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Chapter 1 | Introduction

Introduced in 1987 by M. Gromov and I. Piatetski-Shapiro in [GPS87], the
gluing construction for hyperbolic manifolds was the first method to produce
nonarithmetic manifolds in any dimension n, and remains (along with its gen-
eralizations) the only one as of today. Prior to that, nonarithmetic examples
were obtained using reflection groups, first in dimension n = 3 by V. Makarov
[Ma66], then in dimension n = 4, 5 by E. Vinberg [Vi67]. However, it is known
that discrete reflection groups of finite covolume (resp. cocompact) do not exist
in dimensions n ≥ 996 (resp. n ≥ 30), see [Pr86] (resp. [Vi81]).
Roughly, the idea of the gluing construction is to start with arithmetic man-

ifolds that are different enough (i.e., non-commensurable) but which contain
a common embedded hypersurface. By cutting these manifolds open at the
hypersurface, one obtains “pieces” of manifolds that have isometric boundary
components. These pieces can then be glued together along their boundary to
form a “hybrid” manifold, which turns out to be nonarithmetic (see Figure 1.1).
This construction was generalized to more complicated gluings, notably by
J. Raimbault [Ra13], T. Gelander and A. Levit [GL14] and M. Belolipetsky
and S. Thomson [BT11] (following an idea of I. Agol [Ag06]). These have
important consequences such as the superexponential growth of the number of
nonarithmetic manifolds of volume less than v, as v →∞, or the existence of
hyperbolic manifolds with arbitrarily small systole.

Figure 1.1: Schematic picture of hyperbolic gluing.

7



8 CHAPTER 1. INTRODUCTION

Note that the existence of nonarithmetic lattices is in sharp contrast with
the situation in (almost) all other locally symmetric spaces (in particular those
of rank ≥ 2), where Margulis’ arithmeticity theorem implies that all the cor-
responding manifolds are arithmetic.
As their name suggests, arithmetic manifolds (or equivalently, arithmetic

lattices) are closely related to number theoretic objects: they are constructed
using the ring of algebraic integers of a number field (the field of definition)
and an algebraic group with certain properties. In his 1971 paper [Vi71],
Vinberg introduced a generalization of these invariants (called the trace field
and the ambient group, respectively) to arbitrary Zariski-dense subgroups of
semisimple algebraic groups. For a lattice Γ, the trace field can be seen as the
smallest field k such that Γ can be realized in G(k) for some algebraic group
G (which is precisely the ambient group). Furthermore, Vinberg showed that
these are commensurability invariants, and they thus give a useful way to check
(non)arithmeticity of the corresponding manifolds.
The main result of this thesis concerns the trace fields and ambient groups

of the gluing constructions described above. In this context, a central role
is played by the gluing isometry (i.e., the one used to identify the boundary
components of the manifolds). In Section 4.3, we prove that such a gluing
isometry naturally admits a field of definition, and in Theorem 4.7 we show
that it coincides with the trace field of the corresponding gluing.
This result is valid for all gluings (that is, involving not necessarily arith-

metic pieces) and can be used to compute their trace field explicitly. In the
case of the manifolds of Gromov and Piatetski-Shapiro, we show that (if the
gluing isometries are the canonical ones, see Section 4.4.4) the trace field is a
quadratic extension of the field of definition of the original arithmetic manifolds
(Corollary 4.14). In particular, this gives another proof that these gluings are
nonarithmetic. We also obtain similar results for the various generalizations
of this construction.
On a more theoretical side, we use Theorem 4.7 to deduce results about

specific gluing constructions on general manifolds. In particular, we prove
that:

• The trace field of a gluing always contains the trace field of the pieces,
and each gluing step (that is, each identification of two hypersurfaces)
increases the trace field by at most a quadratic extension (Theorem 4.10),

• The trace field of a piece coincides with the trace field of its double
(Proposition 4.11),

• Closing up a piece (that is, gluing two of its isometric boundary compo-
nents together, see Figure 1.2) does not change the trace field provided
the dimension is odd (Proposition 4.12).

Moreover, we construct even-dimensional pieces of arithmetic manifolds whose
trace field increases when closing up (see Section 4.5). These provide explicit
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examples in arbitrary (even) dimension of nonarithmetic manifolds having pre-
cisely the same volume as an arithmetic one.

Figure 1.2: Closing up a hyperbolic manifold.

In the final part of this thesis (based on a joint work [EM18] with Vincent
Emery), we introduce and motivate the notion of pseudo-arithmeticity using
the theory developed in the previous chapters. Pseudo-arithmetic manifolds
can be seen as a generalized version of gluings of pieces of arithmetic manifolds
(see the remark after their definition in Section 5.1.1). Indeed, we first show
(using Theorem 4.7 as the main tool) that all gluings of arithmetic pieces
are pseudo-arithmetic (Theorem 5.1). Second, we prove (under an additional
restriction on their ambient groups) that their volume is always a rational
linear combination of volumes of arithmetic manifolds (Theorem 5.2).
This thesis is organized as follows. In Chapter 2 we introduce the necessary

background needed for the rest of the text. Chapter 3 is devoted to the defini-
tion of the trace field and ambient groups following Vinberg, as well as some
computations in the case of arithmetic manifolds and manifolds containing hy-
persurfaces. All the results in these two chapters are (more or less) standard;
yet we have included some proofs when they are particularly nice, particularly
simple or lacking a suitable reference.
Chapter 4 contains the main results of this thesis concerning gluings. Af-

ter defining them in their most general form, we compute their trace field
and derive the corollaries mentioned above. Finally Chapter 5 treats pseudo-
arithmeticity and its consequences, following [EM18].
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Chapter 2 | Background

This chapter introduces the necessary background and notation for the rest
of the thesis. The reader is assumed familiar with basic concepts of algebra
and geometry. In particular, we will use without introduction elements of ring
and field theory, Galois theory, quadratic forms and a little number theory
on the algebra side, and concepts of topology, covering space theory and Rie-
mannian geometry on the geometric side. This chapter contains only standard
(well-known) material, where (as explained in the introduction) some proofs
have been included either for aesthetic reasons or simply for a lack of suitable
reference.

2.1 | Linear algebraic groups

This section recalls the notions of algebraic geometry and algebraic groups
we will need. Good references are Hartshorne [Ha77] as well as Borel [Bo91,
Chapter AG] and Platonov and Rapinchuk [PR94, Chapter 2]. In this section
k is an arbitrary subfield of C.

2.1.1 Affine algebraic varieties. We will start by defining the main concepts
of algebraic geometry, namely affine algebraic varieties.

Definition 2.1.1. The k-Zariski topology on Cn is the topology where the
closed sets are Cn and the empty set together with sets of the form

V ({f1, . . . , fr}) = {x ∈ Cn | f1(x) = · · · = fr(x) = 0},

for r ∈ N and fi ∈ k[x1, . . . , xn]. It is clear that we may replace the set
{f1, . . . , fr} by the ideal I ⊂ k[x1, . . . , xn] generated by the fi. An affine
algebraic k-variety is a k-Zariski closed subset of Cn for some n. A morphism
ϕ : V → W of k-varieties V ⊂ Cm, W ⊂ Cn is a map ϕ : V → W which is
induced by a polynomial map km → kn, i.e., such that there exist f1, . . . , fn
in k[x1, . . . , xm] with ϕ(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)). An
isomorphism is a morphism with an inverse that is also a morphism.

11



12 CHAPTER 2. BACKGROUND

The coordinate ring k[V ] of an affine algebraic k-variety V ⊂ Cn is the ring
of functions V → C which are induced by polynomials in k[x1, . . . , xn]. Thus
a map V → W is a morphism if and only if it induces a map k[W ] → k[V ].
An embedding is an injective morphism V → W such that the induced map
k[W ]→ k[V ] is surjective.
If V is a k-variety and K/k is a field extension (with K ⊂ C), the base

change of V to K, denoted VK , is the variety V seen over the field K. Finally,
the K-points of V ⊂ Cn are defined as V (K) = V ∩Kn.

Since all our varieties will be affine, we will often write k-variety or simply
variety if the field is clear from the context.

Remark 2.1.2. Usually the term variety is reserved for irreducible k-closed
sets, that is, those that cannot be written as a finite union of proper closed
subsets. However, we will not (in general) assume this, and use the terms
variety and k-closed set interchangeably.

If I ⊂ k[x1, . . . , xn] is an ideal, we let
√
I = {f | f r ∈ I for some r}

denote the radical of I. By Hilbert’s Nullstellensatz, the polynomial functions
in k[x1, . . . , xn] vanishing on a variety V = V (I) ⊂ Cn defined by the ideal I
are precisely the elements of

√
I. Thus if I is radical (i.e., I =

√
I), we have

a canonical isomorphism k[V ] ∼= k[x1, . . . , xn]/I.
An affine algebraic k-variety V is characterized by its algebra k[V ] in the

following sense: two k-varieties V and W are isomorphic if and only if k[V ]
and k[W ] are isomorphic as k-algebras. Furthermore, any finitely generated
commutative k-algebra A without nilpotents corresponds to a k-variety V as
follows: from finite generation we find a morphism k[x1, . . . , xn] � A, with
kernel an ideal I. Then by definition V = V (I) ⊂ Cn has k[V ] = A.

Definition 2.1.3. The product variety V ×W of varieties V and W is the
variety associated with the algebra k[V ] ⊗k k[W ]. If V = V (I) ⊂ Cm with
I ⊂ k[x1, . . . , xm] and W = V (J) ⊂ Cn with J ⊂ k[y1, . . . , yn], we have

V ×W ∼= V (I · J) ⊂ Cm+n.

2.1.2 Fields of definition. We now define (minimal) fields of definition.

Definition 2.1.4. Let V be a C-variety. Then V = V (I) for some ideal
I ⊂ C[x1, . . . , xn]. If I admits a generating set in k[x1, . . . , xn] for some field
k ⊂ C, we say that V is defined over k. We then have that V = WC for
the k-variety W defined by the ideal J = I ∩ k[x1, . . . , xn]. The smallest field
such that this holds is called the field of definition of V (see Remark 2.1.6 for
comments about existence of such a field).
We can define a similar field for morphisms. Let V andW be two k-varieties,

and let ϕ : VC → WC be a morphism between the base extensions to C. Then ϕ
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is defined over K for some field extension K/k contained in C if the subvariety
Zϕ = {(x, f(x)) | x ∈ V } ⊂ V ×W is defined over K. The field of definition
of ϕ is the field of definition of Zϕ, composed with k (see next remark).

Remark 2.1.5. We will use the convention that a morphism ϕ : VC → WC is
not defined over a smaller field than the base field of V andW . More precisely,
if V and W are k-varieties, the field of definition of ϕ will always be assumed
to contain k, even when the fields of definition of V and W are smaller.

Remark 2.1.6. The existence of a minimal field of definition (for affine va-
rieties) was first proven by Weil. See [CGP15, Definition 1.1.6] and [EGA4,
Section 4.8.11] (and perhaps [Ku85, Exercise 1.2.9]).

Let k ⊂ C be a subfield, and let G be the group of k-automorphisms of C.
Observe that G acts on Cn, and thus on C[x1, . . . , xn] by:

σ
(∑

aix
i
)

=
∑

σ(ai)x
i,

where the index i ranges over Nn and xi = xi11 · · ·xinn . If we consider the
polynomial f ∈ C[x1, . . . , xn] as a function f : C→ C, this action rewrites as

σ(f) = σ ◦ f ◦ σ−1.

It follows that if V ⊂ Cn is a variety with ideal I ⊂ C[x1, . . . , xn] then σ(V ) is
also a variety, corresponding to the ideal σ(I) ⊂ C[x1, . . . , xn]. The following
lemma gives a criterion for deciding when a variety is defined over k.

Lemma 2.1. Let V be a C-variety. Then V is defined over k if and only if V
is fixed by G, that is, if σ(V ) = V for each σ ∈ G.

Proof. If V is a k-variety, then its defining polynomials have coefficients in
k. Thus they are fixed by G, and so is V . Conversely, suppose V is fixed by
G. Since V is the zero locus of finitely many polynomials, V is defined over
a finitely generated extension K/k. By the classification of transcendental
extensions, there are algebraically independent elements t1, . . . , tn such that
K is an algebraic extension of ` = k(t1, . . . , tn), which we can assume to be
Galois. Now let σ ∈ Gal(K/`) be an element of the Galois group. Then one can
extend σ to an automorphism σ ∈ G, which by hypothesis fixes V . Thus V is
fixed by Gal(K/`), and is therefore defined over ` by [Bo91, Theorem AG.14.4].
It remains to show that V is defined over k. Let I be the defining ideal

of V ; it is an `-vector subspace of `[x1, . . . , xN ] for some N . Let IC be the
ideal in C[x1, . . . , xN ] generated by I; we have I = IC ∩ `[x1, . . . , xN ]. Since
IC is the intersection of all maximal ideals containing it, and since G fixes this
collection, we see that I is also fixed by G. Now it suffices to observe that
the same proof of the proposition of §14.2 in [Bo91] works in our more general
case (since for any a ∈ ` \ k there is a k-automorphism σ of ` with σ(a) 6= a).
Therefore I is the `-span of some k-vector space Ik ⊂ k[x1, . . . , xN ], and V is
defined over k.
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Corollary 2.2. Let V,W be k-varieties and let Γ ⊂ V (k) be a Zariski-dense
subset of V . Let ϕ : VC → WC be a morphism such that ϕ(Γ) ⊂ W (k). Then
ϕ is defined over k.

Proof. Let σ ∈ G be a k-automorphism of C. Then the map σϕ = σ◦ϕ◦σ−1 is
also a morphism VC → WC which agrees with ϕ on Γ. If W ⊂ CN for some N ,
the map ϕ− σϕ : V → CN is zero on Γ and hence also on V by Zariski-density.
It follows that ϕ = σϕ.
We now consider the graph Zϕ = {(x, ϕ(x)) | x ∈ V } ⊂ V ×W . Clearly

σ(Zϕ) = Z(σϕ) = Zϕ.

It follows that Zϕ is fixed by all k-automorphisms of C, whence defined over k
by the lemma. By definition, this means that ϕ is defined over k.

2.1.3 Linear algebraic groups.

Definition 2.1.7. A linear (or affine) algebraic k-group G is an algebraic
k-variety with a group structure, such that multiplication G ×G → G and
inverse G → G are morphisms of k-varieties. A morphism between linear
algebraic groups is a morphism of varieties that is also a group homomorphism.
The identity (or neutral) component G◦ of G is the connected component of
G containing 1.

It can be shown that G◦ is actually a closed subgroup of G of finite index
(see [Br10]). Since all algebraic groups considered in this thesis will be linear,
we will usually only write algebraic groups, or k-groups if we wish to specify
the field.

Example 2.1.8. For a finite-dimensional k-vector space V , the group of in-
vertible linear transformations GL(V ) can be seen as the k-points of an alge-
braic k-group GL(V ) defined as follows: For a fixed basis of V , GL(V ) is the
variety in Cn2+1 (with n = dimV ) defined by the vanishing of the polynomial
det(xij)t−1 ∈ k[x11, . . . , xnn, t], together with the following multiplication and
inverse:

(x, s)(y, t) = (xy, ts), (x, t)−1 = (tC(x), det(x))

where xy denotes matrix multiplication of x and y, and C(x) is the cofactor
matrix of x. Then GL(V ) = GL(V )(k). Observe that the base extension
GL(V )K to the field K is none else than GL(V ⊗K).
The group SL(V ) of linear transformations of V having determinant 1 also

possesses a structure of linear algebraic group: it is the closed subgroup
SL(V ) ⊂ GL(V ) defined by:

SL(V ) = {(x, t) ∈ GL(V ) | t = 1}.

We will usually consider elements of GL(V ) as matrices and omit the last
component t. In the special case where V = kn, we will write GLn instead of
GL(V ).
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Remark 2.1.9. A priori, the name affine algebraic group seems to be more
justified in our definition of algebraic groups, the term linear being better
suited for closed subgroups of GLn for some n. It turns out that the two
notions coincide, as the next theorem shows.

Theorem 2.3. Every linear (affine) algebraic group is isomorphic to a closed
subgroup of some GLn.

Proof. Corollary 1.13 (ii) of [Br10].

We will be interested in specific algebraic groups called semisimple.

Definition 2.1.10. An algebraic groupG is semisimple ifGC has no nontrivial
solvable connected normal subgroups. Furthermore, G is (absolutely) simple
if GC has no nontrivial connected normal subgroups.

Remark 2.1.11. We follow [Co14] and [Vi71] and do not require semisimple
groups to be connected. However, our definition reduces to the classical one in
case G is connected. In particular, a group G is semisimple (in our definition)
if and only if G◦ is semisimple in the classical sense.

Next we define quotients of algebraic groups. To that end, we will consider
a k-group G with a normal closed k-subgroup N. We let k[G]N denote the
following k-algebra:

k[G]N = {f ∈ k[G] | f(ax) = f(x) for all a ∈ N, x ∈ G}.

Theorem 2.4. Let G be an algebraic k-group, and N ⊂ G a semisimple
normal closed k-subgroup. Then:

1. The k-algebra k[G]N is finitely generated.

2. The group structure of G induces a linear algebraic group structure on
the k-variety corresponding to k[G]N; denote it by G/N.

3. The algebraic group G/N is isomorphic (as groups) to the quotient of
G by N, and the quotient map G → G/N defines a surjective closed
morphism of algebraic groups.

Proof. This follows from [Br10, Theorem 1.24], which works in the more gen-
eral case where N is reductive.

Definition 2.1.12. In the setting of Theorem 2.4, the quotient group G/N
with its structure of algebraic group is called the (categorical) quotient of G
by N.

We will actually only use quotients of algebraic groups in the special case
where N is a finite central subgroup of G, as in the next example.
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Example 2.1.13. Let (V, f) be a quadratic space over k, that is, a k-vector
space equipped with a quadratic form f . The orthogonal group O(V, f) of
linear transformations of V preserving f can be naturally identified with the
k-points of an algebraic group as follows. Define the orthogonal group O(V, f)
(or simply Of ) to be the following subgroup of GL(V ):

Of = O(V, f) = {g = (g, t) ∈ GL(V ) | f ◦ g = f}.

Here the defining condition f ◦g = f is to be considered as a set of polynomial
equations on the coefficients of g. Clearly we have a natural identification
Of (k) = O(V, f). Similarly, one defines the special orthogonal group as

SOf = SO(V, f) = {g ∈ O(V, f) | det(g) = 1},

and finally, the projective orthogonal group as the quotient

POf = PO(V, f) = Of/{±1}.

Here ±1 denotes ± the identity matrix in Of .
The groups Of , SOf and POf are all semisimple k-groups if dim(V ) ≥ 3,

and (absolutely) simple if dim(V ) 6= 4.

Remark 2.1.14. If k is algebraically closed, the group of k-points POf (k) of
POf is simply Of (k)/ ± 1, that is, the image of Of (k) in the quotient POf .
However, this is no longer true (in general) if k is not algebraically closed. This
is because POf (k) is (by definition) the image of the elements g ∈ Of (k) such
that σ(g) = ±g for all σ ∈ Gal(k/k), which does not imply that g is fixed by
σ. The failure of the surjectivity of Of (k) → POf (k) can be measured using
Galois cohomology, see [Se68, p. 133].

Example 2.1.15. If (V, f) is a symplectic space over k (that is, a k-vector
space equipped with an alternating form f(x, y)), the group Spf of linear trans-
formations of V preserving f can also be seen as the k-points of an algebraic
k-group Spf by applying a similar construction as in the previous example.
The group Spf is then a simple k-group.

2.1.4 Dimension, tangent space, adjoint representation. In this section, we
will briefly recall the notions of dimension, tangent spaces and smoothness of
an algebraic variety. We will then use it to define the (algebraic) adjoint rep-
resentation of an algebraic group. The reader is referred to [Ha77, Chapter 1,
Section 5] for a precise treatment.

Definition 2.1.16. Let V be a k-variety, with coordinate ring k[V ], and x ∈ V
be a point. The dimension dimV of V is the maximal number n such that
there exists a strictly increasing tower of prime ideals

0 ( p1 ( · · · ( pn ( k[V ].
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The maximal ideal mx of x is the ideal in k[V ] of functions vanishing at x. The
tangent space TxV of V at x is the k-vector space (mx/m

2
x)
∗ = Hom(mx/m

2
x, k).

The variety V is said to be smooth at the point x if dimk TxV = dimV , and
singular otherwise. Finally, V is smooth if it is smooth at all points.

It turns out that the set of singular points can be characterized by polyno-
mial equations, and that it does not cover the whole variety:

Theorem 2.5. The set of singular points of an algebraic variety is a proper
closed subvariety.

Proof. See [Ha77, Th. 1.5.3].

Corollary 2.6. Any algebraic group is smooth.

Proof. Multiplication by an element g of an algebraic group G is an isomor-
phism of algebraic varieties. Thus the tangent spaces at all points are isomor-
phic, and since G has a smooth point, all points are smooth.

Remark 2.1.17. If V is a smooth R-variety, then V (R) (resp. V (C)) possesses
the structure of a (smooth) real (resp. complex) manifold (see [Mi13]). In that
respect, the notions of dimension and tangent spaces are equivalent to those
coming from the smooth manifold structure. In particular, if G is an algebraic
R-group, G(R) has the structure of a (smooth) real Lie group.

Definition 2.1.18. LetG be a k-group. The tangent space T1G at the neutral
element 1 ∈ G is called the Lie algebra of G, and usually denoted g.

Note that if G is a k-group, and K/k is a field extension (with K ⊂ C),
then the Lie algebra of GK is naturally isomorphic to g⊗k K.
Let G be a k-group, and g ∈ G(k). Then the map

ϕg : G −→ G

x 7−→ gxg−1

is a k-isomorphism of algebraic groups. Therefore, it induces an isomorphism
of rings k[G] → k[G] which sends the ideal m1 to m1 since ϕg fixes 1 ∈ G.
In turn, it induces an invertible linear transformation of T1G = g, which we
denote by Ad(g). Since g ∈ G(k), we can see Ad(g) as an element ofGL(g)(k).
If g ∈ G(K) for a field extension K/k, the same process gives a linear

transformation Ad(g) of g ⊗k K, which defines, as before, an element of the
groupGL(g⊗K)(K) = GL(g)(K). We can thus make the following definition.

