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Introduction

Environmental pollution is one of the biggest problems we face today. While some forms of environ-

mental pollution mainly have negative impacts at a local level, others cross borders through path-

ways like water and air and affect entire regions or the whole planet making them a transnational or

world-wide problem. In other words, environmental pollution may have a spatial component. For

example, the release of green house gases into the atmosphere is the main driver of man-made global

climate change, itself responsible for the rise of sea levels, heat waves, melting of glaciers, droughts,

and floods worldwide. Furthermore, industrial and agricultural activities have led to soil contami-

nation, destroying fertile soil and water ecosystems locally, but also depleting natural resources such

as rainforests affecting the climate worldwide. Moreover, the discharge of commercial and industrial

waste into rivers has drastically deteriorated their water quality, affecting the entire biosphere along

their course. Further forms of pollution, such as artificial light and noise pollution, drown out natural

landscapes locally, disturbing wildlife in their natural habitat.

In my thesis, I consider environmental pollution that is spatially distributed. Countries, regions or

cities, represented by agents, may thus not only pollute their direct environment but their pollution

may spread and accumulate across agents. Hence, whether and by how much the agents are affected

by the pollution of the others depends on their location, their distance to the polluting sources and

the accumulative nature of the pollution considered. The agents and the pollution emitted build

a network, in which the agents represent the nodes and are arranged according to a geographical

structure and in which the pollution flows represent the edges that connect the agents. The pollution

emitted exerts a negative externality on the agents in the network. Since the others mostly bear the

negative consequences of the pollution produced and these external costs are not taken into account

by the polluters themselves, the polluters have little incentive to incur the costs to reduce pollution.

Consequently, they choose to pollute more as if they were required to pay all associated costs. Thus,

in general, unregulated markets in goods with externalities generate prices that do not reflect the full

social cost of their transactions and therefore allocate the resources inefficiently. As a consequence,

an intervention by an external authority or a voluntary agreement among the agents seems necessary

to correct for the externalities and to improve on the inefficient status-quo.

There is a broad range of policy instruments available for the mitigation of pollution by an exter-

nal authority, including the establishment of property rights, command-and-control regulation and

market-based approaches. However, these approaches may be far from efficient or impractical to im-

plement if, for example, heterogeneously distributed pollution or asymmetric information is present.

In addition, pollution is rarely confined within territorial boundaries with the consequence that reg-

ulations cannot be instated in other jurisdictions and the polluters cannot be held liable for the pollu-

tion damage they cause in these jurisdictions. Thus, if no authority to enforce any regulation exists,

voluntary cooperation among the polluters and their victims is the only way to improve on the in-

efficient outcome. In this thesis, I analyse if and to what extent the efficient levels of pollution can

be implemented by voluntary agreements or regulatory instruments when pollution is spatially dis-

tributed and when many polluters share a network.
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In the first chapter, co-authored with Ralph Winkler, we address the problem of efficient emission

abatement in a multi-polluter network, where the polluters are sovereign states with no supra-

national authority to enforce any action. In this chapter, we consider a specific network in which

the polluters are hierarchically ordered along a graph from upstream to downstream. In this setting,

the emissions released upstream accumulate while moving downstream so that the pollution emitted

upriver induces negative externalities on all downstream agents. An example for this structure is an

international river being polluted by the riparians along its course. The polluters may abate some

of their pollution by incurring abatement costs to reduce the damages caused to their downstream

agents. As the agents do not take into account the externalities on the other agents when deciding on

their actions, they decide to abate inefficiently little. Coase (1960) argued that the problem of having

inefficiently low levels of pollution could be solved by establishing property rights. Given property

rights, agents have an incentive to find a way to make mutually beneficial deals that lead them to

take the externalities into account. However, concerning environmental problems, it is often unclear

how these property rights should be defined. As an example, reconsider river pollution. There is

an absence of clearly defined property rights over the river as all riparians sharing the river usually

claim property rights over it or at least the part of the river flowing through their territory. As a con-

sequence, none of the riparians is willing to reduce its pollution or pay compensations to the others

suffering from it. Thus, one of the reasons for the inefficiently low amount of pollution abatement is

the absence of well-defined property rights or/and the lack of an authority to assign such property

rights. Hence, the only way to tackle pollution crossing borders is voluntary cooperation among the

agents. In order for all externalities to be internalized, the grand coalition needs to form. Thus, all

agents need to cooperate to attain the efficient solution.

An obvious difficulty of any cooperation is the tendency for agents to seek a free ride. This is be-

cause the formation of a coalition, in which agents act cooperatively and therefore reduce pollution,

exerts a positive externality on potential non-members. Thus, the incentive to deviate from the grand

coalition hinges on how much these deviating agents can achieve by themselves. Clearly, this value

depends on how the remaining agents will behave once one or many agents have left the grand

coalition. These remaining agents could either fully cooperate, form partial coalitions or, as is often

assumed, they may behave fully non-cooperatively and break into singletons. Thus, for an agent not

to deviate from the grand coalition, an agent should be at least as well off if he is part of the grand

coalition as if he were on his own or cooperating with some others.

To achieve the grand coalition and the consequent reduction of pollution to efficient levels may

involve some agents making losses relative to the status-quo. This is especially true for spatially

distributed pollution as well as non-uniform damages and mitigation costs, where moving towards

an efficient solution without having the victims pay compensations to the polluters for incurring

the mitigation costs inevitably violates individual rationality. As a consequence, financial transfers

between the agents have been advocated. But how should these transfers look like? While the abate-

ment allocation determines the total welfare, these compensation transfers determine how this total

welfare is shared among the agents. Clearly, there are infinitely many possibilities how this welfare
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can be split. One requirement for the transfer scheme to be accepted is to ensure that any polluter

or coalition of polluters is compensated at least for what they would be able to achieve themselves if

they were operating individually. Another requirement addresses the issue of fairness, in the sense

that any transfer scheme should be perceived as fair. One possible way to define fairness is to demand

that no agent or coalition of agents should be made better off than they were if the non-members fully

mitigated the effects of the negative externality caused in their territories. The abatement allocation

implemented together with the chosen transfer scheme is often called an agreement.

In the first chapter of this thesis, we therefore search for an efficient agreement that is sufficiently

appealing to all agents involved for them to agree to it. Thus, it must fulfil the following conditions:

First, all agents must participate and the efficient pollution levels need to be implemented. Second,

it must satisfy the so-called participation constraints for all possible coalitions while assuming that

non-coalition members behave non-cooperatively. This means that all agents or possible coalitions

are made better off by the agreement than they were if they acted alone. Third, is must fulfil a fair-

ness criterion in the sense that no agent and no coalition is made better off by the agreement than

it were being alone in the network with no other polluters than themselves. We find that there ex-

ists only one agreement that fulfils all participation constraints and fairness constraints at the same

time. This agreement, called the Downstream Incremental Distribution, assigns each agent his marginal

contribution to the coalition composed of its predecessors. It favours downstream agents, as the co-

operation gain goes to the agent most downstream while the agent most upstream is set indifferent

to the status-quo.

Even if we do not have the problem of a missing authority to enforce any joint action, there are

other reasons why an inefficient abatement allocation prevails, for example asymmetric information.

In this case, one agent may have more information than another agent, for example more than the

government. This divergence in knowledge may lead to a misallocation of resources because the

better informed agent has a comparative advantage. Thus, an additional difficulty in forging an

agreement among the agents or implementing a regulatory instrument is that each participant may

retain private information on his mitigation costs or damages. In particular, polluters may have an

incentive to exaggerate their privately known abatement costs in order to reduce the abatement level

they have to supply with the consequence that most of the burden of abatement is left to the others.

Due to this discrepancy in information, it may even be beneficial for an external authority to delegate

its power to enforce actions to one of the agents in the network.

In the second chapter, I address this problem of asymmetric information in multi-polluter networks.

For this, I extend the linear hierarchical setting with downstream oriented externalities introduced

in the first chapter to include asymmetric information and a federalist governance structure. The

lower tiers, representing the agents along the graph, are assumed to have private information about

their abatement costs. An example for this structure is the Aare, a river which flows through several

cantons of Switzerland. I propose that one of the lower tiers is nominated by the federal government

to offer a set of mitigation contracts to the remaining agents. These contracts specify an abatement

level and a compensation payment for the abatement effort. The selected principal can either pro-
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pose the contracts in a centralized manner, where he simultaneously offers contracts to all agents or

he contracts only with his direct up- and downstream neighbours and delegates to those two agents

the authority to contract with their direct up- respectively downriver neighbours and so on till all

agents received a contract. I establish that given full information, both models implement the first-

best optimal allocation and the choice of the principal only determines which agent attains the full

cooperation gain.

In the presence of asymmetric information, an agreement must not only satisfy the participation

constraints of all agents, but also the so-called incentive compatibility constraints. When fulfilled,

these incentive compatibility constraints guarantee that agents do not lie about their true costs. The

abatement allocation attained may thus not be efficient as information rents in return for disclosing

information have to be paid. Given asymmetric information, I demonstrate that even though the

delegated principal agent model is prone to a control loss, the abatement allocation implemented in

the centralized principal agent model can be replicated in the delegated principal agent model while

matching the expected costs of the principal. However, to counteract and to avoid the tendency of the

intermediate agents to bias the abatement allocation in their favour, the nominated principal must be

able to monitor the abatement levels as well as the reports of the intermediate agents and it must be

ensured that the set of contracts is executed after all intermediate agents have accepted their subcon-

tracts.

As all potential principals implement a different abatement allocation, the choice of the prime prin-

cipal matters for the total expected costs occurring in the river basin. I show that the tier located the

most downriver, which is subject to the same informational constraints as the federal government, is

never the best choice to nominate as a principal. In case of linear damages, I establish that choosing

the agent at the source of the river will implement the abatement allocation leading to least expected

total costs for the river basin. For other functional forms of damage and abatement costs, the nomi-

nation of the best principal depends not only on the position of the potential principal along the river

but also on the damage cost parameters as well as the exogenously given pollution levels.

Even if we have full information on all relevant parameters and there exists an authority to en-

force regulatory instruments, inefficient abatement allocations may still prevail in case of spatially

distributed pollution. This is because the regulatory instruments are inefficient or impractical to im-

plement. For example, command-and-control regulation, which includes policies to prescribe how

much pollution a source is allowed to emit or what types of control equipment it must use to meet

such requirements, have often been criticised. First of all, they offer no incentive to abate pollu-

tion beyond the standard set by the authority or to rethink their production methods. Second, they

are inflexible. It is a "one-size-fits-all" approach that does not consider varying performance of pol-

luters. Third, selecting the appropriate standards demands a high level of information, which may

be missing or misrepresented. Thus, command-and-control regulation is unlikely to achieve a least-

cost reduction in pollution and often leads to inefficient pollution levels. In contrast, market-based

approaches seek to address the market failure caused by the externalities by incorporating the ex-

ternal cost created through taxes and charges or by creating property rights and facilitating the es-
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tablishment of a proxy market for the use of environmental services. In other words, market-based

approaches create markets where they did not previously exists to give polluters incentives to re-

duce pollution. These policies can either be quantity-based or price-based. Quantity-based policies

include cap-and-trade systems where the total quantity of pollution is set at the optimal level of

pollution, pollution allowances in this amount are distributed to the polluters and a market is estab-

lished in which the allowances may be traded. Price-based policies are often a tax, where polluters

have to pay a fixed price per unit of emissions. In theory, marked-based policies are often favoured

over command-and-control regulation because they tend to be least costly, place a lower information

burden on the authority and provide incentives for technological advances. However, with heteroge-

neously dispersed pollution, such as river pollution, the social welfare optimum can only be achieved

by source-dependent taxes or prices of the tradable pollution rights in cap-and-trade systems, which

makes their implementation questionable. Being restricted to one price or tax, the question arises,

whether the enforcing authority could set a cap or a tax other than the efficient total pollution level

to reduce overall costs.

In the third chapter of this thesis, I address this issue and propose a second best optimal solution

to the problem of emission abatement in multi-polluter models. I extend the multi-polluter model

introduced in the previous chapters to a general multi-polluter network with heterogeneously dis-

persed pollution, where there exists an external authority enforcing a cap-and-trade system to control

pollution with one price for tradable pollution permits. While with regulating uniformly distributed

pollution the first-best optimal solution can be implemented, controlling heterogeneously dispersed

pollution in multi-polluter networks is more complex. This is because with heterogeneously dis-

persed pollution, the emissions released at the sources and the damage-inducing ambient pollution

levels accumulated at the receptors may not coincide. Because emissions from different sources in-

duce different damage costs for the receptors and as the marginal damage costs may vary across

receptors, the first-best optimal abatement allocation can only be implemented by source-dependent

taxes or prices of the tradable pollution rights in cap-and-trade systems. Hence, setting only one

price for the tradable pollution permits will result in inefficiency.

To improve on this situation, I propose a second-best optimal solution. Instead of taking an ex-

ogenously given and predetermined pollution cap in a cap-and-trade system, the pollution cap is

endogenized so that it is determined by the total cost-minimizing equilibrium of a cap-and-trade

system. I show that with quadratic abatement costs and linear damage costs, the first-best optimal

pollution cap implements the second-best cost-minimizing equilibrium of the cap-and-trade system

for any network. However, the second-best optimal abatement allocation differs from the first-best

optimal abatement allocation, implying higher second-best optimal total costs than first-best optimal.

In particular, second-best optimal total abatement costs fall short of first-best total abatement costs,

while second-best optimal total damage costs exceed first-best optimal damage costs. For other func-

tional forms of damage and abatement cost functions, first-best pollution caps are not second-best

optimal. The second-best optimal pollution caps may either exceed or deceed the first-best optimal

pollution caps and have to be determined for each specific network. These findings hold for two

different cap-and-trade systems, the emission permit market and the ambient pollution market.
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To sum up, in this thesis, I studied if and to what extent the efficient solution can be implemented

in multi-polluter networks with spatially distributed externalities. For this, I analysed three different

circumstances: First, when there is transboundary pollution with no supranational authority to en-

force any regulation, implying that a self-enforcing agreement among all agents is required to reach

efficiency. We show that for a specific network there exists such a voluntary and efficient agreement

that is both stable to deviations and perceived as fair. Second, when there is asymmetric information

in regard to the mitigation costs, implying that acceptable agreements among all agents have to be

found that lead to the revelation of the true costs with the smallest welfare loss possible. We show

that for a specific network with a federalist setting the government should elect one of the lower

tiers as a principal to offer contracts to the remaining agents. The elected principal is then indiffer-

ent between offering contracts simultaneously or delegating its power to his neighbours starting a

sequential contracting process. And third, when there is a market-based approach instated in which

only one price of a tradable pollution permit can be set, implying that a second-best optimal market-

based approach has to be designed which implements the maximal welfare possible given the one

price restriction. We propose a second-best optimal solution for this problem in which the pollution

cap is endogenized in such a way that the social costs are minimized given the one-price-only restric-

tion.

Evidently, regulating spatially distributed pollution poses a big challenge. This is because the stan-

dard regulating instruments such as cap-and-trade or command-and-control systems that usually

implement an efficient allocation do not work in case of spatially distributed pollution or an author-

ity to enforce them is missing. The problem of optimal pollution control is further aggravated by the

presence of asymmetric information as many governments face limitations in monitoring the mitiga-

tion costs or the pollution flows. As illustrated, there is no one-size-fits-it-all solution to the problem

of spatially distributed pollution, so that each situation needs to be analysed separately. Particularly,

the design of second-best optimal mechanisms for pollution control in case of spatially distributed

pollution together with multi-dimensional asymmetric information suggests an interesting avenue

for future research. Also, the design of voluntary and fair agreements that are stable over time given

uncertainties in the future pollution flows might yield interesting insights.
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Chapter 1

Sharing A River With Downstream Externalities

Abstract

We consider the problem of efficient emission abatement in a multi-polluter setting, where

agents are located along a river in which net emissions accumulate and induce negative external-

ities to downstream riparians. Assuming a cooperative transferable utility game, we seek welfare

distributions that are in the non-cooperative core and satisfy a specific fairness constraint. Mean-

ing, we search for welfare distributions that satisfy all agents’ participation constraints, in that

each coalition is at least as well off as it were if acting on its own and that is perceived to be fair,

in that no coalition is better off than it were if all non-members of the coalition do not pollute the

river at all. We show that the downstream incremental distribution, as introduced by Ambec and

Sprumont (2002), is the only welfare distribution satisfying both constraints. In addition, we show

that this result holds true for numerous extensions of our model.

1 Introduction

Industries and cities all around the world have historically been concentrated along rivers, since

rivers provide means of transportation, food production, energy generation and drinking water. Be-

cause of this intensive utilization, many rivers and streams have been and still are being heavily

polluted. Excessive pollution worsens water quality, which reduces economic profits and negatively

impacts wildlife and human health. One specific characteristic of rivers is that pollutants discharged

into the river are carried downriver. As a consequence, it is the downstream riparians rather than

the polluter himself who bears the negative consequences of the emissions discharged into the river.

Moreover, if upstream polluters and downstream riparians belong to different jurisdictions, polluters

may have little incentive to abate their emissions, because they cannot be held liable for the pollution

damage caused in other jurisdictions.

In this chapter, we consider the problem of efficient emission abatement among agents located along

a river, where upstream emissions cause negative externalities to all downstream agents. This set-

ting can be characterized as a cooperative transferable utility game with two sources of externalities.

First, upstream emissions impose negative externalities on downstream agents. Second, cooperative

behaviour among a subset of agents (a so-called coalition) imposes positive externalities upon agents

located in between different connected subsets of this coalition. Due to this second kind of externali-

ties, the core is, in general, empty. As a consequence, we restrict our attention to the non-cooperative

core, i.e. the set of partitions which consists of one coalition and only singletons otherwise. The

non-cooperative core imposes cost upper bounds for any coalition, which can be interpreted as a

participation constraint that has to be satisfied by any cost distribution to be acceptable to all agents.

In addition, we impose cost lower bounds, which are inspired by the aspiration welfare principle, i.e.

no coalition of agents should have lower costs than it can secure for itself if all non-members of the

coalition would not pollute the river at all. We show that the downstream incremental distribution,
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as introduced by Ambec and Sprumont (2002), is the only distribution simultaneously satisfying the

non-cooperative core upper cost bounds and the aspiration lower cost bounds.

The existing literature on transboundary pollution in river basins mainly focuses on the case of two

jurisdictions. Notable exceptions include Ni and Wang (2007) and Gengenbach et al. (2010). Ni and

Wang (2007) derive cooperative sharing rules for the costs of cleaning a river from two principles of

international water law: Absolute Territorial Sovereignty (ATS) claims that every jurisdiction has ex-

clusive rights to use the water on its territory, while Unlimited Territorial Integrity UTI expands these

exclusive use rights to all water originating within and upstream of a respective jurisdiction. They

adapt these principles to the case of pollution responsibility and derive axioms characterizing the

two resulting cost sharing principles. They also show that these cost-sharing principles correspond

to the Shapley value solutions of the corresponding cost-sharing games. However, Ni and Wang

(2007) assume exogenously given costs for cleaning the river. Thus, they are only concerned with the

distribution of these costs. In contrast, pollution levels in our model are endogenously determined

by the actions of the agents. Thus, we are concerned about finding cost sharing distributions that are

acceptable to all agents and, at the same time, give incentives to choose efficient emission abatement

levels in the first place. In line with the literature on international environmental agreements, Gen-

genbach et al. (2010) model river pollution as a two-stage-cartel-formation game. In the first stage,

agents decide whether to join a coalition, while pollution abatement levels are chosen in the second

stage. In the absence of a supranational authority, abatement levels are in general inefficiently low,

as all agents have an incentive to free ride on the abatement efforts of their upstream neighbours.

Analysing the formation of stable coalitions they find that the location of agents has no impact on

coalition stability but rather impacts on environmental outcomes. In contrast to Gengenbach et al.

(2010), we employ a cooperative game setting.

In fact, our research is most closely related to Ambec and Sprumont (2002) and Ambec and Ehlers

(2008), who apply an axiomatic cooperative game theoretic approach to the efficient sharing of wa-

ter along a river basin. In Ambec and Sprumont (2002), agents derive strictly increasing benefits

from water consumption, while Ambec and Ehlers (2008) generalize the results to agents which may

exhibit satiation in water consumption. Ambec and Ehlers (2008) show that the downstream incre-

mental distribution is the only welfare distribution satisfying the non-cooperative core lower bounds

and the aspiration welfare upper bounds. Several other papers propose alternative sharing rules

to the downstream incremental distribution in settings similar to the one proposed by Ambec and

Sprumont (2002). Interpreting the river sharing problem as a line-graph game, Van den Brink et al.

(2007) derive four different efficient solutions including the downstream incremental distribution by

imposing various properties with respect to deleting edges of the line-graph. However, they do not

address fairness issues and consider non-satiable agents. Allowing for multiple springs and satiable

agents with respect to water consumption, Van den Brink et al. (2012) propose a class of weighted

hierarchical welfare distributions based on the Territorial Integration of all Basin States (TIBS) princi-

ple, which includes the downstream incremental distribution as a special case. Ansink and Weikard

(2012) concentrate on reallocations of the resource itself instead of the reallocation of welfare by an

appropriate transfer scheme. In case of water scarcity, the agents’ overlapping claims to river water
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render it a contested resource similar to a bankruptcy problem. They propose a class of sequential

sharing rules based on bankruptcy theory and compare them to other sharing rules, including the

downstream incremental distribution. Demange (2004) considers hierarchies without externalities

and shows that the hierarchical outcome satisfies the core bounds for all connected coalitions for all

super-additive cooperative games. However, the hierarchical outcome may violate core bounds for

non-connected coalitions. If the hierarchy is a river, then the hierarchical outcome corresponds to the

counterpart of the downstream incremental distribution.

Our research can be interpreted as a generalization of the results of Ambec and Ehlers (2008) to com-

modities with public good properties. While water consumption is a purely private good, emission

abatement exhibits public good characteristics, as it imposes negative externalities on all downstream

agents. These additional externalities impose non-trivial complications for proving that the down-

stream incremental distribution satisfies the non-cooperative cost upper bounds and the aspiration

cost lower bounds in the formulation of our river pollution model.

2 A River Sharing Model with Downstream Pollution Externalities

Consider a set of agents N = {1, ...., n}, which are located along a river. Without loss of generality,

agents are numbered from upstream to downstream, i.e. i < j indicates that agent j is located down-

river of agent i. We follow Ambec and Sprumont (2002) and Ambec and Ehlers (2008) in defining

the set of agents preceding agent i by Pi = {1, ..., i}, with the strict predecessors of agent i indicated

as Pi\i = {1, ..., i − 1}. Analogously, the set of agents following agent i is defined by Fi = {i, ..., n},

where Fi\i = {i + 1, ..., n} denotes the set of agents strictly located downriver of agent i.

Each agent i along the river produces gross emissions in exogenously given amount ei. An agent

i may choose to abate the amount xi with 0 ≤ xi ≤ ei, the costs of which are given by the strictly

increasing, twice differentiable and strictly convex abatement cost function ci(xi). Without loss of

generality, we assume that abating nothing induces no abatement costs, i.e. ci(0) = 0. Net emissions

ei − xi are passed into the river where they accumulate and are carried along its course. Assuming

that net emissions of agent i are discharged into the river after agent i’s but before agent i + 1’s loca-

tion, and that there is no pollution at the rivers’ source, the ambient pollution level qi at the location

of agent i is given by the sum of net emissions of all strict predecessors of agent i:

qi = ∑
j∈Pi\i

γji(ej − xj) , ∀ i ∈ N

with 0 < γji ≤ 1. γji represents the assimilative capacity of the river, i.e. what fraction of the

net emissions released by agent j actually reach agent i. As the vector of abatement efforts x =

(x1, . . . , xn), together with the vector of exogenously given emissions e = (e1, . . . , en), fully determine

the vector of ambient pollution levels, we shall often write the ambient pollution levels as a function

of the vector x:

q(x) =
(
q1(x), . . . , qn(x)

)
.
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The ambient pollution level qi causes damage costs to agent i, the amount of which is given by the in-

creasing, twice differentiable and convex damage cost function di(qi). Thus, the net emissions ei − xi

released by agent i induce negative externalities for all downriver agents j > i, but not for agent i

himself or all upstream agents j < i.

The total costs ki agent i faces are the sum of abatement and damage costs:

ki(xi, qi) = di(qi) + ci(xi) .

A river sharing problem is characterized by (N, e, c, d), where c = (c1, . . . , cn) and d = (d1, . . . , dn)

denote the vectors of abatement and damage cost functions. Given a river sharing problem, the

distribution of total costs ki among all agents i is determined by the emission abatement allocation x.

Our assumptions about the accumulation of emissions along the river, as described in the previous

paragraph, imply the following proposition.

Proposition 1 (No abatement is dominant strategy). Given a river sharing problem (N, e, c, d) and for

given emission abatement levels of all agents j ∈ N\i it is a dominant strategy for agent i not to abate at all,

i.e. xi = 0.

Proof. The damage costs of agent i only depend on qi which are not influenced by xi. As costs ci

are strictly increasing in the amount of emission abatement xi, given qi, total costs are minimized by

setting xi = 0.

Proposition 1 states that agents who only consider their own total costs will never abate. In par-

ticular, this implies that if the river sharing problem (N, e, c, d) is considered to be a non-cooperative

game among the agents i ∈ N, the unique Nash equilibrium is given by x̂i = 0 for all i ∈ N (no matter

whether agents are considered to decide sequentially or simultaneously). However, this outcome is,

in general, inefficient. In particular, if we assume that money transfers between agents are possible

and agents have unbounded resources for such transfers, the efficient emission abatement allocation

x⋆ minimizes the sum of total costs ki among all agents. The following proposition establishes that

such an allocation exists and is also unique.

Proposition 2 (Existence and uniqueness of efficient allocation). Given a river sharing problem (N, e, c, d)

there exists a unique vector x⋆ which is the solution to the following constrained minimization problem:

min
{xi}

n
i=1

n

∑
i=1

ki

(
xi, qi(x)

)
subject to

qi(x) = ∑
j∈Pi\i

γji(ej − xj) , ∀ i ∈ N ,

0 ≤ xi ≤ ei , ∀ i ∈ N.

Proof. Existence and uniqueness follow directly from the strict convexity of the total costs functions

ki(xi, qi).

Let ti denote the money payments. We impose ∑
n
i=1 ti = 0 and define agent i’s after transfer costs

13



zi as:

zi = ki(xi, qi) + ti .

Obviously, any vector z = (z1, . . . , zn) with ∑
n
i=1 zi = ∑

n
i=1 ki

(
x⋆i , qi(x⋆)

)
is an efficient cost distribu-

tion, as it implies a unique vector of transfer payments ti = zi − ki

(
x⋆i , qi(x⋆)

)
with ∑

N
i=1 ti = 0 (no

waste of money) and achieves the cost minimum ∑
N
i=1 ki

(
x⋆i , qi(x⋆)

)
. In the following, we call any

efficient cost distribution a river sharing agreement. The main problem will be which one to choose

among this infinite set.

