
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
2
6
3
2
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
3
.
7
.
2
0
2
5

Models and Matheuristics for Large-Scale

Combinatorial Optimization Problems

INAUGURALDISSERTATION

zur Erlangung der Würde eines Doctor rerum oeconomicarum

der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Bern

Mario Gnägi

Betreuer: Prof. Dr. Norbert Trautmann

Professur für Quantitative Methoden der BWL

Departement Betriebswirtschaftslehre

Schützenmattstrasse 14, 3012 Bern

Bern, Mai 2020





Die Fakultät hat diese Arbeit am 17. September 2020 auf Antrag der beiden Gutachter

Prof. Dr. Dolores Romero Morales und Prof. Dr. Norbert Trautmann als Dissertation angenom-

men, ohne damit zu den darin ausgesprochenen Auffassungen Stellung nehmen zu wollen.



Contents

Introduction 1

Paper I: Tracking and outperforming large stock-market indices 5

Paper II: Two continuous-time assignment-based models for the

multi-mode resource-constrained project scheduling problem

50

Paper III: A matheuristic for large-scale capacitated clustering 72



Introduction

Combinatorial optimization deals with efficiently determining an optimal (or at least a

good) decision among a finite set of alternatives. In business administration, such com-

binatorial optimization problems arise in, e.g., portfolio selection, project management,

data analysis, and logistics. These optimization problems have in common that the set of

alternatives becomes very large as the problem size increases, and therefore an exhaustive

search of all alternatives may require a prohibitively long computation time. Moreover,

due to their combinatorial nature no closed-form solutions to these problems exist.

In practice, a common approach to tackle combinatorial optimization problems is to

formulate them as mathematical models and to solve them using a mathematical pro-

gramming solver (cf., e.g., Bixby et al. 1999; Achterberg et al. 2020). For small-scale

problem instances, the mathematical models comprise a manageable number of variables

and constraints such that mathematical programming solvers are able to devise optimal

solutions within a reasonable computation time. For large-scale problem instances, the

number of variables and constraints becomes very large which extends the computation

time required to find an optimal solution considerably. Therefore, despite the continuously

improving performance of mathematical programming solvers and computing hardware,

the availability of mathematical models that are efficient in terms of the number of vari-

ables and constraints used is of crucial importance. Another frequently used approach

to address combinatorial optimization problems are matheuristics. Matheuristics decom-

pose the considered optimization problem into subproblems, which are then formulated

as mathematical models and solved with the help of a mathematical programming solver.

Matheuristics are particularly suitable for situations where it is required to find a good,

but not necessarily an optimal solution within a short computation time, since the speed of

the solution process can be controlled by choosing an appropriate size of the subproblems.

This thesis consists of three papers on large-scale combinatorial optimization prob-

lems. We consider a portfolio optimization problem in finance, a scheduling problem in

project management, and a clustering problem in data analysis. For these problems, we

present novel mathematical models that require a relatively small number of variables and

1



Introduction

constraints, and we develop matheuristics that are based on novel problem-decomposition

strategies. In extensive computational experiments, the proposed models and matheuris-

tics performed favorably compared to state-of-the-art models and solution approaches

from the literature.

In the first paper, we consider the problem of determining a portfolio for an enhanced

index-tracking fund. Enhanced index-tracking funds aim to replicate the returns of a par-

ticular financial stock-market index as closely as possible while outperforming that index

by a small positive excess return. Additionally, we consider various real-life constraints

that may be imposed by investors, stock exchanges, or investment guidelines. Since en-

hanced index-tracking funds are particularly attractive to investors if the index comprises

a large number of stocks and thus is well diversified, it is of particular interest to tackle

large-scale problem instances. For this problem, we present two matheuristics that consist

of a novel construction matheuristic, and two different improvement matheuristics that

are based on the concepts of local branching (cf. Fischetti and Lodi 2003) and iterated

greedy heuristics (cf., e.g., Ruiz and Stützle 2007). Moreover, both matheuristics are

based on a novel mathematical model for which we provide insights that allow to remove

numerous redundant variables and constraints. We tested both matheuristics in a com-

putational experiment on problem instances that are based on large stock-market indices

with up to 9,427 constituents. It turns out that our matheuristics yield better portfolios

than benchmark approaches in terms of out-of-sample risk-return characteristics.