Definition 2.1.19. Let G be a k-group. The adjoint representation of G is
the linear representation

Ad: G −→ GL(g)

g 7−→ Ad(g).
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The map Ad is a morphism of algebraic groups which coincides with the
adjoint representation on the real Lie group G(R) in case G is an algebraic
R-group.

Definition 2.1.20. An algebraic group G is adjoint if Ad is an isomorphism
(of algebraic groups) onto its image.

Remark 2.1.21. This definition of adjoint groups is (as in the semisimple
case) more general than the usual one, since our groups are not required to be
connected. However, as before, one recovers the usual definition if the group
is assumed to be connected, and if a group is adjoint in our sense then its
identity component is adjoint in the classical sense.

Finally, we give a criterion for an algebraic group to be adjoint.

Proposition 2.7. An algebraic k-group G is adjoint if and only if the cen-
tralizer ZG(G◦) of G◦ in G is trivial.

Proof. Let g ∈ G(k). Then g ∈ ZG(G◦) if and only if for every function
f ∈ k[G◦], we have λgf = f , where λgf is the function x 7→ f(gxg−1). It
is not hard to see that this holds exactly when λgf = f for every linear
(homogeneous degree 1) function f ∈ m1, which is equivalent to λgf = f for
all f ∈ m1/m

2
1. In turn, this holds if and only if Ad(g) = 1.

2.1.5 Classical groups. The adjoint connected semisimple algebraic groups
over C have been classified (see Tits [Ti66]). This classification extends with
the help of Galois cohomology to the case of k-groups (for k not necessarily
algebraically closed). We will state (without proof) the result of this classifi-
cation in the classical case, following Platonov and Rapinchuk [PR94].

Definition 2.1.22. Let G be an algebraic group over C, and let k ⊂ C be a
subfield. Then a k-form of G is an algebraic k-group F such that FC = G. If
G is connected, adjoint and simple, then the type of G is the isomorphism type
of its root system, as defined in [Ti66]. If G is an absolutely simple k-group,
we extend this definition by saying that the type of G is the type of Ad(GC)◦.

The irreducible root systems are classified by their Dynkin diagrams, and
fall into one of the infinite families An, Bn, Cn, Dn or into one of the exceptional
systems E6, E7, E8, F4 and G2:

An Bn

Cn Dn

E6 E7

E8 F4

G2
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Definition 2.1.23. A group G is classical if its root system is An, Bn, Cn or
Dn.

We will give the list of (almost) all classical connected absolutely simple
adjoint k-groups in case k is an number field. First, we will need two more
examples of algebraic groups.

Example 2.1.24. Let D be a central division algebra over the number field
k, of degree d (i.e., the center of D is k, and the index [D : k] is d2). The
set SLn(D) of n × n matrices with coefficients in D and reduced norm Nrd 1
forms a group (under standard matrix multiplication). We will realize it as
the k-points of an algebraic k-group.
Consider D seen as a k-vector space and fix a k-basis. Then to each element

a ∈ D corresponds a matrix â ∈ Matd2(k), given by the matrix of the linear
map D → D;x 7→ ax. The image D̂ of D in Matd2(k) is a linear subspace
of Matd2(k) ∼= kd

4 , and is thus determined by linear equations with coeffi-
cients in k. Identifying Matd2(C) with Cd4 and seeing Matd2(k) ⊂ Matd2(C),
these equations endow D̂ with a structure of affine k-variety, with a canonical
identification D̂(k) = D.
In turn, we have a natural identification of A = Matn(D) with

Â(k) = Matn(D̂(k)) ⊂ Matnd2(k).

Again, this shows that Â has a structure of k-variety, with Â(k) = A. Finally,
one can show that the reduced norm Nrd corresponds to a polynomial map
N̂rd : Â(k) → k. Thus we can identify SLn(D) = {x ∈ A | Nrd(x) = 1} with
the k-points of

SLn(D) = {x ∈ Â | N̂rd(x) = 1}.

With this definition, SLn(D) is a semisimple algebraic k-group.

Example 2.1.25. Let ` be a number field, and let D be a central division al-
gebra over ` Assume that it has an involution τ (that is, an anti-automorphism
of D such that τ 2 = id). Let k = `τ be the fixed field of τ , let d denote the
degree of D (so that [D : `] = d2) and let l = [` : k]. Finally, let h = h(x, y) be
a non-degenerate Hermitian or skew-Hermitian sesquilinear form on V = Dn.
The unitary group U(D, h) is the group of invertible linear transformations of
V which preserve h, and the special unitary group SU(D, h) is the subgroup
of U(D, h) of elements having reduced norm 1. If a basis e1, . . . , en of V has
been chosen, the group U(D, h) can be written as

U(D, h) = {g ∈ GLn(D) | ∗gHg = H}.

where H = (h(ei, ej)ij) and ∗g = (τ(gji)) if g = (gij).
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In a similar fashion as in Example 2.1.24, one can realize U(D, h) and
SU(D, h) as the k-points of algebraic k-groups U(D, h) and SU(D, h) respec-
tively. As before, we can take the quotient of the groups by {±1} to obtain

PU(D, h) = U(D, h)/{±1}.

These groups are all semisimple.

We end this section by giving the list of all classical adjoint connected
semisimple k-groups of type different from D4 (see the end of Section 2.3.4
of [PR94]).

Theorem 2.8. Let G be an absolutely simple connected algebraic k-group, for
k a number field. Then unless G is of type D4, the adjoint form AdG of G
is isomorphic to the adjoint form of a group in the following list:

1. Type An (n ≥ 1):

(a) SLm(D) for a division algebra D over k of index d and n = md−1.

(b) SU(D, h) where D is a division algebra of index d over a field `
with an involution τ such that k = `τ ( `, h a hermitian form of
dimension m and n = md− 1.

2. Type Bn (n ≥ 1):

(a) SOf where f is a quadratic form of dimension 2n+ 1.

3. Type Cn (n ≥ 1):

(a) Spf where f is an alternating form of dimension 2n.

(b) SU(D, h) where D is a quaternion algebra over k with canonical
involution τ fixing k and h a Hermitian form of dimension n.

4. Type Dn (n ≥ 3):

(a) SOf where f is a quadratic form of dimension 2n.

(b) SU(D, h) where D is a quaternion algebra over k with canonical
involution τ fixing k and h a skew-Hermitian form of dimension n.

Remark 2.1.26. The Dynkin diagram D4 has an additional automorphism of
order 3, which is not present in Dn for n 6= 3. This implies the existence of a
special kind of algebraic k-groups coming from so-called trialitarian algebras
which are not listed above. As these will be of no interest to us, we will not
define them; we refer to [INV98, §44] for a detailed account on those groups.
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2.1.6 Automorphisms of POf . The group POf defined in Example 2.1.13 will
play a central role in this thesis. We investigate some of its properties in this
section. Let f be a quadratic form in n variables over a field k. Observe first
that the group POf is:

1. connected if n is odd. This follows from the fact that SOf is connected
and −1 /∈ SOf , so we have

POf
∼= SOf .

2. disconnected if n is even. In that case, the determinant det : Of → C
is a polynomial map defined over k, and it induces a polynomial map
on POf which takes values 1 or −1. The connected component PO◦f of
POf is thus the quotient of SOf by {±1}, a group sometimes denoted
by PSOf .

We start our investigation of these groups and their automorphisms with a
basic lemma.

Lemma 2.9. Let f be a quadratic form in n ≥ 3 variables and let g ∈ GLn
be such that

gu = ±ug for all u ∈ SOf . (2.1)

Then g = λI, for some λ ∈ C×.

Proof. Since we are working over C, we can assume that f is the standard
positive definite quadratic form, so that SOf = SOn. Using equation (2.1)
with conjugates of u = diag(−1,−1, 1, . . . , 1) ∈ SOn gives that g is diagonal
(except if n = 4, where matrices of the form(

a
b

c
d

)
can also arise). Using (2.1) again with (even) permutation matrices gives that
all coefficients on the diagonal must be equal (and excludes the above special
matrices in the case n = 4).

Since the connected component PO◦f of POf is the image of SOf in the
quotient POf , an application of Proposition 2.7 directly gives:

Corollary 2.10. If f has n ≥ 3 variables, then POf is adjoint.

We continue by determining the (algebraic) automorphisms of POf .

Theorem 2.11. Let f be a quadratic form in n ≥ 4 variables over a number
field k. Then any (algebraic) k-automorphism of POf is inner, that is, given
by

x 7→ gxg−1 for some g ∈ POf (k).
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Proof. Let ϕ : POf → POf be a k-automorphism, and let `/k be a quadratic
extension such that f becomes isotropic over ` (i.e. there exists x ∈ `n with
f(x) = 0). By the classification of automorphisms of POf (`) (see Dieudonné
[Di80, XII]), ϕ is induced by an automorphism of Of (`) of the form

x 7→ χ(x)hxh−1,

where χ : Of (`) → {±1} is a group homomorphism and h is a semi-linear
invertible transformation (with respect to an automorphism σ of `) such that
f(hx) = λσ(f(x)). Since we are working with POf we can omit χ, and since
ϕ is algebraic, we see that h must be linear. It follows that f ◦ h = λf , and
thus

g̃ =
1√
λ
h ∈ Of (`(

√
λ))

is such that ϕ(x) = g̃xg̃−1. Since σ(g̃) = ±g̃ for any σ ∈ Gal(`(
√
λ)/`), its

image g is in POf (`). Finally, if τ ∈ Gal(`/k) is the non-trivial automorphism,
we have τϕ = ϕ since ϕ is defined over k. As τϕ(x) is conjugation by τg, it
follows that τgg−1 commutes with every element of POf . Since POf is adjoint,
we have τg = g, and thus g ∈ POf (k).

Remark 2.1.27. If f has n = 2m+ 1 variables, the group POf is connected
and of type Bm, and therefore all automorphisms are inner (since the Dynkin
diagram has no non-trivial automorphisms). If however f has n = 2m vari-
ables, the group POf has two connected components, and PO◦f is of type
Dm. Hence there exists (at least) one outer automorphism of PO◦f induced by
a non-trivial automorphism of the Dynkin diagram. However, this is consis-
tent with Theorem 2.11, since in that case the outer automorphism of PO◦f is
induced via conjugation by an element of POf \PO◦f .

We will now investigate various corollaries of Theorem 2.11.

Corollary 2.12. Any automorphism ϕ : POf,C → POf,C with ϕ|PO◦f,C
= id is

trivial, that is, ϕ = id.

Proof. Any such automorphism is of the form x 7→ gxg−1 for g ∈ POf , by
Theorem 2.11. By hypothesis, g is in the centralizer ZPOf

(PO◦f ) of PO◦f in
POf , and thus g = 1 since POf is adjoint.

Using this corollary, one can extend the result of Corollary 2.2 to the case
of almost Zariski-dense subsets POf (k), i.e., subsets Γ such that Γ ∩ PO◦f is
Zariski-dense in PO◦f .

Proposition 2.13. Let f be a quadratic form over k in n ≥ 4 variables, and
let Γ ⊂ PO◦f (k) be Zariski-dense (in PO◦f). Let G be an algebraic k-group
and ϕ : POf,C → GC be a C-isomorphism such that ϕ(Γ) ⊂ G(k). Then ϕ is
defined over k.
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Proof. By Corollary 2.2, ϕ|PO◦f,C
: PO◦f,C → G◦C is an isomorphism defined over

k. Thus for any automorphism σ of C fixing k, we have σϕ−1 ◦ ϕ|PO◦f,C
= id.

By Corollary 2.12 this holds as well over POf,C and we have σϕ = ϕ. Since σ
was arbitrary, ϕ is defined over k by Lemma 2.1.

Finally, a last result about the shape of isomorphisms POf1
∼= POf2 .

Theorem 2.14. Let f1, f2 be two quadratic forms with n ≥ 4 variables defined
over a number field k. Then any k-isomorphism POf1

∼= POf2 is induced by a
k-similitude f1

∼= λf2 for some λ ∈ k. In particular, the groups are isomorphic
if and only if the forms are similar.

Proof. If f1 ◦A = λf2, for some A ∈ GLn(k), then conjugation by A gives the
required isomorphism of the groups. For the other part, let ϕ : POf1 → POf2

be an isomorphism, and let A ∈ GLn(K) be a matrix such that f1◦A = f2, for
some Galois extension K/k. By Theorem 2.11, there exists (up to increasing
K) some g ∈ Of (K) such that the composition of ϕ with conjugation by A
is conjugation by g. Therefore, ϕ is itself induced via conjugation by some
matrix B ∈ GLn(K).
Since ϕ is defined over k, the image of B is in PGLn(k). From the exact

sequence
1→ Gm → GLn → PGLn → 1

and the fact that H1(k,Gm) = 1 (Hilbert’s theorem 90, see [Se68, Proposi-
tion 2, p. 158]), we obtain that the map GLn(k)→ PGLn(k) is surjective (see
[Se68, Proposition 1, p. 133]). Thus some multiple C of B is in GLn(k), and
the matrix C induces the required similitude.

2.2 | Hyperbolic geometry
We will now give the basic elements of hyperbolic geometry needed in the
thesis. We will assume basic knowledge of Riemannian geometry. In particular,
the notions of Riemannian metric, geodesic, curvature will not be introduced.
We refer to Benedetti-Petronio [BP89], Ratcliffe [Ra06] as well as Martelli
[Ma16] for a detailed introduction.

2.2.1 Hyperbolic manifolds. We start by defining hyperbolic manifolds.

Definition 2.2.1. A hyperbolic manifold is a complete Riemannian manifold
(without boundary) of constant sectional curvature −1.

Up to isometry, the hyperbolic space Hn is the unique simply connected
hyperbolic manifold. It can be constructed using the hyperboloid model as
follows. Consider the standard quadratic form fn,1 = −x2

0 + x2
1 + · · · + x2

n of
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signature (n, 1) and let 〈·, ·〉n,1 denote the induced bilinear form on Rn+1. The
level set H = {x ∈ Rn+1 | fn,1(x) = −1} consists of a two sheeted hyperboloid.
By identifying the tangent space at x ∈ H with the orthogonal complement

x⊥n,1 = {y ∈ Rn+1 | 〈x, y〉n,1 = 0},

we see that the form 〈·, ·〉n,1 induces a positive definite bilinear form on this
tangent space which varies smoothly with x. Thus we obtain a Riemannian
metric on it, and one can verify by computing the curvature tensor that all
sectional curvatures are equal to −1.
In order to make it a connected space, we have two options. Either we

simply take one of the two sheets of H (by taking only elements with positive
x0 coordinate, for example), or we identify opposite points on the two sheets
together, that is, we quotient by the action of the group {±1}. The latter
method permits a natural identification of the isometry group as an algebraic
group, as we will see shortly; it is therefore the convention that we will adopt
in this thesis. To sum up, we have:

Hn ∼= H/{±1}, with the Riemannian metric induced from 〈·, ·〉 .

Using this model, the group of isometries of Hn is:

Isom(Hn) ∼= PO(n, 1) = O(n, 1)/{±1},

where

O(n, 1) = {g ∈ GLn+1(R) | 〈gx, gy〉n,1 = 〈x, y〉n,1 for all x, y}.

Observe that the Lie group PO(n, 1) canonically admits a structure of real
algebraic group defined as

PO(n,1) = POfn,1,R, where fn,1 = −x2
0 + x2

1 + · · ·+ x2
n.

For n ≥ 2, we have a natural identification PO(n, 1) = PO(n,1)(R). Indeed,
the group PO(n,1)(R) is (by definition) the image of the elements g ∈ Ofn,1(C)
such that σ(g) = ±g, where σ denotes complex conjugation. If σ(g) = −g,
we see that g = ih, where h is a real matrix which must send f(n,1) to −f(n,1).
Since the latter has signature (1, n), this is impossible, and thus σ(g) = g. It
follows that PO(n,1)(R) = Ofn,1(R)/ ± 1 = PO(n, 1). This will be especially
useful in Section 3.1.
Since Hn is the unique simply connected hyperbolic manifold, it follows

from the theory of covering spaces that every (complete) hyperbolic manifold
has Hn as a universal cover. More precisely, for each hyperbolic manifold
M , there exists a covering map Hn � M such that for every other covering
M ′ �M by a connected hyperbolic manifoldM ′, the covering ofM factors as
Hn �M ′ �M , where Hn �M ′ is the covering map corresponding to M ′.
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It follows that the fundamental group π1(M) of M is isomorphic to the
group Γ of deck transformations of the covering Hn � M . This group Γ is a
discrete torsion-free subgroup of PO(n, 1) and the quotient Γ\Hn has a natural
structure of hyperbolic manifold such that M ∼= Γ\Hn. This works for general
discrete torsion-free subgroups of PO(n, 1), whence the following:

Theorem 2.15. There is a correspondence between complete hyperbolic mani-
foldsM and discrete torsion-free subgroups Γ ⊂ PO(n, 1). It associates a man-
ifold M with the group of deck transformations Γ of a covering Hn �M , and
a discrete torsion-free subgroup Γ ⊂ PO(n, 1) with the manifold M = Γ\Hn.
Furthermore, it takes isometric manifolds to conjugate subgroups, and a man-
ifold M has finite volume if and only if Γ has finite covolume, i.e., is a lattice
in PO(n, 1).

If one is interested in the study of hyperbolic manifolds, this theorem re-
duces the problem to the study of torsion-free lattices in PO(n, 1). In fact,
in dimension n ≥ 3 it is enough to know the isomorphism type of a subgroup
Γ ⊂ PO(n, 1), as the next theorem shows.

Theorem 2.16 (Mostow Rigidity Theorem). Let M,M ′ be two hyperbolic
n-manifolds, for n ≥ 3. Assume there is an isomorphism α : π1(M)→ π1(M ′).
Then α is actually induced by an isometry φ : M →M ′.

We end this section by a proposition on isometries of hyperbolic manifolds.

Proposition 2.17. Let M = Γ\Hn be a hyperbolic manifold. Then there is
an isomorphism

N(Γ)/Γ
∼−→ Isom(M),

where N(Γ) denotes the normalizer of Γ in PO(n, 1).

Proof. By properties of the universal coverings, an isometry ϕ : M → M lifts
to an isometry g : Hn → Hn, i.e., an element g ∈ PO(n, 1), which is unique up
to multiplying with an element of Γ. Since M = Γ\Hn, we have g(Γx) = Γgx
for each x ∈ Hn. Thus gΓ = Γg, i.e., g normalizes Γ. On the other hand, any
isometry g ∈ PO(n, 1) normalizing Γ induces an isometry of M . Finally, the
trivial isometry clearly corresponds to elements of Γ.

2.2.2 Hyperplanes and boundary. In order to study gluing constructions we
will need to speak of hyperbolic manifolds with totally geodesic boundary,
which we now introduce.

Definition 2.2.2. A submanifold M ⊂ M ′ of a complete Riemannian man-
ifold M ′ is called totally geodesic if every maximal geodesic in M (with the
Riemannian metric induced from M ′) is also a maximal geodesic in M ′. A
hyperbolic subspace of Hn is a connected totally geodesic submanifold of Hn.
A hyperplane is a proper hyperbolic subspace of maximal dimension.
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It is not hard to show that any hyperplane in Hn is the image mod {±1}
of the level set H intersected with a codimension one linear subspace of Rn+1.
More precisely, each hyperplane R ⊂ Hn is obtained as

R =
(
x⊥n,1 ∩H

)
/{±1} for some x ∈ Rn+1 with fn,1(x) > 0.

Thus a hyperplane separates Hn into two components, and we can make the
following definition:

Definition 2.2.3. A half-space inHn is the closure of one of the two connected
components of Hn \R for a hyperplane R.

Equivalently, a half-space can be obtained as

L± = {x ∈ H | ± 〈x, v〉 ≥ 0}/{±1} for some x ∈ Rn+1 with fn,1(x) > 0.

Observe that all half-spaces are isometric to each other, and all hyperplanes
are isometric to Hn−1 (one can see this by completing x to an orthogonal basis
of the quadratic space (Rn+1, f)). We are ready to define hyperbolic manifolds
with boundary.

Definition 2.2.4. A hyperbolic manifold with (totally geodesic) boundary is a
Riemannian manifold with boundary that is locally isometric to a half-space
L ⊂ Hn, which is complete and with totally geodesic boundary components.

The main example of hyperbolic manifold with boundary we will use in this
thesis is the following:

Definition 2.2.5. Let M be a hyperbolic manifold. A hypersurface of M is a
(connected) submanifold N ⊂M of codimension 1 which is complete without
boundary and totally geodesic. A (hyperbolic) piece of M is the completion of
a connected component of M \

⊔r
i=1Ni, where N1, . . . , Nr are disjoint hyper-

surfaces of M .

Remark 2.2.6. By definition, hypersurface means embedded hypersurface. It
will however be useful to consider also immersed hypersurfaces, by which we
mean the image under an immersion of a codimension 1 complete manifold
without boundary.

It is not hard to see that a hyperbolic piece is a hyperbolic manifold with
boundary. In fact, one can even describe its universal cover as follows.

Proposition 2.18. Let M be a hyperbolic manifold and let π : Hn → M be a
universal covering with group of deck transformations Γ ⊂ PO(n, 1), so that
M ∼= Γ\Hn.
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1. Let N ⊂ M be a hypersurface. Then the pre-image π−1(N) ⊂ Hn is
a disjoint union of hyperplanes of Hn. If R is such a hyperplane, then
π−1(N) =

⋃
γ∈Γ γR. Moreover, the restriction π|R : R→ N is a universal

covering which induces an isometry

N ∼= StabΓ(R)\R.

