
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
9
1
1

|

d
o
w
n
l
o
a
d
e
d
:

2
5
.
4
.
2
0
2
4

Applications of Resource-Constrained Project

Scheduling in Service Operations Management

INAUGURALDISSERTATION

zur Erlangung der Würde eines Doctor rerum oeconomicarum
der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Bern

Adrian Zimmermann

von Seedorf BE

Betreuer: Prof. Dr. Norbert Trautmann
Professur für Quantitative Methoden der BWL

Departement Betriebswirtschaftslehre
Schützenmattstrasse 14, 3012 Bern

Bern, 22. November 2016

Originaldokument gespeichert auf dem Webserver der Universitätsbibliothek Bern

Dieses Werk ist unter einem
Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5

Schweiz Lizenzvertrag lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/oder schicken Sie einen Brief an

Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Urheberrechtlicher Hinweis

Dieses Dokument steht unter einer Lizenz der Creative Commons
Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz.

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/

Sie dürfen:

dieses Werk vervielfältigen, verbreiten und öffentlich zugänglich machen

Zu den folgenden Bedingungen:

Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in
der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck
entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt).

Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle
Zwecke verwendet werden.

Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer
Weise verändert werden.

Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter
welche dieses Werk fällt, mitteilen.

Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die
Einwilligung des Rechteinhabers dazu erhalten.

Diese Lizenz lässt die Urheberpersönlichkeitsrechte nach Schweizer Recht
unberührt.

Eine ausführliche Fassung des Lizenzvertrags befindet sich unter
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Die Fakultät hat diese Arbeit am 15. Dezember 2016 auf Antrag der beiden Gutachter
Prof. Dr. Thomas Myrach und Prof. Dr. Stefan Creemers als Dissertation angenommen,
ohne damit zu den darin ausgesprochenen Auffassungen Stellung nehmen zu wollen.

Acknowledgements

I elaborated this thesis during my time as a PhD student at the Chair of Quantitative

Methods at the Department of Business Administration, University of Bern.

First and foremost, I would like to thank my supervisor Prof. Dr. Norbert Trautmann

for his continuous support, patience, and valuable advice throughout my PhD studies.

Special thanks go to my colleagues and co-workers who have provided many helpful

comments during our common time at the Chair of Quantitative Methods.

Moreover, I would like to thank Prof. Dr. Thomas Myrach and Prof. Dr. Stefan

Creemers for their willingness to act as external referees of my thesis.

I am also very grateful for the joint work with our industrial partners, papilio AG and

bestview GmbH. I gratefully acknowledge the financial support provided by papilio AG

during my first year as a PhD student.

Finally, I would like to express my gratitude to my parents, Tatjana and Stefan

Zimmermann, and my brother, Martin Zimmermann, who have been a great support

during this period.

Adrian Zimmermann

The present dissertation includes the following three papers.

Paper I

Zimmermann, A., Trautmann, N. (2017). A list-scheduling heuristic for the short-term

planning of assessment centers. Journal of Scheduling. Advance online publication. DOI:

10.1007/s10951-017-0521-5

Paper II

Rihm, T., Trautmann, N., Zimmermann, A. (2016). MIP formulations for an application

of project scheduling in human resource management. Flexible Services and Manufacturing

Journal. Advance online publication. DOI: 10.1007/s10696-016-9260-8

Paper III

Zimmermann, A. (2017). A mixed-integer programming-based heuristic for project schedul-

ing with work-content constraints. European Journal of Industrial Engineering. Advance

online publication. DOI: 10.1504/EJIE.2017.10006712

Contents

Introduction 1

Paper I: A list-scheduling heuristic for the planning of assessment

centers 3

Paper II: MIP formulations for an application of project scheduling

in human resource management 34

Paper III: A mixed-integer programming-based heuristic for project

scheduling with work-content constraints 81

Introduction

Firms in the service industry sell intangible goods such as the selection of highly-skilled

personnel to their customers. In general, such firms employ expensive staff to perform these

services. Hence, an important aspect of service operations management is the planning

of service operations such that personnel utilization is optimized. This thesis consists of

three papers that present solution approaches for respective planning situations which are

based on concepts and methods for the resource-constrained project scheduling problem

(RCPSP). The RCPSP consists in scheduling a set of precedence-related activities that

require time and scarce resources for execution such that the project duration is minimized.

In the first paper, we consider the problem of scheduling assessment centers. This

problem has been stated to us by a human resource management (HRM) service provider.

In an assessment center, candidates for job positions perform a series of tasks during

which they are observed and evaluated by so-called assessors. The scheduling problem

consists of determining (a) the start times of the tasks for each candidate and (b) the

assignment of the assessors to the candidates and the tasks; thereby, complex rules for the

assessor assignment must be considered. For this problem, we develop a list-scheduling

heuristic procedure. At first, the candidates’ tasks are sorted in a list; then, the tasks are

scheduled sequentially based on their order in this list. Our computational results for a

set of real-life problem instances indicate that the heuristic provides very good feasible

schedules in a short amount of computation time. The main contributions of the paper

are the development of a schedule-generation scheme for this complex planning situation

and of an appropriate sorting mechanism. The heuristic procedure has been implemented

in a software system and is used by the HRM service provider.

1

Introduction

In the second paper, we develop five novel alternative mixed-integer linear programming

(MIP) formulations for the assessment center planning problem described above. In general,

different formulations can be used to model the same planning problem; however, the

performance of MIP approaches strongly depends on the underlying formulation and

therefore, alternative formulations should be considered for each planning problem. For

the RCPSP, the difference in performance between such MIP formulations has only

been compared based on generic test instances. In a comparative study, we analyze the

performance of the five MIP formulations based on four real-life instances and 240 test

instances derived from real-life data. The results indicate that good or optimal solutions

are obtained for all instances within short computation time. The main contribution of

the paper lies in the development of the novel MIP formulations and various new lower

bounds for the scheduling of assessment centers, and in the comparison of these MIP

formulations based on real-life data.

In the third paper, we consider the problem of scheduling the activities of a project in

which each activity is characterized by a work content. In this generalized version of the

RCPSP, the activities’ usage of the scarce resources may change over time. Due to this

generalization, this problem setting covers a wide range of problems in service operations

management. For this project scheduling problem, we develop an MIP-based heuristic

procedure. The heuristic procedure schedules the activities iteratively and reschedules

subsets of activities to improve the utilization of the available resource capacities. Our

computational results for a standard test set from the literature show that our heuristic

outperforms the state-of-the-art methods. The paper contributes to the development of

novel MIP-based solution methods in the field of resource-constrained project scheduling; in

particular, the MIP models of our heuristic efficiently exploit the structural characteristics

of the planning problem.

2

Paper I

A list-scheduling heuristic for the planning

of assessment centers

Adrian Zimmermann Norbert Trautmann

Department of Business Administration

University of Bern

Contents
1.1 Introduction . 4

1.2 The planning problem . 6

1.3 Problem definition and related literature 8

1.3.1 Related planning problems . 9

1.3.2 Interpretation as extended MRCPSP 9

1.4 List-scheduling procedure . 11

1.4.1 Multi-pass procedure with random sampling 11

1.4.2 List generation . 13

1.4.3 Schedule generation scheme . 19

1.4.4 Assessor assignment . 23

1.4.5 Results for the illustrative example 23

1.5 Computational study . 23

1.5.1 Test set . 26

1.5.2 Computational results . 28

1.6 Conclusions . 31

Bibliography . 32

3

Paper I: A heuristic for the planning of assessment centers

Abstract

Many companies operate assessment centers to help them select

candidates for open job positions. During the assessment process, each

candidate performs a set of tasks, and the candidates are evaluated

by so-called assessors. Additional constraints such as preparation and

evaluation times, actors’ participation in tasks, no-go relationships, and

prescribed time windows for lunch breaks contribute to the complexity

of planning such assessment processes. We propose a multi-pass list-

scheduling heuristic for this novel planning problem; to this end, we

develop novel procedures for devising appropriate scheduling lists and

for generating a feasible schedule. The computational results for a set of

example problems that represent or are derived from real cases indicate

that the heuristic generates optimal or near-optimal schedules within

relatively short CPU times.

1.1 Introduction

Empirical evidence indicates that human capital is a key success factor in firm performance

(cf., e.g., Huselid 1995). A firm’s human resource managers undertake the task of developing

human capital for the benefit of the firm by recruiting new employees from a pool of

candidates. Such personnel decisions require an evaluation of candidates’ skills, know-how,

and personalities. To perform these evaluations, human resource managers often use

assessment centers (cf., e.g., Spychalski et al. 1997).

The assessment center planning problem (ACP) discussed in this paper has been

reported to us by a human resource management (HRM) service provider that organizes

assessment centers for firms on a regular basis. In these assessment centers, the candidates

perform sets of tasks, during which they are observed and evaluated by assessors, who are

typically managers or psychologists. Each candidate should be observed by approximately

4

Paper I: A heuristic for the planning of assessment centers

half of all available assessors. So-called no-go relationships prohibit specific assessors from

being assigned to certain candidates. After the assessment is completed, all assessors meet

and compile an overall evaluation for each candidate. Some tasks are designed to involve

role-playing and require one or more actors. The requirements for candidates, assessors,

and actors can vary over the course of a task. In addition to completing all tasks, each

candidate takes a lunch break within a prescribed time window. The ACP consists of

determining (1) feasible start times for all tasks and lunch breaks for each candidate and

(2) a feasible assignment of assessors and actors to all tasks such that the total waiting time

for the assessors is minimized; the assessors meet before the start and after the completion

of all tasks and lunch breaks, and therefore this objective corresponds to minimizing the

duration of the assessment.

For this ACP, we provided a mixed-integer linear programming (MILP) formulation

in Zimmermann and Trautmann (2014); this MILP generates optimal or near-optimal

solutions for small instances, but for larger instances, the required CPU time may become

prohibitively long. In principle, the ACP could be interpreted as an extension of the multi-

mode resource-constrained project scheduling problem (MRCPSP, cf., e.g., Talbot 1982):

each task performed by a candidate corresponds to a project activity, the assessment-center

participants correspond to renewable resources, and each assignment of assessors to a

task corresponds to an alternative execution mode. The ACP differs from the MRCPSP

with respect to the specific assessor-assignment constraints, the time-varying resource

requirements, and the time windows for lunch breaks.

In this paper, we propose a novel heuristic of the list-scheduling type (cf., e.g., Adam

et al. 1997) for the ACP. First, the activities are ordered in a list; we devise four sets of

alternative sorting criteria. Second, the activities are scheduled sequentially; we develop

an appropriate schedule generation scheme (SGS) that comprises a procedure for assigning

the assessors to the activities. We integrate the sorting criteria and the SGS into a

multi-pass method comprising random sampling. For each set of sorting criteria, the

5

Paper I: A heuristic for the planning of assessment centers

Table 1.1: Illustrative example: main data

Candidates Assessors Actors Tasks

{C1, C2, C3} {A1, A2, A3, A4} {R1} {E1, E2, E3, E4}

SGS is applied repeatedly; thereby, the order of the activities in the list is varied by

applying random sampling. At the end, the best schedule obtained is returned. In an

experimental performance analysis, we applied our multi-pass method to four real-world

instances and 240 test instances that we constructed based on real-world data. It turned

out that our novel approach requires short CPU time to generate optimal or near-optimal

schedules.

The remainder of this paper is structured as follows. In Section 1.2, we illustrate the

ACP with an example. In Section 1.3, we specify the ACP as the extension of an MRCPSP

and discuss the related literature. In Section 1.4, we present our multi-pass list-scheduling

procedure. In Section 1.5, we report on our computational results. In Section 1.6, we

present concluding remarks and give an outlook on future research directions.

1.2 The planning problem

In this section, we illustrate the ACP with an example that is based on real-world data.

The assessment takes place over one day, although no maximum length of time is

prescribed. The number of participants and the number of tasks are shown in Table 1.1.

To improve comparability among the overall evaluations, each candidate must perform the

same set of tasks. In addition, each candidate must perform each task exactly once.

In the assignment of assessors to the tasks, the following restrictions must be considered.

To ensure an objective overall evaluation, each candidate should be observed by at least

half of the number of assessors rounded down (i.e., 2 assessors). Because of fairness

considerations, each candidate should be observed by approximately the same number of

6

Paper I: A heuristic for the planning of assessment centers

︷ ︸︸ ︷.................
preparation︷ ︸︸ ︷............................

execution ︷ ︸︸ ︷.................
evaluation

time

Candidate
Assessor
Actor

Figure 1.1: Varying requirements for candidates, assessors, and actors during a task

assessors. Hence, no candidate should be observed by more than half of the number of

assessors rounded up plus one (i.e., 3 assessors). The difference between the upper and

lower limits facilitates the assessor assignment without compromising fairness. Once an

assessor has observed a candidate, the number of additional times that this same assessor

can observe that same candidate is not limited. We refer to these restrictions as the 50%

assignment rule. Additionally, a no-go relationship prohibits the assignment of assessor

A4 to candidate C2. Such relationships arise if the candidate and the assessor know one

another personally. We assume that an assignment of the assessors to the candidates exists

which is feasible with respect to all of these constraints. We refer to assessors with one or

more no-go relationships as no-go assessors.

The data for the tasks and the lunch break are listed in Table 1.2. Depending on the

task type, one or two assessors must be present. Because task E1 involves role-playing,

an actor is required. For example, the actor might represent an unhappy customer with

whom the candidate must interact. Tasks E1 and E2 include a preparation period in which

only the candidate is required. During the actual execution of the task, the candidate is

joined by the assessors and, if required, the actor. After execution of tasks E1, E2, and

E3, the assessors and actors have time to record their observations; this time is referred

to as evaluation time and can differ for assessors and actors. Figure 1.1 illustrates these

time-varying participant requirements. The duration and the preparation, execution, and

evaluation times are stated in 5-minute time periods. The candidates have a lunch break

7

Paper I: A heuristic for the planning of assessment centers

Table 1.2: Illustrative example: tasks and lunch break data

Task E1 E2 E3 E4
Lunch
break

Duration 18 29 16 6 6
Preparation time 8 19 0 0 -
Execution time 8 8 12 6 -
Evaluation time 2 2 4 0 -
Required number of assessors 2 2 2 1 -
Required number of actors 1 - - - -

Table 1.3: Illustrative example: activities and lunch breaks

Candidate C1 C2 C3

Task E1 1 2 3
Task E2 4 5 6
Task E3 7 8 9
Task E4 10 11 12
Lunch break B B B

during which they cannot be involved in any task. The earliest and latest possible start

times for the lunch break are time points 30 and 78, respectively. The assessors and actors

take some short lunch break during the evaluation times of the tasks or during some idle

times between the tasks, but these breaks are not scheduled.

Because the four tasks must be performed once by each of the three candidates, there

are a total of 12 activities. Table 1.3 shows the indices of these activities. The lunch

breaks for the candidates are denoted by B.

1.3 Problem definition and related literature

In Section 1.3.1, we sketch two well-known planning problems related to the ACP. In

Section 1.3.2, we interpret the ACP as an extended MRCPSP. We show that the variants

of the MRCPSP considered in the literature differ from the ACP.

8

Paper I: A heuristic for the planning of assessment centers

1.3.1 Related planning problems

The ACP consists of two subproblems: an assignment subproblem and a scheduling

subproblem. These two subproblems are also encountered within the MRCPSP and within

the timetabling problem.

Timetabling involves allocating resources to objects that are being placed in space time

(cf. Wren 1996). For example, in course timetabling for high schools, resources (students

and teachers) are assigned to objects (events that correspond to individual meetings

between students and teachers), and the objects are assigned to classrooms and time slots

(cf. Carter and Laporte 1998). The objects and time slots are of equal duration, and the

scheduling of events thus corresponds to an assignment subproblem. In an assessment

center, different tasks have different durations; hence, the formulation of the ACP as a

timetabling problem is impractical.

The objective of the basic MRCPSP is to (1) assign an execution mode to each activity

and (2) determine a start time for each activity with the aim of minimizing project duration.

There are precedence relations between activities (i.e., an activity can start only after all

its predecessor activities have been completed). Renewable and non-renewable resources

are required to execute the activities. Renewable resources are available with a constant

capacity during each time period of the planning horizon (e.g., employees with a capacity

of eight hours in each work day). The capacity of non-renewable resources is permanently

reduced when an activity is executed (e.g., a monetary budget for the entire project). The

selected mode determines how many units of which resource are required by an activity

and the activity’s duration. The activities must be scheduled to avoid violating precedence

relations and resource capacities.

1.3.2 Interpretation as extended MRCPSP

Table 1.4 lists all of the problem elements present in the ACP and shows whether these

elements are considered in the basic MRCPSP (3) or not (7). Notably, the ACP does

9

Paper I: A heuristic for the planning of assessment centers

Table 1.4: Comparison: ACP and basic MRCPSP

Elements of planning problem ACP basic MRCPSP

Objective: minimize duration 3 3

Activities 3 3

Renewable resources 3 3

Alternative execution modes 3 3

Time-varying resource
3 7

requirements
Time windows 3 7

Mode-assignment constraints 3 7

not include precedence relations or non-renewable resources. The basic MRCPSP can be

extended to include time-varying resource requirements of tasks; for example, Cavalcante

et al. (2001) and Hartmann (1999) consider time-varying resource requirements for labor

and equipment, respectively. The time windows for lunch breaks can be considered by

defining the release dates and activity deadlines. For instance, Drezet and Billaut (2008)

consider activity time windows in an MRCPSP extension in which the resources are

multi-skilled employees.

Specific mode-assignment constraints can be added to the basic MRCPSP. Thus, Li

and Womer (2008) and Tareghian and Taheri (2007) associate prescribed quality values

with each mode, and the modes must be selected such that the quality of the project is

maximized or a minimum quality level is reached. Salewski et al. (1997) consider the

MRCPSP with mode-identity constraints. The set of activities is partitioned into subsets,

and all other activities of that subset must be executed in that same mode after a mode

has been selected for an activity. None of these mode-assignment constraints corresponds

to the assessor-assignment constraints of the planning problem discussed in this study.

In the ACP, associating prescribed quality values with alternative assessor assignments

is not feasible because all quality values depend on the overall assessor assignments to a

candidate. Similarly, the assessor-assignment constraints prevent a meaningful partitioning

of the assessment-center activities into subsets that require the same assessors.

10

Paper I: A heuristic for the planning of assessment centers

1.4 List-scheduling procedure

In this section, we present our multi-pass list-scheduling procedure. A preliminary version

of this heuristic can be found in Zimmermann and Trautmann (2015). We model each

candidate and each assessor as a renewable resource with a capacity of one, and we model

the set of actors as a renewable resource with a capacity that equals the number of actors.

According to the HRM service provider, the duration of each task’s preparation, execution,

and evaluation time is expressed in 5-minute time periods. Hence, we divide the planning

horizon into 5-minute time periods. In the following, we use the notation provided in

Table 1.5.

In Section 1.4.1, we give an overview of the multi-pass procedure. In Section 1.4.2,

we discuss the alternative criteria for ordering the activities in the list. In Section 1.4.3,

we present the SGS that is used to generate a single schedule based on the order of the

activities in the list. In Section 1.4.4, we describe how the assessors are assigned to the

activities during the application of the SGS. In Section 1.4.5, we depict two schedules for

the illustrative example obtained by our multi-pass list-scheduling procedure.

1.4.1 Multi-pass procedure with random sampling

For the MRCPSP, an efficient way to improve the performance of a procedure that

generates a single schedule is to apply the procedure multiple times for different orders

of the activities (cf., e.g., Boctor 1993). Thereby, the order of the activities is varied by

applying different sorting criteria and random sampling. Different sorting criteria are used

because the application of the same criteria does not provide the best solution for each

problem instance. Because there is only a limited number of alternative sorting criteria,

random sampling is employed to generate further activity orders. The benefit of such

multi-pass procedures with random sampling is that they are simple and provide good

solutions with a low computational effort.

For the ACP, we sequentially generate four different lists by applying alternative sorting

11

Paper I: A heuristic for the planning of assessment centers

Table 1.5: Notation

A Number of assessors a = 1, . . . , A
C Number of candidates c = 1, . . . , C
D Duration of schedule
D∗ Duration of best schedule obtained thus far
E Set of tasks
Ec Set of tasks not yet included in the list for candidate c
L Number of positions in the list l = 1, . . . , L
cl Candidate assigned to position l in the list
el Task assigned to position l in the list
counte Number of times task e has been included in the list thus far
l∗ Last position in first part of the list
pB Duration of lunch break
pe Duration of task e
pCe Preparation time of task e
re Number of assessors required by task e
tS Earliest resource-feasible start time of an activity

criteria, and apply the SGS for each of the four lists. Thereby, we employ the random-

sampling method of Damodaran et al. (2011): instead of selecting the first unscheduled

activity in the list, the activity is randomly chosen among the first k unscheduled activities;

the value of parameter k needs to be selected in advance.

The multi-pass procedure applied to each list is summarized as a flowchart in Figure 1.2.

Before the first application of the SGS, the list is generated and the value of D∗ is initialized.

The sum of the durations of all tasks and the lunch break multiplied by the number of

candidates corresponds to an upper bound for D∗, i.e., D∗ := C(
∑

e∈E pe + pB). Then,

the SGS is applied multiple times until a prescribed time limit has been reached. After

this procedure has been repeated for all four lists, the best solution obtained over all four

lists is returned.