3 Coalitions and Cost Upper Bounds

A non-empty subset of agents S ⊂ N is called a coalition if the agents of S choose their emission

abatements such as to minimize the sum of total costs among all coalition members. Denoting by

minS and maxS the most upstream, respectively the most downstream member of coalition S, the

coalition S is connected or consecutive if all agents j with minS < j < maxS are also members of the

coalition S.

We define the secure costs v(S) of a coalition S as the minimum value of the sum of the total costs ki

over all members of the coalition:

v(S) = ∑
i∈S

ki

(
xv

i (S), qi(xv
i (S))

)
,

where xv(S) =
(
xv

1(S), . . . , xv
n(S)

)
denotes the solution to

min
{xi}i∈S

∑
i∈S

ki

(
xi(S), qi(x(S))

)
subject to (3.1)

qi(x) = ∑
j∈Pi\i

γji(ej − xj) , ∀ i ∈ N (3.2)

0 ≤ xi ≤ ei , ∀ i ∈ S , (3.3)

xj given , ∀ j /∈ S . (3.4)

It is obvious from the above definition that both the allocation of abatement efforts xv(S) and the

secure costs v(S) of the coalition S depend, in general, on the behaviour of the agents not belonging

to the coalition S. As an example, consider the coalition S = {k, . . . , n}. In particular the pollution

level qk (but also the pollution levels qi with i > k) depends on the amount of emission abatement

undertaken by the agents i with i < k. According to Proposition 1, if these agents i < k only minimize

their own sum of abatement and damage costs, they would not abate at all, implying a pollution level

of qk = ∑j∈Pk\k γjkej. If however, the agents 1 to k − 1 form a coalition T and minimize their joint total

costs, they will, in general, choose xj > 0 for at least some j ∈ 1, . . . , k − 1. This implies a pollution

level of qk < ∑j∈Pk\k γjkej which reduces the minimal costs v(S) coalition S can secure for itself. Thus,

analogously to Ambec and Ehlers (2008), cooperation exerts a positive externality on the coalition S.

In the following, we restrict our attention to the non-cooperative core, i.e. we assume that all non-
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members of a coalition S behave non-cooperatively, which according to Proposition 1 implies that

they do not abate at all. Then, condition (3.4) is replaced by xj = 0 for all j /∈ S, and the secure

costs v(S) of a coalition S are well defined and unique (as the resulting optimization problem is a

sub-problem of the one analysed in Proposition 2). The reason is like in Ambec and Ehlers (2008): the

structure of the river sharing problem (N, e, c, d), as described in detail in Section 2, is such that only

the non-cooperative core is guaranteed to be non-empty.

Like Ambec and Ehlers (2008), we impose the secure costs as the participation constraint of any

coalition S. A coalition S will only agree to a river sharing agreement if it is not worse off than with-

out the agreement. Thus, a river sharing agreement should at most assign the secure costs v(S) to

any coalition S as otherwise the coalition would block the agreement knowing that it can achieve

at least v(S) on its own. Hence, v(S) defines cost upper bounds for any coalition S a river sharing

agreement must satisfy in order not to be blocked.

4 Cost Lower Bounds

Ambec and Ehlers (2008) also impose welfare upper bounds that are inspired by the unlimited terri-

torial integrity (UTI) doctrine. In case of water consumption, UTI claims that all agents are entitled

to consume the full stream of water originating upstream from their location and, thus, have a legiti-

mate claim to the corresponding welfare level such a consumption generates. As such claims are, in

general, incompatible if water is scarce, Ambec and Sprumont (2002) and Ambec and Ehlers (2008)

interpret them as welfare upper bounds agents may legitimately aspire to.

The straightforward translation of these aspiration welfare upper bounds to the case of our river

pollution model is to define the minimal costs a coalition S can ensure if all non-members of the

coalition would abate all their emissions, and thus, not pollute the river at all. Formally, these cost

lower bounds a(S) are given by:

a(S) = ∑
i∈S

ki

(
xa

i (S), qi(xa
i (S))

)
,

where xa(S) =
(
xa

1(S), . . . , xa
n(S)

)
denotes the solution to

min
{xi}i∈S

∑
i∈S

ki(xi(S), qi(x(S))) subject to

qi(x) = ∑
j∈Pi\i

γji(ej − xj) , ∀ i ∈ N ,

0 ≤ xi ≤ ei , ∀ i ∈ S ,

xj = ej , ∀ j /∈ S .

The cost lower bounds a(S) can be interpreted as a fairness condition: no coalition S should enjoy

lower costs than the costs it were to secure itself if all non-members of the coalition did not pollute

the river at all.
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5 The Downstream Incremental Distribution

As in Ambec and Sprumont (2002) and Ambec and Ehlers (2008), there is a connection between the

non-cooperative core upper bounds v(S) and the cost lower bounds a(S): For the coalition of all

predecessors of agent i they coincide, i.e. v(Pi) = a(Pi). Thus, for any coalition of predecessors Pi it

is clear that the only river sharing agreement satisfying both the cost upper and cost lower bounds is

the so called downstream incremental distribution (DID) defined by

z⋆i = v(Pi)− v(Pi\i) , ∀ i ∈ N .

The DID assigns every agent his marginal contribution to the coalition composed of his predecessors

along the river. As a consequence, the DID is the only candidate for a river sharing agreement that

at the same time satisfies the non-cooperative core upper bounds v(S) and the cost lower bounds

a(S) for any coalition S. The following theorem establishes that the DID, in fact, satisfies the non-

cooperative core upper bounds v(S) and the cost lower bounds a(S) for any coalition S.

Theorem 1 (Only DID satisfies cost upper and lower bounds). The downstream incremental distribution

(DID) z⋆ is the only river sharing agreement satisfying the non-cooperative core upper bounds v(S) and the

cost lower bounds a(S) for any coalition S.

Proof. The proof is split into three parts. In the first part, we show that the DID satisfies the non-

cooperative core upper bounds for any coalition S. In part two, we prove that the DID also satisfies

the cost lower bounds for any coalition S and, finally, in the third part, we show that any river shar-

ing agreement that satisfies the cost upper and lower bounds for an arbitrary coalition S is identical

to the DID.

We prove that the DID satisfies the non-cooperative core upper bounds for any coalition S by in-

duction. The idea is that any coalition S can be created from the grand coalition N by consecutively

deleting all non-members mj ∈ {m1, . . . , mz} of S starting with the most downstream agent mz. This

procedure creates a sequence of intermediate coalitions N = Sz, Sz−1, . . . , S1, S. We show that the

DID satisfies the core upper bounds for any intermediate coalition Sj, j ∈ 1, . . . , z and also for S.

For the first part of the proof we need the following proposition, the proof of which is given in

the Appendix.

Proposition 3. For any T ⊂ N with minT > j and any j ∈ N the following inequality holds:

v(Pmj
∪ T)− v(Pmj

\mj ∪ T) ≤ v(Pmj
)− v(Pmj

\mj) . (5.1)

For the grand coalition N = Sz, the non-cooperative core upper bounds are satisfied. Now,

suppose the DID satisfies the non-cooperative core upper bounds for some intermediate coalition Sj,

i.e.

∑
i∈Sj

z⋆i ≤ v(Sj) . (5.2)
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We generate the intermediate coalition Sj−1 by deleting the non-member mj from the intermediate

coalition Sj. By construction the intermediate coalition Sj−1 consists of all strict predecessors of agent

mj and all agents i > mj who belong to the coalition S. Rearranging inequality (5.2) and applying the

definition of the DID implies

∑
i∈Sj−1

z⋆i ≤ v(Sj)− z⋆mj
= v(Sj)− v(Pmj

) + v(Pmj
\mj) .

We have to show that the DID satisfies the non-cooperative core upper bounds for the intermediate

coalition Sj−1, i.e.

∑
i∈Sj−1

z⋆i ≤ v(Sj)− v(Pmj
) + v(Pmj

\mj) ≤ v(Sj−1) .

Rearranging this inequality yields

v(Sj)− v(Sj−1) ≤ v(Pmj
)− v(Pmj

\mj) . (5.3)

If the coalition S does not have any members i > mj, then the inequality is trivially satisfied as then

Sj = Pmj
and Sj−1 = Pmj

\mj. Otherwise, define the set T consisting of all members i of the coalition

S with i > mj. Then, Sj = Pmj
∪ T and Sj−1 = Pmj

\mj ∪ T and by virtue of Proposition 3, inequality

(5.3) holds.

For the second part of the proof, the following proposition is needed

Proposition 4. For any S ⊂ T ⊂ N and i /∈ S, T the following inequality holds:

a(S ∪ i)− a(S) ≤ a(T ∪ i)− a(T). (5.4)

The proof of Proposition 4 is given in the Appendix.

To show that the DID satisfies the cost lower bounds for any coalition S, we employ v(Pi) = a(Pi) to

rewrite the definition of the DID:

z⋆i = v(Pi)− v(Pi\i) = a(Pi)− a(Pi\i) .

Summing up over all agents i ∈ S and employing Proposition 4 yields

∑
i∈S

z⋆i = ∑
i∈S

a(Pi)− a(Pi\i) ≥ ∑
i∈S

a(Pi ∩ S)− a(Pi\i ∩ S) .

The right hand side of the inequality simplifies to

∑
i∈S

a(Pi ∩ S)− a(Pi\i ∩ S) = a(PminS) + a({PminS, PminS + 1})− a({PminS}) + ...

+ a({PminS, ..., PmaxS})− a({PminS, ..., PmaxS − 1})

= a({PminS, ..., PmaxS}) = a(S) .
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Thus, we obtain

∑
i∈S

z⋆i = a(Pi)− a(Pi\i) ≥ ∑
i∈S

a(Pi ∩ S)− a(Pi\i ∩ S) = a(S) ,

which proves that the DID satisfies the cost lower bounds for any coalition S:

∑
i∈S

z⋆i ≥ a(S) .

Finally, we prove that the DID is the only river sharing agreement that simultaneously satisfies

the cost upper and lower bounds for any coalition S. Therefore, we have to show that whenever a

river sharing agreement z satisfies both the cost upper and lower bounds, then for each agent i it

holds that zi = z⋆i . Again, the proof is by induction.

Similar to Ambec and Ehlers (2008), for agent 1, any river sharing agreement z fulfilling both con-

straints satisfies v({1}) ≥ z1 ≥ a({1}). As v({1}) = a({1}) this implies z1 = z⋆1 . Now, suppose that

zi = z⋆i holds for all agents i upstream of some agent j, i.e. i ≤ j < n. Summing up over all i ∈ Pj, we

obtain

∑
i∈Pj

zi = ∑
i∈Pj

z⋆i = v(Pj) .

As v(Pj+1) = a(Pj+1) and because any river sharing agreement z satisfies both the cost upper and

lower bounds, ∑i∈Pj+1
zi = v(Pj+1) = a(Pj+1) has to hold. Hence,

zj+1 = ∑
i∈Pj+1

zi − ∑
i∈Pj

zi = v(Pj+1)− v(Pj) = z⋆j+1.

Therefore, the cost distribution z is identical to the DID. �

Theorem 1 is the exact counterpart to Theorem 1 of Ambec and Ehlers (2008). However, it is

neither obvious nor straightforward to prove that the DID is the only distribution satisfying the cost

upper and lower bounds in case of our river pollution model. The main challenge in Ambec and

Ehlers (2008) arose from the fact that cooperation among agents impose positive externalities on any

coalition S. As a consequence, the welfare level a coalition could secure for itself crucially depends

on the partition of all non-members. The same is true for our river pollution model. Cooperative

behaviour among non-members of a coalition S induces, in general, positive abatement levels, which

benefits the members of the coalition.

In contrast to Ambec and Sprumont (2002) and Ambec and Ehlers (2008), however, the decision

variable in our model is emission abatement not water consumption. While water consumption only

benefits the consumer and, thus, is a purely private commodity, emission abatement is not. In fact, in

our model emission abatement does not benefit the abating agent but only all downstream agents, as

it reduces the river’s downstream pollution level. Thus, emission abatement imposes positive down-

stream externalities, i.e. pollution abatement is a commodity with public good properties. This is

also reflected in the agents’ welfare: agents’ welfare in the water consumption models of Ambec and
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Sprumont (2002) and Ambec and Ehlers (2008) is simply given by some benefit function bi(xi) which

depends on the water consumption xi of agent i. In our model, the costs agent i faces consist of two

parts: first, the abatement costs ci(xi), which only depend on the emission abatement of agent i and,

second, the damage cost function di(qi) depending on the pollution level qi, which itself is a function

of the emission abatement levels of all upstream agents.

6 Discussion and Extensions

The model detailed in Section 2 relies on a number of assumptions which can be relaxed without

impairing the statement of Theorem 1. First, we assumed that there is no initial pollution at the

source of the river and that the net emissions of agent i do not harm agent i himself but only all

downstream agents. As a consequence, agent 1 does not face any pollution and the specification

of agent 1’s damage function d1 is optional. The first assumption simplified the specification of the

pollution level qi, while the latter assumption implied that in the non-cooperative Nash equilibrium

no agent would abate at all. However, the proof of Theorem 1 does not draw on these assumptions

and would still be valid if the pollution level agent i faces would be defined as

qi = q0 + ∑
j∈Pi

γji(ej − xj) ,

where q0 denotes an initial pollution level at the source of the river.

Second, we framed the model as a pollution abatement model. Obviously, emissions and the cor-

responding pollution levels are prime examples for downstream externalities, yet there are many

other contexts to which our model is applicable. As an example, think of the case of flooding. Then,

ei corresponds to the water discharges from the territory of agent i into the river and xi denotes the

amount of water agent i withdraws from the stream (e.g. by the controlled flooding of designated

flooding areas) and qi is the amount of excess water at agent i’s location. In this interpretation it

would also be reasonable to assume that the water withdrawn xi is not limited by the discharge ei

but could sum up to the total amount of excess water in the river basin, i.e.

0 ≤ xi ≤ qi .

These modifications also would not impact the validity of Theorem 1.

Third, particularly in case of flood protection, agents may have different means of protection. While

the withdrawal of water induces costs to agent i and benefits all his downstream agents, there are

other protection techniques which are purely private goods. As an example, consider that agent i

could build a levee that protects his own territory from flooding, but does not induce any positive

externalities to the downstream agents. Then, the damage to agent i does not only depend on the

total amount of water qi but also on the agent’s investment into private damage protection mi, i.e.

di = di(qi, mi). Assuming that an interior solution is optimal, i.e. m⋆

i > 0, the optimal level of private
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protection m⋆

i (qi) is given by the solution of the first order condition

∂di(qi, mi)

∂mi
= 0 .

Thus, we can re-write di(qi, mi) as di

(
qi, m⋆

i (qi)
)
. Whenever these newly specified damage functions

di

(
qi, m⋆

i (qi)
)

are increasing, twice differentiable and convex in qi, we are back at the model specifi-

cation introduced in Section 2.

7 Conclusion

We showed that the main result of Ambec and Ehlers (2008) that the downstream incremental distri-

bution is the only welfare distribution that satisfied the non-cooperative core bounds and the aspira-

tion welfare bounds simultaneously, can be generalized to the case of commodities with public good

characteristics. Like their water consumption model, our river pollution problem is a cooperative

game with externalities, since cooperation among non-members imposes a positive externality to the

members of any coalition S. However, our model comprises an additional source of externalities be-

cause the emissions discharged into the river induce negative externalities on all downstream agents.

In addition, our results are robust with various extensions of our baseline model.
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Appendix

Proof. of proposition 3

Set Sj = Pmj
∪ T and Sj−1 = Pmj\mj

∪ T. Let us parametrize the damage functions for agents j > mj

with a parameter α ∈ [0, ∞). Due to this parametrization, the secure costs v(Sj−1, α) of the interme-

diate coalitions Sj−1 now depend on the parameter α and amount to

v(Sj−1, α) = ∑
i∈Pmj

\mj

ki(xv(Sj−1, α)) + ∑
i∈Fmj

\mj∩S

ci(xv(Sj−1, α))+

α · ∑
i∈Fmj

\mj∩S

di(qi(xv(Sj−1, α))).

Furthermore, inequality (5.1) changes to

v(Sj, α)− v(Sj−1, α) ≤ v(Pmj
)− v(Pmj

\mj) ∀α ∈ [0, ∞). (7.1)

By showing that (7.1) holds for all α ∈ [0, ∞], then it holds, in particular, for α = 1 and inequality

(5.1) is satisfied.

Thus, in a next step, we show that inequality (7.1) holds for all α ∈ [0, ∞]. For α = 0, we have

v(Sj, 0) = v(Pmj
) and v(Sj−1, 0) = v(Pmj

\mj), therefore inequality (7.1) holds with equality. For all

other α, we differentiate inequality (7.1) with respect to α, i.e.

∂v(Sj, α)

∂α
−

∂v(Sj−1, α)

∂α
≤ 0. (7.2)

Hence, we partially differentiate v(Sj, α) with respect to α and apply the envelope theorem, i.e.

∂v(Sj, α)

∂α
=

∂v(xv(Sj, α), α)

∂α
+

∂v(xv(Sj, α), α)

∂x(Sj, α)
︸ ︷︷ ︸

0

∂x(Sj, α)

∂α

=
∂v(xv(Sj, α), α)

∂α

= ∑
i∈Fmj

\mj∩Sj

di(qi(xv(Sj, α)))

(7.3)

and analogously,

∂v(Sj−1, α)

∂α
=

∂v(xv(Sj−1, α), α)

∂α
= ∑

i∈Fmj
\mj∩Sj−1

di(qi(xv(Sj−1, α))).
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Hence, inequality (7.2) can be rewritten to

∑
i∈Fmj

\mj∩Sj

di(qi(xv(Sj), α)) ≤ ∑
i∈Fmj

\mj∩Sj−1

di(qi(xv(Sj−1, α))).

Clearly, this inequality is satisfied whenever

∑
l∈Pk

xv
l (Sj−1, α) ≤ ∑

l∈Pk

xv
l (Sj, α), ∀k ∈ Sj−1, Sj,

which is stated in the following lemma.

Lemma 1. For any agent k ∈ S, T the following inequality is satisfied

∑
l∈Pk

xv
l (Sj−1, α) ≤ ∑

l∈Pk

xv
l (Sj, α), ∀k ∈ Sj−1, Sj. (7.4)

Proof. of Lemma 1

Consider two coalitions S and T = S ∪ m and an agent m /∈ S. Given this notation, inequality (7.4)

changes to

∑
j∈Pk∩S

xv
j (S, α) ≤ ∑

j∈Pk∩T

xv
j (T, α), ∀k ∈ S, T.

Let us prove Lemma 1 by contradiction, i.e. assume that

∑
j∈Pk∩T

xv
l (T, α) < ∑

j∈Pk∩S

xv
l (S, α). (7.5)

According to the parametrized minimization problem, the following first order conditions have to be

satisfied
c′i(xi) ≤ ∑

j∈Fi\i∩T∩Pm

d′j(qj(xj)) + α ∑
j∈Fm\m∩T

d′j(qj(xj))

≤ ∑
j∈Fi\i∩T∩Pm

d′j



 ∑
k∈Pj\j

γkjek − ∑
k∈Pj\j∩T

γkjxk





+ α · ∑
j∈Fm\m∩T

d′j



 ∑
k∈Pj\j

γkjek − ∑
k∈Pj\j∩T

γkjxk



 , ∀i ∈ T,

(7.6)

and
c′i(xi) ≤ ∑

j∈Fi\i∩S∩Pm\m

d′j(qj(xj)) + α ∑
j∈Fm\m∩S

d′j(qj(xj))

≤ ∑
j∈Fi\i∩S∩Pm\m

d′j



 ∑
k∈Pj\j

γkjek − ∑
k∈Pj\j∩S

γkjxk





+ α ∑
j∈Fm\m∩S

d′j



 ∑
k∈Pj\j

γkjek − ∑
k∈Pj\j∩S

γkjxk



 , ∀i ∈ S

(7.7)

Due to assumption (7.5), the right hand side of (7.6) for i ∈ T is higher than the right hand side of (7.7)

for i ∈ S. This implies c′i(xi(T)) ≥ c′i(xi(S)) for all agents i ∈ S, T and thus, due to the characteristics
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of the cost function ci(.), xv
i (T) ≥ xv

i (S), ∀i. This, however, implies

∑
j∈Pk∩T

xj(T) > ∑
j∈Pk∩S

xj(S).

Therefore, by contradiction, inequality ∑j∈Pk∩S xj(S) > ∑j∈Pk∩S xj(T) cannot hold.

Hence, given Lemma 1, inequality (7.1) is satisfied for all α ∈ [0, ∞], thus also for α = 1 implying

that inequality (5.1) holds for the coalition Sj−1. By induction, inequality (5.1) holds for all intermedi-

ate coalitions Sj, j = 1, ..., z with S1 = S, therefore the DID is stable for all non-consecutive coalitions

S.

Proof. of proposition 4

For the proof of Proposition 4 the following lemma is required.

Lemma 2. For any two coalitions S, T, the following relationships among the abatement levels of an

agent j ∈ T, S hold

xa
j (T ∪ i) ≥ xa

j (S ∪ i) ≥ xa
j (S) and xa

j (T ∪ i) ≥ xa
j (T).

Proof. of Lemma 2

It suffices to show that these inequalities hold for two coalitions S, T, with T = S ∪ t, t ∈ N\S. Let

us first establish that xa
j (G ∪ i) ≥ xa

j (G) for all coalitions G = T, S. The first order conditions for an

agent j ∈ G respectively j ∈ G ∪ i read

c′j(xj) ≤ ∑
k∈Fj\j∩G∪i

d′k( ∑
m∈Pk\k∩G∪i

γmk(em − xm)) (7.8)

respectively

c′j(xj) ≤ ∑
k∈Fj\j∩G

d′k( ∑
m∈Pk\k∩G

γmk(em − xm)). (7.9)

The right hand side of the first order condition in (7.8) is either larger than the right hand side of

(7.9), if j ≤ i, or equal to it, if j > i. Thus, xa
j (G ∪ i) ≥ xa

j (G), ∀j ∈ G, G ∪ i and G = T, S. Due to

T ∪ i = S ∪ i ∪ t, it follows that xa
j (T ∪ i) ≥ xa

j (S ∪ i). Thus, lemma 2 holds.

Recall inequality (5.4) in Proposition 4. We restate the two differences in the inequality in the

following way

a(T ∪ i)− a(T) = ki(xa
i (T ∪ i)) + ∑

j∈T

k j(xa
j (T ∪ i))− k j(xa

j (T))

= ki(xa
i (T ∪ i)) + ∑

j∈T\S

k j(xa
j (T ∪ i))− k j(xa

j (T)) +

∑
j∈S

k j(xa
j (T ∪ i))− k j(xa

j (T))

and

a(S ∪ i)− a(S) = ki(xa
i (S ∪ i)) + ∑

j∈S

k j(xa
j (S ∪ i))− k j(xa

j (S)).
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Thus, by rearranging and using the above expressions, inequality (5.4) can expressed as

ki(xa
i (T ∪ i))− ki(xa

i (S ∪ i)) + ∑
j∈T\S

k j(xa
j (T ∪ i))− k j(xa

j (T))+

∑
j∈S

k j(xa
j (T ∪ i))− k j(xa

j (T)) + ∑
j∈S

k j(xa
j (S))− k j(xa

j (S ∪ i)) ≥ 0.
(7.10)

To prove that inequality (7.10) is satisfied, we divide the terms into three groups I, I I, I I I as repre-

sented in the following

∑
j∈S

k j(xa
j (T ∪ i))− k j(xa

j (T)) + ∑
j∈S

k j(xa
j (S))− k j(xa

j (S ∪ i))

︸ ︷︷ ︸

I

+

∑
j∈T\S

k j(xa
j (T ∪ i))− k j(xa

j (T))

︸ ︷︷ ︸

I I

+ ki(xa
i (T ∪ i))− ki(xa

i (S ∪ i))
︸ ︷︷ ︸

I I I

≥ 0.
(7.11)

In the three lemmas presented below, we will show that for all subgroups I, I I, I I I we have I, I I, I I I ≥

0. As a result, we conclude that inequality (7.10) holds.

Lemma 3. Given the terms in subgroup I of (7.11), it holds that I ≥ 0, i.e.

∑
j∈S

k j(xa
j (T ∪ i))− k j(xa

j (T)) + ∑
j∈S

k j(xa
j (S))− k j(xa

j (S ∪ i)) ≥ 0. (7.12)

Proof. of Lemma 3

Let us rewrite inequality (7.12) by splitting it into cost and damage functions, i.e.

∑
j∈S

cj(xa
j (T ∪ i))− cj(xa

j (T)) + cj(xa
j (S))− cj(xa

j (S ∪ i))

+ ∑
j∈S

dj(qj(xa
j (T ∪ i)))− dj(qj(xa

j (T))) + dj(qj(xa
j (S)))− dj(qj(xa

j (S ∪ i))) ≥ 0.

We prove the inequality above graphically. Due to the convexity of both the damage and cost

functions of each agent j ∈ S and due to the relationships xa
j (T ∪ i) ≥ xa

j (S ∪ i) ≥ xa
j (S) and

xa
j (T ∪ i) ≥ xa

j (T) established in Lemma 2, for each agent j it holds that

cj(xa
j (T ∪ i))− cj(xa

j (S ∪ i)) = m, m ≥ 0

cj(xa
j (S))− cj(xa

j (T)) = n, n ≤ 0,

with |m| ≥ |n| as depicted1 in Figure 1. Similarly,

dj(qj(xa
j (T ∪ i)))− dj(qj(xa

j (S ∪ i))) = m, m ≤ 0

dj(qj(xa
j (S)))− dj(qj(xa

j (T))) = n, n ≥ 0, ∀j

with |n| ≥ |m| as depicted in Figure 2. Thus, we conclude that inequality (7.12) holds.

1As no general relationship can be established for xa
j (T) and xa(S ∪ i), both cases are depicted in the Figures 1 and 2.
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Figure 1: Cost functions
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Figure 2: Damage cost functions
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Lemma 4. Given the terms in subgroup II of (7.11), it holds that I I ≥ 0, i.e.

∑
j∈T\S

k j(xa
j (T ∪ i))− k j(xa

j (T)) ≥ 0. (7.13)

Proof. of Lemma 4

The following first order conditions have to be satisfied

c′j(xj(T)) ≤ ∑
k∈Fj\j∩T

d′k

(

∑
t∈Pk\k∩T

γtk(et − xt(T))

)

, ∀j ∈ T, (7.14)

and

c′j(xj(T ∪ i)) ≤ ∑
k∈Fj\j∩T∪i

d′k

(

∑
t∈Pk\k∩T

γtket + γikei − γtkxt(T)− ∑
t∈Pk\k∩T∪i

γtk∆xt

)

, ∀j ∈ T ∪ i, (7.15)

with ∑t∈Pk\k∩T∪i γtk∆xt = ∑t∈Pk\k∩T∪i γtkxa
j (T ∪ i)− ∑t∈Pk\k∩T γtkxa

t (T).

