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Eine ausführliche Fassung des Lizenzvertrags befindet sich unter
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de



P-Values for Classification –

Computational Aspects and Asymptotics

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

und

der Fakultät für Mathematik und Informatik

der Georg-August-Universität Göttingen

vorgelegt von

Niki Roger Zumbrunnen

von Aeschi bei Spiez

Leiter der Arbeit:

Prof. Dr. L. Dümbgen
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Abstract

P-Values for Classification. Let (X, Y ) be a random variable consisting of
an observed feature vector X and an unobserved class label Y = 1, 2, . . . , L
with unknown joint distribution. In addition, let D be a training data set
consisting of n completely observed independent copies of (X, Y ).

First, we consider a point predictor for Y , namely the standard linear
classifier for two classes. But we do not assume Gaussian distributions. In
this setting we provide a central limit theorem for missclassification rates and
cross-validated estimators thereof.

Point predictors do not provide information about confidence. To get such
information, we construct for each b = 1, 2, . . . , L a p-value πb(X,D) for the
null hypothesis that Y = b, treating Y temporarily as a fixed parameter, i.e.
we construct a prediction region for Y with a certain confidence. In particu-
lar, we consider p-values based on the plug-in statistic for the standard model
with two classes and prove a central limit theorem for inclusion probabilities
and cross-validated estimators thereof.

In addition, we discuss data-driven choices of tuning parameters for p-
values based on multicategory logistic regression, where we use regularization
terms to deal with high-dimensional feature vectors X.

Randomizded P-Values. Randomized tests are a familiar concept from
mathematical statistics. The goal is to obtain tests with exact prescribed
significance level even in settings with test statistics having discrete distribu-
tions. We discuss the related concept of randomized p-values. One benefit is
that p-values obtained from different independent test statistics can be com-
bined more easily. Since in applications non-randomized tests and p-values
are needed, we review and modify a method of Meinshausen et al. (2009).

A major example is the analysis of several independent contingency ta-
bles with small cell counts. We propose various ways of combining corre-
sponding randomized p-values. We also illustrate the benefits of the final
de-randomized test.
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Overview

We start in Section 1.1 with a short introduction to classification. In the
remaining part of Chapter 1 we present the p-values for classification intro-
duced by Dümbgen et al. (2008). First we assume that the joint distribution
of (X, Y ) is known. In this setting optimal p-values are available. If the
joint distribution is unknown, we use training data to compute nonparamet-
ric p-values based on permutation tests. We review asymptotic results of
Dümbgen et al. (2008) and Zumbrunnen (2009). Finally, we comment on
technical details and the implementation of the p-values in the R-package
pvclass.

Some of the test statistics we use depend on a tuning parameter such as
the k in the nearest neighbor method or the penalty parameter τ in the
logistic regression. In Chapter 2 we propose a data-driven way to choose
such parameters. In addition, we comment on computational issues.

The theoretic main result is given in Chapter 3. First we consider lin-
ear discriminant analysis with two classes. But we do not assume Gaussian
distributions. To estimate the covariance matrix we use either the standard
estimator or more robust M -estimators. In these two settings we present
central limit theorems for missclassification rates and cross-validated esti-
mators thereof. This result implies in particular that the estimators are
root-n-consistent.

Next we consider p-values based on the plug-in statistic for the standard
model with two classes. But we relax the assumption of Gaussian distribu-
tions to elliptical symmetry. The corresponding conditional inclusion proba-
bilities are of interest to judge the separability of the two classes. However,
these theoretic quantities are typically unknown. Therefore we use cross-
validation to estimate them. Dümbgen et al. (2008) proved that these esti-
mators are consistent. We take a closer look at the inclusion probabilities
and the corresponding estimators and describe their asymptotic distribution.
In particular, we derive a central limit theorem, which implies that the esti-
mators are root-n-consistent. Moreover, it enables us to construct confidence
intervals for the inclusion probabilities.

For the computation of the p-values, we add the new observation temporar-
ily to a certain class. But it may be an outlier with respect to the distribution
of this class. Therefore it is reasonable to use a robust M -estimator for the
covariance matrix. Our asymptotic results are valid for the standard estima-
tor as well as for the M -estimators.

1



Overview

Chapter 4 is not directly related to the main part of this thesis. In this
chapter we discuss the concept of randomized p-values. Since in applica-
tions non-randomized tests and p-values are needed, we review and modify
a method of Meinshausen et al. (2009). We propose various ways of com-
bining corresponding randomized p-values. We also illustrate the benefits of
the final de-randomized test for several independent contingency tables with
small cell counts.

2



1. Classifiers and P-Values

In this chapter we first give a short introduction to classification. For a more
detailed introduction and further references we refer to McLachlan (1992).
Then we introduce nonparametric p-values for classification as they are given
in Dümbgen et al. (2008) and comment on the implementation in the R-
package pvclass.

This chapter is mainly based on Zumbrunnen (2009) and Dümbgen (2011).

1.1. Classification

Let (X, Y ) be a pair of random variables, where

Y ∈ Y := {1, . . . , L}, L ≥ 2

is the class label of an observation, which is described by the feature vector
X with values in the feature space X .

Classifying (X, Y ) means that only X is observed and Y has to be pre-
dicted via X.

1.1.1. Optimal Classifiers in the Ideal Case

Suppose that the joint distribution of (X, Y ) is known, i.e. we know the prior
probabilities

wθ := P(Y = θ)

and the conditional distributions

Pθ := L(X | Y = θ)

for all θ ∈ Y. Further let M be a measure on X and let each conditional
distribution Pθ be described by a density function fθ with respect to M , i.e.

Pθ(B) =

∫
B

fθ(x)M(dx),

for measurable sets B ⊂ X .

3



1. Classifiers and P-Values

In the simplest case a classifier is a point predictor Ŷ (X) : X → Y for Y .
To find an optimal classifier we need a quality criterion, for example the risk
of missclassification

R(Ŷ ) := P(Ŷ (X) 6= Y ).

The following proposition characterizes optimal classifiers Ŷ ∗(X), in the
sense that they minimize the risk R:

Lemma 1.1. Let Ŷ (X) : X → Y be a classifier. Then

R(Ŷ ) ≥ 1−
∫

max
θ∈Y

wθfθ(x)M(dx),

with equality if and only if

Ŷ (x) ∈ arg max
θ∈Y

wθfθ(x) for M-almost all x ∈ X . (1.1)

Proof. With 1(A) denoting the indicator function for the set A,

R(Ŷ ) := P(Ŷ (X) 6= Y )

= 1−
∑
θ∈Y

wθP(Ŷ (X) = θ | Y = θ)

= 1−
∑
θ∈Y

wθ

∫
fθ(x)1{Ŷ (x) = θ}M(dx)

= 1−
∫
wŶ (x)fŶ (x)(x)M(dx)

≥ 1−
∫

max
θ∈Y

wθfθ(x)M(dx).

The inequality is obviously an equality if and only if (1.1) is satisfied.

Standard Gaussian Model

Let Pθ = Nd(µθ,Σ) with mean vectors µθ ∈ Rd and a common symmetric,
positive definite covariance matrix Σ ∈ Rd×d.

We may write the Gaussian densities as

fθ(x) = c exp
(
−D2

Σ(x,µθ)/2
)

with c := (2π)−d/2 det(Σ)−1/2 and the Mahalanobis distance

DΣ(x,y) :=

√
(x− y)>Σ−1(x− y) = ‖Σ−1/2(x− y)‖

4



1.1. Classification

between x ∈ Rd and y ∈ Rd (with respect to Σ). Here and throughout ‖ · ‖
denotes the Euclidean norm for vectors or the Frobenius norm for matrices,
respectively.

Therefore the optimal classifier can be characterized by

Ŷ ∗(x) ∈ arg min
θ∈Y

(
D2

Σ(x,µθ)− 2 logwθ
)
. (1.2)

Suppose that L = 2 and µ1 6= µ2. Then

D2
Σ(x,µ1)− 2 logw1

>=
<

D2
Σ(x,µ2)− 2 logw2

if and only if

(x− µ1,2)>Σ−1(µ2 − µ1)

>=
<

 log(w1/w2),

with µθ,b := (µθ + µb)/2 for θ, b ∈ Y. The sets of all feature vectors as-
signed uniquely to class 1 or 2, respectively, are separated by a hyperplane
orthogonal to Σ−1(µ2 − µ1).

1.1.2. Classification Using Training Data

The joint distribution of (X, Y ) is typically unknown. In this case we esti-
mate the prior probabilities wθ and the densities fθ by adequate estimators
ŵθ(D) and f̂θ(·,D), respectively. Then we choose a classifier

Ŷ (x,D) ∈ arg max
θ∈Y

ŵθf̂θ(x).

To estimate wθ and fθ we use training data D, consisting of pairs (Xi, Yi),
for i = 1, . . . , n, whereas the Xi as well as the Yi are known. We consider
the (Xi, Yi) as random variables with the same distribution as (X, Y ), and
assume that the n+1 data pairs (X, Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are
stochastically independent. Let

Gθ := {i ≤ n : Yi = θ} and Nθ := #Gθ.

Then an estimator for wθ is given by

ŵθ :=
Nθ
n
.

5



1. Classifiers and P-Values

Linear Discriminant Analysis

In the standard model with Pθ = Nd(µθ,Σ) we replace the unknown mean
vectors µθ and covariance matrix Σ in (1.2) with corresponding estimators
and get the standard linear classifier

Ŷ ∗(x) ∈ arg min
θ∈Y

(
D2

Σ̂
(x, µ̂θ)− 2 log ŵθ

)
. (1.3)

The standard estimators in this model are given by

µ̂θ :=
1

Nθ

∑
i∈Gθ

Xi,

Σ̂ :=
1

n− L
∑
θ∈Y

∑
i∈Gθ

(Xi − µ̂θ)(Xi − µ̂θ)>.

The assumption of Gaussian distributions could be relaxed, e.g. to elliptically
symmetric distributions.

Elliptically Symmetric Distributions. The random vector Z ∈ Rd has a
spherically symmetric distribution (with respect to 0) if for any orthonormal
matrix B ∈ Rd×d, BZ has the same distribution as Z. The distribution
of a random vector X ∈ Rd is elliptically symmetric with center µ ∈ Rd
and scatter matrix Σ ∈ Rd×d, if Σ−1/2(X − µ) has a spherically symmetric
distribution.

For a spherically symmetric random vector Z ∈ Rd with P(Z = 0) = 0
and any unit vector v ∈ Rd

L(v>Z) = L(Z1), (1.4)

where Z1 is the first component of Z. For the proof of this claim and more
details on elliptically symmetric distributions we refer to Muirhead (1982).

Robust M-Estimators. The standard estimator for Σ is sensitive to outliers.
As an alternative, we consider the more robust M -estimators Σ̂M and Σ̂sym.

The first M -estimator, Σ̂M , is the maximum likelihood estimator in the
model where Pθ = Nd(µθ, cθΣ) with cθ > 0 and Σ ∈ Rd×d symmetric and

positive definite with det(Σ) = 1. For the calculations we use that Σ̂M is
the solution of the fixed point equation

Σ = d

L∑
θ=1

Nθ
n

M θ

trace(Σ−1M θ)

with M θ :=
∑
i∈Gθ (Xi − µ̂θ)(Xi − µ̂θ)>.

6



1.1. Classification

The second M -estimator, Σ̂sym, is a generalization for more than one
group of the symmetrized version of Tyler’s M -estimator, as it is defined in
Dümbgen (1998). We assume that the observations Xi are pairwise different

within groups. Then Σ̂sym is the solution of the fixed point equation

Σ =
d

c

L∑
θ=1

1

Nθ

∑
i,j∈Gθ
i<j

(Xi −Xj)(Xi −Xj)
>

(Xi −Xj)>Σ−1(Xi −Xj)

with c :=
∑L
θ=1(Nθ − 1)/2 = (n− L)/2.

k Nearest Neighbors

The nearest-neighbor method is a nonparametric alternative to estimate fθ.
It has the advantage, that only few assumptions about the distributions Pθ
are required. Suppose that (X , d) is a separable metric space and consider
the closed balls

B(x, r) := {y ∈ X : d(x,y) ≤ r}

and the open balls

U(x, r) := {y ∈ X : d(x,y) < r}

for all x ∈ X and r ≥ 0. Assume that

M
(
B(x, r)

)
<∞ for all x ∈ X and r ≥ 0

and that fθ is continuous for all θ ∈ Y.

Lemma 1.2. Let X0 be the support of L(X), i.e.

X0 := {x ∈ X : P(X ∈ B(x, r)) > 0 for all r > 0}.

Then X0 is the smallest closed set with P(X ∈ X c0 ) = 0 and

fθ(x) = lim
r↓0

Pθ(B(x, r))

M(B(x, r))
for all θ ∈ Y,x ∈ X0. (1.5)

To estimate Pθ, we use the empirical measure of the points Xi, i ∈ Gθ,

P̂θ(B) :=
#{i ∈ Gθ : Xi ∈ B}

Nθ
for B ⊂ X .

Now define for fixed integer k ≤ n and any x ∈ X

r̂k,n(x) = r̂k,n(x,D) := min
{
r ≥ 0: #{i ≤ n : Xi ∈ B(x, r)} ≥ k

}

7



1. Classifiers and P-Values

such that B(x, r̂k,n(x)) is the smallest ball centered at x, which covers at
least k training vectors Xi. These are the k nearest neighbors of x. Next we
define

f̂θ(x) :=
P̂θ
(
B(x, r̂k,n(x))

)
M
(
B(x, r̂k,n(x))

) .
Since M

(
B(x, r̂k,n(x))

)
is the same for all classes θ ∈ Y, we end up with an

estimator of the form

Ŷk(x) ∈ arg max
θ∈Y

ŵθP̂θ
(
B(x, r̂k,n(x))

)
.

For ŵθ = Nθ/n, this can be written as

Ŷk(x) ∈ arg max
θ∈Y

#
{
i ∈ Gθ : Xi ∈ B(x, r̂k,n(x))

}
.

This means we use majority vote among the k nearest neighbors to classify
X.

Proof of Lemma 1.2. First we show that X0 is closed. Let x ∈ X \ X0.
Then there is a r > 0 such that P(X ∈ U(x, r)) = 0. Now let y ∈ U(x, r).
Then U(y, r̃) ⊂ U(x, r) with r̃ = r − d(x,y) > 0. But this implies that
P(X ∈ U(y, r̃)) = 0, and thus y /∈ X0. Therefore U(x, r)∩X0 = ∅. Since the
choice of x ∈ X \ X0 was arbitrary, this implies that X0 is closed.

Let X∗ be a countable and dense subset of X . For each x ∈ X c0 there exists
an r > 0 such that P(X ∈ B(x, r)) = 0. Then there is a x∗ ∈ X∗ such that
d(x,x∗) < r/2, so x ∈ B(x∗, r∗) ⊂ B(x, r) for any r∗ ∈ (r/2, r−d(x,x∗))∩Q.
This construction shows that

X c0 ⊂
⋃{

B(x∗, r∗) : x∗ ∈ X∗, 0 < r∗ ∈ Q,P
(
X ∈ B(X∗, r∗)

)
= 0
}
.

Since the latter union is countable, it has measure zero as well.
Now suppose that there is a closed set X ′0 ( X0 satisfying P(X ∈ X ′c0 ) = 0.

Then for any x ∈ X0 \ X ′0 there is a r > 0 such that B(x, r) ∩X ′0 = ∅ and so
P(X ∈ B(x, r)) = 0, which contradicts the definition of X0. Thus X0 is the
smallest closed set with P(X ∈ X c0 ) = 0.

Next we show that (1.5) holds. Since

Pθ
(
B(x, r)

)
=

∫
B(x,r)

fθ(y)M(dy)


≤ sup
y∈B(x,r)

fθ(y)M
(
B(x, r)

)
≥ inf
y∈B(x,r)

fθ(y)M
(
B(x, r)

)
,

it follows from the continuity of f that

lim
r↓0

Pθ
(
B(x, r)

)
M
(
B(x, r)

) = fθ(x).

8



1.2. From Classifiers to P-Values

Weighted Nearest Neighbors

In the previous paragraph the k-nearest neighbors of the observation X were
all weighted equally. However, it would be reasonable to assign larger weights
to training observations which are closer toX. Now we first order the training
data according to their distance to X and then we assign descending weights
to them. Let

Wn(1) ≥Wn(2) ≥ . . . ≥Wn(n) ≥ 0

be weights and

R̂(x,Xi) := #
{
j ≤ n : d(x,Xj) ≤ d(x,Xi)

}
the rank of training observation Xi according to its distance to x. If two or
more training observations are at equal distance to x we could average the
weights or use randomization. However, we assume that

M{y ∈ X : d(x,y) = r} = 0 for all x ∈ X , r ≥ 0 (1.6)

to avoid this problem. We define the weighted nearest neighbor classifier by

Ŷwnn(x) ∈ arg max
θ∈Y

∑
i∈Gθ

Wn

(
R̂(x,Xi)

)
.

1.1.3. Estimation of Missclassification Rates

To judge a certain classifier one could estimate the missclassification rates

Rθ = P
(
Ŷ (X,D) 6= Y | Y = θ,D

)
using cross-validation, i.e. with the estimator

R̂θ =
#{i ∈ Gθ : Ŷ (Xi,Di) 6= Yi}

Nθ
,

where Di denotes the training data without observation (Xi, Yi), and com-
pare them with the missclassification rates of the optimal classifier.

1.2. From Classifiers to P-Values

A drawback of point estimators is the lack of information about confidence.
To get such information we could use a Bayesian approach and calculate the
posterior distribution of Y given X, i.e. the posterior weights

wθ(X) := P(Y = θ |X).

9



1. Classifiers and P-Values

By Lemma 1.1, a classifier Ŷ ∗ satisfying

Ŷ ∗(x) ∈ arg max
θ∈Y

wθ(x)

is optimal in the sense, that it minimizes the risk R(Ŷ ) = P(Ŷ (X) 6= Y ).
Thus we can now compute the conditional risk

P(Ŷ ∗(X) 6= Y |X = x) = 1−max
θ∈Y

wθ(x),

which gives us information about confidence of Ŷ ∗.
However a drawback of the posterior probabilities is, that the posterior

weights wθ(X) depend sensitively on the prior weights wθ, i.e. small changes
in wθ can lead to totally different wθ(X), which we illustrate in Example 1.1.
In addition, classes with small prior weights wθ tend to be ignored by the
classifier Ŷ ∗, and so the class-dependent risk P(Ŷ ∗(X) 6= Y | Y = θ) may
be rather large for some classes θ. Moreover, in some studies the class labels
are not random, but predetermined by the study design. For example in a
case-control study, one recruits a certain number of diseased individuals and
a certain number of healthy individuals. Furthermore, in medical studies the
prior probabilities can change over time or differ geographically, while the
distributions Pθ are reasonably assumed to be universal. Another problem
arises, if the future observation (X, Y ) belongs to a so far unknown class
θ /∈ Y.

In the daily routine one often uses a process of elimination to classify
objects. In our context, this means that we exclude certain classes θ ∈ Y
and finally give a set of plausible candidates for Y . In other words we treat
Y temporarily as an unknown fixed parameter and compute for each class
θ ∈ Y a p-value πθ(X) or πθ(X,D) for the null hypothesis that Y = θ. In
the ideal case, where the joint distribution of (X, Y ) is known, this means
πθ : X → [0, 1] satisfies

P(πθ(X) ≤ α | Y = θ) ≤ α for all α ∈ (0, 1). (1.7)

Given such p-values πθ, the set

Ŷα(X) := {θ ∈ Y : πθ(X) > α}

is a (1− α)-prediction region for Y , i.e.

P(Y ∈ Ŷα(X) | Y = θ) ≥ 1− α for any θ ∈ Y, α ∈ (0, 1).

Thus we can exclude the classes θ /∈ Ŷα(X) with confidence 1 − α. If there

is only one θ ∈ Ŷα(X), we have classified X uniquely with confidence 1−α.

10



1.3. Optimal P-Values as Benchmark

Since we compute p-values for multiple null hypotheses, one could expect
that we get a multiple testing problem. However, the observation X belongs
to only one class and therefore at most one null hypothesis is true.

In the realistic case, where the joint distribution of (X, Y ) is unknown, we
compute p-values πθ(X,D) depending on the current feature vector X as
well as on the training data D. In this case, condition (1.7) can be extended
in two ways:

P(πθ(X,D) ≤ α | Y = θ) ≤ α, (1.8)

P(πθ(X,D) ≤ α | Y = θ,D) ≤ α+ op(1) as n→∞, (1.9)

for any θ ∈ Y and α ∈ (0, 1). Condition (1.8) corresponds to “single use”
and Condition (1.9) to “multiple use”. Suppose that we construct p-values
πθ(·,D) based on one training data set D and classify many future observa-
tions (X̃, Ỹ ). Then the relative number of future observations with Ỹ = b
and πθ(X̃,D) ≤ α is close to

wbP(πθ(X,D) ≤ α | Y = b,D),

a random quantity depending on the training data D.

Example 1.1. For the following one-dimensional example let L = 2, P1 =
Gamma(3, 1) and P2 = Gamma(6, 1). Figure 1.1 illustrates how the optimal
point predictor Y ∗(x) and the posterior weights wθ(x) depend on the prior
probabilities wθ. It shows w2(x) for w2/w1 = 10, 1.5, 1, 0.67, 0.1 (from left to
right). The corresponding boundaries of Y ∗(x) are drawn as vertical lines.

Alternatively, we could calculate p-values which do not depend on the prior
probabilities wθ. Since w2(x) is increasing in x, we define the p-values

π1(x) := P(X ≥ x | Y = 1),

π2(x) := P(X ≤ x | Y = 2).

If πθ(X) ≤ α we claim with confidence 1 − α that Y 6= θ. Figure 1.2 shows
the p-value functions π1(x) and π2(x). In addition, the three regions where

Ŷ0.1(x) = {1}, {2}, {1, 2} are marked.

1.3. Optimal P-Values as Benchmark

In this section we suppose that the distributions P1, P2, . . . , PL have known
densities f1, f2, . . . , fL > 0 with respect to some measure M on X . Then the
marginal distribution of X has density

f(x) :=
∑
θ∈Y

wθfθ(x)

11
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Figure 1.1.: Posterior weights w2(x) for different ratios of prior probabilities
w2/w1.
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Figure 1.2.: P-value functions for class memberships.
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1.3. Optimal P-Values as Benchmark

with respect to M and

wθ(x) =
wθfθ(x)

f(x)
.

Let π = (πθ)θ∈Y consist of p-values πθ satisfying (1.8). Given the latter
constraint we want to provide small p-values and small prediction regions.
Therefore we use the following measures of risk:

R(π) := E
(∑
θ∈Y

πθ(X)
)
,

Rα(π) := E
(
#Ŷα(X)

)
.

Lemma 1.3. Define Rα(πθ) := P(πθ(X) > α). Then

R(π) =

1∫
0

Rα(π) dα

and

Rα(π) =
∑
θ∈Y

Rα(πθ).

Proof. Note that∑
θ∈Y

Rα(πθ) = E
(
#{θ ∈ Y : πθ(X) > α}

)
= Rα(π)

and

R(π) =
∑
θ∈Y

1∫
0

P
(
πθ(X) > α

)
dα =

1∫
0

Rα(π) dα.

In view of the preceding lemma, we focus on minimizing Rα(πθ) for arbitrary
fixed θ ∈ Y and α ∈ (0, 1) under the constraint (1.8).