We employ the following local-search logic in the multi-pass procedure. Each time a

schedule has been generated, the duration of the generated schedule D is compared with

the value of D∗. If the generated schedule has a shorter duration, then the randomized

order in which the activities were scheduled is used as the new list and the value of D∗ is

12

Paper I: A heuristic for the planning of assessment centers

set to D.

1.4.2 List generation

Priority rules that have been proposed in the literature are not appropriate for determining

the order of activities in the ACP because (a) there are no precedence constraints between

the tasks and (b) there is no difference between activities that refer to the same task. In

the following, we derive novel criteria for ordering activities in the list.

The list includes all assessment-center activities. One activity corresponds to a unique

combination of candidate and task. Because of their time windows, we do not include lunch

breaks in the list. The list-generation procedure is depicted as a flowchart in Figure 1.4.

First, the number of positions in the list, L, is calculated by multiplying the number of

tasks, |E|, by the number of candidates C. Next, the candidates 1, . . . , C, are assigned |E|

times to the positions 1, . . . , L. Finally, the tasks are assigned to the positions 1, . . . , L,

such that each task is included once for each candidate. An activity list is obtained such

that a list-adjustment procedure can be applied. In that case, an adjusted activity list is

obtained.

The list consists of three parts to which the following criteria apply (cf. Figure 1.3). If

these criteria are not sufficient to distinguish between tasks, the task index is used as a

tie-breaker.

Sorting criteria: last part of list

To the last C positions in the list, the task of shortest duration is assigned. The activities

that are in the last part of the list may have to be scheduled at the end of the partially

generated schedule. Figure 1.5 illustrates how an overall shorter schedule may be obtained

by considering the shortest task last. The dark grey bars represent the time during which

the participants are occupied in the partial schedule. The light grey bars correspond to a

task with long duration (top) and a task with short duration (bottom), respectively, that

13

Paper I: A heuristic for the planning of assessment centers

Start list-scheduling

Determine order of
activities in list

Activity
list

Set D∗ to upper bound

Apply schedule gene-
ration scheme with
random sampling

Feasible schedule
with duration D

D < D∗?

Set D∗ := D
Update scheduling order
of activities in list

Randomized
activity list

Time limit
exceeded?

Stop list-scheduling

NO

YES

NO

YES

Figure 1.2: Flowchart: multi-pass list-scheduling procedure for one list

Position 1 2 . . . L
Candidate 1 2 . . . C 1 2 . . . C 1 2 . . . C 1 2 . . . C

Criteria
Shortest pre- Largest distance between Shortest
paration time same task duration

Figure 1.3: Criteria for assigning tasks to positions

14

Paper I: A heuristic for the planning of assessment centers

Determine order of
activities in list

Calculate number of
positions L := |E|C

Assign |E| times candidates
1, . . . , C to positions 1, . . . , L

Assign tasks to
positions 1, . . . , L

Activity
list

Apply list
adjustment
procedure?

Adjusted
activity list

Order of activities
determined

YES

NO

Figure 1.4: Flowchart: list-generation procedure

have to be scheduled at the end of the partial schedule.

The pseudocode for assigning the task with shortest duration to the last C positions in

the list is presented in Algorithm 1. First, the task of shortest duration e∗ is determined

(line 1). This task is then assigned to the positions L− C + 1, . . . , L (line 3). Each time

the task is assigned to a position, the counter counte∗ (which is initialized with counte = 0

for all e ∈ E) is increased by one (line 4), and the task is removed from the set Ec∗ of the

corresponding candidate c∗ assigned to that position (lines 5 and 6). Because task e∗ has

been considered for all candidates, it is removed from the set of tasks E (line 7).

15

Paper I: A heuristic for the planning of assessment centers

Candidate

Assessor

Candidate

Assessor

Figure 1.5: Reduced schedule duration by considering shortest task last

Algorithm 1: Assignment of tasks to last C positions in the list

1 e∗ ← min{e ∈ E : pe = mine∈E(pe)}
2 for l = L− C + 1 to L do
3 el ← e∗

4 counte∗ ← counte∗ + 1
5 c∗ ← cl
6 Ec∗ ← Ec∗ \ {e∗}
7 E ← E \ {e∗}

Sorting criteria: first part of list

To the positions in the first part of the list, the task with the shortest preparation time

is assigned. The number of positions for which these criteria apply corresponds to the

number of activities that can be performed simultaneously with respect to the number of

assessors required. By scheduling the corresponding activities first, some of the assessors’

waiting time can be reduced.

The pseudocode for assigning the task with the shortest preparation time to the

positions in the first part of the list is presented in Algorithm 2. First, the task with the

shortest preparation time e∗ is determined (line 1). Then, the number of positions in the

first part of the list l∗ is calculated (line 2). This number corresponds to the minimum of

C and the closest integer lower than or equal to the number of assessors A divided by the

required number of assessors of the selected task re∗ . The selected task is then assigned to

the positions 1, . . . , l∗ (lines 3 and 4). Again, the counter counte∗ is increased, and the

task is removed from the set Ec (lines 5, 6, and 7).

16

Paper I: A heuristic for the planning of assessment centers

Algorithm 2: Assignment of tasks to first positions in the list

1 e∗ ← min{e ∈ E : pCe = mine∈E(pCe)}
2 l∗ ← min(bA/re∗c, C)
3 for l = 1 to l∗ do
4 el ← e∗

5 counte∗ ← counte∗ + 1
6 c∗ ← cl
7 Ec∗ ← Ec∗ \ {e∗}

Sorting criteria: middle part of list

To the positions in the middle part of the list, the tasks are assigned such that the distance

between two positions of the same task is maximized. As a secondary criterion, either the

minimum or maximum preparation time is used. A list is generated with each of the two

secondary criteria. By scheduling activities referring to different tasks such that they run

(partially) in parallel, some candidates may begin the preparation of one task while the

assessors are occupied with the execution of another task.

The pseudocode for assigning the tasks to the positions in the middle part of the list is

presented in Algorithm 3. First, for each candidate c, the tasks in Ec are ordered based on

the secondary criterion employed (line 2). Then, for each position l∗ + 1, . . . , L− C, the

corresponding candidate c∗ is selected (line 4). The tasks in Ec∗ are checked sequentially

whether they have been included in the list the least often thus far (line 6). In that case

the task is assigned to the position (line 7), counte and the set Ec∗ are updated (lines 8

and 9), and the next position in the list is selected (line 10).

Sorting criteria: optional list adjustment

The list-adjustment procedure adjusts the list as follows.

First, the tasks assigned to the positions l∗ + 1, . . . , C are switched with the task with

the longest preparation time. By scheduling the corresponding activities such that they

run (partially) in parallel with activities included in the first part of the list, some of

the candidates can already begin with the preparation of a task while the assessors are

17

Paper I: A heuristic for the planning of assessment centers

Algorithm 3: Assignment of tasks to remaining positions in the list

1 for c = 1 to C do
2 order tasks in Ec based on secondary criterion

3 for l = l∗ + 1 to L− C do
4 c∗ ← cl
5 for e ∈ Ec∗ do
6 if counte = mine∈Ec∗counte then
7 el ← e
8 counte ← counte + 1
9 Ec∗ ← Ec∗ \ {e}

10 break

Table 1.6: Illustrative example: four alternative lists

Position Secondary criteria
maximum preparation time minimum preparation time

non-adjusted list adjusted list non-adjusted list adjusted list
candidate task activity candidate task activity candidate task activity candidate task activity

1 C1 E3 7 C1 E3 7 C1 E3 7 C1 E3 7
2 C2 E3 8 C2 E3 8 C2 E3 8 C2 E3 8
3 C3 E2 6 C3 E2 6 C3 E1 3 C3 E2 6
4 C1 E1 1 C1 E1 1 C1 E2 4 C1 E2 4
5 C2 E2 5 C2 E2 5 C2 E1 2 C2 E1 2
6 C3 E1 3 C3 E1 3 C3 E2 6 C3 E1 3
7 C1 E2 4 C3 E3 9 C1 E1 1 C3 E3 9
8 C2 E1 2 C2 E1 2 C2 E2 5 C2 E2 5
9 C3 E3 9 C1 E2 4 C3 E3 9 C1 E1 1

10 C1 E4 10 C1 E4 10 C1 E4 10 C1 E4 10
11 C2 E4 11 C2 E4 11 C2 E4 11 C2 E4 11
12 C3 E4 12 C3 E4 12 C3 E4 12 C3 E4 12

occupied.

Second, the order of activities in the last C positions of the middle part of the list is

switched by reversing the order in which the candidates are considered. If this part of the

list contains activities with short preparation times, then considering the candidates in

reverse order can reduce some of the assessors’ waiting time.

The four alternative lists for the illustrative example are depicted in columns 4, 7, 10,

and 13 of Table 1.6. The dashed lines indicate the three different parts of the list.

18

Paper I: A heuristic for the planning of assessment centers

1.4.3 Schedule generation scheme

The flowchart of the SGS is depicted in Figure 1.6. Based on their order in the list,

activities are selected sequentially and scheduled as early as possible. To this end, the

earliest resource-feasible start time tS is determined. It may no longer be possible to

schedule the lunch break within its time window when the selected activity is scheduled

at tS. In that case, the corresponding lunch break is scheduled first, and tS is calculated

anew for the selected activity. After all of the activities in the list have been scheduled, all

remaining lunch breaks are scheduled, and a procedure for rescheduling the lunch breaks

is applied.

Earliest resource-feasible start time tS

The flowchart of the procedure that determines the earliest resource-feasible start time tS

for the selected activity is depicted in Figure 1.7. The procedure is initiated by selecting

the first time period of the planning horizon. From the selected time period onward, the

availability of the required candidate and–in the case of a role-play task–the actors are

determined. When determining availabilities, we consider only those time periods during

which the respective participants must be present.

Once the candidate (and, in the case of a role-play task, an actor) is available, a

sub-procedure for the assessor assignment is initiated (see Section 1.4.4). If the assessor

assignment is successful, tS is set to the currently selected time period, and the procedure

ends. Otherwise, the next time period of the planning horizon is selected, and the

availabilities of the participants are examined anew.

Lunch breaks

Before an activity is scheduled at tS, the following procedure determines whether the

lunch break time window is violated. Assuming that the activity is scheduled at tS, the

candidate’s resulting availability is determined throughout the lunch break time window.

19

Paper I: A heuristic for the planning of assessment centers

Apply schedule
generation scheme

Select activity based
on position in list

Determine earliest act-
ivity start time tS

Lunch break
time window
violated?

Schedule lunch break
as early as possible

Schedule selected
activity at tS

All activities in
list scheduled?

Schedule all remain-
ing lunch breaks

Reschedule lunch breaks

Stop schedule
generation scheme

YES

NO

NO

YES

Figure 1.6: Flowchart: schedule generation scheme

20

Paper I: A heuristic for the planning of assessment centers

Determine earliest act-
ivity start time tS

Select first time period
of planning horizon

Candidate (and
actor) available?

Select next time period
of planning horizon

Assessor
assignment

Assessor assign-
ment successful?

Earliest activity start
time determined

NO

YES

NO

YES

Figure 1.7: Flowchart: procedure for determining the earliest resource-feasible activity
start time tS

If it is impossible to schedule the lunch break within this time window, then the lunch

break is scheduled before the activity.

The situation described above might never arise, and some lunch breaks might thus

never be considered during the scheduling of activities in the list. After all activities have

been scheduled, all remaining lunch breaks are scheduled at their earliest resource-feasible

start times.

Scheduling the lunch break after the completion of the last activity might unnecessarily

increase the duration of the schedule. Beginning with the candidate with the smallest

index value, for each candidate we determine whether the lunch break is taken after the

21

Paper I: A heuristic for the planning of assessment centers

Candidate

Assessor

Candidate

Assessor

B

B

Figure 1.8: Reduced schedule duration through lunch break switch

last activity. If the schedule duration is reduced, we switch the order of the last activity

and the lunch break. The reduction of a schedule’s duration through such a switch is

illustrated in Figure 1.8. The light grey bars correspond to the activities performed by

the same candidate. The dark grey bar represents the time during which the assessor is

occupied with another candidate’s activity.

1.4.4 Assessor assignment

The flowchart of the procedure that assigns the assessors to an activity is depicted in

Figure 1.9. The assessors are first ordered randomly and then selected sequentially based

on that random order. An assessor is temporarily assigned if (1) the assignment does

not violate the lower and upper limit of the 50% assignment rule, (2) there is no no-go

relationship with the required candidate, and (3) the assessor is available.

The procedure ends when the required number of assessors has been assigned and the

temporarily assignments are fixed–or once all assessors have been examined. If the required

number of feasible assessors could not be assigned, then any temporary assignments to

the selected activity are reversed.

Whether an assessor assignment violates the 50% assignment rule depends on which

assessors have observed the required candidate thus far. The following two cases and the

corresponding feasibility criteria are considered.

a) The number of different assessors who observe the required candidate equals the

upper limit. Only assessors who have already observed the required candidate at

22

Paper I: A heuristic for the planning of assessment centers

least once are feasible.

b) The number of different assessors who observe the required candidate lies below the

lower limit. Only assessors who have not yet observed the required candidate are

feasible.

In any other case, no additional feasibility criteria apply. Note that the criteria in a) or b)

might become active after the first assessor has been assigned. Additionally, because of

the random order in which assessors are considered, assessor assignment may vary in each

application of the SGS.

1.4.5 Results for the illustrative example

For the illustrative example, we obtained an optimal schedule with a duration of 70 time

units by applying the MILP of Zimmermann and Trautmann (2014). Two alternative

schedules for the illustrative example obtained by our multi-pass list-scheduling procedure

are depicted in Figure 1.10. The duration of the best schedule generated with the list

based on the maximum preparation time criterion and random assessor assignment is 71

time units. An optimal schedule is generated using the random-sampling method.

1.5 Computational study

We have implemented the multi-pass list-scheduling heuristic presented in Section 1.4 in

Java and applied it to four real-world instances and 240 test instances generated based on

real-world data. Compared with the analysis presented in Zimmermann and Trautmann

(2015), these test instances enable a more thorough analysis of the performance of the

procedure.

We compare our novel approach with the MILP presented in Zimmermann and Traut-

mann (2014). We implemented the MILP in AMPL and used the Gurobi Optimizer 6.5 as

solver. We limited the CPU time of the solver to 3,600 seconds for the real-world instances

23

Paper I: A heuristic for the planning of assessment centers

Start assessor
assignment

Determine random
order of assessors

Select first assessor
in that order

50% assignment
rule violated?

No-go relation-
ship violated?

Assessor
available?

Temporarily assign
assessor to activity

Required num-
ber of assessors

assigned?

All assessors
examined?

Fix temporary
assignments

Undo temporary
assignments

Select next
assessor

Assignment
successful

Assignment
unsuccessful

Stop assessor
assignment

NO

NO

YES

YES

YES

NO

NO

YES YES

NO

Figure 1.9: Flowchart: procedure for assigning the required number of assessors to an
activity

24

Paper I: A heuristic for the planning of assessment centers

t
71

C1

C2

C3

A1

A2

A3

A4

R1

B

B

B

7

7

7

8

8

8

6

6

6

1

1

1

1

5

5

5

3

3

3

3

4

4

4

2

2

2

2

9

9

9

10

10

11

11

12

12

t
70

C1

C2

C3

A1

A2

A3

A4

R1

B

B

B

7

7

7

8

8

8

6

6

6

1

1

1

1

5

5

5

3

3

3

3

2

2

2

2

4

4

4

9

9

9

10

10

11

11

12

12

Figure 1.10: Illustrative example: schedules obtained by the heuristic without random
sampling (top) and with random sampling (bottom)

and to 1,200 seconds for the test instances. According to the HRM service provider, it is

important that the heuristic generates good feasible solutions in a short amount of time.

For example, in the event that some of the participants have to cancel their participation at

short notice, the entire assessment must be rescheduled. Hence, the HRM service provider

prescribed a CPU time limit of 10 seconds. In order to evaluate the speed at which the

heuristic generates good solutions, we also applied the heuristic using CPU time limits of

1 second, 5 seconds, and 100 seconds. The available CPU time was divided equally among

the multi-pass procedures for the individual lists. All calculations were performed on a

desktop PC with an Intel Core i5 CPU with 2.7GHz and 4GB RAM.

25

Paper I: A heuristic for the planning of assessment centers

Table 1.7: Real-world instances: main data

Instance C A R I no-go rela-
tionships

R1 7 10 2 42 no
R2 11 11 3 66 no
R3 9 11 3 54 yes
R4 6 9 3 36 no

In Section 1.5.1, we describe the test instances that we used in our computational

study. In Section 1.5.2, we discuss our computational results.

1.5.1 Test set

The data for four real-world instances were provided by the HRM service provider. These

instances include the same set of five tasks and one lunch break for each candidate. The

number of candidates C, assessors A, actors R, and activities and lunch breaks I of the

instances are listed in Table 1.7. The last column indicates whether any no-go relationships

exist.

Additionally, we generated 240 test instances by varying five factors in a full factorial

design. The factors and their experimental levels are summarized in Table 1.8. The

employed experimental levels are based on the four real-world instances and additional

real-world data made available to us by the HRM service provider. Factors C and |E|

correspond to the number of candidates and tasks of each instance. In combination, the

employed levels of these two factors determine the number of activities and lunch breaks I

for each instance. We partitioned 15 real-world tasks into three subsets: (a) role-play tasks,

(b) non-role-play tasks that require only one assessor, and (c) non-role-play tasks that

require two assessors. The tasks for an instance were randomly selected as follows: two

tasks from subset (a), one task from subset (b), and–depending on |E|–one or two tasks

from subset (c). The number of assessors A of an instance equals the integer closest to the

26

Paper I: A heuristic for the planning of assessment centers

Table 1.8: Test instances: factors and experimental levels

Factor Corresponds to Experimental levels

C number of candidates 4, 5, . . . , 10, 11
|E| number of tasks 4, 5
aS average number of assign- 6.0, 8.5, 10.4

ments per assessor
aN proportion of assessors 1/6, 1/3

who are no-go assessors
n average number of no-go 2, 3

relationships per no-go
assessor

total number of assignments divided by the factor aS. The total number of assignments

corresponds to the sum of assessor requirements over all activities. The experimental levels

used for aS correspond to the observed real-world minimum, average, and maximum. Let

AN denote the set of assessors with at least one no-go relationship (i.e., the set of no-go

assessors). The number of no-go assessors |AN | for an instance equals the integer closest

to aNA. We randomly include assessors in the set AN until we reach this number. The

number of no-go relationships N for an instance equals n|AN |. The no-go relationships

are randomly assigned to pairs of candidates and assessors belonging to set AN such that

(1) each assessor in AN has at least one no-go relationship and (2) at least bA/2c different

assessors can be assigned to each candidate. The actors are not considered to be a critical

resource, and they are paid for each role-play task in which they actually perform. Hence,

we set the number of actors R = 3 for all instances, which corresponds to the observed

real-world maximum.

For each combination of factor levels, we generate an instance that leads to 8 ·2 ·3 ·2 ·2 =

192 test instances. We also generate instances without no-go relationships (i.e., aN = n = 0).

This step leads to an additional 8 · 2 · 3 = 48 test instances.

27

Paper I: A heuristic for the planning of assessment centers

Table 1.9: Real-world instances: results

R1 R2 R3 R4

MILP (3600sec) 90 122 101 84
CPU 3128 2987 1386 344
LB 80 110 90 80

Heur. (1sec) 86 114 98 83
Heur. (5sec) 84 113 97 82
Heur. (10sec) 83 113 96 82
Heur. (100sec) 82 113 96 82

1.5.2 Computational results

The results for the four real-world instances R1, . . . , R4 are reported in Table 1.9. The

objective function value of the best schedules obtained by the MILP are shown in row

[MILP (3600sec)]. Furthermore, the row [CPU] shows the number of seconds after which

the MILP obtained the best schedules, and the row [LB] lists the lower bounds obtained

by the MILP. None of the instances were solved to optimality within the prescribed CPU

time limit. The rows [Heur. (1sec)], [Heur. (5sec)], [Heur. (10sec)], and [Heur. (100sec)]

show the results for the heuristic with a CPU time limit of 1, 5, 10, and 100 seconds,

respectively. In comparison with the MILP, the heuristic obtains better solutions for all

four instances with a CPU time limit of 1 second or longer.

The aggregated results for all 240 test instances are reported in Table 1.10. The column

[average OFV] lists the average objective function values and the column [average GAP]

shows the average gaps. To calculate the gaps, we used the lower bound LB obtained

by the MILP and the formula GAP=(OFV–LB)/OFV. Column 4 shows the number of

instances solved to optimality. A heuristic solution is optimal if its objective function

value equals the lower bound obtained by the MILP. Column 5 shows the number of

times that the procedures generated the best solutions; for example, for 216 instances,

[Heur. (100sec)] generates solutions with an OFV that is smaller than or equal to the

OFV obtained by the other procedures. The row [Heur. (10sec, random list)] shows the

28

Paper I: A heuristic for the planning of assessment centers

Table 1.10: Test instances: aggregated results

average average number of
OFV GAP [%] opt. best

MILP (1200sec) 109.4 9.3 22 72
Heur. (1sec) 105.3 6.1 22 77
Heur. (5sec) 104.7 5.5 29 119
Heur. (10sec) 104.5 5.3 30 136
Heur. (10sec, random list) 108.1 8.6 17 35
Heur. (10sec, no sampling) 106.8 7.5 16 43
Heur. (100sec) 104.0 4.8 38 216

results of our heuristic when the lists are generated randomly. The row [Heur. (10sec,

no sampling)] shows the results of our heuristic when no random sampling is employed.

