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Abstract

The theoretical uncertainty of the anomalous magnetic moment of the muon Standard Model (SM) pre-
diction, aµ, is dominated by hadronic inputs, more precisely by the hadronic vacuum polarization (HVP)
contribution. The increased tension between the e+e− → π+π− measurements as well as the discrep-
ancy between the data–driven approach and the lattice QCD result requires further investigation. On one
side, a model independent approach for the isospin–breaking (IB) effects in the ππ–scattering amplitude
can help clarifying the current situation. In this work, we derive the modifications to the Roy equations
for ππ–scattering due to the charged–neutral pion mass difference, which is a first step towards a full
dispersive calculation of the radiative corrections for the process e+e− → π+π−. On the other side, the
hadronic τ decay, τ → ππ0ντ , provides an independent way to compute the HVP contribution to aµ.
Here we will present a dispersive approach to the evaluation of the IB corrections relating τ → ππ0ντ to
e+e− → π+π−, with a focus on the long–range corrections usually denoted by GEM(s).
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a predictive theory describing three of the four known
fundamental forces, i.e., electromagnetic, weak and strong interactions. This theory is one of the most
impressive successes achieved in science throughout the second half of the twentieth century and it has
been experimentally confirmed by the physics community as the theory of particles physics which best
describes a multitude of experiments, which have thoroughly tested it.

The muon anomalous magnetic moment, aµ or muon g − 2, is one of the most precisely measured
quantities in particle physics and allows one to test Quantum Field Theory (QFT) in depth and with
great accuracy. With its electromagnetic, weak and strong interaction contributions, the theoretical pre-
diction of the anomalous magnetic moment of the muon is a very difficult quantity to compute. The
comparison between the theoretical and experimental results of the muon g − 2 sets severe limits on
the deviations from standard theory of elementary particles, the Standard Model, and, at the same time,
plays an important role to test physics Beyond the Standard Model (BSM). Indeed the current situation
regarding the measurement and the SM prediction of aµ is one of the most intriguing hints of new physics
beyond the SM.

On the experimental side, before April 2021, the experimental value was the one obtained at the E821
experiment at the Brookhaven National Laboratory (BNL). The discrepancy with the theoretical SM
result was 3.7 σ [4–7]. In April 2021, the new experimental result of the Muon g − 2 experiment at
Fermilab (FNAL) confirmed the BNL value, bringing the combined BNL+FNAL difference between
the experimental and SM result to [8, 9]

aexp
µ − aSM

µ = 251(59) × 10−11 , (1.1)

with a significance of 4.2 σ, if the leading hadronic contribution is computed via the dispersive method,
i.e., the so called data–driven approach. This difference increased up to 5.1 σ when the new result from
FNAL (Run 2+3) was presented in 2023 [10]. However, this discrepancy is reduced if the first BMW
collaboration lattice QCD result [11] or the one obtained with the standard method but with the CMD–3
e+e− → hadrons data [12] are employed. In June 2025, both the FNAL final experimental result [13]
and the theoretical one [14] were released, leading to a considerable decrease of the discrepancy between
the two values.

aexp
µ − aSM

µ = 38(63) × 10−11 , (1.2)

1



2 Chapter 1. Introduction

where the very precise final experimental result reads

aexp
µ = 116 592 071.5(14.5) × 10−11 (124 ppb) . (1.3)

However, the theoretical result released in the 2025 White Paper (WP25) [14] is obtained from the ex-
clusive use of the new, published leading–order hadronic vacuum polarization estimates based on lattice
QCD calculations. The data–driven estimate based on experimental e+e− → hadrons cross–section
measurements was not included due to the increased tension among the experimental inputs [12, 14]. In
addition, a completely new low–energy approach to measure the muon g − 2 is being developed by the
E34 collaboration at J–PARC [15–17].

On the theory side, the long–standing discrepancy between the experimental measurement of aµ and
the data–driven SM prediction of the muon anomalous magnetic moment (before 2025) has kept the
hadronic corrections under close scrutiny for several years, since this hadronic uncertainty dominates that
of the SM value. In the data driven approach, the leading–order hadronic contribution to the muon
g − 2, aHLO

µ , is usually computed via a dispersion integral using hadronic production cross sections in
electron–positron annihilation at low energy. One of the main obstacles to reduce the error of the hadronic
contribution to aµ is the discrepancy between the experimental extractions of the pion vector form factor
from the cross section of the reaction e+e− → π+π− by using the initial state radiation (ISR) method
(BaBar, KLOE and BESIII) or the energy–scan approach (SND, CMD–2, CMD–3). In particular, the
systematic error of the hadronic vacuum polarization (HVP) contribution to the magnetic moment of the
muon, aHVP

µ , includes a non–negligible effect due to the tension between the high precision experiments
BaBar and KLOE. In this scenario, since 2022, we can add the discrepancy between KLOE/BaBar
and CMD–3 [12] measurements. At the current level of precision, a deep investigation of radiative cor-
rections for the process e+e− → π+π− [18–20], which are implemented in Monte–Carlo generators
used in the experimental analyses, is required. Without going into details here, there are three main ap-
proaches used to compute these corrections: scalar QED supplemented by the pion VFF wherever pos-
sible (F×sQED) [21], generalized vector meson dominance (GVMD) [22] and dispersive approach [23].
While the first two approaches rely on models, the model–independent dispersive approach put the com-
putation of the radiative corrections to e+e− → π+π− on a more solid ground.
An alternative theoretical result for aHLO

µ comes from lattice QCD computations which, however, shows
tensions with the data–driven one. The differences between these two theoretical results as well as the
ones among the different experiments for the e+e− → hadrons cross section measurement, deserve fur-
ther investigation.

On one side, in view of a better understanding of the e+e− → π+π− cross section, in particular given
the recent increased tension among the experimental measurements, an investigation of the ππ–scattering
amplitude, and of its isospin–breaking (IB) effects, is necessary. The two processes are related due to the
Watson theorem, which guarantees that the e+e− → π+π− and the ππ → ππ scatterings are described
by the same phase, once the amplitudes are written in a partial waves expansion and if we consider only
ππ intermediate states. Moreover, the understanding of the ππ–scattering process is necessary since, for
a comprehensive description of the e+e− → π+π− experimental cross section, rescattering effects are
important and need to be included. The ππ–scattering amplitude is understood at a remarkable level of
accuracy, particularly at low energy and in the isospin limit [24–28]. Experimental measurements have
provided, on the one hand, necessary input to theoretical calculations [29] and, on the other, have con-
firmed the predictions for the S–wave scattering lengths [30–33] to the same level of precision. Whenever
experimental data are used, as input or for comparison with theoretical calculations done in the isospin
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limit, it becomes necessary to remove isospin–breaking effects from the data. The effects that need to
be considered are: the emission of real and virtual photons, the up–down quark mass difference and
the charged–neutral pion mass difference. These effects can be investigated with a reliable and model–
independent approach in the region below 1 GeV. The approach is that of dispersion relations, but with an
approximation: intermediate states only up to two pions are considered while the contribution to isospin–
breaking effects of three or more pions or heavier states (KK̄, ηη, etc.) with or without photons is simply
neglected. In fact, the ππ intermediate state represent the main channel and the isospin–breaking effects
result already in a small correction to the scattering amplitude, meaning that the contribution of higher
order states would be further suppressed. The main motivation for this analysis is to provide input for a
dispersive treatment of the same isospin–breaking effects for the vector form factor of the pion, an essen-
tial input for the calculation of the hadronic vacuum polarization contribution to the muon g−2. Dealing
with isospin–breaking effects in this reaction, especially of final–state radiation, has so far been based on
models, in particular on scalar QED, with form factor effects taken into account in an ad hoc manner.
A dispersive approach can do better and provides a model–independent estimate of these effects, but
requires the ππ–scattering amplitude, including isospin–breaking effects, as input. In this work, as a first
step towards a full dispersive calculation of the radiative corrections for the e+e− → π+π− process, we
will analyze the effects due to the charged–neutral pion mass difference in the dispersive analysis of the
ππ scattering amplitude.

On the other side, the current problematic theoretical situation, i.e., the tension among the different
e+e− → π+π− measurements and the discrepancy between the data–driven and the lattice QCD esti-
mates for the muon g − 2, requires new and more precise computation, both from an experimental and
theoretical point of view. In this sense, the study of the τ decay provides an alternative and independent
way to compute this observable, since an analysis of the isospin–breaking corrections to this process in a
model independent way offers a completely new estimate of the e+e− → π+π− cross section, and, ulti-
mately, the muon anomalous magnetic moment, which can help in clarifying the current situation. In fact,
a conserved–vector–current (CVC) relation between electromagnetic and weak form factors allows to re-
late the differential decay rate for the process τ → ππ0ντ to the cross section σ(e+e− → π+π−) in the
isospin limit. In this work, a model–independent dispersive approach to the computations of the isospin–
breaking effects in the τ → ππ0ντ decay, at O(e2p2) in the chiral power counting, is presented, i.e., with
virtual and real photons included. In particular, results for the long–range corrections to the hadronic
τ–decay, usually denoted by GEM(s), will be presented. Up to now these effects were computed only
on a model–dependent basis [34–37]. Our model–independent approach set the understanding of these
isospin–breaking effects on a more solid ground.

The structure of this work is the following: chapter 2 reviews the QED, electroweak and hadronic
contributions to the anomalous magnetic moment of the muon, giving also an overview of the current
experimental and theoretical situation. The concepts of unitarity and analyticity which, coupled with
complex analysis, provide the central tools used in the calculations of this thesis, are introduced in chapter
3. Chapter 4 is a brief introduction to chiral perturbation theory. A detailed analysis of the properties of
the ππ–scattering amplitude and explicit representations used in this thesis work are given in chapter 5.
In chapters 6–8, the model–independent dispersive approach to the ππ–scattering is presented. We first
describe the formalism in the isospin–limit and then how this change once we consider isospin–breaking
effects. Then we explain how to solve Roy equations away from the isospin–limit and in Ch. 8, we show
the results. In chapter 10, we introduce the hadronic τ decay as an alternative computation of the muon
g − 2. In particular, we work out the analysis in the χPT formalism. In chapter 11, we describe our
dispersive analysis of the virtual contributions to the process τ− → π−π0ντ , while in chapter 12 we
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compute the real emission contributions. The results for the muon g − 2 estimate accounting for isospin
breaking effects in the hadronic τ decay are given in chapter 13. In chapter 14, conclusions and outlook
about this thesis work are drawn.



Chapter 2

The muon anomalous magnetic moment

In this chapter, we introduce the anomalous magnetic moment of the muon and explain how it is cal-
culated in the Standard Model. We review the current status of the anomaly between its theoretical
prediction and its measurement and we investigate all the SM sectors contributing to the theoretical
determination of the muon g − 2, i.e., electromagnetic, weak and strong interactions.

2.1 A brief historical overview

Besides charge, spin, mass and lifetime, leptons have other very interesting properties like the magnetic
and the electric dipole moments. Classically the dipole moments can arise from either electrical charges
or currents. An orbiting particle with electric charge e and mass m exhibits a magnetic dipole moment

µL = e

2mL , (2.1)

where L = mr × v is the orbital angular momentum. Both electric and magnetic moments contribute to
the Hamiltonian of electromagnetic interactions of the particle:

H = −µm · B − de · E , (2.2)

where B and E are the magnetic and electric field strengths and µm and de the magnetic and electric
dipole moment operators. On one side, the search for a permanent electric dipole moment (EDM) has
been interesting physicists for decades: the detection of such a dipole would be a strong test of the time
reversal symmetry (T) since an EDM along the spin axis can exist only if T is violated. On the other side,
the magnetic moment is an observable which can be relatively easily studied experimentally from the
motion of the lepton in an external magnetic field. In 1925, Goudsmit and Uhlenbeck, in order to explain
the anomalous Zeeman effect [38, 39], postulated that the intrinsic angular momentum (or spin) of the
electron was equal to 1

2ℏ and that, associated to this spin, there is a magnetic dipole moment µ0 = eℏ
2mc ,

the Bohr magneton. Usually the magnetic moments are measured in terms of µ0 and of the spin operator,
S = ℏσ

2 , which replaces the angular momentum operator L:

µm = gQµ0
σ

2 , (2.3)

where σi (i = 1, 2, 3) are the Pauli spin matrices, Q is the electric charge in units of e and g is the gy-
romagnetic ratio (g–factor). Goudsmit and Uhlenbeck imposed this g–factor to be g = 2 to explain the
anomalous Zeeman effect. In the same year, Back and Landé [40], after numerous experimental investi-

5



6 Chapter 2. The muon anomalous magnetic moment

µ−µ−
p p′

k

q

Figure 2.1: 1–loop QED vertex correction diagram

gations on the Zeeman effect, concluded that the magnetic moment of the electron (µm)e was consistent
with the Goudsmit and Uhlenbeck postulate. In 1927, Pauli formulated the quantum mechanical treat-
ment of the electron spin where g remains a free parameter [41]. In 1928, Dirac presented his relativistic
theory and predicted g = 2 for a free electron [42, 43], twice the value g = 1 associated with the orbital
angular momentum. In 1947, Nafe, Nelson and Rabi [44] reported an anomalous value by about 0.26%
in the hyperfine splitting of hydrogen and deuterium, suggesting a possible anomaly of the magnetic
moment of the electron. This brings us to the definition of the lepton anomalous magnetic moment

al ≡ gl − 2
2 where l = e, µ, τ . (2.4)

In 1948 Kusch and Foley [45], by studying the hyperfine structure of atomic spectra in a constant magnetic
field, presented the first precision determination of the anomalous magnetic moment of the electron
ae = 0.00119(5). In the same year, the theoretical result was computed by Schwinger who, by working
on the renormalization of QED, predicted the 1–loop QED (Fig. 2.1) contribution to the anomalous
magnetic moment [46]

a
QED(1)
l = α

2π = 0.00116... , (2.5)

where α is the fine structure constant.

This contribution is due to quantum fluctuations via virtual electron–photon interactions and is uni-
versal for all leptons in QED. These theoretical and experimental results provided one of the first tests of
the virtual quantum corrections, called radiative corrections, predicted by a relativistic QFT.

2.2 The muon anomalous magnetic moment

The theoretical computation of the anomalous magnetic moment of the muon, aµ = gµ−2
2 , has been

interesting physicists for over 60 years. On one hand, the anomalous magnetic moment of the electron,
ae, has been computed precisely and its agreement with the experimental result provided one of the early
confirmation of QED [47]. Moreover ae is almost insensitive to strong and weak interactions, provides
a stringent test of QED and, until recently, used to lead to the most precise determination of the fine–



2.2. The muon anomalous magnetic moment 7

structure constant α. In the future, this observable will play an important role to test physics Beyond the
Standard Model (BSM) [48]. On the other hand, the long–standing discrepancy between the theoretical
computation and experimental measurement of the anomalous magnetic moment of the muon indicates
aµ as a better candidate to study BSM physics. The anomalous magnetic moment of the muon, aµ, allows
one to investigate all the SM sectors (electromagnetic, weak and strong interactions), providing a great
candidate to unveil BSM effects. If Λ indicates the scale of BSM, the contribution to the anomalous

magnetic moment of a lepton l, al, is generally proportional to m2
l

Λ2 [49]. This leads to a
(

mµ

me

)2
∼ 4×104

relative enhancement of the sensitivity of the muon versus the electron magnetic moment. Thus the
anomalous magnetic moment of the τ would be the best candidate to investigate BSM effects, but the
short lifetime of this lepton makes such a measurement very difficult at the moment.

Before April 2021, the experimental value was the one obtained at the E821 experiment at the
Brookhaven National Laboratory (BNL) and the discrepancy between the BNL measurement and the
theoretical SM result was 3.7 σ. In April 2021, the new experimental result of the Muon g–2 experiment
at FermiLab (FNAL) confirmed the BNL result, increasing the combined BNL+FNAL discrepancy
with the SM result to 4.2 σ, if the leading hadronic contribution is computed via the traditional disper-
sive method with e+e− → hadrons data (see later). This discrepancy increased up to 5.1 σ when a new
result from FNAL (Run 2+3) was presented in August 2023 [10]. On the other side, the BMW collabo-
ration lattice QCD result in 2021 [11] and the one obtained with the standard method but with the new
CMD–3 experimental result for e+e− → hadrons data in 2022 weakened this discrepancy [12]. Between
May and June 2025, a new theoretical value [14] and the final experimental result from FNAL [13] for
the muon g − 2 were published, leading to a considerable decrease of the discrepancy between the two
results [14]:

aexp
µ − aSM

µ (WP25) = 38(63) × 10−11 (2.6)

In contrast with the theoretical result in the WP20, where the leading–order hadronic vacuum polariza-
tion estimate for the muon g − 2 was obtained from a purely data–driven approach, the one released in
the WP25 [14] includes only the new, published lattice–QCD calculations for aHLO

µ , for which the results
from different collaborations are in good agreement (see Fig. 2.2). The data–driven estimate of aHLO

µ ,
computed via a dispersion integral using the hadronic production cross sections in electron–positron
annihilation at low energy, was not included due to the increased tension among the experimental in-
puts [12, 14], in particular between KLOE/BaBar and CMD–3 experiments (see Fig. 2.3 for a detailed
picture of the current situation of the estimate of aHLO

µ with the data–driven approach).

In this chapter a review of the theoretical prediction of aµ in the SM is presented and all the three
contributions (QED, electroweak and hadronic) into which aSM

µ is usually split, are analyzed. For detailed
reviews see [9, 14, 50–52].

2.2.1 QED radiative corrections

The largest contribution to the anomalous magnetic moment is of pure QED origin. The QED con-
tribution to the muon g − 2 arises only from the interaction of leptons (e, µ, τ ) with photons. As a
dimensionless quantity, it can be cast in the following general form [53, 54]

aQED
µ = A1 +A2

(
mµ

me

)
+A2

(
mµ

mτ

)
+A3

(
mµ

me
,
mµ

mτ

)
, (2.7)

where me, mµ and mτ are the masses of the electron, muon and tau, respectively. The term A1, arising
from diagrams containing only photons and muons, is mass independent and is therefore universal for all
three charged leptons. The contributionA2 is a function of the indicated mass ratios and only shows up if
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Figure 2.2: Compilation of lattice results for the flavor contributions to aHLO
µ . Upper–left: light–quark

connected aHLO
µ . Upper–right: strange–quark connected aHLO

µ . Lower–left: charm–quark connected
aHLO

µ . Lower–right: quark disconnected aHLO
µ . The light blue bands correspond to “Avg. A” computed

as explained in [14]. Results not included in the average are denoted by unfilled symbols. Figure taken
from [14].

an additional lepton loop of a lepton different from the muon is involved. This requires at least two more
loops: an additional electron loopA2 (mµ/me) or an additional τ–loopA2 (mµ/mτ ). The first produces
large logarithms ∝ ln (m2

µ/m
2
e) and accordingly large effects, while the second, because of the decoupling

of heavy particles in QED–like theories, produces only small effects ∝ (m2
µ/m

2
τ ). The renormalizability

of QED guarantees that the functions Ai can be expanded as a power series in α/π and computed order
by order

Ai = A
(2)
i

(α
π

)
+A

(4)
i

(α
π

)2
+A

(6)
i

(α
π

)3
+A

(8)
i

(α
π

)4
+ ... (2.8)

One–loop contribution

Only one diagram (Fig. 2.1) is involved in the evaluation of the lowest–order contribution and it provides
the famous result obtained by Schwinger A(2)

1 = 1/2. The Lorentz structure of the vertex correction
is given by the three–point function −ieΓµ = ⟨ψ̄Aµψ⟩, where ψ (ψ̄ = ψ+γ0) is the (barred) spinorial
representation of the fermion, A is the vectorial representation of the photon and e is the electric charge.
As a first step we assign a 4–momentum p to the incoming particle, a 4–momentum p′ to the outgoing
particle and we define the transferred 4–momentum q ≡ p′ − p (Fig. 2.1). This brings us to the spinorial
representation u(p) for the incoming particle and ū(p′) for the outgoing one in momentum space. In
general, Γµ is some expression that involves p, p′, γµ and constants like the mass of the particle, m, and
the electric charge, e. We can narrow down the form of Γµ by appealing to Lorentz invariance. Since Γµ
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Figure 2.3: Dispersive theoretical predictions for aHLO
µ , based on various measurements of e+e− →

π+π− (percentages of the integral covered by each measurement are shown), and for the three approaches
“CHKLS,” “DHMZ,” and “KNTW” (see [14] for details).The gray band indicates the result from WP20,
including the error inflation due to the BaBar–KLOE tension. The experiments above the dashed line
entered the result for WP20, whilst those below are new measurements since then. Figure taken from [14].

transforms as a vector, it must be a combination of the vectors listed above:

−ieū(p′)Γµu(p) = −ieū(p′) [γµ ·A+ (p′µ + pµ) ·B + (p′µ − pµ) · C]u(p) , (2.9)

where A, B and C are functions of the transferred squared momentum q2. From the gauge symmetry of
the theory, the Ward identity, qµΓµ = 0, can be applied and the only term that does not automatically
vanish is the one proportional to C, so C must be zero. The last step is to apply the Gordon identity to
obtain

−ieū(p′)Γµ(p′, p)u(p) = −ieū(p′)
[
γµF1(q2) + iσµνqν

2m F2(q2)
]
u(p) , (2.10)

where σµν = i
2 [γµ, γν ] is the spin–1/2 angular momentum tensor, while F1 and F2 are unknown func-

tions of q2 called (electric) Dirac and (magnetic) Pauli form factors, respectively. In the static limit
(q2 → 0) we have

F1(0) = 1 and F2(0) = al . (2.11)

The first condition is the charge renormalization condition, while the second relation is the finite value of
the anomalous magnetic moment of the lepton l.

By explicitly evaluating the one–loop contribution to the muon vertex function we can prove the
Schwinger result A(2)

1 = 1/2. We assign the particle momenta as shown in Fig. 2.1 and by applying
the Feynman rules listed in App. A, we obtain

ū(p′)Γµ(p, p′)u(p) = −ie2
∫

d4k

(2π)4 ū(p′)
γν(/q + /k +M)γµ(/k +M)γν

[(k − p)2 + iϵ][(q + k)2 −M2 + iϵ][(k2 −M2) + iϵ]u(p) ,

(2.12)
where the +iϵ terms in the denominator are necessary for proper evaluation of the loop–momentum
integral. This integral can be computed using the Feynman parameters technique: squeeze the three
denominator factors of Eq. (2.12) into a single quadratic polynomial in k, raised to the third power; shift
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k by a constant to complete the square in this polynomial and evaluate the remaining spherically symmetric
integral. The price to pay is the introduction of auxiliary parameters to be integrated over. After some
lengthy calculation we obtain

ū(p′)Γµ(p, p′)u(p) = − ie2
∫

d4l

(2π)4

∫ 1

0
dx dy dz δ(x+ y + z − 1) 2

D3

× ū(p′)
[
γµ ·

(
−1

2 l
2 + (1 − x)(1 − y)q2 + (1 − 4z + z2)M2

)

+ i

2Mσiνqν(2M2z(1 − z))
]
u(p) , (2.13)

where D = l2 − ∆ + iϵ and ∆ = −xyq2 + (1 − z)2M2. The decomposition into form factors [55] is now
manifest and in particular, after performing the integration in d4l we obtain

F2(q2) = α

2π

∫ 1

0
dx dy dz δ(x+ y + z − 1)

[
2m2z(1 − z)

m2(1 − z)2 − xyq2

]
+ O(α2) , (2.14)

and, in order to compute the muon anomalous magnetic moment, we have to set q2 = 0 and get

aµ = F2(0) = α

2π

∫ 1

0
dx dy dz δ(x+ y + z − 1)

[
2m2z(1 − z)
m2(1 − z)2

]
= α

π

∫ 1

0
dz
∫ 1−z

0
dy

z

1 − z
= α

2π . (2.15)

This result, together with the higher–order contributions and the currently best value of the fine structure
constant, coming from the electron anomalous magnetic moment ae [56],

α−1(ae) = 137.035 999 1496(13)(14)(330) , (2.16)

leads to the value for the QED contribution to the muon g − 2 [14]

aQED
µ = 116 584 718.8(2) × 10−11 , (2.17)

where the higher–order effects are computed up to 5–loops [57] and the error quoted here is obtained by
combining the ones from the results of aQED

µ computed for three different values of α, i.e., aQED
µ [α(Cs)],

aQED
µ [α(ae)] and aQED

µ [α(Rb)] [14].

2.2.2 Electroweak contribution

The electroweak contribution to the anomalous magnetic moment of the muon is suppressed by a factor
(mµ/MW )2, where MW is the mass of the W boson, with respect to the QED contributions.

One–loop contribution

The one–loop electroweak contribution to the muon g − 2 is due to diagrams shown in Fig. 2.4 and its
analytic form is

aEW
µ (1 − loop) =

5GFm
2
µ

24
√

2π2

[
1 + 1

5(1 − 4sin2θW )2 + O

(
m2

µ

M2
Z,W,H

)]
, (2.18)
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γ

Figure 2.4: Diagrams involved in the computation of the electroweak contribution at one–loop to the
muon g–2, where νµ is the muon neutrino and ϕ is a scalar.

where GF = 1.16637(1) × 10−5 GeV−2 is the Fermi coupling constant, MZ , MW and MH are the
masses of the Z, W and Higgs bosons, respectively, while θW is the Weinberg angle. The numerical
result is [14]

aEW
µ (1 − loop) = 194.79(1) × 10−11 . (2.19)

Higher–order contributions

The two–loop electroweak contribution to aµ [58, 59] leads to a significant reduction of the one–loop
value. This contribution appeared to be of fundamental importance [60] and the correction turned out
to be enhanced by a factor ln(MZ,W /mf ), where mf is a fermion mass scale much smaller then MW . In
QED, diagrams with an odd number of photons attached to a loop do not contribute due to the Furry’s
theorem and the γγγ–amplitude vanishes. In presence of weak interactions, because of parity violation,
contributions from the two orientations of the closed fermion loops do not cancel such that the γγZ,
γZZ and γWW amplitudes do not vanish. The two–loop contributions to aEW

µ is usually split into a
fermionic and a bosonic part: the first one includes all the two–loop EW corrections containing closed
fermion loops, whereas all other contributions are grouped into the second one.

Summing up all the results, the electroweak contribution to the muon g − 2 is [14]

aEW
µ = 154.4(4) × 10−11 . (2.20)

The updates with respect to the result in [9] are related to more accurate measurements of input parameters
entering Feynman diagrams, leading to reduced parametric uncertainties, and to improved determination
of hadronic EW contributions [61].

2.2.3 Hadronic contributions

In this section we will analyze the contribution to the muon g − 2 arising from QED diagrams involving
hadrons, which dominate the uncertainty in the SM value [62–64]. The main effect comes from the
O(α2) hadronic vacuum polarization (HVP) insertion in the internal photon line of the leading one–loop
muon vertex diagram (Fig. 2.5), in particular from the ππ intermediate state. It is this contribution that is
linked to the pion vector form factor FV

π and to ππ scattering [65–68]. Similar representations have been
used more recently [69–72], in particular on a dispersive approach to hadronic light–by–light (HLbL)
scattering [73–78], where the space–like form factor determines the pion–box contribution. Moreover, ππ
scattering plays a crucial role in many hadronic quantities that enter HLbL scattering, e.g. in γ∗γ∗ → ππ

[79–82] or the π0 [83–89] and η, η′ [90–95] transition form factors, with recent extension to the πη
system [96,97].
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µ−µ−

Figure 2.5: HVP contribution to the muon anomalous magnetic moment

Leading–order hadronic contribution

The hadronic leading order (HLO) contribution to the anomalous magnetic moment of the muon, aHLO
µ ,

is due to the vacuum polarization correction to the internal photon propagator of the one–loop diagram
(Fig. 2.5). The computation of this contribution involves low–energy QCD for which the perturbative
approach can not be applied. A different approach to perform this evaluation was found by Bouchiat and
Michel [98]: using analyticity and unitarity, aHLO

µ can be computed from hadronic e+e− annihilation data
via a dispersion integral [98–101] (an introduction to analyticity, unitarity and dispersion relations will be
given in the next chapter). The hadronic input for this contribution is encoded in the QCD two–point
function of the electromagnetic currents [102]

Πµν
h = ie2

∫
d4x eiq·x⟨0|T{jµ

em(x)jν
em(0)}|0⟩ =

(
q2gµν − qµqν

)
Πh(q2) , (2.21)

where the Lorentz decomposition follows from gauge invariance. The current is defined by

jµ
em := q̄Qγµq , q =

 u

d

s

 , Q = 1
3

 2 0 0
0 −1 0
0 0 −1

 , (2.22)

and the sign convention is such that the fine–structure constant evolves according to

α → α(q2) = α(0)
1 − [Πh(q2) − Πh(0)] = α(0)

1 − ∆α(q2) , (2.23)

where q2 is the momentum of the internal photon line and ∆α(q2) = −ReΠ̄h(q2) with Π̄h(q2) ≡
Πh(q2) − Πh(0). The renormalized HVP function Π̄h(q2) is analytic in the complex s := q2 plane
and satisfies the dispersion relation

Π̄h(s) = s

π

∫ ∞

sthr

ds
Im Πh(s′)
s′(s′ − s) , (2.24)

where in pure QCD the integral starts at the two–pion threshold, sthr = 4M2
π , since the threshold energy

necessary to produce a purely hadronic VP is (2Mπ)2. In QCD+QED, the π0γ final state would be the
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first open hadronic channel and should define the lower limit of integration in the dispersion integral.
Unitarity also implies the validity of the optical theorem thanks to which it is possible to relate Im Πh(s)
with the experimentally measured cross section. Up to now, the LO HVP contribution is computed using
the cross section for low–energy hadronic e+e− annihilation, and this gives the relation

σ(e+e− → hadrons) = 4πα
s

1
σe(s)

(
1 + 2m2

e

s

)
Im Πh(s) , (2.25)

where σl(s) =
√

1 − 4m2
l

s . The HVP contribution to the anomalous magnetic moment of the muon can
then be written as [98, 100]

aHLO
µ =

(αmµ

3π

)2 ∫ ∞

sthr

ds
s2 K̂(s)Rhad(s) , (2.26)

where the kernel function is

K̂(s) = 3s
m2

µ

[
x2

2 (2 − x2) + (1 + x2)(1 + x)2

x2

(
ln (1 + x) − x+ x2

2

)
+ 1 + x

1 − x
x2 ln x

]
, (2.27)

with x = 1−σµ(s)
1+σµ(s) and whose behavior is shown in Fig. 2.6, while Rhad(s) is related to the hadronic cross

section by

Rhad(s) = 3s
4πα2

sσe(s)
s+ 2m2

e

σ(e+e− → hadrons) . (2.28)

The usual ratio R, defined as the ratio of hadronic to muonic e+e− experimental cross sections,

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

s(GeV2)

0.65
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0.80

0.85

0.90

0.95

K̂(s)

Figure 2.6: Behavior of the function K̂(s) in the interval s ∈ [4M2
π , 2 GeV2].

R(s) = σ(e+e− → hadrons)
4πα(s)2/3s , (2.29)
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is not what enters the dispersive representation of the HVP contribution: the representation in Eq. (2.26),
with Eqs. (2.27) and (2.28), where σ(e+e− → hadrons) depends on the HVP correction function Πh(s),
is exact. Rhad(s) and R(s) coincide for a tree–level muonic cross section and in the limit s ≫ m2

µ, where
of course the electron mass does not play any role but, for clarity, we have provided the expression of the
HVP contribution without any approximation. With this dispersive approach it is possible to overcome
the issues involving non–perturbative QCD computations appearing in the LO hadronic contribution to
aµ. The ratio R(s), or equivalently Im Πh(s), are obtained from e+e− annihilation data, which involves
a positive squared momentum transfer and so this is called time–like approach.

Before quoting the final result for the HLO contribution to aµ, let us discuss in more details σ(e+e− →
hadrons). This cross section can be determined in e+e− annihilation, either in direct scan mode, where
the beam energy is adjusted to provide measurements at different center–of–mass (CM) energies, or by
relying on the method of radiative return, where a collider is operating at a fixed CM energy. At low
energies, the most important channel is the two–pion channel (details in the next section). This final state
stems mainly from decays of the ρ meson, with an admixture of the ω. Precise measurements in the ρ
region come from CMD–2 and SND experiments but also from the KLOE and BaBar ISR analyses.
More recently results with the ISR method in the charm region and large–angle ISR tagging have been
obtained by BESIII. Sub–leading contributions arise from decays of the ω and ϕ in the three–pion and
two–kaon channels, and from four–pion states with more complicated production mechanisms. The con-
tribution of these channels to the hadronic cross section is obtained from the CMD–2, SND and BaBar
experiments. Moreover, even–higher–multiplicity final states (up to six pions) and final states contain-
ing pions and kaon or the η have to be included in order to achieve an accurate description of the total
hadronic cross section. For energies beyond

√
s ∼ 2 GeV, one relies on measurements of the inclusive

cross section or, alternatively, for energies above the τ mass and away from flavor threshold, perturbative
QCD (pQCD) can provide a good approximation of the total hadronic cross–section. In this case, the
annihilation cross section has to be measured inclusively because of the large number of open exclusive
channels and precise results in the 2–4.5 GeV range are obtained by BESIII. The distribution of different
channel contributions and error squares from different energy regions can be found in Fig. 2.7.
In order to obtain a single estimate for aHLO

µ , a combination of the different data must be performed,
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⇢, !
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�, . . . 2.0 GeV
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�aµ (��aµ)2

contribution error2

Figure 30: Distribution of contributions and error squares from di↵erent energy regions. Reprinted from Ref. [27].

which is based on the isospin-breaking corrections from Ref. [178] (see Sec. 2.2.6). Finally, the combination with
analyticity constraints (see Sec. 2.3.4) in the implementation of Ref. [230] leads to [27]

aHVP, LO
µ = 689.5(3.3) ⇥ 10�10 . (2.20)

Hidden-local-symmetry approach. ChPT provides a rigorous access to the low-energy part of the nonperturbative
sector of QCD, but needs to be extended by vector mesons to go deeper inside the resonance region, leading to
Resonance Chiral Perturbation Theory (R�PT). As shown in Ref. [231], R�PT is, in principle, equivalent to the
Hidden Local Symmetry (HLS) model [232, 233], motivating the use of the HLS model for the analysis of annihilation
cross sections as input for HVP. Such e↵ective Lagrangians share the important feature that they predict physics
correlations among the di↵erent annihilation processes H = {Hi, i = 1, . . . , p} they encompass. This means that any
given e+e� ! Hi cross section is numerically constrained, not only by the experimental data collected in the Hi

channel, but also by those collected in any other final state H j embodied inside the Lagrangian framework. Stated
otherwise, the data collected in any annihilation channel Hi, j behave as an increased statistics for any given channel
H j.

The HLS model is a framework easier to handle than R�PT. However, in order to successfully account for the
large amount of precise experimental data currently available, one should go beyond the basic model and extend it,
consistently with its framework, using appropriate symmetry-breaking mechanisms; basically, HLS models define
interacting frameworks for the fundamental pseudoscalar (P) and vector (V) meson nonets together with photons (�).
Historically, the vector-meson mixing (V–V 0) and the vector-meson–photon mixing (V–�) induced by pseudoscalar
meson loops allowed for a primitive version of a broken HLS model [234]. This raw broken HLS model has evolved
towards an operating version (BHLS) [235–237], which covers a large realm of physics processes involving the
fundamental vector and pseudoscalar meson nonets. An enriched version of BHLS, named BHLS2, is now available,
which has been shown to sharply improve the description of the very low-energy region [238]. Therefore, working
Lagrangian frameworks now exist that are able to provide a consistent picture of all the data samples covering the s
interval ranging from the nearby spacelike region [239, 240] to slightly above the � meson mass. Figure 31 illustrates
the fit quality on the various ⇡⇡ data (spacelike and timelike form factors and the dipion spectrum in the ⌧ decay).

In their present form, the BHLS frameworks encompass a substantial number of processes of di↵erent kinds.
Beside the VP� and P�� partial width decays—where V and P are shorthands to denote any meson pair taken in the
fundamental V and P nonets—the BHLS2 framework describes the e+e� annihilation into the six crucial channels14

⇡+⇡�, ⇡+⇡�⇡0, K+K�, K0K̄0, ⇡0�, and ⌘� (all covered by several data samples), and, finally, the hadronic spectrum in
the ⌧± ! ⇡±⇡0⌫⌧ decay. Additionally, the new BHLS2 release [238] allows, for the first time, the use of the accurate
spacelike data [239] in the derivation of aHVP, LO

µ [⇡⇡]. Finally, it should be valuable to include within the BHLS2
framework the dipion spectra in the ⌘, ⌘0 ! ⇡+⇡�� decays, as they provide additional high-statistics data samples able
to further constrain the estimate for aHVP, LO

µ [⇡⇡].

14The contribution of these six hadronic final states up the the � mass (' 1.05 GeV) represents about 83% of the total muon HVP and about
half of its (squared) uncertainty in standard approaches.

43

Figure 2.7: Distribution of contribution and error squares from different energy regions. Figure taken
from [9].

taking into account the different energy ranges, the different binning, and a possible correlations within
and between data sets. The approaches to combine all the different data sets are mainly two: the DHMZ
approach uses the software package HVPTools which features an accurate data interpolation, averag-
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ing, and integration methods, systematic tests, and a statistical analysis based on the generation of large
samples of pseudo–experiments. It allows for a comprehensive treatment of the correlation between
the measurements of one experiment, as well as inter–experiment and inter–channel correlations. The
KNT [103, 104] approach provides a predominantly data–driven compilation for the hadronic R–ratio,
which is then used to predict the HVP contributions to precision observables such as aµ. Only after com-
bining the different experimental data for σ(e+e− → hadrons), the integral for aHLO

µ can be performed
and the latest result for the HLO contribution is [9]:

aHLO
µ = 6931(40) · 10−11 (2.30)

where the error is mainly due to experimental measurements of hadronic e+e− annihilation. This time–
like approach solves the long–distance QCD problems but it suffers from the experimental uncertainties
associated to the hadronic e+e− annihilation data. However, as said at the beginning of this chapter,
the HLO data–driven contribution to aµ needs to be investigated further due to the increased tension
between the different experimental results for σ(e+e− → hadrons).

An alternative evaluation of aHLO
µ can be obtained by lattice QCD calculations. Since the pioneering

works of Blum [105] and Aubin and Blum [106], and the seminal paper of ETM in 2011 [107] in two–
flavor QCD, many lattice calculations of aHLO

µ have been performed [11, 108–122]. In addition to these,
there are now many works giving the individual windows and other contributions [123–131]. The new
combined lattice value reads [14]

aHLO
µ = 7132(61) · 10−11 . (2.31)

This result is the one considered for the final estimate of the muon g − 2 given in [14].

A few years ago, a new approach has been proposed to determine the leading hadronic contribution to
the muon g − 2, measuring the effective electromagnetic coupling in the space–like region via scattering
data [132]. This leads to the proposal of a new experiment, MUonE at CERN, to measure the differen-
tial cross section of muon–electron elastic scattering as a function of the space–like squared momentum
transfer q2 = t < 0. The differential cross section of that process provides direct sensitivity to the LO
hadronic contribution to aµ. If we now consider the t–channel process described by the muon–electron
elastic scattering, we define the space–like squared four momentum as

t(x) =
x2m2

µ

x− 1 < 0 , (2.32)

where x ∈ [0, 1], and, by recalling the dispersion relation for the hadronic vacuum polarization Π̄h(q2) in
Eq. (2.24), and by imposing q2 = t(x) < 0 we obtain [133]

aHLO
µ = α

π

∫ 1

0
dx(x− 1)Π̄h[t(x)] = α

π

∫ 1

0
dx(x− 1)∆αh[t(x)] . (2.33)

Two–pion intermediate state contribution

The contribution of the two–pion intermediate state, which accounts for more then 70% of the total
leading order effect, can be expressed in terms of the pion vector form factor (VFF)

⟨π±(p′)|jµ
em(0)|π±(p)⟩ = ±(p′ + p)µFV

π [(p′ − p)2] , (2.34)

according to

σ(e+e− → π+π−) = πα2

3s σ
3
π(s)|FV

π (s)|2 s+ 2m2
e

sσe(s) , (2.35)
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where σπ(s) =
√

1 − 4M2
π

s . For a consistent counting of higher orders in α, radiative corrections need
to be taken into account, otherwise this would induce corrections at the same order as HVP iterations or
hadronic light–by–light (HLbL) scattering. The idea is that the leading–order HVP includes not only the
hadronic channels but also the (one–)photon–inclusive ones. In particular, the lowest–lying intermediate
state is no longer the two–pion state, but the π0γ state so that the HVP input corresponds to infrared–
finite photon–inclusive cross sections including both real and virtual corrections. With this convention,
the cross section to be inserted in Eq. (2.28) has to be inclusive of final–state radiation (FSR), but both
VP and initial–state radiation (ISR) effects need to be subtracted. The expression for the bare cross
section then reads

σ(0)(e+e− → γ∗ → hadrons(γ)) =
∣∣∣∣α(0)
α(s)

∣∣∣∣2 σ(e+e− → γ∗ → hadrons(γ))

=
∣∣1 − ΠSM(s)

∣∣2 σ(e+e− → γ∗ → hadrons(γ)) , (2.36)

where the running of α is determined by the full renormalized VP function in the SM, e.g. including the
lepton–loop contribution

Πl(s) = 2α
π

∫ 1

0
dx d(1 − x) ln

[
1 − x(1 − x) s

m2
l

]
. (2.37)

While the subtraction of VP effects may be taken into account afterwards thanks to the above equations,
the correction of ISR and ISR/FSR interference effects is performed with Monte Carlo generators in the
context of each experiment [134–137].

An alternative way to compute the two–pion intermediate state contribution is through the hadronic τ
decay, τ → ππ0ντ . Thanks to a conserved–vector–current (CVC) relation between electromagnetic and
weak form factors, the differential decay rate τ → ππ0ντ can be related to the cross section σ(e+e− →
π+π−) in the isospin limit. In the case of the e+e− → π+π− we have an electromagnetic neutral current
and a final state with isospin (I, Iz) = (1, 0), while in the τ decay we have a vector–axial vector charged
current and a final state with (I, Iz) = (1,−1). Therefore, in the isospin limit, the purely hadronic cross
section for e+e− → π+π− (with QED effects removed) can be related to the τ− → π−π0ντ differential
decay width in this limit by

σ(e+e− → π+π−)(s) = 1
N (s)Γ(0)

e

dΓ(τ− → π−π0ντ )
ds

, (2.38)

where constants and phase–space factors are collected in

N (s) = 3|Vud|2

2παm2
τ

s

(
1 − s

m2
τ

)2(
1 + 2s

mτ

)
, (2.39)

and further (electroweak) constants appear in

Γ(0)
e = G2

Fm
5
τ

192π3 . (2.40)

Details on this alternative and independent approach will be given later in this work.
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Higher-order hadronic contributions

The O(α3) contribution to the muon g − 2 can be divided into two parts:

aHHO
µ = aHHO

µ (VP) + aHHO
µ (LbL) . (2.41)

The first term comes from diagrams containing hadronic vacuum polarization insertions into the internal
photon line, the second term is the hadronic light–by–light contribution. The results considering the
hadronic vacuum polarization insertions, aHHO

µ (VP), were computed both at NLO and NNLO, whereas
the light–by–light contribution is computed at LO and NLO [14]:

aNLO
µ (VP) = −99.6(1.3) × 10−11, (2.42)

aNNLO
µ (VP) = 12.4(1) × 10−11, (2.43)

aLO
µ (LbL) = 103.3(8.8) × 10−11, (2.44)

aNLO
µ (LbL) = 2.6(6) × 10−11 . (2.45)

For the LbL contribution, in analogy with the VP, the result obtained from lattice QCD needs to be
considered [14],

aLQCD
µ (LbL) = 122.5(9.0) × 10−11 , (2.46)

such that the combined (phenomenology + lattice) result for the LbL contribution reads [14]

aµ(LbL) = 112.6(9.6) × 10−11 . (2.47)

2.2.4 SM prediction versus experimental measurement results

On the theory side, a result obtained considering all the contributions listed above was released in 2020 [9]

aSM
µ (WP20) = 116 591 810(43) × 10−11 . (2.48)

This result is computed by utilizing the data–driven result for the LO HVP contribution. The experimen-
tal inputs for the hadronic cross section were combined thanks to the DHMZ and the KNT methods.
Since May 2025 a new theoretical result for the muon g − 2 is available and it reads [14]

aSM
µ (WP25) = 116 592 033(62) × 10−11 . (2.49)

This result is computed by considering only the lattice QCD result for the LO HVP contribution since
the increased tension between the different experiments measuring σ(e+e− → hadrons) prevent to per-
form a meaningful combination of the data. The discrepancy between the data–driven and the lattice
QCD values shows that resolving the tensions in the data–driven estimations of the HVP contribution
is particularly important, and additional results combined with further scrutiny of theory input such as
from event generators should provide a path toward this goal.

On the experimental side, the measurement of the anomalous magnetic moment of the muon is obtained
by injecting polarized muons into a magnetic storage ring with electric vertical focusing. The measured
quantities are then the muon anomalous precession frequency and the magnetic field B in terms of the
proton nuclear magnetic resonance frequency. The first measurement was the one obtained by the E821
experiment at the Brookhaven National Laboratory (BNL) [4–7, 138]:

aexp
µ− = 116 592 140(80)(30) × 10−11 , (2.50)
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where the first error is statistical while the second is systematic. This result is in good agreement with the
average of the measurements of the muon g − 2 of positive muons [4–7, 138], aexp

µ+ = 116 592 030(80) ×
10−11, as predicted by the CPT theorem. By combining these results, the new average is

aexp
µ = 116 592 080(60) × 10−11 (0.5 ppm) . (2.51)

The comparison between the experimental measurement in Eq. (2.51) and the SM prediction in Eq. (2.48)
shows a discrepancy of 3.7 σ. On April 2021, the FermiLab Muon g − 2 experiment revealed a new
experimental result for the anomalous magnetic moment of positive muons [8]:

aµ(FNALRun 1) = 116 592 040(54) × 10−11 (0.46 ppm) . (2.52)

This result differs from the SM value in Eq. (2.48) by 3.3 σ and agrees with the BNL E821 result. The
combined experimental average (BNL+FNAL) is

aexp
µ = 116 592 061(41) × 10−11 (0.35 ppm) . (2.53)

The difference, aexp
µ −aSM

µ (WP20) = (251 ± 59)×10−11, has a significance of 4.2σ. A new experimental
result of the muon g − 2 was released on August 2023, giving [10]

aµ(FNALRun 2+3) = 116 592 055(24) × 10−11 (0.20 ppm) . (2.54)

and the combined (BNL+FNAL) experimental average became

aexp
µ = 116 592 059(22) × 10−11 (0.19 ppm) . (2.55)

yielding a discrepancy of 5.1 σ with the data–driven theoretical result aSM
µ (WP20).