Lemma 1.4. Let L((fθ/f)(X)) be continuous. Then the p-value

π∗θ(x) := Pθ
{
z ∈ X : (fθ/f)(z) ≤ (fθ/f)(x)

}
is optimal, in the sense that Rα(π∗θ) is minimal for each α ∈ (0, 1).

Proof. We consider
ϕ(x) := 1{πθ(x) ≤ α}

13



1. Classifiers and P-Values

as a level-α test of the null-hypothesis Pθ versus the alternative hypothesis
P =

∑
b∈Y

wbPb and maximize the power

Eϕ(X) =

∫
ϕ(x)P (dx)

subject to the condition

Eθϕ(X) :=

∫
ϕ(x)Pθ(dx) ≤ α.

The Neyman-Pearson Lemma (Theorem A.2) yields that Eϕ(X) is maximal
for

ϕ(x) =


1 if (f/fθ)(x) > cθ,

γθ if (f/fθ)(x) = cθ,

0 if (f/fθ)(x) < cθ

with cθ ∈ [0,∞] and γθ ∈ [0, 1] such that

Eθϕ(X) = Pθ
{
x ∈ X : (f/fθ)(x) > cθ

}
+ γθPθ

{
x ∈ X : (f/fθ)(x) = cθ

}
= α.

Since L
(
(fθ/f)(X)

)
is continuous, γθ can be chosen arbitrarily. With γθ = 1

and

cθ := min
{
c : Pθ

{
x ∈ X : (f/fθ)(x) ≥ c

}
≤ α

}
we get

ϕ(x) = 1
{

(f/fθ)(x) ≥ cθ
}

= 1
{
π∗θ(x) ≤ α

}
.

Thus ϕ(x) = 1{π∗θ(x) ≤ α} maximizes Eϕ(x) and minimizes Rα(πθ) =
1− Eϕ(x).

Two other representations of π∗θ(x) are given by

π∗θ(x) = Pθ{z ∈ X : wθ(z) ≤ wθ(x)}
= Pθ{z ∈ X : T ∗θ (z) ≥ T ∗θ (x)}

with

T ∗θ (x) :=
∑
b 6=θ

wb,θfb(x)

fθ(x)
and wb,θ :=

(∑
c 6=θ

wc/wb

)−1

.
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1.4. P-Values via Permutation Tests

Note that

T ∗θ (·) =
f(·)− wθfθ(·)
fθ(·)(1− wθ)

=
1− wθ(·)

fθ
f (·)(1− wθ)

=
wθ(·)−1 − 1

w−1
θ − 1

is a negative monotonic transformation of wθ(·). The first representation
shows that π∗θ(x) is a non-decreasing function of wθ(x). The second repre-
sentation shows that the prior weight wθ itself is irrelevant for the optimal
p-value π∗θ . Only the ratios wc/wb with b, c 6= θ matter. In particular, in case
of L = 2 classes, the optimal p-values do not depend on the prior distribution
of Y at all.

Example 1.2 (Standard model). Let Pθ = Nd(µθ,Σ) with a common
covariance matrix Σ. Then

T ∗θ (x) :=
∑
b 6=θ

wb,θ exp
(
(x− µθ,b)>Σ−1(µb − µθ)

)
(1.10)

with µθ,b = (µθ + µb)/2.

1.4. P-Values via Permutation Tests

Now we suppose that the joint distribution of (X, Y ) is unknown and com-
pute p-values πθ(X,D) and prediction regions

Ŷα(X,D) := {θ ∈ Y : πθ(X,D) > α}

depending on training data D. We introduce nonparametric p-values for
classification as they are given in Dümbgen et al. (2008).

For the remaining part of this thesis we consider the class labels Y1, Y2, . . . ,
Yn as fixed whileX1,X2, . . . ,Xn and (X, Y ) are independent with L(Xi) =
PYi . That way we can handle situations with stratified training data as well
as the case of i.i.d. training data (via conditioning).

Further we assume that the distributions P1, P2, . . . , PL have densities
f1, f2, . . . , fL > 0 with respect to some measure M on X and that all group
sizes Nθ are strictly positive. Asymptotic statements as in (1.9) are meant
as

n→∞ and Nb/n→ wb for all b ∈ Y. (1.11)

Let I(1) < I(2) < · · · < I(Nθ) be the elements of Gθ for a fixed class θ ∈ Y.
Then (X,XI(1),XI(2), . . . ,XI(Nθ)) is exchangeable conditional on Y = θ.
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1. Classifiers and P-Values

Thus we consider a test statistic Tθ(X,D) which is symmetric in (XI(j))
Nθ
j=1.

We define Di(x) to be the training data with x in place of Xi. Then the
nonparametric p-value

πθ(X,D) :=
#
{
i ∈ Gθ : Tθ

(
Xi,Di(X)

)
≥ Tθ(X,D)

}
+ 1

Nθ + 1
(1.12)

satisfies (1.8). By definition, πθ(X,D) ≥ (Nθ + 1)−1. Therefore this proce-
dure is only useful, if Nθ + 1 ≥ α−1. For instance if α = 0.05, Nθ should be
at least 19.

Plug-In Statistic for Standard Model

In the standard model with Pθ = Nd(µθ,Σ) we replace the unknown mean
vectors µθ and covariance matrix Σ in (1.10) with corresponding estimators.
Note that the resulting p-values always satisfy (1.8), even if the underlying
distributions Pθ are not Gaussian with common covariance matrix.

To compute πθ(X,D), we add the new observation X temporarily to class
θ. But X may be an outlier with respect to the distribution Pθ. There-
fore it is reasonable to use one of the robust M -estimators mentioned in
Section 1.1.2.

Nearest Neighbors

Now we use the test statistic Tθ(x,D) = −wθ(x) and estimate wθ(x) via
nearest neighbors (cf. Section 1.1.2). For the k-nearest neighbors we get

ŵθ(x,D) :=
ŵθP̂θ

(
B(x, r̂k,n(x))

)∑
b∈Y

ŵbP̂b
(
B(x, r̂k,n(x))

)
with certain estimators ŵb = ŵb(D) of wb. In case of ŵb = Nb/n, we get

ŵθ(x,D) :=
#{i ∈ Gθ : d(x,Xi) ≤ r̂k,n(x)}
#{i ≤ n : d(x,Xi) ≤ r̂k,n(x)}

=

n∑
i=1

1{d(x,Xi) ≤ r̂k,n(x)}1{Yi = θ}
n∑
i=1

1{d(x,Xi) ≤ r̂k,n(x)}
.

For the weighted nearest neighbors we get

ŵθ(x,D) :=

n∑
i=1

Wn(R̂(x,Xi))1{Yi = θ}
n∑
i=1

Wn(R̂(x,Xi))
.
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1.5. Estimation of Separability

Penalized Multicategory Logistic Regression

Let X = Rd and X contain the values of d numerical or binary variables.
We assume that

P(Y = θ |X = x) = exp(aθ + b>θ x)
/ L∑
z=1

exp(az + b>z x)

for unknown parameters az ∈ R and bz ∈ Rd, which we estimate with pe-
nalized maximum likelihood estimators âz(D) and b̂z(D). To compute the
p-values, we use the test statistic

Tθ(x,D) = − exp(âθ + b̂
>
θ x)

/ L∑
z=1

exp(âz + b̂
>
z x).

Technical details for the penalized multicategory logistic regression are given
in Section 1.8.

1.5. Estimation of Separability

To estimate the separability of different classes by means of given p-values
πθ(·, ·) we compute cross-validated p-values

πθ(Xi,Di)

for i = 1, 2, . . . , n with Di denoting the training data without observation
(Xi, Yi). We treat each training observation (Xi, Yi) temporarily as a ’future’
observation, which has to be classified with the remaining data Di. Then we
could display these p-values graphically or compute the empirical conditional
inclusion probabilities

Îα(b, θ) :=
#{i ∈ Gb : θ ∈ Ŷα(Xi,Di)}

Nb

and the empirical pattern probabilities

P̂α(b, S) :=
#{i ∈ Gb : Ŷα(Xi,Di) = S}

Nb

for b, θ ∈ Y and S ⊂ Y. These numbers Îα(b, θ) and P̂α(b, S) can be inter-
preted as estimators of the conditional inclusion probabilities

Iα(b, θ | D) := P(θ ∈ Ŷα(X,D) | Y = b,D)

17



1. Classifiers and P-Values

and the conditional pattern probabilities

Pα(b, S | D) := P(Ŷα(X,D) = S | Y = b,D),

respectively.
To visualize the separability we plot for large group sizes Nb the empirical

ROC curves
(0, 1) 3 α 7→ 1− Îα(b, θ).

1.6. Asymptotic Properties

In this section we review the asymptotic results of Dümbgen et al. (2008)
and Zumbrunnen (2009). For the plug-in statistic of the standard model we
derive a central limit theorem in Section 3.4.

Throughout this section, asymptotic statements are to be understood with-
in setting (1.11).

The following theorem implies that πθ(X,D) satisfies (1.9) under certain
conditions on the underlying test statistic Tθ(X,D). Furthermore it shows

that the empirical conditional inclusion probabilities Îα(b, θ) and the empiri-

cal pattern probabilities P̂α(b, S) are consistent estimators of Iα(b, θ | D) and
Pα(b, S | D), respectively. Here and throughout →p denotes convergence in
probability.

Theorem 1.5. Suppose that for fixed θ ∈ Y there exists a test statistic T oθ
on X satisfying the following two requirements:

Tθ(X,D)→p T
o
θ (X), (1.13)

L
(
T oθ (X)

)
is continuous. (1.14)

Then

πθ(X,D)→p π
o
θ(X), (1.15)

where

πoθ(x) := Pθ
{
z ∈ X : T oθ (z) ≥ T oθ (x)

}
.

In particular, for arbitrary fixed α ∈ (0, 1),

Rα
(
πθ(·,D)

)
→p Rα(πoθ), (1.16)

Iα(b, θ | D)

Îα(b, θ)

}
→p P(πoθ(X) > α | Y = b) for each b ∈ Y (1.17)
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1.6. Asymptotic Properties

and

Pα(b, S | D)

P̂α(b, S)

}
→p P(Ŷoα(X) = S) for each b ∈ Y and S ⊂ Y, (1.18)

where Ŷoα(X) := {θ ∈ Y : πoθ(X) > α}.

The proof of this theorem can be found in Dümbgen et al. (2008), Theo-
rem 3.1. The p-value πθ(·,D) is asymptotically optimal if T oθ is a strictly
increasing transformation of T ∗θ . The following lemmata show that this is
the case in different situations.

Plug-In Statistic for Standard Gaussian Model

Lemma 1.6. Conditions (1.13) and (1.14) are satisfied with T oθ = T ∗θ in
case of the plug-in rule for the homoscedastic Gaussian model, provided that
E(‖X‖2) <∞ and L(X) has a Lebesgue density.

For the proof we refer to Dümbgen et al. (2008), Lemma 3.2.

Nearest Neighbors

Lemma 1.7. Suppose that (X , d) is a separable metric space with a measure
M satisfying (1.6) and that all densities fb, b ∈ Y, are continuous on X .
Then for the weighted nearest-neighbor rule with weights satisfying∑

i: i≥εn

Wn(i)→ 0 for all ε > 0, (1.19)

n∑
i=1

Wn(i) = 1 for all n ∈ N, (1.20)

Wn(1)→ 0, (1.21)

the assumptions of Theorem 1.5 are satisfied with T oθ = T ∗θ .

The proof of this lemma can be found in Zumbrunnen (2009), Theorem 3.1.
Note that the k-nearest neighbor rule with ŵθ = Nθ/n satisfies the conditions
of the previous theorem, provided that

k = k(n)→∞ and k/n→ 0.

Often different variables of a data set are measured on different scales.
To take this into account, one could use the Mahalanobis distance, which is
scale-invariant and data-driven.
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1. Classifiers and P-Values

Lemma 1.8. Let X be an open subset of Rd and fb, b ∈ Y continuous
Lebesgue densities. Suppose that E

(
‖X‖2

)
< ∞ and let Σ̂ be a consistent

estimator of the nonsingular matrix Σ0 :=
∑
θ∈Θ wθ Var(X | Y = θ). Then

in case of the weighted nearest-neighbor rule with the Mahalanobis distance
DΣ̂ and weights satisfying (1.19)–(1.21), the assumptions of Theorem 1.5 are
satisfied with T oθ = T ∗θ .

The proof of this lemma is given in Zumbrunnen (2009), Theorem 3.10.

1.7. Implementation in pvclass

The p-values for classification are implemented in the package pvclass (Zum-
brunnen and Dümbgen, 2011). It was written in the R programming system
(R Core Team, 2014) and depends on the recommended package Matrix

(Bates and Maechler, 2010).

The main functions of pvclass compute p-values for the potential class
memberships of new observations (pvs) as well as cross-validated p-values for
training data (cvpvs). With the function analyze.pvs, the package pvclass
also provides graphical displays and quantitative analyses of the p-values.

The test statistics of Section 1.4 are available in the package pvclass. It
should be stressed however that users could easily implement test statistics
corresponding to their own favorite classifier (e.g. neuronal nets).

To estimate the parameters we use Nθ/n for wθ and the standard estimator
for µθ. For Σ the package pvclass offers the standard estimator as well as

the more robust M -estimators Σ̂M and Σ̂sym. The estimator Σ̂sym requires
that the observations Xi are pairwise different within groups. Otherwise, if
an observation occurs more than once, pvclass uses only the first to calculate

Σ̂sym.

For the nearest neighbor methods, pvclass offers besides the fixed Eu-
clidean distance also two data-driven distances which are scale invariant.
The Mahalanobis distance with respect to the estimated covariance matrix
Σ̂ as defined in Section 1.1.1 and the data driven Euclidean distance where
we divide each component of X by its sample standard deviation and then
use the Euclidean distance.

For the weighted nearest neighbors pvclass provides the linear weight
function

Wn(i) = max(1− (i/n)/τ, 0),

and the exponential weight function

Wn(i) = (1− i/n)τ .
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1.7. Implementation in pvclass

Alternatively one can specify the weights with an n dimensional vector W .
For the exponential weight function τ should be in (0, 1] and for the linear
weight function it should be greater than 1.

Details for the test statistic based on penalized multicategory logistic re-
gression are given in Section 1.8.

1.7.1. Shortcut

To reduce computation time, we add (X, θ) to the training data before we
judge the plausibility of the class label θ for a new observation X, i.e. we
replace Tθ(X,D) and Tθ(Xi,Di(X)) in Definition (1.12) by Tθ(X,D(X, θ))
and Tθ(Xi,D(X, θ)), respectively, where D(X, θ) denotes the training data
extended by (X, θ). Then we end up with the p-value

πθ(X,D(X, θ)) =
#{i ∈ Gθ : Tθ(Xi,D(X, θ)) ≥ Tθ(X,D(X, θ))}+ 1

Nθ + 1
.

To compute πθ(X,D(X, θ)) it suffices to evaluate Tθ(·,D(X, θ)) at the Nθ+1
points X and Xi, i ∈ Gθ. One can show that this p-value satisfies (1.8) and
the conclusions of Theorems 1.5 and 3.11 remain true.

1.7.2. Data Example ‘buerk’

To illustrate the main functions of pvclass we use the data set buerk pro-
vided by pvclass. It was collected by Prof. Dr. Conny Georg Bürk at the
university hospital in Lübeck and contains data of 21’556 surgeries in a cer-
tain time period (end of the nineties). Besides the mortality and the mor-
bidity it contains 21 variables describing the condition of the patient and the
surgery. All collected variables can be found in Table 1.1.

We use the mortality as class label Y . The original data set contains 21’556
observations. To get a smaller data set, which is easier to handle, we take all
662 observations with Y = 1 and choose randomly 3 · 662 observations with
Y = 0. For the test data set we choose 100 observations from each class. So
we end up with a training data set containing 2448 observations, whereof 562
belong to class 1.

R> library(pvclass)

R> data(buerk)

R> set.seed(0)

R> X.raw <- as.matrix(buerk[, 1:21])

R> Y.raw <- buerk[, 22]

R> n0.raw <- sum(1 - Y.raw)

R> n1 <- sum(Y.raw)

R> n0 <- 3 * n1
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1. Classifiers and P-Values

Variable Meaning
Y Mortality (1 = deceased, 0 = survived)
X(1) Age in years
X(2) Sex (1 = female, 0 = male)
X(3) ASA-Score (American Society of Anesthesiologists),

describes the physical condition on an ordinal scale
1 = A normal healthy patient,
2 = A patient with mild systemic disease,
3 = A patient with severe systemic disease,
4 = A patient with severe systemic disease
that is a constant threat to life,
5 = A moribund patient who is not expected
to survive without the operation,
6 = A declared brain-dead patient whose
organs are being removed for donor purposes

X(4) Risk factor: cerebral (1 = yes, 0 = no)
X(5) Risk factor: cardiovascular (1 = yes, 0 = no)
X(6) Risk factor: pulmonary (1 = yes, 0 = no)
X(7) Risk factor: renal (1 = yes, 0 = no)
X(8) Risk factor: hepatic (1 = yes, 0 = no)
X(9) Risk factor: immunological (1 = yes, 0 = no)
X(10) Risk factor: metabolic (1 = yes, 0 = no)
X(11) Risk factor: uncooperative, unreliable (1 = yes, 0 = no)
X(12) Etiology: malignant (1 = yes, 0 = no)
X(13) Etiology: vascular (1 = yes, 0 = no)
X(14) Antibiotics therapy (1 = yes, 0 = no)
X(15) Surgery indicated (1 = yes, 0 = no)
X(16) Emergency operation (1 = yes, 0 = no)
X(17) Surgery time in minutes
X(18) Septic surgery (1 = yes, 0 = no)
X(19) Experienced surgeon, i.e. senior physician (1 = yes, 0 = no)
X(20) Blood transfusion necessary (1 = yes, 0 = no)
X(21) Intensive care necessary (1 = yes, 0 = no)

Table 1.1.: Variables in buerk data set
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R> X0 <- X.raw[Y.raw == 0, ]

R> X1 <- X.raw[Y.raw == 1, ]

R> tmpi0 <- sample(1:n0.raw, size = 3 * n1, replace = FALSE)

R> tmpi1 <- sample(1:n1, size = n1, replace = FALSE)

R> Xtrain <- rbind(X0[tmpi0[1:(n0 - 100)], ],

X1[1:(n1 - 100), ])

R> Ytrain <- c(rep(0, n0 - 100), rep(1, n1 - 100))

R> Xtest <- rbind(X0[tmpi0[(n0 - 99):n0], ],

X1[(n1 - 99):n1, ])

R> Ytest <- c(rep(0, 100), rep(1, 100))

1.7.3. Main Functions

Classify new observations

The function pvs computes nonparametric p-values for the potential class
memberships of new observations. It returns a matrix PV containing the p-
values. Precisely, for each new observation NewX[i, ] and each class b the
number PV[i,b] is a p-value for the null hypothesis that Y [i] = b. With
the option method or using directly one of the functions pvs.method one can
choose a test statistic.

For the following example we use the weighted nearest neighbor statistic
with an exponential weight function and tau = 10.

R> PV <- pvs(NewX = Xtest, X = Xtrain, Y = Ytrain,

method = ’wnn’, wtype = ’exponential’, tau = 10)

R> head(PV)

0 1

[1,] 0.1738209 0.45470693

[2,] 0.6173821 0.06216696

[3,] 0.1213567 0.58081705

[4,] 0.8473768 0.01776199

[5,] 0.4043455 0.15808171

[6,] 0.2517223 0.34280639

Next we illustrate the p-values graphically with the function analyze.pvs

using the first ten observations of each class.

R> analyze.pvs(pv=PV[c(1:10,101:110),], alpha = 0.05)

For each p-value a rectangle with an area proportional to the p-value is
drawn, see Figure 1.3. The rectangle is blue if the p-value is greater than
alpha and red otherwise. If we specify the class labels of the test data as in
the next example, then the data are sorted by class and the class labels are
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Figure 1.3.: Illustration of the p-values without indicating the class labels of
the test data

shown in the plot, see Figure 1.4. Additionally ROC curves are plotted by
default. We suppress this here with the argument roc = FALSE. An example
of the ROC curve plot can be found in the next section.

R> analyze.pvs(pv=PV[c(1:10,101:110), ],

+ Y = Ytest[c(1:10,101:110)], roc = FALSE)

Cross-validated p-values

The function cvpvs returns a matrix PV containing cross-validated nonpara-
metric p-values for the potential class memberships of the training data. Pre-
cisely, for each feature vector X[i,] and each class b the number PV[i,b] is
a p-value for the null hypothesis that Y [i] = b.

For the following example we use the logistic regression with penalty pa-
rameter tau.o = 2.

R> PV.cv <- cvpvs(X = Xtrain, Y = Ytrain,

method = ’logreg’, tau.o = 2)

R> PV.cv[1:3,]
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0 1

0

1

Figure 1.4.: Illustration of the p-values with class labels of the test data

[,1] [,2]

[1,] 0.9761400 0.001776199

[2,] 0.4172853 0.010657194

[3,] 0.4554613 0.010657194

R> PV.cv[2001:2003,]

[,1] [,2]

[1,] 0.002119767 0.7971530

[2,] 0.049284579 0.2740214

[3,] 0.010068892 0.6263345

The cross-validated p-values can be illustrated graphically the same way as
the p-values for the new observations. If L ≤ 3 the function analyze.pvs

also prints the empirical pattern probabilities P̂α(b, S) for all subsets S ⊂ Y.

Otherwise it prints the empirical conditional inclusion probabilities Îα(b, θ)
for all combinations of b and θ and the empirical pattern probabilities for
S = ∅,Y and {θ} for all θ ∈ Y.

In the following example we suppress the plot of the p-values and get only
the plot of the ROC curves, see Figure 1.5.
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θ
b

0

1

1

0

Figure 1.5.: ROC curves of the cross-validated p-values
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R> analyze.pvs(pv = PV.cv, Y = Ytrain, pvplot = FALSE, cex=1.3)

b P(b,{}) P(b,{1}) P(b,{2}) P(b,{1,2})

1 0 0.78791092 0.04984093 0.1622481

2 0 0.04982206 0.72064057 0.2295374

1.8. Technical Details for Penalized Multicategory
Logistic Regression

One of our versions of penalized multicategory logistic regression is similar to
the regularized multinomial regression introduced by Friedman et al. (2010),
the other one is a variation of the procedure of Zhu and Hastie (2004). An
important difference is that we use a smooth approximation to the absolute
value or norm function so that usual Newton-Raphson procedures (with step
size correction) are applicable.

1.8.1. The Log-Likelihood-Function

Let (X, Y ) be a random variable with values in Rd × {1, . . . , L} for some
integer L ≥ 2. We assume that

P (Y = y |X = x) = exp(ay + b>y x)
/ L∑
z=1

exp(az + b>z x)

for unknown parameters ay ∈ R and by ∈ Rd. For notational convenience we
introduce the vectors

V =

(
1
X

)
and θy =

(
ay
by

)
in Rd′ with d′ := 1 + d. Then

P (Y = y |V = v) = exp(θ>y v)
/ L∑
z=1

exp(θ>z v).