Notably, we still run the heuristic for 10 seconds in this case because of the randomized

assignment of the assessors to the activities. On average, the heuristic obtains better

solutions than the MILP regardless of the prescribed CPU time limit. An increase of the

CPU time limit from 1 to 5 seconds leads to a larger improvement of the average gap than

an increase from 5 to 10 seconds. Compared to a random activity order, the employment

of our sorting criteria improves the average gap from 8.6% to 5.3%. Furthermore, the

average gap is improved from 7.5% to 5.3% with the application of the random-sampling

method. The results obtained by [Heur. (100sec)] indicate that a CPU time limit of 100

seconds leads to even better solutions; however, compared against the results for a CPU

time limit of 10 seconds, the improvement is relatively small.

Table 1.11 shows the average results obtained with each of the four lists and a total

CPU time limit of 10 seconds, i.e., a CPU time limit of 2.5 seconds per list. On average,

the non-adjusted list generated with the minimum preparation time criterion leads to the

best results. However, neither list obtains the best results for each instance of the test set.

The average objective function values and gaps obtained by [MILP (1200sec)] and

[Heur. (10sec)] for different factor levels are reported in Table 1.12. Each instance of the

test set has between 20 and 66 activities and lunch breaks. We list the average results

29

Paper I: A heuristic for the planning of assessment centers

Table 1.11: Test instances: list-dependent results

average average number of
OFV GAP [%] opt. best

Max. preparation time
non-adjusted list 105.4 6.2 22 126
adjusted list 105.9 6.6 14 96

Min. preparation time
non-adjusted list 105.3 6.1 27 134
adjusted list 105.8 6.4 17 101

for the three different ranges of I that correspond to small-, medium-, and large-sized

instances. For the three ranges of I, the heuristic obtains lower average gaps. Similarly,

the heuristic obtains lower average gaps for all levels of the factors aS, aN , and n.

Table 1.12: Test instances: factor-dependent results

MILP (1200sec) Heur. (10sec)
average average average average
OFV GAP [%] OFV GAP [%]

I 20 to 30 114.2 4.0 113.7 3.6
31 to 50 102.7 8.0 99.7 5.4
51 to 66 115.2 18.1 101.4 7.4

aS 6 81.9 10.3 78.4 7.0
8.5 111.9 10.9 105.7 5.9

10.4 134.4 6.6 129.4 3.1

aN 0 108.5 8.8 103.6 4.8
1/6 109.6 9.5 104.5 5.4
1/3 109.7 9.3 105.0 5.5

n 0 108.5 8.8 103.6 4.8
2 108.8 9.0 103.6 4.8
3 110.4 9.7 105.8 6.1

30

Paper I: A heuristic for the planning of assessment centers

1.6 Conclusions

In this work, we developed a multi-pass list-scheduling heuristic for a real-world scheduling

problem arising in the context of assessment centers, which has been reported to us by

an HRM service provider. Our computational results for a set of real-world instances

and a set of instances constructed based on real-world data indicate that our heuristic

consistently generates good schedules with a small amount of computational time. For the

set of real-world instances, compared to the schedules manually generated by the HRM

service provider, the heuristic obtains better schedules in a much shorter amount of time.

A simplified version of our list-scheduling heuristic has been implemented in the planning

software used by the HRM service provider.

Some assessments include group tasks that are performed by multiple candidates

simultaneously in the presence of several assessors. The list-scheduling heuristic presented

in this paper should be extended by exploring procedures for forming these types of groups

and scheduling activities accordingly. Furthermore, the heuristic presented in this paper

can be used to analyze the performance of alternative solution approaches to be developed

in the future, e.g., MIP-based heuristics such as sketched in Rihm and Trautmann (2016).

31

Bibliography

Adam, T. L., Chandy, K. M., Dickson, J. R., 1997. A comparison of list schedules for
parallel processing systems. Communications of the ACM 17(12), 685–689.

Boctor, F. F., 1993. Heuristics for scheduling projects with resource restrictions and several
resource-duration modes. The International Journal of Production Research 31 (11),
2547–2558.

Carter, M. W., Laporte, G., 1998. Recent developments in practical course timetabling. In:
Burke, E. K., Carter, M. W. (Eds.), Practice and Theory of Automated Timetabling II.
Springer, Berlin, pp. 3–19.

Cavalcante, C. C. B., de Souza, C. C., Savelsbergh, M. W. P., Wang, Y., Wolsey, L. A.,
2001. Scheduling projects with labor constraints. Discrete Applied Mathematics 112
(1–3), 27–52.

Damodaran, P., Vélez-Gallego, M. C., Maya, J., 2011. A GRASP approach for makespan
minimization on parallel batch processing machines. Journal of Intelligent Manufacturing
22 (5), 767–777.

Drezet, L.-E., Billaut, J.-C., 2008. A project scheduling problem with labour constraints and
time-dependent activities requirements. International Journal of Production Economics
112 (1), 217–225.

Hartmann, S., 1999. Project scheduling under limited resources: models, methods, and
applications. In: Number 478 in Lecture Notes in Economics and Mathematical Systems.
Springer, Berlin.

Huselid, M. A., 1995. The impact of human resource management practices on turnover,
productivity, and corporate financial performance. Academy of Management Journal 38
(3), 635–672.

Li, H., Womer, K., 2008. Modeling the supply chain configuration problem with resource
constraints. European Journal of Operational Research 26 (6), 646–654.

Rihm, T., Trautmann, N., 2016. A decomposition approach for an assessment center
planning problem. In: Ruiz, R., Alvarez-Valdes, R. (Eds.), Proceedings of the 15th
International Conference on Project Management and Scheduling. Valencia, pp. 206–209.

32

Paper I: A heuristic for the planning of assessment centers

Salewski, F., Schirmer, A., Drexl, A., 1997. Project scheduling under resource and mode
identity constraints: model, complexity, methods, and application. European Journal of
Operational Research 102 (1), 88–110.

Spychalski, A. C., Quinones, M. A., Gaugler, B. B., Pohley, K., 1997. A survey of
assessment center practices in organizations in the united states. Personnel Psychology
50 (1), 71–90.

Talbot, F. B., 1982. Resource-constrained project scheduling with time-resource tradeoffs:
the nonpreemptive case. Management Science 28 (10), 1197–1210.

Tareghian, H. R., Taheri, S. H., 2007. A solution procedure for the discrete time, cost and
quality tradeoff problem using electromagnetic scatter search. Applied Mathematics and
Computation 190 (2), 1136–1145.

Wren, A., 1996. Scheduling, timetabling and rostering – a special relationship? In: Burke,
E. K., Ross, P. (Eds.), Practice and Theory of Automated Timetabling. Springer, Berlin,
pp. 46–75.

Zimmermann, A., Trautmann, N., 2014. Scheduling of assessment centers: an application
of resource-constrained project scheduling. In: Fliedner, T., Kolisch, R., Naber, A.
(Eds.), Proceedings of the 14th International Conference on Project Management and
Scheduling. Munich, pp. 263–266.

Zimmermann, A., Trautmann, N., 2015. A list-scheduling approach for the planning of
assessment centers. In: Hanzálek, Z., Kendall, G., McCollum, B., Š̊ucha, P. (Eds.),
Proceedings of the Multidisciplinary International Scheduling Conference: Theory and
Application. Prague, pp. 541–554.

33

Paper II

MIP formulations for an application of project
scheduling in human resource management

Tom Rihm Norbert Trautmann Adrian Zimmermann

Department of Business Administration

University of Bern

Contents
2.1 Introduction . 35

2.2 Planning problem . 38

2.2.1 Illustration of the planning problem 38

2.2.2 Relation to the RCPSP . 41

2.3 Literature review . 41

2.3.1 MIP formulations for the RCPSP 42

2.3.2 Comparative studies of MIP formulations 43

2.4 MIP formulations for the ACP 45

2.4.1 Formulation CT–A . 45

2.4.2 Formulation CT–F . 51

2.4.3 Formulation CT–O . 54

2.4.4 Formulation DT–P . 58

2.4.5 Formulation DT–O . 60

2.5 Lower bounds . 61

2.5.1 Lower bounds based on the assessors’ workload 62

2.5.2 Lower bounds based on the candidates’ workload 63

2.6 Comparative analysis . 68

2.6.1 Instances . 68

2.6.2 Computational results: real-life instances 70

2.6.3 Computational results: test instances 72

2.6.4 Computational results: problem-specific lower bounds 76

2.7 Conclusions . 76

Bibliography . 78

34

Paper II: MIP formulations for an application of project scheduling

Abstract

In the literature, various discrete-time and continuous-time mixed-

integer linear programming (MIP) formulations for project scheduling

problems have been proposed. The performance of these formulations has

been analyzed based on generic test instances. The objective of this study

is to analyze the performance of discrete-time and continuous-time MIP

formulations for a real-life application of project scheduling in human re-

source management. We consider the problem of scheduling assessment

centers. In an assessment center, candidates for job positions perform

different tasks while being observed and evaluated by assessors. Because

these assessors are highly qualified and expensive personnel, the duration

of the assessment center should be minimized. Complex rules for assign-

ing assessors to candidates distinguish this problem from other scheduling

problems discussed in the literature. We develop two discrete-time and

three continuous-time MIP formulations, and we present problem-specific

lower bounds. In a comparative study, we analyze the performance of

the five MIP formulations on four real-life instances and a set of 240

instances derived from real-life data. The results indicate that good or

optimal solutions are obtained for all instances within short computa-

tional time. In particular, one of the real-life instances is solved to

optimality. Surprisingly, the continuous-time formulations outperform

the discrete-time formulations in terms of solution quality.

2.1 Introduction

Over the past decades, mixed-integer linear programming (MIP) methods have been

significantly improved (cf., e.g., Koch et al., 2011; Bixby, 2012) and successfully applied

to a large variety of real-life scheduling problems in manufacturing and services. Two

35

Paper II: MIP formulations for an application of project scheduling

major advantages of MIP methods are the flexibility to account for changes in the problem

setting and the possibility to obtain upper or lower bounds on the solutions. In general,

different formulations can be used to model the same planning problem. Because the

performance of MIP approaches is determined by the underlying formulation (cf., e.g.,

Vielma, 2015), alternative formulations should be considered for each planning problem.

In this paper, we investigate an assessment center planning problem (ACP). This

problem was reported to us by a human resource management service provider that

organizes assessment centers (AC) for firms. The goal of an AC is to evaluate some

candidates’ job-related skills and abilities for one or several open positions (cf., e.g., Collins

et al., 2003). In an AC, each candidate performs multiple tasks, and for each task, a

prescribed number of assessors (i.e., psychologists or managers) is required. Some tasks

involve role play and additionally require a prescribed number of actors. For example, the

actors might represent unhappy customers with whom the candidate must interact. Tasks

sometimes require a preparation time during which only the candidate is present. During

the execution of the task, the candidate is joined by the assessors and the actor. Some

tasks include a subsequent evaluation during which the assessors and the actors discuss

their observations. This evaluation time can differ between assessors and actors. Each

candidate takes a lunch break within a prescribed time window. When assigning assessors

to tasks, the following rules must be considered: each candidate should be observed by

approximately half the number of assessors; if a candidate and an assessor know each other

personally, no observation is allowed, which is called a no-go relationship. Assessors are

expensive, and hence, their total waiting time should be minimized. Because the assessors

meet before the start and after the completion of all tasks and lunch breaks, this objective

corresponds to minimizing the total duration of the AC (in what follows the AC duration

for short). The planning problem consists of (1) scheduling all tasks and a lunch break

for each candidate and (2) determining which assessors are assigned to which candidate

during which task such that the AC duration is minimized.

36

Paper II: MIP formulations for an application of project scheduling

The ACP can be interpreted as an extension of the resource-constrained project

scheduling problem (RCPSP). The RCPSP consists of scheduling a set of activities subject

to completion-start precedence and renewable-resource constraints such that the project

duration is minimized. For the ACP, each candidate’s tasks and lunch break correspond to

project activities, and the candidates, assessors, and actors represent renewable resources.

However, the ACP does not involve precedence relationships among the activities, but the

above-described additional constraints. In the literature, different MIP formulations have

been proposed for the RCPSP. In discrete-time (DT) formulations, the planning horizon is

divided into a set of time intervals of equal length, and the activities can only start or end

at the endpoints of these intervals. Conversely, in continuous-time (CT) formulations, the

activities can start at any point in time. The DT formulations usually involve binary time-

indexed variables. However, the meaning of these variables differ between the formulations,

e.g., so-called pulse variables indicate whether an activity starts or ends at a specific point

in time (cf. Pritsker et al., 1969; Christofides et al., 1987; Kopanos et al., 2014), and

on/off variables specify whether an activity is in progress at a given time (cf. Kaplan, 1988;

Mingozzi et al., 1998; Kopanos et al., 2014). The CT formulations differ with regard to the

modeling of the resource constraints, e.g., Artigues et al. (2003) use resource-flow variables,

and Kopanos et al. (2014) use overlapping variables. For a comprehensive overview of

different MIP formulations for the RCPSP, we refer to Artigues et al. (2015).

In this paper, we provide two DT formulations and three CT formulations for the

ACP. The two DT formulations are based on pulse variables (DT–P) and on/off variables

(DT–O), respectively. The three CT formulation use assessor-assignment variables (CT–

A), resource-flow variables (CT–F), and overlapping variables (CT–O), respectively, to

model the resource constraints. Moreover, we provide problem-specific lower bounds. The

different MIP formulations are tested on four real-life instances and 240 test instances

based on real-life data. For all instances, good or optimal solutions are obtained within

short computational time. In detail, formulation CT–A consistently outperforms the other

37

Paper II: MIP formulations for an application of project scheduling

four formulations in terms of solution quality. However, using DT–P, the best MIP-based

lower bounds are obtained. Furthermore, only with DT–P, optimality is proven for one of

the real-life instances within the prescribed time limit. Nevertheless, in contrast to the

RCPSP, the CT formulations provide better solutions than the DT formulations.

The remainder of this paper is structured as follows. In Section 2.2, we describe the

ACP using an illustrative example and relate the ACP to the RCPSP. In Section 2.3,

we provide an overview of the related literature. In Section 2.4, we present the MIP

formulations for the ACP. In Section 2.5, we derive the problem-specific lower bounds.

In Section 2.6, we discuss the design and the results of our comparative analysis. In

Section 2.7, we provide some concluding remarks and an outlook on future research.

2.2 Planning problem

In Section 2.2.1, we describe the problem features of the ACP in detail and illustrate them

through an example. In Section 2.2.2, we discuss the relation between the ACP and the

RCPSP.

2.2.1 Illustration of the planning problem

In our illustrative example, the participants of the AC are as follows: there are three

candidates, C1, C2 and C3; four assessors, A1, A2, A3 and A4; and an actor, P1. A no-go

relationship exists between candidate C3 and assessor A2. Each of the three candidates

must perform the three tasks E1, E2, and E3, and take a lunch break.

The tasks of the illustrative example are listed in Table 2.1. The durations of the tasks

are stated in 5-minute time units. Tasks E1 and E3 require two assessors, and task E2

requires one assessor. Task E1 involves role play and requires one actor. Tasks E1 and E2

include a preparation time, and tasks E1 and E3 include an evaluation time. Figure 2.1

shows at which time during the execution of task E1 the candidate, the assessors, and

38

Paper II: MIP formulations for an application of project scheduling

the actor are required. The evaluation time differs between the assessors and the actor.

Due to fairness and objectivity considerations, no waiting times are allowed between the

preparation, the execution, and the evaluation. A waiting time for a candidate would

increase the preparation time, whereas a waiting time for the assessors and actors could

bias their evaluations of the candidate.

The earliest and latest possible start times for the lunch break are 20 and 30, respectively.

The duration of the lunch break is 6 time units. Because each candidate has a lunch break

and performs each of the three tasks exactly once, a total of 12 activities are considered.

Table 2.2 shows the indices of these activities.

︷ ︸︸ ︷
.......................

preparation
︷ ︸︸ ︷
........................

execution
︷ ︸︸ ︷
............

evaluation

︷ ︸︸ ︷
...

duration of the task

time

Candidate
Assessors
Actor

Figure 2.1: Varying requirements for candidate, assessors, and actor during task E1

Table 2.1: Tasks of illustrative example

Task E1 E2 E3

Required number of assessors 2 1 2
Required number of actors 1 - -
Duration 20 10 12
Duration of preparation time (candidates) 8 3 -
Duration of execution time 8 7 8
Duration of evaluation time (assessors) 4 - 4
Duration of evaluation time (actors) 2 - -

The rules for assigning assessors to candidates are as follows: each candidate should

be observed by at least half of the total number of assessors rounded down and by at

most half of the total number of assessors rounded up plus one. The lower limit ensures

an objective overall evaluation for each candidate, and the upper limit is motivated by

39

Paper II: MIP formulations for an application of project scheduling

fairness considerations. The difference between the upper and lower limits facilitates the

assessor assignment without affecting fairness. The number of times that an assessor can

observe the same candidate is not limited. In the illustrative example, each candidate

must be observed by 2 to 3 different assessors. Additionally, because a no-go relationship

exists, candidate C3 can never be observed by assessor A2.

An optimal schedule for the illustrative example is presented in Figure 2.2. The dotted

lines indicate the earliest and latest start times for the lunch breaks, and the solid line

indicates the AC duration. Whether an assessor has been assigned to a candidate at least

once is indicated by a checkmark (3).

Table 2.2: Activity indices of the illustrative example

Task Lunch
Candidate

E1 E2 E3 break

C1 1 4 7 10
C2 2 5 8 11
C3 3 6 9 12

time
0 10 20 30 40 46

C1

C2

C3

A1

A2

A3

A4

P1

1
2

3

4
5
6

7
8

9

10
11

12

1

1
2

2

3

34
5

6

7
7 8

8
9
9

12 3

Assignments

Candidate

Assessor C1 C2 C3

A1 ✓ ✓

A2 ✓ ✓

A3 ✓ ✓

A4 ✓ ✓

Figure 2.2: Optimal schedule of the illustrative example (left) and corresponding assessor
assignment (right)

40

Paper II: MIP formulations for an application of project scheduling

2.2.2 Relation to the RCPSP

The ACP includes many problem features of the well-known RCPSP. Both planning

problems consider activities that require prescribed amounts of some renewable resources

during their execution. In the case of the ACP, the execution of each task and the lunch

break for each candidate correspond to a project activity, and the candidates, assessors, and

actors can be interpreted as renewable resources. The ACP does not involve precedence

relationships among the activities.

In the RCPSP, only the capacities and not the individual units of the renewable

resources are considered. However, in the ACP, the assessor-assignment rules require

that all activities that use a particular resource unit can be identified. Therefore, the

assessor-assignment rules cannot be formulated in the RCPSP.

If each assessor is interpreted as a renewable resource with unit capacity, then alternative

execution modes must be defined in order to represent the alternative assessor assignments.

This corresponds to the multi-mode extension of the RCPSP (MRCPSP). Because each

candidate must be observed by approximately half the number of the assessors, the assessor

assignments interdepend. Such interdependencies between modes are not considered in the

MRCPSP. Before assigning any assessors to a candidate, all modes are feasible. However,

selecting the modes for some activities causes several of the modes of the other activities

to be infeasible.

2.3 Literature review

In Section 2.3.1, we provide an overview of different MIP formulations for the RCPSP

which can be used as the basis for MIP formulations of the ACP. In Section 2.3.2, we

discuss recent works that focus on comparing MIP formulations for extensions of the

RCPSP and for specific real-life problems.

41

Paper II: MIP formulations for an application of project scheduling

2.3.1 MIP formulations for the RCPSP

In DT formulations, binary time-indexed variables are used that indicate the start, end,

or the state (e.g., in progress) of an activity at a specific time. For DT formulations, three

types of binary variables can be distinguished (cf. Artigues et al., 2015). Beside the pulse

and on/off variables described in the Introduction, there are step variables that indicate

whether an activity starts at or before a specific point in time (cf. Klein, 2000; Bianco and

Caramia, 2013). Furthermore, Bianco and Caramia (2013) introduce continuous variables

that specify the percentage of completion of the activities at each point in time.

In CT formulations, the activities can start or finish at any time rather than at

predefined time points such as in DT. Artigues et al. (2003) present a CT formulation

based on resource flows. Besides the continuous start-time variables, this formulation

requires two additional sets of variables. The first set consists of binary sequencing variables

that determine for each pair of activities whether one precedes the other or whether both

are executed in parallel. The second set consists of continuous resource-flow variables for

modeling the resource constraints. Kopanos et al. (2014) present another CT formulation

with continuous start-time variables, binary sequencing variables, and binary overlapping

variables. In combination with the sequencing variables, the overlapping variables are used

to model the resource constraints. Other CT formulations are based on events (e.g. Koné

et al., 2011) or on minimal forbidden sets (e.g. Alvarez-Valdes and Tamarit, 1993).

