
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
8
5
0

|

d
o
w
n
l
o
a
d
e
d
:

1
0
.
4
.
2
0
2
4

Empirically-Grounded
Construction of Bug Prediction

and Detection Tools

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Haidar Osman
von Syrien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Institut für Informatik

Empirically-Grounded
Construction of Bug Prediction

and Detection Tools

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Haidar Osman
von Syrien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät
angenommen.

Bern, 11.12.2017 Der Dekan:

Prof. Dr. Gilberto Colangelo

This dissertation can be downloaded from scg.unibe.ch.

Copyright c© 2017 by Haidar Osman

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 Switzer-
land license. To see the license go to
http://creativecommons.org/licenses/by-sa/2.5/ch/

Attribution–ShareAlike

scg.unibe.ch
http://creativecommons.org/licenses/by-sa/2.5/ch/

Acknowledgments

Doing a PhD at SCG has been a beautiful journey full of rewards. The doctorate title
is only one of them.

First and foremost, I would like to express my deep gratitude to Oscar. From aca-
demic guidance and scientific discussions to personal counselling and after-coffee
fun puzzles, Oscar has offered everything that made my PhD journey that enjoyable.
And on the personal level, being away from home, I always felt safe knowing that
Oscar is there. Oscar ... thank you.

I would like to thank Martin Pinzger for accepting to serve on the PhD committee
and for his valuable feedback on this thesis. I also thank Paolo Favaro for chairing
the PhD defence.

A big thank you to the SCG family. I am grateful for each and everyone of you.
You really made SCG feel like home. I highly value our discussions, fights, papers,
darts, swims, barbecues, beers, and coffees. They will always be great memories.
I thank Mircea for his lifting spirit and valuable input, Andrei for being a support-
ive friend, Boris for the great debates and fun, Andrea for the manly gossip, Jan
for your delightfully-different character, Nevena for breaking the masculine atmo-
sphere, Claudio for the heated discussions, Manuel for the fruitful collaborations,
Yuriy for the context switching, Oli for the deep technical knowledge, Mohammad
for bringing a different academic style, and Leo for the fun experiments. You guys
are wonderful people and I’m honoured to have served my term with you.

I am grateful to Iris for never saying no when I needed help. I am also indebted
to my students: Manuel, Andi, Ensar, Jakob, Sebastien, Simon, Aliya, Cedric, and
Mathias. Your hard work has contributed a lot to my PhD.

I would like to thank my friends and brothers back home for their support. Yazan,
Montajab, Alaa, Sami, Mothanna, Monther, Safwan, and Rami ... thank you for
always being there for me. My in-laws Ahmad and Samira, thank you for your
prayers and warm wishes.

i

ii

I dedicate this work to my family ...

to my parents Mohsen and Ghada, and to my sister Riham for their
unconditional love and support, for believing in me no matter what,
and for setting me on the right path throughout my life ...

to my kids Rima and Yosef ... You are the joy of my life ... Your faces
bring light to my darkest nights ... I hope you grow up to be proud of
your father one day ...

and finally, to Dima ... my friend, my love, my all. A wise man once
said, “Give me one constant and I can build the universe”. You are
that one constant in my life. Without you nothing is possible, nothing
makes sense, and nothing matters. Dima ... this is to you.

Abstract

There is an increasing demand on high-quality software as software bugs have an
economic impact not only on software projects, but also on national economies in
general. Software quality is achieved via the main quality assurance activities of
testing and code reviewing. However, these activities are expensive, thus they need
to be carried out efficiently.

Auxiliary software quality tools such as bug detection and bug prediction tools
help developers focus their testing and reviewing activities on the parts of software
that more likely contain bugs. However, these tools are far from adoption as main-
stream development tools. Previous research points to their inability to adapt to the
peculiarities of projects and their high rate of false positives as the main obstacles of
their adoption.

We propose empirically-grounded analysis to improve the adaptability and ef-
ficiency of bug detection and prediction tools. For a bug detector to be efficient,
it needs to detect bugs that are conspicuous, frequent, and specific to a software
project. We empirically show that the null-related bugs fulfill these criteria and are
worth building detectors for. We analyze the null dereferencing problem and find
that its root cause lies in methods that return null. We propose an empirical solution
to this problem that depends on the wisdom of the crowd. For each API method,
we extract the nullability measure that expresses how often the return value of this
method is checked against null in the ecosystem of the API. We use nullability to
annotate API methods with nullness annotation and warn developers about missing
and excessive null checks.

For a bug predictor to be efficient, it needs to be optimized as both a machine
learning model and a software quality tool. We empirically show how feature selec-
tion and hyperparameter optimizations improve prediction accuracy. Then we opti-
mize bug prediction to locate the maximum number of bugs in the minimum amount
of code by finding the most cost-effective combination of bug prediction configura-
tions, i.e., dependent variables, machine learning model, and response variable. We
show that using both source code and change metrics as dependent variables, apply-
ing feature selection on them, then using an optimized Random Forest to predict the
number of bugs results in the most cost-effective bug predictor.

Throughout this thesis, we show how empirically-grounded analysis helps us
achieve efficient bug prediction and detection tools and adapt them to the character-
istics of each software project.

iii

iv

Contents

1 Introduction 1
1.1 Auxiliary Software Quality Assurance Tools 1
1.2 Our Approach: Empirically-Grounded Analysis 3

1.2.1 Adaptability . 3
1.2.2 Efficiency . 4
1.2.3 EGA to the Rescue . 4

1.3 Contributions in Detail . 5
1.3.1 Building an Efficient Null Dereference

Detection Approach . 5
1.3.2 Efficient Bug Prediction 6

1.4 Outline . 8

2 State of the Art 9
2.1 Detection Tools for Frequent Bug Categories 9

2.1.1 Discovering Prevalent Bugs 9
2.1.2 Method Invocation Bug Detection 10
2.1.3 Null Dereferencing Bug Detection 11

2.2 Bug Prediction Tools . 12
2.2.1 Software Metrics . 13
2.2.2 Feature Selection in Bug Prediction 14
2.2.3 Prediction Models . 16
2.2.4 Hyperparameter Optimization 16
2.2.5 Experimental Setup . 17
2.2.6 Cost-Aware Evaluation . 17

2.3 Conclusions . 18

3 Discovering the Missing Null Check Bug Pattern 21
3.1 Bug-Fix Analysis Procedure . 22

3.1.1 Building The Software Corpora 22
3.1.2 Analyzing Source Code and Change History 22
3.1.3 Manual Inspection . 24

3.2 Results . 24
3.2.1 The Types of Fixed Files 25
3.2.2 Fix Size . 26
3.2.3 The Most Frequent Bug-Fix Patterns 28

v

vi CONTENTS

3.3 Bug-Fix Patterns . 28
3.3.1 Missing Null Checks . 29
3.3.2 Wrong Name/Value . 29
3.3.3 Missing Invocation . 30
3.3.4 Undue Invocation . 31
3.3.5 Other Patterns . 31

3.4 Implications . 31
3.5 Threats to Validity . 32
3.6 Conclusions . 32

4 Null Usage Analysis 35
4.1 Motivation . 36
4.2 Null Check Analysis . 37

4.2.1 Experimental Corpus . 37
4.2.2 Terminology . 37
4.2.3 Analysis . 38
4.2.4 Manual Inspection . 39

4.3 Results . 40
4.3.1 How Common Are Null Checks? 40
4.3.2 What Entities Do Developers Check For Null? 40
4.3.3 Where Does Null Come From? 44
4.3.4 What Does Null Mean? . 45

4.4 Discussion . 46
4.5 Threats to Validity . 47
4.6 Conclusions . 48

5 An Empirical Solution to the Missing Null Check Bug 49
5.1 Harvesting the Wisdom of the Crowd 49

5.1.1 Motivation . 49
5.1.2 The Nullability Measure 50

5.2 Bytecode Collection and Analysis 51
5.2.1 Bytecode Collection . 51
5.2.2 Static Analysis . 52
5.2.3 Validation . 53

5.3 Nullability Distribution . 55
5.3.1 Documentation . 57
5.3.2 Disagreement between Internal and External Usage 59

5.4 Manual Inspection . 60
5.5 Transferring Nullability to the IDE 61

5.5.1 Evaluation . 64
5.6 Threats To Validity . 64

5.6.1 Construct Validity . 64
5.6.2 Generalizability . 65

5.7 Conclusions . 65

CONTENTS vii

6 Optimizing Bug Prediction by Applying
Feature Selection 67
6.1 Technical Background . 68
6.2 Motivation . 71

6.2.1 Regression vs Classification 71
6.2.2 Dimensionality Reduction 71
6.2.3 Filters vs Wrappers . 71

6.3 Empirical Study . 72
6.3.1 Experimental Setup . 73
6.3.2 Results . 74
6.3.3 Threats to Validity . 81

6.4 Conclusions . 81

7 Optimizing Bug Prediction by Tuning Hyperparameters 83
7.1 Empirical Study . 84

7.1.1 Machine Learning Algorithms 84
7.1.2 Parameter Tuning . 84
7.1.3 Procedure . 85
7.1.4 Results . 87
7.1.5 Threats to Validity . 88

7.2 Conclusions and Future Work . 88

8 Empirically-Grounded Optimization of Bug Prediction as a Quality Tool 91
8.1 Empirical Setup . 92

8.1.1 Evaluation Scheme . 92
8.1.2 Dataset . 94
8.1.3 Response Variable . 94
8.1.4 Machine Learning Models 95
8.1.5 Hyperparameter Optimization 95
8.1.6 Feature Selection . 97
8.1.7 Data Pre-Processing . 97

8.2 Results . 100
8.3 Threats to Validity . 103
8.4 Conclusions . 104

9 Conclusions and Future Work 105
9.1 Contributions of This Dissertation 105
9.2 Future Research Directions . 106

9.2.1 Ad-hoc Nullability Analysis 106
9.2.2 Integrated Bug Prediction 106
9.2.3 Putting AQSA Tools to Work 107
9.2.4 Quality Tool Evolution . 107

viii CONTENTS

A Collecting API Clients with KOWALSKI 129
A.1 API Client Collection . 130
A.2 Implementation . 131

A.2.1 Tasks . 132
A.2.2 Jobs . 132
A.2.3 Collector . 132

A.3 Experiment . 133
A.4 Limitations and Threats to Validity 134
A.5 Related Work . 136
A.6 Conclusions . 136

B Analyzing Commits With BICO 137
B.1 Introduction . 137
B.2 BiCo . 139

B.2.1 Linking Commits with Issues 139
B.2.2 Under the Hood . 140
B.2.3 Big Commit Detection . 140
B.2.4 User Interface . 141

B.3 Evaluation . 141
B.3.1 Big Commit Analysis . 141
B.3.2 Software Metrics Extraction Use Case 141
B.3.3 Test Repository . 142
B.3.4 Current Limitations and Future Work 142

B.4 Related Work . 143
B.5 Conclusions . 144

1
Introduction

Delivering high-quality software requires extensive software quality assurance (SQA)
activities. These activities ensure that the product conforms to requirements and
satisfies user needs. The problem is that SQA activities such as testing and code
reviewing are expensive. With finite budgets of software projects, a thorough and
complete verification and validation is impossible, especially with large, complex,
and rapidly evolving modern software systems. To linearly increase the confidence
that all bugs have been found, SQA costs grow exponentially [118, 133]. This expo-
nential relationship between cost and quality rapidly exhausts project budgets.

The manual nature of reviewing code and writing tests is the main source of
SQA costs. This fact drives researchers to devise techniques and develop tools that
help developers focus their reviewing and testing activities to catch more bugs with
fewer resources. Bug prediction and bug detection are the main tools to achieve this
task. Bug prediction hints approximate locations of bugs in software entities (e.g.,
packages, classes, methods) using a machine learning approach. Bug detection on
the other hand hints exact location of bugs (i.e., line of code) using source code
analysis. When designed carefully, bug prediction and detection tools can largely
reduce the costs of software testing and code reviewing and help developers catch
bugs before they slip into production.

1.1 Auxiliary Software Quality Assurance Tools

Software bugs vary in their costs and severity. However, it is an established fact in
software engineering that bugs that are detected early are cheaper to fix. When bugs
slip into advanced phases in development, they become more expensive to fix. Even

1

2 1.1. AUXILIARY SOFTWARE QUALITY ASSURANCE TOOLS

worse, bugs that make it to production can have disastrous consequences on the repu-
tation, cost, and overall success of software projects. Therefore, developers perform
software testing and code reviewing to detect and fix bugs as early as possible and
prevent them from reaching production code. Software testing is an important and
widely adopted technique to detect bugs. Modern development methodologies (e.g.,
Scrum [173, 182], XP [14], TDD [7]) acknowledge software testing as an essen-
tial activity for improving software quality. Code reviewing is also widely adopted
and has several benefits such as bug detection, code improvement, and knowledge
transfer. It has been shown that code reviewing, in its traditional rigorous form (i.e.,
code inspection [51]) and in its modern lightweight tool-oriented form [10], is very
effective in spotting defects in the code [2, 127].

However software testing and code reviewing are costly activities. Software test-
ing has a non-negligible overhead on the development time (approx. 30%) [210] and
code reviewing is by design a resource-intensive activity because it highly involves
people, making it the longest phase of code integration. On average, a developer
spends six hours a week on reviewing other developers’ code [24]. These immense
costs, along with the limited resources available for software projects, call for tools
that help developers optimize testing and reviewing so that more bugs are caught
with fewer resources. We call these tools: auxiliary software quality assurance
(ASQA) tools to emphasize the fact that they only complement the main methods of
testing and reviewing and do not replace them. There are two types of tools available
for this task: bug prediction and bug detection tools.

A bug predictor is an intelligent system (model) trained on data derived from
software (metrics) to make a prediction about bugs (e.g., number of bugs, bug prone-
ness) in software entities (e.g., packages, classes, files, methods). Bug prediction
helps developers focus their quality assurance efforts on the parts of the system that
are more likely to contain bugs. Bug prediction takes advantage of the fact that bugs
are not evenly distributed across the system but they rather tend to cluster [185]. The
distribution of bugs follows the Pareto principle, i.e., 80% of the bugs are located in
20% of the files [160].

The other family of ASQA tools is Bug detection tools (e.g., FindBugs [85],
PMD [166], and Jlint [91]). These tools employ static analysis to detect generic
problems in the source code and provide developers with explanations of these prob-
lems and how to fix them. These tools harvest prior knowledge of generic bugs re-
lated to the target language built-in libraries (e.g., objects of the class java.io.
InputStream should be closed some time after being initiated and used). Other
static analysis approaches focus on one family of problems, such as the null derefer-
encing bug [117, 120, 147].

Both bug prediction and bug detection tools have the potential to cut down testing
and code reviewing costs, but they are still not widely adopted in industry. The main
reasons lie in their low efficiency and adaptability. Efficiency means that these tools
should help software engineers focus their SQA efforts on those software parts that
most likely contain bugs. Adaptability means that these tools should be custom-
tailored to the peculiarities of individual projects because generic tools produce sub-
optimal results. Researchers seem to ignore these two concepts in their approaches.

CHAPTER 1. INTRODUCTION 3

For instance, current bug prediction research focuses on optimizing bug prediction
from the machine learning perspective and seems to overlook optimizing it as a
software quality tool, that is, it must be optimized to locate the maximum number
of bugs in the minimum amount of code [129, 130, 6]. Also it has been shown that
although developers acknowledge the potential benefits of static analysis tools, they
are still hesitant to adopt them because of the high number of false positives and poor
adaptability [92]. In summary, bug prediction and detection tools need to be tuned
for the projects they operate on and optimized as quality tools that help developers
in their software quality assurance activities.

Problem Statement
The low efficiency and adaptability in current auxiliary software quality
assurance tools prevent them from meeting their goal of enhancing the
main SQA activities of testing and code reviewing.

1.2 Our Approach: Empirically-Grounded Analysis
We propose empirically-grounded analysis (EGA) as an approach to solve the ef-
ficiency and adaptability issues in ASQA tools. In general, EGA is the method of
establishing relevant research questions using empirical case studies, action research
methods, or interviews. In this thesis, we use EGA to build efficient and adaptable
bug prediction and detection tools. We formally state our thesis as follows:

Thesis Statement
In order for bug prediction and detection tools to be useful in prac-
tice, they need to be adapted to the different characteristics of differ-
ent projects, and optimized to locate the maximum number of bugs in
the minimum amount of analyzed code. Empirically-Grounded Analy-
sis (EGA) provides a unified framework for achieving these goals.

1.2.1 Adaptability
There are many factors that vary among software projects: domain, development
method, architecture, libraries and frameworks, etc.. These factors play an important
role in how, where, and what bugs are introduced in the software. Bug prediction
and detection tools should be adapted to the particularity of each software system.

In current bug detection tools, a bug rule in one project may not apply in another.
The generic design of these rules limits their adaptability to the project-specific
bugs. Although current bug detection tools are indeed useful, more customized and
empirically-grounded methods are needed to detect bugs that are specific to the soft-
ware at hand.

Bug predictors adapt to software systems using software-derived metrics and
then predict any type of bugs within these systems. However, a bug predictor has
more design choices than just the used metrics. More particularly designing a bug
predictor means making decisions regarding the used metrics, the machine learning

4 1.2. OUR APPROACH: EMPIRICALLY-GROUNDED ANALYSIS

model, and the response variable. These bug prediction configuration options also
need to be adapted. A bug prediction configuration that works with one system may
not work with another because the aforementioned differentiating factors affect the
correlation between different metrics and software defects. In fact, it has been shown
previously that a model trained on data from a specific project does not perform well
on another project and so called cross-project defect prediction rarely works [216].

1.2.2 Efficiency

Auxiliary software quality assurance tools exist to help developers carry out the main
SQA activities more efficiently. This necessitates that these tools be efficient, that
is, they be optimized to help developers locate as many bugs as possible with as few
resources as possible.

The generic bug rules and the nature of static analysis of bug detection tools lead
to the false positives problem. Indeed, the high number of false positives in these
tools hinders their adoption in software projects [21, 92]. Besides, it has been shown
that domain-specific rules are better than generic rules at bug prevention [84]. Al-
though bug detection rules are efficient in the sense that they pinpoint exact locations
of potential bugs, false positives decrease this efficiency as developers need to exam-
ine many locations that do not actually contain bugs. Another problem is that static
analysis itself is expensive. Rules that rarely apply or do not represent serious bugs
slow down bug detection tools and decrease their appeal to developers. Bug rules
should be carefully designed to catch bugs with conspicuous severity and adequate
recurrence.

The main promise of bug prediction is to help software engineers focus their
testing and reviewing efforts on those software parts that most likely contain bugs.
Under this promise, for a bug predictor to be useful in practice, it must be efficient,
that is, it must be optimized to locate the maximum number of bugs in the minimum
amount of code [129, 130, 6]. A bug predictor should be tuned and evaluated to
fulfill this promise.

1.2.3 EGA to the Rescue

In this thesis, we demonstrate how to improve the adaptability and efficiency of
ASQA tools by using EGA in requirement collection, problem analysis, and tool
crafting.

Requirement collection in this context means the discovery of bugs that are
worth building tools for. There are various kinds of software bugs but not all of
them can be detected or are recurrent enough to automate their detection. We pro-
pose a scalable analysis of bug-fix code changes to discover bug patterns and their
prevalence. We empirically show that missing null checks and missing method calls
are the most frequently present categories of bugs in Java projects.

Problem analysis is a vital phase in the development of efficient ASQA tools. It
leads to a better understanding of why the problem exists and how it can be possibly

CHAPTER 1. INTRODUCTION 5

solved. We analyze the missing null check problem by carrying out an empirically-
grounded analysis of null checks themselves. We track null checks in a plethora of
Java systems to understand where null values come from and how they are used. We
discover that methods that return null are the main source of null-related bugs. This
means that a tool that helps developers decide whether to check the returned value
of a method against null or not, would cover a wide spectrum of the missing null
check problem.

Tool crafting is concerned with the approaches and design decisions behind
ASQA tools. Bug prediction and detection tools should be adapted to the particu-
larity of each software system and should be optimized as quality tools. We demon-
strate how EGA helps us build such tools in two use cases: an empirical approach
for detecting missing null checks and an empirically-grounded optimization of bug
prediction.

1.3 Contributions in Detail

1.3.1 Building an Efficient Null Dereference
Detection Approach

We empirically discover and analyze the null dereferencing problem, and then design
an empirical approach to detect it in source code.

First, we set out to discover recurrent bug patterns in Java systems. Analyzing
bug-fix code changes in 810 open-source Java projects reveals many interesting bug
patterns, of which missing null check is the most common [158]. This means that
designing a tool for detecting missing null checks would benefit Java developers in
most projects.

Second, to be able to propose a solution, we analyze the null checks in 810
open-source Java systems to understand when and why developers use null [157].
We find that 35% of all conditional statements contain null checks. A deeper inves-
tigation reveals many questionable practices with respect to using null. Uninitialized
member variables and passing null as a method parameter are recurrent reasons for
introducing null checks, but returning null in methods is by far the most dominant
as 71% of the values checked for null are returned from method calls.

Third, we employ the acquired knowledge to devise an empirical approach that
detects missing null checks on API method calls. We build a prototype Eclipse
plugin that detects, with certain confidence, missing null checks in clients of Apache
Lucene. We collect and analyze a large number of Lucene clients and track how they
handle the returned values from Lucene API calls, i.e., how often they are checked
to be non-null. The results are then aggregated per library method in a nullability
measure defined as follows:

Nullability(Method) =
CheckedDereferences(Method)

Dereferences(Method)

Method nullness denotes whether a method might return null (nullable) or never re-
turns null (non-null). The nullability measure serves as a proxy for method nullness

6 1.3. CONTRIBUTIONS IN DETAIL

and expresses the confidence that a particular method returns null. A nullability of
zero indicates that a method never returns null, i.e., the returned value is always
dereferenced in clients without a null check. The method’s nullness is therefore
non-null. Conversely, a non-zero nullability indicates that a method is nullable. The
Eclipse IDE plugin then adds nullability information, along with confidence and
support, to the method’s documentation. It also adds a nullness annotation to the
return type of the method to assist null analysis tools. Developers can customize
the nullness warnings by setting confidence and support thresholds in the plugin
settings. The nullability documentation enables developers to make more informed
decisions about adding or removing a null check. The null analysis points developers
at locations where a null check is unnecessary or potentially missing.

This empirical bug detection approach is designed with efficiency in mind from
requirement collection (i.e., bug pattern discovery) and problem analysis, till output
design (i.e., weighted warnings) and control (i.e., warning thresholds). Also this ap-
proach fulfils the adaptability requirement by reporting bugs that are directly related
to the external APIs used in a software project and allowing developers to configure
the plugin so that it only reports warnings with certain confidence and support.

This research is published in two full technical research papers [157, 112], a tool
demo paper [113], and an early research achievement paper [158].

1.3.2 Efficient Bug Prediction
Bug prediction employs machine learning to predict bugs in software entities. Thus
building an efficient bug predictor requires optimizations from two point of views:
machine learning and software quality.

Optimizing Bug Prediction as a Machine Learning Model

The quality of the trained model is directly dependent on the quality of the features.
Irrelevant and correlated features degrade the performance of prediction models.
The more features are fed into a model, the more complex the model is, and the less
accurate the model becomes. Feature selection is the process of selecting relevant
features for model training. Feature selection reduces model complexity by elimi-
nating noise and correlated features to reduce the generalization error. There are two
main types of feature selection: filters and wrappers. Filters apply statistical mea-
sures to give scores to features independently of the machine learning model. The
features are then ranked based on the score and a subset of the most relevant features
is selected based on a certain score threshold. Example filters are Correlation-based
Feature Selection (CFS), Information Gain (InfoGain), and Principal Component
Analysis (PCA). Wrappers choose a feature subset that gives the best performance
of a certain machine learning model. They are called wrappers because the learning
algorithm is wrapped into the selection procedure. They try different subsets and
choose the one that gives the best accuracy of the machine learning model at hand.
We empirically investigate the impact of these techniques on building bug predic-
tors. We show that for some machine learning models, it is essential to perform

CHAPTER 1. INTRODUCTION 7

feature selection while other models are robust against noise and redundancy in the
feature set. In general, wrapper methods consistently reduce prediction error while
filters are unstable and can actually hinder the accuracy of a bug predictor. We also
observe that the same feature selection method chooses different features in different
projects. This means that applying feature selection not only improves the accuracy
of a bug predictor, but also adapt it to the software project at hand. These findings
are submitted as a journal article and have passed the first reviewing phase [155].

Machine learning models often have what is known as Hyperparameters. These
are the parameters that need to be set before training the model and affect its learn-
ing, construction, and evaluation. Example hyperparameters are the complexity pa-
rameter in support vector machines and the number of neurons in the hidden layer
in a feed-forward neural network. Different machine learning problems have dif-
ferent characteristics and the hyperparameters need to be tuned accordingly. Using
a standard hill-climbing grid search algorithm, we investigate the effect of hyper-
parameter optimization of a model on its prediction accuracy. Our results reveal
that tuning model hyperparameters has a statistically significant positive effect on
the prediction accuracy of the models, suggesting that adapting hyperparameters to
each software project is a necessary step in building an accurate bug predictor for
that project. These results are published in a workshop paper [154].

Optimizing Bug Prediction as a Software Quality Tool

Hyperparameter optimization and feature selection are optimization techniques from
the machine learning field. However a bug predictor is more than just a machine
learning model. It should help developers steer maintenance activities towards the
buggy parts of a software, by locating the highest number of bugs in the least amount
of code. Hence, it should be optimized for that purpose.

There are many design aspects to a bug predictor, each of which has several op-
tions, i.e., software metrics, machine learning model, and response variable. These
design decisions should be judiciously made because an improper choice in any
of them might lead to wrong, misleading, or even useless results. We argue that
bug prediction configurations are intertwined and thus need to be evaluated in their
entirety, in contrast to the common practice in the field where each aspect is inves-
tigated in isolation. We evaluate 60 different bug prediction configuration combi-
nations on five open source Java projects. Interestingly, source code metrics alone
are not cost-effective whereas change metrics extracted from the evolution of the
system can be used alone to build efficient bug predictors. We find out that the
best choices for building a cost-effective bug predictor are change metrics mixed
with source code metrics as independent variables, Random Forest as the machine
learning model, and the number of bugs as the response variable. Combining these
configuration options results in the most efficient bug predictor across all subject
systems. This study is published in full technical research paper [156].

8 1.4. OUTLINE

1.4 Outline
This dissertation is organized as follows:

In chapter 2, we discuss the state of the art in the domains directly related to this
thesis. We focus on bug prediction approaches, frequent bug patterns studies, and
solutions to the most frequent bugs.

In chapter 3, we present our approach to mining bug-fix code changes and extract-
ing patterns from them. In this chapter, we show how missing null checks are the
most frequent and are worth building detection tools for.

In chapter 4, we analyze null usage in Java systems to learn about the root causes
of null-related problems. Our findings in this chapter helps designing an efficient
detection tool for the missing null bug pattern.

In chapter 5, we design and implement an empirical solution to the missing null
check problem.

In chapter 6, we investigate the effect of applying filter and wrapper feature selec-
tion on bug prediction.

In chapter 7, we investigate the effect of hyperparameter optimization on predicting
the number of bugs.

In chapter 8, we optimize bug prediction as a software quality tool by empirically
choosing the most efficient bug prediction configurations.

In chapter 9, we conclude this thesis and outline future research directions.

In Appendix A, we present KOWALSKI, a tool that can collect clients of a specific
Java API to facilitate API usage mining research.

In Appendix B, we present BICO, a tool that can be used to analyze the evolution
of software projects. It links source code repositories with issue trackers, detects
multi-purpose and miscategorized commits, and calculates source code and change
metrics of projects.

2
State of the Art

There is a large body of research in the domain of auxiliary software quality assur-
ance tools such as bug prediction and detection tools. In this chapter, we survey
the state of the art only in the fields that are directly related to our work. First, we
review existing approaches in exploring bug-fix code changes to discover frequent
bug categories. Second, we survey existing solutions for detecting the two most
prevalent bug categories: method invocation bugs and missing null check bugs. This
is directly related to our missing null check detector as it combines API mining and
static analysis approaches behind the scenes. Finally, we review the related work
in bug prediction and how researchers approached its optimization, highlighting the
research gaps in the field.

2.1 Detection Tools for Frequent Bug Categories
In this section, we focus on the empirically-grounded analysis of bug patterns and
their detection approaches. We demonstrate how prevalent categories of software
bugs are found, what they are, and how each category is approached by researchers.

2.1.1 Discovering Prevalent Bugs

Different bug pattern extraction mechanisms lead to different patterns and statistics,
shedding light on different aspects of software maintenance activities. We share the
same vision as the other studies on bug and fix patterns: automating bug detection
and fixing as much as possible. This is an interesting topic and has caught the atten-
tion of researchers especially in the past decade.

9

10 2.1. DETECTION TOOLS FOR FREQUENT BUG CATEGORIES

Thung et al. [195] manually inspected 500 randomly-selected bugs in three ma-
chine learning and NLP processing systems (Apache Mahout, Apache Lucene, and
Apache OpenNLP) and grouped them into high-level categories. They found out
that bugs related to algorithms have the highest proportion (22.6%). The results are
expected due to the algorithm-intensive nature of the domain, and thus, cannot be
generalized. Pan et al. [161] manually detected some change patterns that corre-
spond to fixes and automatically extracted instances of these patterns from seven
open source projects. Martinez et al. [125] came up with a new approach for speci-
fying and finding change patterns based on AST differencing. They evaluated their
approach by counting 18 change patterns from 14 project repositories. Both studies
report that changes to method invocations and if-statements are by far the most
prevalent bug-fix patterns. However, due to their use of different pattern extraction
mechanisms from ours, neither study reported the missing null-check bug-fix pat-
tern. In our study on bug-fix patterns, presented in chapter 3, we not only confirm
previous findings that bugs related to method invocations (i.e., missing and undue
invocations) are highly recurrent, but also reveal that missing null checks are the
most common bugs in Java systems.

2.1.2 Method Invocation Bug Detection
Studies that detect bugs by mining API usage are based on the assumption that the
majority is right. In our missing null check detector, we follow the same intuition
that bugs are anomalies in the source code [48, 114, 207]. However, none of the
previous studies considers the nullness of API methods as a usage pattern.

Li and Zhou [114] propose a tool called PR-Miner that uses frequent itemset
mining to find program element correlations. These correlations are called program-
ming rules and their violations are treated as possible bugs. PR-Miner considers
method bodies as transactions, and program elements (e.g., method calls) that appear
in it as items. Livshits and Zimmermann developed a tool called DynaMine [116]
that also employs frequent itemset mining to find recurrent patterns of application-
specific method invocations. Based on the bias from these patterns, DynaMine can
suggest bug locations for bugs related to method invocation. Dynamine is differ-
ent from PR-Miner in that it considers code revisions as transactions and inserted
method calls as items. Monperrus et al. adapt the same approach to work specifi-
cally on object-oriented programs [142]. They propose a missing method call detec-
tion system (DMMC) that operates based on the idea of code deviants in type usage.
Type usage is “a list of method calls on a variable of a given type occurring in the
body of a particular calling method” [142]. DMMC collects type usage of all types
in a system then detects deviant type usages as missing call bugs. Nguyen et al.
use graph-based mining to detect object usage patterns in the form of code skeletons
[148]. Then they use graph-based anomaly detection to find locations in the source
code that deviate from the patterns, and possibly represent bugs. On the other hand,
Wang et al. apply n-gram language modeling to detect correlations between pro-
gram elements [205]. Wang et al. implement their approach in a tool called Bugram
and demonstrate that it detects bugs that cannot be detected by other state-of-the-art

CHAPTER 2. STATE OF THE ART 11

tools that use frequent itemset mining.
These previous approaches are applicable only on large systems in order for them

to extract rules and detect violations. This is because rules are extracted from the
same systems they are applied on. Other approaches take advantage of the ecosys-
tems around libraries and frameworks to extract rules. Zhang et al. developed a tool
called Precise that suggests method parameters of a certain API by mining its usage
in other client projects [214]. Zhong et al. [215] mine open source repositories to
extract sequential rules of API method calls. Salman [178] and Saied [177] use sim-
ilar techniques to extract multi-level frequent usage API patterns from API clients.
These patterns can be used for API element recommendation, automatic documen-
tation, and bug detection. In our null check detector, we also mine the ecosystems
of library clients to be able to deduce method nullness rules that can be applied to
other clients of any size.

2.1.3 Null Dereferencing Bug Detection
Null-related bugs attract the attention of many researchers and practitioners who
propose various approaches to detect them as early as possible.

The first family of solutions incorporates data flow analysis techniques to detect
possible null values. Some techniques are simple, fast, and intra-procedural [29, 43,
48, 56, 86] and some are more complex, thorough, and inter-procedural [117, 196,
147, 46]. For instance, Hovemeyer and Pugh [86] perform intra-procedural forward
data flow analysis to approximate the static single assignment (SSA) for the values of
variables. Then they analyze the dereferences as a backward data flow over the SSA
approximation. This algorithm replaces the previous basic forward data flow analy-
sis approach [87] and is now part of FindBugs [85], a static analysis tool for finding
bugs in Java. However, their solution cannot find possible null dereferences of val-
ues returned from method calls, as this is beyond the scope of an intra-procedural
analysis, unless the analysis is aware that the called method is annotated as returning
null. These situations arise often, as values returned from methods are the most of-
ten checked for null category [157]. The nullness annotations our plugin generates
are exactly those missing links between a project and its dependencies that allow an
intra-procedural null analysis to reason about values received by calling a method.

Nanda and Sinha present XYLEM, an unsound inter-procedural, path- and context-
sensitive data-flow analysis [147]. Contrary to Tomb et. al. [196] they report a 16
times higher number of possible null dereferences in inter-procedural than in intra-
procedural analysis, yet they claim a low false positive rate. However, Ayewah and
Pugh [9] compare several null dereference analysis tools, including XYLEM, and ob-
serve that, besides the high number of reported false positives, many of the reported
null dereferences (true positives) do not manifest themselves as bugs at run time.
The authors claim that when the null dereference passes the initial software testing,
it rarely causes bugs and “reviewing all potential null dereferences is often not as
important as many other undone software quality tasks”[9]. Ayewah and Pugh argue
that no warning should be issued for dereferences that are unchanged over many ver-
sions of stable software. We take this argument into consideration in the design of

12 2.2. BUG PREDICTION TOOLS

our missing null check detector. If our analysis finds the same unconditionally deref-
erenced method return value in many versions, it decreases the originating method’s
nullability, which reflects that the method is rarely causing problems.

The second family of solutions proposes to annotate the “nullness” in code. Re-
searchers propose to avoid null dereferences by extending the type system with
@Nullable and @NonNull annotations [52, 164, 163, 42]. Loginov et al. [117],
beside their inter-procedural null dereference analysis, propose null-related annota-
tions to ensure the soundness and safety of the analysis.

The idea of annotations made it to widely-used Java libraries like Checker Frame-
work1 and Guava2. Also some programming languages introduce the idea of refer-
ence declarations that are not null. For instance the Spec# programming system
extends the C# programming language with the support of contracts (like non-null
types), allowing the Spec# compiler to statically enforce these contracts [12].

With annotation, method, field, variable and collection item declarations can be
annotated, so that a static checker can verify that no nullable value is ever deref-
erenced and the nullness matches for parameters passed to methods. However, if
annotations for library methods are missing, either they need to be added manually
or tools need to make naı̈ve assumptions about them. For instance, in their anal-
ysis, Flanagan et al. assumes that all library methods never return null [55]. Our
approach gets rid of the required manual work to add the nullness annotations to
existing projects, as the annotations are automatically generated from usage.

The third family of solutions tries to solve the problem by introducing language
constructs. Haskell [76] and Scala [149] have the “Maybe” and the “Option” types,
which are object containers. In a similar fashion, Oracle introduced the “Optional”
type in Java 8 recently [201]. Groovy and C# have the safe navigation “?.” to safely
invoke a method on a possibly-null object.

In our approach of missing null check detection, we combine API usage mining
with static analysis. First, we collect clients of a certain API. Second, we statically
analyze the source code to detect method calls to that API and whether their returned
values are checked against null or not. This step builds up the nullability measure
for each method in the API. Finally, in the system we want to apply the detection on,
we insert nullness annotations to the API methods, based on the nullability measure
and rely on Eclipse static analysis to produce the necessary null-related warnings.
We also insert documentation about the confidence and support of the nullness so
that developers take informed decisions when they deal with these warnings.

