.1365-
2028.2012.01334.x. 

White, F., 1983. The vegetation of Africa: a descriptive memoir to accompany the 
UNESCO/AITIFAT/UNSO vegetation map of Africa. OSTROM - UNESCO, Paris, 
France. 

Willmer, J.N.G., Piittker, T., Prevedello, J.A., 2022. Global impacts of edge effects on 
species richness-. Biol. Conserv. 272, 109654. https://doi.org/10.1016/j. 
biocon.2022.109654. 

Wingate, V.R., Akinyemi, F.O., lheaturu, C.J., Ifejika Speranza, C., 2022. A remote 
sensing-bared inventory of West Africa tropical forest patches: a basis for enhancing 
their conservation and sustainable use. Remote Sens. 14, 6251. https://doi.org/ 
10.3390/cs14246251. 

Wintle, B.A., Kujala, H., Whitehead, A, Cameron, A., Vdoz, S., Kukkala, A., 
Moilanen, A., Gordon, A., Lentini, P.E., Cadenhead, N.C.R, Bekessy, S.A., 2019. 

15 

FQTest Ecology and Mamgemen.r 601 (2026) 123314 

Gobal syntheris of conservation studies reveals the importance of small habitat 
patches for biod.iverrity. Proc. Natl. Acad. Sci. USA 116, 909-914. https://doi.org/ 
10.1073/pnas.1813051115. 

Wu, H., Lyu, L., Xiao, Z., Yang. T., Jiang. M., Wei, X., 2025. Regeneration of an 
endangered pant species endemic to the remote mountain areas: anthropogenic 
disturbance matters. For. Ecct. Manag. 576, 122406. http!►.//doi.org/10.1016/j. 
foreco.2024.122406. 

Zambrano, J., Cordeiro, N.J., Garzon-Lopez, C., Yeager, 1.., Fortune!, C., Ndangalari, H.J., 
Beckman, N.G., 2020. Investigating the direct and indirect effects of forest 
fragmentation on pant functional diverrity. PLoS ONE 15, e0235210. https://doi. 
org/10.1371/jo umal.pone.023521 O. 

lebaze, D., Gore!, A., Gillet, J.-F., Houngbegnon, F., Barbier, N., Ligot, G., lhoest, S., 
Kamdem, G., Llbciah, M., Droissart, V., Sonke, B., Doucet, J.-L., 2023. Natural 
regeneration in tropical forests along a disturbance gradient in South-East 
Cameroon. For. Ecct. Manag. 547, 121402. http!.://doi.org/10.1016/j. 
foreco.2023.121402. 



 

139 
 

5.4 Co-authored paper 4: Integrating UAV LiDAR and multispectral data to assess forest 
status and map disturbance severity in a West African forest patch 

Authors: Iheaturu C. J., Hepner S., Batchelor J. L., Agonvonon G. A., Akinyemi F. O., Wingate 
V. R. & Ifejika Speranza, C. 
Journal: Ecological Informatics 
Status: Published (2024) 
Access: https://doi.org/10.1016/j.ecoinf.2024.102876 



 

140 
 

Ecological Infonnatics 84 (2024) 102876 

Contents lists available at ScienceDirect 

Ecological Informatics 

ELSEVIER journal homepage: www.elsevier.com/locate/ecolinf 

Integrating UAV LiDAR and multispectral data to assess forest status and 
map disturbance severity in a West African forest patch 

Chima J. Iheaturu a,*, Samuel Hepner", Jonathan L. Batchelor\ Georges A. Agonvonon •, 
Felicia 0. Akinyemi a,c, Vladimir R. Wingate•, Chinwe Ifejika Speranza• 

a Land Systems and SWitainable Land Managanem, In.stirute of Geography, University of Bern, H'.J.llerstrasse 12, 3012 Bern, SWitzerland 
b School of Environmental and For~t Scienc~, Urriversi.ty of Wa.shuwton, Seattle, WA 98195, USA 
c Geomn.ti:s, Deparonen.t of Envirmmental and. Life ScieTlces, Karlstad Universi.ty, Universitetsgatan 2, 651 88 Karlstad, Sweden 

ARTICLE INFO 

Keywords: 
Data fusion 
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Integrated disturbance index 
Forert landscape restoration 
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Multispectral. 
Sustainable forest management 

1. Introduction 

ABSTRACT 

Unmanned aerial vehicle (UAV) technologies have emerged as promising tools to improve forest ecozystem 
assessments. These technologies offer high-resolution data that can significantly enhance evaluations of forest 
structure, condition, and disntrbance severity. UAV sensors such as LiDAR and multispectral provide comple­
mentary information about forest attributes, capturing structural and spectral details, yet their integration for 
comprehensive forest assessment remains understudied. In this paper, we explored the potential of combining 
UAV LiOAR and multispectral data to assess the disturbance severity of a West African forest patch (Benin). We 
developed an integrated disturbance index (IOI) that fuses structural properties from LiDAR data and spectral 
characteristics from multispectral vegetation indices through principal component analysis (PCA). This allowed 
us to delineate low(> 0.65), medium (0.35-0.65), and high ( < 0.35) forest disturbance levels. We applied the 
IOI to the 560-ha Ewe-Adakplame relict forest in Benin, West Africa, and achieved 95 % overall accuracy in 
disturbance detection, outperfonning both LiDAR-only (80 %) and multi spectral-only (75 %) approaches. The IDI 
revealed that 23 % of the forest area has experienced low disturbance, while 28 % and 49 o/o face medium and 
high disturbance levels, respectively. These findings indicate that more than three-quarters of this relict forest 
exhibits medium to high levels of disturbance, underscoring the urgent need for tailored conservation strategies 
to strengthen forest resilience. This method's ability to differentiate disntrbance levels can inform resource 
allocation, prioritize conservation efforts, and guide the development of site-specific management plans. The 
integration of UAV LiDAR and multispectral data demonstrated here has potential for application across diverse 
tropical forest patches, providing an effective means to monitor forest health, assess disturbance severity, and 
support data-driven decision-making in forest conservation and sustainable management. 

Anthropogenic disturbance factors such as wildfire, logging, and 
agricultural expansion are driving widespread fragmentation and 
degradation of tropical forests across West Africa (Dago et al., 2023). 
These disturbances alter forest structme, composition, and function, 
leading to a loss of biodiversity and ecosystem services (Malhi et al., 
2014). Restoration efforts like the African Forest Landscape Restoration 
Initiative (AFRl00) aim to reverse these negative impacts by restoring 
degraded forests and enhancing forest resilience (Mansomian and Ber­
rahmouni, 2021). However, the success of such initiatives depends on 
access to reliable information about the cmrent condition and structure 

(hereafter status) and disturbance severity of the threatened forests. This 
data can then be used to target areas for intervention, develop targeted 
restoration approaches based on disturbance levels, and effectively 
allocate resources for ecological recovery. 

While traditional field assessments of forest status provide critical 
localized information, they are limited in spatial coverage. Only a small 
fraction of the forest area can be covered because manual field data 
collection is time- and labor-intensive and is constrained by accessibility 
to remote areas of dense vegetation (Butler et al., 2016; Zellweger et al., 
2014). These challenges restrict field sampling to discrete plots, further 
limiting the wider characterization of forest status and the identification 
of areas that have undergone distmbance. Furthermore, standardizing 
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traditional field assessment methods across different regions and forest 
types poses significant challenges. While standardization aims to ensure 
consistency, variations in sampling protocols, measurement techniques, 
and data collection practices may persist (Gschwanmer et al., 2016). If 
not adequately addressed, these variations can lead to data discrep­
ancies, making it challenging to compare and integrate information 
from different sources. 

The recent proliferation of high-resolution satellite systems presents 
new opportunities to help overcome field data constraints, offering the 
potential for standardized, wide-area coverage of forests (Popkin, 2016; 
Rahimi et al., 2024; Reiche et al., 2016). However, persistent data gaps, 
mainly due to cloud and cloud shadow contamination in optical satellite 
images, pose challenges for monitoring West African forests (Hackman 
et al., 2017). Compared to other tropical regions, West Africa has a 
scarcity of publicly accessible, cloud-free, high-resolution optical and 
radar data (Pospichal and Crewel!, 2011). This shortage of such imagery 
limits satellite-based monitoring of West African forests. Bridging this 
gap with other means to acquire high-resolution data could complement 
traditional field assessments in forest conservation and restoration ef­
forts (Aleman et al., 2018). 

Emerging unmanned aerial vehicle (UA V) technologies offer a 
promising approach to acquiring high-resolution images to complement 
satellite systems and field-based methods for monitoring tropical forests. 
The possibility to mount different types of sensors on UAVs (e.g., RGB 
cameras, multispectral sensors, and light detection and ranging (LiDAR) 
scanners) provides fine-scale spectral imagery and three-dimensional 
(3D) structural data comparable to intensive traditional field-based as­
sessments (Berie and Burud, 2018). However, some pressing questions 
remain regarding optimizing UAV technologies for forest monitoring 
(Ecke et al., 2022). For example, what analysis techniques best integrate 
disparate data streams like spectral imagery and LiDAR point clouds to 
maximize ecological insight? What work.flows enable scalable and 
reproducible forest monitoring frameworks? Addressing these questions 
through UAV applications could potentially bridge significant knowl­
edge gaps, such as characterizing the extent and levels of forest distur­
bance while providing high-quality and timely data. 

Several studies have demonstrated the value of UAVs for assessing 
forest structure, species composition, and condition (Ecke et al., 2022; 
Wallace et al., 2012; Zlinszky et al., 2015). For example, research has 
shown the ability of UAV LiDAR to quantify various forest structural 
parameters, such as canopy height, gap fractions, diameter at breast 
height (DBH), canopy density, and rumple (Cao et al., 2019; Seidl et al., 
2012; Swayze et al., 2021). Additionally, passive UAV multispectral 
imagery has been employed to assess forest health (Fraser and Con­
galton, 2021) and detect patterns of forest disturbance (Minarik and 
Langhammer, 2016). 

To date, few studies have assessed the potential of integrating UAV 
LiDAR and multispectral or hyperspectral data for tropical forest as­
sessments. For example, Vaglio Laurin et al. (2014) integrated airborne 
LiDAR and hyperspectral data using partial least squares regression 
models with field measurements to estimate above-ground biomass in 
African tropical forests, while de Almeida et al. (2021) fused UAV-borne 
hyperspectral and LiDAR data to monitor diversity and structure in 
restored tropical forests. 

This study explored the potential of integrating UAV-based LiDAR 
and multispectral data to evaluate forest status and map disturbance 
severity in the Ewe-Adakplame Relict Forest (EARF) in Benin. We 
employed a static approach to assess the severity of forest disturbance, 
providing a snapshot of current conditions. Three specific objectives 
were pursued as follows: (i) derive structural properties from UAV 
LiDAR data and spectral vegetation indices (Vis) from UAV multispec­
tral imagery to assess the state of the forest; (ii) generate an Integrated 
Disturbance Index (ID!) using principal component analysis (PCA) of 
correlated structural and spectral VIs; and (iii) delineate low, medium, 
and high disturbance levels based on the ID! to identify areas requiring 
immediate conservation action. 
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Our srudy goes beyond the limitations of traditional field plot sam­
pling by providing comprehensive, centimeter-level spatial coverage of 
the forest from UAV data. The IDI promises a more nuanced under­
standing of forest disturbance levels, exceeding simple binary classifi­
cations. This approach can be upscaled using satellite-based LiDAR and 
multispectral observations for large-scale tropical forest restoration ef­
forts during the United Nations Decade on Ecosystem Restoration 
(2021-2030). 

2. Materials and methods 

2.1. Stucfy site 

This study was conducted in the EARP, a 560-ha semi-deciduous 
forest fragment located in the Ketou District of southeastern Benin, 
West Africa (Fig. 1). This remnant forest patch falls within the Guinean 
region, which lies south of the Sudanian region (CILSS, 2016). The 
climate is subequatorial with a bimodal rainfall pattern. The main rainy 
season occurs from April to late July. This rainy season is characterized 
by relatively heavy rainfall, ranging from an average of 80 mm in April 
to a peak of 280 mm in July, the rainiest month. There is a shorter, less 
intense rainy period from September (100 mm) to November (20 mm). 
However, the average annual precipitation ranges from 900 to 1300 
mm, which is lower than that typical for the Guinean region (Adomou 
et al., 2006). The mean annual temperarure ranges from 24 to 37 'C. 
There is a long plant-growing season spanning 240 days. The EARF 
harbors high levels of biodiversity, with about 185 vascular plant species 
documented, including range-restricted species typical of Upper Guin­
ean forests (Houngnon et al., 2021). However, as with most forests in 
Benin, the fragment faces significant human pressures, such as agricul­
rural expansion and illegal logging (Oloukoi et al., 2006), that is causing 
a decrease in the size and connectivity of natural habitats, leading to a 
severe loss of local biodiversity (Houngnon et al., 2021). 

2.2. UA V multispectral and LiDAR datn 

We conducted the UAV surveys on two different dates to optimize 
data quality. Multispectral data were collected during the less intense 
rainy season (7-17 October 2022) when vegetation is still vibrant, 
enhancing the capture of speco:al signarures related to plant health. 
LiDAR data, on the other hand, were collected during the dry season 
(27-29 December 2022) when reduced leaf cover enables clearer 
penetration of laser pulses for detailed canopy srructure. The multi­
spectral data was collected using a DJ! Phantom 4 Multispectral UAV 
(DJ!, Shenzhen, China) with real-time kinematic (RTK) with six 1/2.9" 
Complementary Metal Oxide Semiconductor (CMOS) sensors for visible 
and multispecttal imaging. The surveys were conducted bernreen 9 am 
and 3 pm under clear, sunny skies with low wind speeds and minimal 
cloud cover (less than 5 %). The UAV was flown at 150 m above ground 
level (AGL) with 80 % forward overlap and 65 % side overlap, capruring 
43,404 nadir images at 8 cm/pixel ground sample distance (GSD). 