For the RCPSP, the performances of these different MIP formulations are compared

in Bianco and Caramia (2013), Koné et al. (2011), and Kopanos et al. (2014). They

all use generic test instances, which are provided in, e.g., Kolisch and Sprecher (1997)

and Vanhoucke et al. (2008). For these test instances, Koné et al. (2011) and Kopanos

et al. (2014) show that the performance is primarily affected by the number of activities

and the length of the planning horizon. The performances of the DT formulations

are negatively affected by the length of the planning horizon because the numbers of

variables and constraints depend on the number of time points considered. In contrast, the

42

Paper II: MIP formulations for an application of project scheduling

performances of the CT formulations are negatively affected by the number of activities

because the number of sequencing variables increases exponentially with the number of

activities. Typically, DT-based formulations are the most competitive and yield the best

LP relaxations. However, no formulation consistently dominates the others, as different

formulations perform better for different problem settings.

In this study, we adapt different RCPSP formulations such that they can be applied to

the ACP. From the DT formulations, we select the RCPSP formulations of Pritsker et al.

(1969) and Kopanos et al. (2014). The basic DT formulation of Pritsker et al. (1969) still

performs very well compared to newer formulations (cf., e.g., Koné et al., 2011). Kopanos

et al. (2014) show that their two DT formulations outperform other DT formulations

presented in the literature. Their DT formulations differ with regard to the modeling of

the precedence constraints. For the ACP, these two formulations are identical because

there are no precedence constraints. From the CT formulations, we adapt the formulations

of Artigues et al. (2003) and Kopanos et al. (2014). The CT formulation of Artigues et al.

(2003) performs well compared to other CT formulations if there are specific problem

characteristics such as long activity durations (cf., e.g., Koné et al., 2011). Kopanos et al.

(2014) show that their two CT formulations outperform other CT formulations presented

in the literature; we adapted their best-performing CT formulation.

2.3.2 Comparative studies of MIP formulations

In addition to the aforementioned comparative studies of the RCPSP, the performances of

alternative MIP formulations have also been compared for various other planning problems.

In the following, we provide an overview of such comparative studies for extensions of the

RCPSP and for some real-life problems.

Some extensions of the RCPSP for which alternative MIP formulations have been

compared are as follows. In Koné et al. (2013), the performances of alternative DT and CT

formulations are compared for an extension of the RCPSP with so-called storage resources.

43

Paper II: MIP formulations for an application of project scheduling

Storage resources are consumed and produced at the project activities’ start times and

completion times, respectively. As in Koné et al. (2011), the authors conclude that no

MIP formulation consistently yields the best results. A comparative performance analysis

of alternative DT formulations for the RCPSP with flexible resource profiles is provided

in Naber and Kolisch (2014). With flexible resource profiles, the resource utilization of

an activity is not constant but rather can be adjusted from period to period. The results

of the comparative study in Naber and Kolisch (2014) indicate that an MIP formulation

based on Bianco and Caramia (2013) dominates all other DT formulations. In the study of

Zapata et al. (2008), alternative DT and CT formulations for the MRCPSP with multiple

projects are compared. The authors conclude that the best MIP formulation depends on

the specific characteristics of each problem instance.

Comparative analyses have also been conducted for MIP formulations in real-life

applications. Stefansson et al. (2011) develop DT and CT formulations for a large-scale

production scheduling problem originating from a pharmaceutical producer. In this

problem, customers order specific products, which need to be produced in a four-stage

production process such that the requested quantity and delivery date of the order are

met. The results obtained for eight test instances indicate that the CT formulation

obtains better solutions within shorter computational time than the DT formulation.

Furthermore, in Chen et al. (2012), a comparative analysis of different mixed-integer

nonlinear programming formulations for the scheduling of crude-oil refinement operations

is presented. The planning problem includes several processing steps, from unloading

marine vessels to producing various crude-oil based products. In a recent study, Ambrosino

et al. (2015) evaluated the performance of two alternative MIP formulations for the

multi-port master bay plan problem. This problem involves the placement of containers

on a containership such that the overall berthing costs of the ship’s multi-port journey are

minimized.

44

Paper II: MIP formulations for an application of project scheduling

2.4 MIP formulations for the ACP

In this section, we present our five MIP formulations for the ACP. The notation of the

MIP formulations is provided in Tables 2.3 and 2.4. In Section 2.4.1, we present the CT

formulation that uses the assessor-assignment decisions to model the resource constraints

(CT–A). In Section 2.4.2, we derive the CT formulation with resource-flow variables (CT–

F). In Section 2.4.3, we present the CT formulation with overlapping variables (CT–O).

In Sections 2.4.4 and 2.4.5, we present the DT formulation with pulse variables (DT–P)

and the DT formulation with on/off variables (DT–O), respectively.

Table 2.3: Sets and parameters of the MIP formulations

C Set of candidates

A Set of assessors

P Set of actors

N Set of candidate-assessor pairs (c, a) with a no-go relationship

I Set of activities i = 1, . . . , n (including lunch breaks)

Ic Set of activities that require candidate c ∈ C
IA, IP Set of activities that require assessors (IA) and actors (IP)

IL Set of lunch breaks

ESL, LSL Earliest (ESL) and latest (LSL) start time for the lunch breaks

pi Duration of activity i

pCi Preparation time of activity i for candidates

pAi , pPi Evaluation time of activity i for assessors (pAi) and actors (pPi)

rAi , rPi Number of assessors (rAi) and actors (rPi) required by activity i

M Sufficiently large number

T Upper bound on the duration of the assessment center

2.4.1 Formulation CT–A

In this section, we present the continuous-time formulation that uses the assessor-

assignment decisions to model the resource constraints (CT–A). In a preliminary version

45

Paper II: MIP formulations for an application of project scheduling

of this MIP formulation (cf. Grüter et al., 2014), each activity is split into several sub-

activities to model the preparation, the execution, and the evaluation times. However,

this results in an unnecessary large number of variables and constraints. In the following,

we model the ACP without splitting the activities.

We distinguish between three types of resources: candidates, assessors, and actors.

Each candidate is modeled as a renewable resource with capacity 1. The set of all assessors

(actors) is modeled as one renewable resource with a capacity that equals the number of

assessors (actors). Due to the capacity of 1, the resource constraints for the candidates

are modeled using binary sequencing variables, i.e., Y C
ij = 1 (Y C

ij = 0) if activity i (j) is

completed some time before the start of activity j (i) by the corresponding candidate. For

the assessors and actors, the resource constraints are modeled using binary sequencing

variables (Y A
ij and Y P

ij), and binary assignment variables (ZA
ia and ZP

ip). For the assessors,

the sequencing variable Y A
ij is equal to 1 if activity i is completed some time before the

start of activity j. Otherwise, Y A
ij is 0, i.e., activities i and j are processed simultaneously

or j finishes some time before i begins. Because the ACP does not include precedence

relationships, there are no prescribed values for the sequencing variables. The assignment

variable ZA
ia is equal to 1 if assessor a is assigned to activity i; otherwise ZA

ia = 0. For the

actors, the sequencing and assignment variables (Y P
ij and ZP

ip) are interpreted in the same

46

Paper II: MIP formulations for an application of project scheduling

Table 2.4: Variables of the MIP formulations

D AC duration

Si Start time of activity i for the candidate

Xit

{
= 1, if activity i starts at time point t;

= 0, otherwise.

Y C
ij

{
= 1, if activity i is performed before j > i by a candidate;

= 0, otherwise.

Y A
ij

{
= 1, if activity i is performed before j 6= i by the assessors;

= 0, otherwise.

Y P
ij

{
= 1, if activity i is performed before j 6= i by the actors;

= 0, otherwise.

ZA
ia

{
= 1, if assessor a is assigned to activity i;

= 0, otherwise.

ZP
ip

{
= 1, if actor p is assigned to activity i;

= 0, otherwise.

Vca

{
= 1, if assessor a is assigned to candidate c at least once;

= 0, otherwise.

FC
ij

{
= 1, if a candidate is sent from activity i to j;

= 0, otherwise.

FA
ij Number of assessors sent from activity i to j

F P
ij Number of actors sent from activity i to j

Ŷij

{
= 1, if activity i starts before or at the same time as j for assessors;

= 0, otherwise.

OA
ji

{
= 1, if activity j finishes after the start of activity i for assessors;

= 0 or 1, otherwise.

OP
ji

{
= 1, if activity j finishes after the start of activity i for actors;

= 0 or 1, otherwise.

Wit

{
= 1, if i is processed at time t by the candidates;

= 0, otherwise.

way. Finally, variable Vca is used to model the assessor-assignment rule, i.e., Vca = 1 if

assessor a is assigned to candidate c at least once.

47

Paper II: MIP formulations for an application of project scheduling

The objective is to minimize the AC duration D.

Min D

The duration corresponds to the latest completion time of an activity that is defined by

constraints (2.1).

D ≥ Si + pi (i ∈ I) (2.1)

Constraints (2.2)–(2.5) determine the resource-feasible start times of the activities. Con-

straints (2.2) are binding if candidate c completes activity i before the start of activity

j. Otherwise, constraints (2.3) are binding. Because candidate c is not required during

the evaluation time, activity j can start at most pAi time units before the completion of

activity i (cf. Figure 2.3).

Sj ≥ Si −M + (pi − pAi +M)Y C
ij (c ∈ C, i, j ∈ Ic : i < j) (2.2)

Si ≥ Sj −M + (pj − pAj +M)(1− Y C
ij) (c ∈ C, i, j ∈ Ic : i < j) (2.3)

Candidate

Assessor

Si Sj

pi

pAi

i

i

j

j

Figure 2.3: Minimum time lag between start times of activities i and j for candidates

48

Paper II: MIP formulations for an application of project scheduling

Candidate 1
Candidate 2

Assessor

Si Sj

pi

pCj

i

i

j

j

Figure 2.4: Minimum time lag between start times of activities i and j for assessors

Candidate 1
Candidate 2

Assessor 1
Assessor 2

Actor

Si Sj

pAi

pPi

pCj

pi

i

i

i

j

j

j

Figure 2.5: Minimum time lag between start times of activities i and j for actors

Constraints (2.4) and (2.5) enforce a sequence of activities for the assessors and actors,

respectively. In the case that activity i is executed before activity j by the assessors,

constraints (2.4) are binding. Because the assessors are not required during the preparation

time, activity j can start at most pCj time units before the completion of activity i (cf.

Figure 2.4). Similarly, constraints (2.5) are binding if activity i is executed before activity

j by the actors. For the actors, activity i is completed after pi − pAi + pPi time units.

Activity j can start at most pCj time units before that completion time (cf. Figure 2.5).

Sj ≥ Si −M + (pi − pCj +M)Y A
ij (i, j ∈ IA : i 6= j) (2.4)

Sj ≥ Si −M + (pi − pAi + pPi − pCj +M)Y P
ij (i, j ∈ IP : i 6= j) (2.5)

49

Paper II: MIP formulations for an application of project scheduling

Constraints (2.6) ensure that the lunch breaks are scheduled within the prescribed time

window.

ESL ≤ Si ≤ LSL (i ∈ IL) (2.6)

Constraints (2.7) and (2.8) imply that the required numbers of assessors and actors are

assigned to each activity.

∑
a∈A

ZA
ia = rAi (i ∈ IA) (2.7)

∑
p∈P

ZP
ip = rPi (i ∈ IP) (2.8)

Constraints (2.9) and (2.10) link the assignment variables to the sequencing variables.

If the same assessor a or the same actor p is assigned to two activities i and j, then a

sequence between these two activities is enforced.

Y A
ij + Y A

ji ≥ ZA
ia + ZA

ja − 1 (i, j ∈ IA, a ∈ A : i < j) (2.9)

Y P
ij + Y P

ji ≥ ZP
ip + ZP

jp − 1 (i, j ∈ IP , p ∈ P : i < j) (2.10)

Constraints (2.11) and (2.12) ensure that either activity i precedes activity j, j precedes i,

or i and j are processed in parallel.

Y A
ij + Y A

ji ≤ 1 (i, j ∈ IA : i < j) (2.11)

Y P
ij + Y P

ji ≤ 1 (i, j ∈ IP : i < j) (2.12)

Constraints (2.13) enforce that the number of assessors assigned to each candidate lies

within the bounds imposed by the assessor-assignment rule.

⌊
|A|
2

⌋
≤
∑
a∈A

Vca ≤
⌈
|A|
2

⌉
+ 1 (c ∈ C) (2.13)

50

Paper II: MIP formulations for an application of project scheduling

Constraints (2.14) determine whether an assessor a has been assigned to a candidate c at

least once. Vca must be equal to 1 if assessor a is assigned to at least one activity that

requires candidate c. If assessor a is never assigned to an activity that requires candidate

c, then Vca must be equal to 0.

∑
i∈Ic\IL

ZA
ia

|Ic\IL|
≤ Vca ≤

∑
i∈Ic\IL

ZA
ia (c ∈ C, a ∈ A) (2.14)

Finally, constraints (2.15) model the no-go relationships.

Vca = 0 ((c, a) ∈ N) (2.15)

In sum, formulation (CT–A) reads as follows:

(CT–A)

Min D

s.t. (2.1)–(2.15)

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i < j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

ZP
ip ∈ {0, 1} (i ∈ IP , p ∈ P)

2.4.2 Formulation CT–F

In this section, we present the continuous-time formulation with resource-flow variables

(CT–F), which is based on the RCPSP formulation of Artigues et al. (2003). This MIP

formulation was first proposed in Zimmermann and Trautmann (2014). The following

51

Paper II: MIP formulations for an application of project scheduling

explanations closely follow that study.

To model the resource flows, formulation CT–F requires the dummy activities 0 and

n + 1; both have a duration of zero, and rA0 = rAn+1 = |A| (rP0 = rPn+1 = |P |) is equal

to the total number of available assessors (actors). Variable FC
ij (FA

ij , F
P
ij) denotes the

quantity of candidates (assessors, actors) sent from activity i (upon completion) to activity

j (at the beginning). This resource flow prevents the corresponding activities from being

executed simultaneously. For the assessors (actors), the sequencing variable Y A
ij (Y P

ij) is

equal to 1 if some assessors (actors) are sent from activity i to activity j. Because each

activity requires exactly one candidate, any flow of candidates between two activities will

be either 0 or 1. Since the resource-flow variable FC
ij is defined as binary, this variable

is used simultaneously as a resource-flow and as a sequencing variable. As a sequencing

variable, FC
ij equals 1 if and only if activity j is executed after activity i.

The following constraints have to be considered. Constraints (2.16) determine resource-

feasible start times of the activities for the candidates. The feasible start times of the

activities for the assessors and actors are determined as in formulation CT–A. Con-

straints (2.16) are binding if a candidate is sent from activity i to activity j (FC
ij = 1).

Sj ≥ Si −M + (pi − pAi +M)FC
ij (c ∈ C; i, j ∈ Ic : i 6= j) (2.16)

Constraints (2.17)–(2.22) are the resource-flow conservation constraints. Constraints (2.17)

ensure that each activity i sends 1 unit of resource c ∈ C to either an activity j 6= i or

the dummy activity n + 1 (if activity i is the last activity performed by candidate c).

Constraints (2.18) ensure that each activity j receives 1 unit of resource c ∈ C from either

an activity i 6= j or the dummy activity 0 (if activity j is the first activity performed by

52

Paper II: MIP formulations for an application of project scheduling

candidate c).

∑
j∈Ic∪{n+1}: j 6=i

FC
ij = 1 (c ∈ C; i ∈ Ic ∪ {0}) (2.17)

∑
i∈Ic∪{0}: i 6=j

FC
ij = 1 (c ∈ C; j ∈ Ic ∪ {n+ 1}) (2.18)

Constraints (2.19)–(2.22) conserve the resource flow of assessors and actors, respectively.

The number of assessors rAi (actors rPi) required by activity i must be sent to and received

from other activities that require the same resource.

∑
j∈IA∪{n+1}: j 6=i

FA
ij = rAi (i ∈ IA ∪ {0}) (2.19)

∑
j∈IP∪{n+1}: j 6=i

F P
ij = rPi (i ∈ IP ∪ {0}) (2.20)

∑
i∈IA∪{0}: i 6=j

FA
ij = rAj (j ∈ IA ∪ {n+ 1}) (2.21)

∑
i∈IP∪{0}: i 6=j

F P
ij = rPj (j ∈ IP ∪ {n+ 1}) (2.22)

Constraints (2.23) and (2.24) link the resource-flow variables to the sequencing variables

for assessors and actors, respectively.

FA
ij ≤ min(rAi , r

A
j)Y A

ij (i, j ∈ IA : i 6= j) (2.23)

F P
ij ≤ min(rPi , r

P
j)Y P

ij (i, j ∈ IP : i 6= j) (2.24)

The sequencing variables Y A
ij and Y P

ij are only used to link the flow variables FA
ij and F P

ij

to the start times of the activities. The flow variables FA
ij and F P

ij can be greater than 1.

For this reason, they cannot be used as sequencing variables.

Constraints (2.1), which determine the AC duration D, and the sequencing constraints

for the assessors (2.4) and actors (2.5), and constraints (2.6), which specify the time window

53

Paper II: MIP formulations for an application of project scheduling

for the lunch breaks, are also included. The same applies to the assessor-assignment

constraints (2.7), (2.9), and (2.11)–(2.15).

In sum, formulation (CT–F) reads as follows:

(CT–F)

Min D

s.t. (2.16)–(2.24)

(2.1), (2.4)–(2.7), (2.9)

(2.11)–(2.15)

Si ≥ 0 (i ∈ I)

FC
ij ∈ {0, 1} (c ∈ C; i, j ∈ Ic ∪ {0, n+ 1} : i 6= j)

FA
ij ≥ 0 (i, j ∈ IA ∪ {0, n+ 1} : i 6= j)

F P
ij ≥ 0 (i, j ∈ IP ∪ {0, n+ 1} : i 6= j)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Y P
ij ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.4.3 Formulation CT–O

In this section, we present the continuous-time formulation with overlapping variables

(CT–O), which is based on the RCPSP formulation of Kopanos et al. (2014).

For activities that cannot be processed in parallel (i.e., two activities which require the

same candidate), we use the sequencing variables Y C
ij . For activities that can be processed

in parallel, the resource constraints are modeled with the following binary variables.

• For the assessors and the actors, we introduce the sequencing variables Ŷij. Specif-

ically, Ŷij = 1 if activity i starts before or at the same time as activity j for the

assessors. These sequencing variables are not defined separately for assessors and

54

Paper II: MIP formulations for an application of project scheduling

Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(i) OA
ji −

̂Yij = 0

i

i

j

j

(ii) OA
ji −

̂Yij = 0 or 1

Candidate 1
Candidate 2

Assessor 1
Assessor 2

i

i

j

j

(iii) OA
ji −

̂Yij = 0

i

i

j

j

(iv) OA
ji −

̂Yij = 1

i

i

j

j

(v) OA
ji −

̂Yij = 1

Figure 2.6: Five possible cases (i)–(v) that illustrate the values of the sequencing and
overlapping variables

actors, because the activities start at the same time for them.

• For the assessors, we introduce the overlapping variables OA
ji. Specifically, OA

ji = 1 if

activity j finishes after the start of activity i for the assessors. If activity j finishes

before or at the same time as activity i starts, then OA
ji is equal to 0 or 1. The

overlapping variables for the actors OP
ji are defined in the same way.

To illustrate how these variables jointly determine whether two activities i, j ∈ IA are

processed in parallel by the assessors, several possible cases are depicted in Figure 2.6.

For case (ii), the variable OA
ji can be equal to zero or one, but for cases (iv) and (v), the

variable must be equal to one.

Constraints (2.25) determine the resource-feasible start times of the activities for

the candidates. Constraints (2.26) ensure that either activity i precedes activity j, or j

precedes i. In contrast to constraints (2.2) and (2.3), the sequencing variables Y C
ij are used

for any pair of activities involving the same candidate.

Si + pi − pAi ≤ Sj +MY C
ji (c ∈ C, i, j ∈ Ic : i 6= j) (2.25)

Y C
ij + Y C

ji = 1 (c ∈ C, i, j ∈ Ic : i > j) (2.26)

55

Paper II: MIP formulations for an application of project scheduling

Constraints (2.27)–(2.29) determine the resource-feasible start times of the activities which

can be processed in parallel. Thereby, parameter λ is used to exclude some symmetric

solutions, i.e., for two activities i > j which start at the same time, it is specified that

Ŷji = 1 and Ŷij = 0. As proposed in Kopanos et al. (2014), we set λ = 0.1.

Sj + pCj ≤ Si + pCi +MŶij (i, j ∈ IA : i > j) (2.27)

Si + pCi + λ ≤ Sj + pCj + (M + λ)Ŷji (i, j ∈ IA : i > j) (2.28)

Ŷij + Ŷji = 1 (i, j ∈ IA : i > j) (2.29)

Constraints (2.30) and (2.31) link the overlapping variables to the start times of the

activities.

