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Notation

Numbers, sets and maps

N the positive natural numbers (not including 0)
Z,Q,R,C the natural, rational, real and complex numbers
0ij the constant 1 when i = j and the constant 0 otherwise
[n] the set {k € IN | k < n} for n € IN U{oo}

S>»T a surjective morphism

S—T an injective morphism

S the closure of S

Ard a partition of d for d € Zy

Goo = li_n)ln Gy the direct limit of a sequence of groups (G,)neN
Veo = liLnn Vi the inverse limit of a sequence of spaces (V,)zeN
pr, the projection map V,, » V, forn <m < oo

Vector spaces and matrices

K an infinite field

K the vector space of maps S — K foraset S

KXy the vector space KlP<-xIml

v the vector space of linear maps V — K
Diag(A1,...,Ax) the block-diagonal matrix with blocks Ay, ..., Ax

GL, the group GL(K") for n € N

GL& the group U,en GL»

Categories

Set the category of sets

Vec the category of finite-dimensional vector spaces over K
Top the category of topological spaces

Vect the category of u-tuples of finite-dimensional vector spaces over K for y € N

The category Vec"

VW objects of Vec!

¢ morphisms of Vect

Ty the projectionmap Ve W » V

Ly the inclusionmap V— Ve W

Hom(V, W) the vector space of morphisms V. — W

End(V) the vector space Hom(V, V)

tol the morphism V& V' — W & W’ obtained from {: V- Wand ¢': V' - W’
GL(V) the group of invertible morphisms V — V

Polynomial functors over K

GL(P) the group of linear automorphisms of a polynomial functor P
Aut(P) the group of polynomial automorphisms of a polynomial functor P
Mor(Q, P) the vector space of polynomial transformations Q — P



Introduction

This thesis mainly revolves around spaces of infinite tensors and expressing tensors
using simpler objects. In the following pages, we will introduce these concepts by
considering infinite matrices over the complex numbers C. Here, the objects that are
simpler than matrices are vectors.

Let n,m € N be integers. A vector v € C" is is a map [n] — C sending i — v; and a
matrix A € C"™" is a map [n] x [m] — C sending (i, j) = A;;. We also write

(41 An A ... A

02 Ay Ay ... A
v=]| . and A=| . . .

On An Apn ... Auw

We define infinite vectors and matrices by replacing the sets [n] and [m] by IN. So an
infinite vector v € C* isamap N — C sending i > v; and an infinite matrix A € C**
isamap INXIN — C sending (i, j) = A;;. Now we also write

v An A
v=|%2] and A=Az Ax

For finite matrices we have to following equivalence.

Proposition. Let A € C™" be a matrix and k > 0 an integer. Then the following
conditions are equivalent:

(1) The determinant of each (k + 1) X (k + 1) submatrix of A is 0.
(2) Wehave A = vlwlT+- . '+Ukw{ forsomevectorsvy,...,vr € C"andwy, ..., w; € C".

When these equivalent conditions are satisfied, we say that A has rank < k. o

Again, the same statement is true when we replace n and m by co. Proving that (2)
implies (1) in the infinite case is easy. To see that (1) implies (2), let A € C*** be an
infinite matrix and assume that the determinant of each (k + 1) X (k + 1) submatrix of
A is 0 for some minimal integer k > 0. Since k is minimal, there must be k columns
v1,...,0x of A that are linearly independent. To show that there exists wy, ..., w, € C*
such that

A:vlwlT+m+vkw,z



it suffices to show that every column v of A is a linear combination of vy, ..., v. If vis
among the vectors vy, ..., vk this is true. Otherwise, we know that every (k+1) x (k+1)
submatrix of the matrix B := (v v2 --- vk v) is also a submatrix of A and hence has
determinant 0. For every n € N, let B,, € ™) pe the matrix consisting of the first
n rows of B. Then B has rank < k. Let V,, € C*! be the kernel of B,. Then we have a
descending chain

C*' oV 2V, 2 V32V

of nonzero subspaces. It follows that
n>dimVy; >2dimV; >dim V3 >dimVy > ---

is a descending chain of postive integers. This second chain stabilizes, i.e., there exists
an m € N such that dimV,, = m for all n > 0. It follows that the space of linear

dependencies of vy, ..., v, v
(o]
V=)V
n=1

has dimension m > 0. So vy,...,v,, v must be linearly dependent. Since vy,..., v
are linearly independent, this means that v is a linear combination of vy, ...,v,. This
shows that the proposition also holds in the infinite case and we say that the infinite
matrix A € C*** has rank < k when the equivalent conditions from the proposition
hold. When rk(A) < k does not hold for any k < oo, then we say that the rank of A
is infinite.

Using the proposition, it is easy to write down infinite matrices with low rank. One
example of a matrix with infinite rank is the infinite identity matrix

1 0

Io={0 1 € C™™.

The multiplication of infinite matrices is defined using the usual formulas

A-B=C, cij=ZAik.Bkj.
k=1

However the product of two infinite matrices is not well-defined in general. If A or B
is an element of the subset

GL« := {Diag(g,I~) | n € N, g € GL,} € C™*%,

then the product is always well-defined. This turns the subset GL., into a group called
the infinite general linear group, which acts on C*** by multiplication on the left and
on the right. Matrices in the same GL-orbit have the same rank.

Next we define the Zarisky topology on the space of infinite matrices. A polynomial
function on C*** is a function

fr € ¢



that sends an infinite matrix A to a finite polynomial expression in its entries A;;.
For integers i,j € N, let x;; be the polynomial function sending A — A;;. Then
Clx;j | i, j € N is the ring of polynomial functions on C***. A closed subset of C***
is any subset of the form

Z(S) ={AeC*|VfeS: f(A) =0}
where S is a subset of C[x;; | 7, j € IN].

Since the determinants of finite submatrices are polynomial functions, the subset
{A € C™** | rk(A) < k}

is closed for each integer k > 0. Note that these subsets are also stable under the action
of GLo X GLw. In fact, these subsets are the only (GLw X GLw)-stable closed subsets
of C®** apart from 0 and C*** itself.

00X 00

Theorem. The only nonempty proper (GLo X GLo)-stable closed subsets of C are
{A € C™** | rk(A) < k}
for integers k > 0.

Before we prove this theorem, we discuss its consequences. First, the theorem shows
that the space C=** is Noetherian up to the action of GLw X GLw. This means that
any descending chain of (GLw X GL)-stable closed subsets of C**

C*®D2X12XoD2X32X4D---

stabilizes. Equivalently, this means that any (GL« X GL«)-stable closed subset of C***

is defined using finitely many orbits of equations. As an example, the subset
{A € C™"® | rk(A) < k}

is defined by the vanishing of the determinants of all (k + 1) X (k + 1) submatrices,
which form one orbit under the action of GL« X GL«. When considering a topological
space with an action of a group, whether Noetherianity up to the action of that group
holds is the first question one wants to answer. This is because it tells you that group-
stable properties of points in the space given by closed conditions are always given by
finitely many orbits of closed conditions, making checking whether such a property
holds theoretically possible. We will generalize the statement that C™** is Noetherian
up to the action of GLs X GL in Chapter 2.

Second, the theorem shows that the following statement holds: let A € C®** be an
infinite matrix. Then either its orbit of GLe X GL is Zariski-dense in C*** or the
rank of A is finite. In the latter case, the (infinite) matrix A can be expressed using
finitely many (infinite) vectors. So either an infinite matrix is GL«-generic or it can be
expressed using simpler object. We will prove more general versions of this statement
in Chapters 3 and 4.



Finally, let P be a property of matrices given by the vanishing of polynomial functions
such that PAQ has property 9 for all matrices A € €™ with property P, P € C"*"
and Q € C"™ . Then the set

{A € CoX |Vn,m eN: (Aij)?}.rzl has property 7)}

is a (GLo X GLoo)-stable closed subset of C***. So since the space C*** is Noetherian
up to the action of GL« X GL, the property # can be checked using finitely many orbits
of polynomial functions. Moreover, since the only nonempty proper (GLw X GL)-
stable closed subsets of C*** are

[A € €% | k(A) < k)

for integers k > 0, it follows that ? must be either trivial or the property that a matrix
has rank < k for some integer k > 0.

We will end this introduction with a proof of the theorem. We will use the following
result.

Lemma. Let n,m € IN be integers and let A € C™™ be a matrix of rank k < min(n, m).
Then the (GL, x GL,,)-orbit of A consists of all matrices in C"" of rank k and the
closure of this orbit consists of all matrices in C"*™ of rank < k. O

Proof of the theorem. Let X be a nonempty proper (GLw X GL)-stable closed subset of
the space C™*®. We first will prove

X C{A e C™ | 1k(A) <k}

for some integer k > 0. Since X is a proper closed subset of C***, there is a polynomial
f € Clxij | i, j € N] such that f(A) = 0 for all A € X. Only finitely many variables occur
in the polynomial f. Let n,m € IN be such that only x;; withi <n and j < m occurin f.
Then we see that f(B) = 0 for all n X m matrices B in the (GL, X GL,,)-stable set
Y = {(Aij);f}.’:l ‘A E X}

and hence it follows from the lemma that rk(B) < min(n, m) for all matrices B € Y. Let
A € X be an infinite matrix. Then gAh € X for all (g, /1) € GLw X GLw. So in particular,
every matrix obtained from A by finitely many row and column permutations is

contained in X. It follows that every n X m submatrix of A is contained in Y. Hence
rk(A) < k for k = min(n, m) — 1.

Now, let k > 0 be minimal with the property that
X C{A e C®"* | rk(A) <k}

holds. Then there is an A € X such that rk(A) = k. Let f € Cl[x;; | i,j € IN] such that
f(A) = 0 for all A € X and let n,m € N be such that only x;; withi < nand j < m
occur in f. Then it follows from the lemma that f(B) = 0 for all matrices B € C"™™ of
rank < k. It follows that f(A) = 0 for all A € C™** of rank < k. Hence

X2 {A € C | rk(A) < k)

and we conclude that these sets must be equal. O



Chapter 1

Preliminaries

This thesis is centered around two concepts; the first being Noetherianity up to the
action of a group and the second being rank functions that try to measure the com-
plexity of an object by how that object can be expressed using simpler objects. In this
chapter, we collect some basic definitions and results related to these concepts that we
will need in the later chapters:

e We define what it means for a topological space equipped with an action of a
group to be Noetherian up to the action of that group.

e Wediscuss inverse limits of sequences of finite-dimensional vector spaces, which
are a source of many interesting examples of group-Noetherian spaces.

e We introduce polynomial functors, which we view as a generalization of finite-
dimensional affine spaces equipped with the trivial group action.

o We list several examples of the kind of rank functions that are related to express-

ing objects using simpler objects.

1.1 Noetherianity up to the action of a group

Let us start with the definition of Noetherianity up to the action of a group together
with a surprisingly useful proposition. Let X be a topological space and let G be a
group acting on X.

Definition 1.1.1. We say that X is Noetherian up to the action of G (or G-Noetherian)
when every descending chain

X=X02X12X22X32X42...

of G-stable closed subsets of X, i.e., closed subsets Y C X such that gY C Y forall g € G,
stabilizes. This means that there exists an i € IN such that X; = X; forall j > i.

Proposition 1.1.2. The space X is G-Noetherian if and only if every proper G-stable closed
subset Y C X is G-Noetherian.

Proof. 1f Xis G-Noetherian and Yis a G-stable closed subset of X, then every descending
chain of G-stable closed subsets of Y is also a descending chain of G-stable closed



subsets of X and hence stabilizes. Conversely, if every proper G-stable closed subset
Y ¢ X is G-Noetherian and

X=Xg2X12X,2X32X42...

is a descending chain of G-stable closed subsets of X, then either X; = X for alli € IN
and the chain stabilizes or X; € X is G-Noetherian for some i € IN. In the latter case, the
chain also stabilizes since X; is G-Noetherian. Hence X must itself be G-Noetherian. O

Our first example of group-Noetherian spaces are finite-dimensional vector spaces
equipped with the Zariski topology. Let V be a vector space that is the dual of a vector
space with countable basis X.

Definition 1.1.3. We define the coordinate ring K[V] of V to be the polynomial ring
over Kin X, i.e., the elements of X are independent variables and the elements of K[V]
are finite polynomial expressions in the elements of X.

We call the elements of X variables and we call elements of K[V] polynomials on V.
Every variable x € X induces a linear function (v — v(x)) € V*. Using these linear
functions, every polynomial on V induces a function V' — K. We call functions
that arise in this manner polynomial functions on V. Here is an example of a linear
combination of the variables of V that is not a polynomial on V.

Nonexample 1.1.4. The series f = ) ,cx X is not an element of K[V]. This corresponds
to the fact that it does not induce a map V — K. &

Definition 1.1.5. For a subset S C K[V], we define its zero set Z(S) C V to be the subset
of V consisting of all points v such that f(v) = 0 for all f € S. The zero sets inside V
form the closed subsets of a topology on V. We call this topology the Zariski topology.

We now have our first example of spaces that are Noetherian up to the action of a
group. Let V be a finite-dimensional vector space equipped with the Zariski topology
and the action of the trivial group {+}.

Theorem 1.1.6 (Hilbert’s basis theorem). The space V is {+}-Noetherian. O
We also get our first important nonexample.

Nonexample 1.1.7. Let V be the dual of a countably infinite-dimensional vector space
with basis X = {x1,xp, ...} and equip V with the Zariski topology and the action of the
trivial group {+}. Then

V 2 Z(x1) 2 Z(x1,x2) 2 Z(x1,X2,x3) 2 Z(X1,X2,X3,X4) 2 ...
is an infinite descending chain of {*}-stable closed subsets that does not stabilize. =~ &

The following proposition tells us that G-Noetherianity is preserved when we make
the group G bigger.

Proposition 1.1.8. Let X be a topological space equipped with the actions of two groups H, G.
Suppose that X is H-Noetherian and and that every G-stable closed subset of X is also H-stable.
Then X is also G-Noetherian.

Proof. Every descending chain of G-stable closed subsets of X is also a chain of H-stable
closed subsets of X and hence stabilizes. o



As a consequence, we see that a finite-dimensional vector space is Noetherian up to
any action of any group. The following example shows that any vector space becomes
G-Noetherian when we make the group G big enough.

Example 1.1.9. Let V be a vector space equipped with the Zariski topology and let the
group GL(V) act on V by left-multiplication. Then the orbits of V are {0} and V' \ {0}.
So the GL(V)-stable closed subsets of V are 0, {0} and V. As there are only finitely
many such subsets, every descending chain of them must stabilize. So the space V' is
GL(V)-Noetherian. )

Noetherianity up to the action of a group is also preserved when we take quotients.

Proposition 1.1.10. Let V be a G-Noetherian vector space and let W be a G-stable subspace
of V. Then V/W is also G-Noetherian.

Proof. Any descending chain of G-stable closed subsets of V/W can be pulled back
along the projection map V —» V/W to get a descending chain of G-stable closed
subsets of V. This chain must stabilize and, since the map V —» V/W is surjective, so
must the chain of subsets of V/W as well. O

Theorem 1.1.6 and Proposition 1.1.8 tell us that interesting examples of vector spaces
that are Noetherian up to the action of some group are infinite-dimensional. Nonex-
ample 1.1.7 shows that in this case the group cannot act trivially. The first result that
gave us a space with these properties is the following theorem.

Theorem 1.1.11 (Cohen [14], Hillar-Sullivant [23, Theorem 1.1]). Fix an integer k € IN
and let Sym(IN) act on the polynomial ring

R=K|[xj|ieN,je[K]
by permuting the first index of the variables. Then the ring R is Sym(IN)-Noetherian, i.e.,
every ascending chain of Sym(IN)-stable ideals of R stabilizes. |
Corollary 1.1.12. The space KN is Sym(IN)-Noetherian.

Proof. Let
KN=X)2X;2X,2X32X42...

be a descending chain of Sym(IN)-stable closed subsets of KN. Then there is an ideal
I C R for every k € N such that X; = Z(Zy). Note that we also have

Xk =Z(Sym(IN) 771 U--- U Sym(IN) 1)

for each k € IN. So we may replace each 7 by the ideal generated by Sym(IN) 71 U ---U
Sym(IN) 7 and hence we may assume that the ideals 7 form an ascending chain of
Sym(IN)-stable ideals. By the theorem, this chain must stabilize and hence the chain
of closed subsets of KN must stabilize as well. |



1.2 Limits of spaces and groups

Many examples of vector spaces that are Noetherian up to the action of some group
arise as the inverse limit of a sequence of finite-dimensional vector spaces. In these
examples, the group acting on the inverse limit is a direct limit of groups acting on the
finite-dimensional spaces. Throughout this section, let

Vi & Vo & Vi &

be a sequence of finite-dimensional vector spaces connected by surjective linear maps.
For eachintegern € IN, let G, be a group acting on V,, and assume that G, is a subgroup
of G,+1 in some natural way. This gives us an action of G, on V1. We also assume
that the map V41 = V,, is G,-equivariant for each n € IN. Now, we define the inverse
limit
Voo i= mn Vi ={(@n)n € [11en Vi | Un+1 Maps to v, for all n € IN}

and the direct limit G, := h_r)nn Gn = U,en Gr. Note that, for an integer m € IN, an
element (v,), € [],>m Vu such that v,,1 maps to v, for all n > m defines a unique
element of V, by letting v, be the image of v,,.1 in V,, for all n < m. Every element
of V can be represented in this way and the group G, acts on Ve by g(vn)n = (80n)n
for all such elements. The fact that the maps V,,1 - V,, are G,-equivariant ensures
that (gv,), again defines an element of V. As these actions are compatible with the
inclusions G, € G,41, we get an action of the whole group G on V. For eachm € IN,
we have projection maps Voo - Vy, and V,, - V), for n > m. We denote all these maps
by pr,,. Each of the spaces V), is equipped with the Zariski topology. We use these
topologies to define a topology on V.

Definition 1.2.1. We say that a subset X, of V is closed when it is the inverse limit
of a sequence of closed subsets, i.e., when

Xow={veVs|¥neN:pr, (v) € Xy}

for closed subsets X;,, C V,,. The closed subsets of V., form a topology. We call this
topology the Zariski topology.

Example 1.2.2. Let V, be the dual of a countably infinite-dimensional vector space
with basis x1, x2, ... and let V, be the dual of the vector space with basis x, ..., x;, for
each n € IN. Then V. is the inverse limit of the vector spaces V,, where the maps
Vus1 — V, are given by precomposition with the inclusion map

span(xy, ..., Xx;) < span(xy, ..., Xu+1).
The topologies on V., from Definitions 1.1.5 and 1.2.1 are the same. *

Let X be a closed subset of Vi, and take X, = pr,(X«) for each n € IN. Then the set
X is the inverse limit of the sets X, and the maps X,,41 — X, are dominant. So every
closed subset of V. is an inverse limit of closed subsets that map dominantly into each
other. The following proposition relates the irreducibility of X., with that of the X,.

Proposition 1.2.3. The following statements are equivalent:

(1) X is irreducible.



(2) X, is irreducible for all n € IN.
(3) X, is irreducible for all n > 0.

Proof. Suppose that X;, is reducible for some n € IN. Then X,, = Y U Z for some closed
subsets Y, Z ¢ X,,. In this case, we see that

Xoo = (pr; (V) N Xeo) U (pr; () N Xs),  Pr, (V) N Xoo, P, H(Z) N Xoo S Xoo

and so X is reducible. This establishes (1) = (2). The implication (2) = (3) is trivial.
So next, suppose that Xeo = Yoo U Zs for some closed subsets Yo, Zoo © Xo with
closures Y, Z,in V,. Then X,, = Y, UZ, foralln € N. If Yo, € X, then Y, C X,, for
some (and then also all bigger) n € IN. The same holds for Z.,. So we see that if X is
reducible, then X,, is reducible for all n > 0. This shows (3) = (1). O

Remark 1.2.4. In general, we cannot expect an open subset of V. to be the inverse
limit of a sequence of open subsets of the V,. .

1.3 Polynomial functors

In this section, we give an introduction to polynomial functors. We start with univari-
ate polynomial functors, which should be compared with univariate polynomials.

Definition 1.3.1. A univariate polynomial functor P assigns to every vector space
V' € Vec a vector space P(V) € Vec and to every linear map ¢: V. — W a linear map
P(¢): P(V) — P(W) such that P(idy) = id(p(v) for all V' € Vec, P({; o £2) = P(ty) o P({2)
for all linear maps ¢1: V. — Wand {;: U — V and the map

Homg(V, W) — Homg(P(V), P(W))
¢ — P

is a polynomial map for all V, W € Vec.

Example 1.3.2. Let U € Vec be a fixed finite-dimensional vector space. Then the
constant functor C;: Vec — Vec assigning U to every vector space and assigning id;
to every linear map is a polynomial functor. *

Example 1.3.3. The functor T: Vec — Vec assigning all vector spaces and linear maps
to themselves is a polynomial functor. &

Definition 1.3.4. A functor Q is a subfunctor of a polynomial functor P when Q(V)
is a subspace of P(V) for all V € Vec and Q(£): Q(V) — Q(W) is the restriction of
P(¢): P(V) — P(W) for all linear maps £: V. — W.

Definition 1.3.5. Let Q be a subfunctor of a polynomial functor P. Then we define
the quotient P/Q as the functor Vec — Vec that assigns to a vector space V € Vec
the quotient space P(V)/Q(V) and assigns to a linear map ¢: V. — W the linear map
P(V)/Q(V) — P(W)/Q(W) induced by P(¢).

Remark 1.3.6. Subfunctors and quotients of a polynomial functor are themselves
polynomial functors. .



Like the set of univariate polynomials, the set of univariate polynomial functors has
an addition and multiplication. Let P, Q be polynomial functors.

Definition 1.3.7. We define the direct sum P & Q of P and Q as the functor Vec — Vec
that assigns to a vector space V' € Vec the space P(V) ® Q(V) and assigns to a linear
map £: V — W the linear map P(V) ® Q(V) — P(W) & Q(W) sending (v1,v2) =
(P(6)(w1), Q(6)(02)).

Definition 1.3.8. We define the tensor product P®Q of P and Q as the functor Vec — Vec
that assigns to a vector space V € Vec the space P(V) ® Q(V) and assigns to a linear
map ¢: V — W the linear map P(V) ® Q(V) — P(W) ® Q(W) sending v; ® vy +—
P(6)(01) ® Q) (v2).

Remark 1.3.9. Direct sums and tensor products of polynomial functors are themselves
polynomial functors. o

Using the direct sum as addition and the tensor product as multiplication, the set of
univariate polynomial functors gets the structure of a semiring. The constant functors
serve a role similar to that of the constants in a polynomial ring and the functor T
serves a role similar to that of the variable.

Example 1.3.10. Let d € IN be an integer. Then we get the polynomial functor

T Vec — Vec

V > v

{ > &

by taking the tensor product of d copies of T. We get the polynomial functor S by
taking the subspace of T®Yy = el consisting of all symmetric tensors forall V' € Vec. &

Like the univariate polynomial ring, the semiring of polynomial functors is graded.
Definition 1.3.11. Let P be a polynomial functor and let 4 > 0 be an integer.

(1) We say that P is homogeneous of degree d when P(t - idy) = t1.idy for every
vector space V € Vec and scalar t € K.

(2) We define the degree-d part Py of P to be the subfunctor of P with
Pa(V) = {v e P(V)| P(t-idv)(v) = t* - v forall t € K}
for all V € Vec.

Proposition 1.3.12. Let P be a polynomial functor. Then P = 5 a0 P ]

Just like polynomials, polynomial functors are the sum of their homogeneous parts.
However, for polynomial functors this sum need not be finite.

Example 1.3.13. The functor Vec — Vec assigning (P 450 NV to V for every V € Vec
is a polynomial functor. For each integer d > 0, its degree-d part is the d-th alternating

power functor /\d. In particular, all its homogeneous parts are nonzero. &

Definition 1.3.14. Let P be a polynomial functor and let d > 0 be an integer. We say
that P has degree d when P(;) # 0 and P, = 0 for all e > d. When P = 0, we say that P
has degree —1.
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In this thesis, we will only consider polynomial functors of finite degree.
Proposition 1.3.15. Let P, Q be polynomial functors.

(1) The constant functor Cy from Example 1.3.2 is homogeneous of degree 0 for every vector
space U € Vec of positive dimension.

(2) The polynomial functor T from Example 1.3.3 is homogeneous of degree 1.

(3) Nomnzero subfunctors and quotients of a homogeneous polynomial functor of degree d are
again homogeneous of degree d.

(4) The degree of the direct sum of P and Q is the maximum of the degrees of P and Q.
(5) The degree of the tensor product of P and Q is the sum of the degrees of P and Q. |

A univariate polynomial ring is generated by its constants and its variable. When
char(K) = 0, it is similarly true that every polynomial functor can be obtained from
the constant functors and the functor T by taking direct sums, tensor products, sub-
functors and quotients. This follows from the next lemma together with the theory of
polynomial representations of general linear groups. In order to state it, we first need
to define what it means to be a morphism between polynomial functors.

Definition 1.3.16. Let P, Q be polynomial functors.

(1) A natural transformation a = (ay)y: Q — P consists of a map ay: Q(V) — P(V)
for every vector space V € Vec such that the diagram

Q(V) —— P(V)

Q(f)l \Lp(t’)

QW) ———— P(W)
commutes for each linear map £: V — W.

(2) A linear transformation a: Q — P is a natural transformation such that ay is a
linear map for each V € Vec.

(3) A polynomial transformation a: Q — P is a natural transformation such that ay
is a polynomial map for each V € Vec.

Let P be a polynomial functor and V' € Vec a vector space. Then the map
GL(V) — GL(P(V))
¢ - P

is a homomorphism. This gives P(V) the structure of a polynomial representation
of GL(V). When the functor P is homogeneous of degree d, then the representation is
also homogeneous of degree d.

Lemma 1.3.17 (Friedlander-Suslin [22, Lemma 3.4]). For any integer d > 0 and vector
space V € Vec with dim(V) > d, the functor sending

P = P(V)

a B ay

11



is an equivalence of categories between the category of homogeneous polynomial functors
of degree d whose morphisms are linear transformations and the category of homogeneous
polynomial representations of GL(V) of degree d. |

When char(K) = 0, every homogeneous polynomial representation of GL(V) of de-
gree d is a direct sum of Schur representations S)(V) where A + d. In this case, it
follows that every homogeneous polynomial functor of degree d is a direct sum of
Schur functors S,. Since the Schur functor S, is a subfunctor of T® for every partition
A + d, this means that every polynomial functor can be obtained from the constant
functors together with T.

The closed subsets of a polynomial functor

Polynomial functors of degree 0 are the same as finite-dimensional vector spaces. In
algebraic geometry, we give such spaces the structure of a topological space. Here, we
do the same with polynomial functors of arbitrary (finite) degree.

Definition 1.3.18. A closed subset X of a polynomial functor P assigns to each vector
space V € Vec a Zariski-closed subset X(V) of P(V) such that P(¢) maps X(V) into X(W)
for each linear map £: V. — W.

Remark 1.3.19. A closed subset X of a polynomial functor P is the same as a subfunctor
of the functor Vec — Top obtained by composing P with the functor Vec — Top that
equips a vector space in Vec with the Zariski topology. In particular, the set X(V)
naturally comes with an action of the group GL(V) for every V € Vec. )

As expected of objects called closed subsets, intersections and finite unions of closed
subsets of a polynomial functor are again closed subsets. For polynomial functors
of degree 0, closed subsets coincide with the usual notion of a closed subset of a
finite-dimensional affine space. So Theorem 1.1.6 tells us that polynomial functors of
degree 0 are Noetherian. This is in fact true in general.

Theorem 1.3.20 (Draisma [17]). Let P be a polynomial functor of finite degree. Then every
descending chain of closed subsets

P=Xp2X12X;2X32Xy2...
stabilizes. m]

We want to view closed subsets of polynomial functors as generalizations of embedded
affine varieties. In order to do so, we need to define what the maps between them are.
Let X C Pand Y € Q be closed subsets of polynomial functors.

Definition 1.3.21. A regular transformation f: Y — X is a natural transformation such
that the map fv: Y(V) — X(V) is a regular map for each V € Vec.

Proposition 1.3.22. Suppose that char(K) = 0. Then every regular tranformation p: Y — X
is the restriction of a polynomial transformation a: Q — P, i.e., we have By = avylyy) for
each V € Vec.

Remark 1.3.23. The proposition is not valid in positive characteristic. To see this, let
K be an algebraically closed field of characteristic p > 0 and consider the image P
of the polynomial transformation S — SP sending v +— o*. The functor P is both
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a closed subfunctor of S” and a polynomial functor itself. However, the identity
transformation P — P does not extend to a polynomial transformation S¥ — P.
Indeed, any such extension would need to be linear and would hence imply that P(V)
is a direct summand of SP(V) for all V € Vec, which is not the case. o

In order to prove Proposition 1.3.22, we need a better understanding of the space
Mor(Q, P) of polynomial transformations Q — P. Given two finite-dimensional vector
spaces V and W, the set of polynomial maps W — V equals K[W]® V. So it is a finitely
generated K[W]-module and additive in V. Similar statements hold for Mor(Q, P).
Write Pg) = Cy, Q) = Cw for vector spaces V, W € Vec. Take Q" = EB 1 Q) and

d
Ry = EB $1Qu) ® - ® 54Qy)-

(ell'“led)ezio
1-€1+"-+d-€d:d

ford > 1.

Lemma 1.3.24. Suppose that d! # 0 in K. Then every polynomial transformation Q" — P
factors uniquely as the composition of the polynomial transformation

y:Q — Ry
d

q1,---,94,---) P Z g ®--eq]
(el,.‘.,ed)EZ‘iO
Loy +td-eg=d

and a linear transformation Ry — P.

Proof. Leta: Q" — Pbe a polynomial transformation. Then ay factors uniquely as the
composition of yy and a GL(V)-equivariant linear map By : Ry(V) — P(V) for every
V € Vec. It is easy to check that f = (Bv)vy is a linear transformation R; — P such that
a = B oy and that f is unique with this property. m|

Proposition 1.3.25. The following statements hold:
(1) The set Mor(Q, P) is the direct sum of Mor(Q, P4)) over all d > 0.
(2) The set Mor(Q, P) is the tensor product of K|W] and Mor(Q’, P).
(2) We have Mor(Q’, Ppy) = V.
(3) If d! # O, then we have Mor(Q’, P4)) = Hom(Ry, P(g)).
In particular, the set Mor(Q, P) is a free K[W]-module of finite rank. |

Example 1.3.26. The set of polynomial transformations K* & S' & S — K& S° consists
of all natural transformations a given by maps of the form

av: K*eVesV — KesV
(A, Az, 0,w) = (filAs,A2), folAs, A2) - 0 + fi(Ma, A2) -0 w)

where fi, f2, f3 € K[x1, x2] are polynomials that do not depend on V. )
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Proof of Proposition 1.3.22. Let V € Vec be a vector space and let ay: Q(V) — P(V) be
any polynomial map extending fy. We consider ay as an element of the space

P(V) @ KIQ(V)]

and note that ay € P(V) ® K[Q(V)]< forsomek € N. If ;: U —» Vand : V — U are
morphisms such that 7o = idy;, then we see that ay; = P(1r) o ay 0 Q(¢) is a polynomial
map Q(U) — P(U) extending fy. So if P(V) ® K[Q(V)]< contains a polynomial map
extending By, then P(U) ® K[Q(U)]< contains a polynomial map extending By for all
U € Vec with dim(U) < dim(V).

Now let W € Vec and assume that dim(W) > dim(V) > deg(P). Then we claim that
) Paypwy

L: W»V

contains a basis of P(W)*. To see that this is true, first consider the case where P = S,
for some partition A. Choose a basis of W. Then we also get a basis of 5;(W). One can
check that its dual basis is contained in

U P(L)P(V)*

L: W>»V

where we may even restrict to the linear maps L: W - V that send dim(W) — dim(V)
elements of the basis of W to zero. This proves the claim for P = S). One can check
that if the claim holds for polynomial functors P; and P, then it also holds for P; & P».
So, since every polynomial functor is a direct sum of Schur functors, it follows that the
claim holds for all polynomial functors.

