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“You can compare the situation with a ship that has sprung a leak on the high seas. Of 

course, there are problems besides this damage. The food in the third class is 

miserable, the seamen are exploited, the band plays German Schlager, but if the ship 

sinks, all this will be irrelevant. If we do not get on top of climate change, there will be no 

use thinking about income distribution, racism and good taste anymore.”  

______________________________________________________________________________________________________________ 

Hans Joachim Schellnhuber,  

founding director of the Potsdam Institute for Climate Impact Research  

(translated from Süddeutsche Zeitung Online, 14th May 2018) 

 

Abstract 

Anthropogenic climate change is the most demanding challenge humanity has to face 

in the ongoing 21st century and beyond. This dissertation delves deeper into enhancing 

the knowledge on the major drivers of climate change and its mitigation. Thus, all four 

articles focus on the macro-level analysis of countries over time, applying causal 

inference. Specifically, the dissertation addresses the predictors of national carbon 

dioxide (CO2) emissions (article 1), the controversial debate on carbon leakage from 

developed to developing countries (article 2), the influence of social inequality on CO2 

emissions (article 3), and the role of forests as climate solution as well as the drivers 

of forest loss and its gain (article 4). Altogether, the results suggest that population 

growth is a major driver of CO2 emissions and deforestation. Another key factor is 

increasing wealth. However, the effect of economic growth is double-edged: On the 

one hand, rising gross domestic product (GDP) almost proportionally boosts carbon 

emissions so far. On the other hand, growth in GDP contributes to enhance forest 

cover. Minor carbon-abating effects are observed for energy prices, technological 

progress, and international environmental agreements. Designating and managing 

protected areas drives forest gain. Furthermore, social inequality and international 

trade are not substantially related to CO2 emissions. Particularly, there is no evidence 

for carbon leakage from developed to developing countries. Given the challenge of 

emissions abatement, natural climate solutions are promising for near-term and large-

scale sequestration of carbon. As the fourth article highlights, dangerous climate 

change could be prevented by doubling current forest cover.  
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Introduction and Summary 

Anthropogenic climate change probably is the most demanding challenge humanity 

has to face in the ongoing 21st century and far beyond (IPCC 2014). Since “The Limits 

to Growth” (Meadows et al. 1972), the seminal report of the Club of Rome in the early 

1970s, global concern for anthropogenic climate change, and its impacts on 

ecosystems and humanity has steadily increased – so has the awareness to reconcile 

human development with environmental protection. Subsequently, the so-called 

Brundtland Commission provided the most widely recognized definition of sustainable 

development in “Our Common Future” (WCED 1987). This strongly influenced the 

negotiations on the United Nations Framework Convention on Climate Change 

(UNFCCC) at the seminal Earth Summit in Rio de Janeiro in 1992. The objective of 

this worldwide agreement of 197 parties has been to stabilize “greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous 

anthropogenic interference with the climate system" (UN 1992: 9). Since the onset of 

the UNFCCC, the five assessment reports by the Intergovernmental Panel on Climate 

Change (IPCC) have shed light upon the geophysical relationships, impacts, and 

mitigation of anthropogenic climate change. These reports have inspired a vast amount 

of inter- and transdisciplinary research. After the adoption of the Kyoto Protocol in 1997 

and its failure, it was only recently that the world community has agreed upon the 

limitation of global warming to well below 2 °C relative to preindustrial levels in the 

Paris Climate Agreement in 2015 (UNFCCC 2015).  

A maximum of 2 °C of global warming until 2100 may provide a relatively safe 

operating space for humanity and prevent dangerous climate change alongside a lock-

in of a ‘Hothouse Earth’ pathway with potentially hazardous consequences for 

ecosystems and human socio-economic systems (IPCC 2014, Steffen et al. 2018, 

Fischer et al. 2018, Rockström et al. 2009). However, humanity allegedly has already 

committed to 1.3 °C of warming (Mauritsen and Pincus 2017). Hence, limiting global 

warming to 1.5 °C and presumably providing an even safer operating space (IPCC 

2018) seems out of reach (Raftery et al. 2017). 

Meanwhile global carbon dioxide (CO2) emissions of fossil fuel use and 

industrial processes – the major contributor to anthropogenic climate change – have 

more than doubled from 15.9 GtCO2 in 1970 to 35.8 GtCO2 in 2016 (Janssens-

Maenhout et al. 2017). This surpasses the global annual gross carbon budget (an 
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estimated 30 GtCO2) to fulfil the 2 °C target with a probability of at least 66 % (IPCC 

2014, Friedlingstein et al. 2014, Meinshausen et al. 2009). Assuming an average 

annual world population of around 10 billion people until 2100 (UNPD 2017), this goal 

translates into 3 t of gross CO2 emissions per capita and year. In 2016, per capita 

carbon emissions amounted to 4.8 tCO2 (Janssens-Maenhout et al. 2017). Hence, to 

prevent dangerous climate change fast and forceful measures of mitigation are 

inevitable (IPCC 2014). Limiting carbon emissions to current levels or even abating 

them to be in line with the climate target seems a tremendous challenge in the light of 

this development (Minx et al. 2018).  

Therefore, this dissertation delves deeper into enhancing the knowledge on the 

major drivers of climate change and its mitigation for effective climate policies on a 

global scale. Thus, all four contributions of this dissertation focus on the macro-level 

analysis of countries over time applying causal inference. The first article entitled 

“Predictors of national CO2 emissions: Do international commitments matter?” (pp. 9-

32), co-authored by Axel Franzen (Franzen and Mader 2016), investigates the drivers 

of national (production-based) CO2 emissions over and above already known factors. 

The paper confirms previous research that population and economic growth are the 

major socio-economic drivers of anthropogenic carbon emissions. Moreover, the 

contribution extends prior studies by analysing the role of international trade, indicators 

of political interventions such as energy prices, and the transition towards renewable 

sources of energy. Furthermore, the paper examines whether voluntary international 

environmental agreements matter. National commitments are often criticized for being 

voluntary and not enforceable. The results of fixed effects panel regression models of 

national carbon emissions from 1980 to 2014 indicate that higher energy prices and 

an energy transition both reduce carbon emissions. In addition, international 

environmental commitments motivate countries to reduce CO2 emissions. 

Interestingly, higher shares of exports or imports of goods and services with respect to 

gross domestic product (GDP) do not substantially drive national carbon emissions.  

Hitherto, national carbon inventories have followed IPCC guidelines based on 

CO2 emissions stemming from fossil fuel combustion and industrial processes within 

countries (production-based accounting (PBA)). Recently, a controversial debate has 

evolved regarding the PBA framework, versus countries’ carbon emissions additionally 

incorporating those from international trade (consumption-based accounting (CBA)). 

So far, the debate has been predominately theoretical and has inspired only a few 
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empirical studies. Thus, the second contribution headed “Consumption-based versus 

production-based accounting of CO2 emissions: Is there evidence for carbon leakage?” 

(pp. 33-40), which is also co-authored by Axel Franzen (Franzen and Mader 2018), 

compares CBA with PBA of CO2 emissions. Moreover, for the first time, the study 

analyses reasons for the differences between the two accounting schemes. In 

particular, it has been argued that wealthy nations with strict environmental regulations 

might outsource carbon-intensive production to less wealthy states with less strict 

regulations, and import these goods and services. Therefore, this paper focuses on 

the question, whether there is evidence for carbon leakage from developed to 

developing countries. The results of fixed effects panel regression models analysing 

110 countries from 1997 to 2011 suggest that for most countries, the differences 

depending on accounting schemes are small and there is no evidence for carbon 

leakage. Instead, the ratio of CBA to PBA emissions rises with increasing energy 

efficiency and growing import rates. Given the small differences between PBA and 

CBA, the study suggests keeping the production-based accounting scheme of CO2 

emissions. 

The third paper “The nexus between social inequality and CO2 emissions 

revisited: Challenging its empirical validity” (pp. 41-55; Mader 2018) deals with the 

political economy argument that income/wealth concentration at the top leads to more 

political influence of rich people on environmental policy, which in turn drives 

environmental degradation. This notion assumes that rich producers and consumers 

benefit more from polluting the environment than the poor, and that the latter are more 

prone to bear the social costs of environmental deterioration. While not directly 

targeted at CO2 emissions, this argument has often been applied to them. However, 

the discourse has been largely separated from the general discussion on drivers of 

national CO2 emissions. The argument is now widely disputed, since macroeconomic 

panel studies applying fixed effects regression models and measuring inequality by the 

Gini coefficient have discovered a flat relationship. Only two of these studies 

substituting Gini by the more appropriate share held by the top 10 percent of the 

income or wealth distribution recently found a positive effect of social inequality on CO2 

emissions. The paper revisits this nexus and challenges the empirical validity of the 

contribution of an increase in wealth and income inequality to higher CO2 emissions 

lately found by Knight et al. (2017) on country-level and by Jorgenson et al. (2017) on 

U.S. state-level. In particular, the contribution replicates these studies, relaxes their 
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assumptions and extends the models according to Franzen and Mader (2016). The 

results show that the positive inequality effects spotted in Knight et al. (2017) and 

Jorgenson et al. (2017) are not robust with respect to the regions and time spans 

observed as well as to the inequality indicators, estimation techniques, and 

confounders selected. Hence, this investigation suggests that there is no sound 

empirical evidence for a substantial nexus between social inequality and CO2 

emissions. After all, lately proposed policy approaches combining efficient cap-and 

trade programs with income and wealth redistribution (so-called cap-and-dividend 

schemes) are not, by themselves, suitable for effective climate policy. In fact, the 

analysis points at the relevance of treating key predictors of CO2 emissions including 

energy prices for the U.S. for effective climate change mitigation. 

Given the enormous challenge of abating greenhouse gas emissions and 

recalling the major drivers of national carbon emissions – population and economic 

growth, a promising strategy for near-term large-scale climate change mitigation is the 

enhancement of natural terrestrial carbon sinks. Here, forests are considered one of 

the most suitable ways to sequester carbon today, as afforestation and reforestation 

(AR) are relatively cost-effective, and associated with least expected adverse effects 

on biogeochemical and biogeophysical systems (Fuss et al. 2018, Griscom et al. 2017, 

IPCC 2014, Smith et al. 2016, Sonntag et al. 2016) unlike most geoengineering 

techniques (Ussiri and Lal 2017).  

Hence, finally, the fourth article of this dissertation “Plant trees for the planet: 

the potential of forests for climate change mitigation and the major drivers of national 

forest area” (pp. 56-98, Mader 2019) estimates the world’s land share under forests 

required to prevent dangerous climate change and identifies the major drivers of 

countries’ forest cover. Therefore, the paper combines the newest available 

longitudinal micrometeorological data (FLUXNET) on forests’ net ecosystem exchange 

of carbon (NEE) from 78 forest sites (N=607) with countries’ mean temperature and 

forest area. The results of this straightforward approach indicate that the world’s forests 

sequester 8.3 GtCO2yr-1 or 1.1 tCO2 per capita and annum. The direct carbon flux-

based method applied here provides estimates that are comparable to the most recent 

studies applying more complicated, indirect carbon stock-based inventories of NEE. 

To meet the 2 °C climate target, the current forest cover has to be doubled to 60 % of 

land area to sequester an additional 7.8 GtCO2yr-1, which demands less red meat 

consumption. This challenge is achievable, as the estimated global biophysical 
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potential of AR is 8.0 GtCO2yr-1 safeguarding food supply for 10 billion people with 

healthy diets. Subsequently, the article identifies the countries with the largest climate 

liabilities, and economic capabilities, while having the greatest mitigation potential 

through AR. The results indicate that the most climate-responsible and wealthy 

countries have the highest AR potential. Hence, these states could take over their 

responsibility for climate change mitigation relatively easily via large-scale domestic 

AR activities.  

Moreover, for effective policies targeted at enhancing forests, knowledge on the 

key drivers of forest area is essential. However, information on causal relationships of 

forest gain and loss is sparse, and unconsolidated with a focus on forest loss. Yet, this 

is only half of the story to be told. It is vital to understand the drivers of both the increase 

and decrease of forest land share for effective AR policies. Thus, the study identifies 

the major predictors of the forest land share of 98 countries from 1990 to 2015 

(N=2’494). The results of fixed effects panel regression models highlight that 

population growth, industrialization, and increasing temperature reduce forest area, 

while more protected forest and economic growth generally increase it.  

 

Altogether, the four articles of this dissertation suggest that population growth 

is a major driver of both anthropogenic carbon emissions and deforestation. Another 

key factor is increasing wealth. However, the effect of economic growth is double-

edged: On the one hand, rising per capita GDP almost proportionally boosts carbon 

emissions so far. On the other hand, growth in GDP contributes to enhance forest 

cover. Hitherto minor effects for climate change mitigation targeted at abating 

emissions are observed for energy prices, technological progress (renewable energy 

transition and energy efficiency increases), and international environmental 

agreements. Designating and managing protected areas drives forest gain. 

Furthermore, social inequality and international trade are not substantially related to 

CO2 emissions of countries. Trade in forest products is not linked to the land area 

covered by forest. Particularly, there is no evidence for carbon leakage from developed 

to developing countries. Given the tremendous challenge of emissions abatement, 

natural climate solutions are promising for the near-term and large-scale sequestration 

of carbon. As the fourth article highlights, dangerous climate change could be 

prevented by doubling current forest cover safeguarding food supply with healthy diets.  
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Nonetheless, the success to sustain a relatively safe operating space for 

humanity and prevent dangerous climate change will depend on fast and forceful 

action to curb major drivers of global warming like population growth while fostering a 

global mandatory carbon certificate market, low-carbon and large-scale carbon 

sequestration technologies, and commitments to safeguard vital services of 

ecosystems integral for human well-being. “A low-carbon world is hard to imagine, yet 

change often follows when we shift our vision of what is possible” (Figueres et al. 

2018). 
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Abstract 

Carbon dioxide emissions are the main cause of anthropogenic climate change and 
play a central role in discussions on climate change mitigation. Previous research has 
demonstrated that national carbon dioxide emissions are driven mainly by population 
size and wealth. However, the variation in per capita emissions of nations with similar 
standards of living and similar population is huge. In this paper we investigate the 
drivers of national per capita carbon dioxide emissions over and above already known 
factors. In particular, we extend previous research by taking into account countries’ 
shares of imports and exports, indicators of political interventions such as energy 
prices, and the use of renewable energy sources. Moreover, we also examine whether 
international commitments, such as the ones made by many nations at climate 
summits of the United Nations, matter. We use country-level data from 1980 to 2014 
and estimate fixed effects panel regression models. In accordance with former 
research we find no environmental Kuznets curve with respect to carbon dioxide per 
capita emission levels. However, higher energy prices and the availability of alternative 
energy sources both reduce emissions. Furthermore, voluntary international 
environmental commitments also motivate countries to reduce carbon dioxide 
emissions. 
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1. Introduction 
 
Carbon dioxide (CO2) emissions are the main cause of global warming and play the 

central role in discussions on climate change mitigation. According to an estimate by 

the Intergovernmental Panel on Climate Change (IPCC), if global warming is to stay 

within the two-degree target, the atmosphere can absorb approximately 30 Gt of 

anthropogenic CO2 yearly (Friedlingstein et al. 2014; IPCC 2014; Meinshausen et al. 

2009). Given that the world population will increase to approximately 10 billion by 2050 

(UN 2015) the two-degree target would allow an emission of 3 tons per person and 

year. In 2014 the world average per person was 5.1 tons. However, the variation in 

CO2 emissions is huge. The average emission in the USA is about 16.5 tons, in the 

European Union 6.7 tons, in India 1.8 tons, and in Africa (excluding South Africa) less 

than one ton (Olivier et al. 2015). Given the IPAT formula according to which 

environmental impact is a function of the population, affluence, and technology 

(Commoner et al. 1971; Ehrlich and Holdren 1970, 1971), differences in per capita 

emissions between countries of different living standards are no surprise. However, 

inspection of country rankings (see Figure 1) reveal that the variation is also large 

between countries with similar living standards such as the USA and Europe, and even 

between similar countries in Europe such as Germany and Switzerland. Given the 

enormous challenge the world is facing to reduce CO2 emissions, insight into the 

factors that are driving emission levels is crucial. So far research has focused on the 

role of population and wealth and some aspects of the economic structure. In this paper 

we investigate additional reasons that might be linked to CO2 emissions. Much 

discussion has recently been devoted to the question of how economic imports and 

exports are related to CO2 emissions. Thus, the emissions of China are often thought 

to be high because China is viewed as the production site of the world with high export 

rates. However, our analysis shows that export rates of different nations bear 

surprisingly little relation to CO2 emissions. Furthermore, we are interested in 

scrutinizing the effect of policies such as the taxing of gasoline prices and other fossil 

energy sources, and of supporting non-fossil energy. Moreover, we pay attention to 

the effects of international environmental agreements such as those made at the world 

climate summits. These summits are often criticized for delivering only voluntary 

commitments but no enforceable obligations (Carraro and Siniscalco 1998; Young 

2010). However, and maybe surprisingly, our analysis shows that even voluntary 

commitments without enforceable laws have some effects on national CO2 levels.  
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This contribution proceeds in four further steps. In the next section, we present the 

latest data with respect to national CO2 emission levels. The descriptive results are 

interesting since national per capita emissions change rapidly, and country rankings 

based on it change accordingly. Hence, we present data for 1990 (the Kyoto bench 

line) and 2014. The third section describes the data and the statistical model. The 

fourth section presents the results. We first discuss and replicate former studies that 

explain national CO2 levels. We use the latest available data containing 183 countries 

overall with yearly reported CO2 levels starting in 1980 through 2014 provided by the 

Emissions Database for Global Atmospheric Research (EDGAR) (Olivier et al. 2015). 

Because of its longitudinal structure the data is suitable for investigating the causal 

structure of some key variables by calculating fixed effects estimates. We then extend 

the model by incorporating new variables into the analysis, which have been discussed 

lately in relation to CO2 levels such as the extent of foreign trade, or energy prices 

(Dietz et al. 2010; Jorgenson and Clark 2011; Rosa and Dietz 2012; Rosa et al. 2015). 

Moreover, we integrate indicators of political commitment such as the number of 

international voluntary agreements a country has signed and set into force in order to 

protect the environment. Finally, the main results are summarized and discussed in 

the last section.  

 

2. Drivers of CO2 emissions 
 
According to the latest report from EDGAR, worldwide CO2 emissions have reached 

35.7 Gt in 2014 (Olivier et al. 2015). Dividing this number by the estimated world 

population of approximately 7 billion people amounts to a global average of roughly 

5.1 tons of CO2 emissions per person per year. The International Panel on Climate 

Change (IPCC) estimates that the atmosphere can absorb an additional 1000 Gt of 

accumulated CO2 until the end of the century in order to meet the two-degree goal of 

global warming with a probability of 66%. Given that 40% of CO2 stays in the 

atmosphere (the other 60% is absorbed by plants, soil and oceans) and that the world 

population will increase to 10 billion (UN 2015), emissions per capita should not exceed 

roughly 3 tons of CO2 emissions per capita and year in order to be sustainable.  

Currently, CO2 emissions per capita (p.c.) are highest in countries such as Qatar (39 

tons p.c.), Kuwait (28 tons p.c.), Trinidad and Tobago (25 tons p.c.), and Luxembourg 

(19 tons p.c.). At the very bottom of the world ranking are countries such as Ethiopia, 
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Democratic Republic of the Congo, and Eritrea where the per capita consumptions of 

fossil energy sources are almost zero and in which emissions are estimated to be 

around 100 kg per capita. However, the measurement at the very top and the very 

bottom of such a world ranking is biased and/or unreliable. In terms of population size 

the countries with the highest emissions (Qatar, Kuwait, Trinidad and Tobago, or 

Luxembourg) are all very small and are oil-producing (with the exception of 

Luxembourg), and at the bottom of the list they are very poor with notoriously unreliable 

data (Andres et al. 2012). Hence, a meaningful analysis should treat the small oil-

producing states at the very top and the poor countries at the bottom of the distribution 

as statistical outliers. Therefore, our ranking (see Figure 1) starts with Australia, Saudi 

Arabia, and the United States, which have per capita emissions of about 17 tons each. 

Other large players are the Russian Confederates (12.4 tons), Japan (10.1 tons), the 

European Union (6.7), and China, which reached 7.6 tons per capita in 2014. In 

comparison the average emissions in Brazil, India or Africa are only 2.5, 1.8, and 1.2 

tons respectively.  

The differences displayed in Figure 1 raise the question of what is causing them. Past 

research has focused on the famous IPAT formula (Commoner et al. 1971; Ehrlich and 

Holdren 1970, 1971), which specifies that the environmental impact of a country is a 

function of population size, wealth, and technology. The basic assumptions of the IPAT 

formula and its statistical interpretation (STIRPAT) have been confirmed by older 

studies using cross sectional data analysis (Dietz and Rosa 1997; Rosa et al. 2004; 

York et al. 2003) as well as by more recent studies that use methodologically more 

advanced statistical methods exploiting the longitudinal data structure (Cole and 

Neumayer 2004; Jorgenson et al. 2014; Liddle 2015; Poumanyvong and Kaneko 

2010). Newest results from the latter line of research estimate that a one percent 

increase in population increases the per capita CO2 emissions by roughly 1%. 1 

Additionally, a one percent increase in wealth (measured by the purchasing power 

parity (PPP) of GDP per capita) increases CO2 emissions in the range of 0.57 to 0.97 

(Liddle 2015). Furthermore, some prior studies incorporate the energy intensity of the 

industrial sector and the share of non-fossil fuels of energy production as indicators of 

a country’s technology. As energy intensity increases by one percent per GDP of 

output (measuring higher inefficiency) CO2 emissions increase by 0.31 percent, and 

CO2 is reduced if a country has a larger proportion of non-fossil energy production 
                                                            
1 See Liddle (2014) for a detailed review of demographic factors on CO2 emissions. 
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(Liddle 2015). Hence, also new results using longitudinal statistical analysis confirm 

the assumptions specified by the IPAT formula that population, wealth, and technology 

are the important drivers of national CO2 emissions.  

 
 
Figure 1: CO2 emissions per capita in international comparison for 1990 and 2014 

 
Note: The figure shows the top 10 and the bottom 10 countries with respect to CO2 emissions p.c. 
Excluded are some very small countries from the top and some very poor countries from the bottom of 
the distribution. Data Source is the Emissions Database for Global Atmospheric Research (Olivier et al. 
2015).  
 

3. Data and Method 
 
For our statistical analyses we compiled data from newest available sources (see 

Table S1 in the supplement for a complete description of all variables). Most 

importantly, we used the Emissions Database for Global Atmospheric Research 

(EDGAR), which contains yearly information on CO2 emissions from 1970 to 2014 for 

183 countries. However, country numbers are reduced due to missing data in some 

covariates or due to statistical outliers (see Table S2 in the supporting information for 

a list of countries included in the analyses). In comparison to other data, EDGAR has 

the advantage of containing the most recent years, and includes emissions from 

industrial processes. Thus, the data is more complete and more accurate than the 

information provided by the International Energy Agency (IEA) (Andres et al. 2012, 

Olivier et al. 2015). Information on countries’ population size is taken from the World 
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Bank (WB). Data on GDP (converted into PPP) is obtained from the International 

Monetary Fund (IMF). The IMF data has the advantage of providing PPP GDP 

information for every country starting 1980 onwards. In comparison, data from the 

World Bank starts in 1990 and would restrict the observation period to 24 years. 

Information on the energy intensity required to produce a unit of GDP, fossil fuel 

consumption, and the share of electricity production from non-fossil sources are 

gathered from the International Energy Agency (IEA). Data on import and export rates 

and information about countries’ GDP share of industry or service is taken from the 

World Bank (WB).  