(Sj + pj)− (Si + pCi) ≤MOA
ji (i, j ∈ IA : i 6= j) (2.30)

(Sj + pj − pAj + pPj)− (Si + pCi) ≤MOP
ji (i, j ∈ IP : i 6= j) (2.31)

Constraints (2.32) and (2.33) ensure that all activities that are executed in parallel do not

require more than the available number of assessors and actors, respectively. Thereby, the

term OA
ji − Ŷij = 1 if activity j starts before activity i and if both activities overlap for

the assessors. The same applies to the actors.

rAi +
∑

j∈IA:j 6=i

rAj (OA
ji − Ŷij) ≤ |A| (i ∈ IA) (2.32)

rPi +
∑

j∈IP :j 6=i

rPj (OP
ji − Ŷij) ≤ |P | (i ∈ IP) (2.33)

56

Paper II: MIP formulations for an application of project scheduling

Constraints (2.34) and (2.35) ensure that the terms OA
ji − Ŷij and OP

ji − Ŷij are greater

than or equal to zero.

Ŷij ≤ OA
ji (i, j ∈ IA : i 6= j) (2.34)

Ŷij ≤ OP
ji (i, j ∈ IP : i 6= j) (2.35)

Constraints (2.36) link the sequencing and overlapping variables to the assignment variables.

If the same assessor a is assigned to two activities i and j, then both activities cannot

overlap for the assessors.

(OA
ji − Ŷij) + ZA

ia + ZA
ja ≤ 2 (a ∈ A, i, j ∈ IA : i 6= j) (2.36)

Constraints (2.1), which determine the AC duration D, and constraints (2.6), which

specify the time window for the lunch breaks, are also included. The same applies to the

assessor-assignment constraints (2.13)–(2.15).

In sum, formulation (CT–O) reads as follows:

(CT–O)

Min D

s.t. (2.25)–(2.36)

(2.1), (2.6), (2.7), (2.13)–(2.15)

Si ≥ 0 (i ∈ I)

Y C
ij ∈ {0, 1} (c ∈ C, i, j ∈ Ic : i 6= j)

Ŷij ∈ {0, 1} (i, j ∈ IA : i 6= j)

OA
ji ∈ {0, 1} (i, j ∈ IA : i 6= j)

OP
ji ∈ {0, 1} (i, j ∈ IP : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

57

Paper II: MIP formulations for an application of project scheduling

2.4.4 Formulation DT–P

In this section, we present the discrete-time formulation with pulse variables (DT–P), which

is based on the RCPSP formulation of Pritsker et al. (1969). This formulation involves the

discretization of the planning horizon into uniform time intervals. The endpoints of a time

interval are denoted by the time points t and t+ 1, respectively (t = 0, . . . , T − 1). Binary

pulse variables Xit state if activity i starts at time t. For each time point t, resource

constraints are formulated that ensure that the resource capacities are not violated. We

extend the resource constraints of the RCPSP formulation such that the preparation and

evaluation times of the AC activities are considered.

For the ACP, the following constraints have to be taken into consideration. The AC

duration corresponds to the latest completion time of an activity, which is defined by

constraints (2.37).

D ≥
T−pi∑
t=0

(t+ pi)Xit (i ∈ I) (2.37)

Constraints (2.38) and (2.39) ensure that each activity starts once. Furthermore, con-

straints (2.39) state that the lunch breaks are scheduled within the prescribed time

window.

T−pi∑
t=0

Xit = 1 (i ∈ I\IL) (2.38)

LSL∑
t=ESL

Xit = 1 (i ∈ IL) (2.39)

58

Paper II: MIP formulations for an application of project scheduling

Constraints (2.40) to (2.42) ensure that the resource capacities are not violated. Con-

straints (2.40) ensure that each candidate performs at most one activity at the same

time t. Candidate c performs activity i at time t if the activity started between time

t− (pi − pAi) + 1 and t. Constraints (2.41) and (2.42) ensure that all activities that are

scheduled in parallel do not require more than the maximum available numbers of assessors

and actors, respectively. An assessor performs activity i at time t if the activity started

between time t− pi + 1 and t− pCi . An actor performs activity i at time t if the activity

started between time t− (pi − pAi + pPi) + 1 and t− pCi .

∑
i∈Ic

t∑
τ=max(0,t−pi+pAi +1)

Xiτ ≤ 1 (c ∈ C, t = 0, . . . , T) (2.40)

∑
i∈IA

t−pCi∑
τ=max(0,t−pi+1)

rAi Xiτ ≤ |A| (t = 0, . . . , T) (2.41)

∑
i∈IP

t−pCi∑
τ=max(0,t−pi+pAi −pPi +1)

rPi Xiτ ≤ |P | (t = 0, . . . , T) (2.42)

Additionally, the assessor-assignment constraints (2.7), (2.9), (2.11), and (2.13)–(2.15) are

also included. Constraints (2.43) link the variables Xit to the sequencing variables Y A
ij .

T−pj∑
t=0

tXjt ≥
T−pi∑
t=0

tXit −M + (pi − pCj +M)Y A
ij (i, j ∈ IA : i 6= j) (2.43)

59

Paper II: MIP formulations for an application of project scheduling

In sum, formulation (DT–P) reads as follows:

(DT–P)

Min D

s.t. (2.37)–(2.43)

(2.7), (2.9), (2.11), (2.13)–(2.15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.4.5 Formulation DT–O

In this section, we present the discrete-time formulation with on/off variables (DT–O),

which is based on the RCPSP formulation of Kopanos et al. (2014). For the RCPSP,

Kopanos et al. (2014) extend the formulation of Pritsker et al. (1969) with binary on/off

variables Wit, which specify if activity i is in progress at time t. With these variables, the

resource constraints can be modeled in a different manner than in Pritsker et al. (1969).

For the ACP, we extend the formulation DT–P (cf. Section 2.4.4) with binary on/off

variables. Due to the preparation and the evaluation time, these on/off variables must

be defined individually for candidates, assessors, and actors. However, this results in a

large number of additional variables, which has a negative impact on the performance. For

this reason, we only define the on/off variables for the candidates, and take the resource

constraints of DT–P for the assessors and the actors. Hence, the resource constraints

(2.40) for the candidates are replaced by constraints (2.44)–(2.46).

Constraints (2.44) ensure that each candidate performs at most one activity at a time.

∑
i∈Ic:t≤T−pAi −1

Wit ≤ 1 (c ∈ C, t = 0, . . . , T) (2.44)

60

Paper II: MIP formulations for an application of project scheduling

Constraints (2.45) link the pulse variables Xit to the on/off variables Wit.

Wit =
t∑

τ=max(0,t−pi+pAi +1)

Xiτ (i ∈ I, t = 0, . . . , T − pAi − 1) (2.45)

Constraints (2.46) are valid equalities that tighten the formulation.

T−pAi −1∑
t=0

Wit = pi − pAi (i ∈ I) (2.46)

In sum, formulation (DT–O) reads as follows:

(DT–O)

Min D

s.t. (2.44)–(2.46)

(2.37)–(2.39), (2.41)–(2.43)

(2.7), (2.9), (2.11), (2.13)–(2.15)

Xit ∈ {0, 1} (i ∈ I, t = 0, . . . , T)

Wit ∈ {0, 1} (i ∈ I, t = 0, . . . , T − pAi − 1)

Y A
ij ∈ {0, 1} (i, j ∈ IA : i 6= j)

Vca ∈ {0, 1} (c ∈ C, a ∈ A)

ZA
ia ∈ {0, 1} (i ∈ IA, a ∈ A)

2.5 Lower bounds

In this section, we derive some lower bounds for the AC duration. In Section 2.5.1, we

present four lower bounds based on the assessors’ workload. In Section 2.5.2, we present

two lower bounds based on the candidates’ workload.

61

Paper II: MIP formulations for an application of project scheduling

2.5.1 Lower bounds based on the assessors’ workload

In this section, we present four different lower bounds (LB1, . . . , LB4) that are based on

the assessors’ workload. In contrast to lower bounds LB1 and LB2, lower bounds LB3 and

LB4 consider the no-go relationships.

Lower bound LB1 corresponds to the average workload of the assessors increased by

the shortest preparation time of an activity. This preparation time is included because

the assessors are never required before that time. The lower bound LB1 reads as follows.

LB1 =

⌈∑
i∈IA

rAi (pi − pCi)

|A|

⌉
+ min

i∈IA
pCi

Lower bound LB2 is obtained by considering only the activities that require two

assessors. The total workload of these activities must be completed by an even number of

assessors. Hence, if the number of assessors |A| is odd, then the following lower bound

LB2 is valid.

LB2 =

∑

i∈IA:rAi =2

2(pi − pCi)

|A| − 1

+ min
i∈IA

pCi

Lower bound LB3 takes the no-go relationships of each assessor into consideration. The

workload of all activities to which assessor a cannot be assigned due to no-go relationships

is evenly distributed among the remaining |A| − 1 assessors and increased by the shortest

preparation time. For each assessor a ∈ A, this corresponds to a lower bound.

LB3 = max
a∈A

∑

c∈C:(c,a)∈N

∑
i∈Ic

rAi (pi − pCi)

|A| − 1

+ min
i∈IA

pCi

Lower bound LB4 combines the underlying ideas of LB2 and LB3. We only consider

activities that require two assessors and for which the corresponding candidates have a

no-go relationship with assessor a. For these activities, an even number of assessors is

required at any time. However, if the number of assessors is even and assessor a cannot

62

Paper II: MIP formulations for an application of project scheduling

be assigned to these activities due to the no-go relationships, it follows that one assessor

a∗ 6= a is not needed. Hence, the workload of all activities that require two assessors and

to which assessor a cannot be assigned is evenly distributed among the remaining |A| − 2

assessors. Again, the shortest preparation time of an activity is added to increase the

lower bound. Hence, if the number of assessors |A| is even, then lower bound LB4 is valid.

LB4 = max
a∈A

∑

c∈C:(c,a)∈N

∑
i∈Ic:rAi =2

2(pi − pCi)

|A| − 2

+ min
i∈IA

pCi

2.5.2 Lower bounds based on the candidates’ workload

In this section, we present two lower bounds for the AC duration based on the candidates’

workload. The first lower bound (LB5) is valid in general, and the second lower bound

(LB6) is only valid under certain conditions. Because each candidate must perform the

same tasks, we do not need to differentiate between different candidates. Hence, in the

following, we consider the tasks to be executed by each candidate and the lunch break

rather than activities for individual candidates. The set of tasks and the lunch break are

denoted by Q and l, respectively. It should be noted that the lunch break is not included in

Q. Let pq, p
C
q , and pAq be the duration, the preparation time, and the assessors’ evaluation

time of task q ∈ Q, respectively. The duration of the lunch break is pl, and its preparation

time (pCl) and evaluation time (pAl) are zero.

Because the tasks and the lunch break must be performed sequentially, lower bound

LB5 is valid.

LB5 =
∑

q∈Q∪{l}

(
pq − pAq

)
The term minq∈Q∪{l} p

A
q could be added to LB5 because the AC cannot end before all

tasks and the lunch break are completed. However, the evaluation time of the lunch break

is always equal to zero and, thus, this term is always zero. The lunch break cannot be

excluded from this term, because each candidate can have the lunch break at the end if

63

Paper II: MIP formulations for an application of project scheduling

the latest possible start time is not violated.

To motivate lower bound LB6, we first consider an illustrative example with two

candidates and three assessors. Each candidate has to perform a task (activities k1 and

k2) that requires two assessors and a lunch break (activities l1 and l2); activities k1 and k2

cannot be scheduled in parallel due to the limited number of assessors. Figure 2.7 depicts

two feasible schedules for this example. In the schedule on the left, both candidates have

the lunch break at the end. Due to the limited number of assessors, candidate C2 has a

waiting time. In this case, the AC duration D corresponds to the lower bound LB5 plus

the waiting time. In the schedule on the right, candidate C2 performs the lunch break first.

In this case, the AC duration D correspond to the lower bound LB5 plus the evaluation

time of the task.

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1

k2 l2

k1

k1

k2

k2

time
LB5 D0

C1

C2

A1

A2

A3

k1 l1

k2l2

k1

k1

k2

k2

Figure 2.7: Schedules of an example with (left) and without (right) waiting time for the
candidates

In this example, either a candidate has a waiting time, or the last activity of a candidate

does not correspond to the lunch break. With this in mind, we propose lower bound

LB6, which is valid under certain conditions. According to our industry partner, these

conditions are fulfilled by a considerable number of real-life instances.

Theorem 1. Let r be a task with the shortest evaluation time. If (i) b|A|/2c < |C| and

(ii) all tasks except task r require two or more assessors, then the following lower bound is

64

Paper II: MIP formulations for an application of project scheduling

valid.

LB6 = δ0 + min (δ1, δ2)

whereas: δ0 =
∑

q∈Q∪{l}

(
pq − pAq

)
δ1 = min

q∈Q\{r}
pAq

δ2 = min
q∈Q\{r}

(pq − pCq − pAq) + min
q∈Q\{r}

pAq −max(pl, pr − pAr)

Proof. If the conditions (i) and (ii) hold for a given problem instance, any feasible solution

belongs either to case 1 or to case 2.

• Case 1: The last activity of at least one candidate does not correspond to a lunch

break or an activity of task r. It results that after the candidate completes this last

activity, the assessors have an evaluation time of at least δ1. Hence, δ0 + δ1 is a lower

bound if the solution belongs to case 1.

• Case 2: The last activity of each candidate either corresponds to a lunch break or

an activity of task r. We show that in this case, at least one candidate has a waiting

time of at least δ2 because condition (i) implies that not all candidates can perform

an activity that requires two assessors at the same time. δ2 corresponds to the length

of the minimum time interval during which the required number of assessors exceeds

the number of available assessors.

Let k denote an arbitrary task that requires two assessors. To determine δ2, we first

consider the four possibilities for ordering the last activities such that the lunch

break or task r are performed at the end by each candidate (cf. Figure 2.8).

a) The lunch break is performed at the end and preceded by task r. Task r is

preceded by task k.

b) Task r is performed at the end and preceded by the lunch break. The lunch

65

Paper II: MIP formulations for an application of project scheduling

break is preceded by task k.

c) Task r is performed at the end and preceded by task k. The lunch break ends

some time before task k.

d) The lunch break is performed at the end and preceded by task k. Task r ends

some time before task k.

time

Dδ0t1 t2 t3 t4

a) C

A1

A2

Task k Task r Lunch

Task k

Task k

Task r

b) C

A1

A2

Task k Task rLunch

Task k

Task k

Task r

c) C

A1

A2

Task k Task r

Task k

Task k

Task r

d) C

A1

A2

Task k Lunch

Task k

Task k

Figure 2.8: All possible orders of the last activities and corresponding assessor requirements

In Figure 2.8, the time point t4 in a) and b) corresponds to the earliest possible

finish time of task k for the assessors. The time points t1, t2, and t3 correspond to

the possible start times of task k for the assessors if no candidate has a waiting time.

The values of these time points are as follows.

t1 = δ0 − pl − (pr − pAr)− (pk − pCk − pAk)

t2 = δ0 − (pr − pAr)− (pk − pCk − pAk)

t3 = δ0 − pl − (pk − pCk − pAk)

t4 = δ0 − pl − (pr − pAr) + pAk

66

Paper II: MIP formulations for an application of project scheduling

Overall, the latest possible start time of task k for the assessors corresponds to

max(t1, t2, t3) = δ0 −min(pl, pr − pAr)− (pk − pCk − pAk).

If t4 > max(t1, t2, t3) and no candidate has a waiting time, then there is a time

interval with a minimum length of t4 −max(t1, t2, t3) during which every candidate

performs a task that requires two assessors. Because b|A|/2c < |C|, the required

number of assessors exceeds the available number of assessors in this interval. To

resolve this conflict, at least one task k must be delayed, which leads to a minimum

waiting time for at least one candidate of t4 −max(t1, t2, t3).

To derive a lower bound for the AC duration, we determine the smallest possible

value of t4 and the largest possible value of max(t1, t2, t3) as follows.

t4 ≥ δ0 − pl − (pr − pAr) + min
q∈Q\{r}

pAq

max(t1, t2, t3) ≤ δ0 −min(pl, pr − pAr)− min
q∈Q\{r}

(pq − pCq − pAq)

Hence, the minimum waiting time corresponds to

t4 −max(t1, t2, t3) ≥ min
q∈Q\{r}

(pq − pCq − pAq) + min
q∈Q\{r}

pAq −max(pl, pr − pAr)

= δ2.

Thereby, we used α + β − min(α, β) = max(α, β), where α, β are two arbitrary

numbers. Hence, δ0 + δ2 is a lower bound if the solution belongs to case 2.

Overall, LB6 = δ0 + min (δ1, δ2) is a lower bound for the AC duration if conditions (i) and

(ii) hold.

In the performance analysis, we use the maximum of these problem-specific lower

bounds. If for an instance the necessary conditions for any of the lower bounds are not

67

Paper II: MIP formulations for an application of project scheduling

fulfilled, we set their respective value to 0.

LB+ = max(LB1, LB2, . . . , LB6)

2.6 Comparative analysis

We implemented the MIP formulations presented in Section 2.4 in AMPL, and we used the

Gurobi Optimizer 6.0.5 as solver. All calculations were performed on an HP workstation

with an Intel Xeon 2.67 GHz CPU and 24 GB RAM. The computational experiment was

performed using four real-life instances and 240 test instances derived from real-life data.

We limited the CPU time of the solver to 3,600 seconds for the real-life instances and to

600 seconds for the test instances. We used Gurobi with its default settings. Additionally,

we applied Gurobi with the parameter MIPFocus set to 1. The parameter MIPFocus

determines the MIP solution strategy of the solver. When this parameter is set to 1,

Gurobi focuses on quickly generating good feasible solutions rather than increasing the

lower bound. The default setting is 0, which aims to balance between finding good feasible

solutions and proving optimality. For the DT formulations, the upper bound of the AC

duration was set to T = 200 for all instances; this value is prescribed by the human

resource provider.

In Section 2.6.1, we describe the instances that we used in our computational study.

In Section 2.6.2, we discuss our computational results for the real-life instances. In

Section 2.6.3, we provide the results for the test instances. In Section 2.6.4, we compare

our problem-specific lower bounds.

2.6.1 Instances

The number of candidates |C|, assessors |A|, actors |P |, tasks |E| and activities |I| of the

four real-life instances are listed in Table 2.5. The last column indicates whether at least

68

Paper II: MIP formulations for an application of project scheduling

Table 2.5: Real-life instances

Instance |C| |A| |P | |E| |I| No-go relationships

RL1 7 10 2 5 42 no
RL2 11 11 3 5 66 no
RL3 9 11 3 5 54 yes
RL4 6 9 3 5 36 no

one no-go relationship exists. We denote the real-life instances with RL1, . . . , RL4.

To test the different MIP formulations, we additionally devised a test set with 240

test instances based on real-life data. For the RCPSP, the well-known test instances of

Kolisch and Sprecher (1997) were generated by systematically varying the complexity

factors resource strength (RS), resource factor (RF), and network complexity (NC).

These factors are only partially applicable to generate the ACP instances. The factor

NC corresponds to the average number of precedence relationships per activity. Because

there are no precedence relationships among the activities of the AC, we do not require

such a factor. The factors RF and RS correspond to the average portion of the resources

used by an activity and the scarcity of the resources, respectively. The factor RF can

be interpreted as the average number of assessors required by an activity. To ensure

that the instances are as close to reality as possible, we selected real-life tasks with given

requirements for assessors and actors. Hence, we do not require a factor such as RF . The

factor RS can be interpreted as the scarcity of the assessors. We use a similar factor to

determine the number of available assessors. In total, we generated the 240 test instances

by varying five complexity factors. Thereby, the employed experimental levels of each

complexity factor were based on real-life data provided by the human resource management

service provider. The complexity factors are as follows.

The complexity factors nC and nE correspond to the number of candidates and

tasks, respectively, and determine the number of activities of an instance. The tasks

were randomly selected from a set of 15 real-life tasks. The experimental levels nC ∈

69

Paper II: MIP formulations for an application of project scheduling

{4, 5, . . . , 10, 11} and nE ∈ {4, 5} were used.

The complexity factor aS corresponds to the average number of assignments per assessor.

This factor is used to determine the number of assessors nA of an instance. The number of

assessors is equal to the nearest integer to
∑

i∈IA r
A
i /a

S; thus, the numerator corresponds

to the total number of assessor assignments. The experimental levels aS ∈ {6.0, 8.5, 10.4}

correspond to the observed real-life minimum, average, and maximum.

The complexity factor aN corresponds to the proportion of assessors who have one or

more no-go relationships (no-go assessors). The number of no-go assessors is given by the

nearest integer to aNnA. The no-go assessors were randomly selected from the set of all

assessors. The experimental levels aN ∈ {1
6
, 1
3
} were used.

The complexity factor aR corresponds to the average number of no-go relationships

per no-go assessor. The number of no-go relationships is equal to the product of aR and

the number of no-go assessors. The no-go relationships were randomly assigned to pairs of

candidates and no-go assessors such that (1) each no-go assessor has at least one no-go

relationship and (2) at least b|A| /2c different assessors can be assigned to each candidate.

The experimental levels aR ∈ {2, 3} were used.

Because the actors are paid for each role play in which they actually perform, they are

not considered to be a critical resource. Hence, the number of actors was set to 3 for all

instances, which corresponds to the observed real-life maximum.

