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Abstract

High-performance virtual machines (VMs) are increasingly reused for pro-
gramming languages for which they were not initially designed. Unfor-
tunately, VMs are usually tailored to specific languages, offer only a very
limited interface to running applications, and are closed to extensions. As
a consequence, extensions required to support new languages often entail
the construction of custom VMs, thus impacting reuse, compatibility and
performance. Short of building a custom VM, the language designer has to
choose between the expressiveness and the performance of the language. In
this dissertation we argue that the best way to open the VM is to eliminate it.
We present Pinocchio, a natively compiled Smalltalk, in which we identify
and reify three basic building blocks for object-oriented languages.

First we define a protocol for message passing similar to calling con-
ventions, independent of the actual message lookup mechanism. The lookup
is provided by a self-supporting runtime library written in Smalltalk and
compiled to native code. Since it unifies the meta- and base-level we obtain
a metaobject protocol (MOP).

Then we decouple the language-level manipulation of state from the
machine-level implementation by extending the structural reflective model
of the language with object layouts, layout scopes and slots.

Finally we reify behavior using AST nodes and first-class interpreters sep-
arate from the low-level language implementation.

We describe the implementations of all three first-class building blocks.
For each of the blocks we provide a series of examples illustrating how they
enable typical extensions to the runtime, and we provide benchmarks vali-
dating the practicality of the approaches.
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1
Introduction

Initial prototypes of programming languages are easily implemented as ab-
stract syntax tree (AST) interpreters written in high-level languages. Nev-
ertheless, evolving these implementations into efficient interoperable run-
times requires a large development effort and deep knowledge of compiler
optimization techniques. This has spawned a lot of research to reduce the
cost by reusing existing language implementations.

At the top layer, dynamic programming languages often provide bend-
able semantics that are used to modify the language from within. Reflec-
tion is a well-studied technique that allows programs to inspect and modify
their own structure and behavior. It provides a window into the internal
structure and execution details of the language from within the language.
This makes it a key component for self-sustainability, the evolution of a lan-
guage from within. Extensive meta programming facilities are introduced
which let users tailor a language to their needs, ranging from Java annota-
tions [138] to full-blown language workbenches such as Helvetia [122] and
SugarJ [52]. Reflection is mostly implemented as an add-on to program-
ming languages, rendering it unable to modify the underlying runtime im-
plementation. For example if we would like to change the method lookup
semantics in standard Smalltalk implementations, we can at most emulate
the new semantics on top of the standard virtual machine (VM) in terms of
the old semantics. This imposes a performance and memory penalty, and
makes it clear that reflection can only go so far without proper support from
the underlying implementation.

In the middle layer, virtual machines for object-oriented languages are typ-
ically programmed using a fixed set of bytecodes. This provides a degree of
freedom since the bytecodes might provide a more adaptable language than
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Chapter 1. Introduction

the language it supports. This approach is for example taken by Groovy [66],
jRuby [82], Scala [128], etc., targeting the Java VM (JVM). Nevertheless these
VMs are typically sealed from the language they support. The bytecodes
are designed specifically for a particular language and its current language
features. An alien VM exhibits limitations and baked-in assumptions origi-
nating from the original language, obstructing the efficient implementation
of the new language. New languages cannot extend the capabilities of a VM
from within the runtime.

At the bottom layer, some VMs are constructed so that they can easily be
adapted. They are constructed in a meta-circular fashion [78, 80, 143], built
from reusable components [70], or generated from high-level models [123].
The resulting VMs are still sealed from the language they support however.
Any application running on top of the resulting VM is limited to the features
that were chosen for a given compiled version of the VM. This is a problem
especially if a combination of two conflicting extensions is required.

In summary, a language designer works either on top of the VM using
either the language or bytecode, and is limited to emulation and simula-
tion of unsupported features, or he changes the VM itself which forces him
to abandon compatibility. This indicates the need for adaptable, reconfig-
urable and retargetable runtime support.

We state our thesis as follows:

Thesis:

To make object-oriented language implementations reusable we need
to reify three fundamental building blocks (1) the communication be-
tween objects, (2) the gap between the system-level and language-level
view of data, and (3) the interpretation of code.

In this dissertation we argue that the best way to open the VM is to eliminate
it. Instead, we identify three fundamental building blocks of object-oriented
runtimes, and describe how to build up an open runtime from the bottom
up by relying on those building blocks:

Communication. To promote freedom of language on a per-object basis we
divide method invocation into two parts: a message passing protocol
and a reified message lookup mechanism.

The message passing protocol reuses the native application binary
interface (ABI) calling conventions as the most basic mechanism of
communication. By using native function calls to implement message
sending, we limit the assumptions about language used by the target
object to a bare minimum, and we maintain interoperability with ABI
compatible applications.

On top of this messaging protocol, we provide a library for Smalltalk
lookup semantics. It is implemented as a self-supporting runtime li-
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brary compiled to native code, while maintaining the standard poly-
morphic behavior of Smalltalk at the meta-level. Since it unifies the
meta- and base-level, we obtain a metaobject protocol (MOP). Infinite
meta-recursion is avoided by using pre-filled inline caches.

Data. To increase the expressiveness of the programming language in terms
of its object structure, we decouple the language-level manipulation
of state from the machine-level implementation. We extend the struc-
tural reflective model of the language with object layouts, layout scopes
and slots, allowing programmers to build objects in terms of high-level
reusable object fragments rather than being limited by simple object
extension through subclassing.

Code. To ease language experimentation and debugging, we reify behavior
using AST nodes and first-class interpreters separate from the low-level
language implementation. Instead of requiring complex code transfor-
mations or needing to modify a low-level VM, first-class interpreters
support light-weight language extensions through subclassing.

We provide separate implementations of the first-class building blocks and
show how they are beneficial for the evolution of the runtime by making it
more customizable and easier to debug.

1.1 Contributions

1. Unified meta- and base-level
By generating the whole runtime from a high-level meta-circular spec-
ification that is formally late-bound, we attain polymorphism at the
meta-level. The use of the same language for both the meta-level
as well as the base-level ensures that meta-programs are as reconfig-
urable as normal base-level applications. In Chapter 4, we will illus-
trate the flexibility of the model by implementing a method tracer and
a prototype-based language.

2. Customizable object layouts
We specify a framework for defining custom layouts of objects built
from a set of basic building blocks that have an implicit hardware
specification. This allows language developers to build elaborate ob-
ject models without having to hook into the compiler, while giving
greater customization power to developers with high performance or
low memory requirements. In Chapter 5, we exemplify this approach
by presenting a typical set of use-cases, including a hybrid between
Smalltalk-80 arrayed objects and Python-style hash-table objects. This
work has first appeared in [146].

3. Customizable dynamic code update mechanism
We provide a single central interface that combines both the compiler

3
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and the class installer infrastructure so that they can be customized.
This serves as entry point for building dynamic code update mecha-
nisms that are required to support more elaborate schemes of appli-
cation and language evolution. We show the usefulness of our model
by drastically improving the performance of the Pharo1 class builder.
This work has first appeared in [147].

4. First-class interpreters
By introducing first-class meta-circular interpreters to the runtime we
provide a clear object-oriented interface to building custom interpreters.
This is especially useful for building interpreters with lower perfor-
mance but higher flexibility requirements such as customizable de-
buggers. In Chapter 6, we show how this setup can be used to easily
implement elaborate debugger support such as the object-flow debugger
[92]. This work has first appeared in [145].

We provide implementations of the contributions in two different systems:

Pinocchio is a Smalltalk in which different execution styles have been pro-
totyped. It implements AST, bytecode, and direct-threaded interpre-
tation using stack-based opcodes, and native compilation targeting
register-based hardware. First-class interpreters are implemented in
the interpreter flavors of Pinocchio, whereas unification of the meta-
and base-level have been explored in the native compiled version.

All versions are bootstrapped by cross-compilation from Pharo Small-
talk [15]. While being an experimental runtime with few implemented
primitives, it is practically usable as standard Smalltalk environment
with competitive dynamic language performance.

PlayOut is an implementation of customizable object layouts on top of Pharo
Smalltalk and Helvetia [122]. PlayOut requires no changes to the Pharo
VM while exhibiting no negative performance impact.

1.2 Outline

This dissertation is structured as follows:

Chapter 2 identifies three fundamental building blocks of object-oriented
languages. It provides an overview of low-level implementation de-
tails for these building blocks, and their implications for the resulting
runtimes.

Chapter 3 gives an overview of the related work. In particular we describe
the state of the art in meta-circular VMs and object-oriented reflection.
We then discuss the problems with those approaches.

1http://www.pharo-project.org
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1.2. Outline

Chapter 4 replaces the traditional VM with a native communication inter-
face for objects. We describe Pinocchio, the implementation of our pro-
totype that implements a self-supporting runtime library for Small-
talk. The runtime library itself is also implemented in Smalltalk and
unifies the meta-level with the base-level such that objects from either
level are indistinguishable. This provides Smalltalk-based objects with
a compiler-generated metaobject protocol.

Chapter 5 introduces layouts, layout scopes and slots as structural abstrac-
tions used by language tools to construct classes and compile meth-
ods. We modify the language tools so that they solely rely on the pro-
vided higher-level interface rather than being hardwired towards the
low-level structural model used by the garbage collector. We show
in various examples that by doing so we can easily implement new
language abstractions and local customizations related to the state of
objects.

Chapter 6 shows how first-class interpreters avoid having to build complex
code transformations, or decompile low-level code, to modify the ap-
plication semantics for language experimentation and debugging. We
exemplify our approach by implementing three non-trivial debuggers.

Chapter 7 concludes the dissertation and outlines future work.
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2
The Building Blocks of

Object-Oriented Runtimes

In this chapter we shed light on the low-level implementation details of ef-
ficient object-oriented runtimes. We identify three fundamental building
blocks used by the implementations, and explain how they impact perfor-
mance.

Communication. Section 2.1 shows how efficient message sending is tradi-
tionally implemented.

Data. Section 2.2 explains the trade-offs of different run-time representa-
tions of objects. It discusses how objects are typically encoded at the
lower level and how this influences the higher level.

Code. Section 2.3 focuses on different ways to encode and evaluate meth-
ods, and Section 2.4 explains the semantic operations performed by
the code.

2.1 Communication: Efficient Message Dispatch

In procedural languages, functions are said to be early-bound, i.e., they di-
rectly call each other. Dynamic object-oriented languages on the other hand
support polymorphism through late-bound message sends. Rather than di-
rectly calling a function, message passing between objects is used to dynam-
ically select which method is activated. Message dispatch is a central feature
of object-oriented languages. For the language to be efficient, it is important
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Chapter 2. Object-Oriented Building Blocks

that virtual message dispatch be fast. There is a myriad of techniques to
implement efficient message dispatch. In this section we will discuss lookup
caches, virtual method tables, inline caches, method inlining, and customization.

2.1.1 Lookup Cache

In dynamically typed languages, the message is looked up in the message
dictionaries of the inheritance hierarchy. To limit the lookup time, Small-
talk traditionally uses a global lookup cache (GLC) that maps the selector
and class onto the related method [65, 89]. The size of the GLC is typically
decided up front to limit memory usage. A GLC with 256 entries is reported
to be effective about 90% of the time [89]. Alternatively lookup caches can
be stored locally on a per-class basis.

While providing a more modest speedup than the following optimiza-
tions, lookup caches have the advantage that they can be used by purely in-
terpretive implementations. All of the following optimizations are generally
implemented in context of a statically compiled or JIT-compiled application
for maximum performance.

2.1.2 Virtual Method Tables

In statically typed languages like Simula, C++, Java, etc., objects that require
virtual method dispatch traditionally contain a pointer to a virtual method
table in their object header. Since types specify exactly what methods are
supported by their implementors, the different methods can be numbered.
Virtual method invocation is simply implemented by direct access of the vir-
tual method table. This implementation method incurs two types of costs,
a direct cost and an indirect cost [46]. The direct cost comes from having
to select the right target procedure at runtime. The indirect cost stems from
optimizations such as inlining that cannot be performed because the target
of a call is unknown at compile time.

2.1.3 Inline Caches

Around 90% of sites where message are sent are monomorphic [41, 144, 27],
i.e., only have one receiver type. Inline caching, storing the method related
to the expected type at the send site, drastically reduces the direct cost of
message sending in natively compiled dynamic languages. Inline caching
is implemented as follows. Initially a send site is unlinked. For example, the
following Smalltalk message send:

bank accept: money

is typically compiled to the following pseudo native code:

load bank
load money
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2.1. Communication: Efficient Message Dispatch

load #accept:
call invoke

The code first loads the receiver (bank), the arguments (money) and the se-
lector (#accept:), and then calls to a meta-level invoke function which per-
forms a full invocation sequence.

Message sends are linked as a side-effect of the invoke function. It stores
the type of the receiver and the implementation of the message used during
the invocation at the send site. Before a subsequent message send, the type
of the new receiver is compared with the cached receiver type. If the type is
the same, the cached method is directly reused. This avoids the cost of a full
message lookup whenever the cache hits.

In the context of a GLC the cost of a message lookup is fairly mini-
mal. The more significant overhead is due to the fact that the CPU exe-
cutes instructions in a pipelined, out-of-order fashion: for higher perfor-
mance, multiple instructions in a single sequence are handled in parallel1.
Pipelined CPUs are best at handling calls to static targets. Since the code
statically identifies the target, the CPU can up-front ensure that the target
code is loaded in the instruction cache, and prefill the CPU pipeline with its
code. Dynamic targets are partially supported using a branch target buffer,
a specialized cache that stores the expected target for each location using a
dynamic call. This allows the CPU to speculatively continue execution [25].
However, if all calls are dynamic, the branch target buffer quickly overflows,
once more incurring large penalties due to pipeline stalls and instruction
cache misses. Inline caches avoid this overhead by dynamically rewriting
the code so that the cached method is the static target. In practice the call to
invoke is replaced at run time by a direct call to the cached method. Instead
of loading the selector, the cached type is loaded for type-checking. This
transforms the previous code into:

load bank
load money
load Bank // Instead of #accept:.
call Bank>>accept: // Instead of invoke.

By directly calling the cached method, the CPU can properly prefetch its
code.

To complement this implementation, all methods have a preamble that
performs the required type-checking. If the type check fails, the pream-
ble falls back to the invoke method to perform a full lookup. Since cached
methods do not get the selector passed in anymore, methods store their own
selector for falling back to invoke. A typical preamble looks as follows:

// Execute the method if receiver is of the expected type.
// The expected_type is passed in via the caller, bound to
// Bank by the code above.

1Parallel handling of instructions is only done where the CPU can prove there is no data
dependency between the instructions.
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cmp type_of(receiver), expected_type
je body
// Otherwise, load the selector and fall back to invoke.
load #accept:
jmp invoke

body:
...

Because of the high cost of message lookup, the failing lookups may still
take up a large amount of time. For example, by relying only on monomor-
phic inline caches, Self still spent up to 25% of its time handling inline cache
misses [74]. Polymorphic inline caches further reduce overhead by caching
multiple methods where a limited set of receiver types is expected [74]. In
practice this causes the runtime system to allocate a short piece of executable
memory in a buffer. Rather than calling to invoke or to a cached_method,
the send site is modified to call to this buffer. The buffer itself contains code
that branches based on already encountered types:

cmp type_of(receiver), Bank
je Bank>>accept:
cmp type_of(receiver), Person
je Person>>accept:
...
load #accept:
call invoke_extend_cache

Whenever a new type of receiver is encountered, the cache grows dynami-
cally. However, when the number of encountered types exceeds a statically
determined value, it is degenerated to a so-called megamorphic send site. The
polymorphic inline cache is removed and replaced with an invoke that al-
ways performs a full lookup.

Since inline caches avoid the memory indirection of virtual method ta-
bles, and improve branch target prediction, they have shown to have com-
petitive performance [47].

2.1.4 Method Inlining

Profile-guided receiver class prediction and static class hierarchy analysis further
mitigate the direct and indirect cost of message dispatch [35, 67, 4]. A vir-
tual method is compiled by merging all its statically found implementations
into a single native function. At run-time a class test is performed to select
the right implementation of the method within the function. This allows
the static compiler to mitigate the indirect cost of virtual method dispatch
by inlining the whole combined method, and optimizing every branch. It
can further mitigate the direct cost of dispatch as well by inlining multiple
methods that dispatch on the same receiver. Additionally it can result in im-
proved performance by avoiding an indirect data access, avoiding potential
data cache misses and resulting pipeline stalls.
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Since in the previously described setup it is more cumbersome to sup-
port dynamic loading of code, other research replaced the class test with a
method test [40]. Objects still refer to a virtual method table, and the call-site
loads the address of the target method from the table. Rather than jumping
to the retrieved address however, it is compared to the original address of
the inlined code as guard for the inlined code. If the guard succeeds, the
inlined code is directly executed. Otherwise the retrieved code is executed.
This setup incurs the overhead of an extra load, but it ensures that code
can easily be replaced at runtime while mitigating the cost of call-sites that
remain unaffected by loaded code.

In dynamic runtimes, method inlining can still be performed by using
runtime type feedback [75]. This type information is automatically collected
in the context of PICs. Type feedback has been shown to compete with static
type inference [3]. Dynamic method inlining is especially important for in-
teractive systems that are extensible at run time.

2.1.5 Customization

While methods can be inherited in object-oriented languages, this has an ad-
verse effect on optimization techniques. Since different subtypes may have
usage patterns of inherited methods, the expected types may differ signifi-
cantly. This reduces the effectiveness of optimization techniques.

Self relies on customization [29] to limit the scope, and thus increase the
effectiveness, of inline caches and method inlining. Customization is the
process of customizing a method towards an expected type. In particular,
in Self all inherited methods are copied down to the inheriting clone family.
By copying down methods the compiler statically knows the type of the re-
ceiver in every activation. This means that the target methods of messages
sent to the receiver (self) are statically known, and thus can be inlined. Ad-
ditionally, by copying down methods, dynamic lookups through multiple
inherited message dictionaries are replaced by a single lookup in the dictio-
nary containing all copied methods.

2.2 Data: Object Format and Management

The exact possible layouts of objects in memory is the object format sup-
ported by the programming language. The format definitions are mostly
constrained by how memory is managed in the programming language,
whether it be manually managed or automatically. In this section we shed
light on the different constraints coming from the hardware, as well as from
garbage collection techniques.
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2.2.1 Hardware Constraints

Languages that let their users manage the memory of their programs often
support highly customizable object formats. Since they do not need to pro-
vide optimized solutions for managing the memory they are more liberal
in the object formats they support. The only rules imposed on the object
format come from hardware and the OS for performance reasons. In this
section we will introduce the most relevant hardware constraints.

Data structure alignment improves reading and writing speed since CPUs
do not read out single bytes at a time [45]. For example, reading out a word
that is not aligned requires reading out two separate words, masking out
the relevant substructures and merging them together. Bigger structures
are often aligned on larger boundaries since the CPU reads out multiple
words at the same time2. To ensure data alignment compilers sometimes
need to insert dummy elements into data structures, a technique called data
structure padding. In C developers can take alignment into account by struc-
turing their objects so that fields that require less space than a single align-
ment unit are grouped together, avoiding space overhead due to unneces-
sary padding, in turn reducing pressure on data caches.

Data cache locality is an important property that benefits from the insight
a developer has in his own applications. Most modern CPUs rely on multi-
level caching. The caches are divided into relatively small blocks (e.g., 64
bytes), called cache lines. Memory is not loaded into the caches based on the
exact size of used objects, but rather in the size of the cache lines. By moving
related objects together, we increase the chance that the memory holding a
subsequently accessed object is already hot, i.e., will already be loaded into
the data cache as a side-effect of a previously loaded object [45, 25]. In mod-
ern high-performance CPUs (and multi-core CPUs), cache misses dominate
the execution cost since they are two to three orders of magnitude more ex-
pensive than the execution of single instructions [45, 25].

Unlike most high-level garbage collected languages, manually managed
languages allow developers to inline objects into other objects. This does not
only avoid unnecessary pointers, reducing the pressure on the data caches,
but also ensures that the contained objects are close to their containers. This
is most effective for arrays of a fixed type, increasing the speed of bulk op-
erations for which cache locality is even more important.

Since memory allocation is fairly expensive, even in manually managed
languages, systems languages often allow objects to be allocated on the stack
directly. This eases memory reclamation since the data is automatically
given back to the system when the frame in which the object was allocated
is left. It also improves data cache locality since the stack is almost always
hot.

Unfortunately, the performance of a manually memory-managed appli-

2Some instructions do not enforce data alignment but are just faster when their arguments
are aligned. For this reason the Mac OS X ABI enforces 16-byte stack alignment on function
calls by testing the alignment whenever the code jumps to system libraries.
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cation is not always adequate since not all developers using systems pro-
gramming languages have the knowledge required to structure their ap-
plications favorably: In practice, caches are under-exploited [26]. Another
example of a common mistake is to declare independent global variables in
the same context, while they are supposed to be used by different threads.
If the compiler places the variables in the same data cache line, the resulting
performance suffers due to false sharing [79, 25]: on each write to the variable
in one thread, the cache line of the second thread needs to be updated via a
slower cache, even though logically there is no need.

Another downside to the approach of letting developers handle their
memory manually is that it often results in memory leaks (forgetting to free up
unreferenced memory), dangling pointers (the use of pointers to already freed
memory), etc., that are difficult to debug [131]. While systems programming
languages give the control to the user, there is a lack of adequate tools to
detect such bugs. In either case, manual memory management is a very
complex task that takes away a lot of time otherwise better spent on solving
the problem at hand, but it is often desirable for memory- and performance-
critical applications.

2.2.2 Garbage Collection Constraints

In a response to the previously described problems with manual memory
management, many modern programming languages make use of a garbage
collector.

Initially concerns were raised about the performance of automatic mem-
ory management. Nevertheless, similar to compilers obviating the need for
hand-written assembler code, high-performance garbage collected runtimes
automatically apply complex optimizations at run-time that are difficult to
statically perform. For example, generational GCs are easily modified to op-
timize data cache locality [33]. Thread-local heaps can avoid false sharing
in many cases [12]. Escape analysis has been used to relieve pressure from
the GC by converting heap allocations into stack allocations, and by scalar
replacement, avoiding object allocation by mapping their instance variables
directly onto registers [28, 88]. However, since the user cannot declare his
intent in the programming language directly, the GC is only left with recon-
structing the assumptions through analysis.

The object format of garbage collected languages is imposed by their
GC. It is designed for minimum GC code complexity, minimal allocation
overhead, and maximum data cache locality. The number of paths through
the GC code is decreased by limiting the number of object types. Allocation
overhead is often avoided by using immediate values, i.e., values that are
not allocated on the heap. The cache locality is increased by directly storing
structural meta-data required by the GC in the object header so that the class
does not need to be loaded.
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Immediate values. Most objects in garbage collected languages are allo-
cated on the heap. They are passed around in the running program by ref-
erence, speeding up passing the object and ensuring consistency throughout
the program. Nevertheless heap allocation is expensive.

This overhead can be reduced by encoding a limited set of data types,
e.g., integers, as immediate values. Because of data alignment used in most
VMs, the references to objects do not vary in all bits of a pointer’s value.
In case of 32 bit (4 byte) or larger object alignment, the least significant two
bits of the pointer are always zero. These bits are available to the language
to encode (at least) three extra data types directly in the pointer, rather than
allocating them on the heap. There are two requirements for data types to
be suitable for immediate encoding: (1) the value needs to be immutable
since it is passed by copying, and (2) the data type must fit in the bits re-
maining after applying the tag bits. Traditionally 32 bit Smalltalk systems
encode small integers as signed 31 bit tagged pointers. Some VMs, such as
the V8 JavaScript VM, also encode characters as immediate values. This is
particularly useful when performing a lot of string operations. Floats are a
third potential immediate value. All of these types of values can be encoded
in the available space in a pointer minus the tag bits.

