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Abstract

This thesis covers a broad part of the field of computational photog-
raphy, including video stabilization and image warping techniques,
introductions to light field photography and the conversion of monoc-
ular images and videos into stereoscopic 3D content.

We present a user assisted technique for stereoscopic 3D conversion
from 2D images. Our approach exploits the geometric structure of
perspective images including vanishing points. We allow a user to
indicate lines, planes, and vanishing points in the input image, and
directly employ these as guides of an image warp that produces a
stereo image pair. Our method is most suitable for scenes with large
scale structures such as buildings and is able to skip the step of
constructing a depth map.

Further, we propose a method to acquire 3D light fields using a
hand-held camera, and describe several computational photography
applications facilitated by our approach. As the input we take an
image sequence from a camera translating along an approximately lin-
ear path with limited camera rotations. Users can acquire such data
easily in a few seconds by moving a hand-held camera. We convert
the input into a regularly sampled 3D light field by resampling and
aligning them in the spatio-temporal domain. We also present a novel
technique for high-quality disparity estimation from light fields. Fi-
nally, we show applications including digital refocusing and synthetic
aperture blur, foreground removal, selective colorization, and others.
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Chapter 1

Introduction

There has always been a difference between real scenes and what we
picture with cameras. Before the invention of photography it was
impossible to record a visual instance as it is. Painters spent hours
or even days and weeks to picture what they have seen or were told.
It therefore seems likely that many famous kings, queens, and other
royals were not as good looking as their portraits, but they were
represented in the most favorable light.

With the invention of photography in the 19th century things
changed. It became possible to capture a scene as it was in reality
in a few moments, with light rays hitting the photography plate di-
rectly. This could all be done without an interpretation of the painter.
Notwithstanding this, the attraction to modify, improve or adapt real
scenes in photomontage became famous nearly as soon as photogra-
phy itself. As an example we show Oscar Rejlander’s Two Ways of
Life from 1857 in Figure 1.1 and realise that digital photo and video
post-production seems to follow the natural evolution of imaging.

Today with digital post-processing we can do more than analogue
photo artists did. While processing of analogue photos was mainly
restricted to changing lighting effects in the dark room and cutting
and pasting objects with real scissors, we now have nearly unlimited

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Oscar Rejlander’s Two Ways of Life from 1857 is one
of the first and most famous photomontages. It consists of about 32
negatives and was build within six weeks. [23]

possibilities to modify pictures. These include very subtle image
changes such as removing red eyes or little spots in somebody’s face,
but also more drastic changes such as adapting a person’s profile,
correcting lens distortions or even computing new camera perspectives.
Furthermore, the difference between photo and video cameras has
shrunk and today both can already be combined into one device.
The digitalisation of photography has opened up whole new fields, as
for example light field photography, and has made it easier to take
stereo images and videos. While in standard photography we create
monocular images by capturing the light rays travelling through one
lens, which is similar to seeing with just one eye, in stereo photography
we capture two views form slightly different positions simultaneously.
Afterwards, we can show an image to each eye giving the viewer the
ability to see the scene in 3D. In light field photography we capture
light rays that go through several lenses, instead of just one or two.
This makes it possible to adjust the viewpoint and the focus after the
fact or to retrieve depth information.
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The fusion of photo and video cameras with large computational
power happened in mobile phones within the last decade. Additional
sensors, such as accelerometers, gyroscopes, GPS receivers and mi-
crophones provide us with information beyond the visual data that
we can use to build photography and video applications. The usage
of the accelerometer for video stabilization and photo deblurring [41]
are two well known examples. Using GPS data to locate 3D models
retrieved from images on a map [84] or using the sound of several
video snippets for alignment in time [5] has become feasible.

The downside of cameras that are built into mobile phones is
their size. With the aim to make mobile phones thinner, lighter, and
smaller also the camera itself had to shrink. While the electrical parts
of the camera could keep pace with the rest of the phone technology
development, the optical parts of the cameras suffer from the minia-
turization. It is best seen when mobile phone images already become
noisy due to bad lighting conditions while standard cameras still are
able to capture nice images. Further it is not possible to have an
optical zoom with such small lenses and the depth of field is very
large. Researchers and mobile phone manufacturers try to counteract
these issues of small lenses with image editing algorithms. We added
our piece [14] to this development, too.

Alongside with smartphones and app-stores, the connection to
the internet became standard so that photo cameras and other ap-
plications now are constantly connected to the web. The opening of
these new software marketplaces and the possibility to share images
with friends instantly led to new business opportunities that helped
to develop image editing software as well as sharing and storing so-
lutions. Furthermore the availability of large image databases, with
the internet being the biggest image database itself, brings along new
possibilities. Nowadays we can use millions of pictures that were taken
of tourist hot spots, for example, to obtain a 3D reconstruction of the
venue [1]. We can also search the web to find the best fitting parts of
images that were left with holes after cutting processes and use them
to fill the gaps [29].

Not only point-and-shoot cameras and consumer photography
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evolved quickly in the last decade. Stereo photography and stereo film-
ing also has reached new heights through the upgrade of many movie
theaters to the capability of displaying 3D movies. Furthermore the
hardware technology has reached a level that made it possible to sell
TVs and screens that can display 3D content as consumer electronics.
These new advances in technology motivated researchers, including
us [15], to develop specialized algorithms for stereo images and videos
or multi-view content in general. Such algorithms include the produc-
tion of stereo content by converting existing mono videos or photos
into 3D content [25, 53, 91], optimizing the 3D perception of already
captured content [49], the application of existing warping techniques
to stereo content [71], but also the application of well known post-
processing techniques of mono content to stereo content (such as copy
and paste of image parts [59, 64]).

In this thesis we focus on computational tools for mono to stereo
conversion and light field photography. Along these lines, our first
research goal [15] deals with the conversion of mono into stereo images
of scenes with strong geometric structure. Further we discuss light
field photography as the topic of the second research objective [14],
in which we focus on creating light fields with a mobile phone camera.
To achieve this goal, we used techniques from video stabilization and
image warping both of which shall be discussed in dedicated chapters,
too.

1.1 Contributions

We contributed the following two tools to computational stereo and
light field photography:

3D Conversion Using Vanishing Points and Image Warping

The interest of our research has focused on mono to stereo conver-
sion in the field of stereo content. We have developed a user aided
method [15] that can convert mono images into stereo images. The
method focuses on images that mainly show man-made objects with a
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strong and clear geometric structure. The user can draw some edges
and faces of the depicted objects and indicate lines that have a com-
mon vanishing point. Further the user defines the desired disparity
for some points. From this information our method computes two
images with a new warping technique based on Caroll et al. [9], such
that the two images are the left and right view of a stereo image pair
and show the input image geometrically consistent in 3D.

Hand-Held 3D Light Field Photography and Applications

We have developed a mobile application [14] that exploits the compu-
tational power of modern smartphones and utilises the fusion of photo
and video cameras. Instead of taking a single picture, the user takes
a short video with a horizontal sweep with his hand-held device. We
then convert this video, with a video stabilization method developed
for this particular case, into a 3D light field. Thanks to the light field
we can create a depth map and apply other image enhancement algo-
rithms. For example the user can select the object she wants to have
in focus with a finger tab on the touchscreen. Then the application
computes an out-of-focus blur for the entire image. The amount of
blur is adjustable by the user, too.

Video Linearization. Firstly, the application applies our video lin-
earization, which aligns the frames of the user taken video horizontally
and temporally in a way that the camera movement between two con-
secutive frames becomes constant. The result is a set of images of the
scene that is taken from equidistant positions along a horizontal line
and that we intuitively interpret as a 3D light field.

Depth Estimation. In a second step we create a depth map of the
scene. In order to achieve this, we have combined and extended exist-
ing algorithms that compute the disparities for pixels form epipolar
images in which each epipolar image consists of one line of each view
of our 3D light field.
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Large Aperture Simulation. The depth map and the 3D light
field together make several applications possible. We can select two
views of the light field as our left and right view and display the
scene in 3D. We can also use the depth map to compute occlusions
by inserting objects into the scene, or we can segment the image to
create a selective grayscale image. However, the main application
is the simulation of a larger aperture. As mentioned above mobile
phones usually have very small camera optics leading to all-in-focus
images. We have developed a method that uses the light field and a
depth map to compute an artificial out-of-focus blur and can therefore
narrow the depth of field. Furthermore, by refocussing using a very
large synthetic aperture, we are able to remove very thin foreground
objects from the image completely.

1.2 Thesis Organization

This thesis covers four chapters (Chapters 2 to 5) with background
knowledge, followed by two chapters (Chapters 6 and 7) that cover
our research results. The thesis is structured as follows:

Chapter 2 gives an overview of existing video stabilization meth-
ods including a short introduction into the structure-from-motion
problem that, given a set of input images of a scene, computes 3D
locations and orientations of cameras and a sparse feature point set
that can be tracked over several of the input images.

Chapter 3 discusses the problem of converting mono images and
videos into stereo content that can be perceived as “3D” by a viewer.

Chapter 4 introduces the technique of image warping in detail
and includes some standard optimization methods for least squares
problems. We further present many existing warping techniques that
can solve a variety of different problems.

Chapter 5 explains the terms light field and epipolar images and
discusses applications of light field photography.

Chapter 6 describes our own developed warping method that
converts monocular images into geometrically consistent 3D stereo
images.
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Chapter 7 presents our video linearization algorithm, our method
that we use to compute the disparities from EPIs, and how we sim-
ulate an arbitrary aperture size and other applications of light field
photography.

Chapter 8 summarizes the results of our research and gives a
brief outlook to possible future work.
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Chapter 2

Video Stabilization

Jittery videos are a well known problem to any hobby filmer and their
friends and relatives who have the pleasure to watch their movies.
The problem tends to increase, when the cameras decrease. And they
decreased dramatically in the last two decades. Professional movie
makers use heavy hardware equipment as cameras on tracks or cranes
to follow the action on a set. Another possibility is a Steadicam, which
is a camera mount that can freely rotate around all 3 axis and has
a counter weight to the camera. Neither are options for tourists or
hobby filmer, who use small, less elaborate cameras or even mobile
phones to take their shots. So, we have to find other solutions, which
can be applied also after the fact and independent of the camera type
which was used. The computer is always a good “other solution”,
especially nowadays, where nearly all videos are shot digitally. It
seems to be a logical consequence, that video stabilization became
an active area of research. Many different approaches were explored
and new algorithms are still being developed. We discuss the most
important and recent ones in this chapter.

13
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1 2 3

Figure 2.1: Overview of the three steps in a standard video stabi-
lization pipeline. First, tracking features in a shaky video. Second,
smoothing the jittery trajectories. Third, rendering new frames.

Before going into detail, we give an overview of the problem. First,
we need to find a way to automatically detect unwanted camera motion.
The human eye recognizes them suddenly and intuitively. But how can
a computer do this? The most common strategy is the following. The
algorithm first detects recognizable points, we call them features, and
tracks them over several frames. This gives feature trajectories. There
is no difficulty in finding out whether the trajectories are smooth or
not. But not all trajectories have to become smooth. For example
feature points tracked on a waving hand of a person bounce from
left to right and back. Often the next step is to find out, which
of the features belong to moving objects. These are then removed
from the set of trajectories. Then we smooth these trajectories. The
naive approach is to smooth them directly in 2D. Unfortunately, this
does not lead to plausible results. One of the main reasons is, that
2D filtering does not respect the 3D structure of the depicted scene.
Further, on each frame features appear and others disappear. As
a consequence, on each frame some feature trajectories start, and
some other may end. Further, some features disappear earlier than
others leading to different lengths of the trajectories. Filtering these
different trajectories separately yields different, inconsistent smooth
trajectories. An example we show in Figure 2.2. This leads to the main
question of the second step in the video stabilization process. How can
we find smooth, but also geometrically consistent feature trajectories?
The answer to this questions differs in every approach. We discuss one
that reconstructs the 3D geometry of the feature points in Section 2.3.
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Figure 2.2: Two feature trajectories (red) are smoothed independently
(green). In the close up (blue box) we see that this pulls apart the
trajectories where they overlay.

For better understanding, we firstly review the 3D reconstruction of
feature points in Section 2.2. A related, but simplified method bases
on a subspace of the trajectory matrix. We discuss the theory in
Section 2.5 and how it applies to video stabilization in Section 2.5. In
Section 2.6 we summarize other methods.

After we found smooth feature trajectories, we proceed to the third
step of the video stabilization pipeline. We need to render new frames
which have the feature points located on the desired positions. Often,
this is done with an image warp. Image warps are versatile and also
used for other tasks. We spend the whole Chapter 4 on that topic.
Therefore, this step of the stabilization process is not discussed in this
chapter. To start from the beginning, we describe the detection and
tracking of feature points.

2.1 Feature Points

To measure the movement of the camera, we need to be able to match
objects in two consecutive frames. Afterwards, we can measure their
movement by computing the difference in pixels. Robustly recognizing
objects is a difficult task, since the object may look different in two
images, because the camera angle or the lighting may be different
or objects may become occluded. The workaround is to search for



16 CHAPTER 2. VIDEO STABILIZATION

distinctive points instead of whole objects. We call these points feature
points.

Nowadays we know several methods to detect feature points. We
discuss two, to give an idea of what feature points are and how they
could be detected and tracked.

2.1.1 Corner Points

In his PhD thesis in 1980 [68] Moravec described a first and very
simple feature detector. He states that feature points, or actually
patches, which are relative easy to recognize, are non-uniform image
areas. Therefore, he proposes to use pixels that are the center of an
area that is most different to other close-by areas, as feature points.
So, the similarity of the two pixels x1 = (x1, y1) and x2 = (x2, y2) is
computed

S(x1,x2) =
∑
u

∑
v

w(u, v)
(
I(x1 + (u, v))− I(x2 + (u, v))

)2
, (2.1)

where u and v range from −n to n for a patch of size 2n+1, I denotes
the image and w is a weighting function which can weight pixels closer
to x1 respectively x2 higher than pixels further away.

Nearly ten years later, this approach was improved by Harris
and Stephens, (1988, [27]), Tomasi and Kanade (1991, [87]), and
Shi and Tomasi (1994, [81]). Although the derivations are slightly
different, the conclusion is the same. To detect if a pixel is a corner
pixel, often called a Harris corner, we now take into account the
partial derivative instead of the pixel values directly. The partial
derivative is approximated by a convolution of the image I with the
row, respectively column vector (−1, 0, 1). We denote the results of
these convolutions Ix and Iy. So, the image gradient at the pixel
x = (x, y) is ∇I(x) = (Ix(x), Iy(x))T. Next, we build on each pixel a
symmetric 2×2 matrix by multiplying the gradient with its transposed,

∇∇T =
[
I2x IxIy
IxIy I2y

]
. We obtain the final structure tensor M by a
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weighted sum of these matrices of the pixel and its neighbors,

M =
∑
u

∑
v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
, (2.2)

where u and v again range from −n to n for a patch of size 2n + 1
and Ix is the short form of Ix(x + (u, v)). The same holds for Iy. To
compute the weights, Harris and Stephens use the Gaussian function,
w(u, v) = e−(u2+v2)/2σ, [27].

Now we have a structure tensor M(x) for each pixel but we are
still left with the question, which pixels are corners. We denote by λ1

and λ2 the two eigenvalues of M . Harris and Stephens state that the
two eigenvalues are proportional to the principal curvature and form
a rotationally invariant description of M [27]. Our view is slightly
different. The matrix M is the covariance matrix of the gradients of
the pixels in the patch. This matrix is then used to do a principal
component analysis. The result of the principal component analysis
tells us in which direction we have the largest gradients, and the
eigenvalues measure their importance. Both views on the problem
boil down to an analysis of the eigenvalues of M . If these are small,
we are on a texture-less patch. If only one eigenvalue is large, we have
only gradients into one direction and the patch in question shows an
edge. Finally, if we have two large eigenvalues, the patch shows two
edges which are normal to each other and therefore build a corner.
The decision whether a pixel is a corner or not can be made by
simply testing the eigenvalues against a threshold. To reduce the
computational cost, Harris and Stephens propose to not compute the
eigenvalues themselves, but instead to compute a corner response
number

R = det(M)− κtr(M)2, (2.3)

where κ is a tunable sensitivity parameter. Note that det(M) = λ1λ2

and tr(M) = λ1 + λ2. Then, R is positive in the corner regions,
negative in the edge regions, and small in the flat regions [27]. So, it
can be tested against a threshold, too.
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2.1.2 Kanade–Lucas–Tomasi Feature Tracker

After detecting the features, we need to track them onto the next
frames. The probably most popular algorithm that does this, is the
Kanade–Lucas–Tomasi feature tracker, short KLT tracker. It bases on
the work of Lucas and Kanade [63], and Tomasi and Kanade [87], but
is best described by Shi and Tomasi [81]. Here we just introduce the
idea of a KLT tracker and refer to the original publication for detailed
explanations. Similar to the feature detection, we consider small
windows around feature points in the image I and sequentially follow
them onto the next image J . Neighboring pixels may move differently,
hence Shi and Tomasi talk about an affine motion field [81], which
can be described by a 2× 2 deformation matrix D and a displacement
vector d. So, for each pixel in the window we have

J(Dx + d) = I(x). (2.4)

Note that D and d are the unknowns we search for. We write Equa-
tion (2.4) as the difference J(Dx + d) − I(x) and build a weighted
sum of all differences over all pixels in the window. Then we search
for D and d that minimize the sum. We skip the details of the further
computation and point interested readers to Shi and Tomasi [81].

However, in many cases (small windows, small movement, etc.) it
leads to better results when assuming D to be the identity matrix and
searching just for d. Shi and Tomasi show that this leaves us with the
equation system Md = e, where M is the structure tensor computed
in the previous section and e = (Ix, Iy)

T
∑

u w(u)(I(x + u) − J(x +
u)) is the image gradient multiplied with the weighted sum of the
differences of the two images inside the window.

2.1.3 SIFT

KLT feature tracking is fast and a good choice to track features on
videos. Its downside is that it works only for relative small feature
movements. Further, lighting condition should be the same, since we
compare pixel values directly. This is not an issue in image sequences
taken with a high frequency, such as movies, but it may become one in
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Gaussians
Difference of

Gaussians

Scale

(a) Differences of Gaussians of one Octave

Scale

(b) Neighbors of a pixel

Figure 2.3: (a) shows the computation of the differences of Gaussians.
The stack on the left contains the Gaussian smoothed images, the
difference of two consecutive images gives the stack on the right. (b)
shows the 26 neighbors (green) of one pixel (red) in the stack. [62]

other cases. In cases where the camera movement between two shots
is large, KLT becomes slower when searching larger neighborhoods,
looses its robustness or may even fail completely.

Nearly two decades after the Harris corners, Lowe introduced the
scale-invariant feature transform SIFT [61, 62] to counteract these
problems. He obtains scale-invariance by searching for feature points
on different scaling levels of the image. Then he computes a rotation
invariant feature descriptor and normalize it to reduce the influence
of the lighting condition. These descriptors are finally used to search
for matches between features on different images.

Feature Detection. Similar to others, SIFT feature tracking also
heavily relies on gradients, however, not in its first step. To detect
SIFT features, we take into account differences of Gaussians. The
difference of two images that are filtered with different kernel size is
large on edges and corners but small in uniform regions and therefore
similar to a gradient image. The advantage over the standard gradient
method is that filters take into account all directions and a larger
neighborhood than gradients computed from the difference between
neighboring pixels. This means, we smooth the image with Gaussian
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functions with σi = ki
√

2, where ki = 2
i
s , i = 0, ..., s. As shown in

Figure 2.3a, we compute the difference of Gaussians by taking the
difference of the two images smoothed with neighboring scales i.e. σi
and σi+1. This gives us s differences of Gaussians, which we call one
octave. Next, we search for minima and maxima in the differences of
Gaussians. First, we compare each pixel against its eight neighbors
on the same scale. If it is a maximum or minimum, we also compare it
against the nine neighbors on the scale below and above. Figure 2.3b
shows the neighborhood of the red marked pixel with green circles.

After processing the whole octave, we can proceed to the next. To
do so, we resample the image which is smoothed with σs = 2

√
2 by

taking every second pixel in each row and column [62]. Then we use
this image as the input and process the next octave in the same way.

Feature Descriptor. Once the SIFT points are found, we also
create a descriptor. We use the Gaussian blurred image of the scale
where we found the feature point. Lowe [62] suggests to use a patch of
size 16× 16, where we compute the gradient on each pixel by simply
taking the difference in x and y direction to the next pixel. Further
we compute the magnitude and direction of the gradient. We split
the patch in 16 smaller patches of size 4× 4. For each such patch, we
build a histogram consisting of 8 bins, each representing a direction.
These 16 histograms build a 128 entry long feature descriptor vector.
To make the descriptor rotationally invariant, we first compute a main
direction for each feature point, subject to its gradients, and compute
all other directions relative to this main direction. To reduce the
influence of the lighting, the feature descriptor is normalized.

Feature Tracking. The feature matching can be done through
these descriptor vectors, assuming that we computed features and
descriptors on two images. Then, we query the descriptors of the
second image with each descriptor from the first image to find the
closest one. The difference between two descriptors is defined as the
Euclidean distance. Lowe proposes to use the best-bin-first algorithm,
introduced by him and Beis [6], which is faster than the k-d-tree.
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2.2 Structure from Motion

Video stabilization can be seen as moving the camera position and
orientation for each frame slightly, such that the path described by
the new camera locations becomes smooth. The same should be the
case for the orientation of the camera. To be able to do this, we need
to know the location and orientation of the camera, for each frame.
The process, to extract this information, is what we call structure
from motion. The basic idea is a very old one, and a process humans
do automatically all day long: With our two eyes, which are located
on different positions, we capture two slightly different images from
our environment. These two images are never the same, which we
can easily double check by stretching out one arm and holding up the
thumb. Closing one eye gives us the view of the other eye. When we
open the closed eye and close the open one at the same time, we get the
impression of a “jumping thumb”. The finger is on a different position
relative to the background. Providing our brain with the views from
both eyes at the same time, it is able to extract information about
the distance to the objects. Replacing the words “eye” by “camera”
and “brain” by “computer”, we have a good idea of what we want
to do in this section. The only difference is that humans have two
eyes, which are capturing scenes at the same time. This is comparable
to a stereo camera. The case we are interested in differs in that we
have a sequence of images, which were taken from one and the same
camera at different points in time. Therefore we also may have many
more than two views from a scene. With this input, we compute the
3D location of a sparse set of features and the camera location and
orientation.

Video stabilization is by far not the only application of 3D recon-
struction of a scene. In the recent past, structure from motion became
a basic tool for many computational photography and computer vision
tasks. Understanding the process of capturing and depicting scene
points with a camera helps to further understand other video stabi-
lization algorithms, which we discuss later, and the conversion form
single images and mono-videos into 3D content (Chapter 3).
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Figure 2.4: We project an image of a tree, with a projector located at
the origin 0, onto two screens, one at distance z1 and another at z2.
The image of the tree scales linear. See Figure 2.7a for image credits.

2.2.1 Projective Geometry

In this section we discuss the basics of the concept of projective
geometry. It is highly linked to the camera model which we use and
describe in Section 2.2.2. To give an intuitive understanding about
projective geometry, we look at the actual inverse process of capturing
pictures. We consider the projection of an image onto a screen. We
assume the projector at the origin of the coordinate system of the
3D space such that it points along the z-axis. Then, each point of
the image gets a third coordinate z, which measures the distance
from the projector to the screen. See also Figure 2.4. Moving the
screen closer or further away from the projector, let the image grow
or decrease but does not distort it. We also could say it scales the
image. Hence, it exists a factor k that scales the coordinates of an
image point (x1, y1, z1) on the first screen onto the second screen,
k(x1, y1, z1) = (x2, y2, z2). This behavior comes from the fact, that
the projector sends one light ray for each pixel it wants to show. These
rays travel straight until they hit the screen and therefore keep their
relative distance to each other. In Figure 2.4 we show a few such light
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rays as blue lines. The projective geometry describes the view of the
projector, which knows the direction of the light rays but not how
far they travel. Therefore, the projector does not distinguish between
points k(x, y, z), which differ only by factor k and all belong to the
same ray. Likewise, this applies to projective geometry.

A line in a Euclidean 2D plane can be written as

ax+ by + c = 0, (2.5)

meaning that all points (x, y) satisfying the equation, form the line.
This definition of the line is not unique. For any real k 6= 0, the
vector (ka, kb, kc) defines the same line, since kax+kby+kc = k(ax+

by + c)
(2.5)
= k0 = 0. The two vectors (a, b, c) and k(a, b, c), related

by the scaling factor k, are considered to be equivalent. We denote
this as (a, b, c) ∼= k(a, b, c). An equivalence class of vectors of such
an equivalence relationship we call homogeneous vectors. The set of
all these vectors in R3 − (0, 0, 0) we call the projective space P2. The
origin of R3 is excluded, since this vector corresponds to no line.

A 2D point (x, y) lies on line l if it satisfies the line Equation (2.5).
With the column vector l = (a, b, c)T we can write the line equation
as the scalar product (x, y, 1)l. Similar as for the lines, we can also
multiply the just created point vector (x, y, 1) with any scalar non-zero
factor and the Equation (2.5) still holds. It follows, that points in R2

can be represented as homogeneous vectors, similar to the lines. We
therefore distinguish between the homogeneous coordinates (x, y, z) of
a point and the inhomogeneous coordinates (x/z, y/z).

Both, the lines and the points have 2 degrees of freedom in R2.
It is obvious for points since we can choose the x and y coordinates
independently. We learned that (a, b, c) and k(a, b, c) describe the
same line. Thus, we can choose k = 1

b and get a
bx + y + c

b = 0 as
the line equation. Rearranging the terms yields −abx+− cb = y, the
standard line equation, which is usually denoted as mx+ b = y. Note,
the b is not the same number in the two equations. We see in the
standard notation that we have two independent variables, the slope
m and the point b where the line intersects the y axis. It follows that
we also have 2 degrees of freedom.
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We have seen that a point x = (x, y, 1)T lies on the line l = (a, b, c)T

if and only if lTx = xTl = 0. Further, we compute the intersection of
two lines l1 = (a1, b1, c1)T and l2 = (a2, b2, c2)T by taking their cross
product x = l1 × l2. Since the resulting vector of the cross product is
perpendicular to both vectors which form the cross product, we have
lT1x = 0 and lT2x = 0. It follows that x lies on both lines and therefore
on the intersection point. With the same argument, we find the line l
going through the two points x1 and x2 by taking their cross product.
This example shows nicely how the role of points and lines may be
interchanged in statements about the properties of points and lines.
Indeed, there is a so called duality principle, which states:

Duality principle To any theorem of 2-dimensional projective ge-
ometry there corresponds a dual theorem, which may be derived
by interchanging the roles of points and lines in the original
theorem. [28]

All points with homogeneous coordinates x = (x, y, z) with z 6= 0
correspond to finite points in R2. Now, we extend this set by adding
points with z = 0, the so called ideal points or points at infinity. This
extended set of points in homogeneous coordinates spans the whole
projective space P2. We can write the set of points at infinity as
(x, y, 0)T, where a specific point is defined by the ratio x : y. They
all lie on one line, denoted as l∞ = (0, 0, 1)T and called the line at
infinity. It is easy to verify that (0, 0, 1)(x, y, 0)T = 0 for all x and y
values.

The intersection of the line l = (a, b, c)T with the line at infinity is
l× l∞ = (b,−a, 0)T, which is an ideal point, too. Further, the parallel
line l′ = (a, b, c′)T with the same coordinates a and b as l, has the same
intersection point (b,−a, 0)T as l. And indeed l×l′ = (c′−c)(b,−a, 0)T.
Neglecting the factor (c′ − c), we obtain the same point at infinity as
the intersection point of l and l′. It is therefore consistent with the
idea that parallel lines in Euclidean space intersect at infinity.

We call a linear mapping from a homogeneous vector to another
one a homography. Synonyms are also projectivity, projective transfor-
mation, and projective collineation. We can write the homography H
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as a non-singular 3× 3 matrix. Then, the transformation becomesuv
w

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xy
z

 , (2.6)

or u = Hx, respectively.
Obviously the homographies form a group: The inverse of a ho-

mography is a homography too, and also the composition of two
homographies is one. Since we have a mapping of a projective space
to a projective space, kH is equivalent to H for any scaling factor
k. Assume it is not, then x′ = Hx is different from x′′ = (kH)x
for any k 6= 0. Thanks to the linearity of the homography we have
x′′ = (kH)x = H(kx) ∼= Hx = x′, a contradiction to the assumption.
It follows that the homographies form an equivalence class, too. Con-
sequently, we call these matrices homogeneous. A homography has,
as a consequence, only 8 degrees of freedom. We can always choose
one entry of its matrix. We usually set h33 = 1. For any homography
matrix H, we reach this by dividing all its entries by h33.

The main property of the homography is that it maps lines onto
lines. Assume the line l is defined as the line through the two points x1

and x2. Then, for ∀α ∈ R we have lTxα = 0 with xα = αx1+(1−α)x2,
since xα is a point on the line through x1 and x2. Using the linearity
of H we write Hxα = αHx1 + (1 − α)Hx2, which is a line through
Hx1 and Hx2. On the other hand we have lTxα = lTH−1Hxα = 0
and it follows that lTH−1 is the line we were looking for.

We started this section with a photo or video projector and stated
that moving the screen closer or further away to the projector scales
the image but keeps angles. We implied that the screen plane stays
orthogonal to the projecting direction while moving it. If this assump-
tion is breached, the projected image becomes distorted. We show
this schematic in Figure 2.5. On the left, we see the projection of
an image onto two screens. I is the image projected onto a screen
orthogonal to the projection direction z. Î is the new image projected
onto a tilted screen and does not form a square. In the sketch left in
Figure 2.5, we see the reason for this. The rays from the center of
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Figure 2.5: Here we show a sketch of a projection onto a plane that
is orthogonal to the projecting direction and a plane which is tilted.
I and Î are the resulting images.

projection to the points x̂1 and x̂2 have different lengths. Therefore
the two scaling factors k1 and k2, which scale x1 and x2 onto x̂1 and
x̂2, differ, and the image increases on the left and decreases the right
side. We can describe the relation between two images projected onto
different planes by a homography.

An image of a wall, which we assume to be flat as plane, behaves
the same as a projection onto screen. It acquires the same perspective
distortions when the camera that takes the picture does not point
perfectly orthogonal to the wall. We can correct these distortions
through a homography and show a practical example, of how to remove
the perspective distortion in Figure 2.6a through a homography. To do
so, we map each pixel x from the distorted image with a homography
H onto the non-distorted point x′ = Hx. We turn pixel coordinates
(x, y) into a homogeneous vector x = (x, y, 1) by adding a 1 as the
homogeneous coordinate. When we expand x′ = Hx and denote it in
pixel coordinates instead of homogeneous vectors, we get

x′ =
h11x+ h12y + h13

h31x+ h32y + h33
, y′ =

h21x+ h22y + h23

h31x+ h32y + h33
. (2.7)

Here we divide by the third homogeneous coordinate, to obtain the
representation (x′, y′, 1) of x′. All four values x, y, x′, and y′ are
then local coordinates in the R2 coordinate system of the images,
i.e. pixel coordinates. Rearranging the terms yields for one point
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(a) Input image (b) After applying the homography

Figure 2.6: We determine the perspective distortion in the input
image (a) by drawing lines that are parallel in reality. We use the
four intersection points to compute a homography, which corrects the
distortion and apply it to each pixel. (b) shows the result.

correspondence two linear equations,

x′(h31x+ h32y + h33) = h11x+ h12y + h13 (2.8)

y′(h31x+ h32y + h33) = h21x+ h22y + h23. (2.9)

Since H has 8 degrees of freedom, we can set h33 = 1. With 4 known
corresponding points, for example the corners of the red quadrilateral
in Figure 2.6, we then build a system of 8 linear equations with 8
unknowns. Solving this, determines the matrix H of the homography
we were looking for. The only constraint we have by choosing the four
points is that they have to be in general position. This means, no
more than two of them can lie on one line.