2.2 Bug Prediction Tools

In the following subsections, we review the different aspects of building a bug pre-
dictor and highlight our contributions.

1http://types.cs.washington.edu/checker-framework/
2https://github.com/google/guava

http://types.cs.washington.edu/checker-framework/
https://github.com/google/guava

CHAPTER 2. STATE OF THE ART 13

2.2.1 Software Metrics
There are three types of features used to predict bugs: software metrics extracted
from the source code, the versioning system, or the organizational structure.

Many researchers argue that source code metrics are good predictors for future
defects [80, 162, 13, 27, 192, 26]. Source code metrics try to capture the quality
(e.g., lack of cohesion in methods, coupling between objects) and complexity (e.g.,
weighted method count, depth of inheritance tree) of the source code itself. The
rationale behind using the source code metrics as bug predictors is that there should
be a strong relation between source code features (quality and complexity) and soft-
ware defects [191]. In other words, the more complex a software entity is, the more
likely it contains bugs. Also the poorer the software design is, the more bug-prone it
is.

A second class of studies considers metrics extracted from the software ver-
sioning systems like CVS, Subversion, and Git. These studies establish a relation-
ship between how and when software entities (binaries, modules, classes, methods)
change and evolve over time on one hand, and the fault-proneness of these enti-
ties on the other hand. The version history metrics (i.e., change metrics) describe
software entities with respect to their age [176, 20], past faults [104, 216, 159],
past modifications and fixes [69, 159, 79, 77, 102, 143], and developer information
[208, 209, 165, 132]. Using software history metrics as bug predictors is motivated
by the following heuristics:

1. Entities that change more frequently tend to have more bugs.

2. Entities with a larger numbers of bugs in the past tend to have more bugs in
the future.

3. Entities that have been changed by new developers tend to have more bugs.

4. Entities that have been changed by many developers tend to have more bugs.

5. Bug-fixing activities tend to introduce new bugs.

6. The older an entity, the more stable it is.

Other researchers work on metrics extracted from actual changes in source code
from one version to another [144, 38, 66]. These changes are called “Code Churns”.
As explained by Nagappan and Ball [144], “Code churn is a measure of the amount
of code change taking place within a software unit over time.”

Finally some researchers argue that the organizational structure and volatility of
the software teams have an impact on the software quality [146, 140]. These studies
show that organizational metrics have positive, strong, and statistically significant
correlation with bug-proneness.

Many studies show that change metrics are better than source code metrics at
predicting bugs [143, 94] [69, 102, 209, 159, 65]. Moreover, Arisholm et al. states
that models based on object-oriented metrics are no better than a model based on
random classification [6]. In chapter 8, we confirm the superiority of change metrics

14 2.2. BUG PREDICTION TOOLS

over source code metrics, but also show that mixing both produce the best results,
contradicting previous findings [6].

2.2.2 Feature Selection in Bug Prediction

In a recent systematic literature review of the machine learning techniques in the bug
prediction field [121], surprisingly, most studies (60%) do not apply feature selection
at all. Our investigation shows that researchers in bug prediction often undermine
the importance of feature selection.

Among the studies that apply feature selection, correlation based feature selec-
tion (CFS) [73] is the most commonly used [121]. Many studies employ the CFS
filter technique before training machine learning models [47, 97, 6] [39, 123, 216,
200, 151]. We also apply CFS as the baseline filter technique and compare it to
wrapper techniques to show that wrappers outperform this filter in most cases.

Most studies that apply feature selection actually apply filter techniques like
principal component analysis (PCA) [101, 38, 145, 96, 189], consistency based se-
lection (CBS) [216], and InfoGain [134, 198, 188, 139]. Very few studies apply
wrapper feature selection techniques [30, 68] when classifying software entities as
buggy or clean (classification). However, to the best of our knowledge, there is no
study that applies wrapper techniques when predicting the number of bugs in soft-
ware entities (regression). In chapter 6 we compare the CFS filter with different
wrappers while treating bug prediction as a regression problem.

Shivaji et al. [187] study the impact of multiple feature selection techniques
(filters and wrappers) on the performance of Naı̈ve Bayes and Support Vector Ma-
chines when classifying code changes as buggy or clean. They report a significant
enhancement in the accuracy measures of both classifiers when feature selection is
applied. However, Shivaji et al. consider “everything in the source code separated
by whitespace or a semicolon” as a feature [187]. This includes variable names,
method names, keywords, comment words, etc.. They end up with a staggering
number of features ranging from 6,127 to 41,942 features. The vast majority of fea-
tures in the initial feature set are bound to be irrelevant, hence the results of their
study are exaggerated and cannot be generalized.

Challagulla et al. [35] report that performing principal component analysis be-
fore training the models does not result in a significant improvement on the perfor-
mance of the bug predictors, while correlation-based feature selection (CFS) and
consistency-based subset evaluation (CBS) actually decrease the prediction error of
the machine learning models. We actually report different results when applying
CFS to regressors.

Khoshgoftaar et al. [100] combine filter feature selection and data sampling
to achieve better classification accuracy on the package level. They report an im-
provement of around 2% to the area under the receiver operator characteristic curve
(AUC-ROC) when the filters are applied to sampled data rather than the whole data.
Then Khoshgoftaar et al. [99] improve the performance by repeatedly applying the
sampling and filtering several times then aggregating the results.

CHAPTER 2. STATE OF THE ART 15

Gao et al. [61] studied seven filter feature selection techniques. They report
that the studied classification models were either improved or remained unchanged
while 85% of the original features were eliminated. Krishnan et al. [107] analyze
whether change metrics remain good predictors during the evolution of Eclipse. In
their analysis, they use J48 decision tree as the machine learning algorithm and refer
to the top five features as the set of prominent predictors, then study the consistency
of this set over the consecutive versions of Eclipse. They report that there is a small
subset of change metrics that is consistently good at classifying software entities as
buggy or clean across products and revisions. Wang et al. [204] study the effect of
removing redundant or useless features from the PROMISE dataset3. They report
that feature selection improves classification accuracy. Catal and Diri [33] explore
which machine learning algorithm performs best before and after applying feature
reduction. In these studies, researchers treat bug prediction as a classification prob-
lem while we study the effect of feature selection on bug prediction as a regression
problem.

Turhan and Bener [199] have another opinion on the matter of feature selection.
They argue that Naı̈ve Bayes assumes the independence and the equal importance of
features. These assumptions are not true in the context of bug prediction. Yet, Naı̈ve
Bayes is one of the best classifiers [134]. Turhan and Bener [199] empirically show
that the independence assumption is not harmful for defect prediction using Naı̈ve
Bayes and assigning weights to features increases the performance and removes the
need for feature selection. Turhan and Bener conclude that “either weighted Naive
Bayes or pre-processing data with PCA may produce better results to locate software
bugs in source code”[199].

We confirm that most of the existing literature treats bug prediction as a clas-
sification problem, and that studying the number of bugs is neglected in the field.
For instance, Ostrand et al. [159] use negative binomial regression (NBR) to predict
the number of bugs in software modules. They report that NBR fits the bug pre-
diction problem and demonstrates high accuracy. Janes et al. [89] compare three
count models to predict the number of bugs and find out that zero-inflated NBR
performs better than Poisson regression and NBR. Rathore and Kumar [172] inves-
tigate six different fault prediction models for predicting the number of bugs and
show that count models (i.e., NBR and Zero-Inflated Poisson regression) underper-
form compared to linear regression, decision tree regression, genetic programming
and multilayer perceptron. Graves et al. [69] build a generalized linear regression
model to predict the number of bugs based on the various change metrics. Gao and
Khoshgoftaar [60] compare the performance of several count models (e.g., Poisson
regression) and show that Hurdle Poisson regression has the most accurate predic-
tions. Nevertheless, these studies do not apply feature selection and their results
should be reassessed in the light of our findings.

3http://openscience.us/repo/

http://openscience.us/repo/

16 2.2. BUG PREDICTION TOOLS

2.2.3 Prediction Models

Most studies comparing different machine learning models in bug prediction show
no difference in performance [40, 111] [203, 135]. Menzies et al. [135] evaluate
many models using the area under the curve of a probability of false alarm versus
probability of detection “AUC(pd, pf)”. They conclude that better prediction models
do not yield better results. Similarly, Vandecruys et al. [203] compare the accuracy,
specificity (true negative rate), and sensitivity (recall or true positive rate) between
seven classifiers. Using the non-parametric Friedman test, as recommended in this
type of problem [40], it is shown that there is no statistically significant difference
at the 5% significance level. Lessmann et al. [111] study 22 classifiers and con-
clude that the classification model is less important than generally assumed, giving
researchers more freedom in choosing models when building bug predictors. Ac-
tually simple models like naı̈ve Bayes or C4.5 classifiers perform as well as more
complicated models [44, 134].

Other studies suggest that there are certain models which perform better than
others in predicting bugs. Elish and Elish [47] compare SVM against 8 machine
learning and statistical models and show that SVM performs classification generally
better. Guo et al. [70] compare Random Forest with other classifiers and show how
it generally achieves better prediction. Ghotra et al. [63] show that there are four sta-
tistically distinct groups of classification techniques suggesting that the choice of the
classification model has a significant impact on the performance of bug prediction.
Our findings confirm the superiority of certain models over others. Specifically, we
show that Random Forest is indeed the best machine learning model, followed by
Support Vector Machines.

2.2.4 Hyperparameter Optimization

Model hyperparameters are often left set to their default values in the bug prediction
literature. Very few studies inspect the effect of hyperparameter settings on the bug
prediction accuracy.

Martino et al. [41, 179] use a genetic search algorithm to optimize the hyperpa-
rameter settings for SVM and compare it with six machine learning models. Their
experiments are carried out on jEdit data from the PROMISE repository [181]. They
report that the genetically optimized SVM gives the highest F-measure. In their
study, Martino et al. do not optimize the other models making the comparisons
unfair.

The response variable of probabilistic models, such as Naiv̈e Beyes, is the prob-
ability that a software entity is defective. When these models are used as classifiers,
they take the threshold that separates the classes as a hyperparameter. It is usually
0.5 by default. Tosun and Bener [197] report that optimizing this threshold decreases
false alarms by up to 11%.

Recently, Tantithamthavorn et al. [193] carried out a large study on the effect of
hyperparameter optimization on the accuracy of 26 classification techniques in bug
prediction. They show that tuning model hyperparameters increases the accuracy

CHAPTER 2. STATE OF THE ART 17

measures by up to 40%.
All previous studies treat bug prediction as a classification problem where the

response variable is the class of a software entity (i.e., buggy or clean). To the
best of our knowledge, our study in chapter 7 is the first study on hyperparameter
optimization in bug prediction as a regression problem, where the response variable
is the number of bugs.

2.2.5 Experimental Setup
There are many other studies that look into the effect of experimental setup on bug
prediction studies. Tantithamthavorn et al. show how different evaluation schemes
can lead to different outcomes in bug prediction research [194]. In this study we
focus on configuring bug predictors to be cost-effective. Thus, we fix the evaluation
scheme to the one the reflects our purpose (i.e., CE). In a systematic literature review,
Hall et al. [75] define some criteria that makes a bug prediction paper and its results
reproducible. Surprisingly, out of 208 surveyed papers, only 36 were selected. In
our study, we adhere to these criteria by extensively describing our empirical setup.
Shepperd et al. [184] raised concerns about the conflicting results in previous bug
prediction studies. They surveyed 42 primary studies. They found out that the choice
of the classification technique, the metric family, and the data set have small impact
on the variability of the results. The variability comes mainly from the research
group conducting the study. Shepperd et al. conclude that who is doing the work
matters more than what is done, meaning that there is a high level of researcher
bias. We agree with the authors that there are many factors that might affect the
outcome of a bug prediction study. In fact this is the main motivation behind our
study. However, Shepperd et al. looked at studies that treat bug prediction as a
classification problem, ignoring the fact that the response variable is itself a factor
that affects the outcome. In our study we include more factors and emphasize the
interplay among them.

2.2.6 Cost-Aware Evaluation
In the literature, bug prediction models are evaluated using the standard measures,
i.e., confusion matrix, prediction error, and statistical correlation. However, many
researchers argue that bug prediction should be evaluated based on their ability to
steer software quality assurance activities efficiently. Mende and Koschke [130]
studied the concept of effort-aware defect prediction. They compared models with
respect to predicting defect density using only Random Forest trained only on source
code metrics. They took the effort into account during the training phase by predict-
ing bug density as a response variable. Although we agree with Mende and Koschke
on the importance of building effort-aware prediction models, our results actually
advise against using source code metrics and bug density as independent and de-
pendent variables respectively. Canfora et al. also consider cost in the training
phase [31]. Using genetic algorithms, they trained a multi-objective logistic regres-
sor that, based on developer preferences, is either highly effective, with low cost, or

18 2.3. CONCLUSIONS

balanced. They treated bug prediction as a classification problem and they used only
source code metrics as independent variables. We agree with Canfora et al. that bug
predictors should be tuned to be cost-effective, but our study shows that source code
metrics are rarely a good choice of independent variables, and predicting bug count
is more cost-effective than predicting bug proneness.

Kamei et al. [94] also evaluated the predictive power of history and source
code metrics in an effort-sensitive manner. They used regression model, regression
tree, and Random Forest as models. They found that history metrics significantly
outperform source code metrics with respect to predictive power when effort is taken
into consideration. Our results confirm their findings but also add that the use of both
metrics is even more cost-effective.

Arisholm et al. [6] studied several prediction models using history and source
code metrics in bug prediction. They also dealt with the class imbalance problem and
performed effort-aware evaluation. They found that I) history metrics perform better
than source code metrics and II) source code metrics are no better than random class
selection. Our results confirm their first finding but contradict the second. We show
that indeed using source code metrics is less cost-effective than using change metrics
or a mix of both. However, using source code metrics with the right options of other
configurations is certainly better than random class selection. This contradiction
with our findings comes from the fact that the dependent variable in their study is
bug proneness and, as opposed to our study, they did not consider other dependent
variables.

Jiang et al. [90] surveyed many evaluation techniques for bug prediction models
and concluded that the system cost characteristics should be taken into account to
find the best model for that system. The cost Jiang et al. considered is the cost of
misclassification because they dealt with the bug prediction problem as a classifi-
cation problem. In our study, we treat bug prediction as a regression problem (i.e.,
bug count and bug density) and as a classification problem (bug proneness and entity
class) and the cost of the model is the actual cost of maintenance using LOC as a
proxy.

In chapter 8, we use the cost effectiveness measure proposed by Arisholm et al.
[6] to evaluate the efficiency of bug predictors as software quality tools.

2.3 Conclusions
In this chapter, we demonstrate existing studies in bug pattern discovery and what
researchers propose to detect the most prevalent ones. In particular, we show that
detecting bugs in method invocation is mainly based on API usage mining, while
null-related bugs are detected be means of static analysis. Method nullness has not
been considered as an API feature in any of the previous studies. In this thesis,
we combine API usage mining with static analysis to build an efficient missing null
check detector.

In this chapter, we also review the state of the art in bug prediction and show that
building a bug predictor requires making decisions regarding independent variables,

CHAPTER 2. STATE OF THE ART 19

machine learning models, and response variables. We call this triple bug prediction
configurations. From our review, we see that there are four main research gaps in
the bug prediction literature:

1. Although bug prediction configurations are interconnected, studies in the lit-
erature focus on each one of them in isolation.

2. There have been many comparative studies in bug prediction, but there is no
study comparing different response variables.

3. Useful machine learning techniques such as feature selection and hyperparam-
eter optimization are rarely applied.

4. Bug predictors are evaluated and optimized mainly as machine learning mod-
els instead of software quality tools

In this thesis, we try to fill these gaps by empirically optimizing bug predictors
as machine learning tools (chapter 6 & chapter 7) and as software quality tools
(chapter 8).

20 2.3. CONCLUSIONS

3
Discovering the Missing Null Check

Bug Pattern

The first step to building an efficient bug detector is to understand where, how, and
when software bugs arise in the code and how programmers usually fix them. In
this chapter, we employ an empirically-grounded analysis to explore bug fixes in a
zoom-in approach by analyzing the types of files involved in fixes, the size of fixes,
and the frequent bugs and fixes in various software projects. We mine the bug-fix
code changes in two Java software corpora. We call the first one the Java Popular
corpus, consisting of 717 unrelated popular Java projects crawled and cloned from
GitHub. The second corpus is the whole Eclipse Ecosystem, which consists of 756
related projects. We mainly pose the following research questions:

RQ1: What file types are involved in fixing bugs?
We use the file extension of the textual files as the file type. As expected, Java
files are involved the most in the fixes. However, a non negligible percentage
of fixes involve XML files.

RQ2: How large are bug fixes?
We measure the size of fixes in terms of lines of code. We find that most fixes
are one liners and the fix size distribution may be project-dependent.

RQ3: What are the most recurrent bug and fix patterns?
Throughout the study, the syntactically similar code changes corresponding
to recurrent bug fixes are called patterns. For instance, a bug pattern can be
a missing method invocation and a fix pattern can be inserting that method
invocation. We find out that missing null checks and missing invocations are
the most recurrent bugs in both corpora.

21

22 3.1. BUG-FIX ANALYSIS PROCEDURE

Answering these questions reveals many opportunities in the field of bug detec-
tion and automatic bug fixing. If we find bug-fix patterns in software systems, we
can eventually apply fixes automatically in the right contexts. Such patterns can also
reveal some good programming practices and some questionable ones.

3.1 Bug-Fix Analysis Procedure
The procedure we follow to identify our bug and fix patterns can be divided into
three separate phases: building the software corpus, analyzing the source code, and
inspecting instances of the top bug-fix code change patterns.

Table 3.1: Details of the studied corpora. The extracted commits are the ones corre-
sponding to bug fixes.

Corpus #Projects #Commits #Code Changes
(Java)

Java Popular Projects 717 80,937 91,644
Eclipse Ecosystem 756 53,374 59,060
Total 1,473 134,311 150,704

3.1.1 Building The Software Corpora
Table 3.1 presents the two corpora we investigate; the Java Popular corpus and the
Eclipse Ecosystem corpus. For the Java Popular corpus, we have built a crawler that
queries GitHub for relatively large Java projects with good ratings and clones these
projects into our server. The crawler’s search criteria specified projects that were
last updated at least on 01.01.2013 (active), had more than a five-star rating (popu-
lar), and were more than 100KB in size (relatively big). For the Eclipse Ecosystem
corpus, we cloned all the Git source code repositories of Eclipse.1

3.1.2 Analyzing Source Code and Change History
In the second phase, we analyze the change history and source code of the cloned
projects. Figure 3.1 illustrates the main steps we perform for every project in our
corpus:

Find bug-fix commits: We extract the commits corresponding to bug fixes from
the Git repositories2. In our approach, every commit corresponds to a bug fix if
the commit message contains some specific keywords, i.e., “fix”, “defect”, “bug”,
or “patch” (following previous studies [94][37][102][190][141]). To increase the

1https://git.eclipse.org/c/
2We used the JGit library for parsing GIT history changes. http://www.eclipse.org/jgit/

https://git.eclipse.org/c/
http://www.eclipse.org/jgit/

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 23

void clearAnimation(){
 Animation animation = getAnimation();
 if (animation != null) {
 super.clearAnimation();
 if (animation.hasEnded()
 && animation.getFillAfter()
 && animation.willChangeBounds()) {
 ((View) getParent(1)).invalidate();
 } else {
 invalidate();
 }
 }
}

void clearAnimation(){
 Animation animation = getAnimation();
 if (animation != null) {
 super.clearAnimation();
 if (animation.hasEnded()
 && animation.getFillAfter()
 && animation.willChangeBounds()) {
 View parent = (View) getParent(1);
 if (parent != null) parent.invalidate();
 } else {
 invalidate();
 }
 }
}

View parent = (View) getParent(1);
if (parent != null) parent.invalidate();((View) getParent(1)).invalidate();

T T = (T) T(1);
if (T != null) T.T();((T) T(1)).T();

T T = (T) T(0);
if (T != null) T.T();

((T) T(0)).T();

TT=(T)T(0);if(T!=null)T.T();((T)T(0)).T();

Extract method bodies from
revisions N, N+1

(for every fix commit)

Remove
whitespaces

Bug-Fix Code Transition

Bug-Fix Pattern

Anonymize
numbers

Anonymize
words

Diff the two texts and
concatenate

Figure 3.1: The pipeline which each project goes through. The final output of this
analysis is the fix patterns and their concrete instances in the software projects.

precision of our results, we filtered out large commits touching more than five files,
because they tend to include a fix and some other type of code change like refactoring
or feature addition. As shown by Śliwerski et al. [190], the average number of
changed files in fix commits tends to be small (2.73 in Eclipse and 4.39 in Mozilla).
Also Thung et al. [119] show that bug fixes that span more than five files are very
rare (7% in Rhino, 1% in AspectJ, 10% in Lucene).

Detect files with textual content: For each of the changed files, we read the top
100 bytes as characters, to form a string (S1), then, using regex, we delete the letters,
digits, and punctuations and end up with another string (S2). If the ratio between the
length of S2 and the length of S1 is less than a 0.5, we consider the file to be a textual
one. Otherwise, we discard it.

Extract the buggy code & the fixed code: For each method that has been changed
inside a commit representing a bug fix, we extract the version before the fix (buggy

24 3.2. RESULTS

method) and the version after the fix (fixed method)3.

Build the patterns: We call the minimal code that contains the bug a bug hunk,
and we call the minimal code that fixed the bug a fix hunk, as in Figure 3.1. All
pairs of bug hunks and fix hunks are concatenated to form a bug-fix code transitions,
e.g., mImageViewer.close(); −→ mImageViewer.free(); The bug-fix transition can
span several lines of code where some lines are changed, added, or deleted. The
transition also can contain unchanged lines between the changed ones.

Following a similar procedure by Gabel and Su [59], we normalize the bug-fix
code transitions to build syntactic patterns by applying the following three steps:

1. Each word (variable name, method name, etc.) is replaced by the letter “T”
(except for Java keywords).

2. Each string literal is replaced by “T”.

3. Each number is replaced by “0”.

4. Each sequence of white space characters is removed.

In this way, we end up with anonymized patterns like: T.T(); −→ T.T();

3.1.3 Manual Inspection
In the third phase, after gathering all the necessary information, we group the code
changes by fix pattern. For each bug-fix change pattern, we have the number of
occurrences, the number of projects where the pattern occurred, and the concrete
code snippets that adhere to the pattern.

We order the fix patterns based on the number of instances and the distribution
across the projects. To get deeper insights into the semantics of the bugs and fixes,
we manually inspected the instances of each of the 20 most significant patterns by
reading the actual buggy code, how it was fixed, and the commit messages. Then
we categorized them. Table 3.2 shows the manually-inspected patterns from both
corpora and their corresponding categories. We noticed some similarities in the in-
spected syntactic patterns of each category. Using these similarities, we generalized
the patterns to extract the exact number of occurrences of each category.

3.2 Results
We compare the results of analyzing the two corpora, the Java Popular corpus and
the Eclipse Ecosystem. The analysis shows that both corpora are statistically similar
regarding the most frequent bug-fix patterns, the types of changed files correspond-
ing to bug fixes, and the number of source lines of code forming a fix.

3We used the JAPA library for parsing Java code.
https://github.com/javaparser/javaparser

https://github.com/javaparser/javaparser

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 25

3.2.1 The Types of Fixed Files

Although all the analyzed projects are Java systems, we found no single project
that was pure Java. All the systems involved multiple programming languages (e.g.,
Ruby, JavaScript, PHP, Scala) and configuration files (e.g., XML).

To answer the first research question (RQ1: What file types are involved in fixing
bugs?), for every commit corresponding to a fix, we extract the information about
the types of the changed files. Figure 3.2 shows that, in both corpora, the fixed files
are mostly Java files. This is expected due to the fact that both corpora are composed
of Java projects. However, XML, JavaScript, and HTML files come in the second,
third, and fourth order of importance correspondingly in both corpora.

72.78%	

9.62%	

2.59%	 0.97%	

14.04%	

64.78%	

7.62%	

2.52%	
4.16%	

20.91%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

java	 xml	 js	 html	 The	 rest	

Pe
rc
en

ta
ge
	 o
f	 n

um
be

r	 o
f	 fi

xe
d	
fil
es
	

File	 Type	

Java	 Popular	 Projects	

Eclipse	 Ecosystem	

Figure 3.2: This figure shows the distribution of changes involved in bug fixes from the
perspective of file types in the Java Popular corpus and the Eclipse Ecosystem. Looking
at the files involved in bug fixes, one can notice the similarity between the Java Popular
corpus and the Eclipse Ecosystem. Since both corpora contain Java projects, Java files
are the most commonly fixed files through the evolution of systems. However, XML,
JavaScript, and HTML files are the most frequently fixed files after Java files in both
corpora.

26 3.2. RESULTS

3.2.2 Fix Size

Regarding the second research question (RQ2: How large are bug fixes in terms of
lines of code?), we find that most fixes in both corpora involve one source line of
code in both corpora, as shown in Figure 3.3. However, we need to compare the
distribution of fix size in both corpora. Our null hypothesis is that the Java Popular
corpus and the Eclipse Ecosystem have identical distribution. We test this hypothesis
without assuming the data to be normally distributed. At 0.05 significance level, we
use the Mann-Whitney-Wilcoxon Test to test our hypothesis. Applying the test, the
p-value turns out to be approximately less than 2.2 ∗ 10−16, which is less than the
0.05 confidence interval4. This means that we reject the null hypothesis and the two
distributions, shown in Figure 3.3, are nonidentical.

The conclusion is that the fix size may be dependent on the projects. Different
projects have different structures, external dependencies, and domains. This may
lead to variations in fix sizes. However, one-line fixes still form the majority of the
fixes in both corpora.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 >20	

Pe
rc
en

ta
ge
	 	 o
f	 F
ix
es
	

LOC	 	

Java	 Popular	 Projects	

Eclipse	 Ecosystem	

Figure 3.3: The distribution of bug fixes according to the number of changed lines of
code in the Java Popular Corpus and the Eclipse Ecosystem. Both distributions are very
similar and almost identical.

4The data set is large. Hence the Mann-Whitney-Wilcoxon Test can only approximate the p-value.
However, the approximation is quite accurate and considered to be a standard.

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 27

Table 3.2: The Top 20 Syntactic Fix Patterns in The Popular Java Corpus and The
Eclipse Ecosystem Corpus

Syntactic Pattern Instances Projects Category

Java Popular Corpus
−→ T.T(); 668 25 % Missing Invocation
−→ T(); 448 18 % Missing Invocation
−→ T.T(T); 368 19 % Missing Invocation

return T; −→ return T; 336 12 % Wrong Name/Value
T.T(T); −→ T.T(T); 335 18 % Wrong Name/Value

−→ T(T); 221 9 % Undue Invocation
T.T(); −→ 191 12 % Undue Invocation

−→ T.T(T, T); 162 10 % Missing Invocation
T.T(T, T); −→ T.T(T, T); 151 11 % Wrong Name/Value

T(); −→ 136 8 % Undue Invocation
return T.T(); −→ return T.T(); 126 4 % Wrong Name/Value

−→ if (T == null) return; 118 4 % Missing Null Check
T.T(T); −→ 115 9 % Undue Invocation

T(T); −→ T(T); 102 5 % Wrong Name/Value
T T = T.T(T); −→ T T = T.T(T); 99 7 % Wrong Name/Value
}catch(TT){ −→ }catch (TT){ 93 6 % Too General Exception

−→ if (T==null){return null;} 85 6 % Missing Null Check
−→ T=null; 85 5 % Missing Release
−→ if(T==null) {return;} 79 5 % Missing Null Check
−→ if(T==null) return null; 68 5 % Missing Null Check

Eclipse Ecosystem
−→ T(); 368 25 % Missing Invocation
−→ T.T(T); 307 25 % Missing Invocation

T.T(T); −→ T.T(T); 255 23 % Wrong Name/Value
−→ T.T(); 242 22 % Missing Invocation

return T; −→ return T; 192 12 % Wrong Name/Value
−→ T(T); 176 15 % Missing Invocation
−→ T.T(T.T()); 132 12 % Missing Invocation

T(); −→ 109 12 % Undue Invocation
T.T(T); −→ 109 12 % Undue Invocation

T.T(); −→ 96 13 % Undue Invocation
−→ T = null; 94 10 % Missing Release
−→ if (T == null) return; 85 7 % Missing Null Check

T(T); −→ 73 11 % Undue Invocation
−→ if (T==null){return null;} 71 10 % Missing Null Check
−→ if (T==null) return null; 66 9 % Missing Null Check

T(); −→ T(); 66 7 % Wrong Name/Value
−→ T.T(true); 60 7 % Missing Invocation
−→ if (T==null){return;} 56 8 % Missing Null Check

T(T); −→ T(T); 56 8 % Wrong Name/Value
return T.T(T); −→ return T.T(T); 54 3 % Wrong Name/Value

28 3.3. BUG-FIX PATTERNS

Table 3.3: The most recurrent bug categories and corresponding examples of their bug-
fix code-change patterns.

Bug Java Popular Corpus Eclipse Ecosystem Example
Category #Instances %Projects #Instances %Projects Paterns

5,328 65% 4,411 64%

−→ if (T == null) return
Missing −→ if (T == null) return null;
Null Check T.T(); −→ if (T != null) T.T();

−→ if (T == null) return T

5,997 76% 2,872 72%

T.T(T); −→ T.T(T);
Wrong return T; −→ return T;
Name/Value T(); −→ T();

T(T); −→ T(T);

2,618 66% 1,596 61%

−→ T.T();
Missing −→ T();
Invocation −→ T.T(T);

−→ T(T);

1,907 53% 1,293 54%

T.T(); −→
Undue T(); −→
Invocation T.T(T); −→

T(T); −→

3.2.3 The Most Frequent Bug-Fix Patterns
As an answer to the third research question (RQ3: What are the most recurrent
bug and fix patterns?) we find that the most frequent bug patterns are missing null
checks (null dereferencing), wrong name/value, missing method invocations, and
undue invocations. These bug patterns are fixed by adding null checks, editing the
name/value, adding the missing invocation, and removing the undue method call
correspondingly. We elaborate on these patterns and report our findings from the
manual investigation in the next section.

We compare the frequent bug-fix patterns in both corpora using Spearman Rank
Correlation between the two lists5 in Table 3.2. The Spearman Rank Correlation
between the two lists is 0.58, meaning that the two lists are highly similar. Also
considering the categories of the most recurrent bug patterns in Table 3.3, we see
that the order of importance of these categories regarding the occurrences of the
categories and the percentage of projects affected is identical in both corpora. These
results indicate that the patterns are project-independent. Our intuition is that the
patterns, as we define them, are Java-specific.

3.3 Bug-Fix Patterns
In the following subsections, we explain and demonstrate the most recurrent bug-
fix patterns we find through our study in both corpora. Table 3.3 shows the bug

5The two lists are not identical. We mitigate this problem using the naı̈ve approach of appending the
missing values from one list to the other list and give them equal ranks.

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 29

categories, the number of instances, the percentage of affected projects, and some
example bug-fix syntactic patterns in each category. These categories are generalized
from our findings from the manual inspection phase.

3.3.1 Missing Null Checks
Dereferencing an object without checking if it is null or not is the most recurrent
and critical bug pattern we found. The criticality of this bug comes from the fact
that 65% of the studied projects suffered from this bug, as shown in Table 3.3, and
it usually causes systems to crash due to the uncaught NullPointerException. In
our manually investigated sample, the bugs of this category are fixed by inserting
null checks on certain objects (the checked object) like if (T==null) or if (T!=null),
meaning that the fixes for the bugs in this category are all addition changes.

We generalize from the manually-inspected syntactic patterns of this category
and consider a pattern to belong to this category if (1) the bug hunk does not have a
null check, and (2) the fix hunk has a null check. Table 3.3 shows some example fix
patterns that fall into this category.

In many cases, a blank return will follow the check. In other words, if the
checked object is null then the method cannot continue its execution and should
immediately return. One example of this is:

if (viewActionsContainer == null) return;

The checked objects are either the results of method invocations, parameters,
or member variables. In almost 70% of the manually inspected cases the checked
object comes from a method invocation. Moreover, this kind of bug often appears
when chaining method calls, as in the illustrated example in Figure 3.1. In chapter 4,
we elaborate on the root causes of null checks.

3.3.2 Wrong Name/Value
All the syntactic patterns that have identical bug and fix hunks fall into this category.
Although the bugs of these patterns seem very frequent from Table 3.3, they are less
important than the other categories because in most of the inspected instances, the
fixes were corrections or edits to literal strings passed as parameters. This pattern
appeared very often with logging methods (log, print, println, etc.).

However, we encountered many cases where the bug lies in the object names,
method names, or parameter names. The reasons behind this kind of bug are either
(1) using the wrong identifier due to name similarity, or (2) calling the wrong method
based on mistaken name-driven assumptions about its functionality.

imageViewer.close(); −→ imageViewer.freeTextures();
key.rewind(); −→ key.flip();

Listing 3.1: Sometimes developers invoke wrong methods due to
misunderstanding method names.

30 3.3. BUG-FIX PATTERNS

dragView.setPaint(mPaint); −→ dragView.setPaint(mHoverPaint);
visitedURLs.clear(); −→ visitedURIs.clear();
return hasClassAnnotations; −→ return hasRuntimeAnnotations;

Listing 3.2: In some cases developers confuse objects or parameters
with similar names.

Listing 3.1 shows two fixes where the bugs were due to misunderstanding method
names. Listing 3.2 shows that the names can be very similar and the programmer
might mistakenly use one instead of the other.

3.3.3 Missing Invocation
When the fix hunk has a new method call that is not present in the bug hunk, then the
pattern falls into this category. Table 3.3 shows example patterns. There are many
scenarios in which this kind of bug can appear. The first is a missing initialization
or configuration of an object immediately after its creation. For example:

ConnectionPool config=new ConnectionPool()

should be immediately followed by:
config.initialize()

The second scenario is what we can call a missing refresh where before doing
something or after finishing something, a certain object should be brought to a con-
sistent state or “refreshed”. These missing method invocations are either at the very
beginning or at the very end of a method body. Method names that we often encoun-
tered from this category are: refresh, reset, clear, pack, repaint, redraw, etc. In most
of the cases, the “refreshed” object is some kind of a container or an aggregator class
like a canvas, tree, view, etc.

The third scenario concerns a missing release. This type of invocation is always
about freeing resources and always comes at the end of the method body in the
manually inspected instances. Example methods are: release, delete, dispose, close
etc.

The fourth scenario occurs when the missing invocation is a missing step during
the building of an object. This pattern is seen mostly in the “Builder Design Pattern.”
For instance, take the following method found in the project eclipse.pde.build:

void generateBuildScript(AntScript script){
generatePrologue(script);
generateBuildUpdateJarTarget(script);
generateGatherBinPartsTarget(script);
generateBuildJarsTarget(script, model);
generateBuildZipsTarget(script);
generateGatherSourcesTarget(script);
generateGatherLogTarget(script);
generateCleanTarget(script);
generateRefreshTarget(script);
generateZipPluginTarget(script);

}

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 31

This method is buggy because it is missing this invocation at the end:

generateZipFolderTarget(script);

3.3.4 Undue Invocation

A pattern is in the undue invocation category when the bug hunk has a method call
that is not in the fix hunk. Table 3.3 shows example patterns of this type. This
pattern is exactly the opposite of the missing invocation pattern and, surprisingly,
corresponds to the same kind of methods like flush, reindex, init, close, etc.

A deeper investigation showed that this bug-fix pattern aims at either

• improving the performance of the system by removing unnecessary initializa-
tions or resettings, or

• avoiding premature resource freeing that causes NullPointerExceptions (NPEs)
somewhere else. We identify this pattern when the bug-fix is in the undue in-
vocation category and the commit message explicitly states that this is an NPE
fix.

3.3.5 Other Patterns

As shown in Table 3.2, there are two further, less frequent bug-fix patterns that
we inspected manually. The first, called Missing Release, assigns null to certain
variables. This bug usually appears inside the methods responsible for freeing the
resources such as release, delete, dispose, close, etc.