To find a polynomial map aw: Q(W) — P(W) extending B, we need to find a homo-
morphism
ay s KIP(W)] — K[Q(W)]

of K-algebras such that the diagram

KIPOW)] -5 K[Q(W)]

)

K[X(w)]

commutes. To find such a map, it suffices to find images a}, (x) € K[Q(W)] for elements
x of some basis B of P(W)" such that &}, (x) maps to B}, (x) in K[X(W)] for all x € B. We
consider a basis B that is contained in

U P(LY'P(V)*
L: W»V

and let x € 8 be some element. Let L: W - V be a linear map such that P(L)(y) = x
for some y € P(V)*. Then the diagrams

KIP(V)] — s K[pw))]

2 i

KIX(V)] —— KIX(W)]
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and

KIQ(v)] —22 s kiowy]

l l

KIX(V)] —— KIX(W)]

commute. Soif z € K[Q(V)] is an element mapping to f},(y) in K[X(V)], then Q(L)*(z) €
K[Q(W)] maps to B}, (x). This way we can construct a polynomial map

aw: QW) — P(W)

extending fw from a polynomial map ay: Q(V) — P(V) extending fy. Note here that
if ay is contained in P(V) ® K[Q(V)]<, then the map aw we constructed is contained
in P(W) ® K[Q(W)] <. This shows that there exists a k € IN such that we can extend fy
to a polynomial map ay € P(V) ® K[Q(V)]< for each V € Vec.

Next, let ay € P(V) ® K[Q(V)]<« be a polynomial map extending fy. Consider the
projection map
P(V) ® KIQ(V)]<k > (P(V) ® KIQ(V)] )"

and let &y be the image of ay under this map. Since X(V) is a GL(V)-stable Zariski-
closed subset of Q(V) and Sy is GL(V)-equivariant, we see that &y also extends fy.
So for each V' € Vec there exists a GL(V)-equivariant polynomial map Q(V) — P(V)
contained in P(V) ® K[Q(V)]<« extending By. Next we will show that these maps can
be chosen in such a way that they form a polynomial transformation Q — P extending
the regular transformation .

Let m > 0 be an integer. For each integer n > m, let Y;, be the set of all polynomial
transformations a: Q — P such that ak» is contained in

P(K") ® K[Q(K")] <

and extends fx». We have shown that Y,,,; € Y, and Y;, # 0 for all n > m. By
Proposition 1.3.25, the set of polynomial transformations a: Q — P such that ag» is
contained in

P(K™) ® K[Q(K™)]<k

is a finite-dimensional vector space. So it is in particular a Noetherian topological
space and Y, is a Zariski-closed subset of this space for all n > m. Hence (),5,, Y, con-
tains some polynomial transformation a: Q — P and this polynomial transformation
extends . m|

The limit of a polynomial functor

Let P be a polynomial functor. Then we get the vector space P, := P(K") for n € IN.
Let pr,: K"*! - K" be the projection map on the first n coordinates. Then we get the
map P(pr,): Py > P,. Since pr, is surjective, so is P(pr,). Every element ¢ € GL,
is a linear map K" — K" and hence induces a linear map P(g): P, — P,. Since P is
a functor, the map GL, — GL(P;) sending g + P(g) is a homomorphism and hence
gives P, the structure of a representation of GL,. We view GL,, as a subgroup of GL,+1
via the inclusion GL, < GL,4; sending g + Diag(g,1). Now one can check that
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the map P(pr,) is GL,-equivariant for every n € IN. So, following the construction
from the previous section, we get an inverse limit P = lim P, acted on by the
group GLe = lim GL, and equipped with the Zariski topology. We also get a map
pr,: P - P, for every n € IN.

Given a closed subset X of P, we get a GL«-stable closed subset X, of P, by taking
the inverse limit of the GL,-stable closed subsets X(K") of P(K"). In the other direction,
given a GLw-stable closed subset X, of P, we get a closed subset X of P given by
taking

X(V)={v e P(V)| f(P({)(v)) = 0 for all f € I(pr, (X)) and linear maps £: V — K"}
for every V € Vec.
Definition 1.3.27. We call X, the affine GL-variety corresponding to X.

Proposition 1.3.28. The map X +— X is a one-to-one correspondence between the closed
subsets of P and the GLe-subuvarieties of Poo. Furthermore, we have X, = pr,(X«) for all
closed subsets X of P and for all n € IN.

Proof. Let X, be the inverse limit of a closed subset X of P. Then we have pr, (Xw) € X,
for every n € N. Let v, € X, be a point and take v,+1 = P(in)(vm) € X4 for
m > n where i,: K" — K™l is a section of pr,,. Then (vy)msn € Xo and hence
Un = Pr,,(Vm)m=n € PT,(X). SO pr,(Xoo) = X;. It now follows easily that

X(V)={v e P(V)| f(P({)(v)) = 0 forall f € I(pr,(X)) and linear maps £: V — K"}.

Next, let X, be a GL-subvariety of Po, and let X be the associated closed subset of P.
Then the inverse limit of X is contained in X. Take v € X and let £: K™ — K" be
a linear map. Then P({)(v,) is a limit of elements of the GL,-orbit of v,. We have
f(w) = 0 for all f € I(pr,(X«)) and all w in this orbit. Hence v,, € X(k™). It follows
that X is the inverse limit of X. O

Corollary 1.3.29. The space P is GLw-Noetherian, i.e. every chain of GLe-subvarieties
of P, stabilizes.

Proof. This follows directly from the proposition together with Theorem 1.3.20. |
A regular transformation a: Y — X induces a map
Xeo - Yoo - Xoo
(Yndn > (axn(Yn))n-
Definition 1.3.30. A morphism e : Xeo — Yo of affine GL-varieties is a map that
arises from a regular transformation a: X — Y in this manner.
Multivariate polynomial functors

Fix an integer u € IN. We finish this section by defining multivariate polynomial
functors. Let Vec be the category whose objects are tuples V = (Vy,..., V) of finite-
dimensional vector spaces and in which a morphism ¢: V' — W is a tuple (¢4, ...,{,)
where each ¢;: V; — Wi; is a linear map.
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Definition 1.3.31. A p-variate polynomial functor P assigns to every V € Vec! a vector
space P(V) € Vec and to every morphism ¢: V — W a linear map P({): P(V) — P(W)
such that P(idy) = id(p(y) for all V € Vec¥, P({; o £2) = P(£;) o P(¢;) for all morphisms
t1: V- Wand {;: U— V and the map

Hom(V,W) — Hom(P(V),P(W))
{ — P

is a polynomial map for all V, W € Vec.

Just like univariate polynomial functors, multivariate polynomial functors have sub-
functors, quotients, direct sums and tensor products. And, just like p-variate polyno-
mial rings, the semiring of u-variate polynomial functors is Zgo—graded.

Example 1.3.32. Let U € Vec be a fixed finite-dimensional vector space. Then the
functor Cy;: Vec! — Vec assigning U to every V € Vec! and assigning idy; to every
morphismis a p-variate polynomial functor. When the space U has positive dimension,
the functor Cy; has degree 0. *

Example 1.3.33. Takei € [u]. Then the functor T;: Vec* — Vecassigning V;to V € Vec!
and ¢; to a morphism ¢ is a homogeneous u-variate polynomial functor of degree ¢;. %

Example 1.3.34. Letd = (dy,...,d,) € IN¥ be a tuple of integers and let A = (Aq,...,A})
be a tuple of partitions such that A; + d;. Then we define the multivariate Schur
functor S, to be the tensor product of the functors Sy, o Ty, ..., S A, 0Ty, ie, we have
S\V=5,Vi® --®S AV foreach V € Vec!. The functor S, is a homogeneous p-variate
polynomial functor of degree d. *

The definitions of linear and polynomial transformations between multivariate poly-
nomial functors generalize as one expects and a multigraded version of Proposi-
tion 1.3.25 holds. Given a p-variate polynomial functor P and a tuple V € Vec* of
vector spaces, the vector space P(V) naturally has the structure of a polynomial rep-
resentation of GL(V) := GL(V1) x --- X GL(V}). When P is homogeneous of degree

de Z;o' then so is the representation P(V). We again have the following lemma.

Lemma 1.3.35 (Touze [34, Théoréme 7.2]). For any tuples d € Z’;O and V € Vect such
that dim(V;) > d; for all i € [u], the functor sending -

P — PV)

a = ay

is an equivalence of categories between the category of homogeneous u-variate polynomial func-
tors of degree d whose morphisms are linear transformations and the category of homogeneous
polynomial representations of GL(V) of degree d. O

As a consequence of the lemma, we find that, when char(K) = 0, every u-variate
polynomial functor is a direct sum of multivariate Schur functors. So in particular,
every u-variate polynomial functor can be obtained from the constant functors Cy
and the functors Ty, ..., T, by taking subfunctors, quotients, direct sums and tensor
products in this case.
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The definition of a closed subset of a polynomial functor also generalizes. A closed
subset of a u-variate polynomial functor is itself a functor from Vec! to Top. The
Noetherianity of multivariate polynomial functors easily follows from the univariate
case. Let P be a p-variate polynomial functor of finite degree and let A: Vec — Vec!
be the functor assigning (V,...,V)to V € Vecand (¢, ..., {) to a linear map ¢.

Lemma 1.3.36. Let X, Y C P be closed subsets such that Xo A=Y o A. Then X =Y.

Proof. Let V € Vec! and W € Vec be such that dim(V;) < dim(W) for each i € [u]. Also,
let i;: Vi < Wand m;: W - V; be linear maps such that 7t; o (; = idy, for each i € [u].
Then we have

X(V)=P(ny,..., )Py, ..., 1)(X(V))) € P(mty, ..., i )(X(W, ..., W) € X(V)

since X is a closed subset of P. Hence X(V) = P(my, ..., mu)(X(W, ..., W)). Similarly, we
have Y(V) = P(mty, ..., ) )(Y(W, ..., W)). Since (W, ..., W) = A(W), it follows that

X(V) = P(mty, ..., ) (X o A)(W)) = P(ty, ..., ) (Y o A)(W)) = Y(V)
for each V € Vec. Hence X = Y. O

Theorem 1.3.37. Every descending chain of closed subsets of P stabilizes.

Proof. Let
P=Xy2X;2X2X32X42...

be a descending chain of closed subsets of P. Then we get a descending chain
PoA=XgoADX{0ADX0ADX30ADX40AD...

of closed subsets of the univariate polynomial functor P o A. This chain must stabilize
by Theorem 1.3.20. Hence the original chain must also stabilize by the previous
lemma. m|

A natural transformation between closed subsets of multivariate polynomial functors
is regular when each of the maps it consists of is regular and every regular transfor-
mation is the restriction of a polynomial transformation when char(K) = 0.

Finally, we construct the limits of multivariate polynomial functors. Let P be a u-
variate polynomial functor. Then we take P, := P(K", ..., K") for every integer n € IN.
Let pr,: K"*! - K" be the projection map on the first n coordinates. Then we get the
maps P(pr,,...,pr,): Py - Py and we define Py, := %iLnn P,. The map

GL' — GL(P,)
(C1,..., L) +— P,...,L)

gives P, the structure of a representation of GL,,. We view GL), as a subgroup of
GL5+1 via the map sending (g1,...,8u) + (Diag(g1,1),...,Diag(g,,1)). This makes
map P(pr,,...,pr,) into a GL}-equivariant map. This gives us an action of the direct
limit GL{, = lim GLj; on Pe.
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Remark 1.3.38. Alternatively, we could define P, as the inverse limit of the maps
P(prnl, .., prn#) where 1y, ...,1n, € N can be chosen independent from each other. As

every space P(K™, ..., K") in this inverse system has a space of the form P(K",...,K")
above it, the inverse limit is naturally isomorphic to the space P, we use. )

We can move between closed subsets X of P and GLE -subvarieties X of Pe as
expected.

Proposition 1.3.39. The map X +— X is a one-to-one correspondence between the closed
subsets of P and the GLY,-subvarieties of Peo. Furthermore, we have X, = pr,(Xw) for all
closed subsets X of P and for all n € IN.

Proof. This follows by combining Lemma 1.3.36 with the arguments from Proposi-
tion 1.3.28. o

Corollary 1.3.40. The space P, is GLA,-Noetherian.
Proof. This follows directly from the proposition together with Theorem 1.3.37. |

A regular transformation a: Y — X induces a map @e: Yoo — Xo and we call the
maps that arise in this way the morphisms ¥ — X.

1.4 Rank functions

Many rank functions can be used to define closed subsets of polynomial functors.
And, many of these rank functions can be defined using polynomial transformations
from smaller polynomial functors. This is no coincidence: see Theorem 4.2.5. In this
section, we list several examples of such rank functions in order to give some intuition
for this theorem.

Example 1.4.1. Letk € Z>be aninteger and let P = T®*1 be the univariate polynomial
functor sending V € Vec to V®*1. The elements of P are (k + 1)-tuples of vectors from
the same vector space. Consider the closed subset X C P defined by

X(V) ={(v1,...,0e1) € VI |01, ..., Uy are linearly dependent}
for all V € Vec. This is a closed subset of P, because the condition
dimspan{oy, ..., vk} < k

is closed and functorial in (v, ...,vk41). For vectors vy, ..., v, from the same vector
space V' € Vec, note that
dimspan{vy, ..., vy}

is the minimal k € Z such that (vy, . .., vy,) is contained in the image of the polynomial
transformation a: K& @ T® — T®" given by the maps

OévthmeBV@k — yen
(A,01,...,00) > (v1,...,00)A

for V € Vec. Here (vy, ..., v;) is treated as a 1 X k matrix. )
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Example 1.4.2. Let P = T1 ® T be the 2-variate polynomial functor sending a pair
(V,W) € Vec? to their tensor product V ® W. The elements of P are matrices. For
k € Z+y, consider the closed subset X C P defined by

X(V,W)={Ae Ve W|rk(A) <k}
for all (V, W) € Vec?. These are closed subsets of P, because the condition
rk(A) <k

is closed and functorial in A. For a finite-by-finite matrix A, note that rk(A) is the
minimal k € Z such that A is contained in the image of the polynomial transformation
a: (T; ® T2)® — P given by the maps

a(VIW):(VGBW)EBk - VoW

(01, W1, ..., U, WE) P V1QWL+ -+ U @ Wy
for (V, W) € Vec?. &
Fix an integer m € Z.»».

Example 1.4.3. Define the rank of a tuple (A4, ..., A;) of matrices of the same size as
rk(A1, ..., Ap) := min {rk(ylAl + o+ UmAm) | (p1:--:um) € ]Pm_l}.

This rank was first defined in [18]. Let P = (T1 ® T2)®" be the 2-variate polynomial
functor sending a pair (V, W) € Vec? to (V ® W)®. For k € Zs, consider the closed
subset X C P defined by

X(V,W) ={(A1,...,An) € VO W)®" | 1k(Ay, ..., An) < k)
for all (V, W) € Vec?. These are closed subsets of P, because the condition
rk(Aq,...,An) <k

is closed and functorial in (A, ..., A;). For finite-by-finite matrices Ay, ..., A, of the
same size, note that rk(A1,...,A;) is the minimal k € Zs( such that (A1,...,A) is
contained in the image of the polynomial transformation

a: K™ (T @ To)* @ (T; ® To)®" ! - P
given by the maps

awmw: K™"e (Ve W) e (Ve W1 — (Ve W)
(B,v1,w1,..., 0, Wi, A1, ..., A1) > (A1,...,Ap-1,01 QW1 + -+ + U @ wy)B

for (V,W) e Vec?. Here (A1,...,Ap_1, 019w +- - -+ 0, @wy) is treated as a 1 X m matrix. &

Example 1.4.4. Let P = T; ® - - - ® T}, be the m-variate polynomial functors sending a
tuple (Vy,...,Vy) € Vec" to V1 ® --- ® V. The elements of P are m-way tensors. For
k € Zy, consider the closed subset X C P defined by

X(Vi,..., Vy) =[tEV1® - ® Vyy | tk(b) < K}
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for all (V4,...,V,,) € Vec". These are closed subsets of P, because the condition
rk(f) <k

is functorial in t. For a tensor f, note that its tensor rank rk(¢) is the minimal k € Z>g
such that t is contained in the image of the polynomial transformation

a:(T1® - &T,)* > P
given by the maps

awv, vy Vi@ @V)® - Vi®--®V,
(Ullz-..,Umll-..,vlk/-..,vmk) B 011Q® QU+ U Q- ® Uy
for (V1,..., V) € Vec™. .

Example 1.4.5. Againtake P =T ®---® T),. A nonzero tensort € V;®: --® V,, has
slice rank 1 when it is of the form ¥ ® v; for somei € [m], ¥ € V1 ®---QV;®---® V,,
and v; € V;. The slice rank slrk(t) of a tensor f is the minimal k € Z5( such that f is a
sum of k tensors with slice rank 1. The slice rank of a tensor was first defined in [32].
For k € Z>, consider the closed subset X C P defined by

X(Vi,..., V) ={te Vi®---Q V,, | slrk(t) < k}
forall (V4,...,V,) € Vec". These are closed subsets of P, because the condition
slrk(t) < k

is closed and functorial in t. For a tensor ¢, note that its slice rank is the minimal sum
ki + .-+ + ky, of integers kq, ..., ky, € Zso such that t is contained in the image of the
polynomial transformation

a: é((n®---®Ti®---®Tm)eBTi)®ki — P
=1

given by the maps

m

I Dk;
VY, Vi) - @((vlg,...@vi@...@vm)@vi) - Vi® -V,
i=1

ki
(i, 0))ij P Lty Ly tij ® vij
for (V1,..., V) € Ved™. &
Fix an integer d € Z,.

Example 1.4.6. Let P = S be the univariate polynomial functors sending a V € Vec to
its dth symmetric power. The elements of P are homogeneous polynomials of degree d.
The Waring rank of a polynomial f € S4(V) is the minimal k € Zs( such that

_pd d
f=0++
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for some linear forms ¢1,...,{; € V. For k € Z(, consider the closed subset X C P
defined by

X(V) = {f € SUV) | wrk(f) <]

for all V € Vec. These are closed subsets of P, because the condition
wrk(t) <k

is functorial in f. For a homogeneous polynomial f of degree d, note that its Waring
rank is the minimal k € Z( such that f is contained in the image of the polynomial
transformation a: T® — P given by the maps

ay: VO g4y
(l1,....6) > O+ +¢

for V € Vec. &

Example 1.4.7. Again take P = S?. The strength of a polynomial f € S%(V) is the
minimal k € Zs( such that

f:gl'hl+"'+gk'hk
for some homogeneous polynomials g1, hy, ..., g, hx of degree < d. The strength of a

polynomial was first defined in [2]. For k € Z(, consider the closed subset X C P
defined by

X(V) = {f € SUV) | stx(f) < K]
for all V € Vec. These are closed subsets of P, because the condition
str(t) <k

is functorial in f. For a homogeneous polynomial f of degree d, note that its strength
is the minimal sum k; + --- + k|42 of integer k. € Zg such that f is contained in the
image of the polynomial transformation

ld/2]
a: @(Se ® Sd—E)éBkg P
e=1

given by the maps
Ld/2]
av: Py e sty - siv)
e=1
(@ejrhep)ej P LT goj-hej
for V € Vec. &
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Chapter 2

Inverse limits of locally diagonal
sequences

In this chapter, the field K is assumed to be infinite.

2.1 Introduction

Consider a sequence of embeddings

built up out of homomorphisms between the following classical algebraic groups

An1: SL, = {A e GL, | det(A) = 1)

By : Oouy1 = {A €GLloyup

fnecuafal, (o, )

Dn : OZn =<JA€ GLG A In AT = In
I, I

A

Cn @ Spy,

each of which we view as embedded subgroups of GL,, for some n € IN. Let G, H be
such groups, let V, W be their standard representations and consider K as the trivial

representation of G. In [3], an embedding G < H is called diagonal if

W= Ve (V)% @ K*

as representations of G for some [, 7,z € Zsg with [ + r > 1. The triple (I, 7,z) is called
the signature of the embedding. If G is of type B, C or D, then the representation V
is isomorphic to V*. In this case, we will always assume that r = 0, which makes the
pair (/,z) unique, and we also denote the signature by (/,z). For more on diagonal

embeddings, see the previous chapter.
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Example 2.1.1. Foralln € Nand /,r,z € Z5o with [ +r > 1, the map

SLn - SL(l+r)n+z

A — Diag4,...,A AT, AT L)
N N —— e’
1 r

is a diagonal embedding with signature (I, 7, z). &

We will assume that the sequence

51 %) 13
Gl —— Gy —— G3 — ...

consists of diagonal embeddings and we let G be its direct limit. We have an associated
sequence of linear maps

81— G —> 8 — ...
where g; is the Lie algebra of G;. Let V be the inverse limit of the sequence

Q) 4— o) «— 0 4

obtained by dualizing the previous sequence. Then V has a natural action of the
group G. The goal of this chapter is to prove the following theorem.

Theorem 2.1.2. Assume that one of the following conditions holds:
(a) The group G; has type A for infinitely many i € IN.
(b) The characteristic of K does not equal 2.

Then the space V is G-Noetherian.

Remark 2.1.3. We would like to point out that the G-Noetherianity of V also follows
from [20, Theorem 1.2] when all groups G; have the same type and all signatures are
of the form (1,0, z). The same is true for Theorem 2.1.4 below. '

Note that the conjugation-actions of GL, and SL, on gl, have the same orbits. This
observation might make one hope that one can prove case (a) of the theorem by
considering sequences of homomorphisms between general linear groups instead of
special linear groups. This turns out to indeed be the case. Consider sequences of the
form

GL,, “ GL,, — GL,, — ...
consisting of embeddings of the form

Ll: GLi’li - GLTIH_]

A +— Diag(4,..., A AT, AT L)
e e ——
l,‘ Ti

with [;, 7;,z; € Zs such that l; + r; > 1 and njy1 = (I; + ;)n; + z;. Let G be the direct limit
of this sequence. Then, similarly to before, the group G acts naturally on the inverse
limit V of the sequence

gInl « gIn2 « gIng, ‘(%
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consisting of the maps

gI”H—l - gI”i
P11 ce Plli L e L4 o
Plil cue Plili o ce L4 Ld li Ti
L] e L] Qll ce Ql”i o [ Z Pkk - Z Q?g
: : : : : k=1 =1
1 e hd Qr,-l e Qriri
L4 ce. ° ® NN o °

Here each e represents some matrix of the appropriate size. Take
a=#i|l;>1)}, ﬁ:#{i|1’i>0}, y:#{i|Zi>0}€ZZQU{OO}.

We assume that a +  + = oo since V is finite-dimensional otherwise. Based on ¢, 8, ¥
we distinguish the following cases:

1) a+p<co;

(2) atp=y=o00;

(3a) B = 0,y < co and char(K) # 2;
(3b) B =0,y < 0 and char(K) = 2; and
(4) p+y <co.

Note here thatif y < oo, then n;|n;,1 for alli > 0. Denote the element of V representated
by the sequence of zero matrices by 0. The following theorem completely classifies
the G-stable closed subsets of V.

Theorem 2.1.4. The space V is G-Noetherian. Any G-stable closed subset of V is a finite
union of irreducible G-stable closed subsets. The irreducible G-stable closed subsets of V are
{0} and V together with

{(P)i e V|Vi>0: tk(P;, I,) <k}, {(P))i € V|Vi>0: rk(P; — AL,) < k}
for A € Kand k € Zsg in case (1) and together with
{(P)i € V| Vi>0: tr(P;) = u}
for u € Kin cases (3b) and (4).

When proving case (a) of Theorem 2.1.2, we may assume that each group G; is of
type A. And we will show that, when this is the case, the space from Theorem 2.1.2
is a quotient of the space from Theorem 2.1.4 if we choose the tuples (/;,7;,z;) to be
the signatures from our orginal sequence of diagional embeddings. This allows us to
prove case (a) of Theorem 2.1.2.

Outline of this chapter. There are many useful ways in which we can change the
sequence of groups




without changing its direct limit G or the inverse limit V' of the associated sequence

9 <« 9, € 9 €

We may in particular assume that all groups G; are of the same type and we will
prove Theorem 2.1.2 for each type seperately. These proofs nevertheless share the
same overall structure. The first section of this chapter in devoted to these sequence
changes and the shared structure of the proofs. After this, we prove Theorem 2.1.4
and Theorem 2.1.2 for groups of type A, C, D and B in that order in five more sections.

2.2 Structure of the proofs

In this section, we reduce Theorem 2.1.2 to a number of cases and we outline the
structure that the proofs of each of those cases and of Theorem 2.1.4 share.

Reduction to standard diagonal embeddings

When the vector space V is finite-dimensional over K, Theorem 2.1.2 becomes trivial.
So we will only consider the cases where V is infinite-dimensional. For all i € N, let
(li, 7i, zi) be the signature of the embedding (;: G; < G;;1. When G; is of type B, C or
D, we will assume that r; = 0. The following lemma tells us that we can assume that
l; >r;forallieN.

Lemma 2.2.1. Forall i € N, let 0;: G; — G; be the automorphism sending A AT and
take k; € Z. |2 Z.. Then the bottom row of the commutative diagram

a)
~

is a sequence of diagonal embeddings with signatures o%**+1(1;, r;, z;) where o acts by permuting
the first two entries. o

The lemma follows from the fact that the automorphism G; — G;, A — A Tis diagonal
and its own inverse. We can choose the k; recursively so that [; > r; for all i € IN
in the bottom sequence. Since the vertical maps are isomorphisms and the diagram
commutes, the bottom sequence gives rise to isomorphic G and V. This allows us to

indeed assume that I; > 7;.

Let G be a classical group of type A, B, C or D. Let ], 1,z € Z>( be integers with 7 = 0
if G is not of type A. Assume that 1, f, are nondegenerate G-invariant bilinear forms
on Ve @ (V*)@r @ K®2,

Lemma 2.2.2. Assume that K = K and that one of the following conditions holds:
(a) By and By are both skew-symmetric.

(b) B1 and By are both symmetric and char(K) # 2.
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Then there exists a G-equivariant automorphism ¢ of V® & (V*)®" @ K® such that

B2(p(v), p(w)) = p1(v, w)
forall v,w € V¥ & (V*)® @ K®-.

Proof. First suppose that [ = r = 0. In this case, the lemma reduces to the well-known
statement that the matrices corresponding to f; and f, are congruent. In general,
Schur’s Lemma splits the lemma into the cases z = 0 and [ = r = 0. Suppose thatz = 0.
If G is of type B, C or D, then Schur’s Lemma also shows the matrices corresponding
to 1 and f3; are Kronecker products of I X I matrices with the identity matrix. If G is of
type A, then Schur’s Lemma shows that / = r and that the matrices corresponding to
p1 and f, are Kronecker products of I X I matrices with the matrix

59

Here we order the copies of V and V* alternatingly. This reduces the case z = 0 to the
thecasel =r=0. m|

Let f,¢g: G — H C GL, be two diagonal embeddings with signature (I, 7, z).

Lemma 2.2.3. If the type of H is B, C or D, assume that K = K. If the type of H is B or
D, assume in addition that char(K) # 2. Then there is a P € H such that the isomorphism
n: H— H,A +— PAP~! makes the diagram

G(L}H
id T

o
G——H

commute.
Proof. The maps f and g both induce an isomorphism
K" = V¥ g (V) @ K%
of representations of G. This means that there are matrices Q, R such that
Qf(A)Q7! = Rg(A)R™! = Diag(4,...,A,A7T,..., AL

for all A € G where the block-diagonal matrix has I blocks A and r blocks AT IfHis
of type A, then we take P = AR™!Q for some A € K such that P € SL,, and see that the
isomorphism rt: H — H,A PAP~! makes the diagram commute.

Assume that H is not of type A. Then H = {g € GL, | ¢'Bg = B} for some matrix
B € GL,. Let 1 and 5, be the G-invariant bilinear forms on K" defined by Q TBQ!
and R"TBR™!. By the previous lemma, there exists a G-equivariant automorphism ¢
of K" such that

P2(p(v), p(w)) = p1(v, )

for all v, w € K". Let S be the matrix corresponding to ¢. Then

STQ"TBQ™'S = R"TBR™!
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and
SDiag(4,...,A,AT,...,AT,I,) = Diag(4,...,A,A™T,...,A7T,1,)S

forall A € G. Take P = R™1S7!Q. Then P~! € H and therefore P € H. The isomorphism
n: H— H, A+ PAP~! makes the diagram commute. O

Proposition 2.2.4. For every i € IN, let i}: G; < Gijy1 be a diagonal embedding with the
same signature (I;,1;,2;) as v;. If the type of G; is B, C or D for any i € N, assume that K = K.
If the type of G; is B or D for any i € IN, assume in addition that char(K) # 2. Then there exist
isomorphisms @;: G; — G; making the diagram

~

L1 %) 13
Gl —— Gy —— G5 ©

e e o

L L L

1 2 3
G —— Gy —— Gz ©

~

commuite.

Proof. We construct the isomorphisms ¢; recursively in such a way that the ¢; are also
diagonal embeddings with signature (1,0,0). Write ¢ = id, let i > 2 and assume that
¢i-1 has already been constructed. Then (/_, o ¢;-1 has the same signature as (;_1. So
by the previous lemma, there exists an isomorphism ¢; making the diagram

Giii —=— G;

\Lid \L@i
li_1°Pi-1

Gio1 —— G;
commute that also has signature (1,0, 0) as a diagonal embedding. O

Recall that, when we replace

i 2 13
G —— G — G — ..

by supersequences or infinite subsequences, we do not change G or V. Therefore we
may assume that each group G; has the same type and we will prove Theorem 2.1.2
for sequences of groups of type A, B, C and D separately. The proposition tells us
that, if we replace K by its algebraic closure, the limits G and V only depend on the
signatures of the diagonal embeddings. Since G-Noetherianity of V over K implies
G-Noetherianity of V over the original field K, we only have to consider one diagonal
embedding per possible signature.
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Identifying V with the inverse limit of a sequence of quotients/subspaces of matrix
spaces

We encounter the following Lie algebras:

Apr: s, = {Pegl, | tr(P) =0}

P 1 + 1 PT=0
I, I,

C, : spy, =<Peagl, |P I”+ In PT=0
I, -1,

D, : o, :{Peglzn P( I”)+( I”)PT:O}

These are all subspaces of gl,, for some m € IN. Consider the symmetric bilinear form
gl Xgal, = K (PQ) = tr(PQ). This map is nondegenerate and therefore the map
al, = all,, P = (Q = tr(PQ)) is an isomorphism. By composing this map with the
restriction map gl;, — sl;, and factoring out the kernel, we find that

P € gly,1

By i 02p41

al, /span(ly,) — sl
Pmod I, — (Qm tr(PQ))

is an isomorphism. When char(K) # 2 and g C gl,, is a Lie algebra of type B, C or D,
the restriction of the bilinear map to g X g is nondegenerate. So the map

g — g
P — (Qm tr(PQ))

is an isomorphism. Since the map gl, — gl is in fact GL,-equivariant, the maps
aly, / span(l,;) — sl and g — g* are all isomorphisms of representations of the groups
acting on them. Using these isomorphisms, we identify the duals g; of the Lie algebras
of the groups G; with quotients/subspaces of spaces of matrices. This in particular
allows us to define the coordinate rings of the g; in terms of entries of matrices. For
type A, we get

Klgl, / span(ly)] = {f € K[gl,] | VP € g, YA € K: f(P + Al,) = f(P)}
which is the graded subring
Klpke | k # €1 ®k Klp11 = pre | k # 1]
of K[al,,] = K[pke | 1 <k, £ < n]. For type B, assuming that char(K) # 2, we have

P v
Y | B _QT Q+Qr'=0
41 =W 0 =0 J€ghu | oL pT
R w -PT
and therefore we get

Klo2n+1] = Klpke, gie, tee, vk, wie | 1 < k, € < nl/(qke + Gexs Toe + 7 k)-
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For type C, we have

P
SPoy = {(R _%T) € gly, R =RT

Q=QT}

and we get

K[spo,] = Klpe, gre, txe | 1 <k, € < nl/(Gre — Gers Tke — Tex)-

For type D, assuming that char(K) # 2, we have
P
D2p = {(R _%T) € gl

K[o2,4] = Klpke, Gre, tee | 1 < k, € < nl/(Gre + Geres e + Ter)-

For Lie algebras g C gl,, of type B, C or D, we will denote elements of K[g] by their
representatives in K[gl,]. Define a grading on each of these coordinate rings by
grad(rye) = grad(wy) = 0, grad(pie) = grad(vi) = 1 and grad(gx,) = 2 for all k, £ € [n].