Through the application of homography we simulated a camera
movement from one spot (Figure 2.6a), to the location from where the
camera points exactly into the direction perpendicular to the depicted
wall. This we did, without knowing about the camera, its location
or pointing direction. The limitation of this application is, that it
only works in the special case where a photograph depicts nothing
but planes. In order to being able to handle more complex photos, we
study the mathematical camera model in the next subsection.
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(a) Pinhole camera (source: Wikipedia1)

Y

Z
X

f

(b) Coordinate system

Figure 2.7: (a) shows a pinhole camera that captures a tree. (b) visu-
alizes the 3D coordinate system with origin at the camera’s pinhole.

2.2.2 Camera Model

Each camera captures a 3D scene and bans it onto a 2D image. Conse-
quently, the camera model is a mapping function that maps 3D points
onto a 2D plane. The purpose of this subsection it to describe how
this mapping works. To begin with, we take a look at the simplest
camera we can think of, the pinhole camera. It is basically an all black
box, which has a small hole in the middle of one face. Through this
hole, light comes into the box and projects the image onto the inner
side of the opposite face (Figure 2.7a). All that needs to be done now,
is to save the projected image. This is done by a photographic film
in analog cameras and by a CCD sensor in nowadays digital cameras.

The mathematical description of a pinhole camera is easy to un-
derstand, bearing in mind the section about projective geometry. We
choose the world coordinate system such that its origin is right at the
hole of the pinhole camera. The x and the y-axis span the plane which
contains the pinhole cameras surface. The z-axis is perpendicular to it
so that it points outwards of the camera. See also Figure 2.7b. Each

1This image is taken from the Wikipedia article about the pinhole camera
https://en.wikipedia.org/wiki/Pinhole_camera. All other figures showing a
tree, are modifications of it, done by the author.
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f
−f
C

Figure 2.8: The real world tree (left) is projected onto two image
planes with z-coordinate f and −f . C denotes the center of the
projection, to photographers known as focal point.

point of the camera’s field of view that is not occluded by another
object has 3D coordinates (X,Y, Z). Note that Z is positive for each
such point. For a better distinction with image coordinates, we denote
3D coordinates with capital letters. We now interpret the 3D coordi-
nate as a homogeneous vector. This makes intuitively sense, since a
homogeneous vector describes a line through the origin. In our case,
we interpret this line as the light ray that travels from the seen 3D
point (X,Y, Z) through the cameras pinhole onto the opposite side
of the box. The point where the light ray hits the back side of the
pinhole camera is the spot that the 3D point is projected onto. We
assume the depth of the box to be f . In the 3D coordinate system
this is the plane (X,Y,−f). Then the projection point that we have
just described has the 3D coordinates −f(X/Z, Y/Z, 1). The minus
sign indicates that the image of a pinhole camera is inverted. Further,
f is the focal length. The coordinates in the 2D image coordinate
system are (−f XZ ,−f

Y
Z ). We show a sketch in Figure 2.8.

The principle of the pinhole camera is key to understanding the
projection of the 3D world onto a 2D plane and is used as the starting
point to extend camera models to cameras with complex lens systems.
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First we omit the minus sign by just pretending that the plane of
projection is in front of the pinhole of the camera. Physically this is
wrong, of course, but mathematically it is equivalent. Further, the
formulation above assumes that the coordinate system is rectified and
has the same scaling in the x and y-direction on the image plane.
This means the pixels are squares. This assumption is usually true,
with some practical exceptions. Considering this, we have (x, y) =
(αx

X
Z , αy

Y
Z ), with αx = fmx and αy = fmy, where mx and my are

the size of a pixel in x and y-direction, respectively. To have only
positive values in the image coordinate system we move the image
plane by (px, py) pixels, where px and py are the half of the image
width and height. If the CCD sensor is not placed carefully enough, its
center is not incident with the z-axis of the real world 3D coordinate
system. We can correct this by adjusting (px, py). We combine all
these camera parameters in the 3× 3 camera calibration matrix

K =

αx s px
0 αy py
0 0 1

 . (2.10)

All parameters which appear in the calibration matrix are called in-
ternal camera parameters. The skew parameter s can have non-zero
values in rare cases of projective cameras. However, for our purposes
we assume it to be zero. The parameter is just given for completeness.
Usually, we assume to have square pixels and therefore f on the di-
agonal instead of αx and αy. To get the image coordinates we write
the 3D location of a point as a column vector and multiply it with
the calibration matrix, followed by the homogeneous division,f 0 px

0 f py
0 0 1

XY
Z

 =

fX + pxZ
fY + pyZ

Z

 7→ [
f XZ + px
f YZ + py

]
=

[
x
y

]
. (2.11)

So far, we chose the origin of the 3D coordinate system such that
it coincides with the camera’s pinhole. We call such a coordinate
system the camera coordinate system. Whenever we have the freedom
to choose the coordinate system, we prefer this basic one. However, if



2.2. STRUCTURE FROM MOTION 31

a so called world coordinate system is given, then our task is to map
the 3D points from the world coordinate system into the camera coor-
dinate system. This mapping consists of a rotation and a translation,
given that both coordinate systems are Euclidean and have the same
orientation. We usually assume to have this. Then, the three rotation
angles and the three dimensional translation vector are the six exter-
nal camera parameters. To add the rotation and the translation to
the camera matrix, we write the rotation as a 3× 3 rotation matrix
R and the translation as a column vector t. This leads to

P = K [R|t] (2.12)

where [R|t] denotes the horizontal concatenation of R and t, and K is
the camera calibration matrix form Equation (2.10). It follows, that
P is a 3 × 4 matrix. To be able to apply P to a point in the world
coordinate system, we have to add 1 as a fourth coordinate to it. It
becomes a homogeneous vector, too. Hence, the camera matrix P is
a projection form P3 onto P2. In the notation of Equation (2.12), the
translation vector t is applied after the rotation. This has to be taken
into account when we assemble the camera matrix. Further, we also
need to take care if the rotation is given from the view of the camera
or the world coordinate system.

2.2.3 Two-View Geometry

We saw in the previous subsection that we can lose one dimension
by projecting a 3D point onto a 2D image. This also means, we lose
information. More specifically, we lose the information of “how far
away” a point is. Each 3D point interpreted as a homogeneous vector
is actually a line in the 3D coordinate system, which goes through
the origin. If now we want to invert this process, that is reconstruct
the “lost” third coordinate of a point, we need additional information.
This additional information is given through firstly, a second image of
the same scene, taken from a different spot and secondly, the distance
between the two camera locations and their focal length. With this
information we can use triangulation. Triangulation is a technique,
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Figure 2.9: Two parallel cameras C1 and C2 with focal length f
capture the point X. x1 and x2 are the locations of X on the image
planes I1 and I2.

which was already developed over 2000 years ago and was used since
the 16th century for land surveying and map-making until the rise of
the GPS system in the 1980s.

To explain the triangulation technique we use the sketch in Fig-
ure 2.9. There we look from top onto two cameras, pointing in the
same direction. The points C1 and C2 mark the center of projection
for the two cameras. X is a world coordinate 3D point, depicted in
the images I1 and I2 as x1 and x2. From the focal length f , which
is actually the distance between the center and the projection plane,
and the image coordinates x1, x2 of the depicted point X, we can
compute the two angles α1 = arctan(x1/f) and α2 = arctan(x2/f).
The inner angles of the shown triangle are then γi = π

2 −αi, i ∈ {1, 2}
and β = π − γ1 − γ2, the angle opposite the baseline b. Then, we
can compute the two unknown triangle edge lengths with the trigono-
metric formula ci

γi
= b

β , where ci denotes the length of the edge

CiX and therefore the distance of X to camera i. The z-coordinate
of X corresponds to the height h of the triangle, given that the
world coordinate system coincides with one of the two camera co-
ordinate systems. h can be computed using trigonometric formulas,
too. We have b = h

tan γ1
+ h

tan γ2
. Using the trigonometric identities
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Figure 2.10: The two camera centers C1 and C2 and the point X
span the epipolar plane. The intersection of the epipolar plane and
the imaging plane I1 yields the epipolar line through x1 and e1. e1

denotes the epipole.

tan(α) = sin(α)/ cosα and sin(α+ β) = sin(α) cos(β) + cos(α) sin(β),

we can rearrange the terms such that we get h = b sin(γ1) sin(γ2)
sin(γ1+γ2) . It

follows that we can compute the unknown edges and the triangle’s
height h. In other words we can compute all three coordinates of X
in the world coordinate system.

In this example, we actually have a very special setting. The
cameras point exactly in the same direction and their location differs
only in the x-coordinate. This is a rare situation in practice. Still,
the point X and the two camera centers C1 and C2 build a triangle.
We exclude here degenerated cases where all three points lie on a
line or two points coincide. This means the principle from above
always works, it just may become more complicate to get the required
numbers. Further, the two camera centers C1 and C2 and the point X
span a plane in the 3D space, the epipolar plane. The intersection of
this plane with the imaging plane is a line, which we call the epipolar
line. We show a sketch in Figure 2.10. Note, each world point creates
a different triangle and therefore a different epipolar plane, which
leads to a different epipolar line. The intersection point of all epipolar
lines in one image is called the epipole. It also is the intersection point
of the camera baseline with the image plane, hence the projection of
the camera center of the other camera. In Figure 2.11a we show an
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(a) Epipolar plane (b) Epipolar lines

Figure 2.11: (a) shows two cameras depicting a bear and a bottle. The
cameras and the bear’s nose span a triangle and define an epipolar
plane. (b) shows the two camera views and two epipolar lines.

example, in which two cameras point inwards such that they see each
other. The green triangle with the camera centers and the bear’s nose
defines the epipolar plane. We show in Figure 2.11b the views of the
two cameras from Figure 2.11a with the epipolar lines from the bear’s
nose (green) and the bottle’s top (red).

Another description of the epipolar line is the following: The
epipolar line of the real world point X in image I1 is the projection
of the light ray from X into camera C2. Figure 2.10 shows that the
epipolar line given by X in image I1 is the projection of the triangle
edge XC2. In the special setting, discussed at the beginning of this
subsection and shown in Figure 2.9, all epipolar lines are horizontal.
Consequently, their intersection point is at infinity. This makes sense
because we find the intersection of camera baseline with the imaging
planes, in Figure 2.9 drawn as I1 and I2, at infinity, too. This is
because the imaging planes are parallel to the baseline.
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2.2.4 Fundamental Matrix

Assume two cameras picture the same scene from different viewpoints,
that is with different centers of projection. Just given the two images,
we know nothing about the cameras and their positions. But there has
to be something which connects the two images taken, right? At least,
they show the same scene. The intuition is right! This “something”
we can formulate mathematically as the fundamental matrix F . It is
the unique 3× 3 rank 2 homogeneous matrix which satisfies

xT
2Fx1 = 0 (2.13)

for all corresponding point pairs x1, x2, denoted as homogeneous
vectors [28].

To understand the fundamental matrix better, we assume for a
moment that we know the two camera matrices P1 and P2, which
project real world points onto the image planes x1 = P1X, x2 = P2X
respectively. X denotes the homogeneous vector (X,Y, Z,W ) of a real
world point. Remember, the camera matrix P = K [R|t] is a 4 × 3
matrix and has therefore a null vector C, PC = 0. In conclusion, we
only can determine its inverse up to this null vector. If we do this, we
obtain for our camera matrix P1

X(λ) = P+
1 x1 + λC1 (2.14)

where P+
1 denotes the pseudo inverse of P1, this is a 4 × 3 matrix

with P1P
+
1 = I, λ is any real number and C1 denotes the null vector.

Moreover, C1 is the location of the camera center in world coordinates.
Since the camera calibration matrix K has full rank, the null vector of
the matrix P1 is also the null vector of [R1|t1]. Therefore, C1 has to
satisfy the equation R1(c1, c2, c3)T = −c4t1, with C1 = (c1, c2, c3, c4)T.
Assuming the homogeneous coordinate c4 = 1, we have (c1, c2, c3)T =
RT

1 t1, which is the location of the camera center.
Equation (2.14) shows, why we can not derive the depth of a point

on an image from the image itself, even we have full knowledge about
the camera. λ is unknown. Hence, we know two points on the ray,
on which X has to lie: P+

1 x1 and the center C1 of the camera P1.
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The projection of these two points onto the second image defines
the epipolar line l2 = P2C1 × P2P

+
1 x1, on which the projection of X,

x2 = P2X has to lie. This is in formulas xT
2 l2 = 0. We learned already

that the projection of the center of the first camera into the second
image is the epipole, hence e2 = P2C1. Further we can write the cross
product as a matrix multiplication2. This allows us to transform the
term P2C1 × P2P

+
1 into a matrix

F = [e2]×P2P
+
1 , (2.15)

which satisfies Equation (2.13) in the definition of the fundamental
matrix. Further [e2]× has rank 2, P1 and P+

2 have both rank 3. It
follows that F has rank 2 and all requirements of a fundemantal matrix
are shown. Another property of the fundamental matrix is that it
has only 7 degrees of freedom. A 3 × 3 matrix has has 9 degrees of
freedom by default. But F has rank 2, so we can only choose 8 entries
arbitrarily. The ninth is then given by the fact, that the third line (or
row) has to be linearly dependent on the first two. Additionally, F is
homogeneous, which removes another degree of freedom.

To get more insight on the meaning of Equation (2.15), we consider
the following example. We assume two cameras such that the world
coordinate system coincides with the first camera’s coordinate system,

P1 = K1[I|0] P2 = K2[R|t]. (2.16)

Then we have

P+
1 =

[
K−1

1

0T

]
C1 =

[
0
1

]
(2.17)

and inserting into Equation (2.15) yields

F = [P2C1]×P2P
+
1

= [K2t]×K2RK
−1
1 = K−T2 RKT

1 [K1R
Tt]×

(2.18)

2a× b = [a]×b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

b1b2
b3
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where we skipped several steps in the last equation. For more
details, we refer to Hartley and Zisserman [28]. We can identify the
two epipoles

e1 = P1

[
−RTt

1

]
= −K1R

Tt and e2 = P2

[
0
1

]
= K2t (2.19)

in Equation (2.18) directly.
So far, F12 = F is the projective mapping from a point in the

projective space of the first camera onto the one of the second camera.
We can compute similarly the fundamental matrix F21, which projects
into the other direction:

F21
(2.15)

= [P1C2]×P1P
+
2 = [e1]×K1R

TK−1
2

=
(
K−T2 RKT

1 [−e1]×
)T

= FT
12, (2.20)

where we use P+
2 =

[
RTK−1

2

0T

]
in the first step. Then we simply

transpose the whole term and use that [a]T× = [−a]×. Finally we
replace e1 by the result of Equation (2.19) and compare to the last
term of Equation (2.18). What we derived in Equation (2.20) is not
a speciality of this example. Moreover, we found another property of
the fundamental matrix: If F is the projective transformation from I1
onto I2, then its transposed FT is the projective transformation from
I2 onto I1.

Before we close the subsection about the fundamental matrix and
its properties, we want to highlight one additional and important
remark. We assumed so far that the center of the cameras do not
coincide. If the two centers have the same location, the translation
vector t becomes zero, and F = 0 in Equation (2.18), too. The same
is true for the epipoles, as we can see in Equation (2.19). Even if
the two camera centers differ, there are many special cases, which we
do not discuss here. We give only one more example. This is the
probably simplest setting, where the two cameras point into the same
direction and have only a translation in the x-direction. We used this
example already for the description of the triangulation (Figure 2.9).
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Then,

F =

0 0 0
0 0 −1
0 1 0

 .
2.2.5 Finding Camera Matrices

In the previous subsection, we computed the fundamental matrix
from the two cameras. In this subsection, we show that the opposite
is possible, too. For the moment we assume that a fundamental
matrix F is given and the cameras P1 and P2 are the unknowns. The
camera matrices are dependent on the world coordinate system while
the fundamental matrix contains only information about the relative
position between the cameras, but no information about the real world
coordinate system. Assume we have two corresponding points x1, x2

and two cameras P1 and P2 which project the 3D world point X onto
them. We now apply the projective transformation H, a 4× 4 matrix,
to the 3D world coordinates. Then X becomes X̃ = HX and the
cameras become P̃1 = P1H

−1 and P̃2 = P2H
−1. The fundamental

matrix remains unchanged

xT
2Fx1 = (P2X)TF (P1X)

= (P2H
−1HX)TF (P1H

−1HX) = (P̃2X̃)TF (P̃1X̃).
(2.21)

In conclusion, we obtain two camera pairs which both have the same
fundamental matrix.

This ambiguity is not a downside since it gives us the freedom to
choose the world coordinate system on our own. We usually choose
the canonical form in order to set the first camera to the form [I|0].
We are then left with the question what we can deduce for the second
camera P2 = [A,a].

Actually, we are looking just for A, since a = e2 is the epipole.
Remember, e2 = P2C1, with C1 = (0, 0, 0, 1)T the center of camera
P1 in homogeneous coordinates. The epipole e2 has to satisfy eT2Fx1

for all possible x1 since it lies on all epipolar lines l2 = Fx1. Therefore
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the epipole e2 is the left null space of F , that is eT2F = 0 and can be
computed directly from F .

If F is a fundamental matrix and P1 and P2 the corresponding two
cameras, then the matrix PT

2 FP1 has to be skew-symmetric. This is
because 0 = xT

2Fx1 = XTPT
2 FP1X is true for any vector X if and

only if PT
2 FP1 is skew-symmetric. We can satisfy this constraint by

setting A = SF , with S a random skew-symmetrix matrix. This leads
to a camera matrix P2 = [SF |e2] and we obtain

PT
2 FP1 = [SF |e2]TF [I|0] =

[
FTSTF 0
eT2F 0

]
. (2.22)

The right hand side is a skew-symmetric matrix, since eT2F = 0. Luong
and Vieville [65] suggested using S = [e2]×. This leads to the two
cameras

P1 = [I|0] and P2 = [[e2]×F |e2] (2.23)

which are computable directly from F .
In a next step we need to show that the two found matrices P1

and P2 are cameras indeed. While this is self-evident for P1, we have
to show that P2 has rank 3. F has to have rank 2, otherwise it is not
a fundamental matrix and eT2F = 0. It follows that two of the three
column vectors of F are linearly independent and therefore span a
plane. e2 is perpendicular to this plane, since it is perpendicular to
all of the column vectors fi of F , because eT2 fi = 0 for i ∈ {1, 2, 3}.
Hence, taking the cross product of e2 and fi gives three vectors, all
of which are perpendicular to e2 and span the same plane as f1, f2, f3.
Therefore [e2]×F , is the same as taking the cross product of e2 and
all the column vectors of F and has rank 2. Then, adding e2 as an
additional column [e2]×F leads to the desired rank 3 matrix.

2.2.6 Projective Reconstruction

The next and also last step in the reconstruction pipeline for two
views, is to find a 3D point for each point pair x1, x2 with given
cameras P1 and P2.
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We have the two equations

x1 = P1X and x2 = P2X, (2.24)

where the unknown 3D point is writen as the homogeneous 4-vector X.
The problem that arises at this stage is that the equation signs mean
in the same equivalence class, since we can multiply the left hand side
of the equations with any factor and they remain valid. To overcome
this problem, we require the vectors of the left hand side and the
right hand side to be parallel. Then, the length of the vectors, and
therefore the scale factor, can be neglected. The cross product of two
parallel vectors has to be zero, so the equations become x1×P1X = 0
and x2 × P2X = 0. Writing this out yields

x1(p3T
1 X)− (p1T

1 X) = 0 x2(p3T
2 X)− (p1T

2 X) = 0

y1(p3T
1 X)− (p2T

1 X) = 0 y2(p3T
2 X)− (p2T

2 X) = 0

x1(p2T
1 X)− y1(p1T

1 X) = 0 x2(p2T
2 X)− y2(p1T

2 X) = 0

where piTj denotes the ith row vector of the jth camera matrix. These
equations are linear and we have a total of six for one point pair. By
taking four of these equations, with two from each camera, we can
build a linear equation system of the form AX = 0 with

A =


x1p

3T
1 − p1T

1

y1p
3T
1 − p2T

1

x2p
3T
2 − p1T

2

y2p
3T
2 − p2T

2

 . (2.25)

We now have four equations to solve to obtain four homogeneous
coordinates. Hence, we cannot solve X directly, becaue it is defined
only up to a scale, which also can be 0. There are two possibilities
to solve this problem. One is to require the homogeneous coordinate
of X to be 1 by setting XT = (X,Y, Z, 1). Another possibility is to
require ‖X‖ = 1. This is the equivalent problem to find the minimum
of the ratio ‖AX‖ / ‖X‖. The solution is the eigenvector of ATA with
the smallest eigenvalue [28]. We can find it through a singular value
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decomposition A = USV T. Then, the column vector of V , which
corresponds to the smallest singular value, represents this eigenvector.

Without a discussion in depth, we want to mention here, that
the two possible workarounds behave differently whenever there is
noise in the image points. It is only possible to set the homogeneous
coordinate to 1 where we can be sure that we are not solving for a
point at infinity. Remember, points on the infinite line have 0 as third
coordinate. This marks a clear restriction when we are processing
outdoor scenes, which include a visible horizon.

2.2.7 Finding the Fundamental Matrix

We have already discussed many properties of the fundamental matrix
and the way we obtain two camera matrices from it. Indeed, the
fundamental matrix opens up many secrets about the two cameras
which depict a common scene. In this subsection we want to explore,
how we can find this useful matrix, given point correspondences on
two images. We basically have Equation (2.13) and the knowledge
about its 7 degrees of freedom and the rank 2. First, we exploit
Equation (2.13), which is

[
x2 y2 1

] f11 f12 f13

f21 f22 f23

f31 f32 f33

x1

y1

1

 = 0 (2.26)

when we write down all its elements. Just rearranging terms leads to

f11x1x2 + f12y1x2 + f13x2 +
f21x1y2 + f22y1y2 + f23y2 +
f31x1 + f32y1 + f33 = 0,

(2.27)

which is a linear equation for the 9 unknowns fij . Since F is ho-
mogeneous, we can reduce the unknowns by fixing one of them, for
example f33 = 1. For the other unknowns, we can set up a system
with 8 equations, given we have 8 pairs of corresponding points, and
solve it. What sounds like a standard mathematical problem, does
not work well in practice in this case. Feature points on an image
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are never noise free and we usually obtain a matrix with full rank
instead of rank 2. To correct this we use SVD in order to decompose
the found F = USV T into two orthogonal and one diagonal matrix S.
The matrix S contains the singular values of F . We set the smallest of
three singular values to zero and call the matrix S′. Then we use the
manipulated diagonal matrix to compute a new F ′ = US′V T, which
is the closest matrix under Frobenius norm to F that has rank 2.

The numerical stability of this method can be improved much
by normalizing the image coordinates at the beginning. We apply a
translation and scale all image points, such that their center is at the
origin of the coordinate system, and the squared mean distance of
the points to the origin is 2. These transformations can be done by
applying 3×3 matrices T1 and T2 to the original image coordinates. To
receive the fundamental matrix F for the original image coordinates,
we have to multiply the found and corrected fundamental matrix F ′

with the inverse transformations: F = T−1
2 F ′T−1

1 .
We can do even better when we combine the two steps of finding

the fundamental matrix and computing a projective reconstruction.
This hybrid algorithm is called the Gold Standard method [28]. It
searches for the fundamental matrix F̂ that minimizes∑

i

d(xi1, x̂
i
1)2 + d(xi2, x̂

i
2)2 (2.28)

subject to x̂i1F̂ x̂
i
2 = 0, where x̂ij denotes the pojection of Xi with Pj .

Intuitively, it searches for the fundamental matrix, which is perfect for
image locations x̂ij that are as close as they can be to the given loca-

tions xij . Hence, the error computed in Equation (2.28) is minimized
by the algorithm and measured directly in (squared) pixel units.

We start the procedure with an initial guess of the fundamental
matrix F as described at the beginning of this section. Next, we obtain
two camera matrices P1 = [I|0] and P2 = [[e2]×F |e2], with e2 the left
null vector of F . From these two camera matrices we can build the
linear equation system given in Equation (2.25), to find a homogeneous
representative of a 3D point Xi for each point correspondence xi1, xi2.
The true point location on the two images we find by back projecting
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the found 3D point. The so found locations x̂i1 = P1X
i, x̂i2 = P2X

i we
use to compute the error according to Equation (2.28). To minimize
the error we build a non-linear equation system, in which we keep P1

fixed and the xijs are known. P2 and Xi are the unknowns. For n
corresponding point pairs, this leads to a total of 12 + 3n variables.
The non-linear system can be solved with one of the methods described
in Section 4.2. Usually the Levenberg–Marquardt algorithm is the
choice.

Once, the optimal solution, that is the one which minimizes (2.28)
is found, we have actually a projective reconstruction. In the case we
still need to know the best fitting fundamental matrix, we build it
from the found camera P2 = [M |t] as F̂ = [t]×M .

2.2.8 n-View Geometry

The last step in every structure from motion pipeline is to refine the
found cameras and 3D point locations. We call this important part
the bundle adjustement. We project each found 3D point Xi with the
found camera Pj and measure the error to the corresponding feature
point xij on the input image. Mathematically,

min
Pj ,Xi

∑
i,j

d(xij , PjX
i) (2.29)

a non-linear minimization problem, which can be solved for example
with the Levenberg–Marquardt algorithm (Section 4.2). The idea is
actually the same as in the Gold Standard method for finding funda-
mental matrices. But it is now relaxed to several views respectively
cameras.

In the simplest case of bundle adjustment, we search for camera
matrices Pj and 3D point locations Xi, like we did it in the previous
section. If we keep the first camera fixed as [I|0], we have 12(m −
1) + 3n variables for m views and n different points. Further each
point location in each view gives two equations. In case we have
a decomposition of the cameras into internal parameters, rotation
and translation, we can constrain the system to keep this. We can



44 CHAPTER 2. VIDEO STABILIZATION

refine the parameters directly. While this is straightforward for the
entries of the calibration matrix K and the translation vector t, we
can denote the rotation with 3 Euler angles and use the standard
conversion to build the rotation matrix R, each time we compute the
projection error. If we know, that the internal parameters are the
same for all views, for example in a video with fixed focus, we can use
the same calibration parameters for all cameras to reduce the number
of variables we search for.

Classical optimization algorithms get usually trapped in local min-
ima. The best way to overcome this problem is to make educated
guesses by finding values that are given to the algorithm and already
come close to the solution. This is the main problem of bundle ad-
justment. We have already discussed how we find the cameras and a
good estimate of the registered 3D points from two views. The naive
approach to add the next view is to process the second and third
view in the same way as the first two. Then we end up with two
different reference coordinate systems, one which has the camera P1

as its origin, one with P2 in its origin. We can avoid this problem with
the assumption that the point set, that we want to reconstruct, is
affine. This means that the coordinate systems given by two different
reference frames can be mapped to each other with an affine 4 × 4
matrix H, which has (0, 0, 0, 1) as its last row. 12 unknown entries
in H result. We can compute these from the two different representa-
tions of P2, since P2 = P̂2H gives 12 linear equations. Computing all
initial guesses relative to the first camera is another option. However,
it has the downside that camera P1 needs to have overlap with all
other cameras to be able to compute fundamental matrices between
P1 and Pj , j > 1. A third possibility is to use the found 3D locations
to compute the next camera. Assume, we have already found j cam-
eras and are now processing camera j + 1. Then we also have a 3D
reconstruction for all tracked feature points in the j processed views.
If some of them are also visible in the j + 1th view, we can use them
to set up linear systems to compute camera Pj+1. Once camera Pj+1

is found, we can use it to do the reconstruction of the points which
are only visible in the cameras j and j + 1.
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The conclusion of this paragraph is that there are many ways to
obtain an initial guess for cameras and the reconstruction of 3D point
locations. Until now there is no “gold standard”. The decision which
assumptions are most likely and which downsides can be neglected
depends on the application.

Summary

To close this section, we give an overview of the steps, which need to
be done in a structure from motion pipeline.

1. Extract and match feature points (Section 2.1).

2. Select two frames and estimate the fundamental matrix between
them (Section 2.2.7).

3. Compute the two cameras (Section 2.2.5) and the 3D points
from the fundamental matrix (Section 2.2.6).

4. Add successively frames, compute fundamental matrices and
estimate the camera and 3D point locations (Section 2.2.8).

5. Refine the found cameras and 3D point locations with bundle
adjustment (Section 2.2.8).

2.3 3D Video Stabilization

Now that we have learned how the reconstruction of 3D points, camera
locations and orientations works, we describe how this applies to video
stabilization. Buehler et al. [7] were the first to develop a video
stabilization method, which uses structure from motion, in 2001. In
their work Buehler et al. do a projective reconstruction and then
upgrade it to a quasi-affine system. They restrict the application
of their method to linear camera motions without rotations. The
feature trajectories in the image space are then pushed to straight
lines. New camera matrices, which project the found 3D points as
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close as possible to these lines, are then searched. This finally leads
to a relatively simple non-linear least squares problem.

In 2009, Smith et al. [82] used a camera array to capture videos.
This makes the 3D reconstruction simpler. For each captured point in
time, different camera poses are available and relative camera positions
are known. This makes it possible to compute the 3D locations of
the found and matched features separately for each time step. Then,
similar to Buehler et al. [7], they compute new camera locations
relative to the input camera, such that the features describe smooth
trajectories. We come back to this method in Section 2.7.

In 2009, Liu et al. [55] followed the probably most intuitive way
of video stabilization. They run the whole structure from motion
pipeline to compute the 3D locations of a sparse feature set as well as
the 3D camera location and orientation for each frame. For this step
the Voodoo Tracker3 is used. Once we know the camera path, we can
either smooth it or replace it by another, desired one. While smoothing
the actual path can be done by low-pass filtering the 3D coordinates of
the camera poses directly, correcting the camera orientation is quite
a bit harder. The trick Liu and colleagues use in their work was
developed by Lee and Shin [50]. They propose to denote the camera
orientations as quaternions. We can see this step as the transformation
of the space of rotations into a linear vector space, where we can use
standard filtering techniques. Afterwards, we transform the filtered
quaternions back into rotation matrices. We can then use the rotation
matrices directly to build the new camera matrix. Compared to this
process, it sounds much simpler to directly replace the original camera
path by a desired one. On the other side, the disadvantage is that the
desired path may be too far away from the original one. This may
become a problem, when it comes to the rendering step. Once the
new camera locations and orientations are found, the 3D features can
be projected. That gives us the pixel locations of these features on the
frames taken with the stabilized camera. Liu et al. use the knowledge
of the feature locations before and after the stabilization of the camera
to guide their content-preserving warp. With this, each frame can

3http://www.viscoda.com
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be newly rendered and appears as if it would have been taken by a
camera moving along a smooth path. We discuss the warping in detail
in Chapter 4.

One of the most recent works which uses structure from motion
for video stabilization was presented at SIGGRAPH 2014 by Kopf
et al. [46]. They target first-person videos. First person videos are
movies that show the scene as it is seen through the eyes of the camera
operator. Usually those kind of movies are much less smooth than
those that were filmed with a hand-held camera. Additionally, they
are often long and contain moments without a real plot, for example
when the filmer has to wait on a traffic light while capturing his bike
ride with a helmet camera. Therefore Kopf et al. were not satisfied
with only stabilizing the videos, which is why they also speed up their
movies by creating so called hyper-lapse videos. Similar to Liu et
al. [55] this is done by reconstructing the 3D positions of features
and cameras, including the camera orientation. Then each input
frame is overlaid with a mesh grid and a depth value for each grid
vertex is computed, based on the knowledge of the sparse feature
set. In that way they construct a dense depth map, which they
then use as a geometry proxy in the rendering step at the end. The
new camera locations are computed through an energy minimization
problem, which takes into account that the new camera path has to
be smooth, fit a given length and avoids showing parts of the scene
that where never captured on the input video.

2.4 Subspace Constraint

Doing a 3D reconstruction of a whole scene to stabilize a video or
aligning an image sequence to a specific camera path may sound
like cracking a nut with a sledgehammer. Indeed, there are methods
to exploit other properties of feature points on images, instead of
performing a full 3D reconstruction. One such method, which is
closely related to structure from motion, is the subspace constraint
firstly described by Michal Irani [37] in 2002. We first explain what
subspace constraint means and afterwards show why this constraint
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exists. In the following Section 2.5, we introduce a video stabilization
algorithm that builds on the subspace constraint.

