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Abstract

Mitochondria are vital organelles, prominently known for their role in ATP production. Even

though mitochondria contain their own DNA, almost all mitochondrial proteins are encoded in
the nucleus. These nuclear encoded mitochondrial proteins are translated in the cytosol and
subsequently imported into the organelle. Disturbance of mitochondrial proteostasis by
mislocalized or destabilized proteins, whose accumulation can lead to mitochondrial
dysfunction, is an issue that demands immediate resolution. Therefore, eukaryotes contain a
wide range of pathways to prevent and restore dysfunctional mitochondria. The ATPase-
associated with diverse cellular activities (AAA) Msp1 contributes to mitochondrial proteostasis
by extracting mislocalised tail-anchored proteins from the mitochondrial outer membrane (OM).
Yeast Msp1 can extract substrate proteins from a lipid bilayer independently from associated
proteins and substrate modifications. However, little is known about Msp1 orthologs outside
the eukaryotic supergroup of the Opisthokonts, which includes animals and fungi.
Trypanosoma brucei is a well-established eukaryotic model organism which belongs to the
Discoba group and thus is essentially unrelated to Opisthokonts. The trypanosome-specific
PATOM36 mediates complex assembly of a-helically anchored mitochondrial outer membrane
proteins, such as proteins of the atypical protein translocase of the outer mitochondrial
membrane (ATOM), into their respective complexes. Inhibition of ATOM complex assembly
via RNAi knockdown of pATOMS36 triggers a pathway that results in the degradation of

unassembled ATOM subunits by the cytosolic proteasome.

Here we have investigated this novel trypanosomal mitochondria-associated degradation
pathway. We show that the trypanosomal Msp1 homolog (TbMsp1) and the trypanosomal
homolog of the AAA-ATPase VCP (TbVCP) are involved in this quality control pathway. The
RNAIi knockdown of pATOM36 in combination with either TbMsp1 RNAi or TOVCP RNAi does
not affect the pathway as pATOM36 substrates are still being degraded by the cytosolic
proteasome. However, the simultaneous knockdown of TbMsp1 and TbVCP in the pATOM36
RNAI background prevents the removal of pATOM36 substrates from the OM despite the
ablation of pATOM36. This suggests that there is some redundancy between TbMsp1 and
TbVCP in this pathway. Furthermore, we show by in situ tagging, coimmunoprecipitation and
mass spectrometry that TbMsp1 localises to both, glycosomes and the OM. Additionally, we
demonstrate by reciprocal coimmunoprecipitations that TbMsp1 forms a stable complex with
the four OM proteins POMP19, POMP31, TbJ31 and TbTsc13. Interestingly, upon pATOM36
and TbVCP ablation, POMP31, TbJ31 and TbTsc13 are required for efficient proteasomal
degradation of pATOM36 substrates, suggesting these three TbMsp1-interacting proteins
assist TbMsp1 in extracting the destabilized OM proteins. pPATOM36 is a functional analogue
of the yeast OM MIM complex and likely of the animal-specific OM protein MTCHZ2, suggesting

that similar mitochondrial quality control pathways linked to Msp1 might also exist in yeast and
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humans. The molecular details underlaying the interactions within the TbMsp1-containing
complex, and the role of the individual TbMsp1-associated proteins in the extraction of
PATOM36 substrates have yet to be elucidated. Additionally, it is unclear whether these
interaction partners are required for the extraction of all TbMsp1 substrates. It is possible that
their activity might be limited to a specific subset of TbMsp1 substrates which includes the
PATOM36 substrates. Other TbMsp1 substrates than those extracted upon pATOM36 and
TbVCP ablation could not yet be identified. Furthermore, it also remains unclear whether

TbMsp1 functions independently of ubiquitin, as has been suggested for yeast Msp1.



1. Introduction

1.1 Mitochondria, the powerhouse of the cell

Mitochondria are cellular organelles best known for their role in producing adenosine 5’-
triphosphate (ATP), the cells ‘energy currency’. ATP is used for various processes including
ion transport, muscle contraction, nerve impulse propagation, substrate phosphorylation, and
chemical synthesis. Furthermore, mitochondria are also involved in several other pathways
ranging from fatty acid metabolism to iron/sulphur cluster synthesis. As a result of their
involvement in vital pathways, mitochondria are essential for all eukaryotes with only few
exceptions (Henze and Martin, 2003; Karnkowska et al., 2016; Simpson et al., 2002; Tovar et
al., 2003; Yahalomi et al., 2020).

1.1.1 Basic architecture

Depending on the organism and cell type, mitochondria are present in various shapes and
numbers (Ahmad et al., 2013; Neves et al., 2010; Shaw and Nunnari, 2002). However, all
mitochondria can be separated into four compartments: Outer membrane (OM),

intermembrane space (IMS), inner membrane (IM) and matrix (Figure 1).

Figure 1: Schematic depiction of mitochondrial structure. Mitochondria can be separated in four
compartments. The outer membrane (OM), the intermembrane space (IMS), the inner membrane
(IM), and the matrix.



The outer membrane (OM) surrounds the mitochondrion and separates it from the cytosol. It
also serves as a communication platform between mitochondria and other cellular organelles
(Audano et al., 2020; Y. Liao et al., 2020). The OM contains a variety of membrane proteins.
Based on proteomic studies performed with fungi, trypanosomes and human cell culture the
OM is suggested to contain 80 to 140 integral membrane proteins (Hung et al., 2017;
Morgenstern et al., 2017; Niemann et al., 2013; Schmitt et al., 2006; Zahedi et al., 2006). The
most abundant protein in the OM is the voltage-dependent anion channel (VDAC) which allows
ions and small molecules to pass freely through the membrane via its beta barrel pore
(Hoogenboom et al., 2007). Proteins that are imported into mitochondria cross the OM through
a protein complex called translocase of the outer membrane (TOM) (Model et al., 2002). Unlike
canonical mitochondrial proteins, OM proteins do not contain cleavable N-terminal
mitochondrial targeting sequences (MTS). Instead, they contain mitochondrial targeting signals
at either end or in the middle of the protein (Jores et al., 2016; Rapaport, 2003).

Figure 2: Topology of integral outer mitochondrial membrane (OM) proteins. Mitochondrial OM

proteins can be classified according to their topology. There are signal- and tail- anchored proteins
(A, B respectively), proteins that are internally a-helically anchored (C), proteins with two or more a-
helical transmembrane domains (D, E) and beta barrel proteins (F). (Walther and Rapaport, 2009;
Zheng et al., 2019)

Integral OM proteins can be classified based on their topology as shown in Figure 2. N- or C-
terminally anchored proteins (Figure 2 A, B) make up a big part of integral OM proteins. They
are also referred to as signal- or tail- anchored proteins, respectively. In both cases, only a



small portion of the protein is facing the IMS, while the large majority is facing the cytosol. In
yeast, there are two known proteins Mim1 and Tom22, in which the transmembrane domain is
found in the middle of the protein, with the N terminus facing the cytosol and the C terminus
facing the IMS (Figure 2 C) (Walther and Rapaport, 2009). Interestingly, the biogenesis of
these single a-helically anchored proteins is mediated by non-orthologous proteins in different
eukaryotic clades. Of these analogous insertases, the mitochondrial import complex (MIM) was
discovered first. MIM is fungi-specific and is composed off the proteins Mim1 and Mim2 (Becker
et al., 2011; Dimmer et al., 2012; Doan et al., 2020; Papic¢ et al., 2011). The second insertase,
peripheral atypical protein translocase of the OM of 36kDa (pATOMS36), was discovered in
Trypanosoma brucei and is restricted to kinetoplastids (Bruggisser et al., 2017; Kaser et al.,
2016). MIM and pATOM36 have been shown to reciprocally complement the biogenesis defect
which occur upon the ablation of the other in yeast and trypanosomes, respectively (Vitali et
al., 2018). Thirdly, a-helically anchored proteins are inserted by the mitochondrial animal-
specific carrier homolog 2 (MTCH2) that was discovered in human cells (Guna et al., 2022).
However, there is evidence that not all a-helically anchored proteins are dependent on an
insertase for OM insertion. Some proteins seem to be able to spontaneously insert into the OM
(Kemper et al., 2008; Vagtle et al., 2015).

Furthermore, a couple of multipass membrane proteins containing two or more
transmembrane helices can be found in the OM (Figure 2 D, E) (Coonrod et al., 2007; Fritz et
al., 2001; Rojo et al., 2002). There is some indication of a multipass membrane protein
insertion pathway that is dependent on the TOM receptor Tom70, but not on other TOM
components (Otera et al., 2007). Other studies found that Mim1 and VDAC are assisting the
integration of a multipass OM protein, though none of the proteins were absolutely required for
insertion (Becker et al., 2011; Zhou et al., 2022). This suggests that depending on the
substrate, multiple proteins contribute to the insertion-efficiency of multipass OM proteins
(Zhou et al., 2022). Lastly, there are B-barrel proteins, which span the membrane via multiple
anti-parallel amphipathic 3-sheets arranged to form a tunnel (Figure 2 F) (Diederichs et al.,
2020). They are typically inserted by the sorting and assembly of machinery (SAM) complex
(Kozjak-Pavlovic et al., 2007). Examples for 3-barrel proteins in the OM are Tom40, the pore
of the TOM complex, or VDAC (Ahting et al., 2001; Hill et al., 1998; Mannella et al., 1996). All
known OM proteins are encoded in the nucleus, which means they are synthesized in the

cytosol and inserted through either TOM, SAM, MIM, or their respective analogues.

The IMS is the space between the OM and the IM. As small solutes such as ions and sugars
can freely cross the OM through pores such as VDAC, the concentration of these molecules
is the same as in the cytosol (Shoshan-Barmatz et al., 2010). Proteins localized in the IMS
often contain disulfide bridges whose oxidative folding is assisted by the protein Mia40 (Figure

3) (Boos et al., 2020; Mesecke et al., 2005). Proteomic studies in fungi and mammals have
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identified approximately 50 soluble IMS proteins (Edwards et al., 2021; Hung et al., 2014;
Morgenstern et al., 2017; Végtle et al., 2017, 2012).

The IM separates the IMS from the matrix. It contains several invaginations called cristae,
increasing the surface of the membrane. The IM is very densely populated with proteins, which
are estimated to make up half of its hydrophobic volume (Schlame, 2021). Among other
proteins, the complexes of the respiratory chain can be found in the IM. In contrast to the OM,
the IM is not permeable for ions, which is a key requisite for keeping the electrochemical
gradient that is required for ATP production and protein import (Mannella, 2006). In
trypanosomes and yeast, between 240 and 290 different IM proteins were detected (Da Cruz
and Martinou, 2008; Morgenstern et al., 2017; Niemann et al., 2013; Vogtle et al., 2017).
However, the number of IM proteins is likely higher; estimates are as high as 840 proteins
(Bohovych et al., 2015). In yeast, nuclear encoded IM proteins are mostly inserted into the IM
via the presequence pathway by the translocase of the inner mitochondrial membrane 22
(TIM22), while most mtDNA encoded IM proteins are inserted by the oxidase assembly (OXA)
complex (Schmidt et al., 2010; Stiller et al., 2016; Stuart, 2002). Matrix proteins can cross the
inner membrane through TIM23 (Sim et al., 2021; Sirrenberg et al., 1996).

The matrix is the viscous lumen encapsulated by the IM. It contains various enzymes,
metabolites and the mtDNA (Bogenhagen, 2012; Mazunin et al., 2015). The matrix proteome
contains around 500 different proteins, including several IM proteins with residues in the matrix
(Rhee et al., 2013). Many of these proteins contain an N-terminal mitochondrial targeting

sequence (MTS) and are imported via the presequence pathway (Figure 3).

1.1.2 Evolutionary origin

Mitochondria have an interesting evolutionary origin. They emerged from an endosymbiotic
event estimated to have occurred ~2 billion years ago, when an alphaproteobacterium was
taken up by an archaea (Dolezal et al., 2006; Gabaldén, 2021; Gargaud et al., 2011; Hedges
et al., 2004; Wang and Luo, 2021). Over a long time span mitochondria evolved from free-
living bacteria to the cellular organelles eukaryotes share today (Burki et al., 2020; Gabaldoén,
2021; Gargaud et al., 2011). The remaining mitochondrial DNA (mtDNA) is a direct
consequence of their bacterial origin (Mishra, 2017; Nass and Nass, 1963). However, almost
all mitochondrial genes have been transferred to the nucleus (Calvo and Mootha, 2010;
Friedman and Nunnari, 2014; Nunnari and Suomalainen, 2012). Human mtDNA encodes for
only 13 out of ~1°’500 known mitochondrial proteins (Calvo et al., 2016; Cotter et al., 2004;
Friedman and Nunnari, 2014; Pagliarini et al., 2008; Schmidt et al., 2010; Taylor et al., 2003).
The exact numbers differ between species, but in all eukaryotes only a small number of
proteins are encoded on the mtDNA. This means over 95% of all mitochondrial proteins are

encoded in the nucleus (Dolezal et al., 2006; Schmidt et al., 2010). These nuclear encoded



mitochondrial proteins are synthesized in the cytosol and subsequently imported into the

organelle, explaining why mitochondrial protein import is a crucial process for survival.

1.1.3 Mitochondrial proteostasis

Most studies on mitochondrial protein import have been conducted in yeast. Most
mitochondrial proteins are imported by TOM and subsequently either TIM22 or TIM23. Even
though the TOM complex was thought to be highly conserved, recent work has shown that
there are quite some variations in different eukaryotes such as kinetoplastids or plants (Ghifari
et al., 2018; Hoogenraad et al., 2002; Mani et al., 2015; Schneider, 2022). Thus, protein import
receptors evolved independently in different eukaryotic supergroups (Fukasawa et al., 2017;
Ghifari et al., 2018; Mani et al., 2015; Rout et al., 2021; Schneider, 2022; Vitali et al., 2018).

Figure 3: Dangers to mitochondrial proteostasis in yeast. Almost all mitochondrial proteins are
translated in the cytosol and subsequently imported into mitochondria. Proteins destined for the
matrix, or the IM often contain an N-terminal mitochondrial targeting sequence (MTS) that is
recognized by receptors on the OM surface, such as Tom70. These receptors direct the protein
through the mitochondrial protein import complexes TOM and TIM. Translocation through the OM and
IM is coupled and is driven by the membrane potential across the IM (Ay) and the ATP-driven
presequence translocase-associated motor (PAM). IMS and OM proteins mostly do not contain a
mitochondrial targeting sequence (MTS) and therefore use different import routes. The import IMS of
proteins is often associated with oxidative protein folding catalysed by Mia40. The import of OM and
IMS proteins usually depends on neither ATP nor the membrane potential across the IM. These

mitochondrial biogenesis pathways can be disturbed by various problems in the cytosol or inside



mitochondria. A selection of challenges to mitochondrial proteostasis is indicated in light boxes in this
figure (Boos et al., 2020).

As illustrated in Figure 3, several problems can occur during mitochondrial biogenesis that
affect mitochondrial proteostasis. A potential problem is that protein import does not function
properly. This can then lead to cytosolic aggregation of precursor proteins, mistargeting or
blocking of the import channel. Matrix proteins need to cross the OM and the IM and are
dependent on ATP and the IM potential for import. If there is too little ATP or the membrane
potential is lost, matrix proteins cannot be imported correctly. However, not all problems in
mitochondrial proteostasis are directly related to protein import. Misfolding, destabilisation or
aggregation of proteins can also occur independently from import. Normally, the levels of
mitochondrial proteins are regulated by synthesis and degradation. If this protein turnover is
disturbed, mitochondrial proteostasis is disrupted (Kowalski et al., 2018). To prevent damage
and to secure mitochondrial function, the cell has a network of different mitochondrial quality
control (MQC) pathways regulating proteostasis (Baker and Haynes, 2011; Fischer et al.,
2012; Quiles and Gustafsson, 2020). These pathways are often accompanied by nuclear
responses, upregulating a variety of factors involved in MQC (Callegari and Dennerlein, 2018).
It is important to mention that many of the quality control pathways introduced below are

interconnected (Fischer et al., 2012).
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1.2 The cytosolic proteasome in MQC

Proteasomes are large, multisubunit structures that are the main eukaryotic protein turnover
machineries. Besides in eukaryotes, they are also found in Archaea and in some Bacteria
(Becker and Darwin, 2016; Maupin-Furlow et al., 2006; Peters et al., 1994). The 26S
proteasome degrades proteins into 3 to15 amino acid long oligopeptides that are then further
degraded into individual amino acids by downstream proteases (Tanaka, 2009). Ubiquitin (Ub)
is used as a marker for proteins that are to be targeted for proteasomal degradation (Hershko
and Ciechanover, 1998). Ub is a 76 amino acid long protein that can be covalently bound to
other proteins or to itself. There are three proteins, which are involved in the ubiquitination
pathway: Ub-activating enzyme (E1), Ub-conjugating-enzyme (E2) and Ub-protein ligase (E3)
(Callis, 2014; Guo et al., 2023).

Figure 4: Schematic depiction of
the 26S proteasome. Classic
proteasomes have a symmetrical
structure consisting of a cylindrical
20S central particle (CP) with
regulatory proteins (RP) assembled
into base and lid subcomplexes
attached at both ends (Tanaka,
2009).

The symmetrical 2.5 mega Dalton proteasome complex consists of a central 20S central
particle (CP) that is capped by 19S regulatory proteins (RP), which are organized in a base
and a lid subcomplex on each side (Figure 4). The cylindrical 20S CP is made up of two inner
B-rings and two outer a-rings each of which contains seven a- or B-subunits (Figure 4). The
proteolytically active site is situated in the inner 3-rings, while the a-rings are a physical barrier,

blocking access of proteins to the proteolytically active site (Bochtler et al., 1999; Tanaka,
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2009). The main function of the lid subcomplex is to deubiquitinate the captured proteins, which
enables the recycling of Ub (Tanaka, 2009). RPs in the base subcomplex recognize and
capture polyubiquitinated proteins, unfold them and open the a-gate so that substrates can be
digested in the proteolytic centre (Tanaka, 2009). Generally, substrates subjected for
proteasomal degradation are ubiquitinated (Ciechanover and Schwartz, 1998; Guo et al.,
2023; Hershko and Ciechanover, 1998). However, it has been demonstrated that ubiquitination
is not an absolute prerequisite for proteasomal degradation (Baugh et al., 2009; Murakami et
al., 1992).

Due to its ability to degrade proteins quickly and specifically it is no surprise that the cytosolic
proteasome plays an important role in various MQC pathways, which will be discussed in the

following chapters.

1.2.1 UPR®™

Figure 5: Schematic overview
of the unfolded protein
response activated by
mistargeting of proteins
(UPR#™). Upon accumulation of
precursor proteins in the
cytosol, UPR@™ is triggered.
This leads to increased activity
of Irc25 and Poc4, which are
chaperones involved in
proteasome assembly leading
to higher proteasome
abundance. This speeds up the
degradation of the accumulated
proteins. It has been
demonstrated that increased
proteasome activity in
mammals is coupled to
downregulation of translation in
the cytosol. The molecular
mechanisms behind this
connection have yet to be
elucidated (Callegari  and
Dennerlein, 2018).
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The unfolded protein response activated by mistargeting of proteins (UPR2™) is a pathway
triggered upon the accumulation of cytosolic mitochondrial precursor proteins. It does not
appear to be substrate-specific. Rather it is a universal response to mitochondrial stress that
manifests in the accumulation of proteins in the cytosol. It has been demonstrated that UPR®™
can also be triggered by proteins and peptides that migrated from the IMS back to the cytosol
(Bragoszewski et al., 2015; Wasilewski et al., 2017). UPR®™ upregulates proteasome activity
by promoting proteasome assembly (Callegari and Dennerlein, 2018; Wasilewski et al., 2017;
Wrobel et al., 2015). This is achieved through increased activity of proteasome assembly
factors Irc25 and Poc4. These two proteins form a chaperone complex that is involved in the
assembly of a-subunits into the proteasome (Callegari and Dennerlein, 2018; Wrobel et al.,
2015). While most studies investigating UPR®™ were performed in yeast, increased
proteasome activity can also be detected in mammalian cells upon stress conditions in
proteostasis (Papa and Germain, 2014). In addition, there appears to be a pathway coupled
to mitochondrial stress conditions that decreases cytosolic translation (Topf et al., 2016; Wang
and Chen, 2015; Wrobel et al., 2015). The link between these two responses to mitochondrial
protein stress is not yet fully understood. However, it has been suggested that the
downregulation of translation in the cytosol is achieved by reducing the nuclear export of the
ribosomal 60S subunit (Wasilewski et al., 2017).

In summary, while the broad principles of UPR®™ and its role in reduction of stress is known,
there are still molecular mechanisms and interactions connecting this pathway to the network
of MQC that have yet to be elucidated.

1.2.2 VCP mediated MQC pathways

The cytosolic proteasome degrades proteins only when they are free in the cytosol.
Nonetheless, mitochondrial proteins can also be subjected to proteasomal degradation.
However, to become accessible for degradation, OM proteins need to be extracted from the
membrane. Membrane-extraction requires energy in the form of ATP and ATPases that
catalyse the process. There are two types of ATPases known to contribute to MQC by making
OM proteins accessible for proteasomal degradation: The valosin-containing protein (VCP,
homologs are also known as p97, Cdc48, TER94 or VAT) and mitochondrial sorting of proteins
1 (Msp1, homologous to ATAD1 in mammals) (Koller and Brownstein, 1987; Pamnani et al.,
1997; van den Boom and Meyer, 2018; Wohlever et al., 2017; Ye et al., 2017). VCP and Msp1
both belong to the group of ATPases associated with diverse cellular activities (AAA) (Hanson
and Whiteheart, 2005; Yedidi et al., 2017). While Msp1 is a membrane protein, VCP is a
soluble protein that resides in the cytosol. However, it has been shown that VCP in addition to

the cytosol localizes to the nucleus as well as to the cytosolic side of various organelles such
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as the endoplasmic reticulum (ER), Golgi, mitochondria, and endosomes (Acharya et al., 1995;
Latterich et al., 1995; Madeo et al., 1998; Rabouille et al., 1995; Ramanathan and Ye, 2012;
Xu et al., 2011). This demonstrates that VCP is involved in a variety of pathways associated
with different organelles. The molecular mechanisms underlying the interactions of VCP with
different organelles are not well understood but likely are mediated by specific adaptor proteins

on the organellar surface (Christianson and Ye, 2014; Ye et al., 2017).

Figure 6: The structure of VCP. A) Schematic depiction of domains within VCP. D1 and D2 are both
ATPase domains. B and C) Top and side view of the hexameric VCP complex in the ADP-bound
form. The six subunits labelled A-F, are also indicated in colours. The colour code of the scheme in
A) was applied to subunit A. (Ye et al., 2017)

Generally, VCP substrates are ubiquitinated and subjected to degradation by the cytosolic
proteasome. The interaction between VCP and ubiquitinated proteins is likely also mediated
by adapter proteins (Ye, 2006; Ye et al., 2017). However, a few substrates that are not
subjected to proteasomal degradation were found in the controversially discussed nuclear
function of VCP (Chang et al., 2021; Ndoja et al., 2014; Ramadan et al., 2007; Wilcox and
Laney, 2009; Ye et al., 2017). VCP has been shown to interact with several nuclear proteins.
Correct chromosomal segregation is promoted by VCP extracting the kinase Aurora B from
chromatin (Dobrynin et al., 2011; He et al., 2015; Ramadan et al., 2007). Mediator of DNA
damage checkpoint protein 1 (MDC1) is another VCP substrate (Chang et al., 2021).
Accumulation of MDC1 was observed in cells lacking a functional VCP, leading to expansion
of the nucleus (Chang et al., 2021). But VCP is not only involved in DNA maintenance and

segregation but also in transcription. It remodels repressor-promotor DNA complexes and
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strips transcription factors from the DNA (Ndoja et al., 2014; Wilcox and Laney, 2009). All these
pathways are located inside the nucleus and the proteins interacting with VCP are therefore
not available for proteasomal degradation. Their fate after their delocalisation by VCP is not

known.

Figure 7: Schematic overview of VCP involvement in MQC pathways. Left) Mitochondria-
associated degradation (MAD): Ubiquitin (Ub) is continuously covalently bound and detached from
integral outer mitochondrial membrane (OM) proteins. VCP is recruited to ubiquitinated proteins by
Doa1. The ubiquitinated proteins are extracted by VCP and degraded by the cytosolic proteasome
(Kramer et al., 2021). Middle) Mitochondrial protein translocation-associated degradation (mitoTAD):
Blockage of the translocase of the outer mitochondrial membrane (TOM) leads to the recruitment of
VCP by Ubx2. VCP removes the stalled protein and delivers it to the proteasome. Right) The ribosome
quality control pathway for mitochondrial polypeptides (mitoRQC) contains two alternative routes.
Vms1 (left) suppresses CAT-tailing by Rqc2. This supports the import and subsequent degradation
of the protein in the mitochondrial matrix. Ltn1 (right) allows ubiquitination of the CAT tailed protein,

which leads to its removal by VCP followed by proteasomal degradation. (P.-C. Liao et al., 2020)

As schematically illustrated in Figure 6A, VCP contains an N-terminal N domain, and the two
ATPase domains D1 and D2 that are connected by short linkers. VCP is present in a hexameric
complex (Figure 6 B, C). D1 and D2 are structurally similar but contribute to different functions
of VCP. While D1 is required for assembly into the hexameric complex and contributes to heat-

induced activity, D2 shows ATPase activity at physiological temperatures (Song et al., 2003;
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Wang et al., 2003). The N-domain is suggested to be present in two conformations, one of
which allows ATP hydrolysis while the other renders the complex inactive (Niwa et al., 2012).
Additionally, the N-domain has also been shown to be sensitive to pathogenic mutations (Wang
etal., 2016). The C-terminus of the protein is required for the stability of the hexameric complex
(Niwa et al., 2012).

There are three well described MQC pathways in which VCP extracts mitochondrial proteins
and feeds them to the cytosolic proteasome: Mitochondria-associated degradation (MAD),
mitochondrial protein translocation-associated degradation (mitoTAD) and the ribosome

quality control pathway for mitochondrial polypeptides (mitoRQC) (Figure 7).

