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Abstract

This work uses geometric tools to develop new results in the theories of random sets, valua-
tions, stochastic processes, and statistical testing.

The first part is dedicated to studying the intersection of randomly translated sets. In the
theory of random sets, the operations of union and of Minkowski sum have been thoroughly
studied, as they agree well with the capacity functional of a random set, which defines its dis-
tribution. Then, limit theorems for random sets are mostly derived for their Minkowski sums
and unions. Only recently, some limit theorems have been achieved for their intersections.
This work expands on some of these results by using the asymptotic properties of integrals
over Minkowski differences.

The second contribution came out of necessity in the path of developing the third part
of this thesis. The functions defined over the family of convex bodies which satisfy the
additivity property, called valuations, are well-studied under assumptions of continuity and
invariance under rigid motions. A complete characterisation of planar monotone integer-
valued σ-continuous valuations is presented, without assuming invariance under any group
of transformations. A construction of the product for valuations of this type is introduced.

In the third part of the thesis, a new family of set-indexed stochastic processes is pre-
sented. These processes satisfy the additivity property of valuations, so they are referred to
as random valuations. The family of valuations is very rich. To achieve meaningful charac-
terisation results, assumptions in the form of independence and infinite divisibility must be
taken into consideration. Under these assumptions and by using tools from the theories of
Lévy processes, stochastic geometry, and valuations, we are able to build a rich new theory,
which is deeply connected with well-known results of deterministic valuations and integral
geometry.

The fourth contribution of this thesis is the development of new methods for testing a
cone hypothesis about the mean of a Gaussian distribution, which can be expressed as a
constraint testing problem. The proposed tests adapt based on the number of constraints
which are violated. It improves the classical (non-adaptive) methods when few constraints
are not satisfied, in terms of both simplicity and power. The new tests are shown to have
a valid significance level α. Moreover, some possible tools to evaluate the elements of the
family of adaptive tests are presented, in terms of risk and power.
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Introduction

This thesis is on the intersection of randomly translated sets, integer-valued valuations,
random valuations, and adaptive tests of a cone hypothesis. It essentially builds on
one publication, one preprint, and two open projects, either in their journal format, as
arXiv preprints, or as the current state of the work.

This introductory chapter gives the motivation and main ideas for each work.
Throughout this introduction, we let (Ω,A,P) be a probability space, consisting

of a non-empty set Ω, a σ-algebra A, and a probability measure P. We denote by X
random variables and random closed sets, and write E for the expectation with respect
to P.

Introduction to Chapter 1

A random closed set X in an Euclidean space is a random element in the family of
closed sets in Rd equipped with the Fell topology. Its distribution is characterised by
its capacity functional, which is

TX(K) = P {X ∩K ̸= ∅} ,

for each compact set K. Limit theorems for sequences of random closed sets are mostly
derived for their Minkowski sums and unions, see Molchanov (2017), as the capacity
functional agrees well with these set operations.

The main focus of this chapter is to show limit results for the intersection of ran-
domly translated sets. Only recently, Richey and Sarkar (2022) proved a limit theorem
for random sets obtained as the intersection of unit Euclidean balls whose centres form
a Poisson point process of growing intensity on the same unit ball.

Following the setting of Marynych and Molchanov (2022). Assume that Ξn =
{ξ1, . . . , ξn} is a set of n i.i.d. points distributed in a set K ⊂ Rd according to a
probability measure µ and define

Xn =
n⋂

i=1

(K − ξi).

In contrast to Marynych and Molchanov (2022), it is not assumed that points are
uniformly distributed in K. Moreover, the convexity assumption on K is also dropped.
Instead, it is assumed that K is a regular closed set from the extended convex ring,
which is the family of locally finite unions of convex bodies, see Kiderlen and Rataj
(2006).

9



The ball hull is the intersection of all unit balls which contain the sample. It is easy
to see that the set Xn of all x ∈ Rd such that Ξn ⊂ x+B1 satisfies

Xn = {x ∈ Rd : Ξn ⊂ x+B1} =
n⋂

i=1

(ξi +B1),

so Xn is the ball hull of a sample Ξn = {ξ1, . . . , ξn} consisting of points distributed in
the unit Euclidean ball. This line of research was initiated in Fodor et al. (2014), in
the case that ξ1, . . . , ξn are independent and uniformly distributed. This approach was
then generalised in Fodor et al. (2020), by replacing the ball with a convex body in
R2, whose boundary needs to satisfy some requirements. The ball hull model has been
extended in Marynych and Molchanov (2022), where the unit ball was replaced by a
general convex body in the space of arbitrary dimension, and it was shown that nXn

converges in distribution to the zero cell of a tessellation.
The standard closed convex hull of a set is defined as the intersection of all images,

under the action of a group of rigid motions, of a half-space containing the given set.
In Kabluchko et al. (2025) a generalisation of this concept is proposed, with a focus on
the analysis of the newly defined convex hulls of random samples taken from a fixed
convex body.

The main result of this contribution states that, after an appropriate multiplicative
scaling, the closure of the complement of the random closed set Xn converges in distri-
bution to the closure of the complement of the zero cell of a tessellation in Rd, whose
distribution is determined by the curvature measure of K and the behaviour of µ near
the boundary of K. Furthermore, if K is convex, after the same appropriate scaling,
then Xn converges in distribution to the zero cell of a tesselation. Some limit results
on the expectation of the volume of properly scaled Xn are also presented.

The proof relies on the analysis of the asymptotic properties of a family of measures
over Minkowski differences between a setK and a scaled version of another set L, which
is

K ⊖ εL := {x ∈ Rd : x+ εL ⊂ K}.
In Kiderlen and Rataj (2006), the authors obtain such results for the volume Vd. For
each element K of the family of gentle sets, which are closed sets that satisfy some
boundary conditions, and each compact set L,

lim
ε↓0

1

ε
Vd(K \K ⊖ εL) =

∫

Sd−1

h(L, u)+Sd−1(K, du),

where h(L, u)+ is the positive part of the support function of L, and Sd−1 is the surface
area measure of K. This result is expanded by replacing the volume with a general
finite measure µ, which is absolutely continuous in a neighbourhood of the boundary of
K and has a density function which behaves like a power of order α near the boundary
ofK. The limit is given by a similar integral, which depends on the support function h+

and the asymptotic behaviour of the density function of µ near the boundary ∂K. The
function of this power then appears in the scaling factor of Xn as n

γ with γ = (1+α)−1.
It is natural that only the behaviour of µ near ∂K matters for the asymptotic of nγXn

since K − ξi for ξi within any positive distance of ∂K does not contribute to the
intersection.

10



Introduction to Chapter 2

Let K d be the family of convex bodies in Rd, with the convention that the empty set is
included in K d. A valuation φ : K d → R is a real additive map, i.e. for any compact
convex sets K and L such that K ∪ L is also convex, we have

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L),

with φ(∅) = 0.
Many characterisation results for valuations have been achieved under assumptions

of invariance under a group of transformations. In most cases, valuations are assumed
to be translation invariant or invariant under the group of all rigid motions. Another
frequently imposed condition is continuity with respect to the Hausdorff metric on
compact convex sets.

The two best-known results are MacMullen’s theorem and Hadwiger’s theorem.
These theorems are presented in the Appendix; the first characterises translation in-
variant continuous valuations, while the second characterises continuous valuations
invariant under rigid motions.

Since the second half of the 1990s, the theory of valuations has undergone rapid
development, mainly due to the work of Alesker, with great expansions in depth and
applications, see for example Alesker and Fu (2014) or Alesker and Bernig (2012). Up
until now, valuations taking values in the group Z of integers under addition were
not thoroughly studied. Clearly, the only continuous valuations with values in Z are
multiples of the Euler characteristic

χ(K) = 1K ̸=∅.

It is straightforward to see that a sum of Euler characteristics like

φ(K) =
N∑

i=1

χ(K ∩ Ci)

for convex bodies C1, . . . , CN defines an integer-valued monotone valuation. Due to
the intersection operation, φ is no longer continuous in the Hausdorff metric, yet it is
σ-continuous, which means that φ(Kn) → φ(K) whenever Kn ↓ K, as n→ ∞. Adding
negative terms to this sum preserves additivity and σ-continuity and may still retain
the monotonicity property.

This chapter focuses on integer-valued monotone σ-continuous valuations without
imposing any invariance assumptions and provides their complete characterisation in
dimensions 1 and 2. The main results establish that each integer-valued, monotone,
and σ-continuous valuation in dimensions 1 and 2 can be represented as an at most
countable sum of Euler characteristics with weights ±1. The convex bodies Ci nec-
essarily form a locally finite family, and the bodies appearing in the negative terms
satisfy a strict admissibility property with respect to the positive ones. In other words,
each integer-valued monotone σ-continuous valuation corresponds to a locally finite
integer-valued measure on the family of convex bodies.

11



A key step is to show that each integer-valued σ-continuous valuation is uniquely
determined by its values on singletons, which define its support. The support of a
valuation φ is the set of points x such that φ({x}) ≥ 1. We show that the intersection
of the support with any convex body is polyconvex. For the latter, we apply Eggleston’s
theorem, see Eggleston (1974), which establishes a connection between polyconvexity
and the structure of invisible points. The absence of such a result in dimensions 3 and
higher makes it impossible to generalise our technique beyond the planar case.

Introduction to Chapter 3

A random valuation is a stochastic process indexed by the family of convex bodies
K d in Rd which satisfies the additivity property of valuations. The distribution of a
random valuation is characterised by its finite-dimensional distributions.

A rich source of random valuations is provided by random (signed) measures on
the family of closed convex sets U in Rd equipped with the Borel σ-algebra generated
by the Fell topology. For example, let Z be a locally finite random signed measure on
U , it is easy to see that

Φ(K) = Z({F ∈ U : K ∩ F ̸= ∅}), K ∈ K d,

is a random valuation.
Random valuations have a version that takes paths in the family of valuations,

which is very rich. To achieve meaningful characterisation results, we assume infinite
divisibility. Every infinitely divisible probability distribution corresponds in a natural
way to a Lévy process. Set-indexed Lévy processes were studied in Bass and Pyke
(1984) assuming that the values on disjoint sets are independent. The central question
in this work was the existence of such a process indexed by a rather general family of
sets and such that its paths are sufficiently regular. These processes have been further
studied in Herbin and Merzbach (2013), where the authors use a new definition for
increment stationarity of set-indexed processes to obtain different characterisations of
this class. An exciting result presented in Rosiński (2018) shows the existence of a
unique Lévy measure for an infinitely divisible set-indexed process.

On top of assuming infinite divisibility, some form of independence assumption can
be taken into consideration. We present a definition for the independence of increments
for a random valuation Φ, which is that for each n ≥ 3 and a nested sequence L1 ⊃ · · · ⊃
Ln of convex bodies and Ln+1 = ∅, the random variables Φ(Li)−Φ(Li+1), i = 1, . . . , n,
are jointly independent. We show that, if Φ is an infinitely divisible valuation, then Φ
has independent increments if and only if its Lévy measure Λ is supported by valuations
ψ with two values {0, c} and such that ψ is monotone increasing if c > 0 and monotone
decreasing if c < 0.

Introduction to Chapter 4

Let µ ∈ Rd and let A be a real-valued m× d matrix. A classical testing problem is to
test

H : Aµ ≥ 0 against Hc : Aµ ̸≥ 0,

12



based on a vector X ∼ N(µ,Σ), where Σ is a given positive-definite matrix while µ is
unknown. This testing model includes testing problems about whether all components
of µ are positive or whether µ1 ≤ · · · ≤ µd against all alternatives. These testing
problems are called type B problems in Silvapulle and Sen (2001) and are studied by
using the likelihood ratio test. They are referred to as constrained likelihood-ratio
tests.

The distribution of the likelihood ratio statistic under H depends on the unknown
vector µ, and a least favourable distribution is found at µ = 0, whose distribution is
that of a mixture of chi-squared distributions. The likelihood ratio statistic is then
evaluated with a quantile of this mixture. The weights of this mixture have an explicit
formula only in special cases, and, usually, they are complicated to compute.

To avoid the calculation of mixing proportions, different works, for example Susko
(2013), Chen et al. (2018), and Al Mohamad et al. (2020), adopt a form of conditional
testing procedure. This line of work was started from ideas of Bartholomew (1961)
and Wollan and Dykstra (1986). This type of testing is called adaptive, as it selects
adaptively which quantile to compare the likelihood ratio statistic with. The classical
approach is then referred to as non-adaptive. The adaptive approach is computationally
more efficient and also more powerful in some regions of the parameter space.

In Al Mohamad et al. (2020), the authors show that this adaptive test has a valid
level α, and they show that, asymptotically, the power of the proposed test is greater
than that of the non-adaptive test when the true vector µ does not violate many
constraints of the null hypothesis.

The main goal of Dümbgen (1995) is to find non-randomized tests x ∈ Rd 7→ 1x̸∈U
of H against all alternatives, where K is the polyhedral convex cone defined by A, i.e.
K = {x ∈ Rd : Ax ≥ 0}, with small risk

R(U) = sup
µ∈Kc

Pµ{U},

under the restriction Pµ{U} ≥ 1 − α for all θ ∈ Kc for some fixed level α ∈ (0, 1/2).
This risk function is minimised over the class Aα(K) of the acceptance regions U ⊆ Rd,
which are measurable and satisfy U + K = U . The test 1x̸∈U for U ∈ Aα(K) is
monotone, in the sense that

1x̸∈U ≤ 1x+µ̸∈U , µ ∈ K,x ∈ Rd.

The support of the non-randomised likelihood ratio test belongs to the family
Aα(K). The risk function R is minimised by a test φ in the family Aα(K), which
is referred to as minimax test.

In this chapter, we fix Σ to be the identity matrix and we introduce a general
adaptive test. The test adapts based on which face of the polar cone of K the observed
X is projected onto. On each such face, a monotone test of level α is defined. Instead
of comparing the non-adaptive test with a mixture of quantiles of fixed distributions,
only one of the quantiles defined by the monotone tests on one of the faces is used. We
show that the adaptive test is also of level α for a certain family of cones. Moreover,
we present some possible tools to evaluate the elements of the family of adaptive tests,
in terms of the risk function R and power.

13



Structure of the thesis

The remainder of this thesis consists of four chapters and an appendix, as introduced
before: Intersection of randomly translated sets (Chapter 1), Integer-valued valuations
(Chapter 2), Random valuations (Chapter 3), and Adaptive tests of a cone hypothesis
(Chapter 4). The first two chapters are published research papers or arXiv preprints
(available on https://arxiv.org) in their original format, with the exact reference given
at the beginning of each chapter. The last two are ongoing projects.
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Chapter 1

Intersection of Randomly Translated Sets

The content of this chapter is a work completed under the supervision of I. Molchanov,
and it is published as

Visonà, T. (2025). Intersections of randomly translated sets. Journal of Theoretical Proba-
bility, 38:3.

This article can be found at:
https://doi.org/10.1007/s10959-024-01371-z
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Abstract
Let �n = {ξ1, . . . , ξn} be a sample of n independent points distributed in a regular
closed element K of the extended convex ring inRd according to a probabilitymeasure
μ on k admitting a density function. We consider random sets generated from the
intersection of the translations of K by the elements of �n , namely,

Xn =
n⋂

i=1

(K − ξi ).

This work aims to show that the scaled closure of the complement of Xn as n → ∞
converges in distribution to the closure of the complement zero cell of a Poisson
hyperplane tessellation whose distribution is determined by the curvature measure of
K and the behaviour of the density of μ near the boundary of K .

Keywords Minkowski difference · Regular closed random sets · Zero cell of a
Poisson tesselation · Intersection of random sets

Mathematics Subject Classification 60D05 · 60G55 · 52A22

1 Introduction

A random closed set in Euclidean space is a random element in the family of closed
sets in Rd equipped with the Fell topology. Limit theorems for random sets are mostly
derived for their Minkowski sums and unions, see [1].

Only recently, [2] proved a limit theorem for randomsets obtained as the intersection
of unit Euclidean balls x + B1 whose centres x form a Poisson point process of
growing intensity λ on the same unit ball. It was shown that these random sets scaled
by λ converge in distribution as λ → ∞ to the zero cell of a Poisson hyperplane

B Tommaso Visonà
tommaso.visona@unibe.ch

1 Institute of Mathematical Statistics and Actuarial Science, Universität Bern, Alpeneggstrasse 22,
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tessellation. It was also shown that the volumes of these intersection sets converge in
distribution.

Many results from [2] follow from the studies of a similar model appearing by
taking the ball hull of a sample �n = {ξ1, . . . , ξn} which consists of i.i.d. points
uniformly distributed in the unit Euclidean ball. The ball hull

Qn =
⋂

x∈Rd ,�n⊂x+B1

(x + B1)

is the intersection of all (translated) unit balls which contain the sample. It is easy to
see that the set Xn of all x ∈ Rd such that �n ⊂ x + B1 satisfies

Xn = {x : �n ⊂ x + B1} =
n⋂

i=1

(ξi + B1).

This line of research was initiated in [3], where the combinatorial structure of the
ball polytope Qn was explored. In particular, it was shown that the expectation of the
number of faces of Qn in dimension 2 converges to a nontrivial limit without taking
any normalization. This was generalized in [4], by replacing the ball with a convex
body in R2, whose boundary needs to satisfy some requirements.

The ball hull model has been extended in [5], where the unit ball was replaced
by a general convex body in the space of arbitrary dimension and it was shown that
the convergence of distribution of nXn entails the convergence of the combinatorial
features of Qn , namely, its f -vector, in particular, the numbers of vertices and facets.
It is shown that the latter convergence holds in distribution together with all moments.

The standard closed convex hull of a set is defined as the intersection of all images,
under the action of a group of rigid motions, of a half-space containing the given set.
In [6] a generalization of this concept is proposed, with a focus on the analysis of the
newly defined convex hulls of random samples taken from a fixed convex body.

Following the setting of [5], we assume that �n = {ξ1, . . . , ξn} is a set of n i.i.d.
points distributed in a set K ⊂ Rd according to a probability measure μ and define

Xn :=
n⋂

i=1

(K − ξi ). (1)

In contrast to [5], it is not assumed that points are uniformly distributed in K and the
convexity assumption on K is also dropped. Instead, it is assumed that K is a regular
closed set from the extended convex ring, which is the family of locally finite unions
of convex bodies, see [7].

The main result states that, after an appropriate multiplicative scaling, the com-
plement of the closure of the random closed set Xn converges in distribution to the
closure of the complement of the zero cell of a tessellation inRd , whose distribution is
determined by the curvature measure of K and the behaviour of μ near the boundary
of K . Some limit results on the expectation of the volume of properly scaled Xn are
also presented.
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The proof is based on two technical results. First, it relies on the analysis of the
asymptotic properties of a family of measures over Minkowski differences between a
set K and a scaled version of another set L , which is

K � εL := {x : x + εL ⊂ K }.
In [7], the authors obtain such results for the volume Vd . For each gentle set K , whose
definition can be found in Sect. 2, and each compact set L ,

lim
ε↓0

1

ε
Vd(K \ K � εL) =

∫

Sd−1
h(L, u)+Sd−1(K , du),

where h(L, u) is the support function of L and h(L, u)+ is its positive part, and Sd−1
is the surface area measure of K .

In Sect. 2,we extend this result by replacing the volumewith a general finitemeasure
μ, which is absolutely continuous in a neighbourhood of the boundary of K and has
density function which behaves like a power of order α near the boundary of K . The
limit is given by a similar integral which depends on the support function h and the
asymptotic behaviour of the density function ofμ near the boundary ∂K . The function
of this power then appears in the scaling factor of Xn as nγ with γ = (1+ α)−1. It is
natural that only the behaviour ofμ near ∂K matters for the asymptotic of nγ Xn since
K −ξi for ξi within any positive distance of ∂K does not contribute to the intersection
in (1).

The second main technical tool relies on the fact that convergence of the inclusion
functionals of regular closed random sets implies the convergence in distribution of
the closure of their complements.