In June 2025, FNAL published the final experimental estimate of the muon g − 2 [13]

aµ(FNALtot) = 116 592 070.5(14.8) × 10−11 (127 ppb) . (2.56)

and the new experimental world average is now

aexp
µ = 116 592 071.5(14.5) × 10−11 (124 ppb) . (2.57)

At the current level of precision there is no tension between the latest SM prediction aSM
µ (WP25) and

the experimental world average:

aexp
µ − aSM

µ (WP25) = 38(63) × 10−11 (2.58)

However, by comparing the uncertainties of Eqs. (2.57) and (2.49) it is apparent that the precision of the
SM prediction must be improved by at least a factor four to match the precision of the current experimen-
tal average. In this sense, progresses on both data–driven and lattice methods applied to the hadronic
contributions are necessary. A plot of the experimental results compared with the current theoretical
situation can be found in Fig. 2.8.
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Figure 2.8: Summary of the current SM prediction for aµ in comparison to experiment (red band and
data point). The final WP25 prediction is denoted in black and via the blue band, it derives from the
LO HVP result defined by the lattice QCD “Avg.1” shown in blue (see [14] for details). The gray band
indicates the WP20 result, based on the e+e− experiments above the first dashed line. Figure taken
from [14]
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Chapter 3

Unitarity and Analyticity

Unitarity is a very general property of any quantum field theory: starting from an initial state, the prob-
ability of any outcome to happen must always be equal to one. This translates into the unitarity of the
so–called S–matrix that relates any initial to any final state of a process. Together with the principle of
maximal analyticity, unitarity allows one to determine the analytic structure of a scattering amplitude.
Complex analysis can then be used to make predictions even when perturbative methods are not valid, as
in the case of QCD at low energy. In this chapter, we introduce the concept of unitarity and analyticity
and derive some important tools used in this thesis.

3.1 S–matrix unitarity

Following Peskin and Schröder [139], let us consider a generic scattering process. In the Schrödinger
picture, we denote the initial state at time ti as |i, ti⟩ while the final state at time tf as ⟨f, tf |. In the
Heisenberg picture, the time evolution of the states is collected into an operator, called the S–matrix
defined as

⟨f |S|i⟩H = ⟨f,∞|i,−∞⟩S . (3.1)

The S–matrix is defined assuming that all the interactions happen in a finite time interval, so that at
asymptotic time, t = ±∞, the states are free of interactions and they are called asymptotic states. Using
the Born postulate, we can calculate the probability that the system ends up in an arbitrary state |l⟩ in
terms of the S–matrix elements:

Pl = |⟨l|f⟩|2 = |⟨l|S|i⟩|2 . (3.2)

In a free theory, the S–matrix is simply the identity matrix 1. Therefore we can write S = 1 + iT , where
T is called the transfer matrix and contains the information about the interaction. Since the S–matrix
would vanish unless the initial and final states have the same total 4–momentum, we can write

T = (2π)4δ4
(∑

pµ
i −

∑
pµ

f

)
M , (3.3)

where pµ
i and pµ

f are the initial and final particles’ momenta, respectively. Then, the non–trivial part of
the S–matrix reads

⟨f |T |i⟩ = i(2π)4δ4
(∑

pµ
i −

∑
pµ

f

)
Mfi . (3.4)

where Mfi = ⟨f |M|i⟩ is the transition amplitude describing the process i → f .

From the conservation of probability it follows the unitarity of the S–matrix, S†S = SS† = 1, which

20
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can be written in terms of the transition amplitude as

−i(T − T †) = T †T . (3.5)

One of the most important implications of unitarity is the relation between scattering amplitudes and
cross sections called the optical theorem. Sandwiching the left–hand side of Eq. (3.5) between ⟨f | and |i⟩
gives

⟨f |i(T † − T )|i⟩ = i⟨i|T |f⟩∗ − i⟨f |T |i⟩

= i(2π)4δ4
(∑

pµ
i −

∑
pµ

f

)
[M∗(f → i) − M(i → f)] . (3.6)

By using the completeness relation

1 =
∑

n

∫
dΠn|n⟩⟨n| , (3.7)

we get

⟨f |T †T |i⟩ =
∑

n

∫
dΠn⟨f |T †|n⟩⟨n|T |i⟩

=
∑

n

(2π)4δ4(pf − pn)(2π)4δ4(pi − pn)
∫

dΠnM(i → n)M∗(f → n) . (3.8)

Thus unitarity implies

M(i → f) − M∗(f → i) = i
∑

n

∫
(2π)4δ4(pi − pn)M(i → n)M∗(f → n) . (3.9)

An important special case is when |i⟩ = |f⟩ = |A⟩, for some state A. Then

2iImM(A → A) = i
∑

n

∫
dΠn(2π)4δ4(pa − pn)|M(A → n)|2 . (3.10)

If |A⟩ is a two–particle state,

ImM(A → A) = 2ECM|pi|
∑

n

σ(A → n) , (3.11)

where ECM and |pi| are the total energy of the system and the modulus of the three–momentum of any
of the two external particles evaluated in the center–of–mass frame, respectively.

From Eq. (3.10), we see that in order to obtain the imaginary part of a given transition amplitude M,
we need to sum over all intermediate states allowed by the symmetries of the process. There might be an
infinite number of them so the idea is to identify which intermediate states are dominant in the process.
There is only a finite number of them to be considered so we can truncate the series and ignore the rest.

3.2 Partial wave expansion of scattering amplitude

Let us consider the process ϕ1(p1)ϕ2(p2) → ϕ3(p3)ϕ4(p4) where the particles ϕi have masses mi and
four–momenta pi = (Ei,pi) with i ∈ {1, 2, 3, 4} and, for simplicity, no spin. The four particles are
on–shell:

p2
i = m2

i = E2
i + p2

i , i ∈ {1, 2, 3, 4} . (3.12)
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The kinematic of the process is described by the following Mandelstam variables

s =(p1 + p2)2 = (p3 + p4)2 ,

t =(p1 − p3)2 = (p2 − p4)2 , (3.13)

u =(p1 − p4)2 = (p2 − p4)2 .

and thanks to the on–shell relation

s+ t+ u =
4∑

i=1
m2

i , (3.14)

the scattering amplitude depends on two out of three invariant Mandelstam variables in addition to the
masses of the particles. We can express the amplitude in terms of the squared center–of–mass energy s
and momentum transfer twhich depends on the scattering angle θs between an incoming and an outgoing
particle in the center–of–mass frame of s. Then the relation in Eq. (3.4) becomes

⟨ϕ3(p3)ϕ4(p4)|T |ϕ1(p1)ϕ2(p2)⟩ = (2π)4δ(4)(p1 + p2 − p3 − p4)M(s, t(θs)) . (3.15)

This scattering amplitude can be expressed as a partial–wave expansion which is based on angular momen-
tum conservation and it is possible because the Legendre polynomials Pℓ(z) form a complete orthogonal
set. We can then write the amplitude as

M(s, t(θs)) =
∑

ℓ

(2ℓ+ 1)Pℓ(cos θs)fℓ(s) . (3.16)

Note that this particular representation includes spinless particles. For particles with arbitrary spins, this
relation can be generalized using Wigner dJ

mm′(θ) functions.
The partial waves fℓ(s) only depend on the centre–of–mass energy squared and they represent transition
amplitudes between states of identical angular momentum ℓ. In order to single out a well–defined partial
wave, one can simply project the amplitude by integrating over zs := cos θs:

fℓ(s) = 1
2

∫ 1

−1
dzsM(s, zs)Pℓ(zs) . (3.17)

This relation holds because the Legendre polynomials for an orthogonal basis are normalized as∫ 1

−1
dzsPℓ(zs)Pℓ′(zs) = 2

2ℓ+ 1δℓℓ′ . (3.18)

In the elastic region, where the intermediate state is identical to the final state, the unitarity relation of the
scattering amplitude can be written as a unitarity relation for the partial waves in a very compacts form.
For simplicity, we consider intermediate states with only two particles with masses mn1,2 . We define the
amplitude with initial state |i⟩ = |ϕ1ϕ2⟩ and final state |f⟩ = |ϕ3ϕ4⟩ as Mfi, we write the unitarity
relation according to the derivation above and we expand the two amplitudes in partial waves:

ImM(s, t) =(2π)4
∑

n

1
2

∫
k

dΠn
2 (k)MniM∗

fn

=
∑

n

λ1/2(s,m2
n1
,m2

n2
)

64π2s

∫
dΩ(k̂)Mni(s, p̂1 · k̂)M∗

fn(s, p̂3 · k̂) (3.19)
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=
∑

n

∑
ℓℓ′

(2ℓ+ 1)(2ℓ′ + 1)
64π2

λ1/2(s,m2
n1
,m2

n2
)

s
fni

ℓ ffn∗
ℓ′ ×

∫
dΩ(k̂)Pℓ(p̂1 · k̂)Pℓ′(p̂3 · k̂) ,

where λ(a, b, c) := a2 + b2 + c2 − 2(ab+ bc+ ac) is the Källen function, dΠn
2 is the 2–body phase space

integral of the intermediate state |n⟩ and the partial waves fni
ℓ correspond to the scattering amplitude

Mni. In order to calculate explicitly the phase–space integral, we can expand the Legendre polynomials
in spherical harmonics as

Pℓ(p̂ · k̂) = 4π
2ℓ+ 1

ℓ∑
m=−ℓ

Yℓm(p̂)Yℓm(k̂) . (3.20)

The orthonormality of the spherical harmonics,∫
dΩ(k̂)Yℓm(p̂)Yℓm(k̂) = δℓℓ′δmm′ , (3.21)

allows one to project Eq. (3.19) on the partial wave of interest:

Imfℓ(s) =1
2

∫ 1

−1
dzImM(s, t(z))Pℓ(z)

=
∑

n

λ1/2(s,m2
n1
,m2

n2
)

16πs fni
ℓ ffn∗

ℓ . (3.22)

3.3 Watson’s theorem

An interesting conclusion can be drawn for the amplitude partial wave expansion if only purely elastic
final state scattering is considered. Let us write the partial wave expansion of the process f → f as

Mff (s, z) =
∑

ℓ

(2ℓ+ 1)tℓ(s)Pℓ(z) . (3.23)

Then, assuming |f⟩ to be the only intermediate state in the sum of Eq. (3.22), the imaginary part of a
given partial wave is reduced to

Imfℓ(s) = λ1/2(s,m2
3,m

2
4)

16πs fℓ(s)t∗ℓ (s) . (3.24)

where m3 and m4 are the masses of the two particles composing the state |f⟩.
The imaginary part of the partial wave must be a real quantity which means that the imaginary part of

the product fℓ(s)t∗ℓ (s) must vanish exactly. By writing the partial waves in a complex exponential form

fℓ(s) =|fℓ(s)|eiδf (s) ,

tℓ(s) =|tℓ(s)|eiδt(s) , (3.25)

the requirement that Imfℓ(s) must be a real quantity implies that δf (s) must be identical to the phase
δt(s) up to integer factors of π. This is only true in the limit of purely elastic rescattering and below the
inelastic threshold. At higher energies, inelasticities must be accounted for as corrections to this relation.
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3.4 Cutting rules

A Feynman diagram yields an imaginary part for M only when the virtual particles in the diagram go on–
shell. For our present purposes, let us define M by the Feynman rules for perturbation theory. This allows
us to consider M(s) as an analytic function of the complex variable s = E2

CM, even though S–matrix
elements are defined only for external particles with real momenta. The appearance of an imaginary part
of M(s) always requires a branch cut singularity. Let s0 be the threshold energy for production of the
lightest multiparticle state. For real s below s0, the intermediate state cannot go on–shell, so M(s) is
real. Thus, for real s < s0, we have the identity

M(s) = [M(s∗)]∗ . (3.26)

which is exactly the Schwarz reflection principle: if Γ is a finite segment of the real axis and D a domain
of the complex z–plane whose intersection with the real axis is Γ than any function f(z) which is analytic
in D and for which Imf(z) = 0 on Γ must satisfy the equation

f(z∗) = f∗(z) , (3.27)

whenever z and z∗ both belong to D. f(z) is said to be a real analytic function in D.

Each side of Eq. (3.26) is an analytic function of s, so it can be analytically continued to the entire
complex s plane. In particular, near the real axis for s > s0 we get

ReM(s+ iϵ) = ReM(s− iϵ) ,
ImM(s+ iϵ) = −ImM(s− iϵ) . (3.28)

There is a branch cut across the real axis, starting at the threshold energy s0; the discontinuity across the
cut is

DiscM(s) = 2iImM(s+ iϵ) . (3.29)

It is possible to prove that the discontinuities arising from a loop diagram give precisely the imaginary part
required by Eq. (3.9). Cutkosky showed that the discontinuity of a Feynman diagram across its branch
cut is always given by a simple set of cutting rules [140]:

∗ cut through the diagram in any way that can put all the cut propagators on–shell without violating
momentum conservation,

∗ for each cut, replace 1
p2−m2+iϵ → −2πiδ

(
p2 −m2) and then perform the loop integrals,

∗ sum over all cuts.

It is important to notice that cuts are directional in the sense that cut particles should have positive energy
when flowing from the left to the right side of the diagram.

3.5 Dispersion relations

Let us consider the amplitude T (s, t, u) of the process described in Ch. 3.2 for some fixed real value of
t [141], but now we also set mi = m. According to the principle of maximal analyticity, the amplitude
is analytic in the whole complex plane, except for the singularities originating from the unitarity relation.
From Eq. (3.10), Im T (s, t, u) will be non–zero along the part of the real s–axis from 4m2 to +∞. We
also suppose that the energy spectrum in the u–channel is the same as that in s, which, in terms of s and
for real values of t, this is the part of the real s–axis from s = −∞ to s = −t. Thus, unitarity requires that
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Figure 3.1: Contour of integration in the complex s-plane

on the parts of the real s–axis from −∞ to −t and from 4m2 to +∞, Im T (s, t, u) must be non–zero.
From the Schwarz reflection principle in Eq. (3.27), if T (s, t, u) has to be analytic in a domain extending
both sides of the real s–axis and including the segment of the s–axis on which Im T (s, t, u) is zero, then
Im T (s, t, u) must satisfy

T (s∗, t) = T ∗(s, t) , (3.30)

provided s and s∗ both lie inside the domain of analyticity in s. For a physical process s, t and u will
all have real values. The convention adopted to specify the physical amplitude is to give a small positive
imaginary part ϵ to whichever of the variables s, t and u is associated with the energy of the physical
process and then let ϵ tend to zero. Thus the physical amplitude for an s–channel process is the value
of the amplitude T (s, t, u) just above the cut in the s–plane. Since T (s, t, u) is defined in a completely
symmetric way, it can be continued from one physical region into that for crossed processes thanks to
analyticity.

3.5.1 Single variable dispersion relations

Let s1 be some fixed point in the s–plane and consider the following function of s

F1(s, s1) ≡ f(s)
(s− s1) . (3.31)

For convenience of notation and to emphasize that T (s, t) is a function of s with t fixed, we have written
T (s, t) as f(s). The function F1(s, s1) has the same singularities as f(s) with an additional pole, whose
residue is f(s1) at s1. By considering the contour in Fig. 3.1 and by applying the Cauchy’s theorem, we
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can write ∫
C

ds
f(s)
s− s1

= 2πif(s1) . (3.32)

The contour C may be separated into two parts, a circle of radius R with center at s = 0 and the
remainder which is made up of lines parallel to and close to the cuts on the real axis. If we suppose that
the contribution from the circle tends to zero, which is the case if |f(s)| → 0 for |s| → ∞, Eq. (3.32) can
be written as ∫ −t

−∞
ds

Imf(s)
s− s1

+
∫ ∞

4m2
ds

Imf(s)
s− s1

= πf(s1) , (3.33)

where for real values of s, Imf(s) ≡ Imf(s+ iϵ) = 1
2i [f(s+ iϵ) − f(s− iϵ)]. Since f(s) is only defined

above or below the axis, we must compute it at s+ iϵ and by using the relation

1
s′ − s± iϵ

= P 1
s′ − s

∓ iπδ(s′ − s) , (3.34)

we obtain [141]

Ref(s) = 1
π

P
∫ ∞

4m2
ds′ Imf(s′)

s′ − s
+ 1
π

∫ −t

−∞
ds′ Imf(s′)

s′ − s
, (3.35)

where P denotes the principal value defined by

P
∫ ∞

4m2

Imf(s′)
s′ − s

ds′ ≡ lim
δ→0+

{∫ s−δ

4m2
ds′ Imf(s′)

s′ − s
+
∫ ∞

s+δ

ds′ Imf(s′)
s′ − s

}
. (3.36)

A relation of the type of Eq. (3.35) is usually referred to as a dispersion relation. Remember that f(s) is
just the amplitude T (s, t) for some fixed value of t.

3.5.2 Subtraction in dispersion relations

If |f(s)| does not tend to zero sufficiently fast with increasing |s|, we cannot use the procedure adopted
above to obtain a dispersion relation. However it is still possible to write down a dispersion relation similar
to Eq. (3.35) if we suppose that |s−1f(s)| → 0 like some negative power of s. Then we define

F2(s′; s, s1) ≡ f(s′)
(s′ − s)(s′ − s1) , (3.37)

where s1 does not lie on either of the two cuts or coincide with either of the poles. Regarding F2(s′; s, s1)
as a function of s′ we see that it possesses the same singularities of f(s′) and in addition two simple poles
at s and s1. The difference here from the unsubtracted dispersion relation is that, in order to determine
the function Ref(s), the value of the amplitude at the fixed point s1, usually called the subtraction point,
is needed. We then obtain the following dispersion relation:

Ref(s) = f(s1) + s− s1

π
P
∫ ∞

4m2
ds′ Imf(s′)

(s′ − s1)(s′ − s) + s− s1

π

∫ −t

−∞
ds′ Imf(s′)

(s′ − s1)(s′ − s) . (3.38)

which is written for real s > −t. For real s < −t, the second of the two integrals would have to be
written as a principal value integral instead of the first and, of course, for −t < s < 4m2 the P sign is
not necessary for either integral. A dispersion relation of the form shown in Eq. (3.38) is called a once–
subtracted dispersion relation. In Eq. (3.38), it has been assumed that s1 does not lie on either of the two
cuts but, since this dispersion relation will describe physical quantities, the subtraction point must lie in
the physical region, i.e., on one of the two cuts. Of course f(s) is not defined actually on the cut, so we
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must specify whether we mean the value just above or just below the cut. Since f(s1) is to be a physical
amplitude, and supposing that it has to correspond to an s–channel process, we choose the subtraction
point to be s1 + iϵ, where s1 is real and greater then 4m2 while ϵ is small and positive. Because

1
s′ − s1 − iϵ

= P 1
s′ − s1

+ iπδ(s′ − s1) ,

1
s′ − s− iϵ

= P 1
s′ − s

+ iπδ(s′ − s) , (3.39)

we see that

s− s1

π

∫ ∞

4m2
ds′ Im f(s′)

(s′ − s1)(s′ − s) =i[Im f(s) − Im f(s1)] + s− s1

π
P
∫ ∞

4m2
ds′ Im f(s′)

(s′ − s1)(s′ − s)
(3.40)

where P, in this case, means that a principal value of the integral is to be taken at each of the two poles
s and s1. So when the subtraction point s1 + iϵ lies just above the right–hand cut, we obtain [141]

Ref(s) = Ref(s1) + s− s1

π
P
∫ ∞

4m2
ds′ Imf(s′)

(s′ − s1)(s′ − s) + s− s1

π

∫ −t

−∞
ds′ Imf(s′)

(s′ − s1)(s′ − s) . (3.41)

A particularly important choice is to take the physical threshold as the subtraction point, s1 = 4m2. Than
it is no longer clear what the principal value of the integral at s1 means. The procedure that has to be
adopted in this case is to define the principal value integral at s1 = 4m2 as the limit, as s1 approaches
4m2 from above, of the principal value integral at s1:

s− 4m2

π
lim

s1→4m2+
P
∫ ∞

4m2
ds′ Imf(s′)

(s′ − s1)(s′ − s) . (3.42)

3.5.3 Double variable dispersion relations–the Mandelstam representation

Let us consider the elastic scattering of spin zero particles of equal mass m and let us assume that unsub-
tracted dispersion relations are meaningful. To display the symmetry between the s– and the u–channels
we rewrite this relation in the form

T (s, t) = 1
π

∫ ∞

4m2
ds′ Im T (s′, t)

s′ − s
+ 1
π

∫ ∞

4m2
du′ Im T (t, u′)

u′ − u
, (3.43)

where u = 4m2 − s − t, for a fixed value of t. The dependence of the two integral terms on t comes
only through the numerators Im T (s′, t) and so the problem becomes that of finding the t–dependence
of Im T (s′, t). In the s–channel physical region, i.e., for real values of s and t satisfying s ≥ 4m2

and 0 ≥ t ≥ −s + 4m2, Im T (s′, t) is in fact the imaginary part of the amplitude T (s, t) and is a
real function. As we move away from the s–channel physical region one can no longer assume that the
continued function is still the imaginary part of the amplitude T (s, t) and in fact it will soon become
complex. So we shall write [141]

T (s, t) = 1
π

∫ ∞

4m2
ds′Ds(s′, t)

s′ − s
+ 1
π

∫ ∞

4m2
du′Du(t, u′)

u′ − u
, (3.44)

where Ds(s, t) = 1
2i [T (s+ iϵ, t) − T (s− iϵ, t)] is the discontinuity across the s–channel cuts.

By applying unitarity in the s, t and u–channel and then by inserting intermediate states in the t–
and u– channels this leads to the definition of the double spectral functions ρst, ρsu and ρtu and to the
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result [141]

T (s, t) = 1
π2

∫ ∞

4m2
ds′
∫ ∞

b(s′)
dt′

ρst(s′, t′)
(s′ − s)(t′ − t)

+ 1
π2

∫ ∞

4m2
ds′
∫ ∞

b(s′)
du′ ρsu(s′, u′)

(s′ − s)(u′ − u) (3.45)

+ 1
π2

∫ ∞

4m2
dt′
∫ ∞

b(s′)
du′ ρtu(s′, u′)

(t′ − t)(u′ − u) ,

where the double discontinuity is defined as

ρst(s, t) ≡ 1
2i [Ds(s, t+ iϵ) −Ds(s, t− iϵ)] , (3.46)

and similarly for ρsu(s, u) and ρtu(t, u). This representation has been obtained by simply using elastic
unitarity and all the Cutkosky diagrams considered have been elastic in at least one channel. Clearly
above the inelastic threshold we will have additional contributions to the double spectral functions. Notice
that Eq. (3.45) involves the assumption that the amplitude has only those singularities that are required
by unitarity in each of the three channels and consequently we speak of maximum analyticity of the
amplitude.

3.6 Omnès–Muskhelishvili problem

As remarked in Sec. 3.3, in certain cases the phase of an amplitude can be obtained from the Watson
theorem. Let us define such an amplitude by F (s) and assume it is analytic on the whole complex plane,
except for a branch–cut on the positive real axis. The Omnès–Muskhelishvili method allows one to find
the most general solution of this function, provided that its phase is known on the cut. This method has
been developed by Omnès [142], based on a previous analysis by Muskhelishvili [143].

The solution to this problem is not unique. Provided that Ω(s) is a solution normalized at s = 0
(Ω(0) = 1), for any function P (s) analytic on the whole complex plane, F (s) = P (s)Ω(s) is also a
solution. One thus needs to add further constraints on F (s) to fix P (s). Let us assume that the cut starts
at some branch–point sthr > 0. The phase along this cut is given by

Arg(Ω(s)) = δ(s) , s ∈ [sthr,∞] . (3.47)

There are two different ways to calculate the discontinuity of Ω(s) on the upper edge of the cut. The first
one is to use the formal definition

Disc(Ω(s)) = Ω(s+ iϵ) − Ω(s− iϵ) . (3.48)

We can also use the direct relation between the discontinuity and the imaginary part of the amplitude
along the cut. Moreover, our knowledge of the phase implies that

Disc(Ω(s)) = 2i|Ω(s+ iϵ)| sin δ(s) = 2iΩ(s+ iϵ)e−iδ(s) sin δ(s)

= Ω(s+ iϵ)e−iδ(s)
(
eiδ(s) − e−iδ(s)

)
= Ω(s+ iϵ)

(
1 − e−2iδ(s)

)
. (3.49)

By combining the two equations we get

Disc(log Ω(s)) = log Ω(s+ iϵ) − log Ω(s− iϵ) = 2iδ(s) . (3.50)
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We assume that the phase converges asymptotically to a multiple of π: δ(s) −−−→
s→∞

απ =: δ(∞). Of

course, this is an approximation and one could also use an incomplete Omnès–Muskhelishvili method
[144, 145] to get closer to the reality. However, this goes behind the scope of this thesis. This assumption
allows one to write Ω(s) as a once–subtracted dispersive integral. The subtraction constant is fixed by
the normalization condition Ω(0) = 1:

Ω(s) = exp
{
s

π

∫ ∞

sthr

ds′ δ(s′)
s′(s′ − s)

}
. (3.51)

In order to determine the function P (s), we need to know more about the asymptotic behavior of Ω(s).
To that end, we write

Ω(s) = exp
{
s

π

∫ ∞

sthr

ds′ δ(s′) − δ(s) + δ(s)
s′(s′ − s)

}
= exp

{
s

π

∫ ∞

sthr

ds′ δ(s′) − δ(s)
s′(s′ − s) + δ(s)

π
log sthr

s− sthr
+ iδ(s)

}
(3.52)

s→∞−−−→ exp
{

− 1
π

∫ ∞

sthr

ds′ δ(s′) − απ

s′ + α log sthr

s
+ iαπ

}
∝
(sthr

s

)α

.

Hence, the asymptotic limit of the phase determines the asymptotic behavior of the Omnès solution. For
instance, in the case of meson form factors, the Brodsky–Farrar counting rule states that

F (s)
s→∞
≲

C

s log sν
, ν > 0 . (3.53)

In this case, the only analytic function P (s) that grows slower than exponentially in s is a polynomial.

This method plays a central role in the dispersive definition of the pion vector form factor [102]. In the
isospin limit, FV

π (s) is an analytic function of s, apart from a branch cut in the complex s–plane that lies
on the real axis, s ∈ [4M2

π ,∞), and is dictated by unitarity. The form factor is real on the real axis below
the branch point 4M2

π , hence it fulfills the Schwarz reflection principle. The Omnès function alone, with
isospin I = 1, is the solution for the VFF in the isospin limit and disregarding inelastic contribution to
the unitarity relation:

FV
π (s) = Ω1

1(s) = exp
{
s

π

∫ ∞

sthr

ds′ δ1
1(s′)

s′(s′ − s)

}
. (3.54)

where δ1
1(s) is the isospin I = 1 elastic ππ phase shift in the isospin–symmetric limit.

Once the isospin–breaking and inelastic contributions are switched on, the pion VFF can be written
as a product of three functions

FV
π (s) = Ω1

1(s)Gω(s)GN
in (s) , (3.55)

where the factorGω accounts for ρ−ωmixing, the most important isospin–breaking effect, which becomes
enhanced by the small mass difference between the ρ and ω resonances, while GN

in takes into account all
further inelastic contributions to the unitarity relation (see [102] for further details). However the ρ − ω

mixing contribution is not the only isospin–breaking effect entering the pion VFF. Corrections due to
the charged–neutral pion mass difference or electromagnetic effects are equally important and enter the
computation of the elastic ππ phase shift δ(s). In particular, the contribution due to the charged–neutral
pion mass difference will be analyzed in the following.



Chapter 4

Chiral Perturbation Theory

Chiral Perturbation Theory (χPT ) can be seen as the low–energy limit of the Standard Model or, to be
more precise, the effective quantum field theory describing hadronic interactions according to the SM,
below the breaking scale of chiral symmetry (E ≪ Λχ ∼1 GeV). This theory was founded long time ago
by the pioneering works of Weinberg [146] and Gasser and Leutwyler [147, 148]. Nowadays χPT is a
well–known theory and it allows one to perform loop calculations in the mesonic and baryonic sector at
low energy with a very high precision. Moreover the original formulation has been successfully extended
in several directions, including heavy quark fields, bound–state dynamics, non–zero temperature effects,
etc. In this chapter we will briefly review the properties of χPT and how it is built and then we will focus
our attention to its application to the meson fields.

4.1 QCD Lagrangian

Quantum Chromo Dynamics (QCD) is the gauge theory of the strong interactions [149–151], i.e., quarks
and gluons interactions, with color SU(3) as the underlying gauge group (for the basic remarks of the
SU(3) group see App. B). Quarks are spin–1/2 fermions with six different flavors in addition to their
three possible colors. Regarding the so–called current–quark–mass values of the light quarks, one should
view the quark mass terms merely as the symmetry breaking parameters with their magnitude providing
a measure for the extent to which chiral symmetry is broken [152].

The QCD Lagrangian exhibits a global SU(3)L ×SU(3)R ×U(1)V ×U(1)A symmetry, where U(1)V

is exactly conserved, its generator is the baryonic number and it survives also in the case of non–vanishing
quark masses,G = SU(3)L×SU(3)R is the group of chiral transformation whileU(1)A is not a symmetry
at the quantum level due to the Abelian anomaly [153–155], and it reads [156, 157]

LQCD =
∑

f=u,d,s,c,b,t

q̄f (i /D −mf )qf − 1
4Gµν,aGµν,a , (4.1)

where Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,cAν,c and

Dµqf =
(
∂µ − ig

8∑
a=1

λC
a

2 Aµ,a

)
qf , (4.2)

where λa are the Gell–Mann matrices listed in App. B, while the superscript C indicates the action in

30
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color space. The field gauge transformations are

qf → q′
f = exp

[
−i

8∑
a=1

Θa(x)λ
C
a

2

]
qf = U [g(x)] qf , (4.3)

λC
a

2 Aµ,a(x) → U [g(x)]λ
C
a

2 Aµ,a(x)U†[g(x)] − i

g
∂µU [g(x)]U†[g(x)] , (4.4)

Gµν ≡ λC
a

2 Gµν,a → U [g(x)]GµνU
†[g(x)] . (4.5)

The six quark flavors are commonly divided into the three light quarks u, d and s and the three heavy
flavors c, b and t [158] mu = 2.16 MeV

md = 4.70 MeV
ms = 93.5 MeV

 ≪ 1 GeV ≤

 mc = 1.273 GeV
mb = 4.183 GeV
mt = 172.56 GeV

 , (4.6)

where the scale of 1 GeV is associated with the masses of the lightest hadrons containing light quarks,
e.g. mρ = 770 MeV, which are not Goldstone bosons resulting from spontaneous symmetry breaking.
The scale associated with spontaneous symmetry breaking, 4πFπ ∼ 1170 MeV, is of the same order of
magnitude [159–161].

4.2 Chiral Symmetry

The interactions between quarks and gluons are highly non perturbative at energies below the breaking
scale of chiral symmetry. This makes very difficult any description of the low–energy hadronic world in
terms of partonic degrees of freedom. On the other hand, the spectrum of the theory at low energies
contains only the octet of the Goldstone bosons resulting from spontaneous symmetry breaking: π, K
and η. Moreover, from an experimental point of view, at very low energies these pseudoscalar mesons
interact weakly, both among themselves and with nucleons. Then QCD can be treated perturbatively
even at low energies, if a suitable transformation of degrees of freedom is performed.

By introducing projection operators PR = 1
2 (1 + γ5) and PL = 1

2 (1 − γ5), the quark fields can be
written as qR = PRq and qL = PLq and the Lagrangian in the chiral limit ({mu, md, ms} →0) becomes

L0
QCD =

∑
l=u,d,s

(q̄R,li /DqR,l + q̄L,li /DqL,l) − 1
4Gµν,aGµν,a . (4.7)

Due to flavor independence of the covariant derivative, L0
QCD is invariant under uL

dL

sL

 → UL

 uL

dL

sL

 = exp
(

−i
8∑

a=1
ΘL

a

λa

2

)
e−iΘL

 uL

dL

sL

 ,

 uR

dR

sR

 → UR

 uR

dR

sR

 = exp
(

−i
8∑

a=1
ΘR

a

λa

2

)
e−iΘR

 uL

dL

sL

 . (4.8)

It is now possible to calculate the variation of the QCD Lagrangian under the infinitesimal local form of
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Eq. (4.8) [162]

δL0
QCD = q̄R

( 8∑
a=1

∂µΘR
a

λa

2 + ∂µΘR

)
γµqR + q̄L

( 8∑
a=1

∂µΘL
a

λa

2 + ∂µΘL

)
γµqL , (4.9)

from which, thanks to the Noether’s theorem, it is possible to obtain the conserved currents associated to
the transformations of the left–handed or right–handed quarks

Lµ,a = q̄Lγ
µλ

a

2 qL, ∂µL
µ,a = 0 ,

Rµ,a = q̄Rγ
µλ

a

2 qR, ∂µR
µ,a = 0 . (4.10)

The eight currents Lµ,a transform under SU(3)L × SU(3)R as an (8, 1) multiplet, i.e., octet and singlet
under transformations of the left– and right–handed fields, respectively. Similarly the right–handed cur-
rents transform as a (1, 8) multiplet under SU(3)L × SU(3)R. Instead of this chiral currents, one often
uses linear combinations

V µ,a = Rµ,a + Lµ,a = q̄γµλ
a

2 q ,

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2 q . (4.11)

There are also a conserved singlet vector current associated to a transformation of all left–handed and
right–handed quark fields by the same phase

V µ = q̄Rγ
µqR + q̄Lγ

µqL = q̄γµq , (4.12)

and a single axial–vector current from a transformation of all left–handed quark fields with one phase
and all right–handed with the opposite phase

Aµ = q̄Rγ
µqR − q̄Lγ

µqL = q̄γµγ5q . (4.13)

The invariance of L0
QCD under global SU(3)L × SU(3)R × U(1)V transformations implies that also the

QCD Hamilton operator in the chiral limit satisfy the same symmetry. We can define the charge operator
as usual

Qa
L(t) =

∫
d3xq†

L(x, t)λ
a

2 qL(x, t) a = 1, ...8 ,

Qa
R(t) =

∫
d3xq†

R(x, t)λ
a

2 qR(x, t) a = 1, ...8 , (4.14)

QV (t) =
∫
d3xq†(x, t)λ

a

2 q(x, t) ,

which satisfy the following commutation relations[
Qa

L, Q
b
L

]
= ifabcQ

c
L ,[

Qa
R, Q

b
R

]
= ifabcQ

c
R , (4.15)

while all the other commutator relations vanish.
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4.2.1 Spontaneous Symmetry Breaking

There is evidence, both from phenomenology and from theory that the chiral symmetry is spontaneously
broken [163]:

∗ absence of parity doublets in the hadron spectrum;

∗ the Nf − 1 pseudoscalar mesons are by far the lightest hadrons;

∗ the vector and axial–vector spectral functions are quite different;

∗ the anomaly matching conditions [164–166] together with confinement require the spontaneous
breaking of the chiral symmetry group for Nf ≥ 3;

∗ in vector–like gauge theories like QCD, vector symmetries like the diagonal subgroup SU(3)V

remain unbroken [167, 168];

∗ there is evidence from lattice gauge theories for a non–vanishing quark condensate.

Considering all these arguments, it is clear that the chiral symmetry G is spontaneously broken to the
vectorial subgroup H = SU(Nf )V . If we consider the vector charges Qa

V = Qa
R + Qa

L which satisfy[
Qa

R +Qa
L, Q

b
R +Qb

L

]
= ifabcQ

c
V , the ground state is necessarily invariant under SU(3)V × U(1)V

[167, 168] in the chiral limit , i.e., the eight vector charges Qa
V as well as the baryon number operator

QV /3 annihilate the ground state
Qa

V |0⟩ = QV |0⟩ = 0 . (4.16)

We now consider the linear combinations Qa
A = Qa

R − Qa
L satisfying

[
Qa

A, Q
b
A

]
= ifabcQ

c
V and[

Qa
A, Q

b
V

]
= ifabcQ

c
A. Since the parity doubling is not observed for the low–lying states, one assumes

that the Qa
A do not annihilate the ground state

Qa
A|0⟩ ̸= 0 , (4.17)

i.e., the ground state of QCD is not invariant under axial transformations. According to Goldstone’s
theorem [169–173], to each axial generator Qa

A, which does not annihilate the ground state, corresponds
a massless Goldstone boson field ϕa(x) with spin 0, whose symmetry properties are tightly connected to
the generator in question. The Goldstone bosons have the same transformation behavior under parity,
ϕa(x, t) → −ϕa(−x, t), i.e., they are pseudoscalars and transform under subgroup H , which leaves the
vacuum invariant, as an octet [

Qa
V , ϕ

b(x)
]

= ifabcϕ
c(x) . (4.18)

From this discussion it is clear that the operator responsible for the spontaneous chiral symmetry breaking
in QCD must be a color–singlet, pseudoscalar quark–gluon operator:

Pa(x) = iq̄(x)γ5λaq(x) , a = 1, ...8 , (4.19)

where, by using (i)2 [γ5
λa

2 , γ0γ5λa

]
= λ2

aγ0, we obtain

i [Qa
A(t), Pa(y)] =


ūu+ d̄d a = 1, 2, 3
ūu+ s̄s a = 4, 5
d̄d+ s̄s a = 6, 7
1
3 (ūu+ d̄d+ 4s̄s) a = 8

. (4.20)
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We evaluate Eq. (4.20) for a ground state which is invariant under SU(3)V , i.e., ⟨0|ūu|0⟩ = ⟨0|d̄d|0⟩ =
⟨0|s̄s|0⟩, and by assuming a non–vanishing singlet scalar quark condensate (⟨0|q̄q|0⟩ = ⟨q̄q⟩ ̸= 0)

⟨0|i [Qa
A(t), Pa(y)] |0⟩ = 2

3 ⟨q̄q⟩ , a = 1, ..., 8 . (4.21)

By inserting a complete set of states into the commutator of Eq. (4.21), both the pseudoscalar density
Pa(y) as well as the axial charge operators Qa

A must have a non–vanishing matrix element between the
vacuum and massless one–particle states |ϕb⟩. In particular, because of Lorentz covariance, the matrix
element of the axial–vector current operator between the vacuum and these massless states appropriately
normalized, can be written as

⟨0|Aa
µ(0)|ϕb(p)⟩ = ipµFδ

ab , (4.22)

where F ≈ 93 MeV denotes the decay constant of the Goldstone bosons in the chiral limit. Assuming
Qa

A|0⟩ ̸= 0, a non–zero value of F is a necessary and sufficient condition for the spontaneous chiral
symmetry breaking. On the other hand, because of Eq. (4.21), a non–vanishing scalar quark condensate
⟨q̄q⟩ is a sufficient (but not a necessary) condition for a spontaneous symmetry breakdown in QCD.

4.2.2 Explicit Symmetry Breaking

The finite u–, d– and s–quark masses in the QCD Lagrangian result in non–zero divergences of the
symmetry currents. As a consequence, the charge operators are in general no longer time independent.
In order to study the explicit breaking of the chiral symmetry let us consider the quark–mass matrix of
the three light quarks and project it on the nine λ matrices [174]

M =

mu 0 0
0 md 0
0 0 ms

 = mu +md +ms√
6

λ0 + (mu +md)/2 −ms√
3

λ8 + mu −md

2 λ3 . (4.23)

In particular, the quark mass term mixes left– and right– handed fields

LM = −q̄Mq = −(q̄RMqL + q̄LMqR) , (4.24)

which variation under the transformations of Eq. (4.8)

δLM = −i

[ 8∑
a=1

ΘR
a

(
q̄R
λa

2 MqL − q̄LM
λa

2 qR

)
+ ΘR(q̄RMqL + q̄LMqR)

8∑
a=1

ΘL
a

(
q̄L
λa

2 MqR − q̄RM
λa

2 qL

)
+ ΘL(q̄LMqR + q̄RMqL)

]
, (4.25)

gives rise to the following divergences

∂µV
µ,a = iq̄

[
M,

λa

2

]
q ,

∂µA
µ,a = iq̄

{
λa

2 ,M

}
γ5q , (4.26)

∂µV
µ = 0 ,

∂µA
µ = 2iq̄Mγ5q + 3g2

32π2 ϵµνρσGµν
a Gρσ

a , ϵ0,1,2,3 = 1 .
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4.2.3 Non–Linear Realization of Chiral Symmetry

Denoting by Vi the generators of H and by Ai the remaining generators of G, any element of G can
be unambiguously decomposed as g = eξiAieηiVi . The Goldstone boson fields are associated to the
coordinates ξi of the coset space G/H . In order to understand how these transform under G we consider
the action of a generic element g ∈ G on u(ξi) = eξiAi :

geξiAi = eξ′
i(g,ξ)Aieη′

i(g,ξ)Vi . (4.27)

This transformation provides a non–linear realization of the group G [175, 176]. This realization is not
linear since Vi’s and Ai’s do not commute but it becomes linear if restricted to the subgroup H :

h0e
ξiAi =

[
eη0

i VieξiAie−η0
i Vi

]
eη0

i Vi , h0 = eη0
i Vi ∈ H . (4.28)

In the specific case of chiral symmetry we have that if gR : u(ξi) → u(ξ′
i), gL : u(−ξi) = u(ξi)† → u(ξ′

i)†

and we can write

u(ξi)
G−→ gRu(ξi)h−1(g, ξi) = h(g, ξi)u(ξi)g−1

L ,

u(ξi)† G−→ gLu(ξi)†h−1(g, ξi) = h(g, ξi)u(ξi)†g−1
R , (4.29)

where h(g, ξi) = eη′(g,ξi)V .

4.3 Effective Lagrangians

Chiral perturbation theory provides a systematic method to discuss the consequences of the global flavor
symmetries of QCD at low energies by means of an effective field theory. The pseudoscalar mesons are
not only the lightest hadrons but also the (pseudo–) Goldstone bosons of the theory. In the chiral limit,
the interaction of Goldstone bosons become arbitrarily weak for decreasing energy, no matter how strong
the underlying interaction is. This is the basis for a systematic low–energy expansion with an effective
chiral Lagrangian that is organized in a derivative expansion.

4.3.1 QCD in the Presence of External Fields

Following [147, 148], we introduce into the QCD Lagrangian the couplings of nine vector currents and
the eight axial–vector currents as well as the scalar and pseudoscalar quark densities to external c–number
fields vµ(x), vµ

(s), a
µ(x), s(x) and p(x)

L = L0
QCD + q̄γµ

(
vµ + 1

3v
µ
(s) + γ5a

µ

)
q − q̄(s− iγ5p)q = L0

QCD + Lext , (4.30)

where the external fields are color–neutral, Hermitian 3×3 matrices

vµ =
8∑

a=1

λa

2 vµ
a , a

µ =
8∑

a=1

λa

2 aµ
a , s =

8∑
a=0

λasa, p =
8∑

a=0
λapa . (4.31)

The big advantage is that one can perform all calculations with a (locally) SU(3)L × SU(3)R invari-
ant effective Lagrangian in a manifestly chiral invariant manner. Only at the very end, one inserts the
appropriate external fields to extract the Green functions of quark currents or matrix elements of inter-
est. The ordinary three flavor QCD Lagrangian is recovered by setting vµ = vµ

(s) = aµ = p = 0 and



36 Chapter 4. Chiral Perturbation Theory

s = diag(mu,md,ms). If one defines the generating functional

exp(iZ[v, a, s, p]) = ⟨0|T exp
[
i

∫
d4xLext(x)

]
|0⟩ , (4.32)

then any Green function consisting of the time–ordered product of color–neutral, Hermitian quadratic
forms can be obtained from Eq. (4.32) through a functional derivative with respect to the external fields.
The quark fields are operators in the Heisenberg picture and have to satisfy the equation of motion and
the canonical anti–commutation relations. The generating functional is related to the vacuum–to–vacuum
transition amplitude in the presence of external fields [147, 148]

exp[iZ(v, a, s, p)] = ⟨0out|0in⟩v,a,p,s . (4.33)

Now we want to study the transformation properties of the external fields under local SU(3)L×SU(3)R×
U(1)V , therefore we write Eq. (4.30) in terms of the left– and right– handed quark fields and we introduce
the fields rµ and lµ such as

vµ = 1
2(rµ + lµ) and aµ = 1

2(rµ − lµ) . (4.34)

The external fields then are subjected to the transformations

rµ → VRrµV
†

R + iVR∂µV
†

R ,

lµ → VLlµV
†

L + iVL∂µV
†

L ,

v(s)
µ → v(s)

µ − ∂µΘ , (4.35)

s+ ip → VR(s+ ip)V †
L ,

s− ip → VL(s− ip)V †
R .

4.3.2 Lowest–Order Effective Lagrangian

The choice of coordinates in the coset space G/H is not unique but, in any given set of coordinates,
we can introduce a field u(ξi) transforming as in Eq. (4.29) [175, 176]. The freedom in the choice of
coordinates implies that the parametrization of u in terms of the pseudoscalar meson fields is not unique.
In the following we shall adopt the exponential parametrization in the 3 × 3 flavor space, defined by

u2(x) = U(x) = exp
(
i
ϕ(x)
F

)
, ϕ(x) =

8∑
a=1

λaϕa(x) ≡

π
0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K− √
2K0 − 2√

3η

 ,

(4.36)

where the parameter F is a dimensional constant that can be related to the decay constant of pseudoscalar
mesons. In the absence of external fields, we can only construct trivial operators in terms of u and u†,
without their derivatives. Once we have fixed the coupling constant in order to reproduce the correct
kinetic term of spinless fields, the most general chiral invariant effective Lagrangian density with the
minimal number of derivatives reads [174]

Leff = F 2

4 ⟨∂µU∂
µU†⟩ , (4.37)
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where the notation ⟨· · · ⟩ indicates the trace of the matrices expression inside. This Lagrangian is the
chiral realization of L0

QCD at the lowest order in the derivative expansion and it is invariant under the
global SU(3)L × SU(3)R transformations

U 7→ RUL† ,

∂µ 7→ ∂µ

(
RUL†) = R∂µUL

† , (4.38)

U† 7→ LU†R† ,

∂µU
† 7→ L∂µU

†R† .

where L = exp
(
iΘL

a
λa

2
)

and R = exp
(
−iΘR

a
λa

2
)
. The global U(1)V invariance is trivially satisfied

because the Goldstone bosons have baryon number zero.

