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Chapter 1 

General introduction 

The kingdom of fungi is highly diverse and is estimated to comprise roughly three 

million species, occupying  a wide range of niches (Hawksworth and Lücking 2017). 

They range from relatively simple, unicellular microorganisms such as yeasts, to 

Armillaria species stretching out over hundreds of hectares of forest floor. Some 

mushrooms feed on decaying dead matter, some form symbiosis with plants to access 

energy rich resources and some use living organisms as food sources, sometimes 

even actively preying on them or altering the behavior of their host to their advantage 

(Petersen 2012). To adapt to these highly diverse niches, some fungi have developed 

complex lifecycles, which can include both sexual and asexual reproduction, multiple 

sexes and dikaryotic phases (Jennings and Lysek 1996). Fungi are involved in nutrient 

cycling, help to maintain healthy forests, act as a food source, are part of spiritual 

ceremonies in many regions of the world and are used in the production of enzymes, 

medicine and beer, making them vital for human wellbeing and the maintenance of 

functioning ecosystems (Petersen 2012).  

Fungal pathogens 

Of particular interest among this staggering diversity of fungi are plant pathogenic 

fungi. Only approximately 10% of all fungal species are associated with living plants 

and the majority do not cause diseases (Knogge 1996). Nevertheless, fungal 

pathogens are responsible for 70% of all known plant diseases (Carris et al. 2012) and 

fungal diseases cause approximately 12% of yield losses in agricultural crops (Oerke 

2006). Foliar pathogenic fungi can cause damage through deprivation of nutrients and 

inhibition of photosynthesis (Swarbrick et al. 2006; Mitchell 2003). Fungal infection can 

result in reduced growth (Lively et al. 1995), deformation (Roy 1993; Alexander and 

Burdon 1984), reduced reproductive output  (Alexander et al. 1985; Alexander and 

Burdon 1984), premature senescence (Goodall et al. 2012) or even mortality (Thrall 

and Jarosz 1994; Alexander and Burdon 1984; Ridenour and Callaway 2003) in the 

host plant. 

Impact of pathogens on plant communities 

The negative impact of fungal pathogens on their host plants is reflected in the biomass 

reduction of whole plant communities (Mitchell 2003; Allan et al. 2010; Seabloom et al. 

2017). In addition to reducing biomass production, fungal pathogens are thought to 
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influence plant community composition (Burdon 1991). They can alter the outcome of 

pairwise competition between different species (Paul 1989; Ridenour and Callaway 

2003; Paul and Ayres 1990). By changing competitive interactions, fungal pathogens 

can potentially influence plant community composition and determine whether one or 

the other species is able to persist.  

Fungal pathogens might even help to maintain a high host diversity through both 

equalizing and stabilizing mechanisms (Chesson 2000). They can have an equalizing 

effect if they reduce competitive differences between their host species by 

disproportionately affecting highly competitive species. This can allow subordinate 

species to persist in the plant communities, which would elsewise have been excluded 

by competition (Chesson 2000; Mordecai 2011). When pathogens increase the relative 

importance of intraspecific competition compared to interspecific competition, this can 

further contribute to coexistence and thus diversity (stabilizing mechanism, Chesson 

2000; Mordecai 2011). Specialist pathogens often benefit when their host species is at 

high abundance, because this facilitates their transmission (Alexander and Mihail 

2000; Bever et al. 1997). For the host, this means substantially increased negative 

consequences of growing in the neighborhood of conspecifics. Specialist pathogens 

should thus prevent total dominance of their hosts. Rare species in the community 

benefit from reduced specialist pressure, which may prevent extinction (Chesson 2000; 

Mordecai 2011; Bever et al. 2015).  

The composition of the fungal community might greatly influence the consequences of 

infection for the host community. Fungal pathogens have a wide variety of strategies 

to attack and exploit their hosts (Møller, Murphy 2018) which likely influences how 

much damage they cause. The impact on infection on plant communities might depend 

on how generalistic (Mordecai 2011) and aggressive (Jarosz and Davelos 1995) the 

fungal pathogens in the community are and more general on their ecological behavior 

(Schierenbeck et al. 2016). For example, powdery mildews which mostly grow on 

leaves likely differ from rust species whose mycelium grows inside leaves (Klenke 

2015). Powdery mildews might reduce photosynthesis by blocking the leaves from 

sunlight, something rusts cannot do due to their internal growth. There is likely also a 

difference between fungal pathogens, which kill host tissue and eventually the host to 

access the resources and biotrophic pathogens, which rely on living hosts (Møller, 

Murphy 2018; Jarosz and Davelos 1995). Thus, the composition of the fungal pathogen 

community might have a large impact on how destructive the pathogens are in their 



 Chapter 1 

 

5 

 

1 

 

 

 

 

 

host plant community. 

Pathogen resistance 

Plants have developed strategies to deal with the threat of natural enemies. There are 

two main strategies that plants can use, defense and tolerance. Their joint effect define 

pathogen resistance of a plant (Haukioja and Koricheva 2000). Defense mechanisms 

are of structural or chemical nature and are either constantly present or induced upon 

enemy attack (Walters 2011). For example, species with though leaves are harder to 

invade for a pathogen than one with soft, tender leaves (preexistent mechanical 

defense). An example of an induced defense is controlled cell death to 

compartmentalize enemy damage (Walters 2011). Pathogen tolerance can be 

achieved for example with compensatory growth, or allocation of resources away from 

the pathogen (Paul and Ayres 1986). How strongly a plant community is affected by 

pathogens, is therefore also dependent on the resistance strategies of the plants in the 

community. 

Fungal pathogens have the potential to substantially alter ecosystems and may 

contribute to ecosystem stability by maintaining species diversity. In a rapidly changing 

world, it is crucial to understand the role of fungal pathogens to predict and mitigate 

the consequences of global change. Anthropogenic influences on global temperatures, 

atmospheric CO2 levels or nutrient cycles can alter the impact of fungal diseases, with 

sometimes detrimental consequences for the hosts  (Fisher et al. 2012; Helfer 2014; 

Mitchell et al. 2003; Liu et al. 2017). 

Nitrogen enrichment 

A particularly important driver of  global change is nitrogen enrichment (Rockstrom et 

al. 2009; Galloway et al. 2008; Sutton 2011). Humans have roughly doubled the supply 

of reactive nitrogen into the environment globally since 1990 (Galloway et al. 2008), 

and in Europe even more than tripled. The intensification of agriculture, of which 

nitrogen enrichment is a part of, has led to a loss of nutrient poor ecosystems, like 

extensive meadows. In the Swiss lowlands, nutrient poor and species rich ecosystems, 

such as extensive grasslands, have shrunk to only 2-5% of their extent in 1950. The 

change has been partly driven by overall agricultural area decline, but was especially 

driven by agricultural intensification (Gattlen 2016). Even when no direct fertilization 

occurs, nitrogen deposition as a consequence of fossil fuel combustion unintentionally 

fertilizes all ecosystems. While nitrogen deposition has decreased in the last 2-3 

decades through various measures, it still remains at high levels (Sutton 2011; 
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Heldstab et al. 2010). Nitrogen enrichment has far-reaching consequences for 

ecosystems. It can cause diversity loss in many taxa, such as plants (Vellend et al. 

2017), fungal pathogens (Blaser 2014), or insects (Haddad et al. 2000), and disrupt 

species interactions (Ochoa-Hueso 2016). 

Direct effects  

Nitrogen enrichment can directly increase pathogen load (Mitchell et al. 2003) and 

change the influence of  pathogens on the competitive ability of the host plant (Paul 

and Ayres 1990). Good nutritional status of a plant could make it more susceptible to 

pathogens, because it has more resources to offer for a pathogen. However, it is also 

possible that a high availability of nutrients could allow the plant to invest more 

resources into defense against pathogens. Such mechanisms are well studied for 

agricultural plant species (Dordas 2008). In natural ecosystems evidence for direct 

effects of nitrogen enrichment on infection are mixed, with often no effects observed 

(Mitchell et al. 2003; Blaser 2014; Veresoglou et al. 2013). 

Indirect effects through changes in community composition 

Nitrogen enrichment can also indirectly affect fungal pathogens by changing the host 

plant community, leading to plant communities dominated by species which are more 

susceptible to disease (Liu et al. 2017; Liu et al. 2018b; Blumenthal et al. 2009). A 

reason for this is, that nitrogen or nutrient enrichment in general favors faster growing 

species (e.g. Vellend et al. 2017; Cleland and Harpole 2010) and fast growing species 

are often less defended against enemies than slower growing species (growth-defense 

trade-off, Coley et al. 1985; Endara and Coley 2011; Lind et al. 2013). This has been 

observed for large browsing herbivores (Lind et al. 2013), insect herbivores (Endara 

and Coley 2011), as well as for microbial pathogens (Blumenthal et al. 2009; Liu et al. 

2017). Plants adapted to nutrient rich environments are more tolerant to natural 

enemies, as lost tissue can be easily replaced through rapid growth and when 

resources are available (Gianoli and Salgado-Luarte 2017), while species adapted to 

nutrient poor habitats typically invest more in defense to avoid tissue loss (Endara and 

Coley 2011; Lind et al. 2013). These trade-offs are known to exist between species, 

but less is known about whether they hold between populations of the same species 

or how they scale up to whole plant communities. It could for example be that fast-

growing heavily infected species benefit most from host dilution with increasing 

diversity, which might mask growth-defense trade-offs at the community level. 
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Leaf economics spectrum 

The growth-strategy of plants is defined by the leaf economics spectrum (Wright et al. 

2004; Reich and Cornelissen 2014). Species adapted to different nutrient levels have 

specific sets of traits adapted to the given environment. These traits covary along 

environmental gradients of nutrient availability. Nutrient poor habitats favor species 

with slow growth-rates, tough leaves (low specific leaf area, high leaf dry matter 

content), low nutrient contents and high defense traits. In nutrient rich habitat, species 

with traits such as fast growth-rates, high light interception (high specific leaf area), 

high nutrient content and low investment in defense are favored (Wright et al. 2004; 

Reich and Cornelissen 2014). The measurement of growth-rates requires multiple 

successive measures of plant size, but because the growth-rate is well correlated with 

traits of the leaf economics spectrum, they can be used as proxies for the growth 

strategy. Especially the specific leaf area is a good predictor of plant growth rates 

(Pérez-Harguindeguy et al. 2013). Originally, the leaf economics spectrum was used 

to describe the growth strategies of different plants along large environmental 

gradients (Wright et al. 2004; Reich and Cornelissen 2014). Nowadays, it is also used 

to characterize plants growing in very similar habitats and as proxies of within-species 

adaptation to local variation in nutrient availability. However, it is debated whether this 

approach is appropriate. Within species the leaf economics spectrum exists, but it does 

not hold for all species, especially at the extremes of the spectrum (Anderegg et al. 

2018). This could be due to different selective pressures at different spacial scales, 

lower variability of traits within than between species (Anderegg et al. 2018; Shipley 

2006) and due to variability in plasticity (Poorter et al. 2009). Therefore, the leaf 

economics spectrum provides a useful framework to assess plant growh-strategies, 

but it must be considered that it may not hold in all cases. 

Indirect effects through changes in diversity 

A further mechanism by which nitrogen enrichment can indirectly alter patterns of 

fungal infection is through changes in species numbers (Keesing et al. 2006; Vellend 

et al. 2017). The diversity of the host community can have an impact on encounter 

rates between hosts and pathogens, pathogen transmission, host susceptibility, and 

recovery from infection or mortality. Host diversity can therefore significantly alter 

disease dynamics (Keesing et al. 2006). An important mechanism by which diversity 

does so is through the density of host species (Janzen 1970; Connell 1971). In less 

diverse communities, the abundance of each host species is higher, which can 

promote disease spread, as many pathogens depend on host density. Several studies 
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have tested the role of host abundance in diverse communities. There are many 

studies which find that an increase of diversity causes a decrease in infection mainly 

through reduced host abundances (e.g. Mitchell et al. 2002; Liu et al. 2016; Rottstock 

et al. 2014). However, there are also others which find less support for this, because 

the diversity effects were mainly driven by the presence of certain species (e.g. 

Halliday et al. 2017), which caused pathogen spillover, especially to closely related 

species (Power and Mitchell 2004; Parker et al. 2015). 

Species loss 

Species loss caused by nitrogen enrichment and by other anthropogenic drivers is not 

only a major concern for disease dynamics (Rockstrom et al. 2009). Species diversity 

has been shown to be important for many ecosystem processes and functions, such 

as biomass production, nutrient cycling and herbivory (Cardinale et al. 2012; Cardinale 

et al. 2011). The simultaneous maintenance of multiple ecosystem functions in 

particular, requires a high species diversity (Hector and Bagchi 2007; Lefcheck et al. 

2015). As illustrated by the aforementioned example of pathogen infection, the 

mechanisms by which diversity impacts ecosystem functions are highly diverse and 

context dependent. These mechanisms can be broadly classified into selection and 

complementarity effects (Loreau and Hector 2001). Diversity may increase (/decrease) 

ecosystem function because the majority of the species benefit (/suffer) from growing 

in a diverse environment and increase (/decrease) their functioning. These effects are 

called complementarity effects. Positive complementarity effects are common for 

biomass production. (Cardinale et al. 2011). This can happen for example due to more 

efficient overall resource use achieved by species with multiple different resource 

acquisition strategies (Barry et al. 2019). Diverse communities might also benefit from 

the presence of high-functioning species. The selection effects quantify the extent by 

which community functioning is provided by few high-functioning species (Loreau and 

Hector 2001), however this is less common than positive complementarity effects for 

biomass production (Cardinale et al. 2011). Single species can drive functioning by 

either dominating the community at the cost of other species, or by changes in 

functioning without affecting functioning in the other species. An extended tripartite 

framework accounts for this, by further partitioning the selection effect into two 

components (Fox 2005). While the bipartite additive partitioning framework of Loreau 

and Hector (2001) is widely used (1349 citations in web of knowledge), the tripartite 

partition of Fox (2005) is less established (151 citations in web of knowledge). It is 



 Chapter 1 

 

9 

 

1 

 

 

 

 

 

common to partition diversity effects into selection and complementarity for biomass 

production but it can be done for other ecosystem functions as well (Grossiord et al. 

2013). This however, has been done only few times (Grossiord et al. 2013; Pires et al. 

2018; Roscher et al. 2018b). Quantifying diversity effects for different ecosystem 

functions allows for quantitative comparisons between functions and helps to gain a 

mechanistic understanding of the consequences of diversity loss. 

 

Figure 1 conceptual framework about how nitrogen directly and indirectly impacts pathogen infection 
and biomass production of diverse plant communities. Photos by Valeska, Beatrice and me. 

This thesis 

The aim of this thesis was to assess the causes and consequences of foliar fungal 

pathogens in an experimental grassland. In Chapter 2, the relative importance of 

mechanisms such as nitrogen disease, host concentration, and growth-defense trade-

off in driving infection at the plant community level are presented. Further, we explore 

the circumstances under which fungal pathogens have negative consequences for 

biomass production. For a more detailed understanding of the drivers of infection in 

individual species, differences in population, species and community level 

mechanisms driving infection are investigated in Chapter 3. Further, in Chapter 4 I 

compare and relate diversity effects for pathogen infection to diversity effects for other 

ecosystem functions. Especially interesting in Chapter 4 are the comparisons between 

the diversity effects for fungal infection with the diversity effects for biomass production, 

as complementarity and selection effects are commonly calculated for biomass 

production and with the diversity effects for herbivory, because herbivores occupy the 
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same ecological niche as fungal pathogens (Raffa et al. 2019). There is evidence for 

all the introduced mechanisms by which nitrogen can directly or indirectly affect 

pathogen infection and its consequences. However, this is the first study to 

simultaneously test all of them to assess their relative importance by systematically 

manipulating nitrogen, the functional composition and diversity of the plant community, 

as well as pathogen access to plants. Manipulating these variables independently of 

each other enables us to mechanistically understand the role of fungal pathogens in 

natural ecosystems and the consequences of anthropogenic changes in the nitrogen 

cycle (Figure 1). 

Study site 

We have established a large field experiment factorially manipulating, species 

diversity, functional composition, nitrogen enrichment, and fungal pathogen exclusion, 

called PaNDiv (Pathogens, Nitrogen, Diversity). The experiment was established on a 

nutrient rich, rather dry, species rich and extensively managed grassland (Delarze 

2015) in the Swiss lowlands. The field has been extensively managed without fertilizer 

but occasional sheep grazing since 2001. This region of Switzerland has a mean 

annual temperature of 9.4 ± 0.1 °C and 1021.62 ± 31.89 mm of precipitation 

(MeteoSchweiz 2019). The soil is characterized as “0.7 to 1m deep brown soil” 

(Cambisol, soil map of the Canton of Bern Soil map of the Canton of Bern 1970-2005). 

The experiment is located at the edge of a former peatland. From 1777 on peat was 

dug to meet the high demand for fuel, since firewood was scarce. The level of the lakes 

and the groundwater was lowered three times between 1780 and 1920 to make the 

peat accessible and to gain land for agriculture. During the last melioration (1917-

1920), the area where the PaNDiv experiment is located, was drained and the river 

crossing the parcel of land was put underground (Archivgruppe Moosseedorf 2012; 

Siegfried 1917-1930, Figure 2). In addition to the cement pipe that was used to channel 

the river (parallel to where the street runs today), ditches to drain the land were dug. 

One of them crosses the experimental field through Block 2 and 4 (Katasterplan, Figure 

3a). Nowadays we see increased levels of carbon and nitrogen in this area (Figure 3c), 

which indicates, that they might have used different soil material to fill the ditches. In 

the late 60s and early 70s, when the land was prepared for building construction, the 

drainages were renewed and pipes for the wastewater were put under ground. At the 

same time, the land was levelled off (Lanz 9/4/2019). As filling material household 

garbage and construction rubble was used. This is still noticeable today, as we found 
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plastic chips, cement and metal pieces mainly in Block 1. After that, the land was 

mainly used as grassland, because the rocky underground did not allow soil cultivation.  

 

 

Figure 2 100 years before PaNDiv. The rectangle in the pictures marks the location of the experiment 
today. 
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Figure 3 how the drain from the melioration still affects soil and vegetation 100 years later. a) 
Katasterplan (Katasterplan, estimated 1917-1920) showing where the drain was put (light red line inside 
of the red square which is roughly where the experiment sl located today, b) aerial view on PaNDiv from 
Swisstopo 2018, c) more % soil N in  2015 before the experiment was set up along the drain (% soil C 
looks similar and is also enhanced in this area, min: 2.30%, max 4.17%). 
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Study design 

To set up the experiment, the vegetation was cleared, and the area ploughed prior to 

sowing the experimental plant communities in fall 2015. Some species were resown in 

spring 2016 due to poor establishment. The communities were assembled from a 

species pool of 20 common grassland species (Chapter 2, Table S2). Half of the 

species were classified as fast-growing, and half as slow-growing based on their 

specific leaf area and leaf nitrogen content, traits indicative of their growth strategy 

(Wright et al. 2004; Reich and Cornelissen 2014, Chapter 2,  Figure S2). Legumes 

were not included in the species pool, as they are very functionally different from the 

other species due to their symbiosis with nitrogen fixing bacteria. Most legumes 

preferentially grow in nitrogen poor habitats. They could therefore have been only 

included in the slow-growing species pool, which would have led to large differences 

between the pools which are not due to the resource traits. We manipulated species 

diversity (1, 4, 8, and 20 species). Communities with four and eight species could have 

either only slow, only fast, or a mix of fast and slow species. The communities with four 

and eight species were chosen randomly from the respective pools, but they contained 

at least one grass and one herb species. There were 10 communities of each type 

(fast, slow, mixed, with four and eight species, Table 1). This created a large gradient 

of average growth strategy and community weighted mean traits. Monocultures of all 

species which were either fast or slow growing and 20 species communities (4 

replicates) which necessarily contained both fast and slow species were planted as 

well (Table 1). In total, there were 84 unique species compositions (Table 1). The 

experiment was weeded three times per year to maintain species compositions. As 

common for extensively managed grasslands in Switzerland, the experiment was 

mown twice per year (June and August). 

Table 1 Community compositions of all 84 communities. Each was grown 4 times with a full cross of 
nitrogen and fungicide treatment, resulting in total 336 plots. 

Nr. of species 
Growth strategy 

1 4 8 20 

Fast 10 10 10 - 

Slow 10 10 10 4 

Mixed - 10 10 - 

 

Each of the species compositions was grown with a control treatment (without nitrogen 

and fungicide), with a fungicide treatment, with a nitrogen treatment and with a joint 

fungicide and nitrogen treatment, resulting in 336 plots in total. The plots were arranged 

in four blocks. Each species composition occurred once per block, with one of the four 
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treatment combinations randomly assigned. Fungicide (Score Profi by Syngenta Agro 

AG, 24.8% difenoconazole) was sprayed four times during the growing season. Plots 

without fungicide were sprayed with water. In 2018, we added a second fungicide 

(Ortiva by Syngenta Agro GmbH, 22.8% azoxystrobin) to the treatment to increase 

efficacy. The fertilized plots received total 100 kg N ha-1y-1 which corresponds to 

intermediately intensive grassland management (Bluethgen et al. 2012). Fertilizer was 

applied in spring and after the first mowing in June. 

Chapter overviews 

In Chapter 2, the effects of community properties on community level infection and 

consequences of infection are studied. From all tested variables, community weighted 

mean specific leaf area was the best predictor of infection, indicating that communities 

dominated by fast growing species had the highest infection. This means that growth-

defense trade-off was a major driver of infection at the community level. More diverse 

communities did not have lower infection, probably due to spillover of generalist 

pathogens or because susceptible species occurred at high abundances. However, 

pathogen infection had the strongest negative impact on community biomass at high 

diversity. This diversity effect was enhanced by fungicide treatment, probably because 

fungicide altered the composition of the fungal community. These results suggest that 

nitrogen affects community level infection mainly indirectly by favoring fast-growing 

species. 

The results presented in Chapter 3 show that the strong effect of community weighted 

mean of specific leaf area at the community level was mainly due to species level 

growth-defense trade-offs, rather than due to spillover of some fast-growing species to 

slower-growing species. Within species, variation in leaf traits did not influence 

infection, indicating that within species trade-off was probably much weaker. However, 

infection of a species increased with the abundance of the host species and the 

abundance of closely related species in the surroundings. Diversity had no additional 

effect on infection apart from diluting the host abundance. Interestingly, fast-growing 

but heavily infected species were not more tolerant to infection. Tolerance to infection 

seemed to trade-off with resource use strategy. Nitrogen limitation in species with quick 

nitrogen acquisition reduced their tolerance to infection, independently of growth 

strategy. The results of Chapter 3 show that between species growth-defense trade-

off is a main driver of infection, but that the consequences of infection are strongly 

influenced by tolerance and its own trade-offs. 
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The absence of strong diversity effects in Chapter 2 and Chapter 3 could be explained 

by contrasting diversity effects, as shown in Chapter 4. Species with rather low 

infection in monoculture had increased infection when growing in mixtures, likely 

suffering from spillover, while species with high infection in monoculture had decreased 

infection, benefitting from host dilution. Even though net effects varied between the 

functions, diversity had comparable effects on all studied functions: species with low 

monoculture functioning increased functioning in mixtures, while species with high 

monoculture functioning decreased functioning in mixtures (negative intraspecific 

selection effects). On average across the community, most functions increased with 

diversity (neutral to positive complementarity effects). Diversity effects across functions 

were mostly not linked to each other and had different context dependencies. This 

means that different species were contributing most to different functions. The lack of 

correlations between the diversity effects of pathogen infection and herbivory is 

probably the most surprising. Pathogens and herbivores share a niche as primary 

consumers of plants and many theories about plant-pest interactions are applied to 

both (e.g. Raffa et al. 2019). The results of Chapter 4 hint that the underlying 

mechanisms driving diversity effects varied between the functions despite similar 

overall patterns. This might explain why high levels of multiple ecosystem functions 

can only be provided by diverse communities. 