The downside of using tagged pointers is that it is asymmetric. All lo-
cations that dereference object pointers need to be aware that the pointer
might actually be an encoded data type. Having to test for different ob-
ject encodings introduces an overhead on standard operations. In case the
code executes natively, more code space is required to test for the different
cases. This overhead is offset by the speed increase by avoiding object allo-
cation and by having direct access to the encoded value through the tagged
pointer. The overhead is further reduced by applying static and dynamic
optimizations that eliminate superfluous type guards.

A second criticism of tagged pointers is that they are not useful given
that JIT compilation can perform the so-called unboxing of these values at
runtime where required, without having to manually ensure it everywhere
in the code. However, by solely relying on JIT compilation for unboxing,
not all sites will run optimally (those that are not yet optimized), the JIT
compiler has more work and will thus optimize the code slower, and start-
up is slower. The last point is especially crucial for short-lived scripts.

Object headers. Objects generally store meta-level information in an ob-
ject extension known as the object header. The object header implies a mem-
ory overhead for objects, so is generally as small as possible. On the other
hand, by storing meta-data directly in the object itself the language im-
proves data cache locality and avoids indirections for object manipulation
and garbage collection. Just like there is a wide variety of object encodings,
there is a variety of object headers.

Dynamically typed object-oriented languages need at least a link from
the object to type information that is used to look up methods at runtime. In

14



2.3. Code: Method Structure

class-based languages this link points to the class. Since a class pointer is re-
quired for inline caching, even highly optimized prototype-based languages
rely on an internal class-like object to store behavior.

While garbage collected languages could look at the class to decide how
to handle an instance, it is more efficient to get the meta-information directly
from the object. For this purpose object headers often include multiple bits
that are relevant to the GC, including the size and type of the object. The
commonly used mark-and-sweep GC requires one bit per object to mark the
object as being used. Reference counting garbage collectors on the other
hand require more space to store the number of references to the object. In
both cases the object header encodes the exact size of the object, and which
segment of the object contains pointers to other objects.

Languages that frequently store objects in dictionaries require good dic-
tionary performance. This is the case especially for languages using hash
tables as native object representation, e.g., Python. There are two basic op-
erations on objects used to support dictionary access, hashing and equality.
To improve the performance of dictionary access, objects often use a portion
of the object header to store the identity hash.

2.3 Code: Method Structure

A layer of interpretation is often introduced between the CPU and the ac-
tual code. This provides language developers with a choice between differ-
ent code formats. We give an overview of the most common formats: AST
nodes, bytecodes, threaded code, and native code. We discuss the trade-offs
between the different formats in terms of understandability, memory usage,
and performance.

2.3.1 AST

The most high-level execution format that is widely used is the AST (ab-
stract syntax tree) [81]. ASTs represent the essential structure of methods
defining its behavior. After semantic analysis has been applied to match
variable declarations and uses, they form a DAG (directed acyclic graph).
Interpreters can walk the resulting DAG to evaluate the code. ASTs are very
close to the original source of a program, making it an ideal format for in-
terpretation and debugging. For ease of implementation, most interpreter
prototypes rely solely on nested AST evaluation.

By representing AST nodes as objects, the interpreter can rely on poly-
morphism to evaluate the AST nodes by recursively descending the DAGs.
This results in a very fine-grained call-stack that does not only keep track
of activations, but also of the exact position within the AST. These call-stack
operations are however superfluous since they dynamically keep track of
state that is statically known. For example, suppose we are executing the
following nested expression:
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(a + b) * c

During execution the runtime will push the values related to a and b on
the operand stack. Before sending the message +, however, it will need to
remember that after returning, the message * needs to be sent. This is re-
membered by pushing the expression * c on a separate expression stack.
This does not only imply direct execution overhead related to managing
the expression stack, but also indirect overhead from additional cache and
pipeline pressure.

The overhead of evaluating a nested AST can be reduced by flattening
the DAG at compile-time in depth-first order. To keep track of the position
within the resulting list of expressions it suffices to store the method or func-
tion and a single program counter for each activation. For extra performance,
the counter can be mapped onto a register and only needs to be written back
to the stack on activations. The disadvantage of flattening the AST is that
the original nesting is not preserved. However, by storing extra meta-data
in the nodes this structure can be recovered for debugging. Alternatively, a
debugger can regenerate this information on-the-fly when required.

2.3.2 Bytecode

Even after flattening its DAG, the resulting AST still has a performance and
memory downside. By encoding code in objects, the resulting AST uses
more space than necessary for execution. Especially if the AST nodes are
reified in the base-language, all AST nodes have an object header and use
full pointers to link to their members. When no care is taken to allocate the
AST nodes optimally by placing related AST nodes near each other, a single
function might require several cache lines to be loaded, adding even more
unnecessary data cache pressure.

Bytecode does not suffer from these problems since it is encoded mini-
mally. They encode language-level operations using bytes, just like native
code, but provide codes generally not offered by a general purpose CPU.
This allows bytecodes to express language-level concepts more concisely
than native code. An additional advantage over native code is that byte-
codes are portable across multiple architectures. By writing an interpreter
for bytecodes in a language supported by the required targets, the language
can automatically be made available on all those platforms.

The evaluation of bytecodes is similar to that of flattened AST nodes.
Since bytes are not objects, a bytecode interpreter is more complex than an
AST evaluator. A bytecode interpreter relies on bit-masking and a multi-
way branch (such as a switch statement or a branch table) to map the bytes
onto their semantic operations. Rather than reading out operands from the
expression objects, operands are decoded from the bytecodes or additional
follow-up bytes. While expression objects can directly link to operand ob-
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jects, bytes cannot easily directly encode other objects3. This is simplified by
storing such objects close to the bytecode, for example in a literal frame or a
constant pool, and using the operand as an index into this literal frame.

Direct bytecode interpretation is not particularly efficient [53]. Addi-
tionally it is criticized to be too far from the source code [42, 37]. This makes
bytecodes a bad medium for understanding the source code. To understand
the code, the bytecodes need to be decompiled or interpreted by an appli-
cation. Debuggers that handle bytecodes rely on external meta-data to map
the bytecodes back onto the original source code. For further dynamic opti-
mizations it is most useful to have a high-level view on the source code, to
understand and optimally encode the intent of the program. By using byte-
codes as a source for optimizations, most of the intent is hidden between im-
plementation details, making it harder to recover the original design. Nev-
ertheless, given that without dynamic optimizations bytecodes can easily
achieve higher performance than AST evaluation, bytecodes remain a more
popular code format for more advanced interpreters.

2.3.3 Threaded Code

Profiling where AST evaluators and bytecode interpreters spend most of
their time reveals that the main dispatch loop shows up high in the rank-
ing. While the dispatch loop is a very simple piece of code that only chooses
how to evaluate instructions, the CPU has to return to it before each instruc-
tion. The code then jumps to the implementation of the actual next opcode
implementation. This implies two branches for each evaluated instruction:
an indirect branch (computed jump to the return address on the stack) from
the previous instruction back to the dispatch loop, and a conditional branch
from the dispatch loop to the next instruction. Since all conditional branches
occur in the same dispatch loop, the branch target predictor of the CPU can-
not possibly properly predict the branch taken, resulting in costly pipeline
stalls between instructions.

To minimize the overhead, other types of virtual machine instruction sets
are used. Threaded code4 [9] removes the need for a centralized dispatch
loop by directly storing the target interpreter function addresses in sequence
as the main code representation. Whenever an instruction finishes evalua-
tion it can directly jump to the next instruction without having to first re-
turn to a main dispatch loop. Threaded code improves performance over
bytecode interpretation, further closing the performance gap between inter-
pretation and native code compilation. Threaded code is however easier to
port across platforms than complete native code compilers. Since there is a
one-to-one mapping between both formats, it is easy to generate equivalent
threaded code on-the-fly while loading bytecode.

3By mixing bytecodes with object pointers the resulting methods become harder to garbage
collect, resulting in performance overhead. The garbage collector would require knowledge of
all bytecodes to find references to other objects.

4Note that threaded code in this context is unrelated to multi-threading.
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There are two main threaded code encodings that are of interest:

Direct-threaded code contains machine addresses in a thread of code, i.e.,
a simple array of code pointers. During execution the runtime keeps
track of the current location within the thread using pointer that repre-
sents the program counter. Interpretation is started by jumping to the
value at the initial program counter. Whenever an instruction finishes
it increases the program counter and direct jumps to its value without
further need for decoding. The program counter namely points at the
address of the implementation of the next instruction.

The following code implements a push_true instruction:

push_true:
stack_push(true);
goto **(pc += 1);

The code is labeled so that can be used as jump target. The operand
to be pushed on the stack is decoded from the thread by reading out
the value directly following the current program counter. At the end
the instruction directly jumps to the next instruction by increasing the
program counter and jumping to its value, the address of the next in-
struction.

A problem with this code style is that the CPU cannot properly predict
where the code wants to go next [54]. Suppose in a specific thread
push true is followed by push false:

void* thread[] = { ...,
&&push_true,
&&push_false,
... };

Since the CPU sees goto **(pc += 1) rather than goto push false,
it cannot properly prefetch the instruction code. It has to wait until the
target address at **(pc += 1) is available before it can load the code
into the pipeline. While the branch target predictor normally helps
by guessing the target based on previous executions, the multitude of
opcode combinations occurring over all threads generally trashes this
cache.

As the example shows, direct-threaded code requires being able to
refer to native code fragments as jump targets. This is problematic
[116, 53] since ANSI-C does not support computed jump (indirect branch)
needed to jump to dynamically provided addresses. Most C imple-
mentations, e.g., GNU C, do however provided a version of computed
jump.

Context threaded code (subroutine threaded code) relies on generated native
code to sequence interpreter operations [13]. Rather than just using
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pointers to the fragments that encode the semantics of instructions,
subroutine threading relies on sequences of native calls to instruc-
tion functions. The following code implements push_true as context
threaded instruction:

void push_true()
{

stack_push(true);
}

The previous thread is encoded as:

void thread()
{ ...

push_true();
push_false();
...

}

This reintroduces the overhead of having single call-and-return se-
quences per instruction, but it avoids the overhead of not knowing
what the next instruction is. Since the CPU directly executes the thread
itself, thanks to the return stack buffer5 it can pre-fetch the code related
to next instruction, avoiding pipeline stalls.

The difficulty of subroutine threading is that native code needs to be
generated and placed in executable memory. Rather than having full
control over the execution in an interpreter, the runtime has to coop-
erate with the hardware to manage execution.

Because of the trade-offs involved, it depends on the hardware which of
both previously described techniques is faster. Both, however, result in
faster execution than vanilla bytecode execution.

Since threaded code uses full pointers to link to opcodes rather than sin-
gle bytes, many more operations can directly be supported than in byte-
code sets. To further increase the time spent doing useful work, superin-
structions optimize threaded code by combining opcodes into larger single
opcodes [116, 56]. Superinstructions reduce the need for reading and dis-
patch opcodes. If the superinstructions are generated at compile-time, the
compiler can apply optimizations across opcodes that would otherwise be
impossible. Useful combinations can be detected using static analysis of
existing applications. Superinstructions reduce the size of threaded code,
and decrease the required number of dispatches and resulting branch mis-
predictions [55]. Nevertheless they require more memory for native code,
increasing pressure on the instruction cache.

5The CPU relies on a return stack buffer since return addresses are mutable on the native
stack. The buffer is used as specialized branch target predictor. The CPU cannot be certain
that push true does not modify the return address to jump somewhere else than returning to
thread (and subsequently call push false).
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The approach of relying on static analysis might however not fit appli-
cations that are dynamically loaded on top of the VM. For this reason, an-
other approach [116] detects used opcode sequences at runtime. By stati-
cally meta-describing the implementations of primitive opcode fragments
they can be copied and combined in a cache for superinstructions at run-
time.

A difficulty in implementing direct-threaded interpreters in a higher-
level language like C is that C compilers are designed to optimize nor-
mal user applications. The instructions of threading interpreters are imple-
mented at a higher granularity than functions, using only fragments of func-
tions. C compilers generally expect to optimize full functions as one block,
which does not generete the optimal code for threaded instruction imple-
mentations. While not very portable across compiler versions, BrouHaHa
[104] instead relies on specifically generated code by manually annotating
variables with register names [105]. The newer LuaJIT interpreter [113] re-
lies on handwritten assembler code for optimal performance.

2.3.4 Native Code

The previously defined code formats can limit themselves to operations that
are first-class in the language. All required meta-level actions, e.g., setting
up a stack frame for activation, are implicit in the base-level operations.
Since there is generally a mismatch between the language and the target
hardware, compiling complex application-level operations fully to native
code requires additional support code to be generated. For example to com-
pile Smalltalk bytecodes to native X86 or X86-64 assembler, bytecodes are
translated into one of the following three native code types:

• a single native instruction, like memory access or copying a register
(accounts for ca. 175 Smalltalk-80 bytecodes),

• an expanded assembler template (their function is similar to CPU mi-
crocode, e.g., copying a memory range),

• a function call (e.g., opcodes that send messages).

The last case is used for code that is too expansive to inline. Instead the code
calls to a meta-level library function that implements the required operation.
Code that supports a programming language is provided in a so-called run-
time library.

2.4 Code: Method Behavior

During execution a so-called continuation keeps track of the run-time state
within the used code format. There are two sides to a continuation: the
runtime stack and the environment. The runtime stack is split up into the con-
trol state and the operand stack. The control state captures the function-call
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nesting and the state within these functions. The operand stack contains the
values required to evaluate expressions, and values resulting from evaluat-
ing expressions. The environment captures the data involved in activations:
local variables, receiver and arguments.

2.4.1 Recursive interpretation

AST interpreters are easily written at a high level using the interpreter pat-
tern or visitor pattern. The interpreter recursively visits code while manually
managing the environments. The host language, rather than the interpreter
itself, keeps track of the runtime stack. The environment is represented as
heap-allocating environment frames that link to the return frame, and the
lexical outer frame to support lambdas.

There are multiple disadvantages to the recursive approach however.
Firstly by letting the host-language manage the recursion, the number of
features easily provided to the base-language is limited to the set of stack-
operations provided by the host-language. Secondly, by intertwining base-
level recursion with meta-level recursion the stack frames used for base-
level recursion will be larger than required since also the meta-level state
is stored in each frame. This state is irrelevant, however, since it can be
reconstructed fully from the state of the application alone. For example,
suppose the following interpreter method evaluates an array of statements
and returns the result of evaluating the last statement:

visitStatements: statements
↑ 1 to: statements size do: [ :pc |

(statements at: pc) accept: self ]

The only data essential to keep track of evaluation are the statements array
and the index into the array (pc). Nevertheless, the language in which the
interpreter is written also keeps track of the state of the interpreter. This
information is superfluous since there is only one possible position between
statement evaluations: at the end of the to:do: loop.

2.4.2 Manual stack management

To get full control over the run-time state of an application the stack can
be manually managed. Within a single method the state is explicitly repre-
sented by a program counter. Calls and returns require storing and restoring
of this program counter. If this strategy is used on top of another language,
the final runtime has two runtime stacks: one for the interpreter and one
for the application. The interpreter itself is generally implemented as a loop
that evaluates application-level code and does not require much stack space.
The application stack will only contain the state required for the evaluation
of the application and is therefore minimal.

As an alternative stack design the environment and the operand stack
can be embedded into a single context frame that is wired in sequence to
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form the runtime stack. The advantage of embedding stack and environ-
ment is that it gives a first-class representation of the runtime state of an
activation. Additionally, it is easy to reorganize the stack at runtime to im-
plement language extensions that are otherwise hard to accomplish. Back-
tracking has been implemented on top of Smalltalk as an example use of
first-class context objects [90].

2.4.3 Stack-mapped context frame

The downside of all the above approaches is that the context objects are al-
located on the heap. Since activations happen at a much higher rate than
any other activity in VMs, this accounts for a large percentage of object al-
locations and gives a large overhead to the garbage collector. Additionally,
since these objects are heap-allocated they likely belong to different cache
lines, causing extra strain on the CPU’s memory management unit between
method activations. This has a major impact on the performance of the run-
time.

A first solution to this problem is to fix the size of context objects and
cache them [89]. This avoids overhead in the garbage collector since they
can be explicitly freed on return. In case a context object is captured by a
closure it cannot be freed. Nevertheless the fixed size of the objects ensures
it will not fragment the cache. However, captured contexts do separate log-
ically consecutive calling contexts, increasing the risk of data cache misses.
Additionally, every activation requires the runtime to write a back-pointer
to the return context into the new context frame.

The overhead is alleviated by allocating the activation frames directly on
a stack [106]. Frames are allocated by increasing the stack pointer, and are
removed by decreasing the stack pointer. This wires stack frames together
in the order of activations, ensuring that the related memory is most likely
already loaded in the data cache. It however brings with it three difficulties:

Firstly, implementing closures is harder in a stack-mapped setup than
in the others. Since context objects are not regular objects but part of a
stack, they automatically disappear and potentially get overwritten when
the method or closure is left. Values that are captured by a closure and have
to live on beyond the life-span of the original activation would get lost. Sim-
ple static analysis of code can identify exactly which values need to be kept
alive beyond the life-span of a stack frame. These values are stored in a sep-
arate, heap-allocated, remote array. By sharing the array between a context
and the closures that capture it, the values are also shared, and can live on
even though the frame they originated from has already terminated.

The second disadvantage is that stack frames are not as flexible as con-
text objects, since they are implicitly sequenced. To support the same fea-
tures as separately heap-allocated context objects, a lot of extra administra-
tion has to be performed. However, since most base-level code relies on
regular activations it makes sense to improve performance in favor of regu-
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lar use.
A final disadvantage is that a pre-allocated stack can overflow on deep

recursion. This is solved in some approaches by not just implementing the
stack as a single large chunk of memory, but rather a series of stack pages.
On every activation the runtime checks if there is still space within the cur-
rent stack page, and if not, it uses a next stack page to allocate the frame.
The first stack frame of a stack page contains a pointer to trampoline code, i.e.,
meta-level code that overcomes the limitation that the CPU expects the stack
frames to be laid out in sequence. The trampoline code restores the previ-
ous stack page and returns to the top stack frame on that page. This setup
avoids stack overflows, and is still faster than allocating separate context
frames since it is more coarse-grained. Alternatively the virtual memory
manager’s page protection can be used to dynamically allocate extra stack
pages or free unused pages. In that case the page protection traps are used
as hardware-supported trampolines.

2.4.4 Register-Based Execution

Just like in hardware, there are two main execution models in software for
handling operands: stack-based and register-based. The model used by a
language does not necessarily directly relate to the model used by hardware.
On the contrary, many languages such as Java and Smalltalk rely on a stack-
based bytecode-set, while being available for register-based processors such
as the X86.

Stack-based bytecode has the advantage of being smaller than register-
based bytecode since often the operands are passed implicitly, relative to
the stack pointer. In register-based languages the code always has to spec-
ify which variables are used in the operation. Register-based bytecode was
found to be 26% larger than the equivalent [132].

Register-based bytecode has the advantage that it is not bound to a stack-
based view of its application. This implies for example that superfluous
values never need to be popped from the stack. Since there are fewer codes
to be executed the final execution time is lower than for the stack-based
alternative, in part due to the overhead of dispatching bytecodes [132].

2.5 Summary

We have identified three main building blocks of object-oriented languages:

• Message sending as communication between objects,

• the object encoding that declares how objects are laid out in memory,
and how they are managed,

• method structure and behavior that encode the semantics of single
methods.
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We have explained the differences between the major design choices for all
building blocks and how they impact performance. In the next chapter we
will talk about how current approaches allow the user to hook into the de-
fined building blocks, and the limitations thereof.
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Background and Problems

In this chapter we discuss two main approaches that are targeted at making
runtimes reusable. They form the basis of the related work we build upon.
In Section 3.1 we give an introduction to run-time reflection, an approach
that is designed to give applications the illusion that they have direct access
to their own meta-level from within their runtime. In Section 3.2 we pro-
vide insights in the alternative approach of generating high-performance
VMs from meta-circular implementations to streamline the development of
new interpreters. The differences between our work and the related work
are presented inline in the relevant chapters (Section 4.5, Section 5.7, and
Section 6.5).

3.1 Reflection

Computational reflection refers to the ability of computer programs to reason
about their own structure and behavior at runtime [134, 95]. Reflective sys-
tems distinguish the base (application) level from the meta (semantic) level.
Reflection entails the reification of meta-level entities to the base level, that
is, semantic entities are reified as ordinary application entities. (If we ask a
Java object for its class, we obtain an ordinary Java object representing that
class.)

Structural reflection is concerned with reification of the structure of the
program, i.e., its data and code. Behavioral reflection is concerned with reifi-
cation of the behavior of the program, i.e., its interpretation. Reflection can be
further refined into introspection and intercession. Introspection is purely con-
cerned with reifying meta-level concepts to reason about them at the base
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level. For example, we may ask an object what fields it has so we can print
them all. Intercession, on the other hand, allows us to manipulate reified
meta-level entities and reflect changes back to the meta-level. In Smalltalk,
one can change the class of an object at runtime, immediately causing that
object’s behavior to change. Such changes effect a causal connection between
the reified entities and the meta-level entities they represent [95].

Some typical uses of reflection are found in (i) debugging tools; (ii) GUIs
for object structures; (iii) code instrumentation and analysis tools; (iv) dy-
namic code generation; and (v) language extensions. Several different ap-
proaches to behavioral reflection have been realized over the years.

Smith introduced the notion of computational reflection and he illus-
trated his model through the implementation of a reflective dialect of Lisp,
called 3-Lisp [134]. 3-Lisp applications can contain special reifier functions
that take reifications of aspects of the interpreter as arguments: the current
expression, the environment in which the expression is being executed and
the continuation of the application. In Smith’s model these reifiers conceptu-
ally run in the scope of the interpreter since they operate on the application
from the point of view of the interpreter. Adding support for reifiers to a
language thus adds the ability to add lines to the code of the interpreter from
within the application context. It also creates the illusion that below every
interpreter, there is another interpreter that evaluates the interpreter and all
reifications requested by the application on top. Reflection is therefore sup-
ported by an infinite tower of interpreters.

3.1.1 Discrete and Continuous Behavioral Reflection

Behavioral reflection in most systems is discrete, which means that reflec-
tive computations are initiated at a discrete point by calling a reflective pro-
cedure and only lasting until this procedure returns [98]. For example, a
method wrapper that makes a method asynchronous only affects the partic-
ular wrapped method, not all the methods in the whole system.

Continuous behavioral reflection refers to reflective computations that mod-
ify existing structures of the meta-interpreters, thus having a continuous ef-
fect on the base level computation [98]. Software transactional memory, for
example, entails a continuous change to the semantics of a language which
can benefit from invasive changes to the runtime [69].

Smith’s “tower of interpreters” approach is fundamentally discrete since
the behavior of interpreters can only be extended, not modified. Existing
meta-behavior cannot be mutated, strictly limiting custom reflective behav-
ior to the base-level code explicitly triggering this custom reflective behav-
ior. Simmons et al. extended the discrete reflective tower to a continuous
model of reflection by introducing first-class interpreters in Refci (reflective
extension by first-class interpreters) [133]. In Refci, changes can be applied
to the interpreter by explicitly wrapping around the meta-interpreter. These
wrappers are then used to interpret of all code to which the modified inter-
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preter is applied, thus having a continuous effect on its interpretation.
Refci extends the interface of reifiers with reifications of the interpreter

itself in the form of a dispatch procedure and preliminary procedures. The
dispatch procedure evaluates expressions by selecting the right interpreter-
level procedures. There is a single default dispatch that provides support for
constants, identifiers, applications and special forms, and bad form errors.
Since the dispatch handles all expressions, it is a reification of the actual
interpreter. To extend the interpreter, a user writes a preliminary proce-
dure. Preliminary procedures create a new dispatch from an existing one.
They transform the dispatch to add support for new expressions, or to wrap
around existing expression handlers, supporting modifications to the ex-
isting interpreter functionality. (We explain the similarities and differences
between Refci and our approach in subsection 6.5.1.)

