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Notation

Numbers, sets and maps
N the positive natural numbers (not including 0)
Z,Q,R,C the natural, rational, real and complex numbers
δi j the constant 1 when i = j and the constant 0 otherwise
[n] the set {k ∈N | k ≤ n} for n ∈N∪{∞}
S� T a surjective morphism
S ↪→ T an injective morphism
S the closure of S
λ ` d a partition of d for d ∈ Z≥0
G∞ = lim

−−→n
Gn the direct limit of a sequence of groups (Gn)n∈N

V∞ = lim
←−−n

Vn the inverse limit of a sequence of spaces (Vn)n∈N

prn the projection map Vm � Vn for n ≤ m ≤ ∞

Vector spaces and matrices
K an infinite field
KS the vector space of maps S→ K for a set S
Kn1×···×nk the vector space K[nk]×···×[nk]

V∗ the vector space of linear maps V → K
Diag(A1, . . . ,Ak) the block-diagonal matrix with blocks A1, . . . ,Ak
GLn the group GL(Kn) for n ∈N
GL∞ the group

⋃
n∈N GLn

Categories
Set the category of sets
Vec the category of finite-dimensional vector spaces over K
Top the category of topological spaces
Vecµ the category of µ-tuples of finite-dimensional vector spaces over K for µ ∈N

The category Vecµ
V,W objects of Vecµ

`, `′ morphisms of Vecµ

πV the projection map V ⊕W � V
ιV the inclusion map V ↪→ V ⊕W
Hom(V,W) the vector space of morphisms V →W
End(V) the vector space Hom(V,V)
` ⊕ `′ the morphism V ⊕ V′ →W ⊕W′ obtained from ` : V →W and `′ : V′ →W′

GL(V) the group of invertible morphisms V → V

Polynomial functors over K
GL(P) the group of linear automorphisms of a polynomial functor P
Aut(P) the group of polynomial automorphisms of a polynomial functor P
Mor(Q,P) the vector space of polynomial transformations Q→ P
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Introduction

This thesis mainly revolves around spaces of infinite tensors and expressing tensors
using simpler objects. In the following pages, we will introduce these concepts by
considering infinite matrices over the complex numbers C. Here, the objects that are
simpler than matrices are vectors.

Let n,m ∈ N be integers. A vector v ∈ Cn is is a map [n] → C sending i 7→ vi and a
matrix A ∈ Cn×m is a map [n] × [m]→ C sending (i, j) 7→ Ai j. We also write

v =


v1
v2
...

vn

 and A =


A11 A12 . . . A1n
A21 A22 . . . A2n
...

...
...

An1 An2 . . . Ann

 .
We define infinite vectors and matrices by replacing the sets [n] and [m] by N. So an
infinite vector v ∈ C∞ is a mapN→ C sending i 7→ vi and an infinite matrix A ∈ C∞×∞

is a map N×N→ C sending (i, j) 7→ Ai j. Now we also write

v =


v1
v2
...

 and A =


A11 A12 . . .
A21 A22 . . .
...

...

 .
For finite matrices we have to following equivalence.

Proposition. Let A ∈ Cn×m be a matrix and k ≥ 0 an integer. Then the following
conditions are equivalent:

(1) The determinant of each (k + 1) × (k + 1) submatrix of A is 0.

(2) We have A = v1wT
1 +· · ·+vkwT

k for some vectors v1, . . . , vk ∈ C
n and w1, . . . ,wk ∈ C

m.

When these equivalent conditions are satisfied, we say that A has rank ≤ k. �

Again, the same statement is true when we replace n and m by ∞. Proving that (2)
implies (1) in the infinite case is easy. To see that (1) implies (2), let A ∈ C∞×∞ be an
infinite matrix and assume that the determinant of each (k + 1) × (k + 1) submatrix of
A is 0 for some minimal integer k ≥ 0. Since k is minimal, there must be k columns
v1, . . . , vk of A that are linearly independent. To show that there exists w1, . . . ,wk ∈ C

∞

such that
A = v1wT

1 + · · · + vkwT
k

1



it suffices to show that every column v of A is a linear combination of v1, . . . , vk. If v is
among the vectors v1, . . . , vk this is true. Otherwise, we know that every (k + 1)× (k + 1)
submatrix of the matrix B := (v1 v2 · · · vk v) is also a submatrix of A and hence has
determinant 0. For every n ∈ N, let Bn ∈ C

n×(k+1) be the matrix consisting of the first
n rows of B. Then B has rank ≤ k. Let Vn ⊆ C

k+1 be the kernel of Bn. Then we have a
descending chain

Ck+1
⊇ V1 ⊇ V2 ⊇ V3 ⊇ V4 ⊇ · · ·

of nonzero subspaces. It follows that

n ≥ dim V1 ≥ dim V2 ≥ dim V3 ≥ dim V4 ≥ · · ·

is a descending chain of postive integers. This second chain stabilizes, i.e., there exists
an m ∈ N such that dim Vn = m for all n � 0. It follows that the space of linear
dependencies of v1, . . . , vk, v

V :=
∞⋂

n=1

Vn

has dimension m > 0. So v1, . . . , vk, v must be linearly dependent. Since v1, . . . , vk
are linearly independent, this means that v is a linear combination of v1, . . . , vk. This
shows that the proposition also holds in the infinite case and we say that the infinite
matrix A ∈ C∞×∞ has rank ≤ k when the equivalent conditions from the proposition
hold. When rk(A) ≤ k does not hold for any k < ∞, then we say that the rank of A
is infinite.

Using the proposition, it is easy to write down infinite matrices with low rank. One
example of a matrix with infinite rank is the infinite identity matrix

I∞ =


1 0 . . .

0 1
. . .

...
. . .

. . .

 ∈ C∞×∞ .
The multiplication of infinite matrices is defined using the usual formulas

A · B = C, Ci j =

∞∑
k=1

Aik · Bkj.

However the product of two infinite matrices is not well-defined in general. If A or B
is an element of the subset

GL∞ := {Diag(g, I∞) | n ∈N, g ∈ GLn} ⊆ C
∞×∞,

then the product is always well-defined. This turns the subset GL∞ into a group called
the infinite general linear group, which acts on C∞×∞ by multiplication on the left and
on the right. Matrices in the same GL∞-orbit have the same rank.

Next we define the Zarisky topology on the space of infinite matrices. A polynomial
function on C∞×∞ is a function

f : C∞×∞ → C

2



that sends an infinite matrix A to a finite polynomial expression in its entries Ai j.
For integers i, j ∈ N, let xi j be the polynomial function sending A 7→ Ai j. Then
C[xi j | i, j ∈N] is the ring of polynomial functions on C∞×∞. A closed subset of C∞×∞

is any subset of the form

Z(S) = {A ∈ C∞×∞ | ∀ f ∈ S : f (A) = 0}

where S is a subset of C[xi j | i, j ∈N].

Since the determinants of finite submatrices are polynomial functions, the subset

{A ∈ C∞×∞ | rk(A) ≤ k}

is closed for each integer k ≥ 0. Note that these subsets are also stable under the action
of GL∞ ×GL∞. In fact, these subsets are the only (GL∞ ×GL∞)-stable closed subsets
of C∞×∞ apart from ∅ and C∞×∞ itself.

Theorem. The only nonempty proper (GL∞ ×GL∞)-stable closed subsets of C∞×∞ are

{A ∈ C∞×∞ | rk(A) ≤ k}

for integers k ≥ 0.

Before we prove this theorem, we discuss its consequences. First, the theorem shows
that the space C∞×∞ is Noetherian up to the action of GL∞ ×GL∞. This means that
any descending chain of (GL∞ ×GL∞)-stable closed subsets of C∞×∞

C∞×∞ ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ · · ·

stabilizes. Equivalently, this means that any (GL∞ ×GL∞)-stable closed subset ofC∞×∞

is defined using finitely many orbits of equations. As an example, the subset

{A ∈ C∞×∞ | rk(A) ≤ k}

is defined by the vanishing of the determinants of all (k + 1) × (k + 1) submatrices,
which form one orbit under the action of GL∞ ×GL∞. When considering a topological
space with an action of a group, whether Noetherianity up to the action of that group
holds is the first question one wants to answer. This is because it tells you that group-
stable properties of points in the space given by closed conditions are always given by
finitely many orbits of closed conditions, making checking whether such a property
holds theoretically possible. We will generalize the statement thatC∞×∞ is Noetherian
up to the action of GL∞ ×GL∞ in Chapter 2.

Second, the theorem shows that the following statement holds: let A ∈ C∞×∞ be an
infinite matrix. Then either its orbit of GL∞ ×GL∞ is Zariski-dense in C∞×∞ or the
rank of A is finite. In the latter case, the (infinite) matrix A can be expressed using
finitely many (infinite) vectors. So either an infinite matrix is GL∞-generic or it can be
expressed using simpler object. We will prove more general versions of this statement
in Chapters 3 and 4.

3



Finally, letP be a property of matrices given by the vanishing of polynomial functions
such that PAQ has property P for all matrices A ∈ Cn×m with property P, P ∈ Cn′×n

and Q ∈ Cm×m′ . Then the set{
A ∈ C∞×∞

∣∣∣∣∀n,m ∈N : (Ai j)
n,m
i, j=1 has property P

}
is a (GL∞ ×GL∞)-stable closed subset of C∞×∞. So since the space C∞×∞ is Noetherian
up to the action of GL∞ ×GL∞, the propertyP can be checked using finitely many orbits
of polynomial functions. Moreover, since the only nonempty proper (GL∞ ×GL∞)-
stable closed subsets of C∞×∞ are

{A ∈ C∞×∞ | rk(A) ≤ k}

for integers k ≥ 0, it follows that Pmust be either trivial or the property that a matrix
has rank ≤ k for some integer k ≥ 0.

We will end this introduction with a proof of the theorem. We will use the following
result.

Lemma. Let n,m ∈ N be integers and let A ∈ Cn×m be a matrix of rank k ≤ min(n,m).
Then the (GLn ×GLm)-orbit of A consists of all matrices in Cn×m of rank k and the
closure of this orbit consists of all matrices in Cn×m of rank ≤ k. �

Proof of the theorem. Let X be a nonempty proper (GL∞ ×GL∞)-stable closed subset of
the space C∞×∞. We first will prove

X ⊆ {A ∈ C∞×∞ | rk(A) ≤ k}

for some integer k ≥ 0. Since X is a proper closed subset ofC∞×∞, there is a polynomial
f ∈ C[xi j | i, j ∈N] such that f (A) = 0 for all A ∈ X. Only finitely many variables occur
in the polynomial f . Let n,m ∈N be such that only xi j with i ≤ n and j ≤ m occur in f .
Then we see that f (B) = 0 for all n ×m matrices B in the (GLn ×GLm)-stable set

Y =
{
(Ai j)

n,m
i, j=1

∣∣∣∣ A ∈ X
}

and hence it follows from the lemma that rk(B) < min(n,m) for all matrices B ∈ Y. Let
A ∈ X be an infinite matrix. Then gAh ∈ X for all (g, h) ∈ GL∞ ×GL∞. So in particular,
every matrix obtained from A by finitely many row and column permutations is
contained in X. It follows that every n × m submatrix of A is contained in Y. Hence
rk(A) ≤ k for k = min(n,m) − 1.

Now, let k ≥ 0 be minimal with the property that

X ⊆ {A ∈ C∞×∞ | rk(A) ≤ k}

holds. Then there is an A ∈ X such that rk(A) = k. Let f ∈ C[xi j | i, j ∈ N] such that
f (A) = 0 for all A ∈ X and let n,m ∈ N be such that only xi j with i ≤ n and j ≤ m
occur in f . Then it follows from the lemma that f (B) = 0 for all matrices B ∈ Cn×m of
rank ≤ k. It follows that f (A) = 0 for all A ∈ C∞×∞ of rank ≤ k. Hence

X ⊇ {A ∈ C∞×∞ | rk(A) ≤ k}

and we conclude that these sets must be equal. �
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Chapter 1

Preliminaries

This thesis is centered around two concepts; the first being Noetherianity up to the
action of a group and the second being rank functions that try to measure the com-
plexity of an object by how that object can be expressed using simpler objects. In this
chapter, we collect some basic definitions and results related to these concepts that we
will need in the later chapters:

• We define what it means for a topological space equipped with an action of a
group to be Noetherian up to the action of that group.

• We discuss inverse limits of sequences of finite-dimensional vector spaces, which
are a source of many interesting examples of group-Noetherian spaces.

• We introduce polynomial functors, which we view as a generalization of finite-
dimensional affine spaces equipped with the trivial group action.

• We list several examples of the kind of rank functions that are related to express-
ing objects using simpler objects.

1.1 Noetherianity up to the action of a group

Let us start with the definition of Noetherianity up to the action of a group together
with a surprisingly useful proposition. Let X be a topological space and let G be a
group acting on X.

Definition 1.1.1. We say that X is Noetherian up to the action of G (or G-Noetherian)
when every descending chain

X = X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

of G-stable closed subsets of X, i.e., closed subsets Y ⊆ X such that gY ⊆ Y for all g ∈ G,
stabilizes. This means that there exists an i ∈N such that X j = Xi for all j ≥ i.

Proposition 1.1.2. The space X is G-Noetherian if and only if every proper G-stable closed
subset Y ( X is G-Noetherian.

Proof. If X is G-Noetherian and Y is a G-stable closed subset of X, then every descending
chain of G-stable closed subsets of Y is also a descending chain of G-stable closed

5



subsets of X and hence stabilizes. Conversely, if every proper G-stable closed subset
Y ( X is G-Noetherian and

X = X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

is a descending chain of G-stable closed subsets of X, then either Xi = X for all i ∈ N
and the chain stabilizes or Xi ( X is G-Noetherian for some i ∈N. In the latter case, the
chain also stabilizes since Xi is G-Noetherian. Hence X must itself be G-Noetherian. �

Our first example of group-Noetherian spaces are finite-dimensional vector spaces
equipped with the Zariski topology. Let V be a vector space that is the dual of a vector
space with countable basis X.

Definition 1.1.3. We define the coordinate ring K[V] of V to be the polynomial ring
over K inX, i.e., the elements ofX are independent variables and the elements of K[V]
are finite polynomial expressions in the elements of X.

We call the elements of X variables and we call elements of K[V] polynomials on V.
Every variable x ∈ X induces a linear function (v 7→ v(x)) ∈ V∗. Using these linear
functions, every polynomial on V induces a function V → K. We call functions
that arise in this manner polynomial functions on V. Here is an example of a linear
combination of the variables of V that is not a polynomial on V.

Nonexample 1.1.4. The series f =
∑

x∈X x is not an element of K[V]. This corresponds
to the fact that it does not induce a map V → K. ♣

Definition 1.1.5. For a subset S ⊆ K[V], we define its zero set Z(S) ⊆ V to be the subset
of V consisting of all points v such that f (v) = 0 for all f ∈ S. The zero sets inside V
form the closed subsets of a topology on V. We call this topology the Zariski topology.

We now have our first example of spaces that are Noetherian up to the action of a
group. Let V be a finite-dimensional vector space equipped with the Zariski topology
and the action of the trivial group {∗}.

Theorem 1.1.6 (Hilbert’s basis theorem). The space V is {∗}-Noetherian. �

We also get our first important nonexample.

Nonexample 1.1.7. Let V be the dual of a countably infinite-dimensional vector space
with basisX = {x1, x2, . . . } and equip V with the Zariski topology and the action of the
trivial group {∗}. Then

V ) Z(x1) ) Z(x1, x2) ) Z(x1, x2, x3) ) Z(x1, x2, x3, x4) ) . . .

is an infinite descending chain of {∗}-stable closed subsets that does not stabilize. ♣

The following proposition tells us that G-Noetherianity is preserved when we make
the group G bigger.

Proposition 1.1.8. Let X be a topological space equipped with the actions of two groups H,G.
Suppose that X is H-Noetherian and and that every G-stable closed subset of X is also H-stable.
Then X is also G-Noetherian.

Proof. Every descending chain of G-stable closed subsets of X is also a chain of H-stable
closed subsets of X and hence stabilizes. �

6



As a consequence, we see that a finite-dimensional vector space is Noetherian up to
any action of any group. The following example shows that any vector space becomes
G-Noetherian when we make the group G big enough.

Example 1.1.9. Let V be a vector space equipped with the Zariski topology and let the
group GL(V) act on V by left-multiplication. Then the orbits of V are {0} and V \ {0}.
So the GL(V)-stable closed subsets of V are ∅, {0} and V. As there are only finitely
many such subsets, every descending chain of them must stabilize. So the space V is
GL(V)-Noetherian. ♣

Noetherianity up to the action of a group is also preserved when we take quotients.

Proposition 1.1.10. Let V be a G-Noetherian vector space and let W be a G-stable subspace
of V. Then V/W is also G-Noetherian.

Proof. Any descending chain of G-stable closed subsets of V/W can be pulled back
along the projection map V � V/W to get a descending chain of G-stable closed
subsets of V. This chain must stabilize and, since the map V � V/W is surjective, so
must the chain of subsets of V/W as well. �

Theorem 1.1.6 and Proposition 1.1.8 tell us that interesting examples of vector spaces
that are Noetherian up to the action of some group are infinite-dimensional. Nonex-
ample 1.1.7 shows that in this case the group cannot act trivially. The first result that
gave us a space with these properties is the following theorem.

Theorem 1.1.11 (Cohen [14], Hillar-Sullivant [23, Theorem 1.1]). Fix an integer k ∈ N
and let Sym(N) act on the polynomial ring

R = K
[
xi j

∣∣∣ i ∈N, j ∈ [k]
]

by permuting the first index of the variables. Then the ring R is Sym(N)-Noetherian, i.e.,
every ascending chain of Sym(N)-stable ideals of R stabilizes. �

Corollary 1.1.12. The space KN is Sym(N)-Noetherian.

Proof. Let
KN = X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

be a descending chain of Sym(N)-stable closed subsets of KN. Then there is an ideal
Ik ⊆ R for every k ∈N such that Xk = Z(Ik). Note that we also have

Xk = Z(Sym(N)I1 ∪ · · · ∪ Sym(N)Ik)

for each k ∈N. So we may replace eachIk by the ideal generated by Sym(N)I1 ∪ · · ·∪

Sym(N)Ik and hence we may assume that the ideals Ik form an ascending chain of
Sym(N)-stable ideals. By the theorem, this chain must stabilize and hence the chain
of closed subsets of KN must stabilize as well. �
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1.2 Limits of spaces and groups

Many examples of vector spaces that are Noetherian up to the action of some group
arise as the inverse limit of a sequence of finite-dimensional vector spaces. In these
examples, the group acting on the inverse limit is a direct limit of groups acting on the
finite-dimensional spaces. Throughout this section, let

V1 V2 V3 . . .

be a sequence of finite-dimensional vector spaces connected by surjective linear maps.
For each integer n ∈N, let Gn be a group acting on Vn and assume that Gn is a subgroup
of Gn+1 in some natural way. This gives us an action of Gn on Vn+1. We also assume
that the map Vn+1 � Vn is Gn-equivariant for each n ∈N. Now, we define the inverse
limit

V∞ := lim
←−−n

Vn =
{
(vn)n ∈

∏
n∈NVn

∣∣∣ vn+1 maps to vn for all n ∈N
}

and the direct limit G∞ := lim
−−→n

Gn =
⋃

n∈N Gn. Note that, for an integer m ∈ N, an
element (vn)n ∈

∏
n≥m Vn such that vn+1 maps to vn for all n ≥ m defines a unique

element of V∞ by letting vn be the image of vn+1 in Vn for all n < m. Every element
of V∞ can be represented in this way and the group Gm acts on V∞ by g(vn)n = (gvn)n
for all such elements. The fact that the maps Vn+1 � Vn are Gn-equivariant ensures
that (gvn)n again defines an element of V∞. As these actions are compatible with the
inclusions Gn ⊆ Gn+1, we get an action of the whole group G∞ on V∞. For each m ∈N,
we have projection maps V∞ � Vm and Vn � Vm for n ≥ m. We denote all these maps
by prm. Each of the spaces Vn is equipped with the Zariski topology. We use these
topologies to define a topology on V∞.

Definition 1.2.1. We say that a subset X∞ of V∞ is closed when it is the inverse limit
of a sequence of closed subsets, i.e., when

X∞ = {v ∈ V∞ | ∀n ∈N : prn(v) ∈ Xn}

for closed subsets Xn ⊆ Vn. The closed subsets of V∞ form a topology. We call this
topology the Zariski topology.

Example 1.2.2. Let V∞ be the dual of a countably infinite-dimensional vector space
with basis x1, x2, . . . and let Vn be the dual of the vector space with basis x1, . . . , xn for
each n ∈ N. Then V∞ is the inverse limit of the vector spaces Vn where the maps
Vn+1 → Vn are given by precomposition with the inclusion map

span(x1, . . . , xn) ↪→ span(x1, . . . , xn+1).

The topologies on V∞ from Definitions 1.1.5 and 1.2.1 are the same. ♣

Let X∞ be a closed subset of V∞ and take Xn = prn(X∞) for each n ∈ N. Then the set
X∞ is the inverse limit of the sets Xn and the maps Xn+1 → Xn are dominant. So every
closed subset of V∞ is an inverse limit of closed subsets that map dominantly into each
other. The following proposition relates the irreducibility of X∞ with that of the Xn.

Proposition 1.2.3. The following statements are equivalent:

(1) X∞ is irreducible.
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(2) Xn is irreducible for all n ∈N.

(3) Xn is irreducible for all n� 0.

Proof. Suppose that Xn is reducible for some n ∈N. Then Xn = Y ∪ Z for some closed
subsets Y,Z ( Xn. In this case, we see that

X∞ = (pr−1
n (Y) ∩ X∞) ∪ (pr−1

n (Z) ∩ X∞), pr−1
n (Y) ∩ X∞,pr−1

n (Z) ∩ X∞ ( X∞

and so X∞ is reducible. This establishes (1)⇒ (2). The implication (2)⇒ (3) is trivial.
So next, suppose that X∞ = Y∞ ∪ Z∞ for some closed subsets Y∞,Z∞ ⊆ X∞ with
closures Yn,Zn in Vn. Then Xn = Yn ∪ Zn for all n ∈ N. If Y∞ ( X∞, then Yn ( Xn for
some (and then also all bigger) n ∈N. The same holds for Z∞. So we see that if X∞ is
reducible, then Xn is reducible for all n� 0. This shows (3)⇒ (1). �

Remark 1.2.4. In general, we cannot expect an open subset of V∞ to be the inverse
limit of a sequence of open subsets of the Vn. ♠

1.3 Polynomial functors

In this section, we give an introduction to polynomial functors. We start with univari-
ate polynomial functors, which should be compared with univariate polynomials.

Definition 1.3.1. A univariate polynomial functor P assigns to every vector space
V ∈ Vec a vector space P(V) ∈ Vec and to every linear map ` : V → W a linear map
P(`) : P(V) → P(W) such that P(idV) = id(P(V) for all V ∈ Vec, P(`1 ◦ `2) = P(`1) ◦ P(`2)
for all linear maps `1 : V →W and `2 : U→ V and the map

HomK(V,W) → HomK(P(V),P(W))
` 7→ P(`)

is a polynomial map for all V,W ∈ Vec.

Example 1.3.2. Let U ∈ Vec be a fixed finite-dimensional vector space. Then the
constant functor CU : Vec→ Vec assigning U to every vector space and assigning idU
to every linear map is a polynomial functor. ♣

Example 1.3.3. The functor T : Vec→ Vec assigning all vector spaces and linear maps
to themselves is a polynomial functor. ♣

Definition 1.3.4. A functor Q is a subfunctor of a polynomial functor P when Q(V)
is a subspace of P(V) for all V ∈ Vec and Q(`) : Q(V) → Q(W) is the restriction of
P(`) : P(V)→ P(W) for all linear maps ` : V →W.

Definition 1.3.5. Let Q be a subfunctor of a polynomial functor P. Then we define
the quotient P/Q as the functor Vec → Vec that assigns to a vector space V ∈ Vec
the quotient space P(V)/Q(V) and assigns to a linear map ` : V → W the linear map
P(V)/Q(V)→ P(W)/Q(W) induced by P(`).

Remark 1.3.6. Subfunctors and quotients of a polynomial functor are themselves
polynomial functors. ♠
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Like the set of univariate polynomials, the set of univariate polynomial functors has
an addition and multiplication. Let P,Q be polynomial functors.

Definition 1.3.7. We define the direct sum P ⊕Q of P and Q as the functor Vec→ Vec
that assigns to a vector space V ∈ Vec the space P(V) ⊕ Q(V) and assigns to a linear
map ` : V → W the linear map P(V) ⊕ Q(V) → P(W) ⊕ Q(W) sending (v1, v2) 7→
(P(`)(v1),Q(`)(v2)).

Definition 1.3.8. We define the tensor product P⊗Q of P and Q as the functor Vec→ Vec
that assigns to a vector space V ∈ Vec the space P(V) ⊗ Q(V) and assigns to a linear
map ` : V → W the linear map P(V) ⊗ Q(V) → P(W) ⊗ Q(W) sending v1 ⊗ v2 7→

P(`)(v1) ⊗Q(`)(v2).

Remark 1.3.9. Direct sums and tensor products of polynomial functors are themselves
polynomial functors. ♠

Using the direct sum as addition and the tensor product as multiplication, the set of
univariate polynomial functors gets the structure of a semiring. The constant functors
serve a role similar to that of the constants in a polynomial ring and the functor T
serves a role similar to that of the variable.

Example 1.3.10. Let d ∈N be an integer. Then we get the polynomial functor

T⊗d : Vec → Vec
V 7→ V⊗d

` 7→ `⊗d

by taking the tensor product of d copies of T. We get the polynomial functor Sd by
taking the subspace of T⊗dV = V⊗d consisting of all symmetric tensors for all V ∈ Vec.♣

Like the univariate polynomial ring, the semiring of polynomial functors is graded.

Definition 1.3.11. Let P be a polynomial functor and let d ≥ 0 be an integer.

(1) We say that P is homogeneous of degree d when P(t · idV) = td
· idV for every

vector space V ∈ Vec and scalar t ∈ K.

(2) We define the degree-d part P(d) of P to be the subfunctor of P with

P(d)(V) =
{
v ∈ P(V)

∣∣∣ P(t · idV)(v) = td
· v for all t ∈ K

}
for all V ∈ Vec.

Proposition 1.3.12. Let P be a polynomial functor. Then P =
⊕

d≥0 P(d). �

Just like polynomials, polynomial functors are the sum of their homogeneous parts.
However, for polynomial functors this sum need not be finite.

Example 1.3.13. The functor Vec → Vec assigning
⊕

d≥0

∧d V to V for every V ∈ Vec
is a polynomial functor. For each integer d ≥ 0, its degree-d part is the d-th alternating
power functor

∧d. In particular, all its homogeneous parts are nonzero. ♣

Definition 1.3.14. Let P be a polynomial functor and let d ≥ 0 be an integer. We say
that P has degree d when P(d) , 0 and P(e) = 0 for all e > d. When P = 0, we say that P
has degree −1.
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In this thesis, we will only consider polynomial functors of finite degree.

Proposition 1.3.15. Let P,Q be polynomial functors.

(1) The constant functor CU from Example 1.3.2 is homogeneous of degree 0 for every vector
space U ∈ Vec of positive dimension.

(2) The polynomial functor T from Example 1.3.3 is homogeneous of degree 1.

(3) Nonzero subfunctors and quotients of a homogeneous polynomial functor of degree d are
again homogeneous of degree d.

(4) The degree of the direct sum of P and Q is the maximum of the degrees of P and Q.

(5) The degree of the tensor product of P and Q is the sum of the degrees of P and Q. �

A univariate polynomial ring is generated by its constants and its variable. When
char(K) = 0, it is similarly true that every polynomial functor can be obtained from
the constant functors and the functor T by taking direct sums, tensor products, sub-
functors and quotients. This follows from the next lemma together with the theory of
polynomial representations of general linear groups. In order to state it, we first need
to define what it means to be a morphism between polynomial functors.

Definition 1.3.16. Let P,Q be polynomial functors.

(1) A natural transformation α = (αV)V : Q→ P consists of a map αV : Q(V)→ P(V)
for every vector space V ∈ Vec such that the diagram

Q(V) P(V)

Q(W) P(W)

αV

Q(`) P(`)

αW

commutes for each linear map ` : V →W.

(2) A linear transformation α : Q → P is a natural transformation such that αV is a
linear map for each V ∈ Vec.

(3) A polynomial transformation α : Q→ P is a natural transformation such that αV
is a polynomial map for each V ∈ Vec.

Let P be a polynomial functor and V ∈ Vec a vector space. Then the map

GL(V) → GL(P(V))
` 7→ P(`)

is a homomorphism. This gives P(V) the structure of a polynomial representation
of GL(V). When the functor P is homogeneous of degree d, then the representation is
also homogeneous of degree d.

Lemma 1.3.17 (Friedlander-Suslin [22, Lemma 3.4]). For any integer d ≥ 0 and vector
space V ∈ Vec with dim(V) ≥ d, the functor sending

P 7→ P(V)
α 7→ αV

11



is an equivalence of categories between the category of homogeneous polynomial functors
of degree d whose morphisms are linear transformations and the category of homogeneous
polynomial representations of GL(V) of degree d. �

When char(K) = 0, every homogeneous polynomial representation of GL(V) of de-
gree d is a direct sum of Schur representations Sλ(V) where λ ` d. In this case, it
follows that every homogeneous polynomial functor of degree d is a direct sum of
Schur functors Sλ. Since the Schur functor Sλ is a subfunctor of T⊗d for every partition
λ ` d, this means that every polynomial functor can be obtained from the constant
functors together with T.

The closed subsets of a polynomial functor

Polynomial functors of degree 0 are the same as finite-dimensional vector spaces. In
algebraic geometry, we give such spaces the structure of a topological space. Here, we
do the same with polynomial functors of arbitrary (finite) degree.

Definition 1.3.18. A closed subset X of a polynomial functor P assigns to each vector
space V ∈ Vec a Zariski-closed subset X(V) of P(V) such that P(`) maps X(V) into X(W)
for each linear map ` : V →W.

Remark 1.3.19. A closed subset X of a polynomial functor P is the same as a subfunctor
of the functor Vec → Top obtained by composing P with the functor Vec → Top that
equips a vector space in Vec with the Zariski topology. In particular, the set X(V)
naturally comes with an action of the group GL(V) for every V ∈ Vec. ♠

As expected of objects called closed subsets, intersections and finite unions of closed
subsets of a polynomial functor are again closed subsets. For polynomial functors
of degree 0, closed subsets coincide with the usual notion of a closed subset of a
finite-dimensional affine space. So Theorem 1.1.6 tells us that polynomial functors of
degree 0 are Noetherian. This is in fact true in general.

Theorem 1.3.20 (Draisma [17]). Let P be a polynomial functor of finite degree. Then every
descending chain of closed subsets

P = X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

stabilizes. �

We want to view closed subsets of polynomial functors as generalizations of embedded
affine varieties. In order to do so, we need to define what the maps between them are.
Let X ⊆ P and Y ⊆ Q be closed subsets of polynomial functors.

Definition 1.3.21. A regular transformation β : Y→ X is a natural transformation such
that the map βV : Y(V)→ X(V) is a regular map for each V ∈ Vec.

Proposition 1.3.22. Suppose that char(K) = 0. Then every regular tranformation β : Y→ X
is the restriction of a polynomial transformation α : Q → P, i.e., we have βV = αV |Y(V) for
each V ∈ Vec.

Remark 1.3.23. The proposition is not valid in positive characteristic. To see this, let
K be an algebraically closed field of characteristic p > 0 and consider the image P
of the polynomial transformation S1

→ Sp sending v 7→ vp. The functor P is both
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a closed subfunctor of Sp and a polynomial functor itself. However, the identity
transformation P → P does not extend to a polynomial transformation Sp

→ P.
Indeed, any such extension would need to be linear and would hence imply that P(V)
is a direct summand of Sp(V) for all V ∈ Vec, which is not the case. ♠

In order to prove Proposition 1.3.22, we need a better understanding of the space
Mor(Q,P) of polynomial transformations Q→ P. Given two finite-dimensional vector
spaces V and W, the set of polynomial maps W → V equals K[W]⊗V. So it is a finitely
generated K[W]-module and additive in V. Similar statements hold for Mor(Q,P).
Write P(0) = CV, Q(0) = CW for vector spaces V,W ∈ Vec. Take Q′ =

⊕
e≥1 Q(e) and

Rd =

d⊕
(e1,...,ed)∈Zd

≥0
1·e1+···+d·ed=d

Se1Q(1) ⊗ · · · ⊗ SedQ(d).

for d ≥ 1.

Lemma 1.3.24. Suppose that d! , 0 in K. Then every polynomial transformation Q′ → P
factors uniquely as the composition of the polynomial transformation

γ : Q′ → Rd

(q1, . . . , qd, . . . ) 7→
d∑

(e1,...,ed)∈Zd
≥0

1·e1+···+d·ed=d

qe1
1 ⊗ · · · ⊗ qed

d

and a linear transformation Rd → P.

Proof. Let α : Q′ → P be a polynomial transformation. Then αV factors uniquely as the
composition of γV and a GL(V)-equivariant linear map βV : Rd(V) → P(V) for every
V ∈ Vec. It is easy to check that β = (βV)V is a linear transformation Rd → P such that
α = β ◦ γ and that β is unique with this property. �

Proposition 1.3.25. The following statements hold:

(1) The set Mor(Q,P) is the direct sum of Mor(Q,P(d)) over all d ≥ 0.

(2) The set Mor(Q,P) is the tensor product of K[W] and Mor(Q′,P).

(2) We have Mor(Q′,P(0)) = V.

(3) If d! , 0, then we have Mor(Q′,P(d)) = Hom(Rd,P(d)).

In particular, the set Mor(Q,P) is a free K[W]-module of finite rank. �

Example 1.3.26. The set of polynomial transformations K2
⊕ S1
⊕ S2

→ K ⊕ S3 consists
of all natural transformations α given by maps of the form

αV : K2
⊕ V ⊕ S2V → K ⊕ S3V

(λ1, λ2, v,w) 7→
(

f1(λ1, λ2), f2(λ1, λ2) · v3 + f3(λ1, λ2) · v · w
)

where f1, f2, f3 ∈ K[x1, x2] are polynomials that do not depend on V. ♣
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Proof of Proposition 1.3.22. Let V ∈ Vec be a vector space and let αV : Q(V) → P(V) be
any polynomial map extending βV. We consider αV as an element of the space

P(V) ⊗ K[Q(V)]

and note that αV ∈ P(V) ⊗ K[Q(V)]≤k for some k ∈ N. If ι : U → V and π : V → U are
morphisms such that π◦ ι = idU, then we see that αU = P(π)◦αV ◦Q(ι) is a polynomial
map Q(U) → P(U) extending βU. So if P(V) ⊗ K[Q(V)]≤k contains a polynomial map
extending βV, then P(U) ⊗ K[Q(U)]≤k contains a polynomial map extending βU for all
U ∈ Vec with dim(U) ≤ dim(V).

Now let W ∈ Vec and assume that dim(W) ≥ dim(V) ≥ deg(P). Then we claim that⋃
L : W�V

P(L)∗P(V)∗

contains a basis of P(W)∗. To see that this is true, first consider the case where P = Sλ
for some partition λ. Choose a basis of W. Then we also get a basis of Sλ(W). One can
check that its dual basis is contained in⋃

L : W�V

P(L)∗P(V)∗

where we may even restrict to the linear maps L : W � V that send dim(W) − dim(V)
elements of the basis of W to zero. This proves the claim for P = Sλ. One can check
that if the claim holds for polynomial functors P1 and P2, then it also holds for P1 ⊕P2.
So, since every polynomial functor is a direct sum of Schur functors, it follows that the
claim holds for all polynomial functors.

To find a polynomial map αW : Q(W)→ P(W) extending βW, we need to find a homo-
morphism

α∗W : K[P(W)]→ K[Q(W)]

of K-algebras such that the diagram

K[P(W)] K[Q(W)]

K[X(W)]

α∗W

β∗W

commutes. To find such a map, it suffices to find images α∗W(x) ∈ K[Q(W)] for elements
x of some basis B of P(W)∗ such that α∗W(x) maps to β∗W(x) in K[X(W)] for all x ∈ B. We
consider a basis B that is contained in⋃

L : W�V

P(L)∗P(V)∗

and let x ∈ B be some element. Let L : W � V be a linear map such that P(L)∗(y) = x
for some y ∈ P(V)∗. Then the diagrams

K[P(V)] K[P(W)]

K[X(V)] K[X(W)]

P(L)∗

β∗V β∗W

X(L)∗
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and

K[Q(V)] K[Q(W)]

K[X(V)] K[X(W)]

Q(L)∗

X(L)∗

commute. So if z ∈ K[Q(V)] is an element mapping to β∗V(y) in K[X(V)], then Q(L)∗(z) ∈
K[Q(W)] maps to β∗W(x). This way we can construct a polynomial map

αW : Q(W)→ P(W)

extending βW from a polynomial map αV : Q(V)→ P(V) extending βV. Note here that
if αV is contained in P(V) ⊗ K[Q(V)]≤k, then the map αW we constructed is contained
in P(W) ⊗ K[Q(W)]≤k. This shows that there exists a k ∈N such that we can extend βV
to a polynomial map αV ∈ P(V) ⊗ K[Q(V)]≤k for each V ∈ Vec.

