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Introduction

Dynamic justification logic
The broad field of epistemic logic aims to reason about knowledge and
belief. Traditional epistemic modal logic deals with the fact of knowing
or believing a certain statement: �F expresses the fact that an agent
knows (believes) statement F , regardless of the underlying reason for that
knowledge (belief).

In contrast, the framework of justification logic introduced by Artemov
[Art01] provides tools to formalize explicit reasons for such belief. Justifi-
cation terms serve as representation of evidence an agent has for its belief:
t : F expresses the fact that an agent believes in statement F for the reason
t, or t is agent’s evidence for F .
Tracking of explicit evidence allows to trace the reasoning the agent

performed to come to a conclusion from base evidence. As an example, the
application axiom illustrates the use of evidence when the agent closes its
beliefs under modus ponens:

t : (F → G) ∧ s : F → t · s : G

Such a framework makes it possible to analyze many epistemic prob-
lems and puzzles from a new perspective [Art06, Art08, BRS14, BKS11a,
KMOS15, KOS16].

Traditional justification logic provides a static picture of all justified be-
liefs that emerge from a given set of premises. It’s a natural question
to consider an extension for dynamically changing sets of reasons for be-
liefs, for example as a result of communication; this is studied in the field
of dynamic justification logic, started by Renne [Ren08] and continued in
[BKR+10, BKS11b, BRS12, BKS14, BRS15].
Kuznets and Studer in [KS13] introduced a dynamic justification logic

JUPCS, providing a simple axiomatization for belief expansion and minimal
change. It adds a new kind of atomic evidence term, up(F ), representing
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the evidence for a formula F after updating the belief set with F , and
also explicitly doesn’t provide evidence for anything else. It also adds an
update operator [Γ]F , which represents the statement F in the state after
an update with a finite set of formulas Γ. The two are connected with the
following axiom:

[Γ]up(F ) : F if F ∈ Γ

JUPCS is shown to be sound and complete with respect to a class of
basic modular models [Art12, KS12] called generated models [Stu13], with
the evidence relation generated inductively from an evidence basis as a
least fixed point of a closure operator. Furthermore, the bases use only
atomic terms.

Being able to restrict the model definition to atomic terms produces
simple models to work with, but comes at a price: term application has to
carry a record of the formula that was used in the application, e.g. t ·F s,
and the application axiom was modified to reflect this:

t : (F → G) ∧ s : F ↔ t ·F s : G

Update rollback
Logic JUPCS provide syntax and semantics for updates: an operation that
adds an explicit reason up(F ) to believe a certain statement F . A natural
question is to consider the inverse of the update operation: taking away an
explicit reason to believe a statement F .
In the simplest form, this operation would only remove specific reason

up(F ) instead of arbitrary justification terms, essentially allowing to undo
updates without disturbing initial beliefs.

Borrowing the terminology for undoing software updates and patches,
we called this operation rollback.

To provide axiomatization for rollback, we add a new operator, [Γ◦]F ,
representing the statement F in the state after rolling back updates with
a finite set of formulas Γ.
By extending definitions and proofs from [KS13] to encompass the new

operator, we obtain a similar semantics based on generated models with
atomic evidence bases.

We further clarify the intended semantics for a rollback following a chain
of updates and rollbacks with the help of history erasing theorem.

2
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Finally, we explore the connections between rollbacks and belief con-
traction [AGM85]. We demonstrate that a couple of naive contraction
operators based on rollbacks fail to meet the requirements of belief con-
traction, but show that a certain generalization is, for well-behaved models,
a candidate for shielded belief contraction [FH01], which opens further op-
portunities for research.

Nominals
Term application with a subscript is an uncommon addition to justification
logic, first introduced by Renne [Ren09]. It naturally raised the question
whether it’s possible to remove the subscript and use the more traditional
application axiom for justification logic for dynamic justification with up-
dates.

Naively modified axioms lead to semantics of generated model with non-
atomic bases, where you can have compound justification terms that justify
some statement, but constituent parts of that term do not justify anything.
Besides not being very natural, this also stops the original completeness
proof from working, as it essentially relied on the ability to reduce justifi-
cation by application terms to justification by subterms.

This left the question whether it’s possible to remove the subscript while
maintaining semantics with atomic models. This thesis presents a stepping
stone in the study of this question. To examine the most basic form of
justification arising from updates, we look at the situation after a finite set
of updates with atomic propositional statements, omitting the dynamics
of updates. Namely, for propositional variables in this fixed update set,
we introduce nominals: terms that justify exactly one formula, which is
enforced on axiom level.

An axiom system JNV
CS is formulated to capture that property, and shown

to be sound and complete with respect to a class of generated models called
intermediate models. This semantics is then shown to enjoy a variant of
finite model property.

However, this class of models is still less natural than the original seman-
tics for JUPCS. We show that, for appropriate constant specifications, it’s
possible to obtain a completeness result for a more natural class of atomic
models through a model reduction procedure we call atomization.

Those results represent the first step in adapting JUPCS to subscript-

3
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free application. The primary direction for further work is re-introducing
dynamic updates and studying the epistemic properties of the resulting
system. Another possible direction is extending nominals to non-atomic
propositions.

4



Part I.

Ground definitions and
preexisting work
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1. Common notational framework
First, we will introduce common syntactic conventions that apply to all
frameworks discussed.

For every justification logic framework we introduce, its language L will
have a common structure:

• A sort of objects called terms, given by a set TmL and a subset of
atomic terms ATmL.
We will use syntactic variables s, t, p, q, r, . . . to denote terms.

• A sort of objects called formulas, given by a set FmL and a subset of
atomic formulas which we denote PropL, since in all cases it will be
the set of propositional variables.
We will use syntactic variables F,G,H, . . . to denote formulas, and
syntactic variables P,Q,R, . . . to denote propositional variables.

As we require finite sets of formulas in our syntax, we will use syntactic
variables Γ,∆ to denote them.
Terms and formulas are given by a set of inductive (sometimes mutually

inductive) rules with atomic terms and formulas explicitly given as a basis
for inductive build-up.

Whenever it is clear from the context, we will drop the subscript L from
those sets.

We will use the standard formula connectives explicitly: ¬F for negation
and (F → G) for implication, for F,G ∈ FmL.

We also use other standard propositional connectives, namely (F ∧ G)
for conjunction, (F ∨ G) for disjunction and F ↔ G for equivalence, as
implicit shorthand:

(F ∧G) := ¬(F → ¬G)
(F ∨G) := (¬F → G)

(F ↔ G) := (F → G) ∧ (G→ F )

7



1. Common notational framework

We will omit parentheses for formula connectives when this is unambigu-
ous; for this, we consider implication is right-associative:

F → G→ H = (F → (G→ H))

We also consider that ∧ and ∨ bind stronger than → and ↔.
Another standard formula connective we will use in every language in-

troduced is evidence: t : F for t ∈ TmL, F ∈ FmL.
Formulas of the form t : F should be read as “t justifies F” or “F is

believed for the reason t”.

Definition 1.1 (Evidence pairs). Given a justification language L, we call
pairs of the form (t, F ) ∈ TmL × FmL evidence pairs.

8



2. Justification Logic With
Updates: JUP

In this chapter, we present the logic JUP and corresponding semantics from
[KS13]. We will also formulate the soundness and completeness results for
them.

2.1. Language L+
s

The language of logic JUP, which we will denote L+
s and is presented in

this chapter, differs from the standard language of justification logic in two
ways:

• Term application carries a formula subscript: t ·F s.

• An additional constructor clause for formulas is introduced: [Γ]F for
a formula F and a finite set of formulas Γ.

Having a formula subscript means that terms and formulas have to be
defined by mutual induction:

Definition 2.1 (Terms and formulas of L+
s ). The sets TmL+

s
of terms and

FmL+
s
of formulas are defined inductively by the following clauses:

Terms:

• (Countably many) term variables: {x, . . .} ⊆ TmL+
s

• (Countably many) term constants: {c, . . .} ⊆ TmL+
s

• Term application: (t ·F s) ∈ TmL+
s
for t, s ∈ TmL+

s
, F ∈ FmL+

s

• Update terms: up(F ) ∈ TmL+
s
for F ∈ FmL+

s

9



2. Justification Logic With Updates: JUP

Formulas:

• (Countably many) propositional variables: {P, . . .} ⊆ FmL+
s

• Implication: (F → G) ∈ FmL+
s
for F,G ∈ FmL+

s

• Negation: ¬F ∈ FmL+
s
for F ∈ FmL+

s

• Evidence: t : F ∈ FmL+
s
for t ∈ TmL+

s
, F ∈ FmL+

s

• Update: [Γ]F ∈ FmL+
s
for F ∈ FmL+

s
and finite Γ ⊆ FmL+

s

Term variables, term constants and update terms are collectively called
atomic terms, and their set is denoted by ATmL+

s
.

Propositional variables are called atomic formulas, and their set is de-
noted by PropL+

s
.

The intended meaning of formulas of the form [Γ]F is “F holds after
an update with all the formulas in Γ”, and up(F ) represents the special
evidence for a formula F in case there was an update including F .

We will omit parentheses for term application when this is unambiguous;
for this, we consider implication is left-associative:

t ·F s ·G r = ((t ·F s) ·G r)

We will also drop the subscript L+
s for the rest of this chapter.

2.2. Logic JUP
To define the deduction system JUPCS, we first give a list of axiom schemes,
using shorthand notation introduced in Chapter 1:

Definition 2.2 (Axioms of JUP).

1. All classical propositional tautologies (Taut)
2. t : (F → G) ∧ s : F ↔ t ·F s : G (App)
3. [Γ]P ↔ P P ∈ Prop (Red.1)
4. [Γ]¬F ↔ ¬[Γ]F (Red.2)
5. [Γ](F → G)↔ ([Γ]F → [Γ]G) (Red.3)

10



2.2. Logic JUP

6. t : F → [Γ]t : F (Pers)
7. ¬up(F ) : G (Init)
8. [Γ]up(F ) : F if F ∈ Γ (Up)
9. [Γ]t : F → t : F

if t ∈ ATm and either t 6= up(F ) or F /∈ Γ (MC.1)
10. [Γ]t ·F s : G↔ [Γ]t : (F → G) ∧ [Γ]s : F (MC.2)
11. [Γ][∆]F ↔ [Γ ∪∆]F (It)

Then, we define the notion of constant specification, which parametrizes
the deduction system:

Definition 2.3. A constant specification CS is a set of evidence pairs of
the form (c, c1 : . . . : cn : F ) (including n = 0, i.e. (c, F )), where F is an
axiom instance of JUP and c, c1, . . . , cn are term constants.

For a given constant specification CS, we can define the deduction system
JUPCS:

Definition 2.4 (Logic JUPCS). The logic JUPCS is a Hilbert-style deduc-
tion system with axiom schemes JUP and two inference rules:

F F → G (MP)
G

(c, F ) ∈ CS
(AN)

c : F

Remarks on JUPCS:

• The axiom (App) differs from the standard justification logic axiom of
application (e.g. [Art01]) — the implication goes both ways, allowing
to unambiguously infer premises from the conclusion. This is made
possible by retaining the formula used in application premises in the
subscript of the application.

• The group of axioms (Red.1)—(Red.3) are called reduction axioms
and allow for carrying updates through propositional connectives un-
til they apply directly to evidence formulas: [Γ]t : F .

11



2. Justification Logic With Updates: JUP

• The axiom (Pers) is called persistence axiom and reflects the fact that
updates only add potential evidence, but existing evidence remains
valid.

• The axioms (Init) and (Up) deal with the update terms. (Init) reflects
the fact that without updates, no update term can be considered evi-
dence for any formula. (Up) reflects that after an update that contains
a formula F , the corresponding evidence term up(F ) becomes valid
evidence for it.

• The group of axioms (MC.1) and (MC.2) reflect the principle of min-
imal change: together, they show that updates do not matter for
terms that do not contain relevant update terms as subterms, and
that the effect of the updates reduces to effect on the constituent
atomic terms. Again, this requires the subscript in application to
formulate (MC.2).

• The last axiom, (It), shows that iterated updates can always be sim-
plified to a single combined update, and vice versa.

• The constant specification CS reflects the ability to use axioms to
construct a justified formula t : F from premises of same form, using
axiom (App) as an analogue of modus ponens. Different constant
specifications yield different sets of justifiable formulas and different
possible justifications for them.

Definition 2.5. A JUP formula F is called provable in JUPCS if it can be
derived from axioms and rules of JUPCS.

It is denoted as `JUPCS F .

2.3. Semantics for JUP
To provide semantics for JUPCS, [KS13] uses a special class of basic modular
models [Art12, KS12] called generated models [Stu13], in which the evidence
relation is built up from a limited basis using a least fixpoint construction.

Definition 2.6 (Atomic basis). An atomic basis is an arbitrary set of
evidence pairs with atomic term part: B ⊆ ATm× Fm.

12



2.3. Semantics for JUP

We will use the syntactic variable B to denote bases.
Then, we define an operator on the powerset P(Tm×Fm), parametrized

by a basis:

Definition 2.7 (Evidence closure operator). For a set X ⊆ Tm× Fm and
an atomic basis B ⊆ ATm× Fm define an operator clJUP

B (X) by clauses:

• (t, F ) ∈ B ⇒ (t, F ) ∈ clJUP
B (X) (equivalently, B ⊆ clJUP

B (X))

• (t, F → G) ∈ X, (s, F ) ∈ X ⇒ (t ·F s,G) ∈ clJUP
B (X)

This is a monotone operator on P(Tm×Fm): for every X,Y ⊆ Tm×Fm,

X ⊆ Y ⇒ clJUP
B (X) ⊆ clJUP

B (Y )

Therefore, by Knaster–Tarski theorem [Tar55] it has a least fixpoint,
which will define our evidence relation:

Definition 2.8 (Evidence relation). For an atomic basis B ⊆ ATm× Fm,
define the (minimal) evidence relation EJUP(B) as the l.f.p. of clJUP

B .

The final ingredient to define a generated model is a valuation of propo-
sitional variables:

Definition 2.9 (Propositional valuation). A propositional valuation is an
arbitrary subset of propositional variables v ⊆ Prop.

Definition 2.10 (JUP models). A JUP model is a pair M = (v,B) with
propositional valuation v ⊆ Prop and atomic basis B ⊆ ATm× Fm.

Before we can interpret JUP formulas in the semantics, we need to in-
troduce model updates.

Definition 2.11 (Update set). For a finite set of formulas Γ, define the
update set UΓ:

UΓ := {(up(F ), F ) | F ∈ Γ)}

Definition 2.12 (Updated model). For a JUP model M = (v,B) and a
finite set of formulas Γ, define the updated model M+Γ = (v,B+Γ), where
B+Γ := B ∪ UΓ.

Now we can interpret formulas in a model, using the truth relation:

13



2. Justification Logic With Updates: JUP

Definition 2.13 (JUP truth relation). For a JUP modelM = (v,B), and
a formula F , the truth relation M  F is defined inductively by:

• M  P ⇔ P ∈ v

• M  ¬F ⇔M 1 F

• M  F → G⇔ (M 1 F orM  G)

• M  t : F ⇔ (t, F ) ∈ EJUP(B)

• M  [Γ]F ⇔M+Γ  F

IfM  F , we say that F is true inM.

We will drop the superscript JUP in EJUP for the rest of this chapter.

2.4. Soundness and completeness for JUP
[KS13] shows that JUPCS is sound and complete with respect to a certain
class of JUP models. We will only formulate the results here; proofs in the
next part follow the same shape as the original proofs.

Definition 2.14 (CS-model). For a constant specification CS, a JUP model
M = (v,B) is called a CS-model if CS ⊆ B.

Definition 2.15 (Initial model). JUP model M = (v,B) is called initial
if, for all formulas F,G, (up(F ), G) /∈ B.

Essentially, initial models represent the state before any updates are
applied, and updated models reflect the changes to the state brought on
by updates.

Definition 2.16 (Validity). A JUP formula F is called valid w.r.t. initial
CS-models if, for every initial CS-modelM, we haveM  F .

It is denoted as JUPCS F .

Theorem 2.17 (Soundness and completeness of JUPCS). For a given con-
stant specification CS, a JUP formula F is valid w.r.t. initial CS-models iff
it is provable in JUPCS:

JUPCS F ⇔ `JUPCS F

14



Part II.

Rollback for JUP
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3. System JUP±

The goal of this chapter is to extend JUP with a new operator, rollback,
that cancels previous updates.

3.1. Language L±s
The language that will be used in this chapter is an extension of the lan-
guage L+

s introduced in Section 2.1.

Definition 3.1 (Terms and formulas of L±s ). The sets TmL±s of terms and
FmL±s of formulas are defined inductively by the following clauses:

Terms:

• (Countably many) term variables: {x, . . .} ⊆ TmL±s
• (Countably many) term constants: {c, . . .} ⊆ TmL±s
• Term application: (t ·F s) ∈ TmL±s for t, s ∈ TmL±s , F ∈ FmL±s
• Update terms: up(F ) ∈ TmL±s for F ∈ FmL±s
Formulas:

• (Countably many) propositional variables: {P, . . .} ⊆ FmL±s
• Implication: (F → G) ∈ FmL±s for F,G ∈ FmL±s
• Negation: ¬F ∈ FmL±s for F ∈ FmL±s
• Evidence: t : F ∈ FmL±s for t ∈ TmL±s , F ∈ FmL±s
• Update: [Γ]F ∈ FmL±s for F ∈ FmL±s and finite Γ ⊆ FmL±s
• Rollback: [Γ◦]F for F ∈ FmL±s and finite Γ ⊆ FmL±s

17



3. System JUP±

Term variables, term constants and update terms are collectively called
atomic terms, and their set is denoted by ATmL±s .

Propositional variables are called atomic formulas, and their set is de-
noted by PropL±s .

As before, term application is considered left-associative, and we will
drop the subscript L±s for the rest of Part II.

The intended meaning of formulas of the form [Γ◦]F is “F holds after
a rollback of all the formulas in Γ”, which means invalidating all previous
updates, if any, for formulas in Γ.
One important thing to note is the intended ordering of iterated updates

and rollbacks. It did not matter for JUP, since the axiom (It) makes updates
commutative, however from the semantics presented in Section 2.3 it is clear
that [Γ][∆]F is interpreted as “after an update with Γ, and subsequently an
update with ∆, F holds”.
As such, we interpret iterated updates and rollbacks in a formula as a

sequence from left to right.

3.2. Logic JUP±

The deduction system JUPCS is an extension of the deduction system JUPCS
introduced in Section 2.2. It uses shorthand notation from Chapter 1 for
propositional connectives:

Definition 3.2 (Axioms of JUP±).

1. All classical propositional tautologies (Taut)
2. t : (F → G) ∧ s : F ↔ t ·F s : G (App)
3. [Γ]P ↔ P P ∈ Prop (Red.1)
4. [Γ]¬F ↔ ¬[Γ]F (Red.2)
5. [Γ](F → G)↔ ([Γ]F → [Γ]G) (Red.3)
6. t : F → [Γ]t : F (Pers)
7. ¬up(F ) : G (Init)
8. [Γ]up(F ) : F if F ∈ Γ (Up)
9. [Γ]t : F → t : F

if t ∈ ATm and either t 6= up(F ) or F /∈ Γ (MC.1)

18



3.2. Logic JUP±

10. [Γ]t ·F s : G↔ [Γ]t : (F → G) ∧ [Γ]s : F (MC.2)
11. [Γ][∆]F ↔ [Γ ∪∆]F (It)
12. [Γ◦]F ↔ F (Roll)
13. [Γ][∆◦]F ↔ [Γ \∆]F (Int)

Definition 3.3. A constant specification CS is a set of evidence pairs of
the form (c, c1 : . . . : cn : F ) (including n = 0, i.e. (c, F )), where F is an
axiom instance of JUP± and c, c1, . . . , cn are term constants.

For a given constant specification CS, we can define the deduction system
JUP±CS:

Definition 3.4 (Logic JUP±CS). The logic JUP±CS is a Hilbert-style deduc-
tion system with axiom schemes JUP± and two inference rules:

F F → G (MP)
G

(c, F ) ∈ CS
(AN)

c : F

Remarks on JUP±CS:

• The axioms (App)—(It) are exactly the axioms of JUP (Definition
2.2) and do not feature the new construct [Γ◦]F .

• The axiom (Roll) reflects the fact that rolling back updates before
any updates are made does not change validity of any formula.

• The axiom (Int) describes the interaction between updates and roll-
backs: an update followed by a rollback is equivalent to an update
without the formulas that were rolled back.

Definition 3.5. A JUP± formula F is called provable in JUP±CS if it can
be derived from axioms and rules of JUP±CS.

It is denoted as `JUP±CS
F .

19



3. System JUP±

3.3. Semantics for JUP±

Semantics for JUP± is an extension of semantics for JUP presented in Sec-
tion 2.3, so base definitions that do not differ from JUP models:

Definition 3.6 (Atomic basis). An atomic basis is an arbitrary set of
evidence pairs with atomic term part: B ⊆ ATm× Fm.