For the LiDAR data, we used a DJ! Matrice 300 RTK (DJ!, Shenzhen, 
China) with a Zenmuse Ll laser scanning system. We conducted the 
flights under favorable weather conditions, similar to those used for the 
multispecttal smveys. We used a scan mode flight pattern with 80 % 
forward overlap and 65 % side overlap at an altirude of 100 mAGL and a 
mapping speed of 6 m/s. The Ll system scanned at 160 kHz, recording 
up to three rerurns per pulse and generating a point cloud with a density 
of 317 ± 114 (mean+ SD) ppm2, of which 85.3 % were first returns. 

2.3. Field datn 

Ground-based measurements were conducted in the same period as 
the UAV flights to validate the UAV-derived products. Twenty sample 
plots (Fig. 1) of 0.25 ha were selected using stratified random sampling 
to caprure varying forest conditions. All trees 210 cm DBH within each 
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Fig. t. srudy area and study design. Upper left -The location of Benin Republic in West Africa (in red); bottom left - Map of Benin Republic showing the location of 
EARF (red dot); Upper right- UAV multispectral and LlDAR setup over the field site, EARF; bottom right - Google Earth lmage of EARF showing the 20 forest in­
ventory plot locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

plot were recorded, and tree heights were measured using a Suunto 
clinometer to characterize tree height distributions. 

Signs of anthropogenic disturbances (Fig. 2) were assessed per plot, 
including fire (charcoal/scorch marks), logging (stumps), trails, agri­
culrural encroachment, dead trees, canopy gaps, lianas/vines, and un­
derstory density as indicators of forest disturbance. 

2.4. Multispectral datn processing 

The raw multispectral images captured by the DJ! Phantom 4 Mul­
tispectral RTK UAV in blue (475 nm), green (560 nm), red (668 nm), red 
edge (717 nm) and near-infrared (NIR) (840 nm) bands were down­
loaded in georeferenced TIFF (GeoTIFF) format and referenced to the 
World Geodetic System 1984 (WGS84) Universal Transverse Mercator 
(UlM) zone 31 N coordinate system. These images were processed using 
Agisoft Metashape Professional sofrware (version 2.0.2, Agisoft UC, St. 
Petersburg, Russia), employing structure-from-motion (SfM) photo­
grammetry techniques to generate an orthomosaic. After photo align­
ment and dense 3D point cloud generation, a digital surface model 
(DSM) was reconstructed from the point cloud, camera positions, and 
orientations. Each band's orthomosaic was radiometrically calibrated 
using Metashape's "Calibrate Reflectance" tool with the "Sun sensor" 
option (Manfreda et al., 2018). No image filtering or minimum look 
angle constraints were applied to preserve the structural details of the 
vegetation (Anders et al., 2019). 

2.4.1. Calculation of vegetntion indices 
To assess the health and condition of the forest canopy, we calculated 

five key vegetation indices (Vis) using the raster calculator within Agi­
soft Metashape Professional sofrware. The selected Vis include the Green 
Normalized Difference Vegetation Index (GNDVI) (Gitelson and 

Merzlyak, 1998), Enhanced Vegetation Index (EV!) (Jiang et al., 2007), 
Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Normalized Dif­
ference Red Edge (NDRE) (Barnes et al., 2000), and Leaf Chlorophyll 
Index (LC!) (Datt, 1999). These indices were chosen based on the 
available spectral bands from the multispectral imagery and their 
common usage in vegetation studies (see Table 1). 

These specific Vis were selected because they provide complemen­
tary information for assessing tropical forest health and disturbance 
levels. For instance, GNDVI measures the contrast between the green 
and NIR bands and is less affected by chlorophyll absorption than the 
traditional Normalized Difference Vegetation Index (NDVI). By reducing 
chlorophyll sensitivity, the GNDVI can better capture structural prop­
erties like foliage density and gap fractions related to disturbance factors 
such as deforestation, fires, storms, or insect infestations that impact 
forest health (Gitelson and Merzlyak, 1998). EV! complements the 
GNDVl's ability to capture structural properties in tropical vegetation by 
adjusting for background influences from tropical soils and atmospheric 
variation, providing a robust characterization of productivity in high­
biomass tropical forests (Huete, 2012). SAVI improves NDVI by mini­
mizing soil influences in tropical systems. Specifically, SAVI adjusts 
NDVI based on soil brighmess factors using an L parameter (soil 
brighmess correction factor) set to 0.5 for intermediate canopy density 
(Huete, 1988). 1l1is minimizes the false variability introduced by con­
trasting soil hues in heterogeneous tropical landscapes. By accounting 
for soil brightness, SAVI enables reliable characterization of canopy 
density and condition, which are crucial for monitoring tropical forest 
health. 

NDRE can further enhance our understanding of vegetation stress 
and deterioration by isolating the red edge band to detect early pigment 
loss and leaf senescence, which is useful for mapping the gradual decline 
of tropical forest canopies (Zarco-Tejada et al., 2013). Such decline 
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Fig. 2. Evidence of anthropogenic disturbance in EARF: (a) A maize plot visibly encroaching into the adjacent forest, (b) A felled tree along a foot trail showing 
scorch marks, (c) A freshly cut down tree stump, probably logged for its timber, (d) Scorch marks at the base of a still-standing tree, suggesting it survived a fire. 
Photo credit: Samuel Hepner and Georges A. Agonvonon. 
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Table 1 
Formulas for the Vls used. 

Vegetation Indices Abbreviation Formula Reference 

Green Normalized GNDVI (NIR- G)/(NIR + (Gitdson and 
Difference Vegetation G) MenJ.yak, 1998) 
Index 

LeafChlotophyll Index LC! (NIR- RE)/(NIR (Datt, 1999) 
+R) 

Soil Adjurted Vegetation SAVI ((NIR - R)/(NIR + (Huete, 1988) 
Index R+L))•(l+L) 

Normalized Difference NORE (NIR- RE)/(NIR (Barnes et al., 
Red Edge +RE) 2000) 

Enhanced Vegetation EVI 2.5 • ((NIR - R)/ (Jiang et al., 
Index without the blue (NIR+2.4*R+ 2007) 
band 1)) 

G is the green band, R is the red band, RE is the red edge band, L is the soil 
brightness correction factor, and NIR is the near-infrared band. 

could be in the form of a reduction in leaf area, chlorophyll content, and 
overall canopy density, resulting from various stress factors like 
drought, nutrient deficiency, pest infestations, or anthropogenic 
disturbance factors like fire or logging. Lastly, LC! estimates chlorophyll 
content, offering high sensitivity to early stages of tropical forest stress 
from factors such as disease, insects, or nutrient deficiency (Daughtry 
et al., 2000). Taken together, these indices provide a more compre­
hensive view of the health and vitality of tropical forests. 

2. 5. LiDAR data processing 

The raw LiDAR data was downloaded and imported into DJ! Terra 
software (version 4.1.0) for initial processing. The point cloud density 
was set to 100 % to retain all points. The output coordinate system was 
defined as WGS84 UTM zone 31 N before initiating the automated 
calibration. The point cloud effective distance parameter was kept at 
250 m, and the "Optimize Point Ooud Accuracy" option was enabled. 
The cleaned point cloud was then exported in LAS (LASer) format. 

LAStools software (rapidlasso GmbH, version 2023.03.30) was then 
used to generate a pit-free canopy height model (CHM) from the LAS 
point cloud (Khosravipour et al., 2014 ). First, the raw LAS point cloud 
was classified into ground and non-ground returns using the lasground 
algorithm Next, a digital terrain model (DTM) representing ground 
elevation was interpolated to 10 cm resolution from classified ground 
returns using the las2dem algorithm. Finally, the CHM was produced by 
calculating the height above ground for the first returns with the 
Zasheightalgorithmand subtracting the DTM (Mielcarek et al., 2018) (Eq. 
(1)), 

(1) 

Where CI-Ild is the canopy height model, Zfrst rerum is the elevation of 
the first return LiDAR points, and DTM is the digital terrain model 
representing ground elevation. 

2. 5.1. Generation of forest structural metrics 
We utilized LAStools to derive key canopy structural metrics iden­

tified in other studies for distinguishing forest structural conditions: 
95th percentile canopy height (H95 ), canopy cover density, gap fraction, 
and canopy surface rumple. These canopy metrics serve as indicators of 
vertical and horizontal complexity, which reflect the impacts of distur­
bances on forest ecosystems as they progress through succession and 
development stages (Jucker et al., 2018). 

The H95 represents the maximum vertical stature and indicates forest 
maturity and structural complexity (Parker and Russ, 2004). In intact 
tropical forests, values typically exceed 30 m, while lower values signal 
stunted growth from disturbances like logging (Sheffield et al., 2021). 
Canopy cover density quantifies horizontal canopy closure by calcu­
lating the proportion of laser pulses reflected by vegetation above 2 m 
height relative to the total number of pulses (Jennings et al., 1999). 
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Dense, multi-layered intact tropical forests exhibit high canopy cover 
density approaching 100 %, whereas disturbed, fragmented forests have 
lower values, often below 80 % (Olsoy et al., 2014). The gap fraction 
metric complements canopy cover density by quantifying vertical 
porosity as the ratio of pulses penetrating through canopy gaps to the 
ground (Zhao et al., 2011). Lower gap fractions below 15 % characterize 
structurally complex forests with multi-strata obstructing light pene­
tration, while higher values typify disturbed, open canopies. Finally, the 
rumple index measures 3D canopy surface roughness as the ratio of 
canopy area to ground area, ranging from 1 for a flat, uniform canopy to 
8 for a highly complex surface (Seidl et al., 2012). Intact forests exhibit 
higher rumple values, typically above 3, due to their structural hetero­
geneity across multiple canopy layers, whereas severely disturbed for­
ests have lower rumple closer to 1 (Kane et al., 2010). 

2.6. Data fusion and disturbance mapping analysis 

To map the disturbance severity across the forest area, we integrated 
multispectral and LiDAR UAV datasets. We developed an ID! framework 
(Fig. 3) co identify disturbed conditions. These disturbed conditions 
were characterized by coincident low vegetation index values from the 
multispectral data and reduced canopy structural metrics derived from 
the LiDAR data, such as decreased canopy height and density, as well as 
increased canopy gaps, when compared to the expected characteristics 
of an undisturbed, intact forest canopy. 

To enable this integrated analysis, we resampled the 10 cm resolu­
tion LiDAR-derived CHM to match the 8 cm resolution of multispectral 
orthomosaics using nearest-neighbor interpolation in ArcGIS Pro® (Esri 
Inc., Version 3.2.1). The CHM was then co-registered with the multi­
spectral bands by manually identifying 30 common ground control 
points (GCPs) and applying a polynomial warp transformation for geo­
rectification (Han et al., 2019). This alignment enabled pixel-level 
analysis. We calculated the five Vis - GNDVI, EV!, SAVI, NDRE, and 
LC! - from the co-registered mulcispectral bands described in Section 
2.4.1. Spearman correlation analysis assessed relationships between 
LiDAR-derived canopy height and spectral Vis, identifying significant 
correlations atp < 0.05. Finally, we used PCA to integrate the LiDAR and 
spectral (Vis) variables into a composite disturbance index (Eq. (2)). 
PCA condensed these indicators into ordered principal components 
(PCs), explaining the decrease in variance. The first principal component 
(PCl) explains the largest portion of the variance in the correlated 
variables, making the PCl raster an effective proxy for the IDI. 
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Fig. 3. Integrated Disturbance Index (IDI) framework for mapping forest 
disturbance. The framework integrates canopy structural metrics derived from 
LiDAR data and spectral vitality indicators captured by vegetation indices. 
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(2) 

Where a is the component loading or weight for each variable, Xis 
the original correlated variable, and n is the number of significantly 
correlated variables. 

The PCl raster was classified into categorical disturbance classes 
using a combination of K-means clustering and knowledge-based 
reclassification. We initially tested different numbers of clusters (k = 2 
to 5) in the K-means algorithm (Table Sl). After visual inspection of the 
resulting maps and consideration of the interpretability and practical 
utility for forest management, we determined that three clusters pro­
vided a balance between simplicity and the ability to capture mean­
ingful variations in forest conditions. 

The K-means clustering with k = 3 was applied to the PCl values, 
identifying natural groupings within the data. These clusters were then 
reclassified into specific disturbance categories (low, medium, and high) 
based on prior knowledge of the relationships between PCl values, VI 
values, and canopy structure metrics. To refine the boundaries between 
disturbance classes, we examined the distribution of PCl values within 
each cluster and adjusted tl1e tluesholds to align with notable breaks or 
inflection points in the data disrribution. The final thresholds for the 
three disturbance classes were defined as follows: 

1. Low Disturbance: PCl values >0.65 
2. Medium Disturbance: 0.35 < PCl values :50.65 
3. High Disturbance: PCl values :50.35 

These thresholds were further validated through field observations 
and comparison with the high-resolution UAV RGB imagery to ensure 
they accurately reflected on-the-ground conditions. Areas with low PCl 
values (:5 0.35) were characterized by low VI values and reduced canopy 
structure (e.g., low canopy heights and high gap fractions). These re­
gions were classified as high disturbance zones, reflecting severe dis­
turbances with significantly reduced vegetation cover and structural 
integrity. Conversely, areas with high PCl values ( > 0.65), supported by 
high VI values and intact canopy structure (e.g., tall canopy heights and 
low gap fractions), were classified as low disturbance zones, indicating 
healthy forest conditions. These zones were distinguished by their 
robust vegetation cover and structural integrity. Intermediate PCl 
values (0.35 < PCl :5 0.65) were classified as medium disturbance 
zones, representing partial canopy damage or other disturbances that 
may have impacted forest structure and health while retaining some 
vegetation cover and canopy integrity. 

