
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
1
0
2
6

|

d
o
w
n
l
o
a
d
e
d
:

4
.
7
.
2
0
2
5

Augmenting IDEs with
Runtime Information for

Software Maintenance

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern
vorgelegt von

David Röthlisberger
von Langnau (BE)

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, 04.06.2010 Prof. Dr. U. Feller

This dissertation is available as a free download from http://scg.unibe.ch/

Copyright © 2010 David Röthlisberger

The contents of this book are protected under Creative Commons Attribution-ShareAlike
3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://www.creativecommons.org/licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license):
http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

Published by David Röthlisberger, Switzerland
ISBN 978-1-4457-6026-1
First Edition, May 2010

http://scg.unibe.ch/
http://www.creativecommons.org/licenses/by-sa/3.0/
http://www.creativecommons.org/licenses/by-sa/3.0/legalcode

Acknowledgments

I was only able to complete this dissertation thanks to the kind help of
people who gave me advice, hints, ideas, or encouragement.

Most notably, I want to thank Oscar Nierstrasz for giving me the
opportunity to work on this dissertation at the Software Composition
Group. Without his continuous support, his professional advice, and his
encouraging feedback on my work it would not have been possible to
finish this dissertation.

I am also grateful to Harald Gall for being the external reviewer of this
dissertation, for carefully reading and evaluating this document, and for
coming to Bern to join the jury of the PhD defense. I also thank Torsten
Braun for accepting to chair the examination and the PhD defense.

I want to thank particularly Stéphane Ducasse who introduced me to
the Software Composition Group, motivated me to pursue a PhD, and
gave me countless ideas and visions that highly influenced this work.
Without the inspiring discussions and email conversations we had, with-
out Stef’s enthusiasm, his priceless advice and his infinite, inexhaustible
passion for the things he is doing, this dissertation would not be the same.

Special thanks also goes to Orla Greevy who taught me how to write
papers and conduct research and who created a warm working environ-
ment when I started with this dissertation. I also thank Tudor Gîrba for
all the countless and intensive discussions which often sharpened my
awareness for important aspects of research. Moreover, I thank Marcus
Denker who supervised my Master’s thesis and back then encouraged
me to pursue a PhD by introducing me to the world of research.

I specifically also thank people that provided appreciated feedback on
drafts of this dissertation: Oscar Nierstrasz, Orla Greevy, Tudor Gîrba,
Niko Schwarz, Andreas Fischer, Andreas Thomet, Sabine Benz.

Many thanks go to the present and former Software Composition
Group members: Adrian Kuhn for his inspiring nature, his imaginative

appeal, and for the room sharing in Vancouver; Adrian Lienhard for
his even-tempered, unagitated yet impressing, assiduous work; Fabrizio
Perin for all the funny discussions, the splendid Italian lessons, and the
entertaining adventures in Lille; Lukas Renggli for his unrivaled Smalltalk
skills and his quality awareness; Jorge Ressia for his unique sense of hu-
mor; Niko Schwarz for the funny exercise sessions and his unadulterated
belief in research; Toon Verwaest for his inspiring enthusiasm; Erwaan
Wernli for his feature-length presentations; Marcus Denker for his social-
izing spirit and his unshakable belief in the good of Smalltalk; Markus
Gälli for his cheerful mindset; Tudor Gîrba for his helpful attitude and his
willingness to share his knowledge; Orla Greevy for her amiable nature,
the pleasant co-operation, and the good time we shared in the same office.

Thanks also to Therese Schmid and Iris Keller for their excellent sup-
port with the administrative chores. I particularly also thank Marcel
Härry for his studious, persevering work on Senseo and Orla Greevy for
her contributions to FeatureEnv!

I also thank the external people I collaborated with, most notably
Danilo Ansaloni, Alexandre Bergel, Walter Binder, Simon Denier, Philippe
Moret, Damien Pollet, Romain Robbes, and Alex Villazón. All of them
contributed to this dissertation. I particularly thank Alexandre Bergel for
inviting me to Santiago de Chile and for the nice time we had there.

Furthermore, I thank various persons I met during the work on this
dissertation at conferences, during meetings or research visits: Hani
Abdeen, Marco D’Ambros, Alberto Bacchelli, Jérémy Barbay, Gwenael
Casaccio, Johan Fabry, Thomas Fritz, Sonia Haiduc, Lile Hattori, Michele
Lanza, Jannik Laval, Mircea Lungu, Fernando Olivero, Daniel Ratiu, Eric
Tanter, and Richard Wettel.

Special thanks go to Anina Bachem, Michelle Bauer, Katharina Leder-
mann, Rachel Martins, and Petra Schilling who were somehow, for one or
the other reason part of the process.

I thank my family, Heidi, Andreas, Erwin, Mirjam, and Stefan. Above
all, I thank Therese for her heart of gold, her greatness of mind, and her
unconditional support.

My words fly up, my thoughts remain below. Words without
thoughts never to heaven go.

— William Shakespeare

Abstract

Object-oriented language features such as inheritance, abstract types,
late-binding, or polymorphism lead to distributed and scattered code,
rendering a software system hard to understand and maintain. The
integrated development environment (IDE), the primary tool used by
developers to maintain software systems, usually purely operates on
static source code and does not reveal dynamic relationships between
distributed source artifacts, which makes it difficult for developers to
understand and navigate software systems.

Another shortcoming of today’s IDEs is the large amount of informa-
tion with which they typically overwhelm developers. Large software
systems encompass several thousand source artifacts such as classes and
methods. These static artifacts are presented by IDEs in views such as
trees or source editors. To gain an understanding of a system, developers
have to open many such views, which leads to a workspace cluttered with
different windows or tabs. Navigating through the code or maintaining a
working context is thus difficult for developers working on large software
systems.

In this dissertation we address the question how to augment IDEs
with dynamic information to better navigate scattered code while at the
same time not overwhelming developers with even more information in
the IDE views. We claim that by first reducing the amount of informa-
tion developers have to deal with, we are subsequently able to embed
dynamic information in the familiar source perspectives of IDEs to bet-
ter comprehend and navigate large software spaces. We propose means
to reduce or mitigate the information by highlighting relevant source
elements (HeatMaps), by explicitly representing working context (Smart-
Groups), and by automatically housekeeping the workspace in the IDE
(AutumnLeaves). We then improve navigation of scattered code by ex-
plicitly representing dynamic collaboration (Hermion, Senseo, CollView)
and software features (FeatureEnv) in the static source perspectives of

vi

IDEs. We validate our claim by conducting empirical experiments with
developers and by analyzing recorded development sessions.

Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Problems of Traditional IDEs 1

1.1.1 Development Activities 2

1.1.2 Problem Identification 4

1.1.3 Taxonomy of IDE Problems and Development Ac-
tivities . 9

1.2 Proposal: Tackling Overloaded Views and Integrating Dy-
namic Information in IDEs 12

1.2.1 Mitigating Information Overload in IDEs 12

1.2.2 Enhancing IDEs with Dynamic Information 14

1.2.3 Summary . 16

1.3 Contributions . 19

1.4 Structure of the Dissertation 20

2 State of the Art 23

2.1 Development Environments 23

2.1.1 Program Analysis and Sophisticated Information
Presentation . 24

2.1.2 Source History Analysis 32

2.1.3 Developer Activity Analysis 35

2.1.4 Debugging, Profiling 41

viii Contents

2.1.5 Querying . 45

2.1.6 Conclusions . 49

2.2 Software Analysis and Visualization 50

2.2.1 Means to Present Static or Historical Information . 51

2.2.2 Dynamic Analysis 54

2.2.3 Summary . 60

2.3 Conclusions . 60

I Mitigating Information Overload in IDEs 63

3 HeatMaps – A Navigational Aid 67

3.1 Introduction . 67

3.1.1 Positioning HeatMaps 67

3.1.2 Introduction to HeatMaps 68

3.2 Information Overflow and Overload in IDEs 70

3.2.1 Motivating Use Case 70

3.2.2 Development Driven Information 71

3.3 HeatMaps . 72

3.4 Validation . 76

3.4.1 Efficiency of HeatMaps 77

3.4.2 Accuracy of HeatMaps 77

3.4.3 User feedback . 83

3.5 Related Work and Discussion 84

3.5.1 Related Work . 84

3.5.2 Discussion . 86

3.6 Summary of the Chapter . 88

4 SmartGroups – Representing Context in IDEs 91

4.1 Introduction . 91

4.1.1 Positioning SmartGroups 91

4.1.2 Introduction to SmartGroups 92

4.2 Software Space Navigation Issues 94

ix

4.3 Existing Approaches . 96

4.4 SmartGroups in a Nutshell 98

4.4.1 Automatic Smart Groups 98

4.4.2 Manual Smart Groups 107

4.4.3 Query Results as Smart Groups 107

4.4.4 Integration of the SmartGroups View 108

4.5 Validation . 109

4.5.1 Correctness of SmartGroups 109

4.5.2 User Feedback . 116

4.6 Summary of the Chapter . 117

5 AutumnLeaves – Reducing the Number of Open Windows 119

5.1 Introduction . 119

5.1.1 Positioning AutumnLeaves 119

5.1.2 Introduction to AutumnLeaves 120

5.2 Problem Analysis: Window Plague in IDEs 122

5.3 AutumnLeaves . 125

5.3.1 AutumnLeaves in a Nutshell 125

5.3.2 Variations, Modifications, Adaptations 128

5.4 Validation . 130

5.4.1 Correctness . 130

5.4.2 Practicality . 136

5.4.3 Differences between IDEs 137

5.5 Summary of the Chapter . 138

6 Discussion 139

6.1 Other IDE Enhancements Tackling Information Overload . 139

6.2 Conclusions . 140

6.2.1 Problems Addressed 140

6.2.2 Remaining Problems 142

x Contents

II Exploiting Dynamic Information in IDEs 145

7 Hermion – Extending Source Code Perspectives with Dynamic
Information 149

7.1 Introduction . 149

7.1.1 Positioning Hermion 149

7.1.2 Introduction to Hermion 150

7.2 Dynamic Information in the IDE 152

7.2.1 Scenario: Understanding a Complex System 152

7.2.2 Hermion Overview 157

7.3 Dynamic Information Gathering 158

7.3.1 Partial Behavioral Reflection 159

7.4 Validation . 160

7.4.1 Case Studies: Pier and OmniBrowser 161

7.4.2 Efficiency . 163

7.4.3 Preliminary Empirical Evaluation 163

7.5 Discussion . 165

7.6 Related Work . 166

7.6.1 Techniques Encompassing Dynamic Information . 166

7.6.2 Techniques Purely Based on Static Analysis 167

7.7 Summary of the Chapter . 168

8 Senseo – High Level Augmentations of IDEs with Dynamic In-
formation 171

8.1 Introduction . 171

8.1.1 Positioning Senseo 171

8.1.2 Introduction to Senseo 172

8.2 Motivation . 174

8.3 Integrating Dynamic Information in IDEs 176

8.3.1 Architecture . 176

8.3.2 Dynamic Information 177

8.3.3 Enhancements to the IDE 178

8.4 Collecting Dynamic Information 181

xi

8.5 Validation . 184

8.5.1 Experimental Design 184

8.5.2 Results and Discussion 188

8.5.3 Threats to Validity 192

8.6 Performance . 194

8.7 Related Work . 197

8.8 Summary of the Chapter . 199

9 CollView – Representing Dynamic Collaboration in IDEs 201

9.1 Introduction . 201

9.1.1 Positioning CollView 201

9.1.2 Introduction to CollView 202

9.2 Hidden Dynamic Collaboration 204

9.3 Representing Dynamic Collaboration in the IDE 207

9.3.1 Gathering Dynamic Information 207

9.3.2 Explicit Dynamic Collaboration 208

9.3.3 Enhancing Existing IDE Tools 211

9.4 Validation . 212

9.4.1 Performance Benchmarks 212

9.4.2 Developer Feedback 214

9.5 Discussion . 215

9.6 Related Work . 218

9.7 Summary of the Chapter . 220

10 FeatureEnv – Visualizing Software Features in IDEs 223

10.1 Introduction . 223

10.1.1 Positioning FeatureEnv 223

10.1.2 Introduction to FeatureEnv 224

10.2 Problem of Feature Identification 226

10.2.1 Explicitly Representing Features in the IDE 226

10.3 FeatureEnv, a Feature-centric Environment 228

10.3.1 Feature Affinity in a Nutshell 228

10.3.2 Elements of FeatureEnv 229

xii Contents

10.3.3 Maintaining Software with FeatureEnv 233

10.4 Validation . 234

10.4.1 Introducing the Experiment 234

10.4.2 Hypotheses . 235

10.4.3 Study design . 235

10.4.4 Study Result . 237

10.4.5 Threats to Validity 242

10.4.6 Study Conclusion . 243

10.5 Discussion . 243

10.6 Related Work . 245

10.7 Summary of the Chapter . 246

11 Discussion 249

11.1 Problems Addressed in the Second Part 249

11.2 Problems Previously Addressed 251

11.3 Remaining Problems . 252

III Conclusions 255

12 Contributions 259

13 Perspectives 265

IV Appendices 269

A Additional IDE Enhancements 271

A.1 Visualizations . 271

A.1.1 System Complexity View 272

A.1.2 Class Blueprint . 273

A.1.3 UML Class Diagrams 275

A.2 Iconic Information . 276

Bibliography 279

List of Figures

1.1 Table of development activities and their problems devel-
opers face when working on them in IDEs. A cell with an
’X’ means that the corresponding problem affects the corre-
sponding activity, while a grayed out cell means that there
is no special influence of this problem on this particular
activity. 9

1.2 The different problems of IDEs our seven techniques tackle
and to which development activities they thus contribute.
A cell with an ’X’ means that the corresponding problem
affects the corresponding activity, but we do not provide
a solution for this particular problem. A grayed out cell
means that there is no influence of a problem on a particular
activity. 18

2.1 Seesoft colors source code lines in a heat gradient to draw
a developer’s attention to important lines. 25

2.2 Seesoft tackles the information overload and the missing
overview in IDEs, but only on a source code level. 26

2.3 Microprints appearing next to the method source code in
the VisualWorks Smalltalk IDE. 27

2.4 Microprints mitigate the problem of information overload
and missing overview in IDEs, but only on a method and
single class level. 27

2.5 Fluid source code views inlining the method definition of
the invoked method getNextTask() in Eclipse’s source editor. 28

2.6 Fluid source code views aims at improving the information
overload, the overview, and the access to distributed artifacts. 29

xiv List of Figures

2.7 Hopscotch’s expandable and collapsable source editor view
showing several classes and their methods. 30

2.8 CodeSonar specifically addresses the problem of not hav-
ing support for quality assessment in IDEs and also im-
proves the overview of class relationships in software sys-
tems. 31

2.9 ROSE’s suggestion view (lower right) integrated into Eclipse. 33

2.10 Hipikat’s results view showing tasks similar to the cur-
rently performed task as specified in a task report. 34

2.11 ROSE, Hipikat, and other mining approaches tackle the
problem of related but distributed artifacts whose collabo-
ration is hidden in IDEs. Furthermore, they also mitigate
the information overload problem as related artifacts can
be easily navigated using the recommendation lists. 34

2.12 A concern representation in FEAT integrated in Eclipse. . . 36

2.13 FEAT tackles the problems of missing overview and in-
formation overload. If recorded navigation activities are
accurate, FEAT can reveal hidden dependencies between
distributed source artifacts relevant for specific features. . 37

2.14 NavTracks’ related files view integrated in Eclipse. 37

2.15 NavTracks mitigates the information overload problem as
related entities can be quickly navigated with the recom-
mendation list, which also contains distributed artifacts
whose collaboration is otherwise not explicit in the IDE. . . 38

2.16 The different views provided by Mylyn in Eclipse. 40

2.17 Mylyn highlights interesting artifacts to mitigate the in-
formation overload, identifies task-relevant entities, and,
dependent on the quality of the development activities,
reveals hidden collaboration between artifacts or identifies
entities used in particular features. 41

2.18 Whyline improves the understanding of static source code,
execution flow, and features. Hidden collaborations can be
also spotted in some cases. 42

2.19 The method trace view of Compass visualizes the entire
runtime control flow as a tree of nodes in a fisheye view. A
node represents a method execution. The call stack below
the method trace view focuses on a single slice of the trace. 43

xv

2.20 Compass reveals hidden dependencies between distant
source artifacts and improves understanding of static source
code and execution flow in specific system executions. . . 44

2.21 An example of JQuery showing in Eclipse an exploration
process tree starting with the results of a query. 46

2.22 JQuery reduces information overload in IDEs by explic-
itly representing concerns, thus relevant artifacts can be
studied in a single perspective, which also improves the
overview. Hidden collaboration between distributed arti-
facts is determined purely by static analysis. 46

2.23 Ferret’s query results view integrated in Eclipse. 47

2.24 By providing a dedicated but often overloaded query view,
Ferret improves to some degree information overload and
overview in the IDE. For the currently selected artifact,
related artifacts are revealed based on static and dynamic
analysis. However, only method invocations are dynami-
cally analyzed, thus support for the understanding of exe-
cution flow, static source code, and dynamic collaborations
is limited. 48

2.25 Summary of the different IDE problems tackled by the
presented related works. All problems are mitigated, but
not any of them thoroughly. 49

3.1 HeatMaps highlight relevant artifacts to reduce the infor-
mation overload and increase the overview in static source
views. HeatMaps also provide limited support for the
representation of context and helps developers to iden-
tify distributed artifacts that are conceptually related. As
HeatMaps can also take into account dynamic information,
they make execution paths more tangible by highlighting
executed artifacts. 68

3.2 A color gradient from light blue to light red representing
heat. 72

3.3 Two HeatMaps highlighting number of versions of source
artifacts, top left, and recently browsed artifacts, bottom
right. 73

3.4 Time-based color gradient. 74

3.5 Metrics-based color gradient. 75

xvi List of Figures

4.1 SmartGroups primarily mitigate the problem of informa-
tion overload, represent context in IDEs, and, to a limited
degree, also make explicit hidden collaboration between
distributed source artifacts. 92

4.2 SmartGroups view integrated on the left side of Pharo Smalltalk’s
system browser, the core of the Smalltalk IDE. 102

4.3 Procedure to determine the correctness of an identified
task-relevant elements depending on its position. 111

5.1 AutumnLeaves primarily alleviates the problem of an over-
loaded workspace in IDEs, which, in turn, also gives devel-
opers a better overview of the system under investigation. 120

5.2 Eclipse supports tabbed browsing of the source space, but
there is only space for a limited number of tabs; additional
tabs are accessible in scroll list at the right. 123

5.3 Squeak Smalltalk provides a desktop on which full-fledged
windows are opened, similar as in MacOS X. 123

6.1 The various lDE shortcomings addressed by the proposals
presented in the first part of the dissertation (HeatMaps,
SmartGroups, and AutumnLeaves) and the development ac-
tivities to which these proposals contribute (HM = HeatMaps,
SG = SmartGroups). 140

7.1 Hermion primarily addresses the problem of imprecise
static source code and also of unclear execution flow in
methods. Additionally, hidden collaboration between dis-
tributed artifacts is made explicit on a method and class
level. 150

7.2 UML Class Diagram of the OmniBrowser kernel classes. . 153

7.3 Static search (1) vs. precise dynamic search (2) for imple-
mentors of children in Hermion. 155

7.4 List of methods invoked for message send nodesFrom:forNode:
in Hermion. 155

7.5 List of types of instance variable selection extracted from
dynamic information in Hermion. 156

7.6 Enriched method source code view including a reference
view in Hermion. 157

xvii

7.7 The link invokes the metaobject upon occurrence of se-
lected base-level operations. 161

7.8 Comparison of execution times for different levels of in-
strumentation for OmniBrowser and Pier. 162

8.1 Senseo contributes to a better system overview, makes vis-
ible dynamic collaboration between distant artifacts, im-
proves the understanding of static source code and execu-
tion flow in and between source artifacts, and even offers
limited support for quality assessment. 172

8.2 Setup to gather dynamic information. 177

8.3 Sample code and its corresponding CCT. 179

8.4 All six interactive views of Senseo. 179

8.5 Simplified excerpt of the CCTAspect 183

8.6 Box plots comparing time spent and correctness between
control and experimental group. 190

8.7 Senseo overhead for the DaCapo benchmarks. 195

8.8 Size of transmitted data packets for “eclipse”. Serializa-
tion/transmission rate: 1.25 packets per second. 196

9.1 CollView aims at explicitly representing and visualizing
dynamic collaboration between related but statically dis-
tributed source artifacts. Moreover, CollView uncovers ex-
ecution flow primarily on a method level but to some de-
gree also on a class or package level. Eventually, CollView
contributes to a better system overview by displaying col-
laboration on a package level. 202

9.2 UML diagram of Mondrian classes involved when display-
ing a graph. 204

9.3 Sequence diagram in Mondrian to display a graph. 206

9.4 Class Collaboration Chart generated by the IDE. 209

9.5 Package Collaboration Chart generated by the IDE. 210

9.6 Method Collaboration Chart generated by the IDE. 211

9.7 Integration of a class collaboration chart in the Squeak
Smalltalk IDE. 211

xviii List of Figures

10.1 FeatureEnv addresses the problem of the invisibility of fea-
tures in IDEs by explicitly representing them and also con-
tributes to make visible hidden collaboration between dis-
tributed source artifacts. 224

10.2 The relevant Pier class hierarchies for the copy page feature
and its call graph. 227

10.3 The Elements of our FeatureEnv. 229

10.4 The Common Subexpression and Sequence Compression
of the Feature Tree. 231

10.5 Comparing average time to correct the two defects. 238

10.6 Comparing average time between using FeatureEnv and
OMNIBROWSER to discover and correct a defect. 238

10.7 Boxplots showing the distribution of the different subjects. 239

10.8 Comparing the average results for the effect of compact
feature overview on program comprehension. 240

11.1 The various lDE shortcomings addressed by the proposals
presented in the second part of the dissertation (Hermion,
Senseo, CollView, and FeatureEnv) and the development
activities to which these proposals contribute (H = Hermion,
S = Senseo, CV = CollView, FE = FeatureEnv). 250

A.1 System complexity view of the AST package integrated in
the Squeak OmniBrowser IDE. 273

A.2 Class blueprint of the RBBlockNode class. 274

A.3 UML class diagram of a part of the AST package. 275

A.4 Several icons appear when browsing class String, such as
the abstract, overridden, overrides, or overrides and over-
ridden icon. 278

List of Tables

1.1 Three indicators highlighting navigation issues caused by
information overload in IDEs. 5

1.2 Information overload caused by too many open windows
in the Eclipse and Smalltalk IDE. 6

3.1 Accuracy rates of different HeatMaps in the Monitoring
Use Case. 79

3.2 Accuracy rates of different HeatMaps in the Historical Use
Case. 80

3.3 Performance of different HeatMaps in specific tasks. . . . 83

4.1 Five indicators highlighting navigation issues occurring in
the Squeak Smalltalk IDE. 95

4.2 The different parameters used in the algorithm to identify
entities relevant for defect correction tasks and how they
influence the order of the relevant entities. 103

4.3 The different parameters used in the algorithm to identify
entities relevant for feature implementation and adaptation
tasks and how they influence the order of the relevant
entities. 104

4.4 The different parameters used in the algorithm to identify
entities relevant for program comprehension tasks and
how they influence the order of the relevant entities. . . . 105

4.5 The different parameters for considering dynamic informa-
tion to refine the ranked list of relevant entities. 106

4.6 Results of the benchmark evaluation for defect correction
tasks. 112

xx List of Tables

4.7 Results of the benchmark evaluation for feature implemen-
tation and adaptation tasks. 112

4.8 Results of the benchmark evaluation for program compre-
hension tasks. 113

5.1 Characteristic of the window plague in the Eclipse and
Smalltalk IDE . 124

5.2 Weight addition to source entities upon certain actions on
the same or dependent entities. Propagation means adding
weight to related entities, for instance from a method to its
class or from a class to its superclass. 127

5.3 Weight addition to the a window upon certain actions on
this window. 127

5.4 Correctness, false positives, false negatives and average
number of windows improvements provided by Autumn-
Leaves of three randomly selected sessions and averaged
over all 25 sessions. 133

8.1 Average expertise in control and experimental group. . . . 185

8.2 The five software maintenance tasks. 187

8.3 Statistical evaluation of the experimental results. 189

8.4 Task individual performance concerning time required and
correctness. 191

8.5 Percentage of subjects using specific dynamic information
in particular tasks. 191

8.6 Mean ratings of the subjects for each feature of Senseo. . . . 192

9.1 Time to gather data and render a class collaboration chart
for Mondrian. 214

9.2 Time to gather data and render a class collaboration chart
for Pier. 214

9.3 User rating for asked statements during the experiment. . 215

10.1 Formulation of the null hypotheses. 235

10.2 Questionnaire. 240

12.1 How we validated each proposal and the outcome of these
validations. 263

xxi

A.1 Icons available in Squeak Smalltalk for different source
artifacts. 277

Chapter 1

Introduction

1.1 Problems of Traditional IDEs

Traditional integrated development environments (IDEs) such as Eclipse
[ECLI 03] and NetBeans [NETB 10] for Java, Microsoft Visual Studio
[MICR 10] for C#/C++, or VisualWorks [VISU 10], Pharo [BLAC 09] and
Squeak [INGA 97] for Smalltalk usually provide a static perspective on
an object-oriented software system. Such a perspective provides a means
to read, modify, create, or delete static source artifacts such as packages,
classes, or methods.

Object-oriented language features such as late-binding, inheritance,
or polymorphism, however, usually lead to distributed and scattered
code which is hard to understand by just focusing on static source arti-
facts and static relationships between these artifacts [DEME 03, DUNS 00,
WILD 92, NIEL 89a, HAMO 05]. Often it is not possible to identify and
locate conceptually related code in the static source space as many
relationships are purely dynamic and thus only present at runtime
[NIEL 89a, NIEL 89b, DUNS 00]. Due to the narrow focus of IDEs on static
source perspectives, most of these dynamic relationships between source
artifacts remain unclear, obscure or simply invisible to the developer
while using the static perspectives of IDEs. In short, traditional IDEs lack
dynamic information in their usually purely static source perspectives.

In today’s IDEs developers are often overloaded with information.
First, IDEs usually contain many complex perspectives and facilities such
as search widgets, menus with hundreds of options, or a plethora of open
windows or tabs [SING 05]. Second, the software systems maintained

2 Introduction

in an IDE are typically large. A developer is overwhelmed by the vast
amount of system artifacts (for instance, classes or methods, configura-
tion or documentation files, log files, etc.) and has thus difficulties to
gain an overview or an initial understanding of an unfamiliar system
[SING 05, KERS 05, KERS 06]. Developers miss a “big picture” view of the
system or a guide throughout the system, for instance by visually relating
artifacts that conceptually belong together but are widely distributed in
the static source space [DESM 06]. IDEs fail to give such a guidance how
to overview and navigate a system. Hence, adding even more informa-
tion to IDE perspectives to also show dynamic relationships between the
static source elements is dangerous as such additional information might
further obstruct system overview and navigation.

We realize that IDEs suffer from two main problems, namely overload-
ing developers with too much information and yet at the same time narrowly
focusing on a software’s static structure and thus missing information about
dynamic relationships between distributed source artifacts.

As software development is a complex process, we first identify sev-
eral distinct activities in this process. The identified problems of IDEs
do not affect all these development activities in the same way. Second,
we carefully analyze the two main issues of IDEs to separate several
sub-problems. Finally, we elaborate a taxonomy that reveals which IDE
shortcoming affects which development activity such as feature imple-
mentation or artifact collaboration investigation. This taxonomy serves
as a guideline to generate ideas how we can address the different short-
comings of IDEs tailored to the needs of different software development
activities.

1.1.1 Development Activities

In the following, we introduce nine development activities proposed
by the literature [PACI 04] as a comprehensive set of activities typically
performed by developers during software maintenance, but also during
initial development of applications. Most of the time, these activities are
performed in IDEs. Sometimes developers additionally use other tools
or environments, such as software analysis tools, but the IDE remains
the primary development tool for practically all activities and developers.
According to studies and surveys Eclipse is used by more than half of all
Java developers [GOTH 05], while only a negligible percentage is using
conventional text editors such as Emacs [CAME 96]. As most Smalltalk
dialects come with a complete environment in which the IDE is included,
it is clear that Smalltalk developers are using an IDE and not, for instance,
a plain text editor.

Problems of Traditional IDEs 3

We follow the development activities framework introduced by Pa-
cione et al. [PACI 04] which proposes the subsequent nine core activities.

1. Feature investigation. In this activity, developers analyze how soft-
ware features (or parts thereof) are implemented, for instance to
reveal which artifacts collaborate to each other to realize a specific
feature.

2. Feature implementation and adaptation. This activity is concerned with
the implementation of new software functionality or the adaptation,
extension, or improvement of existing software features.

3. Artifact investigation. When investigating artifacts, developers ana-
lyze the internal structure of packages, classes, or methods to, for
instance, reveal the class-internal execution flow.

4. Dependency investigation. Studying the dependencies or relation-
ships between different artifacts is called dependency investigation.
This activity is for example performed when developers need to
understand communication patterns between two classes to reveal
the degree of coupling between them.

5. Runtime interaction investigation. In this activity, dynamic commu-
nication and interaction between different artifacts is analyzed, for
example which messages are sent by instances of a class to instances
of another class or how two packages interact at runtime, e.g. which
classes of the two packages communicate with each other.

6. Artifact usage investigation. Developers investigate the usage of
single artifacts to, for instance, reveal the clients of a specific artifact
or how often this artifact is invoked in a specific software feature.

7. Execution patterns investigation. Developers investigate patterns in
system’s execution to better understand the running of the system,
to reveal communication paths between artifacts or within a single
artifact, to follow the control flow, or to assess performance issues,
e.g. when a frequently occurring execution pattern is slow.

8. Quality assessment. Assessing a system’s quality is necessary when
the system is hard to maintain, evolve, or also when it has per-
formance problems. When assessing software quality, developers
usually perform one or several of the other activities as well.

9. Domain concepts understanding. To successfully implement, maintain
and deploy a system, developers also need to understand its domain
and how the domain concepts are represented and implemented in

4 Introduction

the system. Thus this activity is concerned with studying, locating,
or identifying domain concepts in the software system.

In the next section, we identify and categorize the main shortcomings
of IDEs with respect to these software maintenance activities.

1.1.2 Problem Identification

While performing these development activities, developers are usually
affected or even hampered by one or more shortcomings of traditional
IDEs. Before being able to tackle the problem of the narrow focus of
IDEs on static software structure by augmenting these perspectives with
dynamic information, we have to reduce or better organize the (static)
information presented to developers to not overload the source views
even more. Hence, we first analyze the information overload problem
developers suffer from in most IDEs [DE A 08] and derive consequent
problems from this major issue of IDEs. Second, we deduce several
subsequent issues caused by the narrow focus of IDEs on static source
perspectives that neglect runtime information and collaboration between
the static source artifacts.

We deliberately do not discuss in our analysis other problems of IDE
that are not directly related to the two main IDE issues. For instance, IDEs
usually do not support quality assessment of the developed application.
Developers do not obtain automatic feedback from the IDE whether the
current implementation of the system is sound or rather error-prone. The
IDE could, for instance, analyze whether the code being currently written
has any flaws such as being a duplication of other code or whether it
violates commonly accepted principles such as design or best practice
patterns. However, such issues are largely beyond the scope of this work.

Overloaded, unorganized views. Comprehending a software system
is a prerequisite to improve, extend, or correct it. Being overloaded
with too much information in an IDE, however, makes it difficult for a
developer to understand the implementation and behavior of a system
[SING 05, KERS 05]. One negative impact of information overload is a
loss of overview of the system [KERS 05]: How is the system structured,
what are the relations between the different parts, where and how is a
particular feature implemented — these and other questions are difficult
to answer in a huge software space.

The IDE as the primary tool to navigate software does not well sup-
port the process of dealing with a huge software space. It offers only few
means such as a tree of hierarchically related source artifacts (for instance,

Problems of Traditional IDEs 5

Indicator Avg. of 20 sessions

Number of window switches 38.85
Number of entities revisited 35.10
Edit / navigation ratio 9.51%

Table 1.1: Three indicators highlighting navigation issues caused by infor-
mation overload in IDEs.

packages containing classes that contain methods) to help developers
to gain some degree of overview [SING 05]. However, there is no clear
path drawn by the IDE through the huge forest of software entities, in
particular there is usually limited or no support for task-oriented program-
ming [KERS 05, SING 05]. The IDE does not reflect about the nature of
the current task-at-hand, this means there is no guide whatsoever to
advise developers how to complete the current task, for instance sugges-
tions which particular entities they need to consider to correct a defect
[SING 05].

Related to missing task-orientation is the unavailability of context in
IDEs [DESM 06]. The current context is for instance the working set of
entities the developer is focusing on, that is, the entities relevant for the
current development task. This context also consists of distinct views
on these entities, such as open debugger or inspector views and type
hierarchies or source repository views. A working context is often just a
subset of all currently open views or windows in an IDE, as developers
usually do not regularly close windows unrelated to the current focus
of development [RÖTH 09a]. Thus having an explicit and persistent rep-
resentation of a working context would help developers to keep and to
later on re-establish the focus on the task-at-hand [KERS 05].

We analyzed various development sessions [RÖTH 09b] to receive an
impression of how seriously developers are hampered in practice by in-
formation overload in IDEs and their missing task-orientation or context
representation. In the first study, we recorded navigation and modifica-
tion activities from 20 distinct development sessions lasting for 30 minutes
and performed in Squeak Smalltalk [INGA 97] by twelve different devel-
opers working on small or medium-sized applications with not more than
100 classes. As indicators for navigation difficulties caused by information
overload, we consider the number of window switches (changing focus
from one window to another), the number of re-visits of source artifacts
purely for reading and understanding (without modification), and the
edit/navigation ratio (ratio of edit actions compared to navigation actions).
Table 1.1 shows for each indicator the results.

6 Introduction

Metric Eclipse Squeak

Number of windows opened 35.84 25.74
Avg. number of open windows 16.68 14.29
Number of windows closed 10.35 12.96
Number of window switches 58.90 38.85

Table 1.2: Information overload caused by too many open windows in
the Eclipse and Smalltalk IDE.

The values obtained in this study for the various indicators confirm
the hypothesis that navigating the source space in an IDE is often diffi-
cult. Developers frequently have to switch between different windows;
opening views on the same source artifacts several times is also a frequent
incident, even in short development sessions lasting just half an hour.
Moreover, developers usually spend quite some time until they are able
to locate in a maintenance task the artifacts they actually want to modify
to correct a defect, as the low edit/navigation ratio shows. All these
figures demonstrate that in the particular sessions we studied, develop-
ers were probably overloaded with information as they were not able to
appropriately identify and focus on the artifacts of interest.

In a second study, we focus on another reason for information over-
load. Not only the multitude of source artifacts and their scatteredness,
but also the often huge number of windows opened during a develop-
ment session leads to a loss of overview. To study this phenomena we
recorded in Squeak and Eclipse the number of opened windows in total,
the average number of open windows (measured in intervals of five min-
utes), the number of windows closed, and again the number of window
switches. In this study we analyzed 22 development sessions lasting for
half an hour each and performed by six different developers. Table 1.2
reports on the findings of this study.

These numbers highlight the fact that developers usually open many
more windows than they close, thus the list of opened windows steadily
grows. Psychological research reports that human beings are capable to
cognitively handle seven plus or minus two distinct items at any given
time [MILL 56]. As the average number of open windows is more than
twice as high as seven, developers are not able to cognitively handle so
many open windows, thus they are likely to ultimately lose the overview
and their navigation efficiency is hampered. The high number of window
switches is an indication for lost overview and confusion resulting from
being overloaded with too many windows in the development workspace
[RÖTH 09a].

Summary. Our analysis of overloaded, unorganized views on source
code in IDEs shows that this issue has several aspects and causes such as

Problems of Traditional IDEs 7

busy interfaces containing many options, buttons and icons, workspaces
with many open windows or tabs, or, most notably, the large amount of
source artifacts software systems typically encompass. Consequently, it is
difficult to gain an overview of a system, which has been confirmed by the
results of empirical studies of how developers use the IDE [RÖTH 09b,
MURP 06]. A treatment for overloaded views could be the representation
of context and task-related entities, since this allows developers to focus
and a small subset of all system entities and thus considerably limits the
amount of information they have to deal with. However, conventional
IDEs do not represent working context or tasks.

Narrow focus on static source artifacts. As information about dynamic
relationships and collaborations between source artifacts such as classes or
methods is usually missing in most traditional IDEs, developers resort to
debuggers, profilers or static analyses to reason about runtime behavior of
software systems. However, the information revealed by debuggers and
similar tools is volatile and focuses on specific system executions, basically
the current call stack [POTH 07], thus failing to provide a comprehensive
view on the system’s dynamic collaboration patterns. The results of
static analyses are permanently accessible and independent of specific
executions, but are often imprecise and unspecific [ROUN 03, ROUN 04,
DMIT 04a]. Statically searching for methods invoked at a specific call site
in a huge system, for example, often yields many candidates, possibly
also unrelated candidates never invoked at runtime from this call site.

Both debuggers and static analysis tools are thus not always able to
identify conceptually related but statically distant artifacts. Debuggers do
not make such relationships explicit and static analysis does often not find
all relationships or relates entities that actually do not communicate with
each other at runtime [ROUN 03]. It is hence difficult to reveal statically
not visible and thus hidden dynamic collaboration between source artifacts
in an IDE [KO 04, DE A 08, DESM 06], in particular in dynamically-typed
languages where the static type of variables is unknown [RÖTH 08a]. At
runtime, a class might communicate with classes not foreseeable in the
static source code [KO 04]. Analogously, determining and navigating
to all artifacts with which a given entity (such as a class) dynamically
communicates, is not easy in most IDEs [KO 04].

As information about runtime types of variables or about the receiver
types of message sends is important for the understanding of a method’s
source code, the lack of dynamic information also leads to hard to understand
code [KO 04, WILD 92]. In Java, for instance, the use of interface or abstract
types obfuscates the concrete runtime types of variables and makes it
often hard to determine to which receiver types messages are sent at

8 Introduction

runtime [WILD 92]. Another problem that arises when looking just at
static source code is that the execution flow is hidden as the exact execution
path is determined just at runtime [TAEN 89, WILD 92], for instance due
to late binding [WILD 92]. If for instance a method executes branches of
code based on the specific types of a variable, it is crucial to know the
types to which this variable is bound during specific system executions
to understand the execution flow in this method [WILD 92].

Dynamic information is in particular relevant for the understanding
of higher-level artifacts such as software features [EISE 05]. On a feature-
level, the lack of dynamic information is usually more serious than on a lo-
cal source code level, because there is basically no static representation of
features in source code; features only exist at runtime [EISE 05, GREE 06].
Hence a developer is often at a loss to identify the static artifacts (classes,
methods, etc.) implementing a specific feature [WILD 95, EISE 03]. Also
the dynamic interplay of the static artifacts implementing a feature is not
visible in static source code, thus features are just implicitly represented in
code [JERD 96, EISE 03, GREE 06]. However, mapping features to source
artifacts and understanding how these artifacts interact, is crucial for
feature comprehension [EISE 03, EISE 05, GREE 06].

Summary. The narrow focus of IDEs on static software structure in
their perspectives has several negative consequences for developers: Con-
ceptually related source artifacts are spread over the entire software space.
Often their dynamic collaboration is not explicitly represented in IDEs, thus
developers cannot identify these artifacts as being related. Static source
code is often hard to understand, particularly in dynamic languages, when
no runtime information about types or message sending is available. The
intra- and inter-procedural execution flow is not made visible in IDEs and
is hence difficult to reconstruct for developers. The understanding of
software features is poorly supported by IDEs, since they do not represent
features as tangible entities of software and do not make explicit the source
elements implementing particular features.

These analyses of shortcomings and issues of conventional IDEs lead
us to the formulation of the subsequent problem statement and the re-
search question our work sets out to answer.

Problem statement. Being overloaded with often unorganized or unfocused
static information in software development environments (IDEs) on the one hand
and an unavailability of dynamic information on the other hand, renders program
comprehension and software maintenance difficult.

Problems of Traditional IDEs 9

Research question. How can we tackle the information overload in IDEs and
at the same time reasonably integrate dynamic information in the static source
perspectives?

1.1.3 Taxonomy of IDE Problems and Development Ac-
tivities

As most IDE problems and shortcomings affect developers only during
some activities, we elaborate in the following a taxonomy of development
activities and problems of IDEs by mapping them to each other based
on whether a specific problem affects the developer when performing a
specific activity.

For each development activity, we list all identified problems of IDEs
that are negatively impacting this specific activity. Figure 1.1 subsumes
the mapping of IDE problems to development activities. In the following,
we explain in detail these mappings depicted in Figure 1.1 by elaborating
for each development activity how a specific problem of IDEs makes it
difficult to perform this activity. Note that some development activities
directly correlate to problems of IDEs, such as missing support for quality
assessment.

Figure 1.1: Table of development activities and their problems developers
face when working on them in IDEs. A cell with an ’X’ means that the
corresponding problem affects the corresponding activity, while a grayed
out cell means that there is no special influence of this problem on this
particular activity.

10 Introduction

Feature investigation. When developers investigate features to better
understand their implementation by, for instance, identifying the classes
used in a feature, the information overload in IDEs which leads to loss
of overview of the system seriously impedes the feature investigation
process. Since features as purely dynamic software artifacts are not ex-
plicitly represented in an IDE, it is hard to locate in which source artifacts
of a huge system they are implemented. Having an explicit and tangible
representation of features in IDEs mitigates this problem. When looking
at the implementation details of a feature, an explicit representation of
hidden collaborations between artifacts that are often spread over the
entire software space, could ease feature understanding.

Feature implementation. Developers implementing new features are
also struck by the missing overview in IDEs as this makes it difficult
to locate similar features as the one to be implemented, for instance to
reuse parts of an existing implementation. Support for task-oriented
programming, for instance by providing working sets of entities relevant
for related features, would be useful during the implementation of new
features. Of course, having an explicit feature representation in the IDE
would be particularly useful for feature implementation.

Artifact investigation. When developers are analyzing specific source
artifacts (e.g. classes or packages) and in particular the relationships
between these artifacts, information overload clearly hampers artifact
investigation. Typically, the IDE displays all classes in a package with-
out emphasizing which classes would be important for the developer to
focus on to gain an understanding for the package under investigation.
Similarly, it would be useful to see in the IDE how a package collaborates
dynamically with other, possibly distant artifacts. Gaining a low-level un-
derstanding of source artifacts is also difficult due to the lack of dynamic
information. For developers it is a challenge to comprehend the source of
a method in the absence of execution path and runtime type information.

Dependencies investigation. What holds for artifact investigation, is
also true for dependency investigation. Here in particular the availability
of dynamic information about collaboration between artifacts and execu-
tion paths in the IDE could be very useful. Additionally, having a better
overview of the entire system would make the identification of dependent
artifacts easier.

Runtime interaction investigation. Clearly, for the investigation of the
interaction between source artifacts, it would be useful to have any kind

Problems of Traditional IDEs 11

of dynamic information available in the IDE. The information overload
in IDEs, however, seriously hampers the process of identifying runtime
interaction patterns.

Artifact usage investigation. Assessing how and how often artifacts
are used by other elements in a system is usually part of system quality
assessment, thus better support for quality assessment is also beneficial
for artifact usage investigation, as is information about collaboration
patterns between artifacts and possibly also information about execution
paths.

Execution pattern investigation. To better support this development
activity in the IDE, it is very useful to have dynamic information revealing
the execution paths in and between source artifacts. Such information
should be encompassed with information about the dynamic collabora-
tion between distant artifacts.

Quality assessment. Besides not having direct and elaborated support
for quality assessment in the IDE, this activity also suffers from lack
of overview, which makes it difficult to identify problematic patterns
or parts of the code that seriously affect the system quality. Making
visible hidden collaborations could reveal communication patterns that
break encapsulation or that impose other quality problems such as an
unnecessarily tight coupling between two possibly distant artifacts.

Domain concept analysis. Higher level information such as an explicit
representation of features or support for a better overview of the system
directly in the IDE is useful to understand the domain concepts of a sys-
tem. The information overload problem developers suffer from in most
IDEs, however, makes domain concept analysis difficult to perform. The
lack of information about dynamic collaboration and the missing link
between artifacts that are conceptually related but statically distributed
over multiple packages also hampers the identification of certain domain
concepts in the software space. Of less interest but still useful is a rep-
resentation of context in the IDE, for instance developers could build
working sets representing the different domain concepts employed in a
system.

Throughout the chapters of this work, each presenting a different
approach to address different problems of IDEs, we always come back to
the taxonomy of IDE problems and development activities. This serves as
a roadmap for the entire dissertation.

12 Introduction

1.2 Proposal: Tackling Overloaded Views and
Integrating Dynamic Information in IDEs

We first introduce the thesis of this work and subsequently elaborate
on how we substantiate this thesis by presenting proposals aiming at
addressing the aforementioned problems.

We formulate our thesis as follows:

Thesis

To effectively use dynamic information for software maintenance
tasks, we first need to mitigate the information overload in the static
views of IDEs on source code, and subsequently augment these
existing and familiar views on the software structure with dynamic
information.

In the following two sections, we outline the approaches we imple-
mented to support our thesis. Initially, we present three approaches
that tackle the information overload problem. Based on the improve-
ment achieved by the first three approaches, we are then in a position
to propose four distinct contributions that address and tackle the issue
of missing dynamic information in IDEs. Some of the approaches we
describe actually address both of the above problems.

1.2.1 Mitigating Information Overload in IDEs

All three approaches alleviating the information overload problem of
IDEs have been implemented in the Smalltalk IDE (Squeak and Pharo)
and some are also available for the Eclipse Java IDE.

HeatMaps – A Navigational Aid. HeatMaps mitigate the negative im-
pact of information overload by highlighting relevant artifacts and thus
easing system navigation. For this, HeatMaps color relevant artifacts
(packages, classes, methods, etc.) in a software system with a heat color
from blue to red. The more red an artifact is colored, the more important
this artifact is considered to be for the developer. The importance value
is determined with various combinable metrics such as how often or
recent an artifact has been modified or navigated, how extensively it has
been modified, or by which developer it has been committed how often.
Importance is determined differently depending on the nature of the task
developers are performing.

Proposal: Tackling Overloaded Views and Integrating Dynamic Information in IDEs 13

HeatMaps primarily mitigate the information overload in IDEs by help-
ing developers to focus in a large software space on the source artifacts
likely to be relevant. Furthermore, HeatMaps provide a quick overview of
the system as the coloring by relevancy allows developers to efficiently
identify interesting elements in a large software system. HeatMaps also
provide a form of context; if for instance the ’recently modified’ metric is
used to color artifacts, HeatMaps highlight the context of recent modifica-
tion, which is interesting when having to fix a recently introduced defect.
Eventually, HeatMaps also contribute to the problem of distant but related
artifacts. Such artifacts can be quickly identified as they often change in
tandem, thus HeatMaps color them red.

An implementation of HeatMaps is available for the Squeak and Pharo
Smalltalk IDE.

SmartGroups – Representing Context in IDEs. SmartGroups mitigate
the information overload by representing context in the IDE, thus allow-
ing developers to focus on a small part of the possibly huge software
space. There are three different kinds of smart groups: (i) manual smart
groups whose elements are added manually by the developer, (ii) smart
groups making search results permanently available, and (iii) automatic
smart groups whose elements are automatically categorized. SmartGroups
automatically categorize entities relevant for a particular type of task
(either defect correction, feature implementation, or general program
comprehension task) by exploiting recorded previous development activ-
ities, evolutionary information, and dynamic information. SmartGroups
use algorithms similar to those of HeatMaps to identify task-relevant
entities.

SmartGroups mitigate the information overload in IDEs as developers
can focus on the working sets and hence do not have to navigate the
entire, potentially large software space. Instead they just work in the
SmartGroups view which contains a fraction of the complete software
space. SmartGroups can represent dynamically related but statically dis-
tant entities, thus this approach also addresses the problem of hidden
collaborations between distant and distributed artifacts. SmartGroups
can even take into account dynamic information to, for example, auto-
matically build a smart group for each artifact used in a specific system
execution.

An implementation of SmartGroups is available for the Squeak and
Pharo Smalltalk IDE.

14 Introduction

AutumnLeaves – Reducing the Number of Open Windows. The third
approach, AutumnLeaves, provides “housekeeping services” for the IDE
workspace by automatically identifying and removing unused open win-
dows or tabs in a development environment. Typically, developers open
many, possibly unrelated windows or tabs in an IDE even during short
development sessions. These open views then clutter and overload the
workspace, causing the developer to lose the overview. AutumnLeaves
continuously analyzes all open windows and computes based on their
content the relationships between them. If a window seems unrelated to
most or all other open windows, that is, to the current focus of the devel-
oper, AutumnLeaves suggests to close this particular window. The degree
of “unrelatedness” to the prevailing development focus is continually
displayed for each window.

As AutumnLeaves reduces the number of open views (windows or
tabs) in an IDE, this approach improves the overview in the IDE and thus
also mitigates the information overload as developers have to deal with
fewer open windows or tabs.

AutumnLeaves is available for the Squeak and Pharo Smalltalk IDE and
also for the Eclipse Java IDE.

1.2.2 Enhancing IDEs with Dynamic Information

We contribute four distinct techniques to integrate dynamic information
in different ways into development environments. The four approaches
presented in the following address the previously identified problems
caused by lack of dynamic information (cf. Section 1.1.2).

Hermion – Extending Source Code Perspectives with Dynamic Infor-
mation. Hermion augments the understanding of static source code by
embedding dynamic information in the source code views. Hermion fo-
cuses on dynamically typed languages such as Smalltalk and particularly
exploits dynamic information like runtime types of variables, receiver
and argument types of message sends, or callers of a particular method.
This information is integrated in the standard source code perspectives
of the IDE by using tooltips that appear when holding the cursor over a
piece of code (e.g. a variable) or by placing small, clickable icons next to
the code statements in source code to trigger popup windows showing
dynamic information. Additionally, developers can use the presented
dynamic information for navigation, for instance to navigate to the meth-
ods invoked at runtime at a particular call site in a method’s source code.
Furthermore, next to each method and class, Hermion displays a list of all

Proposal: Tackling Overloaded Views and Integrating Dynamic Information in IDEs 15

types that have been used or referenced in this entity during a system’s
recorded execution(s).

Thus Hermion mostly addresses the problem of difficult to understand
static source code and execution paths in this code; particularly in dy-
namic languages where variables have no statically defined type, the
availability of type information in the static source views is very use-
ful. Furthermore, Hermion makes collaboration between artifacts more
tangible and accordingly helps developers locating distributed artifacts.

Hermion is available for the Squeak Smalltalk IDE.

Senseo – Augmenting Static Source Perspectives of IDEs with Dy-
namic Information. Senseo aims at increasing the understanding of
dynamic collaboration between distributed static source artifacts. For
this purpose, Senseo offers a collaboration view for each artifact to reveal
all system artifacts that use or are used by this artifact (“callers” and
“callees”, respectively). Senseo also enriches the source code views with
information about types of variables and receiver or argument types of
message sends. Additionally, it reports on how often artifacts are used
in specific system executions, how many objects have been created in a
method or class, or how many bytecode instructions have been executed
by particular entities (methods, classes, packages).

Senseo mainly tackles the problem of hidden collaboration between
distant source artifacts by making such collaboration explicit. Moreover,
Senseo helps developers to understand executions paths and static source
code. Eventually, Senseo also addresses the information overload issue
by providing an overview of the entire system with respect to specific
dynamic metrics. The collaboration view, for instance, improves the
overview of the system by revealing collaborations between entire pack-
ages.

Senseo is available for the Eclipse Java IDE.

CollView – Representing Dynamic Collaboration in IDEs. CollView
explicitly represents dynamic collaboration between source artifacts in
the IDE by providing visualizations of collaboration patterns. There are
three different kinds of collaborations visualized by CollView, namely
collaboration between packages, classes, and methods. For each of these
three types of artifacts, we display next to a particular artifact the corre-
sponding collaboration view. For packages and classes, the visualization
focuses on the artifact (class or package) of interest and then draws edges
to all artifacts with which the selected artifact collaborates (callers and
callees). The more collaboration between two artifacts occurs at run-

16 Introduction

time (measured by number of method invocations between them in the
recorded system execution), the closer they are displayed and the thicker
the line between them. For method collaboration, we opted for a similar
layout as used in the UML sequence diagram. CollView particularly ad-
dresses a limitation of Senseo, namely that Senseo’s collaboration view is
rather difficult to use for navigation and provides just a limited overview
of the collaboration patterns.

CollView primarily aims at making collaboration between remote and
distributed artifacts visible. Additionally, CollView also supports devel-
opers in better understanding execution paths and static source code,
in particular thanks to the visualization of collaboration patterns on the
method level. Similarly to the collaboration view in Senseo, CollView
also contributes to a better overview of the system, particularly with the
package collaboration view.

CollView is available for the Squeak and Pharo Smalltalk IDE.

FeatureEnv – Visualizing Software Features in IDEs. FeatureEnv ex-
plicitly represents entire software features in the IDE. For this, FeatureEnv
visualizes all artifacts used in one or several features. To reveal these
used artifacts, the developer runs the system and executes the features
of interest while the enhanced IDE analyzes the system execution. In
FeatureEnv, we visually compare several features to each other, because
such a comparison is often useful to detect anomalies (e.g. bugs) in a
specific feature. This comparison also improves feature comprehension
by relating one feature to other, similar features. A single feature can be
visualized as an interactive method call tree to study the implementation
of this particular feature. Furthermore, FeatureEnv provides an adapted
version of the code browser highlighting all entities used in the feature to
visually separate them from other system entities.

FeatureEnv mainly addresses the problem of not having an explicit
feature representation in IDEs, but also aids developers in locating hidden
collaboration between distant and distributed artifacts by connecting such
artifacts in the feature visualizations.

FeatureEnv is available for the Squeak Smalltalk IDE.

1.2.3 Summary

To summarize this section, we enhance Figure 1.1 by also indicating
which of the previously mentioned seven approaches address which IDE
problem. By doing so, we also indicate which approach contributes to
which development activity. For instance, Senseo mostly contributes to

Proposal: Tackling Overloaded Views and Integrating Dynamic Information in IDEs 17

activities such as feature investigation or implementation, dependency
investigation, runtime interaction investigation, or execution pattern
investigation. Figure 1.2 shows the mapping of development activities to
IDE problems and indicates which of our approaches address a particular
problem. An ’X’ in this mapping indicates that we do not contribute a
cure for a specific problem.

18 Introduction

Fi
gu

re
1.

2:
T

he
d

if
fe

re
nt

pr
ob

le
m

s
of

ID
E

s
ou

r
se

ve
n

te
ch

ni
qu

es
ta

ck
le

an
d

to
w

hi
ch

d
ev

el
op

m
en

ta
ct

iv
it

ie
s

th
ey

th
us

co
nt

ri
bu

te
.A

ce
ll

w
it

h
an

’X
’m

ea
ns

th
at

th
e

co
rr

es
po

nd
in

g
pr

ob
le

m
af

fe
ct

s
th

e
co

rr
es

po
nd

in
g

ac
ti

vi
ty

,b
ut

w
e

d
o

no
t

pr
ov

id
e

a
so

lu
ti

on
fo

r
th

is
pa

rt
ic

u
la

r
pr

ob
le

m
.

A
gr

ay
ed

ou
t

ce
ll

m
ea

ns
th

at
th

er
e

is
no

in
fl

u
en

ce
of

a
pr

ob
le

m
on

a
pa

rt
ic

ul
ar

ac
ti

vi
ty

.

Contributions 19

1.3 Contributions

This work aims at mitigating the two main problems of traditional IDEs,
namely information overload and the unavailability of dynamic informa-
tion, and their subsequent sub-problems. The following contributions of
this work pursue this goal:

1. HeatMaps [RÖTH 09c] highlight in the Squeak or Pharo Smalltalk
IDE entities relevant for specific software maintenance tasks. Be-
sides the approach itself, we also contribute a validation of this
approach by applying it to recorded data sets of navigation and
modification activities performed by developers in several software
systems. We refer to this kind of validation as benchmark validation.

2. SmartGroups [RÖTH 09b] automatically represent in the Squeak
or Pharo Smalltalk IDE working context, that is, groups of task-
relevant source entities. We validated SmartGroups with a bench-
mark validation similar to the one performed for HeatMaps.

3. AutumnLeaves [RÖTH 09a] provides “housekeeping” services in the
Squeak or Pharo Smalltalk IDE and in the Eclipse Java IDE by auto-
matically identifying and closing unused views (windows or tabs)
in the IDE workspace. We contribute a benchmark validation ac-
companied with practical user feedback to evaluate AutumnLeaves.

4. Hermion [RÖTH 08a, RÖTH 08b] augments the understanding of
static source code by embedding directly in the static source per-
spectives of the Squeak and Pharo Smalltalk IDE various kinds of
dynamic information, such as receiver and argument types of mes-
sage sends or runtime types of variables. We validated Hermion with
a user study to gather qualitative feedback about its practicability
and usefulness.

5. Senseo [RÖTH 09d, RÖTH 09e] increases the understanding of dy-
namic relationships between distributed static source artifacts in the
Eclipse Java IDE by integrating a collaboration view linking these
conceptually related artifacts together. Besides the approach, we
contribute a comprehensive validation of Senseo by means of a con-
trolled empirical experiment with 30 industrial software developers
that solved typical software maintenance tasks. This experiment
reveals a statistically significant improvement of correctness and re-
duction of time spent solving the tasks when using Senseo compared
to just relying on the traditional Eclipse IDE.

20 Introduction

6. CollView [RÖTH 08c] visualizes in the Squeak Smalltalk IDE dy-
namic relationships between packages, classes, and methods to
make hidden collaboration and execution patterns between dis-
tributed artifacts visible. We informally validated CollView by con-
ducting interviews with developers.

7. FeatureEnv [RÖTH 07a, RÖTH 07b] visually presents software fea-
tures in the Squeak Smalltalk IDE to improve feature comprehension
and maintenance. We validated FeatureEnv by conducting a con-
trolled empirical experiment with twelve developers that corrected
two different defects in a large, unfamiliar software system, one
with the FeatureEnv and one with the traditional Smalltalk IDE.
We were able to measure a statistically significant improvement of
defect correction time when using the FeatureEnv.

8. Additionally, we contribute several minor extensions and enhance-
ments to IDEs such as the integration of visualizations [RÖTH 07c]
(for instance, class blueprints enhanced with dynamic metrics). Fur-
thermore, we contribute a comprehensive analysis and taxonomy
of the major shortcomings, problems, and issues of traditional IDEs
that hinder developers when working on software maintenance
tasks. We map these shortcomings or problems to typical devel-
opment activities to understand which problems of IDEs hamper
developers during which kind of development activities.

1.4 Structure of the Dissertation

This dissertation is subdivided into three parts: The first part discusses
our approaches addressing information overload, missing overview, and
missing representation of context in IDEs. The second part covers our
proposals integrating and exploiting dynamic information in IDEs. Fi-
nally, we conclude our work in the third part. Directly after this chapter
in this introductory part of the dissertation, we elaborate in Chapter 2
the state of the art concerning research on development environments,
program analysis, and software visualization.

Part I: Mitigating Information Overload in IDEs. The first part starts
in Chapter 3 by introducing the HeatMaps approach which highlights
source artifacts in IDEs according to their degree of interest for the current
task the developer is performing.

Chapter 4 presents SmartGroups which support the manual and auto-
matic categorization of source artifacts.

Structure of the Dissertation 21

Chapter 5 presents AutumnLeaves, which automatically identifies in
the IDE open windows or tabs that are not anymore relevant for the
current development task and thus should be closed.

Finally, we conclude this first part in Chapter 6 by discussing and
comparing the three presented proposals and by briefly introducing other
techniques we developed to mitigate the information overload in IDEs.

Part II: Exploiting Dynamic Information in IDEs. Chapter 7 begins the
second part with introducing Hermion, an enhancement to the Smalltalk
IDE integrating dynamic information such as variable or argument types
in source code views.

Chapter 8 discusses Senseo, an approach to augment the IDE with dy-
namic collaboration information by, for instance, displaying all dynamic
callers or callees of a given source artifact.

Chapter 9 presents CollView, an approach to explicitly represent and
exploit dynamic collaboration between source artifacts by visualizing the
communication patterns between packages, classes, or methods.

Chapter 10 introduces FeatureEnv, an extension to the IDE which
allows developers to visualize features to compare them to each other or
to study their internal implementation.

Chapter 11 concludes the second part by critically comparing and
evaluating each of the four presented approaches.

Part III: Conclusions. In Chapter 12 we conclude the dissertation with
regard to whether we were able to positively answer the research question
of this work. As we do not claim to have solved all issues of development
environments, we also thoroughly analyze in Chapter 13 the perspectives
and challenges still remaining to further improve the support for software
maintenance activities in development environments.

Chapter 2

State of the Art

In this chapter we present the state of the art in research about develop-
ment environments, software analysis (in particular dynamic analysis),
and software visualization. We hereby focus on works related to the vari-
ous approaches introduced in Chapter 1, and to be thoroughly discussed
in subsequent chapters. The main focus is on related work in the area
of development environments; we discuss proposals and enhancements
to IDEs applying program analysis, source history analysis, and devel-
opment activity analysis. We also report on debugging, profiling, and
querying tools integrated in IDEs.

2.1 Development Environments

We structure our discussion of related work around the techniques used
to better support program comprehension and software maintenance
in IDEs. We identified three principal analysis techniques exploited by
different approaches to provide developers with helpful additional in-
formation in IDEs: (i) program analysis, that is, analyzing structure and
behavior of software systems to extract information useful for program
understanding, (ii) source history analysis which explores the history
of the software system (for instance, by mining software repositories)
to find interesting patterns such as source artifacts changed in tandem,
and (iii) developer activity analysis where navigation or modification
actions performed by developers in the IDE are recorded and analyzed,
for instance to discover entities likely to be related as they have frequently
been navigated together. Some approaches use a combination of these

24 State of the Art

three analysis techniques. We discuss such approaches in the category
we think they best fit. Other approaches only loosely employ an analysis
technique but rather improve the presentation of the static source code in
the IDE.

Apart from these approaches extending the IDE based on different
analysis concepts and data sources, we also discuss techniques such
as debuggers, profilers, and querying and exploration tools that often
use a combination of different data sources and corresponding analyses
to augment the IDE with information helping developers in program
comprehension.

2.1.1 Program Analysis and Sophisticated Information
Presentation

Traditional IDEs provide source perspectives showing purely static infor-
mation about a software system. The hierarchical relationships of source
artifacts (for instance, based on packages containing classes containing
methods) are represented with tree views such as the package tree in
Eclipse or the column-based system browser in Smalltalk in which each
column represents one level of the static hierarchy of a software system
(usually the package, class, method protocol, and method level). Such
column-based browsers often just support the viewing and editing of one
single element (e.g. a method) at a time. Editing a source element puts the
entire browser in a mode which cannot be left without either saving the
changes done in the edit mode, or discarding these changes. This problem
is addressed by extensions supporting tabbed browsing where several
views (i.e. tabs) on source elements can be opened in the same browser
instance. While one or several tabs are in edit mode, developers can still
navigate the source space using other tabs. Another approach to solve this
“edit mode” problem is contributed by Hopscotch [BYKO 08] (discussed
below in detail) which offers a modeless environment for manipulating
source code.