3.1.2 Separation of base and meta-level

Typically, discrete reflection is implemented by manipulating base-level code
(e.g., through source or bytecode transformation). This technique raises a
whole new set of problems (the same that optimizers introduce for debug-
ging). Most importantly, the application that uses reflection has to keep
track of the meta-level on which it is being evaluated to avoid endless re-
cursion [32, 38]. For instance, the code that logs a method execution must
avoid itself triggering the logging meta behavior to avoid infinite meta re-
cursion. This problem arises from the lack of a clean separation between
base and meta behavior.

While towers of interpreters clearly separate the base-level and meta-
level computations, metaobject protocols generally lack this clear distinc-
tion, leading to confusion between the two levels [32, 38].

At the same time, by conflating the reflective API of objects with their
base-level API, it becomes impossible to guarantee proper encapsulation.
McAffer [99] argues that “The implementation of an object must be explic-
itly exposed and clearly distinguished from the object’s domain-specific be-
haviour description.” Bracha and Ungar argue that “meta-level facilities
must be separated from base-level functionality” [23]. They provide mir-
rors, objects acting as reflective proxies separate from the base-level objects
they reflect upon.

3.1.3 Partial Behavioral Reflection

During a workshop on reflection, Smith mentioned that in the wide spec-
trum of reflective applications most applications only need a fragment of
the information that can be provided by the interpreter [77]. Since reifica-
tion of information is expensive due to wrapping into special objects, partial
behavioral reflection tries to limit the number of reified objects and message
sends needed during the execution of a program.

27



Chapter 3. Background and Problems

Partial behavioral reflection provides a reflective model that enables lo-
cal extensions to the code by attaching metaobjects to operations through
links. A link conditionally lets the metaobject decide about the evaluation
of the operation that activated the link [141]. In the original model links are
installed in the code at class-loading time. Unanticipated partial behavioral
reflection extends the model by allowing dynamic installation and retraction
of links [127]. The model was also further refined to hook into the high-level
AST representations of the code rather than low-level bytecodes [36].

3.1.4 High-level reflective API

Reflection enabled by mechanisms such as method wrappers [24], proxies
[48], or overriding exception handling methods [48] is used in practice only
in limited, idiomatic ways depending on the host programming language.
To enable widespread use of reflection, a safe and practical reflective API is
needed.

Bracha and Ungar claim as a fundamental design principle for reflection
that “meta-level facilities must encapsulate their implementation” [23]. McAffer
justifies this principle as follows:

the metalevel has been thought of as a place for making small
changes requiring small amounts of code and interaction. We
believe that the metalevel should be viewed as any other po-
tentially large and complex application — it is in great need of
management mechanisms. [100]

In an effort to make it feasible to develop libraries and applications that
rely on reflection, Kiczales et al. proposed the use of metaobject protocols
(MOPs) to implement discrete reflection.

What reflection on its own doesn’t provide, however, is flexibil-
ity, incrementality, or ease of use. This is where object-oriented
techniques come into their own [85].

Since its definition, all reflective object-oriented languages have resorted to
metaobject protocols to provide discrete reflection. By providing a clear in-
terface to the language, metaobject protocols give the user the ability to in-
crementally customize the behavior and implementation of the language.
Metaobject protocols provide discrete reflection since it requires installing
custom metaobjects wherever non-standard behavior is required.

Open implementations [84] are a general design principle that moves the
black box boundary of objects so that part of their internal implementation
strategy becomes open and customizable to the user. For example a Set class
could allow the user to specify what kind of operations are most common
for a particular instance so that that instance can be optimized towards that
use-case. Open implementations provide discrete customizations, affecting
only particular instances rather than the system as a whole.
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3.1.5 AOP

Aspect-Oriented Programming (AOP) [86] provides a domain-specific lan-
guage for meta- and reflective programming [126]. It is designed specifi-
cally to target modularization of crosscutting concerns. It consists of two
main parts, a set of advices that change the behavior of programs and a point-
cut language that declaratively defines where the aspect system has to weave
in the advices. Given that AOP is a language for reflection, it can be im-
plemented by providing a pointcut language as a declarative front-end to
reflection [136].

The power of AOP mainly comes from the pointcut language that makes
the way shadow points are selected for local modifications easier and more
understandable by being declarative.

Both partial behavioral reflection and AOP essentially apply structural
intercession to the base-level code: they do not alter the evaluation of the
base-level code but rather change the code to incorporate the new behavior.
The developers of AspectJ even take pains to distinguish the implementa-
tion of AspectJ from classical computational reflection [86].

3.2 Generating Tailored Virtual Machines

In addition to compiling languages to existing VMs, as described in Chap-
ter 1, VMs themselves are increasingly built to be adaptable at compile-time.
The idea of generating high-performance VMs from meta-circular defini-
tions has been explored to a greater extent in several projects [78, 80, 143, 19].
This approach does not only require building a high-level meta-circular VM
but also a compiler toolchain that can optimize the VM to be at least as fast
as (and potentially faster than) a manually written interpreter. The differ-
ence in the various projects lies in the language being implemented by the
VM, and more importantly, the expressiveness of the actual subset of the
language used in the definition of the meta-circular VM.

The Squeak VM [78] is written in a Smalltalk dialect called Slang. The
dialect is a severely limited subset of Smalltalk that eases compilation to
C. Polymorphic message sends are compiled away to early-bound function
calls. Certain operations have two distinct implementations, one for run-
ning in emulation mode on top of another interpreter, and another for after
translation.

The Jikes RVM [80], a meta-circular Java VM, bootstraps from a minimal
image that is cross-compiled from a pre-existing JVM, and then loaded by
a small C program. From there on, all VM services are provided by code
written in plain Java that operates at the same level as other Java code. All
Java bytecode is compiled to native code using virtual method tables.

In the Klein project [143] a metacircular virtual machine is implemented
for the Self language [142]. The Klein VM is written in Self and follows
object-orientation, metacircularity and code reuse. Klein hardwires the ob-
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ject model of Self objects. Klein objects are described by maps, objects that
describe the behavior of objects. To break infinite meta-recursion, Klein
hardwires a single map of maps. Klein bootstraps by cross-compiling a boot-
strapping image, using the dynamic compilation infrastructure that com-
piles Self code to native code. The bootstrap image is cloned from a subset
of the Self objects in an already running development Self VM, written in
C++. Some of the required meta-level code, the clone method and mes-
sage lookup (in case of inline cache miss), is written in an extremely low-
level, message-free, variant of the Self language. The bootstrap image can
be a self-contained Self application, or contain a Self interpreter. For ease
of VM development, the bootstrap image is sent to a debug server (written
in C(++)) that starts the new Klein VM in a separate process. After booting
the new VM, the development VM can reflectively inspect and modify ob-
jects in the remote VM, using mirror-based reflection [23] supported by the
debug server.

PyPy [123] follows a similar approach to the Squeak VM, although it is
written in a more expressive subset of the Python language, called RPython.
PyPy interpreters are developed as a high-level model, scripted together at
load time using the full Python language. Once an interpreter is fully loaded
in the Python runtime, type inference is applied, and a garbage collector and
a JIT compiler are woven in. The toolchain then specializes the resulting
code to a back-end, e.g., C, which is subsequently translated to native code.
Since RPython is more expressive than Slang, it is more attractive for other
language implementations, e.g., Squeak [18].

3.3 Problem 1: The Tyranny of a Closed VM

VMs provide a higher-level interface to the actual target machines. It pro-
vides an intermediate language, most often in the form of bytecodes, that
is targeted by compiler builders of higher-level languages. This facilitates
implementing programming languages since compiler builders only have
to go half-way. Nevertheless there are several problems with using a pre-
compiled VM.

VMs are closed for extension. The Common Language Runtime is a VM
for a whole family of languages [102]. It shows how a unified infrastructure
can ease the development and maintenance of language implementations.
Nevertheless, a single VM cannot anticipate all needs of languages it was
not initially designed to support. For example, the JVM initially did not sup-
port dynamic method invocations. Unfortunately, VMs are classically black
boxes: they define fixed interfaces (i.e., bytecode and an API) for accessing
the features they provide. To extend a VM, one must open the black box, and
define a custom adaptation. Custom VMs, however, introduce branches in
the VM implementation, sacrificing compatibility and risking rapid obsoles-
cence. Additionally, users are forced to choose between features added by
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different custom VMs, or they have to combine them into yet another cus-
tom VM. Examples of now incompatible VMs include the object-flow VM
[93] built as an extension to Squeak, and Iguana/J [120] which introduced
fine-grained MOP extensions to the JVM.

Host language bias or lock-in. VMs are usually tailored towards the lan-
guage for which they were initially developed. Since the JVM is built for
Java, an object-oriented language, it lacks features required by other lan-
guages that target it. To support languages from the LISP family for exam-
ple, tail call elimination needs to be implemented. Since this feature is not
available in the JVM, Clojure [72] does not try to work around this limitation
but instead introduces an explicit new language feature that implements it-
eration. The main problem is that language developers cannot reuse parts
of the VM and replace others with their own code.

Reflection and meta programming restrictions. A VM implements the
meta-level behavior of a programming language. As a consequence, sup-
port for reflection and metaprogramming must be provided by a MOP. Re-
flective extensions to the VM need to be supported up-front. For example,
to allow arbitrary objects to be treated like regular method dictionaries, VMs
generally include manually written tests:

if (method_dictionary.class == MethodDictionary) {
Dictionary_at(method_dictionary, selector);

} else {
send(method_dictionary, "at:", selector);

}

The code checks whether the method dictionary is of the type known to the
VM. If it is, the method dictionary is directly accessed. If it is another type of
object however, the VM invokes the method at: on the object, passing the
selector as argument. This approach is inconsistent with the polymorphic
behavior normally exhibited by the language [32]. Rather than sending a
polymorphic message, the VM developer needs to manually insert these ex-
tension points wherever he sees fit. After compilation, the extension points
are hard-wired into the runtime and inaccessible. It is not possible for a user
to introduce unforeseen reflective capabilities to the system. Many Smalltalk
VMs provide reflective access to the method dictionaries in classes, but do
not support custom method dictionaries at runtime. Those VMs crash when
an instance of a customized class receives a message, since they violate the
encapsulation of the meta-level object by grabbing the method directly out
of the dictionary’s memory.

Douance et al. [44] claim that it is useful to build custom interpreters
that embed new reflective capabilities in an effort to optimize the amount
of information that is actually reified. They propose to implement specific
changes by modifying a meta-circular interpreter that is compiled to a new
interpreter for each specific metaobject protocol.
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Language interoperability issues. Interoperability is a key requirement
for the evolution of a language. Even though we might not care about inter-
operating with other languages, it is vital that new versions of a language
will be able to interact with older versions of the same language.

While many modern programming languages are only slight variations
in semantics of one another (especially in the case of different versions of the
same language), they are generally not compatible in terms of libraries, run-
times and tools. To run a second language in a runtime, the second language
needs to adapt as well as possible to the first for performance and interoper-
ability. Even if the second language has a better performance potential than
the first, it is rather difficult for the second to surpass the performance of the
first. Feature sharing between both languages is often problematic because
of mismatches in object model and execution semantics. If a third language
is implemented on top of the first language, interoperability between the
second and third language is even less guaranteed to work out of the box.

3.4 Problem 2: Low-level Object Structure

Once we zoom in on individual garbage collected objects, we see that the
object models are necessarily hardwired in the GC. For performance rea-
sons, a GC generally only supports a single type of object format. Garbage
collected languages handle this by defining one specific object model that
can be supported by their GC. These languages, however, do not build fur-
ther upon this most basic object model, but use it throughout the language
as only object representation. As a result the expressiveness, as well as the
performance of the language, suffer. While manually managed languages
provide a higher degree of control over the final data layout, garbage col-
lected languages only provide few hardwired choices. The main customiza-
tion features that remain in statically typed languages are the static types,
and potentially a limited set of primitive data types. We divide dynamic lan-
guages into two categories based on their encoding of objects:

Objects as arrays. In languages like Smalltalk-80, objects are references to
arrays of objects, raw bytes, or words, or they are immediately en-
coded as tagged pointers. By representing objects as references to ar-
rays, a minimal amount of space is used, and member access is highly
optimized.

As a downside, code has to know up-front which array indices cor-
respond to which members, and exactly how many members will be
stored in the object. In this scheme, dynamic changes to the layout of
objects are expensive since they require extensive changes throughout
the whole application. Finally, external meta-data is required to un-
derstand the semantics of an object since by itself it is just an array of
pointers.
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Objects as hash-tables. The objects in Python, JavaScript, Ruby, etc., can
grow dynamically based on the code that operates on them. Concep-
tually, these languages encode their objects as hash-tables. The ad-
vantage of dynamically growing objects is that it becomes easier to
dynamically load new code that use such additional slots. By storing
fields as key-value pairs it is easy to inspect and understand objects at
runtime.

Runtime extensible objects pose an extra hurdle for optimizations. VMs
like the V8 JavaScript engine require tricks to mitigate the overhead by
transparently transforming the object format back to a Smalltalk-80-
style object format. This way slot lookup can be converted to simple
array accesses rather than dictionary lookups.

Garbage collected languages solely providing hash tables as a flexible
object model have a hard time optimizing this model in terms of memory
usage and runtime performance. On the other hand, languages that provide
an array-based object model do not easily support dynamic extensions. In
both cases, there is only focus on how to store the data, not how it is ini-
tialized and accessed at run-time. The language makes trade-offs about the
storage for its users and does not allow developers to decide by themselves
what object encoding is useful at any given time.

3.5 Problem 3: Low-Level Execution Model

Meta-tools such as debuggers, profilers, and sandboxing need to continu-
ously reflect on the behavior of applications. Just like the construction of
VMs, building debuggers and profiles is a tedious task mostly left to experts
resulting in generic tools. These resulting tools are only rarely customizable
by the user to fit his needs in a particular situation. The need for custom
tools is clear however, given that most developers reach out to lower level
and less scalable, but more customizable means like print statements.

Building such tools is difficult because the executable format of program-
ming language code is expressed in terms of the low-level execution engine.
The problem is that there is a large gap between the low-level execution
model and the mental model a programmer has of his application. Debug-
gers are often specified in terms of the low-level model since they are the
only representation of the application available at run-time. While meta-
information about the executable code is sometimes available, this is gener-
ally not an executable model, preventing light-weight semantics modifica-
tions.
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3.6 Summary

We have presented a short overview of the implementation of programming
languages

In this chapter, we have discussed work related to opening up language
runtimes to fundamental changes. We have focused on reflection as a tech-
nique to change a runtime from within, and the technique of generating
high-performance VMs from higher-level models as a technique to lower
the cost of building runtimes tailored to the requirements of a language.
From there on we have identified three problems resulting from limitations
of existing reflective models and of VMs:

1. VMs are hardwired towards a particular language or language family,
and do not support fundamental modifications at run-time.

2. Languages only support a single set of predefined encodings of ob-
jects.

3. The gap between run-time code and source code limits the develop-
ment of debuggers and profiles.

In the following chapters we tackle these problems one by one. Chapter 4
enforces polymorphism at the meta-level by implementing a self-supporting
runtime library. Chapter 5 extends the structural model of the language
with first-class support for object layouts, enabling user-defined layout cus-
tomizations. Chapter 6 introduces first-class AST interpreters as basis for
continuous behavioral reflection.
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First-Class Message Lookup

It has been argued that a VM should be built using the techniques and pat-
terns that are established in normal software engineering [99, 143]. We argue
that this principle should not only hold for the implementation of the lan-
guage runtime, but also for the behavior of a compiled and running system.
Similar to the introduction of field programmable gate arrays, we argue that
a VM should not be a hardwired black box with bytecode as arbitrary cut-
off level. Instead it should be a combination of a standardized interface to
all components, a reusable runtime library to support the used language.

In this chapter we efficiently reify the most basic building block of object-
oriented languages: the communication between objects by sending mes-
sages. The presented model standardizes the interface between objects, and
supports custom message handling semantics on a per-object basis. This
is the most basic building block since it allows developers to freely choose
language semantics at object boundaries.

Pinocchio provides messaging semantics as a self-supporting runtime
library. The runtime library replaces the traditional VM by implementing
meta-level semantics, like message sending, directly in Smalltalk. Since the
runtime library is itself implemented in Smalltalk and is first-class, it also
serves as its own runtime library. It is therefore inherently self-supporting.

Objects and code from the base- and meta-level are therefore unified.
They can flow between the two, and base-level objects can polymorphically
replace meta-level objects. Thus all parts of the runtime library are com-
posed of run-time accessible and reusable parts. Since the runtime library
implements the behavior of the Smalltalk language, behavioral reflection is
available to the language as a side-effect of the uniformity of the system.

We will provide several examples illustrating how extensions to the run-
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time can be achieved by replacing part of the meta-level at run time. In
particular we show how the Pinocchio runtime can be adapted to support
prototype-based message lookup.

The contributions of this chapter are:

• we propose a novel approach to realizing a truly self-supporting run-
time that does not rely on interpretation or bytecode;

• we demonstrate how a formal unification of meta- and base-level code
enables runtime extensions;

• we present evidence that a self-supporting and extensible runtime can
be implemented efficiently; and

• we demonstrate that typical language extensions in such a runtime
can be realized with modest effort.

Outline We provide a high-level overview of our approach in Section 4.1.
In Section 4.2 we describe the key elements of the design and implemen-
tation of the self-supporting, extensible Pinocchio language runtime. We
provide a series of examples of typical extensions in Section 4.3, and show
how they can be easily achieved in Pinocchio by substituting meta-level ob-
jects with compatible run-time1 objects. In Section 4.4 we review several
of the perceived benefits of VM-based approaches to the implementation of
languages, and discuss how these points are impacted by the approach. We
discuss related work in Section 4.5 and summarize the chapter in Section 4.6.

4.1 The Message is the Medium

In the previous chapter we have seen that a conventional VM is a closed
black box, offering only a restricted MOP to support reflection and metapro-
gramming (see left side of Figure 4.1). The implementation of the VM is
compiled away, and is not accessible to the running application, except
through the pre-defined MOP. Extensions required to support new program-
ming languages can be achieved only by constructing a custom VM, nega-
tively impacting reusability and compatibility.

In contrast, the Pinocchio runtime consists of objects sending messages.
The semantics of receiving messages is defined by object-specific meta-levels.
These meta-levels are, just like application code, implemented using ob-
jects and messages. The entire Pinocchio runtime is accessible to application
code, rather than just a restricted MOP. Furthermore, to realize extensions,
Pinocchio’s meta-level objects can be replaced at run time by compatible
application objects (see Figure 4.1, right side).

1The Pinocchio runtime enables run-time extensions, i.e., at run time as opposed to compile
time.
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Figure 4.1: A conventional VM (left) is closed, offering only a fixed API for
application objects (top) to interact with it. The Pinocchio runtime (right)
consists of meta-level objects sending messages, just like application objects.
Application objects can fully interact with meta-level objects. Meta-level
objects can be replaced by at run time to realize extensions.

The essential ingredients to run-time extensibility in Pinocchio are: (i)
a self-supporting runtime; (ii) a message sending invocation conventions; and
(iii) unification of meta- and base-level execution.

A self-supporting runtime. The Pinocchio runtime is implemented in a
metacircular fashion, so it relies on itself to provide the meta-level facilities
needed for its own execution. The Pinocchio runtime is compiled to ma-
chine code, resulting in a runtime library rather than a conventional VM.

Message sending invocation conventions. The Pinocchio runtime only
hardwires the most essential meta-level facilities needed to support dynamic
languages, particularly message sending. Pinocchio provides a meta-level
invoke function to lookup a method when an object received a message
(see subsection 4.2.2). Method lookup makes use of a monomorphic inline
cache. This cache can be pre-filled at compile time, thus avoiding infinite
meta-regression when the runtime evaluates itself.

Unification of meta- and base-level execution. The Pinocchio runtime is
fully specified in Smalltalk. The Pinocchio compiler compiles the runtime
down to machine code, yielding a fully object-oriented runtime library. In
essence, the compiler builds the MOP from the Smalltalk sources. As a con-
sequence, the language meta-level is unified with use code, allowing one to
move freely between the base- and the meta-level. Furthermore, the meta-
level objects, being accessible, can be replaced at run time by compatible
application code, thus enabling run-time adaptations.
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4.2 See Pinocchio Run

In this section we explain in greater detail the design and implementation
of the Pinocchio runtime.

Pinocchio sets up the runtime of Smalltalk applications in the same style
as runtimes of C- and C++-based applications. Smalltalk applications are
natively compiled, and supported by a meta-circularly implemented run-
time library. However, unlike VM-based environments it is designed as a
language-agnostic environment. Every object in the runtime can choose its
own language semantics. Objects interact with each other without the need
to wrap foreign objects. Instead of relying on a bytecode interpreter, the
runtime is held together by the following conventions:

Object Headers. Every object is essentially data2 preceded by a header that
contains a pointer to an object describing its behavior.

Message sending. Objects can send messages to each other. This is real-
ized by establishing invocation conventions, and providing an object-
oriented meta-level runtime library.

By only specifying an interface for message sending, Pinocchio leaves
the door open to interoperability with any other object-oriented language
that implements the interface. Since the runtime library is implemented in
Smalltalk, a rich meta-object protocol is automatically available to applica-
tions. This in turn allows developers to easily implement language exten-
sions, debugging and profiling facilities. It also makes it easier to implement
a runtime library for another language in Smalltalk, as an extension of the
existing runtime library.

We will now elaborate the following points:

• Invocation conventions (subsection 4.2.1) define how messages are sent
between objects.

• Lookup and apply procedures (subsection 4.2.2) provide the semantics
of method lookup and execution.

• Infinite meta-regression (subsection 4.2.3) is avoided by pre-filling in-
line caches.

• Native compilation (subsection 4.2.5) adopts conventional compiler
architecture and techniques.

• Bootstrapping Pinocchio (subsection 4.2.6) relies on an existing Small-
talk implementation to cross-compile the runtime.

• Performance (subsection 4.2.7) is assessed with some simple bench-
marks.

2The current implementation of Pinocchio still relies on the Boehm-Demers-Weiser conser-
vative garbage collector. However, care has been taken to lay out all Smalltalk objects so that
they could be managed by a precise garbage collector.
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4.2.1 Invocation Conventions

Message sending in Pinocchio is mapped to native calls. The calls follow
invocation conventions that define how to set up the receiver, message and
arguments, and how to save and restore the environment for method in-
vocation. The conventions are an extension to the calling conventions de-
fined by the operating system ABI (application binary interface). They pro-
vide the protocol for arbitrary callers and callees to send and receive mes-
sages. Pinocchio method invocations rely on monomorphic inline caches,
explained in subsection 2.1.3.

In essence, the following Smalltalk message send:

bank accept: money

is translated to the native X86-64 equivalent of the following pseudo-code:

invoke(#accept:, bank, money);

As explained in subsection 2.1.3, the invoke function is a meta-level function
that supports the initial method lookup and activation. To fill the inline
cache for the type Bank, it is dynamically replaced with:

Bank>>accept:(Bank, bank, money);

4.2.2 Lookup and Apply

The invoke function is the entry point to the meta-level lookup implemen-
tation. It first reads out the behavior object associated with the receiver from
its object header. Then it looks up the selector in the behavior, and applies
the resulting method to the receiver3.

invoke: selector
<invoke>
|method behavior|
behavior ← self behavior.
method ← behavior lookup: selector for: self.
↑ method perform: selector on: self.