Q+Q"=0
R+RT=0

and get

Moving equations around

Let X C V be a G-stable closed subset. For each i € IN, let V; be the vector space (we
identified with) g which is acted on by G; by conjugation and let X; be the closure of
the projection from X to V;. Then X; is a G;-stable closed subset of V; for all i € IN
and there exists an i € IN such that X; # V;. This means that the ideal 7 (X;) C K[V;] is
nonzero. Let f be a nonzero element of 7(X;) and let d be its degree. The first step of
the proof of Theorem 2.1.2 is to use this polynomial f to get elements f; of 7(X;) such
that f; # 0, such that deg(f;) < d and such that f; is “off-diagonal” for all j > i. When
the groups G; are of type B, C or D, this last condition means that f; is a polynomial in
only the variables ri, and wy. When the groups G; are of type A, we similarly require
that the f; are polynomials in the variables py, with k € A and ¢ € £ for some disjoint
sets X, £.

The projection maps pr;: Vi1 — V; induce maps pr}: K[V;] — K[Vj;1] which are
injective and degree-preserving. We will see that, for many of the maps pr; we will
encounter, the map pr; is also grad-preserving. Since X1 projects into X;, we have
pri(Z(X;)) € I (Xi+1)- So f induces nonzero elements g; € J(X;) of degreed forall j > i.

Let A: K¥ — G, be a polynomial map such that the map

Kk - Gj
A - AN

is polynomial as well. Then A(A) - g; € I(X;) for all A € K* and therefore linear
combinations of such elements also lie in 7(X;). Note that we can view A(A) - gj as
a polynomial in the entries of A whose coefficients are elements of K[V;]. Let R be
a K-algebra and h € R[x] a polynomial. Then, since the field K is infinite, one sees
using a Vandermonde matrix that the coefficients of / are contained in the K-span of
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{h(A) | A € K}. Applying this fact k times, we see that all the coefficients of A(A) - g; lie
in span(A(A) - gj | A € K* ¢ I(X)).

We will let f; be a certain one of these coefficients. We have deg(f;) < d by construction
and we will choose A in such a way that f; is “off-diagonal”. We will see that f; is
obtained from g; by substituting variables into the top-graded part of ¢; with respect
to the right grading (in most cases deg or grad). Since the polynomial g; is nonzero, so
is its top-graded part with respect to any grading. So it then suffices to check that this
top-graded part does not become zero after the substitution. In the cases where this is
not obvious, it will follow from a lemma stating that a certain morphism is dominant.

Using knowledge about stable closed subsets of the “off-diagonal” part

The space V; consists of matrices. When we have an “off-diagonal” polynomial which
is contained in 7(X;), we know that the projection Y of X; onto some off-diagonal
submatrix cannot form a dense subset of the projection W of the whole space V;. We
then give W the structure of a representation such that Y is stable and use the fact that
we know that the ideal of Y contains a nonzero polynomial of degree at most d to find
conditions that hold for all elements of Y. These in turn give conditions that must hold
for all elements of X;, which will be enough to prove that X is G-Noetherian.

2.3 Limits of general linear groups
In this section, we let G be the direct limit of a sequence

GL,, “— GL,, “— GL,, —— ...
of embeddings given by

y: GL,, <= GL,,,

A +— Diag(A,...,A AT, . AT, L)
——— —— ————
ll‘ i

forsomel; € Nand rj, z; € Z>o with [; > r;. Welet V be the inverse limit of the sequence

gly, < gly, « al,, «— ...
where the maps are given by

glnm > gITli

P11 N Plli ° ce ® L]
Py ... Py, e ... o o l; ri
T
o ... o Qu ... Qi e = Zpkk_ZQfg~
: : : Do k=1 ¢=1
L4 e L4 Q}’,’l L QI’,’T,’
e ... o o ... e o

Our goal is to prove Theorem 2.1.4. We start by proving some basic properties of the
tuple rank of a matrix with the identity matrix.
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Proposition 2.3.1. Let P, Py, ..., Py be elements of gl,.
1. We have rk(Py, ..., Py) = sup{rk(pr, (P1), ..., pr,(Py)) | n € N}.
2. Ifrk(P, I) < 0o, then rk(P — Als) < oo for some unique A € K.

Proof. We have
rk(pr, (P1), ..., pr,(Py)) < tk(uiPy + -+ + uiPy)

forallm e Nand (up :---: ) € P, So
r = sup{rk(pr, (P1),...,pr,(Py) | n € N} < 1k(Py, ..., Py)
with equality when r = co. Suppose that 7 < co and consider the descending chain
YI2Y,2Y32Y2...

of closed subsets of IP*~! defined by
Y, = {(m teee i lg) € Pk-1 | rk(uy pr,(Pq) + -+ + g pr,,(Py)) < r}.

By construction, each Y, is nonempty. And by the Noetherianity of IP*!, the chain
stabilizes. Let (7 : --- : ) € P*"! be an element contained in Y, for all # € N. Then
we see that rk(Py, ..., Px) < rk(u1P1 + - - - + ugPx) < r. This shows (1).

If rk(P, I) < o0, then rk(P—Aly) < oo for some A € K. If this holds for distinct A, A” € K,
then

00 =1k((A = A)Is) =tk (P — A'I) = (P — Al)) S k(P — A'I) + tk(P — Al) < o0
and hence the A € K such that rk(P — Al.) < co must be unique. This shows (2). O

The following proposition, which is due to Jan Draisma, connects the tuple rank of a
matrix P with the identity matrix to the rank of off-diagonal submatrices of matrices
similar to P.

Proposition 2.3.2. Let k,m,n € Zxq be such that n > 2m > 2(k + 1), let K, % be disjoint
subsets of [n] of size m and let P be an n X n matrix. Then rk(P,I,) < k if and only if the
submatrix Qy « of Q has rank at most k for every Q ~ P.

Proof. Suppose that rk(P, ;) < k. Let Q ~ P be a similar matrix. Then rk(Q, I,;) < k. So
since X N £ = () and the off-diagonal entries of Q and Q — AI, are equal for all A € K,
we see that rk(Qux ) < k.

Suppose that the submatrix Qx ¢ has rank at most k for every Q ~ P. Then this
statement still holds when we replace A and £ by subsets of themselves of size k + 1.
This reduces the proposition to the case m = k + 1. Now the statement we want to
prove is implied by the following coordinate-free version:

(*) Let V be a vector space of dimensionn andletp: V — V be an endomorphism. If
the induced map ¢: W — V/W has a nontrivial kernel for all (k + 1)-dimensional
subspaces W of V, then ¢ has an eigenvalue of geometric multiplicity at least
n—k.
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Indeed, taking ¢: K" — K" the endomorphism corresponding to P and W C K"
a (k + 1)-dimensional subspace, we can first replace P be a matrix Q ~ P to get
W = K1 x {0}. Since Q is similar to all its conjugates by permutation matrices, we
know that det(Qx ) = 0 for all disjoint subsets of #,%£ C [n] of size m. Hence
Qu)\[k+1],[k+1] has rank at most k. So the induced map W — V/W has a nontrivial
kernel. We conclude from (*) that

rk(P— AL) =tk(Q-AL) <n—(n—-k) =k
for some A € K. So rk(P, I;) < k.

To prove (*), consider the incidence variety
Z = {(W,[0]) € Graa (V) X P(V) | 0, 9(0) € W)

and let 11, 71 be the projections from Z to the Grassmannian Gry.1(V) and to IP(V). By
assumption 711 is surjective. So we have

dim Z > dim(Gryy1(V)) = (k+ 1)(n — k- 1).

On the other hand, let v € V \ {0} be a non-eigenvector of ¢. Then nl(ngl([v]))
consists of all W € Gry1(V) containing span(v, ¢(v)) and these form the Grassmannian
Gry_1(V/ span(v, p(v))) of dimension (k — 1)(n — k — 1). Thus the union of the fibres
Uy 1([v]) for v not an eigenvector of ¢ has dimension at most

(k—1)n—k—1) + dim(P(V)) = k+ )(n —k—1) + 2k + 1 — .

This dimension is strictly smaller than dim(Z). Let v be an eigenvector of ¢. Then
TCl(TCEl([U])) consists of all W € Gry,1(V) with v € W and these form the Grassmannian
Gry(V/ span(v)) of dimension k(n — k — 1). So we see that the union of the eigenspaces
of @ must have dimension at least dim(Z) — k(n —k —1) + 1 > n — k. Hence some

eigenspace of ¢ must have dimension at least n — k. m]

23.1 Thecasea+f <o
By replacing
GL,, “3% GL,, <23 GL,, < ...

with some infinite subsequence, we may assume that (/;, ;) = (1,0) and z; > 0 for all
i € IN. Then, by replacing the sequence by a supersequence, we may assume thatn; =i
and z; = 1 for all i € IN. So we consider the inverse limit V' = gl of the sequence

gy « gl « als «
acted on by the group G = GL.

Definition 2.3.3. For n € IN, we call a polynomial f € K[gl,] off-diagonal if
fe€Klpwe l ke, e£]

for some disjoint subsets A, £ C [n] of size m < n/2.
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Lemma 2.3.4. Let n € IN be an integer, let Y be a GL,,-stable closed subset of gl,, and suppose
that 1(Y) contains a nonzero off-diagonal polynomial f. Then rk(P,1,) < deg(f) forallP € Y.

Proof. Let X ,%£ C [n] be disjoint subsets of size m < n/2 and let
feKlpelke X, teLINI(Y)

be a nonzero element. If m = 0, then f is constant and Y = §. So in particular,
rk(P, I,) < deg(f) for all P € Y. For m > 0, let Z be the closure of the set

{(Wkkew cex | (Yroke € Y}

in gl,,. Then f € 7(Z). By conjugating with +1 times a permutation matrix, we may
assume that & = [m] and £ = [2m] \ [m]. Now consider the map

GL,xGL, — GL,
(A/ B) = Dlag(A/ B/ In—Zm)-

Since Y is GL,, X GL-stable, we see that Z is closed under GL,, X GL,, acting by left
and right multiplication. So Z must consist of all matrices of rank at most ¢ for some
t < m. Since f € 1(Z), we see that { < min(m, deg(f)). So by Proposition 2.3.2, we see
that Y consists of matrices P such that rk(P, I,,) < min(m, deg(f)) < deg(f). |

Let X be a proper GL«-stable closed subset of gl,,. Denote the closure of the projection
of X to gl,, by X;; and let 7(X,,) € K[gl,] be its corresponding ideal.

Lemma 2.3.5. Let m be a positive integer and suppose that 1(X,,) contains a nonzero poly-
nomial f. Then rk(P,I) < deg(f) for all P € X.

Proof. Note that the morphism X,, — X,, is dominant for all positive integers m < n.
So it suffices to prove that rk(pr,(P), I;) < deg(f) for n > 0. Let n > 2m be an integer.
Then f induces the element

P Q e
g=||R S e|—= f(P)

of 7(X,) where P,Q,R, S € gl,,. This allows us to assume that deg(f) < m without loss
of generality. For A € K, consider the matrix

Ln Al
A(A) = L, e GL,.
[ Ian]
We have
P Q e P+AR Q+A(S—P)—A%R e
AWMN)|R S e|lAWN)! = [ R S—AR .]
[ ] [ ] [ ] [ ] [ ] [ ]

forall A € K. So we see that if we let A(A) act on g, we obtain the element

P Q o
hA—[[R S oJ+—>f(P+/\R)]
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of 7(X,). Let d be the degree of f and let f; be the homogeneous part of f of degree
d. Then the homogeneous part of /1) of degree d in A equals the polynomial A% f;(R).
Since the field K is infinite, the polynomial f;(R) is a linear combination of the /,.
Hence f;(R) € I(Xy). So rk(P, I,) < deg(f) for all P € X,, by Lemma 2.3.4 and therefore
rk(P, I») < deg(f) forall P € X. O

Lemma 2.3.6. Let k < n be nonnegative integers and let P € gly, and Q € gl,, be matrices
with tk(P) = k and rk(Q) < k. Then P is similar to

(Q Qu)
Q1 O»

Proof. First note that rk(P, I,) = 2n — dim ker(P) = k, since 0 has the highest geometric
multiplicity among all eigenvalues of P. Since 2(k + 1) < 2, it follows by Proposition

2.3.2 that
p(®®
~“r o

for some matrix R € gl, with rk(R) = k. By conjugating the latter matrix with Diag(g, I,;)
for some g € GL, such that gker(R) C ker(Q), we see that

3l )

for some matrix R’ € g1, with rk(R") = k and ker(R’) C ker(Q). This means that Q = SR’
for some S € gl,,. Since both R” and any matrix similar to P have rank k, we see that
the matrix on the right must be of the form

(¥

for some T € gl,. Now note that the matrix

BN ERE

is similar to P and of the form we want. O

for some Q12, Q21, Q22 € gl,y.

Proposition 2.3.7. Let P € gl, be an element. Then either the orbit of P is dense in gl or
k = rk(P — Al) < oo for some unique A € K. In the second case, the closure of the orbit of P
equals the irreducible closed subset {Q € gl | rk(Q — M) < k} of gl.

Proof. Let X be the closure of the orbit of P. Then either X = gl,, or rk(P,I) = k for
some k € Z>y by Lemma 2.3.5. In the second case, we see that rk(P — Al.) = k for
some unique A € Kby (1) of Proposition 2.3.1. Our goal is to prove that X = {Q € gl |
rk(Q — Alw) < k}. Using the GL-equivariant affine isomorphism

ol — 6lo
Q » Q-Als
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we may assume that A = 0 and hence that k = rk(P) is finite. It suffices to prove that

pr,({Q € ale [ tk(Q) < k}) = {Q € gl | rk(Q) < k} = pr,(GLeoP)

for all n > 0 since the middle set is irreducible. See Proposition 1.2.3. The inclusions

pr,(GLeP) € pr,({Q € ale [ 1k(Q) < k) € {Q € gl [ rk(Q) <k}
are clear for all n € IN. Let n > k be an integer such that the rank of pr, (P) equals k.
Then
{Q € al, | 1k(Q) <k} C pr, (GLyy- pr,,,(P)) € pr,,(GLo-P)
by Lemma 2.3.6. So indeed pr, ({Q € gl | tk(Q) < k}) = pr,,(GLoP) foralln > 0. 0O

Lemma 2.3.8. Let m be a positive integer and suppose that 1(X,,) contains a nonzero poly-
nomial f with deg(f) < m. Let g(t) = f(tLn) € K[t] be the restriction of f to span(l,,). Then
X is contained in

| J{Q e gl | K(Q - ML) < deg()}

A
where A € K ranges over the zeros of g.

Proof. Let P be an element of X. Since f is nonzero, we know that X is a proper
GL-stable closed subset of gl,,. Hence the orbit of P cannot be dense in gl,,. So
k = rk(P - Al,) < deg(f) for some A € K by Lemma 2.3.5. This A is unique and the
closure of the orbit of P equals {Q € gl | rk(Q — Alw) < k} by Proposition 2.3.7. So we
see that Al is an element of X. So Al is an element of X,, and hence g(A) = f(AL,) = 0.
We see that for all P € X there isa A € K with g(y) = 0 such that

Pef{Qe€ gl | tk(Q - M) < deg(f)}. O

Proposition 2.3.9. Either the GLeo-stable closed subset span(l«) of gl is contained in X or
there exist Aq,...,Ap € Kand ky, ..., k; € Zsq such that

t
X = | JIQ € gl 1 1k(Q — Ailo) < K.
i=1
Proof. Assume that span(l.) is not contained in X. Then, for some m € IN, X;, is a
proper subset of gl,, that does not contain span(l,;). The ideal 7(X,,) must contain a

nonzero polynomial f such that the polynomial g(t) = f(tI,,) € K[t] is nonzero. By
Lemma 2.3.8, we see that X is contained in

| J{Q e gl | 1K(Q - ML) < deg()}

A
where A € K ranges over the finitely many zeros of g. Take
A={AeK|gh)=0,3P € X: k(P — M) < deg(f)}

and take
ki = max{rk(P — Al) | P € X, rk(P — Als) < oo}
for all A € A. Then we see that
X = | JIQ € gl I T(Q - ML) < K}
AEA

using Proposition 2.3.7. O
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The proposition implies in particular that any descending chain of GL-stable closed
subsets of gl stabilizes as long as one of these subsets does not contain span(l.,). Next
we will classify the subsets that do contain span(l).

Proposition 2.3.10. Let k be a nonnegative integer. Then the GLo-stable subset
{P € gl | k(P 1) < k}

of ol is closed and irreducible.

Proof. Using (1) of Proposition 2.3.1, we see that
{P € gl | k(P ) < k}

is the inverse limit of its projections {P € gl, | rk(P,I,) < k} onto gl,,. So it suffices to
show that this is a closed irreducible subset of gl,, for all n € IN. See Proposition 1.2.3.
The subset {P € g, | rk(P, I;) < k} is the inverse image of the subset

Y ={(P,Q) € o | tk(P,Q) <k}

under the map gl,, — glfl, P+ (P, 1,). The subset Y is closed in glfZ since it is the image
of the closed subset

{((u1: 12), P, Q) € P! x g2 | rk(u1P + 12Q) < k}

under the projection map along the complete variety IP'. So {P € gl | tk(P, I,) < k} is a
closed subset of gl,,. This subset is also the image of the map

{Qegl, [tk(Q) <k} xK — gl,
QA) = Q+Al

and hence irreducible. |
Proposition 2.3.11. Suppose that X contains span(le). Then
X={Pegly|1k(PIs) <klUY

for some nonnegative integer k and some GLw-stable closed subset Y of gl that does not
contain span(le).

Proof. Since X is a proper subset of gl,,, we know that
X Cc{Pegly | k(P Is) < ¢}

for some ¢ € Z>p by Lemma 2.3.5. Let k be the maximal nonnegative integer such that
{P€gly | k(P Io) <k} C X

We will prove the statement by induction on the difference between ¢ and k.

Suppose that £ = k. Then X = {P € gl | rk(P, I) < k} and the statement holds. Now
suppose that £ > k and let Y’ be a GL«-stable closed subset of gl,, that does not contain
span(l«) such that

XN{Pegly | k(P o) < €—1) = [P e gly | tk(P,I) <k} U Y.
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Consider the set Z = {A € K| AP € X: rk(P — Al) = ¢} and fix an element Q € gl
with rk(Q) = ¢. By Proposition 2.3.7, we know for A € K that Q + Al € X if and only
if A € Z. This shows that Z is a closed subset of K. So either Z = K or Z is finite. If
Z = K, then we see that X contains all P € gl,, with rk(P, I) < ¢ by Proposition 2.3.7.
Since ¢ > k, this is not true and hence Z is finite. Take

Y=Y U U{P € gl | Tk(P — Al) < 6.
AeZ

Then we see that X = {P € gl | rk(P, I») <k} U Y. O

Proof of Theorem 2.1.4 in case (1). Let S be the set of pairs (k, f) where k € Z5_; and
where f: K — Zy is a function such that f~1(Z.;) is finite. Define a partial ordering
on Sby (k, f) < (¢,g) whenk < £ and f(A) < g(A) for all A € K. Then for all (k, f) € S,
the set {(k,g) € S | (k,g) < (k, f)} is finite. So any descending chain in S stabilizes. For
a proper GL-stable closed subset X of gl let kx be the maximal integer such that
[P € gle | Tk(P, I) < kx} € X and let fx: K — Z be the function sending A € K to the
maximal k such that {P € gl | rk(P — Al») < k} € X. Then, by Propositions 2.3.9 and
2.3.11, we see that

X ={P e gl | tk(P,Io) < kx} U U [P e gl | k(P - M) < fx(1))
Aef (Zory)

and that the map X + (kx, fx) is an order preserving bijection between the set of
proper GL«-stable closed subsets of gl,, and S. Now consider a descending chain

X12X02X32X42...
of GLw-stable closed subsets of gl,,. We get a descending chain
(kxllfxl) > (kXZ/fXZ) > (kX3/fX3) 2 (kX4/fX4) ...

in S which must stabilize. Therefore the original chain also stabilizes. Hence gl is
GL-Noetherian. The irreducible GL-stable closed subsets of gl., are as described in
the theorem by Propositions 2.3.7,2.3.9, 2.3.10 and 2.3.11. O

2.3.2 The proof of the other cases

Now, we turn our attention to cases (2)-(4) of Theorem 2.1.4. We start by proving some
statements that are useful in multiple cases.

Lemma 2.3.12. Let k,n be positive integers with k < n and let P € gl,, be a matrix. Then
rk(P) < k if and only if det(Qp, ) = 0 for all Q ~ P.

Proof. 1f rk(P) < k, then det(Qpq ) = 0 for all Q ~ P. Suppose that det(Qyi i) = 0 for
all Q ~ P. Note that rk(P) < k if and only if det(Py ) = 0 for all subsets &, £ C [n]
of size k. One can prove this using reverse induction of the size of X N . It X = &£,
then Py o = Q) for some matrix Q ~ P obtained from P by conjugating with a
permutation matrix. So det(Py ) = 0. For |[X N¥L| <k, wetakeie X \L,je L\ K
and A’ = {j} UX \ {i} and note that, since | X' N L] > | X N <],

det(Pyglg) =+ det(Py(/,yg) + det(Q(%//‘gg) =0

where Q ~ P is the matrix obtained from P by adding row i to row j and substracting
column j from column i. ]
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Lemma 2.3.13. Let k, {,n € IN be integers with n > 6k and £ > 2.

(1) Let Py,...,P¢ € gl, be matrices of rank k. Then there exist Q1 ~ P1,...,Q¢ ~ P¢ such
that k < rk(Qq + -+ - + Q) < 3k.

(2) Let Pq,...,Pp € gl, be matrices with tk(P1, 1) = - -+ = tk(P¢, I;) = k. Then there exist
Q1 ~Py,...,Q¢ ~ Prsuch that k < rk(Q1 + -+ - + Qp, I;) < 3k.

Proof. Let P,P" € gl, be matrices such that rk(P), tk(P’) < n/2. We start with three
claims.

(i) ForallQ ~ Pand Q" ~ P’, we have rk(Q + Q') > | rk(P) — rk(P’)|.
(ii) There exist Q ~ P and Q' ~ P’ with rk(Q + Q') = rk(P) + rk(P").
(iii) There exist Q ~ P and Q' ~ P’ with rk(Q + Q') < max(rk(P), rk(P’)).

Claim (i) is obvious. For (ii) and (iii), take m = max(rk(P), rk(P’)) and note that

o (TR TRS\ (L. -S TR TRS\(I, -S\ ((S+T)R 0
R RS ILm] \R RS Lw/ "\ R 0

for some matrices R, S, T with R an (n —m) X m matrix of rank rk(P) by Proposition 2.3.2,
because otherwise rk(P, 1,;) < rk(P) would hold. Similarly, we have

, ° O ° R//
P ”(R' o)~(0 0)
for some (1 — m) X m matrix R” and m X (n — m) matrix R” that both have the same rank
as P’. Now (ii) follows from the fact that

& o)+ %)

has rank rk(P) + rk(P’) and (iii) follows from the fact that
e 0 e (
R 0)"{rR 0

Let Py, ..., P, € gl,, be matrices of rank k. To show (1), we use induction on £. For £ = 2,
we see that (1) follows from (ii). Now suppose that £ > 2 and that

has rank at most m.

k<rk(Qq+---+Qpq) <3k

for some Qq ~ P1,...,Q¢-1 ~ Prq. Using (ii) if rk(Q1 + - - + Qr—1) < 2k and using (i)
and (iii) otherwise, we see that

k<rk(g(Qu+- +Qra)g™ +Qr)) < 3k

for some ¢ € GL, and Q¢ ~ P;. Since ngg‘l ~Py, ..., gQg_lg‘l ~ Py and Qp ~ Py
this proves (1).
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Next, let Pq,...,P; € gl, be matrices with rk(Py,I,) = --- = rk(P¢,I;) = k and let
A1, ..., A¢ € Kbe such that rk(Py — A1) = --- = rk(Py — A¢l,) = k. Then (1) tells us that
there exist Q) ~ P1 —Mly, ..., Q, ~ Pr— Aely such that k<rk(Q)+---+ Q) < 3k. From
this follows that

k<rk(Qq+---+ QI <3k

for Q1 = Q)+ Mly ~ Py,...,Qr = Q) + A¢ely ~ Py. This shows (2). O
Let X be a G-stable closed subset of V and let X; be the closure of the projection of X
to gl,..

Lemma 2.3.14. Suppose that I; + r; > 2 for all i € IN. If there exists a k € Z( such that X;
only contains elements P with tk(P, I,,) < k for all i > 0, then X C {0}.

Proof. The lemma follows by induction on k from the following statement.

(*) Let k,i € IN be integers such that n; > 6k. If X;,; contains an element P with
rk(P, I,,,) = k, then X; contains an element Q with rk(Q, I,;,) > k.

Let k,i € IN be integers such that n; > 6k and let P be an element of X;;; with
rk(P, I,;,,) = k. By Lemma 2.3.12, we have

Py1o... Py * ... i d
Plil Plili ° * b
gpg_l = [ ] v ° Ql] cee Ql?’,‘ |+ /\L’li+1
[ ] e [ ] Qril e Qrﬂ’,‘
° - [ ] [ ] oo L L

for some ¢ € GL,,,, A € Kand Pyy,..., Py, Q11, ..., Qry, € al,, with tk(P11) = k. Since
this is an open condition on g, the matrix gP¢™! is in fact of this form for sufficiently
general ¢ € GLy,,,. This allows us to assume that rk(P;;) = k for all j € [/;] and
rk(—Q{TZ) =rk(Qy) = k for all £ € [r;]. Lemma 2.3.13 now tell us that by replacing g by
Diag(g1,--.,8l+r,1)g for some g1, ..., g1.4+r, € GL;;,, we may also assume that

lz‘ ri
Q= Z Pji - Z QL + Al = )Ly, € X;
j=1 =1
satisfies k < rk (Q, I,,) and this proves (*). O

Note that if z; = 0 and in addition char(K) = 2 or #; = 0, then the map

glnm > gI”i
Py ... Plli ° R L4
P: P: . . l,‘ Ti
11 e 11 “ee T
i iti - P -
° . L4 Qril s Qi’ﬂ‘i

commutes with taking the trace.
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Definition 2.3.15. When z; = 0 for all i > 0 and in addition char(K) = 2 or r; = 0 for all
i > 0, define the trace of an element (P;); € V to be the u € K such that tr(P;) = p for all
i > 0. Otherwise, define the trace of any element of V to be zero.

Note that in all cases the trace of an element of V is G-invariant. For p € K, denote
the G-stable closed subset {P € V | tr(P) = u} of V by Y. Denote the closure of the
projection of Y, to gl,, by Y ;.

Theorem 2.3.16. Assume thatli+r; > 2foralli € Nand that X C Y, for some u € K. Suppose

that for all i € N such that I(Y ;) G Z(X;) and for all nonzero polynomials f € I(X;)\ Z(Y )
of minimal degree, the span of the GL,, ,-orbit of the polynomial

P+ + Py, —Qf, -+ — QF,) € I(Xin)
contains a nonzero off-diagonal polynomial. Then either X =  or X = {0}.

Proof. Since X is strictly contained in Y, there exists an integer j > 2 such that
I(Y,) € I(X;). Note that I(Y,;) & I(X;) for all integers i > j. For all i > j, let
fi € I(Xi) \ Z(Y i) be an element of minimal degree d;. Thend; < d; foralli > jand by
choosing j large enough we may assume that d; < n;.

Fori > j, let g; € 7(X;s1) be a nonzero off-diagonal polynomial contained in the span

of the GL,,,,-orbit of fi(P11 +---+ Py, = Qf, —--- — Q). Then we have deg(g) < d; <
dj < nj < njy1/2 since njyy = (I; +1i)n; +z; =2 2n;. So by Lemmas 2.3.4 and 2.3.14, we see
that X C {0}. O

Corollary 2.3.17. Assume that l; + r; > 2 for all i € IN. Suppose that for all u € K, for
all G-stable closed subsets X C Y, for all i € N such that I(Y,;) & I(X;) and for all
nonzero polynomials f € I(X;)\ Z(Y ;) of minimal degree, the span of the GLy,,,-orbit of the
polynomial
P+ + Py, —Qf, -+ — QF,) € I(Xin1)

contains a nonzero off-diagonal polynomial. Then the irreducible G-stable closed subsets of V
are the nonempty subsets among {0}, V and {P € V | tr(P) = u} for u € K and every G-stable
closed subset of V is a finite union of irreducible G-stable closed subsets.

Proof. Using Proposition 1.2.3, it is easy to check that the mentioned subsets are either
irreducible or empty. If the trace map on V is zero, this corollary is just Theorem 2.3.16
applied with u = 0. Assume the trace map is nonzero. Then the linear map

p:K —» V
g ((u+1)E; — Ex);

has the property that tr(p(u)) = u for all u € K. Let X be a G-stable closed subset of V.
Then
¢ '(X)={pek]|y, cX]

is a closed subset of K. So either ¢p~!(X) is finite or ¢™1(X) = K. By Theorem 2.3.16,
the intersection of X with Y is either (), {0} or Yy and the intersection of X with Y, for
p € K\ {0} is either @ or Y,. So either

X = {0} U U Y, or X= U Y,

pep=1(X)\{0} pep=1(X)

when ¢~1(X) is finite and X = V when ¢71(X) = K. O
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What remains is to reduce the cases (2)-(4) of Theorem 2.1.4 to sequences

GLy, “% GL,, <2 GLy, 3 ...

where the conditions of the corollary are satisfied.

Case (2:a+f=y=0c0

Since y = oo, we do not have z; = 0 for all i > 0. So we get Yo = Vand Y, = 0
for all u € K\ {0}. By restricting to an infinite subsequence we may assume that
li+ri>2and z; > n; for alli € N. Leti € N be such that 7(X;) # 0 and let f € 7(X))
be a nonzero polynomial of minimal degree. Take ! = [;, ¥ = r;, z = z;, m = n; and
n = nijy1 = (I +r)m + z. To prove that the conditions of Corollary 2.3.17 are satisfied,
we need to check the following condition:

(*) The span of the GL,-orbit of the polynomial
gi= f(Pry+-++ Py = Q== Q)
contains a nonzero off-diagonal polynomial.

Consider the matrix

Pii ... Py e ... e @

P11 Pll L o
H= 0 . Q'll glr

e .. o Oy ... Qn o

Rl Rl [ ] [ J [ ]

L] ® [ ] ° [ ]

where Py ¢, Qk ¢, Ry € gl,,. For A € K, consider the matrix

I
A(A) = L
I
I
Lom
For all A € K, we have
r Pil e ... e o

P;l ... P;l e ... e
AMHAAD =l o ... o Qu ... Qu
[} e o er ce er

[ ] [ ] [ ] [ ]
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where P}, = P11 + ARy and P;.]. = Pjjforall j € {2,...,1}. This means that if we let A(1)

act on g, we obtain the polynomial h(A) = f(P11 +---+ Py — Qrfl —--- = QL +ARy). Letd
be the degree of f and let f; = f;(P) be the homogeneous part of f of degree d. Then
fa(R1) is a nonzero off-diagonal polynomial on gl,, since m < n/2. Since f;(R;) is the
coefficient of h(A) at A%, it is contained in the span of the (A). So (*) holds. So we can
apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (2).