Definition 3.7 (Evidence closure). Take an atomic basis B ⊆ ATm× Fm.
For a set X ⊆ Tm× Fm define an operator clJUP±

B (X) by clauses:

• (t, A) ∈ B ⇒ (t, A) ∈ clJUP±
B (X) (equivalently, B ⊆ clJUP±

B (X))

• (t, A→ B) ∈ X, (s,A) ∈ X ⇒ (t ·A s,B) ∈ clJUP±
B (X)

Note that clJUP±
B is a monotone operator on P(Tm× Fm) and therefore

has a least fixpoint by Knaster–Tarski theorem [Tar55].

Definition 3.8 (Evidence relation). For an atomic basis B ⊆ ATm× Fm,
define the (minimal) evidence relation EJUP±(B) as the l.f.p. of clJUP±

B .

We will drop the superscript JUP± from EJUP± for the rest of Part II.

Lemma 3.9 (Evidence properties). Evidence relation E(B) has the follow-
ing properties:

(a) B ⊆ E(B)

(b) (t, F ) ∈ E(B)⇒ (t, F ) ∈ B for t ∈ ATm

(c) {(t, F → G), (s, F )} ⊆ E(B)⇔ (t ·F s,G) ∈ E(B)

Proof. Remember that E(B) is a fixpoint of clJUP±
B :

clJUP±
B (E(B)) = E(B)

From this

(a) B ⊆ clJUP±
B (X) for any X by definition.

In particular, B ⊆ clJUP±
B (E(B)) = E(B).
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3.3. Semantics for JUP±

(b) By definition of clJUP±
B , clJUP±

B (E(B)) consists of a union of two sets
that correspond to clauses.
Any evidence pair coming from the second clause contains an appli-
cation and therefore cannot be atomic. Therefore, if (t, F ) ∈ E(B),
it must be included in clJUP±

B (E(B)) by first clause, which means
(t, F ) ∈ B.

(c) First, assume {(t, F → G), (s, F )} ⊆ E(B). In that case, by second
clause in definition of the closure operator we have

(t ·F s,G) ∈ clJUP±
B (E(B)) = E(B).

Conversely, assume (t ·F s,G) ∈ E(B) = clJUP±
B (E(B)).

Since t ·F s is not atomic, it cannot come from the first clause in the
definition. Therefore, it comes from the second clause and

{(t, F → G), (s, F )} ⊆ E(B)

Lemma 3.10 (Evidence monotonicity). Evidence relation E(B) is mono-
tone on B: for all bases B,B′ we have

B ⊆ B′ ⇒ E(B) ⊆ E(B′)

Proof. Assume B ⊆ B′ and (t, F ) ∈ E(B).
We prove (t, F ) ∈ E(B′) by induction on t.
Base: t ∈ ATm. In this case, by Lemma 3.9,

(t, F ) ∈ E(B)⇒ (t, F ) ∈ B ⊆ B′ ⊆ E(B′)

Step: t = r ·G s. Using Lemma 3.9,

(r ·G s, F ) ∈ E(B) (3.9)==⇒ ((r,G→ F ) ∈ E(B) and (s,G) ∈ E(B))
(IH)==⇒ ((r,G→ F ) ∈ E(B′) and (s,G) ∈ E(B′))
(3.9)==⇒ (r ·G s, F ) ∈ E(B′)

21



3. System JUP±

Definition 3.11 (Models). A JUP± model is a pair M = (v,B) with
propositional valuation v ⊆ Prop and atomic basis B ⊆ ATm× Fm.

So far, the models are identical to JUP. However, to interpret rollbacks
we need to add a notion of rolled-back models.

Definition 3.12 (Update set). For a finite set of formulas Γ, define the
update set UΓ:

UΓ := {(up(F ), F ) | F ∈ Γ)}

Definition 3.13 (Updated model, rolled-back model).
For a modelM = (v,B), define:

• The updated model M+Γ = (v,B+Γ), where B+Γ := B ∪ UΓ.

• The rolled-back model M−Γ = (v,B−Γ), where B−Γ := B \ UΓ.

Let σ, σ′ stand for either “+” or “−”, and letM = (v,B) be an arbitrary
JUP± model.
Then, for a singleton set of formulas Γ = {A} we writeMσA instead of

Mσ{A}, and for any finite sets of formulas Γ,∆ we abbreviate (MσΓ)σ′∆
asMσΓσ′∆, and likewise for (BσΓ)σ′∆.
Using the rolled-back models, we can extend the Definition 2.13 of truth

in JUP to account for rollbacks:

Definition 3.14 (Truth). For a JUP± model M = (v,B), and a JUP±
formula F , the relationM  F is defined inductively by:

• M  P ⇔ P ∈ v

• M  ¬F ⇔M 1 F

• M  F → G⇔ (M 1 F orM  G)

• M  t : F ⇔ (t, F ) ∈ E(B)

• M  [Γ]F ⇔M+Γ  F

• M  [Γ◦]F ⇔M−Γ  F

We observe that our shorthand notation is interpreted as expected:

Lemma 3.15. For a JUP± modelM = (v,B), and JUP± formulas F,G,
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• M  F ∧G⇔ (M  F andM  G)

• M  F ∨G⇔ (M  F orM  G)

• M  F ↔ G⇔ (M  F iffM  G)

Proof. Straightforward from the definition of truth relation for proposi-
tional connectives.

As with JUP, we need to limit the class of models to obtain soundness
and completeness.

Definition 3.16 (Initial model). JUP± modelM = (v,B) is called initial
if, for all formulas F,G, (up(F ), G) /∈ B.

Definition 3.17 (CS-model). For a constant specification CS, a JUP±
modelM = (v,B) is called a CS-model if CS ⊆ B.

Definition 3.18 (Validity). A JUP± formula F is called valid w.r.t. initial
CS-models if, for every initial CS-modelM, we haveM  F .
It is denoted as JUP±CS

F .

Lemma 3.19 (Properties of updated and rolled-back models). For any
JUP± modelM = (v,B), finite sets of formulas Γ,∆:

(a) M+∅ =M−∅ =M

(b) M+Γ+∆ =M+(Γ∪∆)

(c) IfM is an initial model,M−Γ =M

(d) IfM is an initial model,M+Γ−∆ =M+(Γ\∆)

(e) For any constant specification CS, if M is a CS-model then so are
M+Γ,M−Γ

Proof. (a) U∅ = {(up(F ), F ) | F ∈ ∅)} = ∅. Therefore,

M+Γ = (v,B+Γ) = (v,B ∪ UΓ) = (v,B ∪∅) = (v,B) =M

M−Γ = (v,B−Γ) = (v,B \ UΓ) = (v,B \∅) = (v,B) =M
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(b) Follows from the following equivalences:

M+Γ+∆ = (v,B ∪ UΓ)+∆

= (v, (B ∪ UΓ) ∪ U∆)
= (v,B ∪ (UΓ ∪ U∆)) =M+(Γ∪∆)

(c) By definition,M−Γ = (v,B \ UΓ).
SinceM is assumed to be initial, B does not contain evidence pairs of
the form (up(F ), F ) for any F . Therefore, B∩UΓ = ∅ and B\UΓ = B,
from whichM−Γ = (v,B) =M.

(d) By definition,

M+Γ−∆ = (v,B ∪ UΓ)−∆ = (v, (B ∪ UΓ) \ U∆)

We have (B ∪ UΓ) \ U∆ = (B \ U∆) ∪ (UΓ \ U∆), so the above can be
rewritten as

(v, (B ∪ UΓ) \ U∆) = (v, (B \ U∆) ∪ (UΓ \ U∆))
= (v, (B \ U∆))+(Γ\∆) = (M−∆)+(Γ\∆)

However, sinceM is assumed to be initial, we haveM−∆ =M from
the previous claim. Therefore,M+Γ−∆ =M+(Γ\∆).

(e) Assuming that M = (v,B) is a CS-model, or equivalently CS ⊆ B,
we need to show that CS ⊆ B+Γ and CS ⊆ B−Γ.
The first claim is trivial: if CS ⊆ B, then CS ⊆ B ∪ UΓ = B+Γ.
By definition, a constant specification CS cannot contain evidence
pairs of the form (up(F ), F ) for any F , since the term part must be
a constant.
Therefore, CS ∩ UΓ = ∅, and from that

CS ∩ (B−Γ) = CS ∩ (B \ UΓ) = (CS ∩ B) \ (CS ∩ UΓ) = CS ∩ B

Therefore, from CS ⊆ B we conclude that CS ⊆ B−Γ.
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4. Soundness and completeness
for JUP±

4.1. Soundness for JUP±

Theorem 4.1 (Soundness of JUP±CS). For a given constant specification
CS, every formula F that is provable in JUP±CS is valid w.r.t. initial CS-
models:

`JUP±CS
F ⇒ JUP±CS

F

Proof. LetM = (v,B) be an arbitrary initial CS-model. Then we need to
show thatM  F .
We assume that F is provable in JUP±CS, therefore has at least one deriva-

tion. Proof by induction on the length of derivation of F .
Cases depending on the last step of the proof:
Axiom: The proof is an instance of an axiom. Cases depending on the

axiom:

1. (Taut) All instances of propositional tautologies hold under all mod-
els, as the propositional part of truth relation is the same as truth-
table semantics for classical propositional logic.

2. (App) We need to show that

M  t : (F → G) ∧ s : F ↔ t ·F s : G

By Lemma 3.15, this reduces to proving the following equivalence:

(M  t : (F → G) andM  s : F )⇔M  t ·F s : G

By definition of the truth relation, we have the following equivalence:

(M  t : (F → G) andM  s : F )⇔ {(t, F → G), (s, F )} ⊆ E(B)
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Finally, by Lemma 3.9,

(t ·F s,G) ∈ E(B)⇔ {(t, F → G), (s, F )} ⊆ E(B)

Putting the last three equivalences together we obtain the claim.

3. (Red.1) We need to show thatM  [Γ]P ↔ P .
By Lemma 3.15, this reduces to proving the following equivalence:

M  [Γ]P ⇔M  P

By definition of the truth relation,

M  [Γ]P ⇔M+Γ  P

SinceM+Γ andM have the same propositional valuation v, we have:

M+Γ  P ⇔ P ∈ v⇔M  P

This shows the required equivalence.

4. (Red.2) We need to show thatM  [Γ]¬F ↔ ¬[Γ]F .
By Lemma 3.15, this reduces to proving the following equivalence:

M  [Γ]¬F ⇔M  ¬[Γ]F

By definition of the truth relation,

M  [Γ]¬F ⇔M+Γ  ¬F ⇔M+Γ 1 F

On the other hand,

M  ¬[Γ]F ⇔M 1 [Γ]F ⇔M+Γ 1 F

Together, this shows the required equivalence.

5. (Red.3) We need to show thatM  [Γ](F → G)↔ ([Γ]F → [Γ]G).
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By Lemma 3.15, this reduces to proving the following equivalence:

M  [Γ](F → G)⇔M  [Γ]F → [Γ]G

By definition of the truth relation,

M  [Γ](F → G)⇔M+Γ  F → G

⇔ (M+Γ 1 F orM+Γ  G)

On the other hand,

M  [Γ]F → [Γ]G⇔ (M 1 [Γ]F orM  [Γ]G)
⇔ (M+Γ 1 F orM+Γ  G)

Together, this shows the required equivalence.

6. (Pers) We need to show thatM  t : F → [Γ]t : F .

By definitions of the truth relation and the updated model, we have
the following equivalences:

M  t : F ⇔ (t, F ) ∈ E(B)

M  [Γ]t : F ⇔M+Γ  t : F ⇔ (t, F ) ∈ E(B ∪ UΓ)

Since B ⊆ B ∪ UΓ, by Lemma 3.10, we have

(t, F ) ∈ E(B)⇒ (t, F ) ∈ E(B ∪ UΓ)

Therefore, we establish that M  t : F ⇒ M  [Γ]t : F , which, by
definition of truth, provesM  t : F → [Γ]t : F .

7. (Init) We need to show thatM  ¬up(F ) : G.

By definition of the truth relation,

M  ¬up(F ) : G⇔M 1 up(F ) : G⇔ (up(F ), G) /∈ E(B)
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Since up(F ) is atomic, by Lemma 3.9

(up(F ), G) /∈ E(B)⇔ (up(F ), G) /∈ B

The latter is true sinceM is assumed to be initial, which shows the
claim.

8. (Up) We need to show thatM  [Γ]up(F ) : F assuming F ∈ Γ.
By definitions of the truth relation and the updated model,

M  [Γ]up(F ) : F ⇔M+Γ  up(F ) : F ⇔ (up(F ), F ) ∈ E(B ∪ UΓ)

By definition of the update set UΓ, we have

F ∈ Γ⇒ (up(F ), F ) ∈ UΓ ⊆ B ∪ UΓ

By Lemma 3.9, (up(F ), F ) ∈ E(B ∪ UΓ), which shows the claim.

9. (MC.1) Assume t ∈ ATm and either t 6= up(F ) for any F , or t = up(F )
for F /∈ Γ.
We need to show thatM  [Γ]t : F → t : F .
By definition of the truth relation, it is sufficient to show the impli-
cation

M  [Γ]t : F ⇒ (t, F ) ∈ E(B)

Analogous to the above case,

M  [Γ]t : F ⇔ (t, F ) ∈ E(B ∪ UΓ)

By Lemma 3.9, since t ∈ ATm we have

(t, F ) ∈ E(B ∪ UΓ)⇔ (t, F ) ∈ B ∪ UΓ

By definition of the update set UΓ,

(t, F ) ∈ UΓ ⇔ (t = up(F ) and F ∈ Γ)

Therefore, from our assumption about t follows that (t, F ) /∈ UΓ.
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Now, assume that M  [Γ]t : F . From the above, it’s equivalent to
(t, F ) ∈ B ∪ UΓ.
Since (t, F ) /∈ UΓ, we conclude that (t, F ) ∈ B.
By Lemma 3.9 follows (t, F ) ∈ E(B), which shows the required im-
plication.

10. (MC.2) We need to show that

M  [Γ]t ·F s : G↔ [Γ]t : (F → G) ∧ [Γ]s : F

By Lemma 3.15 and the definition of truth relation, the claim is
equivalent to

M+Γ  t ·F s : G⇔ (M+Γ  t : (F → G) andM+Γ  s : F )

The proof then proceeds as in the case of (App), as it does not depend
on the fact that the model is initial.

11. (It) We need to show thatM  [Γ][∆]F ↔ [Γ ∪∆]F .
By Lemma 3.15 and the definition of truth relation, the claim is
equivalent to

M+Γ+∆  F ⇔M+(Γ∪∆)  F

By Lemma 3.19,M+Γ+∆ =M+(Γ∪∆), which proves the equivalence
and the claim.

12. (Roll). We need to show thatM  [Γ◦]F ↔ F .
By Lemma 3.15 and the definition of truth relation, this is equivalent
to

M−Γ  F ⇔M  F

Since M is initial, by Lemma 3.19 M−Γ = M, which proves the
equivalence and the claim.

13. (Int). We need to show thatM  [Γ][∆◦]F ↔ [Γ \∆]F .
By Lemma 3.15 and the definition of truth relation, the claim is
equivalent to

M+Γ−∆  F ⇔M+(Γ\∆)  F
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SinceM is initial, by Lemma 3.19M+Γ−∆ =M+(Γ\∆), which proves
the equivalence and the claim.

(AN): Assume the proof consists of an application of (AN):

(c, F ) ∈ CS
(AN)

c : F
In that case, we need to showM  c : F , or equivalently (c, F ) ∈ E(B).

SinceM is a CS-model, applying Lemma 3.9 we obtain

(c, F ) ∈ CS ⊆ B ⊆ E(B)

This proves the claim.
(MP): Assume the proof terminates in an application of (MP):

F F → G (MP)
G

By induction hypothesis, we haveM  F andM  F → G, since those
subderivations are shorter. By the definition of truth relation,M  F → G
is equivalent to (M  F ⇒ M  G). Therefore, we obtain M  G and
prove the claim.

4.2. Completeness for JUP±

Completeness proof proceeds by using maximal consistent sets for canonical
model construction.

Definition 4.2 (Consistency). For a given constant specification CS, an
arbitrary set Φ of JUP± formulas is called consistent if

JUP±CS 0 ¬(A1 ∧ · · · ∧An) for any finite subset {A1, . . . , An} ⊆ Φ

A set Φ is called maximal consistent if it is consistent, and no proper
superset of Φ is.

Remark 4.3 (Lindenbaum Lemma). For every consistent set Φ, there is a
maximal consistent set Φ′ such that Φ ⊆ Φ′.
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Lemma 4.4. Let Φ be a maximal consistent set. Then the following is
true:

• Φ contains all instances of all axioms.

• Φ is closed under (MP), (AN).

• ¬F ∈ Φ⇔ F /∈ Φ

• (F → G) ∈ Φ⇔ (F /∈ Φ or G ∈ Φ)

• (F ↔ G) ∈ Φ⇔ (F ∈ Φ⇔ G ∈ Φ)

Remark 4.3 and Lemma 4.4 are standard for (maximal) consistent sets;
for proofs, see e.g. [KS16].

Given a maximal consistent set, we can create a corresponding model:

Definition 4.5 (Induced JUP± model). Let Φ be a maximal consistent
set of formulas. We define its induced model asMΦ := (vΦ,BΦ), where

• vΦ := Φ ∩ Prop

• BΦ := {(t, F ) | t : F ∈ Φ, t ∈ ATm}

Lemma 4.6. For any maximal consistent set of formulas,MΦ is an initial
CS-model.

Proof. By construction, vΦ ⊆ Prop and BΦ ⊆ ATm× Fm, thereforeMΦ is
a JUP± model.
By Lemma 4.4, Φ is closed under (AN); therefore, for any (c, F ) ∈ CS we

must have c : F ∈ Φ.
Since c ∈ ATm, by construction we conclude (c, F ) ∈ BΦ, which shows

thatMΦ is a CS-model.
By Lemma 4.4 every instance of axiom (Init) is in Φ: ¬up(F ) : G ∈ Φ.
Since Φ is maximal consistent, above is equivalent to up(F ) : G /∈ Φ.
up(F ) is atomic, therefore by construction

up(F ) : G /∈ Φ⇔ (up(F ), G) /∈ BΦ

Since this holds for arbitrary F and G, this proves thatMΦ is initial.

We need to show that induced models adequately reflect the set they are
induced by. The first step in doing so it the canonical evidence lemma:
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Lemma 4.7 (Canonical evidence). For any maximal consistent set Φ,

(t, F ) ∈ E(BΦ) ⇔ t : F ∈ Φ

Proof. Proof by induction on the term t.
Base: t ∈ ATm.
In that case, by construction, t : F ∈ Φ⇔ (t, F ) ∈ BΦ.
However, since t ∈ ATm, we can apply Lemma 3.9 to get

(t, F ) ∈ BΦ ⇔ (t, F ) ∈ E(BΦ)

Together, this proves the equivalence for the base case.
Step: t = r ·G s for some terms r, s and formula G.
By Lemma 3.9,

(r ·G s, F ) ∈ E(BΦ)⇔ {(r,G→ F ), (s,G)} ⊆ E(BΦ)

On the other hand, by Lemma 4.4, the following instance of axiom (App)
is in Φ:

r : (G→ F ) ∧ s : G↔ r ·G s : F ∈ Φ

Using appropriate instances of propositional tautologies that are also in
Φ and the fact that Φ is closed under (MP) (again, by Lemma 4.4) we can
derive from the previous statement that

r ·G s : F ∈ Φ⇔ {r : (G→ F ), s : G} ⊆ Φ

Induction hypothesis applies for r and s, and we have

(r,G→ F ) ∈ E(BΦ) ⇔ r : (G→ F ) ∈ Φ
(s,G) ∈ E(BΦ) ⇔ s : G ∈ Φ

Put together, those equivalences prove the claim for t, concluding the
proof.

In order to proceed with the proof of completeness, we need to define a
rank function on functions, which will be used for a proof by induction.

Definition 4.8 (Rank). For a L±s term, we inductively define its term
rank with the following clauses:
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• rkTm(t) := 1 for t ∈ ATm.

• rkTm(t ·F s) := max(rkTm(t), rkTm(s)) + 1.

For a L±s formula, we inductively define its formula rank with the fol-
lowing clauses:

• rk(P ) := 1 for P ∈ Prop.

• rk(¬F ) := rk(F ) + 1.

• rk(F → G) := max(rk(F ), rk(G)) + 1.

• rk(t : F ) := rkTm(t).

• rk([Γ]F ) := 2 · rk(F ).

• rk([Γ◦]F ) := 2 · rk(F ).