2. 7. Accuracy assessment 

We assessed the disturbance map's accuracy by comparing it to field 
observations from 20 ground plots. 1n each plo, we recorded distur­
bance indicators such as signs of fire, logged tree srumps, human trail 
density, agricultural encroachment, liana proliferation, dead tree den­
sity, canopy gaps, and vegetation cover. Based on these indicators, each 
plot was classified into low, medium, or high disturbance (Table 2). 

For each field plo, we extracted the proportions of pixels classified 
as Low, Medium, and High disturbance levels from the PCl raster and 
compared these to the field-based disturbance class. For instance, a field 
plot classified as high disturbance should have a higher proportion of 
pixels classified as high disturbance in the PCl raster. By aggregating 
and comparing the disturbance classes within each plot to the field 
reference, we evaluated the accuracy of the fused LiDAR-multispectral 
dataset and the derived disturbance index. 

We also compared the field-based disturbance classes with individual 
LiDAR and spectral metrics to determine if the data fusion improved 
disturbance detection accuracy. Accuracy metrics such as overall accu­
racy (OA), user's accuracy (UA), and producer's accuracy (PA) were 
calculated to quantify performance against the field reference data 
(Congalton and Green, 2019). 
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Table2 
Field-based classification of disturbance Levels based on the percentage of the 
plot affected. 

Disturbance 
level 

Low 

Disturbance 

Medium 
Disturbance 

High 
Disturbance 

3. Results 

Percentage of 
Pot affected 

<15% 

15%-30% 

>30% 

DeS"cription 

Minimal or no signS" of disturbance, S'uch aS' 
the abS"ence of fire S"carS", stumpS', human 
traili., agricultural encroachment, \iana 
prdiferation, dead treeS", and canopy gaps. 
likely repreS"entS" intact or rel. atively 
undisturbed forest conditionS'. 
Moderate levelS" of disturbance indicators, 
ruch ai. i.cattered rtumps, a few human 
trailS', moderate liana infestation, and rome 
canopy ga~. May have experienced 
S'el.ectivelogging, tocl:iized agricultural 
activities, or other low-to-modernte 
disturbance events that have impacted the 
forert structure and hel:ith to rome degree. 
Extensive evidence of disturbance, 
ind uding widespread fire s-tarS', numerous 
stumps, denS"e human trails, extensive 
agricultural encroachment, heavy liana 
prd iferation, high densities of dead treeS", 
and significant canopy gaps. Likely 
repreS"entS" areaS" that have undergone severe 
anthropogenic diS"turbances or nacurnl 
dirturbanceS", I eading to deterioration of the 
forert rtructure and condition. 

3.1. Forest sITuctural and spectral characteristics and their relationships 

The LiDAR-derived CHM revealed the spatial distribution of canopy 
heights across the 560-ha forest area (Fig. 4). The CHM also revealed 
areas of closed tall forest canopy, lower stature vegetation, and canopy 
gaps. Furthermore, the structural metrics derived from the CHM 
revealed that the H 95 for the 560-ha study area was below 20 m. The 
canopy cover density averaged 0.56, and correspondingly, the overall 
canopy gap fraction was 0.44. Lastly, the rumple index averaged 2.54. 

The Vis derived from the co-collected multispectral bands provided 
complementary spectral information about the forest's health. Fig. 5 
reveals diverse spatial patterns and variability of the vegetation condi­
tions across the forest, with areas of high index values (typically >0.6) 
and low index values (generally below 0.3) clearly visible. The GNDVI 
ranged from -0.50 to 0. 92 (Fig. Sl a), with a high mean of 0.69 (±0.10 
standard deviation), exceeding the typical high-value threshold of 0.6. 
The EV! exhibited higher variability, averaging 0.74 (±0.14) across the 
full observed range of -0.29 to 0.95 (Fig. Slb), again highlighting re­
gions with values exceeding 0.6. SAVI values spanned from -0.29 to 
0.63 (Fig. Slc), with a mean of 0.26 (±0.06), indicating substantial areas 
below the low index benchmark of 0.3. The NDRE had a mean of 0.23 
(±0.11), with values ranging from -0.50 to 0.75 (Fig. Sld), mostly 
exhibiting low index values below 0.3. Lastly, the LC! had an average of 
0.34 (±0.08), with a wider range of -0.81 to 0.73 (Fig. Sle), indicating 
considerable areas with values below 0.3. 

The correlation matrix (Fig. 6) shows the correlation coefficients (r) 
quantifying the relationships between CHM and the Vis. The CHM 
exhibited positive correlations with all Vis. The strongest correlations 
were observed with NDRE (r = 0.709), LC! (r = 0.693), and SAVI (r = 
0.657). While still significant (p < 0.05), the correlations with GNDVI (r 
= 0.604) and EV! (r = 0.650) were slightly weaker in comparison. 

3.2. Data fw;ion and disturbance mapping 

The PCA integrated the LiDAR and spectral Vis into a composite 
disturbance index. The variable-PCA-biplot (Fig. 7a) illustrates the 
contribution of each variable to the overall data variation. The scree plot 
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value significance levels are"*" 0.05, "**" 0.01, and"***" 0.001. 

(Fig. 7b) indicates that PCl accounted for the majority (75.7 %) of the 
variance in the original distmbance metrics, while PC2 explained 23 .5 % 
of the variance. As shown in Fig. 7c, EV!, CHM, and GNDVI had the 
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highest loadings and contributed most significantly to PCl, while SAVI, 
NDRE, and LC! loaded more heavily onto PC2. Fig. 7d further details the 
contributions of the variables specifically to PCl. 

Fig. 8 shows the resulting categorical high-resolution (8 cm) distur­
bance map from the classified PCl raster (ID]), delineating zones of 
disturbance severity. Analysis of this map revealed that 49 % (275.75 
ha) of the 560-ha forest fell into the high disturbance category, 28 % 
(154.16 ha) was classified as medium disturbance, and the remaining 
23 % (130.09 ha) was categorized as low disturbance. 

3.3. Accuracy assessment 

The accuracy assessment revealed that combining LiDAR and mul­
tispectral data for IDI classification achieved an OA of 95 %, out­
performing individual sensors used alone. For instance, LiDAR-derived 
CHM achieved an OA of 80 %, while spectral Vis alone reached an OA of 
75 %. Fig. 9a shows the confusion matrix, which highlights the align­
ment between the classified IDI and field measurements. For all distur­
bance classes, both PA and UA of the ID! exceeded 85 %. Conversely, the 
LiDAR CHM exhibited lower accuracy, particularly in the medium 
disturbance class, where PA and UA were 71.43 % (Fig. 9b). Similarly, 
spectral Vis demonstrated lower performance in the medium distur­
bance class, with a PA of 71.43 % and UA of 62.50 %. For the high 
disturbance class, spectral Vis had a PA of 62.50 % and a UA of 71.43 % 
(Fig. 9c). The proportions of pixels classified in each disturbance cate­
gory for each of the 20 field plots are provided in Table S2. 
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Fig. 7. (a) Variable PCA-biplot showing the contribution of variables in data variation, (b) Scree plot showing the percentage of explained variance by the principal 
components, (c) Contributions of the variables to the PCs, (d) Contributions of variables to PCl in percentages. The red dashed line indicates the expected average 
contribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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plots, highlighting localized disturbances. 
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4. Discussion 

Our UAV LiDAR and multispectral data fusion approach showed a 
strong potential for assessing the starus and disturbance severity of 
tropical forest fragments. By combining LiDAR-derived structural met­
rics with multispectral VIs through PCA, we achieved a comprehensive 
and accurate characterization of forest disrurbance. To our knowledge, 
this is the first study to combine UAV LiDAR and multispectral data to 
evaluate the status and disrurbance severity across a West African 
tropical forest. 

4.1. Forest structural and spectral chw-acreristics and their relationships 

The structural properties quantified through the LID AR-derived CHM 
provided insights into the 3D structure and vertical complexity of the 
forest. The relatively low H95 (20 m) compared to the maximum height 
of 48 m observed in the study area suggests a generally low overall forest 
stature. While a definitive reference threshold for mature West African 
forests is not available, this relatively low value suggests the overall 
forest starure is generally low compared to what would be expected in a 
mature undisturbed tropical forest (Vaglio Laurin et al., 2014). This low 
stature likely results from the logging oflarge trees, which has hindered 
the forest's ability to attain its full structural complexity and vertical 
stratification. 

Further evidence of disturbance is reflected in the relatively open 
canopy structure, with a canopy cover density of only 56 % and a high 
gap fraction of 44 %. These results corroborate the findings of Dupuis 
et al. (2023), who associated open, gapped canopy conditions with 
anthropogenic disturbances. The average rumple index of 2.54 indicates 
a low degree of canopy surface roughness, which is perceived as a sign of 
disturbance. These strucrural characteristics suggest that past distur­
bances may have simplified vertical stratification and created a 
smoothened canopy surface across this forest. 

The spectral Vis offered complementary insights into forest health 
and productivity interacting with strucrural development. The positive 
correlations between canopy height and Vis like EV!, NDRE, and LC! 
confirm that taller, more complex forest stands exhibit higher canopy 
moisrure content, chlorophyll concentrations, and photosynthetic ac­
tivity (Huete, 2012). However, the considerably low values observed in 

spectral indices like SAVI, NDRE, and LCI suggest potential deterioration 
in canopy moisrure, leaf pigments, and photosystems across different 
parts of the forest. The low VI values observed in areas with relatively 
high biomass and greenness during the less intense rainy season may 
indicate localized disturbances such as selective logging, which can 
impact forest structure while leaving surrounding vegetation largely 
intact (Cazzolla Gatti et al., 2015). 

While GNDVI is more sensitive to canopy density and adjusted 
greermess, it might not always be directly proportional to canopy height. 
This could explain why its relationships with canopy height were not as 
strong as those observed for indices like NDRE and LCI, which are more 
directly related to the canopy's strucrural characteristics and biophysi­
cal properties. Previous studies have shown that canopy structure and 
vertical complexity can significantly influence indices like NDRE and 
LC! more than greenness-based indices like GNDVI (Huete, 2012; Zou 
and M6ttus, 2017). Additionally, the weaker relationships between the 
indices and canopy height could be attributed to potential variability 
arising from vegetation stress factors, such as moistme availability or 
nutrient deficiencies, which may not be directly linked to canopy height 
but can affect greermess and density measures (Velez et al., 2023). 

4.2. Data fusion and disturbance mapping 

The disrurbance characterized by the data fusion approach reflects 
aspects of the tropical forest status that neither the multispectral nor 
LiDAR data streams can independently capture. The intrinsic strucrural 
properties derived from LiDAR carmot detect subtle declines in moisrure 
content, photosynthetic productivity, and chlorophyll concentration, 
which often precede visible strucrural changes in vegetation (Both et al., 
2019). For instance, our results showed that using LiDAR data alone had 
a UA of only 71.43 % for mapping medium disturbance areas, likely 
missing early signs of stress or deterioration not yet manifested in 
structural changes. Similarly, relying solely on multispectral data had a 
PA of 71.43 % for medium disturbance, potentially overlooking 
emerging patterns in forest structure signaling disrurbance, such as 
canopy thirming, gap formation, or changes in vertical complexity 
(Souza et al., 2005). An example could be a selectively logged area 
where the canopy structure has been altered, but the remaining vege­
tation may still appear spectrally similar to an undisturbed forest. 



 

150 
 

C.J. lh.00.tun.1. etal. 

Combining structural and spectral metrics through PCA provides a 
more comprehensive understanding of forest status. Among the vari­
ables integrated into PCl (!DI), EV!, CHM, and GNDVI exhibited the 
highest loadings. Since GNDVI and EV! had slightly weaker correlations 
with CHM compared to NDRE, SA VI, and LC!, which are more closely 
related to structural characteristics of the canopy, they provided com­
plementary information better suited for capturing vegetation spectral 
vitality. The complementary nature of these metrics enables the detec­
tion of both structural deteriorations captured by the LIDAR-derived 
CHM and declining spectral vitality reflected in Vis like EV! and GNDVI. 

The accuracy assessment of this approach showed that it aligns more 
closely with field-based observations of disturbance, indicating its 
improved performance for disturbance characterizations. This inte­
grated method reveals not only canopy structural damage or pigment 
loss but also senres as an indicator of potential threats to interconnected 
ecological processes that regulate forest function, such as nutrient 
cycling, water balance, and energy exchange. These processes are sus­
ceptible to disruptions caused by disturbances (Nepstad et al., 2008). By 
identifying areas exhibiting signs of stress or deterioration through the 
combined structural and spectral signals, it is possible to take manage­
ment action to prevent further decline. 