Many IDEs also provide additional tools other than a tree- or column-
based package browser, for instance a type or call hierarchy view, a call
graph browser (e.g. the Source Navigator IDE1), or advanced search
facilities. All these tools, browsers, perspectives, or views available in
IDEs have in common that they purely exploit the static structure of
software systems.

However, there are several techniques that extend or complement
these simple views on static software structure. Furthermore, a few tech-

1http://sources.redhat.com/sourcenav

http://sources.redhat.com/sourcenav

Development Environments 25

niques also exploit dynamic information to extend the source perspectives.
We present some of these approaches in the following.

Seesoft [EICK 92] is a software visualization system that eases software
analysis by mapping each line of code to a colored row. The color indicates
an interest metric using a heat map approach: red lines are for instance
most recently changed lines and blue lines least recently changed (see
Figure 2.1). Seesoft explores different data sources, namely static or
dynamic analysis (mainly profiling), but also version control information
such as age or author(s) of source artifacts.

Figure 2.1: Seesoft colors source code lines in a heat gradient to draw a
developer’s attention to important lines.

Seesoft tackles the information overload problem in IDEs by visually
highlighting source code lines that are likely to be of interest to the devel-
oper. Instead of having to read all source lines of a method, the developer
quickly spots interesting lines due to the coloring applied by Seesoft.
Hence the developer has to deal with less information, as the important
information can be more quickly identified. Similarly, Seesoft also tries
to improve the overview of a system. However, as this approach focuses

26 State of the Art

on single lines of code, it might help developers to more quickly gain an
overview of a single method, but as systems encompass many thousand
methods that are usually rather small, Seesoft is not able to provide an
overview of a typical object-oriented system. Seesoft has its origin in
procedural programming where functions typically consist of many more
lines of code than methods in object-oriented applications. Accordingly,
the reduction of information overload contributed by Seesoft is limited to
single methods. Seesoft does not reduce the amount of source artifacts
developers have to deal with while maintaining object-oriented software
systems. Figure 2.2 summarizes the IDE problems addressed by Seesoft.

Figure 2.2: Seesoft tackles the information overload and the missing
overview in IDEs, but only on a source code level.

Microprints [DUCA 05a] are pixel-based character-to-pixel representa-
tions of methods enriched with semantic information mapped to specific
colors (for instance, local variables are colored purple, return statements
red) . Contrary to Seesoft [EICK 92], Microprints provide object-oriented
specific information and visualize method semantics such as state access,
control flow, or invocation relationships [DUCA 05a]. Microprints appear
next to the method source code in the VisualWorks Smalltalk IDE as
shown in Figure 2.3.

Microprints aim at allowing developers to quickly spot patterns, such
as whether a method relies on superclass behavior, by mapping distinct
colors to different types of message sends, e.g. messages sent to super
are colored in orange. Variables or control statements are also mapped
to distinct colors. Thus Microprints improve the overview of methods
and entire classes as Microprints of all methods can be displayed in a row
to better understand the interaction of a class with other classes in the
hierarchy. Additionally, Microprints also tackle the information overload
by saving developers from the need to read the source code line by line to
identify patterns in methods, for instance to compare the implementation
of two methods. As Microprints just statically exploit source code and
method invocations relationships but not behavioral information, they
do not improve the understanding of execution flow or static source code,

Development Environments 27

Figure 2.3: Microprints appearing next to the method source code in the
VisualWorks Smalltalk IDE.

they just make the static information easier and faster to grasp. Figure 2.4
summarizes the IDE problems mitigated by Microprints.

Figure 2.4: Microprints mitigate the problem of information overload and
missing overview in IDEs, but only on a method and single class level.

Fluid source code views [DESM 06] can embed related code (for in-
stance an invoked method) directly in the current source code editor of
Eclipse (see Figure 2.5). Developers can choose to view related code in the
same source view by clicking on an expanded icon next to method invoca-
tion declarations in a method. The embedded remote code is not editable
and appears colored to indicate that it is supplemental to the primary
document [DESM 06]. It is possible to also extend method invocations
in the embedded method definitions to view entire method invocation
chains in the source editor [DESM 06]. Fluid source views recognize the
separated but linked nature of source artifacts and support developers

28 State of the Art

in studying invoked code without having to navigate and thus change
context. However, fluid source code views statically link separated source
artifacts together and may thus identify wrong or unrelated candidate
methods at polymorphic call sites. Not being able to modify the embed-
ded source code we consider as a serious drawback. The ability to directly
edit a related method at the place where it is invoked would be a very
handy extension of the currently read-only fluid source code views.

Figure 2.5: Fluid source code views inlining the method definition of the
invoked method getNextTask() in Eclipse’s source editor.

Fluid source code views aim at addressing the problem of having to
maintain distributed artifacts, but these views only exploit static infor-
mation, thus they cannot precisely link artifacts to each other in all cases.
Higher level elements such as classes or packages are not considered,
just methods are linked. The communication between linked elements is
not hidden or implicit, instead it is clearly stated in source code. How-
ever, these views make it easier for the developer to look at the source
code of remote methods, such as methods invoked by the currently se-
lected method. Thus, fluid source code views also contribute to a better
overview of the system and reduce the number of context switches and
hence also of windows opened by developers, therefore reducing the
information overload. Figure 2.6 subsumes the IDE problems mitigated
by fluid source code views.

Hopscotch [BYKO 08] is the development environment of Newspeak,
a programming language descended from Smalltalk and Self. In Hop-
scotch’s source view, classes are initially shown as headers that can be
expanded to see all defined methods or instance variables. Methods ap-
pear collapsed at first, but can be expanded to view and edit their code
(see Figure 2.7). The Hopscotch editor provides a better overview than
a flat file editor as developers can have an overview of all (collapsed)

Development Environments 29

Figure 2.6: Fluid source code views aims at improving the information
overload, the overview, and the access to distributed artifacts.

methods of a class and just dive in the source of those that are interesting
for the current task. As several classes are shown in the same editor view,
switching from a method of one class to a method of another is usually
fast. Hyperlinks to quickly see all statically computed callers or callees
of a method are also available. Inspired by web browsers, Hopscotch
also provides back and forward buttons, for instance to come back to
previously selected source artifacts when having navigated away to other
classes or to callers of a particular method.

Hopscotch particularly tackles the problem of having too many modes
in an IDE, for instance an edit mode that cannot be left without saving the
changes. In Hopscotch, navigating away from an element with unsaved
changes and coming back to these changes is always possible. However,
we are skeptical whether the Hopscotch views improve the overview of a
system. Being able to navigate several classes and their methods in the
same editor usually leads to a huge editor view which must be scrolled
all the time. Of course, open method definitions can be easily collapsed
to make the view more compact, but the constant need to expand and
collapse the view is cumbersome. While hyper-linking statically related
source artifacts is certainly useful to ease navigation, it neither provides
more overview or focus nor does it reduce the information overload. The
Hopscotch IDE is an interesting improvement of the Smalltalk column-
based IDE, but besides mechanisms to expand or collapse source elements,
it does not deliver new ideas for tree- and file-based IDEs such as Eclipse,
which does not suffer from the mode-related problems of the Smalltalk
IDE that Hopscotch addresses. Ultimately, Hopscotch does not tackle any
of the IDE problems identified in Section 1.1.2.

CodeSonar [RECH 07] automatically detects and visualizes quality de-
fects in object-oriented software systems and is implemented as an Eclipse
plugin. CodeSonar reasons about different types of static relations be-
tween source artifacts such as “extends”, “is_type_of”, or “return_type”
to discover quality defects such as high coupling between classes. CodeS-

30 State of the Art

Figure 2.7: Hopscotch’s expandable and collapsable source editor view
showing several classes and their methods.

onar presents quality defects in navigable graphs visualizing classes as
nodes and the aforementioned relations as edges.

Development Environments 31

Figure 2.8: CodeSonar specifically addresses the problem of not having
support for quality assessment in IDEs and also improves the overview
of class relationships in software systems.

CodeSonar mainly addresses the problem of missing support for qual-
ity assessment in IDEs and provides with its graphs limited support for
gaining an overview of a system (cf. Figure 2.8).

Summary. We note the following commonalities between our work and
the related work enhancing IDEs by means of program analysis and a
more sophisticated information presentation:

• Embedding information in familiar source views. Most presented related
work (Seesoft [EICK 92], Microprints [DUCA 05a], Fluid source code
views [DESM 06]) seamlessly embed additional information in the
existing, familiar IDE perspectives, which makes it easier for de-
velopers to learn and use these tools and techniques in their daily
work. In all our work, we also aim at embedding our new tools
and techniques deeply in the existing IDE views and perspectives.
Our proposals, however, exploit more information than the tools
presented in this section, for instance also development activity,
historical, or runtime information.

• Heat coloring. Seesoft [EICK 92] and to some degree also Microprints
[DUCA 05a] use a heat coloring metaphor to highlight important
artifacts to draw a developer’s attention to them. We follow the
same idea in HeatMaps and also Senseo.

• Linking related artifacts. Fluid source code views [DESM 06] link
artifacts statically related to the currently selected artifact to improve
system understanding by connecting conceptually related parts of
the software space. Hermion, Senseo, and CollView also link related
elements, however, they dynamically analyze the system to discover
these links.

32 State of the Art

2.1.2 Source History Analysis

Other approaches mine software repositories to identify entities related
or coupled, for instance by exploring how source artifacts frequently
changed together in the past. Mining the source history can reveal re-
lationships between source artifacts that are visible neither in the static
software structure nor in its dynamic behavior such as dependencies
between source elements and configuration files.

Shirabad et al. [SHIR 03] use information about artifacts with common
change patterns to recommend developers to also change the related enti-
ties when working on an artifact. This approach works at the granularity
of files. Thus it cannot directly relate source artifacts such as classes or
even methods to each other. However, to achieve our goal of identifying
dynamic communication between source elements, we need to cover
packages, classes, interfaces, or methods, in particular when dealing with
non-file based languages such as Smalltalk. The approach of Shirabad
et al. [SHIR 03] is promising, though, as it exploits both evolutionary
information from software configuration management (SCM) systems
and information from bug tracking systems. Co-update relations between
artifacts, that is, artifacts that need to change together, are determined
using machine learning techniques. This proposal is not accompanied
with a tool integrated in an IDE, thus it does per se not solve any IDE
problem. Furthermore, the quality of the co-update recommendations
is highly dependent on the SCM system used [SHIR 03], thus we cannot
exploit this approach in our work as we want to be independent of any
SCM system.

Ying et al. [YING 04] propose an approach to mining change history
by identifying dependencies between source elements. This approach
complements static and dynamic analysis which cannot always identify
all code relevant for a change, in particular for software systems using
multiple programming languages. This proposal differs from the work
of Shirabad et al. [SHIR 03] as it only relates source artifacts that changed
together repeatedly, which improves the correctness of the recommenda-
tions [YING 04]. This approach, however, is also not integrated in an IDE
and works at the granularity of files, too.

ROSE [ZIMM 04a] is very similar to the approach of Ying et al.
[YING 04] and basically just differs in the mining algorithm used. While
the ROSE approach uses association rule mining [ZIMM 04a], Ying et al.
[YING 04] opted for frequent pattern mining. The predictability of the rec-
ommendations measured in precision and recall of the two approaches is
similar [YING 04]. ROSE is available as an Eclipse plugin (cf. Figure 2.9).

Development Environments 33

Figure 2.9: ROSE’s suggestion view (lower right) integrated into Eclipse.

Hipikat [CUBR 03] recommends artifacts that are relevant for a spe-
cific task by exploiting different sources of information, namely the bug
database as well as the source repository of the project, and even emails
from newsgroups or other message archives are analyzed. Hipikat is avail-
able as an Eclipse plugin (cf. Figure 2.10) which particularly supports
developers unfamiliar with a software system in learning from the im-
plicit “project memory” stored in the system’s change history [CUBR 03].
However, Hipikat requires a similar task to have been performed on a
system in the past to provide specific recommendations of relevant arti-
facts for the current task-at-hand [CUBR 03]. Furthermore, an important
prerequisite for Hipikat is a formal textual definition of the modification
task (e.g. in Bugzilla) [CUBR 03]. From this definition, Hipikat starts to
query the different data sources for similar tasks to suggest to developers
what source element might be of interest for the task-at-hand. However,
in practice there are often no formal definitions of tasks available, and
past tasks might not be similar or not be specified accurately enough to
be able to relate them to current tasks. The requirements Hipikat imposes
on the source and change history and the task management are too severe
for our goals.

34 State of the Art

Figure 2.10: Hipikat’s results view showing tasks similar to the currently
performed task as specified in a task report.

The IDE problems addressed by the four presented mining source
history approaches [SHIR 03, YING 04, ZIMM 04a, CUBR 03] are presented
in Figure 2.11. Note that only ROSE and Hipikat have actually been
implemented as IDE enhancements. The other approaches could probably
be integrated easily into an IDE such as Eclipse.

Figure 2.11: ROSE, Hipikat, and other mining approaches tackle the prob-
lem of related but distributed artifacts whose collaboration is hidden in
IDEs. Furthermore, they also mitigate the information overload problem
as related artifacts can be easily navigated using the recommendation
lists.

Other researchers such as Xie et al. [XIE 06] show a complete picture
of evolutionary data extracted from software repositories to augment
the understanding of a system’s evolution, but these visualizations are
usually very large and outside of the IDE and thus of limited use while
working with the static system structure.

Summary. The following commonalities exist between the related work
enhancing IDEs by means of source history analysis and our own work:

• Exploiting evolutionary information. ROSE [ZIMM 04a], Hipikat
[CUBR 03], and other previously presented proposals discovered
the usefulness of evolutionary information to recommend artifacts
developers should consider to study in order to perform a certain
task. We also take evolutionary information into account in our

Development Environments 35

work on HeatMaps and SmartGroups, but combine this information
with other sources of information such as development activity or
dynamic information to achieve better results.

• Recommending relevant entities. These related proposals also give evi-
dence that recommending relevant entities indeed helps developers
to better understand a system or to more efficiently accomplish soft-
ware maintenance tasks. Thus, we adopt this idea in SmartGroups
by categorizing entities that are likely to be relevant for the current
software maintenance task.

2.1.3 Developer Activity Analysis

Other techniques analyze development activities (usually investigation
(navigation) and modification actions performed in the IDE) instead of
mining software repositories to identify relations between source artifacts.

FEAT [ROBI 03a] applies a concern graph to visualize scattered but con-
ceptually related code elements together in order to identify and navigate
elements relevant for a particular concern. Recent versions of FEAT are
able to automatically infer the source entities related to particular concerns
[ROBI 03b]. Robillard et al. define a concern as “anything a stakeholder
may want to consider as a conceptual unit, including features, nonfunc-
tional requirements, and design idioms” [ROBI 07]. Usually the source
code implementing a concern is not encapsulated in a single source entity,
but is instead scattered over the entire system [ROBI 07]. To determine the
entities participating in a concern, FEAT analyzes system investigation
activities performed by the developer in the IDE [ROBI 03b]. FEAT is
able to identify relevant concerns from a transcript of investigation activi-
ties with a manageable level of noise [ROBI 03b]. The resulting concern
graph presented in the FEAT Eclipse plugin (see Figure 2.12) supports
developers performing maintenance tasks involving identified concerns
[ROBI 03b].

From the IDE problems identified in Section 1.1.2 FEAT primarily
addresses the lack of overview in IDEs and the fact that artifacts rele-
vant for a concern are distributed over the entire source space. FEAT
also mitigates the problem of information overload, hidden collabora-
tions, and missing representation of features in IDEs. However, as FEAT
does not exploit dynamic information, the last two problems are only
loosely addressed, basically when developers have navigated the system
in the past in such a way that they came across artifacts whose collabo-
ration is only dynamically visible or that participate in the same feature.

36 State of the Art

Figure 2.12: A concern representation in FEAT integrated in Eclipse.

Otherwise such collaboration is not made explicit by FEAT. As the au-
thors report, FEAT’s concern identification algorithm is in general heavily
dependent on how organized the analyzed investigation activities are
[ROBI 03b, ROBI 07]. Disorganized investigation sessions yield vague,
incomplete and often useless concern graphs [ROBI 03b]. Thus the FEAT
approach is not very robust and not decently usable when only having
available development sessions from developers unfamiliar with the sys-
tem under study. Furthermore, the FEAT approach requires developers
to manually validate the proposed concerns by rejecting false positives,
that is, concerns wrongly identified. Figure 2.13 lists the IDE problems
partially addressed by FEAT.

NavTracks [SING 05] exploits navigation history to recommend files
related to the file the developer is currently looking at. Next to a source
file, NavTracks shows in Eclipse a view listing related files, as shown
in Figure 2.14. This related files list is ranked by the recency of naviga-
tion; the higher in the list the more recently this file has been navigated.
This approach works at the granularity of files, hence does not take into
account specific methods or classes.

Development Environments 37

Figure 2.13: FEAT tackles the problems of missing overview and informa-
tion overload. If recorded navigation activities are accurate, FEAT can
reveal hidden dependencies between distributed source artifacts relevant
for specific features.

Figure 2.14: NavTracks’ related files view integrated in Eclipse.

Similar to FEAT, NavTracks also tackles the problems of distributed
artifacts and hidden dependencies between them that are not easily dis-
coverable and navigable in IDEs. Additionally, NavTracks also mitigates
information overload as developers can directly navigate related arti-
facts by consulting the recommendation list appearing for each selected
source element. This often saves developers from having to search in the
large software space for related artifacts. The IDE problems addressed by
NavTracks are listed in Figure 2.15.

However, we question the quality of the recommendation list Nav-
Tracks provides. NavTracks only takes into account one single data source,
namely the recency of browsing in the navigation history, to assess the
relatedness of artifacts. Other sources or even combinations of different
sources, such as combining frequency and recency of modification and
navigation of entities, could lead to much better results. Hence it is ques-
tionable whether NavTracks is able to correctly identify related artifacts.
As for FEAT, the performance of NavTracks is also highly dependent on
the quality and nature of the recorded navigation history, thus a correct

38 State of the Art

Figure 2.15: NavTracks mitigates the information overload problem as
related entities can be quickly navigated with the recommendation list,
which also contains distributed artifacts whose collaboration is otherwise
not explicit in the IDE.

identification of dynamic dependencies between distant source artifacts
is certainly not possible in all cases.

Furthermore, a recommendation list helps little to obtain an overview
of the whole system; the developer just sees a list of artifacts possibly
related to a specific artifact, but does not see all interesting entities in
a “big picture” view. These recommendations are always relative to a
selected artifact, that is, dependent on what the developer has currently
selected, thus it is not easy to identify all artifacts related for a given
task. The model of NavTracks does not consider the notion of tasks, thus
related entities are recommended independently of a particular context,
task, or concern. The exchange or the exploration of data sources recorded
by different developers is also not supported with NavTracks as its model
is built on the client side in this specific environment.

NavTracks has only been evaluated by analyzing the recorded navi-
gation activities of three developers. The correctness of NavTracks was
determined by checking whether the file browsed next in the recorded
history appeared in the recommendation list (hit) or not (miss). Correct-
ness equals to number of hits divided by number of navigation events
(hits plus misses). The average correctness for all three developers was
below 30%. We consider this evaluation to be rather weak as the variance
between the three developers was high, thus the number of testimoni-
als should be much higher to achieve a certain degree of power and
significance.

Team Tracks [DELI 05a] follows a similar approach as NavTracks, but
also exploits the code navigation patterns of team members to relate
source elements, thus fixing the issue of NavTracks not being able to
explore navigation data from more than one developer. Besides provid-
ing a list of related artifacts when viewing a particular source element,
Team Tracks also provides a favorite class view which hides classes less
frequently navigated by all team members. DeLine et al. [DELI 05a]

Development Environments 39

claim that sharing team navigation data can further improve the qual-
ity of the related item lists and thus eventually better improve program
comprehension.

Concerning the advantages and shortcomings of Team Tracks, in par-
ticular of its related item view, the same arguments hold as mentioned
for NavTracks.

Mylyn (formerly known as Mylar) [KERS 05, KERS 06] computes a
degree-of-interest value for each source artifact based on the historical
selection or modification of the artifact. The background color of the
artifacts highlights their relative degree-of-interest in the context of the
current task — interesting entities are assigned a “hot” color. In Mylyn
the information used to compute the interest value is relatively simple:
selecting and editing an artifact increases the interest; if no further event
occurs the interest decreases over time. Mylyn has been validated by
means of a field study [KERS 06] in which 16 subjects provided decent
longitudinal data that could be analyzed. The results showed that Mylyn
significantly improves the edit ratio, that is, the ratio between number of
modification and navigation activities. Thus, when using Mylyn develop-
ers perform fewer navigation actions to locate the entities to be modified
to, for instance, correct a defect.

Mylyn addresses basically the same IDE problems as NavTracks, that
is, information overload and scattered, distributed artifacts with hidden
collaboration between them (see Figure 2.17). Additionally, Mylyn also
provides a representation of context by highlighting task-relevant source
entities, and can even represent features if the recorded development
activities allow for their appropriate identification. Highlighting of rele-
vant source artifacts also enhances the overview of the system, at least for
particular tasks represented with Mylyn.

The degree-of-interest model contributed by Mylyn is likely to yield
more precise and accurate results concerning the identification of related
entities than NavTracks’ algorithms. However, developers cannot influ-
ence how the interest value is computed as the algorithms are fixed. The
interest in an artifact is highly dependent on the nature of a task though.
Developers are probably interested in different artifacts when correcting
a defect than when implementing a new feature. Mylyn, however, just
exploits one source of information, development history (navigation and
modification activities), and the model analyzing this data does not adapt
to the nature of the task. For many tasks additional data sources such as
evolutionary or dynamic information could, however, predict the interest
values of artifacts much more accurately [RÖTH 09c].

40 State of the Art

Figure 2.16: The different views provided by Mylyn in Eclipse.

As professional developers reported to us in informal discussions,
Mylyn’s contribution to the reduction of the information overload and
the improvement of system overview is limited for large systems. For
such systems, Mylyn’s task views grow crowded with many artifacts after
a while, thus the overview is hampered also in these task views. This is
a hint that Mylyn’s approach of task identification does not scale well.
Thus Mylyn does not yet completely solve the problems of IDEs such as
information overload, lack of overview and explicit context representa-
tion.

Summary. Our work has the following points in common with the
previously presented related work:

• Exploiting development activities. All approaches presented in this
section give evidence that recorded development activities are an
appropriate source of information to either recommend to develop-
ers entities they should consider for particular tasks or to represent
a working context, that is, a set of entities being relevant in a specific
context, for instance when having to perform a certain task such as

Development Environments 41

Figure 2.17: Mylyn highlights interesting artifacts to mitigate the infor-
mation overload, identifies task-relevant entities, and, dependent on
the quality of the development activities, reveals hidden collaboration
between artifacts or identifies entities used in particular features.

fixing a defect. Thus, HeatMaps and SmartGroups both also exploit
development activity information to identify artifacts relevant for
specific software maintenance tasks, but combine this information
with other sources such as dynamic or historical information to
obtain better results.

• Representing task-relevant context and concerns. FEAT [ROBI 03a] and
Mylyn [KERS 05, KERS 06] propose to explicitly represent software
concerns and task-relevant entities. We strive for a similar goal
in SmartGroups but exploit more information sources, offer a more
flexible model to compute task-relevant entities, and restrict the
number of identified entities in order to not overload developers
with too many, eventually unrelated entities.

• Recommending relevant entities. NavTracks [SING 05] and Team
Tracks [DELI 05a], similar to ROSE [ZIMM 04a] or Hipikat
[CUBR 03], show that recommending relevant entities to developers,
e.g. entities developers should also modify to complete a defect cor-
rection task, is indeed a practicable aid for developers. Hence, we
follow the same principle in SmartGroups which, however, provide
general lists of task-relevant entities that are only dependent on
the type of task being performed, but not on the currently selected
entity as in NavTracks or Team Tracks.

2.1.4 Debugging, Profiling

Many IDEs also provide support for debugging and profiling. In this
section we discuss some recent and advanced debuggers and profilers
available in IDEs.

42 State of the Art

Whyline [KO 04] is a prototype interrogative debugging interface for
the Alice programming environment. Whyline enables developers to ask
why did and why did not kind of questions about runtime failures. Alice2

is an event-based language to simplify the creation of interactive 3D
worlds [KO 04]. To create code, developers drag and drop tiles to the code
area and choose parameters from popup menus, similar as in the Scratch
environment [MALO 04]. This interactive and visual way of programming
is extended by Whyline to allow developers to ask questions about objects
being part of the world developed in Alice, for instance questions such as
why a particular button was not activated at runtime or why a figure did
not change its skin. To concretely ask such questions, the developer selects
a particular object shown by Alice and scans the property changes that
could have happened for this object during the execution of the system
[KO 04]. For each selected property, the code that caused the property
change is highlighted. Whyline analyzes the runtime actions to also reveal
which code has not been executed that could have changed the property,
and why not, for instance because a condition was false. Consequently,
Whyline exposes hidden dependencies between actions and data that are
otherwise hard to determine [KO 04].

Figure 2.18: Whyline improves the understanding of static source code,
execution flow, and features. Hidden collaborations can be also spotted
in some cases.

Whyline tackles the problem of unclear static source code, hidden
execution paths, and even, to some degree, of software features hidden in
code since Whyline allows developers to map program behavior and fea-
tures to particular code statements. Similarly, Whyline also reveals hidden
collaborations between artifacts in some cases. Figure 2.18 summarizes
the IDE problems tackled by Whyline.

While such an interrogative debugging approach directly integrated
in the IDE is interesting, it is a long way to go to support this approach
in complex, object-oriented languages and environments such as Java
and Eclipse [KO 04]. The sheer number of possible questions in a Java
program, the issue of efficiently analyzing the complete execution history
of the program, or the presentation of a dynamic slice in the IDE are

2http://www.alice.org

http://www.alice.org

Development Environments 43

reasons why an adaptation of the Whyline approach is not yet practical
for the context of Java.

Compass [LIEN 09] is a back-in-time debugger available for Smalltalk
which also allows developers to navigate back-in-time through all the
code that has touched a particular object. Compass addresses the problem
that the cause of many bugs is not visible in the execution stacks provided
by conventional debuggers [LIEN 09]. While typical back-in-time debug-
gers such as TOD [POTH 07] enable programmers to step back through
earlier states than the current state of the program, they cannot reveal
from where a particular object relevant for a bug comes [LIEN 09]. For
this reason, Compass also tracks the flow of objects (cf. Figure 2.19), for
instance to detect the method which stored a particular value in an object.

Figure 2.19: The method trace view of Compass visualizes the entire
runtime control flow as a tree of nodes in a fisheye view. A node represents
a method execution. The call stack below the method trace view focuses
on a single slice of the trace.

Tracking the object flow supports developers in correcting hard to fix
defects, but can also reveal hidden collaborations between distant source
artifacts or help programmers understanding features. As any debugger,
Compass also improves the understanding of executions paths and source
code with abstract static types or no static types at all (cf. Figure 2.20).

44 State of the Art

However, the limitation of debuggers is, first, that they focus on a
specific system execution and thus cannot provide general information
such as which source artifacts are used in a feature, which are the different
methods invoked at a polymorphic call site, or which types of objects are
stored in a particular variable. Second, debuggers do not integrate the
dynamic information in the static source views. Debugging information
is volatile in the sense that the reified dynamic information is bound to
a specific debugging session. Developers can investigate the execution
stack or, thanks to Compass, also the object flow, or are able to manually
explore collaborating artifacts or entities participating in a feature. But
this information stems from a snapshot of the program’s runtime and is
only valid for one particular execution. This reified information is not fed
back to the IDE for persistent access.

Furthermore, debuggers do not provide an explicit representation of
artifacts’ collaboration or their participation in particular features. It is
for example not possible to select an artifact in the debugger to see all
the artifacts with which it collaborates in this particular execution. While
a debugger, including Compass, is great to investigate how particular
source entities communicate in a specific execution, it fails to reveal a
general, “big picture” view of a system, for instance how source artifacts
collaborate in general, that is, in many different executions and software
features.

Figure 2.20: Compass reveals hidden dependencies between distant
source artifacts and improves understanding of static source code and
execution flow in specific system executions.

JFluid [DMIT 04b] is a Java profiler integrated in the NetBeans IDE. The
biggest advantage of JFluid is its efficiency; its profiling overhead is very
small compared to other profilers (cf. Section 2.2.2) [DMIT 04b]. JFluid
collects two kinds of CPU profiling data: the calling context tree (that is,
basically the method invocation tree) and gross execution time for single
code regions. JFluid provides a simple interface to show this data in the
NetBeans IDE. Thus, JFluid aims at supporting developers in locating
performance bottlenecks in their code. JFluid does not directly mitigate
any IDE problems besides, to some extent, improving the support for

Development Environments 45

software quality assessment in IDEs as this tool pinpoints entities being
slow to execute.

Summary. Like Whyline [KO 04], Compass [LIEN 09], and JFluid
[DMIT 04b], our work also exploits dynamic information to improve sys-
tem understanding. However, while these approaches present volatile
information about a specific system execution, we want to integrate with
Hermion and Senseo aggregated dynamic information in the IDE that is
permanently available and embedded in the traditional source code views.
CollView and FeatureEnv visualize dynamic information in permanently
accessible visualizations integrated in the IDE. This dynamic information
is usually also aggregated over various system or feature executions.

2.1.5 Querying

JQuery [JANZ 03] is a code browsing tool implemented on top of an
expressive logic query language. It combines a hierarchical browser with
the flexibility of a query tool. In a single integrated view in Eclipse, JQuery
provides an explicit representation of the exploration path followed by
the developer [JANZ 03]. Query results are shown in a tree which only
serves as a starting point for the exploration process [JANZ 03]. Each tree
node can be further expanded to explore entities connected to the selected
node through relationships such as being invoked by or invoking this
particular node (e.g. a method). JQuery uses purely static information
to find the results for such queries. The query language used by JQuery,
TyRuBa3, has the expressive power to also formulate complex queries,
however, such queries are not likely to be used by developers, thus JQuery
also provides pre-defined queries, saving developers from formulating
the queries themselves [JANZ 03].

According to the authors, JQuery is supposed to prevent developers
from getting lost by making relationships between scattered code ele-
ments more tangible [JANZ 03]. JQuery should make the navigation of
crosscutting concerns easier by reducing the need for disorienting view
switches and by explicitly representing the exploration process in terms of
exploration paths in a tree integrated in Eclipse [JANZ 03]. Thus, JQuery
addresses the problem of being overloaded with information in the IDE
and of hidden relationships between scattered and distributed artifacts.
To some degree, JQuery also improves the overview of the system and
in particular of the exploration process (cf. Figure 2.22). However, as
JQuery exploits just static relationships between source artifacts, it cannot
address the problems we discussed in Section 1.1.2 concerning purely

3http://tyruba.sourceforge.net

http://tyruba.sourceforge.net

46 State of the Art

Figure 2.21: An example of JQuery showing in Eclipse an exploration
process tree starting with the results of a query.

Figure 2.22: JQuery reduces information overload in IDEs by explicitly
representing concerns, thus relevant artifacts can be studied in a single
perspective, which also improves the overview. Hidden collaboration
between distributed artifacts is determined purely by static analysis.

dynamic collaborations. Furthermore, the information overload and lack
of overview problem is still present when using JQuery, in particular as
the tree representing the exploration process very quickly grows large.
Furthermore, JQuery does not take into account any task-specific infor-
mation. However, an exploration process to fix a defect is likely to differ
from one concerned with the implementation of a new feature.

Ferret [DE A 08] recognizes the conceptual relation between static and
dynamic aspects of software systems by integrating a query tool into
Eclipse to allow developers to execute conceptual queries about source
artifacts directly in the IDE. An example of such a query is “callers of
method x”. Ferret focuses on querying static information, but is also
able to take into account dynamic and evolutionary information to obtain
more precise results [DE A 08]. Ferret implements 36 conceptual queries
of which five also consider dynamic information. When Ferret is invoked

Development Environments 47

for a particular source artifact, it computes and displays the results of all
queries appropriate for that artifact. Developers cannot formulate their
own query, Ferret pre-defines fixed conceptual queries in the Ferret view
as shown in Figure 2.23. Queries can be cascaded, that is, query results
are used as sources to formulate new queries [DE A 08]. Such cascaded
searches are visualized in a tree. Ferret was validated in a two-day field
study with four professional software developers. The study subjects
used nearly all 36 conceptual queries provided to them and considered
the results as useful [DE A 08].

Figure 2.23: Ferret’s query results view integrated in Eclipse.

The authors claim that Ferret particularly addresses the information
overload in IDEs and the lack of focus and overview [DE A 08]. Addition-
ally, we think that Ferret also contributes to make collaboration between
distant artifacts visible by supporting queries revealing, for instance,
callers of a method. Even on a low source code level, Ferret augments
the understanding of unclear execution flow and static source code by
identifying methods actually invoked at runtime. As Ferret uses a list
to show the results of all queries appropriate for the artifact in question,
developers have to spend quite some time skimming through this list
to find useful information. The computation of these results also takes
considerable time. The different IDE problems mitigated by Ferret are
summarized in Figure 2.24.

While having answers to Ferret’s queries is useful to developers in
many situations, we are skeptical whether the way Ferret integrates the
query results actually mitigates information overload, as first of all Ferret
integrates an additional view with plenty of information, thus rather
increases the amount of information presented by the IDE. Ferret clearly
makes a contribution to identifying related artifacts, but does not solve the
problem of being disoriented and not having a task-dependent context.
Ferret does not take into account development context or tasks. The
results it shows are only dependent on the currently selected artifact, but
are not filtered or otherwise processed dependent on the current task.
Furthermore, the dynamic information exploited by Ferret is very limited.
It basically only reasons about method invocations, thus no runtime type

48 State of the Art

Figure 2.24: By providing a dedicated but often overloaded query view,
Ferret improves to some degree information overload and overview in the
IDE. For the currently selected artifact, related artifacts are revealed based
on static and dynamic analysis. However, only method invocations are
dynamically analyzed, thus support for the understanding of execution
flow, static source code, and dynamic collaborations is limited.

or memory consumption information is provided. Ferret’s support to
comprehend source code hard to understand due to the use of abstract
types or late-binding is hence limited. These concerns are subsumed in
Figure 2.24.

Summary. Our work shares the following points with JQuery [JANZ 03]
and Ferret [DE A 08]:

• Relating scattered code. JQuery [JANZ 03] and also Ferret [DE A 08]
relate scattered and distributed code by allowing developers to for-
mulate queries whose results reveal artifacts that are conceptually
related but statically distributed. With Hermion, Senseo, CollView,
or FeatureEnv we pursue the same goal, but exploit behavioral in-
formation to relate distributed code instead of exploiting recorded
navigation activities (JQuery) or static program information (Fer-
ret). Moreover, our proposals embed this information directly in
the source perspectives, thus saving developers from the need to
formulate queries.

• Static and dynamic information combined. Ferret [DE A 08] is capable
of also taking into account dynamic information for some of their
pre-defined queries. In Hermion and Senseo we also combine the
static perspective with the dynamic view on a system to improve
program comprehension. We, however, use more dynamic informa-
tion than just method invocation, for instance also type information
or complexity information such as number of objects created, etc.

Other approaches combine querying software structure with visual-
izations. GraphLog [CONS 92] for instance aims at simplifying complex

Development Environments 49

relationships among software artifacts by translating them into a graph.
Developers can interact with this graph to visually formulate queries to
find patterns in the relationships between source elements, such as which
classes invoked a particular method.

Figure 2.25: Summary of the different IDE problems tackled by the pre-
sented related works. All problems are mitigated, but not any of them
thoroughly.

2.1.6 Conclusions

To conclude this section about related work in the context of development
environments we analyze which problems and issues of IDEs these related
approaches address, and to which degree. Figure 2.25 gives an overview
of the IDE problems each presented proposal tackles. This table shows
that all problems have been partially addressed by at least one approach.
However, even all approaches combined are not able to address any of
the problems completely.

50 State of the Art

Considering the information overload problem, for instance, some
approaches just reduce or better display information on a source code
level (Seesoft, Microprints), other approaches require the developer to
open slightly fewer windows (Fluid source code views, JQuery), yet other
proposals add shortcuts to ease identifying and navigating to important
artifacts (Hipikat, NavTracks, Ferret, but also Mylyn or FEAT). But none
of these approaches is able to significantly reduce the number of entities
or windows when navigating the entire software space. Mylyn comes
close to this goal, but fails to scale to large systems and its means to
associate artifacts to specific tasks does not yield optimal results.

The other important problem of IDEs, the narrow focus on static views,
in particular their missing representation of collaboration between distant
artifacts, is not well addressed by the considered proposals. Either the
proposals just statically link the artifacts and thus suffer from the impreci-
sion of static analysis (Fluid source code views, JQuery, Ferret), depend
on whether the collaborating artifacts have previously been changed or
navigated together (Hipikat, FEAT, NavTracks, Mylyn), or they focus on
specific system executions and do thus not provide general information
(Whyline, Compass). Hence the current research in the context of devel-
opment environments neither accurately nor completely tackles the two
main problems of IDEs we identified (cf. Section 1.1.2), namely informa-
tion overload and the narrow focus of IDEs on static software structure,
including all subsequent sub-problems.

2.2 Software Analysis and Visualization

In this section, we briefly discuss several proposals to statically or dynam-
ically analyze software systems and to visually present analysis results.
These analyses and visualizations are usually not integrated in IDEs, but
provided in separate tools. We mainly focus on approaches to dynami-
cally analyze software systems as we want to extend IDEs to integrate
dynamic information. We thus carefully study related work on dynamic
analysis and report on how to use and extend existing work to reach our
goal of enriching IDEs with dynamic information.

Gathering information using different analysis techniques is of limited
use if this information is not well presented to developers. Graphical
representations of software and analyses results have long been accepted
as an appropriate comprehension aid [STAS 98]. The work of Maletic
et al. has provided important guidelines for motivating and defining
visualizations. In their work they defined levels of interest and the criteria

Software Analysis and Visualization 51

of effectiveness and expressiveness of software visualization [MALE 02].
Most visualizations presented hereafter follow these guidelines.

2.2.1 Means to Present Static or Historical Information

Moose [NIER 05] is a software analysis platform encompassing various
software visualizations such as different polymetric views [LANZ 03] to
support reverse engineering tasks. Other tools or environments visualiz-
ing static information are for instance Rigi [TILL 94], Hy+ [MEND 95], Dali
[KAZM 99], or Tango [STAS 90]. These environments are standalone ap-
plications that usually do not integrate their services in any conventional
development environment.

We study in the following in more detail several approaches that
could easily be integrated in IDEs. All these approaches mainly tackle the
problem of information overload and missing overview, some addition-
ally help developers to understand the execution flow inside classes and
methods or to identify collaborating artifacts.

Generalized fisheye views [FURN 86] are adapted source code views
that provide a balance of local detail and global context by trading off
importance against distance. The code segment near to the current focus
point is shown in detail while only important lines of code are shown
for segments further away [FURN 86]. Fisheye views thus improve the
overview of source code, but cannot improve the understanding of a sys-
tem as a whole. For object-oriented languages with rather short methods,
fisheye views are less useful.

Polymetric Views [LANZ 03] are lightweight visualizations mapping
different software metrics to two-dimensional nodes representing entities.
Height, width, position, or color of a node can each express a particu-
lar metric value. Nodes are connected by edges representing relations
between source entities such as invocation or inheritance. Polymetric
views have been applied to many different visualizations such as the
system complexity view [LANZ 03], class blueprints [DUCA 05b], or the
condensed runtime information view [DUCA 04]. Polymetric views can
serve a multitude of different purposes such as providing an overview
of a system, of a group of source artifacts, or of single artifacts. Another
purpose is to support the understanding of control flow or relations be-
tween artifacts. Usually, polymetric views show statically determined
information, but as a general-purpose visualization they can easily be
enhanced with dynamic information. In Chapter A, we elaborate on how

52 State of the Art

we integrated polymetric views based on static and dynamic information
in the IDE.

Whorf [BRAD 92] is a software maintenance tool hyper-linking dis-
tributed but conceptually related artifacts and explicitly visualizing the
relationships between such distributed artifacts. Whorf exploits differ-
ent kinds of (static) relationships between artifacts, such as variable and
function references or method call relationships [BRAD 92]. The visual
representations of these different relationships are displayed in interactive
and linked views. Whorf aids developers in navigating distributed and
scattered code.

SHriMP [STOR 01] provides an interactive environment for navigating
and browsing complex source spaces by using nested graphs to browse
hierarchical relationships such as inheritance. SHriMP allows developers
to zoom from high-level visualizations down to low level representations
of source elements such as Javadoc documentation or method source
code. The views of SHriMP provide links to navigate from source code
elements to the corresponding nodes in the visualization. The source code
is not editable in SHriMP and source elements are related based on static
information only. SHriMP particular aims at providing an overview of
the system and to help newcomers to a system to build mental models
of its higher-level design and architectural concepts. To the best of our
knowledge, SHriMP’s views are currently not integrated in any IDE.

Software Terrain Maps [DELI 05b] is an interactive visualization of
source code, similar to cartographic maps, which provides landmarks to
keep a programmer oriented while navigating around. These maps are
provided by a dedicated, stand-alone tool. Software Terrain Maps aim at
reducing disorientation while navigating source code by activating the
spatial memory of the programmers to stay oriented. The software system
is modeled as a set of components (e.g. methods) whose size is mapped
to accordingly sized tiles arranged in a Voronoi diagram [DELI 05b]. The
differently sized shapes serve as memorable visual landmarks easing
the orientation and navigation in such maps. Different color shades
provide further orientation guide. Software Terrain Maps particularly im-
proves the overview of a system and the identification of code previously
browsed, provided that its visual representation is a landmark that can
be easily identified.

CodeMap [KUHN 08] enhances the basic principles of Software Terrain
Maps. CodeMap is integrated in an Eclipse view appearing next to

Software Analysis and Visualization 53

structural views such as the package explorer. Navigation in the map and
the traditional Eclipse source tools are linked, search results or open files
are highlighted in the current map. CodeMap provides a spatial and stable
mental model of software projects to developers by mapping a system’s
structure and vocabulary on a cartographic view. Source artifacts are
shown as hills, the distance between them represents lexical similarity and
structural closeness, the elevations of hills map artifacts’ size expressed in
KLOC. CodeMap addresses the same problems as Software Terrain Maps.
Its landmarks, however, are usually more pronounced and thus easier to
locate in the map. As the positions of source elements remain stable over
time, the orientation in the map and the overview it provides is better
than in the case of Software Terrain Maps.

CodeCity [WETT 08] uses a city metaphor to represent software struc-
ture and evolution. Packages are represented as districts, classes as build-
ings, and methods as stories in a building. Positions of source entities
are determined based on the size of the entities using a modified tree
layout. CodeCity is built on top of Moose [NIER 05] and not integrated
in any IDE. CodeCity particularly aims at providing an overview of a
system. However, as source artifacts may change position over time,
CodeCity is less useful during software maintenance and evolution; it can
be considered as a pure analysis tool for a system to better understand its
high level static structure.

Kumpel [JUNK 09] is an interactive visualization simplifying the anal-
ysis of source file histories by visualizing the complete evolution of the
source code contained in a file in a single view. Each file revision is shown
as a vertical bar in this view. In this bar, each chunk of added code is
colored according to the corresponding developer. Modifications are rep-
resented as small dots which are also colored according to the developer
who performed the modification. Kumpel allows us to quickly identify
who changed which part of a file when and to which extent. Kumpel is
not integrated in an IDE, and while providing a comprehensive view on
a source file’s history, it does not help developers gaining an overview of
a system. Kumpel’s views are themselves overloaded with information
which renders their adoption in an IDE rather difficult.

Summary. To summarize the discussion of these different related works
concerned with static analysis, we report on their issues and limitations.

• First of all, these approaches, except CodeMap, are not integrated
in IDEs and thus cannot directly solve the identified IDE problems.

54 State of the Art

Even when these proposals would be integrated, the issues men-
tioned below still exist.

• The presented visualizations would be an additional view in the
IDE, separated from the conventional source views such as package
tree and source editor. This separation is likely to distract developers
as switching between fundamentally different views (for instance,
between a visualization and the source editor view) imposes a
cognitive burden [EICK 92, ROBB 05]. This burden, however, is
dependent on how well such a visualization can be embedded in
the way how developers interact with the IDE.

• The so far presented visualizations are not able to represent a work-
ing context of task-relevant elements or dynamic collaboration be-
tween distant artifacts, two fundamental issues of IDEs we want to
address.

• None of these approach is capable of enriching the conventional
tools of IDEs that developers are familiar with. All approaches
throw in a completely new and unfamiliar means looking at and
navigating in the source space. Usually, these means are read-only,
they cannot be used to actually modify the software system under
study.

For all these reasons, we search further for works able to provide
information to be integrated in the conventional source perspectives of
IDEs and that can also gather and exploit runtime information.

2.2.2 Dynamic Analysis

We first report on existing work to gather runtime information and second
on approaches to visualize this information. These visualizations are
usually not embedded in IDEs.

Dynamic Information Gathering

In order to be able to augment an IDE’s static source perspectives with
dynamic information, we first formulate the following requirements on
a dynamic data gathering technique before looking at some concrete
proposals:

• Reification of sub-method elements. As our goal is to improve the
understanding of unclear static source code, we need to be able to

Software Analysis and Visualization 55

gather runtime information about sub-method statements such as
variable assignments or message sending.

• Mapping dynamic information to static source elements. We aim at
mapping the collected dynamic information back to static source
code. For instance if the invocation of a particular method is written
several times in a method’s source code, we must be able to identify
which runtime argument types were used at which location in the
code.

• Selective data gathering. Often we are not interested in dynamically
analyzing all parts of a system. Thus we should be able to select the
specific artifacts (packages, classes or methods) and even particular
kinds of operations (e.g. message sending, variable accessing) we
want to cover by dynamic analysis.

• Complete and accurate information. Dynamic information to be inte-
grated in the IDE needs to be accurate and complete in the sense
that information has to be available for all the code executed in the
recorded runs of the system under study. Note that dynamic anal-
ysis is normally not able to completely cover all system behavior
[BALL 99], as usually only specific system features are executed and
dynamically analyzed. But for these features being analyzed we
expect to gather complete dynamic information with respect to the
information to be integrated in the IDE.

• Efficiency. Analyzing the dynamics of software systems is consid-
ered to be slow, because huge amounts of data are generated when
executing software systems. As the IDE should show dynamic in-
formation immediately after a system’s execution, a tremendous
slowdown of the subject system to acquire its execution data is not
tolerable.

• Extensibility. The data gathering approach should be easy to extend,
for instance to conveniently be able to integrate more or different
kind of dynamic information in the IDE.

Dynamic analyses are usually based on tracing mechanisms. Trac-
ing traditionally focuses on capturing a method call tree, but existing
approaches usually do not bridge the gap between dynamic behavior and
the static structure of a program [HAMO 04, DUNS 00, WILD 92]. Thus,
Löwe et al. [LÖWE 01] merged information from static analysis with in-
formation from dynamic analysis to generate visualizations. Zaidman et
al. [ZAID 05] or Hamou-Lhadj et al. [HAMO 05] mined static entities in
dynamic tracing data to, for instance, reveal key classes forming good
starting points for further analysis.

56 State of the Art

Many of today’s tracing tools such as those based on method wrap-
pers [BRAN 98] implement techniques allowing selective instrumentation
of the source code based on criteria such as package boundary or on indi-
vidual selection of methods to limit the amount of gathered data and the
collecting overhead. However, only a few tracing techniques such as that
described in the work of Ducasse et al. [DUCA 06] consider sub-method
elements such as variable assignments or message sending. Often tech-
niques able to gather information about sub-method elements suffer from
a huge overhead. As support for the reification of sub-method elements
is crucial for our work, we seek for approaches capable of efficiently
gathering data beyond the method boundary.

Partial behavioral reflection is a technique provided by Reflex
[TANT 03] for Java and by Reflectivity [DENK 07] for Smalltalk. This
approach allows us to selectively reflect on specific parts of a program’s
execution, such as only on specific classes or particular methods, thus lim-
iting the amount of data gathered and consequently also the performance
overhead. This approach can collect data at different levels of granularity,
also at a sub-method level [TANT 03]. The intention of partial behavioral
reflection is to introduce a layer of abstraction between the low level
details of the implementation language and the concept of capturing and
reifying high level runtime events such as message sends and variable
accesses [DENK 07]. Partial behavioral reflection features a convenient
specification of the dynamic data to be gathered.

MAJOR [BIND 07] is an aspect weaving tool enabling comprehensive
aspect weaving into every class loaded in a Java VM, including the stan-
dard Java class library, vendor specific classes, and dynamically generated
classes. MAJOR is based on the standard AspectJ [KICZ 01] compiler and
weaver and uses advanced bytecode instrumentation techniques to en-
sure portability [BIND 07]. MAJOR provides aspects to gather runtime
information of the application under instrumentation. The collected data
is used to build calling context profiles containing different dynamic
metrics such as number of created objects. MAJOR supports the precise
selection of the artifacts about which dynamic information is gathered.
In contrast to Reflex [TANT 03], MAJOR can collect data about any class
loaded into the VM, and the overhead introduced is even lower than the
one of Reflex.

Besides Reflex and MAJOR, other techniques for dynamic analysis are
available, but they do not meet all of our requirements.

Software Analysis and Visualization 57

*J. Dufour et al. [DUFO 03a] present a variety of dynamic information
for Java programs. They introduce a tool called *J [DUFO 03b] for metrics
measurement. *J relies on the Java Virtual Machine Profiler Interface
(JVMPI), [SUN 00], which is known to cause high performance overhead
and which requires profiler agents to be written in native code. Other pro-
filers based on the JVMPI or its successor, the JVM Tool Interface (JVMTI),
such as JProfiler4 or JProbe5, also suffer from platform dependence and
from limited extensibility. For this reason, these approaches are not usable
for our purposes.

JFluid [DMIT 04b] (cf. Section 2.1.4) exploits dynamic bytecode instru-
mentation and code hotswapping to collect dynamic information. Min-
imizing overhead is a cornerstone of JFluid’s design; it achieves this by
profiling a subset of the application’s methods [DMIT 04b]. By not pro-
filing the rest of the methods the profiling overhead can be dramatically
reduced. Developers select root methods of the call tree so that JFluid
only instruments methods in the call subgraphs determined by these
root methods [DMIT 04b], which greatly reduces the number of methods
being instrumented and consequently the amount of data gathered. Ad-
ditionally, JFluid allows profiling to be turned on and off at will even
while the analyzed system is still running. JFluid uses a hard-coded, low-
level instrumentation to collect gross time for a single code region and to
build a CCT augmented with accumulated execution time for individual
methods.

Sampling-based profiling techniques, which are often used for
feedback-directed optimizations in dynamic compilers [ARNO 01], help
to significantly reduce the overhead of dynamic data collection. How-
ever, sampling produces incomplete and possibly inaccurate information,
which is not appropriate for the integration in an IDE.

Dynamic Information Visualization

Before we discuss different proposals for visualizing dynamic information,
we formulate the following requirements for a visualization to be useful
when embedded in an IDE:

• Lightweight. A visualization should not be too large to not occupy
too much space in the IDE.

4http://www.ej-technologies.com/products/jprofiler
5http://www.quest.com/jprobe

http://www.ej-technologies.com/products/jprofiler
http://www.quest.com/jprobe

58 State of the Art

• Not overloaded. It must not contain too much or too complex in-
formation to not further worsen the information overload in an
IDE.

• Easy to understand. If a visualization is not easy to learn and under-
stand, developers will not use them in their daily work.

Substantial research has been conducted on runtime information vi-
sualization. Various tools and approaches make use of dynamic (trace-
based) information such as Program Explorer [LANG 95], Jinsight and its
ancestors [DE P 93], or GraphTrace [KLEY 88].

Program Explorer [LANG 95] provides interactive visualizations of de-
sign patterns to better navigate and understand frameworks. It par-
ticularly addresses the scaling problem by visualizing abstract but yet
accurate dynamic information which is combined with static information.
However, the dynamic information is not complete, information consid-
ered as less interesting is stripped away from the visualization to make it
more compact.

Jinsight [DE P 93] is a visualization tool providing several views analyz-
ing the running of Java programs to detect performance issues. Jinsight’s
support to gain an understanding for the program execution is limited
and its views are separated from the IDE.

Ducasse et al. [DUCA 04] propose polymetric views for condensed
runtime information to, for instance, provide an overview of the commu-
nication between classes in the whole system. However, they analyze
post-mortem data and cannot focus on specific static artifacts and their
interplay. Furthermore, these visualizations are only accessible in a tool
separated from the IDE, hence not interacting with static source entities
[DUCA 04]. However, an integration of polymetric views showing run-
time information is feasible and could be of benefit to developers during
software maintenance, provided that these views specifically highlight
collaboration between static artifacts.

Jive [REIS 03] visualizes the runtime activity of Java programs. This tool
focuses on visually presenting runtime activity such as message sending
in real time. The goal of this work is to support software development ac-
tivities such as debugging and performance optimizations. Jove [REIS 05]
is an enhancement of Jive providing more detailed dynamic information,
for instance to determine the concrete code statements and instructions

Software Analysis and Visualization 59

currently being executed. The animations of runtime activity provided by
Jive and Jove would be very difficult to integrate in an IDE as they show a
vast amount of data which cannot easily be embedded in the conventional
IDE perspectives. Furthermore, these two tools do not aim at supporting
software maintenance and program comprehension in general, but focus
more on efficiency issues of the analyzed system.

GraphTrace [KLEY 88] visualizes the behavior of object-oriented pro-
grams using graphs in which nodes represent artifacts such as objects,
methods or variables while edges represent relationships between the ar-
tifacts, such as inheritance or delegation. The current activity is animated
in these graphs by highlighting nodes and edges. For large systems, how-
ever, such graphs do not scale, in particular the animation of graphs is
hard to perceive. GraphTrace is provided in a tool separated from the
IDE and is thus not easily usable during software maintenance. Simi-
lar concerns as for Jive and Jove are raised over the usefulness of such
visualizations during maintenance activities performed in IDEs.

Collaboration Browser [RICH 02] recovers object collaborations from
postmortem execution traces and identifies collaboration patterns. A
pattern is displayed as a UML sequence diagram in a tool separated from
the IDE. Additionally, the collaboration browser allows for the querying
of the recovered collaboration patterns. This approach requires detailed
knowledge about the system implementation to reduce the amount of
information displayed in the diagrams, which renders the approach less
usable for unfamiliar systems. Furthermore, no interaction with the static
view on the system is possible, i.e. developers cannot use this browser to
maintain the system.

Shimba [SYST 01] is an environment for reverse engineering Java sys-
tems by combining static and dynamic analysis. Shimba visualizes system
artifacts and their static and dynamic dependencies (inheritance, invoca-
tion, containment, etc.). Shimba generates scenario diagrams to represent
execution traces. As these traces are usually large, it is often difficult to
apply Shimba in specific maintenance tasks and to seamlessly integrate
its visualizations in the IDE.

Gammatella [JONE 04] focuses on visualizing runtime data from de-
ployed software systems. The analyzed systems can be represented at
three different levels: statement, file, and system level. At the statement
level, a statement is colored if it was executed. At the file level, each

60 State of the Art

source line is colored in a miniaturized view as a horizontal line of pixels,
as in Microprints [DUCA 05a] or Seesoft [EICK 92]. At the system level,
Gammatella uses a treemap visualization in which each node represents
a source file and its size the number of executable statements in this file.
At all levels, Gammatella chooses the colors to catch the attention of de-
velopers for source statements or elements that are, for instance, slow to
execute. Gammatella is a pure analysis tool, particularly suited for profil-
ing deployed applications. It is of limited use for software maintenance
tasks and not integrated in any IDE.

2.2.3 Summary

Concerning dynamic data gathering, the best suited technique fulfilling
all our requirements is, for Smalltalk, partial behavioral reflection as
provided by Reflectivity. For Java, MAJOR is more appropriate than
Reflex as it can cover all Java classes, including JDK and dynamically
loaded classes. All other proposals have some flaws and thus cannot be
used to achieve our goal of integrating runtime information in the IDE’s
static code perspectives.

Although the presented techniques and visualizations to present the
gathered dynamic information have their respective use cases, we believe
that most of them are too heavyweight to be integrated in IDEs. As IDEs
overload developers with information, we must not add complex visu-
alizations that occupy either much screen estate or otherwise impose a
cognitive burden on developers. Rather we aim at presenting the gath-
ered dynamic data using lightweight approaches that can be seamlessly
integrated in the conventional IDE tools and perspectives such as package
explorer or source editor. Such visualizations include, for instance, heat
maps, icons, or, to some degree, polymetric views, along with textual
presentation of dynamic information.

2.3 Conclusions

We conclude this section on the state of the art in research on develop-
ment environments, software analysis, and software visualization by
summarizing the most important lessons learnt:

• The existing research proposals and tools enhancing or enriching
IDEs are not capable of satisfactorily solving the problems of IDEs
we raised, that is, information overload and narrow focus on static
software structure.

Conclusions 61

• We learnt from existing work that in particular techniques such as
highlighting artifacts of interest (Seesoft, Microprints, Mylyn, and
others) are a useful means to visually and non-intrusively convey
information helping developers to focus on important and relevant
artifacts, thus mitigating the negative consequences of information
overload.

• Representation of context and task-relevant information (FEAT, My-
lyn) is an important augmentation of IDEs to help developers re-
main oriented and focused on the current software maintenance
task.

• Determining collaborating artifacts based on structural information
or investigation and modification activities performed by develop-
ers (FEAT, Mylyn, NavTracks, Hipikat, and others) does not yield
sufficiently precise results. Thus we additionally need to exploit
behavioral information to achieve precise collaboration information.

• Approaches presenting dynamic information from one single execu-
tion or just from a slice of it (Compass, Whyline, other debuggers or
profilers) cannot give a comprehensive and sufficiently general view
on dynamic collaborations or execution flows in hard to understand
static source code. In particular for feature analysis, a permanently
accessible representation and visualization of features is helpful to
developers while maintaining software systems. Debuggers, how-
ever, usually provide volatile information not accessible from within
the static source perspectives of IDEs.

• From studying several works on static analysis, we are optimistic
that easy-to-understand, lightweight visualizations such as poly-
metric views could be appropriate means to improve the overview
in IDEs while at the same time not overloading the developer with
even more information. Key is that any additional means added
to the IDE is well integrated with the existing perspectives and
tools. Although promising, we do not follow the path of provid-
ing complex and heavy-weight visualizations such as CodeMap
or CodeCity to developers in IDEs as such means might further
increase the information overload.

• Our brief overview of existing work in the area of dynamic anal-
ysis revealed that only a few dynamic data gathering approaches
are able to meet all our requirements formulated to obtain behav-
ioral information required to successfully address the narrow focus
of IDEs on static views on software. Partial behavioral reflection
(Reflectivity) and aspect-based data gathering (MAJOR) provide
appropriate capabilities.

62 State of the Art

• Existing visualizations of dynamic data are usually provided in
analysis tools separated from the IDE. Their integration in IDEs
is, though possible, not attractive as they usually show too much
information to be of use to developers while maintaining software
systems. We opt for the integration of dynamic information into
the existing IDE tools locally to the views on static source elements
and aim at using lightweight visualizations such as heat maps or
polymetric views.

Part I

Mitigating Information
Overload in IDEs

The first part of this dissertation introduces proposals aiming at allevi-
ating the information overload in IDEs. The work presented in this part
later on allows us to integrate dynamic information into the purely static
source perspectives of modern IDEs.

We discuss three distinct proposals in this first part of our work:

• HeatMaps (Chapter 3) highlight relevant source artifacts in an IDE’s
source perspectives to be able to more efficiently identify important
and interesting elements of a software system.

• SmartGroups (Chapter 4) provide workings sets of task-relevant
source artifacts to enable developers to focus on a small fraction
of the entire source space and thus reduce the negative impact of
information overload.

• AutumnLeaves (Chapter 5) performs “housekeeping services” by
automatically removing from a developer’s workspace unused win-
dows or tabs and thus tackles the plethora of open windows with
which a developer is overloaded in an IDE.

We conclude the first part of this dissertation by critically discussing
these three proposals to reveal to which degree they solve the shortcom-
ings of IDEs related to information overload.

Chapter 3

HeatMaps – A Navigational
Aid

3.1 Introduction

3.1.1 Positioning HeatMaps

In this chapter, we present HeatMaps, an approach we implemented in
the Squeak and Pharo Smalltalk IDE to address the problem of being
overloaded with information in the IDE. In particular when working on
a large software system containing many hundreds or even thousands
of classes, developers ultimately have problems gaining or maintaining
an overview of this system, in particular if they are not familiar with
it. HeatMaps tackle this problem by highlighting in the IDE views the
artifacts of interest with a heat color; the more red an artifact appears the
more important it is considered to be for the task-at-hand. Thus, HeatMaps
reduce the number of artifacts developers have to deal with by allowing
them to focus on artifacts colored in a “hot” color. Hence, developers can
more quickly gain an overview of the system. Additionally, HeatMaps also
provide some sort of context as it supports multiple means to determine
the importance of artifacts. Depending on the current development task,
the developer selects a particular HeatMap to be displayed. The entities
colored in this HeatMap are likely to be relevant for the current working
context.

Figure 3.1 lists the IDE problems the HeatMaps approach addresses.
The figure shows that HeatMaps are helpful during all development ac-

68 HeatMaps – A Navigational Aid

Figure 3.1: HeatMaps highlight relevant artifacts to reduce the information
overload and increase the overview in static source views. HeatMaps
also provide limited support for the representation of context and helps
developers to identify distributed artifacts that are conceptually related.
As HeatMaps can also take into account dynamic information, they make
execution paths more tangible by highlighting executed artifacts.

tivities identified in Section 1.1.1. In the remainder of this chapter, we
motivate in detail the need for HeatMaps, discuss the various kinds of
maps we provide and the exact problems they tackle, report on how we
acquire the information for the HeatMaps, and ultimately validate this
work.

3.1.2 Introduction to HeatMaps

Conventional IDEs enable the exploration of a software system principally
by providing views and mechanisms based on the static structure of the
source code. Object-oriented language characteristics such as inheritance
and polymorphism can lead to conceptually related code being scattered
over many different source artifacts [DUNS 00, WILD 92]. This can lead
to an unfocused, undirected navigation of the source space, resulting in
the same entities being browsed several times during the same working
session. Empirical experiments have shown that during a one day coding
session, developers browsed 95% of all visited methods more than once
[PARN 06].