For each combination of complexity factor levels, an instance was generated; this leads

to 8 · 2 · 3 · 2 · 2 = 192 test instances. Additionally, 8 · 2 · 3 = 48 test instances without

no-go relationships (i.e., aN = aR = 0) were generated.

2.6.2 Computational results: real-life instances

For the real-life instances RL1, . . . , RL4, the results obtained by the solver using the MIP

formulations CT–A, CT–F, CT–O, DT–P, and DT–O with MIPFocus set to 0 are reported

in Table 2.6. We compare the objective function values (D) with the lower bounds obtained

70

Paper II: MIP formulations for an application of project scheduling

Table 2.6: Results for real-life instances with MIPFocus set to 0

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB
LB+

RL1 89 67 90 37 88 74 128 81 95 71 82
RL2 136 59 158 36 132 49 149 103 173 72 110
RL3 106 62 121 36 107 49 125 80 118 63 90
RL4 83 70 86 36 82 74 87 81 86 80 82

Table 2.7: Results for real-life instances with MIPFocus set to 1

CT–A CT–F CT–O DT–P DT–O
Instance

D LB D LB D LB D LB D LB
LB+

RL1 86 49 86 36 88 49 98 76 88 70 82
RL2 124 49 128 36 129 54 159 70 150 69 110
RL3 102 49 100 36 108 49 118 59 114 63 90
RL4 82 56 84 36 84 55 82 82 82 76 82

by the solver (LB) and the maximum value over all problem-specific lower bounds (LB+).

For each instance, the best objective function values obtained are highlighted in boldface.

Using the default solver settings, the solver obtains on average the best objective function

values with CT–O and the highest lower bounds with DT–P. For all real-life instances,

these lower bounds are smaller than or equal to the problem-specific lower bound. The

problem-specific lower bound of instance RL4 corresponds to the objective function value

obtained with CT–O, i.e., this solution is optimal.

Table 2.7 lists the results obtained by the solver with MIPFocus set to 1. Except for

CT–O, the average AC duration is improved. However, on average, the lower bounds

are worse. CT–A devises the best solutions for three instances, CT–F for two instances,

and DT–P and DT–O for one instance. The smallest instance (RL4) is even solved to

optimality using formulation DT–P. Both, CT–A and DT–O, also find a solution with an

optimal objective function value, but they do not prove optimality within the prescribed

71

Paper II: MIP formulations for an application of project scheduling

CPU time.

2.6.3 Computational results: test instances

Based on the number of activities |I|, we divide the 240 test instances into small-sized (20–

34 activities, 75 instances), medium-sized (35–49 activities, 90 instances), and large-sized

(50–66 activities, 75 instances) instances. For these three ranges of |I|, the average number

of variables and constraints for the different formulations are presented in Figure 2.9.

Regardless of the number of activities, DT–O has the highest number of variables. For

small- and medium-sized instances, DT–O has also the highest number of constraints.

However, with an increasing number of activities, the number of constraints increases

less for the DT formulations than for the CT formulations. For the large-sized instances,

CT–O has the highest number of constraints.

20–34 35–49 50–66
0

10,000

20,000

Number of activities

N
u

m
b

e
r

o
fv

a
ria

b
le

s CT-A CT-F CT-O DT-P DT-O

20–34 35–49 50–66
0

10,000

20,000

30,000

Number of activities

N
u

m
b

e
r

o
fc

o
n

st
ra

in
ts CT-A CT-F CT-O DT-P DT-O

Figure 2.9: Average number of variables (left) and constraints (right)

Table 2.8 reports the average relative gaps between the obtained solutions and the

problem-specific lower bound (gap+ = (D − LB+)/D), as well as the average relative

gaps between the obtained solutions and the lower bounds obtained by the solver (gap =

(D − LB)/D). To evaluate the quality of the solutions, we use gap+. To evaluate the

quality of the lower bounds provided by the solver, we use gap. For each solver setting

used, the best results are highlighted in boldface.

Regardless of the solver settings employed, the best gap+ is obtained with CT–A

(10.3% for MIPFocus set to 0 and 9.3% for MIPFocus set to 1), and the worst gap+ is

72

Paper II: MIP formulations for an application of project scheduling

Table 2.8: Aggregated results for all 240 test instances

Formulation
MIP-

CT–A CT–F CT–O DT–P DT–O
Focus

Average gap+ [in %]
0 10.3 15.1 12.5 27.7 19.4
1 9.3 11.1 11.2 26.8 18.5

Average gap [in %]
0 44.7 59.8 50.4 37.5 36.6
1 56.7 65.0 55.1 44.6 37.8

Number of feasible solutions
0 240 216 240 240 234
1 240 235 240 240 238

Number of optimal solutions
0 36 29 32 22 19
1 27 24 30 22 27

Number of best solutions
0 170 51 80 22 60
1 161 69 81 27 57

obtained with DT–P. In contrast, the smallest gap is obtained with DT–O. Similarly to

the results of Kopanos et al. (2014), better solutions are obtained with with DT–O than

with DT–P. We conclude that the CT formulations provide better solutions, and that

the DT formulations provide better lower bounds. For all formulations, gap considerably

exceeds gap+. We deduce that the problem-specific lower bounds are considerably higher

than the lower bounds obtained by the solver within the prescribed CPU time limit.

With CT–A, CT–O, and DT–P, feasible solutions are obtained for all 240 test instances

within the prescribed CPU time limit. With CT–F and MIPFocus set to 0, feasible

solutions are obtained only for 216 instances (i.e., 90% of the instances). With MIPFocus

set to 1, this number increases to 235 (i.e., 97.9%); feasible solutions could not be obtained

for five of the large-sized instances.

To determine the number of optimal solutions, we compare the objective function value

obtained with the maximum value over all problem-specific lower bounds and the lower

bound obtained by the solver. With 36 instances, CT–A obtains the highest number of

optimal solutions.

The number of best solutions corresponds to the number of times that a formulation

73

Paper II: MIP formulations for an application of project scheduling

generates a best solution. With MIPFocus set to 0, CT–A provides a best solution for

170 instances. This means that the other formulations generate better solutions for 70

instances only.

With MIPFocus set to 1, the average solution quality for all formulations is improved.

This is indicated by a reduction of gap+. For CT–F, this reduction is quite considerable

(from 15.1% to 11.1%). This might indicate that the MIP solution strategy used by the

solver exploits the resource-flow information in an efficient manner. However, the average

gap is larger with MIPFocus set to 1 because this solver setting focuses less on improving

the lower bounds but gives priority to the quick generation of good feasible solutions.

Therefore, the number of feasible solutions is increased for CT–F. Surprisingly, for the CT

formulations CT–A, CT–F and CT–O, the number of optimal solutions obtained is lower

with MIPFocus set to 1.

Table 2.9 reports the average results for all instances with the same problem charac-

teristics. The overall results show that with MIPFocus set to 1 the best solutions are

obtained. However, for CT–A and small-sized instances, the solver performs better with

MIPFocus set to 0.

The number of activities |I| and the level of complexity factor aS, which defines the

number of available assessors, have a significant impact on both relative gaps. In contrast,

the levels of complexity factors aN and aR, which define the no-go relationships, have no

systematic impact on the relative gaps. Parameter f corresponds to the average duration

of the activities. The performance of DT–O is affected most by the value of f . For

instances with short activities (11 ≤ f ≤ 13), the performance of DT–O is almost as good

as the performance of CT–A. However, for the instances with longer activities, the average

gaps are much higher. Surprisingly, such an effect is not observed with DT–P.

According to the results obtained by Koné et al. (2011) for the RCPSP, DT formulations

are better for instances with activities that have a short duration. Although the durations

of the AC activities are quite short, we do not observe similar results for the ACP. Overall,

74

Paper II: MIP formulations for an application of project scheduling

Table 2.9: Average gap+ for different instance characteristics

Instance MIP- Average gap+

characteristics Focus CT–A CT–F CT–O DT–P DT–O

|I|

20–34
0 1.8 3.1 2.6 10.7 11.0
1 2.4 3.0 2.6 6.8 6.0

35–49
0 8.3 14.9 11.4 28.0 12.7
1 7.8 9.3 9.5 28.0 13.8

50–66
0 21.2 31.8 23.6 44.4 36.5
1 18.1 22.0 21.8 45.4 37.3

aS

6
0 10.1 15.2 12.8 29.3 22.4
1 9.6 11.3 11.9 23.4 20.3

8
0 12.1 17.8 14.3 31.0 20.4
1 11.2 12.9 12.5 32.2 19.4

10.4
0 8.8 11.9 10.4 22.9 15.3
1 7.1 9.0 9.1 24.8 15.8

aN

0
0 10.7 16.9 12.5 25.9 18.8
1 9.2 10.6 11.0 24.9 17.5

0.17
0 10.3 14.9 12.8 27.4 19.4
1 9.4 11.3 11.2 26.9 17.5

0.33
0 10.2 14.5 12.2 29.0 19.6
1 9.3 11.2 11.2 27.6 20.0

aR

0
0 10.7 16.9 12.5 25.9 18.8
1 9.2 10.6 11.0 24.9 17.5

2
0 10.3 15.9 12.4 26.8 18.0
1 9.4 11.3 10.8 27.0 17.8

3
0 10.2 13.5 12.6 29.6 21.1
1 9.3 11.2 11.7 27.6 19.8

f

11–13
0 9.3 13.0 12.2 25.6 10.6
1 8.6 10.0 10.5 26.8 11.2

13–15
0 8.9 13.5 10.7 24.4 18.8
1 7.3 9.4 9.8 22.9 17.5

15–17
0 11.5 17.0 13.5 30.3 23.2
1 10.7 12.4 12.2 28.8 21.9

75

Paper II: MIP formulations for an application of project scheduling

Table 2.10: Comparison of problem-specific lower bounds

Based on workload of Assessors Candidates

Lower bound LB1 LB2 LB3 LB4 LB5 LB6

Number of instances with
93 90 0 8 32 22

best lower bound

the CT formulations provide the best solutions. A drawback of the DT formulations may

be the large number of variables (cf. Figure 2.9) which depend on the number of time

points considered. In the RCPSP, the number of variables is reduced considerably with a

simple preprocessing like the definition of earliest and latest start times for the activities.

However, this preprocessing is based on precedence relationships, which do not exist in

the ACP. Considering the CT formulations, CT–A performs best, and CT–O performs

better than CT–F.

2.6.4 Computational results: problem-specific lower bounds

Table 2.10 compares the six problem-specific lower bounds presented in Section 2.5. The

last row shows the number of instances for which the different lower bounds obtained the

highest values. LB1 and LB2 each provide the highest lower bounds for more than 90

instances. However, lower bounds that consider no-go relationships (LB3 and LB4) only

provide the highest values for a few instances. If the conditions for LB6 hold, this lower

bound provides the highest values for 22 instances.

2.7 Conclusions

Comparisons of alternative MIP formulations in the literature for project scheduling

problems are primarily based on generic test instances. In this study, we analyzed the

performance of two discrete-time and three continuous-time MIP formulations in a real-life

application of project scheduling. We considered the problem of planning assessment

76

Paper II: MIP formulations for an application of project scheduling

centers. For this problem, we developed new MIP formulations, and we provided problem-

specific lower bounds. In contrast to the results generally obtained for the RCPSP, our

comparative study indicates that the CT formulations outperform the DT formulations in

terms of solution quality. However, using the DT formulations, the best MIP-based lower

bounds are obtained.

The assessment center planning problem is an interesting and challenging optimization

problem for future research. An important area is the development of heuristic solution

procedures. Preliminary versions of an MIP-based heuristic and a list-scheduling heuristic

are presented in Rihm and Trautmann (2016) and Zimmermann and Trautmann (2015).

In the MIP-based heuristic, first, the activities are scheduled without assessor assignments;

second, the assessors are assigned to the activities using the CT formulation with resource-

flow variables presented in this study. In the list-scheduling heuristic, the activities are

scheduled sequentially based on problem-specific priority rules. The MIP formulations

and the problem-specific lower bounds presented in this paper can be used to analyze the

performance of such heuristic approaches.

77

Bibliography

Alvarez-Valdes, R., Tamarit, J., 1993. The project scheduling polyhedron: dimension,
facets and lifting theorems. European Journal of Operational Research 67 (2), 204–220.

Ambrosino, D., Paolucci, M., Sciomachen, A., 2015. Experimental evaluation of mixed
integer programming models for the multi-port master bay plan problem. Flexible
Services and Manufacturing Journal 27 (2–3), 263–284.

Artigues, C., Koné, O., Lopez, P., Mongeau, M., 2015. Mixed-integer linear program-
ming formulations. In: Schwindt, C., Zimmermann, J. (Eds.), Handbook on Project
Management and Scheduling Vol. 1. Springer, Cham, pp. 17–41.

Artigues, C., Michelon, P., Reusser, S., 2003. Insertion techniques for static and dynamic
resource-constrained project scheduling. European Journal of Operational Research
149 (2), 249–267.

Bianco, L., Caramia, M., 2013. A new formulation for the project scheduling problem
under limited resources. Flexible Services and Manufacturing Journal 25 (1–2), 6–24.

Bixby, R. E., 2012. A brief history of linear and mixed-integer programming computation.
Doc Math Extra Volume ISMP, 107–121.

Chen, X., Grossmann, I., Zheng, L., 2012. A comparative study of continuous-time models
for scheduling of crude oil operations in inland refineries. Computers & Chemical
Engineering 44, 141–167.

Christofides, N., Alvarez-Valdés, R., Tamarit, J. M., 1987. Project scheduling with resource
constraints: a branch and bound approach. European Journal of Operational Research
29 (3), 262–273.

Collins, J. M., Schmidt, F. L., Sanchez-Ku, M., Thomas, L., McDaniel, M., Le, H., 2003.
Can basic individual differences shed light on the construct meaning of assessment center
evaluations? International Journal of Selection and Assessment 11 (1), 17–29.

Grüter, J., Trautmann, N., Zimmermann, A., 2014. An MBLP model for scheduling
assessment centers. In: Huisman, D., Louwerse, I., Wagelmans, A. (Eds.), Operations
Research Proceedings 2013. Springer, Berlin, pp. 161–167.

Kaplan, L., 1988. Resource-constrained project scheduling with preemption of jobs. Ph.D.
thesis, University of Michigan.

78

Paper II: MIP formulations for an application of project scheduling

Klein, R., 2000. Scheduling of resource-constrained projects. Kluwer, Amsterdam.

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., Danna,
E., Gamrath, G., Gleixner, A. M., Heinz, S., et al., 2011. MIPLIB 2010. Mathematical
Programming Computation 3 (2), 103–163.

Kolisch, R., Sprecher, A., 1997. PSPLIB-a project scheduling problem library: OR
software-ORSEP operations research software exchange program. European Journal of
Operational Research 96 (1), 205–216.

Koné, O., Artigues, C., Lopez, P., Mongeau, M., 2011. Event-based MILP models for
resource-constrained project scheduling problems. Computers & Operations Research
38 (1), 3–13.

Koné, O., Artigues, C., Lopez, P., Mongeau, M., 2013. Comparison of mixed integer
linear programming models for the resource-constrained project scheduling problem
with consumption and production of resources. Flexible Services and Manufacturing
Journal 25 (1–2), 25–47.

Kopanos, G. M., Kyriakidis, T. S., Georgiadis, M. C., 2014. New continuous-time and
discrete-time mathematical formulations for resource-constrained project scheduling
problems. Computers & Chemical Engineering 68, 96–106.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact algorithm for
the resource-constrained project scheduling problem based on a new mathematical
formulation. Management Science 44 (5), 714–729.

Naber, A., Kolisch, R., 2014. MIP models for resource-constrained project scheduling with
flexible resource profiles. European Journal of Operational Research 239 (2), 335–348.

Pritsker, A. A. B., Waiters, L. J., Wolfe, P. M., 1969. Multiproject scheduling with limited
resources: a zero-one programming approach. Management Science 16 (1), 93–108.

Rihm, T., Trautmann, N., 2016. A decomposition approach for an assessment center
planning problem. In: Ruiz, R., Alvarez-Valdes, R. (Eds.), Proceedings of the 15th
International Conference on Project Management and Scheduling. Valencia, pp. 206–209.

Stefansson, H., Sigmarsdottir, S., Jensson, P., Shah, N., 2011. Discrete and continuous time
representations and mathematical models for large production scheduling problems: a
case study from the pharmaceutical industry. European Journal of Operational Research
215 (2), 383–392.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., Tavares, L. V., 2008. An evaluation
of the adequacy of project network generators with systematically sampled networks.
European Journal of Operational Research 187 (2), 511–524.

Vielma, J. P., 2015. Mixed integer linear programming formulation techniques. SIAM
Review 57 (1), 3–57.

79

Paper II: MIP formulations for an application of project scheduling

Zapata, J. C., Hodge, B. M., Reklaitis, G. V., 2008. The multimode resource constrained
multiproject scheduling problem: alternative formulations. AIChE Journal 54 (8), 2101–
2119.

Zimmermann, A., Trautmann, N., 2014. Scheduling of assessment centers: an application
of resource-constrained project scheduling. In: Fliedner, T., Kolisch, R., Naber, A.
(Eds.), Proceedings of the 14th International Conference on Project Management and
Scheduling. Munich, pp. 263–266.

Zimmermann, A., Trautmann, N., 2015. A list-scheduling approach for the planning of
assessment centers. In: Hanzálek, Z., Kendall, G., McCollum, B., Š̊ucha, P. (Eds.),
Proceedings of the Multidisciplinary International Scheduling Conference: Theory and
Application. Prague, pp. 541–554.

80

Paper III

A mixed-integer programming-based heuristic for

project scheduling with work-content constraints1

Adrian Zimmermann

Department of Business Administration

University of Bern

Contents
3.1 Introduction . 82

3.2 Illustrative example . 86

3.3 Basic MIP formulation . 87

3.4 MIP-based heuristic . 91

3.4.1 Preprocessing . 93

3.4.2 Scheduling a single activity . 95

3.4.3 Rescheduling a subset of activities 97

3.4.4 Solution for illustrative example 101

3.5 Computational experiment . 102

3.5.1 Test set . 103

3.5.2 Experimental design . 103

3.5.3 Numerical results . 105

3.6 Conclusions and outlook . 107

Bibliography . 109

1Copyright is that of Inderscience Enterprises Limited and the publisher has given permission to
include the paper in the thesis provided that the source and copyright has been acknowledged.

81

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Abstract

We consider the project scheduling problem in which each project

activity has a prescribed work content that must be completed by a

so-called work-content resource and the activities’ resource usage may

change over time. The resource usage must lie within prescribed bounds

and cannot be changed for a minimum number of consecutive periods.

The amount of resource units used determines the requirements for

further resources. The activities must be scheduled such that the project

makespan is minimized. For this problem, we devise a mixed-integer

programming-based heuristic that schedules the activities iteratively. To

improve the resource usage for multiple activities simultaneously, subsets

of activities are rescheduled each time the activities’ resource usage

appears to be inefficient. Our computational results for a standard test

set from the literature show that our heuristic outperforms the state-

of-the-art method for medium- and large-sized instances, and that for

many small-sized instances, optimal solutions are obtained.

3.1 Introduction

To remain competitive in today’s dynamic business environment, firms are often required

to execute projects such as the development of new products and services. A project is a

unique endeavor that can be divided into precedence-interrelated activities that require

time and scarce resources for their completion. The total amount of resource units used

by an activity corresponds to the work content of that activity. Traditional problem

formulations in the project-scheduling literature, such as the resource-constrained project

scheduling problem (RCPSP) and its multi-mode version (MRCPSP), are based on the

assumption that the activities have a constant resource usage during each period of their

execution. Although the MRCPSP considers alternative execution modes with different

82

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

durations for the activities, each mode still involves a constant resource usage. In practice,

however, project managers are often able to change the resource usage of an activity over

time. For example, let an activity have a work content of three person days. In the RCPSP,

the activity may be completed in three days by one person. In the MRCPSP, an additional

execution mode might be considered that involves three persons on one day. Without the

assumption of a constant resource usage, however, the activity may also be completed

in two days by one person on one day and two persons on the other day. This flexible

resource usage allows project managers to more efficiently utilize the scarce resources.

The relevance of this concept is further emphasized by the fact that most commercially

available project-management software packages provide the option to specify the work

content of the activities.

We consider the problem of scheduling a project with work-content constraints (cf.

Fündeling, 2006). Given are a set of activities, a single work-content resource (e.g., labor),

and a set of non-work-content resources (e.g., different types of tools). The work-content

resource and the non-work-content resources are renewable, and they have a constant

capacity over time. Each activity has a prescribed work content that must be processed

by the work-content resource. The work-content constraints are as follows. In each period

during its execution, the amount of the work-content resource used by an activity must lie

within prescribed upper and lower bounds. Furthermore, a minimum time lag between

consecutive changes in an activity’s usage of the work-content resource is imposed. This

time lag is referred to as the minimum block length. The requirements for the non-work-

content resources depend linearly on the amount of the work-content resource used; an

increase in the usage of the work-content resource leads to a proportional increase in the

usage of the non-work-content resources. In each period, an activity may only use a discrete

number of resource units. Hence, any fractional requirements for the non-work-content

resources are rounded up to the closest integer. The activities must be executed without

interruption and are subject to completion-start precedence relationships, i.e., an activity

83

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

can only start once all its predecessor activities have been completed. The problem

consists of determining the start times and the resource usage of the activities such that

the project makespan is minimized, the precedence relationships are satisfied, the resource

capacities are never exceeded, the entire work content of each activity is processed, and

the work-content constraints are met.