2 Asymptotic Properties of Integrals Over Minkowski Differences

By Hd−1 we denote the Hausdorff measure of dimension (d − 1), and by Hd or Vd
the Lebesgue measure in Rd . We write dx in integrals with respect to the Lebesgue
measure. By Br (a) we denote the closed ball in Rd of radius r and centre a ∈ Rd .
Given a set A in Rd , denote by Int(A) the interior of A, by cl(A) its closure, and by
Ac its complement.

Let K ⊆ Rd be a closed set. The metric projection ξK : Rd \ exo(K ) → K is
defined by letting ξK (a) be the unique nearest point to a from K , where the exoskeleton
exo(K ) is the set of points which do not admit a unique nearest point in K . The set
exo(K ) is measurable and Vd(exo(K )) = 0, see Section 2 in [7]. The reduced normal
bundle of K is

N (K ) :=
{(

ξK (z),
z − ξK (z)

‖z − ξK (z)‖
)

: z /∈ K ∪ exo(K )

}
.

The set

N̂ (K ) := N (∂K ) \ N (K )
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is called the inner reduced normal bundle. The reach function of K is defined as

δ(K , a, u) := inf{t ≥ 0 : a + tu ∈ exo(K )}, (a, u) ∈ N (K ),

assuming that δ(K , a, u) = +∞ if the set {t ≥ 0 : a + tu ∈ exo(K )} is empty.
A set K ⊂ Rd is called regular closed if it coincides with the closure of its interior.

Let R be the family of regular closed sets. A convex set K is regular closed if and
only if its interior is not empty.

A closed set K is said to be gentle if

(G1) Hd−1({a ∈ B : (a, u) ∈ N (∂K ), u ∈ Sd−1}) < ∞ for all bounded Borel sets
B ⊂ Rd ,

(G2) for Hd−1-almost all a ∈ ∂K , there are non-degenerate balls Bi and Bo

containing a such that Bi ⊂ K and Int Bo ⊂ Kc,

see Section 2 in [7]. A gentle set K is not necessarily regular closed, for example, a
singleton is gentle. Each convex body in Rd is gentle.

Let K be a gentle set. For Hd−1-almost all a ∈ ∂K , there exists a unique u ∈ Sd−1

such that (a, u) ∈ N (K ) and (a,−u) ∈ N̂ (K ). This follows from (G2) since the
tangent balls Bi and Bo at a are unique. LetCd−1(K , ·) be the image measure ofHd−1

on ∂K under themap a �→ (a, u) ∈ N (K ), which is definedHd−1-almost everywhere
on ∂K and is measurable, see Lemma 6.3 from [8]. The measure Cd−1(K , ·) is called
the curvature measure of K .

Wewill use the abbreviation for almost all (a, u) ∈ N (K ) instead of forCd−1(K , ·)-
almost all (a, u) ∈ N (K ). The same agreement is used for N̂ (K ) equipped with the
measureC∗

d−1(K , ·), whereC∗
d−1(K , ·) is the image measure ofCd−1(K , ·) under the

reflection (a, u) ∈ N (K ) �→ (a,−u) ∈ N̂ (K ), this reflection is well-defined almost
everywhere.

If K is gentle, for almost all (a, u) ∈ N (K ), it is possible to express explicitly
in terms of the reach function the radii of the inner and outer balls associated with
an a ∈ ∂K as mentioned in (G2). For almost all (a, u) ∈ N (K ), we denote δ± :=
δ(∂K , a,±u), so that Bo := Bδ+(a + δ+u) and Bi := Bδ−(a − δ−u). Moreover,
δ+ > 0 and δ− > 0.

For L ⊆ Rd , its support function is defined as

h(L, u) := sup{〈x, u〉 : x ∈ L}, u ∈ Rd .

If h(L, u) < +∞, the supporting hyperplane of L with normal u �= 0 is given by

H(L, u) := {x ∈ Rd : 〈u, x〉 = h(L, u)}.

We denote with h(L, u)+ the positive part of h(L, u).
For sets K and L in Rd ,

K � L := {x ∈ Rd : L + x ⊆ K }
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is the Minkowski difference of K and L , and the set

Ľ := {x ∈ Rd : −x ∈ L}

is the reflection of L with respect to the origin.
We recall that for almost all a ∈ ∂K , if (a, u) ∈ N (K ), we have that δ(K , a, u) =

δ(∂K , a, u) since N (K ) ⊂ N (∂K ) = N (K ) ∪ N̂ (K ). The same applies to N̂ (K ).

Lemma 2.1 Let K be a gentle set and let L be a compact set in Rd . Let f be a
nonnegative integrable function. Then, for almost all (a, u) ∈ N̂ (K ), there exist
functions t+ and t−, which satisfy

lim
ε↓0

t±(ε)

ε
= h(L,−u)+,

and such that
∫ t+(ε)

0
f (a + tu) dt ≤

∫ δ(∂K ,a,u)

0
f (a + tu)1K\K�εL(a + tu) dt

≤
∫ t−(ε)

0
f (a + tu) dt

for all sufficiently small ε.

Proof Fix (a, u) ∈ N̂ (K ) such that the inner ball Bi and outer ball Bo exist as in (G2).
Define the half-space

H−−u(h(L,−u)) := {x ∈ Rd : 〈x,−u〉 ≤ h(L,−u)}.

There exists an r > 0 such that L ⊆ Br (0), and, consequently, εL ⊆ Bεr (0). The set
εL is not only a subset of Bεr (0), but also of

C(ε) := εH−−u(h(L,−u)) ∩ Bεr (0).

Since L is compact, there is a point l ∈ ∂L such that 〈l,−u〉 = h(L,−u), which is
called the support point, and εl ∈ ε(H(L,−u) ∩ Br (0)).

For all ε < r−1 min{δ+, δ−, 1} and for t ∈ [0, δ−), we have (a+tu) ∈ (K \K�εL)

if and only if a + tu + εL is not a subset of K . Hence, for t ∈ [0, δ−),

{t : a + tu + εL � K } ⊆ {t : a + tu + εL � Bi }
⊆ {t : a + tu + C(ε) � Bi }
= {t : a + tu + ε(H(L,−u) ∩ Br (0)) � Bi },

and
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{t : a + tu + εL � K } = {t : (a + tu + εL) ∩ Kc �= ∅}
⊇ {t : (a + tu + εL) ∩ Int Bo �= ∅}
⊇ {t : (a + tu + εl) ∈ Int Bo}
⊇ {t : a + tu + ε(H(L,−u) ∩ Br (0)) ⊆ Int Bo}.

We then define

t−(ε) := 0 ∨ inf{t ∈ (−δ+, δ−) : a + tu + ε(H(L,−u) ∩ Br (0)) ⊆ Bi },
t+(ε) := 0 ∨ inf{t ∈ (−δ+, δ−) : a + tu + ε(H(L,−u) ∩ Br (0)) � Int Bo},

where ∨ stands for supremum.
The value of t−(ε) is the distance between a and a point of the segment [a, a+δ−u].

Since the set a+tu+ε(H(L,−u)∩Br (0)) is invariant under any rotationwhich keeps
u unchanged, t−(ε) can be calculated by sectioning this set with any 2-dimensional
plane parallel to u which contains a. For each t ∈ (0, δ−), the section of Bδ−(a + tu)

is a circle C . Then t−(ε) is the positive part of the sum of εh(L,−u) and the distance
between a chord of the circle C of length 2(r2ε2 − ε2h(L,−u)2)1/2 and the point on
the boundary a. Hence,

t−(ε) = (εh(L,−u) + δ− − (δ2− − (r2ε2 − ε2h(L,−u)2))1/2)+,

where t−(ε)ε−1 → h(L,−u)+ as ε ↓ 0.
With the same idea used to calculate t−(ε), we can see that

t+(ε) = (εh(L,−u) − (δ+ − (δ2+ − (r2ε2 − ε2h(L,−u)2))1/2))+

and t+(ε)ε−1 → h(L,−u)+ as ε ↓ 0.
Clearly 0 ≤ t+(ε) ≤ t−(ε) < δ− for ε < r−1 min{δ+, δ−, 1}. The points of

discontinuity of 1K\K�εL(a+ tu) happen for t ∈ [t+(ε), t−(ε)]. The identity function
1K\K�εL(a + tu) is 1 for all t ∈ [0, t+(ε)) and is 0 for all t ≥ t−(ε).

The proof finishes by observing that f is integrable and positive on [0, δ−).

We impose the following conditions on a finite measure μ supported by K .

(M1) The measure μ has compact support, and it is absolutely continuous with
density f .

(M2) There exists an α > −1 such that, for almost all (a, u) ∈ N̂ (K ),

lim
t↓0

f (a + tu)

tα
= ĝ(a, u) =: g(a) ∈ [0,+∞),

where the function ĝ is strictly positive on a subset of ∂K of positive measure
and is bounded almost everywhere.

123
23



Journal of Theoretical Probability (2025) 38 :3 Page 7 of 17 3

The argument of the limit function ĝ is the vector (a, u) ∈ N̂ (K ). Since K is gentle,
for Hd−1-almost all a ∈ ∂K there is a unique u ∈ Sd−1 such that (a, u) ∈ N̂ (K ),
then g is well-defined.

As a pointwise limit of measurable functions, g is also measurable. From its
definition and since the support of f on K is compact, g has compact support.

Proposition 2.2 Let K be a gentle set and let L be a compact set in Rd . Let μ be
a finite measure on K which has compact support, is absolutely continuous in a
neighbourhood of ∂K with density f and satisfies (M2). Then

lim
ε↓0

μ(K \ K � εγ L)

ε
=

∫

N (K )

g(a)
(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u)),

where γ = (α + 1)−1.

Proof There exists a constant s > 0 such that the finite measure μ is absolutely
continuous on ∂K + Bs(0) since it is a neighbourhood of ∂K . Moreover, there exists
an r > 0 such that L ⊆ Br (0).

For ε < (s/r)1/γ , Proposition 4 from [7] yields that

μ(K \ K � εγ L)

=
∫

Rd
f (x)1K\K�εγ L(x) dx (2)

=
d∑

i=1

iκi

∫

N (∂K )

δ(∂K ,a,u)∫

0

t i−1 f (a + tu)1K\K�εγ L(a + tu) dt νd−i (∂K , d(a, u)),

where the signed measures ν0(∂K , ·), . . . , νd−1(∂K , ·) are called support measures of
∂K and the constant κi is the volume of the i-dimensional unit ball, for i = 1, . . . , d.
The signed measures ν0(∂K , ·), . . . , νd−1(∂K , ·) have locally finite total variation
from Corollary 2.5 and (2.13) in [8].

The hypotheses of Proposition 4 in [7] require that f is bounded. The statement also
holds for unbounded integrable functions. The sequence of functions fn := f 1{ f ≤n}
is monotone and each fn is bounded. By the monotone convergence, the identity (2)
is also satisfied by unbounded integrable functions.

All summands of (2) with i ≥ 2 are of order o(ε) as ε ↓ 0. The support of 1K\K�εγ L

is contained in ∂K + B2rεγ (0), so that

∣∣∣
1

ε

∫

N (∂K )

∫ δ(∂K ,a,u)

0
t i−1 f (a + tu)1K\K�εγ L(a + tu) dt νd−i (∂K , d(a, u))

∣∣∣

≤ 1

ε

∫ 2rεγ

0

∫

N (∂K )

t i−1+α f (a + tu)

tα
dt |νd−i |(∂K , d(a, u))

≤ (2rεγ )i+α

(i + α)ε
ess sup

((a,u),t)∈N (∂K )×[0,2rεγ )

f (a + tu)

tα
|νd−i |(∂K , ∂K (ε) × Sd−1) → 0,
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as ε ↓ 0, for i �= 1, γ = (α + 1)−1, α > −1, and where

∂K (ε) := {x ∈ ∂K : x + y ∈ supp f for y ∈ B2rεγ (0)},

which is compact for all sufficiently small ε since supp f is compact on ∂K . It follows
that |νd−i |(∂K , ∂K (ε) × Sd−1) is finite for each i = 1, . . . , d − 1, since ∂K (ε) is
bounded and the measures have locally finite total variation. Furthermore, it follows
from the assumption (M2) that f (a + tu)/tα is bounded for almost all ((a, u), t) ∈
N (∂K ) × [0, 2rεγ ) for ε small enough.

Proposition 4.1 and Proposition 5.1 from [8] yield that

2νd−1(∂K , ·) = Cd−1(K , ·) + C∗
d−1(K , ·).

For κ1 = 2,

lim
ε↓0

μ(K \ K � εγ L)

ε

= lim
ε↓0

2

ε

∫

N (∂K )

∫ δ(∂K ,a,u)

0
f (a + tu)1K\K�εγ L(a + tu) dt νd−1(∂K , d(a, u))

= lim
ε↓0

2

2ε

∫

N (K )

∫ δ+

0
f (a + tu)1K\K�εγ L(a + tu) dt Cd−1(K , d(a, u))

+ 2

2ε

∫

N̂ (K )

∫ δ−

0
f (a + tu)1K\K�εγ L(a + tu) dt C∗

d−1(K , d(a, u))

= lim
ε↓0

1

ε

∫

N̂ (K )

∫ δ−

0
f (a + tu)1K\K�εγ L(a + tu) dt C∗

d−1(K , d(a, u)),

since the density function f vanishes outside K . Following Lemma 2.1, for almost all
(a, u) ∈ N̂ (K ),

g(a)
(h(L,−u)+)α+1

α + 1
= lim

ε↓0 inf
s∈[0,t+(εγ ))

f (a + su)

sα

1

ε

∫ t+(εγ )

0
tα dt

≤ lim
ε↓0

1

ε

∫ t+(εγ )

0
f (a + tu) dt

≤ lim
ε↓0

1

ε

∫ δ−

0
f (a + tu)1K\K�εγ L(a + tu) dt

≤ lim
ε↓0

1

ε

∫ t−(εγ )

0
f (a + tu) dt,

≤ lim
ε↓0 sup

s∈[0,t−(εγ ))

f (a + su)

sα

1

ε

∫ t−(εγ )

0
tα dt

= g(a)
(h(L,−u)+)α+1

α + 1
.
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Thus,

Fε(a, u) := 1

ε

∫ δ−

0
f (a + tu)1K\K�εγ L(a + tu) dt

→ g(a)
(h(L,−u)+)α+1

α + 1
as ε ↓ 0

for almost all (a, u) ∈ N̂ (K ). The limiting function is bounded and has compact
support, because g is a bounded function with compact support and L is compact.

The sequence Fε is bounded for all ε > 0 and for almost all (a, u) ∈ N̂ (K ) ∩
((supp f ∩ ∂K ) × Sd−1), which is compact. We can then find an upper bound and
apply the dominated convergence theorem.

We conclude by noticing that

∫

ˆN (K )

g(a)
(h(L,−u)+)α+1

α + 1
C∗
d−1(K , d(a, u)) =

∫

N (K )

g(a)
(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u)).

Remark 2.3 For d ≥ 2, the result does not hold for α ≤ −1. The reason is due to
the summands of (2). There is no γ ∈ R such that the summand with index i = 1
converges and others do not converge to 0. For d = 1 there is only one summand, so
this issue does not emerge.

Example 2.4 Let f (x) = ‖ξ∂K (x) − x‖α with α ∈ (−1,∞) and x ∈ K , where K is
a gentle compact set, and f = 0 outside K . Then

lim
t↓0

f (a + tu)

tα
= ‖u‖α = 1

for almost all (a, u) ∈ N̂ (K ). In this case g(a) = 1 for all a ∈ ∂K and

lim
ε↓0

1

ε

∫

Rd
f (x)1K\K�εγ L(x) dHd(x) =

∫

N (K )

(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u)).

3 Limit Theorem for Intersections of Translated Elements of the
Extended Convex Ring

A random closed set X in Rd is a measurable map from a probability space to the
space F of closed sets in Rd endowed with the Borel σ -algebra generated by the Fell
topology, see [1]. The base of the Fell topology consists of finite intersections of the
sets {F ∈ F : F ∩ G �= ∅} and {F ∈ F : F ∩ L = ∅} for all open G and compact L
in Rd .

123
26



3 Page 10 of 17 Journal of Theoretical Probability (2025) 38 :3

It is known that the distribution of a random closed set is uniquely determined by
its capacity functional defined as

TX (L) := P {X ∩ L �= ∅} ,

where L runs through the family of compact sets in Rd . A sequence of random closed
sets (Xn)n≥1 in Rd converges in distribution to a random closed set X (notation

Xn
d−→ X ) if the corresponding probability measures on F weakly converge. This is

the case if and only if

TXn (L) → TX (L) as n → ∞

for each compact set L such that TX (L) = TX (Int(L)), see Theorem 1.7.7 from [1].
We recall that a convex body is a non-empty compact convex set. The extended

convex ring U is a family of closed sets which are locally finite unions of convex
bodies of Rd , meaning that each compact set intersects at most a finite number of
convex bodies that generate an element of U . We assume that the empty set belongs
to U . Clearly, the family U is closed under intersections.

Let K be a non-empty regular closed element of U , and let μ be a probability
measure on K satisfying (M1) and (M2). Consider the set

�n := {ξ1, . . . , ξn}

composed of n independent points in K distributed according toμ. Let Xn be a random
closed set defined as follows

Xn :=
n⋂

i=1

(K − ξi ). (3)

Let PK := {(ti , ui ) : i ≥ 1} be a Poisson point process on (0,∞) × Sd−1 with
intensity measure ν, which is the product of an absolutely continuous measure on
(0,∞) with density tα and a measure ν̂ on Sd−1 defined as

ν̂(D) :=
∫

N (K )

1{u∈D}g(a)Cd−1(K , d(a, u)), (4)

for D ⊂ Sd−1, where g(a) is given by the property (M2) of μ.
The point processPK corresponds to the family of hyperplanes {x ∈ Rd : 〈x, ui 〉 =

ti }, i ≥ 1,which splits the space into disjoint cells and is said to be aPoisson hyperplane
tessellation of Rd , see [9]. The zero cell of this tessellation is the random convex set

Z =
⋂

i≥1

{x ∈ Rd : 〈x, ui 〉 ≤ ti }. (5)

We now formulate our main result.
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Theorem 3.1 Assume that μ satisfies (M1) and (M2) on K for α > −1. If K is a
regular closed element of U , then

nγ cl(Xc
n)

d−→ cl(Zc) as n → ∞,

where γ = (α +1)−1. Furthermore, if K is a convex set with non-empty interior, then

nγ Xn
d−→ Z as n → ∞.

Definition 3.2 A random closed set X in Rd is said to be regular closed if X almost
surely belongs to the family R of regular closed sets.

For further details about regular closed random sets, see Section 1.1.7 of [1].
The following result is a variant of Theorem 7.5 from [6] with an identical proof.

Lemma 3.3 Let Y and Yn, n ∈ N be regular closed random sets in Rd . If

P {L ⊆ Yn} → P {L ⊆ Y } as n → ∞

for all regular closed compact sets L such that P {L ⊆ Y } = P {L ⊆ Int Y }, then
cl(Y c

n )
d−→ cl(Y ) as n → ∞.

Proof The family of regular closed sets is a separating class, see Definition 1.1.48 in
[1]. It follows from Corollary 1.7.14 in [1] that for the convergence in distribution it
suffices to check that

P
{
cl(Y c

n ) ∩ L �= ∅} → P
{
cl(Y c) ∩ L �= ∅}

as n → ∞,

for all regular closed compact L , which are continuity sets for cl(Y c). The latter means
that

P
{
cl(Y c) ∩ L = ∅} = P

{
cl(Y c) ∩ Int(L) = ∅}

.

Fix a regular closed compact set L which is a continuity set. Since

P
{
cl(Y c) ∩ L = ∅} = P {L ⊆ Int(Y )}

and

P
{
cl(Y c) ∩ Int(L) = ∅} = P {Int(L) ⊆ Int(Y )} ,

we conclude that

P {L ⊆ Y } ≤ P {Int(L) ⊆ Int(Y )} = P {L ⊆ Int(Y )} ≤ P {L ⊆ Y } ,

so that P {L ⊆ Y } = P {L ⊆ Int(Y )}.
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Let εk be a sequence of positive numbers such that εk ↓ 0 as k → ∞, and

P
{
L + Bεk ⊆ Y

} = P
{
L + Bεk ⊆ Int(Y )

}
.

