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Abstract

English

In this dissertation, the behaviour of atoms, bonds, functional groups and molecules in vacuo

but especially also in the crystal is studied using quantum crystallographic methods. The goal

is to deepen the understanding of the properties of these building blocks as well as of the

interactions among them, because good comprehension of the microscopic units and their

interplay also enables us to explain the macroscopic properties of crystals.

The first part (chapters 1-3) and second part (chapter 4) of this dissertation contain theoretical

introductions about quantum crystallography. On the one hand, this expression contains

the term quantum referring to quantum chemistry. Therefore, the very first chapter gives a

brief overview about this field. The second chapter addresses different options to partition

quantum chemical entities, such as the electron density or the bonding energy, into their

components. On the other hand, quantum crystallography consists obviously of the crystallo-

graphic part and chapter 3 covers these aspects focusing predominantly on X-ray diffraction.

A more detailed introduction to quantum crystallography itself is presented in the second part

(chapter 4).

The third part (chapters 5-9) starts with an overview of the goals of this work followed by the

results organized in four chapters.

The goal is to deepen the understanding of properties of crystals by theoretically analysing

their building block. It is for example studied how electrons and orbitals rearrange due to the

electric field in a crystal or how high pressure leads to the formation of new bonds. Ultimately,

these findings shall help to rationally design materials with desired properties such as high

refractive index or semiconductivity.

Deutsch

Mithilfe quantenkristallografischer Methoden werden Atome, Bindungen, funktionellen Grup-

pen und Moleküle in vacuo aber vor allem auch in Kristallen untersucht. Das Ziel ist es die

Eigenschaften dieser Bestandteile zu verstehen und wie sie miteinander interagieren. Das

Verständnis der Verhaltensweise der einzelnen Bausteine sowie deren Zusammenspiel auf

mikroskopischer Ebene kann auch die makroskopischen Eigenschaften von Kristallen erk-

lären.
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Abstract

Der erste Teil dieser Doktorarbeit (Kapitel 1-3) beinhaltet eine theoretische Einleitung in die

verschiedenen Bereiche der Quantenkristallografie. Wie der Name Quantenkristallografie

besagt, besteht diese zum einen aus dem quantenchemischen Teil, weswegen das erste Kapitel

eine kurze Einführung in die Quantenchemie gibt. Das zweite Kapitel widmet sich den ver-

schiedenen Möglichkeiten quantenchemische Grössen wie zum Beispiel die Elektronendichte

oder Bindungsenergien in Einzelteile zu zerlegen. Zum anderen trägt der kristallografische

Teil zur Quantenkristallografie bei. Kapitel drei besteht daher aus einem kurzen Überblick

über die Kristallografie mit Fokus auf der Röntgenbeugung.

Anschliessend folgt im zweiten Teil (Kapitel 4) eine ausführlichere Einleitung in die Quan-

tenkristallografie selbst.

Der dritte Teil (Kapitel 5-9) beginnt mit einer kurzen Übersicht über die Ziele dieser Arbeit

worauf die Resultate, gegliedert in vier verschiedene Kapitel, folgen.

Das Ziel dieser Arbeit ist es die Eigenschaften von Kristallen besser zu verstehen, indem

man ihre Einzelteile theoretisch analysiert und mit verschiedenen Methoden rationalisiert.

Beispielsweise wird untersucht wie sich Elektronen und Orbitale aufgrund des elektrischen

Feldes in Kristallen neu anordnen oder wie unter hohem Druck Bindungen neu geformt

werden. Schlussendlich können all diese Erkenntnisse helfen, Materialien mit spezifischen

gewünschten Eigenschaften herzustellen.

Français

Les atomes, les liaisons entre eux, les groupes fonctionnels et les molécules sont examinés

en utilisant des méthodes de la cristallographie quantique. Le but est de comprendre les

propriétés de ces composants et comment ils interagissent in vacuo mais surtout aussi dans

les cristaux. En comprenant leurs caractéristiques et interactions au niveau microscopique,

on peut aussi rationaliser les propriétés macroscopiques des cristaux.

La première partie (chapitres 1-3) de cette thèse de doctorat contient une introduction brève à

la cristallographie quantique. Comme le nom l’indique, ce domaine de recherche est composé

de la chimie quantique et la cristallographie. Pour cette raison le premier chapitre donne

une introduction à la chimie quantique. Le deuxième chapitre présente quelques méthodes

de décomposition des quantités de la chimie quantique comme la densité électronique ou

l’énergie de liaison. Le troisième chapitre couvre la partie cristallographique.

Ensuite dans la deuxième partie (chapitre 4) une introduction plus détaillée sur la cristallogra-

phie quantique elle-même est donnée.

La troisième partie (chapitres 5-9) commence par un aperçu des objectives de cette disserta-

tion suivis des résultats structurés en quatre chapitres.

Le but est de comprendre les propriétés des cristaux en analysant leurs building blocks avec

différentes méthodes théoriques. Il était par example examiné comment les électrons et

les orbitales se réorganisent dans un cristal à cause du champ électrique ou comment des

nouvelles liaisons sont formées sous pression. Finalement on peut utiliser ces conclusions

pour modeler des matériaux avec des propriétés désirées.
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Part IIntroduction: Theory of Quantum
Chemistry and Crystallography
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1 Quantum Chemistry: Wavefunc-
tions and Density Matrices

The many-body problem describes, among other things, the issue of exactly calculating

quantum systems with more than two particles. It is, in general, not possible to analytically

solve equations describing these systems, and since atoms and molecules (except for the

hydrogen atom) consist of more than two particles, we can consequently not exactly calculate

their behaviours.

However, various approaches have been developed to find approximate solutions to this

problem, some of which are introduced in this chapter. They allow us to, at least heuristically,

determine chemical quantities like the energy or other properties of atoms, molecules, and

materials. This, in turn, is the basis to compute the behaviour of molecules in solutions

to understand chemical reactions; the catalytic activity of surfaces important for efficiently

and cheaply storing energy; the activity and toxicity of drugs; mechanical, optical, electrical,

magnetic, and thermal properties of solids; and many more things, which are important

for various fields of chemistry. This dissertation is exploiting and developing some of those

approximate solutions to answer questions from crystallography and materials science.

1.1 Calculation of wavefunctions using basis functions

This chapter provides a brief introduction to the calculation of wavefunctions with the Hartree-

Fock (HF) method. [1, 2]

Schrödinger equation

The Schrödinger equation describes the behaviour of particles in a quantum system. In

general, it cannot be solved analytically (except for the hydrogen atom). Thus, the goal is to

find numerical solutions, which are as close as possible to the exact solution. In order to do

that, certain approximations can be made. The first one is that it is often sufficient to consider

the time-independent Schrödinger equation:

Ĥtot |Ψ〉 = Etot |Ψ〉 (1.1)

3



Chapter 1. Quantum Chemistry: Wavefunctions and Density Matrices

Where Ĥtot is the Hamilton operator, Φ the wavefunction and Etot the total energy of the

system. The Hamilton operator contains five parts: an operator for the kinetic energy of the

nuclei T̂nucl , one for the potential energy of the nuclei V̂nucl , one for the nucleus-electron

potential V̂nucl−el , one for the kinetic energy of the electrons T̂el , and one for the potential

energy of the electrons V̂el−el .

Ĥtot = T̂nucl + V̂nucl + V̂nucl−el + T̂el + V̂el−el (1.2)

The second approximation is that one is typically dealing with light elements and therefore

the systems can be treated non-relativistically. Thirdly, within the Born-Oppenheimer approx-

imation nuclei and electrons can be treated separately thanks to their different masses owing

to which the electrons move much faster than the nuclei. Thus, the electrons can be described

in the static field of the nuclei. Therefore, the kinetic energy of the nuclei is neglected and

one deals with a constant value for their potential energy. Obviously, a change of the nuclear

coordinates goes along with a change of the nuclear potential energy term (as well as the

electronic terms) leading to very different energies depending on the configuration, which

can be depicted with a potential energy surface as shown in Figure 1.1. For a specific point on

the energy surface, the operators acting on the electrons (V̂nucl−el , T̂el , V̂el−el ) can be applied

to describe the motion of the electrons in the field of the fixed nuclei.

Figure 1.1 – Potential energy surface involving two distances. This particular example was
done with I−5 used in chapter 7, where δ1 and δ2 are the bond distances to the central iodine
atom and the most stable point corresponds to I−5 with C2v symmetry.

4



1.1. Calculation of wavefunctions using basis functions

Pauli exclusion principle

Besides fulfilling the Schrödinger equation, a wavefunction for fermions needs to be antisym-

metric with respect to the exchange of two particles.

Ψ(x1, x2) =−Ψ(x2, x1) (1.3)

If two particles have identical coordinates x1 = x2, zero is the only solution to equation 1.3:

Ψ(x1, x2) =−Ψ(x2, x1) =−Ψ(x1, x2) = 0 (1.4)

From this follows the Pauli exclusion principle, which states that two fermions can never have

the same quantum state. Besides the charge, electrons also have a spin, which can take two

values, α and β. Since they are Fermions, they have to obey the Pauli exclusion principle and

therefore either the spatial or the spin part of a wavefunction describing electrons needs to be

antisymmetric, whereas the other part needs to be symmetric.

(Spin-)orbitals

In chemistry, the wavefunction is usually expressed in terms of orbitals, which are one-electron

wavefunctions. Spatial orbitals describe the probability density of finding electrons in space.

This means that the square of the spatial part ψ of the orbital integrated over a given volume

|ψ(r)|2dr describes the probability of an electron to be in this volume. Spin orbitals χ(x)

additionally inform about the spin of the electron (α or β).

Many-electron wavefunctions and Slater determinants

A multi-electron wavefunction, which is a solution of the electronic Hamiltonian could be

simply constructed by multiplying the orbitals of all electrons:

Ψ(HP ) =χ(HP )
1 ∗χ(HP )

2 ∗χ(HP )
3 ∗ ...χ(HP )

N (1.5)

This wavefunction, called Hartree-product, is a solution of the Schrödinger equation, in the

sense that the orbitals are eigenvectors and the orbital energies eigenvalues of the Hamilton

operator. However, such a wavefunction is not antisymmetrized. This can be achieved by

taking the correct linear combinations of spin and spatial functions for the orbitals in such a

way that the Pauli exclusion principle is fulfilled.

The two-electron functionΨHP
12 =χi (x1)χ j (x2), for example, is an eigenvector of the Hamilto-

nian but not a correct wavefunction since it is not antisymmetric (and also not symmetric).

A linear combination of this product and the same product with exchanged coordinates,

however, is antisymmetric.

Ψ(x1, x2) = 1p
2

{χi (x1)χ j (x2)−χ j (x1)χi (x2)} (1.6)
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Chapter 1. Quantum Chemistry: Wavefunctions and Density Matrices

This can be generalized to N-electrons and in order to express this linear combination, a

short-hand notation, the Slater determinant, was introduced:

Ψ(x1, x2, ..., xN ) = 1p
N !

=

∣∣∣∣∣∣∣∣∣∣
χi (x1) χ j (x1) . . . χk (x1)

χi (x2) χ j (x2) . . . χk (x2)

. . . . . . . . . . . .

χi (xN ) χ j (xN ) . . . χk (xN )

∣∣∣∣∣∣∣∣∣∣
(1.7)

A wavefunction written as Slater determinant is automatically antisymmetrized and normal-

ized.

Hartree-Fock method

The variational principle states that the best wavefunction is the one producing the lowest

energy. Hartree was the first one to make use of this principle and he proposed a procedure

for solving the Schrödinger equation with atomic orbitals (AOs). However, his method was

based on a simple product of atomic orbitals and not on a correctly antisymmetrized one.

Fock extended the approach to correctly antisymmetrized wavefunctions.

Left-multiplication of equation 1.1 withΨ gives:

E = 〈Ψ|Ĥel |Ψ〉 (1.8)

The electronic Hamiltonian Ĥel contains the kinetic energy operator acting on all electrons

individually (one-electron part), the Coulomb attraction part between the electrons and the

nuclei (also one-electron part) and the electron-electron repulsion (two-electron term).

Ĥel =−1

2

N∑
i=1

∇2
i −

N∑
i=1

Z

ri
+

N−1∑
i=1

N∑
j=i+1

1

ri j
(1.9)

Inserting orbitals χi into equation 1.8 and writing out the operators like in equation 1.9 leads

to:

E =
nocc∑
i=1

〈χi (1)|ĥi |χi (1)〉+ 1

2

nocc∑
i=1

nocc∑
j=1

{〈χi (1)χi (1)

∣∣∣∣ 1

ri j

∣∣∣∣χ j (2)χ j (2)〉−〈χi (1)χ j (1)

∣∣∣∣ 1

ri j

∣∣∣∣χ j (2)χi (2)〉}
(1.10)

=
nocc∑
i=1

εi + 1

2

nocc∑
i=1

nocc∑
j=1

{Ji j −Ki j } (1.11)

The first term is the one-electron term and gives rise to the orbital energies εi ; the sum goes

over all occupied spin orbitals. This term contains the kinetic energy of the electrons and

the potential energy due to their attraction to the nuclei. The orbital energies are negative

(stabilizing) for the occupied spin-orbitals. The second term is the Coulomb repulsion energy

Ji j , a two-electron term which is always destabilizing. The third one is also a two-electron
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1.1. Calculation of wavefunctions using basis functions

term and gives rise to the exchange energy Ki j , which is always stabilizing. The exchange

energy would not be present in a Hartree product, it arises due to the antisymmetrization

requirement for the wavefunction. The sum goes over all pairs of occupied spin-orbitals and

the factor 1/2 is needed to compensate for double-counting.

In chemistry, molecular orbitals (MOs) are usually described as linear combinations of atomic

orbitals (LCAO method). Thus, the problem consists in finding the coefficients in the linear

combination that produce the lowest total electronic energy.

The procedure starts with a first approximate wavefunction consisting of MOs χi . Only one

electron is considered at once, which moves in the mean field produced by the nuclei and

all other electrons. Thus, the effective potential can be obtained from the orbitals of all

other electrons of the first approximation, which gives rise to the effective one-electron Fock

operator f̂ and the Fock equation for one electron can be written as:

f̂ (i )χi (xi ) = εiχi (xi ) (1.12)

where the operator is:

f̂ (i ) =−1

2
∇2

i +
∑
A

ZA

ri A
+

nocc∑
B

{
Ĵb(i )− K̂b(i )

}= ĥ(i )+νHF
i (1.13)

The one-electron part (kinetic energy of the electrons and nucleus-electron interaction) is

summarized in ĥ(i ) while the two electron part consists of the Coulomb and exchange interac-

tion and is v HF
i =∑nocc

b { Ĵb(i )− K̂b(i )}, where v HF
i is the average electron-electron potential

that electron 1 feels due to all other electrons. Therefore, the solution depends on all other

spin-orbitals, which is why the Hartree-Fock equations can only be solved iteratively. By

solving the one-electron Hartree-Fock equation, an improved orbital χ1 and corresponding

energy ε is obtained.

Afterwards, the same equation is solved for electron 2 and so on for all other electrons. After

all electrons were calculated an improved set of spin orbitals is obtained. Now, one starts with

a next cycle of one-electron Hartree-Fock equations and goes on until the spin-orbitals and

the corresponding energies do not change anymore. Therefore, a given potential resulting

from the effect of all other electrons does not change a particular spin-orbital anymore and

vice versa. At this point the solution is self-consistent and this is why the procedure is called

self-consistent field approach. In practice, the iterative cycles are repeated until the change

is below a specified convergence criterion. The so-obtained set of spin-orbitals is the best

solution for the Hartree-Fock case. The n orbitals with the lowest energy are the occupied

ones and the higher ones are unoccupied (virtual orbitals).

Roothaan-Hall equations

Different functions are used to describe atomic orbitals, most common are Slater-type orbitals

or linear combinations of Gaussian-type orbitals. These functions form the basis set, and
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their linear combinations are not optimized in a Hartree-Fock calculation. What is optimized,

instead, are the linear combinations of atomic orbitals forming the spatial molecular orbitals

(MO-LCAO): ψi =∑
µCµiΦµ.

The Fock equation with a basis set becomes:

f̂ (i )
N∑
ν=1

Cνi |φν(i )〉 = εi

N∑
ν=1

Cνi |φν(i )〉 (1.14)

Left-multiplication with φ∗
µ(i ) and integration over all space leads to:

∑
v

Cνi

∫ +∞

−∞
φ∗
µ(i ) f̂ (i )φν(i )dr = εi

∑
v

Cνi

∫ +∞

−∞
φ∗
µ(i )φν(i )dr (1.15)

The overlap matrix S is defined as:

Sµν =
∫ +∞

−∞
φ∗
µ(i )φν(i )dr (1.16)

Equation 1.15 can be expressed in matrix form:

FC = SCε (1.17)

F is the Fock matrix, C is the coefficient matrix, and S is the overlap matrix arising due to the

fact that the atomic orbitals are not generally orthogonal to each other. The first column in C

specifies MO 1, the second MO 2, and so on. ε is a diagonal matrix, which specifies the orbital

energies. Equation 1.17 is called the Roothaan-Hall equation.

The density matrix is defined as:

Pµν = 2
N /2∑

a
CµaC∗

νa (1.18)

Together with the basis functions, the density matrix defines the electron density:

ρ(r) =∑
µν

PµνΦµ(r)Φ∗
ν(r) (1.19)

As written in equation 1.13 the Fock operator is:

f̂ (i ) = ĥ(i )+
N /2∑

a
{2 Ĵa(i )− K̂a(i )} (1.20)

where the variable a designates all other molecular orbitals. The one-electron operator

contains the kinetic and the nucleus-electron attraction parts:

ĥ(i ) =−1

2
∇2

i −
∑
A

ZA

|ri −RA|
(1.21)
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1.1. Calculation of wavefunctions using basis functions

The Fock operator in a basis {Φν} can be expressed in matrix representation:

Fµν =
∫

driΦ
∗
µ(i ) f̂ (i )Φν(i )

=
∫

driΦ
∗
µ(i )ĥ(i )Φν(i )+

N /2∑
a

∫
driΦ

∗
µ(i ){2 Ĵa(i )− K̂a(i )}Φν(i ) (1.22)

For clarity it makes sense to define the core-Hamiltonian matrix, which is:

H cor e
µν =

∫
driΦ

∗
µ(i )ĥ(i )Φν(i ) (1.23)

H cor e
µν does not depend on the expansion coefficients and therefore it is sufficient to calculate

these integrals only once for a given basis set.

Equation 1.21 can be re-written in short-hand notation:

Fµν = H cor e
µν +

N /2∑
a

{
2

〈
ΦµΦν

∣∣∣∣ 1

ri j

∣∣∣∣ΨaΨa

〉
−

〈
ΦµΨa

∣∣∣∣ 1

ri j

∣∣∣∣ΨaΦν

〉}

= H cor e
µν +

N /2∑
a

{
2
(
µν|aa

)− (
µa|aν)}

(1.24)

Inserting the linear combination of atomic orbitalsΨa =∑
λCλaΦλ results in:

Fµν = H cor e
µν +

N /2∑
a

{
2

〈
ΦµΦν

∣∣∣∣ 1

ri j

∣∣∣∣∑
σ

CσaΦσ
∑
λ

CλaΦλ

〉
−

〈
Φµ

∑
λ

CλaΦλ

∣∣∣∣ 1

ri j

∣∣∣∣∑
σ

CσaΦσΦν

〉}

= H cor e
µν +

N /2∑
a

∑
λ

∑
σ

CλaC∗
σa

[
2
(
µν|σλ)− (

µλ|σν)]
(1.25)

Replacing the sum over the expansion coefficients with the density matrix P gives:

Fµν = H cor e
µν +∑

λ

∑
σ

Pλσ

[(
µν|σλ)− 1

2

(
µλ|σν)]

(1.26)

The expressions in parenthesis are four-center two-electron integrals:

(
µν|σλ)= ∫

dri dr j Φ
∗
µ(i )Φν(i )

∣∣∣∣ 1

ri j

∣∣∣∣Φ∗
σ( j )Φλ( j ) (1.27)

Thus, the Fock matrix depends on the expansion coefficients C and so the Roothaan equations

need to be solved in an iterative way until self-consistency is reached as previously described.

An additional complication arises from the fact that the basis functions are not orthonormal.

In order to solve the Roothaan equation, they need to be orthonormalized corresponding

to a transformation of the overlap matrix S into a unit matrix. Then the Roothaan equation
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Chapter 1. Quantum Chemistry: Wavefunctions and Density Matrices

becomes:

F’C’ = C’ ε (1.28)

This equation has only non-trivial solutions if the determinant is zero:

|F’−ε| = 0 (1.29)

Solving this equation results in the eigenvectors C’ corresponding to the molecular orbitals and

the eigenvalues ε, which are the orbital energies. The coefficients C’ can be back-transformed

to C corresponding to the coefficients of the non-orthogonal basis set.

Post-Hartree-Fock methods

The more basis functions (AOs) are used, the better is the approximation of the calculated

MOs. With an infinite basis set one reaches hypothetically the Hartree-Fock limit, which is the

lowest possible energy one can obtain with one determinant. However, this is still not a very

good solution because electron correlation is completely neglected. For this reason various

post-HF techniques were developed.

It has been anticipated in the previous section, that in the HF ground state the lowest orbitals

are filled with two electrons each. They are called the occupied orbitals, while all others are

higher in energy and unoccupied (also called virtual). The variationally best single Slater

determinant is the one constructed from these approximate orbitals. In excited states, the

electrons also move to the virtual orbitals. When one electron is in an energetically higher

orbital, it is a singly excited state, for two electrons it is doubly excited, and so on. In these

cases, the Slater determinant contains other orbitals than the energetically lowest ones. The

configuration interaction method makes use of these excited states by forming the best linear

combination of them such that the total energy is lowered with respect to the HF energy. With

this procedure electron correlation is introduced. Usually doubly or triple excited states are

mixed into the HF ground state determinant because with more excited states the calculation

becomes too complex. However, in principle one can make determinants with all possible

excitations up to all N electrons. Such a calculation is called full configuration interaction (full

CI). In principle the use of all possible determinants with an infinite basis set gives rise to an

exact solution of the Schrödinger equation as one can see in Figure 1.2.

Another approach is the Møller-Plesset method where electron correlation is introduced by

adding perturbing operators in addition to the standard Hamilton-operator. Generally post-

HF methods such as CI and MP2 are time-consuming. A different approach where electron

correlation is also not neglected is the Density Functional Theory (DFT) method, shortly

explained in section 1.3.
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1.2. Reduced density matrices

Figure 1.2 – Accuracy of quantum chemical calculations

1.2 Reduced density matrices

Wavefunctions depend on the electronic and spin coordinates of all electrons they describe and

as a consequence, all properties of the system can be obtained by applying the corresponding

operator. However, most of the properties in an N-electron system depend on only one

electron or maximum two electrons at the same time. Therefore, very often more simplified

expressions for a given system can be used, like for example the electron density or reduced

density matrices (RDMs) [3, 4]. RDMs depend only on the coordinates of 1, 2, ... p electrons at

the same time, where p is smaller than or equal to the total number of electrons N.

For a wavefunction with N electrons, the RDM of order p (p-electron-RDM, Γp ) can be ob-

tained by squaring the wavefunction (WFN) and integrating over all other coordinates but the

ones until p. [5]

Γp (x1, x2, ..., xp ; x ′
1, x ′

2, ..., x ′
p ) =(

N

p

)∫
Ψ(x1, x2, ...xp , xp+1, ..., xN )×Ψ∗(x ′

1, x ′
2, x ′

p , xp+1, ..., xN )d xp+1...d xN

The 1-electron RDM Γ1 depends on the coordinates of only one electron, the 2-electron RDM

Γ2 on the coordinates of two, and so on. Therefore, the 1-electron RDM can be written as:

Γ1(x1; x ′
1) = N

∫
Ψ(x1, x2, ..., xN )×Ψ∗(x ′

1, x2, ..., xN )d x2...d xN (1.30)

When the spin is not considered, the spinless 1-electron RDM Γ1(r1;r ′
1) depends on the three

spatial coordinates of one electron only, however on the unprimed and the primed variables

of this coordinate. The diagonal part (r1 = r ′
1) of the spinless 1e-RDM corresponds to the

electron density and depends only on three spatial coordinates. The electron density is an
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Chapter 1. Quantum Chemistry: Wavefunctions and Density Matrices

observable and can be obtained for example from X-ray diffraction as described in chapter

3. The off-diagonal part of the spinless 1e-RDM (r1 6= r ′
1) can be obtained from Compton-

scattering, as for example described by Gillet et al. [6]. Within the LCAO approximation the

spinless 1e-RDM can be expressed with atomic orbitals φµ as: [7]

Γ1(x1; x ′
1) =∑

µν
Pµνφµ(r )φ∗

ν(r ′) (1.31)

The 2e-RDM, given in equation 1.32, depends on the coordinates of two electrons at the same

time like for example the Hamilton operator also does. Therefore, there were attempts to use

simply this matrix instead of the full WFN for solving the Schrödinger equation. However, like

also the 1e-RDM, the 2e-RDM needs to fulfill an additional condition called N-representability

ensuring that the RDM is indeed representing a proper wavefunction [8, 9] and this is compli-

cating the situation.

Γ2(x1, x2; x ′
1, x ′

2) = N (N −1)

2

∫
Ψ(x1, x2, ..., xN )×Ψ∗(x ′

1, x ′
2, ..., xN )d x3...d xN (1.32)

Reduced density matrices can be used to obtain physical properties by applying the appropri-

ate operators on them. One has to consider a given order when applying operators on RDMs.

First, the operators act only on the unprimed coordinates. Then, the primed and unprimed

coordinates are set equal x ′
i = xi . Lastly, the integration is carried out. Therefore, obtaining

the expectation value of a one-electron operator requires only integration over spatial and

spin coordinates of one electron:

〈
Ô1

〉= ∫ [
Ô1Γ

1(x1; x ′
1)

]
x1=x ′1 dr1 (1.33)

1.3 Density functional theory (DFT)

The essential concept of DFT is that the ground state energy of a system of electrons is

determined by the electron density. This relationship was initially proposed by Thomas [10]

and Fermi [11] already in the 1920ies. Therefore, one deals with only three coordinates in the

DFT framework, in contrast to the Hartree-Fock and post-Hartree-Fock approaches where

the N-electron wavefunctions with three spatial and one spin coordinate per electron is the

basic tool. In 1964, Hohenberg and Kohn proved that the ground state energy E is indeed

uniquely determined by the electron density ρ(r) and thus is a functional of the density E
[
ρ
]
.

[12] However, they only demonstrated that there is such a relationship but not how to find

it. Their second theorem is the equivalent to the variational principle in HF theory. They

showed that the energy of a trial density ρtr i al is always higher or equal to the energy of

the exact ground state. In principle, DFT is based on the density and does not require the

concept of orbitals, however, in 1965 Kohn and Sham [13] reintroduced orbitals for practical

reasons. Their concept states that every system of interacting electrons moving in an external

potential ν(r) can equivalently be described by a system of non-interacting electrons moving
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in the potential νs(r) and these two systems have the same electron density. νs(r) is called the

Kohn-Sham potential and it describes the potential in which the hypothetical non-interacting

electrons are moving. The potential stems from the sum of the effect of the nuclei and all other

electrons. [14]

Therefore, the "Kohn-Sham" operator applied on the Kohn-Sham orbitals consists of the

kinetic operator and the potential operator[
−1

2
∇2 +νs(r)

]
φi = εiφi (1.34)

The density of this non-interacting reference system is obtained in the usual way from the

wavefunction ρ(r) =∑
φ∗

i φi . What remains to be determined is the Kohn-Sham potential and

if this was possible, equation 1.34 would result in the exact orbitals. The Kohn-Sham potential

consists of three parts

νs(r) = ν(r)+VCoul (r)+νxc (r) (1.35)

Where ν(r) is the attractive potential of the nuclei, VCoul (r) is the Coulomb repulsion between

the electrons and νxc (r) the exchange correlation potential. The energy is therefore

E = TS +V +VCoul +Exc (1.36)

Where TS is the kinetic energy, V the electron-nuclear attraction energy , VCoul the Coulombic

electron-electron interaction and Exc the exchange-correlation energy. The potential terms

V can be calculated from the Kohn-Sham density, which is identical to the density of the

interacting system and thus these terms are exact. The kinetic energy is calculated based on

the Kohn-Sham orbitals but the exact exchange-correlation potential is not known based on

ρ(r) (and of course also not based on the formulation of the density in terms of non-interacting

orbitals). Contrariwise, if the energy was known exactly, the exchange-correlation potential

could be obtained as the difference between this energy and the known parts (kinetic and

one-electron potential terms).

The Kohn-Sham equations are solved in an SCF procedure like the HF equation. The resulting

orbitals represent a system of non-interacting electrons and therefore do not have an obvious

physical interpretation like the HF orbitals. However, the density derived from them corre-

sponds to the density that interacting electrons of the system have. The advantage of this

method is that a single Slater determinant is obtained, which keeps the computational costs

low but nevertheless includes part of the electron correlation.

Different approximations for νxc (r) were made such as the local density approximation (LDA),

a functional which depends only on the density itself and was already used by Kohn and Sham

[13]. The generalized gradient approximation (GGA) depends in addition also on the gradient

of the density [15]. The exchange-correlation can be split in an exchange and a correlation

part Exc = Ex +Ec . The exchange energy can also be calculated in the Hartree-Fock way but

using the Kohn-Sham orbitals. Mixing this in leads to the so-called hybrid functionals.
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Some functionals are obtained without any fitting to reference data like for example the widely

used PBE [16] one and others use reference data like for example the most commonly used

functional B3LYP consisting of Becke’s three parameter exchange correlation functional and

the LYP functional for correlation.

1.4 Periodic ab-initio calculations

Within the scope of this thesis, not only the calculation of molecules is important but also of

crystals. A crystal is an extended system whose properties depend on the whole structure. It is

obviously not possible to do calculations including all electrons of the crystal. The matrices in

the Fock equation FC=SCE would have almost infinite dimensions. Luckily enough, crystals

are, in fact, characterized by three-dimensional periodicity. By making use of this periodic

behaviour one can circumvent the problem and calculate only one unit cell and then copy

the solution for the other cells. The same assumptions as in molecular calculations can be

made: only the time-independent, non-relativistic Schrödinger equation is considered and

the Born-Oppenheimer approximation is used.

Subsequently, a simplified picture of periodic calculations is presented according to Dovesi et

al. [17] where much more about this topic can be read.

The vector g = n1a1 +n2a2 +n3a3 is called lattice vector and connects two lattice points in the

crystal. It is an integer multiple of the basis vectors of the primitive unit cell a1,a2,a3.

The corresponding vector in the reciprocal lattice is K = K1b1 +K2b2 +K3b3 with K j integers.

b1,b2,b3 are the reciprocal lattice basis vectors. Vectors a and b are mutually orthogonal:

bi ·a j = 2πδi j

The Wigner-Seitz cell is defined as the portion of space being closer to one lattice point than

to all others. The corresponding entity in reciprocal space is the first Brillouin zone: all points

which are closer to one reciprocal lattice points than to all others belong to it.

The Hamilton operator can be written as Ĥ = K̂ + V̂ where K̂ is the kinetic operator and V̂ is a

periodic potential due to the periodicity of the crystal. Therefore, the potential at a point r in

the crystal has to be equal to the potential at r+g:

V (r+g) =V (r) (1.37)

The Schrödinger equation also needs to be invariant with respect to translation of g.

Ĥ(r−g)Ψ(r−g) = EΨ(r−g) (1.38)

Solutions of this equation are called Bloch functions [18] and have the form

Φ(r+ g ;k) = e i k·gΦ(r;k) (1.39)

whereΦ(r;k) is the Bloch function, k is the wavevector and e i k∗g is the Bloch phase factor.
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The solutions can be limited to k in the first Brioullin zone because if k′ = k+K, then

e i k′∗g = e i k∗g +e i K∗g = e i k∗g (1.40)

since K∗ g = 2π∗"i nteg er ".

The Bloch function is itself a product of a plane wave and a periodic function u(r;k):

Φ(r;k) = e i k∗ru(r;k) (1.41)

In principle the Bloch functions go over an infinite crystal. This is solved by introducing

periodic boundary conditions. The easiest assumption is that the considered crystal is a finite

part of an infinite crystal and therefore no surface effects are to be considered. The crystal is

a parallelepiped containing N = N1 ·N2 ·N3 unit cells with sides N j ·a j (j=1,3) and N goes to

infinity. Therefore:

Φ(r+mN j a j ;k) =Φ(r;k) (1.42)

where m is an integer number.

With these conditions, the theorem of the Bloch function becomes:

Φ(r+mN j a j ;k) = e i mN j k∗a jΦ(r;k) (1.43)

From equations 1.42 and 1.43 one sees that the phase factor must be one:

e i mN j k∗a j = 1 (1.44)

The component k j of the wave vector can be defined as:

k j =
n j

N j
b j (1.45)

with n j being integer. Therefore, k is any point in the reciprocal lattice. Again due to trans-

lational symmetry and as written in equation 1.40 the solutions can be limited to the first

Brillouin zone.

There exist N of k points in every reciprocal cell:

k = n1

N1
b1 + n2

N2
b2 + n3

N3
b3 (1.46)

When N1, N2, N3 go to infinity, k becomes a continuous variable.

An important property of Bloch functions is that for two points k and k’ in the first Brillouin

zone all integrals that need to be calculated in the periodic Schrödinger equation are zero

except k=k’. Bloch functions of different wave vectors are mutually orthogonal.

As a consequence, the Hamiltonian matrix represented with Bloch functions is block-diagonal

where every block refers to a specific k and is independent of the others. Every block consists
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Chapter 1. Quantum Chemistry: Wavefunctions and Density Matrices

of n f ×n f Bloch functions.

An infinite number of blocks exists but since k is continuous it can be sampled at a finite

amount of points.

In equivalence to molecular calculations, crystalline orbitals are expressed as linear combina-

tions of Bloch functions

Ψn(r;k) =∑
j

c j n(k)Φ j (r;k) (1.47)

The solution lies in finding the optimum coefficients C(k) in the matrix equation H(k)C (k) =
S(k)C (k)E(k) in order to minimize the energy.

Therefore, the Schrödinger equation becomes:

he f f Ψ
k
k(r) = εk

i Ψ
k
i (r) (1.48)

where he f f contains the kinetic operator and a periodic potential operator, Ψk
k (r ) are crys-

talline orbitals, εk
i are the eigenvalues corresponding to the electronic bands, and i is the

band index. From the solution of this equation follows the electronic band structure of the

crystals. EF is the Fermi level which corresponds to the highest energy of a populated state.

The resulting crystalline orbitals are identically replicated over all primitive unit cells.

Bloch function can either be plane waves or localized functions. In most software packages

like Quantum Espresso [19], VASP [20], WIEN2k [21], or Turbomole [22] plane waves are used

because they are more favourable for the description of metals and delocalized electrons.

However, plane waves have the disadvantage that they poorly describe the electron density

cusps at nuclear positions. Therefore, pseudo-potentials are often required with this software.

In CRYSTAL17 [23] periodic atomic orbitals constructed from Gaussian type functions are

taken, which is computationally more expensive than plane waves but has the advantage that

standard basis sets like for molecular calculations can be processed.

Since periodic calculations are cost-intensive, very often DFT calculations are done but the

approach is not limited to that. Also periodic HF, MP2, etc. calculations are possible.

In CRYSTAL17 geometry optimizations as well as single point calculations can be performed.

For geometry optimizations an external isotropic pressure can be defined and instead of

minimizing just the electronic energy a term consisting of the electronic energy and the PV

(pressure∗volume) term is minimized. On the one hand, this can be employed to simulate

the measurement of crystals under pressure for comparison with experiment or to exclude

experimental biases. On the other hand, it serves to extend the pressure range within which in-

formation is available beyond the experimentally reachable one in order to simulate properties

of materials also under these conditions.
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2 Partitionings of Quantum Chemi-
cal Entities

2.1 Quantum Theory of Atoms in Molecules

From a chemist’s point of view the microscopic building blocks of matter are atoms, functional

groups, and molecules. Contrariwise, the goal of a chemist is usually to obtain substances

with certain macroscopic properties such as optical, electrical, magnetic or thermal properties

of solids, given reactivity of surfaces or molecules in solutions, and much more. Therefore, it

is crucial to correlate the macroscopic properties with the microscopic building blocks of a

material. In fact, a lot of chemistry is explainable in terms of specific properties of building

block like atoms and functional groups, because these entities keep similar characteristics

in different chemical environments. An oxygen atom is usually nucleophilic and a carboxyl

group acidic. Therefore, functional groups have prototypical characteristics, and it would be

helpful to understand and predict them in order to rationally design materials with specific

macroscopic properties.

Unfortunately, much of the quantum chemistry is based on canonical molecular orbital,

which are spread over the entire molecule or system. This makes it difficult to extract local

information specific to functional groups and atoms. One option is to make some a-priori

constraints to the calculation, which allow the MOs to be only on given fragments (see chapter

9 about extremely localized molecular orbitals (ELMOs)) or to localize them a-posteriori.

Another approach is based on the partitioning of the calculated (or experimental) electron

density into atomic contributions. Different methods exist to do so, such as the Hirshfeld

atom partitioning [24] or the Quantum Theory of Atoms in Molecules (QTAIM). The latter was

used for various parts of this thesis and will thus shortly be introduced in this section.

The method was invented by Richard Bader and co-workers in the 1980ies [25] when they tried

to find a quantum mechanical definition of atoms in molecules and therefore an approach

that would make a link between experimental and theoretical chemistry.

QTAIM partitions the electron density based on its topology into so-called atomic basins (Ω).

The entire space until a chosen limiting value of electrons per cubic Ångström is uniquely

partitioned in a way that every point in space belongs to only one atom. Therefore, QTAIM
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Chapter 2. Partitionings of Quantum Chemical Entities

is independent of a reference model. Atomic properties are obtained by integrating over the

atomic basins, which allows for studying the effect of different chemical environments on the

atoms or larger building block, like in the polarizability database approach described in chap-

ter 6. Another advantage of QTAIM is that properties are additive, signifying that properties of

all individual atoms, like the charge or dipole, sum up to the value of the molecular property.

Since the properties are prototypical for atoms and functional groups, they can also be trans-

ferred. Provided that a suitable local coordinate system is chosen, it is possible to calculate

properties of a small and simple system and to transfer them to a larger system where explicit

calculations are not possible or too time-consuming. This was initially used by Bader to justify

his method with the example of estimating the heat of formation in a homologous series of

hydrocarbons [26].

2.1.1 Topology of the electron density

QTAIM is based on a topological analysis of the electron density [27]. The main features are the

critical points (CPs) which are points where the gradient of the electron density is zero. These

can be maxima, minima or saddle points. Different CPs are distinguished by their curvature

which is the sign of the second derivative of the electron density at this point. The number of

non-zero curvatures is called the rank (ω) and is 3 at CPs. When the curvature is positive, it is

assigned +1; when it is negative, it is assigned the value -1. The signature σ is the sum of the

three curvatures. Therefore, CPs are defined by rank 3 and by their signature.

The electron density is dominated by the nuclear attractors which cause that the electron

density has a maximum at these points called nuclear critical point (NCP). Every atomic basin

and its content belongs to one NCP. For a NCP all curvatures are negative and therefore the

signature is -3. It might happen that NCP are present at positions where there is no atomic

nucleus. These are called non-nuclear maxima [28] and they are rare. A signature of +3

designates a cage critical point (CCP) and a signature of +1 a ring critical point (RCP) because

it has a maximum in two directions and a minimum in one direction. These points are found

inside rings of bonded atoms. The most important type of CPs for the analysis of bonding

are the bond critical points (BCPs). These saddle points have two negative curvatures and

one positive. The electron density has a minimum in the direction towards the neighbouring

nuclear critical points which is defined as the bond path and it is maximal in all other directions.

Therefore, the possible types of critical points are:

- (3,-3): NCP

- (3,-1): BCP

- (3,+1): RCP

- (3,+3): CCP

The total number and type of critical points follows the Poincaré-Hopf relationship, which

states that for isolated molecules the number n of critical points are linked by

nNC P −nBC P +nRC P −nCC P = 1 (2.1)
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2.1. Quantum Theory of Atoms in Molecules

The separation into atomic basins is done with the zero-flux criterion. The borders of the

basins are where the gradient vector field of the electron density has zero flux:

∇ρ∗n = 0 (2.2)

Where n is a vector normal to the surface of the atomic basin. Basins are well defined and

have one nucleus or non-nuclear maximum each. Figure 2.1 shows the electron density in

the ring of a molecule used in chapter 9 of this thesis as well as its gradient vector field. The

dashed green lines in Figure 2.1b are the zero-flux surfaces that separate the atomic basins in

the plane of the ring.

(a) Electron density in the plane of a ring of the
NTA-B molecule used in chapter 9

(b) Gradient vector field and some selected inter-
atomic surfaces for the atoms of one ring of NTA-B.

Figure 2.1 – Electron density and QTAIM partitioning into atomic basins

2.1.2 Atomic properties and bond properties

Atomic properties as well as bond properties can be retrieved from QTAIM. Atomic properties

such as the atomic charge, dipole moment, higher order moments, or energy are obtained by

integration over the basinΩ. Due to the fact that QTAIM partitions the entire molecular space

in a unique way, the atomic properties can be summed up to properties of functional groups

(like for the polarizabilities described in section 2.3) and to properties of the entire molecule.

These are exact within the precision of basin integration and of course, like any molecular

property calculation, limited by the precision of the computational method itself.

In order to study interactions and bonds between two atoms, properties at the BCP between

them can be investigated. First of all, this is the electron density ρ(r = BC P ) itself as well

as the Laplacian (second derivative of ρ(r)) ∇2(r = BC P ). The latter is positive when the

electron density is locally depleted and negative when it is locally concentrated. Thus, at

generic positions it informs about the local Lewis acidity while at the BCP it can indicate a

local charge concentration and therefore is diagnostic of a rather covalent bonding. When

atoms with many electrons are examined (such as for the iodine-iodine bonds studied in
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chapter 7), caution is required since the atomic shells also lead to local charge concentration

and depletion and this behaviour might expand until the BCP.