IDEs offer little support to efficiently navigate the source space aside
from the static system structure. Information about previous navigation,
about the system’s dynamics or its evolution, is not exploited. Previous
research efforts such as NavTracks [SING 05] and Mylar [KERS 05] show
that this additional information provides useful insights to a developer ex-
ploring a system or relocating previously browsed entities. If a developer
has for instance access to historical information about her own navigation

Introduction 69

or that of other developers, she will be able to locate previously navigated
entities more quickly [SING 05, KERS 05].

Although gathering additional information about navigation, history,
or even the dynamics of a system may not be particularly challenging
in itself, representing and displaying the vast amount of information
gathered in the constrained IDE space without further increasing the
information overload is inherently difficult. In this chapter we tackle the
following research question: “Is there a unifying mechanism to represent the
complex information that developers face in the context of a constrained IDE
space while working on a development task?” This question is then further
divided into the following issues:

• How can a uniform mechanism represent various kinds of complex
information in an IDE?

• What different kinds of information are of use to a developer while
performing various tasks on a large software system?

In this chapter we introduce a simple and uniform mechanism, called
HeatMaps, to represent complex information in an easily understandable
way in any IDE. This mechanism allows us to seamlessly integrate such
information without considerably increasing and worsening the informa-
tion overload in the IDE perspectives. Instead developers subjectively get
the impression of dealing with less information as HeatMaps help them to
quickly identify the relevant information.

A HeatMap maps all source artifacts presented in the IDE to colors
ranging from red (“hot”) to blue (“cold”). Hot entities contribute heavily
to a given property while cold ones contribute little or nothing. HeatMaps
represent a simple and uniform mechanism as we can apply them to very
different properties of software, such as how recently a source artifact has
been navigated or modified, how many versions or authors an entity has,
or even how much space is allocated to a method invocation. Different
HeatMaps may be more suitable than others for a given task-at-hand,
so the developer can configure the IDE dynamically to apply a selected
HeatMap. A HeatMap can also be defined as a combination of existing
HeatMaps, to simultaneously display different kinds of information.

In Section 3.2 we motivate the need for a uniform approach to repre-
sent various kinds of information in the IDE. In Section 3.3 we present
the HeatMaps mechanism in detail. We assess the efficiency and accuracy
of various HeatMaps for several case studies using a data set spanning
20 months of IDE navigation in Section 3.4. Section 3.5 discusses the
strengths and weaknesses of this approach while Section 3.6 concludes
the chapter with some remarks on future work.

70 HeatMaps – A Navigational Aid

3.2 Information Overflow and Overload in
IDEs

As discussed in Section 1.1.2, development environments present vast
amounts of information to developers, usually reflecting the static struc-
ture of the code. For example, in the Eclipse IDE1 there are more than
ten different types of projects, there is a huge icon set with more than
a thousand different icons, and a large number of source code entities
are distinguished, including packages, classes, interfaces, class hierar-
chies, methods, attributes, inner classes, and aspects. This vast range
of information can easily overwhelm developers, making it difficult for
them to focus on the particular entities relevant to a task, such as classes
working together at runtime, or methods changing in tandem in every
new version.

We therefore argue that there is a need for a configurable mechanism
to ease navigation by highlighting software artifacts of special relevance
to a given task.

Next we present a typical use case that could clearly benefit from such
a mechanism.

3.2.1 Motivating Use Case

As developers we face the task of correcting a defect in a large, unfamil-
iar web application written in an object-oriented language. This defect
occurs in a feature that has been previously implemented by another
developer who has left the team. Due to our lack of knowledge about this
system, we cannot easily identify the entities responsible for the broken
feature. Our IDE has recorded the development actions performed by the
developer while building this particular feature, so we can exploit this
information. However, it is not clear how this historical information can
be presented in the IDE to help us with this task. In addition to the histor-
ical navigation data, we also have access to the change logs, containing
data about previous versions, commits, and authors. It is known that this
kind of information can also be useful to direct the developers to software
artifacts likely to contain defects [GÎ 04, HASS 04, TARV 09, ZIMM 04b].
Besides correcting the mentioned defect, we are required to also boost the
performance of this feature in general. We hence want to see directly in
the IDE hints about the execution behavior in terms of execution time.

1http://www.eclipse.org

http://www.eclipse.org

Information Overflow and Overload in IDEs 71

In our case we could benefit from the availability of three very different
kinds of information directly in the IDE: (i) information about previous
navigation and possibly modifications performed by developers in the
past, (ii) information about the system’s evolution, and (iii) information
about the runtime behavior of the subject system.

3.2.2 Development Driven Information

There is a large range of information that is orthogonal to the static
structure of a software system, but which may be of use for various devel-
opment tasks. In line with Chapter 2, we consider the following kinds of
non-structural information that can support developers performing the
task-at-hand:

• Exploiting navigation and modification activities. The history of naviga-
tion and modification of source artifacts can be exploited to provide
hints to developers where they may want to navigate to or what to
modify in order to perform a development task [SING 05].

– Recently browsed.
– Recently modified.
– Frequency of browsing.
– Frequency of modification.
– Modified by me, i.e. the degree to which an artifact has been

modified by the current author, measured by number of meth-
ods or versions contributed.

– Extent of modification, i.e. how many lines or methods
changed in a method or class.

– Inclusion in search results, i.e. how often an entity appears in
the results of submitted searches.

• Exploiting evolution history. Change logs contain a great deal of
information that can help the developer to understand how the
system has evolved [GÎ 04, LANZ 01, PINZ 05, ZIMM 04b].

– Number of different authors or versions.

– Age.light-weight

• Exploiting execution. Dynamic information helps developers to rea-
son about issues occurring at runtime, such as performance bottle-
necks [DE P 93, JERD 96, WALK 00, RÖTH 08a].

– Memory consumption.

72 HeatMaps – A Navigational Aid

– Execution time.

Given the potential value of these very different kinds of information
to help developers quickly navigate to software artifacts relevant to par-
ticular task, the challenge is to present this information in the IDE in a
way which does not further overload an already complex and busy user
interface. We claim HeatMaps to be exactly such a lightweight approach
to seamlessly integrate many kinds of information into IDE perspectives.

3.3 HeatMaps

We now introduce HeatMaps and explain our approach in detail. In
particular we explore how IDEs can use HeatMaps to display the different
kinds of information seen in Section 3.2.2 with a uniform mechanism.

Figure 3.2: A color gradient from light blue to light red representing heat.

A HeatMap2 employs the metaphor of heat to color artifacts: colors
range from blue (cold) to red (hot) as Figure 3.2 illustrates. The “hotter”
an artifact is colored, the more relevant it is meant to be for the task-at-
hand. A HeatMap thus guides the developer and provides additional
information about the relative importance of different source artifacts. In
a large unknown system consisting of thousand of classes and methods,
the hot artifacts are readily visible and can serve as a starting point to
explore the system further. Figure 3.3 illustrates two examples where
source artifacts are highlighted (i) based on the number of versions and
(ii) how recently they have been browsed.

HeatMaps can be seamlessly integrated in all traditional tools of the
IDE. With the help of a dedicated interface, developers choose the kind
of information that the HeatMap displays, and they can also configure
how different HeatMaps are combined. The HeatMap for the chosen
information then appears in all views and tools in the IDE, for example,
in the package browser hierarchically presenting all system entities, as
well as in the hierarchy browser focusing on the class hierarchy of a
selected class. Source artifacts that appear in the data history for the

2NB: “HeatMaps” (in italics) refers to the prototype tool, while “HeatMap” (unempha-
sized) refers to an individual map.

HeatMaps 73

Figure 3.3: Two HeatMaps highlighting number of versions of source
artifacts, top left, and recently browsed artifacts, bottom right.

selected HeatMap, such as artifacts that have been browsed or modified
while correcting a defect, are assigned a background color representing
their heat; artifacts not in the history are still displayed but not colored.
HeatMaps do not replace or alter the display of the system’s source code
in any tool of the IDE, except by adding a background color to the display
of source artifacts such as packages, classes, or methods. Our prototype
runs in Squeak Smalltalk3 but could easily be ported to other IDEs such
as Eclipse, as the technique does not depend on any Smalltalk-specific
idiom.

3http://squeak.org/

http://squeak.org/

74 HeatMaps – A Navigational Aid

Typically, the navigation history, indicating how frequently entities
have been browsed in the past, is a good guide to the importance of
source artifacts. For a specific maintenance task other, more task-related
information might lead to a better assessment of the relative importance
of different artifacts. HeatMaps exploit all kinds of information as men-
tioned before in Section 3.2.2, that is, information from development
activities, system evolution and execution. Developers can freely choose
the appropriate HeatMap and even use maps combining different sources
of information. Depending on the exact nature of the task, the system’s
evolutionary information might give better results than, say, information
about historical navigation.

As the different HeatMaps to visualize the heat of an entity are based
on very different kinds of information, we briefly describe the way in
which heat is computed for two classes of HeatMaps, namely Time-based
HeatMaps and Metrics-based HeatMaps.

Time-based HeatMaps. HeatMaps highlighting recently browsed or
modified entities are used to reason about the time at which the navigation
or modification of entities occurred. The interest in an entity usually
decreases steadily after it has been navigated or edited. In Figure 3.4 we
can see how with a time-based HeatMap a cold entity is associated with
an early time while a hot entity is close to the current time. We assume
that the interest in an entity decreases steadily as time passes by, thus an
entity’s color constantly “cools down”. We experimented with several
mechanisms to cool down an entity (cf. Section 3.4) and got best results
when gradually cooling the entity as time passes by. There is a lower
bound of entities’ time values to take into account, determined by the
size of the available history and the time passed by between now and the
recorded time for an artifact. This means that if artifacts have not been
covered by a relevant event for a long time, they drop out and will not be
colored in this particular HeatMap. When reusing old navigation data,
as in the use case described in Section 3.2.1), HeatMaps take the highest
time value in the recorded data set as the current time to color the most
recent items red.

Figure 3.4: Time-based color gradient.

HeatMaps 75

Metrics-based HeatMaps Frequency of browsing or modification of an
artifact, and the number of developers having altered it are two examples
of metrics-based HeatMaps. Such HeatMaps are used to reason about
metrics associated with each artifact in the system. The higher the metric
value the more important the artifact becomes. Metric values are linearly
mapped to heat colors in metrics-based HeatMaps, as illustrated in Fig-
ure 3.5. To make sure that HeatMaps meaningfully highlight particularly
important source artifacts, we introduce a threshold if the data set con-
tains a wide range of different ordinal metric values. Hence we often
associate cold not with the minimum value in the data set but with the
threshold value (cf. Figure 3.5). We determine the threshold based on the
system size, the size of the data set, and the distribution of the data.

Figure 3.5: Metrics-based color gradient.

Combined HeatMaps. We assume that combining different kinds of
information leads to a more accurate estimate for the source artifacts’
importance than just exploiting one kind of information. Combining
for example recently with frequently browsed HeatMaps is likely to
better assess the developer’s interest in an artifact than a single source of
information. We offer two different means to combine several HeatMaps:
(i) weighted linear combination of the color values of different HeatMaps
and (ii) exponential decay when combining one time-based with one
metrics-based HeatMap. Combining two HeatMaps linearly means that
an entity once colored in blue and once in red is assigned an in-between
color, if the two HeatMaps are equally weighted. It often makes sense to
weight one HeatMap more than the other(s). For instance, if we combine
recently browsed with recently modified, we weight the color value
from the recently modified map with a weight of 2 (or even higher), as
modification is rare and thus most likely increases the interest in an entity
more than its navigation does. In the exponential decay combination we
assume that the interest in an entity decreases exponentially over time.
Obviously we are most interested in an artifact at the moment when we
browse it. This event is additionally weighted with the number of times
we previously browsed the same entity. From this point on, the interest
in that artifact decays exponentially, similar to radioactive decay. Such
a combination has the advantage that entities not having experienced

76 HeatMaps – A Navigational Aid

any action for a long time are still colored if they once had been very
important.

How to gather the information for the HeatMaps. For many time-
based HeatMaps we instrument the IDE itself to gather information
about the navigation, modification, or deletion of source entities. Most
metrics-based HeatMaps initially obtain their information by executing
a batch process that analyzes all system artifacts to extract information
such as number of versions or authors of specific artifacts. HeatMaps
used to visualize behavioral information require the developer to instru-
ment and exercise the application to gather execution time or memory
usage data. For this we use partial behavioral reflection in Smalltalk
[DENK 07, RÖTH 08a].

Storing, caching, updating, and exchanging the information. We store
the data used by HeatMaps in a simple file format. For some HeatMaps
the underlying data sets quickly grow in size, thus we cache the results of
color computations. This is particularly important for aggregate entities
such as packages or classes, as they aggregate the color value from their
child elements (e.g. single methods), so rendering their color computation
is more time-consuming. Usually HeatMaps are not based on an imported
data set but on the data generated by the current developer in the current
development session; in such cases we update the caches whenever an
event occurs that is relevant to the currently selected HeatMap. These
caching mechanisms make sure that HeatMaps are efficiently displayed
even when their underlying data grows with the ongoing development
session. The HeatMap data is easily exchangeable (e.g. to append it
to a bug report) as it is stored in files. Thus we can easily import the
navigation data generated by the developer in our use case (Section 3.2.1)
to correct this defect.

3.4 Validation

HeatMaps are intended to help developers to more quickly navigate to
software artifacts relevant to the task-at-hand. To be successful, HeatMaps
have to fulfill at least two requirements: They need to be (i) efficient, so
updating and displaying should not slow down the IDE, and (ii) accurate,
that is, they should assess entities’ importance properly, actually highlight-
ing what is relevant for developers. We performed initial experiments
to validate these two requirements by (i) benchmarking the efficiency of
updating and rendering HeatMaps, and (ii) testing HeatMaps against an

Validation 77

available navigation and modification history spanning nearly two years
to verify whether the various HeatMaps would haven given accurate
hints to the developer. Finally, we report on an informal user experiment
we conducted with developers using HeatMaps.

3.4.1 Efficiency of HeatMaps

We tested the performance of the recently browsed HeatMap by observing
the time it takes to add new elements to the database, including updating
all dependent HeatMaps, refreshing all involved caches and updating
the visualization, and we measured the time to actually color all artifacts
for a particular HeatMap in the whole system. The system we used is
the Squeak Smalltalk system itself, consisting of 3180 classes and 57400
methods. We measured the display of HeatMaps in the system browser
that shows all system entities. Updating the HeatMaps database upon
navigation activities causes a non-measurable slowdown in the range of
some milliseconds. Coloring the whole system with a new map affecting
more than half of all entities took less than a second. Thus we consider
HeatMaps to be an efficient means to visualize information in IDEs.

3.4.2 Accuracy of HeatMaps

In this section we evaluate the accuracy of various HeatMaps and their
combinations using a benchmark.

Procedure. In a nutshell, the benchmarking procedure we implemented
replays a recorded sequence of interactions, and measures the color of
each element that was interacted with (in sequence) according to the
HeatMap. The warmer the element is, the more accurate the map is. The
sequence of interactions we replay consists of nearly 90’000 navigation
and modification events recorded in an IDE while developing and main-
taining a medium-sized system (consisting of 7000 methods in 700 classes)
used to analyze software evolution over the course of 20 months. Bench-
marks have the advantage of being easily replicable, ease the comparison
of results, and can be used to test a restricted functionality, such as the
effect of the weight used in the combination of different HeatMaps. The
same approach has been used by other researchers to evaluate similar
works such as code completion engines [ROBB 08].

We implemented two variants of the benchmark, corresponding to
two distinct use cases for HeatMaps:

78 HeatMaps – A Navigational Aid

1. In the Monitoring Use Case the developer uses HeatMaps in her daily
work. Information used in a HeatMap is continuously gathered
and displayed in the IDE, so when she navigates to a new artifact,
the recently browsed HeatMap immediately takes this event into
account.

2. In the Historical Use Case the developer does not record events about
her own development but imports a recorded history of another
development session, for example, a session recorded by another
developer while implementing a feature. This historical data is
assumed to be read-only, that is, newly created events are not added
to the HeatMaps database.

Evaluation. To simulate the first use case we create an initial database
with the first 500 records in the history, test for all following elements the
color value they would be assigned in a particular HeatMap, and add
the tested element itself to the HeatMaps database. The second use case
is similarly simulated; here we vary the records added from the history
to the HeatMaps database starting at the beginning of the history with a
database size of 500. We then test the 100 elements following next in the
history. Afterwards we create a new database with the next 500 elements
after the 100 tested elements, test the 100 subsequent elements, and so on.

Testing a single artifact means computing its color value for the cur-
rently active HeatMap, then computing the distance to red as a percentage
value, so “red” is a 100% fit, “blue” and not colored a 0% fit, and values
in-between are interpolated. This procedure assumes that if the developer
in the history selected an artifact and a HeatMap colored it red, then
the HeatMap would have successfully guided the developer to the right
artifact. The percentage values are aggregated for all tested elements to
form an average result for the whole HeatMap using the given history.
We compute accuracy for the Monitoring Use Case as follows:

Accuracy = 1−
∑n

i=d dist(CV (xi), RED)
n− d + 1

where d represents the size of the initial database, n is the final size of
the database, xi is the ith element, CV (x) is the color value assigned
to element x, and dist(cvi, cvj) is the distance between two colors. For
the Historical Use Case, the accuracy computation works similar with d
equal to 500 and n equal to 600. As the window containing the analyzed
hundred elements in the data set slides over the entire set, we take the
mean of all accuracy values obtained for each window individually to
compute the final accuracy value for the entire historical data set.

Validation 79

HeatMap Accuracy

Recently browsed 74.48%
Frequently browsed 21.08%
Recently modified 34.52%
Frequently modified 4.01%
Artifacts’ age 43.12%
Number of versions < 1%
Recently and frequently browsed combined 73.24%
Recently and frequently modified combined 39.17%
Recently browsed, recently modified combined 74.48%
Recently browsed and age combined 48.56%
“Best of everything” 75.91%

Table 3.1: Accuracy rates of different HeatMaps in the Monitoring Use
Case.

Evaluated HeatMaps. In this experiment we test six different
HeatMaps: recently browsed, frequently browsed (how often the artifact
has been visited), recently modified (created, update, moved, renamed, or
deleted), frequently modified, age of artifact, and number of versions (how of-
ten the artifact has been committed). Furthermore, we combine different
HeatMaps to test whether combined information yields better results. We
combined these maps using the weighted linear combination approach
and weighted the second map with a factor of 2. As stated in Section 3.3
we can give different weights to the individual HeatMaps when combin-
ing them; in this validation each HeatMap is assigned the same weight
in the combinations we tested. Finally, we did a best of everything experi-
ment, that is, we computed for each tested artifact the maximum accuracy
achieved under all tested HeatMaps. This final experiment thus leads to
the maximum accuracy rate we possibly obtain with our approach and
this data set.

Table 3.1 (Monitoring Use Case) and Table 3.2 (Historical Use Case)
show the various accuracy rates for different HeatMaps we obtained
using the recorded developer activities.

Discussion of the results. From these results we conclude that
HeatMaps perform similarly well for both use cases, that is, when continu-
ously used in a development session, or when imported from a recorded
history and used without taking into account events generated thereafter.
The recently browsed HeatMap is the best performing single metric, which
comes as no surprise since the past navigation actions are most likely to be
a good basis to predict future navigation actions; thus our motivating use
case (Section 3.2.1) should be easier to support by a HeatMap that gives

80 HeatMaps – A Navigational Aid

HeatMap Accuracy

Recently browsed 68.27%
Frequently browsed 18.14%
Recently modified 39.02%
Frequently modified 3.62%
Artifacts’ age 21.93%
Number of versions < 1%
Recently and frequently browsed combined 63.81%
Recently and frequently modified combined 39.02%
Recently browsed, recently modified combined 65.48%
Recently browsed and age combined 37.41%
“Best of everything” 70.36%

Table 3.2: Accuracy rates of different HeatMaps in the Historical Use Case.

us hints about what the developer browsed while originally developing
the broken feature.

Modification actions lead to significantly less accurate results com-
pared to navigation actions, as do frequency-based HeatMaps compared
to recency-based HeatMaps. This is intriguing as other researchers re-
ported higher accuracy rates for models based on modification activities
[KERS 05, SING 05]. We explain our contradicting results by the fact that
the used data set contains much fewer modification than navigation ac-
tivities (84000 navigation events compared to 4000 modification events);
thus many browsed entities have never been modified, which means that
those entities are not colored by modification-based maps. We performed
another experiment which tests modification-based maps only with those
entities that indeed have been modified. In this experiment we obtain
accuracies of 67.49% for recently modified and 31.08% for frequently mod-
ified. The low accuracy for the number of versions map is explained by
the fact that just a very small percentage of methods contains more than
one version. For systems with more evolutionary information available
we expect much better results for maps based on such data.

To assess the fitness of this experiment we also constantly studied the
ratio of entities colored by the evaluated HeatMap and all system entities.
This ratio varied between 5% and 38% throughout all experiments with
an average at 17%, hence colored entities clearly stand out.

Threats to validity. There are several threats to validity in the experi-
ment we performed. Firstly, the data set we used contains all navigations
and modifications occurring in one single application, thus we cannot
generalize our results to other systems as well (threat to external validity).
However, we consider this data set as being fairly typically for other

Validation 81

applications of similar (medium) size. The system experienced several
extensions, changes, and refactorings. It also contained several defects
that had to be addressed, thus the recorded development history covers
all the typical tasks we want to support with HeatMaps.

Secondly, the observed navigation and modification patterns have
not necessarily been effective or even optimal, for instance, if developers
didn’t navigate directly to the right artifacts. Since HeatMaps should
guide developers effectively to the entities they have to understand or
modify in the context of a specific task, the HeatMaps should make
close to optimal suggestions. The recorded data set most likely does not
represent an optimal navigation in all cases, thus it is likely that HeatMaps
performing well in the simulated study are not necessarily optimal for the
task-at-hand (threat to external validity). However, as we know that the
developers generating this data set have been involved in the system’s
development from the start and have thus been very familiar with it,
we assume that their navigation patterns are generally very directed
to what they were actually looking for. The results of the experiment
would have been different if we had assumed that not the navigation
but the actual modifications performed indicate an optimal pattern. In
that case an optimal navigation directly opens the entities to modify in
order, for instance, to correct a defect. Under this assumption, the recently
and frequently modified maps give much better results, namely 72.25%
and 47.81%, respectively. Neither assuming that the navigation nor the
modification patterns are optimal in the available data set, is fully correct.
We opted for the former assumption because navigation activities are,
of course, much more frequent while working in an IDE [PARN 06] than
modification activities. The reliability of test results is usually higher
when based on larger data sets.

Thirdly, in this experiment we did not yet distinguish between dif-
ferent tasks. We are going to analyze the performance of HeatMaps with
respect to the task-at-hand in the subsequent experiment. We performed
this experiment under the assumption that the recorded data represents
one large task during which developers navigated optimally (threat to
construct validity). A separation by different development sessions, how-
ever, would make sure that a history of one session, for example, in which
a bug was fixed, does not influence the suggestions for navigation in a
completely different session dedicated, say, to refactoring. However, this
implicit knowledge would have rather increased the accuracy, as using
only the history of a similar session to generate the HeatMaps is very
likely to give better results.

82 HeatMaps – A Navigational Aid

Task-dependent HeatMaps. The data set with which we performed
this validation also contains information about the nature of the task that
has been performed at the moment in which the navigation data has been
recorded. In another experiment, we use this information to compare the
performance of different HeatMaps for different specific tasks, to reveal
whether some HeatMaps are better suited for one kind of development
task than for another. We extracted four types of major development
tasks from the same data set as before, considering all 90’000 navigation
and modification activities: defect correction, new feature implementation,
refactoring, and navigation tasks (tasks which do not change the system,
probably performed purely to gain understanding).

To identify these four types of tasks in the data set, that is, determining
the set of activities representing a particular type of task, we use a semi-
automatic approach: The data set itself is split into development sessions,
that is, sets of activities separated from subsequent sets with a timespan of
at least two hours (to not include meetings, phone calls, or lunch breaks).
We assume that a task does not last longer than one development session.
We manually analyze each development session to reveal whether it
consists of more than one task. We assume that navigation tasks do
not contain any modification activities, defect correction tasks comprise
only a few modification actions, while both refactoring and new feature
implementation tasks contain many modification actions. Thus, we can
assume that a new type of task starts as soon as the modification patterns
change. By manually inspecting what has been navigated and modified,
we can more precisely identify the moment in time when the developer
switched task.

To determine the accuracy of each map for a particular type of task, we
use a similar procedure as in the Monitoring Use Case: The database from
which the accuracy value for a particular entity is computed basically
consists of all activities that occurred before the current item in the data
set. The aggregated accuracy value for a particular type of task is the
average of all accuracy values computed for each data set item being part
of this type of task.

In Table 3.3 we report how often a particular HeatMap most accurately
directed the developer to the desired entities. For refactoring and naviga-
tion tasks, the recently browsed map performs best. For defect correction
and feature implementation tasks the recently browsed combined with
the recently modified map performs best. We attribute this to the fact that
bug correcting activities often occur after a system has been modified,
thus the recently browsed combined with the recently modified map
gives best results. Feature implementation tasks often occur in sequences,
thus leading to the same effect as bug correction tasks. Refactoring and

Validation 83

in particular navigation tasks often occur after navigation activities in
which developers have spotted issues or interesting code segments to be
investigated further. Hence visualizing previous navigation efforts helps
developers to find the entities to refactor or analyze in more detail. The
results in Table 3.3 serve as a guideline: when working on a task in one
of these four areas, developers obtain best results when using the sug-
gested HeatMap. We make use of this knowledge in HeatMaps to suggest
well-performing HeatMaps to the developer based on the task-at-hand
(cf. Section 3.5). We did not test how the HeatMaps visualizing dynamic
information would have performed as there is no recorded runtime data
about this system available. We expect such maps to outperform others
for specific bug corrections.

HeatMap Defect Feature Refactor. Navig.

Recently browsed 49.48% 50.90% 64.27% 75.19%
Frequently browsed 19.07% 20.28% 22.99% 24.82%
Recently modified 45.20% 31.73% 38.03% 28.39%
Frequently mod. 32.98% 9.64% 17.62% 11.88%
Rec. brow. & rec. mod. 54.31% 51.14% 63.00% 72.04%
Freq. brow. & freq. mod. 32.78% 44.01% 29.22% 61.76%

Table 3.3: Performance of different HeatMaps in specific tasks.

3.4.3 User feedback

In addition to the benchmark validation we also gathered feedback from
developers using HeatMaps in practice. Four developers used HeatMaps
over a period ranging from several hours to a week while performing
various kinds of tasks such as maintaining a familiar system. We also
asked one developer to gain an initial understanding for a unfamiliar
system we had developed; we provided him with HeatMaps visualizing
our navigation history in this system. The developers using HeatMaps
generally appreciated their presence during their work. They consid-
ered this navigational aid to be useful; in particular they liked that fact
that HeatMaps are easy to understand and that the maps apply to a
wide range of different kinds of information. The colors we chose as the
background for the source artifacts are considered to be non-intrusive
(we opted to use a color gradient from light blue to light red to obtain
soft colors). All participants stressed the importance of suggesting task-
dependent HeatMaps; although the IDE should suggest, based on the
developer’s characterization of the task-at-hand, the best suited HeatMap,
the engineers still want to be able to customize the automatic suggestion.

After using HeatMaps for a while, one developer considered the fre-
quency and recently browsed HeatMaps to be most useful when he was

84 HeatMaps – A Navigational Aid

interested in understanding the system in general; for addressing a spe-
cific maintenance task, he opted for HeatMaps focusing more on that task,
such as HeatMaps showing evolutionary information about a specific
part of the system or information involving frequency of modification, or
the number of versions, not just navigation.

These early user comments offer a promising feedback about how
useful HeatMaps can be in practice; performing a full-fledged controlled
experiment we leave as future work.

3.5 Related Work and Discussion

3.5.1 Related Work

Other works pursue a similar goal, most notably Seesoft [EICK 92], FEAT
[ROBI 03a], NavTracks [SING 05] and Mylar [KERS 05]. For a thorough
treatment of these approaches we refer to Section 2.1. We compare these
four approaches to HeatMaps and particularly stress their differences and
limitations.

Seesoft. While Seesoft visualizes single lines of code, HeatMaps focus on
entire source artifacts, the lowest level of granularity being the method.
Seesoft’s approach does not provide an overview of a system and makes
it hard to identify interesting artifacts. Even for small-sized systems,
Seesoft’s visualizations of single lines of code do not scale and cannot
contribute to a better system overview in the IDE. However, HeatMaps
complement the approach of Seesoft well: With HeatMaps, developers
can obtain an overview of the system and identify artifacts of interest. To
explore the implementation of an artifact, e.g. a method, Seesoft can visu-
alize the simple, basic metrics of HeatMaps (for instance, recency or extent
of modification) on a per line of code basis. This is for instance interesting
to reveal which lines of code have been added or modified together in
the same commit or by the same author. Profiling information exploited
by Seesoft also allows developers to, for instance, quickly spot lines of
code with high execution frequencies. Such detailed and fine-grained
information on an intra-procedural level is not provided by HeatMaps.

FEAT. HeatMaps pursue a different goal than identifying concerns as
FEAT does. A HeatMap can also represent a concern though, for instance
all entities colored in the same hot color can be perceived as a concern.
However, the HeatMaps approach does not claim to identify concerns
correctly, but to give hints about the relative importance of particular

Related Work and Discussion 85

artifacts for the task at hand. Entities identified as being important might
or might not belong to the same concern. While FEAT aims at identifying
and presenting related artifacts for a given concern to the developer,
HeatMaps provide an overview of a system by drawing the attention of the
developer to particular entities likely to be of interest. To determine this
importance, HeatMaps take into account different data sources. HeatMaps
allow the developer to choose the appropriate HeatMap dependent on the
task and thus acknowledges the fact that there is no single answer to the
question which entities need to be examined to, for instance, comprehend
a system or a particular concern thereof.

NavTracks. HeatMaps, while using similar data as NavTracks (that is,
recency and frequency of navigation) pursue a different goal, namely
providing an overview of a system dependent on the development task
by highlighting entities of importance. Developers can freely choose
which kind of data assesses the artifacts’ importance best for their task at
hand. As NavTracks does not aim to provide an overview of the system
to developers, the two approaches are not directly comparable. However,
often all entities colored in red with HeatMaps are related to each other
and would thus be in the recommendation lists for each other in the
NavTracks approach.

Mylyn. As Mylyn, HeatMaps also apply a heat-based coloring scheme
to highlight important artifacts, but the importance is assessed differently.
While the degree-of-interest model is fixed in Mylyn, the developer can
choose between different models in the HeatMaps approach and can even
combine various models with each other to obtain better results. The
HeatMaps models are also based on different information than that of
Mylyn, including runtime and evolutionary information, such as how
many different developers worked on a specific artifact in the past. For
many tasks, information about previous navigation or modification is
not sufficient to accurately determine the degree-of-interest, since dy-
namic or evolutionary information is likely to give better results. For
example, when addressing a software regression, taking into account
evolutionary information about who changed what in the system gives
appropriate hints to developers about what they should browse. For this
reason, HeatMaps provide suggestions to developers what information,
including combinations thereof, gives best results for which kind of task.
Considering the nature of the task when identifying important artifacts is
likely to give better results than the rather strict degree-of-interest model
provided by Mylyn. However, we have not yet formally compared the

86 HeatMaps – A Navigational Aid

two proposals to each other, mainly due to the fundamental differences
in languages and IDEs (Eclipse and Java versus Smalltalk).

3.5.2 Discussion

Next we discuss several important aspects of our proposal: (i) combining
or aggregating different information from single HeatMaps, (ii) task-
dependent or goal-oriented usage of HeatMaps, and (iii) studying its
limitations.

Information aggregation. From the validation in Section 3.4.2 we learn
that combining HeatMaps does not appear to have a significant positive
effect on the accuracy of a HeatMap. The accuracy of combinations heav-
ily depends on the HeatMaps used, on their weighting, and on the data set
of recorded activities. As the experiment studying the task-dependency
of HeatMaps reveals, combined HeatMaps can outperform single maps
for specific goals or tasks, as was the case for defect correction and imple-
mentation of new features (cf. Section 3.4.2), where a combination of the
recently browsed map with the recently modified map performed best,
also better than the recently browsed map alone. Instead of combining
HeatMaps we could also already take into account the different actions
performed by the user when initially building a single HeatMap. Mylar
[SING 05] for instance creates a degree-of-interest model in which not
only navigation but also each key struck during the modification of an
artifact directly increases the interest value.

As one of our primary goals with this approach is to freely combine,
exchange, and distribute the underlying data for HeatMaps, as well as to
have a uniform approach to efficiently display very different information
in the IDE, we deliberately keep the information used in single HeatMaps
as simple as possible, even though gathering this information is often
complex or time-consuming, as is the case for HeatMaps presenting
dynamic information. This enables the developer to select from a wide
range of information that which best fits the specific task-at-hand; the
IDE supports the developer hereby by offering suggestions for proven
combinations.

Task-dependency, Goal-orientation A navigational aid such as
HeatMaps should ultimately guide the developer towards her goal, for
example, the entity she actually needs to modify to correct a defect. In
software maintenance the goals can be very diverse — gaining an under-
standing for the software is usually a prerequisite to attain any goal when

Related Work and Discussion 87

maintaining software. HeatMaps contribute to program comprehension
by highlighting entities according to their importance. As an artifact’s
importance depends highly on the programmer’s task and on the concrete
goal she is pursuing, HeatMaps can visualize a wide range of information
and propose suggestions what configuration or combination of different
HeatMaps are most useful for a specific task. Developers can further
refine the suggestions given by the IDE.

For many tasks and goals it may be obvious what information is likely
to be most useful for identifying the important entities. For example, to
optimize performance, a HeatMap highlighting heavy computations is
a natural choice. Not only the HeatMap itself but also the nature or age
of the data it visualizes influences the accuracy. From our experience we
know that when starting a new task, the data for the HeatMaps should
either be freshly recorded from scratch or originate from a similar task,
otherwise the assessment of the entities’ relevance is not accurate enough
to properly guide the developer. For this reason HeatMaps provide the
means to easily store the used data for later reuse in another, similar task
(as done for the running use case in Section 3.2.1). Particularly useful
is saving the HeatMaps data used while correcting a bug together with
the bug report, thus giving other developers in the team the opportunity
to view the HeatMaps of the original developer who addressed this
particular bug [SING 05].

As mentioned in Section 3.4.2 we also provide best practice guidelines
to suggest which HeatMaps are most useful for which kind of task. For
developers correcting defects different entities may be important than
for new team members trying to gain an initial understanding for a
large software system. In the future, we want to perform empirical user
studies with different HeatMaps with respect to how well they perform
for various tasks. Of particular interest is the impact of HeatMaps on
initial program understanding, such as when a new developer joins a
team.

Limitations HeatMaps are limited in their expressiveness, since they
can, by definition, only display one ordered set of values at a time. We
can circumvent this limitation to some degree by combining different
HeatMaps. However, it is unclear whether we could display more than
one HeatMap at the same time in the IDE by, say, coloring artifacts in
several colors, or whether we could use discrete colors to visualize discrete
values, such as authors, but still show the degree of realization for a
variable, for example, how much an author contributed to an artifact, by
displaying a gradient around each discrete color. Abusing HeatMaps to

88 HeatMaps – A Navigational Aid

visualize too complex information is likely to erode their main advantage,
that is, being easily understandable.

3.6 Summary of the Chapter

In this chapter we addressed the research question whether there is a
uniform means to guide developers working on various development
tasks through a large software space directly in the IDE without even
more overloading the existing IDE perspectives. We proposed HeatMaps,
a uniform approach to visualize various kinds of information orthogonal
to the static system structure in the IDE. Evolutionary information, infor-
mation about the historical navigation and modification performed in the
IDE, or dynamic information about a large software system, can direct
developers to software entities important for a specific goal and hence
improve the overview of the system, in particular as developers do not
have to care about all system artifacts but rather just about those being
highlighted by HeatMaps.

As software developers and maintainers face very diverse tasks,
HeatMaps offer a flexible and configurable means to visualize different
kinds of information relevant to these tasks. In particular, we provide
predefined configurations of HeatMaps that are, according to our evalu-
ations, best suited to direct developers when solving problems such as
navigating a system to gain an initial or deeper understanding, correcting
defects, implementing new features, or refactoring a system.

While HeatMaps help developers to quickly identify artifacts likely
to be relevant for the current task and to thus gain an overview of the
system, this approach has also some drawbacks: (i) building a mental
map of the task context is difficult; the entities colored in a hot color by a
HeatMap might not formulate a working set as needed for a given task
and the colored entities do usually not appear in a comprehensive list
but are distributed over the entire source space. (ii) A HeatMap shows
the importance of artifacts at a given moment in time; as this importance
evolves over time, the HeatMap also evolves (for instance, by taking
into account new modification events), thus such a map does not reflect
a persistent working context. Finally, (iii) a HeatMap cannot easily be
stored, distributed, or manually altered by the developer; each HeatMap
is bound to a particular environment and a particular computation of
the importance value. For this reason, the coloring of entities cannot be
distributed or adapted by the developer.

We addressed these shortcomings of HeatMaps by working on another
approach particular tailored to represent an explicit context in the IDE.

Summary of the Chapter 89

This approach is called SmartGroups and is introduced in detail in the next
chapter.

Chapter 4

SmartGroups –
Representing Context in
IDEs

4.1 Introduction

4.1.1 Positioning SmartGroups

This chapter introduces SmartGroups, a categorization mechanism for
source artifacts available for the Squeak and Pharo Smalltalk IDE. Smart-
Groups alleviate the difficulties of locating and navigating in a large
software space the artifacts needed to accomplish a specific software
maintenance task. To do this, SmartGroups provide automatically built
working sets to help developers identifying the source artifacts likely to
be important for their current task. Such working sets hold just a small
portion of all artifacts defined in a system, thus SmartGroups reduce the
amount of information developers have to deal with and hence tackles
the information overload problem of IDEs. The artifacts contained in such
automatically created groups of artifacts are, for instance, determined by
analyzing the recent modification or navigation history of a developer, or
by exploiting historical or dynamic information, similar to HeatMaps.

SmartGroups also allow developers to manually create working sets
to persistently represent the context relevant for a particular software
task such as correcting a defect. As a working set in particular contains

92 SmartGroups – Representing Context in IDEs

conceptually related entities, SmartGroups also address the problem of
having many widely distributed artifacts in a software system by bringing
them together in the same smart group.

Figure 4.1: SmartGroups primarily mitigate the problem of information
overload, represent context in IDEs, and, to a limited degree, also make
explicit hidden collaboration between distributed source artifacts.

Figure 4.1 comes back to the IDE problems discussed in Chapter 1
by summarizing all problems tackled by the SmartGroups approach, that
is, information overload, no context representation, and distant but col-
laborating artifacts. Thus, SmartGroups support developers in all typical
software maintenance activities except analyzing how particular artifacts
are used by other elements in the system.

The rest of the chapter discusses in detail our SmartGroups proposal,
the motivation for its realization, its concrete implementation and integra-
tion in the IDE, and ultimately its evaluation by means of a benchmark
validation.

4.1.2 Introduction to SmartGroups

To comprehend a software system, developers typically use a develop-
ment environment (IDE) to navigate the system and to locate important
artifacts, for instance a method which introduced a defect. However, the
navigation of a large system in an IDE is a time-consuming task as there
are many source artifacts such as packages, classes, or methods that im-
plement this system [KO 05]. Moreover, these entities are interconnected
with each other at runtime in ways that are difficult to foresee while
browsing the code [DUNS 00, CHU- 03]. In particular object-oriented lan-
guage features such as polymorphism, abstract types, or the use of design
patterns often lead to conceptually related but scattered and distributed
code [DUNS 00, WILD 92]. For instance, a system might statically refer to
abstract types, but at runtime concrete sub-types of these abstract types
are used [DUNS 00]. As inheritance hierarchies often consist of many
classes and interfaces that might be distributed in several packages, iden-

Introduction 93

tifying the few types actually relevant for a specific task is often difficult
or time-consuming [MARC 04, SOLO 86].

The IDE usually does not support well the identification of task-
relevant artifacts. Instead, developers see in their development envi-
ronment just the hierarchical structure of the software system under
investigation, but there is no notion of a context specifically tailored to
the current task. However, the interest of the developer in specific source
artifacts is typically heavily dependent on the nature of the task. To gain
an overview of an unfamiliar system, a developer needs to study different
artifacts than when correcting a defect in a specific functionality of a
well-known application. But the IDE always gives the same view on the
source space to the developer, independently of the nature of the current
development task.

We propose in this chapter the inclusion of the concept of working
context in the IDE. A working context is a set of artifacts relevant for a
particular task. To identify these relevant entities, we define types of tasks,
namely defect correction, feature implementation, and general program
understanding tasks. Different types of tasks have different relevant
artifacts, thus SmartGroups adapt how it categorizes source elements
based on the nature of the task. For defect correction tasks, for example,
SmartGroups also take into account evolutionary information, that is,
artifacts that were committed to the source repository in the past to
correct a defect. For program understanding tasks, mainly navigation
activities performed in the IDE are analyzed to suggest relevant entities.
Developers manually specify the nature of the task; SmartGroups use this
information to associate development activities with a task type and to
recommend the artifacts appropriate for the specified task type.

Besides defining the task type (defect correction, feature implemen-
tation, or system understanding), we can further characterize the nature
of the task by specifying which static or dynamic parts of a system are
involved when carrying it out. The involved static part is defined by enu-
merating packages while the dynamic part is characterized by involved
software features.

We implemented our proposal as an extension to the IDE called Smart-
Groups which is available for the Squeak and Pharo Smalltalk IDE. This
extension represents working context by categorizing source entities in
groups. These groups are “smart” in the sense that they hold source enti-
ties automatically categorized by algorithms tailored to specific task types.
These algorithms use various kinds of information such as the modifica-
tion and navigation activities performed in the past on the system under
study, evolutionary information such as recently committed artifacts, or
dynamic information such as number of invocations of a method.

94 SmartGroups – Representing Context in IDEs

The main contributions of this chapter are (i) a thorough analysis of
the difficulties in navigating the software space in IDEs, (ii) an implemen-
tation of SmartGroups mitigating these difficulties, (iii) the evaluation of
various algorithms to automatically identify the elements in the smart
groups, and (iv) the validation of how correct and accurate SmartGroups
identify task-dependent entities.

This chapter is structured as follows: Section 4.2 thoroughly studies
the problem of software navigation and comprehension in IDEs while
Section 4.3 reports on related approaches such as Mylyn or NavTracks. In
Section 4.4, we introduce SmartGroups, our implementation of a smart and
automatic categorization mechanism for source artifacts in IDEs, and the
algorithms and their parameters SmartGroups use to identify task-relevant
source artifacts. Section 4.5 evaluates our proposal with a benchmark
validation based on a recorded set of development activities. Eventually,
Section 4.6 concludes the chapter.

4.2 Software Space Navigation Issues

As we stated in Section 1.1.2 an IDE’s views on a software system are
typically overloaded. It is difficult to navigate a large software space
in such overloaded views, in particular as the IDE does not provide
any guide to the developer how to locate relevant artifacts [KERS 05].
However, software navigation is a crucial prerequisite for program com-
prehension [BASI 97, CORB 89], since most software systems spread their
functionality over multiple source artifacts [DUNS 00, CHU- 03, SOLO 86].
Even reasonably sized systems contain several hundreds of these artifacts
(classes, methods, etc.). As conceptually related code is often distributed
over the entire source space, understanding for instance a particular soft-
ware feature requires developers to spend considerable time and effort to
navigate a feature [KO 05, MARC 04]. During this navigation, developers
often lose the overview and have to start over searching for the right path
to be able to comprehend a software feature [NIEL 89a].

In this section we empirically analyze the software space navigation
problem developers suffer from when working on software maintenance
tasks in IDEs such as Eclipse or Smalltalk. We examine several recorded
development sessions to study the extent of navigation problems in the
traditional Pharo and Squeak IDE and to obtain some indicators giving
evidence for the existence of navigational difficulties in IDEs. Although
the two IDEs we cover in our study are dedicated to the non-file based,
dynamically typed Smalltalk language, we do not expect major differ-
ences in the analysis results for other IDEs such as Eclipse or NetBeans,

Software Space Navigation Issues 95

Indicator Avg. of 20 sessions

Number of window switches 38.85
Number of entities revisited 35.10
Edit / navigation ratio 9.51%
Number of navigation actions until first edit 52.14
Number of navigation actions btw. two edits 19.31

Table 4.1: Five indicators highlighting navigation issues occurring in the
Squeak Smalltalk IDE.

which are used for programming in statically typed file-based languages
such as Java. We further analyzed these development sessions to elicit
ideas for the improvement of software navigation, in particular to reveal
whether having a representation of a working context could help to cure
software navigation issues.

Problem indicators. As indicators for navigation difficulties we con-
sider the number of window switches (changing focus from one window
to another), the number of re-visits of source artifacts purely for reading
and understanding (without modification), the edit/navigation ratio (ratio
of edit actions compared to navigation actions), the extent of navigation
until first edit (how many navigation actions a developer performed until
modifying the first artifact), and the average extent of navigation between
two edits (how many navigation actions occur between two subsequent
modification actions). By analyzing 20 development sessions we obtained
the results displayed in Table 4.1 for these five indicators. All the recorded
and analyzed sessions originate from developers working for 30 minutes
on software maintenance tasks (defect correction or feature adaptation) in
small or medium-sized applications with up to hundred classes in Pharo
and Squeak Smalltalk.

As partially introduced in Section 1.1.2, the figures resulting from
this study corroborate the hypothesis that navigating the source space in
Smalltalk is often difficult. Developers very frequently switch between
different windows and visit many source entities several times, even
during short development sessions lasting just half an hour. Locating an
artifact to be modified in order to carry out a software maintenance task
requires developers to spend a considerable amount of time. This is indi-
cated by the low edit/navigation ratio (less than ten percent). All these
figures demonstrate that the amount of navigation activity required to
identify an artifact to be changed is large. This is in particular true at the
beginning of a task when developers perform on average 52 navigation
actions before they locate the first entity they want to modify. Another
indication for ineffective navigation in IDEs is the average number of nav-
igation actions performed between two subsequent modification actions;

96 SmartGroups – Representing Context in IDEs

on average developers perform 19 navigation actions until they again
modify an artifact, which we consider to be a large amount of navigation
between two consequent modification activities.

Study conclusions. From the numbers shown in Table 4.1, and addition-
ally from informal interviews and discussions we had with developers,
we conclude that software space navigation is an important develop-
ment activity that takes a considerable amount of time as it is not well
supported by conventional IDEs. We further conclude from this study
that one reason for these navigational difficulties in IDEs is the fact that
development environments do not represent a working context that is
adapted to the current development task. Instead, IDEs always present
the entire, usually huge software space to developers without providing
guidance how to locate relevant information in this space.

As we revealed in Section 1.1.2 there are other reasons why developers
struggle to navigate a software system in the IDE, such as a surfeit of open
views, tabs or windows, the fact that dependencies between artifacts are
hidden, or because features are not explicitly represented. However, rep-
resenting working context in the IDE is already an improvement as such
a representation is likely to drastically reduce the amount of navigation
required to discover relevant entities by enabling developers to focus on
a constrained portion of the software space.

In this chapter we aim at alleviating the navigation difficulties and the
information overload in IDEs by categorizing source artifacts in groups
to represent a context of artifacts that are relevant for the current software
maintenance task. As other works described in the literature pursue a
similar goal, we first study these proposals to reveal to which degree
they already achieve a representation of working context in IDEs be-
fore we elaborate in the remainder of the chapter on SmartGroups, our
implementation of a categorization mechanism for task-relevant artifacts.

4.3 Existing Approaches

Several existing proposals also aim at presenting task-relevant entities and
at representing a working context in the IDE. We have introduced such
proposals in Section 2.1.3. However, these related works have several
limitations and shortcomings and cannot achieve our goal of representing
context in the IDE. In the following, we report on these shortcomings of
existing work and how we want to overcome them.

Existing Approaches 97

FEAT [ROBI 03a] identifies concerns from recorded program investi-
gation activities performed in the IDE and visualizes these concerns
with graphs. However, the quality of the identified concerns is heavily
dependent on how organized the analyzed investigation sessions were
[ROBI 03b, ROBI 07]. Disorganized investigation sessions cannot be used
to identify concerns [ROBI 03b], thus FEAT’s algorithms are not robust.
We tackle this problem in SmartGroups by exploiting more than one data
source to identify entities belonging to the same context or concern. This
renders the SmartGroups approach more robust, that is, less dependent
on the quality of the analyzed transcript of past investigation activities
as SmartGroups combine several data sources to identify related entities,
such as navigation and investigation but also modification activities, and
even dynamic or evolutionary information. Thus, SmartGroups usually
identify more related entities than FEAT but might be less precise, as
we consider it to be more helpful for a developer to relate an artifact to
a task that is actually not relevant than to not link a relevant element.
The authors of FEAT report that their concerns contain just twelve dif-
ferent source entities on average [ROBI 03b], while a typical smart group
contains twenty or more entities.

NavTracks [SING 05] recommends source entities related to the cur-
rently selected entity by analyzing how developers navigated and modi-
fied the system in the past. With SmartGroups we take into account more
information than just recency of navigation; we also consider evolution-
ary data (age, versions, or authors of source artifacts) or dynamic data
such as number of invocations, memory usage, or execution time. The
analysis of this data yields groups of entities that form a particular con-
text, for instance those that are relevant for a specific software feature or
that are related to a specific task such as bug correction. These groups
are permanently accessible and do not depend on the currently selected
artifact, thus they act as a categorization of source entities. The nature of
the current programming task is an important factor for the identification
of relevant entities. NavTracks recommends related files independently
of the task and thus ignores the relation between tasks and importance of
entities.

Mylyn [KERS 05, KERS 06] exploits programmer activity to build a
degree-of-interest model for the program elements in a system and high-
lights the elements considered interesting for the task-at-hand. Smart-
Groups are related to Mylyn in the sense that they use similar information
to automatically build groups of source artifacts, namely recency and
frequency of modification and navigation of source entities. However,

98 SmartGroups – Representing Context in IDEs

as mentioned before SmartGroups also exploit dynamic and evolutionary
information.

Another difference to Mylyn is that SmartGroups adapt to the nature
of the development task currently being performed (either defect cor-
rection, feature implementation, or system understanding). Depending
on the type of task, SmartGroups use different algorithms to determine
the elements in specific groups. While Mylyn just provides a single and
fixed algorithm to identify related entities, SmartGroups allow develop-
ers to influence how the approach locates relevant artifacts. Developers
understand their development task and the system under study usually
well enough to support SmartGroups in the identification process by, for
example, specifying the task type and packages being involved in the
task, thus we do not apply such a strict model as Mylyn which computes
the degree of interest value for each artifact independently of the nature
of the task and the knowledge and experience of the developer. Although
developers can alter the elements shown as relevant for the task in Mylyn,
they cannot influence how they are initially computed.

4.4 SmartGroups in a Nutshell

In this section we introduce SmartGroups. The focus is on the automatic
categorization of entities that are part of the working context, that is,
relevant for the task-at-hand. Besides providing automatically populated
categories, the so-called smart groups, we also support manual categories
to which developers can manually add artifacts. This is useful to group
artifacts that are personally considered to be interesting, such as candi-
date artifacts for a refactoring. SmartGroups also provide a third kind of
category which holds the results of search queries. These three kinds of
smart groups are discussed in the following. Eventually, we describe how
the SmartGroups view is integrated in the Smalltalk IDE.

4.4.1 Automatic Smart Groups

To automatically identify source entities relevant for a particular task,
SmartGroups exploit various kinds of data sources, namely recorded de-
velopment activities performed in the IDE, evolutionary information
extracted from source repositories (versions, authors, etc.), and dynamic
information extracted from program execution. All available data sources
are combined to reveal task-relevant relations between source artifacts.
For a list of the different kinds of information extracted from these three
data sources we refer to Section 3.2.2.

SmartGroups in a Nutshell 99

By specifying in the interface provided by SmartGroups the type of
task currently being performed, the developer supports the process of
automatically identifying the task-relevant source elements. This task
specification is abstract and high-level: the developer can choose between
defect correction, feature implementation or adaptation, and general pro-
gram comprehension tasks. Note that there is no dedicated task type
for refactoring tasks; usually they are considered to be defect correction
tasks in SmartGroups (cf. Section 4.5.1). This task specification can option-
ally be further refined by enumerating system packages that are relevant
for a task or by characterizing one or several features with which the
task-at-hand is concerned.

As soon as the developer has specified the nature of the current task,
SmartGroups analyze its various data sources based on the given task
specification. Recorded development activities are analyzed with regard
to the task type developers performed during the recording. We assume
that the same types of tasks involve similar entities; for instance, bug
correction is likely to involve certain kind of entities, such as recently
added or modified elements [GRAV 00], elements that contained bugs
in the past [TARV 09], or that have been frequently changed [GRAV 00].
Thus, SmartGroups specifically take into account recency and frequency
of modification to suggest relevant entities for defect correction tasks.
Typically, more artifacts are navigated than modified; thus additionally
to entities frequently or recently modified we also consider entities that
have been frequently navigated but not modified to be task-relevant; the
importance of such entities depends on the type of task.

SmartGroups suggest either methods or classes as entities being rele-
vant for a task. Packages for instance are not considered, mainly because
they are rarely modified and their navigation is not meaningful in the
sense that developers, for instance, still do not know where to look for
the cause of a defect in a package consisting of many classes and methods.
In object-oriented applications developers mostly modify single methods
to correct defects or adapt features. For program comprehension, the un-
derstanding of methods is also crucial, thus SmartGroups mostly suggest
methods as task-relevant entities. Classes are also suggested, in particular
for program comprehension tasks. As we do not consider the addition
of a method to a class as a modification of the class itself (this is not true
if attributes are added), classes are rarely modified during maintenance
tasks, thus they are usually not directly considered as task-relevant for
defect correction or feature adaptation tasks. However, developers are en-
couraged to also examine other methods of a class of which SmartGroups
identified a method as task-relevant.

100 SmartGroups – Representing Context in IDEs

Task Type Identification. If recorded development activities do not
have a task type associated, SmartGroups try to automatically determine
this task type by analyzing the recorded activities. A sequence of recorded
activities usually contains several distinct development sessions. Start and
end of such a development session is either marked by the termination
of the IDE or after a certain period of inactivity (two hours or more). A
development session might contain more than one task. For sessions
containing commits to a repository, we consider the time of a commit as
the end of a defect correction or feature implementation task (see below).
Sessions without commits are either considered to be a single program
comprehension task, or, if they contain modification activities, as a single
defect correction or feature implementation task. To distinguish between
defect correction and feature implementation or adaptation tasks, we
analyze the extent of modification: Sequences of development activities
containing just moderate and local modification (that is, involving just
a few entities) are perceived as defect correction tasks; if modification
involves several entities that were changed relatively extensively, we
assume a feature implementation or adaptation task.

Determining task types from evolutionary data works similar. As this
kind of data does not include information about entity navigation, we
basically just distinguish between defect correction and feature imple-
mentation or adaptation tasks by considering the extent of modification
(both in terms of number of modified entities and added, changed, or
removed lines of code in specific artifacts). Defect correction tasks usually
cover just a few entities while the extent of feature implementation tasks
is larger. If a programmer specifies a type of task in SmartGroups, this
information is automatically stored in the commit message, thus we can
retrieve this information from evolutionary data.

Evolutionary data extends data about recorded development activities
(i) by grouping modified entities into a coherent set, that is, the entities
being part of the same commit, (ii) by adding date and time, author
information, and a commit message to this set of modified entities, and (iii)
by finalizing a batch of modification actions. From recorded modification
actions it is difficult to separate intermittent modifications from those
finally solving a particular task. We expect that committed entities contain
final changes while recorded modification actions are often just a step
towards the final modification of a particular entity in a particular task.
We thus take the time of commit as the completion time of a task, at
least in cases where developers did not manually specify when a task is
finished using the interface of SmartGroups. Furthermore, commits help
to refine information contained in recorded modification activities as they
usually just include entities that indeed have to be modified in order to

SmartGroups in a Nutshell 101

complete a task while they should not include entities modified to, for
instance, introduce logging statements to better understand a program.

The identification of task-relevant entities based on development ac-
tivity and evolutionary data works as follows for the different types of
tasks:

Defect correction. First, we map particular commits to recorded devel-
opment sessions to mark the end of a task. The beginning of a task has
been either specified by the developer or has been automatically deter-
mined as described above. As soon as the extent of the task in the recorded
development activities is determined, we extract all modification actions
and the involved artifacts and count how frequently each artifact was
modified. The set of modified entities is firstly ordered by frequency and
extent of modification and secondly compared to the set of committed
entities; modified entities that have not been committed are moved to
the end of the ordered list of entities. Additionally, we also incorporate
entities that have been frequently navigated but never modified. Such
entities are placed at the end of the list, after those not committed. Source
elements that have been recently modified or frequently and recently
navigated in a development session are considered to be more important
and thus move up in the list.

This procedure is repeated for all defect correction tasks in the
recorded set of development activities. The lists of relevant entities from
all considered tasks are merged; entities from recent development sessions
are prioritized and thus appear higher in the merged list.

As defects often occur in artifacts that have been recently added to
the system [GRAV 00], we increase the priority of artifacts that are young
(age is measured in number of commits since an artifact has been ini-
tially added to the system). We also rank artifacts higher that have been
changed in many commits or that have many different authors, as we
expect the likelihood to contain a defect to be higher for artifacts with
these characteristics.

The ranked list is shown in the SmartGroups view under the label
“suggestions” as illustrated in Figure 4.2. Only the first twenty elements
are shown by default. Developers are presented with all elements in
the list on demand. We limit the maximum number of entities in the
list to 50 elements; elements placed beyond this limit are not presented.
Developers can change the position of elements in the list or manually
add or remove elements, but the list can never grow beyond 50 elements.
This hard limit has been empirically determined to be an appropriate

102 SmartGroups – Representing Context in IDEs

Figure 4.2: SmartGroups view integrated on the left side of Pharo
Smalltalk’s system browser, the core of the Smalltalk IDE.

compromise between having many suggestions for related artifacts and
not overloading the SmartGroups view.

The algorithm to rank a specific artifact to determine its position in
the list of related artifacts encompasses many parameters such as how
frequently navigated entities move up in the list. Each element in the
ranked list has an initial weight which equals its position in the list. Each
parameter adds weight to some of the entities. We automatically add the
maximum weight given by a parameter and increase this weight by one
for entities that have not yet received weight for this parameter to move
such entities towards the end of the list. Eventually, the list is sorted by
the weight of entities in ascending order which leads to the final ranked
list.

The different parameters in this algorithm are listed and explained in
Table 4.2. We empirically determined the optimal value of each parameter
by running a benchmark experiment using ten recorded development
sessions. Each session contained several defect correction tasks for which
we knew precisely the involved development activities. We used the
recorded activities of all but one task to compute the ranked list of relevant
entities for the last task in the session. We knew precisely the elements
that actually had to be modified to correct the defect of this last task. We
then varied in several benchmark runs the different used parameters (e.g.
whether and how to take into account a specific parameter). Eventually,

SmartGroups in a Nutshell 103

Parameter Description
Initialization Initially, the list is ordered by extent of modification, that is,

number of lines that are added or adapted, and by frequency
of modification.

Committed entities Entities that have been modified but not committed are ap-
pended to the end of the list in their initial order.

Frequently navigated The 30 most frequently navigated entities are ordered by
but not modified frequency and appended in this order to the end of the list.
Recent navigation The 100 most recently navigated entities are ordered and the

weight of each entity in the ranked list is increased by its rank
from the ’recent navigation’ list.

Frequent navigation The 40 most frequently navigated entities are ordered and the
weight of each entity in the ranked list is increased by its rank
from the ’frequent navigation’ list.

Recent modification The 20 most recently modified entities are ordered and the
weight of each entity in the ranked list is increased by its rank
from the ’recent modification’ list.

Recent dev. session All development sessions are ordered by recency and the
weight of all entities in the ranked list is increased by the rank
of the development session in which they have been lastly
modified.

Age (young entities The 50 youngest entities are ordered by age (number of com-
mits

ranked higher) since creation) in ascending order and for each of these entities
appearing in the ranked list we increase its weight by the rank
from the ’age’ list.

Number of versions Each entity is ordered by number of versions in descending or-
der and the weight of each entity in the ranked list is increased
by its rank in the ’number of versions’ list.

Number of authors Each entity is ordered by number of authors in descending or-
der and the weight of each entity in the ranked list is increased
by its rank in the ’number of authors’ list.

Table 4.2: The different parameters used in the algorithm to identify
entities relevant for defect correction tasks and how they influence the
order of the relevant entities.

we chose the parameters from the benchmark run which proposed a list
of relevant artifacts best aligned with the set of elements that developers
actually had to modify to correct the last defect in each development
session. The benchmark validation principle is explained in more detail
in Section 4.5.

Feature implementation and adaptation. The identification of source
elements relevant for feature implementation tasks works largely in the
same way as described above for defect correction tasks, except that
feature implementation tasks extracted from the development activity
and source code history are analyzed instead of defect correction tasks.

104 SmartGroups – Representing Context in IDEs

Parameter Description
Initialization Initially, the list is ordered by extent of modification, that is,

number of lines that are added or adapted, and by frequency
of modification.

Committed entities Entities that have been modified but not committed are ap-
pended to the end of the list in their initial order.

Frequently navigated The 20 most frequently navigated entities are ordered by
but not modified frequency and appended in this order to the end of the list.
Recent navigation The 200 most recently navigated and modified entities are

ordered and the weight of each entity in the ranked list is
increased by its rank from the ’recent navigation’ list.

Frequent navigation The 100 most frequently navigated entities are ordered and the
weight of each entity in the ranked list is increased by its rank
from the ’frequent navigation’ list.

Recent modification The 100 most recently modified entities are ordered and the
weight of each entity in the ranked list is increased by its rank
from the ’recent modification’ list.

Recent dev. session All development sessions are ordered by recency and the
weight of all entities in the ranked list is increased by the rank
of the development session in which they have been lastly
modified.

Age (young entities Not used.
ranked higher)
Number of versions Not used.
Number of authors Not used.
Same author Entities changed by the same author as the current developer

are ordered by the recency of the development session in which
this author changed the entity. The weight of each entity in the
ranked list is increased by its rank in the ’same authors’ list.

Table 4.3: The different parameters used in the algorithm to identify
entities relevant for feature implementation and adaptation tasks and
how they influence the order of the relevant entities.

There are also some minor differences in the identification algorithms
compared to defect correction . For instance, we rank artifacts higher that
have been previously modified or navigated by the same author as the
current developer, as we consider it as likely that the same developer
will work on similar features throughout the lifetime of a system. Thus,
entities this developer changed during previous development sessions are
more likely to be relevant for the current task than artifacts this developer
has never touched before. We expect this effect to be less pronounced for
defect correction tasks as often defects have to be urgently corrected, thus
the first available developer may perform the correction and not the one
who normally works on the affected feature.