This parametrization is not unique, because P (Y = y |V = v) remains
unchanged if we add one and the same arbitrary vector to all parameters
θy. We will deal with this non-uniqueness later in various ways. Our goal is
estimation of

θ =
(
θ>1 ,θ

>
2 , . . . ,θ

>
L

)> ∈ RLd
′
,
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1. Classifiers and P-Values

based on independent data pairs (V i, Yi), 1 ≤ i ≤ n, such that L(Yi |V i) =
L(Y |V ). Thus we consider the negative log-likelihood function

Λ(θ) :=

n∑
i=1

(
−θ>YiV i + log

( L∑
y=1

exp(θ>y V i)
))

.

For the computation of the first and second derivatives of Λ(·) we shall use
the following lemma:

Lemma 1.9. Consider the functional

RL 3 f 7→ λ(f) := log

( L∑
y=1

exp(fy)

)
.

The gradient vector and Hessian matrix of this functional λ at f are given
by

p(f) :=

(
exp(fy)

/ L∑
z=1

exp(fz)

)L
y=1

and

h(f) := diag(p(f))− p(f)p(f)>,

respectively. Moreover, for any v ∈ RL,

v>h(f)v

{
= 0 if v1 = v2 = · · · = vL,

> 0 else.

Proof. The formulae for gradient vector and Hessian matrix follow from
elementary calculations. As to the sign of v>h(f)v, note that

v>h(f)v =

L∑
y=1

py(f)v2
y −

( L∑
z=1

pz(f)vz

)2

=

L∑
y=1

py(f)(vy − v̄(f))2,

where v̄(f) stands for the weighted average
∑L
y=1 py(f)vy. Thus v>h(f)v is

non-negative and equals zero if, and only if, all components of v are identical.

With Lemma 1.9 at hand one can easily determine the first and second
derivatives of Λ(·). To formulate the results we use the Kronecker product
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B ⊗C of arbitrary matrices (or vectors) B and C, namely

B ⊗C :=


B11C B12C B13C · · ·
B21C B22C B23C · · ·
B31C B32C B33C · · ·

...
...

...

 .

For our purposes it is useful to know that

(B ⊗C)> = B> ⊗C> (1.22)

and
(B ⊗C)(D ⊗E) = (BD)⊗ (CE) (1.23)

for arbitrary matrices B,C,D,E such that BD and CE are well-defined.
Moreover, for any dimension q, the standard basis of Rq is denoted by

eq,1, eq,2, . . . , eq,q.

Theorem 1.10. Let f(θ,v) := (θ>y v)Ly=1 for v ∈ Rd′ . With p(·) and h(·)
as in Lemma 1.9, the gradient vector and Hessian matrix of the negative
log-likelihood Λ(·) at θ are given by

G(θ) =

n∑
i=1

(
p(f(θ,V i))− eL,Yi

)
⊗ V i

and

H(θ) =

n∑
i=1

h(f(θ,V i))⊗ (V iV
>
i ),

respectively. The matrix H(θ) is positive semidefinite. If the linear span of
V 1,V 2, . . . ,V n equals Rd′ , then for arbitrary δ = (δ>1 , δ

>
2 , . . . , δ

>
L )> ∈ RLd′ ,

δ>H(θ)δ = 0 if, and only if, δ1 = δ2 = · · · = δL.

Proof. Since f(θ,v) is linear in θ, it follows from Lemma 1.9 that

λ(f(θ + δ,v))− λ(f(θ,v))

= λ
(
f(θ,v) + f(δ,v)

)
− λ(f(θ,v))

= f(δ,v)>p(f(θ,v)) + 2−1f(δ,v)>h(f(θ,v))f(δ,v) + o
(
‖δ‖2

)
as δ → 0. Consequently,

Λ(θ + δ)− Λ(θ) =

n∑
i=1

(
−δ>YiV i + f(δ,V i)

>p(f(θ,V i))
)

+ 2−1
n∑
i=1

f(δ,V i)
>h(f(θ,V i))f(δ,V i) + o

(
‖δ‖2

)
.
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To obtain gradient and Hessian of Λ(·) explicitly, note that f(θ,v) = (IL ⊗
v)>θ = (IL ⊗ v>)θ. Thus the linear term (in δ) of the previous expansion
of Λ(θ + δ) equals

n∑
i=1

(
f(δ,V i)

>p(f(θ,V i))− δ>YiV i

)
= δ>

n∑
i=1

(
(IL ⊗ V i)p(f(θ,V i))− eL,Yi ⊗ V i

)
= δ>

n∑
i=1

(
(IL ⊗ V i)(p(f(θ,V i))⊗ 1)− eL,Yi ⊗ V i

)
= δ>

n∑
i=1

(
p(f(θ,V i))⊗ V i − eL,Yi ⊗ V i

)
= δ>

n∑
i=1

(
p(f(θ,V i))− eL,Yi

)
⊗ V i,

while twice the quadratic term may be written as

n∑
i=1

f(δ,V i)
>h(f(θ,V i))f(δ,V i)

= δ>
n∑
i=1

(IL ⊗ V i)h(f(θ,V i))(IL ⊗ V >i ) δ

= δ>
n∑
i=1

(IL ⊗ V i)
(
h(f(θ,V i))⊗ 1

)
(IL ⊗ V >i ) δ

= δ>
( n∑
i=1

h(f(θ,V i))⊗ (V iV
>
i )

)
δ.

Finally, note that

δ>H(θ)δ =

n∑
i=1

f(δ,V i)
>h(f(θ,V i))f(δ,V i) ≥ 0

with equality if, and only if, f(δ,V i)
>h(f(θ,V i))f(δ,V i) = 0 for all indices

i. According to Lemma 1.9, the latter condition is equivalent to

δ>1 V i = δ>2 V i = · · · = δ>LV i for 1 ≤ i ≤ n.

But if the vectors V i span the whole Rd′ , this is equivalent to all vectors δy
being identical.
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1.8.2. Regularizations

Regularization 0. One way to guarantee uniqueness of the parameter θ is
to require

L∑
y=1

θy = 0.

More generally, let θ[j] :=
(
θj,y
)L
y=1

with θj,y denoting the j-th component

of θy. With 1L := (1, 1, . . . , 1)> ∈ RL, the previous condition means that

1>Lθ[j] = 0 (1.24)

for all j = 1, 2, . . . , d′. To enforce (1.24) at least for some j we can add

R0(θ) := 2−1
d′∑
j=1

σj
(
1>Lθ[j]

)2
with a vector σ = (σj)

d′

j=1 ∈ [0,∞)d
′

to Λ(θ). The choice of σ will depend
on further regularization terms.

Theorem 1.11. The gradient vector and Hessian matrix of R0 at θ are
given by

GR,0(θ) =
(
(1L1>L )⊗ diag(σ)

)
θ and HR,0(θ) = (1L1>L )⊗ diag(σ),

respectively.

Proof. Expanding R0(·) is rather simple, because it is a quadratic func-
tional itself. Note first that

R0(θ + δ)−R0(θ) =

d′∑
j=1

σj
(
1>Lδ[j]

)(
1>Lθ[j]

)
+ 2−1

d′∑
j=1

σj
(
1>Lδ[j]

)2
=

d′∑
j=1

σjδ
>
[j]1L1>Lθ[j] + 2−1

d′∑
j=1

σjδ
>
[j]1L1>Lδ[j].

But the subvector a[j] of a ∈ {θ, δ} may be written as (IL ⊗ e>d′,j)a, so

δ>[j]1L1>La[j] = δ>(IL ⊗ ed′,j)1L1>L (IL ⊗ e>d′,j)a

= δ>(IL ⊗ ed′,j)((1L1>L )⊗ 1)(IL ⊗ e>d′,j)a

= δ>
(
(1L1>L )⊗ (ed′,je

>
d′,j)

)
a,

and
∑d′

j=1 σj(1L1>L )⊗ (ed′,je
>
d′,j) = (1L1>L )⊗ diag(σ). Hence

R0(θ+δ)−R0(θ) = δ>
(
(1L1>L )⊗diag(σ)

)
θ+ 2−1δ>

(
(1L1>L )⊗diag(σ)

)
δ.
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Regularization 1: penalizing subvectors. For logistic regression there are
various good reasons to regularize the functional Λ or Λ + R0. One is to
avoid numerical problems. Another is to guarantee existence of a minimizer
in cases where Λ alone has no minimizer. This happens if one subgroup
{Xi : Yi = θo} is separated from {Xi : Yi 6= θo} by a hyperplane. Moreover,
we want to favor parameter vectors with only few large components. A first
way to do this would be to add the penalty

d′∑
j=1

τj‖θ[j]‖

with τ = (τj)
d′

j=1 ∈ [0,∞)d
′

to Λ(θ) + R0(θ). Here and throughout, ‖ · ‖
denotes Euclidean norm. This regularization is motivated by Tibshirani’s
(1996) LASSO and similar in spirit to penalized logistic regression as pro-
posed by Zhu and Hastie (2004). The latter authors used ‖θ[j]‖2 instead
of ‖θ[j]‖. To avoid problems with the non-smoothness of ‖ · ‖ at zero, we
approximate it by a smooth function and consider

R1(θ) :=

d′∑
j=1

τj
(
ε2 + ‖θ[j]‖2

)1/2
for some small number ε > 0. Typically we consider τ1 = 0 and strictly
positive parameters τ2, . . . , τd′ . Note that ‖θ[j]−c1L‖2 becomes minimal if c

equals the mean 1>Lθ[j]/L. Hence minimizing Λ(θ) +R0(θ) +R1(θ) enforces
Condition (1.24) whenever σj + τj > 0.

The following lemma is useful for the analysis of R1:

Lemma 1.12. Consider the functional

RL 3 f 7→ ρ(f) :=
(
ε2 + ‖f‖2

)1/2
.

The gradient vector and Hessian matrix of this functional ρ at f are given
by

gρ(f) := ρ(f)−1f and hρ(f) := ρ(f)−1IL − ρ(f)−3ff>,

respectively. Moreover, hρ(f) is positive definite for any f ∈ RL.
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Proof. Since (1 + δ)1/2 = 1 + δ/2− δ2/8 +O(δ3) as δ → 0,

ρ(f + v) =
(
ε2 + ‖f‖2 + 2f>v + ‖v‖2

)1/2
= ρ(f)

(
1 + ρ(f)−2

(
2f>v + ‖v‖2

))1/2

= ρ(f) + ρ(f)−1
(
2f>v + ‖v‖2

)
/2− ρ(f)−3

(
2f>v + ‖v‖2

)2
/8

+O(‖v‖3)

= ρ(f) + ρ(f)−1f>v + v>
(
ρ(f)−1I− ρ(f)−3ff>

)
v/2 +O(‖v‖3).

This proves that gradient and Hessian of ρ at f are given by gρ(f) :=

ρ(f)−1f and hρ(f) := ρ(f)−1I− ρ(f)−3ff>, respectively. Moreover, since
ρ(f) > ‖f‖, it follows from the Cauchy-Schwarz inequality that

v>hρ(f)v ≥ ρ(f)−1
(
1− ρ(f)−2‖f‖2

)
‖v‖2,

which is strictly positive for v 6= 0.

By means of Lemma 1.12 one can determine the first and second derivatives
of the regularizing function R1(·):

Theorem 1.13. With gρ(·) and hρ(·) as in Lemma 1.12, the gradient vector
and Hessian matrix of R1(·) at θ are given by

GR,1(θ) =

d′∑
j=1

τj
(
gρ(θ[j])⊗ ed′,j

)
and

HR,1(θ) =

d′∑
j=1

τj
(
hρ(θ[j])⊗ (ed′,je

>
d′,j)

)
,

respectively. Moreover, for any δ = (δ>1 , . . . , δ
>
L )> in RLd′ , δ>HR,1(θ)δ ≥ 0

with equality if, and only if,

τ1δ[1] = τ2δ[2] = · · · = τd′δ[d′] = 0.

Proof. It follows from Lemma 1.12 that

R1(θ+δ)−R1(θ) =

d′∑
j=1

τjδ
>
[j]gρ(θ[j]) + 2−1

d′∑
j=1

τjδ
>
[j]hρ(θ[j])δ[j] +o

(
‖δ‖2

)
.

(1.25)
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But δ[j] = (IL ⊗ ed′,j)>δ, whence

δ>[j]gρ(θ[j]) = δ>(IL ⊗ ed′,j)(gρ(θ[j])⊗ 1)

= δ>
(
gρ(θ[j])⊗ ed′,j

)
,

δ>[j]hρ(θ[j])δ[j] = δ>(IL ⊗ ed′,j)(hρ(θ[j])⊗ 1)(IL ⊗ e>d′,j)δ

= δ>
(
hρ(θ[j])⊗ (ed′,je

>
d′,j)

)
δ.

Plugging in the previous expressions within (1.25) yields the asserted expres-
sions for gradient and Hessian.

The additional assertion about the Hessian matrix HR,1(θ) follows from
(1.25) and the fact that all matrices hρ(θ[j]) are positive definite.

Regularization 2: component-wise penalties. A simple form of regulariza-
tion, analogous to Tibshirani’s (1996) LASSO is to add the penalty

d′∑
j=1

τj

L∑
y=1

|θj,y| =

d′∑
j=1

τj‖θ[j]‖1

to Λ(θ) +R0(θ). Again we use a smoothed version of this, namely

R2(θ) :=

d′∑
j=1

τj

L∑
y=1

(ε2 + θ2
j,y)1/2.

Application of Lemma 1.12 in the special case of L = 1 yields the derivatives

ρ′(f) =
f

(ε2 + f2)1/2
and ρ′′(f) =

ε2

(ε2 + f2)3/2

of R 3 f 7→ ρ(f) = (ε2 + f2)1/2. Hence the first two derivatives of R2 have
a rather simple form:

Theorem 1.14. Let v = v(τ ,θ) ∈ RLd′ contain the vectors diag(τ )θ1,
diag(τ )θ2, . . . ,diag(τ )θL from top to bottom. The gradient vector and Hes-
sian matrix of R2(·) at θ are given by

GR,2(θ) = vec
(
(τjρ

′(θj,y))j≤d′,y≤L
)

and

HR,2(θ) = diag
(

vec
(
(τjρ

′′(θj,y))j≤d′,y≤L
))
,

respectively.

In the previous theorem we use the notation vec(M) for a vector which is
formed by stacking the columns of a matrix M (from left to right).
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1.8.3. Strict Convexity and Coercivity

In this subsection we tackle the question when a unique minimizer of Λ +R0

or of Λ +R with R = R0 +R1 or R0 +R2 exists. Let us start with a general
consideration: Suppose that f : Rq → R is continuously differentiable and
convex. Then one can easily verify that the following three statements are
equivalent:

The set of minimizers of f is nonvoid and compact; (1.26)

f is coercive, i.e. f(θ) → ∞ as ‖θ‖ → ∞; (1.27)

lim
t→∞

θ>∇f(tθ) > 0 for any θ ∈ Rq \ {0}. (1.28)

The third statement (1.28) becomes more plausible when noting that R 3
t 7→ θ>∇f(tθ) is the derivative of the convex function R 3 t 7→ f(tθ).

Theorem 1.15. Suppose that V 1,V 2, . . . ,V n span Rd′ , and let σ ∈ (0,∞)d
′
.

Then the Hessian matrix of Λ+R0 is positive definite everywhere. A (unique)
minimizer of Λ + R0 fails to exist if, and only if, there exist vectors θ1,
θ2, . . . ,θL ∈ Rd′ such that θy 6= θz for some class labels 1 ≤ y < z ≤ L and

θ>YiV i = max
y=1,...,L

θ>y V i for 1 ≤ i ≤ n. (1.29)

Theorem 1.16. Let R = R0 +R1 or R = R0 +R2. If σ1 > 0 and τj > 0 for
2 ≤ j ≤ d′, then the Hessian matrix of Λ +R is positive definite everywhere,
and there exists a (unique) minimizer of Λ +R.

Proof of Theorem 1.15. The Hessian of Λ+R0 at θ is the sum of the pos-
itive semidefinite matrices H(θ) and HR,0(θ). According to Theorem 1.10,

for any δ ∈ RLd′ , it follows from δ>H(θ)δ = 0 that δ1 = δ2 = · · · = δL.

But δ>HR,0(θ)δ = 2R0(δ) =
∑d′

j=1 σj(1
>
Lδ[j])

2 = 0 implies that 1>Lδ[j] = 0

for 1 ≤ j ≤ d′, so
∑L
y=1 δy = Lδz = 0 for 1 ≤ z ≤ L.

As to the existence of a unique minimizer, note that strict convexity of
f = R + R0 implies that it has either a unique minimizer or no minimizer
at all. Hence existence of a minimizer is equivalent to (1.28). Suppose that
the latter condition is violated, i.e. limt→∞ θ

>∇f(tθ) ≤ 0 for a fixed nonzero
θ. Note that θ>∇f(tθ) is the sum of θ>G(tθ) and θ>GR,0(tθ) = 2tR0(θ).
Moreover,

θ>G(tθ) =

n∑
i=1

( L∑
y=1

exp(tθ>y V i)∑L
z=1 exp(tθ>z V i)

θ>y V i − θ>YiV i

)
→

n∑
i=1

(
max

y=1,...,L
θ>y V i − θ>YiV i

)
,
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which is certainly nonnegative. Hence, our assumption entails that R0(θ) =

0, i.e.
∑L
y=1 θy = 0 and (1.29). Since θ 6= 0 and

∑L
y=1 θy = 0, the subvectors

θ1,θ2, . . . ,θL cannot be all identical.

On the other hand, suppose that (1.29) holds for some θ = (θ>1 , . . . ,θ
>
L )>

such that θy 6= θz for some 1 ≤ y < z ≤ L. These properties remain

unchanged if we subtract L−1
∑L
y=1 θy from all subvectors θ1,θ2, . . . ,θL.

But then we have a nonzero vector θ ∈ RLd′ such that θ>GR,0(tθ) = 0 and

θ>G(tθ)→ 0 as t→∞.

Proof of Theorem 1.16. Suppose that for some θ, δ ∈ RLd′ ,

δ>H(θ)δ = δ>HR,0(θ)δ = δ>HR,k(θ)δ = 0,

where k = 1 or k = 2. It follows from δ>HR,k(θ)δ = 0 that δj,y = 0

for 2 ≤ j ≤ d′ and 1 ≤ y ≤ L. But then δ>H(θ)δ = 0 is equivalent to
δ1,1 = δ1,2 = · · · = δ1,L, because all vectors V i have first component one.

Hence it follows from δ>HR,0(θ)δ = σ1(1>Lδ[1])
2 = 0 that 1>Lδ[1] = Lδ1,y = 0

for 1 ≤ y ≤ L.

For the existence of a unique minimizer we employ (1.28) again.

1.8.4. Some Comments on the Implementation in pvclass

Representations with matrices. For various reasons it is better to work
with the parameter matrix θ = [θ1,θ2, . . . ,θL] ∈ Rd′×L. Then θ = vec(θ).
In R the operator vec(·) is implemented as as.vector(·). Together with the
augmented data matrix V = [V 1,V 2, . . . ,V n]>, one may write

F :=
[
f(θ,V 1),f(θ,V 2), . . . ,f(θ,V n)

]>
= V θ,

and this simplifies various computations, e.g. the determination of

P :=
[
p(f(θ,V 1)),p(f(θ,V 2)), . . . ,p(f(θ,V n))

]>
,

considerably. Another trick to speed up computations is the well-known
relation

a⊗ b = vec(ba>)
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1.8. Technical Details for Penalized Multicategory Logistic Regression

for arbitrary (column) vectors a and b. In particular, the gradient G(θ) of
Λ at θ may be represented as

G(θ) =

n∑
i=1

(
p(f(θ,V i))− eL,Yi

)
⊗ V i

= vec
( n∑
i=1

V i

(
p(f(θ,V i))− eL,Yi

)>)
= vec

(
V >(P −E)

)
,

where E := [eL,Y1
, eL,Y2

, . . . , eL,Yn ]>. For the Hessian H(θ) we also avoid
the summation of n Kronecker products as follows: For y, z ∈ {1, 2, . . . , L},(
H(θ)ij

)
(y−1)d′<i≤yd′,(z−1)d′<j≤zd′ = V >

((
(δyzP y −P y �P z)1

>
d′
)
� V

)
,

where � stands for componentwise multiplication, and P 1,P 2, . . . ,PL are
the columns of P .

Normalization of F . Having computed F = (Fiy)i≤n,y≤L, one can write
P = (Piy)i≤n,y≤L as

Piy = exp(Fiy)
/ L∑
z=1

exp(Fiz),

and

Λ(θ) =

n∑
i=1

(
log
( L∑
z=1

exp(Fiz)
)
− Fi,Yi

)
.

These representations become problematic numerically if some components
of F become very large or if a whole row of F consists of very small (negative)
values. To circumvent these problems, we subtract from each row of F its
maximum. This does not affect the previous expressions for Piy or Λ(θ).

Choice of σ and τ . In our implementations in pvclass, we use three ver-
sions of penalized logistic regression, specified by the parameters pen.method
and τo:

pen.method R σ τ

vectors R0 +R1 1d′ (τoSj)
d′

j=1

simple R0 +R2 ed′,1 (τoSj)
d′

j=1

none R0 1d′ −

Here Sj is the sample standard deviation (within groups) of the j-th compo-
nents of the vectors V i.
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1. Classifiers and P-Values

Starting values. In the standard model with P(Y = y) = wy and L(X |Y =
y) = Nd(µy,Σ),

P(Y = y |X = x) =
exp(logwy − µ>y Σ−1µy/2 + x>Σ−1µy)∑L
z=1 exp(logwz − µ>z Σ−1µz/2 + x>Σ−1µz)

.

Hence a possible starting point for iterative minimization algorithms is given
by

θ(0)
y = θ(∗)

y −M
(∗) with θ(∗)

y :=

(
log ŵy − µ̂>y Σ̂

−1
µ̂y/2

Σ̂
−1
µ̂y

)
,

where ŵy, µ̂y and Σ̂ are the usual parameter estimators in linear discrim-

inant analysis, while M (∗) ∈ Rd′ is a centering vector depending on the
type of regularization. Its first component equals the average of the com-

ponents of θ
(∗)
[1] . For 2 ≤ j ≤ d′, the j-th component of M (∗) is either the

mean (pen.method = vectors) or the median (pen.method = simple) of the

components of θ
(∗)
[j] .

Solution paths. Suppose that f1, f2 are two convex and twice continuously
differentiable functionals on Rq. Suppose further that for any t > 0, the
functional f1 + tf2 is coercive with positive definite Hessian matrix D2f1 +
tD2f2 everywhere. This entails that for each t > 0 there exists a unique
minimizer θ(t) ∈ Rq of f1 + tf2; indeed θ(t) is the unique solution θ of the
equation

∇f1(θ) + t∇f2(θ) = 0.

It follows from the implicit mapping theorem, applied to the function Rd×R 3
(x, t) 7→ ∇f1(x) + t∇f2(x) ∈ Rd, that (0,∞) 3 t 7→ θ(t) is also continuously
differentiable with derivative

θ′(t) = −
(
D2f1(θ(t)) + tD2f2(θ(t))

)−1∇f2(θ(t)).

These considerations are useful when minimizing Λ+R0+τoRk for different
values of τo > 0. Having determined the minimizer θ(τo) for some value of
τo, a good starting point for the Newton procedure with τ∗ close to τo is
given by

θ(0) := θ(τo)− (τ∗ − τo)
(
H(θ(τo)) +HR,0(θ(τo))

+ τoHR,k(θ(τo))
)−1

GR,k(θ(τo))

= θ(τo)− (τ∗/τo − 1)
(
H(θ(τo)) +HR,0(θ(τo))

+ τoHR,k(θ(τo))
)−1(

τoGR,k(θ(τo))
)
.
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2. Choice of Tuning Parameters

Some of the test statistics we use depend on a tuning parameter such as the
k in the nearest neighbor method or the penalty parameter τ in the logistic
regression. We want to choose them in a data-driven way which preserves
the symmetry in (XI(j))

Nθ
j=1.