The bond ellipticity ε describes the shape of the electron density in the plane containing

the bond path. By definition its value is between 0 and 1. ε = 0 designates a cylindrically

symmetric bond and thus a single or triple bond while a higher ε indicates a double bond with

π character.

The energy density at the BCP can as well give insight about the covalent versus ionic character

of a bond and therefore was also employed in the chapter about bonding in polyiodides.

Cremer and Kraka defined the electronic energy density H(r) as the sum of the potential

energy density V (r) (always negative, stabilizing) and the gradient kinetic energy G(r) (always

positive, destabilizing). [29, 30] Thus, interactions where the energy density at the BCP

Hr=BC P = Gr=BC P +Vr=BC P is negative are dominated by the potential term designating a

covalent interaction and vice versa.

Other properties that can be evaluated with QTAIM are localization and delocalization indices

giving evidence about the sharing of electrons between two atomic basins. They provide

information about whether an interaction is happening via a bonded pathway (high sharing)

or rather through space (low sharing). The most used criterion is the delocalization index (DI)

[31]. Such analysis, however, requires the full one-electron RDM as well as the second order

density-matrix and thus cannot readily be done with DFT wavefunctions and experimental

electron densities.

2.1.3 Software

QTAIM analysis can be done for both, molecular as well as periodic (crystal) wavefunctions

and electron densities. Within the scope of this thesis, the software used for molecular ones

is AIMAll (version 14.11.23 [32]) while the one for crystals is TOPOND as implemented in

CRYSTAL17 [23].

2.1.4 Interaction analysis with other methods

Besides the QTAIM method presented in the previous section, a plethora of techniques to

study bonds and interactions exists. These are for example the non-covalent interaction (NCI)

[33] method, electron localization function (ELF) [34], Roby-Gould index [35], orbital analysis

with NBOs [36] or ELMOs [37] to mention only a few of them. Furthermore, bonding energies

and their decomposition into different contributions can be analysed as described in the next

section.
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2.2. Interaction energies and their decomposition into classic and non-classic
contributions

2.2 Interaction energies and their decomposition into clas-
sic and non-classic contributions

2.2.1 Overview

The bonding or interaction energy (subsequently, only the general term ’interaction energy’

will be used) between two or more molecular fragments is defined as the difference between

the sum of the fragment energies and the energy of the final composite structure. At least

apart from an error introduced by the use of finite basis sets, which can be corrected with

BSSE (basis set superposition error) counterpoise methods.

It is interesting to analyse the different contributions to the bonding energy. Two prominent

decompositions methods are the interacting quantum atoms (IQA) [38] approach and the

energy decomposition analysis (EDA) [39] used in chapter 7 for the analysis of iodine-iodine

interactions in polyiodides, where it was probed how these interactions change when pressure

is applied on the crystal. These two partitionings are further detailed here.

The philosophy behind the two partitionings is very different. The IQA partitioning is based

on the electron density separated into atomic basins according to QTAIM and subsequent

examination of atomic and interaction energies. The EDA is based on a partitioning of the

Hamiltonian in the Schrödinger equations of the separated and interacting fragments.

IQA terms are always calculated for pairs of atoms. When the interaction energy of entire

fragments is to be considered, the respective terms have to be summed. The method is

implemented in AIMAll [32]. IQA analysis can be done for wavefunctions obtained from

Hartree-Fock, B3LYP (using a specific correction in AIMAll for compensating the lack of a

2-electron density matrix), and complete active space calculations.

In the EDA approach, the interaction energies between fragments consisting of one or more

atoms are evaluated. The method is for example implemented in ADF [40] but the terms can

in principle be obtained from any quantum chemistry software. The partitioning based on the

Hamilton operator works only for Hartree-Fock type calculations but an analogous partitioning

for DFT functionals is implemented in ADF. In order to compare the two approaches, we will

focus on Hartree-Fock calculations.

Figure 2.2 – Interaction between two water molecules. This example is used in section 2.2.4.

Both methods allow for the calculation of classic (electrostatic) and non-classic (covalent)

terms. When looking at these terms and comparing their value in literature, they are very

different. Indeed, the electrostatic term in EDA is always stabilizing whereas in IQA it is often

destabilizing. Pendás [41] ascribes the large difference to the fact that with the IQA approach
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all the electron density within a basin belongs to this atom. Electron density outside the

interatomic surface belongs to a different atom. Therefore, it does not matter from which

atom or fragment the electrons are initially coming. EDA instead assigns the electron density

to the fragments by taking as reference the two fragments in vacuo, which is before the

interaction. Thus, the electron densities are interpenetrating in EDA whereas in IQA they are

concentrated around the nuclei. This leads to a lower electrostatic interaction of electrons

to another nucleus in IQA. However, the electrostatic interaction with their own nucleus is

instead stronger.

A more important point besides the difference in the assignment of the electron densities is

that the IQA partitioning examines the interaction in the final molecule whereas EDA considers

the interaction in steps. EDA starts from the two individual fragments which are the reference

state and then lets them interact. It intrinsically takes into account the starting state of the

fragments into the overall partitioning, which is not done in IQA where just the final interaction

energy is considered. One can, however, also introduce an initial reference state in IQA and

decompose in addition to the interaction energy also the deformation energy into classic

and non-classic terms. Like that, the EDA and IQA results become directly comparable. This

procedure was introduced by Racioppi et al. [42] and is detailed below.

2.2.2 IQA - Energy terms from partitioned electron density

The IQA terms can be calculated with the software AIMAll. The atomic energies are obtained

by integrating over atomic basins. The atomic basins instead are obtained from a partitioning

of the electron density according to QTAIM. In order to calculate the exchange-correlation

terms, the two electron density matrix is needed. With Hartree-Fock calculations the exchange

term is available (correlation of course intrinsically not) but DFT calculations are based on

the electron density and do not provide a two-electron density matrix. Maxwell et al. [43]

developed a method to circumvent this issue, which is described in section 2.2.2 ’treatment of

DFT wavefunctions’.

IQA theory

In the following paragraph the partitioning of the interaction energy between two fragments

is presented using a consistent nomenclature; first in analogy to the original IQA derivation

by Pendás et al. [38, 44], second in analogy to Cukrowski et al. [45, 46] and third according to

Racioppi et al. [42] The numerous equations in this section are useful for somebody who wants

to undertake the presented evaluation because there is no software automatically selecting or

summing the correct terms.

Nomenclature

T: kinetic energy

V: potential energy

E: atomic/fragment/molecular energy
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A: one-electron term

AA: interaction within the same atomic basin

AB: interaction between different basins

G ,G : interaction of atoms in the same fragment

G ,H : interaction of atoms on two different fragments

Partitioning of Pendás The total molecular energy of a molecule consists of one-body /

monoatomic (Pendás) or self-energy (Cukrowski) terms and two-body or interaction terms.

E =∑
A

E A A
sel f +

∑
A>B

E AB
i nt (2.3)

The first sum goes over all atoms and the second sum goes over all pairs of atoms excluding

double counting. The one-body or self-energy terms consist of the kinetic energy (always refer-

ring to the kinetic energy of the electrons, Born-Oppenheimer approximation), the electron-

nucleus interaction within one atomic basin and the electron-electron interaction within one

atomic basin:

E A A
sel f = T A +V A A

en +V A A
ee (2.4)

The two-body or interaction contributions are the nucleus-nucleus interaction, the nucleus-

electron interaction (between the nucleus of one basin and the electrons of another basin

and vice versa) and the electron-electron interaction. These terms sum up to the interaction

energy:

E AB
i nt =V AB

nn +V AB
en +V AB

ne +V AB
ee (2.5)

The sum over all above mentioned IQA atomic self and interaction energies in the molecule

gives the total molecular energy where one needs to make sure that the interaction energies

are not counted twice.

E =∑
A

E A A
sel f +

∑
A>B

E AB
i nt =

∑
A

(
T A +V A A

en +V A A
ee

)+ ∑
A>B

(
V AB

nn +V AB
en +V AB

ne +V AB
ee

)
(2.6)

T A is the atomic kinetic energy; the Ven , Vne , Vee , and Vnn terms describe the potential energies

of the pair interactions between the electrons and nucleus of the same (AA) or different (AB)

basins.

The electron-electron interaction term can be further split into the Coulomb interaction term

(V AB
Coul ) and exchange-correlation term (V AB

xc =V AB
ee −V AB

Coul ) (blue) which is associated with

a covalent interaction. Therefore, one can define the classic part (green) of the interaction

energy as:

V AB
cl =V AB

nn +V AB
en +V AB

ne +V AB
Coul (2.7)

and the interaction energy itself as:

E AB
i nt =V AB

cl +V AB
xc (2.8)

The partitioning of the interaction energy E AB
i nt in equation 2.8 gives rise to Pendás’ partitioning
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into classic and exchange-correlation contributions to the bonding energy.

By inserting these terms into equation 2.6 the total molecular energy can be expressed in

terms of kinetic, classic and non-classic parts.

E =∑
A

(
T A +V A A

en +V A A
ee,cl +V A A

ee,xc

)
+ ∑

A>B

(
V AB

nn +V AB
en +V AB

ne +V AB
ee,cl +V AB

ee,xc

)
=∑

A
T A +∑

A
E A A

sel f ,cl +
∑
A

E A A
sel f ,xc +

∑
A>B

E AB
i nt ,cl +

∑
A>B

E AB
i nt ,xc

(2.9)

The classic and non-classic terms obtained with this procedure are difficult to compare to

terms obtained from an EDA partitioning where the total binding energy is partitioned and

not only the interaction energy.

Pendás has indeed defined the binding energy as:

Ebi nd = E −∑
A

E A
vac =

∑
A

E A
de f +

∑
A>B

E AB
i nt (2.10)

Where E A
vac is the energy of the fragments in vacuo.

But he did not go on to partition the complete binding energy into classic and non-classic

terms. In order to obtain the classic and non-classic term of the complete binding energy, one

has to partition also the deformation energy (difference between final and initial/reference

state).

Partitioning of Cukrowski Cukrowski [46] proposed the fragment attributed molecular system

energy change (FAMSEC) scheme based on IQA going in the direction of partitioning also the

deformation energy. He studied intramolecular interactions between two atoms A and B in

the final state (fin). In order to quantify the contribution of the interaction between these two

atoms to the binding energy he defined a reference state (ref ) taking a different conformer

where the two atoms are not interacting.

The fragment G consists of the interacting atoms A and B. The change in their self-energy is:

∆EG
sel f =∆E A

sel f +∆E B
sel f (2.11)

The change in the interaction energy of these two atoms with all other atoms in fragment H

is:

∆
∑

X∈H

EG X
i nt = f i n∑

X∈H

EG X
i nt −

r e f ∑
X∈H

EG X
i nt (2.12)

The change of the interaction energy between atoms A and B is

∆E AB
i nt =

f i n
E AB

i nt −
r e f

E AB
i nt (2.13)
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These terms sum up to:

EG
at tr b−mol =∆EG

sel f +∆E AB
i nt +∆

∑
X∈H

EG X
i nt (2.14)

This is the energy contribution of the fragment G (atoms A and B or also more) to the molecu-

lar energy change when it goes from ref to fin. Since these terms do not include the change of

the self-energy of all other atoms as well as the change of the interaction among all others, it is

not equivalent to the binding energy E f i n −E r e f .

Partitioning of Racioppi Racioppi et al. [42] introduced a procedure which includes all terms

and therefore partitions the entire binding energy into kinetic, classic (electrostatic) and

non-classic (exchange-correlation) parts. Due to the many interaction energy terms, this cal-

culation is extremely time consuming both in computation and human evaluation. Therefore,

it is only adequate for small systems.

In order to calculate the binding energy between several fragments (G , H , etc.) one needs to

calculate three terms:

1) The change of the self-energy. This is the difference between the self-energies E A A
sel f

of all atoms A in the final state and the self-energies of all atoms in the initial state E A A
sel f ,vac .

The sum goes over all atoms in all fragments H . The fragments H have the very same

geometry in the the initial and final state.

Ede f ,sel f =
∑
H

( ∑
A∈H

E A A
sel f −E A A

sel f ,vac

)
=∑

H

( ∑
A∈H

∆E A A
sel f

)
(2.15)

2) The change of the interaction energy within the same fragment from before to after

the interaction. The interaction energies between atoms of any fragment H change when

going from the isolated fragment to the final compound. This gives rise to the deformation

energy term ∆EH
de f ,i nt which is summed over all interaction within the same fragment for all

the fragments.

Ede f ,i nt =
∑
H

 ∑
A>B

A,B∈H

E AB
i nt −E AB

i nt ,vac

=∑
H

 ∑
A>B

A,B∈H

∆E AB
f r ag ment ,i nt

 (2.16)

3) The total interaction energies of all atoms from fragment H with all atoms of frag-

ment G . There is no ∆ here because this term designates interaction energies between atoms

of different fragments and they are not present in the initial state.

E f r ag ment ,i nt =
∑

A>B
A∈G ,B∈H

( ∑
A∈H

∑
B∈G

E AB
i nt

)
= ∑

A>B
A∈G ,B∈H

EG ,H
i nt (2.17)
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The sum of the deformation energies is positive (destabilizing) while the interaction energy is

usually negative (stabilizing).

The total binding energy between all fragments is the sum of these three components.

E f r ag ment ,bi nd = Ede f ,sel f +Ede f ,i nt +E f r ag ment ,i nt (2.18)

Only the last term is present in Pendás decomposition scheme.

Example for two interacting fragments:

Equation 2.18 written out for two fragments G and H becomes:

EG ,H
f r ag ment ,bi nd = ∑

A∈G

∆E A A
de f ,sel f +

∑
A∈H

∆E A A
de f ,sel f +

∑
A,B∈G

A>B

∆E AB
de f ,i nt+

∑
A,B∈H

A>B

∆E AB
de f ,i nt+

∑
A∈G

B∈H

E AB
i nt

(2.19)

The self energy consists of:

E A A
sel f = T A +V A A

en +V A A
ee = T A +V A A

en +V A A
Coul +V A A

xc = T A +V A A
cl +V A A

xc (2.20)

and the interaction energies of

E AB
i nt =V AB

nn +V AB
en +V AB

ne +V AB
ee =V AB

nn +V AB
en +V AB

ne +V AB
Coul +V AB

xc =V AB
cl +V AB

xc (2.21)

Inserting equations 2.20 and 2.21 into equation 2.19 leads to:

EG ,H
f r ag ment ,bi nd = ∑

A∈G

∆T A,G
de f −sel f +∆V A A,G

de f −sel f ,en +∆V A A,G
de f −sel f ,Coul +∆V A A,G

de f −sel f ,xc

+ ∑
A∈H

∆T A,H
de f −sel f +∆V A A,H

de f −sel f ,en +∆V A A,H
de f −sel f ,Coul +∆V A A,H

de f −sel f ,xc

+ ∑
A,B∈G

A>B

∆V AB ,G
de f −i nt ,nn +∆V AB ,G

de f −i nt ,en +∆V AB ,G
de f −i nt ,ne +∆V AB ,G

de f −i nt ,Coul +∆V AB ,G
de f −i nt ,xc

+ ∑
A,B∈H

A>B

∆V AB ,H
de f −i nt ,nn +∆V AB ,H

de f −i nt ,en +∆V AB ,H
de f −i nt ,ne +∆V AB ,H

de f −i nt ,Coul +∆V AB ,H
de f −i nt ,xc

+ ∑
A∈G

B∈H

V AB ,GH
f r ag−i nt ,nn +V AB ,GH

f r ag−i nt ,en +V AB ,GH
f r ag−i nt ,ne +V AB ,GH

f r ag−i nt ,Coul +V AB ,GH
f r ag−i nt ,xc (2.22)

The green terms are classic energies and the blue terms are exchange-correlation energies.

At this point, one can summarize all terms into kinetic, classic and exchange-correlation

deformation parts as well as classic and exchange-correlation interaction parts and generalize

to more than two fragments:

EG ,H
f r ag ment ,bi nd =∆T G

de f +∆V G
de f ,cl assi c +∆V G

de f ,xc +V G ,H
cl assi c +V G ,H

xc (2.23)
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contributions

Where G designates terms on the same fragment and G ,H terms on different fragments.

Thus, a partitioning of the entire binding energy into kinetic, classic and exchange-correlation

terms is obtained, which can be used for comparison to the EDA terms.

Treatment of DFT wavefunctions

In AIMAll version 14.04.17 a treatment for the popular functional, B3LYP, was implemented [43]

allowing to calculate all the above listed terms. The total atomic exchange-correlation energy

is available from the functional. The separation into inter- and intra-atomic contributions is

done as follows: The Kohn-Sham orbitals are handled as if they were Hartree-Fock orbitals

and the interatomic exchange is calculated with HF treatment. The intra-atomic term is

simply the total atomic exchange-correlation minus this interatomic pseudo HF exchange

term. This treatment allows to recover the total exchange-correction energy exactly (withing

the limitation of the method) and it also allows a somewhat ambiguous separation into inter

and intra-atomic terms. In order to activate this option, the keyword ’B3LYP’ has to be inserted

in the extended wavefunction (.wfx) file.

2.2.3 EDA - Energy terms from partitioned Hamiltonian

The binding energy of two or more fragments can be defined as

Ebi nd = E tot − ∑
f r ag ment s

E f r ag (2.24)

The Hamilton operator is composed of a one-electron part and a two electron part. The one

electron part contains the kinetic energy of the electrons and the nucleus-electron interaction.

The two electron part consists of the electron-electron interactions. With this decomposition in

the Schrödinger equation it is easy to distinguish between the Coulomb part and the exchange

part of the electron-electron interactions. (There is no correlation in the Hartree-Fock case.)

E0 = 〈Ψ0|Ĥel |Ψ0〉

=
nocc∑
i=1

〈χi (1)|ĥi |χi (1)〉+ 1

2

nocc∑
i=1

nocc∑
j=1

{〈χi (1)χi (1)

∣∣∣∣ 1

ri j

∣∣∣∣χ j (2)χ j (2)〉−〈χi (1)χ j (1)

∣∣∣∣ 1

ri j

∣∣∣∣χ j (2)χi (2)〉}

=
nocc∑
i=1

εi + 1

2

nocc∑
i=1

nocc∑
j=1

{Ji j −Ki j }

=
nocc∑
i=1

(T +V )i + 1

2

nocc∑
i=1

nocc∑
j=1

{Ji j −Ki j } (2.25)

Applying this on the wavefunctions of the fragments and of the total assembly (final state) leads

to their respective kinetic energy, electron-nucleus interaction energy, Coulombic electron-
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Chapter 2. Partitionings of Quantum Chemical Entities

electron interaction energy and exchange interaction energy.[
nocc∑
i=1

(T +V )i + 1

2

nocc∑
i=1

nocc∑
j=1

{Ji j −Ki j }

] f r ag

Ψ f r ag =
[

T f r ag +V f r ag
ne +V f r ag

coul +V f r ag
xc

]
Ψ f r ag

(2.26)

Subsequently, components belonging together can be grouped into classic and exchange

terms and the corresponding terms are subtracted:

∆T=T f i nal − ∑
f r ag ment s

T f r ag (2.27)

∆Vcl assi c =V f i nal
cl assi c −

∑
f r ag ment s

V f r ag
cl assi c (2.28)

∆Vxc =V f i nal
xc − ∑

f r ag ment s
V f r ag

xc (2.29)

Like this, the total binding energy can be partitioned. However, papers about EDA (for example

by Morokuma [47], Bickelhaupt [14], or Franking [39]), usually focus on the partitioning of the

binding energy into electrostatic interaction, Pauli repulsion, and orbital interaction term.

E bi nd = Eel st at +EPauli +Eor b (2.30)

Nevertheless, it is also possible to retrieve the classic and non-classic terms as a by-product

of an EDA calculation, for example with the software ADF [40]. In that case a partitioning of

the Pauli repulsion and orbital terms into kinetic, coulombic and exchange-correlation part is

obtained such that one can extract the kinetic, classic and non-classic parts.

2.2.4 Exemplary calculation for water

To highlight the differences and similarities between IQA and EDA, an exemplary calculation

of the interaction energies between two water molecules arranged as shown in Figure 2.2 was

done. To allow for a direct comparison, the EDA terms were derived from integrals obtained

with Gamess [48] because ADF uses Slater-type functions, whereas IQA analysis with AIMAll

requires a wavefunction with Gaussian-type functions.

As previously written, the generally used terms in literature resulting from an EDA calculation

are the electrostatic, Pauli, and orbitalic terms. Whereas with the IQA method, the classic Vcl

and exchange-correlation terms Vxc of the final state are typically analysed.[41, 49] While for

the H2O dimer, the agreement between IQA classic and EDA electrostatic terms is not bad,

this is definitely not generally the case. When these literature partitionings are for example

applied to the polyiodides in chapter 7, the classic term in I−5 (I−3 and I2 interacting) is positive

(destabilizing) whereas the electrostatic term in EDA is negative (stabilizing).
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2.3. Atomic polarizabilities

What results from applying the IQA method as done in literature, are energy terms of only the

final compound. The choice of considering just these values stands in contrast to how bonding

is normally interpreted with regard to energetic considerations. In fact, bonding is usually

explained by the stabilization (lowering of total energy) going along with the interaction of two

units. Furthermore, this IQA approach considering only energies in the final compound leads

to different numbers with respect to EDA. When subtracting, in contrast, the corresponding

terms of the reference state (I−3 and I2) from the final state (I−5 ), the classic term becomes

negative as it is the case in EDA.

Thus, it makes sense to introduce reference molecules also in an IQA analysis and to consider

all the terms of equation 2.22. Upon additionally rearranging the EDA terms into classic and

exchange as done in the bottom part of Table 2.1, the respective IQA and EDA values become

very similar. Therefore, the two conceptually very different partitionings can be compared,

and it is found that the agreement is excellent.

Table 2.1 – Enumeration and comparison of IQA and EDA terms for the water dimer. The
values are given in kJ/mol. The first two IQA terms refer to numbers obtained from analysis of
the dimer only. All other numbers are differences between a given term in the dimer minus
the sum of the respective terms in the monomers.

IQA EDA

classic (Vcl ) -19.09
exchange-correlation (Vxc ) -32.27

electrostatic (Eel st at ) -17.84
Pauli repulsion (EPauli ) 13.98

orbitalic (Eor b) -16.41

1-electron part (Vpot ) -46548.22
1-electron part (Vki n) 83.34 77.08

nucleus-nucleus (VN N ) 46343.34 46346.36
Coulomb (VeeCoul ) 23139.19 23296.51

exchange (Veexc ) -19.32 -15.22
kinetic 83.34 77.08

exchange -19.32 -15.22
classic -83.30 -82.99

Total (Etot ) -19.28 -21.14

2.3 Atomic polarizabilities

An electric field, which can be externally applied or provoked by surrounding molecules,

can displace the charge distribution of an atom or molecule with respect to its unperturbed

state. This invokes or changes the dipole moment of the molecule and is quantified by the

polarizability stating how easily the electron density gets distorted. [50]
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For small electric fields the induced dipole moment p is proportional to the electric field E

and the proportionality constant is the polarizability α.

p =αE (2.31)

The dipole moment and the electric field are vectors with three components and thereforeα

is a 3x3 tensor.  px

py

pz

=

 αxx αx y αxz

αy x αy y αy z

αzx αz y αzz


 Ex

Ey

Ez

 (2.32)

The isotropic polarizability is one third of the trace of matrixα.

In analogy to atoms or molecules, the polarization P informs about how much an applied elec-

tric field polarizes a dielectric material. For small electric fields and homogeneous dielectrics

the proportionality constant is the electric susceptibilityχ.

P = ε0χE (2.33)

From the susceptibility χ the dielectric constant εr and the refractive index n are easily

obtained with equation 2.34 assuming that the relative permeability is 1.

n =p
εr =

√
χ+1 (2.34)

The dielectric constant as well as the refractive index are important properties of a material.

There is a high demand for low dielectric constant materials in the semiconductor industry

[51] and high refractive index materials for optoelectronic devices [52].

The macroscopic polarization can be expressed as sum over all dipole moments of N molecules

per volume:

P = N p

V
= N αEl ocal

V
(2.35)

This equation relates macroscopic with microscopic quantities. However, the external electric

field does not correspond to the one a molecule is exposed to. The molecule feels a local

electric field, which depends on the external one and on on its chemical surrounding.

Different approaches to relate the molecular polarizability to the refractive index of metal

organic frameworks (MOFs) are described in a paper resulting from my master thesis. [53]
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3 Crystallography and
X-ray Diffraction

3.1 Crystallography

Crystals are three-dimensional objects with periodic translational symmetry, where the repeat-

ing unit is called unit cell. In addition to the translational symmetry, other symmetry elements

(mirrors, rotational and screw axes) are often present giving rise to 230 different space groups.

(a) Polyiodide crystals used in chapter 7. (b) Tetragonal crystal lattice and unit cell dimensions

Figure 3.1 – Macroscopic and microscopic features of crystals.

The periodicity of the crystal lattice enables both experimental structure determination and

calculation of structure and properties. In section 1.4 it was described how one makes use

of the periodicity in order to do ab-initio calculations of crystals. On the experimental side,

scattering experiments make use of periodic lattices. Most commonly X-rays are used because

they are easily produced and have wavelengths in the order of atomic bonds, but other particles

such as electrons and neutrons can be used as well to study crystals. The irradiation of a

crystalline sample leads to a diffraction pattern, which can be used to determine its structure.

Both, single crystals and polycrystalline powders can be used for diffraction experiments. In

contrast to other analytical methods like nuclear magnetic resonance (NMR), ultra-violet

(UV), or mass spectroscopy (MS), X-ray diffraction experiments provide the structure of the
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sample at atomic or even subatomic resolution making this method a very important tool in

science. Besides the structural determination, which is the most wide-spread use of X-ray

diffraction, one can also aim at estimating the electron charge density distribution and thus

obtain information about the underlying bonding and interactions in the crystal.

3.2 The relationship between structure factors and electron
density

Not so long after the discovery of X-rays by Röntgen, the laws of X-ray diffraction were es-

tablished by van Laue [54], the Braggs [55] and others. X-rays are scattered by the electrons

around atoms and if the atoms are periodically ordered like in crystals, the scattered radiation

is subject to constructive and destructive interference leading to a diffraction pattern.

The positions of the diffraction spots are determined by the periodicity and symmetry of the

crystal while their intensities depend on the scattering power of the present atoms and their

positions relative to each other. Therefore, X-ray diffraction patterns were used to determine

the atomic structures of crystals since William Lawrence Bragg proposed his equations [56]

and nowadays the main application remains the structure determination of crystals consisting

of atoms, molecules, polymers, or other substances.

The measured diffraction intensities Ihkl are proportional to the squares of the structure

factors Fhkl , where h,k,l are the Miller indices and designate the reflection positions.

Ihkl ∝|Fhkl |2 (3.1)

The structure factors in turn are the sum of the atomic scattering factors [57].

Fhkl =
N atoms∑

j
f j (k) e2πi (hx j+k y j+l z j ) =

N atoms∑
j

f j (k) e2πi (k·r) (3.2)

The sum goes over all atoms and k is the scattering vector in reciprocal space with |k| = 2sinθ
λ ,

2θ being the scattering angle, and λ the X-ray wavelength. Furthermore, it is k·r = (hx j +k y j +
l z j ) with x j , y j , z j being the fractional coordinates of atom j . Atoms in a crystal are always in

movement and therefore the structure factor f (0), which an atom would have at rest, has to be

convoluted with a temperature-dependent factor T (k) describing the movement of the nuclei.

[58] It is assumed that the electrons follow the movement of the nuclei instantaneously and

unaltered.

f T = f (0) ∗T (k) (3.3)

By inserting equation 3.3 into equation 3.2, the structure factor becomes

Fhkl =
N atoms∑

j
f (0)

j (k) T j (k) e2πi (k·r) (3.4)

32



3.2. The relationship between structure factors and electron density

T (k) is called the Debye-Waller factor. It depends on the displacement of the atoms from their

mean positions, which is described by the vector u. 〈u2
k〉 is the mean-square displacement

projected on the direction of k. At the lowest order approximation, the atoms undergo isotropic

displacements from their mean positions and therefore 〈u2
k〉 is constant for all k and T (k) is

called the isotropic Debye-Waller factor. If the movement is described anisotropically, T (k)

depends on k.

T (k) = e−8π2〈u2
k〉sin2 θ/λ2

(3.5)

When transformed into a cartesian basis, the expression becomes:

T (k) = e−2π2kTUk (3.6)

Where the matrix U contains the atomic displacement parameters (ADPs).

U =

 U11 U12 U13

U21 U22 U23

U31 U32 U33

 (3.7)

The elements Ui j have the dimension of (length)2.

The atomic scattering factors depend on the electron density distribution of the atom, the

more electrons an atom has the more it scatters the X-rays. Therefore, hydrogen atoms with

only one electron are very difficult to see, whereas heavy atoms are well visible. More precisely,

the atomic scattering factors are defined by the atomic electron density distribution weighted

with the correct phase factor

f j (k) =
∫
ρ(r j )e2πi (k·r)d 3r (3.8)

The structure factors for the entire thermally averaged electron density distribution
〈
ρ(r)

〉
of

the unit cell are its Fourier transforms: [59]

F (k) =
∫

V

〈
ρ(r)

〉
e2πi (k·r)d 3r = F T

〈
ρ(r)

〉
(3.9)

More diffuse electrons lead to low angle scattering (small value of sinθ/λ) whereas electrons

closer to the nuclei lead to higher angle scattering.

In principle the relationship between electron density and structure factors is mutual and the

electron density is simply the Fourier transformation (FT) of the structure factors

〈
ρ(r)

〉= 1

V

∑
h,k,l

Fhkl e−2πi (k·r) (3.10)

However, there are some issues prohibiting the direct transformation of the measured intensi-

ties into the electron density distribution of the crystal. [60] First of all, X-rays are not perfectly

scattered in a crystal and do not pass without other interactions; in reality other effects than
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Chapter 3. Crystallography and X-ray Diffraction

(a) Structure factor for carbon atom. (b) Diffraction pattern

Figure 3.2 – The scattering power of an atom decreases with higher angle. On the right side
one frame of the diffraction pattern of NTA-B used in chapter 9 is shown.

pure Bragg diffraction are present. Among the most important ones is diffuse scattering which

is observed due to a deviation of the crystal lattice from a perfectly regular lattice. Thermal

diffuse scattering, in particular, is due the vibration of atoms which brings them out of perfect

structural correlation. Besides the elastic and coherent scattering leading to Bragg diffraction,

inelastic and incoherent scattering may be present, where the energy of the incident photon

is transferred to an electron which gets expelled from the atom. This is called the Compton

effect and it can be used to probe the momentum of the electrons. Within the kinematic

approximation these effects are neglected assuming that the X-rays are are not modified by the

crystal, meaning there is no (thermal) diffuse scattering, no Compton scattering, no multiple

diffraction, no anomalous dispersion, no extinction, etc. In addition, X-ray photons can get

absorbed by the material if the X-ray wavelength is close to the excitation energy of an atom.

This is especially the case for heavier elements which have many electrons. In an isotropic

sample, absorption is regular and can be modelled.

Second, the atoms in a crystal are always in movement due to various vibrations and one

measures an averaged electron density which cannot simply be described by a static one.

Even more critical are two other issues. One is that the sum in equation 3.10 runs over an

infinite amount of reflections hkl, whereas the measurement goes to a given resolution and

thus obviously provides only a limited set of reflections. The other one is that the measured

intensities Ih,k,l are the square of the structure factors Fh,k,l and therefore only their absolute

magnitude can be obtained and not their phases (under the kinematic approximation).

3.3 Modelling the structure and the electron density

For the reasons introduced in the previous section, it is necessary to model the electron den-

sity. Various models have been developed to do that. Some are based on statistics (like the
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3.4. Structure factor simulation

maximum entropy method [61] where the vibrationally averaged electron density is described

not the static one), others are based on the least-squares refinement of model parameters to

fit the experimental structure factors. The standard procedure to refine structures is based on

the independent atom model (IAM). In order to describe the electron density the IAM uses

spherically averaged ground-state electron densities for every atoms, which are furthermore

non-interacting. This is obviously an approximation because in reality the density is not

spherical. Nevertheless, the deformation from sphericity is small compared to the overall

accumulation of electrons around the nuclei so that spherical atoms are a good approximation.

In a structure refinement based on the IAM the difference between the calculated and the

measured structure factors is minimized in a least-squares procedure. The phase of the struc-

ture factors stems always from the model. The refined parameters are the atomic positions,

the atomic thermal parameters and the scale factor.

Despite the IAM being a good approximation, the fractal dimension plot and the residual

density plot in Figure 3.3 prove that there is a systematic error in this model. A substantial

amount of electron density is not explained and it is also not randomly distributed since

in that case the fractal dimension plot would show a Gaussian distribution. The electron

density difference maps reveals, furthermore, that the unexplained density is located in the

bonding and lone pair regions. These are aspherical contributions to the electron density not

explained with an IAM. The problem is especially pronounced for the hydrogen atom since it

has no core electrons and its only electron is involved in bonding. Therefore, the position of

hydrogen atoms appears shifted towards their bonding partners when obtained from an IAM

of observed structure factors and compared to the real position.

The IAM is often good enough to determine the structure and in many cases, like for example

when dealing with structural disorder in the crystal, twinning, limited amount of reflections or

limited resolution, it is the only possibility. However, if the goal is a description of the electron

density as well, an aspherical atom model is necessary.

In order to describe the electron density remaining after an IAM with spherical form factors,

one can use the multipolar model (MM) [62]. The so-obtained information about the electron

density allows the examination of bonds and interactions in the crystal. The models can

also be used for the extraction of properties or for comparison with electron densities from

theory or other experiments. Electron densities obtained with these models are considered

“experimental” despite the use of theoretical information in the calculation of the atomic

scattering factors. A different type of modelling introducing even more theory is the X-ray

constrained wavefunction (XCW) calculation [63]. Due to their importance in this thesis, both,

the multipolar model and the XCW approach are explained in chapter 4.

3.4 Structure factor simulation

While it is not possible to obtain an unbiased electron density or even a wavefunction from a

limited set of structure factors, the inverse is possible. From a calculated wavefunction for a
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(a) Fractal dimension plot (b) Residual density Fobs - FI AM . Positive con-
tours are depicted as blue lines and negative
ones as red lines. The contour level is 0.1 e/Å3.

Figure 3.3 – Electron density not explained by an independent atom modelling of NTA-B.

given crystal one can simulate the structure factors up to any desired angular resolution.

The purpose of this can be comparison to experiment. However, this procedure was used for

many more reasons throughout the thesis.

One reason to simulate structure factors is to replace experimental ones in case they are not

available or the quality is too poor. This might be the case when no crystal can be obtained

or when the crystal or the measurement are not good enough for a charge density analysis.

Furthermore, structure factors can be simulated for crystals under high pressure for pressure

ranges, which cannot be obtained experimentally.

Additionally, simulated structure factors allow for including or excluding specific effects such

as correlation [64] or the crystal field (see chapter 9).

In CRYSTAL17 [23] an algorithm to simulate structure factors of periodic systems is imple-

mented. In order to simulate structure factors of molecular wavefunctions, molecules were

placed in a fictive unit cell, which is big enough for that there are no interactions between the

molecules in different unit cells (10x10x10 Å3 if not otherwise specified). The simulation was

performed with the structure factor analysis module of XD [65].
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Part IIIntroduction: Theory of Quantum
Crystallography
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4 Quantum Crystallography

4.1 History of combining X-ray diffraction and quantum chem-
istry

About one century ago, scientists started to develop quantum mechanics and to understand

the probabilistic laws that govern the world of molecules, atoms and smaller particles; laws

which cannot be grasped by classical mechanics. Based on these discoveries the field of

quantum chemistry was evolving (see chapter 1).

At a similar time, the foundations for the structure analysis of crystals with X-rays were laid,

for example by Max von Laue who discovered the diffraction of X-rays by crystals [66] and

William Henry Bragg and his son William Lawrence Bragg who formulated the laws for X-ray

diffraction [67].

About half a century ago, first attempts to combine the equations of theoretical quantum

mechanics with the results of various experiments were undertaken. Obviously experiments

were always needed to ensure that the developed theories actually describe reality. After all, a

central point of quantum mechanical calculations are expectation values which, by definition,

are related to measurable quantities. Previously however, calculation and experiment had

been two clearly distinct thing which had not directly been obtained at the same time. Yet,

in that time researchers started to actually introduce experimental observations directly

into their quantum mechanical calculations. Subsequently, the focus will mainly be on

the combination of quantum mechanics and X-ray diffraction, thanks to which the field of

quantum crystallography evolved.

Since X-rays are scattered by electrons, they contain information about the electron density

distribution in a crystal. The electron density is highest in the core region of the atoms

and this is why the independent atom model, which assumes spherical atoms, works well

for solving structures. In fact, the additional density which is in the lone pair and bonding

regions contributes much less to the total intensity of the reflections such that it was for a

long time not possible to gain information about bonding electrons. Yet, it is to be mentioned

that for example Bragg already observed the 222 reflection of diamond, which is forbidden
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when assuming spherical carbon atoms, and he correctly attributed his observation to some

"directional property" of the atoms [68]. When the quality of X-ray diffraction measurements

increased, scientists realized that such information should be accessible and the striving for

obtaining information of the actual electron density distribution in crystals arose.

Two differing strands developed. One strand is making use of density matrices and wave-

functions which are supplemented with or fitted to experimental data (in particular X-ray

diffraction data). This method was initiated by Clinton and Massa [69] who worked with

idempotent density matrices constraint to experimental data and it was further developed

into the X-ray constrained wavefunction approach by Jayatilaka [63]. The other strand was

pioneered by Stewart and Coppens and is concerned with the fitting of (mainly) atom-centred

functions to experimentally measured diffraction data. Initially these approaches relied on the

availability of predetermined coordinates and thermal parameters for example from neutron

diffraction or an IAM and they were only used to obtain the electron density distribution.

Later, the multipolar refinement (section 4.2) or the Hirshfeld atom refinement (HAR) (section

4.5) also allowed to refine positions.

Nowadays the goals of quantum crystallography are manifold. [70] Within a narrow definition,

they can be summarized into four points:

I) Improving the structural information which can be obtained from crystallographic refine-

ments.

II) Obtaining not only positions and displacement parameters but also the electron density

ρ(r) and related quantities in order to derive properties from it. This includes also derivatives

of the electron density like the Laplacian ∇2ρ(r) and topological properties of the ρ(r) distri-

bution as well as for example the electrostatic potential V (r). Instead of a charge distribution

also the spin density or momentum density distribution can be the goal.

III) Obtaining an experimental wavefunction or an otherwise improved wavefunction.

IV) Comparing theory and experiment in order to challenge, confirm, and improve each other.

Quantum crystallography can create a link between the macroscopic world of the crystal

and the microscopic world describing the behaviour of the molecules. The availability of an

electron density or a wavefunction allows to relate the building blocks a material consists

of and the interactions among them to the macroscopic features, a very important point for

crystal engineering, since understanding these mechanisms and thus connecting structure

and function allows to design functional materials.

The results presented within the scope of this thesis, mostly use measurements with elastically

scattered X-rays for the crystallographic part, however, this does not need to be so. Other

scattering techniques like inelastic Compton scattering and diffraction with γ-rays, electrons,

and (polarized) neutrons are widely used. These other techniques not only measure the charge

density but also the momentum density or the spin density (see section 4.6). In addition,

different experiments like spectroscopy, electrical or magnetic measurements can be used

to study crystals and all of them can be combined with other experimental or theoretical
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parts to probe a system. Crystallography can also refer to ab-initio calculations with periodic

boundary conditions, a method often employed in this thesis and described in section 1.4.

On the other hand, the quantum part does not necessarily need to be computational since

many experiments directly probe the quantum behaviour of materials. In any case theory

was always needed to build models from measured data for example to compensate for the

missing information about the phase in X-ray diffraction experiments.

The field of quantum crystallography [71, 72] is broad, a lot of research is going on under

the umbrella of this term and there are many links to other scientific branches. Different

viewpoints on quantum crystallography as well as an overview about the current disciplines

are given in a recent article [70].

Figure 4.1 – Some inputs and outputs of quantum crystallography (QCr)
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4.1.1 From the first quantum mechanical scattering factors to more elab-
orated ones based on atom-centred aspherical functions

The first atomic scattering factors in use were based on the assumption that electrons behave

according to the classical laws of electrodynamics. But soon after Hartree presented his

method for the calculation of wavefunctions in a self-consistent way, scattering factors were

obtained based on quantum mechanical calculations; for example by James and Brindley

[73] who used Hartree wavefunctions (and not Hartree-Fock ones, since Fock published

his article about the calculation of correctly antisymmetrized wavefunctions only in 1930).

Although they were aware that “in any real crystal structure, the arrangement of the outer

electrons of the atoms must be to some extent distorted from spherical symmetry” they tabulated

spherically averaged scattering factors. Spherical scattering factors remained the ones used

until McWeeny published a series of four papers from 1951 to 1954.

In the first paper [74] he calculated atomic scattering factors based on wavefunctions for

1s, 2s, 2p and thereof hybridized atomic orbitals, where the proposed scattering factors for

atoms with non-spherical electron configurations were indeed aspherical. In the second

paper of the series [75], additional scattering factors for bonds were introduced. Together with

the scattering factors of the atoms they gave rise to effective atomic scattering factors which

were not spherical and explicitly took into account electrons in the bonds. He performed

calculations for the hydrogen molecule where the effect of non-sphericity is largest since all

electrons are involved in bond. Since these calculations were quite laborious he introduced

in the third paper [76] Gaussian type orbitals for expressing the Slater type orbitals. In the

fourth paper [77] he applied the formulas to the carbon atom in diamond and graphite. Since

he calculated the structure factors for atoms at rest, he noted that at this point the most

significant improvement would come from including thermal vibration.