In the second paper, we consider the problem of scheduling a set of precedence-related

project activities, each of which requiring some time and scarce resources during their

execution. For each activity, alternative execution modes are given, which differ in the

duration and the resource requirements of the activity. Sought is a start time and an

execution mode for each activity, such that all precedence relationships are respected,

the required amount of each resource does not exceed its prescribed capacity, and the

project makespan is minimized. For this problem, we present two novel mathematical

models, in which the number of variables remains constant when the range of the activ-

ities’ durations and thus also the planning horizon is increased. Moreover, we enhance

the performance of the proposed mathematical models by eliminating some symmetric

solutions from the search space and by adding some redundant sequencing constraints for

activities that cannot be processed in parallel. In a computational experiment based on

instances consisting of activities with durations ranging from one up to 260 time units,

the proposed models consistently outperformed all reference models from the literature.

In the third paper, we consider the problem of grouping similar objects into clus-

ters, where the similarity between a pair of objects is determined by a distance measure

2



Introduction

based on some features of the objects. In addition, we consider constraints that impose

a maximum capacity for the clusters, since the size of the clusters is often restricted in

practical clustering applications. Furthermore, practical clustering applications are often

characterized by a very large number of objects to be clustered. For this reason, we

present a matheuristic based on novel problem-decomposition strategies that are specif-

ically designed for large-scale problem instances. The proposed matheuristic comprises

two phases. In the first phase, we decompose the considered problem into a series of

generalized assignment problems, and in the second phase, we decompose the problem

into subproblems that comprise groups of clusters only. In a computational experiment,

we tested the proposed matheuristic on problem instances with up to 498,378 objects.

The proposed matheuristic consistently outperformed the state-of-the-art approach on

medium- and large-scale instances, while matching the performance for small-scale in-

stances.

Although we considered three specific optimization problems in this thesis, the pro-

posed models and matheuristics can be adapted to related optimization problems with

only minor modifications. Examples for such related optimization problems are the

UCITS-constrained index-tracking problem (cf, e.g., Strub and Trautmann 2019), which

consists of determining the portfolio of an investment fund that must comply with reg-

ulatory restrictions imposed by the European Union, the multi-site resource-constrained

project scheduling problem (cf., e.g., Laurent et al. 2017), which comprises the scheduling

of a set of project activities that can be executed at alternative sites, or constrained clus-

tering problems with must-link and cannot-link constraints (cf., e.g., González-Almagro

et al. 2020).

3



Bibliography

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., Weninger, D., 2020. Presolve reduc-

tions in mixed integer programming. INFORMS Journal on Computing 32 (2), 473–506.

Bixby, E. R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R., 1999. MIP: Theory

and practice - closing the gap. In: Powell, M., Scholtes, S. (Eds.), IFIP Conference on

System Modeling and Optimization. Cambridge, UK, pp. 19–49.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Programming 98 (1–3),

23–47.

González-Almagro, G., Luengo, J., Cano, J.-R., Garćıa, S., 2020. DILS: constrained clus-

tering through dual iterative local search. Computers & Operations Research, 104979.

Laurent, A., Deroussi, L., Grangeon, N., Norre, S., 2017. A new extension of the RCPSP in

a multi-site context: Mathematical model and metaheuristics. Computers & Industrial

Engineering 112, 634–644.

Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem. European Journal of Operational Research

177, 2033–2049.

Strub, O., Trautmann, N., 2019. A two-stage approach to the UCITS-constrained index-

tracking problem. Computers & Operations Research 103, 167–183.