Listing 4.1: The invoke method in pseudo-Smalltalk.

Listing 4.1 implements the default invoke function. The <invoke> an-
notation informs the compiler that this is a special meta-level method that
is activated to support a base-level method invocation. It instructs the com-
piler to generate code that preserves all volatile argument registers before
executing the method body4. Secondly it tells the compiler that this method
needs access to the selector rather than other arguments. Since Smalltalk

3Filling in the inline cache is part of the application mechanism.
4This is analogous to a syscall in UNIX, where another execution level is entered and the

calling environment has to be preserved.
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only relies on the receiver and the selector to dispatch a message, the de-
fault invoke-compiler only makes those values available to the invoke meta-
method. Finally, it enables the compiler’s direct support for the perform:on:
message, inlining the implementation for standard Smalltalk methods and

generating the fallback message send code.
The invoke method is special since it is hardwired in all unlinked Small-

talk send sites and inline cache miss handlers. Its implementation cannot
be dynamically configured by receivers, since the sender rather than the re-
ceiver chooses its implementation. Thus this method imposes the following
minimal requirements on all objects used as receivers:

• All receivers have an object header referring to its behavior, and

• behavior objects are (indirectly) described by SmalltalkBehavior5.

The actual lookup is performed by the behavior object of the receiver.
This is by default an instance of SmalltalkBehavior which implements a
single inheritance lookup of the method through the class hierarchy chain.
The implementation of this method is shown in listing 4.2. As we will show
later this object can be exchanged by a user to redefine the semantics of
message lookup.

lookup: selector for: object
|behavior dictionary|
behavior ← self.
[ behavior == nil ] whileFalse: [

dictionary ← behavior methodDictionary.
(dictionary at: selector)

ifNotNil: [ :method | ↑ method ].
behavior ← behavior super ].

↑ self doesNotUnderstand

Listing 4.2: A meta-level lookup method that browses a class hierarchy and
searches for a matching method.

It is important to stress that this code executes exactly as expected as
Smalltalk code. Independently of the exact runtime type of each of the
variables, the code will succeed as long as the required messages are un-
derstood. For example in Pinocchio a class can have any kind of method
dictionary implementation. As long as the at: message is understood, and
an object is returned that adheres to the interface designated for methods,
the message send will succeed. The Pinocchio meta-level has no hard-coded
assumptions whatsoever about the method dictionary.

5This could later be generalized by only requiring a more general LanguageBehavior meta-
behavior.
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4.2.3 Avoiding Meta-regression by Prefilling Inline Caches

The meta-level of Pinocchio is written in pure Smalltalk, and thus can sup-
port its own execution — it is its own meta-level. This however conceptu-
ally results in infinite meta-regression caused by self-referencing code [39]. The
meta-level invoke shown in listing 4.1, for example, implements method
lookup using message sends. Those messages require method lookups as
well. This implies that all messages sent during an invoke will also call
invoke, causing meta-regression.

To solve this problem, we differentiate between formal and actual bind-
ing time. This notion was introduced by Malenfant [98]:

“A formal binding time is the latest moment at which a binding can
occur in general, while an actual binding time is the actual moment
at which the binding occurs for a particular element of a particular
program.” [98]

The semantics of Pinocchio are realised only with late-bound message
sends. While in some cases we shift the actual binding of a message send
to compile time, the formal binding stays at run time. For example, just like
in Self [30], our compiler inlines ifTrue:ifFalse: for the expected values
true and false by performing local jumps. However, rather than imple-
menting it as an if/else branch, there is a third case where the receiver is
neither true nor false. In that case a message is sent to the actual receiver.
This provides the illusion that the message is actually implemented as a
message send, thus maintaining the formal binding time while improving
performance through inlining.

Meta-regression resulting from sending messages is solved in a similar
way. We shift the actual binding time for meta-level message sends from
run time to compile-time by pre-filling a minimal number of inline caches,
effectively turning late-bound message sends into early-bound calls with
late-bound fallback. It ensures that the default execution path for mes-
sage lookup and invocation is directly accessible without triggering meta-
regression. By relying on inline caches to hardwire the meta-level, Pinocchio
preserves the semantics of all message-sends at the meta-level by design, es-
sentially unifying the meta-level with the base-level.

This is implemented as follows. First we ensure that every message sent
across the entire default method lookup path has a variable (as opposed to a
more complex expression) as receiver. This includes the behavior variable
in the invoke: method, but also other variables such as the dictionary vari-
able in the lookup: method, and the bucket variable in the at: method. We
then manually annotate all those variables with the following type hints:

<typeHint: #dictionary as: #MethodDictionary>

Rather than calling invoke, the compiler statically links the send sites to the
methods that are looked up in the hinted classes at compile-time. Finally,
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pre-filled inline caches are immutable, which is necessary to ensure that the
base case is not unlinked by a non-default meta-object. This is achieved by
performing the type check at the send site and skipping the preamble of the
pre-filled method. This implementation implies that inlined methods must
be regular methods with a regular preamble.

In the previous example, messages sent to the variable dictionary will
assume it is of type MethodDictionary. Instead of calling invoke and pass-
ing the symbol #at:, the send site will first check if the receiver is of type
MethodDictionary. If so, it calls the MethodDictionary’s at: method, by-
passing the preamble of the method. If it fails however, a regular caching
send site is activated. The type check ensures that the formal binding time
stays at run time.

The type hints are visible inside the meta code and therefore explicitly
document the default control flow. They are not external assumptions but
are specified from within the runtime. The Pinocchio MOP is anchored by
annotated default meta-objects. The statically defined anchors in the Pinoc-
chio runtime are merely base cases, however, hardwired to avoid recursion.
They only provide an early-bound native execution flow without influenc-
ing the formal binding time. They can be overloaded with custom code at
any level of meta-regression, and thus preserve the semantics of message
sends.

4.2.4 Separation of Class and Behavior

The use of type hints for meta-level code impacts the design of the meta-
level. Pinocchio does not directly use classes to store the behavior of objects.
The problem with Smalltalk classes is that each class is an instance of its
own meta-class. This renders it impossible to pre-fill the inline cache for the
message sent during invoke to lookup the method. If lookup:for: would
be sent to the class, it would result mostly in cache misses, since different
classes have different meta-classes.

Instead, Pinocchio installs the behavior of objects in explicit behavior
metaobjects. As shown in Figure 4.2, the header of an object points to the be-
havior containing the method dictionary, rather than to the class. These be-
havior metaobjects are generally instances of the class SmalltalkBehavior.
Hence we pre-fill the behavior-related inline caches in the meta-level invoke
with SmalltalkBehavior methods. To model the normal Smalltalk class hi-
erarchy, and to support class-side methods, every SmalltalkBehavior in-
stance links to the related first-class class metaobject.

4.2.5 Native Compilation

The Pinocchio compiler is fully written in Smalltalk and currently supports
System V AMD64 (Linux and OSX on X86-64). By targeting the runtime di-
rectly towards the CPU as its execution environment we minimize assump-
tions about the supported language. The compiler has a fairly traditional
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Figure 4.2: The class side of an object is modelled by two entities: the be-
havior instance which contains the methods and implements the lookup se-
mantics and the class which is the first-class representation of the class. It
contains the class-side methods and can have a custom meta-class.

architecture: methods are parsed by a parsing expression grammar [61] into
an abstract syntax tree (AST). We apply semantic analysis on variables while
transforming the AST into three address code (TAC). After applying a linear
scan register allocator [118] and some easy peephole optimizations, the assem-
bler generates the X86-64 binary instructions. The resulting method object
has a memory layout similar to the format used by Squeak and Pharo: the
object header is followed by a list of literals, and then native code stored as
an array of bytes.

Local variables are mapped onto registers, spilled onto the stack or cap-
tured in remote arrays (see subsection 2.4.3. Instance variable accesses are
implemented by reading out the receiver as an array. Literals used in the
method are read using position-independent code6 (PIC), accessed relative to
the instruction pointer. Because method invocations are mapped onto na-
tive calls, the native stack is used as our Smalltalk call stack. Since the size
of method frames can be statically determined for Smalltalk methods, we
use the base pointer register as general-purpose register and only rely on the
stack pointer for keeping track of the call stack7.

6By relying on position-independent instructions for literal loading we minimize the num-
ber of instructions that need to be updated when a compacting garbage collector moves the
code in memory. Call targets will still need to be updated however since objects move inde-
pendently of each other.

7This is equivalent to the --fomit--frame--pointer optimization used by GCC.
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Our implementation also has primitives. They can be implemented ei-
ther by letting the compiler inline hand-written three address code or by
linking to an external function. This external function just has to be linkable
and follow our call conventions.

Pinocchio message sends follow standard calling conventions (see sub-
section 4.2.1), and rely on monomorphic inline caches (see subsection 2.1.3).
The advantage of following the standard ABI calling conventions is that it
is easy to link to library code written in C or assembler. As long as code fol-
lows the conventions and takes pointers to objects as arguments, it behaves
like a valid method. Another advantage is that it allows calls to Pinocchio
code to be interleaved with calls to C code. By following the same conven-
tions we ensure that the context of the callee is always preserved.

We compile method preambles to one of three different formats for code
size and performance reasons:

• Methods installed on SmallInteger bail out if the receiver is not a
tagged integer (10 bytes, 2 instructions),

• those installed on classes unrelated to the hierarchy of SmallInteger
bail out if the receiver is a tagged pointer, or if the class passed via
the %rax register does not match the class of the receiver (20 bytes, 4
instructions), and

• the methods installed in a superclass of SmallInteger have the full
preamble that combines both previous approaches (30 bytes, 7 instruc-
tions).

4.2.6 Bootstrapping Pinocchio

Currently, the Pinocchio runtime is cross-compiled runtime from within the
Pharo Smalltalk environment, although the goal is to self-host the compiler,
making it available at run time as well.

Pinocchio is bootstrapped by constructing a minimal Smalltalk image.
This is implemented by recursively gathering all relevant classes and com-
piling their methods within Pharo. The compiler caches symbols it finds
during compilation in a symbol table. The image is then serialized into sep-
arate relocatable object files. Our serializer currently supports the ELF and
Mach-O formats. All classes and their related objects are written out to a
single relocatable object file per class. These object files include the class,
its metaclass, the method dictionaries, and the compiled methods with their
literals. Additionally, one object file is created for the symbol table, and an-
other one for the native objects, like nil and true.

All objects that are referred to across the object file boundary are ex-
ported as relocatable objects. They are identified using a globally unique
identifier in their object file’s relocation table. Pointers to the objects are
written out as entries into the relocation table, referring to the unique iden-
tifier. This is shown in Figure 4.3. The final image is then constructed by
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linking the object files using the standard GNU linker (ld). The resulting
binary is similar to a normal Smalltalk image containing all objects required
by the system, with the difference that it is fully self-contained by including
the whole runtime as well.

Object class
Object.o

a MethodDictionary

behavior

methods

a Method

selector

mov %rdi, %r12
.........

MethodDictionary.o

symbols.o

MethodDictionary class

...

SymbolTable instance

...

...

...

...

...

MethodDictionary behavior

...
Object behavior

methodDictionary

...

Figure 4.3: Pinocchio binaries layout. Arrows represent linked objects. Ev-
ery object has a header that links to its class (not all links shown).

To start up the resulting system there is no additional bootstrapping re-
quired. Since we follow the ABI standards, the operating system sets up the
runtime by loading the binary into memory and calling the first function.

4.2.7 Performance

To show that a metacircular runtime can compete with the performance of
current dynamic language implementations, we run three simple bench-
marks. They do not thoroughly benchmark the runtime, but are merely
meant as an indicator of the performance of specific but commonly used
functions. We especially focus on the performance of message sending,
given that it is the topic of this chapter, and avoid performance related to
object allocation, given that we currently still rely on an external memory
manager.

We compare Pinocchio with Ruby version 1.9.2-p290, Python version
2.6.7 and the Croquet Closure Cog VM version 4.0-2489. Cog is a modern
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JIT VM for Smalltalk8. The results are the average of 10 consecutive runs.
The benchmarks are:

Fibonacci(35) The time it takes to recursively calculate the 35th Fibonacci
number. Since all messages sent can be inline cached this mainly
shows how efficient the compiler can compile simple arithmetic, con-
trol structure and calls.

PDictionary(1M) The time it takes to store and retrieve 1 million entries in
a Pinocchio dictionary. The Pinocchio dictionary was used since the
exact same implementation runs on both Pinocchio and Cog.

NativeDictionary(1M) The time it takes to store and retrieve 1 million en-
tries in a dictionary native to the language implementation. Note that
the Ruby and Python hashes are written in C! This shows that it is pos-
sible to have metacircular core language features which still perform
well enough.

Pinocchio Ruby Python Cog
Fibonacci(35) 0.22s 1.58s 4.23s 0.17s
PDictionary(1M) 0.96s 1.26s
NativeDictionary(1M) 0.96s 0.86s 0.22s 1.15s

4.2.8 Metrics

The current version of Pinocchio took two people working full time around
4 months to implement. It consists of 17K lines of Smalltalk code, 600 lines
of C code (of which 20% is support code for inspecting objects and debug-
ging the runtime in GDB, another 10% are memory management functions,
and the rest are Smalltalk primitives) and 50 lines of assembler code that
supports the invoke method.

The Smalltalk code consists of the following parts:
KLOC

Parser 3.5
Three Address Code generation 4.5
Assembler 1.5
Class building and linking 0.5
ELF/Mach-O back-end 3.5
Smalltalk runtime objects 3
Examples 0.5

4.3 Evaluation and applications

To support our claims regarding Pinocchio’s extensibility, its reconfigurabil-
ity and its potential for reuse, in this section we provide several examples.

8see http://www.mirandabanda.org/cog/
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4.3. Evaluation and applications

The demonstrated features relate to the three main issues with current VM-
based environments that we established in Section 3.3.

4.3.1 Reconfiguring the meta-level

The following examples highlight Pinocchio’s flexible metacircular meta-
level that safeguards encapsulation by only relying on message sends. They
show how a user can intercept method invocations by injecting his own
meta-objects into the meta-level.

Tracing method activations. Suppose a developer wants to trace accept:

messages sent to Bank instances. This can be implemented by customiz-
ing the meta-objects: The accept: method in the Bank’s method dictionary
is wrapped in a proxy object that logs the messages before activating the
method:

perform: selector on: receiver with: args
logger logMessage: selector to: receiver with: args.
↑ originalMethod perform: selector on: receiver with: args

perform: #accept:
on: bank with: {money}

wrap arguments 
and jmp

load_arg(money)
load_receiver(bank)
load_selector(#accept:)
call(invoke)

invoke: selector

m := behavior lookup: selector
m perform: selector on: self

deposit: money

invoke: selector

m := behavior lookup: selector
m perform: selector on: self

Meta-level

Meta-Meta-level

Figure 4.4: The evaluation of invoke in the case of a custom method ob-
ject. Invoke will send the message perform:on:with to the method instead of
directly jumping to the method. Note that there are conceptually two meta-
levels, but the meta-meta-level is in fact the same as the meta-level since it
is self supporting.

This is supported by the invoke implementation shown in Listing 4.1. Af-
ter invoke looks up the method, it applies this method to the receiver by
sending it perform:on:. As explained in subsection 4.2.2, the <invoke>

annotation causes the compiler to specialize this message into two distinct
cases. Native methods are executed directly by jumping to the native code.
All other objects receive the message perform: selector on: receiver

with: arguments from the invoke method. In this message the original ar-
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guments are wrapped into an array since Smalltalk methods do not support
a variable number of arguments. This is handled by custom glue code in
the invoke function. Figure 4.4 shows the execution path of a Bank instance
receiving the accept: message and activating the wrapped method.

Tracing single objects. To trace all messages sent to a single object we can
customize its meta-level behavior. This is implemented by replacing its be-
havior with an instance of a subclass of SmalltalkBehavior that specializes
the lookup:for: method. This method automatically wraps all retrieved
methods into logging proxy objects:

lookup: selector for: object
method ← super lookup: selector for: object.
↑ MessageLogProxy wrap: method

This causes all methods, including methods found in superclasses of the
instance, to be wrapped into logging proxies. However, since the methods
are only wrapped during lookup rather than in the method dictionary, the
changes only affect the traced object. This implementation shows that meta-
level functionality can be reused just like regular Smalltalk code.

Other possible applications of customizing the lookup method include
debugging, profiling, object-sensitive access control, message queuing and
remote method invocation.

Implementing DoesNotUnderstand. The perform:on:with: protocol for
applying methods is used inside the core implementation of Pinocchio itself
— namely to implement doesNotUnderstand:. As in regular Smalltalk im-
plementations, if a message is sent to a Smalltalk object that does not imple-
ment it, doesNotUnderstand: originalMessage is sent instead. The imple-
mentation of this protocol is only a few lines in Pinocchio: If no method can
be found, the lookup method of SmalltalkBehavior returns an instance of
DoesNotUnderstand instead. This DoesNotUnderstand instance implements
the perform:on:with: method as follows:

perform: aSelector on: receiver with: someArguments
message ← Message new.
message arguments: someArguments.
message selector: aSelector.
↑ receiver doesNotUnderstand: message

This example shows how a language feature, otherwise hardwired in the
VM, can be implemented inside the runtime environment. No support from
an external lower level is required, and any developer can add such a pro-
tocol to his meta-level.
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4.3.2 Changing lookup semantics

By adding a new behavior implementation we can completely alter the way
messages are looked up. We show this by implementing prototype-based
method lookup. This PrototypeBehavior can be installed on an existing
object, transforming it into a prototype. Prototypes carry their own method
dictionary, called slots, can clone themselves and delegate messages to the
object they were cloned from.

PrototypeBehavior implements the lookup as follows:

lookup: selector for: object
| currentObj |
(primitiveMethods at: selector)

"if the method is primitive, use it"
ifNotNil: [ :method | ↑ method ].

currentObj ← object.
[currentObj == nil] whileFalse: [

(currentObj slot: selector)
"if I have the method, use it"
ifNotNil: [ :method | ↑ method ].

"else look in my delegate chain"
currentObj ← currentObj delegate ].

↑ DoesNotUnderstand new "whoops ---- nothing found"

The behavior holds a set of primitive methods that are used for interacting
with prototypes, namely slot:, delegate and clone. While we could have
used type hinting to bootstrap those messages, as described in the previous
section, here we use the classical approach: We rely on the bootstrapped
Smalltalk system to store the primitive methods.

Objects are converted to prototypes by replacing their behavior:

prototypeObject behavior: aPrototypeBehavior

After executing the previous code, prototypeObject will have prototype-
like semantics and therefore behave like an object from a different language.
It will not even understand the message class. Other instances in the run-
time are unaffected by this modification. The PrototypeBehavior that im-
plements the prototype semantics, for example, behaves like a regular Small-
talk object. Thanks to the invocation conventions, however, both types of
objects can freely interact with each other by sending messages, even if those
messages are handled by different meta-levels.

4.4 Discussion

There are widely perceived advantages to the traditional bytecode-based
virtual machine approach that we did not yet address directly, such as porta-
bility, debugging, instrumentation, and security. In this section we discuss
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how we envision to support these features within the Pinocchio runtime.
Additionally we explain how all the advantages of VMs over native compi-
lation fade in the presence of JIT compilation.

Portability across platforms is one of the most important advantages of a
traditional VM. After porting the VM to multiple platforms, the “binary”
bytecode files supported by the VM are automatically supported by these
platforms.

All real-world high-performance VMs JIT compile the code they receive
to native code. D’Hondt argued [42] that bytecodes are not an ideal format
for these purposes. We see slim binaries [64] as a more interesting source of
code input. Slim binaries are a highly compact, architecture-independent
intermediate code representation optimized to be the input for a JIT com-
piler which then targets a specific architecture. By not only being portable,
but also more high-level, slim binaries offer a better portable code source
format than bytecode for later optimization. Since slim binaries are more
high-level, other tasks such as code validation may become easier as well.
Slim binaries were originally proposed as alternative to fat binaries contain-
ing native code for all possible target architectures.

While a VM enhances portability of applications, the VM itself can be
quite hard to port to a new architecture. Additionally, the JIT compiler will
have to be customized towards the new platform. As shown by the Klein
project, in contrast to a VM written in a low-level language, a clean metacir-
cular and object-oriented VM design eases porting to a different hardware
platform [143].

Debugging programs that run on VMs or interpreters is often considered
to be easier than debugging native applications. Interpreters can provide
reflective hooks to the runtime behavior of an application required to un-
derstand how the application executes.

In JIT compiled runtimes, however, the VM needs to bridge the gap back
from native compiled code to the original bytecode. Since the bytecode is
most likely not the source code format used by the developer, this again
needs to be linked back to the language of origin. Especially when a run-
time hosts many languages, this requires external meta-data about the ap-
plication that is running.

Native applications on the Linux platform can be compiled to contain
extra meta-data about the native code, in a language-agnostic, standardized
debugging data format called DWARF [50]. This format is for example sup-
ported by the GNU Project Debugger, GDB. Kell and Irwin [83] demonstrated
with their DwarfPython [83] how this format can be successfully used to de-
bug dynamic applications implemented in Python. Additionally, by relying
on a standard debugging format, multiple languages can be debugged in an
interleaved fashion. This is exemplified by debugging C and Python within
the same debugger.
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Pinocchio currently does not dynamically generate DWARF meta-data,
nor meta-data for understanding native functions, but our exporter does
generate method names in the exported object files. This currently allows
us to debug Smalltalk applications with an understanding of the call-stack
through GDB.

We do not of course see GDB as the final goal for debugging dynamic
applications. However, since meta-data is available we can build custom
debuggers around the standardized meta-data. This will not only benefit
the languages we support, but others as well, as long as they follow the
standard.

Instrumentation of language-level operations is potentially made easier
by having units in the VM that can be edited to perform extra work. This
has for example been used to build a practical back-in-time debugger that
works by tracking object flow [94].

This approach however is only practical as long as the VM is used as a
vanilla interpreter. Once JIT compilation comes into play, the JIT compiler
needs to be aware of the extra payload introduced by the semantic changes
of the user.

Sub-method reflection [37] is an approach that provides direct access to
the semantics of language and sub-method level operations. It provides a
reflective interface to methods at the AST level, even though they actually
execute at a lower level. The availability of a sub-method reflective interface
and code weaving can be used as an alternative to having direct access to
the VM code.

A secondary advantage to instrumentation in the VM is that, since the
instrumentation code is written at another level, the instrumentation code
itself is immune to its own modifications. However, even in the case of
the back-in-time debugger, much of the debugging code itself was written
within the language that ran on top of the VM. This forced the developers
to add a hook to turn the extensions to the VM off whenever the debugger
was running, to avoid tracking the state of the debugger.

By explicitly representing the meta-level in the form of meta-context ob-
jects [38], extensions installed through sub-method reflection can be pre-
vented from triggering themselves.

Security is a valuable feature attributed to VMs. By viewing the VM as a
trust root we can use it to enforce and govern security policies, e.g., through
bytecode verification [91].

We argue that any piece of software can potentially be used as a trust
root. For example the system’s class loading library can verify the code in
slim binary or even native code. A compiler that can generate malicious
code should only be available to the runtime during development. And
as shown by Miller and Gough [103], object-capabilities [103] support such
an alternative security model at runtime. Newspeak showed that a secure
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language can be built using this approach. The architecture relies on mirrors
[23] to limit the accessible scope of runtime capabilities to an end-user only
by enforcing encapsulation.