Kleinman and Phillips [78] as well as Weiss [79] and later Dawson [80] also calculated aspheri-

cal scattering factors and used them for the calculation of the structure factors of diamond;

specifically for the prediction of the 222 reflection which, with purely spherical scattering

factors, would be absent. De Marco and Weiss [81] expanded this analysis also to silicon and

germanium and obtained results for the 222 reflection of silicon which were in good agreement

with experiment whereas no definite conclusions about germanium could be drawn since in

that case the contribution of the valence electrons is too small compared to the core electrons.

Stewart, Davidson and Simpson [82] showed in 1965 that when the hydrogen scattering

factors are taken from isolated hydrogen atoms, too low temperature parameters for bonded

hydrogens as well as positions too much centred into the bond (compared to results from

neutron diffraction or spectroscopy) are obtained. They calculated new scattering factors for a

polarized hydrogen atom in H2. The predicted form factors were used for least-square fits of

positions and temperature factors.

In 1969, Stewart [83] presented a paper in which he calculated generalized scattering factors

as Fourier transforms of atomic orbital products, where the two functions can be lying on the
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same atom or on two different atoms. The structure factors obtained from these scattering

factors were multiplied with a population parameter and compared to experimental structure

factors. With the least-squares method the population parameters were refined. Orbital

products among 2s and 2p AOs on the same atom were used, therefore leading to atomic

monopole, dipole and quadrupole terms. In 1973 Stewart [84] expanded the method to 3d

atomic orbital products extending the deformation terms to fourth order spherical harmonics.

In the conclusions of this paper he also mentioned the possibility of using instead of atomic

orbital products a multipole expansion in spherical harmonics where the radial part r k is

expanded with a multiplicative function exp(−αk r ) where αk is a variable parameter in the

least squares equations. In that case, the electron density in the chemical bonds is accounted

for by atom-centred terms and not by one or two-center atomic orbital products. In another

paper in 1972, Stewart [85] calculated physical properties based on this model with refined

population parameters.

In a series of papers in 1971, Coppens et al. [86, 87, 88] further developed the AO product based

description of structure factors in order to extract information about bonding in molecules in

a quantitative manner. They stated that the success of the spherical atom model is partially

also due to the fact that thermal factors and positions erroneously include effects of electron

density which is in bonds. Two different models were tested, one with only one-center terms

and one including also products of atomic orbitals on two centres. They obtained expressions

for atoms (one center) and for bonds (two center). The one and two-center atomic orbital

products were multiplied with a population parameter and a temperature factor giving rise

to structure factors for both the atoms and the bonds. The population parameters were

refined with least-square fits to the diffraction data. The correlation between the population

parameters and the conventional least-squares parameters might be large, wherefore they took

the positional and thermal parameters from neutron diffraction instead of refining them and

the total number of electrons was constrained, leaving only the scale factor and the electron

population parameters to be refined. Only a very limited amount of parameters was used

(symmetry was exploited) but they had nevertheless problems with correlation of parameters.

For example, the contribution of the 2s2 term and the sum of 2p2
x , 2p2

y , 2p2
z , which is also

spherical, can not be distinguished and thus the 2s2 parameter was arbitrarily set to some

value.

It turned out that the approach with atomic orbital products on both, the same and differ-

ent centres might be worse compared to atom-centred expansions of the electron density.

An atom-centred expansion of the electron density with spherical harmonics was already

proposed in 1968 by Kurki-Suonio [89], though without refining any population parameters.

In 1971 Hirshfeld [90] further developed this approach. He defined a deformation function

ρ = ρs +δρ , where ρs is the sum of spherical free-atom densities and δρ the deformation

density which is expanded with functions also centred on atoms. Stewart introduced what he

called the pseudoatom model. A pseudoatom consists of all atomic expansion terms of one

atom. With these multipolar terms the scattering factors can be obtained and then selected

coefficients of the multipole model can be refined by a least squares fit to the experimental
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structure factors. In two articles in 1975 and 1976 Stewart summarized his efforts about the

pseudoatom model. [91, 92]

In 1978 Hansen and Coppens [62] introduced the multipolar model, which became the most

widespread model for describing aspherical atom densities. It is explained in section 4.2.

4.1.2 Density matrix and wavefunction refinement

As written in the previous section McWeeny published on one hand a series of papers (1951-

1954) [74, 75, 76, 77] where he proposed for the first time aspherical atomic scattering factors

to model the electron density from X-ray diffraction measurements and his ideas were the

starting point for Stewart, Hirshfeld, Coppens and others to develop the formulas that lead to

the Hansen and Coppens model. On the other hand, McWeeny also published a paper in 1960

[3] about the purification of a non-idempotent density matrix which was the initialization for

Clinton and Massa’s developments of idempotent density matrices that fit the X-ray structure

factors. The idea behind their approach is based on earlier attempts to include experimental

information into the calculation of WFNs and density matrices.

Since WFNs are not physical observables they were and are typically obtained from pure

quantum mechanical calculations using the variational principle and thus via minimization of

the total energy. With an infinite amount of determinants and expansion functions one could

in principle obtain the correct WFN and energy of a given system, see Figure 1.2. In practice,

this is obviously not possible and one has to deal with different approximations. The best

approximate WFN in terms of energy must not necessarily be the best one for the electron

density distribution and thereof resulting properties. Therefore, the idea of introducing addi-

tional constraints for the calculation of the WFN arose. Besides the Hamiltonian, additional

operators are applied on the WFN and their expectation values are requested to be consistent

with experimental values or values from complementary theories. In principle the expectation

values could be forced to be exactly identical to the constraint but in practice the expectation

value is usually constrained such that the difference to the experimental value is lower than a

particular value. Thus, during the variational procedure not only the energy is minimized but

also the difference to the experimental constraints.

Mukherji and Karplus (who later won the Nobel Prize for the development of multiscale models

for complex chemical systems) are among the first researchers calculating experimental WFNs.

[93] They used the dipole moment and the deuteron quadrupole coupling constant as external

constraints for the calculation of a WFN for the hydrogen-fluoride molecule. The deuteron

quadrupole coupling constant is a constraint for the electron density close to the nucleus

whereas the dipole moment constrains rather the outer region of the charge distribution. As a

starting guess they used the best WFN from an unconstrained calculation with a minimal basis

set expressed as a linear combination of atomic orbitals with associated expansion coefficients

ci p . Subsequently, they optimized the coefficients to obtain a new WFN fitting including the

constraint. Some of these coefficients were reserved to ensure the correct normalization of
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the WFN and some to ensure the orthogonalization of the orbitals. Only one coefficient was

used to minimize the difference of the calculated dipole moment and deuteron quadrupole

coupling constant to the experimental one while all other coefficients were only indirectly

affected by the constraint. The new coefficients were determined by several minimization

cycles.

With this approach, the difference of the expectation value of the additional operators to

the experimental constraint was considerably reduced while the energy changed only little.

Furthermore, the constrained WFN resulted in improved agreement with other experimental

properties not used as constraints.

Rasiel and Whitman (1965) [94] developed a more generalized procedure to introduce empiri-

cism (as they call it) into WFNs. They expanded the constrained WFN from the solution of the

unconstrained (or free-variational as they call it) WFN. The constrained part was weighted

with a Lagrange multiplier and this modified equation was solved. Specifically, they performed

calculations for lithium hydride and used the experimental electric dipole moment as con-

straint. The constrained WFN removed a 12% error in the dipole moment while the energy

sacrifice was only 0.06%. Other properties obtained from the constrained WFN were also

improved with respect to the unconstrained WFN.

In contrast to the initial approaches of Mukherji and Karplus, Rasiel and Whitman, and By-

ers Brown [95] who worked with the wavefunctions, Clinton, Nakhleh, and Wunderlich [96]

were determining the one-electron reduced density matrix ρ1

(−→
r ′ ;−→r ;

−→
R

)
. In analogy to the

wavefunction-based approaches, they used empirical data to constrain the first-order RDM.

However, in the first out of a series of five papers, they did not use experimental data as

constraints for the determination of the density matrix but physical theorems. These were

the electrostatic theorem, the virial theorem and the “density-matrix” theorem (meaning that

the total amount of electrons must be correct). ρ1

(−→
r ′ ;−→r ;

−→
R

)
was inserted into the integral

equations of these theorems. In order to be able to solve the equations, different forms for

the density matrix can be assumed and they chose atomic orbital functions to expand it. The

so-obtained semi-empirical densities were not N-representable, meaning they could not be

represented by a proper WFN and analysis of natural orbitals does not result in occupan-

cies always between 0 and 2 as it should be. They mentioned the possibility to circumvent

this problem by directly calculating the WFNs, however, they stated that this would lead to

unnecessary numerical problems and they favoured the first-order reduced density matrix.

In the second paper of the series Clinton, Galli, and Massa [97] proposed a method based on

McWeeney density matrix purification method to make the density matrix idempotent. In an

iterative procedure, a matrix was purified:

Pn+1 = 3P 2
n −2P 3

n (4.1)
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Herein the constraint equations were introduced with a Lagrangian multiplier λ:

Pn+1 = 3P 2
n −2P 3

n

∑
k
λ(n)

k Ok (4.2)

The solution of these equations was not an energy minimization procedure, nevertheless, for

very simple cases with only two variables, they anyhow reproduced the Hartree-Fock density

matrix when they took as constraints Hartree-Fock calculated values.

In paper three [98] only theoretical constraints were used. Specifically, a combination of the

electrostatic and the virial theorem into a single differential equation. Infinitely many densities

would fulfil this equation. Therefore a known density was taken and scaled and only the scale

factor was optimized. They demonstrated with diatomic molecules that the so obtained scale

factors are in qualitative agreement with the variational ones. In paper four [99] they used a

specific theorem of Parr as a constraint on their idempotency equation and in paper five [100]

the equations were applied to the calculation of local energies of H+
2 and He. In a later paper

Clinton and Massa [101] used the cusp condition as constraint on the electron density matrix.

Henderson and Zimmerman [102] later also made use of the Clinton formula. They demon-

strated that these equations can be fulfilled by several idempotent solutions for the density

matrix and thus require an additional criterion to be solved uniquely. For this they introduced

an energy minimization criterion. However, they did not exert any variational minimization

but basically error and trial. They proposed to take a set of operators and calculated initial

guesses for the expectation values of these operators (so no experimental or theoretical con-

straints were introduced). To solve the Clinton equations they took these expectation values

as constraints and calculated the energy from the resulting density matrix. With this density

matrix a new guess was obtained, the procedure was repeated and in the end the solution with

the smallest energy was taken.

In 1972 Clinton and Massa [69] used for the first time coherent X-ray diffraction data to

obtain the electron density of the unit cell and thus of the molecules via a density matrix

fitting. Like in the previous papers, they imposed the quantum-mechanical constraint of N-

representability on the density matrix. The structure of the crystal was supposed to be known.

The elements of the density matrix were determined by least-squares fit to the scattering

factors using the Clinton equations. Therefore, the density matrix has a form automatically

ensuring N-representability and it fits the diffraction data:

Pn+1 = 3P 2
n −2P 3

n +∑
−→
G

λn(
−→
G ) f (

−→
G ) (4.3)

They also already thought about lattice vibration effects which they introduced by multiplying

the scattering-factor data with a thermal factor.

In 1978 Frishberg and Massa [103] worked out some advantages of this approach. Due to

the N-representability condition they faced less parameter correlation problems than Stew-

art, Coppens and others with their approach of atom centred basis functions to expand the
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electron density. In addition, they dealt with less independent parameters. The solution

of the iterative equations is a purified and thus N-representable density matrix additionally

constraint to diffraction data and thus in accordance with structure factor data by the least

squares criterion. Although the scattering factors depend only on the electron density (diago-

nal elements of the one-electron reduced density matrix), also the off diagonal elements are

obtained because the idempotency criterion also includes the off-diagonal elements. They did

exemplary calculations using structure factors of the H2 molecule, once with an idempotent

and once with a non-idempotent density matrix. Although the latter led to a lower R-factor, it

was associated with problems (correlation of parameters, non-physical meaning of exponents,

negative density, higher number of parameters) which were not there for the idempotent

density matrix.

In 1995, Massa, Huang and Karle [104] published a paper in which they used for the first time

the term "quantum crystallography". They specified that this is a method for "combining

X-ray diffraction data for crystals and quantum mechanics with the objective of obtaining

accurate wave functions that are consistent with the X-ray data" and thus "extracting quantum

mechanically valid properties from X-ray diffraction experiments". They did this again in terms

of an N-representable density matrix expressed with atomic orbitals. The Fourier transform

of the density matrix was least-squares fitted to structure factors. Thus, this first definition

highlights the opportunity of improving a wavefunction with crystallographic information.

In a later paper [105] the same authors expand the definition of quantum crystallography,

specifying that "conversely, quantum mechanics, with the aid of crystallography, can greatly

enhance the information available from a crystallographic experiment." Thus, also pointing

out the possibility to improve the crystallographic description of a system with the use of

quantum mechanics.

The one-electron RDM which is the central component of the Clinton equation and Massa’s

early quantum crystallographic ideas can, however, not only be refined against X-ray diffrac-

tion data. Compton scattering also offers itself for that purpose since it contains information

about the off-diagonal elements of the 1-electron RDM (in contrast to X-ray diffraction which

measures the electron density, that is the diagonal part of the RDM). The off-diagonal elements

are related to the momentum of the electrons and thus, the 1-electron RDM is common to

position and momentum space (see section 4.6).

Eventually, a different method was born developed by Jayatilaka in 1998 [106]. In that paper

he described for the first time the refinement of an entire wavefunction and not reduced

density matrices against X-ray data. He termed this the X-ray constrained wavefunction (XCW)

refinement. More details of this method are explained in section 4.4.

4.2 Hansen-Coppens multipolar model

The multipolar model published in 1973 by Hansen and Coppens [62] is probably the most

widely used method to obtain the electron density from an X-ray diffraction experiment.
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The description of the electron density with a multipolar model is done with three different

terms: A spherical core density ρcor e , a spherical valence density ρvalence and real spherical

harmonics yl m to describe the asphericity of the valence electron density.

ρatomi c (r) = Pcρcor e +Pvκ
3ρvalence (r)+

lmax∑
l=0

κ′3Rl (κ′l r)
l∑

m=−l
Plm yl m(r/r ) (4.4)

Pc , Pv , and Plm are population coefficients. The sum of Pc , Pv , and P00 is the number of

electrons of one atom because the multipolar Plm terms with l 6= 0 integrate to zero. ρcor e and

ρvalence are Hartree-Fock densities of the free atoms. The spherical valence function can be

expanded and contracted by adjusting the κ parameter and the radial part of the deformation

valence density with κ′.
The radial function is Rl (r ) = ζnl +3

(nl+2)! r
nl e−ζl r and the angular functions ylm are real spherical

harmonics like also used for atomic orbitals. They are normalized.

As written in section 3.2, the structure factors are the Fourier transforms of the thermally

smeared electron density
〈
ρ(r)

〉
. In analogy to the Born-Oppenheimer approximation, it is

assumed that the electrons move instantaneously with the nuclei and are not affected by the

movement of the nuclei. The nuclei, in turn, are displaced from their equilibrium positions

due to lattice vibrations. This nuclear displacement can be described with a harmonic or

anharmonic tensor Tk (u), where u is the displacement from the equilibrium position and T

a probability function. The structure factors are then calculated as the product of the two

functions in reciprocal space (see equation 3.4), which are in this case the electron density

expanded in multipoles and the thermal displacement function.

Hansen and Coppens wrote a program called MOLLY allowing to perform the least-square

refinement of the adjustable parameters in the model which were: atomic positions, harmonic-

anisotropic vibration, extinction parameters as well as population coefficients Pv , Plm and

radial expansion parameters κ and κ′. The spherical functions in the original Hansen-Coppens

paper go up to hexadecapolar terms (l=4). Hansen and Coppens performed different tests to

ensure that the improved agreement indices of the refined multipolar model are due to a better

description and not just because of the increased number of parameters involving a larger

flexibility of the model. They found that in their examples the fit is physically meaningful, a

point that should be checked for every multipolar model.

In the standard procedure for a multipolar model the expansion still goes to hexadecapolar

terms and ADPs can in principle be refined up to fourths order. The total charge is constrained

to zero such that the crystal remains neutral. The number of parameters can be reduced by

imposing crystal and chemical symmetry. Various software such as XD [65], VALRAY [107],

MollyNX (joint charge and spin density refinement) [108], MoPro [109], and JANA2006 [110]

was developed over the years allowing for slightly different refinement procedures.

Thus, in a multipolar model the electron density is expanded in atom terms (atom-centred

multipolar functions) and no bond functions are used; or to put it differently, only one-center
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D1+

View along z

D1-D0

Q0 Q1+ Q1- Q2+ Q2-

O0 O1+ O1- O2+ O2- O3+ O3-

H0 H1+ H1- H2+ H2- H3+ H3- H4+ H4-

Figure 4.2 – Dipolar, quadrupolar, octopolar, and hexadecapolar functions used in a conven-
tional multipolar refinement

terms and no two-center terms are used. Due to the flexibility of the model it is nonetheless

possible to describe the electron density in the bonds. However, because of the increased

number of parameters with respect to the independent atom model, the data quality and the

angular resolution (until which sinθ \λ reflections are measured) have to be higher than in a

standard measurement.

If the data quality is excellent and the number of measured reflections very high, it is possible

to add more parameters to the model which can be chosen depending on the interest. One

can for example refine the core population [111] or add independent radial functions or κ’s to

every spherical harmonic. However, the reflection to parameter ratio should never be lower

than 10, [59] otherwise parameter correlation is too large. In contrast to the X-ray constrained

wavefunction calculations (see section 4.4) it is clear what is experimental data and where

it enters the model. In addition, the influence of individual reflections on the model can be

calculated. [112]

Since all functions are centred on one atom, atomic properties are easily obtained with the

Hansen-Coppens multipolar model and chemical interpretation is straightforward, in contrast

to the MO model where orbitals are spread over the entire molecule. The multipole parameters

are defined with respect to a local coordinate system of every atom making it easier to account

for local symmetry. This also allows multipoles to be relatively easily transferred between

atoms in similar environments which led to the development of pseudoatom databases

described in the next section.

Hydrogen positions can be constrained to average distances obtained from neutron measure-
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ments. Hydrogen ADPs can be obtained with the SHADE web server. [113, 114] This is done

by combining external and internal vibrations. The external contribution is obtained by a

TLS (translation-libration-screw) analysis of the non-hydrogen-atom framework leading to

a rigid body model that can be imposed on the hydrogen atoms. [115] The internal mean

square displacements of the hydrogen atom corresponds to the sum of the contributions

from the internal vibrational modes. These are obtained from a database derived from the

analysis of neutron diffraction studies of organic compounds. Therefore, the hydrogen ADPs

are calculated as: U i j =U i j
r i g i d +U i j

i nter nal

The multipolar model allows to obtain the electron density as it is in the crystal, that is

including the effect of interactions with surrounding molecules, the effect of the crystal field,

of temperature [116] or pressure [117]. Due to its flexibility it can recover electron density in

the bonds, lone pair regions, interaction regions, etc. Its effect can be visually evaluated by

plotting deformation density maps which show the difference between the electron density of

the multipolar model and the IAM (sum of spherical atoms).

(a) Deformation density (FM M - FI AM ) for the urea
molecule (theoretically simulated structure factors).

(b) Residual density after a multipolar refinement
(Fobs - FM M )

Figure 4.3 – Positive contours are depicted as blue lines and negative ones as red lines. The
contour level is 0.1 e/Å3.

4.3 Databases of multipolar pseudoatoms

The advantage of the multipolar model is that aspherical atoms can be refined and thus effects

of bonding are taken into account. However, this advantage also goes along with a cost, which

is the considerably increased number of parameters compared to the IAM. In order to have

a reasonable data to parameter ratio, the number of measured reflections must be high and

thus the measurement needs to be performed up to very high resolution. By far not all crystals

diffract good enough to allow for that. To circumvent the problem, pseudoatom databases

were introduced. Instead of freely refining all parameters in the model, one relies on tabulated

values for the multipole parameters which vary depending on the atom type. Thereby, it

is possible to obtain aspherical atom densities without increasing the parameter number.
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Moreover, the refinement of very large molecules such as proteins becomes possible.

Based on the charge density derived from the multipoles one can calculate the aspherical

scattering factors. Often, a normal multipolar refinement of positions, ADPs, and multipole

parameters is performed after importing the database parameters. In order to set up the

database, multipoles for given atom types are to be refined in different systems and the

average is the representative of this atom type. An atom type is usually not just a particular

element but rather an atom in a specific chemical environment, for example with defined

first neighbours. In order to make the database parameters transferable from one system

to another one, a local coordinate system needs to be defined, which is independent of the

crystal coordinate system. For minimizing the number of different atom types, as few model

compounds as possible should enter the database while at the same time one needs to ensure

that there are as many as needed to keep a high accuracy of the result. These guiding concept

was also used for the construction of a polarizability database described in chapter 6.

4.3.1 ELMAM

Pichon-Pesme et al. [118] set up the first database with multipole parameters. They refined

multipole parameters for three small amino acid derivatives and used them for the refinement

of a tripeptide molecule, which resulted in better agreement statistics than from a spherical

atom refinement.

These initial attempts led to the development of the ELMAM database where the acronym

stands for ’experimental library multipolar atom model’ [119]. For all atom types occurring

in the proteinogenic amino acids a database entry was obtained based on multipolar refine-

ments of high-resolution X-ray diffraction data from small peptides and amino acid crystals.

Afterwards, the multipolar parameters can be transferred to other peptides measured at lower

resolution and used for a refinement. Thereby the crystallographic statistics is improved.

Later, the ELMAM database was generalized into the ELMAM2 database which contains not

only parameters for atoms in peptides but for many common functional groups of organic

chemistry. [120] Furthermore, the assignment of the local coordinate system was improved.

[121] A good local coordination system is important because it allows to have less multipolar

parameters by exploiting the local symmetry. The origin of the coordinate system is always

located on the atom for which the multipolar parameters are stored and oriented with respect

to the neighbours of this atom. They describe seven different ways of defining the level

coordinate system depending on the atom type.

When setting up the polarizability database for functional groups (see chapter 6) we also

had to choose a way to define local coordinate systems because polarizabilities are tensorial

properties and therefore the coordinate system is important to express the magnitudes in

every direction. To make the polarizabilities transferable from one molecule to another, they

need to be fully independent of the coordinate system of the molecule and only expressed

in a local coordinate system of the considered functional group itself. For functional groups
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consisting of only two atoms, the choice of the local coordinate system was inspired by the

method of Domagała et al. [121] using the direction of one bond (u) as first axis (I1), then the

cross product of u and the direction v of a second bond to obtain I3 = I1 ×v. And the second

axis is I2 = I3 × I1. For functional groups with more than two atoms, we chose to express the

local coordinate system based on the intertial tensor as described in chapter 6.

4.3.2 UBDB

While the parameters in the ELMAM databases are based on fitting to experimental charge

densities, the parameters in the University at Buffalo Database [122] are based on fittings

to calculated charge densities. The authors did single-point calculations on experimental

structures (with bond distances to hydrogen atoms normalized to neutron distances) for small

organic molecules and then fitted them with a Hansen-Coppens multipolar model to set

up the database. Atom types were defined based on the first and second neighbours. The

database entry for one specific atom type was obtained by averaging over all calculated values

for this atom type. It was checked whether the parameters within one type are homogeneous

enough and if this was not the case a new type was defined. The procedure of transferring

parameters of a multipole model describing charge densities of aspherical atoms was termed

TAAM (transferable aspherical atom model).

The database was expanded in 2011 [123] to include more atom types present in biologically

relevant molecules.

4.3.3 Invariom

The generalized invariom database [124] contains entries for different invarioms. Invarioms

are unique atom types defined by their first and second neighbours according to specific rules.

Therefore, molecules can be described by a string containing invarioms which have been

assigned according to the structure and bond lengths. For every invariom a unique compound

is defined by saturating all unused neighbours with hydrogen atoms. This compound is

geometry optimized and then a multipolar model is fitted to the ab-initio density. The database

is made for organic molecules mainly based on H, C, N, O but including also some other atoms.

The local coordinate system is also defined based on the neighbouring atoms.

4.3.4 Comparison

The common goal of all databases is to use transferable aspherical scattering factors and

improve the structure refinement. They are all designed for organic molecules. ELMAM relies

on experimental charge densities whereas UBDB and invariom use calculated ones. However,

UBDB uses experimental structures whereas invariom is based on geometry-optimized ones.

Invariom has strict rules to define atom types and every atom type is unique such that the

multipolar parameters do not need to be averaged. In ELMAM2 two atom types are identical

52



4.4. X-ray constrained wavefunctions

when chemical type, type of local axes, number and type of first neighbours, and planarity are

equal. UBDB defines atom types according to neighbours and evaluates how homogeneous

the parameters are; when they get too different a new type is defined. Bąk et al. compared

structures and properties obtained with the three different databases. They did not find any

profound differences in the structures and ADPs, while differences in the dipole moment and

electrostatic interaction energies were larger. [125]

Table 4.1 – Comparison of pseudoatom databases

ELMAM2 UBDB generalized invariom
database

structure high resolution struc-
tures from selected
compounds, X-H dis-
tances set to average
value from neutron
diffraction

from CSD, X-H dis-
tances set to average
value from neutron
diffraction

geometry optimized

multipoles of Hansen-
Coppens model fitted
to:

experimental struc-
ture factors

electron density from
DFT single point calcu-
lations on experimen-
tal geometry

electron density from
geometry optimiza-
tion

definition of atom
types

atom types based on
chemical type, local
axes, number and type
of direct neighbours,
planarity. In certain
cases also second- and
third-nearest neigh-
bours are considered.
Averaging over same
atom types

based on chemical en-
vironment and statisti-
cal similarity criterion

unique invarioms: an
atom type is defined
based on its neigh-
bours and in certain
cases next-nearest
neighbours, which are
then saturated with H.

4.4 X-ray constrained wavefunctions

4.4.1 Alternative minimization criteria

The variational principle states that the best wavefunction for a given system is the one leading

to the lowest energy. For a perfect system calculated with an infinite basis set and an infinite

number of Slater determinants this is true and properties calculated from such a wavefunction

would be correct. Yet, in practice we always deal with approximate systems with truncated

basis sets and low number of determinants and in these cases the wavefunction leading to the

lowest energy is not necessarily the best one. Properties obtained from such a wavefunction

are not completely accurate and it is possible to improve them within the same level of theory.

A HF calculation, for example, leads to the best orbitals within the one-determinant approxi-

mation and with the given basis set. However, it is known that these orbitals are too diffuse
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as shown in Figure 4.3. When electron correlation is introduced, the orbitals as well as the

electron density contract and get closer to their real optimum form. Indeed, the orbitals from

a DFT calculation (which results also in just one Slater determinant) are actually more con-

tracted than the HF ones at the expense of increasing their energies. The effect of correlation

keeps the electrons away from each other making them see the nucleus less screened and thus

the orbitals less diffuse. In a Hartree-Fock calculation the electron-nucleus attraction is not

negative enough while the kinetic energy and the electron-electron repulsion is also artificially

minimized and thus the orbitals more diffuse. [14]

Thus, despite the HF solution being the one with the lowest possible energy in this framework,

the HF-orbitals are not necessarily the best ones. Therefore, the lowest-energy criterion

employed in the variational principle compensates for errors (finite basis set, number of

determinants) by introducing other errors just to artificially lower the total HF energy. As a

side remark it is noted, that the total DFT energy only appears lower than the total HF one

because it is calculated in a different way. If the energy of a DFT wavefunction was calculated

in the HF way it must necessarily be higher than the HF one (see Table 4.2).

(a) Difference between HF and DFT density of
methane. Red signifies more density in the HF case
and blue more in the DFT case. Isocontour level =
0.000465 e/Å3

(b) Difference between HF highest occupied molecu-
lar orbital (HOMO) and DFT HOMO of methane. Red
signifies more density in the HF case and blue more
in the DFT case. Isocontour level = 0.00004 e/Å3

Figure 4.4 – Differences between DFT (B3LYP) and HF calculation. Both were single point
calculations with the 6-31G basis set on a geometry optimized at HF level.

Indeed there are other options such as DFT or X-ray constrained wavefunction (XCW) cal-

culations. Within the framework of the latter, not only the energy is minimized but also an

additional criterion forcing the electron density to be as close as possible to the one of a real

crystal. Therefore, an X-ray constrained wavefunction necessarily has a higher energy than

the respective unconstrained wavefunction but this does not mean it is worse. Apart from the

fact that it describes the molecule in a crystal and not in vacuo or polarized medium as HF

does, it also allows to indirectly include other effects such as for example correlation at HF
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Table 4.2 – Some energies (in Hartree) of the methane molecule optimized at HF/6-31G level
of theory. The Hartree-Fock energies of the wavefunctions were calculated with AIMAll [32]
via integration over all atoms leading to small numerical imprecisions.

HF output energy* -40.18055
HF energy of this WFN -40.18055
HF sum or orbital energies -13.78792

DFT output energy** -40.51033
HF energy of this WFN -40.17886
DFT sum or orbital energies -12.02672

XCW output energy*** -40.18048
HF energy of this wavefunction -40.18048
XCW sum or orbital energies -13.76745

* HF 6-31G
** B3LYP/6-31G
*** Structure factors for the DFT wavefunction of methane in a hypothetical 10x10x10 Å3 unit cell.
Resolution: 2 Å−1. XCW level of theory: HF/6-31G, λ = 50

level of theory.

For a fair comparison between HF and XCW one should not only improve the WFN but also

the energy as done for DFT calculations where the energy is a functional of the density and

not calculated in the HF way. Also within XCW a simple comparison of energies between con-

strained and unconstrained wavefunctions is biased since the constrained one is necessarily

higher but this wavefunction instead contains other effects. In fact, we have tried to include a

measure of energy also for the X-ray constrained part and the results are presented in section

8.1.

4.4.2 Advantages and disadvantages of XCW

While traditional methods for the refinement of X-ray diffraction data, like for example the

multipolar refinement, provide only information about the diagonal elements of the one-

electron reduced density matrix (the electron density), the XCW method also enables the

calculation of the density matrices and the WFN itself. Since wavefunctions contain all the

information of a quantum mechanical system in a specific state, this approach is not only

providing information about one-electron properties but also about two and more electron

properties. Thus, although the fitting is done to structure factors from Bragg scattering,

depending only on the electron density, the other elements of the density matrices are obtained

as a result of this particular method and thereby also properties which were not used to obtain

the WFN can be calculated. The availability of a WFN goes along with further advantages.

It allows to express the information about a system in a well known and compact form. A
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lot of software exists to deal with WFNs and it is relatively easy to extract various properties.

Parameter correlation is much less of a problem than in multipolar refinement due to the

energy minimization criterion.

Disadvantages are that it is not so clear what part of the results comes from theory and what

from experiment. The physical meaning of XCW derived quantities is questionable since

they come only indirectly from the X-ray experiment. The information level between theory

and experiment might be different like for example structure factors include correlation and

calculation does not. Additionally, there are problems going along with experimental data

such as extinction, absorption, or limited resolution.

The weighting of the theory and experiment part has to be user-defined and it is still unclear

what criteria to use for that.

Another bias is that in order to calculate a molecular WFN one needs to truncate the crystal.

This works well for molecular crystal and is more problematic for polymeric crystal.

Apart from all the issues, a non-periodic WFN built from atomic orbitals representing a crystal

is quite a remarkable construction. The correct linear combination of all the X-ray constrained

WFNs over all molecules in the crystal gives in principle the correct crystal WFN. Thus,

XCWs represent a way to obtain a molecular wavefunction for a periodic system such that, in

principle, the properties are those of the crystal.

4.4.3 Procedure for X-ray constrained wavefunction calculations

Nuclear positions and ADPs need to be known from previous refinements (e.g. HAR (section

4.5) or multipolar model (section 4.2)) before the XCW calculation. XCWs are obtained by

simultaneously minimizing the electronic energy and an agreement statistics obtained by

comparing the calculated structure factors to the measured structure factors (least-squares

fitting). [63] The calculations can be done with the software Tonto. [126]

The energy is the expectation value of the Hamilton operator applied on the WFN Ψ(r;p)

which is determined by the parameters p and coordinates r.

E(p) = 〈
Ψ | Ĥ |Ψ〉

(4.5)

The XCW method has been expanded to Kohn-Sham orbitals, unrestricted calculations and

relativistic calculations. [127]

χ2 is an agreement statistics used to analyse how well the calculated structure factors F calc
k

agree with the measured ones F exp
k . The squared difference of these structure factors is

weighted with the uncertainty σk and summed over every reflection k.

χ2(p,q;Fexp ) = 1

Nr −Np

Nr∑
k

(Fk (p,q)−F exp
k )2

σ2
k

(4.6)

Nr is the number of experimental data, Np is the number of parameters, and q are additional
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parameters of the X-ray diffraction experiment which are needed to represent the measured

structure factors of a real crystal such as thermal motion (ADPs), extinction and an overall

scale factor.

The energy minimization and the least-squares fit of the structure factors are combined in

one global functional L(p,q) to be minimized and one part is weighted with a factor λ. By

convention, λ is usually put in front of the structure factor part. It is not a dimensionless factor

since the unit of the first part is an energy and the second part are squared structure factors so

that the unit is squared electrons. In chapter 8.1 it is described how to make the second part

also have dimensions of energy.

L(p,q) = E(p)+λχ2(p,q;Fexp ) (4.7)

In order to decrease χ2, one has to increase the weight of the experimental part and thus

increase λ. This will, however, lead to an increase of the energy because likewise to the

transformation from HF to DFT, the electrons contract and get on average closer to the nuclei,

thus, increasing their kinetic energy which is always destabilizing (and this dominates over the

effect of lowering the stabilizing potential energy). Vice versa, decreasing the the energy, that

is lowering λ (up to the point where λ= 0 and thus an unconstrained HF calculation) leads to

a worse fit of χ2. [128]

Figure 4.5 – XCW fitting to simulated structure factors of urea. The figures on the top are
magnifications of the regions in the green rectangles.
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There are two ways to introduce thermal effects. Either one partitions the electron density into

atomic contributions (for example with a Hirshfeld atom partitioning) and then convolutes

these with the nuclear-position probability distribution function (ADPs) or one calculates an

approximate two-nucleus distribution from one-nucleus thermal parameters according to the

procedure by Stewart, Coppens, or Tanaka as done in Tonto. Eventually, the structure factors

are calculated by summation over all atoms in the molecule and by applying the correct crystal

symmetry.

An additional parameter∆ can be added to the overall functional, which represents the desired

agreement. The optimum value and targeted agreement is ∆= 1 which means that on average

the modelled structure factors are within one standard deviation of experimental structure

factors.

L(p,q) = E(p)+λχ2(p,q;Fexp −∆) (4.8)

In case the desired agreement is not reached, λ should be increased and the calculation

repeated until χ2 has reached the desired value. However, as visible in Figure 4.5 at a certain

point χ2 does not decrease much more whereas the energy increases a lot. Therefore, it is not

sensible to lower χ2 by all means. Furthermore, convergence problems arise when λ is too

high. Other proposed termination criteria are to increase λ until χ2 reaches the same weighted

residual Rw (F ) as in a multipolar refinement of the same system [129], to increase it until the

change in χ2 or E is below a given level, or to increase until ∆χ
2

∆λ >−0.5 or
|Eel−E el

λ=0|
|E el
λ=0|

> 5∗10−4.

[130]

4.5 Hirshfeld atom refinement and X-ray wavefunction refine-
ment

Scattering factors in the IAM approach are based on spherical, atomic electron densities.

However, the electron density of an atom depends obviously on its chemical environment and

thus, an improved method consists in replacing the spherical atom densities by aspherical

ones. Another way is to replace them by tailor-made electron densities for each atom and

use these for the structural refinement. This idea led to the development of the HAR. [131] In

contrast to the multipolar model, only coordinates and ADPs are refined whereas the electron

density comes from theory and is not refined from experimental data. Since no electron

density parameters are refined correlation between parameters is smaller.

With X-ray diffraction data one can determine cell parameters, atomic coordinates, and

atomic displacement parameters but while the coordinates and ADPs of elements with several

electrons can usually be determined quite accurately, hydrogen atoms are an issue. This is

due the fact that they only have one electron and therefore are almost invisible to X-rays

and furthermore, the density is shifted towards their bonding partners. Yet, in many fields

it is important to know their positions. To circumvent the problem, neutron diffraction can

be used where the H-positions can be accurately determined. Neutron diffraction is by far

not as widespread as X-ray diffraction is because it requires access to large-scale facilities.
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Therefore, H-positions are often fixed to average bond lengths from neutron diffraction data

[132] and the hydrogen ADPs are determined with SHADE, combining a rigid-body analysis of

the molecular backbone and internal vibrations from a database. Pseudoatom databases (see

section 4.3) led to improved description of hydrogen-atom positions and thus bond lengths.

[119] Due to the use of theoretical electron densities, HAR can further improve the situation

and it is possible to obtain good H-positions and reasonable ADPs. [131]

The steps of a Hirshfeld atom refinement according Capelli et al. [131] are:

- An initial set of atomic coordinates is required from a previous refinement, for example an

IAM or MM refinement.

- A wavefunction is calculated for a molecule which is as large as the asymmetric unit or larger,

usually at HF or DFT level of theory. From this wavefunction an initial electron density is

obtained.

- The electron density is partitioned into atoms with Hirshfeld’s stockholder partitioning

scheme. [133], where the electron density of an atom A is obtained with its weighting function

w A .

ρA(r) = w A(r)ρ(r) (4.9)

The weighting function is obtained by dividing the spherically averaged atomic electron

density by the sum of spherical electron densities of all atoms in the molecule.

w A(r) = ρ0
A(r−RA)∑molecule

B ρ0
B (r−RB )

(4.10)

- Charges and dipole moments of the atoms are calculated and used to simulate a crystal field

around the molecule by placing them at the positions of atoms of adjacent molecules.

- In this field a new electron density is calculated and this is called an ED cycle.

- ED cycles are repeated to convergence in the molecular energy which is then called an ED

step.

- The Fourier transforms of the Hirshfeld atoms are used to calculate the aspherical scattering

factors of every atoms. Subsequently, these are used for a least-squares refinement of coordi-

nates and ADPs. This is called a structural refinement step.

- ED steps and structural refinement steps are repeated alternately until the shift of parameters

falls below a given level.

In the initial method of Jayatilaka and Dittrich from 2008 [134] the initially calculated Hirshfeld

atoms were kept fixed and not updated during the procedure whereas in the more recent

procedure presented above cycles of electron density and non-spherical atomic scattering

factor calculations followed by coordinate and ADP refinements are repeated to convergence.

In a study with L-phenylalaninium hydrogen maleate, Woinska et al. [135] compared hydrogen

bond lengths obtained with IAM, MM, HAR (anisotropic ADP, isotropic ADP and ADP from

SHADE), transferable aspherical atom modeling TAAM (database) and neutron diffraction.

It was shown that the hydrogen bond lengths obtained with the anisotropic Hirshfeld atom
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refinement are in very good agreement with the ones from neutron diffraction. In contrast,

bond lengths to hydrogen atoms have to be fixed to neutron distances in the multipole models

and TAAM to derive sensible properties. ADPs of hydrogen can be refined with HAR but the

resulting shapes are not in such a good agreement with neutron data as the positions are.

The XCW method described in section 4.4 is a way to obtain a wavefunction from experimental

structure factors. In its original setting it is not foreseen that it is used for a refinement of

atomic coordinates and thermal vibration parameters. However, in combination with HAR it

can be used to also refine coordinates and ADPs and this method is named X-ray wavefunction

refinement (XWR). It works very similar to the HAR just that the calculation of the electron

density is done with XCWs so that this step also includes experimental info. Thus, it is an

iterative process including an X-ray WFN refinement adjusting the electronic info agaist

experimental data followed by a least-squares refinement. The method was first introduced

by Grabowsky et al. [136]. They studied the bond in SO2 and an SO2-containing molecule

and used the resulting wavefunction to analyse its character. They showed that ionic bonding

rather than multipole covalent bonds are present in these cases. Chȩcińska et al. [137]

compared the structures of three urea derivates obtained from MM, HAR and XWR. XWR gave

the best results.

4.6 Other scattering techniques than X-ray diffraction

4.6.1 Compton scattering

In section 1.2 the one-electron reduced density matrix was introduced. It is:

γ(x;x′) = N
∫
Ψ0(x,x2, ...,xN )× (

Ψ0(x′,x2, ...,xN )
)∗ d x2, ...d xN (4.11)

The 1e-RDM describes the position and spin distribution of the electrons. By integrating over

both spin components the position 1e-RDM P (r;r′) is obtained. Fourier transformation over

all six coordinates leads to the momentum 1e-RDM P̄ (p;p′) [138]. The diagonal elements of the

1e-RDM in position space correspond to the electron density while in momentum space the

diagonal corresponds to the electron momentum density. Both of them are observables; the

electron density from X-ray diffraction and the momentum density from Compton scattering.

X-ray diffraction is the elastic scattering of X-rays and Compton scattering is the inelastic

scattering of photons on the electrons. As a result of the inelastic scattering, the energy of the

incident photon changes and the change depends on the momentum of the electrons along

the scattering direction pz as well as on the scattering angle. Plots showing the scattering with

respect to the electron momentum distribution are called Compton profiles J (pz ). [139]

Compton scattering also has a very small spin-dependent contribution which can be studied

by polarizing the incident photons such that a magnetic Compton profile is obtained. [139]
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4.6.2 Neutron diffraction

In contrast to X-rays which are scattered by electrons, neutrons are mainly scattered by the

core of the atoms. This goes along with a number of important implications: First of all, the

scattering power of the atoms is not anymore directly dependent on the number of electrons.