Provided that we already have tracked and matched feature points
over a video or image sequence, we can fill their coordinates into a
matrix

M =


x1

1 x1
2 . . . x1

F

y1
1 y1

2 . . . y1
F

x2
1 x2

2 . . . x2
F

...
...

...
yN1 yN2 . . . yNF

 , (2.30)

such that the columns of the matrix contain all feature locations
of one frame and the rows of the matrix contain either the x or
the y-coordinates of a whole feature trajectory. For this section, we
only consider features that may be tracked over the whole sequence.
Intuitevely one thinks that such a matrix has some special properties,
since it represents the projections of a 3D point set. Albeit this, the
entries are not fully independent of each other and are restricted to
a subspace of the matrix. This is where the term subspace constraint
stems from. Already in 2002 Michal Irani [37] proved that such a
subspace, and therefore also the matrix, has rank 9 at the most. We
recapitulate this proof next.

What Irani actually showed was that the matrix of the point
differences has rank 9. The differences to a reference frame are given
by uij = xij − xi and vij = yij − yi, where (xi, yi) is the location of the

ith feature in the reference frame and (xij , y
i
j) is the location of the

same feature on the jth frame. Then, the matrix δM consists of all
uij and vij instead of xij and yij .

We first consider one single point with 3D location Xi, Y i, Zi.
For better readability we omit the superscript i. The projection of
the point onto the reference frame is x = f XZ , y = f YZ , where f
denotes the focal length. Similarly, the projection onto the jth frame
is xj = fj

X+δX
Z+δZ , yj = fj

Y+δY
Z+δZ , where fj denotes the focal length on

the jth frame and δX, δY , δZ the movement of the 3D point relative
to the camera, according to its rotation and translation. Then, we
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obtain for the point differences[
uj
vj

]
=

[
xj − x
yj − y

]
=

[
fj
X+δX
Z+δZ − f

X
Z

fj
Y+δY
Z+δZ − f

Y
Z

]
. (2.31)

We extend the fractions on the right hand side to the common denom-
inator (Z + δZ)Z, which we write as Z2 since δZ � Z. This leads
to [

uj
vj

]
=

1

Z2

[
fj(X + δX)Z − fX(Z + δZ)
fj(Y + δY )Z − fY (Z + δZ)

]
(2.32)

=
1

Z2

[
(fj − f)XZ + fjδXZ − fXδZ
(fj − f)Y Z + fjδY Z − fY δZ

]
. (2.33)

Next, we replace δX, δY , δZ by the derivatives Ẋ, Ẏ , Ż. These
derivatives are approximated by Longuet-Higgins and Prazdny [60]
with the condition that tZ � Z and the approximations are

Ẋ = ΩY Z − ΩZY + tX ,

Ẏ = ΩZX − ΩXZ + tY ,

Ż = ΩXY − ΩYX + tZ .

(2.34)

With this replacement we obtain for Equation (2.33)[
uj
vj

]
=

[
(fj − f)XZ +

fj
Z (ΩY Z − ΩZY + tX)

(fj − f)YZ +
fj
Z (ΩZX − ΩXZ + tY )

]

+

[
−f X

Z2 (ΩXY − ΩYX + tZ)
−f Y

Z2 (ΩXY − ΩYX + tZ)

]
.

(2.35)

Then we just rearrange the terms[
uj
vj

]
=

[
−fΩX

XY
Z2 + fΩY

X2

Z2 + fjΩY − fjΩZ YZ
−fΩX

Y 2

Z2 + fΩY
XY
Z2 − fjΩX + fjΩZ

X
Z

]

+

[
fjtX
Z − ftZ X

Z2 + (fj − f)XZ
fjtY
Z − ftZ Y

Z2 + (fj − f)YZ

]
.

(2.36)



50 CHAPTER 2. VIDEO STABILIZATION

Finally, we can write the right hand side as two row vectors

U =
[
−XYZ2

X2

Z2 0 1 −YZ
1
Z 0 − X

Z2
X
Z

]
(2.37)

and

V =
[
−Y

2

Z2
XY
Z2 −1 0 X

Z 0 1
Z − Y

Z2
Y
Z

]
(2.38)

and a column vector

Pj =
[
fΩX fΩY fjΩX fjΩY fjΩZ . . .

fjtX fjtY ftZ (fj − f)
]T
.

(2.39)

Now, the row vectors only contain point-dependent entries and the
column vector contains only camera dependent entries. Finally, Equa-
tion (2.31) turns into [

uj
vj

]
=

[
U
V

]
Pj . (2.40)

It is straightforward to extend this to many features and several
frames. For each feature point we create U i and V i row vectors, and
similarly, we build a corresponding camera vector Pj for each frame.
To do so, we simply add a superscript i to all entries in U and V . In
Pj we already distinguish between the focal lengths f and fj . They
remain the same. However, all ts and Ωs are frame-dependent and
therefore we add a subscript j. Then, the matrix δM , which contains
the differences to the reference frame of all features in all frames, can
be written as

δM =


u1

1 u1
2 . . . u1

F

v1
1 v1

2 . . . v1
F

u2
1 u2

2 . . . u2
F

...
...

...
vN1 vN2 . . . vNF

 =


U1

V 1

U2

...
V N


[
P1 P2 . . . PF

]
. (2.41)

The stack of U i, V i vectors always has width 9, independently of the
number of features we track. This is similarly for the matrix formed
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by the Pj column vectors. The height is always 9, but the width
depends on the number of frames. Equation (2.41) is a decomposition
of the matrix δM into two matrices, which have both rank 9 at the
most. From the rule rank(AB) ≤ min(rank(A), rank(B)) it follows
that δM has rank 9 at the most, too.

In the last step, we want to show that the same rank constraint
applies to the matrix M that contains the actual feature locations
(xij , y

i
j). From the definition of uij , v

i
j , we have

xij = uij + xi = U iPj + xi

yij = vij + yi = V iPj + yi,
(2.42)

where xi = f X
i

Zi , y = f Y
i

Zi . A closer look at U i and V i displays that

the terms Xi

Zi or Y i

Zi are already included as the last element of the
vectors. So, we can increase the last element of Pj by f to get

P̂j =
[
fΩX fΩY fjΩX fjΩY fjΩZ . . .

fjtX fjtY ftZ fj

]T
.

(2.43)

Then, we can write xij = U iP̂j and yij = V iP̂j , and the same argu-
mentation for δM becomes valid for the matrix M .

2.5 Subspace Video Stabilization

We saw in Section 2.2, where we discussed the structure from motion
pipeline briefly, that it is quite expensive to compute the correct 3D
location for all feature points and the camera itself. Further, in some
situations structure from motion fails. This may occur, when the
camera movement is mainly rotational, or the scene is totally flat.
In such a flat scene, as for example a painting or portrait, that is
filmed with a hend-held camera, even small camera jitters are highly
recognizable, but structure from motion algorithms in general fail.

On the other hand, filtering the trajectories of the features directly
in 2D is not possible as we have discussed in the beginning of this
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chapter. Even though, it is worth to store all feature locations in a ma-
trix M , such that each row contains either the x or the y-coordinates
of one feature over all frames as in Equation (2.30). Then the columns
contain all feature point locations of one frame. We saw in the pre-
vious section that this matrix M has rank 9 at the most. Liu et al.
[56] exploit this fact to stabilize videos. One way to understand the
idea is that we look for a basis of this 9 dimensional subspace. Then,
we filter the basis and therefore all feature trajectories in one go and
consistantly with respect to their 3D location. In the remainder of
this section we summarize how Liu and colleagues do this.

2.5.1 Filtering with Subspace Constraint

To begin with, let us assume all features can be tracked over all
frames. In practice this is not the case, but a good starting point
for our explanation. We store the feature locations in a trajectory
matrix M as in Equation (2.30). From the previous section we know
that we can approximate this matrix M , with a matrix which has
rank 9. Therefore we can factorize this approximation matrix into
two matrices, such that we have

M ≈ CE (2.44)

where C has the same height as M but width 9 and E has height 9
but the same width as M . Remember, the height of M is two times
the number of feature trajectories, the width is given by the number
of frames. Liu et al. [56] call the row vectors of E eigen-trajectories.
They can be seen as the basis of the 9 dimensional subspace. On
the other hand, C, the coefficient matrix, describes the 2D feature
location as a linear combination of the eigen-trajectories.

Once we are at the point where we factorized M successfully, we
can smooth the eigen-trajectories directly. This can be done with a
simple 1D Guassian or even a box filter applied to E row wise. In
addition, more complex filtering operations are possible according to
Liu et al. [56]. The filtered eigen-trajectories then build a new matrix
Ê. To get the smoothed 2D trajectories, we multiply the smooth
eigen-trajectories with the coefficient matrix C.
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In practice our assumption that all features can be tracked over
all frames is wishful thinking. Luckily, there is a simple solution for
this problem. When filling the feature locations into M , we leave the
entries in M empty wherever a feature trajectory ends or has not yet
started. The empty places are filled with zeros. To make sure that
we do not add features through the filter step, we compute a binary
matrix W , consisting of ones, where M has a non-zero entry and zeros
elsewhere. We then multiply the product of the coefficient matrix C
and the smoothed eigen-trajectories Ê element-wise with the mask
W to get the smoothed feature trajectory matrix,

M̂ ≈W � CÊ. (2.45)

The symbol � represents the element-wise multiplication.
Given the smoothed output feature locations in matrix M̂ and its

input locations, the stabilized frames can be rendered with the content-
preserving warp by Liu et al. [55]. We postpone the discussion of the
warp to Section 4.3.1 and address the question of how we can find the
factorization.

2.5.2 Moving Factorization

It is unlikely that we have enough trajectories which can be tracked
over the whole video to do the stabilization. This leads to empty
entries in M that we filled with zeros. But to be able to factorize
M , we need to have a full matrix that has no empty or zero entries.
The workaround is to avoid doing the factorization for all frames at
once. Liu et al. [56] divide the matrix M in overlapping sub-matrices,
such that each of them consists of only known non-zero entries and
can therefore be factorized. The overlap of each sub-matrix with the
previous one guarantees that the factorization is consistent to the one
which is already computed.

To initialize the process we reorder the trajectories in M such that
all trajectories, which start on the first frame and can be tracked for
at least k frames, are at the top. k is the window size, which has to
be at least 9, but should be as large as possible. Liu et al. [56] suggest
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to set k = 50. Assume we have m trajectories which can be tracked
over the first k frames or longer. We define M0 as the sub-matrix
containing the first 2m rows and the first k columns of M . So, M0

stores the feature locations of the m trajectories, which can be tracked
over the first k frames. M0 is a full matrix and can be factorized as

M0
2m×k = C2m×9E9×k. (2.46)

The subscript indicates the size of the matrices. To yield this initial
factorization, we compute the singular value decomposition (SVD) of
M0. In the obtained diagonal matrix we set all eigenvalues except the
9 largest to zero and multiply the square root of the modified diagonal
matrix with the other two matrices obtained by the SVD. Note, to be
able to keep the 9 largest eigenvalues we need to have 2m > 9. If this
is not the case, we can choose a smaller k.

After we have found the factorization for M0 we move the factor-
ization window forward by δ frames. Similar to k, δ can be arbitrarily
chosen and is suggested to be δ = 5 [56]. The next sub-matrix, M1, is
built in the same fashion as M0 and consists of all the feature trajec-
tory locations on the frames δ+ 1, ..., δ+ k, which can be tracked over
the whole range. M0 and M1 overlap where they contain the locations
of feature trajectories that could be tracked from frame 1 until frame
δ+k and are therefore in M0 and M1. After ordering the trajectories

accordingly, we can divide M0 =
[
A00 A01

A10 A11

]
and M1 =

[
A11 A12

A21 A22

]
into

sub-matrices, such that A11 contains the overlapping entries. We vi-
sualize this matrix factorization in Figure 2.12. The factorization for
A11 = C1E1 is already computed at this stage and is kept fixed. C1

and E1 are the corresponding sub-matrices from C and E. We can
now use C1 and E1 to solve for C2 and E2 in the quadratic equation[

A11 A12

A21 A22

]
=

[
C1

C2

] [
E1 E2

]
(2.47)

in a least-squares manner. This can be done with standard methods
like Gauss–Newton algorithm or the Levenberg–Marquardt method,
but it is time consuming. A much faster method is to approximate
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= E0 E1 E2A11A10

A01

A12

A21 A22

A00

C2

C0

C1

Figure 2.12: The factorization of the matrix M1 (green): C0, C1, E0

and E1 are kept fix. C1 and E1 are used to compute C2 and E2.

the solution through two linear equations. Instead of solving for C2

and E2 at the same time, we solve one after each other. First we
compute

C2 = A21E1T
(
E1E1T

)−1
(2.48)

and afterwards

E2 =

([
C1

C2

]T [
C1

C2

])−1 [
C1

C2

]T [
A12

A22

]
. (2.49)

These linear approximations are nearly as accurate as solving the
quadratic equation. For our purposes, it suits the need.

Once M1 is factorized, meaning C2 and E2 are computed, we
move the factorization window forward by again δ frames. We build
a new sub-matrix M2 and repeat the steps described in the previous
paragraph with M1 in place of M0. This is done until the end of M
is reached.

As a last step, we check if we have found coefficients for all tra-
jectories. The algorithm does not process a trajectory if it is shorter
than k frames, or starts on a frame between nδ and (n+ 1)δ but ends
before frame (n+ 1)δ + k. For such a trajectory, the coefficients can
be computed easily by solving a linear system, once the whole E is
known. Then, smooth output feature trajectories can be computed
with the filtering step as discussed in the previous Subsection 2.5.1.
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2.6 Other Methods

So far we have focused our discussion on video stabilization methods
that use a 3D reconstruction of feature points, camera location and
orientation directly [7, 82, 55, 46]. In addition, we have discussed a
method that skips the explicit reconstruction step, but still decom-
poses the feature trajectories such that the point locations and the
camera locations can be described separately [56]. In this section we
discuss two recent methods which do not use any reconstruction of
the scene or camera at all. However, at least in the first work that
we discuss, some of the basics about the relationship between camera
positions (also compare Section 2.2) are still being used.

2.6.1 Video Stabilization using Epipolar
Geometry

The title of this section is also the title of the work presented by
Goldstein and Fattal at SIGGRAPH Asia 2012 [21]. In their actual
stabilization process, no knowledge about the scene structure or the
camera itself is being used. Not even information about the epipolar
geometry, as the title claims. Instead, they filter the trajectories of
feature points directly! The epipolar geometry is only used before and
afterwards.

To be able to filter the trajectories in the image space, Goldstein
and Fattal need to ensure that they have very long trajectories, which
are also well distributed over the whole frame. This is reached by
extending the existing trajectories in a technique which we call epipo-
lar point transfer [16, 28]. Epipolar point transfer works as follows:
We have three different views from a scene and we have found and
matched a set of feature points successfully. Then, we can compute
the fundamental matrices between all three views, F12, F23 and F13.
In a next step we choose a feature point pi, which was detected and
matched on the first two views, but not yet on the third one. Thanks
to the fundamental matrices, we know where to search for pi3, the
feature point location in the third image. It has to lie on the epipolar
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F23
F13

View 1
View 3

View 2
l1 l2

p1 p2

p

Figure 2.13: Point p could be tracked on views 1 and 2 as p1 and p2.
With the fundamental matrices F13 and F23, which relate the first
two views with the third, we can compute the epipolar lines l1 and l2
on view 3. The intersection point marks the location of p3.

line l1 = F13p
i
1. Remember, l1 is the projection of the ray going

through the 3D point location of pi and the center of the first camera.
At the same time, pi3 also has to be on the epipolar line l2 = F23p

i
2,

the projection of the ray through the 3D point and the center of the
second camera. It follows, that pi3 is the intersection point of the two
epipolar lines l1 and l2 and we successfully found the projection of pi

onto the third view.

Goldstein and Fattal use this method to extend the found feature
trajectories. For a greater robustness, they use five views or funda-
mental matrices and epipolar lines in order to compute the point on
the sixth image instead of only two. The idea remains the same. For
a good distribution of the trajectories over the whole frame, they par-
tition the frame regularly with a rectangular grid. Then they ensure
that at least one trajectory goes through each grid cell.

Since the trajectories are filtered in the 2D image space directly
and independently of each other, it may happen that the filtered
trajectories do not represent a valid geometric structure anymore.
Therefore, Goldstein and Fattal do not use the filtered trajectories
directly to render the stabilized frames. Instead, they fit new fun-
damental matrices F̃st, which relate the feature points on the input
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qt+1,t

qt+2,t

qt
qt−1,t

qt−2,t
Ft−2,t

Ft+1,t

Ft+2,t

Ft−1,t

Frame t− 2 Frame t− 1 Frame t

Frame t+ 1 Frame t+ 2

qt−2 qt−1

qt+1
qt+2

Figure 2.14: Here we show 5 consecutive frames. We map the moving
point q with the fundamental matrices Fst onto frame t, which gives
the epipolar lines, drawn in color. Together with the assumption that
q moves smoothly, we can reconstruct its trajectory in frame t.

frame s to the stabilized frame t. Afterwards, they apply the epipolar
point transfer with F̃st for several s again in order to find geometri-
cally correct point locations on the stabilized frames. As a last step,
the frames are rendered with the content-preserving warp by Liu et
al. [55].

The most remarkable point in this work is probably the fact that
it also addresses moving objects. The described stabilization process
relies on features of static objects only. Despite, in the rendering
step Goldstein and Fattal consider features on moving objects too.
This makes sense, since moving objects, for example people, may be
much closer to the camera than static background. Therefore, the
displacement to the input image may be different to the background
in such an area. The problem is that we cannot use the point transfer
method for static points directly, even though we know the fundamen-
tal matrices Fst. The epipolar line ls = Fstqs represents the ray of
point q into camera s at time s in the view of camera t. Since q is a
moving object, qt does not lie on ls and it is not possible to transfer a
point using two or more epipolar lines to another view. Nevertheless,
we can exploit this information about the point q on time s in view t
and, together with the assumption that features on real world objects
move smoothly, we can build an equation system. On the one side
qs,t, the feature point location at time s on frame t, has to lie on ls.
On the other side, qs,t − qs−1,t should be constant for all s. After
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solving this system, we get the feature location of a moving point q on
time t in different views s. These qt,s and the fundamental matrices

F̃st we can now use to transfer the point qt from the input frame onto
the stabilized one.

2.6.2 Bundled Camera Paths for Video Stabiliza-
tion

The second work we discuss in this section is entitled “bundled camera
paths for video stabilization” and was presented at SIGGRAPH 2013
by Shuaicheng Liu and colleagues [58]. Even with having the word
“camera” in its title, the described method is far from computing
cameras, as employed in 3D stabilization methods, or decomposing
trajectories into camera and point information, as done in the subspace
stabilization method (Section 2.5). The described method does not
rely on any scene geometry or actual camera information at all. It
is solely based on content-preserving warps [55]. People not familiar
with warping methods may come back to this section after reading
Chapter 4.

All previously discussed methods firstly compute goal feature lo-
cations, which are consistent with the 3D structure of the scene and
then use these to guide the warp in the last step of their pipeline.
Liu et al. [58] do it the other way round. The warp is used at the
beginning to compute a kind of camera paths. First, they overlay a
frame with a rectangular grid. Then, they warp this frame onto the
next frame with the content preserving warp [55]. The warping is
guided through feature points, which were found on the current and
the following frame. The transformation that each grid cell undergoes
can be described by a homography, which is defined by the four grid
cell vertices. These homographies can be interpreted as camera move-
ments. To do so, we treat each video frame as an image, composed of
as many images as we have grid cells, each taken with an independent
camera. We keep on warping the next frame to the one after the
next and computing the homographies for each grid cell. This way
we compute a path, consisting of the homographies from one frame
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to the next, for each of our cameras.
Once the paths for all cameras are found, Liu et al. [58] set up

an optimization system to smooth the camera paths. The system
balances the smoothness of the camera paths and tries to keep them
close to the input paths. A further requirement is that the path of
each camera stays close to the one of its eight neighboring cameras.
The resulting energy minimization problem is quadratic and therefore
solvable as a large sparse linear system.

After finding the optimal camera paths, we can compute the output
positions for each grid cell directly. Then, it is straightforward to again
compute homographies, from the input frames to the output frames,
and do a forward warp. If small wholes appear between neighboring
cameras, these are filled with bilinear interpolation.

The way of describing the camera paths is the main point of this
work and is most likely going to be used in other papers for different
applications. Further this method avoids the step of finding long
feature trajectories, which often can be difficult. And last but not
least, this method does not need any knowledge about the used camera
or the scene structure.

2.7 Stereo Video Stabilization

Camera sensors and lenses become smaller and cheaper to produce
with time. Nowadays, building even two cameras into mobile phones
has become economically affordable. This opens up a whole field of
new possibilities. Mostly, the additional camera in mobile phones is
used to create depth maps for the images. Even though this feature
is not yet common for mobile phones and consumer cameras, a few of
them are available on the marked4 already. A popular example of a
stereo consumer camera is the Fujifilm FinePix REAL 3D, which we
used for a few experiments, too.

Wherever there are consumer video cameras, shaky videos are
close. This is valid for stereo videos too and the reason for us to

4Wikipedia provides a list of 3D-enabled mobile phones:
https://en.wikipedia.org/wiki/List_of_3D-enabled_mobile_phones
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discuss it in more detail. By having two views for each time step, we
also gain a lot of additional information, hence a lot more possibilities.
However, we also need to stabilize two camera views simultaneously.

2.7.1 3D Stereo Video Stabilization

Daniel Frey, one of our students, investigated this topic during his
Bachelor thesis [17]. He implemented the 3D video stabilization al-
gorithm by Liu et al. [55]. We had previously already thought about
possible solutions to keep the camera baseline fixed while stabilizing
the paths. Smoothing only one path and computing the locations for
the second camera out of it? This is possible, since the two cameras of
a stereo camera have a fixed distance. Or shall we add an additional
constraint to the filtering step? To start with, we tested the simplest
of all methods. We filtered the 3D path of the left and right cameras
independently. The results were surprisingly good and we did not
find visible artifacts or disparity distortions. The major problem that
we faced was the structure from motion part (moving content, “flat”
scene, little camera motion) similar to the case of mono-videos. Most
of these problems can be solved when considering the video streams
from both cameras in the reconstruction process. Smith et al. [82]
had exploited this fact already.

To the best of our knowledge, the first published work which tar-
gets the stereo video stabilization is an extension of Smith et al. [82],
which was presented as a demo at ICCV 2011. Since the original paper
is about light field video stabilization, where the light field is captured
with a 5 × 5 camera array, the stereo camera is just a special case
of it. To briefly review, Smith et al. [82] use edge points instead of
feature locations. They then match the found edge points across the
other views of the same time. The camera is calibrated and therefore
the baseline and focal length is known, and the depth of the matched
feature point can be computed through simple triangulation. Of im-
portance, these 3D locations are relative to the corresponding camera
locations, and independent of the previous or next one. Nevertheless
it is now possible to find new camera orientations and locations rel-
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ative to the original one, such that the projections of the 3D points
describe a smooth path. Unfortunately, in the ICCV demo, Smith
et al. do not reveal how they compute the camera location for the
second view, but two possible solutions are conceivable. One is to
compute only one stabilized camera and use the knowledge about the
fixed baseline to compute the location for the second camera. The
other possibility is to compute the two output cameras simultaneously
and to add an additional energy term to the system, which either con-
trols the camera baseline or keeps the feature disparity similar to the
input. Both constraints are easy to implement and do not make the
energy minimization more complex, since both constraints lead to
linear energy terms.

As we see, this method exploits the advantages of stereo videos
directly. The method uses the possiblity to compute the depth of
feature points on each frame pair, independently of whether they are
on moving or static objects. Further, no long feature trajectories are
needed. It is sufficient, if we can track a feature on the previous and
the next frame and additionally on the second view of the current
frame. The downside of this method is that it cannot stabilize low
frequency shake well.

2.7.2 Subspace Stabilization for Stereo Videos

The subspace video stabilization approach that we have discussed in
Section 2.5, was extended to stereo videos by its first author [57]. The
main contribution of this work is the proof that feature trajectories of
both views, the one from the left and the one from the right eye, lie
in the same subspace. This makes it possible to find, match and track
features on both views of the stereo video independently. Afterwards
we can build a matrix of all feature locations in the same fashion as
we did in Equation (2.30) for a mono video. Then we can use the
same steps as as for mono videos. These steps are applying the mov-
ing factorization, smoothing eigen-trajectories and then multiplying
the smooth eigen-trajectories with the coefficient matrix resulting in
output feature locations. In the end, the smoothed trajectory matrix
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is used to guide the content preserving warps, which are applied to
both views on each frame separately. We have already discussed all
steps in detail in Section 2.5.

In this paragraph, we assume that the trajectory matrix is already
factorized. Then, the disparity of a feature trajectory can be computed
as

{d(t)} = {(xR(t)− xL(t)), (yR(t)− yL(t))}
=
(
(CxR − CxL)E, (CyR − C

y
L)E

)
,

(2.50)

where CxR denotes the coefficients, which describe the x-coordinate of
the feature location for the right view. Similar CxL, CyR and CyL denote
the coefficients for the y-coordinates and the left view respectively.
We directly see in Equation (2.50) the impact of the filtering step
on the disparity, since this means replacing E by the filtered Ê. In
a video from a horizontally aligned stereo camera have noise free
features zero vertical disparity. From Equation (2.50) follows that
CyR = CyL. Therefore, a perfect vertical disparity cannot be distorted

by smoothing E. Moreover, a smooth Ê leads to smooth horizontal
disparities and therefore to smooth changes in the perceived depth
and a more pleasant 3D view. Nevertheless, a downside of this method
could be that the stabilization algorithm skews the disparities over
time. Liu et al. [57] report that they did not experience this in their
experiments. They assume the reason is that disparities do not change
significantly over time and therefore the smoothing does not have a
great impact.

We conclude this section with the proof of the existence of the
common subspace of the feature trajectories of two views. Liu et
al. [57] show for two parallel cameras with fixed focal length that the
two subspaces are the same. We do this for the more general case
in which the focal length is varying. In the beginning, we stack all
found feature trajectories of the left camera in a matrix M , as in
Equation (2.30). We extend M by adding the trajectories from the
right camera row-wise in the same manner. Similar to the proof for
mono videos in Section 2.4, we consider the differences of the feature
locations to the reference frames. To keep the notation simple, we
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skip the trajectory number i and the frame number j. Then, uL, vL
denote the displacement of one feature in a frame of the left view.
We choose the global coordinate system such that it coincides with
the coordinate system of the left reference camera. This leads to
the projection xL = f XZ , yL = f YZ on the reference frame and we
can directly re-use the proof for mono videos by simply adding the
subscript L to the variables in Section 2.4.

The right camera is translated by a fixed vector −T relative to the
left camera. More specifically, the 3D point locations are translated
by T = (TX , TY , TZ)T relative to the right camera with TY = TZ = 0,
since the camera is only translated in x-direction. This leads to the
projection xR = f X+TX

Z , yR = f YZ for a feature visible in the right
eye view. Next, we compute uR and vR according to Equation (2.31).[

uR
vR

]
=

[
fj

(X+TX)+δX
Z+δZ − f X+TX

Z

fj
Y+δY
Z+δZ − f

Y
Z

]
. (2.51)

We follow the path of the proof in Section 2.4 and replace δX, δY , δZ
with the derivatives of X, Y , Z from Equation (2.34). The derivatives
remain the same, since T is a constant and disappears by deriving it.
After this replacement and rearranging terms, we obtain

[
uR
vR

]
=

[
−fΩX

(X+TX)Y
Z2 + fΩY

(X+TX)X
Z2 + fjΩY − fjΩZ YZ

−fΩX
Y 2

Z2 + fΩY
XY
Z2 − fjΩX + fjΩZ

X
Z

]

+

[
fjtX
Z − ftZ X+TX

Z2 + (fj − f)X+TX
Z

fjtY
Z − ftZ Y

Z2 + (fj − f)YZ

]
. (2.52)

Again, we can write the right hand side as two row vectors

UR =
[
− (X+TX)Y

Z2

(X+TX)X
Z2 0 1 −YZ

1
Z 0 − X

Z2
X+TX
Z

]
and

VR =
[
−Y

2

Z2
XY
Z2 −1 0 X

Z 0 1
Z − Y

Z2
Y
Z

]
(2.53)



2.7. STEREO VIDEO STABILIZATION 65

and a column vector

Pj =
[
fΩX fΩY fjΩX fjΩY fjΩZ . . .

fjtX fjtY ftZ (fj − f)
]T
.

(2.54)

The row vectors only contain point-dependent entries and the column
vector only camera-dependent entries. If we now compare the Pj
vector to the one from the mono-video case in Equation (2.39), which
is at the same time the vector for the left view in the stereo case, we
find them to be identical. Hence, we found a 9 dimensional vector Pj ,
which can describe the camera difference from the reference camera
for the left and right view at the same time. This concludes our proof.
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Chapter 3

2D to 3D Conversion

Nowadays arrive many block buster movies as “3D movie” in theaters.
What cinemas sell as 3D movies is usually what we call stereo movies.
Stereo in this case means that the theater shows two movies on the
screen, one movie for each eye. We discuss in the first section of this
chapter why this gives the viewer the impression of depth in the scene.
Two ways of producing such 3D movies can be applied. One is to film
each scene with two cameras. However, this method has complicating
drawbacks. First, it doubles the amount of equipment used on the
set and consequently editing the movie afterwards needs additional
effort. Second, finding the right distance between two cameras is a
difficult task especially if the distance has to be adjusted for each
scene. In the end the two cameras have a certain size and therefore a
minimal distance to one another, which can not be reduced and thus
making it impossible to reach the desired disparities by filming with
two cameras.

The second way of producing a 3D movie is to take the shot with
one single camera. This reduces the complexity of filming and allows
using all methodology that has been developed over the last decades
without restriction. The 3D conversion is then done after editing the
movie with standard tools. Adding the 3D effect on the computer

67
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Figure 3.1: Colors from objects far away tend to fade. The trees in
the foreground are pictured in green, while the color of the ground
and the sky become very similar near the horizon.

artificially also gives us the possibility to produce geometrically incor-
rect results. We can emphasize depth cues or reduce them to keep
the scene in a comfortable viewing zone. As we will further see in this
chapter, creating a second view retrospectively is very challenging and
we therefore discuss problems which may occur with this method in
Section 3.3. Possible solutions for the two main problems, which are
finding out the depth of the scene and rendering new views, follow
in Sections 3.4 and 3.5. But first of all, we want to understand what
makes us perceive (Section 3.1) and display (Section 3.1) images in
3D.

3.1 3D Perception

There are a number of effects that give a viewer a cue about how far
away an object had been at the time it was captured. We experience
this everyday, by looking at photographs. Even if the picture is only
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Figure 3.2: Without the shadows (top row) it is impossible to detect
the distance of the viewer to the spheres. Adding the shadows (bottom
row) makes clear that in the right image the right sphere is further
away than the other. [67]

2D, we usually know exactly what is closer and what is further away.
The maybe most obvious depth cue is the relative size of the objects.
We all know that a tree is higher than a standing person. So if we
see an image that shows a person being taller than the tree next to
the person, we intuitively know that the tree is actually much further
away from the viewer than the pictured person. We can experience a
similar behavior with parallel lines, like railway tracks or roads, which
in 2D come closer together the further away they go.

Whenever there are several objects on an image we can also identify
the depth and order of objects by occlusion. If one object is occluded
by another one, we intuitively know one is in front of the other.

Two other depth cues are color saturation and shadows. Colors
tend to fade and lose intensity for objects that are far away, as can be
seen in the example on Figure 3.1. This effect however clearly depends
on the air pollution and the current weather but usually the effect
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left eye view right eye view

Figure 3.3: A person which looks at a green and blue colored cube in
the middle of this figure. To its left and right we show the cube as it
is seen from the according eye.

is noticeable. Shadows are especially important for flying objects,
or objects with no obvious connection to the ground. In Figure 3.2
we show an artificial example of the importance of shadows. The
two images in the top row show two spheres each. The viewer cannot
determine, where the two spheres float in space. After adding shadows
on the ground (bottom row), it becomes clear that in the right image,
the blue sphere is further away than the purple one.