As xa
j (T ∪ i) ≥ xa

j (T) derived in Lemma 2, the right hand side of inequality (7.15) has to be larger

than the right hand side of (7.14). In order for this to be satisfied, the following needs to hold

γikei ≥ ∑
t∈Pk\k∩T∪i

γtk∆xt = ∑
t∈Pk\k∩T∪i

γtkxa
j (T ∪ i)− ∑

t∈Pk\k∩T

γtkxa
t (T).
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Consequently,

dj



 ∑
k∈Pj\j∩(T∪i)

γkj(ej − xa
j (T ∪ i))



 ≥ dj



 ∑
k∈Pj\j∩T

γkj(ej − xa
j (T))



 , ∀j ∈ T. (7.16)

In addition, due to xa
j (T ∪ i) ≥ xa

j (T) and ci(xi) increasing and convex, we have cj(xa
j (T ∪ i)) ≥

cj(xa
j (T)). Combining this with (7.16) implies k j(xa

j (T∪ i)) ≥ k j(xa
j (T)). Summing up over all j ∈ T\S

yields the desired inequality (7.13).

Lemma 5. Given the terms in subgroup III of (7.11), it holds that I I I ≥ 0, i.e.

ki(xa
i (T ∪ i))− ki(xa

i (S ∪ i)) ≥ 0.

Proof. of Lemma 5

Recall that for each j ∈ S ∪ i, the following first order condition must hold

c′j(xj(S ∪ i)) ≤ ∑
k∈Fj\j∩S∪i

d′k

(

∑
t∈Pk\k∩S∪i

γtk(et − xt(S ∪ i))

)

. (7.17)

Similarly, for each j ∈ T ∪ i it must hold that

c′j(xj(T ∪ i)) ≤ ∑
k∈Fj\j∩T∪i

d′k( ∑
t∈Pk\k∩S∪i

γtket + ∑
t∈Pk\k∩T\S

γtket

− ∑
t∈Pk\k∩S∪i

γtkxt(S ∪ i)− ∑
t∈Pk\k∩T∪i

γtk∆xt).
(7.18)

Given that xa
j (T ∪ i) ≥ xa

j (S ∪ i) derived in Lemma 2, the left hand side of inequality (7.18) is larger

than the left hand side of inequality (7.17). Consequently, it has to hold that

∑
t∈Pk\k∩T\S

γtket ≥ ∑
t∈Pk\k∩T∪i

γtk∆xt = ∑
t∈Pk\k∩T∪i

γtkxa
t (T ∪ i)− ∑

t∈Pk\k∩S∪i

γtkxa
t (S ∪ i).

The agents j ∈ T ∪ i do not abate more than the additional pollution flow passing through their

region compared to what they would optimally abate if they belonged to the smaller coalition S ∪ i.

As a result,

di



 ∑
j∈Pi\i∩T∪i

γji(ej − xa
j (T ∪ i))



 ≥ di



 ∑
j∈Pi\i∩S∪i

γji(ej − xa
j (S ∪ i))



 . (7.19)

In addition, as xa
j (T ∪ i) ≥ xa

j (S ∪ i) ∀j derived in Lemma 2 and ci(xi) is increasing and convex, we

have

ci(xa
i (T ∪ i)) ≥ ci(xa

i (S ∪ i)). (7.20)
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Combining (7.19) with (7.20) implies

ki(xi(T ∪ i)) ≥ ki(xi(S ∪ i)).

Proposition 4 then follows from combining Lemmas 3, 4 and 5.
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Chapter 2

Sharing a River with Asymmetric Information

Abstract

In this chapter, we analyse the contractual mitigation of a global public bad along a river in

the presence of a federalist governance structure, where the lower tiers have private information

about their abatement costs. We propose that the federal government nominates one of the lower

tiers to be the principal, who is authorized to offer mitigation contracts to the other tiers sharing

the river. The elected principal can do so either in a centralized manner, i.e. he offers contracts

simultaneously to all other tiers, or in a delegated manner, i.e. he starts an upstream and down-

stream sequential contracting process by contracting with his up- and downriver neighbouring

tiers, to which he then gives the authority to subcontract with their respective neighbouring tiers

till all tiers received a contract. We show that under certain conditions, a nominated principal

can achieve the same abatement allocation with the delegated as with the centralized contract-

ing method while matching his expected costs. As all potential principals implement a different

abatement allocation, the choice of the prime principal matters for the total expected costs occur-

ring in the river basin. We show that the tier located most downriver, which is subject to the same

informational constraints as the federal government, is never the best choice to be nominated as

the principal.

1 Introduction

One negative aspect of sharing a river with others is water pollution. Water pollution not only neg-

atively impacts wildlife and human health but may also deteriorate economic profits. A special

characteristic of rivers is their unidirectional flow and, as a consequence, they carry the pollution

downriver where it accumulates. In addition, the polluters may not bear the negative consequences

of their emissions themselves and may thus have little incentive to reduce their emissions. Moreover,

rivers may flow through several countries, cantons and numerous municipalities so that upstream

polluters and downstream riparians may belong to different jurisdictions. As a consequence, pol-

luters may have little motivation to abate their emissions, because they cannot be held liable for the

pollution damage caused in other jurisdictions.

In this chapter, we analyse contractual mitigation of a global public bad along a river in the pres-

ence of a federalist governance structure, where the lower tiers have private information about their

abatement costs. In countries with a strong federalist structure like Switzerland, the US or Canada

levels directly below the Federal government (States, Provinces or Cantons) as well as the lowest tiers

of government (communities) have considerable authority in terms of the allocation and distribution

of a public bad. Thus, mitigation contracts that have to be accepted by all tiers in the river basin may

be proposed by two sources; either by the federal government, which acts as a social planner or by

one of the lower tiers. Even though the lower tiers follow their self-interest, it might be beneficial for

the federal government to let one of the lower tiers propose mitigation contracts because the lower

tiers are expected to know the preferences of their constituents better than the higher level and thus
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are subject to fewer informational constraints. Yet, as all lower tiers would try to seize the opportu-

nity to propose contracts to the other tiers and each of them would implement a different allocation

of the public bad, the federal government should nominate the tier that instates the allocation leading

to the lowest expected total costs for the federalist state. However, as is well known, the contractual

mitigation of a global public bad in adverse selection models with voluntary participation encoun-

ters several difficulties. First, all tiers have to voluntarily agree to a set of contracts offered by the

principal. Second, tiers may have an incentive to exaggerate their privately known abatement costs

in order to reduce the abatement level they have to supply with the consequence that most of the

burden of abatement is left to the other riparians. Thus, the proposed set of contracts has to ensure

that all tiers are not worse off than in the status quo without any contracts and that it is in their best

interest to reveal their true abatement costs.

Only a few papers consider asymmetric information in the costs and benefits of reducing pollution

and even fewer address environmental agreements taking a mechanism design perspective. One of

the first to consider environmental agreements in a mechanism design setting was Dasgupta et al.

(1980). In their paper, they focus on optimal pollution control with imperfect information about the

abatement costs of the agents. The polluting agents communicate with the regulator but not with

one another and there is only one victim of pollution, the society. In particular, they look at incen-

tive compatible direct revelation schemes and propose a simple adaptation of the Groves scheme,

while neglecting the issue of voluntary participation. Caparros et al. (2004) consider a bargaining

model in which northern countries suffer from emissions of southern countries and negotiate the

transfer necessary to reduce these emissions. Thus, they consider one-sided asymmetric information

and bargaining between one polluter and one victim. Baliga and Maskin (2003) are the first to con-

sider environmental agreements between countries that are at the same time victims and polluters

as a mechanism design problem under asymmetric information. However, they do not consider par-

ticipation constraints and thus find that first best agreements are possible. Helm and Wirl (2011)

consider a two-country model, where bargaining power is asymmetrically distributed and an un-

informed country designs a mechanism controlling collective emissions. They show that the unin-

formed party must jointly use subsidies and its own emissions to incentivize the informed party and

ensure its participation. Martimort and Sand-Zantman (2013) analyse international environmental

agreements and highlight the trade-off between the free riding problem due to asymmetric infor-

mation and voluntary participation. They concentrate on second best mechanisms and show that

the optimal mechanism admits a simple approximation by menus. We contribute to this strand of

literature by adding directed externalities between the affected agents, by studying environmental

agreements in a federalist setting and by analysing the choice of the principal offering contracts.

The design of incentive schemes for implementing optimal plans in organizations where informa-

tion differs across agents has been much studied in recent years. In adverse selection environments,

Myerson (1982) has shown that, in general, any non-cooperative equilibrium outcome of an arbitrary

decentralized organization can be mimicked by a centralized one, where agents communicate their

private information directly to the principal without any interactions among them. Our research is

closest related to Melumad et al. (1995), who show in a three agent model, that both organizational
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structures are equivalent when, in the decentralized structure, the principal can make the payment

to the intermediate agent contingent on the contract set up between this agent and his partner. When

this is not so, the centralized structure is strictly superior. We generalize their model to n agents,

extend it by adding directed externalities among the intermediate agents and set it in a federalist

structure with the option of having different principals.

In particular, we consider two forms of contracting, a centralized and a delegated principal agent

model. In the centralized contracting model, the lower tier chosen by the federal government to be

the principal contracts directly and simultaneously with all other tiers. For the delegated contract-

ing model, upstream and downstream delegated contracting seem appropriate due to the nature of

the river. Hence, the nominated principal contracts with two tiers, his upriver and downriver direct

neighbours, to which he then gives the authority to sub-contract with their up respectively downriver

neighbouring tier and so on till all riparians have accepted their contracts. The elected principals are

allowed to choose among the two contracting methods. Delegated contracting may have the advan-

tage that it reduces the communication requirements between the principal and the other tiers. A

possible disadvantage of delegation is that it may exacerbate incentive problems. Intermediate tiers

who have been given authority over certain decision may pursue their own self-interest rather than

that of the principal.

We show that given full information about the abatement costs, the first best optimal solution, i.e.

the abatement allocation minimizing the sum of all abatement and damage costs in the river, can

be implemented in both the centralized and the delegated principal agent models independent on

who proposes the set of contracts. The total cooperation gain goes to the chosen principal, whereas

all other tiers are equally well off as in the status quo without any mitigation. Thus, the choice of

the principal is only a matter of who attains the cooperation gain and does not affect the abatement

allocation. In the case of privately known abatement costs, the first best optimal abatement allocation

cannot be attained in either contracting model. The abatement levels are distorted due to the infor-

mation rents that have to be paid with the result that they fall short of the first best optimal abatement

levels. In line with the literature, we show that, under certain conditions, a principal can achieve the

same abatement allocation in the delegated contracting model as in the centralized contracting model

while matching his expected costs. For this result to hold, we assume that the contracts, generally

consisting of an assigned abatement level and compensation payment from the benefactors of the

abatement done to the tiers doing the abatement, are realized after all riparians have accepted them

and that all intermediate principals are able to monitor the abatement levels and reported types. In

addition, we show that the selection of the prime principal plays an important role for the total costs

occurring in the river in the presence of asymmetric information. We establish that the riparian most

downriver, who faces the same informational constraints as the federal government, offers contracts

that lead to the highest expected costs in the river basin. Thus, the federal government should del-

egate its power to any other riparian as total expected costs for the river basin amount to less with

any of them acting as the prime principal. Intuitively, the reason for this is that by electing any other

tier to be the principal, one uncertainty drops as this principal knows his own type and thus one less

information rent has to be paid. If damage costs are linear, the tier most upriver is the best choice.
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However, if damage costs take any other functional form, the choice of the best principal depends on

the exogenously given pollution levels, the position of the principal along the river and the damage

parameters as illustrated by an example.

The remainder of this chapter is organized as follows. Section 2 introduces the model. Section 3

characterizes the centralized and delegated principal agent model and presents the optimal contracts

in case of full and in case of asymmetric information in regard to the abatement costs. In Section 4,

we investigate which riparian should be chosen by the federal government as a principal.

2 The River Sharing Model with Asymmetric Information

We analyse contractual mitigation of a global public bad in a federalist structure where the abate-

ment costs are private information. Specifically, consider a country with a federalist government

G with n lower tiers sharing a river. The federal government aims to minimize the expected total

costs incurred due to the public bad in the river basin. Let the lower tiers be represented by agents

i = 1, ..., n. The agents are numbered from upstream to downstream, with i < j indicating that agent

i is upriver of agent j. Agents may pollute the river by discharging pollutants in exogenously given

amount ei > 0. Agents have the possibility to abate pollution in the amount of xi ≤ ei by facing

abatement costs Ci(xi, θi) = θici(xi). Assume, ci(.) is increasing and strictly convex in the abatement

efforts xi. The abatement costs depend on an agent-specific abatement cost parameter θi ∈ [θ, θ],

which is observable only by agent i and not by the other agents j 6= i. Thus, the parameter θi repre-

sents the agent’s private information, i.e. his type. The cost parameters θi are drawn independently

from a commonly known prior distribution F(θi) with a positive density function f (θi). Denote by

x = (x1, ..., xn−1) the vector of abatement levels and by θ = (θ1, ..., θn) the vector of abatement cost

parameters. Furthermore, let θ−i = θ\θi. The net emissions released by the agents accumulate while

moving downriver, so that the ambient pollution level at agent i’s location amounts to

qi(x) =
i−1

∑
j=1

ej − xj.

The ambient pollution level qi(x) causes damage costs Di(qi(x)) that are increasing and convex in

qi(x) and are known to all agents.

Summing up, we face a pollution abatement problem S in a federalist setting with asymmetric in-

formation characterized by (N, e, c, d, θ), where N = n is the number of agents sharing the river,

e = (e1, ..., en) is the vector of gross emissions and C = (C1, ..., Cn) and D = (D1, ..., Dn) denote the

vectors of abatement and damage cost functions.

Furthermore, note that

∂2Ci(xi, θi)

∂xi∂θi
= c′i(xi) ≥ 0, and

∂3Ci(xi, θi)

∂xi∂2θi
= 0.
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The term on the left hand side represents the single crossing property saying that an agent i’s marginal

costs from increasing xi is increasing in his type θi. This implies that higher types will be asked to

abate less, since the marginal costs of abating xi increases everywhere as θi increases. Let us make

the following standard assumption in adverse selection models.

Assumption 1.
F(θi)

f (θi)
is increasing in θi.

Note that we assume pollution to be a directed externality in that agents only suffer from the net

emissions released by agents located upriver. As a consequence, if the pollution abatement problem

is considered to be a non-cooperative game among the agents, then agents have no incentive to

abate, as this would only increase individual costs. Thus, in order to do abatement, agents have to be

compensated for the costs they bear by transfer payments made by the other agents who benefit from

this abatement. Hence, an incentive mechanism or a set of contracts has to be designed that gives

the agents incentives to voluntarily abate pollution. Formally, a set of contracts consists of abatement

levels x(.) = {x1(.), ..., xn−1(.)} and compensation transfers t(.) = {t1(.), ..., tn(.)} so that given such

a set of contracts, an agent i’s costs amount to

ki(.) = Ci(xi, θi) + Di(qi(x))− ti(x),

where ti(x) can either be positive or negative. This set of contracts may be proposed by two sources,

either the federal government, which acts as a social planner or one of the agents is elected by the

federal government to be the principal who subcontracts with all the other agents. In the first con-

cept, the social planner faces the problem of aggregating the (announced) costs of the agents into

a collective decision and has to design an appropriate compensation scheme. In the later concept,

the principal minimizes his expected costs given the announced costs of the other agents and adopts

an appropriate compensation scheme. According to the constrained efficiency theorem (Mas-Colell

et al. (1995)), the federal government is not able to improve upon a decentralized outcome (even if

that outcome is inefficient), if it is limited by the same informational constraints. Thus, the federal

government cannot achieve a better outcome than agent n by designing a set of contracts for all n

agents, as agent n and the social planner face the same informational constraints. However, it might

be beneficial for the federal government to elect one of the other agents to design contracts because

these agents have more information with regard to their abatement costs than the federal government

and thus are limited by fewer informational constraints. The nomination of a specific principal itself

is relevant due to two reasons. First, all agents have an incentive to act as a principal and second,

each potential principal will implement a different abatement allocation. Furthermore, the elected

principal can offer these contracts in two different ways, either in a centralized or a delegated man-

ner.

We first discuss centralized contracting models, where the elected principal offers contracts to all

other agents simultaneously. Second, we consider delegated contracting models, in which one agent

is chosen to be the prime principal, who offers contracts to his direct downstream and upstream

neighbour and gives them the authority to sequentially subcontract with their direct neighbours. In
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either model, the principal faces two problems: first, all agents need to have an incentive to accept a

proposed contract, i.e. they must be at least as well off as in the status quo and second, abatement

costs are privately known, i.e. agents may have an incentive to overstate their true abatement costs.

Thus, a principal has to design a set of contracts for which all agents may find it in their best inter-

est to reveal their abatement costs truthfully and in which all agents are made better off as in the

non-cooperative outcome. In other words, a set of contracts must fulfil all incentive compatibility

constraints as well as all individual rationality constraints.

According to the revelation principle (Gibbard (1973)), we can restrict our attention to incentive com-

patible direct revelation contracts which satisfy the individual rationality of all agents. In such con-

tracts, agents are asked to announce their type, denoted by θ̂i, and in return receive a transfer ti(θ̂i)

and an abatement level xi(θ̂i). Furthermore, we assume that the principal observes all reported types

as well as the abatement levels chosen. In addition, contracts are realised, i.e. abatement levels and

payments are executed, after all agents have accepted their contracts.

Let us have a closer look at the individual rationality constraints. We assume that if one agent does

not accept the contract, no other contracts will be established among the remaining agents. Thus, a

contract fulfils the individual rationality constraints, if no agent can do better on his own given the

assumption that the other agents behave non-cooperatively and do not mitigate. Formally, a contract

satisfies the individual rationality constraints as long as

ki(.) ≤ Di

(
i−1

∑
j=1

ej

)

:= ki.

Next, let us consider the incentive compatibility constraints. Let θi denote the true type of agent i

and θ̂i the reported type. Given any contract, let ki(θ̂i, θi) be the total costs of agent i if he is of type θi

and reports θ̂i while the other agents report truthfully, i.e.

ki(θ̂i, θi) = Ci(xi(θ̂i), θi) + Di(qi(x(θ−i)))− ti(θ̂i).

Then, incentive compatibility requires

ki(θ̂i, θi) ≥ ki(θi, θi), ∀θi,

where ki(θi, θi) is the cost level of agent i of type θi if he announces his true type. Fortunately, Mirrlees

(1971) introduced a way to reduce the number of incentive constraints by replacing them with the

corresponding first order conditions. The trick is as follows: If we think of an agent i’s problem as

choosing an announcement θ̂i, then his minimization problem can be written as

minθ̂ki(θ̂i, θi).
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Thus, the incentive constraint can be stated as follows

θi ∈ argminθ̂i
ki(θ̂i, θi).

Therefore, for all θi ∈ [θ, θ] at which the objective function is differentiable, which it is by assumption,

the following first order condition must hold

0 =
∂

∂θ̂
ki(θ̂i, θi)|θ̂i=θi

.

That is, truth-telling implies that the first order condition of ki(θ̂i, θi) is satisfied when θ̂i = θi.

Let θ̂i(θi) ∈ argmin Ci(xi(θ̂i), θi) − ti(θ̂i) and let ki(θi, θ̂i) = Ci(xi(θ̂i(θi)), θi) − t(θ̂i(θi)) be the

equilibrium cost level of agent i. Note that this cost level depends on θi in two ways: on the agent’s

true type and on his announcement. Thus, differentiating ki(θi, θ̂i) with respect to θi, yields

dki(θ̂i, θi)

dθi
=

∂Ci(xi(θ̂i(θi)), θi)

∂θi
+

∂Ci(xi(θ̂i(θi)), θi)

∂xi(θ̂i(θi))

∂xi(θ̂i(θi))

∂θ̂i(θi)

∂θ̂i(θi)

∂θi
−

∂ti(θ̂i(θi))

∂θ̂i(θi)

∂θ̂i(θi)

∂θi

Applying the envelope theorem yields

dki(θ̂i, θi)

dθi
=

∂Ci(xi(θ̂i(θi)), θi)

∂θi
.

Thus, in case of incentive compatibility, i.e. where θ̂i(θi) = θi, we receive

dki(θ̂i, θi)

dθi
=

∂Ci(xi(θi), θi)

∂θi
. (2.1)

This condition ensures local incentive compatibility. Meaning that an agent i does not gain by mis-

representing θi around the neighbourhood of θi. By itself, it does not ensure that agent i does not

want to misrepresent θi by a large amount. Hence, reporting θi might be a local minimum, but not

a global one. However, global incentive compatibility is guaranteed if in addition to condition (2.1),

monotonicity of x(.) holds.

Proposition 1. (Myerson’s Characterization Theorem) A contract {x(.), t(.)} is globally incentive compatible

iff

1. xi(θi, θ−i) is decreasing in θi (monotonicity)

2. ki(θi, θi) = ki(θi, θi)−
∫ θi

θi

∂Ci(xi(s),s)
∂θi

ds

The proof of proposition 1 may be found in the appendix. As a consequence, when proposition 1

holds, it is ensured that truth-telling is a global minimum.

3 Optimal Contracts in Principal Agent Models in a River

Assume the federal government nominates one of the agents to design a set of contracts for all other

agents. The agent chosen has two possibilities to offer contracts. Either he simultaneously and di-

rectly contracts with the remaining agents in a centralized manner or he starts a delegated contracting
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process in which he subcontracts with his two direct neighbours who are given the authority to sub-

contract with their direct neighbour and so on till all agents received and accepted a contract.

One advantage of the delegated structure is that the intermediate agents can design their subcontracts

while having full knowledge about their own costs. On the other hand, a potential drawback of dele-

gated contracting is that the prime principal may experience a control loss, owing to the monopsony

power granted to the other agents. Melumad et al. (1995) consider an upwards-oriented sequential

contracting model with three agents. They show that the principal, in their case agent 3, can alle-

viate the control loss completely by constructing a sustainable transfer for the outsourcing to agent

2 so that the allocation is the same as in the centralized model. To calibrate the transfer correctly,

however, the principal has to know agent 2’s true costs θ2 as this determines the magnitude of the

monopsony distortion. To elicit this information, the principal offers agent 2 a contract with a con-

tinuum of contingencies, corresponding to different possible true values of θ2. Similarly, we find that

the prime principal can achieve the same abatement allocation in the delegated as in the centralized

model while he is indifferent ex-ante between the centralized and delegated model.

3.1 The Centralized Principal Agent Model

Let us first have a look at the centralized principal agent model. Let Pi denote the structure in which

agent i, i = 1, ..., n, is the principal elected by the federal government. Assume that agent i has to

compensate all agents j < i for their abatement efforts, and is paid by all agents j > i for his abate-

ment effort.

Full Information

Suppose that agent i has full information about the abatement costs of the other agents. Agent i’s

minimization problem can be written as follows

minx1,...,xn−1,t1(.),...,tn(.)Ci(xi, θi) + Di(qi(x)) +
i−1

∑
j=1

tj(x)−
n

∑
j=i+1

tj(x),

subject to the binding individual rationality constraints of the agents j 6= i, i.e.

Cj(xj, θj) + Dj(qj(x))− tj(x) = kj, for j < i

Cj(xj, θj) + Dj(qj(x)) + tj(x) = kj, for j > i,

with kj being the cost level an agent j incurs in the status quo. The individual rationality constraints

must bind, because if they would not, the principal could lower his costs by decreasing tj(.), ∀j < i,

or by increasing tj(.), ∀j > i, while still satisfying the individual rationality constraints. From the

binding individual rationality constraints, the following transfer payments can be attained

tj(x) = Cj(xj, θj) + Dj(qj(x))− kj, for j < i

tj(x) = kj − Cj(xj, θj)− Dj(qj(x)), for j > i.
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Substituting these tj(.) into the minimization problem of agent i yields

minx1,...,xn−1

n−1

∑
j=1

Cj(xj, θj) +
n

∑
i=2

Dj(qj(x))−
n

∑
j=1,j 6=i

kj.

The solution to this minimization problem is the first best abatement allocation xFB = (xFB
1 , ..., xFB

n−1),

with xFB
n = 0.

Asymmetric Information

Let us now assume that the agents have no knowledge about the abatement costs of the other agents.

Finding the optimal direct-revelation set of contracts for the principal in case of asymmetric informa-

tion demands minimizing the principal’s expected total costs over the set of mechanisms that induce

truthful revelation of the agents’ types and full participation. Thus, the principal’s problem of de-

signing the optimal contract can be stated equivalently as minimizing the principal’s expected total

costs subject to the local incentive compatibility constraints, the individual rationality constraints and

the monotonicity constraints. Hence, the principal’s minimization problem can be expressed as

minx1,...,xn,t1(.),...,ti−1,ti+1,...,tn(.)Eθ−i
[Ci(xi, θi) + Di(qi(x)) +

i−1

∑
j=1

tj(x)−
n

∑
j=i+1

tj(x)] (3.1)

subject to the individual rationality constraints, i.e.

Cj(xj, θj) + Dj(qj(x))− tj(x) ≤ kj, for j < i

Cj(xj, θj) + Dj(qj(x)) + tj(x) ≤ kj, for j > i,

Dn(qn(x)) + tn(x) = kn,

the incentive compatibility constraints, i.e.

Cj(xj(θj), θj) + Dj(qj(x(θj)))− tj(θj) ≤ Cj(xj(θ̂j), θj) + Dj(qj(x(θ̂j)))− tj(θ̂j), for j < i

Cj(xj(θj), θj) + Dj(qj(x(θj))) + tj(θj) ≤ Cj(xj(θ̂j), θj) + Dj(qj(x(θ̂j))) + tj(θ̂j), for j > i, j 6= n

and the feasibility constraints
j

∑
k=1

xk ≤
j

∑
k=1

ek, ∀k.

The optimal set of contracts is summarized in the following proposition.

Proposition 2. The optimal abatement levels xPi
1 , ..., xPi

n−1 in the centralized model with agent i as the principal

satisfy

xPi
1 , ..., xPi

n−1 ∈ argminx1,...,xn−1
Ci(xi, θi) + Di(qi(x)) +

i−1

∑
j=1

tj(x)−
n

∑
j=i+1

tj(x),
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whereby

tj(x, θj) = Cj(xj, θj) +
∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
+ Dj(qj(x))− kj, ∀j < i

tj(x, θj) = −Cj(xj, θj)−
∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
− Dj(qj(x)) + kj, ∀j > i

tn(x) = Dn(
n−1

∑
j=1

ej)− kn.