With X-rays light elements scatter less than heavy elements which is the reason for why the

position of hydrogen atoms cannot be well determined. The neutron scattering power instead

varies arbitrarily among the periodic system (at least from a chemical perspective, there are

physical reasons for it) and therefore hydrogen atoms are well visible and their positions

and ADPs can be accurately determined. Second, neutron scattering depends on the isotope

meaning that one can distinguish between different isotopes in a sample (e.g. determine the

hydrogen to deuterium ratio).

It is possible to do refinements using X-rays and neutrons at the same time (X-N method) and

thus to refine accurate hydrogen positions as well as the electron density. [140]

Neutrons penetrate samples much better than X-rays and if single crystal samples are used,

their size must be in the order of 1 mm3 [141] which is much larger than for X-ray diffraction.

Furthermore, neutron sources are considerably less common than X-rays sources which can

be produced in any lab with home-source diffractometers. In order to measure with neutrons

one has to go to large scale facilities such as spallation sources or nuclear reactors.

4.6.3 Polarized neutron diffraction

Neutrons possess a spin, which is employed in polarized neutron diffraction. Their magnetic

moment interacts with the magnetic moment of the electrons and can be used to characterize

magnetic crystalline materials. The scattering depends on the angle between the scattering

vector and the spatial distribution of the magnetization and, moreover, the neutrons interact

with both the nuclei and the electrons making this technique quite complicated. In practice,

the polarization of neutrons is flipped and the respective diffracted intensities are measured

giving rise to so-called flipping ratios.

With the measured data one can refine the spin density using magnetic form factors analo-

gously to the electron density. From these results one can learn about the electronic structure

of open shell systems and magnetic interaction mechanisms. Polarized neutron diffraction

results can be coupled with the ones from X-ray diffraction. Such a joint refinement gives rise

to much better spin-resolved electron densities than when just polarized neutron diffraction

is used. [108]

4.7 Quantum crystallography from other measurements than
diffraction

Crystallographic information can not only be obtained from scattering experiments but from

any other measurement involving crystals. Thus, quantum crystallography is not limited to
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the combination of scattering techniques with theoretical quantum chemistry.

Indeed, the conductivity measurements we performed on the polyiodide crystal (see chapter

7) provide very useful information about the bonding of the different polyiodide units, which

cannot be obtained by diffraction. The interaction between them cannot only be understood

in terms of atom-atom distances because structurally the I2 fragments continuously approach

I−3 while the electrical transport properties change rather suddenly. Even the electron density

and its properties at different interaction distances do not provide this information; they

indeed corroborate the measured increase of the conductivity by predicting a more and more

covalent bond but they do not forecast any sudden change as well. [142]

Deplano et al. [143] demonstrate in their article that Raman spectroscopy can provide infor-

mation about the bonding in polyiodides, which is inaccessible from structural information.

X-ray diffraction measures the averaged (in time and space) electron density whereas Ra-

man spectroscopy provides information about the movement of two atoms with respect to

each other and the correlation of this movement. In general, many spectroscopic techniques

are used to study crystals and they can provide important information inaccessible from

diffraction.

Different information can be obtained from the measurement of the dielectric constant of

MOFs. MOFs are crystals with pores, which can be filled with solvent. In a study of Scatena

et al. [144] the uptake of water molecules in a MOF was studied where the molecules can be

physisorbed, chemisorbed, or are freely moveable in the pores. Depending on the content

of water in the MOF and the way the water molecules are connected to the framework, the

dielectric constant changes. Since many water molecules are only filling the voids without

being structurally visible, this information cannot be obtained from diffraction measurements.

Thus, quantum crystallography is by far not limited to diffraction experiments.
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5 Outline and Goals

In chapter 2, theoretical chemistry tools to partition various chemical quantities were pre-

sented. One is, for example, the Quantum Theory of Atoms in Molecules (QTAIM), with which

an unambiguous definition of atoms in molecules is enabled. Since we are interested in crys-

talline systems, our studies are particularly guided by the identification of atoms, functional

groups, and molecules in crystals. This is not merely an issue of nomenclature but serves

to rationalize the properties of materials in terms of their building blocks and interactions

among them. Furthermore, these building blocks often have remarkably invariant properties.

[145, 146] The four chapters in the results part of this dissertation make use of this concept and

apply it to different problems. Chapters 6 and 7 are published articles [147, 142] while chapter

9 is an article submitted for publication. These three chapters are reported in the dissertation

without any modification, but supplemented with additional results and comments at the end.

My contribution to these articles is explained in the last paragraph of this outline. Chapter 8

summarizes different results obtained in the field of X-ray constrained wavefunctions.

In chemistry, nuclei are always well separated from each other, while this is not the case for

the electron density. Due to the interactions between atoms, the electron density is shared

between them and spread over the molecule; thus, it cannot be easily attributed to atoms.

The QTAIM approach, presented in section 2.1, is a way of uniquely ascribing all the electron

density in the molecular space to atoms. The identification of atoms is useful because one

can thereby assign properties to them. This, in turn, offers the opportunity to understand

the behaviour of given compounds in terms of their building blocks and, therefore, also to

rationally design new materials.

Chapter 6 demonstrates how to obtain polarizabilities of atoms and functional groups based

on QTAIM. The polarizability is an important characteristic that defines material properties

such as the dielectric constant or the refractive index. Furthermore, it is not only used to

obtain macroscopic optical properties but, by partitioning these properties into contributions

of building blocks, it additionally serves to analyse the interactions between the building

blocks themselves. Polarizabilities of functional groups in various molecules were calculated,

compared and classified into groups. For every group the mean polarizability tensor was
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evaluated and served as representative database entry for that particular group. Subsequently,

this average polarizability was transferred to other functional groups, which therefore did not

need to be calculated ab-initio. The availability of a database allows for a quick estimation of

functional group polarizabilities, which otherwise would have to be laboriously computed or

could not be computed at all. In our article we demonstrated that the polarizabilities obtained

from the database are good estimates, such that the refractive index derived thereof is not

further away from the ab-initio calculated value than the precision of a measurement is.

Another possible partitioning is that of the interaction energy presented in section 2.2. Several

techniques exist to partition the energy of two interacting atoms or fragments into different

contributions such as ionic or covalent. Although there is not a clearly best way of doing that

and the results vary depending on the chosen method, such partitionings are more than just

nomenclature. They allow us to analyse the characteristics of a bond and to compare them

with those of other bonds. Absolute numbers of partitioned bond energies are to be taken

with care, but relative numbers compared for different situations can bear a lot of information.

This was done in the article about polyiodides (chapter 7), where we initially examined one

particular iodine-iodine contact in a crystal subjected to increasing external pressures. The

studied crystal consists of well separated I2 and I−3 molecules at ambient pressure. Upon

compression these units approach each other and form bonds, until the crystal eventually

polymerizes. This process appears continuous and is made possible by the nature of iodine

atoms able to form hypervalent structures. The goal was to find out whether the I2 and I−3 units

can be considered separated molecules in the crystal and, if yes, at what compression level

this is not any longer the case. In order to answer this question, several different partitioning

methods of the bond energy were employed. Indeed, we found that when I2 and I−3 approach

each other due to the external pressure, the covalent character of the interaction increases.

This change is not just a theoretical feature but has a tremendous effect on the macroscopic

properties. We measured the conductivity of the crystal and found a dramatical increase with

pressure and thus with the transformation of electrostatic bonds to covalent ones. A second

example showed that also the number of possible polyiodide pathways present in the crystal

has an important effect on the conductivity.

The study presented in chapter 9 started with the compound boron-nitrilotriacetate (NTA-B),

which has three carbonyl groups. In the crystalline state they interact with the carbonyl groups

of neighbouring molecules. The arrangement in the crystal brought up the idea that at high

pressure, the carbonyl groups could form bonds and the crystal would polymerize. Thus, again

this study is guided by the question of how molecules are identified in crystals and when their

identification becomes blurry. We used X-ray constrained wavefunction (XCW) calculations

to study NTA-B and other compounds. On one hand, we did conventional XCW calculations

explained in chapter 4.4 and on the other hand XCW calculations with extremely localized

molecular orbitals (XC-ELMO). We compared the electron density and the orbitals including

and excluding the effect of the crystal and rationalized the observed differences in terms of

interactions.
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Chapter 8 deals with various different aspects of X-ray constrained wavefunctions. First, the

XCW equation was changed in a way that both terms, the quantum chemical minimization

of the energy and the fitting to the crystal structure factors, have units of energy and are

therefore on the same scale. Second, the electronic energy calculated from structure factors

was examined. Third, the effect of an electric field on the structure factors and thereof derived

electron densities was studied.

To sum up, the common point of all chapters is the identification of atoms in molecules and

molecules in crystals in order to study their interactions and contributions to the behaviour of

the total system. Various different kinds of quantum chemical calculations were performed,

either for molecules in vacuo or crystals. Through the use of various quantum chemical and

crystallographic methods and the combination of them to gain additional insight, this work

can rightly be put in the context of quantum crystallography, and the topics studied represent

some questions and answers in the broad spectrum of that research field.

Specification of personal contributions to the published articles

The results presented in the published book chapter constituting chapter 6 of this dissertation

are based on my calculations. Furthermore, I wrote the code for the genetic algorithm cluster-

ing, as well as the code for the definition of a local coordinate system in specific functional

groups and the transformation of polarizabilities into this coordinate system.

For the article about the polyiodides, Tomasz Poręba performed the experimental measure-

ments while I did the calculations.

Within the scope of the XC-ELMO project I stayed one month at the University of Lorraine

in Metz to work with Alessandro Genoni, who introduced me to the XC-ELMO calculations.

The calculations in the article were carried out by me while the high-pressure experiments of

NTA-B were done by Fabio Montisci.
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6 Towards a Generalized Database
of Atomic Polarizabilities

Apart from the addendum, this chapter originates from the previously published book chapter

"Towards a Generalized Database of Atomic Polarizabilities" in Understanding Intermolecular

Interactions in the Solid State, 2018. [147]

(https://pubs.rsc.org/en/content/chapter/bk9781788010795-00211/978-1-78801-079-5)

Reproduced by permission of The Royal Society of Chemistry

Abstract: This chapter deals with the transferability of functional group polarizabilities. The

motivation of this study is the need for a rapid evaluation of dielectric properties of materials

consisting of aggregation of molecules (nanocrystals, fibres, films and crystals), with the purpose

of a rational design and an efficient screening. Criteria based on the quantum theory of atoms

in molecules define functional groups and provide a good transferability of their properties. This

is true not only for properties depending solely on the ground state electron density, but also for

those defined by mixtures of states, like the polarizability, which is the main subject of this study.

In order to allow for the transferability, we use a generalized definition of a local coordinate

system for each functional group, necessary to express the polarizability tensors in a fully self-

contained way without biases. Transferability tests show that the best local coordinate system is

based on the nuclear charge moment tensor of the functional groups. The a priori definition

of the functional groups was further refined by clustering their polarizabilities, using genetic

algorithm according to some similarity criteria, which leads to an even better estimation of

properties for molecules that are not used to build the original database. This procedure allows

to rapidly estimate polarizabilities of large molecules or, together with the dipole moment,

to approximate the crystal field. Applications of this approach concern, among others, the

calculations of linear optical properties of crystals.

6.1 Introduction

Present-day quantum chemical methods allow for precise calculations of molecular wave-

functions and, consequently, electronic properties of molecules. The same holds true for
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crystals, for which periodic wavefunctions, atomic structures as well as electronic structures

and properties can be quite accurately calculated. In this context, it could be expected that

the interest in sub-molecular units, like functional groups, is small because the most obvious

break-down of a material may be molecules (for molecular materials), monomers (for poly-

mers) or atoms (for extended covalent, metallic and single-atom ionic solids). However, when

a materials scientist or a chemist aims at designing a new functionalized material, the basic

constituents of molecules and crystals are still considered. As a matter of fact, the concept of

functional group is so deeply entangled in modern chemistry that it cannot easily be avoided.

The characteristic behaviour of two or more functional groups justifies for instance the use

of the arrow notation in synthetic chemistry, it allows to explain reaction mechanisms and

design new synthetic routes. Functional groups are also important for the characterization of

a material. For example, typical vibrations of atoms in a group give rise to absorption bands

that allow their identification in an IR spectrum. Finally, the optical, electric, magnetic or

mechanical properties of molecular materials can be analysed in terms of the contributions of

the functional groups they consist of; ultimately, just one or a few functional groups might be

enough to explain a molecular or crystal property, an important aspect for retro-designing new

materials (reverse crystal engineering). The fact that functional groups approximately retain

their identity and properties in different molecules goes along with the concept of transfer-

ability [148, 149, 150] according to which the electron density and thereof derived properties

depend, to a first approximation, on the local nuclear configuration and the bonding situation.

Nevertheless, the properties of a functional group depend obviously also on the chemical

environment, which perturbs its “isolated” electron density. These perturbations are of two

kinds: through-bond and through-space. The first one is due to conjugative effects that may

enable outer atoms to modify the electron distribution of a given functional group, even if

they are quite distant. Of course, this perturbation decreases with the number of bonds that

separate the perturbing atom and the functional group under analysis. The through-space

perturbation, instead, is due to the polarization induced by the electric field of the perturbing

group and it rapidly decreases with the distance. Thus, despite an overall similarity, if we

compare a given property of a specific functional group in different molecules, a relatively

large variance may be observed. The variance is smaller for functional groups of the same

molecule embedded in different crystalline environments (for example in co-crystals or poly-

morphs). In fact, the electric field due to the surrounding molecules in a crystal, despite

being of the order of magnitude of GV/m, is much smaller than an intra-molecular field.

Moreover, through-bond effects are almost absent in intermolecular interactions, apart from

very strong hydrogen bonds. Therefore, changing some substituents in a molecule is much

more perturbative than changing the surrounding of a molecule.

For these reasons, to use functional groups in chemistry and materials science, the concept of

similarities and dissimilarities must be properly quantified and it is quite useful to establish a

classification that allows to sort them into groups (clusters) within which some descriptors,

for example physical properties, are similar. This means that elements of a given cluster can

be well represented by the average values of their descriptors, whereas functional groups
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belonging to different clusters are clearly distinguished. After this delicate procedure, one can

build up a database of functional groups and their associated properties, to easily evaluate

the role of a group of atoms in a molecular crystal. The cluster averages not only represent

the molecules used to build up the database, but they are also representative (within a given

confidence criterion) of the same functional groups in other molecules not employed for

constructing the database. If this purpose is reached, the database entries would allow to

rapidly estimate properties of large molecules or their aggregation in crystals, without the

need of extensive and time-consuming calculations. Furthermore, the role of individual atoms

or functional groups to the build-up of a molecular or crystal property can be evaluated, an

important step towards the rational design of molecular-based materials.

Even though our approach is general, we will focus on the first-order polarizability tensor

in this work. The electric polarizability is responsible for the optoelectronic properties of a

material like refractive index or dielectric constant. Thus, a good comprehension of the key

factors that affect the polarizability allows one to tune the optoelectronic properties and design

new materials with targeted applications. For example, high refractive index (HRI) materials

are desirable for lenses, optical waveguides [151], or a high light extraction efficiency in LED

components [152]. Anti-reflective coatings used in solar cells require a tuneable refractive

index [153]. The ongoing downscaling of semiconducting devices demands for materials

with continuously lower dielectric constants for the insulation of wires [154]. Moreover, fast

market changes and the objective to produce more sophisticated opto-electronical devices

stimulate the development of more environment-friendly HRI materials. So far, aromatic

rings, heteroatoms like sulphur, or halogen atoms were used to enhance refractive indices.

[155, 156, 157, 158] However, due to environmental concerns, compounds with halogen

substituents are not suitable. Moreover, a big challenge is to increase the refractive index of

a material while keeping its low viscosity at ambient temperature. At present, a wide group

of halogen-free acrylate derivatives is used for fabricating HRI optical devices but so far no

organic compound with low birefringence, small optical dispersion and absence of visible

spectra absorption exhibited a refractive index above 1.7. [159, 160, 161] Inorganic compounds

may exhibit higher refractive indices but they carry a number of disadvantages such as high

density, low flexibility and highly intense visible absorption bands. [162] Therefore, there is

still a demand for new and improved organic compounds with excellent optical properties.

In this context, the purpose of our research is to simplify the efforts necessary to select new

promising materials (either organic, inorganic or metal-organic), before undergoing expensive

tests and more sophisticated calculations, and before embarking new and perhaps expensive

fabrication procedures. For this purpose, a critical issue is being able to rapidly estimate an

approximate value of the refractive indices of a molecular-based crystalline material in order

to select the most promising candidates.

With modern computational resources, the calculation of static as well as frequency dependent

polarizabilities of small to medium sized molecules is possible using quantum-mechanical

methods at many levels of theory thus allowing for acceptable precision. However, given the
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relatively high level of electronic correlation usually necessary for very accurate estimations of

the optoelectronic properties, ab-initio calculations for large molecules and condensed matter

are often prohibitive. [157] Noteworthy, a high correlation level is necessary to well represent

local and non-local effects perturbing a functional group. This suggests that a partition of the

material in functional groups may be preferable to compute the overall polarizability of the

system. In fact, a database of functional groups may simultaneously guarantee the requested

accuracy (depending on the level of theory used to pre-calculate the functional groups) and a

very high rapidity (because new ab initio calculation is not necessary and the polarizability of

the whole system is simply the sum of the polarizabilities of their constituent parts). The only

concern is a proper spatial orientation of the database polarizability tensors, which can be

solved with a proper treatment of local tensor axes, as deeply discussed in this chapter.

Once a database of functional group polarizabilities is compiled and at hand, optical prop-

erties of molecular materials can be rapidly predicted. If the database also contains dipole

moments of the functional groups, the inner crystal field can be approximated and there-

fore the dielectric properties of a crystalline material as well, by evaluating also the mutual

polarization of the molecules.

The road-map of our research is summarized in Figure 6.1, focusing on the build-up of a

polarizability database, which is the subject of this chapter.

Figure 6.1 – A step-by-step pathway for creating a generalized database of functional group
polarizabilities.
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6.2 Theoretical Background

6.2.1 Earlier Atomic Polarizability Databases and the Need for a New One

A molecule exposed to an electric field will respond to this perturbation by a polarization of its

charge density (affecting both the electron and nuclear distributions). The strength and type of

this response is described by the electric (hyper)polarizabilities, which are symmetric tensors

relating the three-dimensional electric field vectorE to the change in the dipole momentµ.

If only the dipolar first order polarizability is considered, the molecular dipole moment will

change linearly with the applied field and the induced dipole moment change is easily derived:

[163]

∆µ=α ·E (6.1)

The first order polarizability α is a 3 x 3 tensor whose individual components can hardly

be determined experimentally. Alternatively, it is common to refer to the isotropic polariz-

ability (the arithmetic average of the main diagonal tensor components), easily obtained

from refractive measurements in solution or polycrystalline materials. However, knowing the

individual tensor components would be essential as they inform on the orientation of the

polarizability ellipsoid, which may be highly anisotropic. This is of relevance for rationally

designing crystalline materials, because the anisotropy of the molecular polarizability may

explain the most important intra- and inter-molecular contacts that cause the anisotropy of

the optoelectronic properties.

Vogel [164] was one of the first to evaluate and produce a database of isotropic polarizabilities

for different atom and functional group types using additivity schemes. In this kind of ap-

proach, the group constituents of a chemical system are considered to not interact with each

other, hence the “unperturbed” polarizabilities are simply summed together to produce the

whole property. Based on Vogel’s isotropic values, Applequist [165] set up a more advanced

way to evaluate polarizabilities of molecules via a non-additive model taking into account the

interaction of atomic polarizabilities via induced dipole moments. Therefore, the molecular

polarizabilities, despite based on isotropic atomic values, were transformed into anisotropic

ones. Miller [166] used the so-called atomic hybrid components (AHC), which were defined by

the atomic number and the hybridization state of the atom, to construct isotropic molecular

polarizabilities. Every AHC had an assigned polarizability which was obtained by fitting to

experimental data. Kassimi et al. [167] calculated isotropic polarizabilities of amino acids as

the sum of smaller fragments they consist of. The fragments had to be saturated with hydrogen

atoms and this contribution was afterwards removed from the summation:

α(AB) =α(AH)+α(B H)−2α(H) (6.2)

The reference polarizability for hydrogen was obtained from the polarizabilities of methane
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and ethane in the following way:

α(H) =α(C H4)+α− 1

2
α(C2H6) (6.3)

The polarizabilities of the small fragments AH and BH can be calculated with much less effort

or they can also come from a previously built database. Therefore, the authors pointed out the

need for a database of such fragment polarizabilities.

Dykstra et al. [168] developed a database for different atom types including also anisotropic

polarizabilities obtained by fitting their tensor components to the corresponding calculated

molecular components. Unfortunately, no definition was given for the local coordinate system

used to import the anisotropic tensors from the database, an issue which is not trivial to solve

(as we will discuss in section 6.3.2).

Alternatively, Stone [169] calculated distributed polarizabilities from the Hilbert-space based

distributed multipole analysis previously developed by himself and co-workers.[170, 171, 172]

After analysing many partition schemes, Stone advocated that the most transferable polariz-

abilities would be obtained from a real-space based partitioning, like the ones proposed by

Bader or Hirshfeld. Ivanov-Smolenskii et al. [173] obtained polarizabilities of ions based on

X-ray diffraction data. They examined crystals of the NaCl type where the Wigner-Seitz cell

contains only one atom and the separation into what they defined as pseudoatoms is very sim-

ilar to Bader’s scheme described in section 6.2.2. From the number of electrons and their mean

radius they estimated atomic polarizabilities. Whitten et al. [129], instead, pointed out that the

one-electron density, as for example obtained from a multipolar refinement, is not sufficient

for determining polarizabilities. They proposed the X-ray constrained wavefunction approach

to evaluate polarizabilities from X-ray measurements. Suponitsky et al. [174] calculated the

intermolecular interaction energy of a molecule in a crystal as the energy difference of this

molecule embedded in the crystal and in isolation. The induced dipole moment, necessary to

calculate the electrostatic part of the energy, was derived from the difference of the electron

density of the molecule in the crystal and in isolation. The electron density was described with

a Hansen-Coppens multipolar model fitted on one hand to X-ray data and on the other hand

to Hartree-Fock calculations. They concluded that the uncertainty of the electron density

obtained from a measurement, in their example of a non-centrosymmetric crystal of urea, is

too large to allow this calculation while it worked well for electron densities obtained from

Hartree-Fock calculations.

Bader et al. [149] demonstrated the additivity of group polarizabilities for acyclic hydrocarbons

and rationalized it based on the partitioning of the electron density with the Quantum Theory

of Atoms in Molecules (QTAIM). From the polarizabilities of alkanes, Bader derived average po-

larizabilities for the methyl and methylene group. The QTAIM approach was further developed

by Keith who mainly contributed to the solution of the origin dependence problem of dipole

moment derivatives of non-neutral subunits of a molecule (like in fact atoms). This scheme
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was improved and implemented in the software PolaBer, which allows the calculation of full

polarizability tensors for atoms and functional groups in isolated molecules or crystals. [175]

Using this method, Dos Santos et al. [176] calculated average polarizabilities of functional

groups present in naturally occurring amino acids and evaluated the changes with respect to

their aggregates, thus explaining the role of hydrogen bonds on perturbing isolated-molecule

polarizabilities. On one hand, this work paved the way for the database discussed here. On the

other hand, that work also provided accurate analysis of the effect of intra- and intermolecular

interactions on the transferable functional groups, thus showing how to use the database for

accurate determination of polarizabilities of large molecular aggregations, and eventually also

crystals.

In all above studies, functional groups were defined a priori based on chemical intuition.

Except for the QTAIM based studies, the polarizabilities of these atom types, bonds, or groups

were always obtained by fitting them to a set of experimental or calculated molecular po-

larizabilities. As anticipated, our goal is to create a first principle and generally transferable

database for functional group polarizabilities, obtained by a partitioning of the molecular

electron density according to QTAIM (see section 6.2.2). This method is self-consistent and

does not require any assumption. Moreover, also the recognition of functional groups should

emerge from the statistical analysis of calculated polarizabilities on a number of represen-

tative molecules without assuming any a priori knowledge and adopting only unsupervised

clustering algorithms. [177] Using a multivariate cluster analysis, one may in fact fulfil this

condition. In addition, since the number of clusters may exceed that of functional groups, also

subtypes of functional groups may be distinguished. Within one cluster, the polarizabilities

are sufficiently similar and the average values of a particular cluster is the best representation

of its constituent polarizabilities. Ideally, the cluster coincides with a functional group or a

sub-type functional group.

Eventually, a database can be established where each entry contains information about the

functional group type and a 3x3 (symmetric) polarizability tensor.

The following approximations are adopted: a) the nuclear relaxations under the applied field

and the vibrational contributions to the polarizability are ignored; b) only static (i.e. zero-

frequency) polarizabilities are considered. By applying a), the electric (hyper)polarizabilities

are only determined by the electron density. The use of only the first order polarizabilityα (a 3

x 3 symmetric tensor) is justified by the quasi-linear response of the dipole moments to electric

fields of the magnitudes of those of most interacting radiations. Of course, this implies that

non-linear effects (like for example second-harmonic generation) cannot be evaluated with

the database. Even in the strong inner fields of molecular crystals the range of the response

is in general sufficiently close to linearity, therefore the field induced dipole moments and

inner fields are also accurately estimated. The use of static fields is justified by the relative

similarity between high frequency electric polarizabilities and static polarizabilities. In fact,

at very high frequency, all the motions of the molecules and specific strong absorptions are

quenched. A simple scaling could be in case adopted to estimate the refractive index in the
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desired wavelength spectrum region. [178]

As described above, many scientists have proposed methods to estimate atomicα tensors, and

constructed similar databases, either empirically or semi-empirically, but lacking exportable

local coordinate systems for the tensors. A major problem was also the definition of polar-

izabilities that avoid issues related to the origin-dependence of the framework. The novelty

of our approach is to use the transferable Bader’s zero-flux-bounded functional groups, as

previously anticipated [175, 176] to create a database that allows for easy transferability of

properties, hence contributing to the rapid estimation of optoelectronic properties of rather

complex materials such as proteins, polymers or crystals.

This kind of analysis is not restricted to the polarizability, but could be extended to other

properties, like for example the atomic multipole moments. Good estimations of electric

moments (in particular the dipole moment) are important to evaluate the electrostatic po-

tential ‘produced’ by a molecule. As a matter of fact, in the field of charge density analysis,

many databases of atomic electric multipoles have been developed in the past. [124, 121, 179]

Together with the polarizability, they allow to approximate the crystal field, which polarizes

molecules in a crystal.

6.2.2 Distributed Atomic Polarizabilities

In order to derive atomic polarizabilities, it is necessary to define an atomic polarizability

density. In the approach proposed here, we use the quantum theory of atoms in molecules,

that provides a topological partition of the molecular electron density into atomic basinsΩ,

based on the gradient field. This enables defining atomic properties, like the atomic dipole

moments µ(Ω), consisting of two components, namely the atomic polarization µp (Ω) (i.e.,

the charge shift within the atomic basin) and the charge translationµC (Ω) (i.e. the shift from

one basin into another).

µ(Ω) =µp (Ω)+µC (Ω) =−
∫
Ω

(r−RΩ)ρ(r)dr+ (RΩ−R0)q(Ω) (6.4)

In equation (4),RΩ is the position vector of the nucleusΩ;R0 is the origin of the molecular

coordinate system (arbitrarily chosen). If the atomic basin is not neutral, µC (Ω) does not

vanish and is origin dependent. This is a serious issue for transferability. However, the

procedure designed by Keith enables overcoming this dependency by re-writing the charge-

translation component into a basin-to-basin summation:

µ(Ω) =µp (Ω)+µC (Ω) =−
∫
Ω

(r−RΩ)ρ(r)dr+∑
(RΩ−RBC P (Ω|Ω′))Q(Ω|Ω′) (6.5)

Q(Ω|Ω′) is the charge transferred to the atomic basinΩ from the bonded atomΩ′ and RBC P

is the positional vector of the bond critical point between atoms Ω and Ω′. The scheme
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proposed by Keith has a general validity beyond QTAIM itself. A different partitioning scheme

may not only produce a different intrinsic polarizationµC (Ω), but also a different connectivity

between atomic basins, modifying quite substantially µC (Ω). Nevertheless, the sum of all

atomic dipolesµC (Ω) andµP (Ω) must return the molecular dipole. A special case is that of

non-neutral molecules. In this case, the molecular dipole is origin dependent. However, for

any given partitioning, the procedure by Keith provides an origin independent solution (this

basically transform the origin dependence of theµC (Ω) terms into a “partition” dependence).

This aspect is very important when considering transferability of functional group properties,

given that a functional group in a molecule is not supposed to be neutral.

The polarizabilities are eventually obtained as the field derivatives of the total atomic dipoles

(µC (Ω)+µp (Ω)), which could be computed analytically or numerically. Thus, atomic polar-

izabilities can be derived from the unperturbed and perturbed atomic dipole moments by

numerical differentiation, provided that the electric field is sufficiently small to cause only a

linear response:

α(Ω)i j = lim
E→0

µ
E j

i (Ω)−µ0
i (Ω)

E j
(6.6)

The resulting atomic polarizability is a 3x3 tensor, which is by its own definition not symmetri-

cal, but for practical purposes it is symmetrized according to the classical scheme by Nye.[180]

Otero et al.[181] have criticized the use of equation (6) arguing that because the unperturbed,

field-free electron density and the densities perturbed by the electric fields are independently

calculated and partitioned, the atomic basins are not constrained to be constant in the process.

According to the authors, this would be the ultimate reason as to why the polarizability tensors

result not symmetrical. However, this criticism is not correct, as the numerical approach of

equation (6) gives the exact definition of a dipolar density derivative, which corresponds to the

exact analytical definition in the limit of an infinitely small field. The reason why the tensors

are not symmetrical, lies in the atomic basins themselves, which are in fact by definition not

symmetrical, which does not enable equation (6) to be invariant under the exchange of i and J.

This affects bothµp (Ω) andµC (Ω)) terms.

As QTAIM is an exact partitioning scheme, in the sense that all points in molecular or crystal

space are assigned to one and only one atomic basin (except for the boundaries), the sum

of all atomic polarizabilities in a functional group gives the polarizability of the functional

group itself, and likewise for the molecule. The atomic, functional group and molecular

polarizability tensors can be represented in position space as ellipsoids, centred at the centre

of the group/molecule or at the atomic nuclei, with units of a volume.[175, 176, 182, 27] It

is also important to emphasize that, while by definition the total molecular polarizability

must be a positive definite symmetric tensor, the individual atomic polarizability must not.

However, this is very rarely observed and only for polarizabilities of hydrogen atoms that, in

specific intermolecular contexts, could be negatively defined. This issue does not affect any of
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the molecules we used in the calculations reported here.

6.3 Constructing the Database

6.3.1 Computational Details

A sufficiently extended sampling is necessary to obtain a good estimation of the polarizability

of a specific functional group, given that many different environments could be considered.

However, because the amount of possible molecules that contain a particular functional group

is extremely large, even under the condition that the molecule contains a limited number

of atoms, the chosen molecules for a given group were constructed using a preconceived

approach. In particular, molecules containing only C, H, N, and O atoms were used. The 16

common functional groups or atoms shown in Table 6.1 were attached as first neighbours and

as second neighbours to the functional group under analysis.

Table 6.1 – Functional groups or atoms used in this work.

Added group

-H
-CH3 Methyl
-OH Hydroxyl
-OCH3 Methoxy
-COOH Carboxyl
-COH Formyl
-COCH3 Acetyl
-COOCH3 Acetate ester
-NH2 Primary amine
-N(CH3)2 Dimethylamine
-CONH2 Primary amide
-CHCOOHNH2 Amino acid group
-CHCH2 Vinyl
-C(CH3)CH2 Isopropenyl
-CCH Ethynyl
-C6H5 Phenyl

Only one of these functional groups was attached at a time and all other positions were

saturated with hydrogen or methyl groups. The cooperative effect of various functional groups

is therefore not taken into account. The geometry of every molecule, in its more commonly

observed conformation, was optimized with GAUSSIAN09[183] at the B3LYP level of theory

using the cc-pVDZ basis set. An extensive conformational analysis, in search of more stable

conformers, was not performed. Only for 1,3-propandiol a full conformational analysis was

performed with the Open Babel confab generator.[184] The results confirm that using more

conformations for the same molecule would not increase the information, given the relatively
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lower variance. In fact, the standard deviation of the isotropic polarizability of the nine

calculated conformers of 1,3-propandiol is 0.0026 a.u. compared to a standard deviation of

0.0056 a.u. for the entire dataset of the hydroxyl group.

After the geometry optimization of the selected conformation, calculations with and without a

static electric field were carried out at the CAM-B3LYP/aug-cc-pVDZ level of theory to obtain

the wavefunctions and molecular electron densities. Our previous work demonstrated that

this level of theory gives quite accurate functional group polarizabilities for many amino

acids.[176] The chosen electric field was 0.001 a.u. and it was applied in +x, -x, +y, -y, +z, -z

directions, to allow the application of equation (6). AIMAll[32] was used to partition the seven

obtained electron densities into atomic contributions.

6.3.2 The Local Coordinate System

The 3x3 tensors representing the atomic and functional group polarizabilities are expressed

with respect to a coordinate system. For each molecule used to generate the database, this

coordinate system is originally oriented with respect to the molecular inertia tensor. However,

all the polarizabilities of atoms within a given functional group must be compared based on a

common reference frame, independent from that of the molecules they belong to. Therefore,

a local functional group coordinate system is necessary to define the functional group polariz-

abilities that become therefore transferable to any molecule containing that functional group.

The definition of a local coordinate system is not unique and it is of course a rather crucial step

to properly use the information stored in the database. Several definitions of local coordinate

systems are for example found in scattering factor databases used for charge density studies,

like the invariom[124] database, ELMAM2[121], or UBDB[179]. In the invariom database, the

axes are defined along bonds and the ranking of the bond lengths assigns the axes. ELMAM2

also uses bonds for the assignment; and additionally, seven different axes systems are dis-

tinguished depending on the different bonding situations. At variance from our approach,

these definitions hold for individual atoms, where the centre of the coordinate system must

obviously coincide with the atomic nucleus and the axes orientation depends only on other

atoms. In order to implement similar concepts for coordinate systems of functional groups,

additional criteria are necessary, because the group has its own inertia system and intra-group

bonds. While individual atoms (if assumed just as material points) are inherently spherically

symmetric, functional groups are less symmetric and often non-symmetric. Nevertheless,

they often have a topological symmetry, which could be larger than the actual symmetry of

the molecule. In order to refer the local properties to a molecule-independent system, we

defined a local coordinate system for functional groups. For those containing more than two

atoms, an inertia-like tensor I was calculated using the position of the atoms in the functional

group and, instead of the atomic masses, the nuclear charges Z. This is sometimes called the

nuclear charge moment tensor [185]. The elements of the symmetric I tensor were obtained

as follows:
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Ixx = ∑
i=1,N

(y2
i + z2

i )Zi

Iy y =
∑

i=1,N
(x2

i + z2
i )Zi

Izz =
∑

i=1,N
(x2

i + y2
i )Zi

Ix y = Iy x =− ∑
i=1,N

xi yi Zi

Iy z = Iz y =− ∑
i=1,N

yi zi Zi

Ixz = Izx =− ∑
i=1,N

xi zi Zi

(6.7)

where N is the number of atoms in the functional group, x, y, z the atomic coordinates, and Zi

the atomic number. The main axes of the tensor are taken as the local coordinate system with

the origin located at the centre of nuclear charges. Mathematically, the eigenvectors from the

diagonalization of the nuclear charge moment tensor correspond to the components of the

rotation matrix that rotates the global coordinate system to the local coordinate system, as

shown in Figure 6.2a. The rotation matrix must be reordered according to the magnitude of its

eigenvalues (while keeping the handedness of the system) in order to obtain consistent results

for the same functional groups in different molecules. Furthermore, the same orientation

of a given functional group in different molecules must be assured by choosing axes along

particular directions specified by given atoms in the functional group. The advantage of this

“nuclear charge moment tensor” definition is that it is less dependent on small changes of

the molecular geometry compared to other definitions. For functional groups consisting of

only two atoms, the local axes system was defined along the bond direction using a procedure

very similar to the one developed for ELMAM2[121]. The first axis z’ was defined along the

bond connecting the two atoms, the second and third axes, x’ and y’, were simply defined

as perpendicular to the first one. For an unambiguous definition, an additional criterion

was obviously needed; therefore, a supporting vector s’, shown in Figure 6.2b, was defined

along the bond to a neighbouring atom and y’ was chosen to be perpendicular to the plane

spanned by z’ and s’. In both cases the vectors were normalized, giving rise to a locally defined

right-handed coordinate system.

The rotation matrix Q corresponds to the matrix rotating the global coordinate system into the

local one. This matrix must be applied on the originally calculated polarizability tensor as well

as on the molecular coordinates to express them with respect to the local coordinate system.

QTαQ=αFG (6.8)

80



6.3. Constructing the Database

After the polarizability tensors were rotated to the local coordinate system, they were sym-

metrized with respect to the topological symmetry of the functional group given in Table

6.2.

Figure 6.2 – (a) Definition of the local coordinate system based on the nuclear charge moment
tensor of the CH2 functional group. (b) Definition of the local coordinate system along bonds
for a functional group with just two atoms (C-H). s’ is a supporting vector to a neighbouring
atom needed for a unique definition. (c) The matrix Q rotates properties from the external to
the local coordinate system.

Due to the symmetrization of the polarizability tensor of the functional group, a small frac-

tion of the information about the orientation of the tensor is lost. However, the isotropic

polarizability is not influenced by this procedure.

In principle, the database can not only contain polarizability tensors for functional groups but

also tensors for each atom in a given group. The atomic polarizabilities can enter the database

without further symmetrization besides that required when applying equation (6). In order to

use them, they would be averaged over all entries in the database and eventually symmetrized.
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Table 6.2 - Molecules created for the CH2 functional group.

Functional group Hybridization Functional group 

polarizability 

Atomic polarizabilities Topological 

symmetry of fragment 

CH3 C sp3 

  

C3v 

CH2 C sp2 

  

C2v 

 C sp3 

  

C2v 

CH C sp3 

  

C∞ 

 C sp2 

  

C2v 

 C sp   C∞v 

OH  

  

Cs 

NH2  

  

Cs 

NH N sp3 

  

Cs 

 N sp2 
  

Cs 

COOH  

  

Cs 

CONH2  

  

Cs 

CHCOOHNH2  

  

C1 
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6.3.3 Multivariate Data Analysis and Clustering

Once a representative amount of data is available, more insight comes from statistical analysis

of the variables that describe the objects. The tools we adopted for the analysis of this multi-

variate data are the principal component analysis and the unsupervised cluster analysis.[177]

For a given dataset of calculated polarizabilities the mean 〈αij〉 and the standard deviation

σij were calculated for every element of the polarizability tensor (αxx , αy y , αzz , αx y , αxz ,

αy z ) individually. Afterwards, the data can be standardized according to the equation 6.9.

This procedure corresponds to setting the mean to 0 and the standard deviation to 1 for all

variables, thus bringing them on a comparable scale. In the case of polarizabilities, this is

relevant given the large discrepancy between diagonal (large) and out of diagonal components

(smaller, often close or equal to zero). In this way, all the elements of the polarizability tensor

have the same weight.[186]

zi j =
αi j −

〈
αi j

〉
σi j

(6.9)

The next step is the clustering, which means recognizing that in some molecules a given func-

tional group assumes values that are more similar than in others, implying a sub-classification

of groups. For this purpose, one can adopt a cluster analysis. The average of all polarizabilities

within the same cluster will be eventually the database entry for a functional group in a specific

context. It is expected that this context coincides with a specific chemical environment. For

example, the functional group CH2 may behave differently according to the hybridization of

the carbon atom and the nature of its bond(s). Therefore, one may expect to obtain a cluster

for C(sp2), one for C(sp3) and several sub-clusters depending on the groups attached to the

C atom. However, the multivariate analysis is unbiased therefore no a priori information is

given on expected different CH2 groups.

For a good representability of the average values and a more appropriate multivariate analysis,

the ensemble of tested molecules should be sufficiently large. The purpose of the database is

dual: on one hand, it shall represent as many bonding situations as possible for each functional

group in order to represent well the “chemical variance”; on the other hand, it must synthesize

the information in a not too large number of clearly distinguishable cases. A database would

be useless if it is insufficiently representative (too few test molecules) or if it is too much

diversified (it contains too many clusters). It is important to note that different clusters can

contain different numbers of molecules, meaning that the clustering is only based on the

variables and there are no external restraints or interventions.

In order to perform a cluster analysis, it is necessary to evaluate the proximity of two polariz-
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ability tensors. For this purpose, we use the Euclidean distance:

dAB =
√ ∑

K=1
(PK (A)−PK (B))2 (6.10)

where K is the dimension of the property P. Thus, for polarizabilities the summation runs

from 1 to 6. A and B are different data points, thus representing a functional group in two

different molecules.

Clustering was performed using a genetic algorithm, a procedure that is often adopted for

finding the best set of parameters fitting a very large number of observations. Genetic al-

gorithm use methods that mimic evolutionary processes in nature. A given state can be

encoded in a string of numbers (or also matrices, etc.), so called chromosomes. Initially, a set

of chromosomes representing different starting states is created giving rise to a set of parent

chromosomes. Each of them is attributed a fitness according to the chromosome’s ability to

minimize or maximize a given function. Subsequently, two chromosomes are chosen out of

the parental set and combined to give a new one. The probability of picking chromosomes de-

pends on their respective fitness; the higher the fitness, the higher the probability to use them

in the recombination step. Pairing of two chromosomes out of the parental set is repeated until

a set of offspring chromosomes is generated with the same size as the parental set. Mutation of

offspring can happen, which means that a chromosome is changed at an arbitrary number of

random positions. After recombination and mutation, a new set of chromosomes is obtained

with potentially higher fitness. While cycles of selection, recombination, and mutation are

repeated, the general fitness should increase. The overall fittest chromosome corresponds

to the best solution. When the genetic algorithm is applied to our case of grouping polariz-

abilities, the problem lies in finding an optimum clustering that minimize a global function F

defining the average distance between the points in a cluster to their cluster average:[187]

F =
cluster∑

i

∑
α j∈Ci

‖〈α〉Ci −α j‖ (6.11)

where 〈α〉Ci is the average polarizability of cluster i and the sum runs over all polarizabilities

in all clusters. The optimization is done by expressing the cluster averages as chromosomes

that are subject to the evolutionary processes. After each cycle of fitness calculation, selection,

recombination and mutation all polarizabilities are assigned to the closest cluster average.