Finally, in Chapter 5, I summarize the most important findings and identify knowledge 

gaps, which should be addressed in future research.
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ABSTRACT 

Aboveground fungal pathogens can substantially reduce biomass production in 

grasslands. However, we lack a mechanistic understanding of the drivers of fungal 

infection and impact. Using a global change biodiversity experiment, we show that the 

trade-off between plant growth and defense is the main determinant of fungal infection 

in grasslands. Nitrogen addition only indirectly increased infection via shifting plant 

communities towards more fast-growing species. Plant diversity did not decrease 

infection, likely because the spillover of generalist pathogens or dominance of 

susceptible species counteracted dilution effects. There was also evidence that fungal 

pathogens reduced biomass more strongly in diverse communities. Further, fungicide 

altered plant-pathogen interactions beyond just removing pathogens, probably by 

removing certain fungi more efficiently than others. Our results show that fungal 

pathogens have large effects on plant functional composition and biomass production 

and highlight the importance of considering changes in pathogen community 

composition to understand their effects.
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INTRODUCTION 

Pathogenic fungi are omnipresent in the environment and have large impacts on their 

hosts (Fisher et al. 2012). Many studies have looked at species-specific (fungus-plant) 

interactions (e.g. Thrall and Burdon 2003, Roscher et al. 2007a), however, only a few 

experiments have investigated fungal pathogens in whole plant communities, by 

manipulating pathogen access to their hosts (Peters and Shaw 1996; Mitchell 2003; 

Allan et al. 2010; Borer et al. 2015; Heckman et al. 2017). These studies show fungal 

pathogens can have large top-down effects, even reducing grassland biomass 

production as much as insect herbivores (Allan et al. 2010; Seabloom et al. 2017). 

However, effects can be context dependent and factors such as plant species 

composition (Mitchell et al. 2002; Rottstock et al. 2014) or environmental factors 

(Mitchell et al. 2003) can determine infection rates and pathogen impact. Increasing 

our knowledge about causes and consequences of fungal pathogens is important to 

predict effects of global change, e.g. nitrogen enrichment. Nitrogen input can alter 

pathogen infection (Burdon et al. 2006) but the mechanisms by which it does so and 

the consequences for pathogen abundance and impact are poorly understood. 

Key determinants of infection success and consequences of infection are related to 

pathogen transmission, host resistance and host tolerance to infection (as discussed 

in detail by Keesing et al. (2006)). Transmission and resistance should directly 

influence the observed levels of infection, while tolerance should alter the negative 

consequences of infection for fitness or biomass production and, if a tolerant species 

is a good reservoir host, the infection levels in other species (spillover, Power and 

Mitchell 2004). All of these factors can be influenced by environmental variables and 

might trade-off with each other. 

Pathogen resistance and tolerance are linked to plant growth strategy. Plants face a 

trade-off between growth and enemy defense (growth-defense trade-off). Plant 

species adapted to resource-rich environments grow fast but are often less defended 

against enemies, including herbivores (Endara and Coley 2011; Lind et al. 2013) and 

fungal pathogens (Blumenthal et al. 2009; Liu et al. 2017). Fast-growing species are 

likely to better tolerate enemies, as the loss of plant tissue can easily be replaced 

(Gianoli and Salgado-Luarte 2017). Hence, plant communities dominated by fast-

growing species should display higher pathogen infection but lose less biomass to 

pathogens than communities dominated by slow-growing plants from resource-poor 
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environments. The leaf economics spectrum distinguishes these strategies and is 

indicated by several functional traits. Slow-growing species with long-lived, structurally 

expensive leaves, with low nutrient contents occur at one end of the spectrum and fast-

growing species with a high turnover of short-lived, nutrient-rich leaves at the other end 

(Wright et al. 2004). Some of these traits are also directly related to resistance to 

natural enemies, e.g. leaf nutrient  concentrations (Robinson and Hodges 1981). 

Although the growth-defense trade-off hypothesis is well supported for individual plant-

pathogen interactions, we know little about how it scales up to whole plant communities 

and its importance relative to other drivers of infection. 

Another possible driver of infection is the nutrient supply in plant communities. High 

nitrogen supply can lead to decreased infection resistance with fungal pathogens 

(nitrogen-disease hypothesis, Dordas 2008). Nitrogen disease effects are mainly 

known from agriculture, while studies in natural ecosystems show more variable results 

(Mitchell et al. 2003; Veresoglou et al. 2013). This variation may be partly because 

nitrogen enrichment can also have complex indirect effects on fungal infection. 

Nitrogen enrichment often reduces plant species richness and changes plant functional 

composition by promoting fast-growing over slow-growing species (Bobbink et al. 

2010; De Schrijver et al. 2011; Isbell et al. 2013) both of which could indirectly alter 

fungal infection and its consequences. However, nitrogen could also directly lead to 

healthier and more tolerant plants. To mechanistically understand nitrogen effects on 

fungal infection, studies therefore need to assess the direct and indirect effects 

independently. 

Plant diversity can also be a key driver of pathogen infection, through different 

mechanisms. Pathogen infection has been shown to decrease with greater host 

diversity in grasslands through changes in plant abundances (e.g. Mitchell et al. 2002; 

Liu et al. 2016; Rottstock et al. 2014; but see Halliday et al. 2017), which reduces host-

pathogen transmission (host dilution hypothesis, Civitello et al. 2015). However, 

other studies showed that diverse communities are more infected, potentially due to 

the spillover of generalist pathogens between plant species or due to an increase of 

host-density independent pathogens, such as vector-transmitted ones (Power and 

Mitchell 2004; Halliday et al. 2017). The impact of plant diversity on pathogen infection 

may therefore depend on the relative abundance of specialist and generalist 

pathogens and on their transmission mode. Plant diversity might also change pathogen 

community composition by selecting for more generalist species (Thrall et al. 2007) 
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and this could potentially alter the impact of pathogens if specialists and generalists 

differ in their virulence (Leggett et al. 2013). However, relatively little is known about 

the impact of pathogens in low and high diversity plant communities (but see Seabloom 

et al. 2017; Halliday et al. (2017)). 

Changes in plant functional composition, diversity, and nutrients could all affect 

pathogen communities by changing plant biomass and thereby altering microclimatic 

conditions. Pathogens generally grow better in warmer and humid conditions, but this 

varies between pathogen groups (Barrett et al. 2009). The availability of free water if 

often an important driver of infection (Bregaglio et al. 2013; Chen et al. 2014; Sun et 

al. 2017; Bradley et al. 2003), suggesting that the microclimatic humidity is important. 

Further, increased temperature may promote overall pathogen infection (Liu et al. 

2016), but again, different groups of fungal pathogens may react differently (Helfer 

2014). We therefore lack a good understanding of how temperature and humidity 

influences different pathogen groups and how these effects relate to other drivers of 

infection. 

The impact of pathogen infection on plant communities mainly depends on the 

resistance and the tolerance of plants. Impact can be assessed in two ways: comparing 

plots with and without fungicide, and, assessing the amount of fungal infection in a 

plant community and relating it to the biomass produced. The first approach would be 

ideal if fungicide reduced infection to zero. However, most fungicides do not completely 

wipe out all infection, and might be selective for certain fungal groups (Paul et al. 1989; 

Parker et al. 2015; Karlsson et al. 2014), changing fungal community composition. For 

example, if a fungicide is selective against the rather specialized rusts, then the 

fungicide might cause a shift from specialized to more generalist fungal communities. 

The second approach, relating infection and biomass, allows for more quantitative 

comparisons. However, here the direction of causality is hard to establish, as higher 

plant biomass might also lead to higher fungal infection, obscuring the relationship. It 

is therefore advantageous to use both methods; however, no previous studies have 

done so. 

Here we tested the relative importance of nitrogen, plant diversity and functional 

composition as drivers of fungal pathogen abundance, in an experiment that 

manipulated these variables factorially (Figure S1, Table S1). Specifically, we tested 

the growth-defense trade-off hypothesis, the nitrogen-disease hypothesis, and the 
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dilution-effect hypothesis (Figure 1). Further, we assessed the fungal impact on plant 

biomass by comparing biomass from plots with and without fungicide, and by relating 

plant biomass to infection intensity in the same plots. In addition, we tested if our 

experimental treatments altered pathogen abundance and impact through changes in 

microclimatic conditions. 

  

Figure 1 Overview over the main hypotheses, which we tested. Growth-defense trade-off hypothesis: 
Plant species adapted to resource-rich environments and able to compete well under nutrient rich 
conditions are often less defended against natural enemies (Blumenthal et al. 2009; Liu et al. 2017). 
The growth strategy is defined by the leaf economics spectrum (Wright et al. 2004), which has been 
linked to certain disease resistance mechanisms (Cronin et al. 2014; Cronin et al. 2010; Huot et al. 
2014). Nitrogen disease hypothesis: Higher nutrient content of the plant material following nitrogen 
fertilization should promote disease. This is known for agricultural systems (Dordas 2008), but results 
from natural ecosystems vary (Mitchell et al. 2003; Veresoglou et al. 2013). Host dilution hypothesis: 
Many pathogens are dependent on the availability and density of host plants. At high plant diversity the 
abundance of each host plant is in average lower than in species poor communities (Civitello et al. 
2015), which is suggested to be the underlying mechanism of observed negative diversity-disease 
relationships (Lau et al. 2008; Knops et al. 1999; Mitchell 2003; Mitchell et al. 2003). 

MATERIALS AND METHODS 

Experiment 

We set up a large field experiment (PaNDiv Experiment) in the Swiss lowlands (mean 

annual temperature and precipitation 9.4±0.1°C, respectively 1021.62±31.89mm, 

MeteoSchweiz 2019) on a formerly extensively managed grassland in autumn 2015. 

The experiment consisted of 336 2m x 2m plots. We factorially manipulated plant 

species richness, plant functional composition (gradient of specific leaf area as a 

measure of growth strategy), nitrogen addition, and foliar fungal pathogen exclusion. 
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We used a set of 20 common grassland species spanning a large gradient of specific 

leaf area (SLA) to establish the experimental plant communities and divided them into 

fast (high SLA) and slow (Low SLA) growing (Table S2). The experimental 

communities contained either 1, 4, 8 or 20 species. Plots with four or eight species 

could contain only slow, only fast or a mix of species, creating a large gradient in 

community mean SLA values. Monocultures spanned the full range in SLA values while 

plots with 20 species inevitably had an intermediate mean SLA. The communities had 

fully developed by late summer 2016. To maintain species compositions, the plots were 

weeded three times a year. Plots were mown once in the middle of June and once in 

August (for more details see Supplementary methods and Pichon et al. (2019)). 

Each specific community composition received crossed nitrogen and fungicide 

treatments. Nitrogen (N) enrichment plots received 100 kgNha-1y-1, added once in April 

and once after the first mowing, in the form of urea. This is typical of fertilization 

experiments (Hautier et al. 2014) and medium - intensive farming (Bluethgen et al. 

2012). Foliar fungal pathogen exclusion was done with fungicide (Score Profi by 

Syngenta Agro AG, 24.8% difenoconazole and Ortiva by Syngenta Agro GmbH, 22.8% 

azoxystrobin) applied four times during the growing season (0.2ml of Score Profi and 

0.4ml of Ortiva mixed with 0.062l of water per treated plot each time). Plots without 

fungicide were sprayed with water. Difenoconazole interrupts the synthesis of 

ergosterol (IUPAC 2016), a fungal cell membrane component. If applied on top of the 

vegetation, it has no effect on soil (Dahmen, Staub 1992). Azoxystrobin blocks the cell 

respiration by inhibiting the proenzyme coenzyme Q, which prevents the production of 

ATP. Studies have shown no phytotoxic effects of azoxystrobin (Sundravadana et al. 

2007; Khalko et al. 2009) or difenoconazole (Nithyameenakshi et al. 2006). To account 

for potential soil heterogeneity across the study site, plots were arranged in four blocks. 

Each community composition was grown once per block and the nitrogen and fungicide 

treatments were assigned randomly to the communities in the blocks.  

Measurements 

We measured plant aboveground biomass by harvesting two subplots of 0.1m2, 5cm 

above ground level, in mid-June and at the beginning of August 2018. Biomass was 

dried and weighed. Percentage cover of all sown plant species, plus weeds and bare 

ground, was visually estimated in the central square meter of the plots shortly before 

the biomass harvest (June and August). The sum of all estimates per plot could exceed 

100% but here we analyze proportional abundances of each species. Total plant 
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cover was calculated as 1- the proportion of bare ground. To describe the functional 

composition of the communities, we measured SLA (Garnier et al. 2001) on one leaf 

each from five plants, growing in the central square meter of all the monoculture plots 

(if possible, otherwise elsewhere in the plot) in June and in August, at the same time 

as we measured percentage cover. We then calculated several measures of plant 

functional composition. We calculated the realized SLA, i.e. the community weighted 

mean SLA per plot, using the percentage cover measurements and the mean SLA per 

monoculture as the baseline SLA for each species under a given treatment (the four 

combinations of nitrogen x fungicide). Because plant community composition can shift 

in abundance in response to the nitrogen and fungicide treatments, we also calculated 

the shift in SLA of the whole plant community relative to the sown SLA (mean SLA 

of all species sown in a community), by subtracting the sown SLA from the realized 

SLA (see also Supplementary methods). 

Overall fungal infection, and infection with rusts, smuts, powdery mildews, downy 

mildews and leaf spots (see Rottstock et al. (2014), was assessed for each plant 

species in each plot, in July and in early October 2018. Ten randomly chosen 

individuals per plant species, growing in the central square meter of the plot (if possible, 

otherwise elsewhere in the plot), were screened for signs of infection and the 

percentage of infected individuals was recorded (see also Supplementary methods). If 

there were less than 10 individuals in total, the percentage of infected individuals was 

calculated based on the observed number of individuals. Based on the species level 

infection, and the percentage cover of each plant species, we calculated an abundance 

weighted mean fungal infection per plot and season for total infection and infection by 

separate fungal groups (rusts, powdery and downy mildews and leaf spots). The smut 

fungi were excluded, because they were very rare (observed only eight times).  

Further, we measured the microclimate (temperature and relative humidity logger 

iButton DS1923-F5, Maxim Integrated, USA) in each plot, in the center of one of the 

biomass subplots for a period of 2-3 days, with hourly measurements between 

16.07.2018 and 13.08.2018. Due to a lack of data loggers, we could only measure 28 

plots at the same time (Table S3). Therefore, to account for differences in daily 

temperatures we subtracted the temperature and humidity measured in the plots from 

temperature and humidity measured at the same time in a nearby meteorological 

station in Zollikhofen (3.81 km away, MeteoSchweiz 2019).  
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Analysis 

Biomass, infection, and trait data correlated well between the two time points when 

they were measured. For this reason, we used the total biomass (sum of the two 

harvests) and mean values of community shift SLA and fungal infection between the 

two time points. 

We conducted two analyses to test for the causes and consequences of pathogen 

infection. We first analyzed the overall effects of fungicide on fungal infection and 

biomass production at the plot level, using linear mixed effect models, with fungicide 

as the independent variable and nitrogen addition, sown species diversity and realized 

SLA and all possible interactions as covariates. Block and species combination (84 

levels) were included as random effects. We stepwise excluded non-significant terms 

from the model based on likelihood-ratio tests (Zuur 2009) . We also ran separate 

models for each fungal group. 

Secondly, we tested drivers and effects of quantitative levels of fungal pathogen 

infection in structural equation models (SEM, Figure S1, Table S1). As fungicide did 

not completely remove infection we fitted a multi-group SEM to test the drivers and 

effects of pathogen infection on control and fungicide plots separately (Grace 2006). 

All other treatment variables were also included in the SEM with direct effects on both 

fungal infection and biomass production. In the SEM we were therefore able to test for 

the effect of quantitative levels of pathogen infection and whether it varied with 

fungicide application. We included the deviation between plot and air humidity and 

temperature and plant cover, to account for indirect effects of the treatment variables 

through changes in microclimate. This considers potential impacts of the plant 

community on fungal infection, which elsewise would have likely influenced the path 

between fungal infection and biomass. We also incorporated an interaction between 

diversity and pathogen infection, which could affect plot biomass production, by 

constructing a dummy variable by multiplying the standardized values of fungal 

infection and species diversity (path 14 in Figure S1, Table S1). 

We fitted a multi-group SEM, with the groups being the two levels of fungicide 

treatment, which allowed fungicide to interact with all the paths of the models. We 

checked whether each path and intercept differed significantly with fungicide, by 

comparing the AIC values of a fully unconstrained model, where all paths and 

intercepts were allowed to differ, with a model where a particular path was constrained 
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to be equal between fungicide treatments. All paths that did not differ significantly were 

kept constrained (Table S2). We used the same SEM to analyze the separate fungal 

groups (rusts, powdery mildews, downy mildews, and leaf spots).  

To test for diversity effects through host dilution, we calculated host concentration 

effects for each plant species, as the relationship between host cover and infection. 

We fitted separate linear mixed effect models per plant species, nitrogen, and fungicide 

treatment with block as a random effect. The slopes of these models were analyzed 

using another mixed effect model with nitrogen and fungicide as explanatory variables 

and species as a random effect. This allowed us to test whether nitrogen enrichment 

and fungicide alter any host dilution effects. All analyses were conducted in R (R Core 

Team 2018), using the package lme4 for linear mixed effects models (Bates et al. 

2015) and lavaan for SEMs (Rosseel 2012). 

RESULTS 

Effects of fungicide application on fungal infection and plant biomass 

Fungicide reduced fungal infection by 25.33% on average (Figure 2a). The fungicide 

was most effective in high SLA communities, especially at high species diversity and 

in the absence of nitrogen fertilization (Figure S4). Fungicide also increased plant 

biomass but only in plots with high SLA (Figure 2b). This agrees with the idea that 

fungicide was most effective in fast growing communities. Comparing the intercepts in 

the SEM between fungicide and non-fungicide plots showed similar results (Figure 4h). 

Drivers of infection 

We then used SEM to look in more detail at the drivers of pathogen infection and its 

impacts on biomass (SEM: Figure 3; selected partial plots: Figure 4; path coefficients, 

significances, etc.: Table S8). The most important driver was functional composition, 

i.e. whether plant communities contained slow or fast growing plants. Both the sown 

SLA (Figure 4a) and the shift in SLA (Figure 4b) increased fungal infection. 

Communities with low sown SLA and a highly negative SLA shift had lower infection 

than high SLA communities. Leaf spots, rusts and to some degree powdery mildews 

increased with increasing SLA, whereas downy mildews were unaffected (Figure S6). 
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Figure 2 Selected results from the linear mixed 
effects models: model predictions and 95% 
confidence interval of a) impact of fungicide 
treatment on fungal infection and the 
contribution of single fungal groups to overall 
infection The numbers in the bars indicate the 
percentage contribution of each fungal group to 
the total infection. Main fungicide effects of the 
linear mixed effects models per fungal group: 
Fungicide reduced total infection from 
61.50 ± 1.38 % to 45.92 ± 1.39 % (p < 0.001), 
leaf spots from 59.1 2 ± 1.58 % to 
46.90 ± 1.57 % (p < 0.001), rusts from 
16.43 ± 0.81 to 2.67 ± 0.81 % (p < 0.001) and 
powdery mildews from 4.85 ± 0.53 % to 
2.32 ± 0.83 % (p < 0.001), while downy 
mildews were unaffected by fungicide 
(p = 0.623) and were generally very low 
(1.11 ± 0.39 %). b) Interactive effect of realized 
SLA and fungicide on biomass production. 
Plots dominated by fast-growing species 
produced less biomass than plots dominated 
by slow-growing species. Fungicide increased 
biomass production, but only in plots 
dominated by fast-growing species. Under 
fungicide treatment there was even an 
increase of biomass with increasing realized 
SLA. Estimates and CI were derived from the 
effects package (Fox 2003). The whole model 
results can be found in Table S4 and Table S5. 
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Figure 3 SEM: drivers and consequences of fungal infection. Dashed lines: negative effects. Solid lines: 
positive effects. Double headed arrows: correlations. Single headed arrows: paths. Black: significant 
constrained paths, red: significant unconstrained paths between fungicide (dark red) and no fungicide 
(light red). Light grey: not significant paths. Thickness: strength of the path/correlation. 

Microclimate was also important and an increase in temperature increased fungal 

infection (Figure 4f). Humidity had no significant effect on fungal infection (Figure 4e). 

However, humidity and temperature were negatively correlated (Figure 3), which 

makes it hard to fully separate their effects. The impact of microclimate varied between 

fungal groups: rusts and leaf spots, the most abundant groups, increased with 

increasing temperature, while powdery and downy mildews were unaffected (Figure 

S6). Nitrogen and plant species diversity did not affect fungal infection directly (Figure 

4c-d).  
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Figure 4 Partial plots of the SEM: impact of selected variables on fungal infection (a-h), biomass 
production (i) and SLA shift (j) after removing all effects of all the other variables which are not plotted. 
Effects on fungal infection of a) sown SLA (0.331, p<0.001), b) SLA shift (0.186, p<0.001), c) diversity 
(-0.030, p=0.551), d) nitrogen (-0.079, p=0.056), e) microclimatic humidity (-0.082, p=0.125), f) 
microclimatic temperature (0.121, p=0.012), g) plant cover (-0.061, p=0.227) and h) fungicide ±95% CI 
(-0.689, p<0.001) Interactive effects on biomass of i) fungicide, fungal infection and diversity and j) 
Interactive effects on SLA shift of nitrogen and fungicide estimate±95 & CI 

Several factors indirectly affected infection via changing microclimate. Temperature 

varied by 13.6°C between plots and was reduced by plant cover, but not by biomass. 

Plant cover was increased by plant diversity and nitrogen but reduced by sown SLA. 

Therefore, in addition to its positive direct effect, sown SLA also had a positive indirect 

effect on fungal infection, but this indirect path was non-significant overall. Species 

diversity and nitrogen enrichment indirectly decreased infection by increasing plant 

cover and reducing temperature, but again the indirect effects were not significant 

overall. 

The absence of a direct diversity effect on fungal infection cannot be explained by an 

absence of host concentration effects, as on average plant species cover was 

positively related to species-specific infection, suggesting additional mechanisms such 

as spillover or additionally the presence of density independent pathogens. The 
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application of fungicide removed host concentration effects (Figure S8). 

Impact of fungal infection 

In the SEM (SEM: Figure 3; selected partial plots: Figure 4; path coefficients, 

significances, etc.: Table S8), fungal infection also affected plant biomass production, 

however this depended on plant diversity (Figure 4i): in species rich communities 

fungal infection was negatively related to plant biomass, indicating that fungi had strong 

impacts on biomass, whereas in monocultures, fungal infection was even weakly 

positively related to biomass (Figure 4i). Adding fungicide increased the effect of 

diversity on the disease-productivity relationship, which means a stronger negative 

correlation at high diversity and a stronger positive correlation between infection and 

biomass in monocultures (Figure 4i). The SEMs per fungal group revealed that the leaf 

spots and to some degree the rusts drove the negative relationship between infection 

and biomass (Figure S6). Powdery mildew had no impact on biomass production, while 

the downy mildews even increased biomass. The downy mildew and rust models did 

not fit well (both p<0.001) but the fit was good for the leaf spots (p = 0.268) and 

adequate for the powdery mildews (p = 0.088). 

Biomass was also affected by several other factors. Nitrogen enrichment increased 

biomass production independently of the fungicide treatment, a shift in SLA towards 

faster growing species increased biomass production, while the effects of sown SLA 

on biomass depended on the fungicide treatment. 

Fungicide also altered the SLA shift in the experimental plant communities to favor 

faster growing species (Figure 4j), but there was a lot of unexplained variation in SLA 

shift (R2=0.084 under fungicide and R2=0.031 under no fungicide treatment). The effect 

of fungicide on the SLA shift was amplified by nitrogen enrichment so that plots with 

nitrogen added and pathogens reduced shifted towards dominance by faster growing 

species (Figure 4j). 

DISCUSSION 

Growth-defense trade-off 

We found strong support for the growth-defense trade-off hypothesis as the key driver 

of pathogen abundance and impact. Plant communities dominated by fast growing 

species had increased infection, and fungicide was most effective at reducing fungal 

infection in high SLA communities. There is an inherent trade-off between plant growth 

and the production of certain defense compounds (Huot et al. 2014), and species which 

are at the fast end of the leaf economics spectrum have been shown to have lower 
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structural and chemical defenses (Mason et al. 2016; Coley 1988) and higher tissue 

nutrient levels (Wright et al. 2004). Both could explain the increased pathogen attack 

on fast growing species, however, the absence of support for the nitrogen disease 

hypothesis, see below, may indicate that changes in defenses are more important. Our 

results show that growth-defense trade-offs are not only a major predictor of herbivory 

(e.g. Lind et al.) and pathogen attack on individual plant species but also scale up to 

be the key driver of community level pathogen infection.  