The second pattern is the Too General Exception bug. This bug-fix pattern
usually is applied when a “try” block has only one “catch” block that catches only
an object of “Exception”, which is the most general type of exception in Java. The
fix changes the type of caught exceptions to more specific ones and adds more catch
blocks to handle the different exceptional situations differently.

3.4 Implications

Changing Developer Practices: The frequent bug patterns impact programming
style, programming language design, and common practices in software design. The
missing invocation, undue invocation, and the wrong name categories shed light on
the importance of API design. Several of the discussed causes of these bugs would
have been eliminated with proper API design and method/variable naming. It would
be interesting to see whether language-level support could be offered for these kinds
of bugs. Missing null checks, on the other hand, shows that developers should be
aware of the high risk associated with using null. Alternatives to null should be
employed whenever possible. We elaborate on this issue in chapter 4.

32 3.5. THREATS TO VALIDITY

Automatically Detecting Bug Patterns: The existence of “global” bug patterns
reveals opportunities for bug localization and automatic bug fixing. However, the
studied bug-fix patterns are syntactic. We believe that there is no unified context
for all patterns but rather a specific context for each pattern. As we show in chap-
ter 4, the context of the missing null check would be the source of the dereferenced
object. If that object is coming from a method call and that method returns null in
certain situations, this might be a likely candidate for a missing null check bug. On
the other hand, the context of the missing invocation pattern can be the preceding
and succeeding method calls, as explained in subsection 2.1.2. Defining an auto-
mated approach to extract the contexts and the bug patterns is essential to build bug
detectors.

Bug-Detection Beyond Java: Finally, we found that a significant percentage of
the bug-fix code changes in Java systems are made to non-Java files, especially XML
files. Modern software frameworks (e.g., Spring, Hadoop, etc.) rely heavily on
configuration files making them the second most commonly fixed files after Java
files. Studying the patterns of changes made to those configuration files would be
useful for both practitioners and researchers alike. This has implications on the
future development of bug detectors, which might have to consider different types
of software artifacts that are common in modern applications.

3.5 Threats to Validity
We built our corpora to be as representative as possible for Java systems to increase
our confidence in the results. The first corpus represents Java projects that are popu-
lar, big enough, and actively maintained. The second corpus is an entire ecosystem.
However, even if the results were statistically similar between the two corpora, there
is no guarantee that the results can be generalized to all Java systems.

In our extraction, parsing, anonymization, and normalization of the bug-fix code
changes, we might have missed some instances or grouped some instances in the
wrong categories. For instance, wrong requirement specification can result in a bug
spanning multiple files and lines of code. However, due to our large number of
code change snippets, as shown in Table 3.1, we argue that corner cases affect our
statistics and pattern significance computation within acceptable limits.

3.6 Conclusions
In this chapter, our main aim is to explore different bugs in Java systems and see
whether there are frequent bugs that are worth investigating. As we discussed in
chapter 1, bugs that are detectable, conspicuously severe, and reasonably frequent
are worth building detectors, efficient detectors that is.

Indeed, we find that frequent bug patterns do exist in Java systems. Namely,
null-related and method-call-related bugs are the most frequent and automatically

CHAPTER 3. DISCOVERING THE MISSING NULL CHECK BUG PATTERN 33

detecting them would be of great value to developers.
In this thesis, we choose to build a detector for the missing null check bug pat-

tern. In the next chapter, we empirically analyze null usage in general and null
checks in specific, in order to have a better understanding of the problem and iden-
tify possible approaches to tackle it.

34 3.6. CONCLUSIONS

4
Null Usage Analysis

Tony Hoare1 considers null as his “billion-dollar mistake” [83]. As we found in
chapter 3, missing null check is the most frequent pattern of bugs in Java systems.
These results suggest that null dereferencing is a major source of bugs in Java pro-
grams, forcing developers to add guards (null checks) on objects before using them.
However, besides the bugs it introduces in running systems, null usage hinders per-
formance [167], increases maintenance costs [103], and decreases code readability.

Although many tools and techniques have been introduced to solve the null
dereferencing problem, an analytical study is still missing on how null is used, why
null checks are introduced, and where the checked-for-null objects come from in the
source code. We argue that such a study is crucial for building an efficient detec-
tor of null-related bugs. In this chapter, we aim at understanding when, why, and
how often developers introduce null checks. More concretely, we pose the following
three research questions:

RQ1: How common are null checks? We answer this question by measuring the ratio
between the overall number of conditional statements and those containing
null checks.

RQ2: What kind of objects are compared to null? We consider whether the checked
object is a method parameter, a member variable (field), or a local variable.

RQ3: How are the checked-for-null objects initialized? We analyze the kind of ex-
pression that was assigned to the checked-for-null object.

1A computing pioneer credited with introducing the concept of a null pointer in Algol W.
https://en.wikipedia.org/wiki/Tony_Hoare

35

https://en.wikipedia.org/wiki/Tony_Hoare

36 4.1. MOTIVATION

RQ4: How is null used in Java programs? We manually investigate 100 samples
from our corpus to understand what null represents in Java programs (e.g.,
errors, default values, or other special values).

To answer the posed research questions, we developed a tool, NullTracker, that
statically analyzes Java source code files and approximates the statistics about null
check usage. Applying our analysis to a large Java software corpus, we find that
35% of the conditional statements in our corpus are null checks.

We also find that 24% of the checked objects are member variables,2 23% are
parameters, and 50% are local variables. Unsurprisingly, 71% of the checked ob-
jects come from method calls. In other words, developers insert null checks mainly
when they use methods that may return null. Passing null values to methods and
uninitialized member variables are recurrent reasons for introducing null checks.

We manually review 100 code samples from our corpus to understand the con-
texts and discover patterns of null check usage. In 76 samples null is used to rep-
resent errors, in 15 samples it is a representation of absence of a value, and in 9
samples null represents a meaningful value. Most of these instances of null usage
can (or should) be replaced by proper exceptions or special case objects such as a
Null Object [211][212].

4.1 Motivation
Pominville et al. achieved 2% to 10% performance gain in Java bytecode when they
annotated Java class files with assumptions about the “nullness” and array bounds
[167]. With respect to null, their framework, SOOT [202], performs intra-procedural
null analysis to make assumptions about variables being null or not to be able to
remove unnecessary null checks in the bytecode level. This means that null checks
impose a non-negligible performance overhead on Java programs.

In a managed language like Java,3 null is an unusable value. Its interpretation
depends on the context and when it causes a problem, its value yields “no useful
debugging information” [23]. For instance, the listFiles()method in the File
class returns an array of the files, File[], in the specified directory. However, if
the directory does not exist, it returns null. This returned null value might mean
that the File object does not exist, that it is not a directory, or that an I/O error
has occurred. This inherent ambiguity of null leads to increased difficulties in code
comprehension.

Missing null checks are the most recurrent bug pattern in Java systems [158].
This bug manifests itself as the Java NullPointerException. Debugging this kind of
exception is particularly hard because the stack traces do not provide enough in-
formation about the source of the null. Acknowledging this problem, Bond et al.
introduced Origin Tracking [23], which records code locations where unused val-
ues (such as null) are assigned. Origin Tracking gathers the necessary information

2Member variables are also known as fields or field variables.
3A program written in a managed language is executed under the management of a language runtime.

CHAPTER 4. NULL USAGE ANALYSIS 37

dynamically at run time so they can be reported at failure time to aid the debug-
ging activities. This indirectly means that the overuse of null in program increases
maintenance efforts.

To this end, we establish that the use of null in Java code often leads to per-
formance degradation, code that is harder to read, more defective software, and in-
creased project maintenance efforts. In the following sections we explore how often
null is used in Java code and in what contexts. This knowledge can help software
engineers to build better static code checkers and develop better practices for writing
and reviewing Java code.

4.2 Null Check Analysis

4.2.1 Experimental Corpus
For our experiment, we used the same software corpus from a previous study [158].
This corpus was built using a crawler that queries Github4 for Java projects that
have more than 5 stars (popular) and are more than 100KB in size (relatively large).
This corpus contains 810 Java projects, 371,745 Java source files, and 34,894,844
lines of code. We are making the corpus available for download through the Pangea
infrastructure5 [32].

4.2.2 Terminology
Before we explain the analysis, we define the terms used in this thesis as follows
(depicted in Figure 4.1):

• A Conditional: is a binary comparison expression that evaluates to a boolean
value, such as:

– y > 0

– x != null

• A Conditional Statement: is a Java statement that contains a conditional, such
as:

– if(y > 0) ...

– isNull = (x != null);

• A Null Check: is a conditional that contains the null literal as a left hand side
or a right hand side operand. In other words, it is a comparison to null. e.g.,

– Person != null

– iterator.next() != null

4http://www.github.com/
5http://scg.unibe.ch/research/pangea

http://www.github.com/
http://scg.unibe.ch/research/pangea

38 4.2. NULL CHECK ANALYSIS

• An N-Comparand: is an expression that is compared to null in the null check
(Usually an assignable l-value.)

• An NC-Declaration: is the declaration expression of the N-Comparand.

• An NC-Def-expression: is an assignment expression involving the N-Comparand
as the assignable l-value.

• An NC-Def-value: is the value assigned to the comparand in an NC-Def-
expression (i.e., the right-hand side operand of the NC-Def-expression).

public class CoDriver {
 …

public void join(Driver driver) {
 …

Car car;
 …

 car = driver.getCar();
 …
 …

if (car != null) {
 …
 }
 …

}
 …
}

Null Check

N-Comparand

NC-Def-expression

NC-Def-valueNC-Declaration

Figure 4.1: A code example showing the definitions of the terms used in the thesis.

4.2.3 Analysis
We implemented a tool, NullTracker6, to extract null checks and analyze the kinds
and definitions of the N-Comparands. NullTracker is designed as a pipeline, fol-
lowing a pipes and filters architecture. NullTracker analyzes each Java source file as
follows:

1. Parse the Java source file and extract the null checks.

2. For each null check, extract the N-Comparand.

3. Parse the N-Comparand and determine its kind (e.g., name, method call, field
access, etc.).

4. When the N-Comparand is a name expression, determine its kind (mem-
ber variable, local variable, or parameter) by looking for its NC-Declaration
within the current method for local variables and parameters, and within the
current type declaration for member variables.

6https://github.com/haidaros/NullTracker

https://github.com/haidaros/NullTracker

CHAPTER 4. NULL USAGE ANALYSIS 39

5. When the N-Comparand is assignable (name, array access, field access), ex-
tract all the NC-Def-expressions that appear lexically before the null check and
within the same method as the null check itself. Then, parse them and extract
the kind of the NC-Def-values (method call, null literal, object creation, or any
expression that can evaluate to a reference value).

6. Finally, the resulting data, which conforms to the model illustrated in Fig-
ure 4.2, is saved in the database for further analysis.

Null Check N-Comparand

NC-Def-
expressionNC-Def-value

Java Source File
1 0 .. * 1 1

1

0 .. *
11

NC-Declaration

1

0 .. *

Figure 4.2: The data model of NullTracker analysis.

4.2.4 Manual Inspection
After the analysis phase, we manually inspect multiple instances of the null checks
belonging to different categories and types. More concretely, we inspect ten random
samples of each of the following categories to gain more insight:

1. Method call N-Comparands.

2. Field access N-Comparands.

3. local variable name N-Comparands.

4. Parameter name N-Comparands.

5. Member variable name N-Comparands.7

6. Method invocation NC-Def-value.

7. Null literal NC-Def-value.

8. Cast NC-Def-value.

9. Object creation NC-Def-value.

10. Name NC-Def-value.

In this phase we aim at understanding how and why developers use null values
and null checks. We look specifically at the following:

7Member variable name N-Comparand and field access are the same semantically but different lexi-
cally. For example, this.name is a field access whereas name is a member variable name.

40 4.3. RESULTS

1. The intended semantics of the null value.

2. Potentially missing null checks (e.g., a member variable that is sometimes
checked against null and sometimes not before dereferencing it).

3. The type of the checked-for-null object (String, List, Tree, Number, etc.).

4. The source of the null value. (e.g., uninitialized local variables, a return null
statement in a method body, etc.)

We do not derive any statistics from this phase, as we only want to gain deeper
insights into how null and null checks are used in the code and for what reasons.

4.3 Results
We applied our analysis to the 810 Java projects in our dataset and we manually re-
viewed 100 code samples. In the following subsections which are organized around
the research questions, we explain the results.

4.3.1 How Common Are Null Checks?
To our knowledge, only Kimura et al. have measured the density of null checks in
source code [103]. They measured the ratio between the number of null checks and
the number of lines of code. They found this ratio to be from one to four per 100
lines of code, depending on the project.

We, on the other hand, go one step further and measure the ratio of the condi-
tional statements containing null checks with respect to all conditional statements.
This will enable us in answering the first research question: RQ1: How Common
are Null Checks?

We call the ratio between the null checks and the overall number of conditional
statements the null check ratio. Analyzing our dataset, we found 2,329,808 condi-
tionals, 818,335 of which contain null checks. This means that a staggering 35% of
the conditional statements contain null checks.

As detailed in Table 4.1 and Figure 4.3, the null check ratio exhibits a bell-shaped
distribution around the value of 32%. In other words, more than half of the projects
have a null check ratio of more than 32%. Our results show evidence of an existing
overuse (or abuse) of null checks by Java programmers, which indicates the over-
use of the “null” value itself. As discussed in section 4.1, this practice affects the
readability of code, the maintainability of the project, and the performance of the
running system.

4.3.2 What Entities Do Developers Check For Null?
To answer the second research question (RQ2: What kind of objects are checked
against null?), first, we analyze the kind of the N-Comparand itself. Second, we

CHAPTER 4. NULL USAGE ANALYSIS 41

Table 4.1: A summary of the per-project null check ratio.

Number of Number of Null Check
Conditionals Null Checks Ratio

Min 1.0 0.0 0%

1st quartile 117.5 33.0 23%

Median 531.5 138.5 32%

Mean 2,876.3 1,010.3 32%

3rd quartile 2,171.8 671.5 40%

Max 196,812.0 76,609.0 100%

look for the NC-Declaration of the N-Comparand when it is an l-value (i.e., name
expression, array, or field access expression).

We find that N-Comparands are mainly name expressions (78%) and method
call expressions (15%), as Figure 4.4 shows. Figure 4.5 shows that 50% of the
name N-Comparands are local variables, 24% are member variables, and 23% are
parameters.

Inspecting 10 code samples where the null check is against a method call, the
method calls are all to getter methods either from the same class or from another
class. This puts field access N-Comparands, method call N-Comparands, and mem-
ber variable name N-Comparands in the same category, which is member variable
null check. Member variables are checked against null because they might not be
initialized. This happens in the manually inspected code when one or more of the
following is true:

• There exists a constructor that does not initialize the variable.

• There exists a constructor or a setter method that can accepts null as a param-
eter and sets the variable to null.

• There exists a method that explicitly sets the variable to null.

• The member variable is public or is returned by address in the getter method.

The code in all inspected 10 samples where the N-Comparand is a member vari-
able can be improved to avoid having to check for null every time the member
variable needs to be used. In our samples, there is no obvious reason why mem-
ber variables are not explicitly initialized in every constructor. In fact in 5 of the
inspected samples, the member variable should even be final. This suggests a
failure in applying well-established object-oriented design principles, in particular
that of establishing class invariants [136].

As we see in Figure 4.5, a considerable percentage of null checks are guards
on method parameters. In the inspected code samples, we observe that developers

42 4.3. RESULTS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
ul

l C
he

ck
 R

at
io

(a)

Null Check Ratio

N
um

be
r

of
 O

cc
ur

re
nc

es
 (

P
ro

je
ct

s)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

(b)

Figure 4.3: The distribution of the per-project null check ratio. The boxplot in (a) shows
that more than half the projects have null check ratios of more than 32%. The his-
togram in (b) shows that the null check ratio distribution demonstrates a bell-shaped
curve around the value of 32%.

check parameters against null mainly to validate them. However, we differentiate
between two recurring patterns of null checks on parameters. In the first pattern,
a method throws an exception if a certain parameter is null. Listing 4.1 shows a
real example of this pattern. The second, and more questionable, pattern is shown
in Listing 4.2. The method skeletons in Listing 4.2 are the most recurrent usage
scenarios of a parameter null check. In these scenarios, the method does not accept
null as a parameter. However, instead of throwing a proper exception, the method
does nothing and returns silently without informing the caller of any problem.

public File writeToFile(final HttpEntity entity)
throws ClientProtocolException, IOException {

if (entity == null) {
throw new LibRuntimeException(LibResultCode.

E_PARAM_ERROR);
}

...
}

Listing 4.1: Throwing a proper exception when the parameter is null.

SOME_TYPE method1(Param p){
if(p==null){
return null;

}
METHOD_BODY

}

CHAPTER 4. NULL USAGE ANALYSIS 43

void method2(Param p){
if(p==null){
return;

}
METHOD_BODY

}

void method3(Param p){
if(p!=null){
METHOD_BODY

}
}

Listing 4.2: The most recurrent usage scenarios of a parameter null check.

More often than not, this indicates a poor API design. One can use, for in-
stance, the specification pattern [50][49] to extract the validation code, which throws
a proper exception, in a dedicated method or class. In any case, it is widely acknowl-
edged that passing null as an argument to methods is a bad practice and “the rational
approach is to forbid passing null by default” [124]. Nevertheless, developers often
add null checks on parameters because they expect null to be passed as a parameter.
Our results show a clear gap between what is considered a good practice and how
software is implemented in reality.

78.46%	

14.68%	

5.42%	
0.79%	 0.62%	 0.01%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Name	 MethodCall	 FieldAccess	 Enclosed	 ArrayAccess	 Other	

%
	 o
f	 O

cc
ur
re
nc
es
	

Type	 of	 Comparand	

Figure 4.4: The immediate kind of the N-Comparands as a parsing expression.

44 4.3. RESULTS

49.79%	

24.02%	 22.84%	

3.36%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

LocalVariable	 MemberVariable	 Parameter	 Undefined	

%
	 o
f	 O

cc
ur
re
nc
es
	

Type	 of	 Name	 Comparand	 (Checked	 Variables)	

Figure 4.5: The type of name expression comparands. Undefined indicates that 3.36%
cannot be determined, as explained in section 4.5

4.3.3 Where Does Null Come From?

When the N-Comparand is a name expression, we analyze the NC-Def-values as-
signed to it in all the NC-Def-expressions preceding the null check within the same
method. Figure 4.6 shows the kinds of the assigned NC-Def-values. As an an-
swer to the third research question (RQ3: How are the checked-for-null objects
initialized?) we find that 71% of the time the NC-Def-value is a method call ex-
pression, which means that null checks are mostly applied to values returned from
method invocations. In other words, when methods possibly return null, they tend
to cause NullPointerExceptions in the invoking methods forcing developers to add
null checks.

There is a long debate about whether methods should return null or not. In a
previous study [158], we found that missing null checks represent the most frequent
bug in Java programs. In this study, we show that null checks are applied to the re-
sults of method invocations. Both studies combined provide evidence that returning
null in methods is a major cause of bugs. Hence, we side with the opinion that devel-
opers should avoid returning null in their method implementations and either throw
an exception or return a special case object [124] such as a Null Object [211][212].

Surprisingly, some Java standard libraries exhibit this questionable design [124].
In our manually inspected code samples, we find 5 null checks because of methods
from the Java standard API e.g., Map.get(...), List.get(...), Iterator.next().

CHAPTER 4. NULL USAGE ANALYSIS 45

70.93%	

10.09%	
6.93%	

4.15%	 3.15%	 1.53%	 1.34%	 0.86%	 0.50%	 0.53%	
0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

MethodCall	 NullLiteral	 Cast	 ObjectCreaAon	 Name	 CondiAonal	 FieldAccess	 ArrayAccess	 StringLiteral	 Other	

%
	 o
f	 O

cc
ur
re
nc
es
	

Type	 of	 the	 Def-‐Value	 Assigned	 to	 the	 Comparand	 	

Figure 4.6: This diagram shows that the checked-for-null objects are mainly set or ini-
tialized using method invocations.

Another less frequent reason for checking a local variable for null is when it is
initialized within a method call or a constructor that might throw an exception before
completion. We observe this pattern in our manually-inspected code samples, as the
code skeleton shows in Listing 4.3. The variable is set to null first, initialized in a
try-catch block, then checked for null to make sure that initialization completed
and no exception was thrown.

...
Object obj = null;
try{

obj = METHOD_INVOCATION or CONSTRUCTOR_CALL
}catch(...){

....
}
if(obj != null){

...
}
...

Listing 4.3: When the initialization is in a try-catch block, a null check
usually follows to make sure no exception is thrown.

4.3.4 What Does Null Mean?

In the manual inspection phase we find that developers use null values for three
different reasons.

As an answer to the fourth research question (RQ4: How is null used in Java
programs?), the most recurrent usage of null is to encode or represent an error. 76
of 100 inspected samples fall into this category. For instance, if a method does not

46 4.4. DISCUSSION

accept null as a parameter, it returns null or just returns when it encounters a null
parameter. Another example is when a method returns null in a catch block.

The second usage of null is to represent the absence of a value (or the nothing-
ness). 15 out of the 100 inspected samples fall into this category. For example, left
and right branches in a leaf node are null in a binary tree. Another example is a
find(...) method that returns null in case it cannot find the item.

The third usage of null is when it is a proxy for a meaningful value. For in-
stance, in many code samples, we find non-boolean variables used as ones (null
means false and instantiated means true).

We argue that the first and third usage of null are bad practices as there are
other language constructs to represent the corresponding semantics. For errors and
failures, one should use well-defined exceptions as they are easier to read and act
upon. For the third usage, one can have a dedicated enum, class, or other data
type to represent the semantics in a more readable and maintainable form. In fact,
19 out of the 100 inspected classes contain potential bugs in the form of potentially
missing null checks. All of these 19 potential bugs exist when null represents an
error or a meaningful value.

We also argue that second usage scenario where null means the absence of a
value is only tolerable and not ideal, as one should use special case object [124] like
the Null Object [211][212] when applicable. Actually, even when the representation
of absence of value is available for free (such as an empty string for a String
variable), developers tend to not use it. Eight out of the inspected N-Comparands
are of type String and seven are of type List. Carefully reading the code, we
find out that uninitialized strings and lists are equivalent to empty strings and lists
correspondingly in these samples.

4.4 Discussion
Null usage often leads to various maintenance problems. Missing null check bugs,
useless NullPointerException stack traces, and vague null semantics are often the
consequences of the careless use of null value. A disciplined usage of null is highly
recommended [58], and alternatives, like the Null Object Pattern [211][212], should
be considered. However, the results of this study suggest that null is often misused
and overused in Java code.

To demonstrate how null is often misused, we put the observations from this
study and from our previous study on bug-fix patterns [158] into a hypothetical story
that represents the most recurrent pattern of wrong null usage.

A developer, A, adds a return null statement in the method body of m(...)
to indicate that a problem has occurred and the method m(...) cannot continue
its normal execution. Another developer, B, uses the method m(...) and assigns
its result to a local variable obj. When developer B runs his code, a NullPointerEx-
ception is thrown. Developer B looks at the stack traces struggling to understand
the problem and finally identifies the place of the null dereferencing. It is the local
variable obj and the null comes from the method invocation of m(...). Unable

CHAPTER 4. NULL USAGE ANALYSIS 47

to understand the meaning of null in this situation, developer B adds a null check
before using the local variable obj.

When such scenarios accumulate in a codebase, the code starts to get harder to
maintain and reason about, leading to the problems discussed in section 4.1. Our
study also reveals some actionable recommendations to reduce null checks and null
usage:

1. A method should not return null in case of errors. A method should always
throw a proper exception that explains the exact reason and even possible so-
lutions in case of errors.

2. Null should not be passed to public methods and public methods should not
accept null as a parameter. In other words, public method arguments should
be non-null by default.

3. Member variables should be initialized either in all constructors or through
the use of the Builder pattern. The point here is that objects should be fully
constructed before being created and class invariants should be explicitly es-
tablished.

4. String instances should be initialized to empty strings "".

5. List instances should be initialized to empty lists.

Following the aforementioned practices can prevent or at least mitigate the prob-
lems coming from null usage. These practices can be ensured manually during code
review or automatically using static code analyzers and annotations. An even more
radical approach is to forbid the usage of null altogether in the language and observe
the effects on the code quality, but this is a topic for a further study.

4.5 Threats to Validity
The internal threats to validity come from the known limitations of static analysis
itself on one hand, and the limitations of our heuristics on the other hand.

• As can be seen in Figure 4.5, NullTracker cannot trace 3.36% of the variables
back to their declarations, as can be seen in Figure 4.5, because we parse
and analyze one Java source file at a time. For instance, inherited member
variables cannot be discovered.

• NullTracker extracts all the NC-Def-expressions that appear lexically before
the null check regardless of the actual data flow taking all the possible NC-
Def-expressions into account.

• NullTracker cannot detect whether an N-Comparand is changed by passing it
as a parameter to other methods. Only NC-Def-expressions are considered.

48 4.6. CONCLUSIONS

• When an N-Comparand appears within the same method in multiple null
checks, every time it is considered a different N-Comparand leading to possi-
ble duplicates in the analysis of the N-Comparand kinds.

The external threats to validity come from the fact that we only analyzed 810 Java
open-source projects. The results might not generalize to all open source projects or
to industrial closed-source projects

4.6 Conclusions
In this chapter, we aim at understanding the missing null check problem by empir-
ically analyzing when, how, and why developers use null. We conduct a census of
the null checks in Java systems showing that 35% of all conditionals are null checks.
Our analysis reveals many bad practices in terms of null usage. Returning null in
methods, passing null as arguments, and uninitialized member variables are the most
frequent, and questionable, null usage patterns causing the high null check density.
However, the main source of null in null checks is returning null in methods.

These findings reveal that not only missing null checks pose a problem, but ex-
cessive null usage also does. Although we believe that a disciplined use of null
would solve most of the null-related problems, a tool that tells developers where to
add null checks and where to remove them would help developers produce better
code in terms of maintainability and quality.

In the next chapter, we design an empirical solution to the null-related problem
based on the key finding in this chapter: methods that return null are the main cause
of null checks.

5
An Empirical Solution to the Missing

Null Check Bug

In chapter 3, we show that missing null checks are among the most frequent bug
patterns in Java, leading to NullPointerExceptions (NPEs) and causing systems
to crash. Then in chapter 4, we show that methods that return null appear to be
the main source of this problem, as 70% of null-checked values are returned from
method calls. This indicates that developers are often unaware of the nullness of
the invoked methods. Method nullness denotes whether a method might return null
(nullable) or never returns null (non-null). In this chapter, we propose an empirical
approach to deduce method nullness to help developers add null checks in the right
place.

5.1 Harvesting the Wisdom of the Crowd

5.1.1 Motivation
Although it might be fairly easy for developers to reason about the nullness of meth-
ods in their own projects, analyzing methods in external dependencies is not. When
developers want to dereference the return value from methods in external APIs, they
often face three scenarios:

1. They assume that the method does not return null, then they deal with an NPE
later if it occurs. Although this technique can be used during development
with NPEs being detected and fixed through testing, some null dereferences
can make it into production code causing system crashes.

49

50 5.1. HARVESTING THE WISDOM OF THE CROWD

2. They defensively add a null check to eliminate the risk of getting an NPE.
This technique clutters the code with excessive null checks hindering code
comprehension and maintainability [103].

3. They check the source code and read the documentation of the external method
and try to reason about its return value, then add a null check when necessary.
However, as we show later, documentation is often missing and reverse engi-
neering unknown methods can be complicated.

All three scenarios are suboptimal. Method nullness is an important post-condition
of methods for developers to be aware of in order to make the right decisions.

5.1.2 The Nullability Measure
We devise an empirical approach to infer the nullness of library methods relying
on the wisdom of the crowd. Given a particular library, we collect and analyze its
clients and track how they handle the returned values from method calls, i.e., how
often they are checked to be non-null. The results are then aggregated per library
method in a nullability measure defined as follows:

Nullability(Method) =
CheckedDereferences(Method)

Dereferences(Method)

The nullability measure serves as a proxy for method nullness and expresses the
confidence that a particular method returns null. A nullability of zero indicates that
a method never returns null, i.e., the returned value is always dereferenced in clients
without a null check. The method’s nullness is therefore non-null. Conversely, a
non-zero nullability indicates that a method is nullable.

In this chapter, we investigate the nullability of methods in Apache Lucene,
which is the de facto standard library in Java for full-text searching. We collect
4,197 versions of 186 Lucene clients by exploiting the Maven dependency manage-
ment system with KOWALSKI, a tool developed particularly for this purpose. We
compute the nullability for the 42,092 detected methods belonging to 75 versions of
Lucene. We formulate and answer the following research questions:

RQ1: How is nullability distributed and what are the factors affecting it?
We partition the collected methods into methods that expose object state while keep-
ing encapsulation intact (getters) and methods that compute their return value (pro-
cessors). Then we calculate the nullability distribution for the methods when they
are called within Lucene itself (internal usage) and from external clients (external
usage). The majority of methods are never checked against null, but those that are
account for most of the usage. Getters do not document nullness at all, whereas there
is some nullness documentation for nullable processors. While the shapes of the dis-
tributions in internal and external usages are similar, in external usage there are many
methods checked that are not checked in internal usage, hinting at unnecessary null
checks.

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 51

RQ2: How does nullability reflect method nullness?
We select 600 methods that range in nullability from 0 to 1, and try to reverse-
engineer the nullness by manually inspecting the documentation and the source code
of the method. For about half the methods, this context is not broad enough to
decide whether a method returns null or not. Nonetheless, for some methods with a
nullability of 0 we can deduce that they do not return null, whereas most methods
with a non-zero nullability either document that they potentially return null or they
contain a return null statement.

RQ3: How can the nullability measure be used in practice?
We present an IDE plugin that adds nullability information to the method’s docu-
mentation as a usage recommendation, and we can add a corresponding annotation
to the return type of the method to assist null analysis tools. The nullability doc-
umentation enables developers to make a more informed decision about adding or
removing a null check. The null analysis points developers at locations where a null
check is unnecessary or potentially missing.

5.2 Bytecode Collection and Analysis

5.2.1 Bytecode Collection
We collect binaries of Lucene releases and Lucene clients, so that we can compare
internal and external usage of Lucene methods. We find and download the Lucene
related binaries by exploiting the Maven dependency management system. Maven
projects declare their dependencies in a meta-data file and binary releases are pub-
lished on a central package repository. Collecting binaries related to a specific library
means that we need to extract a sub-graph of the dependency graph spanned by all
projects. First, we need to find the libraries for which we want to collect clients. Sec-
ond, we need to find clients of the matched libraries. Third, we need to download
the binaries we want to analyze.

We implement this client collection process in a tool designed for this purpose
called KOWALSKI (detailed in Appendix A). KOWALSKI takes a project name as an
input, Lucene in our case, and finds all releases of Lucene by querying Maven Cen-
tral Search.1 Then it scrapes mvnrepository to find projects depending on Lucene.2

In the third step it uses Maven to fetch the clients, including their dependencies,
from the package repository. More information about KOWALSKI can be found in
the dedicated paper [113].

KOWALSKI finds and collects 7,123 versions of 294 artifacts belonging to 174
groups related to Lucene. The whole process is highly parallelized and completes
within two hours on a multi-core machine. The machine runs a 64 bit Ubuntu OS,
has 32 cores at 1.4 GHz, and 128 GB of RAM.

1https://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.apache.
lucene%22

2https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/
usages

https://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.apache.lucene%22
https://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.apache.lucene%22
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/usages
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/usages

52 5.2. BYTECODE COLLECTION AND ANALYSIS

5.2.2 Static Analysis

1 public void traverse(Node child) {
2 Node parent = child.getParent();
3 child.mark();
4 if (parent != null) {
5 parent.getSibling().mark();
6 }
7 }

Listing 5.1: Example method for null dereference analysis.

We analyze the collected binaries to detect which return values of Lucene meth-
ods are checked for null and which are not. The static analysis is based on SOOT’s
null analysis [202, 167], an intra-procedural and path-sensitive data-flow analysis
that tracks the nullness of local variables. For each path in the control flow graph
it tracks whether a local variable is known to be null, non-null, or unknown. The
analysis supports variable aliasing and learns about their nullness from null checks,
instanceof checks, assignments of newly instantiated objects, and dereferences
in field accesses, array accesses, method invocations, etc. For instance, in List-
ing 5.1, SOOT finds the nullness of the variable parent to be non-null on line 5
as it was checked in the condition of the wrapping if. Our analysis extends the
SOOT nullness analysis by extracting the following three features from all method
implementations in the collected clients of Lucene. First, we identify the first deref-
erence of every value. Those are the locations where a null pointer exception could
potentially happen. The method in Listing 5.1 contains three potential null deref-
erences: child on line 2, parent and parent.getSibling() on line 5. Note
that the subsequent dereference of child on line 3 can never throw a null pointer
exception, as the same value has been dereferenced on line 2 before. Second, we
track where the dereferenced value originates from. For child this is the param-
eter, for parent this is child.getParent(), and for parent.getSibling()
it is parent.getSibling() itself. Third, we note whether or not the derefer-
enced value is checked for null before, indicating whether its origin is nullable or
not. For child the nullness of the parameter is unknown, for parent we know that
child.getParent() is non-null as it was checked, and for parent.getSibling()
it is unknown.

if (child.getParent() != null) {
child.getParent().mark();

}

Listing 5.2: Null check of a method return value.

A conservative null analysis only works on local variables. However, not all null
checks use a local variable that is checked and dereferenced later. Especially fields
accessed through getters and values that are only used once may not be assigned to
a local variable, but checked for null using an expression. For example, Listing 5.1
uses a local variable, but Listing 5.2 uses a method call. A conservative analysis
detects a potential null dereference of child.getParent() on line 2 in List-
ing 5.2, but for a human reader the same dereference looks safe, as the method call

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 53

is checked before dereferencing it. Our analysis assumes lexically identical expres-
sions to evaluate to the same value, thus classifying this dereference as safe. This
assumption is unsound as methods can return different objects for each invocation,
but it is a cheap heuristic compared to a more precise, but computationally much
more expensive, object-sensitivity [138].

Different methods might have conceptually different intents that can reveal fur-
ther insight into what exactly is checked for null, therefore we distinguish between
getters and processors. We introduce a heuristic to classify a method as a getter if
its name is get followed by the name of a field of the declaring class, otherwise we
classify the method as a processor. Note that this classification is merely a tag on a
method. It does not interfere with the analysis.

The analysis of the 7,123 artifacts takes approximately 12 hours on the same 32-
core machine on which we collect them. Of all artifacts, 1,627 Lucene artifacts and
2,570 artifacts of external clients contain a dereference of Lucene methods. External
clients include Solr, Elasticsearch, Neo4j, and OrientDB amongst others. Overall
we find 292,871 dereferences of return values of 42,092 methods belonging to 75
different Lucene releases.
5.2.3 Validation

We inspect the precision of our analysis and heuristics by manually inspecting a
sample of the results and the related code.

Dereference Analysis

We check how precise our potentially unsafe dereference analysis is. Over half
of all analyzed methods do not contain potentially unsafe dereferences. About a
quarter of the methods contain a single dereference. About 96% of the methods
contain no more than eight dereferences. We ignore the remaining methods with
more dereferences in the inspection, as they are potentially complex and hard to
reason about. For 98% of all dereferences there is only a single possible origin. This
allows us to precisely reason about the intention of a null check, as it can only check
a single value. We inspect 50 randomly selected methods in which no dereferences
are detected and 50 randomly selected methods for which we detected at least one
dereference. Our analysis reliably finds 109 potentially unsafe dereferences and their
originating values. Only in two methods do we mistakenly classify as potentially
unsafe. For the originating values we found no errors. All detected originating
values are true possible origins and all possible originating values are detected.