Next, let αV ∈ P(V) ⊗ K[Q(V)]≤k be a polynomial map extending βV. Consider the
projection map

P(V) ⊗ K[Q(V)]≤k � (P(V) ⊗ K[Q(V)]≤k)GL(V)

and let α̂V be the image of αV under this map. Since X(V) is a GL(V)-stable Zariski-
closed subset of Q(V) and βV is GL(V)-equivariant, we see that α̂V also extends βV.
So for each V ∈ Vec there exists a GL(V)-equivariant polynomial map Q(V) → P(V)
contained in P(V) ⊗ K[Q(V)]≤k extending βV. Next we will show that these maps can
be chosen in such a way that they form a polynomial transformation Q→ P extending
the regular transformation β.

Let m � 0 be an integer. For each integer n ≥ m, let Yn be the set of all polynomial
transformations α : Q→ P such that αKn is contained in

P(Kn) ⊗ K[Q(Kn)]≤k

and extends βKn . We have shown that Yn+1 ⊆ Yn and Yn , ∅ for all n ≥ m. By
Proposition 1.3.25, the set of polynomial transformations α : Q → P such that αKm is
contained in

P(Km) ⊗ K[Q(Km)]≤k

is a finite-dimensional vector space. So it is in particular a Noetherian topological
space and Yn is a Zariski-closed subset of this space for all n ≥ m. Hence

⋂
n≥m Yn con-

tains some polynomial transformation α : Q→ P and this polynomial transformation
extends β. �

The limit of a polynomial functor

Let P be a polynomial functor. Then we get the vector space Pn := P(Kn) for n ∈ N.
Let prn : Kn+1 � Kn be the projection map on the first n coordinates. Then we get the
map P(prn) : Pn+1 � Pn. Since prn is surjective, so is P(prn). Every element g ∈ GLn
is a linear map Kn

→ Kn and hence induces a linear map P(g) : Pn → Pn. Since P is
a functor, the map GLn → GL(Pn) sending g 7→ P(g) is a homomorphism and hence
gives Pn the structure of a representation of GLn. We view GLn as a subgroup of GLn+1
via the inclusion GLn ↪→ GLn+1 sending g 7→ Diag(g, 1). Now one can check that
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the map P(prn) is GLn-equivariant for every n ∈ N. So, following the construction
from the previous section, we get an inverse limit P∞ = lim

←−−n
Pn acted on by the

group GL∞ = lim
−−→n

GLn and equipped with the Zariski topology. We also get a map
prn : P∞ � Pn for every n ∈N.

Given a closed subset X of P, we get a GL∞-stable closed subset X∞ of P∞ by taking
the inverse limit of the GLn-stable closed subsets X(Kn) of P(Kn). In the other direction,
given a GL∞-stable closed subset X∞ of P∞, we get a closed subset X of P given by
taking

X(V) = {v ∈ P(V) | f (P(`)(v)) = 0 for all f ∈ I(prn(X∞)) and linear maps ` : V → Kn
}

for every V ∈ Vec.

Definition 1.3.27. We call X∞ the affine GL∞-variety corresponding to X.

Proposition 1.3.28. The map X 7→ X∞ is a one-to-one correspondence between the closed
subsets of P and the GL∞-subvarieties of P∞. Furthermore, we have Xn = prn(X∞) for all
closed subsets X of P and for all n ∈N.

Proof. Let X∞ be the inverse limit of a closed subset X of P. Then we have prn(X∞) ⊆ Xn
for every n ∈ N. Let vn ∈ Xn be a point and take vm+1 = P(im)(vm) ∈ Xm+1 for
m ≥ n where im : Km

→ Km+1 is a section of prm. Then (vm)m≥n ∈ X∞ and hence
vn = prn(vm)m≥n ∈ prn(X∞). So prn(X∞) = Xn. It now follows easily that

X(V) = {v ∈ P(V) | f (P(`)(v)) = 0 for all f ∈ I(prn(X∞)) and linear maps ` : V → Kn
}.

Next, let X∞ be a GL∞-subvariety of P∞ and let X be the associated closed subset of P.
Then the inverse limit of X is contained in X∞. Take v ∈ X∞ and let ` : Km

→ Kn be
a linear map. Then P(`)(vm) is a limit of elements of the GLn-orbit of vn. We have
f (w) = 0 for all f ∈ I(prn(X∞)) and all w in this orbit. Hence vm ∈ X(km). It follows
that X∞ is the inverse limit of X. �

Corollary 1.3.29. The space P∞ is GL∞-Noetherian, i.e. every chain of GL∞-subvarieties
of P∞ stabilizes.

Proof. This follows directly from the proposition together with Theorem 1.3.20. �

A regular transformation α : Y→ X induces a map

α∞ : Y∞ → X∞
(yn)n 7→ (αKn(yn))n.

Definition 1.3.30. A morphism α∞ : X∞ → Y∞ of affine GL∞-varieties is a map that
arises from a regular transformation α : X→ Y in this manner.

Multivariate polynomial functors

Fix an integer µ ∈ N. We finish this section by defining multivariate polynomial
functors. Let Vecµ be the category whose objects are tuples V = (V1, . . . ,Vµ) of finite-
dimensional vector spaces and in which a morphism ` : V → W is a tuple (`1, . . . , `µ)
where each `i : Vi →Wi is a linear map.
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Definition 1.3.31. A µ-variate polynomial functor P assigns to every V ∈ Vecµ a vector
space P(V) ∈ Vec and to every morphism ` : V → W a linear map P(`) : P(V) → P(W)
such that P(idV) = id(P(V) for all V ∈ Vecµ, P(`1 ◦ `2) = P(`1) ◦ P(`2) for all morphisms
`1 : V →W and `2 : U→ V and the map

Hom(V,W) → Hom(P(V),P(W))
` 7→ P(`)

is a polynomial map for all V,W ∈ Vecµ.

Just like univariate polynomial functors, multivariate polynomial functors have sub-
functors, quotients, direct sums and tensor products. And, just like µ-variate polyno-
mial rings, the semiring of µ-variate polynomial functors is Zµ

≥0-graded.

Example 1.3.32. Let U ∈ Vec be a fixed finite-dimensional vector space. Then the
functor CU : Vecµ → Vec assigning U to every V ∈ Vecµ and assigning idU to every
morphism is aµ-variate polynomial functor. When the space U has positive dimension,
the functor CU has degree 0. ♣

Example 1.3.33. Take i ∈ [µ]. Then the functor Ti : Vecµ → Vec assigning Vi to V ∈ Vecµ

and `i to a morphism ` is a homogeneous µ-variate polynomial functor of degree ei. ♣

Example 1.3.34. Let d = (d1, . . . , dµ) ∈Nµ be a tuple of integers and let λ = (λ1, . . . , λµ)
be a tuple of partitions such that λi ` di. Then we define the multivariate Schur
functor Sλ to be the tensor product of the functors Sλ1 ◦ T1, . . . ,Sλµ ◦ Tµ, i.e., we have
SλV = Sλ1V1⊗· · ·⊗SλµVµ for each V ∈ Vecµ. The functor Sλ is a homogeneousµ-variate
polynomial functor of degree d. ♣

The definitions of linear and polynomial transformations between multivariate poly-
nomial functors generalize as one expects and a multigraded version of Proposi-
tion 1.3.25 holds. Given a µ-variate polynomial functor P and a tuple V ∈ Vecµ of
vector spaces, the vector space P(V) naturally has the structure of a polynomial rep-
resentation of GL(V) := GL(V1) × · · · × GL(Vµ). When P is homogeneous of degree
d ∈ Zµ

≥0, then so is the representation P(V). We again have the following lemma.

Lemma 1.3.35 (Touze [34, Théorème 7.2]). For any tuples d ∈ Zµ
≥0 and V ∈ Vecµ such

that dim(Vi) ≥ di for all i ∈ [µ], the functor sending

P 7→ P(V)
α 7→ αV

is an equivalence of categories between the category of homogeneous µ-variate polynomial func-
tors of degree d whose morphisms are linear transformations and the category of homogeneous
polynomial representations of GL(V) of degree d. �

As a consequence of the lemma, we find that, when char(K) = 0, every µ-variate
polynomial functor is a direct sum of multivariate Schur functors. So in particular,
every µ-variate polynomial functor can be obtained from the constant functors CU
and the functors T1, . . . ,Tµ by taking subfunctors, quotients, direct sums and tensor
products in this case.

17



The definition of a closed subset of a polynomial functor also generalizes. A closed
subset of a µ-variate polynomial functor is itself a functor from Vecµ to Top. The
Noetherianity of multivariate polynomial functors easily follows from the univariate
case. Let P be a µ-variate polynomial functor of finite degree and let ∆ : Vec → Vecµ

be the functor assigning (V, . . . ,V) to V ∈ Vec and (`, . . . , `) to a linear map `.

Lemma 1.3.36. Let X,Y ⊆ P be closed subsets such that X ◦ ∆ = Y ◦ ∆. Then X = Y.

Proof. Let V ∈ Vecµ and W ∈ Vec be such that dim(Vi) ≤ dim(W) for each i ∈ [µ]. Also,
let ιi : Vi ↪→ W and πi : W � Vi be linear maps such that πi ◦ ιi = idVi for each i ∈ [µ].
Then we have

X(V) = P(π1, . . . , πµ)(P(ι1, . . . , ιµ)(X(V))) ⊆ P(π1, . . . , πµ)(X(W, . . . ,W)) ⊆ X(V)

since X is a closed subset of P. Hence X(V) = P(π1, . . . , πµ)(X(W, . . . ,W)). Similarly, we
have Y(V) = P(π1, . . . , πµ)(Y(W, . . . ,W)). Since (W, . . . ,W) = ∆(W), it follows that

X(V) = P(π1, . . . , πµ)((X ◦ ∆)(W)) = P(π1, . . . , πµ)((Y ◦ ∆)(W)) = Y(V)

for each V ∈ Vec. Hence X = Y. �

Theorem 1.3.37. Every descending chain of closed subsets of P stabilizes.

Proof. Let
P = X0 ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

be a descending chain of closed subsets of P. Then we get a descending chain

P ◦ ∆ = X0 ◦ ∆ ⊇ X1 ◦ ∆ ⊇ X2 ◦ ∆ ⊇ X3 ◦ ∆ ⊇ X4 ◦ ∆ ⊇ . . .

of closed subsets of the univariate polynomial functor P ◦∆. This chain must stabilize
by Theorem 1.3.20. Hence the original chain must also stabilize by the previous
lemma. �

A natural transformation between closed subsets of multivariate polynomial functors
is regular when each of the maps it consists of is regular and every regular transfor-
mation is the restriction of a polynomial transformation when char(K) = 0.

Finally, we construct the limits of multivariate polynomial functors. Let P be a µ-
variate polynomial functor. Then we take Pn := P(Kn, . . . ,Kn) for every integer n ∈N.
Let prn : Kn+1 � Kn be the projection map on the first n coordinates. Then we get the
maps P(prn, . . . ,prn) : Pn+1 � Pn and we define P∞ := lim

←−−n
Pn. The map

GLµn → GL(Pn)
(`1, . . . , `µ) 7→ P(`1, . . . , `µ)

gives Pn the structure of a representation of GLµn . We view GLµn as a subgroup of
GLµn+1 via the map sending (g1, . . . , gµ) 7→ (Diag(g1, 1), . . . ,Diag(gµ, 1)). This makes
map P(prn, . . . ,prn) into a GLµn-equivariant map. This gives us an action of the direct
limit GLµ∞ = lim

−−→n
GLµn on P∞.
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Remark 1.3.38. Alternatively, we could define P∞ as the inverse limit of the maps
P(prn1

, . . . ,prnµ) where n1, . . . ,nµ ∈N can be chosen independent from each other. As
every space P(Kn1 , . . . ,Knµ) in this inverse system has a space of the form P(Kn, . . . ,Kn)
above it, the inverse limit is naturally isomorphic to the space P∞ we use. ♠

We can move between closed subsets X of P and GLµ∞-subvarieties X∞ of P∞ as
expected.

Proposition 1.3.39. The map X 7→ X∞ is a one-to-one correspondence between the closed
subsets of P and the GLµ∞-subvarieties of P∞. Furthermore, we have Xn = prn(X∞) for all
closed subsets X of P and for all n ∈N.

Proof. This follows by combining Lemma 1.3.36 with the arguments from Proposi-
tion 1.3.28. �

Corollary 1.3.40. The space P∞ is GLµ∞-Noetherian.

Proof. This follows directly from the proposition together with Theorem 1.3.37. �

A regular transformation α : Y → X induces a map α∞ : Y∞ → X∞ and we call the
maps that arise in this way the morphisms Y→ X.

1.4 Rank functions

Many rank functions can be used to define closed subsets of polynomial functors.
And, many of these rank functions can be defined using polynomial transformations
from smaller polynomial functors. This is no coincidence: see Theorem 4.2.5. In this
section, we list several examples of such rank functions in order to give some intuition
for this theorem.

Example 1.4.1. Let k ∈ Z≥0 be an integer and let P = T⊕k+1 be the univariate polynomial
functor sending V ∈ Vec to V⊕k+1. The elements of P are (k + 1)-tuples of vectors from
the same vector space. Consider the closed subset X ⊆ P defined by

X(V) = {(v1, . . . , vk+1) ∈ V⊕k+1
| v1, . . . , vk+1 are linearly dependent}

for all V ∈ Vec. This is a closed subset of P, because the condition

dim span{v1, . . . , vk+1} ≤ k

is closed and functorial in (v1, . . . , vk+1). For vectors v1, . . . , vm from the same vector
space V ∈ Vec, note that

dim span{v1, . . . , vm}

is the minimal k ∈ Z≥0 such that (v1, . . . , vm) is contained in the image of the polynomial
transformation α : K⊕k×m

⊕ T⊕k
→ T⊕m given by the maps

αV : Kk×m
⊕ V⊕k

→ V⊕m

(A, v1, . . . , vk) 7→ (v1, . . . , vk)A

for V ∈ Vec. Here (v1, . . . , vk) is treated as a 1 × k matrix. ♣
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Example 1.4.2. Let P = T1 ⊗ T2 be the 2-variate polynomial functor sending a pair
(V,W) ∈ Vec2 to their tensor product V ⊗ W. The elements of P are matrices. For
k ∈ Z≥0, consider the closed subset X ⊆ P defined by

X(V,W) = {A ∈ V ⊗W | rk(A) ≤ k}

for all (V,W) ∈ Vec2. These are closed subsets of P, because the condition

rk(A) ≤ k

is closed and functorial in A. For a finite-by-finite matrix A, note that rk(A) is the
minimal k ∈ Z≥0 such that A is contained in the image of the polynomial transformation
α : (T1 ⊕ T2)⊕k

→ P given by the maps

α(V,W) : (V ⊕W)⊕k
→ V ⊗W

(v1,w1, . . . , vk,wk) 7→ v1 ⊗ w1 + · · · + vk ⊗ wk

for (V,W) ∈ Vec2. ♣

Fix an integer m ∈ Z≥2.

Example 1.4.3. Define the rank of a tuple (A1, . . . ,Am) of matrices of the same size as

rk(A1, . . . ,Am) := min
{
rk(µ1A1 + · · · + µmAm)

∣∣∣ (µ1 : · · · : µm) ∈ Pm−1
}
.

This rank was first defined in [18]. Let P = (T1 ⊗ T2)⊕m be the 2-variate polynomial
functor sending a pair (V,W) ∈ Vec2 to (V ⊗W)⊕k. For k ∈ Z≥0, consider the closed
subset X ⊆ P defined by

X(V,W) = {(A1, . . . ,Am) ∈ (V ⊗W)⊕m
| rk(A1, . . . ,Am) ≤ k}

for all (V,W) ∈ Vec2. These are closed subsets of P, because the condition

rk(A1, . . . ,Am) ≤ k

is closed and functorial in (A1, . . . ,Am). For finite-by-finite matrices A1, . . . ,Am of the
same size, note that rk(A1, . . . ,Am) is the minimal k ∈ Z≥0 such that (A1, . . . ,Am) is
contained in the image of the polynomial transformation

α : Km×m
⊕ (T1 ⊕ T2)⊕k

⊕ (T1 ⊗ T2)⊕m−1
→ P

given by the maps

α(V,W) : Km×m
⊕ (V ⊕W)⊕k

⊕ (V ⊗W)⊕m−1
→ (V ⊗W)⊕m

(B, v1,w1, . . . , vk,wk,A1, . . . ,Am−1) 7→ (A1, . . . ,Am−1, v1 ⊗ w1 + · · · + vk ⊗ wk)B

for (V,W) ∈ Vec2. Here (A1, . . . ,Am−1, v1⊗w1 + · · ·+vk⊗wk) is treated as a 1×m matrix. ♣

Example 1.4.4. Let P = T1 ⊗ · · · ⊗ Tm be the m-variate polynomial functors sending a
tuple (V1, . . . ,Vm) ∈ Vecm to V1 ⊗ · · · ⊗ Vm. The elements of P are m-way tensors. For
k ∈ Z≥0, consider the closed subset X ⊆ P defined by

X(V1, . . . ,Vm) = {t ∈ V1 ⊗ · · · ⊗ Vm | rk(t) ≤ k}
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for all (V1, . . . ,Vm) ∈ Vecm. These are closed subsets of P, because the condition

rk(t) ≤ k

is functorial in t. For a tensor t, note that its tensor rank rk(t) is the minimal k ∈ Z≥0
such that t is contained in the image of the polynomial transformation

α : (T1 ⊕ · · · ⊕ Tm)⊕k
→ P

given by the maps

α(V1,...,Vm) : (V1 ⊕ · · · ⊕ Vm)⊕k
→ V1 ⊗ · · · ⊗ Vm

(v11, . . . , vm1, . . . , v1k, . . . , vmk) 7→ v11 ⊗ · · · ⊗ vm1 + · · · + v1k ⊗ · · · ⊗ vmk

for (V1, . . . ,Vm) ∈ Vecm. ♣

Example 1.4.5. Again take P = T1 ⊗ · · · ⊗ Tm. A nonzero tensor t ∈ V1 ⊗ · · · ⊗ Vm has
slice rank 1 when it is of the form t′ ⊗ vi for some i ∈ [m], t′ ∈ V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vm
and vi ∈ Vi. The slice rank slrk(t) of a tensor t is the minimal k ∈ Z≥0 such that t is a
sum of k tensors with slice rank 1. The slice rank of a tensor was first defined in [32].
For k ∈ Z≥0, consider the closed subset X ⊆ P defined by

X(V1, . . . ,Vm) = {t ∈ V1 ⊗ · · · ⊗ Vm | slrk(t) ≤ k}

for all (V1, . . . ,Vm) ∈ Vecm. These are closed subsets of P, because the condition

slrk(t) ≤ k

is closed and functorial in t. For a tensor t, note that its slice rank is the minimal sum
k1 + · · · + km of integers k1, . . . , km ∈ Z≥0 such that t is contained in the image of the
polynomial transformation

α :
m⊕

i=1

(
(T1 ⊗ · · · ⊗ T̂i ⊗ · · · ⊗ Tm) ⊕ Ti

)⊕ki
→ P

given by the maps

α(V1,...,Vm) :
m⊕

i=1

(
(V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vm) ⊕ Vi

)⊕ki
→ V1 ⊗ · · · ⊗ Vm

((ti j, vi j))i, j 7→
∑m

i=1
∑ki

j=1 ti j ⊗ vi j

for (V1, . . . ,Vm) ∈ Vecm. ♣

Fix an integer d ∈ Z≥2.

Example 1.4.6. Let P = Sd be the univariate polynomial functors sending a V ∈ Vec to
its dth symmetric power. The elements of P are homogeneous polynomials of degree d.
The Waring rank of a polynomial f ∈ Sd(V) is the minimal k ∈ Z≥0 such that

f = `d
1 + · · · + `d

k
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for some linear forms `1, . . . , `k ∈ V. For k ∈ Z≥0, consider the closed subset X ⊆ P
defined by

X(V) = { f ∈ Sd(V) | wrk( f ) ≤ k}

for all V ∈ Vec. These are closed subsets of P, because the condition

wrk(t) ≤ k

is functorial in f . For a homogeneous polynomial f of degree d, note that its Waring
rank is the minimal k ∈ Z≥0 such that f is contained in the image of the polynomial
transformation α : T⊕k

→ P given by the maps

αV : V⊕k
→ Sd(V)

(`1, . . . , `k) 7→ `d
1 + · · · + `d

k

for V ∈ Vec. ♣

Example 1.4.7. Again take P = Sd. The strength of a polynomial f ∈ Sd(V) is the
minimal k ∈ Z≥0 such that

f = g1 · h1 + · · · + gk · hk

for some homogeneous polynomials g1, h1, . . . , gk, hk of degree < d. The strength of a
polynomial was first defined in [2]. For k ∈ Z≥0, consider the closed subset X ⊆ P
defined by

X(V) = { f ∈ Sd(V) | str( f ) ≤ k}

for all V ∈ Vec. These are closed subsets of P, because the condition

str(t) ≤ k

is functorial in f . For a homogeneous polynomial f of degree d, note that its strength
is the minimal sum k1 + · · · + kbd/2c of integer ke ∈ Z≥0 such that f is contained in the
image of the polynomial transformation

α :
bd/2c⊕
e=1

(Se
⊗ Sd−e)⊕ke → P

given by the maps

αV :
bd/2c⊕
e=1

(Se(V) ⊗ Sd−e(V))⊕ke → Sd(V)

((gej, hej))e, j 7→
∑
bd/2c
e=1

∑ke
j=1 gej · hej

for V ∈ Vec. ♣
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Chapter 2

Inverse limits of locally diagonal
sequences

In this chapter, the field K is assumed to be infinite.

2.1 Introduction

Consider a sequence of embeddings

G1 G2 G3 . . .
ι1 ι2 ι3

built up out of homomorphisms between the following classical algebraic groups

An−1 : SLn = {A ∈ GLn | det(A) = 1}

Bn : O2n+1 =

A ∈ GL2n+1

∣∣∣∣∣∣∣∣ A


In
1

In

 AT =


In

1
In




Cn : Sp2n =

{
A ∈ GL2n

∣∣∣∣∣∣ A
(

In
−In

)
AT =

(
In

−In

)}

Dn : O2n =

{
A ∈ GL2n

∣∣∣∣∣∣ A
(

In
In

)
AT =

(
In

In

)}
each of which we view as embedded subgroups of GLn for some n ∈ N. Let G,H be
such groups, let V,W be their standard representations and consider K as the trivial
representation of G. In [3], an embedding G ↪→ H is called diagonal if

W � V⊕l
⊕ (V∗)⊕r

⊕ K⊕z

as representations of G for some l, r, z ∈ Z≥0 with l + r ≥ 1. The triple (l, r, z) is called
the signature of the embedding. If G is of type B, C or D, then the representation V
is isomorphic to V∗. In this case, we will always assume that r = 0, which makes the
pair (l, z) unique, and we also denote the signature by (l, z). For more on diagonal
embeddings, see the previous chapter.
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Example 2.1.1. For all n ∈N and l, r, z ∈ Z≥0 with l + r ≥ 1, the map

SLn → SL(l+r)n+z

A 7→ Diag(A, . . . ,A︸   ︷︷   ︸
l

,A−T, . . . ,A−T︸          ︷︷          ︸
r

, Iz)

is a diagonal embedding with signature (l, r, z). ♣

We will assume that the sequence

G1 G2 G3 . . .
ι1 ι2 ι3

consists of diagonal embeddings and we let G be its direct limit. We have an associated
sequence of linear maps

g1 g2 g3 . . .

where gi is the Lie algebra of Gi. Let V be the inverse limit of the sequence

g∗1 g∗2 g∗3 . . .

obtained by dualizing the previous sequence. Then V has a natural action of the
group G. The goal of this chapter is to prove the following theorem.

Theorem 2.1.2. Assume that one of the following conditions holds:

(a) The group Gi has type A for infinitely many i ∈N.

(b) The characteristic of K does not equal 2.

Then the space V is G-Noetherian.

Remark 2.1.3. We would like to point out that the G-Noetherianity of V also follows
from [20, Theorem 1.2] when all groups Gi have the same type and all signatures are
of the form (1, 0, z). The same is true for Theorem 2.1.4 below. ♠

Note that the conjugation-actions of GLn and SLn on gln have the same orbits. This
observation might make one hope that one can prove case (a) of the theorem by
considering sequences of homomorphisms between general linear groups instead of
special linear groups. This turns out to indeed be the case. Consider sequences of the
form

GLn1 GLn2 GLnn . . .
ι1 ι2 ι3

consisting of embeddings of the form

ιi : GLni → GLni+1

A 7→ Diag(A, . . . ,A︸   ︷︷   ︸
li

,A−T, . . . ,A−T︸          ︷︷          ︸
ri

, Izi)

with li, ri, zi ∈ Z≥0 such that li + ri ≥ 1 and ni+1 = (li + ri)ni + zi. Let G be the direct limit
of this sequence. Then, similarly to before, the group G acts naturally on the inverse
limit V of the sequence

gln1 gln2 gln3 . . .
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consisting of the maps

glni+1 → glni

P11 . . . P1li • . . . • •

...
...

...
...

...
Pli1 . . . Plili • . . . • •

• . . . • Q11 . . . Q1ri •

...
...

...
...

...
• . . . • Qri1 . . . Qriri •

• . . . • • . . . • •


7→

li∑
k=1

Pkk −

ri∑
`=1

QT
``.

Here each • represents some matrix of the appropriate size. Take

α = #{i | li > 1}, β = #{i | ri > 0}, γ = #{i | zi > 0} ∈ Z≥0 ∪{∞}.

We assume that α+ β+γ = ∞ since V is finite-dimensional otherwise. Based on α, β, γ
we distinguish the following cases:

(1) α + β < ∞;

(2) α + β = γ = ∞;

(3a) β = ∞, γ < ∞ and char(K) , 2;

(3b) β = ∞, γ < ∞ and char(K) = 2; and

(4) β + γ < ∞.

Note here that if γ < ∞, then ni|ni+1 for all i� 0. Denote the element of V representated
by the sequence of zero matrices by 0. The following theorem completely classifies
the G-stable closed subsets of V.

Theorem 2.1.4. The space V is G-Noetherian. Any G-stable closed subset of V is a finite
union of irreducible G-stable closed subsets. The irreducible G-stable closed subsets of V are
{0} and V together with{

(Pi)i ∈ V | ∀i� 0: rk(Pi, Ini) ≤ k
}
,

{
(Pi)i ∈ V | ∀i� 0: rk(Pi − λIni) ≤ k

}
for λ ∈ K and k ∈ Z≥0 in case (1) and together with{

(Pi)i ∈ V | ∀i� 0: tr(Pi) = µ
}

for µ ∈ K in cases (3b) and (4).

When proving case (a) of Theorem 2.1.2, we may assume that each group Gi is of
type A. And we will show that, when this is the case, the space from Theorem 2.1.2
is a quotient of the space from Theorem 2.1.4 if we choose the tuples (li, ri, zi) to be
the signatures from our orginal sequence of diagional embeddings. This allows us to
prove case (a) of Theorem 2.1.2.

Outline of this chapter. There are many useful ways in which we can change the
sequence of groups

G1 G2 G3 . . .
ι1 ι2 ι3
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without changing its direct limit G or the inverse limit V of the associated sequence

g∗1 g∗2 g∗3 . . . .

We may in particular assume that all groups Gi are of the same type and we will
prove Theorem 2.1.2 for each type seperately. These proofs nevertheless share the
same overall structure. The first section of this chapter in devoted to these sequence
changes and the shared structure of the proofs. After this, we prove Theorem 2.1.4
and Theorem 2.1.2 for groups of type A, C, D and B in that order in five more sections.

2.2 Structure of the proofs

In this section, we reduce Theorem 2.1.2 to a number of cases and we outline the
structure that the proofs of each of those cases and of Theorem 2.1.4 share.

Reduction to standard diagonal embeddings

When the vector space V is finite-dimensional over K, Theorem 2.1.2 becomes trivial.
So we will only consider the cases where V is infinite-dimensional. For all i ∈ N, let
(li, ri, zi) be the signature of the embedding ιi : Gi ↪→ Gi+1. When Gi is of type B, C or
D, we will assume that ri = 0. The following lemma tells us that we can assume that
li ≥ ri for all i ∈N.

Lemma 2.2.1. For all i ∈ N, let σi : Gi → Gi be the automorphism sending A 7→ A−T and
take ki ∈ Z /2Z. Then the bottom row of the commutative diagram

G1 G2 G3 . . .

G1 G2 G3 . . .

ι1

σ
k1
1

ι2

σ
k2
2

ι3

σ
k3
3

is a sequence of diagonal embeddings with signaturesσki+ki+1(li, ri, zi) whereσ acts by permuting
the first two entries. �

The lemma follows from the fact that the automorphism Gi → Gi,A 7→ A−T is diagonal
and its own inverse. We can choose the ki recursively so that li ≥ ri for all i ∈ N
in the bottom sequence. Since the vertical maps are isomorphisms and the diagram
commutes, the bottom sequence gives rise to isomorphic G and V. This allows us to
indeed assume that li ≥ ri.

Let G be a classical group of type A, B, C or D. Let l, r, z ∈ Z≥0 be integers with r = 0
if G is not of type A. Assume that β1, β2 are nondegenerate G-invariant bilinear forms
on V⊕l

⊕ (V∗)⊕r
⊕ K⊕z.

Lemma 2.2.2. Assume that K = K and that one of the following conditions holds:

(a) β1 and β2 are both skew-symmetric.

(b) β1 and β2 are both symmetric and char(K) , 2.
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Then there exists a G-equivariant automorphism ϕ of V⊕l
⊕ (V∗)⊕r

⊕ K⊕z such that

β2(ϕ(v), ϕ(w)) = β1(v,w)

for all v,w ∈ V⊕l
⊕ (V∗)⊕r

⊕ K⊕z.

Proof. First suppose that l = r = 0. In this case, the lemma reduces to the well-known
statement that the matrices corresponding to β1 and β2 are congruent. In general,
Schur’s Lemma splits the lemma into the cases z = 0 and l = r = 0. Suppose that z = 0.
If G is of type B, C or D, then Schur’s Lemma also shows the matrices corresponding
to β1 and β2 are Kronecker products of l× l matrices with the identity matrix. If G is of
type A, then Schur’s Lemma shows that l = r and that the matrices corresponding to
β1 and β2 are Kronecker products of l × l matrices with the matrix(

0 I
−I 0

)
Here we order the copies of V and V∗ alternatingly. This reduces the case z = 0 to the
the case l = r = 0. �

Let f , g : G→ H ⊆ GLn be two diagonal embeddings with signature (l, r, z).

Lemma 2.2.3. If the type of H is B, C or D, assume that K = K. If the type of H is B or
D, assume in addition that char(K) , 2. Then there is a P ∈ H such that the isomorphism
π : H→ H,A 7→ PAP−1 makes the diagram

G H

G H

f

id π

g

commute.

Proof. The maps f and g both induce an isomorphism

Kn � V⊕l
⊕ (V∗)⊕r

⊕ K⊕z

of representations of G. This means that there are matrices Q,R such that

Q f (A)Q−1 = Rg(A)R−1 = Diag(A, . . . ,A,A−T, . . . ,A−T, Iz)

for all A ∈ G where the block-diagonal matrix has l blocks A and r blocks A−T. If H is
of type A, then we take P = λR−1Q for some λ ∈ K such that P ∈ SLn and see that the
isomorphism π : H→ H,A 7→ PAP−1 makes the diagram commute.

Assume that H is not of type A. Then H = {g ∈ GLn | gTBg = B} for some matrix
B ∈ GLn. Let β1 and β2 be the G-invariant bilinear forms on Kn defined by Q−TBQ−1

and R−TBR−1. By the previous lemma, there exists a G-equivariant automorphism ϕ
of Kn such that

β2(ϕ(v), ϕ(w)) = β1(v,w)

for all v,w ∈ Kn. Let S be the matrix corresponding to ϕ. Then

STQ−TBQ−1S = R−TBR−1
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and
S Diag(A, . . . ,A,A−T, . . . ,A−T, Iz) = Diag(A, . . . ,A,A−T, . . . ,A−T, Iz)S

for all A ∈ G. Take P = R−1S−1Q. Then P−1
∈ H and therefore P ∈ H. The isomorphism

π : H→ H,A 7→ PAP−1 makes the diagram commute. �

Proposition 2.2.4. For every i ∈ N, let ι′i : Gi ↪→ Gi+1 be a diagonal embedding with the
same signature (li, ri, zi) as ιi. If the type of Gi is B, C or D for any i ∈N, assume that K = K.
If the type of Gi is B or D for any i ∈N, assume in addition that char(K) , 2. Then there exist
isomorphisms ϕi : Gi → Gi making the diagram

G1 G2 G3 . . .

G1 G2 G3 . . .

ι1

id

ι2

ϕ2

ι3

ϕ3

ι′1 ι′2 ι′3

commute.

Proof. We construct the isomorphisms ϕi recursively in such a way that the ϕi are also
diagonal embeddings with signature (1, 0, 0). Write ϕ1 = id, let i ≥ 2 and assume that
ϕi−1 has already been constructed. Then ι′i−1 ◦ ϕi−1 has the same signature as ιi−1. So
by the previous lemma, there exists an isomorphism ϕi making the diagram

Gi−1 Gi

Gi−1 Gi

ιi−1

id ϕi

ι′i−1◦ϕi−1

commute that also has signature (1, 0, 0) as a diagonal embedding. �

Recall that, when we replace

G1 G2 G3 . . .
ι1 ι2 ι3

by supersequences or infinite subsequences, we do not change G or V. Therefore we
may assume that each group Gi has the same type and we will prove Theorem 2.1.2
for sequences of groups of type A, B, C and D separately. The proposition tells us
that, if we replace K by its algebraic closure, the limits G and V only depend on the
signatures of the diagonal embeddings. Since G-Noetherianity of V over K implies
G-Noetherianity of V over the original field K, we only have to consider one diagonal
embedding per possible signature.
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Identifying V with the inverse limit of a sequence of quotients/subspaces of matrix
spaces

We encounter the following Lie algebras:

An−1 : sln = {P ∈ gln | tr(P) = 0}

Bn : o2n+1 =

P ∈ gl2n+1

∣∣∣∣∣∣∣∣ P


In

1
In

 +


In

1
In

 PT = 0


Cn : sp2n =

{
P ∈ gl2n

∣∣∣∣∣∣ P
(

In
−In

)
+

(
In

−In

)
PT = 0

}

Dn : o2n =

{
P ∈ gl2n

∣∣∣∣∣∣ P
(

In
In

)
+

(
In

In

)
PT = 0

}
These are all subspaces of glm for some m ∈ N. Consider the symmetric bilinear form
glm × glm → K, (P,Q) 7→ tr(PQ). This map is nondegenerate and therefore the map
glm → gl

∗

m,P 7→ (Q 7→ tr(PQ)) is an isomorphism. By composing this map with the
restriction map gl∗m → sl

∗

m and factoring out the kernel, we find that

glm / span(Im) → sl∗m

P mod Im 7→ (Q 7→ tr(PQ))

is an isomorphism. When char(K) , 2 and g ⊆ glm is a Lie algebra of type B, C or D,
the restriction of the bilinear map to g× g is nondegenerate. So the map

g → g∗

P 7→ (Q 7→ tr(PQ))

is an isomorphism. Since the map gln → gl
∗

n is in fact GLn-equivariant, the maps
glm / span(Im)→ sl∗m and g→ g∗ are all isomorphisms of representations of the groups
acting on them. Using these isomorphisms, we identify the duals g∗i of the Lie algebras
of the groups Gi with quotients/subspaces of spaces of matrices. This in particular
allows us to define the coordinate rings of the g∗i in terms of entries of matrices. For
type A, we get

K[gln / span(In)] = { f ∈ K[gln] | ∀P ∈ gln ∀λ ∈ K : f (P + λIn) = f (P)}

which is the graded subring

K[pk` | k , `] ⊗K K[p11 − pkk | k , 1]

of K[gln] = K[pk` | 1 ≤ k, ` ≤ n]. For type B, assuming that char(K) , 2, we have

o2n+1 =




P v Q
−wT 0 −vT

R w −PT

 ∈ gl2n+1

∣∣∣∣∣∣∣∣ Q + QT = 0
R + RT = 0


and therefore we get

K[o2n+1] = K[pk`, qk`, rk`, vk,wk | 1 ≤ k, ` ≤ n]/(qk` + q`k, rk` + r`k).

29



For type C, we have

sp2n =

{(
P Q
R −PT

)
∈ gl2n

∣∣∣∣∣∣ Q = QT

R = RT

}
and we get

K[sp2n] = K[pk`, qk`, rk` | 1 ≤ k, ` ≤ n]/(qk` − q`k, rk` − r`k).

For type D, assuming that char(K) , 2, we have

o2n =

{(
P Q
R −PT

)
∈ gl2n

∣∣∣∣∣∣ Q + QT = 0
R + RT = 0

}
and get

K[o2n] = K[pk`, qk`, rk` | 1 ≤ k, ` ≤ n]/(qk` + q`k, rk` + r`k).

For Lie algebras g ⊆ glm of type B, C or D, we will denote elements of K[g] by their
representatives in K[glm]. Define a grading on each of these coordinate rings by
grad(rk`) = grad(wk) = 0, grad(pk`) = grad(vk) = 1 and grad(qk`) = 2 for all k, ` ∈ [n].