1.2.2.1 MAD

MAD is often described as a MQC pathway subjecting defective or mislocalized OM proteins
for proteasomal degradation (Fang et al., 2015; Kramer et al., 2021). However, MAD is not
very precisely defined. Therefore, the pathways summarized as “MAD” vary between authors
(Kramer et al., 2021; P.-C. Liao et al., 2020; Wang and Walter, 2020). Mostly, MAD is defined
as a pathway with VCP functioning in a complex alongside Npl4 and Ufd1 to remove
ubiquitinated proteins from mitochondria, similar to their function in the ER-associated
degradation (ERAD) pathway (Nowis et al., 2006). MAD has mainly been studied in yeast but
homologous processes occur in mammals (Kramer et al., 2021; Tanaka et al., 2010).
Experiments in yeast found that the VCP-Ufd1-Npl4 complex is recruited to mitochondria by
Doa1 to remove various ubiquitinated OM proteins (Goodrum et al., 2019; Neutzner and Youle,
2005; Saladi et al., 2020; Wu et al., 2016) (Figure 7). OM proteins can be ubiquitinated by the
E3 Ub ligases Mdm30 and Rsp5 (Fritz et al., 2003; Goodrum et al., 2019; Nahar et al., 2020).
This Ub tail can be removed from proteins by the two deubiquitinating enzymes (DUBs) Ubp2
and Ubp12 (Nahar et al., 2020). The continuous cycle of ubiquitination and deubiquitination
controls the abundance, and hence, the activity of various OM proteins (Fritz et al., 2003;
Goodrum et al., 2019; Nahar et al., 2020).

Recent research demonstrated that IMS and matrix proteins can also be subject to VCP
assisted proteasomal degradation (P.-C. Liao et al., 2020). For this process to work, retro-

translocation from the matrix or the IMS, to the cytosol has to be postulated.

1.2.2.2 MitoTAD

Obstruction of the TOM complex is very harmful and demands immediate resolution. Two
pathways were described that unclog the TOM translocation pore. They work with the help of
either Msp1, which will be discussed later, or by VCP. The removal of stalled protein via VCP
is referred to as mitoTAD (Martensson et al., 2019). Ubx2 bound to the TOM complex plays a
pivotal role in this pathway because its exposed UBX domain functions as a binding site for

VCP (Martensson et al., 2019). Interestingly, Ubx2 can also be found on the ER, where it is a
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part of the ERAD pathway (Schuberth and Buchberger, 2005). VCP extracts and unfolds the
clogged proteins, rendering the TOM complex functional again. The extracted proteins are
subjected to degradation by the proteasome (Martensson et al., 2019). Experiments in
mammalian cells have determined that the ubiquitination of precursor proteins at the TOM
complex is regulated by the E3 Ub ligase March5 and the deubiquitinating enzyme USP30
(Ordureau et al., 2020; Phu et al., 2020). While ubiquitination of precursor proteins targets
them for degradation, deubiquitination promotes their import (Ordureau et al., 2020; Phu et al.,
2020). However, it has not yet been shown whether Mdm30, Ubp2 and Ubp12 perform a similar
function in yeast (den Brave et al., 2021). Vice versa, it is yet to be determined if VCP is also

involved in unclogging of mammalian TOM (den Brave et al., 2021).

1.2.2.3 MitoRQC

MitoRQC has been characterized in yeast and describes the rescue of polypeptides stalled in
the cytosolic ribosome at mitochondria (Izawa et al., 2017). There are two mitoRQC pathways,
dependent on the presence or absence of Vms1. Several mitochondrial proteins are imported
co-translationally. Such co-translational import is facilitated by Vms1, Ltn1 and Rqc2 bound to
the 60S ribosome at the OM (Izawa et al., 2017). Mistakes in this process lead to the formation
of ribosome-stalled polypeptide aggregates at the OM (Shen et al., 2015). Under such
conditions Rqc2 adds C-terminal alanyl/threonine residues (CAT-tails) to the stuck proteins
(Shen et al., 2015). Vms1 prevents CAT-tailing by separating Rqc2 from the 60S ribosome.
This promotes the import of proteins into mitochondria, where they can either be folded or are
subjected to downstream intramitochondrial MQC pathways (Ng et al., 2021). In the absence
of Vms1, CAT-tails can be attached to the stalled polypeptide by Rqc2. CAT-tails do not contain
lysins themselves, nonetheless, they promote ubiquitination of C-terminal lysine residues of
the stuck protein by the E3 ligase Ltn1 (Izawa et al., 2017; Sitron and Brandman, 2019). The
ubiquitinated protein is extracted by VCP and subjected to degradation by the cytosolic
proteasome (lzawa et al., 2017). Despite mitoRQC not being described in mammals yet, there
are several indications that the Vms1 homolog ankyrin repeat and zinc-finger-domain-
containing 1 (ANKZF1) might be involved in a similar mitochondria-associated RQC in
mammals (Haaften-Visser et al., 2017; Kuroha et al., 2018; Verma et al., 2018; Yip et al.,
2019).

1.2.3 Msp1 mediated MQC pathways

Similar to VCP, Msp1 is an ATPase that facilitates the degradation of nonfunctional OM
proteins via the cytosolic proteasome (Wohlever et al., 2017). However, unlike soluble VCP,
Msp1 is anchored in the OM by a single a-helical TMD (Wohlever et al., 2017). It can be found
in the OM and on peroxisomes (Y.-C. Chen et al., 2014; Okreglak and Walter, 2014). It has
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been shown that peroxisomal proteins, that are mislocalized to mitochondria, are targeted for
degradation by Msp1, whereas if the same proteins are correctly localized to peroxisomes,
they are not. A great variety of proteins need to be targeted for degradation by both
mitochondrial and peroxisomal Msp1. It is therefore interesting to investigate how Msp1
substrates are recognized. It has been proposed that Msp1 contacts substrate proteins directly
by hydrophobic amino acids in its N-domain and that Msp1 substrates contain a extraction
signal that Msp1 directly recognizes if the protein is orphaned, and thus not integrated in a
complex (Figure 8) (Dederer et al., 2019; Li et al., 2019; Okreglak and Walter, 2014; Weir et
al., 2017). This implies that when the substrate is in a complex, the extraction signal is shielded
by interacting proteins. The extraction signal is likely a hydrophobic region in proximity to the
transmembrane domain (TMD) of substrate proteins (Li et al., 2019). However, among all
identified Msp1 substrates, Pex15 is the only protein that contains a clear extraction signal of
this type, it is therefore clear that other recognition mechanisms exist (Wang and Walter, 2020).
Msp1 might not always require specific extraction signals, the mere presence as an orphaned
protein in the organellar membrane might be sufficient to trigger Msp1-assissted degradation
of the protein (Dederer et al., 2019; Wang and Walter, 2020).

The mechanisms of AAA ATPases such as Msp1 have been studied intensively (Augustin et
al., 2009; Hanson and Whiteheart, 2005). AAA ATPases classically contain an N-domain
followed by one or two AAA domains. While the ATPase AAA domains are highly conserved
and convert ATP hydrolysis to a mechanical force, the N-domains responsible for substrate

recognition are much less conserved (Puchades et al., 2020).

The N-domain of Msp1 consists of a TMD and a linker domain (LD) (Figure 8 A). It allows
recognition and extraction of a diverse set of substrates (L. Wang et al., 2020; Wang and
Wallter, 2020). The LD domain consists of two a-helices (a0 and a1) and two loops (L1 and
L2). a0 and L1 form a fishhook-shaped structure, similar to the one in katanin, another AAA
protein (Figure 8 A) (Wang and Walter, 2020; Zehr et al., 2017). It has been suggested that
the melting and refolding of a0 allows Msp1 to dynamically adapt during translocation of
substrates (Wang and Walter, 2020). Like other AAA ATPases, Msp1 functions in a hexameric
complex. Whether Msp1 in the OM assembles into a complex only upon the binding of a
substrate or whether the substrate is recruited to preassembled Msp1 hexamers is presently
unknown (Wang and Walter, 2020; Wohlever et al., 2017).
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Figure 8: Structure of the Msp1 hexamer. (A) Schematic representation of domains and structural
elements within Chaetomium thermophilum Msp1. (B, C) Cryo-electron microscopy, top and side view
of the C. thermophilum Msp1 hexameric complex in open and closed conformation, respectively. Both
structures lack 30 amino acids on the N terminus consisting of the TMD. Msp1 subunits (M1 — M6)
are shown in different colours, while the substrate is depicted in black. ATP, ADP, and Apo in brackets
indicate the nucleotide bound to the subunit. Apo means that there is no nucleotide bound. The
dashed line indicates the spiral seam of the open conformation. In B, subunit M1 is depicted with two
colours indicating two different thresholds: solid pink indicates o = 5.3 which is also how the other
subunits are displayed, translucent pink indicates o = 2.5. This suggests that M1 does not dissociate
from the complex completely but is rather flexible (L. Wang et al., 2020; Wang and Walter, 2020).

19



Using cryo-electron microscopy (EM) the structure of a N-terminally truncated Chaetomium
thermophilum Msp1 (A30-Msp1) hexameric complex with a peptide substrate was resolved (L.
Wang et al., 2020). An open and a closed complex conformation was observed (Figure 8 B,
C) (L. Wang et al., 2020). The open conformation is characterized by an open seam between
the M1 and M6 subunits forming a right-handed open spiral (Figure 8 B). If the A30-Msp1
complex is in its closed conformation, the seam of the spiral is closed by subunit M1 (Figure 8
C). In the closed state, the M1 subunit has a low cryo-EM density, which suggests that M1 is
flexible and present in a variety of states (Wang and Walter, 2020). The investigated A30-Msp1
hexamer contained a 10 amino acid peptide in the central cavity (Figure 8 B, C, indicated in
black). This short peptide probably originated from Escherichia coli and copurified with A30-
Msp1 (L. Wang et al., 2020).

Figure 9: Schematic depiction of Msp1 extracting a peptide. The mechanistic model for Msp1
extraction contains three major steps as illustrated. This model was developed based on the EM data
shown in Figure 8, therefore the transmembrane domains (TMDs) of Msp1 are not shown. A)
Schematic depiction of nucleotide communication loop (NCL) that mediates communication between
the six Msp1 subunits. Dislodged NCLs are outlined with dashed lines. The disordered subunit in the
closed state is also outlined with dashed lines. B) Schematic depiction of substrate translocation
during Msp1 extraction from the OM. lllustrated are the disengagement of M6’s pore-loops 1 and two
and the subsequent engagement of them at the M1 position. The disordered subunit as well as the

disordered pore-loops are outlined in dashed lines. (L. Wang et al., 2020)

20



The detection of two different conformations of the A30-Msp1 complex raises the question of
the function of these two distinct states. A possible explanation is that in the open conformation,
Msp1 is ready to integrate substrates into the middle of the hexamer through the open seam
(Wang and Walter, 2020). This would favour the model of a preassembled Msp1 complex.
Furthermore, it has been suggested that Msp1 alternates between open and closed

conformation during the extraction of substrate proteins (Figure 9) (L. Wang et al., 2020).

Msp1 is a key player in two further MQC pathways: The Msp1-linked MAD pathway and the

mitochondrial compromised import response (mitoCPR).

Figure 10: Schematic overview of Msp1 involvement in MQC pathways. Left) Schematic
depiction of the Msp1-dependent mitochondria-associated degradation (MAD) pathway. Msp1
extracts tail-anchored (TA) proteins from the OM. They are transferred to the endoplasmic reticulum
(ER) where they either travel to their correct target organelle or targeted for degradation via the ERAD
machineries. Right) Schematic depiction of the mitochondrial compromised protein import response
mitoCPR. Upon stalling of the TOM complex, Msp1 is recruited via Cis1. Msp1 is capabale of
extracting stalled precurser proteins from the TOM complex and forwarding them to the proteasome
for degradation. The molecular mechanisms of how proteins are targeted to the proteasome have yet

to be determined.
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1.2.3.1 MAD

Msp1 removes mislocalised tail anchored (TA) proteins from the OM in a pathway that is also
referred to as MAD (Y.-C. Chen et al., 2014; Okreglak and Walter, 2014). It is an alternative
pathway to the previously discussed VCP-linked MAD pathway. The Msp1-linked MAD
pathway has been suggested to remove mislocalized TA proteins from the OM, before they
are reintroduced into the ER membrane from where they are either targeted towards their
correct organellar localisation or subjected for degradation using the ERAD system. One
example for re-localisation is the Golgi protein Gos1. Mitochondrial mis-localisation of Gos1
results in its removal from the OM by Msp1. Gos1 is then directed to the ER but escapes
degradation. Instead, it is re-localised to the Golgi apparatus, which is where it normally
localizes (Y.-C. Chen et al., 2014). In the case Msp1 substrates get degraded after ER
targeting, they are ubiquitinated by a complex containing Ubc7, Cue1, Ubc6 and Doa10. The
ubiquitinated proteins are then removed by the VCP-Ufd1-Npl4 complex and degraded by the
cytosolic proteasome (Dederer et al., 2019; Matsumoto et al., 2019) (Figure 10 A). However,
while this pathway was convincingly demonstrated for the Msp1 substrate Pex15A30, it is
unclear whether all Msp1 substrates are following this route for degradation (Matsumoto et al.,
2019). It seems energetically inefficient to extract the same substrate from two different
membranes instead of only one. However, the possibility to correct the localisation of proteins
such as Gos1 may be a big advantage for the cell (Wang and Walter, 2020). There is another
challenge; it is unlikely for membrane proteins to shuttle through the cytosol without
chaperones. It was therefore suggested that the OM extraction of proteins by Msp1 is
connected to a membrane protein shuttling system, such as the GET pathway. However, how
exactly proteins move from the OM to the ER has yet to be elucidated (Wang and Walter,
2020).

1.2.3.2 MitoCPR

As previously mentioned, mitoTAD is not the only pathway that can clear the TOM complex
from stalled precursor proteins. The other pathway that clears the TOM via Msp1 is called the
mitochondrial compromised protein import response (mitoCPR) and has been discovered in
yeast. In this pathway the accumulation of unimported mitochondrial proteins in the cytosol
triggers the expression of Cis1 (Boos et al., 2019; Weidberg and Amon, 2018). Cis1 is a soluble
cytosolic protein, that interacts with Tom70 and Msp1and recruits Msp1 to stalled import
complexes. Subsequently Msp1 extracts the stalled precursor protein from the import
machinery allowing its proteasomal degradation (Figure 10) (Basch et al., 2020). It is not yet
well understood how Msp1 gains access to the stalled intermediate. The involvement of as yet
undiscovered factors seems likely (Wang and Walter, 2020). It has been shown that upon the
overexpression of Cis1, Msp1 is hindered in its function of extracting mislocalized proteins

(Weidberg and Amon, 2018). This indicates that Cis1 forces Msp1 to exclusively localize at the
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TOM complex, preventing function outside the mitoCPR pathway (Weidberg and Amon, 2018).
How extracted precursors reach the proteasome is not completely understood. Msp1 has been
shown to directly interact with proteasomal subunit Rpn10 (Basch et al., 2020). This suggests
that Msp1 might directly pass substrate proteins to the proteasome (Basch et al., 2020). It is
worth mentioning that it is not yet known how conserved mitoCPR is, as there are no obvious
Cis1 orthologs in mammals. However, it is possible that another adaptor protein might be used
to connect TOM and Msp1, or that Msp1 is able to interact with TOM independent of adaptors
(Wang and Walter, 2020).

Both described Msp1 pathways, MAD and mitoCPR have been characterized in yeast under
stress conditions. Thus, little is known about the activity of Msp1 in the cell under physiological

conditions in the absence of stress (Wang and Walter, 2020).
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1.3 Mitochondrial proteases in MQC

Defective mitochondrial proteins are not exclusively degraded by the cytosolic proteasome;
mitochondria harbour various proteases themselves. These mitochondrial proteases are
involved in different pathways regulating mitochondrial proteostasis. However, their role is not
limited to MQC. They also have a variety of crucial regulatory functions in mitochondria
(Deshwal et al., 2020). However, this differentiation is difficult to make, as these functions and
pathways are all interconnected. In the context of this thesis, the focus will lay solely on the
MQC functions of mitochondrial proteases. Figure 11 provides an overview of different
mitochondrial proteases involved in MQC. ATP-dependent proteases in mitochondria
assemble into mono- or multimeric cylindrical complexes. Two of these complexes, the IMS
facing-AAA (i-AAA) and the matrix facing AAA (m-AAA), are localized in the IM, while Lon
protease 1 (LONP1) and CLPXP reside in the matrix (Levytskyy et al., 2017). The proteases
HtrA serine peptidase 2 (HTRA2) and ATP23 metallopeptidase and ATP synthase assembly
factor homolog (ATP23) reside in the IMS (Figure 11).

Figure 11: Mitochondrial proteases in MQC. Mitochondrial proteases degrade damaged or
misfolded proteins in the IMS and the matrix. In the matrix, the m-AAA, CLPXP and LONP1 complexes
monitor mitochondrial proteostasis by degrading damaged proteins and turning over metabolic
enzymes. CLPXP consists of the Ser protease ATP-dependent Clp protease proteolytic subunit
(CIPP) and the chaperone ATP-dependent Clp protease ATP-binding subunit ClpX-like (CLPX). The
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different complexes of the electron transport chain in the IM are partially maintained by LONP1 and
m-AAA. Peptides residing in the matrix that result from protein digestion, can either be exported and
further be processed in the cytosol or degraded into single amino acids by the oligopeptidase
presequence protease (PITRM1). In the IMS, damaged proteins can be degraded by HTRA2. The
electron transport chain is maintained on the IMS side by ATP23 and i-AAA. The role of ATP23 is yet
to be elucidated. Digested IMS proteins are exported as peptides to the cytosol for further digestion.
(Quirds et al., 2015)

1.3.1 Quality control in the IMS

The i-AAA complex in the IM is facing the IMS and consists of six YME1L (yeast mtDNA escape
1-like) subunits (Puchades et al., 2017). The main substrates of i-AAA are membrane-
embedded proteins (Stiburek et al., 2012). The high temperature requirement mitochondrial
serine protease A2 (HTRA2) and ATP23 are other mitoproteases located in the IMS. The C-
terminus of HTRA2 harbours a PDZ interaction motif. PDZ domains generally interact with a
short region of the C-terminus of other specific proteins. Upon release into the cytosol, HTRA2
contributes to apoptosis (Hartkamp et al., 2010; Vande Walle et al., 2008). ATP23 has been
primarily studied in yeast and is involved in various processes including precursor protein
processing, chaperone activity and protein turnover control (Mossmann et al.,, 2012).
Furthermore, it is a crucial element in the process of ATP synthase assembly (Osman et al.,
2007; Zeng et al., 2007). Additionally, ATP23 is involved in the degradation of the IMS protein
Ups1 (Potting et al., 2010). While ATP23 has been well characterized in yeast, its function in
mammals remains largely elusive to date. However, the role of ATP23 is likely not conserved,
as alignment of the yeast ATP23 protein sequence with fungal, animal and plant homologues
revealed high amino acid variation at the N terminus of the protein (Zeng et al., 2007).
Furthermore, Arabidopsis thaliana ATP23 cannot complement lack of yeast ATP23 in yeast

(Migdal et al., 2017). The further quality control functions of ATP23 remain elusive.

1.3.2 Quality control in the matrix

The integral IM protease m-AAA is degrading proteins in the matrix. The primary substrates of
m-AAA are IM proteins with a matrix exposed domain. Whether a protein is a substrate for i-
AAA or m-AAA depends on whether the recognition site for the protease is on the IMS or the
matrix side of the IM. In contrast to i-AAA, m-AAA subunits contain not only one but two TMDs
(Leonhard et al., 2000). The IM harbours two different m-AAA isoforms containing distinct
subunits. One isoform is a homo-oligomer consisting of AFG3-like subunit 2 (AFG3L2), and
the other is hetero-oligomeric, composed of AFG3L2 and Paraplegin subunits (Koppen et al.,
2007). The abundance of these two isoforms is cell type dependent and heteromeric

complexes are more abundant in neuron cells (Koppen et al., 2007).
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The soluble matrix ATPase LONP1 forms homohexameric complexes (Vieux et al., 2013). It
contains three highly conserved domains: the N-terminal domain, the Walker-type AAA+
domain and the P-domain (M. Shin et al., 2021). The function of the three domains is similar
to other AAA ATPases: The N-domain is used to recognize substrates, the AAA+ domain binds
and hydrolyses ATP and the P domain harbours the proteolytically active site. LONP1
participates in maintaining mitochondrial proteostasis by digesting a subset of proteins (Zurita
Renddn and Shoubridge, 2018). Furthermore, it is involved in the maintenance of several
mitochondrial respiratory chain complexes (Besse et al., 2020; Bezawork-Geleta et al., 2014;
Pryde et al., 2016). Interestingly, independent of the protease activity, LONP1 is suggested to
have a chaperone-like activity in the assembly of oxidative phosphorylation (OXPHOS)
complexes (Kao et al., 2015; C.-S. Shin et al., 2021; Sung et al., 2018).

Figure 12: Schematic
depiction of the CLPXP
complex. The CLPP heptamers
form a central barrel containing
the proteolytic ceter. Each site
of the CLPP barrel harbours a
CLPX  hexamer for the
recognition and unfolding of
substrates. (Lakemeyer et al.,
2019)

The CLPXP complex consists of two heptamers containing proteolytic caseinolytic peptidase
subunit P (CLPP) and two hexamers of caseinoltic peptidase subunit X (CLPX) (Figure 12)
(Kang et al., 2005; Tremblay et al., 2020). Both CLPP and CLPX are nuclear encoded and
contain an N-terminal MTS (Fischer et al., 2013). The C-terminus of CLPP is suggested to
promote heptameric assembly and the interaction with CLPX (Fischer et al., 2015). CLPP can
form stable homo-heptamers. However, these complexes do not possess ATPase activity and
therefore cannot hydrolyse peptides longer than six amino acids (Gispert et al., 2013). CLPX
can form a hexamer independently from CLPP that is stabilized by binding ATP (Stahl and

Sieber, 2017). It is also known to have chaperone activity and stabilizes a number of proteins
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(Kasashima et al., 2012; Nouri et al., 2020; Rondelli et al., 2021). When assembled into
CLPXP, two CLPP heptamers form a central barrel with a CLPX hexamer on each end (Amor
et al., 2019). While CLPX identifies and unfolds substrates, the proteolytic cavity within the
centre of the CLPP barrel degrades the substrate into short polypeptides (Figure 12) (Amor et
al., 2019; Sha et al., 2020). CLPXP participates in MQC by degrading misfolded or damaged
proteins, and also regulates the levels of a variety of proteins in different mitochondrial
pathways, including the tricarboxylic acid cycle, the respiratory chain, protein import and other
metabolic processes (Al-Furoukh et al., 2014; Fischer et al., 2015; Seo et al., 2016; Stahl et
al., 2018; van Ginkel et al., 2018). Interestingly, the expression of CLPXP is increased upon
mitochondrial stress (Cormio et al., 2017; Wong and Houry, 2019). Furthermore, CLPXP is
also linked to supporting UPR (Al-Furoukh et al., 2015; Deepa et al., 2016).
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1.4 Nuclear responses to mitochondrial stress

Mitochondrial stress is resolved by a combination of pathways described previously. In order
to assist the restoration of proteostasis, the cell upregulates the transcription of various
proteins, which are involved in MQC. The connection between mitochondrial stress and the
increased transcription of MQC components is best understood in a pathway called the
mitochondrial unfolded protein response (UPR™). This pathway is triggered by mitochondrial
dysfunction and leads to increased transcription of UPR™ genes coding for mitochondrial
chaperones, mitochondrial proteases, reactive oxygen species (ROS) detoxifying enzymes
and compartments of the mitochondrial import machinery (Melber and Haynes, 2018). After
translation, these proteins enter the damaged mitochondria to restore their functionality. UPR™
was first discovered in mammalian cells, which upon depletion of mtDNA increased the
expression of mitochondrial chaperones and proteases (Martinus et al., 1996). A similar
response could be detected in cells expressing dysfunctional matrix proteins (Zhao et al.,
2002). It has been suggested that the dysfunctional proteins overload the capacity of
mitochondrial chaperones (Melber and Haynes, 2018; Yoneda et al., 2004). In summary, these
results suggested a link between mitochondrial function and the expression of UPR™ genes
(Melber and Haynes, 2018). UPR™ was further characterized in Caenorhabditis elegans as
well as in mammalian cells. A variety of chemical, genetic as well as proteotoxic stress factors
were demonstrated to induce the transcription of UPR™ genes (Desjardins et al., 1985;
Martinus et al., 1996; Yoneda et al., 2004). Additionally, compromising the function of various
mitochondrial proteins involved in mitochondrial protein import, oxidative phosphorylation,
coenzyme Q biosynthesis or lipid biogenesis also triggers UPR™ (Baker et al., 2012; Durieux
et al., 2011; Kim et al., 2016; Nargund et al., 2012; Yoneda et al., 2004).The same is also true
for disruption of the electron transport chain as well as inhibition of mitochondrial ribosomes
(Moullan et al., 2015; Nargund et al., 2012).
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Figure 13: The mitochondrial unfolded protein response (UPR™) in Caenorhabditis elegans
(left) and in mammals (right). Left panel: In C. elegans UPR™ gene expression is mediated by the
transcription factor ATFS1. ATFS1 harbours a mitochondrial targeting sequence (MTS) in addition to
a nuclear localisation sequence (NLS). ATFS1 is imported into healthy mitochondria, where it is
subsequently degraded by the LON protease in the matrix. However, if the import efficiency of
mitochondria is reduced and ATFS1 fails reach mitochondria, ATFS1 is imported into the nucleus.
Nuclear ATFS1 induces the transcription of UPR™ genes, which include mitochondrial chaperones,
mitochondrial proteases, ROS detoxification enzymes and components of the mitochondrial import
machinery. The import of these factors into stressed mitochondria promote their recovery and
stabilization. Right panel: In mammals the expression of UPR™ genes is entangled with the integrated
stress response (ISR). Mitochondrial dysfunction leads to the phosphorylation of the translation
initiation factor elF2a via GCNZ2, or one of the other elF2a-specific kinases (PERK, PKR, or HRI).
Phosphorylation of elF2a activates ISR and reduces overall translation but increases the translation
of mRNAs containing small upstream open reading frames (UORFs) in the 5" untranslated region
(UTR). The mRNAs of the transcription factors CHOP, ATF4 and ATF5 all contain multiple such
UOREFs and therefore their translation is increased upon mitochondrial stress (inset). All three of these
transcription factors are necessary to activate UPR™ gene transcription. CHOP and ATF4 promote
the transcription of ATF5. ATF5 contains an MTS as well as an NLS, similar to ATFS1 in C. elegans,
and is therefore also monitoring mitochondrial import efficiency. The exact relationship between
CHOP, ATF4 and ATF5, and the molecular principles underlaying their activity during mitochondrial
stress, has yet to be elucidated. (Melber and Haynes, 2018)
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1.4.1 UPR™ in C. elegans

A multitude of factors directly control UPR™, one of which is the basic leucine zipper (bZIP)
transcription factor ATFS-1 (Figure 13, left). Upon nuclear import of ATFS-1, it promotes the
transcription of UPR™ genes (Nargund et al., 2015). However, in addition to a nuclear
localization sequence, ATFS-1 also contains a MTS (Haynes et al., 2010). Under non-stress
conditions, ATFS-1 is effectively imported into the mitochondrial matrix, where it is degraded
by the LON protease. Multiple forms of mitochondrial dysfunction lead to impaired
mitochondrial protein import, which results in ATFS-1 not being efficiently imported into
mitochondria (Narendra et al., 2010; Nargund et al., 2012; Wright et al., 2001; Wrobel et al.,
2015). This leads to the nuclear localization of ATFS-1, where it activates the expression of
UPR™ genes (Figure 13, left). Therefore, mitochondrial import efficiency is used by the cell as
a measure of mitochondrial fitness. In that sense, ATFS-1 is serving as a sensor as well as a

communicator between mitochondria and the nucleus (Melber and Haynes, 2018).