Nullness Analysis

We inspect the accuracy of the nullness analysis. We inspect another 100 randomly
selected methods for which we detected at least one dereference. Of 117 derefer-
ences we correctly classified 15 as non-null and 98 as unknown. One instance is
misclassified as non-null, another one as unknown. Three dereferences are mistak-
enly detected as potentially unsafe dereferences. In one instance the dereferenced

54 5.2. BYTECODE COLLECTION AND ANALYSIS

1 public void register(XMLReader parser) {
2 try {
3 // 1 unsafe, is unsafe
4 parser.setFeature("...", true);
5 } catch (SAXException e) {
6 log.warn("...");
7 }
8 try {
9 // 2 unsafe, but is safe

10 parser.setFeature("...", false);
11 } catch (SAXException e) {
12 log.warn("...");
13 }
14 // 3 unsafe, but is safe
15 parser.setContentHandler(this);
16 // 4 safe, is safe
17 ErrorHandler handler = parser.getErrorHandler();
18 }

Listing 5.3: Dereferences of parser with dereferences 2 and 3 falsely classified
as potentially unsafe. String literals shortened and method trailer omitted from
AbstractTopicMapContentHandler in net.ontopia:ontopia-
engine:5.3.0.

field is initialized with a new object immediately before the dereference. As we do
not track assignments to fields, but only locals, we cannot detect this initialization.
The other two misclassifications are the second and third dereference of the param-
eter parser on line 10 and line 15 in the method listed in Listing 5.3. They are
caused by the way the control flow graph is constructed. A try block creates a new
branch in the control flow graph and we have to merge two branches after the try
statement. In the first branch the try block succeeds, in which case parser is now
safe to dereference. In the second branch the try block fails and it is assumed that no
statement was executed, in which case we do not know if parser is safe to deref-
erence on line 10 and line 15. Assuming that pushing the method parameters and
receiver of the method setFeature() on the stack on line 4 always succeeds (since
they are constants and a reference), the actual method invocation is the first opera-
tion that could fail. Correcting these misclassifications would require more complex
control flow graphs that replicate the execution model of the virtual machine more
precisely.

As we have a low rate of non-null instances, we inspect another 100 randomly
selected potentially unsafe dereferences classified as non-null. In 95 cases we cor-
rectly classify it as non-null. In 5 cases the classification is wrong. They happen
in complex loops, try-catch statements, and casting situations. Here we also find
interesting patterns where values are checked for null. Many null checks for fields
occur within hashcode() and equals() methods, which can be auto-generated by
an IDE like Eclipse. The pattern to check a resource for null before closing it in a
finally block is also prevalent. This can be refactored to use Java 7 try-with-resource

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 55

Table 5.1: Methods used both internally by Lucene and external clients, reduced to the
Lucene major version.

major version methods dereferences
1 6 35
2 57 12,038
3 105 34,128
4 209 64,502
5 117 31,992
6 74 14,022

568 156,717

blocks3 to improve code readability. We find null checks for lazy initialization of
fields, and setting defaults for null parameters. It is also common to throw an error
if a value is null, or exit the method with a return or a return null;.

Getter Heuristic

We validate our getter heuristic, which classifies methods as getters if their name
starts with get followed by the name of the field of the class. Therefore, we ran-
domly select 100 methods and inspect them, 50 of which classified as getters, 50 of
which are not. Only one method classified as a getter does not return the field with
the getter name, but instead computes the return value. Eight methods which are
not classified as getters, are getters. They return the field with a name that is very
similar to the method name, or do not use a preceding get. Most getters directly
return the associated field. In some cases the field is lazily initialized. In case of a
collection type a shallow copy is sometimes returned. The getter heuristic we use is
an under-approximation, as we can precisely identify only getters, but we miss some
getters.

5.3 Nullability Distribution
To answer our first research question, RQ1: How is nullability distributed and what
are the factors affecting it?, we measure the nullability for all 42,092 methods whose
return values are dereferenced. In Figure 5.1 we observe that 79% of the methods
are never checked for null, 12% are always checked, and 9% are sometimes checked
and sometimes not. Note that the nullability peaks at 1

2 , 2
3 , 3

4 , etc. are due to methods
for which only a handful of dereferences are found.

We look at the dataset from two different perspectives. First, we contrast inter-
nal and external usage of Lucene regarding nullability to identify potential disagree-
ment. Second, we distinguish between the usage of getters and processors, as they
serve different intents. We filter the dataset to only include methods that are used
internally by Lucene itself as well as by external clients. We reduce the selected

3https://docs.oracle.com/javase/tutorial/essential/exceptions/
tryResourceClose.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

56 5.3. NULLABILITY DISTRIBUTION

0

10000

20000

30000

0.0 0.2 0.4 0.6 0.8 1.0
nullability

m
et

ho
ds

42 092 methods
Nullability distribution

0

200

400

600

0.0 0.2 0.4 0.6 0.8 1.0
nullability

m
et

ho
ds

Nullability distribution

Figure 5.1: The nullability distribution of the 42,092 Lucene methods that are derefer-
enced. The nested distribution zooms in to the nullability range excluding the extremes
]0, 1[.

methods belonging to 75 releases to the six major versions of Lucene by their sig-
nature (qualified class name, method name, argument types) to increase the support
for each method. This reduction assumes that the nullness of a method remains un-
changed for all different releases of a major version. In Table 5.1 we find the 568
methods spread across the major releases dereferenced 156,717 times. We partition
the dereferences and methods by the getter/processor and external/internal dimen-
sions. For each of the four partitions we find a median of around 30 dereferences per
method. The full spectrum ranges from methods only dereferenced once to some
dereferenced 5,071 times.

Figure 5.2 shows the distribution of the selected methods over the whole nulla-
bility range from 0 (returned value is never checked for null before dereferencing)
to 1 (returned value is checked for null before every dereference). We find 86 getters
and 482 processors. Across all four partitions most methods are never checked (ex-
ternal getter 90%, external processor 65%, internal getter 95%, internal processor
74%). Some processors are always checked while this category is not significant for
getters. For getters the share of checked methods is much smaller than for proces-
sors. This could indicate that fields are rarely null. Evidence for this hypothesis is
also reported by Chalin et al., as they show that fields are eventually non-null [34].
In the validation of our getter heuristic we also find many cases of lazy initialization
of fields, which supports this hypothesis.

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 57

getter processor
external

internal

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

0

100

200

300

nullability

m
et

ho
ds

568 methods used internally and externally
Nullability distribution

getter processor

external
internal

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

0

5

10

15

nullability

m
et

ho
ds

Nullability distribution
getter processor

external
internal

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

0

5

10

15

nullability

m
et

ho
ds

Nullability distribution

getter processor

external
internal

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

0

5

10

15

nullability

m
et

ho
ds

Nullability distribution
getter processor

external
internal

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

0

5

10

15

nullability

m
et

ho
ds

Nullability distribution

[] []

15

10

5
0
0.0 0.2 0.4 0.6 0.8 1.0 [] 0.0 0.2 0.4 0.6 0.8 1.0 []

15

10

5
0

Figure 5.2: The nullability distribution of the 568 Lucene methods that are dereferenced
both internally and externally. The nested distribution zooms in to the nullability range
excluding the extremes]0, 1[.

5.3.1 Documentation

Documentation could be another factor that affects whether or not the return value
of method is checked before dereferencing it. For this purpose we collect and pro-
cess the JavaDoc for all selected methods. If either the word null occurs in the
return section of the method documentation, or both words null and return oc-
cur in the general method description, we classify the method as having its nullness
documented. If the method documentation is found but the heuristic does not pass,
we classify the method as not mentioning the nullness of the return value. The mea-
sure does not extract whether the documentation states that the method is non-null
or nullable, but only if the nullness is mentioned at all. We do not differentiate be-
tween internal and external usage, as the documentation is an attribute of a method.
Figure 5.3 shows that nullness is not documented at all for getters and often undocu-
mented for processors. Table 5.2 contains the exact counts for each category, as we
could not always find the documentation. Regarding nullability, nullness is rarely
documented for processors when the nullability is 0. For processors with a nullabil-
ity higher than zero, the method documentation often makes a statement about the
nullness. Getters do not document nullness at all, which can again be seen as support
for eventually non-null fields [34].

58 5.3. NULLABILITY DISTRIBUTION

getter processor

[0]]0, 1[[1] [0]]0, 1[[1]

0

100

200

300

nullability

m
e
th

o
d
s

documented nullness no yes

internal and external merged

Nullness documentation

Figure 5.3: Nullness documentation of methods, split into nullability classes. See Ta-
ble 5.2 for exact counts.

Table 5.2: Nullness documentation of methods, split into nullability classes.

nullability

class doc. not found

method doc. not found

nullness not mentioned

nullness mentioned

getter
[0] 4 11 60 0

]0, 1[0 4 5 0
[1] 0 1 1 0

processor
[0] 14 63 196 14

]0, 1[1 47 78 51
[1] 0 6 5 7

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 59

3147

5245

9

77

147

4286

4

82

47813

23315

167

315

24732

48032

127

355

getter processor
e
x
te

rn
a

l
in

te
rn

a
l

dereferences methods dereferences methods

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00ra
ti
o

nullability [0]]0, 1]

Dereferences vs. nullability

Figure 5.4: Dereferences contrasted with the originating methods of the dereferenced
values.

5.3.2 Disagreement between Internal and External Usage
The sets of checked and unchecked methods only partially overlap between internal
and external usage. In Figure 5.2 we see that in external usage there are many
processors with a low nullability whereas the internal nullability distribution in]0, 1[
is more balanced. The disagreement in usage is also visualized by contrasting the
number of dereferences and associated methods in Figure 5.4. In external usage
there are generally more methods checked and they are more used than unchecked
ones. The checked processors are more often dereferenced, relative to all externally
dereferenced processors as well as relative to the internal usage. Table 5.3 shows
that there are 7 getters and 68 processors that are never checked internally but are
checked externally. Only 2 getters and 28 processors are checked internally but not

Table 5.3: Classification differences regarding nullability of methods between internal
and external usage.

nullability (internal→ external) getter processor

agree
[0]→ [0] 75 287

]0, 1]→]0, 1] 2 99

disagree
[0]→]0, 1] 7 68
]0, 1]→ [0] 2 28

60 5.4. MANUAL INSPECTION

Table 5.4: Inspected methods with classification differences regarding nullability be-
tween internal and external usage.

nullability manual classification
(internal→ external) unknown non-null nullable

getter
[0]→]0, 1] 4 2 1
]0, 1]→ [0] 2 0 0

processor
[0]→]0, 1] 46 15 7
]0, 1]→ [0] 15 3 10

externally. We inspect the 105 methods where internal and external usage disagree.
From the method source code and documentation we try to reverse-engineer the
method nullness. We classify a method as non-null if either the documentation states
so or all return paths always return an object. We classify a method as nullable if
either the documentation states so or at least one return path returns null. The results
in Table 5.4 show that for most of those methods our reverse-engineering approach
cannot deduce the nullability of the majority of the methods. However, we find that
the internal usage is more often in concordance with our classification than external
usage. For example, we classify 15 processors that are never checked internally as
non-null, whereas 7 are nullable.

We learn three things from the inspection of disagreement of internal and ex-
ternal usage. First, external usage is more defensive than internal usage. Second,
reverse-engineering the nullness of a method is non-trivial, even with the source
code at hand. Third, internal usage is a better indicator for method nullness than
external usage, yet, it is not precise.

5.4 Manual Inspection

We answer our second research question, RQ2: How does nullability reflect method
nullness?, by manually inspecting Lucene methods across the whole nullability
range and trying to reverse-engineer the nullness of the method. For this purpose we
partition the nullability spectrum into six intervals and randomly select 100 methods
with a nullability in each interval. The nullability intervals are [0],]0, 0.2],]0.2, 0.4],
]0.4, 0.6],]0.6, 0.8], and]0.8, 1]. We select those methods from the 11,754 Lucene
methods with a minimal support of five dereferences, so that their nullability is com-
puted from at least a handful of dereferences. For each method we find their im-
plementation and documentation, then we try to decide on the nullness of the return
value. We classify a method as non-null if either the documentation states so or all
return paths always return an object. We classify a method as nullable if either the
documentation states so or at least one return path returns null. If none of the above
conditions holds, we classify the method as unknown. The results of this inspection
are shown in Figure 5.5. For about half of the methods the nullness is unknown
using our procedure. It is quite rare that the documentation states that the method
is non-null. Even rarer are methods for which we can deduce non-nullness from

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 61

0

25

50

75

100

[0]]0, 0.2]]0.2, 0.4]]0.4, 0.6]]0.6, 0.8]]0.8, 1]

nullability

m
e
th

o
d
s

nullness non−null unknown nullable

Nullness vs. nullability

Figure 5.5: Manual classification of sources and documentation of 600 Lucene meth-
ods, partitioned by their nullability into five intervals of equal length, except the [0]
category.

their implementation. In those cases the return value is mostly a collection. We can
see that the inferred nullability correlates with the reverse-engineered nullness. The
majority of methods with low nullability are non-null. Even more convincing is the
situation at the other end of the spectrum. The vast majority with a high nullabil-
ity are actually nullable. We observe non-null methods with a non-zero nullability,
indicating unnecessary null checks, as well as nullable methods with nullability of
zero, indicating potentially missing null checks. The direction of causality is unclear
though: Do developers check return values because of the documentation or is the
nullness documented because null pointers have been observed? Nonetheless, we
see that nullability reflects the nullness quite well.

5.5 Transferring Nullability to the IDE
Inspecting the nullability distribution reveals that non-null and nullable methods can
be partially separated. Manual inspection suggests that the nullness of methods is
often undocumented or non-trivial to reverse-engineer. These findings lead us to the
third research question, RQ3: How can the nullability measure be used in practice?
As a showcase of how nullability information can be harvested, we have imple-
mented an Eclipse plugin that integrates Lucene nullability information in the IDE.
The goal of the plugin is to give hints to developers about potential null derefer-
ences and unnecessary null checks. If we can detect potential null pointers, we can
avoid bugs. If we can detect unnecessary null checks, we can reduce cyclomatic
complexity [126]. The latter point is relevant as we find unnecessary null checks
in the manual inspection and null checks account for 35% of all conditional state-
ments [157].

62 5.5. TRANSFERRING NULLABILITY TO THE IDE

Figure 5.6: Augmented JavaDoc with nullability (1), nullness annotation (2) for a
Lucene method with a high nullability giving a warning for a potential bug (3).

First, the plugin adds the nullability information to the JavaDoc of a method, with
both confidence and support. The nullability gives the developer the static frequency
of a null return value. Confidence and support are a proxy for the trust that can be put
into the nullability. If the nullability is computed from only a handful of samples, it
might not be trustworthy as not all usage scenarios of the method might be covered.
Figure 5.6 shows our plugin applied on a code excerpt of Elasticsearch 2 for which
a null pointer bug was reported.4 The cause of the bug is the unconditional deref-
erence of the return value of the Lucene method LeafReader.terms(String).
Our plugin adds nullability documentation with a blue background at position (1).
Besides the nullability of 63% it also tells us that this is computed from 22 out of 35
dereferences that were checked for null. Documenting nullness is certainly impor-
tant, but it still requires developers to read the documentation to detect the nullness.
For example, in Figure 5.6 the nullness is described in the original documentation,
but the developer nevertheless missed it. To raise awareness for potential nullness,
the tools should give more obvious hints to developers about potential null pointers.

Second, the plugin generates external nullness annotations5 from the nullability
measured for Lucene methods. For methods with a nullability of zero we gener-

4https://github.com/elastic/elasticsearch/pull/12495/commits/
d7491515b21fb4b3c94956c75bcb74b8a5c863ae

5http://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.
user/tasks/task-using_external_null_annotations.htm

https://github.com/elastic/elasticsearch/pull/12495/commits/d7491515b21fb4b3c94956c75bcb74b8a5c863ae
https://github.com/elastic/elasticsearch/pull/12495/commits/d7491515b21fb4b3c94956c75bcb74b8a5c863ae
http://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_external_null_annotations.htm
http://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_external_null_annotations.htm

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 63

Figure 5.7: Augmented JavaDoc with nullability (1), nullness annotation (2) for a
Lucene method with a high nullability giving no warning for a potential bug (3) due
to a missing null check.

ate a @NonNull annotation. For methods with a non-zero nullability we generate a
@Nullable annotation. These annotations are stored as Eclipse External Annota-
tions that do not require bytecode manipulation of the Lucene binary, but they are
stored alongside the library and linked through the Eclipse project configuration.
The internal Eclipse JDT Null Analysis6 considers these external annotations. In
Figure 5.6 the annotation is visible in the documentation at position (2). The warn-
ing generated for the potential null pointer is at position (3). The bug in Elasticsearch
was eventually fixed by guarding the dereference with a null check (see Figure 5.7).
After the bug fix, the null analysis issues no warning anymore, as the dereference is
now safe. Detecting potential bugs is not the only use case for the null analysis, as it
can also detect dead code caused by unnecessary null checks.

Third, our plugin can be configured to only generate annotations for methods
with nullability within a certain range. For example we can set the upper limit for the
generation of non-null annotations to 0 and the lower limit for nullable annotations
to 0.8. For all methods with a nullability in between 0 and 0.8 no annotations are
generated and conversely the null analysis does not generate any warnings. This
tuning can be used to reduce the number of warnings.

In the future, we plan to evaluate the IDE plugin with developers in the industry

6https://wiki.eclipse.org/JDT_Core/Null_Analysis

https://wiki.eclipse.org/JDT_Core/Null_Analysis

64 5.6. THREATS TO VALIDITY

low support (30 or less)

high support (over 30)

0 10 20 30 40
number of warnings

FP

TP

UNKNOWN

Figure 5.8: The accuracy of the nullness warnings on Elasticsearch code.

to assess its usefulness and further improve it. The plugin sources are available
online,7 including a sample project and sample nullability data.

5.5.1 Evaluation

We inspect the warnings generated by our plugin on the sources of the Elasticsearch
project at version 1.7.3 from October 15th, 2015. This is the newest version of Elas-
ticsearch we analyzed and uses Lucene 4, for which we collect the most usage data.
Our analysis identifies 764 potentially unsafe dereferences of Lucene methods. The
plugin is configured to generate @Nullable annotations for methods with a nulla-
bility of at least 0.2, as our manual inspection reveals that there is a high agreement
of nullability and nullness above this theshold. For methods with a nullability of
at most 0.1, the plugin generates @NonNull annotations, so that a few unnecessary
null checks detected in the analysis still lead to a generated annotation. When our
plugin is activated, we find 72 problems, caused by 21 different Lucene methods.
We classify the warnings according to the nullness of the causing method using the
same procedure as in section 5.4. Figure 5.8 shows the results of the manual in-
spection. Interestingly, warnings generated from methods with high support have
only one confirmed false positive, but 31 confirmed true positive. On the other hand,
low support methods do not generate any confirmed true positive. We conclude that
nullability is correct for methods with a high support. In other wards, we can trust
the wisdom of the crowd, with respect to inferring nullness, only when the crowd is
large enough.

5.6 Threats To Validity

5.6.1 Construct Validity

The results we gain are only as accurate as the analysis. We validate all parts of the
analysis we suspect to be critical. We report some wrongly classified samples that
hint at bugs in the analysis implementation. Nonetheless, most samples are correctly
classified. Our confidence in the analysis is supported by the manual inspection

7https://github.com/maenu/method-nullability-plugin

https://github.com/maenu/method-nullability-plugin

CHAPTER 5. AN EMPIRICAL SOLUTION TO THE MISSING NULL CHECK BUG 65

which reveals that methods with a high nullability are mostly nullable, whereas many
methods with a low nullability are non-null.

To inspect where internal and external usage disagree on nullability we group
methods by their Lucene major version. This is an over-approximation, as Lucene
does not strictly adhere to semantic versioning and introduces some breaking changes
in minor releases. If a method changes from non-null to nullable without changing
its signature between two minor versions of the same major release, this approxima-
tion mixes the nullability for two different methods.

Based on nullability we generate nullness annotations that lead to warnings.
Those warnings can also be false positives in some cases. We find both checked
methods that never return null according to the method’s documentation and imple-
mentation, as well as unchecked methods that document a potential nullness. The
nullability measure of a method hints at the frequency of null checked return values.
Nullability cannot express in which context a method returns null or not. To re-
duce the number of false positive warnings, our plugin can be configured to generate
annotations only for methods in a specific range.

5.6.2 Generalizability
The composition of our dataset influences the generalizability of our results. KOWAL-
SKI collects only Lucene and other OSS projects that depend on Lucene and are
published on Maven Central. First, this excludes all closed source projects. If given
access to a company repository, KOWALSKI can also be used to collect a dataset of
clients of a company-internal library. The static analysis can be reapplied as well.
Second, all open source projects that are not published on Maven Central are ex-
cluded. There are other popular Maven repositories that may contain other Lucene
clients, for example jcenter8 and clojars.9 However, Maven Central is a large repos-
itory that serves 1,935,045 versions of 185,693 artifacts.10 Some software projects
are not published in a repository at all. We lack a measure to estimate how many
Lucene clients are only distributed as sources, for example on GitHub. As our anal-
ysis is tailored to run on binaries, it would require a build of these projects. Package
repositories are primarily used to distribute reusable libraries, therefore our dataset
has a strong bias towards libraries as clients. Libraries may use Lucene differently
than projects further down the dependency hierarchy. Third, we only analyze the
Lucene ecosystem. The results may not be generalizable to other ecosystems.

5.7 Conclusions
In this chapter, we demonstrate an empirical approach to detect null-related bugs.
We harvest the wisdom of the crowd to infer the nullness of methods of Apache
Lucene. The inference is based on nullability that measures the frequency of null

8https://bintray.com/bintray/jcenter
9https://clojars.org/

10https://search.maven.org/#stats, date of access May 3, 2017

https://bintray.com/bintray/jcenter
https://clojars.org/
https://search.maven.org/#stats

66 5.7. CONCLUSIONS

checks of the method return value before it is dereferenced. We find that most meth-
ods are used as if they were non-null, i.e., they never return null. The nullness of
the non-null methods is rarely documented, nullable methods document the nullness
more often. Getters are generally non-null and do not document nullness at all. We
present an IDE plugin that utilizes method nullability to augment documentation
and to integrate with static analysis tools. The plugin points to potential null deref-
erences and unnecessary null checks. With tuneable configurations, developers can
limit the number of false positives and detect potential problems in the code with
high accuracy, leading to an efficient and adaptable bug detection for this family of
bugs.

In chapter 3, chapter 4, and this chapter, we show how we employ empirically-
grounded analysis to discover the missing null bug pattern, analyze it, and build
an efficient bug detector for it. In the following chapters, we demonstrate how we
empirically optimize bug prediction as a machine learning model and a software
quality tool.

6
Optimizing Bug Prediction by Applying

Feature Selection

There are several optimizations that can be applied to a bug predictor from the ma-
chine learning perspective. The first optimization we explore is feature selection,1

which is the process of determining the smallest subset of features that exhibits the
strongest effect. Feature selection often decreases model complexity and increases
prediction accuracy, especially when there is a large number of features. There are
two well-known types of feature selection methods: filters and wrappers. Filters se-
lect features based on their relevance to the response variable independently of the
prediction model. Wrappers select features that increase the prediction accuracy of
the model.

While there has been extensive research on the impact of feature selection on
prediction models in different domains, our investigation reveals that it is a rarely
studied topic in the domain of bug prediction. Few studies explore how feature se-
lection affects the accuracy of classifying software entities into buggy or clean [187,
61, 33, 107, 204, 100, 99, 64], but to the best of our knowledge no dedicated study
exists on the impact of feature selection on the accuracy of predicting the number
of bugs. As a result of this research gap, researchers often overlook feature selec-
tion and provide their prediction models with all the metrics they have on a software
project or in a dataset. We argue that feature selection is an important step in the
bug prediction pipeline and its application might alter previous findings in the liter-
ature, especially when it comes to comparing different machine learning models or
different software metrics.

1Feature selection is also known as variable selection, attribute selection, and variable subset selection.

67

68 6.1. TECHNICAL BACKGROUND

In this chapter, we treat bug prediction as a regression problem where a bug
predictor predicts the number of bugs in software entities as opposed to classifying
software entities as buggy or clean. We investigate the impact of filter and wrap-
per feature selection methods on the prediction accuracy of five machine learning
models: K-Nearest Neighbour, Linear Regression, Multilayer Perceptron, Random
Forest, and Support Vector Machine. More specifically, we carry out an empiri-
cal study on five open source Java projects: Eclipse JDT Core, Eclipse PDE UI,
Equinox, Lucene, and Mylyn to answer the following research questions:

RQ1: How does feature selection impact the prediction accuracy? Our results show
that applying correlation-based feature selection (CFS) improves the prediction ac-
curacy in 32% of the experiments, degrades it in 24%, and keeps it unchanged in
the rest. On the other hand, applying the wrapper feature selection method improves
prediction accuracy by up to 33% in 76% of the experiments and never degrades it in
any experiment. In fact, after applying wrapper feature selection, the simple Linear
Regression performs at least as well as more advanced models like Random Forest
and Support Vector machine.

RQ2: Are wrapper feature selection methods better than filters? Wrapper feature
selection methods are consistently either better than or similar to CFS. Applying
wrapper feature selection eliminates noisy and redundant features and keeps only
relevant features for that specific project, increasing the prediction accuracy of the
machine learning model.

RQ3: Do different methods choose different feature subsets? We realize there is
no optimal feature subset that works for every project and feature selection should
be applied separately for each new project. We find that not only different methods
choose different feature subsets on the same projects, but also the same feature selec-
tion method chooses different feature subsets when applied on different projects. In-
terestingly however, all selected feature subsets include a mix of change and source
code metrics.

6.1 Technical Background

Trained on bug data and software metrics, a bug predictor is a machine learning
model that predicts defective software entities using software metrics. The software
metrics are called the independent variables or the features. The prediction itself is
called the response variable or the dependent variable. If the response variable is
the absence/presence of bugs then bug prediction becomes a classification problem
and the machine learning model is called a classifier. If the response variable is the
number of bugs in a software entity then bug prediction is a regression problem and
the model is called a regressor.

Feature selection is an essential part in any machine learning process. It aims at
removing irrelevant and correlated features to achieve better accuracy, build faster
models with stable performance, and reduce the cost of collecting features. Model

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 69

Total Error

Va
ria

nc
e

Bias2

Model Complexity

Er
ro

r O
pt

im
um

 M
od

el
 C

om
pl

ex
ity

(a)

Lo
w

 B
ia

s
H

ig
h

Bi
as

High VarianceLow Variance

(b)

Figure 6.1: This illustrative figure shows the relationship between model complexity
and model error in (a) and demonstrates the concepts of variance and bias in (b) [22].

error is known to be increased by both noise [8] and feature multicollinearity [3].
Different feature selection algorithms eliminate this problem in different ways. For
instance, correlation based filter selection chooses features with high correlation
with the response variable and low correlation with each other.

Also when we build a prediction model, we often favour less complex models
over more complex ones due to the known relationship between model complex-
ity and model error, as shown in Figure 6.1(a). Feature selection algorithms try to
reduce model complexity down to the sweet spot where the total error is minimal.
This point is called the optimum model complexity. Model error is computed via
the mean squared error (MSE) as: MSE = 1

N

∑N
i=1(Ŷi − Yi)

2 where Ŷi is the
predicted value and Yi is the actual value. MSE can be decomposed into model bias
and model variance as:
MSE = Bias2 + V ariance+ IrreducibleError [78]

As seen in Figure 6.1(b), Bias is the difference between the average prediction
of our model to the true unknown value we are trying to predict. Variance is the vari-
ability of a model prediction for a given data point. As can be seen in Figure 6.1(a),
reducing model complexity increases the bias but decreases the variance. Feature
selection sacrifices a little bit of bias in order to reduce variance and, consequently,
the overall MSE.

Every feature selection method consists of two parts: a search strategy and a
scoring function. The search strategy guides the addition or removal of features to
the subset at hand and the scoring function evaluates the performance of that subset.
This process is repeated until no further improvement is observed.

70 6.1. TECHNICAL BACKGROUND

Table 6.1: The CK Metrics Suite [36] and other object-oriented metrics included as the
source code metrics in the bug prediction dataset [38]

Metric Name Description
CBO Coupling Between Objects
DIT Depth of Inheritance Tree
FanIn Number of classes that reference the class
FanOut Number of classes referenced by the class
LCOM Lack of Cohesion in Methods
NOC Number Of Children
NOA Number Of Attributes in the class
NOIA Number Of Inherited Attributes in the class
LOC Number of lines of code
NOM Number Of Methods
NOIM Number of Inherited Methods
NOPRA Number Of PRivate Atributes
NOPRM Number Of PRivate Methods
NOPA Number Of Public Atributes
NOPM Number Of Public Methods
RFC Response For Class
WMC Weighted Method Count

Table 6.2: The change metrics proposed by Moser et al. [143] included in the bug
prediction dataset [38]

Metric Name Description
REVISIONS Number of reversions
BUGFIXES Number of bug fixes
REFACTORINGS Number Of Refactorings
AUTHORS Number of distinct authors that checked a file into the repository
LOC ADDED Sum over all revisions of the lines of code added to a file
MAX LOC ADDED Maximum number of lines of code added for all revisions
AVE LOC ADDED Average lines of code added per revision
LOC DELETED Sum over all revisions of the lines ofcode deleted from a file
MAX LOC DELETED Maximum number of lines of code deleted for all revisions
AVE LOC DELETED Average lines of code deleted per revision
CODECHURN Sum of (added lines of code - deleted lines of code) over all revisions
MAX CODECHURN Maximum CODECHURN for all revisions
AVE CODECHURN Average CODECHURN for all revisions
AGE Age of a file in weeks (counting backwards from a specific release)
WEIGHTED AGE Sum over age of a file in weeks times number of lines added during that week normal-

ized by the total number of lines added to that file

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 71

6.2 Motivation
In this section, we shortly discuss the importance of predicting the number of bugs
in software entities. Then, we highlight the impact of feature selection on bug pre-
diction and particularly motivate the need for studying the wrapper methods.

6.2.1 Regression vs Classification
Most of the previous research treats bug prediction as a classification problem where
software entities are classified as either buggy or clean. In a recent study of exist-
ing bug prediction techniques only 5 out of the 64 surveyed papers apply regression
techniques to predict the number of bugs [121]. However, software bugs are not
evenly distributed and tend to cluster [160], and some software entities commonly
have larger numbers of bugs compared to others. A classifier would draw no distinc-
tion between a module containing ten bugs and one with a single bug, resulting in
a less useful feedback for quality assurance. Predicting the number of bugs in each
entity provides more insights about the quality of these software entities [152]. First,
it helps in prioritizing software entities to increase the efficiency of related develop-
ment tasks such as testing and code reviewing [98]. This is an important quality of a
bug predictor especially for cost-aware bug prediction [129, 6, 94, 105, 79]. In fact,
predicting the number of bugs in software entities and then ordering these entities
based on bug density is the most cost-effective option [156]. Second, software qual-
ity assurance teams may be interested in ranking software entities based on other
factors such as bug severity or the number of users affected by the bugs. Although
these aspects are out of the scope of this study, regression would also fit these prob-
lems better than classification because of the numeric response variable. Finally, the
defectiveness of a software entity can be derived from the number of bugs, but not
vice versa [170].

6.2.2 Dimensionality Reduction
When the dimensionality of data increases, distances grow more and alike between
the vectors and it becomes harder to detect patterns in data. This phenomenon is
known as the curse of dimensionality [19]. Feature selection not only eliminates
the confounding effects of noise and feature multicollinearity, but also reduces the
dimensionality of the data to improve accuracy. However, feature selection does not
seem to be considered as important as it should be in the field of bug prediction. For
instance, only 25 out of the 64 studied techniques in a recent research apply feature
selection before training a machine learning model [121]. Interestingly, only 2 out
of the 25 are applied to bug prediction as a regression problem.

6.2.3 Filters vs Wrappers
Feature selection methods are of two types: wrappers and filters [106]. With wrap-
pers, the scoring function is the accuracy of the prediction model itself. Wrappers

72 6.3. EMPIRICAL STUDY

look for the feature subset that works best with a specific machine learning model.
They are called wrappers because the machine learning algorithm is wrapped into
the selection procedure. With filters (e.g., CFS, InfoGain, PCA), the scoring func-
tion is independent of the machine learning model. They are called filters because
the attribute set is filtered before the training phase. Generally, filters are faster than
wrappers but less powerful because wrappers address the fact that different learning
algorithms can achieve best performance with different feature subsets.

Bug prediction datasets are relatively small regardless of the size of software
systems. In terms of machine learning, the problem size is composed of the number
of features and the number of data points. The number of features does not depend
on the size of the system and the number of data points depends on the granularity
of prediction (e.g., file, class, package). If defect prediction is done on the file level,
then the number of files is what matters and not the LOC, and usually this number is
small. For instance, the Linux kernel has fewer than 20’000 C source files, and yet,
it is one of the largest systems in the world. This means that although wrappers are
more resource intensive, they are easily applicable to bug prediction. Nevertheless,
our investigation reveals that wrapper methods are rarely applied in the literature.
Only 2 out of 64 major bug prediction studies apply wrapper methods [121].

6.3 Empirical Study

In this section, we investigate the effect of feature selection on the accuracy of pre-
dicting the number of bugs in Java classes. Specifically, we compare five widely-
used machine learning models applied to five open source Java projects to answer
the following research questions:
RQ1: How does feature selection impact the prediction accuracy?
RQ2: Are wrapper feature selection methods better than filters?
RQ3: Do different methods choose different feature subsets?

Table 6.3: Details about the systems in the studied dataset, as reported by D’Ambros et
al. [38]

% classes with more
System Release KLOC #Classes % Buggy than one bug
Eclipse JDT Core 3.4 ≈ 224 997 ≈ 20% ≈ 7%
Eclipse PDE UI 3.4.1 ≈ 40 1,497 ≈ 14% ≈ 5%
Equinox 3.4 ≈ 39 324 ≈ 40% ≈ 15%
Mylyn 3.41 ≈ 156 1,862 ≈ 13% ≈ 4%
Lucene 2.4.0 ≈ 146 691 ≈ 9% ≈ 3%

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 73

6.3.1 Experimental Setup

Dataset

We adopt the “Bug Prediction Dataset” provided by D’Ambros et al. [38] which
serves as a benchmark for bug prediction studies. We choose this dataset because
it is the only dataset that contains both source code and change metrics at the class
level, in total 32 metrics listed in Table 6.1 and Table 6.2; and also provides the
number of post-release bugs as the response variable for five large open source Java
systems listed in Table 6.3. The other dataset that has the number of bugs as a
response variable comes from the PROMISE repository, but contains only 21 source
code metrics [93].

Prediction Models

We use Multi-Layer Perceptron (MLP), Random Forest (RF), Support Vector Ma-
chine (SVM), Linear Regression (LR), and an implementation of the k-nearest neigh-
bour algorithm called IBK. Each model represents a different category of statis-
tical and machine learning models that is widely used in the bug prediction re-
search [121]. Table 6.4 provides a brief description of these machine learning mod-
els.

We use the correlation-based feature selection (CFS) method [73], the best [35,
64] and the most commonly-used filter method in the literature [121]. For the wrap-
per feature selection method we use the corresponding wrapper applicable to each
prediction model. In other words, we use MLP wrapper for MLP, RF wrapper for
RF, SVM wrapper for SVM, LR wrapper for LR, and IBK wrapper for IBK. Every
feature selection method also needs a search algorithm. We use the Best First search
algorithm which searches the space of feature subsets using a greedy hill-climbing
procedure with a backtracking facility.

We use the Weka data mining tool [72] to build prediction models for each
project in the dataset. Following an empirical method similar to the method of Hall
and Holmes [74], we apply each prediction model to three feature sets: the full set,
the subset chosen by CFS, and the subset chosen by the wrapper. The prediction
model is built and evaluated following the 10-fold cross validation procedure. The
wrapper feature selection is applied using a 5-fold cross validation on the training
set of each fold, then the best feature set is used. The CFS algorithm is applied on
the whole training set of each fold. Then the whole process is repeated 30 times. We
evaluate the predictions by means of the root mean squared error (RMSE). In total,
we have 25 experiments. Each experiment corresponds to a specific project and a
specific prediction model trained on the three feature sets.

We use the default hyperparameter (i.e., configuration) values of Weka 3.8.0 for
the used machine learning models. Although hyperparameters can be tuned [193,
154], we do not perform this optimization because we want to isolate the effect of
feature selection. Besides, Linear Regression does not have hyperparameters and
the gained improvement of optimizing SVM and RF is negligible [193, 154].

74 6.3. EMPIRICAL STUDY

Table 6.4: A brief explanation of the used machine learning models.

Model Description
Multi-Layer Perceptron A feed forward neural network with one input layer, one hidden layer,

and one output layer.
Random Forest An ensemble technique that comprises a multitude of decision trees gen-

erated to fit random samples from the training set. The prediction of the
unseen sample is the average of the predictions of the random trees.