Our first approach was to optimize the estimated expectations of the p-
values. To choose the tuning parameter for the p-value πθ(X,D), we add the
new observation X to the training data with class label θ. Then we search
for the parameter which minimizes the sum of the cross-validated p-values

n∑
i=1

πθ(Xi,D).

Unfortunately, this method chooses mostly small values for k or the regular-
ization parameter. The reason for this is overfitting. It selects the parameter
for which the classes are separated best. However, it is not taken into account
how the p-values change, if the training data vary slightly. For example if we
add a penalty term in the logistic regression, the separation of the training
data gets worse, but we gain stability.

2.1. Stability

In a second approach we want to maximize the stability, i.e. Tθ(X,D) should
take big values for observations not belonging to class θ. To find the tuning
parameter which maximizes the stability, we add the new observation X
to the training data with class label θ. Then we compute for all training
observations with Yi 6= θ the test statistic

T
(τ)
θ (Xi,Di(Xi,X, θ)),

where Di(Xi,X, θ) denotes the training data after adding the observation
(X, θ) and setting the class label of observation Xi to θ. Then we take the
sum of these values

S(τ,X, θ) :=
∑

i : Yi 6=θ

T
(τ)
θ (Xi,Di(Xi,X, θ))
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2. Choice of Tuning Parameters

and search for the parameter τ∗ which maximizes S(τ,X, θ):

τ∗(X, θ) := arg max
τ

S(τ,X, θ).

2.1.1. Subsampling

To determine the optimal tuning parameters for a new observation X and all
potential class memberships, the test statistic has to be computed (L−1)·n·l
times, where l is the number of tuning parameters from which we want to
choose the optimal one. This can be very computer-intensive, especially for
penalized logistic regression in high dimensions. One way to reduce com-
putation time is to take a random subset of the training data containing m

observations per class b 6= θ and compute T
(τ)
θ (Xi,Di(Xi,X, θ)) only for

these observations. Subsampling is particularly useful for large training sets.

2.1.2. Extended Golden Section Search

Another way to reduce computation time is to consider only few values for τ
instead of a whole grid. We observed in simulated and real data examples of
penalized logistic regression that S(τ,X, θ) is a unimodal function of τ for
fixed X and θ, at least for reasonable intervals [a, b].

Now suppose that τ∗ ∈ [a, b] and S(τ) : [a, b] → R is unimodal , i.e. S is
strictly increasing on [a, τ∗] and strictly decreasing on [τ∗, b]. In this case we
can use the golden section search.

Let a ≤ q < r < s < t ≤ b such that τ∗ ∈ [q, t]. At the beginning of the
algorithm we set q = a and t = b. Then S(r) ≤ S(s) implies τ∗ ∈ [r, t] and
we replace (q < r < s < t) by (r < s < s′ < t). In case of S(r) > S(s) we
know that τ∗ ∈ [q, s] and replace (q < r < s < t) by (q < r′ < r < s).

The new point r′ or s′, respectively, can be chosen in different ways. For the
golden section search (Kiefer, 1953) we choose r′ = Cq+Bs or s′ = Br+Ct,
respectively, with C = (

√
5 − 1)/2 ≈ 0.618 and B = 1 − C ≈ 0.382, i.e. we

divide the interval in the golden ratio. In this way we can guarantee that the
quadruples (q < r < s < t), (r < s < s′ < t) and (q < r′ < r < s) differ only
by an affine transformation. Moreover, we get in each step a reduction of the
interval length by the factor C. We stop the algorithm when t − q ≤ δ and
end up with an interval containing τ∗ with length smaller than Cδ. Now we
set τ∗ = arg max(S(q), S(r), S(s), S(t)). With this algorithm we don’t get
the exact argument of the maximum of S. However, the resulting p-values do
not depend too sensitively on the exact choice of τ and it suffices to choose a
τ which is not too far from the arg max. For the same reason, we can choose
a rather large value for δ.

Since we don’t know an interval [a, b] which contains τ∗, we extend the golden
section search. First we search for such an interval and then we start the
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2.2. Dimension Reduction

golden section search. As lower endpoint a we could take 0. However, to
avoid numerical problems we suggest to take a small value greater than 0,
e.g. 1. But a should be small enough, such that we may assume that τ∗ ≥ a.
To find the upper endpoint, we start with some point b and divide the interval
[a, b] in the golden ratio, i.e. s = Ba+ Cb. If S(s) ≥ S(b), τ∗ ∈ [a, b] and we
can start the golden section search. Otherwise, τ∗ could be greater than b
and we define a new upper endpoint b′ = b+C(b−a). Then we iterate these
steps until S(s) ≥ S(b). Pseudocode for the resulting algorithm is given in
Algorithm 1. In the last step we assign τ∗ = arg max(S(q), Sr, Ss), because
S(t) ≤ Ss by construction of the algorithm.

Algorithm 1 τ∗ ← extendedGoldenSection(S, a, b, δ)

(B,C)← (0.382, 0.618)
s← Ba+ Cb
(Ss, Sb)← (S(s), S(b))
if Ss < Sb then
τ∗ ← extendedGoldenSection(S, a, b+ C(b− a), δ)
return τ∗

end if
(q, r, t)← (a,Ca+Bb, b)
Sr ← S(r)
while t− q > δ do

if Sr > Ss then
(r, s, t)← (Cq +Bs, r, s)
(Sr, Ss)← (S(r), Sr)

else
(q, r, s)← (r, s, Br + Ct)
(Sr, Ss)← (Ss, S(s))

end if
end while
τ∗ ← arg max(S(q), Sr, Ss)
return τ∗

2.2. Dimension Reduction

In very high-dimensional settings the computation of the p-values and the
choice of τ , even with subsampling, become too computer-intensive. There-
fore we reduce the dimension of the data before applying the procedure. The
aim of this reduction is not to eliminate all noise variables, but to find a small
enough subset of predictors for which our procedure is computationally fea-
sible. We use l1-penalized multicategory logistic regression to determine the
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2. Choice of Tuning Parameters

subset.
To preserve the symmetry in (XI(j))

Nθ
j=1 we have two options. We can

split the training set and use one part for reduction and the other as training
set. If the training set is not big enough, we add the new observation to the
training set and use the whole set for the reduction. The drawback of the
latter method is that we have to do the reduction separately for each new
observation and potential class membership.

2.3. Numerical Examples

2.3.1. Simulated Data

Example 2.1. Consider L = 2 classes with Pθ = N100(µθ, I100), where µ1 =
(1, 0.5, 0.25, 0.125, 0, . . . , 0)> and µ2 = −µ1. We simulated N1 = N2 = 100

training observations per class and computed π
(τ)
θ (X,D(X, θ)) for 100 test

observations per class and τ = 1, 2, . . . , 100. Here π
(τ)
θ denotes the p-value

based on penalized logistic regression as described in Section 1.4. Figure 2.1
shows the rate of uniquely correct classified test observations for five different
training and test sets. The missclassification rates depend heavily on the
training set. Therefore we simulated 100 training and test sets and averaged
the missclassification rates. The result is also shown in Figure 2.1 (bottom
right). The corresponding distributions of τ∗ are drawn as bar plots. Note
that they are scaled to 1 and do not correspond to the scale of the y-axis.
To determine the distribution of τ∗ we used 20 training sets and 100 test
observations per class and training set.

Example 2.2. Next we consider an example with L = 5 classes, Pθ =
N100(µθ, I100) and µθ = (04(θ−1), 2, 1, 0.5, 0.25, 0, . . . , 0)>, where 0j denotes
the row vector with j zeros. We simulated Nθ = 100 training observations
and 40 test observations per class. Figure 2.2 shows the rate of uniquely
correct classified test observations for five different training and test sets and
averaged over 100 training and test sets (bottom right). The corresponding
distributions of τ∗ are drawn as bar plots. To determine the distribution of
τ∗ we used 5 training sets and 40 test observations per class and training set.

The choice of τ is good in both examples, but the procedure tends to pick
slightly too large values for τ , i.e. to regularize slightly too strong. This
is better than too little regularization, since a strong regularization avoids
overfitting, which is a big problem, especially in high-dimensional settings.

Subsampling increases the variability of τ∗. But the results remain quite
good for reasonable choices of m, e.g. m = 10.

Note that we averaged the rates of uniquely correct classified test observa-
tions over all classes, since these examples are symmetric.
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Figure 2.1.: Rates of uniquely correct classified test observations and distri-
butions of τ∗ for Example 2.1.
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Figure 2.2.: Rates of uniquely correct classified test observations and distri-
butions of τ∗ for Example 2.2.
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Figure 2.3.: Rates of uniquely correct classified test observations and distri-

bution of τ∗ for Example 2.3.

2.3.2. Real Data

Example 2.3 (Internet Ad). We consider data of images on Internet pages
provided by Kushmerick (1999). The binary response indicates whether the
image is an advertisement. The preprocessed data set (Friedman et al., 2010)
without missing values contains 1978 “nonads” and 381 ads. Three of the
1430 features are continuous, the others are binary. Computing p-values for
such a high-dimensional problem would be too computer-intensive. Therefore
we reduce the dimension as described in Section 2.2 using the R-package
glmnet (Friedman et al., 2010). We split the data in a set for the reduction
with 500 “nonads” and 100 ads, a test set with 100 observations per class
and a training set with 1378 “nonads” and 181 ads.

For the reduction, we choose a penalty parameter for which we end up
with a problem of dimension 120. Figure 2.3 shows the rate of uniquely
correct classified test observations of class “nonads” (left) and ads (right).
The distributions of τ∗ are drawn as bar plots. They were determined using
subsampling with m = 100.

Again, τ∗ is not at the arg max of the rate of unique correct classification,
but the rate for τ∗ is near to the maximum. For class ads the procedure
again regularizes slightly too strong.

Example 2.4 (Mushrooms). The UCI Machine Learning Repository (Bache
and Lichman, 2013) provides data of hypothetical samples corresponding to
23 species of gilled mushrooms. The binary response indicates whether the
species is edible or poisonous. Most of the 22 categorical features describe the
shape or the color. We removed 2 features. One has missing values and the
other one takes only one value. After creating dummy-variables we end up
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2. Choice of Tuning Parameters

b P(b,{}) P(b,{1}) P(b,{2}) P(b,{1,2})
1 0.07 0.93 0.00 0
2 0.08 0.00 0.92 0

Table 2.1.: Missclassification rates for τ = 40 in Example 2.4.

with a problem of dimension 91. The data set contains observations of 4208
edible and 3916 poisonous mushrooms. We picked randomly 100 observations
per class for the test set and used the rest as training set.

We computed the p-values for τ = 0.001, 0.01, 0.1, 1, 2, 3, . . . , 100. Table 2.1
shows the missclassification rates for τ = 40. The choice of τ has no big
influence on the result in this example. The rate of uniquely correct classified
observations varies only between 0.9 and 0.94. All the p-values for the wrong
classes are smaller than α = 0.05. The two classes are perfectly separated,
but for some of the observations both null hypotheses are rejected. They
are located between the two class centers at a big distance from most of
the training observations. Therefore both possible class memberships seem
implausible for these observations.

Example 2.5 (Buerk). For the hospital data described in Section 1.7 we
computed p-values for τ = 1, 2, . . . , 100. The amount of regularization has
no influence on the missclassification rates in this example.
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3. Central Limit Theorems

In this chapter we derive two central limit theorems. First, we consider linear
discriminant analysis and describe the asymptotic distribution of missclas-
sification rates and cross-validated estimators thereof. Second, we consider
p-values based on the plug-in statistic for the standard model and prove a
central limit theorem for conditional inclusion probabilities and empirical
conditional inclusion probabilities, which can be interpreted as estimators of
the former.

We consider L = 2 classes with distributions P1 and P2 on X = Rd, which
differ only by a shift. For notational convenience we assume without loss of
generality that Y1 = 1 and Y2 = 2. Let E(X1) = µ1 and E(X2) = µ2 denote
the mean vectors and suppose that

µ1 6= µ2.

Let X̃i := Xi − µYi denote the centered observation and Σ = Var(X1) =
Var(X2) the common positive definite covariance matrix.

Moreover, let P0 := L(Σ−1/2(X1 − µ1)) = L(Σ−1/2(X2 − µ2)) = L(Z)

with Z := Σ−1/2(X1 − µ1) and its first component Z1.
We assume that Z has a differentiable Lebesgue density fZ > 0 and for

all U ∈ Rd×(d−1) with U>U = Id−1

K(U) :=

∫
Rd−1

sup
a∈U⊥

‖∇fZ(a+Uz)‖(1 + ‖z‖)2 dz <∞. (3.1)

Here Id denotes the d-dimensional identity matrix and U⊥ the orthogonal
complement of the column space of U . We define β := Σ−1/2(µ2 − µ1),
such that ‖β‖ = DΣ(µ2,µ1). Except for the proof of Lemma 3.13. There

we define β := Σ−1/2(µλ − µθ).
In this chapter we consider the class labels Y1, Y2, . . . , Yn as fixed while

X1,X2, . . . ,Xn and (X, Y ) are independent. We use ŵθ := Nθ/n as esti-
mator for the prior weights wθ. Note that the choice of ŵθ is relevant only for
the linear discriminant analysis. The p-values based on the plug-in statistic
for the standard Gaussian model for two classes do not depend on the prior
weights wθ. Asymptotic statements are meant as

n→∞ and ŵθ → wθ for all θ ∈ Y.
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3. Central Limit Theorems

Convergence in probability is denoted by→p, convergence in law by→L and
almost sure convergence by →a.s.. Generally we denote with v̂ an estimator
of the vector v = (v1, v2, . . . , vd)

>, by ∆v the scaled difference
√
n(v̂ − v) =

(∆v,1,∆v,2, . . . ,∆v,d)
> and Y vn,i is a summand depending on Xi such that

∆v =
∑n
i=1 Y

v
n,i + op(1). Similarly, Â is an estimator for the matrix

A =

A1,1 · · · A1,d

...
. . .

...
Ad,1 · · · Ad,d

 ,

∆A the scaled difference
√
n(Â−A) and Y An,i is a summand depending on

Xi such that ∆A =
∑n
i=1 Y

A
n,i + op(1). Moreover, vi:j = (vi, vi+1, . . . , vj)

>

is a vector consisting of the components i to j of v.

The density of a random variable ξ is denoted by fξ. If ξ is one-dimensional
Fξ denotes its distribution function.

For random matrices Σ̂, Var(Σ̂) := Var(vec(Σ̂)), where vec(M) denotes
a vector which is formed by stacking the columns of a matrix M (from left
to right). To formulate some of the results we use the Kronecker product ⊗
defined on page 29.

We denote the symmetric difference of two sets A and B with A4B :=
(A \B) ∪ (B \A).

3.1. Half-Spaces

Let H denote the collection of all half-spaces in Rd. A half-space is a set of
the form

H(β, γ) :=
{
z ∈ Rd : β>z + γ ≤ 0

}
for β ∈ Rd \ {0} and γ ∈ R.

The missclassification rates of the standard linear classifier can be written
as a probability measure of a random subspace. Therefore we need some
results about random half-spaces to describe asymptotic properties of miss-
classification rates. These results are also useful to describe the asymptotic
behavior of inclusion probabilities for the p-values based on the plug-in statis-
tic for the standard model.

3.1.1. Root-n-Consistency

The following lemma shows the root-n-consistency of the probability measure
of random half-spaces under certain conditions.
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3.1. Half-Spaces

Lemma 3.1. Let a ∈ R, b ∈ Rd \ {0} and ψ := (b>, a)>. Further let â and

b̂ be random variables such that ∆ψ :=
√
n

(
b̂− b
â− a

)
= Op(1). Additionally

let X be a random vector in Rd with measure P and differentiable density f
which satisfies

‖E(X | b>X = −a)‖ <∞ (3.2)

and for all U ∈ Rd×(d−1) with U>U = Id−1

K(U) :=

∫
Rd−1

sup
a∈U⊥

‖∇f(a+Uz)‖(1 + ‖z‖)2 dz <∞. (3.3)

Then

√
nP
(
{x ∈ Rd : b̂

>
x+ â ≤ 0}4{x ∈ Rd : b>x+ a ≤ 0}

)
= Op(1) (3.4)

and

√
n
(
P{x ∈ Rd : b̂

>
x+ â ≤ 0} − P{x ∈ Rd : b>x+ a ≤ 0}

)
(3.5)

= c>∆ψ + Op(n−1/2)

with c> = −fb>X(−a)E
(
(X>, 1) | b>X = −a

)
, where fb>X denotes the

density of b>X.

Remark 3.2. The constant a in the previous lemma can be replaced by a
deterministic convergent sequence an → a. We will use the lemma with a
sequence depending on ŵ1/ŵ2.

Remark 3.3. Condition (3.3) is satisfied for the multivariate t-Distribution
with density

f(x) = det(Σ)−1/2gν
(
(x− µ)>Σ−1(x− µ)

)
,

for a mean vector µ ∈ Rd, a nonsingular covariance matrix Σ ∈ Rd×d, ν > 1
and gν(s) := C−1

ν (1 + s/ν)−(ν+d)/2 with some normalizing constant Cν > 0.

Proof of Remark 3.3. Without loss of generality let µ = 0 and Σ = Id.
Then

f(x) = C−1
ν (1 + ν−1‖x‖2)−(ν+d)/2

and

‖∇f(x)‖ =
ν + d

Cνν
(1 + ν−1‖x‖2)−(ν+d+2)/2‖x‖.
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For y ∈ arg maxx∈Rd ‖∇f(x)‖ and c := ‖y‖,∫
Rd−1

sup
a∈U⊥

‖∇f(a+Uz)‖(1 + ‖z‖)21{‖z‖ ≤ c} dz <∞.

If ‖z‖ > c, ‖∇f(a + Uz)‖ ≤ ‖∇f(Uz)‖ for all a ∈ U⊥. This implies for
c′ > c,∫
Rd−1

sup
a∈U⊥

‖∇f(a+Uz)‖(1 + ‖z‖)21{c < ‖z‖ ≤ c′} dz

≤
∫

Rd−1

‖∇f(Uz)‖(1 + ‖z‖)21{c < ‖z‖ ≤ c′} dz

=
ν + d

Cνν

∫
Rd−1

(1 + ν−1‖z‖2)−(ν+d+2)/2‖z‖(1 + ‖z‖)21{c < ‖z‖ ≤ c′} dz

=
(d− 1)τd−1(ν + d)

Cνν

∫
R

r(1 + r)2rd−2

(1 + ν−1r2)(ν+d+2)/2
1{c < r ≤ c′} dz,

where τd−1 := π(d−1)/2Γ((d+1)/2)−1 is the volume of the (d−1)-dimensional
unit sphere. By monotone convergence,∫

Rd−1

sup
a∈U⊥

‖∇f(a+Uz)‖(1 + ‖z‖)21{c < ‖z‖} dz

=
(d− 1)τd−1(ν + d)

Cνν

∫
R

r(1 + r)2rd−2

(1 + ν−1r2)(ν+d+2)/2
1{c < r} dr <∞.

Proof of Lemma 3.1. Suppose that b = e1, the first standard unit vector.
Then

P{x ∈ Rd : b̂
>
x+ â ≤ 0} − P{x ∈ Rd : b>x+ a ≤ 0}

= P
{(
ψ + n−

1
2 ∆ψ

)>(x
1

)
≤ 0
}
− P

{
ψ>

(
x
1

)
≤ 0
}

= P
{
x1 + a > 0 ≥ x1 + a+ n−

1
2 ∆ψ

>
(
x
1

)}
− P

{
x1 + a ≤ 0 < x1 + a+ n−

1
2 ∆ψ

>
(
x
1

)}
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3.1. Half-Spaces

= P
{
x1 + a > 0 ≥ x1(1 + n−

1
2 ∆ψ,1) + a+ n−

1
2

(
∆ψ,d+1 +

d∑
i=2

∆ψ,ixi

)}
− P

{
x1 + a ≤ 0 < x1(1 + n−

1
2 ∆ψ,1)

+ a+ n−
1
2

(
∆ψ,d+1 +

d∑
i=2

∆ψ,ixi

)}
.

With

ξ :=
−a− n− 1

2 (∆ψ,d+1 +
∑d
i=2 ∆ψ,ixi)

1 + n−
1
2 ∆ψ,1

and the interval I(ξ) := (min(−a, ξ),max(−a, ξ)] we may write

P{x ∈ Rd : b̂
>
x+ â ≤ 0} − P{x ∈ Rd : b>x+ a ≤ 0}

= P{ξ ≥ x1 > −a} − P{ξ < x1 ≤ −a}

=

∫
Rd−1

∫
I(ξ)

(−1)1{ξ<−a}f(x) dx1 dx2:d

=

∫
Rd−1

∫
I(ξ)

(−1)1{ξ<−a}
(
f(−a,x2:d) + (f(x)− f(−a,x2:d))

)
dx1 dx2:d.

Regarding the second summand,

∣∣∣ ∫
Rd−1

∫
I(ξ)

(−1)1{ξ<−a}
(
f(x)− f(−a,x2:d)

)
dx1 dx2:d

∣∣∣
=
∣∣∣ ∫
Rd−1

∫
I(ξ)

(−1)1{ξ<−a}
x1∫
−a

∇f(η,x2:d)
>e1 dη dx1 dx2:d

∣∣∣
≤
∫

Rd−1

∫
I(ξ)

x1∫
−a

‖∇f(η,x2:d)‖ dη dx1 dx2:d

≤
∫

Rd−1

∫
I(ξ)

∫
I(ξ)

‖∇f(η,x2:d)‖ dη dx1 dx2:d

=

∫
Rd−1

∫
I(ξ)

|ξ + a|‖∇f(η,x2:d)‖ dη dx2:d.
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3. Central Limit Theorems

Cauchy-Schwarz inequality yields

|ξ + a| = n−1/2

|1 + n−1/2∆ψ,1|

∣∣∣∣∣∣∆>ψ
 a
−x2:d

−1

∣∣∣∣∣∣
≤ n−1/2

|1 + n−1/2∆ψ,1|
‖∆ψ‖

√
a2 + 1(1 + ‖x2:d‖)

= Mn(1 + ‖x2:d‖)

with

Mn :=
n−1/2‖∆ψ‖

√
a2 + 1

|1 + n−1/2∆ψ,1|
= Op(n−1/2)

and thus

∣∣∣ ∫
Rd−1

∫
I(ξ)

(−1)1{ξ<−a}
(
f(x)− f(−a,x2:d)

)
dx1 dx2:d

∣∣∣
≤Mn

∫
Rd−1

∫
I(ξ)

‖∇f(η,x2:d)‖(1 + ‖x2:d‖) dη dx2:d

≤Mn

∫
Rd−1

∫
I(ξ)

sup
η̃∈I(ξ)

‖∇f(η̃,x2:d)‖(1 + ‖x2:d‖) dη dx2:d

≤M2
n

∫
Rd−1

sup
η̃∈I(ξ)

‖∇f(η̃,x2:d)‖(1 + ‖x2:d‖)2 dx2:d

≤M2
nK = Op(n−1)

by Condition (3.3). Hence

√
n
(
P{x ∈ Rd : b̂

>
x+ â ≤ 0} − P{x ∈ Rd : b>x+ a ≤ 0}

)
=
√
n

∫
Rd−1

(a+ ξ)f(−a,x2:d) dx2:d + Op(n−1/2)

=

∫
Rd−1

∆ψ,1a−∆ψ,d+1 −
∑d
i=2 ∆ψ,ixi

1 + n−
1
2 ∆ψ,1

f(−a,x2:d) dx2:d + Op(n−1/2)

=
∆ψ,1a−∆ψ,d+1

1 + n−
1
2 ∆ψ,1

∫
Rd−1

f(−a,x2:d) dx2:d

− 1

1 + n−
1
2 ∆ψ,1

d∑
i=2

∆ψ,i

∫
Rd−1

xif(−a,x2:d) dx2:d + Op(n−1/2)
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3.1. Half-Spaces

= − 1

1 + n−
1
2 ∆ψ,1

fX1
(−a)E

(
(X>, 1) | X1 = −a

)
∆ψ + Op(n−1/2)

= −fX1(−a)E
(
(X>, 1) | X1 = −a

)
∆ψ + Op(n−1/2).