Another and even more obvious depth cue is blur. Only objects
that are captured at a specific distance, in the so called depth of field,
are captured sharp. The size of the depth of field depends on the
aperture size. Parts or whole objects, which are closer or further away,
and are outside of the depth of field, become blurry. The blur amount
increases when objects move away from the optimal camera distance
meaning they come closer or move further away from the camera.

The discussed depth cues are all monocular depth cues, since they
give a viewer a hint of the distance from camera to object or about
the order of the pictured objects, and they all work on single 2D
images. However, none of them let us see the pictured scene in 3D.
To create a 3D impression as perceived from real 3D scenes, we have
to show the viewer two different images, one for each eye. From two
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Figure 3.4: The eyes focus on point p. The left eye then sees the
point qn from a slightly different angle than p. This difference dn,
here measured in degree, we call the disparity. The same is valid for
the point qf and the right eye.

slightly different views of each eye, our brain is able to do a kind
of triangulation, similar to what we discussed in Section 2.2.3 in the
two-view case in the structure from motion part. Then we talk about
binocular depth cues.

Let us investigate this in more depth. In the middle of Figure 3.3
we see a pair of eyes that look onto an edge of the cube directly from
the front. One half of the cube is colored green, the other one blue.
In this case being right in front of the cube means the nose of the
viewer is right in front of the cube edge. The two eyes are slightly to
the left and right of the frontal position. Therefore, the left and right
eye see the cube from a slightly different angle and get two different
images of the same cube. How those images may look is shown on the
sides of Figure 3.3. We call this effect parallax. The extend to which
the two images differ depends for one thing on the distance between
the two eyes. This distance is called baseline and is in the range of
50-75mm for the eyes of a human. Furthermore, the distance between
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Figure 3.5: Schematic repre-
sentation of the theoretical
(T, solid) and the empir-
ical (E, dotted) horopter.
Image by Rainer Zenz,
https://en.wikipedia.org/wiki/Horopter.

T
E

the object and the viewer has a large influence, too. We explore this
by considering those points that the two eyes see under the same angle.
In Figure 3.4 this is point p. The eyes are rotated slightly towards
each other, such that the point p is exactly in the center of the retina
in both eyes. This simultaneous movement of both eyes in opposite
direction we call vergence in general and if they rotate towards each
other it is called convergence. We also can say that the point p is
exactly in the viewing direction of both eyes. For the right eye and
the point qn this still holds true. Assuming the eyes do not move,
the point qn is then seen from a different angle for the left eye. This
difference dn, here measured as angle, we call the disparity. We have
the same effect for points further away than p. To keep Figure 3.4
simple, we select the point qf such that it lies on the viewing direction
of the left eye. Now qf appears in the right eye at an angle that differs
by df from the viewing direction.

In theory, all points that are seen under the same angle on both
eyes lie on a circle (see Figure 3.5). This circle is called the horopter.
Geometrically the horopter is the circle from Thale’s theorem, gen-
eralized to non-right-angled triangles. Empirical measures show a
slightly more oval curve, as shown in Figure 3.5 [97]. In either case,
the horopter increases when the focused point gets farther away and
the eyes diverge. This means, the curvature of the horopter decreases
and the approximation by a plane becomes closer to reality for a short
piece of it. In our case, we deal with movies and images that are dis-
played on a relatively small screen or quite far away in theaters. For
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Figure 3.6: A pair of eyes focusing on point p. This defines the zero
disparity plane, denoted by 0. q and r appear in front, respectively
behind the zero disparity plane to the viewer. The effect is created
by showing q at position qL, r at rL to the left eye, while both points
are shown at p to the right eye.

those cases this approximation works. We call this the zero disparity
plane, since objects which appear on that plane have no disparity. In
Figure 3.6, the middle one of the five vertical lines is the zero disparity
and denoted by 0. We set this as our screen. This makes sense be-
cause a viewer usually focusses on the display while watching a movie
or looking at pictures. So if we show an image at that distance it
still appears as a normal 2D image. Let us assume we can display a
separate image for both eyes. In Section 3.2 we mention technologies
to do that. We then can trick the viewer’s eye by displaying a point
q for the left eye at the position qL and for the right eye at qR = p.
The viewer’s brain then triangulates these two points and concludes
that point q is in front of the screen and the illusion of a 3D image
is created successfully. With the same trick we can also let points
appear behind the screen. We show an example in Figure 3.6, with a
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point r, which is displayed on the blue line for the left eye and on p
for the right eye. By having a closer look at Figure 3.6, we see, that
the disparities do not change linearly with the perceived depth. The
disparity to create q that is the distance between p and qL is obviously
larger than the distance between rL and p, although the distances
from r or q to the zero-disparity plane are the same.

3.2 3D Displays

In the previous section, we have learned that we need to show a
viewer two images to create the 3D illusion. In order to do so we need
specialized hardware, such as a screen that creates or reflects polarized
light. In addition, each viewer needs a pair of glasses that filters out

“wrongly” polarized light for each eye. Another technology that allows
reception of a 3D illusion are shutter glasses, which alternately let
the light go through for one eye. On the screen we show images
for the left and right eye alternating, too. The problem that arises
is that screen and glasses need to be synchronised and work at the
same shutter speed. The probably oldest and simplest method are
anaglyph glasses. They work similar to the polarized glass with the
difference that anaglyph glasses filter some color ranges, instead of
polarized light. This has the obvious downside, that some colors can
be seen only with one eye. Therefore gray scale images often work
best for this method. Despite the fact that anaglyph is not the best
method to show stereo images, we use it in this thesis too, since it is
the only method which currently works on paper. However, there are
also methods that can avoid glasses. We discuss this topic briefly in
Chapter 5 about light fields.

3.3 2D to 3D Conversion Pipeline

In this section we explain the standard procedure to convert 2D images
or videos into stereoscopic ones and discuss the problems that have
to be solved.
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Left View

Right View

Input Depth Map 3D

Figure 3.7: Overview of the 2D to 3D conversion pipeline. Firstly we
compute a depth map, which can be converted directly into a disparity
map that is used in the second step to compute two new views. The
last step is then to display the two new images to each eye separately

We discussed and showed in Figure 3.6, that the disparity defines
whether an object appears nearer or farther away from a viewer. Vice
versa, when we create stereo images, we have to create the disparity
accordingly. To do so we need to know, whether an object is in the
front or the back of an image. Extracting this information is the
first step of the conversion pipeline shown in Figure 3.7 and is not a
trivial problem, assuming it should be solved by a computer. Methods,
which try to find out about the depth of objects in images or videos
are discussed in the next section in more depth. Additionally to the
methods discussed in Section 3.4, we have developed a user-guided
method that is presented in Chapter 6.

The second step in Figure 3.7 is rendering the images. Assume
we have an image taken with a digital photo camera and information
about the depth for each pixel of the image we see is given too. So,
we actually have all information we need. We decide to keep the given
image as the one which we show to the right eye. We then need to
create a new image for the left eye. Assume the point q has a depth
that is very close to the viewer, as in Figure 3.4. Originally, and
therefore also on the right eye view, it is displayed on point p. But
for the left eye, we need to display the point at qL. This means, when
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we compose the left eye image, we have to cut out p and paste it on
location qL. As a result, we are left with a whole at position p. This
then is a classical “whole filling problem”. Ideas, how to fill these
wholes or even avoiding them, are discussed in Section 3.5.

The last step of the pipeline is then showing the two images to the
two eyes separately. Methods how this can be done we have already
mentioned in the previous Section 3.2.

3.4 Depth and Disparity Maps

To be able to create 3D images, we first need to know which objects
are closer to the viewer and which are further away. When discussing
methods to find out about image depth we distinguish two cases. The
first one is a situation, where we have several images as input, or
frames in the case of a movie, taken from slightly different locations.
In this case, we can use structure from motion techniques (Section 2.2).
In the other case we only have one single image and it is not possible
to extract depth information with today’s technology. In this case we
require user input. One exception, which does not ask for user input
but has other limitations, we discuss at the end of this section.

The result of all methods we discuss in this section is a depth
map. A depth map is an array that comprises as many entries as
there are pixels of an input image. Each entry corresponds to one
pixel of the image and gives information about the depth of the object
pictured at that particular pixel. From this depth map, we can then
create a disparity map. We already saw in Figures 3.4 and 3.6 that
the depth and the disparity are closely connected. The mathematical
relation between disparity d and depth Z is d ∼ 1

Z . This can be
illustrated as follows. We assume a setting as shown in Figure 3.8:
Both cameras are pointing to the z direction, i.e. are parallel. The
distance between the two cameras, the baseline b, and the first (top)
camera is located at the origin of the coordinate system. Then the
projection of the 3D point X = (X,Y, Z) onto the image of the first
camera is x1 = (X/Z, Y/Z). We assume a focal length f = 1 for
simplicity. The same point is also pictured by the second camera.
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Figure 3.8: Two parallel cameras picture the 3D points X and X∞.
The first one is seen on the two images with a disparity of b/Z, while
the latter is infinite far away (e.g. on the horizon) and does not create
a disparity on the two images.

In its local coordinate system the 3D point X has the coordinates
(X − b, Y, Z), since the camera center is moved by b with respect to
the world coordinate system. It follows, that the projection of X onto
the second image is x2 = ((X − b)/Z, Y/Z). We can then compute
the disparity by taking the difference between the two point locations.
In y direction this is zero. In x direction we have d = X−b

Z − X
Z = −b

Z .
Note that b is a constant. Hence, we have the proposed relation d ∼ 1

Z .

In the case of two parallel cameras, as illustrated in Figure 3.8,
points at infinity have a disparity of 0. Also see X∞. This is still
consistent with d ∼ 1

Z , since any finite number divided by infinity
equals zero by definition. And this also seems a realistic scenario,
because when scenes are captured outside, at least the pixels showing
the horizon are at infinite depth. To avoid such entries in depth maps,
we usually use disparity maps directly.

3.4.1 Multi-View Stereo

We begin the discussion of methods to generate disparity maps with
the situation where we have several input images from different lo-
cations. As we have learned, we can then apply a structure from
motion pipeline (Section 2.2). This gives us the location and viewing
direction for each camera. Intrinsic parameters such as focal length or
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camera center relative to the image coordinate system can be found,
too. The same is true for the 3D point locations for a set of features.
This feature set can be used as a starting point for a dense depth map.
However, it can never be used directly because it is simply too sparse.
The process of a dense reconstruction is called multi-view stereo, or
sometimes dense multi-view stereo, to emphasize the density of the
depth reconstruction.

In the classical structure from motion process we assume to have
point correspondences. We then look for camera parameters and the
3D location of the given points. In the multi-view stereo problem we
assume to know the camera parameters and use this knowledge to find
the depth for each pixel in one image and its correspondence in the
other views at the same time. This gives us a one dimensional search
space for each pixel. For simplicity, we assume the coordinate system
is chosen such that the camera P1 = [I|0], this means its center is at
the origin and it points in the z-direction, the focal length is 1. A
homogeneous 3D point X = (X,Y, Z, 1)T becomes the homogeneous
2D point (X,Y, Z)T = P1X through multiplication with the camera
matrix and projects onto (x, y) = (X/Z, Y/Z) on the image plane.
Conversely, the pixel (x, y) shows the 3D point (xZ, yZ,Z, 1)T, written
in homogeneous coordinates and with unknown Z. Thanks to the
homogeneous notation, (xZ, yZ,Z, 1)T is equivalent to (x, y, 1, d)T,
with d = 1/Z, the disparity. d is always finite and we can further stick
with the image coordinates. Additionally, it isolates the one unknown
parameter, which we are looking for. We try to find this parameter
by projecting (x, y, 1, d)T for all d with P2 onto the second image
and looking for the best matching pixel. Note that the projection
of (x, y, 1, d)T for all d draws the epipolar line on the second view.
We have now discussed the situation for two views. The extension to
three ore more views is straightforward.

Most multi-view stereo algorithms use the color or brightness sim-
ilarity of the pixels as a matching measure. Instead of single pix-
els are usually small patches considered and cross correlations com-
puted [47, 45]. Auclair et al. [2] suggests to use SIFT descriptors
because these do not assume that the objects are locally planar. Ad-
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Figure 3.9: Tow cameras C1, C2, capture a red sphere in front of a
grey wall. In image I1 of camera C1 the part of the wall with black
dashes can not be matched to image I2. This part in image I2 is
hidden by the sphere. Vice versa, the same applies for the dashed
area in I2.

ditional constraints such as smoothness constraints may be used. Wei
et al. [96] build directly on that constraint and start with a sparse
reconstruction from feature points which is then propagated through
filtering. Another option is the ordering constraint, which states that
the order of points along the epipolar lines is preserved [75]. We also
have to take into account that for some pixels of the first view there
is no matching pixel in the other views. Due to parallax effects, some
parts which are visible in the first view may be hidden in the second
view. In Figure 3.9 we show a sketch to this phenomenon.

Taking all constraints into account and solving the problem for all
pixels at the same time leads to a large optimization problem. This can
be solved as a cost or energy minimization problem [45, 47]. Others,
for example Roy and Cox [75] or Hernández et al. [33], formulate the
optimization problem as a graph cut problem. A list and classification
of the most important technologies together with a public data set1

to benchmark them is provided by Seitz et al. [80].

1http://vision.middlebury.edu/mview/
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3.4.2 User Input

Mutli-view stereo applied to an ordinary video cannot retrieve depth
information for all pixels in each shot. Whenever we have only one
image or non-static content in a video, we always only have one view
per time instance and the structure from motion ideas can not be
applied.

Even though other depth cues exist, most algorithms that do
not rely on mutli-view stereo only ask for user input. This is often
combined with other techniques, as we see in a moment. First, we
discuss a work that relies on user input only in order to understand the
most commonly used technique. The article is called StereoBrush [91]
and appeared in 2011. As already indicated in the title, the user
has some kind of brush to draw sparse strokes onto an image. The
brightness of the stroke then indicates depth. Brighter strokes mark
objects closer to the camera. Since the brush strokes only cover a few
pixel of the image, a technique is needed to propagate the information
that was provided by the user. Wang et al. [91] use an idea which goes
back to 2004. Levin et al. [51] developed the technique to colorize
gray scale images with just a few brush strokes. The assumption is
simple. If neighboring pixels have a similar intensity, they also have
a similar color. Or for the StereoBrush: similar colors lead to similar
disparity. Mathematically, we write the following energy term which
should be minimized:

∑
p/∈M

∥∥∥∥∥∥D(p)−
∑

q∈N(p)

wpqD(q)

∥∥∥∥∥∥+
∑
p∈M
‖D(p)−M(p)‖ . (3.1)

D(p) denotes the disparity at pixel p, M the set of strokes and M(p)
the user given disparity at p. The first term then says that the
disparity of pixel p should be the same as the weighted sum of all its
neighbours. The second term deals with the pixels that are marked by
the user and constrains them to the user given value. The weighting
function is chosen such that it sums to one, and the weights are large
when I(p) is similar to I(q), where I denotes the input image. More
details about the weighting function are not revealed by Wang et
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al. [91]. But in their colorization paper Levin et al. [51] give two
possible formulas and additionally a method to write the problem in
terms of linear equations.

Once the concept of the scribbles is understood, it can be used in
combination with many other techniques. As an example we shortly
review Guttmann et al. [24]. To convert short film sequences, the user
is asked to provide depth information on the first and last frame of
the sequence with scribbles similar as above. With this information, a
vector support machine is trained and then used to predict the depth of
each remaining pixel on both the two marked frames and all frames in
between. For each pixel where the reliability of the prediction is high
enough, the information is included in the equation system in form of
c4 ‖D(x, y, t)− T (x, y, t)‖ = 0. T (x, y, t) denotes the predicted depth
of pixel (x, y) in frame t. More equations are gained similar as before.
c3 ‖D(x, y, t)− V (x, y, t)‖ = 0 for the pixels marked by a scribble,
where V denotes the value defined by the user. Spatial neighbors
lead to equations of the form c1WE ‖D(x, y, t)−D(x− 1, y, t)‖ = 0,
similar in the y-direction, where WE weights the color similarity of
the two pixels. It is computed as the square root of two minus the
Laplacian. To make a connection between frames, optical flow is used.
Time-wise corresponding pixels lead to similar equations as spatial
neighbors. The WE is replaced by a WM , which takes into account
that the depth of an object may change over time. Guttmann et
al. [24] found that, “lateral motion seldom changes the depth of the
objects, while objects moving in the vertical direction may change
depth. Moreover, a zoom-in or a zoom-out motion results in motion in
both directions, and is likely to result in a depth change”. Therefore,
WM is set according to the vertical motion of the pixel. We finally
end up with a system of linear equations, in which we can give weight
to the equations by choosing different ci.

As an example of the case where the user input supports other
techniques, we describe the work of Liao et al. [53]. Liao et al. work
with video snippets too, and begin their pipeline with standard struc-
ture from motion. This already gives a depth value for many pixels.
In the next steps further techniques like optical flow or moving objects
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segmentation are used to determine relative depth. This then leads
to equations of the form D(p) = D(q) and inequalities D(p) > D(q).
Pixels, to which no depth can be assigned, are marked and shown to
the user. The user has two kinds of brushes. With the first the user
can mark unknown depth as being the same as other areas. With the
second brush the unknown area can be marked as before or behind
known areas. The depth propagation over the frames is done with the
assumption that pixels with the same color have the same depth. In
the end a large but sparse quadratic optimization problem results.

3.4.3 Machine Learning

After the discussion of standard methods and recent work, we also
mention an article which is quite unique in its kind. We believe that
in the future we will see more work following this path. The reason
is simple: this method actually does what people do. It tries to
understand the image by using the knowledge it has gained. Or in
other words, machine learning methods are used in Hoeim et al. [34]
to label each pixel as “ground”, “vertical” or “sky”. Distinguishing
only these three labels appears very simple. Even though, the results
by Hoiem et al. from ten years ago are impressive and already give
a good information about depth, it is tempting to imagine using
those information to create disparity maps. For the machine learning
part colors, texture, location and geometry are taken into account.
Geometry in this case means just long straight lines. Furthermore
the image is split into superpixels, which are clusters of pixels with a
similar color.

At the same time that Hoeim et al. published their work [34],
Saxena et al. [76] also approached the extraction of 3D information
from still single images with machine learning methods. Instead of
superpixels they used image patches on different scale levels to exploit
the monocluar depth cues. Then, their algorithm estimates a depth
map directly. Later on, Saxena et al. [77] combined their method
with stereo depth cues, which led to a method which outperformed
existing depth-form-stereo-images algorithms. A combination of the



3.5. CREATING OUTPUT IMAGES 83

L M R R2

(a) Top View

View Camera M

View Camera L View Camera R

View Camera R2

(b) Four Camera Views

Figure 3.10: (a) The setting from top: the middle or mono camera
M and cameras L, R and R2, that we want to simulate. (b) The four
views of the cameras. The white box marks the holes, which we need
to fill in the rendered images.

knowledge gained through the patches with an estimation of surface
normals of superpixels further improved the results and gave Saxena
et al. [78] the possibility to convert 2D images of quite complex scenes
into photorealistic 3D models2.

3.5 Creating Output Images

The last step in the mono to stereo conversion pipeline is the rendering
of stereo views. We have already begun to discuss this problem in
Section 3.3. Figure 3.10a illustrates the problem that we need to solve.
The view from the mono camera M is given and we want to create two
output views L and R, one for the left and one for the right eye. One
solution is to use the given input view as one of the outputs which
simplifies the problem because we only have to render one new image
or video, instead of two. The two cameras M and R2 in Figure 3.10a
correspond to this kind of solution. However, in practice it turns out

2http://make3d.cs.cornell.edu/
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that rendering two new outputs is the better approach. The holes
that appear in new views are smaller and distributed to both views.
This is shown in Figure 3.10b. The green sphere that appears in the
middle of the input image (view camera M), moves slightly to the left
and right in the case of two new output views. We show these camera
views L and R in the bottom row of Figure 3.10b. The unknown
region that is drawn in white appears in both views L, R and is much
smaller in each view than in the view of camera R2, which is the view
we create for the case that we keep the input view M as our left eye
view. We can reduce the hole creation with this simple trick, but it
remains the main problem.

The most straightforward way to produce stereo output is used by
Liao et al. [53]. To produce two new views they read out the disparity
values from the previously created disparity map and move each pixel
by half of the disparity to the left or right. Where two pixels are
moved to the same output location, the decision is made from the
disparity map, which is also a depth map at the same time. The
empty pixels are filled with the color from the neighboring pixels that
have the largest depth. Liao et al. use this simple method, because
the rendering of their output is not the focus of their work and, in
addition they state that this method gives sufficient results for all
small holes that arise. Indeed, the results3 look surprisingly good.

A quite similar, but more sophisticated method is image warping.
The idea behind it is to stretch pixels in order to cover holes that
appear, instead of copying their color. Wang et al. [91] developed a
warping method which targets the mono-to-stereo conversion. Another
warping method, which deals with existing stereo content on which
the disparity is adjusted, has been described by Lang et al. [49]. In the
latter methods the authors state that it can also be used to convert
mono into stereo content. We discuss these methods in Section 4.3.2
in the chapter about image warps.

While warping techniques do not use any depth information, image-
based rendering does. It is often used in approaches where the disparity

3http://vis.uky.edu/~gravity/Research/stereolization/stereolization.

htm
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map is generated through dense multi-view stereo techniques. Since
this gives us the camera parameters and a 3D location for each pixel on
the input frames, we can project all these points onto views of cameras
that are moved slightly to the left or right. The generated point clouds
can also be projected onto new views of any other frame, which is why
holes that appear in new views can be filled with information from
other input frames. As an example for an algorithm that uses this
technique for the mono-to-stereo conversion of movies, we cite Kunter
et al. [48].

Image-based rendering is not limited to stereo content production
and also explored in other contexts. A recent work on image-based
rendering was presented by Chaurasis et al. [11] at SIGGRAPH 2013.
Chaurasis and colleagues compute the depth of super pixels instead
of single pixels. These super pixels are then projected onto the view
of the new camera location. All super pixels are warped individually
during the projection. The warp balances the optimal projection
and the preservation of the shape of each super pixel. We do this
procedure for the four views which are closest to the new camera.
This leads to four images, all showing the synthetically created view.
The final output is then created by blending these four views. If holes
remain in the output image, they are filled through solving the Poisson
equations [73] with zero gradient values. This creates a blurry area
which is less noticeable than a hole would be.

A method that lies somewhere between warping and classical
image-based rendering is the video mesh [12]. In this method, feature
points are firstly tracked over the whole video and through struc-
ture from motion techniques augmented with depth information. In
a second step the feature points become vertices of the Delaunay
triangulation. In order to being able to represent depth discontinu-
ities, the user has to provide the algorithm with occlusion boundaries.
Triangles that contain such depth discontinuity are cloned. Each of
the two overlaying triangles holds either foreground or background
pixels. To render two new camera views for each frame, we project
the 3D location of the triangle vertices onto the new views. Then,
the triangles can be rendered with standard methods. The authors
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show successfully converted images and videos in the supplemental
material4.

We close this chapter with one more remark. Rendering stereo
videos from mono videos is actually the same task, as rendering the
frames for a stabilized video. In both cases, we have to synthesize new
frames that are from slightly different view points than those that
we got as the input. Which method solves the problem best highly
depends on how much the new camera position differs from its original
location. In cases in which the camera only moves a little, simpler
methods such as warps do a good job. However, the more the artificial
camera deviates from the original one, the more we are in need of
sophisticated methods. This is nicely illustrated when we compare
the video stabilization from Liu et al. [55] with the one from Kopf et
al. [46]. Both video stabilization methods build on the same idea of
first applying structure from motion and then camera path smoothing.
In the work of Kopf et al. [46] in which totally new camera paths
may be found, Liu’s warping technique is not good enough anymore.
Nevertheless, the image warping developed by Liu et al. does an
adequate job by producing views for the just slightly filtered camera
paths.

4http://groups.csail.mit.edu/graphics/videomesh/



Chapter 4

Image Warps

After having referred to image warps for computing views for new
camera locations at several occasions throughout this thesis, we finally
come to a detailed description of warping and dedicate an entire
chapter to it. However, image warps are a much more versatile tool as
they can also be used to straighten lines in wide-angle photographs [10]
and panoramas [30], or to let people appear slimmer or bolder in
photos [100] and videos [39]. Generally, image warps can be utilized
for problems, where we need to re-arrange an image such that the
ordering of all objects in the image stays the same, but the relative
distance and their size may change. The probably most accessible way
of illustrating image warps is the following. Usually we see an image
as a rigid piece of cardboard. In contrast, by applying an image warp,
we interpret the image as something like a piece of rubber or a dough,
which we can stretch or squeeze as we like. This way we can create
many effects without tearing a hole in the image itself.

These characteristics eventually explain why warping does work
well for computing views for different camera locations. If the camera
only moves a little, the order of the depicted objects does not change,
but spacings between different objects and their occlusion may change
due to parallax effects.

87
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ui,j
xi,j

Figure 4.1: A regular grid is warped into one which satisfies given
constraints.

4.1 Basics of Image Warping

In this section, we develop the mathematical model of the image
warping technique and explain how we can find warps that behave as
intended through the definition of so called energy terms. Moreover,
we describe some general energy terms that are widely used in different
warping applications.

Computer simulations of the deformation of physical objects, anal-
ogous to the rubber band, are often done by the finite element method.
Since an image consists of many finite elements, the pixels, the finite
element method seems to be a nearby way to compute warps. Indeed,
there are approaches, such as the famous seam carving algorithm [3],
which work on the level of single pixels. Seam carving removes or in-
serts pixels, instead of stretching or squeezing them, and is therefore
not a warping method of the kind which we describe here.

An image warp is an R2 → R2 mapping M : (x, y) → (u, v) that
maps each point that may also be a sub-pixel, from the input image
onto a new location in an output image. A warping algorithm searches
for the mapping that maps the image to a new one which satisfies the
given objectives best. In order to keep the cost for searching the best
mapping low, we search for a piecewise linear mapping. Computing a
piecewise linear warp means we overlay the input image with a regular
grid and compute a new location for each vertex. The size of the grid
and its cells depends on the applications. Some applications assume
to have a grid with square cells, while others request just rectangular
cells. In any case, each grid vertex has a location in pixel coordinates,
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Figure 4.2: Illustration of the bilinear interpolation coefficients α, β.

which we denote as xi,j = (x, y)Ti,j , where (i, j) denotes the vertex in
the ith column and jth row. The warp is then defined through the
mappings Mi,j : (x, y)i,j → (u, v)i,j of all grid vertices. Once the grid
mesh is defined, we perform operations on it, until it comes to the
final rendering step.

The objective of an image warp can be versatile. As an example,
we can ask non-straight lines to become straight through the warp;
or we can mark an object and define a specific size or position. It is
unlikely that the lines or objects we want to modify are incident with
the grid vertices. We consider the following basic warping problem.
We want to warp an image such that the feature point (x, y) on the
input image is mapped onto the coordinates (u, v) on the output image.
Hence, we compute the bilinear interpolation coefficients α and β of
the feature point (x, y) with respect to the four enclosing grid vertices.
Then we can write the feature location as

axi,j + bxi+1,j + cxi,j+1 + dxi+1,j+1, (4.1)

where the xi,j denote the four neighboring grid vertices and

a = (1− α)(1− β), b = α(1− β), c = (1− α)β and d = αβ. (4.2)

See also Figure 4.2a. This allows us to express any given feature point
with grid vertices.
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Most constraints we apply to an image warp come down to the
example above, as we see in Section 4.3 about specific warps. We
now explain how one can formulate such a constraint in a computer-
readable manner by sticking with a basic example. We formulate each
constraint as an equation that should be satisfied after the warp. In
order to map the feature point (x, y) onto (u, v), we formulate the
equation

aui,j + bui+1,j + cui,j+1 + dui+1,j+1 = (u, v)T, (4.3)

where a, b, c, d are the coefficients from Equation (4.2) and ui,j denote
the vertices of the enclosing grid after warping. Usually it is not
possible to find a warp that satisfies all constraints. Therefore, we
do not formulate the constraints as equations, but as an energy term.
The goal is then to find the warp that minimizes the energy of the
whole system. The equation above can be turned into such an energy
term:

E =
∥∥aui,j + bui+1,j + cui,j+1 + dui+1,j+1 − (u, v)T

∥∥ . (4.4)

The energy in this case is actually the error between the feature
location after the warp and the target location. These energy min-
imization problems are actual error minimization problems and we
discuss methods to minimize them in Section 4.2.

We call the energy terms that describe the main goal of the warp
data term. Having only data terms is not sufficient for two reasons.
Firstly, we are not guaranteed to have a data term in each grid cell.
This may happen in the case of a feature point-based data term, like
in the example above, due to featureless regions, which appear in most
images or video frames. To be able to define the warp in featureless
regions too, we are in need of energies that act independently of the
image content. The second reason to add other energy terms is to
prevent the warp from distorting the image too much. Therefore, we
often add one or both of the following two constraints to the system.

The conformality constraint penalizes the distortion of a single
grid cell. First we explain the case of a grid consisting of squared cells.
In this case, two neighboring edges of a grid cell become coincident
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Figure 4.3: (a) Illustration of the conformality constraint for squared
grid cells. In (b) we split a general quadrilateral into triangles and
use a local coordinate system to express V1 with V2, V3, α and β.

through a rotation of 90 degrees around the common vertex. As shown
in Figure 4.3a for the edges incident on the lower left vertex, we have
xi,j+1 = R90xi+1,j , where R90 =

[
0 −1
1 0

]
is the matrix describing a 90

degree rotation in 2D. We can convert this constraint into an energy
by replacing x by u and writing it component-wise,

Ec =

∥∥∥∥(ui,j+1 − ui,j) + (vi+1,j − vi,j)
(vi,j+1 − vi,j)− (ui+1,j − ui,j)

∥∥∥∥ . (4.5)

The same idea is used to solve the problem for non-square, even
non-rectangular grid cells. The method is described in Igarashi et
al. [36] and was firstly used for warps by Liu et al. [55]. In a first
step, we split the quadrilateral into triangles. Then we build a local
coordinate system for each triangle. To do so, one triangle vertex
defines the coordinate system’s origin, the triangle side to its right
the α-axis. Next we rotate the α-axis about 90 degrees around the
origin to get the β-axis. In Figure 4.3b we illustrate this with vertex
V2 as the origin of the coordinate system. In the local coordinate
system of Figure 4.3b, we can describe the location of the vertex V1

that does not lie on the α-axis, with the two vertices V2, V3 and α,
β-coordinates. We get

V1 = V2 + α(V3 − V2) + βR90(V3 − V2), (4.6)
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where R90 is again the rotation matrix. The transformation of Equa-
tion (4.6) into an energy term works the same way as in the constraints
discussed previously. This conformality constraint allows the grid cell
to be moved, rotated or scaled but nevertheless, it recognizes similar-
tity deviations even after such transformations.

The conformality constraint prevents the system from too strong
deformation, but it does this for each grid cell separately. To encourage
the warp to behave similarly on neighboring cells, we add a smoothness
constraint. One smoothness constraint that we introduce here was
developed by Carroll et al. [10, 9]. We have described above that the
warp is a mapping function M : (x, y)→ (u, v). Hence, we can write
the coordinates u and v as two functions u(x, y) and v(x, y) of the
variables x, y. Then the derivative of u and v with respect to x and y
describes the distortion of the grid and the second derivative describes
the change of the distortion. In conclusion, if we want to have a slow
and smooth change of the distortion, the second order derivative of
u(x, y) and v(x, y) should be close to zero. The second order partial
derivatives define the Hessian matrix, which are the following two
2× 2 matrices in our case:

H(u) =

[
∂2u
∂2x

∂2u
∂y∂x

∂2u
∂x∂y

∂2u
∂2y

]
H(u) =

[
∂2v
∂2x

∂2v
∂y∂x

∂2v
∂x∂y

∂2v
∂2y

]
. (4.7)

Setting the matrices to be zero and taking their symmetry into account
results in three constraints from each of the two Hessian matrices. We
compute them only for H(u) since H(v) works the same way. We
compute the first order partial derivatives with the forward differences
∂ui,j
∂x = ui+1,j − ui,j and

∂ui,j
∂y = ui,j+1 − ui,j . For the second order

derivative we use the backward differences,

∂2u

∂2x
= (ui+1,j − ui,j)− (ui,j − ui−1,j)

∂2u

∂x∂y
= (ui+1,j − ui,j)− (ui+1,j−1 − ui,j−1)

∂2u

∂2y
= (ui,j+1 − ui,j)− (ui,j − ui,j−1).