Thereafter, a new cluster average is calculated based on all the points in this cluster. Then the

next generation is produced and this cycle is repeated many times.

The symmetrized functional group polarizability tensors can be grouped into clusters based

on either standardized or unstandardized data. The only bias in the procedure is that the

number of clusters is not a “result”, but it is chosen a priori based on certain criteria. There is

some degree of arbitrariness in selecting these indicators. A criterion similar to that of Popelier
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was adopted here, namely the intercluster ratio (I.R.).[188] A Gaussian distribution has a given

mean and standard deviation. Using the standard deviation, a confidence interval around the

mean, e.g. 2σ, can be specified within which a data point is located with a given probability.

The I.R. is a similar criterion to judge the separability of two clusters. An I.R. with a specific

number signifies, in analogy to a single distribution, that the points in the two clusters are

correctly classified with a given probability. It is calculated for each diagonal component of

the polarizability tensor individually. For two clusters A and B the I.R. is defined as the ratio of

the difference of their means to the sum of their respective standard deviations:

I R = 〈αA〉−〈αB 〉
σA +σB

(6.12)

The number of distinct clusters was chosen such that each pair of clusters has at least one

component with an I.R. higher than a given number, which we chose to be 2. This means that

for both clusters the chance that a data point is correctly classified is at least 95.4%.

6.3.4 Recognizing a functional group

The clustering into subcategories that we have presented is based on the polarizabilities

of functional groups. Of course this information is not available when only the molecular

geometry is known and an assignment is needed in order to use the database. Therefore,

additional criteria are needed which are based solely on structural features. Calculations for

CH2 show that a clustering based on the inertia tensor of the functional group results in a very

similar clustering as that based on the functional group polarizabilities. Selecting two clusters,

for example, leads in both cases to a separation of sp3 and sp2 hybridized carbon atoms.

This correspondence is essential in order to classify the functional groups based solely on their

geometry and therefore to make use of the more detailed information stored in the database.

This enables one to make the functional group recognition and polarizability calculation quite

automatic, following this simple sequence: a) define the functional groups within a molecule

(based on the molecular topology); b) calculate the inertial tensor of each functional group;

c) compare the inertial tensors with those calculated for the functional groups stored in the

database and assign to the functional group the mean polarizability of the selected cluster; e)

calculate the molecular polarizability as sum of the functional group polarizabilities.

6.4 Results

6.4.1 Clustering the CH2 Polarizabilities

As introduced above, the polarizabilities of a given functional group depend on the type and

connectivity of the atoms they consist of, perturbed by the chemical environment (mainly

due to through-bond conjugative effects along a given connectivity path or through-space
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interactions). The clustering procedure described in the previous section is a way to identify

and classify these perturbations.

We illustrate here the functional group clustering using the CH2 group as a working example.

Obviously, the polarizability of this group depends strongly on the hybridization state of

the carbon atom. An sp3 hybridized carbon atom will form two additional bonds besides

the ones to the hydrogen atoms, while an sp2 hybridized carbon atom will form only one

additional (double) bond. Therefore, we first expect to find a clear clustering of functional

group polarizabilities based on the carbon hybridization. The effect of groups bonded to the

carbon atom is less easy to predict, although one may anticipate different effects depending

on the electronegativity of the bonded atoms, the presence of electron resonance forms

and the proximity of other non-bonded groups (that may bear strong charges and therefore

produce a strongly polarizing field). Due to the tensor symmetrization in C2v , the principal

axes of the CH2 polarizability tensors coincide with the axes of the local coordinate system.

Therefore, the off-diagonal elements are zero and the polarizabilities can be plotted with the

values of the diagonal only (Figure 6.3a). In case of functional groups with lower symmetry,

the off-diagonal elements are not constrained to zero. In this case, representation of the six

independent variables is difficult to visualize, and the correlation is not easily understood.

For this reason, a principal component analysis is necessary. This allows to identify the

combinations of variables (principal components, PC) that enable explaining the largest

variance in the dataset.

For CH2, the scores of PC1 and PC2 and the local coordinate system are reported in Fig-

ure 6.3b. PC1 is composed of -0.56αxx , 0.57αy y , 0.60αzz and PC2 is composed of 0.74αxx ,

0.67αy y , 0.06αzz . Noteworthy is that PC1, which expresses the negative correlation between

polarizability in the direction x and y, explains more than 80% of the variance.

The molecules used for the statistical analysis are listed in Table 6.3.

The colours in Figure 6.3 indicate the hybridization of the carbon atom (red-orange for sp2;

black-blue for sp3) as well as bonds to heteroatoms (blue or orange). As expected, the po-

larizability is affected by the hybridization (PC1) more than by the direct neighbour (PC2).

The clustering depicted in Figure 6.3b is simply driven by chemical intuition. By applying the

genetic algorithm clustering, we can check whether this intuition reflects the data.

In Figure 6.4, results are reported for calculation with 2, 4, 6 and 8 clusters. In keeping with the

principal component analysis, the effect of the carbon hybridization overwhelms the presence

of a heteroatom. In fact, the result of the clustering with two clusters corresponds almost

entirely to the separation of sp2 and sp3 hybridized carbons. In the case where four clusters

were chosen, the groups with different hybridizations remain separated, but very similar

polarizabilities are distributed on three clusters (blue); a result which does not represent a

chemically intuitive separation because it is not strictly related to the presence of heteroatoms.

When going to eight clusters, the cases where the carbon atom is bound to a heteroatom are

in a distinct cluster.
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Table 6.3 - Molecules created for the CH2 functional group.

molecule label molecule label molecule label molecule label 

 1 
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43 
 

57 

 2a1 
 

14g 

 

44 

 

58 

 
5 

 

14h 

 

45 

 

59 

 6 
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46 
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7a 

 

16c 

 

47 
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48 
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16e 
 

49 
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70 
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6.4. Results

Figure 6.3 – (a) Representation of the standardized CH2 polarizabilties in three-dimensional
space and (b) projected on the plance of the two principal components. The percentage gives
the amount of variance explained by each principal component. The blue rectangle highlights
functional groups with an sp3-hybridized carbon atom and the red rectangle highlights func-
tional groups with an sp2-hybridized carbon atom. furthermore, the orientation of the axes is
shown with the green vectors y and z.

6.4.2 Clustering all Functional Groups

Figure 6.5 shows the 456 standardized polarizabilities of all the calculated functional groups

plotted in principal component space. Figure 6.5a shows the different types of functional

groups, highlighted with colours. The hybridization is indicated with the size of the squares.

From this picture, one can see that the functional groups characterized by the highest polar-

izabilites, namely amino acids, amides and carboxylic acids, present the highest variability

as well. Figure 6.5b shows the outcome of a clustering including the polarizabilities of all

different functional groups

Figure 6.6 shows the 13 clusters originating from the clustering. The size of the symbol is

proportional to the number of entries from a given functional group in this cluster. Since the

polarizabilities of the amino acid functional group are rather high, the variability is high as well

and they go into different clusters. On the contrary, the NH(sp2) and CH(sp2) polarizabilities

go into the same cluster.

6.4.3 Using the Database to Compute Polarizabilities

The polarizabilities of some amino acids were calculated and results are summarized in Figures

6.7-6.10. The molecular tensors are computed in four different ways: 1) analytical double
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Figure 6.4 – Outcome of the genetic algorithm clustering with 2, 4, 6, and 8 clusters indicated
with different colours.

Figure 6.5 – (a) Polarizabilities of eight different functional groups. For NH, CH2 and CH the
size of the squares corresponds to the hybridization of the carbon atom. (The smallest is sp,
the middle one sp2 and the largest squares are sp3.) This makes the total number of functional
groups equal 13. (b) Outcome of the genetic algorithm clustering with 13 clusters shown with
different colours.
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Figure 6.6 – 13 different types of functional groups for which polarizabilities were calculated
are shown on the x-axis and the 13 clusters of the genetic algorithm clustering on the y-axis.
The size of the circles is proportional to the percentage of the functional group type given on
the x-axis in a particular cluster.

derivation of the molecular electronic energy with respect to the field; 2) sum of the QTAIM

partitioned atomic polarizabilities obtained from the calculated molecular electron density

and finite field approximation; 3) sum of average functional group polarizabilities, from our

database entries without clustering; 4) sum of functional group polarizabilities, from our

database entries after the genetic algorithm clustering procedure.

Both methods 1 and 2 use couple-perturbed Kohn-Sham theory to calculate the molecular

wave function under perturbation of a field. From our previous studies,[182] we already

know that the QTAIM distributed polarizabilities (method 2) reconstruct rather accurately

the molecular polarizability calculated with method 1, in keeping with the electron density

partitioning being an “exact” one. Slight differences are due to the numerical derivatives of the

atomic dipoles and the numerical integrations of the density in the atomic basins. Because

the purpose of the present work is testing the clustering and database procedures, we use

as benchmark the QTAIM distributed atomic polarizabilities (method 2) and do not further

discuss in terms of the exact polarizabilities. Moreover, the benchmark polarizabilities are

calculated at the same level of theory as the database entries, in order to avoid issues due to

the choice of functionals and basis sets (albeit of course important). In previous work, we

have shown that the level of these calculations was sufficient to reproduce the experimentally

measured molecular polarizabilities of the natural α-amino acids.

The number of clusters per functional group was determined by the intercluster ratio, chosen
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in such a way that no clusters have an intercluster ratio lower than 2.

The purpose of the comparison is to assess whether the database is able to predict with

sufficient precision the molecular polarizability, compared to a fully ab initio calculation on

the same molecule, given the enormous difference in computational costs. Moreover, it is

interesting to check if using a single entry per functional group is significantly worse than

using clustered and thus more specific entries.

Figure 6.7 shows the percentage deviation of the database polarizabilities from the benchmark

ones for the functional groups of glutamic acid for αxx , αy y , αzz . Additionally, the functional

group polarizabilities were calculated using Miller’s[166] isotropic atomic polarizabilities.

The deviation of the so obtained polarizabilities to the benchmark ones is also given. As all

calculations refer to gas phase molecular geometries, the configuration which is considered is

the neutral, instead of the zwitterionic (stable in the solid state) one. We already calculated a

set of polarizabilities for zwitterionic forms, by fixing the molecular geometries to neutron

diffraction values to mimic the actual behaviour of amino acids in solid state.[176] Figure 6.7

shows that the group most difficult to model with a database is in fact CH2, although it plays a

smaller role for the molecular polarizability because it carries less electrons. Noteworthy is the

improvement with the clustering procedure. In fact, the simple database averages produce

largest errors up to 25% for the CH2 group, which are drastically reduced with the clustering

(apart for αy y of one CH2 group and αxx of the COOH group); all other components are esti-

mated with 10% discrepancy from the benchmark. The use of Miller’s isotropic polarizability

leads in general to a worse approximation of the benchmark polarizability when compared to

the database with clustered entries.

The sum of the various functional group polarizabilities tends to compensate some errors so

that the molecular polarizabilities are estimated within 11% error on individual components

without clustering and within 6% with clustering.

The error of the molecular isotropic polarizability is further reduced (because of error com-

pensation) to 3.66% with the general database polarizabilities and to 1.24% with the clustered

values. Given that we are interested in predicting the optical properties of crystals consisting

of these molecules, it is important to calculate how this error would propagate, for example

on the refractive index. If approximated with the gas phase molar volume, the error on the

polarizability corresponds to an error on the refractive index of 0.011, when calculated without

clustering, or 0.004 with clustering. In both cases, the deviation is well within the uncertainty

of a typical refractive index measurement. This means that calculating an ab initio molecular

polarizability for the evaluation of a crystal refractive index is not more accurate than using

simply the database entries (especially after clustering). On the other hand, the estimation of

the anisotropy and therefore the birefringence is worse.

As already discussed in previous work,[176] an accurate evaluation of the crystal refractive

index should of course account also for the mutual polarization of molecules. Noteworthy, the

functional group approach has an intrinsic advantage with respect to the molecular approach,
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Figure 6.7 – Percentage deviation of the functional group polarizabilities of glutamic acid
calculated with different databases from the benchmark values. The diagonal components are
shown.

because it allows for a more detailed evaluation of the mutual polarizations.[176] Therefore,

the database functional group approach may guarantee a more accurate evaluation of mutual

polarizations with respect to the exact, but global, molecular polarizabilities (unless of course

they are partitioned into distributed atomic or functional group polarizabilities).

Figure 6.8 illustrates the difference between the benchmark QTAIM polarizability tensors and

the same tensors from the database with clustering for glutamic acid drawn with the software

peanut[189].

A comparison between the benchmark isotropic polarizability calculated with PolaBer and

the isotropic polarizability calculated from database entries was made for ten amino acids

that were not used to construct the database. Figure 6.9 shows the percentage deviation of the

molecular isotropic polarizabilities obtained with database entries from the benchmark values.

The deviations between the reference values and the values obtained without clustering are

shown in black whereas the deviations between the reference values and those obtained after

clustering are in red. The average error of the isotropic polarizability among all examined

amino acids calculated without clustering is 2.32% while it is 1.43% when calculated with

clustering. It is interesting to note that almost all the values are positive, meaning that the
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Figure 6.8 – Difference between the benchmark polarizability tensor and the polarizability
tensor from the database for glutamic acid drawn at the center of charge. Red colour indicates
that the benchmark polarizability is higher and blue that the database polarizability is higher.
(a) The database without clustering and (b) the database with clustering.

database polarizability is always higher (Figure 6.10). This is in contrast to many models

discussed in section 6.2.1 where the polarizability from the database is usually lower because

the mutual induction of polarizability between different fragments is not explicitly taken into

account.

The database was also tested for β- and γ-amino acids (Figure 6.11), which reveal similar

features as the natural amino acids. The deviation of the polarizability obtained with the

database from the benchmark polarizability is shown for the αxx , αy y , and αzz component.

The results from the database with clustering are better than when no clustering is performed.

The deviation of the isotropic polarizability is less than 3% in both cases, while it is larger for

the individual components.

These analyses enable us to conclude that the performances of the database are very promis-

ing, because they allow to estimate with accuracy of ca. 2% the isotropic polarizabilities

for molecules that were not used to build the database. For anisotropic components the
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Figure 6.9 – Plot representing the percentage deviation of the database polarizabilities from
the benchmark polarizabilities for ten amino acids. Black columns refer to a database without
clustering and red ones to a database with clustering.

Figure 6.10 – Comparison of the isotropic benchmark polarizability to the database polariz-
abilities for the ten calculated amino acids. The dotted line represents perfect coincidence.

discrepancies are higher, but still acceptable. Therefore, we may conclude that the necessary

condition of transferability is demonstrated. Of course, the success of the database depends

also on the quality of the calculations on the set of test molecules. In this respect, there is

room for improvement, for example using functionals and basis sets that are able to approach

even better the experimental results. For this purpose, more tests are necessary as well as

more experimental information. Noteworthy, the computational costs to produce a similar
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Figure 6.11 – Percentage deviation of the polarizabilities of β-alanine and γ-aminobutyric acid
calculated with the database (with and without clustering) from the benchmark values. The
diagonal components are shown.

database with a more sophisticated level of theory are not so high Nevertheless, the current

database seems to be already suitable for the purposes mentioned in the introduction.

The database will be included in the forthcoming new version of the software PolaBer. For

each functional group, the averages of atomic and group polarizability components are stored

(in Bohr3), together with the averages within each clusters. The database molecules used for

calculations are listed for each cluster.

In the future, the program PolaBer will be modified in order to recognize a functional group

based only on geometrical features and to automatically propose adequate polarizabilities

(average group polarizabilities or specific cluster). The program will allow users to quickly

estimate the polarizability of any given molecule for which they just need to input the geometry.

Considering also the molecular volume, which may be given by the user or also stored in the

database, dielectric properties can directly be calculated.

6.5 Conclusions

In this book chapter, we presented a methodology to derive a functional group database of

fully exportable polarizabilities. We defined a local coordinate system that enables the trans-

ferability of functional group polarizabilities. These polarizabilities were symmetrized and

clustered into subcategories using genetic algorithm. The database entries thereby obtained
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were used to estimate the polarizabilities of different molecules.

The work has many purposes: 1) a multivariate analysis is not only a way to produce repre-

sentative values for given quantities, but also a method to gain insight into the machinery

of electron polarizability effects; 2) the database provides means to rapidly estimate polar-

izabilities in larger molecules or aggregates consisting of the building blocks present in the

database; 3) the derived molecular polarizabilities can be used as such in force fields for the

evaluation of polarization and dispersion interactions in molecular recognition processes; 4)

the polarizability can be used to rapidly estimate dielectric constants in the solid state as well

as derived quantities such as refractive indices.

One of the goals of our research is in fact connected with point 3): The availability of a

polarizability database, especially if extended to all main group atoms and to transition

metals as well, would enable a very rapid screening of molecular/polymeric materials for

optoelectronic applications, for example HRI materials[151, 152, 153, 155, 156, 157, 158, 159,

160, 161, 162, 190] low dielectric constant porous materials[154], etc.

Moreover, our purpose is that of giving the guidelines for extending the database, so that

interested researchers could contribute and expand it by adding functional groups interesting

for their own specific purposes. Our future research, apart from further development of the

database by adding more descriptors (e.g. dipole moments, hyperpolarizabilities, etc.) and

improving the statistics with more test molecules, will be dedicated to improve the automatism

of the calculations, using adequate routines that will enable recognition of the functional

groups. Given the speed of database calculations of polarizabilities and the subsequent

derivation of static dielectric constants and refractive indices, an automatic procedure of

structure screening would be extremely rapid. These structures could be actually observed

and already characterized structures (for example present in structural databases) as well as

structures simulated during processes of crystal structure prediction. The implications for

material design are then rather straightforward.
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6.6 Addendum

6.6.1 Comments and additions to the published article

This study substantially contributes to the long-term goal of establishing a database of po-

larizabilities, which should enable a fast screening of optical properties. We showed how to

automatically sort polarizabilities of various functional groups into clusters using genetic

algorithms. The average of all functional group polarizabilities in one cluster is representative

of this cluster and stored as database entry. Subsequently, we used this entry and imposed it

on the respective functional group in other molecules. However, this back-transformation is

ill-defined because it is unclear which database entry to take for a given functional group. This

ambiguity arises due to the fact that the database entries were created based on an automatic

clustering according to the similarity of their polarizability tensors and not based on well-

defined geometrical criteria. We tried to establish links between geometry and polarizability

such that the assignment of the correct database entry could be done based on the molecular

structure. Indeed, the polarizability is closely linked to the structure, and strong correlations

between them were found, but actually the purpose of the automatic clustering is exactly to

not use geometrical criteria. As described above, this leads to the dilemma that the clustering

is based on the polarizablity of a certain set of test molecules, while at the same time the

polarizability is exactly what one does not know a-priori for a given target molecule because

it is the quantity one wants to extract from the database. Therefore, ambiguity in the choice

of the correct cluster is unavoidable. The only sensible way to circumvent this problem is to

define criteria for the identification of functional groups based on the geometry, which take

into account its chemical environment similar to how it is done in the multipolar pseudoatom

databases. When well-defined geometrical criteria are introduced, the back-transformation is

unambiguous.

However, genetic algorithm clustering is still useful also when clusters are defined based on ge-

ometrical criteria. Because in that case, the clusters defined according to geometrical criteria

could be compared to the clusters obtained from the genetic algorithm clustering. With this

comparison, one could learn whether the clusters defined according to geometrical criteria

have a good size or not and thus, whether their entries have similar enough polarizabilities or if

more or less clusters are needed. In case more clusters are needed because the polarizabilities

within one cluster are too dissimilar, clusters should be split into several ones. On the contrary,

if the polarizabilities of two or more clusters are very similar they could be merged into one.

Subsequently, the well-defined geometrical criteria would be adjusted to that.

Indeed, Figures 6.5 and 6.6 point out that this approach is reasonable because the clusters

from the genetic algorithm clustering resemble a lot the ones one would define by chemical

intuition. The strongest deviation from that is represented by the CH(sp2) and the amino acid

groups, which seem to have quite varying polarizabilities and form different clusters.

It is also be pointed out again that the polarizabilities are symmetric tensors with six indepen-

dent components. For graphical reasons they were reduced to two, using principal component

analysis, but the remaining four components also carry information. For this reason different
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clusters marked with different colors seem to overlap in Figures 6.4 and 6.5. But points which

are close in the 2D plots, do not necessarily need to be as close as that in the 6D space of the

polarizability tensor.

Besides this more fundamental issue, smaller technical problems with the definition of the

local coordinate system based on the inertia tensor arose. In fact, its three axes are well-defined

with the use of equation 6.7, but not, which of the three directions corresponds to the x, y, or z

axis. This was solved by defining specific criteria adjusted for every one of the nine studied

functional groups.

In addition to the clustering with genetic algorithms, also clustering based on k-means and

on a dendrogram were checked. Figure 6.12 shows clusters obtained with the three different

algorithms using polarizabilities of the CH3 group in various chemical environments. The

k-means clustering uses an algorithm that minimizes the same overall function as equation

6.12, except that the difference is squared. Indeed, the resulting clusters are often similar to

the ones obtained with genetic algorithm clustering. However, with the k-means algorithm

the solution is more prone to fall into local minima that are not the overall optimum solution,

because k-means lacks the random element introduced in the genetic algorithm. Clustering

based on a dendrogram very often results in one cluster containing almost all entries while

the others have just one entry, and therefore it is clearly not suitable for this problem.

Figure 6.12 – Three algorithms sorting the CH3 polarizabilities into five clusters. For each
clustering algorithm, the colors distinguish the five obtained clusters.
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6.6.2 Related work of other researchers

It was shown that for hydrogen bonded synthons, like for example a dimer connected through

carboxylic acid groups (COOH-COOH interaction), the prediction of the refractive index can

be improved compared to the experimental value when the synthons are treated explicitly.

This means that the polarizability of the entire dimer is calculated and this value is used to

obtain the crystal refractive index. In contrast, when only the polarizability of the monomer

is explicitly calculated the agreement with the experiment is worse. [191] The database can

without problems be expanded to contain also the most common synthons.

In another study [192], the molecular electrostatic potential (MEP) and the polarizability of

four dipeptides consisting of L-alanine and glycine were analysed. Four different protonation

states (anionic, cationic, neutral zwitterionic and neutral non-zwitterionic) of the dipeptides

were examined as well as different conformers. Dipeptides were chosen because they are

well suited to understand how amino acids and small biomolecules in general behave in

different chemical environments. The ultimate goal would be the correlation of structure and

properties of small building blocks with the properties of large biomolecules. As previously

written, the polarizablity informs about the reaction of the electron density towards an external

stimulus such as the proximity of other molecules or a solvent, whereas the MEP is important

to highlight sites for possible nucleophilic and electrophilic attacks or interactions.

The authors found that both the MEP and the polarizability of the peptide bond do not

change a lot among different conformers. The polarizabilities of the atoms are more variable

highlighting that for the purpose of transferability, functional groups are better suited. The

protonation state instead is important for both properties. Thus, when including dipeptide

bonds into a database, it seems necessary to have a different entry for all four protonation

states.

Wilkins et al. [193] recently set up a database for atomic polarizabilities, which they made

accessible online. Their goals were very similar to the ones that led to the work presented

in this chapter: enabling a fast prediction of molecular polarizabilities and allowing for its

rationalization in terms of building blocks. In our case atomic polarizabilities are obtained

from a partitioning of the electron density, while with their approach, they result from a

machine learning of molecular polarizabilities. In both cases the molecular polarizability

is the sum of the atomic polarizabilities. For the machine learning they used a training set

consisting of more than 7000 small organic molecules containing H, C, N, O, S, and Cl. The

polarizabilities of those molecules were obtained with linear response CCSD calculations.

Once the so-obtained polarizabilities were machine-learnt with their algorithm, they used

them to predict the polarizabilities of molecules not contained in the training set. The authors

showed that the so-obtained molecular polarizabilities are better than explicitly calculated

DFT ones, in the sense that the error compared to ab-initio calculated CCSD polarizabilities is

smaller.

Atomic polarizabilities have also been used to improve multipolar pseudoatom databases by
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Leduc et al. [194] In the ELMAM2 database described in section 4.3 multipole parameters

are stored for various atom types. These are averaged values of a particular atom in different

environments. The parameters can be transferred to different systems, and a multipolar

electron density of those system is obtained quasi immediately. In order to define an atom

type, only information about its covalent bonds is considered. Therefore, the multipole

parameters lack information about the non-covalent environment. However, the non-covalent

environment also has an influence, because it polarizes the electrons. Leduc et al. tried to

retrieve this information by taking into account the local electric field at every nucleus and

modifying the dipole parameters. From the initial multipole parameters the electrostatic

potential is calculated, which in turn gives rise to the electric field. With this field and the

atomic polarizabilities from a database as described below, the dipole moment of every atom is

calculated as in equation 6.1. Thus, one obtains improved dipole moments. With those, a new

electric field was calculated, and the dipole moments were improved by repeating this cycle

to convergence. The authors used the improved dipole moments to calculate intermolecular

electrostatic interaction energies.

In order to obtain the atomic polarizabilities, a dataset of interacting dimers was taken and

the electron densities of the dimers and monomers calculated with and without electric field.

With a QTAIM partitioning, dipole moments were obtained, but for the calculation of atomic

polarizabilities they considered only the atomic polarization termµp (Ω) and not the charge

translation term µc (Ω) whose effect they claimed to be weak. They found that using the

polarizabilities from the monomer calculation led to slightly better results than using the

ones from the dimer calculation where some polarization is already in the polarizabilities

themselves and thus double-counted.

As mentioned in this chapter, there are many different ways to obtain polarizabilities of molec-

ular building blocks and transfer them to other compounds. Virtually all of the approaches

described in literature rely on atomic polarizabilities, although functional group polarizabil-

ities are actually more transferable because they are more constant.[176] The amount of

common functional groups is not enormously large in organic chemistry, which justifies the

establishment of a database with functional group polarizabilities.
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7 Pressure-Induced Polymerization
and Electrical Conductivity of a
Polyiodide

Apart from the addendum, this chapter originates from the previously published article

"Pressure-Induced Polymerization and Electrical Conductivity of a Polyiodide" in Angewandte

Chemie International Edition, 2019 [142] and Angewandte Chemie, 2019 [195].

(https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901178 and https://onlinelibrary.

wiley.com/doi/full/10.1002/ange.201901178)

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Abstract: We report the high-pressure structural characterization of an organic polyiodide

salt in which a progressive addition of iodine to triiodide groups occurs. Compression leads

to the initial formation of discrete heptaiodide units, followed by polymerization to a 3D

anionic network. Although the structural changes appear to be continuous, the insulating salt

becomes a semiconducting polymer above 10 GPa. The features of the pre-reactive state and the

polymerized state are revealed by analysis of the computed electron and energy densities. The

unusually high electrical conductivity can be explained with the formation of new bonds.

Polyiodides (PIs) in crystal form were discovered about 200 years ago. [196] Their structural

diversity, which is due to the bonding flexibility of iodine, remains the subject of continuous

interest. [197, 198, 199] Nowadays, various PIs are known, ranging from I−3 to I3−
29 , with the

general formula In−
2m+n and n up to 4. Their building blocks consist of I−3 as a donor and I2 as an

acceptor forming a charge transfer (CT) complex. CT complexes can interact further to form

extended structures with various topologies, up to cubic networks. As the aggregation of iodine

units is somewhat unpredictable, the design of PIs is not easy. Moreover, the classification

of higher units is, thus far, pragmatically based on the distance between iodine atoms, but

universal criteria are still lacking.

Different theoretical approaches to study bonds in PIs exist, for example, calculations of the

potential energy surface and bond order, [200] energy decomposition analysis (EDA), [201]

analysis of the electron density and its Laplacian at bond critical points (BCP), [202] the

electron localization function, and the one-electron potential. [203] Furthermore, the energy
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densities at BCPs [204] and the interacting quantum atom (IQA) method [205] were used to

analyze halogen bonds. [206]

Depending on the forces exerted by the organic counterions (chemical pressure), PIs exhibit

useful electrochemical properties, such as charge-carrier transportation, high electrolyte

energy densities, high redox reaction reversibility, [207, 208] and a wide range of electrical

conductivity properties, from insulating to metallic behavior. [209, 210] Hence, PIs have found

technical applications in electronic and electrochemical devices such as flow batteries, fuel

cells, dye-sensitized solar cells, and optical devices. [207, 211, 212]

Compared with chemical pressure, an external mechanical pressure more substantially affects

the crystal inter- and intramolecular landscape. In fact, a large lattice strain may induce phase

transformations and even chemical reactions. The achievable static high pressure (HP) in

standard diamond anvil cells (DACs) is on the order of tens of gigapascals. Such a pressure

significantly changes the Gibbs energy, increasing the internal energy and making the PV term

dominant. Similarly large energy changes are, however, not accessible in solids by temperature

alteration, which induces sublimation or melting instead because of the dominant entropic

term. The volume contraction is the main driving force for the addition reaction to atoms

linked by unsaturated bonds and the formation of extended assemblies, which are otherwise

unstable at ambient pressure. One can apply this concept also to polyvalent iodine, which is

typically able to expand its coordination in heptaiodides or organic iodanes. [213] Although

compression may produce exotic chemical bonding situations and properties, only few spec-

troscopic studies have focused on PI at HP. It was demonstrated by Raman spectroscopy

that solid organic PIs can catenate under HP. Pentaiodides form I−3 chains in iodine-doped

poly(vinyl alcohol) films at pressures as low as 0.2 GPa, [214] while a pressure between 0

and 3.4 GPa is needed for bond formation in PI confined in carbon nanotubes. [215] Such

a catenation does not occur in aqueous solution, advocating solid phases as the preferred

matrix for a reaction between iodine units.

In this study, we investigated the response of tetraethylammonium diiodine triiodide (TEAI)

to compression by using powder and single-crystal X-ray diffraction, electrical conductivity

measurements, and first principle calculations. TEAI was chosen after extensive screening

of the Cambridge Structural Database [216] (entries HALTAP [217] and HALTAP01 [218]) in

order to find a moiety with appropriate packing, ready for catenation between donor (I−3 )

and acceptor (I2) upon compression. Quaternary ammonium salts are often used as model

cations for PI studies. [219, 220, 221, 222] Under ambient conditions, TEAI crystallizes in

the orthorhombic Aba2 space group. I2 and the apical iodine atoms of I−3 anions form, via

contacts d1 and d2 (Figure 7.1), zig-zag chains extending along the crystallographic c axis, while

oscillating in the a direction. The same contacts form another zig-zag motif propagating along

the a axis and oscillating mainly along the b axis. These supramolecular chains encapsulate

the isolated cations. Parallel chains form bilayers normal to the b axis owing to the linkage

with I−3 spacers (Figure A.2). The distances between one I2 motif and its neighboring two

I−3 units are unequal (d1 and d2 ; Figure 7.1 and Figure 7.2b). They approach the acceptor

at angles α and β, respectively, which are favorable for the formation of higher units. This
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occurs when the I−3 and I2 molecules are close enough for their frontier molecular orbitals to

overlap. In extended systems, this interplay gives rise to valence and conduction bands. [223]

When the interaction is stronger, the bands broaden, and the band gap decreases, leading to a

semiconducting behavior, as observed in many species. [224, 225, 226]

Figure 7.1 – The iodine units around the tetraethylammonium cation in TEAI at ambient
pressure. The shortest (d1 = 3.479(4) Å) iodine-iodine intermolecular distances are marked in
orange and the second shortest (d2 = 3.494(4) Å) in green.

We performed X-ray diffraction experiments on TEAI in various pressure transmitting media

(PTM). Herein, we report data obtained using nitrogen as the PTM, known to be hydrostatic

up to about 10 GPa [227] and chemically inert. The effects of other, less hydrostatic PTM will

be discussed in a forthcoming full paper. Upon pressurization up to 12.8 GPa, the crystal

volume of TEAI contracted by 35 %. The b axis, which is normal to the corrugated iodine

bilayers, shows the highest linear compressibility because of a lack of strong intermolecular

interactions in this direction. Molecular volume compression trends (Figure 7.2a) do not show

any discontinuity, ruling out the occurrence of phase transitions. The lengths of the unit cell

axes a and b are well predicted by periodic density functional theory (DFT) calculations over

the entire pressure regime whereas the length of the c axis is slightly overestimated. The length

of contact d2 is well simulated whereas the underestimation of d1 at low pressure is due to

temperature effects neglected in the simulations, whereas all high-pressure experiments have

been carried out at ambient temperature. The temperature effects on the lattice parameters

were estimated by an additional diffraction experiment at 110 K and ambient pressure (Table

A.4). Moreover, in the vicinity of the equilibrium geometry, the calculated energy surface is

very flat (see Figure 7.3 for I−5 ), which is the reason why some DFT functionals or basis sets

may fail in predicting the geometry of the adducts, especially when perturbed by the electric

field inside a crystal.

The compression induces a continuous decrease of α and β, perpendicular to the iodine
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Figure 7.2 – a) Unit cell axes and volume of TEAI as a function of pressure. Lines represent
third-order Vinet equations of state [228] (fitted using EoSfit7c [229]). The calculated bulk
modulus is 7.7(5) GPa, which coincides with that of pure I2. [230] b) Evolution of d1 and d2

(see Figure 7.1) with pressure. c) Electric resistance (measured on two different samples) and
calculated band gap as a function of pressure.
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bilayers (Figure 7.1 and Figure A.3). The contact d2, subtending the β angle, is less compress-

ible than d1, subtending α (Figure A.3). As the pressure increases, differences between the

respective distances d1 and d2 as well as α and β broaden. This forces the iodine zig-zag motif

to bend out of its initial shape. This process is illustrated by a gradual increase in torsion

between the triiodides (Figure A.3). Compression of the intermolecular iodine bonds does not

cause any notable distortion of the intramolecular geometry of the I2 and I−3 units.

To gain more insight into the nature of the bonds in PI, we used theoretical tools for bonding

analysis. In TEAI, various interactions of PI units occur among themselves and with the cation,

which complicates the analysis. For simplification and abstraction, we took I−5 calculated in

vacuo as benchmark. The stable structure of I−5 has C2v symmetry, which can be seen as two

I2 molecules symmetrically interacting with a central I− (at distances d1 and d2) in a bent

structure. In the solid state, this symmetry is distorted because of the cations present and the

interactions with other I−3 and I2 moieties. We explored the potential energy surface of the

system (Figure 7.3) and analyzed the electron density indicators along the transformation path

leading to I−5 . Figure 7.3 shows that there is a similarity between the in vacuo potential energy

surface and the one retrieved from the experimental crystal structures within the framework

of structure correlation, [231] although, as expected, the distances are typically shorter in the

solid than in vacuo. In fact, one can easily observe an ideal translation of the crystal potential

energy surface along the diagonal of the diagram in Figure 7.3.

Figure 7.3 – The electronic energy of I−5 calculated in vacuo, as a function of δ1 and δ2. The
color indicates the destabilization from the symmetric I−5 . The white circles represent entries
in the Cambridge Structural Database containing I−5 . The black triangles represent TEAI at
different pressures (the triangle size is proportional to the pressure).

The effect of the mechanical pressure is completely different: The compressed structures of
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TEAI significantly deviate from the transformation paths of the in vacuo or crystal potential

surfaces at ambient pressure. It seems that the HP structures would not converge towards

a symmetric I−5 . This reflects well the multiple I−3 – I2 interactions in the crystals, which

significantly perturb the picture of a localized I−5 moiety (when compressed), and anticipates

the catenation.

If only atomic positions are analyzed, the formation of a genuine covalent bond may not be

identified. Even the electron density itself would provide only partial indication of the nature

of the chemical bonding, especially under compression. Therefore, we used a decomposition

of both the electron density (through quantum theory of atoms in molecules [232]) and the

energy (through EDA and IQA [42]) to analyze the nature of this interaction as a function of

δ1. EDA and IQA are different schemes to partition the bond energy into classic, exchange-

correlation, and kinetic terms. For I−5 , the two methods provide the same picture (Figure

7.4): The classic (electrostatic) contribution always dominates and increases with δ1, whereas

the non-classic (exchange) contribution never exceeds 25% even at short δ1 distances. The

exchange is larger than in KI, but substantially smaller than in I2. Thus the I–I bond in CT

complexes is simultaneously of ionic and covalent nature, [233] although the ionic one always

dominates.

Figure 7.4 – Bonding contributions in I−5 as a function of δ1; the delocalization index is given
in red, and the non-classic contributions to the binding energy (IQA or EDA) are shown
in blue. The ionic KI and the covalent I2 are shown as benchmarks. The reference states
for the decomposition calculations are: I−+K+ → KI, I·+I· → I2, I2+I−3 → I−5 . IQA and EDA
decomposition analysis for I−3 is shown in Figure A.6 of the Supporting Information.

Figure 7.5 highlights the behavior of the total energy density at the I−3 -I2 BCP, proposed as a

criterion to identify a covalent bond [234]: A negative value implies that the potential energy

locally dominates over the kinetic energy and thus that the electron density contributes to
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stabilization. Because of the homeomorphism between electron density and potential energy

density, [235] a negative energy density at BCP implies that the energy density is negative

along the whole path interconnecting the valence shells of the interacting atoms. As shown

in Figure 7.5, the energy density at the BCP turns positive for δ1 > 3.4Å. For the experimental

structures at different pressures, the trend mimics I−5 in vacuo both for d1 (forming I−7 ) and d2

(forming the extended chain). Thus, as a weak I···I contact shrinks, the shared electron density

increases, as also shown by the delocalization index in I−5 (Figure 7.4), and becomes more

stabilizing. It should be noted that while the delocalization approaches one electron pair for

I–I distances close to that in I2, the energy decomposition analysis assigns the dominant role

to the electrostatic term anyway. Even in I2 it exceeds 60 % of the total bond energy, in keeping

with calculations for other homopolar diatomic molecules. [236]

Figure 7.5 – Green and orange: Energy density at the bond critical points (BCPs) of the inter-
molecular contacts d1 and d2 calculated using the experimental structures. Black: Energy
density at the BCP for the contact between I−3 and I2 of I−5 in vacuo calculated at different
distances δ1.

In TEAI, the pressure-induced addition reactions apparently occur in a continuous way, with-

out changing the electronic states of the constituting moieties. However, the formation of an

extended polymer raises the question as to whether this may affect the transport properties

of the compound. For this reason, we carried out measurements of the electric resistance in

TEAI and observed a dramatic drop between measurements at 9.4 and 11.1GPa. This semi-

conductive state is established for d1 ≈ 3.18 Å and d2 ≈ 3.32 Å. In this range of distances, the

percentage of covalency contribution to the bond has reached about 20 %, and upon further

shortening, the increase is small (Figure 7.4).

At variance from X-ray diffraction experiments, the resistivity was measured in nano-alumina

powder, a non-hydrostatic PTM. Nevertheless, powder diffraction measurements performed
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under the same conditions show that TEAI behaves in nano-alumina as in a hydrostatic

medium and therefore the structure–property correlation (although not determined in situ)

is reliable. The van der Pauw method [237] was employed to estimate the resistivity of TEAI,

which is 1.36 Ωcm at the highest pressure. Temperature scans at 25-55◦C (see Figure A.7)

showed that the variation of the electrical conductivity (inversely proportional to the resis-

tivity) in TEAI under high pressure obeys the usual semiconductor equation, σ= Ae−Eg /2kT

where Eg is the band gap and A is a constant. Calculations confirmed the occurrence of a

continuous band gap closure upon compression, in accordance with the measured decrease

in resistivity.

As reported above, the semiconducting behavior is triggered at I-I distances for which the

calculated covalency contribution to the bond is 20 % (Figure 7.4), which does not grow sig-

nificantly upon further compression. On the other hand, the electron sharing continuously

grows as the I-I distance decreases, which causes the valence band broadening and conse-

quent band gap reduction, which seems to be continuous along the compression path. It

should be noted that only the gradual changes induced by pressure enable us to appreciate

the structure-property correlation in such detail.

Recently, it was shown that PIs also exhibit photoconductive properties characteristic for CT

complexes. [212] This phenomenon, however, was not detected in TEAI under high pressure,

neither upon irradiation with a 1 mW 532 nm laser, nor with a 250 W tungsten lamp.

In conclusion, we have studied the effects of applying pressure on a solid-state polyiodide.

The compression stimulates an approach between complementary I−3 and I2 units, which are

clearly separated and interacting mainly electrostatically at ambient pressure, whereas the

covalency contribution increases upon compression, as revealed by theoretical calculations.

Ultimately, this leads to the formation of CT chains, which explains the drastically increased

conductivity.

These features make TEAI a tunable pressure-sensitive electric switch. Structural studies at

high pressure can rationalize the synthesis and search for future organic and hybrid semi-

conductors based on PIs. This includes structures with soft I···I contacts, which are the most

prone for charge transport across the crystal under increased pressure. The results of this

study indicate that solid PIs may be used as solid electrolytes in dye-sensitized solar cells,

which eliminates the need for organic gelators [238] and ionic liquids in general.

Experimental Section

TEAI was synthesized according to literature procedures. [218]

Single-crystal diffraction measurements: A prismatic crystal of TEAI of 200×100×30 µm3 was

loaded in a Merrill–Bassett DAC, equipped with 0.5 mm diamond and steel gaskets. Nitrogen

was used as a pressure-transmitting medium, and the pressure was calibrated with ruby

fluorescence. [239] X-ray diffraction was measured at the Material Science Beamline at Swiss

Light Source (λ = 0.49471 Å). [240] Structures were refined with Shelxl [241] incorporated in

OLEX2. [232] All non-iodine atoms were refined isotropically. Hydrogen atoms attached to

carbon atoms were geometrically placed and refined using a riding model. CCDC 1890310,

1890311, 1890312, 1890313, 1890314, 1890315, 1890316, 1890317, and 1890330 (HP structures,
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low-temperature structure) contain the supplementary crystallographic data for this paper.