We estimate the effects via a standard fixed effects (FE) panel regression model in 

which the yearly changes of CO2 emissions (from the mean) are regressed on the 

yearly changes in the independent variables (Brüderl and Ludwig 2015; Wooldridge 

2010). The model can be written as 

𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑦𝑦�𝑖𝑖 = (𝒙𝒙𝑖𝑖𝑖𝑖 −  𝒙𝒙�𝑖𝑖)𝜷𝜷 + 𝒁𝒁𝑖𝑖𝜸𝜸 + 𝜀𝜀𝑖𝑖𝑖𝑖 −  𝜀𝜀�̅�𝑖                                   (1) 

yit denotes the (natural logarithm of) CO2 per capita of country i in year t.  𝑦𝑦�𝑖𝑖 denotes 

the countries’ average for the whole observation period. xit denotes the vector of all 

exogenous variables for country i in time t, and 𝒙𝒙�𝑖𝑖  the averages for the whole 

observation period. Z is a vector of dummy variables which controls period effects for 

all countries. It takes the value of one if the observation year is one and zero otherwise 

for all t ≠ 1. 𝜀𝜀it refers to a country’s time varying stochastic error term. For statistical 

purposes and for ease of interpretation we took the natural logarithm of all exogenous 

variables, except for the number of international environmental agreements, which 

enter latter models in counts in steps of 100. The fixed effects model given in (1) has 

the advantage of taking only the within country variations into account. Any unobserved 

between country differences, therefore, cannot bias the estimation. Under the 

assumption that xit and εit are not correlated (strict exogeneity) a fixed effects model is 

an adequate statistical tool to estimate the unbiased causal effect of the independent 

variables X on Y. The assumption is violated if there are measurement errors in xit, 

unaccounted period effects (external shocks), or omitted variables that are correlated 

with Y and X. We account for possible period effects by including the yearly time 

dummies (Z) into the analyses.  
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4. Results  
 
We begin our analyses by first replicating former models, who regress the CO2 levels 

of countries on population size, wealth (PPP GDP per capita), energy intensity, and 

fossil fuel consumption (particularly Liddle 2015). Our results (see Model 1 in Table 1) 

replicate former studies rather closely with respect to the effect of population and 

wealth. Our population estimate of 1% suggests that CO2 emissions are simply 

proportional to population size. A quadratic population term (not shown in Table 1) is 

statistically not significant suggesting that there are neither exponential nor marginal 

decreasing effects of population (for similar results see also Jorgenson and Clark 

2010). 

Proportionality suggests that models of CO2 emissions are better specified by using 

emissions per capita instead of total country level emissions, because this incorporates 

population into the dependent variable and thereby circumvents potential problems of 

multicollinearity. The results of such a model using the CO2 emissions per capita are 

displayed in Model 2 of Table 1. The results suggest that every increase in GDP per 

capita by 1% increases CO2 emissions by 0.5%. The quadratic term of logged GDP is 

very small and in latter models (Models 3 and 4) not statistically significant, suggesting 

that also we find no environmental Kuznets curve with respect to the growth of CO2 

per capita emissions like prior studies (Aslanidis and Iranzo 2009; Azomahou et al. 

2006; Cavlovic et al. 2000; Jorgenson 2012; Jorgenson and Clark 2012; Liddle 2015; 

Wagner 2008). Next, we take indicators of technology into account and find in 

comparison to former studies (e.g. Liddle 2015) much stronger effects of the energy 

intensity (Model 2). Thus, a one percent increase in the energy intensity to produce a 

unit of GDP increases CO2 emissions by 1.5 percent, suggesting that technology and 

foremost efficiency has a strong impact on CO2 emissions. 

This difference in effect size might partly be due to the fact that our data on CO2 

emissions includes emissions from industrial processes. In comparison, former 

research only takes emissions from fossil fuel use into account and excludes other 

sources. However, the definition of energy intensity is a unit of energy divided by a unit 

of GDP and the definition of the dependent variable is CO2 divided by population. 

Hence, the two variables are partly linked by data construction. 
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Table 1: Country and Time Fixed Effects Regressions of CO2 Emissions (per capita) 
 Model 1 Model 2 Model 3 Model 4 
Dependent Variables CO2 CO2 per capita 
Population 1.00***    
 (0.16)    
     

GDP p. c. 0.76*** 0.55*** 0.53*** 0.78*** 
 (0.07) (0.06) (0.06) (0.12) 
GDP p. c. squared -0.06*** -0.03* -0.01 -0.03 
 (0.01) (0.01) (0.01) (0.03) 
Energy Intensity 2.31*** 1.52*** 1.30*** 3.03*** 
 (0.36) (0.28) (0.28) (0.39) 
Fossil Fuel Energy Consumption 0.69*** 0.09 0.10+ 0.28* 

(0.09) (0.05) (0.06) (0.11) 
     

Foreign Trade   0.04 0.07 
   (0.03) (0.04) 
Industry   0.01 0.24 
   (0.06) (0.20) 
Services   -0.08 0.68+ 
   (0.06) (0.36) 
Electricity Production from Non-Fossil 
Sources 

  -0.03+ -0.11** 
  (0.02) (0.03) 

International Environmental Agreements  
(Unit: 100 IEAs) 

  -0.06** -0.10* 
  (0.02) (0.04) 

     

Energy Prices    -0.04* 
    (0.02) 
n x T 3295 3295 2877 596 
n 147 147 116 31 
adjusted R2 within 0.7631 0.5355 0.5850 0.7245 
Root MSE 0.13 0.09 0.09 0.04 
Test for Residual Cross-Section 
Independence (H0) 1.40 1.00 1.35 1.44 

Residual Non-Stationarity Panel Unit Root 
Test (H0) 6.48*** 4.775*** 2.46** 2.23* 
Note: + = p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients 
with standard errors in brackets. Models 1 to 4 contain dummy variables for each year in order to control 
for overall time-trends. All standard errors are clustered by country and year, and therefore robust with 
respect to heteroscedasticity and autocorrelation. The test values of the Residual Cross-Section 
Independence Test and the values of the Residual Non-Stationarity Panel Unit Root Test are standard 
normally distributed. Thus, values below 1.96 indicate that H0 cannot be rejected. Hence, the residuals 
are cross-sectionally independent and stationary (homoscedastic without any time trend). Model 4 
contains most OECD countries plus Latvia and South Africa. A coefficient plot of the results including 
the 95% confidence intervals is contained in the supplement (Figure S1). 

 

Finally, the model also contains a variable measuring how much of the total energy 

consumption stems from fossil sources. The effect we find is surprisingly weak. 

Considering only the 31 members of the OECD (Model 4) with the most reliable data, 

a one percent increase in the share of energy stemming from fossil fuels increases 
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CO2 emissions just by 0.28 percent.  

Next, we are concerned with extending the IPAT formula and the analyses of prior 

studies by taking further possible causes of CO2 intensity into account. One argument 

often heard in the debate is that some developing countries have high emission rates 

because they have become industrial production sites of the world. Hence, CO2 

emissions are created in developing countries, but the goods are consumed in the 

affluent nations (so-called Pollution Haven Hypothesis) (Chichilnisky 1994; Jorgenson 

2012). In particular, China is supposed to have high emission rates because of high 

export rates. However, export rates often go hand-in-hand with import rates. In our 

extension we first incorporated import and export rates separately into the model, 

finding no statistically significant effects (see Table S4 in the supplement). Next, we 

combined import and export rates into a variable measuring the percentage of foreign 

trade relative to a country’s GDP. However, the percentage of foreign trade also does 

not produce any significant result in our model (see Models 3 and 4). Hence, this 

finding suggests that the amount of foreign trade is not an important source of CO2 

emissions ceteris paribus (see also Jorgenson et al. 2014). This finding can also be 

demonstrated with regard to China. Figure 2 shows that GDP and CO2 per capita have 

been rising steeply in China since 2005. However, both import and export rates have 

been falling during the same time period. Hence, exports are not the main driver of 

CO2 levels in China (see also Arto and Dietzenbacher 2014). We also find no reliable 

evidence regarding an economy’s share of the industrial or service sector with respect 

to GDP, suggesting that there is no empirical evidence supporting the notion that a 

shift to the service sector goes hand-in-hand with reductions of CO2 per capita.  

Following Rosa and Dietz (2012) (see also Rosa et al. 2015) we extend the model 

further by incorporating indicators of environmental policies. Environmental policies 

can more or less directly intervene with regards to energy supply and energy 

consumption. The supply side is often influenced by encouraging (and subsidizing) 

non-fossil sources such as energy produced by solar, water, nuclear, or other 

renewable sources. We integrated the percentage change in energy supply produced 

by non-fossil sources. As expected the results indicate that every increase of one 

percent reduces the per capita CO2 emissions by 0.11%. The effect is only observable 

in Model 4 (Table 1) controlling for energy prices. This substitution effect of fossil fuel 

by non-fossil fuel sources is surprisingly small. However, the result replicates former 

findings (York 2012). One reason for this might be that renewable energy sources are 
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very volatile depending on weather conditions such as wind, sunshine, or water supply. 

Supposedly, high volatility reduces the substitution effect, particularly if storage 

capacity or smart grids are not available.  

 

Figure 2: Comparison of Trends in CO2 Emissions, GDP and Foreign Trade in China 

 
Note: CO2 data sources are the Carbon Dioxide Information Analysis Center (CDIAC) for the years 
1960 through 1969 and EDGAR for 1970 to 2014.  
 

Countries often indicate their willingness to protect the environment by signing 

international agreements. The most prominent examples in this context are of course 

the Kyoto Protocol and other voluntary international agreements like those made at 

world climate summits. Another recent example is the Agreement on Cooperation on 

Marine Oil Pollution, Preparedness and Response in the Arctic, which was signed by 

the neighboring countries of the Arctic Sea in 2013. These summits and agreements 

are often criticized for not being very successful since many agreements are not 

binding and violations cannot be sanctioned (Carraro and Siniscalco 1998; Young 

2010). Using data from the International Environmental Agreements Database Project 

(IEADP) (Mitchell 2015) we counted all international environmental agreements that 

countries signed and put into force from 1960 to 2014, and incorporated this variable 
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into the model. The distribution varies from 90 agreements (Zambia) to 509 (France) 

and is displayed in Figure 3.  

 

Figure 3: Cumulated Numbers of International Environmental Agreements 

 
Note: Displayed are the 10 countries at the top and 10 countries at the bottom of the distribution in 
addition to some averages such as for the European Union. 
 

The results indicate that for every 100 additional agreements CO2 emissions indeed 

decrease by about 0.06% respectively 0.10% (see Models 3 and 4 in Table 1). Thus, 

the effect is relatively small but voluntary agreements matter and are an indicator of a 

nation’s willingness to reduce emissions. This result is visualized in Figure 4.  
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Figure 4: Predicted Marginal Effect of International Environmental Agreements on CO2 
Emissions per Capita (Obtained from Model 3 of Table 1) 

 
Note: Dashed lines indicate the 95% confidence interval.  
 

 

An often used instrument for reducing emissions is the price mechanism, and many 

countries tax oil and electricity in order to encourage reduction efforts. Internationally 

comparable energy price time series are hard to find in international statistics and are 

only available for OECD countries. This reduces the number of countries for this 

analysis to 31. The results are displayed in Model 4 of Table 1 and show that an 

increase in energy prices by one percent reduces CO2 emissions by 0.04 percent. The 

effect is small and far from proportional. One possible interpretation is that the elasticity 

of the price effect depends on the substitutability of energy. Prices are expected to 

have only small effects if the substitutability is low. This seems to be the case for the 

overall energy demand. A further reason might be that many energy prices, particularly 

the oil price, are volatile. High volatility makes it hard for consumers to adapt 

persistently to energy reducing life styles. However, the results still suggest, that price 

increases are contributing to reductions in CO2 emission levels. 
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We performed a number of robustness checks for the models in Table 1. First, we 

calculated all models by allowing for country-specific constants and slopes (FEIS 

models) (see Brüderl and Ludwig 2015; Wooldridge 2010; Polachek and Kim 1994). 

This extension did not refine the results in any substantial way. Second, we deleted 

the upper and lower 5% of countries with respect to the CO2 emissions and PPP GDP 

per capita in order to control for statistical outliers. Additionally, all models were 

recalculated by dropping one country each time from the regression. Separately, we 

also excluded countries with less than 10 observations. None of these checks had any 

substantial influence on our estimates. Furthermore, all parameters were tested for 

linearity, including penalized splines two-way (country and time) FE models (Ruppert 

et al. 2003). The partial residual plot for GDP is shown in the supplement (Figure S2). 

In addition, we checked the robustness of standard errors via non-parametric 

bootstrapping and found no substantial differences. Moreover, we conducted 

subgroup-specific analyses with regard to OECD membership and non-membership 

(see Table S5 in the supplement), and with respect to different world regions as defined 

by the World Bank (Europe and Central Asia, Latin America and Caribbean, Middle 

East and Africa, South East Asia and Pacific). Subgroup specific analysis was also 

performed with respect to the geographical position of countries (tropical and non-

tropical regions). None of these variations led to essentially different results. Also, we 

substituted the overall energy intensity as shown in Table 1 by the industrial energy 

intensity (taken from the IEA). Lastly, all models were estimated by using CO2 data 

from CDIAC, and GDP data from Penn World Table 8.1. None of these variations leads 

to different conclusions. All models presented in Table 1 as well as all the robustness 

checks were conducted using the statistical software package STATA 14.1.  

 

5. Summary and Discussion 
 
This paper investigates the determinants of national CO2 emissions per capita by using 

more extensive and more accurate data sources than prior studies. The analyses are 

based on 147 countries for which yearly measurements of CO2 per capita and various 

covariates exist for the period between 1980 and 2014. We analyze the data using 

fixed effects panel regression models. Such models avoid cross-sectional 

comparisons, which are often biased due to unobserved heterogeneity between the 

countries. First, we replicate former studies (particularly Liddle 2015) and show that a 
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country’s population size is proportionally related to CO2 emissions. Therefore, CO2 

per capita becomes our dependent variable. Second, our analyses suggest that the 

growth of wealth (GDP per capita) is mostly linearly related to growth in CO2 emissions. 

Moreover, the estimated elasticity 0.5 means that the absolute emissions are 

marginally decreasing at higher levels of GDP.  

Besides these replications our paper offers some new and interesting findings. First, 

we find that a shift from the industrial sector to the service sector is not related to 

reductions in CO2 emissions as is often assumed (e.g. Fourcroy et al. 2012). Second, 

we show that the share of foreign trade does not determine CO2 levels. This result is 

surprising since the literature often hypothesizes that some developing countries (e.g. 

China) have high emission levels because they have become the workbench for more 

affluent countries. Third, we incorporate countries’ political effort by taking the number 

of international environmental commitments into account. Our results suggest that 

countries that have signed many international agreements have indeed reduced 

emission levels as compared to those that signed fewer agreements. Hence, 

international voluntary commitments matter. Finally, we also take national price levels 

into account and show that higher energy prices reduce CO2 emission levels.  

The most surprising result is the finding that voluntary agreements matter. However, 

this does not imply that voluntary agreements are sufficient to meet the international 

goal of limiting climate change to 1.5 or 2 degrees. Assuming that the world population 

will reach roughly 10 billion by the middle of the century and given that the atmosphere 

of the earth can cope with roughly 30 Gt of CO2 emissions the sustainable per capita 

emission is about 3 tons per year. Certainly most industrialized countries exceed 3 

tons per capita extensively. Even the most sustainable countries in Europe (e.g. 

France, or Switzerland) still have emission levels of about 5 tons per capita and would 

need a reduction of around 40% to become sustainable with respect to greenhouse 

gas emissions. Reduction levels of 40% are still very ambitious but appear feasible. 

Other countries such as the USA, Australia or Canada have emission levels of about 

16 or 17 tons and would therefore need reductions of about 80%. Hence, many 

countries have a long way to go and will have to take ambitious measures in order to 

keep the 2-degree goal. Voluntary agreements which are not binding and which will 

not cause sanctions if missed will probably be not sufficient.  
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Supporting Information 
 
Table S1: Variable description  

Variable mean  within (�̅�𝑥𝑖𝑖) between 
(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖 +  �̿�𝑥) 

N 
(n x T) 

n Description Data 
Source 

sd min. max. sd  min. max. 
CO2  
(megatons) 

130.60 232.32 -2782.70 6803.67 520.26 .01 5154.42 7875 175 CO2 emissions (p. c.) of fossil fuel 
use and industrial processes 
(cement production, carbonate 
use of limestone and dolomite, 
non-energy use of fuels and other 
combustion). Excluded are: short-
cycle biomass burning (such as 
agricultural waste burning) and 
large-scale biomass burning 
(such as forest fires). 

EDGAR  

CO2 p. c.  
(metric 
tons) 

3.77 1.35 -6.07 14.34 4.47 .04 21.10 7875 175 

Population 27.33 26.94 -373.17 485.84 102.70 .02 1060.83 10090 184 Total population. Unit: 1 million. WB 
GDP p. c. 
(1000 
interna-
tional 
dollars) 

9.58 5.55 -20.34 53.88 10.31 .49 71.99 5564 178 Gross domestic product (GDP) p. 
c. based on purchasing power 
parity (PPP). PPP GDP is GDP 
converted to international dollars 
using PPP rates. Data are in 
international dollars based on the 
2011 International Comparison 
Program (ICP) round. 

IMF 

Energy 
Intensity 

.23 .13 -.74 1.72 .17 .01 1.36 3890 157 Energy intensity level of primary 
energy is the ratio between 
energy supply and PPP GDP.  
Unit: kg oil equivalent per PPP 
GDP. 

OECD/ 
IEA/WB, 

IMF 

Fossil Fuel 
Energy 
Consump-
tion 

64.51 7.30 30.00 98.38 36.80 0 99.99 5243 159 Energy consumption from fossil 
fuels comprises coal, oil, 
petroleum, and natural gas 
products.  
Unit: % of total energy 
consumption 

IEA/WB 

Foreign 
Trade 

74.45 22.76 -85.94 400.98 39.93 13.88 330.43 7474 178 Trade is the sum of exports and 
imports of goods and services 
measured as a share of GDP. 
Unit: % of GDP. 

WB 

Industry,  
value 
added 
 

28.04 5.94 -4.31 73.88 10.38 7.14 74.06 6225 172 Industry corresponds to the 
International Standard Industrial 
Classification (ISIC) divisions 10-
45. The origin of value added is 
determined by the ISIC, revision 
3. Unit: % of GDP. 

WB 

Services, 
value 
added 

51.85 7.15 12.98 112.10 13.30 22.97 81.81 6225 171 Services correspond to ISIC 
divisions 50-99. The industrial 
origin of value added is 
determined by the ISIC, revision 
3. Unit: % of GDP. 

WB 

Electricity 
Produc-
tion from 
Non-Fossil 
Sources 

43.58 12.23 -20.39 98.66 32.18 0 99.38 4792 125 Sources of electricity refer to the 
inputs used to generate electricity. 
Electricity production from non-
fossil sources comprises 
hydroelectric and other renewable 
as well as nuclear sources. 
Unit: % of electricity production. 

IEA/WB 

Interna-
tional 
Environ-
mental 
Agree-
ments 
(IEAs) 

69.72 82.53 -127.68 379.32 38.44 1.16 199.40 10120 184 An international environmental 
agreement is an 
intergovernmental document 
intended as legally binding with a 
primary stated purpose of 
preventing or managing human 
impacts on natural resources. 
Unit: cumulated number set into 
force. 

IEADP 

Energy 
Prices 

80.09 31.69 -25.42 234.77 32.33 48.38 176.11 1017 34 Energy prices are consumer 
prices for the items electricity, gas 
and other fuels as defined under 
the Classification of Individual 
Consumption According to 
Purpose (COICOP 04.5) and fuel 
and lubricants for personal 
transport equipment (COICOP 
07.2.2). Data are expressed as 
index corrected by IMF PPP rates 
(2010 = 100 for USA). 

OECD, 
IMF 

Notes: EDGAR = Emissions Database for Global Atmospheric Research, IEA = International Energy Agency, IEADP = 
International Environmental Agreements Database Project, IMF = International Monetary Fund, OECD = Organization for 
Economic Co-operation and Development, WB = World Bank; All variables in the models are included by taking their natural 
logarithm except for IEAs, which are included in units of 100 IEAs.  
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Table S2: Countries included in the analyses 
Albania* Comoros Honduras* Mozambique* St. Lucia 
Algeria* Congo, Dem. Rep.* Hungary*# Myanmar* St. Vincent and the 

Grenadines 
Angola* Congo, Rep.* Iceland*# Namibia* Sudan* 
Antigua and 
Barbuda 

Costa Rica* India* Nepal* Suriname 

Argentina* Cote d'Ivoire* Indonesia* Netherlands*# Swaziland 
Armenia* Croatia* Iran, Islamic Rep.* New Zealand*# Sweden*# 
Australia*# Cyprus* Ireland Nicaragua* Switzerland*# 
Austria*# Czech Republic*# Italy*# Nigeria* Syrian Arab 

Republic* 
Azerbaijan* Denmark*# Jamaica* Norway*# Tajikistan* 
Bahamas, The Djibouti Japan*# Pakistan* Tanzania* 
Bahrain* Dominica Jordan* Panama* Thailand* 
Bangladesh* Dominican 

Republic* 
Kazakhstan* Paraguay* Timor-Leste 

Barbados Ecuador* Kenya* Peru* Togo* 
Belarus* Egypt, Arab Rep.* Kiribati Philippines* Tonga 
Belgium*# El Salvador* Korea, Rep.*# Poland*# Tunisia* 
Belize Eritrea* Kyrgyz Republic* Portugal*# Turkey*# 
Benin* Estonia Latvia*# Romania* Ukraine* 
Bhutan Ethiopia* Lebanon* Russian 

Federation* 
United Kingdom*# 

Bolivia* Fiji Lesotho Sao Tome and 
Principe 

United States*# 

Bosnia and 
Herzegovina* 

Finland Libya* Saudi Arabia* Uruguay* 

Botswana* France*# Lithuania Senegal* Uzbekistan* 
Brazil* Gabon* Macedonia, FYR* Seychelles Vanuatu 
Bulgaria* Georgia* Malaysia* Singapore* Venezuela, RB* 
Cabo Verde Germany*# Maldives Slovak Republic*# Vietnam 
Cambodia* Ghana* Malta* Slovenia*# Yemen, Rep.* 
Cameroon* Greece*# Mauritius* Solomon Islands Zambia* 
Canada*# Grenada Mexico*# South Africa*# Zimbabwe* 
Chile*# Guatemala* Moldova* Spain*#  
China* Guinea-Bissau Mongolia* Sri Lanka*  
Colombia* Guyana Morocco* St. Kitts and Nevis  

Notes: We only took countries into consideration that are full members of the United Nations. Models 1 
and 2 of Table 1 contain all 147 countries. Model 3 of Table 1 is based on 116 countries indicated by ‘*’, 
and model 4 contains mostly OECD countries plus Latvia and South Africa indicated by ‘#’. The 
maximum numbers of years observed is T = 34. However, there are some countries for which we 
observe less years due to missing data (e.g. for Canada T = 4 which is the minimum). The average in 
Model 1 is T = 22.4. We estimate unbalanced fixed effects panel regression models. As a robustness 
check, we also estimated models in which the minimum T is 10. There is no substantial difference in 
estimates.  
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Figure S1: Coefficient plot of Table 1 displaying the 95% confidence intervals  
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Table S3: Average within country correlations of variables included in Table 1 
Variables Within correlations 
CO2 0.45 
CO2 p.c. 0.26 
Population 0.97 
GDP p. c. 0.99 
Energy Intensity 0.98 
Fossil Fuel Energy Consumption 0.06 
Foreign Trade 0.60 
Industry 0.18 
Services 0.60 
Electricity Production from Non-Fossil Sources 0.10 
International Environmental Agreements 0.99 
Energy Prices 0.63 

Note: The correlations display the average correlation coefficients between the time series for each panel 
member as estimated by the Pesaran CD-test using the stata command xtcd. All correlations are 
statistically significant for p < 0.01. 
 