(4.8)
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Similar to the conformality constraint for squared grid cells (Equa-
tion (4.5)), we combine the right hand sides of the Equations (4.8),
together with those from the Hessian matrix of v, into a vector. The
norm of this vector is our smoothness energy term Es.

We now have discussed two basic energies and gave an idea how
application specific data terms can look like. To balance the different
energy terms, we assign weights to them before assembling the final
energy minimization problem. The reason to do this is because the
amount of energies for one objective may be different than the one
for another objective. For example, on the one side we have one
conformality energy term per grid cell. On the other side, we may
have several feature points that we want to move to a new location in
one grid cell. Consequently, the algorithm tends to favor the feature
point constraints. Vice versa, in an application where only very few
data energy terms are given, the resulting warp could be the mapping
onto itself, since this has zero conformality and smoothness energy,
and may minimize the overall energy best. In essence we weight the
different constraints by multiplying them with a factor w. Usually,
those weights are found experimentally and given by the authors of
the papers which include warping techniques. Sometimes weights can
also be user adjustable variables. In rare cases weights are computed
by the system, based on some heuristic. We want to mention one of
them here, the so called salience weight [55]. The idea in salience is
to tell the warp in which grid cells distortions are more noticeable. To
do so Liu et al. compute the L2 norm of the color variance inside a
grid cell and use this as the weight for the conformality energy. The
intuition is that grid cells with a higher color variance display more
textured regions and therefore distortions become more recognizable
in such cells than in uniform areas. Consequently, the conformality
energy needs to be weighted higher in such a cell.

Once the warp is computed, we know the output location for each
vertex of the grid that we have overlaid over the input image. As
the last step we render the full image as follows. For each pixel
in the output image we search for its enclosing grid cell, or more
specifically, its four corresponding vertices. Then we do an inverse
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bilinear interpolation, meaning that we go from the right to the left in
Figure 4.2. Finding the α and β values is not trivial but fortunately
described well in Heckbert’s Master thesis [32]. Knowing α and β
we can find the source location of the new pixel on the input image.
All we need to do is to look up the color in the original image, and
color the new pixel accordingly. This color look-up may need another
bilinear interpolation because the computed source location may lie
between pixels.

4.2 Optimization Techniques

In the previous section we have learnt how we can describe a warp
and formulate its objective with formulas. In this section, we discuss
methods to find the warp that fits the objective best.

Since the warp is defined through its grid vertices, we are actually
searching for new locations of grid vertices. Therefore, grid vertex
locations become the unknowns in our optimization system. We fur-
ther formulate constraints that express the objective of the warp as
energy terms, for which examples are given in Equations (4.4) and
(4.5). Energy terms can thus be written as

Ei = ‖fi(x)‖ , (4.9)

where the subscript i indicates that it is one out of many energies, fi
the function which describes the objective and x the set of variables
we have. x may be a bit misleading at first glance, since x is the
vector consisting of the new grid vertex locations, which we denoted
as ui,j in the previous and also next section. We use x in this section,
to be compatible with the standard math notations, especially the
one from Madsen et al. [66], where x denotes the unknowns. Here
x = (u1,1, v1,1, u1,2, . . . , vn,m) is a vector consisting of the coordinates
of the grid vertices.

In order to find the best warp we minimize an energy that consists
of several energy terms. By neglecting the weights wi, we have

E =
∑
i

Ei =
∑
i

‖fi(x)‖ =
∑
i

√
fi(x)2 (4.10)
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for the total energy. Because of the monotonicity of the root function√
f(x)2 and f(x)2 have the same minimum. Moreover, the minimum

stays the same when we multiply a function with a constant value and
therefore searching for the x that minimizes E is the same as finding
the minimum of

F (x) =
1

2

m∑
i=1

(fi(x))2. (4.11)

4.2.1 The Least Squares Problem

If we have one smoothness or conformality constraint per vertex and
additionally energy terms which describe the objective, we are guar-
anteed to have more functions fi than variables. Thus, our energy
minimization problem satisfies the conditions of the following defini-
tion:

Least Squares Problem Finding x∗, the minimizer for a function
F (x) as described in Equation (4.11), with fi : Rn → R and
m ≥ n, n the number of variables and m the number of functions
fi, is called a least squares problem.

For the further discussion of the problem we follow Madsen et
al. [66] and use the Taylor expansion to write

F (x + h) = F (x) + hTg +
1

2
hTHh +O(‖h‖3), (4.12)

where g denotes the gradient,

g = F ′(x) =


∂F (x)
∂x1

...
∂F (x)
∂xn

 , (4.13)

and H is the Hessian matrix,

H = F ′′(x) =
[
∂2F (x)
∂xi∂xj

]
. (4.14)
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If x∗ is the minimum of F (x), we have F (x∗) < F (x) for all x 6= x∗

and hence F (x∗) < F (x∗ + h) for all h. With regards to Equa-
tion (4.12), this means hTg ≥ 0 for all h. Consequently, g(x∗) = 01 is
a necessary condition. Furthermore hTHh ≥ 0 has to be satisfied for
all h. Matrices, which fulfill this condition are called positive definite.
According to Madsen et al. [66] the last term of Equation (4.12) is
dominated by hTHh and is also positive if H is positive definite.

4.2.2 Linear Least Squares Problems

A least squares problem is called a linear least squares problem, if all
functions fi(x) in Equation (4.11) have the from

fi(x) = ai,1x1 + ai,2x2 · · ·+ ai,nxn − bi. (4.15)

Here we can stack all fi(x) into a column vector f(x) of functions and
write each function as the multiplication of the row vector aTi and x
minus the scalar bi. Combining all the vectors aTi into a matrix and
the bi into a vector, turns Equation (4.11) into

F (x) =
1

2
fTf =

1

2
(Ax− b)T(Ax− b). (4.16)

We can directly compute the gradient and the Hessian:

g = F ′(x) = ATAx−ATb and H = F ′′(x) = ATA. (4.17)

The Hessian is clearly symmetric and positive definite and conse-
quently g(x) = 0 is a sufficient condition for x to be a minimum.
Therefore, we have to solve

ATAx = ATb, (4.18)

which is a linear equation system that has as many unknowns as
equations. This can be solved through a Cholesky decomposition of
the matrix ATA.

1Assume we have two non-zero vectors h and g such that hTg > 0. Then we
have for the vector −h, (−hT)g = (−1)(hTg) < 0.
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Another possibility to solve for x in Equation (4.18) is the method
of the orthogonal decomposition. This method is somewhat slower
than the Cholesky decomposition but numerically more stable, since
it avoids forming the product ATA. Instead, A is decomposed with
a singular value decomposition or a QR decomposition. In a QR
decomposition Q is an orthogonal matrix and R is an upper triangular
matrix with positive elements in its diagonal. Thus we get A = QR
with QTQ = I and ri,j = 0 for i > j and ri,i > 0. It follows that R =
QTQR = QTA and we can multiply the equation system Ax = b with
QT, which leaves us with the system Rx = QTb. This can be solved
by a backward substitution. According to Matlab’s documentation
pages, the QR decomposition is what Matlab’s backslash operator
uses. And this backslash operator is what we used in practice in our
experiments.

4.2.3 Non-Linear Least Squares Problems

Unfortunately, not all energy terms, besides the ones discussed in
Section 4.1, can be formulated as linear functions. Some examples of
non-linear constraints are given in the next section, where we discuss
more known applications of warps. In other words, we also have to
consider the more general case in which the fi(x) in Equation (4.11)
are non-linear and we deal with a non-linear least squares problem.

The standard approach to solve non-linear least squares problems
is to start from any point x and search for a direction h in which the
function value decreases, such that F (x) > F (x + h). By making a
step in that direction and using this location as our new x location
we start over again, meaning that we search iteratively for the x∗ that
minimizes F (x). We reach this goal when there is no more h that lets
F decrease. In order to illustrate the procedure, we show a pseudo
code in Algorithm 4.1. The iteration counter k is added to make sure
that the algorithm terminates, even though it is not able to find a
solution by itself.

Open problems which remain are how we can find the best possible
search direction h and choose the step length α. While the above algo-
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Algorithm 4.1 Descent method

k ← 0
x← x0

found← false
while not found and k < kmax do

h←search direction(x)
if no such h exists then

found← true
else

α←step length(x,h)
x← x + αh
k ← k + 1

end if
end while

rithm solves any minimization problem, we next discuss two methods,
which exploit the specific form of non-linear least squares problems,
to find h and α.

Gauss–Newton Algorithm

Like in linear least squares problems, we denote the vector f that we
produce by stacking up all functions fi(x). Again, we have F (x) =
1
2 f

Tf . We derive the Tailor expansion of the vector f ,

f(x + h) = f(x) + J(x)h +O(
∥∥h2

∥∥), (4.19)

where J(x) is the Jacobian matrix of f , consisting of the elements ∂fi
∂xj

,

where i denotes the row and j the column. We define the first two
terms of the Taylor approximation as l(h), such that l(h) approximates
f(x + h) for small h,

f(x + h) ≈ l(h) = f(x) + J(x)h. (4.20)
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We use this to approximate F (x + h) and define L(h),

F (x + h) ≈ L(h) =
1

2
l(h)Tl(h)

=
1

2
fTf + hTJTf +

1

2
hTJTJh.

(4.21)

Note that 1
2 f

Tf = F (x). The idea of the Gauss–Newton algorithm is
to use this h as the search direction hgn to minimize L(h). This search
direction minimizes F (x + h) too, since L(h) is an approximation of
it. We have learnt earlier that one necessary condition for h∗ to be a
minimizer of L is that the gradient of L,

L′(h) = JTf + JTJh, (4.22)

is zero at h∗. Actually, this condition is sufficient, since the Hessian
matrix L′′(h) = JTJ is positive definite, independently of h. There-
fore, we find the search direction hgn of the Gauss–Newton algorithm
by solving

JTJhgn = −JTf , (4.23)

and use it as the h in Algorithm 4.1. In the classical Gauss–Newton
algorithm α = 1 in all steps. More sophisticated choices can be
made with a line search, where α is computed such that it minimizes
F (x + αh). For more details we refer to Madsen et al. [66].

Levenberg–Marquardt Algorithm

The Gauss–Newton algorithm does not always converge and it can be
costly to compute the step length α if other values than 1 are being
used. The Levenberg–Marquardt algorithm computes α implicitly
and is more robust than the Gauss–Newton algorithm, even though it
is based on it. One step hlm of the Levenberg–Marquardt algorithm
is computed by solving

(JTJ + µI)hlm = −JTf with µ ≥ 0, (4.24)

where J = J(x) is again the Jacobian of f , I is the identity matrix and
µ the damping parameter. The latter is the main difference between
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the two algorithms and causes the Levenberg–Marquardt algorithm
also to be called the damped Gauss–Newton Algorithm. There are
various reasons to add this damping parameter.

1. µ > 0 guarantees that the coefficient matrix on the left hand side
of Equation (4.24) is positive definite, even if J does not have a
full rank. This ensures that hlm is a descent direction [66].

2. µ actually balances two algorithms. If µ is large, we have hlm ≈
− 1
µJ

Tf . Since JTf is the gradient of F ,

F ′(x) =

[
∂F (x)

∂xi

]
=

∑
j

fj(x)
∂fj(x)

∂xi

 = JTf , (4.25)

and the Levenberg–Marquardt step for a large µ is a short step
in the direction of the steepest descent. For a very small µ, we
have hlm ≈ hgn and do a Gauss–Newton step. This is good
towards the end of the iteration, when the algorithm is close to
the minimum.

3. By a closer look at 2, we see that µ influences not only the
direction, but also the step length. This makes a line search to
find the best step length dispensable.

The next question is how to choose µ. If F (x) > F (x + hlm), the
step is too big and we have to increase µ. Often, this simple indicator
is used. By a closer look, this is also the case in Algorithm 4.2, where
we test % > 0. % denotes the gain ratio, which is the ratio between
the actual and predicted decrease of the function value,

% =
F (x)− F (x + hlm)

L(0)− L(hlm)
, (4.26)
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where L(h) is defined as in Equation (4.21). Thus,

L(0)− L(hlm) = −hT
lmJ

Tf − 1

2
hT
lmJ

TJhlm

= −1

2
hT
lm

(
2JTf + (JTJ + µI − µI)hlm

)
=

1

2
hT
lm(µhlm − JTf).

(4.27)

Furthermore, hT
lmhlm and −hT

lmJ
Tf are both positive2. Therefore the

denominator is positive and % > 0 equivalent to F (x)−F (x+hlm) > 0.
The closer % comes to one, the better the approximation L(hlm)

of F (x + hlm) becomes. We can decrease µ such that the next
step is closer to the Gauss–Newton step. Otherwise, we increase
µ, which leads to a smaller step going more towards the steepest
descent method.

A good initial value µ0 should be related to the size of the elements
of JT(x0)J(x0). x0 denotes the location where the algorithm starts
its search. It is a good suggestion to use the largest element of the
diagonal of JT(x0)J(x0) multiplied with a user given number τ as µ0,

µ0 = τ ·max{diag(JT(x0)J(x0))}. (4.28)

Last but not least we need to discuss the stopping criteria. Ob-
viously, we confirm that the gradient of F is zero or close enough to
zero, ∥∥JT(x)f

∥∥
∞ < ε1. (4.29)

Further, we check if the algorithm proceeds or stalls and stop if the
steps become too small,

‖hlm‖ = ‖xnew − x‖ < ε2(‖x‖+ ε2). (4.30)

Both, ε1 and ε2 are user chosen parameters and only make sense,
if they are greater than zero. Finally, we have our life insurance
k < kmax.

2From Equation (4.24) and we get −hT
lmJ

Tf = hT
lm(JTJ + µI)hlm.
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Algorithm 4.2 Levenberg–Marquardt Algorithm [66]

k ← 0
x← x0

ν = 2
µ = τ ·max{diag(JT(x)J(x))}
found← (

∥∥JT(x)f(x)
∥∥
∞ < ε1)

while not found and k < kmax do
k ← k + 1
hlm ←solve( (JTJ + µI)hlm = −JTf )
if ‖hlm‖ < ε2(‖x‖+ ε2) then

found← true
else

xnew ← x + αhlm
%← (F (x)− F (x + hlm)) / (L(0)− L(hlm))
if % > 0 then

x← xnew
found← (

∥∥JTf
∥∥
∞ < ε1)

µ← µ ·max{ 1
3 , 1− (2%− 1)3}

ν ← 2
else

µ← µ · ν
ν ← 2 · ν

end if
end if

end while
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4.3 Image Warping Applications

In this section we introduce some of the recent and most popular
applications of the warping technique. We start by introducing the
warps that build the basis for our own work, which we present in
Chapters 6 and 7. After that we present warps with different objectives
to illustrate the versatility of the technique and finally, we close the
circle by explaining an approach similar to the finite elements method.

4.3.1 New Viewpoint for Given Images

From the both previous chapters two core questions have emerged:
first, where can we find a better camera location in vicinity of the
original one, and second, how do we render images from that new
viewpoint. See also Figures 2.1 and 3.7. While we have discussed the
first question in the previous chapters already, we now focus on the
second question in this section.

Content-Preserving Warps for 3D Video Stabilization

In Section 2.3 we have discussed that Liu et al. [55] use structure from
motion to find the camera location and orientation on each frame.
Structure from motion additionally gives a sparse 3D point cloud
consisting of the reconstructed feature points that we have tracked
during the video. In order to obtain locations and orientations of a
smoothly moving camera, Liu et al. firstly filter the input camera
locations and orientations. In a next step, the 3D points are projected
onto the new camera and finally we obtain for each frame a sparse set
of features for which we know the 2D input location and the desired
output coordinates.

The question that arises is how the image depicted by the frame
can be modified such that features become the desired coordinates.
Liu et al. answer this in a two step warping process. The first step
is to compute for each frame the homography which transforms the
input feature location as close as possible to the desired coordinates.
The resulting homography is then applied to each frame as a pre-warp.
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Figure 4.4: From left to right Liu et al. [55] move the camera further
away from its original location. The top row shows the entire warp
result before cropping; the bottom shows the corresponding grids and
the points that guide the warp.

This step is important for feature less regions and applies the new
camera orientation, but not its location. This can already be a good
stabilization, depending on how shaky the video originally was. To
apply the new camera locations we warp the image as described in
Section 4.1. The data term is defined as described in Equation (4.4),
where the bilinear interpolation coefficients a, b, c, and d are com-
puted with the input feature coordinates and where (u, v) denotes
the output feature coordinates. To prevent the algorithm from dis-
torting the frames too much, the conformality constraint described in
Equation (4.6) is used. Further this constraint is weighted with the
salience weight that we describe at the end of Section 4.1. Also the
data terms are weighted, because features appear and disappear on
every frame. If a feature is in a region where it is one out of only a
few, or even the only one, it has a strong influence on the warp and
its appearance or disappearance may change the warp drastically. In
order to get a temporally consistent warp, all features are faded in
and faded out. This is done by increasing and decreasing the features’
weight linearly from zero to the maximum over 50 frames after they
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Figure 4.5: On the left we show the input image, in the middle the
user given constraints and on the right the result of Carroll et al. [9].

appear and before they disappear again.
Both energies, data and conformality, are formulated as linear

equations. Thus, we have to solve a linear least squares problem in the
end. This makes the warping fast, which matters in video stabilization
where we have to render many, sometimes several hundred frames.

Image Warps for Artistic Perspective Manipulation

The work of Carroll et al. [9] also manipulates the perspective the
viewer has on a scene, but in this case we do not have a geometrically
correct 3D structure that we want to preserve. Moreover, the user has
to supply the geometry of the depicted objects as input (Figure 4.5,
middle). The advantage, and in this case also the objective, is that
the user can influence the warp directly and create an image which
looks geometrically plausible to a person. The user can indicate planar
regions, line segments and mark lines that have a common vanishing
point. Furthermore, the user can mark fix points that are not allowed
to move during the warp and can constrain line segments to be vertical
or horizontal. To determine the new perspective the user moves the
vanishing points in a last step. The warp is then computed such that
all given geometric constraints remain valid and the vanishing lines
intersect the new vanishing points. Since this work inspired us to
the publication described in Chapter 6, we have a closer look at the
energies, which are built from the user given constraints.

We begin with the planar regions. To make sure that the user
given region behaves like a planar region during the warp, we ask the
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x0

xn

∆y

∆x
θ
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Figure 4.6: We show a line segment starting at x0 and its control
points xi. The coordinate differences of x0 and xi are given by ∆x =

‖xi − x0‖ cos(θ) and ∆y = ‖xi − x0‖ cos(θ). The ratio ∆x
∆y = cos(θ)

sin(θ)

is the same for all xi. This leads to the line constraint ∆x sin(θ) =
∆y cos(θ) formulated in Equation (4.33).

warp to be a homography on that region. We do this by fitting the
homography and searching for the new grid vertex locations at the
same time. This leads to the energy term

Eh =
∑
i,j

∥∥∥∥∥
[
ui,j
vi,j

]
−

[
h1xi,j+h2yi,j+h3

h7xi,j+h8yi,j+1
h4xi,j+h5yi,j+h6

h7xi,j+h8yi,j+1

]∥∥∥∥∥ , where H =

[
h1 h2 h3

h4 h5 h6

h7 h8 1

]
(4.31)

is the homography. The fraction in the energy term, which comes
from the homogeneous division, makes this constraint non-linear.

If two planar regions share an edge, the homographies that act on
the two regions have to be consistent on that edge. This means, each
point on the edge, αx1 + (1−α)x2, where x1,x2 are the endpoints of
the edge, has to be mapped onto the same point by both homographies
Ha and Hb. This leads to the following homography compatibility
energy,

Ehc = ‖Ha(αx1 + (1− α)x2) = Hb(αx1 + (1− α)x2)‖ . (4.32)

The second type of user given constraint are straight line segments,
which should be preserved during warping. Any line in 2D can be
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defined by one point of the line and an angle. We use this to build
a line constraint as follows. We randomly pick one of the two end
points of the line and define it as x0. Further we select in each grid
cell that the line segment crosses one line point xi as a control point.
We add the other end point of the line segment to the set of control
points. Figure 4.6 shows an illustration of a line segment with control
points in each grid cell. We request these points to be on the same
line after the warp, meaning that all the lines defined by {x0,xi} have
the same angle θ. This leads to the following line energy,

El =
∑
i

‖cos(θ)(v(xi)− v(x0))− sin(θ)(u(xi)− u(x0))‖ , (4.33)

where v(xi) and u(xi) denote the u and v coordinate of the point xi
after the warp. Depending on whether the user denotes the line as
horizontal or vertical, or lets the line orientation be free, the angle θ
in Equation (4.33) is fixed or a variable. In the latter case, this again
is a non-linear constraint.

The vanishing line energy Ev is actually the same as El. The only
difference is that the vanishing point xvan takes the role of x0, while
x0 itself is treated like any other control point of the line. Depending
on the user input, the new location u(xvan) of the vanishing point
may be a fixed point or may be chosen by the algorithm.

The fixed point energy Ep is defined the same way as the data term
in the previously discussed algorithm, the energy is defined according
to Equation (4.4).

Again, to counteract excessive distortions, the conformality and
smoothness energies are added to the system as we have described
in Section 4.1, Equations (4.5) and (4.8). Here, the user can request
straight image borders which constrains all u or v coordinates of the
vertices on that border to be the same.

The total energy of the warp is the weighted sum of all energy
terms and the minimization problem is non-linear, as stated before.
Carroll et al. [9] use the Gauss–Newton method to find the minimal
energy and therefore the warped grid mesh.
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4.3.2 Stereo Image Warps

Both warping methods that we describe above can be used to create
stereo content from mono content. While it seems obvious for the first
method, we refer for the second to our work described in Chapter 6.
Methods to create stereo content specific warps have been developed
in recent years and we discuss three of the most important ones in
the following.

Nonlinear Disparity Mapping for Stereoscopic 3D

The first paper that we present deals with the adjustment of the
disparity of given stereo videos. The focus of the work of Lang et
al. [49] lies on the function φ, which computes the optimal maximal
disparity on each frame pair and the adjustment of all other disparities
according to it. Nevertheless, for the rendering step of the new frames,
Lang et al. have developed their own energy terms to warp images.

Clearly, we want the tracked features to have the desired disparity
after warping the two images. Thus, the first energy term is simply

‖ul(xl)− ur(xr)− φ(d(xl))‖ , (4.34)

where ul and ur denote the u-coordinate of the left and right warp
respectively, φ maps the input disparity d to the desired output dis-
parity. This first energy term gives only relative output locations.
In order to also get absolute goal coordinates, we add the following
constraint to the 20% temporally most stable features. Here we show
only the energy term for the left image,

ul(xl) =
xl + xr

2
+
φ(d(xl))

2
. (4.35)

Similar to video stabilization [55], we need an energy term that en-
sures temporal coherence. Therefore, Lang et al. enforce the partial
derivatives of the warp to be the same on two consecutive frames at
the corresponding pixel x,

∂ut(xt)

∂x
=
∂ut−1(xt−1)

∂x
,

∂ut(xt)

∂x
=
∂ut−1(xt−1)

∂y
, (4.36)
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where t and t− 1 denote the frames. This constraint is applied to the
left and right frame independently, therefore we omitted the subscripts
l and r.

Further we add conformality and smoothness constraints similar
to the previously discussed warps. Interestingly, they are weighted
according to a saliency map. This saliency map is computed not only
from image-based cues but it also takes the depth of pixels in a grid
cell into account. The authors noticed that people tend to focus on
closer objects. Therefore the conformality and smoothness energies
are weighted higher on grid cells that appear closer to the viewer.

StereoBrush: Interactive 2D to 3D Conversion Using Dis-
continuous Warps

We met the StereoBrush technique [91] already in the discussion of
mono to stereo conversion through user input in Section 3.4.2. We
have discussed how the user indicates the depth in some areas through
a sparse set of scribbles and show an example in Figure 4.7. This depth
is propagated over the whole image with an energy minimization. For
convenience of the reader we show the energy term of Equation (3.1)
again,

∑
p/∈M

∥∥∥∥∥∥D(p)−
∑

q∈N(p)

wpqD(q)

∥∥∥∥∥∥+
∑
p∈M
‖D(p)−∆(p)‖ . (4.37)

Here we use p and q instead of x for the input coordinates, to empha-
size that this warp works on pixels directly. M denotes the set of the
pixels the user has marked, ∆ is the assigned disparity. Like in the
paper we just discussed, the data term of the warp has to ensure that
each pixel gets the desired disparity. We can combine Equation (4.34)
directly with the disparity propagation from Equation (4.37). This
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Figure 4.7: Input image with scribbles (left), continuous disparity
map (middle) and discontinuous disparity (right). Wang et al. [91].

leads to the following data term

Ed =
∑
p/∈M

C(p)
∥∥∥(ul(p)− ur(p))−

∑
q∈N(p)wpq(ul(q)− ur(q))

∥∥∥
+
∑
p∈M
‖(ul(p)− ur(p))−∆(p)‖ . (4.38)

C(p) is a conformality weight, which is higher for pixels closer to user
input and lower for those that are further away.

The second energy term is the smoothness energy, which is different
from the one we discussed earlier. It requests pixels that probably
belong to the same object to have the same relative distance to each
other before and after the warp. In other words, these pixels all have
the same disparity. On the other side, pixels may require a different
disparity if they do not belong to the same object. To determine
which pixels belong to the same object, an edge detector is applied
to the image. From this the weighting function δpq is built. δpq is set
to be very small, if p or q are on an edge, or an edge is between them.
Otherwise, δpq = 1. This is used to turn the smoothness energy term
on or off.

Es =
∑
p

S(p)

 ∑
q∈N(p)

δpq
∥∥(u(p)− u(q)

)
−
(
x(p)− x(q)

)∥∥ ,

where S(p) is a saliency weight according to Goferman et al. [19].
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(a) (b) (c) (d)

Figure 4.8: (a) and (c) show the result of the first warp u, which is
supposed to create holes in the image (in (c) marked red). In the
second warp û are foreground pixels (in (a) marked red) fixed and
the smoothness term is turned on. As a result, the background is
stretched and holes filled as in (b) and (d). Wang et al. [91].

Because Wang et al. turn off the smoothness term on edges, they
obtain a discontinuous warp with sharp edges in the disparity map
(Figure 4.7). While these discontinuities are wanted in the depth
map, they lead to holes in the output image. An example is given
in Figure4.8c where the hole is marked with red. Wang et al. fix
this issue with a second warp û as follows. All previously marked
edges are searched for discontinuities. If a pixel p is in front of pixel q
(D(p) < D(q)), we fix the location of p such that û(p) = u(p). Further

we set δ̂pq = 1 if u(p) and u(q) do not overlap. Afterwards the final
warps ûl and ûr are computed with the same energy terms as before,
but this time with δ̂pq instead of δpq. The previously fixed pixels, in
Figure 4.8a marked with red dots, ensure that the foreground keeps
its original shape and the disparity from the first warping step, while
the smoothness term now acts everywhere except on overlaps and
therefore “pulls over” the background on discontinuities and fills the
holes (Figure 4.8b). Moreover, the data term ensures that the desired
disparities in the stretched background are kept, too.

Enabling Warping on Stereoscopic Images

So far we have introduced warps that can convert mono images and
videos into stereoscopic ones or at least adjust the perceived depth
in stereo content. The work of Niu et al. [71], which we discuss next,
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Figure 4.9: Applying existing warps directly onto stereo images may
lead to vertical disparities as shown in the middle in an example from
Niu et al. [71]. The right image shows, that their method overcomes
this problem.

enables any warping technique on stereo content. The input of this
method is a stereo image and a 2D image warp ul(xl) which is applied
to the left view. The method then finds the corresponding warp ur(xr)
for the right view. Applying the given warp of the left view to the right
view is the first step, but not the solution. An example which shows
why we still need to adjust the warp for the right view is a rotation
of the image. Due to disparity, the same object in an image has a
different distance to the rotation center in the left view than it has in
the right view. If the images for both views are rotated the same way
this leads to vertical disparities. We show an example in Figure 4.9.
Another reason to treat the left and right view differently is that the
horizontal disparity has to be adjusted by the warp, too. Figure 4.10
shows the example of a sphere (left) which is scaled through the
warp without adjusting the disparity (middle) and with adjusting
the disparity (right). In order to avoid depth distortions Niu et al.
compute a disparity map for the warped stereoscopic image, such that
it represents the local scaling from the 2D image warp. The scaling
factor s(p) is computed by fitting a similarity transformation of the
coordinates of the four diagonal neighbors of pixel p before and after
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L R L R L R

d d d

Figure 4.10: This is Figure 3 in Niu et al. [71] and shows that the
disparity has to be adjusted by the warp, too. Otherwise, may objects,
here the green sphere, that originally had a depth (left) appear flat
(middle). In the figure right the disparity is scaled properly.

the warp ul. Then, we compute the new disparity map by minimizing
the following energy function:∑

p

∑
q∈N(p)

∥∥∥(D̂(p)− D̂(q))− s(p)(D(p)−D(q))
∥∥∥ , (4.39)

where D(p) and D̂(p) denote the disparity of pixel p before and after
the warp.

The warp ur(xr) for the right image is computed similarly to the
content-preserving warp by Liu et al. [55]. It also consists of two steps.
In a first step we apply the warp ul for the left image, which is user
given, to the right image, too. Afterwards, we compute the final warp
with an energy minimization. The data term pushes the location of
previously matched SIFT features towards the goal location, which is
computed from the location in the left view plus the desired disparity
D̂,

Ed(xl,xr) =
∥∥∥ur(xr)− (ul(xl) + D̂(xl)

)∥∥∥ . (4.40)

The total energy consists of the sum over the data energies for all
feature pairs (xl,xr) and a conformality energy as defined in Equa-
tion (4.5). Note that all energy terms are linear.
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4.3.3 Wide-Angle Images and Panoramas

In all warps that we have discussed so far, our main goal was to
keep the image geometrically correct or at least geometrically plau-
sible. The next two papers we briefly summarize here actually do
the opposite. They take a geometrically correct projection of a wide
angle image and try to avoid unwanted artifacts. The first paper [10]
straightens lines that appear as curves through the geometrically cor-
rect projection. In the second, panorama images consisting of several
photographs are warped in a way that they become rectangles [30].

Optimizing Content-Preserving Projections for Wide-Angle
Images

Carroll et al. [10] consider the problem that straight lines may appear
as curves on images taken with a wide-angle or a fish-eye lens. The
problem stems from the fact that an image is actually the projection
of a sphere onto a 2D plane. It is like mapping the earth, which is a
sphere too, onto a 2D map. Different types of mappings are available:
perspective, mercator or stereographic mapping are the most common
ones, but each of them has its downside. Either the shape is locally
preserved, but area sizes are not, or it is the other way around. Carroll
et al. [10] approach the problem with a warp instead of projection
and receive visually pleasing images as the comparison in Figure 4.11
shows.

The user feeds an image into the algorithm and specifies its type
(wide-angle, fish-eye, panorama, etc.) and the field of view in degree.
Further, the user marks those curves in the image that should become
straight lines in the final output. In a first step, the algorithm back-
projects the image, including the lines, onto a sphere. Afterwards
the warping step, which is actually the same as in many previously
discussed works, follows. The only difference is that the input grid
mesh now lies on a sphere and has λ (longitude) and φ (latitude) as
coordinates, instead of x and y. So, we denote the warp of a point as
u(λ, φ).