Now for an arbitrary vector b ∈ Rd \ {0}, b>x+ a ≤ 0 if and only if e>1 y +
a/‖b‖ ≤ 0 with y = B>x and B = [b/‖b‖, b2, . . . , bd] such that B>B = Id.

Further b̂
>
x + â ≤ 0 if and only if b̂′

>
y + â′ ≤ 0 with â′ = â/‖b‖ and

b̂′ = B>b̂/‖b‖. Then with V := B>X,

P{x ∈ Rd : b̂
>
x+ â ≤ 0} − P{x ∈ Rd : b>x+ a ≤ 0}

= −fV1
(−a/‖b‖)E

(
(V >, 1) | V1 = −a/‖b‖

)( b̂′ − e1

â′ − a/‖b‖

)
= −fb>X/‖b‖(−a/‖b‖)E

((
(B>X)>, 1

)
| b>X = −a

)
· 1

‖b‖

(
B> 0
0 1

)(
b̂− b
â− a

)
= −fb>X(−a)E

(
(X>, 1) | b>X = −a

)(b̂− b
â− a

)
.

Next we show assertion (3.4). Without loss of generality let b = e1. Then

P
(
{x ∈ Rd : b̂

>
x+ â ≤ 0}4{x ∈ Rd : b>x+ a ≤ 0}

)
= P{ξ ≥ x1 > −a}+ P{ξ < x1 ≤ −a}

=

∫
Rd−1

∫
I(ξ)

f(x) dx1 dx2:d

=

∫
Rd−1

∫
I(ξ)

(
f(−a,x2:d) +

(
f(x)− f(−a,x2:d)

))
dx1 dx2:d

=

∫
Rd−1

|a+ ξ|f(−a,x2:d) dx2:d + Op(n−1)

=
1√
n

∫
Rd−1

∣∣∣∣∆ψ,1a−∆ψ,d+1 −
∑d
i=2 ∆ψ,ixi

1 + n−
1
2 ∆ψ,1

∣∣∣∣f(−a,x2:d) dx2:d

+ Op(n−1).
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3. Central Limit Theorems

In the penultimate step we used that∣∣∣ ∫
Rd−1

∫
I(ξ)

(
f(x)− f(−a,x2:d)

)
dx1 dx2:d

∣∣∣
≤
∫

Rd−1

∫
I(ξ)

x1∫
−a

‖∇f(η,x2:d)‖ dη dx1 dx2:d

≤M2
nK = Op(n−1).

Thus

√
nP
(
{x ∈ Rd : b̂

>
x+ â ≤ 0}4{x ∈ Rd : b>x+ a ≤ 0}

)
≤
∣∣∣∣∆ψ,1a−∆ψ,d+1

1 + n−
1
2 ∆ψ,1

∣∣∣∣ ∫
Rd−1

f(−a,x2:d) dx2:d

+

d∑
i=2

(∣∣∣∣ ∆ψ,i

1 + n−
1
2 ∆ψ,1

∣∣∣∣∣∣∣ ∫
Rd−1

xif(−a,x2:d) dx2:d

∣∣∣)+ Op(n−1/2)

= Op(1).

3.1.2. Empirical Processes

For the proofs of the central limit theorems we need some results about empir-
ical processes. The empirical measure P̂ of a sample of independent random
variables X1, X2, . . . ,Xn in a measurable space (X ,B) with distribution P
is the discrete random measure given by

P̂ :=
1

n

n∑
i=1

δXi
,

with δx denoting the Dirac measure at x. For a measurable set D ⊂ X ,

P̂ (D) :=
1

n

n∑
i=1

1{Xi ∈ D}.

For a probability measure P on Rd we consider the empirical process

BP,n = BP,n(H)H∈H

with
BP,n(H) :=

√
n(P̂ − P )(H),
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3.2. Asymptotics of Estimators for Location and Scatter

where H := {H(β, γ) : β ∈ Rd \ {0}, γ ∈ R}. Instead of BP,n
(
H(β, γ)

)
we

also write BP,n(β, γ). For the proof of the following theorem we refer to
van der Vaart and Wellner (1996). It is a consequence of the fact that H is
a Vapnik–Červonenkis class.

Theorem 3.4. The empirical process BP,n converges in l∞(H) weakly to a
centered Gaussian process BP with covariances

E
(
BP (H)BP (H ′)

)
= P (H ∩H ′)− P (H)P (H ′)

and uniformly continuous sample paths with respect to

ρP (H,H ′) := P (H4H ′).

Moreover, H equipped with ρP (H,H ′) is totally bounded and ‖BP,n‖∞ =
Op(1), where ‖ · ‖∞ denotes the uniform norm.

Theorem 3.5. Let H(β, γ), H(β̂, γ̂) ∈ H and P a probability measure on

Rd such that P
(
H(β, γ)4H(β̂, γ̂)

)
→p 0. Then

BP,n(β̂, γ̂)− BP,n(β, γ)→p 0.

Proof. For any fixed ε > 0, Theorem 3.4 implies that with asymptotic
probability 1,

|Bn(β̂, γ̂)− Bn(β, γ)| ≤ sup
H(β̃,γ̃)∈H:

ρP (H(β,γ),H(β̃,γ̃))≤ε

|Bn(β̃, γ̃)− Bn(β, γ)|

→L sup
H(β̃,γ̃)∈H:

ρP (H(β,γ),H(β̃,γ̃))≤ε

|BP (β̃, γ̃)−BP (β, γ)|

→p 0

as ε→ 0.

3.2. Asymptotics of Estimators for Location and
Scatter

The results of this section are not restricted to L = 2. For notational conve-
nience we assume without loss of generality that Y1 = 1, Y2 = 2, . . . , YL = L.

Lemma 3.6. Let θ ∈ Y and µ̂θ = N−1
θ

∑
i∈GθXi be the standard estimator

for µθ = E(Xi | Yi = θ). Suppose that E(‖X‖2) <∞. Then

∆µθ :=
√
n(µ̂θ − µθ) =

n∑
i=1

Y
µθ
n,i →L Nd(0, w

−1
θ Σ),

where Y
µθ
n,i :=

√
nN−1

θ 1{Yi = θ}X̃i.
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3. Central Limit Theorems

Lemma 3.7. Let Σ̂ := (n − L)−1
∑
θ∈Y

∑
i:Gθ (Xi − µ̂θ)(Xi − µ̂θ)> be the

standard estimator for Σ and suppose that E(‖X‖4) <∞. Then

∆Σ :=
√
n(Σ̂−Σ) =

n∑
i=1

Y Σ
n,i + op(1)→L Nd×d(0,Var(X̃1X̃

>
1 )) (3.6)

and

∆Σ−1 :=
√
n(Σ̂

−1
−Σ−1)) =

n∑
i=1

Y Σ−1

n,i + op(1)

→L Nd×d(0, (Σ−1 ⊗Σ−1) Var(X̃1X̃
>
1 )(Σ−1 ⊗Σ−1)) (3.7)

with Y Σ
n,i := n−1/2(X̃iX̃

>
i −Σ) and Y Σ−1

n,i := −Σ−1Y Σ
n,iΣ

−1.

Dümbgen et al. (2013) showed that the assumptions of the following lemma
are satisfied for the M -estimators defined in Section 1.1.2 if L(X | Y = θ) is
elliptically symmetric and E(‖X‖2) <∞.

Lemma 3.8. Let

Σ̂ = Σ + n−1
∑
θ∈Y

∑
i∈Gθ

(
gθ(‖Σ−1/2X̃i‖)X̃iX̃

>
i − hθ(‖Σ

−1/2X̃i‖)Σ
)

+ op(n−1/2)

for continuous bounded functions gθ, hθ such that gθ(r)r
2 is bounded for

r ≥ 0. Suppose that for Yi = θ

E
(
gθ(‖Σ−1/2X̃i‖)X̃iX̃

>
i − hθ(‖Σ

−1/2X̃i‖)Σ
)

= 0.

Then

∆Σ =

n∑
i=1

Y Σ
n,i + op(1)→L Nd×d(0,V ) (3.8)

and

∆Σ−1 =

n∑
i=1

Y Σ−1

n,i + op(1)→L Nd×d(0, (Σ−1 ⊗Σ−1)V (Σ−1 ⊗Σ−1)),

(3.9)

where

Y Σ
n,i := n−1/2

(
gYi(‖Σ

−1/2X̃i‖)X̃iX̃
>
i − hYi(‖Σ

−1/2X̃i‖)Σ
)
,

Y Σ−1

n,i := −Σ−1Y Σ
n,iΣ

−1
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3.2. Asymptotics of Estimators for Location and Scatter

and

V :=
∑
θ∈Y

wθ Var
(
gθ(‖Σ−1/2X̃θ‖)X̃θX̃

>
θ − hθ(‖Σ

−1/2X̃θ‖)Σ
)
.

Proof of Lemma 3.6. We apply the central limit theorem (Theorem A.1)
to the vectors Y

µθ
n,i. The assumptions are fulfilled, since E(Y

µθ
n,i) = 0,

n∑
i=1

Var(Y
µθ
n,i) = Nθ Var(Y

µθ
n,θ) =

n

Nθ
Var(X1) =

1

ŵθ
Σ→ 1

wθ
Σ

and by dominated convergence,

n∑
i=1

E
(
‖Y µθn,i‖

2 min(1, ‖Y µθn,i‖)
)

=
n

Nθ
E
(
‖X̃θ‖2 min(1,

√
nN−1

θ ‖X̃θ‖)
)

→ 0.

Proof of Lemma 3.7. First note that

Σ̂−Σ =
1

n− L

n∑
i=1

(X̃iX̃
>
i −Σ) +

L

n− L
Σ

−
∑
θ∈Y

Nθ
n− L

(
µ̂θ − µθ

)(
µ̂θ − µθ

)>
= n−1

n∑
i=1

(X̃iX̃
>
i −Σ) + Op(n−1).

We apply the central limit theorem to
∑n
i=1 Y

Σ
n,i = ∆Σ + op(1). As to the

assumptions, note that E(Y Σ
n,i) = 0,

n∑
i=1

Var(Y Σ
n,i) = nVar(Y Σ

n,1) = Var
(
X̃1X̃

>
1

)
and by dominated convergence,

n∑
i=1

E
(
‖Y Σ

n,i‖2 min(1, ‖Y Σ
n,i‖)

)
= E

(
‖X̃1X̃

>
1 −Σ‖2 min(1, n−1/2‖X̃1X̃

>
1 −Σ‖)

)
→ 0.
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3. Central Limit Theorems

For an invertible matrix B ∈ Rn×n and Rn×n 3 ∆ → 0, it is well-known
(e.g. Taylor and Lay, 1980) that

(B + ∆)−1 = B−1 −B−1∆B−1 +O(‖∆‖2).

Consequently,

Σ̂
−1

= Σ−1 − n−1/2Σ−1∆ΣΣ−1 + Op(n−1)

and

∆Σ−1 = −Σ−1∆ΣΣ−1 + Op(n−1/2).

For arbitrary matrices A,B,C such that ABC is well-defined, the relation

vec(ABC) = (C> ⊗A) vec(B) (3.10)

is well-known and yields

vec
(
Σ−1∆ΣΣ−1

)
= (Σ−1 ⊗Σ−1) vec (∆Σ) .

Now with Y Σ−1

n,i := −Σ−1Y Σ
n,iΣ

−1, Claim (3.7) follows from (3.6).

Proof of Lemma 3.8. By assumption, E(Y Σ
n,i) = 0. Moreover, since√

n‖Y Σ
n,i‖ is uniformly bounded,

n∑
i=1

Var(Y Σ
n,i) =

∑
θ∈Y

Nθ Var(Y Σ
n,θ)

=
∑
θ∈Y

Nθ
n

Var
(
gθ(‖Σ−1/2X̃θ‖)X̃θX̃

>
θ − hθ(‖Σ

−1/2X̃θ‖)Σ
)

→
∑
θ∈Y

wθ Var
(
gθ(‖Σ−1/2X̃θ‖)X̃θX̃

>
θ − hθ(‖Σ

−1/2X̃θ‖)Σ
)

and for some constant M <∞

n∑
i=1

E
(
‖Y Σ

n,i‖2 min(1, ‖Y Σ
n,i‖)

)
≤ nE

(
n−1M2 ·min(1, n−1/2M)

)
→ 0.

Now the central limit theorem yields (3.8). Claim (3.9) can be proved the
same way as Claim (3.7) in Lemma 3.7.
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3.3. A Central Limit Theorem for Missclassification Rates

3.3. A Central Limit Theorem for
Missclassification Rates

In this section we examine the asymptotic properties of the standard linear
classifier (1.3) for two classes, without assuming Gaussian distributions. More
precisely, we describe the asymptotic distribution of the missclassification
rates

Rθ = P
(
Ŷ (X,D) 6= Y | Y = θ,D

)
and the cross-validated estimators

R̂θ = N−1
θ #{i ∈ Gθ : Ŷ (Xi,Di) 6= Yi}

thereof.

Since we don’t want to make assumptions on the convergence rate of ŵθ,
we consider a reweighted version of the optimal classifier depending on ŵθ
instead of wθ, namely

Ŷ ∗n (x) :=

{
1, (x− µ1,2)>Σ−1(µ2 − µ1) + log(ŵ2/ŵ1) ≤ 0

2, (x− µ1,2)>Σ−1(µ2 − µ1) + log(ŵ2/ŵ1) > 0.

Note that we consider the class labels as fixed and therefore ŵθ is determin-
istic and converges to wθ by assumption.

We define γ := ‖β‖/2 + log(w1/w2)/‖β‖, ν := E(Z | Ŷ ∗(X1) = 1),
u := ‖β‖−1β and suppose that∥∥E(X1 | (X1 − µ1,2)>Σ−1(µ2 − µ1) + log(ŵ2/ŵ1) = 0

)∥∥ <∞, (3.11)

where we condition on X1 being in the separating hyperplane of the optimal
classifier.

The following two central limit theorems imply that, under certain condi-
tions, the standard linear classifier for two classes is asymptotically optimal.
Moreover, R̂1 is a root-n-consistent estimator of R1.

First, we consider the standard estimator of Σ. In this case, the only
assumptions we need to make about the distributions are a finite fourth
moment and that (3.1) and (3.11) hold.

Theorem 3.9. Let L = 2 and Σ̂ be the standard estimator. Suppose that
E(‖X‖4) <∞, (3.1) and (3.11) hold. Then for the standard linear classifier,

√
n

(
R1 − P

(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
)

R̂1 − P
(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
))→L N2

(
0,Λ

)
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and the components of the covariance matrix Λ are given by

Λ1,1 = ‖β‖−2fu>Z(γ)2
[

Var
(
β>Z(ν − 2−1β)>Z

)
+ w−1

1 ‖ν‖2

+ w−1
2 ‖ν − β‖2 + 2E

(
(β>Z)2(ν − 2−1β)>Z

)]
,

Λ2,2 = Λ1,1 + w−1
1

(
P(Ŷ ∗(X1) = 1)− P(Ŷ ∗(X1) = 1)2

)
+ 2‖β‖−1fu>Z(γ) Cov

(
β>Z(ν − 2−1β)>Z,1{Ŷ ∗(X1) = 1}

)
+ 2w−1

1 ‖β‖−1fu>Z(γ)ν>E
(
Z1{Ŷ ∗(X1) = 1}

)
and

Λ1,2 = Λ2,1

= Λ1,1 + ‖β‖−1fu>Z(γ) Cov
(
β>Z(ν − 2−1β)>Z,1{Ŷ ∗(X1) = 1}

)
+ w−1

1 ‖β‖−1fu>Z(γ)ν>E
(
Z1{Ŷ ∗(X1) = 1}

)
.

Instead of the standard estimator for the covariance matrix Σ, one could
use the more robust M -estimators defined in Section 1.1.2. Dümbgen et al.
(2013) showed that these estimators satisfy the assumptions of Lemma 3.8 if
L(Z) is spherically symmetric. In this case Condition (3.11) is not necessary
and Condition (3.1) can be relaxed to

K(U) :=

∫
Rd−1

sup
a∈U⊥

‖∇fZ(a+Uz)‖ dz <∞. (3.12)

Theorem 3.10. Let L = 2 and Σ̂ be an estimator satisfying the assumptions
of Lemma 3.8. Suppose that L(Z) is spherically symmetric satisfying (3.12)
and E(‖Z‖2) <∞. Then for the standard linear classifier,

√
n

(
R1 − P

(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
)

R̂1 − P
(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
))→L N2

(
0,Λ

)
and the components of the covariance matrix Λ are given by

Λ1,1 = fZ1(γ)2

[
w1(2−1‖β‖ − γ)2 Var

(
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
+ w2(2−1‖β‖ − γ)2 Var

(
g2

(
‖Z‖

)
Z2

1 − h2

(
‖Z‖

))
+ w−1

1 (γ/‖β‖)2 + w−1
2 (γ/‖β‖ − 1)2

+ γ(2γ/‖β‖ − 1)E
(
g1

(
‖Z‖

)
Z3

1 − h1

(
‖Z‖

)
Z1

)
+ (‖β‖ − γ)(2γ/‖β‖ − 1)E

(
g2

(
‖Z‖

)
Z3

1 − h2

(
‖Z‖

)
Z1

)]
,
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Λ2,2 = Λ1,1 + w−1
1

(
P(Z1 ≤ γ)− P(Z1 ≤ γ)2

)
+ fZ1

(γ)(2γ − ‖β‖)E
((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γ}

)
+ 2w−1

1 fZ1
(γ)(γ/‖β‖)E

(
Z11{Z1 ≤ γ}

)
and

Λ1,2 = Λ2,1

= Λ1,1 + fZ1(γ)(γ − ‖β‖/2)E
((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γ}

)
+ w−1

1 fZ1(γ)(γ/‖β‖)E
(
Z11{Z1 ≤ γ}

)
.

Proof of Theorem 3.9. Note that

P
(
Ŷ ∗n (X) = 1

∣∣ Y = 1
)

= P
(
(X − µ1,2)>Σ−1(µ2 − µ1) + log(ŵ2/ŵ1) ≤ 0

∣∣Y = 1
)

= P1

{
x ∈ Rd : b>x+ an ≤ 0

}
,

where an := (µ1 − µ2)>Σ−1µ1,2 + log(ŵ2/ŵ1), b := Σ−1(µ2 − µ1) and

P
(
Ŷ (X,D) = 1

∣∣ D, Y = 1
)

= P
(
(X − µ̂1,2)>Σ̂

−1
(µ̂2 − µ̂1) + log (ŵ2/ŵ1) ≤ 0 | D, Y = 1

)
= P1

{
x ∈ Rd : b̂

>
x+ â ≤ 0

}
,

where â := (µ̂1 − µ̂2)>Σ̂
−1
µ̂1,2 + log(ŵ2/ŵ1) and b̂ := Σ̂

−1
(µ̂2 − µ̂1)

with estimators µ̂θ(D) and Σ̂
−1

(D). Elementary calculations reveal that

µ̂θ(Di(X)) = µ̂θ(D) + Op(n−1) and Σ̂
−1

(Di(X)) = Σ̂
−1

(D) + Op(n−1).
Thus

R̂1 =
#{i ∈ G1 : b̂(Di)>Xi + â(Di) > 0}

N1

=
#{i ∈ G1 : b̂(D)>Xi + â(D) + Op(n−1) > 0}

N1

= P̂1

{
x ∈ Rd : b̂(D)>Xi + â′ > 0

}
with â′ = â(D) + Op(n−1).

Define Hn := {x ∈ Rd : b>x+ an ≤ 0}, Ĥ := {x ∈ Rd : b̂
>
x+ â ≤ 0} and
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Ĥ ′ := {x ∈ Rd : b̂
>
x+ â′ ≤ 0}. Then

ηn :=
√
n

(
P1(Ĥ)− P1(Hn)

P̂1(Ĥ ′)− P1(Hn)

)

= −
√
n

(
R1 − P

(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
)

R̂1 − P
(
Ŷ ∗n (X) 6= Y

∣∣ Y = 1
)) .

Next note that

b̂ = Σ̂
−1

(µ̂2 − µ̂1)

= (Σ−1 + n−1/2∆Σ−1)
(
(µ2 − µ1) + n−1/2(∆µ2

−∆µ1
)
)

= b+ n−1/2
(
∆Σ−1(µ2 − µ1) + Σ−1(∆µ2

−∆µ1
)
)

+ Op(n−1).

Hence

∆b :=
√
n(b̂− b)

= ∆Σ−1(µ2 − µ1) + Σ−1(∆µ2
−∆µ1

) + Op(n−1/2)

=

n∑
i=1

Y bn,i + op(1),

where Y bn,i := Y Σ−1

n,i (µ2 − µ1) + Σ−1(Y
µ2
n,i − Y

µ1
n,i) with Y Σ−1

n,i and Y
µθ
n,i as

in Lemma 3.6 and 3.7. Moreover,

â = (µ̂1 − µ̂2)>Σ̂
−1
µ̂1,2 + log(ŵ2/ŵ1)

= an + n−1/2
(
(∆µ1

−∆µ2
)>Σ−1µ1,2 + (µ1 − µ2)>∆Σ−1µ1,2

+ (µ1 − µ2)>Σ−1∆µ1,2

)
+ Op(n−1)

and

∆a :=
√
n(â− an)

= (µ1 − µ2)>∆Σ−1µ1,2 + µ>1 Σ−1∆µ1
− µ>2 Σ−1∆µ2

+ Op(n−1/2)

=

n∑
i=1

Y an,i + op(1),

where Y an,i := (µ1 − µ2)>Y Σ−1

n,i µ1,2 + µ>1 Σ−1Y
µ1
n,i − µ>2 Σ−1Y

µ2
n,i.

Define ψ>n := (b>, an)> and

∆ψ :=
√
n(ψ̂ −ψn) =

(
∆b

∆a

)
=

n∑
i=1

Y ψn,i + op(1)
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with

Y ψn,i :=

(
Y bn,i
Y an,i

)
.

By Lemma 3.1,

√
n
(
P1(Ĥ)− P1(Hn)

)
=
√
n
(
P1(Ĥ ′)− P1(Hn)

)
+ op(1)

= c>∆ψ + op(1)

=

n∑
i=1

c>Y ψn,i + op(1),

where

c = cn = −fb>X1
(−an)E

((X1

1

) ∣∣∣b>X1 = −an
)>

= −fb>X1
(−an)

(
Σ1/2νn + µ1

1

)
and νn := E(Z | b>X1 = −an).