We refer to these transfers as the standard principal agent transfers. They reflect the relevant costs

for the principal that have to be paid to the agents. In expectation, the cost level each agent i 6= n

incurs by accepting his contract falls short of the non-cooperative status quo by an amount equal to

the agent’s informational rent r :=
∂Cj(xj,θj)

∂θj

F(θj)

f (θj)
. The proof of proposition 2 is in the appendix.

3.2 The Delegated Principal Agent Model

Let us now introduce the delegated principal agent model. Due to the nature of the river, we con-

sider upstream-oriented and downstream-oriented sequential contracting. Assume agent i has been

selected as the prime principal. Suppose, he first subcontracts with his direct upriver neighbour

agent i − 1, who in turn subcontracts with his direct upriver neighbour agent i − 2 and so on, till

agent 1 is reached. After all upriver agents j < i have accepted their contract, agent i offers agent

i + 1 a contract, who in turn is given the authority to subcontract with agent i + 2 and so on till all

agents j > i have accepted the contract proposed by their upriver neighbour2. Similarly to the cen-

tralized model, we assume that an agent j has to compensate his direct upriver neighbour j + 1 for

his abatement effort whereas he is paid by his direct downriver neighbour i + 1 for his abatement

effort.

Full Information

Assume first, that types are common knowledge. By backwards induction, agent i, knows that all

other agents j 6= i will set their direct up or downriver contracting partner indifferent between ac-

cepting their contracts of the non-cooperative outcome. In addition, to maximize his cooperation

gain, agent i is confronted with the following minimization problem

minx1,...,xn

n

∑
j=1

Cj(xj) + Dj(qj(x))−
n

∑
j=1,j 6=i

kj.

The abatement allocation minimizing agent i’s costs corresponds to the first best optimal abatement

allocation xFB. However, in contrast to the centralized model, agent i cannot choose all abatement

levels simultaneously to fully incorporate the externalities. Thus, agent i has to construct the two

contracts to his direct upriver neighbour i − 1 and direct downriver neighbour i + 1 in such a way

that the first best allocation is sequentially implemented by all agents. We claim that agent i is able to

skim off the maximal cooperation gain by inducing the following contracting process: He first offers

2Note that delegating downriver first and upriver afterwards will lead to the same results.
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agent i − 1 a transfer ti−1 contingent on the abatement levels of the upriver agents and lets agent

i − 1 decide on the abatement level xn−1. After accepting the transfer payment, agent i − 1 will offer

a transfer to agent i − 2 and so on. We claim that if agent i offers agent i − 1 a transfer of

ti−1(x) =
n−1

∑
i=1

Ci(xFB
i , θi) +

n

∑
i=1

Di(qi(xFB))−
n

∑
j=i

Dj(qj(x1, ..., xi, xFB
i+1, ..., xFB

n−1))

−
n−1

∑
j=i

Cj(xFB
j , θj)−

i−1

∑
j=1

kj, ∀i

all upriver agents j < i will sequentially choose first best optimal abatement levels. After all upriver

agents j < i have accepted their contracts, agent i offers a contract consisting of xFB
i and ti to agent

i + 1. We claim that if agent i offers agent i + 1 a transfer of

ti(x) =
n

∑
j=i+1

kj −
n−1

∑
j=i+1

Cj(xFB
j , θj)−

n

∑
j=i+1

Dj(qj(xFB)),

all downriver agents j > i will subsequently choose the first best optimal abatement levels xFB
j . In

the end, all agents j 6= i will end up with their reservation costs kj whereas the full cooperation gain

goes to agent i.

Proposition 3. Given full information, agent i offers agent i − 1 a contract consisting of the transfer

ti−1(x) =
n−1

∑
i=1

Ci(xFB
i , θi) +

n

∑
i=1

Di(qi(xFB))−
n

∑
j=i

Dj(qj(x1, ..., xi, xFB
i+1, ..., xFB

n−1))

−
n−1

∑
j=i

Cj(xFB
j , θj)−

i−1

∑
j=1

kj, ∀i (3.2)

and offers agent i + 1 a contract consisting of an abatement level of xFB
i and a transfer of

ti(x) =
n

∑
j=i+1

kj −
n−1

∑
j=i+1

Cj(xFB
j , θj)−

n

∑
j=i+1

Dj(qj(xFB)). (3.3)

These transfers together with the first best optimal abatement allocation xFB constitute a Nash-equilibrium of

the delegated contracting model.

The proof of proposition 3 may be found in the appendix.

Clearly, the nominated principal can achieve the same abatement allocation in the centralized and

delegated principal agent model. The transfers to be paid, however, differ in the two models. Nonethe-

less, the principal is equally well off in both models in that he attains the maximal cooperation gain

possible.

Proposition 4. Agent i, the principal, is indifferent between the delegated and centralized model.

This proposition follows by construction.
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Asymmetric Information

Suppose now, that the agents cannot observe the types of the other agents. Suppose the contract-

ing goes as follows: the principal, agent i, first offers agent i − 1 a contract consisting of a transfer

ti−1(x1, ..., xi−1, θ̂i−1) contingent on the abatement levels of all upriver agents j < i which agent i − 1

accepts by reporting θ̂i−1. Agent i − 1 then chooses xi−1 and offers a contract to agent i − 2, who in

turn reports θ̂i−2 and selects xi−2 optimally. This contracting process is continued till agent 1 reports

his type θ̂1 to agent 2 in exchange for a transfer t1(x1, θ̂1) and finally chooses to abate x1. Then, agent

i proposes a contract consisting of an abatement level xi(θ̂i+1) and transfer ti(θ̂i+1) to agent i + 1,

who accepts by reporting θ̂i+1, followed by agent i + 1 proposing an abatement level xi+1(θ̂i+2) and

a transfer ti+1(θ̂i+2) to agent i + 2, who in turn reports θ̂i+2. This contracting process is continued till

agent n accepts the contract.

The resulting sequential optimization problem can be represented as follows. Let us first consider

the upstream-oriented contracting part of the game. In the last step of the upstream contracting,

agent 1 receives t1(x1, θ̂1) and chooses x1. In the second last step, agent 2 subcontracts with agent 1,

given the transfer t2(x1, x2, θ̂1, θ̂2) and his report θ̂2. Agent 2 then faces the following minimization

problem

minx1,x2,t1
Eθ1

[C2(x2, θ2) + D2(q2(x)) + t1(x1, θ1)− t2(x1, x2, θ̂1, θ̂2)] := minx1,x2 M2(x, θ̂2, θ2)

subject to the incentive compatibility constraint of agent 1

θ1 ∈ argminθ̂1
C1(x1(θ̂1), θ1)− t1(x1, θ̂1)

and the individual rationality constraint of agent 1

C1(x1(θ1), θ1)− t1(x1, θ1) ≤ k1.

In the previous step, agent 3 subcontracts with agent 2, given the transfer t3(x1, x2, x3, θ̂1, θ̂2, θ̂3) and

solves

minx1,x2,x3,t2 Eθ1,θ2
[C3(x3, θ3) + D3(q3(x)) + t2(x1, x2, θ̂1, θ̂2)− t3(x1, x2, x3, θ̂1, θ̂2, θ̂3)]

:= minx1,x2,x3 M3(x, θ̂3, θ3),

subject to the incentive compatibility constraint of agent 2

θ2 ∈ argminθ̂2
M2(x, θ̂2, θ2),

the individual rationality constraint of agent 2

J2(x, θ̂2, θ2) ≤ k2
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and subject to

x1, x2 ∈ argminx1,x2 M2(x, θ̂2, θ2).

This process is continued till agent i is reached. Next, consider the downstream-oriented contracting

part of the game. Let x̃j = ∑
j−1
k=1 xk, i.e. the joint abatement effort chosen by the agents k < j. Consider

the second last step of the contracting, in which agent n − 2 subcontracts with agent n − 1, given all

upriver agents j’s reports θ̂j, the transfer tn−2(x̃n−2, θ̂n−1) and the abatement levels selected upriver.

Agent n − 1 will offer agent n a contract composed of an abatement level xn−1 satisfying

minxn−1
Cn−1(xn−1, θn−1) + Dn−1(qn−1(x̃n−1)) + tn−2(x̃n−2, θ̂n−1)− kn + Dn(qn(x̃n−1, xn−1))

:= minxn−1
Mn−1(x, θ̂n−1, θn−1)

and a transfer setting him indifferent between accepting and not. Moving one step upriver, agent

n − 2 subcontracts with agent n − 1, given the transfer tn−3(x̃n−3, θ̂n−2) as well as all upriver agents

i’s reports θ̂i, i = 1, ..., n − 2 and the abatement levels selected upriver. Agent n − 2 thus faces the

following minimization problem

minxn−1,xn−2,tn−2 Eθn−1
[Cn−2(xn−2, θn−2) + Dn−2(qn−2(x̃n−2)) + tn−3(x̃n−3, θ̂n−2)− tn−2(x)]

:= minxn−2,xn−1
Mn−2(x, θ̂n−2, θn−2),

so that agent n − 1 reports truthfully, i.e.

θn−1 ∈ argminθ̂n−1
Cn−1(xn−1(θ̂n−1), θn−1) + Dn−1(qn−1(x̃n−1(θ̂n−1)))

+ tn−2(x̃n−2(θ̂n−1))− tn−1(x̃n−1(θ̂n−1)),

the individual rationality constraint of agent n − 1 is fulfilled, i.e.

Cn−1(xn−1, θn−1) + Dn−1(qn(x̃)) + tn−2(x̃n−2)− tn−1(x̃n−1) ≤ kn−1

and

xn−1 ∈ argminMn−1(x, θ̂n−1, θn−1).

Continue this process till agent i is reached. This implies the following minimization problem for

agent i

minx1,...,xn−1,ti−1,ti
Eθ−i

[Ci(xi, θi) + Di(qi(x)) + ti−1(x, θ̂1, ..., θ̂i−1)− ti(x, θ̂i+1, ..., θ̂n−1)]

:= minx1,...,xn−1
Mi(x)

subject to the incentive compatibility constraint of both agents i − 1, i + 1, i.e.

θj ∈ argminθ̂j
Mj(x, θ̂j, θj), j = i + 1, i − 1,
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the individual rationality constraint of both agents i − 1,i + 1, i.e.

Mj(x, θ̂j, θj) ≤ kj, j = i + 1, i − 1

and subject to

x1, ..., xi−1 ∈ argminx1,...,xi−1
Mi−1(x, θ̂i−1, θi−1), (3.4)

xi+1, ..., xn−1 ∈ argminxi+1,...,xn−1
Mi+1(x, θ̂i+1, θi+1). (3.5)

The last two constraints (3.4),(3.5) reflect that the desired abatement levels must coincide with those

that agent i + 1 respectively agent i − 1 will choose when they subcontract with their corresponding

contracting partners i + 2 respectively i − 2.

For the class of contracts we consider, the revelation principle implies that a centralized arrange-

ment weakly dominates all other arrangements. The relevant question is thus whether the principal

can design a set of contracts that match his expected costs in the centralized model. We will show

that by choosing appropriate transfers, agent i can achieve the same abatement allocation as in the

centralized principal agent model and this is the best he can do.

Proposition 5. Agent i, the principal, can achieve the same abatement allocation xPi in the delegated model as

in the centralized model.

The proof of proposition 5 is in the appendix and is based on the following idea. To achieve

the same outcome in the delegated model as in the centralized principal agent model, agent i has to

counteract the tendency of the other agents j 6= i to bias the abatement levels in their favour. Thus,

the prime principal i has to shift the preferences of both agent i − 1 and i + 1 in such a way that

they fully internalize the prime principals objective. We claim that he achieves this by adopting the

following incentive scheme: He first offers agent agent i − 1 a transfer of

ti−1(x) =ω(θ̂i−1)−
n

∑
j=i

Dj(qj(x1, ..., xi, xPi
i+1, ..., xPi

n−1))−
n−1

∑
j=i

Cj(xPi
j , θ̂j)

−
n−1

∑
j=i

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
−

∂Ci−1(xi−1, θ̂i−1)

∂θ̂i−1

F(θ̂i−1)

f (θ̂i−1)

with

ω(θ̂i−1) =
n−1

∑
k=1

Ck(xPi

k , θk) +
n

∑
k=2

Dk(qk(xPi)) +
n−1

∑
k=i−1

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

i−1

∑
l=1

kl

+
i−1

∑
k=1

∫ θk

θ̂k

∂Ck(xk(θ−k, s, s, ), s)

∂θ̂k

ds.

After all upriver agents have accepted their respective offer, agent i offers agent i + 1 an abatement
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level of xPi
i and a transfer of

ti(x) =
i−1

∑
j=1

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
+

∂Ci+1(xi+1, θ̂i+1)

∂θ̂i+1

F(θ̂i+1)

f (θ̂i+1)
− ϕ(θ̂i+1).

with

ϕ(θ̂i+1) =
n−1

∑
k=i+1

Ck(xPi

k , θk) +
n

∑
k=i+1

Dk(qk(xPi)) +
i+1

∑
k=1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)

+
n−1

∑
k=i+1

∫ θk

θ̂k

∂Ck(xk(θm, s, s), s)

∂θ̂k

ds −
n

∑
l=i+1

kl .

The functions ϕ(.), ω(.) in the transfers above are chosen so as to ensure full participation and truth-

ful type revelation of all agents j 6= i. Since under any incentive-compatible scheme, the expected

payments to either agent i− 2 and i+ 2 must equal their standard principal agent transfers, the trans-

fers ti−1(x), ti(x) given above ensure, that both agents i + 1, i − 1 internalize the principal’s objective.

In the proof of proposition 5, we show that with the functions ω(.), ϕ(.) given above each agent j will

indeed report truthfully at each stage and his expected profit will be equal to his reservation costs at

θj = θ j, in other words his individual rationality constraint will be binding for the highest type. The

claim then follows from the revenue equivalence theorem.

As established, a nominated principal can achieve the same abatement allocation in the delegated

as in the centralized model. However, the transfer scheme offered differs in the two models and

thus, total costs incurred by the nominated principal may vary in the two models. We show that the

expected total costs of the nominated principal fall together in both models and thus, ex-ante, the

principal is indifferent between choosing the delegated or centralized contracting method.

Proposition 6. Agent i is indifferent ex-ante between the delegated and centralized model.

The proof of proposition 6 may be found in the appendix.

4 Choice of the Principal

As a last point, we address the question which agent the federal government should nominate as a

principal. In case of full information, all potential principals implement the first best optimal alloca-

tion. Thus, the source at which the contracts originate just determines who gets the cooperation gain.

Instead of nominating one of the agents to propose contracts, the federal government could for ex-

ample propose a set of contracts according to the downstream incremental cost distribution as proposed

by Winkler and Steinmann (2015). This cost distribution is in the core and additionally satisfied a

specific fairness criterion. In case of asymmetric information, the federal government may benefit

from letting one of the agents propose a set of contracts. Even though the elected principal has a

different objective than the federal government, nominating one of the agents to be the principal

might still be beneficial for the government because this principal has full knowledge about his own

abatement costs. In other words, the nominated principal has one less informational constraint to
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consider while offering contracts. Furthermore, as established in proposition 5, a nominated prin-

cipal implements the same abatement allocation whether he chooses a centralized or a delegated

principal agent model. As evident from the minimization problem of the principal (3.1), however,

the abatement allocation implemented differs across the prime principals. Thus, clearly, the govern-

ment should nominate the agent who implements the abatement allocation leading to least costs for

the river basin. But who is the best principal?

First and not surprisingly, all potential principals will lead to higher total costs for the river basin than

first best optimal as all abatement allocations chosen have in common that there is less individual and

thus less total abatement done than first best optimal.

Proposition 7. The abatement levels under asymmetric information are weakly smaller than under full infor-

mation

xFB
j ≥ xPi

j , ∀i, j.

The proof of proposition 7 is in the appendix. There is efficiency at the top, i.e. the highest type

agents abate pollution in the first best optimal amount. This is because for θi = θi, each principal’s

problem in the asymmetric information case is equivalent to full information case. For all other types,

the principals will distort the abatement levels to reduce the information rents.

Second, we find that agent n should never be the one proposing contracts for the agents along the

river as his best set of contracts leads to higher total expected costs in the river basin as with any agent

i 6= n acting as a principal. Intuitively, by electing any agent i 6= n as a principal, one uncertainty

drops as agent i knows his own type and only n − 2 information rents have to be paid, whereas with

agent n proposing contracts, there are still n − 1 unknown types and information rents. To show this

formally, let us establish the condition under which an agent i is a better prime principal than an

agent k.

Proposition 8. Let E[KPi ] be total expected costs in the river basin with agent i being the principal, i = 1, ..., n.

Then, for any two principals i,k

E[KPi ] ≤ E[KPk ], ∀i, k, i 6= k

if

Eθ [
∂Ck(xPi

k , θk)

∂θk
−

∂Ci(xPk
i , θi)

∂θi
] ≤ Eθ [

∂2Ci(xPk
i , θi)

∂θi∂xi
(xPi

i − xPk
i )].

The proof of proposition 8 may be found in the appendix. From proposition 8, we deduct, that

choosing any agent i, i 6= n as principal leads to lower total expected costs than selecting agent n and

there is less total abatement in the river basin with agent n being the principal.

Corollary 1. Let E[KPi ] be total expected costs in the river basin with agent i being the principal,

i = 1, ..., n. It holds that

E[KPi ] ≤ E[KPn ], ∀i, i 6= n.
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and

Eθ [
n−1

∑
j=1

xPi
j ] ≥ Eθ [

n−1

∑
j=1

xPn
j ], ∀i, i 6= n

The proof of corollary 1 may be found in the appendix. According to the constrained efficiency

theorem, the federal government is not able to achieve a better outcome for the river basin as agent

n because it is subject to the same informational constraints.

According to proposition 8, the position of a potential principal along the river as well as the exoge-

nously given pollution levels and the damage cost parameters play an important role in the abate-

ment allocation chosen and thus in determining who of the principals is the best one. We establish,

that with linear damages, it is best to assign the power to the agent at the source of the river.

Proposition 9. Assume, the damage functions are of the form Di(qi) = αi + βiqi. Then, the federal govern-

ment should nominate agent 1 to be the principal.

The proof of proposition 9 may be found in the appendix. With linear damages, the abatement

levels chosen are a function of the constant marginal damage costs. Because of this and due to his

position, agent 1’s expected abatement level is the highest, no information rent has to be paid for it

and it has the most influence as it benefits all and not just a subgroup of agents. Thus, intuitively,

total expected costs are smallest with agent 1 as the principal.

For any other functional form of the damage costs, there is no clear cut answer to who should be

nominated as principal. This is illustrated by an example of a river shared by three agents with

quadratic damage and abatement costs.

Example 1. Consider a river shared by three agents. Assume, the abatement costs are of the form

Ci(xi) = 1
2 θix

2
i , i = 1, 2 and the damage costs of the form Di(qi(x)) = 1/2βiqi(x)2,i = 2, 3. As

established in proposition 1, the agent most downriver, agent 3, should not be chosen to be the

principal. Let us thus consider agents 1,2 as principals in dependence of the pollution levels e1, e2.

Furthermore, set e1 = αe2. As shown in the appendix, there exist values of α for which either agent 1

or agent 2 is the better principal.

Lemma 1. There exist α ∈ (0, αid) with αid
< 1 for which

E[KP1(α)] > E[KP2(α)],

and for all α > αid,

E[KP1(α)] < E[KP2(α)].

5 Conclusion

In this chapter, we analyse contractual mitigation of a global public bad along a river in the pres-

ence of a federalist governance structure, where the lower tiers have private information about their

abatement costs. In our model, one of the lower tiers is nominated by the federal government to offer

a set of mitigation contracts to the remaining agents. The selected principal either proposes contracts
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in a centralized manner, where he simultaneously offers contracts to all agents, or he contracts only

with his direct up- and downstream neighbour and delegates to those two agents the authority to

contract with their direct up- respectively downriver neighbours, and so on, until all agents received

a contract. We establish that given full information, both models implement the first best optimal al-

location and the choice of the principal only determines which agent attains the full cooperation gain.

In case of asymmetric information, we demonstrate that even though the delegated principal agent

model is prone to a control loss, the abatement allocation implemented in the centralized principal

agent model can be replicated in the delegated principal agent model while matching the expected

costs of the principal. However, to counteract and to avoid the tendency of the intermediate agents

to bias the abatement allocation in their favour, the nominated principal must be able to monitor the

abatement levels as well as the reports of the intermediate agents and it must be ensured that the set

of contracts is executed after all intermediate agents have accepted their subcontracts. As all potential

principals implement a different abatement allocation, the choice of the prime principal matters for

the total expected costs occurring in the river basin. We show, that the tier located most downriver,

which is subject to the same informational constraints as the federal government, is never the best

choice to nominate as a principal. In case of linear damages, we establish that choosing the agent at

the source of the river will implement the abatement allocation leading to least expected total costs

for the river basin. For other functional forms of damage and abatement costs, the nomination of the

best principal depends not only on the position of the potential principal along the river but also on

the damage cost parameters as well as the exogenously given pollution levels.

This chapter can be extended in a number of directions, for example, to flood protection. In this

case, the exogenously given pollution levels correspond to the water discharges from one tier to an-

other, the abatement levels match the amount of water a tier withdraws from the stream by controlled

flooding of designated flooding areas and the pollution flow is the amount of excess water in a tier’s

area. These modifications would not impact on the validity of any propositions made in this chapter.

A more challenging extension of our work would be to allow for the formation of sub-coalitions,

meaning that agents may propose a set of contracts to a sub-group of agents. By incorporating this

cooperative behaviour among the agents, more complex reservation costs respectively participation

constraints would have to be considered. This would also be the approach to follow if sovereign

countries were considered, where there is no federal government giving the power to offer contracts

to one particular agent with the threat that the status quo were to prevail if one agent refuses the

contract.

Our work suggests several other avenues for future research. Our model relies on perfect monitoring

of both the communication among the agents as well as the abatement levels chosen by each agent.

A realistic limitation in monitoring could be that an intermediate agent is confined to observing only

the joint abatement effort of his upriver agents rather than each individual abatement level or/and

may not be able to monitor the communication in regard to the type reports between the other agents.

Thus, analysing the consequences of such reductions in the amount of monitoring between the agents

might yield interesting insights. Additionally, making the exogenously given pollution levels private

information, the adverse selection problem would be enriched by a moral hazard component. In this
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case, an intermediate agent can only observe the pollution flow at his location but cannot deduct the

abatement effort done by the upriver agent. Finally, considering a setting where the asymmetric in-

formation involves two dimensions, the abatement costs and the damage costs, would allow to study

the problems of multidimensional incentive design with type dependent reservation costs. This may

induce countervailing incentives in the sense that an agent may want to overstate its abatement and

damage costs to obtain a higher compensation and at the same time to understate his type to pretend

a better outside option.
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Appendix

Proof. of proposition 1

Assume, a contract is incentive compatible. Let us show (i) and (ii).

Suppose, θ̂i > θi and θ−i constant. From incentive compatibility, we have

ki(θ̂i, θi) ≥ ki(θi, θi).

By definition

θici(x(θ̂i))− ti(θ̂i) ≥ θici(x(θi))− ti(θi).

Rearranging implies

ki(θ̂i, θ̂i)− ki(θi, θi) ≥ (θ̂i − θi)ci(xi(θ̂i, θ−i)). (5.1)

The same must hold for θ̂i, i.e. from

ki(θi, θ̂i) ≥ ki(θ̂i, θ̂i),

we attain

θ̂ici(x(θi))− ti(θi) ≥ θ̂ici(x(θ̂i))− ti(θ̂i)

and thus

ki(θi, θi)− ki(θ̂i, θ̂i) ≥ (θi − θ̂i)ci(xi(θi)). (5.2)

Combining inequalities (5.1) and (5.2) yields

(θ̂i − θi)ci(xi(θ̂i)) ≤ ki(θ̂i, θ̂i)− ki(θi, θi) ≤ (θ̂i − θi)ci(xi(θi)).

The above inequality can be rewritten to

∫ θ̂i

θi

∂Ci(xi(θ̂i), s)

∂θi
ds ≤ ki(θ̂i, θ̂i)− ki(θi, θi) ≤

∫ θ̂i

θi

∂Ci(xi(θi), s)

∂θi
ds. (5.3)

Ignoring the middle term, this implies that

∫ θ̂i

θi

∂Ci(xi(θi), s)

∂θi
ds −

∫ θ̂i

θi

∂Ci(xi(θ̂i), s)

∂θi
ds ≥ 0,

which is identical to

∫ θ̂i

θi

∫ xi(θi)

xi(θ̂i)

∂2Ci(z, s)

∂xi∂θi
dzds ≥ 0.
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By assumption ∂2Ci(xi ,θi)
∂xi∂θi

≥ 0, making the integrand positive. For the integral itself to be positive, we

need

(θ̂i − θi)(xi(θi)− xi(θ̂i)) ≥ 0.

By assumption θ̂i > θi, thus the above inequality is satisfied whenever xi(θi) ≥ xi(θ̂i). Thus, for

incentive compatibility to hold, it is required that xi(θi) is non-increasing in θi. Note that this implies

that x(.) is continuous almost everywhere. Moreover, by fixing one end point in (5.3) and letting

the other converge towards it, we see that k(θi, θi) must be continuous and thus almost everywhere

differentiable. The derivative of k(θi, θi) amounts to

k′i(θi, θi) =
∂Ci(xi, θi)

∂θi
.

Consequently, we attain (ii). The proof is similar for θ̂i < θi.

Next, we assume (i),(ii) and show incentive compatibility. Suppose θ̂i > θi. For incentive com-

patibility to hold, we need

ki(θ̂i, θ̂i) ≤ θ̂ici(xi(θi))− ti(θi) = ki(θi, θi) + (θ̂i − θi)ci(xi(θi)).

Thus, we need to check whether

ki(θ̂i, θ̂i)− ki(θi, θi) =
∫ θ̂i

θi

Ci(xi(s), s)

∂θi
ds ≤ (θ̂i − θi)ci(xi(θi)).

The right hand side of the above inequality can be rewritten to

(θ̂i − θi)ci(xi(θi)) =
∫ θ̂i

θi

∂Ci(xi(θi), s)

∂θi
ds.

Hence, the inequality we have to check is equivalent to

∫ θ̂i

θi

∂Ci(xi(s), s)

∂θi
−

∂Ci(xi(θi), s)

∂θi
ds ≤ 0.

Given our functional forms, this is equivalent to

θ̂ici(xi(θ̂i))− θ̂ici(xi(θi)) ≤ 0.

This holds true as we assumed θ̂i > θi and xi(θi) decreasing in θi.

Next, let us prove that we have global incentive compatibility. As Ci(xi, θi) satisfies the single cross-

ing property and is continuously differentiable, Ci(xi, θi) satisfies increasing differences. Increasing
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differences imply, that if x̂ > x and θ̂ > θ,

θ̂ici(x̂i)− t(θ̂i)− (θ̂ici(xi)− t(θ̂i)) ≥ θici(x̂i)− t(θi)− (θici(xi)− t(θi))

ci(x̂i) ≥ ci(xi).