Additionally, giving a developer access to the meta-level of a language
enables him to introduce new kind of policies and restrictions tailored to his
needs. For example Fischer et al. [58] present a model object level access
control [58]. The introduced policies work by restricting object access more
tightly. In an open system a developer could extend the meta-behavior him-
self to accompany such run-time checks without depending on VM support.

4.5 Related Work

As described in detail in Section 3.2, the Klein project implement a meta-
circular VM [143] by hardwiring the layout of objects, declare that every
object is described by a map, and break meta-recursion by hardwiring a sin-
gle map of maps. Method lookup is however directly implemented in a very
low-level subset of Self. Unlike Pinocchio message lookup, the resulting
lookup does not support polymorphic behavior, but is hardwired towards
standard maps.

Piumarta and Warth [117] propose a flexible object model [115, 117] based
on v-tables that describe the behavior an object. Similar to the work by
Malenfant [97], rather than hardwiring the lookup of methods for all v-
tables, it only relies on native lookup support for v-tables described by the
so-called v-table of v-tables. Methods returned from a v-table are native func-
tions. Neither the inner shape of objects nor the behavior contained in meth-
ods is defined by the system. In Pinocchio we adopted the message sending
interface based on v-tables (the object header) as the basis for language in-
dependence. We do not however rely on a hardwired meta-meta-level but
rather teach the meta-level to support itself. This means that the meta-level
itself is defined in terms of Smalltalk polymorphic message sends and pro-
vides a rich meta-object protocol.

DwarfPython [83] unifies the object model of Python with native C-
structs by interpreting the DWARF meta-data [83]. The AST-interpreter
is extended to interpret DWARF meta-information describing how to ac-
cess objects. This allows DwarfPython code to automatically interact with
foreign functions since it can interpret the resulting data. By generating
native entry points and DWARF meta-data for Python functions, the code
interface between Python and C is unified. This provides a two-way inter-
face between native and Python code, and allows developers to rely on GDB

for debugging. Pinocchio currently cannot interact with data that does not
have an object header. Additionally it lacks proper meta-descriptions to im-
plement cross-language debugging. Our focus is however on providing an
extensible framework for implementing self-supporting languages which is
lacking in DwarfPython.
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4.6 Summary

In this chapter we showed how the meta-level of a language can be uni-
fied with normal user-level code. Instead of having an artificial separation
between meta- and base-level objects can freely pass between the two. All
source code is compiled to machine code. Pinocchio maintains the seman-
tics of message sends to the greatest possible degree, thus avoiding the need
for an explicit change in meta-level. By replacing an object of the Pinocchio
MOP new behavior or new reflective capabilities can be added. The shift in
meta-levels is implicit, conforming to the conventional meta-model of class-
based inheritance and message sending between objects.

We were able to show how this approach enables a user to extend the
runtime to his needs through some typical examples. Furthermore we could
also demonstrate that the performance impact of having metacircular imple-
mentations for core language features is not too big. We even gain perfor-
mance by compiling directly to binary.

This first building block of programming languages separates the lan-
guage semantics at the object boundary. Each side of the interaction can
freely choose its own language semantics. The semantics of message lookup
are supported by providing a first-class message lookup library that can be
customized as needed. In the next chapter, we will support per-object lan-
guage customization by augmenting this model with a first-class library for
specifying the layouts of objects.
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5
First-Class Object Layouts

The previous chapter provided a framework for customizing the semantics
of message passing on a per-object basis. In this chapter we provide indi-
viduality in the dimension of state. We decouple the structure declaration
of objects from the low-level view. We introduce object layouts, layout scopes
and slots as first-class building blocks that bridge the gap between the prim-
itive object representation of the garbage collector and its semantics within
the programming language. It is constrained by the requirements of the GC,
but is open-ended on the language side, allowing languages to easily sup-
port new semantics below the granularity of classes. Languages can expose
the model to their users, allowing them to built custom language extensions,
in most cases without the need to modify the compiler or class builder.

The contributions of this chapter are:

• introducing flexible object layouts, metaobjects that describe the struc-
ture of objects, and the semantics of initializing and accessing data
within the objects,

• presenting a classification and examples of customized slots and their
associated behavior,

• introducing and discussing an implementation of the flexible object
layouts in Pharo Smalltalk [15]. By implementing flexible object lay-
outs on top of Pharo, we show that they can be supported by existing
languages without the need to modify the underlying VM.

Outline Section 5.1 introduces our approach of flexible object layouts in which
object fields are represented by first-class slots. In Section 5.2 we present a
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series of examples of different kinds of slots with their associated behav-
ior. Section 5.3 illustrates how first-class layout scopes are used to control
the visibility of slots. Section 5.4 shows how stateful traits are implemented
using first-class layouts. In Section 5.6 we shed light on how to build and
migrate classes based on layouts. In Section 5.7 we discuss related work.

5.1 Flexible Object Layouts in a Nutshell

superclass
methodDictionary
layout

Behavior
host

Layout

slotScope
Layout With SlotsBasic Layout

Layout Scope

Empty Scope
parentScope
slots

Class Scope

Slot
*1

1

1

1

1

1

1

Class Meta Class

Figure 5.1: Flexible Object Layouts Overview

Tools like compilers and class builders are needed to build up the def-
inition of objects. They are necessarily linked to the runtime that they tar-
get. If they are however too tightly coupled to the assumptions made in the
VM they become less extensible. By introducing first-class object layouts as
building blocks for the programming language, we decouple language tools
and the runtime. This layer consists of three main concepts, directly related
to the low-level view of how classes are constructed: layouts, layout scopes
and slots.

Layouts are the direct reification of the object formats supported by the
GC. Just like languages generally store the used object format in the class
of an object, we store a single layout instance in each class. A class knows
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its layout, and the layout knows the class to which it belongs. As shown
in Figure 5.1, layouts are installed in the layout instance variable of Class
Behavior, the superclass of both Class and Metaclass. The layout itself
links back to the Class Behavior through the host instance variable.

The number of available layout types depends on the VM. Our prototype
implementation is implemented in the Pharo Smalltalk dialect and provides
a fairly typical set of object types: words, bytes, pointers, variable sized,
weak pointers, compiled methods, and small integers [65]. Pharo addition-
ally relies on compact classes to save memory for the instances of widely
used classes by not keeping a pointer from an instance to a class. All this
information encoded in the object header, which is normally only available
to the VM, is now directly available in the first-class layout.

Layout scopes group related instance variables. Apart from a few special
cases, most classes declare a collection of instance variables. Such classes
are related to a layout with slots. A class inherits instance variables from its
superclass and potentially adds several itself. In our abstraction layer, this
is directly modeled using layout scopes. The different layout scopes are
nested in a hierarchy parallel to that of the class structure. As Figure 5.1
shows, layout scopes are contained by layouts with slots.

Slots are a first-class representation of instance variables and their corre-
sponding fields1. They are referred to by a program’s source code when
their name is mentioned in an instance variable access. As such they can
modify read and write access to fields. In our current implementation the
access semantics defined by the slots are directly inlined by the compiler. As
Figure 5.1 shows, slots are contained by layout scopes.

Figure 5.2 illustrates our model using the layout of Dictionary. This par-
ticular class builds instances with a total of two fields, related to the instance
variables #tally and #buckets. Classes that build such instances with a
fixed size have a Pointer Layout. Since this layout is a subclass of Layout
With Slots, it is related to a class scope. Since Dictionary is a subclass of
Hashed Collection, the class scope of Dictionary has as parentScope the
class scope of Hashed Collection. Because Hashed Collection has two
direct instance variables #tally and #buckets, they are linked as slots from
the related class scope. Since Object has no slots, its class scope is empty. A
list of scopes generally ends in the empty scope, just like lists end in nil.

1For clarity we refer to the memory location in an object as the field. The token in source
code that refers to the field we call instance variable.
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Figure 5.2: Scopes related to Dictionary

5.2 First-Class Slots

While normally it is the compiler that is solely responsible for mapping in-
stance variables to fields, slots provide an abstraction that can assume this
responsibility. This allows the slots to influence the semantics of accessing
instance variables. We distinguish between four types of actions: initializa-
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tion, reading, writing and migration. Slots can specialize the semantics of
any of these four actions by overriding the related method in the slot class
definition.

We classify slots as follows:

• Primitive slots are the direct reification of the link between instance
variables and fields.

• Customized slots define custom semantics for the four main actions re-
lated to slots: initialization, reading, writing and migration.

• Virtual slots have no direct representation in the related objects but
rather read state from an aliased field or derive their state in another
way.

5.2.1 Primitive Slots

Primitive slots are metaobjects that simply bind an instance variable to a
field index.

Object subclass: #Slot
layout: PointerLayout
slots: {

#index => Slot.
#name => Slot.

}.

Slot >> initializeInstance: anInstance
self write: nil to: anInstance

Slot >> read: anInstance
↑ anInstance instVarAt: index.

Slot >> write: aValue to: anInstance
↑ anInstance instVarAt: index put: aValue.

Listing 5.1: Default Slot Implementation

Instance variables are by default replaced by standard Slot instances. List-
ing 5.1 shows the core implementation of the default Slot with the three
actions for slots:

• Initialize: The method named initializeInstance: is called during
object instantiation for all Slots. As in most languages the fields of
newly created object are initialized with nil.

• Read: The read: takes the object instance as an argument and uses the
low-level instVarAt: to directly access the field in the instance.
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• Write: The write:to: method works similar to the write: method
and delegates the write access to the low-level instVarAt:put: oper-
ation.

Notice that the slots in the definition of Slot are such standard metaobjects,
making the Slot definition a recursive one. As shown in Listing 5.1, to read
out a standard slot we need to first access the index slot of the slot. But
to access the index slot, we need to be able to access the index slot, and
so on.2 This circularity is however easily broken by letting the VM directly
execute it. Slots break the recursion by directly inlining accessor code into
the methods that refer to them.

5.2.2 Customized Slots

Whereas accesses to primitive slots immediately translate into accesses to
the related field, it is advantageous to be able to customize the semantics of
accessing the slot into something more elaborate. There are four main types
of actions related to slots: initialization, read, write and migration.

In standard object-oriented code initialization of slots is handled directly
in constructor methods. This implies that initialization code needs to be
duplicated for similar but different instance variables, independent of the
instance variables being present on the same class. By providing an initial-
ization mechanism on the slot metaobject this initialization code is shared
between all instance variables related to the same type of slot. The initial-
ization procedure can be further customized towards the class and finally
the instance.

By customizing the reading and writing of slots, we influence all source
code that accesses the related instance variable. A slot is read by using it
as an rvalue. This triggers the protocol slot read: anInstance. Slots are
written to by using them as an lvalue, triggering the protocol slot write:

aValue to: anInstance. This allows developers to create reusable com-
ponents at the level of instance variables, avoiding the need for boilerplate
code to access them.

Finally slots are related to class updates. Whenever instance variables
of a class are removed or added this directly impacts the class and its sub-
classes, their methods and all their instances. While full-blown solutions
to class updates are outside the scope of this dissertation, it is important
to mention that our model supports the construction of solutions for class
updates. Slots can determine how instances should be migrated at the field-
level.

2This is similar to methods. They are conceptually instances of the Method class. While this
class could have a method telling the runtime how to execute the method, this equally recurses
infinitely.
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Type-checked Slots

As a first example Listing 5.2 shows how we can easily build type-checked
slots.

Slot subclass: #TypedSlot
layout: PointerLayout
slots: {

#type => TypedSlot type: Class.
}.

TypedSlot >> write: aValue to: anInstance
(aValue isNil or: [aValue isKindOf: type])

ifFalse: [ InvalidTypeError signal ]
↑ super write: aValue to: anInstance.

Listing 5.2: Typed Slot Implementation

Although it is possible to provide the same functionality as slots by imple-
menting accessor methods, this does not provide the same level of abstrac-
tion. It is not possible to enforce that all code indirectly accesses the state
over a getter method. Each instance variable requiring preconditions to be
fulfilled can also be used in a direct way, circumventing the tests. By rely-
ing on slots however, the programmer has only one single way to access the
instance variable3. Here the guard can be enforced for all methods.

A second advantage of using typed slots rather than relying on modi-
fied setter functions is that the semantics of the slot are reified. In the case
of typed-checked slots this already provides metadata to gradually add typ-
ing to the partly dynamically-typed application, a technique also known as
hardening [149].

By encapsulating type checks in slots we can avoid code that would oth-
erwise duplicated. In an untyped language type checks would either occur
at instance variable write or in setter methods. Since we can even create a
specific slot class for a specific, for example PositiveIntegerSlot, there is
no need to explicitely type check instance variables anymore.

First-class Relationships

To support first-class relationships in a language, a possible solution is to
extend it with first-class support for relationships [14]. However, this bur-
dens language developers with ensuring that all development tools of the
host language properly support the language extension, and makes the lan-
guage more complex than necessary.

Using slots it is possible to model first-class relationships that integrate
seamlessly into the existing language. We model relationships by modeling

3Smalltalk reflection methods, such as instVarAt:, could be used to circumvent this mech-
anism. By solely providing slot objects as reflective mirrors to access state, we can enforce the
correct behavior also for reflective access.
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both possible sides of one-to-one, one-to-many and many-to-many relationships
by defining a One Slot and a Many Slot. To complete the relationship such
slots will then have another one or many slot as their opposite slot.

boss := Boss new.
c1   := Clerk new.
       ...
cN   := Clerk new.

boss : Boss
staff = HotSet {}

c1 : Clerk
boss = nil

cN : Clerk
boss = nil

...

c1 boss: boss.
c2 boss: boss.

boss staff: {c3. ... cN}.

staff = HotSet {
    c1. c2.
}

boss : Boss c1 : Clerk
boss = boss

c2 : Clerk
boss = boss

c3 : Clerk
boss = nil

cN : Clerk
boss = nil

...

boss : Boss
staff = HotSet {
    c3. ... cN.
}

c1 : Clerk
boss = nil

c2 : Clerk
boss = nil

c3 : Clerk
boss = boss

cN : Clerk
boss = boss

...

boss staff: {}.

boss : Boss
staff = HotSet {}

c1 : Clerk
boss = nil

cN : Clerk
boss = nil

...

Step 1:

Step 2:

Step 3:

Step 4:

Figure 5.3: Relationships in Action

Listing 5.3 implements two classes Boss and Clerk that are in a one-to-
many relationship. A boss has a staff of many clerks, but a clerk just has a
single boss. In step 1 of Figure 5.3 we create one instance of the Boss class
and N Clerk instances. In step 2 we set the boss of c1 and c2. This makes
the boss have two clerks as his staff, and the two clerks have a boss. All the
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other clerks are unaffected. In step 3 we overwrite the staff by the array of
clerks c3 till cN. This breaks the relationship between the boss and c1 and
c2 and creates new relationships with the clerks c3 till cN. If in step 4 we set
the staff of the boss to the empty array, all relationships are broken again.

Object subclass: #Boss
layout: PointerLayout
slots: {

#staff => ManySlot opposite: #boss
class: Clerk.

}

Boss >> staff: aCollection
staff ← aCollection

Object subclass: #Clerk
layout: PointerLayout
slots: {

#boss => OneSlot opposite: #staff
class: Boss.

}

Clerk >> boss: aBoss
boss ← aBoss

Listing 5.3: Many Relationship Usage

The code in Listing 5.4 shows the full implementation of the related
classes. Both ends of a relationship need to be typed, so we reuse the Typed

Slot class from Listing 5.2. We extend it by adding a subclass Opposite

Slot that knows that both slots that occur in a relationship refer back to each
other using the opposite instance variable4. Finally the One Slot knows
that it will contain a single value, while the Many Slot has many values. To
make the picture complete, in the case of a Many Slot we install a hot collec-
tion. This is a special kind of collection that knows that it has to update the
opposite side on every change. This is required since the collection itself is
a way to avoid having to directly access the data via the slot.

TypedSlot subclass: #OppositeSlot
layout: PointerLayout
slots: {

#opposite => OneSlot opposite: #opposite
class: OppositeSlot.

}

OppositeSlot subclass: #ManySlot
layout: PointerLayout

4Notice that #opposite is also declared as a One Slot, referring back to itself. This is be-
cause a slot #y that has slot #x as its opposite, is by itself the opposite of #x. Slots that are in a
relationship at the base-level are also in a relationship on the meta-level.
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slots: {
#oppositeHost => Slot.

}

ManySlot >> initializeInstance: anInstance
|set|
set ← HotSet new

oppositeSlot: opposite;
myself: anInstance;
type: self oppositeHost.

super internalWrite: set to: anInstance.

ManySlot >> write: aValueCollection to: anObject
|hotSet|
hotSet ← self read: anObject.
hotSet removeAll.

aValueCollection ensureType: Collection.
hotSet addAll: aValueCollection.

OppositeSlot subclass: #OneSlot
layout: PointerLayout
slots: {}

OneSlot >> write: aValue to: anObject
(self internalRead: anObject)

ifNotNilDo: [:oldValue|
opposite remove: anObject from: oldValue].

super write: aValue to: anObject.

aValue ifNotNil: [opposite add: anObject to: aValue].

Listing 5.4: Relationship Slot Implementation

There are several advantages to using slots rather than specific language
extensions. A library encapsulates the core behavior of relationships but
still requires a significant amount of glue code to invoke all necessary hooks.
However it is possible to dispense with glue code altogether by implement-
ing the first-class relationships directly as a language extension. But lan-
guage changes require all the tools to be changed as well. Hence we argue
in favor of an implementation which solely requires first-class slots that in-
tercept read and write access, obviating the need to modify tools for slot-
related language customizations. As shown in Listing 5.3 it is sufficient to
specify the relationship with slots.
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5.2.3 Virtual Slots

Virtual slots, unlike the previously presented slots, do not require a field in
the related object but redirect access to the data elsewhere.

Alias slots are a trivial kind of virtual slot that simply redirect all accesses
to the aliased slots. Listing 5.5 shows the basic implementation details of the
alias slot. The basic access operations read: and write:to: are forwarded
to aliasedSlot. This is useful for providing a compatibility interface for
legacy or external code. Wrongly named variable accesses can be redirected
by specifying an alias to an existing slot. Since accesses to the slot are di-
rectly compiled as accesses to the aliased slot there is no extra overhead by
using an alias slot over a normal one.

VirtualSlot subclass: #AliasSlot
layout: PointerLayout
slots: {

#aliasedSlot => TypedSlot type: Slot.
}.

AliasSlot >> read: anInstance
↑ aliasedSlot read: anInstance

AliasSlot >> write: aValue to: anInstance
↑ aliasedSlot write: aValue to: anInstance

Listing 5.5: Alias Slot Implementation

Derived slots are computed from the values of other slots. They can be
used for example to provide a dual representation of values without having
to duplicate support code or add explicit transformation code. The code
in Listing 5.6 shows a Color object which has three standard slots for the
three color compounds red, green and blue. The fourth slot is a virtual slot
combining the three compounds into a single integer value. The RGBSlot

internally links to the three other color components, denoted by the slots
named #r, #g and #b. Internally the RGBSlot uses these slots as sources and
transforms the input and output to represent one single integer value.

On assignment the RBG Slot splits the written integer value into the
three compounds and forwards them to the corresponding slots. On read
access the single integer value is computed from the three other slots. By
reading from the rgb instance variable the full combined integer value is
read. This has the advantage over a normal method invocation in that it
can be directly inlined by the compiler and that it stays private to the class.
Whenever this dual number representation is required elsewhere it is suf-
ficient to copy over the RGB Slot and thus the slot helps to reduce code
duplication.
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VirtualSlot subclass: #RGBSlot
layout: PointerLayout
slots: {

#redSlot => TypedSlot type: Slot.
#greenSlot => TypedSlot type: Slot.
#blueSlot => TypedSlot type: Slot.

}.

RGBSlot >> read: aColor
↑ (((redSlot read: aColor) & 0xFF) << 16)
+ (((greenSlot read: aColor) & 0xFF) << 8)
+ ((blueSlot read: aColor) & 0xFF).

RGBSlot >> write: anInt to: aColor
redSlot write:((anInt & 0xFF0000) >> 16) to: aColor.
greenSlot write:((anInt & 0x00FF00) >> 8) to: aColor.
blueSlot write: (anInt & 0x0000FF) to: aColor.

Object subclass: #Color
layout: PointerLayout
slots: {

#r => PositiveIntSlot limit: 0xFF.
#g => PositiveIntSlot limit: 0xFF.
#b => PositiveIntSlot limit: 0xFF.
#rgb => RGBSlot redSlot: #r

greenSlot: #g
blueSlot: #b.

}.

Listing 5.6: RGB Color Slot Implementation

5.2.4 Implementation and Performance

Slot metaobjects define how instance variables are accessed. This is imple-
mented as follows:

While compiling a method, the compiler fetches the slot metaobject and
asks it to generate the access code. The default code in the Slot class inlines
the slot object itself and generates the accessing message send to the slot ob-
ject, with the receiver (and value, in case of assignment) as argument. This
default method is useful for quickly prototyping new slots without hav-
ing to define a code generation strategy, but has the potential overhead of
requiring a message send (or function call, once it is inline cached by the
underlying runtime), rather than a direct memory access. Once the slot se-
mantics are complex enough, however, this extra cost becomes irrelevant.

Additionally our compiler uses Helvetia [122] as a macro system to eas-
ily describe the code required to correctly inline the slot semantics. Primi-
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tive slots use this mechanism to generate simple memory access, thus fully
eliminating the cost.

5.3 First-Class Layout Scopes

In our system a layout consists of layout scopes, which themselves again can
contain slots. Layout scopes provide a level of reusable object semantics that
is orthogonal to the standard reuse through subclassing. They are responsi-
ble for providing access to instance variables and requiring the fields in the
final instance. This allows them to influence the visibility of slots while still
requiring enough space for all slots in the final instances. By creating cus-
tom layout scopes we can implement more complex use-cases which would
otherwise require boilerplate code.

The two core scopes, the empty scope and the class scope are shown in
Figure 5.1. As a default for each class a class scope is generated and linked
to a parent scope which holds the slots forming the superclass. These layout
scopes form a chain which eventually ends in an empty scope, as shown
in Figure 5.2. With this approach we have a compatible model to repre-
sent slot reuse through subclassing. So far we only assumed that the scopes
will contain exactly the slots from the class definition. The following exam-
ples however, show situations where new slots are introduced depending
on the slots specified in the class definition. We introduce additional slots
by adding specialized scopes. Hence the class scopes always contain exactly
the scopes provided with the class definition.

In addition to the empty scope and class scopes two general groups of
additional layout scopes exist. slot hiding scopes only give access to a part of
the actually declared slots, and slot issuing scopes give access to more slots
than are declared by the scope. The following two examples both introduce
new slots and thus are to be seen as slot issuing scopes.

5.3.1 Bit Field Layout Scope

In several languages the number of instances variables is restricted, for in-
stance many Smalltalk VMs limit the number of instances variables to some-
thing less than 64 on many systems. When using many instance variables
that only use booleans it feels natural to combine them into a single field.
Normally each instance variable would require a full pointer to store a value
that can be represented with a single bit. Combining these variables into a
single field helps to reduce the memory footprint of an object. In our im-
plementation we can combine multiple boolean fields into a single bit field.
This not only reduces the memory footprint but also helps to speed up the
garbage collection. Due to the single field the garbage collector has to tra-
verse fewer fields.

Listing 5.7 shows the implementation of the BitSlot. Each BitSlot

knows its storage location in the object denoted by the bitSlot instance
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variable. The bitIndex is used to extract the corresponding bit out of the
integer stored at the location of the bitSlot. In order to read a boolean
value, the BitSlot reads the full integer value from the bitSlot and masks
out the corresponding bit.

VirtualSlot subclass: #BitSlot
layout: PointerLayout
slots: {

#bitIndex => PositiveIntegerSlot.
#bitFieldSlot => TypedSlot type: BitHolderSlot.