Regarding the second component of ηn, note that

P̂1(Ĥ ′)− P1(Hn) =
(
P1(Ĥ ′)− P1(Hn)

)
+
(
P̂1 − P1

)
(Hn) +Rn

with

Rn :=
(
P̂1 − P1

)
(Ĥ ′)−

(
P̂1 − P1

)
(Hn)

= n−1/2
(
BP1,n(b̂, â′)− BP1,n(b, an)

)
and the empirical process BP1,n defined in Section 3.1.2. Lemma 3.1 en-

tails that P1(Ĥ ′4Hn) →p 0 and we deduce from Theorem 3.5 that Rn =
op(n−1/2). Next we define

Y pn,i :=
1{i ∈ G1}√

nŵ1

(
1{Xi ∈ Hn} − P1(Hn)

)
such that

n∑
i=1

Y pn,i =

√
n

N1

∑
i∈G1

(
1{Xi ∈ Hn} − P1(Hn)

)
=
√
n
(
P̂1 − P1

)
(Hn)
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and

ηn =
√
n

(
P1(Ĥ)− P1(Hn)(

P1(Ĥ ′)− P1(Hn)
)

+
(
P̂1 − P1

)
(Hn)

)
+ op(1)

=

n∑
i=1

Y ηn,i + op(1)

with

Y ηn,i :=

(
c>Y ψn,i

c>Y ψn,i + Y pn,i

)
.

Before we can apply the central limit theorem to
∑n
i=1 Y

η
n,i we have to

compute Var(Y ηn,i), the sum Λn :=
∑n
i=1 Var(Y ηn,i) and its limit Λ =

limn→∞Λn. To this end note that

c>Y ψn,i = c>1:dY
b
n,i + cd+1Y

a
n,i

= c>1:dY
Σ−1

n,i (µ2 − µ1) + c>1:dΣ
−1(Y

µ2
n,i − Y

µ1
n,i)

+ cd+1(µ1 − µ2)>Y Σ−1

n,i µ1,2 + cd+1µ
>
1 Σ−1Y

µ1
n,i

− cd+1µ
>
2 Σ−1Y

µ2
n,i

= (c1:d − cd+1µ1,2)>Y Σ−1

n,i (µ2 − µ1)

+ (c1:d − cd+1µYi)
>Σ−1(Y

µ2
n,i − Y

µ1
n,i)

=
(
(µ2 − µ1)⊗ (c1:d − cd+1µ1,2)

)>
vec(Y Σ−1

n,i )

+

√
n

NYi
(−1)1{Yi=1}(c1:d − cd+1µYi)

>Σ−1X̃i

= −v>n vec(Y Σ
n,i) +

√
n

NYi
(−1)1{Yi=1}(c1:d − cd+1µYi)

>Σ−1X̃i,

where

vn :=
(
Σ−1(µ2 − µ1)

)
⊗
(
Σ−1(c1:d − cd+1µ1,2)

)
∈ Rd

2

= −fb>X1
(−an)b⊗

(
Σ−1/2(νn − 2−1β)

)
.

Here and for the following computations we utilize several times the relations
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3.3. A Central Limit Theorem for Missclassification Rates

(1.22), (1.23) and (3.10). The upper left component of Λ is given by

Λn1,1 =

n∑
i=1

Var(c>Y ψn,i)

=

n∑
i=1

(
Var

(
v>n vec(Y Σ

n,i)
)

+
n

N2
Yi

(c1:d − cd+1µYi)
>Σ−1(c1:d − cd+1µYi)

+
2
√
n(−1)1{Yi=2}

NYi
v>n Cov

(
vec(Y Σ

n,i), X̃i

)
Σ−1(c1:d − cd+1µYi)

)
= Var

(
v>n vec(X̃1X̃

>
1 )
)

+ fb>X1
(−an)2

(
ŵ−1

1 ‖νn‖2 + ŵ−1
2 ‖νn − β‖2

)
+ 2cd+1v

>
n Cov

(
vec(X̃1X̃

>
1 ), X̃1

)
Σ−1(µ2 − µ1)

→ ‖β‖−2fu>Z(γ)2
[

Var
(
β>Z(ν − 2−1β)>Z

)
+ w−1

1 ‖ν‖2

+ w−1
2 ‖ν − β‖2 + 2E

(
(β>Z)2(ν − 2−1β)>Z

)]
,

where u := ‖β‖−1β. We used that fb>X1
(−a) = ‖β‖−1fu>Z(γ) and νn →

ν. The latter assertion can be derived from (3.1).

To compute Var(c>Y ψn,i + Y pn,i) we need

Var(Y pn,i) =
1{i ∈ G1}
nŵ2

1

(
P1(Hn)− P1(Hn)2

)
and

Cov(c>Y ψn,i, Y
p
n,i)

= Cov
(
− v>n vec(Y Σ

n,i), Y
p
n,i

)
+ Cov

(√n
NYi

(−1)1{Yi=1}(c1:d − cd+1µYi)
>Σ−1X̃i, Y

p
n,i

)
= −1{i ∈ G1}

N1
v>n Cov

(
vec(X̃1X̃

>
1 ),1{X1 ∈ Hn}

)
− 1{i ∈ G1}

N1ŵ1
(c1:d − cd+1µ1)>Σ−1 Cov

(
X̃1,1{X1 ∈ Hn}

)

=
1{i ∈ G1}

N1
fb>X1

(−an) Cov
(
β>Z(νn − 2−1β)>Z,1{X1 ∈ Hn}

)
+
1{i ∈ G1}
N1ŵ1

fb>X1
(−an)ν>nE

(
Z1{X1 ∈ Hn}

)
.
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Employing (3.1) again, one can show that P1(Hn)→ P(Ŷ ∗(X1) = 1). Thus

Cov
(
Z,1{X1 ∈ H}

)
→ Cov

(
Z,1{Ŷ ∗(X1) = 1}

)
and Cov

(
β>Z(νn −

2−1β)>Z,1{X1 ∈ H}
)
→ Cov

(
β>Z(ν − 2−1β)>Z,1{Ŷ ∗(X1) = 1}

)
by

dominated convergence. Hence the lower left component of Λ is given by

Λn2,2 =

n∑
i=1

Var(c>Y ψn,i + Y pn,i)

→ Λ1,1 + w−1
1

(
P(Ŷ ∗(X1) = 1)− P(Ŷ ∗(X1) = 1)2

)
+ 2‖β‖−1fu>Z(γ) Cov

(
β>Z(ν − 2−1β)>Z,1{Ŷ ∗(X1) = 1}

)
+ 2w−1

1 ‖β‖−1fu>Z(γ)ν>E
(
Z1{Ŷ ∗(X1) = 1}

)
and the other components are equal to

Λn1,2 = Λn2,1

=

n∑
i=1

(
Var(c>Y ψn,i) + Cov(c>Y ψn,i, Y

p
n,i)
)

→ Λ1,1 + ‖β‖−1fu>Z(γ) Cov
(
β>Z(ν − 2−1β)>Z,1{Ŷ ∗(X1) = 1}

)
+ w−1

1 ‖β‖−1fu>Z(γ)ν>E
(
Z1{Ŷ ∗(X1) = 1}

)
.

Next we show that Lindeberg’s condition is satisfied. Note that

n∑
i=1

E
(
‖Y ηn,i‖

2 min(1, ‖Y ηn,i‖)
)

=
∑

λ∈{1,2}

∑
i∈Gλ

E
(
‖Y ηn,i‖

2 min(1, ‖Y ηn,i‖)
)

=
∑

λ∈{1,2}

NλE
(
‖Y ηn,λ‖

2 min(1, ‖Y ηn,λ‖)
)

and for λ ∈ {1, 2}, ‖Y ηn,λ‖ ≤ 2‖c‖‖Y ψn,λ‖+|Y
p
n,λ| ≤ 2‖c‖‖Y ψn,λ‖+n−1/2ŵ−1

1 .
For some constants c′ and c′′

‖Y ψn,λ‖ ≤ ‖Y
b
n,λ‖+ |Y an,λ| ≤ c′‖Y

Σ
n,λ‖+ c′′

√
n

Nλ
‖X̃λ‖.

Therefore ‖Y Σ
n,λ‖ →a.s. 0 implies ‖Y ψn,λ‖ →a.s. 0 and ‖Y ηn,λ‖ →a.s. 0. Since

E‖X̃λ‖2 <∞, E
√
n‖Y Σ

n,λ‖‖X̃λ‖ <∞ and En‖Y Σ
n,λ‖2 <∞

by assumption, the dominated convergence theorem implies that

NλE
(
‖Y ηn,λ‖

2 min(1, ‖Y ηn,λ‖)
)
→ 0
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for any λ ∈ Y and thus Lindeberg’s condition

n∑
i=1

E
(
‖Y ηn,i‖

2 min(1, ‖Y ηn,i‖)
)
→ 0

is satisfied. Since E(Y ηn,i) = 0 for all i ≤ n and the Gaussian distribution
is symmetric, the assertion follows from the central limit theorem (Theo-
rem A.1).

Proof of Theorem 3.10. The prof of this theorem is similar to the proof
of Theorem 3.9. But the covariance matrix of the limit distribution is slightly
different. The elliptical symmetry implies that

P
(
Ŷ ∗(X) = 1

∣∣ Y = 1
)

= P
(
(X − µ1,2)>Σ−1(µ2 − µ1) + log(ŵ2/ŵ1) ≤ 0 | Y = 1

)
= P1{x ∈ Rd : b>x+ an ≤ 0}

= P1{β>Σ−1/2(x− µ1) + αn ≤ 0}
= P0{β>x+ αn ≤ 0}
= P0{(β/‖β‖)>x+ αn/‖β‖ ≤ 0}
= P0{x1 + αn/‖β‖ ≤ 0},

where αn = an + b>µ1. Analogously we get

P
(
Ŷ (X,D) = 1

∣∣ D, Y = 1
)

= P0{x1 + α̂/‖β̂‖ ≤ 0}

with β̂ = Σ1/2b̂ and α̂ = â+ b̂
>
µ1.

Employing Lemma 3.1 with b̂ = b = e1, a = αn/‖β‖ and â = α̂/‖β̂‖ =
αn/‖β‖+ Op(n−1/2) yields

√
n
(
P1(Ĥ)− P1(Hn)

)
= c>∆ψ + op(1)

= −fZ1
(γn)
√
n
( α̂

‖β̂‖
− αn
‖β‖

)
+ op(1),

where γn := ‖β‖/2 + log(ŵ1/ŵ2)/‖β‖ = −αn/‖β‖. Note that we use

Lemma 3.1 with b̂ = b = e1. Therefore Condition (3.2) is not necessary
and Condition (3.3) can be relaxed to (3.12).

The first order Taylor expansion of ‖β̂‖ is given by

‖β̂‖ = ‖β‖+
(β̂ − β)>β

‖β‖
+ op(n−1/2).
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Together with α̂ = αn + Op(n−1/2) this entails that

α̂

‖β̂‖
− α̂

‖β‖
=

−(‖β̂‖ − ‖β‖)αn
(‖β̂‖ − ‖β‖)‖β‖+ ‖β‖2

+ op(n−1/2)

=
−(‖β̂‖ − ‖β‖)αn

‖β‖2
+ op(n−1/2)

= −(β̂ − β)>β
αn
‖β‖3

+ op(n−1/2)

and thus

√
n
( α̂

‖β̂‖
− αn
‖β‖

)
= −
√
n(β̂ − β)>β

αn
‖β‖3

+
√
n
α̂− αn
‖β‖

+ op(1)

= − αn
‖β‖3

(µ2 − µ1)>∆b +
1

‖β‖
∆a +

1

‖β‖
µ>1 ∆b + op(1)

=
(( αn
‖β‖3

+
1

‖β‖

)
µ1 −

αn
‖β‖3

µ2

)>
∆b +

1

‖β‖
∆a + op(1).

Therefore in the elliptic symmetric case c is given by

c = −fZ1
(γn)

‖β‖

(
( αn
‖β‖2 + 1)µ1 − αn

‖β‖2µ2

1

)
= −fZ1(γn)

‖β‖

(
(1− γn

‖β‖ )µ1 + γn
‖β‖µ2

1

)
and

vn =
fZ1

(γn)

‖β‖

(1

2
− γn
‖β‖

)
(b⊗ b).

Hence the upper left component of Λ is given by

Λ1,1 = fZ1
(γ)2

[
w1(2−1‖β‖ − γ)2 Var

(
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
+ w2(2−1‖β‖ − γ)2 Var

(
g2

(
‖Z‖

)
Z2

1 − h2

(
‖Z‖

))
+ w−1

1 (γ/‖β‖)2 + w−1
2 (γ/‖β‖ − 1)2

+ γ(2γ/‖β‖ − 1)E
(
g1

(
‖Z‖

)
Z3

1 − h1

(
‖Z‖

)
Z1

)
+ (‖β‖ − γ)(2γ/‖β‖ − 1)E

(
g2

(
‖Z‖

)
Z3

1 − h2

(
‖Z‖

)
Z1

)]
.
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We utilized that ‖β‖−1β>Z has the same distribution as Z1. Note that
P1(Hn) = P(Z1 ≤ γn), 1{X1 ∈ Hn} = 1{‖β‖−1β>Z ≤ γn} and

Cov(c>Y ψn,i, Y
p
n,i)

= −1{i ∈ G1}
N1

v>n Cov
(√
n vec(Y Σ

n,1),1{X1 ∈ Hn}
)

− 1{i ∈ G1}
N1ŵ1

(c1:d − cd+1µ1)>Σ−1 Cov
(
X̃1,1{X1 ∈ Hn}

)
=
1{i ∈ G1}

N1
fZ1

(γn)(γn − ‖β‖/2)E
((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{X1 ∈ Hn}

)
+
1{i ∈ G1}
N1ŵ1

γnfZ1
(γn)

‖β‖
E
(
Z11{X1 ∈ Hn}

)
=
1{i ∈ G1}

N1
fZ1(γn)(γn − ‖β‖/2)E

((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γn}

)
+
1{i ∈ G1}
N1ŵ1

γnfZ1
(γn)

‖β‖
E
(
Z11{Z1 ≤ γn}

)
.

Therefore the remaining components are given by

Λn2,2 = Λn1,1 + ŵ−1
1

(
P1(Hn)− P1(Hn)2

)
+
1{i ∈ G1}

N1
fZ1

(γn)(2γn − ‖β‖)

· E
((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γn}

)
+ 2

1{i ∈ G1}
N1ŵ1

γnfZ1
(γn)

‖β‖
E
(
Z11{Z1 ≤ γn}

)
.

→ Λ1,1 + w−1
1

(
P(Z1 ≤ γ)− P(Z1 ≤ γ)2

)
+ fZ1

(γ)(2γ − ‖β‖)E
((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γ}

)
+ 2w−1

1 fZ1
(γ)(γ/‖β‖)E

(
Z11{Z1 ≤ γ}

)
and

Λ1,2 = Λ2,1

= Λ1,1 + fZ1
(γ)(γ − ‖β‖/2)E

((
g1

(
‖Z‖

)
Z2

1 − h1

(
‖Z‖

))
1{Z1 ≤ γ}

)
+ w−1

1 fZ1(γ)(γ/‖β‖)E
(
Z11{Z1 ≤ γ}

)
.

We used the dominated convergence theorem twice.
As to Lindeberg’s condition, note that ‖Y Σ

n,i‖ ≤ n−1/2M for some constant
M <∞. Thus the proof is similar to the one used for Theorem 3.9.
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3.4. A Central Limit Theorem for Inclusion
Probabilities

In this section we consider p-values based on the plug-in statistic for the
standard model with two classes. The corresponding conditional inclusion
probabilities

Iα(b, θ | D) = P(θ ∈ Ŷα(X,D) | Y = b,D)

are of interest to judge the separability of the two classes. However, these
theoretic quantities are typically unknown. Therefore we use cross-validation
to estimate them. Namely, we compute the empirical conditional inclusion
probabilities

Îα(b, θ) = N−1
b #{i ∈ Gb : θ ∈ Ŷα(Xi,Di)}

based on cross-validated p-values.
Dümbgen et al. (2008) showed that Îα(b, θ) are consistent estimators of
Iα(b, θ | D), (see also Section 1.6). More precisely,

Iα(b, θ | D)

Îα(b, θ)

}
→p P

(
π∗θ(X) > α | Y = b

)
,

and the limit equals 1− α in case of b = θ.
We now take a closer look at the inclusion probabilities and describe the

asymptotic distribution of

√
n

(
Iα(b, θ | D)− P

(
π∗θ(X) > α | Y = b

)
Îα(b, θ)− P

(
π∗θ(X) > α | Y = b

) )
assuming only elliptically symmetric instead of Gaussian distributions.

Let E :=
{
x ∈ Rd : π∗θ(x) > α

}
and q denote the (1 − α)-quantile of

L(v>Z) for some unit vector v ∈ Rd. The spherical symmetry of L(Z)
implies that q does not depend on v.

Theorem 3.11. Suppose that L(Z) is elliptically symmetric satisfying (3.1)

and E(‖Z‖2) <∞. Either let Σ̂ be the standard estimator and E(‖Z‖4) <∞,

or let Σ̂ be an estimator satisfying the assumptions of Lemma 3.8, e.g. the
M -estimators defined in Section 1.1.2. Then for the plug-in rule for the
standard model with L = 2 classes and θ ∈ {1, 2},

√
n
(
Iα(θ, θ | D)− P

(
π∗θ(X) > α | Y = θ

))
= −
√
n
(
P̂θ − Pθ

)
(E) + op(1)

→L N
(
0, w−1

θ α(1− α)
)

and √
n
(
Îα(θ, θ)− P

(
π∗θ(X) > α | Y = θ

))
= op(1). (3.13)
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For θ 6= λ ∈ {1, 2},

√
n

(
Iα(λ, θ | D)− P

(
π∗θ(X) > α | Y = λ

)
Îα(λ, θ)− P

(
π∗θ(X) > α | Y = λ

) )
=
√
n

(
c
(
P̂θ − Pθ

)
(E)

c
(
P̂θ − Pθ

)
(E) +

(
P̂λ − Pλ

)
(E)

)
+ op(1)

→L N2

(
0,

(
σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2

))
,

where σ2
1 = w−1

θ c2α(1−α) and σ2
2 = w−1

λ Pλ(E)
(
1−Pλ(E)

)
with c = −fZ1

(q−
‖β‖)/fZ1

(q) and Pλ(E) = FZ1

(
q − ‖β‖

)
.

Corollary 3.12. Suppose that the assumptions of Theorem 3.11 are satisfied.
Then for b, θ ∈ {1, 2}

√
n
(
Îα(b, θ)− Iα(b, θ | D)

)
=
√
n
(
P̂b − Pb

)
(E) + op(1)

→L N
(
0, w−1

b Pb(E)
(
1− Pb(E)

))
.

It is remarkable that the term of order Op(n−1/2) in Îα(θ, θ) − P
(
π∗θ(X) >

α | Y = θ
)

vanishes. This means that the cross-validated estimator Îα(θ, θ)
converges faster to the inclusion probability of the optimal p-value than the
theoretic conditional inclusion probability Iα(θ, θ | D) does.

The term of order Op(n−1/2) in Îα(λ, θ) − P
(
π∗θ(X) > α | Y = θ

)
does

not vanish for λ 6= θ. But it may be written as a sum of two independent
summands. The first summand Iα(λ, θ | D) depends only on the training
data from class λ and the second summand depends only on the training
data from class θ.

The Corollary implies that the empirical conditional inclusion probabilities
Îα(b, θ) are root-n-consistent estimators for the conditional inclusion proba-
bilities Iα(b, θ | D). Moreover, it enables us to construct confidence intervals
for Iα(b, θ | D). An asymptotic (1− α)-confidence interval is given by[

Îα(b, θ)±
√
n−1w−1

b Pb(E)
(
1− Pb(E)

)
z1−α/2

]
,

where z1−α/2 denotes the (1 − α/2)-quantile of the standard Gaussian dis-
tribution. In practice, the prior probability wb may be unknown and can be
replaced by the deterministic quantity ŵb = Nb/n. For b = θ, we know that
Pθ(E) = α and can compute the confidence interval[

Îα(θ, θ)±
√
N−1
θ α(1− α)z1−α/2

]

71



3. Central Limit Theorems

for Iα(θ, θ | D). However, for λ 6= θ, Pλ(E) is typically unknown in practice,
which prevents us from constructing confidence intervals for Iα(λ, θ | D).

For the proof of Theorem 3.11 we need the following lemma.

Lemma 3.13. Suppose that the assumptions of Theorem 3.11 are satisfied.
Then for b, θ ∈ {1, 2}

Pb
(
{x ∈ Rd : πθ(x,D) > α}4{x ∈ Rd : π∗θ(x) > α}

)
= Op(n−1/2) (3.14)

and

Pb{x ∈ Rd : πθ(x,D) > α} − Pb{x ∈ Rd : π∗θ(x) > α} (3.15)

=
fZ1

(q − ‖Σ−1/2(µb − µθ)‖)
fZ1

(q)
(P̂θ − Pθ){x ∈ Rd : π∗θ(x) ≤ α}+ op(n−1/2).

For b = θ this reduces to

Pθ{x ∈ Rd : πθ(x,D) > α} − Pθ{x ∈ Rd : π∗θ(x) > α}

= (P̂θ − Pθ){x ∈ Rd : π∗θ(x) ≤ α}+ op(n−1/2).

Proof of Lemma 3.13. For L = 2 classes and θ 6= λ ∈ {1, 2}, we consider

T ∗θ (x) := (x− µλ,θ)>Σ−1(µλ − µθ),

which is a strictly monotonic transformation of T ∗θ (x) defined in Example 1.2
and therefore leads to the same p-values. The empirical version of T ∗θ (x)
based on training data D is given by

Tθ(x,D) = (x− µ̂λ,θ)>Σ̂
−1

(µ̂λ − µ̂θ),

with estimators µ̂b(D) and Σ̂
−1

(D). Elementary calculations reveal that

µ̂b(Di(X)) = µ̂b(D) + Op(n−1) and Σ̂
−1

(Di(X)) = Σ̂
−1

(D) + Op(n−1).
Thus Tθ

(
Xi,Di(X)

)
= Tθ(Xi,D) + Op(n−1) and

πθ(X,D) :=
#
{
i ∈ Gθ : Tθ

(
Xi,Di(X)

)
≥ Tθ(X,D)

}
+ 1

Nθ + 1

= P̂θ
{
z ∈ Rd : Tθ(z,D) + Op(n−1) ≥ Tθ(X,D)

}
+ Op(n−1).

Consequently,

Pb{x ∈ Rd : πθ(x,D) > α} − Pb{x ∈ Rd : π∗θ(x) > α}

= Pb

{
x ∈ Rd : P̂θ

{
z ∈ Rd : Tθ(z,D) + Op(n−1) ≥ Tθ(x,D)

}
+ Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ

{
z ∈ Rd : T ∗θ (z) ≥ T ∗θ (x)

}
> α

}
= Pb

{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
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where

Â(x) :=
{
z ∈ Rd : Tθ(z,D) + Op(n−1) ≥ Tθ(x,D)

}
,

A(x) :=
{
z ∈ Rd : T ∗θ (z) ≥ T ∗θ (x)

}
.

Now we split the term in two summands

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
=
(
Pb
{
x ∈ Rd : Pθ(Â(x)) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

})
+
(
Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
(3.16)

− Pb
{
x ∈ Rd : Pθ(Â(x)) > α

})
.