4



Paper I

Tracking and outperforming large

stock-market indices1

Mario Gnägi Oliver Strub

Department of Business Administration
University of Bern

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Mixed-integer linear and quadratic programming formulations 14

1.3.1 Objective functions and the constraint on the expected excess
return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 TEV: a comparison with dissimilarity functions . . . . . . . . . 18

1.3.3 Real-life constraints . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.4 Removing redundant variables and constraints from the mixed-
integer programming formulations . . . . . . . . . . . . . . . . 21

1.4 Heuristic solution approaches . . . . . . . . . . . . . . . . . . . 23

1.4.1 Construction heuristic . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Local branching heuristic . . . . . . . . . . . . . . . . . . . . . 24

1.4.3 Iterated greedy heuristic . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.2 Novel problem instances . . . . . . . . . . . . . . . . . . . . . . 33

1.5.3 Portfolios without rebalancing: in-sample and out-of-sample per-
formance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.4 MIP gaps: M-Q in comparison with M-L . . . . . . . . . . . . 35

1.5.5 In-sample performance analysis: LBH and IGH in comparison
with M-Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.5.6 Out-of-sample performance analysis . . . . . . . . . . . . . . . 37

1.5.7 Portfolio compositional characteristics: LBH and IGH in com-
parison with M-L . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1Published in Omega 90, 101999 (DOI:10.1016/j.omega.2018.11.008)

5



Paper I: Tracking and outperforming large stock-market indices

Abstract

Enhanced index-tracking funds aim to track the returns of a given

financial benchmark index as closely as possible while outperforming

that index by a small positive excess return. These funds are attractive

to investors, especially when the index is large and thus well diversified.

We consider the problem of determining a portfolio for an enhanced

index-tracking fund that is benchmarked against a large stock-market

index subject to real-life constraints that may be imposed by investors,

stock exchanges, or investment guidelines. Existing approaches to en-

hanced index tracking exhibit one of the following shortcomings: they

may not exploit information about the weights of the stocks in the in-

dex, they may neglect real-life constraints such as the minimum trading

values imposed by stock exchanges, or they may not devise good fea-

sible portfolios within a reasonable computational time when the index

is large. To overcome these shortcomings, we present two matheuris-

tic approaches based on a novel mixed-integer quadratic programming

formulation. We tested both matheuristics on a novel set of problem in-

stances based on large stock-market indices with up to more than 9,000

constituents. Our computational results indicate that within a limited

computational time, both matheuristics yield better feasible portfolios

than benchmark approaches in terms of the objective function value and

out-of-sample risk-return characteristics.

1.1 Introduction

A stock-market index reflects the overall development of the stocks that constitute that

index. Examples of such indices include the Standard & Poor’s 500 index, the EURO

STOXX 50 index, and the Thomson Reuters Global index, which reflect the development

of national, regional, and global stock markets, respectively. Stock-market indices serve

as benchmarks for evaluating the performance of professional managers of both active

and passive investment funds. A passive fund, also known as an index-tracking fund,

aims to replicate the return of an index, whereas an active fund aims to achieve an excess

return over its benchmark index. Passive funds tend to be less risky and incur lower

management costs than active funds (cf. Beasley et al. 2003). However, active funds have

a higher potential return. Recently, a new type of investment fund has emerged, so-called

enhanced index-tracking funds, which are based on the idea of combining the advantages

6



Paper I: Tracking and outperforming large stock-market indices

of both active and passive funds by aiming at a small target excess return with minimum

additional risk relative to the index, i.e., a minimum tracking error (cf. Filippi et al. 2016).

Note that we regard index-tracking funds as a special type of enhanced index-tracking

funds with a target excess return of zero. Enhanced index-tracking funds are attractive to

investors, especially when such a fund is benchmarked against an index that has a large

number of constituents and thus is well diversified.

We consider the enhanced index-tracking problem (EITP) faced by the portfolio man-

ager of an enhanced index-tracking fund that is benchmarked against a large stock-market

index. In the EITP, the portfolio manager is given the current composition of the index

and the current composition of the portfolio, which can consist of stocks from the index

and cash. The portfolio manager can receive cash deposits and cash withdrawal requests.

The available investment budget consists of the net cash flow from deposits and with-

drawals plus the value of the current portfolio. Furthermore, the portfolio manager is

given the following data from the past, i.e., the in-sample period: the values of the index,

the prices of the stocks that currently constitute the index, and the interest rates on cash.

