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von Zürich und Uster

Leiter der Arbeit:

Prof. Dr. Thomas Becher

Albert Einstein Center for Fundamental Physics

Institut für Theoretische Physik, Universität Bern

Originaldokument gespeichert auf dem Webserver der Universitätsbibliothek Bern
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Universität Bern

Automated Transverse Momentum Resummation

for Electroweak Boson Production

by Monika Hager

The production of electroweak bosons, followed by leptonic decays, is among the most

basic hard-scattering processes studied at hadron colliders. Such processes provide back-

grounds to new physics searches, enable the study of possible anomalous gauge couplings

and provide spectra for determining the W boson mass and the angle θW . At small

transverse momentum qT , the electroweak boson production processes involve disparate

scales, namely the small qT and the large mass M of the bosonic states. Fixed-order

perturbative results suffer from large logarithms of the ratio of these scales and hence

become unreliable. The appropriate treatment of these logarithms is their resummation.

This thesis presents a framework for transverse momentum resummation for quark-

induced boson production processes with arbitrary electroweak final states. The resum-

mation is performed in an automated way and is based on reweighting events generated

using a tree-level event generator. The kinematics of the electroweak final states are

accessible, and this allows for the analysis of general observables in the small transverse

momentum region.

Making use of the event generator MadGraph5_aMC@NLO, the resummation is imple-

mented at next-to-next-to-leading logarithmic accuracy and matched to next-to-leading

fixed-order results. Results for Z and W boson production with leptonic decay as well

as for WZ production are presented. The predictions are validated using an existing

resummation code and compared to experimental measurements.

http://www.unibe.ch/
http://www.philnat.unibe.ch/content/index_ger.html
http://www.itp.unibe.ch/


Acknowledgements

I thank my supervisor Thomas Becher for confronting me with a challenging framework

and for entrusting me the task of automating a complex calculation. His office door

was always open, in the literal and the figurative sense of the word, enabling discussions

at any time. I thank my office mates Ramon Stucki, Markus Moser and Laetitia Laub

for their pleasurable company and Lorena Rothen for start-up support. I thank Anita

Krattinger for proof-reading the introduction, Marcel Balsiger for beta testing my code

and Thomas Becher for cross checking some of my results. Of course, I particularly

thank my friends and family for their unfailing interest and encouragement.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 The Larger Picture: What it’s all about . . . . . . . . . . . . . . . . . . . 2

1.1.1 Why we Need Physics . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 A Roadmap to Physics . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Environment of the Present Work . . . . . . . . . . . . . . . . . . 8

1.2 Tracking the Invisible: From the Cloud Chamber to the LHC . . . . . . . 10

1.3 The Cosmic Dance: How Particles Interact . . . . . . . . . . . . . . . . . 14

1.4 Soaring at the Right Altitude: Physics and Scale . . . . . . . . . . . . . . 16

1.5 Measuring the Universe: Precision Physics and New Physics . . . . . . . . 18

1.6 Invitation to Cooperate: On the Relation of Theory and Experiment . . . 22

1.7 Getting down to Business: An Example Scattering Process . . . . . . . . 23

2 Preparation of Tools 29

2.1 Going Beyond Tree Level: The Factorization Formula for Small Trans-
verse Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Knowing our Limits: Effective Field Theories . . . . . . . . . . . . . . . . 31

2.3 Deriving the Factorization Formula: An Adventurous Journey . . . . . . . 32

2.3.1 The 2 to 2 Scattering Process . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 SCET Kinematics and Lagrangian . . . . . . . . . . . . . . . . . . 34

2.3.3 Matching of the Current . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 From PDFs to Beam Functions . . . . . . . . . . . . . . . . . . . . 41

2.3.5 The Collinear Anomaly . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Calculation of the Cross Section 44

3.1 The Hard Function to One Loop and Resummation of Large Logarithms . 44

3.2 The Fourier Integral with Beam Functions to O(ε) . . . . . . . . . . . . . 47

iii



Contents iv

3.2.1 Factoring Out Dependencies on the Hard Scale and Double Loga-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Scale Setting and Modified Power Counting . . . . . . . . . . . . . 50

3.2.3 The Beam Functions as an Expansion in L⊥ . . . . . . . . . . . . . 51

3.3 The Transition from Electromagnetic to Electroweak Interactions . . . . . 53

4 Highlights of the Calculations 55

4.1 Improving the Measurement: The Observable φ∗ . . . . . . . . . . . . . . 55

4.2 A Step Towards More Realism: Considering Recoil Effects . . . . . . . . . 57

4.3 The Art of Physics: Matching to Fixed Order . . . . . . . . . . . . . . . . 60

4.4 Sampling of qT -values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Implementation of the Method 66

5.1 Dressing LO Events with NLO and NNLL Contributions . . . . . . . . . . 67

5.1.1 Generating Tree-Level Events with an Event Generator . . . . . . 67

5.1.2 Computing the One-Loop Corrections for the Hard Function . . . 68

5.1.3 Computing the Reweighting Factor . . . . . . . . . . . . . . . . . . 68

5.2 Extracting Observables From the Reweighted Events . . . . . . . . . . . . 69

5.3 Instructions for the Use of the Reweighting and Analysis Codes . . . . . . 70

5.3.1 Generation of Events at Tree Level . . . . . . . . . . . . . . . . . . 70

5.3.2 Virtual Corrections to the Hard Function . . . . . . . . . . . . . . 72

5.3.3 Reweighting of Events . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Analysis of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.5 Fixed-Order Events at NLO . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Matching and Comparison to Experimental Data . . . . . . . . . . . . . . 75

6 Results and Discussion 77

6.1 Z Boson Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Z Boson Production and Leptonic Decay . . . . . . . . . . . . . . . . . . 78

6.3 W Boson Production and Leptonic Decay . . . . . . . . . . . . . . . . . . 81

6.4 WZ Production and Triple Gauge Boson Coupling . . . . . . . . . . . . . 82

7 Conclusion and Outlook 85

A Calculations 87

A.1 Power counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 The Lagrangian of SCET . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3 Gauge invariance and gauge transformations . . . . . . . . . . . . . . . . . 90

A.4 Wilson lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5 Computation of the two-loop functions Di←j(z) . . . . . . . . . . . . . . . 94

A.6 NLO-expansion of the resummed cross section . . . . . . . . . . . . . . . . 100

A.7 Correlation of qT and φ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B Ingredients for the resummed cross section 103

B.1 Evolution of the hard function . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 Exponent to absorb dependencies . . . . . . . . . . . . . . . . . . . . . . . 104

B.3 DGLAP splitting functions, convolutions and remainder functions . . . . 104



Contents v

B.4 Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107



List of Figures

1.1 Early scientific testimonies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Cube of Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Origin and measurement of a gravitational wave . . . . . . . . . . . . . . 7

1.4 Illustration of the Standard Model . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Cloud chamber with particle tracks . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Feynman diagrams for fundamental interactions . . . . . . . . . . . . . . . 16

1.7 Rotational curves of galaxies, Quantum Mechanical spin . . . . . . . . . . 19

1.8 Lepton universality: decay of the tau . . . . . . . . . . . . . . . . . . . . . 20

1.9 Lepton universality: electronic decay . . . . . . . . . . . . . . . . . . . . . 21

1.10 Lepton universality: B meson decay . . . . . . . . . . . . . . . . . . . . . 21

1.11 Theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.12 Drell-Yan scattering at tree level . . . . . . . . . . . . . . . . . . . . . . . 23

1.13 Kinematics of the Drell-Yan process . . . . . . . . . . . . . . . . . . . . . 25

1.14 Drell-Yan scattering at one loop . . . . . . . . . . . . . . . . . . . . . . . . 26

1.15 Parton distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 The hard interaction at one loop, beam function . . . . . . . . . . . . . . 30

2.2 The hadronic and leptonic part of the hard interaction . . . . . . . . . . . 33

2.3 Timelike and spacelike momentum . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Calculation of the hard interaction at NLO . . . . . . . . . . . . . . . . . 45

3.2 Single quark and gluon emission . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Double quark and gluon emission . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Electroweak interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Construction of the observable aT . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Factorization of the observable φ∗ . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Correlation of qT and φ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Considering recoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Naive matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Transition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Average transverse momentum, matching correction and transition function 62

4.8 Improved matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Structure and kinematics of the factorization theorem . . . . . . . . . . . 67

6.1 Comparison to CuTe for p p→ Z . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Treatment of final-state photon radiation . . . . . . . . . . . . . . . . . . 79

6.3 Comparison of NLL and NNLL for p p → Z → e+ e− . . . . . . . . . . . 80

vi



List of Figures vii

6.4 Comparison to ATLAS data for p p → Z → e+ e− . . . . . . . . . . . . . 80

6.5 Matched NNLL result for the electron momentum in p p → Z → e+ e− . 81

6.6 Muon energy spectrum for p p → W± → µ± ν . . . . . . . . . . . . . . . 82

6.7 Feynman diagrams for W±Z production . . . . . . . . . . . . . . . . . . . 83

6.8 Matched cross section for W+Z production . . . . . . . . . . . . . . . . . 83

6.9 Transverse momentum in W+Z production . . . . . . . . . . . . . . . . . 84



List of Tables

6.1 Kinematic cuts for p p → Z → e+ e− . . . . . . . . . . . . . . . . . . . . 79

6.2 Kinematic cuts for p p → W± → µ± ν . . . . . . . . . . . . . . . . . . . . 82

viii



Chapter 1

Introduction

If you can’t explain something to a

first year student, then you haven’t

really understood.

Richard P. Feynman, 1918-1988

Man muss die Dinge so einfach wie

möglich machen. Aber nicht

einfacher.

Albert Einstein, 1879-1955

This chapter is written in a popular scientific way, the first formulas entering in the last

section only. It is therefore traceable for the courageous layperson, relating the current

work to historical and modern endeavors in theoretical and experimental elementary

particle physics. I attempt to clarify the role of precision physics with respect to “New

Physics”, introduce the concept of scale and pay special attention to the relation of

theory and experiment. I do urge the non-professional reader to read through the whole

chapter including the last section, to get a taste of the work of physics.

In the second chapter, I introduce the notion of the effective field theory, appliable to

a certain aspect of a problem, as opposed to a more general theory claiming to explain

“everything”. I show how a complex problem can be decomposed by reducing mutual

dependencies of physical quantities, a technique known as factorization. Most of the

second chapter is dedicated to the derivation of the factorization formula that will be

used in the rest of this work.

1
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While physical processes can be measured and provide well-behaved results, our theo-

retical calculations can involve infinite expressions and large unphysical quantities that

need to be eliminated. In the third chapter I disclose these “mathematical beasts”,

establish their cause and demonstrate their treatment, allowing us to keep heading for

the desired result.

The fourth chapter is dedicated to refining the results by choosing observables that

can be measured with more precision in the experiment and by considering effects that

had not been treated in previous work [1–4]. I combine the method, which has been

developed to work well for a specific range of energies, with other techniques in order to

obtain a result valid for all energies of interest.

At the heart of the framework for automated transverse momentum resummation pre-

sented in this thesis are two codes that are made available for other researchers in the

field. The first one is a general reweighting code, applicable for Z and W bosons pro-

duced through quark-anti-quark annihilation with leptonic decay. To run the reweighting

code, only technical adaptations such as setting paths are necessary. The second one

is an analysis code that is specific and needs to be tailored to the production and de-

cay process of interest. These codes are featured in chapter five, along with detailed

instructions.

In the second to last chapter, I apply the resummation method to various scattering

processes to obtain qualitative and quantitative results for diverse observables. The

results are validated using an existing resummation code and compared to experimental

measurements, and the findings are discussed. I conclude with an assessment of the work

performed and an outlook to possible applications and extensions of the framework.

1.1 The Larger Picture: What it’s all about

1.1.1 Why we Need Physics

It seems like humans have always been driven by the desire to understand who we are,

where we came from and where we are going. This desire has led to multifarious activities

such as the observation and exploration of our surroundings which led to the evolution

of science. Archaeological relics corroborate astronomical observations dating back as

far as the last ice age. The carvings on the 30’000 year old bone in Fig. 1.1 are thought

to represent lunar phases.

The ancient Greeks laid the foundation for science to explain nature based on its in-

trinsic laws without involving heavenly powers to claim correctness of the explanations.
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Figure 1.1: Left: 30’000 years old bone with carvings presumably representing lunar
phases. Right: Determination of the earth’s circumference by Eratosthenes. The large
and the small circle segment are similar, as they share the same angle. Knowing this
angle and the distance between Syene and Alexandria (marked as two points on the

circle) suffices to determine the circumference of the earth. Illustrations from [5].

The Pythagorean Theorem1, the principle of Archimedes on buoyancy, the formulas

for surfaces and volumes of spheres, cubes and cones and many more topics of Greek

provenance are taught in school to this day.

The Greeks were also active in astronomy and mapmaking. Let me trace the reasoning

of Eratosthenes2 to determine the circumference of the earth. Eratosthenes imagined

a circle sector defined by the center of the earth and the positions of the two cities

Syene and Alexandria, which as he knew are located at equal longitude. If he knew the

angle of that circle sector and the length of the circular arc, the circumference could

be calculated, because the ratio of the angle to the full angle of 360 degrees equals the

ratio of the circular arc (the distance between the two cities) to the circumference of the

earth, see Fig. 1.1. The distance between the two cities was measurable by the pace of a

camel caravan from Syene to Alexandria needing 50 days when advancing approximately

100 stadia3 per day. But how to find out the angle? Eratosthenes assumed that the sun

was directly overhead at noon on the summer solstice in Syene, because the reflection

of the sun was visible on the surface of the water in deep wells. Since the two cities are

located at equal longitude the sun reaches its highest point at the same time of the day

in both of them. He noticed that the rod of a sundial in Alexandria threw a shadow at

noon on the summer solstice. He assumed solar light rays to fall on the earth on parallel

paths so that angles between these parallel rays and straight lines are equal. Using the

straight line from the earth’s center to Alexandria, he found a circle sector similar to

1In a rectangular triangle the lenghts of the sides relate as a2 + b2 = c2, c being the longest side.
2Eratosthenes of Cyrene (around 276-194 BC) was a Greek mathematician and geographer.
3A stadium is an ancient Greek unit of length, corresponding to approximately 185 meters.
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the first one: This sector was defined by the rod of the sun dial in Alexandria and its

shadow. This allowed him to measure the desired angle. His result for the circumference

of the earth was 10 to 15 percent off from todays value.

There is general agreement on the fact that in the medieval period vivid scientific activity

took place rather in the Chinese, the Indian and the Islamic cultures than in Europe

One should still not overlook the wealth of inventions and enhancement of devices that

era left behind in Europe such as the wheeled plough, the water mill, the compass, the

foot-operated loom and spinning wheel, the wheel clock, the furnace, spectacles, the

production of oil colors, acids and alcohol and lastly the letterpress, to name only a few.

The 16th and 17th centuries put forward a major scientific revolution and rang in a

drastic change of the self-concept of mankind in the universe. Due to a variety of

astronomical observations the idea that earth rests at the center of the universe could

no longer be upheld. Galilei4 constructed a telescope to observe the nocturnal sky and

discovered the phases of Venus. They were easy to comprehend assuming the planets

revolve around the sun. The evolution from geocentrism to heliocentrism is referred to

as the Copernican5 revolution.

Physics as it is taught at universities today starts after this revolution with Newtonian

physics6. Newton’s three laws of motion7 allow us to understand just about every

physical phenomenon accessible by our senses. Want to construct an Eiffel Tower or a

bicycle? The Laws of Newton suffice. Want to fly to the moon? The Laws of Newton

together with his Gravitational Theory suffice8. Want to predict the flight path of a

ball? The Laws of Newton suffice9. At this point, I need to clarify the term “mass”,

an important quantity in physics, and its relation to the everyday notion “weight”.

The mass of an object is constant throughout the universe, while its weight depends on

gravitational attraction. Compared to your weight on the earth, you would feel six times

lighter on the moon, because the moon exerts a gravitational force on masses which is

six times smaller than the one on earth.

4Galileo Galilei (1564-1642) was an Italian physicist, mathematician and astronomer.
5Named after the Polish astronomer and natural scientist Nicolaus Copernicus (1473-1543).
6Isaac Newton (1643-1727) was a British mathematician, physicist and astronomer.
7First law: Any object either remains at rest or continues to move at a constant velocity, unless acted

upon by a force. Second law: The vector sum of the forces F on an object is equal to the mass m of
that object multiplied by the acceleration a of the object: F = ma. Third law: When one body exerts a
force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite
in direction on the first body.

8This applies to the aspects of the construction of the spacecraft and making use of gravity, albeit not
to the transmission of wireless signals or the use of computing devices necessary for such an endeavor.

9While playing with my dog I had been able to convince myself that she was well informed about the
Laws of Newton. Albert Einstein also pondered on falling objects and the observation that gravity and
acceleration had the same effect on masses led him to the equivalence principle which is at the heart of
his Theory of General Relativity.
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Another dramatic change in our idea of the world befell us some 100 years ago with the

advent of Quantum and Relativistic Physics10. The millenia-old question11, whether

matter could be split up into smaller pieces endlessly or whether there existed some

basic elementary building blocks no further reducible, was approaching an answer in

the Bohr12 model which postulates that matter consists of atoms comprising a nucleus

and a shell. Based on the Standard Model, born 50 years ago, today’s answer to this

question is: “Yes, there are basic building blocks of matter - elementary particles that

are indestructible and have no substructure.” Though the effects of Quantum and

Relativistic Physics are not relevant for our everyday life, we do use tools that are

sensitive to their effects. The laser beam, widely in use in research and in industry,

could not have been developed, were the principles of Quantum Physics still unknown.

The Global Positioning System would be very inaccurate, were Relativistic Physics not

considered13.

1.1.2 A Roadmap to Physics

After briefly touching upon basic concepts such as the Laws of Newton, the Standard

Model and other physical terminology, let’s look for some orientation in the multitude

of physical theories. The Cube of Physics [6] is useful for relating physical theories

to each other and to understand how they have evolved. It is spanned by three axes

corresponding to three fundamental constants of nature, the speed of light c in vacuum,

the Planck constant h14 and the gravitational constant G, see Fig. 1.2. All physical

theories attribute a value to each one of these constants, the shift of values documenting

the ceaseless development of our understanding of nature.

According to the Special Theory of Relativity, the speed of light c in vacuum is constant

throughout the universe. It can be measured accurately. Before the formulation of

Special Relativity in 1905, it was thought to be infinite, meaning light was thought of

as propagating instantaneously. One corner of the Cube of Physics is therefore located

on the c-axis where the speed of light is infinite15. The Laws of Newton, also known

as “Newtonian Mechanics“, live on this corner of the cube. This corner approximately

dates from the year 1700. Special Relativity dwells on the neighboring corner on the

c-axis. The Laws of Newton are not in contradiction to Special Relativity, the latter

10The Swiss, German and US-American physicist and Nobel laureate Albert Einstein (1879-1955)
concieved the Special and General Theories of Relativity.

11Around 400 BC the Greek philosopher Democritus (460-371 BC) expected matter to consist of
indivisible objects, the indestructible “atoms”.

12Niels H. D. Bohr (1885-1962) was a Danish physicist.
13https://www.srf.ch/sendungen/einstein/einstein/haetten-wir-ohne-einstein-kein-gps
14Named after the German physicist Max Planck (1858 - 1947).
15c =∞, or, more precisely, 1/c = 0.
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Figure 1.2: The Cube of Physics. Photograph and illustration M. Hager.

is simply a generalization of the former. A common wording in physics is: “Special

Relativity reduces to Newtonian Mechanics if we set c to infinity”.

Now we turn to the vertical h-axis. The Planck constant h is the characteristic constant

of Quantum Mechanics. It relates energy to frequency and provides a threshold for the

fundamental uncertainty principle of Quantum Mechanics16. The constant h does not

appear in the Laws of Newton, and it can be stated that “Quantum Mechanics reduces to

Newtonian Mechanics if we set h to zero”. With these considerations, the neighborhood

of Classical and Quantum Mechanics has been settled. The evolution from Newtonian

Physics to Quantum and Relativistic physics took 200 years. The more recent corners

can therefore be dated to the year 1900.

We are now in a position to set foot on the fourth corner of the c/h-plane. Here

live the theories that have incorporated the findings both of Quantum Mechanics and

Special Relativity, among them the Standard Model of Particle Physics and Quantum

Field Theory, the two foundations on which the present thesis is based. We need to

consider Special Relativity, because in the experiments performed in particle physics,

also known as high energy physics, subatomic particles are accelerated to high velocities

- nearly to the speed of light. Approaching the associated questions using Newtonian

Mechanics alone would therefore not lead to meaningful results. We need to consider

Quantum Mechanics, because atomic and subatomic particles behave very differently

than the everyday-objects in the world around us. As sketched above, the latter can

be satisfyingly studied using Newtons Laws, while the former have shown to be well

16The Uncertainty principle imposes a fundamental limit on the precision with which certain pairs of
physical properties of a particle, e.g. energy and lifetime, can be determined.
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Figure 1.3: Upper left: Masses bend spacetime. Lower left: Moving masses cause
gravitational waves. Upper right: Observation site in Hanford, USA, with arms of 4 km
length each. Lower right: Measurement data from two observation sites. Illustrations

Courtesy Caltech/MIT/LIGO Laboratory [7].

described by Quantum Mechanics. The Standard Model is about fifty years old; this

corner can thus be dated with the year 1970.

The cube-neighborhood of Special Relativity is complete, whereby the remaining ad-

jacent corner is inhabited by the General Theory of Relativity. This theory describes

gravity as a geometric property of space and time and can be termed a generalization

of Special Relativity and Newtonian gravitation. The characteristic constant of grav-

ity is the gravitational constant G. While this corner can be dated to the year 1915,

and General Relativity is well-established experimentally, the direct verification of one

specific prediction of the theory was successful only 3 years ago with the detection of

gravitational waves.

What is a gravitational wave? In Special and General Relativity, space and time are no

longer considered independent properties of the universe. Instead, they are viewed as

related to each other and are combined in the concept of spacetime. According to General

Relativity, spacetime is bent by masses. A moving mass therefore causes a gravitational

wave - a ripple of spacetime that spreads through the universe at the speed of light.

Gravitational waves can be observed using so-called laser interferometers. As a rule, the

smaller the effect to be measured is, the larger the observation apparatus needed. As

the effect of a gravitational wave is tiny, the two ”arms“ of the interferometer must be of

considerable length. Other local sources such as earthquakes or lightning could produce

measurement results similar to those of a gravitational wave. At least two measurement

sites are therefore needed to confirm an observation (see Fig. 1.3 for illustration).
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How to combine General Relativity with Quantum Mechanics is an open problem - in

fact it has been, still is and will remain a topic of vigorous research. The Cube of Physics

is ”under construction” to this date. No one knows how physics will evolve in coming

decades. Maybe physics will be represented by another model in the future.

1.1.3 Environment of the Present Work

My work relies on the Standard Model, a theory that describes the elementary parti-

cles and their interactions. We have already discussed that elementary particles are the

basic building blocks of matter. Where can they be found? Our contemporary physical

world view as it has evolved over the last 300 years, based on countless observations,

experiments, models and theories, is the following: Matter in and around us consists of

atoms. A number of atoms can be bound to form molecules. Water, oxygen, proteins,

plastic and starch are examples of molecules. The atoms are electrically neutral, while

they are composed of electrically charged sub-particles. Negatively charged electrons

are distributed in the shell of the atom, while positively charged protons and electri-

cally neutral neutrons form the nucleus of the atom. The proton and the neutron are

subsumed under the term nucleons. Electrons can be withdrawn or added to the shell,

leaving behind an atom or molecule that is no longer electrically neutral, a so-called ion.

The ionisation process can be induced naturally or by experiment. A natural processes

involving ions is the rusting of iron. The main component of sea salt is a compound of

sodium and chloride ions. Processes involving the atom are studied in Atomic Physics

and in Chemistry.

The nucleus of the atom is likewise subject to natural or experimentally evoked mod-

ifications. The natural radioactivity in our surroundings is a manifestation of such an

occurrence in the atomic nucleus. When potassium in our body decays to calcium, a

neutron in the potassium nucleus decays spontaneously to a proton, hereby emitting an

electron and leaving behind a calcium atom17. The processes involving the nucleus of

the atom are studied in Nuclear physics.