Three energies are defined in the usual manner. These are the
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Figure 4.11: The top row shows the geometrically correct mercator,
perspective and stereographic projections, the bottom row shows input
and result of the warping method by Carroll et al. [10].

conformality energy, the smoothness energy and one energy term for
the user marked lines which should become straight. While the ideas
of the constraints are the same as in other papers, the mathematical
formulation changes slightly because the mapping goes from a sphere
onto a plane. The conformality energy is designed following the as-
sumption that the angle between two grid edges incident on a vertex
is 90 degree. This means we can rotate one edge by R90 =

[
0 −1
1 0

]
to

become incident with the other. The conformality energy in Equa-
tion (4.5) bases on the above and the additional assumption that the
input grid mesh consists of square cells. But we have no square cells,
since the input grid lies on a sphere. The edge of a grid cell on the
sphere consists of two great arc segments and two arc segments. All
arc segments have the same length in degree, but not the same length
in Euclidean metrics. The length of the circles representing the longi-
tudes depend on their latitude, as we show in Figure 4.12. Thus, we
have to take this into account and Equation (4.5) for the conformality
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Figure 4.12: We show a quarter of a
vertical cut through the center of a
sphere. The bottom horizontal line is
the radius of the sphere and the great
circle measuring the longitude at lat-
itude 0 (equator). For simplicity we
let the radius be 1. At latitude φ, the
radius of the longitude circle is cos(φ).

φ

cos(φ)

0

energy turns into

Ec =

∥∥∥∥(ui,j+1 − ui,j) + (vi+1,j − vi,j)/ cosφi,j
(vi,j+1 − vi,j)− (ui+1,j − ui,j)/ cosφi,j

∥∥∥∥ . (4.41)

In a similar manner, the smoothness energy from Equation (4.8) is
adjusted. For the details we refer to Carroll et al. [10].

The line energy, which constrains the marked lines to become
straight, is independent of the input grid and we could re-use Equa-
tion (4.33) directly. But we have seen that this line energy term is
non-linear, at least if the angle is a free parameter, too. Instead of
using a non-linear solver, Carroll et al. solve the problem iteratively.
In each step they alternately keep the direction of the line segment
or the distance of the control points to the end point fixed. That way
Carroll et al. have to minimize a linear energy term in each iteration.
They state that the optimiziation converges after only a few iterations
and therefore use the fixed number of 8 iterations.

Rectangling Panoramic Images via Warping

He et al. [30] target panorama images, which consist of several stitched
photographs. Lines, which appear as curves instead of straight lines,
mark a problem in that kind of images, too, but the main objective
of He et al. is to obtain straight borders of the panorama image. The
simplest solution to find straight borders is cropping the panoramas,
but this leads to a loss of information.
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(a) Input (b) Non-Through Seams

(c) Mesh Warped Backwards (d) Output with Grid Mesh

Figure 4.13: He et al. [30] first use seams [3] to make the input rectan-
gular (b) and overlay it with a regular grid, which is warped backwards
onto the input image (c) and lastly warped onto a rectangle (d).
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The approach presented by He et al. [30] is a two step warp. First,
they use the seam carving [3] algorithm to find so called non-through
seams where pixels can be shifted left, right, up or down, until the
image boarder becomes rectangular. The seams are searched in a
greedy manner. In each step, the border with the longest missing
pixel line is selected. The image is then temporally cropped to the
height and width of that pixel line. Then, seam carving is applied to
this sub-image. As shown in Figure 4.13b, the result is a rectangular
image, which contains small cracks, which could be filled as in Avidan
and Shamir [3]. However, He et al. suggest another approach.

He et al. overlay the found rectangular image with a regular, rect-
angular grid mesh. Then the grid mesh is warped backwards onto the
original input image (Figure 4.13c). This is done by taking the shifts of
the pixel from the seam carving step into account and eventually gives
us a non-regular grid on the input image. Now we warp the grid a sec-
ond time to produce the final output image (Figure 4.13d). This warp
has many parallels to the case of the fish-eye images. Since the grid
mesh is not rectangular we have to find another shape-preservation
energy. He et al. use the method described in Zhang et al. [99] to
compute a similarity measure between input and output grid cells.
Further, we ask for straight borders by constraining the border ver-
tices to have the same u or v coordinate. Additionally, straight lines
should be preserved by firstly using the line detection algorithm of
von Gioi et al. [90] and afterwards adding line preserving energies the
same way that we have already discussed. It is easy to imagine that a
user could mark additional lines, which are not detected automatically
or are not straight in the input. The total energy optimization is done
similarly to Carroll et al. [10]. After 10 iterations the final warp is
found.

4.3.4 Content Enhancement

We have discussed several warping techniques, all of which aimed at
adding depth to a scence or changing the view point, while mostly
preserving the geometry of the displayed scene. However, none of



4.3. IMAGE WARPING APPLICATIONS 119

(a) Input (b) Fitted Model (c) Slider (d) Result

Figure 4.14: To reshape human bodies, Zhou et al. [100] fit a 3D body
model (b) to the input image (a). The user can reshape the model
with meaningful sliders (c) and this then is used to guide the warp.

them manipulates an image with the objective to change its content.
Even this is possible with warping techniques.

Parametric Reshaping of Human Bodies

By looking at an image of oneself, nearly everyone once thought that
it would be nice to look taller, smaller, or thinner. Modifying human
bodies on images is the subject of the work by Zhou et al. [100]. In the
beginning, Zhou et al. fit the shape and the pose of a human 3D body
model of a database to the depicted person by using a semi-automatic
algorithm [86]. Then the user can adjust several parameters, such as
weight, height or girth of the body or body parts.

Zhou et al. use a set of regularly sampled points on the contour
and the image border to build a Delaunay triangulation. The trian-
gulation is used as the mesh on which the warp is computed. Three
energy terms build the data term. The first energy term deals with
changes along the skeletal and takes care of the length of the body
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parts. The second energy term is defined perpendicular to the skeletal.
It controls the girth of body parts. The skeleton is roughly determined
through the body model. The third energy term that is introduced
considers the length of the contours to avoid drastic changes to them.
As counterweights, a smoothness and a distortion energy term are
used. The smoothness term measures the difference of the transfor-
mation of neighboring triangles and the distortion energy penalizes
any deformation of the triangles. The total energy is the weighted
sum of all five mentioned energies, where the weights of the energies
are influenced by a saliency map.

MovieReshape: Tracking and Reshaping of Humans in Videos

The work by Jain et al. [39] sounds like the natural follow up of
the previously discussed paper. Indeed, there are many similarities,
but the authors are different and the year of publication is the same.
The two papers share the basic idea and they begin with fitting a 3D
model of a human body. The difference is that in videos the poses may
change over time and are therefore much more important. Again, as
in Zhou et al. [100], the model can be modified by the user through a
set of physically meaningful sliders. The user interacts on one frame of
the sequence and gets immediate feedback. Once the user is satisfied
with the result, the changes are applied to all frames of the sequence.
The warp of the frames is done with the meshless moving least squares
deformation, introduced by Müller et al. [69] and Schaefer et al. [79].

4.3.5 Finite Elements

At the beginning of this chapter, we introduced the warp as an R2 →
R2 mapping M : (x, y) → (u, v). We considered the finite element
method to find the best possible warp. But then we used the finite
differences method to approximate the derivatives of the warp and
solved it for a specific set of points, the grid vertices. This works well
in the case of square input grids because the differences of neighboring
grid vertices represent the partial derivatives of the warp. So, ∂u

∂x at

(xi,j , yi,j) is approximated by ui+1,j −ui,j , similar for ∂u
∂y , ∂v∂x , and ∂v

∂y .
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(a) (b) (c) (d)

Figure 4.15: Kaufmann et al. [43] double the width of the image (a)
with a standard warp that has 6767 DOF (c) and their FEM framework
with 1325 DOF (d). (b) shows the used saliency map.

We used this in the conformality energy in Equation (4.5) to ensure
that the rectangular cell shape is preserved by the warp. Nevertheless
we realized that it can become difficult to formulate such constraints
for non-square grid cells [55, 10, 30]. This is a good reason to come
back to the idea of the finite element method. Kaufmann et al. [43]
built on that a warping framework that is completely independent of
the structure of the mesh. This gives us the ability to use triangle
meshes and irregular meshes that are denser in more salient regions
than in other areas. We show an example in Figure 4.15, which also
compares the number of degrees of freedom of a warping technique
based on a regular grid and the warp by Kaufmann et al. [43].

Finite Element Image Warping

We start again from scratch to better understand the ideas of Kauf-
mann et al. [43] in the last warping paper that we discuss. An image
warp is a function that maps an image location x = (x, y) onto a
new location u(x) = (u(x), v(x)). The function itself is unknown, but
it should fulfill given properties like mapping some feature points to
given locations, keeping specific lines straight and usually distorting
the image as little as possible. We can formulate all these desires
mathematically as energy terms, such that the energy decreases when
the warp better fulfills the objectives.



122 CHAPTER 4. IMAGE WARPS

Now we consider the warp u(x) as a continuous function. The
energy terms that we have defined in all previously discussed papers
now become integrals instead of sums. For example the conformality
constraint from Equation (4.5) turns into

EC =

∫
Ω

∣∣∣∣∂v∂x (x) +
∂u

∂y
(x)

∣∣∣∣2 +

∣∣∣∣∂v∂y (x)− ∂u

∂x
(x)

∣∣∣∣2 dx, (4.42)

where Ω denotes the domain of the input image. The difference to
Equation (4.5) is that Equation (4.42) demands for the conformality
everywhere on the image while Equation (4.5) does that on the grid
vertices only. The price we pay is that the problem of finding the
warping function that minimizes the total energy becomes much more
difficult. Since the total energy is a sum of integrals, we now have
to compute integrals. Here, the finite element method steps in. It
consists of two steps. First, we again split the image domain Ω in
disjunct regions Ωk, such that Ω = ∪kΩk and Ωk ∩ Ωl = ∅ for k 6= l.
Second, we define a set of basis functions φi : Ω → R. Then, we
approximate the warping function with a linear combination of this
functions,

u(x) =
(
u(x), v(x)

)
=

(∑
i

aui φi(x),
∑
i

avi φi(x)

)
, (4.43)

where aui and avi are the weights of the function φi in the approxima-
tion of u(x). It is now up to us, to choose a good set of functions
φi. Often the φi are chosen as hat functions such that we have for
each mesh vertex xj one function φi with φi(xj) = 1 if i = j and
φi(xj) = 0 for all i 6= j. Then, we have a linear approximation of u(x)
on each mesh cell and correct values on the vertices.

While in the beginning we had the function u as the unknown, we
have now a set of scalars {aui , avi } as unknowns. To give an example,
we re-write the conformality energy

EC =
∑
k

∫
Ωk

∣∣∣∣∣∑
i

avi
∂φi
∂x

+
∑
i

aui
∂φi
∂y

∣∣∣∣∣+
∣∣∣∣∣∑
i

avi
∂φi
∂y
−
∑
i

aui
∂φi
∂x

∣∣∣∣∣ dx.
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The per-element integrals, these are the integrals on each Ωk, can be
approximated using a numerical quadrature rule [43] and the coef-
ficients {aui , avi }, which minimize the energy, can be found with the
Newton method [66].

We motivated the use of the finite element method with the abil-
ity to also handle non-square grid cells. Indeed, this is one of the
advantages of this method. Kaufmann et al. [43] use triangles as
mesh cells and show the ability to have non regular meshes, which
are denser in more salient regions than in others. Therefore, they
are able to produce visually similar results with much fewer vertices
than other algorithms with square meshes. Another advantage is the
freedom to select the basis functions φi. In the classical approach the
interpolation inside one mesh cell is restricted to linear or bi-linear
interpolation. Depending on the warp, this may not be a good ap-
proximation to u. With the finite element method we are able to
use polynomial basis functions. Kaufmann et al. proposed the basis
functions 1, x, y, x2, xy, y2 to approximate u quadratically. It is
even possible to select, with some restrictions, a different set of basis
functions on each grid cell.
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Chapter 5

Light Fields

The interpretation of light as a field, like we know the magnetic field,
goes back to the 19th century and Michael Faraday. While a magnetic
field is a vector field, consisting of one direction and one magnitude
on each location in the field, a light field describes the light traveling
in every direction through every point in space. This means, at each
point for all directions in a light field we have vectors representing
traveling light according to ray optics, also called geometrical optics.
Figure 5.1 visualizes this.

The term light field was established in computer graphics by Marc
Levoy in 1996 [52] and gained publicity through the invention of the
first Lytro1 camera in 2012. But the concept of the Lytro camera
goes back to 1908 and Gabirel Lippmann [54]. Already back then
Lippmann used a two-dimensional array of microlenses to capture a
light field. He called it photographie intégrale, which means actually
“complete photography”. Nevertheless, it is usually translated with
integral imaging.

The main selling point of the Lytro camera is the possibility to
refocus images after the fact and the ability of showing a scene taken
from a slightly different viewpoint. These two features are possible

1https://www.lytro.com
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p1

p2

p3

p4

Figure 5.1: We consider the light field in the black rectangle. On each
point in the field, from all directions are light rays coming. We selected
four example points p1 to p4 and draw from each object around the
light field one light ray per example point to visualize the light field.

because a light field camera system captures light rays through a
microlens array which is technically the same as having an array of
cameras and therefore capturing images from many slightly different
positions.

In the first section of this chapter we discuss methods to describe
light fields mathematically and common ways to capture light fields.
Afterwards we introduce methods to compute the depth of objects
seen by the light field (Section 5.2) and unveil the secret of the ability
to refocus light field images after taking them. Finally, we present
other applications of light field photography in Section 5.3.

5.1 Capture and Represent Light Fields

In this section we formalize the idea of light fields. We describe the
light traveling with the model of geometrical optics, which describes
light propagation in terms of rays that propagate along rectilinear
paths in a homogeneous medium. This model works for us because it
shares the assumptions we take in light field photography, too. These
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are, that we have incoherent light and we deal with objects larger
than the wavelength of light. Further we consider only light fields of
occlusion-free spaces. The measure for the amount of light traveling
along a ray is radiance. We begin with looking at the light that travels
through one point in space. Then, the formal description of this light
is given by the plenoptic function,

P = P (x, y, z, θ, φ, t, λ). (5.1)

The coordinates x, y, z describe the 3D point in space where we
measure the light. The two angles θ and φ parameterize the direction
from where the incident light comes. λ is the wavelength of the light
and the physical correct formulation of the color. Finally, t is the time.
We try to give a more intuitive understanding of the parameters of the
plenoptic function. Firstly we fix the coordinates x, y, z and the time
t. We limit the angles θ and φ to a small range. Then summation over
all λ for each θ and φ leads to a gray scale pinhole camera image, taken
at position x, y, z and time t. If we distinguish between different λ we
turn the image into a color image. Further, evaluating the plenoptic
functions for the same x, y, z and angle ranges for several points in
time is what a layman calls “shooting a movie with a fixed camera”.
We can also move the camera over time along a path by denoting its
location as x(t), y(t), z(t). Neglecting the fact that a camera operator
could choose the function of the path, we do not increase the degrees
of freedom by moving the camera over time. We still have information
about incoming light of a small field of view at one location for each
point in time. Thus, the plenoptic function represents all possible
images that could be taken from all viewpoints in the light field and
at any time.

The plenoptic function is the most general description of the light
field, but it turned out not to be the best in practice. Most often we
describe the light field of a scene from outside the scene. We do this
with a mathematical model introduced by Levoy and Hanrahan [52]
and Gortler et al. [22] concurrently. The model describes the light
that travels through a box outside of the scene. The size of the box
can be chosen, depending on the application and the scene that we
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u s sbad

(a) Choices of the Light Field Box

u

v s

t

L(u, v, s, t)

(b) Light Slab

Figure 5.2: (a) shows a valid (u, s) and an invalid (u, sbad) choice of
the two planes to parametrize a light field. (b) is a 3D illustration of
a light slab.

want to capture. The only restriction is that the box has to be empty
meaning it is outside of the scene, because otherwise rays may change
their color while traveling through the box. As an example, we show a
scene consisting of five spheres with different colors marked as circles
in Figure 5.2a. We are able to capture and describe all the light, which
goes through the box, in Figure 5.2a drawn in black to the left of the
spheres. The light comes into the box on the side s and leaves on side
u. We are free to move the box, enlarge, or squeeze it, as long none
of the spheres is in the box. Otherwise, as in the example consisting
of the box stretched such that it includes the green sphere, the red,
blue and purple rays that enter the box on the side sbad, change their
color to green, when they intersect the green sphere.

There are two main advantages of this light field representation.
The first is that it allows a much simpler mathematical model to
describe the light field. We use a coordinate system on both ends
of the box where the light rays enter and leave the box. In case of
a 3D box we use the four coordinates u, v and s, t to describe the
light rays. Hence, L(u, v, s, t) is the light ray that enters the box at
(s, t) and leaves the box at (u, v). Levoy and Hanrahan call this the
light slab representation. Sometimes, it is also called a 4D light field
since it is represented through four parameters. An illustration of
the coordinate system is shown in Figure 5.2b. As a small remark,
the intuition with the light traveling through the box is only used to
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(a) EPI

u s

f
(b) Light Field

Figure 5.3: In (b) we capture a light field of a scene consisting of four
spheres. (a) shows the stack of 1D images captured along u.

explain the idea. Once the idea of the two planes that describe the
light field is understood, it is easy to see that these two planes neither
have to have the same size nor do they need to be parallel. Especially
the size of the planes is often different in practice.

The second advantage of the light slab representation is that it
is similar to how we capture light fields nowadays. Creating a light
slab representation of a light field is actually very straightforward.
For the moment let us focus on one point of the plane from which
the light leaves our box. Then the coordinates (u, v) are fixed to one
specific pair (u∗, v∗), and L(u∗, v∗, s, t) describes all the light rays of
the light field that go through the point (u∗, v∗). This is actually
what a pinhole camera captures. If we assume that the uv- and the
st-planes are parallel, then the distance between the two planes is the
focal length f . The coordinates (s, t) are shifted pixel coordinates
of a pinhole camera image taken on (u∗, v∗) and the center of the
image is (s− u∗, t− v∗). To recall the details of the pinhole camera
model we refer to Figure 2.8. In conclusion, all that we need in order
to capture a light field of a static scene is an ordinary camera. We
move the camera along the uv-plane and take shots after equidistant
steps along both axis. Figure 5.3b shows in a schematic view how we
capture a light field of a scene with four spheres. To keep it simple, we
show only one light ray for each sphere to each of three sample points
corresponding to three camera positions on the u axis. In Figure 5.3a
we show the images, which are captured by our three example cameras.
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Each black vertical line represents one image and the colored dots
represent the spheres on the images. The left image is the one from
the top camera, the middle line corresponds to the middle camera
and similarly the third line corresponds to the bottom camera.

Of course, three cameras make up a simplified example, but they
may already be sufficient for simple scenes as the ones in Figure 5.3b.
Connecting the corresponding dots or pixels in the images like we did
in Figure 5.3a (colored lines) gives the ability to synthesize more views.
For this we can draw more vertical black lines in Figure 5.3a each
corresponding to a new camera or view point on u. The intersection
with the colored lines then mark the pixels that show the correspond-
ing spheres in the synthesized view. This is simplified, too since we
neglected things like occlusion, shape of objects and tacitly assumed
to have a Lambertian scene. There are several papers which deal with
the rendering of light fields and the synthesis of novel views. The
classic and most common one is by Isaksen et al. [38]. We come back
to this topic in Section 5.3 and leave the discussion of Figure 5.3a with
the comment that we call a cut through the light field perpendicular
to the uv- and st-planes an epipolar plane image or shorter an EPI.

The presented representation of light fields became very common
and it also fits our purposes best. However, we want to mention that
modifications exist for the two-plane representation. Wanner and
Goldlücke [93, 94] use a representation that is closer to the way the
light fields are captured. They leave the uv-coordinates, which repre-
sent the camera locations used to capture the light fields, untouched.
But Wanner and Goldlücke compute the st-coordinates relative to
the camera location or the uv-coordinate, respectively. So, the ray
L(u∗, v∗, 0, 0) is the one that is perpendicular to the uv-plane and
goes through the point (u∗, v∗). In the light slab representation from
above this is the ray L(u∗, v∗, u∗, v∗). We can come one step closer
to the original plenoptic function by replacing the (x, y)-coordinates
with the angles of the incoming light rays in Wanner and Goldlücke’s
notation.

Since we started the chapter with the Lytro camera we also want
to give a brief description of how it works. At first glance a Lytro
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Lens SensorMicrolenses

Figure 5.4: A plenoptic camera has on top of its sensor a microlens
array. Each microlens covers only a few pixels, in this drawing five,
which capture incoming light from different directions.

and most other plenoptic cameras are the same as a conventional
camera. There is one aperture through which the light travels into
the camera and one sensor that captures the light. The magic lies
between these two things. The manufacturers places on top of the
light sensor many small lenses, a so called microlens array. Each of the
microlenses covers only a few pixels of the sensor (Figure 5.4). That
way, it is possible to get many small images from slightly different view
points, each one covering incoming light rays form different directions.
Therefore, we could say that a plenoptic camera is a kind of a camera
array consisting of tiny low resolution cameras. The reconstruction of
an image is then performed all in software. What becomes obvious in
this description is the fact that we pay for the additional features of
a light field camera with a loss of resolution.

5.2 Disparity Estimation

In Section 3.4 we have already used the term disparity estimation
when discussing mono-to-stereo conversion. There we used one view
as input and computed disparities from the estimated depth of the
depicted objects to being able to synthesize new views. In this section
we actually are interessted in the inverse process. We use a light field
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Figure 5.5: Here we show two different representations of a 2D light
field. In (a) we draw the light rays according to their space coordinates,
(c) shows the light rays in the camera coordinate system.

as input and compute the disparities of an object that is seen by the
light field. This information is then used to compute the depth of
the object. We refer back to Figure 5.3 for a schematic view. In
Figure 5.3b, which shows the setting from top, we see that the four
differently colored circles all have a different distance to the u-line,
where distance from u means depth. In the image of the leftmost
camera on u (the left vertical line in Figure 5.3a), the ordering of the
spheres is blue, grey, red and green. In the middle image, the red and
grey spots are swapped, and on the last one, the grey is hidden by the
green sphere and the red sphere became the leftmost. In summary
the spheres moved with different speeds relative to the cameras. In
the EPI we can make this visible by connecting the corresponding
pixels with a line, as we did in Figure 5.3a. Then, the slopes of these
lines are different and correspond to the depths of the objects they
represent.

Earlier we stated that objects closer to the camera lead to larger
disparities. Now, Figure 5.3a seems to show the opposite because the
red line, which represents the closest sphere, has the flattest slope.
Conversely, the grey line representing the sphere farthest away is the
steepest line. To explain this we show a copy of Figure 5.3a in Fig-
ure 5.5a. The vertical black lines in Figures 5.3a and 5.5a represent the
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images taken from the cameras along u. The black lines do not show
the whole image but only the overlapping parts. We show the fields of
view of the corresponding three example cameras in Figure 5.5b with
cyan lines. Now we can see that the field of view is different for each
of the images and the camera center is only for the middle camera
right opposite of the center of the imaging plane on s. When we use
the same field of view for all cameras, as drawn with magenta lines
in Figure 5.5b, we get the sheared EPI shown in Figure 5.5c. Note
that in Figure 5.5c we use x to denote the vertical axis to emphasize
that we show the actual pixel coordinates. In conclusion, the colored
dots that represent the spheres have now coordinates relative to the
centers of the camera. Now we have the desired effect and the red
sphere creates the largest disparity leading to the steepest slope for
the red line. Of note, the two Figures 5.5a and 5.5c also depict the two
different light field representations discussed in the previous section.
Figure 5.5a shows Levoy and Hanrahan’s notation and Figure 5.5c
that was further used by Wanner and Goldlücke. In conclusion, only
from the disparity we cannot know the absolute depth. We can only
compute a relative depth that tells us which objects are closer than
others and whether they are much closer or deviate only a little.

In practice, we mostly use the representation from Figure 5.5c
because it is straightforward to produce such EPIs. To produce such
an EPI we take all images from a row of the camera array that captured
the light field and select in each image the same pixel row. These 1D
images consisting of one pixel row can be combined into a new image,
which is then our EPI and represents a horizontal 2D slice of a 4D
light field. We can obtain also vertical slices by considering one pixel
column of each image of an array column. We show an example of a
horizontal EPI in Figure 5.6. It shows the same pixel row of 50 views
taken from horizontally equidistant positions. The topmost pixel row
stems from the leftmost camera, the bottom row from the rightmost
view which leads to different axis then in Figure 5.5c: The x-axis is
going from left to right, the u-axis downwards.

Unless stated differently, we assume a light field representation
and EPIs as shown in Figure 5.5c for the remainder of the chapter.
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u x

Figure 5.6: This EPI consists of 50 views. Its topmost pixel row stems
from the leftmost camera, the bottom row from the rightmost camera.
Therefore, the u-axis points downwards and the x-axis to the right.

Our next goal is to create disparity maps for the scene captured by
the light field from such EPIs. For a human viewer of the example
in Figure 5.6 it is clear that the object with the white border and
the brown inner part has a larger disparity and is in front of the
blue and grey background. This follows directly from the slopes of
the corresponding lines and is also the basic idea for all algorithms
that are supposed to solve this task. We discuss three methods that
compute these slopes and that also significantly influenced our own
work described in Chapter 7.

Cost-Volume Filtering

Rhemann and colleagues [74] approach the problem of finding the
slopes of the lines by constructing and filtering a cost volume. In their
work they use stereo views as input and then match pixels between
the two views. A stereo image pair is a special case of a light field
consisting of only two views. From that view point the generalization
of Rhemann’s method to light fields consisting of several views is
straightforward. To keep our explanation closer to the original work,
we use the stereo matching terminology here.

In stereo matching we try to find for each pixel in the first view
the corresponding pixel in the second view. Assuming perfect stereo
images, both pixels of such a pair have the same y-coordinate. There-
fore, we seek for each pixel of one view the disparity d, which tells
us how many pixels we have to move in the x-direction to come to
the corresponding pixel in the second view. Rhemann et al. then
build up their cost volume as follows. For each triple (x, y, d) they
compute a cost that tells us how expensive it is to assign the disparity
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d to the pixel (x, y) of the first view. The cost is computed by the
difference of the color and the color gradient in x-direction of the
pixels (x, y) in the first and (x+ d, y) in the second view. The better
these two pixels fit, the lower are the costs. Once the cost volume
is built, Rhemann et al. process one xy-slice of the (x, y, d)-volume
after the other. Such a slice contains the cost for one specific disparity
for all pixels. Of course, this cost is different for each pixel. First,
different pixels may have a different disparity since they may stem
from different objects at different depths. Further, the cost for (x, y, d)
and (x, y, d+ 1) may be very similar if the colors of the pixels around
(x+ d, y) have similar colors in the second view. It follows that many
disparities may have a low cost on one pixel. This appears in areas
with low texture. However, the algorithm should assign neighboring
pixels the same disparity if they belong to the same object. Instead
of adding another term that creates a cost for different disparities for
neighboring pixels, Rhemann et al. propose to filter each xy-slice of
the cost volume. This way the costs for neighboring pixels become
similar and the chance that two neighboring pixels have the lowest
cost for the same disparity increases. Further, the cost computed on
edges, which is usually more reliable, is propagated onto textureless
regions. For choosing the filter Rhemann et al. consider that only
areas belonging to the same object should be filtered. To do so Rhe-
mann et al. use the guided filter by He et al. [31] that is an edge
aware filter in which the filter weights are computed from the input
image. This is based on the observation that neighboring pixels with
similar colors are likely to belong to the same object. After filtering
each slice of the cost volume independently Rhemann et al. pick for
each pixel the disparity with the lowest cost.

High Resolution Light Fields

The second approach that we discuss focuses on high resolution light
fields. Kim et al. [44] compute disparity maps for each of up to one
hundred input images with 21 megapixels. Building a cost volume
is not a feasible solution in this case because it simply demands too
much memory. The advantage of this huge amount of input data is
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that we have EPIs with clearly visible lines as shown in Figure 5.6.
Kim et al. exploit this and reconstruct these lines. To overcome the
problem of the textureless areas where lines are difficult to detect
Kim et al. search first for areas with a lot of color variation along
the x-axis of the EPI. Then they pick one of these pixels and test
all possible disparities similarly to Rhemann et al. [74]. E(x̂, û) is
the selected EPI pixel, where x and u denote the coordinates like in
Figure 5.5c. For each disparity d Kim et al. collect all EPI pixels
{E(x̂+ (û− u)d, u)|u = 1, ..., n} that correspond to the line through
E(x̂, û) and represent disparity d. n is the number of given views
and therefore the size of the EPI. For each such line they compute
a score by taking the color differences of the selected pixel (x̂, û) to
the other pixels on the line. The closer a pixel color comes to the
color of the picked pixel, the higher its score is. Consequently, if
a line has more pixels close to E(x̂, û) its score gets higher. After
testing all disparities, Kim et al. assign the disparity with the highest
score to the EPI pixel (x̂, û). Finally, they propagate the disparity
to all EPI pixels that correspond to the line and have a very similar
color to E(x̂, û). The threshold that measures the color similarity is
set conservatively to not risk overwriting foreground disparities by
background disparities. Once all pixels that where initially detected
as being reliable are processed, Kim et al. downsample the EPI.
Then newly reliable pixels are detected and processed and afterwards
the EPI is downsampled again. This way, we obtain an iterative
algorithm that processes each EPI independently. Altogether the
memory consumption is low compared to Rhemann’s method since
only one EPI at the time is in the memory. Further, this method is
highly parallelizeable.

Nevertheless, also Kim et al. cannot avoid using several EPIs to
remove outliers in a last step. They do this with a bilateral median
filter where the weights of the filter are computed from the colors
of the input images. Since the filter window is small (11 × 11) the
memory consumption stays low.
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Consistent Labeling

As a third example for a recent method for disparity estimation on light
fields we present the CVPR 2012 paper by Wanner and Goldlücke [93],
which marked the basis for their succeeding papers [20, 94] published
in CVPR 2013. In contrast to the methods before, this one uses a 4D
light field as input. Similar to the two previous methods also Wanner
and Goldlücke start by processing each EPI separately. Since they
have a 4D light field as input they do it for all horizontal and also
vertical EPIs. Wanner and Goldlücke first Gaussian filter the EPI
and then compute the structure tensor J for each pixel of the EPI
the same way that we used for corner detection in Section 2.1.1. This
leads to a symmetric 2× 2 matrix J . The difference between the two
diagonal elements builds the first entry and two times the symmetric
element of J builds the second entry of a vector that is used as the
initial guess of the disparity line direction. Wanner and Goldlücke
compute a reliability estimator for this direction with the elements
of J .

In their work Wanner and Goldlücke then use the initial guess
of the line direction on each pixel to set up an energy minimization
problem that solves for the disparities of all pixels of the EPI at the
same time. The energy is designed such that it is lower when the
final disparity is closer to the initial guess and the initial guesses are
weighted according to the reliability estimator. To avoid impossible
solutions Wanner and Goldlücke add an infinite large penalty for cases
in which the energy minimization suggests an impossible solution.
This happens if lines of objects with smaller depth are occluded by
lines of objects with larger depth, since objects closer to a camera
cannot be occluded by an object that is further away.

After all EPIs are processed two depth estimates are obtained for
each input view on each pixel, one from the vertical EPI and one
from the horizontal EPI. To resolve this issue Wanner and Goldlücke
solve another optimization problem for each view. Again, the energy
is low if the final depth estimate is close to one of the two guesses.
Additionally, the depth estimate for neighboring pixels has to be the
same if the pixels are not on an edge. So, the cost is set high if
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neighboring pixels have different depth values except the pixels are on
edges. Then, the algorithm is free to choose depth values, independent
of the neighbor pixels. The result of this second minimization problem
is then the final depth map.

All in all, this is a very expensive method and so Wanner and
Goldlücke tested their method on small data sets compared to Kim
et al. [44]. Nevertheless, the produced depth maps seem to be very
accurate.

5.3 Applications

In the previous section we discussed one major application of light
fields: the estimation of the depth of the objects. In this section
we like to explain methods to render images from light fields and
to introduce a method to display a light field viewer. Today these
methods are considered as “general knowledge” but back in 2000 when
Isaksen et al. [38] came up with, it was a great novelty and presented
at SIGGRAPH.

In the following, we sometimes consider 2D instead of 4D light
fields like in Figure 5.7. Nevertheless, everything we discuss here can
logically be extended to 4D.