Compared to defect correction tasks, we slightly adapted the param-
eters of the identification algorithm as depicted in Table 4.3. This adap-
tation was necessary because the benchmarks executed to gauge the

SmartGroups in a Nutshell 105

Parameter Description
Recent navigation The 100 most recently navigated entities are ordered and the

weight of each entity in the ranked list is increased by its rank
from the ’recent navigation’ list.

Recent dev. session All development sessions are ordered by recency and the weight
of all entities in the ranked list is increased by the rank of the
development session in which they have been lastly modified.

Search results The weight of all entities to which developers have navigated
from search results is not increased while the weight of all other
entities is increased by ten.

Reading time All entities are ordered by reading time in descending order and
the weight of each entity in the ranked list is increased by its
rank in the ’reading time’ list.

Time of visibility All entities are ordered by the time they are visible in a view in
in a view descending order and the weight of each entity in the ranked

list is increased by its rank in the ’time open in view’ list.

Table 4.4: The different parameters used in the algorithm to identify
entities relevant for program comprehension tasks and how they influence
the order of the relevant entities.

parameters for feature implementation tasks yielded best results using
different parameters values, since the nature of feature implementation
tasks differs from defect correction tasks.

General program comprehension. Identifying source elements rele-
vant for program comprehension tasks differs from the procedure dis-
cussed above as this type of task does not encompass any modification,
thus we cannot consider evolutionary information or modification activi-
ties for the identification process. We only take into account navigation
activities for program comprehension tasks. We build the list of related
entities in the following way: (i) the initial list of related entities is ordered
by how often an entity was navigated, (ii) recently navigated entities are
ranked higher, (iii) entities which developers selected in the result lists
of searches are considered to be more important, (iv) the more time de-
velopers spent reading a specific artifact, the more importance we assign
to it (an entity’s “reading time” is measured in the outlier-adjusted time
spent between selecting this entity and selecting the next one), and (iv)
the longer a view on a particular entity is open, the higher we rank this
entity. Table 4.4 depicts the different parameters used in this algorithm.

For program comprehension, entities added or changed during defect
correction and feature implementation could also be highly interesting.
Thus, when identifying the entities relevant for a pure program compre-
hension task, we also consult the ranked list of the other two task types.
The ten top elements appearing in the ranked lists of the two other task

106 SmartGroups – Representing Context in IDEs

Parameter Description
Not used artifacts All artifacts not used in the recorded execution of a feature

are moved to the end of the list. Thus, such entities appear
after all used entities in the order they had in the original
list.

Frequency of occurrence All used entities are ordered by frequency of occurrence in
the method call tree and their weight in the ranked list is
increased by the rank they have in the ’frequency of occur-
rence’ list.

Level in tree All used entities are ordered by the highest level in which
they appear in the method call tree and their weight in the
ranked list is increased by the rank they have in the ’tree
level’ list.

Table 4.5: The different parameters for considering dynamic information
to refine the ranked list of relevant entities.

types are also taken into account for program comprehension tasks; they
either move up in the ranked list of the latter if they have already been
identified as relevant for the program comprehension task, or otherwise
are appended to the end of the list and marked with a special annotation.

For all types of tasks, we can additionally consider specific packages,
authors, or time frames, if programmers opted to specify such information
to identify task-relevant source artifacts. In this case, only development
activities matching the specified criteria are considered to identify task-
relevant entities, for instance just artifacts of a specific package.

Inclusion of dynamic information. Behavioral information is not al-
ways available, thus we do not include such information in the basic
algorithms identifying task-relevant entities. However, if dynamic in-
formation is available it can greatly improve the predictive quality of
the algorithms used in SmartGroups. To gather dynamic information the
developer has to run the software feature to be corrected, extended, or
adapted. For the task of implementing a completely new feature, it can
be helpful to execute an existing software feature related to the yet to be
implemented feature. The execution of the system is analyzed using par-
tial behavioral reflection [TANT 03] as integrated in the IDE with Hermion,
which is treated in Chapter 7.

The collected dynamic information (basically a tree of method invoca-
tions) influences the ranked list of task-relevant artifacts identified based
on development activity and source history information in the following
ways: (i) the ranking of artifacts not used in the executed feature(s) is
decreased, (ii) artifacts appearing several times in the method invocation

SmartGroups in a Nutshell 107

tree in different branches move up in the list, and (iii) artifacts appearing
close to the root of the method invocation tree are considered as more
important, thus they also move up in the list. The parameters used in the
algorithm considering dynamic information are depicted and explained
in Table 4.5.

Artifacts appearing in the gathered method invocation tree but not
in the ranked list are only appended to the list if it has not yet reached
the limit of 50 elements. These dynamically identified entities are added
to the list in the order determined by number of occurrences in distinct
branches of the call tree. Thus, dynamic information refines the ranked
list already identified based on development activity and evolutionary
information.

4.4.2 Manual Smart Groups

Besides automatically grouping entities using the algorithms discussed
above, SmartGroups also allow developers to manually create groups and
to associate entities with such groups. All kinds of source elements (that
is, packages, classes, methods, class categories, etc.) can be associated
with one or more groups. One smart group could for instance hold all
classes and methods implementing a logging feature of an application and
another smart group could contain the artifacts responsible for an export
to PDF feature. Thus, manual smart groups make distributed source
artifacts accessible under a name given by the developer, for instance
“logging”.

Manual smart groups are integrated in the same view as the automatic
groups and are presented there under the label “manual groups” (cf.
Figure 4.2).

4.4.3 Query Results as Smart Groups

SmartGroups offer a third kind of group holding results of submitted
search queries. At the top of the system browser included in the Pharo
or Squeak Smalltalk IDE there is a text field accepting search queries
covering all static artifacts in the system, that is, all classes, methods
but also statically defined class references, and senders or implementors
of messages. After submitting such a query, the developer obtains the
result in a smart group named after the search query. Such a smart group
permanently stores search queries and makes their results easily accessible
in the IDE. Whenever such a group is selected, the query is processed
again, thus the search results are always accurate and up-to-date.

108 SmartGroups – Representing Context in IDEs

This kind of smart group tackles the problem that developers often
submit several times the same search query, as the search results vanish
some time after the first search, for instance because they closed the
window holding the search results. In the empirical study introduced in
Section 4.2 we found that in nearly all sessions, several search queries
have been submitted more than once, for instance the same searches for
senders of a message are very frequently submitted several times as the
original window holding these senders was closed or could not be located
again in the plethora of open windows [RÖTH 09a]. Smart groups for
search queries appear below the manual smart groups under the label
“searches” (cf. Figure 4.2).

4.4.4 Integration of the SmartGroups View

The SmartGroups view is tightly integrated in the Smalltalk IDE which is
implemented with the OmniBrowser framework [BERG 07a]. This frame-
work provides a system browser showing four columns for packages,
classes, method categories, and methods, respectively. These columns are
used to hierarchically navigate the source space, similar to the way we
navigate a MacOS file system with the Finder. We embed the SmartGroups
view in the first column, that is, the package column. Tabs allow develop-
ers to switch between the traditional view showing packages in the first
column and the SmartGroups view showing smart groups. In the Smart-
Groups view we show automatic, manual, and ’searches’ smart groups
in this order (cf. Figure 4.2). Developers can collapse and expand each
group. For the automatic smart groups, developers can change between
the different types of tasks (defect correction, feature implementation, or
program comprehension) to view the appropriate suggestions for rele-
vant artifacts for each task type. Furthermore, we provide a lightweight
interface to specify the type of the current task to be performed when
starting to work on it. This specification can be further refined by defining
feature(s) or package(s) involved in this task.

By integrating the SmartGroups view in the familiar IDE interfaces,
we lower the burden for the adoption of smart groups presenting task-
relevant artifacts. These groups allow developers to focus on (usually)
small but relevant parts of the system, thus reducing the amount of in-
formation (that is, source artifacts, but also windows or tabs) developers
have to deal with. As the SmartGroups view is not an additional, com-
plicated tool but an embedded perspective in an existing and familiar
environment, we believe that SmartGroups offer an appropriate means to
successfully reduce the information overload in IDEs. Switching from the
SmartGroups view to the conventional package view in which all system

Validation 109

artifacts are displayed is easily possible by activating the provided tab
called ’packages’ (cf. Figure 4.2).

4.5 Validation

This section validates SmartGroups by two means: (i) we evaluate how
accurate the suggestions for task-relevant artifacts are and (ii) we report
on the practicality of SmartGroups by presenting user feedback.

4.5.1 Correctness of SmartGroups

For the adoption of SmartGroups by developers it is crucial that the sug-
gestions for relevant artifacts be accurate, that is, the automatically deter-
mined entities supposed to be relevant for the current task should meet
the following criteria: (i) the suggested entities should indeed be task-
relevant (high precision, few false positives), (ii) many of the task-relevant
entities should be suggested (high recall, few false negatives), and (iii) the
task-relevant entities should appear as early as possible in the ordered list
of suggested entities to make sure that developers do not have to skim
the entire list to find a relevant artifact.

Procedure. To evaluate precision and recall of the suggestions of Smart-
Groups for task-relevant artifacts, we conduct a benchmark validation
similar to the one applied for the validation of HeatMaps (cf. Section 3.4.2);
benchmark validations have already been used for similar purposes by
other researchers such as Robbes et al. [ROBB 08]. We analyze a recorded
sequence of development activities (navigation and modification actions
performed in the Smalltalk IDE) accompanied with evolutionary infor-
mation (commits, versions, authors). We automatically identify the task
types as described in Section 4.4.1 because developers did not specify
the task types during the development activities we recorded. In an ini-
tialization phase, we use the ten first tasks of each type appearing in the
sequence of development activities to build the initial lists of recommen-
dations for task-related artifacts. To measure the accuracy of SmartGroups,
we compare the recommendation list for a particular task type with the
set of entities that have actually been relevant for the subsequent task
of this type. For example, the ten first defect correction tasks suggest
relevant entities for the eleventh defect correction task in the recorded
sequence of development activities and the accuracy of the suggestions
for the eleventh task is measured. The first eleven tasks are then analyzed
to build the lists of relevant entities for the twelfth task, the accuracy of

110 SmartGroups – Representing Context in IDEs

the suggestions for this twelfth task is measured, and so on until the end
of the sequence of activities is reached.

Identification of task-relevant entities. For a particular task, we deter-
mine the entities that are actually relevant as follows: For defect correction
and feature implementation or adaptation tasks, relevant entities are those
that are committed to the source code repository during the execution of
a task. The committed entities are often a subset of all modified entities
as not every modification is eventually relevant for the completion of
a task. For program comprehension tasks that usually do not contain
any modifications or commits, we consider all navigated entities to be
relevant. Thus, we assume the recorded navigation of developers to be
optimal which might not be appropriate in all cases. This assumption is
certainly a threat to validity of our experiment (see below).

Data set. The recorded data sets we analyzed in this benchmark stem
from five different developers who contributed in total nearly 50’000
navigation and modifications events that were accompanied with 268
commits to a source repository. These developers worked on six different
systems of medium size (consisting of between 300 and 1200 classes). The
time span covered in the recorded sets for each system varies from three
weeks to five months. For each system, we use the recorded sequences of
development activities independently of sequences originating from other
systems to evaluate the accuracy. At the end, we average the determined
accuracy measured over all available sequences of activities.

Evaluation. To determine how accurate the identified task-related en-
tities are, we compare the set of entities that have actually been related
to the task (determined with recorded development activities and evolu-
tionary information) with the suggestion list of SmartGroups. This list is
ordered and contains a maximum of 50 elements. None of the recorded
defect correction or feature implementation tasks spanned 50 elements
(the number of relevant elements varied between one and 37). Actually
relevant task entities should be included in the respective suggestion list
for each task to achieve a recall of 100%. Some program comprehension
tasks exceeded the limit of 50 elements. For these tasks, we temporarily
allowed SmartGroups to suggest more than 50 entities, namely all elements
it could identify as being task-relevant. To measure recall we thus count
the number of task-relevant entities not identified by SmartGroups (false
negatives). We can measure precision by analyzing how many entities
SmartGroups suggested that are actually not task-relevant (counting false
positives).

Validation 111

As the suggestion list is ordered, we can also consider the position of
a correctly suggested element in this list. If the list has n elements and
x elements are actually task-relevant (x < n), then SmartGroups achieved
a fully correct identification if all x elements are contained in the first x
elements of the suggestion list. Even when the suggestion list contains all
x relevant elements, it makes a difference to a developer whether these x
elements are, for instance, shown at the beginning or at the end of the list,
as a developer might not browse the entire list but just check the first few
elements. Thus, we calculate an ordering correctness value which takes
into account the position of elements in the suggestion list. Therefore, we
rate each of the x relevant artifacts that are not part of the first x elements
in the list with a correctness value proportional to the distance of the
element from the first x elements. Figure 4.3 illustrates the calculation of
an elements’s correctness value. If, for example, a task-relevant elements
appears at position x + 2, its correctness value is n−x−2

n−x . Thus, the closer
to the first x elements an element correctly identified as relevant appears,
the higher its correctness value is. If an element is included in the first x
elements, its correctness value is equal to 1.

Figure 4.3: Procedure to determine the correctness of an identified task-
relevant elements depending on its position.

We define the following three formulas for precision, recall, and order-
ing correctness:

Precision =
number of true positives

number of true positives + false positives

Recall =
number of true positives

number of true positives + false negatives

Ordering correctness =

∑x
i=1

n−x−P (i)
n−x

x

True positives are the relevant entities SmartGroups correctly identi-
fied, false positives the entities SmartGroups wrongly identified as being
relevant, false negatives are the relevant entities SmartGroups could not
identify. Note that it is not possible to determine the true negatives as we

112 SmartGroups – Representing Context in IDEs

Measure Value
Number of tasks 172
Number of dev. activities 15’364
Number of commits 179
Precision 39.0%
Recall 65.3%
Ordering correctness 29.1%

Table 4.6: Results of the bench-
mark evaluation for defect cor-
rection tasks.

Measure Value
Number of tasks 84
Number of dev. activities 7’982
Number of commits 86
Precision 35.2%
Recall 54.9%
Ordering correctness 27.8%

Table 4.7: Results of the bench-
mark evaluation for feature im-
plementation and adaptation
tasks.

do not know the exact number of source artifacts in the system at any one
time during the recorded data set. Thus, we cannot compute the accuracy
of SmartGroups defined as the proportion of true results. Precision and
recall, however, give a good impression of SmartGroups’s accuracy. High
precision and high recall values lead to a high accuracy [ZIMM 05].

n is the number of task-relevant entities identified by SmartGroups
(that is, the sum of true and false positives), x the number of entities
actually being relevant for a task. The function P (i) answers the position
of the correctly identified element i, that is, either 0 if element i is part of
the x first elements in the ordered suggestion list or the distance between
the position of i and the first x elements. Thus, the correctness value is 1
(100%) if and only if all x relevant elements appear in the first x elements
of SmartGroups’s recommendation list.

These measures are computed for each task individually and are
averaged over different tasks by computing the arithmetic mean value.

Results. We show the results of the benchmarks separated by type of
tasks. The result tables present precision, recall, and ordering correctness
averaged over all analyzed tasks of a particular type (except the tasks
used to initialize the identification procedure). Table 4.6 presents the
results for defect correction tasks, Table 4.7 for feature implementation
and adaptation tasks, and Table 4.8 for program comprehension tasks.

Note that we were not able to use all recorded development activities
as some were identified as belonging either to a defect correction or a
feature implementation task, but there was no corresponding commit in
this time period, hence we could not determine a set of entities actually
being relevant for such a task. We skipped such sequences of development
activities. For program comprehension tasks it is not necessary to have a
corresponding commit. We ignored, however, development sessions that
matched the criteria for being concerned with a program comprehension

Validation 113

Measure Value
Number of tasks 143
Number of dev. activities 21’354
Number of commits 0
Precision 24.9%
Recall 20.7%
Ordering correctness 19.4%

Table 4.8: Results of the benchmark evaluation for program comprehen-
sion tasks.

task but which lasted a very short amount of time, that is, a few minutes.
In general, we consider the identification of program comprehension
tasks as less reliable than for the other two task types, partially because
this kind of task is associated to a development session when no other
task type matches.

Result interpretation. The results show that precision and recall for
defect correction and feature implementation tasks is fairly high. The
ordering correctness, however, is relatively low which is a sign that Smart-
Groups were often not able to correctly rank the task-relevant entities, but
since SmartGroups could propose many candidates, the entities actually
relevant were also included “somewhere” in the suggestion list. For pro-
gram comprehension tasks, both precision and recall are rather low. We
attribute this to the fact that identifying program comprehension tasks
and separating them from other kind of tasks was more difficult than for
defect correction and feature implementation tasks. Furthermore, Smart-
Groups have to rely on much less information, basically just historical
navigation activities, to determine artifacts related to program compre-
hension tasks, while for the other types of tasks, modification activities
and evolutionary information can considerably improve the prediction
quality of SmartGroups.

Threats to validity. There are several threats to validity in our experi-
ment:

Task type identification. As mentioned above, automatically deferring
the type of task from a sequence of recorded development activities is
error-prone. We might have mistaken feature implementation tasks for
defect correction tasks, and vice-versa. Furthermore, since separating a
development session from another one is either based on a large amount
of time elapsed between two activities or by terminating the IDE, the same
task might actually span more than one development session. However,
for program comprehension tasks we assume that they are completed

114 SmartGroups – Representing Context in IDEs

at the end of a development session while the developer actually might
have continued with this task in the next session. Similarly, it could be
that at the beginning of a session, the developer worked on a program
comprehension task unrelated to the defect correction task following
afterwards. Yet still the entire session, at least until the first commit
ending the defect correction task, is considered to be a defect correction
task. Moreover, it might not be accurate in all cases to consider the time
of commit as the end of defect correction or feature implementation tasks,
as developers might actually continue with the same tasks even after
the commit. Thus, SmartGroups might suggest different entities as being
relevant if type, start, end, and length of tasks were correctly specified.

Granularity of tasks. The three task types we propose are very high
level. There are several kinds of tasks such as performance optimization
or refactoring that do not match any of the three task types. In our ex-
periment, however, such tasks would be considered to be either defect
correction or feature implementation tasks. A more fine grained catego-
rization of tasks is more realistic and is likely to also improve the accuracy
of the suggestions determined by SmartGroups. However, it is currently
not possible to automatically defer the type of a task in a more fine grained
manner. Furthermore, in reality a particular task often contains several
sub-tasks matching the criteria of different task types than the main task.
For instance, a defect correction task usually encompasses aspects of a
pure program comprehension task. SmartGroups do currently not take
into account the different phases occurring in a particular task. We do not
know whether suggesting relevant entities matching the type of sub-tasks
would yield a better suggestion quality for the overall task.

Parameter determination. We determined the different parameters and
their values (cf. Table 4.2, Table 4.3, Table 4.4, and Table 4.5) used in
the algorithms to identify relevant entities for specific types of tasks by
running a benchmark validation using ten recorded data sets. These
data sets were different than those used in this validation, but partially
stem from the same developers working with the same systems as we
considered in the validation. The ten data sets stem from three different
developers working on four different systems. Two of these three devel-
opers also contributed data sets to this validation, and two of the four
systems were also covered in the validation. Thus, the determination
of the parameters is based on similar development sessions as those we
used to validate SmartGroups. Nonetheless, we do not expect that this fact
imposes a considerable threat to validity as the different development
activities and tasks are fairly typical for software maintenance because
all of them were concerned with software systems representative in size
and complexity for many industrial applications. Thus, we expect similar

Validation 115

validation results even if the parameters had been gauged using other
sequences of development activities.

Assumption of optimal navigation. For program comprehension tasks,
we specify that all entities that have been navigated in the recorded data
set are task-relevant. It is likely, however, that developers did not opti-
mally navigate the system to answer the task-relevant questions as they
did not have a perfect knowledge about the system. As the developers
whose activities we recorded were very familiar with the respective sys-
tems they were working on, we expect their navigation to be effective and
close to optimal, even though we do not have a means to validate how
optimal their navigation actually was. We determined the indicators for
navigation problems discussed in Section 4.2 for the recorded develop-
ment activities and revealed that number of window switches (21.63 on
average) and number of entities revisited (16.79 on average) were lower
than in the data sets of developers navigating unfamiliar systems. As
no modification occurs in program comprehension tasks, we could not
measure indicators like edit/navigation ratio.

Generalization. It is unclear how well the recorded data set of devel-
opment activities and tasks are typical and representative for software
maintenance. There are several variables that might impose a threat to
the generalization of the experimental results, such as the extent or sever-
ity of the defects corrected during the recorded tasks, the extent of the
implemented or adapted features, the software systems being worked
on, the length of the development sessions or tasks, and the developers
themselves. Most developers that provided us with recorded data sets
are researchers from academia working on research tools. It is impossible
to say whether systems and developers from industry would lead to
other results when assessing the prediction quality of SmartGroups for
entities relevant for tasks concerned with industrial software systems,
even though the considered systems are fairly representative in terms
of size and complexity. Further experiments need to clarify this point.
We, however, do not expect the performance of SmartGroups to depend
heavily on the nature of the system or on how developers maintain this
system. The quality of the recorded data sets on which SmartGroups base
the prediction of task-relevant entities, particularly for program compre-
hension tasks, is crucial though. For this reason, recorded navigation of
novice developers unfamiliar with a system should not, for instance, be
used to predict relevant artifacts.

Conclusions. This benchmark validation showed that the algorithms
proposed by SmartGroups are indeed able to properly identify task-
relevant entities, in particular for defect correction and feature imple-

116 SmartGroups – Representing Context in IDEs

mentation or adaptation tasks. The predictive quality for relevant entities,
however, drops for program comprehension tasks, which we attribute to
the lack of substantial and reliable information to suggest related entities
for this type of task. Another issue of the current SmartGroups algorithms
is that related entities often do not appear at the top of the suggestion list,
thus the developer is required to navigate in the list. We plan to improve
the ranking of relevant entities by experimenting with other parameters
or different parameter values than those presented in Section 4.4.1.

4.5.2 User Feedback

From the discussions with developers about the concept and implementa-
tion of SmartGroups, we got the following feedback:

Importance of Context. Developers stressed how important a context
representation in the IDE is when we showed SmartGroups to them. In
their daily work, they are overwhelmed with information, particularly
with views containing too many static source artifacts. Developers want
to be able to focus on artifacts relevant for their current task. For this
reason, they considered the various smart groups as very useful. They
also appreciated the categorization of search results, but asked for an
automatic mechanism to remove old queries from this group as old search
results are unlikely to be useful anymore after a while. The developers
we discussed with were not very excited about the manual smart groups.
They might use them occasionally, but it is usually too much of a burden
for them to manually add entities to a smart group and to maintain
these groups on a regular basis. They appreciate, however, the fact that
such manual groups can be used to communicate important aspects of a
system by distributing smart groups containing for instance, important
artifacts of a system crucial for its understanding. In general, the ability
to distribute smart groups between developers was highly appreciated.

Priority of SmartGroups view. Developers are tired of dealing with
views showing a huge software space, for instance a tree of all packages
in a system. Only a small portion of the system, usually just a few entities,
is actually relevant for the current development task. Hence, developers
asked to see by default the SmartGroups view instead of the package tree
which is usually shown in the first column of Smalltalk’s system browser.
We thus changed the SmartGroups view to be activated by default while
developers can switch to the traditional package tree by using the tab
’packages’.

Summary of the Chapter 117

Limited number of presented entities. Developers were glad to be able
to focus on a limited number of entities (not more than 50) considered to
be task-relevant. They agreed with the principle of ranking the entities
by assumed relevance and to show low-ranked entities less prominently,
that is, in an extended list, while only the first 20 elements are shown
by default. As developers experienced that sometimes the suggested
elements did not include those they actually had to modify, for instance, to
correct a defect, they expressed the wish to be able to access the complete
list of entities considered to be relevant by SmartGroups, even the elements
ranked after the first 50 elements. In general, developers considered the
ranking mechanism as intransparent and thus wanted to see all entities
identified as possibly relevant, since the automatic ranking might have
wrongly put a related entity after the first 50 elements causing it to be
stripped away.

We value the obtained feedback from developers and plan to adapt
SmartGroups accordingly.

4.6 Summary of the Chapter

SmartGroups mitigate the problem of being overloaded with information
in IDEs by explicitly representing context by means of working sets con-
sisting of a small portion of all source artifacts of a particular system. In
particular the automatic identification of task-relevant artifacts supports
developers to quickly locate artifacts of importance for a particular defect
correction or feature implementation task. Developers have to spend
less time navigating the software space as SmartGroups provide them
with a suggestion list of relevant artifacts on which they can focus. As
revealed by empirically validating SmartGroups by means of a benchmark
validation, the automatic determination of task-relevant entities performs
well for tasks encompassing modification activities and commits, but is
more error-prone for pure navigation tasks performed to, for instance,
gain an initial understanding for an unfamiliar system. For these kinds
of tasks, SmartGroups offer a means to manually group relevant artifacts;
such manual groups could be built by senior developers to represent the
artifacts novice developers should analyze to comprehend the basics of
the system. During their daily work, developers are usually not willing
to extensively create manual groups, but such groups can serve as an
additional system documentation and can be created and maintained by
the entire development team on a regular basis.

HeatMaps also address the problem of being overloaded with too much
information in the IDE by highlighting important artifacts in the entire

118 SmartGroups – Representing Context in IDEs

source space and thus helping developers to find their way through the
software space. However, not only are developers overwhelmed with
too many source artifacts while working in an IDE, but also with many
windows or tabs they need to open to actually view, browse, and modify
these entities. Maintaining an overview of all these open windows that
clutter a developer’s workspace even during short working session is
challenging. Thus, we elaborate in the next chapter on a technique we
developed to reduce the number of open windows or tabs; this technique
is called AutumnLeaves.

Chapter 5

AutumnLeaves – Reducing
the Number of Open
Windows

5.1 Introduction

5.1.1 Positioning AutumnLeaves

This chapter presents AutumnLeaves, a technique to automatically close
unused open windows in the Squeak or Pharo Smalltalk IDE or tabs in
the Eclipse Java IDE. AutumnLeaves mitigates the information overload
by providing “housekeeping services” to reduce the number of open
windows or tabs in a developer’s IDE workspace. To achieve this goal,
AutumnLeaves continuously analyzes all open windows to check whether
any open window does not align anymore with the current focus of
development. AutumnLeaves then suggests to close such a window.

Figure 5.1 puts the problems addressed by AutumnLeaves in context
with respect to all other IDE problems raised in Chapter 1. AutumnLeaves
primarily mitigates the problems of information overload. Having fewer
open views in an IDE’s workspace also eases maintaining an overview of
the system or of the current development task. AutumnLeaves supports
developers while performing feature investigation or implementation,
analysis of system quality and domain concepts, and particularly also
when studying dynamic dependencies and runtime interactions, as dur-

120 AutumnLeaves – Reducing the Number of Open Windows

Figure 5.1: AutumnLeaves primarily alleviates the problem of an over-
loaded workspace in IDEs, which, in turn, also gives developers a better
overview of the system under investigation.

ing these activities developers have to open many windows to anticipate
the runtime relationships between artifacts, especially when dynamic
information is missing in the IDE.

The rest of the chapter explains AutumnLeaves in detail. After an-
alyzing the problem, we present the concepts and algorithms behind
AutumnLeaves, the different possible variations and adaptations of the
algorithms, and finally an evaluation of the approach’s accuracy by means
of a benchmark validation.

5.1.2 Introduction to AutumnLeaves

Navigating large software systems is difficult as the various artifacts are
distributed in a huge space, while the relationships between these artifacts
often remain hidden and obscure [DUNS 00, WILD 92]. As a consequence,
developers are forced to open views on numerous source artifacts to
reveal these hidden relationships, which leads to a crowded workspace
with many open windows or tabs. Developers often lose the overview
in such a cluttered workspace as IDEs provide little support to get rid of
unused windows. IDEs do not show how these windows are related to
each other, thus developers are confronted with an immense number of
independent, apparently unrelated windows or tabs to reason about. It
is unclear which windows are still important and which ones have been
opened to explore a branch of the navigation space not leading to the
final goal. Thus developers are usually uncertain when a window will
not be used anymore and are thus not willing to take the risk of closing
windows potentially needed in the future. As a result, the number of
open windows steadily grows.

Having many windows open at a given point in time worsens the
information overload and negatively impacts system overview and nav-
igation efficiency as developers have to spend more time locating the
window of interest and as they need to keep a larger, more complex
mental map of the content and purpose of each open window. Thus it

Introduction 121

is desirable to have a minimal set of open windows at any point in time,
which is likely to reduce time to navigate and maintain the working set of
artifacts. It is, however, challenging to determine this minimal set, that is,
the windows containing relevant, important content useful for the current
problem to be solved by the developer.

As navigation is an important prerequisite to program comprehension,
improving source space navigation in the IDE is an important step to
better understand and reverse engineer applications while they are being
developed and maintained. Literature reports that developers spend up
to 35% of their time navigating software [KO 05] and up to 60% is spent
with program comprehension activities in general [BASI 97, CORB 89].

To achieve the goal of reducing the number of open windows Au-
tumnLeaves determines the likelihood of a window’s content to be of
use to the developer by relating it to all other opened artifacts. If for
instance a window contains a class, a window showing a related class
(such as a super- or subclass) or a method of this class is related to the
first window. AutumnLeaves assigns to every open window a weight that
will be increased upon every navigation action in the same or any other
window that is related to the content showed in this window. This weight
allows AutumnLeaves to identify those windows that have no references
or only weak ones to the current development task performed by the
developer. Windows with relatively little weight are steadily grayed out
until AutumnLeaves closes them automatically (optionally by asking the
developer for confirmation beforehand). This closing action occurs when
the weight of a window compared to all other weights drops below a
certain threshold. AutumnLeaves thus acts as a garbage collector for win-
dows to mitigate the window plague with which developers are typically
confronted in modern IDEs.

The research question addressed in this chapter is how to model
hidden references between the various windows opened in a development
session to be able to generally determine the importance of windows
and in particular to identify futile, unused windows, similar to the way
a garbage collector locates and terminates unreferenced objects. How
should we model references between very different windows used in
software development (code, debugger, inspector, or references windows)
and how to represent importance of windows and changes in importance
during a development task?

To the best of our knowledge, there is no proposal described in the
literature which aims at reducing the number of open windows in IDEs.
There are several proposals addressing the problem of being overloaded
with information in IDEs, for instance by recommending related source
elements while browsing particular artifacts (NavTracks), by highlighting

122 AutumnLeaves – Reducing the Number of Open Windows

important, relevant artifacts (Seesoft, Mylyn), or by representing concerns
or task-relevant source elements (FEAT, Mylyn). All these approaches,
presented in detail in Section 2.1, reduce the number of source entities
developers have to navigate or otherwise deal with, but not any approach
minimizes the number of windows in IDEs.

This chapter addresses these questions by first reporting on the plague
of too many opened windows in software development in Section 5.2.
Second, we introduce AutumnLeaves, our proposal to model window
references and to detect obsolete windows in Section 5.3. We validate
AutumnLeaves in Section 5.4 concerning correctness and practicability by
conducting a benchmark validation based on 25 recorded development
sessions. We analyze these sessions to determine whether AutumnLeaves
would have correctly closed a window or whether the developer used
this window after AutumnLeaves would have closed it. This section also
discusses differences between common window management techniques
employed in IDEs. Finally, Section 5.5 concludes the chapter and reports
on future work.

5.2 Problem Analysis: Window Plague in IDEs

Most software systems spread their functionality over multiple source ar-
tifacts (classes, methods). Even reasonably sized systems contain several
hundreds of these artifacts. Depending on the programming language,
these artifacts are contained in files (for instance in Java or C/C++) or are
directly accessible as objects in languages such as Smalltalk [GOLD 84].
In any case, developers navigating these artifacts in modern IDEs such
as Eclipse, a Smalltalk IDE [GOLD 84] or any other environment, usually
view and navigate source entities by opening windows or tabs. Normally
one window or tab only shows one single source entity at a time.

As soon as a window has been opened to view an artifact, it is unclear
whether and how long this view is required to complete the development
task. Thus developers are usually reluctant to close windows, instead
they keep the views on the artifacts open as they fear to not be able to
easily recover these views once closed. As a consequence, they open
more and more windows, in particular when working on complex, object-
oriented applications whose code is scattered over many different artifacts
in statically distinct and disperse parts of the code base (for instance, in
multiple packages).

We conducted several small empirical surveys and studies with devel-
opers either working with Java in Eclipse or with Smalltalk in Squeak. The
fundamental difference between these two IDEs is that Eclipse works with

Problem Analysis: Window Plague in IDEs 123

files containing Java classes while Squeak contains classes and methods
as first-class entities not stored in files. Squeak thus supports the direct
navigation of methods without first opening the declaring file and class
therein. Eclipse also employs the concept of tabs (see Figure 5.2) while in
Squeak, developers open full-fledged windows arranged on a desktop
(see Figure 5.3). These windows can be moved, resized and minimized
and often serve themselves as full-fledged browsers (that is, they contain
the entire package tree from packages down to methods).

Figure 5.2: Eclipse supports tabbed browsing of the source space, but there
is only space for a limited number of tabs; additional tabs are accessible
in scroll list at the right.

Figure 5.3: Squeak Smalltalk provides a desktop on which full-fledged
windows are opened, similar as in MacOS X.

In our empirical studies we analyzed typical development sessions
of developers working on smaller projects (applications with up to 100
classes of either Java or Smalltalk code). As already indicated in Sec-
tion 1.1.2, we recorded the number of opened windows in total, the
average number of open windows (measured in intervals of five minutes),
the number of windows closed, and the number of windows opened,
browsed and closed just afterwards (without changing focus to another
window or tab). Additionally, we recorded the number of times peo-
ple switched from one window to another and how often they visited a

124 AutumnLeaves – Reducing the Number of Open Windows

Metric Eclipse Squeak

Number of windows opened 35.84 25.74
Avg. number of open windows 16.68 14.29
Number of windows closed 10.35 12.96
Number of windows opened
and closed shortly thereafter 2.24 4.15
Number of window switches 58.90 38.85
Number of entities revisited 41.64 35.10

Table 5.1: Characteristic of the window plague in the Eclipse and Smalltalk
IDE

previously browsed entity again without editing this entity on re-visit,
that is, to just read and understand it again. The development sessions
recorded lasted half an hour for each developer. In total we analyzed
22 such development sessions. Table 5.1 reports on the findings of these
studies.

As already discussed in Section 1.1.2 the results of this study clearly
show that the set of open windows in an IDE grows over time as devel-
opers do usually not regularly close windows. Most developers close a
bunch of windows at the end of a development task, suggesting that they
have been negatively impacted by the surfeit of windows throughout
the accomplishment of the task. We can assume that human beings are
not capable of cognitively handling more than seven open windows at
a time [FITT 54]; however, the average number of windows is usually
much higher (cf. Table 5.1). Accordingly, developers visit many entities
several times and very frequently switch between windows, which are
clear indications of them being overloaded with too many windows and
thus having lost the overview of the system and the development task.

As Eclipse employs the concept of tabs and does not use full-fledged
browser windows as Squeak, it is in general easier to re-find windows in
Eclipse as they do not overlap. However, even in Eclipse the developer
usually only sees between five to ten tabs in the tab bar on the screen. To
access remaining open windows it is necessary to use the list next to the
tab bar (see Figure 5.2). Developers reported to us that locating a window
of interest in this list is very difficult and time-consuming. Usually they
opt to not use this window list, but to navigate to the appropriate source
artifact in the package tree and open again a view on it; Eclipse then
automatically opens the window already displaying this artifact.

A common pattern of most interviewed developers to deal with the
window plague is to let the list of windows grow until they are completely
done with the current task. Then developers take the time to manually
close all or most windows opened during the task solving process. Very

AutumnLeaves 125

few developers close windows they consider as not needed anymore
regularly during a task. However, such a procedure leads to a constantly
growing list of windows clearly hampering navigation efficiency. De-
velopers reported spending a considerable amount of time whenever
they have to re-locate an open window. Moreover, they are aware that
most windows they have opened become useless over time, but they are
not willing or able to manually close the windows most likely not to be
needed anymore.

5.3 AutumnLeaves

AutumnLeaves is an approach to overcome the previously discussed win-
dow plague. We firstly explain the basic principles behind Autumn-
Leaves and secondly report on several design considerations and variation
points.

5.3.1 AutumnLeaves in a Nutshell

The ultimate goal of AutumnLeaves is to identify unused windows, that is,
“autumn leaves” that can fall down from the tree as they are not useful
anymore. AutumnLeaves associates a weight to each open window to
indirectly model references between windows. This weight is increased
upon certain user actions. Also the entities displayed in any window
have a weight. This is necessary to relate entities with windows. If for
instance one window displays a class, another a method or a subclass
of this class, we add in our model an implicit reference between these
two windows based on the entities they show. We keep the entity weight
even if windows containing such entities are closed. This enables us to
re-establish references between windows when the developer again opens
a view on this entity in a new window.

To identify obsolete, useless windows, the weight of each window
is compared to the average weight of all open windows. If a window
weight is below a certain threshold of the average weight (defined as
30%), AutumnLeaves suggests to close the window. This suggestion is
visually displayed by graying out the window or its title bar in case of
tabs. Developers can always decline the automatic closing of a window,
otherwise the window is closed five user actions after falling below the
threshold. Additionally, the current window weight is steadily displayed
in the right corner of a window to make developers aware of candidate
windows for removal.

126 AutumnLeaves – Reducing the Number of Open Windows

The weights (for a complete list see 5.3) and the threshold are deter-
mined by performing a benchmark validation on recorded data sets of
navigation and modification activities performed by several developers
working on various development tasks. Section 5.4 reports in detail about
this benchmark validation. In a nutshell, we assume that AutumnLeaves
performs well if it does close windows not used anymore later in the
recorded development session. According to that idea, we ran the bench-
mark on 25 recoded development sessions and ultimately selected the
best performing threshold and weights. We had to trade off correctness
(not closing windows used later on) against effectiveness of AutumnLeaves
(measured with the reduction in average number of open windows) and
favored correctness if the results between two weight configurations were
similar. We have chosen the initial weight configurations (how much spe-
cific actions should increase weight) according to a “gut feeling” for the
importance of actions and varied the concrete weight around the initially
chosen weight for each action by two weight points up and down.

For the threshold we experimented with all values from 5% to 50%
in 5% increments. We discovered that the effect of AutumnLeaves, that is,
the reduction of number of windows, drops quickly when lowering the
threshold while correctness remains relatively stable. However, when the
threshold rises above 30%, the correctness value starts to drop fast, hence
we have chosen to close a window when its weight falls below 30% of the
average window weight. This threshold could be further optimized, but
we consider 30% to be a reasonable value.

The weights of all windows are refreshed and checked against the
threshold after each user action. As a user action we consider opening
a window, typing or scrolling in a window, moving or minimizing win-
dows. To determine entity weights, we additionally consider viewing
(“opening”), creating, modifying, and deleting methods and classes. The
final weight of a window is the sum of its own weight and the weight of
the entity it currently displays. If the displayed entity is a single method,
we also add the weight of its class to the window weight (only applicable
for Smalltalk as we cannot open views on single methods in Java).

To build references between windows we mostly use the entities dis-
played in a window. If we modify a method, we increase the weight for
this entity, but also for the containing class. We thus propagate weight
according to static relationships between source artifacts: From a method
to its class, from a class to its direct superclass and all direct subclasses,
from an inner class to its outer class, from an interface to all implementing
classes. Propagated weight is always half of the direct weight for the
entity: If we add weight 10 to a method, its class gets 5 points. Table 5.2
lists the different weights for all actions on entities, Table 5.3 for window

AutumnLeaves 127

Action Class Method Propagation

Viewing (“opening”) 3 3 1.5
Modifying 8 10 4
Creating 4 4 2
Removing - - 2

Table 5.2: Weight addition to source entities upon certain actions on the
same or dependent entities. Propagation means adding weight to related
entities, for instance from a method to its class or from a class to its
superclass.

Action Weight addition

Initial opening 12
Moving 1
Resizing 1
Getting focus 2
Typing in it 8
Visibility (in Squeak also fractions thereof) 1

Table 5.3: Weight addition to the a window upon certain actions on this
window.

actions. With these settings we obtained best results concerning correct
identification of unused windows and reduction of number of windows.

Some IDEs allow developers to hide or overlap windows with others.
In Squeak for instance, windows can overlap and partially or fully hide
windows behind. In Eclipse, only a limited number of tabs is visible on
the screen. Older tabs are only visible in the drop-down menu to the right
of the tab bar. We consider visible windows to be more important than
hidden ones. We hence reward fully visible windows or tabs with an
additional weight point after every user action. In Squeak, we addition-
ally take into account the degree of visibility, that is, the portion of the
window at the front on the desktop and add the visible proportion of one
weight point to the window weight on every user action. The desktop
management facility of Squeak allows windows to be stacked.

To make sure that the weighting mechanism also properly handles
windows in which no navigation actions happen but that are just selected
to view their contents, we increase the weight of a window by two points
when obtaining the focus. This weight is only given when the developer
looks for more than three seconds at the window to only reward windows
the developer intentionally selected.

We consider all kinds of windows dealing with entire source entities,
that is, class browsers (showing classes and methods), debuggers, inspec-

128 AutumnLeaves – Reducing the Number of Open Windows

tors, workspaces (for code snippets), list windows (list of class references,
method senders or implementors, variable references, etc.). The window
has to focus on a particular entity, that is, one single class or one single
method. In Eclipse we consider the method in the center of the source
view as the selected method. For Eclipse views such as the package ex-
plorer or the type view we consider just the selected entity but not other
visible entities close to the selected one. If the entire list shown in a list
view such as the package explorer was considered, we could not easily
identify relations between different windows based on displayed source
artifacts as most windows would be related to each other when using the
entire content of list views. Other types of windows such as simple text
editors, file browsers, or XML editors are not handled by AutumnLeaves
and will thus never be automatically closed.

5.3.2 Variations, Modifications, Adaptations

Pinning of windows. One variation point is a pinning facility for win-
dows. A window manually pinned by the developer will never be closed
by AutumnLeaves. It will always stay there even if its weight has dropped
below the threshold. Such a feature is useful for windows serving as
libraries or documentation. Developers might never type in these win-
dows, maybe not even interact with them, but still they serve a purpose
to show content of interest to developers, content that is permanently
important, such as a list of constants. Thus the pinning mechanism makes
sure that such reference windows can stay open. Developers are free
to pin any kind of windows and as many as they want. The pinning
mechanism also makes sure that the windows opened for a specific task
do not get closed by AutumnLeaves when interrupting this task to work
on something else. For instance, the pinning could be categorized, so that
all windows for the same tasks can be identified by the pinning category.

Visibility of windows. In Squeak, windows can overlap other win-
dows. The visibility of a window, that is, whether it is fully visible at the
front, partially visible because of other windows covering it, or totally
hidden by other windows, certainly has an influence on the importance
of a window to the developer. We can assume that a fully hidden window
at the end of the stack is less likely to be used by the developer than a
(partially) visible window. Maybe the developer even forgot about the
existence of such a hidden window. We currently account for this fact by
rewarding visible windows with additional weight points on each user
action, in Squeak depending on the extent of visibility. In Eclipse a tab is
either fully visible or fully hidden, thus a visible window always obtains

AutumnLeaves 129

a full reward point. However, another mechanism to take into account
visibility could be to check visibility just at the moment AutumnLeaves
actually suggests to close a particular window. We could define two
thresholds at which windows should be closed: a higher boundary for
hidden or partially hidden windows (e.g. 40%) and a lower boundary
for visible windows (e.g. 20%). We experimented with both mechanisms
and report in Section 5.4.1 on differences between these two concerning
correctness.

Weighting previously selected entities. Another variation point is how
viewed entities should influence the weight of a window. In particular
in Squeak, developers often navigate entities directly in particular win-
dows as most windows provide browser facilities to navigate source code
(Eclipse differs here as its windows only provide local navigation facilities,
for instance scrolling from one method of a class to the next). The im-
portance of such a window not only depends on the currently displayed
source artifact, but also on the recent history of therein navigated arti-
facts. As Squeak offers means to easily navigate the history of a browser
window, similar to functionality provided by web browsers, a previously
viewed class is still conveniently accessible from within this window. If
this displayed class is important and many other windows refer to it, then
this particular window should have a higher importance even when the
developer navigates further to a particular method of this class, as the
old viewed entity is still easily accessible from within this window. We
thus take into account in Squeak not just the currently selected entity, but
also the two artifacts navigated before this entity when computing the
weight of a window. The window weight is thus the sum of the weight of
the window itself and the weights of the first three entities in the window
navigation history. We have chosen the number three and not more to
be able to react to changes in development focus, for instance if open
windows are reused for a new exploration path, previous entities should
not influence the window weight for too long.

Weights. The weights we have chosen (see Table 5.2 and Table 5.3) are
another, important variation point. The rationale behind the currently
defined weights is to take into account the content displayed in windows,
that is, the navigated source artifacts, classes and methods, to be able to
relate different windows to each other. However, as a variation we can
also put more emphasis on actions performed on the windows themselves,
such as the time spent in a window (for typing, scrolling, or having
the focus). The emphasis on the entities can be further relaxed by not
propagating weight from an entity to related entities (for instance, from a

130 AutumnLeaves – Reducing the Number of Open Windows

method to its declaring class). Section 5.4.1 discusses the impact of weight
propagation to related entities.

5.4 Validation

In this section we validate our work in two basic directions: First, we
perform a benchmark validation to study the correctness of AutumnLeaves,
that is, whether our approach correctly identifies candidate windows to
be closed. Second, we report on the practicality of AutumnLeaves, that
is, how developers assess its usefulness in practice, when working on
concrete tasks in their daily work.

5.4.1 Correctness

To evaluate the correct and desired functioning of AutumnLeaves, that is,
identifying the appropriate candidate windows for closing, we performed
a benchmark validation. A benchmark validation has the advantage of
being easily replicable, it eases the comparison of results, and can be used
to test a restricted functionality, such as the effect of different weights on
the performance of AutumnLeaves. The same validation procedure has
been used by other researchers to evaluate similar works such as code
completion engines [ROBB 08].

Procedure. Essentially, the benchmarking procedure we implemented
replays a recorded sequence of user interactions that have occurred in the
IDE. After each action, we let AutumnLeaves compute the weight of all
windows as discussed in Section 5.3. If the algorithms identify a candidate
window for removal, we look forward in the recorded user actions to see
whether the developer ever used this window again and if so, what kind
of actions he performed in this window.

In total, we analyzed 25 recorded development sessions of eight dif-
ferent developers. Each development session lasted between half an hour
and three hours. In these sessions, very different tasks have been per-
formed in different software systems. The development sessions used
in this evaluation are not the same as those mentioned in Section 5.2 to
make the results more generalizable and less tailored to the data used to
identify the problem we want to solve with AutumnLeaves. The sessions
used for the validation are longer and more complex in terms of appli-
cation and task size than those used in Section 5.2. Also the developers
are different persons, except one developer who contributed different
recorded sessions to this evaluation as well as to the initial identification

Validation 131

of the problem. Most developers are either undergraduate or graduate
students who worked on various tasks in research projects. We asked
developers that we personally know to install our recording tool in their
IDE and to submit us recorded sessions of any kind. The recording tool
we implemented instruments the IDE code to send announcements about
all navigation and modification activities occurring in each window we
are interested in. In this validation benchmark we iterate over all recorded
data sessions to find out for each window when it has been last used. In a
second iteration we evaluate after each recorded action whether Autumn-
Leaves suggests to close a window and check whether this window has
been used by the developer afterwards.

The participating developers described for us what kind of tasks they
performed in the respective session. From these descriptions we identified
six different task categories: Implementing a new system from scratch (2
sessions), implementing a new feature for an existing application with
which the developer was either familiar (3) or unfamiliar (4), fixing a
defect in a system (7), optimizing a system’s performance (1), and a
pure navigation task to gain an initial understanding for an unfamiliar
software system (8). A new feature implementing task was for instance
to add a navigation history button showing all previously navigated
source artifacts in the Squeak browser. One navigation task for example
was concerned with determining the classes responsible for rendering
arrowed lines between figures in a drawing program. Most of the 25
development sessions stem from development in Squeak, while only
a few (three sessions) originate from Eclipse. The systems on which
developers were working had a size of approximately one to five hundred
classes, except the application that has been developed from scratch
which only consisted of around 30 classes at the end. After evaluating
the general performance of AutumnLeaves we specifically test whether
this performance depends on the nature of the task being performed in a
development session.

The best result for the performance of AutumnLeaves is certainly if
the developer never again used the window AutumnLeaves suggested to
close. Even if he used the window later on in the recorded activity log,
we analyze how often the window has been used and whether it has been
used to navigate or modify the same entity or a related one (for instance,
method or subclass of a class, a class in the same package of a class, etc.). If
the window was later on used to navigate something completely different,
we rate the decision of AutumnLeaves as correct as the developer could also
have opened an entirely new window instead of re-using an existing one.
If the window has been used to work on the same artifacts or on related
ones, we count the related actions performed in this window and give
AutumnLeaves a correctness rating of the reciprocal value of the counted

132 AutumnLeaves – Reducing the Number of Open Windows

user actions in this particular window. If AutumnLeaves for instance
suggests to close a window that has been used ten times afterwards, we
give this decision a correctness value of 0.1. If the window has been
used just once, the decision is still considered as fully correct. However,
if a window has been used more than 10 times, we rate the decision of
AutumnLeaves as entirely wrong. To obtain the final correctness rate for
AutumnLeaves in a particular development session, we summed up all
correctness rates for all candidate windows AutumnLeaves suggested to
close and divided this by the number of total candidates.

Results. Table 5.4 shows the correctness results we got for different
development sessions. Due to space restrictions we do not show all
25 but just three selected sessions, and the total performance averaged
over all 25 sessions. The five selected tasks are in this order: New feature
implementation (Squeak), defect correction (Squeak), navigation (Squeak),
performance optimization (Eclipse), navigation (Eclipse). This table also
shows the correctness value if computed in an “all or nothing” manner:
Only considering a window to be closed that is never used anymore
afterwards is rated as a correct performance of AutumnLeaves. Thus
this correctness value is the percentage of perfectly correctly identified
windows to be closed. We also analyzed the data sets to identify windows
that have not been suggested by AutumnLeaves for removal, but have not
been used after a certain moment. These windows can be considered as
false negatives as AutumnLeaves should have identified them as well. A
not closed window is not considered to be a false negative if it has been
used until the end of the session. Such a window needs to have been
accessed in the last hundred user actions of a session to not rate it as a false
negative. We also determined the average time between the last usage of
a window and the moment AutumnLeaves was able to pinpoint a window
to be closed. This measure gives evidence on how fast AutumnLeaves is
able to detect changes in the direction the development takes, for instance
if the developer explores another, unrelated branch of the source space.
Furthermore, we give details about the reduction of the average number
of open windows (measured in intervals of five minutes).

Discussion of the results. The results in Table 5.4 show that Autumn-
Leaves usually closed windows correctly when a few usages after the
moment of closing a window just reciprocally reduce the correctness rate
(see definition of the correctness value introduced above). However, the
correctness value dropped significantly when only closing a window
never used later on is considered to be a correct decision (“strict correct-
ness”). Nonetheless, we can still trust the suggestions of AutumnLeaves as

Validation 133

Session 1 Session 2 Session 3 Average

Number of opened windows 82 41 109 65.20
Correctness (with some later
window usage permitted) 74.18% 51.26% 47.52% 61.61%
Correctness strict 53.33% 40.00% 46.29% 51.76%
Number of windows incorrectly
closed (false positives) 7 15 29 13.50
Number of windows incorrectly
not closed (false negatives) 8 4 11 6.12
Time elapsed btw. last usage
and closing [minutes:seconds] 8:12 7:52 12:56 10:09
Avg. number of windows
without AutumnLeaves 25.20 15.86 32.50 28.53
Avg. number of windows
with active AutumnLeaves 17.84 8.41 18.88 26.03
Delta in avg. number of windows 7.36 7.45 13.62 12.50

Table 5.4: Correctness, false positives, false negatives and average number
of windows improvements provided by AutumnLeaves of three randomly
selected sessions and averaged over all 25 sessions.

those windows have not been used often after AutumnLeaves suggested
their closing and hence cannot possibly have played a crucial role in the
development session.

The average number of false negatives is pretty low (6.12). We consider
this to be a very promising performance of AutumnLeaves, in particular
when comparing with the average number of opened windows (65.20).
However, it takes AutumnLeaves a considerable amount of time (on aver-
age more than 10 minutes) to identify a window not used in the future.
This means that with the current weighting mechanism, it is difficult
to react on quickly changing directions in development focus. If for in-
stance the developer finished exploring a part of the application (e.g. the
database layer), it takes time until this is reflected in the content displayed
in the various windows. The developer has to navigate further in most
windows or even manually close old windows in order to make Autumn-
Leaves aware of the new development focus. We will tackle this problem
in future work.

The reduction of the number of average open windows (minus 12.50)
is also a positive sign for the performance of AutumnLeaves. We can
consider any reduction of the number of open windows to be an improve-
ment, provided that truly obsolete, unused windows have been closed.
Even though we do not have evidence on how much more efficient devel-
opers are when they are confronted with fewer windows, the automatic
closing of windows provided by AutumnLeaves certainly helps developers

134 AutumnLeaves – Reducing the Number of Open Windows

to more quickly gain an overview of their workspace and of the subject
system and to hence ease the source space navigation and exploration.

Another interesting result would certainly be the navigation time,
that is, whether fewer windows indeed reduce the navigation time. We
have not yet evaluated enough data to obtain significant results, but early
evaluations indicate that the navigation time and effort is lower with
fewer windows open. In future work we address this question in more
detail.

Task-dependent results. The task-dependent evaluation we performed
revealed that both correctness and effectiveness (window reduction) de-
pend on the nature of the task. We obtained the highest correctness values
for new feature implementation and defect correction tasks (non-strict
correctness of 67.37% averaged over all such tasks). However, for these
tasks the reductions of windows was, at 9.46 windows, below the average
of all 25 sessions (12.5 windows). For tasks concerned with implementing
a new system, performance optimizations or pure navigation, the correct-
ness was lower (59.86%) and the reduction rate higher (13.85 windows).
We attribute these results to the fact that tasks in which developers mostly
navigate a constrained part of the system require opening fewer windows
than tasks involving navigation of several, possibly unrelated parts of the
system. AutumnLeaves can more correctly but less often identify obsolete
windows when the general focus is on entities that are statically strongly
related. Furthermore, feature implementation and defect correction tasks
encompass heavily the use of structural relationships between source
artifacts (e.g. inheritance), thus AutumnLeaves can more correctly identify
related windows. We leave as future work to find means for weight prop-
agation based on non-structural information to obtain better performance
for the other kind of tasks such as exploration tasks.

Variations. We tested the effect of weight propagation and different
threshold mechanisms with two different experiments: i) not considering
propagation of weight and ii) using two thresholds instead of just one.

In the first experiment we ran two benchmarks: one using all weights
as determined in the first experiment, including propagation, and another
one omitting propagation of weight. The latter experiment gives slightly
lower values for both correctness and reduction of average number of
windows (2.56% less correct and 5.46% less reduction of number of win-
dows). We consider propagation of weight to related entities as important,
although its effect is not huge.

Validation 135

Instead of rewarding on each user action windows that are fully or
partially visible, we evaluated in the second experiment a variation of
AutumnLeaves which defines two thresholds, a lower boundary for visible
windows and a higher boundary for hidden windows. As the latter are
more likely to not be useful anymore, we assume that they can vanish ear-
lier. For this experiment we have chosen a lower threshold of 20% of the
average window weight and an upper threshold of 40% (compared to the
standard threshold of 30%). The results of this experiment averaged over
all 25 sessions are the following: correctness slightly increased to 63.58%
while strict correctness (no later window usage permitted) dropped to
50.94%. The delta of average number of windows increased to 14.3 win-
dows, while false negatives and false positives did not show significant
changes. We conclude that this variation did not yield remarkably better
results.

Threats to validity. There are several threats to validity in the exper-
iment we performed. Firstly, the data sets we used cover pretty short
development sessions (up to three hours) and were concerned with rather
simple and constrained tasks. Large industrial projects may encompass
longer and more complex and open tasks (threat to external validity).
However, we consider these development activity logs as being fairly
typically for medium-sized applications, in particular as there were four
different applications involved. We can also assume that even if the tasks
have been rather small and short in our data sets, the performance of
AutumnLeaves nonetheless scales up to larger tasks as those are likely
to have similar constraints and characteristics with respect to window
usage.

Secondly, the fact that a window is not explicitly used anymore in
the recorded data set is not necessarily a sign that it was not important
later on (threat to construct validity). The developer could have looked
at the content of such a window without interacting with it. At least in
Squeak it is possible to have a window in the front and read its content
without ever selecting and giving it the focus. However, this is not
possible in Eclipse. Although such situations might have occurred in the
recorded development sessions, we assume those to be very rare. Thus
they should not have a significant influence on the reported results and on
the prediction quality of AutumnLeaves. In both environments developers
might have glanced at a window just shortly to find out that it the wrong
one

Thirdly, developers who gave us the data sets also reported on the task
they performed therein. From their description, we assigned each task to
the six different task categories. We did not manually study the data sets

136 AutumnLeaves – Reducing the Number of Open Windows

or ask developers further whether they worked on just one single task
without any perturbations or whether they performed some other sub-
tasks or unrelated work in this recorded activity log. Some descriptions of
tasks were ambiguous as developers performed work not unmistakably
assignable to one single task (threat to internal validity). Thus the task-
dependent evaluation of AutumnLeaves contains some pitfalls regarding
accuracy of the results, as the different performance of AutumnLeaves in
some tasks is partially also explained with perturbations in the data sets
and difficulties in assigning these sets to particular tasks. We consider
this effect as marginal though. Another threat concerning task-dependent
evaluation is that we did not have an equal distribution of the data sets on
the six tasks. For instance, there was only one single data set concerned
with performance optimization but seven data sets contained a navigation
task. This imposes a serious threat to construct validity.

5.4.2 Practicality

While the results of the benchmark validation elaborate on the correctness
of AutumnLeaves, the practical usefulness of our proposal is not assessed
by such validation. We thus study the practicality of AutumnLeaves in this
section.

From the discussion with developers, we learned that a crowded
workspace with many open windows seriously hampers development
efficiency, no matter on which task they are working. In particular when
navigating software systems to reverse-engineer them, for instance to
build a mental model of a system in order to be able to extend or cor-
rect particular software features, developers suffer from too many open
windows, which can ultimately lead to a lost of overview. Any solution
to overcome this window plague comes as a relief, developers reported.
However, it is considered to be important to have full control over the
windows. Developers are not willing to accept a fully automatic closing
mechanism, instead they always want to have the power of veto, for
instance if AutumnLeaves suggests to close a window actually being used
as a read-only reference to important constants or definitions.

In developer interviews we also revealed an interest in visual clues
about how important AutumnLeaves considers a window. This not only
supports developers in estimating when a particular window will be
removed, but is also helpful in locating windows still being actively used.
AutumnLeaves currently visualizes the internally maintained weighting
of windows by showing in the window title bar different colors. For
windows considered to be active (their weight is above the threshold), the
title bar is colored in a heat gradient from red to blue, while red means

Validation 137

very important, blue less important, as suggested by other researchers
[EICK 92, KERS 05]. Windows identified for closing are grayed out in
a gradient from light gray to black, where black indicates a weight far
below the threshold. Such visual clues also serve as a navigation aid to
developers, as they often find the window of interest by looking at the
title bar colors. In most cases an interesting window has a non-gray color
and often even a red color.

As future work we leave to empirically determine the impact of dif-
ferent weights (as shown in 5.2 and Table 5.3) in practice, the gain on
productivity of AutumnLeaves or the correlation between the window
importance computed by AutumnLeaves and what developers themselves
consider to be important windows.

5.4.3 Differences between IDEs

As the two IDEs, Eclipse and Smalltalk, have fundamental differences in
their window management (as mentioned in Section 5.2), we also expect
differences regarding AutumnLeaves. Even though the Eclipse data sets
do not significantly differ from the Squeak data sets, the low number of
Eclipse data sets (3 for Eclipse compared to 22 for Squeak) does not allow
us to draw a statistically relevant conclusion. Generally, the AutumnLeaves
algorithms are less complex in Eclipse as for instance visibility is just a
boolean variable — either a tab is visible in the tab bar or it appears in the
tab list (making it essentially invisible). Moving and resizing of windows
is not relevant in Eclipse.

Usage data shows, however, that in Eclipse more windows are open
on average (see Section 5.2), probably due to the fact that Eclipse only
supports limited navigation in windows (for instance, we cannot open a
new class in an existing window). So far we have not analyzed enough
data sets from Eclipse to judge whether we have to adapt considerably
the AutumnLeaves algorithms or the weighting mechanism to adapt to
the navigation differences in Eclipse compared to Squeak. The data we
analyzed gives us the impression that AutumnLeaves is robust enough
to also properly handle Eclipse window management. Further work
aims at gathering and analyzing more Eclipse development data. At the
moment we are optimistic that AutumnLeaves requires only fine-tuning of,
for instance, the weighting procedure to work equally well in Eclipse as
in Squeak.

138 AutumnLeaves – Reducing the Number of Open Windows

5.5 Summary of the Chapter

In this chapter we studied the window plague which overloads the
workspace and hampers the overview of the maintained software system
in most modern IDEs such as Eclipse or Squeak Smalltalk. We analyzed
several development sessions of various developers to reveal the extent
and graveness of workspaces crowded with many windows. Developers
remarked that an automatic means to close windows is beneficial for them
and thus we implemented AutumnLeaves, a mechanism that observes all
open windows and how they are related to each other by associating a
weight to each window. This weight reflects the current importance of a
window and its content (classes or methods) and thus AutumnLeaves can
identify obsolete windows that are most likely not useful anymore in the
current development session. AutumnLeaves automatically closes such
windows, if developers do not decline this. We evaluated AutumnLeaves
with a benchmark validation analyzing 25 recorded development sessions
to determine the correctness of AutumnLeaves’ algorithms. The correctness
results reveal that AutumnLeaves is usually able to pinpoint the windows
that are appropriate candidates for closing. We further reported on the
practicability of our approach and critically discussed it.

With AutumnLeaves, we contribute an approach to reduce the amount
of information with which developers have to deal in IDEs by automati-
cally closing windows. SmartGroups and HeatMaps pursue a similar goal
by providing a working context in which developers just need to consider
a reduced set of entities or by emphasizing the entities of interest in the
entire source space. In the next section, we present some other approaches
giving a better overview of a system to developers working in the IDE
and aiding them to easier locate important entities in a large software
space. The following section also studies the achievements of the entire
first part of this dissertation and identifies IDE issues not yet addressed.

Chapter 6

Discussion

We first briefly look at some other techniques we implemented to alleviate
the information overload IDEs before we conclude the first part of this
dissertation by critically discussing all so far presented proposals and by
identifying IDEs problems still not properly addressed.

6.1 Other IDE Enhancements Tackling Informa-
tion Overload

The previously discussed approaches do not completely solve the informa-
tion overload problem in IDEs. In particular, gaining a quick, higher-level
overview of the system is still not easily possible. To tackle the problem
of missing higher-level overview, we integrated several visualizations
in the IDE such as a system complexity view, class blueprints, and UML
diagrams.