Fungal pathogen impact was also mostly determined by growth-defense trade-offs. 

Fungicide allowed fast growing species to increase in abundance, especially under 

nitrogen. This is in line with findings that plants originating from nutrient rich habitats 

benefitted most from enemy release (Blumenthal et al. 2009, but see e.g. Heckman et 

al. 2017). Fast growing species are expected to be good competitors in nutrient rich 

environments (Wright et al. 2004; Poorter et al. 2009), but our results suggest that 

pathogens reduce their competitive advantage. Pathogens may therefore equalize 

competitive abilities and promote diversity in nitrogen rich conditions. In nutrient poor 

habitats, slow growing plants are expected to be more competitive and in such an 

environment, pathogens might reduce diversity by excluding faster growing species. 

Previous studies have shown pathogens can alter the outcome of plant competition 

(Paul 1989; Ridenour and Callaway 2003) and change plant community composition 

(Allan et al. 2010). Our results suggest that the growth strategy of plants is the key 

predictor of plant community responses to pathogens, and that pathogens promote 

slow growing species.  Over time, this would be expected to reduce pathogen 

abundance and therefore impact. Such feedbacks could cause temporal dynamics 

between plant community composition and fungal infection, which could only be tested 

with long-term data on fungal infection and plant functional composition. 

Nitrogen disease 

We did not find support for the nitrogen disease hypothesis. Nitrogen can increase 

disease in crops but findings from grasslands are contradictory, with some studies 

finding support (Mitchell et al. 2003), but others not  (Lau et al. 2008). Compared to 

agricultural systems, grassland plants could evolve increased disease resistance with 

nitrogen fertilization (Snaydon and Davies 1972), which might offset any benefits the 

pathogens would derive from higher plant nutrient contents. In addition, plant 

community composition changes with nitrogen enrichment. Mitchell et al. (2003) did 

not control for changes in composition but showed that the "disease proneness" of the 
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plants was an important driver of infection. Liu et al. (2018b) showed that nitrogen 

addition favors disease prone species (but see Welsh et al. 2016). However, these 

studies did not explain what drives disease resistance and could not separate 

compositional change effects from direct effects of nitrogen. Our results indicate that 

trade-offs linked to the leaf-economics spectrum are likely the underlying mechanism 

and that an increase in fast growing species is responsible for an increase in infection 

with nitrogen. Further, nitrogen enrichment can increase humidity and decrease 

temperature through increased shading in denser vegetation. In the dry summer of 

2018, N fertilization may have decreased water and temperature stress and made the 

plants more resistant to fungal infection, which would explain why we found a negative 

indirect effect of nitrogen enrichment on infection. This all suggests that the direct effect 

of nitrogen on community infection in grasslands is weak to non-existent. Nitrogen 

enrichment rather drives infection through indirect effects of community shift and 

changes in microclimatic conditions. 

Impact of plant diversity 

Plant diversity did not affect fungal infection in our study, apart from a small indirect 

effect through microclimate. This is contrary to most other studies, which found that an 

increase in diversity leads to a decrease in infection (e.g. Mitchell et al. 2002; Liu et al. 

2016; Rottstock et al. 2014; but see Halliday et al. 2017). We expected that host 

abundance would be diluted at high plant diversity and that this would reduce infection. 

However, while infection on individual plant species was lower when the plants were 

rarer (at least when pathogens were not suppressed by fungicide), this did not lead to 

a negative diversity-infection relationship for the community. Other diversity related 

mechanisms may have counteracted this relationship. Several other studies reported 

unexplained effects of diversity on fungal infection, in addition to host dilution, and 

different plant species and diseases varied in their response to diversity (Rottstock et 

al. 2014; Mitchell et al. 2002; Knops et al. 1999). One mechanism by which diversity 

can counteract dilution effects is  increased spillover of generalist pathogens at high 

diversity or an increase of density independent pathogens such as vector-transmitted 

ones (Power and Mitchell 2004; Halliday et al. 2017). Another possibility is that diverse 

communities become dominated by susceptible species, limiting host dilution effects. 

Both mechanisms might explain why plant diversity did not affect fungal infection in our 

study. 

Interestingly, our results suggest that the impact of fungal pathogens on biomass 
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production was higher in species rich plant communities. Even though plant diversity 

did not alter overall pathogen infection, it could still have altered fungal community 

composition or diversity and might have led to more aggressive fungi at high plant 

diversity or reduced pathogen tolerance of the plants. However, we did not find that 

diversity altered the abundance of our four fungal guilds. It is therefore also possible 

that the ability of the plants to deal with infection varies with diversity. A higher 

pathogen pressure in species poor communities might select for better-defended plant 

genotypes, leading over time to reduced pathogen impact in monocultures. Results 

from the Jena Experiment support this idea and show that plants in monocultures have 

evolved to be more resistant against belowground pathogens (Zuppinger-Dingley et 

al.) and aboveground fungi (Hahl et al. 2017). To better predict variation in pathogen 

impact in plant communities we may need to consider pathogen community 

composition and host genetics. 

Climatic stress 

Temperature also affected fungal infection - leaf spots and rusts both benefitted from 

an increase in temperature in the vegetation. Other studies also indicate that higher 

temperatures increase pathogen infection (Liu et al. 2016) and that different fungal 

groups vary in their responses. Powdery mildews can increase with temperature, while 

rusts show more variables responses (Gullino et al. 2018; Helfer 2014). Longer periods 

of 100% humidity lead to water condensation, which has been shown to increase 

infection (Burdon 1991; Sun et al. 2017). However, we found no effect of humidity on 

infection, after correcting for temperature. The summer 2018 was extraordinarily hot 

and dry, with mean July temperatures 1.6°C above the average of the last 30 years 

and precipitation 18.81% lower (MeteoSchweiz 2019), which likely resulted in intensive 

drought and heat stress for the plants. Drought stress can increase fungal diseases in 

trees (Desprez-Loustau et al. 2006) and increase the negative effects of pathogens on 

competitive ability (Paul and Ayres 1987). The microclimate itself was driven by plant 

cover, which was determined by plant diversity, nitrogen, and functional composition. 

These variables indirectly (but weakly) influenced fungal infection through a change in 

the microclimate. Changes in vegetation microclimate may therefore play an important 

role in affecting plant community resistance to disease under extreme weather 

conditions. 

Impact of fungicide and infection intensity on plant biomass 

In our study, we used two approaches to assess the impact of fungal pathogens: 
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exclusion with fungicide and SEMs testing the effect of infection intensity on plant 

biomass production. Fungicide application increased plant biomass but only in plots 

dominated by fast growing plants, which suggests that fast growing plants are not 

entirely tolerant. The magnitude of biomass reduction was lower than in other studies 

(Allan et al. 2010; Seabloom et al. 2017), perhaps because, unlike in the other studies, 

we mowed the field regularly, preventing the build-up of large pathogen populations 

over the season. Our analysis relating infection and biomass suggested that the 

negative impact of fungal infection on biomass in high diversity plots was amplified by 

fungicide, even though fungicide generally decreased infection. Fungicide shifted the 

functional composition of the fungal community by mainly removing the rather 

specialized rusts and powdery mildews (Klenke 2015) and it removed host 

concentration effects, which also suggests a shift from specialists towards more 

generalist pathogens (Bever et al. 2015). Fungicide may therefore have selected for 

more aggressive, generalist pathogens, which would also explain its small overall 

effect on biomass production. These results suggest that a shift in pathogen community 

composition could be a major driver of pathogen impact. Many studies assess the 

impact of fungal infection on ecosystem functioning by comparing plant biomass in 

fungicide and non-fungicide plots (Mitchell 2003; Allan et al. 2010; Seabloom et al. 

2017; Heckman et al. 2017). Our results show the importance of complementing these 

experiments with measures of infection severity and pathogen community composition. 

To increase our mechanistic understanding of the role of pathogens in affecting 

ecosystem functioning it is crucial to combine both approaches. 

One alternative explanation for the altered impact of fungal infection on biomass under 

fungicide treatment might be non-target effects of the fungicide. However, studies 

show that the fungicides used here do not have phytotoxic effects when they are used 

in the recommended concentrations (Sundravadana et al. 2007; Khalko et al. 2009; 

Nithyameenakshi et al. 2006). Fungicides might also reduce beneficial fungi, like 

mycorrhiza belowground, or other mutualistic leaf-endophytes (Fokkema and Nooij 

1981; Henriksen and Elen 2005). However, root samples of a subset of the 

experimental plant species showed no difference in mycorrhizal colonization between 

plants from fungicide and non-fungicide plots in 2017 (data not shown) and a loss of 

mutualists would be expected to reduce biomass production with fungicide application. 

This suggests that while non-target effects cannot completely be excluded, they are 

unlikely to be the key driver of our results.  
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Conclusions 

We found strong support for growth-defense trade-off as a main driver of fungal 

infection. Fungal infection had an impact on biomass production, but this impact was 

context dependent, with greatest biomass loss due to pathogens in species rich 

communities receiving fungicide treatment. Fungicide altered the complex plant-

pathogen interactions, beyond just removing pathogens, probably by removing certain 

fungi more efficiently than others. Fungicide may therefore have a wider range of 

effects in ecosystems than previously considered. This is both a challenge and an 

opportunity for studies using fungicide treatments 
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SUPPELMENTARY 

Supplementary methods 

Experiment 

We set up a large field experiment (PaNDiv Experiment) in the Swiss lowlands, close 

to the city of Bern (mean annual temperature and precipitation 9.4±0.1°C, respectively 

1021.62±31.89mm, MeteoSchweiz 2019). The grassland contains a species 

composition typical for a nutrient rich, rather dry, grazed grassland (Delarze 2015). We 

cleared an area of 3145m2 (85m x 37m) of all vegetation in autumn 2015 and sowed 

our experimental plant communities. Some species were resown in spring 2016, 

because of poor establishment. The experiment consisted of 336 2m x 2m plots, 

separated by a 1m path sown with a grass seed mixture consisting of Lolium perenne 

and Poa pratensis (UFA-Regeneration Highspeed) and mown regularly during the 

growing season.  

We factorially manipulated plant species richness, plant functional composition, 

nitrogen addition, and foliar fungal pathogen exclusion. We used a set of 20 common 

grassland species to establish the experimental plant communities (Table S2). Half of 

the species were classified as fast, half as slow-growing based on specific leaf area 

(SLA) and leaf nitrogen content (Figure S2), which are traits indicative of the leaf 

economics spectrum (Reich and Cornelissen 2014; Wright et al. 2004). We did not 

include legumes in the species pool, because most legumes are adapted to low 

nitrogen levels and could therefore have been only included in the slow species pool 

only, making the species pools phylogenetically biased. The experimental communities 

contained either 1, 4, 8 or 20 species. Plots with 4 or 8 species could have either only 

slow-growing species, only fast-growing species or a mixture of both, which created a 

large gradient in community weighted mean traits. We grew monocultures of all 

species, which were either fast- or slow-growing, and the plots containing all 20 species 

inevitably had mixed functional compositions. The species for 4 and 8 species 

communities were chosen randomly from their respective species pools. To maintain 

species compositions, the plots were weeded three times a year. Plots were mown 

once in the middle of June and once in August, close to the dates when the farmers 

usually mow their extensive meadows (for more details see Pichon et al. (2019)). 



 Chapter 2 

 
 

37 

 

 

2 

 

 

 

 

Conceptual SEM 

  

Figure S1 The full SEM that we tested. We tested all paths from the manipulated variables (left box) to 
the measured variables. The numbered paths are explained in Table S1 

  

Table S1 Hypothesized mechanism driving fungal infection and biomass production in the SEM model 
(Figure S1)  

Path Hypothesized mechanism Reference 

1 (?/-) mostly negative diversity effect on infection in 
grasslands, through host dilution  

Rottstock et al. (2014), Mitchell et 
al. (2003), Mitchell et al. (2002) 

2 (+) nitrogen disease Dordas (2008) 

3 (+) growth-defense trade-off Wright et al. (2004) 

4 (+) high humidity is often beneficial for fungal 
pathogen growth and sporulation 

Bregaglio et al. (2013), Chen et 
al. (2014), Sun et al. (2017), 
Bradley et al. (2003) 

5 (+) an increase in temperature can increase fungal 
infection 

Liu et al. (2016), Roy et al. (2004) 

6 (?/+) spillover of generalist fungi because of higher 
density of potential hosts 

Power and Mitchell (2004), Parker 
et al. (2015) 

7,10 (+) positive diversity-productivity relationship Tilman et al. (2001) 

8,11 (+) nitrogen increases productivity due to nutrient 
limitation 

Whitehead (1970), DiTommaso 
and Aarssen (1989), Fay et al. 
(2015) 

9,12 (+) high growth rate at high SLA Reich et al. (1992), Lavorel and 
Grigulis (2012)  

13 (-) consumption of biomass through fungal 
pathogens 

Allan et al. (2010), Seabloom et 
al. (2017) 

14 (±) different selection pressure (due to host 
dilution), pathogen community composition shift 

Laine (2006), Roy et al. (2000) 

15 (±) increase in competition for light, sampling effect Bachmann et al. (2018) 

16 (+) nitrogen enrichment favors the abundance of 
fast growing plants  

Lavorel and Grigulis (2012), Liu et 
al. (2018b), De Vries et al. (2012) 

17 (±) likely the communities with extremely high/low 
sown SLA have the biggest negative/positive shifts 
towards intermediate SLA 

 

18, 19 (+) more plant transpiration  in denser vegetation, 
shelter against wind that could remove humid air 

Procházka et al. (2011) 

20, 21 (-) more shading Procházka et al. (2011) 
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Table S2 List of species used for the study design, their growth strategy, which was classified based 
on their specific leaf area and leaf nitrogen concentration and the supplier company of the seeds. 

Grasses Growth strategy Supplier Supplier resown  

Poa trivialis 

Fast 

UFA  
Lolium perenne UFA  
Holcus lanatus UFA UFA & field 
Dactylis glomerata R Hoffmann R Hoffmann 2x 
    

Helichotrichon 
pubescens 

 
UFA R Hoffmann 

Festuca rubra Slow 
 

UFA  
Bromus erectus R Hoffmann R Hoffmann 
Anthoxanthum odoratum R Hoffmann R Hoffmann 2x 
   
Herbs    

Crepis biennis  UFA  
Taraxacum officinale  UFA  
Anthriscus sylvestris  UFA R Hoffmann 
Heracleum sphondylium Fast R Hoffmann R Hoffmann 
Galium album  R Hoffmann  
Rumex acetosa  R Hoffmann  
    

Achillea millefolium  UFA  
Centaurea jacea  UFA  
Daucus carota  UFA UFA 
Salvia pratensis Slow UFA UFA 
Prunella grandiflora  UFA UFA 
Plantago media  UFA UFA 
    

 

 

Figure S2 PCA categorizing the experimental species as fast and slow growing based on their values 
of SLA and leaf nitrogen 
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Measurements 

Measures of SLA 

By including the sown SLA and the SLA shift per plot, calculated based on the 

monoculture measurements with the corresponding nitrogen and fungicide treatment 

we accounted for abundance shifts and for plastic shifts following nitrogen and 

fungicide treatments, but not plastic shifts as a response to diversity. The latter, 

however is not significant compared to the plastic shifts as a response to nitrogen and 

fungicide (data not shown). 

Infection 

Measuring the % of infected individuals is different from many studies, which measure 

infeaction as damaged leaf area (e.g. Mitchell (2003), Halliday et al. (2017)), but likely 

more suitable to compare different fungal groups, as some (e.g. powdery mildews) 

mainly grow on the leaf , while others (e.g. rusts) mainly grow in the leaves, which 

makes a big part of the infection invisible (Klenke 2015). Percent leaf area damaged 

and percent infected individuals are log-correlated (Figure S3) and are therefore not 

fundamentally different from each other. 

  

Figure S3 Correlation between community weighted mean of infection intensity based on % leaf area 
infected and community weighted mean of infection incidence based on % infected individuals. Data 
from fall 2018, as damaged leaf area was only assessed in fall 2018. 
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Microclimate 

Table S3 Dates when humidity and temperature 
loggers were placed in which plots 

Start End Plot numbers 

16.7.2018 18.7.2018 239-252, 323-336 

18.7.2018 20.7.2018 225-238, 309-322 

20.7.2018 23.7.2018 211-224, 295-308 

23.7.2018 28.7.2018 197-210, 281-294 

28.7.2018 27.7.2018 183-196, 267-280 

27.7.2018 30.7.2018 169-182, 253-266 

30.7.2018 1.8.2018 71-84, 155-186 

1.8.2018 3.8.2018 57-70, 141-154 

3.8.2018 6.8.2018 43-56, 127-140 

6.8.2018 8.8.2018 29-42, 113-126 

8.8.2018 10.8.2018 15-28, 99-112 

10.8.2018 13.8.2018 1-14, 85-89 
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Supplementary Analyses 

Table S4 fixed effects of the fungi lmer 

Fixed Effects Estimate SE t value Chi2 p-value 

Intercept 0.42213 0.09771 4.32  marginal 

Nitrogen -0.10653 0.08237 -1.293  marginal 

Fungicide -0.78739 0.08393 -9.382  marginal 

Species Diversity -0.02767 0.08368 -0.331  marginal 

Realized SLA 0.48125 0.08995 5.35  marginal 

Nitrogen x Fungicide 0.08203 0.12109 0.677  marginal 

Fungicide x Species Diversity -0.06974 0.05908 -1.18  marginal 

Nitrogen x Realized SLA -0.13115 0.08343 -1.572  marginal 

Fungicide x Realized SLA -0.40054 0.09638 -4.156  marginal 

Species Diversity x Realized SLA 0.23772 0.08665 2.743  marginal 

Nitrogen x Fungicide x Realized SLA 0.36719 0.12227 3.003 9.187 0.002 

Species Diversity x Fungicide x Realized SLA -0.223 0.09118 -2.446 6.128 0.013 

Random Effects Variance SD    

Composition 0.4232 0.6505    

Block 0.0031 0.0560    

 

 

Figure S4 model predictions of lmer for fungal infection of all significant interactions terms (obtained 
from the effect package in r (Fox 2003)). Fungicide had significant interactions with a) fungicide, realized 
SLA and plant species diversity in explaining fungal infection, and with b) SLA as well as nitrogen in 
explaining biomass production. Fungicide reduced fungal infection on average (t-value= -11.942, 
infection without fungicide: 61.50 ± 1.38 %, infection with fungicide: 45.92 ± 1.39 %). Estimates and CI 
were derived from the effects package (Fox 2003) 
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Table S5 fixed effects of the biomass lmer 

Fixed Effects Estimate SE t value Chi2 p-value 

Intercept -0.3259 0.1393 -2.3400   marginal 

Nitrogen 0.5828 0.0881 6.6120  41.49 <0.001 

Fungicide 0.0779 0.0864 0.9019   marginal 

Realized SLA -0.0865 0.0768 -1.1266   marginal 

Species Diversity 0.1374 0.0688 1.9966  3.999 0.046 

Fungicide x Realized SLA 0.1859 0.0879 2.1138 4.518 0.034 

Random Effects Variance SD    

Composition 0.2340 0.4837    

Block 0.0330 0.1817    

 

 

Figure S5 model predictions of the biomass lmer for a) plant diversity and b) nitrogen treatment (obtained 
from the effect package in r (Fox 2003)). 
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Table S6 Results from the SEM model constrain critera, where we 
tested whether paths and intercepts differed significantly with 
fungicide, by comparing the AIC values of a fully unconstrained model 
with a model where a particular paths was constrained to be equal 
between fungicide treatments. Note that we did not constrain the path 
between biomass and fungal infection, even though it does not 
significantly differ between treatments. Fungal infection is part of the 
interaction term, which cannot be constrained, we therefore did not 
constrain any paths that are part of this interaction. 

  p value  

SLA shift ~ Intercept 0.00184 ** 

  Nitrogen 0.03828 * 

  Plant Diversity 0.1991   

  Sown SLA  0.3178   

Fungal Infection ~ Intercept 1.36E-11 *** 

  Nitrogen 0.9706   

  Plant Diversity 0.3293   

  Sown SLA 0.7754   

  SLA Shift  0.7412   

  Humidity 0.7573   

  Temperature 0.5982   

  Plant Cover 0.6994   

Plant cover~ Intercept 0.143   

  Nitrogen 0.5777   

  Plant Diversity 0.9497   

  Sown SLA 0.07047 . 

  SLA Shift 0.441   

Humidity~ Intercept 0.8263   

  Plant Cover 0.8938   

  Biomass 0.838   

Temperature~ Intercept 0.8052   

  Plant Cover 0.9976   

  Biomass 0.5632   

Biomass~ Intercept 0.4208   

  Nitrogen 0.8657   

  Plant Diversity 0.02808 * 

  Sown SLA 0.01775 * 

  Fungal Infection 0.1295   

  
Fungi x Plant 
Diversity 0.02808 * 

  SLA Shift 0.1629   

Humidity ~~  Temperature 0.9887   

Plant cover ~~ Biomass 0.2556   
Fungal Infection x Plant Diversity 
~~ Plant Diversity 1.47E-11 *** 

  Fungi 0.4388   
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Table S7 model fit indices of fully unconstrained model ant the final constrained model. 

model DF AIC P RMSEA CFI SRMR 

unconstrained 34 7945.6 0.204 0.036 0.989 0.045 

constrained 64 7912.4 0.361 0.019 0.994 0.061 
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Table S8 SEM path, correlation and intercept estimates with and without fungicide treatment for the 
standardized data. Paths/correlations/intercepts labelled with c have been constrained, because they 
do not significantly differ between fungicide treatments. 
      with fungicide without fungicide 

Path   
  

Esti-
mate 

S.E. z-value 
p-
value 

Esti-
mate 

S.E. z-value --value 

Regressions:              

Response Predictor             

SLA shift nitrogen  0.245 0.077 3.196 0.001 0.027 0.075 0.364 0.716 

  plant diversity c -0.069 0.054 -1.266 0.206 -0.069 0.054 -1.266 0.206 

  sown SLA c -0.144 0.054 -2.672 0.008 -0.144 0.054 -2.672 0.008 

fungal 
infection 

nitrogen c -0.079 0.042 -1.908 0.056 -0.079 0.042 -1.908 0.056 

  plant diversity c -0.03 0.05 -0.597 0.551 -0.03 0.05 -0.597 0.551 

  sown SLA c 0.331 0.042 7.933 0 0.331 0.042 7.933 0 

  SLA shift c 0.186 0.042 4.426 0 0.186 0.042 4.426 0 

  micr. humidity c -0.082 0.054 -1.535 0.125 -0.082 0.054 -1.535 0.125 

  micr. temperature c 0.121 0.048 2.509 0.012 0.121 0.048 2.509 0.012 

  plant cover c -0.061 0.051 -1.209 0.227 -0.061 0.051 -1.209 0.227 

plant cover nitrogen c 0.195 0.051 3.835 0 0.195 0.051 3.835 0 

  plant diversity c 0.355 0.051 6.937 0 0.355 0.051 6.937 0 

  sown SLA c -0.192 0.051 -3.742 0 -0.192 0.051 -3.742 0 

  SLA shift c 0.006 0.052 0.107 0.915 0.006 0.052 0.107 0.915 

micr. humidity plant cover c 0.431 0.059 7.273 0 0.431 0.059 7.273 0 

  biomass c 0.071 0.06 1.198 0.231 0.071 0.06 1.198 0.231 

micr. 
temperature 

plant cover c -0.164 0.066 -2.488 0.013 -0.164 0.066 -2.488 0.013 

  biomass c -0.027 0.067 -0.409 0.683 -0.027 0.067 -0.409 0.683 

biomass nitrogen c 0.313 0.051 6.193 0 0.313 0.051 6.193 0 

  sown SLA  0.031 0.081 0.384 0.701 -0.119 0.067 -1.779 0.075 

  SLA shift c 0.137 0.053 2.592 0.01 0.137 0.053 2.592 0.01 

  fungal infection  -0.168 0.096 -1.747 0.081 -0.056 0.069 -0.814 0.416 

  plant diversity  -0.054 0.099 -0.544 0.586 0.191 0.065 2.921 0.003 

  infection x diversity   -0.362 0.115 -3.148 0.002 -0.124 0.08 -1.55 0.121 

Indirect paths           

Fungal 
infection 

p. div. – humidity c -0.013 0.009 -1.458 0.145 -0.013 0.009 -1.458 0.145 

 N. – humidity c -0.007 0.005 -1.390 0.164 -0.007 0.005 -1.390 0.164 

 s. SLA - humidity c 0.007 0.005 1.386 0.166 0.007 0.005 1.386 0.166 

Covariances:              

micr. humidity micr. temperature c -0.463 0.057 -8.168 0 -0.463 0.057 -8.168 0 

plant cover biomass c 0.328 0.048 6.793 0 0.328 0.048 6.793 0 

fungal 
infection 

infection x diversity c -0.292 0.038 -7.668 0 -0.292 0.038 -7.668 0 

plant diversity infection x diversity  -0.518 0.077 -6.74 0 0.195 0.067 2.909 0.004 

nitrogen plant diversity  0    0     

plant diversity sown SLA  0    0     

nitrogen sown SLA   0       0       

Intercepts:              