Say that we have local incentive compatibility and monotonicity. Let θ̂i > θi, then by ∂Ci(xi ,θi)
∂xi

≥ 0 and
∂Ci(xi ,θi)

∂θi
≥ 0, we have

∂Ci(xi(θ̂i), θi)

∂xi(θ̂i)
≤

∂Ci(xi(θ̂i), θ̂i)

∂xi(θ̂i)
.

Then from
∂

∂θ̂i

ki(θ̂i, θi) =
∂Ci(xi(θ̂i), θi)

∂xi(θ̂i)
·

∂xi(θ̂i)

∂θ̂i

−
∂ti(θ̂i)

∂θ̂i

,

we get

∂

∂θ̂i

ki(θ̂i, θi) ≥
∂Ci(xi(θ̂i), θ̂i)

∂xi(θ̂i)
·

∂xi(θ̂i)

∂θ̂i

−
∂ti(θ̂i)

∂θ̂i

=
∂

∂θ̂i

ki(θ̂i, θ̂i) = 0

Hence, ki(θ̂i, θi) is increasing in θ̂i as we assumed θ̂i > θi. Equivalently, if we assume θ̂i < θi, we

receive ∂
∂θ̂i

ki(θ̂i, θi) ≤ 0. Indicating that θi is a global minimum.

Proof. of proposition 2

According to proposition 1, a contract is globally incentive compatible iff for all agents j,

dxPi
j

dθj
≤ 0, ∀j, j 6= i, n

and

k j(θj, θj) = k j(θ j, θ j)−
∫ θ j

θj

∂Cj(xj(s, θ−j), s)

∂θj
ds. (5.4)

Note, that if equation (5.4) holds, then all individual rationality constraints will be satisfied iff

k j(θj, θj) ≤ kj. As a result, one can replace all individual rationality constraints with the one of

the highest type, which has to be binding, i.e.

k j(θ j, θ j) = kj.

From equation (5.4), we attain

tj(x) =
∫ θ j

θj

∂Cj(xj(s), s)

∂θj
ds − kj + Cj(xj, θj) + Dj(qj(x)), ∀j < i,

tj(x) = kj −
∫ θ j

θj

∂Cj(xj(s), s)

∂θj
ds − Cj(xj, θj)− Dj(qj(x)), ∀j > i

tn(x) = kn − Dn(qn(x)).
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Hence, substituting these transfers into the principals objective function implies

minx1,...,xn Ci(xi, θi) + Di(qi(x)) +
i−1

∑
j=1,j 6=i

∫ θ j

θ j

[
∫ θ j

θj

∂Cj(xj(s), s)

∂θj
ds − kj + Cj(xj, θj) + Dj(qj(x))] f (θj)dθj

− kn + Dn(qn(x))

subject to

dxPi
j

dθj
≤ 0, ∀j 6= i.

Let us first ignore the monotonicity constraint and solve the resulting relaxed problem. Integrating

by parts yields

∫ θ j

θ j

∫ θ j

θj

∂Cj(xj(s), s)

∂θj
ds f (θj)dθj = [

∫ θ j

θj

∂Cj(xj(s), s)

∂θj
dsF(θj)]

θ j

θ j
+
∫ θ j

θ j

∂Cj(xj(s), θj)

∂θj
F(θj)dθj

=
∫ θ j

θ j

∂Cj(xj(θj), θj)

∂θj
F(θj)dθj.

Thus, the principals minimization problem can be restated to

minx1,...,xn Ci(xi, θi) + Di(qi(x))−
n

∑
j=1,j 6=i

kj + Dn(qn(x))

+
n−1

∑
j=1,j 6=i

∫ θ j

θ j

[
∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
+ Cj(xj, θj) + Dj(qj(x))] f (θj)dθj. (5.5)

It remains to be checked that the solution xPi
1 , ..., xPi

n−1 to the above minimization problem is indeed

globally incentive compatible, i.e. whether xPi
j is decreasing in θj, ∀j. By using the implicit function

theorem, we attain

dxPi
j

dθj
= −

∂FOCj

∂θj

∂FOCj

∂xj

= −

∂2Cj(xj,θj)
∂xj∂θj

+
∂3Cj(xj,θj)

∂xj∂2θj

F(θj)

f (θj)
+

∂Cj(xj,θj)
∂θj

∂F(θj)

f (θj)
∂θj

SOCj
≤ 0,

with FOCj being the first and SOCj being the second order condition of the above minimization

problem (5.5), whereby SOCj ≥ 0 as xj is a minimum. Hence, the set of contracts is globally incentive

compatible.

Proof. of proposition 3

Let us first have a look at the upriver part of the contracting process, starting with agent i proposing

a contract to agent i − 1. With the transfer ti−1 given in (3.2) from agent i to agent i − 1, agent i − 1 is
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confronted with the following minimization problem

minx1,...,xi−1,ti−2(.)Ci−1(xi−1, θi−1) + Di−1(qi−1(x)) +
n−1

∑
j=i

Cj(xFB
j )

+
n

∑
j=i

Dj(qj(x1, ..., xi−1, xFB
i , ..., xFB

n−1))−
n−1

∑
j=1

Cj(xFB
j , θj)

−
n

∑
j=2

Dj(qj(xFB)) +
i−1

∑
j=1

kj + ti−2(x),

so that the individual rationality constraint of agent i − 2 is binding, i.e.

Ci−2(xi−2, θi−2) + Di−2(qi−2(x))− ti−2(x) + ti−3(x) = ki−2,

implying

ti−2(x) =
i−2

∑
j=1

Cj(xj, θj) +
i−2

∑
j=1

Dj(qj(x))−
i−2

∑
j=1

kj.

The best agent i − 1 can do is to choose xi−1 = xFB
i−1. To ensure that agent i − 2 incorporates the exter-

nalities fully and to maximize his cooperation gain, agent i − 1 proposes to agent i − 2 the following

transfer

ti−2(x) =
n−1

∑
i=1

Ci(xFB
i , θi) +

n

∑
i=2

Di(qi(xFB))−
i−2

∑
i=1

ki

−
n

∑
j=i−1

Dj(qj(x1, ..., xi−2, xFB
i−1))− Cj(xFB

j , θj).

Then again, given that agent i − 2 sets his upriver agent i − 3 indifferent between accepting the

contract or not, agent i − 2 chooses xi−2 = xFB
i−2 and so on. Thus, in general, an agent j + 1 < i offers

agent j a transfer of

tj(x) =
n−1

∑
i=1

Ci(xFB
i , θi) +

n

∑
i=1

Di(qi(xFB))−
n

∑
k=j+1

Dk(qk(x1, ..., xj, xFB
j+1, ..., xFB

n−1))

−
n−1

∑
k=j+1

Ck(xFB
k , θk)−

j

∑
l=1

kl , (5.6)

which ensures that agent j is set indifferent and agent j + 1’s cooperation gain is maximized. At the

last step of the upriver contracting, agent 1 receives a transfer of

t1(x) =
n−1

∑
i=1

Ci(xFB
i , θi) +

n

∑
i=1

Di(qi(xFB))− k1 −
n

∑
j=2

Dj(qj(x1, xFB
2 , ..., xFB

n−1))−
n−1

∑
j=3

Cj(xFB
j , θj).
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He thus solves the following minimization problem

minx1
C1(x1, θ1)−

n−1

∑
i=1

Ci(xFB
i , θi)−

n

∑
i=1

Di(qi(xFB)) + k1

+
n

∑
j=2

Dj(qj(x1, xFB
2 , ..., xFB

n−1)) +
n−1

∑
j=2

Cj(xFB
j , θj),

implying x1 = xFB
1 . Let us now use backwards induction to show that indeed no agent j < i has an

incentive to refuse the contract offered. At the last step of the upriver contracting, agent 1 receives

t1(.) as given in (5.6) and thus faces the following minimization problem

minx1
C1(x1, θ1)−

n−1

∑
i=1

Ci(xFB
i , θi)−

n

∑
i=1

Di(qi(xFB)) +
n

∑
j=2

Dj(qj(x1, xFB
2 , ..., xFB

n−1))

+
n−1

∑
j=2

Cj(xFB
j , θj) +

1

∑
j=1

kj.

Given that all other agents choose first best optimal abatement levels, the best agent 1 can do is to

select x1 = xFB
1 , leaving him with k1 = 0. Similarly, moving downriver to an agent j < i, we have

xFB
j ∈ argminxj

Cj(xj, θj) + Dj(qj(xFB))− tj(x) + tj−1(x)

with tj(x), tj−1(x) given in (5.6), i.e.

xFB
j ∈ argminxj

j−1

∑
k=1

Ck(xFB
k , θk) +

j−1

∑
k=2

Dk(qk(xFB)) + Cj(xj, θj) + Dj(qj(xFB))−
n−1

∑
i=1

Ci(xFB
i , θi) + kj

−
n

∑
i=2

Di(qi(xFB)) +
n

∑
k=j+1

Dk(qk(xFB
1 , ..., xFB

j−1, xj, xFB
j+1, ..., xFB

n−1)) +
n−1

∑
k=j+1

Ck(xFB
k , θk).

As a consequence, all agents j < i end up with their reservation costs kj.

Next, let us have a look at the downriver part of the contracting process with agent i proposing a

contract to agent i + 1. With the transfer ti given in (3.3), which agent i demands from agent i + 1,

agent i + 1’s minimization problem is

minxi+1,...,xn−1,ti+1
Ci+1(xi+1, θi+1) + Di+1(qi+1(xFB

1 , ..., xFB
i )) +

n

∑
j=i+1

kj

−
n−1

∑
j=i+1

Cj(xFB
j , θj)−

n

∑
j=1

Dj(qj(xFB))− ti+1(x)

with the binding individual rationality constraint of agent i + 2, i.e. with

ti+1(x) =
n

∑
j=i+2

kj −
n−1

∑
j=i+2

Cj(xj, θj)−
n

∑
j=i+2

Dj(qj(x)).
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Thus, agent i + 1 offers agent i + 2 an abatement level of xFB
i+1 and a transfer of

ti+1(x) =
n

∑
j=i+2

kj −
n−1

∑
j=i+2

Cj(xFB
j , θj) +

n

∑
j=i+2

Dj(qj(xFB)).

Hence, in general, an agent j > i will offer his direct downriver agent j + 1 an abatement level of xFB
j

and a transfer of

tj(x) =
n

∑
l=j+1

kl −
n−1

∑
k=j+1

Ck(xFB
k , θk)−

n

∑
k=j+1

Dj(qk(xFB)). (5.7)

At the last stage of the downriver contracting, agent n − 1 sets agent n indifferent, i.e.

tn−1 = kn − Dn(qn(xFB)),

implying that agent n − 1 will face the following minimization problem

minxn−1

n−2

∑
j=1

Cj(xFB
j , θj) + Cn−1(xn−1, θn−1) +

n−1

∑
j=1

Dj(qj(xFB))

+ Dn(qn(xFB
1 , ..., xFB

n−2, xn−1))−
n−1

∑
j=1

Cj(xFB
j , θj)−

n

∑
j=1

Dj(qj(xFB)) + kn−1,

with the result that he will choose xFB
n−1. To prove that indeed no agent has an incentive to decline

these contracts, we use backwards induction. In the last stage of the game, by accepting the contract

offered by agent n − 1, agent n incurs

kn(.) = Dn(qn(xFB)) + kn − Dn(qn(xFB)) = kn.

Hence, he is indifferent between accepting the contract or not and will thus accept. In the second last

step, agent n − 1 has to decide whether he accepts the offer by agent n − 2 and whether choosing

xFB
n−1 and tn−1 is optimal. With tn−2 given in (5.7),

xFB
n−1 ∈ argminxn−1

Cn−1(xn−1, θn−1) + Dn−1(qn−1(xFB))− kn + Dn(qn(xFB
1 , ..., xFB

n−2, xn−1))

+
n

∑
j=n−1

kj −
n−1

∑
j=n−1

Cj(xFB
j , θj)−

n

∑
j=n−1

Dj(qj(xFB
1 , ..., xFB

n−1))

and agent n − 1 will end up with kn−1. Similarly, moving upriver, all agents j > i will end up with

their reservation costs kj as with tj, tj−1 given in (5.7), we have

xFB
j ∈ argminxj

Cj(xj, θj) + Dj(qj(xFB))− tj(xFB) + tj−1(xFB),
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i.e.

xFB
j ∈ argminxj

Cj(xj, θj) + Dj(qj(xFB))−
n

∑
l=j+1

kl +
n−1

∑
k=j+1

Ck(xFB
k , θk) +

n

∑
l=j

kl −
n−1

∑
k=j

Ck(xFB
k , θk)

+
n

∑
k=j+1

Dk(qk(xFB
1 , ..., xFB

j−1, xj, xFB
j+1, ..., xFB

n−1))−
n

∑
k=j

Dk(qk(xFB)).

As a consequence, all agents j > i end up with their reservation costs kj.

In contrast, agent i, the principal, will end up with the entire cooperation gain, i.e.

ki(θi) = Ci(xFB
i , θi) + Di(qi(xFB))− ti(xFB) + ti−1(xFB)

=
n−1

∑
j=1

Cj(xFB
j , θj) +

n

∑
j=2

Dj(qj(xFB))−
n

∑
j=1,j 6=i

kj.

with ti(.) as given in (5.7) and ti−1 as given in (5.6).

The transfers (5.6) for all j < i and the transfers (5.7) for all j > i are the best ones the agents can

choose. First, the transfers lead to the implementation of the first best solution. This in turn results in

the largest cooperation gain which is in the interest of all agents. Second, each agent sets his down-

river respectively upriver contracting partner exactly indifferent between accepting or not and thus

extracts the maximum for himself. Or in other words, at the moment of contracting, agent j maxi-

mizes his cooperation gain by choosing tj−1 if j < i as given in (5.6) respectively tj(.) if j > i as given

in (5.7) .

Proof. of proposition 5

From the standard principal agent model, each agent j < i should at least get a transfer of

tj(x) = Cj(xj(θj), θj) +
∂Cj(xj(θj), θj)

∂θj

F(θj)

f (θj)
+ Dj(qj(x))− kj + tj−1(x).

Henceforth, under any incentive compatible scheme, agent j + 1 has to offer agent j at least

tc
j (x) = ∑

j
k=1 Ck(xk(θ̂k), θ̂k) + ∑

j
k=1

∂Ck(xk(θ̂k),θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
+ ∑

j
k=1 Dk(qk(x))− ∑

j
l=1 kl . (5.8)

Similarly, for agent j > i to report truthfully and to ensure his compliance, agent j has to offer agent

j + 1 at least

tj(x) = kj+1 − Cj+1(xj+1, θj+1)−
∂Cj+1(xj+1, θ̂j+1)

∂θ̂j+1

F(θ̂j+1)

f (θ̂j+1)
− Dj+1(qj+1(x))− tj−1(x).

Iterating over the transfers yields

tc
j (x) =

n

∑
l=j+1

kl −
n−1

∑
k=j+1

Ck(xk, θk)−
n−1

∑
k=j+1

∂Ck(xk, θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

n

∑
k=j+1

Dk(qk(x)). (5.9)

Similar to the model with full information, agent i maximizes his cooperation gain under the assump-
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tion that he as to pay agent i − 1 at least tc
i−1(x) as given in (5.8) and can demand at most a transfer

of tc
i (.) as given in (5.9) from agent i + 1 for an abatement level of xi. Thus, he faces the following

minimization problem

minx1,...,xn−1
Eθ−i

[Ci(xi, θi) + Di(qi(x)) +
n−1

∑
j=1,j 6=i

Cj(xj(θ̂j), θ̂j) +
∂Cj(xj(θ̂j), θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)

+
n−1

∑
j=1,j 6=i

Dj(qj(x))−
n−1

∑
j=1,j 6=i

kj].

Agent i’s objective is thus equivalent to the one he faces in the centralized principal agent model.

However, in contrast to the centralized model, here agent i cannot choose all abatement levels him-

self. Agent i thus has to ensure that all intermediate agents j 6= i will choose abatement levels, which

are optimal from his point of view.

Let us first consider the upstream-oriented contracting part of the model. We claim that agent i

offers agent i − 1 a transfer of

ti−1(x) =ω(θ̂i−1)−
n

∑
j=i

Dj(qj(x1, ..., xi, xPi
i+1, ..., xPi

n−1))−
n−1

∑
j=i

Cj(xPi
j , θ̂j)

−
n−1

∑
j=i+1

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
−

∂Ci−1(xi−1, θ̂i−1)

∂θ̂i−1

F(θ̂i−1)

f (θ̂i−1)
,

where ω(θ̂i−1) is chosen in a way that agent i − 1 reports his type truthfully and accepts the contract.

Note that ω(θ̂i−1) depends only on θ̂i−1 and not on any abatement levels. Next, agent i − 1 has to

pay agent i − 2 at least tc
i−2(x) given in (5.8), implying the following minimization problem for agent

i − 1

minx1,...,xi−1
Eθ1,...,θi−2

[Ci−1(xi−1, θi−1) + Di−1(qn−1(x)) +
n−1

∑
j=i

Cj(xj, θ̂j) +
n

∑
j=i

Dj(qj(x))

+
n−1

∑
j=i+1

∂Cj(xj, θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
− ω(θ̂i−1)−

i−2

∑
j=1

kj +
i−2

∑
i=1

Ci(xi, θ̂i)

+
i−2

∑
j=1

Dj(qj(x)) +
i−1

∑
j=1

∂Cj(xj, θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
].

Consequently, agent i − 1 reports θ̂i−1 and then chooses xPi
i−1(θ̂1, ..., θ̂i−1, θi−1). In the next step, to

maximize his cooperation gain, agent i − 1 sets the following transfer

ti−2(x) =ω(θ̂i−2)−
n

∑
j=i−1

Dj(qj(x1, ..., xi−2, xPi
i−1, ..., xPi

n−1))−
n−1

∑
j=i−1

Cj(xPi
j , θ̂j)

−
n−1

∑
j=i−1

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
−

∂Ci−2(xi−2, θ̂i−2)

∂θ̂i−2

F(θ̂i−2)

f (θ̂i−2)
.
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Agent i − 2 accepts by reporting θ̂i−2 and will consequently choose xPi
i−2(θ̂1, ..., θ̂i−1, θi−2). Moving

upstream, agent j receives a transfer of

tj(x) =ω(θ̂j)−
n

∑
k=j+1

Dk(qk(x1, ..., xj, xPi
j+1, ..., xPi

n−1))−
n−1

∑
k=j+1

Ck(xPi

k , θ̂k)

−
n−1

∑
k=j+1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

∂Cj(xj, θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
, (5.10)

with ω(θ̂j) given in general by

ω(θ̂j) =
n−1

∑
k=1

Ck(xPi

k , θk) +
n

∑
k=2

Dk(qk(xPi)) +
n−1

∑
k=j

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

j

∑
l=1

kl

+
j

∑
k=1

∫ θk

θ̂k

∂Ck(xk(θ−k, s, s, ), s)

∂θ̂k

ds, ∀j, j < i

and reports θ̂j with the result that he faces the same minimization problem as agent i, i.e.

minx1,...,xj
Eθ1,...,θj−1

[
j

∑
k=1

Ck(xk, θk) + Dk(qk(x)) +
j

∑
k=1

∂Ck(xk, θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
+

n−1

∑
k=j+1

Ck(xPi

k , θ̂k)− ω(θ̂j)

+
n

∑
k=j+1

Dk(qk(x1, ..., xj, xPi
j+1, ..., xPi

n−1)) +
n−1

∑
k=j+1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

j−1

∑
l=1

kl ]

:= minx1,...,xj
Mj(θj, θ̂j), (5.11)

and therefore sets xPi
j (θ̂1, ..., θ̂n−1, θj). In the last step of the upstream-contracting part of the game,

agent 1 receives the transfer t1(.) as given in (5.10) and solves the following minimization problem

minx1
C1(x1, θ1) +

n

∑
j=2

Dj(qj(x1, xPi
2 , ..., xPi

n−1)) +
n−1

∑
j=2

Cj(xPi
j , θ̂j)

+
∂C1(x1, θ̂1)

∂θ̂1

F(θ̂1)

f (θ̂1)
+

n−1

∑
j=2,j 6=i

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
− ω(θ̂1)

:= minx1
M1(θ1, θ̂1),

resulting in the choice of xPi
1 (θ̂1, ..., θ̂n−1, θ1).

Next, let us consider the downwards-oriented part of contracting. We claim that agent i offers agent

i + 1 a contract consisting of xPi
i (.) and the following transfer

ti(x) =
i−1

∑
j=1

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
+

∂Ci+1(xi+1, θ̂i+1)

∂θ̂i+1

F(θ̂i+1)

f (θ̂i+1)
− ϕ(θ̂i+1),

with ϕ(θ̂i+1) being chosen in a way so that agent i + 1 is willing to accept the transfer and reports his
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type truthfully. Given this transfer, agent i + 1’s minimization problem is

minxi+1,...,xn−1
Eθi+2,...,θn−1

[Ci+1(xi+1, θi+1) + Di+1(qi+1(xPi
1 , ..., xPi

i )) +
∂Ci+1(xi+1, θ̂i+1)

∂θ̂i+1

F(θ̂i+1)

f (θ̂i+1)

− ϕ(θ̂i+1) +
n−1

∑
j=i+2

Cj(xj, θj) +
n−1

∑
j=i+3

∂Cj(xj, θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
+

n

∑
j=i+3

Dj(qj(x))−
n

∑
j=i+3

kj]

:= minxi+1,...,xn−1
Mi+1(θi+1, θ̂i+1).

Agent i + 1 then chooses xPi
i+1 and sets

ti+1(x) =
i+1

∑
j=1,j 6=i

∂Cj(xPi
j , θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)
+

∂Ci+2(xi+2, θ̂i+2)

∂θ̂i+2

F(θ̂i+2)

f (θ̂i+2)
− ϕ(θ̂i+2)

and so on. Thus, in general, an agent j > i, agent j solves

minxj,...,xn−1
Eθj+1,...,θn−1

[Cj+1(xj+1, θj+1) + Dj+1(qj+1(xPi
1 , ..., xPi

j−1)) +
∂Cj(xj, θ̂j)

∂θ̂j

F(θ̂j)

f (θ̂j)

− ϕ(θ̂j) +
n−1

∑
k=j+1

Ck(xk, θk) +
n−1

∑
k=j+2

∂Ck(xk, θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)

+
n

∑
k=j+2

Dk(qk(x))−
n

∑
l=j+2

kl ]

:= minxj,...,xn−1
Mj(θj, θ̂j).

and proposes to agent j + 1 an abatement level of xPi
j in exchange for the following transfer

tj(x) =
j

∑
k=1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
+

∂Cj+1(xj+1, θ̂j+1)

∂θ̂j+1

F(θ̂j+1)

f (θ̂j+1)
− ϕ(θ̂j+1). (5.12)

with ϕ(θ̂j+1) given in general by

ϕ(θ̂j+1) =
n−1

∑
k=j+1

Ck(xPi

k , θk) +
n

∑
k=j+1

Dk(qk(xPi)) +
j+1

∑
k=1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)

+
n−1

∑
k=j+1

∫ θk

θ̂k

∂Ck(xk(θm, s, s), s)

∂θ̂k

ds −
n

∑
l=j+1

kl .

Moving downriver, we reach agent n − 1 with the following minimization problem

minxn−1
Cn−1(xn−1, θn−1) + Dn−1(qn−1(xPi

1 , ..., xPi
n−2, xn−1)) +

∂Cj(xn−1, θ̂n−1)

∂θ̂n−1

F(θ̂n−1)

f (θ̂n−1)

+ Dn(qn(xPi
1 , ..., xPi

n−2, xn−1))− ϕ(θ̂n−1)− kn

:= minxn−1
Mn−1(θn−1, θ̂n−1)
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so that agent n − 1 will propose xPi
n−1 and the transfer tn−1 = kn − Dn(qn(xPi)) to agent n.

Next, let us prove that incentive compatibility holds for all agents j 6= i. To show incentive com-

patibility, we apply the following slightly altered lemmas from Mirrlees (1971) (Lemma 6.1, 6.3)

Lemma 1. Let x⋆i (θi) ∈ argminC(xi, θi)− t(xi). Then,

dki(xi(θi), θi)

dθi
=

∂Ci(xi(θi), θi)

∂θi
+

∂Ci(xi(θi), θi)

∂xi(θi)
·

∂xi(θi)

∂θi
−

∂ti(xi(θi))

∂xi(θi)
·

∂xi(θi)

∂θi
.

Applying the envelope theorem yields

dki(x⋆i (θi), θi)

dθi
=

∂Ci(x⋆i (θi), θi)

∂θi
.

Thus,

ki(x⋆i (θi), θi)− ki(x⋆i (0), 0) =
∫ θi

0

∂Ci(x⋆i (s), s)

∂θi
ds.

Lemma 2. Let ki(θi) = ki(x⋆i (θi), θi) and ki(θ̂i) = ki(x⋆i (θ̂i), θ̂i). Furthermore, let

ki(θi)− ki(θ̂i) =
∫ θi

θ̂i

∂Ci(x⋆i (k), k)

∂θi
dk if θ̂i < θi

ki(θi)− ki(θ̂i) = −
∫ θ̂i

θi

∂Ci(x⋆i (k), k)

∂θi
dk if θ̂i > θi

It follows that if
∂Ci(x⋆i (θ̂i),θi)

∂θi
is non-increasing in θ̂i, i.e. x⋆i (θ̂i) decreasing in θ̂i, then xi(θi) minimizes

ki(xi, θi).

Proof. of lemma 2

Let θ̂i < θi. Then

ki(x⋆i (θi), θi)− ki(x⋆i (θ̂i), θ̂i) =
∫ θi

θ̂i

∂Ci(x⋆i (k), k)

∂θi
dk ≤

∫ θi

θ̂i

∂Ci(x⋆i (θ̂i), k)

∂θi
dk

= ki(x⋆i (θ̂i), θi)− ki(x⋆i (θ̂i), θ̂i)

Thus, ki(x⋆i (θi), θi) ≤ ki(x⋆i (θ̂i), θi), so that x⋆i (θi) must be minimizing ki(xi, θi).

Let θ̂i > θi. Then

ki(x⋆i (θi), θi)− ki(x⋆i (θ̂i), θ̂i) = −
∫ θ̂i

θi

∂Ci(x⋆i (k), k)

∂θi
dk ≤ −

∫ θ̂i

θi

∂Ci(x⋆i (θ̂i), k)

∂θi
dk

= ki(x⋆i (θ̂i), θi)− ki(x⋆i (θ̂i), θ̂i)

Thus, ki(x⋆i (θi), θi) ≤ ki(x⋆i (θ̂i), θi), so that x⋆i (θi) must be minimizing ki(xi, θi).