Case (3a): f = o0, y < oo and char(K) # 2

We do not have char(K) = 2 or r; = 0 for all i > 0. So we again get Yo = Vand Y, = 0
for all 4 € K\ {0}. By restricting to an infinite subsequence we may assume that r; > 0
and z; = O for all i € N. Leti € IN be such that 7(X;) # 0 and let f € 7(X;) be a nonzero
polynomial of minimal degree. Take ! = I;, r = r;, m = n; and n = nj; = (I + rym.
To prove that the conditions of Corollary 2.3.17 are satisfied, we need to check the
following condition:

(*) The span of the GL,-orbit of the polynomial

gi= f(Pyy+-++ Py = Q=+~ Q)
contains a nonzero off-diagonal polynomial.

Consider the matrix

Pn Py e .
H= Pll cee Pll [ ] ce [ ]

R ... Ry Qu ... Qi

er oo er er coe er

where Py ¢, Ok ¢, R € gl,,. Also consider the matrix

L A
A = fn
In
In
for A € gl,,. For all A € gl,,, we have
Py, ... P, e ... e
ANHAA) = P, ... P ./ 0/
[ ] [ ]
11 1r
o ... o o Qe
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where

P!, = Py +ARp

P;.]. = Pjiforjef{2,....1
Qi = Qu-RuA

Q;.]. = Qeufortef(2,...,r}.

This means that if we let A(A) act on the polynomial g, we obtain the polynomial
h(A) = f(P11 + -+ Py — QlT1 — = QI + ARyq + ATRlTl). Let d be the degree of f
and let f; = f;(P) be the homogeneous part of f of degree d. Then we see that the
homogeneous part of /i(A) of degree d in the coordinates of A equals f3(AR11 + ATR])).
Since the polynomial f is nonzero, so is f;. Using char(K) # 2, we have

gl, = {(PQ+PTQ" | P,Q € gl,}

since every matrix is a product of two symmetric matrices by [33, (ii)]. So we see
that the polynomial f;(ARq; + ATRlTl) is nonzero. Now view f;(ARq1 + ATRlTl) as a
polynomial in A whose coefficients are polynomials in the entries of Ry1. Any of its
nonzero coefficients is a nonzero off-diagonal polynomial on gl,, which is contained in
the span of the orbit of g. Here we use that m < n/2 since r > 0. So (*) holds. So we

can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (3a).

Case (3b): f = o0, ¥ < o0 and char(K) = 2

Note that in this case the trace map on V is nonzero. By restricting to an infinite
subsequence we may assume that r; > 0 and z; = 0 for all i € IN. Let u € K, suppose
that X C Y, and let i € IN be such that 7(Y,;) € I(X;). Let f € I(X;) \ I(Y,,;) be a
polynomial of minimal degree. Take ! = I;, r = r;, m = n; and n = njq = (I + r)n.
To prove that the conditions of Corollary 2.3.17 are satisfied, we need to check the
following condition:

(*) The span of the GL,-orbit of the polynomial

§:= f(Pri+-++ Py = Qf == Q)
contains a nonzero off-diagonal polynomial.

Asin case (3a), we find that all coefficients of f;(AR1;+ ATRlTl) are off-diagonal polyno-
mials on gl,, which are contained in the span of the orbit of g. So it suffices to prove that
fa(ARq1 + ATRlTl) is not the zero polynomial. To do this, we will use reduction rules
for graphs. See for example [12] for more on this. Let I' be an undirected multigraph.
Denote its vertex and edge sets by V(I') and E(T).

Definition 2.3.18. We consider the following three reduction rules:
(1) Remove an edge fromI'.
(2) Remove a vertex of I that has at least one loop.

(3) PickavertexvofI' that has atleast one loop. Replace an edge of I with endpoints
v # w by aloop at w.
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We say that I' reduces to a multigraph I if I'” can be obtained from I' by applying a
series of reductions.

Lemma 2.3.19. If T reduces to the empty graph, then the linear map
o KED - — gV®

(Xe)e (er)

is surjective. Here entries corresponding to loops are only added once.

Proof. If T is the empty graph, then {r is surjective. So it suffices to check that {r is
surjective whenever we have a reduction I’ of I" such that the similarly defined map
{1 is surjective. When I” is obtained from I' by applying reduction rule (1), this is easy.
The other cases follow from the fact that x, only appears in coordinate v when e is a
loop with endpoint v. |

Lemma 2.3.20. If char(K) = 2, then {PQ + PTQT | P,Q € gl,} is dense in sl,, for all n € IN.

Proof. Suppose that char(K) = 2 and let n € IN be an integer. Then PQ + PTQT € sl,
for all P,Q € gl,. Note that {PQ + PTQT | P,Q € gl,} is dense in sl, if and only if the
morphism

@: gl,xgl, — gl,/span(E, )
(P,Q) ~ PQ+PT'Q! modE,,

is dominant. To show that ¢ is dominant, it suffices to show that its derivative

d(R,S)(P: gIn EBgIn - gln /span(En,n)
(P,Q) +— PS+P'ST + RQ+RTQ" mod E, ,

at the point
0 1 1

®s=|| |

O =
—_

is surjective. Note that

(dwrs)P)Eij,0) = Einy1-j+Ejns1-i

dws)P)N0,Exe) = (1 —0k1)Ex-1,6 + (1 = O¢n)Eri1k
and hence (d(z s)®)(0, E1,4) = 0 and (d(r 5)¢)(E;,;, 0) = 0 for all i € [n], because char(K) =
2. The other basis elements of gl,, ® gl,, all get sent to a sum of one or two basis elements
of gl, / span(E, ). To prove that d(r s)@ is surjective, it suffices by the previous lemma
to prove that the restriction of d(z 5)¢ to the span of these other basis vectors equals {1
for some multigraph I that reduces to the empty graph.

Define the multigraph T as follows: We let V(I') be the basis {E;; | (i,j) # (n,n)} of
gl,, / span(E; ;) and we let E(I) be the set

{(Eij,0) [i# j}UL(0, Exe) | k, € € [n]} \ (O, Evn)}
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of basis elements of gl,, @ gl,, that are not mapped to 0. This allows us to define the set
of endpoints of an edge in such a way that (d(r,s)¢)lspan(er)) = r- Next we check that
I' reduces to the empty graph. One can check that I has two loops at Ej 1, a loop at Ej ;
for all k > 1 and a loop at E;, for all £ < n. We also have:

(x) edges with endpoints E; j and Ej;1,41 forall i, j € [n —1];
(y) edges with endpoints Ey; and E,, 11— for all 1 <k < n; and

(z) edges with endpoints E;,, and Eq 41-¢ for 1 < ¢ < n.

First, we remove all other edges from I' using reduction rule (1). Next, we replace the
edges (y) and (z) by loops at E,; for 1 < k < n and E; ¢ for 1 < £ < n using reduction
rule (3). The graph I"” obtained this way has the edges (x) together with loops at E1 1
and Eq;, E,;, Ei1, E; for 1 <i < n. Now consider the connected components of I”. One
connected component consists of a path from E; ; to E, , with a loop at E; 1. All other
components are paths with loops at both ends starting at a vertex of the form E;; or
E;; and ending at a vertex of the form E,,; or E;,,. Each of these components reduces
to the empty graph by repeatedly using reduction rules (2) and (3). Therefore I and
I" also reduce to the empty graph. Hence dr sy is surjective and ¢ is dominant. O

Suppose that the polynomial f;(ARq; + ATRlTl) is the zero polynomial. Then f;(P) = 0
for all P € sl,, by Lemma 2.3.20. So f; is a multiple of the trace function on gl,, and we
can write f; = tr-h for some h. But then f — (tr —u)h € I(X;) \ Z(Y ;). This contradicts
the minimality of the degree of f. So f;(AR11 + ATRlTl) cannot be the zero polynomial.
So (*) again holds. So we can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in
case (3b).

Case (4): p+y <0

Note that in this case the trace map on V is nonzero. By restricting to an infinite
subsequence we may assume that[; > 2 and r; = z; = O foralli € IN. Leti € IN be
such that 7(X;) # 0 and let f € 7(X;) be a nonzero polynomial of minimal degree.
Take I = I;, m = n; and n = n;y1 = Im. Then m < n/2. To prove that the conditions of
Corollary 2.3.17 are satisfied, we need to check the following condition:

(*) The span of the GL,-orbit of the polynomial
g :=f(Pui+---+Py)
contains a nonzero off-diagonal polynomial.

Consider the matrix

P11 ... Py
H=|: :
Py ... Py
where Py, € gl,,. Also consider the matrix
I, A
I
AN = I
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for A € gl,,,. For all A € gl,,, we have

Py o P
A(MNHAN) ™ = :
P, ... P

where P}, = P11 + AP, P}, = Py — Py A and P;.]. = Pjjfor j € {3,...,1}. This means
that if we let A(A) act on g, we obtain the polynomial h(A) = f(P11 + -+ Py +[A, P21])
where [—, -] is the commutator bracket. Let d be the degree of f and let f; = f4(P)
be the homogeneous part of f of degree d. Then we see that the homogeneous part
of h(A) of degree d in the coordinates of A equals f;([A, P21]). Since f is nonzero, so
is fz. By [30, Theorem 6.3], we know that every element of sl,, is of the form [X, Y]
for some X, Y € gl,,. So like the previous case, we see that f;([A, P21]) is not the zero

polynomial. Any nonzero coefficient of f;([A, P»1]) as a polynomial in A satisfies (*).
So we can apply Corollary 2.3.17 and this proves Theorem 2.1.4 in case (4).

2.4 Limits of classical groups of type A

In this section, we let H be the direct limit of a sequence

SL,, “% SL,, “= SL,, <3 ...
of diagonal embeddings given by
ti: SL,, <= SLy,
A +— DiagA,...,A AT, .., ATTL)

——— ——
l,' Ti

for some l; € IN and r;,z; € Zso with [; > r;. We let W be the inverse limit of the
sequence

al,, /span(l,,) «—— gl,,, /span(l,,) «—— gl,, /span(l,,) «— ...
where the maps are given by

aly,,, /span(ly,,,) —» gl, /span(ly,)

P11 e Plli o e L L]
Plil . Plili L] . ® ® li Ti
T
e ... o Oy ... Qi e|modl,,, =+ Z Py — Z Q;, mod I,.
: : : . . k=1 =1
d et hd Qr,»l e Qi’ﬂ"i
L ces ® L ces ° °

Againtake o = #{i | ; > 1}, p=#i | r; > 0}, y = #{i | zi > 0} € Z3oU{oo}. Then we
have a +  +y = oo, since H is assumed to be infinite-dimensional. Based on «, 5, we
distinguish the following cases:
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(1) a+p <oo;

(2) a+p=y =00
(3a) p =00,y <ocoand char(K) #2or21{n;foralli> 0;
(8b) B =00,y < oo, char(K) =2and 2 | n; for all i > 0;
(4a) p+y < oo and char(K) 1 n; for alli > 0; and
(4b) B+ 7y < oo and char(K) | n; for all i > 0.
Theorem 2.1.4 has to following corollary.

Corollary 2.4.1. The space W is H-Noetherian. Any H-stable closed subset of W is a finite
union of irreducible H-stable closed subsets. The irreducible H-stable closed subsets of W are
{(0 mod I,,,);} and W together with

{(P; mod I,); € W | Vi > 0: tk(P;, L) < k}
for k € IN in case (1) and together with
{(P; mod L,); € W | Vi> 0: tr(P) = u}
for u € Kin cases (3b) and (4b).

Proof. Let the tuples (I;, 1, z;) from this section and the previous section be the same.
Then H is a subgroup of G and the linear map

wV —»> W
(Py)i = (P mod I,);

is both H-equivariant and surjective. Furthermore, the orbits in V of H and G are the
same. So the H-stable closed subsets of W are precisely the images of G-stable closed
subsets X of V such that X + ker(r) = X. This yields the corollary for the cases (1), (2),
(3a) and (3b). For the cases (4a) and (4b), we note that

{(P)i € V|Vi>0: tr(P;) = u} + ker(n) = {(Py); € V| Vi> 0: tr(P;) = p}

if and only if tr(I,;,) = n; is zero modulo char(K) for all i > 0. Here we use that (nl.‘llni)iz j
is an element of ker(r) with trace 1 when char(K) ¢ n; for all i > ;. O

2.5 Limits of classical groups of type C

For the remainder of this chapter, we assume that char(K) # 2. In this section, we let
G be the direct limit of a sequence

3

L L
SPauw, > SPay, > SPay, < -
of diagonal embeddings given by

Li : sznl‘ = sznl‘+]
A B Diag(4,...,A,I;)) Diag(B,...,B,0)
C D Diag(C,...,C,0) Diag(D,...,D, 1)
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with [; blocks A, B,C, D € gl,, for some /; € N and z; € Zy. We let V be the inverse
limit of the sequence

SPany 4 P2y, 4 Doy &— ...
where the maps are given by

span.] —» 5p2n,-

Pyp ... Py Qu ... Qu e
Py ... Pyt Qga ... Qu , ,

e ... ... e e ... .. Y_q Pre Z,%:lek
Rir ... Ry, Su ... Sy 22:1 Ry X, Sk
Rl,-l . Rlili Sl,-l e Slili

o ... ... e e .. .. e

with Py, = —S?k, Qkes Rie € gl such that Qg = Q{Tk and Ryp = Rz;k.
Theorem 2.5.1. The space V is G-Noetherian.

Let X € V be a G-stable closed subset. Let X; be the closure of the projection of X to
5Py, and let 7(X;) C K[sp,,, | be the ideal of X;. If #{i | [; > 1} < oo, then Theorem 2.5.1
follows from [20, Theorem 1.2].

Remark 2.5.2. Let X C V be a G-stable closed subset in the case where #{i | [; > 1} < oo.
Then V can be identified with a subspace of the space of IN XN matrices and we
can prove (using technique similar to the ones used in this paper) that X consists of
matrices of bounded rank. The G-Noetherianity of V then follows from the Sym(IN)-
Noetherianity of KNk for k € N. Important to note here is that, for every n € N,
the group Sp,, contains all matrices corresponding to permutations 7t € Sy, such that
ni(i+n) = 1(i) + n for all i € [n]. This allows us to define an action of Sym(IN) on V, up
to which the closed subset X is Noetherian. Similar statements hold for sequences of
types B and D. )

We assume that #{i | ; > 1} = co. By restricting to an infinite subsequence, we may
assume that[; > 3 forall i € N.

Lemma 2.5.3. Let n € N, let Y C spy, be an Sp,, -stable closed subset and let Z be the closed

subset
{(11: _%T) €spy, |P= PT}

of sPo,,. Then there is a nonzero polynomial f € I(Y) whose top-graded part is not contained
in the ideal of Z.

Proof. Since Y C sp,,, there is a nonzero polynomial f € 7(Y). Since f is nonzero, so
is its top-graded part g. Let the group GL, act on sp,, via the diagonal embedding
GL, = Sp,,, A = Diag(A,A‘T). Then we get a action of GL,, on K[sp,,]. Note that
this action respects the grading on K[sp,, ] and that the ideal 7 (Y) is GL,-stable. So for
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all A € GL, we have A - f € 7(Y) and the top-graded part of this polynomial is A - g.
Hence it suffices to prove that A - ¢ ¢ 7(Z) for some A € GL,,. Note that
P=PT,AeGL, }

P Q
{A ' (R —PT) Q=Ql,R=R"T
{( APA™1 AQAT )

GL,-Z

ATTRAL —A-TPTAT
_ [{ApPAT! Q
B R —(APA™HT

and that {APA™' | P = PT,A € GL,} is dense in gl, since K is infinite and diagonal
matrices are symmetric. So GL,-Z is dense in $p,,. So since the polynomial g is
nonzero, there must be an A € GL,, such that A - ¢ ¢ 7(Z). ]

Q=QT,R=R"

P=PT Ac GL,
Q=Q",R=RT

P=PT AeGL, }

Lemma 2.54. Let i € N and let f = f(P,Q,R) € I(X;) be a nonzero polynomial whose
top-graded part g is not contained in the ideal of
P= PT} :

{(11; _%T) € 5Py,

Then I(Xiv1) N K[reell < k, € < niv1]/(rxe — 7o) contains a nonzero polynomial with degree
at most deg(f).

Proof. Take m = n;, 1 =1;,z = z; and n = n;11 = Im + z. Consider the matrix

Py ... Py e Qi1 ... Qp e

Py ... Pyt Qun ... Qu

H o N o cee .. @ c
= )
R11 ce Rll ° 511 ce Sll ° P2n
Rll AN Rll 511 .. Sll
° ° ° °

and consider the matrix

L ALy

A(A) = Inom € Spy,
I

In—2m

for A € K. The polynomial f = f(P,Q, R) € Z7(X;) pulls back to the element

I ! I
f Z Py, Z Qkk.s Z Rik

k=1 k=1 k=1
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of 7(Xi41). For A € K, we have

Pil Pil ° 11 il °
P;l ... P;l : Q;l ... Q;l
1|l ... e e . e
A(/\)HA(/\) B R11 ce Rll ° Sil Sil °
Rp Ry Si S
[ ] [ ] [ ] . [

where

P, = Py +ARy

P, = Pyn+ARp

P, = Pyfork=3,...,1

Q; = Qu1+ASxn—P)-ARyn
Q= Qun+AS12—Px)— ARy
Qu = Qufork=3,...,1

Let g be the top-graded part of f. Then we see that

I
8§(Ra1 + Ri2, —(R11 + Ry), Z Rik)
=1

is contained in the span of

! I I
AN - f (Z Py, Z Qkk,s Z Rkk]

k=1 k=1 k=1
over all A € K. We have g(P, Q, R) # 0 for some symmetric matrices P, Q, R € gl,,. Since
char(K) # 2, there are matrices Ri», Ry1 such that Ry = Rgl and Ry; + Ry = P. And,
since | > 2, there are symmetric matrices Ry, ..., Ry such that —(Ry; + R22) = Q and
Zi:l Ry = R. So we see that the polynomial

I
g (Rn + Ri2, —(R11 + R22), Z Ri | € T(Xis1)

k=1

is nonzero. O

Since X C V, we know that X; C P2 for some j € IN. Using the previous lemma, we
see that there is a d € Zyq such that 7(X;) N K[rell < k, € < n;]/(ree — 7g) contains a
nonzero polynomial of degree at most d for all i > ;.

Lemma 2.5.5. Let n € N, let Y C sp,,, be an Sp,, -stable closed subset, let

M1 My,
M= ey
(M21 Mzz)
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be an element and suppose that
I(Y) N K[reell <k, € < nl/(ree — re)

contains a nonzero polynomial of degree m + 1. Then rk(Miz), tk(Mp1) < m. Furthermore, if
n > 6m, then rk(Mi1) = rk(Mp2) < 3m/2 and rk(M) < 5m.

Proof. Let GL, act on sp,, via the diagonal embedding
GL” - SPZn
g + Diag(gg™)
and on {R € g, | R = RT} by ¢- R = ¢"TRg™!. Then the projection map

TSPy, — gl

r Q
(RS)HR

is GL,-equivariant. Let Z be the closure of n(Y) in {R € gl, | R = RT}. Since Y is
GL,-stable, so are 7(Y) and Z. Since char(K) # 2, the GL,-orbits of {R € gl,, | R = RT}
consist of all symmetric matrices of equal rank. So Z must consist of all symmetric
matrices of rank at most i for some i < n. Since 7(Z) contains a nonzero polynomial
of degree m + 1, we see that h < m. See, for example, [31, §4]. So

Y C {(II; (52) € 5Py,

Let A € gl, be a symmetric matrix. Then we have

0 I
(_In X)ESPZn

rk(R) < m} .

with inverse
Let

be an element of Y. Then

0 L\(P Q\[0 L\ _ o AP
-1, AJ\R s/\-1, A)] T\ARA+AS-PA-Q of¢"

So we get rk(ARA + AS — PA — Q) < m for all symmetric matrices A € gl,,. For A =0,
this gives us rk(Q) < m and so rk(Mi2) < m in particular. For all A, we can write

PA + (PA) = (ARA + AS — PA — Q) — ARA + Q
since S = —PT. We get

rk(PA + (PA)T) < rk(ARA + AS — PA — Q) + rk(ARA) + rk(Q) < 3m.
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Since we had no conditions on the element
P Q
(R 5) €Y

we also get rk(P’A + (P’A)T) < 3m for all
P e P Q
(. .)GGLH.(R S)QY

and hence rk(P’A + (P’A)T) < 3m for all P’ ~ P. Now assume that n > 6m. Choose
A = Diag(I;+1,0) and write
P (P11 Piz) -p

with P, € glpy41. Then
PA+ @A =] o

and hence rk(P},) < 3m/2. By Proposition 2.3.2, we see that rk(P,I,) < 3m/2 and
hence rk(P + Al;) < 3m/2 for some A € K. Next, choose A = I,. Then we see that
k(P + PT) < 3m. So

tk(2AL,) < tk(P + PT) + rk(P + AL,) + rk(PT + AL) < 6m < n

and hence A = 0. So we in fact have rk(P) < 3m/2. In particular, we see that rk(My;) =
rk(Maz) < 3m /2. Combining this with rk(Mji,), rk(Mz1) < m, we get rk(M) < 5m. m|

Using Lemma 2.5.5, we see that there is an m € Z( such that

Xi c {(11: g) € 5Py,

for all i > 0. As in the proof of Lemma 2.3.14, we see using Lemma 2.3.13 that this in
fact holds for m = 0.

rk(P) < m}

Lemma 2.5.6. Let n € IN and let Y C sp,, be an Sp,, -stable closed subset of

{(0 Q) Qegln,Q=QT}
R 0 ‘

Regl, R=RT
Then'Y C {0}.
Proof. Let

0 Q

R 0
be an element of Y. Then

0 L\(0 Q\[0 In_l_RoEY
I, L,J\R 0)\-I, I,] \e e

since Y is Sp,, -stable and therefore R = 0. By Lemma 2.5.5, we see that Q = 0. |

The lemma shows that X C {0}. So when #{i | [; > 1} = oo, the only G-stable closed
subsets of V are V, {0} and 0. This proves in particular that V is G-Noetherian.
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2.6 Limits of classical groups of type D

Recall that we assume that char(K) # 2. In this section, we let G be the direct limit of a
sequence

0211] ([% 021’12 (# 02713 (Lé .
of diagonal embeddings given by

Li . OZni — O2n,-+1

A B . Diag(4,...,A,I;)) Diag(B,...,B,0)
C D Diag(C,...,C,0) Diag(D,...,D,1,)

with [; blocks A, B,C,D € gl,, for some /; € N and z; € Z>p. We let V be the inverse
limit of the sequence

Do, & Doy, & D2y & cee
where the maps are given by

O2n;y = D2y

Pyu ... Py e Qun ... Qq o
Pa ... Pyt Qa ... Qu . .

e ... ... e e ... ... ZkI:lPkk Z':lek
R Ry, o S11 ... Sy Zi"zl Ry Y, S
Rlil e Rlili Slil ... Slili

[ Cee e [ ] [ ] . e [ ]

with Py, = =S}, Qks, Rie € 6l such that Qe + Qj, = R + R}, = 0.
Theorem 2.6.1. The space V is G-Noetherian.

This proof of this theorem will have the same structure as the proof of Theorem 2.5.1.
Let X C V be a G-stable closed subset. Let X; be the closure of the projection of X to
02, and let 7(X;) € K[opy,,] be the ideal of X;. If #{i | [; > 1} < oo, then Theorem 2.6.1
follows from [20, Theorem 1.2]. So we assume that #{i | [; > 1} = co. By restricting to
an infinite subsequence, we may assume that /; > 3 for all i € IN.

Lemma 2.6.2. Let n € N, let Y C 09y, be an Oo,,-stable closed subset and let Z be the closed

subset
P
(& S)emr-r)

of 02, Then there is a nonzero polynomial f € I(Y) whose top-graded part is not contained in
the ideal of Z.

Proof. The proof is analogous to the proof of Lemma 2.5.3. O
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Lemma 2.6.3. Let i € N and let f = f(P,Q,R) € I(X;) be a nonzero polynomial whose
top-graded part g is not contained in the ideal of
P= PT}.

¢ e

Then I(Xiv1) N Kreell < k, € < ni1]/(rxe + 7o) contains a nonzero polynomial with degree
at most deg(f).

Proof. The proof is analogous to the proof of Lemma 2.5.4, replacing A(A) by the matrix

Iy ALy

I,_
n=2m Im S OZn .
I

In—Zm
O

Since X C V, we know that X; C 021, for some j € IN. Using the previous lemma, we
see that there is a d € Z5( such that 7(X;) N K[re | 1 < k, € < n;]/(ree + rg) contains a
nonzero polynomial of degree at most d for all i > ;.

Lemma 2.6.4. Let n € N, let Y C 0y, be an Oyy,-stable closed subset and suppose that
I(Y) N K[reell <k, € <nl/(ree + 7ex)

contains a nonzero polynomial of degree m + 1. Then

Y C {(II; g) € Dy

Furthermore, if n > 20m + 2, then k(M) < 10m forall M € Y.

rk(Q), rk(R) < 2m} .

Proof. Let Z be the closure of the subset

(e & 9]

of (R € gl,, | R+ RT = 0}. Let GL,, act on 0y, via the diagonal embedding
GLn — OZn
g +~ Diag(g g™

and on {R € gl, | R+ RT = 0} by g+ R = gRg". Then we see that Y is GL,-stable and
therefore Z is also GL,-stable. So Z must consist of all skew-symmetric matrices of
rank at most /1 for some even h < n. Since 7(Z) contains a nonzero polynomial of
degree m + 1, we see that h < 2m. See [1, §3]. So

Y C {(g g) € Dy
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Let A € gl, be a skew-symmetric matrix and let

P Q
R S
e

0 L\(P Q\(0 L\ _ . Aoy
I, AJ\R s)\, A] “\Q+AS—-PA-ARA )"

So we get rk(Q + AS — PA — ARA) < 2m. Choosing A = 0, we see that

YC {(II; g) € Dyy

Assume that n > 2(3m + 1). Since S = —PT and A = -AT, we get

be an element of Y. Then we have

and hence

rk(Q) < Zm} .

rk(PA — (PA)T) < 1k(Q + AS — PA — ARA) + rk(ARA) + rk(Q) < 6m.
Since Y is GL,,-stable, we have rk(P’A — (P’A)T) < 6m for all P’ ~ P. Choose

I3m+1
A= 0
_I3m+1
and write
/ 4 4

N
P = P$1 P;2 P?3
p 31 p 32 p 33

with Pi1'Pi3'Pé1'P33 € glz;41- Then

PA-P'A"=|-P) 0 D
° -PT o

has rank at most 6m. Therefore the submatrix

0 P’)
21

/T
(_P a1 ®

also has rank at most 6m and hence rk(P7;) < 3m. By Proposition 2.3.2, we see that

rk(P, I;) < 3m. Hence
Y C {M € oy, | tk(M, Diag(l,, —I,)) <2-2m +2-3m = 10m}.

Assume that n > 20m + 2, let M + A Diag(I,, —I,) be an element of Y with rk(M) < 10m
and A € K and let B € gl be a skew-symmetric matrix of rank at least n — 1. Then

(In B) € 0211
Iy
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and therefore i
(1" }i) (M + A Diag(I,, —1I,)) (1" }i) €Y.

So this element must be of the form M’ — u Diag(I,, —I,) with rk(M) < 10m and u € K.
Now note that

-1
rk [A (I" f) Diag(l,, —I,) (I” }3) + u Diag(Iy, —In)]

is at most rk(M) + rk(M’) < 20m. So since

-1
A (In IB)Diag(In, -1,) (I” IB) + p Diag(l,, —I,) = (: _ZAB)

and rk(2B) > n — 1 > 20m, we see that A = 0. Hence Y consists of matrices of rank at
most 10m. O

Using Lemma 2.6.4, we see that there is an m € Z5 such that

X; C {(11: g) € Dy

for all i > 0. As in the proof of Lemma 2.3.14, we see using Lemma 2.3.13 that this in
fact holds for m = 0.

rk(P) < m}

Lemma 2.6.5. Let n € N and let Y C 0y, be an Oy,-stable closed subset of

0 Q)| Qegl,Q+QT=0
R 0 Regl,,R+RT =0 |-

Then'Y C {0}.
Proof. Let

0 Q
R 0
be an element of Y. Then

I, A\(0 O\, A\ (AR oy
L,J\R 0 I,] " \e o
forall A € gl, with A+AT = 0since Y is Oy,-stable and therefore R = 0. By Lemma 2.6.4,

we see that Q = 0. O

As in the previous section, the lemma shows that X € {0}. So again, when #{i | ; >
1} = oo, the only G-stable closed subsets of V are V, {0} and 0 and the space V is
G-Noetherian.

57



2.7 Limits of classical groups of type B

In the last section of this chapter, we still assume that char(K) # 2. Now, we let G be
the direct limit of a sequence

50 %) L3
O2n41 — O2ppr1 > Oopy1 —— ...

of diagonal embeddings. To prove that the corresponding inverse limit V' is G-Noethe-
rian, it suffices to consider the case where K is algebraically closed. The following
proposition shows that, if K = K and (; has signature ([;, z;) with [; even, then we can
insert a group of type D into the sequence defining G.

Proposition 2.7.1. Suppose that K is algebraically closed. Let m,n € Zx be integers and let
t: Ogyms1 = Oopyq be a diagonal embedding with signature (1,z). If | is even, then t is the
composition of diagonal embeddings Ozy11 = Oyoms1) and Oyome1y = Ozt

Proof. By Lemma 2.2.3, it suffices to find one diagonal embedding t: Oyy41 = Opt1
with signature (I, z) for which the proposition holds. For k € IN, note that the group
1 1
H.={AeGL |A| .= |AT= -
1 1
is conjugate to Oy in GLy. The map

Hoyme1 = Hjoms)
A +— Diag(A,...,A)

induces a diagonal embedding Ozy41 < Ojops1) With signature (/,0). Note that
2n+1=12m+1) + z and so z is odd. Write z = 2k + 1. Then the map
Oiem+1y = Oznt1
A B

AB»—) Ikl
C D

is a diagonal embedding with signature (1,z). Now, let ( be the composition of these
two diagonal embeddings. Then ! is itself a diagonal embedding and has signature
(1, 2). o

Ix

Suppose that K is algebraically closed and that the diagonal embeddings (; have
signatures (I;, z;) with [; even for infinitely many i € IN. Then the proposition shows
that we can replace our sequence by a supersequence in which groups of type D appear
infinitely many times. In this case V is G-Noetherian by the previous section. So, even
if K is not algebraically closed, we only have to consider the case where this does not
happen. And, by replacing our sequence by an infinite subsequence, we may assume
that I; € IN odd for every i € IN. As both n; and n;,1 = Iin; + z; are odd, this forces
zi € Zxo to be even for all i € N. Our next task is to find diagonal embeddings with
such signatures.
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First, note that for n € IN and z € Z( the map

1120 O2ne1 = Oppnzyt

A a B
A a B I,
Pyl = |B By
C o D C o D

I

is a diagonal embedding with signature (1,2z). Here A,B,C,D € gl,, «a, ﬁT, yT, 0eK"
and p € K. The associated map of Lie algebras is

PYi2,¢ D2(m+z)+1 > D2+l

P e v Q o

e o o o o P v Q
oo 0y o [p0 Y
R e w S e R w S

with P = -ST,Q,R € gl, and v = T, w = —¢T € K" such that Q + QT = R+ RT = 0.

Next, we construct a diagonal embedding O2,41 < Oj,41) with signature ([, 0) for all
n € N and ! € N odd. Write

1
Jk = € GL
1
for k € N and take
Iln Iln
Hauy1) = A € GLyus1) | A Ji AT = i
Iln Iln
foralln €e Nand ! € N odd. Then we have
I Ik
P Ji pT = 1
I, Ik
where
Iln
Ix
P= 1
Iln
Jk

is a permutation matrix. So the map

Hoyui1p = Ojens)
A +— PAPT
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is an isomorphism. Consider the map

Ons1 = Hopt1y

A a B
A a B
A a B B u 14
B u y| P
c oD B T
C 5 D
C o D

where A,B,C,D € gl,, o, ﬁT, )/T, 0 € K" and u € K all occur [ times on the right hand
side. Write [ = 2k + 1. By taking the composition of these two maps, we get a diagonal
embedding Oy,11 > Oj,41) With signature (1, 0).