  SLA shift  0.177 0.077 2.306 0.021 -0.164 0.075 -2.185 0.029 

  fungal infection  -0.352 0.061 -5.786 0 0.337 0.074 4.57 0 

  plant cover c 0.017 0.05 0.339 0.735 0.017 0.05 0.339 0.735 

  micr. humidity c 0.008 0.051 0.153 0.878 0.008 0.051 0.153 0.878 

  micr. temperature c -0.005 0.056 -0.082 0.934 -0.005 0.056 -0.082 0.934 

  biomass c -0.044 0.054 -0.824 0.41 -0.044 0.054 -0.824 0.41 

  plant diversity c -0.002 0.056 -0.041 0.967 -0.002 0.056 -0.041 0.967 

  nitrogen c -0.02 0.057 -0.344 0.731 -0.02 0.057 -0.344 0.731 

  sown SLA c -0.005 0.057 -0.081 0.935 -0.005 0.057 -0.081 0.935 

  infection x diversity   -0.102 0.062 -1.644 0.1 -0.072 0.068 -1.06 0.289 

Variances:                

  SLA shift  0.917 0.104 8.832 0 0.83 0.096 8.602 0 

  fungal infection  0.568 0.059 9.7 0 0.798 0.084 9.501 0 

  plant cover  0.689 0.072 9.567 0 0.87 0.093 9.362 0 

  micr. humidity  0.76 0.076 9.951 0 0.812 0.083 9.766 0 

  micr. temperature  0.941 0.095 9.95 0 1.003 0.103 9.765 0 

  biomass  0.891 0.093 9.556 0 0.656 0.07 9.354 0 

  nitrogen  0.997 0.113 8.832 0 0.996 0.116 8.602 0 

  plant diversity  0.961 0.109 8.832 0 0.98 0.114 8.602 0 

  sown SLA  0.949 0.107 8.832 0 1.027 0.119 8.602 0 

  infection x diversity   0.741 0.078 9.462 0 0.706 0.075 9.447 0 
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Table S9 Fixed effects of the host concentration lmer (Bates et al. 2015), with helmert contrasts. Model: 
host concentration slope ~ Nitrogen  + Fungicide + Nitrogen x Fungicide + (1|Species) 

Fixed Effects Estimate  S.E. t-value  

Intercept 0.2262 0.0678 3.34  

Nitrogen -0.0681 0.0505 -1.35  

Fungicide -0.1003 0.0505 -1.99  

Nitrogen x Fungicide -0.0006 0.0505 -0.01  

Random Effects Variance SD   

Species 0.0410 0.2025   

 

 

Figure S8 host concentration effect per nitrogen and fungicide treatment, raw data, predicted values and 
95% confidence interval (obtained from the effect package in r (Fox 2003)). 
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ABSTRACT 

Biotrophic fungal pathogens rely on live hosts as food source. Their establishment and 

spread depends the availability of hosts, the defense of the hosts against pathogen 

infection and on the biotic and abiotic environment. A high abundance of host plants 

facilitates the spread of pathogens within a host population (resource concentration). 

The defenses of host plants vary, because defense mechanisms are subject to an 

ecological trade-off with fast growth within and between species (growth-defense 

trade-off). Further, neighboring plant species can also influence infection in a given 

host population, for example through spillover of pathogens or through altering 

microclimatic conditions (associational susceptibility/defense). This study aims to 

disentangle the relative importance of population and species level growth-defense 

trade-off, host concentration, and associational susceptibility. We find strong growth-

defense trade-off between but not within species and some host concentration as 

drivers of infection. Additionally, we find associational susceptibility near closely related 

species, which is a form of host concentration expanded to phylogenetically related 

host groups. Having high infection does not necessarily cause high biomass loss. 

Some species are tolerant to infection. Our results hint that tolerance trades-off with 

quick resource acquisition.
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INTRODUCTION 

Fungal pathogens are everywhere in the environment and they can have a large impact 

on their hosts (Fisher et al. 2012). Several theories make predictions about when 

pathogens should have the largest impact. The resource concentration hypothesis 

predicts that fungal pathogens can readily spread and exploit their host plants when 

hosts grow at high density. Lower abundances of a given host species should therefore 

interfere with the transmission of host pathogens and lead to lower infection (Janzen 

1970; Connell 1971; Burdon and Chilvers 1982; Knops et al. 1999; Mitchell et al. 2003). 

In addition to host density, host traits are likely to determine how susceptible a plant 

species is to infection. The growth-defense trade-off hypothesis predicts that 

defense comes with fitness costs and that plants can therefore invest either in defense 

against pathogens or in growth, with the optimal strategy depending on resource levels 

(Coley 1985). Slow growing species adapted to low nutrient environments should be 

strongly defended against natural enemies, as the production of plant material is costly 

when resources are scarce. On the other hand with increasing nutrient availability there 

is increased competition for light and space, which favors species which invest more 

of their resources into growth and less in defense (Wright et al. 2004; Endara and 

Coley 2011; Liu et al. 2017; Heckman et al. 2019). The leaf economics spectrum is a 

set of correlated traits, such as specific leaf area, leaf dry matter content and leaf 

nutrient concentrations, which distinguishes species adapted to nutrient rich 

environments, with fast growth, high nutrient acquisition and high leaf turnover, from 

species adapted to nutrient poor environments, with slow growth, tough leaves and low 

turnover (Wright et al. 2004). The traits of the leaf economics spectrum are therefore 

often correlated with infection (Cappelli et al. 2019; Cronin et al. 2010). There is 

substantial evidence for the resource concentration and growth-defense trade-offs as 

drivers of pathogen infection but their relative importance and how they manifest at 

different scales is not well known. 

Resource concentration occurs at the population level, as species suffer more infection 

when they are abundant (Knops et al. 1999; Mitchell et al. 2003). However, resource 

concentration effects can scale up to the community level and result in reduced 

infection in diverse plant communities where each species is at lower abundance 

(Mitchell et al. 2003). In addition, species diversity can have further impacts on infection 

(Mitchell et al. 2003; Hantsch et al. 2014; Rottstock et al. 2014; Keesing et al. 2006), 

for example by creating favorable conditions for natural enemies of pathogenic fungi 
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(Dillen et al. 2017). In general, infection decreases with increased diversity more often 

than the opposite (Civitello et al. 2015). However, the importance of additional diversity 

effects beyond reduction in population abundance has rarely been tested. 

The growth-defense trade-off is often studied by comparing species with different 

growth strategies (e.g. Blumenthal et al. 2009; Heckman et al. 2019), but there is 

evidence that the trade-off also occurs between different genotypes of the same 

species (Cole et al. 2016; Züst et al. 2015). However, the correlation between traits 

along the leaf economics trade-off axis is less consistent within than between species 

(Anderegg et al. 2018). It is therefore not clear if leaf economics traits are suitable to 

predict within species defense variability at all (Züst and Agrawal 2017). It has further 

been argued that the link between infection and the leaf economics spectrum might 

not be due to the growth-defense trade-off, but rather due to microclimatic effects 

related to leaf size (one component of specific leaf area, Bradley et al. 2003). Big 

leaves can accumulate droplets of water, which is crucial for spore germination and 

survival of many fungal pathogens (Bregaglio et al. 2013; Chen et al. 2014; Sun et al. 

2017; Bradley et al. 2003). It is therefore important to test multiple traits simultaneously 

and consider other mechanisms related to these traits. The biotic and abiotic 

environment can also shape trait expression in plants, which adds additional 

complexity to the problem. For example nitrogen enrichment can increase leaf nitrogen 

content and specific leaf area (Firn et al. 2019) or an increase in plant diversity can 

increase specific leaf area (Lipowsky et al. 2015; Roscher et al. 2018b). It is not clear 

whether these intraspecific trait changes can happen independently of changes in 

defense and therefore whether environmental variation could disrupt correlations 

between leaf economics traits and defense. 

The growth strategy of neighboring plants in a community can influence enemy 

damage in a focal plant, too. For example, certain plant species can function as 

reservoirs of pathogens. A reservoir host is a species that is infected by a pathogen 

and contributes to its dispersal but suffers little fitness reduction from pathogens. When 

reservoir species are present they can increase infection by causing pathogen spillover 

to other species, leading to associational susceptibility for plants co-occurring with 

reservoir species (Power and Mitchell 2004; Halliday et al. 2017). Traits related to the 

leaf economics spectrum can increase reservoir potential (Cronin et al. 2010) if fast 

growing species have a high tolerance for infection (Power and Mitchell 2004). 
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Potentially, the opposite could also occur if plants suffer less infection when 

surrounded by resistant species. The in- or decrease of enemy damage in a focal plant 

caused by neighboring plants is called associational susceptibility or associational 

resistance (Barbosa et al. 2009; Iason et al. 2018). In an earlier study we found that 

high community mean specific leaf area increased community level infection, 

supporting the idea that communities dominated by fast growing species have higher 

infection (Cappelli et al. 2019). This could be due to the high abundance of fast growing 

and thus heavily infected species and/or due to associational susceptibility and 

increased spillovers to slow growing species when they occur with fast growing ones. 

However, the relative importance of the two mechanisms remains unclear. 

Fast growing species could have high infection but not necessarily suffer more from 

pathogen infection than slower growing plants. Fast-growing species often cope better 

with infection or herbivory and are more tolerant (Cronin et al. 2014; Kempel et al. 

2019; Gianoli and Salgado-Luarte 2017). Having low defense is likely not so 

detrimental in a nutrient rich environment since damaged tissue can be replaced easily, 

especially when the species is good at acquiring the available nutrients (compensatory 

growth, Goodall et al. 2012; Keary and Hatcher 2004; Kempel et al. 2019). When 

growing without interspecific competition the species that can profit most from nutrient 

addition are likely to be those which are able to rapidly acquire nutrients (Tilman 1982). 

Therefore, a given level of infection should decrease biomass more strongly in slow-

growing plants with slower nutrient acquisition rates than in fast-growing plants. To 

assess fungal pathogen impact we need studies manipulating pathogen abundance 

on host plants. Under field conditions, this is only possible by using fungicide. The 

response to fungicide can be expected to be driven by tolerance and defense, as both 

perfectly defended plants without infection and heavily infected but highly tolerant 

plants should not react to fungicide. The joint effects of tolerance and defense define 

the pathogen resistance of a plant (Haukioja and Koricheva 2000). We know that 

pathogen defense is correlated with plant growth. However, we do not know how 

strongly tolerance, resistance in general, growth rate and nutrient acquisition are 

related. Leaf traits indicating fast growth rate might not correlate perfectly with nutrient 

acquisition rates and pathogen tolerance and overall resistance might therefore trade-

off more directly with nutrient acquisition, as tolerance is likely to be more closely linked 

to nutrient acquisition than growth rate per se. 
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In this study, we aim to test the relative importance of the growth-defense and resource 

concentration hypotheses in determining pathogen infection. We test how variation in 

traits at the community, species and population levels influence infection. Further, we 

test how different plant species react to nitrogen and to enemy exclusion and link these 

responses to growth traits and infection to test relationships between pathogen 

defense, pathogen resistance, resource acquisition and growth. 

We test the following hypotheses: 

The growth-defense trade-off should apply across scales: fast growing plant species 

and plant populations (with high SLA, low LDMC and high LA) should have higher 

infection and so should plants growing in fast growing communities (associational 

susceptibility). 

The growth-defense trade-off should also predict pathogen impact and plant responses 

to nutrients: fast growing plants, with high infection, should increase with nitrogen 

(quick resource acquisition) and pathogen removal (low pathogen defense and high 

infection). 

The resource concentration hypothesis should also predict infection: plants should 

have higher infection when their populations are large and when they grow in low 

diversity communities. 

MATERIALS AND METHODS 

Experiment 

The study was conducted in the PaNDiv Experiment. The experiment was established 

in 2015 on an extensively managed (no fertilization for at least 10 years), quite dry 

grassland with naturally high fertility, typical for the Swiss lowlands. This region has a 

mean annual temperature of 9.4 ± 0.1°C and a mean annual precipitation of 1021.62 

± 31.89 mm (MeteoSchweiz 2019). The experiment factorially crosses nitrogen 

enrichment (0, 100 kg ha-1y-1 N in the form of urea), fungal pathogen exclusion (with 

fungicide, see below), species diversity (1, 4, 8, 20) and functional composition 

(gradient from fast to slow growing communities). Twenty common Swiss grassland 

species were used, 8 grasses and 12 non-leguminous forbs. They were classified as 

either fast or slow growing based on their SLA and leaf nitrogen traits. Plant 

communities of 1, 4, 8 and 20 species were established, with species randomly 

selected from the species pool. In the 4 and 8 species treatments we established plots 

with combinations of either only fast-growing species, only slow growing or a mixture 
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of both growth strategies, which produced a large gradient in mean trait values and in 

trait diversity. All plant combinations were present in 4 plots and received the full cross 

of nitrogen and fungicide treatments. For the exclusion of foliar fungal pathogens, we 

used a difenoconazole based systemic fungicide (Score Profi 106 by Syngenta Agro AG, 

24.8% difenoconazole). As it was not very effective, we added another fungicide in 2018 

(Ortiva by Syngenta Agro GmbH, 22.8% azoxystrobin). The data to test the drivers of 

pathogen infection at different scales were collected in summer 2017, however, to look 

at species responses to nitrogen and fungicide we used data also from 2016 and 2018, 

to look for consistent responses across multiple years. The experiment consists of 336 

plots, arranged in four blocks (Pichon et al. 2019). However, for this study a subset of 

200 plots was used, which included all monocultures and half of the 4 and 8 species 

plots but not the 20 species plots (due to the large number of measures that would 

need to be taken in the 20 species plots). 

Measurements 

We quantified the abundance of each sown plant species in each plot, using visual 

estimates of its percentage cover in the central square meter of the plot in the middle 

of August. We also assessed the abundance of weeds and bare ground. The cover 

was estimated by three well trained persons, who calibrated their measurements in the 

field. To account for potential remaining differences, each block was measured by only 

one person (meaning any differences between recorders are accounted for by the 

block random effect). The sum of all the measures per plot could exceed 100% but 

species abundances were converted to relative values for the analysis. 

We measured three leaf traits on all species in all plots. We measured leaf area (LA), 

specific leaf area (SLA) and leaf dry matter content (LDMC) on five leaves per 

species and plot in August 2017, shortly before the biomass harvest, following the 

protocol of Garnier et al. (2001). The mean of the five LA, SLA and LDMC per species 

and plot was calculated. Heracleum sphondylium had not established very well and 

there were not enough suitable leaves in many plots, in addition, the measurements 

are destructive and might have killed the few plants there. For this reason, we did not 

measure traits for H. sphondylium. The P. trivials SLA measurements were much 

higher than all the other SLA measurements and their variation much bigger. The 

leaves were still very small and very often too young for SLA measurements 

(Supplementary). We therefore excluded P. trivialis from the analysis.  

We then calculated measures of functional traits at the community, species, and 
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individual level. To measure the mean growth strategy of the community, we 

calculated community weighted mean (CWM) values for LA, SLA and LDMC, using the 

percent cover measurements to weight the traits. To measure the growth strategy for 

each species, we calculated the mean LA, SLA, and LDMC per species across all 

plots. To measure the growth strategy of the populations (defined as one species in 

one plot), we calculated the difference to the species control (without fungicide, without 

nitrogen) monoculture. We did this for LA, SLA, and LDMC per species and plot, to 

calculate ∆LA, ∆SLA and ∆LDMC. These measures reflect the intraspecific variation in 

the traits, independent of the species mean trait values. 

Fungal infection was measured in September 2017 in all species in all the plots, by 

screening ten individuals (if possible) of the species in the central square meter of the 

plot. If there were not enough individuals in the central square meter, individuals from 

the rest of the plot were considered. If fewer than 10 individuals were present in the 

whole plot, all individuals were screened for infection. Each plant was classified as 

infected or not infected and the percent of infected individuals was calculated. Fungal 

infection can be interpreted as a proxy of the outcome of defense against fungal 

infection, assuming that the sum of all (effective) defense mechanisms define the 

amount of infection. 

In total, there were 800 possible species x plot combinations, of these, 634 were 

realized (Table S1-2) Eighty had to be removed because of a lack of suitable leaves 

for SLA measurements (Poa trivials and Heracleum sphondylium, Supplementary), the 

remaining missing values represent cases where species did not successfully establish 

in a given plot. 

Finally, we measured plant aboveground biomass production in each plot. We 

harvested biomass in two subplots of 0.1m2 per plot, 5cm above ground level in 

August 2017. Biomass was dried and weighed. 

In the monocultures, these measurements were taken more often. We have biomass 

measurements for August 2016, 2017 and 2018 and June 2017 and 2018. The traits 

and infection were measured in the monocultures as well for the same sampling 

periods, except in June 2017. 

Statistical analysis 

Pathogen infection data for all species in all plots was logit transformed and analyzed 

using linear mixed effects models. The analyses were conducted in R (R Core Team 
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2018) with the lme4 package (Bates et al. 2015). The full model included the 

treatments, nitrogen, fungicide and sown plant species diversity, together with all 

possible interactions between them, as well as the community, species and population 

level trait values and interactions between the traits and the treatments (only two way 

interactions were allowed between traits and treatments to avoid fitting very complex 

models).  We also included the percentage cover of the species to test for resource 

concentration effects. Further, we included a term for plant functional group, i.e. 

whether the plant species was a grass or an herb. Functional group could interact with 

all trait measures and with species percentage cover, to account for potentially different 

growth-defense and resource concentration effects between grasses and herbs. 

Specific plant species composition, block, plot and species were used as random 

effects. Fixed effects were stepwise removed if they did not contribute to an improved 

model fit, based on likelihood ratio tests. To account for potential correlations between 

the different traits the same model was run for each trait separately, which resulted in 

the same significant terms. 

To further study the (between species) growth-defense trade-off, we compared the 

responses of species to nitrogen and fungicide in the monocultures. We analyzed 

whether species, which are able to increase their biomass most strongly following 

nitrogen enrichment are the same that increase their biomass following fungicide 

treatment and whether this is related to their monoculture infection level or specific leaf 

area. This was done by correlating monoculture data across different time points 

(August 2016 and June and August 2017, depending on the data availability as not all 

data is available for all time points). We used monoculture data only in order to exclude 

the influence of interspecific competition on responses to nitrogen and fungicide. For 

the traits and infection, we used control (no nitrogen, no fungicide) monoculture 

measurements. The biomass response to fungicide and nitrogen treatment was 

calculated as the log response ratio. The biomass log response ratio to nitrogen is a 

good indicator of resource acquisition (Figure S9). In order to test for interactions 

between response to nitrogen and fungicide, i.e. whether the same species increase 

with fungicide in the presence and absence of nitrogen, we calculated the log response 

ratio to nitrogen with and without fungicide separately. The response to fungicide was 

calculated at without nitrogen addition. 

RESULTS 

We found that pathogen infection was affected by variables at the community, species 
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and individual levels (Table 1). Of these, the species level specific leaf area (SLA) was 

the most important and had the largest effect on pathogen infection. Species with high 

SLA had higher infection overall. However, this effect was much stronger in herbs than 

in grasses, as grasses generally had higher infection and even grasses with lower 

specific leaf area were heavily infected (Figure 1b). The leaf dry matter content and 

the leaf area of the species were not significantly linked to infection.  

At the population level, the relative abundance of a species had an impact on its fungal 

infection. The more abundant a species was, the higher its infection became. The 

relative abundance of species is to some degree linked to the plant diversity of the 

community (Figure S4). The lack of plant diversity effects on infection, suggests that 

diversity has no additional effect on infection beyond its link to relative abundances.  

At the community level, the mean leaf dry matter content increased infection (CWM 

LDMC) (Figure 1a). As grasses had higher LDMC than herbs, CWM LDMC was 

strongly linked to grass abundance (sum of the cover of all grass species present in a 

plant community, Figure S5) this means that a high abundance of grasses in a 

community increased infection in single species growing in that community. Replacing 

CWM LDMC with grass cover in the model shows high grass cover increased infection 

in the grasses, but not the herbs (Table S4, Figure S6). The herbs rather showed a 

decrease of infection with increasing grass cover, but the confidence interval for this 

effect was large. In addition, the cover of the individual species became insignificant 

when community weighted mean of LDMC was replaced with grass cover. This 

indicates that the grasses drove many of the resource concentration effects observed. 

As the grasses are phylogenetically related (Figure S7) and share many fungal 

pathogens (Klenke 2015), they seem to be sensitive to the abundance of closely 

related species. The full model containing grass cover fitted the data better than the 

model with CWM LDMC (AIC grass cover model: 2584.4, AIC CWM LDMC model: 

2589.2, p < 0.001) supporting the idea, that the observed effect of CWM LDMC is 

mainly due to the effect of grass cover. 
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Figure 1 linear mixed effects model predictions for all significant terms ± 95% confidence interval. How 
a) community weighted mean of leaf dry matter content, b) the mean specific leaf area of a given species 
depending on the functional group and c) the abundance of a species in a plot measured as percent 
infection influence the proportion of infected plant individuals in a population. The detailed model results 
are shown in Table 1. 

 
  

Table 1 Results of the mixed effects model explaining fungal infection with plot (orange), species 
(green) and population (yellow) level trait values as explanatory variables in addition to species 
abundance (% cover) and treatment variables (blue). Insignificant terms are shown in grey and with 
lighter colored background. For insignificant higher order interaction terms see Table S3. 
Significances of lower order interactions (functional group, SLA) were achieved by comparing models 
without the higher order interaction with and without the specific term. Abbreviations: community 
weighted mean (CWM), leaf dry matter content (LDMC), specific leaf area (SLA), leaf area (LA) 

fixed effects Estimate S.E. X2 p-value  

Intercept 4.945 0.890    

cover 0.233 0.102 5.141 0.023 * 
CWM LDMC 0.216 0.108 3.949 0.047 * 
SLA 0.698 1.343 5.699 0.017 * 
functional group (Herb) -0.965 1.173 1.979 0.160  
SLA x functional group (Herb) 4.638 1.951 4.907 0.027 * 
Fungicide   3.445 0.063 . 
Nitrogen   0.864 0.353  
Plant Diversity   0.114 0.735  
CWM SLA   0.057 0.811  
CWM LA   0.246 0.62  
LA   0.058 0.809  
LDMC   2.126 0.145  
∆SLA   1.345 0.246  
∆LA   0.842 0.359  
∆LDMC   0.132 0.717  

Random effects Variance S.D.    

Plot 0.451 0.672    

Composition 0.000 0.000    

Species 6.555 2.560    

Block 0.017 0.130    
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The species level growth-defense trade-off was the key driver of infection in our 

experiment and we therefore investigated the trade-off further by correlating species 

responses to nitrogen and fungicide. Correlated species responses to the treatments 

in monoculture showed that species which increase their biomass following nitrogen 

enrichment , were also the ones benefitting most from fungicide treatment (Figure 2a). 