Support Vector Machine A geometrically-inspired machine learning technique that can, in the
feature space, separate data points by choosing the best separating hy-
perplane (i.e., with highest separation margin that is).

Linear Regression The simplest regression algorithm. It tries to fit the training data on a
line then uses this line as a prediction function for unseen data samples.

IBK An implementation of the k-nearest neighbour algorithm where the
value of the dependent variable of a new data point is calculated based
on the average values of the dependent variable of the k-nearest data
points in the feature space.

6.3.2 Results

Figure 7.1 shows standard box plots for the different RMSE values obtained by the
different feature sets per prediction model per project. Within each box, there exists
50% of that specific population.2 We can see that the wrapper populations are almost
always lower than the full set ones, have smaller boxes, and have fewer outliers. This
means that applying the wrapper gives better and more consistent predictions. On
the other hand, we cannot make any observations about applying CFS because the
difference between the CFS populations and the full set populations are not apparent.

While box plots are usually good to get an overview of the different populations
and how they compare to each other, they do not provide any statistical evidence.
To get more concrete insights, we follow the two-stage statistical test: Kruskal-
Wallis + Dunn post-hoc analysis, both at the 95% confidence interval. We apply the
Kruskal-Wallis test on the results to determine whether different feature subsets have
different prediction accuracies (i.e., different RMSE). Only when this test indicates
that the populations are different, can we quantify such differences with a post-hoc
analysis. We perform Dunn post-hoc pairwise comparisons and analyze the effect
size between each two populations. Figure 6.3 shows on the y-axis the detailed effect
size between the two compared RMSE populations on the x-axis. In this plot, there
are two possible scenarios:

1. The Kruskal-Wallis test indicates that there is no statistical difference between
the populations. Then all the bars are red to show that there is no effect be-
tween any two populations.

2By population we mean the RMSE values of a specific experiment with a specific feature set. Each
population consists of 10× 50 = 500 data items (10-fold cross validation done 50 times)

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 75

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●
●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

● ●

●

●●
●
●

●

●●

●●

●
●

●

●

●
●●●
●
●●

●●
●●

●
●

●

●

●

●

●●
●
●

●

●●

●●

●
●

●

●

●
●●●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●●
●
●

●●●

●

●

●●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●●
●
●

●●
●

●

●●●
●

●
●

●

●

●●

●

●

●●

●

●

●●
●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●
●

●

●

●
●●

●

●●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●
●●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●
●●●●●

●

●
●●●●●

●

●●

●

●
●

●
●●

●

●
●
●●

●
●
●
●

●

●

●●

●

●

●

●●

●
●

●●

●

●
●

●
●●

●

●
●
●●

●
●
●
●

●

●
●●

●

●

●

●
●

●
●●

●

●●●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●
●●

●

●●●●
●

●
●
●

●

●

●

●

●●
●

●

●

●
●

●
●●

●

●●
●●
●

●
●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●
●●

●

●●
●●
●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●●●

●
●●

●

●●●

●
●
●

●

●●●

●
●

●

●
●●
●
●
●

●

●●

●

●●
●●●

●

●●●
●

●

●
●
●

●

●
●●
●

●
●
●●
●
●
●

●

●●

●

●●
●●●

●

●●●
●

●●
●

●

●
●●
●
●

●

●●
●

●

●

●
●●
●●

●

●
●
●

●

●

●
●●

●
●●
●

●

●
●●
●
●

●

●●
●

●

●

●
●●
●● ●●●

●

●

●

●●
●

●

●●
●●
●

●
●●●
●

●

●●
●

●
●●●
●

●
●●●
●

●

●

●●
●

●

●●
●●
●

●
●●●
●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●●●●

●

●
●●●

●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●●●
●

●

●
●
●●

●

●

●●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●● ●

●
●

●●

●

●●
●
●

●
●
●

●

●

●
●

●●

●

●●
●

●
●

●

●

●●●●

●

●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●●●

●

●
●●●●
●●
●●

●

●

●
●

●

●

●

●
●
●

●

●
●
●●

●

●

●
●

●●●

●

●
●●●●
●●
●●

●

●●●
●
●
●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●●
●

●●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●●
●

●●
●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●

●●
●

●
●

●
●
●
●●

●

●
●●
●
●●

●

●

●

●
●

●

●

●

●
●●●

●

●●
●

●
●

●
●
●
●● ●

●

●

●

●

●●●
●

●

●●●

●●

●
●
●
●●

●

●●●
●●
●
●
●

●

●

●

●

●

●

●●●
●

●

●●●

●●

●
●
●
●●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●
●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●●
●
●

●

●●

●
●

●

●●

●

●

●
●

●

●
●
●
●
●

●

●●
●
●

●

●●

●
●

●

●●

●

●

●
●

●●●

●

●

●
●

●
●
●

●

●
●●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●
●
●

●

●
●●
●

●
●

●
●
●

●
●
●

●

●

●
●
●
●
●

●

●
●●
●

●
●
●
●
●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●
●
●
●
●

●

●
●●
●

●
●
●
●
●

●●●

●

●

●
●
●
●
●

●

●
●●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●
●
●
●

●

●
●●
●

●
●

●●
●

IBK LR MLP RF SVM

E
clipse JD

T
 C

ore
E

clipse P
D

E
 U

I
E

quinox
Lucene

M
ylyn

F
ul

l S
et

C
F

S
 F

ilt
er

W
ra

pp
er

F
ul

l S
et

C
F

S
 F

ilt
er

W
ra

pp
er

F
ul

l S
et

C
F

S
 F

ilt
er

W
ra

pp
er

F
ul

l S
et

C
F

S
 F

ilt
er

W
ra

pp
er

F
ul

l S
et

C
F

S
 F

ilt
er

W
ra

pp
er

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

R
M

S
E

Figure 6.2: Boxplots of all the experiments in our empirical study. The y-axis represents
the root mean squared error (RMSE). For each project/model, we examine three feature
sets: the full set, the subset chosen by the CFS filter, and the subset chosen by the
wrapper corresponding to the model.

76 6.3. EMPIRICAL STUDY

IBK LR MLP RF SVM

Eclipse JD
T C

ore
Eclipse PD

E U
I

Equinox
Lucene

M
ylyn

C
FS

 F
ilt

er
 −

 F
ul

l S
et

C
FS

 F
ilt

er
 −

 W
ra

pp
er

Fu
ll

Se
t −

 W
ra

pp
er

C
FS

 F
ilt

er
 −

 F
ul

l S
et

C
FS

 F
ilt

er
 −

 W
ra

pp
er

Fu
ll

Se
t −

 W
ra

pp
er

C
FS

 F
ilt

er
 −

 F
ul

l S
et

C
FS

 F
ilt

er
 −

 W
ra

pp
er

Fu
ll

Se
t −

 W
ra

pp
er

C
FS

 F
ilt

er
 −

 F
ul

l S
et

C
FS

 F
ilt

er
 −

 W
ra

pp
er

Fu
ll

Se
t −

 W
ra

pp
er

C
FS

 F
ilt

er
 −

 F
ul

l S
et

C
FS

 F
ilt

er
 −

 W
ra

pp
er

Fu
ll

Se
t −

 W
ra

pp
er

−0.25

0.00

0.25

0.50

−0.25

0.00

0.25

0.50

−0.25

0.00

0.25

0.50

−0.25

0.00

0.25

0.50

−0.25

0.00

0.25

0.50

Ef
fe

ct
 S

ize
 o

n
th

e
R

M
SE

No Effect Negligible Effect Small Effect Medium Effect Large Effect

Figure 6.3: This figure shows the bar plots of the effect size of the Dunn post-hoc
analysis, which is carried out at the 95% confidence interval. The x-axis indicates the
pairwise comparison and the y-axis indicates the effect size. The bars are color-coded.
If the bar is red, this means that the difference is not statistically significant. Grey
means that there is a statistical significant difference, but the effect is negligible. Blue,
golden, and green indicate a small, medium, and large statistically significant effect,
respectively.

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 77

2. The Kruskal-Wallis test indicates a statistically significant difference between
the populations. Then the color of the bars encode the pairwise effect size.
Red means no difference and the two populations are equivalent. Grey means
that there is a significant difference but can be ignored due to the negligible
effect size. Blue, golden, and green mean small, medium, and large effect size
respectively.

To see how feature selection methods impact the prediction accuracy (RQ1),
we compare the RMSE values obtained by applying CFS and wrappers with those
obtained by the full feature set. We observe that the RMSE value obtained by the
CFS feature subset is statistically lower than the full set in 8 experiments (32%),3

statistically higher in other 6 experiments (24%),4 and statistically equivalent in 11
experiments (44%).5 Although CFS can decrease the RMSE by 24% on average
(MLP with Mylyn), it can increase it by up to 24% (SVM with Lucene). We also
notice that, applying CFS is not consistent within experiments using the same model.
It does not always improve, or always degrade, or always retain the performance of
any model throughout the experiments. We conclude that CFS is unreliable and
gives unstable results. Furthermore, even when CFS reduces the RMSE, the effect
size is at most small.

On the other hand, the RMSE value of the wrapper feature subset is statistically
lower than that of the full set in 19 experiments (76%) and statistically equivalent
in the rest. Applying the wrapper feature selection method can decrease RMSE of
a model by up to 33% (MLP with Eclipse JDT). We also observe that the impact of
the wrapper feature selection method on the accuracy is different from one model
to another. It has a non-negligible improvement on the prediction accuracy of IBK,
LR, MLP, RF, and SVM in 80%, 60%, 100%, 20%, and 20% of the experiments,
respectively. This is due to the fact that different machine learning models are dif-
ferent in their robustness against noise and multicollinearity. MLP, IBK, and LR
were improved significantly almost always in our experiments. On the other hand,
SVM and RF were not improved as often, because they are known to be resistant to
noise, especially when the number of features is not too high. RF is an ensemble of
decision trees created by using bootstrap samples of the training data and random
feature selection in tree induction [25]. This gives RF the ability to work well with
high-dimensional data and sift the noise away. The SVM algorithm is also designed
to operate in a high-dimensional feature space and can automatically select relevant
features [88]. In fact, this might be the reason behind the proven record of Ran-
dom Forest and Support Vector Machine in bug prediction [70, 47]. However, in our
experiments, applying the wrapper brings the RMSE value of Linear Regression to
equivalent or even lower levels compared to that of Random Forest. In fact, after
applying feature selection by wrappers, Linear Regression is the best model. This is
particularly surprising and interesting because it shows that applying feature selec-
tion makes the simplest regression model perform potentially better than advanced

3negative non-red effect size in Figure 6.3
4positive non-red effect size in Figure 6.3
5red effect size in Figure 6.3

78 6.3. EMPIRICAL STUDY

ones in bug prediction.
The wrapper method is statistically better than CFS in 18 experiments, statisti-

cally equivalent in 6 experiments, and worse in one experiment, but with a negligi-
ble effect size. These results along with the fact that CFS sometimes increases the
RMSE, clearly show that the wrapper selection method is a better choice than CFS
(RQ2).

Figure 6.4 shows the details about the features selected by each method using
the whole data of each project in the dataset. To answer the third research question
(RQ3), we use the Fleiss’ kappa statistical measure [57] to evaluate the level of
agreement between the different feature selection methods for each project and the
level of agreement of each feature selection method over the different projects. The
Fleiss’ kappa value, called k, is interpreted as described in Table 6.5.

Table 6.5: The interpretation of the possible values of Fleiss-kappa (k)

k Agreement
< 0 Poor

0.01 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost perfect

Table 6.6: The level of agreement between different feature selection methods in each
project

Project k Agreement
Eclipse JDT Core 0.18 Slight
Eclipse PDE UI 0.17 Slight
Equinox 0.40 Fair
Mylyn 0.08 Slight
Lucene 0.18 Slight

Figure 6.4(a) shows that different methods choose different features in each
project. The level of agreement between the different methods is slight in four
projects and fair in only one, as detailed in Table 6.6. Also the same method chooses
different features in different projects. Table 6.7 shows that the level of agreement
between the feature subsets selected by the same method in different projects is at
most fair. However, there exists some agreement on some features. Figure 6.4(b)
shows that REVISIONS, FanOut, NOIM, and FanIn are chosen most often. REVI-

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Feature	Index

Selected	features	per	project/method
Lucene,	 IBK
Lucene,	 LR
Lucene,	 SVM
Lucene,	 RF
Lucene,	 MLP
Lucene,	 CFS
Mylyn,	IBK
Mylyn,	LR
Mylyn,	SVM
Mylyn,	RF
Mylyn,	MLP
Mylyn,	CFS
Equinox,	 IBK
Equinox,	 LR
Equinox,	 SVM
Equinox,	 RF
Equinox,	 MLP
Equinox,	 CFS
Eclipse	PDE	UI,	IBK
Eclipse	PDE	UI,	LR
Eclipse	PDE	UI,	SVM
Eclipse	PDE	UI,	RF
Eclipse	PDE	UI,	MLP
Eclipse	PDE	UI,	CFS
Eclipse	JDT	Core,	IBK
Eclipse	JDT	Core,	LR
Eclipse	JDT	Core,	SVM
Eclipse	JDT	Core,	RF
Eclipse	JDT	Core,	MLP
Eclipse	JDT	Core,	CFS

28

20

17
15 14

12 11 11 10 10 10 9 9 9 9 8 8 8 8 8 8 7 7 6 6 5 4 4 3 3 3 2

CB
O

D
IT

Fa
nI
n

Fa
nO

ut
LC
O
M

N
O
C

N
O
A

N
O
IA

LO
C

N
O
M

N
O
IM

N
O
PR

A
N
O
PR

M
N
O
PA

N
O
PM RF
C

W
M
C

RI
VI
SI
O
N
S

BU
G
FI
XE
S

RE
FA
CT
O
RI
N
G
S

AU
TH

O
RS

LO
C_
AD

D
ED

M
AX

_L
O
C_
AD

D
ED

AV
E_
LO

C_
AD

D
ED

LO
C_
D
EL
ET
ED

M
AX

_L
O
C_
D
EL
ET
ED

AV
E_
LO

C_
D
EL
ET
ED

CO
D
EC
H
U
RN

M
AX

_C
O
D
EC
H
U
RN

AV
E_
CO

D
EC
H
U
RN AG
E

W
EI
G
H
TE
D
_A

G
E

Number	of	times	each	feature	is	selected

(a)

28

20

17
15 14

12 11 11 10 10 10 9 9 9 9 8 8 8 8 8 8 7 7 6 6 5 4 4 3 3 3 2

RI
VI
SI
ON

S
Fa
nO

ut
NO

IM
Fa
nI
n

RE
FA
CT
OR

IN
GS DI
T

NO
PR

M
AG

E
NO

C
NO

IA
CO

DE
CH

UR
N

CB
O

NO
PM

LO
C_
DE

LE
TE
D

M
AX

_C
OD

EC
HU

RN NO
A

LO
C

W
M
C

AU
TH

OR
S

M
AX

_L
OC

_A
DD

ED
W
EI
GH

TE
D_

AG
E

NO
PR

A
BU

GF
IX
ES

NO
PA

AV
E_
CO

DE
CH

UR
N

AV
E_
LO

C_
AD

DE
D

LO
C_
AD

DE
D

AV
E_
LO

C_
DE

LE
TE
D

LC
OM NO
M

M
AX

_L
OC

_D
EL
ET
ED RF
C

Number	of	times	each	feature	is	selected

(b)

80 6.3. EMPIRICAL STUDY

8

4

9

4

8

4

13

8

11

8

11

7

10 9 8

14 15

11

22

16

7
5

9

12 12
14

4

13

8 8

Eclipse	JDT	Core Eclipse	PDE	UI Equinox Mylyn Lucene

Number	of	selected	features	per	algorithm	in	each	project

CFS

MLP

RF

SVM

LR

IBK

(c)

Figure 6.4: Subfigure (a) shows the features selected by each method using the whole
data of each project. Subfigure (b) shows the number of times each feature is selected
out of the 30 (1 CFS feature set + 5 wrapper sets per project). The more times a feature
is selected the more important it is for making accurate predictions. Subfigure (c) shows
how different selection methods vary in the number of selected features. Details about
the features (metrics) are in Table 6.1 and Table 6.2

Table 6.7: The level of agreement between the feature subsets selected by each method
over all projects

Feature Selection Method k Agreement
CFS 0.23 Fair
IBK Wrapper 0.26 Fair
LR Wrapper 0.16 Slight
MLP Wrapper 0.04 Slight
RF Wrapper 0.04 Slight
SVM Wrapper -0.01 Poor

SIONS in particular is chosen by all methods almost all the time. It is selected in 28
out of 30 feature subsets,6 meaning that it has a high predictive power. On the other
hand, RFC, MAX LOC DELETED, NOM, and LCOM are picked the least number
of times, which means they have little to no predictive power.

The number of discarded features varies from 10 to 28 features out of 32 in total,
as detailed in Figure 6.4(c). In fact, the best performing model, linear regression,
selects between 5 (Eclipse PDE UI) and 12 features (Lucene and Mylyn) only. This
means that most of the features can be removed while enhancing (in 48% of the ex-
periments), or at least retaining (in 52% of the experiments), the prediction accuracy.

Another important observation is that no feature subset contains only source

6For each one of the 5 projects in the dataset, there are 6 feature subsets: 1 CFS subset and 5 wrapper
subsets.

CHAPTER 6. OPTIMIZING BUG PREDICTION BY APPLYING
FEATURE SELECTION 81

code metrics or only change metrics, but a mix of both. This means that no category
of metrics (i.e., change and source code) alone is good for predicting the number of
bugs, but they should be combined to achieve better performance. Previous studies
show that change metrics are better than source code metrics in bug prediction and
combining the two sets either does not bring any benefit [143] or hinders the per-
formance [6]. However, these studies either did not employ feature selection at all
[143] or employed only CFS [6].

6.3.3 Threats to Validity
Threats to internal validity are concerned with systematic errors or bias. Although
we use a well-known benchmark as our dataset, the quality of our results is very
dependent on the quality of that dataset. Also our dependence on WEKA for build-
ing the machine learning models, makes the quality of the models dependent solely
on the quality of WEKA implementation itself. Since we are dealing with machine
learning, the risk of overfitting always exists. In general, we mitigate this risk by re-
peating each feature selection/training/testing process 50 times. Also for the wrapper
method, we apply train-test-validate (TTV) approach to mitigate any overfitting bias
in favour of wrappers.7

Threats to external validity are the threats that affect the generalizability of the
results. In our study, the dataset contains metrics only from open source software
systems. It is hard to generalize the results to all systems due to the differences
between industrial and open source projects. Also all the systems in the dataset
are developed in Java and the findings might not generalize to systems developed
in other languages. Another important threat to external validity comes from the
chosen prediction models. Although we try to pick a representative set of prediction
models, our findings might not generalize to other machine learning models such as
hybrid and genetic ones.

Another point is that machine learning methods can be dependant on the under-
lying data. Although our findings are statistically strong, they may not generalize
to all open source Java systems. Practitioners and researchers are encouraged to run
comparative studies, similar to ours, before making decisions regarding the machine
learning techniques employed for bug prediction.

6.4 Conclusions
Generalizing bug prediction findings is hard. Software projects have different teams,
cultures, frameworks, and architectures. Consequently, software metrics have differ-
ent correlations with the number of bugs in different projects. These correlations can
be captured differently by distinct prediction models. In this chapter we show that
wrapper feature selection methods fit this problem best because they not only choose
features relevant to the response variable but also to the prediction model itself. In-
deed, our results show that wrapper feature selection is always better than CFS and

7The train-test-validate is not applicable to CFS due to how CFS operates

82 6.4. CONCLUSIONS

improves the performance of a model (by up to 47%) while eliminating most of the
features (up to 87%). We also show that the same feature selection method chooses
different features in different projects. We cannot generalize what feature subset to
use, but we can recommend combining both change and source code metrics and
letting the wrapper feature selection method choose the right subset and adapt the
bug predictor to the project at hand.

In the next chapter, we perform another optimization from the machine learning
field, which is hyperparameter optimization, to adapt the bug predictor further and
improve its accuracy.

On a side note, while carrying out this study, we realized that datasets providing
the number of bugs as the response variable are scarce, which could be a hurdle
to studies predicting the number of bugs in software systems. We therefore built a
tool that extracts source code and change metrics along with the number of bugs in
software projects. This tool is further explained in Appendix B.

7
Optimizing Bug Prediction by Tuning

Hyperparameters

In chapter 6, we investigate optimizing bug prediction by applying feature selection.
In this chapter, we explore another technique for machine learning optimization: hy-
perparameter optimization. Hyperparameters are the parameters that are set for a
machine learning model and affect its learning, construction, and evaluation. These
parameters need to be set before training the model. Example hyperparameters are
the complexity parameter in support vector machines and the number of neurons in
the hidden layer in a feed-forward neural network. Different machine learning prob-
lems have different characteristics and the hyperparameters need to be optimized
accordingly.

In the past three decades, researchers have analyzed the performance of various
machine learning models in bug prediction. However, more often than not, model
hyperparameters were set to the default values of machine learning frameworks,
which are not necessarily the optimal ones.

We investigate the effect of the hyperparameter optimization1 of a model on its
prediction accuracy. We study two machine learning models: support vector ma-
chines (SVM), and an implementation of the k-nearest neighbours algorithm called
IBK. Using a grid search algorithm, the search space of the hyperparameter values
of each model is traversed and the optimal values are reported. We evaluate the pre-
diction accuracy of each model before and after hyperparameter optimization on five
open source Java systems (same dataset as in section 6.3.1).

Our results reveal that tuning model hyperparameters has a statistically signif-

1Hyperparameter optimization is also known as model selection and hyperparameter tuning.

83

84 7.1. EMPIRICAL STUDY

icant positive effect on the prediction accuracy of the models. The prediction ac-
curacy is improved by up to 20% in IBK and by up to 10% in SVM. However, we
notice that IBK is more sensitive to its hyperparameter values than SVM in our ex-
periments. We also observe that most of the hyperparameter values are changed
during the tuning phase, indicating that default values are suboptimal. Our findings
suggest that researchers in bug prediction need to take hyperparameter optimization
into account in their bug prediction pipelines, as it potentially improves the predic-
tion accuracy of the machine learning models.

7.1 Empirical Study
We carry out our empirical investigation using the same dataset that we use in chap-
ter 6. More details about the dataset are in section 6.3.1.

7.1.1 Machine Learning Algorithms
For this experiment, we pick two machine learning algorithms: k-nearest neigh-
bours (IBK) and support vector machines (SVM). SVM is a geometrically-inspired
machine learning technique that can, in the feature space, separate data points by
choosing the best separating hyperplane (i.e., with highest separation margin that
is). IBK is an implementation of the k-nearest neighbours algorithm where the value
of the dependent variable of a new data point is calculated based on the average
values of the dependent variable of the k-nearest data points in the feature space.

We choose these two machine learning algorithms because they operate differ-
ently, have many hyperparameters, and have two different track records in the field
of bug prediction. While SVM has been extensively used and shown to be one of the
best performing models [47][189][122][179][41], IBK has not been reported to ex-
cel in the bug prediction literature [121]. Studying these two models reveals whether
the tuning process affects how they compare to each other. We use the WEKA2 data
mining framework [72] to train and test the models.

7.1.2 Parameter Tuning
For IBK, we tune three hyperparameters: the number of neighbours, the evaluation
criterion, and the neighbour search algorithm, as detailed in Table 7.1. For SVM, we
tune the complexity parameter and the used kernel and its parameters, as detailed in
Table 7.2 and Table 7.3.

The search space for the optimal hyperparameter values is large and it is im-
practical to try every possible combination of values. We use Multisearch-weka3

to search for the optimal hyperparameter values. It implements a hill-climbing grid
search algorithm. An initial point in the search space is considered the center, then
the algorithm performs 10-fold cross validation on the adjacent parameter values.

2http://www.cs.waikato.ac.nz/˜ml/weka/
3https://github.com/fracpete/multisearch-weka-package

http://www.cs.waikato.ac.nz/~ml/weka/
https://github.com/fracpete/multisearch-weka-package

CHAPTER 7. OPTIMIZING BUG PREDICTION BY TUNING HYPERPARAMETERS85

The best one is considered as the new center. This process is repeated until no better
values are found or the navigation hits the search space borders.

Table 7.1: IBK hyperparameters that are tuned.

Default Search
Parameter Value Range
Number of 1 1 to 5 by step of +1
neighbours

Evaluation Mean Absolute {Mean Absolute Error,
Criterion Error Mean Squared Error}

Neighbour Search Linear Search {Linear, BallTree,
Algorithm CoverTree, KDTree,

Filtered Neighbour Search}

Table 7.2: SVM hyperparameters that are tuned.

Default Search
Parameter Value Range
Complexity 1 10−4 to 102 by step of ×10

Kernel Polynomial {Polynomial, RBF, PUK,
Normalized Polynomial}

7.1.3 Procedure

For each project, we split the data into two sets using stratified sampling: tuning
set (10%) and experimentation set (90%). The hyperparameters are tuned using the
tuning set only. Then, for each machine learning model, we compare the prediction
error between the model with the default hyperparameter values and the model with
the tuned values. For this comparison we use stratified 10-fold cross-validation on
the experimentation set and the root mean squared error (RMSE) is calculated for
each fold. This 10-fold cross-validation is repeated 30 times.

Up to this point, for each project/model, we have 300 RMSEs for the model with
default hyperparameter values and 300 RMSEs for it with the optimal ones. We use
paired student’s t-test with 95% confidence interval to compare the two populations
and determine whether the tuning process improves the prediction accuracy of the
model.

86 7.1. EMPIRICAL STUDY

IBK SVM

0.99
0.79

0.8
0.62

1.19
1.03

0.55
0.43

0.66
0.52

0.8 0.81

0.65 0.63

1.05
0.94

0.41 0.42

0.53 0.53

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Eclipse JD
T C

ore
Eclipse PD

E U
I

Equinox
Lucene

M
ylyn

No Yes No Yes
Tuned

R
M

SE

Figure 7.1: Boxplots of all the experiments in our empirical study. The y-axis is the root
mean squared error (RMSE). For each project, we compare each model before and after
tuning. We carried out the student’s t-test at 95% confidence interval. Red bold frames
indicate the statistically significant results, where the tuning significantly reduced the
RMSE of the model.

CHAPTER 7. OPTIMIZING BUG PREDICTION BY TUNING HYPERPARAMETERS87

Table 7.3: SVM kernel hyperparameters that are tuned.

Default Search
Kernel Parameter Value Range
Polynomial Exponent 1 1 to 10 by step of +0.5

Normalized Exponent 2 1 to 10 by step of +0.5
Polynomial

RBF Gamma 0.01 10−4 to 10 by step of ×10

PUK Omega 1 1 to 10 by step of +0.5
Sigma 1 1 to 10 by step of +0.5

Table 7.4: The tuning results for the hyperparameters for all projects.

Eclipse JDT Core Eclipse PDE UI Equinox Lucene Mylyn
IBK

#Neighbours 5 5 2 5 5

Evaluation Criterion Mean Squared Error Mean Squared Error Mean Squared Error Mean Squared Error Mean Squared Error

Search Algorithm CoverTree Linear Search Linear Search Linear Search Linear Search

SVM

Complexity 10 1 10 10 10

Kernel PUK{Omega=1, Normalized Polynomial RBF RBF Polynomial
Sigma=4.1} {Exponent=5} {Gamma=0.01} {Gamma=0.1} {Exponent=1}

7.1.4 Results

Figure 7.1 shows boxplots of the RMSEs of each model before and after tuning. Red
frames indicate statistically significant results (the null hypothesis of student’s t-test
is rejected).

For IBK, tuning hyperparameters improves prediction accuracy significantly for
all projects. The RMSE is reduced between 13% (in Equinox) and 22% (in Lucene).
The results for SVM are not as significant as in IBK. Only in Equinox does hyper-
parameter tuning reduce RMSE significantly by 10%, while prediction accuracy of
the tuned and untuned models are similar in the other four projects. This means that
IBK is more sensitive to its hyperparameter settings than SVM in bug prediction.

We also compare IBK and SVM. A paired student’s t-test with 95% significance
interval shows that the RMSE of SVM is always statistically lower than the RMSE
of IBK. However, after tuning, the two models are actually statistically equivalent
for four projects and SVM is more accurate than IBK only in Equinox. This result
shows that tuning not only potentially improves the prediction accuracy of a model,
but also changes how different machine learning models compare to each other.

Finally, our results show that the values of model hyperparameters often change
from the default after tuning. Table 7.4 shows the parameter values after tuning.
The tuning phase always changes the value of at least one hyperparameter from the

88 7.2. CONCLUSIONS AND FUTURE WORK

default. Some hyperparameter values actually always change, such as the number
of neighbours and the evaluation criterion in IBK. This leads to the conclusion that
default values in machine learning frameworks are suboptimal for bug prediction.

In summary, we conclude the following:

1. Tuning hyperparameters significantly improves the prediction accuracy of IBK.
Previously, IBK has not been in the top performing models for bug prediction
[121], but with tuning it can be as performant as SVM.

2. IBK is more sensitive to hyperparameter tuning than SVM. We recommend
that researchers experiment with the hyperparameters of the machine learning
models they use before using them, as some require tuning while others are
less susceptible to the hyperparameter values.

3. Many studies have been conducted to compare different machine learning
models in the context of bug prediction. Some studies conclude that classi-
fiers perform similarly in bug prediction [203][135][111][44][134] while oth-
ers suggest that the choice of the classification model has a significant impact
on the performance of bug prediction [70][47][63]. We show that hyperpa-
rameter tuning can have an effect on how machine learning models compare
to each other. This raises doubts in the outcome of studies where no tuning
of or at least experimentation with the hyperparameter values has been con-
ducted.

7.1.5 Threats to Validity

The main threats to the validity of our study are threats to generalizability. First,
the dataset we use contains only open-source Java projects. Replicating the same
experiments on industrial projects or projects written in other languages may give
different results.

We only experiment on two machine learning models only. Hyperparameter
optimization might have different effects on other machine learning models. Also
we carry out the tuning process on only on 10% of the dataset with bounded value
ranges for the hyperparameters. A larger tuning set and wider value ranges might
provide better hyperparameter values.

7.2 Conclusions and Future Work

In this chapter, we study the effect of optimizing model hyperparameters to improve
the accuracy of predicting the number of bugs. We show that the k-nearest neigh-
bours algorithm (IBK) is always significantly improved and the prediction accuracy
of support vector machines (SVM) is either improved or at least retained. We con-
clude that hyperparameter optimization should be conducted before using a machine
learning model and default hyperparameter values are often suboptimal.

CHAPTER 7. OPTIMIZING BUG PREDICTION BY TUNING HYPERPARAMETERS89

In this chapter and the previous one (chapter 6), we show how to empirically
optimize a bug predictor from the machine learning perspective. Hyperparameter
optimization and feature selection adapt a bug predictor to the software project at
hand and improve the prediction accuracy. In the next chapter, we optimize bug
prediction as a software quality tool.

90 7.2. CONCLUSIONS AND FUTURE WORK

8
Empirically-Grounded Optimization of

Bug Prediction as a Quality Tool

In chapter 6 and chapter 7, we optimize bug prediction as a machine learning model.
However, the main promise of bug prediction is to help software engineers focus
their testing and reviewing efforts on those software parts that most likely contain
bugs. Under this promise, for a bug predictor to be useful in practice, it not only
needs to be accurate, but it also must be efficient, that is, it must be optimized to lo-
cate the maximum number of bugs in the minimum amount of code [129][130][6].1

Optimizing a bug predictor requires making the right decisions for (i) the indepen-
dent variables, (ii) the machine learning model, and (iii) the response variable.2 We
call this triple, bug prediction configurations.

These configurations are interconnected. The entire configuration should be
evaluated in order to provide individual answers for each aspect reliably. However,
the advice found in the literature focuses on each aspect of bug prediction in isola-
tion and it is unclear how previous findings hold in a holistic setup. In this study,
we adopt the Cost-Effectiveness measure (CE), introduced by Arisholm et al. [6],
to empirically evaluate the different options of each of the bug prediction configu-
rations all at once, shedding light on the interplay among them. Consequently, we
pose and answer the following research questions:

1Efficient bug prediction as we define it, is sometimes referred to as effort-aware bug prediction in the
literature

2Also known as the dependent variable or the output variable

91

92 8.1. EMPIRICAL SETUP

RQ1: What type of software metrics are cost-effective?

We find that using a mix of source code metrics and change metrics yields the most
cost-effective predictors for all subject systems in the studied dataset. We observe
that change metrics alone can be a good option, but we advise against using source
code metrics alone. These findings contradict the advice found in the literature that
object-oriented metrics hinders the cost-effectiveness of models built using change
metrics [6]. In fact although source code metrics are the worst metrics set, it can still
be used when necessary, but with the right configuration combination.

RQ2: What prediction model is cost-effective?

In this study we compare five machine learning models: Multilayer Perceptron, Sup-
port Vector Machines, Linear Regression, Random Forest, and K-Nearest Neigh-
bour. Our results show that Random Forest stands out as the most cost-effective one.
Support Vector Machines come a close second. While some previous studies suggest
that Random Forest performs generally better than other machine learning models
[70], other studies note that Random Forest does not perform as well [75]. Our find-
ings suggest that Random Forest performs the best with respect to cost-effectiveness.

RQ3: What is the most cost-effective response variable to predict?

We establish that predicting the number of bugs in a software entity is the most
cost-effective approach and predicting bug proneness is the least cost-effective one.
To our knowledge, this research question has not been investigated before in the
literature.

RQ4: Is there a configuration combination that consistently produces highly
cost-effective bug predictors?

Here we evaluate all configurations at once to provide more reliable guidelines
for building cost-effective bug predictors. We conclude that both source code and
change metrics as independent variables combined, Random Forest as the prediction
model, and bug count as the response variable, form the configuration combination
of the most cost-effective bug predictor across all subject systems in the studied
dataset.

8.1 Empirical Setup

8.1.1 Evaluation Scheme
There is a strong relationship between what is expected from a model and how the
model is evaluated. In the field of bug prediction, the desired value expected from
a bug predictor as a software quality tool is to enhance the efficiency of the quality
assurance procedure by directing it to the buggy parts of a software system. This is

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 93

possible only when the bug predictor can find most of the bugs in the least amount
of code. Intuitively, the efficiency of a predictor increases inversely proportional to
the number of lines of code in which it suspects a bug might appear because writing
unit tests for large software entities or inspecting them requires more effort.

Arisholm et al. state that “... the regular confusion matrix criteria, although
popular, are not clearly related to the problem at hand, namely the cost-effectiveness
of using fault-proneness prediction models to focus verification efforts to deliver
software with less faults at less cost”[6]. Consequently, they proposed a cost-aware
evaluation scheme called Cost-Effectiveness (CE) [6]. CE measures the benefit of
using a certain bug prediction model. It summarizes the accuracy measures and the
usefulness of a model by measuring how close the prediction model is to the optimal
model, taking the random order as the baseline. This scheme assumes the ability of
the prediction model to rank software entities in an ordered list. To demonstrate CE,
we show in Figure 8.1 an example cumulative lift curves (Alberg diagrams [150]) of
three orderings of software entities:

1. Optimal Order: The green curve represents the ordering of the software en-
tities with respect to the bug density from the highest to the lowest.

2. Random Order: The dashed diagonal line is achieved when the percentage
of bugs is equal to the percentage of lines of code. This is what one gets, on
average, with randomly ordering the software entities.

3. Predicted Order: The blue curve represents the ordering of the software en-

Percentage of LOC
100%

100%

P
er

ce
nt

ag
e

of
 B

ug
s

Revenue

Loss

Optimal Order

Random Order

The Model Under
Evaluation

Figure 8.1: An overview of the CE measure as defined by Arisholm et al. [6].

94 8.1. EMPIRICAL SETUP

tities based on the predicted dependent variable.