However, this model raises a question: If AFTS-1 promotes the expression of UPR™ genes,
upon mitochondrial import deficiency, how do these proteins get inside mitochondria? There
are two answers to this question. First, some of the genes that are upregulated by AFTS-1,
code for components of the mitochondrial import machinery (Nargund et al., 2012). Therefore,
activation of UPR™ rapidly enhances the mitochondrial import capacity. Second, MTS used by
mitochondrial chaperones and proteases are predicted to be more efficient than the one of
ATFS-1 (Dinur-Mills et al., 2008; Fukasawa et al., 2015).

In the last decade, it has become apparent that mitochondrial stress-induced chromatin
remodelling is required for UPR™ activation (Lorch and Kornberg, 2015; Merkwirth et al., 2016;
Tian et al., 2016). UPR™ gene expression is dependent on the histone methyltransferase,
MET-2, the nuclear co-factor LIN-65 and two jumonji domain histone demethylases, JMJD-3.1
and JMJD1-.2 (Merkwirth et al., 2016; Tian et al., 2016). Mitochondrial stress activates MET-2
as well as the histone demethylases (Melber and Haynes, 2018). LIN-65 and MET-2 stimulate
chromatin condensation. The homeobox protein DVE-1 and the Ub-like protein UBL-5 stabilize
this chromatin state and both of these proteins are also required for the activation of UPR™
(Benedetti et al., 2006; Haynes et al., 2007; Tian et al., 2016). The promotors of UPR™ genes
are kept in a transcriptionally competent state by JMJD-3.1 and JMJD1-.2. Strikingly, these
two histone demethylases are capable of inducing UPR™ independent of ATFS-1 (Merkwirth
et al., 2016).

Furthermore, using endocrine signalling, the activation of UPR™ can also be communicated
between cells and tissues. This has been studied using a variety of neuronal-specific
mitochondrial stressors, which leads to intestinal UPR™ (Durieux et al., 2011; Shao et al,,

2016). Additionally, upon the expression of mutant huntingtin protein in neurons, serotonin
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dependent UPR™ was observed at other sites of C. elegans (Berendzen et al., 2016). These
results suggest that the induction of UPR™ via endocrines or mitokines could be used to
coordinate the stress response between tissues. Therefore, it could also serve as an early

warning system (Melber and Haynes, 2018).

1.4.2 UPR™ in mammals

In mammals the bZIP transcription factor ATF5 functions analogous to C. elegans ATFS-1
(Figure 13, right) (Fiorese et al., 2016). In ATFS-1-less C. elegans, the expression of ATF5
restores the activation of UPR™ (Fiorese et al., 2016). ATF4 and CHOP, which both are bZIP
transcription factors as well, also contribute to the activation of UPR™ (Martinez-Reyes et al.,
2012; Michel et al., 2015; Quirds et al., 2017; Silva et al., 2009; Tyynismaa et al., 2010). Activity
of the integrated stress response (ISR) is required for UPR™ in mammals because the
expression of ATF5, ATF4 and CHOP depends on it (Teske et al., 2013; Zhou et al., 2008).
Phosphorylation of elF2a by one of four kinases activates ISR (Pakos-Zebrucka et al., 2016).
Each of these ISR kinases reacts to specific stressors. Triggers for ISR include unfolded
proteins, double stranded RNA, heme depletion, mitochondrial stress, amino acid depletion,
ROS, and ribosome stalling (Baker et al., 2012; Barbosa et al., 2013; Pakos-Zebrucka et al.,
2016). While IRS supresses protein synthesis in general, it stimulates the translation of mMRNAs
containing small upstream open reading frames (UORFs) in the 5’ untranslated region (UTR)
(Figure 13, inset) (Melber and Haynes, 2018; Pakos-Zebrucka et al., 2016). Because the 5
UTR of their mRNAs contains such uORFs, ATF4, ATF5 and CHOP require elF2a
phosphorylation for their translation. Interestingly, in nematodes, UPR™ functions
independently of elF2a phosphorylation (Baker et al., 2012). The exact molecular mechanisms
underlaying the relationships between ATF4, ATF5 and CHOP are yet to be elucidated. In
conditions unrelated to mitochondrial stress, ATF5 expression is regulated by ATF4 and CHOP
(Teske et al., 2013; Zhou et al., 2008). Upon expression and nuclear localization, ATF5 can
activate UPR™. Nonetheless, ATF4 and CHOP are also hypothesized to directly participate in
adapting transcription to mitochondrial stress (Melber and Haynes, 2018). Interestingly,
mechanistic target of rapamycin complex 1 (nTORC1) has also been suggested to participate
in UPR™M regulation through uORF-mediated regulation of translation. Activity of mTORCA1
promotes translation, while inhibition of mTORC1 activity leads to reduced protein synthesis
(Magnuson et al., 2012; Thoreen et al., 2012; Zhao et al., 2015). Increased mTORC1 activation
increases ATF5 and ATF4 activity (Khan et al., 2017). The mechanisms underlaying mTORC1
stimulation during mitochondrial stress and how or whether mTORC1 is connected to the ISR

to regulate UPR™ are yet to be elucidated.
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1.5 Mitochondrial-derived vesicles

Another control system to combat proteotoxicity is to selectively bud off damaged proteins via
mitochondrial-derived vesicles (MDVs). This defence mechanism seems to be derived from
the bacterial ancestors of mitochondria (Sugiura et al., 2014). MDVs are usually 50-200 nm in
diameter and transport mitochondrial cargo to lysosomes and peroxisomes (Popov, 2022;
Soubannier et al., 2012a). They also have crucial roles in many diseases such as myocardial
ischemia, neurodegenerative diseases or cancer, to name just a few (Konig et al., 2021; Li et
al., 2020; Matheoud et al., 2019, 2016; Poillet-Perez and White, 2021; Popov, 2022; Sugiura
et al., 2014; Towers et al., 2021). MDVs can bud off as single- or double-membrane-bound
vesicles upon mild oxidative stress and transport oxidized proteins to lysosomes for
degradation (Figure 14) (Picca et al., 2019; Ramirez et al., 2022; Soubannier et al., 2012b).

Most studies investigating MDVs have been conducted in mammals (Collier et al., 2023).

Figure 14: Schematic depiction of pathways involving mitochondrial-derived vesicles (MDVs).
MDVs are used for signalling as well as for quality control and immune responses. They transport
mitochondrial proteins and lipids to peroxisomes, lysosomes or multivesicular bodies. The different
pathways which are utilizing MDVs are indicated in blue boxes. Abbreviations: ER (endoplasmic
reticulum), MAPL (mitochondria-associated protein ligase), Pex (peroxisome biogenesis factors),
SOD2 (superoxide dismutase 2), MQC (mitochondrial quality control), MitAP (mitochondrial antigen
presentation). (Collier et al., 2023)
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MDVs containing TOM20 are generated by tubulation of the mitochondrial membranes via
mitochondrial Rho GTPases (MIRO) 1 and 2 and subsequent scission mediated by dynamin-
related protein 1 (DRP1) (Konig et al., 2021). Alternatively, MDVs can form upon mitochondrial
reconstitution of clathrin (Kiiey et al., 2022). Clathrin is a protein that plays a pivotal role in the
formation of various vesicles by inducing budding via coating of a bulge in the membrane
(Pearse, 1976; Royle et al., 2005). The pathway transporting cargo from mitochondria to
peroxisomes has been demonstrated to depend on retromers (Neuspiel et al.,, 2008;
Soubannier et al., 2012a). Retromers are large protein complexes that are also involved in
shuttling membrane proteins between the Golgi and endosomes (Burd and Cullen, 2014).
Additionally, there is a pathway of peroxisome-bound MDVs that generates new peroxisomes
(Sugiura et al., 2017). Peroxins Pex3 and Pex14 are localized to mitochondria in the absence
of peroxisomes (Sugiura et al., 2017). MDVs containing Pex3 and Pex14 fuse with ER-derived
vesicles containing Pex16. Interestingly, the presence of these three proteins, which are then
capable of importing other peroxisomal proteins, is sufficient to generate a new peroxisome
(Figure 14) (Sugiura et al., 2017).

The ability of MDVs to selectively load and transport cargo proteins to specific compartments
implies they can also function in signalling. MDVs take part in the adaptive immune response
via mitochondrial antigen presentation (MitAP). They transport antigens to endolysosomes,
where they are processed to be presented on the cellular surface via major histocompatibility
complex (MHC) class | (Matheoud et al., 2019; Towers et al., 2021). MDVs also contribute to
the innate immune system by transporting mitochondrial superoxide dismutase 2 (SOD2) to
phagosomes, which helps to combat invading bacteria, and also by delivering proinflammatory
mitochondrial components to lysosomes (Figure 14) (Abuaita et al., 2018; Todkar et al., 2021).
Interestingly, different pathways mediate the generation of lysosome-bound MDVs under
varying circumstances (Collier et al., 2023). Phosphatase and tensin homolog-induced kinase
1 (PINK1) and Parkin mediate MDVs to fuse with phagosomes or lysosomes (Abuaita et al.,
2018; Ryan et al., 2020). Other mechanisms target them towards multivesicular bodies, which
leads to inflammation by releasing mitochondrial damage-associated molecular patterns
(DAMPs) via extracellular vesicles (Todkar et al., 2021). Thus, there is a tight connection of

MDVs with the immune response (Collier et al., 2023).
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1.6 Mitophagy

Defective mitochondria that despite the various MQC pathways cannot be rescued by the
repair pathways mentioned above pose a threat to the cell and are targeted for mitochondrial
autophagy (mitophagy) (Onishi et al., 2021). The degradation of deficient mitochondria needs
to take place in a protected area of the cell because some mitochondrial components are toxic
if they are released into the cytoplasm. Moreover, mitochondria are essential for the cell and
missing mitochondria therefore need to be replaced. This is achieved by coupling mitophagy
to mitochondrial biogenesis. The process of mitophagy can be divided into four steps (Figure
15):

1. Defective mitochondria depolarize and lose the membrane potential across the IM. This
loss of the membrane potential is essential for the initiation of mitophagy.

2. Double membrane-bound autophagosomes form and finally envelope the targeted
mitochondria.
Mitochondrial autophagosomes fuse with lysosomes.

Mitochondria are degraded and recycled.

Figure 15: Schematic depiction of the major steps of the mitophagy process. (1) In order to be
subjected to mitophagy, damaged mitochondria need to lose their membrane potential. (2) After
induction of autophagy, the autophagosome wraps around the targeted mitochondrion. (3)
Lysosomes fuse with the mitochondria autophagosome. (4) Mitochondria are degraded and recycled

in this double membrane enclosed protected area.
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There are a variety of pathways that can induce mitophagy. They are separated into Ub-
dependent and Ub-independent pathways. The main Ub-dependent pathway used by the cell
is the PINK1/Parkin pathway. Additionally, there are a couple of OM proteins that do not require
Ub to interact with the microtubule-associated protein 1A/1B-light chain 3 (LC3) to form a

mitochondrial autophagosome.

1.6.1 Ub-dependent mitophagy

Ub-dependent mitophagy pathways depend on the ubiquitination of proteins on the
mitochondrial surface. The PINK1/Parkin pathway in mammals is the best studied such
pathway (Ashrafi and Schwarz, 2013). PINK1 is highly conserved. It participates in the
regulation of a variety of processes, mainly concerning mitochondrial function (N. Wang et al.,
2020). In healthy mitochondria, PINK1 is imported and inserted into the IM and subsequently
cleaved by the PINK1/PGAM5-associated rhomboid-like protease (PARL) (Deas et al., 2011).
Upon a loss of the membrane potential, insertion of PINK1 into the IM is inhibited, leading to
PINK1 accumulation in the OM. Therefore, OM accumulation of PINK1 serves as a signal for
mitochondrial disfunction (Matsuda et al., 2010). This results in the activation and recruitment
of the cytosolic E3 Ub ligase to mitochondria (Lazarou et al., 2015; Matsuda et al., 2010; Riley
et al., 2013). PINK1 activates Parkin by phosphorylation of Parkin as well as of its substrate
Ub at Ser65 (pSer65-Ub) (Kazlauskaite et al., 2015; Lazarou et al., 2015). PINK1 and Parkin
cooperate in modifying mitochondria with Ub-chains. The accumulation of pSer65-Ub on the
OM leads to recruitment of the autophagy receptors nuclear dot protein 52 (NDP52) and
optineurin (OPTN) to the defective organelles. These receptors recruit autophagy initiation
factors such as Unc-51-like kinase 1 (ULK1), Double FYVE-containing protein 1 (DFCP1) and
WD repeat domain, phosphoinositide interacting 1 (WIPI1) (Lamb et al., 2013; Vargas et al.,
2019). Ub-labelled mitochondria can be anchored inside the nascent autophagosome by
OPTN and NDP52 which directly interact with LC3 (Padman et al., 2019; Qiu et al., 2022).
Another option is to recruit autophagy receptors via Parkin assembled Ub chains and TANK-
binding kinase 1 (TBK1) (Heo et al., 2018). This leads to the phosphorylation of all known

autophagy receptors creating a positive feedback loop (Onishi et al., 2021).

Alternatively, PINK1 is able to directly recruit autophagy receptors OPTN and NDP52 via Ub
phosphorylation independently of Parkin (Lazarou et al., 2015; Richter et al., 2016).
Nonetheless, Parkin amplifies the PINK1 induced signal pathway and thus enhances
mitophagy. In addition to Parkin, a number of other E3 Ub ligases, which are capable of
ubiquitinating proteins at the OM, exist. These include the smad ubiquitination regulatory
factor-1 (SMURF1), mitochondrial E3 Ub protein ligase 1 (MUL1) and Gp78 (Mukherjee and
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Chakrabarti, 2016; Orvedahl et al., 2011). SMURF1 mediates mitophagy by facilitating the
transport of autophagy factors to the nascent autophagosome (Orvedahl et al., 2011). MUL1
promotes mitophagy by mediating PINK1 stability in the OM (lgarashi et al., 2020). Gp78 is
capable of inducing mitophagy independent of Parkin by mitochondrial disruption as well as by
ubiquitination (Fu et al., 2013).

1.6.2 Ub independent mitophagy

The OM harbours a number of proteins containing LC3 interacting regions (LIR), which allow
them to bind LC3 independent of Ub. The main receptors in mammals are the Nip3-like protein
X (NIX), B-cell ymphoma 2-interacting protein 3 (BNIP3) and FUN14 domain containing 1
(FUNDCA1) (Lu et al., 2023). NIX is able to induce mitophagy through binding to LC3 via its B-
cell ymphoma 2 homology (BH3) domain (Novak et al., 2010; Sandoval et al., 2008). BNIP3
also contains a BH3 domain allowing it to bind to LC3 (Schweers et al., 2007). Interestingly, it
was shown in murine neurons that loss of BNIP3 leads to an increase of NIX and reduced
mitophagy (Shi et al., 2014). By inhibiting mitophagy, lack off BNIP3 also leads to increased
apoptosis and kidney injury (Lin et al., 2021). Induced by hypoxia, FUNDC1 is also capable of
inducing parkin-independent mitophagy (Liu et al., 2012). However, another E3 Ub ligase,
membrane-associated ring finger (C3HC4) 5 (MARCHS) is regulating FUNDC1 via Ub-
dependent degradation (Chen et al., 2017). Additionally, receptor-interacting serine/threonine-
protein kinase 3 (RIPK3) can inhibit FUNDC1 induced mitophagy and thus promote apoptosis
(Zhou et al., 2017).
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1.7 Trypanosoma brucei

The unicellular parasite Trypanosoma brucei was discovered 1894 while studying cattle
suffering from “Nagana”, in southern Africa (Joubert et al., 1993). Shortly after its discovery,
the parasite was also identified as the causative agent of African sleeping sickness in humans,
also called human African trypanosomiasis. T. brucei is transmitted via bites of the
bloodsucking Tsetse fly (genus Glossina) (Figure 16) (Balfour, 1912; Stitt and Strong, 1944).
The first stage of African sleeping sickness leads to fever, headache, itchiness, and joint pain,
and is followed by a second stage in which trypanosomes cross the blood brain barrier and
induce neurological symptoms such as confusion, poor coordination, numbness, and
disturbance of the sleep cycle (Brun et al., 2010; Buscher et al., 2017; Kennedy, 2013). Since
their discovery, trypanosomes have been intensively studied because the diseases they cause
in humans and livestock are invariably fatal, if left untreated (Batista et al., 2011; Kennedy,
2013). Thus, there are great medical as well as economical interest to study these parasites
in order to find new drugs, develop vaccines or establish vector control measurements (Saini
et al., 2017).

T. brucei contains three morphologically identical subspecies:

1. T. brucei gambiense which is the main causative agent of human African
trypanosomiasis, accounting for over 92% of cases (Barrett et al., 2003). Infection with
this subspecies leads to a slow and chronic from of trypanosomiasis in humans. While
T. b. gambiense mainly infects humans, it has been reported to also infect wildlife and
livestock (Blscher et al., 2017; Molyneux, 1973).

2. T. brucei rhodesiense which infects vertebrates including humans, leading to a fast
acute form of human trypanosomiasis. This subspecies is highly zoonotic, with animals
harbouring the main reservoir (Barrett et al., 2003; Franco et al., 2014).

3. T. brucei brucei, which in contrast to the other two subspecies is unable to infect
humans (Rifkin, 1984; Stephens et al., 2012).

During the last decades, T. brucei has been established as an important and experimentally
accessible eukaryotic model system. The replicative procyclic and bloodstream form stages of
the parasite can be easily cultured and genetically modified (Figure 16). Therefore, in addition
to their clinical importance, they are used as a model organism for eukaryotic cell biology. As
a parasite with two different hosts, trypanosomes have to adapt to different conditions during
their life cycle (Figure 16). In the Tsetse fly there is a temperature of approximately 27°C and
the parasite cells are producing their energy mainly via oxidative phosphorylation. In the
mammalian host the temperature is approximately 37°C and the cells are producing energy

mainly by glycolysis (Nare et al., 2023; Smith et al., 2017). This explains the larger volume of
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the single mitochondrion in procyclic and epimastigote forms compared to the bloodstream
forms (Figure 16).

= Slender bloodstream

Kinetoplast
Mitochondrion
Nucelus
Flagellum

Figure 16: Life cycle of Trypanosoma brucei broken down to the main five stages. During its
life cycle, T. brucei alternates between the Tsetse fly vector (left) and a mammalian host (right).
Indicated by circling arrows are proliferative stages of the parasite; Procyclic and epimastigote in the
fly and the slender bloodstream form in the vertebrate host. Epimastigote form trypanosomes use
their flagellum to bind epithelial cells (depicted in purple) in the salivary gland of the fly. Morphological
changes of the cells concerning their shape, kinetoplast position and size are indicated. Epimastigotes

utilize their flagellum to adhere to epithelial cells of the salivary glands of the fly. (Wheeler et al., 2019)

Trypanosomes belong to the family of the Kinetoplastida of the Discoba clade (Figure 17)
(Burki et al., 2020). This position in the eukaryotic evolutionary tree makes them an interesting
organism for cell biological studies. Most other classical eukaryotic model organisms, such as
mammals, zebrafish, C. elegans, Drosophila melanogaster and also yeast belong to the clade
of the Opisthokonta (Figure 17) (Burki et al., 2020). This means they provide only a very narrow
view of the variety of eukaryotic cell biological processes. By studying trypanosomes and
comparing them to Opisthokonts, we can get a much wider view of the evolution and diversity
of eukaryotic biology. All kinetoplastids have a single mitochondrion which harbours a single
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mtDNA unit called kinetoplast (Jakob et al., 2016; Shapiro and Englund, 1995). The kinetoplast
is attached to the flagellum via the ftripartite attachment complex (TAC) (Figure 16)
(Aeschlimann et al., 2023; Zhao et al., 2008).

Figure 17: The evolutionary tree of eukaryotes. All eukaryotes are descendants of the last
eukaryotic common ancestor (LECA). The coloured groupings indicate the current ‘supergroups’
according to Burki et al., 2020. Multifurcations indicate that the branching order in this lineage has yet
to be resolved. Dashed lines indicate lesser uncertainties about whether these groups actually are
monophyletic. Insets show a small selection of organisms belonging to Chloroplastidae,
Opisthokonta, or Discoba. (Burki et al., 2020; Gargaud et al., 2011)

1.7.1 MQC in T. brucei

Even though MQC is not well studied in trypanosomes, it is likely that such mechanisms also
exist. In contrast to other well studied model organisms, such as human cells or yeast,
trypanosomes do not have the option to perform mitophagy because they only contain a single
mitochondrion. However, trypanosomes most likely harbour a set of MQC pathways that are
quite different from the known MQC mechanisms in Opisthokonts. One reason for this is the
fact that transcription in the nucleus of trypanosomes is exclusively polycistronic (Clayton,
2019). This means that trypanosomes cannot transcriptionally regulate single genes.
Trypanosomes are compensating this by controlling processing, translation, and degradation
of mMRNAs. Therefore, MQC pathways that regulate transcription in other eukaryotes need to

function differently in trypanosomes. As all eukaryotes, T. brucei has an ubiquitin proteasome
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system (Hua et al.,, 1996; Huang et al., 1999; Lowrie et al., 1993; Wong et al., 1992).
Furthermore, orthologs of VCP as well as Msp1 were found in T. brucei. However, orthologs
of other proteins that are involved in MQC pathways in other eukaryotes such as Npl4, Ubx2,
Cue1 or Doa10 appear to be absent. Generally, orthologs of most of the other commonly
identified MQC factors could not be identified in trypanosomes (Dewar et al., 2022a). While
the core subunits of the mitochondrial protein import system are conserved, this is not true for
many other subunits, such as the import receptors, and the architecture of the protein import
translocases. Furthermore, MIM in yeast, MTCH2 mammals and pATOMS36 in trypanosomes
are three convergent insertases for alpha helically anchored OM proteins. Thus, many features
of the protein import systems evolved independently in the different eukaryotic group. This is
surprising since the function of the import system is conserved in all eukaryotes (Schneider,
2022). Therefore, it is assumed that pathways dealing with obstruction of these import

pathways are examples for convergent evolution as well.

In 2022, Dewar et al. published a MQC pathway in T. brucei in which the ubiquitin-like protein
TbUbL1 plays a pivotal role. Upon inducing an import defect by ablating the ATOM complex
import receptor ATOMGE9, a protein of unknown function, an E3 ligase and TbUbL1 are all
recruited to the mitochondrion. Interestingly, TbUbL1 normally localizes to the nucleus, but is
released into the cytosol upon ATOM69 depletion. It is suggested that TbUbL1 binds non-
imported mitochondrial precursor proteins and feeds them to the proteasome to counteract
their aggregation in the cytoplasm (Dewar et al., 2022a). The function of this pathway under
physiological conditions, as well as the exact mechanism that triggers it, have yet to be

elucidated.

The T. brucei ortholog of Yme1 (TbYme1) harbours a duplicated TMD (Kovalinka et al., 2020).
Surprisingly, this double TMD is only found in T. brucei, but not in other kinetoplastids such as
Trypanosoma cruzi, Leishmania major or Bodo saltans. This additional TMD leads to the
complex facing the matrix instead of the IMS. TbYme1 forms a complex with the inner
mitochondrial membrane protein stomatin-like protein 2 (TbSIp2) (Serricchio and Butikofer,
2021). This IM protein complex is suggested to have a dual role in stabilisation and degradation
of mitochondrial proteins (Serricchio and Butikofer, 2021). However, the molecular

mechanisms underlaying these observations are unknown (Serricchio and Butikofer, 2021).

The existence of an another MQC pathway in trypanosomes that clears the OM from
destabilized proteins has been implied (Kaser et al., 2016). It has been demonstrated that
pATOMS36 is required for the assembly of the ATOM complex. Upon pATOMS36 ablation, the
unassembled ATOM subunits ATOM46, ATOM12, ATOM14 and ATOM19 are cleared from
the membrane and subsequently degraded by the cytosolic proteasome (Kaser et al., 2016).

This MQC pathway was characterized in detail in the present PhD thesis (Chapter 3.1). We
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found, that TbMsp1 and TbVCP, the T. brucei orthologs of AAA ATPases involved in MQC in
yeast and mammals, are both implicated in the clearance of pATOM36 substrates (Gerber et
al., 2023). We focused on the role of TbMsp1 in this pathway. We showed that TbMsp1 stably
interacts with four integral OM proteins, and that three of them are required for efficient
TbMsp1-mediated extraction and degradation of pATOM36 substrates (Gerber et al., 2023).
These findings contrast with previous studies of yeast Msp1 which functions independent of
other proteins in MAD-linked pathways (Wohlever et al., 2017).
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2. Aim and Hypothesis

The unicellular parasite Trypanosoma brucei is an interesting model organism to study
mitochondrial quality control (MQC). MQC has already been intensively studied in
Opisthokonts, such as yeast and mammals (den Brave et al., 2021; Ng et al., 2021). However,
in trypanosomes, which belong to the Discoba and are essentially unrelated to Opisthokonts,
MQC pathways are not very well studied to date. Unique features in its biology indicate that in
trypanosomes MQC of the mitochondrial proteome must in some respects differ from the MQC

pathways that have been described in other organisms.