Sending n → ∞ in the chain of inequalities

P
{
L + Bεk ⊆ Yn

} ≤ P {L ⊆ Int(Yn)} = P
{
cl(Y c

n ) ∩ L = ∅} ≤ P {L ⊆ Yn} .

Then, following P {L ⊆ Yn} → P {L ⊆ Y }, we conclude that

P
{
L + Bεk ⊆ Y

} ≤ lim inf
n→∞ P

{
cl(Y c

n ) ∩ L = ∅}

≤ lim sup
n→∞

P
{
cl(Y c

n ) ∩ L = ∅} ≤ P {L ⊆ Y } .

Finally, note that

P
{
L + Bεk ⊆ Y

} ↑ P {L ⊆ Int(Y )} = P {L ⊆ Y } as k → ∞.

Remark 3.4 By Proposition 2 in [7], each regular closed set in the convex ring is
gentle. Since properties (G1) and (G2) defining a gentle set are local, each regular
closed element of the extended convex ring is also gentle.

In general, the family R of regular closed sets is not closed under the intersection.
The following lemmas show that Xn is a regular closed random set for each n ∈ N.

Lemma 3.5 Let A and B be regular closed elements of U . Then

C := {x ∈ Rd : A ∩ (B − x) /∈ R}

is measurable, and its Lebesgue measure is zero.

Proof Assume that A := ∪∞
i=1Li and B := ∪∞

j=1K j , where Li and K j are convex

bodies in Rd for each i, j ∈ N. Since A and B are regular closed, we can also assume
without loss of generality that Li and K j have not-empty interior. Define

Ci j := {x ∈ Rd : Li ∩ (K j − x) �= cl
(
Int(Li ∩ (K j − x))

)}
= {x ∈ Rd : Li ∩ (K j − x) �= ∅, Int(Li ) ∩ Int(K j − x) = ∅},

where the second equality follows from the fact that Li and K j are convex bodies.
The set of possible translations of K j , that intersect Li , is the Minkowski sum

Ǩ j + Li , which is a convex body itself. Since we consider the translations by taking
the opposite of a point in Rd , we have that
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Či j = (Ǩ j + Li ) \ (Int(Ǩ j ) + Int(Li ))

= (Ǩ j + Li ) \ Int(Ǩ j + Li )

= ∂(Ǩ j + Li ).

In general, Int(Ǩ j ) + Int(Li ) ⊆ Int(Ǩ j + Li ), but, in this case, we have equality
because the two sets are convex bodies. Therefore, Vd(Ci j ) = 0, since Ci j is the
boundary of a convex body.

We now show thatC ⊆ ∪∞
i, j=1Ci j . If this is the case, thenC is measurable since the

σ -algebra is complete and any subset of ameasurable set of nullmeasure ismeasurable,
and

Vd(C) ≤ Vd(∪∞
i, j=1Ci j ) ≤

∞∑

i, j=1

Vd(Ci j ) = 0.

We have

C = {x ∈ Rd : ∪∞
i=1Li ∩ (∪∞

j=1K j − x) �= cl
(
Int(∪∞

i=1Li ∩ ∪∞
j=1(K j − x))

)}
= {x ∈ Rd : ∪∞

i, j=1(Li ∩ (K j − x)) � cl
(
Int(∪∞

i=1Li ∩ ∪∞
j=1(K j − x))

)}.

We recall that, given two countable families (Ai )i≥1 and (Bi )i≥1 of subsets of Rd ,
such that Ai ⊇ Bi for each i ∈ N and ∪∞

i=1Ai � ∪∞
i=1Bi , then there exist at least one

i ∈ N such that Ai � Bi . If x ∈ C , then

∪∞
i, j=1(Li ∩ (K j − x)) � cl

(
Int(∪∞

i=1Li ) ∩ Int(∪∞
j=1(K j − x))

)

⊇ ∪∞
i, j=1 cl

(
Int(Li ∩ (K j − x))

)
,

so there are i, j ∈ N such that x ∈ Ci j . Then C ⊆ ∪∞
i, j=1Ci j .

Lemma 3.6 Let μ be an absolutely continuous measure on a regular closed set K ,
which is an element of U . Then Xn is a regular closed random set for each n ∈ N.

Proof. The proof relies on the induction. The step n = 1 is clear. Assume that Xn−1
is a.s. regular closed. Define

An := {(x1, . . . , xn) ∈ (Rd)n : ∩n
i=1(K − xi ) ∈ R},

for n ∈ N. Then P {(ξ1, . . . , ξn−1) ∈ An−1} = 1. We recall the notation �n :=
{ξ1, . . . , ξn}. Since K and Xn−1 are almost surely regular closed elements of U ,
Lemma 3.5 yields that

P {Xn = cl(Int(Xn))} = E
(
P {Xn = cl(Int(Xn))|�n−1}

)

= E
(
1�n−1∈An−1P {Xn = cl(Int(Xn))|�n−1}

)
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= E
(
1�n−1∈An−1P {{ξ : Xn−1 ∩ (K − ξ) = cl(Int(Xn−1 ∩ (K − ξ)))}|�n−1}

)

= 1.

Proof of Theorem 3.1 Assume that K is a regular closed element of U . Let L be a
compact set in Rd . Then

P
{
L ⊆ nγ Xn

} = P
{
n−γ L ⊆ (K − ξi ) for all i = 1, . . . , n

}

= (
1 − P

{
n−γ L � (K − ξ)

} )n

= (
1 − P

{
ξ + n−γ L � K

} )n

= (
1 − P

{
ξ /∈ K � n−γ L

} )n
.

Since K is a regular closed element of U , it is gentle, see Remark 3.4, and L is
compact, Proposition 2.2 yields that

lim
n→∞ nP

{
ξ /∈ K � n−γ L

} = lim
n→∞ nμ(K \ K � n−γ L)

=
∫

N (K )

g(a)
(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u)) < ∞.

Hence,

lim
n→∞ P

{
L ⊆ nγ Xn

} = exp

(
−

∫

N (K )

g(a)
(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u))

)
.

Let Z be the zero cell of the tessellation generated by the point process PK . The
random convex set Z satisfies

P {L ⊆ Z} = P
{
h(L, u)+ ≤ t for all (t, u) ∈ PK

}

= exp(−ν({(t, u) ∈ (0,∞) × Sd−1 : h(L, u)+ > t}))

= exp

(
−

∫

N (K )

g(a)
(h(L, u)+)α+1

α + 1
Cd−1(K , d(a, u))

)
.

It follows that,

lim
n→∞ P

{
L ⊆ nγ Xn

} = P {L ⊆ Z} .

The zero cell Z of the tessellation is a regular closed random set. Indeed, Z is a
convex closed subset of Rd . Moreover, all half-spaces from (5) contain the origin in
their interior almost surely, so that the interior of Z is not empty with probability one.

The convergence of nγ cl(Xc
n) in distribution to cl(Zc) follows by Lemma 3.3,

taking into account that nγ Xn is a regular closed random set by Lemma 3.6 for each
n ∈ N and Z is a regular closed random set.
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Let K be a non-empty regular closed convex set. By Lemma 7.4 in [6] and the
continuity theorem, the sequence of random sets nγ Xn converges in distribution Z as
n → ∞.

It depends on the support of ν̂ in (4), whether the zero cell Z is unbounded or
bounded almost surely. The support of ν̂ is contained in a closed hemisphere of Sd−1

if and only if Z is unbounded almost surely. Indeed, assume that the support of ν̂ is
contained in a closed hemisphere of Sd−1, then the dual cone of the cone generated by
the support of ν̂ is contained in Z a.s. by construction. Assume that Z is unbounded
a.s., it follows from the construction of Z that there is at least a fixed u ∈ Sd−1 such
that no hyperplane generated by PK intersects the cone generated by u. Then the
support of μ̂ must be contained in the dual cone of the cone generated by u, which is
a closed hemisphere of Sd−1.

Assume that K is a convex body whose interior is non-empty, the sequence of
random convex bodies nγ Xn generated by K can converge in distribution to a random
set which is unbounded almost surely.

Example 3.7 Let K be the unit ball centred in the origin and let μ be a probability
measure whose limit of the density function g has support contained in a closed
hemisphere so that the support of ν̂ is also contained in a closed hemisphere. Then
the sequence of random sets nγ Xn converges in distribution to a random set which is
unbounded almost surely.

It is straightforward to deduce the convergence of all power moments of the volume
restricted to a compact set.

Proposition 3.8 Let M be a compact set and let K be a gentle set. Let nγ Xn and Z
be defined as in (3) and (5) respectively. Then, for every m ∈ N,

EVd(nγ Xn ∩ M)m → EVd(Z ∩ M)m as n → ∞.

Proof Following the same steps of proof of Theorem 3.1 and by Proposition 2.2, we
notice that, for x1, . . . , xm ∈ Rd ,

P
{
x1, . . . , xm ∈ nγ Xn

} = P
{{x1, . . . , xm} ⊆ nγ Xn

} →
P {{x1, . . . , xm} ⊆ Z} = P {x1, . . . , xm ∈ Z} ,

as n → ∞, even if K is a gentle set.
Then, by the dominated convergence theorem,

EVd(nγ Xn ∩ M)m =
∫

M
. . .

∫

M
P

{
x1, . . . , xm ∈ nγ Xn

}
dx1 . . . dxm

→
∫

M
. . .

∫

M
P {x1, . . . , xm ∈ Z} dx1 . . . dxm as n → ∞

= EVd(Z ∩ M)m,

since M is bounded.
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In general, it does not hold that if nγ Xn and Z are bounded almost surely for every
n ∈ N, then the sequence EVd(nγ Xn) converges to EVd(Z).

If K is convex, then Xn is also convex. In this case, it is possible to consider its
intrinsic volumes Vj , for j = 0, . . . , d, which are defined by the Steiner formula, see
Theorem 3.10 in [9].

Corollary 3.9 Let K be a convex body with a non-empty interior. Letμ be a probability
measure which satisfies assumptions (M1) and (M2). Let nγ Xn and Z be defined as
in (3) and (5) respectively. Furthermore, assume that the support of ν̂, as defined in
(4), is not contained in a hemisphere of Sd−1. Then, for j = 0, . . . , d,

Vj (n
γ Xn) = nγ j V j (Xn)

d−→ Vj (Z) as n → ∞.

Proof The intrinsic volumes Vj are continuous with respect to the convergence in the
Fell topology restricted to the family of convex bodies, see Remark 3.22 in [9]. The
random closed set Xn is almost surely a convex body with non-empty interior since
K is a convex body with non-empty interior. Since the support of μ̂ is not contained
in a hemisphere of Sd−1, Z is almost surely a convex body with non-empty interior.
Then the convergence in distribution of nγ Xn to Z is assured from the second part of
the statement of Theorem 3.1. By the continuity theorem, for j = 0, . . . , d,

Vj (n
γ Xn) = nγ j V j (Xn)

d−→ Vj (Z) as n → ∞.

Example 3.10 Let K be the union of the two disjoint balls B1(0) and B1(x), with
|x | > 2, and let μ be the uniform distribution on B1(0). The set of sample points
�n = {ξ1, . . . , ξn} is a subset of B1(0) almost surely. The random set nXn is the
disjoint union of the convex random body

n X̃n := n
( ∩n

i=1 (B1(0) − ξi )
)
,

and its translate by nx .
The set n X̃n converges in distribution to the zero cell Z and the set n X̃n + nx

converges in distribution to the empty set as n → ∞.
Then

Vd(nXn) = 2Vd
(
n X̃n

) d−→ 2Vd(Z) as n → ∞.

But nXn also converges in distribution to Z . Hence, Vd(nXn) does not converge in
distribution to Vd(Z) as n → ∞. In particular, from Proposition 5.4 in [5],

EVd(nXn) = 2EVd
(
n X̃n

) → 2EVd(Z) as n → ∞,

so that EVd(nXn) does not converge to EVd(Z) as n → ∞.
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Additional Comments on Theorem 3.1

By Theorem 3.1, it holds that nγ cl(Xc
n)

d−→ cl(Zc) as n → ∞, when K is a regular

closed element of the extended convex ring. While it appears natural that nγXn
d−→ Z,

since Xn and Z are regular closed for each n ∈ N, no proof or counterexample could
be found.

To try to achieve this result, two main approaches were followed.
The first approach is to study the continuity properties of the complement function

in the Fell topology. In particular, checking whether the function

C(·) = cl(·c) : R∩ U 7→ R, K → cl(Kc),

is continuous. Following from Lemma 7.4 in Kabluchko et al. (2025), it holds that the
operation cl(·c) from the family of regular closed convex sets to the family of closure
of their complements is bicontinuous. This does not hold for C(·). Let (cl(F c

n))n∈N be
a sequence of closure of complements of elements of R∩ U in R2 defined as follows:

cl(F c
n) = cl([−1, 1]2 \ (R+ × [− 1

n
,
1

n
])),

which is a box with a decreasing gap. Following Theorem 4.0.1 in the Appendix, we can
see that cl(F c

n) → [−1, 1]2 in the Fell topology, as n→ ∞. Meanwhile Fn = cl(cl(F c
n)
c)

converges to cl(R2 \ [−1, 1]2)∪ {0} × [0, 1], which is not the closure of the complement
of [−1, 1]2.

The second is to use the properties of the finite-dimensional distributions of random
closed sets, given that F is a compact set with a countable base. The family F of closed
sets is compact in the Fell topology, so no tightness conditions are required for the con-
vergence in distribution, see Section 1.7 in Molchanov (2017). It follows that each
sequence Xn of random closed sets has a subsequence which converges in distribution.
For a random closed set X, recall that the functional IX(L) = P {L ⊆ X} is called the
inclusion functional of X. Consider the random function 1x∈X . By Kolmogorov’s ex-
tension theorem, its distribution is determined by its finite-dimensional distributions,
which can be expressed in the following terms P {x1, . . . , xm ∈ X} = IX({x1, . . . , xm})
for x1, . . . , xm ∈ Rd, for more details see Subsection 1.1.7 in Molchanov (2017). More-
over, if X is a regular closed random set, its finite-dimensional distributions uniquely
determine its distribution. The proof of Theorem 3.1 shows that the inclusion func-
tional of nγXn over all the compact sets converges to the inclusion functional of Z,
which implies the convergence of the finite-dimensional distributions. This is not suf-
ficient to show the convergence in distribution since each finite subset of Rd is not a
continuity set for Z, see Definition 1.7.5 in Molchanov (2017).

Open Problem

Let K,L ∈ Kd such that K ⊖ L ̸= ∅. Let ξ1, . . . , ξn be i.i.d points on K with respect
to an absolutely continuous probability measure µ. Define the random convex body

Xn = ∩ni=1(L+ ξi).
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Set
pn = P {Xn ̸= ∅} ,

with p0 = 1, for n ∈ N0. Interestingly, the event {Xn ̸= ∅} is equivalent to the event

{L⊖ conv{ξ1, . . . , ξn} ̸= ∅},

i.e. Xn is non-empty if and only if the convex hull of ξ1, . . . , ξn is contained in a
translation of L.

An open problem is to characterise pn in terms ofK and L. A general formula for pn
appears hard to achieve, except in specific cases. For example, define K = ×d

i=1[0, ai]
and L = ×d

i=1[0, bi] with bi < ai for each i = 1, . . . , d, and let µ be the uniform
distribution on K. Then

pn = Πd
i=1Pi,n

for Pi,n = P {max1≤l≤k≤n |ηl − ηk| ≤ bi}, where η1, . . . , ηn are i.i.d random variables
uniformly distributed on [0, ai].

Proposition 1.0.1. Let τ be defined as follows

τ = min{k ≥ 1 : Xk = ∅}.

Then τ is a stopping time with respect to the natural filtration of the sequence (ξi)i≥1.
τ is finite almost surely and

E(τ) =
∞∑

n=0

pn.

Proof. Since K ⊖L ̸= ∅, it is straightforward to see that τ is a stopping time which is
finite almost surely. Moreover

E(τ) =
∞∑

n=0

P {τ > n} =
∞∑

n=0

P {Xn ̸= ∅} =
∞∑

n=0

pn.
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Chapter 2

Integer-valued Valuations
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Ilienko, A., Molchanov, I., Visonà, T. (2025). Integer-valued valuations. Preprint
arXiv:2502.21144.

The work contained in this Chapter is licensed under a Creative Commons
Attribution-Non-Commercial-No derivative works 2.5 Switzerland license. To see the license, go to
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ or write to Creative Commons, 171

Second Street, Suite 300, San Francisco, California 94105, USA.

37

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/


Integer-valued valuations
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Abstract

We obtain a complete characterization of planar monotone σ-continuous valuations
taking integer values, without assuming invariance under any group of transformations.
We further investigate the consequences of dropping monotonicity or σ-continuity and
give a full classification of line valuations. We also introduce a construction of the
product for valuations of this type.

Keywords: valuation, normal cone, polyconvex set, product of valuations

MSC2020: 52A10

1 Introduction

A valuation φ is an additive map from the family of compact convex subsets of a finite-
dimensional vector space to an abelian semigroup. Additivity means that, for any compact
convex sets K and L such that K ∪ L is also convex, the following identity holds:

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L),

see [8, Chapter 6] for a detailed exposition. Additionally, we will always include the empty
set in the domain of φ and assume that φ(∅) = 0. Most of the literature on valuations
focuses on valuations with values in the set of real or complex numbers or in the family of
compact convex sets equipped with Minkowski addition.

A common assumption in the study of valuations is their invariance under a group of
transformations. In most cases, valuations are assumed to be translation invariant, meaning
that φ(K+x) = φ(K) for all translations x. Alternatively, valuations are also studied under
the assumption of rotation invariance or invariance under the group of all rigid motions.
Another frequently imposed condition is continuity with respect to the Hausdorff metric on
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compact convex sets. This condition is sometimes relaxed to σ-continuity, which requires
that φ(Kn) → φ(K) whenever Kn ↓ K.

Let Kd be the family of convex bodies (i.e., compact convex sets) in Rd. While the
empty set is typically not considered a convex body, we adopt the convention that it is
included in Kd. By Hadwiger’s theorem, any real-valued continuous and invariant under
rigid motions valuation on Kd can be expressed as a weighted sum of the intrinsic volumes
Vi(K), i = 0, . . . , d. Furthermore, MacMullen’s theorem states that the vector space of all
continuous translation-invariant valuations can be decomposed into a direct sum of subspaces
consisting of valuations that are homogeneous of order k = 0, . . . , d. A more refined result
is given by the theorem of Klain and Schneider. It states that if φ is a continuous simple
translation-invariant valuation, then

φ(K) = cVd(K) +

∫

Sd−1

f(u) dSd−1(K, u),

where c ∈ R, f is an odd continuous function, and Sd−1(K, ·) stands for the area measure of
K. Here, simplicity means that φ vanishes on all lower-dimensional sets.

In this paper, we consider valuations taking values in the group Z of integers under
addition. Clearly, the only continuous valuations with values in Z are multiples of the Euler
characteristic

χ(K) =

{
1, K ̸= ∅,
0, K = ∅.

It is straightforward to see that a sum of Euler characteristics like

φ(K) =
N∑

i=1

χ(K ∩ Ci)

for convex bodies C1, . . . , CN defines an integer-valued monotone σ-continuous valuation.
Due to the intersection operation, φ is no longer continuous in the Hausdorff metric. Adding
negative terms to this sum preserves additivity and σ-continuity and may still retain the
monotonicity property, as our examples demonstrate.

Our paper focuses on integer-valued monotone σ-continuous valuations without imposing
any invariance assumptions and provides their complete characterization in dimensions 1 and
2. In the main results, we establish that each integer-valued, monotone, and σ-continuous
valuation in dimensions 1 and 2 can be represented as an at most countable sum of Euler
characteristics with weights ±1. The convex bodies Ci necessarily form a locally finite family,
and the bodies appearing in the negative terms satisfy a strict admissibility property with
respect to the positive ones. In other words, each integer-valued monotone σ-continuous
valuation corresponds to a locally finite integer-valued measure on the family of convex
bodies.