 
Figure S2: Partial residual plot for GDP p.c. of model 3 in Table 1 

 
Notes: The plot shows the partial residual for every country year as calculated from the fixed effects 
regression with penalized splines (Ruppert et al. 2003) for logged GDP per capita. The plot shows that 
the effect of GDP growth on CO2 growth is steeper for poor countries and more flat for richer countries. 
However, it is linear for both groups of observations and linear for the vast majority of observations.  
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Table S4: Country and Time Fixed Effects Regressions of CO2 Emissions per Capita 
Separately for Import and Export Rates  
 Model 3 Model 4 
GDP p. c. 0.53*** 0.53*** 0.79*** 0.78*** 
 (0.06) (0.06) (0.11) (0.12) 
GDP p. c. squared -0.01 -0.01 -0.03 -0.03 
 (0.01) (0.01) (0.04) (0.03) 
Energy Intensity 1.30*** 1.30*** 3.02*** 3.00*** 
 (0.28) (0.27) (0.40) (0.39) 
Fossil Fuel Energy 
Consumption 

0.09 0.10 0.27* 0.29* 
(0.06) (0.06) (0.12) (0.11) 

     

Imports 0.04  0.04  
 (0.03)  (0.04)  
Exports  0.03  0.07 
  (0.02)  (0.04) 
     

Industry 0.01 0.01 0.24 0.24 
 (0.06) (0.06) (0.21) (0.20) 
Services -0.09 -0.07 0.65 0.70 
 (0.06) (0.06) (0.38) (0.38) 
Electricity Production from 
Non-Fossil Sources 

-0.03 -0.03 -0.11** -0.11** 
(0.02) (0.02) (0.03) (0.03) 

International Environmental 
Agreements (Unit: 100) 

-0.06** -0.06** -0.10* -0.10* 
(0.02) (0.02) (0.04) (0.04) 

     

Energy Prices   -0.04* -0.04* 
   (0.02) (0.02) 
n x T 2877 2877 596 596 
n 116 116 31 31 
adj. R2 within 0.5864 0.5844 0.7215 0.7262 
Root MSE 0.09 0.09 0.04 0.04 

Note: * p<0.05, ** p<0.01, *** p<0.001 
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Table S5: Country and Time Fixed Effects Regressions of CO2 Emissions (per capita) 
by OECD Membership Status 
 Model 1 Model 2 Model 3 
Dependent variables CO2 CO2 per capita 

OECD Membership 
Non 

OECD OECD 
Non 

OECD OECD 
Non 

OECD OECD 
Population 1.00*** 1.29***     
 (0.18) (0.33)     
       
GDP p.c. 0.73*** 0.95*** 0.51*** 0.81*** 0.50*** 0.75*** 
 (0.08) (0.07) (0.07) (0.06) (0.07) (0.07) 
GDP p.c. squared -0.07*** -0.04 -0.02+ -0.03 -0.00 0.02 
 (0.02) (0.03) (0.01) (0.02) (0.02) (0.03) 
Energy Intensity 2.33*** 2.78*** 1.41*** 2.47*** 1.20*** 2.72*** 
 (0.35) (0.58) (0.29) (0.52) (0.28) (0.41) 
Fossil Fuel Energy 
Consumption 

0.71*** 0.31+ 0.09+ 0.27 0.10+ 0.24* 
(0.09) (0.18) (0.05) (0.17) (0.06) (0.10) 

       
Foreign Trade     0.05+ 0.02 
     (0.03) (0.04) 
Industry     0.01 0.08 
     (0.06) (0.18) 
Services     -0.09 0.41 
     (0.06) (0.27) 
Electricity 
Production from 
Non-Fossil Sources 

    -0.03 -0.06* 
    (0.02) (0.02) 

International 
Environmental 
Agreements  

    -0.05+ -0.10* 
    (0.03) (0.04) 

n x T 2489 806 2489 806 2261 616 
n 115 32 115 32 87 29 
adj. R2 within 0.7444 0.8074 0.5111 0.6935 0.5623 0.8311 
Root MSE 0.14 0.07 0.10 0.06 0.09 0.05 

Note: + p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
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A B S T R A C T

Lately, a controversial debate has evolved regarding consumption-based accounting (CBA) versus production-
based accounting (PBA) of CO2 emissions. So far, the debate has been predominately theoretical and has
inspired only a few empirical studies. In this article, we compare production-based versus consumption-based
emissions, and for the first time analyze reasons for the differences. In particular, we focus on whether there is
evidence for carbon leakage from developed to developing countries. We use the newest available data for 110
countries and analyze whether there are differences between OECD and non-OECD members. Furthermore, we
compare the within-country differences for the time span of 1997 to 2011 via fixed effects panel regression
models in order to investigate whether increases in GDP per capita result in higher imported emissions. The
results suggest that for most countries the differences depending on accounting schemes are small.
Furthermore, we find no evidence for carbon leakages. In particular, the ratio of CBA to PBA is not driven by
OECD membership or GDP per capita. Instead, the ratio is greater for countries with high energy efficiency and
high import rates. Given the small differences between PBA and CBA, we suggest keeping the production-based
accounting of CO2 emissions.

1. Introduction

A controversial debate has recently evolved around the issue of
whether national CO2 emission inventories should be based on terri-
tory-related production or consumption (Afionis et al. 2017, Fan et al.
2016, Fernandez-Amador et al. 2017, Davis and Caldeira 2010, Davis
et al. 2011, Liu 2015, Peters et al. 2012, Steininger et al. 2015). So far,
national CO2 inventories follow the guidelines of the Intergovern-
mental Panel on Climate Change (IPCC), which are based on the
consumption of fossil fuels within a country. This accounting is called
production-based and is relatively straightforward: It estimates the
greenhouse gas emissions from all the oil, coal, and gas consumed in a
country by private households, industrial production of goods and
services, and electricity production. However, production-based ac-
counting has some disadvantages. First, it excludes emissions stem-
ming from international air and sea transportation. Since such emis-
sions do not take place within a specific territory its attribution to
specific countries is difficult. Second, energy-intensive industries in
countries with strict emission controls, regulations or taxes might

move into territories with fewer restrictions and lower energy costs.
However, the goods produced in the less restrictive countries might
then be exported to the more restrictive countries. Thus, decreasing
emissions in one country can be directly linked to increasing emissions
in the other country. This type of replacement in response to the en-
vironmental policy of a country is often termed “strong carbon
leakage”. Third, the emission leakage can also be weak, e.g. if inter-
national specialization encourages some countries to outsource the
production of carbon-intensive goods to other countries with lower
production costs. Strong and weak carbon leakages result only in re-
allocations of CO2 emissions, and a decrease in one country is more or
less directly related to an increase in another. Consumption-based
accounting takes care of these problems. It subtracts from countries all
emissions that are contained in exported products, including trans-
portation emissions, and includes the embodied emissions in the in-
ventories of the importing countries (Fan et al. 2016, Peters et al.
2011). If the carbon leakages due to international trade are strong
then the difference between consumption-based and production-based
emissions might be large. Hence, with respect to production-based
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inventories, low emission countries might look less “clean” in the
consumption-based framework and high emission countries might in
reality produce goods for the living standard of low emission coun-
tries. Obviously, the difference in accountability of emissions might
also have political implications.

In this paper we will take a look at the differences between con-
sumption-based and production-based accounting of emissions. First,
after a short literature review in Section 2, we describe the differences
by using the most up-to-date data for the 110 countries for which both
inventories are available in Section 3. Second, we also analyze the
differences by using fixed effects panel regression models for the period
of 1997 to 2011 for these 110 countries in this section. Proponents of
the consumption-based method often assume (more or less explicitly)
that developing countries produce carbon emissions mainly for exports
into developed countries. Hence, the former would profit from de-
ducting emissions contained in exports with respect to their CO2 foot-
print. In contrast, developed countries might only have low emissions
because of leakages and this bias would be corrected by consumption-
based accounting. We wonder how big these differences are and whe-
ther or not they are driven by GDP. Third, and also in that section, we
take a look at the development of the differences of the two inventories
for the available time period. If leakages are responsible for the dif-
ference, then they should increase over time since regulations became
stricter and specialization has also increased over time. The final sec-
tion concludes with a discussion of the advantages and disadvantages of
the consumption-based approach.

2. Literature review

In recent years a number of studies have called attention to the fact
that a substantial amount of CO2 emissions are embodied in interna-
tional trade. Thus, Davis and Caldeira (2010) report that in 2004 23%
of global CO2 emissions were contained in exports stemming pre-
dominantly from developing countries (e.g. China) to developed na-
tions (e.g. Switzerland, Sweden, UK, or the USA). An analysis by Peters
et al. (2012) suggests that the proportion related to international trade

is increasing over time (to 26% in 2008). These findings have inspired a
controversial discussion about the extent to which CO2 emissions are
outsourced by developed nations to developing countries. Some authors
propose that since both consumers and producers of goods and services
are equally responsible for CO2 emissions, they should also share mi-
tigation responsibilities (e.g. Steininger et al. 2014, Jakob et al. 2014).
How this could be accomplished and whether switching from produc-
tion-based accounting to consumption-based accounting is beneficial
with respect to the efficiency of CO2 abatement policies is an ongoing
debate (e.g. Liu 2015). The consideration of switching to consumption-
based accounting depends also on empirical assessments of the size of
carbon leakages, and on the reasons for them. So far such empirical
investigations are still sparse. Some studies compare consumption-
based emissions of Annex I countries (those who committed themselves
to CO2 reductions in the Kyoto Protocol) before and after the commit-
ment. They find very small or no evidence for strong carbon leakages.
Similar results hold for studies investigating EU countries before and
after the implementation of the European Union Emissions Trading
System (EU ETS) (for a review see Branger and Quirion 2014). How-
ever, the authors of these studies point out that carbon prices in the EU
have been very low so far providing only small incentives for a re-
allocation of carbon intensive industries such as cement or aluminum
production. Furthermore, energy intensive industries received generous
emission permits by the EU to avoid reallocation. Hence, outsourcing
might increase when the supply of pollution permits is reduced to meet
the emission targets.

Other recent empirical studies investigate the question of whether
the predictors of CO2 depend on the accounting scheme. Econometric
analyses of production-based emissions usually find that national CO2

emissions are predominantly driven by population size, GDP, and the
energy intensity of a nation’s economy. Moreover, further but smaller
predictors are countries’ commitment to environmental protection
(measured by ratification of international agreements), non-fossil en-
ergy sources, and energy prices (see Franzen and Mader 2016).
Fernandez-Amador et al. (2017) compare the effects of GDP per capita
on CO2 per capita of models using production-based data with those of

Fig. 1. The ratio of consumption- and production-based CO2

emissions per capita (CBA/PBA) for 1997 and 2011.
Note: The figure shows the top 5 and the bottom 5 countries with
respect to the ratio of CBA to PBA, the five largest emitters of CO2,
and members of the G7 or BRIICS if not already included by the
other criteria. Data source is the Emissions Database for Global
Atmospheric Research (Olivier et al. 2016) for production-based
accounting and the Global Carbon Atlas (Peters et al. 2011) for
consumption-based accounting of CO2. The horizontal grey line
denotes the average CBA/PBA ratio for 1997, and the blue line the
average for 2011.
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consumption-based data. The estimated elasticity in models using
production-based data is 0.65, and the one using consumption-based
data 0.81. Similar results are reported by Liddle (2018) who finds an
elasticity of 0.57 using production-based CO2 emissions, and an elas-
ticity of 0.66 analyzing consumption-based data. Hence, the difference
of the estimated income elasticity between both accounting schemes is
small, and statistically not significant. However, import and export
rates also matter if consumption-based accounting is applied. Surpris-
ingly, import and export rates do not matter with respect to production-
based emissions. But a country’s export rate has a small negative effect
on consumption-based CO2 emissions, while import rates increase
them, in line with expectations. None of the two studies finds com-
pelling evidence for an Environmental Kuznets Curve (EKC) in-
dependent of the accounting scheme. Thus, CO2 per capita emissions
increase somewhat more slowly at higher income levels than at lower
income levels but the diminishing increase is very small, and statisti-
cally not significant.

In this paper, we are not interested in analyzing the difference of the
predicted estimates by the two different accounting schemes but rather
in identifying the factors that drive the ratio of CBA to PBA. Put dif-
ferently, we identify countries with high and low ratios and analyze the
differences between them. Hence, we analyze the question of which
countries would be affected by shifting the accounting scheme. The
literature on consumption-based accounting assumes that wealthy na-
tions are those with stricter environmental laws e.g. higher carbon
prices and thereby that they tend to outsource carbon-intensive in-
dustries. Hence, if there were carbon leakages, then wealthy nations
should have higher ratios than poorer nations. Moreover, assuming that
international specialization increases, the ratios should over time be-
come larger in wealthy nations and smaller in poorer nations. In the
following we test both assumptions for the first time.

3. Comparing consumption- and production-based emissions

We compare the two accounting methods for CO2 per capita by
using the latest available data; for the production-based accounting
(PBA) we take data from the Emissions Database for Global
Atmospheric Research (Olivier et al. 2016), and for the consumption-
based approach (CBA) data is taken from the Global Carbon Atlas
(Peters et al. 2011). Both sources are recognized as the most exact
inventories and are commonly used in the literature (Fan et al. 2016,
Fernandez-Amador et al. 2017, Franzen and Mader 2016). Con-
sumption-based accounting uses the multi-regional input-output
(MRIO) model and depends on the availability of detailed import and
export data (Peters et al. 2011). The latest available accounting stems
from 2011 and contains 110 countries. First, we compare both in-
ventories by simply calculating the Pearson and Spearman correla-
tions for a country’s CO2 emissions per capita. Pearson’s correlation
between the two inventories for 2011 is r=0.89. Since both in-
ventories depend on estimates and are not very exact (particularly the
CBA), a robustness check of the Pearson correlation is accomplished
by also calculating the rank correlation (Spearman’s r) which is
rS=0.96. Hence, both correlations are extremely high indicating that
statistically CBA and PBA are very similar. On average a country’s
ranking with respect to CO2 per capita does not depend on con-
sumption- or production-based accounting. Countries high in pro-
duction-based emissions are also high in terms of consumption-based
emissions. However, there are some differences and they are quite
surprising. Fig. 1 displays the ratio of CBA to PBA emissions per capita
for 2011 and 1997 (see Fig. 1).

The figure lists the top and bottom five countries with respect to
the ratio of CBA to PBA, the ratios for the five largest CO2 emitters
(China, USA, India, Japan, Russian Federation), and members of the
G7 or BRIICS if not already contained by the other criteria. A ratio of 1
means that consumption-based emissions are exactly the same as
production-based emissions. This is pretty much the case for Canada.
A ratio below 1 means that a country would profit (decrease in CO2

per capita) from switching to consumption-based accounting. Ratios
above 1 indicate that inhabitants of a country consume more CO2 than
under the PBA. If carbon leakages exist, then developed countries
should have ratios above 1 and developing nations ratios below 1.
Inspection of Fig. 1 shows that this is not confirmed by the frequency
distribution of CBA/PBA. The top five countries with the largest ratios
are almost all developing nations. Switzerland is the only exception.
Also, countries with low ratios are mixed and include the Russian
Federation and South Africa. The most extreme deviation is observed
for Switzerland. The PBA for Switzerland results in 5.4 tons per capita
of CO2 in 2011 and in 15.3 if accounting is consumption-based.

Fig. 2. Regressions of the ratio of CBA to PBA of CO2 emissions per capita.
Notes: Unstandardized regression coefficients with 95% confidence intervals. All models
contain dummy variables for each year in order to control for overall time-trends. All
standard errors are clustered by country and year, and therefore robust with respect to
heteroscedasticity and autocorrelation. Robustness checks comprise FE panel regressions
with country-specific constants and slopes (FEIS) (Brüderl and Ludwig 2015), and pe-
nalized splines FE models (Ruppert et al. 2003) to test all parameters for linearity. Fur-
thermore, we ran 110 regressions dropping one country each time to test for statistical
outliers. In addition, the robustness of standard errors was checked using non-parametric
bootstrapping. Moreover, we tested for the influence of omitted variables using the
method suggested by Frank (2000). None of these checks had any substantial influence on
the estimates. “n” refers to the number of countries, and “N” to the number of observa-
tions (number of countries (n) multiplied by the number of years). Table A1 in Appendix
A describes all variables and Table A2 lists all countries included in the models. All
models as well as all the robustness checks were conducted using the statistical software
package STATA 14.2. See also Table A3 for the exact regression results of all three
models.
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However, Switzerland’s imports stem from Germany (32%), Italy
(10%), and France (9%) (World Bank 2017). Hence, Switzerland does
not predominantly import CO2 emissions from developing countries
but mainly from developed countries that have higher production-
based CO2 emissions.

Fig. 1 only delivers a first descriptive impression. More reliable
insight is obtained by a more rigorous statistical analysis of all 110
countries contained in the database of Peters et al. (2011). Results of
such an analysis are depicted in Fig. 2. First, Model 1 of Fig. 2 shows
the regression result of a random effects (RE) panel regression
(Wooldridge 2010) in which we regress the ratio of CBA to PBA on a
dummy variable for OECD membership. The coefficient is almost zero
and statistically not significant. Models 2 and 3 use fixed effects (FE)
panel regression models in which the ratio of CBA to PBA as well as all
independent variables are demeaned (Wooldridge 2010). Model 2
only incorporates countries’ GDP per capita (purchasing power ad-
justed) and its square to control for possible non-linear effects. Again,
the coefficients are zero or very close to it and are not statistically
significant. Hence, a country’s change in GDP per capita does not
change the ratio of CBA to PBA.

Model 3 extends the model by including four variables, energy in-
tensity, trade balance, and an economy’s share of the industrial or
service sector. Energy intensity is obtained by calculating the ratio of a
country’s energy consumption per unit of GDP. The larger the ratio the
more energy is used per unit of GDP. Hence, the variable can also be
interpreted as a country’s energy inefficiency. The results suggest that
energy inefficiency is negatively related to the CBA/PBA ratio. If the
energy consumption per unit of GDP increases the CBA/PBA ratio de-
creases. Put the other way round, if the energy efficiency increases over
time (energy/GDP decreases) then the import of CO2 increases as well.

A negative effect is obtained for the ratio of exports to imports. If
exports increase in comparison to imports, the CBA/PBA ratio de-
creases. Or put the other way round, if the imports are large in com-
parison to exports then the CBA/PBA ratio increases. Hence, this effect
is very intuitive. Finally, an economy’s share of the industry or service
sector is not related to the CBA/PBA ratio.

Furthermore, we take a look at the growth curve of the CBA/PBA
ratio for OECD members and non-members (see Fig. 3). The graph

shows no clear trend for both types of countries. Hence, it is not the
case that OECD members increase in CBA over time, at least not for
the observation period at hand. If anything then OECD members de-
crease imports of CO2, but this trend for 2011 is not statistically sig-
nificant.

4. Conclusion and discussion

An analysis of the CBA/PBA ratio reveals that there is no empirical
evidence for carbon leakage from developed to developing countries.
On average, countries increase imports of CO2 if they become more
energy efficient. A good example is Switzerland, which has high energy
efficiency and also a very high ratio of CBA to PBA. Countries also in-
crease consumption-based CO2 emissions if they do have large imports
in relation to exports, which is a very intuitive effect. However, on
average OECD members or countries with high levels of GDP per capita
do not have larger CO2 imports or have increased them over time. In
fact, the difference in accounting is rather small for most large emitters
such as China (6.1 vs 7.3 or -16%) or the USA (19.2 vs 17.3 or+ 11%).

Given these small differences should we switch to consumption-
based accounting? Consumption-based accounting has the advantage of
incorporating CO2 emissions from international transportation. It also
incorporates carbon leakages and attributes them to the countries who
more or less directly externalize CO2 emissions. However, the empirical
analysis reveals that there are no systematic carbon leakages from de-
veloped countries. Furthermore, the consumption-based approach also
has some disadvantages.

It is based on rather complicated input-output matrices, and thus,
involves more assumptions than the production-based approach. This
makes the consumption-based accounting more inaccurate than the
production-based approach. The consumption-based approach also
violates the principle of product liability, which states that producers
are responsible for the quality and safety of their products. Of course,
this principle applies to companies and it is less clear whether it should
also apply to countries. However, the balance of small advantages and
large disadvantages would suggest keeping the production-based ap-
proach.

Fig. 3. Growth curves of CBA/PBA ratio of model 3.
Note: The graph displays the predictive CBA/PBA ratios including
95% confidence intervals for OECD and Non-OECD countries. “n”
refers to the number of countries, and “N” to the number of ob-
servations (number of countries (n) multiplied by the number of
years). The analysis (model 3 of Fig. 2) contains 99 countries and five
observations (1997, 2001, 2004, 2007, and 2011), however, not all
countries have valid measurements for every year.
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Appendix A

Table A1
Variable description.

Notes: EDGAR=Emission Database for Global Atmospheric Research, GCA=Global Carbon Atlas, IEA= International Energy Agency, IMF= International
Monetary Fund, OECD=Organization for Economic Co-operation and Development, WB=World Bank; All variables in the models are included in the units
reported above.
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Table A2
Countries included in the analyses.

Albania* Costa Rica* India* Morocco* Slovak Republic*
Argentina* Cote

d'Ivoire*
Indonesia* Mozambique* Slovenia*

Armenia* Croatia* Iran, Islamic
Rep.*

Namibia* South Africa*

Australia* Cyprus* Ireland* Nepal* South Korea*
Austria* Czech

Republic*
Israel Netherlands* Spain*

Azerbaijan* Denmark* Italy* New Zealand* Sri Lanka
Bahrain Dominican

Rep.*
Jamaica* Nicaragua* Sweden*

Bangladesh* Ecuador* Japan* Nigeria* Switzerland*
Belarus* Egypt, Arab

Rep.*
Jordan* Norway* Tanzania*

Belgium* El Salvador* Kazakhstan* Pakistan* Thailand*
Benin* Estonia* Kenya* Panama* Togo*
Bolivia* Ethiopia Kyrgyz

Republic*
Paraguay* Tunisia*

Botswana* Finland* Lao PDR Peru* Turkey*
Brazil* France* Latvia* Philippines* Uganda
Bulgaria* Georgia* Lithuania* Poland* Ukraine*
Burkina Faso Germany* Madagascar Portugal* United Kingdom*
Cambodia* Ghana* Malawi Romania* United States*
Cameroon* Greece* Malaysia* Russia* Uruguay*
Canada* Guatemala* Malta* Rwanda Venezuela, RB*
Chile* Guinea Mauritius* Saudi Arabia* Vietnam*
China* Honduras* Mexico* Senegal* Zambia*
Colombia* Hungary* Mongolia* Singapore* Zimbabwe*

Notes: We only took countries into consideration that are full members of the United Nations. Models 1 and 2 of Fig. 2 contain all 110 countries. Model 3 of Fig. 2 is based on 99 countries
indicated by ‘*’.

Table A3
Regressions of the ratio of CBA to PBA of CO2 Emissions per capita.

(1) (2) (3)
Model RE FE FE

OECD Membership −0.02
(0.07)

GDP p.c. −0.02 −0.02
(0.01) (0.01)

GDP p.c. squared 0.00 0.00
(0.00) (0.00)

Energy Intensity −0.99*
(0.28)

Trade Balance (Exports/Imports) −0.21*
(0.06)

Industry 0.02
(0.01)

Services 0.01
(0.01)

2001 0.03 0.05* 0.01
(0.03) (0.02) (0.03)

2004 0.06 0.11* 0.04
(0.03) (0.03) (0.04)

2007 0.14** 0.22* 0.12
(0.04) (0.05) (0.07)

2011 0.18*** 0.28** 0.16*
(0.04) (0.05) (0.06)

n x T 550 549 488
n 110 110 99
adj. R2 within 0.0855 0.0912 0.1276
theta .71

Notes: *= p < 0.05, **= p < 0.01, ***=p < 0.001. Unstandardized regression coefficients with standard errors in brackets. All models contain
dummy variables for each year in order to control for overall time-trends. All standard errors are clustered by country and year, and therefore robust
with respect to heteroscedasticity and autocorrelation. Robustness checks comprise FE panel regressions with country-specific constants and slopes
(FEIS) (Brüderl and Ludwig, 2015), and penalized splines FE models (Ruppert et al., 2003) to test all parameters for linearity. Furthermore, we ran 110
regressions dropping one country each time to test for statistical outliers. In addition, the robustness of standard errors was checked using non-
parametric bootstrapping. Moreover, we tested for the influence of omitted variables using the method suggested by Frank (2000). None of these
checks had any substantial influence on the estimates. Table A1 in Appendix A describes all variables and Table A2 lists all countries included in the
models. All models as well as all the robustness checks were conducted using the statistical software package STATA 14.2.
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A B S T R A C T

Recently, a discussion about the ambiguity of the nexus between social inequality and anthropogenic CO2

emissions has emerged. Macroeconomic panel studies applying region and time fixed effects (FE) regression
models and measuring inequality by the Gini coefficient discovered a flat relationship. Only two of these studies
substituting Gini by the more appropriate share held by the top 10 percent of the income or wealth distribution
find a positive effect. This paper revisits this nexus and challenges the empirical validity of the contribution of an
increase in wealth and income inequality to higher CO2 emissions lately found by Knight et al. (2017) on
country-level and by Jorgenson et al. (2017) on U.S. state-level. The positive inequality effects spotted in these
two studies are not robust with respect to the regions and time spans observed as well as to the inequality
indicators, estimation techniques, and confounders selected. Hence, this in-depth investigation suggests that
there is no sound empirical evidence for a substantial nexus between social inequality and CO2 emissions. After
all, lately proposed policy approaches combining efficient cap-and trade programs with income and wealth
redistribution (so-called cap-and-dividend schemes) are not, by themselves, suitable for an effective climate
policy. In fact, the analysis points at the relevance of treating key predictors of CO2 emissions including energy
prices for the U.S. for effective climate change mitigation.