Write | = J; and consider the Lie algebra

Iln Iln
bons1r = (P €alnsy) | P Ji + Ji P'=0
Iln Iln
PV Q P+ST=Q+Q"=R+RT=0
= © U V(e ahou VI+WT =W]+dT =0
R W S§ uj+jur =0
of Hy,11). The map Oy41 <= Hppiq, corresponds to the map by,41; = 02,41 sending
Pin ... Py Vi ... Vg Qu ... Qu
Pp ... Py Vn ... Vg QOn ... Qu
Oy ... O Uy ... Uy Y11 ... Yy
oy ... Oy Up ... Uy Yp ... Yy
R11 Rll W11 Wll 511 Sll
Rn ... Ry Wp ... Wy Sp ... Sy
to
Pu+--+Pp Vu+--+Vy Qu+---+Qn
®11+"'+‘Dzl LI11+---+LIH \y11+"'+\y11 .
Ry+---+Rp Wy+---+Wn Sn+---+5

Here, for each entry, we either sum along the diagonal or along the anti-diagonal
in a manner consistent with the definition of the map O,41 < H,41;. The map
Hyy111 — Oyon1) corresponds to the map 0jo41) = Dony1 sSending Q to PTQPT.

We let the diagonal embeddings in the sequence

5] 1% 13
02,41 > O2py41 & Oppyy1 —— ...

60



be (compositions) of the forms above. As in the previous sections, if only finitely many
embeddings have signature (I;, 2z;) with /; > 1, then Theorem 2.5.1 follows from [20,
Theorem 1.2]. So we assume that #{/; | [; > 1} = co. Now, by replacing our sequence
by an infinite subsequence, we may assume that /; € IN is odd and at least 3 for every
ieN.

Lemma 2.7.2. Let Y C byy,4q, be an Hy, . j-stable closed subset and let Z be the closed subset

PV Q
® U W|€byy |P=PT
R W S

0of Dpp41,- Then there is a nonzero polynomial f € I(Y) whose top-graded part is not contained
in the ideal of Z.

Proof. The proof is analogous to the proof of Lemma 2.5.3. |

Lemma 2.7.3. Let X be an Hy,,,1 j-stable closed subset of Y1 and let Y be the closure of its
image in v2,41. Let f € T(Y) C K[0p441] be a nonzero polynomial whose top-graded part g is
not contained in the ideal of

P VvV Q
® U W|eby,y |P=PT}.
R W S
Then I(X) contains a nonzero polynomial with degree at most deg(f) that only depends on R

and two columns of W.

Proof. Consider the matrix

Pun ... Py Viu ... Vi Qn ... Qu
Pp ... Py Vn ... Vi Qun ... Qp
Oy ... Oy Uy ... Uy Wy ... Wy
: : R : : © 1€ Doy
Oy ... Oy Uy ... Uy Yp ... ¥y
Ri1 ... Ry Wy ... Wy Si1 ... Sy
Rp ... Ry Wp ... Wy Sp ... S

and note that the polynomial f = f(P,Q, R, v, w) € 7(Y) induces the element
fPu+-+Py, Qu+---+QnRy+---+Rn, Vir +---+ Vi, Wy + -+ + Wp)

of 7(X). Consider the matrix

I, —AlL

A(A) = I € Hypi1)
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for A € K. One can check that
&(R1 = R, =(Ryy + Rp), Ryy + -+ - + Ryy, Wy = Wiy, Wyp + -+ + W)
is contained in the span of
AA) - f(Pur 4+ Py, Qu+--+QnRy+--+Rp, Vir + -+ Vi, Wy + - + Wpy)
over all A € K. So it is an element of 7(X) and its degree is at most deg(f).

Next, consider the matrix

Iln

B(u) = g ‘ € Hopi)

—u 1

Iln

for u € K. Let h(P,Q, R, v, w) be the top-graded part of ¢ with respect to the grading
where P, Q, R get grading 0 and v, w get grading 1. Then one can check that

h(Ry = R, =(Ray + Rin), Ry + -+ + Rpy, =Wisa o, Wi + Wisa )
is contained in the span of
B(y) - Ry = Ry, =(Ruy + Rin), Ry + -+ - + Rpy, Wy = Wiy, Wi + -+ + Wi)
over all u € K. This polynomial is contained in 7 (X) and has degree at most deg(f). O

The following proposition tells us how to use the equation we gain from Lemma 2.7.2.
Let GL, acton {Q € gl, | Q = —QT} by ¢- Q = ¢Qg”. Let k < n be an integer and let
GL, act on K™ by left-multiplication.

Proposition 2.7.4. Let R € gl, be a skew-symmetric matrix and let W € K™ be a matrix
of rank k. Then the closure of the GL,-orbit of (R, W) inside {Q € gl, | Q = —QT} @ K™*
contains all tuples (Q, V) with tk(Q) < rk(R) — 2k.

Proof. We will prove the proposition using induction on k. The case k = 0 is well-
known. So assume that 0 < 2k < rk(R). Let X be the closure of the GL,-orbit of (R, W).
Note that we may replace (R, W) with any element in its GL,-orbit. Since rk(W) =k,
we may therefore assume that the last column of W equals e,. Now, if we act with a

matrix of the form
1

ar ... dp— 1

then the last column of W stays equal to ¢,. And, the last column of R becomes

ary + -+ ay—1¥u-1 +"n
0
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if we write
[ .- Th-1 Tn
R= (o . @ O)
with r1,...,7, € K"1. Astk(R) > k = rk(W) and e, is contained in the image of W, we
see that

0

is not contained in the image of W for some 4y, ...,a,-1. So we may also assume that
the last column of R is not contained in the image of W. Next, note that the last column
of W stays e, and the last column of R stays outside the image of W if we act with a
matrix of the form Diag(g, 1) with ¢ € GL,—1. Since the last column of R is nonzero,
we may therefore assume in addition that

(a1r1 R TRY SR rn)

R’ w 0
R=|-wl 0 1
0 -1 0

for some R’ € gl,,_, and w € K"~2. So the vector e,_; is not contained in the image of
W. Note that rk(R’) > rk(R) — 2. Write

W 0
W=|v"T 0
ul 1

with W € K=2X¢=D and 4, v € K¥1. Since e,_; is not contained in the image of W,
the matrix (W e,,_1) has rank k + 1 and hence rk(W’) = k — 1. The limit
R 0 0y (W 0
lim Diag(l,—2,A,1)- (R, W) =[O0 0 Of,{ 0 O
A0 0 0 0)(u” 1

is an element of X. Using the induction hypothesis, we see that X contains

Q 0 0)(V 0
0o 0o0[[0 O
0 00 uT 1

for all skew-symmetric matrices Q € gl,_, of rank at most rk(R) — 2k and all V €
K(n=2)x(k=1) By acting with a permutation matrix, we see in particular that

Q 00Y(0 O
0 0 0|, oflex
000 ul 1

for all skew-symmetrix matrices Q € gl,_x of rank at most rk(R) — 2k. Therefore
(Diag(Q,0), V) € X since it equals

L0 Q 00)(0 0
lim(Diag(In_k,/Uk)+(O V( _kﬁ 1))) 0 0 Of,|Ly O
A0 000 uT 1

for all skew-symmetrix matrices Q € gl,,_; of rank at most rk(R) — 2k and all matrices
V e K™k So since X is GL,-stable, we see that (Q,V) € X for all skew-symmetric
matrices Q € gl,, of rank at most rk(R) — 2k and all matrices V € K", O
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Lemma 2.7.5. There are integers cy,c1,c2 € IN such that the following holds: let m € Z( be
an integer with com < n and let M € by,,,1 | be an element such that for all matrices

PV Q
® U W|eHy, M
R W S

it holds that rk(R) < m or the first and last column of W are linearly dependent. Then we have
I‘k(M) <cim+ cp.

Proof. Let
P VvV Q
o u v
R W S

be an element of the orbit of M. We assume that com < n with c; high enough and we
will prove a series of claims, which together imply that rk(M) < c;m + ¢g for suitable
co,c1 € N.

(x) We have rk(R) < m + 4.

Suppose that rk(R) > m. Note that Diag(l},, g, I;,) € Hay,41, forall ¢ € GL; with g gl =17.

We have
I, P vV Q\(l, (P vl Q
g o u v g =|g® gUg™' gV
I,JIR W S I, R Wg_l S

for all ¢ € GL;. So we see that the first and last column of Wg™! are linearly dependent
for all ¢ € GL; with gJ¢T = J. Using the fact that

1

-A 1

satisfies gJ¢" = J as long as A is not in the middle row together with JJJT = ], it is now
easy to check that rk(W) < 2. Next, note that

I, A -3AJAT

L -JAT ]€H2n+1,z
Iln

for all A € K™ For all A € K" we have

In A —LAJATY'(P V Q\(I, A -1AJAT) (¢ o o

L —JAT | | u w L ZJAT |=|e e e
Iy, R W S I, R W+RA

and hence rk(W + RA) < 2. So rk(RA) < 4 and hence rk(R) < 4.
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(y) We have rk(Q) < m + 4 and rk(P) = rk(S) < 3(m + 4)/2.
Repeat the proof of Lemma 2.6.4 and act with matrices

Iln Iln B
I p I
Iln A Iln

with A = —AT and B = -BT.
(z) We have rk(W) = rk(®), rk(V) = rk(W) < 4(m + 4) and rk(U) < 22(m + 4).

We have
-1

I, A =IAJATY (P V. Q\(Im A -1AJAT\ (o e e
I —JAT © U v I —JAT |=|e e e
Iln R W S§ Iln o o T

with T = —1RAJAT-WJAT +Sforall A € K", Sork(WJAT) < 4(m+4) forall A € K™,
So rk(W) = rk(®) < 4(m + 4). By conjugating with

Iln
I
Iln

we also see that rk(V) = rk(V) < 4(m + 4). We have
1

I, A -AJATY (P V Q\(l. A -3AJAT e o T
L —JAT o U v I —JAT |=]e o e
I, R W S I, o o o)
with
PV Q\(-3AJAT
T=(I, -A -3AJAT)|® U \y] —JAT
R W S I

Now, we know that rk(T) < m + 4. Also, the matrix T is a sum of nine matrices: the
matrix AUJAT and eight other matrices for which we have found bounds on the rank.
Adding all these bounds together, we find that

tk(AUJAT) < (1 +1+1+3/2+3/2+4+4+4+4)(m +4) =22(m + 4)
for all A € K™, Hence rk(U) < 22(m + 4).

Together (x), (y) and (z) show that

PV Q
k|l U ¥
R W S

for some ¢p, c; € IN. So this holds in particular if we let this matrix be M itself. O

<cim+ ¢

We combine these results as in the previous section. Lemmas 2.7.2 and 2.7.3 play
the roles of Lemmas 2.6.2 and 2.6.3 and give us off-diagonal polynomials. Then,
Proposition 2.7.4 with k = 2 shows us the structure of the off-diagonal part of the
matrix as a GL,-representation with the Zariski topology. From this and the degree
of the off-diagonal polynomial, we get bounds on ranks of some submatrices. Lemma
2.7.5 turns these bounds into a rank bound on the matrix itself. Finally, we find
similarly to Lemma 2.3.14 that X C {0} and this implies that V' is G-Noetherian.
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Chapter 3

Strength of polynomials and tensors

Section 3.2 of this chapter is based on ongoing work with Alessandro Oneto. Sec-
tions 3.3 to 3.6 are based on work [7] with Jan Draisma and Rob Eggermont. In this
chapter, the field K is assumed to be infinite.

3.1 Introduction

Fix an integer d > 2 and let V' € Vec be a finite-dimensional vector space. This chapter
concerns decompositions of polynomials g € S%(V) of the form

q=1’151+'--+1’k8k

where r; € S%(V) and s; € $97¢(V) for suitable natural numbers ¢; € {1,...,d — 1}. The
minimal number of terms k among all such decompositions of g is called the strength

str(g) of g.

Remark 3.1.1. This term was introduced in [2], except that we have taken the liberty
of adding 1 to the strength defined there. .

We begin by listing some basic properties and examples of the strength of a polynomial.

Example 3.1.2. Let f € S%(V) be a polynomial. Then str(f) = 0 if and only if f = 0.
And, we have str(f) = 1if and only if f # 0 and f is reducible. *

Proposition 3.1.3. Let f, g € S4(V) be polynomials.
(1) We have str(f + g) < str(f) + str(g).
(2) We have str(f) < dim V. If K is algebraically closed, then str(f) < dim(V) — 1.

(3) Suppose that V is a subspace of a vector space W. Then the strengths of f viewed as an
element of S(V) and as an element of S*(W) coincide.

(4) Let £: V — W be a linear map and take L := S%(£): S* (V) — S#(W). Then we have

str(f) — dim ker(¢) < str(L(f)) < str(f).

Proof. (1) Suppose that

— — A 7 7
f—r151+---+rkskandg—rlsl+---+rk,Sk,

66



for polynomials 7;, s;, r; ; of degree < d. Then we see that
_ ’ ’
frg=nsi+ - +nstris;+- 18,

and this shows that str(f + g) < str(f) + str(g).
(2) Let x1,x2,...,x, be abasis of V where n = dim V. Then we can write

f=x181+x282+ -+ Xngn

whereg1,92,...,8n € Sd‘l(V) and hence str(f) < n. If the field K is algebraically closed,
then we can write

f=h+x3g3+ 4+ x:9n
where I := f(x1,x2,0,...,0) and g3..., 4 € S1(V). Since K is algebraically closed,
the binary form & is has a linear factor and therefore str(#) < 1. Hence we have
str(f) <str(h)+n—-2<n-1.
3) If
f=1’151 + -+ 7Sk
for r; € S¢(V) and s; € S4¢(V) with 1 < e¢; < d — 1, then the strength of f viewed as an
element of S%(W) is at most k. Conversely, suppose that

f:r151+---+rksk

for r; € S%(W) and s; € S%~%(W) with 1 < ¢; <d — 1 and let £: W - V be a linear map
restricting to the identity of V. Then we see that

£ =S4O)(f) = SU(O(r1)ST(E)(51) + -+ + SH() (1) ST (£)(sx)

and hence the strength of f viewed as an element of S¢(W) is at most k. So the strengths
of f viewed as an element of $4(V) and as an element of S¢(W) coincide.
(4) Write f = rys1 + -+ + 15k for k = str(f) and polynomials 7;,s; of degrees e;, d —e; < d
and take

L, := 5°(£): S4(V) — S4(W)

fore=1,...,d. Then
L(f) = La(f) = L, (r1)Lg—, (51) + -+ + L (1) Li—e, (5k)

and hence str(L(f)) < k = str(f). Let x1, ..., x; be a basis of ker({) and let V' C V be a
subspace such that V = V' @ span(x, ..., x¢). Then we can write

f=f’+x1g1+~~~+xkgk

for some f’ € SY(V’) and g1,...,8x € STH(V). The map f|y: V' — W is injective.
So by (3) we see that str(f’) = str(L(f’")) = str(L(f)). Hence str(f) < str(f’) + k =
str(L(f)) + dim ker(¢). O

The following example shows that the strength of polynomials of degree 2 is com-
pletely understood when char(K) # 2 and x*> = —1 has a solution in K.
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Example 3.1.4. Suppose that K = C. Then symmetric n X n matrices correspond one-
to-one to homogeneous polynomials of degree 2 in the variables xq,...,x, via the
GL,-equivariant map
{AeC™|A=AT) - SXC")
A (e m)AG )

Consider the matrix

0

of rank k and the corresponding polynomial f = x7+- -- +x,%. Note that every symmetric
matrix in C"™" is congruent to such a matrix. We have

2+ = (x + iy)(x — iy)
and hence str(f) < [k/2]. On the other hand, suppose that
f=0 - xn)or- (- xpwr oo+ (- xp)ves (X1 - xe)we
for some vectors vy, wy, ..., ve, we € C". Then we get

1
A= 5 ((vlwlT + wlvlT) +o (Ung; + ww?))

and hence k = rk(A) < 2¢. Hence str(f) = [rk(A)/2]. )

We also have an example that shows that the strength of a polynomial may go down
when you extend the base field.

Example 3.1.5. Consider the polynomial f = x7 + -+ + x; over R. If
f=ris1+- -+ s

for real linear forms rq,s1, ..., 7k, s, then we see that f(v) = 0 for all vectors v in the
subspace ker(ry, ..., r¢) € R" of codimension at most k. Since f(v) = 0 only holds for
v = 0, we see that str(f) > n must hold. Since str(f) < n always holds, we get str(f) = n.
This is roughly twice as high as the strength of f over C, which equals [1/2] by the
previous example. *

The following example explicitly gives the strength of some homogeneous polynomi-
als of degree 3 and thereby shows that the strength of such polynomials is unbounded.

Example 3.1.6. Let n € IN be an integer and x1, y1,z1, ..., Xu, Yu, 2, be a basis of K3,
Derksen, Eggermont and Snowden proved in [15] that the polynomial

X1Y121 + -+ XuYnZy

has strength n. s
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Polynomials of arbitrarily high strength in fact exist in every degree d > 2. To show
this, we need the following lemma.

Lemma 3.1.7. Let d > 3 and suppose that f € S*(V) has strength < k. Then there exists an
¢ < k and an C-dimensional subspace W C V such that the image g of f in S*(V/W) satisfies

str (g—i) <2(k-120)

forall x € (V/W)".
Proof. Write
f =w181 + -+ WeQe + 1181 + -+ TSkt
where wy,...,we € V are linear and rq,5s1, ..., 7k, Sk—¢ have degree > 2 and let W be
the span of w1, ..., w,. Then the image g of f in $%(V/W) satisfies

g=f=ri-si+ -+ Sk¢

and hence we see that

dg _dn — Jdsp e —  — IS¢
ox  ox Sl+r1.8_x+m+ ox ST Ty
has strength < 2(k — ¢) for all x € (V/W)". O

Example 3.1.8. Forn € IN, write f;,, = x‘f +-- 4 xfl. Note that we obtain f;,_; from f;,
by setting x;, to zero and hence str(f;,-1) < str(f;,). We will prove that str(f;,) — oo
when n — oo for all d > 2 using induction on d. We have str(f,,) = [1/2] and hence
the statement holds for d = 2. Now assume that the statement holds for d — 1. Suppose
that str(f;,) < k. Let V be the vector space with basis xi,...,x, and let £ < k and
W C V be as in the lemma. We may assume that xq, ..., x,_¢ form a basis of V/W. Take
X =x1+ -+ Xx,—¢. Then we see that
2 ()

has strength at most 2(k — £). Therefore

—d-1 Ty _ 9 (o, . 19xn (+1
d(x1 + + Xp )=£(x1 +x,1 an g+]

j=1

has strength at most 2(k — £) + ¢ < 2k. Its strength is also equal to

str(fa—1,n-¢) 2 Str(fa-1,n-k)
and so we see that the strength of f;, cannot be bounded by any k < coasn — co. &
The main result of this chapter is the following theorem.

Theorem 3.1.9. Fix d € Zs; and assume that K is a perfect and infinite field with char K = 0
or char K > d. Then for any closed subset X C S there exists an N > 0 such that for all vector
spaces V € Vec the strength of all elements in X(V) is at most N.
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Assume that K is a perfect and infinite field with char K = 0 or char K > 4 and let #’ be
any property of polynomials such that the following condition holds:

(*) If a polynomial f € S4(V) has property P and £: V — W is any linear map, then
the polynomial S%(¢)(f) has property P as well.

Then the theorem applied to the closure of P tells us that either the set of f € S4(V)
with property P is Zariski-dense for every V € Vec or the strength of polynomials with
property ¥ is bounded independently of V.

Example 3.1.10. Let k € N be an integer. Then the dimension of the subset

X(V) = {f € SUV) | str(f) < k)

of $4(V) is bounded by a polynomial in dim V of degree d — 1. Hence X(V) cannot
be equal to S%V) for V € Vec with dimV > 0. Using Proposition 3.1.3(4) and
Theorem 3.1.9, it follows that there exists an N > 0 such that str(g) < N for all V € Vec
and all polynomials g € X(V). *

Example 3.1.11. The paper [24] concerns polynomials all of whose directional deriva-
tives have bounded strength. Let x € V* be nonzero. Then the map that sends a
polynomial to its directional derivative to x is surjective. So since the set of polyno-
mials of bounded strength is not dense for dim V > 0, the same is true for the set of
polynomials all of whose directional derivatives have bounded strength. Hence the
strength of such polynomials is bounded. This implies [24, Theorem 1.2]. &

Remark 3.1.12. See [25, Lemma 1.23] for a strengthening of this result, which shows
that either all f € S%(V) have property P for every V € Vec or the strength of polyno-
mials with property # is bounded independently of V. )

We define the strength str(f) of a series
d _1; d
fesy = hmn SHK™)

as the supremum of the strengths of all its projections pr, (f) € S*(K"). Note that a
strength decomposition of f also gives strength decompositions of all its projections
with the same number of terms. So it is easy to write down series with low strength.
The previous examples also allow us to write down some series whose strength is
infinite.

Example 3.1.13. The series )., x;y;z; has infinite strength over C. &
Example 3.1.14. The series }. >, x? has infinite strength over C. *
Theorem 3.1.9 has the following consequence in this setting.

Corollary 3.1.15. Fixd € Z3; and assume that K is a perfect and infinite field with char K = 0
or char K > d. Then the GLe-orbit of any series in S, of infinite strength is dense.

Proof. Let X be the closed subset of S corresponding to the closure of the GLc-orbit
of a series f € S&. If f is not dense in S%, then X # S? and hence the strength of
polynomials in X is bounded. This would in particular imply that the strength of the
projections pr, (f) € X(K") is bounded and that therefore that the strength of f is finite.
So if the series f has infinite strength, then its GLe-orbit is dense. m|
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Remark 3.1.16. Alternatively, one could define the strength of a series f € S%, as the
infimal number of terms of a strength decomposition of f. These definitions are in fact
equivalent. See Remark 4.5.25 for a proof of this statement.

When studying rank-like measures of tensors, there are several natural questions one
can ask. Letd > 2, n > 1 and k > 0 be integers. The first question to ask is whether
having bounded strength is a closed condition.

Question 3.1.17. Is the subset {f € C[x1,...,xu]@) | str(f) < k} closed?

We know from Example 3.1.4 that the answer is yes for d = 2. It is also known [15,
Proposition 2.2] that the answer is yes for 4 = 3. Since C is algebraically closed, we
also know that the answer is yes when k < 1. So the first open case is (d, k) = (4, 2).

Question 3.1.18. Is the subset {f € Clxy, ..., xu]@4) | str(f) <2} closed?

Note that we have

{f €Clxy, ..., xu1l@ | str(f) <k} ={f € Clxy,..., xul@ | str(f) <k} N Clxy, ..., x0-1] )

for all n € N by Proposition 3.1.3. So to answer Questions 3.1.17 and 3.1.18 it suffices
to ask the question for n > 0.

Second, we want to know the strength of a generic polynomial and the maximal
strength a polynomial can have given its degree and number of variables.

Question 3.1.19. What is the strength of a generic polynomial in Clxy, ..., xn]@a)?
Question 3.1.20. What is the maximal strength of polynomials in Clxy, ..., xu]@a)?

In the next section, we compare the strength of polynomials to their slice rank and
conjecture that they are generically equal, which would in particular imply that the
generic and maximum strengths are the same.

Third, like for the rank of tensors, we can ask how to compute the strength of a poly-
nomial, low strength approximations and one can try to find families of polynomials
with high strength.

Question 3.1.21. Given a polynomial f € C[x1,...,x,]@), can we compute its strength?

Question 3.1.22. Given a polynomial f € C[xy,...,x,]@), can we compute its best low
strength approximation?

Question 3.1.23. Can we explicitly write down families of polynomials with high strength?

See [27] for a recent paper trying to answer this last question for tensors.

Last, let f, ¢ be homogeneous polynomials of the same degree in distinct variables.
Then we have str(f + g) < str(f) + str(g). One would hope that, since the polynomials
use distinct variables, we in fact have str(f + g) = str(f) + str(g). This is however not
the case: the polynomials ¥/ and —y* both have strength 1, but their sum is divisible
by x — y and hence also has strength 1. One can nevertheless ask whether it is possible
to find interesting lower bounds for str(f + g) given str(f) and str(g).
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Question 3.1.24. Given polynomials f, g in different variables with known strengths, can we
find a lower bound for the strength of their sum?

Outline of this chapter. In the next section, we introduce the slice rank of a polynomial
and compare it with its strength. The three sections after that are devoted to proving
Theorem 3.1.9 and its analogues for alternating and ordinary tensors. We conclude
with a section discussing versions of Theorem 3.1.9 and its analogues over Z.

3.2 Slice rank and generic strength of polynomials

In this section, we compare the strength of polynomials with their slice rank in the
case that K = C. Letd > 2 be an integer and V € Vec a vector space.

Definition 3.2.1. Let f € S%V) be a polynomial. The slice rank slrk(f) of f is the
minimal number of terms k among all decompositions of f of the form

g=tig1+ -+ gk
where ¢4, ..., ¢ € V arelinear and g1,...,8x € S1(V) have degreed — 1.
We again start with listing some basic properties of the slice rank of polynomials.
Proposition 3.2.2. Let f, g € $%(V) be polynomials.
(1) We have slrk(f + g) < slrk(f) + slrk(g).
(2) We have slrk(f) < dim V. If K is algebraically closed, then slrk(f) < dim(V) — 1.

(3) Suppose that V is a subspace of a vector space W. Then the slice ranks of f viewed as an
element of S(V) and as an element of S%(W) coincide.

(4) Let £: V — W be a linear map and take L := S%(£): S*(V) — S4(W). Then we have

slrk(f) — dim ker(¢) < slrk(L(f)) < slrk(f).

(5) We have str(f) < slrk(f).
(6) We have slrk(f) = min{codim W | W C V, f(W) = 0}.
(7) Let k > 0 be an integer. Then {h € S*(V) | slrk(h) < k} is a closed subset of S*(V)).

Proof. Parts (1), (2), (3) and (4) have the same proof as in Proposition 3.1.3. Part (5)
follows immediately from the definitions of strength and slice rank. Part (6) is proven
in [15, Proposition 2.2] for d = 3 and this proof in fact works for any d > 2. Part (7)
follows from part (6), which shows that the set

{h e S4(V) | slrk(h) < k}

is a projection of a closed subset along the Grassmannian of codimension-k subspaces
of V. m|

By part (7), the generic and maximal slice rank of polynomials in 54(V) coincide. And
in fact, their value is also know.
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Theorem 3.2.3 ([11, Theorem 6.11]). The genericslice rank of a polynomial in C[x, ..., xx] ()

equals
min{ke Zsn)2 (d+n(;k—1) < k(n—k)}.

O

d
1

d

We can calculate the slice rank of the polynomial f = x4 + --- + x% using the Fano

varieties of the hypersurface defined by f.

Example 3.2.4. Letd > 2 and n > 1 be integers. Then the slice rank of the polynomial
f= x‘f + -+ x% is at most [11/2] since it is the sum of at most that many binary forms.
In order to prove that the slice rank of f is exactly [1/2], we consider the Fano varieties

Fu(Xp) := (W € G(m,C") | P(W) C X} = (W € G(1,C") | f(W) = 0}

of the hypersurface Xy := {f = 0} C P""! for m € [n]. The projective hypersurface
Xy is smooth. Therefore F,(Xs) = 0 for all integers m with 2(m — 1) > n —1 by [29,
Proposition 0.1]. This means that any subspace W € C" with f(W) = 0has codimension
at least [n/2] and hence slrk(f) = [1/2] by Proposition 3.2.2(6). )

By Proposition 3.2.2(7), we see that the generic and maximal slice rank of polynomials
in $%(V) coincide. Let

str’(d, n) < str™*(d, n) < slrk°(d, n) = slrk™(d, n)

denote the generic strength, maximum strength, generic slice rank and maximal slice
rank in K[xy,...,x,]g for integers d > 2 and n > 1. Then we have the following
conjecture.

Conjecture 3.2.5. We have
str’(d, n) = str™*(d, n) = slrk°(d, n) = slrk™(d, n)
for all integers d > 2 and n > 1.

Note that the conjecture holds for d = 2,3 since in those cases the strength and slice
rank of a polynomial coincide.

Remark 3.2.6. While we conjecture the strength and slice rank of a generic polynomial
to be equal, we know that this does not hold for all polynomials. In fact, the differ-
ence between the slice rank and strength of a polynomial can be arbitrarily big. See
Subsection 4.7.3 for details.

3.2.1 The proof of the conjecture ford < 6

Our goal for the remainder of this section is to prove this conjecture for d < 6. To do
this, we have to show that the image of the map

Ld/2]

@k,
o: P (Clvr, . wlo X Clxr, - xdamo) = Clrn,e, 2l
e=1
ld/2] ke
(Geirheei = Y Y 8eihes
e=1 i=1
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does not have full dimension whenever the sum of the k.’s is lower than the generic
slice rank in C[x1, ..., x,]4). Let the g.;, I, ; be generic and consider the derivative

Ld/2]

@k,
Q: @(C[x1l"'lxn](€) XC[-xll---/xl’l](d—e)) - C[X],...,xn](d)
e=1
d/2] k.
((Ge,i/ He,i))e,i — Z Z(ge,i 'He,z' + Ge,z‘ : he,i)
e=1 i=1

of @ at ((e,i, hei))ei- It suffices to prove that the image of this map, which is precisely
the degree-d part of the ideal generated by the g, ;, ., is not the whole space.

Let V € Vec be a vector space of dimension n > 1, let k < n be an integer and take
t,...,0ceVand fi,..., fr € SL(V) generic. Then ¢, ..., { are linearly independent.
Let {41,...,€, € V be such that ¢4, ...,{, form a basis of V. Then we see that

SUV)=Clly, ..., by = (o, 6@ @ Cllisn, - - -, Cala)-

The codimension of ({1, ..., l, fi,. .., fi)@ in S4U(V)is equal to the codimension of

(fi - @

in C[li41, ..., Cul@y = Clly, ..., Cul@y/ (€1, . .., €k)@)- The dimension of this subspace is at
most kdim C[{kq, ..., Cu]1). So we see that the codimension of (£1,..., 4, fi,..., fi)w
in $%(V) is at least

. . d+n—-k-1
d1mC[€k+1,...,€n](d) —kdlmC[karl,...,fn](]) = ( d ) —k(i’l—k).

Now back to the degree-d part of the ideal generated by the g.;, h,;. We know that the
generic slice rank is at most n. So in particular, we can assume that k := k; < n. This
means that the codimension of the degree-d part of ideal generated by the g, ;, k. ; is at
least
d+n-k-1
[

where W is the degree-d part of the ideal in the ring C[x1, ..., x,]1/(g11,--.,81) gener-
ated by the images of the g, ;, h.; with e > 2. Note that

)—k(n—k)—dimW

C[xll .. -;xn]/(gl,lz . ~/g1,k) = C[]/lr e 1ym]

form = n—k. So our next task is to find an upper bound for the dimension of the degree-
d part of an ideal in C[yy, ..., ym] generated by generic g.;, h,; wheree € {2,...,[d/2]},
i € [k.], deg(g.,i) = e, deg(h,;) = d —e. We do this for d = 4,5, 6 separately.

Lemma 3.2.7. Let £ > 0 and m > € + 2 be integers and let g1, ..., 82¢ € Cly1, ..., Yml) be
generic. Then
m+1 2f
2 —

is an upper bound for the dimension of (g1, ..., $2¢)@)-
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Proof. Note that (g1, ..., $2¢)w) is the image of the linear map

C[]/l;-u/]/m]gz)g - C[]/llf]/m](zl)

20 20
ZHi [gi] — ZHigi
i=1 i=1
where [g1], ..., [g2¢] are formal symbols. In the kernel of this map, we have:

(1) gj-lgl—-gi-[gjlfor1 <i<j<2¢

Since £ < m — 2, we have 2f < (m; 1) = dimC[y1, ..., Yml@). So since the g; are generic,
they are linearly independent. Let W C Clyy, ..., ¥l be the subspace they span.
Then the g;-[gi] — gi- [/] are elements of W®2L Consider the basis of W®¢ consisting of
gj-[gil for i, j € [2{] ordered first be the index of [¢;] and then by the index of g;. Then
we see that each g;-[¢:] - &i-[¢;] has a distinct leading term. Hence the g;-[¢i] - gi-[g/]
must be linearly independent. The upper bound now follows. |

Lemma 3.2.8. Let £ > 0 and m > € + 2 be integers and let g1,...,8¢ € Cly1,..., Yml) and
hi,...,he € Cly1, ..., ymlp) be generic. Then

m+1 m+2\ (¢ ’
) ) B
is an upper bound for the dimension of (g1,..., ¢, M1, ..., he) ).