4. 3. lmplication,s for sustainable forest management 

The spatial patterns of forest disturbance mapped in this study pro­
vide critical information to guide sustainable forest management re­
sponses focused on consenration, sustainable use, and restoration. 
Evidence from the field observation points to anthropogenic distur­
bances like timber harvesting, agricultural expansion, and uncontrolled 
fires as key factors degrading forest structure and condition. These 
findings align with previous studies that have highlighted the severe 
implications of such disturbances for forest sustainability if not properly 
managed. For instance, Barlow et al. (2016) found that anthropogenic 
disturbances, particularly fire and logging, have caused wide~read 
degradation of Amazon forests, with negative impacts on carbon stor­
age, biodiversity, and other ecosystem services. Their study highlights 
the urgent need for sustainable forest management practices to mitigate 
these disturbances. Similarly, Lewis et al. (2015) reported that human 
activities, such as deforestation, selective logging, and fragmentation, 
are major drivers of forest degradation in the tropics, leading to signif­
icant losses in biomass and biodiversity. They emphasize the importance 
of implementing conservation strategies and sustainable land-use prac­
tices to preserve the integrity of these ecosystems. 

The !DI developed in this study provides a more detailed under­
standing of the forest conditions, allowing for management in­
terventions to be tailored according to disturbance severity. This 
targeted approach helps avoid inadequate interventions in highly 
disturbed areas and overly aggressive actions in minimally affected 
areas, thereby ensuring efficient allocation of limited conservation re­
sources. The ~atial detail of the IDI also allows for the identification of 
disturbance agents and potential remedies, informing contextualized 
sustainable forest management policies. For example, areas mapped as 
high disturbance (49 % of the forest) face immediate risks of ecological 
transformation away from natural forest states. In these zones, urgent 
action is needed to protect the remaining habitat quality and sustain 
biodiversity, carbon storage, and other ecosystem services vital for 
sustainable management (Barlow et al., 2016). This calls for in­
terventions that limit further anthropogenic pressures, such as illegal 
logging, which has been detected in this zone. While local community 
efforts to deter such degrading activities exist in the region, they have 
only partially succeeded (Abdul Aziz et al., 2024). This highlights the 
need for additional strategies to enhance forest protection. Furthermore, 
to aid the recovery of these highly disturbed areas, implementing 
assisted natural regeneration through silvicultural practices could be 
beneficial (Brancalion et al., 2019). 

Similarly, 28 % of the forest categorized as medium disturbance 
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requires continued monitoring to avoid further decline in forest vitality. 
Prioritizing the conservation of proximal intact forest areas can help 
buffer these partially degraded zones against encroaching edge effects 
(Bakarr and Abu-Bakarr, 2022). Emichment plantings to boost under­
story diversity could also strengthen the resilience of these forests 
against potential invasive species colonization following disturbance 
(Yeong et al., 2016). For the areas mapped as low disturbance (23 % of 
the forest), active conservation is needed to maintain these zones as 
propagule reservoirs capable of facilitating recovery in disturbed re­
gions (Sloan et al., 2016). Conducting biodiversity surveys to map spe­
cies distributions in relation to degradation levels can inform sustainable 
management plans. Co-management with government entities can 
support community-based arrangements to protect suitable habitats 
harboring endangered flora and fauna likely persisting in these intact 
forest refugia. Connecting such refugia through habitat corridors could 
enable climate-adaptive ~ecies migrations as climate change impacts 
accelerate (Heller and Zavaleta, 2009). Opportunities for carbon finance 
programs like REDD+ aimed at reducing emissions from deforestation 
may incentivize continued conservation in these low-disturbance zones 
(Andoh et al., 2022). 

4.4. Limitations andfurure research direction 

This study utilized data collected during a single period for each 
sensor type (LiDAR and multispectral), which allowed us to evaluate the 
current state of the forest and identify areas of concern for targeted 
conservation efforts. While this snapshot provides valuable insights, 
some limitations warrant discussion. First, our study did not capture 
changes over time, which restricts our understanding of how the forest 
evolves and recovers (i.e., forest successional pathways and dynamics). 
To fully comprehend the impacts of disturbances on these pathways, a 
multi-temporal approach would be essential and could be a worthwhile 
direction for future research. This will involve acquiring regular UAV 
LiDAR and multispectral data across wet and dry seasons over multiple 
years. Such a temporal dataset would not only enhance the character­
ization of disturbance severity on forest successional pathways but also 
quantify post-disturbance recovery rates. By capturing the temporal 
dimension, researchers could model tropical forest stability regimes and 
their responses to different disturbance types and severities, providing a 
more holistic understanding of these complex ecosystem processes. This 
approach would complement the findings of the present study and offer 
insights into the long-term trajectories of forest recovery and resilience. 

Additionally, future studies should consider employing LiDAR sen­
sors optimized for multi-return recording to expand the suite of struc­
tural variables that can be derived from the data. Since 85 % of the 
LiDAR returns in this study were first pulses, the sub-canopy vegetation 
structure was not fully captured, limiting the characterization of vertical 
complexity within the forest profile from the canopy to the understory 
layers. By leveraging multi-return LiDAR systems, additional metrics 
related to the vertical distribution of vegetation elements below the 
canopy could be extracted, providing a more comprehensive represen­
tation of the 3D forest structure (Hancock et al., 2019; Leitold et al., 
2014). This enhanced structural information could improve the ability 
to assess ecosystem health and biodiversity across different vertical 
strata. The sub-canopy layers play a crucial role in supporting diverse 
plant and animal communities (Goetz et al., 2007). For instance, Mi.iller 
et al. (2018) demonstrated that LiDAR-derived vertical forest structure 
metrics are strong predictors of bird species richness in temperate for­
ests. Similarly, Simonson et al. (2014) found that the structural 
complexity of the understory, as measured by LiDAR, was positively 
associated with bat species diversity in tropical forests. 

Lastly, expanding the applicability of the UAV-derived disturbance 
mapping methodology to larger spatial scales is a critical next step to­
ward advancing the understanding of forest disturbance patterns. Future 
research could explore integrating high-resolution satellite imagery and 
airborne LiDAR data with UAV data, enabling the extrapolation of 



 

151 
 

C.J. lh.00.tun.1. etal. 

localized findings to national and regional levels (Lima et al., 2019). 
Hyper-spectral satellites, such as the German Environmental Mapping 
and Analysis Program (EnMAP) and the Italian PRecursore IperSpettrale 
della Missione Applicativa (PRISMA), provide finer spectral resolution, 
potentially improving the detection of subtle changes in forest health 
and composition (Transon et al., 2018). Moreover, space-borne LiDAR 
systems like Global Ecosystem Dynamics Investigation (GED!) offer 
opportunities for large-scale, 3D forest structure assessment (Dubayah 
et al., 2020). By combining GEDI's global coverage with the fine-scale 
detail from UAV-LiDAR, we could develop more robust models of for­
est structure and biomass across vast areas. This multi-scale, multi­
sensor approach can potentially improve the assessment and manage­
ment of forest resources. It could provide a more comprehensive view of 
forest dynamics, from individual tree-level changes captured by UAVs to 
landscape and regional patterns observed by satellites. Such integrated 
methodologies would equip decision-makers with powerful tools to 
implement effective conservation and restoration strategies, monitor 
progress toward national and international forest management goals, 
and better understand the complex interactions between local distm­
bances and larger-scale forest health trends. 

5. Conclusions 

This study demonstrated the effectiveness of fusing UA V LiDAR and 
multispectral data to enhance tropical forest disturbance mapping. By 
integrating structural metrics from LiDAR with spectral metrics through 
PCA, we achieved a more comprehensive and accurate characterization 
of forest disturbance compared to using either dataset alone. The 
resulting !DI proved effective in delineating gradations of dis­
turbance-low, medium, and high-across the forest. This stratification 
enables forest managers to implement interventions specifically tailored 
to the degree of disturbance, optimizing the use of limited conservation 
resources. Field observations linked the mapped distmbances to 

anthropogenic drivers like logging, agriculture expansion, and fires, 
informing targeted mitigation strategies. The novelty of this research 
lies in the complementary integration of structural and spectral in­
dicators, providing a better understanding of tropical forest ecosystem 
health. By presenting an accessible framework for fusing UAV LiDAR 
and multispectral data, this study paves the way for the widespread 
implementation of advanced disturbance mapping techniques. This 
supports evidence-based conservation strategies crucial for safeguarding 
vulnerable tropical forests in the face of accelerating global changes and 
anthropogenic pressures. 
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1. Introduction 

ABSTRACT 

Tropical forests face fragmentation, degradation, and conversion, leading to biodiversity loss, reduced carbon 
storage, and diminished ecosystem services. While local populations depend on forest products, the intensity of 
these extractions can lead to forest degradation. This paper examines the interplay between socio-economic 
pressure, perceived and measured forest degradation, and the insights to be gained for informed forest 
management. 

A survey of 1956 respondents was conducted across seven forests in Togo, Benin, Nigeria, and Cameroon, from 
which 328 forest users were identified who regularly work in one of the seven studied forests. In semi-structured 
questionnaires, we asked about forest uses and perceptions of corresponding impacts on forest integrity. We 
integrated spatially explicit demographic and governance data (forest pressure) with interview-based insights 
(perceived degradation) and quantitative assessments of forest structural complexity (measured degradation), 

Most forest users gather non-timber forest products, though hunting and logging were also impottant activ­
ities. Generally, forests affected by logging and fire, or conversion to agriculture, were perceived as degraded. 
Further, the disappearance of large, old trees, different plane and animal species, and the loss of forested areas 
were observed over the years. However, perceptions did not always reflect forest uses. The community with the 
highest pressure on forests was least concerned about forest degradation, while people near strictly protected and 
sacred forests were most concerned. The different relationships between local perceptions, measurable forest 
degradation, and pressure on forest resources need to be considered to guide sustainable forest management and 
reduce ongoing forest degradation and biodiversity loss in Western Africa. 

1. 1. Persistence and degradation of isolated forest patches in Western 
Africa 

much of the Western African landscape (Dangbo et al., 2020; Taubert 
et al., 2018; Wingate et al., 2022). In Togo, Benin, Nigeria, and 
Cameroon alone, more than 400,000 forest patches have been identified 
(Wingate et al., 2022). These patches, while critical for biodiversity 
conservation, climate regulation, and ecosystem services (Lewis et al., 
2015), face significant threats from edge effects such as fire, desiccation, 
and species extinctions (Hill and Curran, 2003; IbM!ez et al., 2014; 
Laurance, 2004). 

Tropical forests are being cleared at an unprecedented pace across 
the globe (Hansen et al., 2013; Poorter et al., 2021; Schelhas and 
Greenberg, 1996 ). In Western Africa, over 80 % of the forest cover 
present in 1900 has been lost, primarily due to agricultural expansion 
driven by population growth (Akinyemi and Ifejika Speranza, 2022; 
Aleman et al., 2017; Amani et al., 2021; Curtis et al., 2018). This 
deforestation has, particularly in the rainforest zone, fragmented large, 
continuous forests into numerous small patches that now characterize 
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Clearing rainforests not only contributes to the current ecological 
crisis but also poses a significant social and economic challenge (Lewark, 
2022). Millions of people live in or near tropical forests, many of whom 
are among the poorest and rely on forest resources for their livelihoods 
(Lewark, 2022; Lewis et al., 2015; Rietbergen, 1993). Over generations, 
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forest-dependent communities have developed complex silvicultural 
practices rooted in their deep connection with the forest, yet these 
practices are often poorly documented and not well understood by sci­
entists and policymakers (Shanley et al., 2016). While originally sus­
tainable, many of these practices are no longer viable due to growing 
pressures (Lewark, 2022). Overexploitation of forest resources, driven 
by increasing demands from both rural and urban populations and 
enhanced access co markets and the monetary economy, conrributes to 
forest degradation as well as forest loss (Lewark, 2022; Malhi et al., 
2013). 

1 .2. Framing forest degradation 

Forest degradation is not univocally defined, but it generally refers to 
the simplification of forest structure, the reduction of biodiversity, and 
the decline in the capacity of a forest to provide ecosystem services 
compared with an intact reference forest (Ghazoul et al., 2015; Hepner 
et al., 2025; V.isquez-Grand6n et al., 2018). In contrast, deforestation 
denotes a change in land use that results in the permanent reduction of 
tree canopy cover below 10 % (Food and Agriculture Organization of the 
United Nations (FAO), 2020a, 2020b). Unlike deforestation, degrada­
tion does not necessarily involve a complete loss of rree cover; rather, it 
describes the biophysical alterations caused by damaging human ac­
tivities, which may unfold over long periods and become evident only 
gradually and subtly (Vasquez-Grand6n et al., 2018). Understanding 
forest degradation, therefore requires not only an assessment of the 
actual and reference ecological state given current environmental con­
ditions, but also attention to its social-ecological context (Schulze et al., 
2019), including how forests are used (Putz, 2011), and how local 
communities perceive forest conditions (Themezie et al., 2021). The 
sodal-ecological context includes the interplay of broader social, cul­
tural, political, and economic factors and drives forest conservation and 
degradation, respectively (Themezie et al., 2022). In many developing 
countries, a plethora of economic incentives leads people to degrade 
forests (Ihemezie et al., 2022; V.isquez-Grand6n et al., 2018). However, 
intrinsic and relational values can also lead to forest conservation 
(Themezie et al., 2021). 

1. 2. 1. Forest uses and their roles in forest degradation 
Forest uses often sustain livelihoods but, when unsustainable, such as 

overharvesting timber, can result in forest degradation and loss (Lewark, 
2022; V.isquez-Grand6n et al., 2018). In multi-purpose forests, sustain­
able management depends on minimizing impacts on other uses; 
othenvise, conflicting and unsustainable practices can lead to forest 
degradation (Schulze et al., 2019). In Western Africa, communities 
depending on forests for their livelihoods use them in diverse way­
s-including harvesting non-timber forest products, timber, fuelwood, 
and charcoal, hunting bushmeat, and engaging in religious practi­
ces-often with overlapping impacts that compromise forest integrity 
(Asner, 2009; Johns, 2004; Malhi et al., 2014). 