The portfolio manager needs to decide how to revise (rebalance) the current portfolio such

that the rebalanced portfolio will exhibit a small tracking error and achieve a given target

excess return in the future, i.e., the out-of-sample period. Because future outcomes are

not known in advance, the portfolio manager aims to minimize the expected tracking er-

ror subject to a constraint that prescribes some minimum expected excess return. When

rebalancing the portfolio, the manager must consider a budget constraint that ensures

that the investment in the stocks plus the total transaction costs spent for rebalancing do

not exceed the investment budget. Furthermore, the portfolio manager must also consider

various real-life constraints that may be imposed by investment guidelines, the investors,

or stock exchanges. Specifically, we consider the following real-life constraints, which are

common both in the literature and in practice (cf., e.g., Filippi et al. 2016; Guastaroba

and Speranza 2012; Strub and Baumann 2018). The number of stocks included in the

portfolio, i.e., the portfolio cardinality, must not exceed a given upper bound because

investing in all constituents of a large index would be impractical due to the consequent

prohibitive management costs. The trading value of each traded stock and the weight of

each stock in the portfolio must be within given ranges. The total proportional and fixed

transaction costs spent for rebalancing must not exceed a given fraction of the investment

budget. Finally, the short selling of stocks is prohibited, and it is assumed that fractional

units of stocks can be traded. Note that the EITP also includes the construction of a new

portfolio as a special case when the portfolio before rebalancing consists only of cash.

In the literature, various mathematical programming formulations have been proposed

7



Paper I: Tracking and outperforming large stock-market indices

for the problem of determining an enhanced index-tracking portfolio. These formulations

differ with respect to the real-life constraints considered, the way the expected tracking

error is attempted to be minimized, and whether and how the expected excess return

is integrated. With respect to the real-life constraints, some authors have determined

enhanced index-tracking portfolios without considering real-life constraints (cf., e.g., Roll

1992), whereas others have considered all real-life constraints as defined in the EITP

(cf., e.g., Strub and Baumann 2018). With respect to the expected tracking error, the

earliest studies attempted to minimize the tracking error variance (TEV), which is a

quadratic function of the covariances between the returns of the stocks, the weights of the

stocks in the portfolio, and the weights of the stocks in the index (cf., e.g., Roll 1992).

Minimizing the TEV corresponds to minimizing the estimated variance of the return

differences between the portfolio and the index in the out-of-sample period (cf. Mutunge

and Haugland 2018). By contrast, later studies attempted to minimize the expected

tracking error by using as the objective function a dissimilarity function that captured the

deviation between the historical developments of the portfolio and the index. One of the

most widely used dissimilarity functions is the mean-absolute deviation (MAD) between

the historical values of the portfolio and the index (cf., e.g., Filippi et al. 2016; Guastaroba

and Speranza 2012; Konno and Wijayanayake 2001). In the most recent study, the goal

of minimizing the TEV was revisited (cf. Mutunge and Haugland 2018). With respect to

the expected excess return, some studies have focused on the problem of determining the

portfolio for an index-tracking fund without considering the expected excess return (cf.,

e.g., Strub and Baumann 2018). In other studies, the expected excess return has been

considered by using a bi-objective approach with the maximization of the expected excess

return as a second competing objective (cf., e.g., Filippi et al. 2016), by introducing into

the objective function a second term that captures the expected excess return (cf., e.g.,

Beasley et al. 2003), or by introducing a constraint that prescribes a minimum expected

excess return (cf., e.g., Roll 1992). From an optimization point of view, these various

means of integrating the expected excess return are very similar because all functions

used for the expected excess return are linear. Various exact approaches, such as mixed-

integer programming, and metaheuristic approaches, such as population-based heuristics

or local-search heuristics, have all been proposed as solution approaches for the problem

of determining an enhanced index-tracking portfolio.

We have identified four gaps in the literature on enhanced index tracking. Gap 1: it

remains an open question whether it is preferable in terms of the out-of-sample track-

ing error to use the TEV as the objective function, which, together with the real-life

constraints, constitutes a cardinality-constrained quadratic optimization problem that is

8



Paper I: Tracking and outperforming large stock-market indices

known to be very challenging to solve (cf. Bertsimas and Shioda 2009; Wu et al. 2017),

or whether it is preferable to use a dissimilarity function such as the MAD, which can be

formulated as a linear objective function and thus is less challenging to optimize. Gap 2:

the EITP as defined above has not been previously considered because the problems

studied in the literature may neglect the minimum expected excess return or some of

the real-life constraints. Hence, the EITP as defined above has not been formulated as a

mathematical program. Moreover, the existing mathematical programming formulations

for problems related to the EITP that consider transaction costs allow the implicit holding

of cash because the budget constraint is modeled as an inequality or because the modeled

transaction costs correspond to merely an upper bound on the true transaction costs.