Remark 4.9 (Base rank). The rank functions have the following properties:

• rkTm(t) > 1

• rkTm(t) = 1⇒ t ∈ ATm

• rk(F ) > 1

• rk(F ) = 1⇒
{
F = P for some P ∈ Prop, or
F = t : G for some t ∈ ATm, G ∈ Fm

Lemma 4.10 (Update/rollback reduction). The formula rank function
obeys the following inequalities:

rk([Γ]F ) > rk(F )
rk([Γ◦]F ) > rk(F )
rk([Γ]¬F ) > rk(¬[Γ]F )

rk([Γ](F → G)) > rk([Γ]F → [Γ]G)
rk([Γ]t ·F s : G) > rk([Γ]t : (F → G))
rk([Γ]t ·F s : G) > rk([Γ]s : F )

rk([Γ][∆]F ) > rk([Γ ∪∆]F )
rk([Γ][∆◦]F ) > rk([Γ \∆]F )
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Proof. By Remark 4.9, rk(F ) > 1 for any formula F , and therefore the first
two inequalities hold:

rk([Γ]F ) = rk([Γ◦]F ) = 2 · rk(F ) = rk(F ) + rk(F ) > rk(F ) + 1 > rk(F )

The next 4 ones can be directly observed by computing respective ranks:

rk([Γ]¬F ) = 2 · (rk(F ) + 1)
= 2 · rk(F ) + 2
> 2 · rk(F ) + 1 = rk(¬[Γ]F )

rk([Γ](F → G)) = 2 · (max(rk(F ), rk(G)) + 1)
= max(2 · rk(F ), 2 · rk(G)) + 2
> max(2 · rk(F ), 2 · rk(G)) + 1
= rk([Γ]F → [Γ]G)

rk([Γ]t ·F s : G) = 2 · (max(rk(t), rk(s)) + 1)
> 2 · rk(t) + 2
> 2 · rk(t)
= rk([Γ]t : (F → G))

rk([Γ]t ·F s : G) = 2 · (max(rk(t), rk(s)) + 1)
> 2 · rk(s) + 2
> 2 · rk(s)
= rk([Γ]s : F )

The final two inequalities again depend on the observation rk(F ) > 1
from Remark 4.9:

rk([Γ][∆]F ) = 4 · rk(F )
> 2 · rk(F ) + 2
> 2 · rk(F )
= rk([Γ ∪∆]F )
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rk([Γ][∆◦]F ) = 4 · rk(F )
> 2 · rk(F ) + 2
> 2 · rk(F )
= rk([Γ \∆]F )

Finally, we can prove that the induced model fully represents the set of
formulas that generated it:

Lemma 4.11 (Truth lemma). Let Φ be a maximal consistent set of for-
mulas. Then,

F ∈ Φ ⇔ MΦ  F

Proof. Proof proceeds by induction on rk(F ) and case distinction based on
the structure of F .

From Remark 4.9, induction base (rk(F ) = 1) is covered by subcases
F = P and F = t : G for t ∈ ATm.

• F = P for P ∈ Prop.
In this case, by definitions of induced model and truth relation for
propositional variables,

P ∈ Φ⇔ P ∈ vΦ ⇔MΦ  P

• F = ¬G.
By definition of formula rank, observe that rk(¬G) > rk(G) and there-
fore the induction hypothesis applies for G.
Since Φ is maximal consistent, by Lemma 4.4 ¬G ∈ Φ⇔ G /∈ Φ.
Then,

¬G ∈ Φ⇔ G /∈ Φ (IH)⇐=⇒MΦ 1 G⇔MΦ  ¬G

• F = G→ H.
By definition of formula rank, observe that rk(G→ H) > rk(G) and
rk(G → H) > rk(H). Therefore the induction hypothesis applies for
both G and H.
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Then, using Lemma 4.4,

(G→ H) ∈ Φ (4.4)⇐=⇒ (G /∈ Φ or H ∈ Φ)
(IH)⇐=⇒ (MΦ 1 G orMΦ  H)
(def)⇐=⇒MΦ  G→ H

• F = t : G.

This case is completely covered by Lemma 4.7:

t : G ∈ Φ (4.7)⇐=⇒ (t, G) ∈ E(BΦ) (def)⇐=⇒MΦ  t : G

• F = [Γ]P .

This and following cases are making use of Lemma 4.10 in order to
apply the induction hypothesis.

By Lemma 4.4, the following instance of axiom (Red.1) is in Φ:

[Γ]P ↔ P ∈ Φ

Applying Lemma 4.4 again, we get

[Γ]P ∈ Φ⇔ P ∈ Φ

By Lemma 4.10, rk([Γ]P ) > rk(P ), and therefore we can apply the
induction hypothesis to P :

[Γ]P ∈ Φ⇔ P ∈ Φ (IH)⇐=⇒MΦ  P

SinceMΦ is an initial CS-model, by Theorem 4.1 the same instance
of the axiom (Red.1) is true inMΦ: MΦ  [Γ]P ↔ P .

From this and Lemma 3.15 we get the following equivalence:

MΦ  P ⇔MΦ  [Γ]P
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Putting equivalences together we obtain the claim.

• F = [Γ]¬G.

By Lemma 4.4, the following instance of axiom (Red.2) is in Φ:

[Γ]¬G↔ ¬[Γ]G ∈ Φ

Applying Lemma 4.4 again, we get

[Γ]¬G ∈ Φ⇔ ¬[Γ]G ∈ Φ

By Lemma 4.10, rk([Γ]¬G) > rk(¬[Γ]G), and therefore we can apply
the induction hypothesis to ¬[Γ]G:

[Γ]¬G ∈ Φ⇔ ¬[Γ]G ∈ Φ (IH)⇐=⇒MΦ  ¬[Γ]G

As in the previous case, we can use Theorem 4.1 and Lemma 3.15 to
obtain the following equivalence from axiom (Red.2):

MΦ  ¬[Γ]G⇔MΦ  [Γ]¬G

Putting equivalences together we obtain the claim.

• F = [Γ](G→ H).

By Lemma 4.4, the following instance of axiom (Red.3) is in Φ:

[Γ](G→ H)↔ ([Γ]G→ [Γ]H) ∈ Φ

Applying Lemma 4.4 again, we get

[Γ](G→ H) ∈ Φ⇔ ([Γ]G→ [Γ]H) ∈ Φ

By Lemma 4.10, we get

rk([Γ](G→ H)) > rk([Γ]G→ [Γ]G)
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4. Soundness and completeness for JUP±

Therefore we can apply the induction hypothesis to [Γ]G→ [Γ]H:

([Γ]G→ [Γ]H) ∈ Φ (IH)⇐=⇒MΦ  ([Γ]G→ [Γ]H)

As in the previous case, we can use Theorem 4.1 and Lemma 3.15 to
obtain the following equivalence from axiom (Red.3):

MΦ  ([Γ]G→ [Γ]H)⇔MΦ  [Γ](G→ H)

Putting equivalences together we obtain the claim.

• F = [Γ]t : G.
Sub-cases depending on t:
– t = up(G) and G ∈ Γ.

In this case, F = [Γ]up(G) : G is an instance of axiom (Up).
By Lemma 4.4, [Γ]up(G) : G ∈ Φ.
By Theorem 4.1,MΦ  [Γ]up(G) : G.
Since both sides are true, this proves the equivalence in the
claim.

– t ∈ ATm but t 6= up(G) or G /∈ Γ.
By Lemma 4.4, the following instance of axiom (Pers) is in Φ:

t : G→ [Γ]t : G ∈ Φ

Similarly for the following (MC.1) instance:

[Γ]t : G→ t : G ∈ Φ

Applying Lemma 4.4, we get the following equivalence:

[Γ]t : G ∈ Φ⇔ t : G ∈ Φ

By Lemma 4.10, rk([Γ]t : G) > rk(t : G), and therefore we can
apply the induction hypothesis for t : G:

t : G ∈ Φ⇔MΦ  t : G
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Using Theorem 4.1 for above axiom instances and the definition
of truth, we obtain the following equivalence:

MΦ  t : G⇔MΦ  [Γ]t : G

Putting equivalences together we obtain the claim.
– t = r ·H s.

By Lemma 4.4, the following instance of axiom (MC.2) is in Φ:

[Γ]r ·H s : G↔ [Γ]r : (H → G) ∧ [Γ]s : H ∈ Φ

Again by Lemma 4.4, we obtain the following equivalence:

[Γ]r ·H s : G ∈ Φ⇔ ([Γ]r : (H → G) ∈ Φ and [Γ]s : H ∈ Φ)

By Lemma 4.10, rk([Γ]r : (H → G)) and rk([Γ]s : H) are both
strictly less than rk([Γ]r ·H s : G). Therefore, induction hypoth-
esis applies to both, and the equivalence becomes

[Γ]r ·H s : G ∈ Φ⇔ (MΦ  [Γ]r : (H → G) andMΦ  [Γ]s : H)

By Theorem 4.1 and Lemma 3.15, we obtain the following equiv-
alence from axiom (MC.2):

MΦ  [Γ]r ·H s : G
⇔ (MΦ  [Γ]r : (H → G) andMΦ  [Γ]s : H)

Putting the equivalences together we obtain the claim.

• F = [Γ][∆]G.
By Lemma 4.4, the following instance of axiom (It) is in Φ:

[Γ][∆]G↔ [Γ ∪∆]G ∈ Φ

Applying Lemma 4.4, we get the following equivalence:

[Γ][∆]G ∈ Φ⇔ [Γ ∪∆]G ∈ Φ
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By Lemma 4.10, rk([Γ][∆]G) > rk([Γ ∪∆]G), and therefore we can
apply the induction hypothesis to [Γ ∪∆]G:

[Γ ∪∆]G ∈ Φ⇔MΦ  [Γ ∪∆]G

On the other hand, we can use Theorem 4.1 and Lemma 3.15 to
obtain the following equivalence from axiom (It):

MΦ  [Γ ∪∆]G⇔MΦ  [Γ][∆]G

Putting equivalences together we obtain the claim.

• F = [Γ][∆◦]G.
By Lemma 4.4, the following instance of axiom (Int) is in Φ:

[Γ][∆◦]G↔ [Γ \∆]G ∈ Φ

Applying Lemma 4.4, we get the following equivalence:

[Γ][∆◦]G ∈ Φ⇔ [Γ \∆]G ∈ Φ

By Lemma 4.10, rk([Γ][∆◦]G) > rk([Γ \∆]G), and therefore we can
apply the induction hypothesis to [Γ \∆]G:

[Γ \∆]G ∈ Φ⇔MΦ  [Γ \∆]G

On the other hand, we can use Theorem 4.1 and Lemma 3.15 to
obtain the following equivalence from axiom (Int):

MΦ[Γ \∆]G⇔MΦ  [Γ][∆◦]G

Putting equivalences together we obtain the claim.

• F = [Γ◦]G.
By Lemma 4.4, the following instance of axiom (Roll) is in Φ:

[Γ◦]G↔ G ∈ Φ
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Applying Lemma 4.4 again, we get

[Γ◦]G ∈ Φ⇔ G ∈ Φ

By Lemma 4.10, rk([Γ◦]G) > rk(G), and therefore we can apply the
induction hypothesis to G:

G ∈ Φ⇔MΦ  G

We can use Theorem 4.1 and Lemma 3.15 to obtain the following
equivalence from axiom (Roll):

MΦ  G⇔MΦ  [Γ◦]G

Putting equivalences together we obtain the claim.

Equipped with the truth lemma, proving completeness is straightfor-
ward:

Theorem 4.12 (Completeness). Logic JUP±CS is complete w.r.t. initial
CS-models, i.e.

JUP±CS
F ⇒ `JUP±CS

F

Proof. Proof by contraposition. Assume that 0JUP±CS
F . In that case, {¬F}

is a consistent set.
Then, there exists a maximal consistent set Φ containing {¬F}, and by

Lemma 4.11MΦ  ¬F , or equivalentlyMΦ 1 F .
Therefore, there is a counter-model for F and 1JUP±CS

F .
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5. Rollback properties: history
erasing and contraction

5.1. History erasing
As noted in Section 3.1, when chaining updates and rollbacks together, the
order in which they are applied matters.

When interpreting a formula of the form [Γ][∆◦]F , we apply the “outer-
most” update with Γ first, then the rollback with ∆, and finally we interpret
F in the resulting model.

The following theorem illustrates how a rollback deep in a chain of up-
dates and rollbacks can be interpreted as erasing corresponding functions
from all previous operations:

Theorem 5.1 (History Erasing). Let the symbol σi to stand either for “+”
or “−” for i ∈ {1, . . . , n}, and define

[Γσi ] :=
{

[Γ], σi is “+”
[Γ◦], σi is “−”

Then, for any constant specification CS, formula F and finite sets of
formulas ∆,Γ1, . . . ,Γn,

`JUP±CS
[Γσ1

1 ] . . . [Γσn
n ][∆◦]F ↔ [(Γ1 \∆)σ1 ] . . . [(Γn \∆)σn ]F

Proof. By Theorem 4.12, it is sufficient to show that the formula is valid
w.r.t. initial CS-models:

JUP±CS
[Γσ1

1 ] . . . [Γσn
n ][∆◦]F ↔ [(Γ1 \∆)σ1 ] . . . [(Γn \∆)σn ]F

By definition of validity, it is sufficient to show that for an arbitrary
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initial CS-modelM = (v,B), the formula is true in it:

M  [Γσ1
1 ] . . . [Γσn

n ][∆◦]F ↔ [(Γ1 \∆)σ1 ] . . . [(Γn \∆)σn ]F

By Remark 3.15, this reduces to proving the following equivalence:

M  [Γσ1
1 ] . . . [Γσn

n ][∆◦]F ⇔M  [(Γ1 \∆)σ1 ] . . . [(Γn \∆)σn ]F

By definition of truth, this becomes

Mσ1Γ1...σnΓn−∆  F ⇔Mσ1(Γ1\∆)...σn(Γn\∆)  F

We will show that Mσ1Γ1...σnΓn−∆ = Mσ1(Γ1\∆)...σn(Γn\∆), from which
the previous equivalence trivially follows.

For σ either “+” or “−” and bases B1, B2, define

B1 σ B2 :=
{
B1 ∪ B2, σi is “+”
B1 \ B2, σi is “−”

We will assume this to be left-associative: B1σB2σ
′B3 = (B1σB2)σ′B3.

Then, by definition of model updates and rollbacks, we have

Mσ1Γ1...σnΓn−∆ = (v, (B σ1 UΓ1 . . . σn UΓn
) \ U∆)

Mσ1(Γ1\∆)...σn(Γn\∆) = (v,B σ1 U(Γ1\∆) . . . σn U(Γn\∆))

Therefore, it is sufficient to show that

(B σ1 UΓ1 . . . σn UΓn
) \ U∆ = B σ1 U(Γ1\∆) . . . σn U(Γn\∆)

Induction on n.
Base: n = 0. We need to show B \ U∆ = B.
SinceM was assumed to be initial, B does not contain evidence pairs of

the form (up(G), G); on the other hand, U∆ contains only evidence pairs
of this form. Therefore, nothing is removed and B \ U∆ = B.
Step: We assume the statement is true for n by induction hypothesis,
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and prove the statement for n+ 1:

(B σ1 UΓ1 . . . σn UΓn
σn+1 UΓn+1) \ U∆

= B σ1 U(Γ1\∆) . . . σn U(Γn\∆) σn+1 U(Γn+1\∆)

Cases based on σn+1:

(a) σn+1 is “+”. In this case,

(B σ1 UΓ1 . . . σn UΓn
σn+1 UΓn+1) \ U∆

= ((B σ1 UΓ1 . . . σn UΓn
) ∪ UΓn+1) \ U∆

= ((B σ1 UΓ1 . . . σn UΓn
) \ U∆) ∪ (UΓn+1 \ U∆)

(IH)= (B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) ∪ (UΓn+1 \ U∆)

Observe that

UΓn+1 \ U∆ = {(up(G), G) | G ∈ Γn+1} \ {(up(G), G) | G ∈ ∆}
= {(up(G), G) | G ∈ (Γn+1 \∆)}
= U(Γn+1\∆)

Therefore,

(B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) ∪ (UΓn+1 \ U∆)
= (B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) ∪ U(Γn+1\∆)

= B σ1 U(Γ1\∆) . . . σn U(Γn\∆) σn+1 U(Γn+1\∆)

Putting those equalities together shows the claim.

(b) σn+1 is “-”. In this case,

(B σ1 UΓ1 . . . σn UΓn σn+1 UΓn+1) \ U∆

= ((B σ1 UΓ1 . . . σn UΓn) \ UΓn+1) \ U∆

= ((B σ1 UΓ1 . . . σn UΓn) \ U∆) \ (UΓn+1 \ U∆)
(IH)= (B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) \ (UΓn+1 \ U∆)
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As above, we have UΓn+1 \ U∆ = U(Γn+1\∆)

Therefore,

(B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) \ (UΓn+1 \ U∆)
= (B σ1 U(Γ1\∆) . . . σn U(Γn\∆)) \ U(Γn+1\∆)

= B σ1 U(Γ1\∆) . . . σn U(Γn\∆) σn+1 U(Γn+1\∆)

Putting those equalities together shows the claim.

5.2. Rollback and contraction
In [KS13], the update operator for JUP is shown to satisfy AGM postu-
lates for belief expansion [Gär88], and this naturally extends to the update
operator for JUP±.
This raises the question whether the rollback operation, which removes

beliefs, can be seen as belief contraction. To discuss this, we need to
introduce the notion of (induced) belief sets (following definitions from
[KS13]):

Definition 5.2 (Belief set). A set of formulas X ⊆ Fm is called a belief
set if it is closed under (MP):

{F, F → G} ⊆ X ⇒ G ∈ X

Definition 5.3 (Induced belief set). For a JUP± model M, define its
induced belief set �M as

�M := {F | M  t : F for some t ∈ Tm}

Lemma 5.4 (Induced belief set). For any JUP± model M = (v,B), �M
is a belief set.

Proof. Same proof as in [KS13]:
Assume {F, F → G} ⊆ �M.
By definition, this means that M  t : F and M  s : (F → G) for

some t, s ∈ Tm, or equivalently {(s, F → G), (t, F )} ⊆ E(B).
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By Lemma 3.9, we can infer (s ·F t, G) ∈ E(B), which is equivalent to
M  s ·F t : G.
By definition of induced belief set, we conclude G ∈ �M.

Lemma 5.5 (Belief monotonicity). For any two models M = (v,B) and
M′ = (v′,B′), the following holds:

B ⊆ B′ ⇒ �M ⊆ �M′

Proof. Assume B ⊆ B′ and let F ∈ �M.
By definition of induced beliefs, there exists a term t such thatM  t : F .
By definition of the truth relation, this is equivalent to (t, F ) ∈ E(B).
By Lemma 3.10, E(B) ⊆ E(B′) and therefore (t, F ) ∈ E(B′) or equiva-

lentlyM′  t : F .
With this, we conclude F ∈ �M′ , which shows the claim.

By applying an update operation, we extend induced belief sets, as we
introduce new reasons for beliefs. First, we define an operator on induced
belief sets:

Definition 5.6 (Expansion). For a modelM and a formula F , define the
expansion of the belief set �M by F as

�M ⊕ F := �M+F

Then, [KS13] shows the following lemma:

Lemma 5.7 (Belief expansion). �M ⊕ F is the smallest belief set that
contains both F and all of �M.

It’s natural to ask whether the rollback operation, that removes reasons
for beliefs, acts like belief contraction in AGM sense [AGM85]. Let’s define
a “naive” contraction operator:

Definition 5.8 (Naive contraction). For a model M and a formula F ,
define the naive contraction of the belief set �M by F as

�M 	1 F := �M−F

Notably, naive contraction in conjunction with expansion has the recov-
ery property:
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Lemma 5.9 (Recovery for 	1). For any model M = (v,B) and any for-
mula F ,

�M ⊆ (�M 	1 F )⊕ F

Proof. By definition, (�M 	1 F )⊕ F = �M−F +F

Note thatM−F+F = (v,B \ U{F} ∪ U{F}) = (v,B ∪ U{F}).
Since B ⊆ B ∪ U{F}, by Lemma 5.5 �M ⊆ �M−F +F , which shows the

claim.

However, one of the requirements for classic belief contraction is success:
contracting with a formula should remove it from a belief set. AGM postu-
lates accept that this is impossible in general, as tautologies are in a sense
“built-in” and cannot be successfully contracted.

However, even for non-tautologies rollback may not succeed to remove a
belief. Take an arbitrary modelM and consider the following update with
3 formulas, where G is not a tautology (and even stronger, G /∈ �M).

G ∈ �M+{G,F,F→G}

If we now try to apply naive contraction with G, it will not remove it
from the belief set, since it’s closed under (MP):

G ∈ �M+{G,F,F→G} 	1 G = �M+{F,F→G}

The reason for this difference is that, for any formula H, both �M ⊕H
and �M 	1 H add or remove one particular reason (namely, up(H)) to
believe in a formula H. For a formula to appear in the induced belief set,
any single reason is enough, which is why updates always succeed.