Another IDE enhancement we contribute places icons next to source ar-
tifacts to show information not directly visible in the static software struc-
ture, such as whether a method is overridden in subclasses or whether a
message has any senders.

These two enhancements further mitigate the problem of being over-
loaded with too much information in IDEs by supporting developers
in finding their way in a large software space. Both visualizations and
iconic information guide developers by highlighting important artifacts
that need further attention and thus help developers to stay oriented
even in an overloaded workspace. As these two enhancements are not

140 Discussion

novel scientific contributions but rather the integration of existing works
and ideas into development environments, we placed the discussion of
this work in the appendix (Chapter A) where we elaborate on how we
concretely integrated these two techniques in the IDE.

6.2 Conclusions

We summarize our contributions and evaluate how they address the infor-
mation overload problem. Afterwards, we identify the shortcomings of
IDEs that are not or only partially addressed by the aforementioned three
proposals (HeatMaps, SmartGroups, and AutumnLeaves). These unsolved
issues of IDEs motivate us to propose the approaches presented in the
second part of this dissertation.

6.2.1 Problems Addressed

Figure 6.1 summarizes all problems addressed in the first part of the
dissertation and reports on the development activities that are now better
supported.

Figure 6.1: The various lDE shortcomings addressed by the proposals
presented in the first part of the dissertation (HeatMaps, SmartGroups, and
AutumnLeaves) and the development activities to which these proposals
contribute (HM = HeatMaps, SG = SmartGroups).

Information overload, missing overview. All three approaches address
the problem of being overloaded with too much information and lack of
overview in the IDE: HeatMaps highlight in the entire software space those
entities with a high probability of being important for the current task to
better gain overview and focus in a large source space. SmartGroups allow

Conclusions 141

for automatic or manual categorization of interesting source artifacts and
thus help developers to focus on a subset of the entire, overloaded source
space. Finally, AutumnLeaves reduces the number of open windows to
better maintain overview and focus in the surfeit of windows developers
usually have to open even during relatively short development cycles.

Missing context and task support. In particular SmartGroups contribute
to the problem of missing representation of context in the IDE as they
enable developers to manually build such a context by categorizing source
entities or by automatically constructing a task context based on how the
system has been previously modified, navigated, or updated. To a limited
degree, HeatMaps represent context by applying a heat color scheme to all
source entities. All artifacts colored in a hot color can be considered as
being part of a particular context, such as being recently modified for the
correction of a bug.

Hidden collaboration between distributed artifacts. Eventually, both
SmartGroups and HeatMaps aid developers in identifying communication
and collaboration patterns between distant and distributed artifacts, such
as classes dependent on each other but located in different packages of a
software system. SmartGroups categorize such distant artifacts in the same
smart group, for instance when the artifacts are changed or navigated in
tandem. HeatMaps color them in the same heat color, thus both techniques
make obvious that these distant artifacts are conceptually related, hence
they might collaborate with each other at runtime. However, neither
SmartGroups or HeatMaps make such collaboration directly visible, the
explicit representation of hidden collaboration hence remains unachieved.

Execution paths hidden. As HeatMaps are also able to use runtime infor-
mation for the heat coloring of source artifacts, a map could for instance
color all entities used in a particular execution scenario. The more often a
method is used, the more red it is colored by this map in the IDE. Such
an usage of HeatMaps highlights to a limited degree the execution paths
occurring in a system, namely the actually executed entities. However,
HeatMaps are not able to reveal relationships between the executed arti-
facts, for example the execution order. We thus present in the second part
of this dissertation more elaborated means to visualize execution paths,
in particular also on a source code level.

142 Discussion

6.2.2 Remaining Problems

Several problems of IDEs as identified in Section 1.1 cannot be addressed
by SmartGroups, HeatMaps, or AutumnLeaves. Some of these unsolved
problems are best tackled by exploiting dynamic information in the IDE.
In the following, we briefly study which problems remain unsolved by
the three techniques presented in this first part of the dissertation.

Quality assessment support poor. The three techniques SmartGroups,
HeatMaps and AutumnLeaves do not aid developers in assessing the qual-
ity of the software system they are developing. In Chapter 8, we present
Senseo which offers limited support for quality assessment by emphasiz-
ing in the IDE source artifacts that consume much memory or create many
objects. As stated in Section 1.1.2 this work does not aim at thoroughly
supporting software quality assessment from within the IDE.

Hidden collaboration between distributed artifacts. While Smart-
Groups and HeatMaps offer some limited support to identify conceptually
related but distributed artifacts, these two techniques are not able to make
explicit the dynamic collaboration patterns between such distant artifacts.
In the case of an unfamiliar system with no recorded history of previ-
ous navigation or modification occurring in the IDE, SmartGroups and
HeatMaps are usually not able to detect distant artifacts. We contribute
several techniques to better determine collaboration between distributed
artifacts and to better embed identified collaboration patterns in the IDE.
Hermion (Chapter 7), Senseo (Chapter 8), CollView (Chapter 9), and Fea-
tureEnv (Chapter 10) all contribute with different means to the problem of
distributed, distant artifacts whose collaboration is not obviously visible
in the static perspectives of traditional IDEs.

Execution paths hidden. With Hermion (Chapter 7), CollView (Chapter 9)
and partially also with Senseo (Chapter 8), we contribute techniques that
allow developers to study execution paths in a software system on a high
package level and on a low method or even source code level, for instance
which method invokes how often and with which arguments which other
methods, or which branch of an if statement is executed how often.

Imprecise static source code. SmartGroups, HeatMaps, and Autumn-
Leaves do not address the problem of not having precise information
in the static source code about how it behaves at runtime, such as runtime
type information. Hence, we propose with Hermion an approach tackling
this problem. We discuss Hermion in detail in Chapter 7.

Conclusions 143

Features hidden in code. With the three techniques from this first part
of the dissertation, it is not possible to directly reason about software
features as first class entities. Manually created smart groups could theo-
retically contain all source artifacts implementing a specific feature, but
SmartGroups do not support the automatic creation of such feature groups.
This issue is addressed with FeatureEnv which enriches the IDE with an
explicit representation of features by visualizing them in interactive views.
Chapter 10 discusses FeatureEnv in detail.

In the following second part of the dissertation, we study in detail
the four techniques addressing the aforementioned problems. These four
techniques, Hermion, Senseo, CollView, and FeatureEnv have in common
that they gather, analyze, exploit, and integrate by various means dynamic
information about the system under study in the IDE.

Part II

Exploiting Dynamic
Information in IDEs

The second part of this dissertation aims at tackling the narrow focus
of IDEs on static software structure by integrating dynamic information
into the static source perspectives of IDEs in order to improve system
navigation and understanding, in particular of dynamic collaboration
between scattered and distributed code.

We present four distinct approaches to embed various kinds of dy-
namic information in the familiar IDE views and tools.

• Hermion (Chapter 7) augments the understanding of static source
code by enhancing an IDE’s source code views with dynamic in-
formation such as runtime types of variables or receiver types of
message sends.

• Senseo (Chapter 8) integrates into the static source perspectives
information about dynamic collaboration between methods, classes,
or packages and thus improves system overview, navigation, and
understanding.

• CollView (Chapter 9) embeds in the IDE interactive, navigable vi-
sualizations of dynamic collaboration patterns between methods,
classes, and packages, in particular to enhance the overview of the
runtime behavior of a system.

• FeatureEnv (Chapter 10) explicitly represents software features in the
IDE by providing visualizations showing all exercised source arti-
facts during a feature’s execution to improve feature understanding
and navigation.

We conclude this second part of the dissertation by discussing these
four approaches with respect to the tackled problems regarding IDEs
narrow focus on static software structure. We also look back at the first
part to summarize which IDE problems and shortcomings we successfully
tackled in the entire dissertation.

Chapter 7

Hermion – Extending
Source Code Perspectives
with Dynamic Information

7.1 Introduction

7.1.1 Positioning Hermion

In this chapter we present Hermion, a technique integrating dynamic
information into the source code perspectives of the Squeak and Pharo
Smalltalk IDE. Hermion particularly aims at improving the understanding
of unclear and imprecise static source code, thus this approach enriches
the source code views with runtime types of variables or receiver and
argument types of message sends. Additionally, Hermion presents all
the types dynamically referenced by a particular source artifact during
the recorded execution, for instances all classes that have been used in a
method.

Figure 7.1 summarizes all of the IDE problems introduced in Chapter 1
that Hermion tackles. Most notably, Hermion alleviates the problem of
unclear static source code presented in an IDE’s source code views by
enhancing them with dynamic information. The availability of such
behavioral information in the source code views also helps developers to
reconstruct the intra-procedural execution flow in methods, particularly
as Hermion highlights all executed statements. Moreover, Hermion also

150 Hermion – Extending Source Code Perspectives with Dynamic Information

Figure 7.1: Hermion primarily addresses the problem of imprecise static
source code and also of unclear execution flow in methods. Additionally,
hidden collaboration between distributed artifacts is made explicit on a
method and class level.

contributes to a better understanding of hidden collaboration between
distributed artifacts, mainly because it presents all types referenced in an
artifact. Thus, Hermion basically contributes to all development activities
apart from feature implementation.

In the remainder of the chapter, we describe our Hermion proposal.
We introduce the research questions to be tackled by Hermion, motivate
the need for dynamic information embedded in source code perspectives,
describe in detail how we integrated runtime information in the Smalltalk
and how we gathered it, and finally validate the approach by means of
an efficiency benchmark and an empirical evaluation with developers.

7.1.2 Introduction to Hermion

Gaining an understanding of large object-oriented systems by navigating
the source code in a development environment (IDE) is an inherently dif-
ficult and time-consuming task. Object-oriented language characteristics
such as inheritance and polymorphism make it difficult to understand
how an application is implemented purely by navigating and browsing
source code [DEME 03, DUNS 00, WILD 92]. Often conceptually related
code is scattered over many different source artifacts, for example classes
and methods. The task of program understanding is more acute with
dynamically-typed languages such as Smalltalk or Ruby, as developers
typically require access to runtime type information to gain a complete
understanding.

Program comprehension is a prerequisite when faced with the task
of extending and maintaining a system. Exploration of a system is con-
strained by the mechanisms provided by the IDE to browse and navigate
a large software space. However, as discussed in Section 1.1.2, today’s
popular IDEs base browsing and navigation mechanisms only on a sys-

Introduction 151

tem’s static source code. They do not provide an integrated view of the
dynamic and static structures of the system, but narrowly focus on the
static view only. They offer little to understand the runtime behavior of
a system. Researchers in program comprehension have recognized the
value of combined static and dynamic views for program comprehen-
sion [DEME 00, DUNS 00, LÖWE 01, SYST 99, WILD 92]. But nonetheless
IDEs do not usually present any dynamic information in their source
perspectives.

In this chapter we identify different kinds of dynamic information and
illustrate how each contributes to a developer’s system understanding.
We claim that direct access within an IDE to runtime information such as
message sends, class references and runtime types of variables enhances
program comprehension through informative and efficient browsing and
navigation. It is crucial that dynamic information is embedded in the IDE
without further overloading the already busy interfaces and without forc-
ing developers to learn new and complex means to access this dynamic
information. The key research questions we address in this chapter are:

• How do we integrate dynamic information into an IDE’s browsing and
navigation mechanisms without overloading the existing source views
even more?

• How can we efficiently collect dynamic data in a running IDE?

We address these questions and present our working prototype, an
IDE called Hermion with the capability to capture runtime information
from an application under development and to exploit this information
by enhancing navigation and browsing of the source code. We validate
the usefulness of Hermion by using it to understand two medium-sized
applications. As validation of our work we perform a preliminary experi-
ment where we ask five developers, unfamiliar with the applications, to
report on how Hermion supports their understanding of the systems.

We cover and address the typical dynamic analysis issues such as
efficiency, coverage and completeness and outline future improvements.

The key contributions of this chapter are: (i) we identify which kinds
of dynamic information are useful for enhancing the navigation and
understanding of systems in the IDE, (ii) we describe our dynamic infor-
mation enhancements to the IDE, and (iii) we apply a partial behavioral
reflection technique to selectively gather runtime information within the
IDE. The goal of this chapter is to report on a means to improve the under-
standing of imprecise static source code, of execution flow in such code,
and of hidden references (that is, classes being dynamically referenced in
a method or another class).

152 Hermion – Extending Source Code Perspectives with Dynamic Information

Outline. In the next section we identify shortcomings of purely static
IDEs and elaborate with example scenarios on what kinds of dynamic
information can improve and optimize the navigation of a source space.
Section 7.3 presents our technique to dynamically collect runtime infor-
mation. We present the validation of our work in Section 7.4 with two
medium-sized object-oriented systems and a preliminary empirical eval-
uation. In Section 7.5 we discuss our work by highlighting efficiency,
coverage and completeness issues. Section 7.6 presents related work,
while in Section 7.7 we draw our conclusions and outline future work.

7.2 Dynamic Information in the IDE

This section answers the research question: How do we integrate dynamic
information into an IDE’s browsing and navigation mechanisms without over-
loading the existing source views even more?

We motivate our work by highlighting the restrictions a developer
faces in IDEs when trying to understand systems implemented in object-
oriented and dynamically-typed languages. The general problem is that
the IDE’s view focuses purely on static source code. It provides little
support for understanding the dynamic behavior of a software system,
in particular of systems written in dynamic object-oriented languages
that make widespread use of inheritance and polymorphism. This makes
it difficult for a developer to determine how classes interact at runtime,
for instance to which receiver a message is sent at runtime, or what kind
of objects are stored in variables. In dynamically-typed languages such
as Smalltalk or Ruby, but also to a lesser degree in statically-typed lan-
guages such as Java, the IDE generally provides no means to support the
developer browsing the source code to understand the runtime behavior
of the system under study. For instance, the Eclipse IDE [ECLI 03] does
not provide an integrated view showing the precise types that are dy-
namically assigned to a variable or to seamlessly navigate directly in the
source code to the message sends actually occurring at runtime.

7.2.1 Scenario: Understanding a Complex System

In the following we illustrate with a scenario some concrete problems a
developer faces when trying to understand a complex and generic ap-
plication written in the dynamic language Smalltalk. Subsequently, we
present our experimental “dynamic IDE” called Hermion which encom-
passes solutions to the problems we are going to identify. We emphasize

Dynamic Information in the IDE 153

children
selection

Column <<abstract>>
Node

PackageNode ClassNode
Filter

children

Fan

Figure 7.2: UML Class Diagram of the OmniBrowser kernel classes.

that the issues we address in this discussion are generally applicable in the
context of IDEs and object-oriented and dynamically-typed languages.

We center our discussion around an example software, the Omni-
Browser framework. OmniBrowser is a highly customizable, generically
implemented framework, rendering it well-suited for the implementa-
tion of a range of source code browsers (e.g. package browsers or class
browsers). It makes extensive use of method dispatching and polymor-
phic message sends which may make it difficult to understand its source
code purely by static browsing.

We briefly introduce the OmniBrowser framework, providing a struc-
tural overview with a UML class diagram in Figure 7.2. It provides a
class Column to represent a vertical list of selectable elements, for instance
a list of packages. Every element in the column is an instance of class
Node. Concrete types of nodes are represented by subclasses of Node, for
example ClassNode or PackageNode. The elements of a column may be
filtered. This feature is realized using a dedicated Filter class. The Fan
class manages the different filters dynamically applicable to a specific
column.

We describe a realistic scenario of how a developer, new to the
OmniBrowser framework, might gain an understanding of the code.
Initially, the developer wants to understand how elements are loaded
into a column for display. Subsequently, she tries to discover how a
selected element is represented in a column. Finally, she wonders how
different columns are embedded in a browser.

Message Send Navigation. To find out how OmniBrowser loads
elements in a column for display, the developer may start by looking
at the class Column. This class defines a method children which reads as
follows:

154 Hermion – Extending Source Code Perspectives with Dynamic Information

children
^fan children

Browsing this method reveals that Column delegates the message send
children to an object called fan which then apparently answers all elements
of a column. Static browsing does not reveal where the elements actually
come from. By just looking at the source code of Column»children it is not
obvious which children method will eventually return the elements. Fur-
thermore, the class of the variable fan cannot be determined statically. Due
to polymorphism, different children methods may be invoked at runtime,
depending on what kind of object is stored in fan. Often modern IDEs,
such as the Squeak IDE, provide an implementors view which displays
a list of all methods named children that exist in the current application.
However, this mechanism populates the list of methods by performing
a static search of the entire application for children methods. This results
in a long list of possible methods (see Figure 7.3). Exploring this list is
time-comsuming and inefficient.

When we analyze the runtime behavior of an OmniBrowser applica-
tion, we discover that only one single children method, the Fan»children
method, is invoked from the children method of the Column class. This
implies that if the IDE provided a mechanism to consult the runtime
information, the search space for the developer could be greatly reduced,
thus resulting in a more precise and efficient navigation of the source
code. Figure 7.3 compares the different lists of implementors, on the left is
the list generated using the existing implementors view mechanism (1) and
on the right is a list that was generated by Hermion which takes dynamic
behavior (that is, message sending) of the OmniBrowser application into
account (2).

The IDE could even include the navigation of message sends directly
in the source code view by enriching this static view with dynamic infor-
mation gathered while a method is being executed. In the Column»children
method for instance we can annotate the message send #children to the
fan object with an icon. Clicking on the icon while reading the method’s
source code navigates the developer directly to the implementation of
the children method in the class Fan, which is the only method invoked at
runtime at this location of the code. In the case of a polymorphic message
send which has different receivers, there are often several possible meth-
ods that may be executed. In such a case, clicking on the icon near the
written message send results in the display of a list of all methods that
have been invoked at runtime. This list also contains information about
the receiver type of the message send and which and how often a method
was invoked. In Figure 7.4. we present an example of this method list

Dynamic Information in the IDE 155

Figure 7.3: Static search (1) vs. precise dynamic search (2) for implemen-
tors of children in Hermion.

Figure 7.4: List of methods invoked for message send nodesFrom:forNode:
in Hermion.

in Hermion for the polymorphic message send #nodesFrom:forNode: which
has two different receiver types.

Type Information. The developer wants to know how a column stores
the selection of a specific element. As the OmniBrowser framework is
implemented in Smalltalk, type information is not available in the source
code. Generically implemented frameworks usually suffer from the same
problem even in statically typed languages as they refer to abstract classes
in the source code, which makes the source code hard to understand as at
runtime concrete classes are used. Thus browsing the source of method
selection does not reveal the type of information the selection instance
variable contains at runtime (see Figure 7.5). It may contain the selected
element itself (that is, a node) or the index in the list of elements (that is,
an integer). However, such type information is essential to understand
how the application generates the list of new elements for the subsequent
column.

By analyzing the selection method of Column dynamically, an IDE can
provide the developer with precise information about how the current
selection of the column is stored, information that is otherwise hard to
determine, when variables can virtually store any kind of object.

156 Hermion – Extending Source Code Perspectives with Dynamic Information

Figure 7.5: List of types of instance variable selection extracted from dy-
namic information in Hermion.

Similar to the message send icon previously described, Hermion also
enhances the static view of variable accesses in the source code with an
icon. Clicking on this icon reveals a list of object types that have been
stored in this variable at runtime at this position in source code, along with
quantitative information, for example the number of times this variable
has assumed a specific type. We refer to this mechanism of revealing the
type of variable as type view. To promote deeper understanding of the code
under investigation, a developer may wish to use the type information of
variables as starting points for further navigation to the corresponding
classes behind the types.

Figure 7.5 depicts the type view for the selection instance variables in
the method selection. It reveals that the selection variable always stores an
integer, which in turn reveals the intent of the Column class to store the
position of the selected element in the list, not the element itself.

Reference Information. If a developer wants to add a new column to a
browser based on the OmniBrowser framework, but is unsure how to do
this, static browsing of the code of class Column does not quickly reveal
which class implements the container component for the columns, as this
communication is very well hidden in a few methods of Column.

Using runtime information, we can identify all classes with which
Column communicates. We refer to those classes as dynamic references of
Column. Many current IDEs such as Eclipse are only capable of locating
those references that are explicitly written in source code. As our exam-
ple shows, the dynamic references are more interesting and useful for
understanding. By integrating type inference mechanisms, the IDE could
provide a mechanism to generate a more comprehensive list of referenced
classes. For dynamic languages this list is still often not accurate or even
correct, because type inference in dynamic languages is not able to infer
the types correctly in all situations [RAPI 98].

If we analyze a software system dynamically we can provide a precise
and correct list of references in a class. We propose a reference view that
presents a list of referenced classes based on dynamic information. This
view reveals to the developer which classes are referenced by the class
under investigation, for example in which methods and in which vari-

Dynamic Information in the IDE 157

Reference ViewType ViewMessage Send Navigation

Sender NavigationBack Button

Figure 7.6: Enriched method source code view including a reference view
in Hermion.

ables. Similar to our proposed type view, the reference view is enriched
with quantitative information extracted from the dynamic information,
for instance how often classes are referenced. When the developer selects
a class or a specific method of this class, she is immediately provided
with this reference view (see Figure 7.6 on the right) to learn to which
other class the selected class or method communicates. In this reference
view the developer also finds a class called ColumnPanel whose intention
revealing name indicates that it contains the different columns the Om-
niBrowser holds. By looking at the places in Column where this class is
referenced dynamically, we indeed learn that columns are added to an
instance of ColumnPanel when the browser is built up.

7.2.2 Hermion Overview

As a proof-of-concept for our claims, we implemented Hermion as an
enhancement to the Squeak Smalltalk IDE [SQUE 10] to integrate the
collection and presentation of dynamic information. Our solution is
not restricted to Smalltalk or Squeak. The mechanisms described in
this chapter and the problem of gathering dynamic data in the IDE are
applicable to any of the widely used IDEs such as Eclipse [ECLI 03] .

Our approach to seamless integration of dynamic information in IDEs
is based on enriching the mechanisms and tools for navigating, browsing,
viewing and editing source code currently existing in the IDE. The devel-
oper does not need to change her perspective or learn a new tool. She is
just provided with new features in her familiar environment. In the case

158 Hermion – Extending Source Code Perspectives with Dynamic Information

of the source code view where the developer browses, writes and edits
source code, we enriched this view with additional visual information
(based on the use of color-coding) that takes the runtime behavior of
the application into account. This visual information is presented in a
lightweight approach by using small icons that are supposed to avoid
overloading the source views even more. In Squeak Smalltalk the devel-
oper browses source code in a class browser which currently displays
a single method at a time. Figure 7.6 shows an example of a enriched
method view for method addCommandsToMenu: of class Column. Variable
accesses are shown in gray, message sends in blue. Each statement is also
enriched with a clickable icon to access the gathered dynamic information.

In this enriched source code view we integrated the solutions to two
of the mentioned problems in Section 7.2.1: message send (as well as
sender) navigation and type view are integrated in the source code view
while the reference view is placed to the right of the source code pane.

Such an enhanced IDE is not only useful for maintaining existing
software systems, but shows its advantages also during development of
new software. The developer can for instance continuously dynamically
analyze her application under development and see in the IDE if a method
invokes the methods it is indented to invoke, or if classes communicate
correctly to other classes at runtime. This gives the developer viable
feedback about the dynamics of her program even during development.

7.3 Dynamic Information Gathering

In this section we elaborate on the question: How can we efficiently collect
dynamic data in a running IDE?

As already discussed in Chapter 2, traditional approaches to collecting
dynamic data such as tracing are generally not efficient enough to provide
dynamic data to be displayed at runtime in the IDE. Another drawback
of these approaches is that they typically yield large amounts of data,
making it difficult to mine useful information [CORN 07a]. Thus it is not
really feasible to adopt these approaches as a basis for providing direct
access to dynamic information in an IDE.

With partial behavioral reflection [TANT 03] we found a means to effi-
ciently gather dynamic data as this approach enables selective collection
of a system’s runtime data. Dynamically analyzing the entire system is
usually not necessary, because during the maintenance phase a developer
is mainly interested in specific parts of the system, for instance in the
classes implementing a specific feature. Furthermore, our approach does
not generate a huge traceing file intended for offline postmortem analysis,

Dynamic Information Gathering 159

but directly gathers and stores the data in the format in which it can
be used without any offline analysis. This format is optimized for fast
lookup, that is, it contains precisely the information the IDE wants to
present in the form of objects.

7.3.1 Partial Behavioral Reflection

After having briefly introduced Partial Behavioral Reflection in Section 2.2.2,
we analyze this approach based on a concrete implementation called
Reflex [TANT 03] in the following in more detail. Reflex offers mecha-
nisms to precisely select entities (e.g. classes, methods, variables) and
operations (for example, message sending, variable access). In particu-
lar, the approach of Reflex allows us to collect data at different levels of
granularity, also at a sub-method level [DENK 07]. For instance, we can
select what kind of operation occurrence in a method we want to reflect
on (for instance, only accesses to a specific variable) and can also precisely
determine what information has to be reified about this operation (for
example, only the value and name of a variable). Hence the Reflex model
is well suited to efficiently gather runtime information about the program
currently being developed [DENK 06]. For our work we use a variation
of Reflex in Smalltalk, called Geppetto [DENK 07, RÖTH 07d].

The crucial entity in the Reflex model is the link. A link causally con-
nects the base level of a system with its metalevel. Links are introduced
in the executable of an application and upon occurrences of base-level
operations they invoke methods on the corresponding metaobjects. Dur-
ing the installation of reflective behavior, the developer precisely selects
the operations where links are to be installed and specifies the metaobject
that the link will trigger. In our scenario, this metaobject implements a
tracing mechanism which stores dynamic data captured at runtime in a
format that is accessible to the IDE. The concepts of base level, link and
tracing metaobject are illustrated in Figure 7.7. The “x”s in the application
code are messages sends to be traced at runtime. For every message
send we install a link that is triggered at runtime. This link reifies the
runtime information about the occurring message send and passes this
information to the tracing metaobject which can then reason about this
information, for instance store it in a database. For a more comprehensive
treatment of partial behavioral reflection we refer the reader to the work
of Tanter et al. [TANT 03].

To gather dynamic data required to realize the features presented
in Section 7.2, we install three links for every method to be analyzed:
The first link reifies receiver and arguments of every message send, the
second link intercepts variable accesses by reifying name and value of

160 Hermion – Extending Source Code Perspectives with Dynamic Information

a variable while the third link does the same, but for assignments to
variables where also the new value of the variable is reified. All these
links pass their information to a meta-object where it is processed and
then stored in a database, and optimized for efficient retrieval so that
the dynamic information can be readily embedded in the IDE at various
places. We eliminate the need to gather large traces, thus minimizing the
amount of dynamic data necessary for runtime analysis of the system.

We sum up by emphasizing the advantages of using partial behavioral
reflection over trace-based approaches:

• Precise specification of the kind and amount of dynamic information. The
developer controls when and where dynamic data is gathered, even
while the application under study is running. The selection is driven
by a developer’s current need. If a specific software feature contains
a defect, the developer selects the feature’s source elements to be
analyzed dynamically. The developer’s selections directly influence
the performance and amount of collected data, thus the developer
can control how efficiently the data gathering will run.

• Instantaneous access to accurate runtime information within the IDE.
Runtime information is processed while it is being gathered (that
is, while the application is running). The selected source entities
are instrumented to introduce the reflective behavior necessary for
gathering dynamic information. Instrumenting a medium-sized
class typically takes less than a few milliseconds. On subsequent
execution of these entities, dynamic information is collected and
displayed in the IDE. For instantaneous integration of runtime in-
formation in the IDE it is crucial to apply a fast data collecting
technique such as partial behavioral reflection so that dynamic in-
formation is readily available in the IDE.

• Mapping of dynamic data to static source elements. Partial behavioral
reflection supports dynamic data gathering about sub-method ele-
ments such as message sends or variables accesses. This gathered
data can easily be mapped back to the specific declarations of mes-
sage sends or variables accesses in source code to make sure that the
developer sees the dynamic behavior which occurred at a specific
location in code.

7.4 Validation

To validate that our approach is usable and scalable in real-world scenar-
ios, we applied it to two case studies. As a first case study we chose Pier,

Validation 161

Figure 7.7: The link invokes the metaobject upon occurrence of selected
base-level operations.

a web-based content management system written in Smalltalk [RENG 07].
As a second case study, we selected the OmniBrowser framework intro-
duced in Section 7.2, which forms part of the traditional IDE of Squeak
Smalltalk 3.9 [SQUE 10]. We performed benchmarks using these two ap-
plications to report on efficiency issues, that is, the factor by which the
applications slow down the IDE when gathering dynamic data and when
presenting dynamic information. Subsequently, we present results of a
preliminary empirical evaluation where we asked developers unfamiliar
with Pier and OmniBrowser to test our environment while working with
these systems.

7.4.1 Case Studies: Pier and OmniBrowser

Pier [RENG 07] consists of 104 classes, most of which are implemented
generically. This makes it quite hard for a developer to understand for
example how these generic classes interact, that is, which methods invoke
which other methods of other classes at runtime. For that reason, we con-
sider Pier to be an appropriate case study to evaluate the usefulness of our
enriched IDE. We asked developers unfamiliar with Pier if our enriched
IDE supported them in gaining an understanding of the application and
if it eases navigation of the application classes. Before we present the
results of this empirical evaluation in Section 7.4.3, we first verified that
is is technically possible to instrument Pier and to integrate the resulting
dynamic data in our IDE.

162 Hermion – Extending Source Code Perspectives with Dynamic Information

Not instru- Message Message sends
mented (ms) sends only (ms) and variables (ms)

Pier, core classes 42 141 (+236%) 297 (+607%)
OmniBrowser, core classes 625 2343 (+274%) 4146 (+564%)

Figure 7.8: Comparison of execution times for different levels of instru-
mentation for OmniBrowser and Pier.

In our initial experiment, we only instrumented the seven core classes
of the Pier model package. While the dynamic data gathering was active
in these core classes, we subjectively noticed just a negligible slowdown
of the running Pier application.

In a second step, we instrumented the entire Pier application. This
instrumentation only takes a few seconds to perform. Even though the
application slowed down while dynamic data collection was active, we
were instantaneously able to make use of the collected information in the
IDE. We consider this as a good indication that it is possible to access
and use dynamic information in an IDE while a system under study is
running.

OmniBrowser [BERG 07b] is a framework to create various kinds of
browsers in Smalltalk. It currently consists of approximately 170 classes.
We also used this framework to implement Hermion. With this experiment,
we analyze the OmniBrowser framework dynamically within itself. By
displaying the results of the dynamic analysis, we trigger the generation
of new dynamic information which is instantly available in the IDE.

We instrumented all eleven classes in the model package of Omni-
Browser. These classes form the core of OmniBrowser and are heavily
used. We were able to successfully instrument all these classes to gather
information about message sending and variable accesses occurring at
runtime. Despite partial behavioral reflection instrumentation, the active
browser in the IDE was still usable even during the collection of the dy-
namic information. We were able to immediately look at the dynamic
information collected, for instance we could navigate the message sends
or view the types of variables as explained in Section 7.2.2. We verified
that our technique did not introduce flaws in the functionality of Omni-
Browser, as we could still successfully run the comprehensive test suite of
OmniBrowser. We were able to accurately collect all the required dynamic
information even for methods heavily used at runtime.

Validation 163

7.4.2 Efficiency

As a performance test we compared the execution speed of the two appli-
cations, Pier and OmniBrowser, with and without dynamic data collection.
Furthermore, we varied the extent of data collection: In a first scenario, we
reified information about message sends, while in the second scenario we
also reified variable accessing. As a reference, we measured the execution
time for the same usage scenario while no data collection is active.

In Pier, we measured the time to display the standard start page of
the web application. In the case of OmniBrowser, the usage scenario of
the application was opening a new system browser which included our
integration of dynamic information. Figure 7.8 contains the results of
this performance test. The slowdown introduced due to the collection
of dynamic information is perceivable, in case of the Pier framework we
observe a slowdown of factor 7. We noticed that it makes a difference
of more than factor 2 if only message sending or also variable accessing
is reified. This represents clear evidence that the amount of information
reified and collected at runtime has a high impact on performance. Lim-
iting the number of reifications, for instance only one kind of operation,
is a good strategy for improving performance. The same is true for the
coverage of static source artifacts: It is much more expensive to cover
all classes, that is, to gather dynamic information about the usage of all
classes in a package, than to select precisely the classes for which dynamic
information is actually of interest.

In Section 7.5 we discuss the impact of these performance results
on the usefulness of Hermion in a practical situation where it is used to
comprehend or maintain a software system.

7.4.3 Preliminary Empirical Evaluation

We conducted an empirical evaluation with five Smalltalk developers to
learn how useful and practical they consider Hermion. The subjects used
Hermion to learn how the Pier application is structured. Concretely, we
gave them the task to understand how a page is stored and displayed
in Pier. None of the subjects had ever worked with Pier before, but
were familiar with the Squeak IDE. We present qualitative feedback the
developers gave us as well as our observations made while watching the
subjects working with Hermion.

We presented the subjects with a list of concrete questions about how
certain aspects of Pier (for example displaying, adding a new or moving
an existing page) are implemented or how certain classes interact with
each other. Some of the questions they had to answer using dynamic

164 Hermion – Extending Source Code Perspectives with Dynamic Information

information integrated in Hermion, the other questions they had to solve
in the original Squeak IDE. As a start, we advised the subjects to look at
and to dynamically analyze three core classes of Pier. From there on, they
could start to understand how specific features of Pier are implemented
and how those classes interact with the rest of the system.

Our own observations reveal that the answers of the subjects were
significantly more precise when they were working with the dynamic
information in the IDE. Concerning efficiency, our measures report that
subjects could answer all of the questions in approximately 25 percent
less time.

Developer Feedback. We gave the subjects a questionnaire covering
various aspects of Hermion. In this questionnaire subjects could rate
the contribution of Hermion on execution overview, type information,
navigational aid and program comprehension. We used a five-level Likert
scale [LIKE 32] for the ratings (’1’ means strongly disagree, ’5’ strongly
agree that Hermion has an effect). Furthermore, we allowed the subjects
to also write free text on the questionnaire to give us qualitative feedback
that cannot be expressed with a Likert scale. In the following we present
the results from the questionnaire:

Execution overview. Subjects considered it as very useful (average
rating value above 4) to see precisely what parts of the code were executed
when Pier is displaying a page. Hence they could focus on the relevant
classes and methods necessary to understand how pages are stored and
displayed, namely those that are executed at runtime.

Type Information. Subjects stressed that readily available type informa-
tion makes it much easier to read the source code of a dynamically-typed
language (average rating was 3.5).

Navigational aid. Students reported that they could more efficiently
locate the methods that were executed by a specific method under inves-
tigation when dynamic information is available (average rating was close
to 4).

Program comprehension. Consequently, they found that dynamic in-
formation accelerated their understanding of the application, as they no
longer had to guess what methods would be executed at runtime. In gen-
eral, all subjects considered the total impact on program comprehension
as high. They reported that it took them much more time to comprehend
the system when they had to use the original Squeak IDE not providing
dynamic information (average rating was above 3).

Discussion 165

7.5 Discussion

We discuss some specific restrictions and limitations of our current
approach and possible solutions to overcome these limitations. First,
we discuss the existing efficiency issues. Subsequently, we elaborate on
the coverage and completeness problem of dynamic information in depth.

Efficiency Issues In Section 7.4.2 we spotted certain efficiency issues
when analyzing applications dynamically from within the IDE. In the
following, we discuss the impact of these results to the applicability of
our approach in real-world scenarios and elaborate on optimizations.

During development and maintenance, the execution performance
of an application is not crucial. A debugging session in step mode for
instance, takes much more time to perform and the developer loses all
information visible in the debugging session when she reverts to the
source code browsing in the IDE. Moreover, a debugger only shows one
distinct run of a software system and neglects information of all other
runs. To understand a software system means to effectively navigate the
system. For this reason, the dynamic data collection, although not yet
fully optimized, still contributes to program comprehension. We consider
that the performance of dynamic data gathering compared to the gained
benefit does not constitute an obstacle to applying this approach for the
task of program comprehension.

Nonetheless, we identified a need to work on these performance
issues in the future. Based on our experience with the experiments, a best
practice for efficiently collecting dynamic information is to only instrument
classes which we want to understand to the level of detail required for
a given maintenance task. The key advantage of our approach is to
provide the developer with the flexibility to choose and define trade-offs
of information over performance as she sees necessary.

Coverage and Completeness An open issue is the coverage aspect of
dynamic information. The completeness of dynamic information always
depends on what is actually executed at runtime. Normally, a full cov-
erage of all behavior of a system is not achievable [BALL 99], instead we
only cover parts of the system by, for instance, exercising some specific
features. This means that we can only highlight the type information for
concrete executions of a system, we cannot show all types that can be
theoretically stored in a variable. But this does not need to be viewed as a
shortcoming, but rather an advantage. In particular, when maintaining

166 Hermion – Extending Source Code Perspectives with Dynamic Information

software, for example correcting defects, the developer is often interested
in understanding specific executions of the application, namely those that
are broken and have to be revised.

The difference concerning completeness between our approach and
analyzing the system in a particular debugging session (that is, using
a debugger provided by the IDE) is that in Hermion we permanently
present all so far gathered dynamic information, this information is the
result of various executions of a system and is not volatile, that is, it
does not disappear as in the debugger. Furthermore, as mentioned in
Section 2.1.4, debuggers included in IDEs such as Eclipse [ECLI 03] or
Squeak [SQUE 10] indeed help developers analyzing the runtime of a
system, but provide little to support navigation of a source space. In a
debugging session, a programmer focuses on a very specific run of the
system, observing and analyzing a slice of the program to discover the
cause for a specific defect [WEIS 81, ZELL 03]. Our work aims at easing
the understanding and navigation of a whole software space in general,
the dynamic information thereby presented in the IDE is not restricted to
a specific run of a program. Instead we merge dynamic information into
the static perspective on source code presented in the IDE.

7.6 Related Work

We relate Hermion to other, comparable proposals addressing similar IDE
problems as identified in Section 1.1.2. We hereby differentiate between
proposals encompassing dynamic information to address the problem of
hidden collaboration, unclear static source code and execution flow.

7.6.1 Techniques Encompassing Dynamic Information

To the best of our knowledge, there is not much research in the area of
integrating results of dynamic analyses into development environments.
However, the work of Reiss [REIS 03] visualizes the dynamics of Java
programs in real time such as the number of message sends received by
a class. These visualizations are not tightly integrated in an IDE though,
but are provided by a separated tool. Therefore, it is not directly possible
to use these analyses while working with source code. We consider it
to be crucial to incorporate knowledge about the dynamics of programs
into the development environment to ease navigating within the source
space. Löwe et al. [LÖWE 01] followed a similar approach by merging
information from static analysis with information from dynamic analysis

Related Work 167

to generate visualizations. However, their work is not integrated into the
development environment.

Ferret [DE A 08] allows developers to formulate queries to reveal infor-
mation about how source artifacts are related to each other. These queries
also reason about dynamic information, for instance, to determine the
exact callers of a method. Thus, Ferret is one of the few proposals to
integrate dynamic information in the static source code views of IDEs.
As Hermion, Ferret is able to identify the methods actually invoked at a
method call site. Ferret also addresses the problem of imprecise static
source code and unclear execution flow in methods. However, the in-
formation about the dynamics in a method are not displayed next to
the method source code but separated in a view holding the results of
different queries, which makes understanding of source code more cum-
bersome than in Hermion where the information is readily available in the
source code view. Additionally, Ferret does not gather and query runtime
type information.

Compass [LIEN 09] is a back-in-time debugger for Smalltalk. It is avail-
able in the IDE, but shows dynamic information separated from the con-
ventional source code perspectives and browsers. While it also presents
information about runtime types of variables or receiver types of message
sends, it focuses on a specific system execution while Hermion embeds dy-
namic information aggregated over several executions in the source code
views. Furthermore, the dynamic information extracted by Hermion is
permanently available in the IDE while Compass’s information is volatile,
only existing during a debugging session.

7.6.2 Techniques Purely Based on Static Analysis

Fluid source code views [DESM 06] augment the source editor of an
IDE in similar ways as Hermion does. These views also insert clickable
icons in the source code editor to show more information. While Hermion
links source artifacts used at runtime in the source code editor, fluid
source code views embed remote method definitions directly in the editor
below the declared invocation of these methods. However, fluid source
code views do not exploit dynamic information to relate source artifacts,
instead they statically link methods to call sites in source code. Thus,
for polymorphic call sites fluid source views cannot guarantee to link
and embed the correct method definitions. Hermion goes one step further
and also presents runtime type information or dynamic collaborations

168 Hermion – Extending Source Code Perspectives with Dynamic Information

between various types of artifacts, while fluid source code views just
focus on methods.

NavTracks [SING 05] keeps track of the navigation history of software
developers. Using this history, NavTracks forms associations between
related source files (such as class files) and can hence presents related
entities to the developers. Hermion also shows related artifacts (for in-
stance, in its reference view), but exploits dynamic information to extract
the relations between artifacts. Thus, relatedness of artifacts is inter-
preted differently by Hermion; its aim is to improve the understanding of
static source code and not recommend artifacts developers might want to
browse next as NavTracks does.

Mylyn [KERS 05, KERS 06] monitors the programmer’s activity in the
IDE to get a degree-of-interest model for program elements scattered
across a large code base, so the IDE can reveal code elements that are
likely to be important for the task at hand [KERS 05]. Thus, Mylyn also
presents related artifacts to the developer. Hermion, however, does not
claim to identify task-relevant artifacts, but to link together artifacts used
at runtime to boost the understanding of static code and identify collabo-
ration not easily visible in this static code.

7.7 Summary of the Chapter

In this chapter we addressed the restrictions and limitations current IDEs
impose on developers faced with the task of understanding an object-
oriented system, in particular if implemented in a dynamically-typed
language. We motivated our work by addressing the questions:

• How do we integrate dynamic information into an IDE’s browsing and
navigating mechanisms? We identified various types of dynamic
information useful for software maintenance and explored how
such information can be integrated into the workflows and views
of an IDE to support developers to gain an understanding of a large
software space through enriched views and precise navigation.

• How can we efficiently collect dynamic data of a running application in
the IDE? We introduced an approach based on partial behavioral
reflection to efficiently and selectively collect dynamic data at differ-
ent levels of granularity (including sub-method data about variable
accesses) at runtime.

Summary of the Chapter 169

We implemented an experimental IDE called Hermion which inte-
grates dynamic information, validated its approach by applying it to
two real-world applications, and measured the efficiency of the dynamic
data gathering using these applications. Moreover, we observed develop-
ers experimenting with Hermion to assess its benefit on navigation and
understanding of a software system.

While Hermion focuses on improving the understanding of imprecise
static source code and the execution flow in methods (for instance, which
if statements are executed), its support for explicitly representing dy-
namic collaboration is limited. In particular higher level collaboration, for
instance which packages communicate with each other, is not represented
in Hermion. Moreover, collaboration patterns are not visualized, thus
dynamic communication is rather hard to understand with Hermion’s
reference views which just list all classes referenced by an artifact. Ad-
ditionally, Hermion does not represent software features in the IDE. We
present in the following chapters proposals addressing these limitations
of Hermion. The next chapter reports on Senseo which aims at also repre-
senting higher level collaboration patterns between packages, classes, and
methods. Senseo also adapts the integration of dynamic information to
the needs of a statically-typed language. Chapter 9 introduces visualiza-
tions of dynamic collaboration patterns to ease their understanding while
Chapter 10 presents a means to explicitly represent software features in
an IDE.

Chapter 8

Senseo – High Level
Augmentations of IDEs
with Dynamic Information

8.1 Introduction

8.1.1 Positioning Senseo

This chapter reports on Senseo, an enhancement of the Eclipse Java IDE.
Senseo augments the static source perspectives with dynamic information
and primarily aims at tackling the problem of not having a representation
of dynamic collaboration between distant but conceptually related source
elements in IDEs. Additionally, Senseo contributes to a better understand-
ing of static source code and execution flow in and between methods.
Moreover, Senseo helps developers to spot performance bottlenecks as it
visually highlights in Eclipse’s source views such as the package explorer
dynamic metrics like the number of objects created in a method or class.
In this way, Senseo also provides limited support for quality assessment
regarding performance issues. By providing a view on the collabora-
tion patterns between packages or classes, Senseo also contributes to a
better overview of the system. Figure 8.1 subsumes all IDE problems
addressed by Senseo. As illustrated by this figure, Senseo is able to improve
the fulfillment of all identified development activities, at least to some
degree.

172 Senseo – High Level Augmentations of IDEs with Dynamic Information

Senseo is tailored to the needs of Java, a statically-typed language,
and embeds the dynamic information in the Eclipse IDE. In contrast to
Hermion, the focus of Senseo is rather on higher level artifacts than sub-
method elements. Senseo primarily represents dynamic collaboration
between source artifacts such as packages, classes, or methods. In a
dedicated collaboration view embedded in Eclipse, Senseo displays for
the currently selected artifact all other elements using or used by this
particular artifact (callers or callees). To embed dynamic information such
as argument or receiver types of message sends in the source code views,
Senseo enhances the tooltips of Eclipse.

Figure 8.1: Senseo contributes to a better system overview, makes visible
dynamic collaboration between distant artifacts, improves the under-
standing of static source code and execution flow in and between source
artifacts, and even offers limited support for quality assessment.

We discuss Senseo in the remainder of the chapter. We first introduce
the approach and motivate the need to embed dynamic information in the
IDE on the basis of a use case. Second, we describe how to gather dynamic
information about Java systems and how we integrate and visualize this
information. We validate Senseo by means of a controlled empirical exper-
iment with 30 professional Java developers and a thorough evaluation of
the performance of our approach to collect runtime information.

8.1.2 Introduction to Senseo

Maintaining object-oriented systems is complicated by the fact that con-
ceptually related code is often scattered over a large source space. The use
of inheritance, interface types, and polymorphism leads to code that is
hard to understand, as it is unclear which concrete methods are invoked at
runtime at a polymorphic call site even in statically-typed languages. As
integrated development environments (IDEs) typically focus on brows-
ing static source code, they provide little help to reveal the execution

Introduction 173

paths a system actually takes at runtime. Being able to reconstruct the
execution flow of a system while working in the IDE can, however, lead
to better program understanding and to more focused navigation in the
source code. In this chapter we show that developers can more efficiently
maintain object-oriented code in the IDE if the static views of the IDE are
augmented with dynamic information.

The importance of execution path information becomes clear when
inspecting Java applications employing abstract classes or interfaces. The
source code of such applications usually refers to these abstract types,
while at runtime concrete subtypes are used. However, if the source code
just refers to abstract types, it can be difficult to identify the concrete
classes actually used at runtime, since there may exist a large number
of concrete implementations. Similarly, when examining source code
that invokes a particular method, a large list of candidate method imple-
mentations may be generated. Static analysis alone will not tell you how
frequently, if at all, each of these candidates is actually invoked. Such
information is nevertheless crucial to assess the performance impact of
particular code statements.

Developers usually resort to debuggers to determine the actual execu-
tion flow of an application. Unfortunately, information extracted during
a debugging session is volatile, that is, it disappears at the end of the
session. Furthermore, such information is bound to a specific execution;
in general, it cannot be used to tell which runtime types occur how often
at a specific place in source code. To analyze and improve the perfor-
mance of a system, developers typically use profilers, which suffer from
similar drawbacks as debuggers: the collected dynamic information is
not integrated in the static source views in the IDE; developers use such
tools only occasionally instead of continuously benefiting from dynamic
information that is directly available in the static source views.

We present an approach to dynamically analyze systems and to aug-
ment the static views of IDEs with dynamic information. We implemented
this approach in Senseo, an Eclipse plugin that enables developers to dy-
namically analyze Java applications. Senseo enriches the source views
of Eclipse with several kinds of dynamic information such as present-
ing which concrete methods a particular method invokes how often at
runtime, which methods invoke this particular method, and how many
objects or how much memory is allocated in particular methods. The gath-
ered information is aggregated over several runs of the subject system; the
developer decides which runs to take into account. Senseo also contributes
two other means to integrate dynamic information: first, a view on the
dynamic collaborations between different source artifacts, which illus-
trates communication at the level of packages, classes and methods, and,

174 Senseo – High Level Augmentations of IDEs with Dynamic Information

second, the Calling Context Ring Chart (CCRC) [MORE 09], a navigable
visualization of the system’s Calling Context Tree (CCT) [AMMO 97].

To validate the usefulness of Senseo in practice, we conducted a con-
trolled user experiment with 30 professional Java developers to obtain
reliable quantitative and qualitative feedback about the impact on devel-
oper productivity contributed by Senseo and the dynamic information it
integrates in Eclipse. The subjects solved five typical software mainte-
nance tasks in an unfamiliar, medium-sized software system. While half
the subjects only used the standard Eclipse IDE, the other half addition-
ally used the Senseo plugin. The experiment shows that the availability of
dynamic information as provided by Senseo yields a significant decrease
in time of 17.5% and a significant increase in correctness of 33.5%.

We contribute (i) an approach to gather and integrate dynamic infor-
mation in the Eclipse IDE, (ii) a controlled user experiment to validate
the practical usefulness of the approach, and (iii) a detailed performance
evaluation of Senseo, our implementation of the approach. With respect
to our prior work [RÖTH 09d, RÖTH 09e], (ii) and (iii) are novel, original
contributions.

The chapter is structured as follows: In Section 8.2 we present a use
case motivating the need for dynamic information within the IDE. Sec-
tion 8.3 introduces Senseo, a plugin that integrates dynamic information
in the Eclipse IDE. Section 8.4 explains our approach to gather dynamic
information from a running application. Section 8.5 validates the practical
usefulness of Senseo for software maintenance tasks with a controlled ex-
periment involving 30 professional developers. Section 8.6 reports on the
efficiency of Senseo. Section 8.7 presents related work. Finally, Section 8.8
summarizes the chapter.

8.2 Motivation

Senseo aims at improving understanding and maintenance of object-
oriented software systems by providing the developer dynamic infor-
mation collected from multiple runs of an application, such as from the
execution of unit tests. In order to motivate the need for exposing dynamic
information in the IDE, we consider the Eclipse JDT1, a set of plug-ins im-
plementing the Eclipse Java IDE. JDT encompasses interfaces and classes
modeling Java source code artifacts, such as classes, methods, fields, or
local variables. Clients of this representation usually refer to interface

1http://www.eclipse.org/jdt

Motivation 175

types, such as IJavaElement or IJavaProject, as the following code
snippet found in JavadocHover illustrates:

IJavaProject javaProject = null;
IJavaElement element = elements[0];
if (element.getElementType() == IJavaElement.FIELD){

javaProject = element.getJavaProject();
} else if (element.getElementType() == IJavaElement.

LOCAL_VARIABLE) {
javaProject = element.getParent().getJavaProject()
;

}

This code is difficult to understand due to the lack of information
about runtime types of variables and any other dynamic information:
(i) it is unclear which getJavaProject methods are invoked at run-
time; (ii) the variable javaProject could still be null at the end of the
code snippet, as not all possible types of elements might be covered by
the conditionals; (iii) the execution frequency of this code and thus its
performance impact is unknown.

These questions cannot be easily answered using only the IDE’s static
source views because there are more than ten different implementations
of the method getJavaProject in the JDT, thus, we do not know which
implementations are actually used. Furthermore, JDT contains many in-
terfaces and classes implementing IJavaElement, therefore, we cannot
statically determine which types of elements are used at runtime in this
code.

Using a debugger, we find out that element is of type SourceField
in one scenario. However, we know that debuggers focus on specific runs,
thus we still cannot know all the different types element has in this
code. To reveal all types of element and all getJavaProject methods
invoked by this polymorphic call site, we would have to debug many
more scenarios, which is very time-consuming as this code is executed
many times for each system run.

For all these reasons, it is much more convenient for a developer if
the IDE itself could show dynamic information aggregated over several
runs within the static source views, that is, Eclipse’s source code viewer
should show precisely which methods are invoked at runtime, including
detailed runtime types for receiver, arguments, and return values. In
addition, information about the number of method invocations or object
allocations helps developers identify performance bottlenecks in an ap-
plication. If developers are interested in a specific execution, Senseo also
allows them to just analyze the information from this single scenario. If

176 Senseo – High Level Augmentations of IDEs with Dynamic Information

source code enriched with dynamic information changes, the recorded
dynamic information about this piece of code is invalidated.

8.3 Integrating Dynamic Information in IDEs

In this section we present our approach to augment IDEs with dynamic
information, towards the goal of supporting the understanding of runtime
behavior of applications. First, we present the architecture of Senseo, an
Eclipse plugin implementing our approach. Second, we discuss different
kinds of dynamic information that can support program understanding.
Third, we illustrate how Senseo integrates and visualizes such dynamic
information within Eclipse.

8.3.1 Architecture

Dynamic information can be collected using a modified Java Virtual Ma-
chine (JVM), with a profiling agent in native code using the standard
JVM Tool Interface (JVMTI), or with the aid of program transformation
or bytecode instrumentation techniques. For portability and compati-
bility reasons, we chose the last approach. Instead of using a low-level
bytecode engineering library to instrument code, we use high-level aspect-
oriented programming (AOP) [KICZ 97] to specify instrumentation as an
aspect. As we discovered in Section 2.2.2, AOP has several advantages
compared to other approaches such as a low data gathering overhead. It
also supports precise selection of the artifacts to be analyzed and ensures
ease of maintenance and extension of the concrete specifications of the
information to be collected.

MAJOR [VILL 08, VILL 09], an aspect weaver that supports compre-
hensive aspect weaving into every class linked in a JVM, including the
standard Java class library, vendor specific classes, and dynamically
loaded or generated classes, was identified in Section 2.2.2 as an ap-
propriate technique to gather dynamic information to be integrated with
Senseo into Eclipse. A main advantage of MAJOR is also its ability to cover
the complete program execution, which clearly separates this technique
from other, similar tools such as *J [DUFO 03a] or JFluid [DMIT 04b] (cf.
Section 2.2.2). MAJOR is based on the standard AspectJ [KICZ 01] com-
piler and weaver and uses advanced bytecode instrumentation techniques
to ensure portability [BIND 07]. The instrumentation code MAJOR has
woven is executed immediately after the JVM bootstrapping.

The application to be analyzed is executed in a separate application
JVM where MAJOR weaves the data-gathering aspect into every loaded

Integrating Dynamic Information in IDEs 177

class, while the Eclipse IDE with the Senseo plugin runs in a standard
JVM to avoid perturbations. While the subject system is still running, the
gathered dynamic data is periodically transmitted from the application
JVM to Eclipse using a socket. We do not have to halt the application to
obtain its dynamic data. Senseo receives the transfered data, processes it,
and stores the aggregated information in its own storage system which is
optimized for fast access from the IDE (see Figure 8.2).

StorageApp VM Sockets Eclipse VM

SenseoMAJOR
Dyn. data

Figure 8.2: Setup to gather dynamic information.

To analyze the application dynamically within the IDE, developers
have to execute it with Senseo. Before starting the application, developers
can define what kind of dynamic information should be gathered at
runtime. By default, all packages and classes of the application and
the Java class library are dynamically analyzed. However, developers
can restrict the analysis to specific classes or even methods to reduce
the analysis overhead if only specific areas need to be observed. Senseo
aggregates dynamic information over all application runs executed with
it, but developers can clear the store and start afresh.

8.3.2 Dynamic Information

The Senseo plugin integrates the following dynamic information into the
IDE.

Method invocation We extract the following information:

Invoked Methods Often, invoked methods are not implemented in the
declared type of a receiver, but in a super- or subtype, if inheritance
or dynamic binding are used. Providing information in the IDE about
the methods invoked helps developers better understand collaborations
between objects and the runtime execution flow.

Developers can also ask to gather further detailed information about
method invocation:

178 Senseo – High Level Augmentations of IDEs with Dynamic Information

• Receiver types. Often subtypes of the type implementing the method
invoke the method at runtime. Knowing receiver types and their
frequency can further increase program understanding.

• Argument types. Information about actual argument types and their
frequency increases the understanding for a method, i.e. how it is
used at runtime.

• Return types. Knowing the concrete types of return values and
their frequency helps developers better understand communication
between different methods.

Number of invocations. This dynamic metric helps developers quickly
identify hot spots in code, that is, very frequently invoked methods and
classes containing such methods. Furthermore, methods never invoked
at runtime become visible, which is useful when removing dead code or
extending the test coverage of the application’s test suite.

Number of created objects. A developer usually cannot tell by reading
source code alone how many objects are created at runtime in a class, a
method or a line of code. This dynamic metric can help one to locate
inefficient code that creates many objects.

Allocated memory. Objects vary in size. Many small objects might not
pose an issue, whereas creating large objects could result in high mem-
ory consumption. Hence, we also provide a dynamic metric recording
memory allocation of various source artifacts, such as classes or methods.
This metric can be combined with the number of created objects metric
to reveal which types of objects consume most memory and thus are
candidates for optimization.

CCT. The CCT [AMMO 97] allows dynamic information to be collected
separately for each calling context. A calling context is a stack of methods
that have been invoked but have not yet completed. The CCT helps the
dynamic inter-procedural control flow of an application to be analyzed.
Figure 8.3 illustrates a code snippet together with the corresponding CCT
(showing only method invocation counts as metric).

8.3.3 Enhancements to the IDE

We now describe how these different kinds of dynamic information are
presented in Eclipse by Senseo.

Integrating Dynamic Information in IDEs 179

Figure 8.3: Sample code and its corresponding CCT.

Source code enhancements. We use tooltips, small windows that pop
up when the mouse hovers over a source element to complement source
code without impeding its readability. Senseo tooltips are interactive; that
is, the developer can open the class of a receiver type by clicking on it.

Figure 8.4: All six interactive views of Senseo.

Method header tooltip When the mouse hovers over the method name in
a method header, the tooltip shows (i) all callers invoking that particular
method, (ii) all callees of the method, and, optionally, (iii) all argument
and return value types. For each piece of information we also show how
often a particular invocation occurred. Figure 8.4 (1) shows a tooltip for
the concrete method endElement. If available, we also show information
about argument and return types when the mouse is over the declared
arguments of a method or the declared return type. These tooltips also

180 Senseo – High Level Augmentations of IDEs with Dynamic Information

display how often specific argument and return value types occurred at
runtime.

Method body tooltip Source elements in the method body also support
tooltips. For each call site of the method, we provide the dynamic callee
information as for the method name, namely concretely invoked meth-
ods, optionally along with argument or return types that occurred in
this method for that particular method invocation at runtime. This infor-
mation is always accompanied with the number of occurrences and the
relative frequency of the specific types at runtime.

Ruler columns. In Eclipse, the source code editor comes with two ruler
columns: The left one shows local annotations (errors, warnings, etc.)
while the right one presents an overview of all annotations from the entire
document. We extended these two rulers to also display dynamic informa-
tion. For every executed method in a Java source file, the overview ruler
(Figure 8.4 (3)) presents how often it has been executed on average per
system run using three different icons colored using a heat scheme: blue
means only a few, yellow several, and red many invocations [RÖTH 09c].
Clicking on such an annotation icon triggers a jump to the declaration
of the method in the file. The ruler on the left (Figure 8.4 (2)) shows the
frequency of invocation of a particular method on a scale from 1 to 6, com-
pared to all other invoked methods. A completely filled bar for a method
denotes methods that have been invoked the most in this application.
These two rulers allow developers to quickly identify hot spots in their
code.

To associate the continuous distribution of metric values to a discrete
scale with three or more representations (e.g. red, yellow, and blue), we
use the k-means clustering algorithm [LLOY 82].

The two rulers are also enriched with tooltips showing more fine-
grained dynamic information. Hovering over a heat bar in the left column
or over the annotation icon in the right bar triggers a tooltip displaying
precise values, such as exact total numbers of invocations or even the
number of invocations from specific methods or receiver types.

Developers can choose between different kinds of dynamic informa-
tion to be visualized in the rulers, such as the number of objects a method
creates or the amount of memory it allocates, either on average or in
total over all executions. Such metrics allow developers to quickly assess
the runtime complexity of specific methods and thus to locate candidate
methods for optimization. The dynamic information to be displayed is
set in the Eclipse preferences.

Collecting Dynamic Information 181

Package Explorer. The package explorer is the main tool in Eclipse used
to locate packages and classes of an application. Senseo augments the
package explorer with dynamic information to guide the developer at a
high level to the source artifacts of interest, see Figure 8.4 (4). For this
purpose, we annotate packages and classes in the explorer tree with icons
denoting the degree to which they contribute to the selected dynamic
metric such as amount of allocated memory. Thus a class aggregates
the metric value of all its methods, a package the value of all its classes.
Similar to the overview ruler the metric values are mapped to blue, yel-
low, and red package explorer icons representing a heat coloring scheme
[RÖTH 09c].

Collaboration View. In a separate view next to the source code editor
(Figure 8.4 (6)), Senseo presents all dynamic collaborators for the cur-
rently selected artifact. For instance, if a method has been selected, the
collaboration view shows all packages or classes invoking methods of
the package or class in which the selected method is declared (callers).
The collaboration view also shows all packages or classes with which the
package or class declaring the method is actively communicating (callees).
For the method itself, the collaboration view lists all direct callers and
callees.

Calling Context Ring Chart (CCRC). The CCRC [MORE 09] offers a
compact visualization of a CCT and provides navigation mechanisms
to locate and explore subtrees of interest for the software maintenance
task at hand (Figure 8.4 (5)). Like the Sunburst visualization [STAS 00],
CCRC uses a circular layout. The CCT root is represented as a circle in the
center. Callee methods are represented by ring segments surrounding the
caller’s ring segment. For a detailed analysis of certain calling contexts,
CCT subtrees can be visualized separately and the number of displayed
tree layers can be limited.

8.4 Collecting Dynamic Information

In this section we explain our approach to collecting dynamic information
using AOP.

Senseo requires flexible support to aggregate dynamic information.
For instance, runtime type information is needed separately for each pair
of caller and callee methods, while memory allocation metrics need to
be aggregated for the whole execution of a method (including direct and
indirect callees). In order to support different ways of aggregating metrics,

182 Senseo – High Level Augmentations of IDEs with Dynamic Information

a data structure is needed to store dynamic information separately for
each executed calling context. The CCT [AMMO 97] perfectly fits this
requirement.

Our CCT representation is designed for extensibility so that additional
metrics can be easily integrated. Each CCT node stores dynamic infor-
mation and refers to an identifier of the target method for which the
metrics have been collected. It also links to the parent and child nodes for
navigation in the CCT.

Our implementation leverages MAJOR [VILL 08, VILL 09], an aspect
weaver with two distinguishing features. First, MAJOR supports com-
plete method coverage. Method invocations through reflection and call-
backs from native code into bytecode are correctly handled. Second,
MAJOR provides efficient access to complete calling context information
through customizable, thread-local shadow stacks. Using the pseudo-
variables thisStack and thisSP, the aspect gets access to the array
holding the current thread’s shadow stack, respectively to the array index
(shadow stack pointer) corresponding to the currently executing method.