2. Let N1, . . . , Nr be disjoint hypersurfaces in M , let C be a connected
component of M \

⊔
Ni and let M0 be the completion of C. The clo-

sure π−1(C) ⊂ Hn of the pre-image of C is an interior-disjoint union
of intersection of half-spaces whose boundary hyperplanes are universal
coverings of the Ni. If M̃0 is such an intersection of half-spaces, then
π−1(C) =

⋃
γ∈Γ γM̃0. Moreover, the restriction of π to the interior of

M̃0 induces a universal covering π|M̃0
: M̃0 → M0 on the completions,

and we have
M0
∼= StabΓ(M̃0)\M̃0.

Proof. We sketch a proof for the sake of completeness (see [Ma16, §3.5.1] for
a more precise one). Since N is totally geodesic, so is any connected cov-
ering, thus connected components of π−1(N) must be hyperbolic subspaces,
hence hyperplanes for dimension reasons. If R is such a hyperplane, all its Γ
translates must either be disjoint or coincide with R, as N is embedded in M .
Furthermore, since Γ is the group of deck transformations of the covering π, it
follows that such Γ translates must exhaust π−1(N). Because any hyperplane
is simply connected, the restriction of π to such a hyperplane R is a universal
covering. Its group of deck transformations is easily seen to be StabΓ(R), and
thus part 1 follows.
For part 2, the proof is almost the same. A connected component of π−1(C)

corresponds to a connected component of π−1(M \
⊔
Ni) = Hn \

⋃
i,γ γRi,

where Ri is a hyperplane in π−1(Ni), which is an intersection of half-spaces of
the required form. The rest of the arguments are the same as in part 1.

The following construction implies that a hyperbolic manifold with boundary
is always a piece of a manifold.

Definition 2.2.7. Let M0 be a manifold with totally geodesic boundary. The
double ofM0 is the manifoldM0×{0, 1}/ ∼ where (x, 0) ∼ (x, 1) for x ∈ ∂M0.

The double of a hyperbolic manifold with totally geodesic boundary is indeed
a hyperbolic manifold, by [Ma16, Prop. 3.5.4] (alternatively, this will follow
from Theorem 4.1 below).

Remark 2.2.8. By construction, a hypersurface locally separates a manifold
into two parts. Thus if M0 is a piece of M , say the completion of M \

⊔
Ni,

the natural map M0 → M induces a double-cover of each Ni. If the normal
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bundle of Ni ⊂ M is orientable, this translates as there being two copies of
Ni in ∂M0, i.e., the double-cover is trivial (it consists of two copies of Ni).
However, if the normal bundle of Ni ⊂ M is non-orientable, then the double-
cover is not trivial, and Ni ⊂M lifts to one connected component Ñi ⊂ ∂M0.
This happens exactly when M is orientable and Ni is not or, vice-versa, when
M is non-orientable and Ni is.

2.2.3 Commensurability and torsion. If the lattice Γ ⊂ PO(n, 1) has torsion,
it will have fixed points in Hn, and thus the quotient Γ\Hn will not be a
manifold (but a so-called hyperbolic orbifold). However, one can still obtain a
finite-volume manifold from this lattice using the following theorem:

Theorem 2.19 (Selberg’s Lemma). Any subgroup Γ ⊂ PO(n, 1) that is finitely
generated has a torsion-free subgroup of finite index.

This theorem is actually valid for any finitely generated subgroup of GLn(C).
Since all lattices in PO(n, 1) are finitely generated (a highly non-trivial fact,
see [Ra72, Remark 6.18 and Theorem 13.15]), we see that a lattice in PO(n, 1)
determines a commensurability class of hyperbolic manifolds.

Definition 2.2.9. Two hyperbolic manifolds M1,M2 are commensurable if
they admit a common finite cover M .

The dual notion for lattices is the following.

Definition 2.2.10. Two subgroups Γ1,Γ2 ⊂ PO(n, 1) are strictly commensu-
rable if Γ1 ∩ Γ2 is of finite index both in Γ1 and Γ2. They are commensurable
(or commensurable in the wide sense) if Γ1 is strictly commensurable to a
conjugate gΓ2g

−1 of Γ2 by an element g ∈ PO(n, 1).

In the correspondence of Theorem 2.15, commensurability of manifolds cor-
responds to commensurability of lattices. If one is interested in the study of
hyperbolic manifolds up to commensurability, it is thus equivalent to study
general lattices in PO(n, 1).

2.2.4 Subgroup separability. Replacing a lattice Γ ⊂ PO(n, 1) by a finite-index
subgroup allows more than just removing torsion, as we will explain now.

Definition 2.2.11. Let Γ be a group. The profinite topology of Γ is the
coarsest topology for which finite index subgroups Γ′ ⊂ Γ and their cosets are
open. A subgroup of Γ is said to be separable in Γ if it is closed in the profinite
topology.

It follows from the definition that a finite index subgroup Γ′ (and any of its
cosets) is also closed. Thus, if Λ ⊂ Γ is a subgroup, its closure in the profinite
topology is given by

Λ =
⋂

Λ⊂Γ′⊂fiΓ

Γ′
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where the intersection is taken over all finite index subgroup of Γ that contain
Λ. The following lemma relates this to our situation:

Lemma 2.20. Let G be a real algebraic group and let G0 ⊂ G be a real
algebraic subgroup. Let Γ ⊂ G(R) be finitely generated. Then Γ ∩ G0(R) is
separable in Γ.

Proof. This is the Lemme Principal in [Be00], slightly reformulated in our
terminology.

The main application for us is the following:

Theorem 2.21. Let Γ ⊂ PO(n, 1) be a torsion-free lattice, and let R ⊂ Hn be
a hyperplane. Suppose that Λ = StabΓ(R) is a lattice in StabPO(n,1)(R); let N
denote the corresponding manifold Λ\R. Then there exists a finite cover M ′ of
M = Γ\Hn such that the inclusion R ↪→ Hn induces an embedding N ↪→M ′.

Proof. This is Théorème 1’ from [Be00]; we include a proof in the case where N
is compact. In that case, there exists a compact fundamental domain D ⊂ R
for the action of Λ. Since the action of Γ on Hn is proper and D is compact,
the set E = {γ ∈ Γ | γD ∩ D 6= ∅} is finite. Assume E \ Λ = {γ1, . . . , γn}.
By Lemma 2.20, Λ is separable in Γ. Hence for each i there must exist a
subgroup Γi ⊂ Γ of finite index, containing Λ but not γi. The intersection
Γ′ =

⋂
i Γi is then still of finite index in Γ, and the manifold Γ′\Hn has the

desired properties.

In the case where the lattice Γ is arithmetic, we will be able to prove stronger
separability results (see Section 2.3.4).

2.2.5 The hyperbolic models Hf . In this section we will introduce a slightly
modified version of the hyperboloid model of hyperbolic space, as it will play
an important role in the rest of the thesis.
Let k ⊂ R be a number field, and let f be a quadratic form defined over k.

Assume that f has signature (n, 1) when seen over R. Then the same procedure
as above for the definition of Hn can be applied to the quadratic form f . More
precisely, we define Hf to be the level set {x ∈ Rn+1 | f(x) = −1}, and set
Hf := Hf/{±1}. Similarly, the quadratic form f induces a Riemannian metric
〈·, ·〉f on tangent spaces which makes Hf into a Riemannian manifold.
Since f has signature (n, 1) there exists a matrix A ∈ GLn+1(R) such that

f ◦ A = fn,1 = −x2
0 + x2

1 + · · · + x2
n, the standard signature (n, 1) quadratic

form. This matrix induces an isometry Hn → Hf via x 7→ Ax, and thus Hf

is also a model for the hyperbolic space.
The corresponding isometry group is easily seen to be:

Isom(Hf ) ∼= POf (R),
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the real points of the algebraic group POf , with its natural action on Hf . We
will see in Section 3.2 that these models are particularly well suited to study
manifolds which contain an immersed hypersurface.
The hyperplanes defined in Section 2.2.2 correspond here to f -orthogonal

complements to vectors of Rn+1 with positive f -norm. Explicitly, each hyper-
plane R ⊂ Hf is obtained as

R =
(
x⊥f ∩Hf

)
/{±1} for some x ∈ Rn+1 with f(x) > 0.

In this case however, the quadratic form f endows Rn+1 with a natural struc-
ture of quadratic space over k. Thus it makes sense to look at hyperplanes
which come from vectors in kn+1.

Definition 2.2.12. A hyperplane R ⊂ Hf is defined over k if it corresponds
to the f -orthogonal complement of some vector x ∈ kn.

Equivalently, one may take x ∈ Onk by clearing the denominators, where Ok
denotes the ring of integers of k.

2.3 | Arithmetic hyperbolic manifolds
Arithmetic manifolds are the most basic examples of hyperbolic manifolds in
arbitrary dimension. This class of manifolds is particularly well understood
and plays a central role in the gluing constructions used to create nonarithmetic
manifolds (see Chapter 4). We devote this section to them, and refer to [Bo69]
as well as [Mo15] for a detailed introduction.

2.3.1 Definition of arithmetic lattices. In this section we will define arithmetic
hyperbolic lattices and show that they are a natural generalization of the usual
lattice Z ⊂ R. We will define them as lattices in PO(n, 1) the isometry group
of the hyperbolic space Hn, up to commensurability. We start with the easiest
example and generalize it step by step until we reach the general definition.
Let fn,1 = −x2

0 + x2
1 + · · · + x2

n be the standard signature (n, 1) quadratic
form of Section 2.2. Then from the fact that Z ⊂ R is discrete, it follows easily
that the subgroup

Of (Z) ⊂ Of (R)

is also discrete (here we see Of as embedded in GLn+1, see Example 2.1.13).
The following theorem implies that it is also of finite covolume, hence a lattice
in Of (R). Since PO(n, 1) ∼= Of (R)/{±1}, we naturally obtain a lattice in
PO(n, 1).

Theorem 2.22 (Borel–Harish-Chandra). Let G be a semisimple linear alge-
braic Q-group. Let Φ: G → GLN be a faithful algebraic representation, and
set G(Z) = Φ−1(GLN(Z)). Then G(Z) is a lattice in G(R).
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See [BHC62, Section 7] for a proof. Observe that in the theorem, the sub-
group G(Z) depends on the embedding of G into some GLN . It turns out that
if one considers only the group G(Z) up to commensurability, then it becomes
independent of the embedding. A proof of this fact can be found in [Bo69,
Corollaire 7.13].
We will generalize this construction in three consecutive steps. First, ob-

serve that the same argument works for any quadratic form f defined over Q,
provided it has signature (n, 1). Indeed, these conditions are sufficient for Of

to be a semisimple algebraic Q-group such that Of (R)/{±1} ∼= PO(n, 1), and
thus Of (Z) determines a lattice in PO(n, 1).
The second step is to replace Q with a number field k and Z with its ring

of algebraic integers Ok. Here we need an apparently stronger version of the
theorem of Borel and Harish-Chandra, stated for number fields:

Theorem 2.23 (Borel–Harish-Chandra for number fields). Let G be a semi-
simple linear algebraic k-group, for k a number field. Let Φ: G → GLN be
a faithful algebraic representation, and set G(Ok) = Φ−1(GLN(Ok)). Then
G(Ok) is a lattice in G(k ⊗Q R).

Here we view G(Ok) inside G(k⊗QR) via the map induced by k ↪→ k⊗QR.
Recall that k ⊗Q R is naturally isomorphic to the product

k ⊗Q R ∼=
∏

σ : k↪→R

R×
∏

{σ,σ} : k↪→C

C,

so that
G(k ⊗Q R) ∼=

∏
σ : k↪→R

σG(R)×
∏

{σ,σ} : k↪→C

σG(C).

The inclusion G(k) ↪→ G(k ⊗Q R) is then given by x 7→ (σ(x))σ.
While this theorem appears to be stronger, it reduces quite easily to the

previous one using Weil’s restriction of scalars, which we will not discuss here.
We refer to [BHC62, Section 12] for a precise proof. Since restriction of scalars
preserves commensurability of subgroups, we have (as before) that the group
G(Ok) is well defined (and does not depend on a representation into GLN)
when considered up to commensurability.
This allows one to do a similar trick to obtain new lattices in PO(n, 1).

Let k ⊂ R be a totally real-number field, and let f be a quadratic form
defined over k, having signature (n, 1) and such that σf is positive definite for
all other embeddings σ : k ↪→ R. Consider the group POf (R); since f has
signature (n, 1), it is isomorphic to PO(n, 1). On the other hand, all conjugate
groups σ(POf )(R) = POσf (R) are compact, since σf is positive definite. Thus,
applying the theorem to the group POf (Ok), it follows that

POf (Ok) ⊂ POf (k ⊗Q R) =
∏

σ : k↪→R

POσf (R) ∼= PO(n, 1)× compact
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is a lattice. Since modding out by a compact factor preserves both discreteness
and finiteness of covolume, we have constructed a lattice in PO(n, 1).

Definition 2.3.1. A quadratic form f over a totally real number field k ⊂ R is
admissible (for PO(n, 1)) if it has signature (n, 1), and if σf is positive definite
for all non-trivial embeddings σ : k ↪→ R.

The last and final generalization is to consider more general algebraic groups
instead of restricting to ones of the form POf for some quadratic form f . This
leads us towards the following definition.

Definition 2.3.2. Let G be an algebraic k-group, with k ⊂ R be a number
field. Then G is said to be admissible (for PO(n, 1)) if G(R) ∼= PO(n, 1) and
if all the other factors in G(k ⊗Q R) are compact. An arithmetic lattice in
PO(n, 1) is a lattice which is commensurable to G(Ok) for an admissible G.
An arithmetic manifold is a manifold M = Γ\Hn where Γ is an arithmetic
lattice.

As explained before, the group G(Ok) is well defined up to commensurabil-
ity; thus the definition makes sense. Moreover it is clear that POf is admissible
if and only if f is.

Remark 2.3.3. In order to produce arithmetic lattices in PO(n, 1), it would
be enough to require an isomorphism G(R) ∼= PO(n, 1)◦ to the identity com-
ponents of the Lie group PO(n, 1). It turns out that any such isomorphism is
induced by an algebraic isomorphism GR ∼= PO◦(n,1) = PO◦fn,1,R (see [Mi13]).
Therefore, G is a k-form of PO◦(n,1), and thus a classical group of type Bn

2
or

Dn+1
2

depending on the parity of n. By looking at the classification of clas-
sical groups (see Theorem 2.8 and the remark after that), one can thus list
all possible algebraic groups G with this property. In particular, it follows
from this classification (more precisely, from Theorem 25.12, 26.15 and 44.8 in
[INV98]) that each such G is the identity component of an algebraic k-group
F such that FR ∼= PO(n,1). Hence the above definition is not restrictive, and
we obtain all arithmetic lattices in PO(n, 1) that way.

The easiest of those k forms are the groups POf for quadratic forms f over
number fields, whence the next definition.

Definition 2.3.4. An arithmetic lattice of type I (or of the first/simplest type)
in PO(n, 1) is a lattice which is commensurable to POf (Ok) for an admissible
f (under an isomorphism POf (R) ∼= PO(n, 1)).

We will need special type of subgroups of G(Ok) called congruence sub-
groups. Let G be a semisimple linear algebraic group, and Φ: G → GLN a
faithful algebraic representation. Let Γ ⊂ G be an arithmetic group that is
commensurable to Φ−1(GLN(Ok)). Then we can construct finite index sub-
groups of Γ as follows. For an ideal a ⊂ Ok the group GLN(Ok/a) is finite.
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Thus the kernel of the map GLN(Ok) � GLN(Ok/a) has finite index in
GLN(Ok).
Definition 2.3.5. In the above setting, the group

Γ(a) = Γ ∩ Φ−1(ker(GLN(Ok)→ GLN(Ok/a)))

is called a (principal) congruence subgroup of Γ.

2.3.2 Examples. Here we regroup some important examples of arithmetic lat-
tices which we will use later on.

Example 2.3.6. Let f = −x2
0 + x2

1 + · · · + x2
n. Then the image of the group

Of (Z) in POf (R) ∼= PO(n, 1) is an arithmetic lattice there. By varying the
coefficients of f one can construct different (that is, non-commensurable) arith-
metic groups in PO(n, 1). This is made precise in the next Theorem.

Theorem 2.24. For i = 1, 2, let Γi ⊂ PO(n, 1) be an arithmetic manifold of
type I, coming from a quadratic form fi. Then Γ1 and Γ2 are commensurable
if and only if f1 and f2 are similar.

Proof. This is proven in [GPS87, §2.6], and in [Me17, Proposition 5.4]. We
include a short proof (in dimension n ≥ 4) which makes use of our machinery.
By Theorem 2.14, the quadratic forms f1 and f2 are similar if and only if the
corresponding algebraic groups POf1 and POf2 are isomorphic. If the groups
are isomorphic, since the commensurability class defined by POfi(Ok) is inde-
pendent of the embedding in some GLN (and hence depends only on the iso-
morphism type of POfi), we see that the groups Γ1 and Γ2 are commensurable.
Conversely, if they are commensurable, we can assume (up to changing the iso-
morphism POf1(R) ∼= PO(n, 1)) that Γ = Γ1 ∩ Γ2 is of finite index both in
Γ1 and Γ2. The composition of the isomorphisms POf1,R

∼= PO(n,1)
∼= POf2,R

then sends Γ which is (almost) Zariski-dense in POf1 into POf2(k). Hence
the isomorphism is induced by a k-isomorphism POf1

∼= POf2 by Proposi-
tion 2.13.

Example 2.3.7. Using this theorem, one can easily construct examples of
non-commensurable arithmetic manifolds. Indeed, let n be odd, and consider
the quadratic forms

fa = −x2
0 + x2

1 + · · ·+ x2
n−1 + ax2

n.

Since the discriminant of λfa equals a mod (Q×)2 for any λ ∈ Q×, we see that
two forms fa and fb are similar if and only if a ≡ b mod (Q×)2. In that case
the forms are even isometric.

It follows that, for instance, the arithmetic groups Ofp(Z) for primes p all
lead to pairwise non-commensurable arithmetic lattices in PO(n, 1). For even
dimensions, more care is needed to obtain non-similar quadratic forms (com-
pare Lemma 4.16). However, it is still possible to construct interesting nonar-
ithmetic manifolds using similar quadratic forms, see Section 4.5.2.
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Example 2.3.8. As explained before, one can construct an arithmetic group
starting from any k-form of the algebraic group PO(n,1). If n is odd, then
PO(n,1) is of type Dm where m = n−1

2
and thus there is a k-form given by

groups of the form PU(D, h) where D is a quaternion algebra over k and h is
a skew-Hermitian form of dimension m (see Theorem 2.8). As an example, one
can take k = Q, D to be the quaternion algebra over Q generated by 1, i, j, ij
such that i2 = 2, j2 = 3 and ij = −ji and h to be the skew-hermitian form on
Dn given by

(x, y) 7−→ x1 · i · y1 + x2 · j · y2 + · · ·+ xn · j · yn.

It can be shown that over Q(
√

2), PU(D, x · j · y) is isomorphic to POf where
f = x2 + 3y2, while PU(D, x · i · y) is isomorphic to POf with f = x2 − y2.
All in all, we have

PU(D, h)Q(
√

2)
∼= POf,Q(

√
2),

where f = −x2
0 +x2

1 +x2
2 + 3x2

3 + · · ·+x2
n−1 + 3x2

n. Thus PU(D, h) is a k-form
of PO(n,1), and the group PU(D, h)(Ok) defines a lattice in PO(n, 1) (up to
commensurability).

2.3.3 Hypersurfaces in arithmetic manifolds. In this section we will study hy-
persurfaces in arithmetic hyperbolic manifolds of type I. As we will see in
Section 3.2, this is no restriction, as other arithmetic groups do not have hy-
persurfaces. More precisely, we will explain how to construct as many disjoint
hypersurfaces in arithmetic manifolds of type I as we want. This will allow us
to obtain pieces of manifolds with interesting properties.
Let M = Γ\Hn be an arithmetic manifold of type I. By definition, there

exists a totally real number field k ⊂ R and an admissible quadratic form f
over k such that Γ is commensurable to POf (Ok). It will be convenient to use
the hyperbolic model Hf defined by f (see Section 2.2.5) with isometry group
POf (R). More precisely, we will assume that Γ ⊂ POf (R) is commensurable
to POf (Ok) and that M = Γ\Hf .

Remark 2.3.9. It will follow from Theorem 3.13 that Γ actually lies in
POf (k), though we will not use this here.

Let R ⊂ Hf be a hyperplane which is defined over k (see Definition 2.2.12),
that is, R = (x⊥f ∩ Hf )/{±1} for some x ∈ kn (or equivalently, x ∈ Onk ).
Let V denote the quadratic space (kn+1, f), and let W denote the subspace
corresponding to R (i.e., W = x⊥f ⊂ V ). Choose an orthogonal basis for W
and extend it to V . The change of base matrix A ∈ GLn+1(k) induces an
isometry between f and

f ′ = f ◦ A−1 = a0x
2
0 + · · ·+ anx

2.
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This matrix A thus induces an isometry

φ : Hf → Hf ′

x 7→ Ax

sending R to the hyperplane {xn = 0} ∩Hf ′/{±1} ⊂ Hf ′ . Finally, it induces
via conjugation an isomorphism of the isometry groups

Φ: POf → POf ′

g 7→ φ−1gφ.

Since Γ is commensurable to POf (Ok), and since the latter is independent
(up to commensurability) of the embedding of POf into some GLN (see Sec-
tion 2.3.1) we have that Φ(Γ) is commensurable to POf ′(Ok). It follows that

Φ(StabΓ(R)) = StabΦ(Γ)(φ(R))

is commensurable to the subgroup of matrices of POf ′(Ok) preserving the
subspace {xn = 0}. The latter is commensurable to the subgroup Of ′0

(Ok)
diagonally embedded in POf ′ , where f ′0 is the quadratic form f ′ with last
coordinate set to 0. This is a lattice in Of ′0

(R), by the Theorem of Borel and
Harish-Chandra (Theorem 2.23).
Coming back to our original manifold M = Γ\Hf , we have shown that

StabΓ(R) ⊂ StabPOf (R)(R)

is a lattice, and it follows that R projects down to an immersed hypersurface
in M = Γ ⊂ Hf .
Therefore, by subgroup separability (Theorem 2.21) we can find a subgroup

Γ1 ⊂ Γ of finite index such that the hyperplane R maps onto an embedded hy-
persurface N ⊂M1 = Γ1\Hf . The hypersurface N is then itself an arithmetic
manifold, whose lattice is commensurable to POf ′0

(Ok) (via the isomorphism
Φ).
It will follow from Proposition 3.11 in Section 3.2.2 that the opposite direc-

tion is still true, i.e., that all hypersurfaces in arithmetic manifolds arise in
that way:

Theorem 2.25. Let M = Γ\Hf be an arithmetic manifold of type I, with Γ
commensurable to POf (Ok).