Since justification logic can provide multiple independent reasons to be-
lieve in a formula, removing just one one may fail to completely remove
the belief, as evidenced by the above example.

However, we can roll back more updates to successfully remove G from
the belief set:

G /∈ �M+{G,F,F→G}−{G,F,F→G} = �M
This naturally raises the question which formulas can, for a given model,

be removed from its induced belief set by some rollback operation. For a
certain natural class of models, we can give a precise answer.
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Definition 5.10 (Initial part). For a modelM = (v,B), define its initial
part M◦ := (v,B◦), where

B◦ := {(t, F ) | (t, F ) ∈ B, t 6= up(G) for any G ∈ Fm}

Essentially, taking the initial part filters out any update terms from the
resulting evidence relation. Directly from the definition of initial models
we get the following remark:
Remark 5.11 (Initial part). For any model M, its initial part M◦ is an
initial model.

Definition 5.12 (Reachable model). We call a modelM reachable if there
exists a finite set Γ ⊆ Fm such thatM = (M◦)+Γ.

Reachable models are a natural class of models: by Lemma 3.19 and
Remark 5.11 those are precisely the models obtainable from initial models
by finite sequences of update and rollback operations.

For such models, we can show precisely what formulas can be removed
from induced belief sets:

Theorem 5.13 (Retractability). For a reachable modelM = (v,B) and a
formula F , the following holds:

(a) If F ∈ �M◦ , then for any finite ∆ ⊆ Fm, F ∈ �M−∆ .

(b) If F /∈ �M◦ , then there exists a finite ∆ ⊆ Fm such that F /∈ �M−∆ .

Proof. M is reachable, so there exists a finite set Γ such thatM = (M◦)+Γ.

(a) For an arbitrary ∆, by Remark 5.11 and Lemma 3.19 we have

M−∆ = (M◦)+Γ−∆ = (M◦)+(Γ\∆) = (v,B◦ ∪ U(Γ\∆))

Since B◦ ⊆ B◦ ∪ U(Γ\∆), by Lemma 5.5 we conclude �M◦ ⊆ �M−∆ .
If we assume that F ∈ �M◦ , this shows F ∈ �M−∆ .

(b) Take ∆ := Γ.
Then, by Lemma 3.19,

M−∆ = (M◦)+Γ−Γ = (M◦)+(Γ\Γ) = (M◦)+∅ =M◦
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Therefore, by assumption, F /∈M◦ =M−∆.

We have demonstrated that, for reachable models, there is a set of beliefs
that are potentially contractible by rollbacks: those not included in the
beliefs induced by initial part. We shall call them acquired beliefs:

Definition 5.14 (Acquired beliefs). For a modelM, define its set of ac-
quired beliefs as

A(M) := �M \�M◦

We can try and define a belief contraction operator based on rollbacks
that meets the requirements of shielded contraction [FH01], i.e. contraction
limited to a subset of all formulas.

Definition 5.15 (Full contraction). For a model M and a formula F ,
define the full contraction of the belief set �M by F as

�M 	2 F :=
{
�M◦ , F ∈ A(M)
�M, F /∈ A(M)

Note that for a reachable model M = (M◦)+Γ, we have M◦ = M−Γ,
and therefore full contraction can be expressed in terms of model rollback.

We can show that full contraction satisfies the conditions of relative suc-
cess and persistence with A(M) being the set of retractable sentences:

Lemma 5.16 (Relative success and persistence for 	2). For any model
M and formulas F , G, the following holds:

(a) If F ∈ A(M), then F /∈ �M 	2 F .

(b) If F /∈ A(M), then �M = �M 	2 F .

(c) If F ∈ �M 	2 F , then F ∈ �M 	2 G.

Proof. (a) If F ∈ A(M), then �M 	2 F = �M◦ .
If we assume F ∈ �M 	2 F , we get F ∈ �M◦ .
This contradicts F ∈ A(M) = �M \�M◦ , which shows the claim by
contradiction.
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(b) If F /∈ A(M), then �M 	2 F = �M by definition.

(c) Assume F ∈ �M 	2 F .
From the above, F /∈ A(M) = �M \�M◦ .
However since F /∈ A(M), we have �M 	2 F = �M by definition of
	2, and therefore F ∈ �M.
From F /∈ �M \�M◦ and F ∈ �M we conclude that F ∈ �M◦ .
Since �M 	2 G is either �M or �M◦ , in either case F ∈ �M 	2 G
which shows the claim.

However, the full contraction operator removes too many beliefs, as it
fails the test for recovery: in general �M * (�M 	2 F )⊕ F .

We can introduce a more generic form of rollback-based contraction op-
erator:

Definition 5.17 (f -contraction). Let f be a function that maps a model
and a formula to a finite set of formulas.

Then, for a model M and a formula F , define the f -contraction of the
belief set �M by F as

�M 	f F :=
{
�M−f(M,F ) , F ∈ A(M)
�M, F /∈ A(M)

	1 and, for a reachable model M = (M◦)+Γ, 	2 can be expressed in
terms of f -contraction:

• f1(M, F ) := {F} (since �M−F = �M for F /∈ A(M))

• f2(M, F ) := Γ

We can show that arbitrary f -contraction fits some of the requirements
of a shielded contraction operator:

Lemma 5.18 (f -contraction properties). For a model M = (v,B) and
arbitrary formulas F,G, any f -contraction operator has the following prop-
erties:

(a) (Closure) �M 	f F is a belief set.
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(b) (Inclusion) �M 	f F ⊆ �M.

(c) (Vacuity) If F /∈ �M, then �M ⊆ �M 	f F .

Proof.

(a) (Closure) �M 	f F is a belief set as an induced belief set of either
M−f(M,F ) orM.

(b) (Inclusion) We need to show that �M 	f F ⊆ �M.
If F /∈ A(M), then by definition �M 	f F = �M ⊆ �M.
If F ∈ A(M), then �M 	f F = �M−f(M,F ) .
Note thatM−f(M,F ) = (v,B \ Uf(M,F )).
Since B \ Uf(M,F ) ⊆ B, by Lemma 5.5 �M−f(M,F ) ⊆ �M, which
shows the claim.

(c) (Vacuity) Assume F /∈ �M.
Therefore, F /∈ A(M) ⊆ �M, and by definition �M 	f F = �M,
which shows the claim.

This shows that, in general, f -contractions are good candidates for a
shielded contraction operator.

We should remark that in the study of belief revision, it’s usually as-
sumed that belief sets are closed with respect to more expressive logic -
normally classic propositional logic. As in [KS13], with a suitably expres-
sive constant specification, belief sets of CS-models have such properties.
First, we define what we mean by suitably expressive constant specifica-

tion:

Definition 5.19 (Appropriate constant specification). A constant specifi-
cation CS is called

• propositionally appropriate if, for every propositional tautology F ,
there exists a constant c such that (c, F ) ∈ CS;

• axiomatically appropriate if, for every instance F of JUP± axioms,
there exists a constant c such that (c, F ) ∈ CS;
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5.2. Rollback and contraction

• JUP±CS-appropriate if is is axiomatically appropriate and, for every
(c, F ) ∈ CS, there exists a constant c′ such that (c′, c : F ) ∈ CS.

Propositionally appropriate specification means that every classical pro-
positional axiom instance is in a CS-model’s belief set, and combined with
being closed under (MP) as per Lemma 5.4 this gives the full strength
of propositional reasoning. Similarly, axiomatically appropriate constant
specifications give all instances of JUP± axioms, and JUP±CS-appropriate-
ness closes with respect to (CS). Formally:

Definition 5.20. A set of formulas X is closed with respect to reasoning
in logic Th if, for any formula F that can be derived using axioms and
rules of Th as well as formulas from X (notation X `Th F ), F ∈ X.

Lemma 5.21. For a CS-modelM, formula F and arbitrary f -contraction
operator 	f , the following holds:

(a) If CS is propositionally appropriate, then belief sets �M, �M⊕F , and
�M	f F are closed with respect to reasoning in classic propositional
logic (i.e. (Prop) + (MP)).

(b) If CS is axiomatically appropriate, then belief sets �M, �M⊕F , and
�M 	f F are closed with respect to reasoning in JUP±∅ (i.e. JUP±CS
with an empty constant specification).

(c) If CS is JUP±CS-appropriate, then belief sets �M, �M⊕F , �M	f F
are closed with respect to reasoning in JUP±CS.

Proof. Since M is a CS-model, by Lemma 3.19 so are M−f(M,F ) and
M+F .

Both �M⊕F and �M	f F are, by definition, belief sets of eitherM+F ,
M orM−f(M,F ), which we’ve just shown to be CS-models.
Therefore, if we can show the claim for an arbitrary CS-model M, it

would also cover cases for �M ⊕ F and �M 	f F .

(a) Let CS be a propositionally appropriate constant specification.
Take an arbitrary formula G for which there exists a derivation in
classic propositional logic using �M as a theory.
We will show that G ∈ �M by induction on the length of derivation
of G, which shows that �M is closed with respect to reasoning in
classic propositional logic.
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5. Rollback properties: history erasing and contraction

Base: The last step of the derivation is a formula from �M.
This means that G ∈ �M.
Axiom: The last step of the derivation is an axiom instance of classical
propositional logic (in other words, an instance of (Prop)).
This means that G is a propositional tautology.
By propositional appropriateness of CS, there exists a constant c such
that (c,G) ∈ CS.
Since M is a CS-model, (c,G) ∈ B and therefore M  c : G. By
definition, this implies G ∈ �M.
Step: The last step of the derivation is an instance of (MP) for some
formula H:

H H → G (MP)
G

Since sub-derivations of H and H → G are shorter, by induction
hypothesis we conclude that {H,H → G} ⊆ �M.
By Lemma 5.4, �M is closed under (MP) and therefore we conclude
G ∈ �M.

(b) Let CS be an axiomatically appropriate constant specification.
Take an arbitrary formula G for which there exists a derivation in
JUP±∅ using �M as a theory.
We will show that G ∈ �M by induction on the length of derivation
of G, which shows that �M is closed with respect to reasoning in
JUP±∅.
Base: The last step of the derivation is a formula from �M.
This means that G ∈ �M.
Axiom: The last step of the derivation is an axiom instance of JUP±.
This means that G is an axiom instance of JUP±.
By axiomatic appropriateness of CS, there exists a constant c such
that (c,G) ∈ CS.
Since M is a CS-model, (c,G) ∈ B and therefore M  c : G. By
definition, this implies G ∈ �M.
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5.2. Rollback and contraction

Step: The last step of the derivation is an instance of either (MP) or
(AN).
The sub-case for (MP) is analogous to the previous case.
For (AN), notice that there are no valid instances of (AN) for JUP±∅,
since the premise (c,H) ∈ ∅ cannot be fulfilled. Therefore, this
sub-case is impossible.

(c) Let CS be a JUP±CS-appropriate constant specification.
Take an arbitrary formula G for which there exists a derivation in
JUP±CS using �M as a theory.
We will show that G ∈ �M by induction on the length of derivation
of G, which shows that �M is closed with respect to reasoning in
JUP±CS.
The proof is completely analogous to the last case except for the
sub-case for (AN).
Step, (AN): The last step of the derivation is an instance of (AN):

(c,H) ∈ CS
(AN)

c : H

In this case, G = c : H and (c,H) ∈ CS. By JUP±CS-appropriateness
of CS, there exists a constant c′ such that (c′, c : H) ∈ CS.
As shown above, this entails c : H ∈ �M, which completes the proof.

	1 and 	2 are, in a way, lower and upper limits of possible contractions.
	1 satisfies the recovery postulate but its set of retractable sentences is in
general smaller than A(M). 	2 guarantees persistence and relative success
for the whole set A(M), but does not satisfy the recovery postulate.
It is plausible that there exists a function f “between” them that would

satisfy, at the same time, recovery, persistence and relative success require-
ments for the full set of retractable sentences A(M), possibly by requiring
a sufficiently expressive constant specification to ensure that belief sets are
closed with respect to some required strength of reasoning.

It’s important to note that both recovery and success postulates are
not universally accepted as requirements for belief contraction; shielded
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contraction is an attempt to provide alternative to the success postulate,
and there may be alternatives to the recovery postulate that are more
suitable for JUP±.
The existence of such optimal f and whether it would fulfill other postu-

lates for shielded contraction from [FH01] are open questions. They war-
rant further study of belief dynamics of updates and rollbacks in JUP±.
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Nominals
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6. From updates to nominals

As explained in the introduction, one of the goals of the research that
forms the basis of this thesis was to obtain an axiomatization of dynamic
justification logic with updates that does not use the subscript in its term
application.

The goal of this part is to present the system of justification logic with
nominals JNV and prove soundness and completeness results with respect to
two different semantics. However, we would like to first give some informal
insight into the design decisions behind JNV as intended simplified version
of JUP.
By dropping the subscript, JUP loses the ability to formulate axioms

(App) and (MC.2) as equivalences. If we try to naively modify them to be
one-way implications, the system loses the ability to reduce justification
formulas with application terms to justification formulas with subterms.

This, in turn, means that generated model semantics must be changed
to allow bases containing non-atomic justification terms. In this case, the
original completeness proof fails, as it relied on the ability to apply (MC.2)
backwards.

In order to better understand how update terms behave in the absence
of subscript, it was decided to approach the problem from another angle.
Instead of a dynamic justification logic, we will consider a “snapshot” of a
state after several updates, with special terms called nominals playing the
role of the update terms.

For a nominal to emulate the update term, we need to recall what update
terms justify. After an update with a set Γ that contains a formula F , the
corresponding update term up(F ) starts being accepted as justification for
the formula F :

` [Γ]up(F ) : F

On the other hand, for any other formula G 6= F , the update term
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6. From updates to nominals

provably doesn’t justify it:

` ¬[Γ]up(F ) : G

Therefore, to emulate update terms after an update with Γ, we need the
nominal nF for F ∈ Γ to justify its respective formula and provably justify
nothing else:

` nF : F
` ¬nF : G, G 6= F

While having atomic models would be ideal, at this point the subscript-
free application suggests generated models with non-atomic bases.

However, this approach needs careful tuning of allowed term structure.
If arbitrary applications are allowed in the basis, we may end up with
anomalous justifications that cannot be satisfied in any atomic models:

nP · t : F

This can be satisfied in a non-atomic model, but to satisfy it in an atomic
model nP needs to justify G → F for some G, which is impossible since
P 6= G→ F for any G.
Therefore, we want to exclude such anomalous justifications from our

system. We would need many axioms to cover all possible anomalies for
arbitrary nominals; as a result, it was decided to simplify the situation we
are expecting to model even further and restrict nominals (and therefore,
the updates we emulate) to propositional variables: namely, we will have
nominals nP for P in some finite set V ⊆ Prop.

In case of propositional nominals, the above application is the only case
that can not be decomposed in any way into subterms that still yields the
original justification. We will call a term normal if it contains no subterms
of the form nP · t, and will explicitly forbid such terms in both the axiom
system and semantics.

Keeping with the goal of eventually obtaining semantics with atomic
bases, consider the following justification:

t · nP : F
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Since nP can only justify P , in order for the above justification to be
obtained from an atomic basis, t must specifically justify P → F . This
requirement will have to be added to the axiom system and reflected in the
semantics.

At this point, the axiom system and corresponding non-atomic generated
model semantics could be shown to be sound and complete. However, in
trying to obtain atomic models, another anomaly was noticed. Consider
the following formula:

x · (y · nP ) : Q ∧ z : P ∧ ¬(x · (y · z) : Q)

It is satisfiable in a non-atomic model. However, assume we want to find
an atomic model that satisfies it.

In this case, x : (X → Q) for some formula X, and thus y : (P → X)
as we decompose the evidence term from first conjunct. However, we must
also have z : P from the second conjunct. In this case, we can use z in
place of nP and infer x · (y · z) : Q, which means we cannot satisfy this
formula (see Figure 1).

(x·(y·nP ),Q)

(x,X→Q)
(y·nP ,X)

(y,P→X)
(nP ,P )

(x·(y·z),Q)

(x,X→Q)
(y·z,X)

(y,P→X)
(z,P )

Figure 1: Non-satisfiability example

In order to overcome this anomaly, which has to do with substituting
terms for nominals, we introduced explicit substitutions into the language
and required, both on the axiom level and in the semantics, that every
substitution of terms for nominals must preserve truth. Informally:

` t : F ∧ s : P → t[s→nP ] : F
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6. From updates to nominals

With the axiom system containing enough safeguards against anomalous
applications, we were able to indirectly show completeness with respect to
atomic models, on condition of locally finite constant specification.
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7. System JNV

7.1. Language LV
n

Start with countably many propositional variables (PropLV
n
): {P, . . .}, and

fix a finite subset V ⊆ PropLV
n
.

Definition 7.1 (Terms). Define the set of terms TmLV
n
inductively:

• (Countably many) term variables: x, . . .

• (Countably many) term constants: c, . . .

• Nominals for propositional variables: nP for P ∈ V

• Application: t · s for t, s ∈ TmLV
n

Atomic terms ATmLV
n
are terms without application: variables, constants

and nominals.

As before, term application is considered left-associative, and we will
drop the subscript LV

n for the rest of Part III.

Definition 7.2 (Subterms). Define sub(t) to be the set of all subterms of
t ∈ Tm in the usual sense:

• sub(t) := {t} for t ∈ ATm

• sub(t · s) := sub(t) ∪ sub(s) ∪ {t · s}

Definition 7.3 (Formulas). Define the set of formulas FmLV
n
inductively:

• Propositional variables: P ∈ Prop

• Implication: F → G for F,G ∈ FmLV
n

• Negation: ¬F for F ∈ FmLV
n
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7. System JNV

• Evidence: t : F for t ∈ TmLV
n
, F ∈ FmLV

n

We will need to explicitly express substitutions of terms for nominals to
formulate one of the axioms and the semantics. For this, we introduce a
notion of basic substitution, representing a single such substitution:

Definition 7.4 (Basic substitutions). A triple 〈i, P, s〉, where i ∈ N, P ∈ V
and s ∈ Tm, is called a basic substitution.
We denote the set of all basic substitutions as S, and will use the syn-

tactic variable σ to denote them.
Informally, 〈i, P, s〉t denotes the result of substituting s for the (i+ 1)-th

occurrence of nP in t.
Formally, define the number of occurrences numP (t) of nP in t:

• numP (nP ) = 1,

• numP (t) = 0, t ∈ ATm \ {nP },

• numP (t · s) = numP (t) + numP (s)

Finally, define 〈i, P, s〉t:

• 〈i, P, s〉nP =
{
s i = 0
nP i > 0

• 〈i, P, s〉t = t, t ∈ ATm \ {nP },

• 〈i, P, s〉(t · q) =
{

(〈i, P, s〉t) · q i < numP (t)
t · (〈i− numP (t), P, s〉q) i > numP (t)

As a shorthand, define 〈i, P, s〉↓t := 〈i− numP (t), P, s〉 for i > numP (t).

Lemma 7.5 (Non-applicable substitutions). For any basic substitution
σ = 〈i, P, s〉 and term t such that i > numP (t), we have σt = t.

Proof. Proof by induction on t for arbitrary σ = 〈i, P, s〉 with i > numP (t).
Base: t ∈ ATm.
There are 2 sub-cases:

(a) t = nP . In this case, we have numP (t) = 1 and therefore by assump-
tion we conclude i > 1 > 0.
Therefore, σt = nP = t.
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n

(b) t ∈ ATm \ {nP }. In that case, the claim follows immediately.

Step: t = q · r.
We have i > numP (t) = numP (q) + numP (r) > numP (q).
Therefore,

σt = 〈i, P, s〉(q · r) = q · (〈i− numP (q), P, s〉r)

Observe that i−numP (q) > numP (q)+numP (r)−numP (q) = numP (r).
Therefore, induction hypothesis applies to r and 〈i− numP (q), P, s〉:

〈i− numP (q), P, s〉r = r

From this we conclude σt = q · r = t.

Definition 7.6 (Term complexity). We define the complexity of a term
cmp(t) as the number of applications:

cmp(t) = 0 for t ∈ ATm

cmp(t · s) = cmp(t) + cmp(s) + 1

Lemma 7.7. Term complexity has the following properties:

(a) t ∈ ATm⇔ cmp(t) = 0

(b) For any term t, cmp(σt) > cmp(t) for any basic substitution σ

Proof.

(a) Trivial from definition of cmp.