1. Introduction

Abating anthropogenic carbon dioxide (CO2) emissions is a focus for
climate change mitigation (IPCC, 2014). To achieve this ambitious goal
it is of great political importance to identify the predictors of the CO2

emissions of countries. Newest longitudinal studies in this line of re-
search confirm that the main drivers are population size and gross
domestic product (GDP, e.g. Dietz et al., 2010; Franzen and Mader,
2016; Liddle, 2015; Rosa and Dietz, 2012; Rosa et al., 2015). Smaller
impacts are observed for non-fossil energy production, energy prices
and international environmental agreements (e.g. Franzen and Mader,
2016).

A largely separate discussion on the nexus between social inequality
and CO2 emissions has emerged since the 1990s. Boyce (1994) in-
troduced a now widely disputed political economy argument. He hy-
pothesizes that more social inequality leads to more environmental
degradation. According to Boyce (1994) income/wealth concentration
at the top leads to more political influence of rich people on environ-
mental policy. His ‘power-weighted social decision rule’ assumes that
rich producers and consumers benefit more from polluting the en-
vironment than the poor, and that the latter are more prone to bear the
social costs of environmental deterioration. While not directly targeted

at spatially and temporally dispersed pollutants like CO2 emissions, this
argument has often been applied to them (see for instance Jorgenson
et al., 2017; Knight et al., 2017).

Because of the ambiguity of Boyce’s (1994) and others’ arguments
(e.g. Borghesi, 2006; Grunewald et al., 2017; Ravallion et al., 2000), a
debate on the empirical validity of a substantial nexus between social
inequality and carbon emissions arose. Though early studies using
cross-sectional data find both a positive (e.g. Ravallion et al., 2000) and
a negative (e.g. Heerink et al., 2001) effect, more recent panel studies
utilizing region and time fixed effects (FE) regression models and
measuring inequality by the Gini coefficient discover no substantial
relation between income inequality and CO2 (Borghesi, 2006;
Grunewald et al., 2017; Hübler, 2017; Jorgenson et al., 2016 and 2017;
Knight et al., 2017). Most recently, two of these studies substituting
Gini by the more appropriate share held by the top ten percent of the
income or wealth distribution spot a positive effect (Jorgenson et al.,
2017; Knight et al., 2017).

This paper revisits this nexus and challenges the empirical validity
of the contribution of an increase in wealth and income inequality to
CO2 emissions recently found by Knight et al. (2017) on country-level
and by Jorgenson et al. (2017) on U.S. state-level for various metho-
dological reasons.
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This contribution proceeds in four further steps: the second section
discusses the ambiguous theoretical approach of Boyce (1994) on the
positive nexus between social inequality and CO2 emissions, and it
presents the latest empirical evidence utilizing FE panel regression
models. Sections three and four provide an in-depth investigation of the
empirical validity of the two most recent contributions. In particular,
the third section replicates the country-level analysis of Knight et al.
(2017), relaxing its assumptions and extending the model, while in the
fourth section the same is undertaken for the U.S. state-level analysis of
Jorgenson et al. (2017). The last section summarizes and discusses the
main results, and closes with some concluding remarks.

2. Theoretical considerations and empirical evidence

Political economist James K. Boyce (1994) argues that more social
inequality yields higher levels of environmental deterioration. Ac-
cording to him a more pronounced income/wealth concentration at the
top of the distribution leads to more political influence of rich people on
environmental policy causing higher levels of environmental pollution.
The proponents of this so-called ‘power-weighted social decision rule’
of producers and consumers of goods and services claim that when the
economic elite gains more power, more benefits can be generated from
polluting activities. Also, the social costs of pollution can more easily be
externalized on the poor respectively less powerful population. In other
words, it is easier for more wealthy rich producers and consumers to
achieve a level of emissions higher than the one incorporating the social
costs of environmental degradation related to these economic activities.
This is because the higher economic and in turn political power of the
rich allegedly makes it easier to externalize the social costs of polluting
activities on the relatively poorer population within a country/state.
This in turn increases the rich’s benefits and makes the poor more
vulnerable to bear the social costs of environmental pollution.

As Borghesi (2006), Grunewald et al. (2017), Jorgenson et al.
(2017), Knight et al. (2017), and Ravallion et al. (2000) suggest,
Boyce’s (1994) argument is a priori ambiguous: The argument is prone
to the assumption that “the net benefit from polluting activities is po-
sitively correlated with individual income” (Grunewald et al. 2017:
250, see also Scruggs, 1998). In other words and building on the de-
mand function for carbon dioxide emissions from the consumption or
production of goods and services, Ravallion et al. (2000) reason that the
effect of an increase in social inequality on CO2 emissions depends on
the relation of poor to rich people’s marginal propensities to emit
(MPE). More specifically, if poor people’s MPE is greater than rich
people’s, an increase in inequality lowers CO2 emissions. Conversely, if
poor people have a lower MPE than the rich, an increase in inequality
raise CO2. It is hard to identify the MPE ratio of poor and rich people a
priori, leaving the validity of a substantial inequality –CO2 emissions
nexus an empirical question (see also Borghesi, 2006).

Moreover, Boyce’s (1994) argument is formulated for pollutants
with spatially and temporally limited but direct hazardous impact like
sulfur and nitrogen oxides (SOX and NOX) as well as water pollution. It
is questionable, whether the argument also applies to CO2 emissions, as
its impact on the climate is spatially and temporally dispersed. First,
CO2 emissions of both poor and rich people in a country contribute to
warming on a global scale. Second, dangerous climate change will
primarily harm future generations (IPCC, 2014). Therefore, both poor
and rich people are expected to have the same MPE, as both groups
benefit equally from carbon emitting activities and can externalize the
social costs of dangerous climate change and its mitigation to either
other countries and – even more so – to future generations. Conse-
quently, this perspective does not expect a substantial effect of in-
creasing inequality in a country on carbon emission levels. Never-
theless, Boyce’s argument has been applied to them assuming a positive
inequality –CO2 emissions nexus (see for instance Jorgenson et al.,
2017; Knight et al., 2017).

Other arguments hypothesizing a positive, negative, inverted U-

shaped, or GDP-depending relation between inequality and CO2 are
more targeted at overall GDP than its distribution or not directed at
causal explanation and therefore not repeated here (see also Berthe and
Elie, 2015; Borghesi, 2006; Cushing et al., 2015; Grunewald et al.,
2017; Hübler, 2017; Jorgenson et al., 2017; Knight et al., 2017).

Turning to the existing empirical evidence, I only refer to macro-
economic studies applying fixed effects panel regressions of CO2 emis-
sions on social inequality. In comparison to cross-sectional ordinary
least squares regression, the FE model has the advantage of exploiting
the longitudinal data structure as it only takes within country variations
into account. Thus, the FE model is not biased by cross-sectional un-
observed heterogeneity (Brüderl and Ludwig, 2015; Wooldridge, 2010).
If the strict exogeneity assumption (r (xit , ε )it =0) holds, FE models
adequately estimate unbiased causal effects (Vaisey and Miles, 2017).
The model can be written as

− = − + + −x x β Z γy y ε ε( )it i it i t it i (1)

yit denotes the CO2 emissions of country i in year t. yi represents country
i’s average of the whole observation period. xit stands for the vector of
all exogenous variables for country i at time t, and xi for the mean of the
whole observation period. The model also comprises a vector of dummy
variables (Z) for every year, which controls period effects for all
countries (time FE). A country’s time varying stochastic error term is
represented by ε it.

To the best of my knowledge, there are only six studies that apply
region and time FE panel regression to directly test whether changes in
income or wealth inequality affect CO2 emissions. Table 1 summarizes
the results, data, and methods of these studies.

As Table 1 reveals, Borghesi (2006), Grunewald et al. (2017),
Jorgenson et al. (2016), and Knight et al. (2017), utilizing FE regression
models, find no substantial effect of the income Gini coefficient on CO2

emissions on country-level. This finding is independent from the time
spans (8 to 29 years covering 1980 to 2010) and the number of coun-
tries (26 to 141) observed as well as from the use of either production-
based accounting (PBA) or consumption-based accounting (CBA) of
CO2, the different data sources employed, and the covariates included.
However, Grunewald et al. (2017) report a substantially negative in-
equality –CO2 emissions nexus making use of group fixed effects (GFE)
estimation (Bonhomme and Manresa, 2015) to account for grouped
patterns of unobserved heterogeneous growth. Nonetheless, the data-
driven grouping of regions might be artificial, as the trajectories of
individual countries or states are the natural sampling and statistical
unit of interest here. FE regression that allows for individual constants
and slopes (FEIS) accounts for heterogeneous growth over time by
simply fixing the interaction between regions and years in addition to
the independent incorporation of region and time fixed effects. This
cancels out potential individual time-varying unobserved heterogeneity
(Brüderl and Ludwig, 2015; Polachek and Kim, 1994; Wooldridge,
2010). Thus, the use of FEIS is more appropriate than GFE here. Re-
plication of Grunewald et al. (2017) utilizing FE and FEIS models finds
no substantial effect of income Gini on CO2 p.c. emissions. The results
are available from the author upon request.

Another recent study by Hübler (2017) applies quantile FE regres-
sion with 149 countries from 1985 to 2012. Quantile regressions are
more robust to influential cases than conventional mean estimators
(Cameron and Trivedi, 2010). Also this study finds no substantial effect
of income Gini on the 0.1, 0.25, 0.5, 0.75, and 0.9 quantile of CO2 per
capita (p.c.).

Aside from the advantage of being a broad indicator of inequality,
the Gini coefficient a priori has the limitation of not being unique for a
specific distribution. Different distributions can result in the same Gini
coefficient value (e.g. Atkinson, 1970; Schutz, 1951) and it is not a
direct measure of income and wealth concentration at the top of the
distribution (Jorgenson et al., 2017). A more appropriate, albeit partial,
measure of social inequality and in turn power concentration is the
income/wealth share held by a given percentile group at the top (Alker
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and Russett, 1964; Jorgenson et al., 2017).
Most recently, two studies revealed a positive relationship between

social inequality and CO2 utilizing the income/wealth share of the top
10% and applying Prais-Winsten FE regression (Greene, 2012): Knight
et al. (2017) is the first study focusing on wealth inequality as a better
indicator for power concentration than income inequality. Analyzing
wealth inequality data from Credit Suisse (Shorrocks et al., 2014), they
find a substantial positive relation of the wealth share of the top 10%
with CBA of CO2 p.c. for 26 countries between 2000 and 2010 while
controlling for income Gini and p.c. GDP. They estimate that with an
increase of wealth concentration of 1%, per capita emissions increase
by 0.80% (p < 0.01, se=0.30). This elasticity is about twice the size
of the elasticity for GDP p.c. (β=0.39, p <0.01, se=0.14). Jorgenson
et al. (2017) analyze the 50 U.S. states and District of Columbia be-
tween 1997 and 2012. They find that a rise in the income concentration
of 1% yields a 0.12% (p < 0.05, se=0.06) rise in total state CO2

emissions while controlling for population size, urban population (%),
GDP p.c., fossil fuel production, and manufacturing (% of GDP).

As the remainder of this article demonstrates, the findings of
Jorgenson et al. (2017) and Knight et al. (2017) are not robust for
various methodological reasons. In sum, this investigation suggests that
there is no sound empirical evidence for a substantial nexus between
social inequality and CO2 emissions.

3. Country-level analysis: investigation of Knight et al. (2017)

The country-level analysis begins with a replication of Knight et al.
(2017). Like Knight et al. (2017), I regress CBA per capita CO2 emis-
sions gathered from the Global Carbon Atlas (Peters et al., 2011) on the
wealth share of the top 10% taken from the Credit Suisse Global Wealth
Databook 2014 (Shorrocks et al., 2014). The newest available data is
for 2014. In this year the top 10% held 56.4% (sd=12.0, median=
58.4%) of net worth on average, which matches Canada’s value. The
distribution ranges from a minimum of 23.3% for the United Kingdom
to a maximum of 71.9% for Switzerland. The time series date back to
2000 with a mean of 57.2% (sd=12.2, median= 58.0). The analysis
only includes countries that have good or satisfactory wealth distribu-
tion data quality according to Shorrocks et al., 2014 (17–25). However,
Knight et al. (2017) also exclude Colombia and Mexico, which have
satisfactory data quality (Shorrocks et al., 2014: 22, 24). This restricts
the analysis to 26 countries instead of 28. GDP p.c. is drawn from the
International Monetary Fund (IMF) and is converted into international
dollars using purchasing power parities (PPP). The income Gini coef-
ficient is taken from the Standardized World Income Inequality

Database (SWIID, Solt, 2016). These variables are available for the
years 2000 to 2014. However, Knight et al. (2017) restrict their analysis
to the years 2000 to 2010. For a description of all variables included in
the models of Tables 2–4 see Table S1 of the Supplementary Informa-
tion. Allowing the estimation of elasticities, all variables enter the
models by taking their natural logarithm. A list of all countries included
in these models is provided in Table S2.

Knight et al. (2017) apply Prais-Winsten country and time fixed
effects regressions (Greene, 2012) with panel-corrected standard errors,
allowing for disturbances that are heteroskedastic and con-
temporaneously correlated across panels. Additionally, these models
correct for first-order autocorrelation (AR(1) process) within panels.
The models further include interaction terms of wealth inequality and
time in order to identify potential fluctuation of the wealth inequality
effect over time. As described above, Knight et al. (2017) find a sub-
stantial positive effect on CO2 p.c. of around 0.80% for an increase in
wealth inequality of 1%. This effect is close to proportionality and
highly statistically significant (see models 1 and 2 of Table 2).

As the models 3 and 4 of Table 2 indicate, this article virtually re-
plicates the results of Knight et al. (2017). An increase of wealth in-
equality by 1% yields a statistically significant rise in per capita CBA of
CO2 of around 0.60%. In line with other studies, the income Gini
coefficient is not connected to CO2. The elasticity of GDP p.c. is sta-
tistically significant around 0.40. This is also the case, when standard
country and time FE regression with heteroscedasticity and auto-
correlation robust standard errors (clustered by country and year) is
used instead of the Prais-Winsten model (see models 5 and 6 of
Table 2). Standard FE regression has the comparative advantage of not
depending on the assumption of an AR(1) process and is therefore used
in the remainder of the analyses.

Nonetheless, the effect of wealth inequality disappears in the
models 3 to 6 of Table 2, when either Australia, Greece, Norway, Sin-
gapore or South Korea is excluded separately from the analysis. This is
also the case when FE panel regression allows for individual constants
and slopes (FEIS) or the wealth share of the top 10% is substituted by
the corresponding share held by the top 1%. See Table S3 in the Sup-
plement for detailed regression results of these sensitivity checks ex-
emplarily for model 5 of Table 2. Thus, the wealth inequality effect is
sensitive to influential cases, a conservative estimation technique, and
the wealth inequality indicator chosen.

Moreover, further relaxation of the analyses made by Knight et al.
(2017) reveals the absence of a wealth inequality effect for both CBA
and PBA of CO2 emissions (see Table 3). First, the wealth inequality
effect loses statistical significance, when Colombia and Mexico are

Table 1
Macroeconomic studies applying region and time fixed effects panel regressions of CO2 emissions on social inequality.

Study Income
Inequality

Wealth
Inequality

Dependent
Variable

Included Confounders Data Model

Borghesi (2006) 0.03 (G) n.a. PBA CO2 p.c. GDP p.c.,
population density, industry (% of GDP)

35 countries, 1988-
1995

FE

Grunewald et al.
(2017)

-1.18 (G) n.a. PBA CO2 p.c. GDP p.c.,
(GDP p.c.)2,
Gini*GDP p.c.

141 countries, 1980-
2008

FE

Hübler (2017) [-0.13, 0.04] (G) n.a. PBA CO2 p.c. GDP p.c.,
industry (% of GDP),
domestic investment
(% of GDP)

149 countries, 1985-
2012

Quantile FE

Jorgenson et al.
(2016)

-0.16 (G) n.a. CBA CO2 population,
urban population,
GDP p.c.

67 countries, 1991-
2008

Prais-Winsten
FE

Jorgenson et al.
(2017)

0.12 (G)
0.12* (S)

n.a. PBA CO2 population, urban population, GDP p.c., fossil
fuel production, manufacturing (% of GDP)

50 U.S. states+D.C.,
1997-2012

Prais-Winsten
FE

Knight et al. (2017) -0.15 (G) 0.80** (S) CBA CO2 p.c. GDP p.c. 26 countries, 2000-
2010

Prais-Winsten
FE

Note: * = p < 0.05, ** = p < 0.01. G=Gini coefficient, S= share held by the top 10%, n.a. = not available, CBA= consumption-based accounting,
PBA=production-based accounting, FE= fixed effects panel regression. All the reported estimates for income and wealth inequality are elasticities.
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included (see model 2 of Table 3). Second, and in addition to the sta-
tistical insignificance, the effect size drops from 0.60 to 0.10 when the
time span is extended from 2000-2010 to 2000-2014 (model 3 of
Table 3). As the models 4 to 6 of Table 3 show, the same applies for PBA
of CO2 gathered from the Emissions Database for Global Atmospheric
Research (EDGAR, Olivier et al., 2016).

Beyond that, the analysis of Knight et al. (2017) is extended by
additionally controlling for wealth levels. This has never been done
before. But it is important, as the wealth inequality effect is hypothe-
sized independently from wealth levels. Data on the average net worth

per adult is also provided by Credit Suisse (Shorrocks et al., 2016) and
enters the models corrected by PPP rates from the IMF. Model 1 of
Table 4 shows, that with an increase of wealth per adult of 1% CBA of

Table 2
: Replication of Knight et al., 2017.

Model (1) (2) (3) (4) (5) (6)
Knight et al., 2017
(6, Table 2)

Replication Replication

Prais-Winsten
Country and Time
FE Regression

Prais-Winsten
Country and Time FE
Regression

Country and
Time FE
Regression

Dependent
Variable

CBA of CO2 p.c.

Wealth Share of
Top 10%
(Wealth
Inequality)

.80** .84** 0.61* 0.63* 0.62* 0.65*
(.30) (.30) (0.26) (0.27) (0.27) (0.28)

GDP p. c. .39** .38** 0.42** 0.41** 0.38* 0.37
(.14) (.14) (0.14) (0.14) (0.16) (0.17)

Income Gini
Coefficient

−.15 −.15 0.03 −0.00 0.07 0.03

(.18) (.18) (0.14) (0.14) (0.21) (0.26)

Wealth
Inequality *
2001

−.08 −0.03*** 0.62*
(.04) (0.01) (0.28)

Wealth
Inequality *
2002

−.17*** −0.03*** 0.61
(.05) (0.01) (0.28)

Wealth
Inequality *
2003

.03 0.02 0.66*
(.04) (0.01) (0.28)

Wealth
Inequality *
2004

−.09* −0.02* 0.63
(.04) (0.01) (0.28)

Wealth
Inequality *
2005

−.08* −0.01 0.64
(.04) (0.01) (0.30)

Wealth
Inequality *
2006

−.12** 0.03** 0.68
(.04) (0.01) (0.31)

Wealth
Inequality *
2007

−.06 0.00 0.65
(.05) (0.01) (0.30)

Wealth
Inequality *
2008

−.03 0.02 0.67
(.05) (0.02) (0.31)

Wealth
Inequality *
2009

−.10* 0.01 0.66
(.04) (0.01) (0.30)

Wealth
Inequality *
2010

−.01 0.03 0.68
(.04) (0.01) (0.31)

n x T 286 286 286 286 286 286
n 26 26 26 26 26 26
adj. R2 within 0.09 0.09

Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized re-
gression coefficients with standard errors in brackets. All six models include the
years 2000–2010 and contain dummy variables for each year in order to control
for overall time-trends. All standard errors in the models 1–4 are panel-cor-
rected, allowing for disturbances that are heteroskedastic and con-
temporaneously correlated across panels. Additionally, these models correct for
first-order autocorrelation (AR(1) process) within panels. All standard errors of
models 5 and 6 are clustered by country and year, and therefore robust with
respect to heteroscedasticity and autocorrelation.

Table 3
Relaxation of Knight et al., 2017.

Model (1) (2) (3) (4) (5) (6)
Country and Time FE Regression

Dependent Variable CBA of CO2 p.c. PBA of CO2 p.c.

Wealth Share of Top 10% 0.62* 0.57 0.09 0.44 0.36 0.15
(0.27) (0.28) (0.24) (0.36) (0.37) (0.27)

GDP p. c. 0.38* 0.43* 0.71** 0.25 0.25 0.51**
(0.16) (0.17) (0.18) (0.21) (0.20) (0.16)

Income Gini Coefficient 0.07 −0.01 −0.02 −0.01 −0.07 −0.10
(0.21) (0.20) (0.26) (0.17) (0.17) (0.21)

n x T 286 308 404 286 308 404
n 26 28 28 26 28 28
adj. R2 within 0.09 0.10 0.25 0.07 0.06 0.22

Notes: * = p < 0.05, ** = p < 0.01. Unstandardized regression coefficients
with standard errors in brackets. All six models contain dummy variables for
each year in order to control for overall time-trends. All standard errors are
clustered by country and year, and therefore robust with respect to hetero-
scedasticity and autocorrelation. Model 4 replicates Model 1 with PBA as de-
pendent variable instead of CBA of CO2 p.c. emissions. Models 2, 3, 5, and 6
also include Colombia and Mexico which have satisfactory wealth distribution
data quality according to Shorrocks et al. (2014: 22, 24). Moreover, models 3
and 6 do not restrict the time span to 2000–2010 as in Knight et al. (2017).
They include the years 2000–2014.

Table 4
Extension of Knight et al., 2017.

Model (1) (2) (3) (4)
Country and Time FE Regression

Dependent Variable CBA of CO2 p.c. PBA of CO2 p.c.

Wealth per adult 0.20** 0.12** 0.08 −0.04
(0.05) (0.04) (0.05) (0.03)

Wealth Share of Top 10% 0.32 0.25 0.24 −0.09
(0.24) (0.19) (0.29) (0.19)

GDP p. c. 0.42* 0.38** 0.39* 0.55**
(0.15) (0.10) (0.16) (0.15)

Income Gini Coefficient 0.00 0.24 −0.09 0.16
(0.22) (0.13) (0.20) (0.15)

GDP p. c. squared −0.01 −0.04
(0.03) (0.05)

Fossil Fuel Energy Consumption 0.54*** 0.67***
(0.13) (0.14)

Trade Balance −0.46*** −0.07
(0.09) (0.12)

Industry −0.19 0.17
(0.30) (0.25)

Services −0.96 0.01
(0.56) (0.49)

Electricity Production from
Non-fossil Sources

−0.08* −0.06*
(0.03) (0.02)

International Environmental
Agreements

0.05 −0.01
(0.07) (0.07)

Energy Prices −0.06 −0.06
(0.03) (0.04)

n x T 404 365 404 365

n 28 26 28 26
adj. R2 within 0.38 0.68 0.25 0.63

Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized re-
gression coefficients with standard errors in brackets. All four models contain
dummy variables for each year in order to control for overall time-trends. All
standard errors are clustered by country and year, and therefore robust with
respect to heteroscedasticity and autocorrelation. All four models include all
countries with at least satisfactory wealth distribution data quality according to
Shorrocks et al. (2014: 17–25) and the years 2000–2014.
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CO2 p.c. rise by 0.20%. This effect is highly statistically significant.
However, the effects of wealth inequality, income inequality, and GDP
p.c. are not affected by the inclusion of the wealth level. Nevertheless,
wealth per adult is not a substantial predictor for PBA of CO2 emissions
(see models 3 and 4 of Table 4).

Next, following the latest literature on drivers of anthropogenic
carbon emissions (e.g. Dietz et al., 2010; Franzen and Mader, 2016;
Rosa and Dietz, 2012; Rosa et al., 2015), this analysis extends models 1
and 3 of Table 4 by accounting for the possibility of confounding
variables. The literature on the environmental Kuznets curve assumes
that the impact of GDP on CO2 is inversely U-shaped. To test this, the
model includes the square of GDP. Data for fossil fuel energy con-
sumption (share of total) as an indicator of technology is provided by
the International Energy Agency (IEA) and the World Bank (WB).1

Moreover, it is often argued, that CBA carbon emissions fall with a
greater trade balance (ratio of exports to imports) of goods and services
(e.g. Afionis et al., 2017; Fan et al., 2016; Franzen and Mader, 2018).
Trade balance data is drawn from the WB database. The economic
structure is represented by the share of the industrial and service sector
with respect to GDP also gathered from the WB. Furthermore, the share
of electricity production from non-fossil sources as an indicator of en-
vironmental policies is added (data source: IEA/WB). Likewise, the
number of international environmental agreements a country signed
and set into force as an indicator of a country’s formal commitment to
environmental protection is included (data source: Mitchell, 2015).
Lastly, the price mechanism is often used to reduce emissions. Inter-
nationally comparable energy price time series are available from the
Organisation for Economic Co-operation and Development (OECD) and
are corrected by IMF PPP rates.