Now we want to study the vector and axial–vector currents associated with the globalSU(3)L×SU(3)R

symmetry of the effective Lagrangian. If we want to compute Jµ,a
L , we set ΘR

a = 0 and choose ΘL
a =

ΘL
a (x). Then to first order in ΘL

a we obtain

δLeff = F 2

4

〈
Ui∂µΘL

a

λa

2 ∂µU† + ∂µU

(
−i∂µΘL

a

λa

2 U†
)〉

= F 2

4 i∂µΘL
a ⟨λa∂µU

†U⟩ , (4.39)

where we used ∂µU
†U = −U†∂µU from differentiating U†U = 1. We then obtain an expression for the

left current and, with an equivalent procedure, for the right current:

Jµ,a
L = ∂δLeff

∂∂µΘL
a

= i
F 2

4 ⟨λa∂
µU†U⟩ , (4.40)

Jµ,a
R = ∂δLeff

∂∂µΘR
a

= −iF
2

4 ⟨λaU∂
µU†⟩ , (4.41)

and, from Eqs. (4.40) and (4.41), one can obtain the expression for the vector and axial–vector currents

Jµ,a
V = Jµ,a

R + Jµ,a
L = −iF

2

4 ⟨λa

[
U, ∂µU†]⟩ ,

Jµ,a
A = Jµ,a

R − Jµ,a
L = −iF

2

4 ⟨λa

{
U, ∂µU†}⟩ . (4.42)

Moreover, because of the symmetry of Leff under SU(3)L × SU(3)R, both vector and axial–vector cur-
rents are conserved (∂µJ

µ,a
V,A = 0).

So far we have assumed a perfect SU(3)L ×SU(3)R symmetry, but we know that an explicit symmetry
breaking may lead to finite masses of the Goldstone bosons (Sec. 4.2.2). AlthoughM is a constant matrix
and does not transform along with the quark fields, LM would be invariant if M transforms as [161]

M 7→ RML† . (4.43)

The most general Lagrangian L(U,M) invariant under Eqs. (4.38) and (4.43) and at lowest order in M
is

Ls.b. = F 2B

2 ⟨MU† + UM†⟩ , (4.44)

where it is possible to prove that the new parameter B is related to the chiral quark condensate. All this
analysis concerns the lowest–order effective Lagrangian which respects the global SU(3)L × SU(3)R

symmetry. However, the Ward identities originating in the global SU(3)L × SU(3)R symmetry of QCD
are obtained from a locally invariant generating functional involving a coupling to external fields. We want
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to approximate the generating functional ZQCD[v, a, s, p] by a sequence Z(2)
eff [v, a, s, p]+Z(4)

eff [v, a, s, p]+
· · · , where the effective generating functionals are obtained using the effective field theory. Therefore, we
need to promote the global symmetry of the effective Lagrangian to a local one and introduce a coupling
to the same external fields v, a, s and p in QCD. Let us define the covariant derivative as

DµU ≡ ∂µU − irµ + iUlµ 7→ VR(DµU)V †
L . (4.45)

Since the effective Lagrangian will ultimately contain arbitrarily high powers of derivatives we also need
the field strength tensors fL

µν and fR
µν corresponding to the gauge fields

fR
µν ≡ ∂µrν − ∂νrµ − i[rµ, rν ] ,
fL

µν ≡ ∂µlν − ∂ν lµ − i[lµ, lν ] , (4.46)

which are traceless. In the chiral counting scheme of chiral perturbation theory the elements are counted
as

U = O(p0) , DµU = O(p) , rµ, lµ = O(p) , fL,R
µν = O(p2) , χ = O(p2) . (4.47)

Then the most general locally invariant effective Lagrangian at lowest chiral order is given by

L(2) = F 2

4 ⟨DµU(DµU)†⟩ + F 2

4 ⟨χU† + Uχ†⟩ , (4.48)

where [147, 148]
χ ≡ 2B0(s+ ip) . (4.49)

L(2) is completely determined by chiral symmetry except for the couplings F and B which have to be
constrained from experimental data. By differentiating with respect to the external sources we find

⟨0|Jµ,a
A (x)|ϕb(p)⟩ = ⟨0| − F∂µϕa(x)|ϕb(p)⟩ = −F∂µe−ip·xδab = ipµFe−ip·xδab , (4.50)

3F 2B = −⟨q̄q⟩ , (4.51)

so that the connections between F and the pion decay constant Fπ, defined by ⟨0|q̄γµγ5q|π+(p)⟩ =
i
√

2Fπp
µ, and between B and the quark condensate are evident. While Fπ is experimentally known

from the process π+ → µ+ν, Fπ = 92.4 MeV, the quark condensate is not directly related to any
physical observable. It is the product B ×mq that can be related to the pseudoscalar meson masses:

M2
π = 2mB ,

M2
K = (m+ms)B , (4.52)

M2
η = 2

3B(m+ 2Ms) ,

where m = mu = md. These results plus the one in Eq. (4.51), are knows as the Gell–Mann, Oakes and
Renner relations [177]. Moreover the masses of Eq. (4.52) can be combined to obtained the Gell–Mann–
Okubo relation

4M2
K = 3M2

η +M2
π , (4.53)

which is independent of the value of B.
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4.3.3 Effective Lagrangians and Weinberg’s Power Counting Scheme

A perturbative description in terms of the most general effective Lagrangian containing all possible terms
compatible with assumed symmetry principles yields the most general S–matrix consistent with the funda-
mental principles of quantum field theory and the assumed symmetry principles [146]. Hence, one needs
some scheme to organize the effective Lagrangian and a systematic method of assessing the importance
of diagrams generated by the interaction terms of this Lagrangian when calculating a physical matrix
element. In the framework of mesonic chiral perturbation theory, the most general chiral Lagrangian de-
scribing the dynamics of the Goldstone bosons is organized as a string of terms with an increasing number
of derivatives and quark mass terms

Leff = L2 + L4 = L6 + · · · , (4.54)

where the subscripts refer to the order in the momentum and quark mass expansion. With such a counting
scheme, the chiral orders in the mesonic sector are always even [O(p2m)] because Lorentz indices of
derivatives always have to be contracted with either the metric tensor gµν or the Levi–Civita tensor ϵµνρσ

to generate scalars and the quark mass terms are counted as O(p2). Weinberg’s power counting scheme
[146] analyzes the behavior of a given diagram under a linear rescaling of all the external momenta,
pi 7→ tpi, and a quadratic rescaling of the light quark masses, mq 7→ t2mq. The chiral dimension D of a
given diagram with amplitude M(pi,mq) is defined by

M(tpi, t
2mq) = tDM(pi,mq) , (4.55)

and thus

D = 2 +
∞∑

n=1
2(n− 1)N2n + 2NL , (4.56)

where N2n is the number of vertices originating from L2n and NL is the number of independent loops.
While the external three–momenta can be made arbitrarily small (to a certain extent), the re–scaling of
the quark masses is a theoretical instrument only and loop diagrams are suppressed due to the term 2NL.

4.3.4 Chiral Lagrangian at O(p4)

The expression of the chiral Lagrangian at O(p4) was computed in [147, 148] and it reads

Lp4 =L1
[
⟨DµU(DµU)†⟩

]2 + L2⟨DµU(DνU)†⟩⟨DµU(DνU)†⟩
+ L3⟨DµU(DµU)†DνU(DνU)†⟩ + L4⟨DµU(DµU)†⟩⟨χU† + Uχ†⟩

+ L5⟨DµU(DµU)†(χU† + Uχ†)⟩ + L6
[
⟨χU† + Uχ†⟩

]2
+ L7

[
⟨χU† − Uχ†⟩

]2 + L8⟨Uχ†Uχ† + χU†χU†⟩ (4.57)

− iL9⟨fR
µνD

µU(DνU)† + fL
µν(DµU)†DνU⟩ + L10⟨UfL

µνU
†fµν

R ⟩
+H1⟨fR

µνf
µν
R + fL

µνf
µν
L ⟩ +H2⟨χχ†⟩ .

where ⟨· · · ⟩ denotes a trace in flavor space. The numerical values of the low–energy coupling constants
Li are not determined by chiral symmetry and they represent the inability to solve the dynamics of QCD
in the non–perturbative regime. So far they have either been fixed using empirical input [147,148,178] or
theoretically using QCD–inspired models [179–182], meson–resonance saturation [183–187] and lattice
QCD [188, 189].

The loop graphs with vertices from L(2) generate divergences, which are absorbed into the renormal-
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ization of the low energy constants of L(4):

Li = Lr
i + Γi

32π2R , i = 1, · · · , 10 , (4.58)

Hi = Hr
i + ∆i

32π2R , i = 1, 2 , (4.59)

where R is defined as
R = 2

d− 4 − [ln(4π) − γE + 1] , (4.60)

with d the number of space–time dimensions and γE the Euler–Mascheroni constant. Γi and ∆i are
constants and the renormalized coefficients Lr

i depend on the scale µ introduced by dimensional regular-
ization. Their values at two different scales are related by

Lr
i (µ2) = Lr

i (µ1) + γi

16π2 ln
(
µ1

µ2

)
. (4.61)

4.3.5 Chiral Lagrangian with photons and leptons

In order to describe the radiative corrections in QCD processes like the ππ–scattering or the τ± →
π±π0ντ processes, which are the goals of this thesis, we need to introduce the chiral Lagrangian involving
also photons and leptons. Starting from Eq. (4.36), the leading–order Lagrangian in SU(3) reads [190]

Leff = F 2
0
4 ⟨uµu

µ⟩ +
∑

ℓ

[
ℓ̄(i/∂ + e /A−mℓ)ℓ+ iν̄ℓL /∂νℓL

]
, (4.62)

where
uµ = i

[
u†

R(∂µ − irµ)uR − u†
L(∂µ − ilµ)uL

]
, (4.63)

with

uL/R = exp
(

∓ i

2F0

8∑
a=0

ϕaλa

)
, (4.64)

and the currents given by

lµ = vµ − aµ − eQem
L Aµ +

∑
ℓ

(
ℓ̄γµνℓLQ

w
L + ν̄ℓLγµℓQ

w†
L

)
,

rµ = vµ + aµ − eQem
R Aµ , (4.65)

in terms of the external vector and axial–vector currents vµ and aµ, and the flavor–space matrices

Qem
L,R → Qem = 1

3 diag(2,−1,−1) ,

Qw
L = −2

√
2GF

0 Vud Vus

0 0 0
0 0 0

 . (4.66)

The relevant counterterms of the radiative corrections to τ− → π−πντ originate from terms in the NLO
Lagrangians [190, 191]

Le2p2 = e2F0
2
{

1
2K1 ⟨(Q̂em

L )2 + (Q̂em
R )2⟩ ⟨uµu

µ⟩ +K2 ⟨Q̂em
L Q̂em

R ⟩ ⟨uµu
µ⟩
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−K3 [⟨Q̂em
L uµ⟩ ⟨Q̂em

L uµ⟩ + ⟨Q̂em
R uµ⟩ ⟨Q̂em

R uµ⟩] +K4 ⟨Q̂em
L uµ⟩ ⟨Q̂em

R uµ⟩
+K5 ⟨[(Q̂em

L )2 + (Q̂em
R )2]uµu

µ⟩ +K6 ⟨(Q̂em
L Q̂em

R + Q̂em
R Q̂em

L )uµu
µ⟩

+ 1
2K7 ⟨(Q̂em

L )2 + (Q̂em
R )2⟩ ⟨χ+⟩ +K8 ⟨Q̂em

L Q̂em
R ⟩ ⟨χ+⟩ (4.67)

+K9 ⟨[(Q̂em
L )2 + (Q̂em

R )2]χ+⟩ +K10 ⟨(Q̂em
L Q̂em

R + Q̂em
R Q̂em

L )χ+⟩
−K11 ⟨(Q̂em

L Q̂em
R − Q̂em

R Q̂em
L )χ−⟩

− iK12 ⟨[(∇̂µQ̂
em
L )Q̂em

L − Q̂em
L ∇̂µQ̂

em
L − (∇̂µQ̂

em
R )Q̂em

R + Q̂em
R ∇̂µQ̂

em
R ]uµ⟩

+K13 ⟨(∇̂µQ̂
em
L )(∇̂µQ̂em

R )⟩ +K14 ⟨(∇̂µQ̂
em
L )(∇̂µQ̂em

L ) + (∇̂µQ̂
em
R )(∇̂µQ̂em

R )⟩
}
,

and

Llept = e2
∑

ℓ

{
F0

2
[
X1ℓ̄γµνℓL⟨uµ{Q̂em

R , Q̂w
L }⟩ +X2ℓ̄γµνℓL⟨uµ[Q̂em

R , Q̂w
L ]⟩ +X3mℓℓ̄νℓL⟨Q̂w

L Q̂
em
R ⟩

+iX4ℓ̄γµνℓL⟨Q̂w
L ∇̂µQ̂em

L ⟩ +iX5ℓ̄γµνℓL⟨Q̂w
L ∇̂µQ̂em

R ⟩ + h.c.
]

(4.68)

+X6ℓ̄(i/∂ + e /A)ℓ +X7mℓℓ̄ℓ
}
,

where explicit chiral symmetry breaking is induced by

χ+ = u†
RχuL + u†

Lχ
†uR , (4.69)

with the substitution χ → 2B0Mquark, where Mquark is the (diagonal) quark mass matrix, and

∇̂µQ̂
em
L = u(DµQ

em
L )u† ,

∇̂µQ̂
em
R = u†(DµQ

em
L )u , (4.70)

utilizing the covariant derivative

DµQ
em
L = ∂µQ

em
L − i[lµ, Qem

L ] ,
DµQ

em
R = ∂µQ

em
R − i[rµ, Q

em
R ] . (4.71)

The low–energy constants in the Lagrangians of Eqs. (4.67) and (4.68) contain UV–divergences, which,
in dimensional regularization, can be separated from the UV–finite parts by

Ki = Kr
i (µ) + ΣiΛ(µ) , i ∈ {1, . . . , 14} , (4.72)

Xi = Xr
i (µ) + ΞiΛ(µ) , i ∈ {1, . . . , 8} , (4.73)

Λ(µ) = µd−4

16π2

{
1

d− 4 − 1
2 [ln 4π − γE + 1]

}
, (4.74)

where the coefficients Σi and Ξi can be found in [191] and [190], respectively.

4.4 Resonance contribution

From the point of view of chiral symmetry, vector, axial–vector, scalar and pseudoscalar mesons, or any
other meson resonances, do not show any particular importance and their presence is manifest indirectly
in the values of the low–energy constants Lr

i . We shall therefore investigate the chiral couplings of the
vector and axial–vector mesons to Goldstone bosons for the ρ meson couplings, i.e., not considering
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them as a gauge bosons of any kind. All resonances carry non–linear realizations of the chiral group
G = SU(3)L × SU(3)R depending on their transformation properties under the diagonal subgroup
SU(3)V [183, 184]. We are interested in resonances transforming as octets R and singlets R1 under
SU(3)V :

R
G−→ h(ψ)Rh(ψ)† , (4.75)

R1
G−→ R1 ,

with the usual matrix notation for the octet

R = 1√
2

8∑
i=1

λiR
i . (4.76)

The non–linear realization of G on the octet fieldR is local and we have to define the covariant derivative

▽µR = ∂µR+ [Γµ, R] , (4.77)

with
Γµ = 1

2
{
u† [∂µ − i (vµ + aµ)]u+ u [∂µ − i (vµ − aµ)]

}
, (4.78)

ensuring the proper transformation

▽µR
G−→ h(ψ)▽µh(ψ)† . (4.79)

We want to discuss the chiral couplings of the meson resonances of the type V (1−−), A(1++), S(0++)
and P (0++) to the pseudoscalar Goldstone fields and to do that we describe the relevant degrees of
freedom in terms of antisymmetric tensor fields [147, 148]. To determine the resonance exchange con-
tributions to the effective chiral Lagrangian we need the lowest order couplings in the chiral expansion
which are linear in the resonance fields. With the coset element u(ψ) defined by

u(ψ) G−→ gRu(ψ)h(ψ)† = h(ψ)u(ψ)g†
L , (4.80)

we obtain the following terms

Octet : uµ = iu†DµUu
† = u†

µ ,

uµuν ,

uµν = iu†DµDνUu
† , (4.81)

χ± = u†χu† ± uχ†u ,

fµν
± = uFµν

L u† ± u†Fµν
R u ,

Singlets : ⟨uµuν⟩ , ⟨uµν⟩ , ⟨χ±⟩ . (4.82)

Because of P and C invariance, it turns out that all the couplings linear in the fields V , A, S and P start
at order p2. All the resonance couplings can be included in the Lagrangian [183, 184]

Lres =
∑

R=V,A,S,P

[Lkin(R) + L2(R) + L4(R) + · · · ] , (4.83)
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with kinetic terms

Lkin(R) = −1
2 ⟨▽λRλµ▽νR

νµ − 1
2M

2
RRµνR

µν⟩ − 1
2∂

λR1,λµ∂νR
νµ
1 + 1

4M
2
R1
R1,µνR

µν
1 , (4.84)

for R = V, A and

Lkin(R) = 1
2 ⟨▽µR▽µR−M2

RR
2⟩ + 1

2
(
∂µR1∂µR1 −M2

R1
R2

1
)
, (4.85)

for R = S, P and with MR, MR1 the corresponding masses in the chiral limit. The interactions read

L2[V (1−−)] = FV

2
√

2
⟨Vµνf

µν
+ ⟩ = iGV√

2
⟨Vµνu

µuν⟩ ,

L2[A(1++)] = FA

2
√

2
⟨Aµνf

µν
− ⟩ , (4.86)

L2[S(0++)] = cd⟨Suµu
µ⟩ + cm⟨Sχ+⟩ + c̃dS1⟨uµu

µ⟩ + c̃mS1⟨χ+⟩ ,
L2[P (0−+)] = idm⟨Pχ−⟩ + id̃mP1⟨χ−⟩ .

We notice that for V and A only octets can couple whereas both octets and singlets appear for S and
P . Moreover there is no coupling that would induce the transitions V → Pγ at O(p2) in the chiral
expansion.



Chapter 5

Pion–pion Scattering

Pion–pion scattering is one of the simplest hadronic reactions that displays many key features of low–
energy QCD [25], most prominently approximate chiral symmetry, its spontaneous breaking, and the
explicit breaking due to finite up– and down–quark masses. Accordingly, the chiral symmetry constrains
the low–energy scattering amplitude, which can be systematically analyzed inχPT [146–148,192] and has
been worked out up to two loop order [193]. In addition, the ππ–scattering exhibits further remarkable
properties that extend beyond the low–energy region where the chiral expansion applies. In this chapter
we analyze the main properties of the ππ scattering amplitude and present explicit representations used
in the calculation.

5.1 Kinematics

Let us consider the pion–pion scattering process π(p1)π(p2) → π(p3)π(p4). Each pion can be described
by a four–vector pµ

i = (Ei,pi) and a mass Mπi , where i = 1, 2, 3, 4. In the isospin limit all the pions
have the same mass

p2
i = M2

π = E2
i + (pi)2 , i ∈ {1, 2, 3, 4} . (5.1)

The kinematic of the process can be expressed in terms of the Mandelstam variables:

s = (p1 + p2)2 = (p3 + p4)2 ,

t = (p1 − p3)2 = (p4 − p2)2 , (5.2)

u = (p1 − p4)2 = (p3 − p2)2 ,

which satisfy the relation

s+ t+ u =
4∑

i=1
pi =

4∑
i=1

M2
i , (5.3)

where the last equality holds if the pions are on–shell. Then the ππ–scattering amplitude depends on two
of the three Mandelstam variables and on the pion mass.

44
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5.2 Multipion states

In the isospin limit, the pions form an isospin triplet with total isospin I = 1 and its third component
I3 = −1, 0, 1. Using the notation |I, I3⟩ we get

|π+⟩ = |1, 1⟩ ,
|π0⟩ = |1, 0⟩ , (5.4)

|π−⟩ = |1,−1⟩ .

An alternative and more convenient basis is the one formed by three elements |πi⟩, i ∈ {1, 2, 3} so that
the physical basis can be rewritten as

|π+⟩ = 1√
2

(|π1⟩ + i|π2⟩) ,

|π0⟩ = |π3⟩ , (5.5)

|π−⟩ = 1√
2

(|π1⟩ − i|π2⟩) .

Once the third isospin component of each element of the basis is known, one can construct the two–
particle states by taking the direct products of two one–particle states |πiπj⟩ = |πi⟩ ⊗ |πj⟩. A product
of states |j1,m1⟩ ⊗ |j2,m2⟩ ≡ |j1, j2;m1,m2⟩ can be expressed in terms of the total isospin |J,M⟩
according to

|j1, j2;m1,m2⟩ =
∑
J,M

⟨J,M |j1, j2;m1,m2⟩|J,M⟩ , (5.6)

where ⟨J,M |j1, j2;m1,m2⟩ are known as the Clebsch–Gordan coefficients. Then we find

|π+π−⟩ = −
√

1
6 |2, 0⟩ −

√
1
2 |1, 0⟩ −

√
1
3 |0, 0⟩ ,

|π−π+⟩ = −
√

1
6 |2, 0⟩ +

√
1
2 |1, 0⟩ −

√
1
3 |0, 0⟩ ,

|π0π0⟩ = −
√

2
3 |2, 0⟩ −

√
1
3 |0, 0⟩ ,

|π+π0⟩ = −
√

1
2 |2, 1⟩ −

√
1
2 |1, 1⟩ ,

|π0π+⟩ = −
√

1
2 |2, 1⟩ +

√
1
2 |1, 1⟩ , (5.7)

|π−π0⟩ =
√

1
2 |2,−1⟩ −

√
1
2 |1,−1⟩ ,

|π0π−⟩ =
√

1
2 |2,−1⟩ +

√
1
2 |1,−1⟩ ,

|π−π−⟩ = |2,−2⟩ ,
|π+π+⟩ = |2, 2⟩ .
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5.3 Isospin amplitudes

Thanks to isospin conservation, a process can be described in terms of the so–called isospin amplitudes
T I(s, t, u). If we consider a scattering process a+ b → c+ d in the s–channel we get

⟨c; d|Ts|a; b⟩ =
∑
I,J

⟨c; d|I,m⟩⟨I,m|Ts|J,m⟩⟨J,m|a; b⟩

= (2π)4δ4

(∑
i

pi

)
cI ∗

c;dc
J
a;bT

I(s, t, u) , (5.8)

where cJ
a;b = ⟨J,m|a; b⟩ identify the Clebsch–Gordan coefficients while Ts indicates the T–matrix in the

s–channel. Then the physical ππ–scattering amplitude can be written in terms of the isospin amplitude

T c(s, t, u) := T (π+π− → π+π−) = 1
6T

2 + 1
2T

1 + 1
3T

0 ,

T x(s, t, u) := T (π+π− → π0π0) = −1
3T

2 + 1
3T

0 , (5.9)

Tn(s, t, u) := T (π0π0 → π0π0) = 2
3T

2 + 1
3T

0 .

There are two further amplitudes, which are related by crossing transformations to the previous ones

T++(s, t, u) := T (π+π+ → π+π+) = T c(t, u, s) ,
T+0(s, t, u) := T (π+π0 → π+π0) = T x(t, u, s) . (5.10)

By using an alternative convention for the isospin basis, the ππ–scattering amplitude can be written as

⟨πa(p1)πb(p2)|T |πc(p3)πd(p4)⟩ = A(s, t, u)δabδcd +B(s, t, u)δacδbd + C(s, t, u)δadδbc , (5.11)

where a, b, c, d ∈ {1, 2, 3}. An important feature of the isospin amplitude for the pion–pion scattering
process is the crossing symmetry which is due to the fact that in the isospin limit, all of the three physical
pions have the same mass. So we obtain the following relations

B(s, t, u) = A(t, s, u) , C(s, t, u) = A(u, t, s) . (5.12)

Thanks to Eq. (5.5) we can relate the amplitudesA(s, t, u), B(s, t, u) and C(s, t, u) to physical processes:

⟨π+π−|π0π0⟩ = A(s, t, u) ,
⟨π+π0|π+π0⟩ = B(s, t, u) , (5.13)

⟨π0π−|π0π−⟩ = C(s, t, u) ,

and, using Eq. (5.9), we can relate them to the isospin amplitudes:

T 0(s, t) = 3A(s, t, u) +A(t, u, s) +A(u, s, t) ,
T 1(s, t) = A(t, u, s) −A(u, s, t) , (5.14)

T 2(s, t) = A(t, u, s) +A(u, s, t) .
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By inserting Eq. (5.14) into Eq. (5.9), one trivially obtains the expression of each of these amplitudes T i,
i = c, x, n in terms of the isospin–invariant amplitude A:

T c(s, t, u) = A(s, t, u) +A(t, u, s) ,
T x(s, t, u) = A(s, t, u) , (5.15)

Tn(s, t, u) = A(s, t, u) +A(t, u, s) +A(u, s, t) .

5.4 Partial wave representation

By considering elastic ππ scattering in the framework of QCD and in the isospin symmetry limit, where
the masses of the up and down quarks are taken equal and the electromagnetic interaction is ignored,
the scattering process is described by a single Lorentz invariant amplitude A(s, t, u) (see Eq. (5.11)). The
partial wave decomposition then reads

T I(s, t) = 32π
∑

ℓ

(2ℓ+ 1)Pℓ (z) tIℓ (s) , (5.16)

where the Legendre polynomials Pℓ(z) depend on the scattering angle θ in the centre of mass frame of s:

z = cos θ = 1 + 2t
s− 4M2

π

. (5.17)

The partial wave amplitude can then be obtained from

tIℓ (s) = 1
64π

∫ 1

−1
dz T I(s, t(z))Pℓ(z) . (5.18)

In the purely elastic case and in the isospin symmetry limit, we only consider a pair of pions in the
intermediate state and the unitarity relation in Eq. (3.22) for the ππ scattering partial waves can be written
in a very compact form:

ImtIℓ (s) = σ(s)|tIℓ (s)|2 , (5.19)

where σ(s) =
√

1 − 4M2
π

s . This shows that there is a diagonal relation between the imaginary part of the
partial wave and its modulus squared.

Below the inelasticity threshold, which is the two–kaon threshold in the case of the ππ scattering, the
partial waves can be expressed uniquely as a function of their phase–shift, δI

ℓ (s):

tIℓ (s) = |tIℓ (s)|eiδI
ℓ (s) = e2iδI

ℓ (s) − 1
2iσ(s) . (5.20)

This relation can be generalized to the inelastic region by introducing an inelasticity function ηI
ℓ (s), with

the property ηI
ℓ (s) ≤ 1. The generalization of the partial wave amplitude then reads

tIℓ (s) = |tIℓ (s)|eiδI
ℓ (s) = ηI

ℓ (s)e2iδI
ℓ (s) − 1

2iσ(s) . (5.21)

In the limit ηI
ℓ (s) → 1, we recover the elastic relation in Eq. (5.20).
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5.4.1 Roy equations

In this section we present a representation for the the partial wave amplitude tIℓ of elastic ππ scattering
due to Roy [194]. This is an important result for this thesis work and constitutes the starting point of
our model–independent analysis of the isospin–breaking effects due to the pion mass difference in the ππ
scattering amplitude (see Chs. 6–8).

Roy’s representation for the partial wave amplitude tIℓ of elastic ππ scattering reads

tIℓ (s) = kI
ℓ (s) +

2∑
I′=0

∞∑
ℓ′=0

∫ ∞

4M2
π

ds′KII′

ℓℓ′ (s, s′)Im tI
′

ℓ′ (s′) , (5.22)

where I and ℓ denote isospin and angular momentum, respectively, and kI
ℓ (s) is the partial wave projection

of the subtraction term, which shows up only in the S– and P–waves:

kI
ℓ (s) = aI

0δ
0
ℓ + s− 4M2

π

4M2
π

(2a0
0 − 5a2

0)
(

1
3δ

I
0δ

0
ℓ + 1

18δ
I
1δ

1
l − 1

6δ
I
2δ

0
ℓ

)
. (5.23)

where a0
0 and a2

0 are the S–wave scattering lengths. The kernels KII′

ℓℓ′ (s, s′) contain a diagonal singular
Cauchy kernel that generates the right hand cut in the partial wave amplitudes, as well as a logarithmically
singular piece that accounts for the left hand cut [24]:

KII′

ℓℓ′ (s, s′) = 1
π(s′ − s)δ

II′
δℓℓ′ + K̄II′

ℓℓ′ (s, s′) (5.24)

Eqs. (5.22) are consequences of the analyticity properties of the ππ scattering amplitude, of the Froissart
bound and of crossing symmetry. They are valid in the interval −4M2

π < s < 60M2
π [194–196], and,

combined with unitarity, they amount to an infinite system of coupled, singular integral equations for
the partial waves. The integration is split into a low energy interval 4M2

π < s′ < s0 and a remainder,
s0 < s′ < ∞ where s0 is defined as the matching point, and it is chosen somewhere in the range where
the Roy equations are valid. The two S–wave scattering lengths, the elasticity parameter below the
matching point and the imaginary parts above that point are treated as an externally assigned input. The
mathematical problem consist in solving the Roy’s integral equations with this input.

Thanks to several analyses and applications of the Roy equations, it has been shown that, for a given
input of S–wave scattering lengths, elasticity parameters and imaginary parts, there are in general many
possible solutions to the equations. This non–uniqueness is due to the singular Cauchy kernel on the right
hand side of Eqs. (5.22). In order to investigate the uniqueness properties of the Roy system, one may
keep only this part of the kernel, so that the integral equations decouple. In this case, a single channel
problem is obtained, that is a single partial wave, which, moreover, does not have a left hand cut. By
investigating the infinitesimal neighborhood of a given solution, it was found that the multiplicity of the
solution increases by one whenever the value of the phase shift at the matching point goes through a
multiple of π/2 [197]. Details on the solution of Roy equations in the isospin limit and for I ∈ {0, 1, 2},
ℓ ∈ {0, 1, 2, 3} can be found in [24,27].

5.5 Electromagnetic corrections to ππ–scattering at low energies

We are interested in the computation of the ππ–scattering amplitude at next–to–leading order including
electromagnetic effects. In this case we switch from the SU(3) Lagrangian formalism described in Ch. 4
to the one in SU(2). At leading order, the effective Lagrangian, considering also the electromagnetic
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interaction, reads [184]

L(2) = F 2

4 ⟨dµU†dµU + χ†U + U†χ⟩ − 1
4F

µνFµν − 1
2a (∂ ·A)2 + C⟨QRUQLU

†⟩ , (5.25)

where, in order to obtain a consistent expansion scheme, the electric charge e is considered of order p
(e,QR, QL ∼ O(p)) and the transformation properties of the various quantities under the chiral
SU(Nf ) × SU(Nf ) read [191]

U → gRUg
†
L

QI → gIQIg
†
I with I = R,L (5.26)

where gR,L ∈ SU(Nf )R,L. To perform this computation we will use a different but equivalent
parametrization of the field U :

U(x) = σ(x) + i
ϕ(x)
F

, (5.27)

where σ(x) =
√

1 − ϕ2(x)
F and, in the case Nf = 2,

ϕ(x) =
(

π0 √
2π+

√
2π− −π0

)
. (5.28)

The covariant derivative dµU is defined as

dµU = ∂µU − i(vµ +QRAµ + aµ)U + iU(vµ +QLAµ − aµ) , (5.29)

and the last term of Eq. (5.25) contain the spurious Qa
L(x) and Qa

R(x), which play the role of sources
for insertions into the QCD Green’s functions of the electromagnetic vertex operators Aµq̄L

λa

2 γ
µqL and

Aµq̄R
λa

2 γ
µqR, respectively. The low energy constant C gives an electromagnetic contribution to the

charged pseudoscalar masses

M2
π0 = (mu +md)B ,

M2
π± = (mu +md)B + 2C · e

2

F 2 , (5.30)

which yields

Z ≡ C

F 4 =
M2

π± −M2
π0

2e2F 2 . (5.31)

Finally the penultimate term of Eq. (5.25) acts as a gauge fixing. At next–to–leading order the generat-
ing functional Z(vµ, aµ, s, p,QL, QR) in the presence of electromagnetic interactions, involves one loop
graphs with vertices from L(2), tree graphs with vertices from L(2) and at most one vertex from the next–
to–leading effective Lagrangian

L(4) = Lp4 + Le2p2 + Le4 , (5.32)

where Lp4 contains the purely QCD low energy interactions among the pseudoscalar mesons at O(p4),
while Le2p2 and Le4 are the chiral Lagrangians involving also photons and leptons. As previously said,
we are now working in the Nf = 2 case and the explicit expression for all the terms in Eq. (5.32) with the
details about their derivation can be found in [198]. As an explicative example, we can then compute the
amplitude for the π+π− → π+π− scattering process. In the isospin basis, the π+π− → π+π− scattering



50 Chapter 5. Pion–pion Scattering

amplitude at leading order is given by

⟨π+π−|π+π−⟩ = 1
4

(
⟨π1π1|π1π1⟩ + ⟨π1π1|π2π2⟩ + ⟨π1π2|π1π2⟩ − ⟨π1π1|π2π1⟩ + {1 ↔ 2}

)
. (5.33)

Considering the Lagrangian of Eq. (5.25), the tree level scattering amplitude reads

A(s, t, u)TL = s+ t− 2M2
0

F 2 . (5.34)

where M2
0 = 2m̂B is the bare mass and can be written in terms of the physical mass according to the

expression of M2
π0 at next–to–leading order [198]:

M2
π0 =2m̂B

{
1 +

2M2
π0

F 2 ℓr
3(µ) + e2Kr

π0(µ) +
M2

π±

16π2F 2 ln
M2

π±

µ2 −
M2

π0

32π2F 2 ln
M2

π0

µ2

}
− 2B

2

F 2 (md −mu)2ℓ7 − 8
3B(md −mu)e2k7 , (5.35)

where

Kr
π0(µ) = −20

9

[
kr

1 + kr
2 − 9

10(2kr
3 − kr

4) − kr
5 − kr

6 − 1
5k7

]
. (5.36)

ℓi and ki are the low–energy constants equivalent to the one in Eqs. (4.58), (4.72) and (4.73) but in the
SU(2) case. At NLO there are four kind of diagrams which contribute to the π+π− → π+π− scattering
amplitude. However we will not consider O(e4) contributions, which include two–photon exchange box
diagrams and which are expected to be smaller than the other contributions at the same order.

5.5.1 Strong Interaction Diagrams

Considering only the strong sector, the process is described by: 1–loop diagrams with vertices from the
Lagrangian in Eq. (5.25) and a tree level diagram with the vertex described by the Lagrangian Lp4 .

∗ π+, π−, π0–loop diagrams.
The first diagrams at NLO that we consider are the one of the type shown in Fig. 5.1. By computing
the amplitude in the s–, t– and u–channels, we get

π+

π−

π+

π−

Figure 5.1: π+, π−, π0–loop diagrams for the π+π− → π+π−–scattering amplitude

A(s, t, u)π−loop =
(s−M2

π0)
2F 4 J00(s)

+ 1
2(1 − d)F 4

{[
4(1 − 2d)M2

π± + 8(d− 1)M2
π0 + (4 − 3d)s+ 2t

]
A(M2

π±)

+
[
8(d− 1)M2

π0(4M2
π± + s) − d(4M2

π± + s)2 (5.37)
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− 16(d− 1)M4
π0 + 16M2

π±s+ 8M2
π±t− 2st

]
J+−(s)

2

}

+ 1
2F 4

[(
8M2

π± − 4M2
π0 − u

)
A(M2

π±) +
(
2M2

π0 − 4M2
π± + u

)2 J+−(u)
2

]
+ {s ↔ t} , (5.38)

where d is the number of space–time dimensions and the loop functions are defined in App.C.

∗ Tadpole Diagrams.
The second type of 1–loop diagram is the tadpole diagram drawn in Fig. 5.2 and the amplitude

π+

π−

π0

π0

Figure 5.2: Tadpole diagram for the π+π− → π+π−–scattering amplitude

reads

A(s, t, u)Tad = − 1
F 4

{[
4
(
4M2

π± + s+ t
)

− 18M2
π0

]
A(M2

π±) +
(
−3M2

π0 + s+ t
)
A(M2

π0)
}
.

(5.39)

∗ O(p4) diagram.
Another contribution involving only the strong interactions is the tree level diagram with the vertex
from Lp4 and the amplitude is

A(s, t, u)p4 = 1
F 4

{[
(s− 2M2

π±)2 + (t− 2M2
π±)2] (l1 + l2) + 2(u− 2M2

π±)2l2
}
. (5.40)

∗ Z–correction
The last term in the pure strong amplitude is the wave function renormalization correction or Z–
correction which comes from tadpole contributions to the external legs of the pions (Fig. 5.3). This
contribution to the π+π− → π+π− scattering amplitude than reads

A(s, t, u)Z = 2
s+ t− 2M2

π0

F 4 A(M2
π±) . (5.41)

5.5.2 Electromagnetic Interaction Diagrams

∗ Vertex Diagram
By introducing the electromagnetic interaction we need to consider loops with virtual photons.
This affects the wave function renormalization of the charged pions and introduce a long range
component into the scattering amplitude through the vertex correction graph (Fig. 5.4). In order
to take care of the infrared divergences, we introduce a fictitious photon mass. In analogy to the
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π+

π−

π+

π−

Figure 5.3: Z–correction for the π+π− → π+π− scattering amplitude

π+

π−

π+

π−

p1

p2

k

p3

p4

Figure 5.4: Vertex diagram for the π+π− → π+π−–scattering amplitude

contribution from the diagram in Fig. 5.1, we have to consider the s–, t– and u–channel so that the
vertex amplitude reads

A(s, t, u)V = e2

F 2

{[
2(M2

π± − t)
M2

π±
+

(2M2
π± − u)
M2

π±

]
A(M2

π±)

+
[
16M4

π± + 4M2
π0

(
4M2

π± − s
)

− 8M2
π± (3s+ 2t) + s (5s+ 8t)

]
4M2

π± − s
J+−(s)

+
(
4M2

π± − 2M2
π0 − u

)
J+−(u)

+
[

4
4M2

π± − s

(
M2

π0

(
2s− 8M2

π±

)
+ 4M2

π± (s+ 2t) − s (s+ 3t)
)

(5.42)

− 2
(
8M2

π± − 2M2
π0 − 3u

) ]
J±γ(M2

π±)

+ 4
(
2M2

π± − s
) (
s+ t− 2M2

π0

)
G+−γ(s)

− 2
[
8M4

π± +M2
π0

(
2u− 4M2

π±

)
− 6M2

π±u+ u2]G+−γ(u)
}

+ {s ↔ t} , (5.43)

where the loop functions are listed in the App. C.

∗ O(e2p2) diagram
In analogy with the pure strong case we have to consider the tree level diagram coming from the
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counterterms Lagrangian Le2p2 . The amplitude then reads

A(s, t, u)TL
e2p2 = − e2

F 2

{
− 20

9 k1 (s+ t) + 4
9k2

[
72M2

π± − 23 (s+ t)
]

+ 2 (2k3 + k4)
[
8M2

π± − 3 (s+ t)
]

(5.44)

+M2
π0

(
40
9 k5 − 248

9 k6 + 8
9k7 − 32k8

)}
.

In addition to this contribution, the wave function renormalization terms coming from the same
Lagrangian of counterterms reads:

A(s, t, u)WFR
e2p2 = −80

9
e2

F 2 (s+ t− 2M2
π0) (k1 + k2) , (5.45)

and the terms which depend on ki coming from the mass renormalization of the neutral pion given
in Eq. (5.35).

∗ Born–type diagrams.
By studying the electromagnetic interactions in the ππ–scattering we have to consider also tree
level diagrams of the type in Fig. 5.5 where the full circles are made explicit in Fig. 5.6 and they
are grouped in the pion vector form factor Fπ

V . The contribution to the scattering amplitude from

π+ π−

π+ π−

p1 p2

p3 p4

Figure 5.5: Born–type diagram for the π+π− → π+π−–scattering amplitude

Figure 5.6: The electromagnetic vertex function of a charged pion to one–loop order. The full square
takes into account the contribution from the low–energy constants just as the tree contribution including
the effect of the wave function renormalization. Diagrams of order O(e3p) are discarded.
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these diagrams is

A(s, t, u)Born-type = e2
{(

u− t

s
[Fπ

V (s)]2
)

+
(
u− s

t
[Fπ

V (t)]2
)}

. (5.46)

∗ Self–Energy Correction
The last contribution comes from the self–energy correction described by the diagram in Fig. 5.7.
The scattering amplitude for this contribution is

π+

π−

π0

π0

p− k

k

Figure 5.7: Self–energy correction diagram for the π+π− → π0π0–scattering amplitude

A(s, t, u)SE = 4e2 s+ t− 2M2
π0

F 2 J±γ(p2) . (5.47)

It is important to underline the fact that, by using the parametrization in Eq. (5.27), we get rid of the
contribution from the diagram in Fig. 5.8 since in the expanded Lagrangian there is any term which
represents the 4πγ vertex. This diagram has to be taken into account if we consider the exponential
parametrization of U(x) (Eq. (4.36) but in the Nf = 2 case).

π+

π−

π0

π0

Figure 5.8: 4πγ vertex diagram for the π+π− → π+π−–scattering amplitude

Before giving the final result for the total scattering amplitude, we want to put the attention to an
important feature of the ππ–scattering at 1–loop. From the detailed analysis just shown it is evident that
the contributing diagrams can be separated in two well–defined groups: a contribution which accounts
for the pion mass difference, i.e., Mπ ̸= Mπ0 , and electromagnetic integration diagrams involving virtual
photons. This clear separation turns out to be important for the dispersive analysis of the isospin–breaking
effects in the ππ–scattering amplitude (see Chs. 6–8) since it allows to ease the study by treating separately
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the effects due to the pion mass difference and the one due to virtual and real photons.

5.5.3 Total π+π− → π+π− Scattering Amplitude

Now that we have all the contributions we can add them all and simplify them. We need to substitute
the explicit expression of the space–time dimension d in terms of ϵ

d = 4 − 2ϵ ,
1

d− 1 = 1
3

(
1 + 2

3ϵ+ 4
9ϵ

2
)
, (5.48)

and, in order to obtain a finite amplitude, i.e., finite for ϵ → 0, the constants li and ki of the Lagrangian
L(4) need to be renormalized such that

ℓr
i (µ2) = γi

32π2

(
ℓ̄i + ln

M2
π±

µ2

)
, (5.49)

kr
i (µ2) = σi

32π2

(
k̄i + ln

M2
π±

µ2

)
. (5.50)

Moreover we have to consider the correction of O(e2) to the mass of the charged pion which are given by
the expression of M2

π± at NLO:

M2
π± =2m̂B

{
1 + e2

4π2 +
2M2

π0

F 2 ℓr
3(µ) + e2Kr

π±(µ) +
M2

π0

32π2F 2 ln
M2

π0

µ2

}
+ 2e2F 2

{
Z

(
1 + e2

4π2

)
+ e2K

′r
π±(µ) − (3 + 4Z)

M2
π±

32π2F 2 ln
M2

π±

µ2

}
(5.51)

− 8
3B(md −mu)e2k7 ,

with

Kr
π± = −20

9

[
kr

1 + kr
2 − kr

5 − 1
5 (23kr

6 + k7 + 18kr
8)
]
,

K
′r
π± = −10

9

[
2Z(kr

1 + kr
2) − 1

2k
r
13 − kr

14

]
. (5.52)

The final amplitude for the π+π− → π+π− scattering process is conveniently written in the following
s ↔ t symmetric decomposition [199]

A+−;+−(s, t, u) =
{
s−M2

π0

F 2 +B+−;+−(s, t, u) + C+−;+−(s, t, u)

+ e2
(
u− t

s
[Fπ

V (s)]2
)}

+ {s ↔ t} ,

where B+−;+−(s, t, u) collects the unitarity pieces arising from the diagrams of type drawn in Fig. 5.1
and Fig. 5.4:

B+−;+−(s, t, u) = 1
2F 4

(
s−M2

π0

)2
J̄00(s)
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+ 1
F 4

[
s2

4 − 1
12(u− t)(s− 4M2

π±) + 2s∆π + 4∆2
π

]
J̄+−(s)

+ 1
4F 4 (u− 2M2

π± − 2∆π)(u− 2M2
π± − 2∆π − 4e2F 2)J̄+−(u)

+ 2e2

F 2 (u− 2M2
π± − 2∆π)

[
2(s− 2M2

π±)G+−γ(s) − (u− 2M2
π±)G+−γ(u)

]
− e2

F 2

[
s+ 4∆π − 4(s− 2M2

π±)
(
t− u

t+ u

)]
J̄+−(s) . (5.53)

The function C+−;+−(s, t, u) represents the contributions from tadpoles as well as from the strong [147,
148] and electromagnetic [198] low–energy constants

C+−;+−(s, t, u) =
s−M2

π0

F 2
e2

32π2

[
−18 − 8

(
1 + ln

m2
γ

M2
π±

)
+ 1

2(K+−;+− − K+−;+−)
]

+
e2M2

π0

32π2F 2

[
10 + 1

2(K+−;+− + K+−;+−)
]

− e2

2π2F 2 (s− 2M2
π±)

(
t− u

t+ u

)
+ 1

48π2F 4

[
(s− 2M2

π±)2(l̄1 + l̄2) + (u− 2M2
π±)2 l̄2

]
−

M4
π0

32π2F 4 l̄3 (5.54)

+ 1
16π2F 4

(
− 5

18u
2 − 13

18s
2 + 2

3uM
2
π0 + 19

6 u∆π + 5
18M

4
π0 − 58

9 M
2
π0∆π

)
− 1

96π2F 4
∆π

M2
π0

(
−3s2 + 16sM2

π0 + 2uM2
π0 − 23M4

π0

)
,

where all the logarithms of the pion mass ratio are expanded as

ln
M2

π±

M2
π0

= ∆π

M2
π0

+ · · · , (5.55)

and

K+−;+− =
(

3 + 4Z
9

)
k̄1 − 40Z

9 k̄2 − 9k̄3 + 4Zk̄4 + 4(1 + 8Z)k̄6 + 2(1 − 8Z)k̄8 ,

K++;++ = −
(

3 + 4Z
9

)
k̄1 − 248Z

9 k̄2 + 9k̄3 − 20Zk̄4 + 4(1 + 8Z)k̄6 + 2(1 − 8Z)k̄8 . (5.56)



Chapter 6

Isospin–breaking effects due to the pion mass difference
in ππ scattering

In the previous chapter we computed in detail the radiative corrections to ππ scattering in the chiral
representation. Now we want to evaluate isospin–breaking effects with the model–independent dispersive
approach, i.e., by means of Roy equations. In particular, we will compute radiative corrections due to
the charged–neutral pion mass difference, which actually belong to the broad class of effects generated
by virtual photon exchanges, but which is well–defined on its own and can be treated separately from all
the others.