(b) Induction on t. Let σ = 〈i, P, s〉.
• Base: t ∈ ATm. Then cmp(σt) > 0 = cmp(t)
• Step: t = r · q. Then

σt =
{

(σr) · q i < numP (r)
r · ((σ↓r)q) i > numP (r)
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Therefore,

cmp(σt) =


cmp((σr) · q) = cmp(σr) + cmp(q) + 1

i < numP (r),
cmp(r · ((σ ↓ r)q)) = cmp(r) + cmp((σ↓r)q) + 1

i > numP (r)

By induction hypothesis,

cmp(σr) > cmp(r) and cmp((σ↓r)q) > cmp(q)

Therefore, in either case we have

cmp(σt) > cmp(r) + cmp(q) + 1 = cmp(r · q)

7.2. Logic JNV

Definition 7.8. The logic of JNV is a Hilbert-style deduction system de-
fined by the following sets of axioms and rules (P ∈ V in all schemes):
Axioms:

1. All classical propositional tautologies (Prop)
2. t : (F → G) ∧ s : F → t · s : G (App)
3. nP : P (N+)
4. ¬nP : F for F 6= P (N−)
5. ¬t : F for all t with nP · s ∈ sub(t) (N/)
6. t · nP : F → t : (P → F ) (N.)
7. t : F ∧ s : P → σt : F where σ = 〈i, P, s〉 (for all i) (Nσ)

Rule:

F F → G (MP)
G
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Definition 7.9. A constant specification CS is a set of evidence pairs of
the form (c, c1 : . . . : cn : F ) (including n = 0, i.e. (c, F )), where F is an
axiom instance of JNV.

Definition 7.10. For a given constant specification CS, the logic of JNV
CS

is defined by the axioms and rules of JNV plus the rule:

(c, F ) ∈ CS
(AN)

c : F

Definition 7.11. A formula F is provable in JNV
CS (notation: `JNV

CS
F ) iff

it can be derived from axioms and rules of JNV
CS.

7.3. Semantics for JNV

Definition 7.12 (Basis). A basis is an arbitrary set of evidence pairs
B ⊆ Tm× Fm.

Definition 7.13 (Subterm set). For a basis B, define its subterm set,
sub(B), as

sub(B) :=
⋃

(t,F )∈B

sub(t)

Definition 7.14 (Evidence closure). Take a basis B ⊆ Tm × Fm. For a
set X ⊆ Tm× Fm define an operator clJNV

B (X) inductively by:

• (t, F ) ∈ B ⇒ (t, F ) ∈ clJNV
B (X) (equivalently, B ⊆ clJNV

B (X))

• (t, F → G) ∈ X, (s, F ) ∈ X ⇒ (t · s,G) ∈ clJNV
B (X)

• (t, F ) ∈ X, (s, P ) ∈ X ⇒ (〈i, P, s〉t, F ) ∈ clJNV
B (X) for i ∈ N, P ∈ V

Note that clJNV
B is a monotone operator on P(Tm × Fm) and therefore

has a least fixpoint by Knaster–Tarski theorem [Tar55].

Definition 7.15 (Evidence relation). For a B ⊆ Tm × Fm, define the
(minimal) evidence relation EJNV (B) as the l.f.p. of clB.

We will drop the superscript JNV from clJNV
B and EJNV for the rest of the

Part III.
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Lemma 7.16. Evidence relation E(B) has the following properties:

(a) B ⊆ E(B).

(b) {(t, F → G), (s, F )} ⊆ E(B)⇒ (t · s,G) ∈ E(B).

(c) {(t, F ), (s, P )} ⊆ E(B)⇒ (〈i, P, s〉t, F ) ∈ E(B) for all i ∈ N, P ∈ V.

Proof. E(B) is a fixpoint of clB.
In particular, clB(E(B)) ⊆ E(B).
From this and the definition of clB we directly obtain the claims.

In the rest of the proofs, we will frequently appeal to the following in-
duction principle:

Lemma 7.17 (Induction on buildup of E(B)). Let P be a predicate on
Tm× Fm. Assume it has the following properties:

• (Base) For all (t, F ) ∈ B, P(t, F ) is true.

• (Application) For all t, s ∈ Tm and F,G ∈ Fm,

P(t, F → G) and P(s, F )⇒ P(t · s,G)

• (Substitution) For all t, s ∈ Tm, F ∈ Fm and P ∈ V,

P(t, F ) and P(s, P )⇒ P(〈i, P, s〉t, F )

Then, for all (t, F ) ∈ E(B), P(t, F ) is true.

Proof. Let E0 := ∅, En+1 := clB(En).
Since clB is monotone, and E0 = ∅ ⊆ E1, it follows that En ⊆ En+1 for

all n ∈ N.
We will show that for all n ∈ N, P(t, F ) is true for all (t, F ) ∈ En.
Induction on n:
Base: n = 0. In this case, the claim is vacuously true, as E0 = ∅.
Step: We need to show that P(t, F ) is true for all (t, F ) ∈ En+1, and

induction hypothesis applies for n.
Assume (t, F ) ∈ En+1 = clB(En). By definition of clB, there are three

cases:
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• (t, F ) ∈ B. In that case, P(t, F ) is true by property (Base).

• (t, F ) = (s · r,G), with (s,H → G) ∈ En, (r,H) ∈ En.
By induction hypothesis, P(t,H → G) and P(s,H) are true.
Therefore, claim follows by property (Application).

• (t, F ) = (〈i, P, s〉r,G), with (r,G) ∈ En, (s, P ) ∈ En.
By induction hypothesis, P(r,G) and P(s, P ) are true.
Therefore, claim follows by property (Substitution).

Define Eω :=
⋃
n∈N
En.

For any (t, F ) ∈ Eω, there exists an n such that (t, F ) ∈ En.
Therefore, for all (t, F ) ∈ Eω, P(t, F ) is true.
We can show that Eω is a fixpoint of clB:

• Eω ⊆ clB(Eω).
Assume (t, F ) ∈ Eω.
Then there exists an n such that (t, F ) ∈ En. Moreover, n > 0 since
E0 = ∅.
Therefore, (t, F ) ∈ En = clB(En−1) ⊆ clB(Eω) by monotonicity of clB.

• clB(Eω) ⊆ Eω.
Assume (t, F ) ∈ clB(Eω). By definition of clB, there are three cases:

– (t, F ) ∈ B. In that case, (t, F ) ∈ clB(∅) = E1 ⊆ Eω.
– (t, F ) = (s · r,G), with (s,H → G) ∈ Eω, (r,H) ∈ Eω.

There exist n,m such that (s,H → G) ∈ En, (r,H) ∈ Em.
From this, (s,H → G) ∈ Emax(n,m), (r,H) ∈ Emax(n,m), since
{En} is an increasing sequence of sets.
Therefore,

(t, F ) = (s · r,G) ∈ clB(Emax(n,m)) = Emax(n,m)+1 ⊆ Eω

– (t, F ) = (〈i, P, s〉r,G), with (r,G) ∈ Eω, (s, P ) ∈ Eω.
There exist n,m such that (r,G) ∈ En, (s, P ) ∈ Em.
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From this, (r,G) ∈ Emax(n,m), (s, P ) ∈ Emax(n,m), since {En} is
an increasing sequence of sets.
Therefore,

(t, F ) = (〈i, P, s〉r,G) ∈ clB(Emax(n,m)) = Emax(n,m)+1 ⊆ Eω

Since E(B) is the l.f.p. of clB, we get E(B) ⊆ Eω. Therefore, for any
(t, F ) ∈ E(B), we have (t, F ) ∈ Eω and subsequently P(t, F ) is true.

Definition 7.18 (Propositional valuation). A propositional valuation is
an arbitrary subset of propositional variables v ⊆ Prop.

Definition 7.19 (Models). A model is a pair M = (v,B) with proposi-
tional valuation v ⊆ Prop and basis B ⊆ Tm× Fm.

Definition 7.20 (Truth). For a modelM = (v,B), and a formula F , the
relationM  F is defined inductively by:

• M  P ⇔ P ∈ v

• M  ¬F ⇔M 1 F

• M  F → G⇔ (M 1 F orM  G)

• M  t : A⇔ (t, A) ∈ E(B)

We observe that our shorthand notation is interpreted as expected:

Lemma 7.21. For a JNV modelM = (v,B), and formulas F,G,

• M  F ∧G⇔ (M  F andM  G)

• M  F ∨G⇔ (M  F orM  G)

• M  F ↔ G⇔ (M  F iffM  G)

Proof. Straightforward from the definition of truth relation for proposi-
tional connectives.

Additional restrictions on the model are required for the semantics to be
sound w.r.t. the logic JN.
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Definition 7.22. We call a term t normal if (nP · s) /∈ sub(t) for any
P ∈ V, s ∈ Tm.

Consider a set of restrictions:

(R.1) (nP , F ) ∈ B ⇔ F = P (for P ∈ V)

(R.2) nP · s /∈ sub(B), or equivalently t is normal for all (t, F ) ∈ B.

(R.3) (t · nP , F ) /∈ B

Note that the restriction (R.3) allows t · nP to occur deeper in the term,
i.e. ((t · nP ) · s, F ) is a valid evidence pair for (R.3).

Definition 7.23 (Intermediate models). We call models with restrictions
(R.1)—(R.3) on B intermediate.
A formula F is called valid w.r.t. intermediate models (notation: i F )

iffM  F for all intermediate modelsM.

Definition 7.24 (Atomic models). Let Ba ⊆ ATm×Fm that satisfies (R.1).
We call a model of the formMa := (v,Ba) atomic.
A formula F is called valid w.r.t. atomic models (notation: a F ) iff

M  F for all atomic modelsM.

Lemma 7.25. Any atomic model is also an intermediate model.

Proof. LetMa := (v,Ba) be an atomic model.
We need to show that restrictions (R.1)—(R.3) hold.

(R.1) By definition of an atomic model.

(R.2) Ba ⊆ ATm× Fm, therefore for all (t, F ) ∈ Ba we have

sub(t) = {t} ⊆ ATm

Therefore, nP · s /∈ sub(t).

(R.3) Again, Ba ⊆ ATm× Fm and therefore (t · nP , F ) /∈ Ba.
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Definition 7.26 (CS-Models). For a constant specification CS, a model
M = (v,B) is called a CS-model if CS ⊆ B.
A formula F is called valid w.r.t. intermediate CS-models (notation:

CS
i F ) iffM  F for all intermediate CS-modelsM.
A formula F is called valid w.r.t. atomic CS-models (notation: CS

a F )
iffM  F for all atomic CS-modelsM.
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8. Soundness and completeness
for JNV

8.1. Soundness for JNV

Before proving soundness, we will need a couple of lemmas.

Lemma 8.1. For an intermediate modelM = (v,B) and any atomic term
t ∈ ATm,

(t, F ) ∈ B ⇔ (t, F ) ∈ E(B)

Proof. Direction from left to right is true for any model and follows from
Lemma 7.16.

Direction from right to left is proved by induction on buildup of E(B):

• Basis: (t, F ) ∈ B, then the claim is trivial.

• Application: (t · s, F ) ∈ E(B).
This case does not apply, since t · s /∈ ATm.

• Substitution: (σt, F ) ∈ E(B) for σ = 〈i, P, s〉, for (t, F ) ∈ E(B),
(s, P ) ∈ E(B).
By assumption, σt ∈ ATm.
By Lemma 7.7, 0 = cmp(σt) > cmp(t) > 0, therefore cmp(t) = 0 and
t ∈ ATm.
Since t is atomic, by definition of the basic substitution σ we have

σt =
{
s, if t = nP and i = 0
t, otherwise

– In the first case, t = nP ∈ ATm and we know that (t, F ) ∈ B
So we have (t, F ) = (nP , F ) ∈ B for an intermediate model
M = (v,B).
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8. Soundness and completeness for JNV

By (R.1), F = P . Therefore, (σt, F ) = (s, P ), and in particular
s = σt ∈ ATm, so induction hypothesis applies to (s, P ) and we
get (σt, F ) = (s, P ) ∈ B.

– In the second case, t = σt ∈ ATm, so induction hypothesis
applies to (t, F ) and we get (σt, F ) = (t, F ) ∈ B.

Lemma 8.2. For any normal terms t, s and any i ∈ N, P ∈ V, 〈i, P, s〉t is
also normal.

Proof. Fix s. Proof by induction on t.
Base: t is atomic. Therefore, for σ = 〈i, P, s〉,

σt =
{
s t = nP and i = 0
t otherwise.

In either case the claim follows by normality of t or s.

Step: t = u · v.
By choice of t, u and v are also normal, since sub(u) ∪ sub(v) ⊆ sub(t).

This means that the induction hypothesis applies for u and v. In particular,
for σ = 〈i, P, s〉 follows that σu and (σ↓u)v are normal.
We have

σt =
{

(σu) · v i < numP (u)
u · ((σ↓u)v) otherwise.

(a) σt = σu · v.
Suppose σt is not normal, i.e. for some Q, r:

(nQ · r) ∈ sub(σt) = {σu · v} ∪ sub(σu) ∪ sub(v)

As shown before, σu and v are normal. Therefore, nQ · r = σu ·v and
nQ = σu, r = v.
By Lemma 7.7,

0 6 cmp(u) 6 cmp(σu) = cmp(nQ) = 0
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Therefore, cmp(u) = 0 meaning that u must be atomic.
Since t is normal, t = u · v 6= nP · r for any r, which means that
u 6= nP .
Therefore, σu = u and σt = t. Contradiction with the assumption
that σt is not normal.

(b) σt = u · ((σ↓u)v).
Suppose σt is not normal, i.e. for some Q, r:

(nQ · r) ∈ sub(σt) = {u · ((σ↓u)v)} ∪ sub(u) ∪ sub((σ↓u)v)

As shown before, u and (σ↓u)v are normal.
Therefore, nQ · r = u · ((σ↓u)v) and nQ = u, r = (σ↓u)v.
But that implies that t = nQ · v, which contradicts normality of t.

Theorem 8.3. Logic JNV
CS is sound w.r.t. intermediate CS-models, i.e.

`JNV
CS
F ⇒ CS

i F

Proof. Proof by induction on the length of derivation.
LetMi = (v,B) be an arbitrary intermediate CS-model.

(a) (Taut). All instances of propositional tautologies hold under all mod-
els, as the propositional part of truth relation is the same as truth-
table semantics for classical propositional logic.

(b) (App). AssumeMi  t : (F → G) ∧ s : F .
From the definition of  we have {(t, F → G), (s, F )} ⊆ E(B).
From Lemma 7.16 follows that (t · s,G) ∈ E(B), or equivalently that
Mi  t · s : G.
Therefore, the implication holds for the model:

Mi  t : (F → G) ∧ s : F → t · s : G
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8. Soundness and completeness for JNV

(c) (N+). By (R.1), (nP , F ) ∈ B ⇔ F = P .
Therefore, (nP , P ) ∈ B.
From Lemma 7.16, (nP , P ) ∈ E(B), and thereforeMi  nP : P .

(d) (N−). Suppose F 6= P .
By (R.1), (nP , F ) /∈ B.
Since nP is atomic, by Lemma 8.1 (nP , F ) /∈ E(B).
Therefore,Mi 1 nP : F .

(e) (N/). The claim is that (t, F ) /∈ E(B) for t such that nP · s ∈ sub(t).
We will show that for any (t, F ) ∈ E(B), nP · s /∈ sub(t) by induction
on buildup of E(B).
We will show that for every (t, F ) ∈ E(B), t is normal.
Basis: (t, F ) ∈ B, then the case is covered by (R.2).
Application: t = r · q while {(r,G→ F ), (q,G)} ⊆ E(B).
By induction hypothesis we have r, q normal.
We need to show that (nP · s) /∈ sub(t) = {r · q} ∪ sub(r) ∪ sub(q),
therefore it is sufficient to show that nP · s 6= r · q.
If the opposite was true, i.e. nP · s = r · q, then we conclude nP = r
and (nP , G→ F ) ∈ E(B).
But, since G → F 6= P , (nP , G → F ) /∈ E(B) as shown above.
Contradiction.
Substitution: t = σr, where σ = 〈i, Q, q〉 and {(r, F ), (q,Q)} ⊆ E(B)
By induction hypothesis, r and q are normal. Lemma 8.2 applies,
showing that t is normal.

(f) (N.). We need to showMi  t · nP : F → t : (P → F ).
AssumeMi  t · nP : F , or equivalently (t · nP , F ) ∈ E(B). We need
to show that (t, P → F ) ∈ E(B).
We show that if (r, F ) ∈ E(B) is of the form (t ·nP , F ), then it follows
that (t, P → F ) ∈ E(B). Proof by induction on buildup of E(B).
Base: By (R.3), (t · nP , F ) /∈ B, so the antecedent of the implication
is always false for this case.
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Application: (t · nP , F ) ∈ E(B), and for some H we have (t,H → F )
and (nP , H) are in E(B). By Lemma 8.1, (nP , H) ∈ B, and by (R.1)
H = P .
Therefore, (t, P → F ) ∈ E(B).
Substitution: (t · nP , F ) ∈ E(B), t · nP = σq for σ = 〈i, Q, s〉 and
(q, F ), (s,Q) ∈ E(B), for which the induction hypothesis applies.
Cases depending on σq:
a) q = nQ, i = 0. Then t · nP = σq = s.

Since (nQ, F ) ∈ E(B), by Lemma 8.1 and (R.1) F = Q.
Induction hypothesis applies for (s,Q) = (t ·nP , F ), which gives
the required (t, P → F ).

b) q ∈ ATm but i > 0 or q 6= nQ. Then t · nP = σq = q. However,
this contradicts q ∈ ATm, so this case does not apply.

c) q = q1 · q2 and σq = σq1 · q2.
Since σq = t · nP , q2 = nP and σq1 = t.
We have (q1 ·nP , F ) and the induction hypothesis applies, giving
(q1, P → F ) ∈ E(B). Together with (s,Q) ∈ E(B), by Lemma
7.16 (σq1, P → F ) = (t, P → F ) ∈ E(B).

d) q = q1 · q2 and σq = q1 · (σ↓q1)q2.
Since σq = t · nP , (σ↓q1)q2 = nP .
By Lemma 7.7, cmp(q2) 6 cmp(nP ) = 0, so q2 ∈ ATm.
Since for atomic q2, nP = 〈j,Q, s〉q2 is either q2 or s, we have
two possibilities:

• q2 = nP .
Induction hypothesis applies for (q, F ) = (q1 · nP , F ), so
(q1, P → F ) = (t, P → F ) ∈ E(B)

• s = nP .
In this case σ = 〈i, Q, nP 〉 for some i.
We have (s,Q) = (nP , Q) ∈ E(B). As shown above, this
means that P = Q.
Therefore, (q, F ) = (q1 · q2, F ) = (t · nQ, F ) = (t · nP , F ).
Induction hypothesis applies, giving (t, P → F ) ∈ E(B).
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(g) (Nσ). We need to showMi  t : F ∧ s : P → σt : F for σ = 〈i, P, s〉.
Equivalently, we need to show that {(t, F ), (s, P )} ⊆ E(B) entails
(〈i, P, s〉t, F ) ∈ E(B). This is proven in Lemma 7.16.

(h) (MP). Modus ponens preserves truth in a model.

(i) (AN). SinceM is a CS-model, then by definition CS ⊆ B.
By Lemma 7.16, we obtain CS ⊆ E(B), giving Mi  (c, F ) for all
(c, F ) ∈ CS.

8.2. Completeness for JNV

The goal of this section is to show that JNV
CS is complete w.r.t. intermediate

models.

Definition 8.4 (Consistency). A set Φ of formulas is called consistent if
JNV

CS 0 ¬(A1 ∧ · · · ∧An) for any finite subset {A1, . . . , An} ⊆ Φ.
A set Φ is called maximal consistent if it is consistent, and no proper

superset of Φ is.

Remark 8.5 (Lindenbaum Lemma). For every consistent set Φ, there is a
maximal consistent set Φ′ such that Φ ⊆ Φ′.

Lemma 8.6. Let Φ be a maximal consistent set.

• Φ contains all instances of all axioms.

• Φ is closed under (MP), (AN).

• ¬F ∈ Φ⇔ F /∈ Φ

• (F → G) ∈ Φ⇔ (F /∈ Φ or G ∈ Φ)

• (F ↔ G) ∈ Φ⇔ (F ∈ Φ⇔ G ∈ Φ)

Remark 4.3 and Lemma 8.6 are standard for (maximal) consistent sets;
for proofs, see e.g. [KS16].

Definition 8.7 (Induced model). Let Φ be a maximal consistent set of
formulas. We define its induced model asMΦ := (vΦ,BΦ), where
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• vΦ := Φ ∩ Prop

• BΦ := {(t, F ) | t : F ∈ Φ, t 6= s · nP for any s, P}

Lemma 8.8. For any maximal consistent set Φ, MΦ is an intermediate
CS-model.

Proof. We need to show that (R.1)—(R.3) hold.

(R.1) (nP , F ) ∈ BΦ ⇔ F = P .
Since Φ is maximal consistent, by Lemma 8.6 all instances of axioms
(N+), (N−) belong to it.
This gives nP : F ∈ Φ⇔ F = P and thus (R.1) by definition of BΦ.

(R.2) nP · s /∈ sub(t) for all (t, F ) ∈ BΦ

By Lemma 8.6, all instances of axioms (N/) belong to Φ.
As above, this means that nP · s ∈ sub(t)⇒ (t, F ) /∈ BΦ.