According to lemma 2, for agent j to report truthfully it suffices to show that

∂Mj(θj, θ̂j)

∂θj
is weakly decreasing in θ̂j. (5.13)
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Let xj(θ̂−j, θj, θ̂j), j = 1, ..., n− 1, denote the minimizers of the minimization problem minx1,...,xj
Jj(θj, θ̂j)

given in (5.11). For condition (5.13) to hold, it suffices to show that

∂Mj(θj, θ̂j)

∂θj
= Eθ1,...,θj−1

[
∂Cj(xj(θ̂−j, θj, θ̂j), θj)

∂θj
] is decreasing in θ̂j, for j < i respectively

∂Mj(θj, θ̂j)

∂θj
= Eθj+1,...,θn−1

[
∂Cj(xj(θ̂−j, θj, θ̂j), θj)

∂θj
] is decreasing in θ̂j, for j > i

Clearly, this is the case as long as xj(θ̂k, θj, θ̂j) is decreasing in θ̂j. This holds true as

dxj(θ̂−j, θj, θ̂j)

dθ̂j

= −

∂2 Mj(θj,θ̂j)
∂θj∂xj

∂2 Mj(θj,θ̂j)

∂2xj

= −

∂3Cj(xj(θ̂−j,θj,θ̂j),θ̂j)

∂2 θ̂j∂xj(.)

F(θ̂j)

f (θ̂j)
+

∂2Cj(xj(θ̂−j,θj,θ̂j),θ̂j)

∂θ̂j∂xj(.)

∂(F(θ̂j)/ f (θ̂j))
∂θ̂j

∂2 Mj(θj,θ̂j)

∂2xj

≤ 0,

with
∂2 Mj(θj,θ̂j)

∂2xj
≥ 0 as xj(θ̂k, θj, θ̂j) is a minimum. The same argument holds for all agents j 6= i. It

remains to be shown, that the individual rationality constraints are fulfilled for all agents j 6= i. For

this to hold, it suffices that the individual rationality constraints are binding for the highest type, i.e.

Jj(θ j, θ j) = kj. Recall

ω(θ̂j) =
n−1

∑
k=1

Ck(xPi

k , θk) +
n

∑
k=2

Dk(qk(xPi)) +
n−1

∑
k=j

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)
−

j

∑
l=1

kl

+
j

∑
k=1

∫ θk

θ̂k

∂Ck(xk(θ−k, s, s, ), s)

∂θ̂k

ds

and

ϕ(θ̂j) =
n−1

∑
k=j

Ck(xPi

k , θk) +
n

∑
k=j

Dk(qk(xPi)) +
j

∑
k=1,k 6=i

∂Ck(xPi

k , θ̂k)

∂θ̂k

F(θ̂k)

f (θ̂k)

+
n−1

∑
k=j

∫ θk

θ̂k

∂Ck(xk(θm, s, s), s)

∂θ̂k

ds −
n

∑
l=j

kl .

As

∫ θ j

θ̂j

∂Cj(xj(θ−j, s, s), s)

∂θ̂j

ds = Cj(xj(θ−j, θ j, θ j), θ j)− Cj(xj(θ−j, θ̂j, θ̂j), θ̂j)

is decreasing in θ̂j, and Mj(θj, θj) is increasing in θj, all individual rationality constraints are binding

at the top. Given these transfers and according to the revenue equivalence theorem, i.e.

k j(θj)− k j(θ j) = −
∫ θ j

θj

∂Cj(xj(θ−j, s, s), s)

∂θj
ds
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all individual rationality constraints are fulfilled. Similar to the proof in the full information case, it

is evident from backwards induction, that given the transfers tj in (5.10) respectively (5.12), no agent

j can do better by choosing an abatement level other than xPi
j . Furthermore, as each agent j sets the

transfer in a way to maximize his cooperation gain, there is no other transfer that is preferable.

Proof. of proposition 6

The difference ∆i in expected costs for agent i between the delegated and centralized model Pi

amounts to

Eθ−i
[∆i] = Eθ−i

[
n−1

∑
j=1,j 6=i

∫ θ j

θ j

[
∫ θ j

θj

∂Cj(xPi
j (θ−j, s, s), s)

∂θj
ds −

∂Cj(xPi
j , θj)

∂θj

F(θj)

f (θj)
] f (θj)dθj].

Integration by parts yields

∫ θ j

θ j

[
∫ θ j

θj

∂Cj(xPi
j (θ−j, s, s), s)

∂θj
ds f (θj)dθj =

∫ θ j

θ j

∂Cj(xPi
j , θj)

∂θj
F(θj)dθj

and thus

Eθ−i
[∆i] = Eθ−i

[
n−1

∑
j=1,j 6=i

∫ θ j

θ j

[
∂Cj(xPi

j (.), θj)

∂θj

F(θj)

f (θj)
−

∂Cj(xPi
j (.), θj)

∂θj

F(θj)

f (θj)
] f (θj)dθj]

= 0.

Proof. of proposition 7

Let x = (x1, ..., xn−1) be the vector of abatement levels. The minimization problem of agent i in

case of asymmetric information, i.e. in the model Pi, differs from the minimization problem in case

of full information in the information rents that have to be paid. Thus, consider the parametrized

minimization problem of agent i

minx Ji(x, κ) = minx

n−1

∑
i=1

Ci(xi, θi) +
n

∑
i=1

Dn(qn(x)) + κ
n−1

∑
j=1,j 6=i

∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
, (5.14)

with κ = 1 in Pi with asymmetric information and κ = 0 in case of full information. We need to

prove that the solution x to the minimization problem of agent i in (5.14) is decreasing in κ, implying

xPi
j ≥ xFB

i , for all i.

Let κ′′ > κ′ and x′′ ∈ argminx Ji(x, κ′′) and x′ ∈ argminx Ji(x, κ′). Then, by revealed preferences

Ji(x′, κ′) ≤ Ji(x′′, κ′),

Ji(x′′, κ′′) ≤ Ji(x′, κ′′).

Adding up the above inequalities and rearranging implies

Ji(x′, κ′′)− Ji(x′, κ′′) ≥ Ji(x′′, κ′′)− Ji(x′′, κ′).
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Rewriting the above expression yields

∫ κ′′

κ′

∂Ji(x′′, κ)

∂κ
dκ ≤

∫ κ′′

κ′

∂Ji(x′, κ)

∂κ
dκ, (5.15)

Note that
∂Ji(x, κ)

∂κ
=

n−1

∑
j=1,j 6=i

∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
.

Thus, inequality (5.15) can be rewritten as

∑
j=1,j 6=i

∫ κ′′

κ′

∫ x′j

x′′j

∂2 Ji(x, κ)

∂xj∂κ
dκdx =

∫ κ′′

κ′

∫ x′j

x′′j

n−1

∑
j=1,j 6=i

∂2Cj(xj, θj)

∂θj∂xj

F(θj)

f (θj)
≥ 0.

Due to the single crossing property, the above inequality is satisfied, whenever

(κ′′ − κ′)(x′j − x′′j ) ≥ 0, ∀j.

Thus, given that κ′′ > κ′, we need x′j > x′′j for the above inequality to hold. This requires that xj is

decreasing in κ. Hence,

xFB
j ( if κ = 0) ≥ xPi

j ( if κ = 1), ∀i, j, j 6= i.

Proof. of proposition 8

Consider two potential principals i and k. Let

Eθ [ f (x)] = Eθ [
n−1

∑
i=1

Ci(xi, θi) +
n

∑
i=2

Di(qi(x)) +
n

∑
j=1,j 6=i,k

∂Cj(xj, θj)

∂θJ

F(θj)

f (θj)
].

From linear approximation

Eθ [ f (xPi)− f (xPk)] ≈ Eθ [
n

∑
i=1

f ′xi
(xPk)(xPi

i − xPk
i )].

This implies

Eθ [ f (xPi)− f (xPk)] ≈Eθ [
n−1

∑
j=1

Cj(x
Pj

j , θj)

∂xj
(xPi

j − xPk
j ) +

n

∑
k=j+1

∂Dk(qk(xPk))

∂xj
(xPi

j − xPk
j )

+ ∑
j=1,j 6=i,k

∂2Cj(xPk
j , θj)

∂θj∂xj

F(θj)

f (θj)
(xPi

j − xPk
j )].
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This can be rewritten as

Eθ [ f (xPi)− f (xPk)] ≈Eθ [
n−1

∑
j=1

Cj(xPk
j , θj)

∂xj
(xPi

j − xPk
j ) +

n

∑
k=j+1

∂Dk(qk(xPk))

∂xj
(xPi

j − xPk
j )

+ ∑
j=1,j 6=i

∂2Cj(xPk
j , θj)

∂θj∂xj

F(θj)

f (θj)
(xPi

j − xPk
j )

+
∂2Ci(xPk

i , θj)

∂θi∂xi

F(θi)

f (θi)
(xPi

i − xPk
i )−

∂2Ci(xPk
i , θi)

∂θi∂xi

F(θi)

f (θi)
(xPi

i − xPk
i )]. (5.16)

Applying the envelope theorem to the right hand side of expression (5.16), we attain

Eθ [ f (xPi)− f (xPk)] ≈ Eθ [−
Ci(xPk

i , θi)

∂xi∂θi

F(θi)

f (θi)
(xPi

i − xPk
i )].

As a consequence,

Eθ [K
Pi(.)− KPk(.)] ≈ Eθ [

∂Ck(xPi

k , θk)

∂θk

F(θk)

f (θk)
−

∂Ci(xPk
i , θi)

∂θi

F(θi)

f (θi)
−

∂2Ci(xPn
i , θi)

∂θi∂xi

F(θi)

f (θi)
(xPi

i − xPk
i )].

Thus, Eθ [K
Pi(.)] ≤ Eθ [K

Pk(.)] as long as

Eθ [
∂Ck(xPi

k , θk)

∂θk
−

∂Ci(xPk
i , θi)

∂θi
] ≤ Eθ [

∂2Ci(xPk
i , θi)

∂θi∂xi
(xPi

i − xPk
i )].

Proof. of corollary 1

Let us first establish the following relationship for the abatement levels of an agent i.

Lemma 2. Agent i abates more in Pi than in Pn, i.e.

xPi
i ≥ xPn

i , i = 1, ..., n − 1

Proof. of lemma 2

Agent i’s minimization problem in Pi differs from the minimization problem of agent n in the addi-

tional information rent that agent n has to pay to agent i. Thus, consider the parametrized minimiza-

tion problem

Ji(x, κ) =
n−1

∑
i=1

Ci(xi, θi) +
n

∑
i=1

Di(qi(x)) +
n−1

∑
j=1,j 6=i

∂Cj(xj, θj)

∂θj

F(θj)

f (θj)
+ κ

∂Ci(xi, θi)

∂θi

F(θi)

f (θi)

with κ = 1 in Pn and κ = 0 in Pi. Showing that the cost minimizing xi is decreasing in κ, implies

xPi
i ≥ xPn

i .

Let κ′′ > κ′ and x′′i (x′′j ) ∈ argminxi
Ji(xi, xj, κ′′) and x′i(x′i) ∈ argminxi

Ji(xi, xj, κ′), where xj stands
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for all abatement levels except xi. Then, by revealed preferences

Ji(x′i(x′j), x′j, κ′) ≤ Ji(x′′i (x′′j ), x′′j , κ′),

Ji(x′′i (x′′j ), x′′j , κ′′) ≤ Ji(x′i(x′j), x′j, κ′′), ∀i, j, i 6= j.

Adding up the above inequalities and rearranging yields

Ji(x′i(x′j), x′j, κ′′)− Ji(x′i(x′j), x′j, κ′) ≥ Ji(x′′i (x′′j ), x′′j , κ′′)− Ji(x′′i (x′′j ), x′′j , κ′), ∀i, j, i 6= j.

Rewriting the above expression yields

∫ κ′′

κ′

∂Ji(x′′i (x′′j ), x′′j , κ)

∂κ
dκ ≤

∫ κ′′

κ′

∂Ji(x′i(x′j), x′j, κ)

∂κ
dκ, (5.17)

Note that
∂Ji(xi, xj, κ)

∂κ
=

∂Ci(xi, θi)

∂θi

F(θi)

f (θi)
,

Hence, inequality (5.17) can be rewritten as

∫ κ′′

κ′

∫ x′i(x′j)

x′′i (x′′j )

∂2 Ji(xi, xj, κ)

∂xi∂κ
≥ 0, ∀i, j, i 6= j.

Due to the single crossing property, the above inequality is satisfied, when

(κ′′ − κ′)(x′i(x′j)− x′′i (x′′j )) > 0.

Thus, given our assumption that κ′′ > κ′, we need x′i(x′j) > x′′i (x′′j ). Thus, xi(.) must be decreasing in

κ. Hence,

xPi
i ( if κ = 0) ≥ xPn

i ( if κ = 1).

According to proposition 8, agent i is better than agent n if

Eθ [K
Pi(.)− KPn(.)] ≈ Eθ [

∂Cn(xPi
n , θn)

∂θn

F(θn)

f (θn)
−

∂Ci(xPn
i , θi)

∂θi

F(θi)

f (θi)
−

∂2Ci(xPn
i , θi)

∂θi∂xi

F(θi)

f (θi)
(xPi

i − xPn
i )] ≤ 0.

(5.18)

Agent n does not abate, i.e. xPi
n = 0 and thus ∂Cn(x

Pi
n ,θn)

∂θn

F(θn)
f (θn)

= 0. In addition, according to lemma 2,

xPi
i ≥ xPn

i . Combined with
∂Ci(xPn

i ,θi)
∂θi

≥ 0, inequality (5.18) is fulfilled.

According to the minimization problem (3.1) of any principal i, the following first order conditions

must hold for all agents j 6= n

∂Cj(xPi
j , θj)

∂xj
+

∂2Cj(xPi
j , θj)

∂θj∂xj

F(θj)

f (θj)
+

n

∑
k=j+1

∂Dk(qk(xPi))

∂xj
= 0, ∀j.
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Subtracting the first order condition for agent j in Pn from the first order condition in Pi as given

above yields

∂Cj(xPi
j , θj)

∂xj
−

∂Cj(xPn
j , θj)

∂xj
+

∂2Cj(xPi
j , θj)

∂θj∂xj

F(θj)

f (θj)
−

∂2Cj(xPn
j , θj)

∂θj∂xj

F(θj)

f (θj)

+
n

∑
k=j+1

∂Dk(qk(xPi))

∂xj
−

n

∑
k=j+1

∂Dk(qk(xPn))

∂xj
= 0. (5.19)

As xPi
j ≤ xPn

j according to lemma 2 and
∂Cj(xj,θj)

∂xj
≥ 0 as well as

∂2Cj(xj,θj)
∂θj∂xj

≥ 0, the first two differences

in (5.19) are negative. Thus, for equality (5.19) to be satisfied,

n

∑
k=j+1

∂Dk(qk(xPi))

∂xj
−

n

∑
k=j+1

∂Dk(qk(xPn))

∂xj
≥ 0 (5.20)

has to hold. Due to
∂Dk(qk(x))

∂xj
< 0, the necessary condition for (5.20) to be satisfied is qk(xPi) ≤

qk(xPn), ∀k. It follows that ∑
n−1
j=1 xPi

j ≥ ∑
n−1
j=1 xPn

j .

Proof. of proposition 9

From the minimization problem (3.1), we attain the following abatement levels

xPi
i = xFB

i = c′−1
i

(

∑
n
j=i+1 β j

θi

)

and

xPi
j = c′−1

j




∑

n
k=j+1 βk

θj +
F(θj)

f (θj)



 ≤ xFB
j

with c′−1
j (.) being the inverse function of c′j(.), j = 1, ..., n − 1. According to proposition 8,

Eθ [K
Pi(.)] ≤ Eθ [K

Pj(.)] ⇔
∫ Eθ [x

Pi
k ]

Eθ [x
Pk
i ]

∂2C(xi, E[θ])

∂E[θ]∂xi
dxi −

∂2C(Eθ [x
Pk
i ], E[θ])

∂E[θ]∂xi
(Eθ [x

Pi
i ]− Eθ [x

Pk
i ]) ≤ 0.

Due to ∂2C(x,θ)
∂θ∂x > 0, the above inequality is satisfied if Eθ [x

Pi

k ] ≤ Eθ [x
Pk
i ] and Eθ [x

Pk
i ] ≤ Eθ [x

Pi
i ]. This

is the case for all agents i upriver of agent k due to ∑
n
j=i+1 β j > ∑

n
j=k+1 β j, k > i and c′−1

j (.) being

an increasing function. The bigger Eθ [x
Pi

k ] relative to Eθ [x
Pk
i ] as well as Eθ [x

Pk
i ] to Eθ [x

Pi
i ], the bigger

the difference between expected total costs in Pi and Pk. Hence, with agent 1 as the principal, the

expected difference in total costs is the largest.

Proof. of lemma 1

The optimal abatement levels xPi
i are the solution to the following minimization problem

minx1,x2 KPi(x1, x2, θ1, θ2, κ1, κ2) =minx1,x2 [D3(e1 + e2 − x1 − x2) + C1(x1, θ1) + κ1
∂C1(x1, θ1)

∂θ1

F(θ1)

f (θ1)

+ C2(x2, θ2) + κ2
∂C2(x2, θ2)

∂θ2

F(θ2)

f (θ2)
+ D2(e1 − x1)− D2(e1)]
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with κi = 0, κj = 1 for structure Pi, i, j = 1, 2, j 6= i and κ1 = 1 and κj = 1 for structure P3. Set
F(θi)
f (θi)

= h(θi). Solving the above minimization problem implies

xPi
1 =

(β2e1 + β3(e1 + e2))(β3 + κ2h(θ2) + θ2)− β2
3(e1 + e2)

(β2 + β3 + κ1h(θ1) + θ1)(β3 + κ2h(θ2) + θ2)− β2
3

, ∀i

and

xPi
2 =

β3(β2e2 + (e1 + e2)(θ1 + κ1h(θ1)))

(θ1 + κ1h(θ1))(κ2h(θ2) + θ2) + β2(β3 + κ2h(θ2) + θ2) + β3(κ1h(θ1) + κ2h(θ2) + θ1 + θ2)
, ∀i

Let e1 = αe2 and

f (α) := Eθ1,θ2
[KP1(α)− KP2(α)].

Set h̃ = E[h(θ)], m = h̃ + E[θ] and b = h̃ + 2E[θ], then

f (α) = −
β2h̃(β2(β2

3(−e2 + e2α)(e2 + e2α) + e2
2α2E[θ]m + β3e2

2α2b) + β3(e2 + e2α)(2e2αE[θ]m + β3(−e2 + e2α)b))

2(β3(β2 + h̃) + (β2 + 2β3 + h̃)E[θ] + E[θ]2)(E[θ]m + β2(β3 + m) + β3b)

Clearly, as long as −e2 + e2α ≥ 0, i.e. α ≥ 1, we get f (α) ≤ 0. There exist αidj , j = 1, 2 for which we

have Eθ1,θ2
[KP1(.)] = Eθ1,θ2

[KP2(.)], namly,

αid1 =
β2

3(β2 + b)

β3mE[θ] +
√

β2
3(β3(β2 + b)(β3b + β2(β3 + b)) + (β2 + 2β3)m(β2 + b)E[θ] + m2E[θ]2)

and

αid2 = −
β3mE[θ] +

√

β2
3(β3(β2 + b)(β3b + β2(β3 + b)) + (β2 + 2β3)m(β2 + b)E[θ] + m2t2)

(β3(β3b + β2(β3 + b)) + (β2 + 2β3)mE[θ])

with αid1 > 0, αid2 < 0. Furthermore, f (α) has a maximum at αmax
< 0, i.e. f ′(α) = 0 ⇔

αmax = −
(β3mE[θ])

(β3(β3b + β2(β3 + b)) + (β2 + 2β3)mE[θ])

with f ′′(αmax) < 0 and f (αmax) > 0. Thus, as we only consider α > 0, for all α ∈ (0, αid1) with αid1 < 1

we get that choosing agent 2 as the principal is better than agent 1 and for all α > αid1 , choosing agent

1 is better.

65



Figure 3: In the pink area, Eθ1,θ2
[KP1(α)] > Eθ1,θ2

[KP2(α)]. In the blue area,
Eθ1,θ2

[KP1(α)] < Eθ1,θ2
[KP2(α)].
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Chapter 3

A Second-Best Optimal Solution for Pollution Abatement in
Multi-Polluter Networks

Abstract

We propose a second-best optimal solution to the problem of pollution abatement in a multi-

polluter network with heterogeneously dispersed pollution. Instead of taking an exogenously

given and predetermined pollution cap in a cap-and-trade system, the pollution cap is endoge-

nized so that it is determined by the total cost-minimizing equilibrium of a cap-and-trade system.

We show that with quadratic abatement costs and linear damage costs, the first-best optimal pol-

lution cap implements the second-best cost-minimizing equilibrium of the cap-and-trade system

for any network. However, the second-best optimal abatement allocation differs from the first-best

optimal abatement allocation, implying higher second-best optimal total costs than first-best opti-

mal. In particular, second-best optimal total abatement costs fall short of first-best total abatement

costs, while second-best optimal total damage costs exceed first-best optimal damage costs. These

findings hold for two different cap-and-trade systems considered, the emission permit market and

the ambient pollution market.

1 Introduction

The regulation of uniformly distributed pollution with multiple sources and receptors of pollution

has been well studied (e.g. Baumol and Oates (1988), Tietenberg (1995)). The first-best solution may

be implemented by a Pigou tax or a cap-and-trade system. However, controlling heterogeneously

dispersed pollution in multi-polluter networks is more complex, because emissions released at the

sources and the damage-inducing ambient pollution levels accumulated at the receptors may not co-

incide. Because emissions from different sources induce different damage costs for the receptors, and

because the marginal damage costs may vary across receptors, the first-best optimal abatement allo-

cation can only be implemented by source-dependent taxes or prices of the tradable pollution rights

in cap-and-trade systems. It is, however, questionable whether such source-dependent regulating

instruments could be implemented.

In this chapter, we propose a second-best optimal solution to the problem of pollution abatement in a

multi-polluter network with heterogeneously dispersed pollution. Instead of taking an exogenously

given and predetermined pollution cap in a cap-and-trade system, we endogenize the pollution cap.

The endogenized pollution cap, termed the second-best pollution cap, is determined by the total cost-

minimizing equilibrium of the cap-and-trade system. We establish that, when facing linear damages

and quadratic abatement costs to reduce emissions, the first-best optimal pollution cap implements

the second-best cost-minimizing equilibrium of the cap-and-trade system for any network. How-

ever, the second-best optimal abatement allocation implied by the second-best pollution cap is not

equivalent to the first-best optimal abatement allocation, indicating higher second-best total costs for

the network than the first-best optimal. In particular, second-best total abatement costs in the cap-

and-trade system falls short of first-best total abatement costs, while second-best total damage costs
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exceed first-best optimal damage costs.

These findings hold for two different cap-and-trade systems, for the emission permit market and

ambient pollution market. The main distinction between these two markets is that an emission per-

mit gives a source a right to emit a unit of emission, whereas an ambient pollution permit is defined

as a permission to deposit a unit of emission at a specific receptor (Montgomery (1972)). Thus, am-

bient pollution markets incorporate the externality structure of the network, while emission markets

ignore it. Yet, counter-intuitively, we find that an ambient pollution market is not always the bet-

ter choice as an optimal second-best policy instrument. Furthermore, for other functional forms of

abatement and damage cost functions, first-best optimal pollution caps do not implement the cost-

minimizing equilibrium of the cap-and-trade system. Interestingly, second-best pollution caps may

either fall short of or exceed the first-best pollution caps. The resulting policy implication for the

regulation of heterogeneously distributed pollution in multi-polluter networks is to implement a

cap-and-trade system that fixes the cap at the first-best optimal pollution level whenever real-life

damages can be approximated to be linear and abatement cost functions to be quadratic. However,

in general, when facing other functional forms of damage and abatement costs, this policy guideline

should not be adopted.

It is well established that tradable pollution permits are a cost-efficient and cost-efficient policy in-

strument for uniformly distributed pollutants with multiple sources and receptors of pollution. They

provide incentives for the greatest reductions in pollution by those that can achieve these reductions

most cheaply and thus allowing any desired level of pollution to be realized at least costs to a net-

work (Baumol and Oates (1971)). However, the literature on the optimal regulation of spatially het-

erogeneous externalities where the emissions from one source affect receptors differently is rather

limited. Montgomery (1972) was the first who showed that a cost-effective, marketable permits sys-

tem must be spatially differentiated and proposed ambient pollution permits. He argued that as

long as the authorities can specify a vector of transfer coefficients for each emitter, linking emissions

at each location with concentrations at each of the predefined receptor locations, specific trades can

be defined which cost-effectively allocate the responsibility. Later, Krupnick et al. (1983) proposed

the approach of pollution offsets allowing trading among sources as long as it does not violate am-

bient air quality standards at any receptor point. New emitters must acquire permits from existing

sources to completely ’offset’ the effects of the new emissions on pollutant concentrations at recep-

tor points so that, in effect, exchange rates are endogenously given. This procedure provides for

ambient quality goals to be attained at least costs. More recently, Klaassen et al. (1994) proposed a

hybrid instrument that combines emission trading with a command-and-control policy, termed the

exchange-rate emission trading system. In this exchange-rate emission trading system, the environ-

mental authority first calculates and sets exchange rates ex-ante equal to the ratios of the sources’

marginal abatement costs in the first-best solution. Sources then trade with each other according to

these exogenous exchange rates. It was established that generally, this system will not achieve the

least cost solution and does not guarantee that environmental deposition constraints are upheld, al-

though total abatement costs are always reduced. Another market-oriented approach was proposed

by Hung and Shaw (2005). They designed a trading-ratio system of tradable discharge permits for
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water pollution control. They show that their cap-and-trade system is a cost-effective instrument that

meets predetermined environmental standards with the least aggregate abatement costs. These pro-

posed regulation instruments are cost effective, but provide second-best policy instruments because

none of them is cost-efficient. However, these instruments do not implement the second-best cost

minimum. To the best of our knowledge, no one has thus far studied second-best optimality for a

market-based policy instrument for a multi-polluter network with spatially distributed pollution.

The rest of the chapter is organized as follows. In Section 2, we introduce the multi-polluter net-

work model and the first-best optimal solution to the problem of pollution abatement. In section

3, we discuss cap-and-trade systems as second-best solution concepts. In section 3, we present the

second-best optimal solution concept and address which cap-and-trade regime should be chosen

regarding second-best optimality. Section 5 concludes the chapter.