Now that we have become acquainted with the electron, the neutron and the proton,

let’s reason whether they are elementary or composite particles. The radioactive decay

can be taken as an indication that the neutron has some kind of substructure. But this

is not enough, as we shall see in the following sections. There are particles that are

elementary, yet decay all the same. Dedicated experiments in the sixties and seventies,

where electrons were scattered from positrons18, protons from protons and electrons

17As a matter of fact a third particle is ejected, called a neutrino. This is an electrically neutral
particle of vanishing mass that is challenging to detect. It is considered elementary.

18The positron is identical to the electron save for the electric charge which is opposite to that of the
electron.
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from protons, allowed to discern elementary from composite particles. The Standard

Model considers the electron as an elementary particle, while the neutron is considered

a composite particle. The radioactively decaying proton is also considered a composite

particle19.

Evidently this leads to the question: Are protons and neutrons composed of elementary

particles? The Standard Model answers: ”Yes, protons and neutrons consist of quarks,

which are elementary.“ Even though electrons and quarks are both elementary, there

exist essential differences. The electron can be bound in the atomic shell, but it can also

exist as a free particle. It is a stable particle that does not decay. It can be detected in

a simple experimental setup, see Section 1.2. A single quark on the other hand does not

exist as a free particle for more than the blink of an eye. Three quarks can be bound

to form a proton or a neutron. There also exist short-lived particles made up of two

quarks. Observing quarks requires considerable experimental effort.

We are now touching upon basic components of the Standard Model. Quarks come

with positive or negative fractions of the electron charge and in three generations, see

Fig. 1.4, differing only in mass from one generation to the next. The first generation of

quarks with the up and the down quark make up the protons and neutrons of ordinary,

stable matter. The next two generations have been found to form further short-lived

particles. The electron, in conjunction with the neutrino, the aformentioned electrically

neutral, almost massless particle difficult to detect, makes up the first generation of

leptons. The muon, belonging to the second generation, is the heavier sibling of the

electron. It will be introduced in Section 1.2 and featured in Section 1.5. The remaining

particles postulated by the Standard Model, the mediators of the interactions amongst

the elementary particles called bosons, are featured in Section 1.3.

Many physical phenomena can be understood by means of the Standard Model. It

can describe ordinary matter and why matter sticks together even though it is mainly

empty space, as we know from Atomic Physics. The Standard Model distinguishes

elementary particles from composite particles and describes the latter’s substructure.

These questions have been investigated in collider experiments and many particles have

been discovered in accordance with the Standard Model. However the Standard Model

can not explain all physical ocurrences. It has a so-called hierarchy problem that will

be highlighted in Section 1.4. It neither can explain the “dark matter” nor the “dark

energy“ that seems to dominate our universe. A few recent experimental measurements

show deviations regarding important quantities predicted by the Standard Model. More

19Protons and neutrons bound in the nucleus both decay radioactively. The situation is different
for free neutrons and protons. Free neutrons can decay in the same manner as bound neutrons. On
average free neutrons exist for about 15 minutes before they decay. Free protons on the other hand are
considered stable, as no decay has ever been witnessed. In fact, experiments searching for free proton
decay are ongoing.
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Figure 1.4: Illustration of the Standard Model [8].

precise measurements and theoretical studies are necessary in order to judge whether

these deviations disclose ”New Physics“ or whether they stem from the inevitable un-

certainties of calculations and measurements, see Section 1.5.

To sum up, the present work is based on Quantum Field Theory and the Standard

Model. It belongs to the areas of research called ”Collider physics“, ”Elementary par-

ticle physics“ and ”Precision physics” and aims at improving the precision of physical

quantities relevant for the Standard Model.

1.2 Tracking the Invisible: From the Cloud Chamber to

the LHC

One of the earliest detectors for radiation was the cloud chamber as used by Wilson20.

During my studies at the University of Bern, I had the opportunity to operate a simple

version of the cloud chamber [9]. A ethanol soaked piece of paper is placed along the side

of a plastic chamber similar to a bucket. The chamber is then sealed with a plastic foil

at the top and placed in a cooling bath of liquid nitrogen. After about an hour droplet

tracks become visible inside the chamber. What happened? The alcohol vaporizes from

the paper at the top of the chamber, which is at room temperature. As the vapor ap-

proaches the significantly cooler region near the bottom of the chamber21 it condensates

20Charles T.R. Wilson (1869-1959) was a British physicist.
21The liquid nitrogen is at its boiling point around -200◦ Celsius.
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Figure 1.5: Left: Alpha decay. Photograph by A. Ariga. Middle: Beta decay. Photo-
graph by A. Ariga. Right: The discovery of the positron. The radius of the curvature
is larger on the lower side of the lead plate and smaller on the upper side. This shows
that the particle went from the lower side to the upper side of the plate. The track of

an electron would be bent the other way round. Illustration from [10].

to droplets. Specks of dust or charged particles can serve as condensation nuclei for the

droplets. Dust particles lead to single droplets. Other droplets appear rapidly, one after

the other, forming a track resembling a string of pearls. Why? Wilson hypothesized

that the condensation nuclei are charged particles knocked off the air molecules present

in the chamber by some radiation permeating the chamber. The droplet tracks indirectly

verify the presence of charged particles and moreover of radiation producing these in

the chamber. Fig. 1.5 shows two of the innumerable patterns that emerge and decay in

this simple experimental setup, witnessing occurrences our senses are blind for, but are

nonetheless accessible indirectly, provided we come up with an intuition how to reveal

nature’s secrets.

What exactly is this radiation apparent in our surroundings manifesting itself in the

cloud chamber and where does it stem from? In the cloud chamber mainly alpha and

beta radiation can be observed. The radiation can stem from the natural radioactivity

in our surroundings. A beta decay occurs e.g. when potassium in our body decays to

calcium: A neutron in the nucleus of the potassium atom decays spontaneously to a

proton, hereby emitting an electron - the beta-radiation22. Electrons leave behind thin,

crooked trails. This is because the light electrons are deviated when they collide with

the heavy air molecules. The heavier and larger alpha-particles23 hit many air molecules

when passing the chamber and therefore show thick, straight tracks. Another source for

the radiation observable in the cloud chamber is cosmic radiation consisting of highly

energetic particles that reach the earth’s atmosphere from outer space. These particles,

mainly protons and atomic nuclei, interact with the molecules in the atmosphere, creat-

ing a particle shower composed of mesons, short-lived particles made up of two quarks.

The mesons decay for their part, e.g. to a muon and a neutrino. The muon is the heavier

version of the electron and can be observed in the cloud chamber with a little luck (as

22This is the often quoted “wave-particle duality” of Quantum Mechanics: Depending on which aspect
we are interested in, we speak of a particle (the electron) or a wave (beta-radiation).

23Alpha particles consist of two neutrons and two protons bound together. As such they can also be
termed Helium nuclei or (fully) ionized Helium.
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this radiation occurs less frequently than alpha or beta radiation). Cosmic radiation is

not fully understood to date. It is believed to stem from supernovae, stars at the end of

their lifetime.

What do we learn from the cloud chamber experiment? Generally speaking it confirms

there is a lot going on in the world at a lower scale indetectable by our senses. Through

patient observation and thorough evaluation we can infer on characteristics of the in-

teraction between electrons and air molecules and hypothesize models on the nature of

the interacting particles. Historically, the cloud chamber enabled the discovery of the

positron: a particle identical to the electron save for the electric charge, which is opposite

to that of the electron24. How was that possible? Charged particles like the electron and

the positron are deviated when they pass through a magnetic field: The tracks become

curved if one establishes a magnetic field surrounding the cloud chamber. For oppositely

charged particles, the curvature is opposite. In 1932, Anderson25 installed a magnetic

field and additionally put a lead plate into the cloud chamber to slow down the particles.

Slowing down a particle will reduce the radius of its track. These modifications enabled

him to determine the flight direction of the particle. Using this setup, he was able to

distinguish tracks of oppositely charged particles and to discern the electron from the

positron.

It is worth pointing out the randomness of the events in the cloud chamber in the sense

that one has no influence on what will take place next. Consequently, the challenge

consisted in creating experiments under controlled testing conditions allowing for specific

observations. Let us consider how the experimental setup could be modified for observing

elementary particles such as the quark. We can interpret the outcome of the cloud

chamber experiment in different ways. Assuming that we are well-informed about the

nature of alpha and beta radiation, but ignorant in respect to the structure of an air

molecule, we hypothesize: “The radiation permeating the chamber serves to probe the

substructure of air molecules.” The droplet tracks then confirm the air molecules contain

charged particles that can be knocked off by radiation. So we have learned something

about the structure of the air molecule. On the other hand, if we are versed in the

structure of molecules and atoms, but uninformed concerning radiation, we formulate

another hypothesis: “The droplet tracks testify the presence of radiation in the chamber”,

as we are quite sure that they stem from electrons knocked out of the atomic shell and

24Each particle has a so-called anti-particle. Particle and anti-particle differ solely in their electric
charge, which is of equal magnitude and opposite sign. While matter consists of particles, anti-matter
consists of anti-particles. The universe contains much more matter than anti-matter. No one knows why
this is the case.

25Carl D. Anderson (1905-1991) was a US-American physicist of Swedish origin.
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that this can only be achieved by means of radiation26. We can then use the features of

the tracks to infer on the nature of the radiation.

The first version of the experiment that aims at probing the substructure of the target

(the air molecule) can be improved by controlling the incident radiation. A beam of

electrons can be directed on the target and the beam energy and intensity, i.e. the

number of beam particles incident per time unit, can be varied systematically. The

traget can be put to some fixed location, so that striking it or not with the electron

beam is not left to chance. In fact, the electron microscope is based on such a setup.

It is used to analyse the structure of cells, large molecules, metals and crystals. The

electron beam is tuned to do no or little damage to the sample. Parts of the sample will

be transparent to the electrons and they will simply pass through, while other parts will

deflect the electrons. The result is an image of the sample. To probe the substructure

of a target however, high energies are needed, so that the electrons can interact with

the sample. As a result of this observation the target will be - at least temporarily -

damaged or destroyed.

The second version of the experiment aiming at detecting unknown radiation can be

optimized by chosing targets that are more sensitive to radiation and by installing an

electric field. Digital cameras can be seen as a further stage of the idea behind the

cloud chamber. A single target, here called a pixel, consists of a layer of silicon27.

Incoming light knocks electrons out of the silicon layer. The more incident light, the

more electrons knocked out. These electrons are moved to a place where they can be

read out by means of an electric field and electronic devices. Each pixel is then assigned

a number corresponding to the amount of electrons knocked out, i.e. the brightness.

A large number of such pixels are arranged in a rectangular array; all pixels together

generate the image.

To probe the substructure of a proton we must go along with the first version of the

experiment. Let’s replace the target and put a proton there instead of an air molecule.

We can now direct a beam of electrons at the proton target. This experiment was

performed in the late sixties. As an outcome of the experiment, one measured the

scattered electron and a large number of further particles, amongst them some mesons

already known from former experiments. This process is called deep inelastic scattering.

The term inelastic refers to the fact that the electron was scattered from the proton,

26This is the sequence in which knowledge was gained historically: Molecules and atoms were discov-
ered previous to radioactivity.

27Silicon is a metalloid, the most common element on earth after oxygen. It is present e.g. in dust
and sand. As a semiconductor, it is widely in use in electronic devices.
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causing the latter to shatter28. The result of deep inelastic scattering could be explained

using the parton model of the proton. This model says that the proton is made up of

partons, the three quarks29.

In order to gain more energy for the collision two beams of protons can be aimed against

one another instead of directing one beam of particles on a target. This is exactly the

experiment currently performed at the research institution CERN in Geneva, Switzer-

land. The experimental setup is called the Large Hadron30 Collider (LHC) and besides

probing the substructure of nucleons it serves to to study the elementary particles and

their interactions.

In conclusion, we have seen how one tackles the challenge of observing the elementary

building blocks of matter. Whereas the cloud chamber may be used to observe the elec-

trons in the shell of the atom particle colliders enable a look right into the constituents

of the atomic nucleus - at an unbelievably small scale31. It can be pointed out that the

smaller the scale we wish to investigate, the larger the energy needed for the collision or

the interaction process. This holds true also for the experimental hardware. The LHC

can be viewed as an enormous microscope used to investigate the smallest constituents

of matter.

1.3 The Cosmic Dance: How Particles Interact

So far the focus was on elementary particles and methods to observe them. I have used

the somewhat undifferentiated term “collision”. In this Section the focus moves to the

interactions of the elementary particles. I begin with a quote from Fritjof Capra32[11]:

“The exploration of the subatomic world in the twentieth century has revealed the in-

trinsically dynamic nature of matter. It has shown that the constituents of atoms, the

subatomic particles, are dynamic patterns which do not exist as isolated entities, but

as integral parts of an inseparable network of interactions. These interactions involve a

ceaseless flow of energy manifesting itself as the exchange of particles; a dynamic inter-

play in which particles are created and destroyed without end in a continual variation

of energy patterns. The particle interactions give rise to the stable structures which

28In elastic scattering, the outgoing objects are the same as the ingoing ones. A popular example
for elastic scattering is the collision of billiard balls. In inelastic scattering, at least one of the collision
partners is damaged, e.g. in a road accident with two vehicles.

29In fact, the substructure of the proton involves a much more complex interplay of partons, which
include quarks, anti-quarks and the gluons postulated by the Standard Model.

30Hadron is the umbrella term for particles made up of quarks, like the proton and the neutron built
by three and the mesons built by two quarks.

31Historically, after the investigation of the atomic shell, one first acquired insight on the atomic
nucleus in even more scattering experiments before advancing towards the nucleons.

32Fritjof Capra (1939) is a US-American physist of Austrian origin.
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build up the material world, which again do not remain static, but oscillate in rhythmic

movements. The whole universe is thus engaged in endless motion and activity; in a

continual cosmic dance of energy.”

Four fundamental forces are known and have been studied to date: the gravitational

force, the electromagnetic force, the weak force and the strong force. Gravity manifests

itself on a large scale by binding together planets, stars and galaxies. At the level of

elementary particles, however, due to their tiny masses, gravity’s effect is extremely small

compared to that of the other forces and can therefore be neglected. The electromagnetic

force combines the effects of electricity and magnetism; it binds electrons to the atomic

nucleus. The strong force binds quarks together in protons and neutrons. The weak

force is responsible for decay processes. The Higgs exchange33 can be viewed as a fifth

force. It will be adressed in the next section.

The four fundamental forces are also called the four fundamental interactions. The term

“interaction” emphasizes the fact that interacting partners, mediators and charges are

involved. All electrically charged elementary particles take part in the electromagnetic

interaction - quarks, electrons and muons, as well as the protons in the atomic nucleus

and atomic or molecular ions. The electric charge can either be positive or negative.

Charges of the same type repel each other, and charges of different types attract each

other. The mediator of the electromagnetic interaction is the photon. What is a pho-

ton? We have already touched upon the wave-particle duality by speaking of either the

electron or of beta radiation, respectively. Similarly light can be seen as a wave, e.g. in

a rainbowas the result of the refraction of a lightwave by raindrops. However, if we are

interested in the interaction of light with matter, it is more convenient to view light as a

particle. A photon is simply the particle version of light. An example for the interaction

of light with matter is the photoelectric effect34: Electrons can be emitted from metallic

materials when light shines on it; the electron absorbs a photon to gain energy and thus

overcomes the atomic bond. This electromagnetic interaction can be pictured using a

Feynman diagram35, see Fig. 1.6.

Only quarks take part in strong interactions. Strong and electromagnetic interactions

together account for the stability of matter. The charges of the strong interaction are

called color charges; this has nothing to do with everyday colors. There are three color

charges called red, blue and green. The mediator of the strong interaction is the gluon.

Like the photon, the gluon is massless. Unlike the electrically neutral photon, the gluon

is itself color charged.

33Peter W. Higgs (1929) was a British physicist.
34Einstein studied the interaction of light with materials and was awarded the Nobel prize for explain-

ing the photoelectric effect in 1905. Solar cells and digital cameras, as featured in Section 1.2, are only
two examples from the wide range of photoelectric effect applications.

35Richard P. Feynman (1918-1988) was a US-American physicist.
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Figure 1.6: Left: The photoelectric effect. Light shines on matter, represented by
a photon (upper left line). An electron (lower left line) absorbs the photon, becomes
energetic and leaves the atomic shell (right line). Right: Muon decay (see text for

details).

All particles take part in the weak interaction responsible for decay processes. Mediators

of the weak interaction are the W boson and the Z boson. These mediators are massive

unlike the photon and the gluon. Both the W boson and the Z boson carry weak charge.

In addition, the W boson also has electrical charge; there is the positively charged W+

and the negatively charged W−. The Z boson is electrically neutral.

Even though gravity is too weak a force to play a role in the sector of elementary

particles and is not included in the Standard Model, I complete this section with a

few words on the gravitational interaction. It is commonly known that gravity acts on

masses. Special Relativity postulates the equivalence of mass and energy36, therefore the

statement is: “The gravitional charges are mass and energy.” All particles are affected

by gravity, including the massless ones like the photon37. The mediator of gravity is the

hypothesized graviton which has not been detected to date.

1.4 Soaring at the Right Altitude: Physics and Scale

All of the four fundamental interactions have characteristic scales. How do these come

about? The three fundamental constants of nature that span the cube of physics, the

gravitational constant G, the speed of light c and the Planck constant h, can be combined

to give “natural“ units of time, length and mass. The resulting Planck time and Planck

length are thought to represent the shortest distances and times relevant in physics. The

Planck length is many orders of magnitude smaller than e.g. the diameter of an atomic

nucleus. The Planck time is much shorter than the lifetimes of the particles discovered

36This is stipulated in the probably most famous formula of physics, E = mc2. On the left side of the
equation E stands for energy and on the right side of the equation we have the mass m times the speed
of light c squared. This formula is applicable for any object, be it an elementary particle or a massive
body known from everyday life.

37In Special Relativity, the energy of an object comprises two terms which can be seen as the energy
the object has at rest (this energy depends on the mass of the object) and the energy it possesses due
to its movement. Although the rest energy of a massless particle, like a photon, is zero, it does have
energy (which is related to its frequency).
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to date. Since this scale is not experimentally accessible at present, we can only wonder

what physical phenomena might be taking place there.

The Planck mass that can be found using G, c and h corresponds to around 0.02 mil-

ligrams - a tiny quantity compared to the everyday unit of a kilogram. But an enormous

quantity compared to the mass of a proton. As discussed mass and energy are the grav-

itational charges. The Planck mass must therefore be viewed as the characteristic scale

of gravity. Surprisingly this scale is way larger than the scales in the realm of the ele-

mentary particles. This fact is known as the hierarchy problem. Why is this a problem?

Owing to the hierarchy of scale, the fundamental interactions cannot be treated in a

common framework. A lot of effort has been made to find a theory valid for all of the

fundamental interactions. While the electromagnetic and the weak interaction have re-

cieved a common framework in the electroweak interaction, it has not been possible to

combine the gravitational interaction with any other fundamental interaction. This re-

veals the limits of the Standard Model, our best practice in physics today: The Standard

model cannot explain the hierarchy problem. Research persists to unify the fundamental

interactions. The models proposed so far can either not be verified or falsified (because

their effects are not accessible experimentally) or the predicted effects have not been

observed to date. These various models are subsumed in the term ”physics beyond the

Standard Model“ - BSM physics.

The characteristic scale of the electroweak interaction, established at many orders of

magnitude below the Planck mass, is refered to as vacuum expectation value of the

Higgs field v. With the discovery of the Higgs boson at the LHC in Geneva (2012) it

has become a matter of common knowledge that ”the Higgs boson gives mass to the

particles“. Now, what might that mean? Let me start with an analogy from everyday

life: The coins used in our everyday life would be useless were they not assigned a

certain value by the national bank. While the masses of particles can be measured in

experiment, it has been hard to incorporate the generation of mass into our physical

theories. In 1964, the Higgs-Mechanism was proposed to solve this difficulty. The

existence of a further mediator, the Higgs boson, was postulated. As indicated above,

particles can just as well be pictured as waves. In the present example, the term field is

more convenient. The earth has a gravitational field, and an electrically charged particle

gives rise to an electric field. The effects of a field can be felt in the surroundings of

their source, whereby they are stronger near the source and weaker at larger distance to

the source. The particles can thus be viewed as exitations of fields acting in spacetime.

The Higgs field can be thought of as encompassing our universe. All massive elementary

particles and mediators interact with the Higgs field through electroweak interaction. It

is by this interaction that they obtain their mass. To come back to the analogy from
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everyday life, it is through a formal act of the national bank (the Higgs field) that coins

(the particles and mediators) recieve a value (mass).

1.5 Measuring the Universe: Precision Physics and New

Physics

The Standard Model cannot explain the hierarchy problem as seen in the last section.

Furthermore there are additional observational results that seem to contradict its predic-

tions. Astronomical observations have shown that galaxies rotate, like the planets rotate

around the sun or a vinyl record rotates around its center. For a rigid body like a vinyl

record the rotational velocity measured as the speed of a specific point on the record

increases with the distance of that point from the center, see Fig. 1.7. The movements

of the planets around the sun follow the Laws of Kepler38: The rotational velocity of

the planets decreases with increasing distance from the sun. In accordance with New-

tonian Gravity and General Relativity, this should also be the case for stars rotating

around their galactic center. Instead, one observes the rotational velocity of stars to be

constant in regions further away from the center. How can this be explained? Assuming

Newtonian Gravity and General Relativity to be correct, this could be explained with

more mass being present in the outer regions of galaxies than can be observed with

our contemporary measuring devices. This hypothetical mass is called dark matter due

to the assumption that, although it does take part in the gravitational interaction, it

does not take part in the electromagnetic interaction, therefore emits no light and is

not visible in optical observations. The Standard Model does not foresee dark matter

and appropriate particles have not been detected to date. Another explanation for the

rotational velocities has been found by modifying Newtons Laws. In short, the discrep-

ancy between the expected and the observed rotational curves of galaxies has not been

settled yet.

Another discrepancy between theory and experiment has arisen in the context of the so-

called anomalous magnetic moment of the muon, also known under the shortcut ”muon

g-2“. A moving body can be described by its momentum. Intuitively, momentum is

a measure for the impact of an object due to its velocity and mass. A car weighing

half a ton moving at 30 kilometers per hour has a momentum five times larger than a

cyclist on a bicycle weighing 100 kilograms moving at the same speed. For a rotating

body such as a planet the corresponding quantity is called angular momentum and

the distance to the rotation center plays a role. These momenta are well described

in classical Newtonian Physics. The movement of an electron in the atomic shell can

38Johannes Kepler (1571-1630) was a German astronomer and mathematician.
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Figure 1.7: Left: Rotational curves of a vinyl record (green dashed line), the planets
in the Solar system (solid blue line) and the observed rotational curves of galaxies (solid
gray line). Illustration by LemonBalmer / CC BY-SA [12]. Right: The Stern–Gerlach
experiment. A beam of particles (2) produced at (1) travels through a magnetic field
(3). The particles are deflected in two specific directions (5), owing to their Quan-
tum Mechanical spin property. Classical physics predicts the particles to be deflected

continuously (4). Illustration by Tatoute / CC BY-SA [13].

be described as a rotation around the atomic nucleus, and the corresponding quantity

is called the orbital angular momentum. Measurements have shown that the electron

possesses an additional characteristic quantity called the intrinsic angular momentum,

also known as spin. This is a genuine Quantum Mechanical effect absent in classical

physics39. Based on the angular momentum, a magnetic moment can be defined. The

Quantum Mechanical correction due to the spin property, also called anomaly, can be

accounted for by multiplying the classical result with a number, the ”muon g-2“. In

the case of muons, there is a discrepancy between the theoretically calculated and the

experimentally measured value of the ”muon g-2“. This discrepancy is large enough to

lead some physicists to assume this might be a hint for BSM physics. Currently, an

experiment is ongoing to shed light on this issue40.