6.1 Dispersive representation of ππ scattering in the isospin limit

As we showed in Eq. (5.15), the ππ scattering amplitude in the isospin limit and in the charge basis can
be written in terms of the single isospin–invariant amplitude A(s, t, u). For small values of s and t, the
dominant contribution comes from the S– and P–waves such that the isospin–invariant ππ scattering
amplitude can be split in a contributions generated by the imaginary parts of the S– and P–waves below
a certain energy

√
s2 = 2 GeV and the rest:

A(s, t, u) = A(s, t, u)SP +A(s, t, u)d . (6.1)

At energies below the upper limit of validity of the Roy equations, s1 = 68M2
π , the background amplitude

A(s, t, u)d, which collects the contribution of the imaginary parts of higher waves as well as of high
energies from S– and P–waves, can be well described by a polynomial. Given the nature of this part of
the amplitude, we expect it to be little sensitive to the pion mass difference and we will therefore keep it
unchanged. As our result will show, although a sensitivity to this mass difference is visible, its size is small
compared to the uncertainties with which the background amplitude is currently known.

The amplitude A(s, t, u)SP can be expressed in terms of three functions of a single variable:

A(s, t, u)SP = 32π
{

1
3W

0(s) + 3
2(s− u)W 1(t) + 3

2(s− t)W 1(u)

+1
2W

2(t) + 1
2W

2(u) − 1
3W

2(s)
}
, (6.2)

where the functions W 0(s), W 1(s), W 2(s) have only a right–hand cut and admit a simple dispersive
representation in terms of the imaginary parts of the S– and P–waves as well as by the two S–wave

57
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scattering lengths a0
0, a

2
0:

W 0(s) = a0
0 s

4M2
π

+ s(s− 4M2
π)

π

∫ s2

4M2
π

ds′ Im t00(s′)
s′(s′ − 4M2

π)(s′ − s) ,

W 1(s) = s

π

∫ s2

4M2
π

ds′ Im t11(s′)
s′(s′ − 4M2

π)(s′ − s) , (6.3)

W 2(s) = a2
0 s

4M2
π

+ s(s− 4M2
π)

π

∫ s2

4M2
π

ds′ Im t20(s′)
s′(s′ − 4M2

π)(s′ − s) .

This representation is valid in the isospin limit, where the imaginary parts have been determined as a
solution of the Roy equations below s1, supplemented by phenomenological input between s1 and s2.

The representations of the ππ scattering amplitudes Tn, T c and T x in Eq. (5.15), as well as the ones
arising from crossing symmetry T++ and T+0 in Eq. (5.10), inherit from Eq. (6.1) the splitting between
the S– and P–waves and the background amplitudes:

T k(s, t, u) = T k
SP (s, t, u) + T k

d (s, t, u) , (6.4)

with k = n, c, x,++,+0. As argued above, only the amplitude T k
SP is expected to be sensitive to the

pion mass difference, and we will concentrate on this in the following.

6.2 Effects due to Mπ − Mπ0

In the chiral expansion, taking into account the effects due to the pion mass difference is straightforward,
but doing this for the ππ interaction in a dispersive framework that extends beyond the chiral regime is
significantly more involved. We will now describe a fully dispersive treatment of these effects, with the
approximation of considering only up to two pions intermediate states.

Away from the isospin limit, the Roy equations take a very different form since different processes get
contributions from different intermediate states in each channel. Even when considering only S– and P–
waves, instead of coupled integral equations for three different partial waves, one ends up with coupled
integral equations for seven different partial waves (of the five different channels in Eqs. (5.15) and (5.10),
only T c and T+0 admit a P–wave).

To estimate the effect in the region below s1, we proceed as follows. First, we concentrate only on the
T k

SP amplitudes and insert the expression in Eq. (6.2) of ASP in terms of single–variable functions. This
provides a dispersive representation of the physical amplitudes, but still in the isospin limit. As a next
step, we express the imaginary parts of the fixed–isospin partial waves appearing in the definition of the
W I functions in Eq. (6.3) in terms of the imaginary parts of the physical channels and correspondingly
define new single–variable functions labeled accordingly. In the following, we detail this procedure for
each amplitude.

The π0π0 → π0π0 amplitude: Let us consider first the Tn amplitude, which is completely crossing–
symmetric in the three Mandelstam variables, i.e., in each channel, the same intermediate states, π0π0

or π+π−, are possible and with the same weight. Doing the steps outlined above, one ends up with the
following representation:

Tn
SP (s, t, u) = 32π

(
Wn,00

S (s) +Wn,+−
S (s) + (s ↔ t) + (s ↔ u)

)
, (6.5)
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with

Wn,00
S (s) = a00

n s

4M2
π0

+
s(s− 4M2

π0)
π

∫ s1

4M2
π0

ds′ Im tn,00
S (s′)

s′(s′ − 4M2
π0)(s′ − s) ,

Wn,+−
S (s) =

s(s− 4M2
π0)

π

∫ s1

4M2
π

ds′ Im tn,+−
S (s′)

s′(s′ − 4M2
π0)(s′ − s) , (6.6)

where Mπ and Mπ0 denote the charged– and neutral–pion mass, respectively, and the superscripts 00
and +− in the W–functions indicate the charges of the intermediate pions contributing to the imaginary
part in the unitarity relation.

The π+π+ → π+π+ amplitude: For this amplitude, the P–wave is again absent in the s channel, but
allowed in the t and u channels. We, therefore, need to define the scattering angle (or the cosine thereof,
zt,u) in the t or u center–of–mass frame:

s = 1
2(t− 4M2

π)(zt − 1), u = 1
2(t− 4M2

π)(−zt − 1) ,

zt = s− u

t− 4M2
π

. (6.7)

The analogous expression to (6.2) for the T++ amplitude reads

T++
SP (s, t, u) = 32π

(
W++

S (s) +W c,00
S (t) +W c,+−

S (t) +W c,00
S (u) +W c,+−

S (u)

+(u− s)W c,+−
P (t) + (t− s)W c,+−

P (u)
)
, (6.8)

where

W++
S (s) = a++ s

4M2
π

+ s(s− 4M2
π)

π

∫ s1

4M2
π

ds′ Im t++
S (s′)

s′(s′ − 4M2
π)(s′ − s) ,

W c,+−
S (s) = a+−

c s

4M2
π

+ s(s− 4M2
π)

π

∫ s1

4M2
π

ds′ Im tc,+−
S (s′)

s′(s′ − 4M2
π)(s′ − s) ,

W c,00
S (s) = s(s− 4M2

π)
π

∫ s1

4M2
π0

ds′ Im tc,00
S (s′)

s′(s′ − 4M2
π)(s′ − s) ,

W c,+−
P (s) = s

π

∫ s1

4M2
π

ds′ 3Im tc,+−
P (s′)

s′(s′ − 4M2
π)(s′ − s) . (6.9)

Via the crossing relation in Eq. (5.10), Eq. (6.8) also provides a representation for T c.

The π+π− → π0π0 amplitude: For this amplitude, there is no P–wave in the s channel, because of the
two identical particles in the final state, but a P–wave is present in the t and u channels, for the crossed
process π+π0 → π+π0. In the t channel, for example, the scattering angle can be expressed in terms of
the Mandelstam variables as follows:

zt = t(s− u) + ∆2
π

λ(t,M2
π ,M

2
π0) , with ∆π := M2

π −M2
π0 , (6.10)

with λ(a, b, c) = a2 + b2 + c2 − 2(a b+ b c+ c a) the Källen function.
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We can then derive the expression of the T x
SP amplitude in terms of single–variable functions:

T x
SP (s, t, u) = 32π

[
W x,+−

S (s) +W 00
x,S(s) +W+0

S (t) +W+0
S (u) (6.11)

+
(
t(s− u) + ∆2

π

)
W+0

P (t) +
(
u(s− t) + ∆2

π

)
W+0

P (u)
]
,

which are defined as

W x,+−
S (s) = a1 s

4M2
π

+ s(s− 4M2
π)

π

∫ s1

4M2
π

ds′ Im t+−
x,S(s′)

s′(s′ − 4M2
π)(s′ − s) ,

W x,00
S (s) = s(s− 4M2

π)
π

∫ s1

4M2
π0

ds′ Im t00
x,S(s′)

s′(s′ − 4M2
π)(s′ − s) ,

W+0
S (s) = a2 s

4M̄2
π

+ s(s− 4M̄2
π)

π

∫ s1

4M̄2
π

ds′ Im t+0
S (s′)

s′(s′ − 4M̄2
π)(s′ − s)

,

W+0
P (s) = 1

π

∫ s1

4M̄2
π

ds′ 3Im t+0
P (s′)

λ(s′,M2
π ,M

2
π0)(s′ − s) , (6.12)

where M̄π = (Mπ + Mπ0)/2 and the two scattering–length–like quantities a1,2 are related to the true
scattering lengths by

a1 = a+−
x + 2ϵπa2 − 8∆π

[
M̄2

π(1 + ϵπ)f+0
s (−∆π) −M2

πf
+0
p (−∆π)

]
, (6.13)

a2 = a+0
c

1 + ϵ2π
+ ∆2

π

(
1 − ϵ2π
1 + ϵ2π

)
f+0

s (ϵπ∆π), (6.14)

and where we have introduced ϵπ := ∆π

4M̄2
π

and

f+0
s (s) = 1

π

∫ ∞

4M̄2
π

ds′ Im t+0
S (s′)

s′(s′ − 4M̄2
π)(s′ − s)

, (6.15)

f+0
p (s) = 1

π

∫ ∞

4M̄2
π

ds′ 3Im t+0
P (s′)

λ(s′,M2
π ,M

2
π0)(s′ − s) . (6.16)

The introduction of the parameters a1 and a2 is necessary in order to ensure that

W x,+−
S (4M2

π) = a1 and W+0
S (4M̄2

π) = a2 . (6.17)

while

txS(4M2
π) = a+−

x and t+0
S (4M̄2

π) = a+0
c . (6.18)

6.3 Unitarity relations for ∆Mπ ̸= 0

We now want to estimate the effect of the pion mass difference in each physical channel and shift Mπ0

to its physical value. This affects the physical ranges of the kinematic variables and, correspondingly,
the thresholds of the various processes. Moreover, it is also reflected in the analytic structure of the T k

amplitudes for which, in addition to the branch cut at 4M2
π in the s channel, a second one develops at

4M2
π0 , or at 4M̄π

2 in the t channel, as has been discussed in detail in [200]. Indeed, the expressions
obtained above do show these different cuts already, provided one takes for Mπ0 its physical value.

Nevertheless, in order to solve the integral equations derived in Sec. 6.2, there is still one piece of
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information missing: the expression of the imaginary parts of the amplitudes that appear in the dispersive
integrals above, as fixed by unitarity. For the S–wave of the Tn,x,c amplitudes, we have a coupled–channel
problem in the s channel, where the unitarity relation is expressed at best in matrix form [200]:

ImTS(s) = TS(s)Σ(s)T ∗
S(s) , with TS =

(
tnS(s) −txS(s)
−txS(s) tcS(s)

)
,

Σ(s) =
(
σ0(s)θ(s− 4M2

π0) 0
0 2σ(s)θ(s− 4M2

π)

)
, (6.19)

with σ(s) =
√

1 − 4M2
π

s
and σ0(s) =

√
1 −

4M2
π0

s
the phase–space factors for the charged and neutral

pions, respectively.

From this, one can read off the imaginary parts for each of the components (to simplify the notation,
we absorb θ–functions in the definition of the σ’s):

Im tnS(s) = σ0(s)|tnS(s)|2 + 2σ(s)|txS(s)|2 ,
Im txS(s) = σ0(s)tnS(s)txS(s)∗ + 2σ(s)txS(s)tcS(s)∗ ,

Im tcS(s) = σ0(s)|txS(s)|2 + 2σ(s)|tcS(s)|2 . (6.20)

For the remaining partial waves of relevance here, considering only intermediate pion states, the unitarity
relation takes the form of the standard optical theorem: Imt = ρ|t|2, with ρ the relevant phase space
factor. In this way, we obtain the following expressions of the imaginary parts we need to insert in the
dispersive integrals.

Amplitude Tn:

Im tn,00
S (s) = σ0(s) |tnS(s)|2 , Im tn,+−

S (s) = 2σ(s) |txS(s)|2 . (6.21)

Amplitudes T c and T++:

Im tc,00
S (s) =σ0(s) |txS(s)|2 , Im tc,+−

S (s) = 2σ(s) |tcS(s)|2 ,

Im t++
S (s) =σ(s)

∣∣t++
S (s)

∣∣2 , Im tc,+−
P (s) = 2σ(s) |tcP (s)|2 . (6.22)

Amplitudes π+π− → π0π0 and π+π0 → π+π0:

Imtx,+−
S (s) =2σ(s)txS(s)tcS(s)∗, Im t+0

S (s) =
2λ1/2(s,M2

π ,M
2
π0)

s

∣∣t+0
S (s)

∣∣2 ,
Imtx,00

S (s) =σ0(s)tnS(s)txS(s)∗, Im t+0
P (s) =

2λ1/2(s,M2
π ,M

2
π0)

s

∣∣t+0
P (s)

∣∣2 . (6.23)

6.4 Scattering–lengths: matching with χPT

A crucial step in the procedure just outlined is to provide input values for the subtraction constants, which
are all expressed in terms of scattering lengths. Like in the isospin–limit case [25], they will be fixed by
matching to χPT at low energy. The ππ scattering amplitudes in the presence of isospin breaking have
been calculated in two papers: the amplitude T x in [198] and later extended to T c in [199] (the details of
the computation of T c were also worked out in Ch. 5 in this work). These two papers contain both the
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effect of the pion–mass difference as well as the effects due to virtual photons, but in a form that allows
them to be easily disentangled. Here, we will make this separation explicit while recasting the amplitude
in a form that allows for an easy matching to our dispersive representation.

Let us start with the Tn amplitude: the χPT representation of the functions Wn,00
S and Wn,+−

S up to
order p4 reads:

Wn,00
S (s) = s

4M2
π0

[
a00

n + b00
n

(
s− 4M2

π0

)
M2

π

]
+ 1

64πF 4
π

D0
0
[
M4

π0

]
(s) ,

W+−
n,S (s) = 1

32πF 4
π

D0 [(x−M2
π0)2] (s) , (6.24)

where Fπ is the pion decay constant, and a00
n and b00

n denote the scattering length and slope parameter,
respectively, in the threshold expansion of the neutral amplitude. The function

Dj
i [p(x)](s) :=

s2(s− 4M2
πj )

16π2

∫ ∞

4M2
πi

dx
σi(x)p(x)

x2(x− 4M2
πj )(x− s) , with i, j = 0,± (6.25)

is the triply–subtracted dispersive integral (twice at s = 0 and once at 4M2
πj as indicated by the super-

script), where the discontinuity is given by the polynomial p(x) multiplied by the two–pion phase space
σi(s). Note that, in the following, the sub– and superscripts referring to charged pions will be omitted,
i.e., D[p] := D±

±[p], D0[p] := D0
±[p], and so on.

The explicit expression for the threshold parameters a00
n and b00

n are listed in App. D. Here, we show
only the expanded results up to O(δ2

π) (after having verified that numerically this is a good approximation):

a00
n = M2

π

32πF 2
π

{
1 − δπ + ξ

[(
4ℓ̄1 + 8ℓ̄2 − 3

2 ℓ̄3 + 2ℓ̄4

)
(1 − δπ)2 + 13

2 − 4δπ

(
1 + δπ

2

)

+ δπ (1 − δπ)
(
k̄31

9 − 10
9 k̄2 − k̄4

)
− 9π

√
δπ

(
1 − 3

2δπ

)]}
,

b00
n = M2

π

32πF 2
π

ξ

[
4
3(ℓ̄1 + 2ℓ̄2)(1 − δπ) + 1

2 + 1
6δπ(1 + 2δπ) − 9π

4
√
δπ

(
1 − δπ

2

)]
, (6.26)

where

δπ := ∆π

M2
π

, and ξ := M2
π

16π2F 2
π

. (6.27)

The threshold parameters are expressed in terms of the mesonic ℓi and electromagnetic ki low–energy
constants (LECs) (see [198]), with k31 given by the combination

k31 = −5
9k1 + k3 . (6.28)

The renormalization of the LECs at one–loop order was studied in [198] and is given by

ℓi = lri (µ) + γiλ , ki = kr
i (µ) + σiλ , (6.29)

where γi and σi are the corresponding renormalization group β functions [198, 201], µ is the renormal-
ization scale, and λ reads

λ = µd−4

32π2

(
2

d− 4 − log(4π) + γ − 1
)
, (6.30)
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with γ the Euler–Mascheroni constant.

The l̄i and k̄i are defined from the renormalized LECs as

ℓr
i = γi

32π2

(
ℓ̄i + log M

2
π

µ2

)
, kr

i = σi

32π2

(
k̄i + log M

2
π

µ2

)
, (6.31)

so that the combination k̄31 reads

k̄31 := 9
4Z

[(
3 + 4

9Z
)
k̄1 − 3k̄3

]
. (6.32)

The constants σi renormalize both photon and pion–mass difference divergences, with the latter en-
coded in the factor

Z := ∆π

2e2F 2 , (6.33)

and, for this work, the relevant σi values are

σ1 = −27
20 − 1

5Z , σ2 = 2Z , σ3 = −3
4 , σ4 = 2Z; σ6 = 1

4 + 2Z , σ8 = 1
8 − Z . (6.34)

The combination k31 is defined such as σ31 = Z/9, implying that the three counterterms appearing in
a00

n in Eq. (6.26)—namely, k2, k4, and k31—only renormalize effects due to the pion–mass difference. Of
course this does not imply that also the finite parts only contain effects due to the pion mass difference—in
other words, that the finite parts would vanish in the limit Z → 0. This is an intrinsic ambiguity of the
present calculation which cannot be resolved. However, the analysis presented here only concerns a part
of the isospin–breaking corrections, and once all of them will be evaluated and combined in our final
result, the ambiguity will disappear.

For the triply–subtracted integral in Eq. (6.25) to converge, the polynomial p(x) has to be at most
second order. This additional subtraction—one more than in Eq. (6.6)—is necessary because, in χPT ,
the discontinuities are valid only at low energy, where they are expanded in powers of momenta and take
the form of second–degree polynomials (times the phase space). To achieve a proper matching, we must
apply an additional subtraction to the general dispersive expressions in Eq. (6.6), thereby obtaining a
sum rule for b00

n . For a00
n , the χPT representation provided here is an essential input to the dispersive

approach.

For the T++ amplitude, we obtain the following expressions for the single–variable functions at O(p4):

W++
S (s) = s

4M2
π

[
a++ +

(
b++ + c++s

) (s− 4M2
π

)
M2

π

]
+ 1

128πF 4
π

D
[
(x− 2M2

π − 2∆π)2] (s) ,

W+−
c,S (s) = s

4M2
π

[
a+−

c +
(
b+−

c + c+−
c s

) (s− 4M2
π

)
M2

π

]
+ 1

128πF 4
π

D
[
(x+ 4∆π)2] (s) ,

W 00
c,S(s) = 1

64πF 4
π

D0
[
(x−M2

π0)2] (s) , (6.35)

W+−
c,P (s) = − 1

384πF 4
π

D
[
(x− 4M2

π)2] (s) , (6.36)

together with the following ones for the expanded constants a, b, and c:
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a++ = − M2
π

16πF 2
π

{
1 − δπ − ξ

[
4
3
(
ℓ̄1 + 2ℓ̄2

)
− 1

2
(
ℓ̄3 + 4ℓ̄4

)
(1 − δπ)2

+ 1
2

(
1 + 3δπ + 88

9 δ
2
π

)
− δπ(1 − δπ)

(
k̄31

9 − 4k̄32 + 62
9 k̄2 + 5k̄4

)]}
,

b++ = M2
π

48πF 2
π

ξ

(
4ℓ̄2 − 23

9 − 4δπ + δ2
π

)
,

c++ = − ξ

864πF 2
π

,

Re[a+−
c ] = M2

π

16πF 2
π

{
1 + δπ + ξ

[
3 + 4

3(ℓ̄1 + 2ℓ̄2) − 1
2 ℓ̄3 + 2ℓ̄4 + δπ

(
2 + ℓ̄3

)
+ δ2

π

(
62
9 − 1

2 ℓ̄3 − 2ℓ̄4

)

+ δπ

(
k̄31

9 (1 + δπ) + 4k̄32(1 − δπ) − 2
9 k̄2 (5 − 31δπ) + k̄4(1 + 5δπ)

)]}
,

Re[b+−
c ] = M2

π

24πF 2
π

ξ

[
73
72 + ℓ̄1 + ℓ̄2 + 4δπ + δ2

π

]
,

c+−
c = ξ

1728πF 2
π

, (6.37)

where k32 is the combination,

k32 := k3 + 2(k6 + k8) ⇒ k̄32 := − 1
8Z
[
3k̄3 − 2 (1 + 8Z) k̄6 − (1 − 8Z) k̄8

]
. (6.38)

The renormalization group β function for this combination is σ32 = 2Z, ensuring once again that all
LECs in Eq. (6.37) only absorb divergences proportional to the pion–mass difference. Note that Eq. (6.37)
provides the exact expressions of a++, b++, c++, and c+−

c , while a+−
c and b+−

c are expanded up to O(δ2
π),

with their exact expressions given in App. D for completeness (the difference between the two expressions
is numerically irrelevant).

The amplitude T x is more complicated because of the presence of particles with unequal masses in
the t– and u–channels. However, an expansion in the pion–mass difference significantly simplifies the
expressions for the subtraction constants while maintaining numerical accuracy. Below, we present the
single–variable functions:

W+−
x,S (s) = s

4M2
π

[
a1 + (b1 + c1s)

(
s− 4M2

π

)
M2

π

]
− 1

32πF 2
π

D
[(s

2 + 2δπ

) (
s−M2

π0

)]
(s) ,

W 00
x,S(s) = − 1

64πF 2
π

D0
[
M2

π0

(
s−M2

π0

)]
(s) ,

W+0
S (s) = s

4M̄2
π

[
a2 + (b2 + c2s)

(
s− 4M̄2

π

)
M2

π

]
− 1

128F 4
π

D+0
+0

[(
s− 2M2

π

)2
]

(s) ,

W+0
P (s) = −

λ(s,M2
π0 ,M2

π)
384F 4

π

J̃
(2)
+0 (s) , (6.39)

where J̃ (2)
+0 (s) :=

J̄+0(s) − sJ̄
′

+0(0)
s2 , which is regular at s = 0.

The expanded subtraction constants are

Re[a1] = − M2
π

32πF 2
π

{
3 + δπ

4 (2 + δπ) + ξ

[
11
2 + 4

3(ℓ̄1 + 2ℓ̄2) − 1
2 ℓ̄3 + 6ℓ̄4
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+ δπ

(
247
108 + 2ℓ̄1 − 4

3 ℓ̄2 + 3
4 ℓ̄3 − 5ℓ̄4

)
− δ2

π

(
1309
216 + ℓ̄1

3 + ℓ̄3

8 + ℓ̄4

2

)
+ δπ

(
k̄31

18 (6 + δπ) + k̄32(2 − δπ) + k̄2

9 (6 + 13δπ) + k̄4(2 + δπ)
)]}

,

Re[b1] = − M2
π

96πF 2
π

ξ

[
119 + 72ℓ̄1

18 + 38
9 δπ − δ2

π

5

]
,

c1 = − ξ

288πF 2
π

(
1
3 + δπ

6 + δ2
π

10

)
,

a2 = M2
π

32πF 2
π

{
1 − δπ

(
1 + δπ

16

)
− ξ

[
1
2 + 4

3(ℓ̄1 + 2ℓ̄2) − 1
2 ℓ̄3 − 2ℓ̄4

− δπ

(
3 + 4

3(ℓ̄1 + 2ℓ̄2) − ℓ̄3 − 4ℓ̄4

)
+ δ2

π

12

(
2669
72 − ℓ̄1 + 2ℓ̄2 − 45

8 (ℓ̄3 + 4ℓ̄4)
)

− δπ (1 − δπ)
(
k̄31

9 − 2k̄32 + 26
9 k̄2 + 2k̄4

)]}
,

b2 = M2
π

864πF 2
π

ξ

[
23 − 36ℓ̄2 + δπ

(
18ℓ̄2 + 49

2

)
+ δ2

π

3
16
(
12ℓ̄2 − 5

)]
,

c2 = ξ

1728πF 2
π

(
1 − δ2

π

80

)
. (6.40)

Note that, once again, all LECs in Eq. (6.40) solely renormalize divergences proportional to the pion–
mass difference.



Chapter 7

Roy equations for ∆Mπ ̸= 0

In this chapter we will solve the Roy equations including isospin–breaking effects due to the charged–
neutral pion mass difference. We will first derive these equation by projecting onto partial waves the
amplitudes defined in Sec. 6.2 and then we will give all the necessary ingredients as well as the strategy
we adopted to solve them.

7.1 Derivation of the Roy equations for ∆Mπ ̸= 0
Roy equations beyond the isospin limit can be obtained directly by projecting the single–variable decom-
position of the pion–pion amplitudes, defined in Sec. 6.2, onto partial waves. This projection is defined
by

tkJ(s) = 1
64π

∫ 1

−1
dz PJ(z)T k(s, t(s, z), u(s, z)) , (7.1)

where k labels any of the ππ channels in the charge basis defined in Eqs. (5.9) and (5.10), J denotes
the angular momentum, PJ stands for the Legendre polynomial of degree J , and z is the cosine of the
scattering angle in the corresponding s channel center–of–mass frame.

For example, the S–wave projection of the neutral channel amplitude reads

tnS(s) = 1
64π

∫ 1

−1
dz Tn(s, t(s, z), u(s, z)) , (7.2)

where in this case

t(s, z) = (s− s00)(z − 1)
2 , u(s, z) = − (s− s00)(z + 1)

2 , s00 = 4M2
π0 . (7.3)

Including explicitly the single–variable decomposition of the π0π0 → π0π0 amplitude in Eq. (6.5), and
performing the angular integration analytically, the neutral–channel S–wave can be recast as

tnS(s) = a00
n +

∫ s+−

s00

ds′Kn(s, s′)Imtn,00
S (s′)+

∫ s1

s+−

ds′Kn(s, s′)
(

Imtn,00
S (s′) + Imtn,+−

S (s′)
)

+dn
S(s) ,

(7.4)
where s+− = 4M2

π± , Imtn,00
S and Imtn,+−

S are defined in Eq. (6.20), and dn
S denotes the driving–term

contribution, i.e., the partial–wave projection of the background integral

dn
S(s) = 1

64π

∫ 1

−1
dz Tn

d (s, t(s, z), u(s, z)) , (7.5)
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accounting for the contribution of the imaginary part of higher J > 1 partial waves as well as of the S–
and P–waves above s1.

The kernel Kn(s, s′) is defined as

Kn(s, s′) = 1
π

[
1

s′ − s
− 2
s′ − 1

s′ − s00
+ 2
s− s00

log
(

1 + s− s00

s′

)]
, (7.6)

and encodes the whole analytic structure of the π0π0 → π0π0 amplitude. The first term in brackets,
1/(s′ −s), accounts for the right–hand cut discontinuity generated by both π0π0 and π+π− intermediate
states, while the log term includes the t and u channel discontinuities. Note that, on the one hand,

lim
s′→s00

K(s, s′) = 1
π

1
s′ − s00

+ O
[
(s′ − s00)0] , (7.7)

which, together with the threshold behavior of ImtnS , makes the integrand integrable around s′ ∼ s00. On
the other hand, in the lim s → s00 the kernel behaves asK(s, s′) = O(s−s00) and hence, the dispersion
relation in Eq. (7.4) fulfills tnS(s00) = a00

n , i.e., the neutral–channel partial–wave amplitude is fixed from
the neutral–channel scattering length, which in practice is taken from the χPT expression in Eq. (6.26).

It is also particularly illuminating to discuss the partial–wave projection of the charged–channel ampli-
tude, which can be obtained from Eq. (6.8) using the crossing–symmetry relation in Eq. (5.10):

tcJ(s) = 1
64π

∫ 1

−1
dz PJ(z)T++(u(s, z), t(s, z), s) , (7.8)

where in this case, we have contributions from both S– and P–waves. Performing once again the partial–
wave projection analytically, we get, for example, for the S–wave

tcS(s) =1
2

(
1 + s

s+−

)
a+−

c + 1
2

(
1 − s

s+−

)
a++ +

∫ s+−

s00

ds′K+−
s,S (s′, s) Imtc,00

S (s′)

+
∫ s1

s+−

ds′
[
K+−

s,S (s′, s)
(

Imtc,00
S (s′) + Imtc,+−

S (s′)
)

+K+−
s,P (s′, s) Imtc,+−

P (s′) (7.9)

+K+−
s,++(s′, s) Imt++

S (s′)
]

+ dc
S(s) ,

where Imtc,00
S , Imtc,+−

S , Imtc,+−
P , and Imt++

S are defined in Eq. (6.22), dc
S(s) is the driving–term con-

tribution, and the kernels read

K+−
s,S (s′, s) = 1

π

[
1

s′ − s
− s′ + s+ 3(s′ − s+−)

2s′(s′ − s+−) + 1
s− s+−

ln
(

1 + s− s+−

s′

)]
,

K+−
s,P (s′, s) = 3

π

[
−3s+ 2s′ − s+−

2s′(s′ − s+−) + 2s+ s′ − s+−

(s− s+−)(s′ − s+−) ln
(

1 + s− s+−

s′

)]
, (7.10)

K+−
s,++(s′, s) = 1

π

[
s− 2s′ + s+−

2s′(s′ − s+−) + 1
s− s+−

ln
(

1 + s− s+−

s′

)]
.

Once again, all kernels are suppressed in the s → s+− limit and Eq. (7.9) satisfies tcS(s+−) = a+−
c .

Nevertheless, due to the K+−
s,S (s′, s) Imtc,00

S (s′) contribution both in the first and second integrals in
Eq. (7.9), the s′ → s+− limit must be studied carefully. On the one hand, close to the charged–pion
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threshold the K+−
s,S kernel behaves as

lim
s′→s+−

K+−
s,S (s′, s) = − s+ s+−

2πs+−(s′ − s+−) + O
[
(s′ − s00)0

]
.

On the other hand, Imtc,00
S only vanishes at the neutral–pion threshold, hence leading to an end–point

singularity. Although this singularity is integrable by construction, its numerical implementation requires
special treatment. First, the K+−

s,S can be decomposed in terms of a regular K+−, I
s,S and singular K+−, II

s,S

part as

K+−
s,S (s′, s) = K+−, I

s,S (s′, s) +K+−, II
s,S (s′, s) ,

K+−, I
s,S (s′, s) = 1

π

[
1

s′ − s
− 2
s′ + 1

s− s+−
ln
(

1 + s− s+−

s′

)]
, (7.11)

K+−, II
s,S (s′, s) = − (s+ s+−)

2πs′(s′ − s+−) ,

Second, the singular piece can be recast as

K+−, II
s,S (s′, s) Imtc,00

S (s′) = 1
σ0(s+−)K

+−, II
s,S (s′, s)

(
σ0(s+−) Imtc,00

S (s′) − σ0(s′) Imtc,00
S (s+−)

)
+ σ0(s′)
σ0(s+−)K

+−, II
s,S (s′, s) Imtc,00

S (s+−), (7.12)

so that the first term in Eq. (7.12) vanishes exactly in the s′ → s+− limit and can be computed using
standard integration routines. Third, the second term in Eq. (7.12) can be integrated analytically. Namely,∫ s1

s00

ds′K+−,II
s,S (s′, s)σ0(s′) = (7.13)

2
s+−

{
σ0(s1) − σ0(s+−)

[
arctanh

(
s+− − s1 (1 − σ0(s1))

s+−σ0(s+−)

)
+ 1

2 log
(

1 − σ0(s+−)
1 + σ0(s+−)

)]}
.

Similar end–point singularities appear in the partial–wave projection of the T++, T x, and T+0 ampli-
tudes, for which the very same procedure should be applied. Expressions of the Roy equations, including
explicit expressions for all the kernels, for the remaining channels in the charge basis are collected in
App. E.

7.2 Scattering lengths, imaginary parts and driving terms

In order to solve Roy equations, we must first fix all input quantities that appear in Eqs. (7.4) and (7.9),
and App. E—namely, the values of the scattering lengths, the imaginary parts of S and P waves above s1

and the driving terms. For the former, we will make use of the χPTγ predictions obtained in Sec. 6.4. For
the latter two, as already anticipated, we will use the same phenomenological estimates given in [25, 26]
even though those references used these in an isospin–symmetric context. The reason for this strategy
is two–fold. First, pion–mass difference effects are expected to be more relevant at low energies, where,
on the one hand, the contribution of the π0π0, π+π0, and π+π− threshold–shift effect is still sizable,
and, on the other hand, the impact of the different masses and phase–space factors, entering both the
kernels and the imaginary parts, is enhanced. Second, the Roy–equation solutions discussed in [25, 26]
were obtained in the isospin limit, but the high–energy and higher partial–wave contributions were fixed
from experimental data without attempting to remove isospin–breaking effects. In that context this was
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motivated by the expectation that isospin–breaking effects are small at high energy. But all this means
that, in the present context, we can just adopt those estimates without the need to apply any correction
to them.

7.3 Partial–wave parameterizations for ∆Mπ ̸= 0
The Roy equations beyond the isospin limit derived in Sec. 7.1 relate the real part of the ππ partial waves
to an integral over their imaginary parts, which, in turn, are also related through the unitarity relations
collected in Sec. 6.3, hence providing a coupled system of integral equations.

Partial waves are customarily expressed in terms of their phase shift and elasticity, i.e., the phase and
modulus of the S–matrix element, respectively. In the isospin limit, the unitarity relations for the three
isospin amplitudes I = 0, 1, 2 are diagonal, and ππ scattering remains elastic below the first inelastic
threshold, which formally starts at the 4π threshold. Nevertheless, in practice, inelastic effects become
experimentally noticeable only at higher energies [29] and ππ scattering can be considered elastic up to
energies around 1 GeV1. Hence, in this elastic region, Roy equations translate into a coupled system of
integral equations for the phase shifts. Above this energy, one also needs to include the elasticity, which,
once again, is obtained from experimental data.

Beyond the isospin limit, one has to switch to the charge basis, which, as discussed in Sec. 6.3, no longer
diagonalizes the unitarity relation in the case of the Tn, T x and T c S–waves, and requires introducing an
additional internal ππ elasticity parameter along with a non–ππ inelasticity contribution. For the latter,
we once again rely on the results in [25, 26], which, as extracted directly from data, already account for
pion–mass difference effects. For the former, we will perform a coupled–channel analysis.

Thus, following the example in [24–26,28,202–204], to solve this system of equations we parameterize
the phase shift at low energies in a suitable form, whose free parameters are obtained by minimizing the
difference between the left– and right–hand side of Roy equations.

7.3.1 Elastic case

We will start with the π+π+ → π+π+ S–wave, which in terms of its phase shift and elasticity is param-
eterized as

t++
S (s) = η++

S (s) e2i δ++
S

(s) − 1
2iσ(s) . (7.14)

For the elasticity η++
S , we consider the isospin–limit results in [25, 26] so that η++

S (s) = η2
0(s). In the

case of the phase shift, we use

δ++
S (s) = δ2

0(s)
(

1 + ∆π

7∑
i=0

c++
i

(
s− s+−

s+−

)i
)
, (7.15)

i.e., it is parameterized in terms of the isospin–limit phase shift result plus a polynomial correction pro-
portional to the pion–mass difference squared ∆π.

At the charged–pion threshold s+−, the parametrization in Eq. (7.15) must match the a++ scattering
length, so that the c++

0 coefficient is fully determined by the relation

c++
0 = ∆a++

a++
IL ∆π

, (7.16)

1In the isospin limit, the S0–wave is elastic up to the KK̄ threshold, the P–wave inelasticity starts quite slowly at the πω
threshold, and the S2–wave remains elastic up to energies around 1 GeV [28].
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with ∆a++ = a++ − a++
IL .

Additionally, to ensure a well–defined integrand, the parametrization in Eq. (7.15) and its first derivative
at s1, the maximum energy of validity of Roy equations, must match the isospin–limit results employed in
the driving term. This imposes two additional constraints, allowing us to fix the values of the coefficients
c++

6 and c++
7 as follows

c++
6 = −

(
s+−

s1 − s+−

)6 5∑
k=0

(7 − k) c++
k

(
s1 − s+−

s+−

)k

,

c++
7 = −

(
s+−

s1 − s+−

)7 6∑
k=0

c++
k

(
s1 − s+−

s+−

)k

, (7.17)

leaving c++
1−5 as the only free parameters.

Similar constraints apply to the π+π− → π+π− P–wave, which we parameterize as

tcP (s) = ηc
P (s) e2i δc

P (s) − 1
4iσ(s) , (7.18)

with ηc
P (s) = η1

1(s) and δc
P (s)

δc
P (s) = δ1

1(s)
(

1 + ∆π

7∑
i=0

cc,P
i

(
s− s+−

s+−

)i
)
, (7.19)

where cc,P
0 is now a free parameter, and cc,P

6−7 are fixed by the matching conditions at s1 analogously to
Eq. (7.17).

The π+π0 → π+π0 channel is slightly more involved since, in this case, the threshold opens at s0+ =
(Mπ+ +Mπ0)2. Starting with the S–wave, its parameterizations in terms of its phase shift and elasticity
reads

t+0
S (s) = η+0

S (s) e2i δ+0
S

(s) − 1
4iσ+0(s) , (7.20)

with σ+0(s) = λ1/2(s,M2
π ,M

2
π0)/s. Once again, we assume that the elasticity is given by its isospin–limit

value in [25, 26], and thus, we assume

η+0
S (s) =

{
1 s ≤ s+−,

η2
0(s) s > s+−.

(7.21)

The phase shift is parameterized in terms of the isospin–limit phase δ2
0 , which is, however, only defined

for energies above the charged–charged threshold s+−. To extend the isospin–limit phase down to the
physical π+π0 threshold we use the kinematic map (see also [205])

ŝ(s) = s1(s− s0+) − s+−(s− s1)
s1 − s0+

, (7.22)

which ensures that ŝ(s0+) = s+− and ŝ(s1) = s1.

Thus, in terms of this map, we parameterize the phase shift as

δ+0
S (s) = δ2

0(ŝ(s))
(

1 + ∆π

7∑
i=0

c+0,S
i

(
s− s0+

s0+

)i
)
. (7.23)
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In order to ensure that at s0+, the parametrization in Eq. (7.23) coincides with the a+0
c scattering length,

the coefficient c+0,S
0 is fixed to the value

c+0,S
0 = 1

∆π

[
s+−

s0+

√
Mπ0

Mπ

√
s1 − s0+

s1 − s+−

(
1 + ∆a+0

c

a+0
c,IL

)
− 1
]
, (7.24)

with ∆a+0
c = a+0

c − a+0
c,IL. In the same way, the matching conditions with the isospin–limit results

in [25, 26] impose the c+0,S
6 and c+0,S

7 to be

c+0,S
6 = −

(
s0+

s1 − s0+

)6
[ 5∑

k=0
(7 − k) c+0,S

k

(
s1 − s0+

s0+

)k

+ i

2∆πδ2
0(s1)

(
7 + (s1 − s0+) δ

2
0(s1)′

δ2
0(s1)

)
log
(

1 + 2iσ+0(s1)t20(s1)
η2

0(s1)

)
+ (s1 − s0+)2

∆πδ2
0(s1) (1 + 2iσ+0(s1)t20(s1))

(
s1Σπ − ∆2

π

s3
1(s1 − s+−)σ+0(s1) t

2
0(s1) + σ+0(s1)

s1 − s+−
t20(s1)′

+
(

7δ2
0(s1)

s1 − s0+
+ iη2

0(s1)′

2η2
0(s1)

) (1 + 2iσ+0(s1)t20(s1)
)

s1 − s0+

)]
,

c+0,S
7 = −

(
s0+

s1 − s0+

)7
[ 6∑

k=0
c+0,S

k

(
s1 − s0+

s0+

)k

+ 1
∆π

(
1 + i

2δ2
0(s1) log

(
1 + 2iσ+0(s1)t20(s1)

η2
0(s1)

))]
, (7.25)

where the prime denotes the derivative with respect to s evaluated at s1. In this way, the new map implies
that both coefficients become complex.

The π+π0 → π+π0 P–wave is parameterized similarly. Namely,

t+0
P (s) = η+0

P (s) e2i δ+0
P

(s) − 1
4iσ+0(s) , (7.26)

with

η+0
P (s) =

{
1 s ≤ s+−,

η1
1(s) s > s+−,

(7.27)

and

δ+0
P (s) = δ1

1(ŝ(s))
(

1 + ∆π

7∑
i=0

c+0,P
i

(
s− s0+

s0+

)i
)
, (7.28)

where c+0,P
0 = 0 and the coefficients c+0,P

6 and c+0,P
7 are given by an expression equivalent to Eq. (7.25)

but with the opposite log determination:

c+0,P
6 = −

(
s0+

s1 − s0+

)6
[ 5∑

k=0
(7 − k) c+0,P

k

(
s1 − s0+

s0+

)k

+ i

2∆πδ1
1(s1)

(
7 + (s1 − s0+) δ

1
1(s1)′

δ1
1(s1)

){
log
(

1 + 2iσ+0(s1)t11(s1)
η1

1(s1)

)
− 2πi

}
+ (s1 − s0+)2

∆πδ1
1(s1) (1 + 2iσ+0(s1)t11(s1))

(
s1Σπ − ∆2

π

s3
1(s1 − s+−)σ+0(s1) t

1
1(s1) + σ+0(s1)

s1 − s+−
t11(s1)′



72 Chapter 7. Roy equations for ∆Mπ ̸= 0

+
(

7δ1
1(s1)

s1 − s0+
+ iη1

1(s1)′

2η1
1(s1)

) (1 + 2iσ+0(s1)t11(s1)
)

s1 − s0+

)]
,

c+0,P
7 = −

(
s0+

s1 − s0+

)7
{ 6∑

k=0
c+0,P

k

(
s1 − s0+

s0+

)k

+ 1
∆π

[
1 + i

2δ1
1(s1)

(
log
(

1 + 2iσ+0(s1)t11(s1)
η1

1(s1)

)
− 2πi

)]}
. (7.29)

7.3.2 Coupled–channel case

As already discussed in Sec. 6.3, in the charge basis, the unitarity relation for the Tn, T c, and T x S--
waves (see Eq. (6.20)) does not become diagonal. Therefore, these waves must be parameterized through a
coupled–channel formalism. Labeling the π0π0 state as 1 and the π+π− as 2, we can define a two–by–two
inelastic S–matrix as:

S =
(

ηn
S(s) ηx

S(s) e2iδn
S (s) i

√
1 − ηx

S(s)2 ei(δn
S (s)+δc

S(s)+δx
S(s))

i
√

1 − ηx
S(s)2 ei(δn

S (s)+δc
S(s)+δx

S(s)) ηc
S(s) ηx

S(s) e2iδc
S(s)

)
, (7.30)

with the T–matrix elements connected to the S–matrix by the standard coupled–channel relations

S11(s) = Sn(s) =1 + 2iσ0(s)tnS(s) ,

S12(s) = Sx(s) =2i
√

2σ0(s)σ(s)txS(s) ,
S22(s) = Sc(s) =1 + 4iσ(s)tcS(s) . (7.31)

or, equivalently,

tnS(s) =ηn
S(s) ηx

S(s) e2iδn
S (s) − 1

2iσ0(s) ,

txS(s) =
√

1 − ηx
S(s)2 ei(δn

S (s)+δc
S(s)+δx

S(s))

2
√

2σ0(s)σ(s)
,

tcS(s) =ηc
S(s) ηx

S(s) e2iδc
S(s) − 1

4iσ(s) . (7.32)

Thus, this inelastic S–matrix parametrization is defined via three phase shifts and three inelasticities:

∗ δn
S and δc

S are the phase shifts of the neutral and charged channels, respectively.

∗ ηx
S denotes the π+π− → π0π0 inelasticity, which, below the first non–ππ inelastic threshold, pro-

vides the pion–pion inelasticity in the charge basis.

∗ ηn
S and ηc

S account for the non–ππ inelastic contributions of the neutral and charged channels,
respectively.

∗ δx
S provides charge–exchange inelastic phase shift.

The neutral phase shift is parameterized as

δn
S(s) = δn,IL

S (s̄(s))
(

1 + ∆π

[ 7∑
i=0

cn
i

(
s− s00

s00

)i

+ σ(s)
4∑

i=0
c̃n

i

(
s− s00

s00

)i
])

, (7.33)
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where, analogously to Eq. (7.22), the map

s̄(s) = s1(s− s00) − s+−(s− s1)
s1 − s00

, (7.34)

extends the isospin–limit results below s+−, and the coefficients c̃n
i allow the imaginary part of tnS(s) to

develop also at the charged pion threshold. In addition, as already noted in Sec. 6.3, the phase–space
factor σ(s) in Eq. (7.33) comes multiplied by θ(s− s+−), so it only contributes to δn

S(s) above s+−.