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Electrical conductivity measurements: Two crystals of TEAI of 60×60 ×80 µm3 were loaded

subsequently in DAC. A mixture of α-nano-alumina and epoxy glue 4:1 was used as the

pressure-transmitting medium. The pressure was calibrated by the ruby fluorescence method.

Four leads of golden wire were pressed against the sample (Figure A.1), and the electrical

resistivity was measured using the four-probe method with a Keithley 2450 multimeter.

CRYSTAL14 [23, 242] was used for geometry optimizations and single-point calculations in

the crystal, using the B3LYP functional and Grimme dispersion correction [243] (for all atoms

except iodine). The basis sets used were of POB_TZVP quality. [244, 245] No imaginary

frequency was calculated. Properties in the crystal were obtained with TOPOND. Gaussian16

[183] was used for geometry optimizations and single-point calculations in vacuo at the

B3LYP/6–311G∗ level of theory. [246] AIMAll 14.11.23 [32] was used for analysis of the electron

density descriptors and IQA. ADF [40] with B3LYP/TZP, without frozen core, and including

scalar relativity was used for EDA.
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7.2 Addendum

After the studies on TEAI, another polyiodide, N-propylurotropinium heptaiodide (UrPrI7),

was examined. Its structure was determined at six pressure points up to 4.02 GPa with X-ray

diffraction measurements. Furthermore, geometry optimizations at the same pressure points

were made and the band gap was calculated, leading to interesting insight in the general

structure-property relationship of polyiodides.

Structural aspects of UrPrI7

Figure 7.6 – I· · · I contacts in UrPrI7 with color code. The cation is omitted for clarity.

Like TEAI, this polyiodide consists of I2 interacting with negatively charged iodide units, but

in contrast to TEAI, several I2 are interacting with the same iodine atom I1. The three I2 units,

which can be identified at ambient pressure are I2-I3, I4-I5, and I6-I7 (see Figure 7.6). The

evolution of the intramolecular I2 distances with pressure is plotted in Figure 7.7. The I2 units

do not shorten a lot, or they even elongate with increasing pressure.

The diiodines approach I1, such that contacts I1-I4, I1-I5 shorten, while I1-I2 remains more or

less constant because it was already relatively short at ambient pressure. The experimental

points in Figure 7.8 demonstrate that especially the contact I1-I4 shortens a lot. As a conse-

quence of that, the contacts I1-I2 and I1-I4 are both around 3.0 Å long at the highest measured

pressure, and therefore a kind of pentaiodide is produced, similar to what happens in TEAI.

However, in contrast to TEAI, this pentaiodide becomes very symmetric with increasing pres-

sure. This can be observed in Figure 7.9 showing the same as Figure 7.3 but with superimposed

data from UrPrI7. The grey triangles representing UrPrI7 tend towards the diagonal and thus
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towards a symmetric pentaiodide.

Both distances I1-I2 and I1-I4 are shorter than d1 in TEAI (orange line in Figure 7.2b). Even at

12.6 GPa, d1 is still longer than the two distances in UrPrI7 at 4.02 GPa.

Thus, UrPrI7 forms a more symmetric pentaiodide with shorter bond lengths than it is the

case in TEAI. However, while d2, which is the distance of the other I2 unit to I−3 in TEAI, also

shortens considerably with pressure leading to continuous iodine chains, the geometry in

UrPrI7 is different and continuous chains with bond lengths below 3.4 Å are not observed.

This aspect will be discussed again together with the analysis of the band gap.

Figure 7.9 also illustrates that at ambient pressure both TEAI and UrPrI7 are positioned among

the white dots, which represent entries in the Cambridge Structural Database (CSD) for

I−3 · · · I2 contacts. Both compounds diverge from this trend with increasing pressure because

the contacts are compressed. Due to this compression geometries are obtained, which are

different from the ambient pressure structures representing the clear majority in the CSD.

Figure 7.7 – Intramolecular I2 distances plotted with respect to pressure. Squares represent
experimental data points and and circles refer to geometry optimized structures.

To finish the structural analysis, it is to be mentioned that the distance I1-I1, which is one of

the two contacts determining the interlayer spacing, shortens considerably. Figure 7.6 shows

that the I3 unit consisting of I1-I2-I3 is establishing the connection between two layers of

iodine. The other such contact is I3-I6.

At 4.02 GPa, the highest measured pressure, the iodine atom I1 forms five interactions, whereof

two are around 3.0 Å, one is 3.3 Å and two are around 3.45 Å in the experimental structure.

Therefore, it can be considered almost pentavalent.
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Figure 7.8 – Intermolecular distances. Squares represent experimental data points and circles
refer to geometry optimized structures.

Figure 7.9 – The colors indicate the destabilization from the symmetric I−5 obtained through
calculation in vacuo. The white circles represent entries in the CSD containing I−5 . The black
triangles represent TEAI and the grey triangles UrPrI7 at different pressures (the triangle size
is proportional to the pressure). For TEAI, d1 is plotted against the intramolecular I−3 length.
For UrPrI7, I1-I2 is plotted against I1-I4.
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Band gap and correlation with structure

Figure 7.10 shows the band gap calculated for the geometry optimized structures of UrPrI7.

The level of theory is the same as used for TEAI so that the results can directly be compared.

The band gap is considerably lower than in TEAI. When considering that TEAI becomes

semiconductive around 10 GPa, corresponding to a band gap of around 2.3 eV, one could

expect that UrPrI7 is semiconductive already at ambient pressure, where the band gap is

already lower than 2.3 eV.

Figure 7.10 – Band gap of TEAI and UrPrI7 for the geometry optimized structures.

In TEAI contacts d1 and d2 are needed to form a continuous chain. In UrPrI7 there are several

possible pathways, the shortest one being through I1-I4-I5-I1 (violet, blue, yellow in Figure

7.6). While I1-I4 and I4-I5 are below 3.4 Å at 0 GPa and below 3.0 Å at 4.02 GPa, this is not

the case for I1-I5. In fact, I1-I5 of UrPrI7 is considerably longer than d2 of TEAI at ambient

pressure (always referring to geometry optimized structure). Therefore, one could expect that

UrPrI7 is less conductive and has a larger band gap. This is obviously not the case. Likely the

reason is that in UrPrI7 there are many different possible pathways to form an iodine chain.

Although each individual one of them has at least one bond length, which is longer than in

TEAI, the sum of all these pathways causes a smaller band gap.

Therefore, the band gap cannot be correlated one to one with the bond distances or the bond

character like for example its covalency. This is confirmed by I2, where the shortest distances

between different I2 units in the crystal are 3.5 Å long [247]. Nevertheless, the crystal has a

band gap of 1.3 eV [248], which is much lower than in TEAI and UrPrI7.

Based on this reasoning, it can be deduced that the I· · · I distance and the bond character are

important criteria for the conductivity in one particular structure, but when comparing several

compounds, the number of possible options for a polymeric chain is equally important.
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Unfortunately, it is very challenging to measure the conductivity of UrPrI7 since it decomposes

very quickly by loosing iodine, and then transforms into a different structure. In general, the

measurement of polyiodides, be it with X-rays for diffraction or with electrodes for conductivity,

is difficult because polyiodides are often not very stable. This issue highlights the necessity

for a theoretical understanding of their bonding characteristics in order to predict properties

where they cannot easily be measured.

Yet, also this theoretical analysis in not trivial, since, as discussed above, a certain I· · · I distance

does not simply correspond to a given conductivity. Therefore, establishing a clear structure-

property relationship in polyiodides is difficult. It is evident that a continuous polyiodide chain

can be conductive due to the hypervalency of iodine and the sharing of electrons between

atoms. But it is also clear from a search in the CSD that, at ambient pressure, polyiodides

usually consist of I−, I2 and I−3 units, which are farther apart from each other than a covalent

I-I bond, whereas longer polyiodides are rare. And therefore, most of the compounds are not

conductive. High pressure studies are a very powerful tool to shed light on the relationship

between I· · · I interaction lengths and conductivity. They allow to analyse various I· · · I distances

and properties for the same compound and to observe the transition from a structure with

clearly separated units to a continuous polyiodide chain as it is the case in TEAI.

In both examined polyiodides, the structural changes with increasing pressure seem con-

tinuous. The intermolecular I· · ·I contacts shorten, and well separated units are gradually

transformed into polymers. The band gap is continuously decreasing with increasing pressure,

and all the examined bond properties behave like that as well. For TEAI, it was demonstrated

that the bonds transform from dominantly ionic ones into more covalent ones. All these

indicators reveal that there is not one specific point where molecules stop to exist and a

polymer is formed. However, the experimental measurement of the resistivity (inverse of

conductivity) pointed out a more abrupt change, suggesting that TEAI undergoes an electronic

phase transition. Since the calculated results do not support any non-continuous behaviour

that would explain the sudden drop of resistivity, more experiments are needed, especially

also on other compounds.
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8 Different Aspects of X-ray Con-
strained Wavefunctions

This chapter is about X-ray constrained wavefunction calculations (XCW), thereof derived

energies and electron densities, and their ability to include crystal field effects under var-

ious conditions. Chapter 9, instead, will focus on molecular orbitals obtained from X-ray

constrained wavefunction calculations. Section 8.1 deals with the two opposed functions

minimized in the XCW procedure (total energy and χ2) and how to transfer the latter to have

units of energy by using the self-electrostatic energy of molecules. Section 8.2 provides a more

in depth analysis of the self-electrostatic energy calculated from structure factors and from a

wavefunction. The matter of section 8.3 is the ability of X-ray constrained WFNs to include

crystal field effects. Finally, section 8.4 is about the use of X-ray constrained wavefunctions for

frozen density embedding.

8.1 X-ray constrained wavefunction fitting using the self-
electrostatic energy

8.1.1 Theoretical background

In a conventional wavefunction calculation the minimized quantity is the electronic energy.

In a crystallographic least-squares refinement the minimized quantity is the difference of

the calculated structure factors F calc
k to the targeted structure factors. These are usually

experimentally measured ones but can be also simulated. Since this chapter treats basic

and fundamental questions rather than applications, the structure factors were simulated

and therefore represent ideal conditions. They will subsequently be abbreviated F "exp"
k . In

an XCW calculation both terms, energy E and structure factor difference χ2, are minimized

simultaneously (equation 8.1). However, these two quantities have different units and thus the

weighting factor λ is not dimensionless. In fact, λ has units of energy but it depends on the

volume and thus its meaning changes when the volume of the studied molecules changes.

J = E +λχ2 (8.1)
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In the traditional XCW formula χ2 is defined as:

χ2 = 1

Nr −Np

Nr∑
k

(F calc
k −F exp

k )2

σ2
k

(8.2)

σk are the standard uncertainties of the measured structure factors, Nr is the number of

measured reflections and Np is the number of parameters of the model. In practice this value

is often set equal 1, assuming that the scale factor is the only freely refined parameter while

the wavefunction parameters themselves are not considered.

If the two parts of equation 8.1 shall have the same unit, equation 8.2 has to be modified such

that χ2 also has units of energy.

The self-electrostatic energy corresponds to the electrostatic interaction of a charge density

distribution with itself. When it is expressed based on the structure factors, the formula is:

[249]

Eel st at−sel f =
1

2πVm

∑
H

|FH|2
H2 (8.3)

with H = |2∗ sin(θ)/λ| and Vm the molecular volume.

Thus, if χ2 shall be an expression with units of energy, it can be expressed with the self-

electrostatic energy:

χ2
E = 1

Nr −Np

1

2πVm

∑
H

(F calc
H −F exp

H )2

σ2
H |H|2 (8.4)

And therefore the new XCW formula becomes:

J = E +λ′χ2
E (8.5)

λ is primed because it is different from λ in the traditional formula. The implementation of

the new formula in Tonto is described in appendix B.

The aim of this section is to test two things: (I) whether using χE instead of χ leads to better

results and (II) how the self-electrostatic energy, the electronic energy of the X-ray constrained

wavfunction, and their differences to the reference value develop upon varying λ or λ′. The

reference is an initial wavefunction used to simulate the structure factors.

Thus, (I) should answer the question how the use of the modified formula changes crystal-

lographic agreement values (e.g. the R-value), the electron density (e.g. the RSR value), and

the electronic energy; especially when comparing the results from the traditional and new

formula obtained with corresponding λ-value.

The real space R (RSR) value is used to quantify the similarity of two electron densities and is

calculated on a grid of np points ([64, 250]):

RSR(ρ1,ρ2) =
∑np

i=1 | ρ1(ri )−ρ2(ri ) |∑np

i=1 | ρ1(ri )+ρ2(ri ) |
(8.6)
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8.1. X-ray constrained wavefunction fitting using the self-electrostatic energy

(II) deals with the self-electrostatic energy, which can be calculated using the structure fac-

tors according to equation 8.3 and the electronic energy as obtained from Tonto. The self-

electrostatic energy can be compared for the calculated and the simulated structure factors

F"exp". The question is how these energies and their difference to the reference value behave.

In principle there could even be an optimum value of λ, considering that the electronic energy

(going away from the reference value with increasing λ) and the self-electrostatic energy

(approaching the value of the simulated structure factors with increasing λ) behave oppositely.

8.1.2 Calculation details

For the three molecules thioacetone ((CH3)2CS), alanine (C3H7NO2), and hydrogen fluoride

initial wavefunctions were calculated at PBE/cc-pVTZ(6d) level of theory using Gaussian. The

so-obtained wavefunctions are the references and were used to simulate structure factors with

the structure factor analysis module of XD [65] (XDsfra). Structure factors were simulated for

the full sphere up to resolution 1.0 Å−1 and a 10×10×10 Å3 unit cell. This choice is not un-

problematic and section 8.2 presents some more details about it. Subsequently, the simulated

structure factors were used in Tonto as "experimental" structure factors and the σk was set to

1 for all structure factors. XCW fittings with the conventional and the new formula were done

at different values of λ or λ′, respectively. The calculations were of Hartree-Fock type with the

6-311++G(2d,2p) basis set. The geometry and the unit cell were obviously the same as the one

for the structure factor simulation and the scale factor was optimized.

Due to the additional factor 2πV as well as the factor 2 (squared) of H in the new formula

(equation 8.4) compared to the traditional one (equation 8.2), the corresponding λ′ value is:

λ′ = 2πV ∗4∗λ (8.7)

With this formula the value λ = 1 becomes λ′ = 169604 for a volume of 10×10×10 Å3 and

transformed into atomic units. Although λ is depending on the volume and cannot have an

absolute meaning when comparing different structures, the correct transformation from λ to

λ′ matters when comparing the performance of the traditional and new formula.

Analysis of the results was done for the electronic energy, the self-electrostatic energy, the

R-factor (how good is the fit in reciprocal space?), and the RSR-value (how good is the fit in

real space?). In addition, the difference between the self-electrostatic energies obtained with

simulated structure factors and with structure factors obtained during the XCW calculation

can be analysed, both in reciprocal and real space. The values presented refer to the difference

in real space: Eλ=x
el st at−sel f −E r e f

el st at−sel f .

8.1.3 Results

Tables 8.1-8.6 show an overview of the results for the three examined compounds. All energies

are given in atomic units. The numbers in Tables 8.1, 8.3, and 8.5 were obtained with the
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traditional XCW formula while the numbers in Tables 8.2, 8.4, and 8.6 were obtained with the

new formula. In the first row, the electronic energy (Eel ) plus the constant nucleus-nucleus

potential (VN N ) resulting from the XCW calculation is given as printed in the Tonto output.

This energy corresponds to the first term in equation 8.1 or 8.5.

In the second row, the self-electrostatic energy is shown calculated according to equation 8.3.

There are results for different λ values from 0 to 100 and in addition there is the column ’ref’.

In this column the electronic energy of the reference DFT wavefunction used to simulate the

structure factors is written as well as the self-electrostatic energy of these simulated structure

factors.

The third row gives the RSR value calculated according to equation 8.6, an agreement measure

in direct space and the fourth row the R-factor as printed by Tonto, an agreement value in

reciprocal space. When increasing λ or λ′ these agreement factors decrease designating a

better agreement.

The subsequent two rows in the tables show the difference of the XCW electronic energy and

self-electrostatic energy to the one obtained with λ= 0. This indicates how far the energy is

away from the one of an unconstrained calculation.

Finally, the last row shows the sum of the absolute difference of the XCW electronic energy

(Eλ=x
el ) to the DFT electronic energy (E r e f

el ) and the difference of the self-electrostatic energy

obtained with the calculated structure factors (Eλ=x
el st at−sel f ) to the one obtained with simulated

structure factors (E r e f
el st at−sel f ):∣∣∣Eλ=x

el −E r e f
el

∣∣∣ +
∣∣∣Eλ=x

el st at−sel f −E r e f
el st at−sel f

∣∣∣.
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8.1. X-ray constrained wavefunction fitting using the self-electrostatic energy

Table 8.1 – Thioacetone (CH3)2CS. XCW calculation done with traditional formula

λ-value
ref 0 0.01 0.1 0.5

Electronic energy + VN N -515.8236 -514.6495 -514.6495 -514.6495 -514.6495
Self-electrostatatic energy 249.6786 248.2052 248.2059 248.2120 248.2388
RSR ∗10−3 10.7161 10.71372 10.6927 10.6009
R-factor 0.00282 0.00282 0.00281 0.00277

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 0.0000

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0000 0.0007 -0.0068 -0.0336

sum of differences 2.6476 2.6469 2.6407 2.6140

λ-value 1 3 5 10 100

Electronic energy + VN N -514.6494 -514.6493 -514.6491 -514.6484 -514.6381
Self-electrostatatic energy 248.2708 248.3858 248.4830 248.6708 249.3753
RSR ∗10−3 10.082 9.728 9.006 5.247 3.396
R-factor 0.00273 0.00256 0.00243 0.00216 0.00093

Eλ=x
el - Eλ=0

el 0.0000 -0.0001 -0.0004 -0.0011 -0.0114

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f -0.1806 -0.2778 -0.4657 -1.1701 -1.3663

sum of differences 2.4671 2.3701 2.1830 1.4888 1.3023

Table 8.2 – Thioacetone (CH3)2CS. XCW calculation done with new formula

λ′-equivalent value (actual value / 169604)
ref 0 0.01 0.1 0.5

Electronic energy + VN N -515.8236 -514.6495 -514.6495 -514.6494 -514.6488
Self-electrostatatic energy 249.6786 248.2052 248.2131 248.2791 248.4955
RSR ∗10−3 10.7161 10.6919 10.4886 9.8086
R-factor 0.002818 0.00281 0.002761 0.002578

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 -0.0007

Eλ
′=x

el st at−sel f - Eλ
′=0

el st at−sel f 0.0000 -0.0079 -0.0739 -0.2903

sum of differences 2.6476 2.6397 2.5737 2.3580

λ-value 1 3 5 10 100

Electronic energy + VN N -514.648 -514.6434 -514.6401 -514.6340 does not
Self-electrostatatic energy 248.6637 248.9562 249.0680 249.1778 converge
RSR ∗10−3 9.2517 8.1402 7.6211 7.0274
R-factor XCW 0.00241 0.00203 0.00181 0.00152

Eλ
′=x

el - Eλ
′=0

el -0.0018 -0.0061 -0.0094 -0.0154

Eλ
′=x

el st at−sel f - Eλ
′=0

el st at−sel f -0.4586 -0.7510 -0.8628 -0.9726

sum of differences 2.1908 1.9026 1.7941 1.6904
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Table 8.3 – Alanine. XCW calculation done with traditional formula

λ-value
ref 0 0.01 0.1 0.5

Electronic energy + VN N -323.4982 -321.9707 -321.9707 -321.9707 -321.9707
Self-electrostatatic energy 228.2702 228.8772 228.8769 228.8744 228.8634
RSR ∗10−3 11.7578 11.7553 11.7326 11.6332
R-factor 0.00682 0.00682 0.00679 0.00672

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 0.0000

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0000 0.0003 0.0028 0.0138

sum of differences 2.1345 2.1342 2.1317 2.1208

λ-value 1 3 5 10 100

Electronic energy + VN N -321.9706 -321.9704 -321.9701 -321.9688 -321.9488
Self-electrostatatic energy 228.8501 228.8005 228.7563 228.6642 228.2248
RSR ∗10−3 11.5126 11.0675 10.6724 9.8501 5.4439
R-factor 0.00662 0.00627 0.00596 0.00532 0.00210

Eλ=x
el - Eλ=0

el 0.0000 -0.0002 -0.0006 -0.0019 -0.0219

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0271 0.0767 0.1209 0.2130 0.6524

sum of differences 2.1074 2.0581 2.0142 1.9234 1.5948

Table 8.4 – Alanine. XCW calculation done with new formula

λ′-equivalent value (actual value / 169604)
ref 0 0.01 0.1 0.5

Electronic energy + VN N -323.4982 -321.9707 -321.9707 -321.9707 -321.9702
Self-electrostatatic energy 228.2702 228.8772 228.8769 228.8744 228.8634
RSR ∗10−3 11.7578 11.7378 11.5648 10.9212
R-factor 0.00682 0.00681 0.00675 0.00648

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 0.0000

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0000 0.0012 0.0133 0.0777

sum of differences 2.1345 2.1342 2.1317 2.1208

λ′-equivalent value 1 3 5 10 100

Electronic energy + VN N -321.9694 -321.9654 -321.9618 -321.9549 does not
Self-electrostatatic energy 228.7192 228.5009 228.3855 228.2530 converge
RSR ∗10−3 10.2981 8.6856 7.7139 6.3460
R-factor 0.00616 0.00514 0.00445 0.00340

Eλ=x
el - Eλ=0

el -0.0013 -0.0053 -0.0089 -0.0158

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.1580 0.3763 0.4917 0.6242

sum of differences 1.9779 1.7636 1.6517 1.5605
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8.1. X-ray constrained wavefunction fitting using the self-electrostatic energy

Table 8.5 – Hydrogen fluoride. XCW calculation done with traditional formula

λ-value
ref 0 0.01 0.1 0.5

Electronic energy + VN N -100.3840 -100.0541 -100.0541 -100.0541 -100.0541
Self-electrostatatic energy 44.4676 44.8516 44.8514 44.8500 44.8437
RSR ∗10−3 9.3004 9.2985 9.2828 9.2143
R-factor 0.00499 0.00499 0.00497 0.00491

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 0.0000

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0000 0.0002 0.0016 0.0078

sum of differences 0.7139 0.7137 0.7123 0.7060

λ-value 1 3 5 10 100

Electronic energy + VN N -100.0541 -100.0541 -100.0540 -100.0538 -100.0509
Self-electrostatatic energy 44.8361 44.8083 44.7837 44.7336 44.4986
RSR ∗10−3 9.1325 8.8383 8.5879 8.0977 5.9646
R-factor 0.00484 0.00458 0.00437 0.00394 0.00208

Eλ=x
el - Eλ=0

el 0.0000 -0.0001 -0.0001 -0.0004 -0.0033

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f -0.1806 -0.2778 -0.4657 -1.1701 -1.3663

sum of differences 0.6985 0.6706 0.6462 0.5962 0.3642

Table 8.6 – Hydrogen fluoride. XCW calculation done with new formula

λ′-equivalent value (actual value / 169604)
ref 0 0.01 0.1 0.5

Electronic energy + VN N -100.0541 -100.0541 -100.0541 -100.0539 -321.9702
Self-electrostatatic energy 44.8516 44.8510 44.8459 44.8229 228.8634
RSR ∗10−3 9.3004 9.2845 9.1547 8.7928
R-factor 0.00499 0.00498 0.00492 0.00471

Eλ=x
el - Eλ=0

el 0.0000 0.0000 0.0000 -0.0002

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0000 0.0006 0.0057 0.0287

sum of differences 0.7139 0.7133 0.7082 0.6854

λ′-equivalent value 1 3 5 10 100

Electronic energy + VN N -100.0536 -100.0522 -100.0515 -100.0508 -100.0473
Self-electrostatatic energy 44.7954 44.7121 44.6613 44.5954 44.39
RSR ∗10−3 8.6081 8.4846 8.4143 8.0597 4.8723
R-factor 0.00452 0.00406 0.00371 0.00323 0.00149

Eλ=x
el - Eλ=0

el -0.0006 -0.0019 -0.0026 -0.0033 -0.0069

Eλ=x
el st at−sel f - Eλ=0

el st at−sel f 0.0561 0.1395 0.1902 0.2562 0.4077

sum of differences 0.6583 0.5763 0.5263 0.4610 0.3605
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Figure 8.1 shows on the left side plots of the electronic energy Eel plus the constant VN N term

with respect to theλ value. In order to plot the results from the XCW calculations with both, the

traditional and new formula in the same graph, the λ′ values were divided by 2πV ∗4 = 169604

to bring them back on the same scale. The plots go from λ = 0 to λ = 10. The reference DFT

energy E DF T
el is always a lot (several hundredths of kilojoules per mole) below the lines of

Eλ=x
el and therefore not shown. However, it is to be noted that the DFT energy is calculated in

a different way. Nevertheless, also the Hartree-Fock energy of the DFT wavefunction is still

lower in energy than the X-ray constrained wavefunctions, because in the HF case only the

energy is minimized and not also the structure factor agreement. On the right side are plots of

the self-electrostatic energy Eel st at−sel f . The blue value corresponds to Eel st at−sel f from the

simulated structure factors F "exp".

8.1.4 Discussion

Part I - Comparison of results obtained with traditional and new formula

Atλ=λ′=0 the results from the traditional and new formula are always identical since this calcu-

lation is a pure Hartree-Fock calculation without any constraints. Upon increasing λ (or λ′) the

electronic energy obviously increases due to the additional constraint and the consequently

reduced flexibility in the variational procedure. For all three compounds thioacetone, alanine,

and hydrogen fluoride the electronic energy increases faster with the new XCW formula using

χ2
E than with the traditional one using χ2. On the other hand, the self-electrostatic energy of

the calculated structure factors approaches the one of the simulated structure factors faster

with the new formula. As visible in Tables 8.1-8.6, also the R-value and the RSR value are lower,

that is in better agreement with the simulated experiment, when using the new formula for

comparable λ values. Therefore, the fitting with the new formula is better in terms of the

self-electrostatic energy and the statistical agreement while the electronic energy increases

faster. In other words, a lower λ′-equivalent value is needed to obtain a fitting, which is as good

as one obtained with a higher λ value. This can also explain why at λ= 100 the calculations

for alanine and thioacetone still converge, whereas they do not for λ′-equivalent = 100.

Part II - Analysis of electronic and self-electrostatic energy. Best λ-value

For thioacetone the self-electrostatic energy from the calculated structure factors (obtained

during the XCW calculation) is lower than the self-electrostatic energy from the simulated

structure factors as visible in Figure 8.1b. When increasing λ from 0 to higher values, both

curves approach the reference value in blue. For alanine and hydrogen fluoride it is the other

way around. In those cases the self-electrostatic energy from the calculated structure factors

Fλ=x is higher than from the simulated F "exp", and the red and black curves approach the

blue line by going down.

At a given value of λ (or λ’), the Eλ=x
el st at−sel f curves crosses the blue line from the simulated
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8.1. X-ray constrained wavefunction fitting using the self-electrostatic energy

(a) Electronic energy of thioacetone (b) Self-electrostatic energy of thioacetone

(c) Electronic energy of alanine (d) Self-electrostatic energy of alanine

(e) Electronic energy of hydrogen fluoride (f) Self-electrostatic energy of hydrogen fluoride

Figure 8.1 – Energy terms (in atomic units) with respect to λ and λ’-equivalent values.

experimental structure factors. For alanine and with the new formula this happens already

before 10, for hydrogen fluoride with the new formula approximately around λ′-equivalent=50

and for thioacetone not until λ′-equivalent=100 but it also approaches it. After this point

the individual structure factors are still improving as indicated by the decreasing R-value but

the agreement of the overall self-electrostatic energy actually worsens. The difference of the

self-electrostatic energy to its targeted value is a measure of the overall agreement (like it can

also be done for the electron density). This means that at the point where the line crosses, an

optimum fitting is reached and afterwards one might be overfitting. However, this happens at
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very high λ, too high to be reached experimentally.

(a) Thioacetone

(b,I) Alanine

(c) Hydrogen fluoride

(b,II) Alanine

Figure 8.2 – Sum of absolute differences (in atomic units). Left: from λ=0 to 10, right: from
λ=0 to 20. Only alanine is shown until 20 because in this case the increase of the red line can
be observed. For the other two compounds this was not observed in the λ′ range for which
calculations can be brought to convergence.
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8.1. X-ray constrained wavefunction fitting using the self-electrostatic energy

For a fair comparison between traditional and new method, both absolute differences, the

one of the electronic and the one of the self-electrostatic energy to the reference value have

to be analysed at the same time. They represent the behaviour of both parts of equation 8.1,

which develop in opposite directions. Therefore, the two differences were summed up and

the results are shown in the last row of Tables 8.1-8.6 and in Figure 8.2. The summation of the

absolute differences can only be done reasonably because they are both energies.

For all three compounds the sum of the absolute differences initially decrease with increasingλ.

However, after the self-electrostatic energy crossed the reference value, the absolute difference

increases again as visible in Figure 8.2b for alanine around λ′-equivalent=10. Therefore, the

energy difference to the targeted value reaches a minimum and this is the best λ′ value in

terms of energy. This could serve as a new criterion for the choice of λ although it is practically

not reachable since a calculation with real experimental data would not converge at such high

λ-values.
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8.2 Electronic energy from structure factors and from wave-
functions

The self-electrostatic energy Eel st at−sel f is the interaction energy of the electrons with them-

selves. It can be calculated from the structure factors according to equation 8.3. [249]

A more detailed analysis of the self-electrostatic energy Eel st at−sel f , as done in this section,

shows that large unit cells and high angular resolutions for the structure factors are needed to

obtain a reasonable value. Whether a value is reasonable can be recognized by comparison to

the electron-electron interaction energy Vee from the corresponding wavefunction.

In order to do this comparison, the energy terms for two small molecules (difluorine F2

and hydrogen fluoride) were examined. A reference wavefunction for both molecules was

calculated at HF/6-311++G(2d,2p) level of theory. From this wavefunction a set of structure

factors F"exp" was simulated for the full sphere and used for XCW calculations at the exact

same level of theory.

Initially a constant resolution of 1 Å−1 was used for the structure factor simulation and the

size of the unit cell was varied. Results are shown in Tables 8.7 and 8.8.

Table 8.7 – Electronic energies of F2 obtained from direct and reciprocal space. The column on
the left indicates the size of the unit cell used for the structure factor simulation. The energies
are in atomic units.

a=b=c [Å] Eel st at−sel f from F"exp" Eel st at−sel f from Fcalc Vee from XCW

5 89.138 89.138 123.153
10 112.084 112.084 123.153
15 120.602 120.602 123.153
20 125.907 125.907 123.153
25 126.505 126.505 123.153
30 128.121 128.121 123.153

Vee of the reference Hartree-Fock wavefunction is 123.153

Table 8.8 – Electronic energies of hydrogen fluoride obtained from direct and reciprocal space.
The column on the left indicates the size of the unit cell used for the structure factor simulation.
The energies are in atomic units.

a=b=c [Å] Eel st at−sel f from F"exp" Eel st at−sel f from Fcalc Vee from XCW

5 37.248 37.248 45.215
10 44.456 44.456 45.215
15 46.933 46.933 45.215
20 48.786 48.786 45.215
25 48.925 48.925 45.215

Vee of the reference Hartree-Fock wavefunction is 45.215
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8.2. Electronic energy from structure factors and from wavefunctions

Vee from the X-ray constrained wavefunctions is constant because the reference wavefunction

was calculated at Hartree-Fock level and therefore the XCW calculation does not need to fit any

additional effect. For the same reason, the Eel st at−sel f calculated with the simulated structure

factors F"exp" and with the structure factors calculated from the XCW Fcalc are identical.

(a) Difluorine F2 (b) Hydrogen fluoride

Figure 8.3 – Electronic energy of the X-ray constrained wavefunction Vee and self-electrostatic
energy obtained from the calculated structure factors Eel st at−sel f plotted against the size of
the unit cell used for the structure factor simulation.

Figure 8.3 demonstrates that the self-electrostatic energy strongly depends on the size of the

unit cell. In fact, Eel st at−sel f is underestimated with small unit cells and approaches Vee with

increasing size of the unit cell. This can be explained by the fact that in a larger unit cell the

electron-electron interaction energy of one molecule becomes more similar to the gas-phase

value, which constitutes here the reference value. However, the curves rise so much that they

overtakes the Vee values. More analysis will be needed to explain this behaviour.

Equation 8.3 has a singularity for H=0, which is why this reflection was excluded from the

summation. For non-polar unit cells this reflection gives no contribution to the electronic

energy but for polar cells the correct formula would include a constant term considering the

dipole moment D [249]:

Eel st at−sel f =
1

2πVm

∑
H

|FH|2
H2 + 2π

3Vm
D2 (8.8)

This constant term was not considered because it has no effect on the non-polar crystal with

F2 and for HF it is also just a constant term. Since, the same behaviour is observed in both

cases, it can also not explain the difference between Vee and Eel st at−sel f .

In Figure 8.4 the self-electrostatic energy for a constant unit cell of 20×20×20 Å3 is plotted

against varying resolution of the structure factor data set. Like when changing the unit cell

size, Eel st at−sel f initially approaches Vee but then becomes even higher.
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(a) Difluorine F2 (b) Hydrogen fluoride

Figure 8.4 – Electronic energy Vee of the X-ray constrained wavefunction and self-electrostatic
energy Eel st at−sel f obtained from the calculated structure factors plotted against the angular
resolution of the structure factor data set.

After this more detailed analysis it becomes clear that the self-electrostatic energies vary

a lot with the unit cell and the resolution used for the simulation of the structure factors.

Therefore, the absolute numbers in the previous section 8.1 need to be taken with care.

However, the goal of that section was a comparison between the traditional XCW formula and

a new formula where χ2 has units of energy. For the purpose of comparison the numbers are

adequate. Nevertheless, more research is needed to better understand the behaviour of the

self-electrostatic energy.
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8.3 How well can X-ray constrained wavefunction calcula-
tions retrieve electric field effects?

Using the XCW method, one can combine quantum chemical calculations with experimental

information of crystals in the form of structure factors. The wavefunction calculation itself

is often a simple Hartree-Fock type calculation although also DFT is possible. The structure

factor part compensates for what was neglected in the calculation, in particular electron

correlation and the effect of the crystal field.

Bytheway et al. [251] calculated the effect of dynamic correlation on structure factors and

predicted that it is often just above the 1% assumed detectability threshold and thus much

smaller then the effect of the asphericity of the electron density. Furthermore, the information

about correlation is only in few data points that often have low intensity. Therefore, the authors

concluded that very careful experiments are needed to be able to model correlation effects

and that for small molecules it is even impossible.

Genoni et al. [64] made a theoretical study where they were simulating structure factors from

wavefunctions at a correlated level of theory (CCSD or CISD) and then used these structure

factors for XCW calculations at Hartree-Fock level. Subsequently, the resulting electron density

was compared to the initial CCSD or CISD one. They found out that the angular resolution at

which the structure factors are calculated plays a crucial role. The effect is slightly counter-

intuitive at first glance because a higher resolution with more simulated structure factors

does not lead to a better reconstruction of the electron density but to one which differs

more from the initial CCSD or CISD one. This was explained with the fact that if the high-

resolution reflections, which arise mainly from the scattering of the core, become predominant

they mask the effect of electron correlation, which has the largest influence on the valence

electrons and therefore the low-angle reflections. Furthermore, they found an oscillating

behaviour of the difference between simulated and calculated structure factors with respect

to the resolution. The authors concluded that correlation effects are indeed visible in the

XCW electron density provided that only low and medium-angle reflections are used and the

λ-parameter is sufficiently high.

In this section the focus lies instead on the effect of electric fields. We will start with a linear,

homogeneous field and subsequently also study the effect of point charges mimicking the

electrostatic potential of surrounding molecules in a crystal. The exemplary molecule chosen

for this study is the ubiquitous urea. Subsequently, the effect of the crystal field was studied

using structure factors from periodic boundary calculations with CRYSTAL17 for L-alanine.

In all cases studied here, only the reference wavefunction contains explicit information about

the electric field and charges or about the entire crystal environment. From the reference

wavefunction structure factors are simulated and fitted with X-ray constrained wavefunctions.

In the quantum chemical part of this wavefunction calculation there is no field or charges.

Their effect is only accounted for by the structure factor part. The resulting X-ray constrained

wavefunction are compared to the reference WFNs to evaluate how well the effect of the

electric field is included.
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8.3.1 The effect of linear electric fields on the electron density from XCW
calculations

Electric field along dipolar axis of urea

A wavefunction was calculated at HF/6-311++G(2d,2p) level of theory with an electric field

applied along the carbon-oxygen bond with a strength of 0.01 au.

Figure 8.5 – Urea molecule with the
C=O bond along the z-axis. The elec-
tric field is also oriented in this direc-
tion.

Structure factors were simulated for the resolutions sin(θ)/λ = 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, and 2.0

Å−1 and a 10×10×10 Å3 unit cell. Tonto was used for the XCW calculations at same level of

theory as used for the reference wavefunction (HF/6-311++G(2d,2p)) and with the same unit

cell as used for the structure factor simulation. The scale factor was not optimized and all the

uncertainties on the structure factors (σ) were set to 1 e. The electron density was calculated

with Multiwfn [252]. Subsequently, the electron density resulting from the X-ray wavefunction

was compared to the reference density by analysing bond critical points and the RSR value as

defined in equation 8.6.

Figures 8.6 and 8.7 show the same data represented differently. In Figure 8.6 the RSR value

is plotted against λ. The RSR value describes the agreement between the XCW density and

the density of the reference wavefunction calculation with an applied electric field. With

increasing λ-values the RSR is decreasing, i.e. the electron density from the XCW calculation is

more in agreement with the reference wavefunction. The lower the resolution of the calculated

set of structure factor is, the faster the decrease happens.

Conversely, Figure 8.7 depicts the RSR value plotted against the angular resolution. For a

given λ, the RSR is lower the lower the resolution is. This holds true down to 0.3 Å−1, but at

a resolution of 0.1 Å−1 the agreement is worse. With the highest lambda value (λ= 20) this

reversing trend is already visible at resolution 0.5 Å−1 because the curve starts to go less steeply

down, which eventually leads to an increase again.

Actually, a higher resolution signifies that more structure factors were calculated (to higher
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Figure 8.6 – RSR plotted against λ for different angular resolution (sin(θ)/λ).

Figure 8.7 – RSR plotted against angular resolution (sin(θ)/λ) for different λ.

scattering angles) and one would expect better results. However, the effect of the electric field

is largest on the valence electrons because they are the most polarizable ones. The valence

electrons scatter at low angles while at high scattering angles the influence of scattering from

the core is clearly dominant. Therefore, including more high angle data just conceals the effect

on the valence electrons by giving the important low-angle reflections a lower relative weight

compared to the total dataset. Yet, below a certain resolution the amount of data becomes too
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low, which explains the steep increase from 0.3 to 0.1 Å−1.

Figure 8.8 shows the electron density at the BCP of the C=O bond along which direction the

electric field was applied. Initially, only points at angular resolutions 0.1, 0.3, 0.5 Å−1, and

higher were calculated and the point at 0.3 Å−1 looked like an outlier. However, the calculation

of points at 0.2, 0.25, and 0.35 Å−1 confirmed the correctness of this point and the curve indeed

drops down followed by a steep increase. This behaviour resembles the oscillating behaviour

found by Genoni et al. [64]. The point at 0.3 Å−1 is much lower and therefore it is doubtful

whether one can trust the results at this low resolution despite the RSR value being the best at

that resolution.

Figure 8.8 – Electron density at the BCP of C=O plotted against angular resolution (sin(θ)/λ)
for different λ.

Figure 8.9 shows the differences between the structure factors calculated from the wavefunc-

tion with and without field. In contrast to the findings of Genoni et al. [64] for the effect of

correlation, there is no obvious oscillating behaviour in the structure factor difference itself.

The effect of the field is more continuous on all resolutions. All the reflections which change by

more than 2 % on a relative scale, are h,k,0 reflections and thus in the direction of the applied

field.

"Randomly" oriented linear electric field

A Hartree-Fock wavefunction was calculated under an electric field of: x=0.01 au, y=0.02 au,

z=0.03 au as shown in Figure 8.10. As before, XCW calculations were fitting structure factors

obtained from this wavefunction and a hypothetical 10×10×10 Å3 unit cell.

134



8.3. How well can XCW calculations retrieve electric field effects?

Figure 8.9 – Difference between structure factors from urea wavefunction calculated with and
without field between 0 and 1.2 Å−1.

Figure 8.10 – Urea molecule with randomly ori-
ented electric field.

The same behaviour of the RSR value as with the linear electric field along C=O can be seen

as illustrated in Figure 8.11. Since the simulated field is larger, also the RSR value is larger,

meaning that there is less agreement between the XCW density and the reference density of

the wavefunction calculated with the field. It does not seem to matter in which direction an

electric field is applied, truncation of the structure factor data at a lower resolution anyway

leads to electron densities which are better in agreement with the one from the reference

wavefunction.

8.3.2 The effect of point charges around urea simulating neighbouring
molecules

The first coordination sphere of urea in the crystal was simulated with ten urea molecules

placed around the central one as illustrated in Figure 8.12. Gaussian was used to calculate

the charges that fit the electrostatic potential of these ten molecules. Subsequently, the point

charges placed at the position of every atom were used to calculate a wavefunction. This

wavefunction simulates the electric field due to the influence of the first coordination sphere
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Figure 8.11 – RSR plotted against λ for different sin(θ)/λ. The RSR represents the similarity
between the XCW density and the density from a wavefunction calculated with a linear,
randomly oriented field.

in the crystal but does not take into account long range interactions.