Moving equations around

Let X ( V be a G-stable closed subset. For each i ∈ N, let Vi be the vector space (we
identified with) g∗i which is acted on by Gi by conjugation and let Xi be the closure of
the projection from X to Vi. Then Xi is a Gi-stable closed subset of Vi for all i ∈ N
and there exists an i ∈ N such that Xi , Vi. This means that the ideal I(Xi) ⊆ K[Vi] is
nonzero. Let f be a nonzero element of I(Xi) and let d be its degree. The first step of
the proof of Theorem 2.1.2 is to use this polynomial f to get elements f j of I(X j) such
that f j , 0, such that deg( f j) ≤ d and such that f j is “off-diagonal” for all j� i. When
the groups Gi are of type B, C or D, this last condition means that f j is a polynomial in
only the variables rk` and wk. When the groups Gi are of type A, we similarly require
that the f j are polynomials in the variables pk` with k ∈ K and ` ∈ L for some disjoint
sets K,L.

The projection maps pri : Vi+1 → Vi induce maps pr∗i : K[Vi] → K[Vi+1] which are
injective and degree-preserving. We will see that, for many of the maps pri we will
encounter, the map pr∗i is also grad-preserving. Since Xi+1 projects into Xi, we have
pr∗i (I(Xi)) ⊆ I(Xi+1). So f induces nonzero elements g j ∈ I(X j) of degree d for all j > i.

Let A : Kk
→ G j be a polynomial map such that the map

Kk
→ G j

Λ 7→ A(Λ)−1

is polynomial as well. Then A(Λ) · g j ∈ I(X j) for all Λ ∈ Kk and therefore linear
combinations of such elements also lie in I(X j). Note that we can view A(Λ) · g j as
a polynomial in the entries of Λ whose coefficients are elements of K[V j]. Let R be
a K-algebra and h ∈ R[x] a polynomial. Then, since the field K is infinite, one sees
using a Vandermonde matrix that the coefficients of h are contained in the K-span of
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{h(λ) | λ ∈ K}. Applying this fact k times, we see that all the coefficients of A(Λ) · g j lie
in span(A(Λ) · g j | Λ ∈ Kk) ⊆ I(X j).

We will let f j be a certain one of these coefficients. We have deg( f j) ≤ d by construction
and we will choose A in such a way that f j is “off-diagonal”. We will see that f j is
obtained from g j by substituting variables into the top-graded part of g j with respect
to the right grading (in most cases deg or grad). Since the polynomial g j is nonzero, so
is its top-graded part with respect to any grading. So it then suffices to check that this
top-graded part does not become zero after the substitution. In the cases where this is
not obvious, it will follow from a lemma stating that a certain morphism is dominant.

Using knowledge about stable closed subsets of the “off-diagonal” part

The space V j consists of matrices. When we have an “off-diagonal” polynomial which
is contained in I(X j), we know that the projection Y of X j onto some off-diagonal
submatrix cannot form a dense subset of the projection W of the whole space V j. We
then give W the structure of a representation such that Y is stable and use the fact that
we know that the ideal of Y contains a nonzero polynomial of degree at most d to find
conditions that hold for all elements of Y. These in turn give conditions that must hold
for all elements of X j, which will be enough to prove that X is G-Noetherian.

2.3 Limits of general linear groups

In this section, we let G be the direct limit of a sequence

GLn1 GLn2 GLn3 . . .
ι1 ι2 ι3

of embeddings given by

ιi : GLni ↪→ GLni+1

A 7→ Diag(A, . . . ,A︸   ︷︷   ︸
li

,A−T, . . . ,A−T︸          ︷︷          ︸
ri

, Izi)

for some li ∈N and ri, zi ∈ Z≥0 with li ≥ ri. We let V be the inverse limit of the sequence

gln1 gln2 gln3 . . .

where the maps are given by

glni+1 � glni

P11 . . . P1li • . . . • •

...
...

...
...

...
Pli1 . . . Plili • . . . • •

• . . . • Q11 . . . Q1ri •

...
...

...
...

...
• . . . • Qri1 . . . Qriri •

• . . . • • . . . • •


7→

li∑
k=1

Pkk −

ri∑
`=1

QT
``.

Our goal is to prove Theorem 2.1.4. We start by proving some basic properties of the
tuple rank of a matrix with the identity matrix.
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Proposition 2.3.1. Let P,P1, . . . ,Pk be elements of gl∞.

1. We have rk(P1, . . . ,Pk) = sup{rk(prn(P1), . . . ,prn(Pk)) | n ∈N}.

2. If rk(P, I∞) < ∞, then rk(P − λI∞) < ∞ for some unique λ ∈ K.

Proof. We have
rk(prn(P1), . . . ,prn(Pk)) ≤ rk(µ1P1 + · · · + µkPk)

for all n ∈N and (µ1 : · · · : µk) ∈ Pk−1. So

r := sup{rk(prn(P1), . . . ,prn(Pk)) | n ∈N} ≤ rk(P1, . . . ,Pk)

with equality when r = ∞. Suppose that r < ∞ and consider the descending chain

Y1 ⊇ Y2 ⊇ Y3 ⊇ Y4 ⊇ . . .

of closed subsets of Pk−1 defined by

Yn =
{
(µ1 : · · · : µk) ∈ Pk−1

∣∣∣ rk(µ1 prn(P1) + · · · + µk prn(Pk)) ≤ r
}
.

By construction, each Yn is nonempty. And by the Noetherianity of Pk−1, the chain
stabilizes. Let (µ1 : · · · : µk) ∈ Pk−1 be an element contained in Yn for all n ∈ N. Then
we see that rk(P1, . . . ,Pk) ≤ rk(µ1P1 + · · · + µkPk) ≤ r. This shows (1).

If rk(P, I∞) < ∞, then rk(P−λI∞) < ∞ for some λ ∈ K. If this holds for distinct λ, λ′ ∈ K,
then

∞ = rk((λ − λ′)I∞) = rk ((P − λ′I∞) − (P − λI∞)) ≤ rk(P − λ′I∞) + rk(P − λI∞) < ∞

and hence the λ ∈ K such that rk(P − λI∞) < ∞must be unique. This shows (2). �

The following proposition, which is due to Jan Draisma, connects the tuple rank of a
matrix P with the identity matrix to the rank of off-diagonal submatrices of matrices
similar to P.

Proposition 2.3.2. Let k,m,n ∈ Z≥0 be such that n ≥ 2m ≥ 2(k + 1), let K,L be disjoint
subsets of [n] of size m and let P be an n × n matrix. Then rk(P, In) ≤ k if and only if the
submatrix QK,L of Q has rank at most k for every Q ∼ P.

Proof. Suppose that rk(P, In) ≤ k. Let Q ∼ P be a similar matrix. Then rk(Q, In) ≤ k. So
since K ∩L = ∅ and the off-diagonal entries of Q and Q − λIn are equal for all λ ∈ K,
we see that rk(QK,L) ≤ k.

Suppose that the submatrix QK,L has rank at most k for every Q ∼ P. Then this
statement still holds when we replace K and L by subsets of themselves of size k + 1.
This reduces the proposition to the case m = k + 1. Now the statement we want to
prove is implied by the following coordinate-free version:

(*) Let V be a vector space of dimension n and letϕ : V → V be an endomorphism. If
the induced map ϕ : W → V/W has a nontrivial kernel for all (k + 1)-dimensional
subspaces W of V, then ϕ has an eigenvalue of geometric multiplicity at least
n − k.
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Indeed, taking ϕ : Kn
→ Kn the endomorphism corresponding to P and W ⊆ Kn

a (k + 1)-dimensional subspace, we can first replace P be a matrix Q ∼ P to get
W = Kk+1

× {0}. Since Q is similar to all its conjugates by permutation matrices, we
know that det(QK,L) = 0 for all disjoint subsets of K,L ⊆ [n] of size m. Hence
Q[n]\[k+1],[k+1] has rank at most k. So the induced map W → V/W has a nontrivial
kernel. We conclude from (*) that

rk(P − λIn) = rk(Q − λIn) ≤ n − (n − k) = k

for some λ ∈ K. So rk(P, In) ≤ k.

To prove (*), consider the incidence variety

Z =
{
(W, [v]) ∈ Grk+1(V) × P(V) | v, ϕ(v) ∈W

}
and let π1, π2 be the projections from Z to the Grassmannian Grk+1(V) and to P(V). By
assumption π1 is surjective. So we have

dim Z ≥ dim(Grk+1(V)) = (k + 1)(n − k − 1).

On the other hand, let v ∈ V \ {0} be a non-eigenvector of ϕ. Then π1(π−1
2 ([v]))

consists of all W ∈ Grk+1(V) containing span(v, ϕ(v)) and these form the Grassmannian
Grk−1(V/ span(v, ϕ(v))) of dimension (k − 1)(n − k − 1). Thus the union of the fibres
π−1

2 ([v]) for v not an eigenvector of ϕ has dimension at most

(k − 1)(n − k − 1) + dim(P(V)) = (k + 1)(n − k − 1) + 2k + 1 − n.

This dimension is strictly smaller than dim(Z). Let v be an eigenvector of ϕ. Then
π1(π−1

2 ([v])) consists of all W ∈ Grk+1(V) with v ∈W and these form the Grassmannian
Grk(V/ span(v)) of dimension k(n − k − 1). So we see that the union of the eigenspaces
of ϕ must have dimension at least dim(Z) − k(n − k − 1) + 1 ≥ n − k. Hence some
eigenspace of ϕ must have dimension at least n − k. �

2.3.1 The case α + β < ∞

By replacing

GLn1 GLn2 GLn3 . . .
ι1 ι2 ι3

with some infinite subsequence, we may assume that (li, ri) = (1, 0) and zi > 0 for all
i ∈N. Then, by replacing the sequence by a supersequence, we may assume that ni = i
and zi = 1 for all i ∈N. So we consider the inverse limit V = gl∞ of the sequence

gl1 gl2 gl3 . . .

acted on by the group G = GL∞.

Definition 2.3.3. For n ∈N, we call a polynomial f ∈ K[gln] off-diagonal if

f ∈ K[pk` | k ∈ K, ` ∈ L]

for some disjoint subsets K,L ⊂ [n] of size m ≤ n/2.
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Lemma 2.3.4. Let n ∈N be an integer, let Y be a GLn-stable closed subset of gln and suppose
thatI(Y) contains a nonzero off-diagonal polynomial f . Then rk(P, In) < deg( f ) for all P ∈ Y.

Proof. Let K,L ⊂ [n] be disjoint subsets of size m ≤ n/2 and let

f ∈ K[pk` | k ∈ K, ` ∈ L] ∩ I(Y)

be a nonzero element. If m = 0, then f is constant and Y = ∅. So in particular,
rk(P, In) < deg( f ) for all P ∈ Y. For m > 0, let Z be the closure of the set

{(yk`)k∈K,`∈L | (yk`)k,` ∈ Y}

in glm. Then f ∈ I(Z). By conjugating with ±1 times a permutation matrix, we may
assume that K = [m] and L = [2m] \ [m]. Now consider the map

GLm ×GLm → GLn

(A,B) 7→ Diag(A,B, In−2m).

Since Y is GLm ×GLm-stable, we see that Z is closed under GLm ×GLm acting by left
and right multiplication. So Z must consist of all matrices of rank at most ` for some
` ≤ m. Since f ∈ I(Z), we see that ` < min(m,deg( f )). So by Proposition 2.3.2, we see
that Y consists of matrices P such that rk(P, In) < min(m,deg( f )) ≤ deg( f ). �

Let X be a proper GL∞-stable closed subset of gl∞. Denote the closure of the projection
of X to gln by Xn and let I(Xn) ⊆ K[gln] be its corresponding ideal.

Lemma 2.3.5. Let m be a positive integer and suppose that I(Xm) contains a nonzero poly-
nomial f . Then rk(P, I∞) < deg( f ) for all P ∈ X.

Proof. Note that the morphism Xn → Xm is dominant for all positive integers m ≤ n.
So it suffices to prove that rk(prn(P), In) < deg( f ) for n � 0. Let n ≥ 2m be an integer.
Then f induces the element

g =



P Q •

R S •

• • •

 7→ f (P)


of I(Xn) where P,Q,R,S ∈ glm. This allows us to assume that deg( f ) < m without loss
of generality. For λ ∈ K, consider the matrix

A(λ) =


Im λIm

Im
In−2m

 ∈ GLn .

We have

A(λ)


P Q •

R S •

• • •

 A(λ)−1 =


P + λR Q + λ(S − P) − λ2R •

R S − λR •

• • •


for all λ ∈ K. So we see that if we let A(λ) act on g, we obtain the element

hλ =



P Q •

R S •

• • •

 7→ f (P + λR)
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of I(Xn). Let d be the degree of f and let fd be the homogeneous part of f of degree
d. Then the homogeneous part of hλ of degree d in λ equals the polynomial λd fd(R).
Since the field K is infinite, the polynomial fd(R) is a linear combination of the hλ.
Hence fd(R) ∈ I(Xn). So rk(P, In) < deg( f ) for all P ∈ Xn by Lemma 2.3.4 and therefore
rk(P, I∞) < deg( f ) for all P ∈ X. �

Lemma 2.3.6. Let k < n be nonnegative integers and let P ∈ gl2n and Q ∈ gln be matrices
with rk(P) = k and rk(Q) ≤ k. Then P is similar to(

Q Q12
Q21 Q22

)
for some Q12,Q21,Q22 ∈ gln.

Proof. First note that rk(P, I2n) = 2n− dim ker(P) = k, since 0 has the highest geometric
multiplicity among all eigenvalues of P. Since 2(k + 1) ≤ 2n, it follows by Proposition
2.3.2 that

P ∼
(
• •

R •

)
for some matrix R ∈ gln with rk(R) = k. By conjugating the latter matrix with Diag(g, In)
for some g ∈ GLn such that g ker(R) ⊆ ker(Q), we see that(

• •

R •

)
∼

(
• •

R′ •

)
for some matrix R′ ∈ gln with rk(R′) = k and ker(R′) ⊆ ker(Q). This means that Q = SR′

for some S ∈ gln. Since both R′ and any matrix similar to P have rank k, we see that
the matrix on the right must be of the form(

TR′ •
R′ •

)
for some T ∈ gln. Now note that the matrix(

In S − T
0 In

) (
TR′ •
R′ •

) (
In T − S
0 In

)
=

(
SR′ •
R′ •

)
=

(
Q •

R′ •

)
is similar to P and of the form we want. �

Proposition 2.3.7. Let P ∈ gl∞ be an element. Then either the orbit of P is dense in gl∞ or
k = rk(P − λI∞) < ∞ for some unique λ ∈ K. In the second case, the closure of the orbit of P
equals the irreducible closed subset {Q ∈ gl∞ | rk(Q − λI∞) ≤ k} of gl∞.

Proof. Let X be the closure of the orbit of P. Then either X = gl∞ or rk(P, I∞) = k for
some k ∈ Z≥0 by Lemma 2.3.5. In the second case, we see that rk(P − λI∞) = k for
some unique λ ∈ K by (1) of Proposition 2.3.1. Our goal is to prove that X = {Q ∈ gl∞ |
rk(Q − λI∞) ≤ k}. Using the GL∞-equivariant affine isomorphism

gl∞ → gl∞

Q 7→ Q − λI∞
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we may assume that λ = 0 and hence that k = rk(P) is finite. It suffices to prove that

prn({Q ∈ gl∞ | rk(Q) ≤ k}) = {Q ∈ gln | rk(Q) ≤ k} = prn(GL∞·P)

for all n� 0 since the middle set is irreducible. See Proposition 1.2.3. The inclusions

prn(GL∞·P) ⊆ prn({Q ∈ gl∞ | rk(Q) ≤ k}) ⊆ {Q ∈ gln | rk(Q) ≤ k}

are clear for all n ∈ N. Let n > k be an integer such that the rank of pr2n(P) equals k.
Then

{Q ∈ gln | rk(Q) ≤ k} ⊆ prn(GL2n·pr2n(P)) ⊆ prn(GL∞·P)

by Lemma 2.3.6. So indeed prn({Q ∈ gl∞ | rk(Q) ≤ k}) = prn(GL∞·P) for all n� 0. �

Lemma 2.3.8. Let m be a positive integer and suppose that I(Xm) contains a nonzero poly-
nomial f with deg( f ) < m. Let g(t) = f (tIm) ∈ K[t] be the restriction of f to span(Im). Then
X is contained in ⋃

λ

{
Q ∈ gl∞

∣∣∣ rk(Q − λI∞) < deg( f )
}

where λ ∈ K ranges over the zeros of g.

Proof. Let P be an element of X. Since f is nonzero, we know that X is a proper
GL∞-stable closed subset of gl∞. Hence the orbit of P cannot be dense in gl∞. So
k = rk(P − λI∞) < deg( f ) for some λ ∈ K by Lemma 2.3.5. This λ is unique and the
closure of the orbit of P equals {Q ∈ gl∞ | rk(Q − λI∞) ≤ k} by Proposition 2.3.7. So we
see that λI∞ is an element of X. So λIm is an element of Xm and hence g(λ) = f (λIm) = 0.
We see that for all P ∈ X there is a λ ∈ K with g(y) = 0 such that

P ∈
{
Q ∈ gl∞

∣∣∣ rk(Q − λI∞) < deg( f )
}
. �

Proposition 2.3.9. Either the GL∞-stable closed subset span(I∞) of gl∞ is contained in X or
there exist λ1, . . . , λ` ∈ K and k1, . . . , k` ∈ Z≥0 such that

X =
⋃̀
i=1

{Q ∈ gl∞ | rk(Q − λiI∞) ≤ ki}.

Proof. Assume that span(I∞) is not contained in X. Then, for some m ∈ N, Xm is a
proper subset of glm that does not contain span(Im). The ideal I(Xm) must contain a
nonzero polynomial f such that the polynomial g(t) = f (tIm) ∈ K[t] is nonzero. By
Lemma 2.3.8, we see that X is contained in⋃

λ

{
Q ∈ gl∞

∣∣∣ rk(Q − λI∞) < deg( f )
}

where λ ∈ K ranges over the finitely many zeros of g. Take

Λ =
{
λ ∈ K

∣∣∣ g(λ) = 0,∃P ∈ X : rk(P − λI∞) < deg( f )
}

and take
kλ = max{rk(P − λI∞) | P ∈ X, rk(P − λI∞) < ∞}

for all λ ∈ Λ. Then we see that

X =
⋃
λ∈Λ

{Q ∈ gl∞ | rk(Q − λI∞) ≤ kλ}

using Proposition 2.3.7. �
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The proposition implies in particular that any descending chain of GL∞-stable closed
subsets of gl∞ stabilizes as long as one of these subsets does not contain span(I∞). Next
we will classify the subsets that do contain span(I∞).

Proposition 2.3.10. Let k be a nonnegative integer. Then the GL∞-stable subset

{P ∈ gl∞ | rk(P, I∞) ≤ k}

of gl∞ is closed and irreducible.

Proof. Using (1) of Proposition 2.3.1, we see that

{P ∈ gl∞ | rk(P, I∞) ≤ k}

is the inverse limit of its projections {P ∈ gln | rk(P, In) ≤ k} onto gln. So it suffices to
show that this is a closed irreducible subset of gln for all n ∈ N. See Proposition 1.2.3.
The subset {P ∈ gln | rk(P, In) ≤ k} is the inverse image of the subset

Y =
{
(P,Q) ∈ gl2n

∣∣∣ rk(P,Q) ≤ k
}

under the map gln → gl
2
n,P 7→ (P, In). The subset Y is closed in gl2n since it is the image

of the closed subset{
((µ1 : µ2),P,Q) ∈ P1

× gl2n

∣∣∣ rk(µ1P + µ2Q) ≤ k
}

under the projection map along the complete variety P1. So {P ∈ gln | rk(P, In) ≤ k} is a
closed subset of gln. This subset is also the image of the map

{Q ∈ gln | rk(Q) ≤ k} × K → gln

(Q, λ) 7→ Q + λIn

and hence irreducible. �

Proposition 2.3.11. Suppose that X contains span(I∞). Then

X = {P ∈ gl∞ | rk(P, I∞) ≤ k} ∪ Y

for some nonnegative integer k and some GL∞-stable closed subset Y of gl∞ that does not
contain span(I∞).

Proof. Since X is a proper subset of gl∞, we know that

X ⊆ {P ∈ gl∞ | rk(P, I∞) ≤ `}

for some ` ∈ Z≥0 by Lemma 2.3.5. Let k be the maximal nonnegative integer such that

{P ∈ gl∞ | rk(P, I∞) ≤ k} ⊆ X.

We will prove the statement by induction on the difference between ` and k.

Suppose that ` = k. Then X = {P ∈ gl∞ | rk(P, I∞) ≤ k} and the statement holds. Now
suppose that ` > k and let Y′ be a GL∞-stable closed subset of gl∞ that does not contain
span(I∞) such that

X ∩ {P ∈ gl∞ | rk(P, I∞) ≤ ` − 1} = {P ∈ gl∞ | rk(P, I∞) ≤ k} ∪ Y′.
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Consider the set Z = {λ ∈ K | ∃P ∈ X : rk(P − λI∞) = `} and fix an element Q ∈ gl∞
with rk(Q) = `. By Proposition 2.3.7, we know for λ ∈ K that Q + λI∞ ∈ X if and only
if λ ∈ Z. This shows that Z is a closed subset of K. So either Z = K or Z is finite. If
Z = K, then we see that X contains all P ∈ gl∞ with rk(P, I∞) ≤ ` by Proposition 2.3.7.
Since ` > k, this is not true and hence Z is finite. Take

Y = Y′ ∪
⋃
λ∈Z

{P ∈ gl∞ | rk(P − λI∞) ≤ `}.

Then we see that X = {P ∈ gl∞ | rk(P, I∞) ≤ k} ∪ Y. �

Proof of Theorem 2.1.4 in case (1). Let S be the set of pairs (k, f ) where k ∈ Z≥−1 and
where f : K → Z≥k is a function such that f−1(Z>k) is finite. Define a partial ordering
on S by (k, f ) ≤ (`, g) when k ≤ ` and f (λ) ≤ g(λ) for all λ ∈ K. Then for all (k, f ) ∈ S,
the set {(k, g) ∈ S | (k, g) ≤ (k, f )} is finite. So any descending chain in S stabilizes. For
a proper GL∞-stable closed subset X of gl∞, let kX be the maximal integer such that
{P ∈ gl∞ | rk(P, I∞) ≤ kX} ⊆ X and let fX : K→ Z≥k be the function sending λ ∈ K to the
maximal k such that {P ∈ gl∞ | rk(P − λI∞) ≤ k} ⊆ X. Then, by Propositions 2.3.9 and
2.3.11, we see that

X = {P ∈ gl∞ | rk(P, I∞) ≤ kX} ∪
⋃

λ∈ f−1
X (Z>kX )

{
P ∈ gl∞

∣∣∣ rk(P − λI∞) ≤ fX(λ)
}

and that the map X 7→ (kX, fX) is an order preserving bijection between the set of
proper GL∞-stable closed subsets of gl∞ and S. Now consider a descending chain

X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

of GL∞-stable closed subsets of gl∞. We get a descending chain

(kX1 , fX1) ≥ (kX2 , fX2) ≥ (kX3 , fX3) ≥ (kX4 , fX4) ≥ . . .

in S which must stabilize. Therefore the original chain also stabilizes. Hence gl∞ is
GL∞-Noetherian. The irreducible GL∞-stable closed subsets of gl∞ are as described in
the theorem by Propositions 2.3.7, 2.3.9, 2.3.10 and 2.3.11. �

2.3.2 The proof of the other cases

Now, we turn our attention to cases (2)-(4) of Theorem 2.1.4. We start by proving some
statements that are useful in multiple cases.

Lemma 2.3.12. Let k,n be positive integers with k ≤ n and let P ∈ gln be a matrix. Then
rk(P) < k if and only if det(Q[k],[k]) = 0 for all Q ∼ P.

Proof. If rk(P) < k, then det(Q[k],[k]) = 0 for all Q ∼ P. Suppose that det(Q[k],[k]) = 0 for
all Q ∼ P. Note that rk(P) < k if and only if det(PK,L) = 0 for all subsets K,L ⊂ [n]
of size k. One can prove this using reverse induction of the size of K ∩L. If K = L,
then PK,L = Q[k],[k] for some matrix Q ∼ P obtained from P by conjugating with a
permutation matrix. So det(PK,L) = 0. For |K ∩L| < k, we take i ∈ K \L, j ∈ L \K
and K′ = { j} ∪K \ {i} and note that, since |K′ ∩L| > |K ∩L|,

det(PK,L) = ±det(PK′,L) ± det(QK′,L) = 0

where Q ∼ P is the matrix obtained from P by adding row i to row j and substracting
column j from column i. �
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Lemma 2.3.13. Let k, `,n ∈N be integers with n ≥ 6k and ` ≥ 2.

(1) Let P1, . . . ,P` ∈ gln be matrices of rank k. Then there exist Q1 ∼ P1, . . . ,Q` ∼ P` such
that k < rk(Q1 + · · · + Q`) ≤ 3k.

(2) Let P1, . . . ,P` ∈ gln be matrices with rk(P1, In) = · · · = rk(P`, In) = k. Then there exist
Q1 ∼ P1, . . . ,Q` ∼ P` such that k < rk(Q1 + · · · + Q`, In) ≤ 3k.

Proof. Let P,P′ ∈ gln be matrices such that rk(P), rk(P′) ≤ n/2. We start with three
claims.

(i) For all Q ∼ P and Q′ ∼ P′, we have rk(Q + Q′) ≥ | rk(P) − rk(P′)|.

(ii) There exist Q ∼ P and Q′ ∼ P′ with rk(Q + Q′) = rk(P) + rk(P′).

(iii) There exist Q ∼ P and Q′ ∼ P′ with rk(Q + Q′) ≤ max(rk(P), rk(P′)).

Claim (i) is obvious. For (ii) and (iii), take m = max(rk(P), rk(P′)) and note that

P ∼
(
TR TRS
R RS

)
∼

(
Im −S

In−m

)−1 (
TR TRS
R RS

) (
Im −S

In−m

)
=

(
(S + T)R 0

R 0

)
for some matrices R,S,T with R an (n−m)×m matrix of rank rk(P) by Proposition 2.3.2,
because otherwise rk(P, In) < rk(P) would hold. Similarly, we have

P′ ∼
(
• 0
R′ 0

)
∼

(
• R′′

0 0

)
for some (n−m)×m matrix R′ and m× (n−m) matrix R′′ that both have the same rank
as P′. Now (ii) follows from the fact that(

• 0
R 0

)
+

(
• R′′

0 0

)
has rank rk(P) + rk(P′) and (iii) follows from the fact that(

• 0
R 0

)
+

(
• 0
R′ 0

)
has rank at most m.

Let P1, . . . ,P` ∈ gln be matrices of rank k. To show (1), we use induction on `. For ` = 2,
we see that (1) follows from (ii). Now suppose that ` > 2 and that

k < rk(Q1 + · · · + Q`−1) ≤ 3k

for some Q1 ∼ P1, . . . ,Q`−1 ∼ P`−1. Using (ii) if rk(Q1 + · · · + Q`−1) ≤ 2k and using (i)
and (iii) otherwise, we see that

k < rk
(
g(Q1 + · · · + Q`−1)g−1 + Q`

)
) ≤ 3k

for some g ∈ GLn and Q` ∼ P`. Since gQ1g−1
∼ P1, . . . , gQ`−1g−1

∼ P`−1 and Q` ∼ P`
this proves (1).
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Next, let P1, . . . ,P` ∈ gln be matrices with rk(P1, In) = · · · = rk(P`, In) = k and let
λ1, . . . , λ` ∈ K be such that rk(P1 − λ1In) = · · · = rk(P` − λ`In) = k. Then (1) tells us that
there exist Q′1 ∼ P1 −λ1In, . . . ,Q′` ∼ P` −λ`In such that k < rk(Q′1 + · · ·+ Q′`) ≤ 3k. From
this follows that

k < rk(Q1 + · · · + Q`, In) ≤ 3k

for Q1 = Q′1 + λ1In ∼ P1, . . . ,Q` = Q′` + λ`In ∼ P`. This shows (2). �

Let X be a G-stable closed subset of V and let Xi be the closure of the projection of X
to glni .

Lemma 2.3.14. Suppose that li + ri ≥ 2 for all i ∈ N. If there exists a k ∈ Z≥0 such that Xi
only contains elements P with rk(P, Ini) ≤ k for all i� 0, then X ⊆ {0}.

Proof. The lemma follows by induction on k from the following statement.

(*) Let k, i ∈ N be integers such that ni ≥ 6k. If Xi+1 contains an element P with
rk(P, Ini+1) = k, then Xi contains an element Q with rk(Q, Ini) > k.

Let k, i ∈ N be integers such that ni ≥ 6k and let P be an element of Xi+1 with
rk(P, Ini+1) = k. By Lemma 2.3.12, we have

gPg−1 =



P11 . . . P1li • . . . • •

...
...

...
...

...
Pli1 . . . Plili • . . . • •

• . . . • Q11 . . . Q1ri •

...
...

...
...

...
• . . . • Qri1 . . . Qriri •

• . . . • • . . . • •


+ λIni+1

for some g ∈ GLni+1 , λ ∈ K and P11, . . . ,Pli,li ,Q11, . . . ,Qriri ∈ glni with rk(P11) = k. Since
this is an open condition on g, the matrix gPg−1 is in fact of this form for sufficiently
general g ∈ GLni+1 . This allows us to assume that rk(P j j) = k for all j ∈ [li] and
rk(−QT

``) = rk(Q``) = k for all ` ∈ [ri]. Lemma 2.3.13 now tell us that by replacing g by
Diag(g1, . . . , gli+ri , Izi)g for some g1, . . . , gli+ri ∈ GLni , we may also assume that

Q =

li∑
j=1

P j j −

ri∑
`=1

QT
`` + λ(li − ri)Ini ∈ Xi

satisfies k < rk
(
Q, Ini

)
and this proves (*). �

Note that if zi = 0 and in addition char(K) = 2 or ri = 0, then the map

glni+1 � glni

P11 . . . P1li • . . . •

...
...

...
...

Pli1 . . . Plili • . . . •

• . . . • Q11 . . . Q1ri
...

...
...

...
• . . . • Qri1 . . . Qriri


7→

li∑
k=1

Pkk −

ri∑
`=1

QT
``

commutes with taking the trace.
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Definition 2.3.15. When zi = 0 for all i� 0 and in addition char(K) = 2 or ri = 0 for all
i� 0, define the trace of an element (Pi)i ∈ V to be the µ ∈ K such that tr(Pi) = µ for all
i� 0. Otherwise, define the trace of any element of V to be zero.

Note that in all cases the trace of an element of V is G-invariant. For µ ∈ K, denote
the G-stable closed subset {P ∈ V | tr(P) = µ} of V by Yµ. Denote the closure of the
projection of Yµ to glni by Yµ,i.

Theorem 2.3.16. Assume that li+ri ≥ 2 for all i ∈N and that X ( Yµ for someµ ∈ K. Suppose
that for all i ∈N such thatI(Yµ,i) ( I(Xi) and for all nonzero polynomials f ∈ I(Xi)\I(Yµ,i)
of minimal degree, the span of the GLni+1-orbit of the polynomial

f (P11 + · · · + Plili −QT
11 − · · · −QT

riri
) ∈ I(Xi+1)

contains a nonzero off-diagonal polynomial. Then either X = ∅ or X = {0}.

Proof. Since X is strictly contained in Yµ, there exists an integer j ≥ 2 such that
I(Yµ, j) ( I(X j). Note that I(Yµ,i) ( I(Xi) for all integers i ≥ j. For all i ≥ j, let
fi ∈ I(Xi) \ I(Yµ,i) be an element of minimal degree di. Then di ≤ d j for all i ≥ j and by
choosing j large enough we may assume that d j ≤ n j.

For i ≥ j, let gi ∈ I(Xi+1) be a nonzero off-diagonal polynomial contained in the span
of the GLni+1-orbit of fi(P11 + · · · + Plili −QT

11 − · · · −QT
riri

). Then we have deg(g) ≤ di ≤

d j ≤ n j ≤ ni+1/2 since ni+1 = (li + ri)ni + zi ≥ 2ni. So by Lemmas 2.3.4 and 2.3.14, we see
that X ⊆ {0}. �

Corollary 2.3.17. Assume that li + ri ≥ 2 for all i ∈ N. Suppose that for all µ ∈ K, for
all G-stable closed subsets X ( Yµ, for all i ∈ N such that I(Yµ,i) ( I(Xi) and for all
nonzero polynomials f ∈ I(Xi) \ I(Yµ,i) of minimal degree, the span of the GLni+1-orbit of the
polynomial

f (P11 + · · · + Plili −QT
11 − · · · −QT

riri
) ∈ I(Xi+1)

contains a nonzero off-diagonal polynomial. Then the irreducible G-stable closed subsets of V
are the nonempty subsets among {0}, V and {P ∈ V | tr(P) = µ} for µ ∈ K and every G-stable
closed subset of V is a finite union of irreducible G-stable closed subsets.

Proof. Using Proposition 1.2.3, it is easy to check that the mentioned subsets are either
irreducible or empty. If the trace map on V is zero, this corollary is just Theorem 2.3.16
applied with µ = 0. Assume the trace map is nonzero. Then the linear map

ϕ : K → V
µ 7→ ((µ + 1)E11 − E22)i

has the property that tr(ϕ(µ)) = µ for all µ ∈ K. Let X be a G-stable closed subset of V.
Then

ϕ−1(X) =
{
µ ∈ K

∣∣∣ Yµ ⊆ X
}

is a closed subset of K. So either ϕ−1(X) is finite or ϕ−1(X) = K. By Theorem 2.3.16,
the intersection of X with Y0 is either ∅, {0} or Y0 and the intersection of X with Yµ for
µ ∈ K \ {0} is either ∅ or Yµ. So either

X = {0} ∪
⋃

µ∈ϕ−1(X)\{0}

Yµ or X =
⋃

µ∈ϕ−1(X)

Yµ

when ϕ−1(X) is finite and X = V when ϕ−1(X) = K. �
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What remains is to reduce the cases (2)-(4) of Theorem 2.1.4 to sequences

GLn1 GLn2 GLn3 . . .
ι1 ι2 ι3

where the conditions of the corollary are satisfied.

Case (2): α + β = γ = ∞

Since γ = ∞, we do not have zi = 0 for all i � 0. So we get Y0 = V and Yµ = ∅
for all µ ∈ K \ {0}. By restricting to an infinite subsequence we may assume that
li + ri ≥ 2 and zi ≥ ni for all i ∈ N. Let i ∈ N be such that I(Xi) , 0 and let f ∈ I(Xi)
be a nonzero polynomial of minimal degree. Take l = li, r = ri, z = zi, m = ni and
n = ni+1 = (l + r)m + z. To prove that the conditions of Corollary 2.3.17 are satisfied,
we need to check the following condition:

(*) The span of the GLn-orbit of the polynomial

g := f (P11 + · · · + Pll −QT
11 − · · · −QT

rr)

contains a nonzero off-diagonal polynomial.

Consider the matrix

H =



P11 . . . P1l • . . . • •

...
...

...
...

...
Pl1 . . . Pll • . . . • •

• . . . • Q11 . . . Q1r •
...

...
...

...
...

• . . . • Qr1 . . . Qrr •

R1 . . . Rl • . . . • •

• . . . • • . . . • •


where Pk,`,Qk,`,Rk ∈ glm. For λ ∈ K, consider the matrix

A(λ) =



Im λIm
. . .

Im
Im

. . .
Im

Im
Iz−m


.

For all λ ∈ K, we have

A(λ)HA(λ)−1 =



P′11 . . . P′1l • . . . • •

...
...

...
...

...
P′l1 . . . P′ll • . . . • •

• . . . • Q11 . . . Q1r •
...

...
...

...
...

• . . . • Qr1 . . . Qrr •

• . . . • • . . . • •
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where P′11 = P11 + λR1 and P′j j = P j j for all j ∈ {2, . . . , l}. This means that if we let A(λ)

act on g, we obtain the polynomial h(λ) = f (P11 + · · ·+ Pll −QT
11 − · · · −QT

rr +λR1). Let d
be the degree of f and let fd = fd(P) be the homogeneous part of f of degree d. Then
fd(R1) is a nonzero off-diagonal polynomial on gln since m ≤ n/2. Since fd(R1) is the
coefficient of h(λ) at λd, it is contained in the span of the h(λ). So (*) holds. So we can
apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (2).

Case (3a): β = ∞, γ < ∞ and char(K) , 2

We do not have char(K) = 2 or ri = 0 for all i � 0. So we again get Y0 = V and Yµ = ∅
for all µ ∈ K \ {0}. By restricting to an infinite subsequence we may assume that ri > 0
and zi = 0 for all i ∈N. Let i ∈N be such that I(Xi) , 0 and let f ∈ I(Xi) be a nonzero
polynomial of minimal degree. Take l = li, r = ri, m = ni and n = ni+1 = (l + r)m.
To prove that the conditions of Corollary 2.3.17 are satisfied, we need to check the
following condition:

(*) The span of the GLn-orbit of the polynomial

g := f (P11 + · · · + Pll −QT
11 − · · · −QT

rr)

contains a nonzero off-diagonal polynomial.

Consider the matrix

H =



P11 . . . P1l • . . . •

...
...

...
...

Pl1 . . . Pll • . . . •

R11 . . . R1l Q11 . . . Q1r
...

...
...

...
Rr1 . . . Rrl Qr1 . . . Qrr


where Pk,`,Qk,`,Rk ∈ glm. Also consider the matrix

A(Λ) =



Im Λ
. . .

Im
Im

. . .
Im


for Λ ∈ glm. For all Λ ∈ glm, we have

A(Λ)HA(Λ)−1 =



P′11 . . . P′1l • . . . •

...
...

...
...

P′l1 . . . P′ll • . . . •

• . . . • Q′11 . . . Q′1r
...

...
...

...
• . . . • Q′r1 . . . Q′rr
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where

P′11 = P11 + ΛR11

P′j j = P j j for j ∈ {2, . . . , l}

Q′11 = Q11 − R11Λ

Q′j j = Q`` for ` ∈ {2, . . . , r}.