A key step in proving the representation involves the support F of a valuation φ, which
is the set of points x such that φ({x}) ≥ 1. We show that each integer-valued σ-continuous
valuation is uniquely determined by its values on singletons and that the intersection of F
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with any convex body is polyconvex. For the latter, we apply Eggleston’s theorem, which
links polyconvexity to the structure of invisible points. The absence of such a result in
dimensions 3 and higher makes it impossible to generalize our technique beyond the planar
case.

The main result in dimension 2 is proved in Section 3. In Section 4 we characterise
all real-valued valuations on the line. In Section 5, we introduce countably generated
valuations, which generalize the weighted sums of Euler characteristics discussed above.
We then define the multiplication of such valuations by arbitrary σ-continuous ones and
examine the properties of this product. Section 6 contains a collection of open problems and
conjectures.

2 Preliminaries on integer-valued valuations

A set function φ : Kd → R is called monotone if φ(K) ≤ φ(L) whenever K ⊂ L. In
particular, this implies nonnegativity: φ(K) ≥ φ(∅) = 0.

Following [8, p. 338], we call a valuation φ σ-continuous if

φ(K) = lim
n→∞

φ(Kn) (1)

for any sequence (Kn) of convex bodies such that Kn ↓ K. First of all, we note that, for
integer-valued valuations, it suffices to check σ-continuity only at singletons.

Proposition 2.1. Let φ be an integer-valued valuation on Kd such that (1) holds for all
K = {x}, x ∈ Rd. Then φ is σ-continuous.

Proof. Assume that the claim is false, and (1) fails to hold for some Kn ↓ K. Then φ(Kn) ̸=
φ(K) for infinitely many n. For all such n and for any hyperplaneH1 meetingK and dividing
Rd into closed half-spaces H−

1 and H+
1 , we have

φ(K) = φ(K ∩H−
1 ) + φ(K ∩H+

1 )− φ(K ∩H1),

φ(Kn) = φ(Kn ∩H−
1 ) + φ(Kn ∩H+

1 )− φ(Kn ∩H1).

Hence, there is H•
1 ∈ {H−

1 , H
+
1 , H1} such that φ(K ∩H•

1 ) ̸= φ(Kn ∩H•
1 ) for infinitely many

n. Proceeding with this division process and choosing Hm and H•
m at the m-th step in such

a way that K ∩H•
1 ∩ . . . ∩H•

m shrink to a singleton {x} as m→ ∞, we obtain

φ(K ∩H•
1 ∩ . . . ∩H•

m) ̸= φ(Kn ∩H•
1 ∩ . . . ∩H•

m) (2)

for each fixed m and infinitely many n. However, due to the σ-continuity of φ at {x},
both sides of (2) converge to φ({x}) as m,n → ∞ simultaneously. Since both sides are
integer-valued, this contradicts (2).

Denote H−
u,t = {x ∈ Rd : ⟨u, x⟩ ≤ t}. The following criterion is useful for verifying the

monotonicity of a (not necessarily additive) σ-continuous set function.
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Proposition 2.2. A non-negative σ-continuous set function φ on Kd is monotone if and
only if φ(H−

u,t ∩M) is non-decreasing in t for each fixed u ∈ Sd−1 and M ∈ Kd.

Proof. The necessity is clear. To prove sufficiency, let K ⊂ L, choose an x1 ∈ ∂K, and
draw through x1 a supporting hyperplane H1 to K. Denote by L1 the part of L cut off by
H1 and containing K. Using the assumption with u orthogonal to H1 and M = L, we get
φ(L) ≥ φ(L1). Proceeding with this process and choosing xn ∈ ∂K and Hn at each step
in such a way that Ln ↓ K, we obtain, by applying the assumption to M = Ln−1, that
φ(Ln−1) ≥ φ(Ln). Thus, φ(L) ≥ φ(Ln), and, by σ-continuity, φ(L) ≥ φ(K).

Note that, as follows from the proof, this proposition remains valid even if σ-continuity
is replaced by a significantly weaker condition φ(K) ≤ supn≥1 φ(Kn) for any Kn ↓ K.

We now give a somewhat unexpected property of integer-valued σ-continuous valuations,
which plays a fundamental role in what follows.

Proposition 2.3. Let φ and φ′ be integer-valued σ-continuous valuations on Kd that coincide
on singletons: φ({x}) = φ′({x}) for any x ∈ Rd. Then φ = φ′.

Proof. We employ reasoning similar to that used in the proof of Proposition 2.1. Suppose
the claim is false and φ(K) ̸= φ′(K) for some K ∈ Kd. Drawing a hyperplane H that meets
K and denoting the closed half-spaces it cuts off by H− and H+, we have

φ(K ∩H−) + φ(K ∩H+)− φ(K ∩H) = φ(K)

̸= φ′(K) = φ′(K ∩H−) + φ′(K ∩H+)− φ′(K ∩H).

Thus, φ(K1) ̸= φ′(K1) for some K1 ∈ {K ∩ H−, K ∩ H+, K ∩ H}. Proceeding with this
process so that Kn ↓ {x} for some x ∈ Rd, we have φ(Kn) ̸= φ′(Kn) for all n, while, by
σ-continuity,

lim
n→∞

φ(Kn) = φ({x}) = φ′({x}) = lim
n→∞

φ′(Kn).

This is impossible due to the integer-valued property of φ and φ′.

Proposition 2.3 implies that no simple (i.e., vanishing on lower-dimensional sets) integer-
valued σ-continuous valuations exist. Any such valuation must vanish on singletons and is
therefore identically zero.

3 The structure of planar integer-valued valuations

In this section, we describe the structure of planar integer-valued monotone σ-continuous
valuations. Recall that the normal cone to a closed convex set C at a point x ∈ C is defined
by

NC(x) =
{
u ∈ Rd : ⟨u, y − x⟩ ≤ 0 for all y ∈ C

}
(3)
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and adopt the convention NC(x) = ∅ for x /∈ C. In particular,

1NC(x)(0) = 1C(x), (4)

1NC(x)(u) = 1C(x) · 1{C ∩ ◦
H+
u (x) = ∅}, u ̸= 0, (5)

where ◦
H+
u (x) = {y ∈ Rd : ⟨u, y − x⟩ > 0}.

This means that NC(x) is empty for x /∈ C, contains only 0 for x ∈ intC, and is a non-
degenerate closed convex cone for x ∈ ∂C. Also denote N0 = N ∪ {0,∞}.
Definition 3.1.

(i) A family of N ∈ N0 closed convex sets Cn is said to be locally finite if only finitely
many of them hit any fixed K ∈ Kd.

(ii) A locally finite family (C−
n ) of cardinality N

− is said to be admissible with respect to
a locally finite family (C+

n ) of cardinality N
+ if

N−∑

n=1

1N
C−
n
(x)(u) ≤

N+∑

n=1

1N
C+
n
(x)(u) (6)

for all x, u ∈ Rd.

In particular, (6) implies that
⋃
nC

−
n ⊂ ⋃

nC
+
n by letting u = 0 and using (4). Further-

more, (6) yields that
⋃
n ∂C

−
n ⊂ ⋃

n ∂C
+
n . Otherwise, for any x violating this inclusion, the

right-hand side of (6) vanishes for all u ̸= 0, while the left-hand side does not for some u.
The simplest example of an integer-valued monotone σ-continuous valuation is provided

by the Euler characteristic

χ(K) = 1{K ̸= ∅}, K ∈ Kd.

The following theorem provides a complete description of such valuations for d = 2.

Theorem 3.2. A function φ : K2 → Z is an integer-valued monotone σ-continuous valuation
if and only if there exist N+, N− ∈ N0 and two locally finite families of N+ and N− nonempty
closed convex sets C+

n and C−
n with the latter being admissible with respect to the former,

such that, for any K ∈ K2,

φ(K) =
N+∑

n=1

χ
(
K ∩ C+

n

)
−

N−∑

n=1

χ
(
K ∩ C−

n

)
. (7)

The families (C+
n ) and (C−

n ) are not uniquely determined: (C+
n ), (C

−
n ) and (C̃+

n ), (C̃
−
n ) define

the same valuation if and only if

N+∑

n=1

1C+
n
(x)−

N−∑

n=1

1C−
n
(x) =

Ñ+∑

n=1

1C̃+
n
(x)−

Ñ−∑

n=1

1C̃−
n
(x) (8)

for all x ∈ R2.
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The non-uniqueness of the representation (7) is confirmed by the following example.

Example 3.3. Let C1 and C2 be two convex bodies such that C1 ∪ C2 is convex. Then the
valuation φ(K) = χ(K ∩ (C1 ∪ C2)) can be alternatively represented as

φ(K) = χ(K ∩ C1) + χ(K ∩ C2)− χ(K ∩ (C1 ∩ C2)).

Since both sides agree on singletons, this follows from Proposition 2.3.

The following examples demonstrate that not all monotone valuations can be constructed
using only C+

n .

Example 3.4. Let a, b and c be segments positioned as shown in Figure 1(a) with O denoting
their intersection point.

(a) (b)

Figure 1

Consider the valuation

φ(K) = χ(K ∩ a) + χ(K ∩ b) + χ(K ∩ c)− χ(K ∩ {O}), K ∈ K2.

This valuation is integer-valued σ-continuous and monotone. To prove monotonicity, note
that φ(K) = 0 means that K and a∪b∪c are disjoint, and φ(K) = 1 means that K intersects
exactly one of these segments. Thus, for φ(K) ≤ 1 and K ′ ⊂ K, we have φ(K ′) ≤ φ(K). If
φ(K) = 2, the latter inequality holds because φ(K ′) ≤ 2 for all K ′ ∈ K2.

Another way to prove the monotonicity of φ is to verify the admissibility of ({O}) with
respect to (a, b, c). From (3), it easily follows that N{O}(O) = R2, and for any s ∈ {a, b, c},
Ns(O) is a closed half-plane that does not contain int s, with its boundary passing through
O and orthogonal to s. Since the union of these three half-planes is the entire plane, (6)
holds for x = O. At all other points, (6) holds trivially, as its left-hand side vanishes for any
u. Hence, φ is monotone by Theorem 3.2.
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Example 3.5. Now consider the valuation

φ = χ(· ∩ A) + χ(· ∩B) + χ(· ∩ {O})− χ(· ∩ A ∩B),

see Figure 1(b). It is also integer-valued σ-continuous and monotone; both proofs of monotonicity
are similar to those in Example 3.4. Note that without the term χ(·∩O), the valuation would
be non-monotone. Altering the positions of the lines bordering A∩B (while maintaining their
nonempty intersection) does not change the valuation but leads to its different representation.

We will precede the proof of Theorem 3.2 with two auxiliary lemmas. For the first one,
we call a point set P an invisibility set if φ({x}) ≥ 1 for each x ∈ P , and, for any x, y ∈ P ,
there exists a point z ∈ (x, y) such that φ({z}) = 0. We denote the convex hull of a set P by
convP and write cardP for the cardinality of P . Note that the bound on the cardinality of
P in the following result is apparently far from optimal one, but it suffices for our purposes.

Lemma 3.6. Let φ be an integer-valued monotone valuation on K2 and n ∈ N. If there
exists an invisibility set P with cardP ≥ 4n, then φ(convP ) > n

2
.

Proof. We proceed by induction on n. For n = 1, the claim is clear. Assume it holds for
n− 1. Arguing by contradiction, suppose that φ(convP ) ≤ n

2
.

As before, for a line H, we denote by H− and H+ the two closed half-planes into which
H divides R2. Draw H in such a way that card(P ∩H−) ≥ 22n−1 and card(P ∩H+) ≥ 22n−1.
With a slight adjustment, H can always be made to pass through some x, y ∈ P . Mark
z ∈ (x, y) with φ({z}) = 0, and denote by a, b the intersection points of H and ∂ convP .
Connect z by line segments to some u, v ∈ ∂ convP in such a way as to divide P ∩ H−

and P ∩ H+ into four closed convex polygons Q−−, Q−+, Q+−, Q++ with cardQij ≥ 4n−1,
i, j ∈ {−,+}, see Figure 2 for n = 2.

Figure 2

One of the polygons Q−−∪Q+− or Q−+∪Q++ is convex, depending on whether the angle
∠uzv is ≤ π or ≥ π. Assume the former. Since

φ([a, z]) = φ([a, b]) + φ({z})− φ([z, b]) ≤ φ(convP )− φ({y}) ≤ n

2
− 1,
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applying the induction hypothesis to Q−− and Q+− yields the contradiction:

n

2
≥ φ(convP ) ≥ φ(Q−− ∪Q+−)

= φ(Q−−) + φ(Q+−)− φ([a, z]) > 2
n− 1

2
−
(n
2
− 1

)
=
n

2
.

Recall that a set is said to be polyconvex if it is a finite union of (not necessarily disjoint)
convex sets. In particular, the empty set is also considered as polyconvex.

Lemma 3.7. Let φ be an integer-valued monotone σ-continuous valuation defined on closed
convex subsets of some W ∈ K2. Then its support

F = {x ∈ W : φ({x}) ≥ 1}

is polyconvex, and all its convex components are closed.

Before proceeding to the proof, we recall a fact from convex geometry. For m ≥ 2, a
set S ⊂ R2 is called m-convex if, for any m distinct points in S, at least one of the line
segments connecting them lies in S. In particular, 2-convex sets are just convex. According
to Eggleston’s theorem [3], a closed m-convex set is polyconvex. Note that an extensive
literature has been devoted to deriving upper bounds on the number of convex components,
see [2], [6], [7], etc.

Proof of Lemma 3.7. We first note that F is closed. Indeed, if F ∋ xk → x, then, for
some closed convex neighbourhood Vx of x and some k ≥ 1, we have by σ-continuity and
monotonicity that

φ({x}) = φ(Vx) ≥ φ({xk}) ≥ 1.

This implies x ∈ F .
Take any set P of m = 42φ(W ) points from F . At least one of the line segments connecting

them lies entirely in F : otherwise, they would form an invisibility set, and by Lemma 3.6,
we would arrive at the contradiction φ(W ) ≥ φ(convP ) > φ(W ). Hence, by Eggleston’s
theorem, F =

⋃l
i=1Ki for some l ≥ 0 and convex Ki. Taking the closures of both sides of

this equality and recalling that F is closed, we arrive at the desired representation.

Proof of Theorem 3.2.

Sufficiency. The set function φ given by (7) is an integer-valued σ-continuous valuation, since
it is a sum of such valuations and, due to local finiteness, this sum has only finitely many
nonzero terms for each K. The only thing that remains to be proved is its monotonicity.

Taking u = 0 in (6) and using (4), we have

φ({x}) =
N+∑

n=1

1C+
n
(x)−

N−∑

n=1

1C−
n
(x) ≥ 0, x ∈ R2. (9)

We will now show that K ⊂ L implies φ(K) ≤ φ(L). In particular, combined with (9), this
ensures φ(K) ≥ 0 for any K.
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Denote by F0 the family of all sets C+
n and C−

n which appear in (7). Fix K0 = K ⊂ L,
and define F1 to be the family of all sets from F0 that hit L while missing K0. Due to local
finiteness, F1 is finite, and it is possible to find a δ > 0 such that the family of sets from
F0 which hit L + Bδ(0) while missing K0 is exactly F1. Here + stands for the Minkowski
addition. Now replace all sets C±

n from the family F1 by their intersections with L. This
does not affect the values of φ on L and its subsets.

We claim that there exist

1) a point x1 ∈ L on the boundary of some set from F1,

2) a supporting line H1 at x1 to this set that separates its interior from K0,

3) a segment Sε1 on H1 of small length 2ε1 with ε1 < δ/ cardF1 centered at x1, such that
Sε1 hits the same sets from F0 as {x1} and conv(K0 ∪ Sε1) \ Sε1 does not intersect any
set from F1,

see Figure 3, where, for simplicity, the sets C+
n and C−

n , shown in gray, are depicted as
disjoint. The above construction can be carried out by choosing x1 to be the minimizer r of
the function x 7→ infz∈K0 ∥z − x∥ for all points x from any of the sets in the family F1. In
the case of multiple minimizers, any of them can be chosen. Note as well that this minimizer
may belong to several sets, say Ci1 , . . . , Cip , from F1. The r-parallel set K

r
0 is smooth at x,

so there is a unique supporting line which then becomes H1. Since any other set from F1 is
farther away from K0 than r, none of them intersects conv(K0 ∪ Sε1) for a sufficiently small
segment Sε1 on H1 centered at x1. Furthermore, since ∂Kr

0 is smooth at x1, no set from
Ci1 , . . . , Cip intersects conv(K0 ∪ Sε1) \ Sε1 .

Figure 3

Denote K1 = conv(K0 ∪ Sε1) and observe that K0 ⊂ K1 ⊂ L + Bε1(0). Let F2 be the
family of sets from F0 (actually, from F1) that hit L while missing K1. Now repeat the
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above process first with K1,F2, x2, H2, ε2 instead of K0,F1, x1, H1, ε1, and, similarly, at the
subsequent steps. This process terminates at step m ≤ cardF1, when Fm+1 = ∅. Then
Km ⊂ L+ Bε(0) with ε =

∑
εi < δ. Then the sets Km, L, and L+ Bε(0) hit the same sets

from the collection F0. Hence, φ(Km) = φ(L), and, to prove monotonicity, it remains to
show that φ(Ki−1) ≤ φ(Ki) for each i = 1, . . . ,m.

Since conv(Ki−1 ∪ Sεi) \ Sεi does not hit any set from Fi, the increment of φ between
Ki−1 and Ki is determined exclusively by those C+

n and C−
n that hit Sεi but miss the open

half-plane
◦
H+
ui
(xi) bounded by Hi and containing Ki−1. By the choice of εi, such a set hits

Sεi if and only if it contains xi. Hence,

φ(Ki)− φ(Ki−1) =
N+∑

n=1

1C+
n
(xi) · 1{C+

n ∩ ◦
H+
ui
(xi) = ∅}

−
N−∑

n=1

1C−
n
(xi) · 1{C−

n ∩ ◦
H+
ui
(xi) = ∅},

which is non-negative by (5) and (6).

Necessity. We first prove that (7) holds with some locally finite families (C+
n ) and (C−

n ) and
afterwards address the admissibility of (C−

n ) with respect to (C+
n ). To begin with, assume

that φ is supported by a subset of a fixed set W ∈ K2. By monotonicity,

Mφ = sup
x∈W

φ({x}) ≤ φ(W ) <∞.

We will proceed by induction on Mφ.
If Mφ = 0, then, comparing φ with the zero valuation using Proposition 2.3, we get

φ = 0, so that the claim holds with N+ = N− = 0.
Now let Mφ = k, k ≥ 1, and suppose the claim has been established for any valuation

φ′ on W such that Mφ′ ≤ k − 1. By Lemma 3.7, the support of φ is F =
⋃l
i=1Ki for some

l ≥ 1 and closed convex sets K1, . . . , Kl ⊂ W . Denote by φ|L = φ(· ∩L) the restriction of φ
to L ∈ K2, and consider the valuation

φ∗ = χ|F +
l∑

r=1

(−1)r−1
∑

1≤i1<...<ir≤l
(φ− χ)|Ki1

∩...∩Kir
. (10)

The valuations φ and φ∗ coincide on singletons: if x ∈ F belongs to exactly m sets from
K1, . . . , Kl and φ({x}) = p, then

φ∗({x}) = 1 + (p− 1)
m∑

r=1

(−1)r−1

(
m

r

)
= p.

Hence, by Proposition 2.3, φ = φ∗. The valuation φ′ = (φ − χ)|Ki1
∩...∩Kir

is integer-
valued monotone σ-continuous, and Mφ′ ≤ k − 1. Thus, by the induction hypothesis, it
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is of the required form. Substituting the expression (7) for φ′ into (10) yields the required
representation for φ∗ = φ.

Now consider an integer-valued monotone σ-continuous valuation φ on the entire K2. For
i, j ∈ Z, denote

Qi,j = [i, i+ 1]× [j, j + 1], Ei,j = [i, i+ 1]× {j},
E ′
i,j = {i} × [j, j + 1], Vi,j = {i} × {j}.