A third inconsistency between theory and experiment is neutrino oscillation. In the

Standard Model the neutrino was originally assumed to be massless and the lepton flavor

number41 is conserved. Both statements contradict an observation known as neutrino

oscillation. Let us begin this discussion with the decay of a muon, see Fig. 1.6. In

the first decay process, a muon (µ) decays to a W boson with negative electric charge

(W−) and a muon neutrino (νµ) in a weak interaction process. The muon neutrino is a

neutrino of the second generation - remember that the elementary particles come in three

generations. In the second decay process, the W− decays weakly42 into an electron (e)

39The Quantum Mechanical spin property was discovered e.g. in the Stern-Gerlach experiment, see
Fig. 1.7.

40The experiment is performed at Fermilab in Batavia, Illinois, USA. Data is taken from 2017 until
2020. Check out the public press for results in 2021!

41The different particle species are distinguished by their flavor. In the case of leptons, the flavors are
electron, muon and tau.

42Meaning: in a weak interaction process.
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Figure 1.8: Left: Electronic decay of the tau. Right: Muonic decay of the tau. Both
decays take place at the same rate. This equivalence is known as lepton universality.

and an anti-electron neutrino (ν̄e)
43. Let us compare the particles before and after the

interactions. Initially, the muon is the only particle. After the decays, we are left with an

electron, a muon neutrino and an anti-electron neutrino. First, we check the conservation

of electric charge. The muon has a negative electric charge, so does the electron. The

neutrinos are electrically neutral. So the net electric charge is conserved. Note that the

charge is ”carried“ from the initial muon to the final electron by the negatively charged

mediator, the W−. Next, we check the conservation of lepton flavor number. The

lepton generations are characterized by their flavors, thereby distinguishing the electron

neutrino, the muon neutrino and the tau-neutrino and their respective anti-particles.

The lepton flavor number is +1 for each particle of a specific flavor, -1 for each anti-

particle of a specific flavor. The initial muon has zero electronic flavor number and +1

muonic flavor number. In the final state, the muonic flavor number is +1 (stemming from

the muon neutrino) and the electric flavor number is zero (as the numbers of the electron

and the anti-electron neutrino cancel each other out). So the lepton flavor number is

conserved in this decay process, as it should be in accordance with the Standard Model.

In experiments, however, it has been observed that neutrinos produced with a certain

flavor may later be observed to have changed in flavor. Muon neutrinos produced by

cosmic radiation in the atmosphere have been measured before and after passing through

part of the earth. The amount of muon neutrinos has been observed to be reduced by up

to 50 percent between the first measurement and the second measurement. Most likely,

the disappeared fraction was transformed into another neutrino flavor, presumably into

tau neutrinos. According to our current theories, a change of flavor is only possible if

neutrinos are massive - in contradiction to the Standard Model. This is the phenomenon

referred to as neutrino oscillation.

Let me finish this section with some thoughts on lepton universality. The weak interac-

tion mediated by the electrically charged bosons W+ or W− is equal for all fermions (the

umbrella term for quarks and leptons). Consequently, the tau is just as likely to decay

into an electron as into a muon44, see Fig. 1.8. Likewise, an electron in the final state

43The bar-symbol ist used to discriminate particles νe from anti-particles ν̄e.
44The statement is true up to small effects from the difference in mass of the leptons.
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Figure 1.9: Left: Electronic decay of the tau. Right: Electronic decay of the muon.
Both decays are equally probable due to lepton universality.
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Figure 1.10: Left: Electronic decay of the B− meson. Right: Muonic decay of the
B− meson. Lepton universality demands equal rates for both decays47.

might just as well stem from a decay process with an initial muon as with an initial tau,

as depicted in Fig. 1.9. Theoretical and experimental results are consistent for these

decays. As mentioned previously, two quarks can be bound to form a meson - a short-

lived particle that will decay soon afterwards. Mesons can decay weakly to fermions.

The decay of e.g. B− mesons made up of a bottom quark45 and an anti-up quark has

been experimentally investigated. According to lepton universality, the electronic decay

of the B− meson should happen just as frequently as the muonic decay. However, recent

experimental results have shown an excess of the electronic decay46, see Fig. 1.10 [14].

As with the discrepancy for the ”muon g-2“, this excess is too small to be firm evidence

for New Physics beyond the Standard Model and at the same time it is too large to be

explained exclusively by the inevitable uncertainties inherent to theory and experiment.

Additional more precise experiments and theoretical efforts will hopefully either expand

Standard Model or confirm its validity.

In summary, precision physics and searches for New Physics are linked together in con-

structive tension. In order for New Physics to be validated, physical quantities must be

measured ever more precisely. Also, the predictions of the Standard Model must be the-

oretically calculated ever more accurately, including effects not considered before. Only

in case of consistent disagreement between Standard Model based predictions and ex-

perimental results can New Physics be established. The current thesis presents a tool to

calculate observables48 including strong and weak effects in an automated fashion. This

tool can be used to study fundamental interactions and decay processes at state of the

art accuracy. Its aim is to contribute to the endeavor of providing accurate predictions.

45The top and the bottom quark are members of the third generation of quarks.
46The statement is true for certain decay channels.
48An observable is a physical quantity directly accessible in experiment, e.g. the energy of a particle.
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Figure 1.11: Cartoon displayed on an office door at the Institute of Exact Sciences
of the University of Bern. Photograph by M. Hager.

1.6 Invitation to Cooperate: On the Relation of Theory

and Experiment

Elementary particle physics is performed experimentally and theoretically. Roughly

speaking, experimental physicists design and perform experiments and analyse the mea-

surement data. Theoretical physicists calculate predictions for the interaction processes

based on theoretical foundations, propose new observables and search for new theories

attempting to explain discrepancies between theory and experiment. The current thesis

contributes to the first task in the domain of theoretical physics. Naturally, theoreticians

and experimentalists have different points of view, a fact that is well represented in Fig.

1.11.

As a rule of thumb, experiments always have the last word in case of discrepancies be-

tween theory and experiment. I would like to conclude the general introduction with

an exception to the rule. From 2006 - 2012, an experiment was conducted to investi-

gate the neutrino oscillations introduced in the previous section49. We have seen that

neutrinos are produced in decay processes. There are many methods to induce such

decay processes. In the aforementioned experiment in Geneva (Switzerland), a beam

of protons was directed on a graphite target. This lead to the production of mesons,

which can decay to muons and muon neutrinos. The particles were sent towards Gran

Sasso (Italy), by means of focussing lenses. The muons were absorbed by the rocks en

route, while the neutrinos continued their flight and were measured at their destination

with a detector specifically constructed for this experiment. Some muon neutrinos were

indeed observed to have oscillated to tau neutrinos. In 2011, the collaborators working

on the experiment reported that neutrinos had been measured to be travelling faster

49The experiment was called ”CERN Neutrinos to Gran Sasso“.
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Figure 1.12: Left: Photon-mediated Drell-Yan scatttering p p → γ + X → l l̄. The
photon is identified with the greek letter γ. Right: Number of events with respect to

the dilepton mass mll for Drell-Yan scattering [15].

than the speed of light. However, the Special Theory of Relativity states that nothing

can travel faster than the speed of light in vacuum, not even a quasi massless neutrino.

I was a Bachelor student at the time this news was communicated, and I vividly recall

the spell of exitement present at our institute. It was hard to believe that Einstein’s

theory of Special Relativity, which had persisted - solid as a rock - for over a century,

could be challenged by a bunch of superluminal particles travelling through the Alps. It

turned out that failures in the experimental setup had lead to false results, and it was

later reported that after the equipment had been fixed, the speed of the neutrinos was

measured to be in agreement with the speed of light.

1.7 Getting down to Business: An Example Scattering

Process

After the general overview everything needed is at hand to immerse ourselves into the

details of the research documented in this thesis. I start with the Drell-Yan (DY)50 scat-

tering process that was first suggested and measured in 1970. In a particle accelerator,

two beams of protons are made to travel in opposite directions in separate beam pipes at

nearly the speed of light, thereby gaining high energy. The two beams are then brought

together, whereby some protons undergo collisions. At high energies this results in a

scattering of the constituents. For example, a quark of one proton can interact with an

anti-quark of the other proton. In an electromagnetic interaction a photon is produced

that subsequently decays to a lepton and an anti-lepton. The remaining constituents of

the protons recombine to build hadrons. The example process is schematically depicted

in Fig. 1.12 (left).

50Sidney D. Drell (1926-2016) was a US-American physicist. Tung-Mow Yan (1937) is a US-American
physicist of Taiwanese origin.
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A detector, an ingenious combination of tracking devices51, calorimeters52 and particle-

identification devices53 measures physical observables including energy, mass and charge

of the particles left behind after the interaction. If the event shows the characteristics

of the process being studied, in our case the two leptons in the final state after the

interaction, the measurement is recorded. After many such measurements an event rate,

also called interaction rate, can be computed, corresponding to the number of events

registered per unit time.

Once the event rate R is known, a quantity called cross section can be evaluated. The

cross section σ of a specific interaction is a measure of the probability for it to take

place. It is defined as

σ =
#interactions · A

NANB
=
R

L , with L =
NANB

A . (1.1)

Ni is the number of particles in beam i, and A is the beam area. The interaction rate

R is the number of interactions per time unit, and the luminosity L is a measure for

the performance of the particle accelerator per time unit. The more particles in the

beams Ni for a given beam area A and time unit, the higher the luminosity of the

accelerator. The cross section has the dimensions of a surface and is measured in barns;

1 b = 10−28 m2. The values of Ni and A can be tuned and the interaction rate R is

measured in the experiment, while the cross section σ is a physical quantity independent

of the accelerator parameters save for the beam energy, as we shall see further below.

In Fig. 1.12 (right), the outcome of proton-proton scattering to a lepton pair is visual-

ized. The term ”µµ-channel” indicates that only events with a muon and an anti-muon

in the final state are considered in this plot. The plot shows the differential cross section.

This is the number of events with respect to a certain observable, here the dimuon mass.

We see that the number of events changes with the mass. Most events were recorded

at a dimuon mass around 90 GeV54. We also notice that the yellow area contributes

most. It corrresponds to the process p p → Z → µ µ̄, where the intermediate state is

a Z boson instead of a photon. It is no coincidence that the peak is at approximately

90 GeV, which is the Z boson mass. Viewing the situation the other way round, the

51The tracking devices include semiconductors (remember the phototelectric effect), gas-ionisation
(remember the cloud chamber) and muon spectrometers. The latter contain magnets to bend the tracks
of charged particles like the muon (remember the discovery of the positron), allowing to calculate charges
and momenta.

52The calorimeter is designed to absorb most particles coming from a collision, forcing them to deposit
their energy within the detector. It consists of dense and highly absorbing material, lead for example.

53Particle-identification devices detect radiation emitted by charged particles. The energy of this
radiation or the angle at which the radiation is emitted allow to distinguish different particle types.

54The GeV is a unit for mass and energy commonly used in high energy physics. 1 GeV corresponds
to 109 electron volt eV. The mass of an electron is approximately mec

2 ' 500’000 eV = 0.5 MeV.
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Figure 1.13: Left: Kinematic quantities in Drell-Yan scattering. Right: Differential
cross section dσ/dqT for Z boson-mediated Drell-Yan scattering.

existence of a peak can be taken as evidence that a particle of a certain mass is in the

intermediate state. This phenomenon is known as a resonance, and it shows exactly how

new particles were and still are discovered.

Another interesting observable is the transverse momentum. This is the component

of the momentum in the plane transverse to the beams. There is – per definition –

no transverse momentum in the initial state of the two protons before the interaction.

Transverse momentum is a conserved quantity, therefore it equals zero also in final state.

If only two leptons are produced without additional radiation, they will fly away back

to back, with equal momentum in opposite directions.

If the measured total transverse momentum of the final state, including possible radia-

tion, does not add up to zero, then some of it was carried away by particles that were

not detected. This is referred to as missing transverse momentum, or missing transverse

energy, respectively. Missing transverse momentum allowed for the discovery of the neu-

trino, produced in the electroweak decay W → l ν. It is also an experimental signature

expected in BSM-physics, e.g. in Supersymmetry (SUSY); searches for SUSY particles

are based on measuring missing transverse energy.

We shall see very soon that the cross section for DY scattering does indeed depend

on transverse momentum, whereby the transverse momentum of the final state is com-

pensated by radiation of the interacting quarks. The understanding of the transverse

momentum spectrum in scattering processes, the calculation of the cross section and fi-

nally the implementation of this calculation into a framework allowing for an automated

evaluation over a wide range of processes and observables, neither limited to the DY

process nor to the transverse momentum - that’s what this thesis is all about.

In order to compute the theoretical cross section for our p p → γ → l l̄ example process

– note that the photon is identified with the greek letter γ – we use methods from
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Figure 1.14: Left: DY scattering at tree level. Middle: A one-loop diagram for
the electromagnetic interaction in DY scattering. Right: A one-loop diagram for the
strong interaction in DY scattering. The black blobs are called interaction vertices.
The mediators are the photons for the electromagnetic and the gluon for the strong
interaction. The coupling constants are α for the electromagnetic and αs for the strong

interaction.

Quantum field theory (QFT). In QFT, physical quantities O are often computed as a

series in a coupling constant g,

O(α) =
∑

cn g
m = c0 + c1 g

2 + c2 g
4 + . . . , (1.2)

where the ci are coefficients. As long as g � 1, the subleading terms of order g4 and

higher powers of g are corrections (perturbations) to the leading term c0 + c1 g
2, hence

the series expansion method is also called perturbation theory. The process at tree level

relevant in our example comprises the leading term only. Each interaction vertex in the

Feynman diagrams in Fig. 1.14 corresponds to a factor g. Based on the diagram, an

amplitude can be calculated. The probability for a process to take place is the square

of the amplitude, so that the leading-order (LO) result will be proportional to g4. In

our example process, which is an electromagnetic interaction, the coupling constant is

denoted α, with α := g2/4π.

Let’s have a look at the kinematic quantities of the DY process, see Fig. 1.13. The

colliding protons have four-momenta P1 = (Eb, 0, 0, Eb) and P2 = (Eb, 0, 0,−Eb), where

Eb is the beam energy of the particle accelerator. The interacting partons carry fractions

zi of the proton momenta, such that Ei = ziEb are the energies of the partons in absence

of radiation. The intermediate state has momentum q = (z1P1 + z2P2), and we find

q2 = z1 z2 s = M2, where M is the mass of the leptonic final state and s = (P1 + P2)2.

The rapidity of the intermediate state is defined as

y =
1

2
ln

(
E + qz
E − qz

)
=

1

2
ln

(
z1

z2

)
, where z1 =

M√
s
ey and z2 =

M√
s
e−y . (1.3)

Intuitively, the rapidity is related to the velocity of the intermediate state in one of the

beam directions. The larger the parton momentum ratio (z1/z2), the larger the rapidity.

The cross section σ for proton-proton scattering to some measured final state Y, as

derived e.g. in [16], is
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σ(p(P1) + p(P2)→ Y )

=

∫ 1

0
dz1

∫ 1

0
dz2

∑
f

φf (z1)φf (z2) · σ(qf (z1P1) + q̄f (z2P2)→ Y ) ,
(1.4)

where the sums runs over all quark and anti-quark flavors55 up, anti-up, down, etc. The

φ(zi) are parton distribution functions (PDFs) that encode the momentum fraction zi

carried away from the proton by the parton.

At this stage some questions are overdue. The proton being a composite particle made

of two up quarks and one down quark, how do we know which quark, the up or the down,

takes part in the interaction? Where does the anti-quark come from? How can we know

which fraction of the proton momentum the parton carries off? The first two questions

can be answered as follows. As already suggested, the substructure of the proton is not

limited to the up and down quarks, which are also called valence quarks. Rather, it can

be pictured as containing all quark and anti-quark flavors as well as gluons, the mediators

of the strong interaction. These constituents are called sea quarks. The sea quarks also

participate in interactions, though with a smaller probability than the valence quarks.

The mentioned scattering experiments of the late sixties have shown that though we

cannot predict the momentum of a specific parton, we can extract the probability for it

to keep a certain fraction of the proton momentum.

In Fig. 1.15 the left diagram shows the cross section of a scattering experiment with

respect to the momentum fraction x of the interacting quark56. The experiment was

performed at various initial energies and scattering angles of the projectile. The plot

shows a characteristic distribution of measurement values that was shown to be inde-

pendent of the energies and angles. Phenomenologically speaking, this means that the

substructure of a proton looks roughly the same for a projectile no matter how hard it

strikes the proton. Based on this finding, many scattering processes with different inter-

action partners were performed, so that the probabilitity distributions of the momentum

fractions for the different partons could be tabulated.

The right diagram shows these distributions for the proton. We notice that for any

momentum fraction x it is more probable to find an up quark than a down quark. It is

also more probable to find a quark than an anti-quark of a certain flavor, and it is more

probable to find quarks of the first generation than of the second. We also see that for

small fractions of x the gluons dominate by far. These findings are purely empirical and

no method is known for finding the PDFs analytically.

55As with the leptons, the different species of the quark are referred to as “flavors“.
56For the sake of comprehensibility, we are slightly simplifying things. The plot shows dσ/dxdQ2

divided by a factor (depending on Q2, x and s) against x, where Q is the momentum transferred to the
target by the projectile. The identification of x with the momentum fraction is only valid at LO.
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Figure 1.15: Left: The cross section of deep inelastic scattering with respect to
the momentum fraction x of the interacting quark and the momentum transfer Q2 of
the electron for various initial electron energies and scattering angles. Right: Parton

distribution functions for the proton at Q2 = 4 GeV2. Illustrations from [16].

The formula for the interaction of a quark with an anti-quark of flavor f to produce a

lepton pair is

σ(qf q̄f → l+ l−) =
1

3
Q2
f ·

4πα2

3M2
, (1.5)

where Q2
f is the square of the quark electric charge of the quark and M2 is the dilepton

mass squared. The coupling constant α of the electromagnetic interaction is also called

the fine-structure constant. The cross section σ for photon-mediated DY scattering at

leading order is

σ(p p→ l+l−) =

∫ 1

0
dz1

∫ 1

0
dz2

∑
f

φf (z1)φf (z2) · 1

3
Q2
f ·

4πα2

3M2
. (1.6)

Let’s also compute the differential cross section dσ/dM2dy which is the cross section

with respect to the physical observables M2 and y. Computing the Jacobian for the

change of variables using relation (1.3), we find dz1dz2s = dM2dy and

dσ

dM2dy
(p p→ l+l− +X) =

∑
f

z1 φf (z1) z2 φf (z2) · 1

3
Q2
f ·

4πα2

3M4
. (1.7)

In the next chapter, I present a formula for the cross section that is more realistic than

the one presented here for the process at tree level. I first discuss the formula qualita-

tively, then outline its derivation using an effective theory. In the remaining chapters

I describe how the different factors of the formula are worked out and implemented

into a computational framework. Finally results generated using this framework are

discussed.



Chapter 2

Preparation of Tools

If you want to go far, go slow.

anonymous

2.1 Going Beyond Tree Level: The Factorization Formula

for Small Transverse Momentum

Now that we have dwelled on the DY-process at tree level, let’s analyze the following

two modifications: We want to consider radiation of the interacting partons, and we

want to include next-to-leading order effects in the strong interaction of the quarks. We

do not go beyond the leading order in the electromagnetic interaction because the NLO-

terms are smaller than the pursued accuracy of a few percent. In the strong interaction

however we include the next-to-leading (NLO) order because it differs from the tree-

level result by 20 to 30 percent1. To encode the radiation, we construct a beam function

B̄. Both improvements are illustrated in Fig. 2.1. The beam function combines the

PDFs known from the tree-level process with a function Ī that encodes the radiation of

quarks and gluons by the interacting partons. The following factorization formula for

photon-mediated Drell-Yan scattering given in [1] meets these requirements:

dσ

dM2dq2
Tdy

=
4πα2

9M2s
|CV (−M2, µ)|2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥ egF (ηF ,L⊥,αs)

×
∑
q

e2
q

[
B̄i(ξ1, x⊥, µ) B̄j(ξ1, x⊥, µ) + (q ↔ q̄)

]
.

(2.1)

1One can assess the relative strenghts of the strong and the electromagnetic interaction by comparing
the decay times of short-lived hadrons through the respective interaction. The decay time is inversely
proportional to the strength of the coupling. One finds that the strong interaction is around 100 times
stronger than the electromagnetic interaction.

29
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Figure 2.1: Left: Feynman diagram of the strong interaction at order O(αs) (NLO).
Right: Beam function B̄ and kinematical details of the radiation.

On the left-hand side of the equation, we have the differential cross section with respect

to the dilepton mass squared M , the rapidity y and the transverse momentum squared

q2
T . In the first factor on the right-hand side, together with the sum over quark charges∑
q e

2
q , we recognize the tree-level result (1.5) for the electromagnetic interaction of a

quark with an anti-quark to produce a lepton pair. The factor
∣∣CV (−M2, µ)

∣∣2 includes

terms up to order NLO of the series in the coupling αs of the strong interaction. The

quantity CV ist called a Wilson coefficient2, and the subscript V raises awareness for

the fact that the coefficient is related to a vector, the gluon in our case. As usual, M is

the mass of the leptonic final state. For the origin of the minus sign, see see Fig. 2.3.

The variable µ appearing here for the first time is the factorization scale – the scale at

which we choose to evaluate the different factors. It has no physical meaning, a fact

that we will make use of in our calculations. The term in brackets on the second line

encodes the radiation. It is part of a Fourier integral, where the integration d2x⊥ runs

over the transverse plane. While this term will be analysed in detail in Chapter 3, let

me illustrate the basic mechanism by means of the beam function

B̄i(ξ, x⊥, µ) =
∑
j

∫ 1

ξ

dz

z
Īi←j(z, x⊥, µ)φj(ξ/z, µ) . (2.2)

As seen in the tree-level interaction, a certain fraction of the proton momentum is carried

away by a parton. The parton can then undergo radiation processes, so that finally a

momentum fraction ξ is left to interact. The beam function depends on the momentum

fraction ξ left after radiation, while the function Ī depends on a variable called z. For

z = 1, no emission takes place and the beam function B̄ reduces to the PDF φ. For

z = ξ the parton takes all of the proton momentum, ξ/z = 1. The integral runs over all

values z ∈ (ξ, 1), so that the beam function encodes all possible radiation, given a ξ, up

to a certain accuracy called NNLL that will be explained later on.

To access the transverse momentum spectrum of the electroweak final state, we integrate

over M2 and y. The cross section dσ/dqT can be found by using the relation

2Kenneth G. Wilson (1936) is a US-American physicist.
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dσ

dqT
= 2qT

dσ

dq2
T

. (2.3)

Fig. 1.13 shows the transverse momentum spectrum dσ/dqT for the Drell-Yan process

p p → Z + X → l l̄ computed using formula (2.1). The X denotes hadronic states

including the radiation we are interested in. Most interactions take place at small

transverse momentum qT around 5 GeV of the lepton pair and hardly any events occurr

with qT > 80 GeV. This finding agrees well with experimental results.

2.2 Knowing our Limits: Effective Field Theories

The factorization formula (2.1) has been derived using an effective theory. An effective

(field) theory aims at explaining some aspects of a problem, as opposed to explaining

everything. In this sense, every physical theory is an effective theory, as we have not

found “The Theory of Everything” yet. As I have exposed in the introduction, the

Standard Model is an effective theory in the sense that is can explain many, albeit not

all physical phenomena below the Planck scale. In an effective theory, one is allowed

to simplify things as long as the effects of the simplification are negligible compared

to the relevant quantities of the problem at hand. It has been pointed out in the

introduction that Quantum Mechanics as a non-relativistic theory is very successful at

describing the hydrogen and the helium atom as well as many more atomic phenomena.

For understanding atoms it is not necessary to take into account the substructure of

the nucleus, let alone of the nucleons. The atomic nucleus can be considered point-like,

charged and – because it is many orders of magnitudes heavier than the electron – to a

good approximation as fixed in space. This illustrates in what way Quantum Mechanics

is an effective theory.

Let’s work out some useful simplifications for our scattering process. In view of the

fact that the masses of the interacting partons are many orders of magnitude smaller

than the mass of the leptonic final state M , the partons can be considered massless.