This means that if we let A(Λ) act on the polynomial g, we obtain the polynomial
h(Λ) = f (P11 + · · · + Pll − QT

11 − · · · − QT
rr + ΛR11 + ΛTRT

11). Let d be the degree of f
and let fd = fd(P) be the homogeneous part of f of degree d. Then we see that the
homogeneous part of h(Λ) of degree d in the coordinates of Λ equals fd(ΛR11 + ΛTRT

11).
Since the polynomial f is nonzero, so is fd. Using char(K) , 2, we have

gln = {PQ + PTQT
| P,Q ∈ gln}

since every matrix is a product of two symmetric matrices by [33, (ii)]. So we see
that the polynomial fd(ΛR11 + ΛTRT

11) is nonzero. Now view fd(ΛR11 + ΛTRT
11) as a

polynomial in Λ whose coefficients are polynomials in the entries of R11. Any of its
nonzero coefficients is a nonzero off-diagonal polynomial on gln which is contained in
the span of the orbit of g. Here we use that m ≤ n/2 since r > 0. So (*) holds. So we
can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (3a).

Case (3b): β = ∞, γ < ∞ and char(K) = 2

Note that in this case the trace map on V is nonzero. By restricting to an infinite
subsequence we may assume that ri > 0 and zi = 0 for all i ∈ N. Let µ ∈ K, suppose
that X ( Yµ and let i ∈ N be such that I(Yµ,i) ( I(Xi). Let f ∈ I(Xi) \ I(Yµ,i) be a
polynomial of minimal degree. Take l = li, r = ri, m = ni and n = ni+1 = (l + r)n.
To prove that the conditions of Corollary 2.3.17 are satisfied, we need to check the
following condition:

(*) The span of the GLn-orbit of the polynomial

g := f (P11 + · · · + Pll −QT
11 − · · · −QT

rr)

contains a nonzero off-diagonal polynomial.

As in case (3a), we find that all coefficients of fd(ΛR11 +ΛTRT
11) are off-diagonal polyno-

mials on gln which are contained in the span of the orbit of g. So it suffices to prove that
fd(ΛR11 + ΛTRT

11) is not the zero polynomial. To do this, we will use reduction rules
for graphs. See for example [12] for more on this. Let Γ be an undirected multigraph.
Denote its vertex and edge sets by V(Γ) and E(Γ).

Definition 2.3.18. We consider the following three reduction rules:

(1) Remove an edge from Γ.

(2) Remove a vertex of Γ that has at least one loop.

(3) Pick a vertex v of Γ that has at least one loop. Replace an edge of Γ with endpoints
v , w by a loop at w.
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We say that Γ reduces to a multigraph Γ′ if Γ′ can be obtained from Γ by applying a
series of reductions.

Lemma 2.3.19. If Γ reduces to the empty graph, then the linear map

`Γ : KE(Γ)
→ KV(Γ)

(xe)e 7→

∑
e3v

xe


v

is surjective. Here entries corresponding to loops are only added once.

Proof. If Γ is the empty graph, then `Γ is surjective. So it suffices to check that `Γ is
surjective whenever we have a reduction Γ′ of Γ such that the similarly defined map
`Γ′ is surjective. When Γ′ is obtained from Γ by applying reduction rule (1), this is easy.
The other cases follow from the fact that xe only appears in coordinate v when e is a
loop with endpoint v. �

Lemma 2.3.20. If char(K) = 2, then {PQ + PTQT
| P,Q ∈ gln} is dense in sln for all n ∈N.

Proof. Suppose that char(K) = 2 and let n ∈ N be an integer. Then PQ + PTQT
∈ sln

for all P,Q ∈ gln. Note that {PQ + PTQT
| P,Q ∈ gln} is dense in sln if and only if the

morphism

ϕ : gln × gln → gln / span(En,n)
(P,Q) 7→ PQ + PTQT mod En,n

is dominant. To show that ϕ is dominant, it suffices to show that its derivative

d(R,S)ϕ : gln ⊕ gln → gln / span(En,n)

(P,Q) 7→ PS + PTST + RQ + RTQT mod En,n

at the point

(R,S) =




0 1

. . .
. . .
. . . 1

0

 ,


1
. . .

. . .

. . .

1




is surjective. Note that

(d(R,S)ϕ)(Ei, j, 0) = Ei,n+1− j + E j,n+1−i

(d(R,S)ϕ)(0,Ek,`) = (1 − δk1)Ek−1,` + (1 − δ`n)E`+1,k

and hence (d(R,S)ϕ)(0,E1,n) = 0 and (d(R,S)ϕ)(Ei,i, 0) = 0 for all i ∈ [n], because char(K) =
2. The other basis elements of gln ⊕ gln all get sent to a sum of one or two basis elements
of gln / span(En,n). To prove that d(R,S)ϕ is surjective, it suffices by the previous lemma
to prove that the restriction of d(R,S)ϕ to the span of these other basis vectors equals `Γ
for some multigraph Γ that reduces to the empty graph.

Define the multigraph Γ as follows: We let V(Γ) be the basis {Ei, j | (i, j) , (n,n)} of
gln / span(En,n) and we let E(Γ) be the set

{(Ei, j, 0) | i , j} ∪ {(0,Ek,`) | k, ` ∈ [n]} \ {(0,E1,n)}
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of basis elements of gln ⊕ gln that are not mapped to 0. This allows us to define the set
of endpoints of an edge in such a way that (d(R,S)ϕ)|span(E(Γ)) = `Γ. Next we check that
Γ reduces to the empty graph. One can check that Γ has two loops at E1,1, a loop at Ek,1
for all k > 1 and a loop at E`,n for all ` < n. We also have:

(x) edges with endpoints Ei, j and E j+1,i+1 for all i, j ∈ [n − 1];

(y) edges with endpoints Ek,1 and En,n+1−k for all 1 < k < n; and

(z) edges with endpoints E`,n and E1,n+1−` for 1 < ` < n.

First, we remove all other edges from Γ using reduction rule (1). Next, we replace the
edges (y) and (z) by loops at En,k for 1 < k < n and E1,` for 1 < ` < n using reduction
rule (3). The graph Γ′ obtained this way has the edges (x) together with loops at E1,1
and E1,i,En,i,Ei,1,Ei,n for 1 < i < n. Now consider the connected components of Γ′. One
connected component consists of a path from E1,1 to En,n with a loop at E1,1. All other
components are paths with loops at both ends starting at a vertex of the form E1,i or
Ei,1 and ending at a vertex of the form En,i or Ei,n. Each of these components reduces
to the empty graph by repeatedly using reduction rules (2) and (3). Therefore Γ′ and
Γ also reduce to the empty graph. Hence d(R,S)ϕ is surjective and ϕ is dominant. �

Suppose that the polynomial fd(ΛR11 + ΛTRT
11) is the zero polynomial. Then fd(P) = 0

for all P ∈ slm by Lemma 2.3.20. So fd is a multiple of the trace function on glm and we
can write fd = tr ·h for some h. But then f − (tr−µ)h ∈ I(Xi) \ I(Yµ,i). This contradicts
the minimality of the degree of f . So fd(ΛR11 + ΛTRT

11) cannot be the zero polynomial.
So (*) again holds. So we can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in
case (3b).

Case (4): β + γ < ∞

Note that in this case the trace map on V is nonzero. By restricting to an infinite
subsequence we may assume that li > 2 and ri = zi = 0 for all i ∈ N. Let i ∈ N be
such that I(Xi) , 0 and let f ∈ I(Xi) be a nonzero polynomial of minimal degree.
Take l = li, m = ni and n = ni+1 = lm. Then m ≤ n/2. To prove that the conditions of
Corollary 2.3.17 are satisfied, we need to check the following condition:

(*) The span of the GLn-orbit of the polynomial

g := f (P11 + · · · + Pll)

contains a nonzero off-diagonal polynomial.

Consider the matrix

H =


P11 . . . P1l
...

...
Pl1 . . . Pll


where Pk,` ∈ glm. Also consider the matrix

A(Λ) =


Im Λ

Im
Im

. . .
Im
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for Λ ∈ glm. For all Λ ∈ glm, we have

A(Λ)HA(Λ)−1 =


P′11 . . . P′1l
...

...
P′l1 . . . P′ll


where P′11 = P11 + ΛP21, P′22 = P22 − P21Λ and P′j j = P j j for j ∈ {3, . . . , l}. This means
that if we let A(Λ) act on g, we obtain the polynomial h(Λ) = f (P11 + · · ·+ Pll + [Λ,P21])
where [−,−] is the commutator bracket. Let d be the degree of f and let fd = fd(P)
be the homogeneous part of f of degree d. Then we see that the homogeneous part
of h(Λ) of degree d in the coordinates of Λ equals fd([Λ,P21]). Since f is nonzero, so
is fd. By [30, Theorem 6.3], we know that every element of slm is of the form [X,Y]
for some X,Y ∈ glm. So like the previous case, we see that fd([Λ,P21]) is not the zero
polynomial. Any nonzero coefficient of fd([Λ,P21]) as a polynomial in Λ satisfies (*).
So we can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (4).

2.4 Limits of classical groups of type A

In this section, we let H be the direct limit of a sequence

SLn1 SLn2 SLn3 . . .
ι1 ι2 ι3

of diagonal embeddings given by

ιi : SLni ↪→ SLni+1

A 7→ Diag(A, . . . ,A︸   ︷︷   ︸
li

,A−T, . . . ,A−T︸          ︷︷          ︸
ri

, Izi)

for some li ∈ N and ri, zi ∈ Z≥0 with li ≥ ri. We let W be the inverse limit of the
sequence

gln1 / span(In1) gln2 / span(In2) gln3 / span(In3) . . .

where the maps are given by

glni+1 / span(Ini+1) � glni / span(Ini)

P11 . . . P1li • . . . • •

...
...

...
...

...
Pli1 . . . Plili • . . . • •

• . . . • Q11 . . . Q1ri •

...
...

...
...

...
• . . . • Qri1 . . . Qriri •

• . . . • • . . . • •


mod Ini+1 7→

li∑
k=1

Pkk −

ri∑
`=1

QT
`` mod Ini .

Again take α = #{i | li > 1}, β = #{i | ri > 0}, γ = #{i | zi > 0} ∈ Z≥0 ∪{∞}. Then we
have α+ β+ γ = ∞, since H is assumed to be infinite-dimensional. Based on α, β, γwe
distinguish the following cases:
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(1) α + β < ∞;

(2) α + β = γ = ∞;

(3a) β = ∞, γ < ∞ and char(K) , 2 or 2 - ni for all i� 0;

(3b) β = ∞, γ < ∞, char(K) = 2 and 2 | ni for all i� 0;

(4a) β + γ < ∞ and char(K) - ni for all i� 0; and

(4b) β + γ < ∞ and char(K) | ni for all i� 0.

Theorem 2.1.4 has to following corollary.

Corollary 2.4.1. The space W is H-Noetherian. Any H-stable closed subset of W is a finite
union of irreducible H-stable closed subsets. The irreducible H-stable closed subsets of W are
{(0 mod Ini)i} and W together with{

(Pi mod Ini)i ∈W
∣∣∣ ∀i� 0: rk(Pi, Ini) ≤ k

}
for k ∈N in case (1) and together with{

(Pi mod Ini)i ∈W
∣∣∣ ∀i� 0: tr(Pi) = µ

}
for µ ∈ K in cases (3b) and (4b).

Proof. Let the tuples (li, ri, zi) from this section and the previous section be the same.
Then H is a subgroup of G and the linear map

π : V → W
(Pi)i 7→ (Pi mod Ini)i

is both H-equivariant and surjective. Furthermore, the orbits in V of H and G are the
same. So the H-stable closed subsets of W are precisely the images of G-stable closed
subsets X of V such that X + ker(π) = X. This yields the corollary for the cases (1), (2),
(3a) and (3b). For the cases (4a) and (4b), we note that{

(Pi)i ∈ V | ∀i� 0: tr(Pi) = µ
}
+ ker(π) =

{
(Pi)i ∈ V | ∀i� 0: tr(Pi) = µ

}
if and only if tr(Ini) = ni is zero modulo char(K) for all i� 0. Here we use that (n−1

i Ini)i≥ j
is an element of ker(π) with trace 1 when char(K) - ni for all i ≥ j. �

2.5 Limits of classical groups of type C

For the remainder of this chapter, we assume that char(K) , 2. In this section, we let
G be the direct limit of a sequence

Sp2n1
Sp2n2

Sp2n3
. . .

ι1 ι2 ι3

of diagonal embeddings given by

ιi : Sp2ni
↪→ Sp2ni+1(

A B
C D

)
7→

(
Diag(A, . . . ,A, Izi) Diag(B, . . . ,B, 0)
Diag(C, . . . ,C, 0) Diag(D, . . . ,D, Izi)

)
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with li blocks A,B,C,D ∈ glni for some li ∈ N and zi ∈ Z≥0. We let V be the inverse
limit of the sequence

sp2n1 sp2n2 sp2n3 . . .

where the maps are given by

sp2ni+1 � sp2ni

P11 . . . P1li • Q11 . . . Q1li •
...

...
...

...
...

...

Pli1 . . . Plili
... Qli1 . . . Qlili

...
• . . . . . . • • . . . . . . •

R11 . . . R1li • S11 . . . S1li •
...

...
...

...
...

...

Rli1 . . . Rlili
... Sli1 . . . Slili

...
• . . . . . . • • . . . . . . •


7→

∑li
k=1 Pkk

∑li
k=1 Qkk∑li

k=1 Rkk
∑li

k=1 Skk



with Pk` = −ST
`k,Qk`,Rk` ∈ glni such that Qk` = QT

`k and Rk` = RT
`k.

Theorem 2.5.1. The space V is G-Noetherian.

Let X ( V be a G-stable closed subset. Let Xi be the closure of the projection of X to
sp2ni and let I(Xi) ⊆ K[sp2ni] be the ideal of Xi. If #{i | li > 1} < ∞, then Theorem 2.5.1
follows from [20, Theorem 1.2].

Remark 2.5.2. Let X ( V be a G-stable closed subset in the case where #{i | li > 1} < ∞.
Then V can be identified with a subspace of the space of N×N matrices and we
can prove (using technique similar to the ones used in this paper) that X consists of
matrices of bounded rank. The G-Noetherianity of V then follows from the Sym(N)-
Noetherianity of KN×k for k ∈ N. Important to note here is that, for every n ∈ N,
the group Sp2n contains all matrices corresponding to permutations π ∈ S2n such that
π(i + n) = π(i) + n for all i ∈ [n]. This allows us to define an action of Sym(N) on V, up
to which the closed subset X is Noetherian. Similar statements hold for sequences of
types B and D. ♠

We assume that #{i | li > 1} = ∞. By restricting to an infinite subsequence, we may
assume that li ≥ 3 for all i ∈N.

Lemma 2.5.3. Let n ∈N, let Y ( sp2n be an Sp2n-stable closed subset and let Z be the closed
subset {(

P Q
R −PT

)
∈ sp2n

∣∣∣∣∣∣ P = PT
}

of sp2n. Then there is a nonzero polynomial f ∈ I(Y) whose top-graded part is not contained
in the ideal of Z.

Proof. Since Y ( sp2n, there is a nonzero polynomial f ∈ I(Y). Since f is nonzero, so
is its top-graded part g. Let the group GLn act on sp2n via the diagonal embedding
GLn ↪→ Sp2n,A 7→ Diag(A,A−T). Then we get a action of GLn on K[sp2n]. Note that
this action respects the grading on K[sp2n] and that the ideal I(Y) is GLn-stable. So for
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all A ∈ GLn we have A · f ∈ I(Y) and the top-graded part of this polynomial is A · g.
Hence it suffices to prove that A · g < I(Z) for some A ∈ GLn. Note that

GLn ·Z =

{
A ·

(
P Q
R −PT

) ∣∣∣∣∣∣ P = PT,A ∈ GLn
Q = QT,R = RT

}
=

{(
APA−1 AQAT

A−TRA−1
−A−TPTAT

) ∣∣∣∣∣∣ P = PT,A ∈ GLn
Q = QT,R = RT

}
=

{(
APA−1 Q

R −(APA−1)T

) ∣∣∣∣∣∣ P = PT,A ∈ GLn
Q = QT,R = RT

}
and that {APA−1

| P = PT,A ∈ GLn} is dense in gln since K is infinite and diagonal
matrices are symmetric. So GLn ·Z is dense in sp2n. So since the polynomial g is
nonzero, there must be an A ∈ GLn such that A · g < I(Z). �

Lemma 2.5.4. Let i ∈ N and let f = f (P,Q,R) ∈ I(Xi) be a nonzero polynomial whose
top-graded part g is not contained in the ideal of{(

P Q
R −PT

)
∈ sp2ni

∣∣∣∣∣∣ P = PT
}
.

Then I(Xi+1) ∩ K[rk`|1 ≤ k, ` ≤ ni+1]/(rk` − r`k) contains a nonzero polynomial with degree
at most deg( f ).

Proof. Take m = ni, l = li, z = zi and n = ni+1 = lm + z. Consider the matrix

H =



P11 . . . P1l • Q11 . . . Q1l •
...

...
...

...
...

...

Pl1 . . . Pll
... Ql1 . . . Qll

...
• . . . . . . • • . . . . . . •

R11 . . . R1l • S11 . . . S1l •
...

...
...

...
...

...

Rl1 . . . Rll
... Sl1 . . . Sll

...
• . . . . . . • • . . . . . . •


∈ sp2n

and consider the matrix

A(λ) =



Im λIm
Im λIm

In−2m
Im

Im
In−2m


∈ Sp2n

for λ ∈ K. The polynomial f = f (P,Q,R) ∈ I(Xi) pulls back to the element

f

 l∑
k=1

Pkk,
l∑

k=1

Qkk,
l∑

k=1

Rkk
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of I(Xi+1). For λ ∈ K, we have

A(λ)HA(λ)−1 =



P′11 . . . P′1l • Q′11 . . . Q′1l •
...

...
...

...
...

...

P′l1 . . . P′ll
... Q′l1 . . . Q′ll

...
• . . . . . . • • . . . . . . •

R11 . . . R1l • S′11 . . . S′1l •
...

...
...

...
...

...

Rl1 . . . Rll
... S′l1 . . . S′ll

...
• . . . . . . • • . . . . . . •


where

P′11 = P11 + λR21

P′22 = P22 + λR12

P′kk = Pkk for k = 3, . . . , l

Q′11 = Q11 + λ(S21 − P12) − λ2R22

Q′22 = Q22 + λ(S12 − P21) − λ2R11

Q′kk = Qkk for k = 3, . . . , l

Let g be the top-graded part of f . Then we see that

g(R21 + R12,−(R11 + R22),
l∑

k=1

Rkk)

is contained in the span of

A(λ) · f

 l∑
k=1

Pkk,
l∑

k=1

Qkk,
l∑

k=1

Rkk


over all λ ∈ K. We have g(P,Q,R) , 0 for some symmetric matrices P,Q,R ∈ glm. Since
char(K) , 2, there are matrices R12,R21 such that R12 = RT

21 and R21 + R12 = P. And,
since l > 2, there are symmetric matrices R11, . . . ,Rll such that −(R11 + R22) = Q and∑l

k=1 Rkk = R. So we see that the polynomial

g

R21 + R12,−(R11 + R22),
l∑

k=1

Rkk

 ∈ I(Xi+1)

is nonzero. �

Since X ( V, we know that X j ( sp2n j for some j ∈ N. Using the previous lemma, we
see that there is a d ∈ Z≥0 such that I(Xi) ∩ K[rk`|1 ≤ k, ` ≤ ni]/(rk` − r`k) contains a
nonzero polynomial of degree at most d for all i > j.

Lemma 2.5.5. Let n ∈N, let Y ( sp2n be an Sp2n-stable closed subset, let

M =

(
M11 M12
M21 M22

)
∈ Y
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be an element and suppose that

I(Y) ∩ K[rk`|1 ≤ k, ` ≤ n]/(rk` − r`k)

contains a nonzero polynomial of degree m + 1. Then rk(M12), rk(M21) ≤ m. Furthermore, if
n > 6m, then rk(M11) = rk(M22) ≤ 3m/2 and rk(M) ≤ 5m.

Proof. Let GLn act on sp2n via the diagonal embedding

GLn ↪→ Sp2n

g 7→ Diag(g, g−T)

and on {R ∈ gln | R = RT
} by g · R = g−TRg−1. Then the projection map

π : sp2n → gln(
P Q
R S

)
7→ R

is GLn-equivariant. Let Z be the closure of π(Y) in {R ∈ gln | R = RT
}. Since Y is

GLn-stable, so are π(Y) and Z. Since char(K) , 2, the GLn-orbits of {R ∈ gln | R = RT
}

consist of all symmetric matrices of equal rank. So Z must consist of all symmetric
matrices of rank at most h for some h ≤ n. Since I(Z) contains a nonzero polynomial
of degree m + 1, we see that h ≤ m. See, for example, [31, §4]. So

Y ⊆
{(

P Q
R S

)
∈ sp2n

∣∣∣∣∣∣ rk(R) ≤ m
}
.

Let A ∈ gln be a symmetric matrix. Then we have(
0 In
−In A

)
∈ Sp2n

with inverse (
A −In
In 0

)
.

Let (
P Q
R S

)
be an element of Y. Then(

0 In
−In A

) (
P Q
R S

) (
0 In
−In A

)−1

=

(
• •

ARA + AS − PA −Q •

)
∈ Y.

So we get rk(ARA + AS − PA −Q) ≤ m for all symmetric matrices A ∈ gln. For A = 0,
this gives us rk(Q) ≤ m and so rk(M12) ≤ m in particular. For all A, we can write

PA + (PA)T = (ARA + AS − PA −Q) − ARA + Q

since S = −PT. We get

rk(PA + (PA)T) ≤ rk(ARA + AS − PA −Q) + rk(ARA) + rk(Q) ≤ 3m.
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Since we had no conditions on the element(
P Q
R S

)
∈ Y,

we also get rk(P′A + (P′A)T) ≤ 3m for all(
P′ •
• •

)
∈ GLn ·

(
P Q
R S

)
⊆ Y

and hence rk(P′A + (P′A)T) ≤ 3m for all P′ ∼ P. Now assume that n > 6m. Choose
A = Diag(I2m+1, 0) and write

P′ =

(
P′11 P′12
P′21 P′22

)
∼ P

with P′21 ∈ gl2m+1. Then

P′A + (P′A)T =


• • P′T21
•

P′21


and hence rk(P′21) ≤ 3m/2. By Proposition 2.3.2, we see that rk(P, In) ≤ 3m/2 and
hence rk(P + λIn) ≤ 3m/2 for some λ ∈ K. Next, choose A = In. Then we see that
rk(P + PT) ≤ 3m. So

rk(2λIn) ≤ rk(P + PT) + rk(P + λIn) + rk(PT + λIn) ≤ 6m < n

and hence λ = 0. So we in fact have rk(P) ≤ 3m/2. In particular, we see that rk(M11) =
rk(M22) ≤ 3m/2. Combining this with rk(M12), rk(M21) ≤ m, we get rk(M) ≤ 5m. �

Using Lemma 2.5.5, we see that there is an m ∈ Z≥0 such that

Xi ⊆

{(
P Q
R S

)
∈ sp2n

∣∣∣∣∣∣ rk(P) ≤ m
}

for all i � 0. As in the proof of Lemma 2.3.14, we see using Lemma 2.3.13 that this in
fact holds for m = 0.

Lemma 2.5.6. Let n ∈N and let Y ( sp2n be an Sp2n-stable closed subset of{(
0 Q
R 0

) ∣∣∣∣∣∣ Q ∈ gln,Q = QT

R ∈ gln,R = RT

}
.

Then Y ⊆ {0}.

Proof. Let (
0 Q
R 0

)
be an element of Y. Then(

0 In
−In In

) (
0 Q
R 0

) (
0 In
−In In

)−1

=

(
R •

• •

)
∈ Y

since Y is Sp2n-stable and therefore R = 0. By Lemma 2.5.5, we see that Q = 0. �

The lemma shows that X ⊆ {0}. So when #{i | li > 1} = ∞, the only G-stable closed
subsets of V are V, {0} and ∅. This proves in particular that V is G-Noetherian.
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2.6 Limits of classical groups of type D

Recall that we assume that char(K) , 2. In this section, we let G be the direct limit of a
sequence

O2n1 O2n2 O2n3 . . .
ι1 ι2 ι3

of diagonal embeddings given by

ιi : O2ni ↪→ O2ni+1(
A B
C D

)
7→

(
Diag(A, . . . ,A, Izi) Diag(B, . . . ,B, 0)
Diag(C, . . . ,C, 0) Diag(D, . . . ,D, Izi)

)
with li blocks A,B,C,D ∈ glni for some li ∈ N and zi ∈ Z≥0. We let V be the inverse
limit of the sequence

o2n1 o2n2 o2n3 . . .

where the maps are given by

o2ni+1 � o2ni

P11 . . . P1li • Q11 . . . Q1li •
...

...
...

...
...

...

Pli1 . . . Plili
... Qli1 . . . Qlili

...
• . . . . . . • • . . . . . . •

R11 . . . R1li • S11 . . . S1li •
...

...
...

...
...

...

Rli1 . . . Rlili
... Sli1 . . . Slili

...
• . . . . . . • • . . . . . . •


7→

∑li
k=1 Pkk

∑li
k=1 Qkk∑li

k=1 Rkk
∑li

k=1 Skk



with Pk` = −ST
`k,Qk`,Rk` ∈ glni such that Qk` + QT

`k = Rk` + RT
`k = 0.

Theorem 2.6.1. The space V is G-Noetherian.

This proof of this theorem will have the same structure as the proof of Theorem 2.5.1.
Let X ( V be a G-stable closed subset. Let Xi be the closure of the projection of X to
o2ni and let I(Xi) ⊆ K[o2ni] be the ideal of Xi. If #{i | li > 1} < ∞, then Theorem 2.6.1
follows from [20, Theorem 1.2]. So we assume that #{i | li > 1} = ∞. By restricting to
an infinite subsequence, we may assume that li ≥ 3 for all i ∈N.

Lemma 2.6.2. Let n ∈ N, let Y ( o2n be an O2n-stable closed subset and let Z be the closed
subset {(

P Q
R −PT

)
∈ sp2n

∣∣∣∣∣∣ P = PT
}

of o2n. Then there is a nonzero polynomial f ∈ I(Y) whose top-graded part is not contained in
the ideal of Z.

Proof. The proof is analogous to the proof of Lemma 2.5.3. �
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Lemma 2.6.3. Let i ∈ N and let f = f (P,Q,R) ∈ I(Xi) be a nonzero polynomial whose
top-graded part g is not contained in the ideal of{(

P Q
R −PT

)
∈ o2ni

∣∣∣∣∣∣ P = PT
}
.

Then I(Xi+1) ∩ K[rk`|1 ≤ k, ` ≤ ni+1]/(rk` + r`k) contains a nonzero polynomial with degree
at most deg( f ).

Proof. The proof is analogous to the proof of Lemma 2.5.4, replacing A(λ) by the matrix

Im λIm
Im −λIm

In−2m
Im

Im
In−2m


∈ O2n .

�

Since X ( V, we know that X j ( o2n j for some j ∈ N. Using the previous lemma, we
see that there is a d ∈ Z≥0 such that I(Xi) ∩ K[rk` | 1 ≤ k, ` ≤ ni]/(rk` + r`k) contains a
nonzero polynomial of degree at most d for all i > j.

Lemma 2.6.4. Let n ∈N, let Y ( o2n be an O2n-stable closed subset and suppose that

I(Y) ∩ K[rk`|1 ≤ k, ` ≤ n]/(rk` + r`k)

contains a nonzero polynomial of degree m + 1. Then

Y ⊆
{(

P Q
R S

)
∈ o2n

∣∣∣∣∣∣ rk(Q), rk(R) ≤ 2m
}
.

Furthermore, if n ≥ 20m + 2, then rk(M) ≤ 10m for all M ∈ Y.

Proof. Let Z be the closure of the subset{
R

∣∣∣∣∣∣
(
P Q
R S

)
∈ Y

}
of {R ∈ gln | R + RT = 0}. Let GLn act on o2n via the diagonal embedding

GLn ↪→ O2n

g 7→ Diag(g, g−T)

and on {R ∈ gln | R + RT = 0} by g · R = gRgT. Then we see that Y is GLn-stable and
therefore Z is also GLn-stable. So Z must consist of all skew-symmetric matrices of
rank at most h for some even h ≤ n. Since I(Z) contains a nonzero polynomial of
degree m + 1, we see that h ≤ 2m. See [1, §3]. So

Y ⊆
{(

P Q
R S

)
∈ o2n

∣∣∣∣∣∣ rk(R) ≤ 2m
}
.
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Let A ∈ gln be a skew-symmetric matrix and let(
P Q
R S

)
be an element of Y. Then we have (

0 In
In A

)
∈ O2n

and hence (
0 In
In A

) (
P Q
R S

) (
0 In
In A

)−1

=

(
• •

Q + AS − PA − ARA •

)
∈ Y.

So we get rk(Q + AS − PA − ARA) ≤ 2m. Choosing A = 0, we see that

Y ⊆
{(

P Q
R S

)
∈ o2n

∣∣∣∣∣∣ rk(Q) ≤ 2m
}
.

Assume that n ≥ 2(3m + 1). Since S = −PT and A = −AT, we get

rk(PA − (PA)T) ≤ rk(Q + AS − PA − ARA) + rk(ARA) + rk(Q) ≤ 6m.

Since Y is GLn-stable, we have rk(P′A − (P′A)T) ≤ 6m for all P′ ∼ P. Choose

A =


I3m+1

0
−I3m+1


and write

P′ =


P′11 P′12 P′13
P′21 P′22 P′23
P′31 P′32 P′33


with P′11,P

′

13,P
′

31,P
′

33 ∈ gl3m+1. Then

P′A − (P′A)T =


• P′T23 •

−P′23 0 P′21
• −P′T21 •


has rank at most 6m. Therefore the submatrix(

0 P′21
−P′T21 •

)
also has rank at most 6m and hence rk(P′21) ≤ 3m. By Proposition 2.3.2, we see that
rk(P, In) ≤ 3m. Hence

Y ⊆ {M ∈ o2n | rk(M,Diag(In,−In)) ≤ 2 · 2m + 2 · 3m = 10m}.

Assume that n ≥ 20m + 2, let M + λDiag(In,−In) be an element of Y with rk(M) ≤ 10m
and λ ∈ K and let B ∈ gln be a skew-symmetric matrix of rank at least n − 1. Then(

In B
In

)
∈ O2n
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and therefore (
In B

In

) (
M + λDiag(In,−In)

) (In B
In

)−1

∈ Y.

So this element must be of the form M′ − µDiag(In,−In) with rk(M) ≤ 10m and µ ∈ K.
Now note that

rk

λ (
In B

In

)
Diag(In,−In)

(
In B

In

)−1

+ µDiag(In,−In)


is at most rk(M) + rk(M′) ≤ 20m. So since

λ

(
In B

In

)
Diag(In,−In)

(
In B

In

)−1

+ µDiag(In,−In) =

(
• −2λB
• •

)
and rk(2B) ≥ n − 1 > 20m, we see that λ = 0. Hence Y consists of matrices of rank at
most 10m. �

Using Lemma 2.6.4, we see that there is an m ∈ Z≥0 such that

Xi ⊆

{(
P Q
R S

)
∈ o2n

∣∣∣∣∣∣ rk(P) ≤ m
}

for all i � 0. As in the proof of Lemma 2.3.14, we see using Lemma 2.3.13 that this in
fact holds for m = 0.

Lemma 2.6.5. Let n ∈N and let Y ( o2n be an O2n-stable closed subset of{(
0 Q
R 0

) ∣∣∣∣∣∣ Q ∈ gln,Q + QT = 0
R ∈ gln,R + RT = 0

}
.

Then Y ⊆ {0}.

Proof. Let (
0 Q
R 0

)
be an element of Y. Then(

In A
In

) (
0 Q
R 0

) (
In A

In

)−1

=

(
AR •

• •

)
∈ Y

for all A ∈ gln with A+AT = 0 since Y is O2n-stable and therefore R = 0. By Lemma 2.6.4,
we see that Q = 0. �

As in the previous section, the lemma shows that X ⊆ {0}. So again, when #{i | li >
1} = ∞, the only G-stable closed subsets of V are V, {0} and ∅ and the space V is
G-Noetherian.
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2.7 Limits of classical groups of type B

In the last section of this chapter, we still assume that char(K) , 2. Now, we let G be
the direct limit of a sequence

O2n1+1 O2n2+1 O2n3+1 . . .
ι1 ι2 ι3

of diagonal embeddings. To prove that the corresponding inverse limit V is G-Noethe-
rian, it suffices to consider the case where K is algebraically closed. The following
proposition shows that, if K = K and ιi has signature (li, zi) with li even, then we can
insert a group of type D into the sequence defining G.

Proposition 2.7.1. Suppose that K is algebraically closed. Let m,n ∈ Z≥0 be integers and let
ι : O2m+1 ↪→ O2n+1 be a diagonal embedding with signature (l, z). If l is even, then ι is the
composition of diagonal embeddings O2m+1 ↪→ Ol(2m+1) and Ol(2m+1) ↪→ O2n+1.

Proof. By Lemma 2.2.3, it suffices to find one diagonal embedding ι : O2m+1 ↪→ O2n+1
with signature (l, z) for which the proposition holds. For k ∈N, note that the group

Hk =

A ∈ GLk

∣∣∣∣∣∣∣∣ A


1

. . .

1

 AT =


1

. . .

1




is conjugate to Ok in GLk. The map

H2m+1 ↪→ Hl(2m+1)

A 7→ Diag(A, . . . ,A)

induces a diagonal embedding O2m+1 ↪→ Ol(2m+1) with signature (l, 0). Note that
2n + 1 = l(2m + 1) + z and so z is odd. Write z = 2k + 1. Then the map

Ol(2m+1) ↪→ O2n+1

(
A B
C D

)
7→


A B

Ik
1

C D
Ik


is a diagonal embedding with signature (1, z). Now, let ι be the composition of these
two diagonal embeddings. Then ι is itself a diagonal embedding and has signature
(l, z). �

Suppose that K is algebraically closed and that the diagonal embeddings ιi have
signatures (li, zi) with li even for infinitely many i ∈ N. Then the proposition shows
that we can replace our sequence by a supersequence in which groups of type D appear
infinitely many times. In this case V is G-Noetherian by the previous section. So, even
if K is not algebraically closed, we only have to consider the case where this does not
happen. And, by replacing our sequence by an infinite subsequence, we may assume
that li ∈ N odd for every i ∈ N. As both ni and ni+1 = lini + zi are odd, this forces
zi ∈ Z≥0 to be even for all i ∈ N. Our next task is to find diagonal embeddings with
such signatures.
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First, note that for n ∈N and z ∈ Z≥0 the map

ι1,2z : O2n+1 ↪→ O2(n+z)+1
A α B
β µ γ
C δ D

 7→


A α B

Iz
β µ γ
C δ D

Iz


is a diagonal embedding with signature (1, 2z). Here A,B,C,D ∈ gln, α, βT, γT, δ ∈ Kn

and µ ∈ K. The associated map of Lie algebras is

pr1,2z : o2(n+z)+1 � o2n+1
P • v Q •

• • • • •

φ • 0 ψ •

R • w S •

• • • • •

 7→

P v Q
φ 0 ψ
R w S


with P = −ST,Q,R ∈ gln and v = −ψT,w = −φT

∈ Kn such that Q + QT = R + RT = 0.

Next, we construct a diagonal embedding O2n+1 ↪→ Ol(2n+1) with signature (l, 0) for all
n ∈N and l ∈N odd. Write

Jk =


1

. . .

1

 ∈ GLk

for k ∈N and take

H2n+1,l =

A ∈ GLl(2n+1)

∣∣∣∣∣∣∣∣ A


Iln

Jl
Iln

 AT =


Iln

Jl
Iln




for all n ∈N and l ∈N odd. Then we have

P


Iln

Jl
Iln

 PT =


Iln+k

1
Iln+k


where

P =


Iln

Ik
1

Iln
Jk


is a permutation matrix. So the map

H2n+1,l → Ol(2n+1)

A 7→ PAPT
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is an isomorphism. Consider the map

O2n+1 ↪→ H2n+1,l


A α B
β µ γ
C δ D

 7→



A α B
. . .

. . . . . .

A α B
β µ γ

. . .
. . . . . .

β µ γ
C δ D

. . . . . . . . .
C δ D


where A,B,C,D ∈ gln, α, βT, γT, δ ∈ Kn and µ ∈ K all occur l times on the right hand
side. Write l = 2k + 1. By taking the composition of these two maps, we get a diagonal
embedding O2n+1 ↪→ Ol(2n+1) with signature (l, 0).

Write J = Jl and consider the Lie algebra

h2n+1,l =

P ∈ gll(2n+1)

∣∣∣∣∣∣∣∣ P


Iln

Jl
Iln

 +


Iln

Jl
Iln

 PT = 0


=



P V Q
Φ U Ψ
R W S

 ∈ gll(2n+1)

∣∣∣∣∣∣∣∣
P + ST = Q + QT = R + RT = 0

VJ + ΨT = WJ + ΦT = 0
UJ + JUT = 0


of H2n+1,l. The map O2n+1 ↪→ H2n+1,l corresponds to the map h2n+1,l � o2n+1 sending

P11 . . . P1l V11 . . . V1l Q11 . . . Q1l
...

...
...

...
...