(R.3) (t · nP , F ) /∈ BΦ

Immediately from definition of BΦ.

To show thatMΦ is a CS-model, observe that Φ is closed under (AN) by
Lemma 8.6. It means that for every (c, F ) ∈ CS, c : F ∈ Φ. Since c 6= t ·nP
for any t, P , we have (c, F ) ∈ BΦ by definition of BΦ.

Lemma 8.9 (Canonical evidence).

(t, F ) ∈ E(BΦ) ⇔ t : F ∈ Φ

Proof.

(⇒) We have (t, F ) ∈ E(BΦ). Induction on the buildup of E(BΦ):
Base: (t, F ) ∈ BΦ, therefore by definition t : F ∈ Φ.
App: (t · s, F ) ∈ E(BΦ), and {(t, G→ F ), (s,G)} ⊆ E(BΦ).
Induction hypothesis applies for t and s: {(t : G→ F ), (s : G)} ⊆ Φ
Since Φ is maximal consistent, by Lemma 8.6,

t : (G→ F )→ (s : G→ (t : (G→ F ) ∧ s : G)) ∈ Φ ((Prop) instance)
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(t : (G→ F ) ∧ s : G)→ t · s : F ∈ Φ ((App) instance)

By Lemma 8.6 and applying (MP) several times, t · s : F ∈ Φ.
Substitution: (〈i, P, s〉t, F ) ∈ E(BΦ), and {(t, F ), (s, P )} ⊆ E(BΦ).
Induction hypothesis applies for t and s: {(t : F ), (s : P )} ⊆ Φ.
Since Φ is maximal consistent, by Lemma 8.6,

t : F → (s : P → (t : F ∧ s : P )) ∈ Φ ((Prop) instance)

(t : F ∧ s : P )→ 〈i, P, s〉t : F ∈ Φ ((Nσ) instance)

By Lemma 8.6 and applying (MP) several times, 〈i, P, s〉t : F ∈ Φ.

(⇐) We have t : F ∈ Φ. Proof proceeds by induction on t.
There are two cases:

(a) t 6= s · nP for any s, P . This includes the base case.
In this case, by definition of BΦ we have (t, F ) ∈ BΦ.
By Lemma 7.16, (t, F ) ∈ E(BΦ).

(b) t = s · nP for some s, P .
In this case, by Lemma 8.6,

s · nP : F → s : (P → F ) ∈ Φ ((N.) instance)

Applying (MP), we get s : (P → F ) ∈ Φ, and by induction
hypothesis (s, (P → F )) ∈ E(BΦ).
SinceMΦ is an intermediate model, (nP , P ) ∈ BΦ by (R.1).
Finally, applying Lemma 7.16 we get (s ·nP , F ) = (t, F ) ∈ E(B).

Definition 8.10. We define the rank for a formula F , denoted as rk(F ),
inductively as follows:

• rk(P ) := 0 for P ∈ Prop

• rk(¬A) := rk(A) + 1
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• rk(A→ B) := rk(A) + rk(B) + 1

• rk(t : A) := 0

Note that this is distinct from the definition of rk in Definition 4.8.

Lemma 8.11 (Truth lemma).

MΦ  F ⇔ F ∈ Φ

Proof. Induction on rk(F ):

(a) F ∈ Prop. We have, by definition, F ∈ Φ⇔ F ∈ vΦ ⇔MΦ  F .

(b) F = ¬G. Since Φ is maximal consistent, ¬G ∈ Φ ⇔ G /∈ Φ by
Lemma 8.6.

rk(¬G) > rk(G), so induction hypothesis applies for G, and therefore
¬G ∈ Φ⇔MΦ 1 G.

(c) F = G→ H.

Since Φ is maximal consistent, G→ H ∈ Φ⇔ (G /∈ Φ or H ∈ Φ) by
Lemma 8.6.

rk(G → H) > rk(G), rk(G → H) > rk(H), so induction hypothesis
applies for G and H, yielding

(G /∈ Φ or H ∈ Φ)⇔ (MΦ 1 G orMΦ  H)

By definition of  and the above, G→ H ∈ Φ⇔MΦ  G→ H.

(d) F = t : G. By Lemma 8.9, t : G ∈ Φ⇔ (t, G) ∈ E(BΦ).

By definition of , that means t : G ∈ Φ⇔MΦ  t : G

Theorem 8.12 (Completeness). Logic JNV
CS is complete w.r.t. intermedi-

ate CS-models, i.e.
CS
i F ⇒ `JNV

CS
F
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Proof. Proof by contraposition. Assume that 0JNV
CS
F . In that case, {¬F}

is a consistent set.
It is contained in a maximal consistent set Φ, and by Lemma 8.11 we

haveMΦ  ¬F , or equivalentlyMΦ 1 F .
Therefore, there is a counter-model for F and 1CS

i F .
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9. Finite model property for JNV

For the following proofs, we will require a variant of finite model property
w.r.t. intermediate models.

Definition 9.1. We call a model M = (v,B) finite if both v and B are
finite.

We call a CS-model M = (v,B ∪ CS) almost finite if both v and B are
finite.

We want to prove a form of finite model property which states that any
satisfiable formula can be satisfied in a finite model.

However, since CS might be infinite, and any CS-model must include
the entire CS in the basis, we cannot achieve “true” finite model property.
Instead, we’ll have almost finite intermediate CS-models. Since CS can
be considered “given”, such almost finite models still contain only finite
information in addition to CS.
Before we prove this, we need a couple more definitions.

Definition 9.2 (Subformulas). For a formula F , we define the set of sub-
formulas subf(F ) inductively as follows:

• subf(P ) = {P},

• subf(¬F ) = {¬F} ∪ subf(F ),

• subf(F → G) = {F → G} ∪ subf(F ) ∪ subf(G),

• subf(t : F ) = {t : F}. Notice that this definition is “shallow” as this
case does not include subf(F ) or propositional variables that may
occur in nominals in t.

For any set of evidence pairs F ⊆ Tm×Fm, define its set of subformulas
as subf(F) :=

⋃
(t,F )∈F

subf(F ).

Definition 9.3. For a formula F , we define
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• relevant evidence EF := {(t, G) | t : G ∈ subf(F )}

• relevant propositional valuation vF := {P | P ∈ subf(F )}

Note that both defined sets are finite for any formula F .

Definition 9.4 (Model agreement).
For a formula F , two modelsM = (v,B) andM′ = (v′,B′) are said to

• agree on relevant propositional valuation for F iff v ∩ vF = v′ ∩ vF ,

• agree on relevant evidence for F iff E(B) ∩ EF = E(B′) ∩ EF .

Lemma 9.5. If two modelsM = (v,B) andM′ = (v′,B′) agree on relevant
propositional valuation and relevant evidence for F , then they agree on the
valuation of F : M  F ⇔M′  F .

Proof. By induction onM  F , since it only depends on relevant proposi-
tional valuation and evidence.

Lemma 9.6. For any bases B,B′ ⊆ Tm× Fm we have:

(a) B ⊆ B′ ⇒ E(B) ⊆ E(B′)

(b) E(E(B)) = E(B)

Proof. (a) Assume B ⊆ B′.
We show that E(B) ⊆ E(B′) by induction on the buildup of E(B).
Base: (t, F ) ∈ B.
Therefore, (t, F ) ∈ B′, and by Lemma 7.16 (t, F ) ∈ E(B′).
App: (t·s, F ) ∈ E(B), and induction hypothesis applies for (t, G→ F )
and (s,G), giving {(t, G→ F ), (s,G)} ⊆ E(B′).
From that and Lemma 7.16 we conclude (t · s, F ) ∈ E(B′).
Substitution: (σt, F ) ∈ E(B) for σ = 〈i, P, s〉, and induction hypo-
thesis applies for (t, F ) and (s, P ) giving {(t, F ), (s, P )} ⊆ E(B′).
From that and Lemma 7.16 we conclude (σt, F ) ∈ E(B′).
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(b) By Lemma 7.16 we have E(B) ⊆ E(E(B)).
Therefore, we only need to show E(E(B)) ⊆ E(B). We show that by
induction on the buildup of E(E(B)).
Base: (t, F ) ∈ E(B), and that shows the claim immediately.
App: (t · s, F ) ∈ E(E(B)), and induction hypothesis applies for (s,G)
and (t, G→ F ), giving {(t, G→ F ), (s,G)} ⊆ E(B).
From that and Lemma 7.16 we conclude (t · s, F ) ∈ E(B).
Substitution: (σt, F ) ∈ E(E(B)) for σ = 〈i, P, s〉, and induction hy-
pothesis applies for (t, F ) and (s, P ) giving {(t, F ), (s, P )} ⊆ E(B).
From that and Lemma 7.16 we conclude (σt, F ) ∈ E(B).

Lemma 9.7. For any basis B and any (t, F ) such that (t, F ) ∈ E(B), there
is a finite subset B′ ⊆ B such that (t, F ) ∈ E(B′).
Proof. Proof by induction on the buildup of E(B).
Base: (t, F ) ∈ B.
Then we can take B′ := {(t, F )}. By Lemma 7.16, (t, F ) ∈ B′ ⊆ E(B′).
App: (t · s, F ) ∈ E(B), and {(t, G→ F ), (s,G)} ⊆ E(B).
Induction hypothesis applies, so there exist finite subsets B′t,B′s of B such

that
(t, G→ F ) ∈ E(B′t) (s,G) ∈ E(B′s)

Take B′ := B′t ∪ B′s. Since both sets in the union are finite, B′ is finite.
By Lemma 9.6, {(t, G→ F ), (s,G)} ⊆ E(B′). From Lemma 7.16 follows

the required (t · s, F ) ∈ E(B′).
Substitution: Analogous to the above case.

Note that the above proof gives a specific construction for a finite subset
of B that is enough to provide evidence for an evidence pair (t, F ).
Definition 9.8. For any basis B and any (t, F ), define B(t,F ) as the subset
of B provided by the Lemma 9.7 if (t, F ) ∈ E(B), and ∅ otherwise.
Definition 9.9. For an intermediate CS-modelM = (v,B) and a formula
F , define Fin(B, F ) as follows:

Fin(B, F ) :=

 ⋃
(t,G)∈EF

B(t,G)

 ∪ {(nP , P ) | P ∈ V}

85



9. Finite model property for JNV

Theorem 9.10 (Finite model property I). For every intermediate model
M and formula F , the model M′ := (v ∩ vF ,Fin(B, F )) has the following
properties:

(a) M′ is a finite model.

(b) M′ agrees withM on relevant propositional valuation for F .

(c) M′ agrees withM on relevant evidence for F .

(d) M′  F ⇔M  F .

(e) M′ is an intermediate model.

Proof. We show claims one by one.

(a) M′ is a finite model.
vF is finite for every formula F , therefore v′ := v ∩ vF is finite.
{(nP , P ) | P ∈ V} is finite because V is finite, EF is finite for any
formula F , and B(t,G) is finite by construction.
Therefore, B′ := Fin(B, F ) is finite as a union of finitely many finite
sets.

(b) M′ agrees withM on relevant propositional valuation for F .
v′ = v∩ vF , therefore v′ ∩ vF = (v∩ vF )∩ vF = v∩ vF , so the models
agree on propositional valuation.

(c) M′ agrees withM on relevant evidence for F .
Observe the following:

• B′ ⊆ B.
All of B(t,G) are subsets of B by construction.
Since M is intermediate, it satisfies (R.1), which means that
{(nP , P ) | P ∈ V} ⊆ B.
Therefore, B′ is as subset of B as a union of subsets of B.

• E(B′) ∩ EF ⊆ E(B).
From the above and Lemma 9.6, we have E(B′) ⊆ E(B), which
is stronger than the claim.
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• E(B) ∩ EF ⊆ E(B′).
Suppose (t, G) ∈ E(B) ∩ EF .
Then B(t,G) ⊆ B′ by construction of B′, and B(t,G) is non-empty.
By construction of B(t,G), (t, G) ∈ E(B(t,G)).
Finally, by Lemma 9.6, E(B(t,G)) ⊆ E(B′), giving (t, G) ∈ E(B′).

• E(B) ∩ EF = E(B′) ∩ EF .
Follows directly from the last two claims.

The above shows thatM andM′ agree on relevant evidence.

(d) M′  F ⇔M  F .
Since the two models agree on relevant propositional valuation and
evidence, claim follows by Lemma 9.5.

(e) M′ is an intermediate model.
We need to show (R.1) — (R.3) for B′.

(R.1) (nP , F ) ∈ B′ ⇔ F = P (for P ∈ V)
Since {(nP , P ) | P ∈ V} ⊆ B′ by construction, the direction
from right to left is valid.
M is an intermediate model, so (R.1) applies for B.
Suppose (nP , F ) ∈ B′ for P ∈ V. Since B′ ⊆ B, (nP , F ) ∈ B
and therefore F = P .

(R.2) nP · s /∈ sub(B′)
M is intermediate; therefore, (R.2) applies for B and we con-
clude nP · s /∈ sub(B).
B′ ⊆ B and consequently sub(B′) ⊆ sub(B).
Therefore, we obtain nP · s /∈ sub(B′).

(R.3) (t · nP , F ) /∈ B′

Analogous to the above case.
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Theorem 9.10 gives us a model that may not be a CS-model. If we want
to show a proper almost finite model property, we need to add constant
specification:

Theorem 9.11 (Finite model property II). For every intermediate CS-
modelM and formula F , the modelM′ := (v∩ vF ,Fin(B, F )∪CS) has the
following properties:

(a) M′ is a CS-model.

(b) M′ is an almost finite model.

(c) M′ agrees withM on relevant propositional valuation for F .

(d) M′ agrees withM on relevant evidence for F .

(e) M′  F ⇔M  F .

(f) M′ is an intermediate model.

Proof. Most of the proof is based on facts established in Theorem 9.10.

(a) M′ is a CS-model.
By definition, since CS ⊆ Fin(B, F ) ∪ CS.

(b) M′ is an almost finite model.
In Theorem 9.10, we established that v∩ vF and Fin(B, F ) are finite;
this exactly means thatM′ is almost finite.

(c) M′ agrees withM on relevant propositional valuation for F .
Shown in Theorem 9.10.

(d) M′ agrees withM on relevant evidence for F .
The proof follows the same reasoning as in Theorem 9.10, with a
minor addition in the proof of sub-claim B′ ⊆ B.
Theorem 9.10 shows that Fin(B, F ) ⊆ B, and sinceM is a CS-model,
CS ⊆ B as well.
Together, this gives Fin(B, F ) ∪ CS = B′ ⊆ B
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(e) M′  F ⇔M  F .
As before, follows from two previous claims and Lemma 9.5.

(f) M′ is an intermediate model.
Same as in Theorem 9.10.
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10. Atomic model semantics for
JNV

The goal of this chapter is to show that atomic models give a sound and
complete axiomatization for JNV.

By Lemma 7.25, any atomic model is also an intermediate model; there-
fore, we automatically get soundness. Instead of directly proving com-
pleteness, we will instead prove that any formula that has an intermediate
counter-model also has an atomic counter-model — by transforming the
initial counter-model while preserving validity of a given formula.

Starting from an arbitrary intermediate CS-model M for a formula F ,
Theorem 9.11 gives an almost finite intermediate CS-model for it. However,
this model may not yet be atomic.

We can define a measure of “non-atomicity” of a model, or complexity,
in terms of the number of applications in its basis. So, given an interme-
diate CS-modelM we construct a finite modelM0 with possibly non-zero
complexity cmp(M0).
The idea is to iteratively modify M0 in a way that reduces complexity

while still producing models that agree on relevant evidence for F , which
will ensure that validity is preserved by Lemma 9.5. A complexity of zero
would mean that the model is atomic. Since complexity is finite, the process
terminates.

However, we will need to impose a restriction on the constant specifica-
tion if we want to produce a CS-model with this process (as opposed to an
arbitrary model).
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10.1. Preliminary definitions and lemmas
We define complexity as a measure of “non-atomicity” of a model.

Definition 10.1 (Basis and model complexity).

• We define basis complexity for a basis B as

cmp(B) :=
∑

(t,F )∈B

cmp(t)

if this sum is finite, and cmp(B) :=∞ otherwise.

• We define model complexity for a modelM = (v,B) as

cmp(M) := cmp(B)

Remark 10.2. For any almost finite or finite model M, its complexity
cmp(M) is always finite.
During the atomization procedure, we will temporarily lose the full con-

stant specification from the basis. In order to accurately track which parts
of the constant specification are retained, we will need the notions of CS
fragments and CS-closure.

Definition 10.3 (CS fragments).

• For a constant c, we define the c-fragment of CS as

CS�c := {(c′, F ) | (c′, F ) ∈ CS, c′ = c}

• For a basis B, we define the B-fragment of CS as

CS�B := {(c, F ) | (c, F ) ∈ CS, c ∈ sub(B)} =
⋃

c∈sub(B)

CS�c

Definition 10.4 (CS-closed model, CS-closure).

• A model M = (v,B) is called CS-closed if its B basis contains the
B-fragment of CS:

CS�B ⊆ B
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• For a modelM = (v,B), define its CS-closure as

MCS := (v,B ∪ CS�B)

Lemma 10.5. A CS-closure of a model is a CS-closed model.

Proof. Take a modelM = (v,B).
Then its CS-closure isMCS = (v,B ∪ CS�B).
We need to show that for every c ∈ sub(B ∪ CS�B), CS�c ⊆ B ∪ CS�B.
We have sub(B ∪ CS�B) = sub(B) ∪ sub(CS�B). we have two cases:

(a) c ∈ sub(B).
Then, by definition of CS�B we have CS�c ⊆ CS�B ⊆ B ∪ CS�B.

(b) c ∈ sub(CS�B).
We have

sub(CS�B) =
⋃

(t,F )∈CS�B

sub(t) =
⋃

c∈sub(B)

⋃
(c,F )∈CS

sub(c)

=
⋃

c∈sub(B)

⋃
(c,F )∈CS

{c} ⊆ sub(B)

Therefore, this c is already covered by the previous case.

Definition 10.6 (Relevant CS). For a formula F , we define relevant con-
stant specification CSF as the EF -fragment of CS:

CSF := CS�EF
= {(c,G) | (c,G) ∈ CS, c ∈ sub(EF )}

We say that a modelM = (v,B) contains CSF if CSF ⊆ B.

Lemma 10.7. For any modelM = (v,B) and any formula F ,

F /∈ subf(B) ⇒ F /∈ subf(E(B))

Proof. Assuming F /∈ subf(B), we show by induction on buildup of E(B)
that F /∈ subf(G) for any (t, G) ∈ E(B).
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Base: (t, G) ∈ B.
Then subf(G) ⊆ subf(B) and therefore F /∈ subf(G) by assumption.
App: (t · s,G) ∈ E(B), and {(t,H → G), (s,H)} ⊆ E(B).
Induction hypothesis applies, so F /∈ subf(H → G).
Therefore, F /∈ subf(G) ⊆ subf(H → G).
Substitution: (〈i, P, s〉t, G) ∈ E(B), and {(t, G), (s, P )} ⊆ E(B).
Directly by induction hypothesis, F /∈ subf(G).

In order to preserve validity of the formula on the last step of atomization,
we will need a restriction on constant specification, local finiteness.

Definition 10.8 (Locally finite CS). A constant specification is said to be
locally finite if, for every constant c, the c-fragment of CS is finite.

As a remark, locally finite CS can be axiomatically appropriate, but not
schematic (for definitions, see e.g. [Fit05]).

We will need to explicitly work with compositions of basic substitutions.
Here, we introduce substitutions, substitution sets, and several operations
on substitutions:

Definition 10.9 (Substitutions). We define substitutions as the free mo-
noid S∗ on the set of all basic substitutions S with λ denoting the empty
word. To clarify notation, we will use σ1 ◦ σ2 to denote concatenation.
For a substitution Σ ∈ S∗, Σ[t] is defined inductively as follows:

• λ[t] := t (so λ is the identity substitution)

• (Σ′ ◦ σ)[t] := Σ′[σt]

Remark 10.10. For any two substitutions Σ1, Σ2 and any term t,

(Σ1 ◦ Σ2)[t] = Σ1[Σ2[t]]

Definition 10.11 (Substitution sets). For a basis B, define its basic sub-
stitution set S(B) as all basic substitutions that can appear in the buildup
of E(B):

S(B) := {〈i, P, s〉 | i ∈ N, P ∈ V, (s, P ) ∈ E(B)}

For a basis B, define its full substitution set as the free monoid S(B)∗ on
its basic substitution set S(B).
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10.1. Preliminary definitions and lemmas

Lemma 10.12. For any basis B, (t, F ) ∈ E(B) and Σ ∈ S(B)∗, we have
(Σ[t], F ) ∈ E(B).