For this problem, Fündeling (2006) develops an exact branch-and-bound-based solution

procedure. To assess the performance of the procedure, the author devises a test set that

consists of instances with up to 200 activities. The computational results indicate that

the CPU time required by the procedure becomes prohibitively large even for small-sized

instances. Furthermore, the problem is shown to be NP-hard. To address medium-

and large-sized instances, Fündeling and Trautmann (2010) present a priority-rule-based

heuristic. The authors apply the heuristic to the test set devised by Fündeling (2006).

Their computational results indicate that the heuristic procedure generates good feasible

solutions in short CPU time. Baumann and Trautmann (2013) devise a mixed-integer

linear programming (MIP) formulation and apply it to 480 problem instances with 10

activities. Although most problem instances are solved to optimality, for some instances no

feasible solution is obtained in reasonable CPU time. Their computational results indicate

that an exact MIP-based approach is suitable for solving small-sized instances. Hence,

the question arises of whether the problem can be decomposed into smaller subproblems

that can be solved efficiently using mixed-integer linear programming. Such MIP-based

decomposition approaches have been applied successfully to different types of scheduling

problems. For example, Fırat and Hurkens (2012) apply an MIP-based heuristic to a

workforce scheduling problem in which the activities require employees with different skills,

and Toffolo et al. (2016) apply an MIP-based heuristic to a variant of the MRCPSP with

multiple projects. In the literature, different scheduling problems have been studied in

which the activities’ resource usage may change over time. However, none of these problems

incorporate all the constraints considered here. Dror et al. (1987), Hackman and Leachman

84

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

(1989), Jozefowska and Weglarz (1998), Kovács (2003), Márkus et al. (2003), and Kis

(2005) consider the scheduling of activities that may use a continuous number of resource

units. Kuhlmann (2003) considers the problem in which the activities’ resource usage

may change over time but without any further restrictions. Ranjbaer and Kianfar (2010)

propose a genetic algorithm for a variant of the problem in which only the work-content

resource is considered. Their algorithm might exclude optimal solutions because not all

possible resource usages of the activities are considered. Naber and Kolisch (2014) propose

four alternative MIP formulations for a variant of the problem in which the work content

processed may be larger than the prescribed work content, and the activities may use a

continuous number of resource units. Baumann and Trautmann (2014) apply the MIP

of Baumann and Trautmann (2013) without the integrality constraints for the resource

usage. Their computational results show that the computational burden is considerably

reduced when these constraints are omitted.

In this paper, we propose a novel MIP-based heuristic procedure for scheduling

projects with work-content constraints. Our heuristic starts by ordering the activities in a

precedence-feasible list. Based on their order in the list, the activities are then scheduled

iteratively. This iterative approach allows the generation of feasible schedules in short

CPU time, but it may also lead to an inefficient resource usage. Hence, each time an

activity has been scheduled, the procedure determines whether the resource usage of that

activity appears to be inefficient. In that case, a subset of activities is rescheduled to

determine a more efficient resource usage among the activities. For the scheduling of a

single activity and the rescheduling of a subset of activities, we devise corresponding MIP

formulations. For determining whether an activity’s resource usage is inefficient, we provide

an appropriate set of conditions. If all these conditions are met, then a rescheduling step

is performed. Furthermore, we propose an MIP-based preprocessing routine that can be

used to enhance the performance of our heuristic procedure. To evaluate the performance

of the heuristic, we have applied it to the test set devised by Fündeling (2006), which

85

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Table 3.1: Illustrative example: parameter values of activities

Activity 1 2 3 4 5 6 7 8 9 10

Work content 47 54 40 26 45 94 65 49 49 67
Upper bound 12 8 9 10 9 13 10 5 11 12
Lower bound 2 2 7 2 4 4 3 2 7 6
Predecessors – – {1, 2} {1} {2, 4} {3} {5} {6} {3, 6} {7, 8}

consists of instances with 10, 20, 40, 100 and 200 activities. Our computational results

indicate that the heuristic generates very good solutions for small-sized problem instances

and that it outperforms the state-of-the-art method for medium- and large-sized instances.

Indeed, for a large number of small-sized instances, the proposed heuristic obtains optimal

solutions in very short CPU time.

The remainder of this paper is structured as follows. In Section 3.2, we illustrate the

scheduling problem using an example. In Section 3.3, we present the MIP formulation

of Baumann and Trautmann (2013). This MIP formulation is the basis for the MIP

formulations employed in our heuristic procedure. In Section 3.4, we present our MIP-

based heuristic. In Section 3.5, we describe our computational experiment. In Section 3.6,

we provide some concluding remarks and an outlook on future research.

3.2 Illustrative example

In this section, we present an example to illustrate the scheduling problem. The example

involves 10 activities that require only the work-content resource. The work-content

resource has a capacity of 13 units, and the minimum block length is 3 periods. For each

activity, Table 3.1 lists the work content and the bounds on the usage of the work-content

resource per period (in resource units). The set of immediate predecessors is listed in row

five.

We applied the MIP of Baumann and Trautmann (2013) to solve the illustrative

86

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

1

2

4

3

5
6

8

9
7

10

48

13

Figure 3.1: Illustrative example: best schedule obtained by the MIP of Baumann and
Trautmann (2013) after 600 seconds of CPU time

example. The best schedule obtained by the MIP after 600 seconds of CPU time is

presented in Figure 3.1. The makespan is 48 periods, and the MIP-based lower bound

is 45 periods. The best makespan obtained by the heuristic of Fündeling and Trautmann

(2010) is 52 periods.

3.3 Basic MIP formulation

The mixed-integer linear programs employed in our heuristic procedure are based on the

MIP formulation of Baumann and Trautmann (2013). For completeness, we include their

MIP formulation in this section. The nomenclature is provided in Table 3.2.

For each activity i ∈ V , the set of relevant periods Ti must be determined. The decision

variables related to activity i are only defined for these periods. The set of relevant periods

is determined based on an activity’s earliest start time ESTi and on its latest finish time

LFTi. The earliest start times are calculated by forward recursion. In this way, the earliest

start time of an activity i is set to the maximum earliest finish time over all its predecessor

activities, i.e., ESTi = maxj∈Pi
(ESTj + p

j
), where p

j
= dwj/rjk∗e is a lower bound for

the duration of an activity j. Similarly, the latest finish times are calculated by backward

recursion.

Using this notation, the MIP formulation reads as follows. The objective is to minimize

the makespan of the project. Here, the dummy activity n + 1 represents the end of

87

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Table 3.2: Nomenclature

Indices

i, j Activity

k Resource

k∗ Work-content resource

t Period that starts at time t− 1 and ends at time t

Sets

Pi Set of immediate predecessors of activity i

R Set of resources

Ri Set of resources required by activity i

T Set of periods

Ti Relevant periods for activity i (Ti = {ESTi + 1, . . . , LFTi, LFTi + 1})
V Set of activities (V = {1, . . . , n+ 1})
V r Set of real activities (V r = {1, . . . , n})
V r
kt Set of real activities that can be processed in period t by resource k

Parameters

ESTi Earliest start time of activity i

LFTi Latest finish time of activity i

m Minimum block length

n Number of activities

pi Upper bound for the duration of an activity i, i.e., pi = bwi/rik∗c
p
i

Lower bound for the duration of an activity i, i.e., p
i

= dwi/rik∗e
Rk Capacity of resource k

rik Upper bound for the amount of resource k used by activity i

rik Lower bound for the amount of resource k used by activity i

sik Incremental increase of the usage of resource k ∈ R \ {k∗} by activity i per

additional unit of work-content resource

wi Work content of activity i

Decision variables

Dit

{
= 1, if usage of resource k∗ by activity i in period t differs from t− 1

= 0, otherwise

Rikt Amount of resource k ∈ R used by activity i in period t

Xit

{
= 1, if activity i is processed in period t ∈ Ti
= 0, otherwise

88

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

the project because it can only start after all real activities have been completed. Con-

straint (3.1) ensures that the dummy activity n+ 1 is scheduled once within the planning

horizon.

Min.
∑
t∈Tn+1

tXn+1,t − 1

s.t.
∑
t∈Tn+1

Xn+1,t = 1 (3.1)

Constraints (3.2) ensure that an activity cannot be interrupted once it has started.

Xi,t−1 −
∑

t′∈Ti:t′<t

Rik∗t′

wi
≤ Xit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (3.2)

Constraints (3.3) guarantee that the total number of work-content resource units used by

an activity coincides with its work content.

∑
t∈Ti

Rik∗t = wi (i ∈ V r) (3.3)

Constraints (3.4) and (3.5) ensure that the number of work-content resource units used by

an activity lies within the prescribed lower and upper bound, respectively.

rik∗Xit ≤ Rik∗t (i ∈ V r; t ∈ Ti) (3.4)

rik∗Xit ≥ Rik∗t (i ∈ V r; t ∈ Ti) (3.5)

89

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Constraints (3.6) to (3.8) force the value of variable Dit to be 1 if the resource usage

changes between two consecutive periods t− 1 and t.

Rik∗t ≤ rik∗Dit (i ∈ V r; t = ESTi + 1) (3.6)

Rik∗t −Rik∗,t−1 ≤ rik∗Dit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (3.7)

Rik∗,t−1 −Rik∗t ≤ rik∗Dit (i ∈ V r; t ∈ Ti : t > ESTi + 1) (3.8)

Constraints (3.9) ensure that an activity is not processed after its latest finish time.

Xit = 0 (i ∈ V r; t = LFTi + 1) (3.9)

Constraints (3.10) ensure that the number of periods between two consecutive changes in

the resource usage is larger than or equal to the prescribed minimum block length.

m−1∑
t′=0

Di,t+t′ ≤ 1 (i ∈ V r; t ∈ Ti : t ≤ LFTi − (m− 2)) (3.10)

Constraints (3.11) ensure that an activity can only start after the work content of all its

predecessor activities has been completed.

Xit ≤
∑

t′∈Tj :t′<t

Rjk∗t′

wj
(i ∈ V ; j ∈ Pi; t ∈ Ti) (3.11)

Constraints (3.12) calculate the requirements of the non-work-content resources of an

activity in each period.

rikXit + sik(Rik∗t − rik∗) ≤ Rikt (i ∈ V r; k ∈ Ri \ {k∗}; t ∈ Ti) (3.12)

90

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Constraints (3.13) ensure that the resource capacities are never exceeded.

∑
i∈V r

kt

Rikt ≤ Rk (k ∈ R; t ∈ T) (3.13)

In sum, the MIP formulation (BT13) of Baumann and Trautmann (2013) reads as follows.

(BT13)

Min
∑
t∈Tn+1

tXn+1,t − 1

s.t. (3.1)–(3.13)

Rikt ∈ Z≥0 (i ∈ V r; k ∈ Ri; t ∈ Ti)

Xit ∈ {0, 1} (i ∈ V ; t ∈ Ti)

Dit ∈ {0, 1} (i ∈ V r; t ∈ Ti)

For further information, we refer to Baumann and Trautmann (2013).

3.4 MIP-based heuristic

In this section, we present our MIP-based heuristic procedure for scheduling a project with

work-content constraints. The heuristic scheme is depicted as a flowchart in Figure 3.2.

First, a preprocessing routine is performed that aims at determining tighter lower and upper

bounds for the activities’ usage of the work-content resource. Subsequently, the activities

are ordered in a precedence-feasible list L using either of the priority rules proposed

by Fündeling and Trautmann (2010). Then, the activities are scheduled iteratively based

on their order in L. The sequential scheduling of the activities enables the construction of

a feasible schedule in short CPU time. However, it may also lead to an inefficient resource

usage. Hence, each time that the scheduling of an activity increases the makespan of the

partial schedule constructed thus far, the resource usage of that activity is examined. If

this examination indicates that the resource usage is inefficient, then a subset of activities

91

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Start

Perform preprocessing

Determine activity list L

Schedule single activity

Reschedule?

Reschedule activity subset All activities
scheduled?

Stop

Yes

No No

Yes

Figure 3.2: Flowchart: overview of the MIP-based heuristic procedure

is rescheduled. By considering several activities simultaneously in this rescheduling step, a

more efficient resource usage may be determined. The heuristic procedure stops once all

activities have been scheduled.

To determine tighter bounds for the activities’ usage of the work-content resource,

we solve the mixed-integer linear programs M-Pmin and M-Pmax (cf. Subsection 3.4.1).

To schedule a single activity and to reschedule each subset of activities, we solve the

mixed-integer linear programs M-SI (cf. Subsection 3.4.2) and M-RE (cf. Subsection 3.4.3),

respectively. In Subsection 3.4.4, we demonstrate how the heuristic procedure generates

an optimal schedule for the illustrative example presented in Section 3.2.

A preliminary version of this heuristic can be found in Zimmermann (2016). That

version of the heuristic does not include the preprocessing routine, and the rescheduling

step is performed for a fixed number of activities each time a prescribed number of

iterations has passed.

In the following, we denote the makespan of the partial schedule by C, and the

92

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

i
rik∗ = 3

rik∗ = 1

not feasible

i

rik∗ = 3

rik∗ = 1

feasible

Figure 3.3: Maximum resource usage lower than prescribed upper bound

j

rjk∗ = 4
rjk∗ = 3

not feasible

j

rjk∗ = 4
rjk∗ = 3

feasible

Figure 3.4: Minimum resource usage higher than prescribed lower bound

remaining capacity of resource k in each period t by Rkt. Notably, the parameter Rkt

replaces the parameter Rk in constraints (3.13). At the start of the heuristic procedure,

C equals 0, and Rkt equals the capacity of the respective resource k ∈ R. We use Ci to

denote the completion time of an activity. Furthermore, we assume that the planning

horizon is sufficiently large, i.e., we define T = {1, . . . ,
∑

i∈V r pi + 1}, where pi = bwi/rik∗c

is an upper bound for the duration of an activity i.

3.4.1 Preprocessing

Due to the minimum block length, an activity’s usage of the work-content resource k∗

might never be as high as the prescribed upper bound rik∗ or as low as the prescribed

lower bound rik∗ . For example, we consider two activities, i and j. Activity i has a work

content of wi = 7 units, and the bounds are rik∗ = 3 and rik∗ = 1. If the minimum block

length is 2 periods, then no maximum resource usage of 3 units is possible (see Figure 3.3).

On the other hand, activity j has a work content of wj = 8 units, and the bounds are

rjk∗ = 4 and rjk∗ = 3. Again, if the minimum block length is 2 periods, then no minimum

resource usage of 3 units is possible (see Figure 3.4).

93

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

To calculate the minimum or maximum resource requirements of an activity, the

resource usage of that activity must be determined over its entire duration such that all

work-content constraints are met and the resource capacities are never exceeded. Fündeling

and Trautmann (2010) show that the problem of determining a feasible resource usage of

an activity is NP-complete. They formulate this problem as a SUBSET SUM problem and

solve it using a dynamic-programming-based approach (cf. Gary and Johnson, 1979). In

this work, we employ an MIP-based approach; to calculate the minimum and maximum

resource requirements of an activity, the mixed-integer linear programs M-Pmin and M-Pmax

are solved, respectively. These two programs are solved once for each activity i ∈ V r.

The program M-Pmin is based on the following formulation.

(M-Pmin)

Min Ri∗k∗1

s.t. (3.2)–(3.10), (3.12), (3.13)

Xi∗1 = 1 (3.14)

Ri∗kt ∈ Z≥0 (k ∈ Ri∗ ; t ∈ Ti∗)

Xi∗t ∈ {0, 1} (t ∈ Ti∗)

Di∗t ∈ {0, 1} (t ∈ Ti∗)

The objective function minimizes the resource usage of the work-content resource k∗ by

the activity under consideration i∗ in period t = 1. From the formulation of Baumann

and Trautmann (2013), the constraints (3.2) to (3.10), (3.12), and (3.13) are included.

These constraints are formulated only for activity i∗. Furthermore, the resource-capacity

constraints, i.e., constraints (3.13), consider the resource usage of only activity i∗. Since

the makespan and the precedence relationships do not have to be considered at this point,

constraints (3.1) and (3.11) are omitted. Constraint (3.14) ensures that the activity is

processed in the first period. The program M-Pmax is based on the same formulation

as M-Pmin, except that the objective function maximizes the resource usage in the first

94

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

i
j

l

3

115

i
j

l

3

106

Figure 3.5: Makespan reduction by delaying the start of activity l

period.

The set of relevant time periods for activity i∗ is determined as follows. The earliest

start time ESTi∗ is set to 0, and the latest finish time LFTi∗ corresponds to the upper

bound for the activity duration, i.e., LFTi∗ = pi∗ .

Let r∗i and r∗i denote the tightened lower and upper bounds for the usage of the work-

content resource as determined by M-Pmin and M-Pmax, respectively. Constraints (3.4)

and (3.5) are replaced by constraints (3.4∗) and (3.5∗), respectively.

r∗iXit ≤ Rik∗t (i ∈ V r; t ∈ Ti) (3.4∗)

r∗iXit ≥ Rik∗t (i ∈ V r; t ∈ Ti) (3.5∗)

3.4.2 Scheduling a single activity

Baumann et al. (2015) show that, due to the minimum-block-length constraint, it may

be optimal to delay the start of an activity rather than scheduling it as early as possible.

Figure 3.5 presents an example with three activities, i, j, and l; a work-content resource

with capacity 3; and a minimum block length of 2 periods. By delaying the start of

activity l, the makespan is reduced by one period. Hence, when scheduling a single activity,

we set the minimization of its completion time as the objective.

95

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

The MIP formulation (M-SI) for scheduling a single activity i∗ reads as follows.

(M-SI)

Min. Ci∗ +
1

LFTi∗wi∗

∑
t∈Ti∗

tRi∗k∗t

s.t. (3.2),(3.3),(3.6)–(3.10),(3.12),(3.13)

(3.4∗), (3.5∗)

Ci∗ ≥ (t− 1)(Xi∗,t−1 −Xi∗t) (t ∈ Ti∗ : t > ESTi∗ + 1) (3.15)

Ri∗kt ∈ Z≥0 (k ∈ Ri∗ ; t ∈ Ti∗)

Xi∗t ∈ {0, 1} (t ∈ Ti∗)

Di∗t ∈ {0, 1} (t ∈ Ti∗)

The objective function minimizes the completion time of the activity under consideration i∗.

The second term of the objective function minimizes the activity’s usage of the work-content

resource in the later periods of its execution. An upper bound for the maximum value of

the second term is given by multiplying the entire work content by the latest finish time of

an activity. The second term is used to reduce the resource usage at the end of the partial

schedule. From the formulation of Baumann and Trautmann (2013), the constraints (3.2),

(3.3), (3.6) to (3.10), (3.12), and (3.13) are included, and constraints (3.4∗) and (3.5∗) are

defined as described in Section 3.4.1. Similar to the MIP formulations M-Pmin and M-Pmax,

these constraints are formulated only for activity i∗, constraints (3.1) and (3.11) are omitted,

and constraints (3.13) consider the resource usage of only activity i∗. Constraints (3.15)

determine the completion time of activity i∗.

The set of relevant time periods for activity i∗ is determined as follows. The earliest

start time of activity i∗ is given by the maximum completion time over all its predecessors,

i.e., ESTi∗ = maxj∈Pi∗ Cj . If Pi∗ = ∅, then we set ESTi∗ = 0. The latest finish time LFTi∗

corresponds to the makespan of the current partial schedule plus the upper bound for the

activity duration, i.e., LFTi∗ = C + pi∗ .

Once an activity has been scheduled, the resource capacitiesRkt are updated. If Ci∗ > C,

96

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

i j

4

4

i

j
4

3

Figure 3.6: Makespan reduction by decreasing the resource usage of activities i and j

then the makespan of the partial schedule is set to C = Ci∗ .

3.4.3 Rescheduling a subset of activities

Fündeling and Trautmann (2010) show that it may be optimal to reduce the resource usage

of an activity by increasing its duration because it allows more activities to be executed in

parallel. Figure 3.6 depicts an example with two activities, i and j; a work-content resource

with capacity 4; and a minimum block length of 2 periods. During the execution of both

activities, either 2 or 3 units of the work-content resource must be used. By decreasing the

resource usage of activities i and j, both activities can be executed in parallel rather than

sequentially, and the makespan is reduced by one period. The inefficient resource usage

depicted in Figure 3.6 may result from minimizing the completion times of individual

activities, as described in Section 3.4.2. Hence, a rescheduling step is employed that aims

to reduce such inefficiencies by considering multiple activities simultaneously.

To determine whether a rescheduling step is performed, the following procedure is

applied. Let i∗ be the activity that has been scheduled in the current iteration, and let V C

be the set of activities that have been scheduled thus far. We define C ′ as the makespan of

the partial schedule before activity i∗ has been scheduled, i.e., C ′ = maxj∈V C\{i∗}Cj, and

we define a time window T that consists of the periods T = {max(1, C ′− pi∗ + 1), . . . , C ′}.