...
Pl1 . . . Pll Vl1 . . . Vll Ql1 . . . Qll
Φ11 . . . Φ1l U11 . . . U1l Ψ11 . . . Ψ1l
...

...
...

...
...

...
Φl1 . . . Φll Ul1 . . . Ull Ψl1 . . . Ψll
R11 . . . R1l W11 . . . W1l S11 . . . S1l
...

...
...

...
...

...
Rl1 . . . Rll Wl1 . . . Wll Sl1 . . . Sll


to 

P11 + · · · + Pll V11 + · · · + Vll Q1l + · · · + Ql1
Φ11 + · · · + Φll U11 + · · · + Ull Ψ1l + · · · + Ψl1
R1l + · · · + Rl1 W1l + · · · + Wl1 S11 + · · · + Sll

 .
Here, for each entry, we either sum along the diagonal or along the anti-diagonal
in a manner consistent with the definition of the map O2n+1 ↪→ H2n+1,l. The map
H2n+1,l → Ol(2n+1) corresponds to the map ol(2n+1) → h2n+1,l sending Q to PTQP−T.

We let the diagonal embeddings in the sequence

O2n1+1 O2n2+1 O2n3+1 . . .
ι1 ι2 ι3
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be (compositions) of the forms above. As in the previous sections, if only finitely many
embeddings have signature (li, 2zi) with li > 1, then Theorem 2.5.1 follows from [20,
Theorem 1.2]. So we assume that #{li | li > 1} = ∞. Now, by replacing our sequence
by an infinite subsequence, we may assume that li ∈ N is odd and at least 3 for every
i ∈N.

Lemma 2.7.2. Let Y ( h2n+1,l be an H2n+1,l-stable closed subset and let Z be the closed subset

P V Q
Φ U Ψ
R W S

 ∈ h2n+1,l

∣∣∣∣∣∣∣∣ P = PT


of h2n+1,l. Then there is a nonzero polynomial f ∈ I(Y) whose top-graded part is not contained
in the ideal of Z.

Proof. The proof is analogous to the proof of Lemma 2.5.3. �

Lemma 2.7.3. Let X be an H2n+1,l-stable closed subset of h2n+1,l and let Y be the closure of its
image in o2n+1. Let f ∈ I(Y) ⊆ K[o2n+1] be a nonzero polynomial whose top-graded part g is
not contained in the ideal of 


P V Q
Φ U Ψ
R W S

 ∈ h2n+1,l

∣∣∣∣∣∣∣∣ P = PT

 .
Then I(X) contains a nonzero polynomial with degree at most deg( f ) that only depends on R
and two columns of W.

Proof. Consider the matrix

P11 . . . P1l V11 . . . V1l Q11 . . . Q1l
...

...
...

...
...

...
Pl1 . . . Pll Vl1 . . . Vll Ql1 . . . Qll
Φ11 . . . Φ1l U11 . . . U1l Ψ11 . . . Ψ1l
...

...
...

...
...

...
Φl1 . . . Φll Ul1 . . . Ull Ψl1 . . . Ψll
R11 . . . R1l W11 . . . W1l S11 . . . S1l
...

...
...

...
...

...
Rl1 . . . Rll Wl1 . . . Wll Sl1 . . . Sll



∈ h2n+1,l

and note that the polynomial f = f (P,Q,R, v,w) ∈ I(Y) induces the element

f (P11 + · · · + Pll,Q1l + · · · + Ql1,R1l + · · · + Rl1,V11 + · · · + Vll,W1l + · · · + Wl1)

of I(X). Consider the matrix

A(λ) =



In −λIn
. . .

In λIn
Il

In
. . .

In


∈ H2n+1,l
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for λ ∈ K. One can check that

g(R1l − Rl1,−(R1l + Rl1),R1l + · · · + Rl1,W1l −Wl1,W1l + · · · + Wl1)

is contained in the span of

A(λ) · f (P11 + · · · + Pll,Q1l + · · · + Ql1,R1l + · · · + Rl1,V11 + · · · + Vll,W1l + · · · + Wl1)

over all λ ∈ K. So it is an element of I(X) and its degree is at most deg( f ).

Next, consider the matrix

B(µ) =



Iln
1

µ
. . .

. . .
−µ 1

Iln


∈ H2n+1,l

for µ ∈ K. Let h(P,Q,R, v,w) be the top-graded part of g with respect to the grading
where P,Q,R get grading 0 and v,w get grading 1. Then one can check that

h(R1l − Rl1,−(R1l + Rl1),R1l + · · · + Rl1,−Wl−1,2,W1l + Wl−1,2)

is contained in the span of

B(µ) · g(R1l − Rl1,−(R1l + Rl1),R1l + · · · + Rl1,W1l −Wl1,W1l + · · · + Wl1)

over all µ ∈ K. This polynomial is contained inI(X) and has degree at most deg( f ). �

The following proposition tells us how to use the equation we gain from Lemma 2.7.2.
Let GLn act on {Q ∈ gln | Q = −QT

} by g · Q = gQgT. Let k ≤ n be an integer and let
GLn act on Kn×k by left-multiplication.

Proposition 2.7.4. Let R ∈ gln be a skew-symmetric matrix and let W ∈ Kn×k be a matrix
of rank k. Then the closure of the GLn-orbit of (R,W) inside {Q ∈ gln | Q = −QT

} ⊕ Kn×k

contains all tuples (Q,V) with rk(Q) ≤ rk(R) − 2k.

Proof. We will prove the proposition using induction on k. The case k = 0 is well-
known. So assume that 0 < 2k ≤ rk(R). Let X be the closure of the GLn-orbit of (R,W).
Note that we may replace (R,W) with any element in its GLn-orbit. Since rk(W) = k,
we may therefore assume that the last column of W equals en. Now, if we act with a
matrix of the form 

1
. . .

. . .
a1 . . . an−1 1

 ,
then the last column of W stays equal to en. And, the last column of R becomes(

a1r1 + · · · + an−1rn−1 + rn

0

)
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if we write

R =

(
r1 . . . rn−1 rn
• . . . • 0

)
with r1, . . . , rn ∈ Kn−1. As rk(R) > k = rk(W) and en is contained in the image of W, we
see that (

a1r1 + · · · + an−1rn−1 + rn

0

)
is not contained in the image of W for some a1, . . . , an−1. So we may also assume that
the last column of R is not contained in the image of W. Next, note that the last column
of W stays en and the last column of R stays outside the image of W if we act with a
matrix of the form Diag(g, 1) with g ∈ GLn−1. Since the last column of R is nonzero,
we may therefore assume in addition that

R =


R′ w 0
−wT 0 1

0 −1 0


for some R′ ∈ gln−2 and w ∈ Kn−2. So the vector en−1 is not contained in the image of
W. Note that rk(R′) ≥ rk(R) − 2. Write

W =


W′ 0
vT 0
uT 1


with W′ ∈ K(n−2)×(k−1) and u, v ∈ Kk−1. Since en−1 is not contained in the image of W,
the matrix (W en−1) has rank k + 1 and hence rk(W′) = k − 1. The limit

lim
λ→0

Diag(In−2, λ, 1) · (R,W) =



R′ 0 0
0 0 0
0 0 0

 ,

W′ 0
0 0

uT 1




is an element of X. Using the induction hypothesis, we see that X contains

Q 0 0
0 0 0
0 0 0

 ,


V 0
0 0

uT 1




for all skew-symmetric matrices Q ∈ gln−2 of rank at most rk(R) − 2k and all V ∈
K(n−2)×(k−1). By acting with a permutation matrix, we see in particular that


Q 0 0
0 0 0
0 0 0

 ,


0 0
Ik−1 0
uT 1


 ∈ X

for all skew-symmetrix matrices Q ∈ gln−k of rank at most rk(R) − 2k. Therefore(
Diag(Q, 0),V

)
∈ X since it equals

lim
λ→0

(
Diag(In−k, λIk) +

(
0 V

(
Ik−1 0
−uT 1

)))
·



Q 0 0
0 0 0
0 0 0

 ,


0 0
Ik−1 0
uT 1




for all skew-symmetrix matrices Q ∈ gln−k of rank at most rk(R) − 2k and all matrices
V ∈ Kn×k. So since X is GLn-stable, we see that (Q,V) ∈ X for all skew-symmetric
matrices Q ∈ gln of rank at most rk(R) − 2k and all matrices V ∈ Kn×k. �
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Lemma 2.7.5. There are integers c0, c1, c2 ∈N such that the following holds: let m ∈ Z≥0 be
an integer with c2m ≤ n and let M ∈ h2n+1,l be an element such that for all matrices

P V Q
Φ U Ψ
R W S

 ∈ H2n+1,l ·M

it holds that rk(R) ≤ m or the first and last column of W are linearly dependent. Then we have
rk(M) ≤ c1m + c0.

Proof. Let 
P V Q
Φ U Ψ
R W S


be an element of the orbit of M. We assume that c2m ≤ n with c2 high enough and we
will prove a series of claims, which together imply that rk(M) ≤ c1m + c0 for suitable
c0, c1 ∈N.

(x) We have rk(R) ≤ m + 4.

Suppose that rk(R) > m. Note that Diag(Iln, g, Iln) ∈ H2n+1,l for all g ∈ GLl with gJgT = J.
We have 

Iln
g

Iln



P V Q
Φ U Ψ
R W S



Iln

g
Iln


−1

=


P Vg−1 Q

gΦ gUg−1 gΨ
R Wg−1 S


for all g ∈ GLl. So we see that the first and last column of Wg−1 are linearly dependent
for all g ∈ GLl with gJgT = J. Using the fact that

g =



1
. . .

λ
. . .

. . .
−λ 1


satisfies gJgT = J as long as λ is not in the middle row together with JJJT = J, it is now
easy to check that rk(W) ≤ 2. Next, note thatIln A −

1
2 AJAT

Il −JAT

Iln

 ∈ H2n+1,l

for all A ∈ Kln×l. For all A ∈ Kln×l, we haveIln A −
1
2 AJAT

Il −JAT

Iln


−1 

P V Q
Φ U Ψ
R W S


Iln A −

1
2 AJAT

Il −JAT

Iln

 =


• • •

• • •

R W + RA •


and hence rk(W + RA) ≤ 2. So rk(RA) ≤ 4 and hence rk(R) ≤ 4.
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(y) We have rk(Q) ≤ m + 4 and rk(P) = rk(S) ≤ 3(m + 4)/2.

Repeat the proof of Lemma 2.6.4 and act with matrices
Iln

Il
Iln A

 ,

Iln B

Il
Iln


with A = −AT and B = −BT.

(z) We have rk(W) = rk(Φ), rk(V) = rk(Ψ) ≤ 4(m + 4) and rk(U) ≤ 22(m + 4).

We have Iln A −
1
2 AJAT

Il −JAT

Iln


−1 

P V Q
Φ U Ψ
R W S


Iln A −

1
2 AJAT

Il −JAT

Iln

 =


• • •

• • •

• • T


with T = − 1

2 RAJAT
−WJAT +S for all A ∈ Kln×l. So rk(WJAT) ≤ 4(m+4) for all A ∈ Kln×l.

So rk(W) = rk(Φ) ≤ 4(m + 4). By conjugating with
Iln

Il
Iln


we also see that rk(V) = rk(Ψ) ≤ 4(m + 4). We haveIln A −

1
2 AJAT

Il −JAT

Iln


−1 

P V Q
Φ U Ψ
R W S


Iln A −

1
2 AJAT

Il −JAT

Iln

 =


• • T
• • •

• • •


with

T =
(
Iln −A −

1
2 AJAT

) 
P V Q
Φ U Ψ
R W S


−

1
2 AJAT

−JAT

Iln

 .
Now, we know that rk(T) ≤ m + 4. Also, the matrix T is a sum of nine matrices: the
matrix AUJAT and eight other matrices for which we have found bounds on the rank.
Adding all these bounds together, we find that

rk(AUJAT) ≤ (1 + 1 + 1 + 3/2 + 3/2 + 4 + 4 + 4 + 4)(m + 4) = 22(m + 4)

for all A ∈ Kln×l. Hence rk(U) ≤ 22(m + 4).

Together (x), (y) and (z) show that

rk


P V Q
Φ U Ψ
R W S

 ≤ c1m + c0

for some c0, c1 ∈N. So this holds in particular if we let this matrix be M itself. �

We combine these results as in the previous section. Lemmas 2.7.2 and 2.7.3 play
the roles of Lemmas 2.6.2 and 2.6.3 and give us off-diagonal polynomials. Then,
Proposition 2.7.4 with k = 2 shows us the structure of the off-diagonal part of the
matrix as a GLn-representation with the Zariski topology. From this and the degree
of the off-diagonal polynomial, we get bounds on ranks of some submatrices. Lemma
2.7.5 turns these bounds into a rank bound on the matrix itself. Finally, we find
similarly to Lemma 2.3.14 that X ⊆ {0} and this implies that V is G-Noetherian.
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Chapter 3

Strength of polynomials and tensors

Section 3.2 of this chapter is based on ongoing work with Alessandro Oneto. Sec-
tions 3.3 to 3.6 are based on work [7] with Jan Draisma and Rob Eggermont. In this
chapter, the field K is assumed to be infinite.

3.1 Introduction

Fix an integer d ≥ 2 and let V ∈ Vec be a finite-dimensional vector space. This chapter
concerns decompositions of polynomials q ∈ Sd(V) of the form

q = r1s1 + · · · + rksk

where ri ∈ Sei(V) and si ∈ Sd−ei(V) for suitable natural numbers ei ∈ {1, . . . , d − 1}. The
minimal number of terms k among all such decompositions of q is called the strength
str(q) of q.

Remark 3.1.1. This term was introduced in [2], except that we have taken the liberty
of adding 1 to the strength defined there. ♠

We begin by listing some basic properties and examples of the strength of a polynomial.

Example 3.1.2. Let f ∈ Sd(V) be a polynomial. Then str( f ) = 0 if and only if f = 0.
And, we have str( f ) = 1 if and only if f , 0 and f is reducible. ♣

Proposition 3.1.3. Let f , g ∈ Sd(V) be polynomials.

(1) We have str( f + g) ≤ str( f ) + str(g).

(2) We have str( f ) ≤ dim V. If K is algebraically closed, then str( f ) ≤ dim(V) − 1.

(3) Suppose that V is a subspace of a vector space W. Then the strengths of f viewed as an
element of Sd(V) and as an element of Sd(W) coincide.

(4) Let ` : V →W be a linear map and take L := Sd(`) : Sd(V)→ Sd(W). Then we have

str( f ) − dim ker(`) ≤ str(L( f )) ≤ str( f ).

Proof. (1) Suppose that

f = r1s1 + · · · + rksk and g = r′1s′1 + · · · + r′k′s
′

k′
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for polynomials ri, si, r′j, s
′

j of degree < d. Then we see that

f + g = r1s1 + · · · + rksk + r′1s′1 + · · · + r′k′s
′

k′

and this shows that str( f + g) ≤ str( f ) + str(g).
(2) Let x1, x2, . . . , xn be a basis of V where n = dim V. Then we can write

f = x1g1 + x2g2 + · · · + xngn

where g1, g2, . . . , gn ∈ Sd−1(V) and hence str( f ) ≤ n. If the field K is algebraically closed,
then we can write

f = h + x3g3 + · · · + xngn

where h := f (x1, x2, 0, . . . , 0) and g3 . . . , gn ∈ Sd−1(V). Since K is algebraically closed,
the binary form h is has a linear factor and therefore str(h) ≤ 1. Hence we have

str( f ) ≤ str(h) + n − 2 ≤ n − 1.

(3) If
f = r1s1 + · · · + rksk

for ri ∈ Sei(V) and si ∈ Sd−ei(V) with 1 ≤ ei ≤ d − 1, then the strength of f viewed as an
element of Sd(W) is at most k. Conversely, suppose that

f = r1s1 + · · · + rksk

for ri ∈ Sei(W) and si ∈ Sd−ei(W) with 1 ≤ ei ≤ d − 1 and let ` : W � V be a linear map
restricting to the identity of V. Then we see that

f = Sd(`)( f ) = Se1(`)(r1)Sd−e1(`)(s1) + · · · + Sek(`)(rk)Sd−ek(`)(sk)

and hence the strength of f viewed as an element of Sd(W) is at most k. So the strengths
of f viewed as an element of Sd(V) and as an element of Sd(W) coincide.
(4) Write f = r1s1 + · · ·+ rksk for k = str( f ) and polynomials ri, si of degrees ei, d− ei < d
and take

Le := Se(`) : Se(V)→ Se(W)

for e = 1, . . . , d. Then

L( f ) = Ld( f ) = Le1(r1)Ld−e1(s1) + · · · + Lek(rk)Ld−ek(sk)

and hence str(L( f )) ≤ k = str( f ). Let x1, . . . , xk be a basis of ker(`) and let V′ ⊆ V be a
subspace such that V = V′ ⊕ span(x1, . . . , xk). Then we can write

f = f ′ + x1g1 + · · · + xkgk

for some f ′ ∈ Sd(V′) and g1, . . . , gk ∈ Sd−1(V). The map `|V′ : V′ → W is injective.
So by (3) we see that str( f ′) = str(L( f ′)) = str(L( f )). Hence str( f ) ≤ str( f ′) + k =
str(L( f )) + dim ker(`). �

The following example shows that the strength of polynomials of degree 2 is com-
pletely understood when char(K) , 2 and x2 = −1 has a solution in K.
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Example 3.1.4. Suppose that K = C. Then symmetric n × n matrices correspond one-
to-one to homogeneous polynomials of degree 2 in the variables x1, . . . , xn via the
GLn-equivariant map

{A ∈ Cn×n
| A = AT

} → S2(Cn)
A 7→ (x1 · · · xn)A(x1 · · · xn)T

Consider the matrix

A =



1
. . .

1
0

. . .
0


of rank k and the corresponding polynomial f = x2

1+· · ·+x2
k . Note that every symmetric

matrix in Cn×n is congruent to such a matrix. We have

x2 + y2 = (x + iy)(x − iy)

and hence str( f ) ≤ dk/2e. On the other hand, suppose that

f = (x1 · · · xn)v1 · (x1 · · · xn)w1 + · · · + (x1 · · · xn)v` · (x1 · · · xn)w`

for some vectors v1,w1, . . . , v`,w` ∈ C
n. Then we get

A =
1
2

(
(v1wT

1 + w1vT
1 ) + · · · + (v`wT

` + w`vT
` )

)
and hence k = rk(A) ≤ 2`. Hence str( f ) = drk(A)/2e. ♣

We also have an example that shows that the strength of a polynomial may go down
when you extend the base field.

Example 3.1.5. Consider the polynomial f = x2
1 + · · · + x2

n over R. If

f = r1s1 + · · · + rksk

for real linear forms r1, s1, . . . , rk, sk, then we see that f (v) = 0 for all vectors v in the
subspace ker(r1, . . . , rk) ⊆ Rn of codimension at most k. Since f (v) = 0 only holds for
v = 0, we see that str( f ) ≥ n must hold. Since str( f ) ≤ n always holds, we get str( f ) = n.
This is roughly twice as high as the strength of f over C, which equals dn/2e by the
previous example. ♣

The following example explicitly gives the strength of some homogeneous polynomi-
als of degree 3 and thereby shows that the strength of such polynomials is unbounded.

Example 3.1.6. Let n ∈ N be an integer and x1, y1, z1, . . . , xn, yn, zn be a basis of K3n.
Derksen, Eggermont and Snowden proved in [15] that the polynomial

x1y1z1 + · · · + xnynzn

has strength n. ♣
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Polynomials of arbitrarily high strength in fact exist in every degree d ≥ 2. To show
this, we need the following lemma.

Lemma 3.1.7. Let d ≥ 3 and suppose that f ∈ Sd(V) has strength ≤ k. Then there exists an
` ≤ k and an `-dimensional subspace W ⊆ V such that the image g of f in Sd(V/W) satisfies

str
(
∂g
∂x

)
≤ 2(k − `)

for all x ∈ (V/W)∗.

Proof. Write
f = w1g1 + · · · + w`g` + r1s1 + · · · + rk−`sk−`

where w1, . . . ,w` ∈ V are linear and r1, s1, . . . , rk−`, sk−` have degree ≥ 2 and let W be
the span of w1, . . . ,w`. Then the image g of f in Sd(V/W) satisfies

g = f = r1 · s1 + · · · + rk−` · sk−`

and hence we see that

∂g
∂x

=
∂r1

∂x
· s1 + r1 ·

∂s1

∂x
+ · · · +

∂rk−`

∂x
· sk−` + rk−` ·

∂sk−`

∂x

has strength ≤ 2(k − `) for all x ∈ (V/W)∗. �

Example 3.1.8. For n ∈N, write fd,n = xd
1 + · · ·+ xd

n. Note that we obtain fd,n−1 from fd,n
by setting xn to zero and hence str( fd,n−1) ≤ str( fd,n). We will prove that str( fd,n) → ∞
when n → ∞ for all d ≥ 2 using induction on d. We have str( f2,n) = dn/2e and hence
the statement holds for d = 2. Now assume that the statement holds for d−1. Suppose
that str( fd,n) ≤ k. Let V be the vector space with basis x1, . . . , xn and let ` ≤ k and
W ⊆ V be as in the lemma. We may assume that x1, . . . , xn−` form a basis of V/W. Take
x = x1 + · · · + xn−`. Then we see that

∂
∂x

(
x1

d + · · · + xn
d
)

has strength at most 2(k − `). Therefore

d
(
x1

d−1 + · · · + xn−`
d−1

)
=
∂
∂x

(
x1

d + · · · + xn
d
)
−

∑̀
j=1

xn−`+ j
d−1∂xn−`+1

∂x

has strength at most 2(k − `) + ` ≤ 2k. Its strength is also equal to

str( fd−1,n−`) ≥ str( fd−1,n−k)

and so we see that the strength of fd,n cannot be bounded by any k < ∞ as n→∞. ♣

The main result of this chapter is the following theorem.

Theorem 3.1.9. Fix d ∈ Z≥2 and assume that K is a perfect and infinite field with char K = 0
or char K > d. Then for any closed subset X ( Sd there exists an N ≥ 0 such that for all vector
spaces V ∈ Vec the strength of all elements in X(V) is at most N.
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Assume that K is a perfect and infinite field with char K = 0 or char K > d and let P be
any property of polynomials such that the following condition holds:

(*) If a polynomial f ∈ Sd(V) has property P and ` : V → W is any linear map, then
the polynomial Sd(`)( f ) has property P as well.

Then the theorem applied to the closure of P tells us that either the set of f ∈ Sd(V)
with propertyP is Zariski-dense for every V ∈ Vec or the strength of polynomials with
property P is bounded independently of V.

Example 3.1.10. Let k ∈N be an integer. Then the dimension of the subset

X(V) := { f ∈ Sd(V) | str( f ) ≤ k}

of Sd(V) is bounded by a polynomial in dim V of degree d − 1. Hence X(V) cannot
be equal to Sd(V) for V ∈ Vec with dim V � 0. Using Proposition 3.1.3(4) and
Theorem 3.1.9, it follows that there exists an N ≥ 0 such that str(g) ≤ N for all V ∈ Vec
and all polynomials g ∈ X(V). ♣

Example 3.1.11. The paper [24] concerns polynomials all of whose directional deriva-
tives have bounded strength. Let x ∈ V∗ be nonzero. Then the map that sends a
polynomial to its directional derivative to x is surjective. So since the set of polyno-
mials of bounded strength is not dense for dim V � 0, the same is true for the set of
polynomials all of whose directional derivatives have bounded strength. Hence the
strength of such polynomials is bounded. This implies [24, Theorem 1.2]. ♣

Remark 3.1.12. See [25, Lemma 1.23] for a strengthening of this result, which shows
that either all f ∈ Sd(V) have property P for every V ∈ Vec or the strength of polyno-
mials with property P is bounded independently of V. ♠

We define the strength str( f ) of a series

f ∈ Sd
∞ = lim
←−−n

Sd(Kn)

as the supremum of the strengths of all its projections prn( f ) ∈ Sd(Kn). Note that a
strength decomposition of f also gives strength decompositions of all its projections
with the same number of terms. So it is easy to write down series with low strength.
The previous examples also allow us to write down some series whose strength is
infinite.

Example 3.1.13. The series
∑
∞

i=1 xiyizi has infinite strength over C. ♣

Example 3.1.14. The series
∑
∞

i=1 xd
i has infinite strength over C. ♣

Theorem 3.1.9 has the following consequence in this setting.

Corollary 3.1.15. Fix d ∈ Z≥2 and assume that K is a perfect and infinite field with char K = 0
or char K > d. Then the GL∞-orbit of any series in Sd

∞ of infinite strength is dense.

Proof. Let X be the closed subset of Sd corresponding to the closure of the GL∞-orbit
of a series f ∈ Sd

∞. If f is not dense in Sd
∞, then X , Sd and hence the strength of

polynomials in X is bounded. This would in particular imply that the strength of the
projections prn( f ) ∈ X(Kn) is bounded and that therefore that the strength of f is finite.
So if the series f has infinite strength, then its GL∞-orbit is dense. �
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Remark 3.1.16. Alternatively, one could define the strength of a series f ∈ Sd
∞ as the

infimal number of terms of a strength decomposition of f . These definitions are in fact
equivalent. See Remark 4.5.25 for a proof of this statement.

When studying rank-like measures of tensors, there are several natural questions one
can ask. Let d ≥ 2, n ≥ 1 and k ≥ 0 be integers. The first question to ask is whether
having bounded strength is a closed condition.

Question 3.1.17. Is the subset { f ∈ C[x1, . . . , xn](d) | str( f ) ≤ k} closed?

We know from Example 3.1.4 that the answer is yes for d = 2. It is also known [15,
Proposition 2.2] that the answer is yes for d = 3. Since C is algebraically closed, we
also know that the answer is yes when k ≤ 1. So the first open case is (d, k) = (4, 2).

Question 3.1.18. Is the subset { f ∈ C[x1, . . . , xn](4) | str( f ) ≤ 2} closed?

Note that we have

{ f ∈ C[x1, . . . , xn−1](d) | str( f ) ≤ k} = { f ∈ C[x1, . . . , xn](d) | str( f ) ≤ k} ∩ C[x1, . . . , xn−1](d)

for all n ∈ N by Proposition 3.1.3. So to answer Questions 3.1.17 and 3.1.18 it suffices
to ask the question for n� 0.

Second, we want to know the strength of a generic polynomial and the maximal
strength a polynomial can have given its degree and number of variables.

Question 3.1.19. What is the strength of a generic polynomial in C[x1, . . . , xn](d)?

Question 3.1.20. What is the maximal strength of polynomials in C[x1, . . . , xn](d)?

In the next section, we compare the strength of polynomials to their slice rank and
conjecture that they are generically equal, which would in particular imply that the
generic and maximum strengths are the same.

Third, like for the rank of tensors, we can ask how to compute the strength of a poly-
nomial, low strength approximations and one can try to find families of polynomials
with high strength.

Question 3.1.21. Given a polynomial f ∈ C[x1, . . . , xn](d), can we compute its strength?

Question 3.1.22. Given a polynomial f ∈ C[x1, . . . , xn](d), can we compute its best low
strength approximation?

Question 3.1.23. Can we explicitly write down families of polynomials with high strength?

See [27] for a recent paper trying to answer this last question for tensors.

Last, let f , g be homogeneous polynomials of the same degree in distinct variables.
Then we have str( f + g) ≤ str( f ) + str(g). One would hope that, since the polynomials
use distinct variables, we in fact have str( f + g) = str( f ) + str(g). This is however not
the case: the polynomials xd and −yd both have strength 1, but their sum is divisible
by x− y and hence also has strength 1. One can nevertheless ask whether it is possible
to find interesting lower bounds for str( f + g) given str( f ) and str(g).
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Question 3.1.24. Given polynomials f , g in different variables with known strengths, can we
find a lower bound for the strength of their sum?

Outline of this chapter. In the next section, we introduce the slice rank of a polynomial
and compare it with its strength. The three sections after that are devoted to proving
Theorem 3.1.9 and its analogues for alternating and ordinary tensors. We conclude
with a section discussing versions of Theorem 3.1.9 and its analogues over Z.

3.2 Slice rank and generic strength of polynomials

In this section, we compare the strength of polynomials with their slice rank in the
case that K = C. Let d ≥ 2 be an integer and V ∈ Vec a vector space.

Definition 3.2.1. Let f ∈ Sd(V) be a polynomial. The slice rank slrk( f ) of f is the
minimal number of terms k among all decompositions of f of the form

g = `1g1 + · · · + `kgk

where `1, . . . , `k ∈ V are linear and g1, . . . , gk ∈ Sd−1(V) have degree d − 1.

We again start with listing some basic properties of the slice rank of polynomials.

Proposition 3.2.2. Let f , g ∈ Sd(V) be polynomials.

(1) We have slrk( f + g) ≤ slrk( f ) + slrk(g).

(2) We have slrk( f ) ≤ dim V. If K is algebraically closed, then slrk( f ) ≤ dim(V) − 1.

(3) Suppose that V is a subspace of a vector space W. Then the slice ranks of f viewed as an
element of Sd(V) and as an element of Sd(W) coincide.

(4) Let ` : V →W be a linear map and take L := Sd(`) : Sd(V)→ Sd(W). Then we have

slrk( f ) − dim ker(`) ≤ slrk(L( f )) ≤ slrk( f ).

(5) We have str( f ) ≤ slrk( f ).

(6) We have slrk( f ) = min{codim W |W ⊆ V, f (W) = 0}.

(7) Let k ≥ 0 be an integer. Then {h ∈ Sd(V) | slrk(h) ≤ k} is a closed subset of Sd(V).

Proof. Parts (1), (2), (3) and (4) have the same proof as in Proposition 3.1.3. Part (5)
follows immediately from the definitions of strength and slice rank. Part (6) is proven
in [15, Proposition 2.2] for d = 3 and this proof in fact works for any d ≥ 2. Part (7)
follows from part (6), which shows that the set

{h ∈ Sd(V) | slrk(h) ≤ k}

is a projection of a closed subset along the Grassmannian of codimension-k subspaces
of V. �

By part (7), the generic and maximal slice rank of polynomials in Sd(V) coincide. And
in fact, their value is also know.
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Theorem 3.2.3 ([11, Theorem 6.11]). The generic slice rank of a polynomial inC[x1, . . . , xn](d)
equals

min
{

k ∈ Z≥n/2

∣∣∣∣∣∣
(
d + n − k − 1

d

)
≤ k(n − k)

}
.

�

We can calculate the slice rank of the polynomial f = xd
1 + · · · + xd

n using the Fano
varieties of the hypersurface defined by f .

Example 3.2.4. Let d ≥ 2 and n ≥ 1 be integers. Then the slice rank of the polynomial
f = xd

1 + · · · + xd
n is at most dn/2e since it is the sum of at most that many binary forms.

In order to prove that the slice rank of f is exactly dn/2e, we consider the Fano varieties

Fm(X f ) := {W ∈ G(m,Cn) | P(W) ⊆ X f } = {W ∈ G(r,Cn) | f (W) = 0}

of the hypersurface X f := { f = 0} ⊆ Pn−1 for m ∈ [n]. The projective hypersurface
X f is smooth. Therefore Fm(X f ) = ∅ for all integers m with 2(m − 1) ≥ n − 1 by [29,
Proposition 0.1]. This means that any subspace W ⊆ Cn with f (W) = 0 has codimension
at least dn/2e and hence slrk( f ) = dn/2e by Proposition 3.2.2(6). ♣

By Proposition 3.2.2(7), we see that the generic and maximal slice rank of polynomials
in Sd(V) coincide. Let

str◦(d,n) ≤ strmax(d,n) ≤ slrk◦(d,n) = slrkmax(d,n)

denote the generic strength, maximum strength, generic slice rank and maximal slice
rank in K[x1, . . . , xn](d) for integers d ≥ 2 and n ≥ 1. Then we have the following
conjecture.

Conjecture 3.2.5. We have

str◦(d,n) = strmax(d,n) = slrk◦(d,n) = slrkmax(d,n)

for all integers d ≥ 2 and n ≥ 1.

Note that the conjecture holds for d = 2, 3 since in those cases the strength and slice
rank of a polynomial coincide.

Remark 3.2.6. While we conjecture the strength and slice rank of a generic polynomial
to be equal, we know that this does not hold for all polynomials. In fact, the differ-
ence between the slice rank and strength of a polynomial can be arbitrarily big. See
Subsection 4.7.3 for details.

3.2.1 The proof of the conjecture for d ≤ 6

Our goal for the remainder of this section is to prove this conjecture for d ≤ 6. To do
this, we have to show that the image of the map

ϕ :
bd/2c⊕
e=1

(
C[x1, . . . , xn](e) × C[x1, . . . , xn](d−e)

)⊕ke
→ C[x1, . . . , xn](d)

((ge,i, he,i))e,i 7→

bd/2c∑
e=1

ke∑
i=1

ge,i · he,i
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does not have full dimension whenever the sum of the ke’s is lower than the generic
slice rank in C[x1, . . . , xn](d). Let the ge,i, he,i be generic and consider the derivative

ϕ :
bd/2c⊕
e=1

(
C[x1, . . . , xn](e) × C[x1, . . . , xn](d−e)

)⊕ke
→ C[x1, . . . , xn](d)

((Ge,i,He,i))e,i 7→

bd/2c∑
e=1

ke∑
i=1

(ge,i ·He,i + Ge,i · he,i)

of ϕ at ((ge,i, he,i))e,i. It suffices to prove that the image of this map, which is precisely
the degree-d part of the ideal generated by the ge,i, he,i, is not the whole space.

Let V ∈ Vec be a vector space of dimension n ≥ 1, let k ≤ n be an integer and take
`1, . . . , `k ∈ V and f1, . . . , fk ∈ Sd−1(V) generic. Then `1, . . . , `k are linearly independent.
Let `k+1, . . . , `n ∈ V be such that `1, . . . , `n form a basis of V. Then we see that

Sd(V) = C[`1, . . . , `n](d) = (`1, . . . , `k)(d) ⊕ C[`k+1, . . . , `n](d).

The codimension of (`1, . . . , `k, f1, . . . , fk)(d) in Sd(V) is equal to the codimension of

( f1, . . . , fk)(d)

in C[`k+1, . . . , `n](d) = C[`1, . . . , `n](d)/(`1, . . . , `k)(d). The dimension of this subspace is at
most k dimC[`k+1, . . . , `n](1). So we see that the codimension of (`1, . . . , `k, f1, . . . , fk)(d)
in Sd(V) is at least

dimC[`k+1, . . . , `n](d) − k dimC[`k+1, . . . , `n](1) =

(
d + n − k − 1

d

)
− k(n − k).

Now back to the degree-d part of the ideal generated by the ge,i, he,i. We know that the
generic slice rank is at most n. So in particular, we can assume that k := k1 ≤ n. This
means that the codimension of the degree-d part of ideal generated by the ge,i, he,i is at
least (

d + n − k − 1
d

)
− k(n − k) − dim W

where W is the degree-d part of the ideal in the ring C[x1, . . . , xn]/(g1,1, . . . , g1,k) gener-
ated by the images of the ge,i, he,i with e ≥ 2. Note that

C[x1, . . . , xn]/(g1,1, . . . , g1,k) � C[y1, . . . , ym]

for m = n−k. So our next task is to find an upper bound for the dimension of the degree-
d part of an ideal in C[y1, . . . , ym] generated by generic ge,i, he,i where e ∈ {2, . . . , bd/2c},
i ∈ [ke], deg(ge,i) = e, deg(he,i) = d − e. We do this for d = 4, 5, 6 separately.

Lemma 3.2.7. Let ` ≥ 0 and m ≥ ` + 2 be integers and let g1, . . . , g2` ∈ C[y1, . . . , ym](2) be
generic. Then

2`
(
m + 1

2

)
−

(
2`
2

)
is an upper bound for the dimension of (g1, . . . , g2`)(4).

74



Proof. Note that (g1, . . . , g2`)(4) is the image of the linear map

C[y1, . . . , ym]⊕2`
(2) → C[y1, . . . , ym](4)

2∑̀
i=1

Hi · [gi] 7→
2∑̀
i=1

Higi

where [g1], . . . , [g2`] are formal symbols. In the kernel of this map, we have:

(1) g j · [gi] − gi · [g j] for 1 ≤ i < j ≤ 2`.

Since ` ≤ m − 2, we have 2` ≤
(m+1

2
)

= dimC[y1, . . . , ym](2). So since the gi are generic,
they are linearly independent. Let W ⊆ C[y1, . . . , ym](2) be the subspace they span.
Then the g j · [gi]− gi · [g j] are elements of W⊕2`. Consider the basis of W⊕` consisting of
g j · [gi] for i, j ∈ [2`] ordered first be the index of [gi] and then by the index of g j. Then
we see that each g j · [gi]− gi · [g j] has a distinct leading term. Hence the g j · [gi]− gi · [g j]
must be linearly independent. The upper bound now follows. �

Lemma 3.2.8. Let ` ≥ 0 and m ≥ ` + 2 be integers and let g1, . . . , g` ∈ C[y1, . . . , ym](2) and
h1, . . . , h` ∈ C[y1, . . . , ym](3) be generic. Then

`

(
m + 1

2

)
+ `

(
m + 2

3

)
−

(
`
2

)
m − `2

is an upper bound for the dimension of (g1, . . . , g`, h1, . . . , h`)(5).

Proof. Note that (g1, . . . , g`, h1, . . . , h`)(5) is the image of the linear map

C[y1, . . . , ym]⊕`(3) ⊕ C[y1, . . . , ym]⊕`(2) → C[y1, . . . , ym](5)∑̀
i=1

Hi · [gi] +
∑̀
i=1

Gi · [hi] 7→
∑̀
i=1

Higi +
∑̀
i=1

Gihi

and that the kernel of this map contains:

(1) h j · [gi] − gi · [h j] for i, j ∈ [`] and

(2) yk · (g j · [gi] − gi · [g j]) for 1 ≤ i < j ≤ ` and k ∈ [m].