Proof. Note that (g1,..., 8¢ h1, ..., h¢)) is the image of the linear map

C[yl, ce ,ym]%(; (&) C[yl, e ,ym]g{; - C[yl, ce /ym](5)

¢ ¢ ¢ ¢
ZHi -8l + Z Gi-[h] = ZHz‘gi + Z Gih;
i=1 i=1 i=1 i=1
and that the kernel of this map contains:
(1) hj-[gi]—gi-[hj]lfori,j € [f]and
) yr-(gj-[g]l—gi-[gDfor1 <i<j<{landke€ [m]
It suffices to prove that these elements are linearly independent.
Consider the projectionon C[yy, .. ., ym]g‘;.
—gi-[hj] and the yi - (g; - [gi] — &i - [/]) project to zero. Since the g; are generic, they are
linearly independent. So that means that the —g; - [i;] are independent as well. This

takes care of the elements from (1). So it suffices to prove that the yi - (¢; - [gi] — gi - [g;])
are linearly independent.

The hj-[gi]—gi-[1j] project onto the elements

As in the previous lemma, it is enough to show that the y; - ¢ are linearly independent
for generic g;. Since this is an open condition, it is moreover enough to show that the
Yx - gj are linearly independent for some g;. Take g; = y?. Then the y; - g = yky]z. are
distinct monomials and hence linearly independent. This finishes the proof. |
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Lemma3.2.9. Let £, (' > Oand m > £+ +2 be integersand let g1, ..., ¢ € Clyy, ..., yule),
hi,...,he € Cly1, ..., Ymlw and aq, ..., a2¢ € Cly1, ..., ymlp) be generic. Then

m+1 m+3 S(m+2 t\(m+1 ¢ , oo (20
(S R O EE R R S RO T Y
is an upper bound for the dimension of (g1,...,8e,M, ..., he, a1, ..., a20) @)

Proof. Note that (g1,...,8¢,h1,...,he,a1,...,820) ) is the image of the linear map

C[]/I,/]/m]% @C[I/l,/]/m]g @C[]/lz/]/m]gz)g, - C[ylz/ym](@
¢ ¢ 20 ¢ ¢ 20
ZHi -[gil +ZG1‘ - [hi] +ZBi'[ai] — ZHigi+ZGihi+ZBiﬂi
i1 =1 i1 im1 =1 im1

and the kernel of this map contains:
(1) ok, - (8- (8] —gi-[g) for1 <ki <k <mand1<i<j<{¢,
(2) vk~ (aj-[8i]=gi-[aj]) fork € [m], i € [(] and j € [2'],
(3) Iy [gi] - i~ [hy] for i, j € [€] and
(4) aj-[a;] —a;-[aj] for 1 <i<j<2¢.

We need to show that after leaving out (g) elements from (1), we get a generically
linearly independent set. We may assume that the g; are linearly independent. So the
projection on Clyjy, ..., ym]g takes care of the elements from (3).

a2l
©)
elements from (2), we get —y; - g; - [4;]. Take g; = yf. Then we see that the monomials

Yk - 8i = Yky? are distinct from each other. We have £m such monomials. So since

Next we take care of (2) and (4) by projecting on C[ys, ..., yml}%" . When we project the

€m+2€’s(€+€’)m§(m—2)ms(m;2)

we can choose the g; to be monomials distinct from the monomials y; - g; and distinct
from each other. It follows that the projection of the elements from (2) and (4) are
generically linearly independent. This leaves the elements from (1).

Finally, we need to show that the elements from (1) are generically linearly independent
after leaving out (g) of them. We consider the elements v, yx, - (¢ - [8i] — &i - [g]) for
1<k <k <mand1 <i < j< ¢ where the condition i < k; = k; < j does not

hold. This leaves out exactly (;) elements. We need to show that the leading terms
Yk Yk, - 8 - [gi] are linearly independent for some choice of the g;. Take g; = y]z and

assume that

Yk, - 8- [8i] = vk vk, - 8 - [8il
for some ky,ky, j, ki,ké, j’,i. Then either j = j/, which implies that (k;,k2) = (k’,ké),
orj =k =kjand j = ki = ko. The latter case implies that i < ky = kp < j or
i <kj =kl <j.Soamong the elements from (1) that we consider, the leading terms
are all distinct. Hence those elements from (1) are linearly independent. O
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By combining the previous lemmas with the discussion before them, we now find
lower bounds for the codimension of the image of the map ¢ for d € {4,5, 6}. We now
need to check that these lower bounds are positive when the sum of the k.’s is lower
than the generic slice rank in C[xy,...,x,]@). For fixed d,n, this can be checked by
computer. So we now first focus on the case where n > 0.

Write m = n — k and note that the codimension of the image of ¢ is at least

(e -

for (d,k1, k) = (4,k, £), is at least

fs(m, {) := (m ; 4) — (n —m)m — (é’(m; 1) + f(m; 2) - (;)m - 52)

for (d,k1,kz) = (5,k, €) and is at least

m+>5

fo(m, £, €)== ( 6

)—(n—m)m—dimW

where

) _fm+1 m+3 S(m+2 f\(m+1 4 ;o (20
dlmW—f( ; )w( ; )+2€( ; ) (2)( ; )+(3) 200 — ¢ (2)
for (d, ki,kz,k3) = (6,k,€,£’). We need to show that f;(m,£) > 0 for d = 4,5 and

m—{ =mn—slrk®(d, n) + 1 and that fe(m,¢,€’) >0 form — € — €’ = n —sltk®(6,n) + 1. To
proceed, we first need a lower bound for n — slrk®(d, n).

Lemma 3.2.10. Suppose that d > 4 and that

n > max (dd_l/d!, d_i/(d — 1)1d-1/q1d-3 2 = Zd!)

holds. Take p(x) = (x +d —1)---(x + 1) — d!(n — x). Then p(x) has a unique positive root

a > 0. We have - .
Vdn—-@d+1)<a< Vdn-1

and n — slrk°(d, n) = |a].

Proof. Recall that

slrk®(d, n) = min {k € Zsnp2

(d+nd_k_1)sk(n—k)}.

Take x = n — k. Then we see that

(d+n—k—1

J )Sk(n—k)

holds if and only if p(x) < 0. Note that p(0) = (d — 1)! — d!n < 0 and that p(x) is strictly
increasing on Rxg. So p(x) has a unique positive root a > 0. Take x = “Vdin - 1. Then

p(x) >dn—-dl(n-x)>0
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andsoa < ‘Vdln—1. Take y = “Vd!n > d. Then
ply—@d+1) <y y-d)—di(n-y) =dly —dy" > =dy((d - 1)! - y"°) <0

since (dn)?3 > (d — 1)1 and hence (d — 1)! < y*3. Soa > “Vdn — (d + 1). Since
n>2" 2d!, we have a < Ndn < n/2. So |a] is the maximal integer < 1n/2 such that
p(x) < n. So |a] = n —slrk®(d, n). |

Remark 3.2.11. Note that the condition on 7 in the lemma is satisfied when d € {4, 5, 6}
and n > 11. Py

Note that fs(m,0) > 0 for m = n — slrk®(4,n) + 1. So for d = 4 it suffices to prove that
fam+1,0+1) > fa(m, )

whenever m — £ = n — slrk®°(4,n) + 1. We have

fam+1,0+1) = fa(m, £) = ém3—2m€+§m+2f—n+l

> ém3—2m(m—2)+2m—n+1

since 0 < £ < m — 2. Assume that n > 11. Then by the lemma, we see that

mzn—slek®(d,m) +12 | V24n - 5|+ 1> V24n -5

and so 1 < (m + 5)3/24. So

\%

1 5
gm3 = 2m(m = 2) + Zm = (m +5)°%/24 +1

8 8 24 24

1 5
8m3—2m(m—2)+8m—n+1

One can check numerically that the latter is positive for m > 41/2. So we see that
fam+1,€+1) > fy(m,£) >0

for all m — € = n - sltk®(4,n) + 1 when n > 691 > (41/2 + 5)3/24. Note that one can
check in a finite amount of time that fs(m, ) > 0 for all m — £ = n —slrk®(4,n) + 1 when
n < 691. We checked using a computer that this is indeed the case.

Next, note that fs(m,0) > 0 for m = n — slrk®(5,n) + 1. So for d = 5 it suffices to prove
that
fs(m+1,6+1) > fs(m, )

whenever m — € = n — slrk®(5, n) + 1. Similarly to before, we find that

9 5 _28L , 69 49

1
1,0+1) - > —mt— —m’ - .

One can check numerically that the latter is positive for m > 18. So we see that

fs(m+1,+1)> f5(m,€) >0
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for all m — £ = n — slrk®(4,n) + 1 when n > 2765 > (18 + 6)*/120. We checked that
fs(m, €) > 0 for all m — € = n — slrk®(5,n) + 1 when n < 2765.

Finally, note that fs(m,0,0) > 0 for m = n — slrk®(6,n) + 1. So for d = 6 it suffices to
prove that

fo(m, €,0) > fo(m, €+ 1,0 —=1) and fe(m+1,£+1,0) > fo(m,¢,0)
whenever m — £ = n —slrk®(6, n) + 1. Similarly to before, we find that

, , 1 4 7 4 11 , 37
— — > — _ _ R —
fo(m, €, ") = fe(m, €+ 1,0 —=1) > 24m 12m + 24m + 12m 6

and

1 5 409 8861 16087
m+1€+1 _ m.t >_— 5 2423 272 _ .
f6( ’ 0) f6( 40) 144m 144m 9m 72 " 720 " 720

The right hand sides of these expressions are positive when m > 24. So we see that
fo(m, £,€') >0

forallm — € — €' = n—slrk®(4,n) + 1 when n > 39763 > (24 + 7)°/720. We checked that
fo(m, €,£') > 0 forallm—€— €' =n—slrk®(6,n) + 1 when n < 39763.

3.3 Bounded strength of polynomials

The goal of this section is to prove Theorem 3.1.9. By assumption, there existsa U € Vec
such that X(U) € S%(U). We fix this U throughout the proof. The bound N > 0 that we
will obtain depends only on d and dim U. See Remark 3.3.8.

Irreducibility. The following lemma is a standard fact from representation theory.
Recall that, since char K = 0 or char K > d, the representations S¢(V*) and $%(V)* of the
group GL(V) are isomorphic for any V € Vec.

Lemma 3.3.1. Foreach V € Vec, the representation S%(V) of GL(V) is irreducible and linearly
spanned by its subset {v | v € V\ {0}}. Furthermore, any GL(V)-equivariant polynomial map
from V into a representation N of GL(V) on which t idy acts via multiplication with t* factors
as V — S4V), v v? and a unique GL(V)-equivariant linear map S4(V) — N. O

Homogeneity. We equip the coordinate ring K[S?(V)] with the grading in which the
elements of S%(V)* have degree 1. For any closed subset X C S? we find, from the
fact that X(V) is GL(V)-stable, that the ideal 7(X(V)) C K[S%(V)] is GL(V)-stable and
in particular homogeneous. We define 6x := min{deg(f) | f € Z(X(U)) \ {0}}.

Induction. If 6x = 0, then J(X(U)) contains a nonzero constant and hence X(U) = 0.
In this case, for any V € Vec, the d-th symmetric power of the zero map V — U maps
X(V) into X(U) and so all X(V) are empty. Hence in Theorem 3.1.9 we may take N = 0.
We proceed by induction, assuming that 6x > 0 and that the theorem holds for all
closed subsets Y C §% with Y(U) ¢ S4(U) and 6y < dx.
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Derivative. Let f € 7(X(U)) \ {0} be homogeneous of degree 6x. By the minimality
of 0x and perfectness of K, there exists an r € S4(U) such that the directional derivative

of
hi= =

is not the zero polynomial. By Lemma 3.3.1, $%(U) is spanned by d-th powers, so we
may further assume that r = u? for some u € U.

We define the closed subset Y ¢ S by
Y(V) :={g € X(V)| V€ € Hom(V, 1) : h(S"(£)(9)) = 0}.

Now we have 0y < deg(h) = deg(f) — 1 < deg(f). So, by the induction hypothesis,
the theorem holds for Y. We define Z(V) := X(V) \ Y(V) and set out to prove that all
elements in Z(V) have strength bounded independently of V.

Shifting. For V € Vec, we define

d

P(V):=$iUe V) =P s esiy),
i=0

X'(V):= XU V) CP(V),

Z/(V) ={q € X'(V) | (8" (rtu)(q)) # 0}
The notation is chosen compatible with [17]. We think of P’(V), X"(V) as varieties over

S4(U), X(U), respectively, via the linear map S%(ry;). Accordingly, by slight abuse of
notation, we will write & for 1 o S(mtyy).

Lemma 3.3.2. We have

ZUV) = U g7’ (V).
geGL(UaV)

In particular, SUP,e7uev) SH(G) = Sup ez () str(q).

Proof. First, wehave Z(U®V) 2 Z’(V), and since the left-hand side is GL(U® V)-stable,
the inclusion 2 follows. Conversely, if g € Z(U @ V), then there exists a linear map
{: UV — U for which h(Sd(f)(q)) # 0. Since this is an open condition on ¢, we may
further assume that £ has full rank. Then for a suitable ¢ € GL(U @ V) we find that
{ = my o g. Accordingly,

h(g ) = (o SUmu))(S™(9)(@) = H(S™(O)(q) # 0
and hence g-q € Z'(V). m|

Lemma 3.3.3. We have

sup str(q) = sup maxq sup str(g), sup str(q);.
VeVec VeVec qeY (V) qez’ (V)
qeX(V)
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Proof. The same statement with Z’(V) replaced by Z(V) is obvious given the fact that
X(V) =Y(V)UZ(V). Let1: V < U& V be the map sending v — (0,v). Then the
map S%(1) maps Z(V) into Z(U & V) and is easily seen to preserve the strength. By the
previous lemma

sup str(q) = sup str(q)
qez’'(V) geZ(UV)

and so the statement follows. m]
So it suffices to show that elements in Z’(V) have bounded strength.
Chopping.
Lemma 3.3.4. For g € P'(V) write q = qo + - - - + g4 with g; € ST (U) ® S'(V). Then
str(g) < dim U + str(gy).
Proof. Note that qg + ... + g4_1 is in the image of the map

U s (UaV) - SHUaV)
r®s > rs

and hence has strength at most dim U. Now, strength is subadditive, so
str(g) < str(go + ... + g4-1) + str(gy) < dim U + str(gy). O

So, as U is fixed, it suffices to prove that for V ranging through Vec and g ranging
through Z’(V) the component g, has bounded strength.

Embedding. Define

d-1

Q(V) = P(V)/$"(V) = P s (W) @ S(V)

i=0
and write 1t (v): P/(V) — Q’(V) for the natural projection. Take
B(V):={q€ Q' (V) | h(g) # 0} = {(q0, - ., q4-1) € Q"(V) | h(go) # O}.

Then ny () maps Z’(V) into B(V). And, by [17, Lemma 7] and Lemma 3.3.1, the
following lemma holds.

Lemma 3.3.5. The map gy (v restricts to a closed embedding Z'(V) — B(V). O

We will not actually use this lemma, but we will use its proof method.

An equivariant map back. We construct a suitable map opposite to the embedding of
Lemma 3.3.5.

Lemma 3.3.6. There exists a GL(V)-equivariant polynomial map W: Q"(V) — S4(V) such
that q4 is a scalar multiple of W(qo, . .., q4-1) for all g = (qo, . .., q94) € Z' (V).
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Proof. Forx € V*and t € K, let £{,: V — U and {;(t): U® V — U be the linear maps
sending v — x(v)u and (1, v) = u + t{x(v). Here u is the vector used in the definition
of h. Note that x - ¢, is a GL(V)-equivariant linear map V* — Hom(V,U). Now
consider the linear map ®(t) := SAe(t): P/(V) — S4U).

The restriction of ®,(t) to the summand S (U) ® S'(V) equals tiq)x,,' where @, ; is the
composition of $%7(idy) ® S'(£y): S4H(U)® S{(V) — S¥i(U) ® S'(U) and the multiplica-
tion map into s4U). In particular, @, ¢ is the identity on S¢(U) and D,y S4V) — Si(U)
is the linear map sending g, — x%(q;)u. Note that the map

V' — Hom(S%(U) ® S (V), S%U))

X = cDx,i
is a GL(V)-equivariant polynomial map of degree i.

The functoriality of X implies that @,(t)(X’(V)) € X(U). In particular, the pull-back
of f along @,(t) to P’(V) vanishes on X’(V). Take g = (qo, . ..,94) € P'(V). Then

F@e(t)qo + 1 + -+ + a1 +40)) = £ (g0 + D1 (q1) + -+ + 177 D1 (qamn) + 37 (g0

vanishes for g € X’(V). In particular, the coefficient of t in the Taylor expansion of
this expression vanishes for g € X’(V) . This coefficient equals

d
xd(%)a—;(%) +W(x,q0, .-, q4-1) = ¥ @a)h(qo) + W (x,q0, - - -, Ga-1)

where the function W: V* x Q’(V) + K is GL(V)-invariant and homogeneous of de-
gree d in its first argument x.

FCI ‘j EZ ( ) Ellz[ Eh(‘iO) : ElIl:l}lEIlCE
( ) ; ( cee - )‘

By Lemma 3.3.1 the space S%(V)* of coordinates on 5% is spanned by the {x/ | x € V*}
and this shows that Z’(V) — B(V) is a closed embedding. But it yields more: by
Lemma 3.3.1, W factors as

V'xQ(V) - SVxQ(V)
xq) = «4q)
and a unique GL(V)-invariant map SV* x Q(V) — K. We denote the latter map

also by W, which is now linear in its first argument. If we reinterpret ¥ as a GL(V)-
equivariant polynomial map Q’(V) — S%V, then for g € Z’(V) we have

1
W0, ., d01).
9d ) (90 Gd-1)

In particular, for g € Z’(V) we have g; € im . O
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Covariants. A covariant of Q’(V) (of order §%(V)) is a GL(V)-equivariant polynomial
map Q'(V) — S4(V). So the map W constructed in Lemma 3.3.6 is a covariant. For
each integer i € [d — 1], choose a basis u;1, ..., U;n, of S4=i(U). Then the map

d—i d-1

®: @ Si(V)en  — @sd—i(U)e;si(V)
i=1

i=0
" d-1
(wij)ij Zui,j@’wi,j

j=1 i=1
is a GL(V)-equivariant isomorphism and the following lemma holds.
Lemma 3.3.7. Let V: Q' (V) — S%V) be a covariant. Then the composition

d-1

W o (idge(), @): SU(U) & P (V)™ — (V)
=1
is given by
d-1 n;
(2 @)~ Y, pl@- w?
Oci,]'EZZ() i=1 j=1

O L day=d
for some polynomial functions p,: S*(U) — K.
Proof. Polynomial GL(V)-equivariant maps
d-1
sluye @ s - siv)
i=1

correspond one-to-one to linear GL(V)-equivariant maps

d-1 n;
Ksfwle B QR)suis(vy) - siw)
i=1 j=1

i j€Z0
d-1 " -
Yo Z]-; Fajj=d

by the universal properties of tensor products and symmetric powers. For each ¢, the

vector space
d-1 n;

Homer, | (X) (X) s1(S'(V)), $4(v)

=1 j=1

is one-dimensional and consists of multiples of the homomorphism ¢, sending

d-1 n; d-1 n;
R Qi wijay > [ [[hin - e
=1 j=1 i=1 j=1
Hence the set of GL(V)-equivariant linear maps
d-1 n; )
Ksfwle B QRE)suis(vy) - sw)
D(i,]'GZZg i=1 j:1

A1yt -
Yis Zjé] l'ai,j—d
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is spanned as a K[S?(U)]-module by the set of all £,. The corresponding statement for
polynomial GL(V)-equivariant maps is the statement of the lemma. |

Conclusion of the proof

Proof of Theorem 3.1.9. By the induction hypothesis and Lemma 3.3.3, to bound the
strength of elements of X(V) for all V € Vec it suffices to bound the strength of
elements of Z’'(V) for all V € Vec. By Lemma 3.3.4, it suffices to bound the strength
of gs over all g = (q0,...,94) € Z’(V). By Lemma 3.3.6, we know that such a g; is
contained in the image of a covariant. So using Lemma 3.3.7, we see that g, is a linear
combination of products of polynomials w;; € S'(V) where i ranges over [d — 1] and
j ranges over [dim S9~/(UI)]. Since each of those products has degree d and since, for
each pair (i, j), the polynomial w; ; has degree i, we see that each of the products is
divisible by w; ; for some i < d/2. We find that the strength of g, is at most

[d/2]
#wijlie(1,...,1d/2]}j € [dim s @)} < Y dim s (W)
i=1

and this bounds the strength of g; independently of V. |

Remark 3.3.8. It follows from the induction that N from Theorem 3.1.9 can be taken
equal to
14/2] ‘
dim U + Z dim S (UD).
i=1

3.4 Bounded strength of alternating tensors

Let V € Vec. For alternating tensors q € /\d(V), the strength str(q) is defined as the
minimal number of terms k in any decomposition of the form

q=riAsy+---+1 A5k

where r; € N(V) and s; € /\d_ei (V) for suitable natural numbers ¢; € {1,...,d — 1}. By
taking all ¢; equal to 1 and using standard properties of the wedge product, we obtain
the bound str(q) < dimV —d + 1.

The goal of this section is to adapt the statement of Theorem 3.1.9 and its proof from
Section 3.3 to the polynomial functor /\d. In order to state the theorem, we only need
to replace ¢ by /.

Theorem 3.4.1. Fix d € Zs; and assume that K is a perfect and infinite field with char K = 0

or charK > d. Then for any closed subset X C N there exists an N > 0 such that for all
vector spaces V € Vec the strength of all elements in X(V) is at most N.

Fix a vector space U € Vec such that X(U) ¢ N(U). Note that dim U > d as A(U) # 0.

Irreducibility. Note that for any V € Vec the GL(V)-modules /\d(V") and /\d(V)* are
isomorphic. The analogue of Lemma 3.3.1 is as follows.
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Lemma 3.4.2. ForeachV € Vec, the GL(V)-module /\d(V) is irreducible and linearly spanned
by its subset {v1 A --- Nvg | v1,...,v4 € V linearly independent}. Furthermore, any GL(V)-
equivariant multilinear and alternating map from V¢ into a GL(V)-module N on which
tidy acts via multiplication with t* extends uniquely to a GL(V)-equivariant linear map

N(V) = N. O

Homogeneity. We equip the coordinate ring K[/\d(V)] with the grading in which the
elements of /\d(V)* have degree 1. For any closed X C N we find, from the fact that

X(V) is stable under GL(V), that the ideal 7 (X(V)) C K[/\d(V)] is GL(V)-stable and in
particular homogeneous. We define 6x := min{deg f | f € 7(X(U)) \ {0}}.

Induction. If 6x = 0, then we find that X(V) = 0 for all V € Vec. We may therefore
assume that 6x > 0 and we proceed by induction, assuming that the theorem holds

forall Y € N with Y(U) € A(U) and 8y < 6x.

Derivative. Let f € 7(X(U)) \ {0} be a homogeneous polynomial of degree 6x. Then,
there exists an r € /\d(ll) such that the directional derivative

_of

T oor

is not the zero polynomial. By Lemma 3.4.2 we may assume that r = u; A --- A uy for
some linearly independent uy, ..., u; € U.

h

We define Y ¢ A by
Y(V) 1= {g € X(V)| V€ € Hom(V, L) - h(\'(€)(q)) = 0]
and note that, by the induction hypothesis, the theorem holds for Y. We define
Z(V) = X(V)\ Y(V)
and prove that all elements of Z(V) have strength bounded independently of V.
Shifting. For V € Vec we define
d

Py = Nuev) =P AN we Nw),

X'(V)=X{UeV)C P’l(_XO/),

Z/(v) = {g & X' V)| A (@) # 0}

We think of P’(V), X’(V) as varieties over /\d(U), X(U), respectively, via the linear map
/\d(Tiu) and we will write & for i o /\d(nu).

Lemma 3.4.3. We have

sup str(q) = sup maxq sup str(g), sup str(q);.
VeVec VeVec qeY (V) qez’' (V)
7eX(V)
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Chopping.
Lemma 3.4.4. For g € P'(V)writeq=qo+ ...+ q4 withq; € /\d_i(LI) ® /\i(V). Then

str(g) < dim U + str(gy).

Embedding. Define

d-1 ) ]
Q) =P W) Ny =P N we Awv)

i=0
and write 1t (v): P/(V) — Q’(V) for the natural projection. Take
B(V):={q € Q' (V) [ h(t) # 0} = {(q0, - -, q4-1) € Q"(V) | h(go) # O}.

Then 71ty (v) maps Z’(V) into B(V) (and this is a closed embedding by [17, Lemma 7]
and Lemma 3.4.2).

An equivariant map back.

Lemma 3.4.5. There exists a GL(V)-equivariant polynomial map W: Q" (V) — /\d(V) such
that q,4 is a scalar multiple of W(qo, . .., q4-1) for all g = (qo, ..., q4) € Z'(V).

Proof. For x = (x1,...,x3) € (VY and t = (t,...,t;) € K%, consider the linear map

o UV - U
d
(o) - u+ Y il (o)
j=1

where {, pV-ou sendsv — x j(v)u j and uq, ..., u, are the vectors used in the definition
of h. Note that x — £, ; is a GL(V)-equivariant linear map (V*)4 = Hom(V, U).

Now take @ (t) := /\d(f;(t)): P'(V) = AYU) and denote the restriction of ®,(t) to the

summand /\d_i(ll) ® N(V) by @, ;. Note that @y is the identity on N(U) and ®, 4 is
the linear map
Nv - Nu
V1A ATy o bty (Do) A A (D G i(0a))

where the latter is a multiple of u; A ... A uz. Also note that x — ®,; is a GL(V)-
equivariant polynomial map of degree i and that x + @, ; is multilinear and alternat-
ing.

By functoriality of X, we have @,(t)(X’(V)) € X(U), and for g = (qo, . ..,q4) € P'(V) we
find that

F@x(B)qo + - +qa)) = f(q0 + Pra(qn) + -+ + Prg1(qu—t) + b1+t - /\d(Z?zlfx,j)(Qd))

86



and this expression vanishes for g € X’(V). The coefficient of t; ---t; in the Taylor
expansion of this expression equals

h(qo) - (x1 A -+ A xg)(qa) + W(x, q0, - - -, Ga-1)

where the function W: (V*)? x Q’(V) — K is GL(V)-invariant and multilinear in (V*).
We note that for g € Z'(V), we have h(qo) # 0 by definition of Z’(V), and therefore

(x1 Ao Axg)(qa) = — W(x,q0,...,q4-1)-

1
h(qo)
The map W factors as
(VxQ(V) - (V) xQ'(V)
(xg) = (x1®---®x44)

and a unique GL(V)-equivariant map (VY x (V) —» K. If we re-interpret W as
a GL(V)-equivariant polynomial map Q’(V) — V& and compose the map with the

projection V& — NV, then we getamap Q'(V) — N'V which we also denote by W.
We see that

1
d'-g; =———Y(q0,...,94-1).
dd o) (90 gd-1)

forall g € Z'(V), since
(1 A= Axg)(ga) = (11 ® -+ @ xg)1(qa)
where ¢ is the GL(V)-equivariant map

e NV v
VLA Ay ngn(a)-vou)@'“@?’a(d)

0€S,4

O

Covariants. A covariant of Q’(V) of order /\d(V) is a GL(V)-equivariant polynomial
map Q'(V) — /\d V. So the map W constructed in Lemma 3.4.5 is a covariant. For each
integer i € [d — 1], choose a basis u; 1, ..., u;,, of /\d_l(ll). Then the map

d—i d-1 ‘ ‘
D Q? Nyer - G? AWy e N(v)

" -1
(w; )i Ui W
jiij j j

j=1 i=1
is a GL(V)-equivariant isomorphism and the following lemma holds.

Lemma 3.4.6. Let V: Q' (V) — /\d V be a covariant. Then the composition
d N d
Wo (id a0, @): AU & @ N(V)* — N (V)
i=1
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is given by

d-1 n; @ij
(9 @ij)ij) = Z pa(q) - /\ A wij
ai/]‘EZZ() i=1 j= =1
?;11 Z;’Ll i'(X,‘l]:d
for some polynomial functions py: /\d(U) - K. m|

Conclusion of the proof.

Proof of Theorem 3.4.1. To bound the strength of elements of X(V) independently of
V, by the induction assumption applied to Y, it suffices to bound the strength of
elements of Z(V) independently of V. Lemma 3.4.3, which focusses the attention to
7', and Lemma 3.4.4 together reduce this problem further to bounding the strength
of elements g, for all (qo, ..., q4) € Z'(V) independently of V. Lemma 3.4.5 shows that
such a g, is contained in the image of a covariant. So Lemma 3.4.6 implies that the

strength of g, is bounded by
Ld/2]

Y dim A (),
i=1

which completes the proof. O

Remark 3.4.7. It follows from the induction that N from Theorem 3.4.1 can be taken
equal to
1d/2] ,
dim U + Z dim N (WD)
i=1

3.5 Bounded strength of ordinary tensors

In this section, we consider the d-variate polynomial functor P := T1 ® --- ® T;. Let
V=(WVy,...,Vy € Vec’. Then P(V)=V;®---®V,. For tensors g € P(V), the strength
str(q) is defined as the minimal number of terms k in any decomposition of the form

q=1r1®s1+---+1r, Qs

where r; € ®j€h Viands; € ®j€[ a1\, Vi for suitable nonempty subsets J; ¢ [d]. By
taking all J; equal to {£}, we obtain the bound str(g) < dim V for any ¢ € [d].

The goal of this section is to adapt the statement of Theorem 3.1.9 and its proof from
Section 3.3 to the polynomial functor P. This time, we do not need to assume anything
about the characteristic of K.

Theorem 3.5.1. Fix d € Z>, and assume that K is a perfect and infinite field. Then for any
closed subset X C P there exists an N > 0 such that for all V € Vec* the strength of all elements
in X(V) is at most N.
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Fix a tuple of vector spaces U € Vec? such that X(U) ¢ PU).

Homogeneity. We equip the coordinate ring K[P(V)] with the grading in which the
elements of P(V)" have degree 1. For any closed X C P we find, from the fact that X(V)
is stable under GL(V), that the ideal 7(X(V)) € K[P(V)] is stable under GL(V) and in
particular homogeneous. We define 6x := min{deg f | f € 7(X(U)) \ {0}}.

Induction. If 6x = 0, then we find that X(V) = 0 for all V € Vec?. We may therefore
assume that 6x > 0 and we proceed by induction, assuming that the theorem holds
forall Y € P with Y(U) € P(U) and dy < 6x.

Derivative. Let f € 7(X(U)) \ {0} be a homogeneous polynomial of degree 6x. Then,
there exists an € P(U) such that the directional derivative

of
hi= =

is not the zero polynomial and we may assume thatr = u; ® - - - ® 1, for some u; € U;.
We define the closed subset Y ¢ P by
Y(V) := {q € X(V)|¥¢ € Hom(V, U) : h(P(¢)(q)) = 0}.
Note that, by the induction hypothesis, the theorem holds for Y. We define
Z(V) = X(V)\ Y(V)
and prove that all elements in Z(V) have strength bounded independently of V.