1. Any hyperplane R ⊂ Hf that is defined over k (i.e., R = (x⊥f ∩Hf )/{±1}
for some x ∈ kn) projects onto an immersed hypersurface N ⊂M .

2. Any hypersurface N ⊂ M is the image of a hyperplane R ⊂ Hf that is
defined over k.



36 CHAPTER 2. BACKGROUND

3. Any hypersurface N ⊂M is arithmetic, and commensurable to the arith-
metic manifold defined by POf0(Ok)\Hf0, where f0 is the quadratic form
f restricted to the subspace defined by R.

This construction gives a way to produce arithmetic manifolds containing
prescribed hypersurfaces (up to commensurability).

Example 2.3.10. The quadratic forms fa from Example 2.3.7 are all of the
form

fa = f0 + ax2
n where f0 = −x2

0 + x2
1 + · · ·+ x2

n−1.

Let Γa ⊂ POfa(Ok) be a torsion-free subgroup. It follows that the hyper-
plane in Hfa corresponding to {xn = 0} projects to an immersed hypersurface
in the manifold Γa\Hfa . This manifold is arithmetic and commensurable to
POf0(Ok)\Hf0 . This method is useful to construct non-commensurable arith-
metic manifolds which contain commensurable hypersurfaces, as we will see in
Section 4.2.

2.3.4 Subgroup separability in arithmetic lattices. Subgroup separability (The-
orem 2.21) is a useful tool for general lattices to pass from immersed hyper-
surfaces to embedded ones in a finite covering. In the case where the lattice
is arithmetic, there are two important refinements of this principle which we
explore now. The first result (due to Belolipetsky and Thomson [BT11]) gives
a way to construct arithmetic manifolds with many disjoint hypersurfaces.

Theorem 2.26. Let R1, . . . , Rs ⊂ Hf be disjoint hyperplanes defined over k.
Let M = Γ\Hf be an arithmetic manifold of type I, with Γ commensurable
to POf (Ok). Then there exists a finite index subgroup Γ1 ⊂ Γ such that
the hyperplanes Ri project down to disjoint embedded hypersurfaces in the
manifold M1 = Γ1\Hf .

Proof. Lemma 3.1 in [BT11].

From the proof of this lemma, it follows that one can take Γ1 to be a con-
gruence subgroup Γ(a) of Γ. Moreover, as soon as the ideal a does not contain
2, the corresponding manifold M1 and all the hypersurfaces will be orientable.
Another improvement in the case of arithmetic lattices concerns its geomet-

rically finite subgroups (see [Ra06, §12.4]).

Definition 2.3.11. A discrete subgroup Γ ⊂ PO(n, 1) is geometrically finite
(in Hn) if it admits a fundamental domain F ⊂ Hn such that:

1. F is a convex polyhedron,

2. Every side of F is the intersection of F with a translate γF of F , for
some γ ∈ Γ,
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3. Every point x ∈ F ∩ ∂Hn admits a neighborhood U such that all sides
of F meeting U pass through x.

The main examples of geometrically finite subgroups that will interest us
are the following:

Theorem 2.27.

1. Any torsion-free lattice Γ ⊂ PO(n, 1) is geometrically finite.

2. Any torsion-free lattice Γ ⊂ O(n−1, 1) ∼= StabPO(n,1)(R) for a hyperplane
R ⊂ Hn is geometrically finite in Hn.

Proof. 1. is Theorem 12.7.3 of [Ra06]. 2. follows from 1: A fundamental poly-
hedron for the action of Γ onHn is “F×R”, where F ⊂ R is one for Γ y R.

As seen in Section 2.2.4, for a lattice Γ ⊂ PO(n, 1), groups of the form
StabΓ(R) are separable in Γ (for any hyperplane R ⊂ Hn). When Γ is arith-
metic of type I, this result extends to the more general case of geometrically
finite subgroups:

Theorem 2.28. Let Γ ⊂ POf be an arithmetic lattice of type I. Then any
geometrically finite subgroup of Γ is separable (in Γ).

Proof. This is [BHW11, Corollary 1.12].

This can be used to construct arithmetic manifolds that contain a hyper-
surface isometric to a fixed arithmetic manifold, see [KRS18]. For us, it will
be useful in Section 4.5.2 when we consider specific examples of manifolds
obtained by “closing up” arithmetic pieces.
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Chapter 3 | Trace Fields

In this chapter we introduce the (adjoint) trace field of lattices in PO(n, 1), and
the associated algebraic group called the ambient group. After defining these
invariants in their various flavors (first for Zariski-dense subgroups, then for
lattices and finally for monodromy representations of manifolds with bound-
ary) we proceed towards the classification of ambient groups of manifolds which
contain an immersed hypersurface. These will be especially useful in the glu-
ing constructions of Chapter 4. Finally, we end this chapter by computing
the trace field and ambient group of an arithmetic lattice and show that it
coincides with its field and group of definition, respectively.
As the previous one, this chapter contains only standard material, and no

substantially new results are presented.

3.1 | Trace fields and ambient groups
This section is devoted to the various definitions of the trace fields we will need.
We will first define them for Zariski-dense subgroups of general semisimple
groups, then for lattices in PO(n, 1) and finally for monodromy representations
of manifolds with boundary.

3.1.1 Definition for Zariski-dense subgroups. The trace field was introduced
by Vinberg [Vi71] for general Zariski-dense subgroups of (not necessarily con-
nected) semisimple algebraic groups, as follows. Recall that for an algebraic
group G we have the adjoint representation Ad: G → GL(g), where g is the
Lie algebra of G.

Definition 3.1.1. Let G be a semisimple algebraic group, and Γ ⊂ G a
Zariski-dense subgroup. The (adjoint) trace field of Γ is the field

Q(tr Ad γ | γ ∈ Γ).

The goal in the remaining of this section is to convince the reader that this
adjoint trace field is a sensible invariant which applies very well to the study
of hyperbolic manifolds. First we will show that if the group is adjoint, this

39
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field can be seen as the smallest field over which the group Γ can be realized.
The following theorem was first (implicitly) proven by Vinberg [Vi71]. Two
other proofs can be found in [DM86] and in [Ma91]. We will give a proof (in
the case of absolutely simple groups) which is a mixture of both.

Theorem 3.1. Let G be an adjoint semisimple algebraic group and Γ ⊂ G
a Zariski-dense subgroup. Let k be the trace field of Γ. Then there exists an
algebraic k-group F and an isomorphism Φ: G→ FC such that Φ(Γ) ⊂ F(k).

Proof. It is enough to find a faithful algebraic representation Φ: G→ GL(W )C
with Φ(Γ) ⊂ GL(W )(k), for some finite-dimensional k-vector space W . In-
deed, the Zariski-closure F of Φ(Γ) in GL(W ) then forms a k-group, and Φ
induces an isomorphism G ∼= FC.
We will assume that G is absolutely simple (see [Vi71] for the general case).

Write ·̂ for Ad. Let g denote the Lie algebra of G, seen as a vector space
over C. Let V (resp. W ) denote the C-span (resp. the k-span) of the set
Γ̂ = Ad Γ ⊂ EndC(g). Since G is simple, so is g and thus the adjoint repre-
sentation is irreducible. By Burnside’s theorem on irreducible representations
[Wa91, §14.8] we have that V = EndC(g).
Let γ̂1, . . . , γ̂m ∈ Γ̂ be a C-basis of V . Let e1, . . . , em be a dual basis with

respect to the bilinear form (x, y) = tr(xy). It is easy to see that for all
x ∈ V , we have x =

∑
i tr(γ̂ix)ei. It follows that for any γ ∈ Γ, we have

γ̂ =
∑

i tr(γ̂iγ̂)ei, so that γ̂ is in the k-span of {e1, . . . , en}.
Thus W is a finite-dimensional k-vector space such that WC = V . The

action of G on g induces an algebraic action of G on V = EndC(g) and thus
an algebraic representation Φ: G→ GL(V ) = GL(W )C which is faithful since
G is adjoint. Since γ̂ ·W ⊂ W , we have Φ(Γ) ⊂ GL(W )(k), as desired.

From the Zariski-density of Γ we obtain the first corollary:

Corollary 3.2 (Uniqueness of F). The algebraic group F is unique up to
k-isomorphism.

Proof. Let F′ be another algebraic k-group with Φ′ : G→ F′C an isomorphism
such that Φ′(Γ) ⊂ F′(k). Then the isomorphism Φ′ ◦Φ−1 : FC → F′C sends the
Zariski-dense subgroup Φ(Γ) ⊂ F(k) into F′(k). Thus Corollary 2.2 implies
that it is defined over k.

In view of this, we make the following definition:

Definition 3.1.2. Let G be an adjoint semisimple algebraic group and Γ ⊂ G
a Zariski-dense subgroup. Let k be the trace field of Γ. Then the ambient group
of Γ is the unique algebraic k-group F (up to k-isomorphism) such that FC ∼= G
and Γ ⊂ F(k) via this isomorphism.

The trace field can also be seen as the minimal field over which Γ can be
realized:
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Corollary 3.3 (Minimality of k). The trace field of Γ is the minimal field k
such that the conclusion of Theorem 3.1 holds.

Proof. Let k be a field and F an algebraic k-group with an isomorphism
Φ: G → FC such that Φ(Γ) ⊂ F(k). Let g be the Lie algebra of G and f
that of F. Since Φ is an isomorphism, it induces an isomorphism of C-vector
spaces g ∼= f⊗C. Since Φ(Γ) ⊂ F(k), we have Ad Φ(Γ) ⊂ AdF(k). Thus there
exists a basis of g (the one coming from f) such that the matrices of Ad Γ have
all coefficients in k. Therefore, the trace field of Γ is contained in k.

Finally, the third corollary tells us that the trace field is invariant under
commensurability.

Corollary 3.4. Let Γ,Γ′ ⊂ G be Zariski-dense subgroups of an adjoint semi-
simple algebraic group which are commensurable (i.e., there is a g ∈ G such
that Γ ∩ gΓ′g−1 has finite index both in Γ and in gΓ′g−1). Then the trace field
of Γ equals that of Γ′.

Proof. Since the trace is invariant under conjugation, it is enough to show that
if Γ0 ⊂ Γ is a finite index subgroup, then the trace fields of Γ and Γ0 coincide.
Clearly, the trace field of Γ0 is included in that of Γ. For the reverse inclusion,
we can (up to replacing Γ0 with a further finite index subgroup) assume that
Γ0 is normal in Γ, and that Γ0 ⊂ G◦. From the proof of Theorem 3.1, we find
a k0-vector space W and a faithful representation Φ: G→ GL(WC) such that
Φ(Γ0) ⊂ GL(W )(k0), where k0 is the trace field of Γ0. We identify G with
Φ(G), so that Γ0 ⊂ G(k0). Our goal is now to show that actually Γ ⊂ G(k0).
Let σ be an automorphism of C fixing k0. It is enough to show that σ fixes

all elements of Γ. For such γ ∈ Γ we have γΓ0γ
−1 = Γ0, and thus for any

γ0 ∈ Γ0,
σ(γ)γ0σ(γ−1) = γγ0γ

−1.

It follows that γ−1σ(γ) commutes with every element of Γ0. By Zariski-density,
γ−1σ(γ) is in ZG(G◦), the centralizer of G◦ in G. Since G is adjoint, this
centralizer is trivial (by Proposition 2.7), and we have σ(γ) = γ.

3.1.2 Definition for lattices. Let Γ be a lattice in the real Lie group PO(n, 1).
We wish to define a notion of adjoint trace field and ambient group for Γ. For
the trace field, we can use the adjoint representation Ad for Lie groups to make
the following analog definition:

Definition 3.1.3. Let Γ ⊂ PO(n, 1) be a lattice. Then the (adjoint) trace
field of Γ is the field

Q(tr Ad(γ) | γ ∈ Γ).

The trace field of a manifold M = Γ\Hn is the trace field of its corresponding
lattice Γ.
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Remark 3.1.4. It follows that the trace field of a manifold is always naturally
embedded in R. This is in contrast with the invariant trace field, usually
studied in the context of 3-manifolds, see [MR03, Chapter 3]. It can be defined
as in Definition 3.1.3, but using the complex Lie group PSL2(C) as a model for
the (orientation preserving) isometries of H3 and its corresponding complex
adjoint representation [MR03, Exercise 3.3.4]. In that case, the invariant trace
field of a lattice is never real [MR03, Theorem 3.3.7].

As seen in Section 2.2.1, the Lie group PO(n, 1) has a natural structure of
real algebraic group: for fn,1 = −x2

0 + x2
1 + · · · + x2

n the algebraic R-group
PO(n,1) = POfn,1 is such that PO(n,1)(R) ∼= PO(n, 1). Recall that PO(n,1) is
connected for n even, and has two connected components for n odd. We let
PO◦(n,1) denote its identity component. The following theorem allows us to
relate the two notions of trace fields (see [Mo15, §4.5]).

Theorem 3.5 (Borel’s Density Theorem). Any lattice Γ ⊂ PO◦(n,1)(R) is
Zariski-dense in PO◦(n,1).

It follows that for a lattice Γ ⊂ PO(n, 1) the following situations can occur:

1. n is even or Γ 6⊂ PO◦(n,1)(R): In that case, we have that the Zariski-
closure of Γ is the whole algebraic group PO(n,1).

2. n is odd and Γ ⊂ PO◦(n,1)(R): In that case, the Zariski-closure of Γ is not
PO(n,1) but just its identity component PO◦(n,1). We will see soon how
to deal with this possibility.

Thus we can make the following definition, compatible with Definition 3.1.2:

Definition 3.1.5. Let Γ ⊂ PO(n, 1) = PO(n,1)(R) be a lattice with trace field
k. Then the ambient group of Γ is the unique algebraic k-group G (up to k-
isomorphism) such that GR is isomorphic to the Zariski-closure of Γ in PO(n,1)

(that is, PO(n,1) or PO◦(n,1)) and Γ ⊂ G(k) via this isomorphism. The ambient
group of a manifold M = Γ\Hn is the ambient group of its corresponding
lattice.

Remark 3.1.6. It follows thatG◦ is a k-form of the algebraic R-groupPO◦(n,1).
Now in the case where n = 2m+ 1 is odd, PO◦(n,1) is an adjoint group of type
Dm. As explained in Remark 2.3.3, it follows from the classification of those
groups that G◦ is the identity component of some algebraic k-group G such
that GR ∼= PO(n,1). Therefore, even in the case where Γ = PO◦(n,1) 6= PO(n,1),
we can still find an algebraic k-groupG such thatGR ∼= PO(n,1), and Γ ⊂ G(k)
via this isomorphism. By abuse of notation, we will again call G the ambient
group of Γ. Note finally that these considerations will play little role in the
later parts of this thesis, since all our algebraic groups will be of the form POf

for some quadratic form f (see Theorem 3.8 below).
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We will end this section by stating the most important theorem about the
trace field of lattices.

Theorem 3.6. Let Γ ⊂ PO(n, 1) be a lattice. If n ≥ 3, then the trace field of
Γ is a number field.

Proof. For n ≥ 4 this follows from local rigidity, see [BG04, Theorem 3.9], or
[OV00, Proposition 1.6.5]. For n = 3, see [MR03, Theorem 3.1.2].

3.1.3 Definition for manifolds with boundary. We want to extend this defini-
tion to manifolds with boundary. In order to do this, we will assume that our
manifolds have finite volume and totally geodesic boundary components also
of finite volume.

Lemma 3.7. LetM be a manifold with boundary. Assume that the components
of ∂M are totally geodesic and that both M and ∂M have finite volume. Let
M̃ ⊂ Hn be a universal cover for M (which is isometrically embedded, as in
Proposition 2.18) and let Γ ⊂ PO(n, 1) be the corresponding group of deck
transformations. Then Γ ∩PO◦(n,1) is Zariski-dense in PO◦(n,1).

Proof. Lemma 1.7B in [GPS87].

Therefore the trace field of Γ can be defined as in Section 3.1.1, and simi-
larly for the ambient group. Observe that since any finite-volume hyperbolic
manifold with totally geodesic finite-volume boundary is the piece of a finite-
volume hyperbolic manifold (namely its double, c.f. Section 2.2.2), its trace
field is necessarily a number field. As in the previous section, we will call
ambient group of Γ any algebraic group G defined over its trace field k, such
that GR ∼= PO(n,1) and Γ ⊂ G(k) via this isomorphism (see Remark 3.1.6).

3.2 | Manifolds with hypersurfaces

This section is devoted to the study of the ambient group of a general hyper-
bolic manifold admitting a hypersurface. Our goal is to prove:

Theorem 3.8. Let n ≥ 3 and Γ ⊂ PO(n, 1) be a torsion-free lattice such that
the corresponding manifold M = Γ\Hn contains an immersed hypersurface.
Then the ambient group of Γ is POf , where f is some quadratic form defined
over the trace field of Γ.

This is stated in [LM93], and follows also from [Me17, Proof of Theorem E],
except for the case of trialitarian groups of type D4 in dimension 7 (note
however that the proof contains a small gap for n ≤ 7 since the final rank
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inequality is not satisfied there). We will give a proof which also covers the
case of groups of type D4.
The main tool in proving Theorem 3.8 will be a proposition about reflections

through hypersurfaces, which is interesting in its own right. This proposition
and its proof are the subject of next section.

3.2.1 Rational reflections. The goal of this section is to prove the following
proposition and use it to deduce Theorem 3.8.

Proposition 3.9 (Reflections are rational). Let M be a hyperbolic manifold
with trace field k and ambient group G, and identify G(R) with PO(n, 1). Let
R ⊂ Hn be a hyperplane lift of an immersed hypersurface N ⊂ M , and let
ρ ∈ G(R) denote the reflection through R. Then ρ ∈ G(k).

We will first need a lemma:

Lemma 3.10. Let G = On(C), seen as an algebraic group over C. Let R ⊂ Cn

be a hyperplane with corresponding reflection ρ ∈ G and let G0 ⊂ G be a
Zariski-closed subgroup such that 〈G0, ρ〉 = StabG(R). Then the centralizer
ZG(G0) of G0 in G equals {±I,±ρ}, where I is the identity matrix.

Proof. Up to conjugation, we may assume that R = {xn = 0}. Then

StabG(R) = On−1(C)× {±1}

diagonally embedded in G, and a straightforward computation shows that
ZG(StabG(R)) = {±I,±ρ}. Thus it is enough to prove that the group ZG(G0)
equals ZG(StabG(R)).
Let g ∈ ZG(G0). Since 〈G0, ρ〉 = StabG(R), it suffices to show that g

commutes with ρ. For a contradiction, assume not. This implies gρg−1 6= ρ
and thus gR 6= R. But every g0 ∈ G0 commutes with gρg−1, whence fixes gR.
Therefore

G0 ⊂ StabG(R) ∩ StabG(gR) ∼= On−2(C)× {±1} × {±1}.

This contradicts dimG0 = dimOn−1(C).

Proof of Proposition 3.9. We will identify G(R) and PO(n, 1) for convenience.
Let Γ0 = StabΓ(R), and let G0 be the Zariski-closure of Γ0 in G.
We claim that the centralizer Z = ZG(G0) of G0 in G consists of the two ele-

ments {1, ρ}. Since the hypersurface N ∼= Γ0\R has finite volume, Borel’s den-
sity theorem implies 〈G0, ρ〉 = StabG(R). Now we can choose an isomorphism
G(C) ∼= On+1(C)/{±1}, lift our groups to On+1(C) and apply Lemma 3.10 to
deduce the claim.
By Zariski-density,

Z =
⋂
γ∈Γ0

{g ∈ G | gγ = γg}
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and Z is thus k-closed. Since it has two elements and 1 ∈ Z(k) is fixed by all
k-automorphisms of C, the same must hold for ρ. Thus ρ ∈ Z(k) ⊂ G(k).

We are ready for the:

Proof of Theorem 3.8. By definition, the ambient group of Γ is a k-form of
PO(n,1) (see Remark 3.1.6). If n is even, there is thus nothing to do (the only
possible k-forms of PO(n, 1) are POf , see Theorem 2.8). Assume n odd. Let
G be the ambient group of Γ, k its trace field. Identify G(R) with PO(n, 1).
The embedded hypersurface lifts to a hyperplane R ⊂ Hn, whose reflection ρ
is in G(k), by Proposition 3.9. The group StabG(R)(R) is the real points of an
algebraic subgroup G0 ⊂ GR defined by

G0 = ZG(ρ) = {g ∈ G | gρ = ρg}.

It is thus a k-subgroup of G, and it follows (again by the classification of
k-forms of PO(n−1,1)) that G0 is isomorphic to Of0 , for some quadratic form
f0 defined over k.
Let f = f0 +x2

n, where xn is a variable not occurring in f0. We consider the
model Hf for Hn, with isometry group POf (R). It is clear that there exists an
isomorphism ϕ : GK → POf,K defined over some finite field extension K/k,
which we assume to be Galois. Furthermore, we can assume that the restriction
ϕ|G0,K

is the k-isomorphism ψ : G0 → Of0 from the previous paragraph, i.e.,
that ϕ is such that

GK POf,K

G0,K Of0,K

ϕ

ψK

commutes.
Let σ ∈ Gal(K/k), and consider the automorphism of POf,K given by

α = σϕ ◦ ϕ−1 : POf,K GK POf,K .
ϕ−1 σϕ

By the classification of automorphisms of POf,K (see Theorem 2.11), there is
a g ∈ POf (K) such that

α(x) = gxg−1.