}

read: anInstance
mask ← (0x01 >> index).
↑ (bitFieldSlot read: anInstance) & mask == mask.

write: aBoolean to: anInstance
|int|
int ← bitFieldSlot read: anInstance.
int ← int & (0x01 >> index) invert. "mask the bit"
int ← int | (aBoolean asBit >> index) "set the bit"
bitSlot write: int to: anInstance
↑ aBoolean

Listing 5.7: Bit Field Slot Implementation

Using bit fields in a normal object is a matter of changing the slot definition.
Instead of using the default Slot the BitSlot has to be used. Listing 5.8
shows the basic definition of an object using bit slots. When using such an
object up to 30 bit slots are combined into a single field. Figure 5.4 shows
a transcript of how the boolean values are written to the single instance
variable. If this were implemented without encapsulating the behavior in
slots, the code of the write:to: or read: method would have to be copied
at least into a getter or setter. In this case there is a single definition of the
extraction semantics in the bit slot, which serves as a template.

Object subclass: #BitObject
layout: PointerLayout
slots: {

boolean1 => BitSlot.
boolean2 => BitSlot.

...
booleanN => BitSlot.

}

Listing 5.8: Bit Object using Bit Slots

Unlike the previous examples of slots the BitSlots require the layout
to add a storage slot. As a reminder, the BitSlots are virtual and hence
do not occupy a field in the instance. The situation is further complicated
in that the number of storage slots is not fixed and depends on the number
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instance : Bit Object
bitSlot = 0  (000)2

instance boolean1: true.

instance := BitObject new.

instance : Bit Object
bitSlot = 1  (100)2

instance boolean3: true.
instance : Bit Object

bitSlot = 5  (101)2

Step 3:

Step 2:

Step 1:

Figure 5.4: A BitField Instance in Action

of BitSlots, since each storage integer has a fixed number of bits. Instead
of changing the current class scope, and thus obfuscating the original slots
definition we add specific bit scopes. In Figure 5.5 we see that the layout
of the Bit Object points to a normal class scope which contains the slot
definition mentioned in the class definition. Instead of linking directly to
the class scope defining the slots of the superclass the parent scope is set to
a special bit field scope. The bit scope internally contains the bit slot which
is used to store the different bits in it. Each virtual bit slot points to a non-
virtual bit field slot defined in a bit scope.

5.3.2 Property Layout Scope

The previous example using bit fields displayed that by using slots and slots
scopes it is possible to transparently optimize the footprint of an object using
boolean instance variables. Here we will show how this technique can be
used to selectively but drastically transform the layout of objects.

JavaScript [59] and Python [119] use dictionaries as the internal represen-
tation for objects. This enables the dynamic addition of instance variables
and saves memory when there are many unused instance variables. The
simplicity of the object design comes with two major drawbacks however:
1) typing mistakes in instance variable names are not easily detected, and 2)
attribute access is difficult to optimize.

In standard Smalltalk the number of instance variables is fixed up-front
in the class. However we easily overcome this limitation by using an inter-
mediate dictionary which holds all the object’s instance variables. Without
first-class layouts this would force us to use unchecked symbols as field
names to access the properties. Furthermore each instance variable access
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Bit Object
boolean1
boolean2
     ...
boolean30

Bit Scope

Class Scope

Pointer Layout

scope slots

Bit Slot
name = #boolean1
bitPosition = 0
fieldIndex = nil

Bit Slot
name = #boolean2
bitPosition = 1
fieldIndex = nil

Bit Slot
name = #boolean30
bitPosition = 29
fieldIndex = nil

...

bitFieldSlot

layout

host

parentScope

BitFieldHolderSlot
name = #bitField
fieldIndex = 1

propertyHolder

Figure 5.5: Bit Field Scope Example

would have to be manually replaced with a dictionary access, which can be
completely avoided in our case. In our implementation it is possible to ben-
efit from both worlds by only enabling dictionary-based storage where it is
needed, while still providing syntax checking for slots.

Object subclass: #PropertyObject
layout: PointerLayout
slots: {

field => Slot
property1 => PropertySlot.
property2 => PropertySlot.

...
propertyN => PropertySlot.

}
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Listing 5.9: Property Object using Property Slots

Listing 5.9 provides a class definition of an object which uses a normal slot,
named field and an arbitrary number of virtual slots that use a dictionary
as storage target. Figure 5.6 shows an example usage of this property object.
Note that the resulting instance uses only two fields. The property holder
named dict is lazily filled with the values for the different properties.

instance : Property Object
dict = {}
field = nil

instance := PropertyObject new.

instance field: 'real field'.

instance : Property Object
dict = {}
field = 'real field'

instance property1: 'string'.
instance property2: false.

instance : Property Object
dict = {
        #property1 ➞ 'string'.
        #property2 ➞ false.
}
field = 'real field'

instance property1: nil.
instance field: nil.

instance : Property Object
dict = {
        #property2 ➞ false.
}
field = nil

Step 4:

Step 3:

Step 2:

Step 1:

Figure 5.6: Property Object in Action

Similar to the previous bit field example we have to introduce a data
holder slot depending on the types of specified slot. In this case we use
a special property scope. Figure 5.7 shows that the property scope holds
an instance of the PropertyHolderSlot class which is required to reserve
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one field for the property storage. This field holds a property dictionary that
maps property slots onto their values. Listing 5.10 shows how accesses are
rewritten by property slots so that they access the state via the property
dictionary.

VirtualSlot subclass: #PropertySlot
layout: PointerLayout
slots: {

#dictSlot => TypedSlot type: PropertyHolderSlot.
}.

PropertySlot >> read: anInstance
↑ (dictSlot read: anInstance)

at: name ifAbsent: [ nil ].

PropertySlot >> write: aValue to: anInstance
↑ (dictSlot read: anInstance) at: name put: aValue.

Listing 5.10: Property Slot Implementation

This approach has three main advantages over the default behavior in
Python or JavaScript. First the overall performance of the system does not
suffer since only the accesses of selected property slots are rewritten to go
over the dictionary. Secondly converting a property slot into a normal slot
is matter of changing the type of slot. The only difficulty is that special care
has to be taken to convert the values in property dictionaries of existing
live instances back into normal fields. Finally, in contrast to the standard
Python or JavaScript approach our model minimizes the risk of runtime er-
rors related to misspelled variable names by requiring the property slots to
be explicitly specified in the layout scope up-front. This allows us to provide
proper compile-time checks of property slots just like for all other Smalltalk
slots.

5.4 Stateful Traits

In this section we show that by reifying the state of the objects and mak-
ing it available in the programming language new language features that
revolve around state can be implemented with less effort. As case-study we
implement stateful traits [49], a mechanism for sharing behavior and state in
standard object-oriented systems which is orthogonal to subclassing. State-
ful traits are components of reuse that are more fine-grained than classes but
generally larger than slots.

Although a previous implementation for Smalltalk exists it was more
difficult to attain and includes ad-hoc solutions like renaming instance vari-
ables to avoid name clashes.
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Property Object
field
property1
property2
     ...
propertyN

Property Scope

Class Scope

Pointer Layout
scope

Slot
name = #field
fieldIndex = 2

slots

Property Slot
name = #property1
fieldIndex = nil

Property Slot
name = #propertyN
fieldIndex = nil

...

dictSlot

layout

host

PropertyHolderSlot
name = #dict
fieldIndex = 1

propertyHolder

parentScope

Figure 5.7: Property Scope Example

5.4.1 Traits

Fundamentally traits are used as collections of reusable methods that are
installed on classes. Normally, installing a trait is implemented by flattening
out the collection in the method dictionary of the target class. All conflicts
resulting from installing a trait have to be resolved by the developer. This
includes renaming methods, rejecting methods and overriding methods.

Before installation the trait object is copied. The trait methods are recom-
piled on the receiving class to ensure correct semantics for superclass sends.
Whenever a trait-related method is modified, the trait and all its users are
notified of the change and updated accordingly. A trait is uninstalled by
removing all methods introduced by the trait. Finally whenever a class is
updated, its trait composition is copied over from the previous version of
the class to the new version of the class.
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5.4.2 Stateful Traits

Stateful traits [10] add the possibility to define state related to traits. When
composing a stateful trait with a class not only the methods are installed,
but also the associated state is added to the class. Stateful traits are closely
related to mixins [22] except that they follow the conflict-avoiding composi-
tion strategy of standard traits.

Empty Scope

Sync Trait
lock

Trait Scope

layout

Pointer Layout scope
host

Slot
name = #lock
fieldIndex = 1

slots

parentScope

Figure 5.8: Stateful Trait Example

5.4.3 Installing State of Stateful Traits

By relying on our model of first-class layouts and scopes it becomes straight-
forward to extend traits with state. A stateful trait is in essence a subclass of
Trait which is extended with a layout. Where we previously declared a class
to use a trait, we can now allow it to equally rely on a stateful trait. The
behavior has to be mixed in at the exact same location as standard traits.
The only additional step required is the mixing of the state declared by the
trait with the state declared by the class. Figure 5.8 shows an example of
such a stateful trait, the Sync Trait. In addition to the provided methods,
the stateful trait has a layout. This layout is linked to the related trait scope
which contains a single slot lock.

The class builder is the tool responsible for installing the state of a state-
ful trait. During this process we want to avoid name clashes with the state of
the target class. To avoid complex renaming required by the original stateful
trait work, we introduce a new kind of layout scope in our model, the fork
scope. A fork scope is a scope that does not only have a parent scope, just
like a normal class scope, but also a list of side scopes. The side scopes con-
tribute to the final number of fields that an associated object has, but they do
not provide any visible slots. Their state in the resulting object is essentially
private to the owner of the scope. The trait scopes are then installed in the
fork scope as side scopes. Figure 5.9 shows how the trait from Figure 5.8 is
applied to the Sync Stream class.
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Fork Scope

Sync Stream
slots = {}

Class Scope

layout

Pointer Layout
scopehost

Empty Scope

Trait Scope

Slot
name = #lock
fieldIndex = 2

slots

parentScope

parentScope

sideScopes

array
Stream

slots

Class Scope

Slot
name = #array
fieldIndex = 1

Pointer Layout

parentScope

Figure 5.9: Stateful Trait with Fork Scopes

The modelling challenge when installing stateful traits is to correctly up-
date the field indices and scope instance variable access. The index calcula-
tion has to take into account the fields in the superclass and other installed
traits.

For the normal operations on a class (e.g., compiling a method inside
the class) the visible slots will be computed by recursively traversing the
parent links of the scopes, aggregating the slots from the class scopes, but
ignoring the side scopes of fork scopes. During compilation of the trait-
specific behavior the trait providing the behavior is used as a compilation
target. This way, at compilation time, the class methods do not have access
to the trait state and vice-versa.
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5.4.4 Installing Behavior of Stateful Traits

After the class has been successfully composed by the class builder, the
methods of the used traits are installed. Stateful trait methods are installed
by updating them in the context of the installed trait copy, meaning in the
context of the trait scope that was installed rather than the original trait
scope. The indices of the slots in the installed scope are already updated to
reflect their installed offset. Recompiling methods in the installed scope will
equally update them to reflect this modification. This is a simplification of
the copy down technique [6] in that it does not try to save memory but always
installs methods by copy. Bytecode modification can be used to reduce the
cost of installing traits by avoiding full compilation of the trait methods for
each use.

5.5 Inspecting Objects

The objects in a run-time application are the main source of debugging in-
formation. For this reason Smalltalk environments come with a variety of
object inspectors. These inspectors allow developers to look at objects using
the structural meta-information retrieved from classes.

Given that Smalltalk normally only provides the class structure and in-
stance variable names as information about the state of objects, basic object
inspectors only provide a very limited way of looking at objects. They ren-
der the object as a list of instance variable to field value associations. The
inspectors often implement mechanisms to easily navigate from one object
to the objects it contains.

More advanced inspectors rely on a metaobject protocol to retrieve meta-
information about instances. They allow classes to specialize the view on
their instances by customizing the methods used by the inspector. This
mechanism only directly supports a very coarse-grained specialization: If
an object requires different views for the different instance variables, its class
has to implement its own infrastructure to support this. This is useful for
example for rendering hash tables as key-value pairs rather rather than the
internal structure used to optimally store the values.

Layouts, scopes, and slots not only provide a natural extension point for
behavior in relation to structure, but since they declare the structure of ob-
jects they offer an ideal back-end to provide information about instances.
Rather than fully implementing the metaobject protocol for inspecting di-
rectly on the class, the class forwards it to the layout metaobject. This ob-
ject relies on the scopes to get extra information about the structure, and
slots to retrieve information about the instance variables. This provides
fine-grained control for the rendering of instances to the relevant classes,
and thus eases reuse of code related to the inspecting. At the same time
the protocol is separated from the class instance and thus provides proper
stratification as required by mirror-based reflection (see subsection 3.1.2).
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The protocol for inspecting is especially important in combination with
custom structural metaobjects. Since for example bit fields, as described in
subsection 5.3.1, merge multiple slots into a single field, traditional inspec-
tors would not provide proper insight into the structure of the instance. The
merged values would be displayed as they are in memory, rather than ren-
dering their higher-level meaning.

5.6 Dynamic Structure Modifications

Dynamically updating software, e.g., for developing and debugging the sys-
tem without restarting it, has long been common practice in dynamic object-
oriented languages such as JavaScript, Ruby, Smalltalk, etc. Despite their
popularity and long history, dynamic software updates remain challenging.
Changes such as removing and adding an instance variable can be challeng-
ing because it is unclear what should happen to the instances of the changed
class. Changing the order of instance variables can be challenging, because
while the semantics are clear, a possibly large number of methods is affected.
In both cases, a high-level, structural change entails a number of changes on
a much lower level.

In this section we propose models that capture structural changes both
from a high-level language point of view, as well as a low-level implemen-
tation view. Modifications to the layout are captured in a class modifica-
tion model and refined into two field modification models, a method modification
model and an instance modification model. We show how these abstractions
can ease previously messy tasks, such as dealing with structural changes,
and implementing appropriate responses to those changes.

5.6.1 Modification Model

Modification models capture changes to layouts and simplify the propaga-
tion of these changes to other impacted elements of the system. Figure 5.10
shows the main classes of the modification model and how they relate to lay-
outs and slots. Following the previously argued necessity to split between
high-level and low-level details, our model is comprised of class modifica-
tions (high-level) that can be refined into field modifications (low-level).

Class modification. A class modification captures the structural changes
to a class at the slot level. A class modification is computed out of two
versions of a class layout and contains separate lists of slots that have been
added, removed, modified, and left untouched. Modifications to a class can
impact its subclasses. As a consequence, a class modification can have so-
called class modification propagations, which model changes performed to
all subclasses.
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Class modification

Class modification 
propagation

*

1 origin

propagations

*

1

Slot

additions
removals

modifications
copies

Layout

computes refined into

AddedField

ModifiedField

RemovedField

UnmodifiedField

1
parent

*

*

1

Slot

Figure 5.10: Main classes in the modification model and how they relate to
the other abstractions

Low-level modifications. Modifications to a high-level class have an im-
pact on the related low-level structures. There are two modification models
that transform the high-level model into concrete low-level modifications
models, the method modification model and the instance modification model.
Both models list for every field, whether it was added, removed, or shifted
to a new position.

The instance modification model maps new positions onto old ones. This
allows the instance migration mechanism to easily initialize new instances
from old ones, automatically disregarding discarded state (there is no new
state mapping to old state that is discarded).

The method modification model maps old positions to new ones. This
allows a code rewriter to update existing accesses to fields by replacing old
indices with new indices. In case the user has not provided custom slots or
layouts, the system-provided slots act as follows. (1) If a field was shifted, all
accesses to those fields are modified accordingly. (2) If a field was removed,
all accesses to that field are replaced by a special native code sequence that
the compiler does not otherwise create, to mark an illegal field access. If it
is executed, it raises a run-time exception.

5.6.2 Building and Installing

The specified modifications are carried out by informing the rest of the sys-
tem of the change, and by applying the transformations in the instance and
method modification model. In our approach, the responsibility to carry
out the modifications lies with two main components: the class builder and
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a class installer.

Class builder. The class builder is responsible for the structural part of
modifying a class or creating a new class. It relies on the installer to fetch
the old version of the class. It then uses the class modification model to
compute the method modification and instance modification models. It then
validates that these changes are semantically sound.

Class installer. Once the class builder has correctly built and validated a
modification model, a class installer is responsible for transactionally5 in-
stalling the change into the system. The class installer is the interface be-
tween the class building process and the rest of the live system.6 Our system
provides an abstract class installer that has to be specialized with a specific
installation strategy that knows which subsystems to notify of changes, how
to migrate live instances, and how to update existing methods. This allows
different installers to implement different strategies to deal with the update
of impacted method code, and with the migration of the instances of the
impacted classes.

5.6.3 Pharo Class Installer

When a class is structurally changed in Pharo, the Pharo class installer mi-
grates all instances and updates the methods of the class and its subclasses
to reflect the structural change. It does not, however, update any running
threads that might be affected by the change. We reimplemented the Pharo
installer as an extension to our abstract class installer so that it relies on the
modification models. This greatly simplifies the installer since almost all the
behavior is already captured by our abstract class installer.

The resulting installer first updates all methods of the old versions of
the classes to adapt to the new versions of the classes. It relies on a method
field updater to apply the changes using the method modification model. The
method field updater decompiles7 the bytecodes of the methods to a slightly
higher-level IR (intermediate representation), updates the field accesses and
compiles the IR back to bytecode. This saves a complete trip through all the
phases of the compilation process, including parsing.

During this process the field accesses occurring in the IR are linked back
to the field modification models. These modification models know which
slots are related to the particular field. There may be at most one slot of each

5The installer must modify the classes and migrate all instances without other code han-
dling the related instances or classes. Otherwise the resulting runtime might end up in an
inconsistent state, possibly containing multiple versions of a single class or instance.

6Note that our model does not include a mechanism for migrating already running threads
to the new version of the classes. This is the responsibility of more complex dynamic software
update mechanisms that rely on our model—which are yet to be implemented.

7We built the decompiler for this project, and made it available as part of the OPAL compiler
package. http://www.squeaksource.com/OpalCompiler.html

79

http://www.squeaksource.com/OpalCompiler.html


Chapter 5. First-Class Object Layouts

the old version and the new version. This allows the slots to coordinate the
updating of field accesses.

The installer then migrates live instances by creating new instances of
the new versions of the modified classes from the existing instances. The
installer implements instance migration by relying on instance modification
models. After migrating the instances, it migrates the old versions of the
classes to the new versions. Both instance migration and class migration
happen in one single stop-the-world transaction.

5.6.4 Metrics

The original Pharo class builder takes a naive approach to updating byte-
codes to a changed class structure: it recompiles all methods of the class.
We replaced the original Pharo class builder by our own class builder. Our
class builder makes use of the method modification model. This allowed
us to experiment with language changes, and let us estimate the increase in
code size that using method modification models entails.

The overall code size of our replacement of the class builder, including
all models, is 2109 lines of code. Out of this, 1194 lines of code form the new
class builder8. The size of the original Pharo class builder9 is 1092 lines of
code. Thus, the amount of code increased by a factor of 1.9, for the whole
model, and for the mere class building, by a factor of 1.1.

The increase in complexity is compensated by a significant gain in flex-
ibility. It also buys a significant performance gain in recompiling classes.
The process of 10 times adding and immediately removing again an instance
variable to a class with 14 subclasses was sped up from 31.2 to 4.6 seconds10,
leading to a speedup by factor 6.8. On a class with no subclasses, nor any
installed methods, the same procedure took 1.2 seconds on both the default
Pharo class builder and in our system. We conclude that our implementa-
tion combines higher flexibility and a clearer design with performance that
is at worst as fast, and at times 6.8 times faster than the naive implementa-
tion.

5.7 Related Work

Various techniques in software engineering exist to to address problems that
stem from the lack of appropriate programming language abstractions. In
this section we list several techniques whose raison d’être is, at least partially,
to address the lack of adequate abstractions for object state manipulation,
access, and composition.

8In build 229 of our system, http://www.squeaksource.com/PlayOut.html
9As ships in version 1.2.1 final of Pharo Smalltalk.

10All measurements were performed on a 2011 MacBook pro at 2.3 GHz. We used the Cog
virtual machine, build VM.r2378. The transformed class is RBProgramNode, as contained in
Pharo 1.2.1 final.
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5.7.1 Language Extensions

When application concerns cannot be properly expressed in a programming
language, this leads to crosscutting boilerplate code. External DSLs [76, 63]
are often used to address this problem. When external DSLs are tightly inte-
grated into our programming language they essentially become language
extensions [101, 122]. However, application-specific extensions to a lan-
guage limit understandability, usability and portability.

Mixins [22] and traits [49, 10] are language extensions built for reuse be-
low the class-level. They promote removal of boilerplate code by extracting
it to the introduced reusable components. Traits improve over mixins by re-
quiring explicit conflict resolution and avoiding lookup problems resulting
from multiple inheritance through the flattening property. While both ap-
proaches support reuse related to the state of objects, the abstractions them-
selves are fairly heavy-weight and they require glue code, another form of
boilerplate code, to configure the final class.

Aspect-oriented programming [87], a language extension in itself, ad-
dresses the problem of cross-cutting concerns related to behaviour in a sys-
tem. Nevertheless, it does not address the cross-cutting problems regarding
state.

5.7.2 Meta Modeling

As opposed to language extensions, meta modeling focuses on describing
data by relying on existing language features. These meta descriptions do
not interfere with the core language and thus are decoupled from the ac-
tual objects they describe. However, if an application solely accesses the
attributes of its instances through first-class meta-descriptions, these meta-
descriptions provide an interface to customize the semantics of state access.

Magritte [121] is a meta modelling framework mainly used together with
Seaside [11]. Magritte is used to describe attributes, relationships and their
constraints. All descriptions are provided as first-class Smalltalk objects.
Magritte provides a complete interface to read and write attributes of an
instance through its meta descriptions. A favorable property of Magritte is,
that its meta-descriptions are described in terms of themselves. This way
it is possible to rely on the same tools to work with instances and with the
model themselves.

Magritte, and meta-modelling tools in general, overlap in many regions
with our approach of first-class layouts, scopes, and slots. However, these
tools are built on top of an existing language and not embedded into it.
Magritte’s meta-description are decoupled from the classes of an object.
Hence, the objects themselves do not directly benefit from their added meta-
descriptions. Smalltalk code is not obliged to use the meta-descriptions.
It can directly access instance variables of the receiver, and assign values
which conflict with the well-defined meta-description. Thus, meta-modelling
frameworks show only the same behavior as first-class slots when attributes
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of objects are accessed solely through the meta-descriptions. But due to the
decoupled implementation, this is not enforced and rather relies on the dis-
cipline of the programmer.

5.7.3 Annotations

Several programming languages support annotations to attach metadata to
program structure. Java annotations, available since version 5.0 of the lan-
guage, are probably the most prominent example. Annotations are gener-
ally a way to directly attach meta information to source elements. Later on
the information in the annotations can be queried using a reflection API. In
this sense annotations cannot be used directly to alter state access. However
it is possible to provide new tools which use annotations to control access
and validate the state of a model. In Java, annotations can be supplied for
classes, methods and instance variables. Generally the annotations are only
used for adding meta-descriptions to the code. This metadata is then later
accessed at runtime using reflection. Example use-cases of annotations in-
clude unit-tests [8] and compile-time model verification [57].

Annotations can be used to avoid manually writing boilerplate code by
generating code from the annotations. Java 6 features pluggable annotation
processors that can hook into the compiler and transform the AST. How-
ever it is not possible to directly modify the annotated sources. Using this
infrastructure it is only possible to create new class definitions that take slot
definitions into account. Due to this limitation it would be required to use
the generated sources.