Proof. Induction on Σ for all (t, F ) ∈ E(B).
Base: Σ = λ. Then (Σ[t], F ) = (t, F ) ∈ E(B).
Step: Σ = Σ′ ◦ σ for σ = 〈i, P, s〉, and by induction hypothesis we have

(Σ′[t], F ) ∈ E(B) for all (t, F ) ∈ E(B).
Take an arbitrary pair (r,G) ∈ E(B). We have (Σ[r], G) = (Σ′[σr], G).
Since Σ ∈ S(B)∗, we infer that σ ∈ S(B) and therefore (s, P ) ∈ E(B).
By Lemma 7.16 we obtain (σr,G) ∈ E(B).
Therefore, by induction hypothesis (Σ′[σr], G) ∈ E(B).

Definition 10.13 (Substitution lifting). For a substitution Σ, we define
lifting of Σ by t inductively as follows:

• (λ ↑ t) := λ

• ((Σ′ ◦ 〈i, P, s〉) ↑ t) := (Σ′ ↑ t) ◦ 〈i+ numP (t), P, s〉

Lemma 10.14. For any substitution Σ and terms t, s,

(Σ ↑ t)[t · s] = t · Σ[s]

Proof. Proof by induction on Σ for arbitrary s.
Base: Σ = λ.
By applying the definition of substitutions and filtering, we observe the

following sequence of equivalent reductions of the claim:

(λ ↑ t)[t · s] = t · λ[s]
λ[t · s] = t · s
t · s = t · s

Step: Σ = Σ′ ◦ σ for σ = 〈i, P, q〉
By definition, Σ ↑ t = (Σ′ ↑ t) ◦ 〈i+ numP (t), P, q〉.
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Observe that i+ numP (t) > numP (t), therefore we get

(Σ ↑ t)[t · s] = ((Σ′ ↑ t) ◦ 〈i+ numP (t), P, q〉)[t · s]
= (Σ′ ↑ t)[〈i+ numP (t), P, q〉(t · s)]
= (Σ′ ↑ t)[t · 〈i+ numP (t)− numP (t), P, q〉s]
= (Σ′ ↑ t)[t · 〈i, P, q〉s]
= (Σ′ ↑ t)[t · σs]

By induction hypothesis for Σ′ and s′ := σs,

(Σ′ ↑ t)[t · (σs)] = t · Σ′[σs]

Using all of the above, we obtain the claim:

(Σ ↑ t)[t · s] = (Σ′ ↑ t)[t · σs]
= t · Σ′[σs]
= t · (Σ′ ◦ σ)[s]
= t · Σ[s]

Definition 10.15 (Substitution filtering). For a substitution Σ, we define
filtering of Σ by t inductively as follows:

• λ|t := λ

• (Σ′ ◦ 〈i, P, s〉)|t :=
{

Σ′|〈i,P,s〉t ◦ 〈i, P, s〉, i < numP (t)
Σ′|t, i > numP (t)

Intuitively, this discards basic substitutions that “do not apply” in the
sense of Lemma 7.5.
Remark 10.16. For any basis B and any term t,

Σ ∈ S(B)∗ ⇒ {(Σ ↑ t),Σ|t} ⊆ S(B)∗

Lemma 10.17. For any substitution Σ and terms t, s,

Σ|t[t · s] = Σ[t] · s
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Proof. Proof by induction on Σ for arbitrary t.
Base: Σ = λ.
By applying the definition of substitutions and filtering, we observe the

following sequence of equivalent reductions of the claim:

λ|t[t · s] = λ[t] · s
λ[t · s] = t · s
t · s = t · s

Step: Σ = Σ′ ◦ σ.
Induction hypothesis: for any term t′, Σ′|t′ [t′ · s] = Σ′[t′] · s.
We need to show:

(Σ′ ◦ σ)|t[t · s] = (Σ′ ◦ σ)[t] · s

Note that (Σ′ ◦ σ)[t] · s = Σ′[σt] · s.
There are two possible cases depending on σ = 〈i, P, r〉 and t:

(a) i < numP (t). In this case,

(Σ′ ◦ σ)|t[t · s] = (Σ′|σt ◦ σ)[t · s] = Σ′|σt[σ(t · s)]

Since i < numP (t), we have σ(t · s) = σt · s.
Using the above, the claim reduces to

Σ′|σt[σt · s] = Σ′[σt] · s,

which is exactly the induction hypothesis for t′ = σt.

(b) i > numP (t). In this case,

(Σ′ ◦ σ)|t[t · s] = Σ′|t[t · s]

Also, since i > numP (t), we have σt = t by Lemma 7.5.
Therefore, the claim reduces to

(Σ′|t)[t · s] = Σ′[t] · s,
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which is exactly the induction hypothesis for t′ = t.

Lemma 10.18 (Combining substitutions). For any substitutions Σ1,Σ2
and terms t, s, there exists a combining substitution Comb(Σ1, t,Σ2) such
that

Σ1[t] · Σ2[s] = Comb(Σ1, t,Σ2)[t · s]

Moreover, for any basis B,

Σ1,Σ2 ∈ S(B)∗ ⇒ Comb(Σ1, t,Σ2) ∈ S(B)∗

Proof. We claim that the required Comb(Σ1, t,Σ2) is (Σ2 ↑ (Σ1[t])) ◦Σ1|t.
Using Lemma 10.17, we observe that

((Σ2 ↑ (Σ1[t])) ◦ Σ1|t)[t · s] = (Σ2 ↑ (Σ1[t]))[Σ1|t[t · s]]
= (Σ2 ↑ (Σ1[t]))[Σ1[t] · s]

Applying Lemma 10.14 for Σ2 and (Σ1[t]) to the last expression, we
obtain the claim:

(Σ2 ↑ (Σ1[t]))[Σ1[t] · s] = Σ1[t] · Σ2[s]

We will need the following observation regarding substitutions and con-
stants:
Lemma 10.19. For a basic substitution σ = 〈i, P, s〉 and a term t, one of
the following is true:
(a) σt = t.

(b) For every constant c ∈ sub(s) ∪ sub(t), c ∈ sub(σt).
Proof. Induction on t for arbitrary σ.

• Base: t ∈ ATm. There are 2 sub-cases:
– t = nP , i = 0. Then σt = s. In this case, sub(s) ∪ sub(t) =

sub(s)∪ {nP }. If a constant c is in sub(s)∪ {nP }, it must be in
sub(s) as nP is not a constant. But c ∈ sub(σt) = sub(s). This
shows case (b) for this branch.
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– t 6= nP or i > 0. Then σt = t which shows case (a).

• Step: t = r · q. There are 2 sub-cases:
– i < numP (r). Then σt = (σr) · q.

By induction hypothesis, either (a) or (b) is valid for σr.
In case of (a) for σr, we have σt = σr · q = r · q = t, so we’ve
shown case (a) for t.
Suppose that case (b) applies for σr, and suppose that a constant
c is in sub(s) ∪ sub(t).
We have sub(t) = sub(r) ∪ sub(q) ∪ {r · q}, and r · q is not a
constant, therefore we have c ∈ sub(r) or c ∈ sub(q).
We need to prove that

c ∈ sub(σt) = sub((σr) · q) = sub(σr) ∪ sub(q) ∪ {(σr) · q}

If c ∈ sub(q) is the case, the above is true.
If c ∈ sub(r), remember that we assumed that case (b) applies
for σr. From this we conclude that c ∈ sub(σr) ⊆ sub(σt), and
therefore (b) applies for σt.

– i > numP (r). Then σt = r · ((σ↓r)q).
Identical to the above, as induction hypothesis applies for an
arbitrary σ.

Finally, we’ll need a notion of a variable fresh for a set of formulas:

Definition 10.20 (Fresh variable). For a formula F , define PV(F ) as the
set of propositional variables that occur in it. It is finite for any formula.

For a finite set of formulas Γ ⊆ Fm, we say that a propositional variable
X is fresh for Γ if X /∈

⋃
F∈Γ

PV(F ).

Lemma 10.21. For every finite modelM = (v,B) and a formula F , there
exists a propositional variable XF,B that is fresh for V ∪ {F} ∪ subf(B).
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Proof. SinceM is finite, so is B and therefore subf(B). V is finite.
From this, the set⋃

P∈V
PV(P ) ∪ PV(F ) ∪

⋃
H∈subf(B)

PV(H)

is finite as a finite union of finite sets, and there are infinitely many
propositional variables in its complement since Prop is countable.
To be specific, take the smallest (in the sense of a fixed ordering of propo-

sitional variables) variable in the complement of that set. By definition, it
is fresh for V ∪ {F} ∪ subf(B).

10.2. Atomization
For the atomization procedure, we assume that we have an intermediate
CS-model that satisfies a given formula F . We will also assume a locally
finite CS.

As a starting point for the construction of the appropriate atomic model,
we need a model that is “between” models from Theorems 9.10 and 9.11.

Lemma 10.22 (Starting finite model). For every locally finite CS, inter-
mediate CS-modelM and formula F , the model

M′ := (v ∩ vF ,Fin(B, F ) ∪ CSF )CS

has the following properties:

(a) M′ is a finite model.

(b) M′ agrees withM on relevant propositional valuation for F .

(c) M′ agrees withM on relevant evidence for F .

(d) M′  F ⇔M  F .

(e) M′ is an intermediate model.

(f) M′ is a CS-closed model.

(g) M′ contains CSF .
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Proof. For the purpose of the proof, we define the following bases:

B1 := Fin(B, F )
B2 := CSF = {(c,G) | (c,G) ∈ CS, c ∈ sub(EF )}
B3 := {(c,G) | (c,G) ∈ CS, c ∈ sub(B1 ∪ B2)}

Using this notation,M′ = (v ∩ vF ,B1 ∪ B2)CS = (v ∩ vF ,B1 ∪ B2 ∪ B3).

(a) M′ is a finite model.
By Theorem 9.10, (v∩ vF ,Fin(B, F )) is finite; hence, B1 = Fin(B, F )
is finite.
For any formula F , sub(EF ) is finite, and for any finite basis B̃ its set
of subterms sub(B̃) is finite as well.
For a locally finite CS, for every constant c, {(c,G) | (c,G) ∈ CS} is
finite.
Therefore, B2 =

⋃
c∈sub(EF )

{(c,G) | (c,G) ∈ CS} is finite as a finite

union of finite sets.
From this, B1 ∪B2 is finite, and consequently B3 is finite as well as a
finite union of finite sets:

B3 =
⋃

c∈sub(B1∪B2)

{(c,G) | (c,G) ∈ CS}

From this we can conclude that the modelM′ = (v∩vF ,B1∪B2∪B3)
is finite.

(b) M′ agrees withM on relevant propositional valuation for F .
Shown in Theorem 9.10.

(c) M′ agrees withM on relevant evidence for F .
The proof follows the same reasoning as in Theorem 9.10, with a
minor addition in the proof of sub-claim B′ ⊆ B.
Theorem 9.10 shows that B1 = Fin(B, F ) ⊆ B.
SinceM is a CS-model, CS ⊆ B as well, and by construction B2 ⊆ CS
and B3 ⊆ CS.

101



10. Atomic model semantics for JNV

Therefore, B′ = B1 ∪ B2 ∪ B3 ⊆ B.
The rest of the argument is unchanged.

(d) M′  F ⇔M  F .
As before, follows from two previous claims and Lemma 9.5.

(e) M′ is an intermediate model.
Same as in Theorem 9.10.

(f) M′ is a CS-closed model.
M′ is the CS-closure of a model (v∩vF ,Fin(B, F )∪CSF ). By Lemma
10.5, it is CS-closed.

(g) M′ contains CSF .
By definition of CS-closure, modelM′ has the following basis:

B′ = Fin(B, F ) ∪ CSF
∪ {(c,G) | (c,G) ∈ CS, c ∈ sub(Fin(B, F ) ∪ CSF )}

Therefore, CSF ⊆ B′ and by definition we conclude thatM′ contains
CSF .

Remark 10.23. Every term t can be uniquely represented using the form
t = t̃ · nPk

· . . . · nP1 (possibly with k = 0, i.e. t = t̃), where t̃ 6= s · nQ for
any s,Q.
As a reminder, term application is left-associative.
The following definition introduces, for a formula F and a modelM, a

new model that agrees withM on truth of F but has less complexity.

Definition 10.24 (F -preserving atomization). Take a finite intermediate
modelM = (v,B) with (t · s,G) ∈ B for some t, s,G.

By Remark 10.23, t and s can, without loss of generality, be uniquely
represented as t̃ · nPk

· . . . · nP1 and s̃ · nQl
· . . . · nQ1 such that neither t̃ nor

s̃ can be further decomposed into q · nR for any q,R.
By Lemma 10.21, there exists a variable X := XF,B that is fresh for

(V ∪ {F} ∪ subf(B)).
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We define the F -preserving atomization of (t · s,G) inM:

AtomF (M; (t · s,G)) := (v,B′), where

B′ := (B \ {(t · s,G)}) ∪
{

(t̃, Pk → . . .→ P1 → (X → G)),
(s̃, Ql → . . .→ Q1 → X)

}
See Figure 2 for an illustration of the resulting applications.
Additionally, define a set of evidence pairs

EX(t · s,G) := {
(s̃, Ql → . . .→ Q1 → X),
(s̃ · nQl

, Ql−1 → . . .→ Q1 → X),
. . . ,

(s̃ · nQl
· . . . · nQ1 , X),

(t̃, Pk → . . .→ P1 → (X → G)),
(t̃ · nPk

, Pk−1 → . . .→ P1 → (X → G)),
. . . ,

(t̃ · nPk
· . . . · nP1 , X → G)

}

All of these evidence pairs contain X as a subformula.
When the context is clear, we will simply refer to it as EX .

(t·s,G)

(t̃·nPk
·...·nP1 ,X→G)

(t̃·nPk
·...·nP2 ,P1→(X→G))

(t̃,Pk→...→P1→(X→G))

(nP2 ,P2)

(nP1 ,P1)

(s̃·nQl
·...·nQ1 ,X)

(s̃·nQl
,Ql−1→...→Q1→X)

(s̃,Ql→...→Q1→X)

(nQl
,Ql)

(nQ1 ,Q1)

Figure 2: Atomization of (t · s,G)
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The idea of atomization of (t · s,G) is to create a new basis of lesser
complexity that will still contain (t · s,G) and the rest of B in E(B). By
choice of X, the new model will agree on relevant evidence for F , therefore
“preserving” it.

With the following lemma, we want to show that E(B′) consists of E(B)
and evidence pairs that contain X as subformulas (and therefore not rele-
vant to F , since X was chosen fresh).

Lemma 10.25. For a finite intermediate modelM = (v,B), (t · s,G) ∈ B
and a formula F , take (v,B′) := AtomF (M; (t · s,G)). Then,

(q,H) ∈ E(B′) ⇒


(q,H) ∈ E(B), or

(q,H) = (Σ[r], H) for some Σ ∈ S(B)∗,
(r,H) ∈ EX .

Note that Σ ∈ S(B)∗ and not S(B′)∗.

Proof. We shall call the two cases of the claim as case (A) or case (B)
respectively further in this proof.

Assume (q,H) ∈ E(B′) Proof by induction on the buildup of E(B′):
Base: (q,H) ∈ B′. By definition of B′, there are two cases:

(a) (q,H) ∈ B \ {(t · s,G)}.
Since B \ {(t · s,G)} ⊆ B ⊆ E(B) by Lemma 7.16, the claim is valid
by case (A).

(b) (q,H) = (t̃, Pk → . . .→ P1 → (X → G)).
Then (λ[q], H) = (q,H) ∈ EX and the claim is valid by case (B).

(c) (q,H) = (s̃, Ql → . . .→ Q1 → X).
Same as the above.

App: (q · r,H) ∈ E(B′), and {(q, E → H), (r, E)} ⊆ E(B′).
Induction hypothesis applies to (q, E → H) and (r, E); therefore, there

are 4 distinct cases based on whether case (A) or (B) applies for them.

(a) Case (A,A):
{(q, E → H), (r, E)} ⊆ E(B).
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Then, by Lemma 7.16, (q · r,H) ∈ E(B), which shows the case (A) of
the claim.

(b) Case (A,B):

(q, E → H) ∈ E(B), r = Σ[r̃] for some Σ ∈ S(B)∗, (r̃, E) ∈ EX .

This case is impossible: Since (r̃, E) ∈ EX , X must be a subformula
of E, however (q, E → H) ∈ E(B) and therefore X cannot be a
subformula of E → H, which contains all subformulas of E.

(c) Case (B,A):

q = Σ[q̃] for some Σ ∈ S(B)∗, (q̃, E → H) ∈ EX and (r, E) ∈ E(B).

From this we conclude that X is a subformula of E → H but not E.

That leaves the following possibilities for (q̃, E → H) ∈ EX :

q̃ = s̃ · nQl
· . . . · nQl−i+1 , E = Ql−i,

H = Ql−i−1 . . .→ Q1 → X 0 6 i < l

or
q̃ = t̃ · nPk

· . . . · nPk−j+1 , E = Pk−j ,

H = Pk−j−1 . . .→ P1 → (X → G) 0 6 j < k

We will prove the claim for the first form, and the proof for the second
form is analogous.

Since (r, E) = (r,Ql−i) ∈ E(B), we have 〈0, Ql−i, r〉 ∈ S(B).

Note that the term r can be represented as 〈0, Ql−i, r〉[nQl−i
].

Define Σ′ := Comb(Σ, s̃ · nQl
· . . . · nQl−i+1 , 〈0, Ql−i, r〉).

With that, by Lemma 10.18,

(q · r,H) = (Σ[s̃ · nQl
· . . . · nQl−i+1 ] · 〈0, Ql−i, r〉[nQl−i

], H)
=
(
Σ′[s̃ · nQl

· . . . · nQl−i+1 · nQl−i
], H

)
=

Σ′[s̃ · nQl
· . . . · nQl−i+1 · nQl−i︸ ︷︷ ︸

v

], Ql−i−1 . . .→ Q1 → X
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This means that (q · r,H) = (Σ′[v], H) for Σ′ ∈ S(B)∗ and

(v,H) =
(
s̃ · nQl

· . . . · nQl−i+1 · nQl−i
, Ql−i−1 . . .→ Q1 → X

)
∈ EX ,

and therefore the claim is valid by case (B).

(d) Case (B,B):
q = Σ1[q̃], r = Σ2[r̃] for some substitutions Σ1,Σ2 ∈ S(B)∗, and
{(q̃, E → H), (r̃, E)} ⊆ EX .
There is exactly one possibility for both of those evidence pairs being
in EX , specifically

(q̃, E → H) = (t̃ · nPk
· . . . · nP1 , X → G) = (t,X → G),

(r̃, E) = (s̃ · nQl
· . . . · nQ1 , X) = (s,X)

Therefore, (q̃ · r̃, H) = (t · s,G) ∈ E(B).
Take Σ := Comb(Σ1, q̃,Σ2).
By Lemma 10.18, Σ ∈ S(B)∗ and

(q · r,H) = (Σ1[q̃] · Σ2[r̃], H) = (Σ(t · s), G)

Since (t · s,G) ∈ E(B), by Lemma 10.12 we have (q · r,H) ∈ E(B) and
the claim is valid by case (A).

Substitution: (σq,H) ∈ E(B′) for σ = 〈i, R, r〉 ∈ S(B′)∗, and (IH) applies
for {(q,H), (r,R)} ⊆ E(B′).
Consider that R ∈ V and X /∈ V by choice of X.
From this, X /∈ subf(R) = {R}. Therefore, (r,R) /∈ EX .
By (IH), (r,R) ∈ E(B) which means that σ ∈ S(B).
Two cases depending on which case of (IH) applies for (q,H):

(a) Case (A): (q,H) ∈ E(B).
In that case, (σq,H) = (σ[q], H) ∈ E(B) by Lemma 10.12 and the
claim is valid by case (A).

(b) Case (B): (q,H) = (Σ[q̃], H) for some Σ ∈ S(B)∗, (q̃, H) ∈ EX .
Then (σq,H) = (σ[Σ[q̃]], H) = ((σ ◦ Σ)[q̃], H).
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10.2. Atomization

By definition of S(B)∗ and the fact that σ ∈ S(B), σ ◦Σ ∈ S(B)∗ and
therefore the claim is valid by case (B).

Next, we will show that F -preserving atomization step has all the re-
quired properties to reduce complexity while maintaining the truth value
of F .

Lemma 10.26. For a finite intermediate modelM = (v,B), evidence pair
(t · s,G) ∈ B, and a formula F , (v,B′) := AtomF (M; (t · s,G)) has the
following properties:

(a) AtomF (M; (t · s,G)) is finite.

(b) AtomF (M; (t · s,G)) is intermediate.

(c) AtomF (M; (t · s,G)) agrees withM on relevant propositional valua-
tion for F .

(d) AtomF (M; (t · s,G)) agrees withM on relevant evidence for F .

(e) AtomF (M; (t · s,G)) is CS-closed ifM is CS-closed.

(f) AtomF (M; (t · s,G)) contains CSF ifM contains CSF .