The observable qT of interest is also much smaller than M , so the ratio qT /M might be

a useful parameter for a series expansion. The momenta of the incoming partons are

oriented along the beam directions, and we are also interested in the momenta in the

transverse plane stemming from radiation. Therefore we should adapt the coordinate

system to this situation. These properties, amongst others, are incorporated into the

effective theory called Soft-Collinear Effective Theory (SCET). SCET will prove to be

well suited for deriving the factorization formula and will be introduced in the next

section.
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2.3 Deriving the Factorization Formula: An Adventurous

Journey

2.3.1 The 2 to 2 Scattering Process

We are interested in the scattering of two protons with momenta P1 and P2 to a measured

final state with two leptons carrying momenta p+ and p− and hadronic states X with

momentum pX ,

p(P1) + p(P2)→ p+ + p− + pX . (2.4)

The general cross section formula for this process is

dσ =
dΠLIPS

2s
|〈p+, p−, pX |P1, P2〉|2 (2π)4δ(4) (p+ + p− + pX − P1 − P2) , (2.5)

We denote the integration over the phase space of the states X as
∑

X and the momen-

tum of the leptons as q = p+ + p−. The second property is implemented in the cross

section by a factor d4q δ(4) (q − p+ − p−) = 1. Also, we replace the delta-distribution in

Eq. (2.5) by its Fourier representation,

(2π)4δ(4) (q + pX − P1 − P2) =

∫
d4x ei(P1+P2−q−pX)x , (2.6)

to get

dσ

d4q
=
dΠLIPS

2s
δ(4) (q − p+ − p−)

∫
d4x

∑
X

|〈p+, p−, pX |P1, P2〉|2 ei(P1+P2−q−pX)x ,

(2.7)

where dΠLIPS is the Lorentz-invariant phase space,

dΠLIPS =
d3 ~p+

(2π)3

1

2E+

d3 ~p−
(2π)3

1

2E−
. (2.8)

In the following it will be useful to work with currents. The fermion vector current Jµ is

of the form ψ̄γµψ. In our case, the currents are related to the symmetry transformation
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Figure 2.2: Left: The hadronic part of the interaction. Right: The leptonic part of
the interaction.

ψ → e−iκψ of the Lagrangian L that will be introduced in the next section. Using

Noether’s Theorem3, we find

Jµ =
∂L

∂(∂ψ)

δψ

δκ
= ψ̄γµψ . (2.9)

This is the current for the electromagnetic interaction of fermions. We will write the

current for the electromagnetic interaction of quarks as Jµ =
∑

q eqψ̄q γ
µ ψq, where the

sum
∑

q is taken over quark flavors and the eq are the quark charges. As we are working

to leading order in the electromagnetic interaction, and because leptons do not interact

strongly, the leptonic part of the scattering amplitude 〈p+, p−, pX |P1, P2〉 factorizes from

the hadronic part. This situation is sketched in Fig. 2.2, and the two contributions are

given by

e2

q2
ū(p−) γµv(p+) , 〈pX |Jµ(0)|P1, P2〉 . (2.10)

In the leptonic part 1
q2 stems from the photon propagator and we have used α = e2/4π.

In the hadronic part we use the current operater introduced above. The cross section

can now be written as the product of a lepton tensor Lµν and a hadron tensor Wµν ,

dσ

d4q
=

1

2s

e4

(q2)2LµνW
µν , (2.11)

with the two tensors

Lµν =

∫
d3 ~p+

(2π)32E+

d3 ~p−
(2π)32E−

δ(4) (q − p+ − p−)
∑
s

ū(p−) γνv(p+) ū(p−) v̄(p+) γµu(p−)

(2.12)

3Emmi Noether (1882-1935) was a German mathematician.
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and

Wµν =

∫
d4x

∑
X

〈P1, P2|J†µ(0)|X〉〈X|Jν(0)|P1, P2〉 ei(P1+P2−q−pX)x . (2.13)

The lepton tensor is evaluated using gµνLµν and the sum
∑

s is taken over final spins.

We use the translation operator to replace J†µ(0) = e−iPxJ†µ(x)eiPx in the hadron tensor.

Applying the relation
∑

X |X〉〈X| = 1 we find the result

dσ =
4πα2

3q2s

d4q

(2π)4

∫
d4x e−iq·x (−gµν) 〈P1, P2|J†µ(x) Jν(0)|P1, P2〉 . (2.14)

The formula above is the starting point for the factorization that will be elaborated

using the effective theory SCET. In the next section, I introduce the formalism needed

herefore.

2.3.2 SCET Kinematics and Lagrangian

Since we consider large momentum in the beam directions and small transverse mo-

mentum qT , we prefer to work with momenta along the beam directions called collinear

and anti-collinear and soft momenta meaning small energies in all directions. These

properties are encoded using two light cone vectors

nµ ≡ (1, 0, 0, 1) , n̄µ ≡ (1, 0, 0,−1) . (2.15)

Due to

n2 = n̄2 = 0 , n · n̄ = 2 , (2.16)

these reference vectors are suited to describe massless particles propagating at the speed

of light. Any vector kµ = (k0, kx, ky, kz) can be decomposed into three components

called (+,−,⊥), where

kµ = kµ+ + kµ− + kµ⊥ = (n · k)
n̄µ

2
+ (n̄ · k)

nµ

2
+ kµ⊥

= (k0 + kz)
n̄µ

2
+ (k0 − kz)

nµ

2
+ kµ⊥ ≡ (n · k︸︷︷︸

+

, n̄ · k︸︷︷︸
−

, k⊥) .
(2.17)
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The four-vector kµ⊥ = (0, kx, ky, 0) is related to the two-dimensional vector ~kT = (kx, ky)

by k2
⊥ = −|~kT |2 = −k2

T = −k2
x − k2

y ¡ 0. The scalar product of two vectors pµ and xµ is

p · x = p+ · x− + p− · x+ + p⊥ · x⊥ . (2.18)

The two relevant scales for the processes of interest are the transverse momentum qT

and the invariant mass M of the leptonic final state, so λ = qT /M is a small expansion

parameter. With these considerations in mind, the relevant momenta called collinear

(c), anti-collinear (c̄) and soft (s) scale as

pc = M(λ2, 1, λ) , pc̄ = M(1, λ2, λ) , ps = M(λ2, λ2, λ2) . (2.19)

Fields are introduced for each sector, the quark fields ψ and the gluon fields Aµ as

ψ(x)→ ψc(x) + ψc̄(x) + ψs(x) , Aµ(x)→ Aµc (x) +Aµc̄ (x) +Aµs (x) . (2.20)

Using projection operators

P+ =
/n/̄n

4
and P− =

/̄n/n

4
(2.21)

satisfying P 2
± = P± and P+ + P− = 1, the collinear field ψc can be further decomposed

into

ψc(x) = P+ψc(x) + P−ψc(x) = ξ(x) + η(x) . (2.22)

Checking the scaling of the different components of the field ψ (see A.1), we find

ξ ∼ λ , η ∼ λ2 , ψs ∼ λ3 . (2.23)

Each component of the gluon field Aµ scales as its momentum. For the collinear gluon

field Aµc we have

n ·Ac ∼ λ2 , n̄ ·Ac ∼ 1 , Ac⊥ ∼ λ , (2.24)

and all components of the soft field Aµs scale as λ2. The Lagrangian of SCET for our

problem can be written as



Chapter 2. Tools 36

LSCET = Lc + Lc̄ + Ls , (2.25)

where Lc and Lc̄ describe the contributions (anti-) collinear to the beams and Ls the

soft contributions. While at first sight this seems to make everything more complicated,

it will turn out that after the due transformations we are left with few terms only. The

collinear Lagrangian for massless fermions and the covariant derivative read

Lc = ψ̄c i /D ψc ,

iDµ = i∂µ + gAµ = i∂µ + g (Aacµ +Aasµ) ta ,
(2.26)

where g is the coupling constant and ta are the generators of SU(3). After some trans-

formations (see A.2) we are left with

Lc = ξ̄

[
in ·D + i /Dc⊥

1

in̄ ·Dc
i /Dc⊥

]
/̄n

2
ξ , (2.27)

where

iDc = i∂ + gAc ,

in ·D = in · ∂ + gn ·Ac + gn ·As .
(2.28)

The component η of the collinear fermion field which is power suppressed compared to

ξ is not present any more in the Lagrangian. The collinear gluon Lagrangian and the

soft Lagrangian read

Lc = −1

4
(F ac )µν (F ac )µν

Ls = ψ̄s i /Ds ψs −
1

4
(F as )µν (F as )µν ,

(2.29)

with the soft covariant derivative iDs = i∂ + gAs. Let’s direct our attention to soft-

collinear interactions. Soft-collinear interactions involving soft quarks do not appear at

leading order in the effective Lagrangian, since ψs ∼ λ3 is power suppressed with respect

to all other fermion and gluon components. The soft contributions can therefore stem

only from gluons. Comparing the collinear gluon field Ac with the soft gluon field As,

we find that all components of the soft field are suppressed with respect to the collinear

field, except for n · As ∼ λ2 ∼ n · Ac (2.24). For this reason, only the component n · As
enters the soft-collinear interactions. The term n·As is part of the derivative n·D (2.28),
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and this gives rise to interactions between soft gluons and collinear fermions. The same

procedure also works for soft-collinear gluon-gluon interactions by defining

igF cµν := [iDc
µ, iD

c
ν ]→ [iDµ, iDν ] , (2.30)

where iDµ = iDc
µ + gn · As n̄µ2 . Basing on the above considerations, in the collinear

Lagrangian the gluon field reduces to

Aµ(x)→ (n ·Ac(x) + n ·As(x))
n̄µ

2
+ n̄ ·Ac(x)

nµ

2
+Aµc⊥ . (2.31)

The final result for the Lagrangian reads

LSCET = ψ̄si /Dsψs + ξ̄

[
in ·D + i /Dc⊥

1

in̄ ·Dc
i /Dc⊥

]
/̄n

2
ξ − 1

4
(F s,aµν )2 − 1

4
(F c,aµν )2 . (2.32)

The anti-collinear sector c̄ in the Lagrangian can be obtained by replacing nµ ↔ n̄µ

in the collinear sector. We now perform the multipole (or derivative) expansion that

serves to keep the unsuppressed contributions only. In soft-collinear interactions, the

momentum dominated by the collinear contribution scales as (λ2, 1, λ). The spacetime

point x is conjugate to the momentum and therefore has scaling (1, λ−2, λ−1). Only the

term x− · ∂+As ∼ λ−2 · λ2 ∼ 1 gives a contribution. Here we have used the fact that all

derivatives4 of the soft field scale as λ2. The Taylor expansion is therefore performed in

the component x−,

As(x) = As(x−) + (x− x−) · ∂As(x−) +
1

2
(x− x−)2 · ∂2As(x−) + ...

= As(x−) + x+ · ∂−As(x−)︸ ︷︷ ︸
O(λ2)

+x⊥ · ∂⊥As(x−)︸ ︷︷ ︸
O(λ)

+O(λ2) .
(2.33)

The expansion shows that the field As(x) can be rewritten as As(x−) up to first order

in λ for soft-collinear interactions.

2.3.3 Matching of the Current

After these considerations we return to the current operator that first appeared in Section

2.3.1 which we write as
4The quantum mechanical momentum operator is p = −i~∂x. Hence all derivatives scale as the

corresponding momenta.
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Jµ(x) = ψ̄(x) γµ ψ(x) . (2.34)

The effective theory (SCET) is constructed through a matching procedure with the full

theory (QCD). It can be shown that the terms of the SCET-Lagrangian do not recieve

any matching corrections, while the current operator does:

JµQCD = CV J
µ
SCET . (2.35)

The Wilson factor CV is called a matching coefficient. When constructing a current

in an effective theory one writes down all possible terms including the fields and their

derivatives allowed by symmetry and gauge invariance. Gauge invariance is discussed

in the Appendix (see A.3). Higher order terms in the parameter λ can be dropped.

Derivatives of collinear fields, scaling as the field itself, and are not suppressed in the

(anti-) collinear sectors. This amounts to non-localities in the (anti-) collinear directions.

The non-local current operator5 can therefore be written as

Jµ(x) =

∫
ds

∫
dtCV (s, t) ψ̄c(x+ sn̄) γµ ψc̄(x+ tn) , (2.36)

where tn and sn̄ are displacements in the (anti-) collinear directions. Non-local operators

are not gauge invariant. Fortunately a product of fields at different spacetime points

can be rendered gauge invariant if the fields are connected by Wilson lines W (x) (see

A.4). Using Wilson lines we can define gauge invariant fermion fields

χ(x) = W †(x)ψ(x) , χ̄(x) = ψ̄(x)W (x) . (2.37)

Now we construct the gauge invariant current operator

Jµ(x) =

∫
ds

∫
dtCV (s, t) χ̄c(x+ sn̄) γµ⊥ χc̄(x+ tn) . (2.38)

Only γ⊥ contributes to the expression above.6 Now we return to the soft-collinear

interaction term in the Lagrangian (2.32),

ξ̄
/̄n

2
in ·Dξ . (2.39)

5A non-local operator contains fields evaluated at different points in spacetime.
6γµ can be decomposed as γµ = γµ⊥+/n n̄

µ

2
+ /̄nn

µ

2
. We have seen (see Appendix A.1) that /n/n = 0 = /̄n/̄n.

So χ̄c(/n+ /̄n)χc̄ = 0 also.
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The soft field As(x) has been multipole-expanded (2.33), so the covariant derivative D

is

in ·D = in · ∂ + gn ·Ac(x) + gn ·As(x−) . (2.40)

We now redefine the collinear fields using soft Wilson lines S(x),

ξ(x)→ Sn(x−)ξ(x)(0)

Aµc (x)→ Sn(x−)A(x)(0)µ
c S†n(x−) ,

(2.41)

where the superscript “(0)” denotes a decoupled field. One can check that after this

redefinition the derivative D no longer depends on the soft sector,

in ·Dξ → Sn(x−)in ·D(0)
c ξ(0) , D(0)

c := ∂ − igA(0)
c (x). (2.42)

The term (2.39) now reads

ξ̄
/̄n

2
in ·Dξ → ξ̄(0) /̄n

2
in ·D(0)

c ξ(0) , (2.43)

and the soft gluon field is no longer present. It has been decoupled from the collinear

Lagrangian, hence the transformation (2.41) is termed a decoupling transformation. The

current now is

Jµ(x) =

∫
ds

∫
dtCV (s, t) χ̄(0)

c (x+ sn̄)S†n(x−)Sn̄(x+) γµ⊥ χ
(0)
c̄ (x+ tn) . (2.44)

This current describes an energetic quark in the direction of P1 and an anti-quark in

the direction of P2. We keep in mind that there is a second contribution in which the

directions of the quark and the anti-quark are interchanged. Again we perform the

multipole-expansion. The momentum of a collinear-anti-collinear interaction scales as

(1, 1, λ), and the conjugate spacetime point x as (1, 1, λ−1). Keeping in mind that the

derivatives scale as the fields, we find that for the collinear field χ
(0)
c the terms x+ ·∂−χ(0)

c

and x⊥ · ∂⊥χ(0)
c give contributions of order 1. We therefore expand χ

(0)
c in x+ +x⊥ (and

χ
(0)
c̄ in x− + x⊥ accordingly). Since the derivatives of the soft fields scale as λ2, there is

no contribution of order 1, and the soft Wilson lines are evaluated at x = 0. The result

after expansion reads
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q = p1 + p2

p1 p2

q = p1 − p2

Figure 2.3: Left: Timelike momentum q with q2 = M2 > 0. Right: Spacelike
momentum q with q2 = −M2 < 0. The mass squared M2 is a physical observable and

therefore always positive.

Jµ(x) =

∫
ds

∫
dtCV (s, t) χ̄(0)

c (x+ +x⊥+sn̄)S†n(0)Sn̄(0) γµ⊥ χ
(0)
c̄ (x−+x⊥+ tn) . (2.45)

This result can now be inserted back into expression (2.13). As the different fields have

been decoupled, the hadronic tensor Wµν factorizes into a soft and collinear matrix

elements,

Wµν ∼ 〈soft〉 × 〈collinear〉 . (2.46)

It turns out that the soft contribution evaluates to 1 in the final result. The ma-

trix elements of the collinear fields correspond to the PDFs. Details of these trans-

formations can be found in [4] from page 55 onwards. We write the matrix element

(−gµν) 〈P1, P2|J†µ(x) Jν(0)|P1, P2〉 in (2.14) as

1

Nc
|CV (−M2, µ)|2

∑
q

e2
q×〈P1|χ̄(0)

c (x++x⊥)
/̄n

2
χ(0)
c (0)|P1〉〈P2|χ̄(0)

c̄ (0)
/n

2
χ

(0)
c̄ (x−+x⊥)|P2〉 ,

where NC is the number of colors. The Wilson coefficient depends on the factorization

scale µ and on −M2. Note the first appearance of a factorization scale in this section.

This indicates that the corresponding quantity has been renormalized. The step from the

bare to the renormalized Wilson coefficient is shown in more detail in Section 3.1. While

the physical mass squared M2 is always a positive quantity, the momentum transfer can

be spacelike with q2 < 0, as shown in Fig. 2.3. This is the origin of the minus sign in

the arguments of the Wilson coefficient: it was originally calculated for a process with

spacelike momentum transfer. The cross section now reads
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dσ =
4πα2

3Ncq2s

d4q

(2π)4

∫
d4x e−iq·x |CV (−M2, µ)|2

∑
q

e2
q

× 〈P1|χ̄c(x+ + x⊥)
/̄n

2
χc(0)|P1〉〈P2|χ̄c̄(0)

/n

2
χc̄(x− + x⊥)|P2〉 .

(2.47)

Here the superscripts “(0)“ of the collinear fields have been dropped for convenience.

2.3.4 From PDFs to Beam Functions

We now turn our attention to the collinear matrix elements. Using SCET operators, the

PDFs read

φq/P (z, µ) =
1

2π

∫
dte−iztn̄·P 〈P |χ̄c(tn̄)

/̄n

2
χc(0)|P 〉 . (2.48)

We see that the standard PDFs are not suitable for our analysis that contains the

transverse displacement vector x⊥. One therefore defines transverse PDFs related to xT

with x2
T = −x2

⊥ > 0,

Bq/P (z, x2
T , µ) =

1

2π

∫
dte−iztn̄·P 〈P |χ̄c(tn̄+ x⊥)

/̄n

2
χc(0)|P 〉 . (2.49)

Using the transverse PDF B, we can express the cross section as

dσ

dM2dq2
Tdy

=
4πα2

3NcM2s
|CV (−M2, µ)|2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥

×
∑
q

e2
q

[
Bq/P1

(ξ1, x
2
T , µ)Bq̄/P2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]
+O

(
q2
T

M2

)
,

(2.50)

where we define

ξ1 =
√
τey , ξ2 =

√
τe−y , with τ =

M2

s
, (2.51)

and the d4x integration has been rewritten in terms of light cone coordinates:

∫
d4x =

1

2

∫ ∞
−∞

dx+

∫ ∞
−∞

dx−

∫
d2x⊥ . (2.52)
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The integration over x+ and x− fixes the momentum fractions ξ1, ξ2. We have also used

the identities d4q θ(q0) δ(q2−M2) = 1
2d

2q⊥ dy = π
2d

2qT dy. The formula above seems to

achieve the desired factorization of the scales M2 and q2
T ∼ x−2

T .

2.3.5 The Collinear Anomaly

The factorization is not fully accomplished yet. Looking at Formula (2.50), we see that

the Wilson coefficient CV depends on the scale M2 ∼ q2. The renormalisation group

(RG) equation for CV that will be solved in Section 3.1 includes a term C ln(q2/µ2),

where C is a factor,

d

d lnµ
CV ∼

[
C ln

(
q2

µ2

)
+ . . .

]
CV . (2.53)

But we demand that the physical cross section is independent of the scale µ. This implies

that the product of beam functions depends on the same term with opposite sign,

d

d lnµ
σ = 0 → d

d lnµ
[BB] ∼ −

(
C ln

(
q2

µ2

)
+ . . .

)
[BB] . (2.54)

In other words, the beam functions contain a hidden dependence on the large scale

q2 ∼M2. This effect is called an anomaly because it is a quantum effect not present at

the classical level. In [1] it was shown that the product can be refactorized as follows:

[
Bq/P1

(ξ1, x
2
T , µ)Bq̄/P2

(ξ2, x
2
T , µ)

]
=

(
x2
T q

2

b20

)−Fqq̄(x2
T ,µ)

Bq/P1
(ξ1, x

2
T , µ)Bq̄/P2

(ξ2, x
2
T , µ) ,

(2.55)

with b0 = 2−γE . The functions Bi/Pj are independent of the hard momentum transfer

q2, which is now a power with exponent Fqq̄. The corresponding calculations are traced

in Section 3.2. Using this refactorization we are finally left with the formula (2.1) given

at the beginning of this chapter, in which the disparate scales M2 and q2
T are completely

separated,

dσ

dM2dq2
Tdy

=
4πα2

3NcM2s
|CV (−M2, µ)|2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥
(
x2
TM

2

b20

)−Fqq̄(x2
T ,µ)

×
∑
q

e2
q

[
Bq/P1

(ξ1, x
2
T , µ)Bq̄/P2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]
+O

(
q2
T

M2

)
.

(2.56)
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The beam functions B have been shown in [4] to obey an operator-product expansion

of the form

Bi/P (ξ, x2
T , µ) =

∑
j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ)φj/P (ξ/z, µ) , (2.57)

where the Ii←j are called kernel functions. Both B and I are specified in Section 3.2.
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Calculation of the Cross Section

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that we

may fear less.

Marie Sklodovska Curie, 1867-1934

Now that the factorization formula (2.56) has been derived, we explicitly calculate the

Wilson coefficient CV to include the NLO-correction for the strong interaction and the

beam functions B encoding radiation. The numerical implementation of all components

of the formula will be explained in Chapter 5. At this point we slightly adjust the

wording: Instead of the large scale M used in the previous chapter, we speak of the hard

scale Q. Both quantities Q2 = M2 correspond to the mass squared of the dilepton final

state. When we speak of the hard function, we mean the Wilson coefficient CV that

encodes virtual corrections from the strong interaction of a quark and an anti-quark.

3.1 The Hard Function to One Loop and Resummation of

Large Logarithms

We write the hard function as a series in the strong coupling constant αs,

Hij(p̂1, p̂2, q, µ) = 1 +
αs(µ)

4π
H(1)
ij (p̂1, p̂2, q, µ) +O(α2

s) , (3.1)

where p̂i = Piξi is the momentum fraction going into the hard interaction after possible

emissions. The square of the Wilson coefficient
∣∣CV (−M2, µ)

∣∣2 in the factorization

44
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= + = CV ·

Figure 3.1: The hard function at NLO is obtained by summing the tree-level and the
virtual 1-loop contributions. This is identical to multiplying the matching coefficient

CV with the tree-level result.

formula (2.56) corresponds to the first two terms of the series, where the second term

denotes the one-loop virtual correction. The matching procedure is illustrated in Fig.

3.1. The Wilson coefficient calculated in dimensional regularization for the photon

production process reads

Cbare
V (ε,Q2) = 1 +

α0
s

4π
CF

(
− 2

ε2
− 3

ε
− 8 +

π2

6
+O(ε)

)(
eγEQ2

4π

)−ε
+O(α2

s) , (3.2)

where α0
s = g2

s/4π is the bare coupling constant and γE the Euler-Mascheroni constant.