It suffices to prove that these elements are linearly independent.

Consider the projection onC[y1, . . . , ym]⊕`(2). The h j ·[gi]−gi ·[h j] project onto the elements
−gi · [h j] and the yk · (g j · [gi]− gi · [g j]) project to zero. Since the gi are generic, they are
linearly independent. So that means that the −gi · [h j] are independent as well. This
takes care of the elements from (1). So it suffices to prove that the yk · (g j · [gi]− gi · [g j])
are linearly independent.

As in the previous lemma, it is enough to show that the yk · g j are linearly independent
for generic g j. Since this is an open condition, it is moreover enough to show that the
yk · g j are linearly independent for some g j. Take g j = y2

j . Then the yk · g j = yky2
j are

distinct monomials and hence linearly independent. This finishes the proof. �
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Lemma 3.2.9. Let `, `′ ≥ 0 and m ≥ `+`′+2 be integers and let g1, . . . , g` ∈ C[y1, . . . , ym](2),
h1, . . . , h` ∈ C[y1, . . . , ym](4) and a1, . . . , a2`′ ∈ C[y1, . . . , ym](3) be generic. Then

`

(
m + 1

2

)
+ `

(
m + 3

4

)
+ 2`′

(
m + 2

3

)
−

(
`
2

)(
m + 1

2

)
+

(
`
3

)
− 2``′ − `2

−

(
2`′

2

)
is an upper bound for the dimension of (g1, . . . , g`, h1, . . . , h`, a1, . . . , a2`′)(4).

Proof. Note that (g1, . . . , g`, h1, . . . , h`, a1, . . . , a2`′)(4) is the image of the linear map

C[y1, . . . , ym]⊕`(4) ⊕ C[y1, . . . , ym]⊕`(2) ⊕ C[y1, . . . , ym]⊕2`′
(3) → C[y1, . . . , ym](6)∑̀

i=1

Hi · [gi] +
∑̀
i=1

Gi · [hi] +

2`′∑
i=1

Bi · [ai] 7→
∑̀
i=1

Higi +
∑̀
i=1

Gihi +

2`′∑
i=1

Biai

and the kernel of this map contains:

(1) yk1 yk2 · (g j · [gi] − gi · [g j]) for 1 ≤ k1 ≤ k2 ≤ m and 1 ≤ i < j ≤ `,

(2) yk · (a j · [gi] − gi · [a j]) for k ∈ [m], i ∈ [`] and j ∈ [2`′],

(3) h j · [gi] − gi · [h j] for i, j ∈ [`] and

(4) a j · [ai] − ai · [a j] for 1 ≤ i < j ≤ 2`′.

We need to show that after leaving out
(`
3
)

elements from (1), we get a generically
linearly independent set. We may assume that the gi are linearly independent. So the
projection on C[y1, . . . , ym]⊕`(2) takes care of the elements from (3).

Next we take care of (2) and (4) by projecting onC[y1, . . . , ym]⊕2`′
(3) . When we project the

elements from (2), we get −yk · gi · [a j]. Take gi = y2
i . Then we see that the monomials

yk · gi = yky2
i are distinct from each other. We have `m such monomials. So since

`m + 2`′ ≤ (` + `′)m ≤ (m − 2)m ≤
(
m + 2

3

)
we can choose the ai to be monomials distinct from the monomials yk · gi and distinct
from each other. It follows that the projection of the elements from (2) and (4) are
generically linearly independent. This leaves the elements from (1).

Finally, we need to show that the elements from (1) are generically linearly independent
after leaving out

(`
3
)

of them. We consider the elements yk1 yk2 · (g j · [gi] − gi · [g j]) for
1 ≤ k1 ≤ k2 ≤ m and 1 ≤ i < j ≤ ` where the condition i < k1 = k2 < j does not
hold. This leaves out exactly

(`
3
)

elements. We need to show that the leading terms
yk1 yk2 · g j · [gi] are linearly independent for some choice of the g j. Take g j = y2

j and
assume that

yk1 yk2 · g j · [gi] = yk′1
yk′2
· g j′ · [gi]

for some k1, k2, j, k′1, k
′

2, j′, i. Then either j = j′, which implies that (k1, k2) = (k′1, k
′

2),
or j = k′1 = k′2 and j′ = k1 = k2. The latter case implies that i < k1 = k2 < j or
i < k′1 = k′2 < j′. So among the elements from (1) that we consider, the leading terms
are all distinct. Hence those elements from (1) are linearly independent. �
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By combining the previous lemmas with the discussion before them, we now find
lower bounds for the codimension of the image of the map ϕ for d ∈ {4, 5, 6}. We now
need to check that these lower bounds are positive when the sum of the ke’s is lower
than the generic slice rank in C[x1, . . . , xn](d). For fixed d,n, this can be checked by
computer. So we now first focus on the case where n� 0.

Write m = n − k and note that the codimension of the image of ϕ is at least

f4(m, `) :=
(
m + 3

4

)
− (n −m)m −

(
2`

(
m + 1

2

)
−

(
2`
2

))
for (d, k1, k2) = (4, k, `), is at least

f5(m, `) :=
(
m + 4

5

)
− (n −m)m −

(
`

(
m + 1

2

)
+ `

(
m + 2

3

)
−

(
`
2

)
m − `2

)
for (d, k1, k2) = (5, k, `) and is at least

f6(m, `, `′) :=
(
m + 5

6

)
− (n −m)m − dim W

where

dim W = `

(
m + 1

2

)
+ `

(
m + 3

4

)
+ 2`′

(
m + 2

3

)
−

(
`
2

)(
m + 1

2

)
+

(
`
3

)
− 2``′ − `2

−

(
2`′

2

)
for (d, k1, k2, k3) = (6, k, `, `′). We need to show that fd(m, `) > 0 for d = 4, 5 and
m − ` = n − slrk◦(d,n) + 1 and that f6(m, `, `′) > 0 for m − ` − `′ = n − slrk◦(6,n) + 1. To
proceed, we first need a lower bound for n − slrk◦(d,n).

Lemma 3.2.10. Suppose that d ≥ 4 and that

n ≥ max
(
dd−1/d!, d−3

√
(d − 1)!d−1/d!d−3, 2

d−1√

2d!
)

holds. Take p(x) = (x + d − 1) · · · (x + 1) − d!(n − x). Then p(x) has a unique positive root
a > 0. We have

d−1√

d!n − (d + 1) < a <
d−1√

d!n − 1

and n − slrk◦(d,n) = bac.

Proof. Recall that

slrk◦(d,n) = min
{

k ∈ Z≥n/2

∣∣∣∣∣∣
(
d + n − k − 1

d

)
≤ k(n − k)

}
.

Take x = n − k. Then we see that(
d + n − k − 1

d

)
≤ k(n − k)

holds if and only if p(x) ≤ 0. Note that p(0) = (d − 1)! − d!n < 0 and that p(x) is strictly
increasing on R≥0. So p(x) has a unique positive root a > 0. Take x =

d−1√
d!n − 1. Then

p(x) ≥ d!n − d!(n − x) > 0
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and so a <
d−1√

d!n − 1. Take y =
d−1√

d!n ≥ d. Then

p(y − (d + 1)) < yd−2(y − d) − d!(n − y) = d!y − dyd−2 = dy((d − 1)! − yd−3) ≤ 0

since (d!n)d−3
≥ (d − 1)!d−1 and hence (d − 1)! ≤ yd−3. So a >

d−1√
d!n − (d + 1). Since

n ≥ 2
d−1√

2d!, we have a ≤
d−1√

d!n ≤ n/2. So bac is the maximal integer ≤ n/2 such that
p(x) ≤ n. So bac = n − slrk◦(d,n). �

Remark 3.2.11. Note that the condition on n in the lemma is satisfied when d ∈ {4, 5, 6}
and n ≥ 11. ♠

Note that f4(m, 0) > 0 for m = n − slrk◦(4,n) + 1. So for d = 4 it suffices to prove that

f4(m + 1, ` + 1) ≥ f4(m, `)

whenever m − ` = n − slrk◦(4,n) + 1. We have

f4(m + 1, ` + 1) − f4(m, `) =
1
6

m3
− 2m` +

5
6

m + 2` − n + 1

≥
1
6

m3
− 2m(m − 2) +

5
6

m − n + 1

since 0 ≤ ` ≤ m − 2. Assume that n ≥ 11. Then by the lemma, we see that

m ≥ n − slrk◦(4,n) + 1 ≥
⌊ 3√

24n − 5
⌋

+ 1 ≥
3√

24n − 5

and so n ≤ (m + 5)3/24. So

1
6

m3
− 2m(m − 2) +

5
6

m − n + 1 ≥
1
6

m3
− 2m(m − 2) +

5
6

m − (m + 5)3/24 + 1

=
1
8

m3
−

21
8

m2 +
41
24

m −
101
24
.

One can check numerically that the latter is positive for m ≥ 41/2. So we see that

f4(m + 1, ` + 1) ≥ f4(m, `) > 0

for all m − ` = n − slrk◦(4,n) + 1 when n ≥ 691 ≥ (41/2 + 5)3/24. Note that one can
check in a finite amount of time that f4(m, `) > 0 for all m− ` = n− slrk◦(4,n) + 1 when
n < 691. We checked using a computer that this is indeed the case.

Next, note that f5(m, 0) > 0 for m = n − slrk◦(5,n) + 1. So for d = 5 it suffices to prove
that

f5(m + 1, ` + 1) ≥ f5(m, `)

whenever m − ` = n − slrk◦(5,n) + 1. Similarly to before, we find that

f5(m + 1, ` + 1) − f5(m, `) ≥
1
30

m4
−

9
20

m3
−

281
120

m2
−

69
20

m −
49
5
.

One can check numerically that the latter is positive for m ≥ 18. So we see that

f5(m + 1, ` + 1) ≥ f5(m, `) > 0
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for all m − ` = n − slrk◦(4,n) + 1 when n ≥ 2765 ≥ (18 + 6)4/120. We checked that
f5(m, `) > 0 for all m − ` = n − slrk◦(5,n) + 1 when n < 2765.

Finally, note that f6(m, 0, 0) > 0 for m = n − slrk◦(6,n) + 1. So for d = 6 it suffices to
prove that

f6(m, `, `′) ≥ f6(m, ` + 1, `′ − 1) and f6(m + 1, ` + 1, 0) ≥ f6(m, `, 0)

whenever m − ` = n − slrk◦(6,n) + 1. Similarly to before, we find that

f6(m, `, `′) − f6(m, ` + 1, `′ − 1) ≥
1

24
m4
−

7
12

m3 +
11
24

m2 +
37
12

m − 6

and

f6(m + 1, ` + 1, 0) − f6(m, `, 0) ≥
1

144
m5
−

19
144

m4
−

5
9

m3
−

409
72

m2
−

8861
720

m −
16087
720

.

The right hand sides of these expressions are positive when m ≥ 24. So we see that

f6(m, `, `′) > 0

for all m − ` − `′ = n − slrk◦(4,n) + 1 when n ≥ 39763 ≥ (24 + 7)5/720. We checked that
f6(m, `, `′) > 0 for all m − ` − `′ = n − slrk◦(6,n) + 1 when n < 39763.

3.3 Bounded strength of polynomials

The goal of this section is to prove Theorem 3.1.9. By assumption, there exists a U ∈ Vec
such that X(U) ( Sd(U). We fix this U throughout the proof. The bound N ≥ 0 that we
will obtain depends only on d and dim U. See Remark 3.3.8.

Irreducibility. The following lemma is a standard fact from representation theory.
Recall that, since char K = 0 or char K > d, the representations Sd(V∗) and Sd(V)∗ of the
group GL(V) are isomorphic for any V ∈ Vec.

Lemma 3.3.1. For each V ∈ Vec, the representation Sd(V) of GL(V) is irreducible and linearly
spanned by its subset {vd

| v ∈ V \ {0}}. Furthermore, any GL(V)-equivariant polynomial map
from V into a representation N of GL(V) on which t idV acts via multiplication with td factors
as V → Sd(V), v 7→ vd and a unique GL(V)-equivariant linear map Sd(V)→ N. �

Homogeneity. We equip the coordinate ring K[Sd(V)] with the grading in which the
elements of Sd(V)∗ have degree 1. For any closed subset X ⊆ Sd we find, from the
fact that X(V) is GL(V)-stable, that the ideal I(X(V)) ⊆ K[Sd(V)] is GL(V)-stable and
in particular homogeneous. We define δX := min{deg( f ) | f ∈ I(X(U)) \ {0}}.

Induction. If δX = 0, then I(X(U)) contains a nonzero constant and hence X(U) = ∅.
In this case, for any V ∈ Vec, the d-th symmetric power of the zero map V → U maps
X(V) into X(U) and so all X(V) are empty. Hence in Theorem 3.1.9 we may take N = 0.
We proceed by induction, assuming that δX > 0 and that the theorem holds for all
closed subsets Y ⊆ Sd with Y(U) ( Sd(U) and δY < δX.
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Derivative. Let f ∈ I(X(U)) \ {0} be homogeneous of degree δX. By the minimality
of δX and perfectness of K, there exists an r ∈ Sd(U) such that the directional derivative

h :=
∂ f
∂r

is not the zero polynomial. By Lemma 3.3.1, Sd(U) is spanned by d-th powers, so we
may further assume that r = ud for some u ∈ U.

We define the closed subset Y ( Sd by

Y(V) :=
{
q ∈ X(V)

∣∣∣∀` ∈ Hom(V,U) : h(Sd(`)(q)) = 0
}
.

Now we have δY ≤ deg(h) = deg( f ) − 1 < deg( f ). So, by the induction hypothesis,
the theorem holds for Y. We define Z(V) := X(V) \ Y(V) and set out to prove that all
elements in Z(V) have strength bounded independently of V.
Shifting. For V ∈ Vec, we define

P′(V) := Sd(U ⊕ V) =

d⊕
i=0

Sd−i(U) ⊗ Si(V),

X′(V) := X(U ⊕ V) ⊆ P′(V),

Z′(V) :=
{
q ∈ X′(V)

∣∣∣ h(Sd(πU)(q)) , 0
}
.

The notation is chosen compatible with [17]. We think of P′(V),X′(V) as varieties over
Sd(U),X(U), respectively, via the linear map Sd(πU). Accordingly, by slight abuse of
notation, we will write h for h ◦ Sd(πU).

Lemma 3.3.2. We have
Z(U ⊕ V) =

⋃
g∈GL(U⊕V)

gZ′(V).

In particular, supq∈Z(U⊕V) str(q) = supq∈Z′(V) str(q).

Proof. First, we have Z(U⊕V) ⊇ Z′(V), and since the left-hand side is GL(U⊕V)-stable,
the inclusion ⊇ follows. Conversely, if q ∈ Z(U ⊕ V), then there exists a linear map
` : U ⊕ V → U for which h(Sd(`)(q)) , 0. Since this is an open condition on `, we may
further assume that ` has full rank. Then for a suitable g ∈ GL(U ⊕ V) we find that
` = πU ◦ g. Accordingly,

h(g · q) = (h ◦ Sd(πU))(Sd(g)(q)) = h(Sd(`)(q)) , 0

and hence g · q ∈ Z′(V). �

Lemma 3.3.3. We have

sup
V∈Vec
q∈X(V)

str(q) = sup
V∈Vec

max

 sup
q∈Y(V)

str(q), sup
q∈Z′(V)

str(q)

 .
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Proof. The same statement with Z′(V) replaced by Z(V) is obvious given the fact that
X(V) = Y(V) ∪ Z(V). Let ι : V ↪→ U ⊕ V be the map sending v 7→ (0, v). Then the
map Sd(ι) maps Z(V) into Z(U ⊕ V) and is easily seen to preserve the strength. By the
previous lemma

sup
q∈Z′(V)

str(q) = sup
q∈Z(U⊕V)

str(q)

and so the statement follows. �

So it suffices to show that elements in Z′(V) have bounded strength.

Chopping.

Lemma 3.3.4. For q ∈ P′(V) write q = q0 + · · · + qd with qi ∈ Sd−i(U) ⊗ Si(V). Then

str(q) ≤ dim U + str(qd).

Proof. Note that q0 + . . . + qd−1 is in the image of the map

U ⊗ Sd−1(U ⊕ V) → Sd(U ⊕ V)
r ⊗ s 7→ rs

and hence has strength at most dim U. Now, strength is subadditive, so

str(q) ≤ str(q0 + . . . + qd−1) + str(qd) ≤ dim U + str(qd). �

So, as U is fixed, it suffices to prove that for V ranging through Vec and q ranging
through Z′(V) the component qd has bounded strength.

Embedding. Define

Q′(V) := P′(V)/Sd(V) =

d−1⊕
i=0

Sd−i(U) ⊗ Si(V)

and write πQ′(V) : P′(V)→ Q′(V) for the natural projection. Take

B(V) := {q ∈ Q′(V) | h(q) , 0} = {(q0, . . . , qd−1) ∈ Q′(V) | h(q0) , 0}.

Then πQ′(V) maps Z′(V) into B(V). And, by [17, Lemma 7] and Lemma 3.3.1, the
following lemma holds.

Lemma 3.3.5. The map πQ′(V) restricts to a closed embedding Z′(V)→ B(V). �

We will not actually use this lemma, but we will use its proof method.

An equivariant map back. We construct a suitable map opposite to the embedding of
Lemma 3.3.5.

Lemma 3.3.6. There exists a GL(V)-equivariant polynomial map Ψ : Q′(V) → Sd(V) such
that qd is a scalar multiple of Ψ(q0, . . . , qd−1) for all q = (q0, . . . , qd) ∈ Z′(V).
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Proof. For x ∈ V∗ and t ∈ K, let `x : V → U and `′x(t) : U ⊕ V → U be the linear maps
sending v 7→ x(v)u and (u, v) 7→ u + t`x(v). Here u is the vector used in the definition
of h. Note that x 7→ `x is a GL(V)-equivariant linear map V∗ → Hom(V,U). Now
consider the linear map Φx(t) := Sd(`′x(t)) : P′(V)→ Sd(U).

The restriction of Φx(t) to the summand Sd−i(U) ⊗ Si(V) equals tiΦx,i where Φx,i is the
composition of Sd−i(idU)⊗Si(`x) : Sd−i(U)⊗Si(V)→ Sd−i(U)⊗Si(U) and the multiplica-
tion map into Sd(U). In particular, Φx,0 is the identity on Sd(U) and Φx,d : Sd(V)→ Sd(U)
is the linear map sending qd 7→ xd(qd)ud. Note that the map

V∗ → Hom(Sd−i(U) ⊗ Si(V),Sd(U))
x 7→ Φx,i

is a GL(V)-equivariant polynomial map of degree i.

The functoriality of X implies that Φx(t)(X′(V)) ⊆ X(U). In particular, the pull-back
of f along Φx(t) to P′(V) vanishes on X′(V). Take q = (q0, . . . , qd) ∈ P′(V). Then

f (Φx(t)(q0 + q1 + · · · + qd−1 + qd)) = f
(
q0 + tΦx,1(q1) + · · · + td−1Φx,d−1(qd−1) + tdxd(qd)ud

)
vanishes for q ∈ X′(V). In particular, the coefficient of td in the Taylor expansion of
this expression vanishes for q ∈ X′(V) . This coefficient equals

xd(qd)
∂ f
∂ud

(q0) + Ψ(x, q0, . . . , qd−1) = xd(qd)h(q0) + Ψ(x, q0, . . . , qd−1)

where the function Ψ : V∗ × Q′(V) 7→ K is GL(V)-invariant and homogeneous of de-
gree d in its first argument x.

For q ∈ Z′(V) we have h(q0) , 0 and hence

xd(qd) = −
1

h(q0)
Ψ(x, q0, . . . , qd−1).

By Lemma 3.3.1 the space Sd(V)∗ of coordinates on Sd is spanned by the {xd
| x ∈ V∗}

and this shows that Z′(V) → B(V) is a closed embedding. But it yields more: by
Lemma 3.3.1, Ψ factors as

V∗ ×Q′(V) → SdV∗ ×Q′(V)
(x, q′) 7→ (xd, q′)

and a unique GL(V)-invariant map SdV∗ × Q′(V) → K. We denote the latter map
also by Ψ, which is now linear in its first argument. If we reinterpret Ψ as a GL(V)-
equivariant polynomial map Q′(V)→ SdV, then for q ∈ Z′(V) we have

qd = −
1

h(q0)
Ψ(q0, . . . , qd−1).

In particular, for q ∈ Z′(V) we have qd ∈ im Ψ. �
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Covariants. A covariant of Q′(V) (of order Sd(V)) is a GL(V)-equivariant polynomial
map Q′(V) → Sd(V). So the map Ψ constructed in Lemma 3.3.6 is a covariant. For
each integer i ∈ [d − 1], choose a basis ui,1, . . . ,ui,ni of Sd−i(U). Then the map

Φ :
d−i⊕
i=0

Si(V)⊕ni →

d−1⊕
i=1

Sd−i(U) ⊗ Si(V)

(wi, j)i, j 7→

 ni∑
j=1

ui, j ⊗ wi, j


d−1

i=1

is a GL(V)-equivariant isomorphism and the following lemma holds.

Lemma 3.3.7. Let Ψ : Q′(V)→ Sd(V) be a covariant. Then the composition

Ψ ◦ (idSd(U),Φ) : Sd(U) ⊕
d−1⊕
i=1

Si(V)⊕ni → Sd(V)

is given by (
q, (wi, j)i, j

)
7→

∑
αi, j∈Z≥0∑d−1

i=1
∑ni

j=1 i·αi, j=d

pα(q) ·
d−1∏
i=1

ni∏
j=1

w
αi, j

i, j

for some polynomial functions pα : Sd(U)→ K.

Proof. Polynomial GL(V)-equivariant maps

Sd(U) ⊕
d−1⊕
i=1

Si(V)⊕ni → Sd(V)

correspond one-to-one to linear GL(V)-equivariant maps

K[Sd(U)] ⊗
⊕
αi, j∈Z≥0∑d−1

i=1
∑ni

j=1 i·αi, j=d

d−1⊗
i=1

ni⊗
j=1

Sαi, j(Si(V))→ Sd(V)

by the universal properties of tensor products and symmetric powers. For each α, the
vector space

HomGL(V)

 d−1⊗
i=1

ni⊗
j=1

Sαi, j(Si(V)),Sd(V)


is one-dimensional and consists of multiples of the homomorphism `α sending

d−1⊗
i=1

ni⊗
j=1

wi, j,1 · · · · · wi, j,αi, j 7→

d−1∏
i=1

ni∏
j=1

wi, j,1 · · · · · wi, j,αi, j .

Hence the set of GL(V)-equivariant linear maps

K[Sd(U)] ⊗
⊕
αi, j∈Z≥0∑d−1

i=1
∑ni

j=1 i·αi, j=d

d−1⊗
i=1

ni⊗
j=1

Sαi, j(Si(V))→ Sd(V)
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is spanned as a K[Sd(U)]-module by the set of all `α. The corresponding statement for
polynomial GL(V)-equivariant maps is the statement of the lemma. �

Conclusion of the proof

Proof of Theorem 3.1.9. By the induction hypothesis and Lemma 3.3.3, to bound the
strength of elements of X(V) for all V ∈ Vec it suffices to bound the strength of
elements of Z′(V) for all V ∈ Vec. By Lemma 3.3.4, it suffices to bound the strength
of qd over all q = (q0, . . . , qd) ∈ Z′(V). By Lemma 3.3.6, we know that such a qd is
contained in the image of a covariant. So using Lemma 3.3.7, we see that qd is a linear
combination of products of polynomials wi, j ∈ Si(V) where i ranges over [d − 1] and
j ranges over [dim Sd−i(U)]. Since each of those products has degree d and since, for
each pair (i, j), the polynomial wi, j has degree i, we see that each of the products is
divisible by wi, j for some i ≤ d/2. We find that the strength of qd is at most

#{wi, j | i ∈ {1, . . . , bd/2c}, j ∈ [dim Sd−i(U)]} ≤
bd/2c∑
i=1

dim Sd−i(U)

and this bounds the strength of qd independently of V. �

Remark 3.3.8. It follows from the induction that N from Theorem 3.1.9 can be taken
equal to

dim U +

bd/2c∑
i=1

dim Sd−i(U).

♠

3.4 Bounded strength of alternating tensors

Let V ∈ Vec. For alternating tensors q ∈
∧d(V), the strength str(q) is defined as the

minimal number of terms k in any decomposition of the form

q = r1 ∧ s1 + · · · + rk ∧ sk

where ri ∈
∧ei(V) and si ∈

∧d−ei(V) for suitable natural numbers ei ∈ {1, . . . , d − 1}. By
taking all ei equal to 1 and using standard properties of the wedge product, we obtain
the bound str(q) ≤ dim V − d + 1.

The goal of this section is to adapt the statement of Theorem 3.1.9 and its proof from
Section 3.3 to the polynomial functor

∧d. In order to state the theorem, we only need
to replace Sd by

∧d.

Theorem 3.4.1. Fix d ∈ Z≥2 and assume that K is a perfect and infinite field with char K = 0
or char K > d. Then for any closed subset X (

∧d there exists an N ≥ 0 such that for all
vector spaces V ∈ Vec the strength of all elements in X(V) is at most N.

Fix a vector space U ∈ Vec such that X(U) (
∧d(U). Note that dim U ≥ d as

∧d(U) , ∅.

Irreducibility. Note that for any V ∈ Vec the GL(V)-modules
∧d(V∗) and

∧d(V)∗ are
isomorphic. The analogue of Lemma 3.3.1 is as follows.
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Lemma 3.4.2. For each V ∈ Vec, the GL(V)-module
∧d(V) is irreducible and linearly spanned

by its subset {v1 ∧ · · · ∧ vd | v1, . . . , vd ∈ V linearly independent}. Furthermore, any GL(V)-
equivariant multilinear and alternating map from Vd into a GL(V)-module N on which
t idV acts via multiplication with td extends uniquely to a GL(V)-equivariant linear map∧d(V)→ N. �

Homogeneity. We equip the coordinate ring K[
∧d(V)] with the grading in which the

elements of
∧d(V)∗ have degree 1. For any closed X ⊆

∧d we find, from the fact that
X(V) is stable under GL(V), that the ideal I(X(V)) ⊆ K[

∧d(V)] is GL(V)-stable and in
particular homogeneous. We define δX := min{deg f | f ∈ I(X(U)) \ {0}}.

Induction. If δX = 0, then we find that X(V) = ∅ for all V ∈ Vec. We may therefore
assume that δX > 0 and we proceed by induction, assuming that the theorem holds
for all Y ⊆

∧d with Y(U) (
∧d(U) and δY < δX.

Derivative. Let f ∈ I(X(U)) \ {0} be a homogeneous polynomial of degree δX. Then,
there exists an r ∈

∧d(U) such that the directional derivative

h :=
∂ f
∂r

is not the zero polynomial. By Lemma 3.4.2 we may assume that r = u1 ∧ · · · ∧ ud for
some linearly independent u1, . . . ,ud ∈ U.

We define Y (
∧d by

Y(V) :=
{
q ∈ X(V)

∣∣∣∣∀` ∈ Hom(V,U) : h(
∧d(`)(q)) = 0

}
and note that, by the induction hypothesis, the theorem holds for Y. We define

Z(V) := X(V) \ Y(V)

and prove that all elements of Z(V) have strength bounded independently of V.

Shifting. For V ∈ Vec we define

P′(V) :=
∧d(U ⊕ V) =

d⊕
i=0

∧d−i(U) ⊗
∧i(V),

X′(V) := X(U ⊕ V) ⊆ P′(V),

Z′(V) :=
{
q ∈ X′(V)

∣∣∣∣ h(
∧d(πU)(q)) , 0

}
.

We think of P′(V),X′(V) as varieties over
∧d(U),X(U), respectively, via the linear map∧d(πU) and we will write h for h ◦

∧d(πU).

Lemma 3.4.3. We have

sup
V∈Vec
q∈X(V)

str(q) = sup
V∈Vec

max

 sup
q∈Y(V)

str(q), sup
q∈Z′(V)

str(q)

 .
�

85



Chopping.

Lemma 3.4.4. For q ∈ P′(V) write q = q0 + . . . + qd with qi ∈
∧d−i(U) ⊗

∧i(V). Then

str(q) ≤ dim U + str(qd).

�

Embedding. Define

Q′(V) := P′(V)/
∧d(V) =

d−1⊕
i=0

∧d−i(U) ⊗
∧i(V)

and write πQ′(V) : P′(V)→ Q′(V) for the natural projection. Take

B(V) := {q ∈ Q′(V) | h(t) , 0} = {(q0, . . . , qd−1) ∈ Q′(V) | h(q0) , 0}.

Then πQ′(V) maps Z′(V) into B(V) (and this is a closed embedding by [17, Lemma 7]
and Lemma 3.4.2).

An equivariant map back.

Lemma 3.4.5. There exists a GL(V)-equivariant polynomial map Ψ : Q′(V) →
∧d(V) such

that qd is a scalar multiple of Ψ(q0, . . . , qd−1) for all q = (q0, . . . , qd) ∈ Z′(V).

Proof. For x = (x1, . . . , xd) ∈ (V∗)d and t = (t1, . . . , td) ∈ Kd, consider the linear map

`′x(t) : U ⊕ V → U

(u, v) 7→ u +

d∑
j=1

t j`x, j(v)

where `x, j : V → U sends v 7→ x j(v)u j and u1, . . . ,ud are the vectors used in the definition
of h. Note that x 7→ `x, j is a GL(V)-equivariant linear map (V∗)d

→ Hom(V,U).

Now take Φx(t) :=
∧d(`′x(t)) : P′(V) →

∧d(U) and denote the restriction of Φx(t) to the
summand

∧d−i(U) ⊗
∧i(V) by Φx,i. Note that Φx,0 is the identity on

∧d(U) and Φx,d is
the linear map ∧d V →

∧d U
v1 ∧ · · · ∧ vd 7→ t1 · · · td · (

∑d
j=1`x, j(v1)) ∧ · · · ∧ (

∑d
j=1`x, j(vd))

where the latter is a multiple of u1 ∧ . . . ∧ ud. Also note that x 7→ Φx,i is a GL(V)-
equivariant polynomial map of degree i and that x 7→ Φx,d is multilinear and alternat-
ing.

By functoriality of X, we have Φx(t)(X′(V)) ⊆ X(U), and for q = (q0, . . . , qd) ∈ P′(V) we
find that

f (Φx(t)(q0 + . . . + qd)) = f
(
q0 + Φx,1(q1) + · · · + Φx,d−1(qd−1) + t1 · · · td ·

∧d(
∑d

j=1`x, j)(qd)
)
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and this expression vanishes for q ∈ X′(V). The coefficient of t1 · · · td in the Taylor
expansion of this expression equals

h(q0) · (x1 ∧ · · · ∧ xd)(qd) + Ψ(x, q0, . . . , qd−1)

where the function Ψ : (V∗)d
×Q′(V)→ K is GL(V)-invariant and multilinear in (V∗)d.

We note that for q ∈ Z′(V), we have h(q0) , 0 by definition of Z′(V), and therefore

(x1 ∧ · · · ∧ xd)(qd) = −
1

h(q0)
Ψ(x, q0, . . . , qd−1).

The map Ψ factors as

(V∗)d
×Q′(V) → (V∗)⊗d

×Q′(V)
(x, q′) 7→ (x1 ⊗ · · · ⊗ xd, q′)

and a unique GL(V)-equivariant map (V∗)⊗d
× Q′(V) → K. If we re-interpret Ψ as

a GL(V)-equivariant polynomial map Q′(V) → V⊗d and compose the map with the
projection V⊗d

→
∧d V, then we get a map Q′(V)→

∧d V which we also denote by Ψ.
We see that

d! · qd = −
1

h(q0)
Ψ(q0, . . . , qd−1).

for all q ∈ Z′(V), since

(x1 ∧ · · · ∧ xd)(qd) = (x1 ⊗ · · · ⊗ xd)ι(qd)

where ι is the GL(V)-equivariant map

ι :
∧d V → V⊗d

v1 ∧ · · · ∧ vd 7→

∑
σ∈Sd

sgn(σ) · vσ(1) ⊗ · · · ⊗ vσ(d)

�

Covariants. A covariant of Q′(V) of order
∧d(V) is a GL(V)-equivariant polynomial

map Q′(V)→
∧d V. So the map Ψ constructed in Lemma 3.4.5 is a covariant. For each

integer i ∈ [d − 1], choose a basis ui,1, . . . ,ui,ni of
∧d−i(U). Then the map

Φ :
d−i⊕
i=0

∧i(V)⊕ni →

d−1⊕
i=1

∧d−i(U) ⊗
∧i(V)

(wi, j)i, j 7→

 ni∑
j=1

ui, j ⊗ wi, j


d−1

i=1

is a GL(V)-equivariant isomorphism and the following lemma holds.

Lemma 3.4.6. Let Ψ : Q′(V)→
∧d V be a covariant. Then the composition

Ψ ◦ (id∧d(U),Φ) :
∧d(U) ⊕

d−1⊕
i=1

∧i(V)⊕ni →
∧d(V)
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is given by (
q, (wi, j)i, j

)
7→

∑
αi, j∈Z≥0∑d−1

i=1
∑ni

j=1 i·αi, j=d

pα(q) ·
d−1∧
i=1

ni∧
j=1

αi, j∧
`=1

wi, j

for some polynomial functions pα :
∧d(U)→ K. �

Conclusion of the proof.

Proof of Theorem 3.4.1. To bound the strength of elements of X(V) independently of
V, by the induction assumption applied to Y, it suffices to bound the strength of
elements of Z(V) independently of V. Lemma 3.4.3, which focusses the attention to
Z′, and Lemma 3.4.4 together reduce this problem further to bounding the strength
of elements qd for all (q0, . . . , qd) ∈ Z′(V) independently of V. Lemma 3.4.5 shows that
such a qd is contained in the image of a covariant. So Lemma 3.4.6 implies that the
strength of qd is bounded by

bd/2c∑
i=1

dim
∧d−i(U),

which completes the proof. �

Remark 3.4.7. It follows from the induction that N from Theorem 3.4.1 can be taken
equal to

dim U +

bd/2c∑
i=1

dim
∧d−i(U).

♠

3.5 Bounded strength of ordinary tensors

In this section, we consider the d-variate polynomial functor P := T1 ⊗ · · · ⊗ Td. Let
V = (V1, . . . ,Vd) ∈ Vecd. Then P(V) = V1 ⊗ · · · ⊗ Vd. For tensors q ∈ P(V), the strength
str(q) is defined as the minimal number of terms k in any decomposition of the form

q = r1 ⊗ s1 + · · · + rk ⊗ sk

where ri ∈
⊗

j∈Ji
V j and si ∈

⊗
j∈[d]\Ji

V j for suitable nonempty subsets Ji ( [d]. By
taking all Ji equal to {`}, we obtain the bound str(q) ≤ dim V` for any ` ∈ [d].

The goal of this section is to adapt the statement of Theorem 3.1.9 and its proof from
Section 3.3 to the polynomial functor P. This time, we do not need to assume anything
about the characteristic of K.

Theorem 3.5.1. Fix d ∈ Z≥2 and assume that K is a perfect and infinite field. Then for any
closed subset X ( P there exists an N ≥ 0 such that for all V ∈ Vecd the strength of all elements
in X(V) is at most N.
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Fix a tuple of vector spaces U ∈ Vecd such that X(U) ( P(U).

Homogeneity. We equip the coordinate ring K[P(V)] with the grading in which the
elements of P(V)∗ have degree 1. For any closed X ⊆ P we find, from the fact that X(V)
is stable under GL(V), that the ideal I(X(V)) ⊆ K[P(V)] is stable under GL(V) and in
particular homogeneous. We define δX := min{deg f | f ∈ I(X(U)) \ {0}}.

Induction. If δX = 0, then we find that X(V) = ∅ for all V ∈ Vecd. We may therefore
assume that δX > 0 and we proceed by induction, assuming that the theorem holds
for all Y ⊆ P with Y(U) ( P(U) and δY < δX.

Derivative. Let f ∈ I(X(U)) \ {0} be a homogeneous polynomial of degree δX. Then,
there exists an r ∈ P(U) such that the directional derivative

h :=
∂ f
∂r

is not the zero polynomial and we may assume that r = u1 ⊗ · · · ⊗ ud for some ui ∈ Ui.

We define the closed subset Y ( P by

Y(V) :=
{
q ∈ X(V)

∣∣∣∀` ∈ Hom(V,U) : h(P(`)(q)) = 0
}
.

Note that, by the induction hypothesis, the theorem holds for Y. We define

Z(V) := X(V) \ Y(V)

and prove that all elements in Z(V) have strength bounded independently of V.

Shifting. For V ∈ Vecd we define

P′(V) := P(U ⊕ V) =
⊕
J⊆[d]

⊗
j∈[d]\J

U j ⊗
⊗

j∈J

V j

 ,
X′(V) := X(U ⊕ V) ⊆ P′(V),

Z′(V) :=
{
q ∈ X′(V)

∣∣∣ h(P(πU)(q)) , 0
}
.

We think of P′(V),X′(V) as varieties over P(U),X(U), respectively, via the linear map
P(πU). We will write h for h ◦ P(πU).

Lemma 3.5.2. We have

sup
V∈Vecd

q∈X(V)

str(q) = sup
V∈Vecd

max

 sup
q∈Y(V)

str(q), sup
q∈Z′(V)

str(q)

 .
�

Chopping. We write n` := dim U` for ` = 1, . . . , d.