Shifting. For V € Vec! we define

P'(V):=PUaV)= @(@ ujeX)V;

Jeldl \jeld\] j€l
X'(V):=X{UaV)CP(V),
Z'(V) = {g € X'(V) | n(P(ru)(q)) # 0}

7

We think of P’(V), X"(V) as varieties over P(U), X(U), respectively, via the linear map
P(mtyy). We will write h for ki o P(mtyy).

Lemma 3.5.2. We have

sup str(g) = sup max{ sup str(g), sup str(q)}.

ZS;YF&‘; VeVec! €Y (V) 9z’ (V)
O
Chopping. We write ny :=dim U, for £ =1,...,d.
Lemma 3.5.3. For g € P'(V) write q = }. ;14 q) with qj € ®j€[d]\] U;® ®j€] V. Then
str(q) < ny + -+ + ng + str(qpq)-
O
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Embedding. Define

Q V) =P V)/PV) =P ( X Uie XV,

Jeldl \jeld\] Jel

and write 1t (v): P/(V) — Q’(V) for the natural projection. Take

B(V) :=1{q € Q'(V) I h(g) # 0} = {(q))jctar € Q' (V) | h(go) # O}
Then n(V) maps Z’(V) into B(V).
An equivariant map back.

Lemma 3.5.4. There exists a GL(V)-equivariant polynomial map V: Q' (V) — P(V) such
that qiq is a scalar multiple of \W((q));ca) for all g = (q))jcra) € Z' (V).

Proof. For x = (x1,...,%4) € V] X -+ X vy and t = (t1,...,t;) € K%, consider the linear
map

UV - U
()i, (1)) > (Ui + tilyi(01))i

where ¢y ;: V; — U; sends v; = x;(v;)u; and uy,...,u, are the vectors used in the
definition of h. Note that x = ¢, ; is a GL(V)-equivariant linear map.

Now take @, (t) := P(£(t)): P’(V) — P(U). The restriction of ®,(t) to the summand

® uj®®vj

jeldN J€]

equals [ t; - @y where @, is the map ®je[d]\] idy, ® ®j€] {y,j. Note that x > @y
is a GL(V)-equivariant polynomial map of degree |J| and that x > ®, 4 is multilinear.

By functoriality of X, we have ®,(t)(X"(V)) € X(U), and for q = (q));cia) € P'(V) we
find that

F(@®)((g)) 1) = f[z [H ti - ‘Px,](fh)) + 1ty tg - P((C)) @) |
Jeldl\ i€]

and this expression vanishes for g € X’(V). The coefficient of t; ---¢; in the Taylor

expansion of this expression equals

h(ge) - (x1 ® - ® x4)(q1a1) + Y(x, (97)jcia))

where the function W: V] x--- X V2 x Q'(V) — Kis GL(V)-invariant and multilinear
in V] x--- X V%. We note that for g € Z’(V), we have h(gg) # 0 by definition of Z'(V),
and therefore

(1 ® - ®x3)qpa) = _%W))\Ij(x, (QI)]Q[d])‘
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The map W factors as the composition of
Vix--xVixQ(V) — (Vi®--eV)xQ(V)
(@ q) = (1®--®xq)

and a unique GL(V)-equivariant map (V] ®---® V) X Q'(V) — K. We denote the latter
map also by W, which is now linear in its first argument. If we re-interpret W as a
GL(V)-equivariant polynomial map Q'(V) — TV, then

1
i) = —W‘P((W)Jqd])-

forallgq € Z'(V). O

Covariants. A covariant of Q’(V) of order P(V) is a GL(V)-equivariant polynomial
map Q'(V) — P(V). So the map W constructed in Lemma 3.5.4 is a covariant. For each
nonempty subset | C [d], choose a basis uj, ..., U, of ®j€[d]\] U;. Then the map

v @(@v| - §(®ue®y

Jeldl\ jeJ J<ld] \ jeld\ je€l
J#0 J#0
[jerapy dim U
(w],g)],g - Z U @wWje
=1

J

is a GL(V)-equivariant isomorphism and the following lemma holds.

Lemma 3.5.5. Let W: Q'(V) — P(V) be a covariant. Then the composition

®ny
W o (idpq), ©): P(U) & P [@ V]) — P(V)

Jeldl \ jeJ
J#0
is given by
k
(4 @jo)re) = Z Z Z P{h,...,fk},fl,...,fk(ﬂl)'®wh,&-
(i JdeT Gielng ] Geelng, ] i=1
for some polynomial functions

p{h/'“/]k}/gl/'“/gk: P(u) - K’

where J consists of all unordered partitions of [d] into nonempty sets, i.e. all collections
U1, ..., Jx} of nonempty subsets J; C [d] with J; N [y = 0 if i # i and Ule Ji = [d]. O

Conclusion of the proof.

Proof of Theorem 3.5.1. To bound the strength of elements of X(V) independently of
V, by the induction assumption applied to Y, it suffices to bound the strength of
elements of Z(V) independently of V. Lemma 3.5.2 and Lemma 3.5.3 together reduce
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this problem further to bounding the strength of elements g4 for all (g;);cq; € Z'(V)
independently of V. Lemma 3.5.4 shows that such a g4 is contained in the image of
a covariant. So using Lemma 3.5.5, we see that gqj,] is a linear combination of tensor
products of elements wj; € (X) jer Vi where | ranges over nonempty subsets of [d] and
j ranges from 1 to [];eq;dim U;. Fix an integer m € [d]. Then we note for each
{J1,..., i} € J that m € |; for some i € [k]. So the strength of g4 is at most

IA

[T dimu;
J<ld] jeldl\]
Jom

Y., []dimuy;

Jcldi\tm) je
J'£0

H (dimU; +1) - 1

jeld\{m}

#lw, me]g[d],é’e[ H dim U
el

and the latter expression is minimized over m when dim U, is maximal. This bounds
the strength of g4 independently of V. |

Remark 3.5.6. It follows from the induction that N from Theorem 3.5.1 can be taken
equal to

ny+---4+ng+ H (nj+1)—-1
jeld\{m}

where n, = dim Uy and where m € [d] such that n,,, > n, for all € € [d]. '

Remark 3.5.7. The definitions of strength we have used have the following common
generalisation: For integers 0 <m <n,dy,...,d, € N with } ;d; > 2 and vector spaces
Vi,...,Vy € Vec, the strength str(g) of a composite tensor

gESHV)® - ® S (V) ® A" (V1) ® -+ @ A" (V)
is the minimal number of terms k in any composition of the form
g =1151 + - + 1Sk
where

i € S1(V)®- - ®S"(Vi) @ N (Vips) ® - @ N Vy
si € Sdl—El(Vl) R---® Sdnz—ﬁm(vm) ® /\dnz+1_3m+l (Vm+l) R ® /\ n~€n Vn

for suitable 0 < ¢; < d; with (eq,...,e,) #(0,...,0),(dy,...,dy).

A version of Theorems 3.1.9, 3.4.1 and 3.5.1 for composite tensors generalising the
three versions exists. A proof of this version can be obtained by modifying the proof
in this section. The most important changes are:

(a) we must assume that char K = 0 or charK > d; foralli € {1,...,n};

17 . ; .
(b) we take h := 3—/: wherer = 11 ®---®r, with r; = u‘j’, u; € U; fori < m and
ri=uig Ao NUjg, Ui € U; for i > m; and
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(c) fori < mwe takex; € Vi and t; € K, for i > m we take x;; € V; and t;; € Kand
we let O, (f) = @;?(tl) ® --® @i’:)(tn) where CDS]_)(tZ-) is the map from the symmetric
case for i < m and the map from the alternating case for i > m.

In addition, the bounds must be adjusted to (more complicated) expressions. )

3.6 Bounded strength over Z

Theorems 3.1.9, 3.4.1 and 3.5.1 require that K be fixed in advance and allow for the

closed subsets of S, ', T) ®- -+ ® T, to be defined by equations specific to K. The price
that we pay for this generality is that we need to require K to be perfect and infinite
and that the values of N in these theorems depend on K.

Indeed, in the proofs, perfectness of the field is used to ensure that a squarefree nonzero
polynomial has some nonzero directional derivative. And, infiniteness of the field is
used to ensure that if some polynomial in ¢ vanishes for all t € K, then the coefficients
of all monomials # vanish. We can get around both of these restrictions by working
only with tensor properties defined over Z before specialising to K.

Let Vecz be the category of finite-rank free Z-modules with Z-linear maps. Every
object V € Vecz gives rise to an affine scheme, the spectrum of the symmetric algebra
(over Z) on the module dual to V. By abuse of notation, we write V for this scheme as
well. The scheme of a product V x W is canonically isomorphic to the product of the
schemes and an ¢ € Homvye, (V, W) determines a morphism of schemes V. — W.

A module V € Vecz has a symmetric power SdZ(V) € Vecz characterised by the
usual universal property. A closed subscheme of SdZ is a rule Xz that assigns to each
V € Vecy a closed subscheme of SdZ(V) in such a manner that for V, W € Vecy and
¢ € Homyec, (V, W) the morphism SdZ({’) maps Xz(V) into Xz(W). This is equivalent to
the condition that the morphism of schemes determined by

5% (V) X Homyee, (V, W) —  S%(W)
(01---04,0) > L(v1)- - (vy)

maps Xz(V) X Homyec, (V, W) into Xz(W).

In terms of equations this means the following: Suppose that V = Z" and W = Z", let
f be any polynomial in the ("_;er) standard coordinates on SdZ(W) with coefficients in
Z and let ¢ be an n X m matrix whose entries ¢;; are variables. Then one can expand
fo Sé({’) as a polynomial }| aezZm cat® in the ¢;; whose coefficients c, are polynomials
in the (m_fd) standard coordinates on SdZ(V). The condition above says that if f is in
the ideal of Xz(W), then all the c, lie in the ideal of Xz(V).

If X7 is a closed subscheme of Sdz, then for each field K we obtain a closed subset Xx
of §% = Si as follows: for V € Vec = Veck choose any linear isomorphism ¢: V — K"

and let Xx(V) be the preimage under 5%(¢) of the set of K-valued points of the scheme
X(Z") c s4(zM).
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Remark 3.6.1. We have
X (V @k L) N (V) = Xk(V)

for all field extensions K C L and all vector spaces V € Veck. )

Theorem 3.6.2. Let d € Z3; and let Xz be a closed subscheme of Sdz. Then there exists an
N > 0 such that the following holds:

(1) Let K be any field with charK = 0 or char K > d such that Xx € S%

- Then for all
V € Veck the strength of all elements in Xx(V) is at most N.
o

The Z-constructions in this subsection have analogues for the polynomial functors N
and T; ® - -- ® T;. And, the analogues of Theorems 3.4.1 and 3.5.1 also hold over Z.

Theorem 3.6.3. Let X be a closed subscheme of /\dZ. Then there exists an N > 0 such that the
following holds:

(1) Let K be any field with char K = 0 or charK > d such that Xx < /\?(. Then for all
V € Veck the strength of all elements in Xx(V) is at most N.

O

Theorem 3.6.4. Let X be a closed subscheme of T17 ® - ® T3 z. Then there exists an N > 0
such that the following holds:

(t) Let K be any field such that Xk € T1x ® --- ® Ty k. Then forall V € Veci the strength
of all elements in Xk(V) is at most N.
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Chapter 4

The geometry of polynomial
functors

This chapter is based on work [8] with Jan Draisma, Rob Eggermont and Andrew
Snowden. We let K be an algebraically closed field of characteristic zero, we let u € IN
be an integer and we assume all polynomial functors to be p-variate and of finite
degree. From Section 4.5 onward, we restrict to the case where u = 1 holds.

4.1 Introduction

Let P be a polynomial functor. If the degree of P equals 0, then P(V) = U for some fixed
vector space U € Vec and the closed subsets of P are the same as the Zariski-closed
subsets of U. The goal of this chapter is to also study closed subsets of polynomial
functors of positive degree and thereby extend the field of affine finite-dimensional
algebraic geometry.

We start with the technical heart of this chapter, which is Theorem 4.2.5. When
studying matrices/polynomials/tensors, one of the questions to ask is always: how can
we express a matrix/polynomial/tensor using simpler objects? In a way, Theorem 4.2.5
proves that attempting to do this is a good idea. The theorem states that, given a
closed subset X of a polynomial functor P, there are two cases:

(1) We have X = P.
(2) The subset X is covered by images from smaller polynomial functors.

So families of objects that share a common structure must have an uniform bound on
the number of simpler objects needed to express them.

Since Theorem 4.2.5 has two mutually exclusive cases, we call it the Dichotomy
Theorem. This theorem helps us to set up the theory of GLw-equivariant infinite-
dimensional affine algebraic geometry in two ways: first, we can use the Dichotomy
Theorem as a tool to do induction on polynomial functors. This allows us to extend
theorems from the base case, which is finite-dimensional affine algebraic geometry,
to all polynomial functors. As a first example, we get an easy proof of the following
theorem.
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Theorem 4.1.1 (Draisma [17, Theorem 1]). Let P be a polynomial functor of finite degree.
Then every descending chain of closed subsets of P stabilizes.

Proof. Let
PoX12X2X352X42...

be a descending chain of closed subsets of P. There are two cases: either X;, = P for
all n € IN or X,, # P for some n € IN. In the first case, we are done. In the second case,
we may assume that n = 1 by removing the first n — 1 closed subsets from the chain.
Now, we have X; # P and hence X; is covered by images from smaller polynomial
functors, i.e., there exist finitely many polynomial transformations «;: Q; — P such
that X; € UJ;im(«;). Take Y;, = ai‘l(Xn) for all i and n € IN. Then we get a chain of
closed subsets of Q;
Qi2Yi12Yi22Yi32Y;42...

for every i. As the Q; are smaller than P, these chains stabilize by the induction
hypothesis. Here the base case consists of polynomial functors of degree zero and is
hence implied by Hilbert’s Basis Theorem. As there are only finitely many 7, the chains
must stabilize at some common point. As X, = (J; @i(Y;,) for each n € IN, we see that
therefore the original chain in P also stabilizes. |

As a second example of a result we can prove using the Dichotomy Theorem as a tool
for induction, we prove a version of Chevalley’s Theorem on the constructibility of
images of constructible sets. See Theorem 4.6.7.

The second use of the Dichotomy Theorem is that it provides a basis for the study
of the lattice of orbit closures in P.,. When the degree of P is zero, then this lattice
consists of infinitely many disconnected points. However, when P is pure and of
positive degree, we will see that this lattice is more interesting. Let p € P, be a point.
Then its orbit closure GLo-p corresponds to the smallest closed subset X C P such that
pr,(p) € X, for all n € IN. Now, we again have two cases: either X = P or X # P. In the
tirst case, we call the point p a GLw-generic point. In the second case, the subset X is
covered by images from smaller polynomial functors and therefore p = a(q) for some
polynomial functor Q < P and some polynomial transformation a: Q — P and some
point g € Qw. As long as the point g is not GLw-generic, we continue to write it as
the image of a point coming from a smaller polynomial functor. Since the ordering on
polynomial functors is well-founded, this can only continue for finitely many steps.
We conclude that every point p is the image of a GL«-generic point g € Qo. Studying
the minimal Q for which this is the case leads to the definition of the type of p, which
we will define in Section 4.5. Our main result here is that the lattices of orbit closures
in P and of types of points in P, are the same.

Outline of this chapter. In the next two sections, we state and prove the Dichotomy
Theorem. Then, before we move on to the applications of the Dichotomy Theorem,
we have a short intermission where we give more details on the structure of dominant
polynomial transformations between two polynomial functors. The sections after that
are about types of points and about a variant of Chevalley’s Theorem for our setting.
We conclude with a section filled with interesting examples and open questions.
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4.2 Ordering polynomial functors

Definition 4.2.1. Let P be a polynomial functor. We define the magnitude of P to be the
sequence mag(P) := (ng, n1,ny, ...) where n, is the number of irreducible components
of the GL(V)-module P4 (V) for all V € Vec! with dim(V;) > 0 for all i € [u].

Remark 4.2.2. The magnitude of P is well-defined by Lemma 1.3.35. o

Let P, Q be polynomial functors with magnitudes mag(P) = (111, 1y, ...) and mag(Q) =
(my1,my,...). We compare the magnitudes of P and Q lexicographically, i.e., we say
that mag(Q) < mag(P) when mag(Q) # mag(P) and m; < n; where d € IN is maximal
with the property that m; # n,. Note that this ordering is well-founded.

Definition 4.2.3. A polynomial functor P is called pure when P, = P(0) = 0.

Write Q = Qo) ® Q’, consider a polynomial transformation a: Q — P and let

9= (90,9") € Qe = Q) ® Qo

be a point with image p = @« (g) in Po. Then the polynomial transformation : Q" — P
defined by the maps

QW) — P(V)

x = ay(qo,x)

also maps the point g’ to p. So if a point in P, lies in the image of a polynomial trans-
formation from Q, then it also lies in the image of a polynomial transformation from
the pure polynomial functor Q' whose magnitude only differs from the magnitude
of Q in its first entry.

Definition 4.2.4. Define the partial ordering < on the set of isomorphism classes of
polynomial functors by Q < P when Q # P and Q) is a quotient of P;) where d € N
is maximal with the property that Q) % P).

Note that when Q < P, we have also mag(Q) < mag(P). So < is well-founded.

Theorem 4.2.5 (Dichotomy Theorem). Assume that K is an algebraically closed field of
characteristic 0 and let X be a closed subset of a u-variate polynomial functor P of finite degree.
Then either X = P or there exist a finite number of finite-dimensional affine varieties A;, pure
u-variate polynomial functors Q; < P and regular transformations

ai:Aiin—>P

such that X(V) = U;im(a; v) for all V € Vec! and Xoo = U; im(aj o).

4.3 The proof of the Dichotomy Theorem

Similar to the proof of Draisma in [17], we will prove the Dichotomy Theorem using
induction on P. Note that, when the degree of P is 0, any nonempty closed subset
X ¢ P is itself a finite-dimensional affine variety and so we can choose Q = 0. So we
assume that P has positive degree. Write P = Q @ R for some irreducible polynomial
functor R C Pz where d = deg(P). Then we have Q < P. If X = Y X R for some closed
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subset Y C Q, then there exist a finite number of finite-dimensional affine varieties A;,
pure polynomial functors Q; < Q and regular transformations

ai: Aix Qi = Q

such that Y(V) = [J;im(a; v) forall V € Vec! and Yo = |J; im(a; ). In this case, we see
that the regular transformations

ﬁiiAiX(Qz‘@R) - P

defined by Biv(a,q,1) = (aiv(a,q),r) satisfy X(V) = U;im(B;v) for all V € Vec! and
Xo = U;im(Bi ). Here we take the identity transformation Q — Qif Y = Q. So we
suppose that such a closed subset Y does not exists.

Fix a U € Vec! such that the ideal 7(X(U)) € K[P(U)] is not generated by 7(X(U)) N
K[Q(U)] and let Y be a closed subset of P. Note that 7(Y(U)) is homogeneous with
respect to the grading where nonzero elements of P(,)(U)" have degree e. If the ideal
I(Y(U)) € K[P(U)] is not generated by Z(Y(U)) N K[Q(U)], then we define Oy as the
minimal degree of an element of 7(Y(U)) that is not contained in the ideal generated
by 7(Y(U)) N K[Q(U)]. Now, let < be the partial ordering on closed subsets Y of P
defined by Y7 < Y if either the closure of the projection of Y; to Q is strictly contained
in the closure of the projection of Y5 or both closures are equal and 6y, < dy,. The
partial ordering < is well-founded since Q is Noetherian by the induction hypothesis
and Theorem 4.1.1. We will also do induction on <.

Let f € 7(X(U)) be a polynomial of degree 6x > 0 that is not contained in the ideal
generated by 7(X(U)) N K[Q(U)]. Then there is a vector r € R(U) such that

_of

h_8r

is not the zero polynomial. We let Y be the biggest closed subset of X such that
h € I(Y(U)). Now either h is contained in the ideal generated by Z(Y(U)) N K[Q(U)]
or it is not. In both cases, we see that Y < X. So we can cover Y with images of
regular transformations from smaller polynomial functors. We will next construct
finitely many additional regular transformations that cover Z(V) := X(V)\ Y(V) for all
V € Vec* and also cover Zy := Xoo \ Yoo.

Take P’ = P o Shyy where Shy;: Vect — Vect is the functor assigning U® V to V' € Vec*
and idy; @€ to a morphism €. Then P’ is a polynomial functor of degree d and PE o = Py
Write P’ = Q' ®R and note that Q" < P. Take Z'(V) := {p’ e X(U V) | h(P(rty)(p’)) # 0}
for each V € Vec! and Z/, := {(p},)n € P | VYn:p, eZ' (K", ..., K")}. We consider the
polynomial transformation y: P* — P given by the maps

yy = P(y): P/(V) = PU & V) > P(V).

First note that yy(Z’(V)) € X(V) for all V € Vec!. Second, note that for all V € Vec!
and p € Z(V), there is a morphism ¢: V — U such that h(P(¢)(p)) # 0 and the element

P =Pl)p)eZ(V), €:V-oUaV, C(v)=(@),0v)foric/u]
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is mapped to p by yv. So we have X(V) \ Y(V) = Z(V) € yv(Z'(V)) € X(V) for
all V e Vec!. Next, for a point p = (pn)n € Xeo \ Yoo, there is an m € N such that
pm € Z(K™,...,K™). Let £: (K™,...,K™) — U be a morphism such that h(P({)(p,)) # 0.
Then the elements

pn =P()pn) € Z'(K"), '+ (K")i = Ui®K");, Ci(v) = (Lipr,(v)),0) fori € [u]

map to the elements p, and P'(pr,,, ..., pr,)(p, ;) = p, for all n > m. So the sequence
(pr)n=m defines a point in Z/, that is mapped to p. We also see that y«(p’) € X for
all p’ € Z,. So we also have Xo \ Yoo = Zoo C Yo(Z)) S Xo. Hence it suffices
to contruct a finite number of finite-dimensional affine varieties B, pure polynomial
functors R; < P and regular transformations

‘B] B]'XR]’—)P,

such that Z’(V) = U jim(B;y) for all V € Vec! and Z, = U]»im(ﬁj,oo). Note that, for
each V € Vec*, the map h o P(nry): P'(V) — Kis the composition of the projection map
g w): P'(V) = Q'(V) with the map h o P(rty) o 1o vycp(vy: Q' (V) — K. Take

2"(V)={qe Q) | (ho P(nu) o 1o vicpn)(@) # 0}

for each V € Vec!. Then the restriction rig/lz/(v): Z'(V) — Z2”(V) is a closed embed-
ding by [17, Lemma 21]. We view the codomain Z”’(V) as a closed subset of K& Q' (V)
and in this manner we obtain a closed subset Z”” of K ® Q’. The regular transforma-
tion Z”” — P’ given by the maps T(Q'(V)E}(V) extends to a polynomial transformation
B: K& Q — P’ such that By (Z2”(V)) = Z'(V) for all V € Vec! and B(ZY) = Zl,.
Since K® Q' < P, we know that there are a finite number of finite-dimensonal affine
varieties Bj, pure polynomial functors R; < K@ Q’ and regular transformations

ﬁ}:BjXRj%KGBQ’

such that Z” (V) = U]’ im(B;y) for all V € Vec! and Z{, = U]- im(Bje). So the regular
transformations
Bj ::‘80[3;: BiXR;— P’

satisfy the desired properties. This concludes the proof.

4.4 The structure of dominant polynomial transformations

Let P, Q be pure polynomial functors. The goal of this section is to better understand
the polynomial transformations a: Q — P that are dominant, i.e., such that ay is
dominant for all V € Vec!. In particular, we want to understand the structure of the
group Aut(P) of polynomial automorphisms P — P.

Consider a polynomial transformation
. _ Sy _ Dy
a:Q=Pst > r=Ps;
A A

and fix a A. Then the composition

Tieem, 0 a: Q — o™
5o A

99



only depends on

Sm s Dm )
P sives;

A<
and is the sum of a polynomial transformation

. &, ny
B P sy oS8

A A <A

and a linear transformation ¢, : Sf"“ — Sf”". This linear transformation €, corre-
sponds to a matrix A, € K"2*"1. We start with the following lemma.

Lemma 4.4.1. The following statements are equivalent:

(1) The polynomial transformation 1 e, o a is dominant.
A

S

(2) The polynomial transformation m

som o is surjective.

(3) The linear transformation €, is surjective.

(4) The matrix A, has rank n,.

Proof. Clearly, we have (4) & (3) = (2) = (1). So it suffices to prove that (1) = (3)
holds. Suppose that (1) holds and that £, is not surjective. Then there exists a surjective
linear transformation ¢’ : SKA — S, such that ¢/ o £, = 0. So then

o Tlgon, © & = ' oBy: @ Sffﬂ”' — S,
AV |<IA|
must be a dominant polynomial transformation. Note that for V € Vec, the dimensions
of
P sv,...,vem
NN <A

and of Sy(V,...,V) are polynomials in the dimension of V. As the former has a
lower degree than the latter, we see that (£’ o $3)(v,.. ) cannot be dominant when the
dimension of V is big enough. Hence £, must be surjective. |

When a: Q — P is dominant, it follows that

. L2000
T(Sian/\ oa:Q—S)

is dominant for all A. It follows that a = o £ where ¢ € GL(Q) is the linear automor-
phism made up out of the linear automorphisms f;l € GL(S|") and : Q = Pisa
polynomial transformation given by maps

pr: DSV - (P si™
A A
q=0q01 - qamNr = (@a1+Baav(maa(@), - Gan, + Ban,v(mt<a(@))))a

for V € Vec" where
EDm,;
Bai: EB Sy V' — S,
MM <A
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are polynomial transformations and where
Tl t Q - @ Sf,mw
A A7 <A
is the natural projection. In particular, we see that m, > n, for all A.

Remark 4.4.2. Suppose that a: Q — P is a polynomial isomorphism. Then it follows
that m) = n, for all A and hence that Q and P are also linearly isomorphic.

Definition 4.4.3. We call ¢ and f the linear and affine parts of a.

Definition 4.4.4. We call a polynomial transformation : Q — P of the form above an
affine polynomial transformation.

Definition 4.4.5. Let f: Q — P be an affine polynomial transformation and suppose
that §, ; = O for all but one pair (A,7). Then we call  an elementary affine polynomial
transformation.

Example 4.4.6. Take Q = S!' ® (5?)®2 and consider the polynomial transformation
a € Aut(Q) given by the maps

ay: Vo SA(V)aSH(V) —» Ve S*(V)eSi(V)

(v,A,B) — (2u,A+B+v*,A-B-30%

for V.€ Vec. We have a = fo € = { o ' where £ € GL(Q) and , f’ € Aut(Q) are given
by the maps
Ve S (V)e S*(V)
(2v,A+ B,A - B),

ty: Vo SHV) e S3(V)
(v, A, B)

l

I

V& SiV)® S*(V)
(v, A + 0%, B — 30%)

Bv: V& SA(V)® SH(V)
(v,A, B)

3

I

and

By VoS (V)@SH V) — VaeSiV)eSi(V)
(v,A,B) — (v,A- 02, B+ 21)2)

for V € Vec. Here we note that that the matrices

ofl )

are invertible and that the solution of the system of equations

b))

isx = (-1,2)T. &
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Example 4.4.7. Take Q = S! ® S ® S® and consider the polynomial transformation
B € Aut(Q) given by the maps

Br: VoSt (V)@S3(V) — VeSS (V)eS3(V)
(v,9,f/) — (v,g9+ 02,f+ vq)
for V € Vec. We have § = 8, o f1 where 81, f2 € Aut(Q) are given by the maps
Brv: VoSV esS¥(V) — VeSS (V)eS(V)
©q,f) = (vq,f+vq)
and
Bov: Ve SV @S (V) — VeSi(V)e S (V)
©q./) = ©q+7f)
for V e Vec. &

Definition 4.4.8. The affine polynomial automorphisms : Q — Q form a subgroup
of Aut(Q). We denote this subgroup by Aff(Q).

Lemma 4.4.9. The subgroup Aff(Q) of Aut(Q) is normal.
Proof. As Aut(Q) is generated by GL(Q) and Aff(Q) by Lemma 4.4.1, this follows from
the fact that £ o Aff(Q) o £~ = Aff(Q) for all £ € GL(Q). O

Lemma 4.4.10. Every affine polynomial transformation Q — P is a composition of the
polynomial transformation 7t: Q — P given by the maps

ny: @SA(V)@’”A - QA}SA(V)%

(@r1s - gqamr = (Gt - Gam)a

for V € Vec! and elementary affine polynomial transformations of Q. In particular, the group
Aft(Q) is generated by the set of all elementary affine polynomial transformations.

Proof. It is easy to see that every affine polynomial transformation is a composition of
elementary affine automorphisms
1)
we [ [T
A=l

where the order of the composition is such that the y,,; with higher |A| are applied
first. When Q = P, we get m = idg and hence Aff(Q) is generated by the set of all
elementary affine polynomial transformations. O
Lemma 4.4.11. Every p € Aff(Q) is a unipotent element of Mor(Q, Q).

Proof. Write Q = Q1) @ - - ® Qg). Then one can check using induction on k that

nQ(1)®"'@Q(k) o (ﬁ - idQ)k =0
forallk € {1,...,d}. In particular, we have ( - idQ)d = 0 and hence f is unipotent. O

The discussion above gives us the following result.

Proposition 4.4.12. Any domimant polynomial transformation a: Q — P is the composition
of a linear automorphism € € GL(Q) and an affine polynomial transformation f: Q — P. The
unipotent radical of the finite-dimensional algebraic group Aut(Q) is Aff(Q) and has GL(Q)
as a Levi complement. m|
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4.5 Theory of types

From now on, we take u = 1 and consider univariate polynomial functors. Fix a pure
polynomial functor P. In this section, we consider the lattice of orbit closures

over all points p € P, ordered by containment, i.e., we say that GLwg < GL&-p when
the former is contained in the latter.

4.5.1 GL-generic points

Definition 4.5.1. A point p € P is called GLw-generic if GLeop = Po. When the
point p is not GL-generic, we call p degenerate.

The GL-generic points will play a role similar to generic points in finite-dimensional
algebraic geometry.

Remark 4.5.2. Note that if the polynomial functor P is not pure, then there are no
points in P, whose GLw-orbit is dense. Hence the definition of GL-generic points
only makes sense when P is pure.

By the Dichotomy Theorem, the point p is GLw-generic if and only if it is not in the
image of any polynomial transformation Q — P with Q < P. We start by relating
the GLw-genericity of a point in P to that of its projections onto the irreducible
components of P.

Lemma 4.5.3. Write P = Py ®--- ® Py and let

P=@1-/Pa) € Po = P1)o ® @ Pg) 0
be a point. Then p € P, is GL-generic if and only if p1 € P1y,co, -+ ., Pa € P(a),c0 are.

Proof. It is clear that if one of py,...,p; is degenerate, then so is p. Suppose that p is
degenerate, but p; is not. Then there exists a polynomial transformation a: Q — P
with Q < P whose image contains p. Note that p; is in the image of the composition
ngoa where my: P — Py is the natural projection. So Q £ Py since p,; is GL-generic.
This means that Q) = P(). So

Quy® - ®Qu-1y <P1y®---®Py_y

and therefore (py, ..., p4-1) is degenerate. It follows by induction on d that, if py, ..., ps
are GL«-generic, then so is p. m|

Lemma 4.5.4. Suppose that P is homogeneous of degree d, write P = ), , S and let

p=@mrePo=EPSH,
Ard

be a point. Then p € P, is GLu-generic if and only if p, € SX?OO is GLeo-generic for all A + d.
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Proof. If one of p, is degenerate, then so is p. Assume that p is degenerate. Then there
exists a polynomial transformation a: Q — P with Q < P whose image contains p.

Write
Q=Resy

Ard

with R a polynomial functor whose degree is lower than the degree of P. Thenm, < n,

for some A since Q < P. This implies that p, is degenerate since it is in the image of

the composition 7gn o a which only depends on Q = R@ S7* < S}*. So if all p; are
A

GLo-generic, then so is p. |

Let A be a partition. Then the subset D) C S, « consisting of all points in S, ., that
are degenerate is a subspace of S) . To see this, let p,q € D, be points coming from
smaller polynomial functors Q, R < S,. Then deg(Q), deg(R) < |A|. So deg(Q® R) < |A]
and hence Q®R < S). As p + g comes from Q ® R, this means thatp +g € D). So D, is
closed under addition. For any polynomial functor Q, the set of points in S, o, coming
from Q is closed under scaling. So D, is indeed a subspace of S .