The area under each of these curves is called the Cost-Effectiveness (CE) area.
The larger the CE area, the more cost-effective the model. However, two things
need to be taken into account in this scenario. First, optimal models are different
for different datasets. Second, the prediction model should perform better than the
random ordering model to be considered valuable. That’s why Arisholm et al. [6]
took the optimal ordering and the random ordering into consideration in the Cost-
Effectiveness measure as:

CE(model) =
AUC(model)−AUC(random)

AUC(optimal)−AUC(random)

where AUC(x) is the area under the curve x.
CE assesses how good the prediction model is in producing a total order of

entities. The value of CE ranges from -1 to +1. The larger the CE measure is, the
more cost-effective the model is. There are three cases:

1. When CE is close to 0, it means that there is no gain in using the prediction
model.

2. When CE is close to 1, it means that the prediction model is close to optimal.

3. When CE is between 0 and -1, it means that the cost of using the model is
more than the gain, making the use of the model actually harmful.

In our experiments, we use CE to compare prediction results and draw conclu-
sions.

8.1.2 Dataset
We carry out our empirical investigation using the same dataset that we use in chap-
ter 6. More details about the dataset are in section 6.3.1.

8.1.3 Response Variable
The chosen dependent variable is an important design decision because it sometimes
determines the difference between a usable and an unusable model. We have to keep
in mind that the final goal of the prediction is to prioritize the software entities into
an ordered list to be able to apply the Cost-Effectiveness (CE) measure. There are
multiple possible schemes to do it:

1. predict the number of bugs as the response variable then order the software
entities based on the calculated bug density.

2. predict the bug density directly then order the software entities based on this
predicted bug density.

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 95

3. predict the bug proneness and order the software entities based on it. Small
classes come before large ones in case of ties.

4. classify software entities into buggy and bug-free, then order them as follows:
buggy entities come before bug-free ones and small classes come before large
ones (with respect to LOC).

The optimal prediction of number of bugs (first scheme) is equivalent to the opti-
mal prediction of bug density (second scheme), since bug density is calculated from
the number of bugs as bugdensity = (#bugs/LOC). Also the optimal prediction
of bug proneness (third scheme) is an optimal classification (fourth scheme). Ob-
viously the optimal regression in the first or second schemes is more cost-effective
than the optimal classification in the third or fourth scheme because it reflects exactly
the optimal solution in the cost-effectiveness (CE) evaluation method. However,
we need to verify whether classification is a valid approach in bug prediction and
whether we should include the third and fourth schemes in the empirical study. In
Figure 8.2, we evaluate the cost-effectiveness of the optimal classifier following the
fourth scheme, for all five systems in our corpus. The cost-effectiveness of the fourth
scheme is excellent for Equinox and JDT, and almost optimal for Mylyn, Lucene,
and PDE. As shown in Table 6.3, the percentage of buggy classes with more than
one bug ranges from 28% to 38%. This leads to the conclusion that in the set of
buggy classes, the number of bugs is proportional to the number of lines of code.
This is particularly interesting because it makes classification as good as predicting
the number of bugs, in the ideal case. We empirically verify which response variable
is better when we train our prediction models.

8.1.4 Machine Learning Models
We investigate the following machine learning models: Random Forest (RF), Sup-
port Vector Machine (SVM), Multilayer Perceptron (MLP), an implementation of
the K-nearest neighbours algorithm called IBK, and Linear Regression (LinR) / Lo-
gistic Regression (LogR)3. We choose these machine learning models for two rea-
sons: First, they are extensively used in the bug prediction literature [121]. Second,
each one of them can be used as a regressor and as a classifier, making compar-
isons across different configurations possible. Classifiers are used to predict the bug
proneness or the class (buggy, bug-free) and regressors are used to predict the bug
count and bug density. We use the Weka data mining tool [72] to build these predic-
tion models.

8.1.5 Hyperparameter Optimization
Machine learning models may have configurable parameters that should be set be-
fore starting the training phase. This process is called hyperparameter optimiza-
tion or model tuning, and can have a positive effect on the prediction accuracy of

3Linear Regression and Logistic Regression are equivalent, but with different types of response vari-
ables. Linear Regression is a regressor and Logistic Regression is a classifier.

96 8.1. EMPIRICAL SETUP

Figure 8.2: Commutative lift curves (Alberg diagrams [150]) comparing the optimal
regressor (bug density predictor) and the optimal classifier with ranking based on LOC
(smallest to largest). These diagrams show that optimal classification performs almost
as well as optimal regression.

E
clipse JD

T
 C

ore
E

clipse P
D

E
 U

I
E

quinox
Lucene

M
ylyn

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

% of LOC

%
 o

f B
ug

s

Response classification regression

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 97

the models. However, different models have different sensitivities to this process.
While model tuning improves IBK and MLP substantially, it has a negligible ef-
fect on SVM and RF [193][154]. In this study, we follow the same procedure as
discussed in chapter 7. The used model parameters are detailed in Table 8.1.

Table 8.1: The tuning results for the hyperparameters

RF Number of Trees= 100

SVM Kernel= RBF {Gamma=0.1}
Complexity=10

MLP
Learning Rate=0.6
Momentum=0.6
Hidden Layer Size= 32

IBK
#Neighbours=5
Search Algorithm= Linear Search
Evaluation Criterion=Mean Squared Error

LinR/LogR No parameters to tune

8.1.6 Feature Selection

The prediction accuracy of machine learning models is highly affected by the qual-
ity of the features used for prediction. Irrelevant and correlated features can increase
prediction error, increase model complexity, and decrease model stability. Feature
selection is a method that identifies the relevant features to feed into machine learn-
ing models. We apply wrapper feature selection for SVM, MLP, and IBK as it has
been shown that it leads to higher prediction accuracy [155]. We do not apply fea-
ture selection for RF because it performs feature selection internally. Following the
guidelines by Osman et al. [153], we apply l2 regularization (Ridge) on LinR/LogR
as the feature selection method.

8.1.7 Data Pre-Processing

Bug datasets are inherently imbalanced where most software entities are bug-free.
This is called the class-imbalance problem and can negatively affect the performance
of machine learning models [206][4]. To cope with this problem, we divide the data
set for each project into two sets: test set (25%) and training set (75%). The sam-
ples in each set are taken at random but maintain the distribution of buggy classes to
be similar to the one in the full data set. We then balance the training set by over-
sampling. This is important for training and for evaluating the prediction models.
The machine learning models are then trained using the balanced training set and
evaluated on the unseen test set.

98 8.1. EMPIRICAL SETUP

Figure 8.3: Boxplots of the CE outcome. Each box plot represents the CE obtained by
100 runs of the corresponding configuration combination on the x-axis. Different back-
ground colors indicate the statistically distinct groups obtained by applying the Scott-
Knott clustering method with 95% confidence interval. The configurations on the x-axis
are of the form Metrics-Model-Response.

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●

●
●

●

−0.25

0.00

0.25

0.50

0.75

ch
g,

 L
in

R
, d

ns
sr

c,
 L

og
R

, p
rs

bo
th

, I
B

K
, d

ns
ch

g,
 S

V
M

, d
ns

bo
th

, S
V

M
, d

ns
bo

th
, R

F,
 d

ns
bo

th
, M

LP
, d

ns
bo

th
, L

in
R

, d
ns

ch
g,

 M
LP

, d
ns

sr
c,

 S
V

M
, d

ns
ch

g,
 R

F,
 p

rs
bo

th
, L

og
R

, p
rs

sr
c,

 M
LP

, d
ns

bo
th

, R
F,

 p
rs

sr
c,

 M
LP

, p
rs

ch
g,

 IB
K

, d
ns

ch
g,

 IB
K

, p
rs

sr
c,

 R
F,

 p
rs

sr
c,

 L
in

R
, d

ns
sr

c,
 M

LP
, c

nt
ch

g,
 L

og
R

, p
rs

bo
th

, M
LP

, c
nt

bo
th

, M
LP

, p
rs

ch
g,

 M
LP

, p
rs

ch
g,

 R
F,

 d
ns

bo
th

, M
LP

, c
ls

bo
th

, S
V

M
, c

ls
bo

th
, S

V
M

, p
rs

ch
g,

 IB
K

, c
ls

sr
c,

 IB
K

, p
rs

bo
th

, I
B

K
, p

rs
ch

g,
 R

F,
 c

ls
sr

c,
 IB

K
, d

ns
ch

g,
 S

V
M

, c
ls

ch
g,

 S
V

M
, p

rs
sr

c,
 L

in
R

, c
nt

bo
th

, R
F,

 c
ls

sr
c,

 S
V

M
, c

ls
sr

c,
 S

V
M

, p
rs

sr
c,

 R
F,

 c
ls

sr
c,

 IB
K

, c
nt

ch
g,

 M
LP

, c
nt

sr
c,

 M
LP

, c
ls

sr
c,

 L
og

R
, c

ls
ch

g,
 L

og
R

, c
ls

sr
c,

 R
F,

 d
ns

ch
g,

 M
LP

, c
ls

sr
c,

 IB
K

, c
ls

bo
th

, I
B

K
, c

ls
sr

c,
 S

V
M

, c
nt

bo
th

, L
og

R
, c

ls
bo

th
, I

B
K

, c
nt

ch
g,

 IB
K

, c
nt

bo
th

, L
in

R
, c

nt
ch

g,
 L

in
R

, c
nt

bo
th

, S
V

M
, c

nt
ch

g,
 S

V
M

, c
nt

ch
g,

 R
F,

 c
nt

sr
c,

 R
F,

 c
nt

bo
th

, R
F,

 c
nt

Configuration

C
os

t E
ffe

ct
iv

en
es

s
(C

E
)

(a) Eclipse JDT Core

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ● ● ●

●

● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

−0.25

0.00

0.25

0.50

0.75

bo
th

, S
V

M
, d

ns
ch

g,
 S

V
M

, d
ns

bo
th

, M
LP

, d
ns

ch
g,

 M
LP

, d
ns

ch
g,

 L
in

R
, d

ns
bo

th
, R

F,
 d

ns
ch

g,
 M

LP
, p

rs
sr

c,
 S

V
M

, p
rs

sr
c,

 S
V

M
, c

ls
sr

c,
 L

og
R

, p
rs

bo
th

, L
in

R
, d

ns
bo

th
, M

LP
, c

nt
ch

g,
 R

F,
 d

ns
ch

g,
 L

og
R

, p
rs

ch
g,

 M
LP

, c
ls

sr
c,

 M
LP

, c
nt

ch
g,

 R
F,

 p
rs

ch
g,

 R
F,

 c
ls

sr
c,

 IB
K

, d
ns

ch
g,

 M
LP

, c
nt

bo
th

, I
B

K
, d

ns
ch

g,
 IB

K
, p

rs
ch

g,
 IB

K
, d

ns
sr

c,
 L

og
R

, c
ls

sr
c,

 IB
K

, p
rs

sr
c,

 M
LP

, d
ns

bo
th

, I
B

K
, c

nt
bo

th
, L

og
R

, p
rs

sr
c,

 M
LP

, p
rs

bo
th

, I
B

K
, p

rs
sr

c,
 IB

K
, c

ls
ch

g,
 IB

K
, c

ls
sr

c,
 R

F,
 c

ls
bo

th
, I

B
K

, c
ls

sr
c,

 IB
K

, c
nt

sr
c,

 S
V

M
, d

ns
ch

g,
 IB

K
, c

nt
ch

g,
 S

V
M

, p
rs

ch
g,

 S
V

M
, c

ls
sr

c,
 R

F,
 p

rs
bo

th
, L

og
R

, c
ls

bo
th

, S
V

M
, p

rs
ch

g,
 L

og
R

, c
ls

bo
th

, S
V

M
, c

ls
sr

c,
 M

LP
, c

ls
sr

c,
 S

V
M

, c
nt

bo
th

, M
LP

, p
rs

ch
g,

 L
in

R
, c

nt
bo

th
, M

LP
, c

ls
sr

c,
 L

in
R

, d
ns

ch
g,

 R
F,

 c
nt

sr
c,

 L
in

R
, c

nt
bo

th
, R

F,
 c

ls
ch

g,
 S

V
M

, c
nt

bo
th

, R
F,

 p
rs

bo
th

, L
in

R
, c

nt
sr

c,
 R

F,
 c

nt
sr

c,
 R

F,
 d

ns
bo

th
, S

V
M

, c
nt

bo
th

, R
F,

 c
nt

Configuration

C
os

t E
ffe

ct
iv

en
es

s
(C

E
)

(b) Eclipse PDE UI

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

● ● ●

● ● ●
●

● ●
● ●

● ● ●
●

●

● ● ● ● ●
●

● ●
●

●
●

● ●

● ● ●
● ● ●

● ● ● ● ●
● ●

●

●

● ● ●

● ●
●

● ●
●

●

●

−0.25

0.00

0.25

0.50

0.75

bo
th

, L
in

R
, d

ns
ch

g,
 L

in
R

, d
ns

bo
th

, S
VM

, d
ns

bo
th

, I
BK

, d
ns

bo
th

, M
LP

, c
nt

bo
th

, R
F,

 d
ns

sr
c,

 R
F,

 p
rs

sr
c,

 L
og

R
, p

rs
ch

g,
 S

VM
, d

ns
ch

g,
 L

og
R

, p
rs

sr
c,

 M
LP

, c
nt

ch
g,

 M
LP

, d
ns

bo
th

, M
LP

, d
ns

ch
g,

 IB
K,

 d
ns

bo
th

, L
og

R
, p

rs
ch

g,
 M

LP
, c

nt
bo

th
, R

F,
 p

rs
sr

c,
 IB

K,
 p

rs
ch

g,
 M

LP
, p

rs
sr

c,
 M

LP
, p

rs
sr

c,
 IB

K,
 d

ns
sr

c,
 S

VM
, c

ls
sr

c,
 S

VM
, p

rs
sr

c,
 R

F,
 c

ls
sr

c,
 L

og
R

, c
ls

ch
g,

 IB
K,

 p
rs

bo
th

, I
BK

, p
rs

bo
th

, M
LP

, p
rs

sr
c,

 S
VM

, d
ns

sr
c,

 IB
K,

 c
ls

sr
c,

 M
LP

, d
ns

sr
c,

 M
LP

, c
ls

ch
g,

 R
F,

 p
rs

ch
g,

 R
F,

 d
ns

ch
g,

 L
og

R
, c

ls
ch

g,
 IB

K,
 c

ls
bo

th
, M

LP
, c

ls
bo

th
, I

BK
, c

ls
ch

g,
 M

LP
, c

ls
bo

th
, L

og
R

, c
ls

sr
c,

 L
in

R
, d

ns
bo

th
, S

VM
, p

rs
bo

th
, S

VM
, c

ls
ch

g,
 S

VM
, p

rs
ch

g,
 S

VM
, c

ls
bo

th
, R

F,
 c

ls
ch

g,
 R

F,
 c

ls
sr

c,
 IB

K,
 c

nt
ch

g,
 S

VM
, c

nt
sr

c,
 R

F,
 d

ns
sr

c,
 S

VM
, c

nt
ch

g,
 L

in
R

, c
nt

sr
c,

 L
in

R
, c

nt
bo

th
, I

BK
, c

nt
ch

g,
 IB

K,
 c

nt
sr

c,
 R

F,
 c

nt
bo

th
, L

in
R

, c
nt

ch
g,

 R
F,

 c
nt

bo
th

, S
VM

, c
nt

bo
th

, R
F,

 c
nt

Configuration

C
os

t E
ffe

ct
ive

ne
ss

 (C
E)

(c) Equinox

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 99

●

●

●

●● ●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●
●

●
● ●

● ● ● ●

● ● ● ●
●

● ● ● ●
● ●

●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
●

●

−0.25

0.00

0.25

0.50

0.75

ch
g,

 S
V

M
, d

ns
ch

g,
 M

LP
, d

ns
bo

th
, S

V
M

, d
ns

ch
g,

 L
in

R
, d

ns
bo

th
, L

in
R

, d
ns

sr
c,

 M
LP

, d
ns

bo
th

, M
LP

, d
ns

bo
th

, R
F,

 d
ns

sr
c,

 L
in

R
, d

ns
sr

c,
 M

LP
, c

nt
sr

c,
 M

LP
, p

rs
sr

c,
 S

V
M

, d
ns

sr
c,

 S
V

M
, p

rs
sr

c,
 S

V
M

, c
ls

sr
c,

 M
LP

, c
ls

sr
c,

 S
V

M
, c

nt
ch

g,
 M

LP
, p

rs
sr

c,
 IB

K
, d

ns
sr

c,
 IB

K
, p

rs
sr

c,
 R

F,
 d

ns
sr

c,
 IB

K
, c

ls
sr

c,
 L

og
R

, p
rs

sr
c,

 R
F,

 p
rs

sr
c,

 IB
K

, c
nt

sr
c,

 L
in

R
, c

nt
sr

c,
 L

og
R

, c
ls

bo
th

, I
B

K
, d

ns
ch

g,
 R

F,
 d

ns
ch

g,
 L

og
R

, p
rs

bo
th

, M
LP

, c
nt

ch
g,

 IB
K

, d
ns

ch
g,

 M
LP

, c
ls

sr
c,

 R
F,

 c
nt

sr
c,

 R
F,

 c
ls

ch
g,

 M
LP

, c
nt

bo
th

, M
LP

, p
rs

bo
th

, I
B

K
, c

nt
bo

th
, I

B
K

, p
rs

bo
th

, I
B

K
, c

ls
bo

th
, R

F,
 p

rs
bo

th
, M

LP
, c

ls
ch

g,
 IB

K
, c

ls
ch

g,
 IB

K
, p

rs
ch

g,
 L

og
R

, c
ls

bo
th

, L
og

R
, c

ls
ch

g,
 S

V
M

, p
rs

ch
g,

 S
V

M
, c

ls
bo

th
, R

F,
 c

ls
bo

th
, L

og
R

, p
rs

ch
g,

 IB
K

, c
nt

bo
th

, S
V

M
, p

rs
bo

th
, S

V
M

, c
ls

bo
th

, S
V

M
, c

nt
ch

g,
 R

F,
 c

ls
ch

g,
 R

F,
 p

rs
ch

g,
 S

V
M

, c
nt

bo
th

, L
in

R
, c

nt
bo

th
, R

F,
 c

nt
ch

g,
 L

in
R

, c
nt

ch
g,

 R
F,

 c
nt

Configuration

C
os

t E
ffe

ct
iv

en
es

s
(C

E
)

(d) Lucene

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●
● ●

●
● ● ●

●

●
●

● ●
● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ●

●
● ●

● ● ●
●

●
● ●

−0.25

0.00

0.25

0.50

0.75

bo
th

, M
LP

, d
ns

ch
g,

 M
LP

, d
ns

sr
c,

 M
LP

, p
rs

sr
c,

 S
V

M
, d

ns
ch

g,
 S

V
M

, d
ns

sr
c,

 L
og

R
, p

rs
bo

th
, S

V
M

, d
ns

sr
c,

 R
F,

 p
rs

sr
c,

 IB
K

, p
rs

bo
th

, M
LP

, p
rs

bo
th

, R
F,

 d
ns

sr
c,

 M
LP

, c
ls

sr
c,

 IB
K

, d
ns

sr
c,

 S
V

M
, c

ls
sr

c,
 S

V
M

, p
rs

bo
th

, I
B

K
, p

rs
sr

c,
 IB

K
, c

nt
sr

c,
 IB

K
, c

ls
sr

c,
 M

LP
, d

ns
sr

c,
 L

in
R

, d
ns

sr
c,

 L
og

R
, c

ls
bo

th
, L

in
R

, d
ns

sr
c,

 R
F,

 c
ls

ch
g,

 R
F,

 d
ns

sr
c,

 R
F,

 d
ns

bo
th

, M
LP

, c
nt

sr
c,

 M
LP

, c
nt

ch
g,

 M
LP

, p
rs

ch
g,

 L
in

R
, d

ns
bo

th
, R

F,
 p

rs
bo

th
, L

og
R

, p
rs

bo
th

, I
B

K
, d

ns
ch

g,
 L

og
R

, p
rs

bo
th

, I
B

K
, c

nt
bo

th
, I

B
K

, c
ls

ch
g,

 M
LP

, c
nt

bo
th

, M
LP

, c
ls

ch
g,

 IB
K

, p
rs

sr
c,

 L
in

R
, c

nt
sr

c,
 R

F,
 c

nt
ch

g,
 R

F,
 p

rs
sr

c,
 S

V
M

, c
nt

bo
th

, R
F,

 c
ls

ch
g,

 IB
K

, d
ns

ch
g,

 IB
K

, c
ls

ch
g,

 M
LP

, c
ls

bo
th

, S
V

M
, p

rs
bo

th
, S

V
M

, c
ls

ch
g,

 IB
K

, c
nt

ch
g,

 R
F,

 c
ls

bo
th

, L
og

R
, c

ls
ch

g,
 L

og
R

, c
ls

ch
g,

 L
in

R
, c

nt
bo

th
, L

in
R

, c
nt

ch
g,

 S
V

M
, p

rs
ch

g,
 S

V
M

, c
ls

ch
g,

 R
F,

 c
nt

bo
th

, R
F,

 c
nt

bo
th

, S
V

M
, c

nt
ch

g,
 S

V
M

, c
nt

Configuration

C
os

t E
ffe

ct
iv

en
es

s
(C

E
)

(e) Mylyn

100 8.2. RESULTS

8.2 Results
In this study, we consider the following configurations:

1. Independent Variables:

(a) source code metrics (src)

(b) change metrics (chg)

(c) both of them combined (both).

2. Machine Learning Model:

(a) Support Vector Machines (SVM)

(b) Random Forest (RF)

(c) Multilayer Perceptron (MLP)

(d) K-Nearest Neighbours (IBK)

(e) Linear Regression (LinR) or Logistic Regression (LogR)

3. Response Variable:

(a) bug count (cnt)

(b) bug density (dns)

(c) bug proneness (prs)

(d) classification (cls)

There are 60 possible configuration combinations. For each one, we pre-process
the data, train the model on the training set, perform the predictions on the test data,
and calculate the Cost Effectiveness measure (CE). We repeat this process 50 times
to mitigate the threat of having outliers because of the random division of the dataset
into a training set and a test set. We do not perform k-fold cross-validation method
because calculating CE over a small set of classes can be misleading. Instead, we
perform the repeated hold-out validation because it is known to have lower variance
than k-fold cross validation making it more suitable for small datasets [18].

In this experiment, statistically speaking, the treatment is the configuration com-
bination and the outcome is the CE score. Hence, we have 60 different treatments
and one outcome measure. To answer the posed research questions, we need to com-
pare the CE of different configuration combinations. Since there is a large number
of treatments, traditional parametric tests (e.g., ANOVA) or non-parametric tests
(e.g., Friedman) have the overlapping problem, i.e., the clusters of treatment over-
lap. Therefore, we use the Scott-Knott (SK) cluster analysis for grouping of means
[183], which is a clustering algorithm used as a multiple comparison method for
the analysis of variance. SK clusters the treatments into statistically distinct non-
overlapping groups (i.e., ranks), which makes it suitable for this study. We apply
SK with 95% confidence interval to cluster the configuration combinations for each
project in the dataset.

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 101

Figure 8.3 shows box plots of the CE outcomes for each configuration combi-
nation. Each box plot represents the population of the 100 runs of the corresponding
configuration. The box plots are sorted in an increasing order of the means of CE,
represented by the red points. Alternating background colors indicate the Scott-
Knott statistically distinct groups (i.e., clusters or ranks).

The results in Figure 8.3 clearly demonstrate the interplay between the design
choices in bug prediction. Changing one value in the configuration can transform
a bug predictor from being highly cost-effective, to being actually harmful. For in-
stance, while both-RF-cnt is the most cost-effective configuration in Figure 8.3(a),
both-RF-dns is in the least cost-effective cluster. This means that although RF is
the best machine learning model and both is the best choice of metrics, using them
with the wrong response variable renders a bug predictor useless. There are many
examples where changing one configuration parameter brings the bug predictor from
one cluster to another. Examples for each configuration variable include:

1. In Figure 8.3(a), both-RF-cnt is ranked 1st whereas
both-RF-dns is ranked 7th.

2. In Figure 8.3(b), both-SVM-cnt is ranked 2nd whereas
both-MLP-cnt is ranked 6th.

3. In Figure 8.3(e), chg-SVM-cls is ranked 2nd where as
src-SVM-cls is ranked 6th.

These examples constitute a compelling evidence that bug prediction configurations
are interconnected.

To answer the first research question (RQ1) regarding the choice of independent
variables, we analyze the top cluster of configurations in Figure 8.3. We observe that
for Eclipse PDE UI, Equinox, and Mylyn, the software metrics value in the top rank
is either both or chg. In Eclipse JDT Core, src appears in one configuration out
of three in the top rank. In Lucene, src appears in one configuration out of 27 in the
top rank. These results suggest that the use of both source code and change metrics
together is the most cost-effective option for the independent variables. Using only
change metrics is also a good choice, but using only source code metrics rarely is.
It was shown in the literature that adding source code metrics to change metrics
hinders the cost-effectiveness and using source code alone is not better than random
guessing [6]. Our results show that although less cost-effective, source code metrics
can be used alone when necessary (e.g., change metrics cannot be computed). There
is always a cost-effective configuration combination with the source code metrics as
the independent variables (e.g., src-RF-cnt).

For the second research question (RQ2) regarding the choice of the machine
learning model, we observe that RF is the only option in the top rank in Eclipse JDT
Core, Eclipse PDE UI, and Equinox, and it is in the top rank of Lucene and Mylyn.
SVM also performs well. It appears in the top rank in Lucene and Mylyn, and in
the second rank in the rest of the projects. These results indicate the superiority
of Random Forest and Support Vector Machines in producing cost-effective bug

102 8.2. RESULTS

Figure 8.4: The max mean values of CE obtained for each project

0.4

0.32

0.53

0.65

0.53

0.0

0.2

0.4

0.6

0.8

E
cl

ip
se

 J
D

T
 C

or
e

E
cl

ip
se

 P
D

E
 U

I

E
qu

in
ox

Lu
ce

ne

M
yl

yn

C
os

t E
ffe

ct
iv

en
es

s

predictors. On the other hand, MLP and IBK made it to the top two clusters only in
Lucene, suggesting that Multilayer Perceptron and K-Nearest Neighbour do not fit
the bug prediction problem well.

For the third research question (RQ3) regarding the most cost-effective response
variable, we observe that cnt is in the top rank in Lucene and is the only response
variable in the top rank in the other projects. It is clear that predicting the bug
count results in the most cost-effective bug predictors. Another observation is that
the response variable configuration in the bottom two clusters is almost conclusively
either dns or prs. This means that predicting bug density or bug proneness actually
hinders the cost-effectiveness of the bug prediction.

Overall, one result that stands out is that the configuration both-RF-cnt is in
the top cluster across projects (RQ4). In fact, it is the most cost-effective configura-
tion in Eclipse JDT Core, Eclipse PDE UI, and Equinox and it is in the top cluster
in Lucene and Mylyn. This finding suggests that this configuration seems to be the
best from the cost-effectiveness point of view.

Software projects differ in their domains, development methods, used frame-
works, and developer experiences. Consequently, software metrics differ in the cor-
relation with the number of bugs among projects. This is the reason why using both
metrics came out as the best choice of independent variable. However, to deal with
the inevitable noise and redundancy in using both metrics, the best configurations
includes Random Forest as the machine learning model. Random Forest is an en-
semble of decision trees created by using bootstrap samples of the training data and
random feature selection in tree induction [25]. This gives RF the ability to work
well with high-dimensional data and sift the noise away. This is the reason why

CHAPTER 8. EMPIRICALLY-GROUNDED OPTIMIZATION OF BUG PREDICTION
AS A QUALITY TOOL 103

feeding both types of metrics into Random Forest actually makes sense. Also bug
count came out as the best option for response variable because it reflects the “gain”
in CE better than classification or proneness. Bug density also reflects the “gain”
but it is better to calculate it from bug count than to leave it to the prediction model
to deduce. Therefore, bug count is a simpler and more appropriate response variable
than bug density. All these factors contribute to the fact that both-RF-cnt is the
most cost-effective configuration for bug prediction.

Finally, the results in Figure 8.4 also show that the cost-effectiveness of the best
bug predictor varies among projects. Although the best bug predictor is never harm-
ful to use (no negative CE) in our experiments, it can still be of little value for
some projects, e.g., CE = 0.32 for Eclipse PDE UI. This means that bug prediction
should be evaluated as a technique in the context of a software project before putting
it in use in that specific project.

8.3 Threats to Validity
To minimize the threats to validity in our empirical study, we follow the guidelines
of Mende [128] by

• using a large dataset to avoid large variance of performance measures,

• maintaining the same fault distribution in the test set and training set as the
original set, to minimize bias,

• repeating the experiment 50 times to minimize the effect of outliers,

• and reporting on the dataset, data preprocessing procedure, and model config-
urations to enable replication.

In our study we use the “Bug Prediction Dataset” provided by D’Ambros et al.
[38] as a benchmark. Although it is a well-known and studied dataset, the quality of
our results is very dependent on the quality of that dataset.

Our dependence on WEKA [72] for building the artificial intelligence models,
makes the quality of the models dependent solely on the quality of WEKA itself.

The fact that this dataset contains metrics only from open source software sys-
tems makes it hard to generalize to all Java systems. In the future, we plan to apply
our study on more datasets and to use other data mining tools.

Another threat to validity comes from the use of LOC as a proxy for cost. As
we explained before, reviewing code and writing unit tests take much more effort
for large modules than small ones. However, we are aware of the fact that this proxy
might introduce some bias. We use it because it has been used in several previous
studies as such (e.g., [129][6]) and it is widely accepted in the community as a good
measure of effort.

Our study is on the Java-class level. Hence, our findings may not apply on other
granularity levels such as method level or commit level.

104 8.4. CONCLUSIONS

Finally, in this study, we assume that the purpose of bug prediction is to locate the
maximum number of bugs in the minimum amount of code in order to be a useful
support to quality assurance activities. However, defect prediction models can be
used for other purposes. For example, they can be used as tools for understanding
common pitfalls and analyzing factors that affect the quality of software. In these
cases, our findings do not necessarily apply. In the future, we plan to extend this
study to the broader context of several defect prediction use cases.

8.4 Conclusions
Bug prediction is used to reduce the costs of testing and code reviewing by direct-
ing maintenance efforts towards the software entities that most likely contain bugs.
From this point of view, a successful bug predictor should not only be accurate in its
prediction, but also find the largest number of bugs in the least amount of code. In
chapter 6 and chapter 7, we optimize bug prediction from the machine learning per-
spective. In this chapter, we optimize bug predictors as software quality tools. Using
the cost effectiveness evaluation scheme, we carry out a large-scale empirical study
to find the most efficient bug prediction configurations, as building a bug predictor
entails many design decisions, each of which has many options.

Our findings reveal a compelling evidence that bug prediction configurations are
interconnected. Changing one configuration can render a bug predictor useless. A
mix of source code and change metrics as independent variables, Random Forest
as the machine learning model, and bug count as the response variable result in the
most cost-effective bug predictor in all systems in the used dataset. Without the
empirically-grounded analysis of the different configuration options, it is hard to
reach this conclusion.

9
Conclusions and Future Work

Bug prediction and detection tools are auxiliary software quality assurance (AQSA)
tools that help developers carry out the main quality assurance activities of testing
and code reviewing efficiently. AQSA tools should direct developers to the parts that
are more likely to contain bugs. However, for these tools to be useful in practice, they
need to be adapted to the peculiarities of the projects they are applied to, and they
need to be efficient in locating the maximum number of bugs in the minimum amount
of code. In this chapter we conclude this thesis by summarizing its contributions and
pointing for possible future directions.

9.1 Contributions of This Dissertation
In this thesis, we present empirically-grounded analysis (EGA) as a unified approach
to improve the adaptability and efficiency of ASQA tools. The contributions of this
thesis can be summarized as follows:

1. We use EGA to discover bug patterns that are common in Java projects so
that they are worth building detection tools for. Among others, we find that
missing null checks are the most frequent bugs in Java.

2. In order to build an efficient detection tool, we use EGA to analyze null checks
and null usage in Java systems. We find that methods that return null are the
root cause of null checks.

3. We propose an empirical solution to the missing null problem. For every
method in an API, we calculate its nullability, i.e., how often the returned

105

106 9.2. FUTURE RESEARCH DIRECTIONS

value from this method is checked in the ecosystem of the API. An Eclipse
plugin uses this nullability measure to annotate method nullness in a software
project and display warnings of missing and excessive null checks.

4. We use EGA to find out whether certain optimizations are beneficial to apply
in bug prediction. We empirically show that feature selection and hyperpa-
rameter optimization adapt bug prediction to software projects and improve
its accuracy

5. We use EGA to optimize bug prediction as a quality tool. We empirically
evaluate the 60 configuration options and find that training Random Forest on
both change and source code metrics to predict the number of bugs results in
the most cost-effective bug predictor.

Throughout the thesis, we learn that there is no silver bullet when it comes to
building bug prediction and detection tools. Every project is unique and what works
for one does not necessarily work for others. Studies in bug prediction and detection
cannot and should not be generalized. AQSA tools need to be carefully designed,
evaluated, and tailored to projects before they can be adopted. As we show, EGA
provides a suitable framework for extracting requirements, analyzing problems, de-
signing solutions, and evaluating results. Furthermore, EGA is sometimes the only
option. For instance, there is no analytical method other than EGA to find the most
efficient bug prediction configurations (as in chapter 8). Trial and error, statistical
comparisons, and repeated experimentation are proven to be powerful methods that
software developers can use systematically to build efficient software quality tools.

9.2 Future Research Directions
This dissertation opens the door for better tool crafting and integration.

9.2.1 Ad-hoc Nullability Analysis
We envision a tool that extends our nullability plugin to implement an ad-hoc anal-
ysis. This tool can be an IDE plugin that does the following:

1. Analyze the dependencies and APIs used in a project.

2. Collect clients of these APIs from several sources other than mvnrepository
such as GitHub and Bitbucket.

3. Calculate the nullability of each method in the API and annotate the project
code with the proper nullness annotations.

9.2.2 Integrated Bug Prediction
All previous studies in bug prediction, including ours, are detached from the IDE. We
argue that insights from bug prediction should be embedded in the IDE. We envision

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 107

a bug prediction plugin that automatically collects metrics, empirically finds the best
machine learning optimizations and bug prediction configurations, and then makes
predictions on the current state of the project. These predictions are then presented
to the developer in the IDE as insights on where to focus attention.

However, there is still a missing step to implement such a plugin: the link be-
tween the predictions and developer actions. Currently, bug prediction studies do not
take into account the amount of testing and reviewing invested in a certain software
entity. When developers act upon the suggestions of a bug predictor, future predic-
tions should take these actions into account. This feedback loop is missing from
state-of-the-art bug prediction studies. One way to implement this feedback loop is
to include testing metrics as dependent variables, e.g., coverage metrics and number
of tests for each software module. We believe that such metrics would improve the
accuracy and usability of a bug predictor, but further research is needed to verify this
claim. We actually have already started started building the necessary infrastructure
to carry out such studies, as explained in Appendix B.

9.2.3 Putting AQSA Tools to Work
The main goal of auxiliary software quality tools is to improve the efficiency of
software testing and code reviewing. This goal should also be evaluated by putting
AQSA tools to work. One possible direction is to integrate bug prediction insights
into test case generation. Generating test cases automatically and executing them is
a resource-intensive process that needs to be carried out efficiently. We believe that
the ranked list of software modules produced by a bug predictor can act as a test case
generation strategy. We plan to pursue this direction in the future.

9.2.4 Quality Tool Evolution
Ensuring software quality is a continuous activity. Quality tools that work efficiently
on a project during early phases of development may not work in later phases. We
argue that software quality tools should also evolve to stay relevant. In the context
of this thesis, there are many questions that are interesting to investigate:

1. Do we get similar bug patterns if we analyze early phases of projects and
advanced phases?

2. How often does a bug predictor need to be (re)trained? What metrics should
it be trained with in different phases?

3. How does the efficiency of bug prediction tools evolve as projects evolve?

4. Should software developers use different tools in different phases?

We believe that answering these questions may reveal interesting findings that can
change the way we develop software quality tools and adopt them.

108 9.2. FUTURE RESEARCH DIRECTIONS

Bibliography

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders
from source code: From usage scenarios to specifications. In Proceedings of
the the 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engi-
neering, ESEC-FSE ’07, pages 25–34, New York, NY, USA, 2007. ACM.

[2] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. Software inspections: an
effective verification process. IEEE software, 6(3):31–36, 1989.

[3] M. P. Allen. The problem of multicollinearity. Understanding Regression
Analysis, pages 176–180, 1997.