5.7.4 Object Relational Mapping

A special case of meta modelling worth mentioning is the use of structural
and semantic meta information to model object relational mapping [7]. Meta
information is needed to provide a meaningful mapping from the objects to
the database. However generally the objects should stay fully functional
thus some part of the semantics described in the meta information has to be
available.

Several object oriented front ends for relational databases support slot-
like structures to describe the database fields. Django [43] provides several
types of fields to describe and constrain what kind of data can be stored in
the different instance variables. This metadata is further used to create the
table description. Although the field descriptors could be directly used to
generate getters and setters which dynamically validate the assigned data,
this is only done when serializing the object to the database. As such rela-
tionships are only indirectly usable by storing and loading objects from the
database.

In the Active Record implementation used with Ruby on Rails class-side
methods are used to create descriptions of the fields used in a table. These
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methods use Ruby’s reflective capabilities to install getters and setters. In
this sense there are no slot objects but class-side methods to create slot de-
scriptions.

5.7.5 First-Class Slots

The Common Lisp Object System (CLOS) [16, 112] provides support for
first-class slots11. Upon defining a class slots are described as part of the
class definition. Internally CLOS uses this information to decide which slot
class to use. Standard CLOS always relies on the default slot class. In Per-
sistent CLOS (PCLOS) [111] the lookup was customized, to decide based on
an extra keyword whether the default or the persistent slot class should be
used. On accessing slots the slot-value function is called. This is a generic
function similar to the instVarAt: and instVarAt:put: methods in Small-
talk which can be used to directly access the fields of an object using indices.
It can be overridden to specialize slot access for the entire class. Internally
this function relies on a class-side method slot-value-using-class. This
method can finally specialize variable access to the type of class and the type
of slot.

While CLOS already provides slots as one of the main reifications, stan-
dard CLOS does not provide a way to specialize instance variable access.
As PCLOS shows it would however be fairly easy to hook into the protocol
and allow programmers to provide custom slot metaobjects. CLOS however
does not reify any instance structure beyond the level of slots.

The E programming language [135] provides slots as objects represent-
ing the location where values of instance variables are stored for specific
instances. This model is the closest to what is presented in this chapter.
However it requires the system to generate a multitude of objects for each
user-level object, as all instance variables of a single instance need their own
metaobject.

C and C++ provide references which can be used to mimic the availabil-
ity of first-class slots. However such references are simply lvalues providing
direct access to the raw memory. They cannot influence any access seman-
tics, nor do they provide a higher-level abstraction that can be reused by
other instance variables by bundling accessor methods.

5.7.6 Unified Slots and Methods

In Self [142] and Newspeak [21] message sends and slot access are unified.
In Self everything is a slot access, so methods are just special slots that re-
quire dynamic calculation. The opposite view is that slots are just special
methods that retrieve their value from memory. This forces the user to al-
ways access values through a standardized interface that can flexibly react

11What we call fields is called slots in CLOS. Slot is named slot-descriptor in CLOS.
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to change. Even more interesting is that objects can specialize the inher-
ited slots through overriding, just like inherited methods. Data becomes
completely public since slots cannot be hidden. Since the accessors and ini-
tialization code have to be overridden separately, this implies that they have
to be specialized over and over again for each individual slot. There is no
standard way to bundle these methods in a specialized metaobject and in-
stall them as a single unit.

5.7.7 Dynamic Software Update

Techniques to dynamically update production systems have been the sub-
ject of intensive research [137, 73, 96]. The emphasis in this case is on en-
suring program correctness before and after the roll-out of the update, which
requires well-timed migration of data [130]. Works in the field of dynamic
updates focus on what constraints the migration should comply to and low-
level implementation details, and not on the design of consistent and ex-
tensible language mechanisms to better support changes at run-time [109].
The problem of evolving object instances (sometimes called long-lived ob-
jects, or persistent objects) has been studied in the object-oriented database
community [20, 114].

Change-oriented development [125, 108, 51] aims at tracking and en-
abling changes in software with fine-grained change models. The goal of
these models is to provide better insights into the nature of software devel-
opment and provide better user experiences in IDEs. Our goal is different
and we aim at supporting dynamic evolution with a modification model
that abstracts low-level details and provides higher-level abstractions that
can be extended. Penn et al. [114] provide a classification of all possible soft-
ware changes. Our prototype supports all changes they list.

Dynamic software updating is a cross-disciplinary research topic that
covers software-engineering, programming language design, and operating
systems [96, 110, 137, 130, 73, 31, 107]. The challenge to provide developers
with a simple programming model that is practical—safe, efficient, and that
allows developers to easily specify the necessary custom migration logic—
is still open. Reflection has traditionally been used to provide means for
run-time adaptations [124]. It is however orthogonal to safety, and it is then
also a challenge to extend the reflective architecture so as to support safe
dynamic updates.

5.8 Summary

The lack of proper abstractions to reify object state is often the reason for the
introduction of boilerplate code. To address this problem, in this chapter
we proposed to extend the structural reflective model of the language with
object layouts, layout scopes and slots. Layouts and slots are first-class build-
ing blocks encapsulating the assumptions that conventionally exist only as
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implicit contracts between the virtual machine and the compiler. Layouts
describe the object layout of instances of a class while slots represent the
conceptual link between instance variables and fields. Layout scopes reify
how classes extend the layout of their superclass.

We have shown

• that first-class slots encapsulate the definition of custom semantics for
instance variable initialization, access and migration (e.g., first-class rela-
tionships), promoting consistent fine-grained reuse,

• that layout scopes support language extensions (e.g., stateful traits)
that influence layout composition,

• and that a customizable class installer provides a framework for build-
ing dynamic software update mechanisms.

We have classified slots into primitive slots, customized slots and virtual slots
and provided examples for each. The programming language tool that re-
quires the most fundamental change to support our layout-based model is
the class builder, and we have shown how even its implementation becomes
simpler by using slots.

In Chapter 4 we introduced messaging as a first-class building block for
interaction between objects. In this chapter we complemented that model
with object layouts, layout scopes and slots as first-class building blocks for
the objects themselves. In following chapter, we avoid the need to bridge the
gap between debuggers and the execution format by making the behavior
of applications first-class. We provide access to the semantics of execution
within one object by storing the AST nodes of methods, and providing ac-
cess to first-class interpreters for those AST nodes.
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6
First-Class Interpreters

In Section 3.3 we argued that VMs are closed for extension. As a conse-
quence, in Chapter 4 we eliminated the VM by translating Smalltalk code
to native code supported by a metacircular runtime library. Nevertheless,
debuggers and language experiments are often more conveniently imple-
mented by modifying the interpreter of a language [140]. In this chapter we
show how Pinocchio supports language experimentation and debugging,
without support from an underlying runtime implementation, by support-
ing first-class interpreters.

The Pinocchio compiler stores a complete reflective model of the applica-
tion code, including a secondary representation of methods using the AST
nodes [36]. The semantics of Pinocchio are reified as a first-class AST in-
terpreter. Applications specify their own interpreters inside the runtime as
subclasses of this default Interpreter class. Applications freely flow from
interpreter to interpreter depending on the required semantics.

The contributions of this chapter are:

• a novel approach to behavioral reflection inspired by Refci’s first-class
interpreters [133];

• the design and implementation of a proof-of-concept prototype of the
approach;

• the presentation of three non-trivial case studies demonstrating how
first-class interpreters facilitate behavioral reflection.

The prototype of first-class interpreters is implemented in an older version
of Pinocchio than described in Chapter 4. This particular version relies on
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bytecode interpretation of Smalltalk code, rather than native compilation.
However, other than general speedup from a faster runtime, all the con-
cepts explained in this chapter also apply in the natively compiled version.
Nevertheless, it is important to notice that in Chapter 4 the meta-level and
base-level are conflated. This is due to the overlap between invoking the
meta-level invoke:, and invoking inline cached methods. As motivated in
subsection 3.1.2, to avoid confusion meta-levels should be clearly separated.
This implies that meta-level code, such as the invoke: method, should exe-
cute at the meta-level of the first-class interpreter, while other code runs at
the base-level of (on top of) the first-class interpreter.

Outline In Section 6.1 we present first-class interpreters in a nutshell, and
we explain how custom interpreters are built and subsequently used. Sec-
tion 6.2 illustrates how a first-class interpreter can easily be extended to sup-
port debugging, and then motivates the design of multiple interpreters with
the help of an example of a specialized interpreter to support object-flow
analysis for back-in-time debugging and a parallel debugger. Section 6.4
compares Pinocchio to other dynamic languages in terms of performance,
and outlines the further steps required to turn Pinocchio into a fast approach
to behavioral reflection. Section 6.6 concludes with a brief summary of the
results.

6.1 First-Class Interpreters in a Nutshell

Pinocchio enables lightweight language experimentation and debugging us-
ing first-class interpreters. It provides a default Interpreter class that de-
fines a meta-circular interpreter implemented as an AST visitor. It reuses
and exploits three features from Smalltalk for light-weight extensibility:

• the object model: interpreters adopt the object model of Smalltalk—
since specialized interpreters typically make only modest changes to
their base-level semantics, objects can often flow freely between levels;

• recursion: interpreters are defined as recursive AST visitors instead
of as bytecode interpreters with explicit stacks — first-class continu-
ations can be used to implement non-local flow of control;

• garbage collection: interpreters can rely on the garbage collection pro-
vided by their meta-level.

Behavioral reflection is supported by explicitly instantiating first-class in-
terpreters that subclass the default interpreter. Extending interpreters is fa-
cilitated by the fact that AST nodes are semantically closer to the original
source code than bytecode [37, 42]. This also implies that tools relying on
first-class interpreters are portable across platforms.
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To construct a new variant of the Pinocchio interpreter it suffices to sub-
class the Interpreter class and override a part of its interface (see Fig-
ure 6.1).

Interpreter extensionInterpreter extension

C CoreC Core

InterpreterInterpreter
overridesoverrides

implements nativelyimplements natively

nativesnatives

environmentenvironment

Figure 6.1: Native methods in the Interpreter and interpreter extension
through subclassing

The interpretation of an application is altered simply by passing the ap-
plication in the form of a closure to a customized interpreter. For example,
the expression

Debugger interpret: [ self runApplication ].

will cause the passed closure [ self runApplication ] to be evaluated
by the Debugger interpreter.

As usual, closures encapsulate an environment and an expression object.
When starting up a specialized interpreter, the continuation of the inter-
preted application is empty. The interpreter installs the enclosed environ-
ment and starts evaluating the expression in this environment. Since the
passed expression for the default interpreter is a closure, it is evaluated by
sending the message value to the closure on top of the interpreter:

interpret: aClosure
↑ self send: (Message new selector: #value)

to: aClosure.

Although it might seem correct to directly evaluate the closure by invoking
aClosure value, this is incorrect as the closure would be evaluated at the
wrong level of interpretation. It would run at the level of the custom inter-
preter (the meta-level from the application’s point-of-view) rather than on
top of the interpreter as desired.

The open design of the meta-circular interpreter lets programmers ex-
tend the runtime with very little effort. More importantly, the extensions
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to the interpreter are implemented within the language provided by the
runtime itself. As such they can be implemented using any of the existing
tools for the language, including development environments, debuggers,
test-runners and versioning systems.

6.2 Implementing Custom Interpreters

In this section we present three different customized interpreters imple-
mented in Pinocchio1. We first introduce a simple debugger that reuses
garbage collection and the object model, and relies on straightforward recur-
sion to manage control flow. The alias interpreter shows how interpreters
with custom object models are implemented. Finally we outline how inter-
preters relying on access to the runtime stack are supported in Pinocchio
through modifiable interpreters and the availability of first-class continua-
tions.

6.2.1 A Simple Debugger

interpret:
send:to:class:
visitSend:
visit...

environment
Interpreter

send:to:class:
defaultStepBlock

Stepping
stepBlock

defaultStepBlock

Debugger
 

Figure 6.2: Specializing a meta-circular interpreter

1The full sources of these use cases are available under http://scg.unibe.ch/download/
pinocchio/pinocchio_svn1397_mc196.zip.
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6.2. Implementing Custom Interpreters

To show how extensions to existing interpreters are implemented and
used we first describe the implementation of a simple debugger. It executes
a program while allowing the user to pause evaluation at the level of mes-
sage sends. In order to start evaluating code using a debugger, the user
passes the code to the debugger in the form of a closure:

Debugger interpret: [ self runApplication ].

The debugger takes control over the evaluation of the block. At each mes-
sage send it allows the user to decide to step to the next message send, to
inspect the current receiver, to step over the evaluation of the message send
or to evaluate Pinocchio statements. This is a typical subset of actions avail-
able in any debugger.

As shown in Figure 6.2, to implement the debugger in Pinocchio, we
start by creating the stepping interpreter class as a subclass of the standard
Interpreter. The stepping interpreter overrides the methods in charge of
evaluating message sends. Rather than directly executing a send, the step-
ping interpreter delays this behavior and first gives control to a stepBlock

installed on the interpreter instance:

send: message to: receiver class: class
↑ stepBlock value: receiver

value: class
value: message
value: [ super

send: message
to: receiver
class: class ].

The stepBlock of the interpreter can be used to flexibly modify the
message send semantics of the running interpreter. Subclasses of the step-
ping interpreter can define a custom default stepBlock and replace the
stepBlock at runtime.

The debugger itself is implemented by providing different kinds of blocks
to the stepping interpreter. The default stepBlock of the debugger is im-
plemented as follows:

defaultStepBlock
↑ [ :receiver :class :message :action |

self print: receiver class name, '>>', message.
self debugShellWithAction: action ].

It first displays information about the current message send by printing out
the receiver’s class and the message including the selector and arguments.
Then the debug shell is launched, a simple read-eval-print-loop (REPL) that
accepts certain debug actions, as well as Pinocchio statements as input. Since
this REPL runs within the execution context of the interpreter, the current
execution of the application is temporarily halted until the REPL eventually
returns and decides to evaluate the action.
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Other types of debug actions can be implemented using different step-
ping blocks. The following method implements the step over behavior. It
lets the debugger execute an entire application-level recursive call without
prompting the user about its evaluation.

stepOver: overAction
|result previousBlock|
previousBlock ← stepBlock.
stepBlock ← [ :receiver :class :message :action |

action value ].
result ← overAction value.
stepBlock ← previousBlock.
↑ result

It locally stores the previous stepping strategy and installs a block that skips
all steps. Whenever the application finishes the recursive call that trig-
gered the current step the control flow will automatically end up back in
this method restoring the block to the previous version and continuing.

Evaluation This way of implementing a debugger is straightforward and
only requires very little code to add new flexible features. The whole im-
plementation of the debugger adds around 50 lines of code to the stepping
interpreter, which adds another 30 to the vanilla interpreter. Since the de-
bugger is just another interpreter it can be passed in at any level of interpre-
tation. As such it can be used not only to debug a user program, but also
the interpreter running it. Naturally this allows for the debugger to debug
itself.

6.2.2 Alias Interpreter

As a second use case we show how to implement Object Flow Analysis [92]
in Pinocchio. Object Flow Analysis is a dynamic analysis that tracks the
transfer of object references at runtime. It has been employed for various
reverse engineering approaches and for the implementation of an efficient
back-in-time debugger [94].

The problem tackled by Object Flow Analysis is the fact that in code with
assignments it is hard to track where a certain value comes from. A debug-
ger only shows the current call stack and hence often does not reveal the
context in which a field was assigned. While execution traces show exactly
how the interpreter goes through the code, they do not show how the values
are stored and retrieved. For example, to understand where a certain value
of an instance variable comes from, we need to look at all the source code
that might have triggered a store. In an alias interpreter (the back-end used
by Object Flow Analysis) object references are represented by real objects on
the heap. These objects, referred to as aliases, keep track of the origin of each
reference in memory.
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To know where each value comes from, the alias interpreter alters the
semantics of the interactions so that it generates aliases for:

• allocation of objects and their instance variables,

• reading and writing of fields,

• passing of arguments,

• returning of return values, and

• evaluation of literals (constants).

Rather than directly passing around actual values, in the interpreter objects
are wrapped into alias objects.

We chose Object Flow Analysis as second use case because it requires
deep changes in the interpreter and its object model. This case lets us eval-
uate how flexible our approach is for extending low-level details of the run-
time and how much effort is saved in realizing these changes compared to
the original implementation.

An Alias Example Suppose we have a class Person with one instance
variable name and simple accessors for name, consider for example the fol-
lowing code:

testMethod
↑ AliasInterpreter interpret: [ |person|

person ← Person new.
person name: 'John'.
person name: 'Doe'.
person ].

In this excerpt, the block is evaluated in the context of an alias interpreter.
All the values used by the alias interpreter are aliased. When the result is
returned from the alias interpreter it is not unwrapped so we can inspect the
aliasing in the instance. The resulting alias graph, as shown in Figure 6.3,
contains the following information:

return2 ← self testMethod.

self assert: (return2 isKindOf: ReturnAlias).
self assert: (return2 environment selector = #testMethod).

person ← return2 value.
self assert: (person isKindOf: Person).

return1 ← return2 origin.
self assert: (return1 isKindOf: ReturnAlias).
self assert: (return1 environment selector = #new).
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fieldWrite2 ← person name.
self assert: (fieldWrite2 isKindOf: FieldWriteAlias).
self assert: (fieldWrite2 value = 'Doe').

fieldWrite1 ← fieldWrite2 predecessor.
self assert: (fieldWrite1 isKindOf: FieldWriteAlias).
self assert: (fieldWrite1 value = 'John').

allocation1 ← fieldWrite1 predecessor.
self assert: (allocation1 isKindOf: AllocationAlias).

parameter1 ← fieldWrite1 origin.
self assert: (parameter1 isKindOf: ParameterAlias).
self assert: (parameter1 value = 'John').

literal1 ← parameter1 origin.
self assert: (literal1 isKindOf: LiteralAlias).
self assert: (literal1 value = 'John').

parameter2 ← fieldWrite2 origin.
self assert: (parameter2 isKindOf: ParameterAlias).
self assert: (parameter2 value = 'Doe').

literal2 ← parameter2 origin.
self assert: (literal2 isKindOf: LiteralAlias).
self assert: (literal2 value = 'Doe').

All the gathered information can be used by a debugger to provide means to
navigate through the tracked flow of objects. This can easily be used to track
for example where null-pointers come from, since all objects are accounted
for by aliases.

Linguistic Symbiosis In order to track aliasing the interpreter wraps all
objects into alias objects. This makes the object model of the alias interpreter
differ significantly from the default interpreter.

Pinocchio’s object model provides structural reflection similar to that of
Smalltalk. This feature is a requirement for symbiotic reflection [150, 68]: ap-
plications have to be able to start a new interpreter and pass themselves as
applications. The new interpreter starts by running at the base-level of the
application, but as the application passes itself to the new interpreter, it be-
comes part of the meta-level of the application. The new interpreter makes
use of base-level structural reflection to interpret the code of the application.

Symbiotic reflection is typically used when the language of the meta-
level differs from that of the base-level, for example, when Java is used to
interpret a dynamic language. Objects from the meta-level (e.g., Java) typ-
ically need to be wrapped before they can be used at the base-level, and
unwrapped to be manipulated at the meta-level. This process is known,
respectively, as downing and upping.
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person := Person newperson := Person new Person basicNewPerson basicNew

person name: ‘Doe‘person name: ‘Doe‘ name: v
   name := v
name: v
   name := v

personperson

person name: ‘John‘person name: ‘John‘ name: v
   name := v
name: v
   name := v

predecessorpredecessor
originorigin

fieldWrite1: name  fieldWrite1: name  

fieldWrite2: name  fieldWrite2: name  

parameter1: v    parameter1: v    

parameter: v    parameter: v    

allocation1: name    allocation1: name    

literal1: ‘John‘literal1: ‘John‘

return2: personreturn2: person

literal2: ‘Doe‘literal2: ‘Doe‘

return1: person    return1: person    

Figure 6.3: Alias Graph (origin denotes where an alias comes from, predeces-
sor of a field write alias is the alias that was previously stored in this field)

In Pinocchio the base- and the meta-languages generally differ only in
limited ways at the meta-level, leaving most of the base-level semantics un-
altered. This allows many of the user-defined interpreters to let objects flow
freely from the meta-level to the base-level and back, transferring or sharing
ownership of the same object without any wrapping or unwrapping. This
is the case for the debugger in the previous section.

In case the base- and meta-levels of a Pinocchio interpreter diverge sig-
nificantly however, it is entirely up to the interpreter to correctly realize the
required upping and downing. The alias interpreter is such an example.
Rather than directly passing objects from the meta-level to the base-level,
all objects passed around in the alias interpreter have to be wrapped into
alias objects. When the base-level application performs native actions on
aliased objects they first need to be unwrapped by the interpreter. In this
situation it is increasingly important that the system relies on dependency in-
jection [62, 129] to access static resources, so that wrapped objects are not
accidentally leaked to the outside system.

Aliasing using first-class interpreters The implementation of an alias in-
terpreter using Pinocchio is fairly straightforward. First all interpreter meth-
ods that are related to one of the tracked actions (object allocation, reading
and writing of fields, passing as argument, evaluation of literals (constants)
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and returning from method) are overridden to generate the aliases. For ex-
ample, the method that interprets methods is overridden so that it returns a
ReturnAlias instance wrapped around the result:

interpretMethod: aMethod
| result |
result ← super interpretMethod: aMethod.
↑ (ReturnAlias alias: result)

environment: environment.

Notice that the actual semantics of the interpretation of methods is just in-
herited from the vanilla interpreter.

All methods that need the actual values inside the aliases are overridden
to first unwrap the aliases. Aside from methods related to the evaluation
of natives, all interpreter methods only need the value of the current self.
This is shown in the following method, which is invoked by the interpreter
whenever it evaluates an assignment to a slot. It assigns the actual value to
the slot of the current self by first unwrapping the aliased self and then
wrapping the value in a FieldWriteAlias:

assignSlot: aSlot to: anAlias
| alias unwrappedSelf |
unwrappedSelf ← self currentSelf value.
alias ← (FieldWriteAlias alias: anAlias)

environment: environment.
alias predecessor: (aSlot readFrom: unwrappedSelf).
↑ aSlot assign: alias on: unwrappedSelf

The alias interpreter uses a different object model for the base-level than
for the meta-level. As explained in the previous paragraph this requires the
alias interpreter to realize the upping and downing by itself. Every time an
object moves from the meta-level to the base-level it needs to be wrapped to
look like the other objects in the runtime (like aliases, in this case).

There are two places where objects potentially flow from the meta-level
to the base-level. The first is the initial closure passed to the interpreter. The
closure is linked to an environment that contains objects possibly referred
to by the code of the closure. Rather than directly sending value to the
closure, we first have to pre-process it:

interpret: aClosure
↑ self send: (Message new selector: #value)

to: aClosure asAliased

The asAliased message will deep-clone the closure, and wrap the clo-
sure as well as all the values referred to by its environment into allocation
aliases. We use allocation aliases since we are unsure of the origin of the ob-
jects. As it is the initial state of the alias interpreter, from the perspective of
the alias interpreter it is as if the objects were allocated at that point in time.
This indicates that users of interpreters that rely on a modified object model

96



6.2. Implementing Custom Interpreters

have to be careful not to pass a closure along that has references to huge
object graphs or ensure that deep-cloning is not required by the interpreter.