We now renormalize the coefficient in the MS1 scheme, introducing a scale µ and ex-

pressing the bare coupling α0
s in terms of αs(µ). Using the relation Zα αs(µ)µ2ε =

e−εγE (4π)εα0
s with Zα = 1 +O(αs), we obtain

Cbare
V (ε,Q2) = 1 +

αs(µ)

4π
CF

(
− 2

ε2
− 3

ε
− 8 +

π2

6
+O(ε)

)(
Q2

µ2

)−ε
+O(α2

s) . (3.3)

The divergences are absorbed into a multiplicative factor Z,

Z(ε,Q2, µ) = 1 +
αs(µ)

4π
CF

(
− 2

ε2
− 3

ε
+

2

ε
ln
Q2

µ2

)
+O(α2

s) . (3.4)

One can check that the equation

CV (Q2, µ) = lim
ε→0

Z−1(ε,Q2, µ)Cbare
V (ε,Q2) (3.5)

holds, with the renormalized Wilson coefficient CV at order αs given by

CV (Q2, µ) = 1 +
αs(µ)

4π
CF

(
− ln2 Q

2

µ2
+ 3 ln

Q2

µ2
+
π2

6
− 8

)
+O(α2

s) . (3.6)

1Modified minimal subtraction (MS) is a scheme for choosing the finite parts of the counterterms in
the process of renormalization.
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We compute the square of CV to find

H(1)
qq̄ = −2CF ln2 Q

2

µ2︸ ︷︷ ︸
L2

+6CF ln
Q2

µ2︸ ︷︷ ︸
L1

+CF

(
2π2

6
− 16

)
︸ ︷︷ ︸

L0

. (3.7)

Note that, had we evaluated CV (−Q2, µ), as it appears in the facturization formula,

instead of CV (Q2, µ), we would have obtained 7π2/3 instead of 2π2/6, because ln(−a) =

ln(a) + iπ for a > 0. With L ≡ ln(Q2/µ2) scaling as α−1
s , H(1) contains leading logarith-

mic (LL) terms with αsL
2 ∼ O(1/αs), next-to leading logarithmic (NLL) terms with

αsL ∼ O(1) and next-to-next-to leading logarithmic (NNLL) terms with αsL
0 ∼ O(αs).

We observe that (3.7) involves large logarithms for µ2 � Q2, while the beam functions

involve large logarithms for µ2 � q2
T , as we shall see in the next section. This dilemma

can be remedied by solving the renormalization group equation for CV . The following

equation holds to all orders in αs,

d

d lnµ
CV (Q2, µ) =

[
CF γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (3.8)

where the functions

γcusp(αs) = 4
αs(µ)

4π
+O(α2

s) , γV (αs) = −6CF
αs(µ)

4π
+O(α2

s) (3.9)

are anomalous dimensions. One obtains the solution

CV (Q2, µ) = exp

{∫ µ

µh

[
CF γcusp(αs) ln

Q2

µ′2
+ γV (αs)

]
d lnµ′

}
CV (Q2, µh) . (3.10)

It is convenient to write the solution in terms of an evolution factor U ,

CV (Q2, µ) = U(µh, µ)CV (Q2, µh) . (3.11)

This relation allows us to evaluate the hard function at a high scale µh ∼ Q an then to

evolve the result down to a low scale µ ∼ qT where the beam functions are evaluated.

The large logarithms are thus absorbed into an exponent while the Wilson coefficients

are well-behaved. This procedure is referred to as resummation of large logarithms to

all orders in αs. The explicit formula for U is given in the Apendix, see B.1.
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3.2 The Fourier Integral with Beam Functions to O(ε)

3.2.1 Factoring Out Dependencies on the Hard Scale and Double Log-

arithms

In perturbation theory, the beam functions B in (2.56) are polynomials in a logarithmic

quantity L⊥,

L⊥ ≡ ln

(
x2
Tµ

2

b20

)
, (3.12)

that depends on the transverse displacement xT and a scale µ, while b0 = 2e−γE is a

constant. The transverse PDFs B that first appeared in (2.50) contain a dependence

on the square of the hard momentum transfer q2. As has been shown in (2.55) this

dependence can be factored out, leaving us with the beam functions B. We will see in

the following that for a valid expansion we will need to factor out yet another quantity,

namely the double logarithmic dependence of the beam functions B on L⊥. The beam

functions after both refactorizations will be denoted as B̄. The corresponding notation

for the kernel functions is I, I and Ī.

We start with the following relation from [4],

[
Bq/q(z1, x

2
T )Bq̄/q̄(z2, x

2
T )
]
q2 = δ(1− z1)δ(1− z2)

− CFαs
4π

{
δ(1− z1)δ(1− z2)

(
4L⊥ ln

(
q2

µ2

)
+ 2L2

⊥ +
π2

3

)

+

[
2δ(1− z2)

(
L⊥

1 + z2
2

[1− z2]+
− (1− z2)

)
+ (z1 ↔ z2)

]}
.

(3.13)

Note that compared to (2.55) the hadronic state P1 in Bq/P1
has been replaced by a

quark q in Bq/q. The same holds for Bq/P2
and Bq̄/q̄. The subscript q2 indicates the

hidden dependence on q2 that can be seen explicitly in the second line. In the last line,

[1 − z2]+ indicates a plus distribution. Plus distributions are discussed in A.5. The q2

dependent term can be expressed as

ln

(
q2

µ2

)
= ln

(
M2x2

T

b20

)
− L⊥ , (3.14)

and a comparison of the relevant terms of (2.55) and (3.13) yields
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(
x2
T q

2

b20

)−Fqq̄(x2
T ,µ)

= e
−Fqq̄ ln

(
x2
T q

2

b20

)
∼ 1− 4

CFαs
4π

L⊥ ln

(
M2x2

T

b20

)
. (3.15)

Expanding the left-hand side in αs, we read off

Fqq̄(x
2
T , µ) = CF γcusp L⊥ +O(α2

s) . (3.16)

The relationship between the partonic beam functions Bi/j and the kernel functions Ii←j
can be seen as follows,

Bi/j(ξ, x
2
T , µ) =

∑
k

∫ 1

ξ

dz

z
Ii←k(z, x

2
T , µ)φk/j(ξ/z, µ)

=
∑
k

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) δ(1− ξ/z)δkj

= Ii←j(ξ, x
2
T , µ) ,

(3.17)

where we have used that the partonic PDFs are φk/j(x) = δ(1 − x)δkj . Using this

relationship we can restate equation (2.55) as

[
Iq←i(z1, x

2
T , µ) Iq̄←j(z2, x

2
T , µ)

]
=

(
x2
T q

2

b20

)−Fqq̄(x2
T ,µ)

Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ) .

(3.18)

Comparing (3.18) with (3.13), one can find the explicit expression for the kernel functions

I at order αs [1],

Iq←q(z, L⊥, αs) = δ(1− z)
[

1 +
CFαs

4π

(
L2
⊥ −

π2

6

)]
− CFαs

2π

[
L⊥

1 + z2

[1− z]+
− (1− z)

]
.

(3.19)

Here we observe the double logarithmic dependence of the kernel functions I on L⊥. For

not too small qT ,
x2
Tµ

2

b20
∼ 1 and L⊥ is a small logarithm. So the kernel functions can be

readily evaluated. We factor out this dependence by rewriting [2]

Iq←i(z, L⊥, αs) ≡ ehi(L⊥,as) Īq←i(z, L⊥, αs) . (3.20)

The double-logarithmic exponent hi(L⊥, αs) is defined as the solution of the RG equation
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d

d lnµ
hi(L⊥, αs) = CiγcuspL⊥ − 2γi(αs) (3.21)

with boundary condition hi(0, αs) = 0. For quark-induced processes Ci = CF , while we

have Ci = CA in the gluon case. We arrange the prefactors into a single exponent,

egi(ηi,L⊥,αs) =

(
x2
TQ

2

b20

)−Fij(L⊥,αs)
ehi(L⊥,αs) ehj(L⊥,αs) . (3.22)

The exponent gF (ηF , L⊥, αs) for the quark case is listed in the Appendix (see B.2). We

have introduced the variable ηi that will be elucidated in the next section,

ηi ≡ ηi(Q2, µ) =
Ciαs(µ)

π
ln
Q2

µ2
∼ 1 . (3.23)

We adjust the factorization formula to the modifications found so far:

dσ

dM2dq2
Tdy

=
4πα2

3NcM2s
|CV (−M2, µ)|2 1

4π

∫
d2x⊥ e

−iq⊥·x⊥ egF (ηF ,L⊥,αs)

×
∑
q

e2
q

[
B̄i(ξ1, x⊥, µ) B̄j(ξ1, x⊥, µ) + (q ↔ q̄)

]
.

(3.24)

Since the integrand only depends on x2
T = −x2

⊥, we rewrite q⊥ · x⊥ = −xT qT cosφ and

integrate over the azimuthal angle φ, which yields

∫ ∞
−∞

d2x⊥ e
−iq⊥·x⊥ = 2π

∫ +∞

0
dxT xTJ0(xT qT ) . (3.25)

Due to the oscillatory nature of the Bessel function J0(xT qT ), the numerical convergence

is rather slow. It can be improved by using the identity J0(xT qT ) = 2
π ImK0(−ixT qT )

and then performing a Wick rotation xT → ixT . Omitting the prefactors and listing

only the Fourier part F of the cross section, we have

Fij(Q,µ, qT , ξi, ξj) =
1

4π

∫
d2x⊥ e

−iq⊥·x⊥ egF (η,L⊥,as)B̄i(ξ1, x⊥, µ) B̄j(ξ1, x⊥, µ)

= − 1

π
Im

∫ +∞

0
dxT xT K0(xT qT ) egF (η,L⊥,as)B̄i(ξ1, x⊥, µ) B̄j(ξ1, x⊥, µ) .

(3.26)
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3.2.2 Scale Setting and Modified Power Counting

At this point, let us pause briefly, recapitulate our endeavour, review what we have al-

ready achieved and look ahead what remains to be done. Using an effective theory and

a small expansion parameter λ = qT /M , we have derived a factorization theorem (2.56)

for Drell-Yan production at small transverse momentum qT � M . What is the lower

bound for the validity of the factorization formula regarding qT ? One would expect that

we would need to impose µ � ΛQCD, the location of the Landau pole2, in order for

perturbation theory to remain valid. However, we shall shortly introduce a scale q∗ and

show that the cross section can be calculated for arbitrarily small values of qT , up to

corrections controlled by ΛQCD/q∗. We distinguish three regions of transverse momen-

tum which require different treatment. For large qT & 40GeV, fixed order perturbative

calculation is adequate, and there is no need for resummation as no large logarithms

are present. In an intermediate region, large logarithms appear that we resum. In the

region of very small qT . q∗, the power counting must be modified.

We now need to set the factorization scale µ. For a reliable evaluation of the factorization

formula, the quantity L⊥ (3.12) entering the Fourier integral via the beam functions B̄

and the exponent gF should be a small quantity. Assuming that qT and xT are conjugate

variables with qT · xT ∼ 1, the choice µ ∼ qT seems reasonable. A detailed study of the

region of very small qT in [2] leads to an associated scale q∗, given by the value of µ at

which η (3.23) becomes equal to one,

q∗ = Q exp

(
− π

2Ci αs(q∗)

)
. (3.27)

In our numerical work, we therefore use µ = qT + q∗ as the default choice for the

factorization scale. For Z production q∗ ≈ 1.88 GeV. Note that since we set the scale

indepently of the integration variable, we do not hit the Landau pole. A consequence

of the appearance of the dynamical scale q∗ is that the logarithm L⊥, which counts as

an O(1) quantity for µ ∼ qT , now scales as L⊥ ∼ 1√
αs

for qT → 0. To keep track of

the powers we introduce a parameter ε with αs ∼ ε and L⊥ ∼ ε−1/2. Consequently, for

our order αs calculation we consider terms of order ε−1/2, ε0, ε1/2 and ε. This modified

power counting has been considered for the exponent gF (see B.2).

2L. D. Landau (1908-1968) was a Soviet physicist. The Landau pole is the scale where perturbation
theory breaks down, because the loop corrections become as large as the leading order. For µ ∼ ΛQCD,
αs(µ)→∞.
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ξ/z ξ

P (1)
q←q(z)

ξ/z ξ

P (1)
q←g(z)

Figure 3.2: Left: Gluon emission. Right: Quark emission.

3.2.3 The Beam Functions as an Expansion in L⊥

As depicted in Figure 2.1, the transverse-position dependent beam function B̄i factor-

izes into a perturbative kernel Īi←j describing the soft and collinear emissions at low

transverse momentum and a PDF φj ,

B̄i(ξ, x⊥, µ) =
∑
j

∫ 1

ξ

dz

z
Īi←j(z, x⊥, µ)φj(ξ/z, µ) . (3.28)

For NNLL resummation3, we need the one-loop result for Īi←j which takes the form

Īi←j(z) = δ(1− z) δij − as
[
P(1)
i←j(z)

L⊥
2
−Ri←j(z)

]
+O(a2

s) . (3.29)

Here we have introduced the abbreviation as = αs(µ)/4π. The first term of the expansion

takes care of the case where no emission takes place, z = 1, and the beam function

corresponds to the PDF. The logarithmic piece is proportional to the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) splitting functions P(1)
i←j at one loop. The two relevant

terms for P(1)
i←j are P(1)

q←q and P(1)
q←g, see Fig. 3.2. To achieve uniform accuracy over the

entire low qT region, we take into account the modified power counting and also include

the leading logarithmic piece of the two-loop beam functions

∆Īi←j(z) = a2
s

(
Di←j(z)− 2β0 P(1)

i←j(z)
) L2

⊥
8
, (3.30)

where

Di←j(z) =
∑
k

Di←k←j(z) =
∑

k=q,q̄,g

∫ 1

z

du

u
P(1)
i←k(u)P(1)

k←j(z/u) . (3.31)

Two of the contributions to Di←k←j for quark-induced hard scattering are depicted

in Figure 3.3. The diagram to the right shows that the quark flavor before and after

radiation can differ in the two-loop terms. The DGLAP splitting functions P(1)
i←j , the

3The terms LL, NLL and NNLL are explained in the text below Formula (3.7).
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ξ/z ξ

Dq←g←g(z)

ξ/z ξ

Dq←g←q′(z)

Figure 3.3: Left: Quark and gluon emission. Right: Double quark emission.

remainder functions Ri←j and the two-loop functions Di←j are listed in Appendix B.3,

and sample computations for Di←j is performed in A.5.

The complete beam function at NNLL accuracy is thus a second order polynomial in

the logarithm L⊥,

B̄i(ξ, x⊥, µ) =
∑
j

∫ 1

ξ

dz

z

[
δ(1− z) δij − asP(1)

i←j(z)
L⊥
2

+ asRi←j(z)

+ a2
s

(
Di←j(z)− 2β0P(1)

i←j(z)
) L2

⊥
8

]
φj(ξ/z, µ)

≡ B(0)
i (ξ, µ) + asB

(1)
i (ξ, µ)− as

L⊥
2
B

(2)
i (ξ, µ)

+ a2
sL

2
⊥

(
−β0

4
B

(2)
i (ξ, µ) +

1

8
B

(3)
i (ξ, µ)

)
,

(3.32)

and the coefficients B
(m)
i (ξ, µ) are functions of the momentum fraction ξ and the factor-

ization scale µ. With the coefficients B
(m)
i (ξ, µ) at hand, the Fourier integral reduces to

a set of integrals involving the n-th power of a logarithm

Mn(Q,µ, qT ) = − 1

π
Im

∫ +∞

0
dxT xT K0(xT qT )egF (ηF ,L⊥,as)Ln⊥ . (3.33)

Expressed in terms of the integrals Mn and coefficients B
(m)
i , the final form of the

Fourier-integral, as implemented in our code, is

Fij(Q,µ, qT , ξi, ξj) =
1

4π

∫
d2x⊥ e

−iq⊥·x⊥ egF (ηF ,L⊥,as)B̄i(ξ1, x⊥, µ) B̄j(ξ1, x⊥, µ)

=M0(Q,µ, qT )
[
B

(0)
i (ξ1, µ)B

(0)
j (ξ2, µ) + asB

(0)
i (ξ1, µ)B

(1)
j (ξ2, µ) + asB

(1)
i (ξ1, µ)B

(0)
j (ξ2, µ)

]
− as

2
M1(Q,µ, qT )

[
B

(0)
i (ξ1, µ)B

(2)
j (ξ2, µ) +B

(2)
i (ξ1, µ)B

(0)
j (ξ2, µ)

]
+
a2
s

4
M2(Q,µ, qT )

[
− β0B

(0)
i (ξ1, µ)B

(2)
j (ξ2, µ)− β0B

(2)
i (ξ1, µ)B

(0)
j (ξ2, µ)

+
B

(0)
i (ξ1, µ)B

(3)
j (ξ2, µ)

2
+
B

(3)
i (ξ1, µ)B

(0)
j (ξ2, µ)

2
+B

(2)
i (ξ1, µ)B

(2)
j (ξ2, µ)

]
.

(3.34)
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Z

uL, uR e+L , e
+
R

e−R, e
−
L

gg

ūR, ūL

W+

uL e+R

νL

g√
2Vud

ūR

Figure 3.4: Left: Electroweak interaction mediated by the Z. Right: Electroweak
interaction mediated by the W+.

3.3 The Transition from Electromagnetic to Electroweak

Interactions

Our considerations so far are related to an electromagnetic process mediated by a photon,

our efforts however are aimed at treating electroweak processes including Z and W

boson production by quark-antiquark annihilation. Here we must take into account the

chirality of the fermions: W bosons couple to left fermions and right antifermions. Z

bosons and photons couple to both components. In experiment, coupling could only be

verified for left neutrinos and right antineutrinos. The quarks coupling to W bosons are

of different flavor, so quark mixing must be kept in mind.

A detailed discussion of electroweak interactions is beyond the scope of this work. In-

stead, we will briefly discuss the sample interactions depicted in Fig. 3.4. The interaction

u ū → Z → e+ e− is realized in four variants respecting conservation of weak hyper-

charge, one of them being uL ūR → Z → e+
L e
−
R. Each fermion couples to the Z with a

specific factor times the coupling constant g. To obtain the amplitude for this process,

all possibilities must be summed. The process u d̄ → W+ → e+ ν has been observed

in the version uL d̄R → W+ → e+
R νL as shown in Fig. 3.4. The coupling of fermions

to the W is g/
√

2, and the factor Vud takes care of the quark mixing involved with

this interaction. The coupling constant g is related to the electromagnetic coupling α

by g2 sin2 θW = 4πα, where θW is the electroweak mixing angle named after S. Wein-

berg4. The angle θW is the only free parameter of the electroweak interaction, assuming

the electromagnetic coupling α is already known, and it needs to be determined by

experiment.

The result (2.56) can hence be generalized to W and Z production (without subsequent

decay) as follows. To obtain the double differential cross section d2σ/dq2
Tdy we change

the prefactor according to

4πα2

3NcM2s
→ 4π2α

Ncs
(3.35)

4Steven Weinberg (1933) is a US-American physicist of Austrian origin.
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and insert the proper charge factors. For the Z boson we replace

∑
q

e2
q →

∑
q

|gqL|2 + |gqR|2
2

=
∑
q

(
1− 2|eq| sin2 θW

)2
+ 4e2

q sin4 θW

8 sin2 θW cos2 θW
. (3.36)

For the W we replace the sum over flavors q by a double sum over individual quark

and anti-quark flavors q, q′. The relevant coupling for a W+ boson produced in the

annihilation of an anti-down and an up quark is

∑
q

e2
q →

∑
q,q′

|gq,q′L |2
2

=
∑
q,q′

|Vq,q′ |2
4 sin2 θW

, (3.37)

where Vq,q′ are elements of the Cabibbo–Kobaiashi–Maskawa (CKM) quark mixing ma-

trix.
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Highlights of the Calculations

The more I study, the more insatiable

do I feel my genius for it to be.

Ada Lovelace, 1815-1852

4.1 Improving the Measurement: The Observable φ∗

The observable φ∗ has been developed based on the fact that collider detectors gener-

ally have far better angular resolution than calorimeter (energy) or track (momentum)

resolution. In the following, I sketch the history of the φ∗-observable.

In [17], the authors discuss the ingredients of the qT -measurement in experiment. In

a Drell-Yan process, the qT -measurement depends on the resolution of the transverse

momentum pT of the leptons as well as on the overall event selection efficiency. They

propose an observable that is sensitive to qT , but less sensitive to these experimental

systematics. They decompose the ~qT = ~p
(1)
T + ~p

(2)
T into two orthogonal components: aT

transverse and aL parallel to the di-lepton thrust-axis t̂, see Fig. 4.1, where

Figure 4.1: Construction of the observable aT . Figure from [17].
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t̂ =
~p

(1)
T − ~p

(2)
T

|~p (1)
T − ~p

(2)
T |

, aT = |~qT × t̂| , aL = ~qT · t̂ . (4.1)

For events with opening angle of the leptons in the transverse plane ∆φll < π/2, corre-

sponding to only approximately 1% of the cross section, this decomposition is not useful,

and aT is set equal to qT . The sensitivity to lepton pT mis-measurement and the de-

pendence on event selection efficiency of the observables qT , aT and aL are studied. The

authors conclude that for low to moderate values of qT , qT < 50 GeV, aT is significantly

less prone to these experimental systematics than qT .

A theoretical study of the novel variable aT is carried out in [18]. The authors perform

a resummation at NLL for the variable aT and compare this result to the one stemming

from the qT distribution. They show that the calculations are nearly identical, and that

the resulting leading order cross sections for aT and qT /2 coincide up to a constant

term. The resummed results are then expanded to order α2
s and tested against fixed-

order results at NLO-level using the program MCFM1. The authors conclude that in

the low aT domain, the variable is useful for modelling partonic radiation and studying

small-x broadening of transverse momentum distributions.

In [19], the variable φ∗ ≈ aT /Q is introduced, where Q represents the dilepton invariant

mass. It is defined as

φ∗ = tan

(
π −∆φ

2

)
sin(θ∗) , with cos(θ∗) := tanh

(
∆η

2

)
, (4.2)

where ∆η = η− − η+ is the difference in pseudorapidity η,

η = − ln

[
tan

(
θ

2

)]
, (4.3)

of the decaying leptons and ∆φ the opening angle of the leptons in the azimuthal plane.

The angle between the momentum vector of the particle and the beam axis is denoted

θ. In Fig. 4.2 the two factors forming φ∗ are visualized. A variation of ∆φ around its

leading-order (also called Born-level2) value at ∆φ = π shows that the first factor is

zero at Born level and obtains its maximum for ∆φ→ 0. The second factor takes values

in [0, 1] and is maximal for ∆η = 0. Intuitively, the observable φ∗ is a measure of the

deviation of the lepton opening angle ∆φ from its value at Born level.

1http://mcfm.fnal.gov/
2Max Born (1882-1970) was a german physicist.
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Figure 4.2: Left: If the leptons are back to back, ∆φ = π and φ∗ = 0. Right: The
maximum of φ∗ is obtained for ∆η = 0.

The observable φ∗ is determined exclusively from the measured lepton directions. The

authors perform detailed studies of different variables, for example aT and QT /Q, re-

garding physics sensitivity (dependence of the variable on Q), experimental resolution

and immunity to experimental systematic uncertainties. They show that in the region

of low qT , the variable φ∗ is superior to other variables.

An analytical prediction for the φ∗ variable is presented in [20]. In this paper, the resum-

mation is performed at next-to-next-to-leading order, and the result is matched to NLO

fixed-order results. Cuts on the final state leptons, as they are used in experiment, are

incorporated into the calculation. A comparison to experimental data is carried out in

[21]. The computations are performed at the appropriate renormalisation, factorisation

and resummation scales, which are then varied in order to asses the uncertainty of the

results. The authors report excellent agreement with experimental data stemming from

the D∅ collaboration over a large range of φ∗ in all rapidity bins. Finally, in [22], an

equivalent study is carried out using LHC data. The resummed predictions are obtained

using a reweighting procedure similar to ours.

Fig. 4.3 shows a density plot of the cross section in qT and log10 φ
∗ to illustrate the

correlation among the two observables. For a given qT , there is a maximum possible

value for φ∗ obtained when the two leptons are produced at ∆η = 0. One finds that

φ∗max = qT /Q (for a derivation see A.7). The corresponding relation for Q = MZ is shown

as a dashed red line, and the red area above the line is kinematically excluded. The

largest cross section is found near the maximum possible value of φ∗ which demonstrates

the close correlation among the two observables.