[4] H. Altinger, S. Herbold, F. Schneemann, J. Grabowski, and F. Wotawa. Per-
formance tuning for automotive software fault prediction. In 2017 IEEE 24th
International Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), 2017.

[5] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc. Is it a
bug or an enhancement?: a text-based approach to classify change requests.
In Proceedings of the 2008 conference of the center for advanced studies on
collaborative research: meeting of minds, page 23. ACM, 2008.

[6] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and compre-
hensive investigation of methods to build and evaluate fault prediction mod-
els. J. Syst. Softw., 83(1):2–17, Jan. 2010.

[7] D. Astels. Test-Driven Development — A Practical Guide. Prentice Hall,
2003.

[8] A. Atla, R. Tada, V. Sheng, and N. Singireddy. Sensitivity of different ma-
chine learning algorithms to noise. Journal of Computing Sciences in Col-
leges, 26(5):96–103, 2011.

[9] N. Ayewah and W. Pugh. Null dereference analysis in practice. In Proceed-
ings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’10, pages 65–72, New York, NY,
USA, 2010. ACM.

109

110 BIBLIOGRAPHY

[10] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013.
IEEE Press.

[11] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The miss-
ing links: bugs and bug-fix commits. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 97–106. ACM, 2010.

[12] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In Construction and analysis of safe, secure, and interoperable
smart devices, pages 49–69. Springer, 2005.

[13] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions on,
22(10):751–761, Oct. 1996.

[14] K. Beck. Extreme Programming Explained: Embrace Change. Addison Wes-
ley, 2000.

[15] A. Begel and R. DeLine. Codebook: Social networking over code. In ICSE
Companion, pages 263–266, 2009.

[16] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook: discovering and ex-
ploiting relationships in software repositories. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE ’10, pages 125–134, New York, NY, USA, 2010. ACM.

[17] A. Begel and T. Zimmermann. Keeping up with your friends: Function foo,
library bar.dll, and work item 24. In Proceedings of the 1st Workshop on Web
2.0 for Software Engineering, Web2SE ’10, pages 20–23, New York, NY,
USA, 2010. ACM.

[18] C. Beleites, R. Baumgartner, C. Bowman, R. Somorjai, G. Steiner, R. Salzer,
and M. G. Sowa. Variance reduction in estimating classification error using
sparse datasets. Chemometrics and intelligent laboratory systems, 79(1):91–
100, 2005.

[19] R. Bellman. Adaptive control processes: A guided tour. Princeton University
Press, St Martin’s Press, 1960.

[20] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect prediction us-
ing temporal features and non linear models. In Ninth international workshop
on Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting, IWPSE ’07, pages 11–18, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 111

[21] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM, 53(2):66–75,
Feb. 2010.

[22] Understanding the bias-variance tradeoff, accessed June 9, 2016.
http://scott.fortmann-roe.com/docs/BiasVariance.html.

[23] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S. McKinley.
Tracking bad apples: reporting the origin of null and undefined value errors.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object ori-
ented programming systems and applications (OOPSLA’07), pages 405–422,
New York, NY, USA, 2007. ACM.

[24] A. Bosu and J. C. Carver. Impact of peer code review on peer impression
formation: A survey. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on, pages 133–142. IEEE, 2013.

[25] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[26] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relation-
ships between design measures and software quality in object-oriented sys-
tems. Journal of Systems and Software, 51(3):245–273, 2000.

[27] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis. Investigating quality
factors in object-oriented designs: An industrial case study. In Proceedings of
the 21st International Conference on Software Engineering, ICSE ’99, pages
345–354, New York, NY, USA, 1999. ACM.

[28] R. P. L. Buse and W. Weimer. Synthesizing API usage examples. In Proceed-
ings of the 34th International Conference on Software Engineering, ICSE ’12,
pages 782–792, Piscataway, NJ, USA, 2012. IEEE Press.

[29] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dy-
namic programming errors. Softw. Pract. Exper., 30(7):775–802, June 2000.

[30] J. Cahill, J. M. Hogan, and R. Thomas. Predicting fault-prone software mod-
ules with rank sum classification. In 2013 22nd Australian Software Engi-
neering Conference, pages 211–219. IEEE, 2013.

[31] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella. Multi-objective cross-project defect prediction. In Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference on, pages 252–261, Mar. 2013.

[32] A. Caracciolo, A. Chiş, B. Spasojević, and M. Lungu. Pangea: A workbench
for statically analyzing multi-language software corpora. In Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on, pages 71–76. IEEE, Sept. 2014.

112 BIBLIOGRAPHY

[33] C. Catal and B. Diri. Investigating the effect of dataset size, metrics sets, and
feature selection techniques on software fault prediction problem. Informa-
tion Sciences, 179(8):1040–1058, 2009.

[34] P. Chalin, P. R. James, and F. Rioux. Reducing the use of nullable types
through non-null by default and monotonic non-null. IET Software, 2(6):515–
531, December 2008.

[35] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul. Empirical
assessment of machine learning based software defect prediction techniques.
International Journal on Artificial Intelligence Tools, 17(02):389–400, 2008.

[36] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

[37] V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks
from history. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 433–436,
New York, NY, USA, 2007. ACM.

[38] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug
prediction approaches. In Proceedings of MSR 2010 (7th IEEE Working
Conference on Mining Software Repositories), pages 31–40. IEEE CS Press,
2010.

[39] A. B. De Carvalho, A. Pozo, and S. R. Vergilio. A symbolic fault-prediction
model based on multiobjective particle swarm optimization. Journal of Sys-
tems and Software, 83(5):868–882, 2010.

[40] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research, 7:1–30, 2006.

[41] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro. A genetic algorithm to
configure support vector machines for predicting fault-prone components. In
International Conference on Product Focused Software Process Improvement,
pages 247–261. Springer, 2011.

[42] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. W. Schiller. Building
and using pluggable type-checkers. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 681–690, New York,
NY, USA, 2011. ACM.

[43] I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic incon-
sistency inference. In Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, pages 435–
445, New York, NY, USA, 2007. ACM.

[44] P. Domingos and M. Pazzani. On the optimality of the simple bayesian clas-
sifier under zero-one loss. Mach. Learn., 29(2-3):103–130, Nov. 1997.

BIBLIOGRAPHY 113

[45] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language and in-
frastructure for analyzing ultra-large-scale software repositories. In Proceed-
ings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 422–431, Piscataway, NJ, USA, 2013. IEEE Press.

[46] T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null
types for Java. Journal of Object Technology, 6(9):455–475, 2007.

[47] K. O. Elish and M. O. Elish. Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software, 81(5):649–660,
2008.

[48] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant
behavior: A general approach to inferring errors in systems code. In Proceed-
ings of the Eighteenth ACM Symposium on Operating Systems Principles,
SOSP ’01, pages 57–72, New York, NY, USA, 2001. ACM.

[49] E. Evans. Domain-Driven Design: Tacking Complexity In the Heart of Soft-
ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[50] E. Evans and M. Fowler. Specifications. In Proceedings of the 1997 Confer-
ence on Pattern Languages of Programming, pages 97–34, 1997.

[51] M. Fagan. Design and code inspections to reduce errors in program develop-
ment. IBM Journal of Research and Development, 15(3):182, 1976.

[52] M. Fähndrich and R. Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of OOPSLA ’03, ACM SIGPLAN
Notices, 2003.

[53] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data
for feature tracking. In Proceedings IEEE Working Conference on Reverse
Engineering (WCRE 2003), pages 90–99, Los Alamitos CA, Nov. 2003. IEEE
Computer Society Press.

[54] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database
from version control and bug tracking systems. In Proceedings International
Conference on Software Maintenance (ICSM 2003), pages 23–32, Los Alami-
tos CA, Sept. 2003. IEEE Computer Society Press.

[55] C. Flanagan and K. R. M. Leino. Houdini, an Annotation Assistant for ESC/-
Java, pages 500–517. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[56] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Imple-
mentation, PLDI ’02, pages 234–245, New York, NY, USA, 2002. ACM.

114 BIBLIOGRAPHY

[57] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psycho-
logical bulletin, 76(5):378, 1971.

[58] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[59] M. Gabel and Z. Su. A study of the uniqueness of source code. In Proceedings
of the eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, pages 147–156. ACM, 2010.

[60] K. Gao and T. M. Khoshgoftaar. A comprehensive empirical study of count
models for software fault prediction. IEEE Transactions on Reliability,
56(2):223–236, 2007.

[61] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya. Choosing software
metrics for defect prediction: an investigation on feature selection techniques.
Software: Practice and Experience, 41(5):579–606, 2011.

[62] M. Ghafari, K. Rubinov, and M. M. Pourhashem K. Mining unit test cases to
synthesize API usage examples. Journal of Software: Evolution and Process,
pages e1841–n/a, 2017. e1841 smr.1841.

[63] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classifica-
tion techniques on the performance of defect prediction models. In Proceed-
ings of the 37th International Conference on Software Engineering-Volume 1,
pages 789–800. IEEE Press, 2015.

[64] B. Ghotra, S. Mcintosh, and A. E. Hassan. A large-scale study of the impact of
feature selection techniques on defect classification models. In Proceedings
of the 14th International Conference on Mining Software Repositories, MSR
’17, pages 146–157, Piscataway, NJ, USA, 2017. IEEE Press.

[65] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug predic-
tion. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 171–180. ACM, 2012.

[66] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source code
changes and code churn for bug prediction. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 83–92. ACM, 2011.

[67] E. Giger, M. Pinzger, and H. C. Gall. Can we predict types of code changes?
an empirical analysis. In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 217–226. IEEE, 2012.

[68] I. Gondra. Applying machine learning to software fault-proneness prediction.
Journal of Systems and Software, 81(2):186–195, 2008.

[69] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering,
26(2), 2000.

BIBLIOGRAPHY 115

[70] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness
by random forests. In Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on, pages 417–428. IEEE, 2004.

[71] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz. A quantitative analysis
of developer information needs in software ecosystems. In Proceedings of the
2nd Workshop on Ecosystem Architectures (WEA’14), pages 1–6, 2014.

[72] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[73] M. A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 359–366. Morgan Kaufmann Publishers
Inc., 2000.

[74] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for
discrete class data mining. IEEE transactions on knowledge and data engi-
neering, 15(6):1437–1447, 2003.

[75] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic liter-
ature review on fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–1304, 2012.

[76] Haskell 98 Report.

[77] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault prediction.
In ICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 263–272, Washington, DC, USA, 2005. IEEE
Computer Society.

[78] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of sta-
tistical learning: data mining, inference and prediction. The Mathematical
Intelligencer, 27(2):83–85, 2005.

[79] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-grained
module histories. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 200–210, Piscataway, NJ, USA, 2012.
IEEE Press.

[80] S. Herbold. Training data selection for cross-project defect prediction. In
Proceedings of the 9th International Conference on Predictive Models in
Software Engineering, PROMISE ’13, pages 6:1–6:10, New York, NY, USA,
2013. ACM.

[81] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: how misclas-
sification impacts bug prediction. In Proceedings of the 2013 International
Conference on Software Engineering, pages 392–401. IEEE Press, 2013.

116 BIBLIOGRAPHY

[82] A. Hindle, D. M. German, and R. Holt. What do large commits tell us?: a
taxonomical study of large commits. In Proceedings of the 2008 international
working conference on Mining software repositories, pages 99–108. ACM,
2008.

[83] T. Hoare. Null references: The billion dollar mistake. Presentation at QCon
London, 2009.

[84] A. Hora, N. Anquetil, S. Ducasse, and S. Allier. Domain specific warnings:
Are they any better? In 2012 28th IEEE International Conference on Software
Maintenance (ICSM), pages 441–450, Sept. 2012.

[85] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notices,
39(12):92–106, 2004.

[86] D. Hovemeyer and W. Pugh. Finding more null pointer bugs, but not too
many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’07, pages
9–14, New York, NY, USA, 2007. ACM.

[87] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static anal-
ysis to find null pointer bugs. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, PASTE ’05, pages 13–19, New York, NY, USA, 2005. ACM.

[88] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector
classification. Technical report, Department of Computer Science, National
Taiwan University, 2003.

[89] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi.
Identification of defect-prone classes in telecommunication software systems
using design metrics. Information sciences, 176(24):3711–3734, 2006.

[90] Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction
models. Empirical Softw. Engg., 13(5):561–595, Oct. 2008.

[91] Jlint home page. http://jlint.sourceforge.net/.

[92] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software
developers use static analysis tools to find bugs? In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 672–
681. IEEE Press, 2013.

[93] M. Jureczko and L. Madeyski. Towards identifying software project clusters
with regard to defect prediction. In Proceedings of the 6th International Con-
ference on Predictive Models in Software Engineering, PROMISE ’10, pages
9:1–9:10, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 117

[94] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and
A. Hassan. Revisiting common bug prediction findings using effort-aware
models. In Software Maintenance (ICSM), 2010 IEEE International Confer-
ence on, pages 1–10, Sept. 2010.

[95] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi. A large-scale empirical study of just-in-time quality assurance.
IEEE Transactions on Software Engineering, 39(6):757–773, 2013.

[96] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai.
Object-oriented software fault prediction using neural networks. Information
and software technology, 49(5):483–492, 2007.

[97] A. Kaur and R. Malhotra. Application of random forest in predicting fault-
prone classes. In 2008 International Conference on Advanced Computer The-
ory and Engineering, pages 37–43. IEEE, 2008.

[98] T. M. Khoshgoftaar and E. B. Allen. Ordering fault-prone software modules.
Software Quality Journal, 11(1):19–37, 2003.

[99] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald. A comparative
study of iterative and non-iterative feature selection techniques for software
defect prediction. Information Systems Frontiers, 16(5):801–822, 2014.

[100] T. M. Khoshgoftaar, K. Gao, and N. Seliya. Attribute selection and imbal-
anced data: Problems in software defect prediction. In 2010 22nd IEEE In-
ternational Conference on Tools with Artificial Intelligence, volume 1, pages
137–144. IEEE, 2010.

[101] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh. An empirical study of pre-
dicting software faults with case-based reasoning. Software Quality Journal,
14(2):85–111, 2006.

[102] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting faults from
cached history. In ICSE ’07: Proceedings of the 29th international conference
on Software Engineering, pages 489–498, Washington, DC, USA, 2007. IEEE
Computer Society.

[103] S. Kimura, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Does return null
matter? In Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on, pages
244–253, Feb. 2014.

[104] M. Klas, F. Elberzhager, J. Munch, K. Hartjes, and O. von Graevemeyer.
Transparent combination of expert and measurement data for defect predic-
tion: an industrial case study. In Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, volume 2, pages 119–128, May 2010.

118 BIBLIOGRAPHY

[105] K. Kobayashi, A. Matsuo, K. Inoue, Y. Hayase, M. Kamimura, and
T. Yoshino. ImpactScale: Quantifying change impact to predict faults in large
software systems. In Proceedings of the 2011 27th IEEE International Con-
ference on Software Maintenance, ICSM ’11, pages 43–52, Washington, DC,
USA, 2011. IEEE Computer Society.

[106] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
intelligence, 97(1):273–324, 1997.

[107] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-Popstojanova. Are
change metrics good predictors for an evolving software product line? In
Proceedings of the 7th International Conference on Predictive Models in Soft-
ware Engineering, page 7. ACM, 2011.

[108] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers
update their library dependencies? Empirical Software Engineering, pages
1–34, 2017.

[109] R. Lämmel, E. Pek, and J. Starek. Large-scale, AST-based API-usage analy-
sis of open-source Java projects. In Proceedings of the 2011 ACM Symposium
on Applied Computing, SAC ’11, pages 1317–1324, New York, NY, USA,
2011. ACM.

[110] X. B. D. Le, D. Lo, and C. Le Goues. History driven program repair. In
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference on, volume 1, pages 213–224. IEEE, 2016.

[111] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel
findings. IEEE Trans. Softw. Eng., 34(4):485–496, July 2008.

[112] M. Leuenberger, H. Osman, M. Ghafari, and O. Nierstrasz. Harvesting the
wisdom of the crowd to infer method nullness in Java. In Proceedings of the
17th International Working Conference on Source Code Analysis and Manip-
ulation, SCAM 2017. IEEE, 2017.

[113] M. Leuenberger, H. Osman, M. Ghafari, and O. Nierstrasz. KOWALSKI:
Collecting API clients in easy mode. In Proceedings of the 33rd International
Conference on Software Maintenance and Evolution, ICSME 2017. IEEE,
2017.

[114] Z. Li and Y. Zhou. Pr-miner: automatically extracting implicit programming
rules and detecting violations in large software code. In ACM SIGSOFT Soft-
ware Engineering Notes, volume 30, pages 306–315. ACM, 2005.

[115] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta,
and D. Poshyvanyk. Mining energy-greedy API usage patterns in Android
apps: an empirical study. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 2–11. ACM, 2014.

BIBLIOGRAPHY 119

[116] B. Livshits and T. Zimmermann. Dynamine: finding common error pat-
terns by mining software revision histories. SIGSOFT Softw. Eng. Notes,
30(5):296–305, Sept. 2005.

[117] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. Nanda. Veri-
fying dereference safety via expanding-scope analysis. In Proceedings of the
2008 International Symposium on Software Testing and Analysis, ISSTA ’08,
pages 213–224, New York, NY, USA, 2008. ACM.

[118] M. Lowry, M. Boyd, and D. Kulkami. Towards a theory for integration of
mathematical verification and empirical testing. In Automated Software En-
gineering, 1998. Proceedings. 13th IEEE International Conference on, pages
322–331. IEEE, 1998.

[119] Lucia, F. Thung, D. Lo, and L. Jiang. Are faults localizable? In Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on, pages
74–77, June 2012.

[120] R. Madhavan and R. Komondoor. Null dereference verification via over-
approximated weakest pre-conditions analysis. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 1033–1052, New York,
NY, USA, 2011. ACM.

[121] R. Malhotra. A systematic review of machine learning techniques for software
fault prediction. Applied Soft Computing, 27:504–518, 2015.

[122] R. Malhotra, A. Kaur, and Y. Singh. Empirical validation of object-oriented
metrics for predicting fault proneness at different severity levels using support
vector machines. International Journal of System Assurance Engineering and
Management, 1(3):269–281, 2010.

[123] R. Malhotra and Y. Singh. On the applicability of machine learning tech-
niques for object oriented software fault prediction. Software Engineering:
An International Journal, 1(1):24–37, 2011.

[124] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

[125] M. Martinez and M. Monperrus. Mining software repair models for reason-
ing on the search space of automated program fixing. Empirical Software
Engineering, 20(1):176–205, 2015.

[126] T. J. McCabe. A measure of complexity. IEEE Transactions on Software
Engineering, 2(4):308–320, Dec. 1976.

[127] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code
review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 192–201. ACM, 2014.

120 BIBLIOGRAPHY

[128] T. Mende. Replication of defect prediction studies: problems, pitfalls and
recommendations. In Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, page 5. ACM, 2010.

[129] T. Mende and R. Koschke. Revisiting the evaluation of defect prediction
models. In Proceedings of the 5th International Conference on Predictor
Models in Software Engineering, PROMISE ’09, pages 7:1–7:10, New York,
NY, USA, 2009. ACM.

[130] T. Mende and R. Koschke. Effort-aware defect prediction models. In Proceed-
ings of the 2010 14th European Conference on Software Maintenance and
Reengineering, CSMR ’10, pages 107–116, Washington, DC, USA, 2010.
IEEE Computer Society.

[131] D. Mendez, B. Baudry, and M. Monperrus. Empirical evidence of large-
scale diversity in API usage of object-oriented software. In Source Code
Analysis and Manipulation (SCAM), 2013 IEEE 13th International Working
Conference on, pages 43–52. IEEE, 2013.

[132] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with
developer networks and social network analysis. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, SIGSOFT ’08/FSE-16, pages 13–23, New York, NY, USA, 2008.
ACM.

[133] T. Menzies and B. Cukic. When to test less. IEEE Software, 17(5):107–112,
2000.

[134] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes
to learn defect predictors. Software Engineering, IEEE Transactions on,
33(1):2–13, Jan. 2007.

[135] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. De-
fect prediction from static code features: Current results, limitations, new
approaches. Automated Software Engg., 17(4):375–407, Dec. 2010.

[136] B. Meyer. Applying design by contract. IEEE Computer (Special Issue on
Inheritance & Classification), 25(10):40–52, Oct. 1992.

[137] A. K. Midha. Software configuration management for the 21st century. Bell
Labs Technical Journal, 2(1):154–165, 1997.

[138] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In ISSTA ’02: Proceedings
of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, pages 1–11, New York, NY, USA, 2002. ACM Press.

[139] A. T. Mısırlı, A. B. Bener, and B. Turhan. An industrial case study of clas-
sifier ensembles for locating software defects. Software Quality Journal,
19(3):515–536, 2011.

BIBLIOGRAPHY 121

[140] A. Mockus. Organizational volatility and its effects on software defects. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages 117–126, New York,
NY, USA, 2010. ACM.

[141] A. Mockus and L. Votta. Identifying reasons for software change using his-
toric databases. In Proceedings of the International Conference on Software
Maintenance (ICSM 2000), pages 120–130. IEEE Computer Society Press,
2000.

[142] M. Monperrus, M. Bruch, and M. Mezini. Detecting missing method calls
in object-oriented software. ECOOP 2010–Object-Oriented Programming,
pages 2–25, 2010.

[143] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction. In Proceed-
ings of the 30th International Conference on Software Engineering, ICSE ’08,
pages 181–190, New York, NY, USA, 2008. ACM.

[144] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proceedings of the 27th International Conference
on Software Engineering, ICSE ’05, pages 284–292, New York, NY, USA,
2005. ACM.

[145] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component
failures. In Proceedings of the 28th international conference on Software
engineering, ICSE ’06, pages 452–461, New York, NY, USA, 2006. ACM.

[146] N. Nagappan, B. Murphy, and V. Basili. The influence of organizational struc-
ture on software quality: An empirical case study. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages 521–
530, New York, NY, USA, 2008. ACM.

[147] M. G. Nanda and S. Sinha. Accurate interprocedural null-dereference analysis
for Java. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 133–143, Washington, DC, USA, 2009. IEEE
Computer Society.

[148] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In Proceedings of the
the 7th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 383–392, New York, NY, USA, 2009. ACM.

[149] M. Odersky. Scala language specification v. 2.4. Technical report, École Poly-
technique Fédérale de Lausanne, 1015 Lausanne, Switzerland, Mar. 2007.

[150] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in tele-
phone switches. IEEE Trans. Softw. Eng., 22(12):886–894, Dec. 1996.

122 BIBLIOGRAPHY

[151] A. Okutan and O. T. Yıldız. Software defect prediction using bayesian net-
works. Empirical Software Engineering, 19(1):154–181, 2014.

[152] H. Osman. On the non-generalizability in bug prediction. In Post Proceed-
ings of the Ninth Seminar on Advanced Techniques and Tools for Software
Evolution (SATToSE 2016), 2016.

[153] H. Osman, M. Ghafari, and O. Nierstrasz. Automatic feature selection by reg-
ularization to improve bug prediction accuracy. In 1st International Workshop
on Machine Learning Techniques for Software Quality Evaluation (MaL-
TeSQuE 2017), pages 27–32, Feb. 2017.

[154] H. Osman, M. Ghafari, and O. Nierstrasz. Hyperparameter optimization to
improve bug prediction accuracy. In 1st International Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE 2017),
pages 33–38, Feb. 2017.

[155] H. Osman, M. Ghafari, and O. Nierstrasz. The impact of feature selection on
predicting the number of bugs. Information and Software Technology, page
in review, 2017.

[156] H. Osman, M. Ghafari, O. Nierstrasz, and M. Lungu. An extensive analysis
of efficient bug prediction configurations. In Proceedings of the The 13th In-
ternational Conference on Predictive Models and Data Analytics in Software
Engineering, PROMISE 2017. ACM, 2017.

[157] H. Osman, M. Leuenberger, M. Lungu, and O. Nierstrasz. Tracking null
checks in open-source Java systems. In Proceedings of the 23rd IEEE In-
ternational Conference on Software Analysis, Evolution, and Reengineering
(SANER), Mar. 2016.

[158] H. Osman, M. Lungu, and O. Nierstrasz. Mining frequent bug-fix code
changes. In Software Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on,
pages 343–347, Feb. 2014.

[159] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and number of
faults in large software systems. Software Engineering, IEEE Transactions
on, 31(4):340–355, Apr. 2005.

[160] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In ACM
SIGSOFT Software Engineering Notes, volume 29, pages 86–96. ACM, 2004.

[161] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an understanding of bug fix
patterns. Empirical Softw. Engg., 14(3):286–315, June 2009.

[162] A. Panichella, R. Oliveto, and A. De Lucia. Cross-project defect prediction
models: L’union fait la force. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE
Conference on, pages 164–173, Feb. 2014.

BIBLIOGRAPHY 123

[163] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst. Practical
pluggable types for java. In Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ISSTA ’08, pages 201–212, New York, NY,
USA, 2008. ACM.

[164] M. M. Papi and M. D. Ernst. Compile-time type-checking for custom type
qualifiers in Java. In Companion to the 22Nd ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications Companion, OOP-
SLA ’07, pages 809–810, New York, NY, USA, 2007. ACM.

[165] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks
predict failures? In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16,
pages 2–12, New York, NY, USA, 2008. ACM.

[166] Pmd home page. http://pmd.sourceforge.net/.

[167] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A frame-
work for optimizing Java using attributes. In Proceedings of the 2000 confer-
ence of the Centre for Advanced Studies on Collaborative research, page 8.
IBM Press, 2000.

[168] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking API
protocol conformance with mined multi-object specifications. In Proceedings
of the 2012 International Conference on Software Engineering, ICSE 2012,
pages 925–935, Piscataway, NJ, USA, 2012. IEEE Press.

[169] R. Purushothaman and D. E. Perry. Towards understanding the rhetoric of
small changes-extended abstract. In International Workshop on Mining Soft-
ware Repositories (MSR 2004), International Conference on Software Engi-
neering, pages 90–94. IET, 2004.

[170] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan. The impact of
using regression models to build defect classifiers. In Proceedings of the 14th
International Conference on Mining Software Repositories, pages 135–145.
IEEE Press, 2017.

[171] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference
of function precedence protocols. In Proceedings of the 29th international
conference on Software Engineering, pages 240–250. IEEE Computer Soci-
ety, 2007.

[172] S. S. Rathore and S. Kumar. An empirical study of some software fault pre-
diction techniques for the number of faults prediction. Soft Computing, pages
1–18, 2016.

[173] L. Rising and N. S. Janoff. The scrum software development process for small
teams. IEEE Software, 17(4):26–32, July 2000.

124 BIBLIOGRAPHY

[174] C. D. Roover, R. Laemmel, and E. Pek. Multi-dimensional exploration of API
usage. In 2013 21st International Conference on Program Comprehension
(ICPC), pages 152–161, May 2013.

[175] C. Rosen, B. Grawi, and E. Shihab. Commit guru: analytics and risk predic-
tion of software commits. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 966–969. ACM, 2015.

[176] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rothermel.
Predicting accurate and actionable static analysis warnings: An experimental
approach. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 341–350, New York, NY, USA, 2008. ACM.

[177] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-
level api usage patterns. In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, pages 23–32. IEEE,
2015.

[178] H. E. Salman. Identification multi-level frequent usage patterns from apis.
Journal of Systems and Software, 130:42–56, 2017.

[179] F. Sarro, S. Di Martino, F. Ferrucci, and C. Gravino. A further analysis on
the use of genetic algorithm to configure support vector machines for inter-
release fault prediction. In Proceedings of the 27th annual ACM symposium
on applied computing, pages 1215–1220. ACM, 2012.

[180] A. A. Sawant and A. Bacchelli. A dataset for API usage. In Proceedings of the
12th Working Conference on Mining Software Repositories, pages 506–509.
IEEE Press, 2015.

[181] J. Sayyad Shirabad and T. Menzies. The PROMISE repository of software
engineering databases. School of Information Technology and Engineering,
University of Ottawa, Canada, 2005.

[182] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Alan
R. Apt, first edition, 2001.

[183] A. J. Scott and M. Knott. A cluster analysis method for grouping means in
the analysis of variance. Biometrics, pages 507–512, 1974.

[184] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of machine
learning in software defect prediction. IEEE Transactions on Software Engi-
neering, 40(6):603–616, 2014.

[185] S. A. Sherer. Software fault prediction. Journal of Systems and Software,
29(2):97–105, 1995.

BIBLIOGRAPHY 125

[186] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An industrial study on
the risk of software changes. In Proceedings of the ACM SIGSOFT 20th In-
ternational Symposium on the Foundations of Software Engineering, page 62.
ACM, 2012.

[187] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to
improve code change-based bug prediction. IEEE Transactions on Software
Engineering, 39(4):552–569, 2013.

[188] P. Singh and S. Verma. An investigation of the effect of discretization on
defect prediction using static measures. In Advances in Computing, Control,
& Telecommunication Technologies, 2009. ACT’09. International Conference
on, pages 837–839. IEEE, 2009.

[189] Y. Singh, A. Kaur, and R. Malhotra. Prediction of fault-prone software mod-
ules using statistical and machine learning methods. International Journal of
Computer Applications, 1(22):8–15, 2010.

[190] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes?
In Proceedings of International Workshop on Mining Software Repositories
— MSR’05, Saint Lous, Missouri, USA, 2005. ACM Press.

[191] R. Subramanyam and M. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: implications for software defects. Soft-
ware Engineering, IEEE Transactions on, 29(4):297–310, Apr. 2003.

[192] M.-H. Tang, M.-H. Kao, and M.-H. Chen. An empirical study on object-
oriented metrics. In Software Metrics Symposium, 1999. Proceedings. Sixth
International, pages 242–249, 1999.

[193] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. Auto-
mated parameter optimization of classification techniques for defect predic-
tion models. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 321–332, New York, NY, USA, 2016. ACM.

[194] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An
empirical comparison of model validation techniques for defect prediction
models. IEEE Transactions on Software Engineering, 43(1):1–18, 2017.

[195] F. Thung, S. Wang, D. Lo, and L. Jiang. An empirical study of bugs in ma-
chine learning systems. In Software Reliability Engineering (ISSRE), 2012
IEEE 23rd International Symposium on, pages 271–280, Nov. 2012.

[196] A. Tomb, G. Brat, and W. Visser. Variably interprocedural program analysis
for runtime error detection. In Proceedings of the 2007 International Sympo-
sium on Software Testing and Analysis, ISSTA ’07, pages 97–107, New York,
NY, USA, 2007. ACM.

126 BIBLIOGRAPHY

[197] A. Tosun and A. Bener. Reducing false alarms in software defect prediction
by decision threshold optimization. In Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement,
pages 477–480. IEEE Computer Society, 2009.

[198] B. Turhan and A. Bener. A multivariate analysis of static code attributes for
defect prediction. In Seventh International Conference on Quality Software
(QSIC 2007), pages 231–237. IEEE, 2007.

[199] B. Turhan and A. Bener. Analysis of naive bayes’ assumptions on software
fault data: An empirical study. Data & Knowledge Engineering, 68(2):278–
290, 2009.

[200] B. Twala. Software faults prediction using multiple classifiers. In Computer
Research and Development (ICCRD), 2011 3rd International Conference on,
volume 4, pages 504–510. IEEE, 2011.

[201] R.-G. Urma. Tired of null pointer exceptions? Consider using Java SE 8’s
optional! Technical report, Oracle, Mar. 2014.

[202] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot — a Java bytecode optimization framework. In Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative research,
page 13. IBM Press, 1999.

[203] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Hae-
sen. Mining software repositories for comprehensible software fault predic-
tion models. Journal of Systems and software, 81(5):823–839, 2008.

[204] P. Wang, C. Jin, and S.-W. Jin. Software defect prediction scheme based
on feature selection. In Information Science and Engineering (ISISE), 2012
International Symposium on, pages 477–480. IEEE, 2012.

[205] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan. Bugram: bug de-
tection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, pages 708–
719. ACM, 2016.

[206] S. Wang and X. Yao. Using class imbalance learning for software defect
prediction. IEEE Transactions on Reliability, 62(2):434–443, 2013.

[207] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies.
In Proceedings of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC-FSE ’07, pages 35–44, New York, NY, USA,
2007. ACM.

BIBLIOGRAPHY 127

[208] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using developer information as
a factor for fault prediction. In Proceedings of the Third International Work-
shop on Predictor Models in Software Engineering, PROMISE ’07, pages 8–,
Washington, DC, USA, 2007. IEEE Computer Society.

[209] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil the
broth? using the number of developers to enhance defect prediction models.
Empirical Softw. Engg., 13(5):539–559, Oct. 2008.

[210] L. Williams, G. Kudrjavets, and N. Nagappan. On the effectiveness of unit
test automation at microsoft. In Software Reliability Engineering, 2009. IS-
SRE’09. 20th International Symposium on, pages 81–89. IEEE, 2009.

[211] B. Woolf. The null object pattern. In Design Patterns, PLoP 1996.
Robert Allerton Park and Conference Center, University of Illinois at Urbana-
Champaign, Monticello, Illinois, 1996.

[212] B. Woolf. Null object. In R. Martin, D. Riehle, and F. Buschmann, editors,
Pattern Languages of Program Design 3, pages 5–18. Addison Wesley, 1998.

[213] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting source code
changes by mining change history. Software Engineering, IEEE Transactions
on, 30(9):574 – 586, Sept. 2004.

[214] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou. Automatic
parameter recommendation for practical api usage. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pages 826–
836, Piscataway, NJ, USA, 2012. IEEE Press.

[215] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Mining and rec-
ommending API usage patterns. In S. Drossopoulou, editor, ECOOP 2009 -
Object-Oriented Programming, volume 5653 of Lecture Notes in Computer
Science, pages 318–343. Springer Berlin Heidelberg, 2009.

[216] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process. In Proceedings of the the 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE ’09, pages 91–100, New
York, NY, USA, 2009. ACM.

128 BIBLIOGRAPHY

A
Collecting API Clients with

KOWALSKI

Understanding API usage is important for upstream and downstream developers. For
upstream developers it is important to know how their APIs are used, so that they can
estimate the impact of changes. Downstream developers require a self-explanatory
API in the best case or at least documentation [71]. With the lack of documentation,
usage examples of an API serve as a good entry point to learn and explore the API
[28], but finding the clients of a specific API to extract usage patterns is a non-trivial
task. Many studies therefore analyze a few hand-selected projects to mine the API
usage [1][115]. Others collect usage patterns by analyzing a large corpus of projects
and select those patterns with the highest support [174][109]. Few studies mine unit
test cases to synthesize API usage examples when other sources of client code are
rare [62]. Nevertheless, high diversity exists in API usage [131] since an API can
provide many callable methods, while different clients make use of different subsets
of them. Therefore, to find different possible usages of an API, one should find
enough client code to cover as many usage scenarios as possible.

In this chapter, we present KOWALSKI, a tool to collect clients of specific Java
APIs. KOWALSKI exploits the wide-spread use of Maven as a dependency man-
agement system. KOWALSKI takes the name of an API as an input, crawls Maven
repositories, and outputs JAR (Java ARchive) artifacts of the API clients, includ-
ing their dependencies. While most existing large-scale miners operate on sources
with limited type-awareness only [45], KOWALSKI enables type-aware analysis of
API clients as it collects them in bytecode format. The classes referenced in the
client bytecode can be resolved, so that typed call graphs can be constructed. The
call graphs could be used to extract protocols, i.e., methods that need to be called

129

130 A.1. API CLIENT COLLECTION

(c) artifact extraction

(b) client identification

downloaded artifactsAPI projects API client projects

(a) API matching

analyze

“g:org.apache.lucene”

<<query>>

“lucene-core:5.5.0”

<<descriptor>>

“neo4j-lucene-index:3.1.1”

<<descriptor>>

neo4j-lucene-index:3.1.1

lucene-core:5.5.0

depends on

<<classpath>>

neo4j.IndexType.clearDocument()

lucene.Document.getFields()

invokes

<<invocation>>

search.maven.org

mvnrepository.com/lucene-core/5.5.0/usages

mvn

Figure A.2: Dataflow in KOWALSKI from the initial query to the class path of dowloaded
binaries to analyze.

in a certain order [148][168][171]. Moreover, KOWALSKI facilitates tracking of the
evolution of clients and APIs, as collected artifacts are tagged with their version
numbers. The source code of KOWALSKI is available on GitHub.1

We use KOWALSKI to collect clients of Apache Lucene, the de facto standard
for full-text search, available in the Maven Central repository.2 Within one hour
KOWALSKI collects 7,755 client artifacts of Lucene, for which we extract call graphs
in six hours. From the call graphs we determine in how many clients a Lucene
method is used and how often a method is used in those clients. API developers
can use this information to distinguish between API hotspots, which affect many
clients if changed, and cold spots, which can be changed with little impact. We find
hotspots in the high-level API methods to create queries and documents, and to read
from and write to the full-text index. Cold spots are API methods that deal with
file format of the index. The dataset, KOWALSKI binaries, and setup scripts for this
experiment can be fetched from Figshare.3

We also use KOWALSKI to collect clients of Apache Lucene to infer the nullness
of API methods [112], i.e., whether a method may return a null value or not.