The second place where objects flow from the base-level to the meta-level
and back is in the evaluation of natives. To support the interpretation of na-
tives, the original alias interpreter overrides most of the supported methods
and performs the correct action. Since not all natives have the same se-
mantics, no single implementation can properly support the evaluation of
all of them. To complete our implementation we would also have to pro-
vide new implementations for the subset of operations we support. For
this experiment, however, we limited ourselves to the general solution that
works for most examples. Whenever a native is called, the receiver as well as
the arguments are downed and passed to the implementation of the meta-
interpreter. The result returned from this native is upped by wrapping it
into an allocation alias and passed to the application.

Evaluation The original Object Flow Analysis has been implemented by
directly extending the Pharo VM. It required changes of a large amount of
the VM code and took several weeks to implement. The Pinocchio version
on the other hand was implemented in less than one day. It is spread over
20 methods and 12 alias data classes.

One of the main ideas behind the alias interpreter is that it allocates
aliases on the heap so they are automatically garbage collected when their
state becomes irrelevant to the state of the application. Because the ex-
tension is at the VM level new objects have to be manually instantiated at
that level. Since referring to specific Smalltalk classes is cumbersome from
within the interpreter, the original interpreter just provides one class fitting
all types of aliases. This class has a special field designated to indicate the
actual alias type. In Pinocchio, the alias interpreter is implemented in a stan-
dard Smalltalk environment. This allows the programmer to rely on the full
expressiveness of the language: all aliases are instances of classes represent-
ing their specific type. Since Pinocchio interpreters reuse garbage collection
from the main runtime, it is also automatically used for collecting the aliases.

In contrast to the original alias debugger the Pinocchio version is fully
hosted within the language itself. This allows us to use the standard tools for
implementing, and more importantly, for debugging the alias interpreter.
Now that the alias interpreter is functional new tools or even alias inter-
preters can be debugged using the current alias interpreter. This is not pos-
sible in the original Smalltalk version, since their alias interpreter extensions
are written in C, and are thus not subject to the (modified) Smalltalk inter-
preter.

6.2.3 Recursive Interpreters

Behavioral reflection in Smalltalk entails manipulation of the (reified) run-
time stack. In Smalltalk-80, the state of the computation is fully captured by
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the runtime stack. As a consequence, the Smalltalk bytecode interpreter
does not need to keep track of any control flow itself and automatically
adapts to reflective changes to the runtime stack. The disadvantage of this
approach is that to be able to adapt to such reflective changes easily, the
evaluation of the interpreter is completely decoupled from the evaluation
of the application. Not only must bytecodes explicitly manipulate the stack,
but code that passes control from the meta-level to the base-level must be
“ripped” into event handlers that can run to completion without blocking
[2]. Since base-level code in Smalltalk-80 can make arbitrary changes to the
runtime stack, the bytecode interpreter must be prepared to resume execu-
tion in any arbitrary context. If the interpreter wants to keep track of state
related to the evaluation of the application other than what is available in
the standard stack frames, it also has to manually keep track of this data and
keep it in sync with the application’s execution.

Pinocchio’s use of first-class interpreters with automatic stack manage-
ment [2] greatly simplifies the expression of behavioral reflection. Code that
passes control from the meta-level to the base-level can be straightforwardly
implemented by relying on recursive calls. Pinocchio interpreters can sim-
ply rely on recursion to keep track of any state related to the application’s
control flow just like any other Smalltalk application.

The disadvantage of this approach is that it becomes impossible to di-
rectly perform operations normally requiring explicit stack manipulations
since there is no explicit stack. We identify two types of direct stack ma-
nipulation in Smalltalk: applications need to be able to (i) capture a certain
state of the stack and later restore it, and (ii) capture a stack and pass it
to another program, a meta-circular interpreter, for reflective evaluation of
the application. In this section we show that Pinocchio supports these two
requirements respectively through first-class continuations [34] and modifi-
able first-class interpreters.

Parallel Debugging An example of a situation where a user would like to
capture and restore the state of a stack is a parallel debugger. Unlike the nor-
mal debugger, which only evaluates one block at a time, this special kind of
debugger takes two blocks and interprets them in parallel comparing their
state of evaluation at each step.

Consider the following failing test case, which we encountered during
the development of Pinocchio:

dict ← SetBucket new.
dict at: #key put: 'value'.

self assert: (dict includes: #key).
self assert: (dict includes: 'key').

The second assertion (last line) fails. This test was documenting a bug
that we had difficulties to track down. Symbols and strings are considered
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equal ( #key = 'key') in Smalltalk and hence the second assertion should
pass too.

Using the basic debugger described in subsection 6.2.1 to find the dif-
ference in execution of the two assertions is cumbersome. The manual ap-
proach would be to launch a separate debugger for each of the assertions
and step through the code until the states of the tests differ.

Since we had difficulties tracking down the root cause of this bug, we
implemented a specialized debugger that we call parallel debugger. The use
of the parallel debugger for the previously mentioned test case looks as fol-
lows:

ParallelDebugger interpret:
(Array

with: [ dict includes: #key ]
with: [ dict includes: 'key' ])

The debugger runs the given blocks in parallel up to the point where the
executions start to differ:

SetBucket>>#includes:
SetBucket>>#do:

SmallInt(1)>>#to:do:
BlockClosure>>#whileTrue:

SmallInt(1)>>#<=
SmallInt(1)>>#>
−→ false

false>>#not
−→ true

true>>#ifTrue:
SetBucket>>#at:
−→ #'key'

Symbol(#'key')>>#==
1) (#'key') −→ true
2) ('key') −→ false

Listing 6.1: Parallel debugger trace

Looking at this trace immediately reveals that both traces differ upon a strict
equality check on a symbol. In the first case the comparison returns true,
in the second case false. SetBucket incorrectly uses == (pointer equality)
rather than = to compare keys, rendering strings and symbols distinct. The
parallel debugger provides the minimal output needed to quickly identify
the root cause of the problem.

To implement the parallel debugger we need to be able to evaluate mul-
tiple closures in lock step. In an interpreter with manual stack management
this is straightforward. Rather than interpreting the code of one interpreter
in a loop, one lets all interpreters do one step of evaluation before compar-
ing their states. Pinocchio however relies on automatic stack management
and thus relies on recursion to evaluate the closures. This implies that the
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Figure 6.4: Thread-based parallel execution of two code parts in the parallel
debugger.

parallel debugger needs to be able to jump out of, and back into a certain
recursion state. This problem is similar to implementing coroutines in a re-
cursive language. The only difference is that the parallel debugger itself
handles thread-switching before and after each message send. Coroutines
and threads can easily be accommodated in recursive languages through the
use of first-class continuations [71].

Just like the debugger described in subsection 6.2.1, the parallel debug-
ger is built as a subclass of the stepping interpreter. The main difference is
that the stepping block is not used to control a single execution trace, but
to handle the interleaved execution of the given number of closures. Before
and after each message send, control is transferred to the next thread: The

100



6.2. Implementing Custom Interpreters

state of the current green thread2 is stored by capturing its continuation and
the application’s environment. The next green thread is then continued by
restoring its application’s environment, and by activating its continuation.
Whenever we resume the first thread, we compare the state of all the rou-
tines and continue with the first thread.

The parallel debugger, like the serial debugger presented in Section 6.1,
directly reuses the object model of the underlying base-level interpreter. As
a consequence, no upping or downing is required, and objects can freely
flow between the base- and meta-levels.

Even though interpreters are defined recursively as AST visitors, this
poses no problem for expressing non-local flow of control. Green threads
are easily simulated by capturing the needed continuations and explicitly
transferring control when needed (in the case of parallel debuggers, before
and after each message send). The parallel debugger is only possible due
to the support for continuations in Pinocchio. Without continuations we
could not switch between the execution of multiple closures. It would only
be possible to continue the execution of the next closure from inside the
current one.

Runtime Modifiable Interpreters Meta-circular interpreters such as the
Smalltalk debugger are a second type of application that require direct ac-
cess to an explicit stack. The Smalltalk interpreter can pass control over the
evaluation of an application to a debugger by passing its runtime stack to
the debugger. The Smalltalk debugger however is fully meta-circular and
has to manually manage this runtime stack for the evaluation of the appli-
cation. The advantage of this approach is that since the meta-circular as
well as the core interpreter are both decoupled from the state of the applica-
tion’s stack, the meta-circular interpreter is given full control over the evalu-
ation of the application. While Pinocchio’s first-class interpreters only have
continuous behavioral impact on the evaluation until the closure finishes,
meta-circular interpreters with manual stack management can evaluate the
program beyond the continuation where the interpreter was started. This is
a very useful feature as is obvious from the Smalltalk debugger. Whenever
an error occurs, the Smalltalk debugger can take over the evaluation as if
it had been running the application all along, although the core interpreter
has mostly executed the program up to that point.

If in Pinocchio we would like to start a new interpreter to change the
interpretation semantics, the change would be limited to the scope of the
control flow in which they were activated. This is undesirable for debugging
purposes since we would not be able to step through more of the program
than the recursion of the message send that caused the error. We rather want
to change the semantics of an interpreter while it is running.

In Pinocchio modifiable interpreters are accommodated by letting the

2The parallel debugger manages green threads, since it emulates true multi-threading by
alternating between the different green threads on a single hardware thread.
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user specify which parts of an interpreter are mutable. The stepping inter-
preter discussed in subsection 6.2.1 is an example of an interpreter whose
semantics can partly be modified while it is running. Its stepBlock influ-
encing the semantics of message sends is orthogonal to the control flow of
the application, leaving it unaffected by the interpreter exiting the control
flow where the stepBlock was installed. The semantics of the stepBlock

is only bound to the scope in which its host interpreter is active.
The following example is an extension method to the debugger described

in subsection 6.2.1. It temporarily replaces the current stepping semantics
for the duration of a variable number of message sends. It allows a user to
specify a specific number of steps to be skipped.

skipBlock: count
|skips previousBlock|
skips ← 0.
previousBlock ← self stepBlock.
↑ [ :receiver :class :message :action |

skips ← skips + 1.
(skips >= count)

ifTrue: [ self stepBlock: previousBlock ].
self executeAction: action ].

For the duration of the given number of message sends the user is not
prompted concerning the evaluation. Once the steps are over, control is
returned to the previously active stepping style.

The skipBlock: method is a clear example of how the stepBlock can
be used to apply changes that potentially surpass the control flow in which
they were activated. Even if the number of skipped steps is larger than the
number of steps needed for the application-level recursive call before which
the block was installed, the block will stay active until the requested number
of steps are over.

6.3 Minimizing the Interpreter Stack

Our approach of starting new interpreters on top of other interpreters is sim-
ilar to, albeit the inverse of, the tower of first-class interpreters in Refci [133].
This has the advantage that we can use the same approach to minimize the
height of the tower that is actually running at each point in time. For exam-
ple, since normal applications are not interpreted, the stack of interpreters
is empty. It is important to never run on a stack bigger than necessary, since
each extra level of interpretation has a steep price in terms of performance.

Since most custom interpreters will only partly alter the semantics of
existing native methods, the default implementation in charge of invoking
natives, invokeNative, allows interpreters to rely on meta-meta-level im-
plementations of natives to provide the behavior to the base-level. In other
words, whenever an application ends up in code that invokes a native, the
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interpreter can ask its meta-interpreter to perform the actual invocation of
the native. This temporarily drops the interpreter from the active stack of
interpreters.

In Pinocchio the height of the tower is further pragmatically minimized
by using invokeNative. By making the whole standard interpreter available
as a fine-grained set of natives installed on the Interpreter class (see Fig-
ure 6.1), only the extensions to the interpreter are evaluated meta-circularly.
The reused native methods are evaluated directly at the bottom level.

Since natives are able to send messages back to the application level,
every call to invokeNative stores the interpreter that triggered the actual
native. To ensure that the application always runs on the proper level of
interpretation, when the native wants to send a message back to the ap-
plication it first has to restore the stack of interpreters that was active before
invoking the native. An example of such a case is the native implementation
of the at: method installed on dictionaries. This method needs to be able
to request the hash value of a key, and later compare it with the keys in the
dictionary using the = message. Both methods are within the control flow
of the native evaluation of the at: method. To evaluate both methods at the
right level of interpretation, the stack of interpreters that was active before
the at: was invoked needs to be reconstructed before their evaluation is
started.

6.4 Performance

We indicate the expected performance ceiling by running a simple bench-
mark, calculating the 27th Fibonacci number, on a fully meta-circular im-
plementation of the interpreter. We benchmark the interpreter running on
top of Pinocchio implemented as simple bytecode interpreter, as well as the
bytecode interpreter itself. On an average of 10 consecutive runs, the native
interpreter executes the code in an average time of 0.09 seconds, whereas
the meta-circular interpreter takes 25.60 seconds. The meta-circular inter-
preter thus executes 250 times slower than the native interpreter. This is the
expected cost for each extra level of interpretation without optimizations.

The benchmarked version of Pinocchio calculates the 35th Fibonacci num-
ber in 2.5 seconds, and is thus more than 10 times slower than the version
described in Chapter 4. We expect that, for a single additional level of in-
terpretation, a faster runtime will make the first-class interpreter approach
more feasible.

For further research, it is also interesting to look into dynamic optimiza-
tion techniques that can bring the performance of applications running on
top of custom interpreters close to the speed of standard applications. This
essentially removes one meta-level. Previous research [17, 151] has outlined
how meta-level tracing can optimize code that is running on top of an in-
terpreter, without needing to implement a compiler that knows about the
semantics of the interpreter. The idea is to run the application on top of an
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interpreter, that is in turn running in a JIT compiling environment. Straight-
forward tracing of the interpreter would over time, however, compile the
single bytecode implementations as separate native functions. This brings
its performance maximally to that of a simple interpreter written in native
code. However, by also passing the program counter of the application in
the interpreter to the tracing facility, the JIT compiler can trace how the in-
terpreter evaluates the application. This approach allows the compiler to
implicitly compile the application by tracing the application through the
interpreter. The dynamic compiler, in essence, expands the base-level ex-
pressions using the meta-level interpreter code that evaluates it, optimizes
the expanded code, and executes the result as native meta-level code. In
the ideal scenario, this would completely remove superfluous interpretation
overhead for a single layer of interpretation.

6.5 Related Work

In this section we compare our approach to the reflective interpreters tech-
niques, as well as meta-circular interpreters.

6.5.1 Tower Approach to First-Class Interpreters

Of all reflective interpreters, our model is most similar to the model pro-
posed by Simmons et al. in their prototype Refci [133]. Just like Pinocchio,
Refci provides access to first-class extensible interpreters. Their prelimi-
nary procedures are the equivalent of having functions that create anony-
mous subclasses of a existing interpreter classes, overriding single inter-
preter methods (or implementing a single new interpreter methods).

Unlike Refci interpreters, Pinocchio’s interpreters are not tail-recursive
continuation passing interpreters (by default). Instead they are normal re-
cursive interpreters that rely on the continuation of the runtime below to
maintain their continuation. This greatly simplifies the final definition of
the actual interpreter since control flow is handled implicitly. It however
does not restrict the power of the interpreter since continuations can be cap-
tured and restored. In Refci such an implementation would be impractical
since tail-recursion is used to ensure that the theoretically infinite tower of
interpreters can be cut off to a finite stack of actually running interpreters
and an unbounded meta-continuation of waiting interpreters.

Refci provides no model to share extensions between different inter-
preters in the stack. Duplicate changes need to be installed manually in
the levels where they are required. In Pinocchio subclassing takes care of
the sharing of code. Since in Pinocchio interpreters are manually stacked,
these interpreters can be instances of the same interpreter thus automati-
cally sharing extensions.

We go beyond the Refci model, by showing (in Section 6.2.3) how Pinoc-
chio interpreters can be made modifiable at run time. The first-class inter-
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preters themselves can decide what is made modifiable. The modifications
applied to an interpreter in Pinocchio can have further extent than the re-
cursion in which they were created. In Refci this notion of extended contin-
uations was merely noted as future work.

No effort was made to outline how Refci can be made into a practical
runtime. Since all interpreters in Refci are meta-circular, it thus suffers from
the problems explained in subsection 6.5.2.

6.5.2 Meta-circular Interpreters

Meta-circular interpreters [1] such as the Smalltalk debugger and all un-
compiled versions of the interpreters described in Section 3.2 offer a way
of easily allowing changes to the semantics of a language at runtime from
within the language itself. They generally reify a subset of features from the
host-language, and reuse the complementary set of features.

The first problem with meta-circular interpreters is that to modify their
semantics one generally needs to directly modify the source code. No exten-
sion mechanisms are provided by the interpreters themselves. Pinocchio on
the other hand provides a clear protocol for extension through subclassing.

The second problem is that meta-circular interpreters impose a large
runtime overhead in comparison with standard interpreters. This prob-
lem is partly solved by compilation of the full interpreter, as discussed in
Section 3.2, but this results in a compile-time rather than run-time change,
resulting in immutable interpretation semantics at run time.

While in the current implementation of Pinocchio the Interpreter class
is still mostly meta-circular, a clear strategy of how performance can be
greatly increased has been outlined. We explained how to rely as much as
possible on the existing C-level interpreter, essentially removing the meta-
circular layer for all code except for the custom interpreter extensions. Then
we explained how these extensions to the interpreter can also be optimized
at runtime through JIT compilation.

6.5.3 Dealing with Infinity

Brown [148] is an extension of 3-Lisp that introduced the meta-continuation
as an explicit representation of the infinite tower of interpreters. As shown
in Figure 6.5, the theoretically infinite tower of interpreters can be imple-
mented as a finite stack of interpreters running on top of a level-shifting pro-
cessor — a non-reflective processor that is able to shift up a level whenever
a reification occurs in the application, i.e., go up one meta-level. In order to
stay efficient the processor is also able to shift down whenever a level of in-
terpretation is not needed anymore. An application should ultimately never
run at a level higher than is necessary. Shifting up is implemented in Brown
by popping an interpreter from the meta-continuation, a lazy infinite stack
of interpreters. Shifting down pushes the unneeded interpreter back onto
the meta-continuation.
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i1

i2

i1

shift upshift up

shift upshift up shift downshift down

shift downshift down

AppAppAppApp

Figure 6.5: Finite Scope of the Infinite Tower of Interpreters

As explained in Section 6.3, Pinocchio uses this technique to minimize
its finite stack of interpreters.

6.6 Summary

First-class interpreters inherit their object model from Smalltalk, except for
the fact that “compiled” methods are reified as ASTs rather than directly
as the code format used by the native execution engine. While running an
application on top of a custom interpreter, objects can freely flow between
base- and meta-levels provided their structural representation remains the
same. Otherwise the customized interpreter is responsible for upping and
downing objects between levels. Interpreters are defined recursively, but
have a fine degree of control over program flow due to their ability to cap-
ture and transfer control to first-class continuations. Garbage collection, and
other native features provided by the native meta-level can be simply reused
by specialized interpreters.

We have shown through several examples how behavioral reflection pro-
vided by first-class interpreters allows sophisticated behavioral adaptations
to be easily implemented. In addition to a serial and a parallel debugger, we
demonstrated how an alias interpreter, which tracks object flow for back-in-
time debugging, can be easily implemented by a specialized interpreter, in
contrast to a conventional approach in Smalltalk requiring invasive changes
to create a specialized VM.

The first-class interpreters are presently a proof-of-concept prototype im-
plemented on top of an older version of Pinocchio. No serious optimization
effort has yet been undertaken. We have outlined a number of promising
tracks that we believe will significantly reduce the overhead introduced by
specializing an interpreter, including simply porting the model to the latest
version of Pinocchio.
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In this dissertation we have identified communication between objects, seman-
tics of object state, and interpretation of code as three building blocks funda-
mental to object-oriented runtimes. We showed that by reifying them into
the runtime we open up the language. We provided full implementations
with realistic performance for all the contributions.

Our key contributions are the following:

• By implementing a generic message passing protocol we have lim-
ited the assumptions objects impose on their communication partners.
Through the unification of meta- and base-level code we have attained
polymorphism at the meta-level, supporting fine-grained customiza-
tion through a behavioral MOP. We showed that using this building
block we can 1) customize the meta-level with base-level objects, and
2) modify the semantics of message lookup. (Chapter 4)

• By introducing first-class structural metaobjects we have bridged the
gap between high-level object features and the low-level physical lay-
out. We showed that using these building blocks we can 1) provide be-
havioral hooks to object layouts that are triggered when the fields of an
object are accessed, 2) compose multiple slots into a custom low-level
representation and 3) simplify the implementation of state-related lan-
guage extensions such as stateful traits. (Chapter 5)

• We have extended the behavioral reflective model of Pinocchio with
first-class AST interpreters, separated from the low-level language im-
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plementation. We have showed that first-class interpreters easily sup-
port non-trivial debuggers. (Chapter 6)

7.1 Future Work

In this section we provide an overview of further research and practical next
steps related to the implementation of Pinocchio.

7.1.1 Research Directions

Structural dependencies. By establishing a calling convention, in Chapter 4
we limited the dependency on the expected encoding of behavior.
While this provides greater flexibility for executed code, it means that
every message send is essentially a foreign function call. This implies
that we need to design a memory management system that can cope
with diverse languages, especially manually managed languages, and
the flow of data between them. This may mean that the presented
conventions need make the management of passed data explicit.

Negotiating object features. In Chapter 5, we have shown that the layout
model supports slots that require special structural features, using lay-
out scopes (e.g., BitSlot requires a free bit in a BitFieldScope, see
subsection 5.3.1). A problem with the current implementation is that
a pragmatic approach was taken to support such slots. The slots di-
rectly extend the inherited layout scopes to include missing layout
scopes. This, however, allows slots to mutate the chain of inherited
layout scopes, or discard it altogether. Instances of the resulting class
will be inconsistent with the inherited code that operates on them,
likely ending in invalid memory access. Instead, slots should use a
well-designed communication API to require object features. The API
should ensure that slots can only add new features. This may imply
replacing layout scopes by another model that better captures struc-
tural object features.

Describing arrays. Currently layouts only apply to regular Smalltalk ob-
jects. It would be interesting to investigate how the model would also
apply for the arrayed portion of arrayed objects. For example, by at-
taching a type to the array we can imagine supporting inlined objects
that have better cache locality than arrays containing objects via refer-
ences. This would be beneficial for the standard Pharo dictionary im-
plementation that normally contains Association instances, objects
that contain a key-value pair. Rather than linking to the Association

instance, the key-value could directly be inlined in two consecutive
entries, without the user of the array having to be aware of this fact.
By extending the feature-set related to the state of arrays, the resulting
language moves in the direction of object-oriented databases.
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Context state as a building block. The list of identified building blocks is
not exhaustive. One additional block we already identify is the state
of the current execution context. By reifying state manipulation within
a context frame (reading from and assigning to local variables) we es-
sentially support active variables [60, 5], local variables that behave
just like our slots, which are read from and written to using access
methods rather than directly using primitive operations. This feature
is useful for example to implement contextual values [139]. Given that
activations in Self are clones of the method, the layout model might be
reusable in that setting to directly support active values without the
need to extend the model.

7.1.2 Practical Steps

Reintegrating results. The different approaches presented in this disserta-
tion have mostly been developed in isolation. Given that the runtime
explained in Chapter 4 is the latest version, both first-class layouts and
first-class debuggers should be reintegrated into that version.

Polishing Pinocchio. To evolve Pinocchio into a robust Smalltalk runtime,
the compiler needs to be finished; memory management and mul-
tithreading need to be implemented; and a multitude of primitives
needs to be supported.

Static single assignment. The Pinocchio implementation went through sev-
eral stages of rewrites to improve performance while getting closer to
the hardware. Since during development it was used as a platform
for learning how to generate self-supporting native code, the compiler
based on three address code (TAC) is reaching its limitations and is
currently holding up development. To increase progress, effort needs
to be put into replacing the TAC compiler by a compiler based on static
single assignment form. This effort would also pay off for implement-
ing further optimizations, enabling both static and dynamic optimiza-
tions through peephole optimizations and inlining.
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