Note that R2 =
⋃
i,j∈ZQi,j, and double, triple, and quadruple intersections of distinct

components take the form of Ei,j, E
′
i,j, or Vi,j, while the intersections of higher orders are

empty. The restriction of φ to any of these sets is an integer-valued monotone σ-continuous
valuation as well. Hence, by the reasoning above, these restrictions are of the required
form. Applying an analogue of (10) to the countable collection of sets Qi,j with intersections
beyond the fourth order being empty, we obtain the required form of φ.

We now prove that (C−
n ) is admissible with respect to (C+

n ). Since φ({x}) ≥ 0 for any
x, we have

N−∑

n=1

1C−
n
(x) ≤

N+∑

n=1

1C+
n
(x),

which, by (4), implies (6) for u = 0. Fix some x and u ̸= 0, and let

p+ =
N+∑

n=1

1C+
n
(x), p− =

N−∑

n=1

1C−
n
(x),

q+ =
N+∑

n=1

1C+
n
(x) · 1{C+

n ∩ ◦
H+
u (x) = ∅}, q− =

N−∑

n=1

1C−
n
(x) · 1{C−

n ∩ ◦
H+
u (x) = ∅}.

(11)

If (6) is violated for x and u, then by (5), we have q+ − q− < 0. It follows from (11) that

N+∑

n=1

1C+
n
(x) · 1{C+

n ∩ ◦
H+
u (x) ̸= ∅} −

N−∑

n=1

1C−
n
(x) · 1{C−

n ∩ ◦
H+
u (x) ̸= ∅}

= (p+ − q+)− (p− − q−) = (p+ − p−)− (q+ − q−) > (p+ − p−) = φ({x}).
(12)

Due to local finiteness, there are a disk Bε(x) that hits the same C+
n and C−

n as {x} and a

closed convex set K, approximating Bε(x) ∩
◦
H+
u (x) from the inside, that hits the same C+

n

and C−
n as Bε(x) ∩

◦
H+
u (x). Hence, the left-hand side of (12) is φ(K), while the right-hand

side is φ(Bε(x)), which contradicts monotonicity.
To prove the final claim of the theorem, it suffices to note that (8) means the equality

of the corresponding valuations on singletons. By Proposition 2.3, this implies their overall
equality.

Remark 3.8. Note that, in fact, we constructed the representation (7) with components C+
n

and C−
n that are not only closed and convex but also bounded, meaning they belong to

K2. However, using unbounded components is often convenient. For example, for the Euler
characteristic χ, we can simply take N+ = 1, N− = 0 and C+

1 = R2.
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The proof that the admissibility of (C−
n ) with respect to (C+

n ) is both necessary and
sufficient for the monotonicity of φ extends to any dimension along the same lines. In
other words, if a valuation φ on Kd has the form (7) with some locally finite families (C+

n )
and (C−

n ), then it is monotone if and only if (C−
n ) is admissible with respect to (C+

n ) in
the sense of Definition 3.1(ii). However, the necessity of the representation (7) beyond the
two-dimensional setting remains an open question: the most critical part of the proof relies
on an application of Eggleston’s theorem, and little is known about its validity in higher
dimensions.

The σ-continuity condition imposed in Theorem 3.2 is crucial. If it is omitted, the class of
integer-valued monotone valuations expands. This is illustrated by the following examples,
which work in spaces of any dimension.

Example 3.9. If N− = 0, then the right-hand side of (7), written in the form of

φ =
N+∑

n=1

1{· ∩ C+
n ̸= ∅},

defines an integer-valued monotone valuation even if the sets C+
n are not necessarily closed.

Example 3.10. For u ∈ Sd−1, denote by Hu the supporting hyperplane of K with outer
normal u and set Ku = K \ (K ∩Hu). Thus, Ku is K with one exposed face removed. For
N+ ∈ N0, a set {un} ⊂ Sd−1 and a locally finite set {xn} ⊂ Rd, both of cardinality N+,
define

φ(K) =
N+∑

n=1

1{xn ∈ Kun}, K ∈ Kd. (13)

The monotonicity of (13) is clear. To prove additivity, we first note that, for K,L ∈ Kd with
convex union,

(K ∪ L)u = Ku ∪ Lu and (K ∩ L)u = Ku ∩ Lu.
The only two non-trivial inclusions here are the direct one in the first equality and the
reverse one in the second. Let H+

u,x stand for the open half-space with inner normal u
whose boundary contains x. If x ∈ (K ∪ L)u, then x belongs to, say, K, and there exists
y ∈ H+

u,x ∩ (K ∪ L). If y ∈ K, we have x ∈ Ku. If, however, y ∈ L, then, due to convexity
of K ∪ L, there exists z ∈ [x, y] ∩K ∩ L. If z = x, we have x, y ∈ L, and thus x ∈ Lu. If
z ̸= x, then x, z ∈ K, and so x ∈ Ku. This proves the direct inclusion in the first equality.

Now let x ∈ Ku ∩ Lu. Then x ∈ K ∩ L and there exist y1 ∈ H+
u,x ∩ K, y2 ∈ H+

u,x ∩ L.
Again, due to convexity of K ∪ L, there is z ∈ [y1, y2] ∩K ∩ L. Hence, z ∈ H+

u,x ∩ (K ∩ L),
and so x ∈ (K ∩ L)u. This proves the reverse inclusion in the second inequality.

The additivity of each summand in (13) follows from the identity

1{xn ∈ Kun}+ 1{xn ∈ Lun} = 1{xn ∈ Kun ∪ Lun}+ 1{xn ∈ Kun ∩ Lun}
= 1{xn ∈ (K ∪ L)un}+ 1{xn ∈ (K ∩ L)un}.

The general case follows by linearity and, if necessary, by passing to the limit.
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It is interesting to note that, in the one-dimensional case, all discontinuous integer-valued
monotone valuations are fully characterized by a combination of these two examples. This
follows from Theorem 4.1(iv) in the next section. On the other hand, for σ-continuous
valuations with the monotonicity condition dropped, the representation (7) may also fail
even in the one-dimensional setting, as demonstrated by Examples 4.2 and 4.3 in the next
section. This confirms that the Jordan decomposition does not hold for integer-valued σ-
continuous valuations.

4 Valuations on the line

In this section, we will explore the structure of valuations on K1, with a focus on integer-
valued valuations that possess some additional properties such as monotonicity or σ-conti-
nuity. In particular, it will be shown that, in the one-dimensional analogue of Theorem 3.2, it
is always possible to set N− = 0, thus restricting the right-hand side of (7) to positive terms
only. The one-dimensional case is, of course, much simpler than the planar one, which allows
us to provide in the following theorem a complete characterization of all one-dimensional
valuations with certain properties.

We will use the double angle brackets ⟨⟨p, q⟩⟩, −∞ ≤ p ≤ q ≤ ∞, to denote any of the
four types of intervals: closed, semi-open, or open. If p = −∞ or q = ∞, the interval on the
corresponding side can only be open. If p = q, then ⟨⟨p, q⟩⟩ = [p, p] = {p}.
Theorem 4.1. Let φ be an arbitrary valuation on K1 = {[a, b] : a ≤ b}. Then there exist
two unique functions f, g : R → R with f(0) = 0 such that φ([a, b]) = g(b) − f(a) for any
a ≤ b. Conversely, any such pair of functions defines a valuation. Moreover,

(i) φ is integer-valued if and only if f and g are integer-valued;

(ii) φ is monotone if and only if f and g are non-decreasing and f ≤ g;

(iii) φ is σ-continuous if and only if f is left-continuous and g is right-continuous;

(iv) φ is integer-valued and monotone if and only if there exist N1, N2, N3 ∈ N0, a locally
finite family of N1 intervals ⟨⟨pn, qn⟩⟩, and two locally finite sets of N2 (resp., N3) points
rn (resp., sn), such that, for each [a, b] ∈ K1,

φ([a, b]) =

N1∑

n=1

1
{
[a, b] ∩ ⟨⟨pn, qn⟩⟩ ̸= ∅

}

+

N2∑

n=1

1{rn ∈ (a, b]}+
N3∑

n=1

1{sn ∈ [a, b)};
(14)

(v) φ is integer-valued monotone and σ-continuous if and only if there exist N ∈ N0 and
a locally finite family of N closed intervals [pn, qn], such that, for each [a, b] ∈ K1,

φ([a, b]) =
N∑

n=1

1
{
[a, b] ∩ [pn, qn] ̸= ∅

}
.
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Note that, unlike the terms in the last two sums of (14), 1{t ∈ (a, b)} is not a valuation:
additivity is violated, e.g., for K = [t − 1, t] and L = [t, t + 1]. Moreover, (14) can be seen
as a combination of Examples 3.9 and 3.10 in the one-dimensional setting.

Proof of Theorem 4.1. The difference g(b)− f(a) clearly satisfies additivity and so defines a
valuation. Conversely, for the valuation φ, define

f(x) =

{
φ([0, x])− φ({x}), x ≥ 0,

φ({0})− φ([x, 0]), x < 0,

g(x) =

{
φ([0, x]), x ≥ 0,

φ({x}) + φ({0})− φ([x, 0]), x < 0.

(15)

Then f(0) = 0 and, for 0 ≤ a ≤ b, we have by additivity

φ([a, b]) = φ([0, b])− φ([0, a]) + φ({a}) = g(b)− f(a).

The other two cases, a ≤ b < 0 and a < 0 ≤ b, are treated similarly.
In (i), the “only” part follows from (15), while the “if” part from φ([a, b]) = g(b)− f(a).

The same equality easily yields both parts in (ii) and (iii).
The “if” part in (iv) follows from Examples 3.9 and 3.10. We now prove the “only if”

part in (iv). Let φ({c}) = m = minx∈R φ({x}) and φ′ = φ(· − c) − m. Then φ′ is an
integer-valued monotone valuation with φ′({0}) = 0. Hence, for its functions f and g, we
have f(0) = g(0) = 0. It follows from the previous claims that f and g are non-decreasing
step functions with integer jumps, and f ≤ g. To each point x > 0 where g has a left
discontinuity, i.e., g(x) − g(x−) ≥ 1, we associate a pattern of g(x) − g(x−) consecutive
identical entries “[x”. In a similar manner, handle the right discontinuities of g, denoting
their positions as “(x”, x ≥ 0. Then proceed similarly with the left and right discontinuities
of f , using the notation “x)” and “x]”, respectively. Finally, combine these patterns in
increasing order of x into a single, at most countable sequence. In the case of patterns with
the same x, they should be arranged in the following order: [x . . . (x . . . x) . . . x] . . .. The
resulting sequence encodes both f and g on [0,∞).

For example, for the functions

f = 21(0,2) + 31{2} + 51(2,4] + 71(4,6] + 101(6,∞),

g = 31(0,1] + 41(1,2] + 51(2,4) + 61{4} + 71(4,6) + 81{6} + 121(6,∞),

using this algorithm, we obtain the following sequence:

(0 (0 (0 0] 0] (1 (2 2) 2] 2] [4 (4 4] 4] [6 (6 (6 (6 (6 6] 6] 6].

Now, for the first opening bracket, find the nearest closing one on the right, note the resulting
interval, remove the used pair from the sequence and repeat the procedure. If there are not

14

51



enough closing brackets, use ∞) as many times as needed. In the above example, we arrive
at the following set of intervals:

(0, 0], (0, 0], (0, 2), (1, 2], (2, 2], [4, 4], (4, 4], [6, 6], (6, 6], (6, 6], (6,∞), (6,∞).

The resulting intervals can be real, such as the four types of ⟨⟨p, q⟩⟩, or virtual, such as
[r, r) and (s, s]. A virtual interval (t, t) is impossible by construction due to the condition
f ≤ g. Along the same lines, a similar list of real and virtual intervals can be constructed
on (−∞, 0].

Consider the valuation φ′′ constructed according to (14), by incorporating the real inter-
vals ⟨⟨pn, qn⟩⟩ into the terms of the first sum, and the points rn, sn defining the virtual
intervals into the terms of the second and third sums. Calculating by (15) the functions
fn and gn corresponding to all six types of terms in (14), it is easy to see that the step
functions f and g for φ′′ have the same positions and structure of discontinuities as those
for φ′. Hence, these functions coincide, and so φ′′ = φ′. Thus, φ′ takes the form of (14).
Shifting φ′ to the right by c and adding m = m1{[a, b] ∩ (−∞,∞) ̸= ∅}, we arrive at the
required representation for φ.

The “if” part in (v) is clear. The “only if” part follows from (iv) and the fact that all
other terms in (14) are easily seen not to be σ-continuous.

We can now give the examples announced at the end of Section 3, which demonstrate
that, even in the one-dimensional case, the representation (7) may fail if the monotonicity
condition on the valuation is dropped.

Example 4.2. Let

f = 0 and g =
∞∑

n=1

1[ 2n−1
2n

, 2n
2n+1)

.

By Theorem 4.1, φ([a, b]) = g(b) − f(a) = g(b) defines an integer-valued σ-continuous
valuation on K1. Since the pair (fp,q, gp,q) = (0,1[p,q)) corresponds to the valuation

φp,q([a, b]) = 1{b ∈ [p, q)} = 1{[a, b] ∩ [p, q] ̸= ∅} − 1{[a, b] ∩ {q} ≠ ∅},

we arrive at the representation

φ([a, b]) =
∞∑

n=1

1{[a, b] ∩ C+
n ̸= ∅} −

∞∑

n=1

1{[a, b] ∩ C−
n ̸= ∅}

=
∞∑

n=1

χ{[a, b] ∩ C+
n } −

∞∑

n=1

χ{[a, b] ∩ C−
n },

(16)

where C+
n =

[
2n−1
2n

, 2n
2n+1

]
, C−

n =
{

2n
2n+1

}
, and ∞−∞ = 0 by convention. The families (C+

n )
and (C−

n ) are not locally finite.
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Example 4.3. Let f = 0 and g(x) =
⌊

1
1−x

⌋
· 1(−∞,1), x ∈ R. Since g =

∑∞
n=1 1[n−1

n
,1),

the above reasoning leads to (16) with C+
n =

[
n−1
n
, 1
]
, C−

n = {1} for all n, and the same
convention. This time, the families (C+

n ) and (C−
n ) are neither locally finite, nor is the sum

in (8) even well defined.

In both of the above examples, there are no other locally finite families (C̃+
n ) and (C̃−

n ).
Indeed, denoting yk =

k
k+1

, we have by (16) that φ({yk}) ̸= φ({yk+1}) for k ≥ 1. Hence, on

each interval [yk, yk+1], there must be a point from some ∂C̃+
n or ∂C̃−

n . This contradicts the
local finiteness.

5 Multiplication of countably generated valuations

Theorems 3.2 and 4.1(v) lead us to the following general definition.

Definition 5.1. A valuation φ on Kd is called countably generated if there exist N ∈ N0, a
locally finite family of N nonempty closed convex sets Cn, and a set of N real numbers αn
such that

φ(K) =
N∑

n=1

αn χ
(
K ∩ Cn

)
, K ∈ Kd. (17)

While in Definition 5.1 the sets Cn were assumed to be only closed and convex, an
equivalent representation with compact Cn follows from the inclusion-exclusion argument
used in the proof of Theorem 3.2.

The above theorems show that any integer-valued monotone σ-continuous valuation on
K1 or K2 is countably generated with all αn = 1 if d = 1 and αn = ±1 if d = 2.

Any countably generated valuation is clearly σ-continuous. Let Vd stand for the vector
space of all σ-continuous valuations on Kd equipped with the natural operations of addition
and multiplication by real numbers, and denote by Gd its subspace of countably generated
valuations. Note that elements of Gd are completely determined by their values on singletons:
if φ, φ′ ∈ Gd are defined by N, (αn), (Cn) and N

′, (α′
n), (C

′
n), respectively, then φ = φ′ if and

only if
N∑

n=1

αn1Cn =
N ′∑

n=1

α′
n1C′

n
. (18)

This can be proved along the same lines as Proposition 2.3.
For a countably generated valuation, multiplication by a σ-continuous valuation can be

defined as follows. For ψ ∈ Vd and φ ∈ Gd given by (17), define

(φ · ψ)(K) =
N∑

n=1

αnψ(K ∩ Cn), K ∈ Kd. (19)

The terms on the right-hand side are well defined, sinceK∩Cn ∈ Kd for all n. IfN = ∞, only
a finite number of them are non-zero due to the local finiteness of (Cn). Finally, the value of
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the sum on the right-hand side of (19) does not depend on the specific choice of N, (αn), (Cn)
in the representation of φ by (17). Indeed, this sum is the Groemer integral of

∑N
n=1 αn1K∩Cn

with respect to ψ, see [5]. This integral is well defined for ψ ∈ Vd by Theorem 3 in the same
paper. It remains to note that, for another set N ′, (α′

n), (C
′
n) corresponding to φ, we have

N ′∑

n=1

α′
n1K∩C′

n
= 1K ·

N ′∑

n=1

α′
n1C′

n
= 1K ·

N∑

n=1

αn1Cn =
N∑

n=1

αn1K∩Cn

by (18).
In the following proposition, we list the basic properties of this product.

Proposition 5.2. For fixed K ∈ Kd,

(i) (φ, ψ) 7→ (φ · ψ)(K) is a bilinear map from Gd × Vd to R;

(ii) (φ · ψ)(K) = (ψ · φ)(K) on Gd ×Gd;

(iii) (χ · ψ)(K) = ψ(K), where χ is the Euler characteristic.

For fixed φ ∈ Gd and ψ ∈ Vd,

(iv) (φ · ψ)(·) is a σ-continuous valuation, that is, this operation acts from Gd × Vd into
Vd, moreover, (φ · ψ)({x}) = φ({x})ψ({x}) for each x ∈ Rd;

(v) if ψ ∈ Gd, then φ ·ψ ∈ Gd as well, more precisely, if φ is defined by N, (αn), (Cn), and
ψ by N ′, (α′

n), (C
′
n), then φ · ψ is defined by NN ′, (αnαm′ ), (Cn ∩ Cm′ ).

Proof. (i) follows directly from (19). For

φ = 1{· ∩ C ̸= ∅} and ψ = 1{· ∩ C ′ ̸= ∅}, (20)

we have

(φ · ψ)(K) = ψ(K ∩ C) = 1{K ∩ C ∩ C ′ ̸= ∅} = φ(K ∩ C ′) = (ψ · φ)(K). (21)

The general case of (ii) follows by linearity. Statement (iii) directly results from χ = 1{· ∩
Rd ̸= ∅}.

For (iv), if φ = 1{· ∩ C ̸= ∅}, then (φ · ψ)(K) = ψ(K ∩ C), which is a σ-continuous
valuation, then use linearity. The equality in (iv) follows from

(φ · ψ)({x}) =
N∑

n=1

αnψ({x} ∩ Cn) =
N∑

n=1

αn χ({x} ∩ Cn)ψ({x}) = φ({x})ψ({x}).

For (v), under (20), the result follows from (21). In the general case, again use linearity.

17

54



The valuation φ · ψ can be naturally called the product of φ and ψ for the following
reason. The multiplication of smooth valuations introduced by S. Alesker [1] can be, in the
translation-invariant case, succinctly described as follows. Let φ0 stand for the volume, and
define φA = φ0(·+A), A ∈ Kd, with + being the Minkowski addition. The Alesker product
is defined by setting

(φA · φB)(K) = φ0

(
∆(K) + A×B

)
, K ∈ Kd, (22)

where ∆: Rd → Rd × Rd stands for the diagonal embedding x 7→ (x, x). This product then
extends by linearity and continuity to all pairs of smooth translation-invariant valuations.

Except for the multiples of the Euler characteristic, countably generated valuations are
neither smooth nor translation-invariant. Therefore, to use this approach, the basic valuation
φ0 needs to be redefined. Let φ0 = 1{0 ∈ ·}. Then φA = φ0(· + A) = 1{· ∩ (−A) ̸= ∅} for
any (not necessarily bounded) nonempty closed convex set A. It follows from (22) that

(φA · φB)(K) = 1
{
∆(K) ∩

(
(−A)× (−B)

)
̸= ∅

}
= 1{K ∩ (−A) ∩ (−B) ̸= ∅}, K ∈ Kd,

which is consistent with the description of the product given in Proposition 5.2(v). This
is in line with the intersectional approach to the Alesker product given in [4] within the
framework of smooth manifolds.