Regarding the first summand note that

A(x) =
{
z ∈ Rd : T ∗θ (z) ≥ T ∗θ (x)

}
=
{
z ∈ Rd : z>Σ−1(µλ − µθ) ≥ x>Σ−1(µλ − µθ)

}
=
{
z ∈ Rd : β>Σ−1/2z ≥ β>Σ−1/2x

}
=
{
z ∈ Rd : u>Σ−1/2(z − µθ) ≥ u>Σ−1/2(x− µθ)

}
,

where β = Σ−1/2(µλ−µθ) and u := β/‖β‖. Note that Pθ(A(x)) > α if and

only if u>Σ−1/2(x− µθ) < q. Consequently,

Pb
{
x ∈ Rd : Pθ(A(x)) > α

}
= Pb

{
x ∈ Rd : u>Σ−1/2(x− µθ) < q

}
. (3.17)

Lemma 3.6, 3.7 and 3.8 yield

Tθ(x,D) = (x− µ̂λ,θ)>Σ̂
−1

(µ̂λ − µ̂θ)

= (x− µλ,θ)>Σ−1(µλ − µθ)−
∆>µλ,θ√

n
Σ−1(µλ − µθ)

+ (x− µλ,θ)>
∆Σ−1√

n
(µλ − µθ) + (x− µλ,θ)>Σ−1 ∆µλ −∆µθ√

n

+ Op(n−1)
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and thus

Â(x) =
{
z ∈ Rd : Tθ(z,D) + Op(n−1) ≥ Tθ(x,D)

}
=
{
z ∈ Rd : T ∗θ (z)− T ∗θ (x) + (z − x)>Σ−1/2

(
Σ1/2 ∆Σ−1√

n
(µλ − µθ)

+ Σ−1/2 ∆µλ −∆µθ√
n

+ Op(n−1)
)
≥ 0
}

=
{
z ∈ Rd : (z − x)>Σ−1/2

(
β + Σ1/2 ∆Σ−1√

n
(µλ − µθ)

+ Σ−1/2 ∆µλ −∆µθ√
n

+ Op(n−1)
)
≥ 0
}

=
{
z ∈ Rd : β̂

>
Σ−1/2z ≥ β̂

>
Σ−1/2x

}
=
{
z ∈ Rd : û>Σ−1/2(z − µθ) ≥ û

>Σ−1/2(x− µθ)
}
,

where β̂ := β+ Σ1/2 ∆Σ−1√
n

(µλ −µθ) + Σ−1/2 ∆µλ
−∆µθ√
n

+ Op(n−1) and û :=

β̂/‖β̂‖.
We deduce from the spherically symmetric distribution of Σ−1/2(Xθ−µθ)

that û>Σ−1/2(Xθ−µθ) conditional on the training data has the same distri-

bution as u>Σ−1/2(Xθ −µθ). Therefore Pθ
{
z ∈ Rd : Tθ(z,D) + Op(n−1) ≥

Tθ(x,D)
}
> α if and only if û>Σ−1/2(x− µθ) < q.

This entails that

Pb
{
x ∈ Rd : Pθ(Â(x)) > α

}
= Pb

{
x ∈ Rd : û>Σ−1/2(x− µθ) < q

}
and

Pb
{
x ∈ Rd : Pθ(Â(x)) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
= Pb

{
x ∈ Rd : û>Σ−1/2(x− µθ) < q

}
− Pb

{
x ∈ Rd : u>Σ−1/2(x− µθ) < q

}
= Pb

{
x ∈ Rd : û>Σ−1/2(x− µb) < û

>Σ−1/2(µθ − µb) + q
}

(3.18)

− Pb
{
x ∈ Rd : u>Σ−1/2(x− µb) < u>Σ−1/2(µθ − µb) + q

}
.

Next we consider the second summand of (3.16). For y ∈ R let

G(y) := Pθ
{
z ∈ Rd : u>Σ−1/2(z − µθ) ≥ y

}
= P0{z ∈ Rd : u>z ≥ y}
= 1− FZ1

(y)

and therefore G′(y) = −fZ1(y) < 0.
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Note that

Pθ(A(x)) = Pθ
{
z ∈ Rd : u>Σ−1/2(z − µθ) ≥ u>Σ−1/2(x− µθ)

}
= G(u>Σ−1/2(x− µθ))

and the spherically symmetric distribution of Σ−1/2(Xθ − µθ) implies

Pθ(Â(x)) = Pθ
{
z ∈ Rd : û>Σ−1/2(z − µθ) ≥ û

>Σ−1/2(x− µθ)
}

= Pθ
{
z ∈ Rd : u>Σ−1/2(z − µθ) ≥ û

>Σ−1/2(x− µθ)
}

= G(û>Σ−1/2(x− µθ)).

The first order Taylor expansion of G at q is given by

Pθ(Â(x)) = G(q) +G′(q) ·
(
û>Σ−1/2(x− µθ)− q

)
+ op

(
û>Σ−1/2(x− µθ)− q

)
= α+G′(q) ·

(
û>Σ−1/2(x− µθ)− q

)
+ op

(
û>Σ−1/2(x− µθ)− q

)
.

For β ∈ Rd and γ ∈ R consider the half-space H(β, γ) := {z ∈ Rd : β>z+γ ≤
0} and the empirical process BPθ,n(β, γ) :=

√
n(P̂θ − Pθ)

(
H(β, γ)

)
. Then

P̂θ(Â(x)) = Pθ(Â(x)) +
(
P̂θ − Pθ

)
(Â(x))

= Pθ(Â(x)) + n−1/2BPθ,n(−Σ−1/2û, û>Σ−1/2x)

= α+G′(q) ·
(
û>Σ−1/2(x− µθ)− q

)
+ n−1/2BPθ,n(−Σ−1/2û, û>Σ−1/2x)

+ op

(
û>Σ−1/2(x− µθ)− q

)
.

Next we show that for the computation of

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(Â(x)) > α

}
it suffices to consider all x such that

|û>Σ−1/2(x− µθ)− q| < n−1/2c−1‖BPθ,n‖∞ + Op(n−1) = Op(n−1/2)
(3.19)

for some constant c > 0. To this end note that

1
{
P̂θ(Â(x)) + Op(n−1) > α

}
6= 1

{
Pθ(Â(x)) > α

}
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implies

‖BPθ,n‖∞ >
√
n
∣∣Pθ(Â(x))− α

∣∣+ Op(n−1/2)

=
√
n
∣∣G(û>Σ−1/2(x− µθ))− α

∣∣+ Op(n−1/2).

Now suppose that
∣∣û>Σ−1/2(x− µθ)− q| ≤ δ. Because |G(q)− α

∣∣ = 0,∣∣G(û>Σ−1/2(x− µθ))− α
∣∣ ≥ ∣∣û>Σ−1/2(x− µθ)− q

∣∣ min
t∈[q±δ]

|G′(t)|,

which entails (3.19) with c := mint∈[q±δ] |G′(t)|.
If
∣∣û>Σ−1/2(x− µθ)− q

∣∣ > δ, the monotonicity of G implies that∣∣G(û>Σ−1/2(x− µθ))− α
∣∣ ≥ δc

and hence ‖BPθ,n‖∞ >
√
nδc+ Op(n−1/2). But ‖BPθ,n‖∞ = Op(1) by Theo-

rem 3.4 and thus P(‖BPθ,n‖∞ >
√
nδc+ Op(n−1/2))→ 0.

Suppose that (3.19) holds. Then

Pθ(Â(x)) = α+G′(q) ·
(
û>Σ−1/2(x− µθ)− q

)
+ op(n−1/2).

Moreover, û = u+ Op(n−1/2) and

û>Σ−1/2x = û>Σ−1/2(x− µθ) + û>Σ−1/2µθ

= q + u>Σ−1/2µθ + Op(n−1/2).

The spherical symmetry of L(Z) and E(‖Z‖2) < ∞ imply (3.2). Therefore
the assumptions of Lemma 3.1 are satisfied. Applying the lemma, we get

Pθ
(
H(−Σ−1/2û, û>Σ−1/2x)4H(−Σ−1/2u, q + u>Σ−1/2µθ)

)
= Op(n−1/2)

and by Theorem 3.5,

BPθ,n(−Σ−1/2û, û>Σ−1/2x) = BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(1).

Consequently,

P̂θ(Â(x)) = α+G′(q) ·
(
û>Σ−1/2(x− µθ)− q

)
+ n−1/2BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2).
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Moreover, G′(q) < 0 yields

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(Â(x)) > α

}
= Pb

{
x ∈ Rd : G′(q) ·

(
û>Σ−1/2(x− µθ)− q

)
+ n−1/2BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2) > 0

}
− Pb

{
x ∈ Rd : Pθ(Â(x)) > α

}
= Pb

{
x ∈ Rd : û>Σ−1/2x < û>Σ−1/2µθ + q

− 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2)
}

− Pb
{
x ∈ Rd : Pθ(Â(x)) > α

}
= Pb

{
x ∈ Rd : û>Σ−1/2(x− µb) < û

>Σ−1/2(µθ − µb) + q (3.20)

− 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2)
}

− Pb
{
x ∈ Rd : Pθ(Â(x)) > α

}
.

Combining (3.18) and (3.20) we get

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
= Pb

{
x ∈ Rd : û>Σ−1/2(x− µb) < û

>Σ−1/2(µθ − µb) + q

− 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2)
}

− Pb
{
x ∈ Rd : u>Σ−1/2(x− µb) < u>Σ−1/2(µθ − µb) + q

}
= P0

{
x ∈ Rd : û>x < û>Σ−1/2(µθ − µb) + q

− 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2)
}

− P0

{
x ∈ Rd : u>x < u>Σ−1/2(µθ − µb) + q

}
with P0 := L(Σ−1/2(Xb − µb)). The spherical symmetry of P0 yields

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
= P0

{
x ∈ Rd : x1 < û

>Σ−1/2(µθ − µb) + q

− 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ) + op(n−1/2)
}

− P0

{
x ∈ Rd : x1 < u

>Σ−1/2(µθ − µb) + q
}

= P0

{
x ∈ Rd : x1 − ŝ ≤ 0

}
− P0

{
x ∈ Rd : x1 − s ≤ 0

}
with ŝ := û>Σ−1/2(µθ−µb)+q− 1√

nG′(q)
BPθ,n(−Σ−1/2u, q+u>Σ−1/2µθ)+

op(n−1/2) and s := u>Σ−1/2(µθ − µb) + q = q − ‖Σ−1/2(µb − µθ)‖.
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Since ŝ− s = Op(n−1/2) we can apply Lemma 3.1 with b̂ = b = e1, â = −ŝ
and a = −s. We obtain claim (3.14) and

Pb
{
x ∈ Rd : P̂θ(Â(x)) + Op(n−1) > α

}
− Pb

{
x ∈ Rd : Pθ(A(x)) > α

}
= (ŝ− s)fZ1

(s) + Op(n−1).

If b = θ, (û− u)>Σ−1/2(µθ − µb) = 0. Suppose that b 6= θ. The first order

Taylor expansion of ‖β̂‖ is then given by

‖β̂‖ = ‖β‖+
(β̂ − β)>β

‖β‖
+ o(‖β̂ − β‖)

and therefore

û− u =
‖β‖β̂ − ‖β̂‖β
‖β‖‖β̂‖

=
‖β‖(β̂ − β)− (β̂−β)>β

‖β‖ β

‖β‖2 + (β̂ − β)>β
+ o(‖β̂ − β‖)

=
‖β‖(β̂ − β)− (β̂−β)>β

‖β‖ β

‖β‖2
+ o(‖β̂ − β‖)

=
(β̂ − β)

‖β‖
− (β̂ − β)>β

‖β‖3
β + o(‖β̂ − β‖).
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Plugging in β = Σ−1/2(µλ − µθ) and β̂ := β + Σ1/2 ∆Σ−1√
n

(µλ − µθ) +

Σ−1/2 ∆µλ
−∆µθ√
n

+ Op(n−1) results in

û− u =
Σ1/2∆Σ−1(µb − µθ) + Σ−1/2(∆µb −∆µθ )√

n‖Σ−1/2(µb − µθ)‖

−
(µb − µθ)>∆Σ−1(µb − µθ) + (∆µb −∆µθ )

>Σ−1(µb − µθ)√
n‖Σ−1/2(µb − µθ)‖3

·Σ−1/2(µb − µθ) + op(n−1/2).

Hence

(û− u)>Σ−1/2(µθ − µb)

=
(µb − µθ)>∆Σ−1(µθ − µb) + (∆µb −∆µθ )

>Σ−1(µθ − µb)√
n‖Σ−1/2(µb − µθ)‖

+
(µb − µθ)>∆Σ−1(µb − µθ) + (∆µb −∆µθ )

>Σ−1(µb − µθ)√
n‖Σ−1/2(µb − µθ)‖

+ op(n−1/2)

= op(n−1/2)

and

Pb{x ∈ Rd : πθ(x,D) > α} − Pb{x ∈ Rd : π∗θ(x) > α}
= (ŝ− s)fZ1

(s) + Op(n−1)

= − 1√
nG′(q)

BPθ,n(−Σ−1/2u, q + u>Σ−1/2µθ)fZ1
(s) + op(n−1/2).

Finally, with

H(−Σ−1/2u, q + u>Σ−1/2µθ) = {x ∈ Rd : u>Σ−1/2(x− µθ) ≥ q}
= {x ∈ Rd : π∗θ(x) ≤ α}

we get

Pb{x ∈ Rd : πθ(x,D) > α} − Pb{x ∈ Rd : π∗θ(x) > α}

=
fZ1(q − ‖Σ−1/2(µb − µθ)‖)

fZ1
(q)

(P̂θ − Pθ)
(
{x ∈ Rd : π∗θ(x) ≤ α}

)
+ op(n−1/2).
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Proof of Theorem 3.11. Define Ê :=
{
x ∈ Rd : πθ(x,D) > α

}
and note

that Îα(b, θ) = P̂b(Ê)+op(n−1/2). Then by Theorem 3.5 and equation (3.14)
from Lemma 3.13,

Îα(b, θ)− P
(
π∗θ(X) > α | Y = b

)
= P̂b(Ê)− Pb(E) + op(n−1/2)

=
(
Pb(Ê)− Pb(E)

)
+
(
P̂b − Pb

)
(E)

+
((
P̂b − Pb

)
(Ê)−

(
P̂b − Pb

)
(E)
)

+ op(n−1/2)

=
(
Pb(Ê)− Pb(E)

)
+
(
P̂b − Pb

)
(E) + op(n−1/2).

Let

η :=
√
n

(
Iα(b, θ | D)− P

(
π∗θ(X) > α | Y = b

)
Îα(b, θ)− P

(
π∗θ(X) > α | Y = b

) )
=
√
n

(
Pb(Ê)− Pb(E)(

Pb(Ê)− Pb(E)
)

+
(
P̂b − Pb

)
(E)

)
+ op(1).

We employ Lemma 3.13 to decompose Pb(Ê) − Pb(E) in independent sum-
mands

Pb(Ê)− Pb(E) = −c
(
P̂θ − Pθ

)
{x ∈ Rd : π∗θ(x) ≤ α}+ op(n−1/2)

= c
(
P̂θ − Pθ

)
(E) + op(n−1/2),

where c = −fZ1
(q − ‖Σ−1/2(µb − µθ)‖)/fZ1

(q). Note that c = −1 if b = θ.
In this case

P̂θ
{
x ∈ Rd : πθ(x,D) > α

}
− Pθ

{
x ∈ Rd : π∗θ(x) > α

}
= −

(
P̂θ − Pθ

)
(E) +

(
P̂θ − Pθ

)
(E) + op(n−1/2)

= op(n−1/2),

which is claim (3.13).

Now we define for ν ∈ {b, θ}

Y νn,i :=
1√
nŵν

1{i ∈ Gν}
(
1{Xi ∈ E} − Pν(E)

)
such that

n∑
i=1

Y νn,i =

√
n

Nν

∑
i∈Gν

(
1{Xi ∈ E} − Pν(E)

)
=
√
n
(
P̂ν − Pν

)
(E).
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3.4. A Central Limit Theorem for Inclusion Probabilities

Thus we may write

η =

n∑
i=1

Y ηn,i + op(1)

with

Y ηn,i :=

(
cY θn,i

cY θn,i + Y bn,i

)
.

Before we can apply the central limit theorem to
∑n
i=1 Y

η
n,i we need to

compute the covariance matrix Var(Y ηn,i), the sum Λn :=
∑n
i=1 Var(Y ηn,i)

and its limit Λ = limn→∞Λn. To this end note that

Var(Y νn,i) =
1{i ∈ Gν}
nŵ2

ν

(
Pν(E)− Pν(E)2

)
and

Λn1,1 = c2
n∑
i=1

Var(Y θn,i)

→ c2

wθ

(
Pθ(E)− Pθ(E)2

)
= w−1

θ c2α(1− α).

Suppose that b 6= θ. Then Cov(Y θn,i, Y
b
n,i) = 0 and thus Λ1,1 = Λ1,2 = Λ2,1.

Moreover,

Var(cY θn,i + Y λn,i) = c2 Var(Y θn,i) + Var(Y λn,i)

=
c21{i ∈ Gθ}

nŵ2
θ

(
Pθ(E)− Pθ(E)2

)
+
1{i ∈ Gλ}
nŵ2

λ

(
Pλ(E)− Pλ(E)2

)
and

Λn2,2 = c2ŵ−1
θ

(
Pθ(E)− Pθ(E)2

)
+ ŵ−1

λ

(
Pλ(E)− Pλ(E)2

)
→ w−1

θ c2α(1− α) + w−1
λ Pλ(E)

(
1− Pλ(E)

)
with

Pλ(E) = P0

{
x ∈ Rd : u>x < q + u>Σ−1/2(µθ − µλ)

}
= P0

{
x ∈ Rd : u>x < q − ‖β‖

}
= FZ1

(
q − ‖β‖

)
,

81



3. Central Limit Theorems

which follows from equation (3.17).

As to Lindeberg’s condition, note that |Y νn,i| ≤ 2n−1/2ŵ−1
ν and hence

‖Y ηn,i‖ ≤ 2|c||Y θn,i|+ |Y bn,i| ≤
4|c|√
nŵθ

+
2√
nŵb

≤ Mn√
n
,

where Mn is deterministic and bounded. Therefore Lindeberg’s condition

n∑
i=1

E
(
‖Y ηn,i‖

2 min(1, ‖Y ηn,i‖)
)
≤ n−1/2M3

n → 0

is satisfied. Finally note that E(Y ηn,i) = 0 for all i ≤ n. Now the assertions
follow from the multivariate central limit theorem (Theorem A.1).
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4. Randomized and
De-Randomized P-Values

In this chapter we discuss the concept of randomized p-values which is not
directly related to the main topic of this thesis. The corresponding concept
of randomized tests is familiar in mathematical statistics and is used to ob-
tain tests with exact prescribed significance levels even in settings with test
statistics having discrete distributions. Similarly, randomized p-values are
particularly useful for test statistics with discrete distributions.

In applications non-randomized tests and p-values are needed. Therefore
we review and modify a method of Meinshausen et al. (2009) to de-randomize
p-values. To randomize and de-randomize one single p-value brings no bene-
fit, since the resulting p-value is greater than the initial one. However, if we
want to combine p-values obtained from different independent test statistics,
randomization may be useful. Randomize the p-values, combine them and
de-randomize the combination again can lead to a result which is considerably
smaller than the combination of the non-randomized p-values.

4.1. De-Randomization

Example 4.1. We consider a random variable X ∼ Poiss(λ) with unknown
parameter λ and want to test H0 : λ = λ0 versus HA : λ > λ0. The usual
p-value is given by 1 − Gλ0

(T − 1) with the test statistic T = X and Gλ0

denoting the c.d.f. of Poiss(λ0). This p-value is conservative due to the
discrete distribution of T .

In mathematical statistics we look at the randomized level-α-test rejecting
H0 with probability

ϕ(x) =


1 if 1−Gλ0(T − 1) ≤ α
γ if 1−Gλ0(T ) ≤ α < 1−Gλ0(T − 1)

0 if α < 1−Gλ0
(T ),

where

γ :=
P
(
1−Gλ0(T − 1)

)
− α

P
(
1−Gλ0

(T − 1)
)
− P

(
1−Gλ0

(T )
) .
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4. Randomized and De-Randomized P-Values

The corresponding randomized p-value is given by

π ∼ Unif[1−Gλ0
(T ), 1−Gλ0

(T − 1)].

In applications non-randomized tests and p-values are needed. Therefore we
will de-randomize this p-value.

The abstract setting. Consider a probability space (Ω,A,P), and let T :
(Ω,A) → (T ,B) and π : (Ω,A) → [0, 1] be measurable mappings satisfying
the following assumptions under a certain null hypothesis:

(A.1) L(π) = Unif[0, 1].

(A.2) For each t ∈ T there exists a given distribution function Ft on [0, 1]
such that

P(π ≤ u |T ) = FT (u) almost surely, for each u ∈ [0, 1].

Note that π is a randomized p-value, and the pair (T, π) may be represented
as

(T, π) =
(
T,QT (U)

)
,

where T and U are independent, U ∼ Unif[0, 1], and Qt is the quantile
function of Ft, i.e.

Qt(v) := min
{
u ∈ [0, 1] : Ft(u) ≥ v}.

In our specific applications, T is a single or vector-valued test statistic, and
it is often desirable to come up with a p-value π̃ depending on T only. A
naive solution would be

π̃ := QT (1),

because QT (1) ≥ π almost surely. But this may be much too conservative.
Here is a first general proposal how to construct π̃:

De-randomization in the spirit of Meinshausen et al. (2009). Let Γ ⊂
(0, 1] be a nonvoid set, and let h : Γ→ (0,∞). Defining

J(u) := sup
γ∈Γ

1{u ≤ γ}
h(γ)

for u ≥ 0,

we assume that

J :=

∫ 1

0

J(u) du < ∞.
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4.1. De-Randomization

We define Qt(v) :=∞ for v > 1 and note that J(u) = 0 for u > 1. Then for
any α ∈ (0, 1),

α = E
(J(π/α)

J

)
= E

(
E
(J(π/α)

J

∣∣∣T))
≥ E

(
sup
γ∈Γ

E
(1{π ≤ αγ}

Jh(γ)

∣∣∣T))
= E

(
sup
γ∈Γ

FT (αγ)

Jh(γ)

)
≥ E

(
sup
γ∈Γ

1
{
FT (αγ) ≥ Jh(γ)

})
= E

(
sup
γ∈Γ

1
{
QT (Jh(γ)) ≤ αγ

})
= P

(
QT (Jh(γ)) ≤ αγ for some γ ∈ Γ

)
.

Thus we may reject the null hypothesis at level α if

QT (Jh(γ))

γ
≤ α for some γ ∈ Γ.

A corresponding non-randomized p-value is given by

π̃ := min
γ∈Γ

QT (Jh(γ))

γ
,

provided the latter minimum exists almost surely.

Example 4.2. Let Γ = {γo} for some fixed γo ∈ (0, 1) and h(γo) = γo. Then
J(u) = 1{u ≤ γo}/γo, J = 1, and the nonrandomized p-value is given by

π̃ :=
QT (γo)

γo
.

Example 4.3. Let Γ = [γo, 1] for some fixed γo ∈ (0, 1) and h(γ) = γ. Then

J(u) = sup
γo≤γ≤1

1{u ≤ γ}
γ

=

{
1/γo if 0 ≤ u ≤ γo,
1/u if γo ≤ u ≤ 1.