The coefficient cn
0 is fixed by demanding that the tSn partial wave coincides at threshold with the isospin-

breaking a00
n scattering length from χPTγ . Namely, evaluating tSn in Eq. (7.32) at the neutral–pion thresh-

old one gets

tnS(s00) = a00
n,IL (1 + cn

0 ∆π)

√
s00 (s1 − s+−)
s+− (s1 − s00) , (7.35)

so that, defining ∆a00
n = a00

n − a00
n,IL, one gets

cn
0 = 1

∆π

[√
s+− (s1 − s00)
s00 (s1 − s+−)

(
1 + ∆a00

n

a00
n,IL

)
− 1
]
. (7.36)

Finally, taking into account that s+− = s00 + 4∆π, at leading order in the pion–mass difference, this
reduces to

cn
0 ≃ 1

∆π

∆a00
n

a00
n,IL

. (7.37)

Once again, the coefficients cn
6 and cn

7 are fixed by imposing a continuous and differentiable matching
at s1, similarly to Eq. (7.25). Expanding also at leading order in ∆π, one gets

cn
6 = −

(
s+−

s1 − s+−

)6
[ 5∑

k=0
(7 − k) cn

k

(
s1 − s+−

s+−

)k

+ σ(s1)
2

4∑
k=0

c̃n
k

(
s1 − s+−

s+−

)k (
14 − 2k − s+−

s1

)

+ i

δn,IL
S (s1)

{
4

(s1 − s+−)

(
2 − 1 + η̃x

S(s)2

SIL
n (s1)

)
−
(

1 − η̃x
S(s)2

2SIL
n (s1)

)
η̃x

S(s)′

η̃x
S(s) − 1 + η̃x

S(s)2

2 SIL
n (s1)

ηn
S(s1)′

ηn
S(s1) ,

+ δn,IL
S (s1)′

δn,IL
S (s1)

((
1 − 1 + η̃x

S(s)2

2SIL
n (s1)

)
− 4 i δn,IL

S (s1)
(

1 + 1 + η̃x
S(s)2

4SIL
n (s1)

))}]
,

cn
7 = −

(
s+−

s1 − s+−

)7
[ 6∑

k=0
cn

k

(
s1 − s+−

s+−

)k

+ σ(s1)
4∑

k=0
c̃n

k

(
s1 − s+−

s+−

)k

+ i

(s1 − s+−) δn,IL
S (s1)

(
1 − 1 + η̃x

S(s)2

2SIL
n (s1)

)]
, (7.38)

where

SIL
n (s) =1 + 2i σ(s)

(
t00(s) + 2t20(s)

)
/3 ,

η̃x
S(s) =

√
1 − 8 σ0(s)σ(s) |(t00(s) − t20(s)) /3|2, (7.39)

and, once again, the prime denotes the derivative with respect to s evaluated at s1.



74 Chapter 7. Roy equations for ∆Mπ ̸= 0

In the same way, the charged S–wave phase shift is expressed as

δc
S(s) = δc,IL

S (s)
(

1 + ∆π

[ 7∑
i=0

cc,S
i

(
s− s+−

s+−

)i

+ σ0(s)
3∑

i=0
c̃c

i

(
s− s+−

s+−

)i
])

, (7.40)

whereas, as in the tnS case, the coefficients c̃c
i allow tcS to develop an imaginary part at the neutral–pion

thresholds, as demanded by Eq. (6.20).

The coefficient cc,S
0 is given by

cc,S
0 = ∆a+−

c

a+−
c,IL∆π

− c̃c
0 σ0(s+−) , (7.41)

with ∆a+−
c = a+−

c − a+−
c,IL, and where the second term in Eq. (7.41) is suppressed in ∆π.

Finally, the matching conditions at s1 fix the coefficients cc,S
6 , cc,S

7 to be

cc
6 = −

(
s+−

s1 − s+−

)6
[ 5∑

k=0
(7 − k) cc

k

(
s1 − s+−

s+−

)k

+ σ(s1)
2

3∑
k=0

c̃c
k

(
s1 − s+−

s+−

)k (
14 − 2k − s+−

s1

)

+ i

δc,IL
S (s1)

{(
4

s1 − s+−
+ δc,IL

S (s1)′

2δc,IL
S (s1)

+ iδn,IL
S (s1)′ + ηn

S(s1)′

2 ηn
S(s1)

)
1 − η̃x

S(s)2

SIL
n (s1)

+ 1 + η̃x
S(s)2

2SIL
n (s1)

η̃x
S(s)′

η̃x
S(s)

}]
,

cc
7 = −

(
s+−

s1 − s+−

)7
[ 6∑

k=0
cc

k

(
s1 − s+−

s+−

)k

+ σ(s1)
3∑

k=0
c̃c

k

(
s1 − s+−

s+−

)k

+ i

(s1 − s+−)δc,IL
S (s1)

1 − η̃x
S(s)2

2SIL
n (s1)

]
. (7.42)

Below the first inelastic non–ππ threshold sin
2, ηn

S = ηc
S = 1 and δx

S = 0, hence recovering the standard
two–channel S–matrix parametrization. In this energy region, the elasticity parameter ηx

S provides the
ππ–inelasticity among the three Tn, T c and T x scalar channels, so that

ηx
S = |S11| = |S22| =

√
1 − |S12|2 for s < sin . (7.43)

Above sin, ηx
S accounts for the whole charge–exchange inelasticity, but we still allow for isospin–breaking

corrections up to s1, where once again we impose the isospin–limit results in [25, 26].

To ensure the correct threshold behavior of the txS partial wave, as well as to describe the cusp effect
of its imaginary part at both the charge– and neutral–pion thresholds, we parameterize this elasticity
parameter as

ηx
S(s) = η̃x

S(s)
(

1 + ∆π

√
(s− s+−)(s− s00)

7∑
i=0

cx
i

(
s− s+−

s+−

)i
)
, (7.44)

with η̃x
S(s) defined in Eq. (7.39).

2In this case, sin is assumed to correspond to the K̄K threshold, i.e., sin = 4M2
K .
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Once again, the value of the coefficient cx
0 is fixed by the T x isospin–breaking scattering length value

a+−
x as computed in χPTγ

cx
0 = 4

s+−∆π

[
(a+−

x )2 − (a+−
x + ∆a+−

x )2 exp
{
i

(
1 +

7∑
k=0

22k

sk
00
cx

k∆k+1
π

)

× tan−1
4(a+−

x + a2
0)
√

(s1 − s+−)(s1(2s+− − s00) − s2
+−)∆π

(s1 − s+−)2 − s1(s1 − s00) + 8(3a+−
x + 2a+−

x a2
0 + 2(a2

0)2)(s1 − s+−)∆π

}]
, (7.45)

with ∆a+−
x = a+−

x − a+−
x,IL. At leading order in ∆π this matching condition simplifies to

cx
0 = −

8 a+−
x,IL

s+−

(
∆a+−

x

∆π
+

2a00 2
n,IL a

+−
x,IL

s+−

)
(7.46)

To ensure continuity and differentiability with the isospin–limit solution at s1, the coefficients cx
6 and cx

7
are fixed by

cx
6 = −

(
s+−

s1 − s+−

)6
[ 5∑

k=0
(7 − k) cx

k

(
s1 − s+−

s+−

)k

+ 1
s1 − s+−

{(
9

s1 − s+−
+ 2iδn,IL

S (s1)′ + ηn
S(s1)′

ηn
S(s1)

)
1 − η̃x

S(s)2

SIL
n (s1) + 1 + η̃x

S(s)2

SIL
n (s1)

η̃x
S(s)′

η̃x
S(s)

}
,

cx
7 = −

(
s+−

s1 − s+−

)7
[ 6∑

k=0
cx

k

(
s1 − s+−

s+−

)k

+ 1
(s1 − s+−)2

1 − η̃x
S(s)2

SIL
n (s1)

]
. (7.47)

In the same way, above sin the elasticity parameters ηn
S and ηc

S fulfill 0 ≤ ηn
S , η

c
S ≤ 1, and their values

are fixed once again from the isospin–limit results in [25, 26]. Namely,

ηn
S(s) =


1 s ≤ s+− ,

ηn,IL
S (s)
ηx,IL

S (s)
=

|1 + 2iσ(s)
(
t00(s) + 2t20(s)

)
/3√

1 − 8σ(s)2 |(t200(s) − t20(s)) /3|2
s > s+− ,

ηc
S(s) = ηc,IL

S (s)
ηx,IL

S (s)
=

|1 + 4iσ(s)
(
2t00(s) + t20(s)

)
/6|√

1 − 8σ(s)2 |(t00(s) − t20(s)) /3|2
. (7.48)

Finally, δx
S is non–vanishing only above sin and provides the charge–exchange phase shift beyond the

elastic approximation:

δx
S = arg

(
2
√

2 i σ(s)
(
t00(s) − t20(s)

)
/3
)

− δn,IL
S (s) − δc,IL

S (s) . (7.49)

7.4 Imaginary parts in the inelastic regime

Below the first non–ππ inelastic threshold, the isospin–breaking parametrizations derived in the previous
section, combined with the unitarity relations discussed in Sec. 6.3, provide enough information to com-
pute the imaginary part of the amplitudes in the charge basis. However, the Roy equations beyond the
isospin limit, as derived in Sec. 7.1, require these imaginary parts to be defined up to s1, an energy that
lies above sin. Thus, in the kinematic region sin < s ≤ s1, the unitarity relations from Sec. 6.3 have to be
extended to incorporate inelastic contributions. Namely,
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Amplitude Tn:

ImtnS(s) = Imtn,00
S (s) + Imtn,+−

S (s) = σ0(s) |tnS(s)|2 + 2σ(s) |txS(s)|2 + ηx
s (s)2(1 − ηn

S(s)2)
4σ0(s) . (7.50)

Amplitudes T c and T++:

ImtcS(s) =Imtc,00
S (s) + Imtc,+−

S (s) = σ0(s) |txS(s)|2 + 2σ(s) |tcS(s)|2 + ηx
s (s)2(1 − ηc

S(s)2)
8σ(s) ,

Imtc,+−
P (s) =2σ(s) |tcP (s)|2 + 1 − ηc

P (s)2

8σ(s) ,

Imt++
S (s) =σ(s)

∣∣t++
S (s)

∣∣2 + 1 − η++
S (s)2

4σ(s) . (7.51)

Amplitudes π+π− → π0π0 and π+π0 → π+π0:

ImtxS(s) =Imtx,+−
S (s) + Imtx,00

S (s) = 2σ(s)txS(s)tcS(s)∗ + σ0(s)tnS(s)txS(s)∗

+
i ηx

S(s)
√

1 − ηx
S(s)2

4
√

2σ0(s)σ(s)
ei(δn

S (s)−δc
S(s))

(
ηn

S(s)ei δx
S(s) − ηc

S(s)e−i δx
S(s)
)
,

Imt+0
S (s) =2σ+0(s)

∣∣t+0
S (s)

∣∣2 + 1 − η+0
S (s)2

8σ+0(s) ,

Imt+0
P (s) =2σ+0(s)

∣∣t+0
P (s)

∣∣2 + 1 − η+0
P (s)2

8σ+0(s) . (7.52)

7.5 Strategy for the numerical solution

The isospin–breaking parameterizations defined in Sec. 7.3 together with their corresponding imaginary
parts in Sec. 7.4 provide enough information to check whether Roy equations for ∆Mπ ̸= 0 are satisfied.
Specifically, by using the imaginary parts as input, the right–hand side (RHS) of Roy equations in Sec. 7.1
can be computed and then compared with their left–hand sides (LHS), which are directly determined by
the real part of the parameterizations.

A numerical solution to Roy equations can be obtained by evaluating and minimizing the least–square
difference between the Roy equation LHS and RHS over a mesh ofN points in the seven S– and P–wave
amplitudes in the charge basis:

∆2
Roy =

∑
k,X

N∑
j=1

(
Re t k

X(sj) − F
[
t k
X

]
(sj)

)2
, (7.53)

where k labels the channels in the charged basis, X denotes the partial wave (S or P ), and sj are squared-
energy points taken between the k–channel threshold and smax = (0.975 GeV)2 (slightly below the KK̄
threshold). Here F [t k

X ](s) denotes the Roy–equation RHS beyond the isospin limit. The numerical Roy
solution is then obtained by varying the free parameters to minimize ∆2

Roy.

An exact solution of Eq. (7.53) corresponds to ∆Roy = 0, meaning Roy equations are perfectly satis-
fied. In principle, this renders the specific definition of ∆Roy irrelevant. However, in practice, the input
quantities—such as scattering lengths and driving terms that influence the matching conditions—are only
known within finite precision. This introduces systematic uncertainties in the solutions.

Given this scenario, the precise definition of ∆Roy = 0 used in the minimization process may influence
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the quality of an approximated solution. Ideally, a χ2–function would be the most suitable choice for
minimization algorithms. However, the lack of well–defined statistical errors precludes its direct applica-
tion. To address this and to ensure that all partial waves are treated uniformly, regardless of their relative
magnitude, we adopt the following function:

∆2
Roy =

∑
k,X

N∑
j=1

(
Re t k

X(sj) − F
[
t k
X

]
(sj)

Re t k
X(sj)

)2

, (7.54)

where N is varied between 50 to 150 to ensure the stability of the results, and in the end, fixed to 100.

In this way, using the parametrization parameters in Sec. 7.3 as fitting parameters, we look for solutions
to Roy equations beyond the isospin limit by minimizing the merit function in Eq. (7.54).



Chapter 8

Results

In this chapter, we will show the results for the dispersive, model–independent analysis of the isospin–
breaking effects due to the pion mass difference in the ππ scattering amplitude. We will first list the
missing (numerical) pieces to complete the analysis and then we will discuss the solutions of the Roy
equations in all the seven physical channels.

8.1 Some important numbers

We start by minimizing the ∆Roy merit function (see Eq. (7.54)) up to a maximum energy smax =
(0.975 GeV)2, slightly below the KK̄ threshold and before the non–ππ inelasticity in the Tn, T c, and
T x S–waves becomes significant. In addition, we impose the matching conditions with the isospin–limit
solution at s1, the highest energy at which Roy equations are solved. Beyond this point, i.e., s > s1, the
ππ input is extracted from experimental data.

The subthreshold parameters, which appear as subtraction constants in the isospin–breaking Roy equa-
tion, are derived from the χPTγ predictions expanded at O

(
δ2

π

)
, whose expressions are explicitly given

in Sec. 6.4. For their numerical evaluation, we use the PDG values [158] for the charged and neutral pion
masses,

Mπ± = (139.57039 ± 0.00017) MeV , Mπ0 = (134.9768 ± 0.0005) MeV , (8.1)

while for the pion–decay constant, we take the FLAG value [206]

Fπ = (92.2 ± 0.1) MeV ,

and the renormalization scale µ is set to µ = 770 MeV. For the mesonic low–energy constants (LECs),
we use

ℓ̄1 = −0.4 ± 0.6 , ℓ̄2 = 4.3 ± 0.1 , ℓ̄3 = 3.3 ± 0.3 , ℓ̄4 = 4.4 ± 0.2 , (8.2)

where the values of ℓ̄1, ℓ̄2, and ℓ̄4 are taken from [207], and ℓ̄3 is obtained as the average between the
Nf = 2 + 1 + 1 and Nf = 2 + 1 FLAG values [206].

Finally, for the electromagnetic LECs (ki) we use the numerical estimates given in [208],

k̄1 =(1.7 ± 1.3) × 10−3 , k̄2 = (4.1 ± 1.2) × 10−3 , k̄3 = (2.3 ± 2.7) × 10−3 ,

k̄4 =(3.8 ± 1.2) × 10−3 , k̄6 = (4.1 ± 1.3) × 10−3 , k̄8 = (2.2 ± 2.9) × 10−3 . (8.3)

With these numerical values, we can directly evaluate the χPTγ expressions for the scattering lengths
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given in Sec. 6.4, obtaining the following deviations from their isospin–limit values:

∆a00
n = −5.375 × 10−3 , ∆a++ = 2.918 × 10−3 , ∆a+−

c = 4.076 × 10−3 ,

∆a1 = −0.711 × 10−3 , ∆a2 = −1.467 × 10−3 . (8.4)

In addition, the values for ∆a+−
x and ∆a+0

c , which are required for evaluating the parameterizations
of the t+0

S and txS partial waves, can be computed from ∆a1 and ∆a2 using the relations in Eqs. (6.13)
and (6.14), respectively. Nevertheless, these expressions involve the same parameterizations we aim to
compute, leading to an implicit system of equations and significantly complicating the ∆Roy minimization
problem. Instead, since the partial–wave contributions in Eqs. (6.13) and (6.14) are already suppressed
by ∆π and ∆2

π, respectively, we can initially estimate the parameterization effect using the isospin–limit
results and update their values only in a later iteration. In this way, the starting value for the a+−

x and a+0
c

scattering length difference reads:

∆a+−
x

∣∣
0 = 0.081 × 10−3 , ∆a+0

c

∣∣
0 = −1.474 × 10−3 , (8.5)

where the subscript 0 indicates that these are starting values for both quantities. These results show only
a small correction relative to ∆a2 for a+0

c but a sizable effect for a+−
x compared to ∆a1.

The scattering lengths in the isospin limit are taken from the Roy–equation analysis in [25,26] and read
a0

0 = 0.220 and a2
0 = −0.0444, which in the charge–basis translate to the values

a00
n, IL = 0.0437 , a++

IL = −0.0444 , a+−
c, IL = 0.0659 , a+−

x, IL = 0.0881 , a+0
c, IL = −0.0222 .

(8.6)

8.2 Roy equations solutions with isospin–breaking effects

Once the scattering length values are fixed, we can begin searching for solutions. To ensure a well–
behaved minimum and prevent artificial correlations that might amplify isospin–breaking corrections, we
start adiabatically, introducing each parameterization parameter one at a time, stopping when the value of
the merit function per number of parameter ∆2

Roy/Npar no longer improves. This procedure yields six free
parameters for the P waves and five for most S waves; the partial waves tnS and tcS require an additional
five and four parameters, respectively, to account for the cusp structure. Proceeding in this way, we obtain
merit function value of ∆2

Roy = 1.4 · 10−4, achieving a level of consistency between the LHS and RHS
of the Roy equations comparable to that in the isospin limit.

While the results for the Tn, T c, and T x S–waves, as well as the P–waves, indicate small isospin–
breaking corrections—enhanced primarily at the threshold and in the resonance region—the repulsive,
non–resonant T++ and T+0 S–waves exhibit a more uniform effect. Notably, in the T+0 case, this effect
even increases with energy, leading to an unphysical bending enforced by the matching conditions at s1, as
shown in Fig. 8.1. This result reflects the dominance of the T+0 S–wave: in the Roy–equations framework,
this wave collects isospin breaking effects from all the other waves, leading to a sizable deviation from the
isospin limit solution at s1. In fact, the T+0 S–wave is directly related to the I = 2 channel, which in the
isospin limit shows rather large uncertainties, as it is shown in Fig. 8.2. To address this issue, we impose
the matching conditions only at higher energies, namely s2 = 4 GeV2, and parameterize the t+0

S input
above s1 using the polynomial,

t+0
S (s)

∣∣
input

= t+0, IL
S (s) + b+0

S

s− s2

s1 − s2

(
1 − s− s2

s1 − s2

)
, for s1 ≤ s ≤ s2 , (8.7)
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Figure 8.1: Result for the real part of the t+0
S (s) partial wave, with matching conditions imposed at

s1 = (1.15 GeV)2 to the isospin–limit result (dashed gray line). Roy equations are imposed only in the
ππ elastic region so that the LHS (blue) and RHS (red) curves start deviating above smax = (0.975 GeV)2.

Figure 8.2: Different data sets for the S–wave in the I = 2 channel and curves that [24] used as input in
the equation analysis. Figure taken from [24].
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which ensures a continuous and differentiable matching with the isospin–limit solution at s2, while allow-
ing for a shift at s1 given by

∆t+0
S (s1) = t+0

S (s1) − t+0, IL
S (s1) = b+0

S , (8.8)

where b+0
S is a complex free parameter determined through the ∆Roy minimization. Note that above s1,

we only need as input Imt+0
S , but below the isospin–breaking parameterization in (7.23) is expressed in

terms of its phase shift and elasticity, the latter being fixed from data. Consequently, in order to ensure
also a continuous matching at s1, only the real or imaginary part of the parameter b+0

s can be chosen
freely. In practice, we leave Re b+0

S free so that its imaginary part is given by

Im b+0
S = −Im t+0, IL

S +
1 −

√
η+0

S (s1)2 − 16σ+0(s1)2
(

Re t+0, IL
S (s1) + Re b+0

S

)2

4σ+0(s1) . (8.9)

With this new scheme, we minimize the merit function ∆Roy once again, using both the isospin–
breaking parameterization parameters and Re b+0

S as free parameters. As a result, we obtain a value
for the merit function ∆2

Roy = 1.2 × 10−4, slightly below our previous results when the matching to the
isospin–limit was imposed at s1. The partial waves remain nearly unchanged compared to our previ-
ous results, except for t+0

S near s1, where the unphysical bending observed in Fig. 8.1 now disappears,
obtaining at s1 the difference to the isospin limit,

∆Re t+0
S (s1) = Re t+0

S (s1) − Re t+0, IL
S (s1) = Re b+0

S = −5.56 × 10−3 . (8.10)

which amounts to a 2.5% effect. Furthermore, to estimate the effect of the asymptotic matching to the
isospin–limit at s2 for the t+0

S partial wave—and how this affects the value of Re b+0
S and hence, the

deviation from the isospin–limit at s1—we solve the Roy–equations for ∆π ̸= 0 once again, varying
the asymptotic value of the partial wave Im t20 within uncertainties. This variation affects not only the
matching conditions but also the value of the driving terms, allowing us to quantify the corresponding
changes in the solution.

The resulting coefficient in the isospin–breaking parameterization are given in Table 8.1 and the final
values for the corrections to a+−

x and a+0
c read

∆a+−
x = 0.032 × 10−3 , ∆a+0

c = −1.479 × 10−3 , (8.11)

which highlights a tiny effect for a+0
c , but makes the correction for a+−

x even smaller in magnitude than
the initial estimate.

The results for the real and imaginary parts of each of the seven S and P ππ waves are shown in
Figs. 8.3–8.7, where we compare the isospin–breaking parameterizations to the isospin–limit result. The
uncertainty band of the isospin–breaking parameterizations reflects the effect of varying the asymptotic
value of Im t20. For the real part of the partial waves, we plot both the LHS and RHS of Roy equations. In
all cases, their difference is almost negligible, reflecting how well Roy equations for ∆π ̸= 0 are satisfied.

Moreover, at the bottom of each figure, we include the difference between the isospin–breaking and
isospin–limit results, illustrating the size of the pion–mass difference corrections. These corrections should
be compared with the difference between the LHS and RHS of the Roy equations and the isospin–
breaking uncertainty band, which generally remain smaller across the entire energy region. This ensures
that the pion–mass difference corrections lie well above our intrinsic uncertainties.

In more detail, Fig. 8.3 displays the results for the tnS partial wave, where one can observe that while
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c0 c1 c2 c3 c4 × 10 c5 × 102 c̃0 c̃1 c̃2 c̃3 × 10 c̃4 × 102

tnS — 18.3 −6.85 0.511 0.743 −1.59 112 −7.04 0.574 0.578 −0.320

tcS — −34.2 9.52 −1.48 1.06 −0.332 −4.90 6.97 0.555 0.641 —

tcP 2.45 −13.7 4.19 −0.269 −0.413 0.707 — — — — —

txS — −6.71 −0.913 2.09 −4.52 3.92 — — — — —

t++
S — 38.3 −13.4 2.18 −1.52 0.0768 — — — — —

t+0
S — −40.39 15.1 −2.83 2.84 −1.49 — — — — —

t+0
P 4.06 11.6 −4.11 0.505 −0.251 0.0255 — — — — —

Table 8.1: Values of the parameter used to describe the isospin–breaking correction in the phase. These
values are given in unit of GeV−2, except the one for txS which are in unit of GeV−4.

the physical region starts at the charged–pion threshold for the isospin–limit parameterization, it opens
at the neutral–pion threshold in the isospin–breaking case, thereby amplifying the size of the correction.
The corrections are also enhanced at the f0(500) and f0(980) resonance regions, while remaining small
elsewhere, allowing for a smooth matching with the isospin limit at s1. In more quantitative terms, using
the variable s̄(s) in Eq. (7.34) for the evaluation of the isospin–limit result, the pion–mass difference
correction for the real part of the tnS(s) partial wave is around 12% at the neutral pion–threshold, which
by construction coincides with the size of ∆a00

n as computed in χPTγ , below 3% in the f0(500)/σ region
(
√
s ∼ 0.5 GeV), and around 7.5% near 1 GeV, the f0(980) region.

Figs. 8.4 and 8.5 show the results for the tcS(s) and txS(s) partial waves. In either case, the physical
region starts at the charged–pion threshold for both the isospin–limit and isospin–breaking results. Thus,
the differences at threshold correspond to the size of the scattering length differences computed in χ PTγ ,
around 6% for tcS and almost negligible for txS . The corrections become small at higher energies, with
a moderate increase in the f0(980) resonance regions of around 5%. Near s1, the effect is below 1%,
ensuring a smooth matching with the isospin–limit results.

Figs. 8.6 and 8.7 depict the results for the P–waves. In both cases, the P–wave centrifugal barrier effect
ensures that they vanish at their corresponding threshold, i.e., tcP (s+−) = t+0

P (s0+) = 0. Nevertheless,
while the physical region for the T c P–wave starts at the charged–pion threshold, making the isospin–
breaking results indistinguishable from the isospin–limit at low energies, it begins at s0+ for the t+0

P ,
leading to the pion–mass difference corrections observe in Fig. 8.7. In both cases, pion–mass difference
corrections remain small—below 2% over the entire energy range studied—rising to roughly 3% only in
the ρ(770) resonance region.

Finally, Figs. 8.8 and 8.9 show the results for the repulsive S–waves. In this case, the uncertainty
bands become significantly larger due to the strong dependence of the t++

S (s) and t+0
S (s) partial waves

on the asymptotic value of Im t20(s). While the imaginary part of t++
S (s) opens at the charged–pion

threshold—so that its difference from the isospin–limit result stems from the χPTγ correction to the scat-
tering length—the physical region for t+0

S (s) starts at s0+, introducing an additional correction, as seen
in Fig. 8.9. In both cases, the pion–mass difference relative corrections reach a maximum at threshold,
slightly exceeding 6%. Beyond this maximum, the relative correction decreases until it stabilizes around
a plateau at

√
s ∼ 0.5 GeV. For the t++

S partial wave, this plateau is around 1%, while for the t+0
S , the

relative correction for the real part reaches around 3%. Thus, while the corrections above 1 GeV in the
π+π+ → π+π+ channel remain relatively small, allowing for a smooth matching to the isospin–limit
value at s1, the shift with respect to the isospin–limit value required by the fit in the π+π0 → π+π0

S–wave is Re b+0
S = −5.65 × 10−3, and the matching is performed only at s2.
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Figure 8.3: Results for the real (left panel) and imaginary (right panel) parts of the tnS(s) partial wave.
For the real part, we display the isospin–breaking parameterization, i.e., the LHS of Roy equations (solid
blue), and the dispersive representation, i.e., the RHS (dashed red), along with the isospin–limit result
(gray–dotted line). For the imaginary part, since unitarity is exactly satisfied, we plot only the isospin–
breaking parameterization and the isospin–limit result. The blue band represents the uncertainty in the
isospin–breaking parameterization due to variations in the asymptotic value of Im t20. The inset figures
in both panels highlight the low–energy region, where the effect of the neutral–pion threshold becomes
visible. At the bottom of both panels, we show the difference between the isospin–breaking and isospin
limit parameterizations (gray–dotted line), along with the uncertainty band of the isospin–breaking pa-
rameterization. The isospin–limit result is evaluated using the variable s̄(s), defined in Eq. (7.34), which
maps the charged–pion threshold into the neutral one, allowing for a direct comparison of both results
at the same energies. For the real part, we also plot at the bottom the difference between the LHS and
RHS of Roy equations for ∆π ̸= 0.

8.3 Resonance pole parameters for ∆π ̸= 0

Because our formalism is founded on analyticity, the dispersive representation obtained here provides
model–independent access to the physical (first) Riemann sheet, and, by means of the Schwarz reflection
principle, can be continued to the unphysical (second) sheet. Consequently, the isospin–breaking am-
plitudes defined in Sec. 7.1 and App. E permit the extraction of the poles associated with the elastic ππ
resonances—f0(500), f0(980), ρ+(770) and ρ0(770)—and, by comparing their pole positions with the
isospin–limit values, to quantify the effects of the pion–mass difference.

In the isospin limit, the scalars f0(500) and f0(980) are isosinglet (I = 0) resonances and therefore
appear as a single pole in the three scalar amplitudes Tn, T c, and T x:

√
sf0(500)

∣∣
IL = (440 − i 271) MeV, √

sf0(980)
∣∣
IL = (997 − i 26) MeV , (8.12)

rounded according to the uncertainties quoted in [209–212].

Within our isospin–breaking formalism, this single–pole structure is also preserved thanks to the
coupled–channel formalism described in Sec. 7.3. The continuation of the partial waves tnS , tcS , and
txS to the second sheet yields

√
sf0(500)

∣∣
∆π

= (441 − i 270) MeV, √
sf0(980)

∣∣
∆π

= (997 − i 26) MeV . (8.13)
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Figure 8.4: We compare the isospin–breaking and isospin–limit results for the real (left panel) and imag-
inary part (right) of the tcS(s) partial wave. The different curves follow the conventions in Fig. 8.3. In this
case, the physical region for both the isospin–limit and isospin–breaking parameterizations starts at the
charged–pion threshold. Thus, the shift observed at low energies in the inset figures originates from the
χPTγ correction to the scattering length.

Comparing Eqs. (8.12) and (8.13) shows that isospin–breaking shifts are negligible at the present level
of precision: for the f0(500) the pole mass increases by ∼ 1 MeV and the width decreases by ∼ 2 MeV.
In contrast, the f0(980) pole is essentially unchanged within the quoted rounding.

By contrast, the ρ(770) is an isovector (I = 1) resonance, so that in the isospin limit the three charge
states ρ±(770) and ρ0(770) are degenerate:

√
sρ(770)

∣∣
IL = (763.29 − i 71.65) MeV . (8.14)

Isospin breaking effects lift this degeneracy. Analytically continuing the P–wave amplitudes tcP and t+0
P

(see App. E) gives

√
sρ0
∣∣
∆π

= (763.28 − i 71.66) MeV ,
√
sρ±
∣∣
∆π

= (762.29 − i 71.89) MeV . (8.15)

These values indicate a mass splitting of order ∼ 1 MeV and a width difference of order ∼ 0.5 MeV
induced by the pion–mass difference. Taking into account the uncertainties reported in [210, 212], the
pion–mass–difference effects on the ρmass and width are therefore minimal and within their error budget.
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Figure 8.5: Results for the real (left) and imaginary (right) part of the txS(s) partial wave. The curves follow
the same conventions as in Fig. 8.3. The imaginary part of both the isospin–breaking and isospin–limit
partial waves opens at the charged–pion threshold. At this energy, the pion–mass difference correction is
given by ∆a+−

x , which value in χPTγ leads to the small shift observed in the inset figures.

Figure 8.6: We show the isospin–breaking and isospin–limit results for the real (left panel) and imaginary
(right panel) of the tcP (s) partial wave. The bottom of each figure displays the difference between the
isospin–breaking and isospin–limit results, highlighting the minimal impact of pion–mass corrections in
this case. For the real part, we also depict the LHS and RHS of Roy equations. Both curves almost
coincide in the entire elastic region (s+− ≤ s ≤ sin) with their difference—displayed in the bottom
panel—remaining well below the deviation from the isospin–limit result.
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Figure 8.7: Comparison between the isospin–breaking (blue–solid line) and isospin–limit (gray–dotted)
results for the real (left panel) and imaginary (right panel) part of the t+0

P (s) partial wave. In the isospin–
breaking case, the physical region starts at s0+, whereas in the isospin limit, it opens at the charged–pion
threshold s+−. This explains why, despite being a P–wave, a shift appears between the isospin–breaking
and isospin–limit results at low energies.

Figure 8.8: Results for the real (left panel) and imaginary (right) part of the t++
S (s) partial wave. The

physical region for both the isospin–breaking (solid–blue line and band) and isospin–limit (gray–dotted
curve) partial waves starts at the charged–pion threshold. The pion–mass correction at threshold is given
by ∆a++, whose value is determined in χPTγ . For the real part of the partial wave, we also include the
RHS of the Roy equation (dashed–red line). The RHS–LHS difference, shown at the bottom, remains
consistently smaller than the pion–mass correction.
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Figure 8.9: Comparison between the isospin–limit and isospin–breaking results for the part (left panel)
and imaginary part (right panel) of the t+0

S (s) partial wave. In the isospin–breaking case, the imag-
inary part opens at s0+, whereas in the isospin limit, it starts at s+−. This shift, together with the
χPTγcorrection to the ∆a+0

c scattering length, leads to the significant pion–mass corrections observed
in the inset figures at low energies, reaching a maximum of approximately 6% at threshold. At higher
energies, these corrections gradually decrease and stabilize around 3% at

√
s ∼ 0.5. At s1, and only for

this wave, an additional pion–mass difference correction is required in the fit, encoded in the parameter
Re b+0

S = −5.56 × 10−3. The bottom of both panels shows the difference between the isospin–breaking
and isospin–limit parameterizations (gray–dotted line), along with the uncertainty band for the isospin–
breaking parameterization. For the real part, we also display the difference between the RHS and LHS
of the Roy equation (dashed–red line), which remains significantly smaller than the pion–mass correc-
tion. The isospin–limit result is evaluated using the variable ŝ(s), defined in Eq. (7.22), which maps the
charged–pion threshold onto the π+π0 threshold, enabling a direct comparison between the isospin–
breaking and isospin–limit results at the same energies.



Chapter 9

Isospin–breaking corrections to τ → ππ0ντ : overall strat-
egy

As we pointed out in Ch. 2, the tension between experimental and Standard Model results of the muon
anomalous magnetic moment requires new and more precise computations. In this sense, the study of
the τ decay provides an alternative and independent way to compute this observable. In the following
chapters we will focus on the computation of the long–range corrections to the hadronic τ–decay, usually
denoted by GEM(s).

9.1 Why study τ → ππ0ντ

In a data–driven approach, the hadronic contribution to aµ, aHVP
µ , is determined from the cross section of

the reaction e+e− → π+π−, which is measured in different experiments, using the initial state radiation
(ISR) method (BaBar, KLOE and BESIII) or the energy–scan approach (SND, CMD–2, CMD–3). In
particular, a relevant contribution in the error of aHVP

µ is due to the tension between the high precision
experiments BaBar and KLOE. However, this discrepancy increased after the release of the new result
from CMD–3 [12]. An overview of the estimations of aµ for different experiments from e+e− → π+π−

can be found in Fig. 2.3. The tensions showed in Fig. 2.3 are the reason why in [14] a data–driven estimate
of the aHVP, LO

µ is not provided. In fact, after the CMD–3 measurement of the critical e+e− → π+π−

channel, systematic discrepancies had increased to a level that could no longer be taken into account by a
meaningful error inflation. There are several ongoing investigations trying to rectify the situation [14,20],
including new data as well as improvements of the radiative corrections and Monte Carlo generators
[18, 21–23,213–215].

In view of this, the study of the hadronic τ decay offers an alternative way to estimate the e+e− →
π+π− cross section and ultimately the muon anomalous magnetic moment which can help in clarifying
the current situation. As we can see from the diagrams in Fig. (9.1), in the case of the e+e− → π+π−

we have an electromagnetic neutral current and a final state with isospin (I, Iz) = (1, 0), while in the
τ decay we have a vector–axial vector charged current and a final state with (I, Iz) = (1,−1). Thanks
to a conserved–vector–current (CVC) relation between electromagnetic and weak form factors, in the
isospin limit, the purely hadronic cross section for e+e− → π+π− (with QED effects removed3) can be
related to the τ− → π−π0ντ differential decay width in this limit by Eq. (2.38) where constants and
phase–space factors are collected in Eqs. (2.39) and (2.40). Including isospin violation to leading order,

3cf. removal of vacuum polarization and initial–state–radiation effects in [102].
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Figure 9.1: Tree level diagrams for the processes e+e− → π+π− and τ− → π−π0ντ .

O
[
(mu −md)p2] and O(e2p2), the modified CVC relation takes the form

σ(e+e− → π+π−)(s) = 1
N (s)Γ(0)

e

dΓ(τ− → π−π0ντ )
ds

RIB(s)
Sππ

EW
, (9.1)

where Sππ
EW = 1 + 2α/π log (MZ/mτ ) + ... = 1.0233(3)(24) [216–223] takes into account the dominant

short distance electroweak corrections in the convention that the normalization proceeds with respect to
the full decay rate Γe ≡ Γe[τ → eντ ν̄e], of which Eq. (2.40) represents the LO approximation. The
isospin breaking (IB) effects are included in

RIB(s) = FSR(s)
GEM(s)

β3
ππ(s)

β3
π0π(s)

∣∣∣∣∣FV
π (s)
f+(s)

∣∣∣∣∣
2

. (9.2)

In particular, FSR(s) = 1 + α
π η(s) [137, 224–226] account for final state radiation contributions in

e+e− → π+π−(γ), GEM(s) includes the virtual and real photons corrections, β3
ππ(s)

β3
π0π

(s) is the phase space

correction factor and
∣∣∣F V

π (s)
f+(s)

∣∣∣2 accounts for corrections between the different form factors entering the

two processes. In this work we will mainly focus on the determination of the GEM(s) factor which will
be computed with a new model–independent dispersive approach. At LO in IB, the τ decay rate can
therefore be expressed as

dΓ[τ → ππντ (γ)]
ds

= Sππ
EWKΓ(s)β3

ππ0 |f+(s)|2GEM(s) ,

(9.3)

with

KΓ(s) = Γe|Vud|2

2m2
τ

(
1 − s

m2
τ

)2(
1 + 2s

m2
τ

)
, (9.4)

and where GEM(s), following [34,35], can be defined as

GEM(s) =

∫ tmax(s)
tmin(s) dt D(s, t)∆(s, t)∫ tmax(s)

tmin(s) dt D(s, t)
, (9.5)

where

D(s, t) = m2
τ

2
(
m2

τ − s
)

+ 2M2
π − 2t

(
m2

τ − s+ 2M2
π

)
+ 2t2 , (9.6)
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τ

ντ

π0

π−

τ

γ

Figure 9.2: Triangle diagram with ππγ– and τντππ–vertices dressed with the pion vector form factor.

is the tree–level kinematic function, while

∆(s, t) = 1 + 2fe2p2

+ (s, t) + gLow(s, t) + grest(s, t) . (9.7)

includes both real and virtual photons radiative corrections. All the terms in ∆(s, t) will be explained in
detail later in this work. However, we want to stress the fact that, in order to use the hadronic τ decay
to compute the e+e− → π+π− cross section, not only radiative corrections have to be understood, but
also appropriate IB effects need to be applied to ensure consistency with the standard photon–inclusive
definition of the LO HVP contribution as determined from the e+e− scattering, aHVP,LO

µ [ππ].
For now, we do not aim at a full calculation of second–order isospin breaking effects, which are tiny,

and we therefore evaluate GEM(s) in the isospin limit, Mπ0 → Mπ and FV
π (s) → f+(s). The only

exception where the pion mass differences does matter in the end concerns the aµ integral, as otherwise
fake isospin–breaking effects can be generated if the phase–space boundaries do not match, i.e., the
threshold singularity in GEM(s) sits at s = 4M2

π , but the physical threshold of τ± → π±π0ντ at s =
(Mπ +Mπ0)2. This mismatch can be avoided by a simple linear mapping [205]

GEM(s) 7→ GEM
[
s̃(s)

]
, (9.8)

with

s̃(s) =
(m2

τ − 4M2
π)s+

[
4M2

π − (Mπ +Mπ0)2]m2
τ

m2
τ − (Mπ +Mπ0)2 , (9.9)

fulfilling s̃[(Mπ + Mπ0)2] = 4M2
π and s̃(m2

τ ) = m2
τ , to ensure that the singularity in GEM

[
s̃(s)

]
is

shifted to the physical threshold. In fact, this threshold singularity leads to the only second–order IB
effects that do need to be included, i.e., the threshold–enhanced terms in GEM(s) multiplied with the IB
corrections from phase space and Sππ

EW lead to non–negligible contributions, so that a linearized form of
the corrections in Eqs. (9.1) and (9.2) should be avoided (see Sec. 13.4).

9.2 Our approach

In the literature, IB corrections to the hadronic τ decay are computed with model–dependent meth-
ods [34–37]. Here, we developed a new, model–independent dispersive approach for the radiative cor-
rections to τ → ππντ . In this framework, the only relevant unitary diagram is the one in Fig. 9.2. In a
dispersive picture, such a contribution arises by considering the pion–pole singularity in the general ma-
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τ−

ντ

π−

π0

π+
γ

W−

Figure 9.3: Box diagram in a dispersive approach. The gray blobs denote the pion form factor, in the
neutral and charged channel, respectively. The short–dashed red line indicates that the intermediate–
state pion is taken on–shell

trix element ⟨ππ0|jµ
emj

ν
W |0⟩ of weak and electromagnetic currents, which could be generalized in analogy

to pion Compton scattering [79–81,227–229]. However, at low energies the pion–pole contribution gives
by far the dominant effect, leading to the picture in Fig. 9.2. Given the short–range weak vertex, the
diagram appears as a triangle topology, but actually originates from a box diagram. In fact, keeping in
mind that the τντππ

0 vertex arises from integrating out the W boson, this topology then takes the form
shown in Fig. 9.3. Once the intermediate–state pion is taken on–shell, both the ππγ– and the τντππ–
vertices appearing in the triangle–diagram of Fig. 9.2 are described exactly by the electromagnetic and
the weak form factor, respectively. In particular, in our dispersive framework, we employ the unsubtracted
dispersive representation

f+(s) = − 1
π

∫ ∞

4M2
π

ds′ Im f+(s′)
s− s′ . (9.10)

which satisfies the following sum rule

f+(0) = 1
π

∫ ∞

4M2
π

ds′ Im f+(s′)
s′ = 1 . (9.11)

In principle, one would need to differentiate between FV
π (s) and f+(s) for electromagnetic (Eq. (2.34))

and weak vertices, but since the difference is higher order in isospin–breaking, we use the expression in
Eq. (9.10) for both. The unsubtracted form factor in Eq. (9.10) is chosen to ensure that UV divergences
already cancel within the triangle diagram itself (in contrast to χPT ), at the expense of having to fulfill
a posteriori the sum rule in Eq. (9.11) to respect charge conservation.

Our dispersive representation of the triangle diagram (see Fig. 9.2) is sensitive to the high–energy
behavior of this unsubtracted form factor. We therefore need to fix the subtraction constants through a
matching procedure with the χPT result, in order to guarantee the correct low energy behavior. This step
is fundamental not only because our result then display a reduced sensitivity to the high–energy part of
the dispersive integrals, but also because it allows us to restore the correct IR singularities, to be canceled
from photon real–emissions (see Ch. 12), and the correct chiral logarithms. The detailed procedure is
explained in Sec. 11.6.



Chapter 10

Radiative corrections to τ → ππ0ντ in χPT

As we explained in Ch. 9, radiative corrections to the hadronic τ decay computed in the χPT framework
are of fundamental importance in order to restore the correct low–energy behavior in our dispersive
computation. In the following sections we detail the χPT computations for the radiative corrections to
τ → ππ0ντ , showing explicitly the UV– and IR–divergences cancellation, the latter after considering
photon real–emission contribution in the soft–photon approximation.

10.1 χPT representation

At leading order in chiral power counting, the SU(3) χPT Lagrangian including virtual photons and
leptons (see Sec. 4.3.5) and relevant for calculating the radiative corrections to τ− → π−π0ντ includes
the terms

LLO
eff ⊃

[
(∂µ − ieAµ)π−] [(∂µ + ieAµ)π+]+ τ̄ [iγµ (∂µ − ieAµ) −mτ ] τ

+ iν̄τL /∂ντL + 2iGFV
∗

ud ν̄τLγ
µτ
[
π0 (∂µ + ieAµ)π+ − π+∂µπ

0] , (10.1)

where e is the elementary charge, GF the Fermi constant and Vud a CKM–matrix element. By means of
the interactions contained in the LO Lagrangian, the tree–level amplitude for
τ−(l1) → π−(q1)π0(q2)ντ (l2) is found to be

iMtree = iGFV
∗

udū(l2, ντ )(1 + γ5)(/q2 − /q1)u(l1, τ) . (10.2)

The relevant counterterms of the radiative corrections to the hadronic tau decay originate from terms in
the NLO Lagrangians Le2p2 and Llept listed in Eqs. (4.67) and (4.68) in Sec. 4.3.5.

10.1.1 General Considerations

The decay amplitude of τ−(l1) → π−(q1)π0(q2)ντ (l2), once we include radiative corrections, can be
written in terms of two form factors by

iM = iGFV
∗

udū(l2, ντ )γµ(1 − γ5)u(l1, τ) [(q2 − q1)µf+(s, t) + (q1 + q2)µf−(s, t)] , (10.3)

92
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where f+ represents the contribution due to the JP = 1− component of the weak current and f− vanishes
in the isospin limit [34,35].4 The Mandelstam variables are defined as

s = (l1 − l2)2 = (q1 + q2)2 , (10.4)

t = (l1 − q1)2 = (q2 + l2)2 ,

u = (l1 − q2)2 = (q1 + l2)2 .

Projecting this expression for the tree–level amplitude onto the form factors, therefore implies

f tree
+ (s, t) = 1 , f tree

− (s, t) = 0 . (10.5)

The spin–averaged squared amplitude can thus be expressed by

1
2
∑
spins

|M|2 =2G2
F |Vud|2

{
(m4

τ −m2
τs)|f−(s, t)|2 (10.6)

− 2m2
τ (2M2

π0 +m2
τ − s− 2t) Re

[
f+(s, t)f∗

−(s, t)
]

+ [4M2
π(M2

π0 − t) + 4t(s+ t−M2
π0) −m2

τ (s+ 4t) +m4
τ ]|f+(s, t)|2

}
.

Furthermore, the differential decay width is given by

dΓ = 1
32m3

τ (2π)3

1
2
∑
spins

|M|2
 ds dt , (10.7)

with the phase space in the π0ντ invariant mass square limited by tmin ≤ t ≤ tmax with

tmin = (q0∗
2 + l0∗

2 )2 −
[√

(q0∗
2 )2 −M2

π0 + l0∗
2

]2
, (10.8)

tmax = (q0∗
2 + l0∗

2 )2 −
[√

(q0∗
2 )2 −M2

π0 − l0∗
2

]2
, (10.9)

with particle energies in the π0ντ center–of–mass frame given by

q0∗
2 =

s−M2
π +M2

π0

2
√
s

, l0∗
2 = m2

τ − s

2
√
s

. (10.10)

In the π−π0 invariant mass squared the phase space is bounded by

(Mπ +Mπ0)2 ≤ s ≤ m2
τ . (10.11)

Ignoring the dependence of f±(s, t) on the second variable, the integral over t reproduces [34]

dΓ[τ → ππντ ]
ds

= Γ(0)
e |Vud|2

2m2
τ

βππ0(s)
(

1 − s

m2
τ

)2[([
βππ0(s)

]2(1 + 2s
m2

τ

)
+ 3∆2

π

s2

)∣∣f+(s)
∣∣2

− 6∆π

s
Re
[
f+(s)f∗

−(s)
]

+ 3
∣∣f−(s)

∣∣2] . (10.12)

4This is an example of a second–class current [230,231]. As shown in [231], f− can be traded for a scalar from factor f0(s), with
f0(0) = 1 and f−(s) = ∆π

s

[
f+(s) − f0(s)

]
, which shows that f−(s) scales with the pion mass difference ∆π = M2

π − M2
π0 .
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Figure 10.1: Leading diagrams for the radiative corrections to τ−(l1) → π−(q1)π0(q2)ντ (l2) excluding
wave function renormalization.