First we discuss how we can compute new views from a light field.
We assume to have a light field that is represented by two planes.
Through the st-plane the rays enter the light field and leave it by
going through the uv-plane. In the 2D sketch in Figure 5.7 we only
see the two axes u and s. From this light field, we render two new
views. One of these views is the view of camera C1 that is actually
located behind the light field. This camera view can only be rendered
with the assumption that the space between the camera and the uv-
plane is occlusion free. The second camera view C2 is located inside
the light field and is slightly rotated such that it is no longer parallel
to the uv- and st-plane. We assume to know the 3D position of the
cameras, the uv- and st-plane and also the camera matrices. Then
we are able to compute a ray for each pixel of the new view of, for
example, camera C1. The ray connects the camera center and the
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C1

u s

C2

Figure 5.7: We show the rays through the light field that is defined
by the lines u and s, which lead to the two camera views C1 and C2.

imaging plane of the camera. We then extend each ray, such that
it intersects the uv- and the st-plane. The intersection points give
us the four coordinates (u, v, s, t), which define each ray of the light
field. All we need to do now is to look up the color or brightness
of this ray and insert the information into the pixel of the new view.
The same process works also for the case of camera C2. The only
difference is that we have to extend the ray from the camera center
through the imaging plane also in the opposite direction to get an
intersection point with the uv-plane. For both cameras, we draw five
such example rays in Figure 5.7, either in blue or grey.

In practice we have to take into account that we do not know all
possible rays of the light field. At least in case we captured the light
field with a camera array from a real-life scene. Figure 5.7 shows such
a case in which we consider the small black triangles along u to be
the cameras from the array. Not all of the example rays drawn for
camera C2 hit one of these triangles. Actually, the chance that one
of the desired rays (u, v, s, t) hits the center of an input camera is
infinitesimal small, since the camera center is a point. The simplest
solution is to pick the input camera (u∗, v∗) that is closest to the
desired uv-coordinates and use the color information of the pixel
representing the ray through (u∗, v∗, s, t). A much better solution is
to consider the four (or in 2D two) cameras (ui, vi) that are closest
to (u, v) and to compute the desired ray (u, v, s, t) as a weighted sum
of the rays (ui, vi, s, t). It is also possible to consider more cameras
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Figure 5.8: We show a thin lens with focal length f that images the
object O1 (green) at distance S1 on the imaging plane I as S2. The
image from object O2 (red) lies actually behind I. Therefore the
object O2 appears blurred on the image and O2 is an out-of-focus
object.

depending on the application and the density of the camera array.
Isaksen et al. [38] give examples of possible weighting functions and
call them reconstruction filters. We have the problem of a discrete
number of rays also on the st-plane since this consists of a discrete
number ob pixels. Usually on the st-plane the problem is smaller,
since the pixel grid is denser than the camera grid on the uv-plane
and a simple bilinear interpolation does the job.

So far we assumed pinhole cameras that have such a small aperture,
the pinhole, that only one light ray from each object travels through.
This way, only little light enters the camera, which either leads to a
long exposure time or that we can capture only extremely bright scenes.
To overcome this issue common cameras have a larger aperture, that
collects more light rays, which are then bundled by a lens. Figure 5.8
illustrates a system with a thin lens. For two objects O1, O2 we show
three rays each that travel through the lens and are focused by the
lens onto one point, the image point. The outer two light rays for each
point symbolize the additional light that is collected by the lens, while
the middle ray also would be captured by a pinhole camera. Rays
that travel along the lens axis (dashed line in Figure 5.8) focus at the
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focal point fp at a distance f (focal length) from the lens. In other
words, the image point of an object infinitely far away is at the focal
point. For objects at a finite distance S1 we can compute the distance
S2 of the image point to the lens with the thin lens formula,

1

S1
+

1

S2
=

1

f
. (5.2)

Note that if S1 = ∞ we have 1
S1

= 0 and 1
S2

= 1
f and therefore the

equation also holds for objects at infinity.
From the thin lens formula we see that the distance S2 varies

dependent on S1, while f is a constant for each lens. In conclusion,
if we place the camera sensor at distance S2, where a specific object
with distance S1 to the camera has its image point, other objects
may have their image point at other distances. Figure 5.8 shows this
scenario, where we put the imaging sensor I at the distance S2 behind
the lens such that the object O1 (green) has its image point on it. But
then the image point of object O2 (red) is further away than I, which
leads to the fact that rays from O2 hit I on different points. These
points build the circle of confusion and are recognizable in an image
as blur, if the circle of confusion is larger than one pixel. We call
everything on an image that creates a recognizable circle of confusion
and becomes blurry out of focus. Conversely, everything else is in the
depth of field of the camera and appears sharp in the image.

If we have a light field captured with an array of close to pinhole
cameras, we can simulate cameras with apertures of nearly any size by
considering several input cameras. To explain this effect we consider
Figure 5.9. Again we have a light field parametrized by the uv- and
st-planes and captured by a camera array that we indicate through
triangles on the u-axis. The depicted scene is simple and consists of
two walls at different depths. Both are colored as checkerboards, one
in black and grey, the other one in green and blue squares. Now we
compute the view of a new camera located in the middle of the uv
plane at (u′, v′) in the figure drawn in red. The focal plane of the new
camera should be the plane going through the black and grey wall. We
parametrize the focal plane with f (horizontally) and g (vertically).
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s fu

f2
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Figure 5.9: Here we show how we synthesize an image for the red
camera with a large aperture focusing on the fg-plane.

As the name says the focal plane is the plane perpendicular to the
pointing direction of the camera and at the depth that the camera
focuses. In other words, objects on the focal plane appear sharp in
the image. In our example, the black and grey wall should therefore
appear sharp in the synthesized image. In order to frame the new
image from several input views, we combine the rays in a way that
they converge at the fg- instead of the uv-plane. To compute one
pixel of the red camera we compute the ray going from (u′, v′) through
the pixel onto the focal plane. This gives us the coordinates (f1, g1)
on the focal plane. To determine the pixel color we compute the rays
(ui, vi, f1, g1) for all neighboring cameras, where (ui, vi) denote the
coordinates of the i-th camera. Each (ui, vi, f1, g1) ray also intersects
with the st-plane and therefore is an (u, v, s, t)-ray, too. We just need
to compute the st-coordinates to look up the ray’s color. Again, we
do this for several cameras, meaning we compute the st-coordinates
for several (ui, vi, f1, g1) where the u- and v-coordinates differ, to
combine these to the pixel color in the synthetic image. In case where
the depicted object is in focus like on (f1, g1) in Figure 5.9, the result
is neither impacted by the number of rays considered nor by the
weighting function. All rays have the same color, in our example grey,
neglecting the fact that the depicted object could be non-Lambertian.
The more interesting case is when no object is on the point of the
focal plane. In our example in which the wall is further away than the
focal plane, we have such a point at (f2, g2). Luckily, the squares on
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Figure 5.10: We render a new view for the red camera with focus on
the gray and black plane by considering all input cameras. Then, all
but one of the rays we combine for each pixel are black or gray and
the green foreground object is not anymore visible in the new view.

the wall are large enough or the camera array is dense enough so that
both closest input cameras see a blue spot by looking at (f2, g2). So by
assembling the pixel that corresponds to (f2, g2) from the closest two
cameras the pixel is still blue. This is akin to a small aperture with a
large depth of field or a small circle of confusion. By increasing the
aperture, which we do by taking two more input views into account,
we see that the two additional rays are green. They depict already
another square of the wall. When we compute a weighted sum of
these four rays, the result is not a clear blue anymore and we created
a blurry pixel of an out of focus object.

The same applies also to out-of-focus-objects, which are closer to
the camera than the focal plane. In this case (shown in Figure 5.10),
we notice an additional interesting fact. Rays which do not go through
the out-of-focus-object see behind the object. We draw the object
which is closer than the focal plane in green in the figure. For both
example points (f1, g1) and (f2, g2) in Figure 5.10 all but one of the
cameras see the background. If we now simulate the largest possible
aperture, which means taking all available input views into account,
then the green rays have a very low impact compared to all other
rays. However, in almost all pixels that we render a ray that hits
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Figure 5.11: Sheared EPIs: The upper EPI we sheared such that the
blue region comes into focus, i.e. is vertically aligned. In the second
plot, the EPI is sheared such that the brow a area is vertically aligned.

the foreground object is involved. Thus, we end up with an image in
which the foreground object is blurred over the whole image, similar
to a layer of dust. The more cameras are involved and the larger the
baseline of the camera array becomes, the smaller the ratio between
the foreground object rays and background object rays. A larger
baseline means that we simulate a larger aperture. We talk about an
infinite aperture if the baseline is large enough for the dust to clears
up to become hardly recognizable. Then, we practically made the
foreground image disappear.

If we have a light field captured with a camera array and we
have views sampled regularly on the uv-plane, we do not have to
compute each ray separately to compute new views from the light
field. We can build EPIs like the ones that we have already used to
estimate the depth of objects. Assuming our EPI is a horizontal slice
of our light field, then one row of the EPI corresponds to one camera.
Interpolating rays from two neighboring cameras is now the same as
interpolating between the corresponding two rows of the EPI. In order
to simulate a larger aperture we consider more than two rows and
compute a weighted sum of them, which is mathematically the same as
filter these rows vertically with the according filter kernel. If we filter
an EPI like the one shown in Figure 5.6 vertically with a large filter
kernel, we obtain a blurry image. We can keep objects in focus by
shearing the EPI according to the disparity of the object. This means
the object gets the same position in all input views and this eventually
leads to vertical lines in the EPI. As an example we show the EPI
of Figure 5.6 twice in Figure 5.11. Once we sheared the EPI such
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Figure 5.12: On top the input EPI consisting of 36 images. The one
in the middle we blurred vertically with a 7 rows wide Guassian filter
(σ = 2.5, yellow box). The bottom one is filtered with a box filter,
considering all rows (magenta box), what we do for infinite apertures.

that the blue parts are vertically aligned and once where the brown
area is vertically aligned. When filtering the sheared EPI vertically
(yellow boxes), the vertically aligned areas are not changed due to
the filter, independent of the filter size. As a result the objects that
are represented by these rays stay in focus. On the other hand, lines
which became flatter (more horizontal) through the shearing are more
impacted by the filtering because more different lines are considered
in such an area. Further we can control the out-of-focus blur by
changing the size of the filter kernel. We show an example in which
we have aligned the EPI of a light field showing a fence according to
the background in Figure 5.12. In the EPI we show on the top the
wires of the fence are visible as grey diagonal lines. The middle EPI
we have filtered vertically with a Gaussian filter considering 7 rows
(yellow box) of the EPI. The lines representing the fence wire became
blurry and become out-of-focus in the single views. The bottom EPI
we filtered with a box filter of the height of the EPI, which made
the wires disappear totally and we have created an “infinite” aperture
view. As a final note we mention that shearing the filter kernel instead
of the EPI images is mathematically the same but computationally
cheaper.

The last application of light fields that we discuss is a light field
display. The autostereoscopic display makes a whole light field visible
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Figure 5.13: The two eyes of the viewer see the autostereoscopic
display under slightly different angles and therefore receive different
views emitted by the lenslets on the screen. In the example in this
figure, the viewer’s left eye receives the color from the red pixel and
the right eye from the green pixel.

to a viewer in the sense that the viewer can independently move
in the light field and always receives the correct view for both eyes.
This also means that the two eyes see different views leading to a 3D
perception of the displayed scene. We achieve this by inverting the
process that we have previously used to capture a light field. Instead
of a camera array that captures incoming light from several directions
at many positions, we use a display that sends light rays from every
position towards different directions. We can build such a display
from a standard screen by adding a layer of lenslets on top of the
screen. Each of the little lenses covers a few pixels of the screen
and assembles them to one new pixel, which shows different colors
depending on the viewing direction. Figure 5.13 illustrates such a
display and shows how a viewer perceives the same “pixel” differently
with each eye. In the 2D example of Figure 5.13 one lenslet covers
five pixels and is therefore able to display five different views. We can
increase the number of views by decreasing the pixels on the display
or by increasing the lenslets. Like for the plenoptic camera we pay for
more viewing directions with a loss of resolution.



Chapter 6

3D Conversion Using
Vanishing Points and
Image Warping

After the discussion of the problem statement and recently developed
solutions for the task of 2D to 3D conversion in Chapter 3, we present
our approach. In this chapter we introduce a paper we presented at
the 3DTV-CON 2013 in Aberdeen [15].

The paper deals with single images that depict human made ob-
jects with a clear geometric structure, such as streets, bridges or
buildings. Hence, none of the automatic algorithms known so far is
able to compute appropriate depth maps. Therefore, we describe a
technique for user assisted 2D to 3D stereo conversion that exploits the
geometric structure of perspective images including vanishing points.
We build on an image warping framework, as discussed in Chapter 4,
and exploit constraints derived from the perspective geometry of the
input to obtain a stereo image pair. In our approach a user speci-
fies line and plane constraints, and indicates lines that intersect at
vanishing points. Instead of explicitly constructing a depth map, we
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warp the input image according to the user constraints to produce
a stereo pair. Our approach is most suitable for scenes with large
scale geometric structures such as buildings. It provides flexible user
control and requires little user effort to produce visually convincing
results.

6.1 Related Work

The standard industry workflow for high-quality conversion involves
labor intensive manual processing including segmentation (or roto-
scoping) and depth map creation [89]. Our work is related to previous
academic research that strives to reduce user effort, while still pro-
viding enough flexibility to obtain convincing results. We restrict our
discussion in this section to the most relevant previous work on user
assisted stereo conversion, since we discussed the 2D to 3D conversion
problem already in Chapter 3. External overview articles, such as the
work by Smolic et al. [83], are available, too.

Harmann et al. [26] describe an early system that combines au-
tomatic depth map computation using a machine learning algorithm
with user input. Several authors [25, 8, 98, 53] have proposed scribble-
based interfaces that allow users to indicate the desired depth at
sparse locations in video sequences. An automatic procedure then
extrapolates the sparse user input to define dense per-pixel depth,
and stereo views are created using depth-image-based rendering.

Wang et al. [91] propose a similar scribble-based user interface,
which we discuss in Section 3.4.2 in depth. Further they develop a
discontinuous warping technique that can create sharp depth discon-
tinuities at object boundaries, which are discussed already in Section
4.3.2. The “depth director” system by Ward et al. [95] is based on
segmentation more similar to the standard industry workflow, but it
includes a variety of computer vision techniques such as automatic
oversegmentation, optical flow, and structure from motion, to support
user interaction. A disadvantage of scribble-based systems is that
they are less suitable to generate depth maps for large scale geometric
structures such as buildings, since the consistency of user scribbles



6.2. OVERVIEW 149

with the underlying geometry is not guaranteed.
Our approach exploits the geometric structure of perspective im-

ages including vanishing points, inspired by the seminal work by Horry
et al. introducing the “tour into the picture” [35]. In contrast to this
work, however, we do not explicitly construct 3D geometry, which
allows us to work with more general scenes. Instead, we exploit
line, plane, and vanishing points indicated by the user directly as
constraints for image warping to produce a stereo pair. Our warping
algorithm builds on the work by Carroll et al. [9], which we introduced
in Section 4.3.1 in depth. We extend their work with constraints specif-
ically for stereo conversion. Since we sidestep explicit depth image
creation, we also avoid potential artifacts commonly associated with
depth-image-based rendering.

6.2 Overview

We show an overview of our method in Figure 6.1. Given a source
image, our main idea is to construct the left and right view of a stereo
pair using constrained image warping. A user specifies various con-
straints such as straight line constraints (yellow in Figure 6.1a), which
preserve linearity in the warped image, and planar region constraints
(blue), which locally restrict the image warp to a homography. The
user can also select sets of lines that converge in vanishing points
(dotted red lines). Finally, he can place target disparity constraints
at individual locations in the source image (pink). In addition to the
user inputs, our system automatically enforces additional constraints
specific to stereo conversion: we restrict the image warp to generate
horizontal disparities, we set the target disparity of vanishing points
to zero (since they are at infinity), and we enforce that the disparity
along line constraints varies linearly. We feed these constraints into an
optimization-based image warping algorithm to map the input view
onto two new images, the left and right view respectively. Figure 6.1b
shows the line and plane constraints provided by the user after warp-
ing, and Figure 6.1c shows the final stereo output. We next provide
details of the image warping algorithm, and then discuss results.
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(a) User input (b) Warped Constraints (c) Anaglyph Output

Figure 6.1: Overview of our method: (a) The source image with the
user provided input consisting of line (yellow) and plane constraints
(blue), vanishing points (intersections of dotted red lines), and dispar-
ity constraints (pink dots). (b) shows the line and plane constraints
in the left and right view after warping (red-cyan anaglyph encoded).
The output stereo pair (anaglyph) is shown in (c). c©Felix Frey, re-
produced by permission.

6.3 Constrained Image Warping

Our constrained image warping algorithm is based on an energy min-
imization framework following the work by Carroll et al. [9]. We next
describe our user interface, in Section 6.3.2 the mathematical formu-
lation of the warping problem, and finally the energy minimization
solver (Section 6.3.3).

6.3.1 User interface

The user interface allows a user to define constraints that describe the
geometric structure of the scene. The image warper then employs the
constraints to obtain the novel views of the scenes required for stereo
output. The user may indicate the following constraints:

Planar Regions. Regions indicated as planar will be warped
locally using a homography.

Straight Lines. The user can specify straight line segments,
which will be preserved as straight during the warp. Further it is
possible to mark subsegments of line constraints as inactive. This is
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useful if a constrained line is partially occluded by other objects.

Vanishing Points. The user can indicate lines and edges of
planar regions that are parallel in 3D. These lines define a vanishing
point in the image plane. Vanishing points are fixed during image
warping, since they correspond to points at infinity in 3D, and the
projection of points at infinity do not change under a translation of
the camera parallel to the image plane.

Line Orientation. Lines and edges of planar regions can be
restricted to become vertical or horizontal after the warp.

Disparities. The user can fix a desired output disparity at any
point on the image. Often it is necessary to define the disparity at
only two or a few more locations. We allow users to indicate relative
disparities between the fixed locations, which provides the ability to
scale the disparities easily later.

6.3.2 Mathematical Formulation

We define our warp using a rectangular mesh consisting of quad faces,
which is overlaid on the input image. Given the warped locations of
the four vertexes of a quad, we warp the interior of the quad using
bilinear interpolation, as described in Section 4.1. To compute the left
and right view of the desired stereo output, we formulate an energy
minimization problem that determines two deformed meshes ul(xi,j)
and ur(xi,j) that best fulfill our set of constraints. Here, l and r
denote the left and right view, respectively, i and j are vertex indexes,
xi,j are the locations of the undeformed mesh vertexes on the input
image, and u∗(xi,j), with ∗ ∈ {l, r}, are the warped locations of the
vertexes in the left and right output views, respectively. We also
denote input coordinates by x = (x, y) and output coordinates in the
left and right view by u∗ = (u∗, v∗), ∗ ∈ {l, r}. Next we briefly discuss
the energy terms for our constraints. In addition to the user provided
constraints introduced in Section 6.3.1, we impose further constraints
to ensure the output is a valid stereo pair.
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Vertical Disparities

We avoid vertical disparities by penalizing differences between the
v coordinates in the left and right output views, which leads to an
energy term summing up over all mesh vertexes,

Ea =
∑
i,j

(vli,j − vri,j)2. (6.1)

User Provided Disparities

Each user specified disparity constraint is given by a location xd =
(xd, yd) and a target relative disparity ∆, where d denotes the disparity
constraint. Each disparity constraint corresponds to a target location
ul,d = (xd + f∆, yd) in the left, and ur,d = (xd − f∆, yd) in the right
view, where f is a user specified global disparity scaling factor. Hence
the energy term for each disparity constraint is

Ed =
∥∥ul(xd)− ul,d

∥∥2
+
∥∥ur(xd)− ur,d

∥∥2
. (6.2)

We also introduce a disparity constraint for each vanishing point,
where the target disparity simply is ∆ = 0, that is, vanishing points
remain fixed.

Note that the constrained location xd is unlikely to coincide with
a grid vertex. Hence we express the location as a linear combination
of its surrounding quad vertexes, where we compute weights (a, b, c, d)
according to Heckbert’s inverse bilinear mapping [32], as we describe
in Section 4.1. The corresponding output location is expressed using
the same weights, as in Equation (4.1), u∗(x) = au∗i,j + bu∗i+1,j +
cu∗i+1,j+1 + du∗i,j+1.

Ratios from Vanishing Points

This and the following constraints are applied on both warps separately
but on the same way. For simplicity we omit the superscripts l and r
for the rest of the section.

While line constraints, as described in Equation 4.33, preserve
straightness of lines, they do not penalize deformations along the line
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Figure 6.2: The ratios of points on a line from a vanishing point stay
constant during the warp.

direction. We exploit the additional information provided by vanishing
points to avoid such undesired deformations. Assume we have two
points x1 = (x1, y1), x2 = (x2, y2) on a line with vanishing point
x∞ = (x∞, y∞), as shown in Figure 6.2. Let us consider the ratios
|x1 − x∞|/|x2 − x∞| = cx, and |y1 − y∞|/|y2 − y∞| = cy. Because
after the warp the line given by x1 and x2 still goes through the same
vanishing point u∞ = x∞, and with the intercept theorem, we can
see that the ratios cx and cy stay constant during the warp. In our
case the vanishing point never lies between x1 and x2, hence we can
omit the norm. Reordering terms gives x1 − cxx2 = (1− cx)x∞, and
similarly for the y-coordinate. This leads to the energy

Er =
∑
k

(
u(xk)− cxu(x0)

1− cx
− u∞

)2

+

(
v(xk)− cyv(x0)

1− cy
− v∞

)2

,

(6.3)

where xk, k ≥ 0 are locations sampled on the line segment. To sample
the line regularly, we split it into intervals obtained by intersecting
it with the mesh, and we use the middle point of each interval. We
express these locations using bilinear interpolation from mesh vertexes
as above. Note that these constraints may seem redundant with the
constraint to avoid vertical disparities. With lines that are nearly hor-
izontal, however, even small vertical disparities can lead to significant
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undesired deformations. We found the ratio constraint to be necessary
to avoid these in practice. Finally, observe that we divide the energy
by (1 − cx) and (1 − cy). This scales the error to pixel units and
makes it comparable to all the other energy terms, which measure the
error in pixels, too. This is important during the optimization step,
to balance the weight of the energy terms.

Additional Constraints

We implemented the remaining user constraints described in Sec-
tion 6.3.1 similarly as proposed in the work by Caroll et al. [9]. For
a more detailed description, we refer to Section 4.3.2. We use an
energy term Eh described in Equation (4.31) to constrain the warp
to a homography in planar regions. If two planar regions have a
common edge, it is necessary to constrain the homographies, which
gives rise to an additional term Ehc as formulated in Equation (4.32).
As mentioned above, the straight line constraint yields the energy
term El from Equation (4.33). This energy may also constrain the
line orientation, if desired. Next there is an energy Ev that keeps
lines pointing to vanishing points. Finally, there are two regulariza-
tion energies as described in Section 4.1. The conformality energy Ec
(Equation (4.5)) keeps the mesh rectangular, and a smoothness term
Es (Equation (4.8)) prevents abrupt changes from one mesh cell to
the next.

6.3.3 Optimization

The total energy E our algorithm minimizes is a weighted sum of all
the energies from the previous subsection,

E =w2
aEa + w2

d

∑
Ed + w2

r

∑
Er

+ w2
h

∑
Eh + w2

hc

∑
Ehc + w2

l

∑
El

+ w2
v

∑
Ev + w2

cEc + w2
sEs,

(6.4)



6.4. RESULTS 155

where the summations are over the number of the respective types
of constraints. We also multiply each type of energy with a weight
factor. The disparity constraints are the most important. Further,
they act on only one grid cell, where all other constraints affect larger
parts of the mesh. So, we weight this energy highest. The other user
constraints are more important than the regularization terms, since
the later are not meant to be hard constraints. Hence, we also weight
them more heavily. Although we normalize the energy of the ratio
constraint in Equation (6.3), this energy is often about ten times larger
than the others. We balance this by giving ten times less weight to it.
Besides, we found the best weights by experimenting and with regard
to [9]. We produced all results shown here with weights wd = 1000,
wh = whc = 200, wl = wv = 100, and wr = 10 for the user given
constraints, and wa = 20, ws = 12, and wc = l for the others.

The total energy we minimize is a least-squares problem. Because
of the homography and line constraints, however, it is non-linear. We
implemented a simple iterative Gauss–Newton method as described
in Section 4.2.3 to solve for the minimum. We stop the minimization
as soon as the total error becomes smaller than 10−5. Keep in mind
that we measure the energy in pixel units. In the vast majority of
our experiments we reached the stopping condition after at most ten
iteration steps.

6.4 Results

We show all results in gray scale because they are more suitable for
anaglyph glasses than color images. Images that need few constraints,
as in Figure 6.3, take only a couple of minutes of user interaction. For
more complex scenes indicating appropriate constraints may require
trial and error, and our algorithm is fast enough to enable an iterative
workflow. While it may be challenging for the user to set geometrically
plausible disparities, our system allows a user to handle even complex
scenes by specifying only a small number of disparity constraints as
shown in Figure 6.4. In Figures 6.3 and 6.4 we also shift the produced
images horizontally towards each other by ∆/2 after warping. Hence
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(a) Input with User Constraints (b) Warped Constraints and Mesh

(c) Grayscale Output Encoded in Anaglyph

Figure 6.3: c©Angelo Kaunat, reproduced by permission.
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Figure 6.4: These images need many user constraints. In each we
constrain five lines to be vertical (black dots). We prescribe disparities
only at one (bottom) respectively two (top) points. On the bridge
in the top image we use the ability to mark lines as partially hidden.
This constraint guarantees that the disparity is correct along the whole
bridge. c©Photos Felix Frey, reproduced by permission.

we can adjust the zero disparity plane such that the scene appears
partially in front and behind the screen.

6.5 Limitations

Our algorithm is able to produce 3D images from a variety of single
input images only with limited user input. In images showing many
objects with round or organic shapes, however, it may be difficult to
indicate the required constraints, because we rely on planes, straight
lines and vanishing points. The downside of the cell-wise image warp
is that it is not possible to create depth discontinuities. We illustrate
this in Figure 6.5, which shows the disparity maps for three of the
examples we have shown in this chapter. It is also not possible to have
objects of different depths in one and the same cell. This can be seen
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Figure 6.5: We show the implicitly computed disparity maps of the
results shown in Figures 6.1, 6.3, and 6.4. We overlay the user input
to indicate where the disparity discontinuities ideally would be.

in Figure 6.4 top row, where the umbrellas are warped together with
the building and therefore appear at the same depth. In the future, we
plan to combine our approach with scribble and segmentation based
techniques to handle such cases.



Chapter 7

Hand-Held 3D Light
Field Photography and
Applications

Modern smartphones and tablet computers with their ever increasing
computational power provide fascinating opportunities to implement
computational photography applications without resorting to off-line
computation. In this chapter, we describe a method for hand-held 3D
light field photography, which we presented at CGI 2014 in Sydney [14].
As input we take image sequences captured with a hand-held camera
along approximately linear trajectories. Capturing such data is a
matter of a few seconds and does not require any extra equipment. At
the core of our approach then is an efficient method to resample the
input image sequence into a regularly sampled 3D light field, that is,
the light field corresponds to a linear camera motion with equidistant
views. This light field then opens up the possibility for a variety of
further processing. First, we present a high quality algorithm for
disparity estimation. Based on the disparity map, we then propose
applications for digital refocusing, foreground removal, segmentation,

159
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3D Light
Field

Disparity
Map

Appli-
cations

Figure 7.1: Overview of our processing pipeline.

object insertion, and multiview autostereo output.
Our approach shares similarities with recent techniques that at-

tempt to perform multi-view 3D reconstruction [85] and 4D light field
acquisition [13] on mobile devices. The main goal of multi-view recon-
struction techniques is to produce full 3D models, which can then be
used, for example, for 3D printing. While these techniques produce
impressive results, they require several minutes of user interaction
to obtain high quality reconstructions. Similarly, unstructured 4D
light fields require the acquisition of many images from viewpoints
distributed over a 2D domain, for example roughly on a hemisphere
around an object of interest. In contrast, data capturing for our ap-
proach takes just a few seconds. The focus of our approach is not
on full 3D reconstruction or image based rendering, but on providing
advanced computational photography tools. In summary, we make
the following contributions:

• An efficient technique for resampling sequences of images along
an approximately linear camera trajectory into 3D light fields.

• A high quality disparity estimation technique based on 3D light
fields.

• A technique to generate out-of-focus blur leveraging 3D light
field data.

• A proof-of-concept implementation demonstrating feasibility of
our approach on a mobile device.

Figure 7.1 shows an overview of our pipeline. Given an input image
sequence from a hand-held camera under a roughly linear trajectory,
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we first resample the data into a regularly sampled 3D light field
(Section 7.2) and then perform disparity estimation (Section 7.3).
Finally, we leverage this data for several computational photography
applications (Section 7.4), including digital refocusing, foreground
removal, segmentation, object insertion, and multiview autostereo
output. Finally, we present results from a proof of concept application
for mobile devices in Section 7.5.

7.1 Related Work

Resampling image sequences from approximately linear camera mo-
tions into 3D light fields is similar to video stabilization. Our approach
is most related to the work by Liu et al. [56], which we describe in
Sections 2.4 and 2.5. They proposed to use a linear analysis of feature
tracks in the input video to recover a lower dimensional subspace,
where the projection into the subspace is related to the camera mo-
tion. By smoothing the projection matrix they then obtain smoothed
feature tracks. In contrast to their approach, we solve an optimization
problem to obtain a linear camera trajectory that best approximates
the input camera motion. We also resample the input images tem-
porally to obtain a camera motion with constant speed. Similarly to
their technique we render the output views using content preserving
image warps [55]. As we show in Chapter 2 video stabilization can also
be solved by reconstructing the 3D camera path [55], or by smoothing
2D feature trajectories under additional constraints [92]. Subspace
analysis is attractive for us because it avoids the complexities and
robustness issues with reconstructing the full 3D camera motion, but
it provides enough information to achieve a linear camera motion at
constant speed.

Our disparity estimation algorithm is inspired by the recent work of
Rhemann et al. [74] and Kim et al. [44], whereas the latter represents
the state-of-the art for disparity estimation from light fields. Both
these works we discuss briefly in Section 5.2. Kim et al. showed
that very high quality disparity estimation is possible from light fields
with high spatio-angular resolution by estimating disparity scores for
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single pixels. We use a similar approach to obtain initial estimates for
disparity scores. Then we use an efficient edge aware filter to remove
noise in our initial score volume of disparity hypotheses as proposed
by Rhemann et al. While they apply the guided image filter [31] for
this purpose, we are building on domain transform filtering [18], which
allows us to easily include additional confidence values for the disparity
hypotheses in the filtering process. We present a comparison of our
approach and these techniques using standard datasets in Section 7.3,
demonstrating the improved quality of our method.

Digital refocusing is one of the main applications of our framework.
Ng [70] and Isaksen et al. [38] showed in their seminal work how
4D light fields can be used to refocus digital images after the fact.
Unfortunately, applying the same techniques directly to 3D light fields
lead to unnatural one-dimensional out-of-focus blur. In our approach,
we leverage our disparity maps to combine 3D light field refocusing
with an image based blur to achieve convincing results. An even
simpler approach to achieve digital refocusing is to use a focus stack,
which has been implemented in commercial mobile applications [72].
These techniques, however, cannot increase the defocus beyond the
limits imposed by the aperture of the camera. Our approach allows for
a very large synthetic aperture, and we provide additional functionality
such as completely removing thin foreground objects, inspired by the
work by Joshi et al. [40]. Defocus blur can also be manipulated using
image processing techniques [4], but the quality of this approach is
limited since it is purely image based, and it produces artifacts in
particular when foreground objects are out of focus.

Beyond refocusing, our technique enables other light field process-
ing techniques such as alpha matting [42]. We found, however, that in
practice a simpler approach using edge aware filtering is more robust.
Finally, the 3D light fields produced by our technique can also be used
for multiview autostereo displays [54].