Forest products are often categorized under Non-Timber Forest 
Products (NTFP), which include firewood, fruits, fodder, fiber, and food 
(Lewark, 2022; Prasad, 1999; Pretzsch, 2014). Alternatively, these 
products are sometimes framed as Non-Wood Forest Products (NWFP), 
explicitly excluding wood (Muir et al., 2020). Most NTFP are harvested 
sustainably (Corlett, 2016), but frequent harvesting and harmful prac­
tices such as overexploitation can lead to forest degradation and local 
species extinction (Johns, 2004; Rietbergen, 1993; Shanley et al., 2016 ). 

Timber is the most widely traded and controversial forest product 
(Barbier et al., 2019; Rietbergen, 1993). The selective removal of 
high-value timber species, a practice known as high-grading, has several 
cascading effects on forest ecosystems, including gap formation and 
reduced structural complexity (Asner, 2009). Although selective logging 
can provide short-term employment and income, it often facilitates 
forest access, increases hunting pressure, accelerates fragmentation, and 
ultimately contributes to deforestation (Johns, 2004; Lewis et al., 2015; 
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Malhi et al., 2014). 
In Sub-Saharan Africa, fuelwood and charcoal, which are the most 

important energy sources (Leach and Mearns, 1993; Sola et al., 2019), 
have also contributed to forest degradation and deforestation (Sedano 
et al., 2016; Williams and Anghelea, 2021). Fuelwood sourced from 
forests represents a substantial biomass removal, with uncertain effects 
on nutrient and carbon cycles but a possible reduction in forest flam­
mability (Malhi et al., 2014; Morton, 2007). 

In recent years, fire frequency and spatial extent have increased 
significantly (Malhi et al., 2014; Shlisky et al., 2009), making it a major 
driver of forest degradation in Western Africa (Dago et al., 2023; 
Goldammer, 2016). Yet, fire has been used for millennia to manage 
tropical forests (Goldanuner, 2016; Tacconi et al., 2006). It is employed 
to enhance soil fertility and increase crop yields, connol pests and 
weeds, and facilitate hunting (Amoako and Gambiza, 2022). 

Forests are important sources of bushmeat and fish, which are 
primary sources of protein for many subsistence societies (Brashares 
et al., 2004; Lewark, 2022; Shanley et al., 2016). However, defaunation 
significantly impacts forest ecosystems by breaking trophic chains and 
altering plant dissemination (Lewis et al., 2015; Malhi et al., 2014). Fish 
depletion and impacts ofartisanal fishing in seasonally inundated forests 
remain largely unknown in Western Africa. 

Forests are also used for non-material services, such as for religious 
practices. Western Africa is home to the animistic religion Vod(m 
(Alohou et al., 2016). While the conservation of forests and trees is not a 
central tenet of the Vod(m religion (Fournier, 2011; Nyamweru and 
Sheridan, 2008), there are thousands of sacred forests in Western Africa 
with intact plant communities, high biodiversity, and substantial 
aboveground biomass (Kassi et al., 2021; Lynch et al., 2018). However, 
traditional woodcuttings and forest burnings for the religious interpre­
tation of smoke signals can also lead to forest degradation (Kokou and 
Sokpon, 2006; Kossi et al., 2021). Thus, it is important to understand the 
social-ecological contexts of forest degradation. 

1.2.2. The social-ecological context of forest degradation 
Individual use of forest resources has localized impacts, but pressures 

at the forest scale are largely determined by broader socio-economic 
conditions (Geist and Lambin, 2002). In many African rural areas, 
livelihoods depend heavily on subsistence farming and forest products 
such as fuelwood and timber, with limited market access and mecha­
nization further reinforcing this dependence (Neuenschwander et al., 
2015; Sulaiman et al., 2017; Van Vliet and Nasi, 2008). 

1.2.2.1. PressW'e on forests. Land and forest degradation arises from the 
interaction of social, ecological, and institutional factors that together 
shape human pressure on forest ecosystems. While a larger population 
near forests does not always result in greater degradation (Agrawal, 
1995; Wardell et al., 2003), it often does so, as higher population density 
tends to increase demand for forest resources and pressure on forest 
integrity (Mertens and Lambin, 2000; Mon et al., 2012; Ryan et al., 
2017; Zhao et al., 2006). In this study, we adopt the assumption that 
population size generally correlates with forest use intensity. The 
number of users entering forests to extract resources directly affects the 
rate of exploitation, and even when resources are renewable, additional 
users raise the likelihood of exceeding the forest's carrying capacity (De, 
2012). Excessive logging and hunting can disrupt forest structure and 
ecological processes, including water and carbon cycling and animal 
population dynamics (Lewis et al., 2015; Malhi et al., 2014). Infra­
snucture such as roads and tools like chainsaws further accelerate 
degradation by improving access and extraction efficiency (Ahrends 
et al., 2010). The ecological setting modulates these dynamics. Larger 
forests can buffer pressure more effectively than smaller ones, while 
isolation-the ratio of forest to non-forest area in the immediate sur­
rounding (Hepner et al., 2025)-captures how unique or exposed a 
forest is within its landscape context. More isolated forests often face 
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higher pressure due to limited alternative resource areas. Similarly, 
fragmentation-the proportion of forest area close to an edge (Fischer 
et al., 2021; Hepner et al., 2025)-increases accessibility and vulnera­
bility, creating a feedback loop in which human use generates more 
edges, which in turn attract further use (Olupot and Chapman, 2006). 
Moreover, smaller and more fragmented forest patches typically have 
reduced capacity to regenerate or recover from disturbances and are 
more likely to disappear over time compared to larger, less fragmented 
forests (Wingate et al., 2024). Finally, governance mediates how 
human and ecological factors translate into actual pressure (cf. Fasona 
et al., 2019). Governance structures-ranging from prohibited or sacred 
access to family- or community-based management (Mintah et al., in 
prep.)-ean either resrrict or enable forest use. Together, population 
demand, types of use, ecological context, and governance determine 
how strongly human activities shape forest degradation. 

1.2.2.2. PerceiYed forest degradation. While forest use and resource 
extraction generally lead to measurable alterations in the ecosystem, 
these changes are subjectively perceived by forest users 
(Femafldez-Llamazares et al., 2015). Perceptions of forest degradation 
depend on socio-economic status, interests, and the perceived benefits 
from forests (Hasanah et al, 2019; Themezie et al., 2022). For instance, 
when land conversion from forest to non-forest generates economic 
profits, users may view it as land valorization rather than degradation, 
despite the objective loss of forest ecosystem services (Hasanah et al., 
2019; Ihemezie et al., 2022). Since forest changes can occur gradually 
and over timescales that are difficult for people to perceive (Binkley, 
2021), perceptions of degradation often deviate from measured forest 
change. Communities tend to notice tangible signs such as the decline of 
valuable timber species, the need to walk longer distances or purchase 
timber that is no longer available nearby, lengthening dry seasons and 
delayed rains, or increased time and effort needed for hunting due to 
declining wildlife (cf. Hermans-Nemnann et al., 2016). Yet many forms 
of degradation remain unreported, including the loss of already rare 
species, subtle shifts in forest srructure, or changes in less valued species 
that are not perceived as relevant to local livelihoods (cf. Binkley, 2021; 
Food and Agriculture Organization of the United Nations (FAO), 2011). 
Perceptions of degradation are particularly important among local users, 
since they directly influence forest use and management (Adenle et al., 
2022; Femandez-Llamazares er al., 2015; Tadesse and Teketay, 2017; 
Tesfaye et al., 2012). While perceptions shape how people act, 
measurable indicators remain essential to assess ecological change 
directly. 

1.2.2.3. Measured forest degradatiort Forest degradation is often a slow 
and subtle process, making it challenging to detect directly through 
observation and remote sensing (Jimenez-Rodriguez et al, 2022; Rey­
gadas et al., 2019). Nevertheless, it can be assessed indirectly using 
specific indicators, such as biodiversity loss, biomass decline, and 
simplification of forest suuctural complexity (Ghazoul et al., 2015; 
Hepner et al., 2025). Forest structural complexity refers to the 
three-dimensional arrangement of forest and tree components and can 
be measured using terresuial laser scanning (Ehbrecht et al., 2017). It is 
strongly correlated with ecosystem functioning, productivity, biodiver­
sity, and overall forest integrity ( Coverdale and Davies, 2023). High 
structural complexity typically indicates intact, resilient forest ecosys­
tems (Coverdale and Davies, 2023; Ehbrecht et al., 2017) with minimal 
human impact (Johns, 2004; Poore, 2013; Shanley et al., 2016; Willim 
et al., 2019), though some forest types are naturally less complex (e.g., 
tropical savanna and woodlands; Ehbrecht et al., 2021). In general, 
structural complexity that is substantially lower than the natural refer­
ence for a given forest type is a key indicator of degradation (Hepner 
et al., 2025). Comparing actual and reference structural complexity 
provides a rapid, objective assessment of degradation. 

Finally, integrating the forest's social-ecological context, actors' 
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perceptions, and objective measures such as suuctural complexity pro~ 
vides a more comprehensive understanding of forest degradation. This 
integration highlights the need for management approaches that bring 
these dimensions together. 

1.3. Addressing degradation through sustainable forest management 

To address forest degradation and balance forest use with conser­
vation, sustainable forest management (SFM) has been proposed 
(Corlett, 2016). SFM refers co "the process of managing permanent forest 
lwid to achieve one or more clearly specified objeaives of management with 
regard to the production of a continuous fl.ow of desu-ed forest products wid 
se1Yices without undue reduction in its inherent values mid future productivity 
and without wufue undesirable effects on the physical and social environ­
ment'' (International Tropical Timber Organization (!TIO), 2006, p. 12). 

SFM represents a compromise between different values, as defined 
by various interest groups (Lewark, 2022) and can help slow forest 
degradation (Knoke, 2016). However, social, economic, and ecological 
sustainability often conflict (Lewark, 2022), and management decisions 
cannot rely solely on objective measures such as forest structural 
complexity (Ehbrecht et al., 2017; Hepner et al., 2025). Effective man­
agement must also consider the perceptions of forest users, which may 
diverge from measured conditions and vary across social groups 
(Meijaard et al., 2013; Taddese et al., 2020). 

By integrating multiple perspectives-social-ecological context, user 
perceptions, and objective indicators-SFM can be both ecologically 
sound and socially legitimate (Colfer, 2005; Reed, 2008). This paper 
thus provides insights for SFM by comparing pressure on forests with 
perceived and measured forest degradation. We examine seven forest 
patches in the agricultural landscapes of Togo, Benin, Nigeria, and 
Cameroon, a poorly studied region with diverse social-ecological con­
ditions, including both sacred and non-sacred sites. We pose the 
following research questions and hypotheses: 

1. To what extent do forest use patterns differ across forests with 
varying socio-cultural, economic, and ecological contexts? 
• H: Forest use is expected to be dominated by the collection ofnon­

timber forest products across all sites, with minor differences 
possibly linked to observable site characteristics, such as gover­
nance rules (e.g., sacred forests) or ecological conditions (e.g., 
swamp vs. semi-deciduous forests). 

2. How do perceptions of forest use impacts differ across sites with 
varying socio-cultural, economic, and ecological contexts? 
• H: Logging and fire are expected to be widely perceived as 

degrading forests across sites, while perceptions of other activities 
(e.g., agriculture, charcoal production, NTFP collection) are ex~ 
pected to show greater variability depending on measurable or 
describable contextual factors, such as forest type, local re­
strictions, or community norms. 

3. How are pressure on forests and perceived and measured forest 
degradation interrelated? 
• H: Forests under greater pressure of use (e.g., logging, hunting, 

weak governance) are expected to show higher measured degra­
dation. These pressures are also likely to shape local perceptions, 
such that observable degradation corresponds with community 
perceptions. 

2. Methods 

2.1. Study site 

2.1.1. Ecological characterization of forests 
We selected seven forest patches in Togo, Benin, Nigeria, and 

Cameroon, in the two biomes of the 'Tropical and Subtropical Grass­
lands, Savannas, Shrublands', and the 'Moist Broadleaf Forests' (Fig. 1; 
Dinerstein et al., 2017; see Table Al for details). These sites include 
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Fig. 1. Forest management practices of seven forest patches were studied in the Tropical & Subtropical Grasslands, Savannas & Shrublands (light green) and the 
Tropical & Subtropical Moist Broadleaf Forests (dark green) of Togo, Benin, Nigeria, and CameroonJ in Africa (marked grey in the inset map). 1. Koui, 2. Ewe­
Adakplame, 3. Hlanzoun, 4. Iko, 5. Ikot, 6. Mbangassina, 7. Ngam-Kondomeyos. 

semi-deciduous forests (1. Koui and 2. Ewe-Adakplame, also known as 
Kouvizoun sacred forest Adakplame-Ewe), swamp forests (3. I-Ilanzoun, 
also known as Lokoli, and 5. Ikot), and moist forests (4. Iko, 6. Mban­
gassina, and 7. Ngam-Kondomeyos), ranging from 20 to 1160 ha. Pre­
cipitation varies between 1000 and 1300 mm in Koui, Ewe-Adakplame, 
and Hlanzoun, and from 1500 to 3000 mm in Iko, Ikot, Mbangassina, 
and Ngam-Kondomeyos, with annual temperatures averaging between 
23 and 28 °c (Hijmans et al., 2005). Common tree families in these 
forests include Moraceae (e.g., Trerulia afri.runa), Fabaceae (e.g., Gil­
bertiodendron dewevrei), and Myristicaceae (e.g., Pycnanthus angolensis). 
The selected forests build on previous studies (Hepner et al., 2025; 
Wingate et al., 2022, 2023, 2024), contributing to a more comprehen­
sive understanding of Western African forest patches. 