Moreover, since the isomorphism G0
∼= Of0 is over k, we have that

α|Of0,K
= id,

and thus g must commute with all elements ofOf0 . Therefore (by Lemma 3.10)
g ∈ {id, ρ}, where ρ ∈ POf (k) is the reflection through the quadratic subspace
defined by {xn = 0}.
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Let β : POf → POf denote the automorphism of POf induced via conju-
gation by ρ. It follows that for every σ ∈ Gal(K/k), we have

σϕ ◦ ϕ−1 ∈ {id, β}.

Since id and β are k-automorphisms, we have

στϕ ◦ ϕ−1 = σ(τϕ ◦ ϕ−1) ◦ σϕ ◦ ϕ−1 = τϕ ◦ ϕ−1 ◦ σϕ ◦ ϕ−1

and it follows that σ2
ϕ ◦ ϕ−1 = (σϕ ◦ ϕ−1)2 = id.

Let N = 〈σ2 | σ ∈ Gal(K/k)〉; it is a normal subgroup of Gal(K/k), and
thus the extension

` = KN/k

is Galois. Since the square of all elements of the group Gal(`/k) ∼= Gal(K/k)/N
is trivial, it is a group isomorphic to a product of Z/2. Thus ` is a multi-
quadratic extension of k, and since (by the previous paragraph)

σϕ ◦ ϕ−1 = id ∀σ ∈ N,

we have that ϕ is actually defined over `.
Write ` = k(

√
a1, . . . ,

√
ar), and let σi ∈ Gal(`/k) be the automorphism

sending
√
ai to −

√
ai and fixing √aj for j 6= i. Let {i1, . . . , is} be the set of

indices such that σiϕ ◦ ϕ−1 = β, and define the quadratic form

q = f0 + ax2
n, where a = ai1 · · · ais .

Then q is a quadratic form over k, which becomes isomorphic to f over `.
More precisely, we have

q = f ◦ A, where A =

(
I 0
0
√
a

)
.

Let ψ : POq,` → POf,` be the corresponding isomorphism of algebraic groups.
By construction, σiψ ◦ ψ−1 equals β exactly when i ∈ {i1, . . . , is}, i.e., when

σiϕ ◦ ϕ−1 = β. Hence

σϕ ◦ ϕ−1 = σψ ◦ ψ−1 ∀σ ∈ Gal(`/k).

Consider the isomorphism η : POq,` → G` given by η = ϕ−1 ◦ ψ. Then the
above equation rewrites as

σϕϕ−1 = σψψ−1 ⇔ σϕϕ−1ψ = σψ ⇔ ϕ−1ψ = σ(ϕ−1)σψ ⇔ η = ση

for all σ ∈ Gal(`/k). Thus η is defined over k and G ∼= POq, as desired.
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3.2.2 Manifolds of type I. It follows from the results of the previous section
that any finite-volume hyperbolic manifold M with non-empty finite-volume
totally geodesic boundary satisfies the following:

1. The trace field k of M is a number field, naturally embedded in R.

2. The ambient group of M is POf , where f is a quadratic form over k
such that POf (R) ∼= PO(n, 1).

This last property suggests that the natural setting to study these manifolds
is by using the hyperbolic models Hf defined in Section 2.2.5.

Definition 3.2.1. A manifold of type I is a hyperbolic manifold of finite-
volume with (possibly empty) boundary, all of whose boundary components
are totally geodesic and of finite volume, such that its ambient group is POf

for some quadratic form f . If M is a manifold of type I with trace field k, a
model for M is a universal cover M̃ ⊂ Hf (that is isometrically embedded, as
in Proposition 2.18) with a covering map M̃ �M such that the corresponding
group of deck transformations Γ lies in POf (k).

To end this section, we give two results which we will need in the sequel.
The first is about hypersurfaces in manifolds of type I, and is a corollary of
Proposition 3.9.

Proposition 3.11. Let M be a manifold of type I, and let M̃ ⊂ Hf be a model
for M . Let N ⊂M be a hypersurface in M . Then any hyperplane lift R ⊂ Hf

of N is defined over k (i.e., corresponds to the f -orthogonal complement of a
vector x ∈ kn+1).

Proof. Let GOf denote the group of similitudes of f (that is, the extension
of the orthogonal group Of by the multiplicative group Gm, see [INV98, §12
and §23]). Then POf fits in the exact sequence of algebraic groups

1→ Gm → GOf → POf → 1,

and since H1(k,Gm) = 0 (Hilbert’s Theorem 90) we have that the induced
map GOf (k)→ POf (k) is surjective (see [Se68, Proposition 1, p. 133]).
By Proposition 3.9, the reflection ρ at R lifts to an element ρ̃ ∈ GOf (k).

Let V denote the k-quadratic space defined by f , and let W ⊂ V ⊗k R be the
subspace corresponding to R. Since W is described by the equation

W = {x ∈ V ⊗k R | ρ̃x = x},

it is defined over k. Thus so is its orthogonal complement in V , i.e., there is
v ∈ V such that W = v⊥f ⊗k R, as desired.

The final lemma is a technical result which explains how isometries of man-
ifolds of type I induce isometries of the models.
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Lemma 3.12. LetM1,M2 be manifolds of type I, and for i = 1, 2 let M̃i ⊂ Hfi

be a model for Mi. Assume there exists an isometry φ : M1 → M2, and let k
denote the trace field of M1 (and thus of M2). Then φ lifts to an isometry
Hf1 → Hf2 induced by a matrix A ∈ GLn+1(k) such that f2 ◦A = λf1 for some
λ ∈ k.

Proof. The isometry φ induces an isomorphism Φ: POf1 → POf2 of the am-
bient groups which is defined over k. By Theorem 2.14, this isomorphism is
induced by a matrix A ∈ GLn+1(k) such that f2 ◦ A = λf1 for some λ ∈ k.
In turn, the isometry Hf1 → Hf2 induced by A coincides with φ (since they
induce the same isomorphism POf1 → POf2).

3.3 | Computation in the arithmetic case

This section is devoted to the computation of the trace field and ambient
group of arithmetic groups. Let Γ ⊂ PO(n, 1) be an arithmetic lattice. By
definition, there exists an admissible algebraic group G defined over a totally
real number field k ⊂ R such that G(R) ∼= PO(n, 1) and Γ is commensurable
with the image of G(Ok) in PO(n, 1).

Theorem 3.13. Let Γ be as above. Then the trace field of Γ is k and its
ambient group is G.

Proof. This follows from [PR09, Lemma 2.6], yet we will give an easier proof
in our more specific case.
Identify G(R) with PO(n, 1). Since the trace field and ambient group are

invariant under commensurability, we can assume that Γ is in G(k). Thus it
is sufficient to show that the trace field of Γ coincides with k, since then it will
follow from uniqueness of ambient groups that G is the ambient group of Γ.
Let ` be the trace field of Γ. Since the isomorphismG(R) ∼= PO(n, 1) induces

an isomorphism of the Lie algebras, the traces of the adjoint representations
coincide and we have ` ⊂ k. For the reverse inclusion we know from the
previous section that there exists an algebraic group F defined over ` such that
F(R) ∼= PO(n, 1) and Γ ⊂ F(`) via this isomorphism. By Proposition 2.13, we
see that G ∼= Fk. Since k is totally real, each embedding ` ↪→ R extends to
exactly [k : `] embeddings k ↪→ R. Moreover, as

G(k ⊗Q R) = F(k ⊗Q R) ∼= F(`⊗Q R)[k:`],

the number of non-compact factors in G(k⊗Q R) is a multiple of [k : `]. Since
G is admissible, there is only one such factor. This forces [k : `] = 1, and the
theorem is proven.
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Finally, we give a corollary about the trace field of arithmetic manifolds
sharing a hypersurface.

Corollary 3.14. Let M1,M2 be arithmetic manifolds of type I, with hypersur-
faces Ni ⊂ Mi. Assume N1 and N2 are commensurable. Then the trace fields
of M1 and M2 coincide.

Proof. By Theorem 2.25, the hypersurfaces Ni are arithmetic and commen-
surable to a common manifold N0 = Γ0\Hf0 with Γ0 commensurable to
POf0(Ok), for some admissible quadratic form f0. Thus their trace field is
k, and again by Theorem 2.25, this is the trace field of M1 and M2.
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Chapter 4 | Gluings

This chapter introduces gluing constructions and gives tools to compute their
trace fields and ambient groups. In the first section, we start by defining gluings
in a broad sense that encompasses all known constructions. We then review in
Section 4.2 the classical gluing constructions of nonarithmetic manifolds using
pieces of arithmetic manifolds (the method of Gromov and Piatetski-Shapiro
and its generalizations).
In Section 4.3 we proceed to state and prove the main results of this thesis

(concerning gluings). The idea is that an isometry used to glue pieces of man-
ifolds together at a given hypersurface admits naturally a field of definition,
which turns out to coincide with the trace field of the resulting gluing. This
allows one to compute the trace field of gluings easily by choosing appropriate
models for the pieces. We apply this technique in Section 4.4 to deduce gen-
eral corollaries of the main theorem and compute the trace field of manifolds
obtained using the previously described classical gluing constructions.
In Section 4.5, we use these constructions with pieces of commensurable

arithmetic manifolds and show that one can realize an arbitrary large trace
field. Finally, we give examples (in any even dimension n ≥ 4) of pieces
of arithmetic manifolds whose trace field increases under “closing up” (see
Definition 4.1.2).

4.1 | General hyperbolic gluings

4.1.1 Interbreeding and closing up. In this section we introduce the notion of
gluing of hyperbolic manifolds in its most general form. Since all our manifolds
will have hypersurfaces (or boundary hypersurfaces) we will restrict our atten-
tion on manifolds of type I (see Section 3.2.2). Recall that those are finite-
volume hyperbolic manifolds with (possibly empty) boundary, all of whose
components are totally geodesic and of finite volume. Moreover, these are re-
quired to have an ambient group of the form POf (if they have (boundary)
hypersurfaces, this is always satisfied, see Theorem 3.8).
Let M1 and M2 be manifolds of type I, and assume there are boundary

hypersurfaces N1 ⊂ ∂M1 and N2 ⊂ ∂M2 which are isometric. Topologically,
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we can glue M1 with M2 together along these boundary components. More
precisely, let ϕ : N1 → N2 be an isometry, and let M denote the adjunction
space

M = M1 ∪ϕM2 = M1 tM2/ ∼ϕ
where ∼ϕ is the equivalence relation induced by x ∼ ϕ(x) for all x ∈ N1.
This is a topological space, which is naturally endowed with a structure of
hyperbolic manifold with boundary, as we will see below.

Definition 4.1.1. The manifold M = M1 ∪ϕM2 is called an interbreeding of
M1 and M2 along ϕ.

This construction can also be applied to glue a manifoldM1 to itself. Indeed,
let M1 be a manifold of type I and let N1, N2 ⊂ ∂M1 be two disjoint isometric
boundary hypersurfaces. Then if ϕ : N1 → N2 is an isometry, we can form the
quotient space

M = M1/ ∼ϕ
where ∼ϕ is the equivalence relation induced by x ∼ ϕ(x) for all x ∈ N1.
As before, this space admits a natural structure of hyperbolic manifold with
boundary, as we will see in the next theorem.

Definition 4.1.2. The manifold M = M1/ ∼ϕ is called the closing up of M1

along ϕ.

The following theorem justifies the fact that we call these constructions
manifolds.

Theorem 4.1. Interbreedings and closing ups have a natural complete struc-
ture of hyperbolic manifold around the glued hypersurface N1 = N2 ⊂M .

Proof. The proof is the same as that of Theorem 2.10.B in [GPS87], which
treats the special case in which M1 and M2 have only one or two boundary
components. It is to be noted that the condition that N1 and N2 have finite
volume is essential.

The common object that will play a central role in trace field computations
is the following.

Definition 4.1.3. The isometry ϕ : N1 → N2 used in the construction of
interbreedings and closing ups is called the gluing isometry.

In general, we want to look at gluings which have pre-defined pieces as
building blocks, whence the next definition.

Definition 4.1.4. LetM be a set of hyperbolic n-manifolds of type I, of fixed
dimension n. Then the gluings of M is the smallest set Mgl containing M
and closed under interbreedings and closing ups.

Thus for each manifold M ∈ Mgl there exists a sequence M0, . . . ,Mr with
M0 ∈M,Mr = M andMi+1 obtained either by closing upMi or interbreeding
it with a manifold inM.



4.1. GENERAL HYPERBOLIC GLUINGS 53

4.1.2 Arithmetic pieces. The main examples of gluings for this thesis will be
constructed using arithmetic pieces:

Example 4.1.5. Let A denote the set of all pieces of arithmetic n-manifolds.
Then the elements of the set Agl are gluings of arithmetic pieces. As said in the
introduction, as of today, the known examples of nonarithmetic manifolds arise
either from hyperbolic Coxeter groups or from gluing constructions involving
arithmetic pieces. Since finite covolume (resp. cocompact) Coxeter groups do
not exist in dimensions n ≥ 996 (resp. n ≥ 30), see [Pr86, Vi81], we see that
the set Agl contains all known examples of nonarithmetic hyperbolic manifolds
large dimension.
It was however recently shown by Fisher, Lafont, Miller and Stover [FLMS18]

that there exists a hyperbolic manifold M of dimension 5 which is not com-
mensurable to a gluing of non-commensurable arithmetic pieces. Therefore
M /∈ Agl. However, it turns out that this manifoldM is still pseudo-arithmetic
(see [EM18] and Chapter 5).

In Section 2.3.3 we explained how to construct arithmetic hyperbolic mani-
folds containing hypersurfaces. We will now use this process to produce arith-
metic pieces with prescribed boundary (up to commensurability).
Let k ⊂ R be a totally real number field, and let f = f0 + ax2

n be an
admissible quadratic form over k, with f0 = f0(x0, . . . , xn−1) and a ∈ k totally
positive. Let Γ ⊂ POf (k) be the image of O(Ok) in POf . It is an arithmetic
lattice in POf (R) and it follows from Selberg’s lemma (Theorem 2.19) that
there exists a congruence subgroup Γ1 ⊂ Γ which is torsion-free, i.e., such that
Γ1\Hf is a hyperbolic manifold.
Let R ⊂ Hf be the hyperplane defined by the subspace {xn = 0}. As

seen in Theorem 2.25, the subgroup Λ = StabΓ(R) is a lattice in the group
StabPOf (R)(R) ∼= Of0(R). Therefore, by subgroup separability (Theorem 2.21)
there exists a further finite-index subgroup Γ2 ⊂ Γ1 such that the map
Λ2\R ↪→ Γ2\Hf is an embedding, where Λ2 = StabΓ2(R). In fact, since
we are dealing with arithmetic manifolds, we can use Theorem 2.26 with one
hyperplane, which allows us to take Γ2 as a congruence subgroup.
The hyperplane R maps onto a hypersurface in M . The next proposition

shows that by taking a further finite index subgroup, we can ensure that the
collection of hyperplanes Γ2 · R projects down to as many copies of N as we
want:

Proposition 4.2. Let M be an orientable arithmetic manifold and N ⊂M an
orientable embedded hypersurface. Then for any m ∈ N, there exists a finite
normal coveringM ′ �M such that there are m disjoint lifts N1, . . . , Nm ⊂M ′

of N , all isometric to it, such that M ′ \
⋃
Ni is connected.

Proof. Proposition 4.3 of [GL14].
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It follows that for each m, there exists a (normal) finite-index subgroup
Γ3 ⊂ Γ2 such that M3 = Γ3\Hf contains m disjoint copies N1, . . . Nm of N ,
and such that M3 \

⋃
Ni is connected. Thus its completion M is a piece

of arithmetic manifold which has 2m boundary components, all of which are
isometric to N .
We sum this up in a proposition-definition that we will use later.

Proposition 4.3. Let k ⊂ R be a totally real number field, f = f0 + ax2
n a

quadratic form over k, with f0 = f0(x0, . . . , xn−1) admissible and a ∈ k totally
positive. Let Γ ⊂ POf (k) denote the image of the group Of (Ok) in POf ,
and for an ideal a ⊂ Ok let Γ(a) ⊂ Γ denote the congruence subgroup of Γ of
level a, i.e., the image of the group ker(Of (Ok) → Of (Ok/a)) in POf . Let
R ⊂ Hf denote the hyperplane corresponding to the subspace {xn = 0}, let
Λ = StabΓ(R) and set Λ(a) = Λ ∩ Γ(a). Then:

1. Λ(a) is the image of ker(Of0(Ok)→ Of0(Ok/a)) in POf .

2. There exists an ideal a ⊂ Ok such that Γ(a) is torsion-free and the cov-
ering Hf �M = Γ(a)\Hf induces an embedding

N = Λ(a)\Hf0
∼= Λ(a)\R ↪→M = Γ(a)\Hf ,

with both N and M orientable.

3. For such an a and each m ∈ N, there exists a finite-index normal sub-
group Γ′ ⊂ Γ(a) and m elements γ1, . . . , γm ∈ Γ(a) such that the hy-
perplanes γiR project to disjoint hypersurfaces Ni ⊂ M ′ = Γ′\Hf , all
isometric to N and such that M ′ \

⋃
Ni is connected.

Definition 4.1.6. An arithmetic piece of type (f = f0 + ax2
n, a ⊂ Ok) is a

piece obtained as the completion of a connected component of M \N , where
M,N, f, a are as in 2. of Proposition 4.3. An arithmetic piece of type (f, a,m)
is a piece obtained as the completion of M ′ \

⋃
Ni, where M ′, Ni, f, a,m are

as in 3. of Proposition 4.3.

We end this section by introducing for each boundary hypersurface a canon-
ical choice of model for arithmetic pieces. Let M be an arithmetic piece of
type (f, a) or (f, a,m) and let N ⊂ ∂M be a hypersurface in the boundary.
By definition,M is a piece of Γ1\Hf , where Γ1 is a finite-index subgroup of the
congruence subgroup Γ(a) and Γ is the image of Of (Ok) in POf . Let M̃ ⊂ Hf

be a model for M with monodromy representation Γ+ ⊂ Γ1 ⊂ POf (k) such
that Γ+ = StabΓ(M̃), and let R ⊂ ∂M̃ be a hyperplane lift of N . Then there
exists an element γ ∈ Γ(a) such that γR is the hyperplane R0 corresponding to
{xn = 0}. Moreover, it is easy to see that such a γ is unique up to multiplying
with elements of StabΓ+(R0) on the left.
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Let π : M̃ � M denote the covering map, and let M̃N = γM̃ . Then the
composition π◦γ−1 : M̃N → M̃ �M is a universal covering ofM , independent
of the choice of γ. Moreover, since γ ∈ Γ(a) ⊂ POf (k), we see that M̃N ⊂ Hf

is actually a model for M , with monodromy representation

γΓ+γ−1 ⊂ POf (k).

Definition 4.1.7. The model M̃N ⊂ Hf is called a canonical model for M
with respect to N .
This model will be useful when computing trace fields of gluings of arithmetic

pieces.

4.2 | Nonarithmetic gluings
This section surveys the existing gluing constructions for hyperbolic manifolds.
These were originally introduced by Gromov and Piatetski-Shapiro as a way of
obtaining nonarithmetic lattices in arbitrary dimension. We start by recalling
their classical construction and then explore further generalizations.

4.2.1 Gromov and Piatetski-Shapiro’s construction. We will consider the glu-
ing construction of Gromov and Piatetski-Shapiro in the broadest sense. For
i = 1, 2, let Mi be an arithmetic piece of type (fi = f0 + aix

2
n, a ⊂ Ok) (see

Definition 4.1.6). Recall that this means that fi is an admissible quadratic
form over a totally real number field k ⊂ R, with (totally) positive x2

n coeffi-
cient, and that a ⊂ Ok is an ideal chosen such that the corresponding lattice
Γ(a) ⊂ POfi is torsion free and the hyperplane R ⊂ Hfi corresponding to
{xn = 0} projects down to a hypersurface in the boundary ∂Mi of Mi.
By construction, all boundary component(s) M1 and M2 are isometric to an

arithmetic manifold N corresponding to the quadratic form f0, i.e.,

N = Λ(a)\Hf0 where Λ = image of Of0(Ok) in POf0 .

Now assume further that the arithmetic manifolds corresponding to fi are
non-commensurable (i.e., that the quadratic forms are not similar, see Theo-
rem 2.24). Since M1 and M2 have isometric boundary component(s), we can
glue them together, first interbreeding at one boundary component and closing
up the (potentially) remaining boundary component; call M the correspond-
ing manifold. Observe that the gluing isometry is not specified. However
this is not needed for the purpose of nonarithmeticity since we started with
non-commensurable arithmetic groups:
Proposition 4.4. The gluing M is nonarithmetic.
Proof. See [GPS87, §2.9].

There is however a canonical choice of gluing isometry, which we now define.
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Definition 4.2.1. For i = 1, 2, let Mi be an arithmetic piece of type (fi, a)
or (f, a,mi), for f = f0 + aix

2
n, a ⊂ Ok and mi ≥ 1. Let Ni ⊂ ∂Mi be

a hypersurface in the boundary, and let M̃i ⊂ Hfi be the canonical model
for Mi with respect to Ni, such that the hyperplane Ri ⊂ Hfi corresponding
to {xn = 0} is a hyperplane lift of Ni. Then the canonical gluing isometry
ϕ : N1 → N2 is the map induced by the identification R1 = Hf0 = R2 in the
universal covers of N1, N2.

We will see in further detail how the gluing isometry influences the trace
field of the glued manifold (even when the pieces come from commensurable
manifolds) in Sections 4.4 and 4.5.

4.2.2 Generalizations. The gluing construction of previous section can be gen-
eralized to construct many non-commensurable nonarithmetic manifolds, and
give lower bounds on the number of commensurability classes of nonarithmetic
manifolds of volume less than v, as v → ∞. The idea is to glue many pieces
together according to a specific colored graph, and to show that the result-
ing gluings are commensurable exactly when the graphs are isomorphic. This
process was first used by Raimbault [Ra13] and generalized by Gelander and
Levit [GL14]. We will briefly explain this latter construction.