A.1 API Client Collection
We want to find clients of a specific API, so that our downstream analysis finds many
API calls. We also require the called methods to be precisely identifiable. For that
we need type information about the called methods, namely method signatures and
declaring types. As APIs evolve over time, methods may be added, removed, or
change the contract. Different versions of an API may co-exist. For example, the
method org.apache.lucene.search.Weight.scorer() never returns null in
an early version of Lucene, but does so in later versions.4 Hence a method invocation

1https://github.com/maenu/kowalski
2http://search.maven.org/
3https://figshare.com/projects/KOWALSKI_ICSME_Tools_2017/22756
4https://issues.apache.org/jira/browse/JCR-3481

https://github.com/maenu/kowalski
http://search.maven.org/
https://figshare.com/projects/KOWALSKI_ICSME_Tools_2017/22756
https://issues.apache.org/jira/browse/JCR-3481

APPENDIX A. COLLECTING API CLIENTS WITH KOWALSKI 131

(c) artifact extraction(b) client identification

downloaded artifactdependency artifact

project API project API client project

(a) API matching

Figure A.1: Dependency subgraph extraction steps with project nodes marked as API,
API client and artifacts.

must be traceable to the method signature, the declaring class, the declaring API,
and the API’s version. This information constructs a universally unique method
identifier. We need a way to find the API clients and the universally unique identifier
of the called API methods.

Collecting clients of a specific API means that we need to extract a subgraph
of the dependency graph spanned by all projects, as shown in Figure A.1. First,
we need to match the APIs for which we want to collect clients (a). Second, we
need to identify clients of the matched APIs (b). Third, we need to extract the API
client artifacts we want to analyze (c). These artifacts can be sources, binaries, or
documentation.

Many Java projects use Maven as a dependency management system, which
we can exploit for our purpose. Maven projects declare their dependencies in a
meta-data file. For example, one version of Neo4j declares the artifact descriptor
org.neo4j:neo4j-lucene-index, version 3.1.1, and a dependency to Lucene
version 5.5.0. Neo4j developers use Maven to automatically collect the required
Lucene dependency from a package repository. Just as Lucene, Neo4j itself is pub-
lished to this package repository. Therefore, both the API and its client are stored in
the same repository and linked through the declared dependency.

A.2 Implementation

We implement the aforementioned dependency subgraph extraction in KOWALSKI.
KOWALSKI is designed for high concurrency and collects artifacts rapidly. In Fig-
ure A.2 we show how the extraction is implemented using the three tasks (a, b, c) as
introduced in Figure A.1. Each task is run in a job that pipes the input and output
of the tasks between streams of cached intermediate results.

132 A.2. IMPLEMENTATION

A.2.1 Tasks
The three tasks are decoupled from each other, so that multiple instances of the same
task run in parallel. The output of one task is the input of another task, which enables
piping different tasks in sequence.

The API matching task (a) finds projects that match a query for Maven Central
Search.5 For example, to find all Apache Lucene versions, the task takes a query
in the form g:org.apache.lucene as input. The task then collects all match-
ing artifacts and outputs their descriptors, e.g., org.apache.lucene:lucene-
core:5.5.0 for Lucene 5.5.0.

The client identification task (b) accepts an artifact descriptor and collects their
clients. Clients of an artifact are found by scraping the mvnrepository website.6

The task outputs artifact descriptors again, e.g., org.neo4j:neo4j-lucene-
index:3.1.1 for Neo4j 3.1.1, as it is a client of Lucene.

The artifact extraction task (c) takes an artifact descriptor and collects the corre-
sponding JAR binaries, including dependencies. This task can be configured using a
traditional Maven setting.xml to declare the repositories the JARs should be fetched
from. It is also possible to configure the dependency scopes that should be used
to resolve the necessary dependencies. For instance, a dependency to a unit test-
ing framework is declared in the test scope. If we were to analyze tests, we could
configure the artifact extraction task to include the test dependencies.

A.2.2 Jobs
The tasks are executed in jobs, denoted by the dashed arrows in Figure A.2. Jobs
are responsible for providing input for the wrapped tasks and deciding what to do
with the task’s output. The output stream of one job is the input stream of another
job. The chaining of jobs through streams acts as the composition mechanism to
build the pipeline required to collect the dataset. A job reads the task’s input from an
input stream, delegates the input to the task to process, and writes the task’s output
to an output stream. Since tasks are independent, and the access to input and output
streams is synchronized, jobs can be executed concurrently. Streams are named, so
that a job can be configured by the type of the task it executes together with the
names of the input and output streams.

A.2.3 Collector
The collector runs multiple workers that are responsible for carrying out the jobs. A
worker is merely a thread running a job. All workers are executed in parallel by the
collector. The collector can be configured by specifying how many workers for each
job are instantiated. At startup, all jobs are created based on this configuration and
executed with the number of workers desired.

5See http://search.maven.org/#api REST API
6For example https://mvnrepository.com/artifact/org.apache.lucene/

lucene-core/5.5.0/usages

http://search.maven.org/#api
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/5.5.0/usages
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/5.5.0/usages

APPENDIX A. COLLECTING API CLIENTS WITH KOWALSKI 133

groupId
artifactId
version
timestamp

ARTIFACT

name

CLASS

signature

METHOD1 *CONTAINS

1 *
IMPLEMENTS * *

INVOKES
* *

DEPENDS_ON

1 *
DECLARES

Figure A.3: Neo4j database schema for the analysis call graph.

A.3 Experiment

For our experiment we extract call graphs of Apache Lucene clients and identify
Lucene API hotspots, which are the most used methods in the API. We deploy
KOWALSKI to a multi-core Ubuntu server to collect the clients. The collection and
analysis runs on a 64 bit Ubuntu machine with 32 cores at 1.4 GHz and 128 GB of
RAM. We use Apache Artemis as a JMS server to persist the streams of intermediate
results and we deploy Neo4j as the database to store the extracted call graphs. The
artifact extraction task from KOWALSKI writes downloaded JAR and POM artifacts
to the local Maven repository, so that they can be read by the downstream analy-
sis. We run 16 worker threads to collect the dependencies of multiple API clients in
parallel. The collected clients are analyzed in 4 concurrent processes.

The analysis applied to the API clients processes all methods that are defined in
classes of the client artifact. All invocations of Lucene methods are extracted. The
invoked methods are tracked to the defining classes and Lucene version, so that for
each analyzed artifact, a typed call graph is stored in the database. The schema of
the database is shown in Figure A.3. As each artifact is stored exactly once in the
database, different clients calling the same API method in the same API artifact are
reflected by multiple incoming invocations of the same method. Therefore, it is not
just that we have a call graph for each analyzed client, but we have an aggregated
call graph over the whole dataset.

It takes one hour to collect the 7,755 identified clients and six hours to analyze
them. The analysis of a single client takes eleven seconds on average. As the analysis
starts as soon as the binary artifacts of the first client are extracted, the whole process
terminates within six hours. 1,685 binaries are part of Lucene itself, as it is a multi-
module project. In 3,009 of non-Lucene binaries we find invocations to Lucene. In
the remaining 3,061 binaries we cannot find Lucene usage, as Lucene is a transitive
dependency and not directly used by the analyzed methods. The binaries belong to
186 different projects identified by the unique artifact descriptor. We group Lucene
and client releases by major version to get an overview of the usage, as shown in

134 A.4. LIMITATIONS AND THREATS TO VALIDITY

Table A.1: Client major versions per Lucene major version, invoked Lucene methods,
and their invocations.

Lucene version clients methods invocations
1 1 23 37

2 48 999 8,819

3 87 1,141 11,619

4 109 1,446 12,830

5 45 1,794 24,773

6 35 1,299 6,720

7 3 4 7

Table A.1. For Lucene versions 1 and 7 we observe very small usage, so we ignore
them in the experiment hereafter.

Figure A.4 shows for each major Lucene version how widely a method is used
among clients and how often it is invoked when used. The product of these two
usage metrics results in the number of total invocations of a method, denoted by the
color of a method point. This evaluation can serve as an estimation of the impact
when Lucene changes its API methods. From the plots we can read how many call
sites need to be refactored when a Lucene method changes its signature and how
many clients are affected. We find hotspots in the high-level API methods to create
queries and documents, and to read from and write to the full-text index. Cold spots
are API methods that deal with file format of the index. We observe that the general
usage changes over time. While some methods are used in 40 out of 48 clients of
Lucene 2, the most widespread methods are used in only 17 out of 35 clients for
Lucene 6. In newer Lucene versions, methods are generally invoked more often.
Two projects, Elasticsearch and Solr, which have grown together with Lucene, are
responsible for this phenomenon.

A.4 Limitations and Threats to Validity

For our experiment KOWALSKI collects only Lucene and other OSS projects that de-
pend on Lucene and are published on Maven Central. First, this excludes all closed
source projects. If given access to a company repository, KOWALSKI can also be
used to collect a dataset of clients of a company-internal library. The static analysis
can be reapplied as well. Second, all open source projects that are not published on
Maven Central are excluded. There are other popular Maven repositories that may
contain other Lucene clients, for example jcenter7 and clojars.8 However, Maven

7https://bintray.com/bintray/jcenter
8https://clojars.org/

https://bintray.com/bintray/jcenter
https://clojars.org/

APPENDIX A. COLLECTING API CLIENTS WITH KOWALSKI 135

2 3 4 5 6

0 1 0 1 0 1 0 1 0 1

0

10

20

30

40

using clients / clients

in
v
o
c
a
ti
o
n
s
 p

e
r

u
s
in

g
 c

lie
n
t

invocations bottom 5% middle 90% top 5%

Method usage in Lucene versions

Figure A.4: Method usage in Lucene versions 2 to 6. We show in how many clients a
method is used, and how often it is called in those clients.

Central is a large repository that serves 1,935,045 versions of 185,693 artifacts.9

Package repositories are primarily used to distribute reusable libraries, therefore our
dataset has a strong bias towards libraries as clients. Libraries may use Lucene differ-
ently than projects further down the dependency hierarchy. Third, we lack a measure
to estimate how many Lucene clients are only distributed as sources, for example on
GitHub. As our analysis is tailored to run on binaries, it would require a build of
these projects. While building arbitrary projects from source is non-trivial [109], we
conjecture the widespread use of Travis CI among active projects might facilitate this
issue. The identification of clients of a dependency on GitHub requires a searchable
index similar to mvnrepository for Maven, but for GitHub projects. Parsing POMs
alone will not detect clients that rely on a transitive dependency [108]. Identifying
transitive dependencies requires resolving all dependencies of a projects, which is an
time-intensive task. Fourth, we only analyze the Lucene ecosystem, and the results
may not generalize to other ecosystems.

9https://search.maven.org/#stats, date of access May 3, 2017

https://search.maven.org/#stats

136 A.5. RELATED WORK

A.5 Related Work
There are several datasets over large parts of GitHub. Google’s BigQuery GitHub
dataset10 can be queried for contents of source files. It even runs static analysis
remotely,11 but type information is not provided and must be reconstructed. Dyer
et al. provide ASTs that include partial type information from sources in GitHub
projects in the Boa dataset [45]. The binaries collected by KOWALSKI provide more
type information as we can track method invocations to the invoked method and li-
brary version without ambiguity. By choosing Maven repositories as our datasource
we are restricted to a smaller set of OSS projects than GitHub, but we gain type
precision.

Lämmel et al. check out 6,286 SourceForge projects and manage to build 1,476
of them with Ant to analyze them for API usage [109]. They manually search for
missing dependencies to fix build errors in 15% of the built projects. Instead of
building projects from source, we collect binary Maven artifacts with resolved de-
pendencies. We use the SOOT analysis framework that creates phantom references
for unresolvable classes.

Sawant et al. build a typed dataset for five APIs and their usages in 20,263
GitHub projects using Maven [180]. They use partial compilation to work around
unresolvable classes. By compiling from source, projects can be inspected for any
revision of a source file in a version control system. Our dataset includes only built
binary artifacts, yet they are versioned as well, therefore we can track the evolution
of a project as well, although on a coarser level of releases.

A.6 Conclusions
KOWALSKI is a tool to collect API clients for API usage analysis. Our experiment
shows that KOWALSKI is performant and produces datasets that can be analyzed to
find hotspots.

The KOWALSKI pipeline can be used to collect datasets about any API that is
hosted in the supported Maven repositories, from large ecosystems around Apache,
Eclipse, or Mozilla artifacts to more focused sets of clients of a single product such
as Hibernate, JUnit, or Guava. KOWALSKI can also be used on a company internal
repository. The collected clients of closed source frameworks and libraries can be
analyzed to identify hotspots.

To conquer the bias in the collected datasets towards libraries, one future direc-
tion is to utilize Travis CI for extending KOWALSKI with a task to build projects
from GitHub.

10https://cloud.google.com/bigquery/
11https://medium.com/google-cloud/static%2Djavascript%2Dcode%

2Danalysis%2Dwithin%2Dbigquery%2Ded0e3011732c

https://cloud.google.com/bigquery/
https://medium.com/google-cloud/static%2Djavascript%2Dcode%2Danalysis%2Dwithin%2Dbigquery%2Ded0e3011732c
https://medium.com/google-cloud/static%2Djavascript%2Dcode%2Danalysis%2Dwithin%2Dbigquery%2Ded0e3011732c

B
Analyzing Commits With BICO

Developers commit changes to the code base of a certain project in order to, for
instance, fix bugs, add features, or refactor the code. In empirical studies, researchers
often need to link commits with issues in issue trackers to audit the purpose of code
changes. Unfortunately, there exists no general-purpose tool that can fulfill this
need for different studies. For instance, while in theory each commit should serve
one purpose, in practice developers may include several goals in one commit. Also,
issues in issue trackers are often miscategorized.

BICO (BIg COmmit analyzer) is a tool that links the source code management
system with the issue tracker. BICO presents the information in a navigable form, in
order to make it easier to analyze and reason about the evolution of a certain project.
It takes advantage of the fact that developers include issue IDs in commit messages
to link them together. BICO also provides dedicated analytics to detect big commits,
i.e., multi-purpose and miscategorized commits, using statistical outlier detection.
In an initial evaluation, we use BICO to analyze bug-fix commits in Apache Kafka.
Our tool reports 9.6% of the bug-fixing commits as miscategorized or multipurpose
commits with a precision of 85%. This high precision demonstrates the applicability
of the outlier detection method implemented in BICO.
Screencast: https://vimeo.com/223184016
Sourcecode & Instructions: https://github.com/papagei9/scg-bico

B.1 Introduction

Developers commit source code changes for many reasons, e.g., to fix bugs, add
features, or clean up the code. The purposes of these commits are usually docu-

137

https://vimeo.com/223184016
https://github.com/papagei9/scg-bico

138 B.1. INTRODUCTION

mented in the commit messages themselves. Developers also include issue IDs in
commit messages to link their commits with the issues they resolve. This ad-hoc
style of linking source code management systems with issue trackers motivates re-
searchers to mine both repositories and deduce knowledge from the evolution of
systems, like discovering bug-fix patterns [161][158][110], predicting changes in
the code [213][67], and building datasets for bug prediction [38]. Such studies face
three main challenges:

Linking commits with issues

Although many techniques have been proposed in the past to approach this problem
(e.g., [190]), there exists no general-purpose tool that can be used off the shelf. Each
study has its own implementation.

Finding clean commits

Ideally, commits should not be big and each commit should serve one purpose. This
is not necessarily true in practice. There are commits that serve multiple purposes
at the same time. Studies can produce more reliable results if they rely on clean
commits, i.e., uni-purpose commits.

Categorizing issues correctly

It has been shown previously that issues in issue trackers are sometimes miscatego-
rized [5][81]. This threatens the external validity of the studies that rely on accurate
categorization.

To address these challenges, we have developed BICO, a general-purpose tool
that links commits and issues, and provides further analytics to detect suspicious
commits that either combine multiple purposes or are miscategorized, which we
refer to as big commits. For instance, issue number 6271 in Apache Lucene1 is cat-
egorized as a bug. After linking this issue with the commit that fixes it, it turns out
that this commit changes 3’945 lines of code in 73 files and it is actually a refac-
toring commit. Eliminating such commits from analysis, or at least the awareness
of their controversy, improves the reliability of further empirical studies in software
evolution. BICO implements statistical outlier detection to detect big commits like
this one. An initial evaluation to extract and analyze bug-fix commits in Elastic-
search shows that BICO could categorize 1’489 commits as fixes, 7% of which are
detected as big commits with a precision of 85%.

BICO represents a first step to build a general-purpose infrastructure for ana-
lyzing software evolution. To demonstrate its usefulness, we built a metric suite
extractor on top of BICO for calculating change metrics [143], source code metrics
[36], and defect counts [190] for any analyzed system at the point in time of any
commit. BICO, with its big commit analysis, provides a usable infrastructure that
facilitates this metric extraction.

1https://issues.apache.org/jira/browse/LUCENE-6271

https://issues.apache.org/jira/browse/LUCENE-6271

APPENDIX B. ANALYZING COMMITS WITH BICO 139

B.2 BiCo

B.2.1 Linking Commits with Issues

BICO requires the user to provide the Git URL and the issue tracker URL of the
project to be analyzed. BICO detects issue IDs in commit messages and uses them
to link commits with issues. This technique is known in the literature and has been
used in several studies [190][38] because developers often include in the commit
messages the IDs of the issues resolved by the current commit. For instance, one of
the commit messages in Apache Flume states:
“FLUME-774. Move HDFS sink into a separate module”
This means that this commit resolves the issue “FLUME-774”. BICO uses these
IDs to fetch the issues from issue trackers. However, different projects can have
different URLs for their issues and the user needs to provide the template URL for
the projects they need to analyze. Also different issue trackers have different issue
IDs. Currently, BICO supports three issue trackers:

1. JIRA2 is one of the most used issue trackers in the open-source commu-
nity, provided by Atlassian. Usually, issue reports can be obtained using
the following URL template: https://issues.apache.org/jira/
si/jira.issueviews:issue-xml/%s/%s.xml where the user puts
“%s” to instruct BICO that this is the placeholder for the issue ID. When a
project uses this tracker, BICO looks in the commit messages for the pat-
tern WORD-NUMBER and considers it as an issue ID, as this is the for-
mat JIRA gives IDs to issues, e.g., ZOOKEEPER-2688, KAFKA-4744, and
TIKA-2261.

2. Bugzilla3 is another widely-used issue tracker provided by Mozilla. Similarly
to JIRA, the template is usually https://bugzilla.mozilla.org/
show_bug.cgi?ctype=xml&id=%s. Since issue IDs are just numbers
in Bugzilla, for projects using Bugzilla as an issue tracker, BICO looks for any
number in the commit message and tries to find an issue with this number as
an ID.

3. Github Issues4 is an issue tracker for the projects hosted on Github. More and
more projects are moving to Github Issues because of its convenience. The
user just needs to provide the Github URL as the issue tracker, e.g., https:
//github.com/elastic/elasticsearch. Similarly to Bugzilla, Github
uses plain numbers as issue IDs.

2https://www.atlassian.com/software/jira
3https://www.bugzilla.org/
4https://github.com/

https://issues.apache.org/jira/si/jira.issueviews:issue-xml/%s/%s.xml
https://issues.apache.org/jira/si/jira.issueviews:issue-xml/%s/%s.xml
https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=%s
https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=%s
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://github.com/

140 B.2. BICO

1

2

3

Figure B.1: Screenshots of the BICO showing the main functionality. From the overview
of project details (1), one can navigate to an analysis of the project (2), or to a list of
possible big commits (3).

B.2.2 Under the Hood

Under the hood, BICO is mainly a batch job tool. Starting from the UI, when a
user adds a new project to be analyzed, BICO starts a batch job in the backend
that does the actual heavy lifting. Each batch job consists of two steps. In the
first step BICO clones the repository, parses the commits, extracts issue IDs from
commit messages, and saves the results in the database. As soon as the first step is
successfully completed, the second step starts, where BICO retrieves all the issues
for all the IDs extracted in the previous step and links them with the commits in
the database. After this step, the user can explore the extracted data via the web
interface. BICO also provides a means to control the batch jobs themselves. Users
can stop, restart, pause, and resume the jobs at anytime. The batch job backend
is implemented in Spring Batch and the web front-end is implemented in Spring
MVC.5

B.2.3 Big Commit Detection

BICO implements an outlier detection method to find big commits, as in Figure B.1(3).
Since BICO keeps data about the number of changed files and the number of changed
lines in each commit, it can calculate the first quartile Q1 and the third quartile Q3
of these metrics in each category of commits. Using these quartiles, BICO uses the
definition of extreme outliers in statistics to detect big commits. Such outliers are

5https://spring.io/

APPENDIX B. ANALYZING COMMITS WITH BICO 141

data points that are smaller than Q1 − 3 × IQR (i.e., lower outer fence) or larger
than Q3+3× IQR (i.e., upper outer fence), where IQR = Q3−Q1 (intermediate
quartile range). In BICO, big commits are commits that have more changed files or
lines of code than the extreme outlier threshold within that commit category. The
main rationale behind this approach is that different types of source code changes
have different characteristics. For instance, code refactoring changes tend to be large
whereas bug-fix changes are known to be small [119].

B.2.4 User Interface
All extracted data is saved in a database and can be used separately from BICO it-
self. However, BICO provides its own UI for users to explore the extracted data.
Figure B.1 shows the main functionality of BICO. Screenshot (1) shows the details
of the analyzed projects where the user can see all the commits of the projects and
can click on a commit to see its details. Also, the user can click “analyze” to per-
form statistical analysis on the commits, as in screenshot (2), where the commits of
each issue type are analyzed as a group. Simple statistics as well as charts are dis-
played about the commits of the following issue types: bug, feature, improvement,
refactoring, and documentation.

B.3 Evaluation

B.3.1 Big Commit Analysis
As an initial evaluation, we use BICO to extract and analyze the bug-fix commits in
Apache Kafka, a popular publish/subscribe distributed infrastructure implemented
on top of Hadoop.6 Kafka uses Github as the source code management system
and JIRA as an issue tracker. BICO was able to categorize 1036 commits as fixes
using the categories of the linked issues. However, BICO detects that 100 of the
fixing commits (9.6%) are big commits. We manually investigated the reported big
commits in the bug-fix category and observe that only 15 of them are false positives,
i.e., they are actually bug-fix commits. The remaining 85 commits are correctly
classified as big commits: 33 improvement, 19 multipurpose, 15 feature addition, 9
refactoring, 8 test addition, and 2 documentation addition. This precision of 85%
suggests that the statistical outlier detection is a reliable method for detecting big
commits and BICO can be used off-the-shelf to analyze project repositories and aid
researchers in related empirical studies.

B.3.2 Software Metrics Extraction Use Case
The extraction and accurate categorization of commits in BICO makes it possible
to implement a wide range of software evolution analyses. We have implemented a
feature in BICO to extract software metrics of any analyzed system. The supported

6https://github.com/apache/kafka

https://github.com/apache/kafka

142 B.3. EVALUATION

metrics are the change metrics proposed by Moser et al. [143], source code metrics
[36], and defect counts from the SZZ algorithm [190]. SZZ can be run once to
label Java classes with bug counts across the evolution of the system. Change and
source code metrics can be calculated for the system on every commit, on every nth

commit, or on a specific commit specified by the commit hash. This functionality
allows researchers in the domain of defect prediction to build defect predictors and
carry out empirical studies on any git-based system, and not only on the publicly-
available datasets such as the bug prediction benchmark [38] or the Tera-PROMISE
repository.7

B.3.3 Test Repository

We have created a git repository for a synthesized Java project.8 This repository
contains commits of different categories and acts as the ground truth to test BICO.
We are currently in the process of expanding this repository to cover more cases and
scenarios to be able to test BICO more extensively in the future.

B.3.4 Current Limitations and Future Work

In Github issues and Bugzilla, issue IDs are just numbers. Although a commit mes-
sage may contain numbers that are not issue IDs (e.g., dates, commit hashes), it is
highly unlikely to have an issue ID with that same number. However, there might
still be some false links between commits and issues. Besides, BICO only extracts
the issues that are linked by commits, because the focus of the tool is on commit
analysis. In the future, we plan to extend BICO to pull all issues of a certain projects
regardless of the possibility to link them with commits. Also commits that do not
contain issue IDs, are not categorized, but still kept in the database. These commits
can be categorized based on the content of the commit messages, but this is not yet
implemented.

Several open-source projects (e.g., OpenStack) use the Gerrit code review sys-
tem.9 In these projects, commit messages may contain IDs to link commits to code
reviews in the Gerrit system. We plan to extend BICO to analyze code review data,
since there is a growing interest in analyzing this type of data.

Although the initial evaluation reveals the high precision of outlier detection
in BICO, we plan to carry out a larger and more thorough evaluation, where the
precision of big commit detection in each category is analyzed on multiple projects.
Besides, we now only measure the precision of BICO. We need to estimate the
recall, as the outlier detection might miss some big commits.

BICO is in its initial stage and we plan to extend it in multiple directions. We
plan to support other outlier detection methods such as statistical tests, depth-based
approaches, deviation-based approaches, and distance-based approaches. Different

7http://openscience.us/repo/
8https://github.com/papagei9/AcmeStore
9https://www.gerritcodereview.com/

https://github.com/papagei9/AcmeStore

APPENDIX B. ANALYZING COMMITS WITH BICO 143

projects might require different methods and we plan to let the user choose the ap-
propriate method of outlier detection. Another direction is to analyze the textual
content of the commit message and issue itself to determine the purpose of the com-
mit using natural language processing techniques. The long-term goal is to provide
an infrastructure that can extract commits and categorize them reliably to facilitate
future related studies.

B.4 Related Work
Mockus and Votta [141] categorize the changes of software based on the textual
content in transaction log messages in the Extended Change Management System
(ECMS) [137].

Śliverski et al. [190] identify the commits that induce fixes in the future. They
start from the bug report in an issue tracker, then navigate to the commit that fixes
the issue, identify the changed code in that commit, and finally track that changed
code to the commit that introduces it. Analyzing Eclipse and Mozilla, Śliverski et
al. reveal that the average number of changed files in a fix commit tends to be small:
2.73 in Eclipse and 4.39 in Mozilla. Purushothaman and Perry [169] analyze small
changes in software using change and defect history data. They find that nearly 10%
of changes are one-liners and the maximum number of changes are adaptive (i.e.,
new features). After a manual inspection of 374 bugs from three systems, Lucia
et al. [119] find that bug fixes that span more than five files are very rare (7% in
Rhino, 1% in AspectJ, 10% in Lucene). Herzig et al. [81] manually examined more
than 7’000 issues from issue trackers of five open-source projects. They report that
between 37% and 47% of issue reports are wrongly typed in issue trackers. This
type of study can benefit from an off-the-shelf tool such as BICO.

Fischer et al. combine data from Mozilla CVS and the Bugzilla issue tracker
into one database called the release history database as a part of a software evolution
analysis framework [54]. Then Fischer et al. use this combination of data sources
to pinpoint and track features in the source code and reveal relationship between
features in Mozilla [53]. BICO provides similar functionality but on a wider scale
where many issue trackers are supported and any git repository can be analyzed.

Dallmeier and Zimmermann [37] propose iBUGS, a tool that extracts bug lo-
calization data semiautomatically from software change history. Using patterns like
“Fixed 1234” or “Bug #1234” in commit messages, they discover bug-fix commits,
but without linking them to issue trackers. The authors made many datasets avail-
able using iBUGS. BICO provides a step further by linking the commit messages to
issues in issue trackers.

Begel et al. develop a framework called Codebook [15][16][17], that extracts
data from several types of software repositories and combines them into people-
artifacts graphs. However, Codebook is tailored to the infrastructure at Microsoft
and cannot be used in other contexts. BICO on the other hand is publicly available
and can work with most of open-source project setups.

Rosen et al. present Commit Guru [175], a tool that can provide commit ana-

144 B.5. CONCLUSIONS

lytics for any publicly accessible git repository. The main goal is to identify risky
commits (i.e., bug-introducing commit) [186][95]. Commit Guru calculates commit-
level metrics (e.g., number of modified files, Age from last change) and use them to
predict how risky every commit is. However, using the approach suggested by Hin-
del et al. [82], Commit Guru relies only the commit messages in order to categorize
commits. It also assumes that each commit belongs to one category. BICO is differ-
ent from Commit Guru in that it links issues and commits, identifies big commits,
and extracts change and source code metrics on the Java file level.

Hindle et al. [82] define the term Large Commits as the commits that include
large numbers of files. Hindel et al. carried a case study on in 9 open source projects,
and manually analyzed the 1% of the commits that contain the largest number of
files, any files and not only source code files. They concluded that large commits
are likely to be perfective while small commits are likely to be corrective. In this
study we define big commits differently, as the commits that are miscategorized or
serve multiple purposes. We also detect categories of large commits, rather than just
listing all of them.

Bachmann et al. introduced Linkster [11], a tool that connects version con-
trol history and bug report history to identify defect-fix commits. The main intent
of Linkster is to help developers and researchers navigate and annotate commits.
BICO uses similar analysis for linking commits and issues. BICO also can be used
for exploration but is mainly intended for analysis. BICO identifies categories of
commits, identifies big commits, and extract software metrics the analyzed system
at any commit.

Although the techniques for linking commits with issues are already explored
in the literature, there exists no tool or implementation that can be used. BICO
aims at filling this gap and facilitating reproducible empirical research in software
engineering.

B.5 Conclusions
Analyzing software evolution often requires the purposes of code changes to be de-
termined. BICO is a tool that links information from software code management
systems and issue trackers to determine the purposes of source code changes, i.e.,
commits. BICO can be used off-the-shelf to analyze software projects, build datasets
on software changes, extract software metrics for defect prediction, and explore the
collected data.

Declaration of consent

on the basis of Article 28 para. 2 of the RSL05 phil.-nat.

Name/First Name:

Matriculation Number:

Study program:

Bachelor Master Dissertation

Title of the thesis:

Supervisor:

I declare herewith that this thesis is my own work and that I have not used any sources other

than those stated. I have indicated the adoption of quotations as well as thoughts taken from

other authors as such in the thesis. I am aware that the Senate pursuant to Article 36 para. 1

lit. r of the University Act of 5 September, 1996 is authorised to revoke the title awarded on

the basis of this thesis. I allow herewith inspection in this thesis.

Signature

Place ate

OSMAN / Haidar

10-980-670

PhD Program in Computer Science

✔

Empirically-Grounded Construction of Bug Prediction and Detection
Tools

Prof. Dr. Oscar Nierstrasz

Haidar Osman

Personal
Information

E-mail: haidarpi@gmail.com
Nationality: Syrian
Birthdate: 05.06.1984 (Latakia, Syria)

Research
Interests

Empirical Software Engineering, Mining Software Repositories,
Bug Prediction, Software Evolution.

Languages Arabic (Native), English (Fluent), German (A1)

Education PhD in Computer Science 2013 - 2017
University of Bern, Bern, Switzerland.
Thesis Title: Empirically-Grounded Construction of Bug Prediction and Detection
Tools
Advisor: Prof. Oscar Nierstrasz

MSc in Informatics 2010 - 2013
Università della Svizzera Italiana (USI), Lugano, Switzerland.
Thesis Title: Web-Based Collaborative Software Modeling
Advisor: Prof. Michele Lanza

BSc in Informatics Engineering 2002 - 2007
Tishreen University, Latakia, Syria.
Project Title: Topic Maps API
Advisor: Prof. Nasser Ali Nasser

Awards Swiss Engineering Ticino Award (2nd prize) 2014
for an outstanding master thesis.

AL-BASEL Top Student Awards 2003, 2005, 2006, 2007
Top student awards during the bachelor studies.

Presidential Certificate of Honour 2002
3rd top high school graduate nationwide in Syria.

Work
Experience

PhD Researcher 2013 - 2017
University of Bern, Switzerland

Big Data Engineering Intern 2015 - 2016
Swisscom, Switzerland

Software Engineer 2008 - 2010
CyberCode Consulting, Syria

Teaching Assistant 2007 - 2010
Tishreen University, Syria

	1
	Introduction
	Auxiliary Software Quality Assurance Tools
	Our Approach: Empirically-Grounded Analysis
	Adaptability
	Efficiency
	EGA to the Rescue

	Contributions in Detail
	Building an Efficient Null Dereference Detection Approach
	Efficient Bug Prediction

	Outline

	State of the Art
	Detection Tools for Frequent Bug Categories
	Discovering Prevalent Bugs
	Method Invocation Bug Detection
	Null Dereferencing Bug Detection

	Bug Prediction Tools
	Software Metrics
	Feature Selection in Bug Prediction
	Prediction Models
	Hyperparameter Optimization
	Experimental Setup
	Cost-Aware Evaluation

	Conclusions

	Discovering the Missing Null Check Bug Pattern
	Bug-Fix Analysis Procedure
	Building The Software Corpora
	Analyzing Source Code and Change History
	Manual Inspection

	Results
	The Types of Fixed Files
	Fix Size
	The Most Frequent Bug-Fix Patterns

	Bug-Fix Patterns
	Missing Null Checks
	Wrong Name/Value
	Missing Invocation
	Undue Invocation
	Other Patterns

	Implications
	Threats to Validity
	Conclusions

	Null Usage Analysis
	Motivation
	Null Check Analysis
	Experimental Corpus
	Terminology
	Analysis
	Manual Inspection

	Results
	How Common Are Null Checks?
	What Entities Do Developers Check For Null?
	Where Does Null Come From?
	What Does Null Mean?

	Discussion
	Threats to Validity
	Conclusions

	An Empirical Solution to the Missing Null Check Bug
	Harvesting the Wisdom of the Crowd
	Motivation
	The Nullability Measure

	Bytecode Collection and Analysis
	Bytecode Collection
	Static Analysis
	Validation

	Nullability Distribution
	Documentation
	Disagreement between Internal and External Usage

	Manual Inspection
	Transferring Nullability to the IDE
	Evaluation

	Threats To Validity
	Construct Validity
	Generalizability

	Conclusions

	Optimizing Bug Prediction by Applying Feature Selection
	Technical Background
	Motivation
	Regression vs Classification
	Dimensionality Reduction
	Filters vs Wrappers

	Empirical Study
	Experimental Setup
	Results
	Threats to Validity

	Conclusions

	Optimizing Bug Prediction by Tuning Hyperparameters
	Empirical Study
	Machine Learning Algorithms
	Parameter Tuning
	Procedure
	Results
	Threats to Validity

	Conclusions and Future Work

	Empirically-Grounded Optimization of Bug Prediction as a Quality Tool
	Empirical Setup
	Evaluation Scheme
	Dataset
	Response Variable
	Machine Learning Models
	Hyperparameter Optimization
	Feature Selection
	Data Pre-Processing

	Results
	Threats to Validity
	Conclusions

	Conclusions and Future Work
	Contributions of This Dissertation
	Future Research Directions
	Ad-hoc Nullability Analysis
	Integrated Bug Prediction
	Putting AQSA Tools to Work
	Quality Tool Evolution

	Collecting API Clients with KOWALSKI
	API Client Collection
	Implementation
	Tasks
	Jobs
	Collector

	Experiment
	Limitations and Threats to Validity
	Related Work
	Conclusions

	Analyzing Commits With BiCo
	Introduction
	BiCo
	Linking Commits with Issues
	Under the Hood
	Big Commit Detection
	User Interface

	Evaluation
	Big Commit Analysis
	Software Metrics Extraction Use Case
	Test Repository
	Current Limitations and Future Work

	Related Work
	Conclusions