This correlation between biomass response to nitrogen and fungicide also became 

stronger over time (Figure 2a). Looking at species in monoculture we also generally 

saw a positive correlation between SLA and infection, supporting the analysis using 

the species values across all plots. Although consistent, this correlation was only 

marginally significant in August 2018, perhaps due to the low power when the analysis 

is restricted to monocultures. However, neither the response to nitrogen nor the 

response to fungicide could be linked to SLA. The correlation was never significant and 

the direction of the correlation was inconsistent across the years (Figure 2e-f). This 

means that it is not species with high (or low) specific leaf area that increase in biomass 

following nitrogen enrichment or fungicide treatment. Although insignificant, infection 

was consistently negatively correlated with biomass response to nitrogen across time, 

which indicates that species with low infection may benefit from nitrogen enrichment 

(Figure 2g). There was no correlation between infection and response to fungicide, 

indicating that high infection levels do not indicate a high impact of pathogens on a 

given species (Figure 2h). 

Nitrogen and fungicide also interacted to affect species responses. The correlation 

between the biomass log-response ratio to nitrogen with and without fungicide was not 

significantly correlated, which means that different species were able to increase their 

biomass in response to nitrogen enrichment in the presence and absence of fungal 

pathogens (Figure 2b). Species, which increase strongly with nitrogen when fungal 

pathogens are present (and to fungicide at ambient nitrogen levels) seem not to benefit 

from nitrogen when fungal pathogens are suppressed. This might indicate that in the 

absence of fungal pathogens, the species, which typically increase with nitrogen were 

not able to benefit from additional nutrients. Also, the response of biomass to fungicide 

with and without nitrogen was not significantly correlated (except for in June 2018), 

showing that different species benefitted from fungicide at different nitrogen levels 

(Figure 2c). 
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DISCUSSION 

We found that the specific leaf area of a species is a key driver of its infection, indicating 

that the growth-defense trade-off mainly exists at the species level. This is consistent 

with other studies, which find high infection in species that are adapted to high nutrient 

environments (Blumenthal et al. 2009; Liu et al. 2017). The increase in infection with 

increasing SLA was pronounced in herbs, but less so in grasses. We expected fast 

growing species to be more tolerant, but less resistant, to infection in general. 

However, we observed high infection in all grasses, even in slow growing ones with 

low SLA. This could indicate that pathogen tolerance is not linked to the growth-

defense trade-off, but that there is an additional trade-off between defense and 

tolerance (Figure 3a, correlation ?4), similar to trade-offs between different components 

of defense (Kempel et al. 2011; Koricheva et al. 2004, discussed later). Grasses often 

have a high tolerance to herbivory (Anderson et al. 2013; Anderson and Briske 1995; 

Coughenour 1985; Barthelemy et al. 2019) and it is possible that they are also more 

tolerant against fungal pathogens and generally use tolerance instead of defense to 

cope with natural enemies (Haukioja and Koricheva 2000). As SLA is usually the better 

predictor of plant growth than LDMC or LA (Pérez-Harguindeguy et al. 2013) we can 

conclude that a growth-defense trade-off is an important mechanism driving infection. 

The trade-off holds mainly between species, but breaks down at certain scales, i.e. 

within species or between grasses. 

At the population level, none of the tested traits were significantly correlated with 

infection. This might suggest that within species growth-defense trade-offs are rather 

weak compared to between species trade-offs (Heckman et al. 2019). However, it 

might also be that within species, trade-offs cannot be well captured by resource 

economic traits. Correlation between the leaf economics traits are less pronounced 

within than between species. The break down in correlations is partly because there is 

much less trait variation within species, but it is potentially also due to trait plasticity or 

different selective forces operating on intraspecific trait variation (Anderegg et al. 

2018). Other studies have shown that within species, trait expression is not as tightly 

linked to growth strategy (Derroire et al. 2018; Roscher et al. 2018a) and species can 

to some degree change the expression of one resource economics trait without 

simultaneously changing the expression of other, typically correlated, traits 

(Chapter  4). SLA can be increased by reducing leaf thickness and increasing leaf area, 

which can happen independently of changes to dry matter content. Such intraspecific 
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changes allow adaption to environmental conditions but do not necessarily promote 

growth (Poorter et al. 2009). For example, species can adjust their SLA to increase 

light interception in response to shading, without simultaneously changing other leaf 

economic traits as well (Lipowsky et al. 2015). These findings caution that we might 

not be able to observe within species growth-defense trade-offs by looking at traits 

alone. 

Leaf area was not linked to infection, at neither population, species nor community 

level. This indicates that the ability of big leaves to create favorable microclimatic 

conditions for pathogens was not important in increasing infection in our study. Bradley 

et al. (2003) showed that large leaves were better at capturing droplets of water, which 

favored the germination of fungal spores. In the field however, the impact of water 

retention on infection was context dependent. In a dry study site, species with higher 

water retention had higher infection, while in wet conditions there was no link between 

water retention and infection and all species had high infection. (Bradley et al. 2003). 

Our results suggest that even though leaf area might have an impact on infection under 

some circumstances, the link between the leaf economics spectrum and infection is 

mainly due to a growth-defense trade-off. 

At the population level, host abundance was the only variable influencing infection. 

Infection increased with increasing abundance, which supports the resource 

concentration hypothesis (Burdon and Chilvers 1982; Knops et al. 1999; Mitchell et al. 

2003). However, the effect size was rather small compared to the effect size of species 

SLA. Host abundance was linked to plant species diversity, indicating that diversity can 

at least weakly decrease infection through host dilution, however, diversity had no 

additional effects on infection (Keesing et al. 2006). It is likely, that we observed only 

weak effects of host abundance because of pathogen spillover from neighboring plants 

(Power and Mitchell 2004; Halliday et al. 2017). Closely related species often share 

pathogens and pathogen infection may respond to the abundance of closely related 

species in an area (Parker et al. 2015; Gilbert and Webb 2007). We find some support 

for this, as the model including grass cover instead of community level LDMC fitted the 

data better and showed that grasses, but not herbs, suffered more infection when 

surrounded by a high density of other grasses. This suggests that resource 

concentration effects are driven not just by the abundance of conspecifics but by the 

abundance of closely related species.  Unfortunately, our study design is not suitable 
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to fully test for community level resource concentration due to phylogenetic 

relatedness, as we lack many other confamilials in our species pool and we do not 

have plots containing only grasses or herbs, which would allow us to separate LDMC 

from grass cover effects. Another possible explanation for the low effects of host cover 

and thus diversity relative to other studies (Rottstock et al. 2014; Mitchell et al. 2002; 

Mitchell et al. 2003; Liu et al. 2016), might be the design of our experiment. The PaNDiv 

experiment crosses manipulations of diversity and plant growth strategy and the large 

effects of growth strategy on infection might mask any diversity effects. Host plant 

abundance was the only population characteristic that had an impact on infection, 

indicating that resource concentration was more important than growth-defense trade-

off at the population level, in fine tuning patterns of infection. 

We also found no effect of the community SLA on infection. This indicates that fast 

growing species have more infection but that they do not cause spillovers to slow 

growing species. We therefore find no evidence for associational susceptibility for 

species growing in fast-dominated communities. Spillover happens preferably between 

closely related species (Gilbert and Webb 2007). Therefore, the community level SLA 

might be less important than the SLA of closely related species. Plots containing only 

closely related species covering a large range of SLA would be needed to test for this. 

Previous results showing that a high community mean SLA increases infection in this 

experiment (Cappelli et al. 2019) therefore seem to be due to high SLA species 

supporting high levels of pathogen infection, but not due to increased spread of 

pathogens between species. 

High levels of pathogen infection (indicating low host defense) did not necessarily 

reduce plant biomass, as the biomass response to fungicide (total host resistance to 

infection) in monocultures was not correlated with infection across the years (Figure 

3a, correlation h). This suggests that tolerance might be a valuable alternative strategy 

to deal with fungal pathogens (Figure 3a, correlation ?1), as proposed by other studies 

(Roy et al. 2000; Chase et al. 2000; Kempel et al. 2019; Gianoli and Salgado-Luarte 

2017). Defense alone (inverse of infection) was consistently negatively linked to growth 

strategy (Figure 3a, correlation d) but not to overall resistance, in contrast to studies 

on large herbivore impact (Lind et al. 2013). The lack of correlation between total 

resistance (response to fungicide) and defense might be explained by a trade-off 

between tolerance and defense (Chase et al. 2000; Roy et al. 2000, but see Cronin et 

al. 2014). Both, heavily defended (and thus infection free species), but not tolerant and 
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highly tolerant, but not defended species should not increase biomass when fungicide 

is applied. However, if a heavily defended species would be infected nonetheless, it 

would benefit a lot from fungicide, but this is unlikely to be observed in the field (Figure 

3b). Tolerance may therefore play an important role in addition to defense in 

determining pathogen resistance (Figure 3a, correlation ?2). However, to 

systematically disentangle the effects of resistance and tolerance under different 

nutrient levels, studies manipulating infection levels through inoculations would be 

needed, as it is not possible to measure tolerance under field conditions. 

Total resistance to infection was positively correlated with biomass response to 

nitrogen (Figure 3a, correlation a), rather than to SLA and plant growth strategy (Figure 

3a, correlation f). As the response to nitrogen was also uncorrelated with growth 

strategy, nitrogen acquisition strategy may differ from overall growth strategy. A recent 

experiment with 15N labelled ammonia and nitrate (Walde 2019) showed that different 

species have high nitrogen uptake under ambient and increased nitrogen availability, 

suggesting a trade-off between competitive ability for nitrogen and ability to rapidly 

acquire nitrogen. It is the species most able to take up nitrogen under high nitrogen 

conditions that increase with nitrogen addition (Figure S9). This agrees with theory 

stating that coexistence requires that species rapidly draw down the nutrient they find 

most limiting (Tilman 1982). The species which profit from nitrogen are therefore those 

able to rapidly acquire nitrogen when it is supplied at high rates and these are the 

species that suffer from pathogens. Our results therefore suggest a trade-off between 

nitrogen uptake and ability to cope with pathogens. This is probably linked to the 

nitrogen limitation of the species with quick nutrient acquisition. Nitrogen limitation 

might reduce the capacity to compensate for lost tissue (Wise and Abrahamson 2005). 

The trade-off between nitrogen uptake and tolerance could be linked to the root 

economics spectrum, which should indicate belowground nutrient acquisition strategy 

(Mommer and Weemstra 2012; Fort et al. 2016). The root economics spectrum is not 

strongly linked to the leaf economics spectrum in grassland species (Schroeder-Georgi 

et al. 2016; Bergmann et al. 2017, but see Reich and Cornelissen 2014) which supports 

the idea of two (at least partly) independent trade-offs. The growth-defense trade-off 

has received a lot of attention as a driver of enemy impact but our results suggest that 

there may be additional trade-offs linked to resource acquisition that determine the 

impact of fungal pathogens on their hosts. 
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Figure 3 a) overview over the correlation analysis of the monoculture measurements across the year 
(Figure 2) and what this could mean for infection tolerance. Pathogen resistance represents the joint 
consequences of tolerance and defense to infection. Of the two, we measured defense (as the inverse 
of infection), but not tolerance, as this is not possible in our field setting. Total resistance was not 
consistently linked to defense (h), which means that species with high infection did not benefit most from 
fungicide. This suggests that tolerance plays an important role (?1). The only significant correlation was 
between total resistance and nitrogen acquisition (a). Given that defense is not significantly linked to 
resistance, this suggests that tolerance is the main reason for the strong link between resistance and 
nitrogen acquisition (?2). Although not significant, but consistent across the years, defense was 
negatively correlated with growth strategy (d). We expected fast growing species to be highly tolerant 
(?3), but given that resistance and growth strategy are not related, there is no indication that this is true. 
b) the lack of a significant correlation between defense and resistance might be explained by the joint 
effect of tolerance and defense, which are expected to trade-off. Both, highly tolerant (b) and highly 
resistant (b) species likely do not respond to fungicide. The highly tolerant species would not respond 
to fungicide, because they are largely unaffected by fungal pathogens, the highly resistant species do 
not respond, because they should not have infection. If for some reason, even highly defended, but not 
tolerant species would get infected nonetheless, they should increase biomass strongly following 
fungicide treatment (c).  

Interestingly, species responses to nitrogen and pathogens also interacted. The plants 

which increased with fungicide under ambient N were not the same as those that 

benefitted from fungicide under increased nitrogen. A high availability of nitrogen might 

have allowed certain species to be more tolerant of infection (Kempel et al. 2019; 

Horgan et al. 2018). It is also possible that when fungi are suppressed insect 

herbivores invade the shared and now free niche (Raffa et al. 2019; Thaler et al. 2012; 

Cappelli et al. 2019), which would explain why some species don’t benefit so much 

from fungicide. A shift from strong limitation by nitrogen to increased limitation by other 

resources in N addition plots could also alter species responses to pathogens. 

Different species also benefitted most from nitrogen when fungal pathogens were 

present and when they were suppressed. We know that fungicide doesn’t exclude 

pathogens completely and alters the composition of the fungal community (Cappelli et 
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al. 2019) and a shift in the pathogen community could therefore alter species 

responses to nitrogen with and without fungicide. It should be noted, that these results 

are based on the monoculture data only, which means we have one replication per 

species and treatment per year. Nonetheless, the results hint at interactive effects of 

nitrogen and pathogens.  

Our results show that the growth-defense trade-off is the major driver of pathogen 

infection. In general, species level characteristics were the key drivers of pathogen 

infection, while community context and intraspecific variation were of relatively minor 

importance. Changes in plant species composition are therefore likely to be the major 

driver of changes in pathogen abundance. However, although resource economics 

traits predicted pathogen infection (defense) they did not predict pathogen impact on 

biomass production. In contrast nitrogen acquisition strategy seems to predict 

pathogen impact and may trade-off with tolerance against pathogens. It is therefore 

likely that plant species differentiate along multiple trade-offs axes, between tolerance, 

defiance and competitive ability for particular nutrients. In order to understand the 

ecological role of fungal pathogens, it will be important to consider tolerance and to 

develop frameworks which include multiple trade-offs simultaneously. 
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Figure S1 raw SLA measurements per species  
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Figure S2 raw leaf area (LA) measurements per species 
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Figure S3 raw leaf dry matter content (LDMC) measurements per species 
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The four monocultures of Heracleum 

sphondylium had to be excluded due to a 

lack of enough suitable leaves to measure 

leaf traits. The four monocultures of Poa 

trivialis were excluded, because the P. 

trivialis SLA measurements were much 

higher than all the other SLA 

measurements and their variation much 

bigger (see Figure S1 – S3). The leaves 

were still very small and very often too 

young for SLA measurement. After 

removing Poa trivialis and Heracleum 

sphondylium 720 data points would have 

been possible of which 634 were realized. 

Most missing data are due to the species 

Anthriscus sylvestris and Daucus carota, 

which have not established very well and 

Rumex acetosa, which by the time of the 

measurement had died back, after having 

flowered.  

  

Table S1 Sample sizes per treatment group. In brackets the maximum possible 
minus Poa trivialis and Heracleum sphondylium. White: control plots, red: fungicide 
plots, blue: nitrogen plots, violet: fungicide + nitrogen plots. 

SD fast mixed slow 

1 
8 (10-2) 8 (10-2)         10 (10) 10 (10) 

8 (10-2) 8 (10-2)         10 (10) 10 (10) 

4 
12 (20-4) 15 (20-4) 16 (20-1) 19 (20-1) 19 (20) 20 (20) 

14 (20-4) 14 (20-4) 18 (20-1) 17 (20-1) 19 (20) 18 (20) 

8 
22 (40-9) 24 (40-9) 33 (40-4) 28 (40-4) 38 (40) 33 (40) 

24 (40-9) 26 (40-9) 31 (40-4) 32 (40-4) 36 (40) 37 (40) 

20 
                  Total:     

                  637 (800-80) 

Table S2 sample sizes per species. In brackets 
the maximum possible sample size. 

species 
abbreviation sample 

size 

Achillea millefolium Am 32 (32) 

Anthoxanthum 
odoratum 

Ao 
34 (36) 

Anthriscus 
sylvestris 

As 
6 (44) 

Bromus erectus Be 36 (40) 

Crepis biennis Cb 32 (32) 

Centaurea jacea Cj 36 (36) 

Daucus carota Dc 26 (44) 

Dactylis glomerata Dg 48 (48) 

Festuca rubra Fr 36 (36) 

Galium album Ga 40 (44) 

Holcus lanatus Hl 36 (36) 

Helictotrichon 
pubescens 

Hp 
40 (40) 

Lolium perenne Lp 32 (32) 

Prunella grandiflora Pg 40 (40) 

Plantago media Pm 48 (48) 

Rumex acetosa Ra 23 (36) 

Salvia pratensis Sp 48 (48) 

Taraxacum 
officinale 

To 
44 (48) 

Poa trivialis Pt 0 (40) 

Heracleum 
sphondylium 

Hs 
0 (40) 
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Figure S4 relationship between host plant abundance and plant species diversity for each species. 
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Table S3 full model results of the linear mixed effects model 

fixed effects Estimate S.E. X2 p-value 

Intercept 4.945 0.890   
cover 0.233 0.102 5.141 0.023 
SLA 0.698 1.343  marginal 
CWM LDMC 0.216 0.108 3.949 0.047 
functional group Herb -0.965 1.173  marginal 
SLA x functional group Herb 4.638 1.951 4.907 0.027 
Fungicide   3.445 0.063 
LDMC   2.126 0.145 
∆SLA   1.345 0.246 
Nitrogen   0.864 0.353 
∆LA   0.842 0.359 
CWM LA   0.246 0.62 
∆LDMC   0.132 0.717 
Plant Diversity   0.114 0.735 
LA   0.058 0.809 
CWM SLA   0.057 0.811 
∆SLA x functional group   3.694 0.055 
Nitrogen x SLA   1.252 0.263 
Nitrogen x CWM SLA   3.493 0.062 
SD x ∆LDMC   3.345 0.067 
Nitrogen x ∆LA   3.721 0.054 
Nitrogen x LDMC   2.169 0.141 
Nitrogen x cover   1.631 0.202 
Plant Diversity x Nitrogen   3.502 0.061 
Plant Diversity x SLA   2.108 0.146 
Nitrogen x Fungicide   1.801 0.18 
Plant Diversity x Fungicide   1.771 0.183 
CWM LDMC x functional group   1.879 0.17 
CWM SLA x functional group   1.743 0.187 
Nitrogen x ∆SLA   1.659 0.198 
Fungicide x LDMC   1.223 0.269 
CWM LA x functional group   0.866 0.352 
Plant Diversity x CWM LA   0.79 0.374 
Plant Diversity x LA   0.851 0.356 
LDMC x functional group   0.5 0.48 
Plant Diversity x CWM LDMC   0.424 0.515 
Plant Diversity x LDMC   0.487 0.485 
Fungicide x ∆SLA   0.4 0.527 
Nitrogen x CWM LA   0.355 0.551 
Nitrogen x LA   0.375 0.54 
LA x functional group   0.38 0.538 
∆LA x functional group   0.299 0.584 
Plant Diversity x CWM SLA   0.239 0.625 
Nitrogen x ∆LDMC   0.189 0.664 
Fungicide x LA   0.15 0.699 
Fungicide x CWM LA   0.197 0.657 
Plant Diversity x Nitrogen x Fungicide   0.206 0.65 
Plant Diversity x cover   0.171 0.679 
cover x functional group   0.208 0.648 
Fungicide x CWM LDMC   0.146 0.703 
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Fungicide x ∆LA   0.152 0.696 
∆LDMC x functional group   0.145 0.704 
Fungicide x SLA   0.135 0.713 
Fungicide x cover   0.083 0.773 
SD x ∆SLA   0.051 0.821 
SD x ∆LA   0.048 0.827 
Fungicide x ∆LDMC   0.037 0.846 
Nitrogen x CWM LDMC   0 0.99 
Fungicide x CWM SLA   0 0.995 

Random effects Variance S.D   
Plot 0.451 0.672   
Composition 0.000 0.000   
Species 6.555 2.560   
Block 0.017 0.130   

 

 

Figure S5 Strong correlation (pearson correlation, R2 = 0.72, p < 0.001) between community weighted 
mean leaf dry matter content (CWM LDMC) and the abundance of grass species. 
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Supplementary 7: model with grass cover instead of CWM LDMC 

   

Table S4 Results of the mixed effects model explaining fungal infection with plot, species and 
population level trait values as explanatory variables in addition to species abundance (% cover) and 
treatment variables) In this model the community weighted mean of LDMC was replaced by the 
summed abundances of all grass species. Insignificant terms are shown in grey and with lighter 
colored background. Abbreviations: community weighted mean (CWM), leaf dry matter content 
(LDMC), specific leaf area (SLA), leaf area (LA) 

fixed effects Estimate S.E. X2 p-value  

Intercept 5.229 0.954    

grass abundance 0.717 0.175    

SLA 0.561 1.431    

functional group (Herb) -1.528 1.261    

SLA x functional group (Herb) 4.758 2.082 4.572 0.033 * 
grass abundance x  
functional group (Herb) -1.142 0.333 11.541 0.001 

**
* 

Fungicide -0.439 0.219 3.971 0.046 * 
Nitrogen   1.511 0.219  
Plant Diversity   1.176 0.278  
CWM SLA   0.185 0.667  
CWM LA   2.155 0.142  
cover   0.351 0.554  
LA   0.629 0.428  
LDMC   2.166 0.141  
∆SLA   2.351 0.125  
∆LA   1.279 0.258  
∆LDMC   0.008 0.930  

Random effects Variance S.D.    

Plot 0.424 0.651    

Composition 0.000 0.000    

Species 7.536 2.745    

 

Figure S6 Model prediction plots for the lmer with grass cover instead of community leaf dry matter 
content 
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Figure S7 Phylogeny of the PaNDiv experiment species pool. This is a subset of the Daphne phylogeny 
(Durka and Michalski 2012).1 

 
1 Durka, W. & Michalski, S.G. (2012). Daphne: a dated phylogeny of a large European flora for 

phylogenetically informed ecological analyses. Ecology, 93, 2297. 
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Figure S8 detailed correlations from Figure 2. Correlations between a) biomass response to fungicide 
(Fc, pathogen resistance) without nitrogen enrichment and response of biomass to nitrogen (N, resource 
acquisition) in the presence of fungal pathogens, b) the biomass response to nitrogen with and without 
fungicide treatment to show how pathogens change resource acquisition,  c) the biomass response to 
fungicide with and without nitrogen enrichment to show how resources alter pathogen resistance, and 
d) specific leaf area (SLA, as a measure of growth strategy) and infection (as a measure of defense) 
across different time points of the experiment. All data was measured in the monocultures of the species. 
Note that the range of the x-axis varies between the years when the x-axis represents SLA, as the range 
in SLA is much larger in June 2018, than in the other sampling periods. The species abbreviations are 
given in Table S2.  



Resource use traits predict a growth-defense trade-off between, but not within, species

 

78 

  



     Chapter 3 

 
 

79 

 

 

 

3 

 

 

 

 

Figure S8 continued. Detailed correlations from Figure 2. Correlations between e) biomass response to 
nitrogen (N, resource acquisition) in the presence of fungal pathogens and SLA (growth strategy), f) 
biomass response to fungicide (Fc, pathogen resistance) without nitrogen enrichment and SLA (growth 
strategy), g) biomass response to nitrogen (resource acquisition) in the presence of fungal pathogens) 
and infection (defense) and h) biomass response to fungicide (pathogen resistance) without nitrogen 
and infection (defense) across different time points of the experiment. All data was measured in the 
monocultures of the species. Note that the range of the x-axis varies between the years when the x-axis 
represents SLA, as the range in SLA is much larger in June 2018, than in the other sampling periods. 
The species abbreviations are given in Table S2. 