10.2 Radiative corrections

At O(e2p2) in χPT, the diagrams arising from the lowest order effective Lagrangian of [190] are shown
in Fig. 10.1. In this work, we employ dimensional regularization to deal with both the UV and the IR
divergences arising in the computation. Following the definition in Eq. (10.3), the form factors f+(s, t)
for the diagrams in Fig. 10.1 read

f
(a)
+ (t) = e2

16π2

{
− A0(M2

π)
4M2

π

+ 1
m4

τ − 2m2
τ (M2

π + t) + (M2
π − t)2

×
[
2
(
m4

τ − 2tm2
τ + t(t−M2

π)
)
B0(M2

π , 0,M2
π)

−
(
m2

τ (3M2
π + t) +m4

τ − 2(M2
π − t)2)B0(m2

τ , 0,m2
τ )

+
(
m2

τ (t−M2
π) +m4

τ + 2t(M2
π − t)

)
B0(t,M2

π ,m
2
τ )
]

+ 2
(
m2

τ +M2
π − t

)
C0(M2

π , t,m
2
τ , 0,M2

π ,m
2
τ )
}
, (10.13)

f
(b)
+ (t) = 0 , (10.14)

f
(c)
+ (t) = e2

16π24M2
π

[
A0(M2

π) − 4M2
πB0(M2

π , 0,M2
π)
]
. (10.15)
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Figure 10.2: Counterterm diagram for the radiative corrections to τ− → π−π0ντ .
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Figure 10.3: Loop and counterterm diagrams of the external leg contributions.

We notice that, in the χPT framework at this order, the form factor f+(t) depends on the single Man-
delstam variable t. The scalar loop integrals used within these expressions are obtained by utilizing
Passarino–Veltman reduction techniques [232–238] implemented in FeynCalc [239–242]. Since f−(t)
vanishes in the isospin limit we show from now on only the relevant f+(t) form factors.

In addition to the one–loop diagrams in Fig. 10.1, a counterterms contribution as in Fig. 10.2 must be
included, which gives the following f+(t)

f ct
+(t) = 2e2

9 [12K1 − 9(K3 −K12) + 10K5 − 3X1] . (10.16)

which is independent on the Mandelstam variable t and where the low–energy constants Ki and Xi

contain UV–divergences, which, in dimensional regularization, can be separated from the UV–finite parts
accordingly to Eqs. (4.72) and (4.73) with the definition of Λ(µ) in Eq. (4.74).

The O(e2p2) corrections to the τ and π− 2–point functions in Fig. 10.3 (a) and (c) need to be included
and in the case of the τ lepton, this quantity is given by

Zτ = 1 + d
d/p

Στ (/p)
∣∣∣∣
/p=mτ

, (10.17)

with Στ (/p) the associated τ self–energy function. Analogously, for the π−

Zπ− = 1 + d
dp2 Σπ−(p2)

∣∣∣∣
p2=M2

π

. (10.18)

Moreover, the τ and the pions 2–point functions are subject to renormalization by terms from the NLO
Lagrangians Le2p2 and Llept (see Fig. 10.3 (b) ,(d) and (e)). The counterterms contribution amounts
to [243]

Zct
τ = −e2X6 ,

Zct
π− = −4

9e
2 (6K1 + 5K5) , (10.19)

Zct
π0 = −4

9e
2 (6K1 − 9K3 + 5K5) .
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Their contribution to the decay amplitude is obtained through

Mext. =
(√

Zct
π0

(
Zπ− + Zct

π−

)
(Zτ + Zct

τ ) − 1
)
iMtree . (10.20)

Altogether the O(e2p2) amplitude to τ− → π−π0ντ is given by

iMvirt := iMa + iMb + iMc + iMct +
(√

Zct
π0

(
Zπ− + Zct

π−

)
(Zτ + Zct

τ ) − 1
)
iMtree

=
[
f

(a)
+ (t) + f

(b)
+ (t) + f

(c)
+ (t) + f ct

+(t) +
(√

Zct
π0

(
Zπ− + Zct

π−

)
(Zτ + Zct

τ ) − 1
)]

iMtree .

(10.21)

10.2.1 UV–divergences cancellation

The UV–divergent terms arising from the diagram in Fig. 10.1 appear as

f
(a)
+ (t)

∣∣
UV-div.

= − 7e2

64π2 32π2ΛUV ,

f
(b)
+ (t)

∣∣
UV-div.

= 0 ,

f
(c)
+ (t)

∣∣
UV-div.

= 3e2

64π2 32π2ΛUV , (10.22)

where ΛUV is defined in Eq. (4.74) with the subscript indicating that it refers only to the UV–divergent
contribution (in the following we will employ ΛIR for the IR–divergent terms in dimensional regulariza-
tion). For the counterterm Lagrangian we obtain

f ct
+(t)

∣∣
UV-div.

= − 2e2

64π2 32π2ΛUV . (10.23)

The UV–divergent contribution to the τ and pions external legs corrections (Fig. 10.3) are

(√
ZτZπ− − 1

) ∣∣∣∣
UV-div.

= − 2e2

64π2 32π2ΛUV,(√
(1 + Zct

π−)(1 + Zct
π0)(1 + Zct

τ ) − 1
) ∣∣∣∣

UV-div.

= 8e2

64π2 32π2ΛUV . (10.24)

Altogether the UV divergences therefore cancel: iMvirt|UV-div = 0.

10.3 IR–divergences in the soft–photon approximation

We will now compute the photon real emission contribution in the soft–photon limit and in sQED and
we will explicitly see how these results cancel the IR–divergences present in the virtual contributions in
the χPT framework.

By considering the box diagram amplitude in sQED, i.e., Fig. 10.1 (a), the IR–divergent contribution
reads

f
(a)
+ (t)

∣∣∣∣∣
IR-div

= e2

16π2 2
(
M2

π +m2
τ − t

)(
− tBπτ

0 (t)
λπτ (t) 32π2ΛIR

)
(10.25)
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where

Bπτ
0 (t) = λ

1/2
πτ (t)
t

log xt , xt = − t− (mτ −Mπ)2 − λ
1/2
πτ (t)

t− (mτ −Mπ)2 + λ
1/2
πτ (t)

, (10.26)

and λπτ (t) = λ(t,M2
π ,m

2
τ ) is the Källén function. This can be written at the amplitude level and

explicitly in terms of ϵIR = d− 4 as

iMa

∣∣∣∣
IR-div.

=
Mred.

−
ϵIR

8m
2
τ +M2

π − t

λ
1/2
πτ (t)

log
(
m2

τ +M2
π − t+ λ

1/2
πτ (t)

2mτMπ

)
, (10.27)

where

Mred.
− := ie2GFV

∗
ud

16π2 ū(l2, ντ )
[
/q1 − /q2

]
u(p1, τ) . (10.28)

while the amplitudes Mb and Mc do not contain any IR–divergent parts. On the other hand, the self–
energy (SE) diagrams contribute with

fSE
+ (t) = e2

16π2 64π2ΛIR (10.29)

which again can be written in terms of the reduced amplitude as

√
Zπ− iMtree

∣∣∣∣
IR-div.

=
√
Zτ iMtree

∣∣∣∣
IR-div.

= − 4
ϵIR

Mred.
− . (10.30)

For the purpose of canceling the IR divergences, it is useful to express this contribution in terms of the
tree–level differential decay width,

dΓtree = 1
(2π)332m3

τ

1
2
∑
spins

|Mtree|2
 ds dt , (10.31)

with

1
2
∑
spins

|Mtree|2 = 4G2
F |Vud|2

[
4
(
M4

π − 2M2
πt+ t(s+ t)

)
+m4

τ −m2
τ (s+ 4t)

]
.

in the isospin limit, i.e., Mπ0 = Mπ. The IR–divergent contribution to the differential decay width
arising from the interference of the triangle diagram with the tree–level amplitude can be expressed by

dΓa

∣∣∣∣
IR-div.

= − e2

2π2ϵIR

m2
τ +M2

π − t

λ
1/2
πτ (t)

log
(
m2

τ +M2
π − t+ λ

1/2
πτ (t)

2mτMπ

)
dΓtree , (10.32)

where this specific contribution to the differential decay width is defined as

dΓa = (2π)4

2mτ

∑
spins

{iMa(iMtree)∗ + iMtree(iMa)∗} dΦ3(l1; l2, q1, q2) ,

with n–body phase space in PDG conventions [244] defined by

dΦn(P ; p1, . . . , pn) = δ(4)(P −
n∑

i=1
pi

) n∏
i=1

d3pi

(2π)32p0
i

. (10.33)
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The IR–divergent contribution of the wave function renormalization to the differential decay width can
be written as

dΓZπ−

∣∣∣∣
IR-div.

= dΓZτ

∣∣∣∣
IR-div.

= e2

4π2ϵIR
dΓtree . (10.34)

To obtain an IR–finite result we need to consider also the initial– and final–state radiation contribution
which includes the following amplitudes

iMISR = τ

γ π−

π0

ντ

, iMFSR = τ

π−

γ

π0

ντ

. (10.35)

and for this computation, the soft photon approximation (SPA) can be employed. In the calculation of
squared amplitudes, cross sections and decay widths, photon momenta appearing in the numerators are
to be neglected in this approximation, in order to extract the leading term in the Low expansion.

The initial–state radiation diagram shown above contributing to τ−(l1) → π−(q1)π0(q2)ντ (l2)γ(k)
evaluates to

iMISR = −2iGFVudū(l2, ντ )
(
/q1 − /q2

) i (/l1 − /k +mτ

)
(l1 − k)2 −m2

τ

(ieγµ)u(l1, τ) (ϵµ(k))∗
. (10.36)

Note that the denominator of this amplitude can be simplified to

(l1 − k)2 −m2
τ = −2l1 · k , (10.37)

for an on–shell τ . Furthermore, by using Dirac algebra, part of the numerator can be written as(
/l1 − /k +mτ

)
γµu(l1, τ) =

[
2gµν(l1 − k)ν − γµ(/l1 − /k −mτ )

]
u(l1, τ)

SPA
≈
[
2l1µ − γµ(/l1 −mτ )

]
u(l1, τ) = 2l1µu(l1, τ) . (10.38)

Therefore, the initial–state radiation amplitude in the SPA appears as

iMISR = iMtree
[
e
l1 · ϵ∗(k)
l1 · k

]
. (10.39)

Likewise, the final–state radiation amplitude can be expressed as

iMFSR = 2ieGFVudū(l2, ντ )
(
/q1 + /k − /q2

)
u(l1, ντ ) (2q1 + k)µ

(q1 + k)2 −M2
π

(ϵµ(q))∗

SPA
≈ iMtree

[
−e q1 · ϵ∗(k)

q1 · k

]
. (10.40)

Note that in SPA the phase–space integration over the soft–photon momentum can be separated

dΓbrems = (2π)4

2mτ

1
2
∑
spins

∣∣MISR + MFSR
∣∣2 dΦ4(p1; p2, l1, l2, q)
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SPA
≈ dΓtree

∫ ′ dd−1k

(2π)d−1
1

2|k|
∑
pol.

e2
∣∣∣∣ l1 · ϵ∗

l1 · k
− q1 · ϵ∗

q1 · k

∣∣∣∣2 , (10.41)

by neglecting the photon momentum in the argument of the 4–momentum conserving δ–function and
where the primed integral only runs over photon momenta

∣∣k∣∣ < ∆, where ∆ is a resolution parameter.
Performing the polarization sum, the integrand appears as

∑
pol.

∣∣∣∣ l1 · ϵ∗

l1 · k
− q1 · ϵ∗

q1 · k

∣∣∣∣2 = 2l1 · q1

(l1 · k)(q1 · k) − m2
τ

(l1 · k)2 − M2
π

(q1 · k)2 . (10.42)

The integrals have been worked out in [236] and earlier in [245–248]. However we are working in dimen-
sional regularization also for the infrared divergences so we recapitulate here our derivation [249]. The
terms of the integrand in Eq. (10.41) can be split up

dΓbrems = e2dΓtree [2(l1 · q1)I int −m2
τI

ISR −M2
πI

FSR] . (10.43)

and a detailed computation of the different terms is given in App. F. Here we give only the result for the
IR divergent contribution:

dΓbrems = e2

2π2ϵIR

[
−1 + m2

τ +M2
π − t

λ
1/2
πτ (t)

log
(
m2

τ +M2
π − t+ λ

1/2
πτ (t)

2mτMπ

)]
dΓtree , (10.44)

This term perfectly cancels the IR–divergences coming from virtual corrections in Eqs. (10.32) and (10.34).



Chapter 11

Dispersive analysis of the isospin breaking corrections to
τ → ππ0ντ

As we saw in Sec. 9.2, the only relevant diagram is the one in Fig. 9.2. In fact, by considering the other
loop contributions in the χPT framework, the diagrams (b) and (c) in Fig. 10.1 do not generate analytic
singularities in the Mandelstam variables. In order to take into account the strong final–state interactions
between τ− and π0, since the main purpose of studying this decay concerns a precision measurement of
the corresponding πVFF, the tree–level vertex (see Eq. (10.3)) needs to be modified accordingly:

iM → −iGFV
∗

udū(l2, ντ )γµ(1 − γ5)u(l1, τ)f+(s) [(q1 − q2)µ(1 + κ+(s, t)) + (q1 + q2)µκ−(s, t)] ,
(11.1)

where f+(s) is the pion vector form factor as defined in the non–radiative process, and by factoring it
out, the remaining scalar functions, κ+(s, t) and κ−(s, t), are redefined accordingly. The ∆(s, t) term in
Eq. (9.7) entering the GEM(s) definition therefore read

∆(s, t) = 1 + 2 Reκ+(s, t) + gLow(s, t) + grest(s, t) . (11.2)

In this chapter, we work out our new model–independent dispersive approach which sets the understand-
ing of the isospin–breaking effects to the hadronic τ decay on a more solid ground.

11.1 Triangle–diagram supplemented by form factors

By considering our dispersive triangle diagram (see Fig. 9.2 and Eq. (9.10)), and projecting it onto the
κ+(s, t) form factor, analogously to what was done in Eq. (10.3), the following expression can be obtained

κ
disp
+ (s, t) = e2

16π4f+(s)

∫ ∞

4M2
π

ds′ ds′′ [κ̃B(s, s′, s′′) + κ̃C(s, t, s′, s′′) + κ̃D(s, t, s′, s′′)
]
, (11.3)

where

κ̃B = Im f+(s′) Im f+(s′′)
2s′(s− 4M2

π)
[
B̄0(M2

π ,M
2
π , s

′) − 2B̄0(s, s′, s′′)
]
,

κ̃C = Im f+(s′) Im f+(s′′)
2s′
[
s((t−M2

π)2 + st) +M2
πm

4
τ −m2

τs(M2
π + t)

]
×
{

−
[
2st(t−M2

π) +m6
τ +m4

τ (2M2
π − s− 2t) −m2

τ (M2
π − t)(M2

π − s+ t)
]

100



11.2. Pion vector form factor f+(s) 101

× C̄0(m2
τ ,M

2
π , t,m

2
τ , s

′,M2
π)

+
[
2s(2M4

π − 4M2
πt+ t(s+ 2t)) +m6

τ +m4
τ (3M2

π − 2s− t) +m2
τs(s− t− 3M2

π)
]

× C̄0(0,m2
τ , s, s

′′,m2
τ , s

′)

−
[
s
{
M4

π(s− s′′ − 16t) + 2M2
πt(5s+ s′′ + 8t) − t(t(3s+ s′′) + s(s+ s′′))

}
+m4

τ

(
8M4

π +M2
π(3s− s′′) − s2)

+m2
τs
(
4M4

π +M2
π(s′′ − 6s− 20t) + s2 + 4st+ s′′t

)] C̄0(M2
π ,M

2
π , s, s

′,M2
π , s

′′)
s− 4M2

π

−
s′(m2

τs(M2
π + t) −m4

τM
2
π − s((t−M2

π)2 + st)
)

s− 4M2
π

C0(M2
π ,M

2
π , s, s

′,M2
π , s

′′)
}
,

κ̃D = Im f+(s′) Im f+(s′′)
2s′
[
s((t−M2

π)2 + st) +M2
πm

4
τ −m2

τs(M2
π + t)

]
×
{
s′(t−M2

π)
[
m2

τ (M2
π + s+ t) − 2st−m4

τ

]
D0(m2

τ ,M
2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

+
[
m6

τ

(
4M2

π + s− s′′)+m4
τ

(
4M4

π − 2M2
π(s+ s′′ + 2t) − s2 + ss′′ − 6st+ 2s′′t

)
+m2

τ

(
M4

π(s′′ − s) +M2
πs(s− s′′ − 8t) + t

(
3s2 + ss′′ + 9st− s′′t

))
+ 2s

(
M2

π − t
) (

2M4
π − 4M2

πt+ t(s+ s′′ + 2t)
) ]

× D̄0(m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)
}
, (11.4)

where
F̄0(..., s′, ...) := F0(..., s′, ...) − F0(..., 0, ...) , F ∈ B,C,D . (11.5)

Differently from the χPT analysis, here the form factor κ+(s, t) indeed depends on both Mandelstam
variables s and t. Moreover, thanks to the use of the unsubtracted dispersive representation of f+(s), the
result is now manifestly UV finite, i.e., the suppression of the high–energy modes due to the additional
propagators is enough to render the loop integrals finite. Note also that the common prefactor appearing
in the denominators of κ̃C and κ̃D can be written as

s((t−M2
π)2 + st) +M2

πm
4
τ −m2

τs(M2
π + t) = s(t− tmin)(t− tmax) , (11.6)

for tmin/max of Eqs. (10.8) and (10.9) in the isospin limit. These divergences at the border of the phase space
are canceled by corresponding zeros in the numerator, but the cancellation needs to be made explicit for
a stable implementation (see Sec. 11.4).

11.2 Pion vector form factor f+(s)

The pion vector form factor f+(s) for the τ− → π−π0ντ decay will be determined by fitting the experi-
mental data (see Sec. 13.1) and the following ansatz is taken

f+(s) =

1 +GN
in (s) +

∑
V =ρ′, ρ′′

cV Aρ′ρ′′(s)

Ω1
1(s) , (11.7)
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τ

ντ

π−

π0
τ

γ

Figure 11.1: ππ rescattering diagram for the decay τ− → π−π0ντ

π−

π0

π−

π0

Figure 11.2: Higher order radiative correction to the ππ scattering amplitude.

where the Omnès function [142]

Ω1
1(s) ≡ exp

(
s

π

∫ ∞

4M2
π

dx
δ1

1(x)
x(x− s− iϵ)

)
, (11.8)

is constructed from the ππ P–wave phase shift from solving Roy equations and taking its values at δ(s0)
and δ(s1) with

√
s0 = 0.8 GeV and

√
s1 = 1.15 GeV as fitting parameters [102]. Above

√
sδ

c = 1.3
GeV, the phase shift is continued to the value of π with the prescription

δ(s) = π −
(
π − δ(sδ

c)
)2

π − δ(sδ
c) + δ′(sδ

c)(s− sδ
c) , (11.9)

ensuring δ(s) is continuously differentiable at sδ
c .

The P–wave phase shift entering Eq. (11.8) is the one in the isospin limit. For a complete analysis on the
isospin breaking effects in the hadronic τ decay, this quantity must also include such corrections, which
leads to the connection with the isospin breaking corrections in the ππ scattering amplitude, previously
described in this work (see Chs. 6–8). Once we include radiative corrections, the isospin limit P–wave
phase δ1

1(s) is replaced by δIB(s) obtained from t+0
P (s) in Ch. 8, which account for effects due to the

charged–neutral pion mass difference. This will allow us to compute rescattering effects as the one in
Fig. 11.1. The last step is to include the contribution from further virtual photons in the computation of
isospin breaking effects in ππ scattering, i.e., not only effects due to Mπ0 ̸= Mπ. This is still a work in
progress and will give rise to corrections as the ones in Fig. 11.2, which contribute in the hadronic τ decay
through the diagram in Fig. 11.3.

The conformal polynomial

GN
in (s) =

N∑
k=1

pk

(
zk(s) − zk(0)

)
, (11.10)
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τ

π−

π0

ντ

γ

Figure 11.3: Contribution from higher order virtual photons to the hadronic τ decay.

in Eq. (11.7), with conformal variable

z(s) =
√
sin − sc −

√
sin − s√

sin − sc +
√
sin − s

, (11.11)

should account for inelastic channels, such as 4π. In view of the phenomenological finding that inelas-
ticities below the πω threshold are negligible, we set sin = (Mω +Mπ)2. Note that for s > sin, the
square root in z(s) can be analytically continued as

√
sin − s → −i

√
s− sin, such that z(s) matches the

behavior of z(s + iϵ) with infinitesimally small ϵ > 0. Furthermore, the correct threshold behavior of
GN

in (s) is enforced letting the term ∝
√
sin − s vanish by means of the condition [102]

p1 = −
N∑

k=2
k pk , (11.12)

amounting to N − 1 free parameters in Gin(s). The point that is mapped to the origin in the conformal
map is identified as sc, which is set to sc = −1 GeV2 in the following.

Because of the use of unsubtracted dispersion relation in the calculation of virtual corrections, the sum
rule in Eq. (9.11) is used as a constrained on the inelastic polynomial GN

in (s), such that the coefficient p2

is given by

p2 =
π +

∫∞
4M2

π
dxCN (s)∫∞

4M2
π

dxCD(s)
(11.13)

with

CN (s) = 1
s

Im

{
Ω1

1(s)
[ N∑

k=3
k pk (z(s) − z(0)) −

N∑
k=3

pk

(
zk(s) − zk(0)

)
−

∑
V =ρ′, ρ′′

cV Aρ′ρ′′(x) − 1
]}

,

CD(s) = 1
s

Im
{

Ω1
1(s)

[
z2(s) − z2(0) − 2 (z(s) − z(0))

]}
. (11.14)

The last term takes into account the contribution of the ρ′ ≡ ρ(1450) and ρ′′ ≡ ρ(1700) resonances in
the ππ spectrum. It is given by

Aρ′ρ′′(s) = s

π

∫ ∞

sthr

dx
ImA(s)

x(x− s− iϵ) , (11.15)
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where
ImA(s) = Im

1
M2

V − s− i
√
sΓV (s)

, (11.16)

where the energy–dependent widths are constructed from the ωπ phase space [250]

Γ̂V (s) = ΓV
γV →ωπ(s)
γV →ωπ(M2

V )θ (s− sin) , γV →ωπ(s) = λ3/2(s,M2
ω,M

2
π)

s3/2 (11.17)

neglecting the V → ππ and V → a1π (a1 → 3π) decay channels of ρ′ and ρ′′. In addition, centrifugal
barrier factors according to [251, 252]

ΓV (s) = Γ̂V (s) s

M2
V

λ(M2
V ,M

2
ω,M

2
π) + 4M2

V p
2
r

λ(s,M2
ω,M

2
π) + 4s p2

r

, pR = 202.4 MeV , (11.18)

are implemented, altering the asymptotic behavior of the energy–dependent widths.

Regarding the contribution of ρ′ and ρ′′, we also tried fit variants in which these two resonances are
directly implemented via the conformal variable [253], but we observed worse performance especially for
the ρ′′ resonance due to its location very close to the border of the phase space.

With this ansatz for the πVFF, we end up with two free parameters in Ω1
1(s) [102], three for each

resonance and N − 2 free parameters in Gin(s), to be determined by fitting to experimental data (see
Ch.13).

Finally, we can explicitly list the differences between the e+e− → π+π− and τ− → π−π0ντ . In
the e+e− → π+π− case there is a ρ0 resonance dominance and the ρ− ω mixing is the most important
isospin–breaking effect to include inFV

π (s). In this case theP–wave phase is the one in the π+π− channel
(for detailed analysis see [102]). For the τ− → π−π0ντ process instead, the dominant resonance is the
ρ− and there is a contribution from the ρ′ and ρ′′ resonances to include (no ρ− ω mixing). The P–wave
phase entering f+(s) is the one in the π0π− channel.

11.3 Numerical treatment of “special” D0

The scalar integral D0(m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , 0,M2
π , s

′′), appearing in the expression for the κdisp
+ (s, t)

form factor, exhibits a singularity at s′′ = s introducing a hurdle to overcome when numerically carrying
out the dispersion integrals in Eq. (11.3). In the scalar integral, this divergent part appears as

D0(m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , 0,M2
π , s

′′) = − d0(t)
s′′ − s

(
32π2ΛIR + 1 − log µ2

IR

Mπmτ

)
+Dπτ

0 (s, t, s′′) ,

(11.19)
where

Dπτ
0 (s, t, s′′) = 2d0(t)

s′′ − s
log s′′

s′′ − s
+Drest

0 (t, s′′) , d0(t) = − t

λπτ (t)B
πτ
0 (t) ,

Drest
0 (t, s′′) = 1

s′′ − s

1
λ

1/2
πτ (t)

[
− log xt log Mπmτ

s′′ + log2 x1 + log2 x2

− Li2
(
1 − x2

t

)
+

∑
y∈
{

x1x2, 1
x1x2

,
x1
x2

,
x2
x1

}Li2
(
1 − xty

)]
, (11.20)
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where x1 =
√

s′′

mτ
and x2 =

(
1−σπ(s′′)
1+σπ(s′′)

)1/2
, while Bπτ

0 (t) and xt are defined in Eq. (10.26). The

dispersion integral over s′′ can then be written in the following way

κ
disp
+ (s, t) ⊃

∫ ∞

4M2
π

ds′′ Im f+(s′′)
(
p1(s, t) + p2(s, t)s′′

s′′ − s

)[
2d0(t) log s′′

s′′ − s
+Drest

0 (t, s′′)
]
, (11.21)

where p1 and p2 collect the kinematic prefactors independent of s′′. In order to ease the numerical
integration, we add and subtract the Im f+(s) multiplied with the divergent part of the integrand. By
doing so, we get

κ
disp
+ (s, t) ⊃

∫ ∞

4M2
π

ds′′ { Im f+(s′′) − Im f+(s)
}p1(s, t) + p2(s, t)s

s′′ − s
(11.22)

×
[
2d0(t) log s′′

s′′ − s
+Drest

0 (t, s′′)
]

+ p2(s, t)
∫ ∞

4M2
π

ds′′
{

Im f+(s′′) − Im f+(s)θ(Λ2 − s′′)
}

×
[
2d0(t) log s′′

s′′ − s
+Drest

0 (t, s′′)
]

+ Im f+(s)
{
d0(t)

[
p2(s, t)Iℓ1(s,Λ2) +

(
p1(s, t) + p2(s, t)s

)
Iℓ2(s)

]

+
(
p1(s, t) + p2(s, t)s

) ∫ ∞

4M2
π

ds′′ D
rest
0 (t, s′′)
s′′ − s

+ p2(s, t)
∫ Λ2

4M2
π

ds′′ Drest
0 (t, s′′)

}
,

written in terms of the analytically carried out integrals

Iℓ1(s,Λ2) = 2
∫ Λ2

4M2
π

ds′′ log s′′

s′′ − s

= 2
{
s log Λ2 − s

s− 4M2
π

+ Λ2 log Λ2

Λ2 − s
+ 4M2

π log s− 4M2
π

4M2
π

+ iπ(s− 4M2
π)
}
,

Iℓ2(s) = 2
∫ ∞

4M2
π

ds′′ 1
s′′ − s− iϵ

log s′′

s′′ − s− iϵ

= 2 Li2
(

1 − 4M2
π

s

)
− 2π2

3 +
(

2πi+ log s

s− 4M2
π

)
log s

s− 4M2
π

. (11.23)

The dependence on the (high–energy) integral cutoff Λ2 of Iℓ1 will cancel the one introduced by the
integral

∫
ds′′Drest

0 (t, s′′) in Eq. (11.22). The imaginary part that emerges from the Cauchy propagator,
see Eq. (11.23), also needs to be kept, as it contributes to Reκ+(s, t) due to the imaginary part of f+(s)
in Eq. (11.3).

11.4 Endpoint singularities in the phase–space

As pointed out in Sec. 11.1, the common denominator in the expression of the triangle–diagram supple-
mented with pion VFF can be written as in Eq. (11.6). This gives an endpoint singularity once the phase
space integral in t is performed. However, by numerically evaluating these contributions is possible to
show that the two infinities cancel and the result is finite. As a first step we can split the triangle form
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factor κdisp
+ (s, t) (see Eq. (11.3)) in the following two contributions

κ
disp
+ (s, t) = e2

16π4f+(s)

∫ ∞

4M2
π

ds′ ds′′
[
κfin

+ (s, t, s′, s′′) + N(s, t, s′, s′′)
s(t− tmin)(t− tmax)

]
, (11.24)

where tmin/max are defined in Eqs. (10.8) and (10.9), while κfin
+ (s, t, s′, s′′) includes all the terms of κdisp

+ (s, t)
without the divergent denominator and it corresponds to κ̃B(s, s′, s′′) in Eq. (11.4). In order to an-
alytically show that the divergences at t − tmin/max explicitly cancel we want to rearrange the numer-
ator as N(s, t, s′, s′′) = (t − tmin)(t − tmax)N̄(s, t, s′, s′′). After checking that N(s, tmin, s

′, s′′) =
N(s, tmax, s

′, s′′) = 0, which can be proved analytically using the algorithm provided in [238] to fac-
torize D0 at the phase–space boundary into simpler loop functions

D0(m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)
∣∣
t=tmin/max

= 1
D(s, t, s′, s′′)

{[
m4

τ (s′′ − s) + s (s− s′ − s′′)
(
t−M2

π

)
+m2

τ

(
s(s− s′′) + (s+ s′ − s′′)(t−M2

π)
)]
C0(0,m2

τ , s, s
′′,m2

τ , s
′)

+
[
2
(
m4

τM
2
π + ss′′t

)
+ (s− s′ + s′′)(M2

π − t)2 −m2
τ (s+ s′′)(t+M2

π)
]

× C0(0,M2
π , t,m

2
τ , s

′′,M2
π)

+
[
m4

τ (s− s′′) + (s+ s′ − s′′)(M2
π − t)2 + 2ss′t−m2

τ (2s+ s′ − 2s′′)(t+M2
π)
]

× C0(m2
τ ,M

2
π , t,m

2
τ , s

′,M2
π)

+
[
m2

τ

(
2M2

π(s+ s′ − s′′) + s(s′′ − s)
)

+ s(s− s′ − s′′)(t+M2
π)
]

× C0(M2
π ,M

2
π , s, s

′,M2
π , s

′′)
}∣∣∣∣∣

t=tmin/max

, (11.25)

with

D(s, t, s′, s′′) = λπτ (t)λ(s, s′, s′′)

+ s′
[
m4

τ

(
s′ − 4M2

π

)
+ 2m2

τ (s− s′ + s′′)
(
m2

τ −M2
π − t

)
− 4ss′′t

]
, (11.26)

and likewise for the second D0 function with s′ = 0. Inserting these relations into Eqs. (11.3) and (11.4),
indeed the numerators vanish, canceling the zero in the denominator of Eq. (11.6). Accordingly, we can
write

N(s, t, s′, s′′) = N(s, t, s′, s′′) −N(s, tmax, s
′, s′′) ≡ (t− tmax)N+(s, t, s′, s′′) , (11.27)

such that N+(s, t, s′, s′′) = N(s,t,s′,s′′)−N(s,tmax,s′,s′′)
(t−tmax) . Then

N(s, t, s′, s′′) = (t− tmax)N+(s, t, s′, s′′)
= (t− tmax)[N+(s, t, s′, s′′) −N+(s, tmin, s

′, s′′)]
= (t− tmax)(t− tmin)N̄(s, t, s′, s′′) . (11.28)
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After this rearrangement, the N̄(s, t, s′, s′′) in Eq. (11.28) can be divided into three contributions

N̄(s, t, s′, s′′) = N̄fin(s, t, s′, s′′) + N̄+(s, t, s′, s′′) + N̄−(s, t, s′, s′′) . (11.29)

The first term does not present the endpoint singularities anymore and it can be grouped in κfin
+ (s, t, s′, s′′)

such that

κfin
+ =Im f+(s′) Im f+(s′′)

s′

{
B̄0(M2

π ,M
2
π , s

′) − 2B̄0(s, s′, s′′)
2(s− 4M2

π) + 2C̄0(0,m2
τ , s, s

′′,m2
τ , s

′)

+ C0(M2
π ,M

2
π , s, s

′,M2
π , s

′′)
2(s− 4M2

π) + 3s+ s′′ − 16M2
π

2(s− 4M2
π) C̄0(M2

π ,M
2
π , s, s

′,M2
π , s

′′)

− 2s+m2
τ

2s C̄0(m2
τ ,M

2
π , t,m

2
τ , s

′,M2
π) + m2

τ − 2s
2s D0(m2

τ ,M
2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

−
m2

τ (s′′ − 9s) + 2s
[
s+ s′′ − 6M2

π + 2(t+ tmin + tmax)
]

2s

× D̄0(m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)
}
. (11.30)

The other two terms are

N̄+ = Imf+(s′)Imf+(s′′)
(t− tmax)(tmax − tmin)

{
C̄+

0 (m2
τ ,M

2
π , t,m

2
τ , s

′,M2
π)

2ss′

[
2stmax(M2

π − tmax)

+m2
τ (M2

π − tmax)(M2
π − s+ tmax) +m4

τ (s+ 2tmax − 2M2
π) −m6

τ

]
−

(M2
π − tmax)

[
m2

τ (M2
π + s+ tmax) −m4

τ − 2stmax
]

2s
×D+

0 (m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

+ D̄+
0 (m2

τ ,M
2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

2ss′

[
m6

τ (4M2
π + s− s′′)

+m4
τ

(
4M2

π − 2M2
π(s+ s′′ + 2tmax) − s2 + ss′′ − 6stmax + 2s′′tmax

)
+m2

τ

(
M4

π(s′′ − s) +M2
πs(s− s′′ − 8tmax) + tmax(3s2 + ss′′ + (9s− s′′)tmax)

)
+ 2s(M2

π − tmax)
(
2M4

π − 4M2
πtmax + tmax(s+ s′′ + 2tmax)

) ]}
, (11.31)

and

N̄− = Imf+(s′)Imf+(s′′)
(t− tmin)(tmin − tmax)

{
C̄−

0 (m2
τ ,M

2
π , t,m

2
τ , s

′,M2
π)

2ss′

[
2stmin(M2

π − tmin)

+m2
τ (M2

π − tmin)(M2
π − s+ tmin) +m4

τ (s+ 2tmin − 2M2
π) −m6

τ

]
−

(M2
π − tmin)

[
m2

τ (M2
π + s+ tmin) −m4

τ − 2stmin
]

2s
×D−

0 (m2
τ ,M

2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

+ D̄−
0 (m2

τ ,M
2
π ,M

2
π , 0, t, s,m2

τ , s
′,M2

π , s
′′)

2ss′

[
m6

τ (4M2
π + s− s′′)

+m4
τ

(
4M2

π − 2M2
π(s+ s′′ + 2tmin) − s2 + ss′′ − 6stmin + 2s′′tmin

)
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+m2
τ

(
M4

π(s′′ − s) +M2
πs(s− s′′ − 8tmin) + tmin(3s2 + ss′′ + (9s− s′′)tmin)

)
+ 2s(M2

π − tmin)
(
2M4

π − 4M2
πtmin + tmin(s+ s′′ + 2tmin)

) ]}
, (11.32)

where
F±

0 (..., t, ...) := F0(..., t, ...) − F0(..., tmax/min, ...) . (11.33)

while the F̄0 functions are defined according to Eq. (11.5) and where we suppressed the arguments
of κfin

+ (s, t, s′, s′′) and N̄±(s, t, s′, s′′) for brevity. We notice that N̄±(s, t, s′, s′′) still have a divergent
denominator at tmax/min respectively, but these remaining (removable) singularities can be dealt with by
expanding around t = tmax/min when the integration in t is close to the boundaries tmax/min.

11.5 IR singularities and low–energy limit

The D0 function discussed in Sec. 11.3 gives an example of an IR–divergent loop function in Eq. (11.4).
However, a second source of IR–divergences arises in

C0(m2
τ ,M

2
π , t,m

2
τ , 0,M2

π) = Cπτ
0 (t) − tBπτ

0 (t)
λ

(
32π2ΛIR + 1 − log µ2

IR

Mπmτ

)
(11.34)

with

Cπτ
0 (t) = = 1

λ
1/2
πτ (t)

[
1
2 log2 xt − 1

2 log2 Mπ

mτ

+ Li2
(
1 − x2

t

)
− Li2

(
1 − xt

Mπ

mτ

)
− Li2

(
1 − xt

mτ

Mπ

)]
, (11.35)

and which is the same loop function that defines the bulk of χPT result in Eq. (10.13). For both the D0

and C0 terms, the only remaining dependence on s′ disappears via the sum rule in Eq. (9.11), and, upon
separating s′′ = (s′′ − s) + s, the D0 terms in which s′′ appears in the numerator cancel exactly the C0

contribution, leaving

κ
disp
+ (s, t)

∣∣∣
IR

= − e2

16π2f+(s)
1
π

∫ ∞

4M2
π

ds′′ Im f+(s′′)
s′′ − s

2t(M2
π +m2

τ − t)Bπτ
0 (t)

λ
32π2ΛIR

= − e2

16π2
2t(M2

π +m2
τ − t)Bπτ

0 (t)
λ

32π2ΛIR , (11.36)

after inserting Eq. (9.10). The resulting IR divergence therefore matches exactly the IR singularity of
f

(a)
+ (t) obtained in χPT (see Eq. (10.25)).

This observation is more general, i.e., by construction our dispersive representation reduces to χPT in
the pointlike limit, and, accordingly, the low–energy properties of the representations agree. One key
aspect concerns the IR structure, another one the chiral logarithms. To illustrate the latter point, we
consider the expansion around t = 0

f
(a)
+ (0) = e2

16π2

[
m2

τ − 2M2
π

m2
τ −M2

π

+ M4
π + 2M2

πm
2
τ − 7m4

τ

4(m2
τ −M2

π)2 log M
2
π

m2
τ

− 7
4

(
32π2ΛUV − log µ

2
UV

m2
τ

)
+ m2

τ +M2
π

m2
τ −M2

π

log M
2
π

m2
τ

(
32π2ΛIR + 1 − log µ2

IR

Mπmτ

)]
, (11.37)

where we have written the UV scale with respect to mτ to isolate the chiral logarithm. Using a narrow–
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width approximation Im f+(s) = πδ(s−M2
ρ )M2

ρ , the dispersive result for s = t = 0 can be performed
in terms of polylogarithms, and the expansion for Mρ → ∞ gives

κ
disp
+ (0, 0) = e2

16π2

[
3
8 − m2

τ

m2
τ −M2

π

+ M4
π + 2M2

πm
2
τ − 7m4

τ

4(m2
τ −M2

π)2 log M
2
π

m2
τ

+ 7
4 log

M2
ρ

m2
τ

+ m2
τ +M2

π

m2
τ −M2

π

log M
2
π

m2
τ

(
32π2ΛIR + 1 − log µ2

IR

Mπmτ

)]
+ O

(
M−2

ρ

)
. (11.38)

The comparison of Eqs. (11.37) and (11.38) shows again that the IR singularities coincide, but also that
the coefficients of the chiral logarithm match exactly. Moreover, the coefficient of the UV divergence is
reproduced, upon identifying µUV = Mρ, so that, as expected, the result again becomes UV divergent in
the pointlike limit Mρ → ∞. The only difference then concerns finite contact terms, related to LECs in
χPT .

Using the narrow–width limit, one can also study the threshold behavior of the resulting GEM(s) func-
tion analytically. In particular, we showed that the same factorization ofD0 functions based on which the
endpoint singularities in Sec. 11.4 disappear also ensures that GEM(s) derived from the IR–finite parts
of κdisp

+ (s, t) remains finite at threshold. Accordingly, singularities at threshold only originate from the
remainder of the IR cancellation, see Sec. 12.4.1, which behaves as log(s − 4M2

π), and real–emission
diagrams, the latter leading to the dominant 1/(s− 4M2

π) threshold divergence.

11.6 Matching with χPT

Our representation of the triangle–diagram supplemented by the pion VFF (see Fig.(9.2)) is sensitive to
the high–energy behavior of the unsubtracted form factor f+(s). In the low energy regime, we need
to utilize the very well known chiral perturbation theory (see Sec.10.1). In order to take the best of
both worlds, we developed a matching procedure by expanding around s, t = 0 both the χPT form
factorfχPT

+ (t), which from Eq. (10.21) is given by

fχPT
+ (t) = f

(a)
+ (t) + f

(b)
+ (t) + f

(c)
+ (t) + f ct

+(t) +
(√

Zct
π0

(
Zπ− + Zct

π−

)
(Zτ + Zct

τ ) − 1
)
, (11.39)

and the dispersive representation of the triangle–diagram (see Eq.(11.3)). From the perspective of a dis-
persive analysis, all terms apart from f

(a)
+ (t) amount to a subtraction constant, as these diagrams do not

involve a non–trivial dependence on the Mandelstam variables. We then build the new matched form
factor:

κmatch
+ (s, t) = κ

disp
+ (s, t) − κ

disp
+ (0, 0) + fχPT

+ (0) . (11.40)

With this procedure, we suppress the high–energy part of the integral in Eq. (11.3) and thus reduce the
sensitivity to the asymptotic form of Imf+(s). The new form factor κmatch

+ (s, t) is still UV finite, since
both κ

disp
+ (s, t) and fχPT

+ (t) = f
loop
+ (t) + f ct

+(t) are UV safe, has the right IR singularities and chiral
logarithms.

The expanded χPT form factor fχPT
+ (0) is then given by

fχPT
+ (0) = e2

16π2

{
m2

τ − 2M2
π

m2
τ −M2

π

− 3
2 −

M2
πm

2
τ log M2

π

m2
τ

(m2
τ −M2

π)2 − 8π2Xℓ(µUV) + log µ3
UV

M2
πmτ

− 2
(

1 + m2
τ +M2

π

m2
τ −M2

π

log Mπ

mτ

)(
log µ2

IR

Mπmτ
− 32π2ΛIR

)}
, (11.41)
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where Xℓ(µ) is defined as the combination

Xℓ(µ) = 4
3X1 + X̃

phys
6 (µ) , Xℓ(µ) = Xℓ(Mρ) + 3

16π2 log µ2

M2
ρ

. (11.42)

and X̃phys
6 (µ) is the long distance contribution of

X
phys
6 (µ) := X6 − 4K12 = X

phys
6,SD + X̃

phys
6 (µ) . (11.43)

In particular, the short–distant part is directly related to the SEW term defined in Eq. (9.1) via the relation

e2X
phys
6,SD = 1 − Sππ

EW + ... , (11.44)

For the numerical evaluation we took the value reported in [254], yielding X̄ℓ(Mρ) = 14.0(6) × 10−3,
where exactly the needed combination of LECs is computed in Lattice QCD, thanks to lepton flavor
universality, and which differs quite significantly from the resonance–saturation estimate [207,255, 256]

X̄ℓ(Mρ) ≃ 7
32π2 − 3

8π2

(
Mρ

4πFπ

)2
≃ 5 × 10−3 . (11.45)

Moreover, so far we have glossed over the matching to SD contributions, which requires

∆Xℓ

∣∣
SD

= − 1
4π2 log m

2
τ

M2
ρ

(11.46)

to be added to X̄ℓ(µ). This decomposition follows previous conventions for the SD contribution in the
literature [34,35,222]. However, we emphasize that only the combination of Sππ

EW and GEM(s) is scheme
independent—at the precision at which the matching calculation is performed (see Sec.11.6.1).5

Note that we do not show here the expression for the expanded κdisp
+ (0, 0) since it involves the expansion

of the Passarino–Veltman functions [232–238], performed with the Package–X option LoopRefineSeries
[257, 258], and it turns out to be a rather long and complicated expression.

With this procedure, we obtained an amplitude at O(e2p2) for the τ → ππ0ντ process which has
both the correct low– and high–energy behavior. It also allows us to establish a suitable basis for the
connection to short–distance (SD) contributions and lattice QCD [259], most conveniently expressed in
terms of the chiral low-energy constant (LEC). However, we still need to cure the IR–divergences present
in κmatch

+ (s, t). This requires the computations of real photon emission contributions, both from initial–
and final–states, and it will be explained in details in the next chapter.

11.6.1 Scheme–dependence discussion

In the analysis of the isospin breaking corrections for the hadronic τ decay, only the combination of Sππ
EW

and GEM(s) is scheme independent—at the precision at which the matching calculation is performed. In
fact, we just showed that the short–distance part of the LEC X

phys
6,SD can be separated from the rest and

that it is directly connected to the SEW correction through Eq. (11.44). The resulting scheme ambiguity
amounts to an O(α/π) uncertainty in Sππ

EW [14], which requires a dedicated matching calculation in

5The scale µUV in the χPT result cannot simply be identified with the scale of the low–energy effective (Fermi) theory after
the W –boson is integrated out (LEFT), which is already reflected by the fact that the χPT running in Eq. (11.42) and the LEFT
running—Eq. (11.46) arises from its naive application between mτ and Mρ—do not agree. Instead, the matching between χPT and
LEFT is most conveniently formulated at the level of the LECs [223]. For a consistent matching, the dependence on both the
χPT scale and the LEFT scale need to cancel in the decay rate at the considered order.
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analogy to [223], using input from lattice QCD for the required non–perturbative matrix elements [260,
261].

For future use, we derive a relation between the value of the LEC X̃
phys
6 (µ) we use in our analysis and

any possible value of the same quantity in GEM(s). As fχPT
+ (t), and consequently κmatch

+ (s, t), depends
only linearly on the combination of LECs, the subsequent dependence ofGEM(s), given in Eq. (9.5) with
Eqs. (9.6) and (9.7), is also linear,

∂GEM

∂Xℓ(µ) = −e2 , (11.47)

and the relation
GEM(s)

∣∣
Xℓ(µ) = GEM(s)

∣∣
Xℓ(µ)=X̄ℓ(µ) − e2(Xℓ(µ) − X̄ℓ(µ)

)
, (11.48)

is exact at O(e2p2). Our numerical results, presented for X̄ℓ(Mρ) = 14 × 10−3 from [254], are therefore
trivial to adjust once an improved matching analysis becomes available.