The effect of point charges fitting the electrostatic potential used in Gaussian and point charges

automatically assigned in Tonto for a cluster radius of 8 Å is similar and detailed in Figure B.1

in the appendix.

From the wavefunction calculated with charges, structure factors were simulated and subse-

quently used for XCW calculations.

Figure 8.12 – The central molecule is
shown with balls and sticks and the
ten surrounding urea molecules with
sticks. For the calculation of the wave-
function the surrounding molecules
were represented as point charges at
every atom position fitting the elec-
trostatic potential.
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The same trends with respect to the λ-parameter and the angular resolution as for the two

linear fields can be seen in Figure 8.13. When judged based on the RSR value, the strength

of the effect is between the effect of the two linear fields studied before and thus in absolute

magnitude between 0.017 au and 0.037 au.

Figure 8.13 – RSR plotted against λ for different resolutions sin(θ)/λ. The RSR represents the
similarity between the XCW density and the density from a wavefunction calculated with point
charges around the central urea.

While the RSR value is just one number for the comparison of the entire electron densities,

one can also plot a density difference map to see more in detail where these changes happen.

Figure 8.14 shows that due to the effect of point charges at the positions of surrounding oxygen

atoms, electron density moves away from the hydrogen atoms to the nitrogen causing the red

lobes. Contrariwise electron density moves from the C=O bond towards the oxygen atom due

to the positive surrounding charges.

Figure 8.14 – Difference between density from
wavefunction without field and from XCW at
λ=10, resolution = 0.7 Å−1. The isovalue is
0.0008 e/Bohr3, with red for positive and blue
for negative contour levels. Therefore, blue sig-
nifies more density in the XCW case and red
less electron density.

Table 8.9 shows the total molecular dipole moment of urea obtained from the different wave-
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functions. The one from the X-ray constrained wavefunction is in between the one from the

wavefunction with charges and the one without any charges. However, it is closer to the one

without charges and thus the XCW procedure does not recover the entire effect of the electric

field due to the charges. It is worth mentioning that the calculated dipole moments are in

agreement with higher level calculations of Santos et al. [253] who obtained 4.67 D for the

dipole moment of urea in vacuo and 7.54 D in the same solid phase of urea as used here.

Table 8.9 – Total molecular dipole moment in Debye

Calculation of wavefunction dipole moment

WFN without charges 5.254
X-ray constrained WFN with λ= 10 and resolution = 0.7 Å−1 5.511
WFN with charges simulating crystal environment 7.900

8.3.3 Comparison of electric field and correlation effects on the electron
density from XCW calculations

As written previously, electron correlation and the crystal field are not considered in the

Hartree-Fock part of an XCW calculation but are present only in the structure factor part. This

justifies studies examining how well these effects are included in XCWs.

A brief comparison between these two effects is made here. The correlated wavefunction is a

CCSD one obtained with Gaussian. The urea molecule is in a slightly different geometry than

for the studies of the electric field but this is of no relevance here.

Table 8.10 shows the RSR agreement value for different XCW densities with respect to the

respective reference density.

The effect of an electric field depends on its strength. Depending on that it can have a stronger

or weaker influence on the electron density than correlation has. Increasing λ always leads to

an improved agreement.

Table 8.10 – RSR values for various XCW calculations using structure factors simulated up to
resolution 0.7 Å−1.

Structure factors simulated using wavefunction including: RSR*10−2

λ=1 λ=10

Correlation 4.683 3.950
E-field linear along C=O 1.400 1.370
E-field random linear 7.990 7.797
Point charges 4.313 4.128

Figure 8.15 visualizes the different effect of correlation and the electric field due to point

charges around urea. While the charges shifts the outermost electrons in the positive direction

of the field (as with a linear field along C=O) and produce a striped pattern, correlation moves
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electron density 1) away from the bonds to the nuclei and 2) generally outwards.

The comparison of the XCW density to a normal Hartree-Fock one always provokes the same

effect as the comparison between the reference density compared to the normal Hartree-Fock

one, but the effect is damped.

(a) HF - CCSD in direct space (b) HF - XCW (fitting structure factors includ-
ing correlation)

(c) HF (no charges) - HF (point charges) (d) HF - XCW (fitting structure factors includ-
ing effect of charges)

Figure 8.15 – Density differences for the effect of correlation and point charges. The isosurface
level is 0.002 e/Bohr3 for a) and b) and 0.0008 e/Bohr3 for c) and d). Red represents positive
and blue negative contour levels. The XCW used here were done with λ=10 and resolution 0.7
Å−1.

With higher λ the agreement between the XCW and the reference wavefunction improves as

well as generally with lower angular resolution of the structure factors.

Point charges simulating the electric field have in total magnitude a similarly large effect on the

electron density as electron correlation as can be seen from the RSR value and the difference

densities.

While the definition of an optimum λ-value is rather difficult (see section 8.1), it is possible to

say which resolution is best for a specific case, namely the one giving the lowest RSR without

producing any peculiarity.

139



Chapter 8. Different Aspects of X-ray Constrained Wavefunctions

8.3.4 Effect of the crystal field on the electron density from XCW calcula-
tions

Besides studying the effect of an electric field or point charges on structure factors and the

ability of X-ray constrained wavefunction calculations to include these effects, also the crystal

field can be investigated with similar methods. In chapter 9 the effect of the crystal field on

the X-ray constrained density and especially also on X-ray constrained extremely localized

molecular orbitals (XC-ELMOs) of different molecules is examined. In this section the total

electron density of L-alanine is analysed after shortly introducing the independent molecule

model (IMM).

Independent molecule model for structure factor simulation

A wavefunction calculated with periodic boundary conditions (crystal calculation) can be

used to simulate structure factors. When standard crystal calculations are carried out, these

structure factors include long-range crystal field effects and short-range intermolecular in-

teractions. However, it is also possible to perform crystal calculations where these effects are

explicitly excluded using the MOLSPLIT option of CRYSTAL17. This avoids molecule-molecule

interactions by removing the molecules very far apart from each other. After the wavefunction

calculation has been done, the molecules are placed again in their normal crystal geometry,

and the superposition of the individual molecular densities gives rise to the crystal one. We

call this approach using a non-interacting system the independent molecule model (IMM).

Both the ’normal’ and the IMM structure factors can be used for XCW calculations. The

densities of the so-obtained X-ray constrained wavefunctions can be subtracted to highlight

differences. Therefore, the influence of the crystal field and intermolecular interactions go-

ing via reciprocal space, on the density of a molecule can be studied. The same holds for

XC-ELMOs, apart from the fact that the orbitals are squared before comparison to get rid of

the phase.

This method to investigate the influence of a crystal environment on the XCW results works

only for simulated structure factors since in experimental ones, interactions cannot be artifi-

cially excluded. However, in that case, one can instead analyse the electron density differences

resulting from the comparison of an unconstrained calculation (λ= 0) and of an XCW compu-

tation (λ> 0 and experimentally measured structure factors as restraints).

L-alanine in the crystal

A periodic wavefunction of L-alanine based on its real crystal structure (CSD name LALNIN23,

Figure 8.16) was calculated with CRYSTAL17 at HF/TZVP [245] level of theory. In addition, an

IMM wavefunction with the same specifications was computed. Structure factors were simu-

lated for the full sphere up to resolution 1Å−1. Hartree-Fock was used because correlation is

not of interest for this study and the basis set was changed with respect to the previous section

because the one used in Tonto did not lead to convergence for the periodic calculations with
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CRYSTAL17. Nevertheless, the 6-311++G(2d,2p) basis set was used for the XCW calculations.

Figure 8.16 – Strong hydrogen bonds formed by an L-alanine molecule in the crystal.

Figure 8.17a depicts the direct space electron density difference between the normal CRYS-

TAL17 calculation and the IMM one and is therefore illustrating the effect of interactions in

the crystal. Figure 8.17b instead shows the density difference map of an XCW fitting to normal

and to IMM structure factors of a CRYSTAL17 calculation. The features in Figures 8.17a and b

are qualitatively very similar although the effect is weaker when going via reciprocal space

fitting and therefore the isovalue in the XCW picture is chosen lower.

The blue lobes around the oxygen atoms represent an accumulation of electrons when using

structure factors including the crystal field effect. This can be explained by the interaction

of the oxygen atoms with partially positively charged neighbouring atoms, especially the

strong hydrogen bond shown in Figure 8.16. Due to this interaction, electrons are polarized

from the C-O bond towards the oxygen atom causing the observed density difference. On the

hydrogen atoms of the amine the opposite side of this effect becomes visible. Due to the strong

hydrogen bond, electrons from the oxygen atoms of a neighbouring molecule push electrons

on the hydrogen atoms into the N-H bond. Thus, there is a local depletion of electron density

explaining the red lobes on these atoms. It is to be pointed out that, with this method, one

highlights the rearrangement of electron density within the molecule itself as a consequence

of the crystal field and intermolecular interactions. But one does not see accumulation of

electron density in the regions of intermolecular interactions. It is an intrinsic part of XCW

calculations, which use molecular wavefunctions to describe molecules in crystal, that this is

so. Nevertheless, the example of L-alanine demonstrates that effects due to intermolecular

interactions in the crystal are recovered in XCW calculations and density difference maps can

be used to visualize them.
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(a) Direct subtraction of densities from CRYSTAL17
calculation ρI M M −ρcr y st al . The picture appears
chaotic because cubes of periodically repeated
units are subtracted and not a molecular density.
The isovalue is 0.002 e/Bohr3. Blue regions indi-
cate an accumulation of electron density for nor-
mal crystal calculations with respect to IMM calcu-
lations.

(b) Density differences obtained by comparing XCW
(λ=5) calculations with structure factors including
and excluding the electric field. The isovalue is
0.0008 e/Bohr3. Blue regions indicate an accumula-
tion of electron density for XCW calculations with
structure factors including the crystal field effects.

Figure 8.17 – Electron density difference maps for L-alanine.
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8.4 Frozen density embedding using X-ray constrained wave-
functions

The calculation of a wavefunction is limited to systems without too many atoms and electrons.

For the case of a solute molecule in a solvent, for example, it is usually not possible to compute

an explicit wavefunction for the entire system. Calculating only the solute alone, instead, is

not accurate enough for most problems. For this reason, strategies had to be developed that

allow for the calculation of an explicit wavefunction of the solute while taking into account

the environment. The embedding approach by Wesołowski et al. [254, 255] divides the total

system into two subsystems SA and SB , where the total density is the sum of the two densities:

ρ(r) = ρA(r)+ρB (r) (8.9)

Only for subsystem SA (for example the solute molecule) a wavefunction is explicitly calculated.

From the wavefunction the electron density can be calculated. For HF and DFT it is:

ρA(r ) = 2
N /2∑
i=1

ϕ∗
i ϕi (8.10)

The influence of subsystem SB is considered via a constant density ρB (r). This approximation

requires that the interactions between SA and SB are not too strong and not of dominantly

covalent nature. Due to the use of a constant density in which an explicitly calculated molec-

ular wavefunction is embedded, this method was termed Frozen-density embedding the-

ory (FDET). With Kohn-Sham equations, the effect of the frozen density is taken into account

via an effective potential V #
e f f (r), which replaces the conventional potential:

[
−1/2∇2 +V #

e f f (r)
]
ϕi = εiϕi (8.11)

Subsequently, the equations can be solved in the usual self-consistent way. To obtain the

embedding potential, the electron density ρB (r) represented in any desired form and the

potential from the nuclei νB (r) are needed.

Usually ρB (r) is obtained with conventional quantum mechanical calculations. However, it is

also possible to use an experimentally derived electron density such as for example the ones

obtained from X-ray diffraction experiments with charge-density quality data. In that case the

electron density can either be represented by a multipolar model or it can come from X-ray

constrained wavefunctions. Obviously, the potential from the nuclei is also available in these

cases, since the atomic coordinates must be known in both methods.

For this study, X-ray constrained wavefunction calculations of glycylglycine were performed to

obtain experimental densities, which were subsequently used for embedding. The embedded

molecules were acrylic acid, acrolein, and acetone in different orientations with respect to

glycylglycine. The excitation energies of the embedded molecules were studied focusing

on the effect of changing the λ weighting parameter in the X-ray constrained wavefunction
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calculations.

It was found that the excitation energies obtained with ρB (r) from X-ray constrained wavefunc-

tions are comparable to the ones obtain with ρB (r) from conventional quantum wavefunctions.

In contrast to those, XCWs are experimental and implicitly take into account correlation ef-

fects even when calculated at Hartree-Fock level of theory. In addition, XCWs represent the

situation in the crystal and not in gas-phase. Therefore, they might provide a useful alternative

to conventional ones in cases where the embedding system itself should already include

intermolecular interactions.

144



9 Analysis of Crystal Field Effects
and Interactions with X-ray Re-
strained ELMOs

Apart from the addendum, this chapter is based on the paper "Analysis of crystal field effects

and interactions with X-ray restrained ELMOs", which was submitted to the special issue

"Charge density studies towards structure-property correlation" of the Journal of Molecular

Structure.

Abstract: The purpose of this study is to assess the capability of X-ray restrained molecular

wavefunction methods to reproduce the perturbation due to the crystal field.

The effect of the crystal environment on the molecular charge densities has been thoroughly

investigated experimentally and theoretically. However, the same analysis in terms of molec-

ular orbitals is unprecedented. We specifically analysed the extremely localized molecular

orbitals (ELMOs), because they allow for a valence bond like interpretation that is closer to the

typical chemical reasoning.

For a set of test molecules, we calculated first principles wavefunctions (called primary wave-

functions) and the corresponding scattered intensities (primary structure factors), that we used

for X-ray restrained Hartree-Fock and ELMO calculations. This mimics the typical procedure of

modelling wavefunctions from experimental X-ray diffraction, having the primary wavefunc-

tion as benchmark.

This study follows a previous investigation concerning the effects of electron correlation, where

it was shown that those subtle features could be retrieved only to a minor extent. The electric

field generated by surrounding molecules is instead more substantial. Therefore, retrieving

this information should be more successful and, in case, extremely useful for supramolecular

chemistry and crystal engineering. The work also provides useful indications to experimentalists

who want to exploit the potentialities offered by the X-ray restrained wavefunction methods.
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9.1 Introduction

Long-range crystal field and short-range intermolecular interactions significantly affect the

structure and properties of molecules in crystals. Long-range forces are mainly due to atom-

ic/molecular charges whose strength is decaying with the reciprocal square power of the

distance, whereas other forces are decaying more rapidly. On the other hand, short-range

forces are a blend of different effects, including partially covalent interactions, charge transfer,

the apparent repulsion due to the Pauli exclusion principle, London-type forces, as well as

the electrostatic forces mentioned above. The interplay among these different factors is ex-

tremely complex. However, understanding these interactions in crystals is fundamental for

the purpose of rationally designing materials featuring specific properties and, more generally,

for crystal engineering. Various techniques are being used to study interactions in crystals,

from the traditional examination of crystal structures to the equally important analysis of

electron densities and their derivatives [256, 257, 258, 259] obtained from purely theoretical

calculations or from experiments (especially from X-ray diffraction measurements and subse-

quent modelling). Since the correlation of electron densities with properties is crucial, various

descriptors based on the electron density itself were derived [25, 260, 33, 261, 262] and used to

analyse interactions .

In this context, the possibility to compute so-called X-ray constrained wavefunctions (XCWs)

[106, 263, 128, 264, 265, 64, 266, 127] has emerged as a powerful approach that enables scien-

tists to retrieve not only one-electron density distributions, but also tentative wavefunctions

from experimental X-ray diffraction data. Since these wavefunctions are actually restrained

(not exactly constrained) to structure factors (SF), we will subsequently refer to them as

X-ray restrained wavefunctions (XRWs) in contrast to the generally used term in literature.

These experimental wavefunctions can be obtained through the simultaneous minimization

of the electronic energy and of the difference between observed and calculated structure

factor magnitudes for a molecular wavefunction (WFN) ideally embedded in a crystal. X-

ray restrained wavefunctions have been used in diverse studies for the analysis of crystal

interactions and properties, e.g. for refractive indices [129, 267] or for the study of bonds

[268, 136, 269, 270, 271], etc. Although so far these studies mainly focused on the electron

density and its related properties in crystals, the XRW technique also provides molecular

orbitals. As we will see in this study, by exploiting orbitals from XRW calculations, one would

be able to exploit the full arsenal of this new technique.

Although extended to different strategies of quantum chemistry [272, 273, 130, 274, 275, 276,

277, 278], the XRW approach was originally developed in the framework of the Hartree-Fock

formalism and this is the level of theory that is still mainly used when X-ray restrained wave-

function calculations are performed. However, when the Hartree-Fock technique is exploited,

both in the traditional way and within the XRW method, the resulting canonical orbitals

generally spread over the entire molecule, thus hampering a straightforward chemical inter-

pretation. On the other hand, more frequently, chemical-bonding analyses based on MOs

takes advantage of some localization strategies, reminiscent of valence bond treatments, or of
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some perturbation theory-based approaches (as for example the analysis of frontier molecular

orbitals or orbital diagrams widely adopted also in textbooks). Concerning the localization

techniques, the goal is achieved by obtaining molecular orbitals mainly localized on small

fragments within the molecule (generally, atoms and bonds). For example, traditional local-

ized MOs are those obtained through unitary transformations of the canonical Hartree-Fock

molecular orbitals [279, 280, 281, 282, 283, 284, 285] that maximize or minimize chemical-

ly/physically sound functionals (such as, the orbitals self-extension [279, 280], the orbitals

auto-repulsion energy [281, 282], the charge density overlap [283], the local orbital popula-

tions [284, 285]). Obviously, being unitary transformations of the canonical Hartree-Fock

orbitals, they provide a wavefunction equivalent to the canonical Hartree-Fock one (they differ

only for a phase factor) and, consequently, the same properties (e.g. total energy and electron

density) for the system under exam. However, they are not exactly localized, but they have

tails extending over other regions of the molecule than the specified fragment. This partially

reduces their chemical interpretability.

In order to build molecular orbitals that are strictly localized on molecular subunits, we have

to resort to the so-called extremely localized molecular orbitals (ELMOs). [37, 286] They are

molecular orbitals exactly localized on any of the desired fragments, defined by a localization

scheme chosen a priori according to the chemical intuition or some computational needs. In

this case, due to a reduction in the variational space (i.e., the ELMOs are expanded on a subset

of the available atomic basis functions, see section 9.2.1), the Hartree-Fock representation is

not preserved and, hence, the total energy associated with the ELMO wavefunction is higher

than the corresponding Hartree-Fock one. This is the price to pay to have a strict localization

and a better chemical interpretability.

Similar to the XRW approach with canonical Hartree-Fock MOs, an X-ray restrained wavefunc-

tion technique in the framework of the ELMO theory was also developed (XC-ELMO strategy

in literature, subsequently termed XR-ELMO) [272, 287, 130, 274]. As in the unrestrained

case, the strict localization allows for a more straightforward chemical interpretability of the

molecular orbitals. An inherent and immediate advantage of obtaining localized functions

is the possibility to define them for specific fragments, such as atoms, bonds or functional

groups, and to consequently store them as electronic LEGO building blocks in proper libraries

[288, 289, 290] with the final goal of reconstructing electron densities and related properties

[291, 292], including structure factors. This allows for the refinement of crystallographic

structures of large systems (e.g. proteins and peptides) with undoubted advantages. [293]

In this study, we investigate another possibility offered by the X-ray restrained ELMOs: ex-

ploiting them to interpret supramolecular interactions in crystals within an orbital framework.

In this way, the covalent interactions (visualized through orbitals) as well as the electrostatic

ones (visualized through densities) are equally accounted for. The goal of using ELMOs is to

pinpoint orbitals that are mostly perturbed by an interaction and, consequently, to get insights

into their roles (and the roles of the corresponding molecular fragments) in the stabilization of

a crystal packing. Furthermore, it is interesting to find out whether the change in the extremely
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localized molecular orbitals is due to short-range or orbital interactions or, otherwise, to

long-range effects due to the crystal field (see Figure 9.1).

Figure 9.1 – Oxalic acid molecule in a crystal. The strongest short-range interactions with the
surrounding water molecules are shown with black lines. Blue dots represent other oxalic acid
molecules in the crystal responsible for the long-range crystal effects.

The paper is organized as follows. In the next section, we briefly describe the theoretical and

computational details of our investigation, also presenting the fundamentals of the ELMO and

XR-ELMO methods and describing the systems taken into account. Afterwards, we present

and discuss the obtained results and finally, in the last section, we draw general conclusions.

9.2 Theory and Methods

9.2.1 The ELMO and XR-ELMO Techniques

The ELMO strategy originally proposed by Stoll [286] requires a predefined localization scheme

that subdivides the molecule into non-exclusive subunits. This implies assigning local basis-

sets βi = {|χi
µ〉}M i

µ=1 to the different fragments, each of them given by the basis functions (or

atomic orbitals) centred on the atoms that belong to the considered subunit. Afterwards,

the molecular orbitals corresponding to the different fragments are expanded on these local

basis-sets. For example, for the i -th subunit, the α-th ELMO can be expressed as:

|ϕi
α〉 =

∑
µ∈βi

C i
µα|χi

µ〉 (9.1)

The molecular wavefunction is the single Slater determinant constructed with orbitals defined

in equation 9.1:

|ΦELMO〉 = 1p
(2N !)det [S]

Â
[
ϕ1

1ϕ̄
1
1 · · ·ϕ1

n1
ϕ̄1

n1
· · ·ϕ f

1 ϕ̄
f
1 · · ·ϕ

f
n f
ϕ̄

f
n f

]
(9.2)

with Â as the antisymmetrizing operator, ni as the number of occupied ELMOs for the i -

th fragment, ϕ̄i
α as a spin-orbital with spatial part ϕi

α and spin part β, and det [S] as the
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determinant of the overlap matrix between the occupied ELMOs.

The coefficients of the linear combination 9.1 that define the ELMOs are obtained by minimiz-

ing the energy associated with the ELMO wavefunction and are obtained by solving modified

Hartree-Fock equations for each fragment in which the molecule under exam was initially

subdivided:

F̂ i |ϕi
α〉 = εi |ϕi

α〉 (9.3)

with F̂ i as the Fock operator for the i -th fragment, which is defined as

F̂ i =
(
1− ρ̂+ ρ̂i †

)
F̂

(
1− ρ̂+ ρ̂i

)
(9.4)

where F̂ is the traditional Fock operator of quantum chemistry, ρ̂i is the local density operator

for the i -th subunit, which depends only on the occupied ELMOs of the fragment, and ρ̂ is the

global density operator, which depends on all the occupied ELMOs of the molecule and, for

this reason, couples the eigenvalue-equations associated with the different subunits.

The only difference between the unrestrained and the X-ray restrained ELMO techniques

is that the former are obtained with a traditional variational method, whereas the latter

minimize the sum of the total energy of the system and the disagreement with respect to a

set of X-ray structure factors weighted by their experimental uncertainties (if coming from

a measurement). This means that the desired X-ray restrained ELMOs are those extremely

localize molecular orbitals that always respect the expansion constraints imposed by equation

9.1, but that also minimize the functional:

J [ΨELMO] = 〈ΨELMO |Ĥ |ΨELMO〉+λ(χ2 [ΨELMO]) (9.5)

where Ĥ is the non-relativistic Hamiltonian operator for the reference molecule in the unit-cell

of the crystal under exam, λ is an external multiplier giving the strength of the experimen-

tal restraint, and χ2 is the measure of the statistical disagreement between computed and

experimental values. In particular,

χ2 = 1

Nr −Np

∑
h

(
η|F calc

h |− |F exp
h |)2

σ2
h

(9.6)

with Nr as the number of considered X-ray diffraction data, Np as the number of adjustable

parameters, h as a triad of Miller indices labelling each reflection, σh as the experimental

uncertainty corresponding to the observed structure factor amplitude |F exp
h |, and η as a

scale factor that is determined by minimizing χ2. Although the method is conceived to use

experimental structure factor magnitudes, also theoretically simulated structure factors can

be used in equation 9.6. This is the procedure that we actually adopted for most of the X-ray

restrained wavefunction calculations (including the XR-ELMO ones) carried out in the present

study (see section 9.2.2 and the Results section).

Looking for the ELMOs that minimize functional 9.5 corresponds to solving a new set of modi-
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fied Hartree-Fock equations (one for each subunit), [272, 287] which are formally analogous

to those proposed by Stoll:

F̂ i ,exp |ϕi
α〉 = εi |ϕi

α〉 (9.7)

but where the modified Fock operator for the generic i -th fragment has this form:

F̂ i ,exp =
(
1− ρ̂+ ρ̂i †

)
F̂

(
1− ρ̂+ ρ̂i

)
+λ∑

h
KhRe

{
F calc

h

}(
1− ρ̂+ ρ̂i †

)
Îh,R

(
1− ρ̂+ ρ̂i

)
+λ∑

h
KhIm

{
F calc

h

}(
1− ρ̂+ ρ̂i †

)
Îh,C

(
1− ρ̂+ ρ̂i

)
(9.8)

where

Kh = 2η

Nr −Np

η|F calc
h |− |F exp

h |
σ2

h |F calc
h | (9.9)

and Îh,R and Îh,C are the real and imaginary parts of the structure factor operator given by

Îh = Îh,R + i Îh,C =
Nm∑
k=1

e i 2π(Rk r+tk )·(Bh) (9.10)

with B as the matrix of the reciprocal-lattice and {Rk ,tk }Nm

k=1 as the Nm unit-cell symmetry

operations.

9.2.2 Computational protocol

Compounds

We studied two different compounds starting with the very simple molecule HCN. First this

molecule was examined in an electric field and second in a crystal. In both cases the same

geometry of the HCN molecule was used, which was optimized in vacuo at the B3LYP/cc-pVDZ

level of theory. In order to study HCN in a crystal, we considered a hypothetical crystal of

HCN with no symmetry elements except translation (space group P1) and, consequently, with

only one molecule per unit-cell. The distance between the nitrogen atom of one molecule

and the hydrogen of its closest neighbour was chosen to be 2.77 Å, which corresponds to the

mean lengths of this particular hydrogen bond as retrieved from the CSD [216]. The search

was made for nitrogen triply bonded to carbon interacting with a hydrogen atom bonded to

a carbon (C≡N· · ·H-C). The angle (CNH) was constrained to be between 170 and 180◦ in the

search to obtain only linear contacts. By chance, the unit-cell length in the direction along the

molecule becomes exactly 5 Å. Therefore, the unit-cell dimensions were chosen to be 5 Å in

each direction (a=b=c= 5 Å).

Afterwards, we considered oxalic acid dihydrate, a hydrogen-bonded system, for which we

took into account the geometries of three studied pressure points, all of them taken from a

study conducted by Casati et al. [294] and left unchanged.
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Periodic ab-initio calculations and structure factor simulation

For the case of HCN in an electric field, the molecule was placed in a hypothetical 10×10×10

Å3 unit-cell in the absence of any roto-reflection symmetry element and fixed molecular

geometry in order to simulate structure factors with XD [65].

For all the examined crystal systems, single point periodic calculations with CRYSTAL17 [23]

were performed on the described structures. The calculations were done at the restricted

Hartree-Fock (RHF) level of theory with a 6-31G(d,p) basis set. The RHF/6-31G(d,p) combina-

tion was consistently used for all the single-point wavefunction calculations in vacuo or with

periodic boundary conditions, as well as for all the X-ray restrained calculations for sake of

consistency. XR-ELMO calculations are time-intensive, which is the reason why we adopted a

rather low level of theory and a rather contracted basis set. Noteworthy, a precise description

of electron correlation is not of importance for the purpose of this study. At the moment, we

are rather interested to test the machinery of XR-ELMOs and its ability to retrieve electric field

induced changes to the wavefunction, not in a very accurate wavefunction itself.

For the example of HCN in a hypothetical crystal and α-OAD at 0, 3.6, and 5.3 GPa, structure

factors were simulated with CRYSTAL17. In addition, the MOLSPLIT option was used to cal-

culate a periodic wavefunction where no intermolecular interactions are present for reasons

explained in section 9.3.1. The software automatically recognizes oxalic acid and water as

individual molecules and separates them far apart. Table 9.1 gives an overview about the three

studied compound, their unit-cell, symmetry, and resolution for which structure factors were

simulated.

X-ray restrained calculations

For all the XRW calculations with canonical Hartree-Fock MOs (subsequently called XR-RHF)

we exploited the Tonto [126] software. All computations were performed with a weighting

factor λ equal to 5, if not otherwise specified. Different λ-values between 0.5 and 50 were

also tested but they did not lead to qualitatively different results from the λ=5 case (see Figure

9.4). Since in this study we mainly used only theoretical structure factors as restraints, all the

uncertainties σh were set equal to 1.0 e and the obtained χ2 values were generally very low.

All the XR-ELMO calculations were performed using a modified version for the GAMESS-UK

quantum chemistry package [295] where the XR-ELMO equations have been implemented.

Also for these computations, we set λ=5 and σh=1.0 e. The lattice and molecular geometry

always corresponded to the calculation of the primary wavefunction.

For the X-ray restrained wavefunction fitting calculation of OAD, the asymmetric unit was

chosen such that it contains one oxalic acid and two water molecules. For this purpose the

inversion centre was removed and the atoms duplicated exactly at the symmetric coordinates

such that the space group changed from P21/n to P21.
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Table 9.1 – Overview of different compounds used with corresponding resolution for structure
factors.

System unit-cell dimen-
sions (Å3)

symmetry resolution for SF (Å−1)

HCN in electric field 10×10×10 P1 0.0-0.3, 0.0-0.7, 0.0-1.2, 0.0-1.8

HCN in crystal 5×5×5 P1 0.0-0.7

Oxalic acid dihydrate
(periodic wavefunc-
tion calculation)

experimental P21/n 0.0-0.8

Oxalic acid dihydrate
(XRW calculation)

experimental P21 0.0-0.8

Differences between electron densities

We analysed the differences between the electron densities resulting from the various computa-

tions (from now on, density difference maps or, more simply, density differences). In particular,

electron densities obtained from XRW calculations based on structure factors including elec-

tric field or crystal interactions were subtracted from electron densities from XRW calculations

using structure factors without interactions (ρX R
no f i el d −ρX R

f i eld or respectively: ρX R
I M M −ρX R

cr y st al ,

see Table 9.2), as it will be described with more details in the Results section for each spe-

cific case. For the direct comparison of the obtained XR-ELMOs (|ϕX R
no f i el d |2 −|ϕX R

f i eld |2 and

|ϕX R
I M M |2 −|ϕX R

cr y st al |2), we decided to consider and subtract the squared orbitals instead of the

simple orbitals for two reasons; because the former are more directly connected to electron

density distributions and, above all, because they do no depend on a phase factor.

9.3 Results

9.3.1 HCN

Electric field

A molecule embedded in a crystal interacts with its first neighbours through short range

intermolecular contacts, but it also feels the long range electric field generated by the outer

molecules. In order to simulate the latter, we made the simplest approximation, which

consisted in applying a homogenous and linear electric field along the linear molecule HCN

in both orientations of the main inertial axis. The applied field was 0.01 a.u., which is of the

order of magnitude typically experienced by a molecule in a crystal with intermediately strong

packing forces. From now on, we will indicate these calculations (and the resulting electron

densities) as “direct space calculations” (and “direct space electron densities”) to distinguish

them from computations (and electron densities) associated with the use of structure factors
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Table 9.2 – Definition of various density differences. IMM refers to the independent molecule
model (see the text for more details). Instead of (IMM-crystal), in all the cases mentioned
below, the differences can also be (no electric field – field). XR refers to wavefunctions or
orbitals obtained from X-ray restrained calculations. The primary wavefunction is the initially
calculated wavefunction used to simulate the structure factors.

Symbol difference between source in direct space source in reciprocal
space

ρI M M −ρcr y st al molecular electron
densities

primary wavefunc-
tion (Hartree-Fock or
ELMO calculation)

|ϕI M M |2−|ϕcr y st al |2 squared ELMOs primary wavefunction
(ELMO calculation)

ρX R
I M M −ρX R

cr y st al molecular electron
densities

XR-Hartree-Fock or
XR-ELMO calcula-
tions

primary structure fac-
tors

|ϕX R
I M M |2−|ϕX R

cr y st al |2 squared ELMOs XR-ELMO calcula-
tions

primary structure fac-
tors

ρX R
λ=0 −ρX R

λ>0 molecular electron
densities

XR-Hartree-Fock or
XR-ELMO calcula-
tions

primary or measured
structure factors

|ϕX R
λ=0|2 −|ϕX R

λ>0|2 squared ELMOs XR-ELMO calcula-
tions

primary or measured
structure factors (but
not recommended
for simulated primary
ones)

(namely, reciprocal space information) as restraints. Subsequently, the direct space densities

obtained from the wavefunctions calculated with and without the external electric field were

subtracted as shown in Figure 9.2.

At the terminal sites of the molecule, the electrons are shifted according to the electrostatic

field direction. In the central part of the molecule (around the carbon atom), instead, the

opposite happens to compensate for the effect at the extremities. This illustrates a classical

through-bond reorganization of the electron density in response to the external electric field.

[111]

This is the behaviour obtained for the direct-space calculations. If the XRW procedure works,

the same behaviour should be observed in XRW electron densities. For this reason we com-

puted structure factors for the three wavefunctions (no-field, positive electric field correspond-

ing to the left side of Figure 9.2, and negative electric field corresponding to the right side of
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Figure 9.2 – Electron density differences in direct space. The compared densities correspond
to a wavefunction calculated without any field and to wavefunctions resulting from computa-
tions with an electric field applied along the molecular axis (ρno f i el d −ρ f i eld ). The plotted
isosurface corresponds to 0.001 e/bohr3. Blue regions indicate an accumulation of electron
density when the electric field is applied, whereas red regions indicate depletion of electron
density when the electric field is applied.

Figure 9.2). As shown by Genoni et al. [64], the diffraction resolution of the structure factors

plays an important role. Therefore, structure factors were simulated up to sinθ/λ = 1.8 Å−1 and

X-ray restrained wavefunctions were calculated using four different resolution shells (0.0-0.3,

0.0-0.7, 0.0-1.2, 0.0-1.8 Å−1).

Figure 9.3 shows electron density differences ρX R
no f i el d −ρX R

f i eld obtained from X-ray restrained

wavefunctions at Hartree-Fock and ELMO levels. These XRWs were calculated by fitting to

primary structure factors that include or exclude the effects of the electric field. In analogy to

the direct space calculations, the electric field was also applied in both directions.

In general, the effect is comparable to the one obtained through the direct-space calculations,

although it is damped (the isosurface level being 0.0002 e/bohr3 in Figure 9.3 compared with

0.001 e/bohr3 in Figure 9.2). This is due to the fact that XRW calculations by definition only

partially include the effect of the electric field. In fact, while the second part of equation 9.5

contains this effect (through reciprocal space fitting), the first part (energy minimization) does

not. This holds true not only for the electron density but also for quantities derived from it,

such as for the dipole moment shown in the appendix in Figure C.1.

Furthermore, the diffraction resolution plays an important role for the electrostatic field

as it does also for including electron correlation [64]. In microscopy, a higher resolution

is synonymous of higher accuracy in the image formation. However, in diffraction mode,

where the image comes from optimizing a model against the measured structure factors, the

higher accuracy is non-homogeneously spread. Core electrons dominate the high scattering

angle, while valence electrons, on which the effect of the electric field (as well as of electron

correlation) is the largest, scatter only at low angles. Therefore, including higher angle data

reduces the weight of valence electrons and of their density. This pitfall is more pronounced for

weaker deformations as those produced by an external electric field or by electron correlations,

whereas it is less harmful for electron polarizations due to chemical bonding, because the

effects are much larger. This explains the decreased magnitude and clarity of the density
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Figure 9.3 – Density differences obtained by comparing XRW calculations with SF including
and excluding the electric field (ρX R

no f i el d −ρX R
f i eld ), both at Hartree-Fock and ELMO level; blue

regions indicate an accumulation of electron density for XRW calculations with SF including
the electric field effects. For all the plots, the isovalue is 0.0002 e/bohr3.

differences in Figure 9.3 with an increasing resolution. Increasing the strength of the simulated

electric field from 0.01 a.u. to 0.1 a.u. qualitatively leads to similar results, as shown in the

appendix in Figure C.2. An interesting feature is the lobe on the right side of the nitrogen

nucleus, which, in Figure 9.2, is embedded in a larger and opposite-sign lobe. This seems to

be an artefact arising from the transformation through reciprocal space and back to direct

space. It is likely due to a poor description of the very diffuse density that contributes to the

scattering only at very low resolution (hardly sampled by a medium/small-size unit-cell in

direct space and therefore invisible).

Figure 9.4 shows the results of X-ray restrained Hartree-Fock calculations using a set of struc-

ture factors up to only 0.3 Å−1 for different values ofλ. When the isosurface levels are chosen as

in Figure 9.4, it becomes very clear that different λ-values affect the results only quantitatively,

but not qualitatively. It is interesting to notice that, above a certain λ-value, the isovalue does

not need to be further increased. It seems that, at that point, increasing the weight of the

reciprocal space fitting does not significantly change the result.

In Figure 9.3, it is easy to observe that the density differences resulting from XR-ELMO cal-

culations are completely analogous to those obtained through traditional X-ray restrained

Hartree-Fock calculations. Therefore, the XR-ELMO results are trustable and we can analyse

the orbital variations in the same way as those of the electron densities, as shown in Figure

9.5. As already mentioned in the section dedicated to the description of the computational

protocol, the obtained orbitals were always squared before being compared (subtracted).
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Figure 9.4 – Density differences obtained by comparing XR-RHF calculations with SF including
and excluding the effects of the negative electric field. Blue regions indicate an accumulation
of electron density for XR-RHF calculations with SF including the effects of the electric field.
The isovalue is adjusted to different λ-values in order to highlight the qualitative similarity
among the different cases.

In Figure 9.5, within each set of four, the uppermost picture always refers to the nitrogen lone

pair orbital, the second one to the C-H bond orbital, the third one to the C-N σ bond orbital

and the lowest one to one of the two π orbitals for the C-N bond. While the two π orbitals

behave in the same way, the σ one only slightly changes because it describes electrons that

are less polarizable. For all the three resolutions and for both fields, the electrons in the C-N π

orbital move towards the positive direction of the electric field. The electrons in the C-H bond

also move in an analogous way, whereas the ones in the N-lone pair orbital show an opposite

behaviour, probably for compensation effects. Noteworthy, this dual behaviour would not be

revealed so straightforwardly by canonical Hartree-Fock orbitals.

From this first and very simple example on HCN in an electric field, we can draw already some

conclusions: a) the electron density on the terminal atoms N and H complies with the electric

field while the electron density on the carbon atom behaves oppositely for a compensation

effect (see Figure 9.2 and 9.3); b) as for correlation, lower diffraction resolution is better; c)

XR-ELMOs analysis allowed to reveal the effects of the electric field from a localized molecular

orbital-based point of view and, consequently, to rationalize these effects in terms of molecular

fragments. This would be impossible from an analysis on the overall electron density.
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Figure 9.5 – Orbital differences resulting from the comparison of XR-ELMO calculations with
SF including and excluding the electric field effects: (|ϕX R

no f i el d |2 − |ϕX R
f i eld |2; blue regions

indicate an accumulation of electron density for XRW calculations with SF including the
effects of the electric field. The isovalue is set to 2×10−5 e/bohr3).
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HCN - crystal field

The next step of our investigation consisted in simulating an entire crystal, where both long

and short-range interactions were simultaneously present. A hypothetical crystal based on

this molecule was constructed where all molecules are aligned as described in the Compounds

section 9.2.2. As subsequently explained in the Computational protocol, we computed struc-

ture factors based on a periodic wavefunctions representing this crystal. Simulated structure

factors have several advantages compared to experimental ones: a) thermal effects, which

increase the complexity of the problem, are not included, b) any packing can be simulated,

even those that are not observed in practice, c) calculated structure factors are not affected by

experimental errors.

There is an additional motivation of using theoretical simulations: one can explicitly include

and exclude some of the effects that we want to study. In particular, we performed calculations

for a crystal with normally interacting molecules and one excluding the mutual interaction of

molecules (using the MOLSPLIT option in CRYSTAL17) in a sort of “independent molecule

model” (hereinafter called IMM). For XR-ELMO calculations, this option is useful because

the simulated structure factors used as constraints are obtained from periodic Hartree-Fock

wavefunctions. Therefore, an XR-ELMO calculation at a given λ > 0 would also fit (compensate

for) the error introduced by the use of ELMOs. In other words, a calculation at λ > 0 would

include the effect due to the crystal field and the fitting to canonical Hartree-Fock molecular

orbitals with ELMOs. This makes XR-ELMO fitting to IMM structure factors important for

comparison, since this also fits structure factors from canonical HF calculations but does not

include intermolecular interactions. To exclude any bias due to the choice of the basis set, all

the structure factors were simulated preforming periodic RHF calculations with the same set

of basis functions as used for the XR-RHF and XR-ELMO calculations.

In order to judge how the crystal environment and specific interactions in the crystal influence

the molecule, electron densities obtained from XR-RHF calculations based on structure factors

including crystal interactions were subtracted from electron densities resulting from XR-RHF

calculations fitting IMM structure factors, as shown in the difference-density plot at the

bottom left of Figure 9.6. On the right side we also show the same differences for four selected

XR-ELMOs (which are analogous to those considered in Figure 9.5), calculated using simulated

structure factors up to 0.7 Å−1. Overall, the picture resembles the one where an electric field

with orientation from H to N was applied (physical definition, with positive charge at N and

negative charge at H; see Figure 9.5 for comparison). The similarity can be well explained by

the fact that the molecule indeed feels this electric field in the crystal due to the dipole moment

of the neighbouring molecules. The dominating blue lobe might be due to the hydrogen bond

interaction, which causes electrons on the nitrogen to shift towards the hydrogen atoms of the

adjacent molecule, thus reducing the red feature. Overall, the changes in the density and in

the ELMOs under the effect of the crystal electric field are very small in absolute values, thus

justifying the use of theoretical ELMOs as building block in the current version of the ELMO-

databases [288, 289, 290]. Nonetheless, when plotted at a low iso-contour level, differences
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are visible, which point out the nature of the crystal environment. Thus, the use of structure

factors from an independent molecule model (IMM) calculation can give valuable insights

into these interactions.