Resource use traits predict a growth-defense trade-off between, but not within, species

 

80 

  

 

 

Figure S9 Biomass response to nitrogen enrichment (log response ratio) is large for species which are 
a) not good at taking up nitrogen at low ambient nitrogen levels (without N fertilization), but b) good at 
taking up nitrogen at high ambient nitrogen levels (with N fertilization). Data source: Walde (2019) 
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ABSTRACT 

Effects of biodiversity on ecosystem functioning can occur through a variety of different 

mechanisms, which can be broadly categorized into selection and complementarity 

effects. Complementarity effects occur when most species change their functioning in 

species rich communities, while selection effects quantify the extent to which 

functioning is driven by a few species. Selection effects can be divided into effects 

occurring due to interspecific abundance shifts (dominance effects) or due to 

intraspecific shifts in functioning (species changing functioning but not abundance in 

diverse communities). Many studies have calculated complementarity and selection 

effects for biomass production, but we know much less about their importance for other 

ecosystem functions. We also know little about how the diversity effects of different 

functions relate to each other, i.e. if the same or different species drive different 

functions, or whether diversity effects are context dependent. We used data from a 

large grassland experiment (PaNDiv) in which species diversity, functional 

composition, nitrogen enrichment and fungal pathogen exclusion were factorially 

manipulated. We calculated complementarity and selection effects for five different 

ecosystem functions (plant aboveground biomass, herbivory, pathogen infection and 

specific leaf area and leaf dry matter content as proxies of nutrient cycling), using 

bipartite and tripartite partitions. We observed positive complementarity effects across 

all functions, suggesting that positive diversity effects are typically driven by multiple 

species. Intraspecific selection effects were negative for all functions, showing that 

species converge in their functioning, particularly because species with low 

monoculture functioning increased their functioning in mixture. Despite these overall 

consistencies, diversity effects on the five functions were not correlated, suggesting 

different species drive the different functions, and environmental drivers had varying 

impacts on the functions. This indicates, that different underlying mechanisms can 

result in similar overall patterns in diversity effects between functions. The variation in 

underlying mechanisms and species driving different functions suggest that high 

diversity is needed for the simultaneous provision of multiple ecosystem functions.   
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INTRODUCTION 

The diversity of primary producers affects many different ecosystem functions 

(Cardinale et al. 2006; Cardinale et al. 2012) through a variety of mechanisms. A more 

mechanistic understanding of biodiversity-functioning relationships is of fundamental 

interest and is important to predict and manage functional consequences of 

biodiversity declines. Biodiversity-ecosystem functioning research groups biodiversity 

mechanisms into two main categories: complementarity and selection effects, which 

together sum up to the net effect of diversity (additive partitioning sensu Loreau and 

Hector 2001). The complementarity effect summarizes the extent to which species 

increase or decrease their functioning in mixtures. A large complementarity effect 

occurs if most species shift their functioning in the same direction. Complementarity 

effects can be explained by several underlying processes: for example, more efficient 

resource partitioning or reduced infection from specialist pathogens in diverse 

communities (for an extensive review of causes of complementarity effects in biomass 

production see Barry et al. 2019). Alternatively, certain species could contribute 

disproportionality to the provision of an ecosystem function, leading to selection 

effects. Selection effects are positive if mixture functioning is driven by species with 

high functioning in monoculture and negative if species with low functioning in 

monoculture increase their functioning in mixtures (or if high functioning species 

reduce their functioning). Positive complementarity effects for biomass production is 

generally observed in biodiversity experiments, however selection effects can vary 

from slightly positive to negative (Cardinale et al. 2011). This means that positive 

biodiversity-productivity relationships are driven by increased biomass production in 

many species. However, we have much less information on the mechanisms by which 

biodiversity affects other ecosystem functions and therefore how often other functions 

are driven by few or many species. 

It is possible to partition diversity effects into selection and complementarity for other 

functions. If individual species contributions to function can be calculated, for instance 

in the case of pathogen infection or herbivory, then diversity effects can be partitioned 

in the same way. In addition, Grossiord et al. (2013) showed that complementarity and 

selection effects can be calculated even if the contribution of single species to 

community functioning cannot be measured, by using proxies for functioning. 

Functional traits are good proxies of many ecosystem functions (Garnier et al. 2004; 

Lavorel and Grigulis 2012; Laughlin 2011) and the additive partitioning framework can 
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be used to analyze community weighted means traits to reveal how diversity affects 

ecosystem functions related to these traits (Roscher et al. 2018b; Grossiord et al. 

2013). For example, Grossiord et al. (2013) showed that water use efficiency in tree 

communities, using leaf carbon isotope composition as a proxy, had varying net and 

complementarity effects, but no selection effect. In other words, increased water use 

efficiency in diverse communities was not driven by single species but by changes in 

water use efficiency across many species. The diversity interaction modelling 

approach provides an alternative way to calculate effects analogous to selection and 

complementarity (Kirwan et al. 2009; Connolly et al. 2013; Dooley et al. 2015; Brophy 

et al. 2017). However, it requires the estimation of a large number of parameters, 

especially at high diversity. Calculating selection and complementarity for several 

different functions measured in the same communities would allow a comparison of 

diversity mechanisms across functions. 

Selection effects can arise from two different processes. Firstly, one or a few species 

with high (or potentially also with low) functioning can dominate the mixtures and drive 

community functioning. This is a zero-sum dynamic in which high abundance of one 

species comes at the cost of decreased abundance of other species. Such interspecific 

abundance shifts are likely driven by competition: for example, a positive selection 

effect for herbivory could arise if a species which is highly palatable to herbivores is 

simultaneously a good competitor (e.g. Kempel et al. 2011) and dominates species 

mixtures. Secondly, certain species may shift functioning without shifting abundance 

and provide most of the functioning in mixtures without affecting the functioning of other 

species, i.e. intraspecific shifts in function. In this case positive selection effects would 

indicate divergence in functioning in mixtures (high functioning species increase and/or 

low functioning decrease) and negative selection effects indicate convergence in 

functioning between species. For example spillover of pathogens in mixtures can lead 

to more similar levels of infection between species (Power and Mitchell 2004), which 

could result in a negative selection effect for pathogen infection, if the species with 

lowest monoculture infection increase in infection the most. As abundance shifts and 

changes in functioning of single species can potentially have opposing effects on the 

selection effect, it is important to quantify the two mechanisms separately (Fox 2005, 

Figure S2), which cannot be achieved by the diversity interaction approach (Kirwan et 

al. 2009). To our knowledge this tripartite partitioning has mainly been applied to 

biomass production and rarely to other ecosystem functions (but see Pires et al. 2018). 
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If the same species are involved in driving different functions then we would expect 

biodiversity mechanisms for different functions to correlate (Sullivan et al. 2007). 

However, if different species promote different functions, diversity effects should not 

be correlated. Very often sets of traits (e.g. Garnier et al. 2001; Wright et al. 2004) and 

sets of ecosystem functions (e.g. Lavorel and Grigulis 2012; Schädler et al. 2003) 

correlate. For example, specific leaf area (SLA) is negatively correlated with leaf dry 

matter content (LDMC, Garnier et al. 2001), herbivory is positively correlated with 

decomposition (Schädler et al. 2003), or SLA is positively correlated with pathogen 

infection (Cappelli et al. 2019). These correlations in the traits and in the ecosystem 

functions would suggest that biodiversity effects should correlate across functions, 

however, this has not been tested. 

It is also likely that diversity effects are context dependent and understanding this 

context dependency is critical to predict when diversity is an important driver of 

functioning. Diversity effects can vary depending on which species or species groups 

occur in the community (Wagg et al. 2017; Marquard et al. 2009). For example, 

legumes are known to increase complementarity effects (e.g. Marquard et al. 2009). 

And high functional diversity may lead to stronger positive complementarity and 

negative selection effects (Wagg et al. 2017; Roscher et al. 2012). However, functional 

diversity can have complex effects on complementarity and selection effects 

depending on other community characteristics (Roscher et al. 2012; Isbell et al. 2008; 

Wagg et al. 2017) and effects of the functional composition of the species pool have 

rarely been considered.  

Further, the abiotic and biotic environment can shape diversity effects. Pires et al. 

(2018) showed that less frequent but higher intensity rainfall reduced complementarity 

effects on decomposition and Hector et al. (2012) showed that selection effects for 

biomass depend on the soil and on the water availability. Studies have also assessed 

how nutrient availability alters diversity effects on biomass production. Many suggest 

that nutrient enrichment reduces complementarity effects (Jarchow and Liebman 2012; 

Roscher et al. 2016; Siebenkaes et al. 2016; Craven et al. 2016, but see Yin et al. 

2018; Wacker et al. 2009) likely by removing facilitative interactions between species 

(Roscher et al. 2016) and increasing dominance effects (Jarchow and Liebman 2012; 

Siebenkaes et al. 2016; Yin et al. 2018). Further, it is often suggested that reduced 

impact by natural enemies at high diversity could be an underlying mechanism 
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explaining positive complementarity in biomass (Eisenhauer 2012; Maron et al. 2011; 

Schnitzer et al. 2011). However, this has not been tested by calculating 

complementarity when enemies are excluded. Hardly any studies have calculated 

context dependency in biodiversity mechanisms for functions other than biomass 

meaning we do not know whether other functions show similar levels of context 

dependency or not. 

This study analyses data from an experiment manipulating plant species richness, 

plant functional composition (community mean specific leaf area [SLA]), nitrogen 

addition and foliar fungal pathogen exclusion. We calculate biodiversity mechanisms 

across three functions (aboveground biomass, herbivory and pathogen infection) and 

two community mean traits as proxies for nutrient cycling related functions (SLA and 

leaf dry matter content). We manipulate the mean SLA of species compositions. Within 

a given species composition, species can shift in abundance and intraspecific trait 

values, so we can test how realized community weighted mean SLA changes with 

diversity and how this depends on nitrogen, pathogens and the functional composition 

of the species pool. We address the following questions: are the same biodiversity 

mechanisms important for different functions? Do these mechanisms correlate, 

suggesting similar processes and species driving effects of diversity on different 

functions? How strong is context dependency in biodiversity mechanisms and what are 

the main factors determining the strength of different mechanisms? 

MATERIALS AND METHODS 

Experiment 

The study was conducted in the PaNDiv experiment, located on an extensively 

managed grassland in the Swiss lowlands. The experiment consists of 336 plots and 

manipulations of plant diversity (1, 4, 8, 20 species), functional composition and 

diversity (a gradient of sown SLA was created by grouping species into fast [high SLA] 

and slow [low SLA] growing species and creating plots with only fast, only slow or a 

mix of growth strategies), nitrogen enrichment in the form of urea (0, 100 kg.ha-1.y-1) 

and enemy exclusion with foliar fungicide (Score Profi by Syngenta Agro AG, 24.8 % 

difenoconazole and Ortiva by Syngenta Agro GmbH, 22.8 % azoxystrobin) were 

factorially manipulated (see Pichon et al. (2019) for a detailed experiment description). 

Species combinations were randomly selected from the respective species pool (i.e. 

fast, slow or mixed) and the experiment contained 84 unique species compositions. 

The plots were arranged in four blocks and all species compositions (diversity x sown 
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SLA) occurred once per block. Each composition received the four combinations of 

fungicide x nitrogen treatments, while the particular treatment each composition 

received was randomly allocated to each block. The plots were separated by 1m wide 

stripes of grass. To maintain species compositions, the experiment was weeded three 

times per year. The whole experiment was mown twice a year to mimic the 

management of an extensively managed grassland in the area. 

Ecosystem function measurements 

We measured plant species abundances and several different ecosystem functions or 

function related traits. In total we measured three functions: biomass production, 

herbivory, pathogen infection and two traits, SLA and LDMC, as proxies of nutrient 

cycling related functions (Laughlin 2011; Schädler et al. 2003). For simplicity we refer 

to all functions and traits as “functions”. 

We visually estimated % cover of all the sown plant species, the bare ground and the 

weeds in all plots. The sum of all cover values per plot could exceed 100%. Cover was 

estimated twice a year (two “sampling periods”) between 2016 and 2018, once at the 

beginning of June and once at the beginning of August. In 2016 we only used the 

August data, because the field had not fully established before then. The cover values 

of the target plant species (calculated relative to total target cover, i.e. without the 

weeds and the bare ground, so that proportional abundance of target species sums to 

1) were transformed to relative values and were used as measures of the species’ 

abundances. Shortly after the % cover measurements, we measured biomass in all 

plots in two 50cm x 20cm areas per plot. The samples were dried at 60°C for at least 

24h, before weighing and we used the mean biomass of the two measurements. The 

% cover data were then used to calculate the biomass produced by each species. We 

multiplied the total biomass per plot by the proportional abundance of each plant 

species to calculate species specific biomass. Here abundance was proportional to 

total vegetation cover, i.e. including the weeds, so that the total biomass of all target 

species does not include the weed abundance. Weed abundances were low, except 

in the first year (weed cover was 31.9 ± 1.19 % in August 2016 but 7.3 ± 0.34 % across 

the other sampling periods). To check that these estimates of species specific biomass 

were accurate we also sorted the biomass from 84 plots (2 samples per plot) in June 

2017 and from 216 plots (1 sample per plot) in August 2017. The estimated biomass 

values per species were close to the sorted biomass values in June, R2 = 0.87 (Figure 

S1). The correlation was less strong in August (R2 = 0.4) presumably because sorting 
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only one biomass sample per plot does not account for spatial variation in species 

abundances. The strong correlation between predicted and observed species biomass 

means we are confident that our approach is suitable for estimating species 

biomasses. 

We measured the traits specific leaf area (SLA) and leaf dry matter content (LDMC) 

in August 2017, simultaneously as the biomass harvest, in a subset of 200 plots (all 80 

monocultures and 60 4 and 8 species plots) following the protocol of Garnier et al. 

(2001). We collected five fully developed, healthy and sun exposed leaves per species 

per plot. Sometimes we could not find enough suitable leaves and were forced to take 

fewer leaves (out of 1600 samples possible, in 141 cases only 1-4 leaves were 

sampled and in 238 cases no leaves could be found). The leaves were hydrated with 

deionized water overnight, before the leaf area and the fresh weight were measured, 

for the calculation of SLA and LDMC. Before measuring the dry weight, the leaves 

were dried at 60°C for at least 48h (Garnier et al. 2001). We estimated pathogen 

infection on 10 plants in the central square meter of the plots in 2016, 2017 and 2018 

in September when infection intensity is highest (Rottstock et al. 2014). In 2018 we 

also estimated infection in June. Infection was measured as the proportion of 

individuals with signs of infection. If the central square meter had too few individuals, 

we scored additional plants from the rest of the plot and if less than 10 individuals could 

be found in the whole plot, the proportion was calculated based on all individuals found. 

Herbivory was assessed at the end of May and August 2018. Five individuals of each 

target species were haphazardly selected from the central square meter of each plot 

and five leaves per individual were assessed for damage. Leaves were selected from 

the middle tier of each individual, excluding juvenile and senescing leaves and we 

calculated the proportion of damaged leaves per species per plot. We calculated 

community level fungal infection, insect herbivory, SLA and LDMC as community 

weighted means. The contribution of each species to the community level function is 

therefore proportional to its abundance. 

Additive partitioning 

We calculated net, selection and complementarity effects using the additive partitioning 

framework of Loreau and Hector (2001) for biomass and the adjusted framework of 

Grossiord et al. (2013) for fungal infection, insect herbivory, SLA and LDMC. We used 

equal abundances and monoculture values (from the corresponding nitrogen and 

fungicide treatment) as the null hypothesis, expected values. We then further 
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partitioned the selection effects of all functions into intra- and interspecific selection 

effects using the tripartite partitioning of Fox (2005). For the functions other than 

biomass we followed the same logic as for the bipartite partitioning of Grossiord et al. 

(2013), which we extended to a tripartite partition (see Supplementary materials). As 

the different functions were measured in different units we scaled all functions between 

0 and 1, per sampling period, before calculating additive partitioning. For a detailed 

description of the calculations see Supplementary Methods. 

We excluded Heracleum sphondylium and Anthriscus sylvestris, because of their poor 

establishment. Further, when a species was missing from a plot, we could not measure 

traits or enemy damage. The missing values were replaced with the monoculture 

values of the same species in the same treatment, which leads to conservative 

estimates of selection and complementarity effects. When monoculture values were 

missing (2 out of 400 samples), we modelled them based on the other monoculture 

values, including species identity, sampling period and fungicide and nitrogen 

treatment as explanatory variables. Zero monoculture values were possible for 

herbivory and fungal infection and these cause infinitely big complementarity and 

selection effects. To avoid this, zero values were set to half of the observed minimum 

function (detailed description in Supplementary Methods). 

A caveat of the additive partitioning approach is the importance of the monoculture 

values, as they are included in all measures of net, complementarity and selection 

effects. Ideally, we would have replicates of all the monocultures, to have more precise 

measurements and reduce the impact of random variation. However, because of the 

high number of species and treatment combinations we could not replicate the 

monocultures. 

Analysis 

We first analyzed the overall complementarity, intra and interspecific effects for each 

variable. All effects on biomass, pathogen infection and herbivory were log 

transformed, keeping the original sign, to achieve a normal distribution. For SLA and 

LDMC residuals were normally distributed and variance was homogenous, so these 

values were not transformed. We then constructed linear mixed effects models 

including all the treatment variables (nitrogen, fungicide, sown SLA, sown mean 

pairwise distance in SLA and plant diversity). We excluded interactions between the 

treatment variables in the analysis even though our experiment design would allow the 
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full four-way interaction to be tested, to keep our models relatively simple, as we were 

fitting a large number of different models. We therefore tested how our treatment 

variables alone change diversity effects. We additionally included random slopes of 

fungicide and nitrogen against sampling period and random intercepts for the 

interactive effect of sampling period and plant composition, to account for seasonal 

effects in these treatments. We simplified the random effect structure using likelihood 

ratio tests to compare models with and without particular random terms, however, we 

retained block, plot, species composition and sampling period in all models. Using 

these mixed effect models, we first calculated the values for each biodiversity effect by 

fitting intercept only models, using the chosen random structure per effect. We then 

tested for context dependency in complementarity, intra and interspecific selection 

effects by examining the fixed effects. Fixed effect structures were simplified by 

progressively excluding non-significant effects.  

Selection effects can be driven by changes in species with either high and/or low 

monoculture functioning, e.g. a negative selection effect could arise if species with low 

monoculture functioning increase their functioning in mixtures and/or because species 

with high monoculture functioning reduce functioning in mixtures. To better visualize 

the overall intra and interspecific selection effects we plotted relationships between the 

mean monoculture function per species, across treatments and seasons (scaled 

relative to the mean of all monocultures to show species with above or below 

monoculture functioning), and the mean change in function between monocultures and 

mixtures (∆RFi). We did this for both interspecific changes in function and intraspecific 

changes. We have two plant groups in the species pool of the experiment, which differ 

significantly in their LDMC and in their fungal infection: grasses and (non-leguminous) 

herbs (Figure S9c-d). To visualize, the extent to which observed diversity mechanisms 

are driven by differences in these two groups, we additionally plotted the relationships 

for grasses and herbs separately. 

We also looked at how the effects correlated with each other across the functions. We 

calculated the mean of net, complementarity, intraspecific selection and interspecific 

selection effects across all sampling periods (with the untransformed values), because 

we did not measure all the functions for all the sampling periods. The mean values 

where then correlated with each other using Pearson correlation coefficients. 
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RESULTS 

Intercepts 

The net effect was negative for SLA, LDMC, herbivory and pathogen infection and 

positive for biomass, meaning that the mixtures yielded more biomass and had lower 

infection, herbivory and trait values than expected based on the monocultures (Figure 

1). We observed positive or neutral complementarity effects for all functions. Positive 

complementarity for biomass, pathogen infection and SLA, means that, on average, 

species had higher than expected functioning in polycultures (Figure 1). Positive 

complementarity effects were higher when more species increased their functioning in 

mixtures. For pathogen infection in some cases a minority of the species were driving 

positive complementarity effects in mixtures (Figure S4).  

Selection effects were negative across all functions (Figure 1). We decomposed the 

selection effect into the contribution of inter- and intraspecific shifts. In the case of the 

traits negative selection effects were mainly due to interspecific abundance shifts 

(Figure 1, Figure 2), and to a lesser extent due to intraspecific shifts (Figure 1, Figure 

3). For herbivory and pathogen infection it was the opposite and interspecific shifts 

were more important (Figure 1). This means that species which had below average 

monoculture enemy damage had more damage in the mixtures and species with above 

average monoculture enemy damage had less damage in the mixtures (Figure 1, 

Figure 3). There were contrasting intra and interspecific selection effects on biomass: 

species with high monoculture biomass increased in abundance and those with low 

monoculture biomass decreased in the mixtures (positive interspecific selection effect, 

Figure 1, Figure 2). However, low biomass species increased their biomass per area 

(negative intraspecific selection effect, Figure 1, Figure 3). Intraspecific shifts 

outweighed interspecific shifts which led to a negative selection effect in total. Overall, 

the species which dominated the mixtures were those with high monoculture biomass 

and to some extent those with low monoculture trait values, monoculture pathogen 

infection or herbivory did not predict dominance in mixture (Figure 3, Figure 2). 
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Figure 1 Intercept only models of all additive partitioning measures for all the functions. The data for the 
herbivory, pathogen and biomass models were log transformed for the analysis. The estimates and the 
upper and lower boundaries of the confidence intervals were back-transformed to show values on the 
original standardized scale, which is why the CI bars are asymmetric. Details about how different species 
contribute to the inter- and intraspecific selection effects of the different functions can be found in Figure 
2 and Figure 3. 
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Correlations 

To better understand these simultaneous changes in biodiversity effects, we calculated 

correlations between all effects within and across functions. Within functions, all 

complementarity and selection effect were highly significantly negatively correlated 

(blue squares in Table 1), leading to intermediate net effects (Figure 1). The negative 

correlation between complementarity and selection effects was mainly driven by 

intraspecific selection effects, while interspecific selection effects had weaker and 

variable correlations with complementarity effects. 

We observed negative correlations between the diversity effects for SLA and LDMC 

(Table 1n, Figure S8). These correlations mean that when communities shifted towards 

lower SLA with diversity, they also a shifted towards higher LDMC (i.e. towards a 

slower growing plant community). We observed negative net effects for both SLA and 

LDMC, which seems contradictory, but can be explained by the dominance of the slow 

growing herbs, which have low SLA but also relatively low LDMC (compared to the 

grasses, Figure S9a).  

Diversity effects on the consumer (herbivores, pathogens) functions did not correlate 

strongly with those on the traits, except for a weak positive correlation between the 

interspecific selection effects of pathogen infection and SLA. (Table 1g-h, k-l). 

Complementarity and selection effects for biomass were slightly positively correlated 

with complementarity and selection effects for pathogen infection, due to intraspecific 

changes (Table 1b). Net effects and interspecific selection effects for biomass were 

negatively correlated with the net effect of herbivory (Table 1c). These effects were 

counter to our expectation that where consumers were reduced in diverse 

communities, this would also increase biomass.  

Context dependency 

The SLA and LDMC diversity effects were largely unaffected by the experimental 

treatments (Figure 4). We therefore do not discuss the details of these models. 

Diversity effects for biomass were stronger with higher species richness. Positive 

complementarity effects became more positive and negative intraspecific selection 

effect became more strongly negative with increasing diversity, while interspecific 

selection effects were not affected (Figure 4). 
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Table 1 correlations between all measures of net effect (NE), complementarity effect (CE) and total, 
intra- and interspecific selection effect (SE) of biomass, pathogen infection, herbivory damage, specific 
leaf area (SLA) and leaf dry matter content (LDMC). More details can be found in Figure S7. The 
expectations are described in Table S4. 