Lemma 3.5.3. For q ∈ P′(V) write q =
∑

J⊆[d] qJ with qJ ∈
⊗

j∈[d]\J U j ⊗
⊗

j∈J V j. Then

str(q) ≤ n1 + · · · + nd + str(q[d]).

�

89



Embedding. Define

Q′(V) := P′(V)/P(V) =
⊕
J([d]

⊗
j∈[d]\J

U j ⊗
⊗

j∈J

V j


and write πQ′(V) : P′(V)→ Q′(V) for the natural projection. Take

B(V) := {q ∈ Q′(V) | h(q) , 0} = {(qJ)J([d] ∈ Q′(V) | h(q∅) , 0}.

Then π(V) maps Z′(V) into B(V).

An equivariant map back.

Lemma 3.5.4. There exists a GL(V)-equivariant polynomial map Ψ : Q′(V) → P(V) such
that q[d] is a scalar multiple of Ψ((qJ)J([d]) for all q = (qJ)J⊆[d] ∈ Z′(V).

Proof. For x = (x1, . . . , xd) ∈ V∗1 × · · · × V∗d and t = (t1, . . . , td) ∈ Kd, consider the linear
map

`′x(t) : U ⊕ V → U
((ui)i, (vi)i) 7→ (ui + ti`x,i(vi))i

where `x,i : Vi → Ui sends vi 7→ xi(vi)ui and u1, . . . ,ud are the vectors used in the
definition of h. Note that x 7→ `x,i is a GL(V)-equivariant linear map.

Now take Φx(t) := P(`′x(t)) : P′(V)→ P(U). The restriction of Φx(t) to the summand⊗
j∈[d]\J

U j ⊗
⊗

j∈J

V j

equals
∏

i∈J ti · Φx,J where Φx,J is the map
⊗

j∈[d]\J idU j ⊗
⊗

j∈J `x, j. Note that x 7→ Φx,J

is a GL(V)-equivariant polynomial map of degree |J| and that x 7→ Φx,[d] is multilinear.

By functoriality of X, we have Φx(t)(X′(V)) ⊆ X(U), and for q = (qJ)J⊆[d] ∈ P′(V) we
find that

f (Φx(t)((qJ)J⊆[d])) = f

∑
J([d]

∏
i∈J

ti ·Φx,J(qJ)

 + t1 · · · td · P((`x,i)i)(q[d])

 ,
and this expression vanishes for q ∈ X′(V). The coefficient of t1 · · · td in the Taylor
expansion of this expression equals

h(q∅) · (x1 ⊗ · · · ⊗ xd)(q[d]) + Ψ(x, (qJ)J([d])

where the function Ψ : V∗1 × · · · × V∗d × Q′(V) → K is GL(V)-invariant and multilinear
in V∗1 × · · · × V∗d. We note that for q ∈ Z′(V), we have h(q∅) , 0 by definition of Z′(V),
and therefore

(x1 ⊗ · · · ⊗ xd)(q[d]) = −
1

h(q∅)
Ψ(x, (qJ)J([d]).
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The map Ψ factors as the composition of

V∗1 × · · · × V∗d ×Q′(V) → (V∗1 ⊗ · · · ⊗ V∗d) ×Q′(V)
(x, q′) 7→ (x1 ⊗ · · · ⊗ xd, q′)

and a unique GL(V)-equivariant map (V∗1⊗ · · ·⊗V∗d)×Q′(V)→ K. We denote the latter
map also by Ψ, which is now linear in its first argument. If we re-interpret Ψ as a
GL(V)-equivariant polynomial map Q′(V)→ TdV, then

q[d] = −
1

h(q∅)
Ψ((qJ)J([d]).

for all q ∈ Z′(V). �

Covariants. A covariant of Q′(V) of order P(V) is a GL(V)-equivariant polynomial
map Q′(V)→ P(V). So the map Ψ constructed in Lemma 3.5.4 is a covariant. For each
nonempty subset J ( [d], choose a basis uJ,1, . . . ,uJ,nJ of

⊗
j∈[d]\J U j. Then the map

Φ :
⊕
J([d]
J,∅

⊗
j∈J

V j


⊕nJ

→

⊕
J([d]
J,∅

⊗
j∈[d]\J

U j ⊗
⊗

j∈J

V j


(wJ,`)J,` 7→


∏

j∈[d]\J dim U j∑
`=1

uJ,` ⊗ wJ,`


J

.

is a GL(V)-equivariant isomorphism and the following lemma holds.

Lemma 3.5.5. Let Ψ : Q′(V)→ P(V) be a covariant. Then the composition

Ψ ◦ (idP(U),Φ) : P(U) ⊕
⊕
J([d]
J,∅

⊗
j∈J

V j


⊕nJ

→ P(V)

is given by

(
q, (wJ,`)J,`

)
7→

∑
{J1,...,Jk}∈J

∑
`1∈[nJ1 ]

· · ·

∑
`k∈[nJk ]

p{J1,...,Jk},`1,...,`k(q) ·
k⊗

i=1

wJi,`i

for some polynomial functions

p{J1,...,Jk},`1,...,`k : P(U)→ K,

where J consists of all unordered partitions of [d] into nonempty sets, i.e. all collections
{J1, . . . , Jk} of nonempty subsets Ji ( [d] with Ji ∩ Ji′ = ∅ if i , i′ and

⋃k
i=1 Ji = [d]. �

Conclusion of the proof.

Proof of Theorem 3.5.1. To bound the strength of elements of X(V) independently of
V, by the induction assumption applied to Y, it suffices to bound the strength of
elements of Z(V) independently of V. Lemma 3.5.2 and Lemma 3.5.3 together reduce
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this problem further to bounding the strength of elements q[d] for all (qJ)J⊆[d] ∈ Z′(V)
independently of V. Lemma 3.5.4 shows that such a q[d] is contained in the image of
a covariant. So using Lemma 3.5.5, we see that q[d] is a linear combination of tensor
products of elements wJ,` ∈

⊗
j∈J V j where J ranges over nonempty subsets of [d] and

j ranges from 1 to
∏

j∈[d]\J dim U j. Fix an integer m ∈ [d]. Then we note for each
{J1, . . . , Jk} ∈ J that m ∈ Ji for some i ∈ [k]. So the strength of q[d] is at most

#

wJ,`

∣∣∣∣∣∣∣∣ m ∈ J ( [d], ` ∈

 ∏
j∈[d]\J

dim U j


 ≤

∑
J([d]
J3m

∏
j∈[d]\J

dim U j

=
∑

J′([d]\{m}
J′,∅

∏
j∈J′

dim U j

=
∏

j∈[d]\{m}

(dim U j + 1) − 1

and the latter expression is minimized over m when dim Um is maximal. This bounds
the strength of q[d] independently of V. �

Remark 3.5.6. It follows from the induction that N from Theorem 3.5.1 can be taken
equal to

n1 + · · · + nd +
∏

j∈[d]\{m}

(n j + 1) − 1

where n` = dim U` and where m ∈ [d] such that nm ≥ n` for all ` ∈ [d]. ♠

Remark 3.5.7. The definitions of strength we have used have the following common
generalisation: For integers 0 ≤ m ≤ n, d1, . . . , dn ∈N with

∑
i di ≥ 2 and vector spaces

V1, . . . ,Vn ∈ Vec, the strength str(q) of a composite tensor

q ∈ Sd1(V1) ⊗ · · · ⊗ Sdm(Vm) ⊗
∧dm+1(Vm+1) ⊗ · · · ⊗

∧dn(Vn)

is the minimal number of terms k in any composition of the form

q = r1s1 + · · · + rksk

where

ri ∈ Se1(V1) ⊗ · · · ⊗ Sem(Vm) ⊗
∧em+1(Vm+1) ⊗ · · · ⊗

∧en Vn

si ∈ Sd1−e1(V1) ⊗ · · · ⊗ Sdm−em(Vm) ⊗
∧dm+1−em+1(Vm+1) ⊗ · · · ⊗

∧dn−en Vn

for suitable 0 ≤ ei ≤ di with (e1, . . . , en) , (0, . . . , 0), (d1, . . . , dn).

A version of Theorems 3.1.9, 3.4.1 and 3.5.1 for composite tensors generalising the
three versions exists. A proof of this version can be obtained by modifying the proof
in this section. The most important changes are:

(a) we must assume that char K = 0 or char K > di for all i ∈ {1, . . . ,n};

(b) we take h := ∂ f
∂r where r = r1 ⊗ · · · ⊗ rn with ri = udi

i , ui ∈ Ui for i ≤ m and
ri = ui,1 ∧ · · · ∧ ui,di , ui, j ∈ Ui for i > m; and
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(c) for i ≤ m we take xi ∈ V∗i and ti ∈ K, for i > m we take xi, j ∈ V∗i and ti, j ∈ K and
we let Φx(t) = Φ

(1)
x1

(t1)⊗ · · · ⊗Φ
(n)
xn

(tn) where Φ
(i)
xi

(ti) is the map from the symmetric
case for i ≤ m and the map from the alternating case for i > m.

In addition, the bounds must be adjusted to (more complicated) expressions. ♠

3.6 Bounded strength over Z

Theorems 3.1.9, 3.4.1 and 3.5.1 require that K be fixed in advance and allow for the
closed subsets of Sd,

∧d
,T1⊗ · · · ⊗Td to be defined by equations specific to K. The price

that we pay for this generality is that we need to require K to be perfect and infinite
and that the values of N in these theorems depend on K.

Indeed, in the proofs, perfectness of the field is used to ensure that a squarefree nonzero
polynomial has some nonzero directional derivative. And, infiniteness of the field is
used to ensure that if some polynomial in t vanishes for all t ∈ K, then the coefficients
of all monomials td vanish. We can get around both of these restrictions by working
only with tensor properties defined over Z before specialising to K.

Let VecZ be the category of finite-rank free Z-modules with Z-linear maps. Every
object V ∈ VecZ gives rise to an affine scheme, the spectrum of the symmetric algebra
(overZ) on the module dual to V. By abuse of notation, we write V for this scheme as
well. The scheme of a product V ×W is canonically isomorphic to the product of the
schemes and an ` ∈ HomVecZ(V,W) determines a morphism of schemes V →W.

A module V ∈ VecZ has a symmetric power Sd
Z

(V) ∈ VecZ characterised by the
usual universal property. A closed subscheme of Sd

Z
is a rule XZ that assigns to each

V ∈ VecZ a closed subscheme of Sd
Z

(V) in such a manner that for V,W ∈ VecZ and
` ∈ HomVecZ(V,W) the morphism Sd

Z
(`) maps XZ(V) into XZ(W). This is equivalent to

the condition that the morphism of schemes determined by

Sd
Z(V) ×HomVecZ(V,W) → Sd

Z(W)
(v1 · · · vd, `) 7→ `(v1) · · · `(vd)

maps XZ(V) ×HomVecZ(V,W) into XZ(W).

In terms of equations this means the following: Suppose that V = Zm and W = Zn, let
f be any polynomial in the

(n−1+d
d

)
standard coordinates on Sd

Z
(W) with coefficients in

Z and let ` be an n × m matrix whose entries `i j are variables. Then one can expand
f ◦ Sd

Z
(`) as a polynomial

∑
α∈Zn×m

≥0
cα`α in the `i j whose coefficients cα are polynomials

in the
(m−1+d

d
)

standard coordinates on Sd
Z

(V). The condition above says that if f is in
the ideal of XZ(W), then all the cα lie in the ideal of XZ(V).

If XZ is a closed subscheme of Sd
Z

, then for each field K we obtain a closed subset XK

of Sd = Sd
K as follows: for V ∈ Vec = VecK choose any linear isomorphism ` : V → Kn

and let XK(V) be the preimage under Sd(`) of the set of K-valued points of the scheme
X(Zn) ⊆ Sd(Zn).
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Remark 3.6.1. We have
XL(V ⊗K L) ∩ Sd(V) = XK(V)

for all field extensions K ⊆ L and all vector spaces V ∈ VecK. ♠

Theorem 3.6.2. Let d ∈ Z≥2 and let XZ be a closed subscheme of Sd
Z

. Then there exists an
N ≥ 0 such that the following holds:

(†) Let K be any field with char K = 0 or char K > d such that XK ( Sd
K. Then for all

V ∈ VecK the strength of all elements in XK(V) is at most N.

�

TheZ-constructions in this subsection have analogues for the polynomial functors
∧d

and T1 ⊗ · · · ⊗ Td. And, the analogues of Theorems 3.4.1 and 3.5.1 also hold over Z.

Theorem 3.6.3. Let X be a closed subscheme of
∧d
Z. Then there exists an N ≥ 0 such that the

following holds:

(†) Let K be any field with char K = 0 or char K > d such that XK (
∧d

K. Then for all
V ∈ VecK the strength of all elements in XK(V) is at most N.

�

Theorem 3.6.4. Let X be a closed subscheme of T1,Z ⊗ · · · ⊗ Td,Z. Then there exists an N ≥ 0
such that the following holds:

(†) Let K be any field such that XK ( T1,K ⊗ · · · ⊗ Td,K. Then for all V ∈ Vecd
K the strength

of all elements in XK(V) is at most N.

�
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Chapter 4

The geometry of polynomial
functors

This chapter is based on work [8] with Jan Draisma, Rob Eggermont and Andrew
Snowden. We let K be an algebraically closed field of characteristic zero, we let µ ∈N
be an integer and we assume all polynomial functors to be µ-variate and of finite
degree. From Section 4.5 onward, we restrict to the case where µ = 1 holds.

4.1 Introduction

Let P be a polynomial functor. If the degree of P equals 0, then P(V) = U for some fixed
vector space U ∈ Vec and the closed subsets of P are the same as the Zariski-closed
subsets of U. The goal of this chapter is to also study closed subsets of polynomial
functors of positive degree and thereby extend the field of affine finite-dimensional
algebraic geometry.

We start with the technical heart of this chapter, which is Theorem 4.2.5. When
studying matrices/polynomials/tensors, one of the questions to ask is always: how can
we express a matrix/polynomial/tensor using simpler objects? In a way, Theorem 4.2.5
proves that attempting to do this is a good idea. The theorem states that, given a
closed subset X of a polynomial functor P, there are two cases:

(1) We have X = P.

(2) The subset X is covered by images from smaller polynomial functors.

So families of objects that share a common structure must have an uniform bound on
the number of simpler objects needed to express them.

Since Theorem 4.2.5 has two mutually exclusive cases, we call it the Dichotomy
Theorem. This theorem helps us to set up the theory of GL∞-equivariant infinite-
dimensional affine algebraic geometry in two ways: first, we can use the Dichotomy
Theorem as a tool to do induction on polynomial functors. This allows us to extend
theorems from the base case, which is finite-dimensional affine algebraic geometry,
to all polynomial functors. As a first example, we get an easy proof of the following
theorem.
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Theorem 4.1.1 (Draisma [17, Theorem 1]). Let P be a polynomial functor of finite degree.
Then every descending chain of closed subsets of P stabilizes.

Proof. Let
P ⊇ X1 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ . . .

be a descending chain of closed subsets of P. There are two cases: either Xn = P for
all n ∈N or Xn , P for some n ∈ N. In the first case, we are done. In the second case,
we may assume that n = 1 by removing the first n − 1 closed subsets from the chain.
Now, we have X1 , P and hence X1 is covered by images from smaller polynomial
functors, i.e., there exist finitely many polynomial transformations αi : Qi → P such
that X1 ⊆

⋃
i im(αi). Take Yi,n = α−1

i (Xn) for all i and n ∈ N. Then we get a chain of
closed subsets of Qi

Qi ⊇ Yi,1 ⊇ Yi,2 ⊇ Yi,3 ⊇ Yi,4 ⊇ . . .

for every i. As the Qi are smaller than P, these chains stabilize by the induction
hypothesis. Here the base case consists of polynomial functors of degree zero and is
hence implied by Hilbert’s Basis Theorem. As there are only finitely many i, the chains
must stabilize at some common point. As Xn =

⋃
i αi(Yi,n) for each n ∈ N, we see that

therefore the original chain in P also stabilizes. �

As a second example of a result we can prove using the Dichotomy Theorem as a tool
for induction, we prove a version of Chevalley’s Theorem on the constructibility of
images of constructible sets. See Theorem 4.6.7.

The second use of the Dichotomy Theorem is that it provides a basis for the study
of the lattice of orbit closures in P∞. When the degree of P is zero, then this lattice
consists of infinitely many disconnected points. However, when P is pure and of
positive degree, we will see that this lattice is more interesting. Let p ∈ P∞ be a point.
Then its orbit closure GL∞·p corresponds to the smallest closed subset X ⊆ P such that
prn(p) ∈ Xn for all n ∈N. Now, we again have two cases: either X = P or X , P. In the
first case, we call the point p a GL∞-generic point. In the second case, the subset X is
covered by images from smaller polynomial functors and therefore p = α(q) for some
polynomial functor Q < P and some polynomial transformation α : Q → P and some
point q ∈ Q∞. As long as the point q is not GL∞-generic, we continue to write it as
the image of a point coming from a smaller polynomial functor. Since the ordering on
polynomial functors is well-founded, this can only continue for finitely many steps.
We conclude that every point p is the image of a GL∞-generic point q ∈ Q∞. Studying
the minimal Q for which this is the case leads to the definition of the type of p, which
we will define in Section 4.5. Our main result here is that the lattices of orbit closures
in P∞ and of types of points in P∞ are the same.

Outline of this chapter. In the next two sections, we state and prove the Dichotomy
Theorem. Then, before we move on to the applications of the Dichotomy Theorem,
we have a short intermission where we give more details on the structure of dominant
polynomial transformations between two polynomial functors. The sections after that
are about types of points and about a variant of Chevalley’s Theorem for our setting.
We conclude with a section filled with interesting examples and open questions.
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4.2 Ordering polynomial functors

Definition 4.2.1. Let P be a polynomial functor. We define the magnitude of P to be the
sequence mag(P) := (n0,n1,n2, . . . ) where nd is the number of irreducible components
of the GL(V)-module P(d)(V) for all V ∈ Vecµ with dim(Vi)� 0 for all i ∈ [µ].

Remark 4.2.2. The magnitude of P is well-defined by Lemma 1.3.35. ♠

Let P,Q be polynomial functors with magnitudes mag(P) = (n1,n2, . . . ) and mag(Q) =
(m1,m2, . . . ). We compare the magnitudes of P and Q lexicographically, i.e., we say
that mag(Q) < mag(P) when mag(Q) , mag(P) and md < nd where d ∈ N is maximal
with the property that md , nd. Note that this ordering is well-founded.

Definition 4.2.3. A polynomial functor P is called pure when P(0) = P(0) = 0.

Write Q = Q(0) ⊕Q′, consider a polynomial transformation α : Q→ P and let

q = (q0, q′) ∈ Q∞ = Q(0) ⊕Q′∞

be a point with image p = α∞(q) in P∞. Then the polynomial transformation β : Q′ → P
defined by the maps

Q′(V) → P(V)
x 7→ αV(q0, x)

also maps the point q′ to p. So if a point in P∞ lies in the image of a polynomial trans-
formation from Q, then it also lies in the image of a polynomial transformation from
the pure polynomial functor Q′ whose magnitude only differs from the magnitude
of Q in its first entry.

Definition 4.2.4. Define the partial ordering ≤ on the set of isomorphism classes of
polynomial functors by Q < P when Q � P and Q(d) is a quotient of P(d) where d ∈ N
is maximal with the property that Q(d) � P(d).

Note that when Q < P, we have also mag(Q) < mag(P). So ≤ is well-founded.

Theorem 4.2.5 (Dichotomy Theorem). Assume that K is an algebraically closed field of
characteristic 0 and let X be a closed subset of a µ-variate polynomial functor P of finite degree.
Then either X = P or there exist a finite number of finite-dimensional affine varieties Ai, pure
µ-variate polynomial functors Qi < P and regular transformations

αi : Ai ×Qi → P

such that X(V) =
⋃

i im(αi,V) for all V ∈ Vecµ and X∞ =
⋃

i im(αi,∞).

4.3 The proof of the Dichotomy Theorem

Similar to the proof of Draisma in [17], we will prove the Dichotomy Theorem using
induction on P. Note that, when the degree of P is 0, any nonempty closed subset
X ( P is itself a finite-dimensional affine variety and so we can choose Q = 0. So we
assume that P has positive degree. Write P = Q ⊕ R for some irreducible polynomial
functor R ⊆ P(d) where d = deg(P). Then we have Q < P. If X = Y × R for some closed
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subset Y ⊆ Q, then there exist a finite number of finite-dimensional affine varieties Ai,
pure polynomial functors Qi ≤ Q and regular transformations

αi : Ai ×Qi → Q

such that Y(V) =
⋃

i im(αi,V) for all V ∈ Vecµ and Y∞ =
⋃

i im(αi,∞). In this case, we see
that the regular transformations

βi : Ai × (Qi ⊕ R)→ P

defined by βi,V(a, q, r) = (αi,V(a, q), r) satisfy X(V) =
⋃

i im(βi,V) for all V ∈ Vecµ and
X∞ =

⋃
i im(βi,∞). Here we take the identity transformation Q → Q if Y = Q. So we

suppose that such a closed subset Y does not exists.

Fix a U ∈ Vecµ such that the ideal I(X(U)) ⊆ K[P(U)] is not generated by I(X(U)) ∩
K[Q(U)] and let Y be a closed subset of P. Note that I(Y(U)) is homogeneous with
respect to the grading where nonzero elements of P(e)(U)∗ have degree e. If the ideal
I(Y(U)) ⊆ K[P(U)] is not generated by I(Y(U)) ∩ K[Q(U)], then we define δY as the
minimal degree of an element of I(Y(U)) that is not contained in the ideal generated
by I(Y(U)) ∩ K[Q(U)]. Now, let � be the partial ordering on closed subsets Y of P
defined by Y1 ≺ Y2 if either the closure of the projection of Y1 to Q is strictly contained
in the closure of the projection of Y2 or both closures are equal and δY1 < δY2 . The
partial ordering � is well-founded since Q is Noetherian by the induction hypothesis
and Theorem 4.1.1. We will also do induction on �.

Let f ∈ I(X(U)) be a polynomial of degree δX > 0 that is not contained in the ideal
generated by I(X(U)) ∩ K[Q(U)]. Then there is a vector r ∈ R(U) such that

h =
∂ f
∂r

is not the zero polynomial. We let Y be the biggest closed subset of X such that
h ∈ I(Y(U)). Now either h is contained in the ideal generated by I(Y(U)) ∩ K[Q(U)]
or it is not. In both cases, we see that Y ≺ X. So we can cover Y with images of
regular transformations from smaller polynomial functors. We will next construct
finitely many additional regular transformations that cover Z(V) := X(V) \Y(V) for all
V ∈ Vecµ and also cover Z∞ := X∞ \ Y∞.

Take P′ = P ◦ ShU where ShU : Vecµ → Vecµ is the functor assigning U⊕V to V ∈ Vecµ

and idU ⊕` to a morphism `. Then P′ is a polynomial functor of degree d and P′(d) = P(d).
Write P′ = Q′⊕R and note that Q′ < P. Take Z′(V) := {p′ ∈ X(U⊕V) | h(P(πU)(p′)) , 0}
for each V ∈ Vecµ and Z′∞ :=

{
(p′n)n ∈ P′∞

∣∣∣ ∀n : p′n ∈ Z′(Kn, . . . ,Kn)
}
. We consider the

polynomial transformation γ : P′ → P given by the maps

γV := P(πV) : P′(V) = P(U ⊕ V)→ P(V).

First note that γV(Z′(V)) ⊆ X(V) for all V ∈ Vecµ. Second, note that for all V ∈ Vecµ

and p ∈ Z(V), there is a morphism ` : V → U such that h(P(`)(p)) , 0 and the element

p′ = P(`′)(p) ∈ Z′(V), `′ : V → U ⊕ V, `′i (vi) = (`(vi), vi) for i ∈ [µ]
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is mapped to p by γV. So we have X(V) \ Y(V) = Z(V) ⊆ γV(Z′(V)) ⊆ X(V) for
all V ∈ Vecµ. Next, for a point p = (pn)n ∈ X∞ \ Y∞, there is an m ∈ N such that
pm ∈ Z(Km, . . . ,Km). Let ` : (Km, . . . ,Km)→ U be a morphism such that h(P(`)(pm)) , 0.
Then the elements

p′n = P(`′)(pn) ∈ Z′(Kn), `′ : (Kn)i → (Ui ⊕ Kn)i, `′i (v) = (`i(prm(v)), v) for i ∈ [µ]

map to the elements pn and P′(prn, . . . ,prn)(p′n+1) = p′n for all n ≥ m. So the sequence
(p′n)n≥m defines a point in Z′∞ that is mapped to p. We also see that γ∞(p′) ∈ X∞ for
all p′ ∈ Z′∞. So we also have X∞ \ Y∞ = Z∞ ⊆ γ∞(Z′∞) ⊆ X∞. Hence it suffices
to contruct a finite number of finite-dimensional affine varieties B j, pure polynomial
functors R j < P and regular transformations

β j : B j × R j → P′

such that Z′(V) =
⋃

j im(β j,V) for all V ∈ Vecµ and Z′∞ =
⋃

j im(β j,∞). Note that, for
each V ∈ Vecµ, the map h ◦P(πU) : P′(V)→ K is the composition of the projection map
πQ′(V) : P′(V)→ Q′(V) with the map h ◦ P(πU) ◦ ιQ′(V)⊆P′(V) : Q′(V)→ K. Take

Z′′(V) :=
{
q ∈ Q′(V)

∣∣∣ (h ◦ P(πU) ◦ ιQ′(V)⊆P′(V))(q) , 0
}

for each V ∈ Vecµ. Then the restriction πQ′(V)|Z′(V) : Z′(V)→ Z′′(V) is a closed embed-
ding by [17, Lemma 21]. We view the codomain Z′′(V) as a closed subset of K ⊕Q′(V)
and in this manner we obtain a closed subset Z′′ of K ⊕ Q′. The regular transforma-
tion Z′′ → P′ given by the maps πQ′(V)|

−1
Z′(V) extends to a polynomial transformation

β : K ⊕ Q′ → P′ such that βV(Z′′(V)) = Z′(V) for all V ∈ Vecµ and β∞(Z′′∞) = Z′∞.
Since K ⊕ Q′ < P, we know that there are a finite number of finite-dimensonal affine
varieties B j, pure polynomial functors R j ≤ K ⊕Q′ and regular transformations

β′j : B j × R j → K ⊕Q′

such that Z′′(V) =
⋃

j im(β j,V) for all V ∈ Vecµ and Z′′∞ =
⋃

j im(β j,∞). So the regular
transformations

β j := β ◦ β′j : B j × R j → P′

satisfy the desired properties. This concludes the proof.

4.4 The structure of dominant polynomial transformations

Let P,Q be pure polynomial functors. The goal of this section is to better understand
the polynomial transformations α : Q → P that are dominant, i.e., such that αV is
dominant for all V ∈ Vecµ. In particular, we want to understand the structure of the
group Aut(P) of polynomial automorphisms P→ P.

Consider a polynomial transformation

α : Q =
⊕
λ

S⊕mλ

λ
→ P =

⊕
λ

S⊕nλ
λ

and fix a λ. Then the composition

πS
⊕nλ
λ
◦ α : Q→ S⊕nλ

λ
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only depends on ⊕
λ′:|λ′|<|λ|

S⊕mλ′

λ′
⊕ S⊕mλ

λ

and is the sum of a polynomial transformation

βλ :
⊕

λ′:|λ′|<|λ|

S⊕mλ′

λ′
→ S⊕nλ

λ

and a linear transformation `λ : S⊕mλ

λ
→ S⊕nλ

λ
. This linear transformation `λ corre-

sponds to a matrix Aλ ∈ Knλ×mλ . We start with the following lemma.

Lemma 4.4.1. The following statements are equivalent:

(1) The polynomial transformation πS
⊕nλ
λ
◦ α is dominant.

(2) The polynomial transformation πS
⊕nλ
λ
◦ α is surjective.

(3) The linear transformation `λ is surjective.

(4) The matrix Aλ has rank nλ.

Proof. Clearly, we have (4) ⇔ (3) ⇒ (2) ⇒ (1). So it suffices to prove that (1) ⇒ (3)
holds. Suppose that (1) holds and that `λ is not surjective. Then there exists a surjective
linear transformation `′ : Snλ

λ
→ Sλ such that `′ ◦ `λ = 0. So then

`′ ◦ πS
⊕nλ
λ
◦ α = `′ ◦ βλ :

⊕
λ′:|λ′|<|λ|

S⊕mλ′

λ′
→ Sλ

must be a dominant polynomial transformation. Note that for V ∈ Vec, the dimensions
of ⊕

λ′:|λ′|<|λ|

Sλ′(V, . . . ,V)⊕mλ′

and of Sλ(V, . . . ,V) are polynomials in the dimension of V. As the former has a
lower degree than the latter, we see that (`′ ◦ βλ)(V,...,V) cannot be dominant when the
dimension of V is big enough. Hence `λ must be surjective. �

When α : Q→ P is dominant, it follows that

πS
⊕nλ
λ
◦ α : Q→ S⊕nλ

λ

is dominant for all λ. It follows that α = β ◦ ` where ` ∈ GL(Q) is the linear automor-
phism made up out of the linear automorphisms `−1

λ ∈ GL(Smλ

λ
) and β : Q → P is a

polynomial transformation given by maps

βV :
⊕
λ

Sλ(V)⊕mλ →

⊕
λ

Sλ(V)⊕nλ

q = ((qλ,1, . . . , qλ,mλ))λ 7→ ((qλ,1 + βλ,1,V(π<λ(q)), . . . , qλ,nλ + βλ,nλ,V(π<λ(q))))λ

for V ∈ Vecµ where
βλ,i :

⊕
λ′:|λ′|<|λ|

S⊕mλ′

λ′
→ Sλ
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are polynomial transformations and where

π<λ : Q→
⊕

λ′:|λ′|<|λ|

S⊕mλ′

λ′

is the natural projection. In particular, we see that mλ ≥ nλ for all λ.

Remark 4.4.2. Suppose that α : Q → P is a polynomial isomorphism. Then it follows
that mλ = nλ for all λ and hence that Q and P are also linearly isomorphic.

Definition 4.4.3. We call ` and β the linear and affine parts of α.

Definition 4.4.4. We call a polynomial transformation β : Q→ P of the form above an
affine polynomial transformation.

Definition 4.4.5. Let β : Q → P be an affine polynomial transformation and suppose
that βλ,i = 0 for all but one pair (λ, i). Then we call β an elementary affine polynomial
transformation.

Example 4.4.6. Take Q = S1
⊕ (S2)⊕2 and consider the polynomial transformation

α ∈ Aut(Q) given by the maps

αV : V ⊕ S2(V) ⊕ S2(V) → V ⊕ S2(V) ⊕ S2(V)
(v,A,B) 7→ (2v,A + B + v2,A − B − 3v2)

for V ∈ Vec. We have α = β ◦ ` = ` ◦ β′ where ` ∈ GL(Q) and β, β′ ∈ Aut(Q) are given
by the maps

`V : V ⊕ S2(V) ⊕ S2(V) → V ⊕ S2(V) ⊕ S2(V)
(v,A,B) 7→ (2v,A + B,A − B),

βV : V ⊕ S2(V) ⊕ S2(V) → V ⊕ S2(V) ⊕ S2(V)
(v,A,B) 7→ (v,A + v2,B − 3v2)

and

β′V : V ⊕ S2(V) ⊕ S2(V) → V ⊕ S2(V) ⊕ S2(V)

(v,A,B) 7→ (v,A − v2,B + 2v2)

for V ∈ Vec. Here we note that that the matrices

(2),
(
1 1
1 −1

)
are invertible and that the solution of the system of equations(

1 1
1 −1

)
x =

(
1
−3

)
is x = (−1, 2)T. ♣
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Example 4.4.7. Take Q = S1
⊕ S2

⊕ S3 and consider the polynomial transformation
β ∈ Aut(Q) given by the maps

βV : V ⊕ S2(V) ⊕ S3(V) → V ⊕ S2(V) ⊕ S3(V)
(v, q, f ) 7→ (v, q + v2, f + vq)

for V ∈ Vec. We have β = β2 ◦ β1 where β1, β2 ∈ Aut(Q) are given by the maps

β1,V : V ⊕ S2(V) ⊕ S3(V) → V ⊕ S2(V) ⊕ S3(V)
(v, q, f ) 7→ (v, q, f + vq)

and

β2,V : V ⊕ S2(V) ⊕ S3(V) → V ⊕ S2(V) ⊕ S3(V)
(v, q, f ) 7→ (v, q + v2, f )

for V ∈ Vec. ♣

Definition 4.4.8. The affine polynomial automorphisms β : Q → Q form a subgroup
of Aut(Q). We denote this subgroup by Aff(Q).

Lemma 4.4.9. The subgroup Aff(Q) of Aut(Q) is normal.

Proof. As Aut(Q) is generated by GL(Q) and Aff(Q) by Lemma 4.4.1, this follows from
the fact that ` ◦Aff(Q) ◦ `−1 = Aff(Q) for all ` ∈ GL(Q). �

Lemma 4.4.10. Every affine polynomial transformation Q → P is a composition of the
polynomial transformation π : Q→ P given by the maps

πV :
⊕
λ

Sλ(V)⊕mλ →

⊕
λ

Sλ(V)⊕nλ

((qλ,1, . . . , qλ,mλ))λ 7→ ((qλ,1, . . . , qλ,nλ))λ

for V ∈ Vecµ and elementary affine polynomial transformations of Q. In particular, the group
Aff(Q) is generated by the set of all elementary affine polynomial transformations.

Proof. It is easy to see that every affine polynomial transformation is a composition of
elementary affine automorphisms

π ◦
∏
λ

nλ∏
i=1

γλ,i

where the order of the composition is such that the γλ,i with higher |λ| are applied
first. When Q = P, we get π = idQ and hence Aff(Q) is generated by the set of all
elementary affine polynomial transformations. �

Lemma 4.4.11. Every β ∈ Aff(Q) is a unipotent element of Mor(Q,Q).

Proof. Write Q = Q(1) ⊕ · · · ⊕Q(d). Then one can check using induction on k that

πQ(1)⊕···⊕Q(k) ◦ (β − idQ)k = 0

for all k ∈ {1, . . . , d}. In particular, we have (β − idQ)d = 0 and hence β is unipotent. �

The discussion above gives us the following result.

Proposition 4.4.12. Any domimant polynomial transformation α : Q→ P is the composition
of a linear automorphism ` ∈ GL(Q) and an affine polynomial transformation β : Q→ P. The
unipotent radical of the finite-dimensional algebraic group Aut(Q) is Aff(Q) and has GL(Q)
as a Levi complement. �

102



4.5 Theory of types

From now on, we take µ = 1 and consider univariate polynomial functors. Fix a pure
polynomial functor P. In this section, we consider the lattice of orbit closures

GL∞·p ⊆ P∞

over all points p ∈ P∞ ordered by containment, i.e., we say that GL∞·q ≤ GL∞·p when
the former is contained in the latter.

4.5.1 GL∞-generic points

Definition 4.5.1. A point p ∈ P∞ is called GL∞-generic if GL∞·p = P∞. When the
point p is not GL∞-generic, we call p degenerate.

The GL∞-generic points will play a role similar to generic points in finite-dimensional
algebraic geometry.

Remark 4.5.2. Note that if the polynomial functor P is not pure, then there are no
points in P∞ whose GL∞-orbit is dense. Hence the definition of GL∞-generic points
only makes sense when P is pure.

By the Dichotomy Theorem, the point p is GL∞-generic if and only if it is not in the
image of any polynomial transformation Q → P with Q < P. We start by relating
the GL∞-genericity of a point in P∞ to that of its projections onto the irreducible
components of P.

Lemma 4.5.3. Write P = P(1) ⊕ · · · ⊕ P(d) and let

p = (p1, . . . , pd) ∈ P∞ = P(1),∞ ⊕ · · · ⊕ P(d),∞

be a point. Then p ∈ P∞ is GL∞-generic if and only if p1 ∈ P(1),∞, . . . , pd ∈ P(d),∞ are.

Proof. It is clear that if one of p1, . . . , pd is degenerate, then so is p. Suppose that p is
degenerate, but pd is not. Then there exists a polynomial transformation α : Q → P
with Q < P whose image contains p. Note that pd is in the image of the composition
πd ◦αwhere πd : P→ P(d) is the natural projection. So Q � P(d) since pd is GL∞-generic.
This means that Q(d) � P(d). So

Q(1) ⊕ · · · ⊕Q(d−1) < P(1) ⊕ · · · ⊕ P(d−1)

and therefore (p1, . . . , pd−1) is degenerate. It follows by induction on d that, if p1, . . . , pd
are GL∞-generic, then so is p. �

Lemma 4.5.4. Suppose that P is homogeneous of degree d, write P =
⊕

λ`d Snλ
λ

and let

p = (pλ)λ ∈ P∞ =
⊕
λ`d

Snλ
λ,∞

be a point. Then p ∈ P∞ is GL∞-generic if and only if pλ ∈ Snλ
λ,∞

is GL∞-generic for all λ ` d.