Let f0(x0, . . . , xn−1) be an admissible quadratic form over a totally real num-
ber field k, and for i = 1, . . . , 6, let fi = f0 + aix

2
n for some totally positive

ai ∈ k. Assume that the fi are pairwise non-similar (so that the arithmetic
groups they define are pairwise non-commensurable) and let Mi be an arith-
metic piece of type (fi, a ⊂ Ok,mi), where a ⊂ Ok is a fixed ideal and

m1 = m2 = 2, m3 = · · · = m6 = 1.

Since the pieces Mi all have isometric boundary components, one can inter-
breed them together or close them up in any way we like (for example using
the canonical gluing isometry of Definition 4.2.1). The idea of Gelander and
Levit is to glue them along a graph ∆ obtained as 2-coloring the quotient of
the Cayley Graph of the free group F on two generators a and b by a finite
index subgroup H ⊂ F . Thus ∆ is a 2-colored 4-regular oriented graph with
edges labeled in {a, a−1, b, b−1}. Let V1 = M1 and V2 = M2, and define A
(resp. A−1) to be the “oriented interbreeding” of M3 with M4 (resp. of M4

with M3). Let B,B−1 be defined analogously with M5 and M6. Then to each
graph ∆ constructed above corresponds a glued manifold M∆ constructed by
taking a copy of V1 or V2 for each vertex (depending on the coloring) and by
gluing the manifolds A,A−1, B,B−1 depending on the edges of ∆. Again, the
gluing isometries do not matter if one is interested in nonarithmeticity and
non-commensurability:

Proposition 4.5. Let ∆,∆′ be two non-isomorphic graphs as above, each hav-
ing a single vertex of color 1. Then the two manifolds M∆ and M∆′ are non-
commensurable.
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Proof. See [GL14, Proposition 3.3].

By estimating the number of such colored graphs ∆, they are able to con-
struct many pairwise non-commensurable non-arithmetic manifolds.
Another important construction of nonarithmetic manifolds is due to Be-

lolipetsky and Thomson [BT11] (following an idea of Agol [Ag06] in dimension
4). The idea is to construct, for each ε > 0, an arithmetic piece having two
boundary components which are at distance ≤ ε of each other (using Theo-
rem 2.26). The double of such a piece then has systole ≤ 2ε, and as ε → 0
such a manifold cannot be arithmetic.
It turns out that the manifolds of Agol-Belolipetsky-Thomson are all quasi-

arithmetic (see Thomson [Th16] for a proof, and Section 5.1 for a definition).
It follows that the trace field of the gluing is the same as that of the original
manifold. Alternatively, this is also a consequence of Proposition 4.11 below,
which states that the trace field never increases when taking the double of
a piece of a manifold (arithmetic or not). There is however a finer invariant
called the trace ring which allows to distinguish between the commensurability
classes of these manifolds, see [Mi18].

4.3 | Trace fields and ambient groups of gluings

This section contains the main result of this thesis concerning gluings (Theo-
rem 4.7). In the first part, we define extensions of gluing isometries, and show
that they admit naturally a field of definition which depends only on the orig-
inal gluing isometry. In the second part, we prove that it coincides with the
trace field of the resulting gluing (interbreeding or closing up). This method
will allow us to easily compute the trace field of gluings of manifolds of type I
and derive interesting corollaries.
We will generally assume that the manifolds used in the gluing constructions

are of dimension n ≥ 4. The reason for this choice is that the trace field
of hyperbolic surfaces and 3-manifolds is usually studied using the algebraic
groups PSL2(R) and PSL2(C) instead of PO(n,1)(R) for the isometries of Hn,
see Remark 3.1.4 and [MR03, Chapters 1 and 3]. For (invariant) trace field
computations of gluings in dimension 3, see Neumann and Reid [NR91].

4.3.1 Field of definition of gluing isometries. In this section we will consider
gluing isometries (see Definition 4.1.3), and attach a certain field to them.
Let M1,M2 be manifolds of type I, and assume they have isometric boundary
hypersurfaces N1

∼= N2, where Ni ⊂ ∂Mi. Let ϕ : N1 → N2 be a gluing
isometry (here we allow the closing up case by settingM1 = M2). Let M̃i ⊂ Hf

be a model for Mi and let Ri ⊂ ∂M̃i be a hyperplane lift of Ni.
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Definition 4.3.1. An extension of ϕ is an isometry φ : Hf1 → Hf2 sending
R1 to R2 such that the following diagram commutes (where the vertical maps
are the coverings):

R1 R2

N1 N2.

φ

ϕ

In terms of the monodromy representations Γi ⊂ POfi(ki) this implies that

φ StabΓ1(R1)φ−1 = StabΓ2(R2).

Such a φ always exists. Indeed, the composition R1 � N1 → N2 is a covering
ofN2, and since R1 is connected and simply connected, it is a universal covering
of N2. Thus R1 � N2 factors through R2, and we get a map φ : R1 → R2 which
fits in a commutative diagram as above. Now it simply remains to arbitrarily
extend φ to a map Hf1 → Hf2 .
The isometry φ is induced via multiplication by a matrix A ∈ GLn+1(R) such

that f1 = f2 ◦A, and thus naturally induces (via conjugation) an isomorphism
of algebraic groups

Φ: POf1,R −→ POf2,R

g 7−→ φ g φ−1.

This isomorphism is algebraic and hence admits a field of definition (see Sec-
tion 2.1.2). The main lemma of this section is the following.

Lemma 4.6. The field of definition of Φ depends only on ϕ.

This motivates the following definition:

Definition 4.3.2. Let ϕ be a gluing isometry. The field of definition of ϕ is
the field of definition of the induced isomorphism Φ.

Proof of Lemma 4.6. We treat both the interbreeding and closing up case at
once by setting M1 = M2 in the latter. Let ϕ : N1 ⊂ ∂M1 → N2 ⊂ ∂M2 be a
gluing isometry, let φ, φ′ be two extensions and let Φ,Φ′ be the corresponding
isomorphisms on the ambient groups. By definition, φ and φ′ can be defined
using arbitrary models for M1 and M2. The first step is to reduce the proof to
the case where both φ and φ′ are defined using fixed models M̃1 for M1 and
M̃2 for M2.
Let M̃ ⊂ Hf and M̃ ′ ⊂ Hf ′ be two models for M1. By uniqueness of

universal covers, there exists an isometry ψ : M̃ → M̃ ′ such that the following
diagram commutes, where the diagonal arrows are the covering maps:

M̃ M̃ ′

M1.

ψ
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This isometry extends to an isometry ψ : Hf → Hf ′ , and if Γ ⊂ POf (k) and
Γ′ ⊂ POf ′(k) are the monodromy representations corresponding to the above
coverings, the commutative diagram implies that

ψ Γ ψ−1 = Γ′.

Since Γ is (almost) Zariski-dense in POf and Γ′ ⊂ POf (k), it follows from
Proposition 2.13 that the isomorphism Ψ1 : POf,R → POf ′,R induced by ψ is
defined over k1, the trace field of M1. Similarly, for M2 any two choices of
models give rise to such an isomorphism Ψ2 of the ambient groups, which is
defined over k2, the trace field of M2.
Now changing the models of M1 and M2 in an extension φ of ϕ amounts to

replacing the induced isomorphism Φ with Ψ1 ◦Φ ◦Ψ−1
2 , for Ψ1, Ψ2 defined as

above. Since Ψ1 and Ψ2 are defined over the trace fields k1 and k2 of M1 and
M2 respectively, and since the field of definition of Φ contains (by definition)
both k1 and k2, we see that it must equal the field of definition of Ψ1 ◦Φ◦Ψ−1

2 .
Therefore, for i = 1, 2, we can fix a model M̃i ⊂ Hfi forMi with monodromy

representation Γi ⊂ POfi(ki), and assume that both extensions φ and φ′ are
maps Hf1 → Hf2 . Moreover, since all hyperplane lifts Ri ⊂ ∂M̃i of Ni ⊂ ∂Mi

are in the same Γi orbit, we can assume (up to replacing φ′ by γ2 ◦ φ′ ◦ γ1 for
some γ1 ∈ Γ1 and γ2 ∈ Γ2) that there are hyperplane lifts R1 ⊂ ∂M1 of N1 and
R2 ⊂ ∂M2 of N2 such that both φ and φ′ send R1 to R2. Observe that since
conjugation by γi ∈ Γi is an operation defined over ki, the same argument as
before implies that we do not change the field of definition of Φ′.
Now since both φ and φ′ are extensions of the same ϕ : N1 → N2, the

isometry φ−1 ◦ φ′ fixes R1, and induces the identity isometry N1 → N1. By
Proposition 2.17 we thus have that φ−1 ◦ φ′ = γ or ρ1γ, where γ ∈ StabΓ1(R1)
and ρ1 is the reflection about R1. Since γ fixes R1, we can again replace φ′
with φ′ ◦γ−1 (as before without changing the field of definition of Φ′) to obtain

φ−1 ◦ φ′ ∈ {1, ρ1}.

It follows that

Φ′ = Φ ◦Ψ, Ψ ∈ {1, conjugation by ρ1}.

Since ρ1 ∈ POf1(k1) by Proposition 3.9 we see that the fields of definition of
Φ and Φ′ coincide, as desired.

4.3.2 The trace field of gluings. The goal of this section is to prove the main
theorem of this thesis:

Theorem 4.7. Let M be a manifold of type I constructed either by inter-
breeding M1 and M2, or closing up M1. Let ϕ denote the corresponding gluing
isometry. Then the trace field of M coincides with the field of definition of ϕ.
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In what follows we will often blur the distinction between a piece M1 and
its interior. In particular, we will see a piece of a manifold as embedded in it,
although the boundary components may be identified. The following (easy)
lemma allows us to adapt the model of a piece to that of the manifold which
contains it, in a way that respects the hypersurfaces.

Lemma 4.8. Let M be a manifold of type I, let j : M1 →M be an embedding
of (the interior of) M1 as a piece of M and let N ⊂ M1 be a hypersurface.
Let M̃1 ⊂ Hf1 be a model for M1 with monodromy representation Γ1 ⊂ POf1,
and let M̃ ⊂ Hf ,Γ ⊂ POf be defined similarly for M . Let R1 ⊂ M̃1 (resp.
R ⊂ M̃) be a hyperplane lift of N (resp. j(N)). Then there exists an isometry
φ : Hf1 → Hf such that the diagram of Figure 4.1 commutes. In particular, if
Φ: POf1,R → POf,R denotes the isomorphism induced by φ, we have

Φ(Γ1) = StabΓ(φ(M̃1)).

Hf1 Hf

M̃1 M̃

R1 R

M1 M

N j(N).

φ

φ

φ

j

j

Figure 4.1: A “chair” diagram.

Proof. Let M̃ ′
1 be a connected component of the pre-image of j(M1) ⊂ M

under the covering M̃ � M . Then the induced map M̃ ′
1 � M1 is a universal

covering of (the interior of) M1, and it follows that there exists an isometry
φ : M̃1 → M̃ ′

1 ⊂ M̃ which induces the embedding j : M1 →M . Since these are
intersection of half-spaces, φ is the restriction of an isometry φ : Hf1 → Hf .
As the choice of M̃ ′

1 was arbitrary, we can assume that R ⊂ M̃ ′
1. Now φ−1(R)

is a hyperplane lift of N , and hence there exists an element γ1 ∈ Γ1 such that
γ1(R1) = φ−1(R). Thus upon replacing φ with φ ◦ γ1, we may assume that
φ(R1) = R. Since φ induces j on M1, it also induces j : N → j(N).
Looking at the group of deck transformations of M̃ ′

1 � j(M1), we see that
it equals StabΓ(M̃ ′

1). But since M̃ ′
1 = φ(M̃1), it must also equal Φ(Γ1), com-

pleting the proof.
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Corollary 4.9. Let k1 (resp. k) denote the trace field of M1 (resp. M). Then
k1 ⊂ k and the isomorphism Φ is defined over k, i.e., is an isomorphism of
k-groups Φ: POf1,k → POf .

Proof. We have Φ(Γ1) ⊂ Γ ⊂ POf (k). By minimality of the trace field, we
obtain k1 ⊂ k. Moreover, since Γ1 ⊂ POf1(k1) is (almost) Zariski-dense,
Proposition 2.13 implies that Φ is defined over k.

Remark 4.3.3. It follows that the ambient group of any gluing is always a
base extension of the ambient group of any of its pieces.

We are ready for the:

Proof of Theorem 4.7. We first consider the interbreeding case. For i = 1, 2,
let M̃i ⊂ Hfi be a model for Mi, and let M̃ ⊂ Hf be one for M . Let ki
(resp. k) denote the trace field of Mi (resp. M) and let Γi ⊂ POfi(ki) (resp.
Γ ⊂ POf (k)) be a monodromy representation for Mi (resp. M).
As the (interior of the) manifold M1 naturally embeds in M , Lemma 4.8

and its corollary imply that k1 ⊂ k and that we can assume f = f1, M̃1 ⊂ M̃ ,
Γ ⊂ POf1(k) and Γ1 = StabΓ(M̃1). Applying the same argument to the
embeddingM2 ↪→M gives that k2 ⊂ k and we have an isometry φ : Hf2 → Hf1

such that Φ(Γ2) = StabΓ(φ(M̃2)), where Φ is the isomorphism induced by φ.
Let Ni ⊂ Mi (i = 1, 2) denote the gluing hypersurface, and let N ⊂ M

denote the same hypersurface seen in M . Let R1 ⊂ M̃1 ⊂ M̃ be a hyperplane
lift of N1 (and of N), and let R2 ⊂ M̃2 be one of N2. It follows from Lemma 4.8
that we may choose φ such that φ(R2) = R1.
Let ϕ : N2 → N1 denote the gluing isometry. By construction, φ is an

extension of ϕ. Let ` denote the field of definition of ϕ; it is the field of
definition of the algebraic isomorphism Φ: POf2,R → POf1,R. Note that by
definition, ` contains k1 and k2. Observe that since π1(M) is generated by the
images of π1(M1) and π1(M2) under the natural maps induced via inclusion
Mi ↪→ M , it follows that Γ = 〈Γ1,Φ(Γ2)〉. Since Γ1 ⊂ POf1(k1) ⊂ POf1(`)
and Φ(Γ2) ⊂ Φ(POf2(k2)) ⊂ POf1(`), we see that the trace field k of Γ must
be contained in `. On the other hand, since Φ sends Γ2 ⊂ POf2(k2) ⊂ POf2(k)
into Γ ⊂ POf1(k), it follows from Proposition 2.13 that Φ is defined over k,
i.e., ` ⊂ k. This completes the proof in the interbreeding case.
We now consider the closing up case; we will use the same notation for M ,

M1 as in the interbreeding case. As before we have k1 ⊂ k and we can assume
(using Lemma 4.8) that f = f1, M̃1 ⊂ M̃ , Γ ⊂ POf1(k) and Γ1 = StabΓ(M̃1).
We let N1, N2 denote the two hypersurfaces in ∂M1, N the corresponding
hypersurface in M , R1 a hyperplane lift of both N1 and N , and R2 one of
N2. The fundamental group π1(M) is now generated by π1(M1) and a loop
λ starting on one side of N and ending on the other side. Let η ∈ Γ be the
isometry corresponding to λ; it follows that ηR1 is a hyperplane lift of N2.
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Since those are conjugate under the action of Γ1, there is a γ1 ∈ Γ1 such that
γ1ηR1 = R2. Set φ = γ1η. We have Γ = 〈Γ1, φ〉.
Again as before, φ is an extension of ϕ. Let ` denote the field of defini-

tion of ϕ, i.e., the field of definition of the induced (algebraic) automorphism
Φ: POf1,R → POf1,R. Since Φ is conjugation by φ ∈ Γ ⊂ POf1(k), we have
` ⊂ k. Moreover, Theorem 2.11 implies that φ ∈ POf1(`) and since k1 ⊂ `
and Γ ⊂ POf1(k1) we have k ⊂ ` and the proof is complete.

4.4 | Corollaries and computations
In this section we explore some by-products of Theorem 4.7 and compute the
trace field of the known constructions of nonarithmetic manifolds.

4.4.1 Gluing and quadratic extensions. The first corollary of Theorem 4.7 we
will see is the following.

Theorem 4.10. Let M be obtained either by interbreeding the manifolds M1

and M2 or by closing up M1. Let k denote the composite of the trace fields of
M1 andM2 in the interbreeding case, and the trace field ofM1 in the closing up
case. Then the trace field of M is an extension of k that is at most quadratic.

Proof. We treat both cases at once by setting M2 = M1 in the closing up
case. Let M̃i ⊂ Hfi be a model for Mi, and let Ni ⊂ Mi denote the gluing
hypersurface. Up to choosing a different orthogonal basis for fi, we may assume
that fi = qi+aix

2
n for some quadratic form qi and that the hyperplane Ri ⊂ Hfi

corresponding to {xn = 0} is a hyperplane lift of Ni ⊂ Mi. By Lemma 3.12,
the isometry ϕ : N1 → N2 is induced by a matrix A0 ∈ GLn(k) such that:

q2 ◦ A0 = λq1, for some λ ∈ k.

Thus up to replacing f2 with λ−1(f2 ◦ A) = q1 + λ−1a2x
2
n, where

A =

(
A0 0
0 1

)
and conjugating the monodromy representations accordingly, we can assume
that f2 = q1 + a2x

2
n. Now by construction, using these models, the matrix

B =

(
I 0

0
√
a1/a2.

)
is such that f2 ◦B = f1, and thus induces an isometry φ : Hf1 → Hf2 which is
an extension of the original gluing isometry ϕ. Therefore the trace field of M
is contained in k(

√
a1/a2) = k(

√
a1a2), as desired.
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4.4.2 Doubling and trace field. The next result is about doubles of manifolds
with boundary. Recall that if M is a manifold of type I, its double is the
manifoldM×{0, 1}/ ∼, where (x, 0) ∼ (x, 1) for x ∈ ∂M (see Definition 2.2.7).
If N1, . . . , Nr are a subset of the boundary hypersurfaces of M , one can also
consider the (restricted) double of M at N1, . . . , Nr, which can be defined as
M × {0, 1}/ ∼ where (x, 0) ∼ (x, 1) only for x ∈ N1 ∪ · · · ∪Nr.

Proposition 4.11. The double of a manifold M of type I along any number
of components in ∂M has the same trace field as M .

Proof. Let N1, . . . , Nr ⊂ ∂M be the boundary components at which we want
to form the double M ′. Then M ′ can be constructed as follows:

1. Form the interbreeding of M with a copy of itself at N1 (with trivial
gluing isometry); call the resulting manifold M1.

2. If Mi−1 has been defined, construct Mi by closing up Mi−1 at the two
boundary components corresponding to Ni (with trivial gluing isometry).

The manifold Mr is the double of M we wanted to construct. We will show
that each step of this construction does not change the trace field.
Let M̃ ⊂ Hf be a model for M with corresponding monodromy representa-

tion Γ ⊂ POf (k), where k is the trace field of M . Choose the same model for
the other copy of M used to construct M1. By considering the same hyper-
plane lifts in both cases, one sees that the identity isometry id ∈ POf (k) is
an extension of the gluing isometry of M1. Thus M1 has the same trace field
as M .
Assume Mi has been constructed, and choose a model M̃i ⊂ Hf for Mi with

monodromy representation Γi ⊂ POf (k) such that M̃ ⊂ M̃i and

Γ = StabΓi(M̃).

Let Ni+1, N
′
i+1 denote the two copies of Ni+1 in ∂Mi.

By construction, reflection at N1 ⊂ Mi induces an isometry of Mi; call it
ρ1. Observe that ρ1Ni+1 = N ′i+1. Composing the covering map M̃i � Mi

with ρ1, we obtain another model M̃ ′
i ⊂ Hf with monodromy representation

Γ′i ⊂ POf (k) such that M̃ ′
i = M̃i and Γ′i = ρ1Γiρ1 6= Γi. Since ρ1Ni+1 = N ′i+1,

we see that we can choose a hyperplane R ⊂ Hf such that R ⊂ M̃i is a
hyperplane lift of Ni+1 and R ⊂ M̃ ′

i is a hyperplane lift of N ′i+1. There again,
id ∈ POf (k) is an extension of the gluing isometry, and so Mi+1 still has the
same trace field as Mi.

Remark 4.4.1. Proposition 4.11 can also be deduced as a corollary of Propo-
sition 3.9. Indeed, the orbifold defined by M with "mirrors" at the boundary
components has the same trace field as M by Proposition 3.9 (since it has a
monodromy representation given by 〈Γ, ρ1, . . . , ρr〉, where Γ is one for M and
the ρi are the reflections at hyperplane lifts of the Ni). The double of M is
then a double cover of this orbifold.
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4.4.3 Odd dimensional closing up. The third proposition of this section tells
us that in odd dimension, closing up does not change the trace field.

Proposition 4.12. Let M be an n-manifold of type I. If the dimension n is
odd, then closing up M at any subset of its boundary components does not
change the trace field.

Proof. Let M̃ ⊂ Hf be a model for M with corresponding monodromy rep-
resentation Γ ⊂ POf (k), where k is the trace field of M . Let N1, N2 be two
isometric boundary components of M with hyperplane lifts R1, R2 ⊂ ∂M̃ and
let ϕ : N1 → N2 be a gluing isometry. Let φ ∈ POf (R) be an extension of ϕ
such that φ(R1) = R2.
Let Φ: POf,R → POf,R be the map induced via conjugation by φ and let σ

be a k-automorphism of C. Then σΦ is induced via conjugation by σ(φ). Let
G0 denote the Zariski-closure of StabΓ(R) in POf . As StabΓ(R1) ⊂ POf (k),
the maps Φ and σΦ must agree on it. Therefore, Φ−1 ◦ σΦ is the identity on
StabΓ(R1), and thus also on G0 by Zariski-density. It follows that φ−1σ(φ)
commutes with every element of G0. By Lemma 3.10 (or more precisely the
argument in the proof of Proposition 3.9), we have σ(φ) = φ or σ(φ) = φρ
(where ρ is the reflection at R1). Moreover, since ρ ∈ POf (k) by Proposi-
tion 3.9, we have σ(φρ) = σ(φ)ρ and thus σ acts on the set {φ, φρ}.
Since n is odd, the algebraic group POf has two connected components, and

PO◦f (R) consists of the orientation-preserving isometries of Hf . It follows that
the set PO◦f ∩ {φ, φρ} contains exactly one element. Now as PO◦f is defined
over k, it is stable under σ, and thus σ fixes one, and hence both elements
of {φ, φρ}, i.e., σ(φ) = φ. Since σ was arbitrary, Lemma 2.1 implies that
φ ∈ POf (k). Since by construction, φ was an extension of the gluing isometry
ϕ, the trace field of the closing up of M is k and the proof is complete.