2 Multi-Polluter Network with non-uniformly distributed Pollution

Consider a multi-polluter network G consisting of n sources of pollution represented by a set of

agents N = 1, ..., n. The agents are arranged in the network G according to an exogenously given

geographical structure g. Each agent i produces gross emissions in exogenously given amount ei,

whereby ei ≥ 0 for all i and ej > 0 for at least one j. Gross emissions of agent i may pose negative

and spatially heterogeneous externalities on other agents j 6= i in the network. Each multi-polluter

network exhibits a specific externality structure Γ with elements γij ∈ [0, 1]. For any pair of agents

i, j, γij > 0 states that agent j is negatively affected by agent i’s emissions and the size of γij specifies

the percentage of the emissions released by agent i that reach agent j. In contrast, γij = 0 indicates

that the emissions of agent i do not affect agent j. Furthermore, we assume that γii = 0 for all agents,

so that pollution is an external effect. To clarify, externalities only go in one direction, so that γij 6= 0

does not necessarily imply γji 6= 0. Examples of such multi-polluter networks with spatially hetero-

geneously distributed pollution may encompass heterogeneously distributed global air pollutants,

noise pollution and river pollution.

All agents i may choose to abate pollution in the amount xi with 0 ≤ xi ≤ ei by incurring abate-

ment costs ci(xi). The abatement costs faced are strictly increasing, differentiable and strictly convex

functions ci(.), i.e. c′i(.) > 0, c′′i (.) > 0 and ci(0) = 0. Let x = (x1, . . . , xn) be the vector of abatement

efforts. Net emissions ei − xi are released at each agent i, and are assumed to accumulate in the net-

work, so that the ambient pollution level qi at agent i of the network G is given by the sum of net

emissions by the agents j 6= i with γji > 0, i.e.

qi(x) =
n

∑
j=1

γji(ej − xj). (2.1)

Intuitively, γji measures by how much the ambient pollution level qi(x) at agent i increases, if net

emissions of agent j increase by one unit. The ambient pollution level qi(x) imposes costs on agent i

in form of damages, which are differentiable, convex and strictly increasing functions di(qi(x)) of the
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ambient pollution level qi(x) given in (2.1), i.e. d′i(.) > 0 and d′′i (.) ≥ 0. Without loss of generality,

di(0) = 0, no damages are incurred if there is no pollution.

Total costs of an agent i are denoted by ki(xi, qi(x)) and are the sum of his damage and abatement

costs, i.e.

ki(xi, qi(x)) = di(qi(x)) + ci(xi).

As the vector of abatement efforts x = (x1, ..., xn) together with the vector of exogenously given emis-

sions e = (e1, ..., en) fully characterize the vector of ambient pollution levels q(x) = (q1(x), ..., qn(n)),

total individual costs ki(xi, qi(x)) of an agent i are fully determined by the abatement allocation x.

To sum up, a multi-polluter network G with heterogeneously dispersed pollution is characterized

by (N, e, c, d, Γ), where N is the number of agents, and c = (c1, ..., cn) respectively d = (d1, ..., dn)

denote the vectors of abatement and damage cost functions. We assume perfect information in all

variables and functions (N, e, c, d, Γ).

There exists a unique and optimal abatement allocation minimizing overall costs in the multi-polluter

network, i.e. the sum of all individual abatement and damage costs.

Proposition 1. There exists a unique abatement vector x⋆ which is the solution to the following constrained

minimization problem

minx1,...,xn

n

∑
i=1

ci(xi) + di(qi),

subject to

qi(x) =
n

∑
j=1

γji(ej − xj)

and

0 ≤ xi ≤ ei.

Proof. of proposition 1

Existence and uniqueness follow directly from the strict convexity of the individual total cost func-

tions ki(xi, qi(x)).

As we restrict our attention to interior solutions, the necessary conditions for the total cost mini-

mum are

c′i(xi) =
n

∑
j=1

γijd
′
j(qj), ∀i, j, (2.2)

which follow directly from the corresponding Lagrangian

L =
n

∑
i=1

ci(xi) + di(qi) +
n

∑
j=1

λj[
n

∑
i=1

γij(ei − xi)− qj],

where λj is the Lagrange-multiplier of each pollution level qj, and the combination of the resulting
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first order conditions

∂L

∂xi
= c′i(xi)−

n

∑
j=1

λjγij = 0, ∀i = 1, ..., n; j = 1, ..., n

∂L

∂qi
= d′i(qi)− λi = 0, ∀i = 1, ..., n.

Due to pollution being an external effect and because abatement is costly, agents do not have any

incentive to abate.

Proposition 2. If the multi-polluter network G is considered to be a non-cooperative game among the agents,

each agent’s dominant strategy is not to abate, xi = 0, ∀i.

As a consequence of proposition 2, the first-best optimal abatement allocation will not be imple-

mented by the agents voluntarily. Thus, external regulation is deemed necessary. Such regulatory

instruments include, for example, command-and-control regulation and market-based approaches

such as cap-and-trade systems. However, in contrast to multi-polluter networks with either uni-

formly mixed pollutants or pollution impact measured at a single receptor, multi-polluter networks

with non-uniformly mixed pollutants and many affected receptors would require many different

permit trading markets or source specific emission taxes to implement the first-best solution. Yet,

in reality implementing many such markets or taxes may be difficult to be administered. Thus, in

this chapter we focus on establishing only one cap-and-trade system charging the same price for the

pollution rights for all emitters with the drawback that only second-best outcomes may be achieved

in the case of spatially distributed pollution.

In the next section, we introduce two different cap-and-trade systems, the emission permit mar-

ket and the ambient pollution permit market. We illustrate that these two markets indeed do not

implement the first-best solution in our setting in general, except for the conditions established.

3 A second-best Solution: Cap-and-Trade Systems

In cap-and-trade systems, an external authority chooses a pollution cap z for the whole network.

Pollution permits, representing the right to emit one unit of pollution, are then issued in this amount

and allocated to the agents at no costs so that each agent receives zi permits. Agents are allowed to

trade the permits they are equipped with at a price of p. Let zi be the net emissions of agent i. If zi

exceeds zi, an agent i may sell the excess (zi − zi) at the price p in exchange for money. Similarly, he

may buy zi − zi if the pollution released exceeds the number of permits held by the agent i. A buyer

of permits is thus paying a charge for polluting, while a seller is being rewarded for having reduced

his pollution. Thus, in theory, those who can reduce pollution most cheaply will do so, reaching the

pollution target at the lowest cost. Clearly, if the external authority sets the pollution cap too high,

the price of one permit is too low, reducing the incentives for the agents to cut back emissions and

damage costs will be high. On the other hand, setting the pollution cap too low might lead to a high

permit price, implying high abatement costs. The initial allocation of permits has no consequences

for overall costs in a permit market, as we have perfect information, perfect competition and no
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transaction costs (Montgomery 1972). In addition, we assume that agents are not budget restricted.

In the following, two different permit market regimes are introduced, the emission market, where

the externality structure of the network is ignored, and the ambient pollution market, where it is

incorporated.

Emission market

In an emission market, emission permits are traded. An emission permit gives an agent the right to

discharge one unit of pollution, regardless of how many and by how much other agents are affected

by this unit of pollution. Let zE be the pollution cap set by an external authority for the emission

market and z = (z1, ..., zn) be the vector of net emissions. Each agent i will choose the least-costly

way to comply with the pollution regulation, i.e.

minzi
ci(ei − zi) + di(qi(z)) + p · (zi − zi)

subject to 0 ≤ zi ≤ ei and qi(z) =
n

∑
j=1

γjizj,

where p · (zi − zi) with a positive (negative) sign represents agent i′s permit trading expenditure

(revenue). The associated first order conditions are

c′i(ei − zi) = p, ∀i = 1, ..., n, (3.1)

stating that an agent i adjusts his abatement level until the marginal abatement costs are equal to the

permit price. Let c−1
i (.) denote the inverse function of ci(.). From the first oder conditions, we attain

the individual permit demand functions

zE
i (p) = ei − c′−1

i (p), ∀i. (3.2)

As ci(.) is increasing and convex, c−1
i (.) is increasing and concave. Thus, the permit demand func-

tions zE
i (p) are decreasing functions of the permit price p. Market clearing demands the sum of all

permit demands to be equal to the permit supply, i.e.

zE =
n

∑
i=1

zE
i (p). (3.3)

From this the equilibrium price pE can be attained. Let zE = (zE
1 (pE), ..., zE

n(pE)) be the resulting

vector of permit demands for an emission market given zE. Total costs for an agent i add up to

kE
i (pE, zE) = ci(ei − zE

i (pE)) + di(qi(z
E)) + pE · (zE

i (pE)− zi)

whereby qi(z
E) = ∑

n
j=1 γjiz

E
j (pE).

Summing up over all agents individual cost levels kE
i (pE, zE) yields a total cost level of TE, i.e.

TE =
n

∑
i=1

kE
i (pE, zE) =

n

∑
i=1

ci(ei − zE
i ) + di(qi(z

E)),
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where individual revenues and expenditures on permits add up to zero.

Ambient Pollution Market

Next, we consider an ambient pollution market. An ambient pollution permit gives agent i the per-

mission to deposit a unit of emissions at a specific agent. Thus, in this market, the externality struc-

ture Γ is integrated in that each agent i has to hold permits in the amount of his induced ambient

pollution. Let zI be the ambient pollution target level set by the coordinator. Similar to the emission

market, the cost-minimizing behaviour of the agents i = 1, ..., n implies the following minimization

problem

minzi
ci(ei − zi) + di(qi(z)) + p · (

n

∑
j=1

γijzi − zi)

subject to 0 ≤ zi ≤ ei and qi(z) =
n

∑
j=1

γjizj.

Solving the minimization problem yields the first order conditions

c′i(ei − zi) = p ·
n

∑
j=1

γij, ∀i = 1, ..., n. (3.4)

Analogously to the emission market, the costs to abate one more unit of pollution have to be equal to

the costs to emit one more unit of pollution. However, in contrast to the emission market, the costs to

emit one more unit of pollution are composed of the price of a permit times the sum of the increases

in the ambient pollution levels at the receptors caused by the additional unit of pollution. From (3.4),

the net emission function zI
i (p) = ei − c′−1

i (p · ∑
n
j=1 γij) of agent i can be attained. Individual permit

demand is then given by ∑
n
j=1 γijz

I
i (p), which is, analogously to the emission market, decreasing in

the permit price p. Market clearing demands

zI =
n

∑
i=1

n

∑
j=1

γijz
I
i (pI), (3.5)

from which we obtain the equilibrium price pI and the vector of net emission functions

zI
i = (zI

1(pI), ..., zI
n(pI)). The resulting individual total costs for an agent i are

kI
i (pI , zI) = ci(ei − zI

i (pI)) + di(qi(z
I)) + pI · (

n

∑
j=1

γijz
I
i (pI)− zi)

with qi(z
I) = ∑

n
j=1 γjiz

I
j (pI). Adding up all individual cost levels yields total costs in an ambient

pollution market of

T I =
n

∑
i=1

kI
i (pI , zI) =

n

∑
i=1

ci(ei − zI
i ) + di(qi(z

I)),

whereby total expenditures and revenues of the permit trades add up to zero.
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Both permit market regimes generally fail to implement the least cost minimum given any pre-

determined pollution cap in networks with non-uniformly distributed pollution. In the following

proposition, we establish under which specific conditions permit markets are able to implement the

first-best solution.

Proposition 3. Emission markets are first-best optimal iff

n

∑
j=1

γijd
′
j(qj) =

n

∑
j=1

γkjd
′
j(qj), ∀k, i,

i.e. a unit-increase in net emissions of each agent i = 1, ..., n needs to have exactly the same total negative effect

on all other agents j 6= i.

Ambient pollution markets are first-best optimal iff

d′i(qi) = d′j(qj), ∀i, j,

i.e. marginal damages have to be equalized across all agents i.

The proof of proposition 3 may be found in the appendix.

Instead of setting an arbitrary pollution level, it is reasonable to assume that a coordinator will set

the pollution cap to be first-best optimal, i.e. to the first-best optimal total level of pollution in case

of an emission market or the first-best optimal total level of ambient pollution in case of an ambient

pollution market. The first-best pollution cap z⋆E for an emission market is determined by the sum of

all endogenously given gross emissions ei minus the first-best abatement levels x⋆, i.e.

z⋆E =
n

∑
i=1

ei − x⋆i . (3.6)

Similarly, the first-best pollution cap z⋆I for the ambient pollution market is given by the sum of each

agent’s first-best optimal ambient pollution level q⋆i , i.e.

z⋆I =
n

∑
i=1

q⋆i (x) =
n

∑
i=1

(
n

∑
j=1

γji(ej − x⋆j )). (3.7)

In the next section, we propose a second-best optimal solution for the pollution abatement prob-

lem in networks with non-uniformly dispersed pollution.

4 A Second-best Optimal Solution

As established in the previous section, whenever we face heterogeneously distributed pollution in

multi-polluter networks, cap-and-trade systems fail to implement the first-best optimal solution

given any predetermined pollution cap. Cap-and-trade systems are cost-effective, in that a pre-

determined pollution cap is met at least costs, however, these least costs might not correspond to

the cost minimum of the cap-and-trade system. Thus, we propose the following second-best opti-

mal solution for the problem of emission abatement in multi-polluter networks: Instead of taking
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an exogenously given pollution cap, we endogenize the pollution cap. The endogenized pollution

cap, we call the second-best pollution cap, is determined by the total cost minimizing equilibrium of the

cap-and-trade system considered.

Formally, let zw be a given pollution cap for the two markets w = I, E, where I stands for an am-

bient pollution and E for an emission market. Total costs in a permit market in dependence of the

pollution cap zw, denoted by Tw(zw), are uniquely determined by zw and amount to

Tw(zw) =
n

∑
i=1

ki(pw(zw), zw) =
n

∑
i=1

di(
n

∑
j=1

γjiz
w
i (pw(zw))) +

n

∑
i=1

ci(ei − zw
i (pw(zw))), w = I, E. (4.1)

The individual permit demands zw
i (pw(zw)) follow from the cost minimization conditions (3.1) and

(3.4) for the emission and ambient pollution market respectively and pw(zw) is attained from the

market clearing conditions for the emission market (3.3) respectively ambient pollution market (3.5).

Proposition 4. For both permit markets w = I, E, there exists a pollution cap z⋆⋆w which implements the

total cost minimizing equilibrium of the permit market if c′′′i (ei − zw
i (.)) ≤ 0.

The pollution cap z⋆⋆w solving ∂Tw(zw)
∂zw = 0 is a global minimum as long as Tw(zw) is convex in

zw, which is shown to be the case whenever c′′′i (ei − zw
i (.)) ≤ 0. The proof of proposition 4 may be

found in the appendix. Examples for abatement functions with c′′′i (ei − zw
i (.)) ≤ 0 are of the form

ci(xi) = xn
i with n > 1 and ci(xi) = 1/k · exp(xi)− 1/k.

4.1 Second-best Pollution Caps

The second-best pollution cap z⋆⋆w minimizes total costs Tw(zw) in the corresponding permit market,

w = I, E. Thus, differentiating Tw(zw) given in (4.1) with respect to zw and setting equal to zero yields

(
n

∑
i=1

n

∑
j=1

∂di(∑
n
j=1 γjiz

w
j (pw(zw)))

∂zw
j (pw(zw))

·
∂zw

j (pw(zw))

∂pw(zw)

)

·
∂pw(zw)

∂zw

+

(
n

∑
j=1

∂cj(ej − zw
j (pw(zw)))

∂zw
j (pw(zw))

·
∂zw

j (pw(zw))

∂pw(zw)

)

·
∂pw(zw)

∂zw = 0.

Applying the envelope theorem implies

n

∑
i=1

n

∑
j=1

∂di(∑
n
j=1 γjiz

w
j (pw(zw)))

∂zw
j (pw(zw))

∂zw
j (pw(zw))

∂pw(zw)
|zw=z⋆⋆w

+
n

∑
j=1

∂cj(ej − zw
j (pw(zw)))

∂zw
j (pw(zw))

∂zw
j (pw(zw))

∂pw(zw)
|zw=z⋆⋆w = 0.

(4.2)

In proposition 4, we state that there always exits a z⋆⋆w for which (4.2) holds. Furthermore, z⋆⋆w con-

stitutes a global minimum, because total costs T(zw) are convex.

Do second-best pollution caps differ from first-best pollution caps and if yes, do they exceed or fall
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short of first-best pollution caps? Intuitively, second-best pollution caps should deceed first-best pol-

lution caps. Even though externalities are better incorporated in the second-best optimal concept

compared to traditional cap-and-trade systems, permit markets are primarily cost effective, leading

to least total abatement costs possible. Due to this, it is reasonable to assume that second-best optimal

caps should fall short of first-best caps. Surprisingly, we find that when facing linear damages and

quadratic abatement costs, the first-best pollution caps coincide with the second-best pollution caps.

Proposition 5. Suppose agent i faces quadratic abatement costs represented by

ci(xi) =
1

2
αi · x2

i , with αi > 0, i = 1, ..., n,

and linear damage functions di(.) taking the following form

di(qi(x)) = βi · qi(x), with βi > 0, qi(x) =
n

∑
j=1

γji(ej − xj), i = 1, ..., n.

Then, the first-best optimal pollution cap z⋆w implements the second-best cost minimizing equilibrium of the

cap-and-trade system w = I, E for any network.

The appendix provides the proof of proposition 5. Proposition 5 states that if facing linear dam-

ages and quadratic abatement costs, establishing a cap-and-trade system and choosing a pollution

cap corresponding to the first-best optimal pollution level implements the second-best cost minimiz-

ing equilibrium of the cap-and-trade system for any network with non-uniformly distributed pollu-

tion and spatially distributed sources and receptors. However, we show that the second-best optimal

abatement allocation implied by the second-best pollution cap generally differs from the first-best

optimal abatement allocation for at least one agent expect for the conditions stated in proposition 3,

indicating higher second-best minimal total costs for the network than first-best optimal. In other

words, the dead weight loss, defined as the difference between the second-best cost minimum and

the first-best cost minimum, is weakly positive. Furthermore, we establish that in the second-best

cost minimizing equilibrium, total abatement costs fall short of the first-best total abatement costs,

whereas total damage costs exceed first-best total damage costs for both permit market regimes.

Proposition 6. If facing linear damage and quadratic abatement cost functions, for both market regimes it

holds that

∆Cw = Cw − C⋆ ≤ 0, w = I, E

and

∆Dw = Dw − D⋆ ≥ 0, w = I, E

with Cw and Dw being the second-best minimal total abatement costs respectively damage costs in the market

regime w and C⋆ and D⋆ being the total abatement and damage costs in the first-best solution respectively.

Moreover, the dead weight loss is positive

DWLw = ∆Cw + ∆Dw ≥ 0, w = I, E.

The proof of proposition 6 may be found in the appendix. In conclusion, the cost minimizing equi-
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librium in a cap-and-trade system differs from the total cost minimum in the multi-polluter network.

Although total abatement effort is the same as in first-best solution, it is not optimally distributed

among the agents because the externalities are still not perfectly internalized in the second-best opti-

mal solution and the cost-effective property of the cap-and-trade systems seems to be predominant.

By facing other functional forms for the abatement and damage cost functions, the first-best optimal

pollution cap does not implement the second-best cost minimizing equilibrium of the cap-and-trade

system. Second-best pollution caps may either exceed or fall short of first-best pollution caps. This

finding is illustrated for quadratic damage costs and quadratic abatement costs for a specific network.

Example 1. Let us consider the problem of efficient emission abatement in an international river.

Agents are located along the river and pollute the water body by discharging waste water from

commercial and industrial waste in the amount of ei. Net emissions ei − xi accumulate while moving

downriver and we assume the river does not have any assimilative capacity. Furthermore, suppose

the agents i = 1, ..., n are linearly ordered along the river from up to down, so that j > i indicates that

agent j is located downriver of agent i. The externality structure Γ for the river sharing problem is

characterized by

γji =







0, ∀j ≥ i

1, ∀j < i

In words, an agent i’s net emissions affect all his downstream agents j > i equally and fully. Thus,

this specific network has a linear hierarchical structure with downstream oriented externalities.

Figure 4: River pollution network with n = 3, where the arrows represent the externalities between the
agents

Agent 1 Agent 2 Agent 3

Suppose, we have quadratic damage functions given by

di(qi(x)) = 1/2βiq
2
i (x), i = 1, ..., n

with βi > 0, so that the marginal damage costs d′i(qi) are positive and increasing in qi, i.e. d′i(qi) >

0, d′′i (qi) > 0, ∀i. As before, the functional form of the quadratic abatement functions is given by

ci(xi) = 1/2αix
2
i . The first order conditions (2.2) for the river network indicate that the marginal

abatement costs of an agent i have to be equal to the sum of the marginal damage costs of all his

followers j > i along the river. The main consequence of choosing non-linear damage functions

is that the first order conditions (2.2) of the minimization problem in proposition 1 constitute a n-

dimensional system of equations as the marginal damage costs are not constant. Thus, for simplicity,

we consider a river shared by only three agents.
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The first order conditions (2.2) translate into

c′1(x1) = d′2(q2(x)) + d′3(q3(x))

c′2(x2) = d′3(q3(x))

c′3(x3) = 0.

Given the functional forms of the abatement and damage cost functions, the system of equations can

be rewritten as

α1x1 = β2(e1 − x1) + β3(e1 + e2 − x1 − x2)

α2x2 = β3(e2 + e1 − x1 − x2)

α3x3 = 0.

Solving the system of equations, yields the following first-best abatement levels

x⋆1 =
e1(β2β3 + α2β2) + α2β3(e1 + e2)

α2(α1 + β2) + β3(α1 + α2 + β2)

x⋆2 =
β2β3e2 + α1β2(e1 + e2)

α2(α1 + β2) + β3(α1 + α2 + β2)

x⋆3 = 0.

As the emissions of agent 3 do not harm any other agents, it would be inefficient for agent 3 to abate.

Therefore, it is reasonable to assume that agent 3 is not required to hold any permits and no permits

are allocated to agent 3 initially. Hence, the first-best pollution cap for the emission market amounts

to

z⋆E =
2

∑
i=1

ei − x⋆i =
α2β2e2 + α1α2(e1 + e2)

α2(α1 + β2) + β3(α1 + α2 + β2)

and for the ambient pollution market

z⋆I =
2

∑
i=1

3

∑
j=1

γij(ei − x⋆i ) =
α1e1(2α2 + β3) + α2e2(α1 + β2 − β3)

α2(α1 + β2) + β3(α1 + α2 + β2)

with ∑
3
j=1 γ1j = 2 and ∑

3
j=1 γ2j = 1, indicating that agent 1’s emissions at the source of the river

impact the two downriver agents 2 and 3 whereas agent 2’s emissions only affect agent 3.

Next, we calculate the second-best pollution cap. In an emission market, agent i minimizes

minzi
ki(zi, p) = minzi

1/2αi(ei − zi)
2 + 1/2βiq

2
i (z) + p(zi − zi)

so that qi(z) =
2

∑
j=1

γjizj,
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implying zE
i (p) = ei −

p
αi

, i = 1, 2. Market clearing demands

2

∑
i=1

zi = e1 −
p

α1
+ e2 −

p

α2
= zE,

from which we extract

pE(zE) =
e1 + e2 − zE

1
α1
+ 1

α2

.

Inserting pE(zE) into zE
1 (p) and zE

2 (p) yields the individual permit demands of

zE
i (pE(zE)) = ei −

1

αi

e1 + e2 − zE

1
α1
+ 1

α2

, i = 1, 2.

Total costs in the emission market in dependence of the pollution cap zE amount to

TE(zE) = c1(e1 − zE
1 (p(zE))) + c2(e2 − zE

2 (p(zE))) + d2(z
E
1 (p(zE))) + d3(z

E)

= 1/2




(e1 + e2 − zE)2

1
α1
+ 1

α2

+ β2

(

e1 −
e1 + e2 − zE

α1(
1
α1
+ 1

α2
)

)2

+ β3(z
E)2



 .

Total costs TE(zE) reach their minimum at the second-best pollution cap z⋆⋆E, which can be expressed

as

z⋆⋆E =
α2(α1e1(α1 + α2 − β2) + e2(α2

1 + α1α2 + α2β2))

α2
1(α2 + β3) + α2

2(β2 + β3) + α1α2(α2 + 2β3)
.

Similarly, in an ambient pollution market, agent i minimizes

minzi
ki(zi, p) = minzi

1/2α1(ei − zi)
2 + 1/2βiq

2
i (z) + p(

3

∑
j=1

γijzi − zi)

so that qi(z) =
2

∑
j=1

γjizj,

with ∑
3
j=1 γ1j = 2 and ∑

3
j=1 γ2j = 1 for agent 1 and agent 2 respectively, implying net emission

functions of zI
1(p) = e1 −

2p
α1

and zI
2(p) = e2 −

p
α2

. Market clearing demands

2

∑
i=1

3

∑
j=1

γijz
I
i (p) = 2(e1 −

2p

α1
) + e2 −

p

α2
= zI

from which we extract

pI(zI) =
2e1 + e2 − zI

4
α1
+ 1

α2

.

79



Plugging pI(zI) into zI
1(p) and z2(p) yields the individual net emission functions of

zI
i (pI(zI)) = ei −

∑
3
j=1 γij

αi

(

2e1 + e2 − zI

4
α1
+ 1

α2

)

, i = 1, 2.

Total costs in a permit market in dependence of zI are the sum of the individual cost levels

T I(zI) = c1(e1 − zI
1(pI(zI))) + c2(e2 − zI

2(pI(zI))) + d2(z
I
1(pI(zI))) + d3(z

I
1(pI(zI)) + zI

2(pI(zI)))

= 1/2



α1

(

2

α1

2e1 + e2 − zI

4
α1
+ 1

α2

)2

+ α2

(

1

α2

2e1 + e2 − zI

4
α1
+ 1

α2

)2


+ 1/2β2

(

e1 −
2

α1

2e1 + e2 − zI

( 4
α1
+ 1

α2
)

)2

+ 1/2β3

(

e1 −
2

α1

2e1 + e2 − zI

( 4
α1
+ 1

α2
)

+ e2 −
1

α2

2e1 + e2 − zI

( 4
α1
+ 1

α2
)

)2

.

Minimizing T I(zI) with respect to zI yields the following second-best pollution cap

z⋆⋆I =
α1e1(α1(2α2 + β3) + α2(8α2 − 2β2 + 2β3)) + α2e2(α2

1 + 4α1α2 + 4α2β2 − 2α1β3 − 4α2β3)

(α2 + β3)(α2
1 + 4α1α2) + 4α2

2(β2 + β3)
.

For the case of linear damages, we established that first and second-best pollution caps coincide. By

assuming specific abatement and damage cost parameters, it can be easily demonstrated that this

equivalence does not hold in the case of quadratic damages. In particular, the divergence may go in

both directions in that second-best pollution caps may exceed or deceed first-best pollution caps. For

simplicity, let us consider the case of full symmetry, i.e. αi = α, βi = β and ei = e. In this case, the

first-best pollution caps for the two permit market regimes simplify to

z⋆E =
αe(2α + β)

α2 + 3αβ + β2

and

z⋆I =
α2e + αe(2α + β)

α2 + 3αβ + β2
.