6 Open problems

In this section, we outline some open problems and conjectures. First, a major issue is
to consider the case of general dimensions. This cannot be done by mimicking the proof
of Theorem 3.2 due to the absence of a result relating m-convexity and polyconvexity in
dimensions 3 and more.

Problem 6.1. Characterize integer-valued monotone σ-continuous valuations in dimensions
3 and higher.

Counterexamples show that it is not possible to obtain meaningful results for valuations
which are not σ-continuous. However, relaxing the monotonicity condition may be interesting
also in dimension 2.

Problem 6.2. Obtain characterization results under weaker variants of the monotonicity
condition, e.g., assuming nonnegativity or local boundedness of variation in the sense of

sup
L⊂K,L∈Kd

φ(L) ≤ CK , K ∈ Kd,

where CK is a constant depending on K.

Problem 6.3. Which property of an integer-valued monotone σ-continuous valuation φ ensu-
res that its representation (7) contains no negative terms? This question can be posed in
general dimension, assuming that the representation (7) holds.
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The representation (7) can be interpreted as follows. Consider an integer-valued signed
measure on the space of convex closed sets in R2 of the form

µ =
N+∑

n=1

δC+
n
−

N−∑

n=1

δC−
n
,

where δC stands for the unit mass at C. By Remark 3.8, we may assume that this measure
is defined only on K2. Then (7) can be written in the following integral form

φ(K) =

∫

K2

χ(K ∩ C)µ(dC), K ∈ K2.

More generally, by (17), any countably generated valuation on Kd can be written in the same
form with µ =

∑N
n=1 αnδCn for real numbers αn.

We call a measure µ on Kd (with its Borel σ-algebra generated by the Hausdorff metric)
locally finite if µ(CK) <∞ for all K ∈ Kd, where CK = {C ∈ Kd : K∩C ̸= ∅}. An arbitrary
locally finite signed measure µ on Kd yields a valuation by letting

φ(K) =

∫

Kd

χ(K ∩ C)µ(dC) =
∫

Kd

1{K ∩ C ̸= ∅}µ(dC) = µ(CK). (23)

Since CKn ↓ CK as Kn ↓ K, this valuation is σ-continuous due to the σ-additivity of the
measure µ.

Problem 6.4. Identify σ-continuous valuations on Kd such that (23) holds for a locally finite
signed measure µ on Kd? Note that, as follows from Example 3.3, such a measure need not
be unique.

The set of valuations admitting an integral representation of the form (23) is far from
being limited to countably generated valuations. For instance, the d-dimensional volume can
be expressed in this form with a measure µ concentrated on singletons

µ({x} : x ∈ B) = λd(B), B ∈ B(Rd),

where λd stands for the d-dimensional Lebesgue measure. Similar representations hold for
intrinsic volumes.

We conjecture that (23) holds for a very broad family of valuations. Examples 4.2 and 4.3
demonstrate that this does not hold for all σ-continuous valuations, since the families (C+

n )
and (C−

n ) in these examples do not satisfy the local finiteness condition and so the measure
µ is not locally finite. This may be explained by the lack of monotonicity in these valuations.

Problem 6.5. Is the family of countably generated valuations dense (in some sense) in the
space of all σ-continuous valuations?

The following problems address changing the range of values and/or the definition domain
of valuations.

Problem 6.6. Characterize valuations taking values in other semigroups, such as (Z/nZ,+),
(Z/nZ,×), (Q,+), etc.

Problem 6.7. Characterize integer-valued valuations on convex functions. It is very likely
that this can be done using our methods.
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Chapter 3

Random Valuations

The content of this chapter is an ongoing project in collaboration with I. Molchanov
and A. Ilienko.
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Random Valuations

Abstract

A random valuation is a stochastic process on the family of convex bodies whose
realisations are a.s. additive. The family of valuations is very rich, and to achieve
meaningful characterisation results, assumptions in the form of independence and
infinite divisibility must be taken into consideration. Under these assumptions and by
using tools from the theories of Lévy processes, stochastic geometry, and valuations,
we are able to build a rich new theory, which is deeply connected with well-known
results of deterministic valuations and integral geometry.

1 Introduction

Most of the literature on valuations focuses on valuations with values in the set of real or
complex numbers or in the family of compact convex sets equipped with Minkowski addition.

Let Kd be the family of convex bodies (i.e., compact convex sets) in Rd. While the empty
set is typically not considered a convex body, we adopt the convention that it is included in
Kd. A valuation φ is an additive map from Kd to an abelian semigroup. Additivity means
that,

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L) (1)

for any compact convex sets K and L such that K ∪ L is also convex, see [9, Chapter 6].
Additionally, we will always assume that φ(∅) = 0.

A random valuation is a stochastic process indexed by the family of convex bodies in Rd

which satisfies the additivity property of valuations. To achieve meaningful characterisation
results, we assume that the distribution is infinitely divisible. Each infinitely divisible
probability distribution corresponds in a natural way to a Lévy process. Set-indexed Lévy
processes were studied in [1] assuming that the values on disjoint sets are independent. The
central question in this work was the existence of such a process indexed by a rather general
family of sets and such that its paths are sufficiently regular. These processes have been
further studied in [4], where the authors use a new definition for increment stationarity of
set-indexed processes to obtain different characterisations of this class. An exciting result
presented in [7] shows the existence of a unique Lévy measure for an infinitely divisible
set-indexed process.
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2 Basic properties of random valuations

Let RKd
denote the space of all functions φ : Kd → R, and let BKd

be its cylindrical σ-algebra.
Let (Ω,F ,P) be a probability space.

Definition 2.1. A random valuation Φ is a stochastic process on Kd whose realisations are
a.s. additive: with probability 1,

Φ(K ∪ L) + Φ(K ∩ L) = Φ(K) + Φ(L)

for all K,L,K ∪L ∈ Kd, and Φ(∅) = 0. The distributions of (Φ(K1), . . . ,Φ(Kn)) for n ≥ 1,
K1, . . . , Kn ∈ Kd are called the finite-dimensional distributions of Φ.

A random valuation Φ is said to be separable if there exist a countable family D ⊂ Kd

and a set Ω0 ⊂ Ω of full probability such that, for each ω ∈ Ω0 and every K ∈ Kd, there
is a sequence (Kn ∈ D, n ≥ 1) with Kn → K in the Hausdorff metric ρH and Φ(Kn) →
Φ(K). The separability property implies separability in probability, obtained by replacing
the a.s. convergence Φ(Kn) → Φ(K) with convergence in probability. Since Kd is separable
in the Hausdorff metric, a random valuation is separable a.s. (resp., in probability) whenever
it is continuous a.s. (respectively, in probability).

These separability conditions are formulated in terms of distributions and therefore do
not imply any continuity property of the realisations of Φ. Recall that there are two basic
notions of continuity for a deterministic valuation φ:

(C1) continuity in the Hausdorff metric;

(C2) σ-continuity, meaning that φ(Kn) → φ(K) whenever Kn ↓ K.

It is clear that (C1) implies (C2). Moreover, if φ is monotone, then σ-continuity is equivalent
to the upper semicontinuity of φ. For a random valuation Φ, these continuity conditions are
understood as applying to almost all realisations of Φ.

Lemma 2.2. If Φ is a separable random valuation, then CΦ = {Φ is continuous} is an
F-measurable event.

Proof. Let C̃Φ denote the event that Φ is locally uniformly continuous on D:

C̃Φ =
⋂

r≥1

⋂

m≥1

⋃

n≥1

⋂

K,L∈D,
K,L⊂Br(0),
dH(K,L)≤n−1

{
|Φ(L)− Φ(K)| ≤ m−1

}
.

Since all intersections and unions are countable, we have C̃Φ ∈ F .
To prove the lemma, it suffices to show that Ω0 ∩ C̃Φ = Ω0 ∩ CΦ. The reverse inclusion

follows from the local compactness ofKd w.r.t. the Hausdorff metric: any continuous function
on Kd is locally uniformly continuous there, and hence also on D. To prove the direct
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inclusion, let Kn → K. By the definition of separability, choose Ki, Ki
n ∈ D with Ki → K

and Ki
n → Kn such that Φ(Ki) → Φ(K) and Φ(Ki

n) → Φ(Kn) for all ω ∈ Ω0. Hence,

|Φ(Kn)− Φ(K)| ≤ |Φ(Kn)− Φ(Ki
n)|+ |Φ(Ki

n)− Φ(Ki)|+ |Φ(Ki)− Φ(K)|,

and, therefore,

lim sup
n→∞

|Φ(Kn)− Φ(K)| ≤ lim sup
n→∞

lim sup
i→∞

|Φ(Ki
n)− Φ(Ki)|,

which vanishes by the local uniform continuity of Φ on D.

If the separability assumption on Φ is replaced by its (joint) measurability with respect
to F ⊗ B(Kd), then the events that many other path properties hold turn out to be F -
measurable as well. As usual, we assume that the underlying probability space is complete.

Lemma 2.3. If Φ is measurable with respect to F ⊗ B(Kd), then the following events are
F-measurable:

{Φ is continuous}, {Φ is σ-continuous}, {Φ is monotone},
{Φ is invariant under a given group of Borel automorphisms of Kd}.

Proof. Since all these events are shown to be measurable in the same way, we consider only
Cσ

Φ = {Φ is σ-continuous}. Define

S =
{
(ω,K, (Ki)i≥1) ∈ Ω×Kd × (Kd)N : Ki ↓ K, lim sup

i→∞
|Φ(Ki)− Φ(K)| > 0

}
.

The F ⊗B(Kd) -measurability of Φ readily implies that S belongs to F ⊗B(Kd)× (B(Kd))N.

Then, Cσ
Φ =

(
projΩ S

)∁
.

By the measurable projection theorem (see, e.g., Theorem 2.12 in [3]), projΩ S is univer-
sally measurable with respect to F and, in particular, belongs to the completion F . Since
the probability space is complete, Cσ

Φ ∈ F , as claimed.

Lemma 2.4. Each σ-continuous random valuation Φ is separable.

Proof. The family of polytopes with vertices inQd is countable and dense inKd; in particular,
each K ∈ Kd can be approximated from above by elements of this family.

The family of all valuations is very rich, and some invariance conditions are necessary to
arrive at meaningful characterisation results.

If almost all realisations of Φ are translation invariant and continuous, then, following
McMullen’s theorem (see, e.g., Theorem 6.3.5 in [9]), Φ can be decomposed into the sum of
homogeneous valuations of orders k = 0, . . . , d, and each summand is a random valuation
itself.
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Proposition 2.5. Assume that Φ is a random valuation whose almost all realisations are
continuous and translation invariant. Then

Φ(K) =
d∑

i=0

Φi(K), (2)

where each Φi is a random valuation whose almost all realisations are continuous, translation
invariant, and homogeneous of degree i.

Proof. By McMullen’s theorem, (2) holds for almost all realisations of Φ. Each Φi is additive
and homogeneous of degree i on Kd. For each K ∈ Kd, we evaluate Φ at rK for r > 0, which
shows that

Φ(rK) =
d∑

i=0

Φi(rK) =
d∑

i=0

riΦi(K).

Thus,
(
Φ0(K), . . . ,Φd(K)

)
is the solution of the above system of linear equations for d + 1

different values of r. This solution is a linear transform of the values Φ(r0K), . . . ,Φ(rdK),
and so each Φi(K) is a random variable for all K ∈ Kd.

For each i = 0, . . . , d and for all finite subsets of Kd as {K1, . . . , Kn}, the distributions of
the random vectors (Φi(K1), . . . ,Φi(Kn)) determine the finite-dimensional distributions of a
stochastic process on Kd, which is additive and thus is a random valuation.

A direct consequence of the previous result and Hadwiger’s theorem (see, e.g., Theorem
6.4.14 in [9]) is the characterisation of random valuations whose almost all realisations are
continuous and invariant under rigid motions.

Corollary 2.6. Assume that Φ is a random valuation whose almost all realisations are
continuous and invariant under rigid motions. Then

Φ(K) =
d∑

i=0

ξiVi(K), (3)

where (ξ0, . . . , ξd) is a random vector, and V0, . . . , Vd stand for the intrinsic volumes.

A rich source of random valuations is provided by random (signed) measures on the
family C of closed convex sets in Rd equipped with the Borel σ-algebra generated by the
Fell topology. A measure µ on C is said to be locally finite if µ is finite on the families
{F ∈ C : F ∩K ̸= ∅} for all compact sets K.

Proposition 2.7. Let Z be a locally finite random signed measure on C. Then

Φ(K) = Z({F ∈ C : K ∩ F ̸= ∅}), K ∈ Kd,

is a σ-continuous random valuation. Furthermore, Φ is a.s. non-negative if Z is a.s. non-
negative. In this case, Φ is necessarily monotone.
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Proof. Since Z is a random measure, Φ(K) is F -measurable for any K ∈ Kd. Therefore, Φ
is a stochastic process on Kd.

Assume that K,L ∈ Kd are such that K ∪ L ∈ Kd. Define

AK = {F ∈ C : K ∩ F ̸= ∅}.

Since Z is a random measure and its support is contained in the family of closed convex sets,
we get that

Φ(K) + Φ(L) = Z(AK) + Z(AL) = Z(AK∪L) + Z(AK∩L) = Φ(K ∪ L) + Φ(K ∩ L) a.s.

Since A∅ = ∅, we have Φ(∅) = Z(∅) = 0 a.s.
Assume that (Kn)n≥1 is a sequence in Kd such that Kn ↓ K. Then AKn ↓ AK as n→ ∞.

Since Z is a random measure,

lim
n→∞

Φ(Kn) = lim
n→∞

Z(AKn) = Z(AK) = Φ(K) a.s.

If Z is non-negative, then Φ is clearly also non-negative and monotone, since AL ⊂ AK for
L ⊂ K.

3 Infinitely divisible valuations

A random valuation Φ is said to be infinitely divisible, if, for each n ≥ 2, Φ is equal in
distribution to the sum Φ1n + . . .+ Φnn, where Φ1n, . . . ,Φnn are n i.i.d. random valuations.
In this case we say that Φ is an ID valuation.

An ID valuation is an infinitely divisible element in the group of all additive functions
Kd → R with addition. Note that the family of all additive functions is a closed subset of
the family of all functions RKd

equipped with the pointwise convergence.
Let Φ be an ID valuation, and let I = {K1. . . . , Km} be a finite collection of sets from

Kd. Then the random vector ΦI = (Φ(K1), . . . ,Φ(Km)) is infinitely divisible. By the Lévy-
Khinchin representation, there exists a unique triplet (ΣI ,ΛI , bI) such that, for each u ∈ Rm,

Eeı⟨u,ΦI⟩ = exp

{
− 1

2
⟨u,ΣIu⟩+ ı⟨u, bI⟩+

∫

Rm\{0}
(eı⟨u,x⟩ − 1− ı⟨u, x⟩1∥x∥≤1ΛI(dx)

}
,

where ΣI is a non-negative definitem×m matrix, bI ∈ Rm, and ΛI is a Lévy measure on Rm.
The uniqueness of the triplet (ΣI ,ΛI , bI) implies that for I ⊂ I ′, the matrix ΣI′ restricted
to I × I equals ΣI , the vector bI′ restricted to I equals bI , and ΛI is the projection of ΛI′ .

The matrix ΣI determines the Gaussian component of Φ. In particular, each ID valuation
is the sum of two independent random valuations, one with only the Gaussian component and
the other determined by bI and ΛI . Assume that Φ does not have the Gaussian component.

With the tools developed in [7], it is possible to patch together the measures ΛI to
come up with a single measure on BKd

which admits them as projections. A measure Λ on
(RKd

,BKd
) is said to be a Lévy measure if the following two conditions hold:
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(L1) for all K ∈ Kd, ∫
min(1, |ψ(K)|2)Λ(dψ) <∞, K ∈ Kd; (4)

(L2) for all A ∈ BKd
, Λ(A) = Λ∗(A \ OKd), where Λ∗ is the inner measure and OKd is the

function ψ : Kd → R which is identically zero.

Condition (L2) is satisfied if there exists a countable set J ⊂ Kd such that

Λ({ψ ∈ RKd

: ψ(K) = 0 for all K ∈ J }) = 0.

Theorem 2.8 and Corollary 2.18 from [7] imply the following result.

Theorem 3.1. Let Φ be a separable in probability ID valuation without Gaussian component.
Then there exists a unique Lévy measure Λ on (RKd

,BKd
) (which is necessarily σ-finite) and

a deterministic valuation φ such that, for any m ≥ 1, finite family {K1, . . . , Km} ⊂ Kd, and
u ∈ Rm,

E exp
{
ı

m∑

j=1

ujΦ(Kj)
}
= exp

{
ı

m∑

j=1

ujφ(Kj)

+

∫

RKd

(
eı

∑m
j=1 ujψ(Kj) − 1− ı

m∑

j=1

ujψ(Kj)1∥(ψ(K1),...,ψ(Km))∥≤1

)
Λ(dψ)

}
.

Remark 3.2. If Φ is an ID valuation which takes values in a subset of RKd
closed with

respect to pointwise convergence, then its Lévy measure is supported by the same subset.
This applies to monotone random valuations or to non-negative ones. Indeed, denote by
µn the distribution of Φ1n such that the sum of its n independent copies equals to Φ in
distribution. By [2, Lemma 4.3.12], Λ is the vague limit of nµn in the family of all non-
negative functions on Kd in the topology of pointwise convergence with the zero function
excluded. If the realisations of Φ almost surely belong to a family V which is closed in the
pointwise convergence, then [6, Lemma 4.1] implies that Λ vanishes on the complement to
V .

The Lévy measure Λ can be seen as the projective limit of ΛI , for each finite subset I of
Kd.

If, instead of (4), we assume that

∫
min(1, |ψ(K)|)Λ(dψ) <∞, K ∈ Kd,

then Λ is the Lévy measure of an ID valuation. If the weaker condition (4) is imposed, then
it is harder to ensure regularity properties of the ID valuation with such Lévy measure.

A random valuation is even in distribution if Φ(K) has the same distribution as Φ(Ǩ),
where Ǩ = {−x : x ∈ K}; it is odd in distribution if Φ(K) has the same distribution as
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−Φ(Ǩ). If the equalities hold almost surely, then Φ is said to be a.s. even (odd). The
uniqueness of the Lévy measure implies that an ID valuation is even in distribution if Λ is
invariant under transformations which maps a valuation ψ to the valuation ψ′(K) = ψ(Ǩ),
and it is a.s. even if Λ is supported by even valuations. Similar statements hold for odd
valuations.

Let N be a completely random measure on the family of valuations with mean Λ. Note
that N

(
{ψ : |ψ(K)| > ε}

)
has Poisson distribution with parameter Λ

(
{ψ : |ψ(K)| > ε}

)
<

∞, and so is almost surely finite. Proposition 2.10 from [7] implies the following.

Proposition 3.3. A separable in probability ID valuation Φ without Gaussian component
has the same distribution as

Φ̃(K) =

∫
ψ(K)

[
N(dψ)− 1|ψ(K)|≤1Λ(dψ)

]
+ φ(K), K ∈ Kd, (5)

where φ(K) is a deterministic valuation and N is the Poisson random measure on the family
of all valuations with intensity Λ.

The integral in (5) is understood as its principal value, that is, as

lim
ε↓0

∫

|ψ(K)|≥ε
ψ(K)

[
N(dψ)− 1|ψ(K)|≤1Λ(dψ)

]
.

The representation given at (5) involves the compensating term arising from integration with
respect to Λ. The compensating term vanishes if Φ is symmetric, that is, Φ has the same
distribution as −Φ.

Remark 3.4. If Φ is non-negative, then it does not have a Gaussian component. Its Lévy
measure is supported by non-negative valuations and satisfies

∫
min(1, ψ(K))Λ(dψ) <∞, K ∈ Kd. (6)

In this case, it is possible to work with the Laplace transform of the finite-dimensional
distributions, which becomes

E exp
{
−

m∑

j=1

ujΦ(Kj)
}
= exp

{
−

m∑

j=1

ujφ(Kj)−
∫

RKd

(
1− e−

∑m
j=1 ujψ(Kj)

)
Λ(dψ)

}

for u ∈ Rm
+ , where φ is a deterministic valuation.