(g) cmp(AtomF (M; (t · s,G))) < cmp(M).

Proof. (a) M is finite, or equivalently both B and v are finite.
B′, by definition, has exactly 1 more element than B and is therefore
finite as well.
Therefore, AtomF (M; (t · s,G)) = (v,B′) is finite.

(b) We need to show (R.1) — (R.3) for B′. Note thatM is intermediate,
and therefore (R.1) — (R.3) holds for B.

(R.1,⇐) We want to show that (nP , P ) ∈ B′ for P ∈ V.
SinceM is intermediate, (nP , P ) ∈ B.
Since nP is atomic, (nP , P ) ∈ (B \ {(t · s,G)}) ⊆ B′.

(R.1,⇒) Assume (nP , H) ∈ B′ with P ∈ V.
There are three cases:
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10. Atomic model semantics for JNV

– (nP , H) ∈ (B \ {(t · s,G)}) ⊆ B.
SinceM is intermediate, by (R.1) for B we have H = P .

– (nP , H) = (t̃, Pk → . . .→ P1 → (X → G)).
This case is impossible: if t̃ = nP , then t̃ · nPk

(or, in case
k = 0, t̃ · s) is a subterm of t · s for (t · s, F ) ∈ B, which is
impossible by (R.2) for B.

– (nP , H) = (s̃, Ql → . . .→ Q1 → X).
This case is again impossible. If l 6= 0, then the argument
is as above with s̃ · nQl

.
If l = 0, then (t · s, F ) = (t · nP , F ) ∈ B, which contradicts
(R.3) for B.

(R.2) Assume that (R.2) does not hold and nP · r is a subterm of q for
some (q,H) ∈ B′.
There are three cases:
– (q,H) ∈ (B \ {(t · s,G)}) ⊆ B.

SinceM is intermediate, (R.2) applies for it.
Consequently, nP · r ∈ sub(q) is impossible.

– (q,H) = (t̃, Pk → . . .→ P1 → (X → G)).
By choice of t̃, t̃ ∈ sub(t).
Therefore, sub(q) ⊆ sub(t) ⊆ sub(t · s) and (t · s,G) ∈ B.
(R.2) applies forM, therefore nP ·r ∈ sub(t·s) is impossible.

– (q,H) = (s̃, Ql → . . .→ Q1 → X).
Analogous to the above case.

Therefore, we obtain a contradiction, which proves (R.2).
(R.3) Assume that (R.3) does not hold and (q · nP , H) ∈ B′ for some

q, P,H.
There are three cases:
– (q · nP , H) ∈ (B \ {(t · s,G)}) ⊆ B.

Therefore, (q · nP , H) ∈ B, which is impossible since M is
intermediate and (R.3) applies for it.
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– (q · nP , H) = (t̃, Pk → . . .→ P1 → (X → G)).
By choice of t̃ according to Remark 10.23, t̃ = q · nP is
impossible.

– (q · nP , H) = (s̃, Ql → . . .→ Q1 → X).
Analogous to the above case.

Therefore, we obtain a contradiction, which proves (R.3).

(c) The claim is trivial, sinceM and AtomF (M; (t ·s,G)) have the same
propositional valuation v, and therefore agree on relevant proposi-
tional valuation for any formula.

(d) We need to show that E(B) ∩ EF = E(B′) ∩ EF .
Recall the definition of EX from Definition 10.24.
As a first step, we show that EX ⊆ E(B′) by applying Lemma 7.16
multiple times:

(s̃, Ql → . . .→ Q1 → X) ∈ B′ ⇒ (s̃, Ql → . . .→ Q1 → X) ∈ E(B′)
(nQl

, Ql) ∈ (B \ {(t · s,G)}) ⊆ B′ ⇒ (nQl
, Ql) ∈ E(B′)

(conclusions above)⇒ (s̃ · nQl
, Ql−1 → . . .→ Q1 → X) ∈ E(B′)
· · ·

(conclusions above)⇒ (s̃ · nQl
· . . . · nQ1 , X) = (s,X) ∈ E(B′)

And similarly starting from (t̃, Pk → . . .→ P1 → (X → G)).
Note that from this we have {(t,X → G), (s,X)} ⊆ EX ⊆ E(B′), and
by applying Lemma 7.16 again we get (t · s,G) ∈ E(B′).
By construction of B′ and Lemma 7.16, we have

B \ {(t · s,G)} ⊆ B′ ⊆ E(B′)

Combining the last two conclusions, we obtain B ⊆ E(B′).
By Lemma 9.6, E(B) ⊆ E(E(B′)) = E(B′).
From this we immediately obtain E(B) ∩ EF ⊆ E(B′) ∩ EF .
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To show the inverse inclusion, E(B′) ∩ EF ⊆ E(B) ∩ EF , assume that
(q,H) ∈ E(B′) ∩ EF .
By Lemma 10.25, we have two cases for (q,H) ∈ E(B′):

a) (q,H) ∈ E(B).
Therefore, (q,H) ∈ E(B) ∩ EF as required.

b) (q,H) = (Σ[r], H) for some Σ ∈ S(B)∗, (r,H) ∈ EX .
Since (r,H) ∈ EX , X occurs in H. By choice of X, X does not
occur in subf(EF ). Therefore, (q,H) /∈ EF and this case does
not apply.

(e) To prove CS-closedness we must show the following: ⋃
(q,H)∈B′

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)}

 ⊆ B′
Observe that all terms occurring in EX are subterms of t·s. Therefore,
all constants occurring in EX already occur in B.
There are two cases for (q,H) ∈ B′:

a) (q,H) ∈ B \ {(t · s,G)}.
SinceM is CS-closed, ⋃

(q,H)∈B

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)}

 ⊆ B
and in particular {(c, E) | (c, E) ∈ CS, c ∈ sub(q)} ⊆ B for
(q,H).
Since (t · s,G) 6= (c, E) for any c, E, we conclude

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)} ⊆ B \ {(t · s,G)} ⊆ B′

b) (q,H) ∈
{

(t̃, Pk → . . .→ P1 → (X → G)),
(s̃, Ql → . . .→ Q1 → X)

}
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In either case, since q ∈ sub(t · s),

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)}
⊆ {(c, E) | (c, E) ∈ CS, c ∈ sub(t · s)}

And sinceM is CS-closed and (t · s,G) ∈ B, we have

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)} ⊆ B

Finally, by the same argument as in the previous case

{(c, E) | (c, E) ∈ CS, c ∈ sub(q)} ⊆ B \ {(t · s,G)} ⊆ B′

This shows that {(c, E) | (c, E) ∈ CS, c ∈ sub(q)} ⊆ B′ for any
(q,H) ∈ B′, or equivalently ⋃

(q,H)∈B′
{(c, E) | (c, E) ∈ CS, c ∈ sub(q)}

 ⊆ B′.
(f) It’s easy to see that B ∩ CS ⊆ B′ ∩ CS: since (t · s,G) /∈ CS we have

B ∩ CS = (B \ {(t · s,G)}) ∩ CS ⊆ B′ ∩ CS

Therefore, if CSF ⊆ B, and considering that CSF ⊆ CS, we have

CSF = CSF ∩ CS ⊆ B ∩ CS ⊆ B′ ∩ CS ⊆ B′

(g) By definition, cmp(AtomF (M; (t · s,G))) = cmp(B′).
In general, we have cmp(B1 ∪ B2) 6 cmp(B1) + cmp(B2) and the
inequality becomes equality in case of a disjoint union.
Considering the above, definition of B′ and cmp({(q,H)}) = cmp(q),
we have:

cmp(B′) 6 cmp(B \ {(t · s,G)}) + cmp(t̃) + cmp(s̃)

Since (t · s,G) ∈ B and the union (B \ {(t · s,G)}) ∪ {(t · s,G)} is
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disjoint, we have

cmp(B) = cmp((B \ {(t · s,G)}) ∪ {(t · s,G)})
= cmp(B \ {(t · s,G)}) + cmp(t · s)

Therefore,

cmp(AtomF (M; (t · s,G))) 6 cmp(B)− cmp(t · s) + cmp(t̃) + cmp(s̃)
= cmp(B)− (cmp(t) + cmp(s) + 1) + cmp(t̃) + cmp(s̃)
= cmp(B)− 1− (cmp(t)− cmp(t̃))− (cmp(s)− cmp(s̃))

Note that by choice of t̃, cmp(t) > cmp(t̃) and similarly for s. This
shows the claim:

cmp(AtomF (M; (t · s,G)))
6 cmp(B)− 1− (cmp(t)− cmp(t̃))− (cmp(s)− cmp(s̃))
6 cmp(B)− 1
= cmp(M)− 1 < cmp(M)

Lemma 10.27 (Atomization step). For any finite intermediate CS-closed
model M = (v,B) with complexity cmp(M) > 0 and a formula F such
that M  F and M contains CSF , there exists a finite intermediate CS-
closed modelM′ containing CSF with complexity cmp(M′) < cmp(M) and
M′  F .

Proof. Since cmp(M) > 0, that means there exists (t · s,G) ∈ B.
Since M is also a finite intermediate model, it fulfills the requirements

for defining AtomF (M; (t · s,G)).
TakeM′ := AtomF (M; (t · s,G)).
By Lemma 10.26,M′ is CS-closed, finite, intermediate, fits the complex-

ity bound and contains CSF .
SinceM andM′ agree on relevant propositional valuation and evidence

for F , by Lemma 9.5 we haveM′  F .

By iterating the atomization step, we can reduce the complexity of the
model to zero, yielding an atomic model.

112



10.2. Atomization

Lemma 10.28 (Atomization). For any finite intermediate CS-closed model
M = (v,B) and a formula F such that M  F and M contains CSF ,
there exists a finite atomic CS-closed modelMa containing CSF such that
Ma  F .

Proof. The complexity cmp(M) is finite since the model is finite.
Proof by induction on cmp(M):

• Base: cmp(M) = 0.
In this caseM is already atomic and one can takeMa :=M.

• Step: cmp(M) > 0, and the induction hypothesis applies for models
of lower complexity.
Apply Lemma 10.27 to M: we obtain M′ with a strictly smaller
complexity that fits the premises of the claim.
Therefore, induction hypothesis applies to M′ and we have finite
atomic CS-closed modelM′a containing CSF such thatM′a  F .
TakeMa :=M′a.

However, the obtained atomic model may not yet be a CS-model. We
intend to add the entire constant specification back into the basis, but we
must prove that this will not create relevant evidence for F . The fact that
we kept the model CS-closed will guarantee it, as any new evidence will
have to contain new constants.

Lemma 10.29. Given a CS-closed modelM = (v,B),

(q,G) ∈ E(B ∪ CS) ⇒

{
(q,G) ∈ E(B), or
∃c : c ∈ sub(q) \ sub(B), c ∈ sub(CS)

Proof. We shall call the two cases of the claim as case (A) or case (B)
respectively further in this proof.

Assume (q,G) ∈ E(B ∪ CS). Induction on the buildup of E(B ∪ CS):
Base: (q,G) ∈ B ∪ CS.

• If (q,G) ∈ B, we have (q,G) ∈ E(B) by Lemma 7.16 and the claim is
shown by case (A).
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• Suppose (q,G) = (c,G) ∈ CS \ B.
If we assume c ∈ sub(B), then by CS-closedness we have (c,G) ∈ B,
which contradicts (c,G) ∈ CS \ B.
Therefore, c /∈ sub(B), while obviously c ∈ sub(c). This shows the
claim by case (B).

Application: (t · s,G) ∈ E(B ∪ CS) since (t,H → G) ⊆ E(B ∪ CS) and
(s,H) ⊆ E(B ∪ CS).
Induction hypothesis applies for (t,H → G) and (s,H).

• If case (A) applies to both, (t,H → G) ∈ E(B) and (s,H) ∈ E(B).
Therefore, by Lemma 7.16, (t · s,G) ∈ E(B) and claim is shown by
case (A).

• Otherwise, there exists a constant c in either (sub(t) \ sub(B)) or
(sub(s) \ sub(B)).
Since sub(t ·s) = {t ·s}∪sub(s)∪sub(t), we have c ∈ sub(t ·s)\sub(B)
and claim is shown by case (B).

Substitution:
(σq,H) ∈ E(B ∪ CS) for σ = 〈i, P, r〉, since {(q,H), (r, P )} ⊆ E(B ∪ CS).
Induction hypothesis applies to (q,H) and (r, P ).
By Lemma 10.19, we have 2 sub-cases:

• σq = q.
If case (A) applies for (q,H), then (σq,H) = (q,H) ∈ E(B) showing
case (A) for this branch.
Otherwise, case (B) applies for (q,H) and we have some constant c
such that c ∈ sub(q) \ sub(B).
However, sub(σq) = sub(q) and therefore case (B) applies for this
branch.

• For every constant c′ such that c′ ∈ sub(q) ∪ sub(r), c′ ∈ sub(σq).
If case (A) applies for both (q,H) and (r, P ), we have (q,H) ∈ E(B)
and (r, P ) ∈ E(B).
Therefore, by Lemma 7.16, (σq,H) ∈ E(B) and claim is shown by
case (A).
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Otherwise, case (B) applies for either (q,H) or (r, P ), and therefore
there exists a constant c that belongs to either (sub(q) \ sub(B)) or
(sub(r) \ sub(B)), and c ∈ sub(CS).
From the above we can conclude that c ∈ sub(q) ∪ sub(r), which
yields c ∈ sub(σq) and shows case (B) for this branch.

Note that the condition to contain CSF in the modelM is key for pre-
serving truth of F when “adding back” the full constant specification CS.
If we did not guarantee this condition, adding back the constant spec-

ification may produce new relevant evidence for F , potentially making F
false inM′.

Lemma 10.30. Given a formula F and a finite atomic CS-closed model
M = (v,B) containing CSF such thatM  F , there exists an almost finite
atomic CS-modelM′ such thatM′  F .

Proof. TakeM′ := (v,B ∪ CS). By definition,M′ is a CS-model. Since B
is finite, by definitionM′ is almost finite.
M is atomic: for any (t, G) ∈ B, t is atomic.
For any (t, G) ∈ CS, t must be a constant and therefore atomic.
From this, for any (t, G) ∈ B ∪ CS, t must be atomic, and thereforeM′

is atomic.
Finally, we want to show thatM′  F , by using Lemma 9.5. M andM′

have the same propositional valuation v, and therefore agree on relevant
propositional valuation for any formula. All that’s left to show is thatM
andM′ agree on relevant evidence for F .
Since B ⊆ B ∪ CS, we have E(B) ⊆ E(B ∪ CS) and therefore we have

E(B) ∩ EF ⊆ E(B ∪ CS) ∩ EF .
We need to show that E(B ∪ CS) ∩ EF ⊆ E(B) ∩ EF .
Suppose (t, G) ∈ E(B ∪ CS) ∩ EF .
By Lemma 10.29, there are two cases from (t, G) ∈ E(B ∪ CS):

(a) (t, G) ∈ E(B). In this case, we immediately obtain (t, G) ∈ E(B)∩EF .

(b) There exists a constant c such that both c ∈ sub(t) \ sub(B) and
c ∈ sub(CS).
We assume that (t, G) ∈ EF . From this, c ∈ sub(t) ⊆ sub(EF ).
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Since c ∈ sub(CS), there exists (c′, F ) ∈ CS such that

c ∈ sub(c′) = {c′}

Therefore, c′ = c and (c, F ) ∈ CS.
However, since c ∈ sub(EF ), we conclude that (c, F ) ∈ CS�EF

= CSF .
M contains CSF , therefore we have c ∈ sub(CSF ) ⊆ sub(B).
This is a contradiction with c ∈ sub(t) \ sub(B) and shows that this
case is impossible.

This shows E(B ∪ CS)∩ EF ⊆ E(B)∩ EF and thereforeM andM′ agree
on relevant evidence for F .
By Lemma 9.5, we conclude thatM′  F .

Finally, with all steps of the atomization procedure in place, we can
prove completeness w.r.t. atomic models.

Theorem 10.31 (Completeness for atomic models). If CS is locally finite,
logic JNV

CS is complete w.r.t. atomic CS-models, i.e.

CS
a F ⇒ `JNV

CS
F

Proof. Proof by contraposition: assume that 0JNV
CS
F .

By Theorem 8.12, it follows that 1CS
i F .

Alternatively, there exists an intermediate CS-modelM withM 1 F .
Equivalently, we haveM  ¬F . Define G := ¬F .
Applying Lemma 10.22 to M and G, there exists a finite intermediate

CS-closed modelMf containing CSG such thatMf  G.
Applying Lemma 10.28 to Mf and G, there exists a finite atomic CS-

closed modelMa containing CSG such thatMf  G.
Finally, applying Lemma 10.30 to Ma and G, there exists an atomic

CS-modelM′ such thatM′  G.
Equivalently,M′  ¬F and thusM′ 1 F for an atomic CS-modelM′.
From this we conclude 1CS

a F .
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nominals

With Theorem 10.31, we achieve the goal of having simple atomic model
semantics for logic JNV.

Logic JNV is supposed to represent the state after updates with the fixed
set of propositional variables V, with nominals corresponding to update
terms. However, this is just a first step towards building a subscript-free
variant of JUP.

JNV lacks the ability to represent updates with more complex formulas,
and has no notion of changing the nominal set.

Justification Logic
(with Prop. Nominals) −−−−→ Dynamic Justification Logic

(with Prop. Updates)y y
Justification Logic
(with Nominals) −−−−→ Dynamic Justification Logic

(with Updates)

Figure 3: Roadmap for reconstructing updates

There are essentially two possible paths for extending JNV to get back
to the expressiveness of JUP, as shown in Figure 3.

It’s possible to extend nominals to cover arbitrary formulas instead of
just propositional nominals. Keeping atomic models in this case would
require adding more axioms and restrictions on intermediate models that
deal with “impossible” applications.

Alternatively, one can leave the nominals restricted to propositional vari-
ables, and attempt to add back the notion of updates with corresponding
model dynamics. This seems to be a more natural extension.
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One possible obstacle for extending JNV to more closely reflect update
dynamics is the fact that the set of “successful” updates is built into the
language, specifically that V is fixed. JNV in its current form cannot in-
terpret update terms for updates that haven’t happened yet. The corre-
sponding way to extend JNV would be to remove the use of the set V from
the language itself and restrict it to the axiom system, which would then
distinguish between nominals in the “successful” set and nominals that do
not justify anything yet.

The local finiteness condition on CS is an unusual one: it puts an up-
per bound on possible constant specifications, when typical conditions like
axiomatic appropriateness are, in a sense, a lower bound condition. This
condition is sufficient to let the atomization procedure complete, but it’s
an open question whether it can be relaxed or dropped.

The atomization procedure itself may be useful in other justification logic
systems. In fact, having nominals and explicit substitutions in JNV made
the procedure significantly more complex than the basic underlying idea
of adding “fresh” evidence pairs to replace an irreducible application in
the basis. Logical systems with generated models that do not have those
features may enjoy a simpler version of the atomization procedure to obtain
atomic model semantics.
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, see truth relation
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a , 72
i, 71
CS
i , 72
	1, 47
	2, 50
	f , 51
⊕, 47
↓t, 64
〈i, P, s〉, 64
`JUPCS , 12
`JUP±CS

, 19
`JNV

CS
, 67

∧,∨,↔, 7
t : F , 10, 17, 64

ATm, 10, 18
A(M), 50
AtomF , 102
acquired belief, 50

agreement
on prop. valuation, 84
on relevant evidence, 84

atomization, 113
F -preserving, 102
step, 112

axiom
(App), 10, 18, 66
(Init), 18
(Int), 19
(It), 11, 19
(MC.1), 11, 18
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(N+), 66
(N−), 66
(Nσ), 66
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(N.), 66
(Pers), 11, 18
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B, see basis
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closure, 51
f -contraction, 51
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naive, 47
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vacuity, 52

belief expansion, 47
belief set, 46

induced, 46

CS, see constant specification
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CS�B, 92
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clB, see evidence closure
cmp
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cmp(M), 92
cmp(t), 65

closedness w.r.t. reasoning, 53
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JNV
atomic, 116

JNV
CS
intermediate, 81

JUPCS, 14

JUP±CS, 41
consistent set, 30, 78

maximal, 30, 78
constant specification, 11, 19, 67

B-fragment, 92
c-fragment, 92
axiomatically appr., 52
JUP±CS-appropriate, 53
locally finite, 94
propositionally appr., 52
relevant, 93

E(B), see evidence relation
EF , 83
EX , 103
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closure
clJNV
B , 67

clJUP
B , 13

clJUP±
B , 20

pair, 8
relation
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EJUP, 13
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FmLV
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propositional valuation, 13, 70
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propositional variable, 10, 17, 63
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term, 32

relevant
constant specification, 93
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rule
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application, 9, 17, 63
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update, 9, 17
variable, 9, 17, 63

truth relation
JNV, 70
JUP, 14
JUP±, 22
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v, see propositional valuation
vF , 83
validity

JNV
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