4.2 A Step Towards More Realism: Considering Recoil

Effects

The derivation of the factorization formula for the cross section in Chapter 2 was based

on the small expansion parameter λ = qT /M . Contributions of higher oder in λ were
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Figure 4.3: The double differential cross section in qT and log10 φ
∗. The dashed red

line corresponds to φ∗ = qT /MZ , the maximum achievable value of φ∗ for a given qT .
In the red region above the dashed line, the cross section vanishes. Dark areas in the
density plot correspond to a large cross section. Most of the cross section arises from

values of φ∗ close to the kinematic boundary.

qT 6= 0 qT 6= 0 qT = 0 qT = 0

qT 6= 0 qT = 0 qT 6= 0 qT 6= 0

Figure 4.4: Upper left: In a physical process countless radiation processes take place,
leading to equal and opposite transverse momenta in the initial hadronic and the final
leptonic part. Upper right: In the process at tree level, no transverse momentum is
present. Lower left: Neglecting recoil effects leads to a mismatch in the kinematics
of the initial and the final state. Lower right: Boosting the tree-level event restores

conservation of transverse momentum.

systematically expanded away. In particular, the small transverse momentum of the par-

tons entering the hard scattering process was not taken into account. As a consequence,

the partons obey tree-level kinematics in the factorization formula (2.56),

ξ1p1 + ξ2p2 = q . (4.4)
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This situation is depicted in the upper right of Fig. 4.4. Expanding away the small

transverse momenta is appropriate for the computation of the QCD corrections asso-

ciated with the large scale Q2 as qT � Q. It is useful because the hard part of the

process is then given by the tree-level amplitude times correction factors, allowing us to

generate this part using a tree-level generator.

Due to the expansion we are left with a mismatch between the electroweak part, which

has zero transverse momentum, and the hadronic part in which the beam functions

generate emissions at a low transverse momentum qT . Momentum is no longer conserved

exactly, as illustrated in the lower left of Fig. 4.4. Given a hadronic momentum p⊥X due

to the radiation, we define the quantity q⊥ = −p⊥X , that we parametrize as

qµ⊥ = (0, qT cosφ, qT sinφ, 0). (4.5)

We now boost the entire tree-level event such that its total transverse momentum be-

comes qµ⊥ (for details see B.4). While the total cross section is invariant under this

transformation, the tree-level process now has two incoming partons with small trans-

verse momenta. In our reweighting, we use the parton kinematics before the boost to

determine the momentum fractions ξ1 and ξ2 for the beam functions. Doing so, we

again neglect small momentum components. The electroweak final state however now

has the correct transverse momentum, as represented in the lower right of Fig. 4.4. This

procedure allows us to access to the transverse-momentum distribution of the individual

final state particles.

Another procedure to consider the recoil effects was proposed by S. Catani et. al. in

[23]. The authors suggest a Lorentz transformation of the colliding parton momenta

from the hadronic collision frame to a specified vector boson rest frame. For dilepton

production involving parton momenta kiT , the constraint qT = k1T +k2T provides a class

of consistent qT -recoil prescriptions, the choice k1T = k2T = qT /2 corresponding to the

Collins-Soper rest frame for the vector boson. The different schemes for implementing

recoil effects differ by terms suppressed by the small quantity q2
T /Q

2 in which we expand.

These power suppressed terms are not captured by our resummation formula, but we

will match to fixed-order results to account for their effects up to O(αs).

In summary, we modify the tree-level events such that recoil effects are no longer ne-

glected. The events are boosted to a frame in which they have momentum qT in the

transverse plane. In this way we take into consideration the transverse momentum due

to the emissions. Due to momentum conservation, also the decay products are provided

with transverse momentum, and their qT -spectra become accessible.
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4.3 The Art of Physics: Matching to Fixed Order

Once more we recall that our result is based on the small expansion parameter λ = qT /M

and therefore holds for small values of qT . Logarithms which arise at small transvserse

momentum are resummed, while contributions which are suppressed by powers of q2
T /Q

2

are expanded away. At larger transverse momentum these contributions become more

and more relevant and should be included.

For large qT -values we therefore want to recover the fixed-order result. The fixed-order

cross section relies on a series expansion in the strong coupling αs. For large momentum

transfer Q, the interaction is feeble and the coupling αs small – a property referred to as

asymptotic freedom. The result at fixed order is therefore well suited for large values of

qT . The resummed and fixed-order calculations can be matched at intermediate values

of qT to achieve uniform accuracy for the entire range of transverse momenta. One

could be tempted to combine our resummed result with the fixed-order result by simply

adding the two results,

dσNNLL

dqT

∣∣∣∣
combined

' dσNNLL

dqT
+
dσNLO

dqT
. (4.6)

The first term on the right-hand side is the resummed result and the second term

the fixed-order NLO-result obtained from the event generator MG5_aMC@NLO. The

labelling of fixed-order results is not uniform in the literature. We use the term NLO

to denote the O(αs) result, such that the LO prediction is a δ-function term at qT = 0.

But this amounts to double counting some of the contributions. To correct for this,

we therefore need to subtract the NLO-contribution of the resummed result. The NLO-

expansion of the resummed cross section is computed in A.6. After this step, the matched

cross section reads

dσNNLL

dqT

∣∣∣∣
matched to NLO

=
dσNNLL

dqT
+
dσNLO

dqT
− dσNNLL

dqT

∣∣∣∣
exp. to NLO︸ ︷︷ ︸

matching correction ∆σ

. (4.7)

The third term on the right-hand side of (4.7) is the resummed result expanded to NLO.

The combination of the second and third term is called the matching correction ∆σ.

The result of this matching procedure, which we will call naive matching, is shown in

Fig. 4.5. While formally correct, the matched result (4.7) suffers from two problems.

First of all, we do not recover the pure fixed-order result, even at very large qT , because

the resummed result includes higher-order terms in αs. Formally they are beyond the

accuracy of the computation and can be kept, but since they are based on the qT → 0
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Figure 4.5: Matching correction, resummed, and matched result for qT and φ∗, for
the Z-production process featured in Section 6.2.
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Figure 4.6: Transition function t(λ) used to switch off the resummation.

limit, they can induce unphysical behavior at large qT . Indeed, naively keeping those

terms one ends up with a negative cross section at qT & Q.

The second problem concerns the other end of the spectrum. Both the fixed-order result

and the NLO expansion diverge for qT → 0. The difference goes to zero, but numerically

the cancellation is imperfect which leads to large numerical noise, well visible in Fig.

4.5, which renders the matched result useless for very small qT . The numerical problems

are especially visible because the resummed leading-power cross section is suppressed

for very small qT . The matching correction is not needed in this region. Because it

contains unresummed large logarithms, it can even be problematic to include it. In the

following, we will improve our matching scheme to solve both of the above problems.

To eliminate the numerical noise at small qT , we switch off the matching correction for

very low qT < q0, where q0 is a cutoff of the order of a few GeV. The cutoff q0 is chosen

large enough to avoid the numerical noise from the incomplete cancellation and small

enough that the neglected matching correction, which parametrically scales as q2
0/Q

2,

lies within the scale uncertainty of the resummed result. Both conditions are fulfilled

for the choice q0 = 5 GeV, which we adopt as our default value.

To avoid unphysical behavior stemming from higher-order terms in αs of the resummed

result, we switch off the resummation at large qT . To achieve this we introduce a

transition function
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Figure 4.7: Average transverse momentum, size of the matching correction and tran-
sition function for the observables qT , φ∗ and p`T for the Z-production process featured

in Section 6.2.

t(λ) :=
1

1 + a λCi b
, (4.8)

with λ = ∆σ/σmatched, where ∆σ is the matching correction and σmatched the naively

matched cross section (4.7). We use a = 4, b = 8 and Ci = CF = 4/3 for the quark

induced processes discussed here. The resulting functional form is plotted in Figure

4.6. The plot shows that we start switching off the resummation when the matching

correction amounts to around 20% of the result and switch if off completely once it is

larger than 40% of the matched cross section.

The improved matching scheme now reads
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Figure 4.8: Improved matching for qT , according to (4.9) for the Z-production process
featured in Section 6.2. The purple curve shows the matching with a cutoff qT > q0
and the blue curve also includes the transition function t(λ) which becomes active for

qT & 50 GeV.

dσNNLL

dqT

∣∣∣∣
matched to NLO

= t(λ)

(
dσNNLL

dqT
+ ∆σ

∣∣∣∣
qT>q0

)
+ (1− t(λ))

dσNLO

dqT
. (4.9)

For low values of qT , the function t(λ) equals 1 up to power corrections. Expression

(4.7) is hence reproduced up to the fact that the matching is switched off at very small

qT < q0. For large values of qT , we have t(λ)→ 0 so that the first term vanishes and we

go back to the fixed-order result.

There are various other prescriptions to switch off resummation. An advantage of work-

ing with a transition function is that this approach is simple and transparent. In [23]

the transition to fixed order was based on the value of qT . Using instead the size of

the power corrections as a measure is useful because it immediately generalizes to other

observables such as φ∗ or the lepton energy distribution.

In Figure 4.7 we plot the expectation value 〈q2
T /Q

2〉, evaluated with the resummed cross

section before matching, the size of the matching correction and the value of the tran-

sition function for qT , φ∗ and p`T , the lepton energy distribution. One observes that

there is a good correlation between the quantity λ, which tracks the size of the power

corrections, and the expectation value 〈q2
T /Q

2〉 in the region of low transverse momen-

tum. Some care is required when computing expectation values using the resummed

events since the resummed cross section becomes negative at large qT & Q, where the

formalism is not valid. This unphysical behavior would lead to a negative value for the

expectation value 〈q2
T /Q

2〉 at large values of φ∗. To avoid this, we exclude the events

with negative cross section when computing the expectation values shown in Figure 4.7.

While the expectation value 〈q2
T /Q

2〉 and λ lead to similar behavior, we prefer to use λ

since it does not require any additional computations beyond the ingredients of (4.9).
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In Figure 4.8, we show the matched result based on the improved formula (4.9). One

observes that the numerical noise at small qT is gone. The right plot in the same figure

shows the transition from the resummed result to the fixed-order case which takes place

between qT values of 50− 70 GeV.

4.4 Sampling of qT -values

For the resummation procedure we need to generate a sample of events with different

transverse momenta. The most natural way of doing this would be to distribute the

events according to the cross section, i.e. to compute

z = Σ(qT ) =

∫ qT

0
dq′T

1

σ

dσ

dq′T
. (4.10)

Inverting this relation one obtains qT (z) and one then uses a random number z = 0 . . . 1

to generate qT values. Proceeding in this way would yield events with equal weight, but

one would obtain only few events at larger qT where the cross section is small. In order

to have a sample which also covers the region of larger qT values, we instead generate

weighted events by sampling the qT values uniformly, i.e. we generate a random number

z and set

qT = z qmax (4.11)

Imposing a maximum qT value is necessary because the resummed result for the cross

section becomes unphysical at large values qT & Q. Writing ∆q = dqT /dz = qmax, the

cross section integral takes the form

σfid =

∫ qmax

0
dqT

dσ

dqT
=

∫ 1

0
dz∆q

dσ

dqT
. (4.12)

In a MC evaluation of the last integral with N events, each event thus contributes a

weight

w =
1

N

∆q

σfid

dσ

dqT
(4.13)

or equivalently, we can assign a cross section

∆σ =
∆q

N

dσ

dqT
(4.14)
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to each event. In the practical implementation, we start with MG5_aMC@NLO tree-level

events, generate qT and a random angle φ ∈ (0, 2π) to obtain the transverse momentum

vector. Then we boost the event as discussed in 4.2 and compute the event weight.



Chapter 5

Implementation of the Method

Now that the factorization formula (2.56) has been derived, its components have been

mathematically worked out (Chapter 3) and methodical refinements have been illus-

trated (Chapter 4), this chapter is dedicated to the automatisation of the calculations.

Our method is implemented using a universal reweighting code in combination with

the event generator MG5_aMC@NLO [24] and a process-specific analysis code. Sec-

tion 5.1 is focussed on the reweighting code, which is universal in the sense that it can

be applied to arbitrary quark-induced electroweak boson production processes with or

without subsequent leptonic decay, for example

p p → Z and p p → Z → l+ l−

p p → W+ → l+ ν and p p → W− → l− ν ,

p p → W+ Z and p p → W+ Z → l+ l+ l− ν

p p → W → HW and p p → Z → H Z .

(5.1)

With the analysis code illustrated in Section 5.2, one can choose the observables to be

analysed, e.g. qT or φ∗, impose the relevant experimental cuts, such as the transverse

momentum and rapidity cuts ATLAS imposes on the leptons, and fill a set of histograms

for the observable under consideration, containing the resummed result as well as its

NLO expansion for different scale choices. These histograms may then be combined

with experimental data. The use of the codes is explained step by step in Section 5.3,

and methods to match the results to fixed order and compare them to experimental data

are outlined in Section 5.4.

66
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Figure 5.1: Structure and kinematics of the factorization theorem for boson produc-
tion. The wavy lines denote the electroweak bosons in the final state.

5.1 Dressing LO Events with NLO and NNLL Contribu-

tions

5.1.1 Generating Tree-Level Events with an Event Generator

Our considerations so far were related to the production of single bosons and their

leptonic decay. The underlying factorization formula includes process-specific parts,

such as the hard function to one loop, and universal parts, such as the radiation of the

interacting quarks. In order to generate arbitrary electroweak states like the ones listed

in (5.1), we make use of MG5_aMC@NLO to compute the process-specific parts of the

resummed cross section and supply it with the universal ingredients needed to achieve

the resummation.

We choose a process and generate tree-level events with MG5_aMC@NLO. This results

in a Les Houches Event File (LHEF) [25] containing kinematics and the leading-order

cross section

dσLO =

∫ 1

0
dξ1

∫ 1

0
dξ2

∑
ij∈{q̄,q̄}

dσ0
ij φi(ξ1, µ)φj(ξ2, µ) (5.2)

for each event. Here, dσ0
ij(p̂1, p̂2, q1, ..., qN ) is called the partonic cross section. For the

scattering process studied in Section 1.7, the Born-level cross section was given in (1.6).

Because we no are no longer limited to the production of single bosons, the momentum

q in our formulas gets replaced by q1 + q2 + ...+ qN for N bosons in the intermediate or

the final state. This situation is illustrated in Fig. 5.1.
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5.1.2 Computing the One-Loop Corrections for the Hard Function

The one-loop correction to the hard function takes the form

H(1)
qq̄ = −2CF ln2

(
M2

µ2

)
+ 6CF ln

(
M2

µ2

)
+ h0(p̂1, p̂2, q1, ..., qN ) . (5.3)

For the photon-mediated process and for Z-production we have h0 = CF (−16 + 7π2/3).

This quantity was computed in Section 3.1. The process-specific one-loop corrections

h0 are computed with the routine Madloop of MG5_aMC@NLO. The hard function

is related to the finite part C0 of the virtual contribution obtained from Madloop as

follows,

h0(p̂1, p̂2, q1, ..., qN ) = 2C0(p̂1, p̂2, q1, ..., qN , µMad) + CF

[
π2

3
+ 2 ln2 Q2

µ2
Mad

− 6 ln
Q2

µ2
Mad

]
,

(5.4)

where µMad is a reference scale used by the event generator. We use a script written

during earlier work on jet veto resummation [26] to compute the loop correction for each

tree-level event and store this information in the eventfile.

5.1.3 Computing the Reweighting Factor

Next we run the reweighting code. The user needs to set two paths and define the range

of qT values to be considered. The maximal qT can be chosen arbitrarily. For comparison

to experimental data, the user will want to adjust the qT range to the data provided.

Our default choice for qT,max is around the average mass of the intermediate state, where

the cross section vanishes. In a first step, the code computes an interpolation for the

Q-dependent quantity q∗ (3.27). The default value for the high scale µh = Q will be

chosen dynamically for each event in the main routine based on the kinematics of the

event.

In the main routine, the code executes the following steps event by event. A transverse

momentum qT and an angle φ are randomly generated. The entire tree-level event

with four-momentum q̂µ = (q0, 0, 0, qz) of the intermediate state is boosted (see B.4) to

transmit the recoil, see Section 4.2, such that the new coordinates are

qµ
′

= (q
′
0, qT cosφ, qT sinφ, q

′
z) . (5.5)
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The flavors i and j of the incoming partons, their momentum fractions ξ1 and ξ2 as well

as Q2 are read from the eventfile. The quantity q∗(µh = Q) is obtained by numerically

solving (3.27) for the given Q-value of the event using interpolation, and the factorization

scale is set to µ = qT + q∗. The RG-evolved hard function Hij is constructed using the

loop correction provided with each event and the general form of the evolution factor U .

For the given value of qT , the integralsMi are computed. We have tabulated the beam

function coefficients B
(k)
f and use a PDF code for their interpolation. The reweighting

code computes the resummed cross section by assembling the mentioned quantities with

the Born-level cross section and the factor for obtaining the differential cross section

dσ/dqT from dσ/dq2
T emerging from the factorization formula (2.3). The cross section

at qT is obtained as a weight factor

w =

(
αs(µ)

αs(µMad)

)k Hij(p̂1, p̂2, q1, ..., qN , µ)Fij(ξ1, ξ2, qT , µ)

φi(ξ1, µMad)φj(ξ2, µMad)
w0 , (5.6)

where w0 is the Born weight of the tree-level event that was generated with the factor-

ization and renormalization scales set equal to a reference value µMad. The denominator

is needed to remove the PDFs that come in via the LO cross section (5.2). Instead, we

need the beam functions, given by Fij . The exponent k is the power of αs of the Born

level process. For the quark-induced electroweak vector-boson processes we consider

here k = 0.

The fixed-order expansion at the scale µmatch = Q is also computed. All these steps

are repeated under scale variation: The factorization scale µ, the high scale µh and the

matching scale µmatch are varied by factors 2 and 1/2. The code then writes the boosted

vectors and the weight factors back into the eventfile. The result of the reweighting

is that we have a statistical ensemble of events with transverse momentum containing

different weights for different scale choices.

5.2 Extracting Observables From the Reweighted Events

Our analysis code is process-specific and relies on an eventfile with reweighted events

obtained by the approach presented in the previous section. At the beginning of the

code, two paths need to be set. The qT region of interest must correspond to, or lie in

the range of the one chosen for the reweighting. Additionally, a cutoff value q0 has to

be defined for the matching procedure, see Section 4.3. Our default value is q0 = 5 GeV.

Inside the main routine kinematical cuts and fiducial regions can be set.

Subsequently arrays are defined for the scale-varied and NLO-expanded cross sections

as well as for the observables of interest. For the process p p → Z → e+ e− featured in
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the results Chapter 6, we choose to analyze the dilepton transverse momentum qT , the

dilepton angular observable φ∗ and the electron transverse momentum p`T . Arrays for

histograms and event statistics are set up. The binning of the histograms can be chosen

to suit the experimental data for comparison.

In the main routine we loop through the reweighted and boosted events. The event

kinematics are read in for computing the observables. For those events that satisfy the

imposed cuts, the cross sections are stored. An additional loop over the events that have

passed the cuts serves to collect their contributions to the fiducial cross sections that are

assigned to the respective bins. Further data can be collected for statistical quantities,

e.g. the average value of qT in bins of φ∗ shown in Fig. 4.7.

The binned results are written to a textfile, and a series of plots are created that provide

a first impression. After this analysis we have the resummed result, as well as its NLO

expansion, for different scale choices in histogram format and ready for matching and

comparing to experimental data. Note that our code produces cross sections, not spectra.

If needed, we normalize our curves after the matching as a last step before comparison

to experiment.

5.3 Instructions for the Use of the Reweighting and Anal-

ysis Codes

In order to use the reweighting and analysis codes, you must meet some prerequisites.

• Install MadGraph5_aMC@NLO1.

• Install a PDF set, e.g. MMHT2014nloclas118 with LHAPDF ID 252002.

• Link the PDFs in MadGraph5_aMC@NLO.

5.3.1 Generation of Events at Tree Level

First generate the process of interest. Locate your MG5_aMC@NLO directory, open a

terminal and start Madgraph by typing

>> ./bin/mg5_aMC

1http://www.madgraph.org/
2https://lhapdf.hepforge.org/pdfsets.html
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By default 4 quark flavors are activated. We work with 5 flavors, including also the

b-quark. To import the 5 flavor scheme type

>> import model loop_sm-no_b_mass

Generate the process, e.g.

>> generate p p > Z [QCD]

Save the results in a new directory, e.g.

>> output OUT_ppZ

Before generating events, we need some preparations. Adjust the runcard, to be found

in the process directory, /Cards/run_card.dat. Choose the number of events to be

generated, the required accuracy as well as the collider type and energy and specify the

PDF set to be used, for example:

lhapdf = pdlabel ! PDF set

25200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number.

As has been expanded on in Section 5.1, our method is based on handling single events.

For each event, we want MG5_aMC@NLO to use the invariant mass Q of the final-

state particles as the scale for renormalization and factorization. We therefore opt for a

dynamical scale choice:

10 = dynamical_scale_choice ! Choose one (or more) of the predefined ...

In order to render the quarks massless, the ickkw parameter must be set to -1:

-1 = ickkw

Save the runcard after having made the settings. The dynamical scale choice needs to be

implemented into the script setscales.f, to be found in the folder /SubProcesses. In

the function scale_global_reference(pp) at the end of the script, the user can define

the scale to be used by MG5_aMC@NLO. Define the variable ppv needed for summing

up the contributions to the invariant mass at the beginning of the the function:

double precision ppv(0:3)

The scale must be set dynamically regardless of the value of the ickkw parameter, so

replace if(ickkw.eq.-1)then by if(.false.)then at the beginning of the routine:

tmp=0

if (.false.) then

tmp=ptj

...

At the end of the routine, define the scale by adding the following lines:

#################################################################

## USER-DEFINED SCALE: ENTER YOUR CODE HERE
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## to use this code you must set

## dynamical_scale_choice = 10

## in the run_card (run_card.dat)

#################################################################

temp_scale_id=’User-defined dynamical scale: mu = Q’ ! use ...

tmp = 0d0

do i = 0,3

do j = 3, nexternal-1

ppv(i) = ppv(i) + pp(i,j)

enddo

enddo

tmp = dsqrt(dot(ppv,ppv))

#################################################################

## USER-DEFINED SCALE: END OF USER CODE

#################################################################

The numbering of the external particles can be checked in the Feynman diagrams in

/HTML/info.html. You are now ready to generate tree-level events. Type

>> launch OUT_ppZ

Alternatively, you can locate the process directory in a terminal and type

>> ./bin/generate_events

Make sure you choose the following options in the first dialogue:

order = LO

fixed_order = OFF

shower = OFF

madspin = OFF

reweight = OFF

In the next step you have the possibility to edit the parameter card and the runcard.

Unless you want to make further modifications, you can bypass this dialogue and di-

rectly press Enter again. The events are now generated and stored in the folder

/events.lhe.gz in the directory /Events/run_01_LO. Extract the file events.lhe from

this folder.

5.3.2 Virtual Corrections to the Hard Function

The leading-order cross section (5.2) is available in the eventfile. The one-loop cor-

rection factor h0 (5.4) that includes the virtual QCD-corrections at order αs has been
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automated in MG5_aMC@NLO [26]. The relevant script is the virt_reweighter.py

in /Utilities/VetoPrefactors. Move this script to the folder /bin/internal of the

process directory.

In case the process generated has an intermediate state, the virt_reweighter.py must

be adapted. For the example process p p > Z [QCD], this is not needed. For e.g.

p p > Z > e+ e-, add the supplementary line ’’.join(’z’)+’_’+\ to the helper

function channelToShellName at the beginning of the script:

# Process identified by list of PDGs to shell name mapping

def channelToShellName(in_pdgs,out_pdgs):

return ’’.join([PDGToShellName(in_pdg) for in_pdg in in_pdgs])+’_’+\

’’.join(’z’)+’_’+\

’’.join([PDGToShellName(out_pdg) for out_pdg in out_pdgs])

For the process p p > W+ Z > mu+ nu e+ e- the corresponding line would read

’’.join(’wpz’)+’_’+\.

Now locate the process directory and enter

>> cd bin/internal

>> ./virt_reweighter.py ../../Events/run_01_LO/events.lhe

The events are reweighted with the virtual corrections and saved as events_rwgt.lhe.

5.3.3 Reweighting of Events

Move the following objects to the folder /Events/run_01_LO:

• The python scripts qT_reweighter.py and rew_functions.py,

• the Fortran scripts alphaS.f, BeamNew.f and mstwpdf.f,

• the Makefile

• and the folder Grids.