Figure 8.5 illustrates three advices2 of our aspect for CCT construction
and dynamic information collection. In the CCTAspect, each thread
generates a separate, thread-local CCT. The shadow stack is an array of
CCTNode instances, representing nodes in the thread-local CCT. A special
root node is stored at position zero. Periodically, after a configurable
number of profiled method calls, each thread integrates its thread-local
CCT into a shared CCT in a synchronized manner. This approach reduces
contention on the shared CCT, yielding significant overhead reduction in
comparison with an alternative solution where all threads directly update
a shared CCT upon each method invocation.

The first advice in Figure 8.5 intercepts method entries and pushes
the CCTNode representing the invoked method onto the shadow stack.
To this end, it gets the caller’s CCTNode instance from the shadow stack
(i.e., at position sp-1) and invokes the profileCall method, which
takes as argument an identifier of the callee method. We use static
join points, accessed through AspectJ’s thisJoinPointStaticPart
pseudo-variable, to uniquely identify method entries; they provide infor-
mation about the method signature, modifiers, etc. The profileCall
method returns the callee’s CCTNode instance and increments its invoca-
tion counter; if the same callee has not been invoked in the same calling
context before, a new CCTNode instance is created as child of the caller’s
node.

2Aspects specify pointcuts to intercept selected join points in the execution of programs,
such as method calls. Advices adapt join points with code to be executed before, after or
around them.

Collecting Dynamic Information 183

aspect CCTAspect {
before(): execution(* *(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp] = ss[sp--1].

profileCall(thisJoinPointStaticPart);
ss[sp].storeRcvArgsRuntimeTypes(thisJoinPoint);

}

after() returning(Object o): execution(* *(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp].storeRetRuntimeType(o);
ss[sp] = null;

}

after() returning(Object o): call(*.new(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp].storeObjAlloc(o);

}
...

}

Figure 8.5: Simplified excerpt of the CCTAspect

The second advice in Figure 8.5 deals with normal method completion,
popping the method’s entry from the shadow stack. For simplicity, here
we do not show cleanup of the shadow stack in the case of a method
completing abnormally by throwing an exception [VILL 09].

The third advice intercepts object creation to keep track of the number
of created objects and the memory allocated for each calling context. The
method storeObjAlloc(Object) uses the object size estimation func-
tionality of the java.lang.instrument API to update the memory
allocation statistics in the corresponding CCTNode instance.

CCTAspect collects the receiver, argument and result runtime types
using dynamic join points.

During execution, the aspect code periodically sends the collected
metrics to the Senseo plugin in the IDE. Upon metrics transmission, thread-
local CCTs of terminated threads are first integrated into the shared CCT.
Afterwards, the shared CCT is traversed to aggregate the metrics as
required by Senseo. Finally, the aggregated metrics are sent to the plugin
through a socket. Metrics aggregation and serialization may proceed
in parallel with the program threads, since they operate on thread-local
CCTs most of the time.

184 Senseo – High Level Augmentations of IDEs with Dynamic Information

8.5 Validation

We conducted a controlled experiment with 30 professional Java develop-
ers to evaluate the benefits of Senseo [RÖTH 09d] for software maintenance.
We now describe the experimental design, the subjects, the evaluation
procedure, the final results (including qualitative feedback), as well as
threats to validity.

8.5.1 Experimental Design

This experiment aims at quantitatively evaluating the impact of Senseo
and the dynamic information it integrates in the Eclipse IDE on developer
productivity in terms of efficiently and correctly solving typical software
maintenance tasks. We therefore analyze two variables in this experiment:
time spent and correctness. This experiment also reveals which kind of
tasks benefit the most from the availability of dynamic information in the
IDE. The experimental design we opted for is similar to the one applied
in the study of Cornelissen et al. [CORN 09] which evaluated a trace
visualization tool called EXTRAVIS.

Study Hypotheses. We claim that the availability of Senseo reduces the
amount of time it takes to solve software maintenance tasks and that it
increases the correctness of the solutions. Accordingly, we formulate the
following two null hypotheses:

• H10: Having Senseo available does not impact the time for solving
the maintenance tasks.

• H20: Having Senseo available does not impact the correctness of the
task solutions.

Consequently, we formulate these two alternative hypotheses:

• H1: Having Senseo available reduces the time for solving the main-
tenance tasks.

• H2: Having Senseo available increases the correctness of the task
solutions.

We test the two null hypotheses by assigning each subject to either a
control group or an experimental group. While the experimental group
has Senseo available for answering typical software maintenance tasks
and questions, the control group uses a standard Eclipse IDE; otherwise

Validation 185

Table 8.1: Average expertise in control and experimental group.
Expertise variable Control group Exper. group
Years of experience 4.73 4.40
Java experience [0..4] 2.93 2.80
Eclipse experience [0..4] 2.80 2.67
Unfamiliar code exp. [0..4] 2.73 2.73

there is no difference in treatment between the two subject groups. As
both groups have nearly equal expertise, differences in time or solution
correctness can be attributed to the availability of the Senseo plugin.

Study Participants. We asked 30 software developers working in in-
dustry (24) or with former industrial experience (6) to participate in our
experiment. Participation was voluntary and unpaid. All subjects an-
swered a questionnaire asking for their expertise with Java, Eclipse, and
specific skills in software engineering, such as how often they work with
unfamiliar code. All participants are familiar with Java and the Eclipse
IDE.

The subjects have between one and 25 years of professional experience
as software engineers (average 4.8 years, median 4 years). 27 subjects have
a university degree in computer science while three subjects either studied
in another area or learned software engineering on the job. The subjects
are very heterogeneous and thus fairly representative (seven different
nationalities, working for eight different companies). In a Likert scale
[LIKE 32] from 0 (no experience) to 4 (expert) subjects rated themselves on
average 2.93 for Java experience, 2.73 for Eclipse experience, and 2.72 for
experience in working with unfamiliar code. All these ratings correspond
to “very experienced”.

To assign the 30 subjects to either the experimental or the control
group, we used the obtained expertise information. To assess the exper-
tise we considered four variables as given by the subjects: number of
years of professional experience in software engineering, experience with
Java, Eclipse and with maintaining unfamiliar code. For each subject we
searched for a pair with similar expertise concerning these variables and
then randomly assigned these two persons to either of the two groups.
This leads to a very similar overall expertise in both groups as shown in
Table 8.1.

186 Senseo – High Level Augmentations of IDEs with Dynamic Information

Subject System and Tasks. As a subject system we have chosen jEdit3,
an open-source text editor written in Java. JEdit consists of 32 packages
with 5275 methods in 892 classes totaling more than 100 KLOC. We opted
for jEdit as a subject system as it is medium-sized and representative
of many software projects found in industry. JEdit has a long history
of development spanning nearly ten years and involving more than ten
developers. Even though it has been refactored several times, a careful
analysis of the code quality revealed several design flaws, such as the use
of deprecated code, tight coupling of many source entities to package-
external artifacts, and lack of cohesion in almost all packages, all of which
makes jEdit hard to understand. We expect many industrial systems to
have similar quality problems, thus we consider jEdit to be a well-suited
subject application fairly typical for many industrial systems developers
come across on their job. Furthermore, the domain of a text editor is
familiar to everyone, thus no special domain-knowledge is required to
understand jEdit.

The tasks we gave the subjects are concerned with analyzing and
gaining an understanding for various features of jEdit. While choosing
the tasks, our main goal was to select tasks representative for real main-
tenance scenarios. Furthermore, these tasks must not be biased towards
dynamic analysis. To assure that these criteria are met we selected the
tasks according to the framework proposed by Pacione et al. [PACI 04].
They identified nine principal activities for reverse engineering and soft-
ware maintenance tasks covering both static and dynamic analysis. Based
on these activities they propose several characteristical tasks including all
identified activities. We thus design our tasks following this framework to
respect all nine principal activities, which avoids a potential bias towards
Senseo.

This leads us to the definition of five tasks, each divided into two
subtasks, resulting in ten different questions we asked to the subjects.
Table 8.2 outlines all five tasks and their subtasks and explains which
of Pacione’s activities they cover. Task five is special since we use it as
a “time sink task” to avoid ceiling effects [ARIS 07]. Subjects that can
answer the questions quickly might spend considerably more time on the
last task when they notice that there is still much time available, so the
addition of a time-consuming task at the end which is not considered in
the evaluation ensures that subjects have a constant time pressure for all
relevant tasks. The first four tasks still cover all of Pacione’s activities.

All questions are open, that is, subjects cannot select from multiple
choices but have to write a text in their own words. Beforehand, the

3http://www.jedit.org/

Validation 187

Table 8.2: The five software maintenance tasks.
Task Activities Description
1.1 A 1, 9 Locating a feature in code and naming the

packages and architectural layers in
which it is implemented

1.2 A 1, 4 ,5 Describing package collaborations in
this feature

2.1 A 8 Comparing fan-in, fan-out of three classes
2.2 A 4, 5, 6, 8 Describing coupling between the

packages of these three classes
3.1 A 1, 3, 4, 5 Analyzing the order in which methods

of a class are invoked
3.2 A 1, 3, 5, 7 Locating clients of this class and

analyzing the communication patterns
between the class and its clients

4.1 A 4, 5, 8, 9 Comparing two features on a fine-grained
method level to locate a defect in a feature

4.2 A 2 Correcting this defect by comparing
it to the other, flawless feature

5.1 A 4, 5, 6, 7 Exploring an algorithm in a specific class
and analyzing its performance

5.2 A 5, 6, 7, 8 Comparing this algorithm to another,
similar algorithm in terms of efficiency

experimenters solved all tasks themselves to prepare model answers
according to which the subjects’ answers were corrected.

Experimental Procedure. We gave the subjects a short five minute in-
troduction to the experiment setup. Subjects from the experimental group
additionally received a 20 minute introduction to Senseo, following a pre-
pared script to ensure that every subject receives the same information.
We provided the Senseo subjects with a short description and a screen-
shot highlighting and explaining the core features of Senseo, to serve as a
reference during the experiment.

Afterwards, we started the experiment. We supervised all subjects
during the entire experiment and recorded the time they took to answer
each question. Concerning infrastructure, each subject obtained the same
pre-configured Eclipse installation we distributed in a virtual image. The
only difference between the control group and the experimental group
was the availability of the Senseo plugin, otherwise the Eclipse IDE was
configured in exactly the same way.

188 Senseo – High Level Augmentations of IDEs with Dynamic Information

We provided the Senseo group with pre-recorded dynamic information
obtained by executing all actions from the menu bar of jEdit to make sure
that the pre-recorded information is not biased towards the experiment
tasks. We provided pre-recorded dynamic information to control the
variable of tracing the appropriate software features. Although it does
not take much time to gather dynamic information with Senseo, freeing
subjects from this task makes sure that the subjects’ performance in the
experiment is only dependent on how Senseo presents the information
and not on which information has been recorded. As the control group
did not receive any dynamic information, we clearly stated in the task
descriptions how to run and analyze the feature under study with the
conventional debugger in Eclipse.

Variables and Evaluation. The two dependent variables we study in
this experiment are time the subjects spend to answer the questions, and
correctness of the answers. Keeping track of the answer time is straight-
forward as we prohibited going back to previously answered questions.
We simply record the time span between the starting time of one question
and the next. Correctness is measured using a score from 0 to 4 according
to the overlap with the model answers, which forms a set of expected
answer elements (usually the names of certain source artifacts).

The only independent variable in our experiment is whether the Senseo
plugin is available in the Eclipse IDE to the subjects during the experi-
ment.

We apply the parametric, one-tailed Student’s t-test to test our two
hypotheses at a confidence level of 95% (α=0.05). To validate that the t-test
can be used, we first apply the Kolmogorov-Smirnov test to verify normal
distribution and then Levene’s test to check for equality of variance in the
sample.

8.5.2 Results and Discussion

In this section we analyze the results obtained in the experiment. First,
we evaluate the results for time and correctness. Second, we identify for
which types of tasks the availability of dynamic information in the IDE is
most useful. Finally, we evaluate the qualitative feedback we gathered by
means of a debriefing questionnaire.

Only three subjects could not complete the time sink task (task 5) in
the two hours we allotted, but everybody finished the four relevant tasks.

Validation 189

Table 8.3: Statistical evaluation of the experimental results.
Group Mean Stdev. K.-S. Lev F t p
Time [m]:

Eclipse 114.80 20.62 0.27

Senseo 94.73 (-17.5%) 12.4 0.18 3.06 3.23 .0016

Correctness (points):

Eclipse 11.33 2.58 0.31

Senseo 15.13 (+33.5%) 2.10 0.24 0.22 4.42 .0001

Time. On average, the Senseo group spent 17.5% less time solving the
maintenance tasks. The time spent by the two groups is visualized as a
box plot in Figure 8.6.

To statistically verify whether Senseo has an impact on the time to
answer the questions, we test the null hypothesis H10 which says that
there is no impact. We successfully applied the Kolmogorov-Smirnov and
the Levene test on the time data (see Table 8.3), thus we are able to apply
Student’s t-test to evaluate H10. The application of the t-test allows us to
reject the null hypothesis and instead accept the alternative hypothesis,
which means that the time spent is statistically significantly reduced by
the availability of Senseo as the p-value is with 0.0016 considerably lower
than α=0.05 (see Table 8.3).

From the observations of subjects during the experiment, from their
informal feedback during the debriefing interviews, and particularly from
the formal questionnaires (see below), we could conclude that subjects
using Senseo were more efficient due to the following reasons: (i) the
availability of dynamic information in the source code tooltips helps
developers to more quickly gain an understanding how source artifacts
communicate with each other, (ii) the visualizations of dynamic informa-
tion such as number of method invocations shown in ruler columns and
package tree enable developers to quickly spot which source elements
are executed and how often, and (iii) as the collaboration view accurately
presents all source artifacts that are related or collaborate with a selected
source entity such as a package, class or method, developers can more
quickly navigate to code relevant for a specific task.

Correctness. The Senseo group’s answers for the four maintenance ques-
tion are 33.5% more correct, which is also shown in the box plot in Fig-
ure 8.6.

To test the null hypothesis H20, which suggests that there is no effect
of the availability of Senseo on answer correctness, we can also use the Stu-

190 Senseo – High Level Augmentations of IDEs with Dynamic Information

60

80

100

120

140

Eclipse Senseo

T
im

e
 s

p
e
n
t
(m

in
u
te

s
)

13

17

4

6

8

10

12

14

16

18

20

Eclipse Senseo

C
o
rr

e
c
tn

e
s
s
 (

p
o
in

ts
)

(1) (2)
Figure 8.6: Box plots comparing time spent and correctness between
control and experimental group.

dent’s t-test as the Kolmogorov-Smirnov and the Levene test succeeded
for the correctness data (compare Table 8.3). As the t-test gives a p-value
of 0.0001 which is clearly below α=0.05, we reject the null hypotheses and
accept the alternative hypothesis H2, which means that having Senseo
available during software maintenance activities helps developers to more
correctly solve maintenance tasks.

The evaluation of the questionnaire, the observations during and
the informal interviews after the experiment allowed us to attribute the
improvements in correctness to the same techniques of Senseo that also
improved the efficiency: (i) precise information about runtime collabo-
ration or execution paths as highlighted in the extended source tooltips
enables developers to accurately navigate to dependent artifacts, (ii) infor-
mation about execution complexity (number of method calls or number
and size of created objects shown in ruler columns or package tree) eases
the correct identification of inefficient code, and (iii) accurate overviews
of collaborating artifacts given by the collaboration view supports devel-
opers in exploring all relevant parts of the system to completely address
a task.

Validation 191

Table 8.4: Task individual performance concerning time required and
correctness.

Task Time [m] Correctness (points)
Eclipse Senseo Eclipse Senseo

Task 1 511 425 (-16.8%) 38 53 (+39.5%)
Task 2 388 340 (-12.4%) 58 79 (+36.2%)
Task 3 437 291 (-33.4%) 52 69 (+32.7%)
Task 4 386 365 (-5.4%) 22 26 (+18.2%)

Table 8.5: Percentage of subjects using specific dynamic information in
particular tasks.

Dynamic Information Task 1 Task 2 Task 3 Task 4
Runtime types (Tooltip) 33% 47% 47% 20%
Number of invocations 53% 67% 40% 27%
Number of created objects 33% 47% 27% 13%
Number of exec. bytecodes 27% 33% 20% 7%
CCRC 7% 7% 0% 0%
Dynamic collaborators
(callers, callees) 53% 80% 73% 33%

Task-dependent Results. We also analyzed the two variables, time
spent and correctness, for each task individually to reveal which kinds
of tasks benefit most from dynamic information integrated in Eclipse.
Table 8.4 presents the aggregated results for time spent and correctness
for each subject group and each task individually. Tasks 1, 2 and 3 benefit
significantly from the availability of Senseo both in terms of time required
to solve them and the correctness of the solution. However, for task 4 the
benefit of Senseo is less pronounced.

Qualitative Feedback. We also collected qualitative feedback using a
questionnaire to evaluate the impact of particular parts of Senseo on
specific kinds of maintenance tasks. This evaluation yields answers to the
question which Senseo feature and which kind of dynamic information is
actually relevant or useful in what kind of maintenance tasks.

In Table 8.5 we list for each task the percentage of subjects that used a
specific kind of dynamic information integrated by Senseo (“Did you use
dynamic information X in task Y?”), and Table 8.6 presents how useful
subjects rated each Senseo technique on a Likert scale from 0 (useless) to 4
(very useful).

192 Senseo – High Level Augmentations of IDEs with Dynamic Information

Table 8.6: Mean ratings of the subjects for each feature of Senseo .
Dynamic Information Mean rating [0..4]
Tooltip showing runtime types 3.6
Ruler column incl. dynamic info 3.2
Overview ruler column incl. dyn. info 3.0
Package tree incl. dynamic info 2.4
CCRC 2.1
Collaboration view 3.7

From the evaluation, we draw the conclusion that there are basically
three kinds of tasks whose solution process is very well supported by the
availability of dynamic information in IDEs: (i) tasks requiring developers
to understand how different source artifacts collaborate or depend on
each other, (ii) tasks in which developers have to assess how often code is
executed or how complex its execution is, and (iii) tasks that require the
developer to understand which code is related to a given feature. This
conclusion agrees with the quantitative results discussed earlier where
we revealed that task 1 (feature and collaboration understanding), task 2
(quality assessment) and task 3 (control flow understanding) benefited
most from the availability of Senseo, while for task 4 (low level defect
correction) dynamic information was less useful.

From the results evaluating the different Senseo concepts (Table 8.6),
we conclude that developers particularly benefit from the availability
of the collaboration views and runtime type information in source code.
Also considered useful are visualizations of dynamic information in the
source code columns such as the presentation of number of invoked meth-
ods in a method or class. The aggregated dynamic information presented
in the package tree are perceived as less useful by the developers, proba-
bly because it is not meaningful to study runtime complexity at a high
package level. The subjects also could not benefit from the CCRC as this
visualization serves the rather specialized task of performance optimiza-
tion which has not been directly covered by the maintenance tasks of the
experiment.

8.5.3 Threats to Validity

In this section we discuss several threats to validity concerning this ex-
periment. We distinguish between (i) construct validity, that is, threats
due to how we operationalized the time and correctness measures, (ii)
internal validity, that is, threats due to inferences between treatment and

Validation 193

effect during the analysis, and (iii) external validity which refers to threats
concerning the generalization of the experiment results.

Construct Validity. Due to the operationalization of the time and cor-
rectness variables, the results might not hold in real, non-experimental
situations. For instance, subjects could have been more attentive than
they would be in their daily job, or they could have been more anxious
as they were observed and assumed that their performance was being
evaluated. However, we consider this threat to be negligible as we made
clear that subjects’ performance is not evaluated. Furthermore, this threat
is likely to affect both the control and the experimental group equally.

Internal Validity. Some threats to internal validity originate from the
subjects. First, subjects might not have the required expertise to properly
solve the maintenance tasks. This threat is largely eliminated by prelimi-
nary assessment of the subjects’ expertise concerning their Java, Eclipse
and software maintenance skills. Additionally, we required them to not
have expert knowledge in developing jEdit. Second, the experimental
group might have had more knowledge than the control group. This
threat is mitigated by assigning the subjects in a randomized manner to
the two groups in a way that both groups have nearly equal expertise (see
Table 8.1).

Other threats to internal validity stem from the maintenance tasks we
prepared. First, the tasks could have been too difficult or time-consuming
to solve. This threat is refuted by the fact that nearly all subjects from both
groups could solve all tasks in time (except two from the control group
and one from the Senseo group). Moreover, each question was answered
fully correctly by at least one person from each group. Additionally,
we asked subjects in the questionnaire directly how they judged the
time pressure and the difficulty. On average, the ratings were 2.8 for
time pressure (representing “felt no time pressure”) and 3.1 for average
difficulty of all tasks (which means “appropriately difficult”). Second, the
threat that we formulated tasks favoring Senseo is largely limited as we
used Pacione’s established framework [PACI 04] to find the tasks used in
the experiment. Third, a threat for the correctness evaluation is that the
experimenters might have favored Senseo while grading subjects’ answers.
By initially building an answer model according to which the subjects
answers were graded, we mitigated this threat. For the obtained answers
the experimenters gave points as pre-defined in the answer model which
in turn has been formulated and validated by two persons individually.

194 Senseo – High Level Augmentations of IDEs with Dynamic Information

External Validity. Generalizing the results of the experiment could be
unjustified due to the selection of tasks, subjects, or the application used in
the experiment. This threat is mitigated since we selected the maintenance
tasks carefully to follow Pacione’s framework [PACI 04] of representative
maintenance tasks. We furthermore asked open questions to the subjects
to better model industrial reality than would be possible with multiple
choice questions.

As the subjects work for different companies and have a high variety of
education profiles, the study participants should be fairly representative
for professional software developers and thus not impose a threat to
generalization.

In Section 8.5.1 we described several reasons why jEdit is representa-
tive for many industrial systems. Additionally, we asked subjects at the
end of the experiment how comparable in terms of maintainability they
consider jEdit to be to systems they daily work with. On average, they
gave on a Likert scale from 0 (totally different) to 4 (very representative)
a rating of 3.1, which refers to “many similarities”. Hence we are confi-
dent to have found with jEdit a system representative for most industrial
applications.

8.6 Performance

In order to validate that Senseo offers sufficient performance to cope with
real-world workloads, we evaluated the different sources of overhead
and analyzed the amount of transmitted data for the DaCapo bench-
marks4 [BLAC 06]. For our measurements, we use MAJOR5 version 0.6
with AspectJ6 version 1.6.5 and the SunJDK 1.6.0_13 Hotspot Server Vir-
tual Machine. We execute the benchmarks on a quadcore machine running
CentOS Enterprise Linux 5.3 (Intel Xeon, 2.4GHz, 16GB RAM).

Figure 8.7 shows the overhead for CCT creation, collection of dynamic
information (including the number of method invocations, the number
of object allocations, the estimated allocated bytes, and the runtime re-
ceiver, argument, and return value types), as well as serialization and
data transmission to the Eclipse plugin, including processing of the re-
ceived data by the plugin. In this measurement setting, each benchmark
is executed 15 times and the median execution time is taken for com-
puting the overhead. For each run of each benchmark, the CCT and the
gathered dynamic information are serialized and transmitted once upon

4http://dacapobench.org/
5http://www.inf.usi.ch/projects/ferrari/
6http://www.eclipse.org/aspectj/

http://dacapobench.org/
http://www.inf.usi.ch/projects/ferrari/
http://www.eclipse.org/aspectj/

Performance 195

!"##$ %"&#$
'"#($)")($ '"%($)"!&$)"*'$)"+'$)"),$)"*)$

+"*&$

)"+($

,"('$,"!,$

)"(%$

#")%$

!"!)$

%"(%$

*"''$
%"+($ %"#)$

''"'%$

'(")+$

+"!,$

&"%*$ &"'!$

&"&#$

&"!($

&"#!$

&")*$

'"!#$

&"'*$ &")&$

&"!)$

&"*&$

&"%&$

'$

!$

#$

*$

,$

''$

'!$

'#$

'*$

',$

)'$

)!$

)#$

)*$

-./01$ 203-/$ 45-1/$ 6407896$:38$ 59;0<2$ =>/53.$ 0?7.<6@$ 0?96-145$ 8A<$ @-0-.$ B63"$

A6-.$

C
D
6
15
6
-
<
$E
-
4/
3
1$

F617-07G-H3.I/1-.9A79973.$

J30064H3.$3:$<>.-A74$7.:31A-H3.$

JJK$416-H3.$

Figure 8.7: Senseo overhead for the DaCapo benchmarks.

benchmark completion. To this end, we modify the DaCapo benchmark
harness in order to delay the end of a measurement until the transmitted
data have been received and processed by the Eclipse plugin. Figure 8.7
also shows the average overhead (geometric mean) for the DaCapo suite.

On average (geometric mean), CCT creation alone causes an over-
head of factor 2.68. CCT creation and collection of dynamic information
result in an overhead of factor 9.07. The total overhead, including seri-
alization/transmission, is of factor 9.47. For all benchmarks, the larger
part of the overhead is due to the collection of dynamic information,
where the collection of runtime type information is particularly expen-
sive. Serialization/transmission causes only minor overhead, because
in these measurement settings serialization/transmission happens only
once upon benchmark completion.

Senseo features an optimized serialization mechanism that transmits
the CCT in an incremental way, sending only those nodes where some dy-
namic information has changed since the previous transmission. Thanks
to the principle of locality, typically only a small subset of the CCT nodes
is transmitted. Thus, it is possible to frequently update the dynamic
information in the Eclipse plugin, such as once per second.

Figure 8.8 illustrates the size of successively transmitted data pack-
ets for a single run of DaCapo’s “eclipse” benchmark with a serial-
ization/transmission rate of 1.25 packets per second.7 Such a high
serialization/transmission rate ensures that the developer always sees

7We chose the “eclipse” benchmark for this measurement, since it has the longest execu-
tion time in the DaCapo suite in our measurement environment.

196 Senseo – High Level Augmentations of IDEs with Dynamic Information

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350 400

P
ac

ke
t S

iz
e

[K
B

]

Packet Number

Dynamic Information
CCT Nodes

Figure 8.8: Size of transmitted data packets for “eclipse”. Serialization/-
transmission rate: 1.25 packets per second.

up-to-date dynamic information in the IDE, refreshed more than once
per second, while the application under maintenance is running in the
MAJOR JVM. In total, 370 packets are sent, that is, the total runtime of
“eclipse” is about 296s in this setting (causing an overhead factor of 14.8,
whereas a single serialization/transmission upon benchmark completion
induces an overhead of factor 7.9 as shown in Figure 8.7). For each packet,
Figure 8.8 differentiates between the size of the transmitted CCT nodes
and the size of the sent dynamic information.

While most packets are rather small, below 1MB, some packets are
considerably larger, reaching up to 9MB. The packets 60–79 appear as a
major peak in the figure. We found that these packets convey dynamic
information collected while the “eclipse” benchmark is compiling some
projects. The minor peak in Figure 8.8 (packets 227–232) corresponds
to some XML data processing. The initial packets, collecting during
the startup phase of “eclipse”, are very small. This can be explained
by the fact that the startup phase is IO-intensive and involves much
class-loading and just-in-time compilation by the JVM, which are mostly
implemented in native code and are therefore not amenable to MAJOR’s
instrumentation.

As Senseo can be used to gather dynamic information from all appli-
cations used in the DaCapo suite in reasonable time, we conclude that

Related Work 197

Senseo is fast enough to cope even with large-sized applications, and it is
possible to frequently transmit the collected dynamic information to the
Eclipse plugin, continuously providing up-to-date dynamic information
to the software developer. Even though the overall overhead is high
when gathering dynamic information, we do not consider this as a major
issue, as the application does not need to run at productive speed while
analyzing it.

8.7 Related Work

In this section we compare related works to our Senseo approach.

JFluid [DMIT 04b]. Similar to Senseo, JFluid runs the application under
instrumentation in a separate JVM, which communicates with the visual-
ization part through a socket and also through shared memory. JFluid is
a pure profiling tool, whereas Senseo was designed to support program
understanding and maintenance. JFluid does not aggregate dynamic
information but focuses on presenting behavioral information about a
specific system execution.

Ferret [DE A 08] integrates a query tool into Eclipse to allow developers
executing conceptual queries about source artifacts directly in the IDE.
An example of such a query is “callers of method x”. Ferret also takes into
account dynamic information In contrast to Senseo, Ferret does not aim at
giving an overview of the system or enriching the static IDE perspectives
with dynamic information; it present the results of queries in a view
separated from the source code.

Compass [LIEN 09] is a back-in-time debugger for the Smalltalk IDE.
As already mentioned in Section 7.6, Compass does not integrate the
reified dynamic information in the conventional source code views and
focuses on a specific system execution. Moreover, the reified information
is volatile and is discarded at the end of a debugging session.

Fluid source code views [DESM 06] are similar to Senseo as they also
link call sites in code to invoked methods in an IDE’s source views. How-
ever, these links are statically determined, so they might be imprecise
or even incorrect for polymorphic call sites. The comparison between
Hermion and fluid source code views in Section 7.6 concerning enhanc-
ing the source views basically also holds for Senseo, with the difference

198 Senseo – High Level Augmentations of IDEs with Dynamic Information

that Senseo extends the tooltip in Eclipse’s source editor, while Hermion
and fluid source code views insert icons and, in the latter case, even the
invoked source code directly in the source editor.

Approaches analyzing development activities. As mentioned in Sec-
tion 2.1.3, there are several proposals analyzing development activities
recorded in the IDE to support navigation and maintenance of software
systems. FEAT [ROBI 03a] identifies concerns from recorded program
investigation activities performed in the IDE and visualizes these con-
cerns with graphs. NavTracks [SING 05] recommends source entities
related to the currently selected entity by analyzing how developers nav-
igated and modified the system in the past. Mylyn [KERS 05, KERS 06]
exploits programmer activity to build a degree-of-interest model for the
program elements in a system and highlights the elements considered
interesting for the task-at-hand. Senseo is similar to these works as it also
relates source artifacts to each other, but based on how these artifacts
correspond to each other at runtime. Senseo focuses on the dynamic rela-
tions between source artifacts and not on how these artifacts have been
navigated or modified by developers. Moreover, Senseo also supports
developers in gaining an overview of the behavior of a system, which is
not supported by the FEAT, NavTracks or Mylyn. Senseo differs in the
same way to proposals that exploit the source history to find dependen-
cies between artifacts as these approaches such as ROSE [ZIMM 04a] or
Hipikat [CUBR 03] reveal how artifacts have been committed together to
the source repository but not how they communicate at runtime.

Visualizations of dynamic information not integrated in IDEs. In Sec-
tion 2.2.2 we discussed several techniques visualizing dynamic informa-
tion outside the IDE in a separate tool. Examples for such tools and envi-
ronments are Jinsight [DE P 93], Shimba [SYST 01], Collaboration Browser
[RICH 02], GraphTrace [KLEY 88], or Jive [REIS 03] and Jove [REIS 05].

Senseo differs from these related works as it integrates and embeds
dynamic information directly in the IDE locally to specific static system
artifacts instead of providing a general overview in a separated tool. Such
a local integration particularly recognizes the conceptual relation between
static and dynamic aspects of software systems. Hence, dynamic infor-
mation readily made available by Senseo in the IDE allows developers
to embrace such information while navigating the software space and
while working with source code. It is this tight integration of dynamic
information in the conventional source perspectives of an IDE, without
further increasing the information overload, which supports develop-

Summary of the Chapter 199

ers in software maintenance, as the results of the conducted controlled
experiment confirm (cf. Section 8.5).

8.8 Summary of the Chapter

In this chapter we presented Senseo, an approach for gathering and inte-
grating various kinds of dynamic information from running Java applica-
tions within the Eclipse IDE. The provided dynamic information includes
callers, callees, runtime type information, method invocation counters,
and object allocation metrics. Senseo integrates dynamic information in
the package tree, the ruler columns, and in the source editor tooltips of
the Eclipse IDE. In addition, Senseo offers a condensed and interactive
visualization of the CCT and provides a navigable view on all dynamic
collaborators of a source artifact (package, class, or method). The dynamic
information is continuously updated in the IDE while an application is
running.

A controlled experiment with 30 professional developers confirms
that the dynamic information provided by Senseo significantly improves
correctness and reduces the time needed for various software maintenance
tasks. A performance evaluation shows that our approach is practical and
able to visualize dynamic information in the IDE that is updated more
than once per second.

Senseo addresses the shortcomings of Hermion, that is, it represents
dynamic collaboration at a higher level (package and class level) than
just presenting runtime types or receiver types of message sends on a
source code level. Moreover, Hermion does not provide an overview of dy-
namic collaboration as Senseo does with its collaboration view. However,
even Senseo does not visualize dynamic collaboration patterns between
packages, classes or methods, instead it presents such information in
lists. This often makes it hard to quickly grasp the “big picture view”,
that is, an overview of how and how often artifacts communicate with
each other at runtime, for instance how many classes of two packages
communicate with each other and which methods are thereby invoked.
This problem is tackled by CollView which we present in the following
chapter. Another shortcoming of Hermion which is neither addressed by
Senseo is the missing representation for software features in the IDE. This
problem is tackled by FeatureEnv, which is the topic of Chapter 10.

Chapter 9

CollView – Representing
Dynamic Collaboration in
IDEs

9.1 Introduction

9.1.1 Positioning CollView

In this chapter we introduce CollView, an enhancement to the Smalltalk
IDE integrating visualizations of dynamic collaboration. CollView aims at
fixing the shortcomings of Hermion and Senseo. These two approaches do
not visualize collaboration patterns in easy to understand visualizations.
They just link collaborating artifacts in the source code views instead of
providing an overview of dynamic collaboration between artifacts to the
developer.

CollView represents dynamic collaboration patterns between concep-
tually related but statically distributed artifacts by visualizing such col-
laboration in charts embedded in the IDE. Moreover, CollView supports
developers in navigating dynamic dependencies between source elements
from a high package level down to a class or method level to gain an
understanding of the dynamic behavior of a system. The collaborations
charts generated by CollView also make visible the execution flow in the
system, for instance which methods invoke with other methods in which
order. Additionally, CollView tackles the problem of hidden execution

202 CollView – Representing Dynamic Collaboration in IDEs

paths between source elements, at least on a method level, and to some
degree also on a class or package level. Eventually, CollView gives an
overview of a system by visualizing on a high package level the com-
munication occurring between all system packages. Figure 9.1 briefly
summarizes the IDE problems CollView primarily addresses.

Figure 9.1: CollView aims at explicitly representing and visualizing dy-
namic collaboration between related but statically distributed source
artifacts. Moreover, CollView uncovers execution flow primarily on a
method level but to some degree also on a class or package level. Even-
tually, CollView contributes to a better system overview by displaying
collaboration on a package level.

The rest of this chapter introduces CollView and motivates the need to
have a representation of dynamic collaboration in IDEs. Afterwards, we
report on how CollView visualizes collaboration between source artifacts
in charts and how these charts are integrated in the IDE. We validate
CollView by means of performance benchmarks for the data gathering
technique and by reporting on user feedback.

9.1.2 Introduction to CollView

When maintaining software, developers typically navigate a system’s
source code in a development environment (IDE) to gain an understand-
ing of how the system functions. Source code browsing alone does not an-
swer many of the questions about how an object-oriented system behaves
at runtime. Object-oriented system behavior stems from the dynamic
cooperation of interacting classes and methods [WILD 93]. IDEs tradi-
tionally provide views to support reasoning about static source artifacts.
There is a lack of solid support for behavioral information within the IDE
forcing developers to themselves build up and maintain a mental map of
the dynamic relationships between source artifacts.

A common practice of object-oriented software development is to in-
corporate documented design patterns [GAMM 95] to solve well-known,
recurring design problems. Design patterns are a kind of “micro architec-

Introduction 203

tures” consisting of static program artifacts and dynamic collaborations
between them. The Chain of Responsibility pattern, for example, processes
a series of objects, involving several different static source artifacts whose
dynamic interaction is often difficult to uncover from the source code.
While patterns may increase the flexibility of the system, they usually also
introduce a level of complexity, making a system even more difficult to
understand just by static source code browsing.

IDEs such as Eclipse [ECLI 03] provide plugins to generate visual
representations of a system’s behavior (e.g. UML sequence diagrams).
These representations are usually restricted to providing pure snapshot
visualizations and lack interactive capabilities to support navigation of
the software artifacts directly within the IDE. Moreover, they often rely on
trace-based post-mortem analysis. Developers accustomed to immediate
availability of information in the IDE are less likely to incorporate such
analyzes in their daily work.

Developers typically focus on specific static artifacts, e.g. key classes
which they have identified as relevant for their current task, and have a
need to study their dynamic relationships while source code browsing.
Immediate access to visualizations of dynamic class relationships that
evolve in synch with the static artifacts would provide the developer
with the missing behavioral information. To offer real added value to a
developer, visualizations should provide a means to navigate through
and browse the source code of collaborating artifacts. Additionally, such
visualizations have to be lightweight and easy to learn and understand in
order to not overload developers with even more complex information.

In this chapter we propose the introduction of dynamic collaboration
representations that are readily accessible in the IDE as interactive, navi-
gable views. To achieve this goal, we face several challenges. In particular,
we focus on three key research questions:

• Why is it crucial to understand how source artifacts dynamically commu-
nicate from within the IDE?

• How can we achieve the immediate availability of dynamic information in
the IDE?

• How do we browse and reason about dynamic collaborations in an IDE
without further overloading the environment with information?

We address these questions in detail in Section 9.2. In Section 9.3 we
contribute our working prototype called CollView to illustrate how to
represent, visualize and navigate dynamic collaborations directly in the
IDE. CollView is available for the Squeak and Pharo Smalltalk IDE. In
Section 9.4 we validate the usefulness of this approach by studying two

204 CollView – Representing Dynamic Collaboration in IDEs

Graph
display: element on: canvas

RectangleShape

displayOn: canvas
style display: self on: canvas

display: element on: canvas
next

Style
displayOn: canvas
display: element on: canvas

children
style

Element

display: element on:
canvas
children do: [:ea |
 ea displayOn: canvas]

display: element on: canvas
next display: element on: canvas

display: element on: canvas
UndefinedObject

display: element on: canvas
element display: element on: canvas

Figure 9.2: UML diagram of Mondrian classes involved when displaying
a graph.

applications where the behavior is not easily understood by source code
reading. Furthermore, we ask developers to assess the gained benefit of
using embedded dynamic analyzes and our dynamic collaboration repre-
sentations in CollView when trying to understand these software systems.
We present a critical analysis of our proposal in Section 9.5, provide an
overview of related work in the context of our work in Section 9.6 and
conclude in Section 9.7.

9.2 Hidden Dynamic Collaboration

The dynamics of object-oriented software systems are hidden in devel-
opment environments. Widely used language concepts such as polymor-
phism or dynamic method binding make it difficult to understand the
behavior of object-oriented systems. To fully comprehend the workings
of behavioral design patterns [GAMM 93] such as Chain of Responsibility,
Visitor, Observer, or State, the developer needs to understand how the
delegation between the participating objects works at runtime. Static
analyses can reveal inheritance relationships or method call definitions,
but to which objects messages are sent and which methods are actually
invoked is not visible prior to execution. This implies that only through
dynamic analyses we are able to reveal this information.

Hidden Dynamic Collaboration 205

We illustrate the problem of missing dynamic information by taking as
an example the task of trying to understand a concrete incarnation of the
Chain of Responsibility pattern in Mondrian [MEYE 06], a graph rendering
software and one of the case study systems of our work. We chose the
Chain of Responsibility pattern because it is a frequently used pattern in
practice [VOK 04] and well explains the problems we are addressing
in this chapter. To define a graph of nodes and edges in Mondrian, a
developer implements a script specifying the layout and styles of nodes
and how they are connected to each other with edges. The following
code illustrates a simple script to render a tree graph for a class hierarchy
visualization:

graph nodes: aClass withAllSubclasses.
graph edges: aClass inheritance using:

(Line from: #superclass to: #subclass).
graph layout: TreeLayout new.
graph style:

(RectangleShape new color: #linesOfCode),
(Extent new width: #numberOfAttributes;

height: #numberOfMethods).

Mondrian has a generic internal design centered around the class
Element. The entire graph itself is a subclass of Element as are nodes and
edges. Different styles to be applied to nodes are composed and arranged
in a Chain of Responsibility. This means that after being applied, the first
style passes to the next style in the chain until all of the defined styles
have been applied. As an element can be a graph, a node or an edge, it is
virtually impossible to tell from reading the source code what methods
are actually invoked at runtime. Elements can also have children, e.g. in
a class hierarchy graph the subclasses of a given class are modeled as
child elements of the element representing that class. The static analysis
of Mondrian results in the UML diagram displayed in Figure 9.2. Modern
IDEs (e.g. Eclipse [ECLI 03] or Squeak [INGA 97]) can often automatically
generate UML diagrams from source code, for instance with the inCode
plugin [INCO 09].

However, the static UML diagram does not shed much light on how
the entire graph of all the nodes and edges is displayed at runtime. The ac-
tual dynamics of Mondrian displaying a graph is illustrated in Figure 9.3:
To render the whole graph the method Element » displayOn: canvas is in-
voked on the graph object. This method triggers the traversal of the chain
of styles. The last style in this chain triggers the displaying of the element
itself, i.e. invoking method Element » display: element on: canvas which
iterates over all children of that element and invokes method Element
» displayOn: canvas on them. The style of the graph itself is undefined.
An instance of UndefinedObject hence directly invokes display: element on:

206 CollView – Representing Dynamic Collaboration in IDEs

displayOn:

display:on:

display:on:
displayOn:

display:on:

display:on:

:Graph :Undefined
Object

:Element :Rectangle
Shape

:Extent

display:on:

Figure 9.3: Sequence diagram in Mondrian to display a graph.

canvas to iterate over the graph’s children. Revealing the interplay of
graph, nodes and styles together at runtime is not feasible by studying a
static UML diagram or the static source code, in particular as both graph
and elements are simply called element in the source code. Moreover, it
is not obvious that relevant behavior implemented in UndefinedObject is
intended to be invoked if an element’s style is undefined.

Our working example from our Mondrian case study is a typical
incarnation of the type of challenges a developer faces when trying to
reverse-engineer a software system within the IDE: by performing manual
or semi-automated static analysis, she discovers relevant static source
entities such as packages or classes (e.g. the classes Element and Graph)
but fails to see from the source code or from available UML diagrams
how the static artifacts interact with each other at runtime, e.g. which
dynamic dependencies exist between them. The dynamics of source
entities, e.g. collaboration between objects, are not explicitly available
in IDEs. Although techniques to reverse engineer sequence diagrams
using dynamic analysis (e.g. Briand et al. [BRIA 06]) and also IDE plugins
generating these sequence diagrams (e.g. MaintainJ1 for Eclipse) exist,
they do not offer a means to browse and navigate the source artifacts
depicted in these diagrams. Thus these views are not tightly embedded in
IDEs. They also fail to provide the information immediately after system’s
execution. Moreover, these sequence diagrams generally cannot deal with
large amounts of runtime data.

In the following we elaborate on concepts to increase the understand-
ing of dynamic collaborations between static entities directly from within
the IDE by making them explicit. The goal is to give developers easily

1http://www.maintainj.com/

http://www.maintainj.com/

Representing Dynamic Collaboration in the IDE 207

comprehensible views used to focus on specific executions and specific
artifacts.

9.3 Representing Dynamic Collaboration in the
IDE

To represent dynamic collaboration between various source artifacts ex-
plicitly within the IDE, we first need to execute the system under study to
gather runtime information. In a second step we empower developers to
reason about the runtime information within the IDE by representing the
dynamic information as interactive and navigable views. The chief goal is
that developers select arbitrary static artifacts within the IDE, e.g. several
classes or all packages of an application, whose dynamic collaboration
they need to comprehend for a given usage scenario. Developers then
execute the system (exercising specific features of interest), and the IDE
takes care of the dynamic data gathering and immediately presents this
data in the form of views to developers.

9.3.1 Gathering Dynamic Information

As we realized in previous chapters, for instance in Chapter 2 or Chapter 7,
analyzing the runtime behavior of applications using tracing tools is time-
consuming and generates large amount of data. This makes such tools
inappropriate for integration in IDEs as developers require immediate
benefit from the results of dynamic analyzes. Partial behavioral reflection
overcomes these problems as it enables us to select in a very fine-grained
manner on what dynamic parts of a system we want to reflect. Thus,
we rely on the same approach to dynamic data gathering as we use for
Hermion (cf. Section 7.3); this approach is called Reflectivity. For CollView
we can reuse the same interface to Reflectivity as used in Hermion as both
tools need to extract the same information from a running application.
However, CollView does not exploit runtime type information, thus we do
not reify such information but focus on the reification of message sending.

To reveal how a Mondrian graph is rendered, the developer needs to
understand how the classes Graph, Element and Style depicted in Figure
9.2, communicate at runtime, i.e. how they send messages between each
other. Using the Reflectivity framework we specify that only dynamic
information concerning message sends occurring in these three classes
should be collected, while all other dynamic data, e.g. message sends to
system classes or variable accesses, are ignored.

208 CollView – Representing Dynamic Collaboration in IDEs

The developer triggers the dynamic analysis of the entities of interest
directly from within the IDE and then runs the system, either using
recorded scripts such as test cases or by directly running the system as
an end-user. Reflective behavior, which is introduced into the binary
of methods, collects information about every message send occurring
within the selected entities. For more details of how we build our IDE
enhancements on partial behavioral reflection, we refer the reader to
Hermion introduced in Chapter 7.

9.3.2 Explicit Dynamic Collaboration

CollView enables the developer to browse dynamic collaborations be-
tween static source artifacts as soon as any dynamic information has been
gathered. CollView provides interactive collaboration charts that support
browsing and analysis of dynamic collaboration. We embed these charts
tightly in the IDE so they are directly accessible to a developer working on
the source code: In the case of our Mondrian example, a developer selects
the static entities of interest, e.g. class Graph, Element and Style to observe
their dynamic behavior, exercises specific features of Mondrian, and even
while the system is running, she can open an interactive collaboration chart
showing the dynamic communication occurring between instances of the
selected classes.

Interactive Collaboration Charts

In this section we describe the details of our Interactive Collaboration Charts.
All our views are graph representations of dynamic collaborations at
different levels of granularity. Their interactive capabilities support nav-
igation of source code artifacts. Furthermore, we map information (e.g.
number of message sends) to edges and nodes, similar to the polymet-
ric views for visualizing runtime information described in the work of
Ducasse et al. [DUCA 04].

Class Collaboration Chart. This chart is conceptually similar to UML’s
sequence diagram (e.g. Figure 9.3). We display in a class collaboration
chart how messages are passed between objects of classes. As sequence
diagrams do not scale for larger applications with a deep nesting level of
message sending involving many objects, we condense the information
in the collaboration chart to show each selected class and each message
sent between instances of these selected classes only once. We take into
account indirect communication, i.e. if an instance of class A sends a
message to an instance of a class not selected, but an instance of this class

Representing Dynamic Collaboration in the IDE 209

Figure 9.4: Class Collaboration Chart generated by the IDE.

sends a message to objects of any selected class, we show a dashed line
between the two selected classes denoting indirect communication. The
order of message sends is not preserved in this view (the same message
sent between any instances of two classes is displayed as one single edge,
no matter how often it occurs). As a result, the collaboration chart does
not become too cluttered even for large systems. To further compress
the dynamic information we adopt an approach similar to that described
in the work of Hamou-Lhadj and Lethbridge [HAMO 03]: we ignore re-
peated message sends occurring as a result of loops or recursions when
calculating the message send frequency. The views guide developers
to understand how selected artifacts interplay at runtime without con-
fronting them with too much information.

CollView is also capable of rendering a full-fledged UML sequence
diagram on demand through interaction with the Class Collaboration Chart
(for instance, by selecting two classes), if the developer wants to study a
particular collaboration in more detail.

Once again considering our Mondrian example, performed by the
three classes Graph, Element and Style, we show the interactive collab-
oration chart in Figure 9.4. All messages exchanged by these classes,
including UndefinedObject, are visually presented. The developer can
convert the whole chart into an UML sequence diagram or select a spe-
cific message send and open a new class collaboration chart with this
message send as a starting point. Additionally, it is also possible to open
an interactive collaboration chart on a specific method, i.e. to see all collab-
orations between this method and other methods. Clicking on the edge
#displayOn: leaving Graph for instance brings up the method collaboration
chart shown in Figure 9.6.

Package Collaboration Chart. We provide a big picture view of dy-
namic collaboration at the package level, typically representing the entire
system, if necessary even including system packages. We consider that
a dynamic collaboration exists if an instance of a class in one package

210 CollView – Representing Dynamic Collaboration in IDEs

Figure 9.5: Package Collaboration Chart generated by the IDE.

sends messages to an instance of a class in the other package. In this
case our chart displays an edge between the packages. An example of
a Package Collaboration Chart is shown in Figure 9.5. The developer can
study the collaboration between any two packages by clicking on the
edge to discover which classes actually communicate with each other. It is
then possible to open a Class Collaboration Chart on any two collaborating
classes to study the collaboration on a message sending level.

Method Collaboration Chart. At a fine-grained level of detail we want
to reason about the method level, i.e. with which methods a given method
communicates at runtime. For this purpose we use a method collaboration
chart focusing on a particular method. This chart shows all messages sent
from within this method as edges that invoke other methods. Once again
we map frequency of invocation to the thickness of the edges and the
number of invocations relative to the overall number of invocations to
the size of the nodes. Figure 9.6 presents the method collaboration chart
for the method Element » displayOn: canvas of our Mondrian example.

A key characteristic of our collaboration charts is that they are inter-
active and support browsing within the IDE. Clicking on any class in
a class collaboration chart opens a source code view of this class. By
clicking on a message send between two classes (i.e. an edge) the user
can, for example, see all methods invoked by this send or open method
collaboration charts with the invoked method as a root. A click on the
message displayOn: sent from Graph to Element as shown in Figure 9.4
opens a method collaboration chart focusing on the method Element »
displayOn: canvas shown in Figure 9.6, as Graph simply uses the method
displayOn: implemented in its parent class Element.

Representing Dynamic Collaboration in the IDE 211

Figure 9.6: Method Collaboration Chart generated by the IDE.

Figure 9.7: Integration of a class collaboration chart in the Squeak
Smalltalk IDE.

Additional dynamic information is available on demand in collabora-
tion charts, e.g. the average execution time of a message send, the number
of times a message has been sent, the number of instances of a class, or
the number of classes from two different packages that communicate
with each other, and so on. Such information may prove useful to assess
or identify performance bottlenecks. We also provide visual means to
quickly identify frequent communication paths by displaying the edges
in this path more thickly, as shown in Figure 9.5 or Figure 9.6. Finally, the
charts are dynamically modifiable, i.e. the developer can for instance re-
move static artifacts from the chart or add additional artifacts (e.g. classes)
that should also be taken into account when rendering the chart.

In the following, we explain how these charts are tightly embedded
in the IDE, i.e. how these charts integrate with the static views of source
artifacts such as packages, classes or methods.

9.3.3 Enhancing Existing IDE Tools

Typically, an IDE provides means to browse source code entities in a top-
down manner, i.e. going down from packages, classes to single methods,
e.g. by using a tree view. In the Squeak Smalltalk IDE [INGA 97] packages,

212 CollView – Representing Dynamic Collaboration in IDEs

classes, method categories and methods are navigated in columns in
this order, as visible in Figure 9.7. We enhance this source code view in
the Squeak Smalltalk IDE with means to select several static artifacts of
the same kind (e.g. several classes). The IDE instruments these selected
entities on demand with partial behavioral reflection as described in
Section 9.3.1 to gather dynamic information, without having to halt the
system if it is already running. The developer then executes a feature of
interest in the subject system or runs a particular test case to generate
runtime data to be studied in more detail. Within the IDE the developer
chooses the class collaboration chart to view this chart based on the
previously gathered information.

Such a scenario is illustrated in Figure 9.7 where the classes Graph,
Element and Style have been selected. After the program, i.e. Mondrian,
has been executed, selecting the tab “Class Collaboration” brings up the
class collaboration chart for these three classes as shown in Figure 9.4.

In all charts, static artifacts are navigable, e.g. selecting a class opens
this class in parallel to the chart (see actions of class MOStyle in Figure 9.7),
or clicking on edges in class charts brings up the method invoked. Modi-
fying source code marks all charts involving this source code as obsolete,
i.e. these charts need to be updated by a new run of the system.

This approach of integrating collaboration visualizations in IDEs is
very lightweight and does not further overload the busy interfaces of
development environments as these charts only appear on demand, when
the developer wants to investigate in detail the dynamic collaboration
between particular source artifacts.

9.4 Validation

First, we validate CollView by reporting on the efficiency and performance
of the dynamic information gathering and the generation of the charts.
Second, we present the results of a study conducted with developers,
where we asked them to assess the added value of having access to our
dynamic collaboration views tightly integrated in the IDE.

9.4.1 Performance Benchmarks

We ran two benchmarks evaluating the generation of Class Collaboration
Charts: First, we selected the three classes of our Mondrian example,
(Element, Style and Graph), to generate a chart highlighting how these
classes interact at runtime. To gather the runtime information, we let

Validation 213

Mondrian generate ten complex graphs each with a hundred nodes. We
measured the time to execute our scenario once with and once without
dynamic information collection activated. We also measured the time
to render the charts after having collected the dynamic information. We
summarize the results in Table 9.1.

As a second case study we analyzed Pier [RENG 06], a sophisticated,
web-based content management system implemented in Smalltalk. Pier
has a generic model to provide its services, thus we decided to analyze
its core package called Pier-Model in which the main classes reside. In
total, we analyzed eight classes in this package which we have chosen
randomly, without taking into consideration any knowledge about how
these classes communicate with each other. The selected classes consist of
215 methods in total. After analyzing the behavioral information gathered
while exercising a Pier feature edit page, we noticed that these eight classes
indeed directly or indirectly collaborate at runtime, resulting in a huge
collaboration chart. Again, we measured the time to run this feature
with and without runtime analysis, and the time to render the chart. We
present the results in Table 9.2.

The figures we obtained from our benchmarks lead us to conclude that
the information gathering technique is efficient enough for most practical
use cases where only a limited number of classes are to be analyzed. As
the comparison between the Mondrian and the Pier benchmark illustrates,
the analysis time significantly increases in proportion to the number of
analyzed source artifacts. We also performed a preliminary benchmark
analyzing all classes of Pier, which resulted in an overhead of more
than factor seven. It is possible to perform such analyses covering all
application classes, but the resulting class collaboration chart will be
too cluttered to be of use to developers. This kind of chart is typically
intended to only cover a subset of all the application classes. In such a
case we do not consider the performance of data gathering to be an issue.

We note that gathering information to generate package collaboration
charts for a whole application is at least as efficient as generating class
charts for a limited number of classes as much less information has to be
gathered to reason about package dependencies, basically only whether
any two packages exchange methods and how often such methods are
invoked. Analyzing package dependencies of the whole Pier application
results in an overhead of less than factor two.

Drawing the charts is very efficient even for large charts, as illustrated
by the results of both benchmarks.

214 CollView – Representing Dynamic Collaboration in IDEs

Action Measured time (ms)

Execution w/o data collecting 7246
Execution w/ data collecting 20725 (overhead 186%)

Chart rendering 0.2

Table 9.1: Time to gather data and render a class collaboration chart for
Mondrian.

Action Measured time (ms)

Execution w/o data collecting 56
Execution w/ data collecting 233 (overhead 316%)

Chart rendering 0.3

Table 9.2: Time to gather data and render a class collaboration chart for
Pier.

9.4.2 Developer Feedback

We asked several Smalltalk developers familiar with the Squeak Smalltalk
IDE to use our charts while working on a feature enhancement request in
a software system that was unknown to them before. All subjects of this
preliminary user experiment were graduate students with at least one year
of Smalltalk experience and several years of programming experience in
other object-oriented languages such as Java. To realize the enhancement
of the subject system (namely the Pier system), the study subjects needed
to gain an understanding of at least five classes in this system, in particular
how these classes collaborate with each other. We did not mention which
classes are important to realize the enhancement, but explained the model
package of Pier in which the feature enhancement had to be implemented
by means of a static UML class diagram not revealing any information
about the runtime collaboration between the various classes.

The task for the developers was first to gain a basic understanding
of the dynamics between the classes in the model package of Pier and
then second to focus on the enhancement request, which was relatively
easy to perform as soon as the classes realizing the feature have been
identified. Concretely, we asked them to implement a move mechanism
for an existing web page in the content management system. A copy
and a remove mechanism were already present, which we mentioned
in the explanation phase. We also gave the hint to implement the move
feature by combining the copy and the remove features. The subjects had
to find out how the commands realizing these actions and the classes
representing web pages interact at runtime to be able to implement the
feature request. We advised them to run the copy and remove features

Discussion 215

Statement Average rating

Strong effect on class collaboration understanding 4.4
Strong effect on general understanding of the feature 4.1

Strong effect on complete system understanding 3.2
Strong effect on execution overview 4.3

More efficient navigation of source entities 3.4
Faster identification of relevant source entities 3.9

Table 9.3: User rating for asked statements during the experiment.

of Pier to generate a class collaboration chart expressing the dynamic
relationships between the model classes contributing to these features.
This scenario makes use of three design patterns that subject had to grasp,
the Command, Composite, and Observer patterns.

After the experiment, we asked several questions to the subjects to
be answered on a Likert scale [LIKE 32] from ’1’ to ’5’ where ’1’ means
’strongly disagree’ and ’5’ means ’strongly agree’ with the asked state-
ment. The statements we issued to the subjects and the average rating
we obtained are shown in Table 9.3. Additionally, the subjects gave some
comments, e.g. that the charts were very useful to locate relevant static
entities to be studied further and to understand how they relate to other
entities at runtime, leading to a faster comprehension of the executed
features.

This developer feedback constitutes a preliminary empirical evalua-
tion of our work. Nonetheless, the feedback we obtained encourages us
to conduct a full-fledged empirical evaluation covering several tasks to be
performed by the subjects in order to obtain quantitative data validating
the effect of the interactive collaboration charts on program comprehen-
sion more thoroughly. We expect that CollView also supports well typical
software maintenance tasks such as debugging, fault isolation and cor-
rection, or feature identification, as all these different tasks encompass
hidden dynamic collaborations between source artifacts made visible by
CollView.

9.5 Discussion

In this section we discuss several aspects of our work which we consider
to be critical to our approach. These aspects cover four dimensions of
our proposal: (1) efficiency and (2) completeness of dynamic analysis,
(3) usability, and (4) extensibility of the interactive presentation of the

216 CollView – Representing Dynamic Collaboration in IDEs

information, i.e. collaboration charts.

Efficiency. We have provided the results of our benchmarks on pure
data gathering efficiency in Section 9.4.1. However, we need to discuss
scalability of our approach in terms of size of the subject system or the
amount of the resulting dynamic data. Concerning the size of systems
we can analyze with our approach, we need to distinguish between class
collaboration and package collaboration charts. As shown in the pre-
vious section, viewing a full-fledged class collaboration chart covering
the whole system does not provide much value to the developer as it
is not easy to locate any concepts in the resulting view. The package
collaboration chart is better suited when reasoning about the dynamic
collaborations of the entire application as it provides useful information
about frequent communication paths between the different packages.
From this view the developer can identify communication paths of inter-
est, which she can then study further on the level of class collaboration.
By starting to analyze package collaboration instead of class collaboration
the developer can also reason about larger systems in which several thou-
sands of message sends occur to realize a specific feature. We validated
this by studying such an execution of a system (i.e. the test suite of Pier
consisting of more than 1000 test cases).

Another way to deal with a large amount of data is to adopt filtering
and compression techniques. As mentioned in Section 9.3.2 we filter out
recurrent method calls resulting from loops using a similar algorithm as
presented by Hamou-Lhadj et al. [HAMO 03] before finally storing the
information used to generate class collaboration charts. As developers
typically select specific source entities, e.g. classes, to be analyzed dynam-
ically, all information not generated by the selected entities is omitted by
default, which is useful to ignore much data not required for a given use
case from the start.

Completeness. Dynamic analysis always raises the issue of coverage
and completeness of the obtained dynamic information [BALL 99]. The
results of dynamic analyses depend on what exactly gets executed in
the system under study. The collaboration between several classes for
instance can vary heavily between two different features being executed.
We recognize this fact, but in the context of an IDE, developers normally
focus on very specific tasks, i.e. correcting a defect or enhancing a feature.
For this kind of task, it is an advantage rather than a drawback to focus
on specific executions of the system instead of having complete coverage
of all theoretically possible executions. Being able to tailor the view to a

Discussion 217

very limited scope, e.g. executing a feature with pre-defined input values
to reproduce a reported bug, eases the understanding for this specific
scenario as noise of other executions are not included in the collaboration
charts.

Collaboration charts contain less information than for instance se-
quence diagrams, as the order in which messages are sent is not preserved.
Collaboration charts provide an overview to quickly grasp information of
interest without distracting developers by displaying too much informa-
tion. As soon as they have identified communication patterns of interest,
they can study them more in detail, by using a full-fledged sequence
diagram, a debugging session or simply reading the source code.

Another completeness issue arises due to the fact that the static source
artifacts are selected by the developer. This is inherently error prone as
she might omit some of the entities relevant for the problem at hand, e.g.
a defect in a system’s feature. This is in particular true when dealing
with a large, unknown system where the important entities have to be
identified first. However, in many cases the developer has already a
basic understanding of the system in terms of important entities to be
considered in the first step. As the package collaboration chart allows
the developer to start the analysis at a coarse-grained level, she can start
with this initial knowledge and gradually select other entities of interest.
In Mondrian we discovered the important role of the UndefinedObject
class by first studying the package collaboration where we could easily
see that Mondrian communicates with the system package containing
UndefinedObject (i.e. package Kernel-Objects).

Usability. Usability is a fundamental aspect of a development environ-
ment. We constantly integrate user feedback in our own development
process of CollView. In particular, we collected user feedback in early
development stages to assure that developers understand and can effec-
tively use our interactive collaboration charts within the IDE. From the
discussions with developers, i.e. end-users of our work, we constantly ob-
tained hints and remarks about missing features and better integration of
our work into the existing environment of the IDE, i.e. Squeak Smalltalk.
We consider these feedback loops to be a best practice when working on
enhancements to development environments, in particular to increase us-
ability, but also to discover potentially useful features. This is even more
important when working on tools incorporating dynamic information, as
the vast amount of data makes it difficult to devise representations that
are easy to grasp.

218 CollView – Representing Dynamic Collaboration in IDEs

Extensibility. Currently we have built CollView in the Squeak Smalltalk
environment [INGA 97], as this IDE is easily extensible. The concepts we
describe in this chapter, however are generic and we do not expect it to
be difficult to port this work to other IDEs such as Eclipse [ECLI 03] for
Java. Making the various charts interactive is straightforward. More chal-
lenging is the efficient collection of data without having to recompile or
otherwise prepare the subject system. Reflex [TANT 03] provides similar
means for partial behavioral reflection as adopted in our approach, but
it is less efficient and requires the reflective behavior to be anticipated
before starting the system. As the IDE takes care of the correct installation
of the reflective data gathering in the subject application before start up,
this is no drawback in many cases.