4.4.4 Gluings of arithmetic pieces. As explained in Section 4.2.1, the gluing
isometries in Gromov and Piatetski-Shapiro’s constructions and their general-
izations are usually not specified, and thus the trace field cannot be computed
as such. However, there is always a canonical isometry one can use (see Defi-
nition 4.2.1). When gluing arithmetic pieces with this isometry, the trace field
of the resulting gluing can be computed easily using Theorem 4.7.

Theorem 4.13. Let M ∈ Agl be a gluing of arithmetic pieces. Assume the
pieces used in the construction are arithmetic pieces of trace field k and type
(fi, a) or (fi, a,mi) (see Definition 4.1.6), for i = 1, . . . , r, where fi = f0+aix

2
n,

and that the gluing isometries are the canonical ones. Then the trace field of
M is

k(
√
aiaj | 1 ≤ i, j ≤ r) = k(

√
a1a2, . . . ,

√
a1ar).

Proof. By definition, there exists a sequence M0, . . . ,Ms where M0 ∈ A is an
arithmetic piece, Ms = M and Mi+1 is constructed from Mi by interbreeding
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Mi with a piece in A or closing up Mi. Assume first that Mi+1 is constructed
by interbreeding Mi with an arithmetic piece A1 of coming from the quadratic
form f1 = f0 + a1x

2
n. Let ki denote the trace field of Mi. Let A2 be the arith-

metic piece of Mi containing the boundary hypersurface to which A1 is glued,
and assume A2 comes from the quadratic form f2 = f0 + a2x

2
n. For j = 1, 2,

let Nj ⊂ Aj be the gluing hypersurfaces in the boundary. By definition, there
are models Ãj ⊂ Hfj for Aj with monodromy representation Λj ⊂ POfj(k)
such that the hyperplane defined by {xn = 0} is a hyperplane lift of Nj ⊂ Aj.
By Lemma 4.8, there is a model M̃i ⊂ Hf1 with monodromy representation
Γi ⊂ POf1(ki) such that

Ã1 ⊂ M̃i and Λ1 = StabΓi(Ã1).

Now by hypothesis, the gluing isometry is the canonical one, and thus an
extension is given by

φ : Hf1 −→ Hf2

x 7−→
(
I 0

0
√
a1/a2

)
x.

The field of definition of the induced isomorphism

Φ: POf1,ki −→ POf2,ki

then is ki(
√
a1/a2) = ki(

√
a1a2). Indeed, if

√
a1a2 ∈ ki there is nothing to

do, otherwise the unique non-trivial ki-automorphism of ki(
√
a1a2) sends Φ to

ρ ◦ Φ, where ρ denotes the reflection at the hyperplane defined by {xn = 0},
and thus Φ is not defined over ki, but over ki(

√
a1a2).

Assume now that Mi+1 is the closing up of Mi. As before, let A1, A2 denote
the arithmetic pieces where the gluing happens, allowing the case A1 = A2.
Then the proof proceeds as in the interbreeding case, choosing models in Hfj

where hyperplane lifts of the gluing hypersurfaces are {xn = 0}, and using
the above map as an extension. Observe that in case A1 = A2, the hyper-
plane {xn = 0} is a lift of both hypersurfaces and thus the identity is a valid
extension.
By induction we have that the trace field of M is

kr = k(
√
ai1ai2 , . . . ,

√
ai2r−1ai2r),

where the sequence i1, . . . , i2r depends on the gluing ordering. Since all pieces
are used, this sequence contains all indices between 1 and r, and thus kr is
easily seen to be the field given in the statement of the theorem.

It is interesting to compare this result to Theorem 4.10, where the isometries
are not specified and thus the quadratic extension is not explicit. Applying
Theorem 4.13 to the case of the gluings of Gromov and Piatetski-Shapiro with
canonical gluing isometries, we obtain:
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Corollary 4.14. Let M be a gluing of Gromov and Piatetski-Shapiro (as de-
scribed in Section 4.2.1). Assume the gluing isometry is the canonical one. Let
fi = f0 + aix

2
n, (i = 1, 2) be the two quadratic forms over k used to define the

pieces. Then the trace field of M is k(
√
a1/a2) = k(

√
a1a2).

Remark 4.4.2. Since the quadratic forms fi are chosen to be non-similar (so
that the arithmetic groups are non-commensurable, c.f. Theorem 2.24), a1/a2

cannot be a square in k. Thus the trace field K of the gluing is a quadratic
extension of k. However, since its ambient group is G = POf1,K = POf2,K

(see Remark 4.3.3) and POf1 is admissible over k, G cannot be admissible
over K (see also Remark 5.1.2 below). This gives another proof that these
gluings are nonarithmetic.

Similarly, the trace fields of the gluings of Gelander and Levit (assuming the
canonical gluing isometry) is an easy consequence of Theorem 4.13:

Corollary 4.15. Let M∆ be a gluing of Gelander and Levit (as described
in Section 4.2.2). Assume the gluing isometries are the canonical ones. Let
fi = f0 + aix

2
n, (i = 1, . . . , 6) be the quadratic forms over k used to define the

pieces. Then the trace field of M∆ is

k(
√
ai/aj | i, j = 1, . . . , 6) = k(

√
a1a2, . . . ,

√
a1a6).

4.5 | Gluing commensurable manifolds
In this section, we will see how we can use Theorem 4.13 to construct gluings
of pieces of commensurable manifolds of trace field k, whose trace field is an
arbitrary large extension of k. We will also give examples of arithmetic pieces
whose trace field increases under closing up.

4.5.1 Gromov–Piatetski-Shapiro revisited. The goal of this section is to study
what happens when the gluing construction of Gromov and Piatetski-Shapiro
and its generalizations (see Section 4.2.1) are applied with pieces of commen-
surable arithmetic manifolds. We will need a small lemma about quadratic
forms of a given shape.

Lemma 4.16. Let f0 be a quadratic form over a number field field k and for
i = 1, 2 let ai ∈ k× and fi = f0 ⊥ 〈ai〉 = f0 + aiy

2. Then the following are
equivalent:

1. f1 and f2 are similar (i.e. ∃λ ∈ k such that f1 is isometric to λf2).

2. a1f0 is isometric to a2f0.
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Proof. If 2. holds, then a2f1 = a2f0 + a1a2y
2 ∼= a1f0 + a1a2y

2 = a1f2, which
implies similarity with factor a1/a2. If 1. holds, let λ ∈ k× be such that
f1
∼= λf2. If the dimension of the fi is even, the discriminant of f2 equals

that of λf2. Therefore f1
∼= λf2 implies that a1 ≡ a2 mod (k×)2, i.e., a1/a2

is a square in k. It follows that a1f0
∼= a2f0. In that case, f1 and f2 are even

isometric.
If the dimension is odd, again equating the discriminants gives λ = a1/a2

mod (k×)2. Therefore f0 + a1y
2 = f1

∼= (a1/a2)f2 = (a1/a2)f0 + a1y
2, and by

Witt cancellation we have f0
∼= (a1/a2)f0, i.e., a2f0

∼= a1f0, as desired.

Using this lemma, one can apply the Gromov–Piatetski-Shapiro construction
with pieces of arithmetic groups coming from similar (but not isomorphic)
quadratic forms over Q and obtain interesting examples of gluings of pieces of
commensurable manifolds. We can then use Theorem 4.13 to show that the
trace fields we obtain can be arbitrary large extensions of Q.

Corollary 4.17. Let F be a totally real multiquadratic number field. Then
for n ≡ 2 (mod 4) there exists an n-manifold M which trace field F which is
obtained as a gluing of pieces of pairwise commensurable arithmetic manifolds
with trace field Q.

Proof. By hypothesis, there are positive elements a1, . . . , ar ∈ Q× such that
F = Q(

√
a1, . . . ,

√
ar). Consider the quadratic forms

f0 = −x2
0 + · · ·+ x2

n−1 and fi = f0 + aix
2
n.

Theorem 4.13 implies the existence of a gluingM with trace field F constructed
using pieces of arithmetic manifolds corresponding to the quadratic forms fi.
Thus we only need to show that all these arithmetic groups are commensurable,
i.e., that all the forms fi are similar.
By Lemma 4.16, it suffices to show that af0

∼= f0 for any positive a ∈ Q. The
discriminants of these forms coincide, since the number of variables is even.
Thus by the Hasse-Minkowski principle (see [Se77, IV.3.3]), it is enough to
show that their Hasse invariants εp coincide for each prime p. Setting δn = −1
and δi = 1 otherwise, we have, for any prime p:

εp(af0) =
∏
i<j

(aδi, aδj)p = (a, a)
(n−1)(n−2)

2
p · (a,−a)n−1

p ,

where (·, ·)p denotes the Hilbert symbol at p. The term (a,−a)p equals one
by standard properties (see [Se77, III.1.1]), and since n ≡ 2 (mod 4), the
quantity (n−1)(n−2)

2
is even. Therefore εp(af0) = 1 = εp(f0) for any prime p and

any a.

If one starts with an admissible quadratic form f0 over a totally real number
field k such that aif0

∼= f0 for totally positive elements ai ∈ k, i = 1, . . . , r, then
the same construction will give a manifold with trace field k(

√
a1, . . . ,

√
ar).
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4.5.2 Closing up arithmetic pieces. As shown in Proposition 4.12 the oper-
ation of closing up a manifold does not change the trace field provided its
dimension is odd. The goal of this section is to give examples of arithmetic
pieces of even dimension, where the trace field increases under closing up.
We will give first a (relatively) general lemma about how to construct such
examples and illustrate the method in the particular case of k = Q.

Lemma 4.18. Let f0(x0, . . . , xn−1) be an admissible quadratic form over a
totally real number field k, and let a ∈ k be totally positive and such that
f0
∼= af0. Assume there exists a matrix A0 ∈ GLn(k) such that

1. f0 ◦ A0 = af0,

2. 1
a
A2

0 ∈ Of0(Ok).

Then there is a pieceM of the arithmetic manifold corresponding to f = f0+x2
n

and a gluing isometry ϕ such that the closing up of M under ϕ has trace field
k(
√
a).

Proof. We can assume that a is not a square in k (otherwise it is trivial).
Let Γ denote an arithmetic lattice corresponding to an arithmetic piece of
type (f, a, 1). This means that Γ is a finite index subgroup of the image of
Of (Ok) in POf , chosen such that it is torsion-free and the hyperplane R ⊂ Hf

corresponding to {xn = 0} projects down to a non-separating hypersurface N
in Γ\Hf . Let Λ = StabΓ(R), so that N = Λ\R ∼= Λ\Hf0 .
The group Λ is an arithmetic subgroup contained in the image of Of0(Ok)

in POf . Let Λ̃ be its pre-image in Of0(Ok), and consider the matrix

g0 =
1√
a
A0.

We have g2
0 ∈ Of0(Ok) by hypothesis, and thus gN0 ∈ Λ̃ for a suitable power

N (since Λ̃ is of finite index in Of0(Ok)). It follows that the group

Λ̃1 = Λ̃ ∩ (g0 Λ̃ g−1
0 ) ∩ · · · ∩ (gN−1

0 Λ̃ g−N+1
0 )

is a finite index subgroup of Λ̃ that is normalized by g0. Hence the image g0 of
g0 in POf0 induces an isometry of N1 = Λ̃1\Hf0 . Observe as a side note that
g0 ∈ POf0(k), since σ(g0) = −g0 for the unique non trivial k-automorphism σ
of k(

√
a).

Let Λ1 denote the image of Λ̃1 in POf . Since Λ is geometrically finite, so
is Λ1, hence it is separable in Γ (Theorem 2.28). It follows that there exists a
finite index subgroup Γ1 ⊂ Γ such that StabΓ1(R) = Λ ∩ Γ1 = Λ1.
Consider now the matrix

g =

(
g0 0
0 1

)
.
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It preserves f , and thus defines an element g in POf (k(
√
a)). However, if

as before σ is the non-trivial k-automorphism of k(
√
a), we have σ(g) = gρ,

where ρ is the reflection at the hyperplane R, and thus g /∈ POf (k).
We are ready to complete the proof. Write M1 = Γ1\Hf , N1 = Λ1\R ⊂M1

and let M denote the completion of M1 \ N1. Since N1 is non-separating in
M1, M is connected. Let N2, N3 denote the two boundary components of
M isometric to N . Let M ′ be obtained by closing up M along the isometry
N2
∼= N3 induced by g0.
In order to compute the trace field of M ′, we consider the canonical models

M̃2, M̃3 ⊂ Hf for M associated to the hypersurfaces N2 and N3 respectively.
Recall that for such models, we have that R ⊂ ∂M̃i is a hyperplane lift of
Ni ⊂M . It follows that, by construction, the element g is an extension of the
gluing isometry. Since its field of definition is k(

√
a), the trace field of M ′ is

also k(
√
a), as desired.

Remark 4.5.1. This construction can be seen as a refinement of the Gromov–
Piatetski-Shapiro construction with commensurable pieces (as seen in the pre-
vious section). Indeed, the quadratic form f from the lemma is similar to
f ′ = f0 +ax2

n by Lemma 4.16. Thus if one chooses two different models forM ,
one in Hf and one in Hf ′ , the following matrix can be chosen as an extension
of the gluing isometry:

g =

(
1 0
0
√
a

)
.

This gives directly that the gluing M has trace field k(
√
a).

Note however that more efforts are needed to construct the piece used for
closing up, since we have only this piece at our disposal and are not allowed
to use ones coming from commensurable manifolds as in Theorem 4.13. In
particular, finding a similitude A0 satisfying condition 2. from the lemma is
crucial for our purpose (in order to have an arithmetic group normalized by
the g0 from above).

We end this section by giving explicit examples of pieces of manifolds whose
closing up increases the trace field by a quadratic extension.

Example 4.5.2. We will use the notation 〈a1, . . . , am〉 for the quadratic form
a1x

2
1 + · · ·+amx

2
m and ⊥ for orthogonal sum. Consider the following quadratic

forms over Q:
q1 = 〈−1, 1, 1, 2〉 and q2 = 〈1, 2〉 .

For m ≥ 0, set

f0 = q1 ⊥ q2 ⊥ · · · ⊥ q2︸ ︷︷ ︸
m times

, and f = f0 ⊥ 〈1〉 .
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Thus f0 = 〈−1, 1, 1, 2, 1, 2, . . . , 1, 2〉 is an admissible quadratic form over Q of
dimension 2m+ 4. Define the matrices

A1 =


2 0 1 0
0 1 0 2
−1 0 −2 0
0 1 0 −1

 and A2 =

(
1 2
1 −1

)
.

We have q1 ◦ A1 = 3 · q1 and q2 ◦ A2 = 3 · q2, and thus the matrix

A0 =


A1

A2

. . .
A2


is such that f0 ◦ A0 = 3 · f0. Computing the squares gives that both 1

3
A2

1 and
1
3
A2

2 have coefficients in Z, and hence 1
3
A2

0 ∈ Of0(Z). Therefore by Lemma 4.18,
there exists a piece of the arithmetic manifold corresponding to Of (Z) whose
trace field increases to Q(

√
3) under closing up. This procedure gives examples

in any even dimension n ≥ 4.

Table 4.1 below gives quadratic forms and matrices which can be used as in
the example above to produce all quadratic extensions Q(

√
d) for d square-free,

2 ≤ d ≤ 42. These examples were computed using the mathematical software
Sage [Sage]. It follows from their construction that the volume of all these
manifolds coincides with the volumes of the original arithmetic manifolds.
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Field Quadratic forms Matrices

k = Q(
√

2)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
2 0 1 1
0 0 1 −1
1 1 1 1
1 −1 1 1

)
A2 = ( 1 1

1 −1 )

k = Q(
√

3)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
2 0 1 0
0 1 0 2
−1 0 −2 0
0 1 0 −1

)
A2 = ( 1 2

1 −1 )

k = Q(
√

5)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
3 0 0 2
0 1 2 0
0 2 −1 0
−2 0 0 −3

)
A2 = ( 1 2

2 −1 )

k = Q(
√

6)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
3 0 1 2
0 0 −2 2
1 2 1 2
1 −1 1 2

)
A2 = ( 2 2

1 −2 )

k = Q(
√

7)
q1 = 〈−1, 1, 1, 3〉
q2 = 〈1, 3〉

A1 =

(
3 1 1 0
−1 −1 −2 3
−1 −2 −1 −3
0 1 −1 −1

)
A2 = ( 2 3

1 −2 )

k = Q(
√

10)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
4 1 1 2
1 3 −1 1
−1 1 1 −3
2 1 3 2

)
A2 = ( 1 3

3 −1 )

k = Q(
√

11)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
4 1 2 0
−1 0 −2 4
−2 −2 −3 −2
0 2 −1 −1

)
A2 = ( 3 2

1 −3 )

k = Q(
√

13)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
4 1 1 1
−1 1 −2 −3
−1 −2 −3 1
−1 −3 1 −2

)
A2 = ( 2 3

3 −2 )

k = Q(
√

14)
q1 = 〈−1, 1, 1, 5〉
q2 = 〈1, 5〉

A1 =

(
4 1 1 0
−1 −1 −3 5
−1 −3 −1 −5
0 1 −1 −2

)
A2 = ( 3 5

1 −3 )

k = Q(
√

15)
q1 = 〈−1, 1, 1, 6〉
q2 = 〈1, 6〉

A1 =

(
4 0 1 0
0 3 0 6
−1 0 −4 0
0 1 0 −3

)
A2 = ( 3 6

1 −3 )

k = Q(
√

17)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
5 0 2 2
0 3 2 −2
−2 2 −4 −1
−2 −2 −1 −4

)
A2 = ( 1 4

4 −1 )

k = Q(
√

19)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
5 0 2 2
0 −4 1 −2
−2 1 −2 −6
−1 −1 −3 1

)
A2 = ( 1 6

3 −1 )

k = Q(
√

21)
q1 = 〈−1, 1, 1, 3〉
q2 = 〈1, 3〉

A1 =

(
5 0 1 3
0 −3 3 −3
−1 3 1 −6
−1 −1 −2 −3

)
A2 = ( 3 6

2 −3 )

k = Q(
√

22)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
5 0 1 2
0 −4 2 −2
−1 2 1 −6
−1 −1 −3 −2

)
A2 = ( 2 6

3 −2 )

k = Q(
√

23)
q1 = 〈−1, 1, 1, 7〉
q2 = 〈1, 7〉

A1 =

(
5 1 1 0
−1 −1 −4 7
−1 −4 −1 −7
0 1 −1 −3

)
A2 = ( 4 7

1 −4 )

k = Q(
√

26)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
6 0 1 3
0 −4 3 −1
−1 3 3 −3
−3 −1 −3 −5

)
A2 = ( 1 5

5 −1 )

k = Q(
√

29)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
7 0 2 4
0 −3 4 −2
−2 4 1 −4
−4 −2 −4 −5

)
A2 = ( 2 5

5 −2 )
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k = Q(
√

30)
q1 = 〈−1, 1, 1, 5〉
q2 = 〈1, 5〉

A1 =

(
6 0 1 5
0 0 5 −5
−1 5 −1 −5
−1 −1 −1 −5

)
A2 = ( 5 5

1 −5 )

k = Q(
√

31)
q1 = 〈−1, 1, 1, 3〉
q2 = 〈1, 3〉

A1 =

(
6 1 1 3
−1 1 2 −9
−1 2 −5 −3
−1 −3 −1 −2

)
A2 = ( 2 9

3 −2 )

k = Q(
√

33)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
6 0 1 2
0 3 4 −4
−1 4 −4 −2
−1 −2 −1 −5

)
A2 = ( 1 8

4 −1 )

k = Q(
√

34)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
6 0 1 1
0 4 3 −3
−1 3 −5 −1
−1 −3 −1 −5

)
A2 = ( 3 5

5 −3 )

k = Q(
√

35)
q1 = 〈−1, 1, 2, 5〉
q2 = 〈2, 5〉

A1 =

(
6 1 0 0
−1 −6 0 0
0 0 5 5
0 0 2 −5

)
A2 = ( 5 5

2 −5 )

k = Q(
√

37)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
7 2 2 2
−2 1 −2 −6
−2 −2 −6 1
−2 −6 1 −2

)
A2 = ( 1 6

6 −1 )

k = Q(
√

38)
q1 = 〈−1, 1, 1, 2〉
q2 = 〈1, 2〉

A1 =

(
7 0 3 2
0 −4 2 −6
−3 2 −5 −6
−1 −3 −3 2

)
A2 = ( 6 2

1 −6 )

k = Q(
√

39)
q1 = 〈−1, 1, 1, 3〉
q2 = 〈1, 3〉

A1 =

(
7 1 3 0
−1 2 −3 9
−3 −3 −6 −3
0 3 −1 −3

)
A2 = ( 6 3

1 −6 )

k = Q(
√

41)
q1 = 〈−1, 1, 1, 1〉
q2 = 〈1, 1〉

A1 =

(
7 0 2 2
0 3 4 −4
−2 4 −5 −2
−2 −4 −2 −5

)
A2 = ( 4 5

5 −4 )

k = Q(
√

42)
q1 = 〈−1, 1, 1, 6〉
q2 = 〈1, 6〉

A1 =

(
7 0 1 6
0 0 6 −6
−1 6 −1 −6
−1 −1 −1 −6

)
A2 = ( 6 6

1 −6 )

Table 4.1: Quadratic forms and matrices producing non-
trivial trace fields under closing up, as in Example 4.5.2.