Thus

J =

∫ γo

0

1

γo
du+

∫ 1

γo

1

u
du = log(e/γo).
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4. Randomized and De-Randomized P-Values

Consequently, a nonrandomized p-value is given by

π̃ := min
γo≤γ≤1

QT (log(e/γo)γ)

γ

= min
γo≤γ≤1/ log(e/γo)

QT (log(e/γo)γ)

γ

= min
γo log(e/γo)≤u≤1

log(e/γo)QT (u)

u
.

Example 4.4. Let Γ = (0, 1] and h(γ) = γδ for some δ ∈ (0, 1). Then

J(u) = sup
0<γ≤1

1{u ≤ γ}
γδ

= 1{u ≤ 1}u−δ and J = (1− δ)−1.

Consequently, a nonrandomized test rejects the null hypothesis if

QT (γδ/(1− δ))
γ

≤ α for some γ ∈ (0, 1],

which is equivalent to

QT (u)

((1− δ)u)1/δ
≤ α for some u ∈ (0, 1].

The corresponding p-value,

π̃ = min
0<u≤1

QT (u)

((1− δ)u)1/δ
,

is well-defined if, for instance,

lim sup
u↓0

Ft(u)

u
< ∞ for all t ∈ T .

For then, Qt(u) ≥ c(t)u for all u ∈ (0, 1] and some c(t) > 0, so that
Qt(u)/u1/δ → ∞ as u ↓ 0. Moreover, Qt is left-continuous and non-de-
creasing, and this entails that Qt(u)/u1/δ attains a minimum on (0, 1].

4.2. Combining Independent P-Values

Suppose that for a given null hypothesis, stochastically independent and pos-
sibly randomized p-values π1, π2, . . . , πm are available. There are infinitely
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4.2. Combining Independent P-Values

many possibilities to combine these p-values into one p-value. One specific
way is to use

π := Φ
(
m−1/2

m∑
i=1

Φ−1(πi)
)

(4.1)

with the standard Gaussian distribution function Φ. More generally, we may
define

π := Φ
( m∑
i=1

wiΦ
−1(πi)

)
(4.2)

with certain weights w1, w2, . . . , wm > 0 such that
∑m
i=1 w

2
i = 1.

This method is motivated by the following model: Suppose we observe
independent random variables X1, X2, . . . , Xm with Xi ∼ N (θ, σ2

i ), where
the standard deviations σi > 0 are known while the mean θ is unknown. For
the null hypothesis “θ ≥ 0”, possible p-values are given by

πi := Φ
(Xi

σi

)
.

Then proposal (4.1) leads to

Φ
(
m−1/2

m∑
i=1

Xi

σi

)
∼ Unif[0, 1] if θ = 0.

In this simple model, the Neyman-Pearson Lemma (Theorem A.2) shows
that an optimal p-value is given by

Φ

(( m∑
i=1

σ−2
i

)−1/2 m∑
i=1

Xi

σ2
i

)
= Φ

(( m∑
i=1

σ−2
i

)−1/2 m∑
i=1

Φ−1(πi)

σi

)
,

and this corresponds to proposal (4.2) with

wi :=
( m∑
j=1

σ−2
j

)−1/2

σ−1
i .

Here the optimal weights are proportional to the reciprocal standard devi-
ations. But there is another representation which can be imitated in different
settings: Note that with Z ∼ N (0, 1),

d

dθ

∣∣∣
θ=0

Eθπi =
d

dθ

∣∣∣
θ=0

EΦ
(θ + σiZ

σi

)
=

1

σi
EΦ′(Z) =

const.

σi
.

Thus in more general settings where our null hypothesis is of the form “θ ≥ 0”
for some real parameter θ, we propose to choose wi proportional to

d

dθ

∣∣∣
θ=0

Eθπi.
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4.3. Application to Multiple Contingency Tables

Suppose that we have multiple independent contingency tables, e.g. data
from a multicenter clinical trial or a meta-analysis. Assume that the tables
have small cell counts. In this case the test statistics can take only few values
and randomization may be useful.

4.3.1. Two-by-Two Tables

Let S(1), S(2), . . . , S(m) be independent two-by-two tables:

Xi zi −Xi zi
si −Xi ni − si − zi +Xi ni − zi
si ni − si ni

We consider the row and column sums as fixed and assume that the tables
have a common but unknown odds ratio ρ.

Now we want to test the null hypothesis ρ = 1 versus the alternative
ρ < 1. Under the null hypothesis Xi has a hypergeometric distribution
with parameters ni, zi and si. A p-value for table S(i) is given by πcons

i :=

Hni,zi,si(Xi) where Hni,zi,si(k) :=
∑k
l=0

((
zi
l

)(
n−zi
si−l

)/(
ni
si

))
denotes the cdf of

the hypergeometric distribution with parameters ni, zi and si. Due to its
discrete distribution, this p-value may be rather conservative. Therefore we
consider the randomized p-value

πi ∼ Unif[Hni,zi,si(Xi − 1), Hni,zi,si(Xi)].

Combining the p-values of all tables, we get the randomized p-value

π := Φ
( m∑
i=1

wiΦ
−1(πi)

)
,

which we de-randomize as described in section 4.1. Note that the non-
randomized p-values πcons

i can be combined the same way, which results in
the conservative p-value πcons := Φ

(∑m
i=1 wiΦ

−1(πcons
i )

)
.

In order to compute QT with T = (Xi)
m
i=1, we first approximate FT nu-

merically. To this end we discretize the distribution of the Zi := wiΦ
−1(πi).

For a fixed δ > 0 we choose Ci,1, Ci,2 ∈ Zδ such that

P(Zi ≤ Ci,1 | T )� 1,

P(Zi > Ci,2 | T )� 1.
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4.3. Application to Multiple Contingency Tables

Then we define

Z̃i :=


Ci,1 if Zi ≤ Ci,1,
dZi/δeδ if Ci,1 < Zi < Ci,2,

Ci,2 if Zi ≥ Ci2 ,

and compute pi =
(
pi(j)

)M(i)

j=1
, with pi(j) := P(Z̃i = Ci,1 + (j − 1)δ | T ).

The approximate distribution of π conditional on T is then given by the
convolution of p1, p2, . . . , pm and its domain is given by

Φ
( m∑
i=1

Ci,1 + kδ
)

k = 0, 1, . . . ,

m∑
i=1

(
M(i)− 1

)
,

where M(i) := (Ci,2 − Ci,1)/δ + 1.

Simulation of Xi. To compute the power of the resulting test we need to
simulate Xi under the alternative hypothesis. In general Xi has a non-central
hypergeometric distribution, i.e.

P(Xi = k | ni, zi, si) = fρ(k | ni, zi, si),

with

fρ(k | n, z, s) := Cρ(n, z, s)
−1ρk

(
z

k

)(
n− z
s− k

)
,

Cρ(n, z, s) :=

min(z,s)∑
l=max(z+s−n,0)

ρl
(
z

l

)(
n− z
s− l

)
,

see e.g. Agresti (2007). For the computation we use the representation

fρ(k | n, z, s) = C̃ρ(n, z, s)
−1 ρk

k!(z − k)!(s− k)!(n− z − s+ k)!
,

C̃ρ(n, z, s) :=

min(z,s)∑
l=max(z+s−n,0)

ρl

l!(z − l)!(s− l)!(n− z − s+ l)!

and to avoid numerical problems, we compute it in three steps:

f ← log(ρ)k − log(k!)− log
(
(z − k)!

)
− log

(
(s− k)!

)
− log

(
(n− s− z + k)!

)
f ← exp

(
(f −max(f))

)
f ← f/sum(f).
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ρ = 1 ρ = 0.8 ρ = 0.5 ρ = 1/3
exact 0.0355 0.1443 0.7287 0.9809
conservative 0.0013 0.0147 0.2949 0.8189
β = 0.1 0.0064 0.0518 0.5204 0.9298
β = 0.3 0.0135 0.0907 0.6328 0.9615
β = 0.5 0.0135 0.0907 0.6328 0.9615
β = 0.7 0.0135 0.0907 0.6328 0.9615
β = 0.9 0.0135 0.0907 0.6328 0.9615
γ0 = 0.5 0.0064 0.0518 0.5204 0.9298
γ0 = 0.1 0.0031 0.0280 0.4064 0.8830

Table 4.1.: Power for Example 4.5 at significance level α = 0.05.

Exact Monte-Carlo p-values. In the case of two-by-two tables we can com-
pute exact Monte-Carlo p-values. We use them as a benchmark for the de-
randomized p-values. In practice the de-randomized p-values are only useful
for K-by-L tables with max(K,L) > 2.

For the computation of the Monte-Carlo p-values note that

logPθ(Xi = k | ni, zi, si) = kθ + log
(
Cρ(n, z, s)

−1
)

+ log

((
z

k

)(
n− z
s− k

))
with θ := log ρ. The log-likelihood function of the whole model is given by

L(θ) =

m∑
i=1

(
θXi + log

((
z

Xi

)(
n− z
s−Xi

)))
+m log

(
Cρ(n, z, s)

−1
)

and a potential test statistic for ”θ = θ0” vs. ”θ < θ0” would be

∂

∂θ

∣∣∣
θ=θ0

L(θ) =

m∑
i=1

Xi +m
∂

∂θ

∣∣∣
θ=θ0

log
(
Cρ(n, z, s)

−1
)
.

Since the last summand does not depend on the data, we choose the test
statistic

m∑
i=1

Xi.

Example 4.5. We simulated 10’000 times m = 10 tables with n = 20,
z = 10, s = 8 and different values for the odds ratio ρ. To combine the
p-values we used equal weights wi = m−1/2. Table 4.1 shows the power at
significance level α = 0.05 for the exact Monte-Carlo p-value, the conserva-
tive p-value πcons, QT (β)/β for β = 0.1, 0.3, . . . , 0.9 and the adaptive version
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

P(
π
≤
α

)

exact
β = 0.5
conservative

Figure 4.1.: Power for ρ = 0.5 in Example 4.5.
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(Example 4.3) with γ0 = 0.5 and 0.1. Figure 4.1 shows the power as func-
tion of α for the exact Monte-Carlo p-value, the conservative p-value and
QT (0.5)/0.5 for ρ = 0.5.

The power of the de-randomized p-values is considerably better than that
of the conservative. The choice of β has not a big influence on the power,
therefore the adaptive version brings no benefit.

4.3.2. K-by-L Tables

Now suppose that we have multiple K-by-L tables S(i) with max(K,L) > 2
and we want to test for independence. To get an exact p-value for one table

S(i), we compute Pearson’s chi-squared statistic T
(i)
s for all t tables with the

same marginal totals as S(i). The p-value is given by

πcons
i :=

#{s ≤ t : T (i)
s ≥ T (i)

0 }
t

,

where T
(i)
0 is the statistic of S(i). If t is small, πcons

i can take only few values
and therefore it would be worthwhile to consider the randomized p-value

πi ∼ Unif

[
#{s ≤ t : T (i)

s > T
(i)
0 }

t
,

#{s ≤ t : T (i)
s ≥ T (i)

0 }
t

]
.

For multiple tables these p-values can be combined using (4.1). Alternatively,

noting that T
(i)
0 ∼appr. χ

2
(K−1)(L−1), we define the combined p-value

π := 1− Fm(K−1)(L−1)

( m∑
i=1

F−1
(K−1)(L−1)(πi)

)
, (4.3)

where Fk denotes the c.d.f. of χ2
k.

Example 4.6. Table 4.2 shows data from a hypothetical multi-center clinical
trial. For each of the five 2-by-3 tables the p-value πcons

i is given. Combining
them with (4.1), we get πcons = 0.122. If we combine the randomized p-values
πi using (4.1) and de-randomize the result, we end up with a considerably
smaller p-value. For example QT (0.1)/0.1 = 0.011.

Combining the p-values with (4.3) leads to even better results, namely
πcons = 0.051 and QT (0.1)/0.1 = 0.008.
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Table p-value

0 3 3 0.3
3 0 0

0 2 1 0.333
3 0 0

0 0 3 0.5
2 1 1

0 3 0 0.111
6 0 2

0 0 2 0.333
3 4 1

Table 4.2.: Data from a hypothetical multi-center clinical trial.
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A. Classical Results

A.1. Lindeberg-Feller Central Limit Theorem

Theorem A.1. For n = 1, 2, 3, . . . let Y n,1,Y n,2 . . .Y n,n ∈ Rd independent
random vectors. Suppose that for a matrix Σ ∈ Rd×d

n∑
i=1

E(Y n,i) = 0,

n∑
i=1

Var(Y n,i)→ Σ,

n∑
i=1

E
(
‖Y n,i‖2 min(1, ‖Y n,i‖)

)
→ 0.

Then
∑n
i=1 Y n,i →L Nd(0,Σ).

This is a standard result in asymptotic statistics, see e.g. van der Vaart
(1998).

A.2. Neyman-Pearson Lemma

Theorem A.2. Let P0 and P1 be probability distributions possessing densi-
ties f0 and f1, respectively, with respect to a measure µ.

(i) Existence. For testing H : P0 against the alternative K : P1 there
exists a test ϕ and constants c ∈ [0,∞] and γ ∈ [0, 1] such that

E0ϕ(X) = α (A.1)

and

ϕ(x) =


1 if f1(x) > cf0(x)

γ if f1(x) = cf0(x)

0 if f1(x) < cf0(x).

(A.2)

(ii) Sufficient condition for a most powerful test. If a test satisfies (A.1)
and (A.2) for some c and γ, then it is most powerful for testing P0

against P1 at level α.
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(ii) Necessary condition for the most powerful test. If ϕ is most powerful
at level α for testing P0 against P1, then for some c it satisfies

ϕ(x) =

{
1 if f1(x) > cf0(x)

0 if f1(x) < cf0(x)
(A.3)

a.s. µ. It also satisfies (A.1) unless there exists a test of size < α and
with power 1.

The proof can be found in Shao (2003).
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Meinshausen, N., Meier, L., and Bühlmann, P. (2009). p-values for high-
dimensional regression. J. Amer. Statist. Assoc., 104(488):1671–1681.

Muirhead, R. J. (1982). Aspects of multivariate statistical theory. John Wiley
& Sons Inc., New York. Wiley Series in Probability and Mathematical
Statistics.

R Core Team (2014). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Shao, J. (2003). Mathematical statistics. Springer Texts in Statistics.
Springer-Verlag, New York, second edition.

Taylor, A. E. and Lay, D. C. (1980). Introduction to functional analysis.
John Wiley & Sons, New York-Chichester-Brisbane, second edition.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J.
Roy. Statist. Soc. Ser. B, 58(1):267–288.

van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, Cambridge.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and
empirical processes. Springer Series in Statistics. Springer-Verlag, New
York. With applications to statistics.

Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized
logistic regression. Biostatistics, 5(14):427–443.

Zumbrunnen, N. (2009). P-values for weighted nearest-neighbor classifiers.
Master’s thesis, University of Bern.
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inclusion probabilities, 70
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missclassification rates, 59, 60
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classifier, 4

optimal, 4, 59
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contingency tables
multiple K-by-L, 92
multiple two-by-two, 88

data set
buerk, 21, 46
interned ad, 45
mushrooms, 45

distribution
elliptically symmetric, 6
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multivariate t, 49
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empirical measure, 7, 54
empirical process, 54
exchangeability, 15

feature space, 3
feature vector, 3

Gaussian model, see standard
model

golden section search
extended, 40

half-space, 48

inclusion probabilities, 70
conditional, 17
conditional empirical, 17

Kronecker product, 28

linear discriminant analysis, 6
logistic regression

penalized multi-
category, 17, 27

M -estimator, 6
symmetrized, 7

Mahalanobis distance, 4, 19
missclassification rates, 9
multiple testing, 11
multiple use, 11

nearest neighbors, 16, 19
k, 7
weighted, 9

Neyman-Pearson Lemma, 97

p-value, 10
combined, 86
cross-validated, 17
Monte-Carlo, 90
nonparametric, 15, 16
optimal, 13, 14
randomized, 84

pattern probabilities
conditional, 18
empirical, 17
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posterior distribution, 9
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pvclass, 20
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empirical, 18, 26

shortcut, 21
single use, 11
stability, 39
standard estimators, 6
standard model, 4, 15

plug-in statistic, 16, 19
subsampling, 40

training data, 5
training data, 15
tuning parameter, 39

unimodal, 40
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List of Symbols

Symbols used in Chapters 1–3. This list is not exhaustive.

B(x, r) closed ball of radius r centered at x, p. 7
DΣ(x,y) Mahalanobis distance between x ∈ R and y ∈ R

with respect to Σ, p. 4
Fξ distribution function of the one-dimensional random

variable ξ, p. 48
H(β, γ) half-space in Rd, p. 48
I(·) ordered elements of Gθ, p. 15
L number of classes, p. 3
M measure on X , p. 3, 15
Nθ number of training observations of class θ, p. 5, 15
Pθ conditional distribution L(X | Y = θ), p. 3, 15
Rθ missclassification rate, p. 9
R risk of missclassification, p. 4
S(τ,X, θ) sum of test statistics, p. 39
Tθ(X,D) test statistic based on training data, p. 16
T ∗θ (x) test statistic for the optimal p-value, p. 14, 15
U(x, r) open ball of radius r centered at x, p. 7
Wn(i) weight assigned to observation i, p. 9
Y class label, p. 3, 15, 47
Z1 first component of Z, p. 47
1(A) indicator function for the set A, p. 4

A general matrix notation, A =

A1,1 · · · A1,d

...
. . .

...
Ad,1 · · · Ad,d

,

p. 48

∆A scaled difference
√
n(Â−A), p. 48

∆v scaled difference
√
n(v̂− v) = (∆v,1, . . . ,∆v,d)

>, p.
48

Id d-dimensional identity matrix, p. 47
Nd(µθ,Σ) d-dimensional Gaussian distribution with mean vec-

tor µθ ∈ Rd and covariance matrix Σ ∈ Rd×d, p. 4
P0 distribution of Z, p. 47
Σ positive definite covariance matrix in Rd×d, p. 4, 47

U⊥ orthogonal complement of U , p. 47
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X feature vector, p. 3, 15, 47

Y An,i summand of ∆A, p. 48
Y vn,i summand of ∆v, p. 48

Z Σ−1/2(X1 − µ1), p. 47

β Σ−1/2(µ2 − µ1), such that ‖β‖ = DΣ(µ2,µ1); in

the proof of Lemma 3.13 β := Σ−1/2(µλ − µθ), p.
47, 73

1d d-dimensional vector of ones, p. 31
e1 first standard unit vector, p. 50
‖ · ‖∞ uniform norm, p. 55
‖ · ‖ Euclidean or Frobenius norm for vectors or matrices,

respectively, p. 5, 32

R̂θ cross-validated missclassification rate, p. 9

Â estimator for A, p. 48

Σ̂M M -estimator, p. 6

Σ̂sym symmetrized M -estimator, p. 6

Σ̂ standard estimator for Σ or one of the M -estimators
Σ̂M and Σ̂sym, p. 6

µ̂θ standard estimator for µθ, p. 6
v̂ estimator for v, p. 48

P̂ empirical measure of a sample of independent ran-
dom variables with distribution P , p. 7, 54

R̂(x,Xi) rank of training observation Xi, p. 9

Ŷ (X) classifier, point predictor for Y , p. 4

Ŷ ∗(X) optimal classifier, p. 4

f̂θ estimator of fθ, p. 5
r̂k,n(x,D) radius of the smallest ball centered at x, which cov-

ers at least k training vectors Xi, p. 7
ŵθ(x,D) estimator of wθ(x), p. 16
ŵθ estimator of wθ, p. 5, 47

Îα(b, θ) empirical conditional inclusion probability, p. 17,
70

P̂α(b, S) empirical pattern probability, p. 17

Ŷα(X) prediction region, p. 10

Ŷα(X,D) prediction region based on training data, p. 15
BP,n empirical process induced by H, p. 54
µθ,b (µθ + µb)/2, p. 5
µθ mean vector in Rd, p. 4
⊗ Kronecker product, p. 29, 48
πθ(X,D) p-value based on training data, p. 10, 16
πθ(Xi,Di) cross-validated p-value, p. 17
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π∗θ(x) optimal p-value, p. 13, 14
π vector of p-values (πθ)θ∈Y , p. 13
4 symmetric difference, p. 48
τ∗ optimal parameter τ , p. 40

X̃i centered observation, p. 47
→a.s. convergence in law, p. 48
→p convergence in probability, p. 18, 48
→L convergence in law, p. 48
u ‖β‖−1β, p. 59
vi:j vector consisting of the components i to j of v, p.

48
v general vector notation, v = (v1, v2, . . . , vd)

>, p. 48
vec(M) vector which is formed by stacking the columns of

a matrix M (from left to right), p. 34, 48
d(·, ·) some metric, p. 7
f(x) density of the random vector X, p. 11
fθ density of Pθ with respect to M , p. 3, 15
fξ density of the random variable ξ, p. 48
gθ continuous bounded function such that gθ(r)r

2 is
bounded for r ≥ 0, p. 56

hθ continuous bounded function, p. 56
n training sample size, p. 15, 47
wθ(x) posterior weight, p. 9, 14
wθ prior probability, p. 3
wb,θ ratio of prior weights, p. 14
z1−α/2 (1− α)-quantile of the standard Gaussian distribu-

tion, p. 71
D(X, θ) training data extended by (X, θ), p. 21
Di(Xi,X, θ) training data after adding the observation (X, θ)

and with the class label of observation Xi set to θ,
p. 39

Di(x) training data with x in place of Xi, p. 16
Di training data without observation (Xi, Yi), p. 9, 17
D training data, consisting of pairs (Xi, Yi), for i =

1, . . . , n, p. 5
Gθ index set of training observations of class θ, p. 5
H collection of all half-spaces in Rd, p. 48
Iα(b, θ | D) conditional inclusion probability, p. 17, 70
L(X) distribution of the random variable X, p. 3
Pα(b, S | D) pattern probability, p. 18
Rα measure of risk for p-values, p. 13
X0 support of L(X), p. 7
X feature space, p. 3, 15
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Y set of class labels {1, . . . , L}, p. 3
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	1
	Overview
	Classifiers and P-Values
	Classification
	Optimal Classifiers in the Ideal Case
	Classification Using Training Data
	Estimation of Missclassification Rates

	From Classifiers to P-Values
	Optimal P-Values as Benchmark
	P-Values via Permutation Tests
	Estimation of Separability
	Asymptotic Properties
	Implementation in pvclass
	Shortcut
	Data Example `buerk'
	Main Functions

	Technical Details for Penalized Multicategory Logistic Regression
	The Log-Likelihood-Function
	Regularizations
	Strict Convexity and Coercivity
	Some Comments on the Implementation in pvclass


	Choice of Tuning Parameters
	Stability
	Subsampling
	Extended Golden Section Search

	Dimension Reduction
	Numerical Examples
	Simulated Data
	Real Data


	Central Limit Theorems
	Half-Spaces
	Root-n-Consistency
	Empirical Processes

	Asymptotics of Estimators for Location and Scatter
	A Central Limit Theorem for Missclassification Rates
	A Central Limit Theorem for Inclusion Probabilities

	Randomized and De-Randomized P-Values
	De-Randomization
	Combining Independent P-Values
	Application to Multiple Contingency Tables
	Two-by-Two Tables
	K-by-L Tables


	Classical Results
	Lindeberg-Feller Central Limit Theorem 
	Neyman-Pearson Lemma

	References
	Index
	List of Symbols