Compile the Fortran scripts using the Makefile. The command

>> make

should return

>> gfortran BeamNew.f alphaS.f mstwpdf.f -o BeamNew

At the beginning of the script qT_reweighter.py, in the box USER DEFINED SETTINGS,

insert the following information:
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• The path to your MG5_aMC@NLO directory,

• the path to the process directory and

• the range of transverse momentum qT to be considered.

The reweighting can now be accomplished by entering

>> python qT_reweighter.py

This can take considerable time, around 3 minutes for 1000, half an hour for 10’000 and

one day for 500’000 events. The results are written to events_rwgt_boost.lhe.

5.3.4 Analysis of Events

The reweighted events can be analysed with the script analyzer.py. The output of the

analyzer.py is a file named data_hist.txt. This file contains the resummed result,

as well as its NLO expansion, for different scale choices in histogram format. To use

analyzer.py, specify paths, the range of transverse momentum and the matching cutoff

q0 in the box USER DEFINED SETTINGS. Define the observables desired for analysis in

the section VARIABLES AND ARRAYS. Set up the histograms in ORGANIZE HISTOGRAMS.

In the part IMPOSE CUTS of the main routine, specify kinematical cuts and fiducial

regions. For a coherent outcome, make sure the binning of the histograms and the cuts

imposed correspond to the settings for the generation of fixed-order results and to the

experimental data.

5.3.5 Fixed-Order Events at NLO

The resummed results can be matched to fixed-order results. The fixed-order cal-

culation is automated in MG5_aMC@NLO as well. Use a template from the folder

/FixedOrderAnalysis and modify it according to the process of interest: define the de-

sired histograms as well as the binning, impose cuts on kinematic quantities and observ-

ables. For the example process p p > Z [QCD], use the script analysis_HwU_pp_V.f.

Update the fixed-order analysis card, to be found in /Cards/FO_analyse_card.dat,

with the following lines:

FO_ANALYSIS_FORMAT = HwU

FO_ANALYSE = analysis_HwU_pp_V.o

In the runcard, to be found in /Cards/run_card.dat, set the ickkw parameter to zero:

0 = ickkw
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You are now ready to generate fixed-order events. In the MG5_aMC@NLO terminal,

type

>> launch OUT_ppZ

Alternatively, you can locate the process directory and type

>> ./bin/generate_events

Make sure to choose the following options in the first dialogue:

order = NLO

fixed_order = ON

shower = OFF

madspin = OFF

reweight = OFF

Then press Enter. You have the possibility to edit the runcard and the fixed-order

analysis card. If you have already updated these cards, you can bypass this dialogue

and press Enter. The fixed-order events are stored in the file MADatNLO.HwU in a new

run directory /Events/run_02. In the files data_hist.txt and MADatNLO.HwU, data

for the resummed and the fixed-order cross sections for the selected observables are now

available and ready for matching. Their combination with experimental data allows for

comparison of the theoretical predictions to experimental results.

5.4 Matching and Comparison to Experimental Data

We perform the matching in a separate Mathematica3 notebook. The different cross

sections are combined step by step according to the prescription given in Section 4.3.

The matching correction ∆σ is obtained from the NLO fixed-order result for the cross

section, computed with MG5_aMC@NLO, at qT > q0. We then subtract from this the

NLO-expanded resummed result imposing the same cutoff.

For the comparison to experimental data, we work with Mathematica as well. The

ATLAS experiment uses bins of unequal size, and this can require a rebinning. For the

processes featured in the results Chapter 6, we use equidistant bins for the fixed-order

and the resummed data and have rebinned the experimental data. As a final step, a

normalization prescription must be chosen to obtain the spectrum from the cross section.

We first compute the fiducial cross section in the region qT . M , the average mass of

the final state, from our matched result using default scale choices and then divide by

this number to get the spectrum. We also normalize the experimental result to the

measured cross section in this momentum region. The upper range was chosen because

3https://www.wolfram.com/mathematica/
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the unmatched resummed cross section turns negative at higher values of qT which would

lead to unphysical behavior in the unmatched spectra shown in Figure 6.3.



Chapter 6

Results and Discussion

I now present a some computations made with our code and compare to results obtained

with previous frameworks and experimental predictions. Our computations are based

on version 2.6.4 of the MG5_aMC@NLO framework and unless stated otherwise, we

adopt the default parameter values of this code. These include MZ = 91.188 GeV,

αs(MZ) = 0.118, αEM = 1/132.507, GF = 1.16639 × 10−5 GeV−2, and the derived

quantities MW = 80.419 GeV and θW = 0.490912. We work with the MMHT 2014 NLO

PDF set with nf = 5 flavors [27]. For the hard scale, we choose the value µh = Q, where

the value of Q is set dynamically, on an event-by-event basis. For the low scale, we choose

µ = qT + q∗, where q∗ was defined in (3.27). In our fixed-order computations and for

the matching we use µf = µr = µh. To estimate the uncertainties of our computation,

we individually vary the scales µ and µh by a factor two around their default values and

take the envelope of the variations as our scale uncertainty. We found that in order to

have sufficient statistics, we need to generate around 100’000 events for a qT range of

100 GeV.

6.1 Z Boson Production

We first compare our results for the process p p → Z to those obtained with the re-

summation code CuTe [3] for the purpose of validation. CuTe1 is a C++ program to

calculate the differential cross-section for electroweak gauge boson and Higgs boson pro-

duction at small transverse momentum qT . The code implements NNNLL resummation

as well as matching to NNLO fixed-order results and uses the LHAPDF interface to

provide different PDF sets. The resummation code CuTe relies on the same theoretical

foundations as the current work.

1https://cute.hepforge.org/

77
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Figure 6.1: Comparison of the Z boson transverse momentum cross section to the
result obtained with the CuTe code, with rapidity cut |yZ | < 2.4.

The only selection criterion applied is to restrict the rapidity of the Z boson to |yZ | < 2.4.

The results for the resummed cross section are shown in Fig. 6.1. The difference in the

peak region stems from the fact that in CuTe µ = qT + q∗e−qT /q∗ while in our code

µ = qT + q∗. The rapidity is defined using τ = (M2 + q2
T )/s in CuTe, while we have

τ = M2/s (2.51). This leads to a difference for large qT . When one adjusts these values,

the results coincide exactly.

6.2 Z Boson Production and Leptonic Decay

Measurements of φ∗ and qT for DY events with dilepton pairs e+e− and µ+µ− in the final

state are presented in [15]. The data were collected in 2012 with the ATLAS detector

in pp collisions at
√
s = 8 TeV, corresponding to an integrated luminosity2 of 20.3 fb−1.

The selection criteria are listed in Table 6.1: Events were considered with transverse

momentum p`T > 20 GeV and pseudorapidity (4.3) |η| < 2.4 for each lepton in the final

state. The lepton pairs were required to have a rapidity (1.3) |y``| < 2.4. Our study is

related to the Z-resonance region 66 GeV < m`` < 116 GeV.

The raw measurements are subjected to many steps of analysis before being published3.

From the observed events, two cross sections are extracted. The fiducial cross section

2The integrated luminosity is the integral of the luminosity with respect to time.
3We use the results from the repository https://www.hepdata.net.
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Leptons p`T > 20 GeV |η| < 2.4
Lepton pairs |y``| < 2.4
Mass region 66 GeV < m`` < 116 GeV

Table 6.1: Kinematic cuts applied for the process p p → Z → e+ e−.

l̄

l

Born

bare

dressed

Figure 6.2: Three particle-level definitions are applied to the measurements regarding
lepton kinematics and final-state photon radiation: Born (red), bare (green) and dressed

(black).

corresponds to the result in a region of phase-space defined by the event selection cri-

teria. For the total cross section, the measured event yield must be extrapolated to

the experimentally inaccessible part of the phase space. To this extent, theoretical pre-

dictions are used. The final-state photon radiation (FSR) is treated in three different

ways named bare, dressed and Born. The lepton kinematics before FSR are called Born,

those after FSR bare. The particle level called dressed is defined by combining the bare

four-momentum of each lepton with that of photons radiated within a cone defined by

∆R = 0.1 around the lepton, see Fig. 6.2. We perform our studies using the Born

data. Monte Carlo simulation is used to estimate backgrounds and to correct the data

for detector resolution and inefficiencies, as well as for the effects of FSR. The details of

this analysis can be found in the reference [15].

Before confronting experiment, it is interesting to compare the resummation at NLL and

NNLL order. The corresponding spectra are shown in Fig. 6.3. We observe that the

scale uncertainties are reduced by about a factor two going from NLL to NNLL. The

NNLL results lie within the NLL uncertainties.

In Fig. 6.4, we plot our matched results for the qT and φ∗ spectra, as measured by

ATLAS. The scale bands are driven by the µ variation at low qT . The µh variation

becomes dominant at larger values when we start to switch off the resummation. The

experimental data and the prediction generally agree quite well. At intermediate values

we overshoot a little bit and our cross section is too small in the fixed order region at
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Figure 6.3: Comparison of the NLL (blue) and NNLL (red) results for the qT and
φ∗ spectra. The plots show the result before matching. For visual reference, we also

include ATLAS measurements (green points).
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Figure 6.4: Comparison of the matched NNLL result to ATLAS data. The experi-
mental uncertainties (green dots) are below 1% and thus invisibly small, the theoretical

ones (blue bands) are obtained from scale variation, see text.

large qT . Our fixed-order matching at O(αs) only includes the leading term for qT 6= 0

and thus has limited accuracy. In the context of the fixed-order computation, let us

mention that in the matching scheme (4.9) with a cutoff q0 on the matching corrections,

we could extend the matching with limited effort to O(α2
s). To do so, one would use

MG5_aMC@NLO to perform a NLO computation of Z + j with pjT > q0, where j is a

jet. The resummed results would then be expanded one order higher in αs to extract

∆σ.

Fig. 6.5 shows the matched result for the lepton energy distribution. Due to the lepton
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Figure 6.5: Matched NNLL result for the electron momentum. ATLAS imposes
peT > 20 GeV, so the distribution vanishes below this value. The bands show the scale

uncertainties.

energy cut, this distribution starts at p`T = 20 GeV. Resummation effects are especially

important near the end-point of the tree-level result at half of the mass MV of the

produced boson. Indeed for p`T < MV /2, the distribution is dominated by low-qT events,

while the matching becomes important at higher values of p`T , see Fig. 4.7. The lepton

energy spectrum is much easier to measure than the transverse momentum of the weak

boson, especially for the W where one has to reconstruct the missing energy to obtain

the boson momentum, but to our knowledge no LHC measurements were presented for

p`T in Z production, so we cannot directly compare.

6.3 W Boson Production and Leptonic Decay

Measurements of inclusive W+, W− and Z/γ∗ production cross sections are presented in

[28]. The data were collected in 2011 with the ATLAS detector in pp collisions at
√
s = 7

TeV with an integrated luminosity of 4.6 fb−1. Differential W+ and W− cross sections

were measured in a lepton pseudorapidity range |η`| < 2.5 and differential Z/γ∗ cross

sections as a function of the absolute dilepton rapidity for |y``| < 3.6. In an inclusive

W → `ν analysis, signal events can be considered to consist of three contributions: the

isolated charged lepton, the undetected neutrino, and any further particles produced

in the hadronization of quarks and gluons produced in association with the W boson.

The measurements provide a sensitive test of electron-muon universality in the weak

interaction sector. The ratios RW and RZ for electronic and muonic decay were found

to confirm lepton universality in the weak vector-boson decays in [28].

Our qualitative study is related to W production. We calculate the transverse momen-

tum cross sections of the muon in W → µ ν. Besides the figures shown in 6.6, no data
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W decay pµT > 20GeV |ηµ| < 2.4

Table 6.2: Kinematic cuts applied for the process p p → W± → µ± ν.

p p → W - +X → μ- νμ+X
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Figure 6.6: Number of events in bins of 2 GeV for the muon pT in W− → µ−ν̄ (top)
and W+ → µ+ν (bottom). Left: The muon differential cross section for the energy we
obtain with our method. The bands show the scale uncertainties. Right: As measured

by ATLAS [28].

on the moun spectra were published. The selection criteria applied for our qualitative

study are listed in Table 6.2.

6.4 WZ Production and Triple Gauge Boson Coupling

The Standard Model predicts triple gauge boson couplings (TGCs), see Fig. 6.7. The

TGC vertex is determined by the electroweak gauge structure, and it can be measured

through the analysis of diboson production. A precise measurement of this vertex probes

for possible new phenomena involving gauge bosons. The W±Z production cross section

may be enhanced by anomalous TGCs deviating from gauge constraints. New particles

decaying into W±Z pairs, such as those predicted in supersymmetric models, can also

increase the cross section. An measurement sensitive to such effects has been performed

at the Large Hadron Collider in 2011 [29].

The W±Z production cross section was measured with the ATLAS detector in pp colli-

sions at
√
s = 7 TeV. Four decay channels including large missing transverse momentum

were considered, namely W±Z → e±e+e−ν, W±Z → µ±e+e−ν, W±Z → e±µ+µ−ν and
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Figure 6.7: The SM tree-level Feynman diagrams for W±Z production through the
s-, t- and u-channels.
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Figure 6.8: Matched cross sections for W±Z production at
√
s = 7 TeV. The left plot

shows the total transverse momentum qT , the right one pZT , the transverse momentum
of the Z boson. The bands show the scale uncertainties. The only cut we apply is to

restrict the rapidity of the di-boson system to |y| < 2.4.

W±Z → µ±µ+µ−ν. The following selection criteria were applied: The transverse mo-

mentum of the muon must exceed 15 (18 for trigger) GeV, its pseudorapidity |η| < 2.5.

For electrons, the transverse energy must be greater than 15 (22 for electron pT trigger)

GeV, while the pseudorapidity must satisfy |η| < 1.37 or 1.52 < |η| < 2.47. At least

one of the electrons (muons) is required to have pT > 20. The dilepton invariant mass

must lie within 10 GeV of the Z boson mass. Background processes for the W±Z signal

are jets produced in association with W± or Z bosons, W+W− and ZZ pairs as well as

top-quark production events. In total, 317 candidates were observed with a background

expectation of 68 ± 10 events. There were 206 W+Z and 111 W−Z candidates, con-

sistent with the expectation of 186 ± 11 and 110 ± 6, respectively. From the observed

events, the fiducial and the total cross section are extracted.

We have mimicked the process by generating p p > W+Z with diboson rapidity |y| < 2.4.

The results are shown in Fig. 6.8. Plots of the Z boson transverse momentum from [29]

are shown in Fig. 6.9.
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Figure 6.9: Visualization of Z boson transverse momentum as measured by ATLAS
[29].



Chapter 7

Conclusion and Outlook

Life need not be easy, provided only

that it is not empty.

Lise Meitner, 1878-1968

I have presented and implemented a framework for transverse momentum resummation

for arbitrary electroweak final states. The main points of this thesis were to explain the

theoretical foundations, namely the factorization formula derived in an effective theory

and the resummation technique. The implementation of the method, allowing for the

automated computation of cross sections, was fleshed out in detail. Results for several

observables including the variable φ∗ were generated and discussed.

The framework is set up for arbitrary electroweak final states and has been validated

carefully for Z and W boson production and leptonic decay by comparing to results ob-

tained from existing resummation codes. It can be applied to arbitrary bosonic produc-

tion processes, as was demonstrated for WZ production. Unfortunately no experimental

data could be found for lepton transverse momenta. Hopefully, such results will soon

be available. An interesting application is the determination of the W boson mass. The

experimental analysis relies on predicitons for ratios of transverse momentum spectra of

different production cross sections. Our framework is suited for such tasks.

After the end of the LHC Run 2 (2015-2018) a torrent of new results is expected. Very

recently, new results on boson and diboson production at
√
s = 13 TeV were published

[30–32]. As mentioned above, our framework is suitable to compute cross sections for

these processes, and they can be compared to experimental data once these become

available on HEPData1.

1https://www.hepdata.net
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Our framework could be extended to Higgs production. This process is gluon induced,

and beyond NNLL two beam function structures arise. We have implemented the re-

summation at NNLL accuracy and match to fixed order at O(αs). For single-boson

processes, the resummation can now be performed up to N3LL accuracy [33–35]. Higher

accuracy in αs requires two-loop ingredients which are not universally known, but could

be implemented by hand for single-boson processes and for those double-boson processes

where they are available. Furthermore, the matching could be extended to O(α2
s) by

using MG5_aMC@NLO for an NLO computation of Z + j, where j is a hadronic jet.

The resummed results could be expanded one order higher in αs to extract the matching

correction ∆σ.

I am very much looking forward to applications of the framework in the Standard Model

and beyond.
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Calculations

A.1 Power counting

To find the scaling of the different fields in SCET, we compute their two-point correlators,

e.g. 〈0|T{ξ(x) ξ̄(0)|0}〉. Use γµ† = γ0γµγ0, ψ̄ = ψ†γ0, γ0γ0 = 1 and note that n† = n

and n̄† = n̄ to find ξ̄,

ξ̄ = P+ψ ∝ /n/̄nψ = (/n/̄nψ)†γ0 = ψ† /̄n†/n†γ0

= ψ†γ0γνγ0n̄νγ
0γµγ0nµγ

0

= ψ̄n̄νnµγ
νγµ = ψ̄/̄n/n

= ψ̄P− .

(A.1)

Evaluating the correlator

〈0|T{ξ(x) ξ̄(0)}|0〉 = P+〈0|T{ψ(x) ψ̄(0)}|0〉P− ∼ /n/̄n 〈0|T{ψ(x) ψ̄(0)}|0〉 /̄n/n

∼
∫

d4k

(2π)4

/n/̄n /k /̄n/n

k2 + iε
e−ik·x ∼ λ4 · 1

λ2
∼ λ2

(A.2)

reveals that ξ ∼ λ. The three contributions related to the momentum in the above

expression scale as k2 ∼ λ2, d4k ∼ λ4 and /n/̄n /k /̄n/n ∼ 1. The last scaling follows from

relation n2 = n̄2 = 0 (2.16). Therefore /n/n = n2 = 0 and /̄n/̄n = n̄2 = 0, and only the

component with /̄n/n/̄n survives in the numerator,

/n/̄n /k /̄n/n = /n/̄n

[
(n · k)

/̄n

2
+ (n̄ · k)

/n

2
+ /k

µ
⊥

]
/̄n/n = (n̄ · k)

/n

2
∼ 1 . (A.3)
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The calculation for the η field component is identical, save for the exchange of the

projection operators. The relevant term is

/̄n/n /k /n/̄n = /̄n/n

[
(n · k)

/̄n

2
+ (n̄ · k)

/n

2
+ /k

µ
⊥

]
/n/̄n = (n · k)

/̄n

2
∼ λ2 . (A.4)

The component η thus scales as λ2. For the soft field ψs we have k2 ∼ λ4, d4k ∼ λ8 and

/k ∼ λ2, so ψs ∼ λ3. The correlator for the gluon field is

〈0|T{Aµ(x)Aν(0)}|0〉 =

∫
d4k

(2π)4

i

k2 + iε
e−ik·x

[
−gµν − (1− ξ) k

µkν

k2

]
, (A.5)

so each component of the gluon field scales as its momentum. For the collinear gluon

field Aµc we have

n ·Ac ∼ λ2 , n̄ ·Ac ∼ 1 , A⊥c ∼ λ , (A.6)

and all components of the soft field Aµs scale as λ2.

A.2 The Lagrangian of SCET

A field theory is a system with a continuous set of degrees of freedom. It can be defined

in terms of a Lagrangian L. The dynamics of the system are determined by the principle

of least action δS
δφ = 0, where φ is a field and S the action,

S =

∫
dtL =

∫
d4xL with L =

∫
d3xL . (A.7)

We remind ourselves how these concepts lead to the Euler-Lagrange1 equations. Given

a Lagrangian L[φ, ∂µφ] that depends on a field φ and its first derivatives, we vary φ→
φ+ δφ, such that

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
=

∫
d4x

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
δφ+ ∂µ

[
∂L

∂(∂µφ)
δφ

]
.

(A.8)

1Leonhard Euler (1707-1783) was a Swiss mathematician, physicist and astronomer. Joseph L. La-
grange (1736-1813) was a French mathematician, physicist and astronomer.
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Assuming the field vanishes at temporal and spacial infinity, the last term drops out,

and the Euler-Lagrange equations follow,

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 . (A.9)

Using the Euler-Lagrange equations, the equations of motions of a Langrangian can be

derived. In our case, the Lagrangian is given in (2.25), and we start with the collinear

Lagrangian (2.26) that we rewrite in light cone coordinates,

Lc = (ξ̄ + η̄)

[
i(n ·D)

/̄n

2
+ i(n̄ ·D)

/n

2
+ i /D⊥

]
(ξ + η)

= ξ̄i(n ·D)
/̄n

2
ξ + ξ̄i /D⊥η + η̄i(n̄ ·D)

/n

2
η + η̄i /D⊥ξ .

(A.10)

In the second line we have used the relation /n/n = 0 = /̄n/̄n. We solve the Euler-Lagrange

equations (A.9) for ξ̄ and η̄ and find

(n ·D)
/̄n

2
ξ = − /D⊥η , (n̄ ·D)

/n

2
η = − /D⊥ξ . (A.11)

Next we multiply the second line with /̄n/2, solve for η and deduce η̄,

η = − /̄n

2n̄ ·D
/D⊥ξ , η̄ = −ξ̄

←
/D⊥

/̄n

2n̄ ·
←
D
, (A.12)

that are now inserted into Eq. (A.10), which after the necessary transformations sim-

plifies considerably,

Lc = ξ̄i(n ·D)
/̄n

2
ξ + ξ̄i /D⊥η + η̄i(n̄ ·D)

/n

2
η + η̄i /D⊥ξ

= ξ̄i(n ·D)
/̄n

2
ξ − ξ̄i /D⊥

/̄n

2n̄ ·D
/D⊥ξ + ξ̄

←
/D⊥

/̄n

2n̄ ·
←
D
i(n̄ ·D)

/n

2

/̄n

2n̄ ·D
/D⊥ξ

− ξ̄
←
/D⊥

/̄n

2n̄ ·
←
D
i /D⊥ξ

= ξ̄i(n ·D)
/̄n

2
ξ − ξ̄i /D⊥

/̄n

2

1

n̄ ·D
/D⊥ξ + ξ̄

←
/D⊥

/̄n

2n̄ ·
←
D

[
i(n̄ ·D)

/n

2

/̄n

2n̄ ·D − i
]
/D⊥ξ

= ξ̄i(n ·D)
/̄n

2
ξ − ξ̄i /D⊥

/̄n

2

1

in̄ ·Di
/D⊥ξ + ξ̄

←
/D⊥

/̄n

2n̄ ·
←
D

[iP+ − i] /D⊥ξ

= ξ̄

[
i(n ·D) + i /D⊥

1

in̄ ·Di
/D⊥

]
/̄n

2
ξ .

(A.13)
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In the second last line we have inserted a factor i/i = 1 in the second term. The last

line follows using (P+)2 = P+, and the sign change in the second term stems from the

permutation of /̄n and /D⊥.

A.3 Gauge invariance and gauge transformations

A gauge theory is a field theory with a Langrangian that is invariant under a contin-

uous group of local transformations. These transformations form a Lie group, known

as the gauge group. If the symmetry group is non-commutative, the corresponding

gauge theory is non-Abelian. Quantum Chromodynamics (QCD) is the theory of strong

interactions between quarks and gluons. It is a quantum field theory and as such a

non-Abelian gauge theory with gauge group SU(3).

When encoding the properties of physical objects and their dynamics – in our case

the elementary particles as well their mutual interactions – using a Lagrangian, fields

and their derivatives, it can be quite tricky to reconcile the mathematical framework

with the physical degrees of freedom. We describe the massless spin 1 gluon field using

a field with four components. This description is useful as it is well adapted to the

formalism of relativistic physics. But gluons have only two physical polarizations, so

our formalism is redundant. The following procedure has been established to deal with

this situation. For fermion fields a symmetry transformation is defined that leaves the

physical degrees of freedom and thus the measurable quantities of the field invariant. A

gauge field is introduced which is related to the physical gauge boson of the interaction.

A transformation for the gauge field is defined that includes an extra term which can be

constrained for gauge fixing. Finally a covariant derivative, required to transform like

the (fermion) field, is constructed. This procedure has the effect that the Lagrangian is

invariant under these gauge transformations - the Lagrangian is gauge-invariant.