As the models 2 and 4 of Table 4 demonstrate, the results of the
models 1 and 3 of Table 4 are not substantially affected by the inclusion
of confounders – neither for CBA nor for PBA carbon emissions. The
results show, that a rise in fossil fuel energy consumption by 1% in-
creases CO2 by about 0.60%. Besides, substitution of fossil electricity
production by non-fossil sources by 1% reduces carbon emissions by
about 0.07%. As other studies confirm, this effect is far from being
proportional (Franzen and Mader, 2016; York, 2012). Furthermore and
as expected, a higher trade balance yields lower CBA CO2 emissions, but
does not affect PBA CO2. All the other additional variables are not re-
lated to CO2 in this analysis of 26 countries between 2000 and 2014.
Amongst others, the models 2 and 4 do not find any evidence for an
environmental Kuznets curve.

The reported regression results of the Tables 3 and 4 were thor-
oughly tested for robustness: First, all models were recalculated by
performing FEIS regression. Second, all models were rerun excluding
one country each time from the regression. None of these checks had
any substantial influence on the estimates. Furthermore, all parameters
were tested for linearity including penalized splines FE regression
models (Ruppert et al., 2003). The robustness of standard errors was
investigated via non-parametric bootstrapping. Also these checks de-
tected no fundamental deviations from the reported results. Also, there
is no substantial interaction between GDP/wealth and income/wealth
inequality. Further sensitivity checks comprise the implementation of
different indicators of wealth and income inequality retrieved from
different data sources: The wealth share held by the top 10% was
substituted by the wealth share held by the top 1% also provided by
Credit Suisse (Shorrocks et al., 2014: 125). In addition, the income Gini
coefficient of the SWIID is replaced by the ones provided by the WB and
the OECD. The income Gini coefficient is also replaced by the income

share held by the top 10%, the top 5%, and the top 1%. This data is
retrieved from the WB (only top 10%) and the World Wealth and In-
come Database (WWID, www.wid.org), but comes with much shorter
time series compared to Gini. Lastly, further indicators were used to
operationalize income inequality as provided by the OECD. These in-
clude the P90/P10 disposable income decile ratio, the S90/S10 dis-
posable income decile share, and the poverty rates (lines 50 and 60).
However, none of these variations affected the reported results in any
substantial way. All the analyses were conducted using the statistical
software package STATA 15.1.

Altogether, this rigorous country-level analysis finds no robust re-
lation between income/wealth inequality and CO2 emissions. The po-
sitive wealth inequality effect disappears, when arbitrary restrictions
introduced by Knight et al. (2017) on the countries and years included
are relaxed. Hence, this analysis invalidates the positive wealth in-
equality – carbon emissions nexus found by Knight et al. (2017).

4. U.S. State-level analysis: investigation of Jorgenson et al.
(2017)

Jorgenson et al. (2017) provide a second recent study that finds a
positive relation between inequality and CO2 emissions measuring in-
come inequality with the share held by a certain percentile group at the
top. Using data for the 50 states of the U.S. and the District of Columbia
between 1997 and 2012, they perform FE regression of total PBA CO2

emissions on the income share of the top 10% while controlling for
population size, and GDP p.c. in the first model. Their second model
further controls for the population share living in urban areas, fossil
fuel production measured in trillion British thermal units (Btu), and
manufacturing as a share of GDP. The U.S. state-level analysis also
begins with a replication of Jorgenson et al. (2017). Similar to their
study, CO2 emissions data is gathered from the U.S. Environmental
Protection Agency (EPA). State-level information on the income share
of the top 10% is available from the World Wealth and Income Database
(WWID). On average the top 10% accounted for 45.8% of income in
2014 (sd=5.0, median=45.5%), which resembles Montana. The
minimum is 34.5% (Alaska) and the maximum 60.0% (New York). In
1997 the mean was at 42.1% (sd=3.9, median=41.8%). Data on
population size and the population share living in urban areas is taken
from the U.S. Census Bureau. Information on real GDP p.c. is gathered
from the U.S. Bureau of Economic Analysis (BEA). The BEA also pro-
vides information on the GDP share of the manufacturing sector. Data
on fossil fuel production is taken from the U.S. Energy Information
Administration (EIA). All these variables are now available for the years
1997 to 2014. For a description of all variables included in the models
of Tables 5 and 6 see Table S4 of the Supplementary Information.
Utilizing Prais-Winsten State and Time FE regression as described
above, Jorgenson et al. (2017) discover that total U.S. state CO2 emis-
sions rise statistically significant by about 0.12% with an increase of
income inequality by 1% (see models 1 and 2 of Table 5).

As the models 3 and 4 of Table 5 show, this result could not be
reproduced using Prais-Winsten FE regression. Income inequality is not
statistically significantly related to CO2. The sources of the data of this
analysis are the same as in Jorgenson et al. (2017). Thus, a reason for
divergent results might be data updates since the download of
Jorgenson et al. (2017) in 2015. Nonetheless, the models 5 and 6 of
Table 5 reveal that standard FE regression as described above provides
a statistically significant income inequality elasticity of around 0.70.
However, the effects of the other covariates are virtually replicated by
either using Prais-Winsten or standard FE regression models except for
urban population.

Moreover, the robustness of the missing income inequality effect in
the models 3 and 4 of Table 5 is confirmed by substituting the income
share of the top 10% by the top 5% and top 1% also provided by the
WWID (see models 1 and 2 of Table S5). Table S5 (models 3 and 4)
additionally reports the regression results for the replication of

1 Jaforullah and King (2017) argue that the inclusion of an energy con-
sumption variable might lead to biased results. However, excluding fossil fuel
energy consumption from the analysis does not alter the reported results in any
substantial way. This is also the case for the U.S. state-level analysis. The results
are available from the author upon request.
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Jorgenson et al. (2017) utilizing the income Gini coefficient retrieved
from the U.S. State-Level Income Inequality Database (USIID, Frank,
2014). In line with Jorgenson et al. (2017) none of these models finds a
statistically significant and substantial effect of income Gini on CO2

emissions.
However, the substantial effect of income inequality found in the

standard state and time FE models 5 and 6 of Table 5 disappears when
either Delaware or District of Columbia are excluded separately from
the analysis. This is also the case when FE panel regression allows for
individual constants and slopes. See Table S6 in the Supplement for
detailed regression results of these sensitivity checks exemplarily for
model 6 of Table 5. Moreover and apart from the fact that the results
are sensitive to influential cases and a conservative estimation tech-
nique, relaxation and further extension of the analyses made by
Jorgenson et al. (2017) reveal the absence of an income inequality ef-
fect for CO2 emissions per capita (see Table 6). Franzen and Mader
(2016), and Liddle (2015) argue to utilize CO2 per capita instead of
total CO2 as used in Jorgenson et al. (2017). The incorporation of po-
pulation in the dependent variable circumvents potential problems
stemming from multicollinearity. Moreover, CO2 emissions per capita
are the unit of primary political interest here. Standard FE regression of
per capita CO2 on income inequality and GDP p.c. for 1997 to 2014
reveals that the income inequality effect remains relatively stable and
substantial (see model 1 of Table 6) in comparison to model 5 of
Table 5. Nevertheless, also in model 1 of Table 6 the effect is sensitive
to influential cases, as it vanishes when ten states or the District of
Columbia are excluded separately from the analysis. These states are
Alaska, Arkansas, Delaware, Hawaii, Maryland, Michigan, Missouri,
Oklahoma, South Dakota, and Washington.

In any case, the effect of income inequality disappears when sub-
stantial confounders are considered (see models 2, 3, and 4 of Table 6).
This is already true when the square of GDP p.c. is in the model along
with GDP p.c. and the income share of the top 10% (see model 2).
Interestingly, model 2 reveals an inversely U-shaped effect for GDP p.c.,
which confirms the environmental Kuznets curve hypothesis on U.S.
state-level.

In addition to that, Model 3 comprises fossil fuel production p.c., the
GDP share of manufacturing, the share of the renewable energy pro-
duction, and energy prices (both taken from the EIA). Furthermore and
in line with Jorgenson et al. (2017), Model 4 incorporates an indicator
of state environmentalism. Following the suggestion of Dietz et al.
(2015) this is captured by a score of pro-environmental voting by states’
congressional delegations based on the League of Conservation Voters
scorecard ranging from 0 to 100. Also for these two extensions of model
2 the income inequality effect remains statistically insignificant and
loses in magnitude. This is because of the effects of the GDP share of
manufacturing and energy prices. For an increase in the value added of
manufacturing by 1%, CO2 p.c. fall statistically highly significantly by
about 0.70% (see models 3 and 4 of Table 6). Besides that, policies
targeted at the price mechanism are promising for the U.S. to mitigate
carbon emissions: As model 3 of Table 6 reveals, an increase in energy
prices by 1% yield a decrease in CO2 of 0.30%. This effect is highly
statistically significant. However, the rest of the covariates is not sub-
stantially related to CO2. Particularly, model 4 of Table 6 shows that
there is also no effect for the indicator of state environmentalism pro-
posed by Dietz et al. (2015).

The results in Table 6 were tested for robustness similar to the
country-level analysis. Moreover, the income share held by the top 10%
was replaced by the income share of the top 5%, and the top 1% as also
provided by the WWID. None of these examinations altered the re-
ported results in any substantial way. None of the models reported in
Table 6 finds a statistically significant and substantial effect of income
Gini on CO2 emissions per capita, which is in line with the findings of
Jorgenson et al. (2017).

All things considered, the U.S. state-level analysis also demon-
strates, that there is no robust and substantial connection between

Table 5
Replication of Jorgenson et al., 2017.

Model (1) (2) (3) (4) (5) (6)
Jorgenson et al.
(2017) (43,
Table 3)

Replication Replication

Prais-Winsten
State and Time FE
Regression

Prais-Winsten
State and Time FE
Regression

State and Time FE
Regression

Dependent
Variable

CO2

Income Share of
Top 10%

0.13* 0.12* 0.37 0.34 0.90* 0.72*
(0.06) (0.06) (0.20) (0.19) (0.31) (0.30)

Population 0.51** 0.43** 0.59*** 0.54*** 0.54* 0.51*
(0.10) (0.11) (0.10) (0.11) (0.19) (0.20)

GDP p. c. 0.25** 0.23** 0.26*** 0.24*** 0.28** 0.27**
(0.06) (0.06) (0.05) (0.05) (0.09) (0.08)

Urban
Population

0.91** 0.79** 0.74
(0.29) (0.27) (0.39)

Fossil Fuel
Production

0.00 0.02** 0.02
(0.00) (0.01) (0.01)

Manufacturing −0.01 −0.16 −0.28
(0.02) (0.17) (0.16)

n x T 816 816 816 816 816 816
n 51 51 51 51 51 51
adj. R2 within 0.14 0.18

Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized re-
gression coefficients with standard errors in brackets. All six models include the
years 1997–2012 and contain dummy variables for each year in order to control
for overall time-trends. All standard errors in the models 1–4 are panel-cor-
rected, allowing for disturbances that are heteroskedastic and con-
temporaneously correlated across panels. Additionally, these models correct for
first-order autocorrelation (AR(1) process) within panels. All standard errors of
the models 5 and 6 are clustered by state and year, and therefore robust with
respect to heteroscedasticity and autocorrelation.

Table 6
Relaxation and Extension of Jorgenson et al., 2017.

Model (1) (2) (3) (4)
State and Time FE Regression

Dependent Variable CO2 per capita

Income Share of Top 10% 0.66* 0.50 0.34 0.36
(0.30) (0.31) (0.25) (0.26)

GDP p. c. 0.39** 0.45*** 0.48*** 0.48***
(0.10) (0.11) (0.12) (0.12)

GDP p. c. squared −0.50*** −0.52*** −0.36*
(0.07) (0.08) (0.14)

Fossil Fuel Production p.c. 0.09 0.08
(0.06) (0.06)

Manufacturing −0.72** −0.69**
(0.21) (0.22)

Renewable Energy Production 0.24 0.23
(0.14) (0.13)

Energy Prices −0.30** −0.38**
(0.10) (0.10)

State Environmentalism 0.01
(0.01)

n x T 918 918 918 900
n 51 51 51 50
adj. R2 within 0.11 0.20 0.31 0.30

Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized re-
gression coefficients with standard errors in brackets. All four models include
the years 1997–2014 and contain dummy variables for each year in order to
control for overall time-trends. All standard errors are clustered by country and
year, and therefore robust with respect to heteroscedasticity and autocorrela-
tion. Model 4 excludes District of Columbia, as data on state environmentalism
is not available.
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income inequality and carbon emissions. The positive income in-
equality effect disappears, when substantial confounders and newest
available data are taken into account. Thus, this rigorous investigation
invalidates the positive income inequality effect found by Jorgenson
et al. (2017).

5. Discussion and conclusion

All in all, this contribution reconsiders the positive relationship
between social inequality and CO2 emissions lately found by Knight
et al. (2017) for wealth inequality on country-level and by Jorgenson
et al. (2017) for income inequality on U.S. state-level. The paper
challenges the empirical validity of the contribution of an increase in
wealth and income inequality to higher CO2 emissions for various
reasons: Rigorous inquiry exposes that the results of these two studies
are sensitive to the regions and time spans observed as well as to the
inequality indicators, estimation techniques, and covariates selected.
Thence, this in-depth investigation invalidates the findings of Knight
et al. (2017) and Jorgenson et al. (2017) and suggests that there is no
sound empirical evidence for a substantial nexus between social in-
equality and CO2 emissions.

This in turn means that Boyce’s (1994) a priori ambiguous idea of a
‘power-weighted social decision rule’ does not apply to CO2. Given a
certain income/wealth level, both poor and rich people of a country can
accrue the social costs of climate change and its mitigation to other
countries and – even more so – to future generations. Independently
from the income or wealth distribution, people benefit equally from the
externalization of costs. The results suggest that the marginal pro-
pensity to emit (MPE) of poor people equals the MPE of rich people
within a country. However, seminal future research in this field will
depend on the availability of valid income and wealth inequality data
for many countries and years. Still, the problem remains that data of
good quality is sparsely obtainable only for a few relatively rich
countries for a short period of time.

Finally, some propose policy approaches that combine cost-efficient
and dynamically efficient cap-and-trade programs with income redis-
tribution as a promising avenue for progressive climate change miti-
gation (e.g. Boyce and Riddle, 2009). Yet, the results of this analysis
suggest that these so-called cap-and-dividend schemes are not, by
themselves, the best means of reducing carbon emissions. Rather, im-
plementing efficient cap-and-trade schemes together with an enforce-
able international CO2 compensation framework appear more pro-
mising for an effective climate policy complemented by measures
affecting key predictors of CO2 emissions.
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Supplementary Information of “The nexus between social inequality and CO2 

emissions revisited: Challenging its empirical validity” 

Table S1: Country-level: Variable description 
Variable mean  within (�̅�𝑥𝑖𝑖) between 

(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖 + �̿�𝑥) 
N 

(nxT) 
n Description Data 

Source 
sd min. max. sd  min. max. 

PBA  
CO2 p. c.  
 

3.5 1.6 -11.6 19.2 4.3 .1 21.3 9467 175 PBA CO2 emissions p. c. of fossil fuel use and 
industrial processes (cement production, 
carbonate use of limestone and dolomite, non-
energy use of fuels and other combustion) 
attributed to the country in which goods and 
services are produced (Olivier et al. 2016).  
Unit: metric tons. 

EDGAR 

CBA  
CO2 p. c.  

5.4 1.2 -.3 15.8 5.5 .1 26.1 2750 110 CBA CO2 emissions p. c. of fossil fuel use and 
industrial processes attributed to the country in 
which goods and services are consumed (CBA 
CO2 = PBA CO2 - CO2 exports + CO2 imports) 
(Peters et al. 2011). Unit: metric tons. 

GCA 

Wealth per 
Adult 

2.3 3.5 -48.2 43.6 9.0 0.0 93.0 2587 162 Wealth per adult (Wpa, individual net worth held 
by adults aged 20 and up, Shorrocks et al. 2016) 
based on purchasing power parity (PPP). PPP 
Wpa is Wpa converted to international dollars 
using PPP rates from the IMF. Data are in million 
international dollars. 

CS, IMF 

Wealth Share 
of Top 10% 

.59 .02 .52 .68 .12 .21 .78 645 43 Wealth (individual net worth held by adults aged 
20 and up) share held by a given percentile 
group (Shorrocks et al. 2014). 

CS 

GDP p. c. 
 

9.9 5.8 -21.4 55.2 10.5 .5 71.4 5736 178 Gross domestic product (GDP) p. c. based on 
PPP. PPP GDP is GDP converted to 
international dollars using PPP rates. Data are in 
1000 international dollars. 

IMF 

Income Gini 
Coefficient 

.37 .03 .19 .56 .09 .23 .63 3831 162 Household disposable (post-tax, post-transfer) 
Income Gini coefficient ranging from 0 (perfect 
equality) to 1 (perfect inequality). 

SWIID 

Fossil Fuel 
Energy 
Consumption 

.64 .07 .29 1.00 .37 0 1.00 5382 161 Energy consumption from fossil fuels comprises 
coal, oil, petroleum, and natural gas products.  
Unit: share of total. 

IEA/WB 

Trade Balance .87 .23 -.19 3.88 .26 .04 1.75 7595 177 Trade balance is the ratio of exports to imports 
of goods and services as share of GDP. 

WB 

Industry,  
value added 
 

28.0 6.0 -4.8 73.9 10.9 7.2 76.0 6333 175 Industry corresponds to the International 
Standard Industrial Classification (ISIC) 
divisions 10-45. The origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Services, 
value added 

52.3 7.2 8.6 112.4 13.4 22.8 82.1 6333 174 Services correspond to ISIC divisions 50-99. 
The industrial origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Electricity 
Production 
from Non-fossil 
Sources 

.43 .12 -.21 .98 .32 0 .99 5318 130 Sources of electricity refer to the inputs used to 
generate electricity. Electricity production from 
non-fossil sources comprises hydroelectric and 
other renewable as well as nuclear sources. 
Unit: share of total. 

IEA/WB 

International 
Environmental 
Agreements 

72.7 85.2 -130.3 378.7 39.4 1.6 205.0 10304 184 An international environmental agreement is an 
intergovernmental document intended as legally 
binding with a primary stated purpose of 
preventing or managing human impacts on 
natural resources (Mitchell 2015). 
Unit: cumulated number set into force. 

IEADP 

Energy Prices 85.9 35.1 -30.3 270.8 36.1 49.6 189.4 1127 38 Energy prices are consumer prices for the items 
electricity, gas and other fuels as defined under 
the Classification of Individual Consumption 
According to Purpose (COICOP 04.5) and fuel 
and lubricants for personal transport equipment 
(COICOP 07.2.2). Data are expressed as index 
corrected by IMF PPP rates (2010 = 100 for 
USA). 

OECD, 
IMF 

Notes: CBA = Consumption-based Accounting, CS = Credit Suisse, EDGAR = Emissions Database for Global Atmospheric 
Research, GCA = Global Carbon Atlas, IEA = International Energy Agency, IEADP = International Environmental Agreements 
Database Project, IMF = International Monetary Fund, PBA = Production-based Accounting, OECD = Organisation for Economic 
Co-operation and Development, p. c. = per capita, SWIID = Standardized World Income Inequality Database (Solt 2016), WB = 
World Bank; All variables in the models are included by taking the natural logarithm allowing for the estimation of elasticities.  

 

50



2 
 

Table S2: Countries included in the analyses 

Notes: All countries are full members of the United Nations. All 28 countries with good and satisfactory 
quality wealth distribution data are included in the relaxed and extended models. 26 countries indicated 
by ‘*’ are included in the restricted models by Knight et al. (2017). For the further model extension 
(models 2 and 4 of Table 4) data on the additional control variables is missing for Israel and Singapore. 
 
 
Table S3: Replication of Knight et al. 2017: Sensitivity Checks 
Model (1) (2) (3) (4) (5) (6) (7) 
 Replication 
 Country and Time FE Regression 
Dependent Variable CBA of CO2 p.c. 
Wealth Inequality 0.58 0.54 0.53 0.37 0.52 1.10 0.27 

(0.27) (0.28) (0.26) (0.25) (0.29) (0.66) (0.13) 
GDP p. c. 0.37* 0.43* 0.43* 0.47* 0.32 0.85* 0.35 
 (0.16) (0.16) (0.16) (0.17) (0.17) (0.33) (0.17) 
Income Gini 
Coefficient 

0.04 -0.01 0.12 0.12 0.09 -0.05 0.09 
(0.21) (0.21) (0.21) (0.22) (0.22) (0.23) (0.22) 

n x T 275 275 275 275 275 286 286 
n 25 25 25 25 25 26 26 
adj. R2 within 0.08 0.10 0.13 0.13 0.04 0.12 0.09 
Notes: * = p < 0.05. Unstandardized regression coefficients with standard errors in brackets. All seven 
models contain dummy variables for each year in order to control for overall time-trends. All standard 
errors are clustered by country and year, and therefore robust with respect to heteroscedasticity and 
autocorrelation. Model 1 excludes Australia, model 2 Greece, model 3 Norway, model 4 Singapore, and 
model 5 South Korea. Model 6 applies fixed effects panel regression allowing for individual constants 
and slopes. Model 7 substitutes the wealth share held by the top 10% by the wealth share held by the 
top 1% also provided by Credit Suisse (Shorrocks et al. 2014: 125). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Australia* Finland* Japan* Singapore* 
Austria* France* Mexico South Korea* 
Belgium* Germany* Netherlands* Spain* 
Canada* Greece* New Zealand* Sweden* 
Colombia Ireland* Norway* Switzerland* 
Czech Republic* Israel* Poland* United Kingdom* 
Denmark* Italy* Portugal* United States* 

51



3 
 

Table S4: US State-level: Variable description 

Notes: Btu = British thermal unit, CB = U.S. Census Bureau, BEA = U.S. Bureau of Economic Analysis, EIA = U.S. Energy 
Information Administration, EPA = U.S. Environmental Protection Agency, p. c. = per capita, LCV = U.S. League of Conservation 
Voters, USIID = U.S. State-Level Income Inequality Database (Frank 2014), WWID = World Wealth and Income Database. All 
variables in the models are included by taking the natural logarithm allowing for the estimation of elasticities.  

 
 
 
 
 
 
 

Variable mean  within (�̅�𝑥𝑖𝑖) between 
(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖  + �̿�𝑥) 

N 
(n x T) 

n Description Data 
Source 

sd min. max. sd  min. max. 
CO2  
(million tons) 

108.8 10.1 40.7 154.5 111.3 3.8 663.0 1275 51 Production-based accounting 
of CO2 emissions (p. c.) from 
the combustion of fossil fuels 
from the commercial, 
industrial, residential, 
transportation, and electric 
power sectors. 

EPA 

CO2 p. c.  
(metric tons) 

24.4 2.3 9.4 34.7 19.2 6.5 122.3 1275 51 

Population 
 

4870.0 
 

1566.0 -7130.0 15994.1 5288.8 454.1 27870.0 2856 51 Resident population including 
armed forces in thousands. 

CB 
Urban 
Population  
 

73.46 1.40 67.85 79.06 15.00 38.66 100 1020 51 Resident population in 
urbanized areas and urban 
clusters as percentage of 
total. As this data is only 
available each decade with 
measure-ments in 2000 and 
2010, missing values were 
inter-polated as done in 
Jorgenson et al. (2017). 

CB 

Real GDP p. c. 
 

47.3 3.9 23.0 71.1 17.4 30.7 155.6 969 51 Real gross domestic product 
(GDP) p. c. in thousand 
chained 2009 US$. 

BEA 

Income Gini 
Coefficient  

.48 .08 .24 .71 .02 .45 .54 4863 51 Income Gini coefficient 
ranging from 0 (perfect 
equality) to 1 (perfect 
inequality). 

USIID 

Income Share  
of Top 10% 

.37 .06 .18 .88 .03 .24 .46 4998 51 Pre-tax national income 
share held by a given 
percentile group. 