2.1. 2. Socio-economic characterization of forest communities 
Most people living in the areas surrounding these forests earn less 

than $1 per day, have limited formal education, and rely on forest re­
sources such as timber, fuelwood, bushmeat, and medicinal plants (Food 
and Agriculture Organization of the United Nations (FAO) & United 
Nations Environment Programme (UNEP), 2020; Neuenschwander 
et al., 2015). Based on the Relative Wealth Index (Chi et al., 2022), these 
communities are economically modest, ranging from -0.6 in Mbangas­
sina to 0.3 in Ikot. While this does not indicate extreme poverty (-1), it is 
typical for low- and middle-income countries and affects daily life: 
residents may have limited access to household assets, reliable elec­
tricity, transportation, clean water, sanitation, and waste management 
(Chi et al., 2022; Rutstein and Johnson, 2004). 

These socio-economic conditions contribute to a high pressure on 
forests, which is further amplified by (i) rapid population growth 
(United Nations, Department of Economic and Social Affairs (UNDESA), 
Population Division, 2022), (ii) economic inequalities (Goers et al., 
2012), (iii) widespread corruption in governance structures (Ighodaro 
and Igbinedion, 2020), and (iv) insecure land temrre, poor mapping and 
documentation of land uses, and resulting land disputes (Ewane et al., 
2015; Kouassi et al., 2022). Consequently, sustainable forest manage­
ment is rarely prioritized. 

Forest governance and ownership vary across sites, and we differ­
entiate four types based on rules of access and use (Mineah et al., in 
prep.). These rules define who can enter the forest and what activities 
are permitted within it, both of which strongly influence degradation 

dynamics. 

Type 1 corresponds to forests where both access and use are 
completely prohibited due to sacredness, as in Kaui. Women are not 
allowed to enter at all, and only initiated men may enter on explicit 
invitation to perform religious rituals; otherwise, no one enters or 
uses the forest. 
Type 2 represents partially sacred forests, where some areas are 
restricted (completely protected) and others are accessible for 
limited use. On certain days, no one may enter the forest, but for 
most of the year, men and women, including non-initiated in­
dividuals, can access non-sacred parts, while sacred sections remain 
strictly protected (e.g., Ewe-Adakplame, Hlanzoun). 
Type 3 encompasses family-managed forests, where access and use 
are controlled by individual family lineages. Only family members 
can enter and manage their plots according to lineage-specific rules 
(e.g., Ikot, Mbangassina). 
Type 4 corresponds to community-managed forests, which are 
generally the most accessible: members of the local community are 
allowed to enter and use forest resources according to communal 
rules (e.g., lko, Ngam-Kondomeyos). 

In practice, these classifications are not absolute: not all users comply 
fully with customary rules, and governance arrangements may change 
over time. Ownership disputes are rare, occurring only in Ewe­
Adakplame, where they indirectly weaken compliance with access and 
use regulations as belief systems evolve. Day-to-day governance and 
enforcement largely depend on local institutions, customary arrange­
ments, and their interplay with formal government structures. 

Most people in these communities work in agriculture, which con­
stitutes the dominant land use surrounding these forest patches, along 
with croplands and agroforestry systems. These land-use patterns 
interact with forest governance: sacred and community-managed forests 
tend to have stricter rules on clearing or logging (Kassi et al., 2021), 
whereas family-owned forests may experience more variable land-use 
pressure depending on family practices (see also Nath et al., 2018). 
Despite the lack of strong formal protection, these forest patches have 
persisted since at least 1975, surrounded by croplands, agroforestry, and 
wetlands (Hansen et al., 2013; Wingate et al., 2022). 
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2.2. Data collection 

Between September 2022 and March 2023, we conducted a house­
hold survey with 1956 randomly selected households in 22 villages near 
the seven forests in Togo, Benin, Nigeria, and Cameroon, based on 
Cochran's sample size for an unknown population size ( Cochran, 1977). 
From this sample, 328 individuals (15 %) reported that they regularly 
use the forest and are familiar with its current condition. We therefore 
administered our questionnaire to these respondents (see Supplemen­
tary Information for the questionnaire). 

Surveys were carried out by members of our research team, sup­
ported by assistants from local universities and forest ministries, using 
the software EpicollectS (Aanensen et al., 2009). Interviews were con­
ducted in local languages and later translated into English. Questions 
were typically posed in a closed-ended format with predefined answer 
options, followed by open-ended prompts that allowed respondents to 

elaborate freely (Table 1). To ensure clarity, the concept of forest 
degradation was translated into practical interview questions (e.g., 
disappearance of tree species) and distinguished from deforestation, 
which was assessed through questions on forest area or canopy cover 
change. All respondents were informed about the purpose of the survey 
and gave their consent to participate. 

The final sample of 328 respondents represented 17 ethnic groups, 
with up to six ethnic groups per forest (Table 2). Age ranged from 20 to 
65 years, with most interviewees being over 40 and having lived near 
the forests for more than a decade (Figs. Al and A2). Only 9 % of re­
spondents were women, reflecting local norms where men typically 
speak for the household. Most respondents reported subsistence uses of 
forest resources (fuelwood, wild foods, medicinal plants), while some 
also mentioned commercial activities such as bushmeat and timber 
sales. 

Table 1 
Examples from the questionnaire with alternating closed-ended and open 
questions. Closed-ended questions offered predefined answers (shaded grey), 
while open questions allowed free elaboration (white background). Questions 
1-4 focus on forest degradation (e.g., impacts oflogging, species disappearance), 
while questions 5-6 address deforestation (forest area change). The question­
naire is available as supplementary information. 

1. What is the impact of logging on forest 
integrity? 

2. ExP,ain the impact of logging 

3. Do you know any tree species that 

Amwers 

• Strong negative impact 
• Low negative imi=ect 
• No impact 
• Low positive impact 
• Strong positive impact 

• E.g._. I ess trees 
• E.g._. hotter temperatures 
• E.g._. it is forbidden to log trees 
• E.g., the forest becomes more open 

disappeared? • Yes 
• No 

4. Which tree species disa~ared? 
• E.g._. Mahogany 
• E.g._. lroko 

5. Did the forest area change in the last 10 
years? • Yes, it increased 

• Yes, it decreased 
• No, it did not change 

6. Ex(l.ain your anS'\Ver about the forest area 
change in the last 10 years. • E.g., Forest area changed due to 

logging: and farming. 
• E.g. The forest boundaries remain 

the same. 
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2.3. Data ana(ysis 

All interview data were cleaned in Microsoft Excel (Microsoft Cor­
poration, 2024) and analyzed using R (R Core Team, 2024). Given the 
varying number of interviews per forest, we primarily worked with 
relative values. 

2.3.1. Pressure onforests 
Population pressure on finite resources is a key contextual factor for 

quantifying pressure on forests (Francesconi et al., 2022). To capture 
this, we developed a composite indicator of forest pressure for each site 
based on the following equation and suited to isolated and formally 
unprotected forest patches: 

Pressure on forests = Tso *Pop+ Frag * Users+ Gov* Harm ( 1) 

where: 

• Isa (isolation)= ratio afforest to non-forest area within a 10 km 
buffer surrounding each forest (Hepner et al., 2025), describing 
how isolated the forest patch is in the landscape. Forests with few 
surrounding trees are assumed to experience higher pressure 
(Table 3). 

• Pop (population density) = population living within 1 O km of the 
forest (Bondarenko et al., 2020) divided by forest area (ha), 
reflecting the local demand on forest resources. 

• Frag (fragmentation)= ratio afforest area within 100 m of the 
edge to total forest area (Fischer et al., 2021; Hepner et al., 2025), 
as edge areas are generally easier to access and exploit (Olupot and 
Chapman, 2006 ). 

• Users= population that regularly uses the forest divided by forest 
area (ha), based on household surveys in the corresponding com­
munities (Garekae et al., 2017; Jha et al., 2022; Pinheiro et al., 
2016; Sambrook et al., 1999). 

• Gov (governance) = one of four classes based on accessibility and 
user rules (Mintah et al., in prep.): 1 = prohibited access & sacred, 
2 = partial access & sacred, 3 = family-based management, 4 = 
community-based access. 

• Harm (harmful activities) = proportion of users engaged in 
potentially environmentally harmful activities (logging and 
hunting). 

The weights (]so, Frag, Gov) amplify or buffer human pressures. 
Higher Isa values indicate greater isolation, where forests are sur­
rounded by less tree cover and thus represent rarer, more sought-after 
resources in the landscape. Higher Frag values denote greater frag­
mentation, where a larger proportion of forest area lies close to edge­
s-zones that are more accessible, ecologically exposed, and often the 
first to be exploited (Olupot and Chapman, 2006). Gov represents access 
regulation, with lower values corresponding to restricted or sacred ac­
cess and higher values to more open, community-based use. Together, 
these factors modulate the strength of human pressure: isolation can 
concennate demand, fragmentation enhances accessibility, and gover­
nance determines the degree to which access is controlled or extraction 
permitted. 

The model follows an additive logic in which human pressure results 
from the combined influence of population density, user intensity, and 
harmful activities. Each of these factors is weighted multiplicatively by 
its corresponding modifier (Tso, Frag. Gov) to reflect that the impact of 
human presence depends on ecological and institutional context. 
Multiplication can yield zero values after min-max normalization, 
which is acceptable and meaningful, as it represents minimal pressure 
under favorable conditions (e.g., low population or restricted access and 
use). 

We explored alternative weighting schemes to check the robustness 
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Table 2 
Respondents' characteristics for each studied forest community, 

Forest Respondents interviewed (n) Villages interviewed (n) Ethnicities interviewed (n) Males: females interviewed ( %) 

Koui 
Ewe-Adakp.ame 
Hlanz.oun 
Iko 
Ikot 
Mbaogassina 
Ngam-Kondomeyos 

11 
35 
176 

80 
14 

of results. The chosen configuration, with !so and Fragranging from O to 
1 and Gov from 1 to 4, was retained as it provided realistic gradients of 
pressure and reflects the mediating role of governance in how social and 
ecological factors translate into actual forest use. Empirical evidence 
shows that governance, while operating through diverse pathways and 
impacts, often weighs more heavily on forest outcomes than de­
mographic or biophysical drivers, through its effects on enforcement, 
tenure, and institutional capacity (Fischer et al., 2020; Nolte et al., 
2013). The higher weighting assigned to harmful users 0-4) acknowl­
edges their disproportionately direct impact on forest integrity 
compared to broader population presence or general forest users. 

To ensure comparability across forests and reduce the influence of 
differences in scale and units, we applied a min-max normalization 
(range 0-1) to the Pop, Users, and Hann variables before applying the 
equation (Table 4). The equation builds on similar approaches inte­
grating demographic and spatial data with insights from household in­
terviews (Garekae et al., 2017; Jha et al., 2022; Pinheiro et al., 2016; 
Sambrook et al., 1999). Iso was exrracted in Google Earth Engine 
(Gorelick et al., 2017) within a 10 km buffer around each forest, chosen 
as a reasonable walking distance for carrying forest products. Population 
within 10 km of each forest was derived from spatially explicit census 
data (Bondarenko et al., 2020) in QGIS (QGIS Development Team, 
2023). Forest areas were delineated from forest/non-forest classifica­
tions of satellite imagery (Hepner et al., 2025). Variables for regular 
forest users and harmful activities (logging and hunting) were informed 
by household surveys in corresponding communities. 

After calculating Eq. (1 ), we compared the resulting pressure values 
across the seven forests to facilitate site-level interpretation (Table 5). 
Finally, we assessed the relationship between forest pressure and both 
perceived and measured degradation using a Pearson correlation test (R 
Core Team, 2024). 

2.3.2. Determination of forest uses 
Respondents were individuals who regularly work in the forest. They 

were asked to report their main forest activities, including the collection 
of NTFPs, hunting, logging, fishing, religious practices, and other uses. 
Multiple activities could be selected. Activities considered illegal, such 
as charcoal production, were not asked about directly, but perceptions 
of their impacts were captured elsewhere in the survey. A heat map was 
then generated to visualize the distribution of activities across the 
different forest sites. 

2.3.3. Perceptions of forest use impacts and degradation 
Respondents were asked to classify the perceived impact of specific 

forest uses on forest integrity using five categories, ranging from 'strong 
negative' to 'strong positive' impact. The relative contributions of '1ow 
negative' and 'strong negative impact' to the whole spectrum were used 
to define 'perceived degradation'. To determine whether perceptions 
differed significantly across communities and users' main activities, we 
applied a G-test (Agresti, 2007), which is a likelihood-ratio test for 
categorical data assessing the independence of variables in contingency 
tables, implemented via the DescTools package (Signorell, 2025). In 
addition, respondents reported observed signs of degradation, for 
example the loss of certain species. 

2.3.4. Measured forest degradation 

100: 0 
100: 0 
71: 29 
93: 7 
95: 5 
85: 15 
1000 

Forest uses may impact forest integrity and contribute to measurable 
forest degradation. To define measured degradation, we relied on the 
difference between actual and reference stand structural complexity as 
presented in Hepner et al. (2025; Table A2). In that framework, forest 
degradation and fragmentation are related to structural complexity, 
with reference values derived from the potential structural complexity 
modeled by Ehbrecht et al. (2021). This model extrapolates structural 
attributes from primary forests and predicts the maximum stand struc­
tural complexity index (SSCI) achievable under the specific edaphocli­
matic conditions of a given location in the absence of human 
interference. The predictions are spatially explicit at 30 arcseconds 
( ~ 100 m) resolution, so that each forest patch in our study has its own 
reference value reflecting local potential conditions. 