 
 

  

0.40 -0.22 0.28 -0.25 0.04 0.09 -0.08 -0.03 -0.08 0.23 0.07 0.08 0.24 -0.07 0.06 0.22 -0.20 -0.07 -0.21 -0.04 -0.18 0.15 0.11 0.14

*** *** *** *** *** *** * * * .

-0.98 0.18 -0.98 0.01 0.16 -0.16 -0.06 -0.16 0.12 0.01 0.07 0.17 -0.03 0.02 0.07 -0.06 0.00 -0.10 -0.03 -0.03 -0.01 -0.01 -0.01

*** ** *** ** * ** * **

-0.14 0.99 0.00 -0.15 0.15 0.06 0.16 -0.08 0.01 -0.06 -0.13 0.02 -0.01 -0.03 0.02 -0.01 0.06 0.03 -0.01 0.05 0.04 0.04

* *** * * * *

-0.24 0.05 0.06 -0.05 -0.02 -0.05 0.09 -0.07 0.12 0.11 0.07 0.03 0.13 -0.12 -0.12 0.00 -0.03 -0.01 -0.04 -0.06 0.05

*** * *

-0.01 -0.16 0.16 0.06 0.16 -0.09 0.01 -0.07 -0.14 0.01 -0.01 -0.04 0.04 0.00 0.06 -0.03 -0.04 0.01 0.00 0.02

* * * *

0.20 0.13 0.62 -0.06 0.06 0.07 -0.02 0.02 -0.04 -0.05 -0.13 0.09 -0.01 0.16 0.09 -0.06 0.17 0.15 0.10

** * *** . .

-0.95 -0.34 -0.97 0.17 0.02 0.08 0.22 -0.05 -0.23 -0.15 -0.09 -0.21 0.16 0.14 0.06 0.12 0.11 0.04

*** *** *** ** *** * * .

0.54 0.96 -0.15 0.00 -0.09 -0.21 0.03 0.21 0.10 0.12 0.20 -0.11 -0.11 -0.07 -0.06 -0.06 -0.01

*** *** * *** * *

0.30 0.02 0.05 -0.03 -0.04 -0.02 0.18 0.03 0.17 0.20 -0.03 -0.08 -0.05 -0.04 -0.04 -0.01

*** . . *
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** *** * .
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* *** *** . * * .
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*** * *** .
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*** ***
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*** *** *** *** *** * * **
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The growth strategy of the plant community (sown SLA) had the biggest impact on 

diversity effects for pathogen infection (Figure 4). The net effect of diversity on 

pathogen infection was negative in slow growing communities but increased to slightly 

positive in high SLA communities (Figure 4). Increases in the net effect were driven by 

increases in intra- and interspecific selection effects (Figure 4): in communities 

containing only slow-growing species, species with low monoculture infection could 

increase in abundance (negative interspecific selection effect), while fast growing 

communities were dominated by species with high monoculture infection. However, 

the complementarity effects followed the opposite pattern: on average, plants had 

higher infection than expected based on the monocultures (positive complementarity 

effect) and this was particularly strong in slow-growing communities. The lower 

complementarity effects in fast growing communities arise because many fast-growing 

species have very high monoculture infection (close to 100%) cannot increase infection 

further in polycultures. 

The growth strategy of the plants also determined the effect of diversity on herbivory. 

The net effect on herbivory shifted from zero in slow growing communities to negative 

in fast growing and this pattern was driven by the interspecific selection effect (Figure 

4). The net effect of diversity on biomass was, on average, slightly lower when the 

communities contained mainly fast-growing plants than when they contained mainly 

slow-growing plants (Figure 4). This was driven by complementarity effects, and to 

some degree by inter- and intraspecific selection effects (Figure 4). Despite these large 

effects of average growth strategy, functional diversity in terms of differences in SLA 

never altered diversity effects on any functions. 

Nitrogen enrichment increased the interspecific selection effect in biomass and in 

pathogen infection, but this did not alter the net effect. Weak changes in 

complementarity and intraspecific selection effects may have balanced changes in the 

interspecific selection effect. Nitrogen enrichment further decreased positive 

complementarity and increased negative intraspecific selection effects of herbivory 

(Figure 4). 
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Fungicide decreased the positive net effect for biomass and removed the negative net 

effect of herbivory. These changes could not be attributed to complementarity or 

selection effects, probably because they were too weak to be detected by the models. 

Fungicide did not change net, complementarity or selection effects of infection (Figure 

4a). This doesn’t mean that fungicide had no effect on infection (Cappelli et al. 2019), 

but it means that fungicide doesn’t alter diversity effects on infection. 

DISCUSSION 

We always observed neutral or positive complementarity and negative selection effects 

across all functions, which shows that broad diversity mechanisms are similar for these 

functions. Despite similar patterns, the lack of correlations between many diversity 

effects indicates that different species drove different functions and varying underlying 

ecological mechanisms are behind the diversity effects on different functions. 

We found mostly positive complementarity effects (positive for biomass, pathogen 

infection and SLA, neutral for herbivory and LDMC). This indicates that multiple 

species increase their functioning in polycultures, and the functioning of mixed plant 

communities is typically driven by several species. However, sometimes 

complementarity effects were driven by a few species with extraordinarily large 

increases in functioning (especially for pathogen infection, see also Mahaut et al. 

2019). This shows the importance of also examining individual species contributions 

to interpret complementarity effects, in cases where species contributions to function 

vary dramatically (Roscher et al. 2007b). The lack of significant correlations between 

complementarity effects for different functions (except between biomass and pathogen 

infection and between SLA and LDMC), indicate that in most cases different species 

supplied different functions. This highlights the importance of having a high diversity of 

species to maintain multiple ecosystem functions simultaneously (Hector and Bagchi 

2007; Isbell et al. 2011). Many underlying mechanisms can cause complementarity 

effects. For biomass production, resource partitioning is often assumed, however there 

are many other possibilities, such as facilitation between species or decreased 

pressure from natural enemies (Barry et al. 2019). These mechanisms might directly 

or indirectly affect other functions: for example decreased aboveground enemy 

infection should result in a negative complementarity effect for herbivory or pathogen 

infection and enhanced resource use efficiency might influence the expression of 

functional traits, e.g. causing increased biomass N pools (Fargione et al. 2007). 
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However, the generally positive complementarity effects could also have been driven 

by different mechanisms in different functions. For example, increased density in 

diverse plant communities can increase SLA through shading (Lipowsky et al. 2015; 

Roscher et al. 2018b) or diversity can increase the chance for natural enemy spillover 

(Power and Mitchell 2004; Castagneyrol et al. 2014). Interestingly, even though 

herbivores and fungal pathogens are both primary consumers and might be expected 

to respond similarly to plant diversity (e.g. Heckman et al. 2016; Blumenthal 2006), 

complementarity effects were neutral for herbivory but positive for fungal pathogen 

infection. Stronger complementarity for pathogen infection might be explained by a 

greater importance of spillovers for pathogens because pathogens are less mobile 

than herbivores and more likely to spread only between neighboring hosts (Raffa et al. 

2019). Positive complementarity effects indicate that most functions are driven by 

multiple species; however, it is likely that for different functions, different types of 

complementarity interactions between species are responsible. 

The intraspecific selection effect was always negative, showing that plants converged 

in their functioning (per area), mostly because species with low monoculture 

functioning increased their functioning in mixture. Convergence was strong for biomass 

and pathogen infection and weaker but still present for herbivory, SLA and LDMC. 

Several other studies have found negative intraspecific selection effects, which 

supports the idea that this is a common diversity effect across functions (plant traits: 

Roscher et al. 2018b, decomposition: Pires et al. 2018, biomass: e.g. Liu et al. 2018a; 

Wagg et al. 2017; Yin et al. 2018 but see Pontes et al. 2012). The species might have 

converged toward optimum functioning due to synergies between functions, meaning 

that convergence in one function drives convergence in the others. However, negative 

intraspecific selection effects were rarely correlated between functions, indicating that 

different species and mechanisms were responsible for convergence in the different 

functions. Negative density dependence, caused by strong intraspecific competition or 

specialist enemies (de Kroon et al. 2012), or even facilitation of low functioning species 

(Soliveres et al. 2015), could have resulted in increases for low functioning species in 

mixture and therefore convergence in biomass and possibly the traits. For herbivory 

and pathogen infection, convergence might have been driven by species with much 

enemy damage in monoculture benefiting from host dilution (Keesing et al. 2006; 

Mitchell et al. 2002; Rottstock et al. 2014), while species with low monoculture enemy 

damage suffered from spillover (Power and Mitchell 2004). 
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While intraspecific selection effects were consistently negative, interspecific selection 

effects varied. The contribution of a given species to interspecific selection effects is 

defined by its abundance and monoculture functioning. Differences between functions 

arise from different correlations between the abundance shifts and the different 

monoculture function values. The shifts in abundances were most strongly related to 

monoculture biomass and to some degree to monoculture trait values (Figure S5). 

Species with high (monoculture) biomass and low SLA and LDMC increased in 

abundance at the cost of species with low biomass, high SLA and LDMC. This was 

expected because these functions often covary  (Wright et al. 2004). Monoculture 

pathogen infection and herbivory were generally not related to abundance shifts, but 

this varied depending on the experimental treatment, see below. However, the 

interspecific selection effects of herbivory and biomass were correlated, indicating that 

at least some of the species which increased in abundance had both high monoculture 

biomass and high monoculture herbivory. This might indicate that the negative 

consequences of herbivory could be offset by the benefits of high biomass of the 

species, leading to dominance of highly productive species, but no visible effect of 

herbivory on species abundances (Gianoli and Salgado-Luarte 2017). 

We found variable context dependency in the diversity effects of different functions. 

There was weak context dependency for SLA and LDMC but strong effects of the 

treatments on diversity effects for herbivory, fungal pathogen infection and biomass. 

Interestingly the diversity effects for fungal pathogens and insect herbivores were 

affected by different factors. The diversity effects for pathogen infection responded 

strongly to community functional composition, while diversity effects for herbivory were 

mainly altered by nitrogen. Diversity effects for biomass mainly changed with 

increasing plant diversity. This shows that diversity can have different effects on 

ecosystem functions in different environments.  

Diversity effects (complementarity and intraspecific selection effects) only 

strengthened with increasing plant species richness for biomass. Increasing positive 

complementarity and decreasing negative selection effects with increasing diversity 

are common for biomass, showing that mechanisms, such as enhanced nutrient use 

efficiency or reduced enemy attack, are more effective at higher species richness 

(Craven et al. 2016). For the other functions this was not the case. Given that diversity 

effects on plant enemies are often related to the abundance of the host plants (Keesing 
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et al. 2006) and that the biggest decline in host abundance occur between one and 

four species (Figure S11), it is not surprising that the diversity effects for herbivory and 

pathogen infection did not increase as plant species richness changed from 4 to 20 

species. Similarly, studies did in most cases not find increasing selection and 

complementarity effects with higher diversity for different functional traits (Roscher et 

al. 2018b) and water use efficiency (Grossiord et al. 2013). This indicates that diversity 

effects on several functions saturate at low diversity levels but that mechanisms 

promoting biomass complementarity operate more effectively in higher diversity 

communities. 

Community functional composition altered the strength of diversity effects for several 

functions. Diversity effects on herbivory were enhanced in fast growing communities 

while diversity effects on biomass and pathogen infection were maximal in slow-

growing communities. For biomass production stronger complementarity in slow 

growing communities might reflect the fact that species from low resource 

environments are more strongly differentiated in resource competition, allowing more 

opportunities for coexistence (Tilman 1982). For pathogen infection fast growing 

species had generally high infection and diversity did not alter infection in fast growing 

communities (Cappelli et al. 2019). The interspecific selection effect was also affected 

by functional composition and changed in opposing directions for pathogen infection 

and herbivory. Species with low pathogen infection and high herbivory increased in 

abundance in slow growing communities, while species with high infection and low 

herbivory increased in fast growing communities. This could mean that fast growing 

plants are more susceptible to herbivores, while the competitive ability of slow growing 

plants is more reduced by pathogens. This would suggest that different trade-offs 

between defense, growth and tolerance exist for herbivores and pathogens. Some 

studies have suggested that high functional diversity should enhance diversity effects 

(Wagg et al. 2017), which we do not find here. In contrast, community functional 

composition has rarely been considered as a modifier of diversity-functioning 

relationships but our results suggest that it alters diversity effects on several functions. 

Resource levels and fungal pathogen abundance also altered diversity effects for some 

functions. Nitrogen enrichment increased the interspecific selection effect for biomass 

and pathogen infection, showing that nitrogen favors species with high biomass 

production and high pathogen infection, as expected (Liu et al. 2017; Siebenkaes et 
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al. 2016; Pontes et al. 2012; Heckman et al. 2016). This is at least partially driven by 

the same species, as the intraspecific selection effects of biomass and pathogen 

infection are correlated. Nitrogen enrichment also altered diversity effects for herbivory: 

complementarity decreased from positive to negative with nitrogen and intraspecific 

selection became less negative. Fungicide had relatively small effects, but it did 

weaken the positive net effect of diversity and negative net effect of herbivory. The 

effects on biomass agree with studies on soil pathogens (Maron et al. de Kroon et al. 

2012) and suggest that aboveground pathogens may drive some of the diversity-

productivity relationship. 

We observed remarkably consistent diversity effects across different functions, 

showing that diversity affects different functions in broadly similar ways. However, we 

know relatively little about the underlying mechanisms. It has recently been shown that 

for biomass production diversity mechanisms link to coexistence mechanisms, so that 

the most stably coexisting communities produced most biomass (Godoy et al. 2019). 

This link was not apparent for other functions, agreeing with the idea that different 

underlying mechanisms are responsible. The low correlations between the diversity 

effects of the different functions indicate that different species supply different functions 

in diverse communities and the variable context dependencies indicate that the 

responses of the different species are likely driven by different mechanisms for different 

functions. The results of this study illustrate how varying ecological mechanisms 

affecting different plant species can lead to comparable overall patterns in how 

diversity impacts different ecosystem functions. Negative selection effects and positive 

complementarity effects were the rule and led to rather weak net effects. However, the 

lack of strong correlations between diversity effects on many functions show that 

different species drive different functions, which highlights the importance of high 

diversity for the provision of multiple ecosystem functions simultaneously. 
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SUPPLEMENTARY 

 

Figure S1 correlation between biomass calculated based on total plot biomass and visual estimates of 
abundance of each species and biomass per species from sorted samples from a) June and b) August 
2017. Note that abundance was measured in the central square meter of the plots, while biomass 
samples were taken on two subplots (20cm x 50cm) within the central square meter. In August we sorted 
one sample per plot for 216 plots, while in June we sorted both samples per plot for 84 plots. Sorting 
only one sample led to a less precise correlation, as we do not account for spatial heterogenity in the 
plots. 
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Supplementary Methods 

Calculations of additive partitioning 

We first used a bipartite partition of diversity effects into complementarity and selection 

for all functions. We calculated additive partitioning sensu Loreau and Hector (2001) 

for biomass and used the adjusted framework of Grossiord et al. (2013) for all the other 

functions, with abundance (relative cover, ai) as the weighting factor (see Table S1 

and Table S2). The complementarity effect shows how much higher or lower the 

biomass of the species in a polyculture is, on average, compared to their monoculture 

biomass. The selection effect is a measure of how much the species with high (or 

low) monoculture biomass contribute to the polyculture biomass. In all cases, we used 

the monocultures with the corresponding nitrogen and fungicide treatment as a 

reference, so that we analyze shifts in response to diversity, under the different 

treatments. 

Table S1 General additive partitioning variables for functions and what they correspond to in the 
framework of Loreau and Hector (2001) used for biomass and the adjusted framework of Grossiord 
et al. (2013) used for traits and enemy damage. Note that for calculating FO i Tmix i is weighted with 

abundance, while YO i is not. The reason for this is that - other than for biomass - for the other functions 
we do not measure an amount, but a value per species, which is independent of the abundance. For 
the further calculations it is important that Tmix i is weighted (Grossiord et al. 2013). More details in 
Table S2. 

variable explanation Biomass Traits & 
enemy 
damage 

Fmono i  Value of the function of species i measured 
in the monoculture with the corresponding 
nitrogen and fungicide treatment 

Mi  Tmono i  

Fmix i  Value of the function of species i measured 
in the mixture 

= YO i,   
in PaNDiv: YO ∗
 ai  

Tmix i  

ai  Abundance of species i in the mixture ai  ai  

FO i  contribution of species i to the function of 
the mixture 

YO i  TO i = Tmix i ∗
ai  

 

The expected value of a certain function of a plant species mixture (FE) was calculated 

as the mean of the monoculture values of all the species i in the mixture (Fmono i ), FE =

Fmono i = ∑ (Fmono i ∗
1

N
)i , because we sowed the species at equal abundances (

1

N
). 

The observed function of a plant species mixture (FO) in case of biomass, equals the 

actually measured biomass in the plots and for the other functions it is the community 

weighted mean of the measured values of the species in the mixture CWM(TO i) =

∑ TO i ∗ aii . The net effect quantifies how much the observed function of a plant mixture 

deviates from the expected function level for that mixture. A positive net effect means 
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that the mixture has a higher function value than expected based on the monocultures. 

The net effect can be expressed as the sum of the complementarity effect and the 

selection effect (Loreau and Hector 2001). 

NE = CE + SE = N ∗ ∆Fmix i ∗ Fmono i + N ∗ cov(∆Fmix i, Fmono i)   (1) 

with the complementarity effect calculated as followed for biomass, based on the 

number of species in the mixture (N), the biomass yields of all the species in the mixture 

(YO i) and their respective monoculture yields (Mi)  (Loreau and Hector 2001). 

CE = N ∗
YO i

M i
∗ Mi          (2a) 

For the other functions, the measures of the function in the mixture (Tmix i) are weighted 

with ai to calculate the contribution of each species i to the plotlevel function (TO i) 

(Grossiord et al. 2013) 

CE = N ∗
Tmix i∗ai

Tmono i
∗ Tmono i         (2b) 

The selection effect for biomass sensu Loreau and Hector (2001) is calculated as 

SE = ∑ (𝑖
YO i

M i
−

YO i

M i
) ∗  (Mi − Mi)         (3a) 

and for the other functions sensu Grossiord et al. (2013) as 

SE = ∑ (i
Tmix i∗ai

Tmono i
−

Tmix i∗ai

Tmono i
) ∗ (Tmono i −  Tmono i)         

 (3b) 

Selection effect: inter- vs. intraspecific shifts 

We next partitioned the selection effect into selection effects due to inter- and 

intraspecific shifts. This tripartite partition (complementarity, intra and interspecific 

selection effects) is the same as the tripartite partition of Fox (2005). To visualize this 

partition, we can imagine an intermediate community which has the observed species 

relative abundances (observed cover values), but in which the level of function 

provided by a species per unit area is the same as in the monoculture (illustrated in 

Figure S2). We can then in a first step calculate additive partitioning between the 

intermediate and the expected community. Because an abundance shift of one species 

always comes at the cost of another species, the complementarity effect is always zero 

in this first step. The interspecific selection effect calculated in this first step is 

analogous to the dominance effect of Fox (2005). In a second step we can calculate 
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additive partitioning between the observed and the intermediate community, i.e. 

assuming that species change their level of function per unit area but their relative 

cover stays the same. The complementarity effect can be calculated in this second 

step and is the same as the complementarity effect of the standard bipartite partition 

and the trait-independent complementarity effect of Fox (2005). The intraspecific 

selection effect of the second step only considers changes in the provision of a given 

function per species and per unit area (=intraspecific shifts) and is analogous to the 

trait-dependent complementarity effect of Fox (2005) (mathematical details in Table 

S2). 
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Figure S2 Additive partitioning split up into intra- and interspecific shifts, analogous to Fox (2005). 
The differently colored cubes illustrate single species. The height of the cubes represents the function 
provided by the species per unit area, the ground area represents the species abundance (relative 
cover), which makes the volume of a cube the contribution of the given species to the polyculture 
function. In this example we assume a plant community of four species. Based on the monocultures 
we expect the species to have a certain value of the function per area (height), and because of equal 
sown abundances we expect them to cover exactly one quarter of the total community (top left in the 
image). However, we observe something different: the blue and orange species have a different 
function per area than in monoculture (height) and a different abundance (area) than expected 
(dashed lines represent the expected shape base on the monoculture). Normally, we calculate 
additive partitioning by comparing the expected and the observed community. Here we want to 
partition selection effects into inter- or intraspecific shifts. The total selection effect can be split up by 
comparing an 'intermediate" community, where only the interspecific shift in relative abundances is 
considered (the orange species increases at the expense of the blue species), with the expected 
community. This “intermediate” community can then be compared with the actually observed 
community to evaluate the intraspecific shifts, in which species do not shift their relative abundance 
but change function per unit area (the red species increases its function per area and the blue species 
decreases it). Note that the interspecific shift is a zero sum game, which makes complementarity 
effect inter zero and complementarity effect intra is equal to complementarity effect tot, which makes 
this illustration analogous to the tripartite partitioning sensu Fox (2005). The mathematical details 
underlying this concept can be found in Table S2. 
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Dealing with missing data 

Since our plant communities are sown at equal abundances, the expected contribution 

of the species in a mixture (RFe_i) is 1/plant diversity. Despite resowing, two species, 

Heracleum sphondylium and Anthriscus silvestris did not establish in many plots, most 

likely unrelated to the experimental treatments. We therefore excluded the two species 

completely and adjusted plant diversity for the calculation of additive partitioning. In 

many cases the effect sizes of complementarity and selection was unchanged when 

the two species were excluded, but selection and complementarity effects for biomass 

were smaller when they were excluded (Figure S3). 

 

Figure S3 Comparison of intercept only models when Heracleum sphondylium and Anthriscus sylvestris 
were included (w) or excluded (w/o) in the analysis. Including them leads to an overestimation of 
complementarity and selection effect for biomass, but does not change the results of other functions 
much. 

We could not measure traits or enemy damage for species with zero or very low 

abundance in a plot. We therefore used the monoculture values for these species 

instead. This is a conservative approach because it assumes that there is no effect of 

diversity on the functioning of these species. The net effect was not altered by this, 

because species at low abundance hardly contribute to overall community functioning. 

The contribution of these species to selection due to intraspecific shifts remains the 

same and because we used monoculture values, they could not contribute to 
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interspecific shifts. 

We had a few cases with missing monoculture values (traits) and measurements of 

zero in monocultures (infection, herbivory, pathogens). Both cases cause problems 

when calculating additive partitioning. The measurements of zero were set to half of 

the minimum of all the other monocultures, to obtain a reasonably small value, without 

inflating the calculations of complementarity and selection effects. We had two cases 

of missing monoculture biomass values due to lost samples (2 out of 400 samples [80 

monocultures x 5 sampling period]) and in total four missing values for herbivory, 

pathogens and traits, because the leaf material was dead after the mowing and had 

not grown back enough for measurements. In case of missing monoculture values, we 

predicted the values. We modeled the monoculture values as a function of species, 

sampling period, nitrogen and fungicide treatment and the interaction between species 

and sampling period. We then predicted the missing monoculture values from these 

models.  
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Figure S7 correlations between net effect, selection effect and complementarity effect of all functions 
(means over the seasons) 
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Figure S7 extended 
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Table S4 expected correlations between the diversity effects of different functions in Table 1 

. The first column indicates which panel in  Table 1 the expectation refers to. 

Panel Expectation Reference 

b, c Pathogenic fungi and herbivorous insects cause biomass loss. The more 
damage by pathogenic fungi and herbivorous insects we observe in the 
field, the higher the biomass loss should be and diversity effects of 
biomass production should be negatively related to diversity effects of 
pathogen infection and herbivory. 

Seabloom et al. 
2017; Cappelli et 
al. 2019 

d, e A high SLA and a low LDMC are characteristic for species with fast 
growth rates and high biomass production. Diversity effects causing a 
shift towards species with higher SLA and lower LDMC should be linked 
to diversity effects towards higher biomass production. 

Wilson et al. 
1999; Smart et al. 
2017; 
Breitschwerdt et 
al. 2019 

g Pathogenic fungi and herbivorous insects are both primary consumer of 
plants and many theories about the drivers of infection and herbivory, 
which are identical for both. There are for example plant characteristics 
linking to both high infection and high herbivory. 

(Schädler et al. 
2003; Cappelli et 
al. 2019; Raffa et 
al. 2019) 

h Species with fast growth, which is indicated by high SLA are more 
susceptible to fungal pathogens. If diversity leads to higher SLA, then 
this should also lead to higher infection and diversity effects of pathogen 
infection and SLA should be positively correlated. 

(Cappelli et al. 
2019) 

i Species with fast growth, which is indicated by high SLA are more 
susceptible to fungal pathogens. As SLA and LDMC are negatively 
correlated to each other, diversity effects of pathogen infection and 
LDMC are expected to be negatively correlated to each other 

Cappelli et al. 
2019; Garnier et 
al. 2001 

k, l The palatability of plant leaves is positively related to specific leaf area 
and water content (which is directly negatively related to LDMC). 
Therefore the diversity effects of herbivory are expected to be positively 
correlated with SLA and negatively with LDMC. 