WWID 

of Top 5% .27 .05 .11 .74 .03 .15 .35 4998 51  
of Top 1% .13 .04 .01 .61 .02 .06 .21 4998 51  
Fossil Fuel 
Production 

993.5 750.6 -2825.2 7029.2 2006.9 0 12190.8 2856 51 Total fossil fuel production 
(coal, natural gas, and crude 
oil) in trillion Btu. 

EIA 

Fossil Fuel 
Production p.c. 

.5 .9 -6.2 10.6 1.5 0 9.8 2856 51 Fossil fuel production in 
trillion Btu p.c.. 

 

Manufacturing .12 .02 .01 .25 .06 .00 .28 1020 51 Value added by 
manufacturing of durable and 
nondurable goods as share of 
GDP. 

BEA 

Renewable 
Energy 
Production  

38.8 15.0 -6.4 106.3 34.9 .5 100 2856 51 Total renewable energy 
production as percentage of 
total energy production. 

EIA 

Energy Prices 10.3 6.2 -2.6 36.0 1.6 7.3 14.6 2346 51 Total energy average price of 
all end-use sectors in US$ per 
million Btu. 

EIA 

State Environ-
mentalism 

46.8 12.1 3.1 92.5 25.2 4.9 92.1 1350 50 Score of pro-environmental 
voting by states’ 
Congressional delegations 
based on the LCV scorecard 
ranging from 0 to 100 (Dietz 
et al. 2015). 

LCV 
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Table S5: Replication of Jorgenson et al. 2017: Sensitivity Checks 
Model (1) (2) (3) (4) 
 Prais-Winsten State and Time FE Regression State and Time 

FE Regression 
Dependent 
Variable 

CO2 

Income Share of 
Top 5% 

0.29    
(0.18)    

Income Share of 
Top 1% 

 0.30   
 (0.18)   

Income Gini 
Coefficient 

  -0.04 -0.00 
  (0.32) (0.32) 

     

Population 0.54*** 0.54*** 0.55*** 0.52* 
 (0.11) (0.11) (0.12) (0.20) 
GDP p.c. 0.23*** 0.22*** 0.24*** 0.28** 
 (0.05) (0.05) (0.05) (0.09) 
     

Urban Population 0.81** 0.82** 0.82** 0.82 
(0.28) (0.28) (0.28) (0.41) 

Fossil Fuel 
Production 

0.02** 0.02** 0.02** 0.02 
(0.01) (0.01) (0.01) (0.01) 

Manufacturing -0.14 -0.13 -0.13 -0.26 
 (0.17) (0.17) (0.17) (0.16) 
n x T 816 816 816 816 
n 51 51 51 51 
adj. R2 within    0.16 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All four models include the years 1997-2012 and contain dummy variables for each 
year in order to control for overall time-trends. All standard errors in the models 1, 2, and 3 are panel-
corrected, allowing for disturbances that are heteroskedastic and contemporaneously correlated across 
panels. Additionally, these models correct for first-order autocorrelation (AR(1) process) within panels. 
All standard errors of model 4 are clustered by state and year, and therefore robust with respect to 
heteroscedasticity and autocorrelation. 
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Table S6: Replication of Jorgenson et al. 2017: Further Sensitivity Checks 
Model (1) (2) (3) 
 Replication 
 State and Time FE Regression 
Dependent Variable CO2 
Income Share  
of Top 10% 

0.65 0.65 0.44 
(0.32) (0.32) (0.26) 

Population 0.63** 0.63** 1.29** 
 (0.19) (0.19) (0.32) 
GDP p. c. 0.28** 0.28** 0.11 
 (0.10) (0.10) (0.10) 
Fossil Fuel Production 0.02 0.02 0.01 

(0.01) (0.01) (0.02) 
Manufacturing -0.38* -0.38* -0.54 
 (0.16) (0.16) (0.30) 
n x T 800 800 816 
n 50 50 51 
adj. R2 within 0.16 0.16 0.12 
Notes: * = p < 0.05, ** = p < 0.01. Unstandardized regression coefficients with standard errors in 
brackets. All three models include the years 1997-2012 and contain dummy variables for each year in 
order to control for overall time-trends. All standard errors are clustered by state and year, and therefore 
robust with respect to heteroscedasticity and autocorrelation. Model 1 excludes Delaware, and model 2 
drops District of Columbia. Model 3 performs FE panel regression with individual constants and slopes 
(FEIS). 
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Plant trees for the planet: the potential of forests for climate change mitigation and the 
major drivers of national forest area 

 

Abstract 

 
Forests are one of the most cost-effective ways to sequester carbon today. Here, I 

estimate the world’s land share under forests required to prevent dangerous climate 

change. For this, I combine newest longitudinal data of FLUXNET on forests’ net 

ecosystem exchange of carbon (NEE) from 78 forest sites (N=607) with countries’ 

mean temperature and forest area. This straightforward approach indicates that the 

world’s forests sequester 8.3 GtCO2yr-1. For the 2 °C climate target the current forest 

land share has to be doubled to 60.0 % to sequester an additional 7.8 GtCO2yr-1, which 

demands less red meat consumption. This afforestation/reforestation (AR) challenge 

is achievable, as the estimated global biophysical potential of AR is 8.0 GtCO2yr-1 

safeguarding food supply for 10 billion people. Climate-responsible countries have the 

highest AR potential. For effective climate policies, knowledge on the major drivers of 

forest area is crucial. Enhancing information here, I analyse forest land share data of 

98 countries from 1990 to 2015 applying causal inference (N=2,494). The results 

highlight that population growth, industrialization, and increasing temperature reduce 

forest land share, while more protected forest and economic growth generally increase 

it. In all, this study confirms the potential of AR for climate change mitigation with a 

straightforward approach based on the direct measurement of NEE. This might provide 

a more valid picture given the shortcomings of indirect carbon stock-based inventories. 

The analysis identifies future regional hotspots for the AR potential and informs the 

need for fast and forceful action to prevent dangerous climate change. 
 
Keywords: Forest area; climate change mitigation; carbon sequestration; net ecosystem exchange; 
fixed effects panel regression; FLUXNET; FAO; 
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1 Introduction 

Forests provide many tangible and intangible ecosystem services integral for 

human well-being (e.g. Ellison et al. 2017, Federici et al. 2015). Beyond this, forests 

are considered one of the most suitable ways to sequester carbon today, as 

afforestation and reforestation (AR) are relatively cost-effective, and associated with 

least expected adverse effects on biogeochemical and biogeophysical systems (Fuss 

et al. 2018, Griscom et al. 2017, IPCC 2014, Smith et al. 2016, Sonntag et al. 2016). 

Recent global estimates on the current net carbon sink of established forests 

(i.e. carbon sequestration) range from 2.2 (Federici et al. 2015) to 8.0 (Grassi et al. 

2018, Oleson et al. 2013)2 to 8.8 gigatons of carbon dioxide per year (GtCO2yr-1; Pan 

et al. 2011). Evaluations of the maximum biophysical sequestration potential of AR 

vary from 1.1 to 12.1 GtCO2yr-1 (Smith et al. 2016, Minx et al. 2018, Ciais et al. 2013). 

However, all these estimates are based on the calculation of changes in carbon stocks 

along Intergovernmental Panel on Climate Change (IPCC) guidelines (IPCC 2006) or 

the Houghton bookkeeping method (Houghton et al. 2012), providing an indirect and 

mostly incomplete measure of forests’ net ecosystem exchange of carbon (NEE). This 

approach requires periodic information on the carbon content of biomass, and involves 

fundamental assumptions on carbon stocks – especially when reliable data is missing. 

This is notably true for many developing nations (Grassi et al. 2018, IPCC 2006). 

Moreover, each of these country estimates is based on different data quality, 

definitions of forest area, and accounting methods. Though data quality is gradually 

improving, this suggests a sizable challenge to develop a valid and internationally 

comparable inventory of global forest carbon fluxes based on indirect stock-based 

                                                            
2 Results from the simulations of the Dynamic Global Vegetation Model (DGVM) Community Land 
Model (CLM) version 4.5 (Oleson et al. 2013; Table SI 8 in Grassi et al. 2018); 
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techniques (Grassi et al. 2018). 

This study has four objectives: First, I provide estimates of the annual carbon 

sequestration of established forests, and the biophysical climate change mitigation 

potential of AR based on the direct micrometeorological measurement of NEE as 

provided by FLUXNET (NASA 2015) (section 2). With this direct measurement of 

above canopy carbon flux no information on carbon stocks is needed to infer NEE. 

Thus, NEE estimates based on FLUXNET data may provide a more valid picture of 

forests’ carbon sink and their mitigation potential. Second, with this straightforward 

approach, I infer the forest land share required to meet the 2 °C climate target and 

three AR scenarios to acquire this goal (section 3; see Appendix A Methods and 

Materials for details). Third and subsequently, I identify the countries with the largest 

climate liabilities, and economic capabilities while having the greatest mitigation 

potential through AR (section 4). 

Fourth, for effective policies targeted at enhancing forests and climate change 

mitigation, knowledge on the key drivers of forest area is essential. However, 

information on causal relationships of forest gain and loss is sparse, and 

unconsolidated (Aguilar and Song 2018, Morales-Hidalgo et al. 2015) with a focus on 

forest loss (Busch and Ferretti-Gallon 2017). Yet, this is only half of the story to be told. 

Thus, here I identify the major predictors of the forest land share of 98 countries from 

1990 to 2015 gathered from the Food and Agriculture Organization of the United 

Nations (FAO 2018) applying causal inference (section 5). The last section 

summarizes and discusses the main results, and closes with some concluding 

remarks. 
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2 Global and regional forest carbon sink 

To quantify the NEE of countries’ forests, I utilize the newest available 

micrometeorological FLUXNET data of 78 measurement towers in forests of 16 

countries on five continents from 2000 to 2014 (N=607; Table B.1 in Appendix B 

Supplementary Figures and Tables). Multiple linear ordinary least squares (OLS) 

regression identifies annual mean temperature as the main determinant of forests’ 

NEE (u-shaped relationship) in this data (Table B.2, and Figure B.1 in Appendix B). 

Model predictions on countries’ NEE of forests using countries’ average temperature 

taken from the World Bank (2018) show that established forests sequester -8.8 tCO2ha-

1yr-1 on average in 2015 (median: -9.2; Appendix A). This is rather close to prior 

assessments based on indirect measurements of NEE (Sohngen 2010). Portugal has 

the highest negative NEE with a net absorption of -15.1 tCO2ha-1yr-1, whereas the 

highest positive NEE is observed for Canada with a net release of 16.3 tCO2ha-1yr-1 

(Figure 1a). The forests of almost all countries are net absorbers of carbon, except the 

boreal forests in Canada, the Russian Federation, and Mongolia that are net sources 

of carbon. This might be due to diebacks of these boreal forests resulting from insect 

outbreaks and wildfires due to higher mean temperatures and droughts induced by 

climate change (Canadell and Raupach 2008). As introspection of Figure 1a reveals, 

NEE varies by climate forest domain following a u-shaped mean temperature – NEE 

relationship. The carbon sequestration of boreal forests is lowest with a mean NEE of 

-1.1 tCO2ha-1yr-1, while it is highest for temperate forests with -12.6 tCO2ha-1yr-1. 

Tropical forests’ NEE lies in-between with an average of -6.0 tCO2ha-1yr-1. This pattern 

is in line with former research (Brumme et al. 2005).  

Multiplying countries’ average NEE per hectare by their forest area (FAO 2018, 

Figure 1b) suggests an overall forest carbon sink of -8.3 GtCO2yr-1 or -1.1 tCO2yr-1 per 
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capita (p.c., UNPD 2017) in 2015. Carbon sequestration is highest in the forests of the 

United States and Brazil (-3.2 GtCO2yr-1 each), followed by China (-2.0 GtCO2yr-1), 

Australia (-1.5 GtCO2yr-1) and the Democratic Republic of the Congo (-1.1 GtCO2yr-1). 

The rest of the world’s countries has a net absorption of less than -1.0 GtCO2yr-1 each, 

and Canada, Mongolia, and the Russian Confederates have a substantial net release 

of 16.7 GtCO2yr-1 in sum.  

The global estimate of this rather simple approach using direct carbon flux 

measurements of NEE is fairly close to the estimates of two recent studies applying 

more complicated, indirect, carbon stock-based inventories of NEE (Grassi et al. 2018, 

Oleson et al. 2013, Pan et al. 2011). Grassi et al. (2018) report a global forest carbon 

sink of -8.0 GtCO2yr-1 for the Community Land Model (version 4.5; Oleson et al. 2013)3 

and Pan et al. (2011) estimate a sink of -8.8 GtCO2yr-1 based on changes in carbon 

stocks.  

  

                                                            
3 This Dynamic Global Vegetation Model (DGVM) could be considered one of the most elaborate 
DGVMs as it comprises the most relevant ecological characteristics as compared to other commonly 
used DGVMs (Table SI 7 in Grassi et al. 2018).  
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Figure 1 | Net ecosystem exchange (NEE) of CO2 of countries’ forests in 2015. a-c, Data source 
for the calculation of NEE of CO2 of countries’ forests is FLUXNET (NASA 2015), World Bank (2018) 
and FAO (2018). Negative numbers indicate net absorption of carbon, positive numbers its net release. 
a, Carbon sequestration in tCO2ha-1yr-1 of forest area (mean = -8.8, median = -9.2, min. (Portugal) = -
15.1, max. (Canada) = 16.3). b, Countries’ overall forest carbon sequestration in GtCO2yr-1 (sum = -8.3 
GtCO2yr-1). c, Countries’ overall NEE potential of afforestation/reforestation (AR) in GtCO2yr-1 based on 
scenario 3 exceeding the 7.8 GtCO2yr-1 required to meet the 2 °C respectively 3 tCO2 per capita climate 
target (sum = -8.0 GtCO2yr-1; see text and Appendix A for details). 
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3 Forest land share trends and AR scenarios 

Before evaluating countries’ climate change mitigation potential of AR (Figure 

1c), the current forest land share, suitable land for AR as well as competing land uses 

have to be quantified. The average forest land share as provided by the FAO shrunk 

from 31.8 % in 1990 to 30.8 % in 2015 (Figure 2), which corresponds to a forest loss 

of 1.3 Mkm2 – an area as large as Peru.  

 
Figure 2 | Forest land share in international comparison 1990 and 2015. Depicted are the top and 
bottom five countries, top five countries with respect to overall forest area (FAO 2018) by climate domain 
in 2015, and members of the G7 and BRIICS if not already included. Dark blue solid line = mean 2015; 
Grey solid line = mean 1990; Scenario 1: Red solid line = required forest share for the 2 °C climate 
target, red long-dashed line = achievable forest share; Scenario 2: red dashed line = achievable forest 
share; Scenario 3: Green solid line = required forest share, green short-dashed line = achievable forest 
share. See text and Appendix A for details. 

As Figure 2 shows, European countries like France, Italy, Germany, and 

Norway resemble the mean of 2015. The forest land share varies strongly: Laos ranks 

highest with 81.3 % and is followed by Papua New Guinea, Finland, Guinea-Bissau, 

and Sweden constituting the top five. The bottom five countries with almost no forests 

are Algeria, Saudi Arabia, Mauritania, Libya, and Egypt. Between 1990 and 2015 

Indonesia incurred the greatest loss of almost a quarter and Brazil as top carbon 

sequestering country lost 10.0 % of its tropical forests. The greatest gain was 
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accomplished by China with a one third increase in forest area while ranking third in 

overall NEE. For the United States as top carbon absorbing nation, almost no change 

in forest cover was observed in this period. 

Furthermore, Figure 2 presents the required as well as the achievable forest 

land share of three different AR scenarios to prevent dangerous climate change. The 

global annual gross carbon budget to fulfil the 2 °C climate target with a probability of 

at least 66 % is an estimated 30 GtCO2 (IPCC 2014, Friedlingstein et al. 2014, 

Meinshausen et al. 2009). Assuming an average annual world population of 9.8 billion 

people until 2100 (UNPD 2017), this goal translates into ~3 t of gross CO2 emissions 

per capita (p.c.) and year. 

First, scenario 1 is the baseline scenario. It assumes constant production and 

consumption patterns, constant other carbon sinks, and a further required emissions 

reduction of 1.0 tCO2yr-1 p.c. after accounting for the overall forest carbon 

sequestration of 0.8 tCO2yr-1 p.c.. Hence, in scenario 1 the required forest land share 

to meet the 2 °C respectively the 3 tCO2 p.c. climate target is 67.8 % (red solid line in 

Figure 2) to additionally sequester 9.8 GtCO2yr-1 (Appendix A). The red long-dashed 

line is the forest land share that can be achieved via 100 % AR of all shrub-covered 

areas and herbaceous vegetation as retrieved from the FAO (2018; 44.8 % forest land 

share). This is more than one third of the required AR. Second, in scenario 2 a forest 

land share of up to 57.5 % can be achieved by additionally afforesting and reforesting 

44 % of permanent grassland and cropland (FAO 2018), assuming current diets and 

an average land demand of 2,100 m2 p.c. (Hallström et al. 2015) for feeding an 

expected 9.8 billion people per year (red dashed line in Figure 2). This represents more 

than two thirds of this tremendous AR challenge. Finally, in scenario 3 healthier diets 

with reduced red and ruminant meat consumption decrease agricultural land demand 
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further by 28.0 % to 1,510 m2 p.c. and reduce dietary-related emissions by 0.2 tCO2 

yr-1 p.c. (Hallström et al. 2015). This yields a required forest land share of 60.0 % to 

meet the 2°C climate target (green solid line in Figure 2) equivalent to an additional 7.8 

GtCO2yr-1 to be sequestered by forests. Thus, in this healthy diet scenario further AR 

of grassland and cropland results in an attainable 62.0 % of forest land share (8.0 

GtCO2yr-1; green short-dashed line in Figure 2). 

Consequently, the 2 °C climate target can be met by almost doubling the current 

forest area whilst safeguarding food security with a healthy diet. This outstanding 

challenge means 37.9 Mkm2 more of forest area or an estimated 2.6 trillion additional 

trees. Approximately, this corresponds to the number of trees lost since the start of 

human civilization (Crowther et al. 2015). This challenge translates into approximately 

260 trees p.c. or one tree p.c. per week for a realisation time of five years.  

Realizing the need for large-scale AR, there are promising worldwide projects 

like ‘Plant for the Planet’, which aims at planting one trillion trees. Since 2007, this 

project has planted 13.6 billion trees (Plant for the Planet 2019) – 0.5 % of the climate 

target. In 2017 the World Wildlife Fund, the Wildlife Conservation Society and BirdLife 

International launched the ‘Trillion Trees’ program aiming at restoring one trillion trees 

by 2050 (Trillion Trees 2019). Furthermore, the ‘Bonn Challenge’ strives for the 

restoration of 3.5 Mkm2 of forests by 2030 (~9.2 % of AR required for the 2 °C target). 

To date pledges exceed 1.7 Mkm2 (International Union for Conservation of Nature 

2019). To achieve the targets of all three voluntary initiatives together would account 

for the vast majority of the required AR (86 %). 260 trees per capita seems a relatively 

low number. However, the need for fast and forceful AR is high leaving this venture an 

ambitious challenge. 
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4 Liabilities, AR potentials, and capabilities 

Given that call, who is in charge of action? Being the country with the highest 

negative NEE of established forests (Figure 1b), and the world’s second largest carbon 

emitter (Janssens-Maenhout et al. 2017), the United States of America rank highest in 

the climate change mitigation potential of countries through AR (NEE = -1.0 GtCO2yr-

1; Figure 1c). Figure 1c also demonstrates that the world’s largest carbon emitter and 

third largest carbon absorber in forests, China, has the second highest AR potential (-

0.8 GtCO2yr-1). This offers a great opportunity for the United States, and China, 

accounting for almost half of the global carbon emissions and having to bear one of 

the highest domestic social costs of carbon emissions (Ricke et al. 2018), to take their 

responsibility for climate change mitigation seriously. Together with Australia, 

Argentina, and Brazil they form the top five countries with respect to mitigation potential 

through AR, accounting for almost half of its total.  

The radar plots in Figure 3 provide a more comprehensive picture of the 

countries’ climate change liabilities, forests’ mitigation contributions, AR potentials, and 

economic capabilities for action in worldwide comparison. One group of countries at 

the top of the ranking of the sum score of these characteristics is formed by those 

ranking highest in mitigation potential of AR, while being among the largest emitters of 

CO2 (p.c.) and the wealthiest nations (Figure 3a-c,e-j,n). These countries are Japan, 

Spain, France, Australia, the United States, Argentina, Italy, Germany, Brazil, and the 

United Kingdom. Hence, these states could take over their responsibility for climate 

change mitigation relatively easily via large-scale domestic AR activities. Figure 2 

indicates that the forest land share of three of these countries, France, Italy, and the 

United Kingdom, grew between 1990 and 2015, while Brazil, and Argentina 

experienced forest loss. 
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Another group of nations is both liable of global warming and has high AR 

potential, but to some extent lacks economic strength to implement large-scale 

measures. Countries like China, Peru, South Africa, Indonesia, and India fall into this 

group (Figure 3k-m,o,p). Indonesia and Peru reflect this, since these countries lost 

forests between 1990 and 2015 (Figure 2). By contrast, China, and India gained forest 

in this period probably due to large-scale AR programs. These nations and poor 

countries with little climate responsibility but large AR potential like the Democratic 

Republic of the Congo (Figure 3t) need multilateral financial assistance, foremost from 

wealthy, climate-responsible states, to unfold their AR potential. This applies to 

countries, which additionally have relatively low or no AR mitigation potential like South 

Korea, Sweden, Canada, and the Russian Federation (Figure 3d, q-s). This could be 

a worthwhile enhancement of the REDD+ (Reducing Emissions from Deforestation 

and Forest Degradation) framework.  
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Figure 3 | Country ranking of climate responsibility, forests’ mitigation contribution and 
potential, and economic capabilities in 2015. a-y, Radar plots of countries’ relative performance with 
regard to climate responsibility (CO2, and CO2 per capita (p.c.) emissions (Janssens-Maenhout et al. 
2017)), forests’ mitigation contribution (forest land share (%; FAO 2018), net ecosystem exchange 
(NEE) per ha, and national NEE), forests’ mitigation potential (NEE potential)), and economic 
capabilities (gross domestic product (GDP) p.c. (IMF 2018)). The numbers 1 to 5 on the spokes of the 
radars indicate the quintile the country ranks (1 = lowest, 5 = highest). The numbers in the centre of 
each radar represent the sum of quintiles of each country. Presented are the top and bottom five 
countries with respect to this sum, the top five countries of overall forest area by climatic forest domain 
and members of the G7 and BRIICS. The full country ranking of the sum score and all included variables 
can be obtained from Table B.4 in Appendix B.  
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5 Predictors of national forest land share 

Nonetheless, the plea for international cooperation and referring to climate 

change responsibility is not enough. For effective policies targeted at the enhancement 

of forests, profound knowledge on the key drivers of national forest area is crucial. 

Previous research has focused on determinants of forest loss with different regional 

and temporal cover and a focus on satellite-derived data in recent years (Busch and 

Ferretti-Gallon 2017, Leblois et al. 2017). However, these studies are agnostic about 

AR and forest regrowth, as some authors critically remark themselves (DeFries et al. 

2010). Focusing on forest loss only shines light on half of the story to be told. Hence, 

causal information on the predictors of national forest land share analysing panel data 

of many countries by means of causal inference is still sparse and unconsolidated 

(Aguilar and Song 2018, Morales-Hidalgo et al. 2015).  

Aguilar and Song (2018), and Morales-Hidalgo et al. (2015) are the only two 

studies regressing changes in national forest area as provided by the FAO on changes 

in countries’ socioeconomic characteristics utilizing fixed effects (FE) panel regression 

models. Morales-Hidalgo et al. (2015) is the first study regressing national forest area 

between 1990 and 2015 gathered from the FAO on a few socio-economic and political 

indicators applying causal inference. The results of their country and year FE panel 

regression models (Table 6 in Morales-Hidalgo et al. 2015) suggest that population 

growth reduces forest area, whereas GDP p.c. and protected areas increase it. 