Chapter 12

Real–emission contributions

The amplitude computed in Ch. 11 is UV–finite but still IR–divergent. Similarly to the analysis performed
in Ch. 10 in the χPT formalism and in the soft–photon approximation, in order to cancel the infrared
divergences, the emission of real photons, both from the initial and the final states, must be included.
In what follows we compute the real emission contributions from photons, necessary to cancel the IR
divergences, and from resonances, in particular ρ, a1 and ω resonances.

12.1 Real–emission amplitude

The expression for the triangle–diagram (Fig. 9.2), after restoring the correct low–energy behavior through
the matching procedure (see Ch. 11.6), shows infrared singularities that cancels once we include initial
and final state radiations of Fig.12.1. Notice that also for these diagrams, the τππ0ντ vertex is dressed
with the pion vector form factor f+(s) given in Eq. (9.10). Following [35], the matrix element for the

τ

γ π−

π0

ντ

τ

π−

γ

π0

ντ

Figure 12.1: Initial and final state radiations diagrams for τ− → π−π0ντ .

decay τ−(l1) → π−(q1)π0(q2)ντ (l2)γ(k) has the general structure

T = eGFV
∗

udϵ
µ(k)∗[Fν ū(l2)γν(1 − γ5)(mτ + /l1 − /k)γµu(l1) + (Vµν −Aµν)ū(l2)γν(1 − γ5)u(l1)] .

(12.1)

The first part of Eq. (12.1) describes bremsstrahlung off the initial τ lepton with

Fν = (q2 − q1)ν

2l1 · k
f+(s) . (12.2)

The second part of the matrix element describes the vector and axial–vector components of the transition
W−(l1 − l2) → π−(q1)π0(q2)γ(k). The hadronic tensor Vµν contains bremsstrahlung off the π− in the

112
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final state and gauge invariance implies the Ward identities

kµVµν = (q1 − q2)νf+(s) ,
kµAµν = 0 . (12.3)

For these resonance contributions, Vµν and Aµν , we utilize the expressions in [35],

Vµν = f+[(l1 − l2)2] q1µ

q1 · k
(q1 + k − q2)ν − f+[(l1 − l2)2]gµν

+ f+[(l1 − l2)2] − f+(s)
(q1 + q2) · k

(q1 + q2)µ (q2 − q1)ν

+ v1 (gµνq1 · k − q1µkν) + v2 (gµνq2 · k − q2µkν)
+ v3 (q1µq2 · k − q2µq1 · k) q1ν + v4 (q1µq2 · k − q2µq1 · k) (q1 + q2 + k)ν ,

Aµν = ia1ϵµνρσ (q2 − q1)ρ
kσ + ia2 (l1 − l2)ν ϵµρστk

ρqσ
1 q

τ
2 . (12.4)

In particular, the vector corrections v1, v2, v3, v4 come from the resonance Lagrangian of [184] where
the contributing diagrams are listed in Fig. 12.2, while the axial–vector ones, a1 and a2, come from the
leading O(p4) contribution of the Wess–Zumino–Witten (WZW) action [262] and the diagrams are the
ones in Fig. 12.3. Since the strength of the WZW contribution is determined by the anomaly in terms

π−

γ

π0

ρ0

ρ−
π−

γ

π0

ρ0

π−

π0

γ

ρ−

ρ0

π0 π−

γ
a−1

Figure 12.2: ρ and a1 resonance exchange contribution via resonance chiral theory [184]. In the first
diagram, a photon is to be appended wherever possible.

of the pion decay constant, the free parameters in the resonance Lagrangian can be identified with two
vector couplings FV , GV , one axial–vector coupling FA and the masses parameters MV , MA. By writing
(l1 − l2)2 = s+ 2(q1 + q2) · k, Low’s theorem [263] is manifestly satisfied:

Vµν =f+(s) q1µ

q1 · k
(q1 − q2)ν + f+(s)

(
q1µkν

q1 · k
− gµν

)
+ 2df+(s)

ds

(
q1µq2 · k
q1 · k

− q2µ

)
(q1 − q2)ν + O(k) . (12.5)

Additionally, we take into account the contribution from the resonance diagram containing a radiative
ωπγ coupling (see Fig. 12.4), since its sizable contribution has been noted before [264, 265]. More ex-
plicitly, the algebraic expression for this contribution can be found in Eq. (23) of [264], with values of the

τ

ντ

π−

γ

π0

τ

ντ

π−

γ

π0

π−

Figure 12.3: Chiral anomaly contribution via Wess–Zumino–Witten action [262].
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τ

ντ

π0

γ

π−

ρ−
ω

Figure 12.4: Omega resonance contribution containing a radiative ωπγ coupling according to [264].

couplings therein given in Eqs. (28), (32) and (33). As in the analysis of τ− → π−π0ντ performed by the
different experiments (Belle, ALEPH, CLEO and OPAL), ω → πγ is considered a background contri-
bution and excluded from the published data, we follow [36, 266, 267] in including only the interference
contribution arising from the diagram with the radiative ω coupling.

By following [34, 35], the fully inclusive decay rate, i.e., with photons of all energies included, is given
by Eq. (9.3) and in particular we are interested in the computation of the electromagnetic correction
function GEM(s). From Eq. (9.7), where after the matching procedure described in Ch. 11.6 the form
factor fe2p2

+ (s, t) is replaced with κmatch
+ (s, t), the terms containing the real (photon and resonances)

emission contributions are gLow(s, t) and grest(s, t). The first term gLow(s, t) accounts for the contribution
of (s, t) in the non–radiative Dalitz plot and it can be computed analytically (details in the next section and
in [35]), while the second term grest(s, t), that cannot be accessed by the non–radiative decay, is determined
numerically. Moreover, thanks to this separation, the infrared–divergences will be fully contained in
gLow(s, t) such that, once this term is added to the equally infrared divergent electromagnetic one–loop
correction for the non–radiative decay, i.e., κmatch

+ (s, t), the IR–divergences cancel explicitly. We will see
this cancellation explicitly in the following section. However, we must emphasis the fact that, differently
for what was done in [35], we are working in dimensional regularization also for IR–divergences.

12.2 Determination of gLow(s, t) and grest(s, t)

Once we consider only the leading Low approximation of O(k−2) to the differential decay rate, we get

dΓ = αG2
F |Vud|2

32π7mτ
|f+(s)|2D(s, t)

[
2l1 · q1

(l1 · k)(q1 · k) − m2
τ

(l1 · k)2 − M2
π

(q1 · k)2

]
dLIPS , (12.6)

where dLIPS is the phase space integral given by

dLIPS = d3l2
2Eν

d3q1

2Eπ−

d3q2

2Eπ0

d3k

2k0 δ
(4)(l1 − l2 − q1 − q2 − k) . (12.7)

and the kinematic of the radiative decay can be found in App. G. Integration over neutrino and photon
momenta leads to the three–fold differential rate

dΓ = αG2
F |Vud|2

64π4m3
τ

|f+(s)|2D(s, t)
[
2l1 · q1I11(s, t, x) −m2

τI20(s, t, x) −M2
πI02(s, t, x)

]
ds dt dx ,

(12.8)
with [268]

Imn(s, t, x) = 1
2π

∫
d3l2
2Eν

d3k

2k0
δ(4)(l1 − l2 − q1 − q2 − k)

(l1 · k)m(q1 · k)n
. (12.9)
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The next step consists in performing the integration over x, the invariant mass squared of photon and
neutrino. Here we must distinguish between two different regions in the s−t plane. For (s, t) in the Dalitz
plot of the non–radiative decay, the lower limit for the x–integration is 0. This is a consequence of working
in dimensional regularization also for IR–divergences, otherwise it would have been xmin(s, t) = M2

γ , with
Mγ a fictitious photon mass. For (s, t) that cannot be accessed in the non–radiative decay the lower limit
is given by x−(s, t) (see App. G). This last contribution is infrared finite and occurs only for

s ≤ m2
τMπ

mτ −Mπ
. (12.10)

The corresponding contribution to theGEM, booked in grest(s, t), is enhanced in the threshold region and
plays an important role in its contribution to aµ. The upper limit of the x–integration is always given by
x+(s, t) given in App. G.

The double differential decay rate in the leading Low approximation, for (s, t) in the non–radiative
Dalitz plot and integrated over all photon momenta, takes the form

dΓ = αG2
F |Vud|2

64π4m3
τ

|f+(s)|2D(s, t) [J11(s, t) + J20(s, t) + J02(s, t)] ds dt , (12.11)

where

J11(s, t) =
[
32π2ΛIR + 1 − log µ2

IR

[2x+(s, t)γ̄]2

]
1
β̄

log
(

1 + β̄

1 − β̄

)
+ log(2x+(s, t)γ̄) 1

β̄
log
(

1 + β̄

1 − β̄

)
+ 1
β̄

{
Li2

(
1
Y2

)
− Li2 (Y1) + 1

4

[
log2

(
− 1
Y2

)
− log2

(
− 1
Y1

)]}
,

J20(s, t) = − 1
2

(
32π2ΛIR + 1 − log µ

2
IR

m2
τ

)
+ log

(
m2

τ − s

mτx+(s, t)

)
,

J02(s, t) = − 1
2

(
32π2ΛIR + 1 − log µ

2
IR

m2
τ

)
+ log

(
m2

τ +M2
π − s− t

Mπx+(s, t)

)
. (12.12)

are the functions in [35] and reported in App. G, but with the IR–divergent parts translated to dimensional
regularization. Then gLow(s, t) is given by

gLow(s, t) = α

π
[J11(s, t) + J20(s, t) + J02(s, t)] . (12.13)

The remaining part of the radiative decay rate, containing all terms except the leading Low ones, is
calculated numerically giving the so called grest(s, t) term which accounts for the infrared finite remainder
of the rate, i.e., all terms except the ones contained in gLow(s, t). Putting everything together, the double
differential rate for the photon–inclusive two–pion decay is given by

dΓππ(γ)

ds dt
= G2

FSEW|Vud|2

64π3m3
τ

|f+(s)|2D(s, t)
[
1 + 2κmatch

+ (s, t) + gLow(s, t) + grest(s, t)
]
. (12.14)

From these result it is possible to explicitly show that the IR–divergences in 2κmatch
+ (s, t) + gLow(s, t)

cancel. After recalling the expression for the matched form factor κmatch
+ (s, t) in Eq. (11.40), the IR–

divergences cancellation happens as follows:[
κ

disp
+ (s, t)+α

π
J11(s, t)

]∣∣∣∣∣
IR-div

= 0 ,
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[
− κ

disp
+ (0, 0) + fχPT

+ (0)+α

π
J20(s, t) + α

π
J02(s, t)

]∣∣∣∣∣
IR-div

= 0 . (12.15)

This result shows how the matching procedure described in Sec. 11.6 is essential to ensure the IR–
divergences cancellation also in the dispersive calculation (Fig. 9.2)

12.3 Soft–photon limit in grest(s, t)

As remarked earlier, we compute the contribution of grest(s, t) purely numerically. This is done by in-
tegrating the square of the amplitude T given in Eq. (12.1). However, the piece that gives rise to the
IR–divergent gLow(s, t) needs to be subtracted. Hence, we write grest(s, t) as

grest(s, t) = 1
128π3G2

F |Vud|2D(s, t)|f+(s)|2 (12.16)

×
∫

dx dcos θkdϕk
m2

τx(
m2

τ − s+ x+ cos θk

√
λ (s, x,m2

τ )
)2

{
|T |2 − |TLow|2

}
,

with the measure function of the 4–body phase–space integral spelled out explicitly, see Eq. (G.12) in
App. G, and the amplitude square |TLow|2, giving rise to the expressions in Eq. (12.12), given by

|TLow|2 = 8e2G2
F |Vud|2|f+(s)|2D(s, t)

[
2l1 · q1

(l1 · k)(q1 · k) − m2
τ

(l1 · k)2 − M2
π

(q1 · k)2

]
, (12.17)

leading to an expression for grest free of IR singularities.

12.4 Integration at threshold

The numerical integration of gLow(s, t) in t and grest in ϕk, cos θk, x and t (for details about the phase
space integration see App. G) shows a divergence at the threshold s = 4M2

π . In order to bypass this
end–point singularity we apply a change of variables where we parametrize t and x in terms of angles:

x →

{
1
2x+(s, t) (zx − 1) inRIII

1
2 [x+(s, t) − x−(s, t)] zx + 1

2 [x+(s, t) + x−(s, t)] inRIV\RIII
(12.18)

t →

{
1
2
[
t̄max(s) − t̄min(s)

]
zt + 1

2
[
t̄max(s) + t̄min(s)

]
inRIII

1
2
[
(mτ −Mπ)2 − t̄max(s)

]
zt + 1

2
[
(mτ −Mπ)2 + t̄max(s)

]
inRIV\RIII

(12.19)

where −1 ≤ zx ≤ 1 and −1 ≤ zt ≤ 1 and the expressions for x±(s, t) and t̄min,max(s) are given in App. G.
With this transformation we can isolate the threshold divergence and numerically integrate the amplitude
on the full s range, i.e., s ∈ [4M2

π ,m
2
τ ]. In particular, it is the product of the radiative amplitude (after the

change of variables) times the Jacobian arising from rewriting t in terms of zt that becomes integrable at
threshold. In fact, it is easy to see from Eq. (12.19), that the Jacobian inRIII , where the singular behavior
arises, reads

Jt(s) = 1
2
[
t̄max(s) − t̄min(s)

]
, (12.20)
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and it vanishes at s = 4M2
π since t̄max(s) = t̄min(s), curing the divergence. The Jacobians in RIV \III ,

instead, do not vanish at threshold and this results in a regular but sizable contribution of the real emission
diagrams in this region. Once we checked this approach with the real emission contributions, we apply it
to the determination of κdisp

+ (s, t) such that also in this case the integration exactly at threshold is under
control.

12.4.1 Threshold singularity of gLow(s, t)
The variable substitution described above turns out to be a good solution for the integration of κmatch

+ (s, t)
and grest(s, t) but it does not work for gLow(s, t) defined in Eq. (12.13). In fact, this result shows a physical
divergence at threshold, s = 4M2

π , which is not solved by rewriting the variable t in terms of the angle zt

and then multiply for the Jacobian.

In order to solve this problem, we perform the variable substitution also in this case but then we expand
the new expression around s = 4M2

π . The contribution to GEM(s) from gLow(s, zt), after the angle
integration, i.e.,

GJ
EM(s) =

∫ 1
−1 dzt Jt(s)D(s, zt)gLow(s, zt)∫ 1

−1 dzt Jt(s)D(s, zt)
,

∫ 1

−1
dzt Jt(s)D(s, zt) = m2

6s (s−m2
τ )2(2s+m2

τ )(s− 4M2
π)3/2 , (12.21)

has the following analytical form

GJ
EM(s) =

[
c

log
3/2 log

(
s− 4M2

π

4M2
π

)
+ crest

3/2

]
+ crest

2
√
s− 4M2

π

+ (s− 4M2
π)
[
c

log
5/2 log

(
s− 4M2

π

4M2
π

)
+ crest

5/2

]
+ O[(s− 4M2

π)3/2] , (12.22)

where crest
i include all the terms that are not divergent for s = 4M2

π , with i = 3/2, 2, 5/2, ... indicating
the degree of the expansion of the numerator in Eq. (12.21). It is then clear that, after the integration in
zt, the contribution of gLow(s, zt) to GEM(s) is still logarithmically divergent at threshold.

12.5 Determination of resonance couplings

For the numerical evaluation of the resonance contribution to real emission we need to determine the
coupling FV , GV and FA. Frequent choices are from the short–distance constraints [35, 183]

FV =
√

2Fπ ≃ 0.13 GeV , GV = Fπ√
2

≃ 0.065 GeV , FA = Fπ ≃ 0.092 GeV , (12.23)

and the phenomenologically motivated one

FV = 0.16 GeV , GV = 0.065 GeV , FA = 0.12 GeV , (12.24)

where FV and GV are extracted from the decay widths of ρ → e+e−, ρ → ππ and K∗ → Kπ [269],
while FA comes from an old measurement [270] of the a1 → πγ partial width via Eq. (4.10) in [183].
The extraction of FA from a1 → πγ has been challenged in the literature mostly suggesting smaller
values of FA [79,186,271–274], but the situation is far from conclusive. Hoping to shed some light on the
issue, we attempted another indirect determination, by assuming that the a1 → πγ decay proceeds via
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a1 → ρπ → πγ [87, 250]

For the first step of the decay chain a1 → πρ → πγ, one needs the coupling for a1 → ρπ, which could
be defined in a hidden–local–symmetry model [275] according to

La1πρ = − i√
2
ga1ρπ Tr Aµ[Φ, V µ], (12.25)

where the relevant fields are collected in

Φ =
(
π0/

√
2 π+

π− −π0/
√

2

)
, Vµ =

(
ρ0/

√
2 ρ+

ρ− −ρ0/
√

2

)
µ

, Aµ =
(
a0

1/
√

2 a+
1

a−
1 −a0

1/
√

2

)
µ

.

(12.26)
However, in order to ensure gauge invariance, we promote it to

L̃a1πρ = − i

2
√

2
g̃a1ρπ Tr Aµν [Φ, V µν ] , (12.27)

formulated in terms of the field–strength tensors Vµν = ∂µVν − ∂νVµ and Aµν = ∂µAν − ∂νAµ.
Momentum–space Feynman rules extracted from this interaction terms appear as, e.g.,

a±1 , µ ρ0, ν

π±

q

p

k

= ±g̃a1ρπ(gµν k · q − kµqν) , (12.28)

similar to the a1ρπ interaction term utilized in [264, 265, 276]. Since the interactions for the different
channels enabled by the above interaction term differ only by sign, the partial widths appear as

Γ(a±
2 → π±ρ0) = Γ(a±

2 → π0ρ±) = Γ(a0
1 → π±ρ∓) . (12.29)

We can therefore express

Γ(a1 → πρ) = 2Γ(a±
2 → π±ρ0) = |g̃a1ρπ|2

4π M2
ρ |pρ|

(
1 + 2|pρ|2

3M2
ρ

)
, (12.30)

with the spatial ρ–momentum |pρ| =
√
λ(m2

a1
,M2

ρ ,M
2
π)/(2ma1) in the center–of–mass frame. Further

assuming the total experimental width Γa1 = (0.25, . . . , 0.6) GeV [158], to be dominated by the πρ decay
channel Γa1 = Γ(a1 → πρ), yields

|g̃a1ρπ| = (3.6, . . . , 5.6) GeV−1 , (12.31)

or |ga1ρπ| = 5.1 GeV−1 corresponding to Γa1 = 0.5 GeV used in the evaluation of the resonance
model terms of Eq. (12.4). Utilizing the total width as measured by the COMPASS collaboration Γa1 =
0.380(80) GeV [277], |ga1ρπ| = 4.5(5) GeV−1. For comparison, in [264] they cite gρa1π = 4.843 GeV−1

for their coupling strength.

In order to describe the full decay chain, we make further use of the gauge–invariant interaction term
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of [278],

LγV =
√

2e
gργ

Fµν TrQVµν , (12.32)

with the charge matrixQ = diag(2,−1)/3 and the electromagnetic field–strength tensors Fµν = ∂µAν −
∂νAν . Coupling the photon to a neutral ρ with momentum k, the partial decay width can be written as

Γ(a±
1 → π±γ) = e2|g̃a1ρπ|2

24πg2
ργ

(
k2

M2
ρ − k2

)2
|k|
(

3k2 + 2|k|2
)
, (12.33)

where the spatial photon momentum is given by |k| =
√
λ(m2

a1
,M2

π , k
2)/(2ma1). Taking the limits

M2
ρ → 0, k2 → 0, the above expression yields

Γ(a±
1 → π±γ) =

e2|g̃a1ρπ|2m3
a1

96πg2
ργ

(
1 − M2

π

m2
a1

)3
. (12.34)

In contrast, in [184] they obtained

Γ(a±
1 → π±γ) = e2F 2

Ama1

96πF 2
π

(
1 − M2

π

m2
a1

)3
, (12.35)

from resonance chiral theory. Equating the above expressions, yields

FA = {0.069, 0.097, 0.11} GeV , (12.36)

for Γa1 = {0.25, 0.5, 0.6} GeV, where gργ = 5.98 [91] is employed. With the total width as mea-
sured by COMPASS [277], FA = 0.085(9) GeV. However, with gργ = 4.96 as extracted from Γ(ρ →
e+e−) [250],

FA = {0.083, 0.12, 0.13} GeV , (12.37)

or FA = 0.10(1) GeV using the COMPASS total a1 width in this case.

These values ought to be compared to the estimate from short–distance constraints in Eq. (12.23) [183]
and from the determination by means of the resonance–chiral–theory interaction and the direct experi-
mental measurement of Γ(a1 → πγ) given in Eq. (12.24) [279] for which the thesis work of [280] found

FA = 0.12(2) GeV. (12.38)

Comparing with the values extracted via a1 → πρ → πγ and the one due to short–distance constraints
that tend to be smaller than the above one, it seems to fit into the picture. Following the remark in [280],
the photon production experiments suggest that the branching ratio Γ(a1 → πγ) could be smaller than
the value obtained by the previous direct measurement [273,274].
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Results

We now have all the ingredients to compute the contribution of GEM(s), defined in Eq. (9.5), to the
hadronic τ–decay, where now the ∆(s, t) term including the radiative corrections reads

∆(s, t) = 1 + 2 Reκmatch
+ (s, t) + gLow(s, t) + grest(s, t). (13.1)

In the following we explain in details our fitting procedure, we show the fit results and, at the end, we
give our final estimate of ∆aHVP, LO

µ [ππ, τ ] in Sec. 13.4.

13.1 Fitting procedure

The pion vector form factor f+(s) is determined by fitting the experimental data from Belle [281],
ALEPH [282], CLEO [283] and OPAL [284]. These experiments measure the spectrum

1
N

dN
ds

= KΓ(s)
Γπ

β3
ππ0(s)|f+(s)|2GEM(s) , (13.2)

with partial widths Γe ≡ Γ(τ− → e−ν̄eντ ) contained inKΓ(s) in Eq. (9.4) and Γπ ≡ Γ(τ− → π−π0ντ ).
For the external inputs we use Sππ

EW = 1.0233(24) [14], Br[τ → eντ ν̄e] = 17.82(4)% and Br[τ →
ππντ ] = 25.49(9)% from the global fit of [158,285] (whose errors are correlated with coefficient −0.19),
and Vud = 0.97367(32) [158].

Since GEM(s) itself is dependent on the input of f+(s) but rather expensive to numerically calculate,
a self–consistent iterative procedure is followed:

1. Determine GEM(s) from f+(s) = Ω1
1(s), with δ(s0) = 110.4◦ and δ(s1) = 165.7◦, where s0 =

(0.8 GeV)2 and s1 = (1.15 GeV)2, as extracted from fits to e+e− → π+π− (cf. Tab. 10 of [102]).

2. Having fixed GEM(s), we fit the free parameters in f+(s) of Eq. (11.7) by means of Eq. (13.2) to the
experimental data, with the regularization of Eq. (9.9). From the discussion in Sec. 11.2, we have
2 + 2 × 3 + (N − 2) free fit parameters, with N the degree of the conformal polynomial Gin(s).

3. The resulting representation for f+(s) is then used to calculate GEM(s) in the next step and the fit
is repeated with this new input.

The procedure is stopped once there is convergence in the fit parameters, i.e., after a few iterations.
In practice, the differences to the starting point f+(s) = Ω1

1(s) are small but certainly not negligible,
reflecting the important role of inelastic effects for a precision analysis of aHVP, LO

µ [ππ] [286,287].

The spectrum provided by the different experiments falls into bins of widths sb, e.g., in the case of the
Belle experiment almost all of the bins are of width sb = 0.05 GeV2. Within the bin, events will not be

120
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distributed equally, but weighted by the distribution, so that the actual observable becomes(
1
N

dN
ds

(si)
)bin

= 1
sb

i

∫ si+sb
i /2

si−sb
i
/2

ds
1
N

dN
ds

(s) , (13.3)

in the bins with center si. Alternatively, one can calculate corrected bin centers scorr
i for the pion VFF fit by

a null search, and we checked that both approaches lead to identical results. This effect is analogous to the
required bin average for hadronic cross–section measurements using initial–state radiation [102,288,289].

Furthermore, we make use of the statistical covariance matrix Covstat(i, j) as well as the full systematic
covariance matrix Covsyst(i, j) whenever available, i.e., for Belle and ALEPH experiments. While for
the CLEO experiment only the systematic covariance matrix is available, the OPAL experiment provides
a combined statistical and systematic covariance matrix, without the information to disentangle the two
error components. In these two cases we treated the single covariant matrix as purely statistical. In order
to avoid the D’Agostini bias [290], the total covariance matrix is constructed via [291]

Cov(i, j) = Covstat(i, j) +
(

1
N

dN
ds

(si)
)bin( 1

N

dN
ds

(sj)
)bin Covsyst(i, j)

yiyj
, (13.4)

where yi is the central value of the experimental observable in bin i, which is then used in yet another
iterative procedure for each fit of the theoretical distribution to the data.

13.2 Sources of uncertainties

The uncertainties we considered in our analysis and that we propagated to GEM(s) can be divided into
the ones coming from the input data and the theoretical ones. For the first group, the uncertainties are
given by

∗ statistical and systematic covariance matrices on τ− → π−π0ντ data.

∗ uncertainties on the spectrum due to the branching ratios Br(τ− → e−ν̄eντ ) and Br(τ− →
π−π0ντ ).

The errors derived from the covariance matrices give rise to a fit uncertainty on f+(s), which is then
propagated to GEM(s), including a scale factor if χ2/dof > 1. Combined with the uncertainty derived
from the branching ratios, this defines the experimental error. On the theory side, the sources of theoretical
uncertainties entering in the pion vector form factor f+(s) are

∗ the variation of the conformal polynomial degree N ,

∗ the variation of the sc parameter in the conformal polynomial,

while for uncertainties entering the GEM(s) directly we have

∗ the variation of the cutoff of the dispersive integral (from 20 GeV2 to 9 GeV2),

∗ the use of different estimates for the couplings FV , GV and FA that enter once we include the
resonances contribution (see Sec. 12.5).

In the latter case, we define the difference between results obtained with the SD couplings (12.23) and
the phenomenologically estimated ones (12.24) as 1σ uncertainties, while for the other uncertainties the
errors are quoted as the maximal deviation from our central solution. Additionally, for the computation
of the uncertainty on the shift ∆aµ (and entering also the spectrum in Eq. (13.2)), the uncertainty due to
the scheme dependence of Sππ

EM, as reported in [14], is included. The same uncertainty also affects the
spectrum (13.2), but only via an overall rescaling. Accordingly, we first present fit results that focus on
the uncertainty components listed above, while adding the SD error propagated from Sππ

EM at the end.
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13.3 Fit results

We perform fits for different degree of the conformal polynomial (N = 3, 4, 5, corresponding toN−2 free
parameters) to the Belle data only, to Belle+ALEPH and to all the data sets combined (Belle+ALEPH+
CLEO+OPAL). The reason behind this choice is as follows: first, the Belle data set provides the most
precise spectral function, especially in the ρ′, ρ′′ region, and we find that individual fits to the other data
sets struggle to resolve the detailed resonance structure, which would require using a simplified fit function
in these cases, and thus leading to results that are difficult to compare. For this reason, we always include
the Belle data in each fit variant. Second, the only other data set for which a full documentation of the
statistical and systematic uncertainties is available is ALEPH, while for CLEO and OPAL systematic
errors are either not provided or combined with statistical ones, and this motivates a combined fit with
Belle. We still quote the global fit as our final result, but it is instructive to compare fits to the more
complete data sets only (see Tab. 13.1).

Stable fits are obtained for N = 3, 4, with p–values ranging from a few percent if we consider only the
Belle data set, over 3.0 × 10−3 for the fit to Belle+ALEPH, to 0.7 × 10−3 for the global fit. Accordingly,
it is clear that some tensions are present in the data base, since the fit quality deteriorates considerably in
the latter cases. To investigate the fit quality further, we also studied variants allowing for an additional
parameter in the conformal polynomial, in which case the p–value increases to over 60% for Belle only
and to a few percent for the combined fit, suggesting that the fits with lower N could be too constrained.
However, we observe that the gain in the χ2 values comes at the expense of clear signs of overfitting,
i.e., the ρ′′ parameters need to be stabilized by imposing penalty functions, as otherwise mass and width
parameter would run away to unphysical values. In addition, the asymptotic behavior of Im f+(s) out-
side the region constrained by data starts to show unphysical oscillations, indicating that tensions in the
physical region are transferred to the high–energy tail. For that reason, we define our central values by
N = 4, while including the variation toN = 3, 5 in the uncertainty estimate. This procedure ensures that
both the systematic variation among all fit variants and the error inflation of the statistical error are taken
into account. The latter would be minimized or even absent if choosing the N = 5 fits as central values,
thus hiding the tensions in the data base. We also considered fit variants in which the explicit ρ′, ρ′′ con-
tributions are replaced by corresponding poles in the conformal variables [253]. In general, the behavior
is similar, as fits with smooth high–energy behavior tend to display relatively poor fit quality, which can
be overcome by allowing for more fit parameters, but again at the expense of overfitting and even more
severe instabilities in the ρ′, ρ′′ parameters, presumably due to the fact that the sensitivity to the pole
parameters is reduced compared to parameterizations better tailored for the real axis. While eventually
the former would be preferred, we conclude that with the ρ′′ so close to the border of the available phase
space, fits to the τ spectral function based on the functional form in Eq. (11.7) are better controlled.

The global fit is shown in Fig. 13.1, while in Figs. 13.2 we show a zoom of our fit result around the ρ
resonance peak (left) and close to the threshold 4M2

π (right), since it is, in fact, the low energy region that
gives the biggest contribution to the muon g − 2 computation from τ data. Due to the energy weighting
in the calculation of aHVP, LO

µ [ππ, τ ], we find that the threshold region actually plays an integral role,
especially, as there appears to be some (compensating) tension between the threshold and ρ–resonance
region. That is, while in the central fits with N = 4 the VFF in the ρ peak tends to be overestimated, for
N = 5 the data around the ρ(770) are better reproduced, yet the integrated aµ value actually increases,
due to an enhancement in the threshold region. Within uncertainties all fits are compatible, but the
observation remains that the analyticity and unitarity constraints built into our dispersive representation
of f+(s) suggest some tension in the data sets between threshold and resonance region.

The modulus of the pion VFF f+(s) arising from our global fit to the experimental data is shown in
Fig. 13.3, while in Fig. 13.4 we display the real and imaginary parts of f+(s) separately. It is also instructive
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Figure 13.1: Fit to the data sets for the full energy range and considering all the experiments, i.e.,
Belle+ALEPH+CLEO+OPAL.
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Figure 13.2: Fit result for the energy spectrum in the region close to threshold (left) and around the ρ–
resonance peak (right).
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χ2/dof p-value δ(s0) [◦] δ(s1) [◦] p3 × 102 p4 × 102 p5 × 102 cρ′ [GeV2] Mρ′ [GeV] Γρ′ [MeV] cρ′′ [GeV2] Mρ′′ [GeV] Γρ′′ [MeV]

Belle (Ndata = 62)

1.36 0.041 110.05(13) 167.00(10) 3.11(65) 0.47(9) 1.46(2) 443(47) −0.24(8) 1.67(2) 257(83)
1.30 0.070 109.95(15) 166.93(11) −3.7(4.4) 3.4(2.2) 0.33(10) 1.44(2) 375(58) −0.40(14) 1.70(2) 289(76)
0.93 0.62 109.60(16) 166.57(13) −4.3(4.7) 17.5(3.7) −6.4(1.4) 0.66(12) 1.49(1) 566(53) −0.94(20) 1.75(1) 398(58)

1.36 0.043 110.04(14) 167.00(10) 3.13(66) 0.47(10) 1.46(2) 442(51) −0.24(8) 1.67(2) 257(87)
1.30 0.072 109.94(15) 166.92(11) −3.6(4.4) 3.3(2.2) 0.33(10) 1.44(2) 376(58) −0.39(14) 1.70(2) 289(77)
0.93 0.62 109.59(26) 166.57(26) −4.2(4.9) 17.4(5.5) −6.4(2.1) 0.66(12) 1.49(1) 565(57) −0.94(21) 1.75(1) 399(63)

Belle+ALEPH (Ndata = 62 + 78 = 140)

1.37 0.0029 109.89(13) 166.77(8) 3.11(64) 0.46(8) 1.46(2) 450(47) −0.21(7) 1.67(2) 262(98)
1.38 0.0028 109.81(13) 166.71(10) −1.8(3.1) 2.4(1.6) 0.36(6) 1.45(1) 404(35) −0.32(10) 1.70(2) 297(71)
1.20 0.062 109.41(14) 166.33(10) −0.77(4.80) 17.7(3.4) −7.3(1.4) 0.75(13) 1.50(1) 611(52) −0.82(19) 1.75(1) 400(59)

1.37 0.0030 109.88(12) 166.77(9) 3.13(65) 0.46(9) 1.46(2) 450(47) −0.21(8) 1.67(2) 260(120)
1.38 0.0030 109.79(14) 166.71(10) −1.7(4.4) 2.4(2.2) 0.37(10) 1.45(2) 405(57) −0.32(14) 1.70(3) 297(92)
1.20 0.060 109.41(13) 166.33(9) −0.7(4.8) 17.5(3.2) −7.2(1.3) 0.75(13) 1.50(1) 610(51) −0.81(19) 1.75(1) 401(59)

Belle+ALEPH+CLEO+OPAL (Ndata = 62 + 78 + 43 + 72 = 255)

1.32 0.0006 109.75(9) 166.59(7) 3.26(69) 0.53(10) 1.47(2) 482(49) −0.25(8) 1.66(2) 295(69)
1.32 0.0007 109.67(12) 166.54(9) −1.4(4.2) 2.2(2.1) 0.43(12) 1.46(2) 439(57) −0.36(14) 1.69(3) 327(90)
1.19 0.021 109.31(12) 166.20(9) −0.8(5.9) 18.6(3.2) −7.7(1.4) 0.81(21) 1.50(2) 631(75) −0.88(19) 1.75(1) 416(57)

1.32 0.0006 109.74(11) 166.59(8) 3.28(67) 0.53(8) 1.47(2) 481(44) −0.25(5) 1.66(2) 295(52)
1.32 0.0006 109.66(12) 166.54(9) −1.2(3.8) 2.2(1.9) 0.43(10) 1.46(2) 440(50) −0.36(13) 1.69(3) 326(85)
1.19 0.020 109.31(15) 166.18(14) −0.7(5.0) 18.4(4.0) −7.6(1.7) 0.81(14) 1.50(1) 630(59) −0.88(20) 1.75(1) 417(68)

Table 13.1: Results of our fits to the (combined) data sets Belle, Belle+ALEPH, and
Belle+ALEPH+CLEO+OPAL (in brackets the number of data points). For each (combination of) ex-
perimental data set(s), we show the result for N = 3 (first line of each set of fits), N = 4 (second line of
each set of fits), andN = 5 (third line of each set of fits). Moreover, the results account for different values
of FV , GV , and FA: SD couplings from Eq. (12.23) (upper half of each set of fits) and phenomenological
couplings from Eq. (12.24) (lower half of each set of fits). The uncertainties refer to the fits errors, prior
to scale–factor inflation (where applicable).

to consider the phase of the pion VFF, see Fig. 13.5, especially in view of the preceding discussion about
the asymptotic behavior. In all fit variants, by construction, the phase ultimately tends to π, ensuring the
correct asymptotic behavior of the pion VFF f+(s) ≃ 1/s [292–296], but for N = 5 one observes sizable
oscillations before the phase returns to its asymptotic value.

13.4 Determination of ∆aµ

From the fit described in the previous section, we obtain the results for GEM(s) in Figs. 13.6 and 13.7. In
particular, Fig. 13.6 shows the result for the leading Low contribution to GEM(s), i.e., the one obtained
by considering only the effect of κmatch

+ (s, t) and gLow(s, t) in Eq. 13.1. Importantly, the curves labeled
by “ChPT” in Figs. 13.6 and 13.7 do not exactly correspond to the numerical results from [34, 35], but
are instead constructed replacing κmatch

+ (s, t) in Eq. (13.1) by fχPT
+ (t), which amounts to replacing the

dispersive evaluation of the box diagram by its χPT approximation. In this way, we obtain a more mean-
ingful comparison of χPT and dispersive results, updating other aspects of [34, 35] to the input used in
this work, e.g., input for f+(s) and LECs.

Differently from the previous result (red line), our new model–independent dispersive approach shows a
clear structure–dependent correction in the ρ, ρ′ and ρ′′ regions already in Fig. 13.6. Moreover, we notice
that while the χPTGLow

EM (s) contribution remains almost constant with values around 1 for most of the
energy range, our result becomes greater then 1 around the ρ–resonance region, explaining the difference
we observe for the ∆aHVP, LO

µ [ππ, τ ] estimate due toGLow
EM (s) with respect to the result in [35] and leading
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Figure 13.5: Phase of the pion vector form factor f+(s).

to a substantial decrease by about 2×10−10. Fig. 13.7 shows the fullGEM(s), i.e., including also grest(s, t)
with all the resonances terms (vi, ai and ω). While the qualitative behavior largely matches previous work,
the energy dependence is altered substantially, especially in the vicinity of the ρ resonance. In addition,
we observe a constant offset, which traces back to the local term in the χPT contribution, especially
the SD logarithm in Eq. (11.46).6 The large uncertainty band close to the 4M2

π threshold is mainly due
to the different estimates for the resonance coupling FV , GV and FA we employed, which as a direct
consequence will give the largest contribution to the theoretical error in the shift ∆aHVP, LO

µ [ππ, τ ]. We
are now in the position to evaluate the shift of the HVP integral caused by IB corrections specific to the
hadronic τ decay, τ− → π−π0ντ . By setting |FV

π (s)/f+(s)| = 1 in Eq. (9.2), the shift ∆aHVP,LO
µ can be

expressed as

∆aHVP,LO
µ [ππ, τ ] =

(αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2

[
β3

ππ(s)
β3

ππ0(s)
1

Sππ
EWGEM(s̃(s)) − 1

]
vτ (s) , (13.5)

with the τ spectral function given by

vτ (s) = Sππ
EWβ

3
ππ0(s)|f+(s)|2GEM(s̃(s)) , (13.6)

and charged pion phase space factor βππ(s) =
√

1 − 4M2
π/s. Different contributions to ∆aHVP,LO

µ [ππ, τ ]
are usually singled out via linearization of the integrand

∆aHVP,LO
µ [ππ, τ ]

∣∣∣∣
PS

=
(αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2

[
β3

ππ(s)
β3

ππ0(s) − 1
]
vτ (s) , (13.7)

∆aHVP,LO
µ [ππ, τ ]

∣∣∣∣
SEW

=
(αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2

[
1

Sππ
EW

− 1
]
vτ (s) , (13.8)

6Part of the local contribution to fχPT
+ (t), as given in Eqs. (10.16) and (10.19), was absorbed into the definition of the pion

VFF f+(s) in [34, 35]. We avoid this bookkeeping, as it would lead to a more complicated form of f+(s) in the fit to the τ
spectral function, in particular, the normalization would differ from unity, by an amount ultimately controlled by the LEC Xℓ.
Moreover, the analysis of the matching to SD contributions would become more complicated, given that this matching relation is
most conveniently derived at the level of the chiral LEC [223].
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Figure 13.6: Result for the leading Low GEM(s) contribution, i.e., including κmatch
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setting grest(s, t) to zero.
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Figure 13.7: Result for the full GEM(s) contribution, i.e., including κmatch
+ (s, t), gLow(s, t) and grest(s, t).

In particular grest(s, t) include the contributions from the different resonances, i.e., ρ, a1 and ω.
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∆aHVP,LO
µ [ππ, τ ]

∣∣∣∣
GEM

=
(αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2

[
1

GEM(s̃(s)) − 1
]
vτ (s) , (13.9)

to represent phase–space, SD, and radiative corrections and such that we can write it in a general form
as

∆aHVP,LO
µ [ππ, τ ]

∣∣∣∣
rIB

=
(αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2 [rIB(s) − 1] vτ (s) . (13.10)

Explicitly spelling out the effects of O(e2) in the integrand as M2
π0 = M2

π − e2∆M , Sππ
EW = 1 + e2∆Sππ

EW

and GEM = 1 + ∆GEM, the difference of the linearized integrand and the full one, expanded in e2,
appears as[(

1
GEM

− 1
)

+
(
β3

ππ

β3
ππ0

− 1
)

+
(

1
Sππ

EW
− 1
)

−
(
β3

ππ(s)
β3

ππ0(s)
1

Sππ
EWGEM(s̃(s)) − 1

)]
vτ (13.11)

= −e4
√
s− 4M2

π

s3/2

[
(s− 4M2

π)∆GEM∆Sππ
EM + 3∆M (∆GEM + ∆Sππ

EM)
]

|f+(s)|2 + O(e6) ,

suggesting that since GEM diverges at the ππ0 threshold, the term ∝ ∆M ∆GEM could become relevant
due to the resulting threshold enhancement.

The results considering all the three different fit variants for the integrals in Eqs. (13.7), (13.8) and (13.9)
as well as the one without factorizing the integral, i.e., Eq. (13.5), are given in Tab. 13.2. In particular, for
the contribution to ∆aHVP,LO

µ [ππ, τ ] coming from GEM(s), we have the following splitting:

∗ GLow
EM (s) contribution obtained by setting to zero grest(s, t) in Eq. (13.1).

∗ Gno RχPT
EM (s) contribution that includes grest(s, t) but with the resonances terms turned off, i.e., with

vi and ai in Eq. (12.4) and the ω contributions set to zero.

∗ GFull
EM(s) contribution with all the resonances (vi, ai and ω) terms restored in grest(s, t).

rIB(s) Belle Belle+ALEPH Belle+ALEPH+CLEO+OPAL

1/GLow
EM (s) −2.292(15)exp(14)theo −2.279(13)exp(16)theo −2.267(13)exp(14)theo

1/Gno RχPT
EM (s) −5.21(3)exp(2)theo −5.20(3)exp(2)theo −5.19(3)exp(2)theo

1/GFull
EM(s) −5.44(3)exp(40)theo −5.43(3)exp(40)theo −5.41(3)exp(40)theo

β3
ππ(s)/β3

ππ0(s) −7.74(4)exp(3)theo −7.73(4)exp(3)theo −7.74(4)exp(3)theo

1/Sππ
EW −12.180(57)exp(8)theo −12.177(57)exp(7)theo −12.166(56)exp(8)theo∑
rIB −25.36(12)exp(44)theo −25.34(12)exp(44)theo −25.32(12)exp(44)theo

Full −24.84(12)exp(39)theo −24.82(12)exp(39)theo −24.80(12)exp(39)theo

ãµ 510.1(2.4)exp(0.2)theo 510.0(2.4)exp(0.2)theo 509.5(2.4)exp(0.2)theo

Table 13.2: Result for the correction ∆aHVP, LO
µ [ππ, τ ] (in units of 10−10) due to different GEM(s) con-

tributions (leading Low, full radiation off τ and π, full real emission including resonances), phase–space
factor, and Sππ

EW. The results labeled as
∑
rIB are obtained by summing the contributions from Gfull

EM(s),
phase space, and Sππ

EW, while “Full” combines the same effects but without linearization. ãµ refers to the
resulting two–pion contribution aHVP, LO

µ [ππ, τ ], but without consideration of IB in the matrix elements
and before adding e+e−–specific corrections. The theory error do not include yet the uncertainty due to
the scheme ambiguity in Sππ

EW nor an estimate of higher intermediate states in the virtual contribution.
All results are provided separately for the three fit variants given in Table 13.1.
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Ref. [267] Ref. [297] Ref. [14] This work

Phase space −7.88 −7.52 −7.7(2) −7.74(5)
Sππ

EW −12.21(15) −12.16(15) −12.2(1.3) −12.2(1.3)
Gfull

EM −1.92(90) (−1.67)+0.60
−1.39 −2.0(1.4) −5.4(5)

Sum −22.01(91) (−21.35)+0.62
−1.40 −21.9(1.9) −25.3(1.4)

Full – – – −24.8(1.4)

ãµ 510.3(3.0) 510.9+2.9
−3.1 510.3(3.4) 509.5(2.7)

Table 13.3: Comparison to previous work, following the notation of Table 13.2. Our results have been
supplemented by the SD error from [14], which then dominates the final uncertainty, as well as an estimate
of higher intermediate states in the virtual contribution.

Finally, Table 13.2 also includes a quantity defined as

ãµ ≡
(
αmµ

3π

)2 ∫ m2
τ

4M2
π

ds
K̂(s)
4s2

[
βππ(s)

]3[
βππ0(s)

]3 vτ (s)
Sππ

EWGEM[s̃(s)] , (13.12)

which can be interpreted as the first step towards aHVP, LO
µ [ππ, τ ], prior to considering corrections in the

matrix elements |FV
π (s)/f+(s)| = 1 + O(e2) and adding IB corrections specific for e+e−.

First, Table 13.2 shows that the differences for the resulting IB corrections among the different fits are
small, which simply reflects the fact that the IB corrections are required with much less relative preci-
sion than the full integral. However, even at this level of precision we observe that a linearization of the
IB corrections should be avoided, since the threshold–enhanced O(e4) terms do become relevant. This
observation also emphasizes the importance of a stable numerical implementation down to the two–pion
threshold, to fully capture these corrections. Considering the changes among the different GEM(s) vari-
ants, the numerically largest contribution arises from the radiation of τ and π, around −3.0×10−10, while
the additional contribution due to resonance diagrams only induces an additional shift around −0.2 units.
This shift, in fact, is less than half the size of the uncertainty propagated from the resonance couplings,
most notably FA, which dominates the overall uncertainty budget for GEM(s). In view of this substantial
uncertainty already of the leading resonance contributions, which are motivated via χPT resonance satu-
ration, together with the overall small impact of resonance contributions on ∆aHVP, LO

µ [ππ, τ ], we do not
see a justification for including yet higher resonance multiplets.