Lemma 4.5.5. Suppose that P = S’ and let

p=(p1,...,pr € P =S}

be a point. Then p € Po is GLoo-generic if and only if the points p1, ..., pn € S« are linearly
independent modulo D,.

Proof. This proof is left to the reader. |

Proposition 4.5.6. Write P = (D, S and let
p= ((p)\,ll ) /p)\,n,\)))\ € Py = @ Sz?oo
A

be a point. Then p € P« is GLw-generic if and only if the points py1,...,PAn, € Sieo are
linearly independent modulo D, for all A.

Proof. This follows directly from the previous three lemmas. |

Our next task is to show that GLe-generic points exist. Recall that T® is the univariate
polynomial functor sending V + V&,

Lemma 4.5.7. The point

o0 (o)
— ®d \D
p= (Z Cind+1 @+ B Cindds- -+, Z Cind+(n-1)d+1 ® -+ ® ei.nd+nd) € (T*)!
i=0 =0

is GLo-generic.

Proof. We need to prove that (T®?)®" is the smallest closed subset X of itself such that
p € Xeo. So let X C (T®)®" be a closed subset such that p € X.. Then we see that

k

k
knd
Z Cind+1 @+ ® Cindids - -+, Z Cind+(n-1)d+1 ® "+ ® ei-nd+nd) € X(K™*)
i=0 i=0

Prya(p) =
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forall k € N. Let £: K4 — V be any linear map and write {(¢;) = v; € V. Then we see
that

k

k
P(6)(pry, (p) = Z Vind+1 ® *** @ Vipdads -1 ), Vinda(n=1)d+1 ® * * * ® Vingana | € X(V)
i=0 i=0

for all vy, ...,V € V. For k = n(dim V)¢, we see that every element of (V&)®" is of
this form. Hence X = (T®¥)®" and so p is GLc-generic. O

Lemma 4.5.8. For every partition A and every n € IN, the space SY" | contains a GL«-generic
point.

P]OOf. TakEd = |/\| Ihen
T d ®n s

AMrd
with ny, > n for all A + d. By the previous lemma and Proposition 4.5.6, it follows that
Si’g has a GLe-generic point (p1, ..., pn,). By Lemma 4.5.5, we see that (p1,...,pn) isa
GLco-generic point of 57" . O

Proposition 4.5.9. The space Po, contains a GLe-generic point.
Proof. This follows from Proposition 4.5.6 and the previous lemma. O
Proposition 4.5.10. For every partition A, the quotient space S, « /D is infinite-dimensional.

Proof. The previous lemma shows that S, /D, contains n linearly independent ele-
ments for all n € IN. Hence S, /D, must be infinite-dimensional. O

Before we define the type of a point, we state some easy but important observations.

Proposition 4.5.11. Let g € Qo be a GLw-generic point and let «a, f: Q — P be polynomial
transformations such that ae(q) = Poo(q). Then a = .

Proof. Since deo — P is GLeo-equivariant, we see that deo — foo is zero on GLeo:q. As
Qo — Poo is continuous, it follows that dtes — Poo is the zero map. So aw = oo and hence
we geta = f. m|

Proposition 4.5.12. Let q € Qw be a GLo-generic point and let a: Q — P be a polynomial
transformation. Then im(@te) = GLoo @0 (q).

Proof. We have Qo = GLw-q and hence

IM(@eo) = Aoo(Qoo) = Aoo(GLew ) = GLoo tteo(q)

since & is GLeo-equivariant. |

105



4.5.2 Types of points
Let p € P be a point.

Proposition 4.5.13. There exist a polynomial functor Q < P, a GLe-generic point q € Qe
and a polynomial transformation a: Q — P with p = aeo(g).

Proof. We prove the proposition using induction on P. If p is GL«-generic, then we take
Q =P,g=pand a = idp. Otherwise, let X be the closed subset of P with GLep = Xw.
Then X # P and hence X is covered by images from smaller polynomial functors by
Theorem 4.2.5. It follows that there exist a polynomial functor R < P, a point r € R
and a polynomial transformation f: R — P with p = f(r). By induction, there also
exist a polynomial functor Q < R, a GL«-generic point 4 € Q and a polynomial
transformation y: Q — R withr = aw(g). We see that the conditions of the proposition
hold witha = foy. m|

Roughly speaking, the type of the point p is the smallest polynomial functor Q (up to
isomorphism) satisfying the conditions of the proposition. To prove that such a func-
tor Q is well-defined, we need to understand the polynomial transformations whose
image contain p better. Let «: Q — P and f: R — P be polynomial transformations.

Definition 4.5.14. We write o < f§if there exists a polynomial transformationy: Q — R
such that @ = g oy. We say that @ and f are equivalent if both a < f and g < a.
The quasi-order < induces a partial order on equivalence classes [a] of polynomial
transformations, also denoted <.

Let g € Qw be a GL-generic point. Note that this implies that Q is pure. Also let
7 € R be an arbitrary point.

Lemma 4.5.15. Assume that R = Sy for some partition A’. Then there exist a polynomial
functor Q’, a point ¢’ € Ql, and a polynomial transformation y: Q & Q" — R such that
(7,9") € Qoo ® QY is GLw-generic and y(q,9") = 1.

Proof. Write
Q=EPsy and g=(@r1-- an)i € P ST
g A

We are allowed to enlarge the 1) as long as 451, ...,4,,,, remain linearly independent
modulo D, and we need to prove that after doing so the point r lies in the image of a
polynomial transformation from P, S’'. Note that, after possibly enlarging 1,,, we
may assume that r lies in the span of g/ 1,...,44/,4,, modulo D),. So we can write r as a
linear combination of gx/1,...,q 1, and a degenerate pointin Sy .. We can write this
degenerate point as the image of a point (v}, ...,7,) € Sp;,0®- - ® Sy, 0 Where Ay, ..., Ag
are partitions with [A;] < [A’]. So, using induction on [A’|, we can enlarge the 1, finitely
many times and write each of the 7/ as images from (D), "*. This in turn allows us to
write r as an image from €P 1 SKA. |

Now we drop the assumption that R is a Schur functor.

Lemma 4.5.16. There exist a polynomial functor Q’, a point q' € Q{, and a polynomial
transformation y: Q®Q" — Rsuch that (q,9") € Qu® QY is GLeo-genericand y(q,9’) = 1.
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Proof. 1t suffices to prove the lemma assuming that the polynomial functor R is pure.
We prove the lemma using induction on the number of irreducible components of R.
When R = 0, we simply take Q" = 0 and y = 0. So assume that R # 0 and write

R=R'®S, and r=(r,s)€eR,®S)

for some partition A. Using the induction hypothesis, there exist a polynomial functor
Q’, a point 4° € Q, and a polynomial transformation y: Q ® Q" — R’ such that
(9,9") € Qe ® QF, is GLw-generic and Y« (q,4’) = 1. Using the previous lemma, there
also exist a polynomial functor Q”, a point g € Q¢ and a polynomial transformation
Y :Q®Q ®Q" — S, such that

10,9,9") € Qe ® QL ® QL

is GLeo-generic and y.,(9,9’,q"") = s. We are now done since Q' ®Q"”, (7’,4”) and (y,)”)
satisfy the conditions of the lemma. O

Proposition 4.5.17. If e (q) = Poo(t), then a < B.

Proof. By the previous lemma, there exist a polynomial functor Q’, a point 4” € Q¢ and
a polynomial transformation y: Q®Q" — Rsuch that(7,9") € Qe ® QY is GLw-generic
and Yw(q,9") = r. Note that aw(1g.(4,9") = @c(q) = Po(Y(q,4)). It follows that
aomg=poyas(qq)is GLo-generic and hence a = o y(-,0). m]

Corollary 4.5.18. All polynomial transformations a: Q — P for which there exists a GLoo-
generic point q € Qwo With aw(q) = p are equivalent and have im(®teo) = GLoo"p. m|

Corollary 4.5.19. There is a unique polynomial functor whose magnitude is minimal among
all polynomial functors Q for which there are a GLw-generic point q € Qo and a polynomial
transformation a: Q — P with p = a«(q).

Proof. Let Q be any polynomial functor whose magnitude is minimal among all poly-
nomial functors for which there are a GL-generic point 4 € Q. and a polynomial
transformation a: Q — P with p = aw(g). Also let R be a polynomial functor, r € R a
GL-generic point and f: R — P a polynomial transformation with p = (7). We will
prove that Q is a quotient of R, which implies that Q is unique up to isomorphism.

By the previous proposition, we see that § < a. So there exists a polynomial transfor-
mation y: R — Q such that f = @ o y. Consider the closed subset X = im(y) € Q and
the point Y« (r) € Xoo. If X # Q, then by Theorem 4.2.5 there exist a polynomial functor
Q" < Q, a polynomial transformation a’: Q" — Q and a GLw-generic point 4" € Qf,
with al,(7’) = Y (r). But then

P = Boo(r) = Aoo(Yoo(r) = oo (@le(q")) = (@0 @)oo (q),

which contradicts the minimality of Q. Hence X = Q and so the polynomial transfor-
mation y: R — Q is dominant. We conclude using Lemma 4.4.1 that Q is a quotient
of R and hence Q is unique. |

Definition 4.5.20. We call the polynomial functor Q from the corollary the type of p.
From the proof of the previous corollary, we also get the following result.

Corollary 4.5.21. Let r € Ro be a GLu-generic point, let a: R — P be a polynomial
transformation and let Q be the type of awo(r). Then a factors through Q. m|
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4.5.3 A map between lattices

We conclude this section by proving the following theorem. Note that equivalent
polynomial transformations have the same image.

Theorem 4.5.22. The map

{classes of pure polynomial transformations into P} — {GLo-0rbit closures in Puo}

[a] — im(ac)
is an order-preserving bijection.

Here the former set is ordered by the partial order < from Definition 4.5.14 and the
latter set is ordered by containment.

Remark 4.5.23. The inverse of this map is not order-preserving in general. See Sub-
section 4.7.2 for an example where this happens.

The fact that this map is order-preserving follows from directly from the definition of
the partial order <. Surjectivity of the map follows from Corollary 4.5.18. To prove
injectivity, we need to following lemmas.

Lemma 4.5.24. Let a: Q — P be a polynomial transformation. If pr,(p) € im(ay) for all
n € N, then p € im(0e).

Proof. Before we prove the general case, we first consider the case where the field K
is uncountable. Let g € Q. be a point. Then the equality aw(q) = p holds if and only
if au(pr, (7)) = pr,(ps) holds for all n € IN. This translates a«(g) = p into polynomial
equations in countably many variables and the condition that pr, (p) € im(a,) for
all n € IN shows that any finite number of these equations has a solution. Hence, by
Lang’s theorem from [28] the entire system has a solution when K is uncountable.

Now for the general case, let f: R — P be a polynomial transformation and let 7 € R,
be a GLw-generic point such that f.(r) = p. Choose an uncountable algebraically
closed extension L/K. Then r is still GLe-generic in RL : indeed, for each n € IN, there
exists an m > n such that pr, (GL,- pr,, (7)) is dense in R,, and then this set is also dense
in RL. Proposition 4.5.17 yields that - < at. But then also § < @, i.e., there exists a
polynomial transformation y: R — Q (defined over K) such that f = a oy, as the space
Mor(R, Q) is finite-dimensional and the field K is algebraically closed. So g = ye(r)
satisfies a0 (q) = p. |

Remark 4.5.25. The rank functions from Section 1.4 all can be extended to their re-
spective infinite settings. There are two a priori different way of doing this. One
possibility is to define the rank of a series p as the infimum of all its projections pr,, (p).
Another way is to define the rank of a series using the description of the rank in terms
of polynomial transformations. The previous lemma shows that these two definitions
coincide.

Lemma 4.5.26. Suppose that K has infinite transcendence degree over Q. Let p € Po have
coordinates that are algebraically independent over Q. Then p is GL-generic.
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Proof. Let Q < P be a pure polynomial functor. Then the polynomial transformation
a: Q" =Mor(Q,P)®Q — P defined by the maps

av(p,q) = pv(q)
for V € Vec is defined over Q and for any polynomial transformation f: Q — P we
have im(fw) C im(aw). We have Q" < P. So there is a d such that QEE) = P foralle > d
and QE 4 # P is a quotient of P). We see that the coefficients of the polynomials
n +— dim Q’(K") and n + dim P(K") coincide in degrees > d and that the coefficient of
n — dim Q’(K") is lower in degree d. So dim Q’(K") < dim P(K") for n € IN big enough.
For such an integer n € IN, we find that

im(ay)

is a strict closed subset of P(K") defined over Q. Hence it does not contain the point
pr, (p) € P(K") since its coordinates are algebraically independent over Q. |

Injectivity now follows from the following proposition.

Proposition 4.5.27. Let a: Q — P and p: R — P be polynomial transformations such that

im(deo) = iM(Beo).
If Q is pure, then o < . If in addition R is also pure, then o and f are equivalent.

Proof. The polynomial transformations a and f are defined over our fixed ground field
K. Let L/K be an algebraically closed extension of infinite transcendence degree and
let g € QL have coordinates that are algebraically independent over K. Now define
pn = ak(prL(g)). This is a generic point of the K-variety im a,, = im ;. So in particular,
it is contained in the image of the map gL: RE(L") — PL(L"). By Lemma 4.5.24 applied
with L instead of K, it follows that p := (p,)» € P lies in the image of the map
BL: Rw(L) = Pwo(L). Moreover, the point g is GL-generic by Lemma 4.5.26. Here
we use that Q is pure. So by Proposition 4.5.17 we find al < gf. But the polynomial
transformation : Q' — RE such that al = Bl oy is a solution to a finite-dimensional
system of polynomial equations with coefficients from K. Hence this system has a
solution over the algebraically closed field K. So a < . When R is also pure, the same
argument shows that also § < a. o

Proof of Theorem 4.5.22. The proof of the theorem follows from Corollary 4.5.18 together
with the previous proposition. |

4.6 A version of Chevalley’s Theorem

Let Q, P be polynomial functors and let a: Q — P be a polynomial transformation.
The goal of this section is to use the Dichotomy Theorem to prove that a sends GL-
stable constructible subsets of Q. to GL-stable constructible subsets of P,. First, we
define what it means for a GLo-stable subset of P, to be constructable.

Definition 4.6.1. A GL-stable subset C C P, is called constructible if it is a finite
union of subsets of the form X, N U where X, is a GL-stable closed subset and U is
a GL-stable open subset of Pe.

Remark 4.6.2. Note that GL..-stable open subsets of P., do not in general correspond
to functors. Hence we will not denote them and constructible subsets of P, using a
subscript co.
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4.6.1 Constructibility of the whole image

As a first step, we prove that im(a.) is constructible. We use the following lemma.

Lemma 4.6.3. Let A, B be finite-dimensional affine varieties and assume that A is irreducible.
Let P, Q, R be polynomial functors and assume that Q and R are pure. Let a: A X Q — P and
B: B X R — P be regular transformations and assume that

im(de) = iM(Bwo)
holds. Then there exists an open dense subset A’ C A such that de(A” X Qo) € iM(Beo).

Proof. Let L be an algebraic closure of K(A). For each n € IN we have a K-algebra
homorphism «},: K[P(K")] — K[A] ®k K[Q(K")]. Compose this with the natural K-
algebra homomorphism

K[A] &k K[Q(K™)] — L ®k K[Q(K™)] = LIQ"(L")]

and extend the resulting map L-linearly to a map L[PL(L")] — L[Q}(L")]. This is a
homomorphism of L-algebras. The maps QL") — PX(L") we obtain in this manner
form a polynomial transformation al: QF — PL. We have

ker ((aﬁ)*) = L ®x ker(a;,)

and this implies thatim(ak, ) is defined by the same equations (with coefficients from K)
asim(a). Similarly, the regular transformation f§ gives rise to a regular transformation

pt: Bt x Rt — Pt

such that im(BL,) is defined by the same equations as im(B.). We conclude that

imak =im ﬁ@o
holds. By Proposition 4.5.27 applied with L instead of K, we find that g* = al oy
for some polynomial transformation y: Q" — BE x RE. Thinking of y as a (multi-
valued) algebraic map from A to the finite-dimensional space B x Mor(Q, R) of regular
transformations Q — B X R, we find that there exists a finite-dimensional affine
variety C over K together with a dominant morphisma: C — A, amorphismb: C — B
and a morphism 1: C — Mor(Q, R) such that a(a(c), —) = p(b(c), —) o (c) as polynomial
transformations Q — P for all ¢ € C. By Chevalley’s theorem a(C) is constructible, so
it contains an open dense subset A’ C A. This set has the desired property. |

Let a: Q — P be a polynomial transformation.
Proposition 4.6.4. The set im(ae) C Po is constructible.

Proof. We prove the proposition using induction on Q. Take X. = im(a~). By
Theorem 4.2.5, we know that there exist a finite number of finite-dimensional affine
varieties A;, pure polynomial functors Q; < P and regular transformations

(XiZAiXQi—>P
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such that X = J;im(aj«). We may assume that @; = a and that each variety A; is

irreducible. Using the previous lemma, we may also assume that im(a;) ¢ im(«) for
alli # 1. Now take Yoo = U;z1 im(aj ). Then we see that

M (o) = (Xoo \ Yeo) U tteo (0 (Yos) ).

Note that Z := a2} (Yw) is a strict closed subset of Qw. So there exist a finite number
of finite-dimensional affine varieties Bj, pure polynomial functors R; < Q and regular
transformations

ﬁ i B j X R]' - Q

such that Ze = U;im(Bj). So

im(teo) = (Xeo \ Yeo) U U iM(ateo © B o).
j

is constructible by induction as the polynomial transformations a o §; have as domains
the polynomial functors R; < P. o

Corollary 4.6.5. Let X be a closed subset of Q. Then aeo(Xeo) is a constructible subset of Pe.

Proof. There exist a finite number of finite-dimensional affine varieties A;, pure poly-
nomial functors Q; < Q and regular transformations

ai: Aix Qi — Q

such that Xo = [J; iIM(@j ). SO @eo(Xoo) = UJ; im(es © @ o) is constructible. O

4.6.2 Constructablility of the image of a constructible subset

Let n € N be an integer. Note that the set

Diag(l,;, GL) = {Diag(l,, g) | § € GL&} = U {Diag(l,, §, 1) | § € GLy,}
meN

is a subgroup of GL. Let P be a polynomial functor and let Z be a closed subset of
the polynomial functor P o Shg». Then we have a corresponding GLc-stable closed
subset Zy, of (P o Shgn)e. We can identify

(PoShic)w = lim,  P(K™) = lim, _ PK") = lim, _, PK") = P

>

as topological spaces. Note however that GL«-stable subsets of (P oShk )« correspond
under this identification with Diag(l,;, GLw)-stable subsets of P.,. Now, let a: Q — P
be a polynomial transformation. To prove the analogue of Chevalley’s Theorem for
our setting, we need one more lemma.

Lemma 4.6.6. Let U be a nonempty GLwo-stable open subset of Q. Then ae(U) contains a
nonempty GLeo-stable open subset of im(cteo).

Proof. Take Xo = im(ae) and Yoo = Qw \ U. Then Y is a proper closed subset of Q.
So there exist an n € IN and f € Z(Y(K")) such that f is not the zero polynomial. Let
Z C K® Q o Shg» be the closed subset defined by

Z(V) ={(A,9) e K& QK" ® V) | Af(Q(mkr)(q) = 1}
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and consider the polynomial transformation : K& Q o Shg» — P o Shi» defined by
the maps

Bv:KeQK"aV) — PK'eV)
Aq) = axev(q)

for V € Vec. By Corollary 4.6.5, the set foo(Z) is constructible. So it contains a GLc-
stable open dense subset of its closure. Note that § factors through the projection on
Q o Shgn. Denote the projection of Z«, on (Q o Shk»)e by U’. We see that the subset U’
is GL«-stable, open and dense in (Q o Shk»)w and that the image of U’ in (P o Shx»)w
is constructible.

Now we identify (Q o Shxr)e With Qu and (P o Shgr)e With Pe. Then we know
that U’" C U is a Diag(l,;, GL)-stable dense open subset of Qw such that aw(U’) is
constructible. So a.(U’") contains a Diag(l,,, GL)-stable dense open subset V of its
closure, which is Xo = im(ae) as U’ is dense in Q. So we see that V C a.(U)
and since the latter is GL-stable, we find that the GL.-stable open dense subset
UgecL., §V of X is also contained in e (U). O

Theorem 4.6.7. Let C be a GL«-stable constructible subset of Qeo. Then ae(C) is 4 GLeo-
stable constructible subset of Pe.

Proof. 1f C is contained in a GLw-stable closed subset Xoo & Qo, then we can cover
the closed subset X of Q using finitely many images im(f.) where the f: R — Q
are polynomial transformations with R < Q by Theorem 4.2.5 and pull C back along
the maps fw. In this case, we see that a«(C) is constructible using induction on Q.
So we may assume that C is dense in Q. This means in particular that C contains
a nonempty GL-stable open subset of Q. By the previous lemma, we see that
aw(C) therefore contains a nonempty GLw-stable open subset V' of im(a.). Take
U=az(V)and Xe = Qw \ U. Then ao(U N C) = V., is constructible and aeo(Xeo N C)
is also constructible using induction on Q. Hence their union a«(C) is constructible
as well. O

4.7 Examples and open questions

We conclude with some interesting examples and open questions.

4.7.1 Dimension functions

Let P be a polynomial functor of degree d. Then there is a polynomial g € Q[x] of
degree d such that dim P(V) = g(dim V) forall V € Vec withdim V' > 0. Let X C Pbe a
closed subset. Then a natural question to ask is whether is is also true that there exists
a polynomial g € Q[x] such that dim X(V) = f(dim V) for all V € Vec with dim V > 0.
By adjusting the proof of the Dichotomy Theorem, we can show that this is indeed
the case.

Proposition 4.7.1. There is a polynomial g € Q[x] such that
dim X (V) = g(dim V)
forall V € Vec with dim V > 0.
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Proof. The closed subset X of P is irreducible if and only if the closed subset X(V)
of P(V) is irreducible for every vector space V € Vec. And, the closed subset X of
P can only have finitely many components since P is Noetherian. Suppose that the
proposition holds for all irreducible closed subsets of P. Then we see that dim X(V)
is a maximum of finitely many polynomials in dim V when dim V > 0. This implies
that dim X(V) is itself a polynomial in dim V for dim V' > 0. So it suffices to prove the
proposition for irreducible closed subsets X of P. We will prove the proposition using
induction of P. So we may assume that the proposition holds for all closed subsets of
polynomial functors Q < P.

Assume that X is irreducible. If deg(P) = 0, then dim X(V) is constant. Assume that the
degree of P is positive. Let R be an irreducible subfunctor of P4 and write P = Q ® R.
If X = Y X R for some closed subset Y C Q, then dim X(V) = dim Y(V) + dim R(V) is
a polynomial in dim V' for dim V' > 0 since Q < P and since dim R(V) is polynomial
in dim V for dim V > 0. So we assume that this is not the case. This means that for
some U € Vec the ideal 7(X(U)) € K[P(U)] is not generated by 7 (X(U)) N K[Q(U)]. Let

fe I(XW)) \ (L(X(W)) N K[Q)])
be a polynomial of minimal degree. Then

f
hi= - #0

for some r € R(U). For every V € Vec, take
Z(V) = (g € XU V) | h(P(rur)(g) # O}
and note that Z(V) is a dense open subset of X(U & V) since X is irreducible. So
dimZ(V) = dim X(U & V)

and therefore it suffices to prove that dim Z(V) is a polynomial in dim V for dim V' > 0.
Write P’ := P o Shyy = Q' @ R. Then the map h o P(rtiyy): P’'(V) — K factors through the
projection map g (v)y: P'(V) — Q' (V). We get a map

Z(V) = {q" € Q'(V) | l(P(ru)(g, 0)) # 0} =: Z'(V)

and this map is known to be a closed embedding. So we can view Z as a closed subset
of Z’, which in turn we can view as a closed subset of K® Q' < P. Therefore, we
conclude that dim X(U @ V) = dim Z(V) is a polynomial in dim V fordim V' > 0. O

Now suppose that X is the closure of the image of a polynomial transformation
a: Q — P. Let g,h € Q[x] be the polynomials such that dim X(V) = g(dim V) and
dim Q(V) = h(dim V) for all V € Vec with dim V > 0. Then g(n) < h(n) for all integers
n > 0 and hence deg(g) < deg(h) = deg(Q). The following proposition tell us what
happens when the difference 1 — g still has the same degree as Q.

Proposition 4.7.2. If deg(h — g) = deg(Q), then the polynomial transformation a: Q — P
factors through Q/R for some nonzero subfunctor R C Q.
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Proof. Let U, V € Vec be vector spaces and view Q(U), Q(V) as subspaces of Q(U & V)
via the natural maps. Take g € Q(U) and r € Q(V) and let ¢ be a variable. Then we can
write

auev(q + €r) = auev(q) + eBwvy(g, 1) mod &
for some polynomial transformation
B: (QoT1)@(QoT2) > Po(T1@Th)
between bivariate polynomial functors. Recall here that T1(U, V) = Uand T>(U, V) = V
for all U,V € Vec. Note that
V - ker(Buv)(g, )
is a (linear) subfunctor of Q for all U € Vec and g € Q(U). Let U;, U, € Vec be vector
spaces and take g1 € Q(U;) and g1 € Q(Uz). Then we claim that
ker(Bu,eu,, v)(q1 + 92, —)) € ker(Bar,,v)(g1, —)) N ker(Ban,v)(g2, —))

where we view g1 and g, as elements of Q(U; @ U») via the natural maps. Indeed, for
r € Q(V) such that

:B(U1®U2,V)(q1 +q2,1) =0
we see that B, v)(q1,7) = 0 from the fact that the diagram

By ey, v

QUL @ W) @ Q(V) — "1y P(U; & L) @ V)
Q(ﬂul)EDQ(idv)l \Lp(ﬂulﬁaidv)
Q) & Q(V) s P(L; & V)

By,v)

commutes. We similarly see that By, v)(q2,7) = 0. So the containment holds. And,
from this follows that there are Uy € Vec and g9 € Q(Up) such that

ker (B v)(@o, =) = [ ] ker(Buvy(g,-)
se0(h

for all V € Vec. Now consider the (linear) subfunctor R € Q defined by

R(V) := ker(Buy,,v)(90, —))

for all V € Vec. We claim that @: Q — P factors through Q/R. To see this, we have to
prove that ay factors through Q(V)/R(V) for every V € Vec. Note that Sy y) restricts
to the zero map on Q(V) ® R(V). This means that

av(q + er) — av(q) = eBw)(q,7) = 0 mod &

for all g € Q(V) and r € R(V). So the partial derivative of ay at any point g € Q(V) in
any direction r € R(V) is zero. So ay factors through Q(V)/R(V) for every V € Vec and
hence «a factors through Q/R. If the subfunctor R C Q is nonzero, then we are done.
This leaves the case where R = 0. So we assume that ;;,,1)(qo, —) is injective for every
V € Vec. This means that the dimension of the tangent space

T(Xuoe;v(flo)X( UpaV)

is at least dim Q(V). So dim Q(V) < dim X(Uy & V) < dim Q(Up & V). This shows that
deg(h — g) < deg(h) = deg(Q) must hold. O

By repeated use of the proposition, we see that when X is the closure of the image of
a polynomial transformation from a minimal Q, then deg(h — g) < deg(Q) must hold.
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4.7.2 A counterexample (S!)*? & (§?)® — S*

Consider the polynomial transformation a: (S?)®* — S* defined by the maps

ay: S2(V)® 5 Ss4WV)
(f,.8h) — fg—H

for V € Vec and the closed subset X = im(a) of S*. One would hope that X = im(a). We
will first show that this is not the case. Let : (S1)®2 @ (5%)® — S* be the polynomial
transformation defined by the maps

Bv: VR e 2V - sYV)
&y, f,8h) — Xf+y*g+xyh

for V € Vec.

Lemma 4.7.3. We have im(p) C X.

Proof. TakeV € Vec,t € K',x,ye€ Vand f, g, h € S%(V). Then we have

(P + G2 + t9) — (xy — th)?)
= ¥*f +yg® +xyh+1t(---) € im(ay).

lay (y2 +Hf, X%+ tg, xy — %th)

So since the field K is infinite, we find that im(By) C im(ay) = X. O

Lemma 4.7.4. There is no polynomial transformation y: (S*)®? & (S*)® — (52)® such that
B = a o y. In particular, we have im() € im(a)

Proof. We know that if im(f) € im(«), then = a o y for some polynomial transforma-
tion
y: (Sl)GBZ ® (52)693 N (52)693

by Proposition 4.5.17. Such a polynomial transformation has to be defined by polyno-
mial maps of the form

1132 + c1xy + c13y? + c1af + c15¢ + c16h
yv(x,y, f,8h) = c21X% + copxy + c3y? + Couf + €25 + cagh
312 + caxy + c33y? + caa f + c35¢ + ca6h

for V € Vec for some constants c;; € K. This turns the equation = a0y into a system of
polynomial equations in the ¢;;. Now, one can check that this system has no solutions
using a Grobner basis calculation. m|

Proposition 4.7.5. We have im(a) # X.

Proof. This follows from the previous two lemmas. |
This example leads to several open questions.

Question 4.7.6. Is im(p) closed?

Question 4.7.7. Is im(a) U im(p) closed?
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Let a: Q — P be a polynomial transformation and take X = im(a). In our example,
we found a polynomial transformation § = By such that im(8) C X by taking a limit of
polynomial transformations ff; = a oy where the y;: (S1)®2®(5?)® — S* were defined
by the maps

Viv: VEBZ ® SZ(v)EBS - S4
oy feh) > (Pt T+ tg Ty — th/2)

for V € Vec and t € K*. One can ask whether this is the only way to define such f.

Question 4.7.8. Can we always write X as the union of images im(p) of polynomial trans-
formations Bo: R — P that are limits of families of polynomial transformations p;: R — P
factoring though a?

Now again consider the polynomial transformation : (S!)®? & (S?)®® — S* defined by
the maps

Bv: Ve S(V)® — SYV)
xy figh) = f+yPg+xyh

for V € Vec as an element of the space Mor((S')®2 @ (5%)%3, S*). Given polynomial
functors Q, P, one might hope that the set of polynomial transformations Q — P that
factor through some quotient of Q is a closed subset of the space of all polynomial
transformations Q — P. The polynomial transformation g shows that this is not
always the case. Indeed, the polynomial transformation f is a limit of polynomial
transformations factoring through (5?)®, but g itself does not factor through either
St @ (S2)® or (S1)®2 @ (S%)®2. Here we see that f does not factor through S!' @ (%)%
since otherwise the coefficients x?, y?,xy of f, ¢, h in the maps defining f would be
linearly dependent. And, we see that 8 does not factor through (S')®? @ (5%)®2 since
dimim(By) > 2dim V + 2dim S*(V) for V € Vec with dim V >> 0.

4.7.3 Unbounded slice rank of strength < 1 polynomials

Consider the polynomial transformation a: (S?)®2 — S* defined by the maps

ay: S2(V)®2 - SXWV)
(gh) —» g-h
for V € Vec. Let k € IN be an integer and also consider the polynomial transformation
B: (S @ (S%)® — S* defined by the maps
By: Ve SV - s4(V)
(Gl fro ) = G it + G fi

for V € Vec. Since the only polynomial transformation (5%)® — (S')® @ (S%)%* is
zero, we see that @ does not factor through p. It follows that im(a) € im(p) by
Proposition 4.5.17. Hence the slice rank of the strength < 1 polynomials in im(«) is
not bounded by k. Since this holds for every k € IN, we see that the slice rank of
polynomials of the form g - h with deg(g) = deg(h) = 2 is unbounded. This shows that
the gap between the strength and slice rank of a polynomial can be arbitrarily big.
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