Nonetheless, the results of Morales-Hidalgo et al. (2015) could be biased by omitting 

other substantial drivers of forest land share. Aguilar and Song (2018) is the only study 

analysing the ratio between national forest area and land area (i.e. forest land share) 

ensuring comparability of changes in forest cover between countries irrespective of 

their total land area. In their FE models, Aguilar and Song (2018) include agricultural 
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land area, 10-year lagged GDP growth rate, GNI p.c., population growth rate, 

population density, share of rural population, rate of secondary school enrolment, its 

15-year lagged values, and the squares of all these characteristics as independent 

variables. The results of their beta-logistic generalized linear mixed models with ratio 

response indicate that all of the considered covariates are substantially related to forest 

land share (Table 3 in Aguilar and Song 2018). However, FE models including both 

levels and lags of the same characteristics produce biased results, if the causal effects 

emerge immediately (Vaisey and Miles 2017), as it is the case in Aguilar and Song 

(2018). Furthermore, the results of Aguilar and Song (2018) could be biased by 

omitting important confounding variables.  

To improve, consolidate and expand previous studies, here I regress the forest 

land share of 98 countries from 1990 to 2015 as provided by the FAO on socio-

economic, political, and ecological characteristics applying country and year FE 

regression models (Brüderl and Ludwig 2015; Appendix A). The 98 countries analysed 

(Table B.7) have high or sufficient quality of forest area data (tiers 3 and 2; FAO 2016) 

and comprise around 89 % of global forest area in 2015 (Keenan et al. 2015). All other 

countries, which have unreliable data solely based on expert estimates (tier 1) are 

excluded from the analysis. First, one of the best-documented drivers of deforestation 

is agricultural expansion (Jorgenson 2006). As model 1 of Figure 4 shows, a 1 % 

within-country increase in agricultural land share on average leads to a 0.2 % within-

country decrease in the forest land share. Population growth explains this effect, as it 

disappears when population size is included in the regression (model 2). Population 

growth of 1 % yields deforestation of 0.27 %. This suggests that agricultural expansion 

allows population growth, which in turn exerts pressure on forests because of land 
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demands for housing, mobility, and other resources.4   

 
Figure 4 | Predictors of national forest land share. Coefficient plots of unstandardized regression 
coefficients (dark blue filled circles) of country and year fixed effects regressions of national forest land 
share on various successively included predictors (models 1-6) including 95 % confidence intervals 
(dark blue bars; see Table B.5 in Appendix B for details). All six models contain dummy variables for 
each year to control for overall time-trends. All variables are included by taking their natural logarithm 
allowing the estimation of elasticities. ‘n’ refers to the number of countries, and ‘N’ to the number of 
observations (number of countries (n) times the number of years). Table B.6 in Appendix B describes 
all variables and Table B.7 lists all countries included in the models. 

 

Second, it has often been hypothesized that urbanization slows deforestation 

and promotes AR, because the per capita land demand of cities is assumed to be lower 

as compared to rural areas (Jorgenson 2006). However, the models 2-6 of Figure 4 

reveal that increasing rates of the population living in urban areas are not substantially 

related to countries’ forest area.  

Third, the direction of the impact of growing wealth on forest cover is widely 

discussed in the literature (e.g. Jorgenson 2006). There has been widespread consent 

that deforestation activities prevail at low and middle levels of gross domestic product 

(GDP) p.c. and AR activities outweigh deforestation at higher levels of GDP p.c. 

                                                            
4 Moreover, in the FE regression of population (N=2504, n=98), the elasticity of agricultural land is 0.49 
(p < 0.001). Together with the results of the models 1 and 2 of Figure 4, this suggests that population 
growth mediates the relationship between agricultural expansion and forest loss. 
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following a trajectory referred to as the environmental Kuznets curve (EKC; Aguilar and 

Song 2018). However, the empirical evidence for a forest EKC is mixed and the two 

most recent and elaborate studies found evidence for a clear positive relationship 

between GDP and forest cover invalidating the forest EKC hypothesis (Aguilar and 

Song 2018, Morales-Hidalgo et al. 2015). Models 3-6 of Figure 4 highlight this as well: 

Economic growth of 1 % increases forest land share by 0.1 % irrespective of economic 

structure and wealth levels.5 Hence, this supports the notion that wealth at least to 

some extent leads to more awareness for the ecosystem services of forests and the 

need to protect them.  

In addition to that and extending prior studies, economic structural change could 

affect forest transition net of GDP growth. An increasing GDP share of the industry 

sector might introduce pressure on forestlands because of relatively high land 

requirements of industrial production sites and higher returns for industrial production 

than for forest products. As models 3-6 of Figure 4 indicate, there is some evidence in 

favour of this argument, because a 1 % increase in the GDP share of the industry 

sector yields a 0.1 % decrease in forest land share. In turn, expansion of the service 

sector could release pressure from forests, as services are presumed to have less land 

demand. However, in the data there is no support for this notion, since a 1 % increase 

in the GDP share of the service sector is also related to a 0.1 % decline in forest cover. 

Yet, this effect is not statistically significant at the p = 0.05 level.  

Furthermore, the model is enhanced by including an indicator of foreign trade 

in forest products. It has been a common concern that forest products trade could be 

one of the reasons for deforestation especially in poor countries with tropical forests 

                                                            
5 The partial residual plot for GDP of a penalized splines FE regression (Ruppert et al. 2003) adequately 
modelling non-linearities confirms this, too (Figure B.2 in Appendix B). 
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and few alternatives of employment to timber logging or farming. By contrast, one can 

argue that foreign trade of forest products could be an incentive for forest conservation, 

when the net return of forestry investments and sustainable forest management is 

greater than the net return for forest clearing for agricultural production (Burgess 1993). 

However, models 4-6 of Figure 4 demonstrate that increases in exports of forest 

products relative to their imports do not substantially alter countries’ forest area. 

Moreover, policies for forest protection may contribute to stop deforestation and 

forest degradation, and foster AR activities with the aim of enhancing the global forest 

carbon sink, conserving biodiversity, and safeguarding other ecosystem services of 

forests. These goals are part of manifold international initiatives and agreements on 

forest protection. Designating and managing protected areas has been a primary 

strategy to achieve these goals (Morales-Hidalgo et al. 2015). Hence, protected forest 

area serves as an indicator for a country’s willingness to sustain the ecosystem 

services of forests and to commit to AR activities. As models 5 and 6 of Figure 4 reveal, 

a 1 % increase in protected forest area is associated with forest growth of 0.06 %. This 

effect is statistically significant, but rather small. This is in line with the results of Moral-

Hidalgo et al. (2015). 

Finally, climate change itself might harm forest ecosystems leading to forest 

degradation and forest loss. Long-term case studies of tree mortality indicate that 

higher mean temperature and droughts increase tree mortality and the frequency of 

wildfires (Canadell and Raupach 2008, Young et al. 2017, Martin 2015). However, it is 

still unclear whether this also applies to forest loss on a global scale. As model 6 of 

Figure 4 shows, a 1 % increase in countries’ mean air temperature reduces their forest 

area on average by 0.1 %, while severe drought events do not affect forest cover 

immediately and ceteris paribus. This suggests that global warming contributes to 
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forest loss, even though the effect is rather small. 

 

6 Discussion and Conclusion 

Altogether, this study suggests that dangerous climate change could be 

prevented solely by AR, as forests’ biophysical climate change mitigation potential 

safeguarding food security with healthy diets (scenario 3) exceeds the required 

additional carbon uptake for the 2 °C target. For this, the study estimates countries’ 

carbon sequestration of forests based on the direct micrometeorological measurement 

of NEE, average temperature and forest area. This straightforward, direct carbon flux-

based method provides estimates that are comparable to the most recent studies 

applying more complicated, indirect carbon stock-based inventories of NEE. The direct 

approach followed here might provide a more valid picture given the outlined 

shortcomings of indirect carbon stock-based inventories. However, the direct approach 

rests on the assumption that countries’ average temperature is a valuable 

approximation of the mean climatic conditions of their forests. Moreover, uncertainties 

stem from data gaps on the NEE of tropical forest biomes, as Figure B.1 in Appendix 

B demonstrates. Further uncertainties may arise from varying tree density, age, 

species, species richness and the health of forests (Hawes 2018). Hence, further 

validation of these initial findings is needed. This includes the establishment of 

additional and more precise FLUXNET measurement towers especially in tropical 

forests to close data gaps, and to increase accuracy and spatial resolution of model 

predictions.  

Furthermore, the analysis identifies future regional hotspots for the AR potential. 

The United States, China, Australia, Argentina, and Brazil are the top five countries 

with respect to mitigation potential through AR, accounting for almost half of its total. 
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However, to unfold the AR potential effectively, it is vital to establish a global mandatory 

carbon certificate market incorporating the forest carbon sink of countries and private 

forest owners. This generates financial incentives to restore and sustain forest biomes 

(Sohngen 2010). Enriching voluntary initiatives like REDD+ with countries’ AR 

potentials, climate-liabilities, and economic capabilities might be a valuable starting 

point for that.  

Evenly important, the analysis of the major drivers of countries’ forest land share 

highlights that curbing agricultural expansion and population growth may be a focus 

for AR policies. Moreover, forests’ vulnerability to global warming points to the 

necessity to plant the right trees in the right places. Therefore, sustainable regional 

forest management needs to identify the tree species most resilient to temperature 

increases, and enhance the biodiversity of forests (Huang et al. 2018, Liang et al. 

2017). Together with growing wealth, the expansion of protected forest areas is a 

suitable way to amplify the forest carbon sink, conserve biodiversity, and safeguard 

other vital ecosystem services provided by forests. 

Nevertheless, biophysical, social, and economic challenges alongside large-

scale AR might jeopardize its potential benefits (e.g. Canadell and Raupach 2008, 

Smith et al. 2016, Fuss et al. 2018), and contest the feasibility of the three presented 

AR scenarios. In general, all three presented AR scenarios a priori exclude land cover 

types that are, by themselves, biophysically unsuitable for near-term and cost-efficient 

AR (i. e. artificial surfaces, permanent snow and glaciers, terrestrial barren land, and 

sparsely natural vegetated areas). In addition, all scenarios safeguard food supply for 

10 billion people. However, the feasibility of all three scenarios more or less depends 

on the socio-economic pressure exerted on the land designated to be 

afforested/reforested. Griscom et al. (2017) report that almost half of the existing AR 
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potential could be cost-effectively realized below US$100 tCO2-1 (the estimated social 

cost of 1 tCO2 emitted within the 2 °C climate target). More than 10 % of the AR 

potential are achievable at low cost (<US$10 tCO2-1). At least part of scenario 1, the 

AR of shrub-covered and herbaceous vegetation, might be reachable at low cost. 

However, costs are expected to be higher for the AR of agricultural land (permanent 

grassland and cropland; scenarios 2 and 3). Agricultural expansion and increases in 

population density increase the opportunity costs of not clearing forests and the costs 

of AR, and decrease forest cover (as shown in this study). Near-term costs might be 

even higher, when a large-scale diet transition away from red and ruminant meat is 

demanded to free up additional land for AR (scenario 3). Yet, meat reduced diets are 

regarded as ‘win-win diets’ fostering both public health and the environment in the long-

run (Willett et al. 2019). Moreover, and as this study demonstrates, the growing wealth 

of nations decreases the relative costs of AR and conveys forest protection and AR. 

Nonetheless, well-tailored AR policies have to account for possible trade-offs between 

climate change mitigation through AR and benefits for the local population. Here, 

agroforestry and policies targeted at the promotion of timber as building material whilst 

substituting carbon-intensive concrete and steel could be especially beneficial, and 

may substantially promote climate change mitigation (Oliver et al. 2014, Tollefson 

2017).  

All told, permanent carbon storage is a prerequisite to outpace the burning of 

fossil carbon and reduce the CO2 concentration in the atmosphere. Hence, it is vital to 

combine sustainably managed, large-scale AR activities with technologies for 

permanent carbon storage like bioenergy with carbon capture and storage (BECCS) 

at the end of the trees’ life cycle for effective climate change mitigation (Fuss et al. 

2018, Smith et al. 2016). What is more, abating emissions and applying other negative 

emissions technologies are valuable in order to hedge the impact of potential side 
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effects of one mitigation option like AR (Minx et al. 2018, Sohngen 2010, Fuss 2010) 

to keep up with the need for fast and forceful action to prevent dangerous climate 

change. 
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Appendices 

A. Methods and Materials 

Global and regional forest carbon sink 

To assess the net ecosystem exchange of carbon (NEE) of countries’ forests I use the newest 

available direct measurements of NEE of 78 micrometeorological measurement towers located in forests 

of 16 countries from 2000-2014 provided by FLUXNET (NASA 2015). See Table B.1 in Appendix B for 

an overview of the analysed tower sites. FLUXNET sites collect data on the exchanges of CO2 between 

forests and the atmosphere, precipitation and air temperature at least in a 30 minutes interval. Table 

B.3 provides a summary of the descriptive statistics. The tower sites use eddy covariance methods to 

measure forests’ NEE. The unique dataset utilized here, ‘FLUXNET2015’, provides standardized values 

for these characteristics and underwent several quality control tests and gap-filling (Pastorello et al. 

2017).  

To infer the NEE of countries’ forests from these 78 FLUXNET sites I apply a straightforward 

approach consisting of three steps: Firstly, I regress their annual NEE on several site characteristics 

(average temperature, average temperature squared, precipitation, latitude, and elevation) controlling 

for overall time-trends by including dummy variables of the years observed. While primarily interested 

in the variation between the forest sites, the inclusion of the 607 site-years available for this model 

minimize the influence of a specific observation period stemming from annual variation in climatic and 

other conditions. Therefore, all standard errors are clustered by tower site to ensure robustness with 

respect to heteroscedasticity and autocorrelation. The results of this linear ordinary least squares (OLS) 

regression model (Table B.2) indicate that only average temperature substantially relates to NEE. As 

Figure B.1 shows, the temperature – NEE relationship of forests follows a u-shaped pattern. Forests 

with an annual mean temperature of -5 to 0 °C are net emitters of carbon, whereas the carbon 

sequestration of forests is highest in climatic domains with an average of about 15 °C. Even higher 

temperatures are associated with lower sequestration. Note that uncertainty between 15 and 26 °C is 

relatively high, because of a rather limited number of tower sites in this climatic forest domain. The 

reported regression results of Table B.2 were tested for robustness: First, the model was rerun excluding 

one measurement tower each time from the regression. Second, all parameters were tested for linearity 

including a penalized splines fixed effects (FE) regression model (Ruppert et al. 2003). Furthermore, 

the robustness of standard errors was investigated via non-parametric bootstrapping. None of these 
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checks had any substantial influence on the estimates. In addition, the robustness of all estimates with 

respect to model specification was assessed using the procedure suggested by Young and Holsteen 

(2017). The potential influence of omitted variables was examined using the method suggested by Frank 

(2000). Also these checks detected no fundamental deviations from the reported results. The analyses 

were conducted using the statistical software package STATA 15.1. 

Secondly, I predict the mean annual sequestration between the years 2000 and 2014 (t) of 

country i’s forests in tons CO2 per hectare (𝑦𝑦𝑖𝑖) from model 1 of Table B.2 according to the following 

formula: 

𝑦𝑦𝑖𝑖 = 1
𝑇𝑇
∑ (𝛽𝛽0𝑇𝑇
𝑖𝑖=1 + 𝛽𝛽1𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑎𝑎𝑖𝑖𝑖𝑖2 + 𝛽𝛽3𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑖𝑖)               (Eq. A.1). 

𝛽𝛽0 represents the model intercept. 𝑎𝑎𝑖𝑖𝑖𝑖 stands for the average air temperature of country i in year t, 𝛽𝛽1 

for the regression coefficient of the sites’ average temperature, and 𝛽𝛽2 for the coefficient of its square. 

𝑏𝑏𝑖𝑖 denotes country i’s centroid’s latitude, and 𝛽𝛽3 the regression coefficient for the forest sites’ latitude. 

𝛾𝛾𝑖𝑖  represents the regression coefficient for year t. With 𝛽𝛽0=5.60, 𝛽𝛽1=-2.20, 𝛽𝛽2=0.07, 𝛽𝛽3=-0.06 from 

model 1 of Table B.2 follows: 

𝑦𝑦𝑖𝑖 = 1
𝑇𝑇
∑ (5.60𝑇𝑇
𝑖𝑖=1 − 2.20𝑎𝑎𝑖𝑖𝑖𝑖 + 0.07𝑎𝑎𝑖𝑖𝑖𝑖2 − 0.06𝑏𝑏𝑖𝑖 + 𝛽𝛽𝑖𝑖)              (Eq. A.2). 

Data for 𝑎𝑎𝑖𝑖𝑖𝑖 is taken from the Climate Change Knowledge Portal of the World Bank (2018; Table 

B.6), and from the Country Geography Database of Portland State University (2018) for 𝑏𝑏𝑖𝑖. Computation 

of Eq. A.2 yields a global average of -8.8 tCO2ha-1yr-1 (median = -9.2, sd. = 4.8, min. = -15.1, max. = 

16.3) sequestered by forests in 2015. With roughly 2.7 trillion trees (Crowther et al. 2015) in the 40.0 

Mkm2 (FAO 2018) of forests worldwide, this translates into a mean of -8.8 kgCO2yr-1 per tree (tropical 

forests (latitude 0° to <25° North (N) or South (S)): -8.4, temperate forests (25° to <50° N or S): -17.3, 

boreal forests (≥50° N): -1.9) as weighted by the share of trees by forest type (tropical: 0.48, temperate: 

0.24, boreal: 0.27; Crowther et al. 2015). 

Thirdly, simply multiplying countries’ average NEE per hectare by their forest area gathered 

from the FAO (2018) gives countries’ forest carbon sink. Summing up yields an estimate for the global 

forest carbon sequestration of -8.3 GtCO2yr-1 or -1.1 tCO2yr-1 per capita (p.c.; UNPD 2017). 
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Afforestation/reforestation (AR) scenarios 

To prevent dangerous climate change, the required and achievable forest land share of three 

different AR scenarios are developed. The basis for these scenarios is the 2 °C target and the associated 

remaining carbon budget until 2100. With the Paris Climate Agreement, the world community has agreed 

upon the limitation of global warming to well below 2 °C relative to preindustrial levels (UNFCCC 2015). 

A maximum of 2 °C of warming until 2100 may provide a relatively safe operating space for humanity 

and prevent dangerous climate change alongside a lock-in of a ‘Hothouse Earth’ pathway with potentially 

hazardous consequences for ecosystems and human socio-economic systems (IPCC 2014, Steffen et 

al. 2018, Fischer et al. 2018, Rockström et al. 2009). Yet, humanity allegedly has already committed to 

1.3 °C of warming (Mauritsen and Pincus 2017). Hence, limiting global warming to 1.5 °C and 

presumably providing an even safer operating space (IPCC 2018) seems out of reach (Raftery et al. 

2017). Global CO2 emissions of fossil fuel use and industrial processes have risen to 35.8 GtCO2 or 4.8 

tCO2 per capita (p.c.) in 2016 (Janssens-Maenhout et al. 2017). This surpasses the global annual gross 

carbon budget (an estimated 30 GtCO2) to fulfil the 2 °C target with a probability of at least 66 % (IPCC 

2014, Friedlingstein et al. 2014, Meinshausen et al. 2009). Assuming an average annual world 

population of 9.8 billion people until 2100 (UNPD 2017) this goal translates into ~3 t of gross CO2 

emissions p.c. and year. 

Scenario 1 is the baseline assuming business-as-usual production and consumption patterns, 

constant other carbon sinks, further required emission reductions of 1.0 tCO2yr-1 p.c. after accounting 

for the overall forest carbon sequestration of 0.8 tCO2yr-1 p.c. with an expected average population of 

9.8 billion people per year until 2100. Hence, the required additional absorption by forests for the 2 °C 

respectively the 3 t p.c. target is 9.8 GtCO2yr-1. Assuming similar carbon sequestration of established 

forests and afforested/reforested land, simple solution of the rule of three and addition to the existing 

forest area (40.0 Mkm2) delivers a required forest area of 88.0 Mkm2. With a global land area of 129.7 

Mkm2 (FAO 2018) this corresponds to a forest land share of 67.8 % necessary to reach the 2 °C target 

with AR activities alone. This implicitly assumes similar tree density, species, species richness and forest 

health of afforested/reforested land and established forests. To quantify the land area suitable for AR, 

land unsuitable for near-term and cost-efficient AR was excluded. These land cover types are artificial 

surfaces (including urban and associated areas), permanent snow and glaciers, terrestrial barren land, 

and sparsely natural vegetated areas as quantified by the FAO (2018). 100 % AR of all shrub-covered 
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areas and herbaceous vegetation (18.1 Mkm2) result in an achievable 44.8 % of forest land share in this 

scenario. 

Scenario 2 further assumes current diets and an associated demand of agricultural land of 2,100 

m2 p.c. (Hallström et al. 2015). As there are 3,770 m2 p.c. of agricultural land currently available, 44 % 

of permanent grassland and cropland (FAO 2018) can be additionally afforested/reforested (16.4 Mkm2) 

for feeding an expected 9.8 billion people per year. Hence, a forest land share of 57.5 % can be realized 

in scenario 2 (77.6 Mkm2). This accounts for more than two thirds of the AR climate target outlined in 

scenario 1.  

To achieve the AR target fully, further reduction in the demand for agricultural land is required. 

In scenario 3 healthier diets with reduced red and ruminant meat consumption further decrease 

agricultural land demand by 28.0 % to 1,510 m2 p.c. while dietary-related emissions decrease by 0.2 

tCO2yr-1 p.c. (Table 1 in Hallström et al. 2015). Hence, this reduction in carbon emissions implies a 

global reduction of the required carbon uptake by forests of 2.0 GtCO2yr-1 to 7.8 GtCO2yr-1. This 

resembles a required forest land share of 60.0 % or 77.9 Mkm2 of forest area. Via a further 28.0 % AR 

of permanent grassland and cropland a forest land share of 62.0 % or 80.4 Mkm2 of forest area can be 

achieved to additionally sequester 8.0 GtCO2yr-1.  

 

Predictors of national forest land share 

Compared to cross-sectional regression models, the FE panel model has the advantage of 

exploiting the longitudinal structure of the data as it only includes within-country variation. Hence, the 

FE model is not biased by cross-sectional unobserved heterogeneity (Brüderl and Ludwig 2015, 

Wooldridge 2010). If the strict exogeneity assumption (r (𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜀𝜀𝑖𝑖𝑖𝑖) = 0) holds, FE models adequately 

estimate unbiased causal effects (Vaisey and Miles 2017). The model can be written as 

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 = (𝒙𝒙𝑖𝑖𝑖𝑖 − 𝒙𝒙�𝑖𝑖)𝜷𝜷 + 𝒁𝒁𝑖𝑖𝜸𝜸 + 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜀𝜀�̅�𝑖                                                 (Eq. A.3). 

Here, yit denotes the forest land share of country i in year t. 𝑦𝑦�𝑖𝑖 represents country i’s mean of 

the whole observation period. xit stands for the vector of all exogenous variables for country i at time t, 

and 𝒙𝒙�𝑖𝑖 for the average of the time observed. The model further comprises a vector of dummy variables 

(Z) for every year to control period effects for all countries (time FE). A country’s time varying stochastic 

error term is represented by 𝜀𝜀it. All metric variables are included by taking their natural logarithm, which 
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allows the estimation of elasticities. All standard errors are clustered by country and year, and are 

therefore robust with respect to heteroscedasticity and autocorrelation. The reported regression results 

of Figure 4 were tested for robustness analogous to the results of the analysis for the FLUXNET data 

as already explained above. Furthermore, all six models were recalculated using the total forest land 

area as dependent variable instead of forest land share. None of these checks detected any substantial 

deviations from the results reported in Figure 4. 
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B. Supplementary Figures and Tables 

Table B.1 | FLUXNET micrometeorological measurement towers in forests included in the 
regression analysis by country (NASA 2015).   