Schädler et al. 
2003 

n SLA and LDMC are usually negatively correlated and thus, the diversity 
effects on SLA and LDMC are expected to be also negatively correlated 

Garnier et al. 
2004 
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Figure S8 Correlations between net effect, complementarity effect, SE, SEAS and SEPS of SLA and 
LDMC (means per plot over the seasons) 
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Figure S9 additional illustrations, 
about how plot composition, mainly 
the abundance of herbs and grasses 
affect additive partitioning of SLA, 
LDMC and infection. Herbs: Achillea 
millefolium (Am), Anthriscus 
sylvestris (As), Centaurea jacea (Cj), 
Crepis biennis (Cb), Daucus carota 
(Dc) Galium album (Ga), Heracleum 
sphondylium (Hs) Plantago media 
(Pm) Prunella grandiflora (Pg) 
Rumex acetosa (Sp), Taraxacum 
officinale (To); Grasses: 
Anthoxanthum odoratum (Ao), 
Bromus erectus (Be), Dactylis 
glomerata (Dg), Festuca rubra (Fr), 
Helictotrichon pubescens (Hp), 
Holcus lanatus (Hl),  Lolium perenne 
(Lp), Poa trivialis (Pt) 

a) the average plot composition per 
diversity and functional composition 
illustrates thedominance of slow 
growing herbs over the other plant 
groups. 

b) Correlation between SLA and 
LDMC for all experimental species 
(black), herbal species only (blue) 
and grass species only (red). SLA 
and LDMC are negatively correlated 
with each other, but only within plant 
group and not across al plants, as 
grasses have generally higher LDMC 
than herbs. 

c) Mean percentage infection ± se of 
all the species and separated 
between grasses and herbs. 
Grasses have in average higher 
infection than herbs. 



Consistent biodiversity effects across functions 

 
 

126 

  

 

Figure S10 significant effect of a) nitrogen, b) fungicide, c) sown plant species richness and d) sown 
specific leaf area (SLA) on net effect, complementarity effect, intra- and interspecific selection effect of 
biomass, pathogen and herbivory. Estimates and CI obtained from the effects package (Fox 2003). 
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Chapter 5 

Summary and general conclusions 

Summary 

Fungal plant pathogens are ubiquitous and have the potential to substantially influence 

their host communities (Fisher et al. 2012; Allan et al. 2010; Mordecai 2011). 

Understanding the role of fungal pathogens in plant communities is important if we are 

to predict the consequences of global change for these communities. 

In this thesis, I quantified the relative importance of different drivers of infection, which 

are often altered by the global change driver nitrogen enrichment. Nitrogen can directly 

affect infection by altering the nutritional status of the host plants and indirectly by 

changing the functional composition and the diversity of the host plant community. As 

diversity loss is a major concern of global change, I investigated in more detail how 

different effects of plant diversity influence fungal pathogen infection and how this 

compares to diversity effects on other ecosystem functions. Further, I investigated how 

changes in fungal pathogen infection affected the host communities. 

We measured infection in the PaNDiv experiment based on incidence rather than 

severity, (e.g. leaf area infected). We did this because different pathogen groups vary 

in their visibility and comparisons between groups would have been difficult in case of 

a severity-based measurement. There is a difference between pathogens whose 

mycelium grows on the surface of the leave such as powdery mildews and pathogens 

that grow mostly leaf-internally like rusts. The latter are often only visible where they 

sporulate, even though their mycelium covers much larger areas (Klenke 2015). 

Pathogen incidence and severity can vary in their response to different drivers of 

infection (Blaser 2014), even though they were correlated (Chapter 2). To test for 

differences between the responses of incidence and severity we measured damaged 

leaf area on a subset of the plots on 25 random leaves per species in fall 2018. Only 

fungicide had an influence on the leaf area infected in a community. It reduced the 

infected leaf area by 40.63% (analysis not shown). This is similar to the results of 

Blaser (2014), who found relatively few effects of the tested variables on disease 

severity, compared to disease intensity. The two measures might be useful for studying 

different aspects of diseases in plant communities. Since disease incidence seems to 

respond more strongly to drivers of infection, it might be a better measure to 



Summary and general conclusions

 
 

134 

  

understand disease dynamics in complex environments. The disease severity is 

perhaps more informative in terms of how much the species are affected by the 

pathogens (e.g. Mitchell 2003). 

Contrary to our expectations, we did not find direct effects of nitrogen enrichment on 

fungal infection in any of the chapters. Studies which find large effects of nitrogen 

enrichment on fungal disease looked either at agricultural species (Dordas 2008; 

Veresoglou et al. 2013) or on whole plant communities (Liu et al. 2016). Studies looking 

at single species in natural habitats find contrasting results (Blaser 2014; Veresoglou 

et al. 2013; Mitchell et al. 2003; Lau et al. 2008). This means that the large effects of 

nitrogen enrichment in other studies is likely due to indirect effects through changes in 

community composition. The results of Chapter 4 show that under nitrogen fertilization, 

heavily infected species increased in abundance at the cost of less infected species. 

This is in line with the results of Liu et al. (2017) and Blumenthal et al. (2009), who 

found that mainly disease-susceptible species benefitted from nitrogen enrichment. In 

Chapter 2, we showed that this was linked to the growth strategy of the plants, as 

mainly fast growing species increased in abundance following nitrogen fertilization. 

Growth strategy, as measured by the proxy of specific leaf area was the main driver of 

infection, supporting the growth-defense trade-off hypothesis. This agrees with studies 

finding growth-defense trade-offs for mammal (Lind et al. 2013) and insect herbivores 

(Endara and Coley 2011), as well as for microbial pathogens (Blumenthal et al. 2009). 

Species with high specific leaf area were the most heavily infected (Chapter 3). This 

scaled up to whole plant communities. The more fast-growing species dominated a 

community, the higher community level infection became (Chapter 2). Results from 

Chapter 3 showed that this was solely due to the high abundance of heavily infected 

species, but not due to associational susceptibility and spillover of pathogens from fast 

to slow-growing species. This was further underpinned by the correlation of 

interspecific diversity effects for specific leaf area and infection (Chapter 4), meaning 

that when fast growing species increased in abundance, heavily infected species 

simultaneously increase. The lack of spillover from fast to slow-growing species is 

surprising, as fast-growth increases the chance that a species becomes a source for 

spillover (Cronin et al. 2010). These results strongly support the growth-defense trade-

off mechanisms between species. However, we did not find an influence of population 

level variation in specific leaf area on infection, which hints that within species growth-
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defense trade-off did not occur (Chapter 3). It may be that traits of the leaf economics 

spectrum are not suitable to predict within-species growth-defense trade-off (Züst and 

Agrawal 2017), because the traits are not so tightly correlated with each other between 

species (Anderegg et al. 2018). However, other studies found mixed results regarding 

within species growth-defense trade-off and it is likely that between species growth-

defense trade-off was more important (Heckman et al. 2019; Cole et al. 2016; Züst et 

al. 2015). 

We did not find evidence for pathogen spillover from fast to slow species, but our 

results suggest that pathogen spillover occurs between closely related species. With 

increasing abundance of grasses, all grass species had increased infection (Chapter 

3). The grass species we used in the experiment are phylogenetically very closely 

related (Durka and Michalski 2012) and are known to share many pathogens (Klenke 

2015; Spear and Mordecai 2018). This pattern is reflected also within the rust species 

which I identified: the plant species have specific rusts, but there are two rusts, 

Puccinia graminis and P. coronata, which are shared between multiple grass species 

(Table 2). Studies investigating the role of spillover often use grass communities as a 

study system, because of shared pathogens between grasses (e.g. Mordecai 2013; 

Power and Mitchell 2004; Borer et al. 2007; Spear and Mordecai 2018). These studies 

show how pathogen spillover can significantly alter community assembly. Depending 

on how strongly each host species is affected by a generalist pathogen and how 

efficiently each host species passes the pathogen on to con- and heterospecifics, the 

presence of the pathogen can facilitate invasion, or lead to coexistence or priority 

effects (Mordecai 2013; Borer et al. 2007). These generalist pathogens depend on the 

availability of all their hosts together, and not on the abundance single species (Young 

et al. 2017; Gilbert and Webb 2007; Parker et al. 2015). This might explain why we 

found rather weak (single) host concentration effects in Chapter 3 compared to other 

studies which find strong host concentration effects (e.g. Knops et al. 1999; Mitchell et 

al. 2003). The results of Chapter 4 suggest that mainly species with low infection suffer 

from spillover when grown in diverse communities. Species with high infection are 

more likely to benefit from lower abundances in diverse communities. These two 

mechanisms balance each other out. Spillover from heavily infected species to closely 

related species in diverse communities is probably the reason why we did not observe 

overall diversity effects in Chapter 2. Even though we did not measure spillover directly, 

our results suggest that it plays a major role in diverse communities in driving infection 
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in species with elsewise low infection. 

Table 2 rust species found on plants in October 2017. The two 
rusts shared between many grasses, Puccinia coronata and P. 
graminis are highlighted in bold. 

Plant species Rust species 

Achillea millefolium Puccinia millefolii 

Anthoxanthum odoratum Puccinia graminis 

Bromus erectus Puccinia coronata 
Puccinia symphyti-bromorum 

Crepis biennis Puccinia praecox 

Centaurea jacea Puccinia centaureae 
Puccinia jaceae 

Dactylis glomerata Puccinia coronata 
Puccinia graminis 
Puccinia striiformioides 
Uromyces dactylidis 

Festuca rubra Uromyces festucae 

Galium album Puccinia galii-verni 
Puccinia punctata 

Holcus lanatus Puccinia coronata 

Helictotrichon pubescens Puccinia graminis 

Lolium perenne Puccinia coronata 
Puccinia graminis 

Poa trivialis Puccinia coronata 
Puccinia graminis 

Rumex acetosa Puccinia acetosae 

Taraxacum officinale Puccinia sylvatica 
Puccinia taraxaci 
Puccinia variabilis 

 

Infection did not necessarily reduce biomass production. Species with high infection 

did not benefit most from fungicide treatment (Chapter 3) and the effect of infection on 

community biomass was context dependent (Chapter 2). How strongly single species 

are affected by pathogen infection depends on their tolerance (Haukioja and Koricheva 

2000). Often it is assumed that fast-growing species are tolerant and that tolerance 

trades off with defense. (Roy et al. 2000; Chase et al. 2000). However, our results 

rather suggest a trade-off between tolerance and resource acquisition, in addition to 

an independent growth-defense trade-off. At the population level, the impact of 

infection increased with increasing plant diversity. It could be that the species in diverse 

communities had lower pathogen resistance than in species poor communities, as 

pathogen pressure and selection for resistance is likely higher in species poor 

communities. Additionally, the pathogen communities can vary significantly between 
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species poor and species rich plant communities (e.g. Blaser 2014; Rottstock et al. 

2014), which could further influence the consequences of infection. However, from the 

observed pathogen groups, only the most abundant group, the leaf spots caused 

biomass loss. How compositional changes in fungal community composition affects 

plant communities is an interesting field for future studies. In addition to biomass loss, 

we also observed an impact of fungal infection on the composition of the plant 

communities. When fungal pathogens were suppressed with fungicide, fast-growing 

species were able to increase in abundance at the cost of slower growing species 

(Chapter 2). This effect might have been more pronounced without weeding the 

communities. It suggests that at least under some circumstances fast-growing species 

suffer more from infection than slow-growing species. These results show that the 

impact of fungal pathogen infection is context dependent and complex. 

In Chapter 4 we compared diversity effects for pathogen infection with diversity effects 

for other functions. The additive partitioning framework used to do so was originally 

developed to understand how diversity affects plant biomass production (Loreau and 

Hector 2001; Fox 2005), but it has recently been suggested for other functions as well 

(Grossiord et al. 2013). So far, this has only been attempted a few times (Pires et al. 

2018; Roscher et al. 2018b; Fox and Rauch 2009; Grossiord et al. 2013). The reason 

for this might be that using the additive partitioning framework for other functions 

requires additional assumptions. A major question that arises is how to deal with 

species that should have been in a species mixture, but disappeared or failed to 

establish. The biomass of such species in the polyculture is simply zero. However, we 

cannot measure the function of these species in the mixture and their hypothetical 

function at infinitely small abundance is likely not zero. One option would be to ignore 

the species that are absent and adjust the species diversity. This would mean ignoring 

processes that have led to the loss of the species. In this thesis, we substituted the 

missing measurements with the corresponding monoculture value. By doing so, we 

considered the loss of the species, but ignored their intraspecific shifts and thus 

potentially underestimated the complementarity effects and the intraspecific selection 

effects. This could be the reason why we found the strongest diversity effects for 

biomass. However, we also found rather strong diversity effects for pathogen infection 

compared to the other functions and the methodological decision cannot explain these 

differences. Further, it is not clear yet how suitable the additive partitioning framework 

is for proportional data such as the infection measure used in this thesis. Proportional 
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data have an upper limit and infection cannot exceed 100%. Biomass production on 

the contrary can (in theory) always increase. Our data indicates that proportional data 

could be problematic when many heavily infected species are included in the study. 

This issue warrants further investigation but exceeds the scope of this thesis. 

A potential problem of additive partitioning is the high importance of the monoculture 

functioning of a species. The monoculture values are included in all the calculations of 

the diversity effects (Loreau and Hector 2001; Fox 2005). Whether a species has 

above- or below-average monoculture functioning compared to the other species in a 

plot, defines in which direction intra- and interspecific changes in this species influence 

its contribution to the selection effect. Mistakes or random variation in the monoculture 

measurements can therefore greatly influence selection and complementarity effects. 

Replicated monocultures would be ideal to ensure accurate monoculture 

measurements, but for logistical reasons we were not able to do that. Each replication 

would have required forty additional plots. 

Something else which should be considered especially when interpreting the 

complementarity effect, is that few species with large proportional inter- and 

intraspecific shifts can drive diversity effects (Mahaut et al. 2019). In our experiment, 

this was sometimes the case for infection. Few species with large increases in infection 

caused positive complementarity effects, even though the majority of the species 

rather had negative changes. 

The additive partitioning framework is useful to categorize diversity effects and 

compare them between functions despite these potential pitfalls. To my knowledge, 

the diversity interaction modelling approach is the only alternative way to calculate 

effects analogous to selection and complementarity (Kirwan et al. 2009; Connolly et al. 

2013; Dooley et al. 2015; Brophy et al. 2017). However, diversity interaction modelling 

cannot separate intra- and interspecific shifts and it requires the estimation of a large 

number of parameters and thus a large amount of data.  Therefore, additive partitioning 

can help to understand the consequences of biodiversity loss and the underlying 

mechanisms of biodiversity-ecosystem functioning relationships, but results should 

always be interpreted in light of the above mentioned points. 

In PaNDiv, we found consistent negative selection effects and neutral to positive 

complementarity effects for all functions. On average, the species increased 

functioning for most functions (positive complementarity effects). The negative 
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selection effects were mainly due to intraspecific shifts, which means that the species 

became more similar in functioning in the mixtures relative to their monocultures. 

Therefore, species with high functioning in monoculture were driving functioning of 

polycultures less than expected. This shows that diversity has the same broad effects 

on different functions. However, there were different species involved in driving these 

patterns for the different functions and the diversity effects for different functions had 

inconsistent context dependencies. This indicates that the mechanisms underlying the 

diversity effects varied between the functions. The results highlight the importance of 

a high species diversity for the maintenance of multiple ecosystem functions (Hector 

and Bagchi 2007; Isbell et al. 2011). The lacking link between the diversity effects for 

pathogen infection and herbivory are especially surprising. Foliar fungal pathogens and 

herbivorous insects are both primary consumers of plants and share a common niche 

(Raffa et al. 2019; Thaler et al. 2012). Theories, such as the growth-defense trade-off 

hypothesis or the resource concentration hypothesis are used for both groups (e.g. 

Halliday et al. 2017; Endara and Coley 2011; Liu et al. 2017) and the same defense 

mechanisms can be involved in the regulation of both enemy groups (Thaler et al. 

2012). The results of Chapter 4 clearly indicate that herbivory and pathogen infection 

need to be studied separately to fully understand the role of higher trophic levels in 

ecosystems. 

Outlook 

We used fungicide to manipulate the access of fungal pathogens to their hosts. The 

use of pesticides is probably the only way to manipulate infection in a large-scale field 

experiment. We substantially reduced infection, but we could not completely remove 

all pathogens, despite adding a second fungicide in 2018. By mostly removing rusts 

and powdery mildews, we changed the composition of the fungal pathogen community 

(Chapter 2). Selectively removing pathogen species can influence the consequences 

of infection, because it likely benefits some plant species more than others, while 

complete removal of natural enemies would remove pathogen pressure from all host 

plants (Crawley and Pacala 1991). The results showed that the fungal community 

surviving the fungicide treatment had greater negative consequences for biomass 

production. It is possible that we favored more aggressive pathogens with the fungicide 

treatments, but it might also be that the observed negative consequences were due to 

the removal of endophytic mutualists or the suppression of hyperparasitic fungi. It 

would be interesting to study the effects of single fungal guilds alone and in 
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combination with artificial infection studies in growth chambers to avoid such non-

target effects of fungicide. Infection experiments would allow identifying the pathogens 

that drive the observed patterns. It would help to find out which pathogens have the 

most detrimental impact on the plant communities, whether all pathogens are regulated 

with growth-defense trade-offs or which fungal pathogens mostly spillover between 

species. 

To study the impact of pathogen community composition, pathogen species must be 

identified. I found visual identification difficult, labor intensive, and uncertain. Molecular 

methods have led and continue to lead, to substantial changes in the nomenclature 

and phylogeny of fungal pathogens. Many species have been split into several different 

species, and apparently different species lumped into a single one, which hints that 

visual identification alone is not appropriate to study pathogen communities (Klenke 

2015). I am happy to know that the project “Impact of global change on phyllosphere 

microbiome in grasslands” of my colleagues Nadia Maaroufi and Anne Kempel was 

funded to genetically characterize the fungal communities in PaNDiv. I hope that their 

results will advance our understanding of the ecological role of fungal community 

composition. 

A high diversity in the pathogen community (e.g. Blaser 2014; Rottstock et al. 2014), 

likely requires a high diversity of defense mechanisms. Microbial pathogens in general 

first need to enter their host. They can do so by penetrating the cuticle and cell walls 

by digesting these mechanical barriers with secreted enzymes or toxins, as for 

example powdery mildews do (Magendans and Dekker 1966). Some, like the haploid-

dikaryotic stage (uredo spores) of rust fungi use natural openings such as stomata to 

enter their hosts (Klebahn 1904). Others rely on the help of other organisms, which 

create wounds in the plants through their own feeding or even directly transport the 

pathogen to and into the plant as vectors (Møller, Murphy 2018). Once inside the hosts, 

the pathogens have different strategies to access the resources of their hosts. There 

are three main strategies: necrotrophic pathogens attack their hosts with cell wall 

degrading molecules. This kills the attacked plant cells and makes their content 

available to the pathogen. Biotrophic pathogens, such as rusts or mildews, feed on 

substrate provided by their host, but cause only minimal damage to the host cells. 

There are also pathogens with an initial biotrophic stage, but later become necrotrophic 

(hemibiotrophic pathogens). To access the resources of the host plants, microbial 
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pathogens have a large array of effector molecules, which can change the plant’s 

structure, metabolism, or hormonal regulation to the benefit of the pathogen (Møller, 

Murphy 2018).  

To deal with this large variety of pathogen strategies plants have evolved many 

different defense mechanisms. These mechanisms can be broadly categorized into 

constitutive and induced structural and chemical defenses (Walters 2011). For 

example, a thick cuticle or cell wall should reduce the invasion success of pathogens 

which try to break down this first line of defense or trichomes might hinder the access 

of vectors to the host plant (Møller, Murphy 2018). An example for a chemical 

constitutive defense is resin, which apart from mechanically blocking potential entrance 

ways for pathogens also contains antifungal and antibiotic substances (Kolosova and 

Bohlmann 2012). For induced defenses, the plant needs to recognize the attack as an 

attack in the first place. The plants may recognize the pathogen directly or react to 

inflicted damage (Møller, Murphy 2018). Once detected, the plants can start to react. 

Many of the induced defense mechanisms are linked to one of two hormonal pathways: 

the jasmonate and salicylate pathways. Salicylic acid is thought to be mainly involved 

in fending off biotrophic pathogens like rusts or powdery mildews, while the jasmonic 

acid pathway is mostly involved in triggering defenses against necrotrophic fungi like 

many leaf spots (Thaler et al. 2012). However, the attack strategies of individual 

pathogens are so highly diverse that there is likely no defense strategy against large 

groups of pathogens and for each pathogen, a very specific set of defense 

mechanisms is necessary. Many of these very specific defense mechanisms are 

known from agricultural species or model organisms. Their role in natural communities 

remains largely unexplored. For example, a high diversity of defense mechanism in a 

plant community might contribute to positive diversity-ecosystem functioning 

relationships. 

The growth-defense trade-off hypothesis assumes increased defense in slow growing 

species and indeed our results support that hypothesis. However, given the many 

possibilities of defense, it is possible that not all of them are necessarily tightly linked 

to the growth strategy (Züst and Agrawal 2017). In the PaNDiv experiment, specific 

leaf area linked to infection and thus overall defense (Chapter 2, Chapter 3). Leaf dry 

weight and leaf area, two physical properties define the specific leaf area. It is possible 

that specific leaf area captures structural defenses, but chemical defenses less 

consistently (Abdala-Roberts et al. 2018). This is critical, as different defense 
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mechanisms might have different trade-offs. For example, induced and constitutive 

defenses trade off with each other (Koricheva et al. 2004), and only the constitutive 

defenses trade off with competitive ability (Kempel et al. 2011). Similarly, our results 

suggest that total defense trades off with growth strategy, while tolerance is rather 

linked to resource acquisition (Chapter 3). The ideal mixture of defense (and tolerance) 

mechanisms might be very context dependent. The role of multiple defense trade-offs 

in whole plant communities is an interesting field for future studies. 

As mentioned, tolerance is a strategy to cope with natural enemies in addition to 

defense. In the field, we were not able to measure tolerance as such. However, the 

results hint that tolerance might play an important role in plant-pathogen interactions 

and should be considered in future research, especially since it can have trade-offs 

that are independent of defense and growth-strategy. While there have been some 

attempts to study the role of herbivory tolerance (e.g. Kempel et al. 2019; Gianoli and 

Salgado-Luarte 2017), less is known about pathogen tolerance. The challenge lies in 

inflicting a given amount of pathogen damage to a plant. Herbivory can be simulated 

by clipping parts of a plant, but since pathogens do not directly remove plant tissue, 

mimicking pathogen damage is more complicated. A possibility could be to inoculate 

fixed proportions of leaves of a plant with fungal spores to manipulate disease intensity. 

Fitness or biomass in response to the proportion of (successfully) inoculated leaves 

could serve as a measure of tolerance.  

 

Figure 5 Eudarluca caricis parasitizing Puccinia graminis on a) Helictotrichon pubescens and b) 
Anthoxanthum odoratum in October 2017. 
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In this thesis, I focused on interactions between fungal pathogens and their hosts in 

plant communities. However, there are many other organisms in the ecosystem with 

which the fungal pathogens can interact, and which might influence the establishment 

and spread of fungal diseases. There is a large variety of hyperparasitic fungi that 

exploit fungal pathogens and there are known examples of insects that consume fungal 

pathogens (Klenke 2015). We observed Eudarluca caricis infection on many rusts on 

PaNDiv (Figure 5), despite not actively searching for them. Thus, natural enemies of 

fungal pathogens are likely common and abundant, yet their importance for example 

for top down pathogen control has hardly been studied so far (Klenke 2015, but see 

Tollenaere et al. 2014).  

Final Conclusions 

In this thesis, I addressed different drivers of pathogen infection. By factorially 

manipulating different drivers I could assess their relative importance and understand 

direct and indirect mechanisms. I showed that growth-defense trade-off of species is a 

main driver of infection. This trade-off at the species level is reflected at the population 

level; high abundances of fast-growing species meant high community level infection. 

Further, we found effects of host concentration. Both species abundances and the 

abundance of closely related species increased infection. Diversity reduced the 

abundances of species but seemed to have no additional effects. This was probably 

because of contrasting effects linked to diversity. Species with high infection benefitted 

from reduced abundances, while relatively resistant species with low infection when 

grown alone rather suffered from spillover. Similar effects have been observed for other 

ecosystem functions. Species, which were able to provide high level of functioning 

when grown alone, decreased their functioning when grown in mixtures and species, 

which were not as good at providing the same function when grown only with 

conspecifics increased functioning in the mixtures. The diversity effects were relatively 

strong for fungal infection compared to the other functions. Despite the comparable 

patterns across functions, the underlying mechanisms likely differed. Different species 

contributed to different functions and the diversity effects for different functions 

occurred mostly independently from each other. These results contribute to our 

understanding of the role of fungal pathogens in natural ecosystems.
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