Firstly, individual dysfunctional mitochondria cannot be disposed via mitophagy because there
is only a single mitochondrion per trypanosome cell. Furthermore, transcription in the nucleus
of trypanosomes is exclusively polycistronic, indicating that individual mRNAs cannot be
transcriptionally regulated (Clayton, 2019). Therefore, pathways such as the mitochondrial
untranslated protein response (UPR™), that functions via transcriptional control by the
activation of specific transcription factors, cannot be operational in trypanosomes (Melber and
Haynes, 2018). Moreover, even though the core components of the mitochondrial protein
import systems are conserved across all eukaryotes, several components such as the import
receptors or the import machinery for alpha helically anchored OM proteins, evolved
convergently in trypanosomes (Bruggisser et al., 2017; Doan et al., 2020; Guna et al., 2022;
Schneider, 2022). It is therefore likely that the responses to the obstruction of the trypanosomal
import pathways also evolved independently. Additionally, orthologs of many MQC proteins

conserved in other eukaryotes seem to be absent in trypanosomes (Dewar et al., 2022a).

Previous results in our lab have shown that a trypanosomal MQC pathway is triggered by
ablation of pATOM36 (Kaser et al., 2016). pATOM36 mediates biogenesis of a subset of OM
proteins. It is a trypanosome-specific protein that is a functional analogue of the yeast MIM
complex, which functions as an insertase for a-helically anchored OM proteins. Upon ablation
of pATOM36, several ATOM complex subunits such as ATOM46, ATOM14 or ATOM19 are

destabilized and degraded by the cytosolic proteasome (Kaser et al., 2016).

The aim of this thesis was to analyse and characterize this novel MQC pathway that is triggered
by pATOM36 ablation. Intriguingly, we could show that the pathway is mediated by the
conserved trypanosomal orthologs of VCP and Msp1. Moreover, three TbMsp1-associated

proteins also contribute to the activity (Gerber et al., 2023).
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Introduction

The mitochondrial outer membrane (OM) forms the interface be

tween mitochondria and the cytosol, and many of its proteins have
important functions in cytoplasmic-mitochondrial communication.
Integral OM proteins are often a-helically anchored, and many have
just a single transmembrane domain (TMD). Intriguingly, there are
at least three unrelated protein factors mediating the biogenesis of
a-helically anchored OM proteins in different eukaryotic clades.

The mitochondrial import complex (MIM) was discovered in Sac
charomyces cerevisiae and consists of two small proteins, Mim1 and
Mim2, that are restricted to fungi (Becker et al, 2011; Papic et al, 201%;
Dimmer et al, 2012; Doan et al, 2020). In the parasitic protozoan
Trypanosoma brucei, the kinetoplastid-specific peripheral atypical
protein translocase of the outer membrane 36 (pATOM36) has the
same function (Kaser et al, 2016; Bruggisser et al, 2017). Expression
of pATOM36 in yeast lacking the MIM complex restores growth
under non-permissive conditions, and vice versa, expression of the
MIM complex complements the OM protein biogenesis defect in
PATOM36-ablated trypanosomes (Vitali et al, 2018). In human cells,
the mitochondrial animal-specific carrier homolog 2 (MTCH2) is
necessary and sufficient to insert a-helically anchored membrane
proteins into the OM (Guna et al, 2022). However, at least in yeast,
spontaneous insertion into the OM also seems possible for some
proteins (Kemper et al, 2008; Vogtle et al, 2015).

Safeguarding mitochondrial functions requires mitochondria-
associated degradation (MAD) pathways that survey the OM and
guarantee that its proteins are correctly targeted and assembled
(Mohanraj et al, 2020; den Brave et al, 2021; Kramer et al, 2021). The
highly conserved Mspl, an ATPase associated with diverse cellular
activities (AAA), plays a key role in this process. It consists of an
N-terminal TMD and a C-terminal AAA domain, which faces the cytosol
(Nakai et al, 1993), and localises to both the OM and the peroxisomal
membrane. Msp1 extracts mislocalised and/or misassembled proteins
from the OM and feeds them to the cytosolic proteasome (Chen et al,
2014, Okreglak & Walter, 2014; Weir et al, 2017, Wohlever et al, 2017,
Weidberg & Amaon, 2018). Non-mitochondrial tail-anchored (TA) pro-
teins, which have a single TMD at their C-terminus, can be prone to OM
mistargeting under both normal and stress conditions (Kalbfleisch
et al, 2007, Chen et al, 2014 Okreglak & Walter, 2014; Rao et al, 2016;
Costello et al, 2017; Weir et al, 2017 Wohlever et al, 2017). The latter
includes a deficient guided-entry of TA protein pathway in the ER or an
impaired peroxisomal targeting machinery (Schuldiner et al, 2008;
lonikas et al, 2009; Chen et al, 2014; Okreglak & Walter, 2014). There is no
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clear sequence consensus between Mspl substrates (Chen et al, 2014
Okreglak & Walter, 2014; Weir et al, 2017, Wohlever et al, 2017, Dederer
etal, 2019; Li et al, 2019). However, Msp1 recognises and extracts orphan
TA proteins that are normally found in a complex, which suggests that
their oligomeric state is an important determinant (Weir et al, 2017,
Dederer et al, 2019). Intriguingly, mitochondrial Msp1 is not known to
form stable complexes with other proteins and appears to extract its
substrates from the OM without help from other proteins (Wohlever
et al, 2017; Dederer et al, 2019). However, adaptor proteins may still be
required for substrate selectivity or regulation of activity. For example,
Msp1 is able to clear stuck precursor proteins from the TOM complex
via a transient interaction with the inducible peripheral OM protein
Cis1and the TOM receptor Tom70 in response to mitochondrial protein
import stress (Weidberg & Amon, 2018).

Msp1 deletion in yeast causes a mild growth phenotype only,
which suggests some redundancy in OM quality control (Chen et al,
2014; Okreglak & Walter, 2014). In line with this, it was shown that
under stress conditions, the AAA-ATPase VCP, a soluble cytoplasmic
component of the ER-associated protein degradation system, can
also extract mistargeted proteins from the OM (Heo et al, 2010). For
degradation by the proteasome, proteins generally require ubiq-
uitination. It has been shown that mislocalised proteins can be
extracted from the OM by Msp1 and transferred to the ER, where
they are ubiquitinated by the ER-resident E3 ligase Doal0. This
allows for their extraction from the membrane by VCP and sub-
sequent degradation by the proteasome (Dederer et al, 2019
Matsumoto et al, 2019). However, as E3 ligases normally have
specific sets of substrates, this pathway might not be required for
all Msp1substrates, and some may be degraded by the proteasome
without prior ubiquitination (Matsumoto et al, 2019).

Studies of mitochondrial processes, including MAD pathways,
have mainly focused on yeast and mammals, which belong to the
same eukaryotic supergroup of the Opisthokonts. However, a better
understanding of their basic features and evolutionary history
requires that these processes be studied across divergent eu-
karyotes. Arguably the best-studied mitochondrion outside of yeast
and mammals is that of T. brucei. It belongs to the Discoba su-
pergroup, which is essentially unrelated to the Opisthokonts
{Verner et al, 2015; Harsman & Schneider, 2017; Schneider, 2020).

It has previously been shown that ablation of pATOM36 triggers a
MAD pathway, resulting in the proteasomal digestion of destabi-
lised pATOM36 substrates from the OM. Results of the present
study, using cells depleted for Msp1 and/or ThVCP, are consistent
with the notion that ThVCP and ThMsp1 contribute to this pathway.
In addition, we found four integral OM proteins that interact with
TbMsp1 and showed that ablation of three of them interferes with
the MAD pathway in cells where TbMsp1 levels are not affected.

Results

TbMsp1 interacts with proteins of the mitochondrial OM and
the glycosomes

Msp1is highly conserved within eukaryotes, with ThMsp1 showing 34.5
and 335% identity to that of yeast and human Msp1, respectively. This
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Figure 1. TbhMsp1 forms complexes in the OM and glycosomes.
(A) Schematic depiction of predicted domain structures of ThMsp1 and four
interacting OM proteins. The indicated domains were predicted as described in
the Material and Methods section. (B) ThMsp1 complexes were
immunoprecipitated from crude mitochondnial fractions of differentially stable
isotope labelling by amino acids in cell-labelled 2913 parent cells and cells
expressing in situ tagged ThMspT-HA analysed by quantitative mass spectrometry
{n = 3). Proteins found to be significantly enriched more than threefold in
ThMsp? complexes are labelled with either their name or their accession number,

conservation is in contrast to many other trypanosomal OM proteins,
most of which are specific to kinetoplastids (Niemann et al, 2013).
ThMsp1 has the expected conserved sequence motifs including the
ApA domain and the Walker A and Walker B motifs required for ATP
binding and hydrolysis (Figs 14 and 51). To identify TbMsp1 interaction
partners and determine its intracellular localisation, we produced a
cell line expressing a C-terminally in situ HA-tagged ThMsp1 variant
Digitonin-extracted crude mitochondrial fractions of this cell line were
subjected to a stable isotope labelling by amino acids in cell culture
(SILAC) immunoprecipitation experiment using anti-HA antibodies.
ThMsp1-HA precipitated 10 proteins with enrichment factors of more
than threefold (Fig 1B). From previous proteomic analyses, three were
identified as OM proteins, five are glycosomal proteins, TbTsc13
showed both localisations, and Th927.3.4500 is the cytosolic fumarate
hydratase, which was hypothesised to interact with the cytosolic side
of the glycosomal membrane (Colasante et al, 2006; Coustou et al,
2006; Niemann et al, 2013; Giither et al, 2014). Of the glycosomal
proteins, the peroxisome biogenesis protein Pex11 (Th92711.11520),
tyrosine phosphatase (Th927.10.10610), glycosomal metaholite trans-
porters GAT1 (Th927 4 4050), and GAT2 (Th927.11.3130) all contain TMDs
(Lorenz et al, 1998; Yernaux et al, 2006; Igoillo-Esteve et al, 2011),
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whereas phosphoglycerate kinase A (Th927.1720) is localised in the
glycosomal lumen (Alexander & Parsons, 1993; Peterson et al, 1997).

In the present study, we focused on the four most enriched OM
proteins (Fig 1). The first is the protein of the mitochondrial OM
proteome 31 (POMP31), which is a kinetoplastid-specific protein of
unknown function with four predicted TMDs. The second one is
Thj31, a J-like protein which has a single predicted TMD (Bentley
et al, 2019). It is the homolog of mammalian DNAJCI1, with which it
also shares the domain of unknown function 3,395 (Munoz-Gomez
et al, 2015). The third is POMP19, a kinetoplastid-specific protein
with a single TMD that contains a predicted thioredoxin-like and a
predicted eglutathione S-transferase domain, and the fourth is
TbTsc13, which was previously detected in a proteomic study of
glycosomes (Giither et al, 2014). It shows homology to the mam-
malian enoyl-CoA reductase of the ER elongase complex and has six
predicted TMDs (Cinti et al, 1992). TbTsc13 contains a predicted
ubiquitin-like domain at the N-terminus.

Cell fractionation using low concentration of digitonin results in
a soluble fraction, containing the cytosol, and a crude mitochon-
drial fraction which also contains most of the ER marker binding
protein (BiP), the glycosomal marker aldolase (ALD), and other
particulate cell components (Fig S24 and B). TbMsp1-Ha and its four
epitope-tagged OM interactors co-fractionated with the voltage-
dependent anion channel (VDAC), as would be expected for mi-
tochondrial proteins (Fig 524). A proteinase K protection assay
furthermore showed that the mitochondria were still intact in the
digitonin pellet because the intermembrane space-localised Timd
and the matrix marker mitochondrial heat shock protein 70
(mHsp70) were protected from the added proteinase K and were
only digested after the addition of Triton X-100 (Fig $2C). ThMsp1
and three interactors, on the other hand, were as proteinase
K-sensitive as the atypical protein translocase of the OM 69
(ATOMS9), the OM protein that serves as a control (Fig 52C). Finally,
TbMsp1 and its interactors were predominantly recovered in the
pellet when subjected to alkaline carbonate extraction at high pH,
indicating that, in line with their predicted TMDs, they are all in-
tegral membrane proteins (Fig 524, lower panels).

Immunofluorescence of cells expressing either TbMsp1-myc or
an epitope-tagged interactor revealed a close degree of co-
localisation of POMP31, Th)31, and POMP19 with the mitochondri-
al marker ATOM&O (Fig 534). As expected from the SILAC- pulldown
experiment (Fig 18) and previous analyses (Cinti et al, 1992; Giither
et al, 2014), ThMspl-myc and ThTsc13-HA are not exclusively
mitochondrially localised. ThMsp1-myce, in addition to mitachon-
drial staining, partially co-localised with the glycosomal marker ALD
(Fig 53B). The localisation of ThTsc13-HA, in line with its predicted
function as an enoyl-CoA reductase, partially overlapped with the
ER luminal BiP (Fig S3C).

In addition, normalised abundance profiles of untagged native
TbMsp1 and its four interactors from a previous proteomic analysis
with six subcellular fractions, including crude and pure OM, confirm
the OM localisation of all four proteins (Fig 54) (Niemann et al, 2013).

Finally, we validated the interactions of the four proteins with
TbMsp1 and between each other by immunoprecipitations using
cell lines in which both Msp1 and one candidate interactor were
epitope-tagged. Itis important to note that expression of the tagged
ThMsp1 only marginally affects growth (Fig 55). Interactions could

Mspl-containing complex in 1. brucei  Gerber et ol

A

SHA  gmye
KDa IN FT IP FT _IP
w8 oV ra
38
230" - - !P‘- y
H-lames @= [VDAC %
a——y 5
NL“W pnl—— — ATOMBD
aHA  amye
kDa IN_FT IP_FT_IP a-HA
38

-._‘-... ToMsp1-HA

_—...."i = | Thyat-myc

25 [l W[5 POMPIIHA 59 o o

Figure 2. Reciprocal IPs reveal a ThMsp1-centric i inthe OM.
(A) Crude mitochondrial fractions from cells overexpressing the indicated C-
terminally myc- and HA-tagged proteins were d by immunoprecipi X
Crude mitochondrial fractions (IN), unbound proteins (FT), and final eluates (IF)
were separated by SDS-PAGE. Resulting immunoblots were probed with anti-
tag antibodies and antisera against voltage-dependent anion channel and
ATOMBS. (B) Summary of the confirmed interactions detected by
coimmunoprecipitation. Two-sided arrows indicate reciprocal interactions.

¥

be confirmed between TbMsp1 and each of POMP31, Th)31, POMP19,
and ThTsc13 (Fig 24), whereas interactions were not detected be-
tween these proteins and the most abundant OM protein, VDAC, or
the a-helically anchored protein import receptor ATOME9, Using the
same method, we could also detect mostly reciprocal interactions
between POMP31, Th)31, POMP19, and TbTsc13. As a further control,
we subjected cell lines individually expressing tagged ThMsp1 and
each of its four tagged interactors to pulldown with anti-HA and
myc beads, respectively. As expected, the tagged proteins were only
recovered in the pellet when using resin with matching anti-HA or
myc beads; no unspecific interaction of the tagged proteins with the
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Figure 3. ThVCP and ThMsp1 are -4

ATOM19 and ATOM&E by the cytosolic proteasome.
{A) Western blot analysis of total cellular extract (3 = 10° cells each) of the
indicated uninduced and induced single, double, and triple RNAi cell lines {-/+
Tet), probed with ATOM19 and ATOM46 antisera. EFla serves as loading control.
(B) Quantifications of ATOM46 and ATOM19 levels in the RNAI cell lines from
immunoblots shown in (&) The signal for each sample was normalised to its
respective EFla signal and then to the respective signal in uninduced cells.
Data are presented as mean values with error bars corresponding to the SD (n =
3-6). The P-values indicated in the graph were calculated using a one-way ANOVA
followed by a Bonferroni post hoc test to allow for multiple comparisons.

resin was observed (Fig 56). In summary, these results suggest that
at least a fraction of all five proteins are present in the same protein
complex (Fig 2B).

Finally, to investigate the importance of TbMsp1 and the four
ThMspl-interacting proteins for cell viability, we produced induc-
ible RNAI cell lines targeting the ORFs of these proteins. However,
despite the fact that the RNAQ efficiently depleted the corre
sponding target mRNAs (Fig S7), only the RNAI cell line targeting
ThTsc13 showed a clear inhibition of growth (Fig 57, bottom panel).
This was expected as ThTsc13 is likely to play an essential role in
fatty acid elongation, as in yeast (Kohlwein et al, 2001). Thus, within
the limit of the RNAI analysis, which does not completely deplete
gene products, ThMsp1, POMP19, POME31, and Th)31 are not essential
for normal cell growth in the procyclic form of trypanosomes.
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Figure 4. Proteomic analysis shows that TbVCP and ThMsp1 are involved in the
proteasomal degradatlun of pATOM36 substrates,

Volcano plots visualising quantitative MS data of whole cell extracts from the
indicated RMAI cell lines (n = 3) used in f Relative protein quantification was
based on peptide stable isotope dimethyl labelling Shown are comparisons of
uninduced and induced pATOM36 RNAI cells (top), induced pATOM36 RNAI cells
and induced pATOM36/ proteasome subunit 81 double RMAI cells (middle), and
induced pATCM36E RNAI cells and induced pATOM36/ ThVCP/TbMsp1 triple RMAI
cells (bottom).
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PATOM36 RNAI results in proteasomal depletion of its substrates

The biogenesis of many a-helically membrane-anchored mito-
chondrial OM proteins is mediated by distinct protein factors in
yeast (MIM complex), humans (MTCH2), and trypanosomes
(pATOM36) (Becker et al, 2011; Papic et al, 2017; Dimmer et al, 2012;
Kaser et al, 2016; Bruggisser et al, 2017; Doan et al, 2020; Guna et al,
2022). Moreover, for the MIM complex and pATOM36, reciprocal
complementation experiments demonstrate that they are func-
tionally interchangeable (Vitali et al, 2018). In the present study, we
focussed on the proteomic consequences of pATOM36 depletion in
trypanosomes. The total cellular levels of the ATOM complex
subunits ATOM19 and ATOM46 were massively reduced after in-
duction of pATOM36 RNAJ (Fig 34, lanes 1and 2; Fig 3B), in agreement
with a previous proteomic analysis of crude mitochondrial fractions
of pATOM36-depleted cells (Kaser et al, 2016). This was confirmed
when whole cell samples of the same uninduced and induced
PATOM36 RNAI cell line were compared using a proteomic analysis
(Fig 4, top panel). The experiment also showed that the levels of 11
OM proteins, including ATOM19 and ATOM&6, were significantly
reduced by more than 15-fold in the induced RNAi cells (Fig 4, top
panel, pATOM36 substrates). This group of proteins consists of
ATOM subunits, OM membrane proteins of unknown function
termed POMPs (Niemann et al, 2013), Th)31, VDAC, and the putative
ABC transporter Th927.1.4420. Eight of them have been identified as
pATOM36 substrates in a previous study (Kaser et al, 2016).
Moreover, Th927.1.4420 and POMP33 were found to be depleted -1.4-
fold in the previous study which is only marginally below the
threshold of 15-fold. Approximately two-thirds of the other pro-
teins found to be more than 15-fold depleted (Fig 4, top panel)
belong to the mitochondrial impartome, and thus their depletion is
likely an indirect consequence of reduced import because of the
diminished levels of the ATOM subunits. However, whereas the level
of the Msp1 interactor Thi31 was significantly decreased by 1.7-fold,
the same was not the case for TbMsp1 itself or for any of the three
remaining interactors. The fact that many more non-OM proteins
were detected in the present experiment compared with the
previous study (Kaser et al, 2016) can be explained because in

duction of pATOM36 RNAI was 1 d longer and because, instead
of crude mitochondrial fractions, whole cellular extracts were
analysed,

To testwhether destabilised pATOM36 substrates are digested by
the cytosolic proteasome, we produced a cell line able to knock-
down both pATOM36 and the proteasomal subunit 1 (for a
characterisation of all double and triple RNAI cell lines used in this
study; see Fig S8). A comparison of this pATOM36/subunit B, double
RNAI cell line with the single pATOM36 RNAI cell line by immunoblot
analysis indicated that the levels of ATOM46 and ATOM19 were
significantly stabilised (Fig 34, compare lanes 2 and 10). Three-to-
fivefold more ATOM19 and ATOM46 were found in cells depleted for
PATOM36 and proteasomal subunit 8, in comparison with cells only
depleted for pATOM36. This was in line with data from a quantitative
proteomics analysis of induced samples of the same two cell lines
(Fig 4, middle panel), which showed a significant more than 1.5-fold
enrichment of seven pATOM36 substrates, including ATOM19 and
ATOMA46, indicating that their levels were stabilised. Moreover, a
number of other OM proteins not previously shown to be substrates

Mspl-containing complex in T. brucel  Gerber et al.

of pATOM36 were also stabilised. We conclude from this experiment
that pATOM36 depletion triggers a pathway which feeds destabi-
lised pATOM36 substrates to the cytosolic proteasome.

TbMsp1 and TbVCP are implicated in proteasomal degradation of
PATOM36 substrates

How can the cytosolic proteasome access membrane-integral
PATOM36 substrates? In Opisthokonts, the AAA-ATPase Mspl is
able to extract TA proteins from the OM (Zheng et al, 2019). Thus, we
decided to test whether TbMsp1 could be involved in the degra-
dation of the integral OM proteins ATOM19 and ATOM46 in
PATOM36-depleted cells using the same approach that was used to
show the involvement of the proteasome. However, in contrast to
the pATOM36/subunit B, double RNAI cell line (Fig 34, compare
lanes 9 and 10), combining TbMsp1 RNAI with pATOM36 RNAI (Fig 34,
compare lanes 5 and 6) did not significantly prevent the degra
dation of ATOM19 and ATOM46.

In Opisthokonts, the AAA-ATPase VCP is involved in various
pathways that remove OM proteins from their membrane to allow
for their degradation (Zheng et al, 2019). To find out whether ThVCP,
the trypanosomal VCP homolog (Rogey & Bangs, 1999; Lamb et al,
20017), plays a similar role in the pATOM36-triggered pathway, we
produced a double RNAI cell line allowing simultaneous depletion
of pATOM36 and TBVCP (Fig 58). Immunaoblot analyses of this cell
line showed that, whereas the level of ATOM19 was slightly yet
significantly stabilised upon pATOM36 and TbVCP depletion in
comparison with the level found in pATOM36-depleted cells, the
same was not the case for ATOM46 (Fig 34 and B). Thus, simulta-
neous ablation of pATOM36 and ThVCP gave essentially the same
results that were observed in the pATOM36/TbMsp1 double RNAI
cell line.

These results can best be explained if the depletion of one AAA-
ATPase protein, ThMsp1 or ThVCP, allowed its activity to be at least
partially compensated by the other. To directly test this hypothesis,
we generated a triple RNAi cell line, targeting pATOM36, ThMsp1, and
TBVCP simultaneously (Fig 58). With this cell line, we could show
that depletion of all three proteins significantly restored the levels
of ATOM19 and ATOM46 to approximately three-to-sixfold of their
levels in pATOM36-depleted cells (Fig 34, compare lanes 7 and 8).
These results were independently confirmed and extended by a
complementary proteomic analysis which compared the induced
pATOM36 cell line (corresponding to lane 2 in Fig 34) with the
induced triple RNAQ cell line depleting pATOM36, TbMspl, and
TbVCP1 simultaneously (corresponding to lane 8 in Fig 34). In this
experiment, five pATOM36 substrates and a few other OM proteins
were significantly enriched more than 15-fold, indicating that their
levels were stabilised (Fig 4, bottom panel). The simplest expla-
nation for these results is that ThbMsp1 and ThVCP have redundant,
at least partially synergistic functions in the MAD pathway that lead
to the degradation of pATOM36-dependent substrates.

TbMsp1interactors contribute to the function of the MAD pathway
Using the same approach, it was possible to test whether the four

mitochondrial OM proteins that we identified to be in the same
protein complex as TbMsp1 played a functional role in the MAD
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Figure 5. Th)31, POMP31, and TbTsc13 are required for the mitochondria-
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{A) Western blot analysis of total cellular extracts (3 = 10° cells each) of the
indicated uninduced and induced double and triple RNAI cell lines {-/+ Tet),
probed with ATOM19 and ATOMA6 antisera. EF1o was used as a loading control.
(B) Quantifications of ATOM4G and ATOM19 levels in the RNAI cell lines from
immunoblots shown in Fig 34, The signal for each sample was normalised to its
respective EF1a signal and then to the respective level in uninduced cells. Data
are presented as mean values with error bars corresponding to the S0 (n = 3-6)
The P-values indicated in the graph were calculated using a one-way ANCVA
followed by a Bonferroni post hoc test to allow for multiple comparisons.
Source data are available for this figure.

pathway investigated in this study. We constructed a series of triple
RNAI cell lines, depleting either POMP31, POMP19, Thi31, or ThTsc13
together with pATOM36 and ThVCP, to trigger the MAD pathway and
to prevent pATOM36 substrates being degraded via the ThVCP-
mediated arm of the pathway (Fig S8). Upon induction of RNAI, a
significant restoration in the levels of ATOM19 and ATOM4E was
detectable by immunoblot in triple RMAI cell lines where either
Th)31, POMP31, and ThTs¢13 were depleted along with pATOM36 and
TbWVCP, in comparison with cells in which only pATOM36 and TbVCP
were depleted (Fig 54, compare lanes 2 with lanes 6, 8,10, Fig 5B). In

Mspl-containing complex in 7. brucei  Gerber et al.

the case of Thi31, only the level of ATOM46 restoration was significant.
This observed restoration in the levels of ATOM12 and ATOM&46 upon
pATOM36, THVCP, and either Thi31, POMP31, or ThTsc13 depletion
phenacopies the effects observed in the triple RNAi cell line targeting
PATOM36, TOVCP1, and TbMsp1. This strongly suggests that Thj31,
POMP31, and ThTsc13 do not only form a complex with mitochondrial
TbMsp1, but that each of the three proteins also contributes to the
function in the MAD pathway triggered by pATOM36 depletion. The
triple RNAI cell line depleted for POMP19 did not significantly restore
the levels of ATOM&E or ATOM19, suggesting that it does not affect
mitochondrial ThMsp1 activity.