Country Tower site 
code 

Reference 
paper 

Country Tower site 
code 

Reference 
Paper 

Country Tower site 
code 

Reference 
paper 

Belgium BE-Vie Aubinet et al. 
(2001) 

French 
Guyana 

GF-Guy Bonal et al. 
(2008) 

United 
States 

US-Blo Falge et al. 
(2002) 

Brazil BR-Sa1 Hayek et al. 
(2018)  

Germany DE-Hai Knohl et al. 
(2003) 

 US-GBT Zeller and 
Nikolov 
(2000) 

BR-Sa3 Saleska et 
al. (2003) 

 DE-Lkb Lindauer et 
al. (2014) 

 US-GLE Frank et al. 
(2014) 

Canada CA-Gro McCaughey 
et al. (2006) 

 DE-Lnf Anthoni et al. 
(2004) 

 US-Ha1 Barford et al. 
(2001) 

CA-NS1 Goulden et 
al. (2006)  

 DE-Obe Bernhofer et 
al. (2008) 

 US-KS1 Dore et al. 
(2003) 

CA-NS2 Bond-
Lamberty et 
al. (2004) 

 DE-Tha Grünwald 
and 
Bernhofer 
(2007) 

 US-Me1 Irvine et al. 
(2007) 

CA-NS3 Bond-
Lamberty et 
al. (2004) 

Ghana GH-Ank Chiti et al. 
(2010) 

 US-Me2 Law et al. 
(2004) 

CA-NS4 Schmidt et 
al. (2011) 

Italy IT-CA1 Sabbatini et 
al. (2016) 

 US-Me3 Sun et al. 
(2004) 

CA-NS5 Bond-
Lamberty et 
al. (2004) 

 IT-CA3 Sabbatini et 
al. (2016) 

 US-Me4 Law et al. 
(2004) 

CA-Oas Chen et al. 
(2003) 

 IT-Cp2 Fares et al. 
(2014) 

 US-Me5 Law et al. 
(2004) 

CA-Obs Chen et al. 
(2003) 

 IT-Cpz Garbulsky et 
al. (2008) 

 US-Me6 Ruehr et al. 
(2012) 

CA-Qfo Bergeron et 
al. (2007) 

 IT-Isp Ferréa et al. 
(2012) 

 US-MMS Baldocchi et 
al. (2005) 

CA-SF1 Amiro et al. 
(2006) 

 IT-La2 Marcolla et 
al. (2003) 

 US-Oho Chu et al. 
(2016) 

CA-TP1 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Lav Marcolla et 
al. (2003) 

 US-PFa Desai et al. 
(2008) 

CA-TP2 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-PT1 Migliavacca 
et al. (2009) 

 US-Prr Kobayashi et 
al. (2014) 

CA-TP3 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Ren Montagnani 
et al. (2009) 

 US-Syv Desai et al. 
(2005) 

CA-TP4 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Ro1 Rey et al. 
(2002) 

 US-UMd Gough et al. 
(2013) 

CA-TPD Schmidt et 
al. (2011) 

 IT-Ro2 Tedeschi et 
al. (2006) 

 US-WCr Desai et al. 
(2005) 

Czech 
Republic 

CZ-BK1 Acosta et al. 
(2013) 

 IT-SR2 Gruening et 
al. (2013) 

 US-Wi0 Desai et al. 
(2008) 

Denmark DK-Sor Pilegaard et 
al. (2011) 

 IT-SRo Chiesi et al. 
(2005) 

 US-Wi1 Desai et al. 
(2008) 

Finland FI-Hyy Suni et al. 
(2003) 

Netherlands NL-Loo Moors (2012)  US-Wi2 Desai et al. 
(2008) 

FI-Let Koskinen et 
al. (2014) 

Panama PA-SPn Wolf et al. 
(2011) 

 US-Wi3 Desai et al. 
(2008) 

FI-Sod Thum et al. 
(2007) 

Russian 
Federation 

RU-Fyo Kurbatova et 
al. (2008) 

 US-Wi4 Desai et al. 
(2008) 

France FR-Fon Delpierre et 
al. (2016) 

RU-SkP Maximov 
(2012) 

 US-Wi5 Schmidt et 
al. (2011) 

FR-LBr Berbigier et 
al. (2001) 

Switzerland CH-Dav Zielis et al. 
(2014) 

 US-Wi8 Desai et al. 
(2008) 

FR-Pue Rambal et al. 
(2004) 

 CH-Lae Etzold et al. 
(2011) 

 US-Wi9 Schmidt et 
al. (2011) 
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Model (1) 
Dependent variable NEE 
Average temperature -2.20*** 
 (0.46) 
Average temperature 
squared 

0.07** 
(0.03) 

Precipitation -0.00 
 (0.00) 
Latitude -0.06 
 (0.29) 
Elevation -0.00 
 (0.00) 
2000 (reference)  
2001 3.80 
 (2.60) 
2002 -1.21 
 (3.38) 
2003 -1.77 
 (3.98) 
2004 -2.15 
 (3.69) 
2005 -1.42 
 (3.65) 
2006 -0.10 
 (3.62) 
2007 -3.53 
 (3.84) 
2008 -1.75 
 (3.73) 
2009 -1.45 
 (4.02) 
2010 0.34 
 (3.83) 
2011 -1.63 
 (3.90) 
2012 -1.24 
 (3.90) 
2013 -0.93 
 (3.80) 
2014 -2.46 
 (3.92) 
Constant 5.60 
 (19.49) 
n x T 607 
n 78 
adjusted R2 0.15 

Table B.2 | Linear OLS regression of net ecosystem exchange. NEE = net ecosystem exchange in 
tCO2ha-1yr-1. ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard errors 
in brackets. All standard errors are clustered by tower site, and robust with respect to heteroscedasticity 
and autocorrelation. Years covered: 2000-2014. Table B.3 gives a descriptive overview of all variables 
in model 1. Table B.1 lists all 78 micrometeorological measurement towers of FLUXNET in forests 
included in model 1.  
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Figure B.1 | Predicted values of net ecosystem exchange (NEE) by annual average temperature. 
NEE of CO2 as predicted by the OLS regression model presented in Table B.2 (dark blue line) with 95% 
confidence intervals (blue area). Negative numbers on the y-axis indicate net absorption of CO2 by 
forests, positive numbers net CO2 release. 
 
 
Variable mean  within (�̅�𝑥𝑖𝑖) between 

(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖 + �̿�𝑥) 

N 

(nxT) 

n Description 

sd min. max. sd  min. max. 

Net ecosystem 
exchange 

-13.98 6.28 -41.86 13.55 15.52 -67.40 10.21 674 94 Net ecosystem exchange (NEE) of CO2. NEE 
is the sum of Gross Primary Productivity 
(GPP, i.e. biomass stored) and ecosystem 
respiration (release of CO2 from soil and 
plant). Negative numbers indicate net 
absorption, positive numbers net release of 
CO2. Unit: t per ha. 

Average 
temperature 

8.87 0.73 6.52 11.21 7.42 -4.62 25.89 693 94 Average annual air temperature derived from 
daily averages. Unit: °C.  

Precipitation 0.92 0.19 0.19 1.59 0.56 0.16 3.11 693 94 Annual precipitation. Sum of daily data.  

Unit: 1000 mm. 

Latitude 44.39 0 44.39 44.39 12.93 2.9 67.4 693 94 In degrees north or south from equator. 

Elevation 527.62 0 527.62 527.62 596.38 1 3197 625 78 Elevation of site. Unit: m above sea level. 

Table B.3 | Variable description of FLUXNET data of micrometeorological measurement towers 
in forests. Data source is FLUXNET, a global network of micrometeorological tower sites with long-
term measurement. FLUXNET is operated by the Oak Ridge National Laboratory Distributed Active 
Archive Center (ORNL DAAC) of the National Aeronautics and Space Administration (NASA) of the 
United States. Years covered: 2000-2014.  
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Rank Country Sum score 
of quintiles 

CO2 
emissions 

CO2 p.c. 
emissions 

Forest land 
share 

NEE  
per ha 

NEE NEE 
potential 

GDP p.c. 

1 Japan 33 5 5 5 4 5 4 5 
2 Spain 33 5 4 4 5 5 5 5 
3 South Korea 32 5 5 5 5 4 3 5 
4 France 32 5 4 3 5 5 5 5 
5 United States 31 5 5 3 3 5 5 5 
6 Australia 31 5 5 2 4 5 5 5 
7 Mexico 30 5 4 3 4 5 5 4 
8 Argentina 30 5 4 2 5 5 5 4 
9 Italy 30 5 4 3 5 4 4 5 

10 Germany 30 5 5 3 4 4 4 5 
11 Turkey 30 5 4 2 5 5 5 4 
12 Brazil 29 5 3 5 2 5 5 4 
13 Peru 29 4 3 5 4 5 5 3 
14 New Zealand 29 3 5 4 4 4 4 5 
15 China 29 5 5 3 3 5 5 3 
16 Poland 29 5 5 3 4 4 4 4 
17 Iran, Islamic Rep. 29 5 5 1 5 4 5 4 
18 Venezuela, RB 29 5 4 5 2 5 4 4 
19 South Africa 28 5 5 1 5 4 5 3 
20 Turkmenistan 28 4 5 2 5 4 4 4 
21 Malaysia 28 5 5 5 2 4 3 4 
22 Belarus 28 4 4 4 4 4 4 4 
23 Czech Republic 28 4 5 4 4 3 3 5 
24 Greece 28 4 4 3 5 4 4 4 
25 Bulgaria 28 4 5 4 5 3 3 4 
26 United Kingdom 27 5 4 2 4 3 4 5 
27 Portugal 27 4 4 4 5 3 3 4 
28 Chile 27 4 4 3 3 5 4 4 
29 Serbia 27 5 5 3 5 3 3 3 
30 Bolivia 27 3 3 5 4 5 5 2 
31 Romania 27 4 4 3 4 4 4 4 
32 Indonesia 26 5 3 5 1 5 4 3 
33 Finland 26 4 5 5 1 4 2 5 
34 Austria 26 4 5 4 3 3 2 5 
35 Hungary 26 4 4 3 5 3 3 4 
36 Belgium 26 4 5 3 5 2 2 5 
37 Kazakhstan 26 5 5 1 3 3 5 4 
38 Ukraine 26 5 4 2 4 4 5 2 
39 Colombia 26 4 3 5 2 5 4 3 
40 Slovenia 25 3 5 5 4 2 1 5 
41 Thailand 25 5 4 3 1 4 4 4 
42 Croatia 25 3 4 4 5 3 2 4 
43 India 25 5 3 3 2 5 5 2 
44 Vietnam 25 5 3 5 2 4 4 2 
45 Sweden 25 4 4 5 1 4 2 5 
46 Morocco 25 4 3 2 5 4 4 3 
47 Slovak Republic 25 3 5 4 4 2 2 5 
48 Bosnia and Herzegovina 24 3 5 4 4 3 2 3 
49 Angola 24 3 2 4 3 5 5 2 
50 Netherlands 24 4 5 2 5 1 2 5 
51 Ecuador 24 3 3 5 3 4 3 3 
52 Ireland 24 3 5 2 4 2 3 5 
53 Estonia 24 3 5 5 3 2 1 5 
54 Latvia 23 2 4 5 3 3 2 4 
55 Zambia 23 2 1 5 3 5 5 2 
56 Zimbabwe 23 3 2 4 3 5 5 1 
57 Norway 23 4 5 3 1 3 2 5 
58 Botswana 23 2 3 2 3 4 5 4 
59 Uruguay 23 2 3 2 5 3 4 4 
60 Azerbaijan 23 3 4 2 5 2 3 4 
61 Myanmar 23 3 1 4 3 5 5 2 
62 Uzbekistan 22 4 3 1 5 3 4 2 
63 Paraguay 22 2 2 4 3 4 4 3 
64 Russian Federation 22 5 5 5 1 1 1 4 
65 Namibia 22 1 3 2 4 4 5 3 
66 Lithuania 22 3 4 4 3 2 2 4 
67 Syrian Arab Republic 22 4 3 1 5 1 3 5 
68 Denmark 22 3 4 2 4 2 2 5 
69 Lao PDR 22 1 2 5 3 5 4 2 
70 Canada 22 5 5 4 1 1 1 5 
71 Tanzania 22 2 1 5 3 5 5 1 
72 Iraq 21 4 4 1 4 2 3 3 

Table B.4 | Full country ranking of climate responsibility, forests’ mitigation contribution and 
potential, and economic capabilities in 2015. 
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Rank Country Sum score 
of quintiles 

CO2 
emissions 

CO2 p.c. 
emissions 

Forest land 
share 

NEE  
per ha 

NEE NEE 
potential 

GDP p.c. 

73 Congo, Rep. 21 2 2 5 2 5 3 2 
74 Israel 21 4 5 1 4 1 1 5 
75 Switzerland 21 3 4 3 3 2 1 5 
76 Gabon 21 2 3 5 2 4 1 4 
77 Algeria 21 4 4 1 3 2 4 3 
78 Congo, Dem. Rep. 20 2 1 5 2 5 4 1 
79 Cameroon 20 3 2 4 2 4 3 2 
80 Panama 20 2 3 5 2 3 1 4 
81 Georgia 20 2 3 4 3 3 2 3 
82 Lebanon 20 3 4 2 5 1 1 4 
83 Saudi Arabia 20 5 5 1 2 1 1 5 
84 Pakistan 20 4 2 1 4 2 5 2 
85 Central African Republic 20 1 1 4 2 4 3 5 
86 Macedonia, FYR 20 2 4 4 4 2 1 3 
87 Cuba 20 3 3 3 2 2 2 5 
88 Papua New Guinea 20 2 2 5 2 5 2 2 
89 Mozambique 20 2 1 5 2 5 4 1 
90 Albania 19 1 3 3 5 2 2 3 
91 Dominican Republic 19 3 3 4 3 2 1 3 
92 Tunisia 19 3 3 1 4 2 3 3 
93 Philippines 19 4 2 3 2 3 3 2 
94 Egypt, Arab Rep. 19 5 3 1 3 1 3 3 
95 Nepal 18 2 1 3 5 3 3 1 
96 Ethiopia 18 2 1 2 3 4 5 1 
97 Costa Rica 18 2 3 5 2 2 1 3 
98 Libya 18 4 5 1 3 1 2 2 
99 Honduras 17 2 2 4 2 3 2 2 

100 Bangladesh 17 4 2 2 2 2 3 2 
101 Nigeria 17 4 2 1 1 3 4 2 
102 Kenya 17 3 2 1 2 3 5 1 
103 Ghana 17 3 2 4 1 3 2 2 
104 Afghanistan 17 2 1 1 5 2 5 1 
105 Cambodia 17 2 2 5 1 3 2 2 
106 Somalia 17 1 1 2 1 3 4 5 
107 Guatemala 17 3 2 3 2 3 2 2 
108 Moldova 17 2 3 2 5 1 2 2 
109 Cote d'Ivoire 16 2 2 3 1 3 3 2 
110 Jordan 16 3 3 1 4 1 1 3 
111 Swaziland 16 1 2 4 4 1 1 3 
112 Madagascar 16 1 1 2 3 4 4 1 
113 Jamaica 15 2 3 3 2 1 1 3 
114 Malawi 15 1 1 3 3 3 3 1 
115 Sri Lanka 15 3 2 3 1 2 1 3 
116 Nicaragua 15 2 2 3 2 2 2 2 
117 Uganda 14 2 1 2 2 2 4 1 
118 Mongolia 14 3 4 1 1 1 1 3 
119 Burundi 14 1 1 2 3 1 1 5 
120 Liberia 14 1 1 4 2 3 2 1 
121 Senegal 14 2 2 4 1 2 2 1 
122 Armenia 14 1 3 2 3 1 1 3 
123 Yemen, Rep. 13 3 2 1 3 1 2 1 
124 Lesotho 13 1 1 1 5 1 2 2 
125 Guinea 13 1 1 3 1 3 3 1 
126 Benin 13 2 2 4 1 2 1 1 
127 El Salvador 13 2 2 2 2 1 1 3 
128 Kyrgyz Republic 12 2 2 1 1 1 3 2 
129 Rwanda 11 1 1 2 4 1 1 1 
130 Guinea-Bissau 11 1 1 5 1 1 1 1 
131 Chad 11 1 1 1 1 2 4 1 
132 Sierra Leone 11 1 1 4 1 2 1 1 
133 Tajikistan 11 1 2 1 2 1 3 1 
134 Gambia, The 11 1 1 5 1 1 1 1 
135 Burkina Faso 10 1 1 2 1 2 2 1 
136 Mauritania 10 1 2 1 1 1 2 2 
137 Niger 9 1 1 1 1 1 3 1 
138 Mali 9 1 1 1 1 1 3 1 
139 Haiti 8 1 1 1 2 1 1 1 
140 Eritrea 8 1 1 2 1 1 1 1 
141 Togo 7 1 1 1 1 1 1 1 

Table B.4, continued | Full country ranking of climate responsibility, forests’ mitigation 
contribution and potential, and economic capabilities in 2015. p.c. = per capita, NEE = net ecosystem 
exchange, GDP = gross domestic product. Numbers represent the quintiles the countries rank if not indicated otherwise. Data 
sources: CO2 emissions: EDGAR – Emissions Database for Global Atmospheric Research; forest land share: FAO – Food and 
Agriculture Organization of the UN; NEE: own calculations based on FLUXNET data; GDP: IMF – International Monetary Fund.    
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Model (1) (2) (3) (4) (5) (6) 
Dependent 
variable 

Forest land share 

Agricultural land -0.21* -0.08 -0.03 -0.04 0.05 0.03 
 (0.10) (0.10) (0.10) (0.11) (0.13) (0.12) 
       

Population  -0.27** -0.28** -0.27** -0.17* -0.18* 
 (0.08) (0.08) (0.08) (0.08) (0.08) 

Urban population  -0.00 -0.02 -0.01 -0.12 -0.11 
 (0.09) (0.09) (0.09) (0.09) (0.08) 

       

GDP per capita   0.10* 0.09* 0.10* 0.09* 
   (0.04) (0.03) (0.04) (0.04) 
Industry   -0.10* -0.08* -0.09* -0.10* 
   (0.04) (0.04) (0.04) (0.04) 
Services   -0.08 -0.08+ -0.09+ -0.09+ 
   (0.05) (0.04) (0.05) (0.05) 
       

Forest products 
trade balance 

   0.02 0.02 0.03 
   (0.03) (0.02) (0.02) 

       

Protected forest 
area 

    0.06* 0.06* 
    (0.03) (0.03) 

       

Mean temperature      -0.10* 
     (0.04) 

Droughts      0.00 
      (0.00) 
n x T 2494 2494 2255 2255 1781 1744 
n 98 98 96 96 88 88 
adjusted R2 within 0.06 0.15 0.22 0.20 0.27 0.28 
Table B.5 | Country and time fixed effects regressions of forest land share. + = p < 0.10, * = p < 
0.05, ** = p < 0.01. Unstandardized regression coefficients with standard errors in brackets. All six 
models include the years 1990-2015 and contain dummy variables for each year in order to control for 
overall time-trends. All standard errors are clustered by country and year, and robust with respect to 
heteroscedasticity and autocorrelation.  
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Figure B.2 | Partial residual plot for GDP p.c. of model 6 in Figure 4 and Table B.5. Partial residual 
for every country year (blue filled circles) and the smoothed mean (red curve) as calculated from the 
fixed effects regression with penalized splines (Ruppert et al. 2003) for logged GDP per capita. Red 
ticks on the x-axis represent knots. The plot demonstrates that the effect of GDP growth on forest land 
share growth is almost flat for poor countries with logged PPP GDP p.c. of less than ca. 8.0, and positive 
and virtually linear for richer countries. Thus, the effect is positive and linear for the vast majority of 
observations. 
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Variable mean  within (�̅�𝑥𝑖𝑖) between 
(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖 +  �̿�𝑥) 

N 
(nxT) 

n Description Data 
Source 

sd min. max. sd  min. max. 
Forest land 
share  

32.77 2.02 18.34 50.01 23.83 0 98.60 4690 181 Forest is determined both by the 
presence of trees and the absence 
of other predominant land uses. 
Forest area is land under natural or 
planted stands of trees of at least 5 
meters in situ or with the potential of 
growth to this height, with an area of 
more than 0.5ha and width of more 
than 20m, and a canopy cover of at 
least 10%, whether productive or 
not, and excludes tree stands in 
agricultural production systems and 
trees in urban parks and gardens. 
Unit: % of land area. 

FAO 

Agricultural 
land 

40.37 2.87 19.71 57.93 21.12 0.53 84.40 4650 182 Agricultural land refers to the share 
of land area that is arable, under 
permanent crops, and under 
permanent pastures.  
Unit: % of land area. 

FAO 

Population 34.12 12.17 -191.34 249.11 127.76 0.02 1272.37 4754 183 Total population. Unit: 1 million. UNPD, 
WB 

Urban 
population 

52.83 3.37 39.20 69.73 23.32 8.93 100 4806 185 Urban population refers to people 
living in urban areas as defined by 
national statistical offices.  
Unit: % of total population. 

UNPD, 
FAO, 
WB 

GDP p. c. 11.29 4.85 -16.87 47.98 11.75 0.54 62.31 4384 177 Gross domestic product (GDP) per 
capita (p.c.) based on purchasing 
power parity (PPP). PPP GDP is 
GDP converted to international 
dollars using PPP rates.  
Unit: 1000 international dollars. 

IMF 

Industry,  
value added 

28.17 4.50 -5.59 60.52 11.04 7.20 75.96 4092 174 Industry corresponds to the 
International Standard Industrial 
Classification (ISIC) divisions 10-45. 
The origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Services, 
value added 

55.57 5.41 22.75 99.17 13.46 22.77 82.07 4075 173 Services correspond to ISIC 
divisions 50-99. The industrial origin 
of value added is determined by the 
ISIC, revision 3.  
Unit: % of GDP. 

WB 

Forest 
products 
trade 
balance 

0.16 1.53 -24.07 27.69 2.03 -2.09 24.27 4171 174 Forest products trade balance is the 
ratio of exports to imports of forest 
goods as share of GDP. 

FAO 

Protected 
forest area 

37.40 34.56 -640.36 469.28 142.59 0 1630.39 3289 149 Protected forest area is designated 
primarily for conservation of 
biological diversity and natural and 
associated cultural resources. 
Protection and maintenance is 
managed through legal or other 
effective means. Unit: km2. 

FAO 

Mean 
temperature 

18.98 0.49 15.61 21.29 8.21 -5.97 28.90 4225 169 Mean annual air temperature 
derived from quality controlled 
monthly observational data from 
thousands of weather stations 
worldwide. Unit: °C. 

WB 

Droughts 0.20 0.36 -0.60 1.16 0.24 0 1 1963 160 Dummy, 1, if a drought occurred at 
least once a year. A drought is 
classified if at least one of the 
following criteria is met: 10 or more 
people dead, 100 or more people 
affected, declaration of a state of 
emergency, call for international 
assistance. 

CRED 

Table B.6 | Drivers of national forest land share: variable description. CRED = Centre for Research 
on the Epidemiology of Disasters, FAO = Food and Agriculture Organization of the United Nations, IMF 
= International Monetary Fund, UNPD = United Nations Population Division, WB = World Bank; All 
variables in the models are included by taking the natural logarithm allowing for the estimation of 
elasticities. Years covered: 1990-2015. 
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Algeria*# Hungary*# Peru*# 
Argentina*# India*# Philippines*# 
Australia*# Indonesia*# Poland*# 
Austria*# Iran, Islamic Rep.*# Portugal*# 
Bangladesh*# Ireland*# Romania*# 
Belarus*# Israel Russian Federation*# 
Belgium*# Italy*# Senegal*# 
Brazil*# Jamaica*# Serbia*# 
Bulgaria*# Japan* Slovak Republic*# 
Burkina Faso*# Kenya*# Slovenia*# 
Cambodia*# Lao PDR* South Africa*# 
Cameroon*# Latvia*# South Korea*# 
Canada*# Lebanon*# Spain*# 
Chile*# Liberia Sri Lanka* 
China*# Lithuania*# Swaziland*# 
Colombia*# Malawi*# Sweden*# 
Congo, Rep.*# Malaysia*# Switzerland*# 
Costa Rica* Mali*# Tajikistan*# 
Croatia*# Mexico*# Tanzania*# 
Czech Republic*# Mongolia*# Thailand*# 
Denmark*# Morocco*# Tunisia*# 
Dominican Republic* Mozambique*# Turkey*# 
Ecuador*# Myanmar*# Uganda*# 
Estonia*# Namibia*# Ukraine*# 
Ethiopia* Nepal*# United Kingdom* 
Finland*# Netherlands*# United States*# 
France* New Zealand*# Uruguay*# 
Gabon*# Nicaragua*# Uzbekistan*# 
Gambia, The*# Niger*# Venezuela, RB*# 
Georgia*# Norway*# Vietnam*# 
Germany*# Panama*# Zambia*# 
Ghana*# Papua New Guinea*# Zimbabwe*# 
Guatemala*# Paraguay*#  
Table B.7 | Countries included in the analyses. All 98 countries are full members of the United 
Nations, have sufficient quality of forest area data (tier 2 and 3; FAO 2016) and are included in the 
models 1, and 2 of Table B.5. Due to missing values in the further added variables, the models 3 and 4 
include the 96 countries indicated by ‘*’, and for the models 5 and 6 of Table B.5 the 88 countries marked 
by ‘#’. 
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