The integration of the charts into the IDE, i.e. how to interact with
the charts from and back to traditional IDE tools, is easily extensible and
adaptable, provided that the IDE offers open frameworks to extend itself,
which is the case for both the Smalltalk and Eclipse IDE.

9.6 Related Work

In this section we compare CollView to existing work in the context of IDEs,
representing dynamic collaborations and visualizing behavior of object-
oriented systems. Most of these related works have been introduced in
Section 2.2.2.

Collaboration Browser [RICH 02] represents a program’s behavior in
terms of collaboration patterns. This approach performs postmortem
analysis on execution traces of a system’s behavior and represents the
collaborations in visualizations similar to UML sequence diagrams. These
visualizations are integrated in a minimal browser separated from the
conventional IDE; the visualizations can be queried by the developer. No
interaction with the static view on the system is possible, i.e. developers
cannot use this browser to maintain the system.

Cornelissen et al. [CORN 07b] propose to use sequence diagrams to
visually display the behavior of test suites. They address scalability
issues and propose abstractions to efficiently represent the trace data.
They suggest limiting stack depth and omitting constructors to filter out
interactions that are not needed for comprehension. We also address
the issue of limiting the amount of information to be represented in the
views by means of partial behavioral reflection and filtering techniques
as discussed in the previous section.

Related Work 219

Polymetric views for condensed runtime information [DUCA 04] give
an overview of the communication between classes in the whole system.
These views are provided by a tool separated from the IDE, thus no
interaction between these views and the static source code is possible.
Moreover, focusing on specific artifacts and looking at how they commu-
nicate with the rest of the systems is not supported by this approach.

Program Explorer [LANG 95] visualizes the dynamic communication
of programs and focuses on identifying and visualizing design patterns.
Unlike CollView, Program Explorer does not show complete information
concerning the communication between source artifacts but focuses on
information considered to be relevant to recover design patterns in pro-
grams. Moreover, Program Explorer is not able to show how a specific
artifact collaborates with the rest of the system. Program Explorer is a
stand-alone tool not integrated in any IDE.

Jinsight [DE P 93] focuses on the visualization of runtime interactions
between objects with the goal of easing the identification of performance
bottlenecks, for instance two objects heavily communicating with each
other. Contrary to CollView, Jinsight does not provide an overview of
the collaboration patterns in a system and is not able to visualize how
specific artifacts collaborate with other artifacts such as packages, classes,
or methods. Jinsight is a tool separated from the IDE.

GraphTrace [KLEY 88] presents animated graphs of runtime activity
and thus highlights the current activity of a program. The runtime graphs
are usually very large, which makes it hard to integrate such graphs in
an IDE and to use them during software maintenance. GraphTrace is not
able to provide an overview of the communication occurring between
system artifacts.

Shimba [SYST 01] is an environment for reverse engineering Java sys-
tems by providing scenario diagrams representing execution traces. These
traces are usually very large and thus Shimba, as GraphTrace, is hard to
embed or use in an IDE in order to support program comprehension and
software maintenance.

Jive and Jove [REIS 03, REIS 05] visualize the runtime activity of Java
programs in real time with the goal of supporting software development
activities such as debugging and performance optimizations but also
understanding of runtime behavior in general. The focus of CollView is to

220 CollView – Representing Dynamic Collaboration in IDEs

integrate visualizations of runtime collaborations in the IDE to provide
useful insights and interactive navigational aids for developers while
working with the source code of a system. This means that CollView
not only visualizes the runtime behavior, but uses the visualizations to
navigate the system, hence its aim is not solely to boost understanding
for the software, but to use the visualization of runtime collaboration to
evolve or maintain a system in the IDE.

9.7 Summary of the Chapter

In this chapter we proposed to explicitly represent dynamic collabora-
tions between static artifacts with CollView. We addressed the following
questions throughout the chapter:

• Why is it crucial to understand how source artifacts dynamically com-
municate from within the IDE? We elaborated on use cases where an
explicit representation of dynamic collaboration in IDEs is useful
for developers, for instance to understand the interplay of several
classes in a system or to locate important classes by looking how
the system behaves at runtime.

• How can we achieve the immediate availability of dynamic information
in the IDE? An important prerequisite to such an representation
of collaboration in IDEs is an efficient and effective technique to
gather dynamic information, which is fulfilled by sub-method par-
tial behavioral reflection [DENK 07] as we illustrated by means of
conducted benchmarks.

• How do we browse and reason about dynamic collaborations in an IDE?
We identified several requirements an integration of dynamic collab-
oration in an IDE needs to fulfill in order to be useful to developers:
(i) focusing on specific static artifacts (e.g. identified classes) is cru-
cial, (ii) view generation needs to be immediately available after
system execution and tightly integrated in the IDE, i.e. accessible
while browsing static artifacts, (iii) these views of dynamic collabo-
ration have to be condensed, interactive and intertwined with the
static view on the system to be usable and to not force developers
to switch to other tools or views separated from the conventional
source views.

As we have shown in a preliminary user experiment with Smalltalk de-
velopers, the representation of dynamic collaboration as charts available
in the IDE provides added value in terms of program comprehension, for
instance feature comprehension, and navigation of static source artifacts.

Summary of the Chapter 221

After having presented three related approaches integrating dynamic
information in the static source perspectives of IDEs, we are still miss-
ing a representation of features in the IDE. Hermion is able to improve
the understanding of static source code and the execution flow therein,
Senseo aims at integrating in IDEs information about how source artifacts
(packages, classes, methods) collaborate to other artifacts, and CollView
visualizes such collaboration information to provide an overview and a
better means to navigate a system based on dynamic relationships be-
tween the various system artifacts. However, software features, which are
dynamic by nature, are not explicitly represented by any of these three
proposals. Thus, we elaborate in the following chapter on FeatureEnv, an
enhancement to the IDE allowing developers to execute one or several
features and visualizing the execution of the feature(s) in the development
environment to better analyze, navigate, or maintain the feature(s).

Chapter 10

FeatureEnv – Visualizing
Software Features in IDEs

10.1 Introduction

10.1.1 Positioning FeatureEnv

In this chapter we describe FeatureEnv, an enhancement to the conven-
tional Squeak Smalltalk IDE. FeatureEnv sets out to tackle the invisibility
of software features in the static source perspectives of IDEs by providing
visualizations of features and by highlighting in the source views the
artifacts contributing at runtime to a feature. FeatureEnv also mitigates the
problem of hidden collaboration between conceptually related but stati-
cally distributed source artifacts by relating in the feature visualizations
all source artifacts exercised during feature execution. Thus, FeatureEnv
improves the support for all development activities except artifact us-
age investigation. Figure 10.1 summarizes the IDE problems tackled by
FeatureEnv and the development activities for which it provides better
support in the IDE.

To achieve its goals, FeatureEnv provides three perspectives on features
integrated in the IDE: (i) a feature overview to compare the dynamics of
several features to each other, (ii) a feature tree presenting the method call
tree generated during the execution of a specific feature, and (iii) a feature
artifact browser which is an adapted version of the traditional system
browser in Smalltalk and which highlights all source artifacts (packages,
classes, methods) used in a specific feature.

224 FeatureEnv – Visualizing Software Features in IDEs

Figure 10.1: FeatureEnv addresses the problem of the invisibility of fea-
tures in IDEs by explicitly representing them and also contributes to make
visible hidden collaboration between distributed source artifacts.

The rest of this chapter is dedicated to presenting FeatureEnv in detail.
After introducing the approach, we give reasons why a missing represen-
tation of features is a burden to program comprehension and software
maintenance. We afterwards present FeatureEnv, which tackles this prob-
lem. We validate our proposal with a controlled empirical experiment
concerned with typical software maintenance tasks.

10.1.2 Introduction to FeatureEnv

System comprehension is a prerequisite for software maintenance but
it is a time-consuming activity. Studies show that 50-60% of software
engineering effort is spent trying to understand source code [BASI 97,
CORB 89]. Object-oriented language characteristics such as inheritance
and polymorphism make it difficult to understand runtime behavior
purely by inspecting source code [DEME 03, DUNS 00, WILD 92]. The
task of understanding a software system is further exacerbated by a best
practice in object-oriented programming to scatter behavior in many small
methods, often in deep inheritance hierarchies [NIEL 89b].

The problems of understanding object-oriented software are poorly
addressed by current development tools, since these tools typically focus
only on a structural perspective of a software system by displaying static
source artifacts such as packages, classes and methods. This is also true
for modern Smalltalk dialects and development environments such as
Squeak [INGA 97] or Cincom VisualWorks [VISU 10].

A system may be viewed as a set of features. Each feature represents
a well-understood abstraction of a system’s problem domain. Typical
maintenance requests are expressed in terms of features [MEHT 02]. Thus,
understanding how features are implemented is a prerequisite for system
maintenance. A feature denotes a unit of behavior of a system. It exists
at runtime as a collaboration of objects exchanging messages to achieve
a specific goal. However, as it is not explicitly represented in the source

Introduction 225

code, it is not easy to identify and manipulate. In this chapter, we adopt
the definition of a feature as being a unit of observable behavior of a
system [EISE 03].

As traditional development environments offer the software engineer
a purely structural perspective of object-oriented software, they make no
provision for the representation of behavioral entities such as features.
To tackle this shortcoming, we propose to support the task of program
understanding during maintenance by augmenting a static source code
perspective with a feature perspective of a software system. We present
a novel feature-centric environment called FeatureEnv which provides
support for visual representation, interactive exploration, navigation and
maintenance of a system’s features. To motivate our work, we address
the following questions:

• How useful is a feature-centric development environment for un-
derstanding and maintaining software?

• How do we quantitatively measure the usefulness of a feature-
centric development environment?

• How do software engineers subjectively rate the usefulness of a
feature-centric perspective of a system to perform their maintenance
tasks?

The fundamental question we seek to answer is if software engineers
can indeed better understand and maintain a software system by exploit-
ing a feature-centric perspective in a dedicated feature-centric develop-
ment environment. We want to determine if a feature-centric perspective
is superior to a structural perspective to support program comprehen-
sion. To address this question, we implemented FeatureEnv in Squeak
[INGA 97], a dialect of Smalltalk. FeatureEnv acts as a proof of concept
for the technical feasibility of our approach and as a tool which we can
validate in practice with software engineers. While this tool adds more
information to the overloaded IDE, it at the same time also helps devel-
opers to better identify relevant artifacts and thus mitigates the negative
impact of information overload.

The key contributions of this chapter are: (1) we present our feature-
centric development environment, and (2) we provide empirical evidence
to show its usefulness to support comprehension and maintenance ac-
tivities as compared with the structural views provided by a traditional
development environment.

Structure. In the next section we expand on the problem of feature
comprehension and provide a motivating example. Based on this, we for-
mulate our hypotheses of the usefulness of a feature-centric perspective

226 FeatureEnv – Visualizing Software Features in IDEs

for performing maintenance tasks. In Section 10.3 we introduce Fea-
tureEnv, allowing a developer to work in a feature-centric development
environment. We validate the usefulness of FeatureEnv by conducting an
empirical study in Section 10.4. We present the results and evidence of
our study in Section 10.5. We report on related work in Section 10.6 and
finally we conclude in Section 10.7.

10.2 Problem of Feature Identification

It is a generally accepted best practice of object-oriented programming that
functionalities or features are implemented as a number of small methods
[DUNS 00]. This, in addition to the added complexity of inheritance and
polymorphism in object-oriented software, means that a software engineer
often needs to browse a long chain of small methods to understand
how a feature is implemented. In Figure 10.2 we illustrate this with an
example from Pier [RENG 06], the system we chose as a basis for our
experimentation. Pier is a web content management system [RENG 06]
implemented in Squeak Smalltalk [INGA 97]. Figure 10.2 shows a small
part of the class hierarchy of Pier and an excerpt of a call tree, generated
by exercising the copy page feature.

A software engineer, faced with the task of maintaining the copy page
feature, first needs to locate the relevant classes and methods, and then
browses back and forth in the call chain to establish a mental map of the
relevant parts of the code and to gain an understanding of how the feature
is implemented. This is a cumbersome and time-consuming activity and
often the software engineer loses time and focus while browsing irrelevant
code.

10.2.1 Explicitly Representing Features in the IDE

From the perspective of a software engineer, a feature consists of a set of all
methods executed while performing a certain task or activity in a software
system. The relationships between the methods of a feature are dynamic
in nature and thus are not explicit in the structural representation of the
software [JERD 96]. For our purposes, we represent features (i.e. dynamic
units of behavior) in terms of their participating methods. We aim at
supporting software maintenance activities in general (as discussed in
Section 10.1.2), though the main focus of FeatureEnv is on supporting the
software engineer when maintaining or fixing a defect in a feature. Thus
we need to capture and represent features as explicit entities. The behavior
of a feature may be captured by triggering an activity from the user

Problem of Feature Identification 227

invokes

CopyCommand(Command)>>execute

CopyCommand(LocationCommand)>>doValidate

CopyCommand>>doExecute

CopyCommand(Command)>>doExecute

CopyCommand(Command)>>structure

Page>>postCopy

Page(Structure)>>postCopy
Page(Decorated)>>postCopy inheritance lookup

name
execute
doValidate
doExecute
structure
uniqueName:in:
...

Command

name
defaultName
doValidate
name:
target
...

name
target

LocationCommand

defaultName
doExecute
...

CopyCommand

postCopy
...

Decorated

postCopy
postCopyTo:
name
isValidCommand:in:
name:
title:
...

Structure

postCopy
...

Page

Page(Object)>>copy

Page(Object)>>postCopy

Figure 10.2: The relevant Pier class hierarchies for the copy page feature
and its call graph.

interface. Alternatively, as described in the work of Licata et al. [LICA 03],
test cases are typically aligned with features. For our experimentation
we opted to use test cases to trigger features. Furthermore, by using test
cases we can better control the volume of dynamic information captured
to represent each feature.

Our premise is that by explicitly representing features in the devel-
opment environment, we support maintenance activities by providing
the software engineer with an explicit map between features and source
entities that implement the feature. By focusing the attention of the main-
tainer on only relevant source entities of a given feature or a set of features,
we improve the understanding and the ease with which she can carry
out maintenance tasks. This clear focus may actually reduce the nega-
tive impact of information overload even though FeatureEnv integrates
more information in the IDE; as developers have to spend less time to
locate artifacts relevant for a particular feature, they are less hampered by
overloaded interfaces in the IDE.

We state our hypotheses as:

• FeatureEnv decreases the time a software engineer has to spend to main-
tain a software system (e.g. to correct a bug) compared to a traditional
development environment which provides only a structural perspective of
the code.

228 FeatureEnv – Visualizing Software Features in IDEs

• FeatureEnv improves and enriches the understanding of how the features
of a software system are implemented.

We refine our hypotheses in Section 10.4, when we describe the details
of our empirical study. Our qualitative and quantitative evaluation of
the findings of our experimentation reveal that these hypotheses indeed
hold.

10.3 FeatureEnv, a Feature-centric Environment

We embed FeatureEnv in the software engineer’s integrated development
environment (IDE). The purpose of FeatureEnv is to augment an IDE
with a feature perspective of a software. We implemented our approach
in Squeak Smalltalk [INGA 97]. FeatureEnv complements the traditional
structural and purely textual representation of source code in a browser
by presenting the developer with interactive, navigable visualizations
of features in three distinct but complementary views. These views are
enriched with metrics to provide the software engineer with additional in-
formation about the relevancy of source artifacts (i.e. classes and methods
) to features.

Initially, we introduce the key elements of FeatureEnv. Subsequently,
we describe how FeatureEnv promotes a software engineer’s comprehen-
sion of scattered code in object-oriented programming while performing
maintenance tasks on a system’s features.

10.3.1 Feature Affinity in a Nutshell

Greevy et al. [GREE 07] defined a Feature Affinity measure to assign a
relevancy scale to methods in the context of a set of features. Feature
Affinity defines an ordinal scale corresponding to increasing levels of
participation of a source artifact (e.g. a method) in the set of features that
have been exercised. For FeatureEnv we consider four Feature Affinity
values: (1) a singleFeature method participates in only one feature, (2) a
lowGroupFeature method participates in less than 50% of the features, (3) a
highGroupFeature method participates in 50% or more of the features and
(4) an infrastructuralFeature method participates in all of the features.

We exploit the semantics of Feature Affinity to guide and support
the software engineer during the navigation and understanding of one
or many features. We assign to the visual representation of a method
a color that represents its Feature Affinity value. Our choice of colors
corresponds to a heat map (that is, a cyan method implies singleFeature

FeatureEnv, a Feature-centric Environment 229

testCopy
testCopyIntoChild
testInitialized

CopyCommandTest
...

Test Browser
tests

<<context menu>>

- generate trace
- open in feature view
- run

(1)

(4)

<<context menu>>

- view source in browser
- ...

(3)
(4)

(2)

Figure 10.3: The Elements of our FeatureEnv.

and red implies infrastructuralFeature, i.e. used by all the features we are
currently investigating). Such a heat map allows developers to quickly
grasp the similarities and differences between two or more features. Such
knowledge helps developers to better understand features and to locate
artifacts responsible for flaws in particular features. It is likely that a
defect occurring in one single feature is caused by parts that are different
from similar but non-broken features.

10.3.2 Elements of FeatureEnv

FeatureEnv contributes three different visualizations for one and the same
feature: (2) the compact feature overview, (3) the feature tree view and (4)
the feature artifact browser. (1) is the test runner which is not directly
part of FeatureEnv but a separate tool. Any means exercising a feature of
a software system can be used by FeatureEnv to analyze this feature. In
Figure 10.3 we use a test runner.

Compact Feature Overview

The Compact Feature Overview presents a visualization of two or
more features represented in a compacted form. The Compact Feature
view represents a feature as a collection of all methods used in the feature
as a result of capturing its execution trace. Each method is displayed
as a small colored box; the color represents the Feature Affinity value.
The methods are sorted according to their Feature Affinity value. The
software engineer decides how many features she wants to visualize
at the same time (see Figure 10.3 (2)). Clicking on a method box in the
Compact Feature View opens the Feature Tree View, which depicts a call
tree of the execution trace. This visualization reveals the method names

230 FeatureEnv – Visualizing Software Features in IDEs

and order of execution. All occurrences of the method selected in the
Compact Feature View are highlighted in the call tree.

Feature Tree

This view presents the method call tree, captured as a result of ex-
ercising one feature (see Figure 10.3 (3)). The first method executed for
a feature (e.g. the “main” method) forms the root of this tree. Methods
invoked in this root node form the first level of the tree, hence the nodes
represent methods and the edges are message sends from a sender to a
receiver. As with the Compact Feature Overview, the nodes of the tree
are colored according to their Feature Affinity value.

The key challenge of dynamic analysis is how to deal with the large
amount of data. For our experimentation we chose to analyze Pier
[RENG 06], a web-based content management system implemented in
Smalltalk. We obtained large traces containing more than 15’000 method
invocations. We discovered that it is nearly impossible to visualize that
amount of data without losing the overview and focus while still convey-
ing useful information. To overcome this we applied two techniques:

First, we opted to execute test cases of a software system rather than
interactively trigger the features directly from the user interface. For
instance, instead of looking at the entire copy page feature initiated by
a user action in the user interface, we analyze the copy page feature by
running the test cases that were implemented to test this feature. As stated
in the work of Licata [LICA 03], features are often encoded in dedicated
unit test cases or in functional tests encoded within several unit test cases.
In the case of a software system that includes a comprehensive test suite,
it is appropriate to interpret the execution traces of such test cases as
feature execution traces [LICA 03].

Second, we compressed the execution traces and the corresponding
visual representation as a feature tree as much as possible without
omitting information about order of execution of method sends. To
achieve this we use two different algorithms, one to remove common
subexpressions in the tree and another to remove sequences of recurring
method calls as a result of loops. These two algorithms are explained in
the following.

Common Subexpression Removal
A subexpression in a tree is a branch which occurs more than once.
If, for example, a pattern “method c invokes methods a and b"
occurs several times in a call tree, we identify this pattern as a com-
mon subexpression. Our analysis reveals that the execution traces

FeatureEnv, a Feature-centric Environment 231

C>>testA
A>>>b

A>>c

A>>b
D>>b

C>>a

(1) common subexpression popup

3
A>>d

C>>e
(2) sequence compression

Figure 10.4: The Common Subexpression and Sequence Compression of
the Feature Tree.

of features typically contain many common subexpressions. By
compacting the representation of these subexpressions, we reduce
the tree by up to 30% on average. Our visualization still includes
an expandable root node of a common subexpression branch in the
tree, the subexpression can be opened in a pop-up window by the
software engineer. Figure 10.4 (1) shows a schematic representation
of how we display common subexpressions in our feature tree view.

To remove common subexpressions, we applied the algorithm
presented by Flajolet et al. [FLAJ 90].

Sequence Removal

Often a feature trace contains several sequences, e.g. methods in-
voked in a loop. It is straightforward to compress these nodes
included in a loop by only presenting them once. Furthermore, we
indicate how often the statements of a loop are repeated. If, for
example, the methods d and e are executed three times in a loop,
we add an artificial numeric node labeled with a ‘3’ to the tree and
link the nodes for d and e to this node (as shown in Figure 10.4 (2)).
To detect and compact sequences, we implemented a variation of
the algorithm presented in Hamou-Lhadj et al. [HAMO 03].

232 FeatureEnv – Visualizing Software Features in IDEs

These techniques guarantee that the feature tree is still complete and
easy to read and interpret by the software engineer. No method calls
occurring in the feature are omitted.

Initially a feature tree is displayed collapsed to the first two levels. Ev-
ery node can be expanded and collapsed again. In this way, the software
engineer can conveniently navigate even large feature trees.

When a user selects a method node in the compact feature overview,
all the occurrences of this method are highlighted in the feature tree. Also
the tree is automatically expanded to the first occurrence of the selected
method and the feature tree window is centered on that node. The user
can navigate through all occurrences of the desired method by repeatedly
clicking on the corresponding node in the compact feature overview. By
opening a method node in the feature tree the engineer is able to follow
the complete chain of method calls from the root node to the current
opened method node. No intermediate calls of methods belonging to the
software system under study are omitted.

Every node of the tree provides a button to view the source code of
the corresponding method in the feature artifact browser.

Feature Artifact Browser

The source artifacts of an individual feature are presented as text in
the feature artifact browser (see Figure 10.3 (4)). By default, it exclusively
displays the classes and methods actually used in the feature. On demand,
developers can also see all system artifacts in the feature artifact browser;
the feature artifacts appear highlighted. This makes it much easier for
the user to focus on a single feature of the software. Our feature artifact
browser is an adapted version of a standard class browser available in the
Squeak environment. It contains packages, classes, method categories
and methods in four panes on the top, while the lower pane contains the
source code of the selected entity. This version of the class browser not
only presents static source artifacts, but also the feature affinity metric
values by coloring the names of classes and methods accordingly.

The three distinct visualizations provided by FeatureEnv are tightly in-
terconnected so that a software engineer does not lose the overview when
performing a maintenance task. For instance, the user selects a method
in the compact feature overview, the tree opens with all occurrences of
the selected method. From the tree perspective, the software engineer can
choose to view a method as source code in the feature artifact browser by
double-clicking on a node that represents the method of interest in the
feature tree.

FeatureEnv, a Feature-centric Environment 233

To initiate a maintenance session with FeatureEnv, the software en-
gineer selects test cases that exercise features relevant to her specific
maintenance task. To ease the collection of features traces, we extended
the standard class browser of Smalltalk (called OmniBrowser) to seam-
lessly execute instrumented test cases and capture feature traces as shown
in Figure 10.3 (1). Thus, once she has executed the instrumented test
cases, the software engineer launches FeatureEnv with an initial number
of features.

10.3.3 Maintaining Software with FeatureEnv

FeatureEnv supports program comprehension and feature understanding
for maintenance tasks in three ways:

Firstly, by comparing several features with each other in the compact
feature overview, software engineers gain knowledge about how different
selected features are related in terms of the methods they have in com-
mon. Since the features included in this compact feature overview can be
arbitrarily selected, a developer can compare any two features with each
other. However, when performing a specific maintenance task, it makes
sense to select related test cases to e.g. compare failing tests with similar,
non-failing tests to determine which parts of a software system may be
most likely responsible for a defect. If, for example, only one test method
of a test class exercising the copy command feature of a software system is
failing, then we compare this test method to all test methods exercising
the copy command feature. We assume that by looking first at the methods
that are only used in the single failing test method, we are more likely
to be faster at discovering the defect, as chances are high that one of the
singleFeature methods (i.e. methods unique to one compact feature view)
is responsible for that defect. The aim of the compact feature overview
is to support the quick identification and rejection of candidate methods
that may contain a defect.

Secondly, the feature tree provides insight into the dynamic structure
of a feature, an orthogonal dimension compared to the static structure
visible in the source code. The nodes in the tree are also colored according
to the Feature Affinity metric which guides the software engineer to
identify faulty methods. In the example described above where a single
feature is failing, the most likely candidate methods responsible for the
defect are colored in cyan in the feature tree. Since this tree is complete,
i.e. it contains all method calls for that specific feature, chances are high
that the engineer discovers the source of the defect in one of these single
methods that are easy to locate in the feature tree due to their coloring.

234 FeatureEnv – Visualizing Software Features in IDEs

The software engineer can also navigate and browse the tree to obtain
a deeper understanding of the implementation of the feature and the
relationships between the different methods used in the feature. For
every method of a feature, the software engineer can easily navigate to
all occurrences of this method in the feature tree to find out how and
in which context the given method is used. This helps one to discover
the location of a defect and the reason why it occurs. The feature tree
transforms and improves the understanding of the dynamic structure of
a feature and reveals where and how methods are used. For every node
in the feature tree, the developer can view the source code of that method
in the feature artifact browser.

Thirdly, the feature artifact browser helps the developer to focus only
on entities effectively used in a feature. The number of methods that
might be responsible for bugs is thus reduced to a small subset of all
existing methods in a class or a package. Since only packages, classes and
methods are presented to the developer in the feature artifact browser, it
is much easier for her to find information relevant for a defect or another
maintenance task, i.e. classes or methods. Hence the feature artifact
browser helps one to focus on relevant source artifacts and to not lose
track and context and thus, in a sense, reduces the information overload
by allowing developers to focus on a subset of all system entities.

10.4 Validation

To obtain a measure of the usefulness of FeatureEnv and its concepts
in practice, we conducted an empirical study with subjects using and
working with FeatureEnv. The goals of this study are to gain insight
into the strengths and shortcomings of our current implementation of
FeatureEnv, to obtain user feedback about possible improvements and
enhancements, and to assess the practical potential of FeatureEnv. Our
primary goal is to gather quantitative data that indicates how beneficial
is the effect of using FeatureEnv as compared with the standard structural
and textual representations of a traditional development environment.
We introduce and describe the experiment in this section, formulate the
hypotheses we address and describe precisely the study design. Finally,
we present the results we obtained from the experiment.

10.4.1 Introducing the Experiment

To validate FeatureEnv we asked twelve subjects (computer science grad-
uate students) to perform two equally complex maintenance tasks in a

Validation 235

H01 The time to discover the location of the defect is equal when
using the standard browser and FeatureEnv. (formally: µD,FB

= µD,OB , where µD,FB is the average discovery time using
FeatureEnv and µD,OB the average discovery time using Omni-
Browser)

H02 The time to correct the defect is equal when using the standard
browser and FeatureEnv. (formally: µC,FB = µC,OB)

H03 FeatureEnv has no effect on the software engineer’s program
comprehension. (formally: average effect µE,FB = 0)

Table 10.1: Formulation of the null hypotheses.

software system, one task performed in FeatureEnv and the other in the
standard environment of Squeak Smalltalk (i.e. using OmniBrowser). As
a maintenance task, we assigned the subjects the correction of a defect
in the software system. The presence of the defect is revealed by the fact
that some of the feature tests are failing.

In this experiment we seek to validate three hypotheses concerning
FeatureEnv. If the result of the experiment reveals that the hypotheses
hold, we then have successfully obtained clear evidence that FeatureEnv
supports a developer to perform maintenance tasks and that the feature
affinity metric we applied is of value in practice.

10.4.2 Hypotheses

We propose the three null hypotheses listed in Table 10.1. The goal of
the experiment is to refute these null hypotheses in favor of alternative
hypotheses which would indicate that a feature-centric environment helps
the software engineer to discover and correct a defect and hence improves
program comprehension.

10.4.3 Study design

Study setup. During the experiment, subjects were asked to correct two
bugs in a complex web-based content management framework written in
Smalltalk. Our software system, Pier [RENG 06], consists of 219 classes
of 2341 methods with a total of 19261 lines of code. The two defects are
approximatively equally complex to discover and correct. To introduce
these two bugs we slightly changed one method per bug in the Pier sys-
tem. As a result of our change, some (feature) tests failed. We presented
the subjects with these failing tests as a starting point for their search for

236 FeatureEnv – Visualizing Software Features in IDEs

the defect. In Pier a unit test class is dedicated to a certain feature (e.g.
copying a Wiki page) and the different methods of a test class are different
instantiations of that feature (e.g. different parameters with which the
feature is exercised). This is in line with the argumentation presented in
the work of Licata [LICA 03] stating that features are often encoded in
unit test cases.

In our experiment, we introduced two different defects in the copy
page feature. This feature is tested by a dedicated test class with five test
methods. The two defects produce failures in different test methods of
the copy page test class. For the experiment we select all five test methods
exercising the copy page feature and show them in row in the Compact
Feature View of FeatureEnv. As these five test methods exercise variants
of the same feature, they are clearly related to each other, which means
that if one test method shows a failure but the others do not, the failure is
most likely caused by methods the failing test is exclusively executing.

We conducted the experiment with twelve graduate computer science
students as subjects with varying degrees of experience with the Smalltalk
programming language and the Squeak development environment. All
subjects had between one and five years of experience with the language,
but only between zero and four years of experience with the Squeak
development environment. None of the subjects was familiar with the
design and implementation of the Pier application in detail.

Before starting the experiment, we organized a workshop to introduce
the concepts and paradigms of FeatureEnv. Every subject could experi-
ment with FeatureEnv for half an hour before commencing our experiment
consisting of the task of defect location and correction. Furthermore, we
briefly introduced the subjects to the design and the basic concepts of
Pier by presenting an UML diagram of the important entities of the ap-
plication. The experiment was conducted in a laboratory environment,
as opposed to the subjects’ normal working environment. While per-
forming the experiment, we observed the subjects. Afterwards we asked
them to respond to a questionnaire to gather qualitative information
about FeatureEnv. The questionnaire contains several questions about
the usefulness of FeatureEnv to understand the program and to perform
the requested maintenance tasks. For every question, the subjects could
choose a rating from -3 to 3, where -3 represents a hindrance to program
comprehension, 0 no effect and 3 very useful. In addition, the subjects
could provide qualitative feedback, e.g. identified shortcomings of the
environment and suggestions for improvement. The results of these open
suggestions, as well as the observations of the experimenters form the
qualitative part of our study.

Validation 237

Every subject had to fix both defects, one using FeatureEnv and the
other one using the standard class browser, i.e. OmniBrowser. Both the
debugger as well as the unit-test runner were available to complete the
task. We prohibited use of every other tool during the experiment. From
subject to subject we varied the order in which they fixed the defects
as well as the order in which they used the different browsers. Hence
there are four possible combinations to conduct an experiment with a
subject and each of these four combinations was exercised three times. A
concrete combination was randomly chosen by the experimenters for any
subject.

Dependent variables. We recorded two dependent variables: (i) the
time to discover the location (i.e. the method) where the defect was
introduced, and (ii) the time to actually correct the defect completely. We
considered the goal as being achieved when all 872 unit tests of Pier ran
successfully. The bugs were carefully chosen so that they could only be
corrected in a specific method.

10.4.4 Study Result

Initially we report on the quantitative data we obtained by recording the
time the subjects spent to locate and correct the defects using the different
browsers. Then we present qualitative feedback by evaluating the results
from the questionnaire answered by the subjects.

Time Evaluation. Figure 10.5 compares the average time spent to
correct the bugs, independently of which browser has been used to fix a
defect. The figure clearly shows that the two bugs were approximately
equally complex, which allows us to compare the time different subjects
spent in different environments to correct the two defects. We initially
selected these two defects after having assessed their complexity in a
pre-test with two subjects working in the standard Squeak browser. These
two subjects are not included in the final evaluation of the experiment.
They needed approximately the same time to correct both defects and
subjectively considered the two bugs as equally complex and difficult to
correct.

Figure 10.6 compares the total time the subjects spent to discover the
location of the defect once using FeatureEnv and once using the OMNI-
BROWSER. FeatureEnv yields a 56 percent decrease in time spent which

238 FeatureEnv – Visualizing Software Features in IDEs

0 5 10 15 20 25 30

Defect B

Defect A

Figure 10.5: Comparing average time to correct the two defects.

0 5 10 15 20 25 30 35

Correcting with OmniBrowser

Correcting with Feature-centric Environment

Discovery with OmniBrowser

Discovery with Feature-centric Environment

Figure 10.6: Comparing average time between using FeatureEnv and
OMNIBROWSER to discover and correct a defect.

equals to 56 minutes saved compared to using OMNIBROWSER. During
the experiment we considered that the correct location of the defect has
been discovered when the subject announces to the experimenters the
method considered to be responsible for the defect. If the announced
method was incorrectly blamed, the experimenters did not accept the
answer and subjects continued searching.

The situation is similar when considering the time spent to fully
correct the defects (see also Figure 10.6), which is the time to discover
the defect plus the amount of time to edit and correct the faulty method.
Here we get a relative improvement of 33 percent which equals 100
minutes saved when using FeatureEnv instead of OMNIBROWSER.
Figure 10.7 presents boxplots showing the distribution of the discovery
and correction time the different subjects spent in different browsers. The
different defects are not identifiable in these boxplots, only the different
browsers. To determine the complete correcting time we considered the
time spent to make all tests of Pier run successfully.

Validation 239

0

10

20

30

40

50

Discovery with
Feature-centric

Environment

Discovery with
OmniBrowser

Correcting with
Feature-centric

Environment

Correcting with
OmniBrowser

Figure 10.7: Boxplots showing the distribution of the different subjects.

Qualitative Feedback. In our questionnaire we mainly asked the
subjects how they rated the effect of the different aspects of FeatureEnv on
program comprehension. We asked about the overall effect of FeatureEnv
on program comprehension and about the specific effect of feature
overview, feature tree, feature class browser, and the feature affinity
metric. Furthermore, we asked how well certain parts of FeatureEnv
were understood by subjects and how well they could interact with the
different parts. In Table 10.2 we present the details of our questionnaire
and the average results we got from the subjects. They could choose
between a rating from -3 to 3, so an average rating of 1.16 for e.g. “General
effect on Program Comprehension” reveals a positive, although not a
very strong effect. As an example, we depict in Figure 10.8 the results for
the question about the effect of the compact feature overview on program
comprehension. The ratings were on average 1.58 which denotes that the
subjects considered the effect on average as “good”.

Statistical Conclusion. To test the first two hypotheses formulated in
Table 10.1 we apply the one-sided independent t-test [KANJ 99] with an α
value of 10% and 22 degrees of freedom. One requirement for applying
the t-test is equality of variance of the two samples. For the two discovery
time samples we determine a variance of 92 and 112, respectively; for

240 FeatureEnv – Visualizing Software Features in IDEs

Question Result

1. General effect on Program Comprehension 1.16
2. Effect of Compact Feature Overview 1.58
3. Effect of Feature Tree Browser 1.33
4. Effect of Feature Class Browser 1.50
5. Effect of Feature Affinity Metric 1.42
6. Understanding the subexpression compression in Feature Tree 1.58
7. Understanding the sequence compression in Feature Tree 1.75
8. Understanding the navigation in Feature Tree 2.00
9. Interaction with Compact Feature View 1.50
10. Interaction between Feature Tree and Feature Class Browser 1.58

Table 10.2: Questionnaire.

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

Figure 10.8: Comparing the average results for the effect of compact
feature overview on program comprehension.

the correcting time samples the variances are closer to each other, 102
and 110, respectively. For the correction time the variance requirement
is fulfilled. For the discovery time we are careful and assume that this
requirement is not fulfilled. Another requirement for applying the t-test
is a normal distribution of the underlying data which we justify with the
Kolmogorow-Smirnow-Test. With an α value of 5% the result of this test
allows us to assume normal distribution for the correction time samples.
With an α value of 10% we can also assume normal distribution of the
discovery time samples.

These preliminary tests allow us to use the t-test at least for the correc-
tion time. We also use it for the discovery time, but we are skeptical about
the outcome. For the discovery time we calculated a t value of 1.32. The

Validation 241

t distribution says that the probability of t > 1.32 is exactly 10% which
means that we can just barely reject the null hypothesis H01. Because
the requirements for the t-test are not properly fulfilled and because we
consider an α value of 10% to be too low to justify a rejection of the null
hypothesis, we cannot give enough evidence for the positive effect of
FeatureEnv on the discovery time of a defect.

For the time to correct a defect we obtain a t value of 1.86 which is
bigger than the t value of the 95% confidence interval (t = 1.717). This
means that we can reject H02 with an α value of 5% and accept the
alternative hypothesis H12 saying that FeatureEnv speeds up the time to
correct a defect (µC,FB < µC,OB).

At first glance it looks surprising that we cannot reject H01 but H02,
which means that the experiment substantiates our claim that FeatureEnv
helps developers correcting defects more efficiently, but not that Fea-
tureEnv also improves locating the artifacts causing these defects. We
explain this result by the fact that there is a significant outlier in the dis-
covery time data with the feature-centric environment (cf. Figure 10.7).
One subject spent a considerable amount of time locating the appropriate
method to correct the defect while the actual correction just took little
time. We did not remove this outlier from the evaluation as it was not
caused by an abnormal condition that would justify such a removal. As
we only had twelve subjects available for this experiment, outliers can
have a huge impact on the results as there are not enough data points
that could compensate for such outliers. We are confident that we could
also reject H01 when repeating this experiment with considerably more
subjects than just twelve, in particular as we were still able to reject H02

even with the present experiment.

To test the third hypothesis we use the results of the questionnaire
and apply the one-sided Wilcoxon signed-rank test [WILC 45]. We cannot
assume normal distribution for the underlying data in this case since
the ratings were almost all positive, thus we opted for applying the
Wilcoxon test. We only apply the test to the answers for the general effect
of FeatureEnv. We calculate a W value of 26 which is exactly equal to the
S value we find in the tabular denoting the 95% confidence interval. This
means that we can reject H03 with an α value of 5% and hence accept the
alternative hypothesis which says that FeatureEnv has a positive effect on
program comprehension.

242 FeatureEnv – Visualizing Software Features in IDEs

10.4.5 Threats to Validity

In this section we report on the main threats to validity of our experi-
ment. We distinguish between external, internal and construct validity
[O’BR 05].

• External validity depends on the subjects and the software system in
which subjects are asked to correct defects during the experiment.
In our case the software system, Pier, is a complex real-world
application comparable to other industrial object-oriented systems.
The subjects, however, are students and research assistants who
may not be directly comparable to programmers in industry.
Furthermore, the experiment was conducted in a laboratory
environment which biases the performance of the subjects. Hence
the results are not directly applicable to settings in practice,
although we consider the aforementioned influences to be small.

• Internal validity is jeopardized by the fact that not all subjects had
the same amount of experience with the programming language
and especially with the Squeak development environment. While
everybody was quite familiar with programming in Smalltalk (at
least one year of experience), the particular environment was new
to some of the subjects. But because these problems were present
for both defects and browsers, we believe that they do not bias the
results tremendously. Furthermore, we changed the order of the
bugs and browsers from subject to subject, hence the results were
only slightly biased by the fact that subjects had more insight into
the development environment and also into the software system
when fixing the second bug than they had for the first bug. However,
the different amount of experience of the subjects is nonetheless a
shortcoming of this study.
Another important issue is that subjects could also use other tools
than just the two different browsers, e.g. the debugger. As it is
usually necessary to use a debugger in a dynamic language to find
a bug, we did not prohibit its usage. Some subjects performed the
task predominantly by using the debugger to find the bug whereas
they made the necessary corrections often in the provided browser.
Using the debugger was a more frequent phenomena when subjects
used the traditional browser to fix the defect. These other available
tools clearly bias the result of our experiment to a degree which is
hard to estimate.
Yet another important issue is that the subjects were unfamiliar
with FeatureEnv. It is a complete new environment with a very

Discussion 243

different approach to look at a software system and its features. The
other environment (i.e. the OmniBrowser) was well-known by all
subjects, since the paradigm applied in this browser is the standard
way of browsing source code in most Smalltalk dialects.

• Construct validity. Our measure, the time to find and correct a defect,
is adequate to assess the contribution of FeatureEnv to maintenance
performance. However, this time is certainly biased by many other
factors than the browsers in use, such as the experience of the
developer, her motivation, the use of other tools, etc. To assess
the effect of FeatureEnv on program comprehension we used our
questionnaire to obtain feedback on how the subjects personally
judge the effects on program comprehension. These answers are
certainly subjective and may hence not be representative. Thus,
the applied measures are not a perfect assessment of the effects of
FeatureEnv on software maintenance, although at least the former is
still relatively well assessed with the applied measures.

10.4.6 Study Conclusion

Two main issues of our empirical study are: (1) the subjects participating
in the experiment do not have the same experience with the programming
language and the development environment, and (2) they were unfamil-
iar with FeatureEnv as they had never used it before. However, they are
familiar with the standard development environment. Another important
issue is that due to the limited number of subjects participating in the
experiment, it is difficult to draw statistically firm conclusions. This study
nonetheless gives us worthwhile insights into how software engineers use
FeatureEnv and how they judge its impact on software maintenance. The
results we obtained motivate us to proceed with our work on this envi-
ronment and the subject feedback gives us ideas for its improvement. We
conclude that performing this study was crucial to validate and improve
FeatureEnv.

10.5 Discussion

In this section we discuss some of the interesting ideas and suggestions
we obtained as feedback from the subjects who participated in the experi-
ment. Furthermore, we also discuss some of the issues of feature analysis
inherent in FeatureEnv:

244 FeatureEnv – Visualizing Software Features in IDEs

• Bidirectional interactions. Providing the capability to navigate the tree
by clicking and selecting the textual representations of the methods
in the feature artifact browser and being able to click on nodes in
the tree to select the same methods in the compact feature view is a
useful improvement to FeatureEnv. This helps one to navigate and
understand more quickly the structure and implementation of a
feature.

• Bind tree to debugger. Using a debugger is not an easy task since we
only see a slice of a program in the debugger but not the overall
structure. If we could use the feature tree to step through a running
program to debug it, we could easier gain an overview and under-
standing of the overall structure of a feature. Hence a promising
extension of FeatureEnv would be to add debugging facilities to
the feature tree, such as stepping through a program, inspecting
variables and changing methods on the fly.

• Delta debugging. Using FeatureEnv to discover and correct a defect
in a feature is a frequent task which we can ease by analyzing test
cases representing features. Careful analysis of test cases with delta
debugging approaches [ZELL 02] allows us to rank methods used
in a feature according to their probability being responsible for a
defect. If we present the methods in the compact feature view sorted
by their probability to contain erroneous code, a developer can very
quickly focus on the right methods to correct a defect.

• Performance analysis. By enriching FeatureEnv, in particular the fea-
ture tree, with more dynamic information such as execution time or
memory consumption, the tool will be well suited for performance
analysis. The feature tree can easily reveal which branch consumes
the most resources or which specific method call takes the most
time to execute. Another useful enhancement is a mechanism to
compare different executions of a feature (e.g. with different param-
eters) with each other to emphasize differences in execution time or
consumption of resources.

• Scalability issues. Dynamic analysis approaches are required to ma-
nipulate large amounts of data. We address this issue by using
unit test cases to trigger the behavior of features. Test are usu-
ally constrained units of behavior, thus generate smaller amount
of data than actual software features. Furthermore, we present
the user with both a compressed feature view as well as with the
entire call tree of a feature. To reduce the call tree, we applied
compression algorithms. Our feature representations could also be

Related Work 245

reduced by applying selective instrumentation and filtering tech-
niques [HAMO 03].

• Coverage. By using test cases to represent features we do not obtain
full coverage of all possible execution paths of a feature. Other
feature identification approaches are, however, also subject to this
limitation [WILD 95, EISE 03]. We argue that although full coverage
is desirable, it is not essential to support a feature-centric approach
to software maintenance.

10.6 Related Work

In this section we relate FeatureEnv to similar work in the field of software
visualization and reverse engineering. We particularly compare our ap-
proach to proposals visualizing the dynamics of object-oriented systems.
Most proposals visualize entire system executions and do not isolate spe-
cific software features in this execution. These related proposals are Whorf
[BRAD 92], Program Explorer [LANG 95], Jinsight [DE P 93], GraphTrace
[KLEY 88], and Jive/Jove [REIS 03, REIS 05]. All these approaches make
use of dynamic (trace-based) information.

Whorf [BRAD 92] provides explicit support for delocalized plans (con-
ceptually related code that is not located contiguously in a program).
Whorf links different views on the software to highlight interactions be-
tween physically disparate components. The authors also performed an
experiment with software engineers to measure how quickly it took them
to identify relevant code to perform an enhancement to a software system,
once with paper documentation and once with Whorf. The results show
that using Whorf improved efficiency when performing a maintenance
task. As with our experiment, the authors of Whorf were also able to ob-
tain evidence that analyzing the interactions between distributed source
artifacts and linking these artifacts together in a tool helps developers
during software maintenance.

Program Explorer [LANG 95] focuses on visualizing design patterns to
better navigate and understand frameworks. It does not visualize soft-
ware features per se, but provides visualizations that scale well even for
large applications by presenting abstracted dynamic information com-
bined with results from static analysis. However, the dynamic informa-
tion presented is not complete and not integrated in the IDE, thus this

246 FeatureEnv – Visualizing Software Features in IDEs

approach is less useful during feature maintenance, particularly defect
correction.

Jinsight [LANG 95] visualizes interactions between objects in interac-
tion diagrams. These diagrams are mainly used to detect performance
bottlenecks, thus the support of Jinsight for feature comprehension and
software maintenance is rather limited.

GraphTrace [KLEY 88] uses graphs to visualize the behavior of object-
oriented systems. GraphTrace shows the current program activity by
highlighting in the graph the nodes (source artifacts) and edges (method
invocations) currently being executed. As these graphs usually grow very
large, their use during software maintenance is limited. As GraphTrace
does not explicitly represent specific software features in a the graph, this
tool does not help developers much during feature comprehension and
maintenance.

Jive and Jove [REIS 03, REIS 05] visualize the runtime activity of Java
programs in real time. Representing features or connections between dis-
parate artifacts is not an objective of these tools, instead they aim at sup-
porting debugging or performance optimizations. Thus, they contribute
to rather specific tasks than to general software maintenance activities
such as feature comprehension.

In contrast to the above approaches, FeatureEnv aims at directly incor-
porating interactive and navigable visualizations of the dynamic behavior
of features into the development environment. In this way, we emphasize
the importance of providing the software engineer with direct access to
the information during a maintenance session.

10.7 Summary of the Chapter

In this chapter we presented FeatureEnv which allows us (1) to visually
compare several features of a software system, (2) to visually analyze the
dynamic structure of a single feature in detail and, (3) to navigate, browse
and modify the source artifacts of a single feature in a feature artifact
browser focusing on the entities actually used in that feature. All these
visualizations are enriched with the feature affinity metric to highlight
parts of a feature relevant to a specific maintenance task.

The views on features are fully interactive and interconnected to ease
and enhance their usage in maintenance activities. We validated Fea-

Summary of the Chapter 247

tureEnv by carrying out an empirical study with twelve graduate com-
puter science students. The results of our experiment are promising
because they clearly reveal that FeatureEnv has a positive effect on soft-
ware maintenance, in particular on the efficiency of correcting software
defects. We recognize that, as our experiment had only a low number of
participating subjects, it is difficult to generalize the results. However,
feedback of the users in addition to the quantitative results of our analysis
are encouraging.

With FeatureEnv we eventually contributed an approach represent-
ing software features in the IDE. With this proposal we complete the
integration of dynamic information in the IDE after having presented
approaches enriching the static source perspectives with behavioral in-
formation (Hermion, Senseo), linking distributed but dynamically inter-
connected artifacts (Hermion, Senseo), and visually representing dynamic
collaboration patterns between such artifacts (Senseo, CollView). We con-
clude in the next chapter this second part of the dissertation by critically
discussing our achievements.

Chapter 11

Discussion

In this chapter, we discuss the different approaches presented in the
second part of the dissertation. We analyze which problems the vari-
ous proposals combined address to which degree. We also consider the
approaches introduced in the first part of the dissertation to obtain a com-
plete overview of how we tackled the various IDE problems as identified
in Section 1.1.2 in this dissertation. This analysis eventually reveals which
problems are not yet fully addressed.

11.1 Problems Addressed in the Second Part

Figure 11.1 summarizes all problems addressed in the second part of the
dissertation and reports on the development activities that are now better
supported.

Hidden collaboration between distributed artifacts. All four ap-
proaches (Hermion, Senseo, CollView, and FeatureEnv) tackle the problem
that conventional IDEs do not make visible dynamic collaboration be-
tween distributed source artifacts. Usually, IDEs have a narrow focus
on static relationships between source artifacts (inheritance, package/-
class/method relations, etc.), thus the dynamic communication between
artifacts spread over the entire software space is difficult to discover in
IDEs. Both Hermion and Senseo tackle this problem by embedding in
the source code views dynamic information to link artifacts based on
how they are dynamically used. Senseo additionally provides a navigable
view showing callee and caller relationships between source artifacts, for

250 Discussion

Figure 11.1: The various lDE shortcomings addressed by the proposals
presented in the second part of the dissertation (Hermion, Senseo, CollView,
and FeatureEnv) and the development activities to which these proposals
contribute (H = Hermion, S = Senseo, CV = CollView, FE = FeatureEnv).

instance which other packages used a particular package and which other
packages were used by this package at runtime. CollView exploits similar
collaboration information but visualizes the revealed communication pat-
terns between source elements in navigable charts. FeatureEnv eventually
represents entire software features by showing which entities are used in
a feature and how, that is, which method invoked which other method in
which order. These four approaches combined are able to represent in the
IDE collaboration between artifacts from source level up to feature level,
thus covering a large spectrum of how different types of source elements
dynamically communicate with each other.

Hidden execution paths. Hermion reveals hidden execution paths in
source code by showing which code fragments are executed how often,
which types are stored in variables, and which methods are invoked at
specific call sites in a method. Senseo also makes explicit which methods
are invoked in a particular method or which other methods this method
invoked, but additionally shows on a class or package level how such ele-
ments are used at runtime, that is, which are their callers and which other
elements they call. CollView visualizes in method collaboration charts
the execution paths between methods for particular system executions.
CollView also visualizes in dedicated collaboration charts how and how
often classes or packages execute each other. These charts can be opened
for specific artifacts directly in the conventional static source perspectives.

Problems Previously Addressed 251

Unclear static source code. Static source code is often difficult to under-
stand, for instance because it refers to abstract types, but from reading the
static code it does not become obvious what kind of concrete types will be
used at runtime. At polymorphic call sites it is statically not determinable
which methods will be invoked during system execution. Hermion ad-
dresses this problem by enriching the static source code perspectives of
IDEs with gathered dynamic information such as types of variables, infor-
mation about the methods being invoked at runtime at specific call sites,
information about the callers of a method, the types of arguments being
passed during invocation, or the types of objects receiving the message
send that triggered the method invocation.

Features hidden in code. Software features are intangible artifacts, fea-
tures purely exist at runtime of a software system and usually encompass
many static source artifacts contributing to their execution. Conventional
IDEs thus do not represent features in their static source perspectives.
With FeatureEnv we embed a feature representation in the IDE by visualiz-
ing all entities being part of a feature’s execution and by displaying how
these artifacts communicate with each other during feature execution,
that is, how the method call tree of this feature is constructed. Thus,
FeatureEnv supports developers in comprehending a software feature by
providing a tangible representation of its implementation.

Missing Overview. Senseo and CollView partially contribute to a better
system overview as they represent high-level collaboration, for instance
by visualizing the communication patterns between the different system
packages. Knowing how packages collaborate with each other is a starting
point to identifying parts of a system being important for particular tasks
or a general system understanding. Thus, these two approaches help
developers to quickly gain an overview of the important parts or aspects
of a software system.

11.2 Problems Previously Addressed

In the first part of this dissertation, we presented three approaches aiming
at mitigating the information overload problem in IDEs, in particular to
be able to enhance the IDE with dynamic information. These three pro-
posals (HeatMaps, SmartGroups, and AutumnLeaves) tackle the following
problems:

252 Discussion

Information overload, missing overview. HeatMaps highlight artifacts
being relevant for particular development tasks in the static source per-
spectives using a heat-coloring scheme (a color gradient from blue to red).
Thus, developers can quickly identify important artifacts, hence have to
deal with less information and can eventually faster gain an overview
of the system as important and relevant artifacts stand out. SmartGroups
support the automatic identification of task-relevant entities and group
them together; for instance, SmartGroups present a group of artifacts being
relevant for defect correction tasks. Developers can hence focus on a
subset of all system artifacts when working on a task, which reduces
the information overload. One aspect of the information overload in
IDEs is the fact that a developer’s workspace is usually cluttered with
many open views, tabs, or windows. AutumnLeaves offers a mechanism
to automatically identify and eventually close unused tabs or windows
in the workspace. Hence, AutumnLeaves performs “housekeeping” in the
workspace to reduce the amount of information developers have to deal
with.

Missing context and task support. Both HeatMaps and SmartGroups
represent task-relevant context, that is, they identify the set of entities
being of importance for a specific development task. HeatMaps color
such related artifacts with heat colors. However, this form of context
representation is rather difficult to use, thus we provide with SmartGroups
a means to identify and group entities likely to be relevant for specific
types of development tasks. Developers can manipulate the proposed
groups by adding or removing entities they personally consider to (not)
be relevant. Thus, SmartGroups provide a working context to developers
that helps them to stay focused on the task-at-hand.

11.3 Remaining Problems

We do not claim to have solved all problems of modern IDEs with our
seven proposals presented in this dissertation. There are several short-
comings and issues of IDEs still not yet properly or completely addressed.
We elaborate on the IDE issues we consider as still being pending in the
following. This identification of pending issues we also recognize as an
avenue of future work.

Limited support for quality assessment. As discussed in Section 1.1.2,
traditional IDEs do not offer advanced support to help developers assess
the quality of the software systems they are maintaining. For instance,

Remaining Problems 253

an IDE could specifically highlight entities highly coupled with different
parts of a system or draw a developer’s attention to inefficiently imple-
mented algorithms or to artifacts never used at runtime. With Senseo we
provide some degree of quality assessment by making visible in the IDE
source artifacts that are expensive to execute, for instance because they
are creating many objects or execute many bytecode instructions. Such
artifacts (packages, classes, or methods) are colored in red in package tree
and source code editor by Senseo.

However, none of our approaches particularly aims at assessing soft-
ware quality. There is still much room for improvement when it comes
to quality assessment support in the IDE. Software quality should be of
high priority in software development, thus the IDE should encourage
it, for example by (i) highlighting artifacts not passing defined quality
metrics such as fan-in/fan-out [MARI 07], (ii) by observing developers
while typing code and suggesting solutions to improve code quality (e.g.
avoiding code clones), or (iii) by notifying programmers of artifacts or
parts of artifacts (e.g. branches of if-statements) not covered by the sys-
tem’s test suite. In short, IDEs have a high potential to improve system
quality, but existing approaches such as Lint [JOHN 78] do not exploit
all possibilities of IDEs to assist developers in improving system quality
during software development.

System overview. Gaining an overview of an unfamiliar system is a
highly complex and time-consuming activity. Although many of our
proposals contribute to improve the overview of a system in the IDE, we
acknowledge that there is still more work to be done to further ease the
task of getting an overview of a large software system. We identify the
following points on which further work in this area could focus:

Task-dependent visualizations. When developers need to understand a
software system and thus want to gain an overview of it, they usually
want to accomplish a certain task, for instance they want to adapt this
system to use it for a specific goal or they want to locate a particular
system feature. However, aids to overview a system are usually unaware
of specific goals, for instance visualizations of a system’s static structure
or its dynamic behavior always look the same for each task and are not
tailored to specific tasks. Thus, we propose to integrate visualizations that
focus on aspects of a software system that are relevant for a developer’s
current task and goal. For instance, if a developer wants to understand
how a feature is implemented in a system, a visualization of the entire
system structure should highlight the artifacts used in that particular
feature.

254 Discussion

Starting points. Many visualizations provide a “big picture” view of
a system, but it is often unclear for a developer how to go from the ab-
stract to the concrete. Even though visualizations such as the system
complexity view usually highlight artifacts with respect to some criteria
such as size (number of lines of code, number of methods or attributes),
it is not obvious which entities developers should explore first in order
to improve their understanding of the system. Highlighted artifacts are
often not those really crucial for system understanding, but they might
stand out since their implementation is complex. We recommend that vi-
sualizations or any other means helping developers in the understanding
and overviewing process should suggest starting points, that is, entities
being appropriate candidates to analyze in detail in order to boost system
understanding.

Overview of low level collaboration. While Senseo and CollView give
an overview of high level collaboration, for instance by visualizing the
communication patterns between packages, none of our approaches pro-
vides an overview of the low level dynamic collaboration between meth-
ods or classes. Senseo, CollView, and Hermion integrate collaboration infor-
mation in the source code views or in dedicated visualizations, but this
information is locally available for selected methods or classes for which
developers are presented with the direct callers or callees of a particular
artifact. While these views on collaboration information can be navigated
to locate indirect callers and callees, there is no overview of such low level
collaboration available, for instance by means of visualizations showing
the general communication patterns between methods in the system. Fea-
tureEnv provides a visualization of the method call tree generated by a
specific feature, but this visualization does not reveal how the involved
methods communicate in other system features. Furthermore, the method
call tree visualized in FeatureEnv often grows very large and does thus
not offer a comprehensible overview of a feature’s execution. We wonder
whether it is possible to embed in the IDE interactive visualizations pro-
viding an overview of low level dynamic collaboration patterns between
methods and classes. In order to be effective, such visualizations should
show a compact view of these collaboration patterns, otherwise they are
too large to be usable and understandable.

With this discussion we complete the second part of the dissertation.
The last part concludes this work by summarizing the main contribu-
tions we made and by elaborating on the perspectives for further work
concerned with development environments and the problems they face.

Part III

Conclusions

The last part of this dissertation concludes this work. We first present
the contributions of this dissertation (Chapter 12) and subsequently elab-
orate on perspectives for further work in the context of development
environments (Chapter 13).

Chapter 12

Contributions

We set out to alleviate two main problems of IDEs: (i) information over-
load and (ii) a narrow focus on static source perspectives neglecting any
dynamic information of software systems. We proposed to enhance the
IDE perspectives with dynamic information to make dynamic depen-
dencies between distributed source artifacts visible. A careful analysis
of the shortcomings of conventional IDEs, however, revealed that we
first have to tackle the information overload issue before we are able to
embed more information in the already overloaded and busy views of
IDEs. This analysis of the current state of modern IDEs yielded a detailed
list of shortcomings and issues (cf. Figure 1.2) for which we subsequently
proposed various approaches to address them. We focused on the Squeak
or Pharo Smalltalk IDE and the Eclipse Java IDE.

We also analyzed the state of the art in research on development envi-
ronments and identified shortcomings of related works such as Mylyn
[KERS 05, KERS 06] or NavTracks [SING 05] and proposed to amend and
extend existing approaches in order to properly and more completely
address the information overload in IDEs by highlighting or categorizing
entities relevant for software maintenance tasks. We learnt from existing
works how to analyze and visualize runtime behavior of software systems
(e.g. [TANT 03, BIND 07, KLEY 88, DUCA 04]) and adapted, extended, and
improved these works to augment IDEs with dynamic information to
achieve our goal of integrating up to date and accurate dynamic informa-
tion in IDEs.

The analysis of the shortcomings of IDEs and of related work in this
area allowed us to propose seven distinct approaches tackling the issue of
information overload or narrow focus on static source structure, or both.
These seven approaches combined answer the research question of this

260 Contributions

dissertation, namely how we can tackle the information overload in IDEs
while at the same time reasonably integrate dynamic information in the
static source views.

The approaches to mitigate the information overload problem are
based on (i) highlighting artifacts of interest to quickly identify them in
the large software space, (ii) representing context to be able to focus on
specific artifacts, and (iii) reducing the number of open views in a devel-
oper’s workspace. To augment static source perspectives with dynamic
information, we claim that it is crucial to embed this additional dynamic
information in the already existing and familiar source code views such
as package tree, source editor, or source browser to not further overload
the busy IDE workspace with new views and perspectives and to lower
the burden for developers to adopt and use dynamic information during
software maintenance. Our proposals meet this requirement and are, for
instance, able to explicitly represent dynamic collaboration or software
features in the IDE.

The seven approaches tackling information overload and augmenting
static source perspectives with dynamic information form the foundation
of the contributions of this dissertation; we briefly summarize all seven
contributed proposals in the following:

Approaches alleviating information overload:

• HeatMaps highlight task-relevant artifacts by coloring them in a
heat color scheme in accordance with the degree-of-interest for
the task-at-hand. Hence, developers can more quickly navigate
to important artifacts in the software space and have to deal with
less information. We validated HeatMaps by means of a benchmark
validation using recorded development sessions consisting of nearly
90’000 navigation and modification events. HeatMaps are available
for the Squeak or Pharo Smalltalk IDE.

• SmartGroups represent working context in the IDE by categorizing
entities relevant for specific tasks. Developers can thus focus on a
small subset of all source artifacts in a system and are not anymore
affected by overloaded views. SmartGroups were evaluated with a
benchmark validation analyzing development sessions consisting
of nearly 50’000 navigation and modification events stemming from
five different developers working on six distinct systems. Smart-
Groups are available for the Squeak or Pharo Smalltalk IDE.

• AutumnLeaves performs “housekeeping services” in the overloaded
IDE workspace by automatically removing unused views on source

261

artifacts (windows, tabs). Thus, developers have to deal with fewer
windows, which increases the overview and reduces information
overload. We evaluated AutumnLeaves with a benchmark validation
considering 25 development sessions of eight different developers
working in distinct software systems. AutumnLeaves is available for
the Squeak or Pharo Smalltalk IDE and for the Eclipse Java IDE.

Proposals to augment source perspectives narrowly focusing on static
structure with dynamic information:

• Hermion augments the static source code of the dynamically typed
language Smalltalk with dynamic information such as runtime types
of variables or receiver types of message sends. Hermion helps devel-
opers understanding static source code and execution flow therein.
We evaluate this approach by analyzing developer feedback report-
ing about Hermion’s usefulness for maintaining software systems.
Hermion is available for the Squeak and Pharo Smalltalk IDE.