7.2. SPATIO-TEMPORAL 3D LIGHT FIELD RESAMPLING 163

Input sequence

Spatially aligned

Temporally aligned

Figure 7.2: Overview of our resampling. From the input sequence
(top), we first search for a horizontal camera path (middle). Then, we
resample this path regularly and compute equidistant views (bottom).

7.2 Spatio-Temporal 3D Light Field Re-
sampling

The input to our method is an image sequence from a camera sweep,
similar to a sweep panorama. The sweep should be a left-to-right
(or right-to-left), approximately linear camera motion without signif-
icant camera rotation. The user then picks one view as a reference
image, which we use to resample the 3D light field as described below,
compute a disparity map (Section 7.3), and perform our applications
(Section 7.4). A camera sweep acquired using a hand-held device is un-
likely to be perfectly linear, and the images usually are non-equidistant
samples along the camera path. Hence we perform a linearization of
the camera path in a first step (Figure 7.2, Sections 7.2.1 to 7.2.3).
In a second step, we produce new views from equidistant camera
positions along this linear path (Section 7.2.4).
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7.2.1 Feature Trajectory Matrix

Our stabilization and resampling process is based on Liu et al.’s sub-
space video stabilization [56], which we describe also in Section 2.5.
We begin with feature tracking and feature matching, and obtain a
collection of feature trajectories {(xit, yit)}, where i is the feature index,
and (xit, y

i
t) are the coordinates of the feature on frame t. We collect

the trajectories in a trajectory matrix,

M =


x1

1 x1
2 . . . x1

F

y1
1 y1

2 . . . y1
F

...
xN1 xN2 . . . xNF
yN1 yN2 . . . yNF

 , (7.1)

where F is the number of frames of the input sequence and N the
number of trajectories we found. Not all features can be tracked over
the full duration of the video in general, and for missing features we
set their corresponding entries in M to zero.

7.2.2 Factorization

The seminal work by Irani [37] showed that the trajectory matrix M
can be approximated by a matrix with rank 9. Irani factorizes M into
two matrices C and E. We discuss her method in Section 2.4 in depth.
The feature coefficient matrix C ∈ R2N×9 describes the 3D structure
of the N feature points, and the camera matrix E ∈ R9×F represents
the F camera positions and the projections of the features onto the
frames. We exploit this in Section 7.2.3 where we search for a new
camera matrix which describes a linear camera motion. Since CE is
a full matrix, we multiply it element-wise with a binary matrix W
consisting of ones where M has a non-zero entry, and zeros elsewhere.
Hence, the matrix factorization we look for becomes

M ≈W � CE, (7.2)

where � denotes element-wise multiplication.
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Figure 7.3: We show a part of the feature trajectory matrix. Trajecto-
ries (white) are ordered according to their first appearance. The initial
factorization window is red, and a second window is green. With the
C0 matrix entries from the first window (green dotted lines) and the
additional frames of these trajectories (solid part of green lines) in the
next window we compute E1. Next we compute coefficients for tra-
jectories that span the second window, but did not span the previous
one completely (dashed green lines).
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We incrementally factorizeM with the moving factorization method
by Liu et al. [56], which we describe in Section 2.5. In our approach,
we select our initial window such that the reference frame Fm is in its
center. The initial window is depicted in red in Figure 7.3. We then
collect all trajectories that span the whole window in a trajectory ma-
trix M0, which we decompose using SVD. By truncating the resulting
matrices to 9 rows resp. columns and distributing the square roots of
the 9 largest eigenvalues to the left and right matrices we get a camera
matrix E0 and a coefficient matrix C0. Next, we move the window
forward as depicted in green in Figure 7.3, and we search again for
the trajectories that span the whole window. Since now we have some
trajectories that spanned the previous window, too, we already have
coefficients in C0 for them. These cases are depicted with green dot-
ted lines in Figure 7.3. With these coefficients we can compute the
missing entries for the camera matrix E1, which corresponds to the
frames that are not covered by the previous factorization windows.
The camera matrix is then complete for the current window, and we
can compute the feature coefficients C1 for the new trajectories that
completely cover the current factorization window (and have not been
computed before). We mark these trajectories with green dashed lines
in Figure 7.3. Finally, we repeat this process forward and backward
in time until all frames are processed. For a more formal description
we refer to Section 2.5.2 or Liu et al. [56].

In the process above, we compute the coefficients in C for each
feature with the knowledge of only one factorization window, although
most feature tracks extend beyond a single window. The restriction
to single windows may fail if, for example, the camera moves only very
little during this window and does not constrain C enough. Therefore,
we verify the validity of the coefficients of each feature by checking if
the difference between the approximation using the factorization and
the input feature location ever exceeds 3 pixels. If this test fails, we
recompute the feature coefficients by taking into account the whole
feature trajectory and test the factorization error again. In the end,
we keep only trajectories for which the approximation never differs
more than 3 pixels.
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7.2.3 Linear Camera Motion

To construct a 3D light field we require a linear camera path and
completely horizontal feature trajectories. In addition, the camera and
the features should stay as close as possible to the input. Hence we seek
trajectories with constant y-coordinates, and the x-coordinates along
the linearized camera path should stay as close as possible to the input.
Remember that we factorized the trajectory matrix into a feature
coefficient matrix C and a camera matrix E. Further, we can split the
coefficient matrix into submatrices Cx and Cy, which give rise to the x-
and y-coordinates of the feature trajectories, respectively. With that
in mind, we now search for a new matrix Ê, such that CyÊ is row-wise
constant. Since our desired camera motion is linear, the columns of
Ê representing the cameras in each frame must follow a linear model.
This is, Ê = EsT +Eb, where Es and Eb are both column vectors of
height 9, and T is a row vector of length F . Intuitively, the vector T
marks the points in time each frame was captured. Our goal is now
to determine the unknowns Es, Eb, and T .

We further reduce the degrees of freedom of the system by holding
the reference frame Fm fixed. As a consequence, the y-coordinate for
all trajectories is given by that frame. We then create a matrix δM
containing the differences of the feature coordinates in the trajectory
matrix M to the location in the reference frame Fm. Note that
the column m of δM is all zero. We conclude that Tm = 0 and
Mm = Wm � CEb. The subscript m denotes the m-th column of M
and W respectively, and the m-th entry of T . It follows that Eb is
equal to the m-th column of E. Hence, our problem reduces to the
minimization

arg min
T,Es
‖Cy(EsT )‖+ α ‖δMx −Wx � Cx(EsT )‖ . (7.3)

The first term pushes the y-coordinates towards the ones in Fm. The
second term keeps the x-coordinates where they were on the input
frames and prevents the system from returning the trivial solution,
and α is a factor to balance the two terms. We usually obtained best
results with α = 1.
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Figure 7.4: We show the EPI of the input sequence on top. Lines may
become thinner or wider (green box) or may disappear (red box). In
the middle is the EPI after the linearization of the camera path. The
structure of the light field is now clearly visible. Still, the lines are
curved as the comparison to the blue line shows. In the bottom EPI
the lines became straight after temporal resampling.

7.2.4 Rendering of Output Views

We finally compute the output feature locations and render the views
of the regularly sampled 3D light field. With T and Es given, and
{(xim, yim)} the feature locations on the reference frame, the feature
locations on frame j on a perfectly linearly moving camera are

{(xim, yim) + (CixE
sTj , C

i
yE

sTj)}, (7.4)

where Tj denotes the j-th entry of T . Still, it is possible that the
camera changes speed along its linear trajectory. This leads to curved
lines in the EPI as we show in Figure 7.4. To avoid this, we manipulate
T . We set

∆t = min(|min(T )| , |max(T )|)/n (7.5)
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where n is an arbitrary number of views we want to create on each
side of the reference frame. For the l-th output image, with l ∈
{−n, ..., n}, we compute its time t = l∆t, and we use t to compute
the new x-coordinates. For the y-coordinates we use the location on
the reference frame Fm directly. This leads to the output feature
locations {(xim, yim) + (CixE

st, 0)}.
We render the output view by searching for t’s next smaller and

larger entry in T . We warp the corresponding two input frames with
the content-preserving warp from Liu et al. [55], and linearly blend
the two warped frames to produce the output image. After rendering
all 2n images our 3D light field is complete and the EPIs show straight
lines as we show in Figure 7.4.

7.3 Disparity Map

For most of our applications we need a disparity map for our reference
image. We compute this disparity map using the 3D light fields that we
obtain as described in the previous section. We first construct a score
volume that holds a score for a set of disparity hypotheses at each pixel,
where larger scores indicate higher quality matches (Section 7.3.1). We
then filter each disparity slice of the score volume using a structure
preserving filter to increase the robustness of our initial score estimates
(Section 7.3.2). We assign a disparity to each pixel with a winner-
takes-all strategy over the filtered disparity hypotheses at each pixel.
Finally, we apply a bilateral median filter to get our output disparity
map.

7.3.1 Score Volume Computation

We construct our score volume using the stabilized images Ij from
the previous section as input. For each disparity hypothesis from a
predetermined set of hypotheses, we shift all the images horizontally
with respect to the hypothesized disparity. We then compare the
pixels in the shifted images with the reference image Im and compute
a score for each pixel. We adopt the similarity measurement from
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Figure 7.5: The accumulated score of the red disparity hypothesis
is larger than the one of the green one because we find more pixels
with non-zero scores along the red line. On the other hand, the green
hypothesis has fewer but higher non-zero scores. Our normalization
gives preference to the correct hypothesis in green.

Kim et al. [44] using an Epanechnikov kernel. Additionally, we also
take into account the horizontal image gradients.

More precisely, we define the initial score for pixel (x, y) and dis-
parity hypothesis d as

S(x, y, d) =
∑
j 6=m

K(Ij(xs, y)− Im(x, y))

·K(∇xIj(xs, y)−∇xIm(x, y)),

(7.6)

where j is the index of the input image, xs = x + (j − m)d is the
shifted pixel position under disparity d, and ∇x is the horizontal
image gradient. The similarity kernel K is the Epanechnikov kernel
K(z) = 1−‖z/h‖2 if ‖z/h‖ < 1 and 0 otherwise. We set the threshold
h to h = 9, where pixel values are in the range [0, 255].

We observe, however, that in regions containing occlusions as in
Figure 7.5 the raw score from Equation (7.6) is biased towards the
foreground disparity. For the pixel marked in yellow the correct dis-
parity corresponds to the green ray, which belongs to the background.
Along this ray, however, we have fewer non-zero scores in the sum of
Equation (7.6) because of the occlusion by the foreground in some of
the views. Hence the sum of the scores of the disparity of the fore-
ground, drawn in red, is higher, although the value of the individual
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scores in Equation (7.6) are smaller. To avoid this effect we include a
normalization step in our approach.

We first define a confidence measure C(x, y), which captures at
each pixel (x, y) the ratio by which the highest score outperforms the
average score, that is,

C(x, y) =
maxd(S(x, y, d))
1
D

∑
d S(x, y, d)

. (7.7)

This ratio indicates how unique the maximum score is with respect
to the average score. In an ideal case the score is non-zero only for a
single disparity hypothesis and the confidence takes on the value D,
the number of disparity hypotheses. The confidence goes to 1 as the
maximum score gets closer to the average.

Situations as in Figure 7.5 lead to low confidence values, because
the scores of the disparity hypotheses of the yellow pixel exhibit several
peaks instead of a single one. Therefore, if the confidence is low we
divide each score by its corresponding number of non-zero values in
the sum in Equation (7.6). This favors disparity hypotheses with
fewer, but higher scores, and allows us to more robustly detect the
background disparity. If confidence is high there is likely a single peak
in the scores and the normalization is not necessary. It may even
be counterproductive, since it reduces the prominence of the peak.
Hence in this case we normalize all scores for a pixel by the same
factor, which is the number of non-zero values in the highest score in
Equation (7.6). We obtained all our results with a threshold of D/4
on the confidence.

7.3.2 Score Volume Filtering

The purpose of the score volume filtering step is to reduce the noise in
our initial per pixel score estimate described above. We apply an edge
preserving filter to the (x, y)-slice of each disparity hypothesis similar
as proposed by Rheman et al. [74]. Instead of the guided image filter,
however, we use the domain transform filter (DTF) introduced by
Gastal and Oliveira [18], whose computational complexity is linear
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(a) Reference Image (b) Score Volume Slice

(c) Unnormalized (d) Normalized

(e) Our confidence map (f) Final Result

Figure 7.6: Steps of the disparity map creation: (b) parts of four slices
of the score volume S for disparity hypothesis -1.5, 0, 1.5 and 3 (from
left to right), (c) the disparity with maximum score, (d) the disparity
with maximum but normalized scores, (e) the confidence map.
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in the number of pixels to be filtered and independent of the filter
support size, similar as for the guided filter. The most attractive
property of the DTF for our problem is that its support adaptively
shrinks or expands according to the image structure. In particular, in
highly uniform areas where disparity estimation is notoriously difficult,
the filter takes on a large support. In regions with rich structure, in
contrast, the filter support shrinks. Intuitively, the DTF weights pairs
of pixels by their distance (according to some metric) along a path
connecting them in the image. This is similar to geodesic filtering,
and indeed the domain transform approach can be interpreted as an
iterative approximation of geodesic filtering. Here we focus on our
extensions of DTF for filtering our score volumes. Please see the
original publication [18] for more details.

We first give a simplified explanation of the basic DTF in 1D.
Assume the input is a 1D function I(x) : R → R. The DTF weight
for two neighboring pixels at locations x and x + h is defined as
g(|ct(x)− ct(x+ h)|), where g is a filter kernel, and ct : R → R is
the domain transform function, which is at the core of the approach.
The main idea is to define ct in a way such that the absolute value
|ct(x)− ct(x+ h)| is related to a l1 distance in 2D between the two 2D
points given by the pixels and their function values. This l1 distance
is defined as σsh + |σr(I(x)− I(x+ h))|, where σs and σr are filter
parameters similar to the spatial and range parameters of the bilateral
filter. The key observation is that if these 2D distances are large, ct
“scales up” the argument |ct(x)− ct(x+ h)| to the filter, leading to
a quick fall-off of filter weights, and preserving the structure in the
input. The opposite happens for small distances. Generalizing to
color images with three r, g, b channels, one can show that the above
constraints on ct lead to the definition

ct(u) =

∫ u

0

1 +
σs
σr

∑
k∈r,g,b

|I ′k(x)| dx, (7.8)

where I ′k is the derivative of the k-th color channel. In addition, 2D
images can be filtered by iterating over several 1D passes.

In our application, we filter the disparity hypotheses scores ob-
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tained in the previous section using the color image of the reference
view as a “guide” to define the domain transform function, which is
similar to cross-bilateral filtering. We observed, however, that we can
improve the quality of our filtered output by including the confidence
C, Equation (7.7), from the previous Section. The intuition for includ-
ing the confidence in the DTF is that if we found a clear winner among
the disparity hypotheses at a pixel, meaning we get a high confidence
value, the filter does not need to extend further. On the other hand, if
we have low confidence in the winning disparity hypothesis, the filter
should expand until we accumulated enough evidence.

We include the confidence into the DTF as an additional channel in
the guide, forcing the filter support to stop where we have enough con-
fidence. We achieve this by plugging the logarithm of Equation (7.7)
into Equation (7.8),

ct(u) =

∫ u

0

1 +
σs
σr

∑
k∈{r,g,b}

|I ′k(x)|+ σs
σc

log(C(x)) dx. (7.9)

Due to the non-linearity of our confidence estimate, we use log(C) as
an upper bound on the confidence of the filtered score volume that
will be accumulated by the filter. We can easily show that using the
logarithm guarantees that the filter support never accumulates more
than the user specified confidence σc. We use σr = 178.5, set σs to one
fifth of the image width, and σc = log(D) to produce all our results.

After cost volume filtering, we select the disparity with the highest
score in a winner-takes-all manner. We finally apply a bilateral median
filter to remove remaining spike noise within a 9×9 block. To compute
this weighted median, we calculate its bilateral weights [88] according
to the corresponding colors in the reference image. Then a histogram
is created using the computed weights as accumulation factor of the
neighboring disparities. The median value of this histogram is assigned
to the pixel’s disparity. We compare our approach to two other recent
methods [93, 44] in Figure 7.7.
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(a) Reference Image (b) Wanner and Goldlücke [93]

(c) Kim et al. [44] (d) Ours

Figure 7.7: Our result compared to other recent methods: (a) the
reference view, (b) result of Wanner and Goldlücke [93], (c) result of
Kim et al. [44], (d) our final disparity map.
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7.4 Applications

In this section we present several applications of our reconstructed
3D light fields, most of them relying on disparity maps constructed
as described above.

7.4.1 Refocusing using Synthetic Apertures

Shallow depth of field effects, as often used in professional portrait
photography for example, are beyond the reach of devices like smart
phones because of size restrictions on the optical design. Light fields
acquired by translating a camera, however, make it possible to sim-
ulate synthetic apertures whose size is only limited by the range of
camera translations. Light fields also facilitate digital refocusing after
the fact, that is, changing the focal depth after image acquisition. We
exploit our 3D light fields to achieve refocusing using potentially large
synthetic apertures.

Given a 4D light field, it is straightforward to simulate a synthetic
aperture by simply filtering over its two angular dimensions, where
the filter represents the shape and extent of the desired aperture. The
main challenge we need to overcome is that in our 3D light fields we
only have one angular dimension, restricting synthetic apertures to
horizontal 1D slits. We solve this problem by observing that we can
model any separable 2D aperture as a superposition of vertical 1D
apertures over the 1D angular domain of our 3D light fields. Hence,
we use a two step procedure to obtain synthetic 2D apertures. First,
for each view in our 3D light field we approximate the effect of the
vertical 1D aperture. In the second step, we filter these processed
views over the angular domain of the light field.

We leverage our disparity maps to compute the vertical 1D syn-
thetic apertures using a depth-aware blur. We assume a two layer
model consisting of a foreground and a background layer at each pixel,
where the foreground contains all neighboring pixel closer to the cam-
era, and the background all other pixels. We compute the colors for
both layers separately, and blend them using alpha compositing. We
obtain the depth-aware blur by splatting each foreground pixel to its
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(a) Reference Image (b) Vertical 1D Aperture

(c) Foreground in Focus (d) Background in Focus

(e) Reference Image (f) Foreground in Focus

Figure 7.8: We create our synthetic aperture in two steps. First we
enlarge the aperture vertically only (b). This we do for several views
along the horizontal camera path. Summing them up extends the
aperture horizontally (c). To get (d) we apply the same procedure by
focusing on the background. (f) shows an example where the different
levels of blur are recognizable. The person in foreground appears
sharp, the people behind are less blurred than the building and the
trees further away. (e) is the input image of (f).
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vertical neighbors, where the splat size is given by the difference of the
pixel’s disparity to the disparity corresponding to the desired focal
distance, and we use a 1D Gaussian splat kernel. More precisely, we
splat the color of pixel q to a vertical neighbor p using the Gaussian
weight

G(p, q, σ) =
1√

2πσ2
e−
‖p−q‖2

2σ2 , (7.10)

where the variance

σq =
a |d(q)− df |+ 1√

2 log(255)
(7.11)

is defined by the difference of the disparity d(q) of pixel q to the
disparity df of the object in focus and the user given aperture size a.

We compute the foreground color F (p) of a pixel p by accumulating
the splat contributions of all foreground pixels q, that is, pixels with
larger disparities than p,

F (p) =

∑
{q|d(q)>d(p)}G(p, q, σq)I(q)

W (p)
, (7.12)

where we normalize by the sum of the weights

W (p) =
∑

{q|d(q)>d(p)}

G(p, q, σq). (7.13)

Note that the normalization weight W (p) can be considered as an
opacity value. We similarly compute the background color using all
background pixels, that is, pixels with the same or smaller disparities
than p. Note that here we calculate the filter size according to the
disparity of p for all background pixels. We do this because p itself
belongs to the background, and it should not be splatted with colors
from pixels which are behind it when p itself is in focus. Then,

B(p) =

∑
{q|d(q)≤d(p)}G(q, p, σp)I(q)∑
{q|d(q)≤d(p)}G(q, p, σp)

. (7.14)
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Finally, we composite the foreground and background using alpha
blending with α = min(1,W (p)),

V (p) = αF (p) + (1− α)B(p), (7.15)

where we clamp foreground coverage to one. We show an example in
Figure 7.8b.

Note that to apply the depth-aware blur to each light field view, we
need a disparity map for each one. Instead of recomputing disparity
maps for each view, we simply propagate the disparities from the
reference image by following them to the other views. Hence, we
propagate the disparity d of pixel (x, y) on the reference view m to
pixel (x+d(i−m), y) on the i-th disparity map. For pixels that receive
several disparity values we keep the largest one, since this is the one
belonging to the frontmost object. On the other hand, gaps appear
in background regions that were occluded in the reference view. We
fill these holes with the lower disparity of its left respectively right
border.

Once we computed all the vertically blurred views Vi, we shift
them according to the in-focus disparity df and compute a weighted
sum

IsynthApp(p) =
∑
i

G(i,m, σ)Vi(ps) (7.16)

as the output image, where ps = (xs, y) with xs = x + (i − m)df .
We use again the Gaussian weights G(i,m, σ), where i is the index
of the view, m is the index of the reference image and σ = (a +
1)/
√

2 log(255).

7.4.2 Further Applications

In this section we illustrate the usefulness of our processing pipeline
by discussing further computational photography applications.

Foreground Removal

We can automatically remove thin foreground obstacles by exploit-
ing our light field data and disparity map. This is useful to remove
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unwanted objects that may spoil a shot, as illustrated in Figure 7.9.
Our approach is inspired by previous work that exploits light fields to
“see through” foreground objects that partially occlude the scene be-
hind [40]. The main idea is that digitally refocusing on a background
layer using a very large synthetic aperture makes the foreground al-
most transparent. Since we have a disparity map at our disposal in
addition to the light field, we are even able to completely disregard
foreground objects based on their disparity when digitally refocusing
on the scene behind. We simply mask out the disparity map using a
threshold given by the disparity of the obstacle. Then we refocus the
light field on the background and integrate only where the mask is
non-zero. We apply the same disparity propagation to the non-central
light field views as in Section 7.4.1.

Segmentation and Alpha Matting

We can use our disparity map to segment foreground objects by thresh-
olding the disparities. The user sets the threshold simply by selecting
the desired object. In addition, we obtain an alpha matte by filtering
the resulting binary segmentation mask with the guided image filter
as proposed by He et al. [31]. The filtering step produces a “guided
feathering” effect where alpha values preserve detailed image struc-
tures while smoothly blending between foreground and background.
Although algorithms for alpha matting using light fields have been
proposed [42], we found that these approaches are less robust and
more sensitive to parameter settings and scene characteristics.

We can also use the resulting segmentation and alpha matte to
generate a selective gray scale effect where the selected region stays
colorful while we convert the rest of the scene to a gray scale image,
as shown in Figure 7.11. Leveraging the disparity map, we can further
provide functionality to insert new objects in the scene while respect-
ing occlusions and performing alpha compositing with the foreground
and background.
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(a) Reference Image (b) Synthetic Aperture

(c) Large Synthetic Aperture (d) Infinite Aperture

Figure 7.9: We show the user selected reference image in (a). In (b)
and (c) we applied our synthetic aperture focusing on the background
with aperture size 5 and 10, respectively. In (d) we show the result of
our “infinite aperture” by removing the fence.

(a) Reference Image (b) Alpha Matte (c) Text Inserted

Figure 7.10: An application of our computed alpha matte: For the
reference image (a) an alpha matte is generated for the foreground (b).
The object is inserted into the scene and blended with the foreground
(c).
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(a) Reference Image (b) Grayscale

Figure 7.11: An application of image segmentation: pixels with a
disparity value below a threshold are converted to gray scale.

Multiview Autostereo Output

With the method from Section 7.2.4 we are able to render views from
any point on the camera baseline. Hence it is straightforward to pro-
duce the appropriate views for autostereoscopic displays or lenticular
prints. We adjust the zero-disparity plane to focus on desired scene
elements by horizontally shifting the created views, where we read the
required shift directly from the disparity map.

7.5 Mobile Application

To demonstrate the feasibility of a mobile app targeting advanced
computational photography we implemented digital refocusing with
synthetic apertures on iOS. The app lets the user record short movies
and then processes the video frames as explained in Section 7.2. The
user can then refocus the image as described in Section 7.4.1 using a
touch gesture.

The iOS implementation shares most of the underlying source code
with its desktop sibling, which keeps the porting effort at a minimum.

To improve performance on the mobile device we vectorized the
math-libraries using ARM NEON, perform more complex operations
asynchronously to avoid freezing the user interface, and use an OpenGL
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iPhone 5
Movie Preprocess Disparity Warp Refocus
Fence 17.9s 44.7s 4.3s 8.8s
Rava 30.0s 41.4s 3.6s 5.7s
Yasmin 11.4s 41.4 4.1s 12.6s

iPad Air
Preprocess Disparity Warp Refocus

Fence 8.8s 18.3 2.2s 3.8s
Rava 14.1s 16.1 1.6s 2.5s
Yasmin 5.9s 16.5 1.8s 6.1s

Table 7.1: Results for the 2D synthetic aperture as explained in Section
7.4.1.

ES 2 based off-screen renderer to increase the performance of our
image-based warper from Section 7.2.4. Last but not least, we tuned
all quality settings for speed to minimize the runtime complexity when
computing synthetic apertures aimed at mobile device screen resolu-
tions. This includes the number of tracked features1, the number of
rendered views (10), and the input frame resolution (720× 1280).

We benchmarked our prototype on two devices, an iPhone 5 pow-
ered by Apple’s ARM-v7s A6, and an iPad Air powered by Apple’s
ARM-v8 64bit A7. The results are shown in Table 7.1. Apparently,
preprocessing the input material is the most time consuming part,
notably feature detection, whereas refocusing is relatively quick. It is
thus advisable to use as few frames as possible, and then to store the
preprocessed data for later reuse. This enables us to provide a similar
experience as with the Lytro light field picture files.

1Using cv::goodFeaturesToTrack()
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(a) The EPI we used for the disparity estimation.

(b) Reference Image (c) Disparity Map (d) Focus on Teddy

Figure 7.12: The branch in the top right corner of the reference image
(b) moved with the breeze. Despite linearization, the EPI in (a) does
not show straight lines for this area and the disparity map computation
fails (c). Therefore, the branch stays sharp in the refocused image
(d).

7.6 Limitations and Conclusions

Our whole pipeline relies on a faithful linearization of the input image
sequence. The algorithm fails when this step does not succeed. This
may happen due to the lack of feature points, or if the input video
is just to shaky. In the later case, the warp may produce views
with visible distortions. Such distortions may also lead to bad EPIs
which may make it difficult to compute a good depth map. The
same problem we face with moving content. We show an example in
Figure 7.12, where the branch in the top right corner moved slightly
with the breeze. This is clearly visible in the EPI, Figure 7.12a, and
leads to a wrong disparity estimation, visible in the disparity map
in Figure 7.12c. Further, more low-level performance optimization is
needed to provide a desirable level of interactivity on current mobile
devices.

However, we presented a method for hand-held 3D light field pho-
tography and described several computational photography applica-
tions enabled by our framework. The main advantage of our approach
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over previous techniques for capturing light fields using hand held
devices is that it requires only a simple and short user interaction,
making it practical for casual users. Our work hinges on a novel
technique for spatio-temporal resampling of image sequences from ap-
proximately linear camera paths into regularly sampled 3D light fields.
We also developed a novel disparity estimation technique leading to
state-of-the-art results on standard datasets. Finally, we introduced
a digital refocusing approach using synthetic apertures that leverages
our light field data and disparity maps, and several other applica-
tions. We believe our approach opens exciting avenues for further
computational photography applications on mobile devices.
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Chapter 8

Conclusions

We finish this thesis with a short summary of the topics we covered
and highlight the contributions of our own research. We also give a
brief outlook of possible future work.

Video Stabilization. We have explained the standard stabilization
pipeline, which first matches feature points across frames, stabilizes
them and uses these to guide the rendering of the new frames. We
discussed two techniques, structure from motion and subspaces, in
detail and mentioned several other methods. Further we also presented
methods for stereo video stabilization and found that some of the
standard stabilization methods are directly applicable to stereo videos.
The biggest challenge in this area are videos with a large amount of
moving content. None of the discussed methods can stabilize such
a video and only one paper treats moving objects separately in the
rendering step. Therefore, we see the largest space for improvement
in future in this area.

2D to 3D Conversion. We have learnt why humans perceive their
environment in 3D and how we can display images in a way that the
viewer perceives depth of a depicted scene. Despite the rendering of

187
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the stereo views the most difficult problem is to find out the depth in
the scene of a monocular image. We have presented techniques that
solve this problem through user input, but also some that use machine
learning methods. Mainly in the latter case we think we are just at
the beginning of the development and we will see that future work will
go far beyond what machine learning algorithms can do nowadays.

Image Warping. We have presented the standard warping tech-
nique that bases on rectangular grid cells and discussed many differ-
ent applications of this technique. At the end of the chapter we also
discussed a method that generalizes warping techniques. This gener-
alization in combination with the versatility of image warping leaves
no doubt that we will see more applications to photos and videos.

Light Fields. We have covered the basics of light fields, their ac-
quisition, representation and also a method to display a light field.
Further we presented applications and methods that compute new
views from a light field and how we can estimate the depth of ob-
jects from a light field. Since light field photography just entered the
consumer market, we expect progress in the whole area of light field
processing, even though the currently most vivid area is the depth
estimation.

3D Conversion Using Vanishing Points and Image Warping

Conclusions. We have presented a warping-based method that is
able to convert mono images into geometrically correct stereo images.
It heavily relies on a strong and simple geometry in the scene and on
user input. Nevertheless the user input is restricted to the provision
of only some planar areas, faces and vanishing points and thus can be
done in only a few minutes. The limitations of the method are twofold.
First, the warp that we use is not able to produce depth discontinuities.
Second, on scenes consisting of round or organic shaped objects, it
may be difficult to indicate planar areas and straight lines. Then it
becomes impossible to find the vanishing points.



189

Future Work. As a future work we therefore see the use of a warp-
ing technique that can produce depth discontinuities and the use of
additional tools for the user to provide the system with depth infor-
mation in the absence of planar areas and straight lines. Further, it
would be interesting to remove the user input totally from the sys-
tem with line detection methods and the automatic computation of
vanishing points.

Hand-Held 3D Light Field Photography and Applications

Video Linearization. With our video linearization we can turn
a video sequence taken with a swipe of a hand-held camera into a
regularly sampled 3D light field. We use the image warping technique
to render the new views. This has the downside that images that
build the light field, are actually slightly distorted and we can only
tolerate small deviations from a horizontal camera path. Despite this,
it suites our need as we have shown with several examples.

Disparity Estimation. We combined and extended two methods
which estimate the disparity of rays in an EPI. We have shown the
robustness of the methods with many real-live scenes, and the accuracy
of our method out-performs other state-of-the art algorithms. But for
our case it is a problem that methods which estimate the disparity of
lines in the EPI can not handle moving content, because this gives no
straight lines in the EPI. Furthermore, time-wise the disparity map
estimation is the bottle neck in our pipeline and owing to this fact we
are not yet able to create a pleasant user experience.

Large Aperture Simulation. Besides other applications we have
presented a method to compute photos with a narrow depth of field
and this method profits from the many views we have thanks to the
light field. Despite the fact that our out-of-focus blur looks more
realistic than many others, it is still distinguishable from the bokeh
effect created with real lenses. Additionally, we are able to remove
thin foreground objects completely.
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Future Work. To overcome the issue about moving content or a
too shaky input video, the video linearization and depth estimation
steps could be combined. In an iterative approach it seems to be
possible to compute disparities and fill the wholes in the stabilized
frames with information from other frames at the same time. This
would make warping obsolet and would lead to a higher quality light
field. Further, moving content could be recognized and removed from
the initial disparity estimation. Afterwards, the disparity estimation
from the static part of the scene can be propagated to the moving
objects.

The linearization and disparity estimation could be made faster by
the use of fewer frames. Intermediate frames could then be computed
directly from the EPI to still reach the same quality of the out-of-focus
blur. The blur itself could be made more realistic by the use of other
blur kernels.
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