Chapter 5 | Pseudo-arithmeticity
and Volumes

The goal of this final chapter is to present the notion of pseudo-arithmeticity
and motivate it using the trace field computations from the previous sections.
The content of this chapter is a more detailed version of a joint work with
Vincent Emery [EM18]. In the first section, we start by introducing pseudo-
arithmetic manifolds and deduce from the results established in the previous
chapters that all gluings of arithmetic pieces are pseudo-arithmetic. In Sec-
tion 5.2 we give the necessary background in the various homology theories
needed for Section 5.3, where we prove (under an additional assumption on
the ambient group) that the volume of a pseudo-arithmetic manifold is al-
ways a rational linear combination of volumes of arithmetic manifolds (in all
dimensions n ≥ 4).

5.1 | Pseudo-arithmeticity and gluings
This section introduces and motivates the notion of pseudo-arithmeticity of
lattices (and manifolds).

5.1.1 Pseudo-arithmeticity. Let Γ ⊂ PO(n, 1) be an arithmetic lattice. Recall
that by definition (see Definition 2.3.2), there exists a totally real number field
k ⊂ R and an algebraic k-group G such that:

1. G is admissible, that is, G(R) ∼= PO(n, 1) and for each non-trivial em-
bedding σ : k ↪→ R, the conjugate group σG(R) is compact. In other
words, G(k⊗QR) ∼= PO(n, 1)× compact (and the factor PO(n, 1) comes
from the trivial embedding k ⊂ R).

2. Γ is commensurable with the image of G(Ok) ↪→ G(R)
∼−→ PO(n, 1).

By Theorem 3.13, k is the trace field of Γ and G is its ambient group. This
allows one to generalize the notion of arithmeticity to any lattice Γ ⊂ PO(n, 1),
by requiring that its ambient group mimics that of an arithmetic lattice. A

73
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first idea is to relax the two hypotheses on Γ,G above by requiring that only
the first be satisfied.

Definition 5.1.1. A lattice Γ ⊂ PO(n, 1) with trace field k and ambient
group G is quasi-arithmetic if G is admissible (over k). A hyperbolic manifold
M = Γ\Hn is quasi-arithmetic if Γ is.

Remark 5.1.2. As seen previously, any isomorphism G(R) ∼= PO(n, 1) is
induced by an R-isomorphism of algebraic groups G ∼= PO(n,1) (see Re-
mark 2.3.3). Therefore if σ : k ↪→ C is a complex embedding the group σG is
isomorphic to PO(n,1),C and thus σG(C) is non-compact. It follows that for an
algebraic k-group G to be admissible, k must be totally real.
Moreover, for any non-trivial extension K/k, the group GK cannot be ad-

missible (over K). If K has a complex place, this is implied by the previous
argument. If K is totally real, each embedding k ↪→ R extends to [K : k]
embeddings K ↪→ R, and thus

GK(K ⊗Q R) ∼= G(k ⊗ R)[K:k]

since τGK = σG for any embedding τ : K ↪→ R extending σ : k ↪→ R. Hence
having only one compact factor on the left implies [K : k] = 1.

It follows from the remark that the trace field of a quasi-arithmetic lattice Γ
must be totally real. Comparing with the definition of arithmeticity, one sees
that a lattice Γ is quasi-arithmetic if instead of requiring Γ to be commensu-
rable with G(Ok) for G admissible, one just asks for Γ ⊂ G(k).
There are examples of quasi-arithmetic nonarithmetic lattices in any dimen-

sion given by the construction of Belolipetsky and Thomson (see Section 4.2.2).
However, in the context of gluings, it turns out that this definition is not gen-
eral enough to encompass all arithmetic gluings (that is, elements of Agl, see
Example 4.1.5). The reason is that the ambient group of a gluing coincides
with the ambient group of any of the piece used in its construction (see Re-
mark 4.3.3). Thus as soon as a gluing procedure increases the trace field, the
ambient group cannot be admissible, by Remark 5.1.2. However, it turns out
that the trace field of a gluing of arithmetic pieces is not arbitrary, as the next
theorem shows.

Theorem 5.1. Let M ∈ Agl be a gluing of arithmetic pieces. Then:

1. All its arithmetic pieces have the same trace field, call it k.

2. The trace field K of M is a multiquadratic extension of k, that is,
K = k(

√
a1, . . . ,

√
ar) for some ai ∈ k.

3. The ambient group of M is GK where G is the ambient group of any of
the pieces used in its construction.
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This is Theorem 2.7 in [EM18]. We will give a proof in the next section.

Remark 5.1.3. When the gluing isometries are specified, one can actually
compute the trace field explicitly using Theorem 4.13.

This motivates taking the following weakening of quasi-arithmeticity as def-
inition of pseudo-arithmeticity.

Definition 5.1.4. A lattice Γ ⊂ PO(n, 1) with trace field K and ambient
group G is pseudo-arithmetic if there exists a subfield k ⊂ K such that:

1. G ∼= G0,K for some k-group G0 that is admissible (over k),

2. the extension K/k is multiquadratic.

A hyperbolic manifold M = Γ\Hn is pseudo-arithmetic if Γ is.

Therefore, pseudo-arithmetic lattices are those whose ambient group mimics
the properties of the ambient group of a gluing. It turns out that, surprisingly,
all known examples of hyperbolic Coxeter lattices in dimension n ≥ 4 are
pseudo-arithmetic (see [EM18, Section 4]). Therefore, all known constructions
of hyperbolic lattices in dimension n ≥ 4 lead to pseudo-arithmetic manifolds.
Pseudo-arithmeticity also has important implications for volumes:

Theorem 5.2. Let M be a pseudo-arithmetic manifold with trace field K
(a multiquadratic extension of k). Assume its ambient group is of the form
POf,K, for some quadratic form f defined over k. Then there exist arithmetic
manifolds M1, . . . ,MN and rationals β1, . . . , βN ∈ Q such that

Vol(M) = β1 Vol(M1) + · · ·+ βN Vol(MN).

The integer N from the theorem corresponds to the degree of the multi-
quadratic extension K/k, and the arithmetic manifolds come from quadratic
forms obtained via a substitution x 7→ αix in one of the variables of f , where
{αi}i is a basis of K as a k-vector space. This theorem will be proven in
Section 5.3.

Remark 5.1.5. In even dimension, the theorem follows directly from the
(generalized) Gauss-Bonnet Theorem. Indeed, for any (complete) hyperbolic
manifold of finite volume and dimension n = 2m we have

Vol(M) =
(−1)m4mm!

n!
· πm · χ(M),

where χ(M) is the Euler characteristic of M . Therefore the set of volumes of
these manifolds is in πm ·Q, and they are all Q-linearly dependent.
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5.1.2 Gluing of arithmetic pieces. This short section is devoted to the:

Proof of Theorem 5.1. Part 1. follows from Corollary 3.14 and part 3. from
Remark 4.3.3. The proof of part 2. uses a repeated application of Theorem 4.10.
Indeed, by definition, there is a sequence M0, . . . ,Ms where M0 ∈ A is an
arithmetic piece, Ms = M , and Mi+1 is constructed from Mi by interbreeding
Mi with a piece in A or closing up Mi.
We will prove the theorem by induction on the number s of gluing operations

(either interbreeding or closing up). At the base case s = 0, we have an
arithmetic piece, so the theorem holds. For the inductive case, we will handle
both interbreeding and closing up at once. If Mi+1 is an interbreeding of Mi,
we set A2 ∈ A to be the arithmetic piece to which we glue Mi, and we set
A1 to be the arithmetic piece in Mi containing the boundary hypersurface to
which A2 is glued. If Mi+1 is the closing up of Mi, we set A1, A2 to be the two
arithmetic pieces containing the boundary hypersurfaces of Mi at which the
closing up occurs. Observe that we allow the case A1 = A2. Let ki denote the
trace field of Mi.
For j = 1, 2, let Ãj ⊂ Hfj be a model for Aj with monodromy representation

Λj ⊂ POfj(k). Using Lemma 4.8, we find a model M̃i for Mi contained in Hf1

with monodromy representation Γ ⊂ POf1(ki) such that

Λ1 = StabΓ(Ã1).

Now by Theorem 4.10 (or rather, by its proof), the Ãj and fj can be chosen
such that the gluing isometry ϕ admits an extension φ : Hf1 → Hf2 , such
that the induced isomorphism Φ: POf1,` → POf2,` is defined over a quadratic
extension ` = k(

√
a) of k. Therefore, the induced isomorphism Φ seen from

the point of view of the ambient group ofMi has ki(
√
a) as a field of definition.

Since a ∈ k, the resulting field is indeed a multiquadratic extension of k.

5.2 | Homology
This section recalls the basic facts about homology needed to prove Theo-
rem 5.2 and defines the relative homology of PO(n, 1) with respect to its action
on the boundary ∂Hn.

5.2.1 Classical homology. Here we regroup fundamentals of homology and
cohomology of groups, and their singular counterparts. The main references
are Weibel [We94] and Brown [Br82].

Definition 5.2.1. Let G be a group. The group ring ZG is the ring of all
formal sums

∑
g∈G agg where ag ∈ Z and almost all are zero. A ZG-module is
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a module over the ring ZG, that is, a Z-module with a linear action of G. A
ZG-module A is free if it is isomorphic to a direct sum of copies of ZG. It is
projective if there exists a ZG-module B such that A ⊕ B is free. A (chain)
complex of ZG-modules is a family of ZG-modules A = {Am}m∈Z together
with homomorphisms d : Am → Am−1 such that d◦d = 0. It is exact or acyclic
if ker d = im d. The homology of a complex A is the family of Z-modules
Hm(A)m∈Z where

Hm(A) = ker(Am → Am−1)/ im(Am+1 → Am).

A projective resolution P � A of a ZG-module A is an exact chain complex

· · · → Pm+1 → Pm → Pm−1 → · · · → P1 → P0 → A→ 0→ 0→ · · ·

such that all Pm are projective.

It follows from the universal property of projective modules that projective
resolutions exist for any ZG-module.
We are ready to define homology of groups. Let G be a group and A,B be

ZG-modules.

Definition 5.2.2. For each m, the Z-module TorZGm (A,B) is, equivalently:

1. The m-th homology of the complex P ⊗ZG B, where P is a projective
resolution of A.

2. The m-th homology of the complex A ⊗ZG Q, where Q is a projective
resolution of B.

One can show that TorZGm (A,B) is well defined and independent (up to
canonical isomorphism) of the chosen projective resolutions P or Q.

Definition 5.2.3. The group homology Hm(G,A) is defined as

Hm(G,A) = TorZGm (Z, A).

In the special case where A = Z we write Hm(G) = Hm(G,Z).
Any short exact sequence 0 → A → B → C → 0 induces a long exact

sequence

· · · → Hm(G,A)→ Hm(G,B)→ Hm(G,C)
δ→ Hm−1(G,A)→ · · ·

of the corresponding homology groups. The homomorphism δ is called the
connecting homomorphism.
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5.2.2 Simplicial homology. In this section we briefly recall how to compute
simplicial homology of a triangulated space.

Definition 5.2.4. A simplicial complex is a set K of simplices which intersect
at faces and such that every face of a simplex inK is also inK. For a topological
space X, a triangulation is a simplicial complex K that is homeomorphic to
X.

It is to be noted that every smooth manifold can be triangulated (see
[Mu16]). If K is a simplicial complex, it defines a chain complex C = C(K) as
follows:

• Cm is the free Z-module on the set of oriented m-simplices in K, quo-
tiented by the submodule generated by elements of the form σ+σ′, where
σ′ is the m-simplex σ with reverse orientation.

• If (v0, . . . , vm) is an oriented m-simplex, then define

d(v0, . . . , vm) =
m∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vm)

where (v0, . . . , v̂i, . . . , vm) is the oriented simplex obtained by removing
vertex vi. The map d then induces a homomorphism d : Cm → Cm−1

such that d2 = 0.

Definition 5.2.5. The homology Hm(K) of a simplicial complex K is the
homology of C(K). The (simplicial) homology Hm(X) of a topological space
X is the homology of a triangulation of X. For a Z-module R, the homology
Hm(X;R) of X with coefficients in R is the homology of the complex C(K)⊗Z
R.

It can be shown that simplicial homology is independent of the triangulation
and isomorphic to the standard singular homology (see [Ha02, Theorem 2.27]).

5.2.3 Relative homology. In this section we set G = PO(n, 1)◦ (the orien-
tation preserving isometries of Hn) and denote by Ω = ∂Hn the geometric
boundary of Hn. The group G acts naturally on the set Ω, and the diagonal
action induces an action of G on Ωm. Let ZΩm denote the set of formal sums∑

x∈Ωm axx with ax ∈ Z and almost all are zero; it is naturally a ZG-module.
Let S ⊂ G be a subgroup of G. The inclusion S ↪→ G induces an inclusion

of rings ZS ↪→ ZG which allows us to see ZΩm as a ZS-module. Let JΩ be
the kernel of the augmentation map

ε : ZΩ −→ Z∑
x∈Ω

axx 7−→
∑
x∈Ω

ax.
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Definition 5.2.6. The relative homology of S ⊂ G (or homology of S relative
to its action on Ω) is

Hm(S,Ω) = Hm−1(S, JΩ) = TorZSm−1(Z, JΩ).

For a Z-module R, the relative homology with coefficients R of S ⊂ G is

Hm(S,Ω;R) = Hm−1(S, JΩ⊗Z R).

We will be mainly interested in the case where S = G or S is a lattice in G.
Observe that the short exact sequence of ZS-modules

0→ JΩ→ ZΩ→ Z→ 0

induces a long exact sequence in homology with a connecting homomorphism

δ : Hm(S) = Hm(S,Z)→ Hm−1(S, JΩ) = Hm(S,Ω).

If S acts freely on Ω (that is, sx = x implies s = 1 for any s ∈ S, x ∈ Ω), then
for any point x ∈ Ω the ZS-submodule ZS · x of ZΩ is isomorphic to ZS and
thus free. It follows (since it is the direct sum of those modules) that ZΩ is
a free ZS-module, and by looking at the long exact sequence above one sees
that δ is an isomorphism in that case.

5.2.4 Relative homology of lattices. This section treats the special case where
S = Γ is a lattice in G = PO(n, 1)◦. We will assume that Γ is torsion-free. Let
M = Γ\Hn denote the corresponding (orientable) manifold.
Consider first the end-compactification M̂ of M , that is, the compact topo-

logical space obtained by adjoining one point to each cusp. Its universal cover
X consists of Hn together with the set C ⊂ ∂Hn of points fixed by parabolic
elements of Γ. If M is compact, then M̂ = M and thus Hn(M̂) ∼= Z. If M
is non-compact, let M0 ⊂ M be a (large enough) compact subset such that
A = M \ M0 is a disjoint union of cusps. Then the closure Â of A in M̂

is contractible, and thus Hn(M̂) ∼= Hn(M̂, Â) (see [Ha02, Section 2.1]). By
excision, the latter is isomorphic to Hn(M0, ∂M0) ∼= Z. Thus in both cases,
we have that Hn(M̂) = Z.
Fix a triangulation of M̂ such that the cusp points are contained in its

vertices (one can do this by adding one vertex for each cusp to a triangulation
of M0). Let C(M̂) be the corresponding chain complex of Z-modules. By
lifting the triangulation of M̂ to a triangulation of its universal cover X, we
obtain a chain complex C(X), invariant under the action of Γ. It is therefore
a ZΓ-module, and we have C(X)⊗ZΓ Z = C(X)ZΓ

∼= C(M̂). This implies that
Hn(M̂) = Hn(C(X)⊗ZΓ Z).
Proposition 5.3. We have an isomorphism Hn(Γ,Ω) ∼= Hn(C(X) ⊗ZΓ Z).
Thus

Hn(Γ,Ω) ∼= Hn(M̂) ∼= Z.
Proof. See for instance [Em17, Section 3].
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5.2.5 Relative homology and volumes. We use the notation from the previous
section. In particular, G = PO(n, 1)◦, Ω = ∂Hn and Γ ⊂ G is a torsion-free
lattice. We begin with a definition.

Definition 5.2.7. The fundamental class [Γ] ∈ Hn(G,Ω) is the image of the
generator of Hn(Γ,Ω) ∼= Z corresponding to the positive orientation in Hn(M̂),
under the natural map induced by the inclusion Γ ↪→ G.

As the next theorem shows, this gives a homological way to compute the
volume of the corresponding manifold which will be one of the main ingredients
in the proof of Theorem 5.2.

Proposition 5.4. There exists a linear map v : Hn(G,Ω) → R such that for
any torsion-free lattice Γ ⊂ G,

v([Γ]) = Vol(Γ\Hn).

Proof. See [NY99, Section 3,4] and [Em17, Section 3]. The main idea of the
proof is the following. Consider the complex A = (ZΩm)m∈N where A0 = Z
and the boundary maps are given by

d : ZΩm+1 −→ ZΩm

(x0, . . . , xm) 7−→
m∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xm).

This complex is acyclic, and contracting the last maps ZΩ2 → ZΩ → Z → 0
into ZΩ2 → JΩ → 0 gives an acyclic resolution of JΩ. Let B denote the
contracted complex (so that B0 = ZΩ2 and B−1 = JΩ). The orientation of
Hn induces an orientation on each ideal simplex. Hence we have a function
v : Ωn+1 → R which assigns to a point (x0, . . . , xn) the (signed) volume of the
oriented ideal simplex it defines. Since volume is invariant under (orientation-
preserving) isometries, v actually induces a map

v : (ZΩn+1)ZG = ZΩn+1 ⊗ZG Z −→ R.

Moreover, it is not hard to see that it is zero on the image of d. Thus, v induces
a linear map

v : Hn−1(B ⊗ZG Z)→ R.

Finally, let P be a projective ZG-resolution of JΩ. Since the complex B
is acyclic, it follows from [Br82, Lemma I.74] that there exists a chain map
P → B (unique up to homotopy) extending the identity JΩ → JΩ. Thus, it
induces a map in homology

v : Hn(G,Ω) = Hn−1(P ⊗ZG Z) −→ Hn−1(B ⊗ZG Z) −→ R.
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By construction, the fundamental class [Γ] ∈ Hn(G,Ω) corresponds to a
finite sum of oriented simplices in Hn(C(X)⊗ZΓ Z). It turns out that modulo
boundaries in C(X), each of these simplices can be expressed as a sum of
ideal simplices, whose signed volume equals that of the original simplex. The
class in Hn(G,Ω) of this sum of oriented ideal simplices then coincides with
[Γ]. Therefore by construction, v([Γ]) equals the (signed) volume of this sum,
which equals the volume of the triangulation of M̂ , i.e., Vol(M).

5.3 | Volumes of pseudo-arithmetic manifolds
The goal of this section is to prove Theorem 5.2. We will start by computing
the homology of the k-points PO◦f (k) of the algebraic groups PO◦f , and deduce
the theorem using results of [Em17].

5.3.1 Homology of ambient groups. Let k ⊂ R be a totally real number field,
K/k a totally real multiquadratic extension, and fix totally positive elements
ai ∈ k such that K = k(

√
a1, . . . ,

√
ar). Let f0 = f0(x0, . . . , xn−1) be a

quadratic form over k that is admissible. Assume that f0 is diagonal, with
negative x0 coefficient. Define the quadratic forms

fi = f0 + aix
2
n, i ∈ {0, 1}r, ai = ai11 · · · airr .

Set αi =
√
ai, so that the {αi} form a basis of K as k-vector space. Observe

that
fi = f(x0, . . . , xn−1, αixn), where f = f0 + x2

n,

so that the matrix

Di =


1

. . .
1

αi


is such that fi = f ◦Di.
Let Gi = PO◦fi and G = PO◦f,K (the group PO◦f seen over K). It follows

from the above definition that conjugation by Di induces a K-isomorphism of
algebraic groups

ϕi : Gi,K −→ G.

In particular it induces an inclusion Gi(k) ↪→ G(K). The goal of this section
is to prove Proposition 3.4 in [EM18]:

Proposition 5.5. The map induced by the inclusions Gi(k) ↪→ G(K)⊕
i∈{0,1}r

Hn(Gi(k),Q) −→ Hn(G(K),Q)

is surjective.
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5.3.2 Lemmas. Recall the following definition.

Definition 5.3.1. A morphism ϕ : G′ → G between two algebraic k-groups is
an isogeny if it is surjective with finite kernel. An algebraic group G is simply
connected if it is connected and if every isogeny G′ → G with G′ connected is
an isomorphism.

Every semisimple connected algebraic groupG has a simply connected cover,
usually denoted G̃, which is unique up to isomorphism (see [PR94, Theo-
rem 2.6]). Moreover, if G is adjoint, there is an exact sequence

1→ Z→ G̃→ G→ 1, (5.1)

where Z denotes the center of G̃.
We will need three lemmas. The first one relates the homologies of a group

and its simply-connected cover.

Lemma 5.6. Let G be a connected semi-simple adjoint algebraic group defined
over a field K, and let G̃ denote its simply-connected cover. The natural map
G̃(K)→ G(K) induces a surjective map (for any m ≥ 0):

Hm(G̃(K),Q)→ Hm(G(K),Q).

Proof. The proof is a generalization of the proof of [Em17, Proposition 4.2].
Observe that the exact sequence (5.1) induces an exact sequence

1→ Z(K)→ G̃(K)→ G(K)→ H1(K,Z)→ H1(K, G̃)

in Galois cohomology (see [Se68, Proposition 1, p. 133]). Contracting this
exact sequence we obtain a short exact sequence

1→ G̃(K)/Z(K)→ G(K)→ A→ 1, (5.2)

where A = ker(H1(K,Z)→ H1(K, G̃)).
Consider the following composition of maps

Hm(G̃(K),Q) Hm(G̃(K)/Z(K),Q)

Hm(G̃(K)/Z(K),Q)A Hm(G(K),Q)

(5.3)

where the horizontal maps are induced by the quotient G̃(K) � G̃(K)/Z(K)

and the inclusion G̃(K)/Z(K) ↪→ G(K) coming from the above exact se-
quence, respectively.
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