• Senseo integrates in the source code perspectives of the Eclipse
Java IDE dynamic information aggregated over several system ex-
ecutions to make visible dynamic collaboration between statically
distributed source artifacts. Furthermore, Senseo provides a visual-
ization of the calling context tree representing specific executions.
We thoroughly validated Senseo by means of a controlled empirical
experiment with 30 professional developers solving typical software
maintenance tasks. This experiment reveals that Senseo aids devel-
opers to more efficiently (17.5% less time spent) and more correctly
(33.5% improvement) solve these maintenance tasks compared to
working with the conventional Eclipse IDE.

• CollView visualizes collaboration patterns between static source
artifacts (packages, classes, methods) and thus supports developers
in navigating and gaining an overview of dynamic relationships in a
system. We report on developer feedback to illustrate the usefulness
of CollView. CollView is available for the Squeak Smalltalk IDE.

• FeatureEnv explicitly represents software features in the Squeak
Smalltalk IDE by providing different feature visualizations. These
feature views allow developers to visually compare different fea-
tures, to understand how the source artifacts interact during feature
execution, and to quickly identify in the source space the artifacts
being exercised by a feature. We comprehensively evaluated Fea-
tureEnv by means of a controlled empirical experiment with twelve
developers correcting defects in an unfamiliar software system. The

262 Contributions

experimental results show that developers using FeatureEnv can
more quickly locate (56% less time spent) and correct (33% less
time spent) the erroneous source artifacts responsible for the defect
compared to developers using the standard Squeak Smalltalk IDE.

While these approaches have been developed individually and sep-
arately, they nicely complement each other and can be combined in the
same IDE to comprehensively tackle the information overload and an
IDE’s narrow focus on static source perspectives.

In order to build the necessary body of evidence that these approaches
indeed successfully confirm our thesis, we validated each approach either
with benchmarks analyzing empirical data or with controlled empirical
experiments involving professional developers as subjects. The validation
of our proposals revealed (i) that they correctly and efficiently work (for
instance, that AutumnLeaves closes windows actually not being used
anymore or that Hermion efficiently gathers dynamic information) and (ii)
that they solve or at least mitigate the problems each approach claims to
address. Table 12.1 summarizes with which methods we evaluated the
seven proposals and what is the outcome of each validation.

We conclude from the outcome of the various evaluations we per-
formed (cf. Table 12.1) that the contributions of this dissertation (i) are
capable of reducing the information overload in the IDE, that (ii) integrat-
ing dynamic information helps developers to more efficiently and effec-
tively perform software maintenance tasks, and that (iii) this integrated
dynamic information does not further overload an IDE’s workspace pro-
vided that we tightly and seamlessly embed the dynamic information
in the already existing and familiar source views and that the overload
with (static) information has been alleviated upfront. Consequently, the
seven contributed approaches altogether successfully substantiate our
thesis that we first need to mitigate the information overload in the static
views of IDEs on source code, and subsequently augment these existing
and familiar views on the software structure with dynamic information
to effectively use dynamic information for software maintenance tasks.

We complete this dissertation by emphasizing in the subsequent chap-
ter interesting perspectives for further work.

263

Proposal Validation Outcome
HeatMaps Benchmark validation,

user feedback
HeatMaps reduce information overload and im-
prove overview by accurately highlighting rele-
vant entities, thus enabling developers to focus
on interesting entities.

SmartGroups Benchmark validation,
user feedback

SmartGroups accurately categorize entities rele-
vant for maintenance tasks to ultimately reduce
information overload and to allow developers
to more efficiently perform such tasks.

AutumnLeaves Benchmark validation,
user feedback

AutumnLeaves correctly identifies and closes
unused windows and reduces informa-
tion overload by “cleaning” a developer’s
workspace.

Hermion Performance evalua-
tion, user feedback

Hermion efficiently integrates dynamic infor-
mation in the IDE; developers consider such in-
formation as useful for software maintenance.

Senseo Controlled experiment
(30 subjects), perfor-
mance evaluation

Senseo efficiently integrates dynamic informa-
tion in the IDE which enables developers to
more effectively and more correctly solve main-
tenance tasks.

CollView Performance evalua-
tion, user feedback

CollView efficiently visualizes dynamic collabo-
rations between source artifacts in the IDE to
help developers during system maintenance.

FeatureEnv Controlled experiment
(12 subjects)

FeatureEnv’s representation of software fea-
tures in the IDE enables developers to more
efficiently correct software defects.

Table 12.1: How we validated each proposal and the outcome of these
validations.

Chapter 13

Perspectives

Better system overview. HeatMaps marginally contribute to a better
overview of the static aspects of a system by highlighting task-relevant
artifacts. CollView improves the overview of system behavior and Fea-
tureEnv of specific software features. None of these approaches, however,
satisfactorily supports developers in gaining a general overview of a
system, thus we also integrated in the IDE software visualizations such
as the system complexity view (cf. Chapter A). Yet still we envision a
better support of IDEs to gain an overview of an unfamiliar system. For
instance, a visualization integrated in IDEs should be able to highlight the
source elements that are important for system understanding, for example
by suggesting valuable entry points to start the system comprehending
process in order to conceive a system in its entireness.

Improve overview of low level collaboration. Having an overview
of dynamic behavior on a method level is not well supported by our
proposals. While Hermion and Senseo integrate information about method
execution in an IDE’s source perspectives, they do not contribute a means
providing an overview of such information. CollView and FeatureEnv
visualize how methods invoke each other but focus on specific methods
or features. We envision to support developers in understanding general
method invocation and execution flow patterns in a system, for instance
by integrating compact, lightweight visualizations of method call trees
aggregated over several system executions to give a general impression
of how methods communicate with each other.

266 Perspectives

Task-dependent overview. HeatMaps and SmartGroups acknowledge
the fact that system investigation activities are usually concerned with
particular software maintenance tasks. For instance, a developer seeks
to locate system artifacts containing a particular defect. Means to gain
an overview of a system such as visualizations, however, do not account
for the task to be accomplished. We thus aim at providing task-sensitive
visualizations that enable developers to quickly overview the part of a
system relevant for the task-at-hand, for instance the artifacts and their
relationships causing a defect.

Supporting quality assessment. Even though conventional IDEs just
provide limited support for quality assessment, we have not addressed
this shortcoming in this dissertation. As software quality is a crucial
aspect of software development, we plan to help developers identify-
ing quality problems in the software systems they are maintaining by
extending the IDE to automatically run quality metrics and report on any
violations of these metrics, such as source artifacts being badly covered
with tests or artifacts that are highly coupled with many distinct parts of
the system. Senseo has already started to support quality assessment by
highlighting artifacts creating many objects or executing many bytecode
instructions.

Practicality of the approaches. For many approaches such as HeatMaps,
SmartGroups, or AutumnLeaves we provide a thorough analysis of their
accuracy and correctness, that is, whether they correctly achieve what
they are supposed to achieve. As we aim at supporting developers in
performing software maintenance tasks, it is, however, crucial to also
assess the practical usefulness of our work, that is, whether our proposals
are usable in practice and whether developers can indeed benefit from
their availability in the IDE. Such a validation has to be performed by
controlled empirical experiments (like those performed for Senseo and
FeatureEnv) or by field studies (such as presented for Mylyn [KERS 06]) to
gather reliable quantitative and qualitative feedback on the practicality of
our work.

Comprehensive validation of combined approaches. So far, we vali-
dated each approach individually to reveal its correctness or practical
usefulness. It would be, however, interesting to find out how much all
approaches combined contribute to more efficiently and effectively ac-
complish software maintenance tasks in the IDE. To this end, we aim
at conducting controlled experiments similar to the one performed for
Senseo, but providing the experimental subject group with several, pos-

267

sibly all approaches we contributed in this dissertation at the same time
in the IDE. Such an experiment could measure the combined effect of
our techniques and answer questions like whether such a combination
contributes more than the sum of the individual parts.

Supporting more IDEs. The contributed approaches are either available
for the Squeak and Pharo Smalltalk IDE or for the Eclipse Java IDE.
AutumnLeaves is available for all three IDEs. We are currently working on
porting, adapting, and enhancing some approaches to also make them
available for other IDEs, for instance by implementing FeatureEnv in the
Eclipse IDE. We also started to work on Visual Studio [MICR 10] for C# to
enhance this IDE with the concept of working context similar as provided
by SmartGroups.

Part IV

Appendices

Appendix A

Additional IDE
Enhancements

The first part of this dissertation discussed several approaches to miti-
gate the information overload in IDEs. Our proposals such as HeatMaps,
SmartGroups, or AutumnLeaves, however, do not completely solve the
information overload problem. In particular, gaining a quick, higher-level
overview of the system is still not easily possible. To tackle the prob-
lem of higher-level overview, we integrated several visualizations in the
IDE such as a system complexity view, class blueprints, and UML dia-
grams. Another enhancement to the IDE makes use of icons placed next
to source artifacts to show information not directly visible in the static
software structure, such as whether a method is overridden in subclasses
or whether a message has any senders. This section briefly discusses all
these additional techniques we implemented.

A.1 Visualizations

Visualizations presenting results from software analyses are often pro-
vided by dedicated environments such as Moose [DUCA 00], Program
Explorer [LANG 95], GraphTrace [KLEY 88], or CodeCrawler [LANZ 05].
Thus these visualizations are usually not integrated in the IDE, that is,
in the environment where developers mostly work on software systems.
As these reverse-engineering environments are not focusing on provid-
ing means to modify the system under study, developers interested in
obtaining software visualizations have to use both the IDE and the reverse-

272 Additional IDE Enhancements

engineering tool to work on their daily maintenance tasks. Developers
are forced to frequently switch between the two environments. In order to
avoid such tool and context switches and to be able to use software analy-
sis knowledge while actually working with source code, we integrated
useful software analysis visualizations in the IDE. The visualizations are
accessible from the conventional source perspectives.

We extended the perspectives on static source artifacts (e.g. classes)
in the Squeak and Pharo Smalltalk IDE with appropriate visualizations,
similar to what RBCrawler [KUHN 07] and inCode [INCO 09] do for Cin-
com Smalltalk [VISU 10] and for Eclipse [ECLI 03], respectively. When
the developer has selected a class, she can generate directly within the
IDE a class blueprint, a system complexity view focusing on the class
hierarchy of this particular class, or a UML class diagram instead of just
looking at the source code. Typically, a visualization is interactive in the
sense that the developer can click on nodes to jump to classes or methods
represented by such nodes. Context menus accessible from within visual-
izations allow the developer to trigger searches for references to classes,
for implementors of message sends, or for accessors of instance variables.

In the following we look in detail at three types of visualizations we
integrated in the Squeak and Pharo IDE, especially at the particular IDE
problems each visualization type mitigates.

A.1.1 System Complexity View

To integrate the system complexity view into the OmniBrowser frame-
work [BERG 07b] implementing the various browsers used in the Squeak
or Pharo Smalltalk IDE, we added a tab bar next to the source code view
to switch from the traditional source code editor to the visualization.

One kind of visualization available in this tab bar is the system com-
plexity view [LANZ 03]. Usually the system complexity view visualizes
the class hierarchies contained in the currently selected package. The view
can be extended with additional packages. Furthermore, the system com-
plexity view can also be generated just for a set of specific classes. Classes
not included in the set of currently selected classes or packages but being
part of a class hierarchy whose root class is included, are depicted in the
system complexity view with a green border. The system complexity
view is a polymetric view, which means it maps several metrics to each
shape representing a class. The width of this shape represents number of
attributes, the height number of methods, and the color number of lines
of code of a particular class.

Visualizations 273

Figure A.1: System complexity view of the AST package integrated in the
Squeak OmniBrowser IDE.

Such a view serves as a navigational aid and helps developers to gain
a quick overview of all classes in a system or of a particular package
and thus mitigates the information overload problem by providing a
higher view on source entities than the traditional source perspectives
such as the package explorer. Figure A.1 shows an example for a system
complexity view showing a package modeling the abstract syntax tree
(AST) of Smalltalk.

A.1.2 Class Blueprint

Class blueprints [DUCA 05b] are similarly integrated in the OmniBrowser
IDE as the system complexity view. For a selected class, the blueprint
shows in different layers its methods and attributes as nodes and the
communication between them as edges. Five layers are shown: the
initialization, interface, implementation, accessor, and attributes layer.
Each method of the class belongs to one of the four method layers while
all its attributes are included in the attributes layer. To determine the
communication between the methods and attributes, the source code is
statically analyzed. The class blueprint is also a polymetric view: The

274 Additional IDE Enhancements

width of a method node represents the number of statically defined
invocations, the height its lines of code. The color of a method node
encodes further information, such as whether the method is an abstract
or a delegator method.

As static analysis might yield imprecise results, for instance proposing
communication edges that are never triggered at runtime, we extended
the class blueprint to also take into account dynamic information recorded
while executing particular software features. A method invocation or
an attribute access actually occurring in a recorded execution scenario is
denoted as a red edge while the edges for statically determined commu-
nication between methods appear in black, those for accessing attributes
in cyan. Such dynamic class blueprints support developers in under-
standing the class-internal execution patterns occurring during specific
software features. As the dynamic information can be aggregated for
many different software runs, a dynamic class blueprint is also useful to
detect dead code, i.e. methods never invoked or attributes never accessed.

Figure A.2: Class blueprint of the RBBlockNode class.

Developers can interact with the class blueprint, for instance to navi-
gate to the source code of a method, to see a list of all class-internal callers
of a method or a list of all methods referencing an attribute. From the
traditional source code views, developers can open the blueprint of the
currently selected class. The currently selected method is highlighted in

Visualizations 275

the class blueprint for better visibility. Figure A.2 shows the blueprint of
the class representing the block node in the AST; in this case, the internal
communication is determined by static analysis only.

A.1.3 UML Class Diagrams

As a third visualization, we added support for drawing UML class di-
agrams to the OmniBrowser IDE. Similar as for the system complexity
view, we can show UML diagrams for the selected package, class, or a
set of classes. The class diagram shows all attributes and methods of a
class and connects classes based on inheritance relationships. Class-side
methods are underlined in the diagram.

Figure A.3: UML class diagram of a part of the AST package.

The UML class diagram is interactive as developers can click on meth-
ods to browse to their source code or on attributes to see a list of methods
referencing them. Clicking on a class’ title bar to see its definition in
source is also possible. The integration of UML class diagrams in the IDE
supports developers in gaining an overview of classes and their hierar-
chies. Such class diagrams provide a more detailed view than the system
complexity view as they also show all methods and attributes of each
class. Figure A.3 shows a part of the same AST package as Figure A.1, but
in a UML class diagram.

276 Additional IDE Enhancements

A.2 Iconic Information

Icons serve the purpose of visually conveying information that is other-
wise difficult to grasp or display [LEWI 04], such as information about
inheritance relationships, for instance whether a method is overridden in
subclasses. As the user interface in an IDE is usually already overloaded
with information, small, non-intrusive icons serve well the purpose of
giving a quick hint about interesting aspects of source artifacts. Thus,
well-designed icons are a suitable means to enrich purely textual inter-
faces. Another advantage of icons is that they do not use much space: a
twelve by twelve pixel icon already conveys valuable information.

However, it is crucial to not overuse icons. They should only be used
to draw the attention of developers to important information; if they are
used everywhere in all IDE interfaces, they cannot serve the purpose
of highlighting information of interest. Furthermore, a concise set of
icons should be integrated; developers will not be able to remember or
to interpret their respective meaning if too many, just slightly different
icons are used. Additionally, the icons need to be self-explanatory. If these
requirements are met, icons support developers to more quickly grasp
important information in a large software space and thus help them to
deal with the information overload problem, in particular as icons also
make explicit information that can otherwise not easily be spotted in the
source space, such as whether a method is overridden in any subclass or
whether it is raising an exception.

We integrated icons in the Squeak and Pharo Smalltalk IDE. We opted
to not show more than one icon per source artifact at a time. Thus, if an
artifact fulfills the criteria of several icons, we only show the one with
the highest precedence. Precedence is determined by the criticality of the
information depicted with the icon. Errors, for instance, have the highest
precedence followed by important structural information such as being an
abstract method or one that is overridden in subclasses. We show icons for
all types of source entities used in Smalltalk: packages, classes, methods,
and, as a special case, test methods and classes. Table A.1 reports on
the different icons used for the four main types of source artifacts while
Figure A.4 shows the various method icons appearing when browsing
the String class.

We also use icons as a means to navigate in the source space. Clicking
on icons triggers the execution of an action appropriate for this particular
icon. The overridden icon, for instance, can be used to navigate to the
method in a subclass overriding the selected method. If several subclasses
override this method, then the developer sees a list of classes to choose
from. Some icons trigger non-navigational actions when clicked. Test-

Iconic Information 277

Table A.1: Icons available in Squeak Smalltalk for different source artifacts.
Name Icon Description

Package, Class Categories

Package icon Denotes whether an entity is a Monticello package.

Dirty package Packages that have been locally modified but not
yet committed.

Newer version Packages with newer version(s) in repository than
installed locally.

Classes

Exception icon Exception and subclasses.

Collection icon Collection and subclasses.

Methods

Overridden icon Whether a method is overridden in any subclass.

Overrides icon Whether a method overrides the same method
from a superclass.

Overrides and Whether a method overrides and
overridden icon is overridden at the same time.

Super send icon Method sending super to the same method.

Super send icon Super send, but invoking different receiver.

Abstract icon Abstract method, that is, one sending
#isSubclassResponsibility.

Halt icon Method sending #halt.

Flag icon Method sending #flag:.

Exception icon Method raising an exception.

Test methods, test classes

Green icon Test method or class running green.

Yellow icon Test method or class running yellow (failures).

Red icon Test method or class running red (errors).

More green than Test class with more green than
red icon red running test methods.

Equal green than Test class with nearly the same number
red icon of green and red running test methods.

More red than Test class with more red than
green icon green running test methods.

Not run icon Test has not been executed yet.

278 Additional IDE Enhancements

Figure A.4: Several icons appear when browsing class String, such as the
abstract, overridden, overrides, or overrides and overridden icon.

related icons for example run the associated test class or method when
clicked. Hence icons do not only show additional information, but can
also provide useful facilities to navigate in the source space or serve as
shortcuts for specific actions.

Bibliography

[AMMO 97] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In PLDI
’97: Proceedings of the ACM SIGPLAN 1997 Conference on
Programming Language Design and Implementation, pp
85–96. ACM Press, 1997. (pp 174, 178, 182)

[ARIS 07] E. Arisholm, H. Gallis, T. Dyba, and D. I. Sjoberg. Eval-
uating Pair Programming with Respect to System Complexity
and Programmer Expertise. IEEE Transactions on Software
Engineering, vol. 33, no. 2, pp 65–86, 2007. (p 186)

[ARNO 01] M. Arnold and B. G. Ryder. A Framework for Reducing the Cost
of Instrumented Code. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pp 168–179,
2001. (p 57)

[BALL 99] T. Ball. The Concept of Dynamic Analysis. In Proceedings of the
European Software Engineering Conference and ACM SIG-
SOFT International Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSC’99), number 1687 in LNCS,
pp 216–234, Heidelberg, sep 1999. Springer Verlag. (pp 55,
165, 216)

[BASI 97] V. Basili. Evolving and Packaging Reading Technologies. Journal
Systems and Software, vol. 38, no. 1, pp 3–12, 1997. (pp 94,
121, 224)

[BERG 07a] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful
Traits. In Advances in Smalltalk — Proceedings of 14th
International Smalltalk Conference (ISC 2006), volume 4406
of LNCS, pp 66–90. Springer, August 2007. (p 108)

[BERG 07b] A. Bergel, S. Ducasse, C. Putney, and R. Wuyts. Meta-Driven
Browsers. In Advances in Smalltalk — Proceedings of 14th

280 Bibliography

International Smalltalk Conference (ISC 2006), volume 4406
of LNCS, pp 134–156. Springer, August 2007. (pp 162, 272)

[BIND 07] W. Binder, J. Hulaas, and P. Moret. Advanced Java Bytecode
Instrumentation. In PPPJ’07: Proceedings of the 5th Interna-
tional Symposium on Principles and Practice of Program-
ming in Java, pp 135–144, New York, NY, USA, 2007. ACM
Press. (pp 56, 176, 259)

[BLAC 06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA ’06:
Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and
Applications, pp 169–190, New York, NY, USA, October 2006.
ACM Press. (p 194)

[BLAC 09] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates,
2009. (p 1)

[BRAD 92] K. Brade, M. Guzdial, M. Steckel, and E. Soloway. Whorf:
A Visualization Tool for Software Maintenance. In Proceedings
of IEEE Workshop on Visual Languages, pp 148–154. IEEE
Society Press, 1992. (pp 52, 245)

[BRAN 98] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the Rescue. In Proceedings European Conference on Object
Oriented Programming (ECOOP’98), volume 1445 of LNCS,
pp 396–417. Springer-Verlag, 1998. (p 56)

[BRIA 06] L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java
Software. IEEE Transactions on Software Engineering, vol. 32,
no. 9, pp 642–663, 2006. (p 206)

[BYKO 08] V. Bykov. Hopscotch: Towards User Interface Composition. In In-
ternational Workshop on Advanced Software Development
Tools and Techniques (WasDeTT), July 2008. (pp 24, 28)

[CAME 96] D. Cameron, B. Rosenblatt, and E. Raymond. Learning GNU
Emacs. O’Reilly, 1996. (p 2)

281

[CHU- 03] M. C. Chu-Carroll, J. Wright, and A. T. T. Ying. Visual separa-
tion of concerns through multidimensional program storage. In
AOSD ’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pp 188–197, New
York, NY, USA, 2003. ACM Press. (pp 92, 94)

[CONS 92] M. P. Consens, A. O. Mendelzon, and A. G. Ryman. Visualiz-
ing and Querying Software Structures. In Proceedings of the
14th International Conference on Software Engineering, pp
138–156, 1992. (p 48)

[CORB 89] T. A. Corbi. Program Understanding: Challenge for the 1990’s.
IBM Systems Journal, vol. 28, no. 2, pp 294–306, 1989. (pp 94,
121, 224)

[CORN 07a] B. Cornelissen. Dynamic Analysis Techniques for the Recon-
struction of Architectural Views. In Proceeding of the 14th
Working Conference on Reverse Engineering (WCRE). IEEE,
2007. (p 158)

[CORN 07b] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van
Wijk, and A. van Deursen. Understanding Execution Traces
Using Massive Sequence and Circular Bundle Views. In Pro-
ceedings of the 15th International Conference on Program
Comprehension (ICPC), pp 49–58. IEEE Computer Society,
2007. (p 218)

[CORN 09] B. Cornelissen, A. Zaidman, A. van Deursen, and B. van
Rompaey. Trace Visualization for Program Comprehension: A
Controlled Experiment. In Proceedings 17th International Con-
ference on Program Comprehension (ICPC), pp 100–109.
IEEE Computer Society, 2009. (p 184)

[CUBR 03] D. Cubranic and G. Murphy. Hipikat: Recommending Pertinent
Software Development Artifacts. In Proceedings 25th Interna-
tional Conference on Software Engineering (ICSE 2003), pp
408–418, New York NY, 2003. ACM Press. (pp 33, 34, 41,
198)

[DE A 08] B. de Alwis and G. C. Murphy. Answering conceptual queries
with Ferret. In Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE), pp 21–30, New York,
NY, USA, 2008. ACM. (pp 4, 46, 47, 48, 167, 197)

[DE P 93] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visual-
izing the Behavior of Object-Oriented Systems. In Proceedings

282 Bibliography

of International Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’93),
pp 326–337, October 1993. (pp 58, 71, 198, 219, 245)

[DELI 05a] R. DeLine, M. Czerwinski, and G. G. Robertson. Easing Pro-
gram Comprehension by Sharing Navigation Data. In VLHCC
’05: Proceedings of the 2005 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, pp 241–248, Wash-
ington, DC, USA, 2005. IEEE Computer Society. (pp 38,
41)

[DELI 05b] R. DeLine. Staying Oriented with Software Terrain Maps. In
Proceedings of the 2005 International Workshop on Visual
Languages and Computing, pp 309–314. IEEE Computer
Society, 2005. (p 52)

[DEME 00] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding Refactor-
ings via Change Metrics. In Proceedings of 15th International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’00), pp 166–178, New
York NY, 2000. ACM Press. Also in ACM SIGPLAN Notices
35 (10). (p 151)

[DEME 03] S. Demeyer, S. Ducasse, K. Mens, A. Trifu, and R. Vasa. Re-
port of the ECOOP’03 Workshop on Object-Oriented Reengineer-
ing. In Object-Oriented Technology (ECOOP’03 Workshop
Reader), LNCS, pp 72–85. Springer-Verlag, 2003. (pp 1, 150,
224)

[DENK 06] M. Denker, O. Greevy, and M. Lanza. Higher Abstractions for
Dynamic Analysis. In 2nd International Workshop on Pro-
gram Comprehension through Dynamic Analysis (PCODA
2006), pp 32–38, 2006. (p 159)

[DENK 07] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
Method Reflection. In Journal of Object Technology, Special
Issue. Proceedings of TOOLS Europe 2007, volume 6/9, pp
231–251. ETH, October 2007. (pp 56, 76, 159, 220)

[DESM 06] M. Desmond, M.-A. Storey, and C. Exton. Fluid Source Code
Views. In ICPC ’06: Proceedings of the 14th IEEE Interna-
tional Conference on Program Comprehension (ICPC’06),
pp 260–263, Washington, DC, USA, 2006. IEEE Computer
Society. (pp 2, 5, 27, 31, 167, 197)

[DMIT 04a] M. Dmitriev. Profiling Java Applications Using Code Hotswap-
ping and Dynamic Call Graph Revelation. In Proceedings of

283

the Fourth International Workshop on Software and Perfor-
mance, pp 139–150. ACM Press, 2004. (p 7)

[DMIT 04b] M. Dmitriev. Profiling Java Applications Using Code Hotswap-
ping and Dynamic Call Graph Revelation. In WOSP ’04: Pro-
ceedings of the Fourth International Workshop on Software
and Performance, pp 139–150. ACM Press, 2004. (pp 44, 45,
57, 176, 197)

[DUCA 00] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an Extensible
Language-Independent Environment for Reengineering Object-
Oriented Systems. In Proceedings of CoSET ’00 (2nd Interna-
tional Symposium on Constructing Software Engineering
Tools), June 2000. (p 271)

[DUCA 04] S. Ducasse, M. Lanza, and R. Bertuli. High-Level Polymetric
Views of Condensed Run-Time Information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pp 309–318, Los Alamitos CA,
2004. IEEE Computer Society Press. (pp 51, 58, 208, 219, 259)

[DUCA 05a] S. Ducasse, M. Lanza, and R. Robbes. Multi-level Method
Understanding Using Microprints. In Proceedings of VISSOFT
2005 (3th IEEE International Workshop on Visualizing Soft-
ware for Understanding), September 2005. (pp 26, 31, 60)

[DUCA 05b] S. Ducasse and M. Lanza. The Class Blueprint: Visually Sup-
porting the Understanding of Classes. Transactions on Software
Engineering (TSE), vol. 31, no. 1, pp 75–90, January 2005.
(pp 51, 273)

[DUCA 06] S. Ducasse, T. Gîrba, and R. Wuyts. Object-Oriented Legacy
System Trace-based Logic Testing. In Proceedings of 10th Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR’06), pp 35–44. IEEE Computer Society Press,
2006. (p 56)

[DUFO 03a] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dy-
namic metrics for Java. ACM SIGPLAN Notices, vol. 38, no. 11,
pp 149–168, November 2003. (pp 57, 176)

[DUFO 03b] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool for dy-
namic analysis of Java programs. In OOPSLA ’03: Companion
of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, pp 306–307, New York, NY, USA, 2003. ACM Press.
(p 57)

284 Bibliography

[DUNS 00] A. Dunsmore, M. Roper, and M. Wood. Object-Oriented In-
spection in the Face of Delocalisation. In Proceedings of ICSE
’00 (22nd International Conference on Software Engineering),
pp 467–476. ACM Press, 2000. (pp 1, 55, 68, 92, 94, 120, 150,
151, 226)

[ECLI 03] Eclipse. Eclipse Platform: Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-over-
view.pdf. (pp 1, 152, 157, 166, 203, 205, 218, 272)

[EICK 92] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—A Tool
for Visualizing Line Oriented Software Statistics. IEEE Transac-
tions on Software Engineering, vol. 18, no. 11, pp 957–968,
November 1992. Depth. (pp 25, 26, 31, 54, 60, 84, 137)

[EISE 03] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features
in Source Code. IEEE Computer, vol. 29, no. 3, pp 210–224,
March 2003. (pp 8, 225, 245)

[EISE 05] A. Eisenberg and K. De Volder. Dynamic Feature Traces: Find-
ing Features in Unfamiliar code. In Proceedings IEEE Interna-
tional Conference on Software Maintenance (ICSM 2004), pp
337–346, Los Alamitos CA, September 2005. IEEE Computer
Society Press. (p 8)

[FITT 54] P. M. Fitts. The Information Capacity of the Human Motor System
in Controlling the Amplitude of Movement. Journal of Experi-
mental Psychology, vol. 47, no. 6, pp 381–391, 1954. (p 124)

[FLAJ 90] P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations
on the common subexpression problem. In Automata, Lan-
guages, and Programming, volume 443 of LNCS, pp 220–234.
Springer Verlag, 1990. (p 231)

[FURN 86] G. W. Furnas. Generalized Fisheye View. In Proceedings of CHI
’86 (Conference on Human Factors in Computing Systems),
pp 16–23. ACM Press, 1986. (p 51)

[GAMM 93] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design
Patterns: Abstraction and Reuse of Object-Oriented Design. In
O. Nierstrasz, editor, Proceedings ECOOP ’93, volume 707
of LNCS, pp 406–431, Kaiserslautern, Germany, July 1993.
Springer-Verlag. (p 204)

[GAMM 95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995. (p 202)

285

[GÎ 04] T. Gîrba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding Early Reverse Engineering Efforts by Summarizing the
Evolution of Changes. In Proceedings of 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM’04), pp
40–49, Los Alamitos CA, September 2004. IEEE Computer
Society. (pp 70, 71)

[GOLD 84] A. Goldberg. Smalltalk 80: the Interactive Programming En-
vironment. Addison Wesley, Reading, Mass., 1984. (p 122)

[GOTH 05] G. Goth. Beware the March of This IDE: Eclipse Is Overshadow-
ing Other Tool Technologies. IEEE Software, vol. 22, no. 4, pp
108–111, 2005. (p 2)

[GRAV 00] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
Fault Incidence Using Software Change History. IEEE Transac-
tions on Software Engineering, vol. 26, no. 2, 2000. (pp 99,
101)

[GREE 06] O. Greevy, S. Ducasse, and T. Gîrba. Analyzing Software Evolu-
tion through Feature Views. Journal of Software Maintenance
and Evolution: Research and Practice (JSME), vol. 18, no. 6,
pp 425–456, 2006. (p 8)

[GREE 07] O. Greevy. Enriching Reverse Engineering with Feature Analysis.
PhD thesis, University of Bern, May 2007. (p 228)

[HAMO 03] A. Hamou-Lhadj and T. Lethbridge. An Efficient Algorithm
for Detecting Patterns in Traces of Procedure Calls. In Proceed-
ings of 1st International Workshop on Dynamic Analysis
(WODA), May 2003. (pp 209, 216, 231, 245)

[HAMO 04] A. Hamou-Lhadj and T. Lethbridge. A Survey of Trace Ex-
ploration Tools and Techniques. In Proceedings IBM Centers
for Advanced Studies Conferences (CASON 2004), pp 42–55,
Indianapolis IN, 2004. IBM Press. (p 55)

[HAMO 05] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering Behavioral Design Models from Execution Traces. In
Proceedings IEEE European Conference on Software Main-
tenance and Reengineering (CSMR 2005), pp 112–121, Los
Alamitos CA, 2005. IEEE Computer Society Press. (pp 1,
55)

[HASS 04] A. Hassan and R. Holt. Predicting Change Propagation in
Software Systems. In Proceedings 20th IEEE International
Conference on Software Maintenance (ICSM’04), pp 284–293,

286 Bibliography

Los Alamitos CA, September 2004. IEEE Computer Society
Press. (p 70)

[INCO 09] inCode. inCode — Eclipse plugin for code analysis, 2009.
http://www.intooitus.com/inCode.html. (pp 205, 272)

[INGA 97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA’97), pp 318–326. ACM
Press, November 1997. (pp 1, 5, 205, 211, 218, 224, 225, 226,
228)

[JANZ 03] D. Janzen and K. de Volder. Navigating and Querying Code
Without Getting Lost. In AOSD’03: Proceedings of the 2nd
International Conference on Aspect-oriented Software De-
velopment, pp 178–187, New York, NY, USA, 2003. ACM.
(pp 45, 48)

[JERD 96] D. Jerding, J. Stasko, and T. Ball. Visualizing Message Pat-
terns in Object-Oriented Program Executions. Research Report
GIT-GVU-96-15, Georgia Institute of Technology, May 1996.
(pp 8, 71, 226)

[JOHN 78] S. Johnson. Lint, a C Program Checker. In UNIX programmer’s
manual, pp 78–1273. AT&T Bell Laboratories, 1978. (p 253)

[JONE 04] J. A. Jones, A. Orso, and M. J. Harrold. GAMMATELLA:
visualizing program-execution data for deployed software. Infor-
mation Visualization, vol. 3, no. 3, pp 173–188, 2004. (p 59)

[JUNK 09] M. Junker. Kumpel: Visual Exploration of File Histories.
Master’s thesis, University of Bern, January 2009. (p 53)

[KANJ 99] G. K. Kanji. 100 Statistical Tests. SAGE Publications, 1999.
(p 239)

[KAZM 99] R. Kazman and S. J. Carriere. Playing detective: Reconstruct-
ing software architecture from available evidence. Automated
Software Engineering, April 1999. (p 51)

[KERS 05] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model
for IDEs. In AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development, pp
159–168, New York, NY, USA, 2005. ACM Press. (pp 2, 4, 5,
39, 41, 68, 69, 80, 84, 94, 97, 168, 198, 259)

287

[KERS 06] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In SIGSOFT ’06/FSE-14: Proceed-
ings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, pp 1–11, New York,
NY, USA, 2006. ACM Press. (pp 2, 39, 41, 97, 168, 198, 259,
266)

[KICZ 97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In
M. Akşit and S. Matsuoka, editors, Proceedings of European
Conference on Object-Oriented Programming, volume 1241,
pp 220–242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997. (p 176)

[KICZ 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen,
editor, Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP-2001), volume 2072
of Lecture Notes in Computer Science, pp 327–353, 2001. (pp 56,
176)

[KLEY 88] M. F. Kleyn and P. C. Gingrich. GraphTrace — Understanding
Object-Oriented Systems using Concurrently Animated Views. In
Proceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’88), volume 23, pp 191–205. ACM Press, November
1988. (pp 58, 59, 198, 219, 245, 246, 259, 271)

[KO 04] A. J. Ko and B. A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceed-
ings of the 2004 conference on Human factors in computing
systems, pp 151–158. ACM Press, 2004. (pp 7, 41, 42, 45)

[KO 05] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design require-
ments for maintenance-oriented IDEs: a detailed study of correc-
tive and perfective maintenance tasks. In ICSE ’05: Proceedings
of the 27th international conference on Software engineering,
pp 125–135, 2005. (pp 92, 94, 121)

[KUHN 07] A. Kuhn. RBCrawler — a Visual Navigation System for
Smalltalk’s Refactoring Browser. European Smalltalk User
Group Innovation Technology Award, August 2007. (p 272)

[KUHN 08] A. Kuhn, P. Loretan, and O. Nierstrasz. Consistent Layout
for Thematic Software Maps. In Proceedings of 15th Working
Conference on Reverse Engineering (WCRE’08), pp 209–218,

288 Bibliography

Los Alamitos CA, October 2008. IEEE Computer Society
Press. (p 52)

[LANG 95] D. Lange and Y. Nakamura. Interactive Visualization of Design
Patterns can help in Framework Understanding. In Proceedings
ACM International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’95),
pp 342–357, New York NY, 1995. ACM Press. (pp 58, 219,
245, 246, 271)

[LANZ 01] M. Lanza. The Evolution Matrix: Recovering Software Evolution
using Software Visualization Techniques. In Proceedings of IW-
PSE 2001 (International Workshop on Principles of Software
Evolution), pp 37–42, 2001. (p 71)

[LANZ 03] M. Lanza and S. Ducasse. Polymetric Views—A Lightweight
Visual Approach to Reverse Engineering. Transactions on Soft-
ware Engineering (TSE), vol. 29, no. 9, pp 782–795, Septem-
ber 2003. (pp 51, 272)

[LANZ 05] M. Lanza and S. Ducasse. CodeCrawler — An Extensible and
Language Independent 2D and 3D Software Visualization Tool. In
Tools for Software Maintenance and Reengineering, RCOST
/ Software Technology Series, pp 74–94. Franco Angeli, Mi-
lano, 2005. (p 271)

[LEWI 04] J. Lewis, R. Rosenholtz, N. Fong, and U. Neumann. Visu-
alIDs: automatic distinctive icons for desktop interfaces. ACM
Transactions on Graphics, vol. 23, no. 3, pp 416–423, August
2004. (p 276)

[LICA 03] D. Licata, C. Harris, and S. Krishnamurthi. The Feature Signa-
tures of Evolving Programs. In Proceedings IEEE International
Conference on Automated Software Engineering, pp 281–
285, Los Alamitos CA, October 2003. IEEE Computer Society
Press. (pp 227, 230, 236)

[LIEN 09] A. Lienhard, J. Fierz, and O. Nierstrasz. Flow-Centric, Back-
In-Time Debugging. In Objects, Components, Models and
Patterns, Proceedings of TOOLS Europe 2009, volume 33 of
LNBIP, pp 272–288. Springer-Verlag, 2009. (pp 43, 45, 167,
197)

[LIKE 32] R. Likert. A technique for the measurement of attitudes. Archives
of Psychology, vol. 22, no. 140, pp 1–55, 1932. (pp 164, 185,
215)

289

[LLOY 82] S. P. LLoyd. Least Squares Quantization in PCM. IEEE Trans-
actions on Information Theory, vol. 28, pp 129–137, 1982.
(p 180)

[LÖWE 01] W. Löwe, A. Ludwig, and A. Schwind. Understanding Soft-
ware – Static and Dynamic Aspects. In 17th International Con-
ference on Advanced Science and Technology, pp 52–57,
2001. (pp 55, 151, 166)

[MALE 02] J. I. Maletic, A. Marcus, and M. Collard. A Task Oriented View
of Software Visualization. In Proceedings of the 1st Workshop
on Visualizing Software for Understanding and Analysis
(VISSOFT 2002), pp 32–40. IEEE, June 2002. (p 51)

[MALO 04] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick. Scratch: A Sneak Preview. In International
Conference on Creating, Connecting and Collaborating
through Computing, pp 104–109. IEEE Computer Society,
2004. (p 42)

[MARC 04] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An Informa-
tion Retrieval Approach to Concept Location in Source Code. In
Proceedings of the 11th Working Conference on Reverse En-
gineering (WCRE 2004), pp 214–223, November 2004. (pp 93,
94)

[MARI 07] M. Marin, A. v. Deursen, and L. Moonen. Identifying cross-
cutting concerns using fan-in analysis. ACM Transactions on
Software Engineering and Methodology, vol. 17, no. 1, pp
1–37, 2007. (p 253)

[MEHT 02] A. Mehta and G. Heineman. Evolving legacy systems features
using regression test cases and components. In Proceedings
ACM International Workshop on Principles of Software Evo-
lution, pp 190–193, New York NY, 2002. ACM Press. (p 224)

[MEND 95] A. Mendelzon and J. Sametinger. Reverse Engineering by
Visualizing and Querying. Software — Concepts and Tools,
vol. 16, pp 170–182, 1995. (p 51)

[MEYE 06] M. Meyer, T. Gîrba, and M. Lungu. Mondrian: An Agile
Visualization Framework. In ACM Symposium on Software
Visualization (SoftVis’06), pp 135–144, New York, NY, USA,
2006. ACM Press. (p 205)

[MICR 10] Microsoft. Microsoft Visual Studio, March 2010.
http://www.microsoft.com/VisualStudio. (pp 1,
267)

290 Bibliography

[MILL 56] J. C. Miller and C. J. Maloney. The Magical Number Seven,
Plus or Minus Two: Some Limits on Our Capacity for Processing
Information. Psychological Review, vol. 63, pp 81–97, 1956.
(p 6)

[MORE 09] P. Moret, W. Binder, D. Ansaloni, and A. Villazón. Visualizing
Calling Context Profiles with Ring Charts. In VISSOFT 2009:
5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp 33–36, Edmonton, Alberta,
Canada, September 2009. IEEE Computer Society. (pp 174,
181)

[MURP 06] G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE? IEEE Software, jul
2006. (p 7)

[NETB 10] NetBeans. NetBeans IDE. http://www.netbeans.org,
archived at http://www.webcitation.org/5p1qB6hNt, 2010.
(p 1)

[NIEL 89a] F. Nielson. The Typed Lambda-Calculus with First-Class Pro-
cesses. In E. Odijk and J.-C. Syre, editors, Proceedings PARLE
’89, Vol II, volume 366 of LNCS, pp 357–373, Eindhoven, June
1989. Springer-Verlag. (pp 1, 94)

[NIEL 89b] J. Nielsen and J. T. Richards. The Experience of Learning and
Using Smalltalk. IEEE Software, vol. 6, no. 3, pp 73–77, 1989.
(pp 1, 224)

[NIER 05] O. Nierstrasz, S. Ducasse, and T. Gîrba. The Story of Moose:
an Agile Reengineering Environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05),
pp 1–10, New York NY, 2005. ACM Press. Invited paper.
(pp 51, 53)

[O’BR 05] M. O’Brien, J. Buckley, and C. Exton. Empirically Studying
Software Practitioners - Bridging the Gap between Theory and
Practice. In Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance (ICSM 2005). IEEE Computer
Society Press, 2005. (p 242)

[PACI 04] M. Pacione, M. Roper, and M. Wood. A Novel Software visual-
isation Model to Support Software Comprehension. In Proceed-
ings of the 11th Working Conference on Reverse Engineering,
pp 70–79. IEEE Computer Society, November 2004. (pp 2, 3,
186, 193, 194)

291

[PARN 06] C. Parnin and C. Görg. Building Usage Contexts During Pro-
gram Comprehension. In Proceedings of the 14th IEEE Inter-
national Conference on Program Comprehension (ICPC’06),
volume 0, pp 13–22, Los Alamitos CA, 2006. IEEE Computer
Society. (pp 68, 81)

[PINZ 05] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
Multiple Evolution Metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pp 67–75,
St. Louis, Missouri, USA, May 2005. (p 71)

[POTH 07] G. Pothier, E. Tanter, and J. Piquer. Scalable Omniscient De-
bugging. Proceedings of the 22nd Annual SCM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’07), vol. 42, no. 10, pp
535–552, 2007. (pp 7, 43)

[RAPI 98] P. Rapicault, M. Blay-Fornarino, S. Ducasse, and A.-M. Dery.
Dynamic Type Inference to Support Object-Oriented Reengineer-
ing in Smalltalk, 1998. Proceedings of the ECOOP ’98 Inter-
national Workshop Experiences in Object-Oriented Reengi-
neering, abstract in Object-Oriented Technology (ECOOP ’98
Workshop Reader forthcoming LNCS). (p 156)

[RECH 07] J. Rech and W. Schäfer. Visual support of software engineers
during development and maintenance. SIGSOFT Softw. Eng.
Notes, vol. 32, no. 2, pp 1–3, 2007. (p 29)

[REIS 03] S. P. Reiss. Visualizing Java in Action. In Proceedings of
SoftVis 2003 (ACM Symposium on Software Visualization),
pp 57–66, 2003. (pp 58, 166, 198, 219, 245, 246)

[REIS 05] S. P. Reiss. JOVE: Java as it happens. In Proceedings of SoftVis
2005(ACM Symposium on Software Visualization), pp 115–
124, 2005. (pp 58, 198, 219, 245)

[RENG 06] L. Renggli. Magritte — Meta-Described Web Application
Development. Master’s thesis, University of Bern, June 2006.
(pp 213, 226, 230, 235)

[RENG 07] L. Renggli. Pier — The Meta-Described Content Management
System. European Smalltalk User Group Innovation Technol-
ogy Award, August 2007. Won the 3rd prize. (p 161)

[RICH 02] T. Richner and S. Ducasse. Using Dynamic Information for the
Iterative Recovery of Collaborations and Roles. In Proceedings

292 Bibliography

of 18th IEEE International Conference on Software Mainte-
nance (ICSM’02), p 34, Los Alamitos CA, October 2002. IEEE
Computer Society. (pp 59, 198, 218)

[ROBB 05] R. Robbes, S. Ducasse, and M. Lanza. Microprints: A Pixel-
based Semantically Rich Visualization of Methods. In Proceed-
ings of 13th International Smalltalk Conference (ISC’05), pp
131–157, 2005. (p 54)

[ROBB 08] R. Robbes and M. Lanza. How Program History Can Improve
Code Completion. In Proceedings of ASE 2008 (23rd Interna-
tional Conference on Automated Software Engineering), pp
317–326, 2008. (pp 77, 109, 130)

[ROBI 03a] M. P. Robillard and G. C. Murphy. FEAT: A tool for locating, de-
scribing, and analyzing concerns in source code. In Proceedings
of 25th International Conference on Software Engineering,
pp 822–823, May 2003. (pp 35, 41, 84, 96, 198)

[ROBI 03b] M. P. Robillard and G. C. Murphy. Automatically inferring con-
cern code from program investigation activities. In Proceedings
of the 18th International Conference on Automated Software
Engineering, pp 225–234, October 2003. (pp 35, 36, 97)

[ROBI 07] M. P. Robillard and G. C. Murphy. Representing Concerns in
Source Code. ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 16, no. 1, p 3, 2007. (p 35)

[RÖTH 07a] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Feature Driven
Browsing. In Proceedings of the 2007 International Confer-
ence on Dynamic Languages (ICDL 2007), pp 79–100. ACM
Digital Library, 2007. (p 20)

[RÖTH 07b] D. Röthlisberger, O. Greevy, and A. Lienhard. Feature-centric
Environment. In Proceedings IEEE International Workshop
on Visualizing Software for Understanding (Vissoft 2007)
(tool demonstration), 2007. (p 20)

[RÖTH 07c] D. Röthlisberger and O. Nierstrasz. Combining Development
Environments with Reverse Engineering. In Proceedings of
FAMOOSr 2007 (Ist International Workshop on FAMIX and
Moose in Reengineering), 2007. (p 20)

[RÖTH 07d] D. Röthlisberger, M. Denker, and É. Tanter. Unanticipated Par-
tial Behavioral Reflection. In Advances in Smalltalk — Proceed-
ings of 14th International Smalltalk Conference (ISC 2006),
volume 4406 of LNCS, pp 47–65. Springer, 2007. (p 159)

293

[RÖTH 08a] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploiting
Runtime Information in the IDE. In Proceedings of the 16th
International Conference on Program Comprehension (ICPC
2008), pp 63–72, Los Alamitos, CA, USA, 2008. IEEE Com-
puter Society. (pp 7, 19, 71, 76)

[RÖTH 08b] D. Röthlisberger. Hermion — Exploiting the Dynamics of Soft-
ware. European Smalltalk User Group Innovation Technol-
ogy Award, August 2008. (p 19)

[RÖTH 08c] D. Röthlisberger and O. Greevy. Representing and Integrating
Dynamic Collaborations in IDEs. In Proceedings of the 15th
Working Conference on Reverse Engineering (WCRE 2008),
pp 74–78, Los Alamitos, CA, USA, 2008. IEEE Computer
Society. (p 20)

[RÖTH 09a] D. Röthlisberger, O. Nierstrasz, and S. Ducasse. Autumn
Leaves: Curing the Window Plague in IDEs. In Proceedings
of the 16th Working Conference on Reverse Engineering
(WCRE 2009), pp 237–246, Los Alamitos, CA, USA, 2009.
IEEE Computer Society. (pp 5, 6, 19, 108)

[RÖTH 09b] D. Röthlisberger, O. Nierstrasz, S. Ducasse, and A. Bergel.
Tackling Software Navigation Issues of the Smalltalk IDE. In
Proceedings of International Workshop on Smalltalk Tech-
nologies (IWST 2009), pp 58–67, New York, NY, USA, 2009.
ACM. (pp 5, 7, 19)

[RÖTH 09c] D. Röthlisberger, O. Nierstrasz, S. Ducasse, D. Pollet, and
R. Robbes. Supporting Task-oriented Navigation in IDEs with
Configurable HeatMaps. In Proceedings of the 17th Interna-
tional Conference on Program Comprehension (ICPC 2009),
pp 253–257, Los Alamitos, CA, USA, 2009. IEEE Computer
Society. (pp 19, 39, 180, 181)

[RÖTH 09d] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Augmenting Static
Source Views in IDEs with Dynamic Metrics. In Proceedings of
the 25th International Conference on Software Maintenance
(ICSM 2009), pp 253–262, Los Alamitos, CA, USA, 2009. IEEE
Computer Society. (pp 19, 174, 184)

[RÖTH 09e] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Senseo: Enriching
Eclipse’s Static Source Views with Dynamic Metrics. In Pro-
ceedings of the 25th International Conference on Software

294 Bibliography

Maintenance (ICSM 2009), pp 383–384, Los Alamitos, CA,
USA, 2009. IEEE Computer Society. Tool demo. (pp 19, 174)

[ROUN 03] A. Rountev, A. Milanova, and B. G. Ryder. Fragment Class
Analysis for Testing of Polymorphism in Java Software. In ICSE
’03: Proceedings of the 25th IEEE International Conference
on Software Engineering, pp 210–220, Los Alamitos, CA,
USA, 2003. IEEE Computer Society Press. (p 7)

[ROUN 04] A. Rountev, S. Kagan, and M. Gibas. Evaluating the impreci-
sion of static analysis. In PASTE ’04: Proceedings of the 5th
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp 14–16, New York, NY,
USA, 2004. ACM. (p 7)

[SHIR 03] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Mining the
Maintenance History of a Legacy Software System. In Interna-
tional Conference on Software Maintenance (ICSM 2003), pp
95–104, 2003. (pp 32, 34)

[SING 05] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Supporting
Navigation in Software Maintenance. In International Con-
ference on Software Maintenance (ICSM’05), pp 325–335,
Washington, DC, USA, sep 2005. IEEE Computer Society.
(pp 1, 2, 4, 5, 36, 41, 68, 69, 71, 80, 84, 86, 87, 97, 168, 198, 259)

[SOLO 86] E. Soloway and K. Ehrlich. Empirical studies of programming
knowledge. Readings in artificial intelligence and software
engineering, pp 507–521, 1986. (p 94)

[SQUE 10] Squeak. Squeak Home Page. http://www.squeak.org/,
archived at http://www.webcitation.org/5p1poT9Ta, 2010.
(pp 157, 161, 166)

[STAS 90] J. T. Stasko. TANGO: A Framework and System for Algorithm
Animation. IEEE Computer, vol. 23, no. 9, pp 27–39, Septem-
ber 1990. (p 51)

[STAS 98] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price.
Software Visualization — Programming as a Multimedia
Experience. The MIT Press, 1998. (p 50)

[STAS 00] J. Stasko. An evaluation of space-filling information visualizations
for depicting hierarchical structures. Int. J. Hum.-Comput. Stud.,
vol. 53, no. 5, pp 663–694, 2000. (p 181)

295

[STOR 01] M.-A. Storey, C. Best, and J. Michaud. SHriMP Views: An
Interactive and Customizable Environment for Software Explo-
ration. In Proceedings of International Workshop on Program
Comprehension (IWPC ’2001), 2001. (p 52)

[SUN 00] Sun Microsystems, Inc. Java Virtual Machine Profiler Interface
(JVMPI). Web pages at http://java.sun.com/j2se/1.4.2/docs/guide/
jvmpi/, 2000. (p 57)

[SYST 99] T. Systä. On the relationships between static and dynamic models
in reverse engineering Java software. In Working Conference on
Reverse Engineering (WCRE99), pp 304–313, October 1999.
(p 151)

[SYST 01] T. Systä, K. Koskimies, and H. Müller. Shimba — An Environ-
ment for Reverse Engineering Java Software Systems. Software —
Practice and Experience, vol. 31, no. 4, pp 371–394, January
2001. (pp 59, 198, 219)

[TAEN 89] D. Taenzer, M. Ganti, and S. Podar. Problems in Object-
Oriented Software Reuse. In S. Cook, editor, Proceedings
ECOOP ’89, pp 25–38, Nottingham, July 1989. Cambridge
University Press. (p 8)

[TANT 03] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial Behav-
ioral Reflection: Spatial and Temporal Selection of Reification. In
Proceedings of OOPSLA ’03, ACM SIGPLAN Notices, pp
27–46, nov 2003. (pp 56, 106, 158, 159, 218, 259)

[TARV 09] A. Tarvo. Mining Software History to Improve Software Mainte-
nance Quality: A Case Study. IEEE Software, vol. 26, no. 1, pp
34–40, January 2009. (pp 70, 99)

[TILL 94] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
Programmable Reverse Enginnering. International Journal of
Software Engineering and Knowledge Engineering, vol. 4,
no. 4, pp 501–520, 1994. (p 51)

[VILL 08] A. Villazón, W. Binder, and P. Moret. Aspect Weaving in
Standard Java Class Libraries. In PPPJ ’08: Proceedings of
the 6th International Symposium on Principles and Practice
of Programming in Java, pp 159–167, New York, NY, USA,
September 2008. ACM. (pp 176, 182)

[VILL 09] A. Villazón, W. Binder, and P. Moret. Flexible Calling Context
Reification for Aspect-Oriented Programming. In AOSD ’09:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/

296 Bibliography

Proceedings of the 8th International Conference on Aspect-
oriented Software Development, pp 63–74, Charlottesville,
Virginia, USA, March 2009. ACM. (pp 176, 182, 183)

[VISU 10] VisualWorks. Cincom Smalltalk.
http://www.cincomsmalltalk.com/, archived at
http://www.webcitation.org/5p1rRxls5, 2010. (pp 1, 224,
272)

[VOK 04] M. Vok. Defect Frequency and Design Patterns: An Empiri-
cal Study of Industrial Code. IEEE Transactions on Software
Engineering, vol. 30, pp 904–917, 2004. (p 205)

[WALK 00] R. J. Walker, G. C. Murphy, J. Steinbok, and M. P. Robillard.
Efficient mapping of software system traces to architectural views.
In CASCON ’00: Proceedings of the 2000 conference of the
Centre for Advanced Studies on Collaborative research, p 12.
IBM Press, 2000. (p 71)

[WEIS 81] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the
5th international conference on Software engineering, pp
439–449, Piscataway, NJ, USA, 1981. IEEE Press. (p 166)

[WETT 08] R. Wettel and M. Lanza. Visual Exploration of Large-Scale
System Evolution. In Proceedings of Softvis 2008 (4th Interna-
tional ACM Symposium on Software Visualization), pp 155 –
164. IEEE CS Press, 2008. (p 53)

[WILC 45] F. Wilcoxon. Individual Comparisons by Ranking Methods.
International Biometric Society, 1945. (p 241)

[WILD 92] N. Wilde and R. Huitt. Maintenance Support for Object-
Oriented Programs. IEEE Transactions on Software Engineer-
ing, vol. SE-18, no. 12, pp 1038–1044, December 1992. (pp 1,
7, 8, 55, 68, 92, 120, 150, 151, 224)

[WILD 93] N. Wilde, P. Matthews, and R. Hutt. Maintaining Object-
Oriented Software. IEEE Software (Special Issue on "Making
O-O Work"), vol. 10, no. 1, pp 75–80, January 1993. (p 202)

[WILD 95] N. Wilde and M. Scully. Software Reconnaisance: Mapping
Program Features to Code. Journal on Software Maintenance:
Research and Practice, vol. 7, no. 1, pp 49–62, 1995. (pp 8,
245)

[XIE 06] X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of CVS
Repository Information. In WCRE’06: Proceedings of the 13th

297

Working Conference on Reverse Engineering, pp 231–242,
Washington, DC, USA, 2006. IEEE Computer Society. (p 34)

[YING 04] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
Source Code Changes by Mining Change History. Transactions
on Software Engineering, vol. 30, no. 9, pp 573–586, 2004.
(p 32)

[ZAID 05] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying Webmining Techniques to Execution Traces to Support the
Program Comprehension Process. In Proceedings IEEE Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR’05), pp 134–142, Los Alamitos CA, 2005. IEEE
Computer Society Press. (p 55)

[ZELL 02] A. Zeller. Isolating cause-effect chains from computer programs.
In SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIG-
SOFT symposium on Foundations of software engineering,
pp 1–10, New York, NY, USA, 2002. ACM Press. (p 244)

[ZELL 03] A. Zeller. Program analysis: A hierarchy. In Proceedings of
the ICSE 2003 Workshop on Dynamic Analysis, pp 6–9, 2003.
(p 166)

[ZIMM 04a] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Min-
ing Version Histories to Guide Software Changes. In 26th Inter-
national Conference on Software Engineering (ICSE 2004),
pp 563–572, Los Alamitos CA, 2004. IEEE Computer Society
Press. (pp 32, 34, 41, 198)

[ZIMM 04b] T. Zimmermann and P. Weißgerber. Preprocessing CVS Data
for Fine-Grained Analysis. In Proceedings 1st International
Workshop on Mining Software Repositories (MSR 2004), pp
2–6, Los Alamitos CA, 2004. IEEE Computer Society Press.
(pp 70, 71)

[ZIMM 05] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Min-
ing Version Histories to Guide Software Changes. IEEE Trans-
actions on Software Engineering, vol. 31, no. 6, pp 429–445,
June 2005. (p 112)

Curriculum Vitae

Personal Information

Name David Röthlisberger
Date of Birth October 1, 1982
Place of Birth Köniz, Switzerland
Nationality Swiss

Education

2007 – 2010 Ph.D. in Computer Science at the Software Com-
position Group, University of Bern, Switzerland
Thesis title: Augmenting IDEs with Runtime and
Development Information for Software Maintenance

2008 – 2010 Bachelor in Business Administration, University
of Bern, Switzerland

2004 – 2006 Master in Computer Science at the Software Com-
position Group, University of Bern, Switzerland
Thesis title: Geppetto: Enhancing Smalltalk’s Reflec-
tive Capabilities with Unanticipated Reflection

2001 – 2004 Undergraduate Degree in Computer Science at
the University of Bern, Switzerland. Minors in
Mathematics and Business Administration.

Complete Curriculum Vitae:
http://www.droethlisberger.ch/media/cv-davidroethlisberger.pdf

http://www.droethlisberger.ch/media/cv-davidroethlisberger.pdf

	List of Figures
	List of Tables
	Introduction
	Problems of Traditional IDEs
	Development Activities
	Problem Identification
	Taxonomy of IDE Problems and Development Activities

	Proposal: Tackling Overloaded Views and Integrating Dynamic Information in IDEs
	Mitigating Information Overload in IDEs
	Enhancing IDEs with Dynamic Information
	Summary

	Contributions
	Structure of the Dissertation

	State of the Art
	Development Environments
	Program Analysis and Sophisticated Information Presentation
	Source History Analysis
	Developer Activity Analysis
	Debugging, Profiling
	Querying
	Conclusions

	Software Analysis and Visualization
	Means to Present Static or Historical Information
	Dynamic Analysis
	Summary

	Conclusions

	I Mitigating Information Overload in IDEs
	HeatMaps -- A Navigational Aid
	Introduction
	Positioning HeatMaps
	Introduction to HeatMaps

	Information Overflow and Overload in IDEs
	Motivating Use Case
	Development Driven Information

	HeatMaps
	Validation
	Efficiency of HeatMaps
	Accuracy of HeatMaps
	User feedback

	Related Work and Discussion
	Related Work
	Discussion

	Summary of the Chapter

	SmartGroups -- Representing Context in IDEs
	Introduction
	Positioning SmartGroups
	Introduction to SmartGroups

	Software Space Navigation Issues
	Existing Approaches
	SmartGroups in a Nutshell
	Automatic Smart Groups
	Manual Smart Groups
	Query Results as Smart Groups
	Integration of the SmartGroups View

	Validation
	Correctness of SmartGroups
	User Feedback

	Summary of the Chapter

	AutumnLeaves -- Reducing the Number of Open Windows
	Introduction
	Positioning AutumnLeaves
	Introduction to AutumnLeaves

	Problem Analysis: Window Plague in IDEs
	AutumnLeaves
	AutumnLeaves in a Nutshell
	Variations, Modifications, Adaptations

	Validation
	Correctness
	Practicality
	Differences between IDEs

	Summary of the Chapter

	Discussion
	Other IDE Enhancements Tackling Information Overload
	Conclusions
	Problems Addressed
	Remaining Problems

	II Exploiting Dynamic Information in IDEs
	Hermion -- Extending Source Code Perspectives with Dynamic Information
	Introduction
	Positioning Hermion
	Introduction to Hermion

	Dynamic Information in the IDE
	Scenario: Understanding a Complex System
	Hermion Overview

	Dynamic Information Gathering
	Partial Behavioral Reflection

	Validation
	Case Studies: Pier and OmniBrowser
	Efficiency
	Preliminary Empirical Evaluation

	Discussion
	Related Work
	Techniques Encompassing Dynamic Information
	Techniques Purely Based on Static Analysis

	Summary of the Chapter

	Senseo -- High Level Augmentations of IDEs with Dynamic Information
	Introduction
	Positioning Senseo
	Introduction to Senseo

	Motivation
	Integrating Dynamic Information in IDEs
	Architecture
	Dynamic Information
	Enhancements to the IDE

	Collecting Dynamic Information
	Validation
	Experimental Design
	Results and Discussion
	Threats to Validity

	Performance
	Related Work
	Summary of the Chapter

	CollView -- Representing Dynamic Collaboration in IDEs
	Introduction
	Positioning CollView
	Introduction to CollView

	Hidden Dynamic Collaboration
	Representing Dynamic Collaboration in the IDE
	Gathering Dynamic Information
	Explicit Dynamic Collaboration
	Enhancing Existing IDE Tools

	Validation
	Performance Benchmarks
	Developer Feedback

	Discussion
	Related Work
	Summary of the Chapter

	FeatureEnv -- Visualizing Software Features in IDEs
	Introduction
	Positioning FeatureEnv
	Introduction to FeatureEnv

	Problem of Feature Identification
	Explicitly Representing Features in the IDE

	FeatureEnv, a Feature-centric Environment
	Feature Affinity in a Nutshell
	Elements of FeatureEnv
	Maintaining Software with FeatureEnv

	Validation
	Introducing the Experiment
	Hypotheses
	Study design
	Study Result
	Threats to Validity
	Study Conclusion

	Discussion
	Related Work
	Summary of the Chapter

	Discussion
	Problems Addressed in the Second Part
	Problems Previously Addressed
	Remaining Problems

	III Conclusions
	Contributions
	Perspectives

	IV Appendices
	Additional IDE Enhancements
	Visualizations
	System Complexity View
	Class Blueprint
	UML Class Diagrams

	Iconic Information

	Bibliography