If Φ is non-negative, then the compensating term in (5) also vanishes and then

Φ(K) =

∫
ψ(K)N(dψ) + φ(K), (7)

where the integral exists in the conventional sense. If Φ is also integrable, then

EΦ(K) =

∫
ψ(K)Λ(dψ) + φ(K).
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The constant term φ vanishes if the essential infimum of Φ(K) is zero for all K.
Since the family of σ-continuous valuations is not closed in the topology of pointwise

convergence (unlike the families of monotone or nonnegative valuations), it is not possible to
use the argument from Remark 3.2 to pass the σ-continuity property from Φ to the support
of its Lévy measure.

Lemma 3.5. Assume that Φ is a separable in probability ID valuation, which is monotone.
If Φ is σ-continuous and integrable, then its Lévy measure is supported by σ-continuous
valuations.

Proof. Since the family of all monotone valuations is closed in the topology of pointwise
convergence, the Lévy measure is supported by a subset of all monotone valuations. Thus,

Ee−tΦ(K) = exp
{
− φ(K)−

∫
(1− e−tψ(K))Λ(dψ)

}
.

Assume that Kn ↓ K. Then Φ(Kn) → Φ(K) almost surely. The dominated convergence
theorem yields that the Laplace transforms converge, and so

∫
(e−tψ(K) − e−tψ(Kn))Λ(dψ) → 0 as n→ ∞.

Since ψ is monotone, this yields that

ψ(Kn) ↓ ψ(K) as n→ ∞

for Λ-almost all valuations ψ.

4 Independence of increments

A random valuation Φ is said to have independent increments if, for each n ≥ 3 and a nested
sequence L1 ⊃ · · · ⊃ Ln of convex bodies and Ln+1 = ∅, the random variables Φ(Li) −
Φ(Li+1), i = 1, . . . , n, are jointly independent. For instance, if (Kt)t≥0 is a nested increasing
family of convex bodies, then Φ(Kt), t ≥ 0, is a stochastic process with independent
increments.

Proposition 4.1. An ID valuation has independent increments if and only if Φ(K)−Φ(L)
and Φ(L)− Φ(M) are independent for all convex bodies K ⊃ L ⊃M .

Proof. Necessity is trivial and we prove only sufficiency. Let L1 ⊃ · · · ⊃ Ln ⊃ Ln+1 = ∅ be
a nested collection of sets from Kd. Define ξi = Φ(Li)−Φ(Li+1), i = 1, . . . , n. The imposed
condition yields that the random variables ξi and ξi+1 are independent for each i = 1, . . . , n.
The Lévy measure of the pair (ξi, ξi+1) is supported by the union of the axes in R2, see, e.g.,
Exercise 12.10 from [8]. This Lévy measure is the projection of the Lévy measure of the
whole vector (ξ1, . . . , ξn), and so this latter Lévy measure is also supported by the axes in
Rn, meaning that the components are jointly independent.
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Lemma 4.2. Let Φ be an ID valuation with the Lévy measure Λ, and let a1, . . . , an and
b1, . . . , bm be real numbers and K1, . . . , Kn and L1, . . . , Lm be convex bodies. Then the finite
sums

∑
aiΦ(Ki) and

∑
bjΦ(Lj) are independent if and only if Λ is supported by valuations

ψ such that
∑
aiψ(Ki) = 0 or

∑
bjψ(Lj) = 0.

Proof. The statement follows from the already mentioned Exercise 12.10 from [8].

The next result characterises ID valuations with independent increments. Recall that we
always assume that random valuations are separable in probability.

Theorem 4.3. Let Φ be an ID valuation. Then Φ has independent increments if and only
if its Lévy measure Λ is supported by valuations ψ with two values {0, c} and such that ψ is
monotone increasing if c > 0 and monotone decreasing if c < 0.

Proof. By Proposition 4.1 and Lemma 4.2, Φ has independent increments if and only if Λ is
supported by ψ such that

ψ(K) = ψ(L) or ψ(L) = ψ(M) (8)

for all K,L,M ∈ Kd with M ⊂ L ⊂ K. Let K ∈ Kd with c = ψ(K) ̸= 0. Taking M = ∅
we obtain that ψ(L) = 0 or ψ(L) = ψ(K) = c for all L ⊂ K. If K ⊂ W for W ∈ Kd, then
c = ψ(K) = ψ(W ), since Φ(K) does not vanish. For each L ∈ Kd, take W ∈ Kd such that
(K ∪ L) ⊂W. Then ψ(L) is either zero or ψ(L) = ψ(W ) = c. If c > 0, then ψ(K) ≥ ψ(L)
whenever L ⊂ K. If c < 0, then ψ is decreasing.

In the other direction, if ψ is monotone and takes two values 0 and c, then (8) holds.
For example, if c > 0 and ψ is increasing, then ψ(L) is either 0 or is equal to ψ(K) for
L ⊂ K.

Note that ψ from the support of Λ specified in Theorem 4.3 may be two-valued with
different c’s, also combining positive and negative values. If Φ is monotone, then Φ(K) ≥
Φ(∅) = 0 for all K ∈ Kd and so Φ is nonnegative. For deterministic valuations, the
nonnegativity property does not imply monotonicity, e.g., the valuation

Φ(K) = 1K∩L̸=∅ − 1K∩M ̸=∅

is nonnegative, but not monotone.

Corollary 4.4. If Φ is a nonnegative ID valuation with independent increments, then Φ is
necessarily monotone.

The representation from Theorem 4.3 can be further specified if the random valuation Φ
is nonnegative and σ-continuous. Recall that C denotes the family of all convex closed sets
in Rd.
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Theorem 4.5. Let Φ be a nonnegative σ-continuous ID valuation with independent increments.
Then its Lévy measure Λ is the pushforward of a Borel measure ν on C × R+ by the map

(F, t) 7→ ψ(K) = t1K∩F ̸=∅, K ∈ Kd, (9)

and
Φ(K) =

∑

(Fi,ti)∈η
ti1K∩Fi ̸=∅,

where η is the Poisson process on C×R+ with intensity ν. The measure ν necessarily satisfies

∫
min(1, r)1F∩K ̸=∅ν(d(F, r)) <∞. K ∈ Kd. (10)

Proof. By Theorem 4.3, Λ is supported by valuations ψ with values in {0, c} for some c > 0
(which depends on ψ). By Lemma 3.5, all such ψ are σ-continuous.

It follows from [5] that a nonnegative σ-continuous valuation ψ with two values is uniquely
determined by its support, which is the set F of all points x such that ψ({x}) > 0 and then

ψ(K) = c1F∩K ̸=∅

for some c > 0. This set F is necessarily nonempty, since otherwise ψ would have empty
support and so would be zero. By σ-continuity of ψ we immediately obtain that F is closed.

Let L = conv({x, y}) for any x, y ∈ F , and choose z ∈ L. Since x ∈ L, we have
ψ(L) = ψ(K) or ψ(L) = ψ({x}), so in all cases ψ(L) = ψ(K). By the same argument,
ψ(L1) = ψ(L2) = ψ(K) for the segments with end-points x, z and y, z, respectively. By
additivity,

ψ({z}) = ψ(L1) + ψ(L2)− ψ(L) = ψ(K).

Thus, F is a convex set.
Property (10) follows from (6).

The Poisson process η on C × R+ from Theorem 4.5 defines a random measure Z on C
by letting

Z(A) =
∑

Fi∈A
ti

for all measurable A ⊂ C. In this way the representation in Theorem 4.5 can be formulated
as follows.

Corollary 4.6. Assume that Φ is a nonnegative σ-continuous ID valuation with independent
increments. Then

Φ(K) = Z({F ∈ C : F ∩K ̸= ∅})
for a Poisson random measure Z on C.
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Example 4.7. Let Λ be the pushforward of the product of the Lebesgue measure and the
Dirac measure δ1 under the map (x, r) 7→ (B1(x), r). Furthermore, let φ(K) = 0. Then

Ee−tΦ(K) = exp
{
−
(
1− e−t

)
Vd(K

1)
}
,

where K1 = K +B1(0) is the 1-envelope of K. By a direct check it is easy to see that

Φ(K) = η(K1),

where η is the unit intensity Poisson process on Rd.

We now characterise ID valuation satisfying a weaker independence condition. We say
that a random valuation Φ has convex-independent increments if the random variables
Φ(K) − Φ(K ∩ L) and Φ(L) − Φ(K ∩ L) are independent for all K,L ∈ Kd such that
K ∪ L is convex.

Lemma 4.8. If Φ is a random valuation with independent increments, then Φ has convex-
independent increments.

Proof. By assumption, Φ(K ∪L)−Φ(L) and Φ(L)−Φ(K ∩L) are independent. It remains
to notice that Φ(K ∪L)−Φ(L) is a.s. equal to Φ(K)−Φ(K ∩L) by the additivity property
of Φ.

A function g : Rd → R+ is said to be quasi-concave if {x : g(x) ≥ t} is convex for all
t ∈ R+. For any K ∈ Kd denote

g∨(K) = sup{g(x) : x ∈ K}.

Theorem 4.9. Let Φ be a monotone σ-continuous ID valuation. Then Φ has convex-
independent increments if and only if its Lévy measure Λ is supported by valuations

ψ(K) = g∨(K)

for a family of quasi-concave functions g : Rd → R+.

Proof. By Lemma 4.2, Λ is supported by ψ such that

ψ(K) = ψ(K ∩ L) or ψ(L) = ψ(K ∩ L) (11)

for all K,L ∈ Kd with K ∪L ∈ Kd. Furthermore, all ψ from the support of Λ are monotone
and σ-continuous. Taking into account the monotonicity properties of ψ, we have that

ψ(K ∪ L) = ψ(K) + ψ(L)− ψ(K ∩ L) = max(ψ(K), ψ(L)).

Define g(x) = ψ({x}), x ∈ Rd. Consider any hyperplane H which intersects the relative
interior of K and so splits K into two convex sets K1 and K2 whose union is K. Assume
that g(K1) = g(K). Splitting K1, we obtain a sequence Kn, n ≥ 1, which shrinks to a point
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x and such that ψ(Kn) = ψ(K) for all n. By σ-continuity, g(x) = ψ({x}) = ψ(K), while
the construction shows that g(x) = g∨(K).

Consider the segment [x, y] and a point z in its relative interior. Then

g([x, y]) + g(z) = g∨([x, z]) + g∨([z, y]).

Without loss of generality assume that g([x, y]) = g∨([z, y]). Then g(z) = g∨([x, z]) ≥ g(x).
Thus, g(z) ≥ min(g(x), g(y)), and so g is quasi-concave.

In the other direction, if g is quasi-concave, then (11) holds, so that Φ has convex-
independent increments.

The following result shows that its possible to slightly weaken the independence of
increments property if Φ is assumed to be σ-continuous and monotone.

Proposition 4.10. Assume that Φ is a σ-continuous monotone ID valuation. Then Φ
has independent increments if and only if Φ(K) − Φ(L) and Φ(L) are independent for all
K,L ∈ Kd such that L ⊂ K.

Proof. By Lemma 4.2, Λ is supported by ψ such that

ψ(K) = ψ(L) or ψ(L) = 0

for all K,L ∈ Kd with L ⊂ K. Furthermore, all ψ from the support of Λ are monotone and
σ-continuous.

Since ψ is monotone, for K,L ∈ Kd such that K ∪ L is convex, we have ψ(K ∪ L) =
ψ(K∩L) or ψ(K∩L) = 0. Furthermore, ψ(K∪L) = ψ(K) or ψ(K) = 0. If ψ(K∩L) = 0 and
ψ(K) = 0, then ψ(K) = ψ(K ∩ L). If ψ(K ∩ L) = 0 and ψ(K ∪ L) = ψ(K), then ψ(L) = 0
by additivity and ψ(L) = ψ(K ∩ L). If ψ(K ∪ L) = ψ(K ∩ L), then ψ(K) = ψ(K ∩ L) by
monotonicity.

Thus, (11) holds, so that ψ(K) = g∨(K) for g(x) = ψ({x}), x ∈ Rd. Therefore,

g∨(K) = g∨(L) or g∨(L) = 0.

In particular for L = {x} for x ∈ K we have that g∨(K) = g(x) or g(x) = 0. Thus, g is a
constant or zero on K. Letting K grow yields the conclusion.
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Chapter 4

Adaptive Tests of a Cone Hypothesis

The material presented in this chapter is an ongoing project under the supervision of
Lutz Dümbgen.
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Adaptive Tests of a Cone Hypothesis

Abstract

We propose a new type of test for a cone hypothesis which adapts
based on the number of constraints that are violated. It improves the
classical non-adaptive model when few constraints are not satisfied, in
terms of both simplicity and power. The new tests are shown to have
a valid significance level α in the case of the negative cone. Moreover,
some possible tools to evaluate the elements of the family of adaptive
tests are presented, in terms of risk and power.

1 Introduction

Let X ∼ N(µ, Id), where µ ∈ Rd, and let A be any real-valued m× d matrix.
A well-known testing problem is to test

H : Aµ ≥ 0 against Hc : Aµ ̸≥ 0.

This problem can be translated into another testing setting, whether µ be-
longs to a fixed polyhedral convex cone or not.

LetK be a closed convex cone in Rd. In general, a convex set is polyhedral
if it is a finite intersection of half-spaces. Then K is polyhedral if there exists
a matrix A such that

K = {x ∈ Rd : Ax ≥ 0}.
Let K◦ be the polar cone corresponding to K. That is

K◦ = {x ∈ Rd : x · y ≤ 0, y ∈ K} = cone(−a1, . . . ,−am),

where a1, . . . , am are the columns of AT . The reflection of K with respect to
the origin is −K.
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The testing problem H has been thoroughly studied. In [2], the author
shows that a particular test, referred to as minimax test, minimises a specific
risk function over a certain class of non-randomised tests, which also contains
the likelihood ratio test. In [1], the authors present a new type of tests in
the likelihood ratio case.

2 Associated normal variables restricted to a

convex cone

A bounded measurable function f : Rd → R is called monotone with respect
to a convex cone K if

f(x+ µ) ≥ f(x)

for x ∈ Rd and µ ∈ K. A linear transform T is inclusive for a convex cone
K if T (K) ⊇ K. The following theorem extends the main result presented
in [3].

Theorem 2.1. Let K be a convex cone whose interior is non-empty. Let X
be a multivariate normal with mean vector 0 whose covariance matrix Σ is
inclusive for K. Then f and g are monotone with respect to K and −K◦

respectively if and only if

Cov(f(X), g(X)) ≥ 0.

Proof. The proof follows that of the main theorem in [3]. First, assume that
the functions f and g are continuously differentiable with bounded partial
derivatives. As shown in [3], the following functional

F (λ) =

∫

Rd

ϕ(x)f(x)gλ(x)dx,

where ϕ is the density of X and

gλ(x) =

∫

Rd

ϕλ(λx− y)g(y)dy

for ϕλ(x) = (1− λ2)−d/2ϕ((1− λ2)−1/2x), has derivative

F ′(λ) =
1

λ

∫

Rd

ϕ(x)
(
∇f(x)TΣ∇gλ(x)

)
dx.
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It’s observed that F (λ) is continuous in λ and that F (0) = Ef(X)Eg(X) and
F (1) = E(f(X)g(X)). If F ′(λ) is positive, then the main statement holds.

Notice that for µ ∈ K ∩ Sd−1 and x ∈ Rd, we have that

0 ≤ lim
t↓0

f(x+ tµ)− f(x)

t
= ∇f(x) · µ,

which implies that ∇f(x) ∈ −K◦ for each x ∈ Rd. Similarly, we can see that
∇g(x) ∈ K. Furthermore, since ∂gλ

∂xi
= ∂ϕλ∗g

∂xi
= ϕλ ∗ ∂g

∂xi
for each i = 1, . . . , d,

we also have that ∇gλ(x) ∈ K.
Since Σ is inclusive for K, it follows that Σ∇gλ(x) ∈ K for each x ∈ Rd

and that F ′(λ) is positive. The other steps of the proof remain unchanged.

Remark 2.2. It is easy to see that the previous result is an expansion of the
theorem from [3]. Let K be the positive cone, then K◦ = −K and f and g
are monotone, i.e. they are non-decreasing functions of each of the separate
variables x1, . . . , xd. Furthermore, the matrix Σ is inclusive for K if and only
if σij ≥ 0 for each i, j = 1, . . . , d.

We conjecture that a similar result can be achieved in the case that X is
a standard normal variable restricted to the convex cone.

Conjecture 2.3. Let K◦ be the polar cone of a closed convex cone K in Rd.
Let f : Rd → R+ be a bounded measurable function such that

f(x+ α) ≤ f(x) for x ∈ Rd, α ∈ K, (1)

Let X be a standard random Gaussian variable. Then

Cov(f(X), exp (X · µ)|X ∈ K◦) ≤ 0.

In [2], the class A(K) of acceptable regions is introduced, which are
measurable sets U ⊆ Rd that satisfy U + K = U . In particular, the non-
randomized test 1x ̸∈U for U ∈ Aα(K) is monotone, in the sense that

1x∈U ≤ 1x+µ∈U , µ ∈ K, x ∈ Rd.,

which is equivalent to

1x ̸∈U ≥ 1x+µ ̸∈U , µ ∈ K, x ∈ Rd.

Assuming that the Conjecture 2.3 holds, it is straightforward to achieve
the next statement.
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Corollary 2.4. Let K◦ be the polar cone of a closed convex cone K in Rd.
For each µ ∈ K,

∫
K◦ h(x)e

− 1
2
||x−µ||2dx

∫
K◦ e

− 1
2
||x−µ||2dx

≤
∫
K◦ h(x)e

− 1
2
||x||2dx

∫
K◦ e

− 1
2
||x||2dx

, (2)

for each measurable function h : Rd → {0, 1} such that

h(x+ ν) ≤ h(x) x ∈ Rd, ν ∈ K.

Proof. The inequality (2) is equivalent to

∫

K◦

∫

K◦
h(x)ex·µdMd(x)dMd(y) ≤

∫

K◦

∫

K◦
h(x)ey·µdMd(x)dMd(y),

where Md is the Gaussian measure of mean 0 and covariance matrix Id. This
is equivalent to

Cov(h(X), exp(X · µ)|X ∈ K◦) ≤ 0.

We conclude by noticing that h satisfies the condition (1) of Conjecture 2.3.

The previous statement can be proven without the use of the Conjec-
ture 2.3 in the case that K is the negative cone, i.e.

K = {x ∈ Rd : x1 ≤ 0, . . . , xd ≤ 0},

where its polar cone is the positive cone.

Lemma 2.5. Let K◦ be the polar cone of the negative cone K. Let f : Rd →
R+ be a bounded measurable function such that

f(x+ α) ≤ f(x) for x ∈ Rd, α ∈ K.

Then ∫
K◦ h(x)e

− 1
2
||x−µ||2dx

∫
K◦ e

− 1
2
||x−µ||2dx

≤
∫
K◦ h(x)e

− 1
2
||x||2dx

∫
K◦ e

− 1
2
||x||2dx

,

for each µ ∈ K.
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Proof. The proof works on induction over the dimension d. The case d = 1
follows from Lemma 1 in [1].

Assume that the statement holds up to dimension d− 1. The function f
is a nondecreasing function of the separate variables x1, . . . , xd. For µ ∈ K
and x̄ = (x2, . . . , xd), following from the induction hypothesis, we have

∫
K◦ h(x)e

− 1
2
||x−µ||2dx

∫
K◦ e

− 1
2
||x−µ||2dx

=

∫∞
0
· · ·

∫∞
0

∫∞
0 h(x1,x̄) exp (x1µ1) exp (− 1

2
x21)dx1∫∞

0 exp (x1µ1) exp (− 1
2
x21)dx1

exp (x̄ · µ̄) exp(−1
2
||x̄||2)dx̄

∫∞
0
· · ·

∫∞
0

exp (x̄ · µ̄) exp(−1
2
||x̄||2)dx̄

≤
∫∞
0
· · ·

∫∞
0

∫∞
0 h(x1,x̄) exp (− 1

2
x21)dx1∫∞

0 exp (− 1
2
x21)dx1

exp (x̄ · µ̄) exp(−1
2
||x̄||2)dx̄

∫∞
0
· · ·

∫∞
0

exp (x̄ · µ̄) exp(−1
2
||x̄||2)dx̄

...