This reference represents the most complex forest structure achiev­
able under current natural conditions without hmnan interference and 
thus serves as a benchmark for ecological integrity. Actual structural 
complexity was quantified using the SSCI, which captures the hetero­
geneity in the three-dimensional distribution of plant material based on 
terrestrial laser scans (Ehbrecht et al., 2017). 

Forest integrity and degradation are therefore expressed along a 
continuous range, represented by the difference between actual and 
reference SSCI values. Negative differences indicate structural simplifi­
cation relative to the potential reference-Le., degradation-while 
values closer to zero suggest higher integrity. For interpretative pur­
poses, we classify stands with substantially negative deviations as 
degraded and those within the expected reference range as intact. In this 
study, "intact forest" refers specifically to stands that are not structurally 
degraded relative to the modeled reference SSCI; it does not necessarily 
imply a pristine or old-growth state, nor does it encompass other 
ecological dimensions such as biodiversity or ecosystem functioning, 
which are beyond the scope of this analysis. 

3. Results 

3.1. Forest uses 

The seven forest patches are managed in non-indusrrial, predomi­
nantly manual ways, with minimal use of small machinery like chain­
saws. Most people collect non-timber forest products (NTFP, 50 %), 

while hunting (15 %) and logging (13 %) are also important activities 
(Fig. 2). Main activities did not differ significantly across forests. In the 
swamp forest of I-Oanzoun, fishing (26 %) is a key activity, while in the 
sacred forest ofKoui, eco-guardian duties ('Others', 67 %) and religious 
activities (33 %) are important. 

NTFP primarily include fuelwood, along with fruits and medicinal 
plants. The "Others" category includes mainly agricultural activities ( 46 
%), and to a minor degree, trading of forest products, and work as eco­
guard. Hunters mainly target mammals, such as small antelopes (e.g., 
Duiker: Cephalophus sp.) and rodents (e.g., rat: Thryonomys sp.), but also 
birds and snakes. 

While most people do not actively plant trees, roughly 30 % of re­
spondents plant trees (mainly in Ngam-Kondomeyos, Ewe-Adakplame, 
and Ikot). These respondents plant economically valuable species 
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Table 4 
Min-max normalization (0-1) was applied to allow comparison of socio­
ecological variables across different forest sites. 

Forest Pop: a/b: min-max Ui.ers: c/b: min- Harm: e/c: min-
normi:iized max normalized max nocmalized 

Koui 0.38 0.99 0.00 
Ewe- 0.30 0.21 0.89 

Adakpame 
Hlanzoun 0.10 0.22 0.42 
lko 0.00 1.00 0.35 
lkot 1.00 0.38 1.00 
Mbangassi na 0.23 0.50 0.35 
Ngam- 0.02 0.00 0.54 

Kondomeyoi. 

Table 5 
Weighted factors are summed up for the final indicator of forest pressure with a 
theoretical range of0 (minimal pressure) to 6 (maximal pressure). 

Forest li.o * Frag * Gov* Sum of indicators: forert 
Pop Ui.eri. Harm Jiesi.ure 

Koui 0.26 0.79 0.00 1.05 
Ewe-Adakp.ame 0.25 0.17 1.78 2.19 
Hlanzoun 0.08 0.11 0.84 1.03 
lko 0.00 0.33 1.41 1.74 
lkot 0.76 0.11 3.00 3.87 
Mbangassina 0.09 0.23 1.05 1.37 
Ngam- 0.00 0.00 2.18 2.18 

Kondomeyoi. 

Dominance of Main Activities by Forest 

NTFP 

Hunting 

b I eogg;,, 

i OtM~ • 

Ashing 

Religion 

Ptn::tntage ('%} 

• 
fofest 

Fig. 2. The heat map shows the seven forests on the x-axis and six different 
main activities on the y-axis. Multiple answers were allowed. Most forest users 
(n 328) collect non-timber forest products (NTFP) across all the forests, In the 
prohibited access, sacred forest of Kaui, Togo, logging, hunting, and fishing are 
forbidden. The respondents who ticked 'Others' explained that they work in 
agriculture, as traders of forest products, and as eco-guardians. In Iko, Mban­
gassina, and Ngam-Kondomeyos, religion was not mentioned as a forest activ­
ity. Main activities did not significantly differ across forests. 

outside of forests, such as palms for palm wine production (e.g., Raphia 
vinifera), fruit trees (e.g., lrvingia gabonensis), and timber trees (e.g., 
Tectonagrandis). Some also plant trees to mark land boundaries. 

3.2. Perception,s of forest use impacts wid signs of degradation 

Perceptions of forest use impacts differ significantly (p < 0.001) 
across forests. In total, two-thirds of the interviewees perceive logging 
(61 %) and fire (60 %) as having a srrong negative impact on the forests 
(Fig. 3). Agriculture (35 %) is also perceived negatively by about one­
third of respondents, while charcoal production, fuelwood exrraction, 
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Fig. 3. Respondents of seven forests (n = 328) were asked about their perception (five classes) of six different activities, which can impact and eventually degrade 
forests. Activities such as logging and fire are mostly perceived as having a negative impact (red, on top) on forests, as compared to fuelwood and NWFP collection 
(dark grey and green, below). Note that fire is not a forest use directly, but its practice facilitates other uses, such as logging, agriculture, and hunting. Communities 
on the left side of the x-axis (e.g., Kaui) frequently report strong negative impacts across forest uses as compared to those on the right side of the x-axis (e.g., Ikot). 
Perceived impacts of forest practices differ significantly across forests (p < 0.001). 

and NTFP collection are widely regarded as having little or no impact. In 

Kaui, two of three respondents perceive strong negative impacts from 

logging, fire, agriculture, and charcoal production. In Ewe-Adakplame, 

however, logging is mostly perceived as having only low to moderate 

negative impacts. In the two swamp forests of Hlanzoun and Ikot, most 

respondents do not perceive any of the uses as having strong negative 

effects. In Ikot, 42 % of respondents even consider agriculture to have a 

positive impact, reflecting the central role of farming in local 
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livelihoods. Perceptions of impacts do not differ significantly across 
respondents' main activities. 

Beyond these perceptions, respondents also reported concrete signs 
of degradation. Across all sites, the most cited indicators were the 
disappearance of large, old rrees (78 %), the loss of valuable timber 
species such as Milida excelsa, Khaya grandifolia, and Diospyros sp. (71 
%), and the disappearance of wildlife such as forest elephants (Lox­
od-Onta cyclotis), lions (Panthera leo), and chimpanzees (Pan 1rogloqytes) 

(78 %). These signs were reported by the majority in nearly every forest. 
Respondents frequently associated these changes with logging, farming, 
and hunting, noting that timber and bushmeat have become harder to 
access and more costly. 

Some signs of degradation were site-specific. In the Cameroonian 
forests ofNgam-Kondomeyos (89 %) and Mbangassina (64 %), invasive 
plants were a notable concern, whereas they were hardly mentioned 
elsewhere. Insect decline was reported by fewer respondents overall (26 
%), but was pronounced in Koui (66 %), :tvlbangassina (64 %), and 
Ngarn-Kondomeyos (50 %). 

In addition to signs of degradation, the loss of forest area was also 
mentioned. In Ewf-Adakplame and Ngam-Kondomeyos, all respondents 
(100 %) reported a decrease in forest area, while in Hlanzoun, only 29 % 
did so, with many perceiving no change (37 %) or even expansion (34 
%). In Ikot, some respondents likewise reported stability (16 %) or an 
increase (24 %). 

Taken together, communities most often perceive logging and fire as 
the most harmful uses, and report signs of forest degradation in the form 
of tree and animal losses, with variation across sites reflecting social­
ecological conditions such as livelihood reliance on agriculture, re­
strictions on forest use, and ecosystem type. 

3. 3. Pressure on forest.s and perceived and measured forest degradation 

The relationship between pressure on forests and perceived im­
pacts of forest uses shows no statistically significant correlation (Fig. 4). 
Descriptively, however, communities with high pressure, that is, large 
populations in relation to the forest area and many loggers and hunters, 
do not perceive their forest uses as degrading (e.g., Ikot swamp forest, 
Nigeria), whereas communities with lower pressure and stricter re­
strictions express greater concern about degradation (e.g., Kaui sacred 
forest, Togo). 

Trees, Forests and PeqJle 22 (2025) 101061 

When contrasting pressure and measured degradation on forests, 
there is a srrong, negative, and significant correlation (Fig. S). Most 
forests have low pressure and remain intact. However, Ewe-Adakplame 
and Ikot have a high pressure, with for example, more than 50 % of the 
forest users engaged in logging and hunting. In these two cases, forest 
srructure is significantly below its potential and therefore the two forests 
are considered as degraded. 

When conrrasting perceived and measured degradation, no 
consistent pattern emerges (Fig. 6). In some cases, perception aligns 
with measured degradation (e.g., Ewe-Adakplame), while in others it 
does not (e.g., Ikot., low perceived degradation but high measured 
degradation). 

Taken together, only pressure on forests and measured degradation 
correlate, while pairs involving perceived degradation do not. The three 
dimensions converge in some forests (e.g., Ewe-Adakplame) but diverge 
in others (e.g., Ikot, Kaui). These patterns suggest that., despite broad 
similarities in forest uses across sites, perceptions vary with socio­
economic conditions and local governance, influencing how commu­
nities recognize and report degradation. 

4. Discussion 

4.1. Forest uses and forest degradation 

Forest activities range from extractive uses, such as hunting and 
logging (Fig. 2), to conservation practices like the maintenance of sacred 
forests. As expected from our first hypothesis, the collection ofNTFPs is 
the most widely conducted activity among forest users, followed by 
hunting and logging. Despite socio-cultural (e.g., sacred vs. non-sacred), 
economic (e.g., low vs. intermediate wealth), and ecological (e.g., semi­
deciduous vs. moist forest) differences between the studied forest sites, 
the dominant activities of forest users do not differ significantly. Some 
forests (e.g., Ewe-Adakplame and Ikot) are located near cities, where 
communities have comparatively higher economic resources; these sites 
also show more logging and hunting, with consequences on measured 
forest degradation. Hunters provide communities with bushmeat 
(except in Koui), a vital protein source in rural Africa (Benjamin-Fink, 
2019), often tied to cultural values (Dounias and Ichikawa, 2017). 

Forest uses and management are shaped by (i) cultural habits (Fa 
et al., 2002; Van Vliet and Nasi, 2008), (ii) available technologies (Putz 

Perceived Degradation vs. Pressure 

'""' • 

20 

H\anzom • 
30 

'"' • 

.. 
Perceived Degradation 

r • -0.52, p • 0.23 

Mt>anlJftSlll;I 

50 00 

Fig. 4. Perceived degradation does not correlate with pressure on the forest. 
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Fig. 5. Strong, negative, and significant correlation between forest pressure and measured degradation. Pressure reflects the intensity of forest use, and measured 
degradation denotes the gap between observed and JX)tential forest structure, with lower (more negative) values indicating greater degradation. 
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Fig. 6. Perceived and measured forest degradation do not correlate. In the top left corner (e.g., Hlanzoun) and bottom right corner (e.g., Ewe-Adakplame), perceived 
and measured forest degradation match. However, in the bottom left corner (e.g., Ikot) and top right corner (e.g., Kaui), perceived and measured forest degradation 
do not match. 

et al., 2000), (iii) governance (Kishor and Belle, 2004; Zoysa and Inoue, 
2008), (iv) livelihood alternatives (Banerjee and Madhurima, 2013; De, 
2012), and (v) market dynamics (Lewark, 2022). Uses often overlap: 
charcoal production requires prior logging, fire facilitates logging, 
agrlCulture, and hw1ting. These overlapping uses have reciprocal 
ecological consequences: intensive logging can displace wildlife and 
reduce hunting success, while heavy hunting can deplete 
seed-dispersing animals, affecting future timber availability (Lewis 
et al., 2015). In Koui's sacred forest, religious practices prohibit 
extractive uses such as fishing, hunting, and logging. 

Although most people engage in extractive uses, only few actively 

10 

restore formerly forested areas by planting trees, mainly in Ngam­
Kondomeyos, Ew€:-Adakplame, and Ikot. Cultivating fruit trees can 
attract wildlife, promoting seed dispersal and indirectly supporting 
bushmeat hunting (Levis et al., 2018). Tree planting can decrease 
pressure on forests by providing nearby timber or fruits 
(Hermans-Neumann et al., 2016), but it requires secure land tenure 
(Shepherd et al., 1993), which is often contested (Kouassi et al., 2022). 
Forest use patterns can also change over time due to workforce migra­
tion (Lewark, 2022) or the introduction of new actors with greater 
financial power. For example, a Beninese forest has seen the introduc­
tion of honey production and ecotomism by an NGO (Gbedomon et al., 
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2016). 

4.2. Perceptions of forest use impacts and signs of degradation 

Perceptions of the impacts of forest uses differ across sites but not 
across respondents' main activities. Logging and fire are widely 
perceived as strongly degrading forests (about 60 % of respondents), 
reflecting shared environmental awareness, while perceptions of agri­
culture, charcoal production, and NTFP collection vary across sites, 
influenced by forest type, customary restrictions, and community 
norms. Although respondents' activities (e.g., eco-guardians, hunters, or 
NTFP collectors) did not significantly affect perceptions, it remains 
plausible that such roles shape awareness, as individuals more involved 
in forest protection may perceive threats differently. 