By comparing results for our full dispersive and the χPT version of the triangle diagram, we find that
structure–dependent virtual corrections amount to about −2.0 × 10−10, yielding the second largest con-
tribution after bremsstrahlung off τ and π.7 Accordingly, one could worry about the possible impact of
higher intermediate states in the hadronic matrix element, via resonance left–hand cuts or rescattering
corrections. Given the experience from γ∗γ∗ → ππ [79–81, 227–229], one would expect such effects
to be small in the low–energy region, with the first major resonance–enhanced structure related to the
f2(1270) resonance. To account for virtual corrections beyond the pion pole, we assign an additional
uncertainty of 0.3 × 10−10 to the GEM(s) contribution, motivated as the same relative uncertainty as
resonance diagrams induce in the case of real emission.

7The separation of real and virtual contributions is of course scale dependent, but the differences of dispersive and χPT results
for the triangle diagram, to quantify structure–dependent virtual contributions, and of Grad

EM and GLow
EM , to quantify radiation off τ

and π, are well defined.
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Figure 13.8: GEM(s) contribution to ∆aHVP, LO
µ [ππ, τ ] as a function of a cutoff Λ in the HVP integral,

for our dispersive implementation of the box diagram and its ChPT approximation, in both cases for the
leading Low and full evaluation of real emission. Additionally, the results corresponding to using the full
GEM(s) of previous works by Flores-Baéz et al. (2006) [265] and Miranda, Roig (2020) [37] are shown.

Our final results are summarized in Table 13.3, with central value defined by the N = 4 VFF fits to all
data sets and the mean of the strategies in Eqs. (12.23) and (12.24) for the resonance couplings

∆aHVP, LO
µ [ππ, τ ]

∣∣
Full

= −24.8(0.1)exp(0.5)th(1.3)SD × 10−10 , (13.13)

where the experimental error combines the uncertainties derived from the covariance matrices of the
data for the τ spectral function and the τ branching fractions, while the theory error accounts for all
contribution listed in Sec. 13.2, i.e., variation of N , sc, the cutoff of the dispersive integral, and the
resonance couplings, with the latter the by far most important effect. Overall, the uncertainty is now
dominated by the scheme dependence in Sππ

EW, that is, the matching between SD contributions contained
in Sππ

EW and radiative corrections described by GEM(s). As for GEM(s) itself, however, the uncertainty
has been reduced by a factor of three compared to the assignment in [14], which mainly reflects the fact
that potentially sizable structure–dependent virtual corrections are now explicitly evaluated. In Fig. 13.9,
we show the differences ∆aµ = aSM

µ − a
Exp
µ for different inputs of aHVP,LO

µ . As we can see our result
slightly shift the correction closer to the WP20 estimate.

It is also instructive to scrutinize the origin of the changes in central value compared to the previous
work listed in Table 13.3, after all, our value for the GEM(s) contribution shifts by about 2.5 σ, part of
which is then canceled upon adding the previously neglected O(e4) effects. To this end, we first evaluate
the GEM(s) contribution as a function of the cutoff in the HVP integral, see Fig. 13.8, and compare
the result to the χPT evaluation of the triangle diagram, both for the leading Low and full calculation
of the real–emission contributions. The figure shows that there are indeed significant differences in the
energy dependence, as expected from Figs. 13.6 and 13.7, leading to the aforementioned decrease by 2.0×
10−10 due to resonance enhancement of the ρ(770). Apart from this effect, further changes compared
to [14,267,297] seem surprising, as one would expect these evaluations to be closer to our “ChPT” result,
but a large part of the difference traces back to the local contribution in Eqs. (10.16) and (10.19), for which
we use lattice–QCD–based input from [298].6
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Chapter 14

Conclusions

The muon anomalous magnetic moment is a very well studied observable and its possible connection
with New Physics kept it under close scrutiny in the last decades. In this thesis project we reviewed the
state of the art of the Standard Model theoretical prediction of the muon g − 2, paying particular atten-
tion to the hadronic contribution, since it dominates the uncertainty associated to the SM prediction.
Moreover, we detailed the current experimental and (data–driven) theoretical discrepancy, trying to high-
light the possible fields where an improvement of the theoretical results can help in clarifying the situation.

The goals achieved in this thesis project are mainly two: first, we computed the radiative corrections to
the ππ scattering due to the charged–neutral pion mass difference with a model–independent dispersive
approach. This is of fundamental importance in order to better and more deeply understand the tension
between different experimental results for the e+e− → π+π− cross–section. From this observable one
obtains the data–driven SM prediction of the muon anomalous magnetic moment and, therefore, it must
be known with great accuracy, requiring the inclusion of rescattering effects such as the ππ scattering.
Second, given the current situation concerning the e+e− → π+π− cross–section and the discrepancy
between the data–driven and lattice QCD estimate for the muon g−2, we applied a model–independent
dispersive approach to compute the isospin breaking corrections to the hadronic τ decay, offering, at the
end, a completely new estimate of the e+e− → π+π− cross section. The results of this work set the
understanding of this isospin–breaking effects, both in the ππ–scattering and in the hadronic τ–decay,
on a more solid ground.

To analyze the radiative correction in the ππ–scattering due to the charged–neutral pion mass differ-
ence in a precise and model–independent way, we have generalized Roy equations in order to include
these effects. The subtraction constants appearing in Roy equations are obtained by matching the same
dispersive representation in χPTγ . However, differently from what is available in the literature, some
significant work was necessary in order to bring our dispersive framework in the correct form, suitable for
the matching procedure. We have solved these modified Roy equations for the S– and P–wave partial
waves, obtaining the pion–mass difference corrections at low energies,

√
s ≤ 0.975.

Our results indicate that the most significant relative corrections occur near the corresponding thresh-
old, reaching up to 12% for the neutral channel, with slightly smaller corrections for other partial waves.
For the resonant partial waves, these corrections generally diminish as the energy increases, becoming siz-
able only in the resonance region. In contrast, for the repulsive S–wave, the pion mass difference effects
gradually decrease at higher energies, stabilizing around 3% for the t+0

S (s) partial wave and approximately
1% for t++

S (s) at an energy
√
s ∼ 0.5 GeV. These results suggest that, while pion mass difference effects
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are most prominent at low energies for most partial waves and gradually fade at higher energies—allowing
for a smooth matching to the isospin limit at s1—they remain small but non–zero for the t+0

S (s) partial
wave.

Moreover, we have extracted the pole position of the f0(500), f0(980), and ρ±,0(770) resonances
by analytically continuing the dispersive amplitudes to the second Riemann sheet. We have assessed
the impact of the charged–neutral pion–mass difference on these pole parameters and find that isospin
breaking produces only very small, charge–dependent shifts in resonance masses and widths, which are
well below the current level of precision of these resonances.

Our result provide a rigorous dispersive representation of ππ scattering that can be used for further
phenomenological studies. In particular, they are highly relevant for assessing the pion mass difference
corrections to the ππ contributions in the hadronic vacuum polarization component of the muon g − 2.

In the computation of the isospin breaking effects in the hadronic τ–decay, we focused on the long–
range corrections, denoted by GEM(s). These are computed in a model–independent way by utilizing a
dispersive representation of the pion vector form factor in order to account for the pion internal structure.
In particular, we employed an unsubtracted dispersion relation of f+(s) to ensure the UV finiteness of
the amplitude, while the IR divergences are canceled by including photon real emission contributions.
We also included the effects due to resonances, in particular ρ, a1 and ω resonances. The correct low–
energy behavior is then restored through a matching procedure with the χPT result for the same radiative
corrections.

Besides improving the radiative corrections parameterized byGEM(s), our work also strongly motivates
increased efforts in the new measurements of the τ− → π−π0ντ spectral function, as possible at Belle
II [299]. Indeed, our dispersive fits to the spectrum reveal that some tensions among the currently avail-
able data sets do exist, and at the same time we observe differences to previous evaluations. Part of the
difference might originate from the changes in GEM(s), but we also find that the constraints imposed by
analyticity and unitarity result in a moderate tension between the low–energy part of the spectrum and
the ρ region, which tends to increase the integral for small values of s.

Our final result of the impact of isospin breaking corrections to aµ is

∆aHVP, LO
µ [ππ, τ ]

∣∣
Full

= −24.8(0.1)exp(0.5)th(1.3)SD . (14.1)

Looking at the different contributions, we found good agreement with previous works for phase–space
and short–distance corrections, while for GEM(s) a larger negative correction was obtained. We ob-
served that changes due to structure–dependent contributions are indeed sizable in the vicinity of the ρ
resonance, leading to a net correction of about −2.0 × 10−10 in the HVP integral, while further changes
to previous work trace back to the local χPT contribution.

As main outcome of this work on the hadronic τ–decay, the uncertainty in the GEM(s) contribution is
reduced substantially, leaving the matching between the short–distance factor Sππ

EW and the radiative cor-
rections described byGEM(s) as the dominant source of uncertainty in the τ–specific IB corrections. This
matching can be further improved using input from lattice QCD, and establishing the latter connection
could also help to address the remaining, most critical IB correction in the matrix elements. That is, our
work allows for a reliable calculation of the long–range radiative corrections, which could be combined
with lattice–QCD techniques as well as complementary dispersive calculations of IB in the pion VFF to
achieve a complete account of IB corrections to hadronic τ decays, to allow for a robust evaluation of the
two–pion HVP contribution to the anomalous magnetic moment of the muon.
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Appendix A

Reference formulae

A.1 Feynman rules

A.1.1 QED Lagrangian

Starting from the QED Lagrangian

L = −1
4(Fµν)2 + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ , (A.1)

the Feynman rules read

Dirac propagator :
p

=
i(/p+m)

p2 −m2 + iϵ
, (A.2)

Photon propagator : µ ν

p

= −igµν

p2 + iϵ
, (A.3)

QED vertex : γ
ℓ

ℓ
= −ieγµ , (A.4)

External fermions :
p

= us(p) (initial) , (A.5)

p
= ūs(p) (final) , (A.6)

External antifermions :
p

= v̄s(p) (initial) , (A.7)

p

= vs(p) (final) , (A.8)

External photons :
p

= ϵµ(p) (initial) , (A.9)

p

= ϵ∗µ(p) (final) , (A.10)
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A.1.2 χPT with virtual photons and leptons

At lowest order in chiral power counting, the SU(3) χPT Lagrangian including virtual photons and
leptons, introduced in Eq. (4.62), includes the terms

LLO
eff ⊃

[
(∂µ − ieAµ)π−] [(∂µ + ieAµ)π+]+ τ̄ [iγµ (∂µ − ieAµ) −mτ ] τ

+ iν̄τL /∂ντL + 2iGFV
∗

ud ν̄τLγ
µτ
[
π0 (∂µ + ieAµ)π+ − π+∂µπ

0] , (A.11)

relevant for calculating the radiative corrections to τ− → π−π0ντ . The following Feynman rules can be
extracted:

γ∗

π+

π−

p+

p−

= ie(p− − p+)µ , (A.12)

τ

ντ

π−

π0

p−

p0

= −2iGFV
∗

ud(/p− − /p0) , (A.13)

τ

ντ

π−

π0

γ = −2ieGFV
∗

udγ
µ , (A.14)

where e is the elementary charge, GF the Fermi constant and Vud a CKM–Matrix element. Note that in
the conventions of Ref. [190] the QED vertex appears as

γ

ℓ

ℓ

= ieγµ . (A.15)



Appendix B

SU(3) group

The SU(3) group is of fundamental importance in the study of strong interactions because on one hand
it is the gauge group of QCD and, on the other hand, flavor SU(3) is approximately realized as a global
symmetry of the hadron spectrum [300–302], so that the observed (low–mass) hadrons can be organized in
approximately degenerate multiplets fitting the dimensionalities of irreducible representations of SU(3).
Moreover, the direct product SU(3)L × SU(3)R is the chiral–symmetry group of QCD for vanishing
u–, d– and s–quark masses. In this section we will review few basic properties of this group and its Lie
algebra su(3) [303–305].

The group SU(3) is defined as the set of all unitary, unimodular, 3×3 matrices U , i.e., U†U = 1 and
det(U) = 1. So any group element can be parametrized by a set of eight independent real parameters
Θ = (Θ1, ...,Θ8) varying over a continuous range. Elements of SU(3) are conveniently written in terms
of the exponential representation

U(Θ) = exp
(

−i
8∑

a=1
Θa

λa

2

)
, (B.1)

where λa are the eight linearly independent Gell–Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , (B.2)

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 2

 .

The structure of the Lie group is encoded in the commutation relations of the Gell–Mann matrices[
λa

2 ,
λb

2

]
= ifabc

λc

2 , (B.3)

where fabc = 1
4i ⟨[λa, λb]λc⟩. The anticommutator relations read

{λa, λb} = 4
3δab + 2dabcλc , (B.4)

where dabc = 1
4 ⟨{λa, λb}λc⟩. Moreover, it is convenient to introduce a ninth matrix λ0 =

√
2
3 diag(1, 1, 1).
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Finally, an arbitrary 3×3 matrix M can be written as

M =
8∑

a=0
λaMa , (B.5)

where Ma are complex numbers given by Ma = 1
2 ⟨λaM⟩.



Appendix C

Loop integrals

In this section we show the explicit expression of the loop integrals defined in the ππ–scattering amplitude,
following [198,236]:

A(M2) = − iµ2ϵ

∫
ddk

(2π)d

1
k2 −M2 + iϵ

,

JP Q(s) = − iµ2ϵ

∫
ddk

(2π)d

1
(k2 −M2

P + iϵ)[(k − p)2 −M2
Q + iϵ] , (C.1)

G±γ(s) = − iµ2ϵ

∫
ddk

(2π)d

1
(k2 −m2

γ + iϵ)[k2 − 2k · p1 + iϵ][k2 + 2k · p2 + iϵ] ,

where s = p2, µ is a scale introduced to preserve the natural dimensions of the integrals and the masses
in the propagator are considered reals.

The simplest case is the one–point function for which the explicit expression reads

A(M2) = M2

16π2

(
∆ϵ − ln M

2

µ2 + 1
)
, (C.2)

where ∆ϵ is the divergent contribution of the loop function and it reads

∆ϵ = 1
ϵ

− γE + ln 4π , (C.3)

where ϵ is defined starting from the number of space–time dimensions, d = 4 − 2ϵ, and γE is the Euler–
Mascheroni constant.

For the two point function we recall the definition

JP Q(s) ≡ J̄P Q(s) + JP Q(0) , (C.4)

where for s > (MP +MQ)2 and d = 4, one finds

J̄P Q(s) = 1
32π2

{
2 + ∆P Q

s
ln
M2

Q

M2
P

− ΣP Q

∆P Q
ln
M2

Q

M2
P

+
λ

1
2
P Q(s)
s

ln


(
s− λ

1
2
P Q(s)

)2
− ∆2

P Q(
s+ λ

1
2
P Q(s)

)2
− ∆2

P Q

+ 2iπ
λ

1
2
P Q(s)
s

}
, (C.5)
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and

JP Q(0) = 1
16π2

{
∆ϵ − M2

P

M2
P −M2

Q

ln M
2
P

M2
Q

+ ln µ2

M2
Q

+ 1
}
, (C.6)

with ΣP Q = M2
P +M2

Q, ∆P Q = M2
P −M2

Q and λP Q(s) = λ(s,M2
P ,M

2
Q).

The last loop integral that we worked with is the three–point function G±γ(s). Introducing two Feyn-
man parameters and performing standard manipulations leads to the following integral representation

G±γ(s) = − 1
32π2

∫ 1

0
dx
∫ 1

0
dy

1
f(x) · d

dy
ln
[
y2f(x) + (1 − y)m2

γ

]
+ O(m2

γ) , (C.7)

where f(x) = M2
π± − x(1 − x)s− iϵ. For s < 0, the roots of f(x) are real and lie outside of the interval

[0, 1], so that the integration is straightforward

G±γ(s) = − 1
32π2sσ

{
4Li2

(
1 − σ

1 + σ

)
+ π2

3 + ln2
(

1 − σ

1 + σ

)

+ 2
[

ln
(

−s
M2

π±

)
− ln

(
m2

γ

M2
π±

)
+ 2 ln (σ)

]
ln
(

1 − σ

1 + σ

)}
, (C.8)

The dilogarithm or Spence function is defined as usual,

Li2(x) = −
∫ x

1

ln t
1 − t

dt . (C.9)



Appendix D

Explicit expressions for the subtraction constants

D.1 Neutral channel

For the Tn, the exact, explicit expressions of the subtraction constants a00
n and b00

n read

a00
n =

M2
π0

32πF 2
π

{
1 + ξ0

[
4ℓ̄1 + 8ℓ̄2 − 3

2 ℓ̄3 + 2ℓ̄4 − 23
2 − 9 − 11δπ

(1 − δπ) Lπ + 9j0
(
4M2

π0

) ]

+ ξδπ

(
k̄31

9 − 10
9 k̄2 − k̄4

)}
,

b00
n =

M2
π0

384πF 2
π

ξ
[
16
(
ℓ̄1 + 2ℓ̄2 − 3

)
+ 2δπ(1 − 24λπ) + 27j0

(
4M2

π0

)]
, (D.1)

where ξ0 := M2
π0/(16π2F 2

π ) = ξ(1 − δπ), Lπ := − ln (1 − δπ) = δπ + O(δ2
π) and λπ := Lπ/δπ =

1 + O(δπ).

D.2 π+π− channel

For the T c amplitude, we get

a++ = − M2
π

16πF 2
π

{
1 − δπ − ξ

[
4
3
(
ℓ̄1 + 2ℓ̄2

)
− 1

2
(
ℓ̄3 + 4ℓ̄4

)
(1 − δπ)2 − 1

2

(
1 + 3δπ + 88

9 δ
2
π

)

− δπ(1 − δπ)
(
k̄31

9 − 4k̄32 + 62
9 k̄2 + 5k̄4

)]}
,

b++ = M2
π

48πF 2
π

ξ

(
4ℓ̄2 − 23

9 − 4δπ + δ2
π

)
,

c++ = − ξ

864πF 2
π

,

a+−
c = M2

π

16πF 2
π

{
1 + δπ + ξ

[
4
3
(
ℓ̄1 + 2ℓ̄2

)
− 1

2 ℓ̄3 (1 − δπ)2 + 2ℓ̄4
(
1 − δ2

π

)
− 27 − 90δπ − 133δ2

π + 124δ3
π

18 (1 − δπ) + (3 + δπ)2

4 j0
(
4M2

π

)
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+ δπ

(
k̄31

9 (1 + δπ) + 4k̄32(1 − δπ) − 2
9 k̄2 (5 − 31δπ) + k̄4(1 + 5δπ)

)]}
,

b+−
c = M2

π

24πF 2
π

ξ

[
ℓ̄1 + ℓ̄2 − 97 − 754δπ + 297δ2

π + 144δ3
π

144 (1 − δπ) + 3
32 (3 + δπ)2

j0
(
4M2

π

)]
,

c+−
c = ξ

1728πF 2
π

. (D.2)

D.3 π+π− → π0π0 channel

For the amplitude T x

a1 = − M2
π

32πF 2
π (2 − δπ)

{
2 (3 − δπ) + ξ

3

[
33 + 158δπ − 29δ2

π − 36δ3
π

3 + 8ℓ̄1
(
1 + δπ − δ2

π

)
+ 4ℓ̄2 (2 − δπ)2 − 3ℓ̄3 (1 − δπ)2 + 12ℓ̄4

(
3 − 4δπ + δ2

π

)
+ 3

2
(
6 − 7δπ + δ3

π

)
j0
(
4M2

π

)
+ 2

(
2 − 11δπ − 18δ2

π + 9δ3
π

)
λπ + 4

3δπ

(
16 − 21δπ + 2δ2

π

)
j̄

(1)
+0 + 3

2δ
4
π j̄

(2)
+0

+ δπ

(
2
3 k̄31(3 − δπ) + 12k̄32(1 − δπ) + 4

3 k̄2(3 + 5δπ) + 12k̄4

)]}
,

b1 = − M2
π

96πF 2
π

ξ

[
4ℓ̄1 + 23

12 + 51
4 δπ + 2δ2

π + 2 (1 − 3δπ)λπ + 3
8(1 − δπ)(3 + δπ)j0

(
4M2

π

)
+ 8

3 j̄
(1)
+0

]
,

c1 = − ξ

144πF 2
π

j̄
(1)
+0 ,

a2 = M2
π

32πF 2
π

1
η (2 − δπ)

{
2 (1 − δπ) − ξ

[
1
3

((
17 + 10δπ − 23δ2

π

)
+ 8η (2 − δπ)

3 + 8 (1 − δπ) ℓ̄1

− 4 (2 − δπ) (2 − δπ − 4η) ℓ̄2 − 3 (1 − δπ)2 (
ℓ̄3 + 4ℓ̄4

))

+ 2
3
[
6 − 8η (2 − δπ) − δπ

(
7 − 9δπ + 6δ2

π

)]
λπ − η2δ2

π

4 (2 − δπ)
(
1 − 2η−1) ¯̄j+0

(
4M̄2

π

)
+ (2 − δπ)η

(
(1 − 2η−1)2 + η2δ4

π

64

)
j̄+0

(
4M̄2

π

)
+ δ4

π

8 (4 − η (2 − δπ)) j(2)
+0

−
(

(2 − δπ)
(

16
9η2 + δ4

πη
2

16

)
− 4

9
(
8 − 12δπ + 3δ2

π − 4δ3
π

))
j

(1)
+0

− δπ (1 − δπ)
(

2
9 k̄31 − 4k̄32 + 52

9 k̄2 + 4k̄4

)]}
,

b2 = − M2
π

96πF 2
π

ξ

η

[
2
(

2ℓ̄2 − 2λπ + 1
3

)
+ 3

(
1 − η + η2

4 + η4δ4
π

256

)
j̄+0

(
4M̄2

π

)
+ 3η2δ2

π

16 (2 − η) ¯̄j+0
(
4M̄2

π

)
−
(

4
3η + 3η + 3η3δ4

π

64

)
j̄

(1)
+0 − 3ηδ2

π

32
(
ηδ2

π − 16
)
j̄

(2)
+0 − ηδ4

π

8 j̄
(3)
+0

]
,

c2 = ξ

288πF 2
πη
j̄

(1)
+0 , (D.3)
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where we have defined η := M2
π/M̄

2
π and ¯̄j+0(s) := j̄+0(s) − sj̄

′

+0(0) , and j̄(i)
+0 := M2i

π ∂
i
sj̄+0(s)|s=0 .

j0
(
4M2

π0

)
= 2 +

√
δπ

1 − δπ

(
−π + 2 arctan

√
δπ

1 − δπ

)
,

j̄0(4M2
π) = 2 −

√
δπ

[
ln 1 +

√
δπ

1 −
√
δπ

+ iπ

]
,

j̄+0(4M̄2
π) = 1 +

(
1 − δπ

2 − ηδ2
π

8

)
λπ + ρ

2 ln 4 − η(2 − δπ) − 4ρ
4 − η(2 − δπ) + 4ρ ,

¯̄j+0(4M̄2
π) = 1 − 2(2 − δπ)

ηδ2
π

+
(

4
ηδ2

π

(1 − δπ) + 1 − δπ

2 − ηδ2
π

8

)
λπ + ρ

2 ln 4 − η(2 − δπ) − 4ρ
4 − η(2 − δπ) + 4ρ ,

j̄
(1)
+0 = 1

2δ3
π

[δπ(2 − δπ) − 2(1 − δπ)Lπ] ,

j̄
(2)
+0 = 1

3δ5
π

[
δπ(12 − 12δπ + δ2

π) − 6(2 − δπ)(1 − δπ)Lπ

]
,

j̄
(3)
+0 = 1

2δ7
π

[
δπ(2 − δπ)(30 − 30δπ + δ2

π) − 12(1 − δπ)(5 − 5δπ + δ2
π)Lπ

]
, (D.4)

with
ρ :=

√
1 − η(1 − δπ/2) + η2δ2

π/16 , (D.5)

and with j(s) := 16π2J̄(s) , Σπ = M2
π(2 − δπ) and M̄π = Mπ

2 (1 +
√

1 − δπ) .



Appendix E

Explicit expressions for the kernels

E.1 π+π+ channel

The S-wave projection of the π+π+ channel reads

t++
S (s) =a++s

s+−
− a+−

c (s− s+−)
s+−

+
∫ s+−

s00

ds′
[
K++

c,S (s′, s)Imtc,00
S (s′)

+
∫ s1

s+−

ds′
[
K++

S (s′, s)Imt++
S (s′) +K++

c,S (s′, s)
(

Imtc,00
S (s′) + Imtc,+−

S (s′)
)

+K++
c,P (s′, s)Imtc,+−

P (s′)
]

+ d++
S (s) , (E.1)

where the kernels are

K++
S (s′, s) = 1

π

s(s− s+−)
s′(s′ − s+−)(s′ − s) ,

K++
c,S (s′, s) = 1

π

[
s− 2s′ + s+−

s′(s′ − s+−) + 2
s− s+−

ln
(
s′ + s− s+−

s′

)]
,

K++
c,P (s′, s) = 3

π

[
3s+ 2s′ − s+−

s′(s′ − s+−) − 2(2s+ s′ − s+−)
(s− s+−)(s′ − s+−) ln

(
s′ + s− s+−

s′

)]
. (E.2)

E.2 π+π− channel

In this case, both an S- and P-wave partial decomposition is present. For the S-wave, we obtain

tcS(s) = − a++(s− s+−)
2s+−

+ a+−
c (s+ s+−)

2s+−
+
∫ s+−

s00

ds′K+−
s,S (s′, s)Imtc,00

S (s′)

+
∫ s1

s+−

ds′
[
K+−

s,S (s′, s)
(

Imtc,00
S (s′) + Imtc,+−

S (s′)
)

+K+−
s,P (s′, s)Imtc,+−

P (s′)

+K++
+−,S(s′, s)Imt++

S (s′)
]

+ dc
S(s) , (E.3)

with

K+−
s,S (s′, s) = 1

π

[
1

s′ − s
− s′ + s+ 3(s′ − s+−)

2s′(s′ − s+−) + 1
s− s+−

ln
(
s′ + s− s+−

s′

)]
,
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K+−
s,P (s′, s) = 3

π

[
−3s+ 2s′ − s+−

2s′(s′ − s+−) + 2s+ s′ − s+−

(s− s+−)(s′ − s+−) ln
(
s′ + s− s+−

s′

)]
,

K+−
+−,S(s′, s) = 1

π

[
s− 2s′ + s+−

2s′(s′ − s+−) + 1
s− s+−

ln
(
s′ + s− s+−

s′

)]
, (E.4)

while for the P-wave we have

tcP (s) =a+−
c − a++

6s+−
(s− s+−) +

∫ s+−

s00

ds′K+−
s,P (s′, s)Imtc,00

S (s′)

+
∫ s1

s+−

ds′
[
K+−

s,P (s′, s)
(

Imtc,00
S (s′) + Imtc,+−

S (s′) − Imt++
S (s′)

)
+K+−

p,P (s′, s)Imtc,+−
P (s′)

]
+ dc

P (s) , (E.5)

where the kernels are

K+−
p,S (s′, s) = 1

π

[
− s− s+−

6s′(s′ − s+−) − 2
s− s+−

+ s+ 2s′ − s+−

(s− s+−)2 ln
(
s′ + s− s+−

s′

)]
,

K+−
p,P (s′, s) = 1

π

[
s(s− s+−)

s′(s′ − s+−)(s′ − s) − s− s+−

2s′(s′ − s+−) − 6(2s+ s′ − s+−)
(s− s+−)(s′ − s+−)

+ 3(s+ 2s′ − s+−)(2s+ s′ − s+−)
(s− s+−)2(s′ − s+−) ln

(
s′ + s− s+−

s′

)]
. (E.6)

E.3 π+π− → π0π0 channel

The S-wave projection for the π+π− → π0π0 scattering reads

txS(s) =a+−
x s

s+−
− a+0

c [s− 2Σπ]
sπ±0

+
∫ s+−

s00

ds′Kx,S(s′, s)Imtx,00
S (s′)

+
∫ s1

s+−

ds′Kx,S(s′, s)
(

Imtx,00
S (s′) + Imtx,+−

S (s′)
)

+
∫ s1

s0+

ds′
[
K0+

x,S(s′, s)Imt0+
S (s′) +K0+

x,P (s′, s)Imt0+
P (s′)

]}
+ dx

S(s) , (E.7)

where the kernels read

Kx,S(s′, s) = 1
π

s(s− s+−)
s′(s′ − s+−)(s′ − s) ,

K0+
x,S(s′, s) = 1

π

{
s− 2s′ + 4MπMπ0

s′(s′ − s0+) + 1
2q(s, s+−)q(s, s00)×

[
ln
(

1 + 4q(s, s+−)q(s, s00)
s+ 2s′ − 2Σπ

)
− ln

(
1 − 4q(s, s+−)q(s, s00)

s+ 2s′ − 2Σπ

)]}
,

K0+
x,P (s′, s) = −3

πλ±0(s′)

{
3s+ 2s′ − 2Σπ − s′ (s′ + 2s− 2Σπ) + ∆2

π

2q(s, s+−)q(s, s00) ×

[
ln
(

1 + 4q(s, s+−)q(s, s00)
s+ 2s′ − 2Σπ

)
− ln

(
1 − 4q(s, s+−)q(s, s00)

s+ 2s′ − 2Σπ

)]}
, (E.8)

where q(x, y) = 1
2
√
x− y and λ±0(s) = λ(s,Mπ,Mπ0) =

[
s− (Mπ +Mπ0)2] [s− (Mπ −Mπ0)2] .
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E.4 π+π0 → π+π0 channel

The last π+π0 → π+π0 channel can be decomposed in both an S- and P-wave. For the S-wave, we get

t+S (s) =
a+0

c

(
s+ (Mπ −Mπ0)2) (s+ s0+)

2ss0+
− a+−

x λ±0(s)
2ss+−

+
∫ s+−

s00

ds′K0+
x,S(s′, s)Imtx,00

S (s′) +
∫ s1

s+−

ds′K0+
x,S(s′, s)

(
Imtx,00

S (s′) + Imtx,+−
S (s′)

)
+
∫ s1

s0+

ds′
[
K0+

s,S(s′, s)Imt0+
S (s′) +K0+

s,P (s′, s)Imt0+
P (s′)

]}
+ d+

S (s) , (E.9)

with

K0+
x,S(s′, s) = 1

π

[
λ±0(s)

2ss′(s′ − s+−) − 1
s′ + s

λ±0(s) ln
(
ss′ + λ±0(s)

ss′

)]
,

K0+
s,S(s′, s) = 1

π

{
1

s′ − s
− 2
s′ − 1

2ss′
(s+ s0+)

(
s+ (Mπ −Mπ0)2)
s′ − s0+

+ s

λ±0(s) ln
(
s (s+ s′ − 2Σπ)

ss′ − ∆2
π

)}
,

K0+
p,P (s′, s) = 3

πλ±0(s′)

{
s+ s′ + λ±0(s)

2s −
s
(
λ±0(s′) + 2ss′ − 2∆2

π

)
λ±0(s) ln

(
s (s+ s′ − 2Σπ)

ss′ − ∆2
π

)}
,

(E.10)

while the P-wave decomposition reads

t+P (s) = − a+0
c λ±0(s)
6ss0+

+ a+−
x λ±0(s)
6ss+−

+
∫ s+−

s00

ds′K0+
x,P (s′, s)Imtx,00

S (s′)

+
∫ s1

s+−

ds′K0+
x,P (s′, s)

(
Imtx,00

S (s′) + Imtx,+−
S (s′)

)
+
∫ s1

s0+

ds′
[
K0+

p,S(s′, s)Imt0+
S (s′) +K0+

p,P (s′, s)Imt0+
P (s′)

]}
+ d+

P (s) , (E.11)

where the kernels are

K0+
x,P (s′, s) = 1

π

[
− λ±0(s)

6ss′(s′ − s+−) − 2s
λ±0(s) + s

λ±0(s)

(
1 + 2ss′

λ±0(s)

)
ln
(
ss′ + λ±0(s)

ss′

)]
,

K0+
p,S(s′, s) = 1

π

{
2s

λ±0(s) + λ±0(s)
6ss′ (s′ − s0+)

+ s

λ±0(s)

[
1 − 2s (s+ s′ − 2Σπ)

λ±0(s)

]
ln
(
s (s+ s′ − 2Σπ)

ss′ − ∆2
π

)}
,

K0+
p,P (s′, s) = 1

πλ±0(s′)

{(
1

s′ − s
− 1

2s

)
λ±0(s) +

6s
[
∆2

π − s′ (s′ + 2s− 2Σπ)
]

λ±0(s)

+
3s
[
∆2

π − 2s′ (s− Σπ)) − s′2] [λ±0(s) − 2s (s+ s′ − 2Σπ)]
λ±0(s)2
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× ln
(
s (s+ s′ − 2Σπ)

ss′ − ∆2
π

)}
. (E.12)



Appendix F

Soft Bremsstrahlung

The first (phase space) integral we need to compute is

I int = µ2ϵρ

∫ ′ dd−1k

(2π)d−1
1

2|k|
1

(l · k)(q1 · k) , (F.1)

where ϵ = 4−d
2 and l = ρl1. The parameter ρ is defined in such a way that (l − q1)2 = 0 and such that

(l0 − q0
1) has the same sign as q0

1 . After performing the integrals over the polar angles (that the integrand
does not depend on) except for θ, we obtain

µ2ϵ

∫ ′ d3−2ϵk

(2π)3−2ϵ
= µ2ϵ

4π2 Γ(1 − 2ϵ)(4π)ϵ4ϵ

∫ ∆

0
d|k| |k|2−2ϵ

∫ π

0
dθ (sin θ)1−2ϵ

. (F.2)

Now we introduce a Feynman parameterization and define pµ
α = αlµ + (1 − α)qµ

1 such that

1
(l1 · k)(q1 · k) →

∫ 1

0
dα 1

(pα · k)2 . (F.3)

Then the integral in Eq. (F.1) can be written in the form

I int =µ2ϵρ

8π2 Γ(1 − 2ϵ)(4π)ϵ4ϵ

∫ ∆

0
d|k| |k|−1−2ϵ

∫ 1

0
dα
∫ π

0
dθ (sin θ)1−2ϵ 1

(p0
α − |pα| cos θ)2 . (F.4)

The integrals over momentum |k| and angle θ give∫ ∆

0
|k|−1−2ϵd|k| = −∆−2ϵ

2ϵ (F.5)

4ϵ

∫ π

0
dθ (sin θ)1−2ϵ

(p0
α − |pα| cos θ)2 = 2

p2
α

[
1 − ϵ

p0
α

|pα|
log p

0
α − |pα|
p0

α + |pα|
+ O(ϵ2)

]
.

By expanding in ϵ we get

I int = 1
4π2

∫ 1

0
dα 1

p2
α

[
1
ϵIR

+ 1
2γE − 1

2 log(4π) + 1
2 log ∆2

µ2 + p0
α

2|pα|
log p

0
α − |pα|
p0

α + |pα|

]
(F.6)
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where, in analogy with the UV–divergences, we have ϵIR = −2ϵ. The last step is to compute the two
different integrals in α. Due to the way the parameter ρ is defined,

p2
α = 2α(ρ l1 · q1 − q2

1) + q2
1 = α(ρ2m2

τ −M2
π) +M2

π . (F.7)

The integral multiplying the IR–divergent term can then be written as

∫ 1

0
dα 1

p2
α

= 2
ρλ

1/2
πτ (t)

log
(
m2

τ +M2
π − t+ λ

1/2
πτ (t)

2mτMπ

)
. (F.8)

Furthermore, the more complicated integral associated to the finite bremsstrahlung contribution, is given
by [236]

∫ 1

0
dα 1

p2
α

p0
α

|pα|
log p

0
α − |pα|
p0

α + |pα|
=
{

1
4ℓv log2

(
m(m+ v)

2vq0
1 − q2

1 −mv

)
− 1

2ℓv log2
(

− v(m+ v)
2vq0

1 − q2
1 + v2

)

− 1
ℓv

[
− Sp

(
m+ v

v

)
+ Sp

(
v(m+ v)

2vq0
1 − q2

1 + v2

)]}m=ρ(l0
1−|l1|)

m=q0
1−|q1|

.

(F.9)

where ℓ = ρl01 − q0
1 = ±|ρl1 − q1|, v = ρ2l2

1−q2
1

2ℓ and ρ is defined such that (ρl1 − q1)2 = 0 and such that
(ρl01 − q0

1) has the same sign of q0
1 :

ρ = l1 · q1

l21
±

√
(l1 · q1)2

l41
− q2

1
l21
. (F.10)

The Spence function is defined by

Sp(z) = −
∫ z

0
du

log(1 − u)
u

, (F.11)

and the Källèn function is referred to with suppressed arguments λ = λ(t,m2
τ ,M

2
π). Simplifying this

result and applying identities relating Sp(z) to Sp(1/z), the Feynman-parameter integral can be expressed
by [236]∫ 1

0
dα 1

p2
α

p0
α

|pα|
log p

0
α − |pα|
p0

α + |pα|
= (F.12)

1
ℓv

{
1
4 log2 u

0 − |u|
u0 + |u|

+ Sp
(
v − u0 − |u|

v

)
+ Sp

(
v − u0 + |u|

v

)}u=ρl1

u=q1

. (F.13)

In the τ rest frame, the auxiliary quantities involved in the expression above appear as

ρ = m2
τ +M2

π − t+ λ
1/2
πτ (t)

2m2
τ

, v = mτρ , (F.14)

ℓ = λ
1/2
πτ (t)
2mτ

, q0
1 = m2

τ +M2
π − t

2mτ
.
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Similarly we have

IISR,FSR = µ2ϵ

∫ ′ dd−1k

(2π)d−1
1

2|k|
1

(pi · k)2 (F.15)

= 1
4π2

1
p2

i

[
1
ϵIR

+ 1
2γE − 1

2 log(4π) + 1
2 log ∆2

µ2 + p0
i

2|pi|
log p

0
i − |pi|
p0

i + |pi|

]
where pi = l1, q1.



Appendix G

Phase–space integration for τ± → π±π0ντγ

G.1 Kinematics

We will now compute the phase–space integration for a process with 4 particles in the final state, such
as the radiative τ decay and then we will discuss the physical regions to consider in order to compute the
differential decay rate and spectrum.

The kinematic of the process τ−(l1) → π−(q1)π0(q2)ντ (l2)γ(k) is described by the following invari-
ants:

s = (q1 + q2)2 = (l1 − l2 − k)2, (G.1)

t = (l1 − q1)2 = (l2 + q2 + k)2, (G.2)

u = (l1 − q2)2 = (q1 + l2 + k)2, (G.3)

x = (q2 + k)2 = (l1 − q1 − q2)2, (G.4)

with s + t + u + x = m2
τ + 2M2

π , l21 = m2
τ and q2

1 = q2
2 = M2

π . Note that, since we are interested in
O(e2p2) corrections to the hadronic τ decay, we set Mπ0 = Mπ everywhere in our analysis. After the
integration over neutrino and photon 4–momenta the remaining integrals that need to be computed are
Imn(s, t, x) given in Eq. (12.9). By writing the δ–function in different components we get

Imn(s, t, x) = 1
2π

∫
d3l2
2l02

d3k

2k0 δ
(0)(l01 − l02 − q0

1 − q0
2 − k0)δ

(3)(l1 − l2 − q1 − q2 − k)
(l1 · k)m(q1 · k)n

. (G.5)

In the τ center–of–mass frame, the four momenta read

l1 = (mτ ,0), l2 = (|l2|, l2), k = (|k|,k),

q1 =
(√

M2
π + |q1|2,q1

)
, q2 =

(√
M2

π + |q2|2,q2

)
. (G.6)

By imposing the three momentum conservation in this reference frame, i.e., l2 = −q1 − q2 − k, and
from the definition of the invariant x in Eq. (G.4), we get

|l2| = 1
|k|

(x
2 − |k|2 − |k||q1 + q2| cos θk

)
, (G.7)

with θk the angle between k and |q1 + q2|. We can now use the energy conservation by considering the
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argument of the δ(0)–function in the τ–rest frame, which reads

f(|k|) = mτ − |l2| −
√
M2

π + |q1|2 −
√
M2

π + |q2|2 − |k|. (G.8)

By imposing f(|k|) = 0, we get

|k|0 = mτx

m2
τ − s+ x+ cos θk

√
λ (s, x,m2

τ )
. (G.9)

With these results we can write |k|0 in terms of Mandelstam variables, masses and one angle while
δ(0)(l01 − l02 − q0

1 − q0
2 − k0) can be written as

δ(0)(l01 − l02 − q0
1 − q0

2 − k0) = δ (|k| − |k|0)
|f ′ (|k|0)| , (G.10)

such that the integral in Eq. (G.5) is now given by

Imn = 1
2π

∫
d cos θk dϕk d|k| |k|2

4|l2||k|
δ (|k| − |k|0)

|f ′ (|k|0)|
1

(l1 · k)m (q1 · k)n . (G.11)

where
|k|2

4|l2||k|
1

|f ′ (|k|0)| = m2
τx

2
(
m2

τ − s+ x+ cos θk

√
λ (s, x,m2

τ )
)2 . (G.12)

We now need to find an expression for |q1|, |q2| and |q1 + q2| in terms of masses and Mandelstam
variables:

∗ from l1 · q1 = mτ

√
M2

π + |q1|2 = 1
2 (m2

τ +M2
π − t) we get

|q1| = λ
1/2
πτ (t)
2mτ

, (G.13)

∗ from l1 · q2 = mτ

√
M2

π + |q2|2 = 1
2 (s+ t− x−M2

π) we get

|q2| =

√
(M2

π − s− t+ x)2 − 4M2
πm

2
τ

2mτ
, (G.14)

∗ |q1 + q2| =
√

(q1 + q2)2 =
√

|q1|2 + |q2|2 + 2|q1||q2| cos θq, where θq is the angle between q1

and q2 and can be determined from

q1 · q2 = s− 2M2
π

2 =
√
M2

π + |q1|2
√
M2

π + |q2|2 − |q1||q2| cos θq . (G.15)

The last step consists in rewriting the scalar products l1 · k and q1 · k in terms of the quantities just
determined. In the τ–rest frame we have

l1 · k = mτ |k|0 ,

q1 · k = |k|0
(√

M2
π + |q1|2 − |q1| cos θkq1

)
, (G.16)

with θkq1 the angle between k and q1. This angle can be determined by looking at Fig. (G.1) and by
choosing the coordinate axes such that
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q1

q2

k

q1 + q2

φk

θq

θ1

θk

θ2

Figure G.1: The τ → ππ0νγ decay in the τ–rest frame

q1 + q2 =

 0
0

|q1 + q2|

 and k =

 sin θk cosϕk

sin θk sinϕk

cos θk

 |k| , (G.17)

and

q1 =

 sin θ1

0
cos θ1

 |q1| and q2 =

 − sin θ2

0
cos θ2

 |q2| , (G.18)

with constraint

q1 + q2 =

 |q1| sin θ1 − |q2| sin θ2

0
|q1| cos θ1 + |q2| cos θ2

 !=

 0
0

|q1 + q2|

 . (G.19)

We then find

cos θ1 = |q1| + |q2| cos θq√
|q1|2 + |q2|2 + 2|q1||q2| cos θq

, (G.20)

where cos θq is determined in Eq. (G.15). Finally, from

q1 · k = |k||q1| cos θkq1 = |k||q1| (sin θk cosϕk sin θ1 + cos θk cos θ1) , (G.21)

we get
cos θkq1 =

√
1 − cos2 θk

√
1 − cos2 θ1 cosϕk + cos θk cos θ1 , (G.22)

and we can write the integral Imn in terms of masses, Mandelstam variables and only one angle.

G.2 Integration region and boundaries

In order to calculate differential rates and spectra, we need the physical region D in the form of a normal
domain:

D = {smin ≤ s ≤ smax, tmin(s) ≤ t ≤ tmax(s), xmin(s, t) ≤ x ≤ xmax(s, t)} , (G.23)
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Figure G.2: (s, t) Dalitz plot where RIV represent the full radiative phase space while RIII is accessible
to the non-radiative decay. The contribution in RIV\RIII is important for the threshold behavior.

where smin = 4M2
π and smax = m2

τ . In order to give the explicit form of tmin/max(s) and xmin/max(s, t) we
introduce the functions

t±(s, x) = 1
2s

[
2s
(
m2

τ +M2
π

)
− s

(
m2

τ + s− x
)

±
√
λ (s,M2

π ,M
2
π)λ (m2

τ , s, x)
]
,

x±(s, t) = 1
2M2

π

[
2M2

π

(
m2

τ + s
)

− s
(
m2

τ +M2
π − t

)
±
√
λ (s,M2

π ,M
2
π)λπτ (t)

]
. (G.24)

In the following, let us call RIII the region in the s− t plane accessible in the non–radiative three–body
decay, and RIV the region accessible in the radiative decay. A plot representing the two different regions
can be found in Fig. G.2. RIII is given by

t̄min(s) = t−(s, 0) for smin ≤ s ≤ smax ,

t̄max(s) = t+(s, 0) for smin ≤ s ≤ smax , (G.25)

while RIV corresponds to

tmin(s) = t−(s, 0) for smin ≤ s ≤ smax ,

tmax(s) =
{

t+(s, 0) for s∗ ≤ s ≤ smax

(mτ −Mπ)2 for smin ≤ s ≤ s∗
, (G.26)

with

s∗ = m2
τMπ

mτ −Mπ
. (G.27)

Finally, for given (s, t) the limits for x are

xmax(s, t) = x+(s, t) ,
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xmin(s, t) =
{

0 for (s, t) ∈ RIII

x−(s, t) for (s, t) ∈ RIV\RIII , (G.28)

where the value xmin(s, t) = 0 is a consequence of working in dimensional regularization also for IR–
divergences, otherwise it would have been xmin(s, t) = M2

γ , with Mγ a fictitious photon mass. Moreover,
the following combinations of invariants appear in Eq. (12.12):

Y1,2 =
1 − 2ᾱ±

√
(1 − 2ᾱ)2 −

(
1 − β̄2

)
1 + β̄

, (G.29)

with

ᾱ =
(
m2

τ − s
) (
m2

τ +M2
π − s− t

)
M2

π +m2
τ − t

· λπτ (t)
2δ̄

, β̄ = − λ
1/2
πτ (t)

M2
π +m2

τ − t
, γ̄ = λ

1/2
πτ (t)
2
√
δ̄

,

δ̄ = M2
π

(
m2

τ − s
) (
M2

π − t
)

− st
(
s+ t−m2

τ

)
+M2

π

(
st−m4

τ +m2
τs+m2

τ t
)

−M4
πm

2
τ , (G.30)
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