≤
∫
K◦ h(x)e

− 1
2
||x||2dx

∫
K◦ e

− 1
2
||x||2dx

.

Remark 2.6. As Lemma 1 in [1], if we assume that h is radial, i.e. h(rv) =
h(r) for v ∈ Sd−1 and r ≥ 0, then we can drop the assumption that x · y ≥ 0
for each x, y ∈ K. We can see that X = RV , where V ∼ Unif(Sd−1 ∩K◦),
R2 ∼ χ2

d, and R and V are independent. Then

Cov(h(X), exp(X · µ)|X ∈ K◦) = Cov(h(RV ), exp(RV · µ)).

By the law of total covariance,

Cov(h(RV ), exp(RV · µ)) = E(Cov(h(RV ), exp(RV · µ)|V ))

+ Cov(E(h(RV )|V ),E(exp(RV · µ)|V )).

The first component is always negative in the case that h is non-decreasing
in R, since exp(RV · µ) is non-increasing in R. If we assume that h depends
only on R, i.e. h(RV ) = h(R), which is equivalent to the likelihood ratio
case, it is easy to see that the second component vanishes. It implies that
the conditional covariance is negative with the two previous assumptions, so
that (2) holds.
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3 Adaptive Tests

We assume that the Conjecture 2.3 holds.
We recall that a monotone (non-adaptive) test for a convex cone K is

a measurable function φ : Rd → {0, 1} such that φ(x) ≥ φ(x + µ) for any
x ∈ Rd and µ ∈ K. In particular, the complement of the support of φ belongs
to A(K).

For each j = 1, . . . , k, define the monotone test φj for Kj on Sj, which
means

φj(x) ≥ φj(x+ ν)

for any x ∈ Sj and ν ∈ Kj.

Definition 3.1. The function φ is called an adaptive test for K generated
by the monotone tests φj if

φ(y) =
k∑

j=1

1{Π(y|K◦)∈ri(Fj)}(y)φj(Pjy), y ∈ Rd. (3)

We work under the assumption that conjecture ... holds.
The distribution of φj(PjY ) under H depends on Pjµ. For each j =

1, . . . , k, we want to work with any test such that a least favourable distri-
bution is obtained at µ = 0, given that Π(Y |K◦) ∈ ri(Fj). Lemma 1 in [1]
establishes that it is always the case for the likelihood ratio test.

We now need some more results to establish that each adaptive test φ is
of level α if each φj is of level α in Sj, for j = 1, . . . , k.

Lemma 3.2. Let K be a polyhedral cone. For µ ∈ K,

Pµ(φj(PjY ) = 1|Π(Y |K◦) ∈ ri(Fj)) ≤
P0(φj(PjY ) = 1|Π(Y |K◦) ∈ ri(Fj)), (4)

where Y ∼ N(0, Id).

Proof. Fix j ∈ {1, . . . , k} and fix µ ∈ Kj. Let Z ∼ N(0, Idj) in Sj. Since
the covariance matrix of Y is the identity, then PjY = Z in distribution. We
want to study the following conditional probability

P(φj(Z + µ) = 1|Z + µ ∈ Fj) =

∫
Fj
φj(x)e

− 1
2
||x−µ||2dx

∫
Fj
e−

1
2
||x−µ||2dx

.

79



By Corollary 2.4, since φj is a monotone test, we have that

P(φj(Z + µ) = 1|Z + µ ∈ F ) ≤ P(φj(Z) = 1|Z ∈ F ).

As shown by Lemma 3.14.2 in [4], the event {Π(Y |K◦) ∈ ri(Fj)} is equiv-
alent to the event {PjY ∈ ri(Fj), (I − Pj)Y ∈ F⊥

j ∩K}.
To conclude, since PjY is independent of the event {(I−Pj)Y ∈ F⊥

j ∩K},
we have

Pµ(φj(PjY ) = 1|Π(Y |K◦) ∈ ri(Fj))

= Pµ(φj(PjY ) = 1|PjY ∈ ri(Fj), (I − Pj)Y ∈ F⊥
j ∩K)

= Pµ(φj(PjY ) = 1|PjY ∈ ri(Fj))

≤ Pµ(φj(PjY − Pjµ) = 1|PjY − Pjµ ∈ ri(Fj))

= P0(φj(PjY ) = 1|Π(Y |K◦) ∈ ri(Fj))

since Pjµ ∈ Kj, Pj(Y − µ) ∼ N(0, Idj), and Pj(Y − µ) = PjY − Pjµ.

The following result shows that each adaptive test φ, such that each φj
is a test of level α in Sj, is also a test of level α.

Theorem 3.3. Let K be a polyhedral cone. If φj is a valid test of level α
for H|Sj

against Hc
|Sj

for each j = 1, . . . , k, then

Pµ(φ(Y ) = 1) ≤ (1− Pµ(Y ∈ K))α ≤ (1− P0(Y ∈ K))α < α. (5)

Proof.

Pµ(φ(Y ) = 1) =
k∑

j=1

Pµ({φj(PjY ) = 1} ∩ {Π(Y |K◦) ∈ ri(Fj)})

=
k∑

j=1

Pµ(φj(PjY ) = 1|Π(Y |K◦) ∈ ri(Fj))Pµ(Π(Y |K◦) ∈ ri(Fj))

≤ α
k∑

j=1

Pµ(Π(Y |K◦) ∈ ri(Fj))

= (1− Pµ(Π(Y |K◦) ∈ ri(F0)))α.

= (1− Pµ(Y ∈ K))α ≤ (1− P0(Y ∈ K))α < α.
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The adaptive test, like the non-adaptive one, does not exhaust the level
α unless µ = 0. When it is possible to calculate the adjustment term Pµ(Y ∈
K), we can adjust the adaptive test and gain more power.

4 Risk

The main goal of the work from [2] is to find non-randomized tests x ∈ Rd 7→
1x ̸∈U of

H : µ ∈ K against Hc : µ ̸∈ K,

with small risk
R(U) = sup

θ∈Kc

Pθ(U),

under the restriction PθU ≥ 1 − α for all θ ∈ Kc for some fixed level
α ∈ (0, 1/2). This risk function is minimised over the class Aα(K) of the
acceptance regions U ⊆ Rd, which are measurable and satisfy U + K = U .
In particular, the test 1x ̸∈U for U ∈ Aα(K) is monotone.

The likelihood ratio test belongs to the family Aα(K). The main result
of [2], Theorem 2.1, shows that, for K with non-empty interior, the risk
function R is minimised by a certain test, which is referred to as minimax
test. The main step of the proof is to see that the risk function R can be
expressed in the following way

R(U) = sup
θ∈∆0

lim
r→∞

Prθ(U), (6)

where ∆0 is a dense subset of ∂K. Furthermore, it is shown that each point
of ∆0 belongs to the relative interior of one of the d− 1-dimensional faces of
K.

We need to establish some results to see how the risk function R behaves
over the family of adaptive tests.

Let φ be an adaptive test as in (3) defined on Rd. Let φj be the test φ|Sj
.

Lemma 4.1. The test φj is an adaptive test on Sj.

Proof. The set Fj = {F0, . . . , Fkj} of faces of the cone Fj is a subset of the
family of faces of K◦. Moreover, each subspace spanned by an element of Fj

is contained in Sj. Then

φj(y) =

kj∑

i=1

1{Π(y|Fj)∈ri(Fi)}(y)φi(Piy), y ∈ Sj,
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since Π(y|Fj) = Π(y|K◦), for y ∈ Sj.

Proposition 4.2. Let ν be an element of ri(Fj), for j = 1, . . . , k−1, and let
µ be in K such that µ ⊥ ν. Assume that dim(Fj) = dj for dj ∈ {1, . . . , d−1}.
Then

lim
t→∞

Etµ+νφ(X) = Eνφ
j(Y ), (7)

where Y ∼ Ndj(0, Idj).

Proof. For j = 1, . . . , k−1, φ can be bounded from above and below. Assume
without loss of generality that F0, . . . , Fkj are the faces of Fj. Set Aj =

∪kji=1Ci, and similarly Bj = ∪ki=kj+1Cj. Notice that Aj and Bj are a partition

of Rd. For x ∈ Rd, define

f(x) = φj(Pj(x))1Aj
(x) ≤ φ(x)

and
g(x) = φj(Pj(x))1Aj

(x) + 1Bj
(x) ≥ φ(x).

Set cd = (2π)−d/2. Let Oj be the linear subspace orthogonal to Sj, notice
that ν ∈ Sj and µ ∈ Oj. Assume without loss of generality that x =
(x1, . . . , xdj , 0, . . . , 0) ∈ Sj and x = (0, . . . , 0, xdj+1, . . . , xd) ∈ Oj. Then

lim
t→∞

Etµ+νf(X) = lim
t→∞

cd

∫

Rd

f(x)e−
1
2
||x−(tµ+ν)||2dx

= lim
t→∞

cd

∫

Rd

φj(Pj(x))1Aj
(x)e−

1
2
||x−ν||2e−

1
2
||x−tµ||2dx

= lim
t→∞

cdjcd−dj

∫

Rdj

∫

Rd−dj

φj(x)1Aj
(x)e−

1
2
||x−ν||2e−

1
2
||x−tµ||2dx

= Eνφ
j(Y ).

Similarly,
lim
t→∞

Etµ+νg(X) = Eνφ
j(Y ),

since
lim
t→∞

Etµ+ν1Bj
(X) = 0.

This yields
lim
t→∞

Etµ+νφ(X) = Eνφ
j(Y ).
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Let Aad
α (K) be the class of the adaptive acceptance regions of level α, so

each element is the closure of the complement of the support of an adaptive
test. The same risk function R is minimised by each element of Aa

α(K). The
identity (6) also holds over Aad

α (K), where θ still belongs to the relative inte-
rior of a full-dimensional facet of K. Following Proposition 4.2, by choosing
ν = 0 and µ = θ, we get that, for each U ∈ Aa

α(K),

R(U) = E0φ
1(Y ),

where Y ∼ N1(0, 1). By the definition of the adaptive tests, φ1 is a test
of level α for K = [0,∞), which is uniquely defined. It follows that each
adaptive acceptance region has the same risk under R.

A possible new risk function would need to be adaptive. Let U ∈ Aad
α (K)

be the closure of the complement of the support of φ. Define

Rj(U) = sup
θ∈Cj

Pθ(U). (8)

Definition 4.3. The adaptive risk function for φ is defined as

Rad(U) = max
j=1,...,k

Rj(U),

where U is the closure of the complement of the support of φ.

By Proposition 4.2 and the identity (6), it follows that

Rj(U) = sup
θ∈ri(Fj)

Eθ(1− φj(Y )),

where Y ∼ N(0, Idj).

5 Adaptive Critical Value and Power of the

Adaptive Test

Let K be a polyhedral cone in Rd. Let φL be the adaptive test whose φj
are the likelihood ratio tests in Sj. The test φL is called adaptive likelihood
ratio test, and it is extensively studied in [1].

The likelihood ratio statistic for testing H : µ ∈ K against all alternatives
for a polyhedral cone K in Rd is

LR(Y ) = min
θ∈K

(Y − θ)T (Y − θ) = ||Π(Y |K◦)||2,
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for Y ∼ N(µ, Id). The distribution of LR(Y ) under H depends on µ, and a
least favourable null distribution is obtained at µ = 0. So

P0(LR(Y ) ≤ c) =
d∑

i=0

wd−i(d,K)P(χ2
i ≤ c).

From Proposition 3.6.1 in [4], wd−i(d,K) is the measure of the set of points
which project onto a facet of K◦ of dimension d − i. Usually, we test H
againstHc by comparing LR(Y ) to the (1−α)-quantile of the least favourable
distribution. In [1], the authors compare the likelihood ratio test against the
adaptive critical value

q(K,Y, α) =
k∑

j=1

1Π(Y |K◦)∈ri(Fj)qrj ,

where qrj is the (1−α) quantile of a χ2 random variable of with rj = rank(Pj)
degrees of freedom.

The power of the nonadaptive test is

Pµ(LR(Y ) > c(α)),

where c(α) is the (1−α)-quantile of the mixture of χ2 distributions. For the
adaptive test, the power is

Pµ(LR(Y ) > q(K,Y, α)).

Let rL(α) be the largest integer such that c(α) ≥ qrL(α). Assume the faces
F1, . . . , Fk are ordered such that the ranks rj of the projection matrices Pj
onto the linear spaces Sj are ordered, i.e. r1 ≤ · · · ≤ rk. From Proposition 3
in [1], it follows that for each j = 1, . . . , k such that j ≤ rL(α), if the event
{Π(Y |K◦) ∈ ri(Fj)} occurs, then the nonrejection of the adaptive test implies
the nonrejection of the non adaptive test. For j > rL(α), the converse occurs.

The same type of study can be done for other adaptive test φ, by defining
an adaptive critical value qφ(K,Y, α) and rφ(α).

In most cases, it is difficult to do explicit calculations because of the shape
of the cone K and the type of test φ. We now study one simple case where
it is straightforward to calculate an explicit rφ(α) for a fixed α and K.

Let K be the negative cone in Rd, i.e.

K = {x ∈ Rd, x1 ≤ 0, . . . , xd ≤ 0}.
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Let φM be the minimax adaptive test, which means that each φj is the
minimax test in each Sj. Assume X ∼ N(µ, Id). In the non-adaptive case,
we reject if max(X) ≥ c, for c > 0. Then

α = P0(max(X) ≥ c) = 1− P(X < c) = 1− Φ(c)d,

so
c = Φ−1

(
(1− α)1/d

)
.

In the adaptive case, we reject if max(X) ≥ cd(X), where

d(X) = |{i = 0, . . . , d : Xi > 0}|,

i.e. d(X) is the number of constraints which are not satisfied. Then, for
k ∈ {1, . . . , d} and Z ∼ Nk(0, Ik),

α = P(max(X) ≥ ck|d(X) = k)

= P(max(Z) ≥ ck|Z ≥ 0)

= 1− (2Φ(ck)− 1)k,

so

ck = Φ−1
(1 + (1− α)1/k

2

)
.

It follows that, for γ = (1 − α), rφM
(α) is the largest k = 0, . . . , d such

that

γ1/d ≥ 1 + γ1/k

2
,

which is equivalent to

1− 2(γ1/d) + (γ1/d)d/k ≤ 0.

For α ↓ 0, we have

1− 2(γ1/d) + (γ1/d)d/k = 1− 2 exp(log(1− α)/d) + exp(log(1− α)/k)

= 2α/d− α/k +O(α2),

so for α very small, then rφM
(α) ≃ d/2.

In Section 6 of [1], the authors show by computational calculations that,
for the adaptive likelihood ratio test φL and α = 0.05,

rL(α) ≃ ⌊d/2⌋+ 1,

85



for d large enough.
Recall the matrix A defining the testing problem and the cone K. Each

row a of A defines a constraint for x ∈ Rd such that either a · x ≥ 0 or
a · x < 0. If x doesn’t satisfy i constrains, for i = 1, . . . , d− 1, then Π(x|K◦)
projects on a face Fj of K

◦ of dimension less or equal to d − i. For a fixed
cone K, a fixed α ∈ (0, 1), and an adaptive test φ, when it is possible to
define and calculate rφ(α), we call rφ(α) the power of φ. We would say that
φ is the most powerful test for K if it maximises rφ(α) over the family of all
the adaptive tests. Equivalently, the most powerful test φ for K would be
the one for which the highest number of constraints can be broken, and to
be still more powerful than its non-adaptive counterpart.
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[2] Lutz Dümbgen. “Minimax tests for convex cones”. In: Ann. Inst. Statist.
Math. 47.1 (1995), pp. 155–165. issn: 0020-3157,1572-9052. doi: 10.
1007/BF00773419. url: https://doi.org/10.1007/BF00773419.

[3] Loren D. Pitt. “Positively Correlated Normal Variables are Associated”.
In: The Annals of Probability 10.2 (1982), pp. 496–499. issn: 00911798,
2168894X. url: http://www.jstor.org/stable/2243445 (visited on
10/15/2025).

[4] M. J. Silvapulle and P. K. Sen. Constrained Statistical Inference. Wiley,
2001.

86



Appendix

The Fell Topology and Random Closed Sets

All the definitions and results presented in this section are taken from Chapter 1 in
Molchanov (2017) and Chapter 12 in Schneider and Weil (2008).

Let E be a locally compact space with a countable base. Let F ,G and C be the
family of closed, open, and compact subsets of E respectively. For A,A1, . . . , Ak ⊆ E
and k ∈ N0, one defines the missing and hitting families

FA := {F ∈ F : F ∩ A = ∅} FA := {F ∈ F : F ∩ A ̸= ∅} (1)

and
FA
A1,...,Ak

:= FA ∩ FA1 ∩ · · · ∩ FAk
.

The base of the Fell topology is generated by the set system

{FC ∈ F : C ∈ C} ∪ {FG ∈ F : G ∈ G},
which is ∩-stable. A well-known fact is that F is a compact space with a countable
base. The following theorem presents a useful characterisation of the convergence in
the Fell topology. By ’almost all j ∈ N’ we mean all j ∈ N with at most finitely many
exceptions.

Theorem 4.0.1. Let (Fj)j∈N be a sequence in F , and let F be in F . Then the following
statements are equivalent:

(a) Fj → F in the Fell topology, as j → ∞.

(b) The following conditions hold:

(b1) If G ∈ G and G ∩ F ̸= ∅, then G ∩ Fj ̸= ∅ for almost all j ∈ N.
(b2) If C ∈ C and C ∩ F = ∅, then C ∩ Fj = ∅ for almost all j ∈ N.

By using this result, one can see that the operation of union is continuous in the
Fell topology, meanwhile the intersection is not.

A random closed set X in E is a measurable map from a probability space to the
space F of closed sets in E endowed with the Borel σ-algebra generated by the Fell
topology.

It is known that the distribution of a random closed set is uniquely determined by
its capacity functional defined as

TX(L) = P {X ∩ L ̸= ∅} ,
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where L runs through the family of compact sets in E. A sequence of random closed

sets (Xn)n≥1 in E converges in distribution to a random closed set X, i.e. Xn
d−→ X, if

the corresponding probability measures on F weakly converge. This is the case if and
only if

TXn(L) → TX(L) as n→ ∞
for each compact set L such that TX(L) = TX(Int(L)).

Valuations

All the definitions and results presented in this section are taken from Chapter 6 in
Schneider (2014).

Let K d be the family of convex bodies (i.e., compact convex sets) in Rd, with the
convention that the empty set is included in K d. A valuation φ : K d → R is a real
additive map. Additivity means that, for any compact convex sets K and L such that
K ∪ L is also convex, the following identity holds:

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L),

with the condition that φ(∅) = 0. The family K d is equipped with the Hausdorff
metric, which is

ρH(K,L) = inf{ϵ > 0 : K +Bε ⊇ L,L+Bε ⊇ K}, K, L ∈ K d.

A valuation φ is translation invariant if φ(K+x) = φ(K) for each x ∈ Rd, rotation
invariant if φ(gK) = φ(K) for each rotation g, and invariant under rigid motions if
it is translation and rotation invariant. A valuation is said to be continuous if it is
with respect to the Hausdorff metric. Moreover, it is homogeneous of degree α ≥ 0
if φ(λK) = λαφ(K) for each λ ≥ 0. For translation invariant continuous valuations,
only a few degrees of homogeneity are possible.

Theorem 4.0.2 (McMullen). Let φ be a translation invariant, continuous valuation
on K d. Then, there are continuous, translation invariant valuations φ0, . . . , φd on K d

such that φi is homogeneous of degree i, i = 0, . . . , d, and

φ(λK) =
d∑

i=0

λiφi(K),

for each λ ≥ 0 and K ∈ K d.

By adding the assumption of invariance under rotations, we get the following state-
ment.

Theorem 4.0.3 (Hadwiger). Let φ be a continuous valuation on K d which is invariant
under rigid motions. Then, there are constants c0, . . . , cd such that

φ(K) =
d∑

i=0

ciVi(K),

where Vi is the i-th intrinsic volume.
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