103



Proof. If one of pλ is degenerate, then so is p. Assume that p is degenerate. Then there
exists a polynomial transformation α : Q → P with Q < P whose image contains p.
Write

Q = R ⊕
⊕
λ`d

Smλ

λ

with R a polynomial functor whose degree is lower than the degree of P. Then mλ < nλ
for some λ since Q < P. This implies that pλ is degenerate since it is in the image of
the composition πS

nλ
λ
◦ α which only depends on Q = R ⊕ Smλ

λ
< Snλ

λ
. So if all pλ are

GL∞-generic, then so is p. �

Let λ be a partition. Then the subset Dλ ⊆ Sλ,∞ consisting of all points in Sλ,∞ that
are degenerate is a subspace of Sλ,∞. To see this, let p, q ∈ Dλ be points coming from
smaller polynomial functors Q,R < Sλ. Then deg(Q),deg(R) < |λ|. So deg(Q⊕R) < |λ|
and hence Q⊕R < Sλ. As p + q comes from Q⊕R, this means that p + q ∈ Dλ. So Dλ is
closed under addition. For any polynomial functor Q, the set of points in Sλ,∞ coming
from Q is closed under scaling. So Dλ is indeed a subspace of Sλ,∞.

Lemma 4.5.5. Suppose that P = Sn
λ and let

p = (p1, . . . , pn)λ ∈ P∞ = Sn
λ,∞

be a point. Then p ∈ P∞ is GL∞-generic if and only if the points p1, . . . , pn ∈ Sλ,∞ are linearly
independent modulo Dλ.

Proof. This proof is left to the reader. �

Proposition 4.5.6. Write P =
⊕

λ Snλ
λ

and let

p = ((pλ,1, . . . , pλ,nλ))λ ∈ P∞ =
⊕
λ

Snλ
λ,∞

be a point. Then p ∈ P∞ is GL∞-generic if and only if the points pλ,1, . . . , pλ,nλ ∈ Sλ,∞ are
linearly independent modulo Dλ for all λ.

Proof. This follows directly from the previous three lemmas. �

Our next task is to show that GL∞-generic points exist. Recall that T⊗d is the univariate
polynomial functor sending V 7→ V⊗d.

Lemma 4.5.7. The point

p =

 ∞∑
i=0

ei·nd+1 ⊗ · · · ⊗ ei·nd+d, . . . ,
∞∑

i=0

ei·nd+(n−1)d+1 ⊗ · · · ⊗ ei·nd+nd

 ∈ (T⊗d)⊕n
∞

is GL∞-generic.

Proof. We need to prove that (T⊗d)⊕n is the smallest closed subset X of itself such that
p ∈ X∞. So let X ⊆ (T⊗d)⊕n be a closed subset such that p ∈ X∞. Then we see that

prknd(p) =

 k∑
i=0

ei·nd+1 ⊗ · · · ⊗ ei·nd+d, . . . ,
k∑

i=0

ei·nd+(n−1)d+1 ⊗ · · · ⊗ ei·nd+nd

 ∈ X(Kknd)
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for all k ∈N. Let ` : Kknd
→ V be any linear map and write `(e j) = v j ∈ V. Then we see

that

P(`)(prknd(p)) =

 k∑
i=0

vi·nd+1 ⊗ · · · ⊗ vi·nd+d, . . . ,
k∑

i=0

vi·nd+(n−1)d+1 ⊗ · · · ⊗ vi·nd+nd

 ∈ X(V)

for all v1, . . . , vknd ∈ V. For k = n(dim V)d, we see that every element of (V⊗d)⊕n is of
this form. Hence X = (T⊗d)⊕n and so p is GL∞-generic. �

Lemma 4.5.8. For every partition λ and every n ∈N, the space S⊕n
λ,∞

contains a GL∞-generic
point.

Proof. Take d = |λ|. Then
(T⊗d)⊕n =

⊕
λ′`d

S⊕nλ′
λ′

with nλ′ ≥ n for all λ ` d. By the previous lemma and Proposition 4.5.6, it follows that
S⊕nλ
λ,∞

has a GL∞-generic point (p1, . . . , pnλ). By Lemma 4.5.5, we see that (p1, . . . , pn) is a
GL∞-generic point of S⊕n

λ,∞
. �

Proposition 4.5.9. The space P∞ contains a GL∞-generic point.

Proof. This follows from Proposition 4.5.6 and the previous lemma. �

Proposition 4.5.10. For every partitionλ, the quotient space Sλ,∞/Dλ is infinite-dimensional.

Proof. The previous lemma shows that Sλ,∞/Dλ contains n linearly independent ele-
ments for all n ∈N. Hence Sλ,∞/Dλ must be infinite-dimensional. �

Before we define the type of a point, we state some easy but important observations.

Proposition 4.5.11. Let q ∈ Q∞ be a GL∞-generic point and let α, β : Q→ P be polynomial
transformations such that α∞(q) = β∞(q). Then α = β.

Proof. Since α∞ − β∞ is GL∞-equivariant, we see that α∞ − β∞ is zero on GL∞·q. As
α∞ − β∞ is continuous, it follows that α∞ − β∞ is the zero map. So α∞ = β∞ and hence
we get α = β. �

Proposition 4.5.12. Let q ∈ Q∞ be a GL∞-generic point and let α : Q → P be a polynomial
transformation. Then im(α∞) = GL∞·α∞(q).

Proof. We have Q∞ = GL∞·q and hence

im(α∞) = α∞(Q∞) = α∞(GL∞·q) = GL∞·α∞(q)

since α∞ is GL∞-equivariant. �
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4.5.2 Types of points

Let p ∈ P∞ be a point.

Proposition 4.5.13. There exist a polynomial functor Q ≤ P, a GL∞-generic point q ∈ Q∞
and a polynomial transformation α : Q→ P with p = α∞(q).

Proof. We prove the proposition using induction on P. If p is GL∞-generic, then we take
Q = P, q = p and α = idP. Otherwise, let X be the closed subset of P with GL∞·p = X∞.
Then X , P and hence X is covered by images from smaller polynomial functors by
Theorem 4.2.5. It follows that there exist a polynomial functor R < P, a point r ∈ R∞
and a polynomial transformation β : R → P with p = β∞(r). By induction, there also
exist a polynomial functor Q ≤ R, a GL∞-generic point q ∈ Q∞ and a polynomial
transformation γ : Q→ R with r = α∞(q). We see that the conditions of the proposition
hold with α = β ◦ γ. �

Roughly speaking, the type of the point p is the smallest polynomial functor Q (up to
isomorphism) satisfying the conditions of the proposition. To prove that such a func-
tor Q is well-defined, we need to understand the polynomial transformations whose
image contain p better. Let α : Q→ P and β : R→ P be polynomial transformations.

Definition 4.5.14. We write α � β if there exists a polynomial transformation γ : Q→ R
such that α = β ◦ γ. We say that α and β are equivalent if both α � β and β � α.
The quasi-order � induces a partial order on equivalence classes [α] of polynomial
transformations, also denoted �.

Let q ∈ Q∞ be a GL∞-generic point. Note that this implies that Q is pure. Also let
r ∈ R∞ be an arbitrary point.

Lemma 4.5.15. Assume that R = Sλ′ for some partition λ′. Then there exist a polynomial
functor Q′, a point q′ ∈ Q′∞ and a polynomial transformation γ : Q ⊕ Q′ → R such that
(q, q′) ∈ Q∞ ⊕Q′∞ is GL∞-generic and γ∞(q, q′) = r.

Proof. Write

Q =
⊕
λ

Snλ
λ

and q = ((qλ,1, . . . , qλ,nλ))λ ∈
⊕
λ

Snλ
λ,∞
.

We are allowed to enlarge the nλ as long as qλ,1, . . . , qλ,nλ remain linearly independent
modulo Dλ and we need to prove that after doing so the point r lies in the image of a
polynomial transformation from

⊕
λ Snλ

λ
. Note that, after possibly enlarging nλ′ , we

may assume that r lies in the span of qλ′,1, . . . , qλ′,nλ′ modulo Dλ′ . So we can write r as a
linear combination of qλ′,1, . . . , qλ′,nλ′ and a degenerate point in Sλ′,∞. We can write this
degenerate point as the image of a point (r′1, . . . , r

′

k) ∈ Sλ1,∞⊕· · ·⊕Sλk,∞where λ1, . . . , λk
are partitions with |λi| < |λ′|. So, using induction on |λ′|, we can enlarge the nλ finitely
many times and write each of the r′i as images from

⊕
λ Snλ

λ
. This in turn allows us to

write r as an image from
⊕

λ Snλ
λ

. �

Now we drop the assumption that R is a Schur functor.

Lemma 4.5.16. There exist a polynomial functor Q′, a point q′ ∈ Q′∞ and a polynomial
transformation γ : Q⊕Q′ → R such that (q, q′) ∈ Q∞⊕Q′∞ is GL∞-generic and γ∞(q, q′) = r.
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Proof. It suffices to prove the lemma assuming that the polynomial functor R is pure.
We prove the lemma using induction on the number of irreducible components of R.
When R = 0, we simply take Q′ = 0 and γ = 0. So assume that R , 0 and write

R = R′ ⊕ Sλ and r = (r′, s) ∈ R′∞ ⊕ Sλ,∞

for some partition λ. Using the induction hypothesis, there exist a polynomial functor
Q′, a point q′ ∈ Q′∞ and a polynomial transformation γ : Q ⊕ Q′ → R′ such that
(q, q′) ∈ Q∞ ⊕ Q′∞ is GL∞-generic and γ∞(q, q′) = r′. Using the previous lemma, there
also exist a polynomial functor Q′′, a point q′′ ∈ Q′′∞ and a polynomial transformation
γ′ : Q ⊕Q′ ⊕Q′′ → Sλ such that

(q, q′, q′′) ∈ Q∞ ⊕Q′∞ ⊕Q′′∞

is GL∞-generic and γ′∞(q, q′, q′′) = s. We are now done since Q′⊕Q′′, (q′, q′′) and (γ, γ′)
satisfy the conditions of the lemma. �

Proposition 4.5.17. If α∞(q) = β∞(r), then α � β.

Proof. By the previous lemma, there exist a polynomial functor Q′, a point q′ ∈ Q′∞ and
a polynomial transformation γ : Q⊕Q′ → R such that (q, q′) ∈ Q∞⊕Q′∞ is GL∞-generic
and γ∞(q, q′) = r. Note that α∞(πQ∞(q, q′)) = α∞(q) = β∞(γ∞(q, q′)). It follows that
α ◦ πQ = β ◦ γ as (q, q′) is GL∞-generic and hence α = β ◦ γ(−, 0). �

Corollary 4.5.18. All polynomial transformations α : Q → P for which there exists a GL∞-
generic point q ∈ Q∞ with α∞(q) = p are equivalent and have im(α∞) = GL∞·p. �

Corollary 4.5.19. There is a unique polynomial functor whose magnitude is minimal among
all polynomial functors Q for which there are a GL∞-generic point q ∈ Q∞ and a polynomial
transformation α : Q→ P with p = α∞(q).

Proof. Let Q be any polynomial functor whose magnitude is minimal among all poly-
nomial functors for which there are a GL∞-generic point q ∈ Q∞ and a polynomial
transformation α : Q→ P with p = α∞(q). Also let R be a polynomial functor, r ∈ R∞ a
GL∞-generic point and β : R→ P a polynomial transformation with p = β∞(r). We will
prove that Q is a quotient of R, which implies that Q is unique up to isomorphism.

By the previous proposition, we see that β � α. So there exists a polynomial transfor-
mation γ : R → Q such that β = α ◦ γ. Consider the closed subset X = im(γ) ⊆ Q and
the point γ∞(r) ∈ X∞. If X , Q, then by Theorem 4.2.5 there exist a polynomial functor
Q′ < Q, a polynomial transformation α′ : Q′ → Q and a GL∞-generic point q′ ∈ Q′∞
with α′∞(q′) = γ∞(r). But then

p = β∞(r) = α∞(γ∞(r)) = α∞(α′∞(q′)) = (α ◦ α′)∞(q′),

which contradicts the minimality of Q. Hence X = Q and so the polynomial transfor-
mation γ : R → Q is dominant. We conclude using Lemma 4.4.1 that Q is a quotient
of R and hence Q is unique. �

Definition 4.5.20. We call the polynomial functor Q from the corollary the type of p.

From the proof of the previous corollary, we also get the following result.

Corollary 4.5.21. Let r ∈ R∞ be a GL∞-generic point, let α : R → P be a polynomial
transformation and let Q be the type of α∞(r). Then α factors through Q. �
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4.5.3 A map between lattices

We conclude this section by proving the following theorem. Note that equivalent
polynomial transformations have the same image.

Theorem 4.5.22. The map

{classes of pure polynomial transformations into P} → {GL∞-orbit closures in P∞}

[α] 7→ im(α∞)

is an order-preserving bijection.

Here the former set is ordered by the partial order � from Definition 4.5.14 and the
latter set is ordered by containment.

Remark 4.5.23. The inverse of this map is not order-preserving in general. See Sub-
section 4.7.2 for an example where this happens.

The fact that this map is order-preserving follows from directly from the definition of
the partial order �. Surjectivity of the map follows from Corollary 4.5.18. To prove
injectivity, we need to following lemmas.

Lemma 4.5.24. Let α : Q → P be a polynomial transformation. If prn(p) ∈ im(αn) for all
n ∈N, then p ∈ im(α∞).

Proof. Before we prove the general case, we first consider the case where the field K
is uncountable. Let q ∈ Q∞ be a point. Then the equality α∞(q) = p holds if and only
if αn(prn(q)) = prn(pn) holds for all n ∈ N. This translates α∞(q) = p into polynomial
equations in countably many variables and the condition that prn(p) ∈ im(αn) for
all n ∈ N shows that any finite number of these equations has a solution. Hence, by
Lang’s theorem from [28] the entire system has a solution when K is uncountable.

Now for the general case, let β : R→ P be a polynomial transformation and let r ∈ R∞
be a GL∞-generic point such that β∞(r) = p. Choose an uncountable algebraically
closed extension L/K. Then r is still GL∞-generic in RL

∞: indeed, for each n ∈N, there
exists an m ≥ n such that prn(GLm·prm(r)) is dense in Rn and then this set is also dense
in RL

n. Proposition 4.5.17 yields that βL
� αL. But then also β � α, i.e., there exists a

polynomial transformation γ : R→ Q (defined over K) such that β = α◦γ, as the space
Mor(R,Q) is finite-dimensional and the field K is algebraically closed. So q = γ∞(r)
satisfies α∞(q) = p. �

Remark 4.5.25. The rank functions from Section 1.4 all can be extended to their re-
spective infinite settings. There are two a priori different way of doing this. One
possibility is to define the rank of a series p as the infimum of all its projections prn(p).
Another way is to define the rank of a series using the description of the rank in terms
of polynomial transformations. The previous lemma shows that these two definitions
coincide.

Lemma 4.5.26. Suppose that K has infinite transcendence degree over Q. Let p ∈ P∞ have
coordinates that are algebraically independent over Q. Then p is GL∞-generic.
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Proof. Let Q < P be a pure polynomial functor. Then the polynomial transformation
α : Q′ = Mor(Q,P) ⊕Q→ P defined by the maps

αV(β, q) = βV(q)

for V ∈ Vec is defined over Q and for any polynomial transformation β : Q → P we
have im(β∞) ⊆ im(α∞). We have Q′ < P. So there is a d such that Q′(e) � P(e) for all e > d
and Q′(d) � P(d) is a quotient of P(d). We see that the coefficients of the polynomials
n 7→ dim Q′(Kn) and n 7→ dim P(Kn) coincide in degrees > d and that the coefficient of
n 7→ dim Q′(Kn) is lower in degree d. So dim Q′(Kn) < dim P(Kn) for n ∈N big enough.
For such an integer n ∈N, we find that

im(αn)

is a strict closed subset of P(Kn) defined over Q. Hence it does not contain the point
prn(p) ∈ P(Kn) since its coordinates are algebraically independent over Q. �

Injectivity now follows from the following proposition.

Proposition 4.5.27. Let α : Q→ P and β : R→ P be polynomial transformations such that

im(α∞) = im(β∞).

If Q is pure, then α � β. If in addition R is also pure, then α and β are equivalent.

Proof. The polynomial transformations α and β are defined over our fixed ground field
K. Let L/K be an algebraically closed extension of infinite transcendence degree and
let q ∈ QL

∞ have coordinates that are algebraically independent over K. Now define
pn = αL

n(prL
n(q)). This is a generic point of the K-variety imαn = im βn. So in particular,

it is contained in the image of the map βL
n : RL(Ln)→ PL(Ln). By Lemma 4.5.24 applied

with L instead of K, it follows that p := (pn)n ∈ P∞ lies in the image of the map
βL
∞ : R∞(L) → P∞(L). Moreover, the point q is GL∞-generic by Lemma 4.5.26. Here

we use that Q is pure. So by Proposition 4.5.17 we find αL
� βL. But the polynomial

transformation γ : QL
→ RL such that αL = βL

◦ γ is a solution to a finite-dimensional
system of polynomial equations with coefficients from K. Hence this system has a
solution over the algebraically closed field K. So α � β. When R is also pure, the same
argument shows that also β � α. �

Proof of Theorem 4.5.22. The proof of the theorem follows from Corollary 4.5.18 together
with the previous proposition. �

4.6 A version of Chevalley’s Theorem

Let Q,P be polynomial functors and let α : Q → P be a polynomial transformation.
The goal of this section is to use the Dichotomy Theorem to prove that α∞ sends GL∞-
stable constructible subsets of Q∞ to GL∞-stable constructible subsets of P∞. First, we
define what it means for a GL∞-stable subset of P∞ to be constructable.

Definition 4.6.1. A GL∞-stable subset C ⊆ P∞ is called constructible if it is a finite
union of subsets of the form X∞ ∩U where X∞ is a GL∞-stable closed subset and U is
a GL∞-stable open subset of P∞.

Remark 4.6.2. Note that GL∞-stable open subsets of P∞ do not in general correspond
to functors. Hence we will not denote them and constructible subsets of P∞ using a
subscript∞.
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4.6.1 Constructibility of the whole image

As a first step, we prove that im(α∞) is constructible. We use the following lemma.

Lemma 4.6.3. Let A,B be finite-dimensional affine varieties and assume that A is irreducible.
Let P,Q,R be polynomial functors and assume that Q and R are pure. Let α : A×Q→ P and
β : B × R→ P be regular transformations and assume that

im(α∞) = im(β∞)

holds. Then there exists an open dense subset A′ ⊆ A such that α∞(A′ ×Q∞) ⊆ im(β∞).

Proof. Let L be an algebraic closure of K(A). For each n ∈ N we have a K-algebra
homorphism α∗n : K[P(Kn)] → K[A] ⊗K K[Q(Kn)]. Compose this with the natural K-
algebra homomorphism

K[A] ⊗K K[Q(Kn)]→ L ⊗K K[Q(Kn)] � L[QL(Ln)]

and extend the resulting map L-linearly to a map L[PL(Ln)] → L[QL(Ln)]. This is a
homomorphism of L-algebras. The maps QL(Ln) → PL(Ln) we obtain in this manner
form a polynomial transformation αL : QL

→ PL. We have

ker
(
(αL

n)∗
)

= L ⊗K ker(α∗n)

and this implies that im(αL
∞) is defined by the same equations (with coefficients from K)

as im(α∞). Similarly, the regular transformation β gives rise to a regular transformation

βL : BL
× RL

→ PL

such that im(βL
∞) is defined by the same equations as im(β∞). We conclude that

imαL
∞ = im βL

∞

holds. By Proposition 4.5.27 applied with L instead of K, we find that βL = αL
◦ γ

for some polynomial transformation γ : QL
→ BL

× RL. Thinking of γ as a (multi-
valued) algebraic map from A to the finite-dimensional space B×Mor(Q,R) of regular
transformations Q → B × R, we find that there exists a finite-dimensional affine
variety C over K together with a dominant morphism a : C→ A, a morphism b : C→ B
and a morphismψ : C→Mor(Q,R) such that α(a(c),−) = β(b(c),−)◦ψ(c) as polynomial
transformations Q → P for all c ∈ C. By Chevalley’s theorem a(C) is constructible, so
it contains an open dense subset A′ ⊆ A. This set has the desired property. �

Let α : Q→ P be a polynomial transformation.

Proposition 4.6.4. The set im(α∞) ⊆ P∞ is constructible.

Proof. We prove the proposition using induction on Q. Take X∞ = im(α∞). By
Theorem 4.2.5, we know that there exist a finite number of finite-dimensional affine
varieties Ai, pure polynomial functors Qi ≤ P and regular transformations

αi : Ai ×Qi → P
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such that X∞ =
⋃

i im(αi,∞). We may assume that α1 = α and that each variety Ai is
irreducible. Using the previous lemma, we may also assume that im(αi) ( im(α) for
all i , 1. Now take Y∞ =

⋃
i,1 im(αi,∞). Then we see that

im(α∞) = (X∞ \ Y∞) ∪ α∞
(
α−1
∞ (Y∞)

)
.

Note that Z∞ := α−1
∞ (Y∞) is a strict closed subset of Q∞. So there exist a finite number

of finite-dimensional affine varieties B j, pure polynomial functors R j < Q and regular
transformations

β j : B j × R j → Q

such that Z∞ =
⋃

j im(β j,∞). So

im(α∞) = (X∞ \ Y∞) ∪
⋃

j

im(α∞ ◦ β j,∞).

is constructible by induction as the polynomial transformations α◦β j have as domains
the polynomial functors R j < P. �

Corollary 4.6.5. Let X be a closed subset of Q. Then α∞(X∞) is a constructible subset of P∞.

Proof. There exist a finite number of finite-dimensional affine varieties Ai, pure poly-
nomial functors Qi ≤ Q and regular transformations

αi : Ai ×Qi → Q

such that X∞ =
⋃

i im(αi,∞). So α∞(X∞) =
⋃

i im(α∞ ◦ αi,∞) is constructible. �

4.6.2 Constructablility of the image of a constructible subset

Let n ∈N be an integer. Note that the set

Diag(In,GL∞) = {Diag(In, g) | g ∈ GL∞} =
⋃
m∈N

{Diag(In, g, I∞) | g ∈ GLm}

is a subgroup of GL∞. Let P be a polynomial functor and let Z be a closed subset of
the polynomial functor P ◦ ShKn . Then we have a corresponding GL∞-stable closed
subset Z∞ of (P ◦ ShKn)∞. We can identify

(P ◦ ShKn)∞ = lim
←−−m≥1

P(Km+n) = lim
←−−m≥n

P(Km) = lim
←−−m≥1

P(Km) = P∞

as topological spaces. Note however that GL∞-stable subsets of (P◦ShKn)∞ correspond
under this identification with Diag(In,GL∞)-stable subsets of P∞. Now, let α : Q → P
be a polynomial transformation. To prove the analogue of Chevalley’s Theorem for
our setting, we need one more lemma.

Lemma 4.6.6. Let U be a nonempty GL∞-stable open subset of Q∞. Then α∞(U) contains a
nonempty GL∞-stable open subset of im(α∞).

Proof. Take X∞ = im(α∞) and Y∞ = Q∞ \ U. Then Y is a proper closed subset of Q.
So there exist an n ∈ N and f ∈ I(Y(Kn)) such that f is not the zero polynomial. Let
Z ⊆ K ⊕Q ◦ ShKn be the closed subset defined by

Z(V) = {(λ, q) ∈ K ⊕Q(Kn
⊕ V) | λ f (Q(πKn)(q)) = 1}
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and consider the polynomial transformation β : K ⊕ Q ◦ ShKn → P ◦ ShKn defined by
the maps

βV : K ⊕Q(Kn
⊕ V) → P(Kn

⊕ V)
(λ, q) 7→ αKn⊕V(q)

for V ∈ Vec. By Corollary 4.6.5, the set β∞(Z∞) is constructible. So it contains a GL∞-
stable open dense subset of its closure. Note that β factors through the projection on
Q ◦ ShKn . Denote the projection of Z∞ on (Q ◦ ShKn)∞ by U′. We see that the subset U′

is GL∞-stable, open and dense in (Q ◦ ShKn)∞ and that the image of U′ in (P ◦ ShKn)∞
is constructible.

Now we identify (Q ◦ ShKn)∞ with Q∞ and (P ◦ ShKn)∞ with P∞. Then we know
that U′ ⊆ U is a Diag(In,GL∞)-stable dense open subset of Q∞ such that α∞(U′) is
constructible. So α∞(U′) contains a Diag(In,GL∞)-stable dense open subset V of its
closure, which is X∞ = im(α∞) as U′ is dense in Q∞. So we see that V ⊆ α∞(U)
and since the latter is GL∞-stable, we find that the GL∞-stable open dense subset⋃

g∈GL∞ gV of X∞ is also contained in α∞(U). �

Theorem 4.6.7. Let C be a GL∞-stable constructible subset of Q∞. Then α∞(C) is a GL∞-
stable constructible subset of P∞.

Proof. If C is contained in a GL∞-stable closed subset X∞ ( Q∞, then we can cover
the closed subset X of Q using finitely many images im(β∞) where the β : R → Q
are polynomial transformations with R < Q by Theorem 4.2.5 and pull C back along
the maps β∞. In this case, we see that α∞(C) is constructible using induction on Q.
So we may assume that C is dense in Q∞. This means in particular that C contains
a nonempty GL∞-stable open subset of Q∞. By the previous lemma, we see that
α∞(C) therefore contains a nonempty GL∞-stable open subset V of im(α∞). Take
U = α−1

∞ (V) and X∞ = Q∞ \U. Then α∞(U ∩ C) = V∞ is constructible and α∞(X∞ ∩ C)
is also constructible using induction on Q. Hence their union α∞(C) is constructible
as well. �

4.7 Examples and open questions

We conclude with some interesting examples and open questions.

4.7.1 Dimension functions

Let P be a polynomial functor of degree d. Then there is a polynomial g ∈ Q[x] of
degree d such that dim P(V) = g(dim V) for all V ∈ Vec with dim V � 0. Let X ⊆ P be a
closed subset. Then a natural question to ask is whether is is also true that there exists
a polynomial g ∈ Q[x] such that dim X(V) = f (dim V) for all V ∈ Vec with dim V � 0.
By adjusting the proof of the Dichotomy Theorem, we can show that this is indeed
the case.

Proposition 4.7.1. There is a polynomial g ∈ Q[x] such that

dim X(V) = g(dim V)

for all V ∈ Vec with dim V � 0.
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Proof. The closed subset X of P is irreducible if and only if the closed subset X(V)
of P(V) is irreducible for every vector space V ∈ Vec. And, the closed subset X of
P can only have finitely many components since P is Noetherian. Suppose that the
proposition holds for all irreducible closed subsets of P. Then we see that dim X(V)
is a maximum of finitely many polynomials in dim V when dim V � 0. This implies
that dim X(V) is itself a polynomial in dim V for dim V � 0. So it suffices to prove the
proposition for irreducible closed subsets X of P. We will prove the proposition using
induction of P. So we may assume that the proposition holds for all closed subsets of
polynomial functors Q < P.

Assume that X is irreducible. If deg(P) = 0, then dim X(V) is constant. Assume that the
degree of P is positive. Let R be an irreducible subfunctor of P(d) and write P = Q ⊕ R.
If X = Y × R for some closed subset Y ⊆ Q, then dim X(V) = dim Y(V) + dim R(V) is
a polynomial in dim V for dim V � 0 since Q < P and since dim R(V) is polynomial
in dim V for dim V � 0. So we assume that this is not the case. This means that for
some U ∈ Vec the ideal I(X(U)) ⊆ K[P(U)] is not generated by I(X(U))∩K[Q(U)]. Let

f ∈ I(X(U)) \ (I(X(U)) ∩ K[Q(U)])

be a polynomial of minimal degree. Then

h :=
∂ f
∂r

, 0

for some r ∈ R(U). For every V ∈ Vec, take

Z(V) := {q ∈ X(U ⊕ V) | h(P(πU)(q)) , 0}

and note that Z(V) is a dense open subset of X(U ⊕ V) since X is irreducible. So

dim Z(V) = dim X(U ⊕ V)

and therefore it suffices to prove that dim Z(V) is a polynomial in dim V for dim V � 0.
Write P′ := P ◦ ShU = Q′ ⊕ R. Then the map h ◦ P(πU) : P′(V)→ K factors through the
projection map πQ′(V) : P′(V)→ Q′(V). We get a map

Z(V)→ {q′ ∈ Q′(V) | h(P(πU)(q, 0)) , 0} =: Z′(V)

and this map is known to be a closed embedding. So we can view Z as a closed subset
of Z′, which in turn we can view as a closed subset of K ⊕ Q′ < P. Therefore, we
conclude that dim X(U ⊕ V) = dim Z(V) is a polynomial in dim V for dim V � 0. �

Now suppose that X is the closure of the image of a polynomial transformation
α : Q → P. Let g, h ∈ Q[x] be the polynomials such that dim X(V) = g(dim V) and
dim Q(V) = h(dim V) for all V ∈ Vec with dim V � 0. Then g(n) ≤ h(n) for all integers
n � 0 and hence deg(g) ≤ deg(h) = deg(Q). The following proposition tell us what
happens when the difference h − g still has the same degree as Q.

Proposition 4.7.2. If deg(h − g) = deg(Q), then the polynomial transformation α : Q → P
factors through Q/R for some nonzero subfunctor R ⊆ Q.
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Proof. Let U,V ∈ Vec be vector spaces and view Q(U),Q(V) as subspaces of Q(U ⊕ V)
via the natural maps. Take q ∈ Q(U) and r ∈ Q(V) and let ε be a variable. Then we can
write

αU⊕V(q + εr) ≡ αU⊕V(q) + εβ(U,V)(q, r) mod ε2

for some polynomial transformation

β : (Q ◦ T1) ⊕ (Q ◦ T2)→ P ◦ (T1 ⊕ T2)

between bivariate polynomial functors. Recall here that T1(U,V) = U and T2(U,V) = V
for all U,V ∈ Vec. Note that

V 7→ ker(β(U,V)(q,−))

is a (linear) subfunctor of Q for all U ∈ Vec and q ∈ Q(U). Let U1,U2 ∈ Vec be vector
spaces and take q1 ∈ Q(U1) and q1 ∈ Q(U2). Then we claim that

ker(β(U1⊕U2,V)(q1 + q2,−)) ⊆ ker(β(U1,V)(q1,−)) ∩ ker(β(U2,V)(q2,−))

where we view q1 and q2 as elements of Q(U1 ⊕U2) via the natural maps. Indeed, for
r ∈ Q(V) such that

β(U1⊕U2,V)(q1 + q2, r) = 0

we see that β(U1,V)(q1, r) = 0 from the fact that the diagram

Q(U1 ⊕U2) ⊕Q(V) P((U1 ⊕U2) ⊕ V)

Q(U1) ⊕Q(V) P(U1 ⊕ V)

β(U1⊕U2 ,V)

Q(πU1 )⊕Q(idV) P(πU1⊕ idV)

β(U1 ,V)

commutes. We similarly see that β(U2,V)(q2, r) = 0. So the containment holds. And,
from this follows that there are U0 ∈ Vec and q0 ∈ Q(U0) such that

ker(β(U0,V)(q0,−)) =
⋂

U∈Vec
q∈Q(U)

ker(β(U,V)(q,−))

for all V ∈ Vec. Now consider the (linear) subfunctor R ⊆ Q defined by

R(V) := ker(β(U0,V)(q0,−))

for all V ∈ Vec. We claim that α : Q→ P factors through Q/R. To see this, we have to
prove that αV factors through Q(V)/R(V) for every V ∈ Vec. Note that β(V,V) restricts
to the zero map on Q(V) ⊕ R(V). This means that

αV(q + εr) − αV(q) ≡ εβ(V,V)(q, r) ≡ 0 mod ε2

for all q ∈ Q(V) and r ∈ R(V). So the partial derivative of αV at any point q ∈ Q(V) in
any direction r ∈ R(V) is zero. So αV factors through Q(V)/R(V) for every V ∈ Vec and
hence α factors through Q/R. If the subfunctor R ⊆ Q is nonzero, then we are done.
This leaves the case where R = 0. So we assume that β(U0,V)(q0,−) is injective for every
V ∈ Vec. This means that the dimension of the tangent space

TαU0⊕V(q0)X(U0 ⊕ V)

is at least dim Q(V). So dim Q(V) ≤ dim X(U0 ⊕ V) ≤ dim Q(U0 ⊕ V). This shows that
deg(h − g) < deg(h) = deg(Q) must hold. �

By repeated use of the proposition, we see that when X is the closure of the image of
a polynomial transformation from a minimal Q, then deg(h − g) < deg(Q) must hold.
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4.7.2 A counterexample (S1)⊕2
⊕ (S2)⊕3

→ S4

Consider the polynomial transformation α : (S2)⊕3
→ S4 defined by the maps

αV : S2(V)⊕3
→ S4(V)

( f , g, h) 7→ f g − h2

for V ∈ Vec and the closed subset X = im(α) of S4. One would hope that X = im(α). We
will first show that this is not the case. Let β : (S1)⊕2

⊕ (S2)⊕3
→ S4 be the polynomial

transformation defined by the maps

βV : V⊕2
⊕ S2(V)⊕3

→ S4(V)
(x, y, f , g, h) 7→ x2 f + y2g + xyh

for V ∈ Vec.

Lemma 4.7.3. We have im(β) ⊆ X.

Proof. Take V ∈ Vec, t ∈ K∗, x, y ∈ V and f , g, h ∈ S2(V). Then we have

t−1αV
(
y2 + t f , x2 + tg, xy − 1

2 th
)

= t−1
(
(y2 + t f )(x2 + tg) − (xy − 1

2 th)2
)

= x2 f + yg2 + xyh + t(· · · ) ∈ im(αV).

So since the field K is infinite, we find that im(βV) ⊆ im(αV) = X. �

Lemma 4.7.4. There is no polynomial transformation γ : (S1)⊕2
⊕ (S2)⊕3

→ (S2)⊕3 such that
β = α ◦ γ. In particular, we have im(β) * im(α)

Proof. We know that if im(β) ⊆ im(α), then β = α ◦ γ for some polynomial transforma-
tion

γ : (S1)⊕2
⊕ (S2)⊕3

→ (S2)⊕3

by Proposition 4.5.17. Such a polynomial transformation has to be defined by polyno-
mial maps of the form

γV(x, y, f , g, h) =


c11x2 + c12xy + c13y2 + c14 f + c15g + c16h
c21x2 + c22xy + c23y2 + c24 f + c25g + c26h
c31x2 + c32xy + c33y2 + c34 f + c35g + c36h


for V ∈ Vec for some constants ci j ∈ K. This turns the equation β = α◦γ into a system of
polynomial equations in the ci j. Now, one can check that this system has no solutions
using a Gröbner basis calculation. �

Proposition 4.7.5. We have im(α) , X.

Proof. This follows from the previous two lemmas. �

This example leads to several open questions.

Question 4.7.6. Is im(β) closed?

Question 4.7.7. Is im(α) ∪ im(β) closed?
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Let α : Q → P be a polynomial transformation and take X = im(α). In our example,
we found a polynomial transformation β = β0 such that im(β) ⊆ X by taking a limit of
polynomial transformations βt = α◦γt where the γt : (S1)⊕2

⊕ (S2)⊕3
→ S4 were defined

by the maps

γt,V : V⊕2
⊕ S2(V)⊕3

→ S4

(x, y, f , g, h) 7→ (t−1y2 + t f , t−1x2 + tg, t−1xy − th/2)

for V ∈ Vec and t ∈ K∗. One can ask whether this is the only way to define such β.

Question 4.7.8. Can we always write X as the union of images im(β) of polynomial trans-
formations β0 : R → P that are limits of families of polynomial transformations βt : R → P
factoring though α?

Now again consider the polynomial transformation β : (S1)⊕2
⊕ (S2)⊕3

→ S4 defined by
the maps

βV : V⊕2
⊕ S2(V)⊕3

→ S4(V)
(x, y, f , g, h) 7→ x2 f + y2g + xyh

for V ∈ Vec as an element of the space Mor((S1)⊕2
⊕ (S2)⊕3,S4). Given polynomial

functors Q,P, one might hope that the set of polynomial transformations Q → P that
factor through some quotient of Q is a closed subset of the space of all polynomial
transformations Q → P. The polynomial transformation β shows that this is not
always the case. Indeed, the polynomial transformation β is a limit of polynomial
transformations factoring through (S2)⊕3, but β itself does not factor through either
S1
⊕ (S2)⊕3 or (S1)⊕2

⊕ (S2)⊕2. Here we see that β does not factor through S1
⊕ (S2)⊕3

since otherwise the coefficients x2, y2, xy of f , g, h in the maps defining β would be
linearly dependent. And, we see that β does not factor through (S1)⊕2

⊕ (S2)⊕2 since
dim im(βV) > 2 dim V + 2 dim S2(V) for V ∈ Vec with dim V � 0.

4.7.3 Unbounded slice rank of strength ≤ 1 polynomials

Consider the polynomial transformation α : (S2)⊕2
→ S4 defined by the maps

αV : S2(V)⊕2
→ S4(V)

(g, h) 7→ g · h

for V ∈ Vec. Let k ∈N be an integer and also consider the polynomial transformation
β : (S1)⊕k

⊕ (S3)⊕k
→ S4 defined by the maps

βV : V⊕k
⊕ S3(V)⊕k

→ S4(V)
(`1, . . . , `k, f1, . . . , fk) 7→ `1 · f1 + · · · + `k · fk

for V ∈ Vec. Since the only polynomial transformation (S2)⊕2
→ (S1)⊕k

⊕ (S3)⊕k is
zero, we see that α does not factor through β. It follows that im(α) * im(β) by
Proposition 4.5.17. Hence the slice rank of the strength ≤ 1 polynomials in im(α) is
not bounded by k. Since this holds for every k ∈ N, we see that the slice rank of
polynomials of the form g · h with deg(g) = deg(h) = 2 is unbounded. This shows that
the gap between the strength and slice rank of a polynomial can be arbitrarily big.
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