Figure 9.6 – Top left: density differences resulting from the comparison of the direct space
IMM and crystal calculations (ρI M M −ρcr y st al ; iso-contour level set to 0.0008 a.u.) Bottom
left: density difference resulting from the comparison of the XR-RHF calculation using IMM
structure factors with the XR-RHF calculation using crystal structure factors (ρX R

I M M −ρX R
cr y st al ;

iso-contour level set to 4× 10−5 e/bohr3, blue=negative and red=positive). Right: orbital
differences resulting from the comparison of the XR-ELMO calculation using IMM structure
factors with the XR-ELMO calculation using crystal structure factors (|ϕX R

I M M |2 −|ϕX R
cr y st al |2;

isocontour level set to 2×10−5 e/bohr3, blue=negative and red=positive).

9.3.2 Oxalic acid dihydrate

Finally, we examined the α-phase of oxalic acid dihydrate (OAD), featuring several strong

hydrogen bonds, among which the strongest ones are transformed into bonds when the crystal

gets compressed due to an external pressure. [294] From the six hydrogen bonds formed by

one molecule (see Figure 9.7), three are symmetry-independent. The shortest hydrogen bond

at ambient pressure (1.464 Å) is the one formed by the carboxyl-hydrogen with the neighboring

water molecule. It shortens with decreasing temperature [296] and with increasing pressure,

while the O-H bond of the hydrogen bond involved in this contact elongates until the proton

shifts towards the water at 5.3 GPa. Table 9.3 shows the hydrogen bond distances for OAD

measured at different pressures.

In analogy to the HCN case, periodic wavefunctions were calculated for α-OAD for the experi-

mental structures at 0, 3.6, and 5.3 GPa and used to simulate structure factors. The IMM was

used to obtain a set of structure factors where no intermolecular interactions are present.

For the X-ray restrained wavefunction fitting calculation, the setting reported in Table 9.1

was chosen in order to calculate one entire (and symmetrical) molecule of oxalic acid and,
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Figure 9.7 – Hydrogen bonds of oxalic acid dihydrate for the ambient pressure experimental
structure. Distances are given in Ångström.

Table 9.3 – Bond and interaction distances (in Å) at different pressures

C=O· · ·HOH C=O· · ·HOH OH· · ·OH2 O-H
(blue) (green) (orange) (solid line)

0 GPa 1.901 1.947 1.464 1.040
3.6 GPa 1.690 1.693 1.331 1.107
5.3 GPa 1.647 1.637 1.065 1.366

necessarily, two molecules of water. These water molecules were properly chosen far from

the oxalic acid (see Figure 9.8) to avoid explicit strong hydrogen bonds, shown in Figure 9.7.

Therefore, the hydrogen bonds are activated only through the fitting of the structure factors

calculated from periodic calculations on the experimental crystal structure but not in the

direct space calculation of the wavefunction of the supramolecular fragment (see again Figure

9.8). This choice enabled us to better highlight the influence of the structure factors on the

oxalic acid not directly affected by the water molecules in the X-ray restrained wavefunction

calculation.

Figure 9.9 shows the density differences obtained by comparing XR-RHF calculations using

IMM structure factors to XR-RHF calculations exploiting usual crystal structure factors (always

ρX R
I M M −ρX R

cr y st al ). There, the influence of the water molecules only considered in the structure

factors part is clearly visible. In fact, when fitting to crystal structure factors, there is less

electron density on the carboxylic hydrogen because the oxygen atoms of the water molecules

are binding this site and, therefore, they push the electron density away. An effect is also visible

on the carbonyl group, where a polarization occurs and electrons at the carbon atom are

pushed away towards the oxygen, because the oxygen atoms (an electron donor) is accepting a

weak hydrogen bond from the water molecule. For the sake of comparison, in Figure C.3 in the

appendix, we show the differences obtained by subtracting the electron density corresponding
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Figure 9.8 – Fragments chosen for the XR-RHF and XR-ELMO calculation (in ball-and-stick
representation). The water molecules are far away from the oxalic acid, such that their interac-
tions are not taken into account in the pure wavefunction calculation. Their new positions
were obtained by shifting the original ones (here shown with sticks) one unit-cell length in all
three directions.

to a simple wavefunction calculation (RHF/6-1G(d,p)) on the oxalic acid with two water

molecules as close as in the crystal structure at 0 GPa, to the electron density associated

with a simple wavefunction calculation (RHF/6-31G(d,p)) on the oxalic acid with two water

molecules that are 5 Å apart from the oxalic acid. This was done to show that the observed

density differences are analogous to those seen in Figure 9.9 and, therefore, that they are

indeed due to the short-range hydrogen bonds mentioned above. At 3.6 and 5.3 GPa the

difference increases as shown in Figures 9.9b and 9.9c.

Figure 9.9 – a) Electron density differences resulting from the comparison of XR-RHF calcu-
lations using IMM structure factors wth XR-RHF computations exploiting crystal structure
factors. (ρX R

I M M −ρX R
cr y st al ; isosurfaces: 0.002 e/bohr3 (top row) and 0.0008 e/bohr3 (bottom

row)). Red and blue designate positive and negative regions, respectively. b) and c) analogous
results obtained for the crystal structures at 3.6 GPa and 5.3 GPa.
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When analysing the XR-ELMOs of Figure 9.10, one can see that the O-H σ-type orbital shifts

electrons away from the hydrogen atom towards the covalently bonded oxygen due to the

influence of the hydrogen bond to the neighbouring water molecule present in the crystal. An

interesting feature appears at 5.3 GPa. At this pressure, the bond to the water is established

and, therefore, there are again more electrons in this region, as one can evince from the

small blue lobe. On the contrary, the region between the hydrogen and oxygen molecule is

characterized by a depletion of the electron density. In carbonyl orbitals one can observe a

shift of electrons from carbon to oxygen due to the weakening of the double bond in favour of

additional interactions that the oxygen atom is forming.

Thus, only looking at the molecule itself and not knowing the interactions in the crystal,

small changes in the XR-ELMOs can indicate which parts of the molecule are involved in the

interactions. From the electron density and the σ O-H bond orbital at 5.3 GPa it also seems

that this ELMO is able to indicate where a bond is being formed.

Figure 9.10 – Top row: differences for the XR-ELMOs corresponding to the two O-H bonds;
middle row: differences for the XR-ELMOs associated with the two carbonyl π orbitals; bottom
row: differences for the XR-ELMO corresponding to one of the oxygen atom lone pairs. In all
cases we depicted the differences |ϕX R

I M M |2 −|ϕX R
cr y st al |2 with the iso-contour level set to 0.0002

e/bohr3, blue=negative and red=positive. The differences are shown for the computations
performed on the crystal structures at 0 GPa, 3.6 GPa, and 5.3 GPa.

For the sake of completeness, in Figure 9.11 we also show the electron density differences

resulting from the comparison of an unrestrained RHF calculation (λ=0.0) and of an XR-RHF
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computation (λ=0.5 and experimentally measured structure factors as restraints) on the crystal

structure of the oxalic acid at ambient pressure. [294] It is possible to see that the features

of the electron density are very similar to those in Figure 9.9a. They are only slightly less

pronounced. This can be attributed to the fact that an experimental dataset also contains

temperature effects and noise. The analysis of the orbitals is thus more difficult. Nevertheless,

also in this case, for the ELMOs corresponding to O-H bonds involved in hydrogen-bond

contacts, we can observe the same effects already highlighted for the simulated structure

factors.

Figure 9.11 – Left: density differences resulting from the comparison of the unrestrained
RHF/6-31G(d,p) calculation with the XR-RHF/6-31G(d,p) computation (with λ=0.5 and ex-
perimental structure factor magnitudes) on the crystal structure of OAD at ambient pres-
sure (ρX R

λ=0 −ρX R
λ=0.5; isosurface: 0.004 e/bohr3, blue=negative and red=positive); right: corre-

sponding ELMO differences (|ϕX R
λ=0|2 −|ϕX R

λ=0.5|2; isosurface: 0.004 e/bohr3, blue=negative and
red=positive).

9.4 Conclusions

This work focused on X-ray restrained wavefunction fittings, both with canonical orbitals

and with extremely localized molecular orbitals. The main finding was that X-ray restrained

wavefunction techniques are able to account for the electron density and molecular orbital

deformations caused by intra-crystal electric fields. We simulated structure factors calculated

with or without an applied electric or crystal field. If the crystal field is switched off, but the

wavefunction is anyway periodic (for example using the option MOLSPLIT of CRYSTAL17),

we generate an independent molecule model. This provides a benchmark for molecular or
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orbital density differences, very useful to highlight the effects of the electric field. These

density differences are generally small, thus, justifying the use of purely theoretical ELMOs in

databases [274, 288, 289] constructed for improving the refinement of macromolecular crystal

structures. [293]

The diffraction resolution plays a role similar to the one already observed for correlation [64]:

high resolution data do not allow a better recovery of the electric field effect but a worse

one. This can be explained with the down-weighting of the low-angle reflections, which are

important for a good modelling of the valence electrons.

With the example of HCN under the influence of an electric field, it was shown that not all

XR-ELMOs polarize in the direction of an applied electric field. Some of them are actually

polarized in the opposite direction. The method was also successful in the analysis of the

intermolecular interaction effects for the more complicated system of the oxalic acid dihydrate.

In that case it was possible to highlight the influence of the hydrogen bond contacts on the

electron density of the oxalic acid molecule, whose effects become more important as pressure

increases.

Furthermore, for OAD, both experimental and simulated structure factors were used. There-

fore, in light of the obtained results, the approach can also be exploited when measured X-ray

data are available, although the pictures might become slightly less clear because experimental

structure factors intrinsically contain more information than the theoretical ones and are

affected by experimental errors. Further applications and tests of the technique, also using

challenging experimental cases, are already envisaged.
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9.5 Addendum

In addition to the compounds presented in the paper, the method was also applied to boron

nitriolotriacetate (NTA-B). This molecule has three carbonyl groups, which interact with

carbonyl groups of neighbouring molecules in the crystal. Crystals of this compound were

synthesized and measured at different pressures. The synthesis and the data collection at high

pressure (HP) are described elsewhere. [297] The crystal packing is dominated by short con-

tacts between carbonyl groups, some of which have angles not far away from the Bürgi-Dunitz

angle [298] and are promising candidates for HP reactivity through nucleophilic addition and

thus possible polymerization. Each carbonyl O and C atom partake in two such interactions,

resulting in a very efficient packing. The HP behaviour of NTA-B was studied experimentally

and computationally.

9.5.1 Boron-nitrilotriacetate high pressure results

Boron-nitrilotriacetate (NTA-B) belongs to the family of boratranes [299]. Atranes are charac-

terized by a transannular dative bond between a bridgehead nitrogen atom to a Lewis acidic

metal atom such as boron, silicon, or phosphorus at the other bridgehead. The electronegativ-

ity difference between the bridgeheads atoms determines the strength of the transannular

interaction.

The crystal structure of NTA-B at ambient pressure was investigated in the 1980s by Bürgi

et al. [300, 301] The compound crystallizes in the monoclinic Pna21 space group forming

transparent plates. The molecules show non-crystallographic C3v symmetry, with planar

five-membered rings. Each of the three carbonyl groups on every molecule interacts with

two carbonyl groups of neighbouring molecules leading to six different kinds of carbonyl-

carbonyl interactions as shown in Figure 9.12 (numbers in Figure 9.12b). The oxygen atoms

are electronegative and the carbon atoms electropositive. Due to the carbonyl-carbonyl

intermolecular interaction, electrons are polarized from the lone-pair orbitals of the oxygen

atoms into the π∗-orbital of the other carbonyl group. The π∗ ← n interactions between lone-

pair orbitals on the electronegative oxygen atoms and the π∗-orbitals of the neighbouring

electropositive carbon atoms show promise for polymerization at HP, via classic nucleophilic

addition reactions. In order to examine this, NTA-B was measured at different pressures up

to 16 GPa and the structure was simulated with periodic DFT calculations up to 60 GPa (see

appendix C.4).

The calculated C=O· · ·C=O interaction distances (shown in Figure 9.12a) are in good agree-

ment with the measured ones. The mismatch at ambient pressure is due to the different

temperature of experimental and calculated data (273 and 0 K respectively) and probably to an

overcorrection of the dispersion forces, but these factors become irrelevant at higher pressure,

where the pressure∗volume term dominates. The shortest C=O· · ·C=O distance decreases

from 2.84 Å at ambient pressure to 2.09 Å at 60 GPa. This is the only interaction where a bond

critical point (BCP) was present over the entire pressure regime. However, the electron density
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(a) Intermolecular distances (b) Nomenclature for intermolecular contacts

Figure 9.12 – a) Experimental (filled symbols) and calculated (empty symbols) distances for
the six carbonyl-carbonyl interactions in NTA-B. Similar colour indicates that the same oxygen
atom is involved in the interaction and the same symbol indicates that the same carbon atom
is involved. b) The six different carbonyl-carbonyl interactions in NTA-B are marked with
dotted black lines and the nomenclature is specified.

at this BCP is much lower than it is in structures with polymerized C=O bonds. Thus, despite

the distance being extremely short, the expected polymerization was not observed in this

pressure range. This may be due to the fact that the two most compressible interactions in

the 40-60 GPa range involve the same carbon atom and are thus competing. The absence of

bond critical points over all pressure ranges, an established criterion to examine interactions,

speaks for the use of other analysis tools such as the ELMOs involved in the interaction.

Other types of interactions and short contacts are also present. The oxygen atoms from the

carbonyl groups are also involved in C=O· · ·B contacts, and there are several CH· · ·O hydrogen

bonds, where the involved oxygen may be the heterocyclic or the carbonylic one, and also

short O· · ·O contacts are present.

9.5.2 XRW and XR-ELMO calculations on simulated and measured struc-
ture factors of NTA-B

The top left picture of Figure 9.13 shows the electron density difference from XRW fitting

to IMM structure factors and to crystal structure factors for the 0 GPa structure of NTA-B.

The influence from carbonyl groups of neighbouring molecules on the electron density is

visible by the blue lobes around the oxygen and the red ones around the carbon atom of the

carbonyl group. Electrons from the depicted carbonylic oxygen atoms get polarized towards

the carbonylic carbon and the hydrogen atoms of neighbouring molecules. This, in turn,

causes the electron density of the carbonyl group to be polarized from carbon towards oxygen,
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thus the relative electron deficiency on the carbon atom and the abundance of electrons

on the oxygen atom. This effect slightly increases with the pressure and thus reflects the

shortening of the interaction distance, visible from the surfaces with the higher isovalue in

appendix C.5. However, it is not visible in which direction the carbonyl-carbonyl interactions

are exactly going, mainly due to two reasons: 1) Even when putting explicit point charges at the

position of the neighbouring carbon atoms, the electron density does not simply polarize only

in these directions as shown in appendix C.6. 2) Not only the carbonyl-carbonyl interactions

are present in NTA-B but many interactions, thus substantially complicating the situation.

Figure 9.13 – a) Differences for calculated structure factors of NTA-B. On top is the electron
density difference (ρX R

I M M −ρX R
cr y st al ; iso-contour level set to 0.001 e/bohr3) and on the bottom

the XR-ELMO differences (|ϕX R
I M M |2 −|ϕX R

cr y st al |2; iso-contour level set to 4 × 10−5 e/bohr3).

b) Differences for measured structure factors. On top is the electron density difference (ρX R
λ=0−

ρX R
λ>0; iso-contour level set to 0.001 e/bohr3) and on the bottom the XR-ELMO difference

(|ϕX R
λ=0|2 −|ϕX R

λ>0|2; iso-contour level set to 0.0004 e/bohr3)

The bottom left part of Figure 9.13 depicts density difference maps for some selected squared

XR-ELMOs, which were obtained with the same structure factor set as used for the calculation

of the electron densities from canonical molecular orbitals. These occupied XR-ELMOs are

involved in the carbonyl-carbonyl interactions (all three XR-ELMOs corresponding to the three

carbonyl groups are always shown simultaneously). The lone-pair s orbitals on the oxygen
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atoms get polarized outwards due to the influence of the neighbouring carbon atoms. The

interpretation of the p lone pair orbitals on the oxygen atoms is more difficult but corresponds

to the result obtained when taking the difference between a wavefunction where point charges

were put around a carbonyl group and a wavefunction without charges (see appendix C.6). The

σ-orbitals of the carbonyl bonds show a small polarization towards the oxygen atoms, whereas

the π-orbitals are clearly polarized towards the oxygen atoms, thus showing the tendency to

abandon the double bonds in favour of a single bond in the direction of the neighbouring

carbonyl groups. The similarity of the XR-ELMOs of the same kind reflects the approximate

C3v symmetry of the molecule.

The pictures in Figure 9.13b result from XRW calculations with experimentally measured

structure factors. Only the high-resolution data collected at ambient pressure can be used for

this highly sensitive analysis, the quality of high-pressure data is not good enough. In case of

experimentally measured structure factors, it is obviously not possible to use the IMM. Instead

of that the density from an XRW calculation with λ = 0.5 was subtracted from the density

obtained with λ= 0, which corresponds to a normal Hartree-Fock calculations. Calculations

with λ = 5 did not converge. The electron density difference resembles the one obtained

from the simulated structure factors, although the polarization from the carbonylic carbon

atom towards the oxygen atom is less obvious and the picture is generally noisier. This can be

attributed to the fact that the experimental data also contains temperature effects and noise

of the measurement.

Interpretation of the repolarization within the individual orbitals is more difficult. The s and p-

type orbital differences look similar to the theoretical results, whereas the shift of electrons in

the π orbital from carbon to oxygen is less evident than in the case where simulated structure

factors were used.

Although virtual orbitals are not directly restrained by structure factors (since they are unoccu-

pied) they are indirectly restrained via the SCF calculation. Several unoccupied orbitals per

fragment result from an XR-ELMO calculation and Figure 9.14 shows only the differences of

the π∗ orbitals on the three carbonyl groups. Due to the interactions of the carbon atoms (as

an electron acceptor) with atoms from neighbouring molecules, this orbital polarizes in the

opposite way as the π orbital.

In conclusion, one can say that NTA-B does not polymerize in the measured pressure regime

and also the geometry optimized structures do not support that, despite the carbonyl-carbonyl

interaction distances becoming quite short. The compound forms many different interactions

with its neighbours in the crystal hindering a straightforward interpretation. Nonetheless,

electron density difference maps and especially also ELMO difference maps clearly indicate a

polarization within the carbonyl groups due to these interactions.
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Figure 9.14 – Difference of the three carbonyl π∗ orbitals resulting from the comparison of the
XRW calculation using IMM structure factors with the XRW calculation using crystal structure
factors (|ϕX R

I M M |2 −|ϕX R
cr y st al |2; iso-contour level set to 4 × 10−5 e/bohr3).
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10 Conclusions

The common motive of this dissertation is the identification of atoms, functional groups, and

molecules in crystals, and how they interact with each other. If we understand how these

building blocks behave individually and together, we can explain observed characteristics of

crystals and we can create new crystals with desired properties. However, X-ray diffraction, as

well as many other experimental techniques used on crystals, usually probe the entire bulk.

Therefore, theoretical concepts are required, which allow us to define sub-crystalline and

sub-molecular building blocks, as well as they enable us to study them.

But do atoms and functional groups in molecules [25, 302], bonds [303, 304, 305, 306], and

molecules in crystals exist at all? These questions have been addressed by many researchers,

and like all their publications, this dissertation does not provide any unique answer to them.

Rather we assumed that such entities indeed exist, even if a precise definition is not possible.

It is an enormous advantage to work with this concept and in fact the existence of some

sub-molecular units with quite unchangeable properties can hardly be denied. Hence, we

studied functional groups in molecules and molecules in crystals while carefully evaluating

whether the assumption of such building blocks is sensible and justified.

In chapter 6 we examined the polarizabilities of various functional groups in different chemical

environments. We found that a fully automatized clustering of these functional groups leads

to very similar clusters as the ones we would define based on our chemical knowledge. This

is due to the fact that functional groups keep their properties rather constant also in varying

chemical environments, making them the most sensible chemical building blocks. Many

chemical disciplines such as synthesis and analysis exploit this concept, but it is rarely used

in the construction of databases for polarizabilities and other properties, which are often

based on atoms. However, since the properties of a given atom are usually not as constant

as the properties of a given functional group, it becomes necessary in those cases to define

various atom types for the same element. We demonstrated that functional groups are very

useful building blocks for the creation of a database, which can be used for a fast evaluation

of properties. But there are also some issues such as the definition of the functional groups

themselves, the definition of a proper local coordinate system, and a sensible categorization

(clustering).
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In chapter 7 we studied the behaviour of the polyiodide TEAI. At ambient pressure the

compound consists, besides the cation, of interacting I−3 and I2 units, separated by around 3.5

Å. With increasing pressure the distances between them decrease until a polymer is formed.

In consistency with that, the crystal was shown to become semiconductive at high pressure

(around 10 GPa). However, we wanted to further understand and rationalize, how the iodine-

iodine interactions change upon pressurization. For this purpose, we theoretically analysed I−5 ,

the simplest case of an I−3 unit interacting with an I2. We found that, with decreasing distance,

this interaction is transformed from a mainly electrostatic one into a more covalent one.

According to the considered theoretical indicators, the transformation from well separated

molecules into a polymer happens gradually, and it is therefore not possible to highlight one

specific pressure or distance at which a bond can be clearly defined. This is true for both, I−5
and the TEAI crystal.

For chapter 8, however, the definition of molecules is essential. The X-ray constrained wave-

function (XCW) approach is based on the assumption that molecules in crystals are well

defined. For molecular crystals this assumption is justified, but also in that case, a crystal

is more than the sum of its constituting molecules, because they interact with each others.

In an XCW calculation this is taken into account via the structure factors of the crystal. We

examined how much an electric or crystal field perturbs the electron density of a molecule

under these conditions. Furthermore, we calculated the self-electrostatic energy of a molecule

in a crystal based on the structure factors and used this expression to modify the standard

XCW equations.

Chapter 9 expanded the analysis of field effects in XCW calculations to molecular orbitals.

The idea was that the polarization of electrons due to a field can not only be studied for the

total molecular electron density but also for each individual orbital, especially when making

use of the concept of ELMOs. As expected, the ELMOs of a given atom or bond are quite

constant in various chemical environments, and they are perturbed little by the structure

factors from the crystal. Nonetheless, the influence of the crystal does change the ELMOs, and

we could analyse the small differences to rationalize effects of intermolecular interactions and

the crystal field on molecular orbitals as well as on the total electron density.

X-ray diffraction is one of the most widely adopted techniques in crystallography because

the structure and, with good quality data, also the electron density can be obtained with it.

But in order to really exploit this information, it has to be further processed, for example by

characterizing the atoms and functional groups, or by studying the bonds and interactions

between them. Such studies provide information about the link between the microscopic

building blocks and the macroscopic properties of the crystal. Numerous different tools can be

used for this analysis and in the previous chapters some of them have been exploited to gain

information about various different compounds. Going beyond the standard crystallographic

analysis is the cornerstone of quantum crystallography and this dissertation has hopefully

illustrated some of its facets.
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List of Acronyms

ADP atomic displacement parameter

AO atomic orbital

BCP bond critical point

CCP cage critical point

CP critical point

CSD Cambridge Structural Database

DFT Density Functional Theory

DI delocalization index

EDA energy decomposition analysis

ELMO extremely localized molecular orbital

FDET Frozen-density embedding theory

FT Fourier transformation

HAR Hirshfeld atom refinement

HF Hartree-Fock

HOMO highest occupied molecular orbital

HP high pressure

IAM independent atom model

IMM independent molecule model

IQA interacting quantum atoms

LCAO linear combination of atomic orbitals

MM multipolar model

MO molecular orbital

MOF metal organic framework

NCP nuclear critical point

NTA-B Boron-nitrilotriacetate

PI Polyiodide

QTAIM Quantum Theory of Atoms in Molecules

RCP ring critical point

RDM reduced density matrix

RSR real space R

SF structure factors

TEAI tetraethylammonium diiodine triiodide

UrPrI7 N-propylurotropinium heptaiodide

WFN wavefunction

XC-ELMO X-ray constrained extremely localized

molecular orbital

XCW X-ray constrained wavefunction

XR-ELMO X-ray restrained extremely localized

molecular orbital

XRW X-ray restrained wavefunction

XWR X-ray wavefunction refinement
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A Appendix to Chapter 7

A.1 Powder diffraction data of TEAI collected in epoxy-nano-
alumina 4:1

Powder diffraction measurements: A crystal of TEAI with 80 x 60 x 80 µm size was loaded in a

Merrill-Bassett DAC in quasi-hydrostatic medium - a mixture of α-nanoalumina and epoxy

glue 4:1. Upon closing the cell, the single crystal was immediately crushed into powder by

diamond anvils and the surrounding pressure-transmitting medium. Gold was used as a pres-

sure calibrant [307]. High-pressure powder diffraction data was collected using synchrotron

radiation (λ = 0.49407 Å, as calibrated by diffraction of the LaB6 NIST standard [308]) at the

Material Science Beamline at Swiss Light Source [240]. Diffraction patterns were indexed and

refined using the Le Bail method [309] implemented in Topas 5 software [310].

A.2 Determination of the correct space group of TEAI

Crystal structures of tetraetylammonium di-iodine triiodide (TEAI) were previously investi-

gated at ambient pressure (entries HALTAP and HALTAP01 in Cambridge Structural Database

[216]). HALTAP [217] and HALTAP01 [218] were synthesized in the same manner as it was done

in this study, however HALTAP01 was then recrystallized from EtOH/MeCN 1:1. HALTAP is

described in Aba2 (non-centrosymmetric) group, while HALTAP01 is claimed to be in Cmca

(centrosymmetric) group with the quarternary ammonium nitrogen lying on an inversion

center and carbon atoms disordered with occupancies 0.5 in two positions. However, our

findings do not support the latter. Analysis of the absolute structure of TEAI recrystallized

from EtOH/MeCN 1:1 using likelihood methods [311] was performed using PLATON [312].

The results indicated that the structure is a racemic twin (calculated probability that it is a

racemic twin equal to 1.000). The method calculated that the probability that the structure is

inverted is smaller than 1 × 10−9, and that the structure is not a twin smaller than 5 × 10−12.

The absolute structure parameter y [311] was calculated using PLATON. The resulting value

was y=0.53(7) indicating that the absolute structure has probably been determined correctly
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Figure A.1 – Top: Powder diffractograms of TEAI in 4:1 nanoalumina - epoxy. Bottom: photo of
the measurement cell with four-probe setup (photo taken through the upper diamond).

as an inversion twin. Thus, TEAI crystallized from EtOH and the one recrystallized from

EtOH/MeCN 1:1 are well-described by Aba2 symmetry as an inversion twin and this symmetry

was further used for the high-pressure models. Nevertheless, the ratio between twins cannot

be quantified by high-pressure measurement since it does not allow a reliable determination

of the Friedel parameter.

A.3 Structural motifs of iodine chains in TEAI

Figure A.2 shows the structure of iodine chains in TEAI propagating through d1 and d2. The

top left picture illustrates a zig-zag chain along the c axis, which, due to strong I· · · I interaction,

hinders the axis compressibility. The top right picture shows the corrugated chain along a – it

extends through I−3 along the b axis forming bi-layers. These iodine bilayers stack on top of

each other, stabilized by weak Van der Waals interactions (bottom picture). For this reason,

the b axis is the most compressible one. In terms of relative compressibility the axes can be
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ordered as: b > a > c, which is a direct consequence of the iodine chain geometry in a given

crystallographic direction.

Figure A.2 – Structural motifs of iodine chains in TEAI

A.4 Bending of the structural motif in TEAI under high-pressure

Figure A.3 – Decrease of α (orange) and β (green), with simultaneous increase in torsion
between tri-iodides (blue).
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A.5 Bonding analysis of I−3 , I−5 and I−7 optimized in vacuo

Figure A.4 – Optimized I−3 , I−5 and I−7 with atom labels used throughout the text

I−3 optimized in vacuo is linear and has two equal bond lengths of 3.04 Å. I−5 has C2v symmetry

with bond lengths of 2.92 Å to the terminal iodine atoms (I1-I2 and I4-I5) and 3.16 Å to the

central iodine atom (I2-I3 and I3-I4). The in vacuo optimized structure of I−7 has C2 symmetry

with I1-I2=2.87 Å, I2-I3= 3.25 Å, and I3-I4= 3.02 Å. The angles I2-I3-I4 and I4-I5-I6 are 109.84°.

Tables A.2 and A.3 list the bonding and interaction energies between the fragments in I−3 (I2

and I− interacting), I−5 (I−3 and I2 interacting) and I−7 (I−5 and I2 interacting) calculated with EDA

and IQA. For a detailed explanation of the terms refer to the recent article by Racioppi et al.

[42]. The total bonding energy is decreasing from I−3 to I−5 to I−7 . The net orbitalic energy is

positive in all cases and in that sense the formation of I−3 (as already discussed by Hoffmann

[201]) as well as I−5 and I−7 is driven by electrostatics. With IQA a positive classic contribution

to the interaction energy is obtained (Table A.2) which is however relativized by partitioning

also the deformation energy (Table A.3) where a negative and dominantly classic contribution

is calculated [42].

Abbreviations used in Tables A.1-A.3:

EDA

Eel st : Electrostatic term

EPauli : Pauli term

Eor bi t al i c : Orbitalic term

Enet or bi t al i c : Is the sum of the Pauli and the orbitalic term

For explication of these terms see [39]

Eki n : kinetic energy

ECoul omb : Coulombic parts of EPauli and Eor bi t al i c

Ecl assi c : The sum of Eel st and the coulombic parts of EPauli and Eor bi t al i c

Exc : The exchange-correlation parts of EPauli and Eor bi t al i c

These terms are obtained by a partitioning of the Hamilton operator in the Hartree-Fock case
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A.6. Further IQA interaction terms for I−5

and the functional in the DFT case

IQA

Vi nt ,cl : classic part of the interaction energy

Vi nt ,xc : exchange-correlation part of the interaction energy

Vi nt : interaction energy

Vde f or mati on : deformation energy

Vbi nd : binding energy

For further explication of these terms refer to [38]

Ebi nd ,cl : Vi nt ,cl plus the classic part of the deformation energy

Ebi nd ,xc : Vi nt ,xc plus the exchange-correlation part of the deformation energy

For further explication of these terms refer to [42].

Table A.1 - Total bonding energies

Table A.2 - Bonding energies for I−3 , I−5 , and I−7 using a conventional decomposition scheme

Table A.3 - Bonding energies for I−3 , I−5 , and I−7 using Racioppi’s [42] decomposition scheme for
IQA

A.6 Further IQA interaction terms for I−5
Figure A.5 shows additional aspects of the bonding energy partitioning for I−5 obtained with

IQA calculations.
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Figure A.5 – Exchange-correlation and classic part of the interaction energy Vi nt ,xc and Vi nt ,cl ,
delocalization index DI, and percentage classic contribution for I−5 with constrained distance
I−3 -I2.

Vi nt ,cl and Vi nt ,xc correspond to the classic and the exchange-correlation part of the inter-

action energy Vi nt . With increasing distance, both the classic and the exchange correlation

term are decreasing in absolute value. It is important to keep in mind that these two terms

sum up to Vi nt and not to the total binding energy Ebi nd . The percentage classic contribution

shown in this figure as well as the The classic part of the interaction energy Vi nt ,cl and the

delocalization index (DI) show the same decrease. Their correlation was described in a paper

by Francisco et al. [44].

A.7 IQA and EDA terms for tri-iodide I−3
The behaviour of the relative non-classic (exchange-correlation) contribution to the binding

energy is basically the same as observed for I−5 .

A.8 Temperature effect on the lattice parameters and inter-
atomic distances in TEAI under ambient pressure

In order to check the effect of low temperature on the unit cell parameters and molecular

structure of TEAI, a diffraction experiment at 110 K was performed. Table A.4 shows the

comparison of selected structural parameters between structures collected at 110 and 29 8K

[217]. One can see that the c axis shortening at low temperature is greatly hindered by the

iodine motif running along this axis. It is in accordance with the compressibility trend under

high-pressure. The same behaviour is presented by the shortening of d1 – low temperature

affects stronger compression of this contact (with respect to d2), just like in the high-pressure

structures.
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A.9. Electrical resistivity measurements under high pressure and variable temperature

Figure A.6 – Relative non-classic contribution to the binding energy upon elongation of δ1,
which is the distance between I− and I2.

Table A.4 – Unit cell axes lengths, volume and values of d1 and d2 (see Figure 7.1) in the low-
and ambient temperature structure of TEAI

110 K 298 K

a [Å] 11.2757(1) 11.511(3)
b [Å] 15.3799(2) 15.654(5)
c [Å] 12.3216(1) 12.358(5)
V [Å3] 2136.80(4) 2226.83(8)
d1 [Å] 3.4197(4) 3.497(4)
d2 [Å] 3.4846(4) 3.494(4)

A.9 Electrical resistivity measurements under high pressure
and variable temperature

A DAC pressurized to circa 10 GPa was prepared for conductivity measurements as described in

the Experimental section. The sample thickness was determined by the external measurement

of the distance between the diamonds before and after pressurization (the gasket thickness

was measured beforehand) using a micrometer. Subsequently the Pt100 thermocouple was

placed inside a 2 mm long on-purpose drilled hole within the DAC body, in order to measure

its temperature. The entire system was placed inside a Büchi B-585 glass oven. I-V scans

between 0.5 and 3 V were performed at 26.0; 31.5; 35.8, 42.7; 49.7 and 54.9 ◦C (stable readings

from the digital thermometer connected to the thermocouple). Firstly, bulk resistivities at

each temperature point were calculated using the Van der Pauw method as: ρ = πR · t/ln2,

where R is the measured resistance (Table A.5) and t is the constant sample thickness (42µm).
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Table A.5 – Recorded resistances of TEAI sample under 10 GPa at variable temperatures.

T [◦C] R [MΩ]

26.0 7.17(6)
31.5 5.46(20)
35.8 2.44(47)
42.7 1.35(12)
49.7 0.48(5)
54.9 0.46(2)

We then calculated the band gap using Arrhenius equation (Eg = 2k lnρ/ 1
T ) and linearly fitting

the function slope (Figure A.7). The obtained value of the bad gap is to 1.60 ± 0.03 eV.

Figure A.7 – Resistivity versus temperature plot for TEAI under circa 10 GPa. The red line
indicates the linear trend model fitted to the data.
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B Appendix to Chapter 8

B.1 Implementation of new formula in Tonto

The implementation of the new formula where χ2 has units of energy into Tonto [126] is not

trivial due to the complexity of this software code. After a lot of trial and error, it was found

that the formula:

fac_times_ alpha=fac*alpha*(alpha*Fm-Fexp)/(Fsig*Fsig*Fm)

(reproduced here in the way it is written in the code) has to be modified in the following way

to include H:

fac_times_ alpha=fac*alpha*(alpha*Fm-Fexp)/(Fsig*stl*2*Fsig*stl*2*Fm*2*3.141592654*volume)

B.2 Point charges from Gaussian and Tonto

Point charges can simulate the electric field around a molecule. In Gaussian charges fitting

the electrostatic potential of the first coordination sphere were put. In Tonto one can choose

to put charges that are within a given radius around the molecule. A cluster radius of 8 Å was

chosen.

The effect of point charges manually put in Gaussian and the point charges automatically

assigned in Tonto for a cluster radius of 8 Å is very similar as seen in Figure B.1a and b. Figure

B.1c shows that with the way the charges were put in Gaussian, the effect is a bit stronger.

Figure B.1d shows the difference between the wavefunction calculated without field and an

X-ray constrained density fitted to structure factors from a wavefunction with the field. The

effect is the same as seen in (a) and (b), just less strong.
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(a) WFN without charges minus Gaussian
WFN with cluster charges fitting electrostatic
potential

(b) WFN without charges minus Tonto
Hartree-Fock WFN with cluster charges simu-
lating crystal environment and cluster radius
8 Å

(c) Gaussian WFN with cluster charges fitting
electrostatic potential minus Tonto Hartree-
Fock WFN with cluster charges simulating
crystal environment and cluster radius 8 Å

(d) WFN without charges minus Tonto XCW
with λ= 10 and resolution = 0.7 Å−1

Figure B.1 – Density difference maps with an isovalue of 0.0004 e/Bohr3. Red regions indicate
an accumulation of electron density for the first term and blue for the second (subtracted)
term.
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C Appendix to Chapter 9

C.1 Dipole moment of HCN

HCN has a relatively strong dipole moment that is influenced by the electric field as shown on

the very left of Figure C.1 (direct space). The effect is damped a lot when going via simulated

structure factors and XRW fitting (right side of Figure C.1). Again the effect is stronger at lower

resolution for the same weighting parameter (λ=5), and the typical sampling enabled by a

medium-small unit cell is insufficient for a proper description.

Figure C.1 – Magnitude of dipole moment for the three electric fields obtained from the
primary wavefunctions (direct space) and from the X-ray restrained wavefunctions (fitting in
reciprocal space).
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C.2 Electric field of 0.1 a.u. along HCN

Figure C.2 – Density differences obtained by comparing XR-RHF calculations with SF including
and excluding the electric field of 0.1 a.u., which is ten times stronger than the one used for all
other results. ρX R

no f i el d −ρX R
f i eld ; blue regions indicate an accumulation of electron density for

XR-RHF calculations with SF including the electric field effects. For all the plots, the isovalue
is 0.002 e/bohr3; which is ten times higher than the one used for the density difference plots
in Figure 9.3.

C.3 Electron density difference for oxalic acid with and with-
out water

Figure C.3 shows electron density differences obtained by subtracting the density of a direct-

space calculation on the oxalic acid with the water molecules (at the position shown, which

are taken from the experimental structure) from the density resulting from a direct-space

computation on the oxalic acid with the water molecules 5 Å apart. Therefore this figure shows

the effect of directly including or excluding the interaction of the oxalic acid with the water

molecules in the primary wavefunction calculation. Figure 9.9, instead, shows electron density

differences from XR-RHF calculations where the interaction of the oxalic acid molecule with

the water molecules is only considered with the structure factors but not directly in the pure

wavefunction calculation. Nevertheless, the density difference features in these two figures

are very similar. The picture on the left of Figure C.3, for example, shows a red lobe on the

carboxylic hydrogen atom and blue lobes around the oxygen atom, which are features also

observed in Figure 9.9. The picture on the right indicates the shift of electrons in the carbonyl

group form the carbon to the oxygen atom, which is again also observed in Figure 9.9. This

highlights the similarity between directly including and excluding water molecules in the

calculation of the primary wavefunction and only including their effect via structure factors

from the crystal.

C.4 Periodic DFT calculations for NTA-B

Periodic DFT calculations were performed with the software CRYSTAL17 [23] using the hybrid

functional B3LYP. The basis set pob-TZVP [245] from the Crystal library was employed for all

the atoms. London-type pairwise empirical correction to the energy was used to account for

dispersion effects [243]. The experimental XRD structure at ambient pressure was used as
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C.5. Electron density differences of NTA-B for structure factors simulated at different
pressures

Figure C.3 – Electron density differences obtained by comparing direct-space calculations on
oxalic acid dihydrate: ρw ater aw ay −ρw ater cl ose . The plotted isosurface corresponds to 0.004
e/bohr3. Blue regions indicate an accumulation of electron density when the water molecules
are close (as they are shown in this Figure).

starting guess for geometry optimization at ambient pressure. Calculations were performed at

0, 1, 2, 3, 4, 5, 10, 15, 20, 30, and 40 GPa in Pna21 space-group. After 40 GPa, convergence could

not be obtained with the pob-TZVP basis set. Two additional pressure points at 50 and 60 GPa

could be obtained by changing the scaling factor of the most diffuse functions of the basis set

from 1.00 to 1.05. This is not the cause for the increase of several intermolecular distances

above 40 GPa in Figure 9.12a, since calculations below 40 GPa with the scaled basis set led to

very similar results as with the scaled basis set. In addition, calculations in the space group P1

were performed for different pressure points to check for the possible existence of alternative

phases, but the geometry remained the same as in the Pna21 optimization.

C.5 Electron density differences of NTA-B for structure fac-
tors simulated at different pressures

Figure C.4 – Density differences for the 0 GPa and 30 GPa structures resulting from the com-
parison of the XRW calculation using IMM structure factors with the XRW calculation using
crystal structure factors. The iso-contour level on the left is 0.01 e/Bohr3 and on the right 0.001
e/Bohr3, and blue signifies negative and red positive iso-contour values.
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C.6 Change of carbonyl ELMOs with point charge

Two point charges of +1 were positioned around the carbonyl group of an acetone molecule as

shown in Figure C.5 to mimic the electrostatic part of a carbonyl-carbonyl interaction in the

crystal and observe its influence on the orbitals.

Structure factors were simulated for the wavefunctions obtained with and without point

charges. Both structure factor sets were used for XR-ELMO calculations. The resulting differ-

ences for the s, p, σ, and π orbital are shown in Figure C.6 from three different perspectives.

Comparison between these simplified situation with the ELMO differences of the carbonyl

groups of NTA-B in the crystal shows many similarities. Therefore, the behaviour of the ELMOs

shown in Figure C.6 can be taken as exemplary for how the molecular orbitals of a carbonyl

functional group change when influenced by charges.

Figure C.5 – The positions of the two point charges of +1 are shown in light blue from two
different perspectives.

Figure C.6 – Differences for the XR-ELMOs associated with the carbonyl group shown
from three different perspectives (|ϕX R

no char g es |2 −|ϕX R
char g es |2; iso-contour level set to 4∗10−5

e/bohr3, blue indicates negative and red positive regions).
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