Under WT conditions, Msp1 forms a complex with four interacting
OM proteins (Fig 18), three of which contribute to the activity of the
MAD pathway (Fig 5). We wondered if this complex formed as a
response to MAD pathway activation. We performed a SILAC-
pulldown experiment of the in situ HA-tagged ThMsp1 expressed
in induced pATOM36-ablated RNAI cell lines. The bait Msp1 and all
four Mspl-interacting OM proteins were found to be enriched to
very similar extents as in WT conditions (Fig 59). Moreover, es-
sentially the same is the case for the glycosomal proteins. Thus, the
TbMsp1-containing OM protein complex described in our study is
present in both the presence and absence of pATOM36.

Discussion

We have discovered a pathway in T. brucei that removes destabilised
a-helically anchored proteins from the mitochondrial OM. This
pathway is triggered upon depletion of the OM protein biogenesis
factor pATOM36 (Fig 6). Previous studies suggest that pATOM36 has
two distinct functions. It mediates the integration of ATOM46 and
ATOM19 into the heterooligomeric ATOM complex after the proteins
have been inserted into the OM (Kaser et al, 2016). However, it can
also facilitate insertion of certain proteins into the OM, aswas shown
for POMP10 (Bruggisser et al, 2017), Removal of pATOM36 prevents
integration of several ATOM subunits into the ATOM complex, leading
to their degradation by the cytosolic proteasome (Fig 6). This deg
radation will require the selective extraction of these membrane
proteins from the OM. TbMsp1 and TbVCP, the trypancsomal ho
mologs of the Opisthokont mitochondrial quality control compo-
nents Mspl and VCP, are AAA-ATPases and therefore perfect
candidates for such a job. Our results show that there is some re-
dundancy in the system as knocking down only one of the two AM-
ATPases hardly affects the MAD pathway. Thus, this newly discovered
TbMsp1 and TbVCP-linked MAD pathway likely function in safe-
guarding OM functions in trypanosomes, maintaining this essential
interface for mitochondrial-intracellular communications.
Maintenance of protein homeostasis is essential to maintain
cellular functions under both unstressed and stress conditions.
Many membrane proteins in eukaryotes require selective trafficking
to specific subcellular compartments and assembly into defined
stoichiometric complexes before functioning, This assembly pro-
cess is not 100% efficient and thus degradation of unassembled,
potentially harmful complex subunits is required. Msp1is known to
extract these orphaned proteins from both the mitochondrial OM
and the peroxisomal membrane, allowing their degradation by the

https:/ /doiorg/10.26508/152.202302004  vol 6 | no 71 | e202302004 6 of 15

49



50

B> Life Science Alliance

MAD off (wildtype levels of pATOM36)  MAD on (depleted pATOM36)
EE
Proteasome E‘:E;ﬂgff g

ThVCP

Complex with
p.ﬂH'OMBE TOM36 ThMsp1

Proteasome .
Deficient
protein

Figure 6. Schematic model of the trypanosomal
mitochondria-associated degradation (MAD)
pathways triggered by the absence of pATOM36.
Left panel, pATOM36 mediates the assembly of a
subset of mitochondrial OM proteins (pATOM36
substrates) into their respective protein
complexes. The mitochondrial fraction of ThMsp1
is constitutively associated with OM proteing
(TbMsp1 interactors), Under these conditions, the
described MAD pathways are not operational {MAD
off}. Right panel, RMAI-mediated ablation of
PATOM36 triggers the MAD pathways (MAD on)

substrate substrate complex

’ 5 Tthg;l
PATOM36 interactors

TEVCP /
\TOM36
g?hstrate

that ultimately result in the proteasomal
degradation of orphan pATOM36 substrates,
This likely happens by paralle! pathways linked to
two different AAA-ATPases, the soluble TBVCP or
the OM-integral TbMsp1. The ThMspt-linked
MAD pathway depends on three ThMsp1-
interacting proteins for full activity.

TbMspl
Interaé?ors

proteasome (Chen et al, 2014; Hegde, 2014; Weir et al, 2017). In yeast,
Msp1 has been shown to be sufficient for membrane protein ex-
traction (Wohlever et al, 2017) or, in case of particular substrates, to
function together with an interacting protein that is induced by a
specific trigger, for example, in MitoCPR (Weidberg & Amon, 2018).

Trypanosomal ToMsp1 surprisingly forms a complex with at least
four other integral mitochondrial OM proteins. Three of these
interactors, POMP31, Th)31, and ThTsc13, contribute to the activity of
the MAD pathway that is triggered upon pATOM36 depletion.

Whereas POMP31 is only found in kinetoplastids, TbJ31 is an
orthologue of the mammalian mitochondrial OM |-protein, DNAJCT,
although it lacks a complete HPD motif and thus is a )-like protein
(Munoz-Gomez et al, 2015). ThJ31and DNAJC11 both have a C-terminal
DUF3395 domain suggested to mediate protein-protein interactions
{violitzi et al, 2019). It has also been reported that mammalian
DNAJC11 may transiently interact with the mitochondrial contact site
and cristae organizing system complex (Xie et al, 2007; Violitzi et al,
2012). TbTsc13 shows similarity to the enoyl-CoA reductase of the ER
elongase complex (Miinalainen et al, 2003; Sickmann et al, 2003;
Reinders et al, 2006; Parl et al, 2013). Interestingly, it has an N-ter-
minal ubiquitin-like domain that is exposed to the cytosol (Uchida
et al, 2021). As yet, we do not understand the specific role these
TbMsp1-interacting proteins may play in the described MAD pathway.
However, the notion that TbMsp1 may act in concert with a J-like
protein that could directly or indirectly regulate chaperones seems
plausible in this context. The same is the case for the ubiquitin-like
domain of ThTsc13, which potentially could facilitate proteasome
binding and activation (Collins & Goldberg, 2020).

How pATOM36 substrates are recognised by the MAD pathway is not
yet understood; in particular, we do not know how these proteins can
be recognised efficiently by both TbMsp1 and TbVICP. Msp1 substrate
specificity is known to be multifaceted (Fresenius & Wohlever, 2019);
however, as the pATOM36 substrates we focused on in this work,
ATOM&6 and ATOM19, are integral parts of the ATOM complex, we could
hypothesise that these proteins become orphaned upon pATOM36
depletion, allowing them to become substrates of ThMspl. Never-
theless, not all pATOM36 substrates are known to be components
of multiprotein complexes. Cytosolic VCP is involved in diverse
cellular processes, and its substrate specificity in other organisms

Mspl-containing complex in T. brucel  Gerber et al

is governed by its numerous cofactors, many of which interact
with ubiquitin conjugated to its substrates (Buchberger et al, 2015;
Escobar Henriques & Anton, 2020). The potential requirement for
selective ubiguitination cascades adds another layer of yet un-
defined diversity to the regulation of this process.

Understanding variations in mitochondrial biogenesis across
eukaryotes can provide insight into their evolution as well as into the
process of how the endosymbiotic bacterial ancestor of the mito-
chondrion converted into an organelle. VCP and Msp1 are conserved
throughout eukaryotes and, thus, were present in the last eukaryotic
common ancestor (LECA). However, the convergent evolution of
known divergent OM protein biogenesis factors (pATOM36, MTCH2,
and MIM) for a-helically anchored OM proteins between, and even
within, distinct eukaryotic supergroups suggests that LECA did not
contain a protein with this function (Vitali et al, 2018).

This is in agreement with the notion that LECA contained a much
simpler B-barrel-based OM protein import system (Dolezal et al,
2006; Mani et al, 2016), whereas most additional a-helical subunits of
the TOM complex, for example, the receptors, were added later aftera
first divergence of eukaryotes to confer specificity and efficiency of
the import process (Perry et al, 2006; Mani et al, 2015, 2016; Rout et al,
2021). Thus, the role of Mspl in removing orphan a-helical OM
proteins is likely not its ancestral one. Instead, the requirement of
Msp1 to clear precursor blockages in the OM protein import ma-
chinery may have evolved first (Weidberg & Aman, 2018). Whether
ThMsp1 has retained this activity remains to be investigated.

Thus, the ThMsp1 function linked to surveillance of OM protein
biogenesis likely arose after pATOM36 evolution, and the same is
the case for the mitochondrial OM protein complex formed by
Msp1and its interactors, three of which contribute to its activity. The
MAD pathway triggered by the depletion of pATOM36 is, to our
knowledge, the first one to be characterised in any eukaryote that is
specifically linked to defects in OM protein biogenesis.

If the emergence of pATOM36 drove the evolution of a Msp1/VCP-
linked pathway to survey and maintain the integrity of its activity, did
the same happen in Opisthokonts? Intriguingly, there are hints that
depletion of yeast MIM or mammalian MTCH2 may drive MAD path-
ways. Loss of these proteins does result in depletion in the level of at
least some of their substrates (Vitali et al, 2018; Guna et al, 2022),
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reminiscent of the proteasomal degradation of pATOM36 substrates by
the MAD pathway described here. Accumulation of orphan OM pro-
teins is likely harmful for all mitochondria, suggesting that a pathway
to deal with such proteins might be required in all eukaryotes.

We therefore expect that the independent establishment of
specific OM protein biogenesis pathways in different phylogenetic
groups resulted in the parallel evolution of the corresponding MAD
pathways in the same groups. It is likely that these systems are also
connected to the widely conserved AAA-ATPases Mspl and VCP.
Should this be the case, it will be interesting to find out whether
they, as with TbMsp1, also require additional factors for full activity
and, if yes, what their identity might be.

There has been much progress in defining mitochondrial quality
control pathways in Opisthokonts such as yeast and metazoans.
However, only very recently have studies on mitochondrial quality

Reagents and tools table.
Reagent type
(species) or

resource

Designation Source or reference

control expanded beyond this narrow range of eukaryotic diversity.
A MAD pathway has been found in trypanosomes, a member of
the Discoba supergroup, that facilitates the removal of mistargeted
aggregation-prone mitochondrial proteins from the cytosol
(Dewar et al, 2022a). The results suggested that the depletion of
cytosolic chaperones may be a general trigger of MAD throughout
eukaryotes. The present Msp1 and VCP-linked pathway is the
second MAD pathway discovered in trypanosomes. Further
studies in other non-classical model systems are expected to
improve our understanding of the fundamental features of such
pathways, which are similar not because of common descent but
because all eukaryotes have to cope with the shared constraints
imposed by hosting mitochondria.

Materials and Methods

Identifiers Additional information

Cell line (T.brucei) 29.13, procyclic wirtz et al (1999)

WT

Anti-HA (mouse,

Antibody e BioLegend 901503 (MMS-101R) WB (1:5,000), IFA (1:1,000)

: Anti-mye (mouse, 2 : ;
Antibody monoclonal) Invitrogen 132500 WB (12,000), IFA {1:50)
Antibody Anti-ATOMI9 Furogentec Polyclonal antibody against g (1.cnn)

purified protein

Antibody Anti-ATOMAG Mani et al (2015) WB {1500)
Antibody Anti-pATOMI6 vitali et al (2018) WE {1:250)

& o Gift from Prof. James Bangs, SUNY
Antibody Anti-ThVCP Buffalo, US WB {1:50)

¢ 2, Gift from Paul Michels, University ? T
Antibody Anti-ALD of Edinburgh, Scotland IFA {1:1,500) WE {1:10,000)

: . Gift from Prof. James Bangs, SUNY e 3
Antibody Anti-BiP Buffalo, US IFA {1:2,500) WE (1:50,006)
Antibody Anti-ThMsp1 Furogentec Peptide antibody against C + W8 {1:1,000)

2 DEALKRVRPSMASSY o

y Anti-ATOMAC (rabbit, . .
Antibody polyclonal) Niemann et al (2013) Bleed 1, IFA {1:1,000)

; Anti-VDAC (rabhbit, : ; 3
Antibody polyclonal) Niemann et al (2013} WB (1:1,000)

: Anti-EFla (mouse i

" Merk A 5-235 5

Antibody sroreelonal terk Millipore 05-235 WB (110,000)

7 Anti-cytochrome ¢ + i .
Antibody (rabbit, polyclonal) Crausaz Esseiva et al (2004) WB {1:700)
Antibody ::::?Emmcm"“”a' Niemann et al (2013) WE (12000)
Antibody Anti-ATOMES Mani et al {2015) WB (1500)
Antibody Anti-Tim Niemann et al (2013) WB {1:100)
Antibody Anti-mouse IRDye 680LT | rp gineriences PN 926-68020 WB {120,000)

conjugated {goat)
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Continued
Reagent type
(species) or Designation Source or reference Identifiers Additional information
resource
Antibody Anti-rabbit IRDye 800CW |\ cp gioccionces PN 926-32211 WB {120,000)
conjugated {(goat)
. Goat Anti-mouse Alexa . . :
Antibody Fluor 596 Thermo Fisher Scientific # A-1032 IFA {1:1,000)
Antibody Goat Anti-rabbit Alexa . 0o Fieher sefentific # A-T1008 IFA (1:1,000)
Fluor 488
c_omrnen:ual assayor  Prime-a-Gene labelling Promea w106 Radioactive labelling of Northern
kit kit probes
Commercial assay or  EZView Red Anti-c-myc 5 ] 5
kit affinity gel Sigma-Aldrich 6654 ColP
;ct»mmen:lal SSaHYOh Anti-HA affinity matrix Roche TEE0ME00T ColP
Commercial assay or  Proteinase K,
kit recombinant, PCR Grade Roche e
Chemical Tetracycline o
compound, drug Hydrochloride slgma-Aldrich 14650 ret
Chemical Digitonin Biosynth 103202 Ger.e_rauon of crude mitochondrial
compound, drug ? fractions
Chemical
compound, drug FFA Fluka UNZ213
Chemical Albumin (BSA) Fraktion V )
compound, drug (pH 7,0) Applichern A1
Chemical : o
T - Me
compound, drug riton X-100 Merck Millipore 108603
Chemical :
T
compound, drug ween 20 AppliChem AGT4
Chemical Lysine-L U-13C, U-15N £ e A
compound, drug (Lys8) Euroisotop CHLM-291-H SILAC labelling
Chemical Arginine-L U-13C6, s .
compound, drug U-15N4 {Are1o) Euroisotop CHLM-535-H SILAC labelling
Chemical ; .
compound, drug Lysine-L, 4455-D4 {Lys4)  Euroisotop DLM-2640 SILAC labelling
Chemical s ; )
Cormpoing, drug Arginine-L 13C6 (Args) Euroisotop CLM-2265-H SILAC labelling
Chemical Formaldeyde, light o . Peptide stable isotope dimehtyl
compound, drug (CH,0) FgmaAldrich HBA labelling
Chemical Formaldeyde, heavy . ; Peptide stable isotope dimehtyl
compound, drug (“CD.0) SlgmasAldrkh Aedban, labelling
Chemical Sodium cyano- . . . . Peptide stable isotope dimehtyl
compound, drug borohydride (NaBH,CN) Sigma-Aldnch hal labelling
Enzyme Trypsin, MS approved SERVA 37286

Software, algorithm

GraphPad Frism, version
6.0 f

Graphpad software

www.graphpad.com

Depiction of growth curves and
analysis of Western blot
quantification

Software, algorithm

Fiji

Image)

Schindelin et al (2012)

Processing of images

Software, algorithm

Figure)

Image) Plugin

Mutterer and Zinck {(2013)

Assembly of microscopy figures

Software, algorithm

Image Studio Lite v. 525.

LI-COR Biosciences

Quantification of Western blots

Software, algorithm

Software, algorithm

Adobe llustrator

RStudio

Adobe

RStugio

www.adobe.com

www.rstudio.com

Figure assembly

Mass spectrometry analysis,
valeano plotting
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Methods and protocols

Transgenic cell lines

Transgenic T. brucei cell lines were generated using the procyclic
strain 2913 (Wirtz et al, 1999). Cells were cultivated at 27°C in SDM-79
(Brun & Schonenberger, 1979) supplemented with 10% (vol/vol)
FCS2, containing G418 (15 pg/ml; Gibco), hygromycin (25 pg/mi;
InvivoGen), puromycin (2 pg/ml; InvivoGen), blasticidin (10 pg/mlL;
InvivoGen), and phleomycin (25 pg/ml; LifeSpan BioSciences) as
required. RNAI or protein overexpression was induced by adding
1 pg/ml tetracycline to the medium.

To produce plasmids for ectopic expression of C-terminal triple
c-myc- or HA-tagged ThMsp1 (Th927.5.960), POMP31 (Th927 6.3680),
ThI31 (Th927.7.990), POMP19 (Th927.10.510), and ThTsc13 (Th927.3.1840),
the complete ORFs of the respective gene were amplified by PCR and
inserted in a modified pLew100 vector (Wirtz et al, 1999; Bochud
Allemann & Schneider, 2002) containing either a C-terminal triple
c-myc- or HA-tag (Oberholzer et al, 2006). One TbMsp1 allele was
tagged in situ at the C-terminus with a triple HA-tag via a PCR ap-
proach, using a pMOTag vector containing a phleomycin resistance
cassette as described in Oberholzer et al (2006).

RNAi cell lines were prepared using a plew100-derived vector
with a 500 bp target gene fragment and its reverse complement
present with a 460 bp stuffer in-between, generating a stem-loop
construct. The RNAIs targeted the indicated nucleotides (nt) of the
ORF of proteasome subunit B, (nt 266-759), THVCP (nt 423-896),
TbTsc13 (nt 379-891), Thi31 (nt 831-1,255), POMP31 (nt 170-568),
POMP19 (nt 182-610), TbMsp1 (nt 530-940). The pATOM36 RNAi
construct was previously published (Pusnik et al, 2012).

Digitonin extraction

Cell lines were induced for 16 h before the experiment to express the
epitope-tagged proteins. Crude mitochondria-enriched fractions were
obtained by incubating 1 = 10° cells on ice in 0.6 M sorbitol, 20 mM
Tris-HCL (pH 75), and 2 mM EDTA (pH 8) containing 0.015% (wt/vol)
digitonin for the selective solubilization of plasma membranes.
Centrifugation (5 min, 6,800 g, 4°C) yielded a cytosolic supernatant and
a mitochondria-enriched pellet. Equivalents of 13 = 10° cells of each
fraction were analysed by SD5-PAGE and subsequent Western blotting
to demonstrate organellar enrichment for proteins of interest

Alkaline carbonate extraction

To separate soluble or peripherally membrane-associated proteins
from integral membrane proteins, a mitochondria-enriched pellet
was generated as described above by digitonin extraction and
resuspended in 100 mM Na,CO; (pH 11.5). Centrifugation (10 min,
100,000g, 4°C) yielded a supernatant containing soluble proteins
and a pellet containing membrane fragments. Equivalents of 7.5 =
10° cells of each fraction were subjected to SDS-PAGE and
immunoblotting.

Proteinase K protection assay

A mitochondria-enriched digitonin pellet from 5 = 107 cells over
expressing C-terminally tagged Msp1, POMP31, Thi31, or ThTsc13 was
generated as described above. The pellet was resuspended in
250 mM sucrose, 80 mM KCL, 5 mM MgAc, 2 mM KH2PO4, and 50 mM
Hepes, and distributed in five equal samples. Triton X-100 was

Mspl-containing complex in 1. brucei  Gerber et ol

added to indicated samples to 05% (vol/vol). Proteinase K was
added to the samples in concentrations as indicated. After 15 min
incubation on ice, the reactions were stopped by adding PMSF to
5 mM. Samples without Triton ¥-100 were centrifuged (3 min, 6,800
g, 4°C) and all samples were resuspended in 505 loading buffer. In
each sample, 1= 10° cell equivalents were subjected to SDS-PAGE
and Western blotting.

Immunoprecipitation

Digitonin-extracted mitochondria-enriched fractions of 1 = 10°
induced cells were solubilized on ice in 20 mM Tris-HCL (pH 7.4),
0.1 mM EDTA, 100 mM NacCl, 25 mM KCl, 1x protease inhibitor mix
(EDTA-free; Roche), and 1% (wt/val) digitonin. After centrifugation
(15 min, 20817g, 4°C), the lysate (IN, input) was transferred to either
50 pl of HA bead slurry (anti-HA affinity matrix; Roche) or 50 pl c-myc
bead slurry (EZview red anti-c-myc affinity gel; Sigma-Aldrich), both
of which had been equilibrated in wash buffer (20 mM Tris-HCl [pH
7.4), 0.1 mM EDTA, 100 mM NaCl, 10% glycerol, 0.2% [wt/vol] digi
tonin). After incubating at 4°C for 2 h on a rotating wheel, the
supernatant containing the unbound proteins (FT, flow through)
was removed. The bead slurry was washed three times with wash
buffer. Bound proteins were eluted by boiling the resin in 60 mM
Tris-HCl (pH 6.8) containing 2% SDS (IP). 25% of crude mitochon-
drial fractions (Input, IN), unbound proteins in the flow through (FT),
and 50% of the final eluates (IP) were separated by SD5-PAGE and
analysed by Western blot.

SILAC immunoprecipitations

Cells were grown for 5 d in SILAC medium (SDM80 containing
5.55 mM glucose, supplemented with 10% dialyzed, heat-inactivated
FCS, 75 mg/l hemin) containing isotopically distinct variants of
arginine (“Ci"M./Arg0, “Ci'No/Args, or “CIN./Arg10; 226 mell
each) and lysine (Ci*N./Lys0, ClNIH./ Lyss, or “CPN,/Lyss; 73
mg/l each) (Eurisotope). 2 = 107 WT cells and cells expressing in situ
tagged Mspl-HA (in the presence or absence of pATOM36) were
mixed and washed with 1x PBS. Crude mitochondria-enriched
fractions were obtained by digitonin extraction as described
above. The pellet of the digitonin extraction was subjected to
immunoprecipitation as described above. Proteins were precipi-
tated after the methanol-chloroform protocol (Wessel & Fligge,
1984) and further processed for liquid chromatography-mass
spectrometry (LC-MS) analysis including reduction in cysteine
residues, alkylation of thiol groups, and tryptic digestion as de-
scribed before (Dewar et al, 2022b). The experiment was performed
in three biological replicates with different labelling schemes,

RNA extraction and Northern blotting

Acid guanidinium thiocyanate-phenol-chloroform extraction accord-
ing to Chomczynski and Sacchi (1987) was used for isolation of total
RNA from uninduced and induced RNAI cells. Total cellular RNA
was separated on a 1% agarose gel in 20 mM MOPS buffer sup-
plemented with 0.5% formaldehyde. Northern probes were gen-
erated from gel-purified PCR products corresponding to the RNAI
inserts and radioactively labelled using the Prime-a-Gene la-
belling system (Promega).
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Immunofluorescence microscopy

Induced =10° cells overexpressing the indicated tagged proteins
were harvested by centrifugation (5 min, 1,800g) and washed with 1x
PBS. After resuspension in 1x PBS, the cells were left adhering on a
glass slide in a wet chamber. The cells were fixed with 4% PFA,
permeabilised with 0.2% Triton X-100, and blocked with 2% BSA in 1x
PBS. Antibodies were incubated on the slides in 1% BSA and 1x PBS.
The dried slides were mounted with Vectashield containing 4 DAPI
(Vector Laboratories, P/N H-1200). Images were acquired with a
DFC360 FX monochrome camera (Leica Microsystems) mounted on
a DMIBOO0B microscope (Leica Microsystems). Image analysis and
deconvolution were performed using LASX software (version
3.6.20104.0; Leica Microsystems). The acquired images were pro
cessed using Fiji (Image) version 2.10./1.53; Java 1.8.0_172 [64 bit]).
The Pearson product-moment correlation coefficient (Pearson’s r)
was calculated for a region of interest defined as one represen
tative cell that is shown in the Figure using Fiji's Coloc 2 analysis.
Microscopy figures were composed using Figure) (Mutterer & Zinck,
203).

Peptide stable isotope dimethyl labelling and high-pH reversed-
phase fractionation

RNAi cell lines were grown in triplicate in SDM-79 for 3 d, in the
presence or absence of tetracycline, 1 = 10% cells were centrifuged
(8 min, 1,258g, RT) and washed with 1x PBS. The pellets were flash
frozen in liquid nitrogen and subsequently processed for tryptic in-
solution digestion as described before (Peikert et al, 2017). Dried
peptides were reconstituted in 100 mM tetraethylammonium bi-
carbonate, followed by differential labelling with “light” or “heawy”
formaldehyde (CH.0/™CD.0; Sigma-Aldrich) and sodium cyano-
borohydride (NaBH,CN; Sigma-Aldrich) (Morgenstern et al, 2021),
Labelling efficiencies (=99% for all individual experiments) were
determined by LC-MS analysis. Equal amounts of differentially
“light" and "heavy” labelled peptides derived from the respective
controland induced RNAI cells were mixed, purified, and fractionated
by high pH reversed-phase chromatography using StageTips es-
sentially as described previously (von Kanel et al, 2020). In brief,
peptides, reconstituted in 10 mM NH.OH, were loaded onto StageTips
and eluted stepwise with 0%, 2.7%, 5.4%, 9.0%, 11.7%, 14.4%, 36%, and
65% (vol/vol each) acetonitrile (ACN) /10 mM NH,OH. Fractions 1and 7
(0% and 36% ACN eluates) and fractions 2 and 8 (2.7% and 65% ACN
eluates) were combined for LC-MS analysis.

Quantitative LC-MS analysis

Before LC-MS analysis, peptides were desalted using StateTips,
vacuum-dried, and reconstituted in 0.1% (vol/vol) trifluoroacetic
acid. LC-MS analyses were performed using either a Q Exactive Plus
(Msp1-HA SILAC IPs) or an Orbitrap Elite (RNAI experiments) mass
spectrometer connected to an UltiMate 3,000 RSLCnano HPLC
system (all instruments from Thermo Fisher Scientific). Peptides
were loaded and concentrated on PepMap C18 precolumns (length,
5 mmy; inner diameter, 0.3 mm; Thermo Fisher Scientific) at a flow
rate of 30 pl/min and separated using Acclaim PepMap €18
reversed-phase nano-LC columns (length, 500 mm; inner diameter,
75 pm; particle size, 2 pm; pore size, 100 A; Thermo Fisher Scientific)
ata flow rate of 0.25 ul/ min. The solvent system used for the elution
of peptides from Msp1-HA SILAC IP experiments consisted of 0.1%

Mspl-containing complex in 1. brucei  Gerber et ol

(vol/val) formic acid (FA; solvent A1) and 86% (volfvol) ACN/0.1%
{vol/vol) FA (solvent B1). The following gradient was applied: 4-39%
solvent B1in 195 min followed by 39-54% B1in 15 min, 54-95% B1in
3 min, and 5 min at 95% B1, For the elution of peptides from RMAi
experiments, 4% (vol/vol) dimethyl sulfoxide (DMS0)/0.1% (vol/vol)
FA (solvent A2) and 48% (vol/vol) methanol/30% (vol/vol) ACN/4%
(vol/vol) DMS0/0.1% (vol/vol) FA (solvent B2) were used. A gradient
ranging from 3-65% solvent B2 in 65 min, 65-80% B2 in 5 min, and
5 min at 80% B2 was applied.