The second-best pollution caps reduce to

z⋆⋆E =
4αe

2α + 5β

and

z⋆⋆I =
(15α − β)e

5α + 13β
.

Thus, given full symmetry, first-best exceed second-best pollution caps as

z⋆⋆E − z⋆E = −
αβ2e

(2α + 5β)(α2 + 3αβ + β2)
< 0
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and

z⋆⋆I − z⋆I = −
β2e(α + β)

(5α + 13β)(α2 + 3αβ + β2)
< 0.

Yet, by deviating slightly from full symmetry, for example by setting β2 = 1/3β3 in an emission

market and β2 = 2β3 in an ambient pollution market, first-best pollution caps fall short of second-

best pollution caps.

Example 1 illustrates that the first-best pollution cap does not implement the cost minimizing

equilibrium in the two permit markets considered if damage costs are non-linear. In order to attain

the second-best least costs in cap-and-trade systems, the second-best pollution cap has to be derived

formally for each specific network.

4.2 Second-best Optimal Choice of Permit Market Regime

Should the external authority choose an ambient pollution market or an emission market? Intuitively,

ambient pollution markets seem to be the better choice as they incorporate the externality structure

and therefore look at ambient pollution levels not just emission levels. However, against intuition,

this is not always the case. To see this, assume without loss of generality, that we face linear damage

costs and quadratic abatement costs and let us compare the dead weight losses created by the two

market regimes.

Let mi = ∑
n
j=1 γijβ j. Intuitively, mi measures the total marginal effect of an increase in agent i’s

net emissions ei − xi on the damages of all agents j, with γij > 0. Applying lemma 3 and using

slightly rewritten expressions for ∆CE and ∆DI derived in (5.11) and (5.15) respectively in the proof

of proposition 6, implies

DWLE = 1/2






n

∑
i=1

m2
i

αi
−

(

∑
n
i=1

mi
αi

)2

∑
n
i=1

1
αi




 (4.3)

and

DWLI = 1/2






n

∑
i=1

m2
i

αi
−

(

∑
n
i=1 ∑

n
j=1 γij

mi
αi

)2

∑
n
i=1

1
αi
(∑n

j=1 γij)2




 . (4.4)

By taking the difference

DWLE − DWLI = 1/2






(

∑
n
i=1 ∑

n
j=1 γij

mi
αi

)2

∑
n
i=1

1
αi
(∑n

j=1 γij)2
−

(

∑
n
i=1

mi
αi

)2

∑
n
i=1

1
αi





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we observe that as

(
n

∑
i=1

n

∑
j=1

γij
mi

αi

)2

≥

(
n

∑
i=1

mi

αi

)2

as well as

n

∑
i=1

1

αi
(

n

∑
j=1

γij)
2 ≥

n

∑
i=1

1

αi
,

we cannot draw the conclusion, that the ambient pollution market incorporating the externality struc-

ture, should always be chosen as a second-best optimal policy instrument. On the contrary, as illus-

trated in the following example, the second-best cost minimizing equilibrium of an emission market

may beat the one from an ambient pollution market.

Example 2. Recall the river pollution network introduced in example 1. To illustrate that the second-

best total cost minimum of an ambient pollution market may exceed the second-best least costs of an

emission market, we consider a river with 3 agents and compare the dead weight losses created by

establishing a second-best optimal permit market.

Recall the formulas of the dead weight losses for an emission respectively ambient pollution market

derived in (4.3) respectively (4.4). For the river network, mi = ∑
n
j=i+1 β j. Thus, the dead weight loss

for a second-best optimal emission market amounts to

DWLE =
1/2β2

2

α1 + α2

and similarly, for an ambient pollution market we attain

DWLI =
1/2(β2 − β3)2

α1 + 4α2
.

Let αi = α and βi vary across agents i = 1, 2, 3. Then,

DWLI =
(β2 − β3)2

10α
> DWLE =

β2
2

4α
⇔ (β2 − β3)

2
> 5/2β2

2.

Clearly, there exist values for β2, β3 for which this inequality is satisfied, for example for β3 = 3β2.

5 Conclusion

In this chapter, we propose a second-best optimal solution to the problem of pollution abatement in a

setting where the multiple sources and receptors of pollution are spatially distributed and pollution

is non-uniformly dispersed. Instead of taking an exogenously given and pre-set pollution cap in a

cap-and-trade system, the pollution cap is endogenized in such a way that it results from the total

cost minimizing equilibrium of the cap-and-trade system. We show that setting the pollution cap at

the first-best optimal pollution level implements the second-best cost minimizing equilibrium for any

network if damage costs are linear and abatement costs are quadratic. However, the second-best cost
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minimum exceeds the first-best total cost minimum, with total second-best optimal abatement costs

falling short of first-best total abatement costs and total second-best optimal damage costs exceed-

ing total first-best damage costs, indicating that the second-best abatement allocation differs from

the first-best abatement allocation for at least one agent. Thus, we provide the following policy im-

plication for the environmental regulation of pollution in networks with heterogeneously dispersed

pollution: whenever real life damages are approximately linear and abatement costs quadratic, and

a cap-and-trade system was established to regulate the pollution, then the pollution cap should be

set at the first-best optimal level to attain least total costs possible. Yet, for other functional forms of

damage and abatement cost functions, no such policy implication can be made. In these cases, first-

best pollution caps are not second-best optimal and second-best pollution caps have to be calculated

for each specific network structure.

One drawback of the second-best optimal solution concept proposed in this chapter and cap-and-

trade systems in general is that they require perfect information of the abatement and damage cost

functions as well as the exogenously given pollution levels. Abatement costs may be especially dif-

ficult to monitor and agents may have an incentive to overstate their true abatement costs. Further-

more, if sources and receptors are assumed to be nations, no international government exists that

can impose a cap-and-trade system. Hence, establishing a cap-and-trade system would require co-

operation among the sovereign nations. Yet, they can only be expected to cooperate if it makes them

better or at least not worse off. Thus, the initial distribution of second-best optimal amount of per-

mits should be used as an instrument for compensating the potential losers of an international policy

instrument. As a final point, clearly there exists an isomorphism between a second-best pollution cap

and a second-best Pigou tax. By endogenizing the Pigou tax so that it is determined by the second-

best cost minimum of the multi-polluter network given a tax regime, the resulting second-best tax

implies a total pollution level equivalent to the first-best optimal pollution level.
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Appendix

Proof. of proposition 3

Let us first consider emission markets. In an emission market equilibrium, marginal abatement costs

have to be equalized over all agents as all agents face the same price pE, i.e.

c′i(ei − zi) = c′j(ej − zj), ∀i, j. (5.1)

In order for the emission market to be first-best optimal, the cost minimizing conditions (2.2) have to

hold. Combined with (5.1), this implies that

n

∑
j=1

γijd
′
j(qj) =

n

∑
j=1

γkjd
′
j(qj), ∀k, i, j = 1, ..., n.

Similarly, for an ambient pollution market, the necessary cost minimizing conditions (3.4) combined

with pI having to be equal for all agents leads to

c′i(ei − zi)

∑
n
m=1 γim

=
c′j(ej − zj)

∑
n
m=1 γjm

, ∀i, j.

Together with the first order conditions for the first-best solution (2.2), an ambient pollution market

is first-best optimal whenever

∑
n
j=1 γijd

′
j(qj)

∑
n
m=1 γim

=
∑

n
j=1 γkjd

′
j(qj)

∑
n
m=1 γkm

, ∀i, k.

Rearranging implies

n

∑
m=1

γkm

n

∑
j=1

γijd
′
j(qj) =

n

∑
m=1

γim

n

∑
j=1

γkjd
′
j(qj), ∀i, k,⇔

(γi1 + ... + γin)(γk1d′1(q1) + ... + γknd′n(qn)) = (γk1 + ... + γkn)(γi1d′1(q1) + ... + γind′n(qn)) ⇔
n

∑
j=1

n

∑
m 6=j

γijγkm(d
′
m(qm)− d′j(qj)) = 0 ⇔

d′j(qj) = d′m(qm), ∀j, m.

Proof. of proposition 4

We have to prove that there exists a z⋆⋆w that is the solution to ∂Tw(zw)
∂zw = 0 and that this local ex-

tremum is a global minimum. For this, Tw(zw) needs to be convex in zw, which is the case whenever

c′′′i (ei − zw
i (.)) ≤ 0.

Lemma 1. Total costs Tw(zw) are convex in zw if c′′′i (ei − zw
i (.)) ≤ 0.

Proof. of lemma 1

To show that total costs are convex, a few properties of the price and permit demand functions need

to hold, as established in the subsequent lemma.
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Lemma 2. For both permit markets w = I, E, the price pw(zw) is decreasing in zw and convex whenever

c′′′i (ei − zw
i (.)) ≥ 0 and concave whenever c′′′i (ei − zw

i (.)) ≤ 0. The permit demands zw
i (p(zw)) are

decreasing in pw(zw) and increasing in zw. Furthermore, the permit demands are concave functions

of zw whenever c′′′i (ei − zw
i (.)) ≥ 0 and convex whenever c′′′i (ei − zw

i (.)) ≤ 0.

Proof. of lemma 2

Let us first show that the demand for permits decreases with an increase in the permit price. Follow-

ing from the necessary conditions of the emission (3.2) and ambient pollution market (3.4), zi(.) =

ei − c′−1
i (.). Thus,

∂zw
i (pw(zw))

∂pw(zw)
= −

1

c′′i (ei − zw
i (pw(zw)))

< 0, w = I, E,

as c′′i (ei − zw
i (pw(zw)) > 0. Next, let us establish that

∂pw(zw)
∂zw < 0 and

∂2 pw(zw)
∂2zw ≥ 0, w = I, E. The

proofs for the emission and ambient pollution market differ, but only slightly. For completeness,

both proofs will be presented. From the market clearing condition for an emission market, we obtain

zE =
n

∑
i=1

ei − c′−1
i (p).

Thus,

n

∑
i=1

c′−1
i (pE(zE))−

n

∑
i=1

ei + zE = 0.

Applying the implicit function theorem yields

n

∑
i=1

∂c′−1
i (pE(zE))

∂pE(zE)

∂pE(zE)

∂zE
+ 1 = 0.

Solving for
∂pE(ze)

∂zE gives

∂pE(zE)

∂zE
= −

1

∑
n
i=1 c′−1

i (pE(zE))′
= −

1

∑
n
i=1

1
c′′i (ei−zi)

< 0

as c′′i (ei − zi(.)) > 0, indicating a decrease in the permit price if the pollution cap increases. Analo-

gously, for the ambient pollution market,

zI =
n

∑
i=1

n

∑
j=1

γij(ei − c′−1
i (p

n

∑
j=1

γij))

and by the implicit function theorem,

∂ ∑
n
i=1 ∑

n
j=1 γijc

′−1
i (pI(zI)∑

n
j=1 γij)

∂zI

∂pI(zI)

∂zI
− 1 = 0.
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From this we obtain

∂pI(zI)

∂zI
= −

1
∂ ∑

n
i=1 ∑

n
j=1 γijc

′−1
i (pI(zI)∑

n
j=1 γij)

∂zI

= −
1

∑
n
i=1

∑
n
j=1 γij

c′′i (ei−zI
i (pI(zI)))

< 0.

Taking the second order derivative of pw(zw) with respect to zw yields

∂2 pw(zw)

∂2zw = −
1

∑
n
i=1

gi

−(c′′i (ei−zw
i (pw(zw))))2 · c′′′i (ei − zw

i (pw(zw))) ·
∂zw

i (pw(zw))

∂pw(zw)
∂pw(zw)

∂zw

,

with gi = 1 for the emission market and gi = ∑
n
j=1 γij for the ambient pollution market. Thus,

∂2 pw(zw)

∂2zw







> 0 if c′′′i (ei − zw
i (pw(zw))) > 0

< 0 if c′′′i (ei − zw
i (pw(zw))) < 0.

Additionally, let us analyse the curvature of zw
i (pw(zw)), i.e.

∂2zw
i (pw(z)w)

∂2 pw(zw)
=

1

(c′′i (ei − zw
i (pw(zw))))2

· c′′′i (ei − zw
i (pw(zw))) ·

∂zw
i (pw(zw))

∂pw(zw)

so that

∂2zw
i (pw(zw))

∂2 pw(zw)







< 0 if c′′′i (ei − zw
i (pw(zw))) > 0

> 0 if c′′′i (ei − zw
i (pw(zw))) < 0.

For both permit markets

∂zw
i (pw(zw))

∂zw =
∂zw

i (pw(zw))

∂pw(zw)
︸ ︷︷ ︸

<0

·
∂pw(zw)

∂zw
︸ ︷︷ ︸

<0

> 0.

Finally, with

∂2zw
i (pw(zw))

∂2zw =
∂2zw

i (pw(zw))

∂2 pw(zw)

(
∂pw(zw)

∂zw

)2

+
∂zw

i (pw(zw))

∂pw(zw)

∂2 pw(zw)

∂2zw

and given the properties of pw(zw) and zw
i (pw(zw)), we attain

∂2zw
i (pw(zw))

∂2zw







< 0 if c′′′i (ei − zw
i (.)) > 0

> 0 if c′′′i (ei − zw
i (.)) < 0.

Thus, zw
i (pw(zw)) is a convex function of zw whenever c′′′i (ei − zw

i (.)) < 0.

Let D(zw) = ∑
n
i=1 di(∑

n
j=1 γjiz

w
j (p(zw))) and C(zw) = ∑

n
i=1 ci(ei − zw

i (p(zw))), with T(zw) =

D(zw) + C(zw). From convex function calculus, we know that when f is convex and g is convex and

monotonically increasing, then g ◦ f is convex. Given that c′′′i (ei − zw
i (.)) ≤ 0, zw

i (pw(zw)) is convex in
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zw. As di(.) as well as ci(.) are convex and monotonically increasing, we have that D(zw) and C(zw)

are convex functions in zw. Hence, Tw(zw) = D(zw) + C(zw) being the sum of two convex functions

must be convex as well. Because Tw(zw) is a convex function of zw in the case of c′′′i (ei − zw
i (.)) < 0,

Tw(zw) has a global minimum at z⋆⋆w, which however must not be unique as we do not have strictly

convex functions.

Proof. of proposition 5

Let us first characterize the first-best optimal abatement levels x⋆. According to proposition 1, the

first-best optimal abatement allocation has to satisfy the following first order conditions

c′i(xi) =
n

∑
j=1

γijd
′
j(qj).

To simplify our analysis, let mi = ∑
n
j=1 γijd

′
j(qj). Intuitively, mi measures the total marginal effect

of an increase in agent i’s net emissions ei − xi on the damages of all agents j, with γij > 0. As

the marginal damages d′j(qj) are constants for all agents j, the first-best abatement levels take the

following form

x⋆i = c′−1
i (mi), i = 1, ..., n.

Given the functional form of ci(.), the first-best solutions can be expressed as

x⋆i =
mi

αi
, i = 1, ..., n, (5.2)

indicating that x⋆i is inversely proportional to αi. As per (3.6), the first-best pollution cap for an

emission market amounts to

z⋆E =
n

∑
j=1

(ej − x⋆j ) =
n

∑
j=1

ej −
mj

αj
(5.3)

and similarly, in compliance with (3.7), the first-best pollution cap for an ambient pollution market is

z⋆I =
n

∑
j=1

n

∑
i=1

γji(ej − x⋆j ) = ∑
j

∑
i

γji(ej −
mj

αj
). (5.4)

Next, we determine the second-best pollution caps, first for an emission market and then for an

ambient pollution market. Given the functional form of ci(.) and the individual cost minimizing

conditions for the permit demands (3.2), we attain

zE
i (pE(zE)) = ei −

pE(zE)

αi
(5.5)

implying

∂zE
i (pE(zE))

∂pE(zE)
= −

1

αi
. (5.6)
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Furthermore, c′i(ei − zi) = αi(zi − ei). The second-best pollution cap z⋆⋆E has to fulfill equation (4.2).

Inserting the expressions derived in (5.5) and (5.6) into equation (4.2) yields

n

∑
i=1

n

∑
j=1

mj ·

(
−1

αj

)

−
n

∑
j=1

αj(ej − zE
j (pE(z⋆⋆E))) ·

(
−1

αj

)

= 0.

Rearranging implies

n

∑
j=1

zE
j (p(z⋆⋆E)) =

n

∑
j=1

ej −
mj

αj
. (5.7)

By definition,
n

∑
j=1

zE
j (p(z⋆⋆E)) = z⋆⋆E.

Thus, according to (5.7), we get

z⋆⋆E =
n

∑
j=1

ej −
mj

αj
.

Given the first-best pollution cap (5.3), we conclude

z⋆⋆E = z⋆E.

Analogously, for the ambient pollution market, given the functional form of ci(.) and the individual

cost minimizing conditions for the permit demands (3.4), we attain

zI
j (pI(zI)) = ej −

pI(zI)∑
n
k=1 γjk

αj

and thus

∂zI
j (pI(zI))

∂pI(zI)
= −

∑
n
k=1 γjk

αj
.

The second-best pollution cap z⋆⋆I has to fulfill (4.2). Inserting the expressions derived above into

(4.2) implies

n

∑
j=1

mj ·

(
−∑

n
k=1 γjk

αj

)

−
n

∑
j=1

αj(ej − zj(p(z⋆⋆I))) ·

(

−
∑

n
k=1 γjk

αj

)

= 0

Rearranging yields

n

∑
j=1

n

∑
k=1

γjkzI
j (pI(zI⋆⋆)) =

n

∑
j=1

n

∑
k=1

γjkej −
n

∑
j=1

n

∑
k=1

γjk

mj

αj
.

88



By definition

z⋆⋆I =
n

∑
j=1

n

∑
k=1

γjkzI
j (pI(zI⋆⋆)),

which according to (5.4) implies

z⋆⋆I = z⋆I .

Proof. of proposition 6

The first-best allocation derived in (5.2) determines first-best total abatement costs, i.e.

C⋆ =
n

∑
i=1

ci(x⋆i ) = 1/2 ·

(
n

∑
i=1

m2
i

αi

)

(5.8)

and first-best total damage costs, i.e.

D⋆ =
n

∑
i=1

di(qi(x⋆)) =
n

∑
i=1

mi(ei −
mi

αi
). (5.9)

To attain Cw and Dw, the second-best optimal permit demands have to be acquired. With the func-

tional forms of the damage and abatement functions and the cost minimizing conditions of the emis-

sion market (3.1), we obtain zE
i (p) = ei −

p
αi

. In the second-best cost minimum, market clearing

demands

n

∑
i=1

zE
i (p(z⋆⋆E)) =

n

∑
i=1

ei −
p(z⋆⋆E)

αi
= z⋆⋆E.

Solving for p(z⋆⋆E) yields

pE(z⋆⋆E) =
∑

n
i=1 ei − z⋆⋆E

∑
n
i=1

1
αi

.

Inserting pE(z⋆⋆E) into zE
i (p) = ei −

p
αi

, yields permit demands

zE
i (p(z⋆⋆E)) = ei −

∑
n
i=1 ei − z⋆⋆E

αi ∑
n
i=1

1
αi

. (5.10)

According to proposition 5, second-best and first-best permit pollution caps coincide. Thus, inserting

z⋆E derived in (5.3) into the above expression (5.10) leads to the second-best optimal permit demands,

i.e.

zE
i (p(z⋆⋆E)) = ei −

∑i
mi
αi

αi ∑i
1
αi

.

Thus, total abatement costs in the second-best cost minimum amount to

CE =
n

∑
i=1

ci(ei − zE
i (pE(z⋆⋆E))) = 1/2

(
(∑n

i=1
mi
αi
)2

∑
n
i=1

1
αi

)

(5.11)
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and total damage costs to

DE = ∑
i=1

di(
n

∑
j=1

γjiz
E
j (pE(z⋆⋆E))) =

n

∑
i=1

βi

n

∑
j=1

γji

(

ej −
1

αj

∑
n
i=1

mi
αi

∑
n
i=1

1
αi

)

. (5.12)

Given the expressions of C⋆ in (5.8) and CE in (5.11), we attain

∆CE = CE − C⋆ = 1/2

(
(∑n

i=1
mi
αi
)2

∑
n
i=1

1
αi

−
n

∑
i=1

m2
i

αi

)

. (5.13)

And analogously, with D⋆ derived in (5.9) and DE given in (5.12), we attain

∆DE = DE − D⋆ =
n

∑
i=1

βi

n

∑
j=1

γji

(

ej −
1

αj

∑
n
i=1

mi
αi

∑
n
i=1

1
αi

)

−
n

∑
i=1

mi(ei −
mi

αi
)

=
n

∑
j=1

mj

αj

(

mj −
∑

n
i=1

1
αi

mi

∑
n
i=1

1
αi

)

.

Equivalently, for an ambient pollution market, the net emission functions resulting from the individ-

ual cost minimizing conditions (3.4) amount to zI
i (p) = ei −

p ∑
n
j=1 γij

αi
. Combined with market clearing,

we receive

pI(z⋆⋆I) =
∑

n
i=1 ∑

n
j=1 γijei − z⋆⋆I

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2

so that

zI
i (pI(z⋆⋆I)) = ei −

1

αi
·

n

∑
j=1

γij






∑
n
i=1 ∑

n
j=1 γijei − z⋆⋆I

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2




 .

Inserting the first-best pollution cap derived in (5.4) into the above expression, yields second-best net

emission functions of

zI
i (p(z⋆⋆I)) = ei −

1

αi
·

n

∑
j=1

γij






∑
n
j=1

mj

αj
∑

n
k=1 γjk

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2




 .

Thus, the total abatement cost in the second-best total cost minimum amount to

CI =
n

∑
i=1

ci(ei − zI
i (p(z⋆⋆I))) = 1/2 ·






(∑n
j=1

mj

αj
∑

n
k=1 γjk)

2

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2




 (5.14)

and similarly, total damage costs to

DI = ∑
i=1

di(
n

∑
j=1

γjiz
I
j (p(z⋆⋆I))) =

n

∑
i=1

βi

n

∑
k=1

γki



ek −
1

αk

n

∑
j=1

γkj

∑
n
i=1 ∑

n
j=1

γji

αj
∑

n
k=1 γjkβk

∑
n
i=1

1
αi
(∑n

j=1 γij)2



 . (5.15)
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Given the expressions of C⋆ in (5.8) and CI in (5.14), we conclude that

∆CI = CI − C⋆ = 1/2 ·






(∑n
j=1

mj

αj
∑

n
k=1 γjk)

2

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2
−

n

∑
i=1

(mi)
2

αi




 . (5.16)

Similarly, according to D⋆ derived in (5.9) and DI given (5.15), the difference in total damage costs

amounts to

∆DI = DI − D⋆

=
n

∑
i=1

βi

n

∑
k=1

γki



ek −
1

αk

n

∑
j=1

γkj

∑
n
i=1 ∑

n
j=1

γji

αj
∑

n
k=1 γjkβk

∑
n
i=1

1
αi
(∑n

j=1 γij)2



−
n

∑
i=1

mi(ei −
mi

αi
)

=
n

∑
k=1

m2
k

αk
−

n

∑
k=1

mk

αk





n

∑
j=1

γkj

∑
n
i=1 ∑

n
j=1

mjγji

αj

∑
n
i=1

1
αi
(∑n

j=1 γij)2



 .

Lemma 3. The following relationship between ∆Cw and ∆Dw holds

∆Dw = −2 · ∆Cw, w = I, E.

Proof. of lemma 3

Given the definitions of ∆CE and ∆CI in (5.13) respectively (5.16), we have

−2∆CE = −2 ·

(

1/2

(
(∑n

i=1
mi
αi
)2

∑
n
i=1

1
αi

−
n

∑
i=1

m2
i

αi

))

=
n

∑
i=1

m2
i

αi
−

(∑n
i=1

mi
αi
)2

∑
n
i=1

1
αi

=
n

∑
i=1

mi

αi

(

mi −
∑

n
i=1

mi
αi

∑
n
i=1

1
αi

)

.

= ∆DE.

Similarly,

−2∆CI = −2




1/2 ·






(∑n
j=1

mj

αj
∑

n
k=1 γjk)

2

∑
n
i=1

1
αi

(

∑
n
j=1 γij

)2
−

n

∑
i=1

(mi)
2

αi











=
n

∑
i=1

m2
i

αi
−

(∑n
j=1 ∑

n
k=1

γjkmj

αj
)2

∑
n
i=1

1
αi
(∑n

j=1 γij)2

=
n

∑
i=1

m2
i

αi
−

(∑n
j=1 ∑

n
k=1

γjkmj

αj
)

∑
n
i=1

1
αi
(∑n

j=1 γij)2
· (

n

∑
j=1

n

∑
k=1

γjkmj

αj
)

= ∆DI .
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Let us now prove that ∆Cw ≤ 0 and ∆Dw ≥ 0. By contradiction, let ∆CE
> 0. Then,

∆CE
> 0 ⇔ 1/2

(
(∑n

i=1
mi
αi
)2

∑
n
i=1

1
αi

−
n

∑
i=1

1

αi
(mi)

2

)

> 0

⇔
n

∑
i=1

1

αi
m2

i

n

∑
i=1

1

αi
−

(
n

∑
i=1

1

αi
mi

)2

< 0

⇔
n

∑
i=1

n

∑
j=1,j 6=i

1

αiαj
(mi − mj)

2
< 0.

The last inequality does not hold due to (mi − mj)
2 always being positive. Thus, ∆CE

> 0 cannot be

satisifed. Given ∆CE ≤ 0 and applying lemma 3, implies ∆DE ≥ 0.

Equivalently, for the ambient pollution market, assume by contradiction that ∆DI
< 0. Then,

∆DI
< 0 ⇔

n

∑
k=1

(mk)
2

αk
−

n

∑
k=1

mk

αk





n

∑
j=1

γkj

∑
n
i=1 ∑

n
j=1

γji

αj
mj

∑
n
i=1

1
αi
(∑n

j=1 γij)2



 < 0

⇔ (
n

∑
i=1

1

αi
(

n

∑
j=1

γij)
2)(

n

∑
i=1

m2
i

αi
)−

(
n

∑
i=1

mi

αi

n

∑
j=1

γij

)2

< 0

⇔ 1/2
n

∑
i=1

n

∑
j=1

(
mi ∑

n
k=1 γik − mj ∑

n
k=1 γjk

)2

αiαj
< 0.

The last inequality does not hold true due to
(
mi ∑

n
k=1 γik − mj ∑

n
k=1 γjk

)2
always being positive.

Hence, ∆DI ≥ and it follows from lemma 3, that ∆IC ≤ 0.

Finally, we show that DWLw ≥ 0. By definition of DWLw and as a consequence of lemma 3, we

obtain

DWLw = ∆Dw + ∆Cw = −2∆Cw + ∆Cw = −∆Cw, w = I, E.

Given ∆Cw ≤ 0, we conclude DWLw ≥ 0.
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