The rescheduling step is performed each time the following three conditions are met.

1. By scheduling activity i∗, the makespan of the partial schedule is increased, i.e.,

Ci∗ > C ′.

97

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

i∗

C ′C ′ − pi∗

i∗

C ′C ′ − pi∗

Figure 3.7: Partial schedules that meet the first two conditions (left) and all three conditions
(right) that are required for performing a rescheduling step

2. Within the time window T , the sum of the remaining capacity of the work-content

resource is larger than zero, i.e.,
∑

t∈T Rk∗t > 0.

3. Within the time window T , the usage of the work-content resource k∗ by activity

i∗ is less than or equal to half of the remaining resource capacity before activity i∗

has been scheduled, i.e.,
∑

t∈T Ri∗k∗t ≤ 0.5
∑

t∈T (Rk∗t + Ri∗k∗t). In particular, the

current resource usage may be inefficient because no more than 50% of the available

resource capacity within the time window T was used when scheduling activity i∗. In

the case that
∑

t∈T Ri∗k∗t =
∑

t∈T Rk∗t = 0, i.e., activity i∗ does not use any resource

capacities in T because there are none available, the secondary condition prevents a

rescheduling.

Figure 3.7 depicts two partial schedules. The dark-gray area represents the overall resource

usage before activity i∗ has been scheduled. In both cases, the first and second conditions

are met because the scheduling of activity i∗ increases the makespan, and there are still

resource capacities available within the time window T (white area). However, the third

condition is only met by the partial schedule on the right. The available resource capacity

before activity i∗ has been scheduled is 6 units. In the partial schedule on the left, activity

i∗ uses 4 units, and the third condition is not met because 4 > 0.5 · 6. In the partial

schedule on the right, activity i∗ only uses 2 units, and the condition is met because

2 ≤ 0.5 · 6.

To select the activities for rescheduling, the following procedure is applied. Let Vs be

the subset of activities that are selected for rescheduling. The number of activities included

98

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

in Vs determines the size of the rescheduling problem. If the size of the rescheduling

problem becomes too large, then the mixed-integer linear program might be unable to

determine a more efficient resource usage in reasonable CPU time. Hence, only a small

number of activities should be considered in the rescheduling step. We define γ as the

number of activities initially included in Vs. The subset Vs consists of γ activities with the

greatest completion times over all activities that have been scheduled thus far. Additionally,

all activities that meet the following conditions are included in Vs. Let S be the minimum

start time over all γ activities initially included in Vs. If an activity j that is not yet

included in Vs is completed immediately before or some time after this minimum start

time, i.e., Cj ≥ S, then activity j is also included in Vs.

The MIP formulation (M-RE) for rescheduling the activities in the subset Vs reads as

follows.

(M-RE)

Min.
∑
t∈Tn+1

tXn+1,t − 1 +
1∑

i∈Vs LFTi

∑
i∈Vs

Ci

s.t. (3.1)–(3.3), (3.6)–(3.10), (3.12), (3.13)

(3.4∗), (3.5∗)

Ci ≥ (t− 1)(Xi,t−1 −Xit)

(i ∈ Vs; t ∈ Ti : t > ESTi + 1) (3.16)

Xit ≤
∑

t′∈Tj :t′<t

Rjk∗t′

wj

(i ∈ Vs ∪ {n+ 1}; j ∈ Pi ∩ Vs; t ∈ Ti) (3.17)

Rikt ∈ Z≥0 (i ∈ Vs; k ∈ Ri; t ∈ Ti)

Xit ∈ {0, 1} (i ∈ Vs ∪ {n+ 1}; t ∈ Ti)

Dit ∈ {0, 1} (i ∈ Vs; t ∈ Ti)

The objective function minimizes the makespan of the partial schedule. The dummy

activity n+ 1 represents the end of the partial schedule because it can only start after all

99

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

activities in the partial schedule have been completed. The second term of the objective

function minimizes the sum of the completion times of the activities in Vs. An upper bound

for the maximum value of the second term is given by the sum of the latest finish times of

all activities in Vs. The second term is used to avoid scheduling uncritical activities that

do not affect the makespan at the end of the partial schedule. From the MIP formulation

of Baumann and Trautmann (2013), the constraints (3.1) to (3.3), (3.6) to (3.10), (3.12),

and (3.13) are included, and constraints (3.4∗) and (3.5∗) are defined as described in

Section 3.4.1. These constraints are formulated only for the activities in Vs and, in the

case of constraint (3.1), for the dummy activity n+ 1. Constraints (3.16) determine the

completion times of all activities in Vs. Constraints (3.17) ensure that any precedence

relationships among the activities in Vs and the dummy activity n+ 1 are satisfied.

To determine the set of relevant time periods for the activities in Vs, the following

procedure is applied. For the γ activities with the greatest completion times, the set of

relevant time periods is determined as follows. The activities’ earliest start time and latest

finish time are set to the smallest start time and the greatest finish time over all activities

in Vs, respectively. The resulting time windows are further increased by reducing the

earliest start times as follows. Let pi be the duration of activity i in the current partial

schedule, i.e., pi =
∑

t∈Ti Xit. Then, ESTi = ESTi − (pi − pi). Activities for which the

value of pi − pi is large use more resource units in each period during their execution. By

increasing their time windows accordingly, this resource usage might be reduced and more

activities can be processed in parallel. For any activity i in Vs that does not belong to the

γ activities with the greatest completion times, the earliest start time and the latest finish

time are set to their current start time minus 5 periods and their current completion time

plus 5 periods, respectively. By limiting the time windows of these activities, the size of

the rescheduling problem can be reduced. If the earliest start time violates the precedence

relationships with the activities not included in Vs, then the earliest start time is set to

ESTi = maxj∈Pi\Vs Cj.

100

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

If the current makespan C cannot be improved during the rescheduling step, then the

current solution is retained. Notably, the current solution is also used as an initial solution

for M-RE.

3.4.4 Solution for illustrative example

We illustrate how the MIP-based heuristic procedure generates an optimal schedule for the

example presented in Section 3.2. Using the so-called longest path following priority rule

of Fündeling and Trautmann (2010) (cf. Subsection 3.5.2), the precedence-feasible list L =

(1, 2, 4, 3, 5, 6, 8, 7, 10, 9) is generated. We set γ = 4. Figure 3.8 depicts the construction

of the schedule. After the first five iterations, a first rescheduling step is performed because

the scheduling of activity 5 increases the makespan of the partial schedule, but none of the

available resource capacities before the completion of activity 3 are used. The activities for

rescheduling are selected as follows. First, the four activities with the largest completion

times are selected, i.e., activities 2 to 5. Then, because activity 1 has a completion time

that is greater than the minimum start time over these four activities, activity 1 is also

selected. During the rescheduling of activities 1 to 5, the makespan of the partial schedule

is reduced by one period. Notably, the resource usage of activity 4 is reduced such that

activities 3 and 5 can start earlier. During the next five iterations, activities 6 to 10 are

scheduled. After the scheduling of activities 8 and 10, respectively, a rescheduling step

is performed. However, these two rescheduling steps do not lead to a reduction of the

makespan. After the scheduling of activity 9, a final rescheduling for activities 6 to 10

is performed. Consequently, the resource usages of activities 6 to 8 are adjusted such

that activity 9 is completed before the start of activity 10. The resulting makespan of 45

periods corresponds to the optimal solution, and the procedure required 13 seconds of

CPU time.

101

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

1

2

4

3
5

20

13

(i)

1

2

4

3

5

19

13

(ii)

1

2

4

3

5 6

7

8
10

9

51

13

(iii)

1

2

4

3

5
6

7

8

9
10

45

13

(iv)

Figure 3.8: Illustrative example: generated (partial) schedule after five iterations (i), after
first rescheduling step (ii), after ten iterations (iii), and after final rescheduling step (iv)

3.5 Computational experiment

We applied the MIP-based heuristic procedure presented in Section 3.4 to the set of

test instances devised by Fündeling (2006). In Subsection 3.5.1, we describe the test

instances. In Subsection 3.5.2, we explain the setting for our computational experiment.

In Subsection 3.5.3, we report our numerical results.

102

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

3.5.1 Test set

The test set of Fündeling (2006) consists of 5 · 480 = 2400 instances with 10, 20, 40, 100,

and 200 activities. Each instance involves one work-content resource and up to three non-

work-content resources. The instances were generated by varying the following complexity

factors.

• The order strength OS corresponds to the ratio of the total number of precedence

relationships to the maximum number of all possible precedence relationships. The

experimental levels OS ∈ {0.25, 0.50, 0.75} were used. For example, OS = 0.25

implies that there are few precedence relationships relative to the number of project

activities.

• The resource factor RF corresponds to the mean percentage of resources used by

an activity. The experimental levels RF ∈ {0.25, 0.50, 0.75, 1.00} were used. For

example, RF = 0.25 implies that all activities require the work-content resource

only.

• The resource strength RS indicates the scarcity of the resources. The experimental

levels RS ∈ {0.00, 0.25, 0.50, 0.75} were used. For example, RS = 0 implies that for

each resource, there exists at least one activity that requires the resource’s maximum

capacity.

For each combination of complexity factor levels, 10 instances were generated. The

minimum block length was randomly chosen from the set {2, 3, 4}, and the parameter

values for wi, rik∗ , and rik∗ were randomly chosen such that a feasible solution exists for

each instance. For further information, we refer to Fündeling (2006).

3.5.2 Experimental design

We implemented our heuristic procedure in AMPL, and we used the Gurobi Optimizer 6.5

to solve M-Pmin, M-Pmax, M-SI, and M-RE. To limit the run time of our heuristic, we set

103

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

the CPU time limit for M-RE to 5 seconds. After some preliminary tests, we set the value

of γ to 4. By considering a small number of activities simultaneously, M-RE can obtain

good feasible solutions within the prescribed time limit. We did not prescribe a time limit

for M-Pmin, M-Pmax, and M-SI because the CPU time required to solve these programs is

short.

The performance of our heuristic procedure depends on the order of the activities in

the precedence-feasible list. Hence, we generated a list with each of the three priority rules

proposed by Fündeling and Trautmann (2010). The priority rules are as follows.

• Longest Path Following (LPF) rule: The priority of an activity i is determined by

the minimum time lag between its start time and the end of the project. To compute

this priority value, the lower bound for the activity duration p
i

= dwi/rik∗e is used.

• Most Total Successors (MTS) rule: The priority of an activity i equals the total

number of activities that cannot be started before the completion of activity i.

• Most Work content Remaining (MWR) rule: The priority value of an activity i equals

its work content plus the work content of all its immediate and indirect successor

activities.

If several activities are eligible for the same position in the list, then ties are broken by

the lowest activity index. For each list, we applied our heuristic procedure to construct a

single schedule. Thus, we obtained three schedules for each instance.

We compare our heuristic procedure to the priority-rule heuristic of Fündeling and

Trautmann (2010) and the MIP formulation of Baumann and Trautmann (2013). Fündeling

and Trautmann (2010) applied their schedule-generation scheme for each of the three

priority rules described above. Furthermore, they employed random priority values in a

multi-pass experiment with a CPU time limit of 30 seconds. Their computations were

performed on a standard PC with a 3.4GHz Intel Pentium IV CPU. We implemented the

MIP of Baumann and Trautmann (2013) in AMPL, and used the Gurobi Optimizer 6.5 as

104

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

the solver. Before applying the MIP, we performed the preprocessing routine described in

Section 3.4.1. To generate feasible solutions for the instances with more than 10 activities,

the CPU time required by the MIP becomes prohibitively long. Hence, we applied the

MIP to the 480 instances with 10 activities only. Thereby, we set the solver time limit

to 600 seconds. All of our computations were performed on a standard PC with a 2.80GHz

Intel i5 CPU and 4GB RAM.

3.5.3 Numerical results

Table 3.3 reports the average results for the test instances with 10 activities. The MIP

of Baumann and Trautmann (2013) obtains feasible solutions for 469 instances only. The

average gaps for the 469 instances and for all 480 instances are listed in rows [∅ ∆LB469]

and [∅ ∆LB480], respectively. The gap of an instance equals (MS − LB)/MS, where

MS is the makespan of the schedule generated and LB corresponds to the lower bound

proposed by Fündeling and Trautmann (2010). The average CPU time and the number

of instances solved to optimality are reported in the last two rows. Columns [BT13] and

[FT10] report the results obtained by the MIP of Baumann and Trautmann (2013) and

the heuristic of Fündeling and Trautmann (2010), respectively. Columns [LPF], [MTS],

and [MWR] present the results obtained by our heuristic procedure using the respective

priority rules described in Subsection 3.5.2. Regardless of the priority rule employed, our

heuristic generates shorter schedules than FT10 in less CPU time. Furthermore, optimal

schedules are obtained for approximately 80% of the instances.

Tables 3.4 to 3.7 report the average results for the test instances with 20, 40, 100,

and 200 activities, respectively. On average, for instances with 40 activities or less, our

procedure generates schedules with shorter makespans than FT10 in less CPU time. For

instances with 100 and 200 activities, our procedure also generates better solutions than

FT10. However, the required CPU time is longer.

Table 3.8 reports the effect of the preprocessing routine and the rescheduling step on

105

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Table 3.3: Results for instances with 10 activities

BT13 FT10
this work

LPF MTS MWR

∅ ∆LB469 [%] 14.0 16.3 14.4 14.6 14.5
∅ ∆LB480 [%] – 16.5 14.7 14.9 14.8
∅ CPU time [sec] 72.0 30.0 4.6 5.2 5.2
opt. 447 164 391 383 386

Table 3.4: Results for instances with 20 activities

FT10
this work

LPF MTS MWR

∅ ∆LB480 [%] 14.6 12.8 13.0 12.9
∅ CPU time [sec] 30.0 10.4 10.5 10.8

Table 3.5: Results for instances with 40 activities

FT10
this work

LPF MTS MWR

∅ ∆LB480 [%] 15.6 12.8 13.1 12.9
∅ CPU time [sec] 30.0 24.5 23.6 23.9

Table 3.6: Results for instances with 100 activities

FT10
this work

LPF MTS MWR

∅ ∆LB480 [%] 16.9 12.6 12.8 12.8
∅ CPU time [sec] 30.0 68.5 63.8 64.2

106

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Table 3.7: Results for instances with 200 activities

FT10
this work

LPF MTS MWR

∅ ∆LB480 [%] 16.9 11.6 11.9 11.9
∅ CPU time [sec] 30.0 171.4 155.9 159.0

Table 3.8: Effect of preprocessing and rescheduling

n = 10 n = 100
complete no prepro. no res. complete no prepro. no res.

∅ ∆LB480 [%] 14.7 14.9 16.9 12.6 12.8 13.1
∅ CPU time [sec] 4.6 7.7 1.6 68.5 90.8 22.3

the average results for the instances with 10 activities (n = 10) and 100 activities (n =

100). Because the results are similar for all priority rules, we focus on the LPF rule,

which provides the lowest average gaps. Columns [complete], [no prepro.], and [no res.]

show the average results when the complete heuristic procedure is applied, when the

procedure is applied without the preprocessing routine, and when no rescheduling steps

are performed, respectively. In particular, without the preprocessing routine, the required

CPU time increases from 4.6 to 7.7 seconds for instances with 10 activities and from 68.5

to 90.8 seconds for instances with 100 activities. The inclusion of the rescheduling steps

leads to an increase in the average CPU time, but it also reduces the average gaps

from 16.9% to 14.7% for instances with 10 activities and from 13.1% to 12.6% for instances

with 100 activities.

3.6 Conclusions and outlook

For the project scheduling problem with work-content constraints, we have devised an

MIP-based heuristic procedure that involves two novel MIP formulations. Furthermore, we

107

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

presented an MIP-based preprocessing routine that considerably improves the performance

of the heuristic. Our computational results for a test set from the literature that consists

of instances with up to 200 activities indicate that the heuristic provides very good feasible

solutions for small-, medium-, and large-sized instances. For many small-sized instances,

the heuristic generates optimal solutions in very short CPU time, and for medium- and

large-sized instances, the heuristic provides better solutions than the state-of-the-art

method.

In our future research, we will focus on the development of new methods for determining

the order in which the activities are scheduled. For example, an MIP-based approach may

be used to generate a schedule for a relaxed version of the problem, and the order of the

activities may then be determined based on their start times in that schedule. A relaxation

of the problem can be achieved by, e.g., omitting the minimum-block-length constraints or

by allowing a continuous resource usage. Furthermore, the MIP-based heuristic presented

in this work may be applied to similar project scheduling problems in the literature, such

as the multi-mode resource-constrained project scheduling problem.

108

Bibliography

Baumann, P., Fündeling, C.-U., Trautmann, N., 2015. The resource-constrained project
scheduling problem with work-content constraints. In: Handbook on Project Management
and Scheduling Vol. 1. Springer, Cham, pp. 533–544.

Baumann, P., Trautmann, N., 2013. Optimal scheduling of work-content-constrained
projects. In: T. Laosirihongthong, R. Jiao, M. Xie, R. Sirovetnukul (Eds.): Proceedings
of the International Conference on Industrial Engineering and Engineering Management.
IEEE, Bangkok, pp. 395–399.

Baumann, P., Trautmann, N., 2014. An MILP formulation for scheduling of work-content-
constrained projects. In: T. Fliedner, R. Kolisch, A. Naber (Eds.): Proceedings of the
International Conference on Project Management and Scheduling. PMS, Munich, pp.
24–27.

Dror, M., Stern, H. I., Lenstra, J. K., 1987. Parallel machine scheduling: processing rates
dependent on number of jobs in operation. Management science 33 (8), 1001–1009.

Fırat, M., Hurkens, C. A. J., 2012. An improved MIP-based approach for a multi-skill
workforce scheduling problem. Journal of Scheduling 15 (3), 363–380.

Fündeling, C.-U., 2006. Ressourcenbeschränkte Projektplanung bei vorgegebenen Ar-
beitsvolumina. Gabler, Wiesbaden.

Fündeling, C.-U., Trautmann, N., 2010. A priority-rule method for project scheduling with
work-content constraints. European Journal of Operational Research 203 (3), 568–574.

Gary, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide to the Theory
of NP-completeness. WH Freeman and Company, New York.

Hackman, S. T., Leachman, R. C., 1989. An aggregate model of project-oriented production.
IEEE Transactions on Systems, Man, and Cybernetics 19 (2), 220–231.

Jozefowska, J., Weglarz, J., 1998. On a methodology for discrete–continuous scheduling.
European Journal of Operational Research 107 (2), 338–353.

Kis, T., 2005. A branch-and-cut algorithm for scheduling of projects with variable-intensity
activities. Mathematical programming 103 (3), 515–539.

109

Paper III: An MIP-based heuristic for scheduling work-content constrained projects

Kovács, A., 2003. A novel approach to aggregate scheduling in project-oriented manufac-
turing. In: Proceedings of the 13th International Conference on Automated Planning
and Scheduling. Doctoral Consortium, Trento, pp. 63–67.

Kuhlmann, A., 2003. Entwicklung eines praxisnahen Project Scheduling Ansatzes auf der
Basis von Genetischen Algorithmen. Logos, Berlin.

Márkus, A., Váncza, J., Kis, T., Kovács, A., 2003. Project scheduling approach to
production planning. CIRP Annals-Manufacturing Technology 52 (1), 359–362.

Naber, A., Kolisch, R., 2014. MIP models for resource-constrained project scheduling with
flexible resource profiles. European Journal of Operational Research 239 (2), 335–348.

Ranjbaer, M., Kianfar, F., 2010. Resource-constrained project scheduling problem with flex-
ible work profiles: a genetic algorithm approach. Transaction E: Industrial Engineering
17, 25–35.

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., Soares, J. A., 2016. An integer
programming approach to the multimode resource-constrained multiproject scheduling
problem. Journal of Scheduling 19 (3), 295–307.

Zimmermann, A., 2016. An MIP-based heuristic for scheduling projects with work-content
constraints. In: Proceedings of the International Conference on Industrial Engineering
and Engineering Management. IEEE, Bali, to appear.

110

	1
	
	Introduction
	The planning problem
	Problem definition and related literature
	Related planning problems
	Interpretation as extended MRCPSP

	List-scheduling procedure
	Multi-pass procedure with random sampling
	List generation
	Schedule generation scheme
	Assessor assignment
	Results for the illustrative example

	Computational study
	Test set
	Computational results

	Bibliography

	
	Introduction
	Planning problem
	Illustration of the planning problem
	Relation to the RCPSP

	Literature review
	MIP formulations for the RCPSP
	Comparative studies of MIP formulations

	MIP formulations for the ACP
	Formulation CT–A
	Formulation CT–F
	Formulation CT–O
	Formulation DT–P
	Formulation DT–O

	Lower bounds
	Lower bounds based on the assessors' workload
	Lower bounds based on the candidates' workload

	Comparative analysis
	Instances
	Computational results: real-life instances
	Computational results: test instances
	Computational results: problem-specific lower bounds

	Bibliography

	
	Introduction
	Illustrative example
	Basic MIP formulation
	MIP-based heuristic
	Preprocessing
	Scheduling a single activity
	Rescheduling a subset of activities
	Solution for illustrative example

	Computational experiment
	Test set
	Experimental design
	Numerical results

	Bibliography