Mass spectrometric data were acquired in a data-dependent
maode. The Q Exactive Plus was operated with the following settings:
mass range, m/z 375 to 1,700; resolution, 70,000 (at m/z 200); target
value, 3 = 10% and maximum injection time (max. IT), 60 ms for MS
survey scans. Fragmentation of up to 12 of the most intense multiply
charged precursor ions by higher energy collisional dissociation
was performed with a normalised collision energy (NCE) of 28%, a
target value of 10°, a max. IT 0f 120 ms, and a dynamic exclusion (DE)
time of 45 s, The parameters for MS analyses at the Orbitrap Elite
were as follows: mass range, m/z 370 to 1,700; resolution, 120,000 (at
m/z 400); target value, 10% and max. IT, 200 ms for survey scans. A
TOP1S (pATOM36/subunit B; double and pATOM36/TbVCP/ThMsp1
triple RNAi experiments) or TOP25 (pATOM36 RNAI experiments)
method was applied for fragmentation of multiply charged pre-
cursor ions by low energy collision-induced dissociation in the
linear ion trap (NCE, 35%; activation g, 0.25; activation time, 10 ms;
target value, 5000; max. IT, 150 ms; DE, 45 s).

Proteins were identified and quantified using MaxQuant/
Andromeda (Cox & Mann, 2008; Cox et al, 2011) {version 155.1 for
Msp1-HA SILAC IP and 1.6.0.1 for RNAI data). Mass spectrometric raw
data were searched against a TriTryp database specific for T. brucei
TREU927 (release version 8.1 for Msp1-HA SILAC IP and 36 for RMAI
data; downloaded from https:/ /tritrypdb.org). For protein identi
fication, MaxQuant default settings were applied, with the excep-
tion that only one unique peptide was required. For relative
quantification, the appropriate settings for SILAC labelling (light
labels, Lys0/ArgD; medium-heavy, Argh/ Lys4; heavy, Lys8/Arg10) or
stable isotope dimethyl labelling (light, dimethylLys0 /dimethylNterLys0;
heavy, dimethylLys6/dimethylNterLys6) were chosen. Quantification was
based on at least one ratio count. The options “match between runs”
and “requantify” were enabled. Only proteins quantified in at least two
independent replicates per dataset were considered for further analysis.
The mean log,, (SILAC IP data) or mean log, (RNAI data) of protein
abundance ratios was determined, and a one-sided (SILAC IP data) or
two-sided (RMAI data) ¢ test was performed. For information about the
proteins identified and quantified, see Table 51 (TbMsp1-HA SILAC IPs)
and Table 52 (RNAi experiments) in the PRIDE database.

Computational analysis of proteins

Conserved structural elements of Msp1 (Ogura et al, 2004; Martin
et al, 2008; Wang et al, 2020) are highlighted in Fig 1A TMDs were
predicted using Phobius (Madeira et al, 2022) (TbMsp1, POMP3,
Thj31, POMP19) or HMMTOP (Tusnady & Simon, 1998) (TbTsc13), and
conserved domains were either predicted with ncbinlm.nih.gov/
Structure (POMP19, ThTsc13) or annotated Pfam domains on HMMER
(Potter et al, 2018) (TbMsp1, Th)31). The ubiquitin-like domain of
ThTsc13 was predicted by HHpred (Zimmermann et al, 2018). The
multiple amino acid sequence alignment of ThMsp1, ATAD1 from
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H. sapiens (HsATAD1), and Msp1 from 5. cerevisiae (ScMsp1) shown
in Fig 51 was performed with Clustal Omega (Sievers et al, 2011).

Data Availability

The mass spectrometry data have been depesited to the Proteo-
meXchange Consortium (Deutsch et al, 2020) via the PRIDE (Perez-Riverol
et al, 2022) partner repository and are accessible using the dataset
identifiers PXD039631 (SILAC IP data) and PXD039634 (RNAI data).

Supplementary Information

Supplementary Information is available at https://doiorg/10.26508/1sa.
202302004,
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Clustal Omega multiple sequence alignment of amino acid sequences of TbMsp1, ATAD1 from H.

sapiens (HsATAD1), and Msp1 from S. cerevisiae (ScMsp1). Predicted transmembrane domains are

coloured in blue. The conserved structural elements coloured in yellow are: (i) the Walker A and B motif

for nucleotide binding and ATP hydrolysis, (ii) three pore-loop motifs, which are involved in gripping and

unfolding substrates and driving translocation through the pore, (iii) a WD motif, which likely contributes

to the coupling of ATP hydrolysis to conformational changes required for successful substrate

translocation, (iv) a nucleotide communication loop, and (v) an arginine finger motif.
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Figure S2.
TbMsp1, POMP31, TbJ31, POMP19, and TbTsc13 are integral OM proteins.

(A) Immunoblot analysis of whole cells (WC), soluble cytosolic (S1) fractions, and digitonin-extracted
mitochondria-enriched (P1) from cells overexpressing the indicated C-terminally myc- or HA-tagged

proteins. Immunoblots were probed with anti-tag antibodies and antisera against voltage-dependent
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anion channel and EF1a, which serve as markers for mitochondria and cytosol, respectively. P1
fractions were subjected to alkaline carbonate extraction at pH 11.5 resulting in soluble supernatant (S2)
and membrane-enriched pellet (P2) fractions. Immunoblots were probed with anti-tag antibodies and
antisera against voltage-dependent anion channel and cytochrome c (cyt ¢), which serve as markers for
integral and peripheral membrane proteins, respectively. (B) Immunoblot analysis of whole cells (WC),
soluble cytosolic (S1) fractions, and digitonin-extracted mitochondria-enriched (P1) from cells
expressing TbMsp1-myc probed with antisera against the ER marker binding protein and the glycosomal
marker aldolase. (C) Immunoblot analysis of proteinase K protection assays on digitonin-extracted
mitochondria-enriched fractions from cells overexpressing the indicated HA or myc-tagged proteins. An
untreated sample serves as the control (left lane). Proteinase K and Triton X-100 were added as
indicated.
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Figure S3.

TbMsp1, POMP31, ThbhJ31, POMP19, and TbTsc13 localise to mitochondria in an

immunofluorescence analysis.

Immunofluorescence analysis of either WT cells or cells overexpressing the C-terminally myc or HA-

tagged proteins (as indicated at the top of each column). (A, B, C) Cells were stained using anti-tag
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antibodies (top row) and co-stained either with the mitochondrial marker ATOM40 (A), the glycosomal
marker aldolase (B), or the ER marker binding protein (C) (middle row). All slides were also stained with
DAPI, which marks both nuclear and mitochondrial DNA in merged images (bottom row). All images
have been deconvoluted, and the Pearson R-values for colocalization of the indicated antigens are
depicted. Scale bars: 10 um. All images were acquired using the same microscope settings. Panels in

which the brightness and contrast have been reduced to avoid saturation are indicated by asterisks.
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Figure S4.
Normalised abundance profiles confirm OM localisation.

Normalised abundance profiles of TbMsp1, POMP19, POMP31, TbhJ31, and TbTsc13 over six
subcellular fractions, from a previously published proteomic analysis, showing maximal intensity in the
OM fraction (Niemann et al, 2013).
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Figure S5.

Growth curve of T. brucei cells ectopically expressing TbMsp1-myc.

Growth curve of induced (+Tet) and uninduced (-Tet) cells ectopically expressing TbMsp1-myc. Error
bars corresponding to the SD (n = 3) are too small to be displayed. The inset panel shows the
overexpression of TbMsp1-myc 1 d after induction as analysed by immunoblot decorated with antisera
against TbMsp1 and EF1a.
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Figure S6.
Control experiments for the immunoprecipitations shown in Fig 2.

Crude mitochondrial fractions from cells overexpressing the indicated C-terminally myc- or HA-tagged
proteins were analysed by immunoprecipitation using HA or myc beads, respectively. Crude
mitochondrial fractions (IN), unbound proteins (FT), and final eluates (IP) were separated by SDS-
PAGE. Resulting immunoblots were probed with anti-tag antibodies and antisera against voltage-
dependent anion channel and ATOM69.
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Figure S7.

Verification and growth analysis of TbMsp1, POMP19, POMP31, TbJ31, and TbTsc13 RNA.I cell

lines.

Growth curve of the indicated induced (+Tet) and uninduced (-Tet) RNAI cell lines. The growth curves
were performed in triplicate, but the SD are too small to be displayed. The inset panels show the
efficiency of RNAI for the indicated cell lines, either 3 d after induction when analysed by Western blot
or 2 d after induction when analysed by Northern blot. EF1a or ethidium bromide-stained rRNAs serve

as loading controls, respectively.
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Figure S8.

Verification and growth analysis of double and triple RNAi cell lines.

Growth curve of induced (+Tet) and uninduced (-Tet) double and triple RNAI cell lines. The growth
curves were performed in triplicate, but most SDs are too small to be displayed. The inset panels show

the efficiency of RNAI for the indicated targets, either 2 d after induction when analysed by Northern blot
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or RT-PCR, or 3 d after induction when analysed by immunoblot. Ethidium bromide-stained rRNAs,

tubulin cDNA, or EF1a serve as loading controls, respectively.

TbMsp1-HA IP + pATOM36 RNAI

5] ¢ OM |
Glycosomal ;
41 ® Both :
' Tb927.11.3130
® TbMsp1 TbJ§1:

B i POMP31 . TbMspf
5 3 POMP19d . . i
2 . e \Tb927.11.11520

(@]
Y L o ToTsera Tb927.4.4050
® s® |
1 \Tb927.10.10610
e e IR sl — = = = = e = o =0.05
1 J 1
| :
1
"-J :

-0.5 0 1
mean log,, ratio ToMsp1-HA in situ pATOM36 RNAIi /29.13
Figure S9.

Stable isotope labelling by amino acids in cell pulldown of TbMsp1-HA in pATOM36-depleted

cells.

TbMsp1 complexes were immunoprecipitated from crude mitochondrial fractions of differentially stable
isotope labelling by amino acids in cell-labelled 29.13 parent cells and cells expressing in situ tagged

TbMsp1-HA depleted for pATOM36 RNAI and analysed by quantitative mass spectrometry (n = 3).
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Abstract

Mitochondria are organelles shared between essentially all eukaryotes. To maintain their vital
functions, cells have several pathways that monitor and maintain mitochondrial proteostasis.
We recently published a paper describing a mitochondria-associated degradation (MAD)
pathway in Trypanosoma brucei, which is triggered upon ablation of the mitochondrial import
complex (MIM) analogue pATOMS36. The ablation of pATOM36 leads to complex subunits of
the atypical protein translocase of the outer membrane (ATOM) being removed from the
mitochondrial outer membrane (OM) by one of the two ATPases TbMsp1 or TbVCP followed
by degradation by the cytosolic proteasome. While it is known that VCP function is dependent
on ubiquitination of its substrates, it is unclear whether substrates need to be ubiquitinated for
removal by TbMsp1. To test this, we in situ expressed the ATOM component and MAD
substrate ATOM19 with all of its lysines replaced by arginine. We hypothesized that these
mutations would prevent the ubiquitination of this substrate and therefore TbVCP would not be
able to remove it from the OMM. We could show by blue native PAGE analysis that ATOM19
without lysines is integrated in a large molecular weight complex, which presumably is the
ATOM complex. Upon induction of pATOM36 RNAi, ATOM19 and the ATOM19 variant without
lysines both are depleted from the cells. Interestingly, both versions of the protein are also
equally depleted in a cell line simultaneously ablated for pPATOM36 and TbMsp1. This suggests
that even though if ATOM19 does not have any lysines, ubiquitination of the protein might still
be possible. Further experiments are needed to reveal the role of ubiquitination in TbMsp1- or

TbVCP-assisted degradation of destabilized OM proteins in T. brucei.

Introduction

Mitochondria are essential organelles that perform a number of vital functions in eukaryotes.
The mitochondrial outer membrane (OM) that surrounds the mitochondrion, harbours a
complex and dynamic proteome (Niemann et al., 2013; Schmitt et al., 2006). While OM
proteins can have various topologies, proteins that are anchored in the membrane by a single
alpha-helical transmembrane domain make up a considerable proportion of the OM proteome.
Several studies conducted in yeast have suggested that the mitochondrial import complex
(MIM), consisting of Mim1 and Mim2, is mediating the biogenesis of a-helically anchored OM
proteins (Becker et al., 2011; Dimmer et al., 2012; Doan et al., 2020; Papi¢ et al., 2011).
Interestingly, MIM is fungi-specific and appears to have the same function as the mitochondrial
animal-specific carrier homolog 2 (MTCH2) in animals and the peripheral atypical protein
translocase of the outer mitochondrial membrane of 36 kDa (pATOM36) in kinetoplastids
(Bruggisser et al., 2017; Guna et al., 2022; Kaser et al., 2016). These three proteins are non-

homologous, providing an example of convergent evolution in mitochondrial protein import. In
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fact it could be shown that MIM of yeast and pATOM36 in trypanosomes reciprocally

complement each other in the two organisms (Vitali et al., 2018).

It has been shown by our group that ablation of pATOM36 leads to the removal and
degradation of several a-helically anchored proteins by the cytosolic proteasome (Gerber et
al., 2023; Kaser et al., 2016). In order to be accessible to the cytosolic protein degradation
machinery these proteins need to be removed from the lipid bilayer of the OM. The two
ATPases TbVCP and TbMsp1 both contribute to this function in a synergistic manner (Gerber
et al., 2023). It has been shown that yeast Msp1 functions in a reconstituted liposome assay
without any substrate modifications or associated proteins (Wohlever et al., 2017). However,
in trypanosomes, the processing of certain substrates has been demonstrated to depend on
the presence of both, TbMsp1 and TbMsp1-interacting proteins (Gerber et al., 2023). Since
Msp1 is well conserved, it is reasonable to assume that this difference is mainly due to the
different substrates analysed and that yeast Msp1 and TbMsp1 are not functioning
fundamentally different (Gerber et al., 2023). There might be different substrate recognition
mechanisms or substrate modifications for some of which TbMsp1 is dependent on its

interacting proteins for correct recognition.

Proteins targeted for proteasomal degradation are often marked with a ubiquitin polymer a
various lengths (Chau et al., 1989; Hershko and Ciechanover, 1998). Ubiquitin consists of 76
amino acids and can be covalently attached via its C-terminus to a substrate lysine or to other
ubiquitins. However, alternative ubiquitination sites have been reported, for example the N-
terminus of the protein MyoD (Breitschopf et al., 1998). The TbVCP yeast homologue Cdc48
has been shown to rely on ubiquitination of its substrates to remove them from membranes
(Bodnar et al., 2018; Olszewski et al., 2019; Twomey et al., 2019). VCP and Cdc48 are highly
conserved and involved in common eukaryotic processes such as endoplasmic reticulum-
associated degradation (ERAD). Therefore, it is very likely that these findings also apply to
TbVCP.

In this study we wanted to investigate whether ubiquitination plays a role in the TbMsp1
assisted mitochondria-associated degradation (MAD) pathway that is triggered by pATOM36
ablation. We expressed a version of the MAD substrate ATOM19 where all the lysines were
replaced by arginines. Using blue native PAGE, we could show that ATOM19 without lysines
is still integrated into a large molecular weight complex. Upon ablation of pATOM36, ATOM19
and the ATOM19 variant without lysines are both depleted from the cells. Moreover, both
versions of ATOM19 are equally depleted in cells induced for pATOM36 and TbMsp1 RNAI.
Hence, these results show that, should ubiquitination be required for the TbVCP linked MAD
pathway, it is not attached to internal lysines in ATOM19.
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Results

ATOM19 is 168 amino acids long and contains four lysines (Figure 1). The short length and
the low number of lysines make this protein a good candidate to investigate the role of
ubiquitination in the previously described MAD pathway. Lysines are the primary target for
ubiquitination and mutating lysines to arginine in a protein of interest has been demonstrated
to prevent its ubiquitination (G. Chen et al., 2014). We hypothesized that a variant of ATOM19
where all lysines are replaced by arginines might be resistant to ubiquitination. Thus, ATOM19
without lysines (Figure 1) was expressed in situ with a C-terminal HA-tag in cells that can either
be induced for pATOM36 RNAI or for pATOM36, TbMsp1 double RNAI (Figure 2).

ATOM19 1 MDSLAHSVSSMVHCAENFHIPLVRSRTVVTAVAVGIPIAVLLHDTAEHWM 50
Frrrrrrrrrrrrreerrrrrrrrrer et ree et e el

ATOM19 no K 1 MDSLAHSVSSMVHCAENFHIPLVRSRTIVVTAVAVGIPIAVLLHDTAEHWM 50

ATOM19 51 PTSFQLPITSWFRREWRONPEVESSHLTLARNATIIFFYLAMVLSEGTFYE 100
ARRERREEREERE] (RERERN IRERRRRE RN RN RN

ATOM1¢ no K 51 PTSFQLPIISWFRREWRONPEVESSHLTLARNAIIFFYLAMVLSEGTEYE 100

ATOM19 101 TPIDYVADRVSGAPAREAFNERTQRGRASAFSAREEVASEEGLNEASSRQ 150
RN RREEREEREEN] (REREEN] (RRRRERERERERE R EREERE N

ATOM1S no K 101 TPIDYVADRVSGAPARBAFNERIQEBGRHSAFSAAEEVASEEGLNEASSRQ 150

ATOM19 151 QRDTALRRRFLHESRTSN 168
RN ERENRRR RN

ATOM19 no K 151 QRDTALRRRFLHESRTSN 168

Figure 1: Emboss needle alignment of amino acid sequences of ATOM19 and ATOM19 without

lysines (ATOM19_no_K). Replaced lysines are highlighted in red.

As shown in Figure 2A ATOM19 without lysines as well as wild type ATOM19 are expressed
in uninduced cells and are essentially completely degraded upon pATOM36 RNAI induction. If
our hypothesis holds true and ATOM19 without lysines cannot be ubiquitinated we expect the
protein to be extracted from the membrane by TbMsp1 and not TbVCP, as based on results in
other organisms, TbVCP most likely depends on ubiquitination (Bodnar et al., 2018; Olszewski
et al., 2019; Twomey et al., 2019). Figure 2B illustrates that in the presence of pATOM36,
ATOM19 without lysines is integrated in a high molecular weight complex, that likely
corresponds to the ATOM complex. We expect only orphaned proteins to be substrates of the
pATOM36-associated MAD pathway. Therefore, ATOM19 without lysines was expected to

integrate in a complex because it is only targeted for degradation upon pATOM36 ablation.

However, surprisingly, Figure 2C shows that ATOM19 without lysines in the absence of
pATOM36 and TbMsp1 is degraded to the same extent as wildtype ATOM19. These results
suggest that even though lysines are the primary target for ubiquitination, ATOM19 without
lysines can be extracted from the OM by TbVCP. This can be explained either by TbVCP
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functioning in a fundamentally different manner than its yeast homologue Cdc48 or, more likely,

by ATOM19 still being ubiquitinated despite having no lysines.

Figure 2: No difference between
ATOM19 without lysin and wild type
ATOM19 A) Western blot analysis of
total cellular extract (3 x 10° cells each)
of uninduced and induced pATOM36
RNAi cells in situ expressing ATOM19
without lysines. Immunoblots were
probed with HA and ATOM19 antisera.
EF1a serves as a loading control. B)
BN-PAGE immunoblot analysis of
mitochondria enriched fractions of cells
in situ expressing ATOM19 without
lysines. Immunoblot was decorated
with HA antiserum. C) Western blot
analysis of total cellular extract (3 x 108
cells each) of uninduced and induced
pATOMS36, TbMsp1 RNAI cells in situ
expressing ATOM19 without lysines.
Immunoblots were probed with HA,
ATOM19 and TbMsp1 antisera. EF1a

serves as a loading control.

Discussion

This study could not determine if ubiquitination plays a role in TbMsp1-assisted MAD upon
pATOM36 ablation. We have discovered that in situ expressed C-terminally HA tagged
ATOM19 without lysines is degraded if pATOM36 is ablated. We have recently published a
model where MAD substrates can be removed from the OM by either TbVCP or TbMsp1
(Gerber et al., 2023). Our experiments demonstrate that ATOM19 without lysines is integrated
into a large molecular weight complex which is most likely the ATOM complex. The high
molecular weight complex we detect by BN-PAGE analysis is very similar to previously
published BN immunoblots stained for ATOM components (Mani et al., 2015).To gain further
evidence, a coimmunoprecipitation (ColP) experiment with ATOM19 lacking lysines could be
performed. If lysine-less ATOM19 and other ATOM components are detected in the ColP
eluate, it would prove that integration of ATOM19 without lysines into the ATOM complex is

possible.
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ATOM19 lacking lysines was further investigated in cells knocked down for either pATOM36
or pATOM36 in combination with TbMsp1. The efficiency of the TbMsp1 RNAi was
demonstrated directly by the decrease of the protein by western blot. The efficiency of the
pATOM36 RNAIi was shown indirectly by the decrease of wild type ATOM19 signal on western
blot, which is a direct consequence of the lack of pATOM36 (Gerber et al., 2023; Kaser et al.,
2016). Surprisingly, in situ expressed ATOM19 without lysines in cells induced for pATOM36
and TbMsp1 RNAi was still subjected to MAD. Since TbMsp1 is absent in these cells, the
protein is most likely extracted from the OM by TbVCP. This could be explained by TbVCP
functioning in a fundamentally different manner than its yeast homologue Cdc48. However,
due to the high conservation of this protein in all eukaryotes this seems unlikely. It is more

probable that ATOM19 without lysines can still be ubiquitinated, possibly at the N-terminus.

It would be interesting to experimentally determine whether ATOM19 without lysines can be
ubiquitinated at its N-terminus. To prevent the N-terminal ubiquitination one could add a large
tag e.g., a 6x myc tag, to the N-terminus of the protein. This has been demonstrated to
effectively prevent ubiquitination in mammalian cells (Breitschopf et al., 1998). Another method
successfully applied was expressing the protein of interest fused to a deubiquitination enzyme
(DUb) (Henning et al., 2022; Stringer and Piper, 2011). The presented set of experiments could
be repeated with the addition of either a bulky tag or a DUb to the N-terminus of ATOM19

without lysines.

In summary, further experiments are needed to determine more definitively whether
ubiquitination of pATOMS36 substrates is required for them to be processed by TbMsp1 or
TbVCP assisted MAD.

Material and Methods

Transgenic cell lines

Transgenic T. brucei cell lines were generated using cell lines descending from the procyclic
strain 29.13 (Wirtz et al., 1999). ATOM19 without lysines was introduced into published
pATOM36 RNAI, and pATOM36, TbMsp1 RNAI cell lines (Gerber et al., 2023; Pusnik et al.,
2012). Cells were cultivated at 27°C in SDM-79 (Brun and Schoénenberger, 1979)
supplemented with 10% (vol/vol) FCS, containing G418 (15 ug/ml; Gibco), hygromycin (25
pug/ml; InvivoGen), puromycin (2 pg/ml; InvivoGen), blasticidin (10 pg/ml; InvivoGen), and
phleomycin (2.5 ug/ml; LifeSpan BioSciences) as required. RNAi was induced by adding 1

ug/ml tetracycline to the medium.

ATOM19 without lysines was ordered as a synthetic gene from biomatik as the following

sequence:
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ATGGATAGCCTTGCACACAGTGTGAGTTCTATGGTGCACTGCGCCGAAAACTTTCACAT

CCCGCTTGTGCGCAGCCGGACTGTAGTGACCGCTGTGGCTGTGGGCATTCCCATTGCC
GTTTTGCTTCACGACACAGCCGAACACTGGATGCCTACCTCATTTCAACTCCCCATTATT
TCATGGTTTCGCCGACGGTGGCGGCAGAACCCGGAAGTGEGITCATCACACCTGACAC
TTGCGCGCAATGCCATTATATTCTTTTACTTAGCCATGGTGCTGAGTGAAGGCACATTTT
ACGAAACGCCTATAGATTATGTGGCGGATCGGGTATCTGGAGCTCCCGCACGALGCGC
ATTTAACGAGCGCATTCAACGAGGTCGCCATAGTGCCTTTTCAGCTGCTGAAGAGGTTG
CTAGTGAAGAAGGTTTGAATGAAGCGAGTTCCAGGCAGCAGCGAGACACCGCACTCCG
TCGCCGTTTCTTACATGAAAGCCGTACTTCCAACTAA

All four lysin codons that were changed to arginine are highlighted in green. A Sac/ (GAGCTC)
restriction site was also mutated without changing the amino acid sequence to facilitate
cloning, highlighted in yellow. The protein was cloned into a plasmid based on pMO-3HA,
pBluescriptll KS+ plasmid (Oberholzer et al., 2006).