The gauge transformations of SCET are identical to those of QCD. But we need to

respect the scalings of the fields, so each sector has its own gauge transformations.

Under a soft gauge transformation the soft fields transform as

ψs(x)→ Vs(x)ψs(x) , Vs(x) = exp[iαas(x)ta] , ∂αas(x) ∼ (λ2, λ2, λ2) ,

Aµs (x)→ Vs(x)

[
Aµs (x) +

i

g
∂µ
]
V †s (x) ,

(A.14)

and the collinear fields transform as
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ξ(x)→ Vs(x−)ξ(x) ,

Aµc (x)→ Vs(x−)Aµc (x)V †s (x−) .
(A.15)

Note that Vs(x) has been multipole expanded when acting on the collinear fields. For de-

tails see the corresponding expansion of As(x) in (2.33). The soft fields do not transform

under a collinear gauge transformation,

ψs(x)→ ψs(x) , Aµs (x)→ Aµs (x) . (A.16)

The collinear fields transform as

ξ(x)→ Vc(x)ξ(x) , Vc(x) = exp[iαac (x)ta] , ∂αac (x) ∼ (λ2, 1, λ) ,

Aµc (x)→ Vc(x)

[
Aµc (x) +

i

g
(∂µV †c (x)) +

n̄µ
2

[n ·As(x−), V †c (x)]

]
.

(A.17)

A.4 Wilson lines

We consider a generic Wilson line connecting two spacetime points y and z for an Abelian

theory such as QED. Under a gauge transformation V (x) = eiα(x), the gauge field Aµ(x)

transforms as Aµ(x)→ A′µ(x) = Aµ(x)− 1
e∂µα(x). We now investigate how the Wilson

line [z, y] transforms under V (x),

[z, y] = exp

[
−ie

∫
C
dxµA

µ(x)

]
→ exp

[
−ie

∫
C
dxµ(Aµ(x)− 1

e
∂µα(x))

]
= exp

[
−ie

∫
C
dxµA

µ(x) + i

∫
C
dxµ∂

µα(x)

]
= [z, y] exp

[
i

∫
C
dxµ∂

µα(x)

]
.

(A.18)

Now we parametrize the curve C with the variable s, xµ = xµ(s), and choose y = x(sy),

z = x(sz), so that
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exp

[
i

∫
C
dxµ∂

µα(x)

]
= exp

[
i

∫ sz

sy

ds
dxµ
ds

d

dxµ
α(x(s))

]

= exp

[
iα(x(s))

∣∣∣sy
sy

]
= exp [iα(z)] exp [−iα(y)] .

(A.19)

Using the fact that V (z) and [z, y] commute, we have

[z, y]→ [z, y] exp

[
i

∫
C
dxµ∂µα(x)

]
= exp [iα(z)] [z, y] exp [−iα(y)]

= V (z)[z, y]V †(y).

(A.20)

If the path is closed, y = z, the Wilson line is gauge invariant. Next we show that the

covariant derivative along the curve C vanishes, i.e. ẋµ(t)Dµ[x(t), y] = 0. Consider the

intermediate point xµ = xµ(t) and parametrize the curve C using the variable t, with

y = x(ty), z = x(t). Then

d

dt

∫
C
dxµA

µ(x) =
d

dt

∫ t

ty

dt′
dxµ
dt′

Aµ(x(t′))

=
d

dt

∣∣∣F (x(t′))
∣∣∣t′=t
t′=ty

=
d

dt
(F (x(t))− F (x(ty)))

= f(x(t))

=
dxµ
dt

Aµ(x(t)).

(A.21)

We have used f(x(t)) =
dxµ
dt A

µ(x(t)) and the antiderivative F (x(t)). So

ẋµ(t)Dµ[x(t), y] =
dxµ

dt

(
∂µ + ieAµ(x(t))

)
[x(t), y]

=
dxµ

dt

d

dxµ
exp

[
−ie

∫ t

ty

dt′
dxµ
dt′

Aµ(x(t′))

]
+ ie

dxµ

dt
Aµ(x(t))[x(t), y]

= −ie
(
d

dt

∫ t

ty

dt′
dxµ
dt′

Aµ(x(t′))

)
[x(t), y] + ie

dxµ

dt
Aµ(x(t))[x(t), y]

= −iedxµ
dt

Aµ(x(t))[x(t), y] + ie
dxµ

dt
Aµ(x(t))[x(t), y]

= 0.

(A.22)
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In the non-Abelian case, the exponent is matrix-valued, and we therefore need to specify

an ordering prescription. In this case, we write the Wilson line as

[x+ sn̄, x] = P exp

[
ig

∫ s

0
ds′ n̄ ·A(x+ s′n̄)

]
. (A.23)

The operator P indicates path ordering such that

P[A(x)A(x+ sn̄)] =

A(x+ sn̄)A(x) , for s > 0 ,

A(x)A(x+ sn) , for s < 0 .
(A.24)

As derived in (A.20) the Wilson lines transform as

[x+ sn̄, x]→ V (x+ sn̄)[x+ sn̄, x]V †(x) , (A.25)

so that products of the form

ψ̄(x+ sn̄)[x+ sn̄, x]ψ(x) (A.26)

are gauge invariant. One can also work with Wilson lines that go to infinity,

W (x) = [x,−∞n̄] = P exp

[
ig

∫ 0

−∞
ds n̄ ·A(x+ sn̄)

]
, (A.27)

such that the Wilson line along a finite segment can be written as a product of two

Wilson lines extending to infinity,

[x+ sn̄, x] = W (x+ sn̄)W †(x)

= P exp

[
ig

∫ 0

−∞
dt n̄ ·A(x+ sn̄+ tn̄)

]
P exp

[
−ig

∫ 0

−∞
dt n̄ ·A(x+ tn̄)

]
= P exp

[
ig

∫ s

0
dt n̄ ·A(x+ tn̄)

]
.

(A.28)

The Wilson lines extending to infinity transform as follows under gauge transformations,

W (x)→ V (x)W (x)V †(−∞n̄) . (A.29)
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Considering gauge functions that vanish at infinity, V (−∞n̄) = 1, the combinations

χ(x) = W †(x)ψ(x) , χ̄(x) = ψ̄(x)W (x) , (A.30)

are gauge invariant. It has been shown above that the covariant derivative along the

curve C vanishes. In our particular case this implies that

n̄ ·DW (x) = 0 . (A.31)

Taking into account collinear and soft gauge fields, the corresponding Wilson lines are

denoted as follows,

Wc(x) = P exp

[
ig

∫ 0

−∞
ds n̄ ·Ac(x+ sn̄)

]
,

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·As(x+ sn)

]
.

(A.32)

A.5 Computation of the two-loop functions Di←j(z)

To implement the factorization formula, we need to have all components at hand in nu-

merical form. We have chosen to tabulate the beam function coefficients B
(k)
j (3.34) and

use an existing PDF code for their interpolation. Working out the two-loop functions

Di←j(z), corresponding to the coefficient B
(3)
j , requires an elaborate but attractive ana-

lytical calculation. I therefore evaluate one example explicitly in the following. Starting

with the plus distribution I derive the needed identities. Next I show how plus distribu-

tions can be convolved. Finally I compute Dq←q←g(z).

The plus distribution is defined as follows:

∫ 1

0

(
g(z)

1− z

)
+

f(z) =

∫ 1

0

g(z)

1− z (f(z)− f(1)) . (A.33)

Consider the following term, needed for the Altarelli-Parisi coefficient Pq←q,
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∫ 1

0
dz

[
1 + z2

1− z

]
+

f(z) =

∫ 1

0
dz

[
(1− z)2 + 2z

1− z

]
+

f(z)

=

∫ 1

0
dz

[
1− z +

2(z − 1) + 2

1− z

]
+

f(z)

=

∫ 1

0
dz

[
1− z − 2 +

2

1− z

]
+

f(z)

=

∫ 1

0
dz

(
−1− z +

2

1− z

)
(f(z)− f(1))

= −
∫ 1

0
dz(1 + z) f(z) + f(1)

∫ 1

0
dz(1 + z)

+ 2

∫ 1

0
dz

[
1

1− z

]
+

f(z) .

(A.34)

Now use the transformation

f(1)

∫ 1

0
dz(1 + z) = δ(1− z)f(z)

∫ 1

0
dz(1 + z)

=
3

2
δ(1− z)f(z) ,

(A.35)

resulting in

[
1 + z2

1− z

]
+

= −1− z +
3

2
δ(1− z) + 2

[
1

1− z

]
+

. (A.36)

To evaluate the following expression, integrate over the logarithmic term,

∫ 1

0
dz

[
ln(z)

1− z

]
+

f(z) =

∫ 1

0
dz

(
ln(z)

1− z

)
(f(z)− f(1))

=

∫ 1

0
dz

(
ln(z)

1− z +
π2

6
δ(1− z)

)
f(z) ,

(A.37)

so

[
ln(z)

1− z

]
+

=

(
ln(z)

1− z +
π2

6
δ(1− z)

)
. (A.38)

Finally consider
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∫ 1

0
dz

z

[1− z]+

f(z) =

∫ 1

0
dz

(
1

1− z

)
+

g(z)

=

∫ 1

0
dz

1

1− z (zf(z)− f(1))

=

∫ 1

0
dz

1

1− z ((z + 1− 1)f(z)− f(1))

=

∫ 1

0
dz

1

1− z (f(z)− f(1) + (z − 1)f(z))

=

∫ 1

0
dz

(
1

[1− z]+

+
z − 1

1− z

)
f(z)

=

∫ 1

0
dz

(
1

[1− z]+

− 1

)
f(z) ,

(A.39)

such that

z

[1− z]+

=
1

[1− z]+

− 1 . (A.40)

For the products of Altarelli-Parisi distributions we will need the following convolutions,

(
1

1− z

)
+

⊗ δ(1− z/u) ,

(
1

1− z

)
+

⊗
(

1

1− z/u

)
+

. (A.41)

For this purpose, consider the expression

f(β) = (1− z)β−1 , (A.42)

that we Taylor-expand around β0 to get

f(β) =

∞∑
n=0

(β − β0)n

n!

lnn(1− z)
1− z (1− z)β0 . (A.43)

Now integrate,
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∫ 1

0

dz

z
f(β) =

∞∑
n=0

(β − β0)n

n!

∫ 1

0

dz

z

lnn(1− z)
1− z (1− z)β0

=
∞∑
n=0

(β − β0)n

n!

∫ 1

0
dz

lnn(1− z)
1− z

1

z
(1− z)β0︸ ︷︷ ︸
f(z)

− 0︸︷︷︸
f(1)

]


=
∞∑
n=0

(β − β0)n

n!

∫ 1

0

dz

z

(
lnn(1− z)

1− z

)
+

(1− z)β0 .

(A.44)

Choosing β0 = 0 we have found the relation

(1− z)β−1 =
1

β
δ(1− z) +

∞∑
n=0

βn

n!

(
lnn(1− z)

1− z

)
+

. (A.45)

The first term is needed to account for the pole at z = 1. The relation is readily

differenciated,

∂

∂β
(1−z)β−1 = ln(1−z)(1−z)β−1 = − 1

β2
δ(1−z)+

∞∑
n=1

nβn−1

n!

(
lnn(1− z)

1− z

)
+

. (A.46)

Now we convolve relation (A.45) with the plus distribution,

∫ 1

z

du

u

(
1

1− u

)
+

(1− z/u)β−1 =

∫ 1

z
du

(
1

1− u

)[
1

u
(1− z/u)β−1 − (1− z)β−1

]
−
∫ z

0
du

(
1

1− u

)
(1− z)β−1 .

(A.47)

For the second term,

−
∫ z

0
du

(
1

1− u

)
(1− z)β−1 = (1− z)β−1 ln(1− z) , (A.48)

we use the derivative (A.46). Note that
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∫ 1

z
du

(
1

1− u

)
+

f(u) =

∫ 1

0
du

(
1

1− u

)
+

f(u)−
∫ z

0
du

(
1

1− u

)
f(u)

=

∫ 1

z
du

(
1

1− u

)
[f(u)− f(1)]−

∫ z

0
du

(
1

1− u

)
f(1) ,

(A.49)

since the plus distribution is identical to the fraction itself if z < 1. After carrying

out the integrals in (A.47), the convolutions can be computed. We see that the Delta-

function in (A.45) has coefficient β−1. By picking the term with the same coefficient

from the solution of (A.47), we find

(
1

1− u

)
+

⊗ δ(1− z/u) =

(
1

1− z

)
+

. (A.50)

Analogously, by noting that the coefficient of the Plus-distribution in (A.45) has coeffi-

cient β0, we find

(
1

1− u

)
+

⊗
(

1

1− z/u

)
+

= −π
2

6
δ(1− z)− ln(z)

1− z + 2

(
ln(1− z)

1− z

)
+

. (A.51)

Using the relations above the convolutions of the AP 1-loop coefficients that are listed

in B.3 can be evaluated. I now evaluate Dq←q←g(z) explicitly.
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Dq←q←g(z) =

∫ 1

z

du

u
P(1)
q←q(u)P(1)

q←g(z/u)

= 16CFTF

∫ 1

z

du

u

(
1 + u2

1− u

)
+

[( z
u

)2
+
(

1− z

u

)2
]

= 16CFTF

∫ 1

z

du

u

(
−1− u+

3

2
δ(1− u) + 2

[
1

1− u

]
+

)[( z
u

)2
+
(

1− z

u

)2
]

= −16CFTF

∫ 1

z
du

1

u

[( z
u

)2
+
(

1− z

u

)2
]

︸ ︷︷ ︸
term 1

− 16CFTF

∫ 1

z
du

[( z
u

)2
+
(

1− z

u

)2
]

︸ ︷︷ ︸
term 2

+ 24CFTF

∫ 1

z
du δ(1− u)

1

u

[( z
u

)2
+
(

1− z

u

)2
]

︸ ︷︷ ︸
term 3

+ 32CFTF

∫ 1

z
du

1

u

(
1

1− u

)
+

[( z
u

)2
+
(

1− z

u

)2
]

︸ ︷︷ ︸
term 4

(A.52)

Evaluate each term separately. Terms 1− 3 can be integrated,

∫ 1

z
du

1

u

[( z
u

)2
+
(

1− z

u

)2
]

= −z2 + 2z − ln(z)− 1 , (A.53)

∫ 1

z
du

[( z
u

)2
+
(

1− z

u

)2
]

= −2z2 + z + 2z ln(z) + 1 , (A.54)

∫ 1

z
du

1

u
δ(1− u)

[( z
u

)2
+
(

1− z

u

)2
]

= z2 + (1− z)2 . (A.55)

In term 4 we have

f(u) =

[( z
u

)2
+
(

1− z

u

)2
]

1

u
(A.56)

and

f(1) = z2 + (1− z)2 , (A.57)

such that it evaluates to
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∫ 1

z
du

(
1

1− u

)
+

[( z
u

)2
+
(

1− z

u

)2
]

1

u

=

∫ 1

z
du

(
1

1− u

)[( z
u

)2
+
(

1− z

u

)2
− z2 − (1− z)2

]
−
∫ z

0
du

(
1

1− u

) (
z2 + (1− z)2

)
= −3z2 − 2z2 ln(z) + 4z + 2z ln(z)− ln(z)− 1 + (2z2 − 2z + 1) ln(1− z) .

(A.58)

Collecting all terms and simplifying, we get

Dq←q←g(z) = 16CFTF

[(
z2 + (1− z2

)2
ln

(
(1− z)2

z

)
− 2z2 ln z − 1

2
+ 2z

]
. (A.59)

A.6 NLO-expansion of the resummed cross section

To expand the resummed result to NLO, we consider the leading-order approximation

of Fij (3.34) in L⊥, starting at O(αs). The relevant terms are

M0B
(0)
i B

(0)
j and − as

2
M1

[
B

(0)
i B

(2)
j +B

(2)
i B

(0)
j

]
in Fij and

−ηL⊥ = −CFαs
π

ln
Q2

q2
T

L⊥ and − 2asγ
q
0L⊥

in the exponent gF (B.2). We use the relations [2]

1

2

∫ ∞
0
dxT xT J0(xT qT ) e−ηL⊥ =

1

q2
T

(
q2
T

µ2

)η
Γ(1− η)

e2ηγE Γ(η)

η→0→ η

q2
T

(A.60)

and

d

dη

1

2

∫ ∞
0
dxT xT J0(xT qT ) e−ηL⊥ = −1

2

∫ ∞
0
dxT xT J0(xT qT ) e−ηL⊥L⊥

(A.60)
=

1

q2
T

.
(A.61)

Now we can collect the contributions,



Appendix A. Calculations 101

1

2

∫ ∞
0
dxT xT J0(xT qT ) e−ηL⊥−2asγ

q
0L⊥ =

1

2

∫ ∞
0
dxT xT J0(xT qT ) e−ηL⊥(1− 2asγ

q
0L⊥)

=
η

q2
T

+ 2asγ
q
0

1

q2
T

,

(A.62)

so that

M0B
(0)
i B

(0)
j =

as
q2
T

(
ΓF0 ln

Q2

q2
T

+ 2γq0

)
B

(0)
i B

(0)
j (A.63)

and

− as
2
M1

[
B

(0)
i B

(2)
j +B

(2)
i B

(0)
j

]
=

as
2q2
T

[
B

(0)
i B

(2)
j +B

(2)
i B

(0)
j

]
. (A.64)

For the hard function we can use the leading order result Hij = 1. The expansion of the

resummed cross section for quark-induced processes and qT > 0 to O(αs) is given by

dσNNLL
ij

dq2
T

∣∣∣
exp. to NLO

= dσ0
ij

as
q2
T

[(
ΓF0 ln

Q2

q2
T

+ 2γq0

)
δ(1− z1)δ(1− z2)δqiδq̄j

+
1

2

(
P(1)
q←iδ(1− z2)δq̄j + P(1)

q̄←jδ(1− z1)δqi

)]
φi(ξ1/z1, µ)φj(ξ2/z2, µ) .

(A.65)

A.7 Correlation of qT and φ∗

We consider a boson with mass M and transverse momentum qT decaying to two leptons

and want to find the maximum value of φ∗ for the leptons. For ∆η = 0, we can

parametrize this situation as

q = (
√
M2 + q2

T , 0, qT , 0) ,

p1 = (pT , pT sinα, pT cosα, 0) ,

p2 = (pT ,−pT sinα, pT cosα, 0) ,

(A.66)

with α = ∆φ/2, such that q = p1 + p2, qT = 2pT cosα and
√
M2 + q2

T = 2pT . Now
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cosα = cos

(
∆φ

2

)
=

qT√
M2 + q2

T

(A.67)

and

φ∗ = tan

π
2
− arccos

 qT√
M2 + q2

T

 . (A.68)

For qT = 0, we have ∆φ = π and φ∗ = 0, and for qT � M , ∆φ = 0 and φ∗ → ∞.

Expanding the right-hand side of (A.68), we find that for a given qT

φ∗ ≤ qT
M

. (A.69)



Appendix B

Ingredients for the resummed

cross section

B.1 Evolution of the hard function

The evolution factor U(ŝ, µh, µ) (3.11) needed to evolve the Wilson coefficient from a

high scale µh ∼ Q down to a low scale µ ∼ qT has the analytic form

U(ŝ, µh, µ) = e4CFS(µh,µ)−4aγ(µh,µ)

(
ŝ

µ2
h

)−2CF aΓ(µh,µ)

, (B.1)

where r = αs(µ)/αs(µh),

aγ(µh, µ) =
γq0
2β0

[
ln r +

(
γq1
γq0
− β1

β0

)
αs(µ)− αs(µh)

4π
+ . . .

]
, (B.2)

aΓ(µh, µ) =
Γ0

2β0

[
ln r +

(
Γ1

Γ0
− β1

β0

)
αs(µ)− αs(µh)

4π
+ . . .

]
, (B.3)

and
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S(µh, µ) =
Γ0

4β2
0

{
4π

αs(µh)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µh)

4π

[(
Γ1β1

Γ0β0
− β2

β0

)
(1− r + r ln r) +

(
β2

1

β2
0

− β2

β0

)
(1− r) ln r

−
(
β2

1

β2
0

− β2

β0
− Γ1β1

Γ0β0
+

Γ2

Γ0

)
(1− r)2

2

]
+ . . .

}
.

(B.4)

Here we have used the coefficients βi of the QCD β-function, the Casimir operator

CF = 4/3 and the anomalous dimensions Γi and γqi .

B.2 Exponent to absorb dependencies

Using the coefficients βi of the QCD β-function, the anomalous dimensions ΓFi and γqi

as well as d2 =
(

202
27 − 7ζ3

)
CA − 56

27 TFnf , where the Casimir operators CA = 4 and

TF = 1/2 and nf is the number of flavors, we write the exponent gF (L⊥, as) (3.22) as

gF (η, L⊥, as) = −
[
ηL⊥

]
ε−1/2 −

[
as
(
ΓF0 + ηβ0

) L2
⊥
2

]
ε0

−
[
as

(
2γq0 + η

ΓF1
ΓF0

)
L⊥ + a2

s

(
ΓF0 + ηβ0

)
β0
L3
⊥
3

]
ε1/2

−
[
as ηd2 + a2

s

(
ΓF1 + 2γq0β0 + η

(
β1 + 2β0

ΓF1
ΓF0

))
L2
⊥
2

+ a3
s

(
ΓF0 + ηβ0

)
β2

0

L4
⊥
4

]
ε

−O(ε3/2) .

(B.5)

We have used the abbreviation as = αs(µ)/4π.

B.3 DGLAP splitting functions, convolutions and remain-

der functions

The perturbative kernels Īi←j involve the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) splitting functions P(1)
i←j , the remainder functions Ri←j and the convolutions

Di←j given below.



Appendix B. Formulas 105

P(1)
q←q(z) = 4CF

(
1 + z2

1− z

)
+

, P(1)
q←g(z) = 4TF

[
z2 + (1− z)2

]
, (B.6)

Rq←q(z) = CF

[
2(1− z)− π2

6
δ(1− z)

]
, Rq←g(z) = 4TF z(1− z) , (B.7)

Dq←q←q(z) = 16C2
F

[
4

(
ln (1−z)2

z

1− z

)
+

+ 3

(
1 + z2

1− z

)
+

− 4(1 + z) ln(1− z) + 3(1 + z) ln z

− 2(1− z)− 9

4
δ(1− z)

]
,

Dq←g←q′(z) = 16CFTF

[
4

3z
+ 1− z − 4z2

3
− 2(1 + z) ln z

]
,

Dq←q←g(z) = 16CFTF

[(
z2 + (1− z)2

)
ln

(1− z)2

z
− 2z2 ln z − 1

2
+ 2z

]
,

Dq←g←g(z) = 32CATF

[(
z2 + (1− z)2

)
ln(1− z) + (1 + 4z) ln z +

2

3z
+

1

2
+ 4z − 31z2

6

]
+ 8β0TF

[
z2 + (1− z)2

]
.

(B.8)

B.4 Boost

The four-momentum of the intermediate state at tree level is given by q̂µ = (q0, 0, 0, qz).

A boost transformation, parametrized by a transverse momentum qT and an angle φ

leads to new coordinates qµ
′

= (q
′
0, qT cosφ, qT sinφ, q

′
z). Conservation of momentum

q̂2 = q
′2

is ensured by imposing

qz
′

= qz and q
′
0 =

√
q2

0 + q2
T . (B.9)

The boost matrix for the transformation L q̂µ = (q
′
0, qT cosφ, qT sinφ, q

′
z) then reads

L =


γ −βxγ −βyγ 0

−βxγ Lxx Lxy 0

−βyγ Lxy Lyy 0

0 0 0 1

 , (B.10)

where
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γ =

√
1

1− β2
x − β2

y

, βx =
qT cosφ√
q2

0 + q2
T

, βy =
qT sinφ√
q2

0 + q2
T

,

Lxx = 1 +
β2
x(γ − 1)

β2
x + β2

y

, Lyy = 1 +
β2
y(γ − 1)

β2
x + β2

y

, Lxy =
βxβy(γ − 1)

β2
x + β2

y

.

(B.11)
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die angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus
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