Respondents largely perceived forest area loss over recent years, 
partly due to fire, which is supported by remote sensing (Aleman et al., 
2017; Chuvieco et al., 2018; Hansen et al., 2013; Wingate et al., 2022, 
2024). However, forest decline is not limited to outright loss: forests are 
often degraded before they disappear completely, a process that may not 
be visible to outsiders or detectable from satellite imagery (Theaturu 
et al., 2025). For example, respondents reported little change in forest 
area in Hlanzoun between 2010 and 2020, whereas Biah et al. (2024) 
indicate that much of the intact forest has been degraded. The negative 
impacts of forest uses are also reflected in the disappearance oflarge, old 
trees, both in the sampled forests and in surrounding areas (Atindehou 
et al., 2022). Fewer large, old trees also contribute to a decline in forest 
structural complexity and aboveground biomass (Ali et al., 2019; Ali and 
Wang, 2021). 

Similarly, the absence of large animals can limit aboveground 
biomass, as many large-bodied vertebrates disperse large-seeded trees 
that store a substantial share of carbon; their loss can reduce forest 
carbon stocks by up to ~3 % (Chanthorn et al., 2019; Lewis et al., 2015). 
Our results suggest that most large animals have disappeared from all 
the sampled forests. Large animals and top predators are typically the 
first species to be displaced and extirpated as human populations grow 
(Chanthorn et al., 2019; Lewis et al., 2015). Large-bodied animals often 
cause economic losses by feeding on crops or attacking humans and 
livestock, which may explain why some of the intetviewed individuals 
express relief at their absence. Human-wildlife conflicts are common in 
different parts of Africa, particularly where human populations and 
corresponding land use expand (Benjamin-Fink, 2019). 

Invasive plant species do not appear to be a major concern across the 
sampled forests. It is possible that people have become accustomed to 
invasive species or even utilize them for their beneficial attributes (e.g., 
Chromolaena odorata for medicinal use, Omokhua et al., 2016), and 
therefore do not perceive them as symptoms of forest degradation. Still, 
in Cameroon, more than 60 % of respondents considered invasive planrs 
problematic (e.g., Osteospennum sp.). Whether an invasive species is 
perceived as delaying forest recovery or, conversely, as providing 
agronomic or medicinal benefits is largely a matter of perspective and 
context (Juru et al., 2024; Omokhua et al., 2016; Tchiengue et al., 2013). 

Although the global decline of insect populations is a recognized 
threat (Wagner et al., 2021) and deforestation is a well-established 
driver of insect decline (Wagner, 2019), only a minority of re­
spondents in our case study sites reported declines in insect populations. 
Interestingly, insect decline was noted in Kaui (the best-protected forest 
in our sample) and in Mbangassina and Ngam-Kondomeyos, which 
correspond to the most connected forests, highlighting the need for 
further research and potentially reflecting differences in the environ­
mental awareness and observations of respondents. In Western Africa, 
specific instances of insect decline have been documented (Dendi et al., 
2023; Olatoye et al., 2024), but data remain sparse (Wagner, 2019), and 
more work is needed to disentangle the interactions between defores­
tation and degradation in shaping insect populations. By conrrast, in 
Zimbabwe, climate change has promoted insect outbreaks that damaged 
forest trees (Mataruse et al., 2023). Other tree diseases were not 
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perceived as a significant issue in the sampled forests, possibly due to 
their high species diversity (Bosu et al., 2019). 

4.3. PresslD'e on forests and perceived and measured forest degradation 

Although forest uses are similar across sites, perceptions of their 
impacts differ. A negative tendency-though not statistically sig­
nificant-exisrs between pressure (population density and proportion 
engaged in logging and hunting) and perceived degradation. This 
indicates that intensive forest use is not always recognized as harmful, 
leading us to reject parrs of the third hypothesis. Differing value prior­
ities likely explain these patterns: in Kaui (Togo), sacred forests foster 
relational values that outweigh utilitarian considerations (Themezie 
et al., 2021), whereas in Ikot (Nigeria), instrumental values dominate, 
allowing intensive use without perceived degradation (Themezie et al., 
2021, 2022). 

Such mismatches can create feedback loops. In high-use sites like 
Ikot, resource depletion can increase value and drive further exploita­
tion. In restricted forests like Kaui, spiritual and ecosystem services 
reinforce traditional conservation practices. Cognitive and social 
mechanisms, including shifting baseline syndrome 
(Fern.indez-Llamazares et al., 2015), cognitive dissonance (balancing 
the belief that the forest is well-protected with awareness of harmful 
practices; Hannon-Jones &Mills (2019)), and cultural and institutional 
reinforcement (Kasperson et al., 1988; Renn, 2011), further shape local 
perceptions of degradation. 

Measured degradation largely aligns with pressure and gover­
nance contexts. In Ewe-Adakplame and Ikot, high pressure coincides 
with advanced degradation, whereas Hlanzoun and Koui maintain 
higher integrity due to restricted access, and Ngam-Kondomeyos and 
Mbangassina benefit from large forest areas and resource availability 
outside forests. Disputes over land tenure and local conflicts can exac­
erbate pressure, as seen in Ewe-Adakplame, where forest loss is accepted 
for more profitable land use (cf. Hasanah et al., 2019). 

Governance is context-dependent. What effectively preserves forests 
in one site (e.g., strict sacred-forest rules in Kaui) may not work else­
where. Under high pressure, governance levels can erode gradual­
ly-restricted regimes can shift toward more open access (2 ➔ 4 in Ewe­
Adakplame; 3 ➔ 4 in Ikot)-whereas strengthening governance, such as 
re-sacralization or tighter restrictions, is considerably more difficult, 
particularly with the spread of Christianity and Islam (Alohou et al., 
2017; Mintah et al., 2024; Neuenschwander and Adomou, 2017). 
Together, these results emphasize that forest condition emerges from a 
complex interplay of ecological conditions, human pressure, gover­
nance, landscape context, and local perceptions, rather than from single 
factors, even though wealth disparities may modulate pressure (higher 
relative wealth index in Ewe-Adakplame and Ikot; Chi et al., (2022)). 

The relationship between perceived and measured forest degra­
dation differs across sites. While in Ewe-Adakplame, perceived and 
measured degradation coincide, in Ikot and Kaui, perception and 
measured forest degradation do not consistently align. These patterns 
underscore the importance of integrating local perceptions with 
ecological measurements to fully understand forest change in its social­
ecological context. While we explored the relationships between pres­
sure on forests and perceived and measured forest degradation, no 
srrong correlations or clear patterns emerged, likely due to the limited 
sample size and the inherent complexity of social-ecological dynamics. 

4.4. Implications for sustainable forest mwwgement 

Forest degradation is a complex, wicked problem with no one-size­
fits-all solution that simultaneously enables livelihoods and conserves 
forests (Nikolakis and Innes, 2020; Pouliot et al., 2012). Strong tradi­
tional management systems, such as sacred foresrs, can promote con­
setvation, foster personal responsibility, enhance environmental 
lmowledge, and reduce careless behaviors (Kingbo et al., 2022; 
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Maleknia et al., 2024). 
Respondents highlighted the need for forest guards and stronger 

institutions to facilitate landscape and land-use planning (cf. Intergov­
ernmental Science-Policy Platform on Biodiversity and Ecosystem Ser­
vices (IPBES), 2018; Lewis et al., 2015) and coordinate reforestation 
(Kouassi et al, 2021), though corruption can undermine these efforts 
(Ighodaro and Igbinedion, 2020). Region-specific socio-bioeconomies 
supporting sustainable livelihoods are essential (Garrett et al., 2024). 
For instanc~ honey production and ecotourism can generate income 
without immediate forest degradation (Gbedomon et al., 2016) and 
biodiversity or carbon credits could be explored for Western African 
forests (Jones, 2024). 

Critically, local perceptions of degradation are central for effective 
SFM. Both Ikot and Ewe-Adakplame experience high human pressure 
and show signs of degradation, yet only Ewe-Adakplame respondents 
perceive this as such. This divergence illustrates that governance and 
conservation effectiveness depend not only on ecological conditions but 
also on how local users recognize and interpret forest change. Without 
such recognition, attempts to halt degradation and deforestation are 
unlikely to succeed. 

4.5. Limitations 

The extensive number of household interviews (n = 1956) represents 
approximately 3 % of the population living within 10 km of the seven 
studied forest patches (around 580,000 people, Bondarenko et al., 
2020). Of all the interviewed people, roughly 15 % (n = 328) answered 
specific questions related to forest management practices and ecology, 
indicating that they frequently enter the forest and understand its dy­
namics. While we are confident that these numbers provide represen­
tative insights (margin of error ±5 % at 95 % confidence interval, Eq. 
(2)), 91 % of our interviewees were male, reflecting local norms where 
men are considered household heads. As forest tasks are often 
gender-specific (e.g., firewood collection by women; Lewark, 2022; 
Sinasson et al., 2017), some responses may reflect household-level 
perspectives rather than individual experiences. 

We conducted the surveys once in each village during the dry season. 
Responses might differ if the same questions were asked in another 
spatial and temporal setting (Rietbergen, 1993). Prior to the surveys, we 
carefully reviewed question wording with local scholars experienced in 
fieldwork. Nevertheless, some questions may have been phrased in ways 
unfamiliar to interviewees, potentially causing misunderstandings. In­
teiviews are inherently subjective, and responses-particularly 
regarding individual perceptions---may depend on socio-economic and 
political circumstances, as well as the specific benefits respondents 
derive from the forests. Sensitive or illegal practices such as charcoal 
production were not asked about directly, as these would likely have 
been underreported, and our insights on this activity therefore remain 
indirect. However, no obvious outliers were found during data cleaning. 
Increasing the number of studied forests could provide more robust 
statistical insights and reveal additional nuances between different 
forest archetypes (Wingate et al., 2023). 

5. Conclusion 

Across all forests, the use of non-timber forest products pre­
dominates, confirming that livelihoods are closely tied to forest re­
sources despite ecological and cultural differences. Perceptions of forest 
use impacts converge on logging and fire as the main drivers of degra­
dation, but their intensity and direction vary with local governance and 
livelihood dependence. The expected alignment between pressure, 
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perceived, and measured degradation is only partial: while physical 
degradation corresponds to higher use pressure, it does not necessarily 
match local perceptions. This divergence reflects how social-ecological 
contexts and shifting baselines shape people's understanding of forest 
change. 

Integrating these three dimensions reveals that forest degradation is 
not solely an ecological process but also a social one, mediated by access, 
norms, and governance. Sustainable management therefore, requires 
coupling biophysical assessments of degradation with the social di­
mensions of forest use and perception. Strengthening locally embedded 
governance systems---such as sacred forest protection-alongside 
context-specific livelihood strategies offers pathways to balance forest 
conservation and human well-being. 
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Annex 

Figs. Al, A2, Tables Al, A2. 
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Fig. Al. The age of respondents (n 328) spans the whole society from 20 to over 65 years old. 
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Fig. A2. Most resp::indents (n = 328) have spent more than 10 year..-living close to their respective forest. 

Table Al 
Characteristics of the seven forests patches studied in Togo, Benin, Nigeria, and Cameroon (I lcpncr ct al., 2025). Soil type is based on International Union of Soil 
Sciences (IUSS) Working Group World Reference Base for Soil Resources (WRB) (2015). 

C.Ountry Forest name Coordinates (WGS 84, Latitude 
/ Longitude) 

Togo Koui 0°43'12"/8°15'36" 

Benin EwC-AdakplamC (aJso known as Kouvizoun 2" 34' 12" /7~ 28' 12• 
sacred forest Adakplanle-Ewe) 
tllanzoon (also known as Lokoli) -r 15'36" ;r 3'36• 

Nigeria Iko 8° 15' o· / 5° 35' 24~ 

Iko< r 53' 21• 14' 3</ 36' 

Cameroon Mbangassina 11"' 35' 24" / 4° 38' 24" 
Ngam-Kondomeyos 11' 4</ 48' / 3' t 24' 

TableA2 

Vegetation type 

Moist semi-
deciduous foresc 
Moist semi-
deciduous forest 
Swamp forest 

Moist forest 
Swamp forest 

Moist forest 
Moist forest 

Soil Surrounding landcover 

Aaisol Settlement /Agriculture/ 
Savanna 

Acrisol / Lixisol Settlement /Agriculture/ 
Savanna 

Aaisol / Gleysol / Settlements/ Agriculture/ 
Uxisol Wetlands 
Aaisol Agriculture/ Agroforestry 
Aaisol / Cambisol / Settlement /Agriculture/ 
._,uvisol Water 
Ferralsol Agriculture/ Agroforestry 
Ferralsol Wetlands/ Agroforesl'ry 

Ecological data describing the studied forest patches from llcpncr ct al. (2025). Forest structure is considered degraded in EwC--AdakplamC and lkot, since the actual 
stn1ctural complexity is significantly (0 *) below its potential 

Forest 

Koui 
Ewc-Adakplamc 
Hlan1.oun 
Iko 
Ikot 
Mbangassina 
Ngain-

Kondomeyos 

Actual stand strucmral complexity 
index 

5.3 (±0.5) 
4 (±).2) 
5.6(±0.8) 
6.5(±0.9) 
6.2 (±1) 
5.8(±0.5) 
6.4(±0.4) 

Reference stand struct"Ural 
complexity 

5.4 
5.3 
5.2 
6.8 
7.9 
5.8 
6.2 

14 

Forest sl.'ructural integrity (actual • reference Tol.'al Tree Species 
00) Ridmess 

42 

~~- M 
0.4 30 
-0.3 143 ~,- . 

129 
0.2 194 
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Data availability 

Data will be made available on request. 
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