DNA construct for transfection was obtained using PCR with the following oligonucleotides:
Forward primer:
ttgaaggttttttttttgaaaaaagaagagaagaaaaataaggggtaaataaaattaatatacaaaagaaataaggcaatATG
GATAGCCTTGCACACAGTGTGAGTTCTATGGTG

Reverse primer:
cccccctcetetetetectattegecttcttcaagttctttccccaaactttceccectttctattttttttttcacaactc TGGCGGCCGCT
CTAGAACTAGTGGAT

SDS-PAGE and western blot

Cells were treated with tetracycline for three days to induce RNAi and ectopic protein
expression as indicated. After the cells were washed with PBS, they were lysed in SDS buffer
(2% SDS, 0.0025% bromophenol blue (w/v), 100mM B-mercaptoethanol in 60 mM Tris-HCI pH
6.8). 3x10° cell equivalents per lane were separated on a 14% acrylamide gel in an
electrophoresis cell (Bio-rad, Mini-PROTEAN Tetra Vertical Electrophoresis Cell). After
transfer on a nitrocellulose membrane (Amersham) and blocking in 5% milk in PBS antisera
against indicated proteins were added in 2.5% milk, PBST (HA 1:5°000 (BioLegend, 901503
(MMS-101R)), ATOM19 1:500 (Gerber et al., 2023), TbMsp1 1:1°000 (Gerber et al., 2023),
EF1a 1:10°000 (Merk Millipore, 05-235)). After three PBST washes the membranes were
incubated with secondary antibodies (Anti-mouse IRDye 680LT conjugated (goat) and Anti-
rabbit IRDye 800CW conjugated (goat), 1:20°000, LI-COR Biosciences). The membranes were
imaged using a LI-COR ODYSSEY scanner and analysed using the corresponding software
(Image Studio Lite v. 5.2.5., LI-COR Biosciences).
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Digitonin extraction followed by BN-PAGE

Crude mitochondria-enriched fractions were obtained by incubating 1 x 108 uninduced cells,
in situ expressing ATOM19 without lysines, in 0.6 M sorbitol, 20 mM Tris—HCI (pH 7.5), and 2
mM EDTA (pH 8) containing 0.015% (w/v) digitonin (Biosynth) on ice. Centrifugation (5 min,
6,800 g, 4°C) yielded a cytosolic supernatant and a mitochondria-enriched pellet. This pellet
was solubilized in solubilization buffer (20 mM Tris—HCI pH 7.4, 50 mM NaCl, 10% glycerol,
0.1mM EDTA) containing 1% (w/v) digitonin and incubated on ice for 15min. After
centrifugation (20,0009, 4°C, 15min), the supernatant was separated on 4-13% gradient
acrylamide gels. 5 x 107 cell equivalent was loaded per well. Before western blotting, the gel
was incubated in SDS-PAGE running buffer (25 mM Tris, 1 mM EDTA, 190 mM glycine, 0.05%
(w/v) SDS) to facilitate transfer of the proteins to a PVDF membrane (Immobilon-FL). The
immunoblot was decorated with HA antiserum (BioLegend, 1:5000 in PBST, 2.5% milk). Anti-

mouse (goat, HRP-coupled, Sigma Aldrich) antibodies were used as secondary antibodies.
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Abstract

Mitochondria are essential organelles, most prominently known for their role in ATP
generation. Eukaryotes have developed a variety of pathways to restore defective
mitochondria upon mitochondrial stress. Some of these pathways involve mitochondrial sorting
of proteins 1 (Msp1), an ATPase associated with diverse cellular activities. Msp1 removes
mislocalized as well as destabilized alpha-helically anchored membrane proteins from the
mitochondrial outer membrane (OM), and subjects them for degradation by the cytosolic
proteasome. Additionally, Msp1 can clear stuck substrates from the translocase of the outer
membrane (TOM). It is known, for a subset of Msp1 substrates that they are reinserted into
the endoplasmic reticulum (ER) membrane before they are degraded using components of the
ER-associated degradation machinery (ERAD). Other Msp1 substrates may follow different
degradation routes. However, the molecular components and the mechanisms connecting
Msp1 to the ER, or potentially directly to the proteasome have yet to be elucidated. Here we
investigate Msp1-mediated OM protein degradation in the unicellular parasite Trypanosoma
brucei. We further characterize T. brucei Msp1 (TbMsp1) by exclusively expressing a substrate
trap (ST) mutant TbMsp1 which is able to bind the substrate as well as ATP but is unable to
hydrolyse ATP and therefore cannot release its substrates. We ablated pATOMS36 to trigger a
previously described mitochondrial quality control pathway in the presence of wildtype (WT)-
and ST-TbMsp1-myc and performed stable isotope labelling by amino acids in cell culture
(SILAC) followed by coimmunoprecipitation (ColP) and mass spectrometry (MS) of ST-
TbMsp1-myc, using WT-TbMsp1-myc as a control. Surprisingly, there were no known
PATOMS36 substrates specifically enriched with ST-TbMsp1-myc. These results indicate that
these substrates might be preferentially removed from the OM by TbVCP. However, in the list
of proteins which were pulled down, we not only uncovered potential new TbMsp1 substrates,
but also potential downstream components of the TbMsp1 pathway. Among the enriched
proteins we found three members of the endoplasmic reticulum membrane protein complex
(EMC). Among other functions, the EMC complex mediates the insertion of tail-anchored
proteins into the ER membrane. These results suggest that TbMsp1 and the EMC potentially

interact with each other at mitochondria-ER contact sites.

Introduction

Eukaryotic cells harbour a variety of organelles, each of which contains a subset of nuclear
encoded proteins. These proteins are translated by cytosolic ribosomes and subsequently
targeted to their respective organelle. Tail-anchored (TA) membrane proteins of the
endoplasmic reticulum (ER) for example are shuttled to the ER via the Guided Entry of Tail-

Anchored (Get) protein import pathway (Schuldiner et al., 2008; Stefanovic and Hegde, 2007).
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Upon interference with the Get pathway, some these TA proteins, which normally localize to
the ER membrane, are inserted into the mitochondrial OM instead (Okreglak and Walter,
2014). The conserved, membrane-anchored ATPase Associated with various cellular Activities
(AAA), mitochondrial sorting of proteins 1 (Msp1) is a crucial component of a mitochondria-
associated degradation (MAD) pathway which clears the OM from such mislocalized TA ER
proteins (Okreglak and Walter, 2014). Pex15 is such a TA protein; it normally inserts into the
ER membrane, butis cleared upon mislocalisation to the OM via Msp1 followed by degradation
by the cytosolic proteasome (Okreglak and Walter, 2014). Interestingly, Pex15A30 that is
removed from the OM by Msp1 is not directly shuttled to the proteasome, but reinserted into
the ER membrane, before it is further processed and degraded via part of the ER-associated
degradation (ERAD) pathway (Dederer et al., 2019; Matsumoto et al., 2019). It seems
counterintuitive for the cell to reinsert a protein into another membrane and use even more
ATP to extract it before it can be degraded. However, this localisation to the ER offers the
option for the cell to divert the protein to the correct localisation pathway. This re-localisation
pathway was also observed for the Golgi protein Gos1 (Y.-C. Chen et al., 2014; Matsumoto,
2023). It has been suggested that Msp1 substrates contain exposed hydrophobic patches
which are recognized by Msp1 if the substrates fail to assemble into their correct complexes
in the OM. This suggests that these recognition signals are hidden if the Msp1-substrate is
present in complexes (Li et al., 2019). AAA proteins, such as Msp1 have been intensively
studied, and the molecular mechanisms of how substrate proteins are extracted are known in
great detail (L. Wang et al., 2020). However, how proteins extracted by Msp1 travel to the ER,

and whether all Msp1 substrates follow this route remains elusive.

Most studies on Msp1 have been conducted in yeast and mammals, which belong to the same
eukaryotic supergroup of the Opisthokonts. We have recently discovered a novel Msp1
dependent mitochondrial quality control (MQC) pathway in the protozoan parasite
Trypanosoma brucei (Gerber et al., 2023). Upon the knockdown of the pATOM36 which is a
yeast OM protein insertase MIM analogue, several ATOM complex components are removed
from the OM either by T. brucei valosin-containing protein (TbVCP) or T. brucei Msp1
(TbMsp1) and degraded (Gerber et al., 2023; Kaser et al., 2016; Vitali et al., 2018). We
determined that TbMsp1 forms a stable complex with four integral OM proteins. Additionally,
three of these TbMsp1 interacting proteins, TbJ31, POMP31 and TbTsc13, are needed for
TbMsp1-dependent removal of pATOMS36 substrates from the OM (Gerber et al., 2023).

In this study we aimed to identify additional TbMsp1 substrates in trypanosomes. For this
purpose we used a synthetic RNAI resistant version of TbMsp1 containing a point mutation
changing the amino acid from glutamic acid (E) to glutamine (Q) in the highly conserved Walker
B motif of the AAA domain of TbMsp1(Gerber et al., 2023). The resulting mutant ToMsp1 loses
the ability to hydrolyse ATP (Li et al., 2019). The same approach was used before with yeast
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Msp1 (Basch et al., 2020; Castanzo et al., 2020; Li et al., 2019; Matsumoto et al., 2019;
Okreglak and Walter, 2014). We expressed this C-terminally myc-tagged RNAi-resistant
substrate trap (ST) mutant ST-TbMsp1 in the background of a TbMsp1, pATOM36 double
RNA. cell line. As a control, the same cell lines were created expressing a C terminally myc
tagged RNAI resistant version of wildtype (WT) WT-TbMsp1 was used. We could show that
the ST-TbMsp1 localizes similar to WT-TbMsp1 in immunofluorescence assays (IFA).
Furthermore, using blue native (BN) PAGE of mitochondrial enriched fractions we could
observe ST-TbMsp1 but not WT-TbMsp1 in a complex. Finally, we attempted to assess tagged
ST-TbMsp1s ability to pull down substrates. We subjected tagged WT- or ST-TbMsp1
expressed in the pATOM36, TbMsp1 double RNAI cell line to stable isotope labelling with
amino acids in cell culture (SILAC) coimmunoprecipitation (ColP) followed by mass
spectrometry (MS). The resulting analysis provided us with a dozen proteins that show
significantly stronger interaction with ST-TbMsp1 than WT-TbMsp1. Surprisingly, none of the
expected pATOM36 substrates appeared among these 12 proteins. Interestingly, we did pull
down three components of the ER membrane protein complex (EMC). These findings suggest
that TbMsp1 may interact with the EMC at the mitochondrial — ER interface.

Results

Ectopic expression of ST-TbMsp1 has no effect on growth of procyclic trypanosomes.
We ectopically expressed ST- and WT-TbMsp1 in transgenic cell lines which allow inducible
RNAI for either TbMsp1 or for TbMsp1 and pATOM36 together. As can be seen in the top left
panel of Figure 1, the exclusive ectopic expression of a RNAiI resistant WT-TbMsp1 marginally
affects the growth of procyclic trypanosomes induced for TbMsp1 RNAI. For unknown reasons
endogenous TbMsp1 is not detected in non-induced cells (Figure 1, top left). Possibly the RNAI
in those cells is leaky. Importantly, the expression of ST-TbMsp1 does not affect growth (Figure
1, top right). In the two cell lines that exclusively express either ST- or WT-TbMsp1 in the
background of pATOM36 RNAIi the TbMsp1 RNAI is probably leaky as well (Figure 1, bottom
left & right). However, pATOMS36 is present in non-induced, and absent in induced cells (Figure
1, bottom left & right). Both of these double RNAI cell lines also show growth inhibition starting
at around three days after induction, which aligns with previous experiments were pATOM36
was depleted (Gerber et al., 2023; Kaser et al., 2016).
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Figure 1: Verification and growth analysis of ectopic expression of WT- and ST-TbMsp1-myc
and indicated RNAis.

Growth curve of the indicated induced (+Tet) and uninduced (—Tet) RNAi cell lines. The growth curves
were performed in triplicate, but the SD are too small to be displayed. The inset panels show the
efficiency of RNAI for the indicated cell lines, 3 d after induction when analysed by Western blot using
anti TbMsp1 antiserum. Voltage dependent anion channel (VDAC) or eukaryotic elongation factor 1

a (EF1a) serve as loading control.

Ectopically expressed ST and WT-TbMsp1 localise alike in an immunofluorescence
analysis. All four cell lines exclusively expressing WT- or ST-TbMsp1 either in the presence
or the absence of pATOM36 RNAi were subjected to immunofluorescence analysis (IFA)
(Figure 2). It was previously shown that TbMsp1 localizes to glycosomes and the OM, it
therefore does not colocalize perfectly with any of the tested organellar markers (Gerber et al.,
2023). Nonetheless, both WT- and ST-TbMsp1 overlap with the mitochondrial marker protein
ATOMA40 to a similar extent as has been observed for unclogged TbMsp1 (Gerber et al., 2023).

This indicates that the ST mutation does not lead to mislocalisation of TbMsp1.
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Figure 2: WT- and ST-TbMsp1 localise alike in an immunofluorescence analysis.
Immunofluorescence analysis of cells exclusively expressing the C-terminally myc tagged WT- or ST-
TbMsp1 (as indicated at the left of each row) in the presence and absence of pATOM36 RNAI (as
indicated at the left). Cells were stained using anti-myc antibodies (right column) and co-stained with
the mitochondrial marker ATOMA40 (third column). All slides were also stained with DAPI, which marks

both nuclear and mitochondrial DNA in merged images (first and second column). Scale bar = 10 ym.

The ST mutation renders the TbMsp1 complex stable for blue native polyacrylamide gel
electrophoresis. The WT-TbMsp1 forms a complex that is not stable during blue native
polyacrylamide gel electrophoresis (BN-PAGE) analysis (Figure 3, lanes 1, 3, 5, 7). However,
the ST mutation stabilizes a TbMsp1-myc-containing complex that can be detected by BN-
PAGE of around 666 kDa. TbMsp1 has a molecular weight of ~37 kDa, meaning that the
expected hexameric TbMsp1 complex would have an expected molecular weight of
approximately 223 kDa. This indicates that the 666 kDa complex likely contains additional

proteins such as possible substrates but maybe also stably interacting proteins. Furthermore,
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the addition of ATP to all the buffers after lysis seems to stabilize the TbMsp1-myc-containing

high molecular weight complex resulting in a more intense band (Figure 3, lanes 6 and 8).

Figure 3: TbMsp1 complex is
stabilized by the ST mutation. BN-
PAGE immunoblot analysis of
solubilized mitochondrial fractions of
the cell lines exclusively expressing
the indicated WT or ST-TbMsp1-myc
variants in the presence and
absence of pATOM36 RNAi as well
as the presence and absence of
ATP. The immunoblot was probed
for myc. The Coomassie gel serves

as a loading control.

ST-TbMsp1 does not bind to pATOM36 substrates upon pATOM36 RNAi. A ColP was
performed in cells exclusively expressing myc-tagged ST- or WT-TbMsp1 that were induced
for pATOM36 RNAIi. The resulting Immunoblot was analysed with myc and ATOM19
antibodies, revealing that in both cases the pulldown of TbMsp1-myc was very efficient (Figure
4). However, the ATOM subunit ATOM19, a known substrate of pATOM36, was recovered in

neither of the IP eluates (Figure 4).
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Figure 4: ATOM19 cannot be pulled down using ST-TbMsp1 as bait in pATOM36 RNAI cells.
Crude mitochondrial fractions from three days induced cells ablating pATOM36 and overexpressing
the indicated C-terminally myc- tagged TbMsp1 variants were analysed by immunoprecipitation.
Crude mitochondrial fractions (IN), unbound proteins (FT), and final eluates (IP) were separated by

SDS-PAGE. Resulting immunoblots were probed with anti-myc antibodies and antisera ATOM19.

Proteomic analysis of ST-TbMsp1 interacting proteins. Nonetheless, we wanted to test
whether a group of proteins specifically binds to ST-TbMsp1. Therefore, cells exclusively
expressing ST- and WT-TbMsp1 in the background of pATOM36 RNAi were subjected to
SILAC, ColP and analysed by mass spectrometry (Figure 5). In the volcano blots of Figure 5
all proteins that are specifically enriched with the ST-TbMsp1 bait are in the top right quadrant.
In the top volcano plot in Figure 5, known pATOM36 substrates are highlighted in red. Only
ATOM®69, VDAC and TbJ31 have been detected and none of them bound to the ST-TbMsp1
more than to the WT-TbMsp1 (Figure 5). TbMsp1 localizes to glycosomes and the OM (Gerber
et al., 2023; Guther et al., 2014; Niemann et al., 2013). However, surprisingly, the proteins that
were specifically enriched with ST-TbMsp1 were neither glycosomal nor in the OM (Figure 5)
(Guther et al., 2014; Niemann et al., 2013). Moreover, only two of the 12 proteins could also

be found in the mitochondrial importome of T. brucei (Peikert et al., 2017).

The first such protein is FtsH16, a mitochondrial protease with a single transmembrane domain
(TMD) in the inner membrane (IM) with the AAA domain facing in the intermembrane space
(IMS) (Billington et al., 2023; Kovalinka et al., 2020). Interestingly, FtsH16 is kinetoplastid-

specific and does not have homologs outside of this clade (Kovalinka et al., 2020).

The second mitochondrial protein specifically enriched in the ST-TbMsp1 pulldown is
Tb927.8.5560 (5560). 5560 was identified as a protein that associates with the NADH
dehydrogenase (ubiquinone) 1 B subcomplex (Acestor et al., 2011). It contains a S-adenosyl-
I-methionine-dependent methyltransferase domain. However, ablation of 5560 via RNAi does

not affect growth of procyclic trypanosomes (Mbang-Benet et al., 2015).

The remaining 10 enriched proteins were Tb927.11.14910, the vesicle-associated membrane
protein (VAMP)-associated protein (VAP) (Tb927.11.13230), Tb927.8.610, Tb927.8.7560,
Tb927.7.1470, Tb11.02.5420, ER membrane protein complex subunit 1 (EMC1)
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(Tb927.4.590), EMC2 (Tb927.7.6260), Tb927.8.650 and EMC4 (Tb927.6.2600).
Tbh927.11.14910 was bioinformatically classified as protein phosphatase 2C and based on IFA
it was determined to mainly localize to the ER (Billington et al., 2023; Brenchley et al., 2007).
Tb927.11.13230 is a putative vesicle-associated membrane protein (VAMP)-associated
protein (VAP). IFA indicates association of this protein with the flagellum (Billington et al.,
2023). Interestingly, this VAP plays a pivotal role in flagellum attachment zone (FAZ) ER
structures (Lacomble et al., 2012). Tb927.8.610, also known as TZP96.2, is associated with
the transition zone (TZ) (Dean et al., 2016). Tb927.8.7560 is a putative CorA-like Mg2+
transporter protein and in IFA localized to reticulated cytoplasm (Billington et al., 2023; Lunin
et al., 2006). However, it's putative function would require Tb927.8.7560 to be anchored in a
membrane. Interestingly, Tb927.8.7560 is included in the African trypanosome cell surface
phylome and is a member of Fam55, a group of metal ion transporters (Jackson et al., 2013).
Tb927.7.1470 corresponds to the mitochondrial ATP synthase subunit c-3 (ATPc3)(Gulde et
al., 2013) but IFA could not confirm its mitochondrial localisation (Billington et al., 2023; Gulde
etal., 2013). Tb11.02.5420 corresponds to a putative NADPH-cytochrome p450 reductase and
is suggested to localize to the mitochondrion (Acestor et al., 2009). Tb927.4.590 is EMC1 and
part of the EMC complex (lyer et al., 2022). The EMC is a multifaceted complex crucial for ER
membrane protein insertion and folding (Guna et al., 2018; Jonikas et al., 2009). Interestingly,
the EMC localizes to the mitochondria - ER interface in trypanosomes (lyer et al., 2022).
Furthermore, with Tb927.7.6260 (EMC2) and Tb927.6.2600 (EMC4), two other EMC
components were significantly enriched in the ST-TbMsp1 ColPs (Figure 5). EMC10 was also
detected to be more than two-fold enriched. However, the P value was slightly below the cutoff
of 0.05. Finally, Th927.8.650 corresponds to a putative cation-transporting ATPase which likely
localizes to the ER (Billington et al., 2023).

Surprisingly, one protein was more enriched in the WT- than the ST-TbMsp1 ColP. This was
Tb927.5.3640 which corresponds to a putative mitochondrial small subunit (SSU) ribosomal
protein mS65 (Zikova et al., 2008).

Taken together, our results show that ectopically expressed WT and ST-TbMsp1-myc localize
similarly in the cell and the ST mutation stabilizes a TbMsp1-containing complex detectable by
BN-PAGE. Interestingly, ST-TbMsp1 does not preferentially bind to known pATOMS36
substrates when expressed in a pATOM36 RNAI background. Instead, we identified a list of
potential alternate substrates or interaction partners that specifically interact with the ST-

TbMsp1 complex.
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Figure 5: Proteomic analysis shows ST-TbMsp1 complexes do not contain pATOM36
substrates when ectopically expressed in pATOM36 RNAi cells. TbMsp1 complexes were

immunoprecipitated from crude mitochondrial fractions of differentially stable isotope labelling by
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amino acids in cell culture (SILAC) labelled cells expressing pATOM36 RNAi and either WT- or ST-
TbMsp1-myc. Precipitates were analysed by quantitative mass spectrometry (n=3). Proteins found to
be significantly enriched more than twofold in ST-TbMsp1 compared to WT-TbMsp1, or the other way

around, are labelled with either their name or their accession number in one of the volcano plots.

Discussion

We could not detect a direct interaction of ST-TbMsp1 with pATOM36 substrates. Note
however that if pATOM36 substrates bind to the same extent to both WT- and ST-TbMsp1, we
would not detect their binding. Nonetheless, our experiments demonstrate that ST- and WT-
TbMsp1-myc are similarly localized in the cell when investigated by IFA. Notably, the RNAI
against TbMsp1 appears in most experiments to be leaky. This results in TbMsp1 also being
ablated in non-induced cells, which may result in cells that are adapted to the loss of TbMsp1
if kept in cell culture over a long time. TbMsp1 was ablated in induced and uninduced cells in
cell lines expressing ST or WT-TbMsp1 and pATOM36 RNAi additionally. The same is true for
the cell line expressing WT-TbMsp1. However, the cell line expressing ST-TbMsp1 only lost
the endogenous RNAI sensitive TbMsp1 upon induction. Which means that comparing the cell
lines exclusively expressing WT or ST-TbMsp1 could potentially be problematic. These results
also suggest that the parental cell lines used for the generation of these cell lines are likely not
clonal, as the parental cell lines only lost TbMsp1 upon induction of the RNAi (Gerber et al.,
2023). However, since in both pATOM36 RNAi-containing cell lines the TbMsp1 RNAi was
equally leaky and therefore their only difference is the ST mutation, we considered them

suitable for this study.

Furthermore, we established that the ST mutation stabilizes a TbMsp1-containing complex
detectable by BN-PAGE. Interestingly, the size of the detected complex is much bigger, than
expected for a single TbMsp1 hexamer containing a substrate. This further points to the stable

interaction of the TbMsp1 complex with other proteins (Gerber et al., 2023).

Our attempts to detect pATOM36 substrates that are specifically bound to the ST-TbMsp1 via
ColPs followed by western blots, as well as mass spectrometry, have not succeeded. None of
the proteins we found significantly enriched in the ST- compared to the WT-TbMsp1 ColP
mass spectrometry analysis were pATOMS36 substrates. It is tempting to speculate, that this is
due to them being equally enriched in the WT-TbMsp1 ColP. However, it was demonstrated
in our recent publication that upon pATOM36 RNA, in situ tagged unmutated TbMsp1-HA does
not specifically pull down any pATOMS36 substrates (Gerber et al., 2023). Even though there
were differences in the expression of the bait, one being in situ tagged TbMsp1-HA and the
other being exclusive ectopic expressed WT- and ST-TbMsp1-myc, we would not expect the

pATOM36 substrates to be specifically enriched in the WT-TbMsp1-myc ColP. The western
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blot result of the WT-TbMsp1 ColP in pATOM36 RNAi showing no pulldown of ATOM19 further
supports this hypothesis. To further substantiate this, one could perform a SILAC ColP
followed by MS using the WT-TbMsp1-myc, pATOM36 RNAI cell line and compare it with the
pATOMS36 RNAI cell line without a myc tagged bait.

Notably, in pATOM36 RNAI background in the ColPs a dozen proteins were significantly and
specifically enriched in ST-TbMsp1 compared to WT-TbMsp1; FtsH16, Tb927.8.5560,
Tb927.11.14910, VAP, Tb927.8.610, Tb927.8.7560, Tb927.7.1470, Tb11.02.5420, EMC1,
EMC2, Tb927.8.650 and EMC4. None of them were significantly changed in the previously
published pATOM36 RNAI dataset (Gerber et al., 2023). Therefore, there is no evidence that
the interaction between the TbMsp1 complex and these proteins is only occurring when
pATOM36 is ablated. Thus, they might also interact with ST-TbMsp1 in the presence of
pATOM36. This could be tested by performing the ST- and WT-TbMsp1 pulldown experiments
without pATOM36 RNA.. Irrespective of whether their interaction with ST-TbMsp1 is dependent
on the absence pATOM36 or not, it is not clear what their relationship to TbMsp1 is. Since
none of the proteins are present in the OM or glycosomes, it could be that they are TbMsp1
substrates that happen to mislocalize to the OM or glycosomes more frequently than other
proteins. Interestingly, about half of the protein enriched in the ST-TbMsp1 ColP are putative
ER proteins. Especially intriguing is the fact that three EMC components were found to interact
with ST-TbMsp1. This leads to a second hypothesis delineating the relationship between ST-
TbMsp1 and the EMC. Msp1 extracts mislocalized C terminally anchored proteins from the
OM (Weir et al., 2017). After extraction Msp1-substrates are inserted into the ER (Matsumoto
et al., 2019). However, the molecular mechanisms underlaying the transfer to the ER after
extraction has yet to be elucidated. Interestingly, the EMC is specialized in inserting C
terminally anchored proteins into the ER membrane. Furthermore, the EMC has been localized
at ER-mitochondria contact sites in trypanosomes (lyer et al., 2022). Additionally, IFA
experiments in yeast have shown overlap of the EMC with an EMC-substrate at ER-
mitochondria contact sites (Matsumoto et al., 2019). Our results indicate that there is a direct
interaction between ST-TbMsp1 and the EMC complex. Therefore, one could speculate that
these ER proteins are part of TbMsp1 mediated mitochondrial quality control mediating
downstream processes such as transfer and insertion to the ER membrane. However,
presently these are speculations and require substantial further experimental investigation.
One possible follow up experiment could be to investigate the impact of the downregulation of
EMC on TbMsp1 mediated mitochondrial quality control. In summary, further experiments are
needed to determine more definitively whether the EMC plays an active role in TbMsp1-

mediated mitochondrial or possibly also glycosomal quality control.
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Material and Methods

Transgenic cell lines

Transgenic T. brucei cell lines were generated using cell lines descending from the procyclic
strain 29.13 (Wirtz et al., 1999). RNAi resistant wildtype (WT) TbMsp1 was ordered at Biomatik.

With the following sequence:

ATG CGA CCT CTG GAC GTG TTG CTG AAT GGG TTG CGC GGG CTG TGT ACC GCC
ATT AAG GAA ACA CCC CTC TTC ATA TGG GTG TAC CTT TCT ATA CTG GGC GTG GTG
GCT CGG AAG CTG ACG TAC CGT TTT GGT CTT ACG ACT AAA AGC AAA AAG ATA
GGA AAA CAC GTC ATC CGC GTT ACG GAT GCG GAA GAA ACC CTT TCA GAG GAT
GTA ATG GAC GTG GAA GAA ATT AAT GCG ACA TTT GAC GAC GTG GGG GGT CTG
GAA GAT GTG AAA AAG GCA CTA ATT GAA CAC GTG AAG TGG CCG TTT ACC CGC
CCG GAA CTA TTT GAG GGA AAC ACG CTG AGG TCG CAT CCll AAG GGl ATC ITR
cTC TAll GGT cCli cCA GGl ACG GGl AAG ACA cTC ATH GcT BGH GcT BTl Gec
BGH GAATA GGT TG GCA TTB ATT AAl GTG BGH ACT GAB TCT TR TTC BEE AAB
TGG GTH GGA GAll ACG GAB AAA AAB GCT GCll gec GTll TTC ACH CTT GClil GCC
AAR CTG B8 cCT TGl GTG ATR TTC GTll GAC GABATA GAB GCCITE CTT GG TTA
BGl AAT BBB TG GAB Gec GClil ccG CAB AAC AAT GCG AAR ACA ATH TTll ATG
ACll CAlll TGG GAll GGT GTll GTC CAH AAA AAR TCA AABATT GTR GTC ATl GGG GCi
ACG AAll CGG cCll TTG GCH ATT GAB GAA GCll ATA BGH AGG BGEB cTG CcClj CcTC
CAl cTG GABR GTA cCll cCA cCll GAT ATR ACT GGl CGG BGHl AAG ATH TTA AAB ATT
BTB ATG GAB CAT GAB GTG GClll GAC GAE TCG AAll CGT @A CGA T GTG GAll TAT
GTll GCG B8l AAG ACH TTT GGll TAC ACH GGG BBE GAT BTl ACT GAB CTG TGl
AAA GCll Gecc GCR BT ATG cCH ATC BGH GAA ATHl GGC TGl GAC AAR GAAITEB ccC
TGC TTG GAA TGT CGC CAC TTT GAC GAG GCC CTC AAG CGG GTC CGG CCT TCG
ATG GCA TCA AGC GTT TGA

In yellow indicated is the region targeted by RNAi in TbMsp1 RNAI cell lines (Gerber et al.,
2023). In red indicated are nucleotides that have been changed, to make the mRNA immune
to the RNA..

Using the “QuickChange Il Site-Directed Mutagenesis Kit” (Agilent, Catalog #200523) a point
mutation was introduced in the sequence to generate a plasmid encoding the substrate trap

(ST) mutant with the following sequence:

ATG CGA CCT CTG GAC GTG TTG CTG AAT GGG TTG CGC GGG CTG TGT ACC GCC
ATT AAG GAAACACCCCTCTTCATATGG GTGTACCTTTCTATACTG GGC GTG GTG
GCT CGG AAG CTG ACG TAC CGT TTT GGT CTT ACG ACT AAA AGC AAA AAG ATA
GGA AAA CAC GTC ATC CGC GTT ACG GAT GCG GAA GAA ACC CTT TCA GAG GAT
GTA ATG GAC GTG GAA GAA ATT AAT GCG ACA TTT GAC GAC GTG GGG GGT CTG

91



GAA GAT GTG AAA AAG GCA CTA ATT GAA CAC GTG AAG TGG CCG TTT ACC CGC
CCG GAA CTA TTT GAG GGA AAC ACG CTG AGG TCG CAT cCll AAG GGl ATC ITR
cTC TAll GGT cCli cCA GGl ACG GG AAG ACA cTC ATH GcT BGH CT BTl Gec
BGH GAATA GGT TG GCA TTB ATT AAl GTG BGH ACT GAB TCT TR TTC BEE AAB
TGG GTH GGA GAll ACG GAB AAA AAB GCT GCll ccc GTll TTC ACH CTT GClil GCC
AAR CTG BBE8 cCT TGl GTG ATH TTC GTll GAC CABATA GAB GCClITR CTT GG TTA
BGl AAT BBB TG GAB Gcc GCll ccG cAB AAC AAl GCG AAR ACA ATH TTll ATG
ACll CAlll TGG GAll GGT GTll GTC CAH AAA AAR TCA AABATT GTB GTC ATl GGG GCi
ACG AAll CGG cCll TTG GCH ATT GAB GAA GCll ATA BGH AGG BGEB cTG CcClj CcTC
CAl cTG GAR GTA cCll cCA cCll GAT ATR ACT GGl CGG BGHl AAG ATH TTA AAB ATT
A ATG GAB CAT GAB GTG GCll GAC GAHE TCG AAll CGT 8 CGA ITH GTG GAR TAT
GTll GCG B8l AAG ACH TTT GGll TAC ACH GGG BBE GAT BTl ACT GAB CTG TGl
AAA GCli Gecc GCRBTH ATG cCH ATC BGH GAA ATHl GGC TGl GAC AAR GAAITEB ccC
TGC TTG GAA TGT CGC CAC TTT GAC GAG GCC CTC AAG CGG GTC CGG CCT TCG
ATG GCA TCA AGC GTT TGA

The changed nucleotide is indicated in turquoise. This point mutation changes the encoded

amino acid from glutamic acid to glutamine.

Primers used:
5-CCAAGTAAGGCGTCTATTTGGTCAACGAATATCACACAA-3
5-TTGTGTGATATTCGTTGACCAAATAGACGCCTTACTTGG-3

The WT- and ST-TbMsp1 were cloned in a modified pLew100 vector containing a C-terminal
triple c-myc-tag (Bochud-Allemann and Schneider, 2002; Oberholzer et al., 2006; Wirtz et al.,
1999). The resulting WT and ST-TbMsp1-containing plasmids were introduced into published
TbMsp1 and TbMsp1, pATOM36 RNAI cell lines (Gerber et al., 2023). Cells were cultivated at
27°C in SDM-79 (Brun and Schoénenberger, 1979) supplemented with 10% (vol/vol) FCS,
containing G418 (15 pg/ml; Gibco), hygromycin (25 pg/ml; InvivoGen), puromycin (2 pg/mil;
InvivoGen), blasticidin (10 pg/ml; InvivoGen), and phleomycin (2.5 pg/ml; LifeSpan
BioSciences) as required. RNAi and ectopic protein expression was induced by adding 1 ug/ml

tetracycline to the medium.

SDS-PAGE and western blot

Cells were treated with tetracycline for three days to induce RNAi and ectopic protein
expression as indicated. After the cells were washed with PBS, they were lysed in SDS buffer
(2% SDS, 0.0025% bromophenol blue (w/v), 100mM B-mercaptoethanol in 60 mM Tris-HCI pH
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6.8). 2x10° cell equivalents per lane were separated on a 12% or 14% acrylamide gel in an
electrophoresis cell (Bio-rad, Mini-PROTEAN Tetra Vertical Electrophoresis Cell). After
transfer on a nitrocellulose membrane (Amersham) and blocking in 5% milk in PBS, antisera
against indicated proteins were added in 2.5% milk, PBST (ATOM19 1:500 (Gerber et al.,
2023), TbMsp1 1:1°000 (Gerber et al., 2023), EF1a 1:10°000 (Merk Millipore, 05-235),
pATOM36 1:250 (Vitali et al., 2018), VDAC 1 :1'000 (Niemann et al., 2013), myc 1:200
(Invitrogen, 132500)). After three PBST washes the membranes were incubated with
secondary antibodies (Anti-mouse IRDye 680LT conjugated (goat) and Anti-rabbit IRDye
800CW conjugated (goat), 1:20’000, LI-COR Biosciences). The membranes were imaged
using a LI-COR ODYSSEY scanner and analysed using the corresponding software (Image
Studio Lite v. 5.2.5., LI-COR Biosciences).

Digitonin extraction followed by BN-PAGE

Crude mitochondria-enriched fractions were obtained by incubating 1 x 108 induced cells
expressing ST- or WT-TbMsp1 in TbMsp1 RNAi or TbMsp1, pATOM36 double RNAI cells, in
0.6 M sorbitol, 20 mM Tris—HCI (pH 7.5), 1 mM DTT, 5mM MgCl, and 2 mM EDTA (pH 8)
containing 0.015% (w/v) digitonin (Biosynth) and 2mM ATP as indicated on ice. Centrifugation
(5 min, 6’800 g, 4°C) yielded a cytosolic supernatant and a mitochondria-enriched pellet. This
pellet was solubilized in solubilization buffer (20 mM Tris—HCI pH 7.4, 50 MM NaCl, 10%
glycerol, 0.1 mM EDTA, 1 mM DTT, 5mM MgCl: and if indicated 2mM ATP) containing 1%
(w/v) digitonin and incubated on ice for 15 min. After centrifugation (20,000 g, 4°C, 15 min), the
supernatant was separated on 4-13% gels. 5 x 107 cell equivalent was loaded per well. Before
western blotting, the gel was incubated in SDS-PAGE running buffer (25 mM Tris, 1 mM EDTA,
190 mM glycine, 0.05% (w/v) SDS) to facilitate transfer of the proteins to a PVDF membrane
(Immobilon-FL). The immunoblot was decorated with HA antiserum (BioLegend, 1:5000 in
PBST, 2.5% milk). Anti-mouse (goat, HRP-coupled, Sigma Aldrich) antibodies were used as

secondary antibodies.

Immunofluorescence microscopy

Induced 1 x 10° cells overexpressing the WT- or ST-TbMsp1-myc in ToMsp1 RNAi or ToMsp1,
pATOM36 double RNAI, were harvested by centrifugation (5 min, 1’800 g) and washed with
1x PBS. After resuspension in 1x PBS, the cells were left adhering on a glass slide in a wet
chamber. The cells were fixed with 4% PFA, permeabilised with 0.2% Triton X-100, and
blocked with 2% BSA in 1x PBS. Antibodies were incubated on the slides in 1% BSA and 1x
PBS (myc 1:50 (Invitrogen, 132500), ATOMA40 1:1°000 (Niemann et al., 2013)). The dried slides
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were mounted with Vectashield containing DAPI (Vector Laboratories, P/N H-1200). Images
were acquired with a DFC360 FX monochrome camera (Leica Microsystems) mounted on a
DMIG000B microscope (Leica Microsystems). Image analysis was performed using LASX
software (version 3.6.20104.0; Leica Microsystems). The acquired images were processed
using Fiji (Imaged version 2.10./1.53; Java 1.8.0_172 [64 bit]). Microscopy figures were
composed using FigureJ (Mutterer and Zinck, 2013).

Immunoprecipitation

Digitonin-extracted mitochondria-enriched fractions of 1 x 10% induced cells were solubilized
on ice in 20 mM Tris—HCI (pH 7.4), 0.1 mM EDTA, 100 mM NaCl, 25 mM KCI, 1x protease
inhibitor mix (EDTA-free; Roche), 1 mM DTT, 5mM MgClz, 2mM ATP and 1% (wt/vol) digitonin.
After centrifugation (15 min, 20’817 g, 4°C), the lysate (IN, input) was transferred to 50 pl c-
myc bead slurry (EZview red anti-c-myc affinity gel; Sigma-Aldrich), which had been
equilibrated in wash buffer (20 mM Tris—HCI [pH 7.4], 0.1 mM EDTA, 100 mM NaCl, 10%
glycerol, 0.2% [wt/vol] digitonin, 1 mM DTT, 5mM MgCl,, 2mM ATP). After incubating at 4°C
for 2 h on a rotating wheel, the supernatant containing the unbound proteins (FT, flow through)
was removed. The bead slurry was washed three times with wash buffer. Bound proteins were
eluted by boiling the resin in 60 mM Tris—HCI (pH 6.8) containing 2% SDS (IP). 2.5% of crude
mitochondrial fractions (Input, IN), unbound proteins in the flow through (FT), and 50% of the
final eluates (IP) were separated by SDS—PAGE and analysed by Western blot.

SILAC immunoprecipitations

Cells were grown for 5 days in SILAC medium (SDM80 containing 5.55 mM glucose,
supplemented with 10% dialyzed, heat-inactivated FCS, 7.5 mg/l hemin) containing isotopically
distinct variants of arginine ('>Cs'*N4/Arg0, *Cs'*N4/Arg6, or *Cs'*N4/Arg10; 226 mg/l each)
and lysine (2Cs"*N2/Lys0, 2Cg"*N22Ha/Lys4, or *Cs'5N4/Lys8; 73 mg/l each) (Eurisotope). 2 x
108 cells expressing WT-TbMsp1-myc in ToMsp1, pATOM36 RNAi TbMsp1 and 2 x 108 cells
expressing ST-TbMsp1-myc in TbMsp1, pATOM36 RNAi were mixed and washed with 1x
PBS. Crude mitochondria-enriched fractions were obtained by digitonin extraction as
described above. The pellet of the digitonin extraction was subjected to immunoprecipitation
as described above. Proteins were precipitated after the methanol-chloroform protocol (Wessel
and Flugge, 1984) and further processed for liquid chromatography-mass spectrometry (LC-
MS) analysis including reduction in cysteine residues, alkylation of thiol groups, and tryptic
digestion as described before (Dewar et al., 2022b). The experiment was performed in three

biological replicates with different labelling schemes. Further processing and quantitative LC-
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MS analysis was conducted by the Warscheid group in Wirzburg. The resulting data was

analysed and visualized using R studio (Posit PBC).
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4. Discussion

Mitochondria are involved in several vital pathways and are therefore essential for almost all
eukaryotes (Henze and Martin, 2003; Karnkowska et al., 2016; Simpson et al., 2002; Tovar et
al., 2003; Yahalomi et al., 2020). Interestingly, mitochondria derive from a bacterial ancestor
and contain their own genome (Nass and Nass, 1963). However, all but a few genes have
been transferred to the nucleus (Brandvain and Wade, 2009). Hence, most mitochondrial
proteins are synthesized by cytosolic ribosomes and subsequently imported into mitochondria.
A variety of problems can occur during mitochondrial biogenesis and disturb mitochondrial
function (Boos et al., 2020). Over the last decade several mitochondrial quality control (MQC)
pathways were discovered which aim to not only minimize the damage caused by impaired
mitochondria but also to maintain mitochondrial function (den Brave et al., 2021; Ng et al.,
2021). Some of these pathways involve the ATPase associated with diverse cellular activities
(AAA) mitochondrial sorting of proteins 1 (Msp1) (Castanzo et al., 2020; Matsumoto et al.,
2019; Weidberg and Amon, 2018). In one such pathway Msp1 mediates the extraction of
mislocalized tail-anchored proteins from the outer mitochondrial membrane (OM) which are
subsequently degraded by the cytosolic proteasome (Weir et al., 2017). Mislocalisation can be
induced experimentally by preventing the correct localisation of such proteins via the ablation
of components of their respective biogenesis pathways (Castanzo et al., 2020; Weir et al.,
2017; Wohlever et al., 2017). In this mitochondria-associated degradation (MAD) pathway
Msp1 can function independently of cofactors or substrate modifications (Wohlever et al.,
2017). However, in yeast Msp1 is dependent on cofactor Cis1 in a pathway which clears
clogged translocase of the outer mitochondrial membrane (TOM) complexes (Weidberg and
Amon, 2018). Up to date essentially all experiments investigating Msp1 were conducted in

yeast or in mammalian cell culture.

We aimed to characterize Msp1 in the protozoan parasite Trypanosoma brucei. T. brucei is
essentially unrelated to Opisthokonts to which most popular eukaryotic model organisms such
as yeast, flies, mice, and humans belong to. The characterisation of MQC pathways in distantly
related model organisms provides interesting insights in eukaryotic evolution. Our group
discovered a novel MAD pathway in which destabilised a-helically anchored proteins from the
OM are degraded by the cytosolic proteasome (Kaser et al., 2016). This pathway is triggered
by the destabilisation of the atypical protein translocase of the outer mitochondrial membrane
(ATOM) complex via ablation of the MIM complex analogue pATOM36. pATOM36 is involved
in the insertion of a-helically anchored OM proteins such as present in the outer membrane
proteome 10 (POMP10), but importantly also in the assembly of ATOM complex subunits
(Bruggisser et al., 2017; Kaser et al., 2016). It has been found that ATOM complex subunits
are removed from the OM and degraded by the cytosolic proteasome upon ablation of
pATOMS36 (Kéaser et al., 2016). In my PhD | further investigated this MQC pathway and found
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that T. brucei valosin-containing protein (TbVCP) and TbMsp1 play synergistic roles in

removing these proteins from the OM.

Surprisingly, we found four OM proteins which stably interact with TbMsp1 in a
coimmunoprecipitation (ColP) experiment with in situ tagged TbMsp1: POMP31, the putative
DnaJ-like protein TbJ31, the putative trans-2-enoyl-CoA reductase TbTsc13, and POMP19.
However, while this complex was detectable via reciprocal ColPs using dually tagged cell lines,
a complex containing wildtype TbMsp1 could not be detected by blue native polyacrylamide
gel electrophoresis (BN-PAGE).

Even more surprisingly, by using double and triple RNAI cell lines we found that the TbMsp1
mediated extraction of unassembled ATOM subunits depended on the TbMsp1 interacting
proteins POMP31, TbJ31 and TbTsc13 (Gerber et al., 2023). This contrasts with experiments
in yeast that demonstrated the independence of Msp1 from any associated proteins (Wohlever
et al.,, 2017). The precise roles of the three TbMsp1 interacting proteins have yet to be
determined. However, it is likely that they function in recognizing or recruiting substrates to the
hexameric TbMsp1 complex. Not all the substrates we identified to be part of the pathway that
is triggered by ablation of pATOM36 are canonical Msp1 substrates with a single C-terminal
transmembrane domain (TMD). ATOM19 for example is predicted to contain two TMDs.
Therefore, it could also be hypothesized that these TbMsp1 interacting proteins assist in the
extraction of noncanonical TbMsp1 substrates. Interestingly, none of these proteins nor their

homologs in yeast have been linked to MQC previously.

However, TbTsc13 has some properties of a potential MQC factor. Interestingly, upon DNA
replication stress the yeast homolog of TbhTsc13 increases in abundance and more of the
protein is found in endoplasmic reticulon (ER) foci, indicating that Tsc13 is responsive to
cellular stress (Breker et al., 2013; Tkach et al., 2012). Furthermore, TbTsc13 harbours an N-
terminal ubiquitin-like domain, that probably faces the cytosol. This domain could possibly be
involved in interactions with the cytosolic proteasome. It has been shown for some Msp1
substrates of yeast that they are reinserted into the ER membrane where they are ubiquitinated
and extracted by VCP before they are degraded by the proteasome. However, not all Msp1
substrates need to follow this route (Matsumoto et al., 2019). It is not known how Msp1-
extracted proteins are shuttled from the OM to the ER. It is possible that TbTsc13 recruits the
proteasome towards the TbMsp1-containing complex so that the extracted proteins can be
degraded directly, without the detour to the ER. Interestingly, yeast Msp1 has been shown to
cooperate with the proteasome in the mitochondrial compromised protein import response
(mitoCPR) (Basch et al., 2020). An interesting follow-up experiment would be to investigate
the impact of the expression of an N-terminally truncated RNAi-resistant TbTsc13 version
lacking the ubiquitin-like domain in a pATOM36, TbVCP and TbTsc13 triple RNAi cell line. This
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could show us whether the ubiquitin-like domain contributes to the function of this MQC

pathway.

POMP31 (Tb927.6.3680) is a kinetoplast-specific protein. It has four predicted TMDs, and
localizes to the OM. The dependency of TbMsp1-mediated extraction on a kinetoplast-specific
protein indicates that this pathway likely functions different to the ones in yeast and humans
as they do not have a POMP31 homolog. However, it is possible that a protein unrelated to
POMP31 functions in a similar way. We do not know the specific function of POMP31 in this
pathway. It might be involved in substrate recognition or the recruitment of substrates to the
TbMsp1-containing complex. Interestingly, the ATOM components that are extracted upon
pATOMS36 ablation are not homologues of the corresponding TOM components in yeast.
Therefore, it might not be surprising if the pathways surveying the integrity of the ATOM
complex may have evolved independently of their counterparts in yeast and mammals.
Whether POMP31 is directly required for TbMsp1 function or whether it is only involved in the

clearing of destabilized ATOM components has yet to be elucidated.

TbJ31 is an orthologue of the mammalian OM J-protein, DNAJ11 (Mufioz-Gomez et al., 2015).
TbJ31 and DNAJ11 both contain the C-terminal domain of unknown function 3395 (DUF3395),
which is hypothesized to mediate interactions between proteins (Violitzi et al., 2019).
Therefore, TbJ31 could be involved in substrate recruitment, or it could mediate the assembly
or stability of the TbMsp1-containing complex. Interestingly, the structure predicted by
AlphaFold suggests that TbJ31 not only contains an alpha-helical TMD, but also might contain
a beta barrel structure that is embedded in the OM (Wheeler, 2021). TbJ31 is significantly
depleted from the cell upon ablation of pATOM36. If TbJ31 contains indeed a beta-barrel
membrane embedded domain, insertion into the OM membrane should be mediated by the
sorting and assembly machinery (SAM). However, TbJ31 was not found to be significantly
downregulated upon ablation of SAM in trypanosomes (Bruggisser et al., 2017). Thus, it would
be interesting to determine whether TbJ31 indeed contains a beta-barrel protein domain, for
example by expressing it in an inducible Sam50 RNAI cell line to see whether Sam50 plays a

role in its biogenesis.

Our studies indicated that POMP19 is not required for the TbMsp1 pathway degrading
pATOM36 substrates. Yet, this protein is stably integrated into the TbMsp1-containing
complex. It would be possible that POMP19 is involved in the recruitment of another yet
unknown subset of TbMsp1 client proteins that are different from the known pATOM36
substrates. Alternatively, it is possible that the ablation of POMP19 in the triple RNAi cell line
was not efficient enough to cause a detectable biochemical phenotype. Like POMP31,
POMP19 is kinetoplastid specific, indicating its role in the Msp1-complex, if it has any, is not

conserved across eukaryotic groups.
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To gain a more complete picture of the TbMsp1 complex and its role in the removal of
destabilized OM proteins it would be interesting to investigate TbMsp1-assissted extraction
without the lethal pATOM36 RNAI, under more physiological conditions. A mutated ATOM19,
which is inserted into the OM but is unable to assemble into the ATOM complex, could
potentially be targeted for TbMsp1-assisted degradation in the presence of pATOMS36.
However, TbVCP is likely simultaneously targeting destabilized OM proteins, possibly even
more efficiently than TbMsp1. TbVCP RNAi is lethal to the cells, two to three days post
induction (Gerber et al., 2023). Therefore, it would also be interesting to design an experiment
in which the substrate is specifically removed from the OM by TbMsp1, without ablating
TbVCP. Presently, we did not achieve this.

VCP requires ubiquitination of its quality control substrates for efficient removal, while Msp1 is
believed to function independently of ubiquitin (Ub) (Twomey et al., 2019; Wohlever et al.,
2017). Therefore, we hypothesized that a ubiquitination-resistant substrate protein might also
be resistant to TbVCP mediated extraction. Ub is attached to lysine residues of substrate
proteins. We used a synthetic ATOM19 gene in which all lysine codons were replaced by
arginine codons. We hypothesized that lysine-free ATOM19 might be degraded exclusively via
TbMsp1 upon pATOM36 depletion because TbMsp1 likely functions independently from Ub.
Upon TbMsp1 and pATOM36 double RNAi we expected only the wildtype ATOM19 to be
degraded via TbVCP, but not the lysine-free ATOM19. However, in all experiments lysine-free
ATOM19 phenocopied wildtype ATOM19. Both were depleted upon pATOMS36 single RNAI as
well as upon pATOM36, TbMsp1 double RNAI. There are two possible explanations for this
outcome. Firstly, it could indicate that TbVCP functions independently from Ub, which is highly
unlikely due to the high conservation of VCP across all eukaryotes. More likely the ablation of
lysines is not sufficient to prevent ATOM19 from being ubiquitinated. Proteins can also be
ubiquitinated at their N-terminus (Breitschopf et al., 1998). With the results obtained from these
experiments the involvement of Ub in TbMsp1-mediated degradation remains unclear. The
addition of a large N-terminal tag prevents the N-terminal ubiquitination of proteins (Breitschopf
et al., 1998). Another method used to prevent the Ub-dependent degradation of a substrate
protein is fusing it to a deubiquitination enzyme (DUb) (Stringer and Piper, 2011). Therefore,
the set of experiments conducted could be expanded with lysine-free ATOM19 fused to either

a tag or a DUb at the N-terminus.

Moreover, we aimed to investigate a substrate trap (ST)-TbMsp1, containing a point mutation
changing a glutamic acid to a glutamine within the highly conserved Walker B motif of the
ATPase domain. This mutation impedes the hydrolysation of bound ATP (Stratford et al., 2007;
Wohlever et al., 2017). ST-TbMsp1 therefore remains in a stable complex bound to ATP and
the substrate protein. In contrast to the wildtype (WT) hexameric TbMsp1 complex, ST-
TbMsp1 is stable enough to be visualized by BN-PAGE followed by western blot. The complex
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appears to be stabilized further by adding excess ATP to the buffers when preparing the

sample.

Interestingly, ATOM19 did not copurify with the ST-TbMsp1 in pATOM36 RNAi ColP
experiments analysed via western blot. Neither did it or any other pATOM36 substrate when
we performed the same ColP in a SILAC experiment analysed by mass spectrometry. A
potential explanation could be that pATOM36 substrates are primarily removed from the OM
by TbVCP, and TbMsp1 is only used in this pathway upon TbVCP ablation.

However, some other proteins did enrich significantly to the ST-TbMsp1 compared to the WT-
TbMsp1 in the presence of pATOM36 RNAI. A dozen proteins were significantly enriched in
ST-TbMsp1 pulldowns compared to WT-TbMsp1 pulldowns. These proteins may interact with
ST-TbMsp1 regardless of presence or absence of pATOM36. Their connection to the TbMsp1-
mediated pathway described in this thesis is therefore unclear, but since they are neither in
the OM nor glycosomal proteins, they could be TbMsp1 substrates which are mislocalizing to
either one of these locations. Half of the proteins enriched in ST-TbMsp1 ColP are likely ER
proteins, 3 of them belong to the endoplasmic reticulum membrane protein complex (EMC),
suggesting a potential interaction between ST-TbMsp1 and the EMC. Interestingly a fourth
EMC component copurified with ST-TbMsp1 just below the significance threshold to a similar
extent as the other three. This raises the question whether ER proteins, and the EMC in
particular, could be involved in TbMsp1-mediated MQC, possibly facilitating transfer and
insertion into the ER membrane. The EMC could thereby be the missing link between the OM
and the ER in Msp1 mediated MAD. Further experiments, such as investigating the impact of
EMC downregulation on TbMsp1-mediated MAD, are needed to confirm these speculations,
and determine the EMC's role in TbMsp1-mediated MQC definitively.
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