Consequently, these cash holdings are not considered in the formulation of the expected

tracking error and the expected excess return. Gap 3: the existing solution approaches

for the related problems studied in the literature may not be appropriate for the EITP

when the TEV is used as the objective function. The existing exact approaches would

require the solution of a series of quadratic programming relaxations, which may become

computationally very expensive when large indices are considered. The existing meta-

heuristic approaches would require adaptation to the real-life constraints of the EITP,

which may reduce their effectiveness because they are tailored for other specific problems

that are less constrained. Gap 4: there are no available instances of the EITP based on

large stock-market indices; the existing instances of related problems either are based on

small indices or do not provide information about the index composition.

The main contribution of this paper is to address the open question corresponding to

gap 1 by providing novel theoretical arguments and novel experimental results. The the-

oretical arguments indicate that minimizing the TEV instead of a dissimilarity function

may lead to superior out-of-sample tracking errors, especially when the index is large,

because dissimilarity functions may not exploit the known index composition. To be able

to provide experimental results, we first had to address the gaps 2 to 4. To address

gap 2, we present a novel mixed-integer quadratic programming (MIQP) formulation and

a novel mixed-integer linear programming (MILP) formulation of the EITP. In the MIQP

formulation, we use the TEV as the objective function. In the MILP formulation, we use

the MAD as the objective function. The novelties in these formulations are a formulation

of the considered real-life constraints in which cash holdings are explicitly considered and

insights that allow to remove redundant variables and constraints. To address gap 3,

we present a construction matheuristic and two improvement matheuristics based on

the proposed MIQP formulation that are able to determine good feasible portfolios, i.e.,

portfolios that satisfy all considered constraints, within a reasonable computational time

9



Paper I: Tracking and outperforming large stock-market indices

for the EITP when the TEV is used as the objective function, especially for instances

based on large indices. The construction heuristic, which can be used to find an initial

feasible portfolio quickly, is based on a novel idea of linearizing the TEV by using the

identity matrix as a simplified covariance matrix and by considering absolute instead of

squared deviations in the terms of the resulting function. The first improvement heuristic

is based on the concept of local branching, which has been successfully applied to various

combinatorial optimization problems (cf. Fischetti and Lodi 2003). In local branching,

starting from the initial feasible solution, the solution space to be searched is iteratively

defined with an upper bound on the number of binary variables whose values flip. The

novelty of this improvement heuristic is that we consider a subset of promising stocks

that differs in each iteration to reduce the required computational time. The second im-

provement heuristic is based on the concept of iterated greedy heuristics (cf., e.g., Ruiz

and Stützle 2007). In iterated greedy heuristics, a current feasible solution is iteratively

deconstructed and subsequently reconstructed in a greedy manner to form a new feasible

solution. The novelties of this improvement heuristic are that we also consider a differ-

ent subset of promising stocks in each iteration and that, in contrast to existing iterated

greedy heuristics (cf., e.g., Strub and Trautmann 2016), we apply mixed-integer quadratic

programming for the reconstruction. The proposed matheuristics are particularly suit-

able for the EITP because they are simple to implement and because they combine the

flexibility of mathematical programming to easily incorporate complex constraints such

as the considered real-life constraints with the ability of heuristics to find good feasible

solutions quickly. Hence, the proposed matheuristics exhibit the properties of accuracy,

speed, simplicity, and flexibility, which are the four essential attributes of good heuris-

tics according to Cordeau et al. (2002). Finally, to address gap 4, we generated a set

of novel instances of the EITP based on nine large regional and global real-world stock-

market indices maintained by Thomson Reuters. The largest of these indices has more

than 9,000 constituents. In a computational experiment based on these instances, we

tested two heuristic solution approaches that are based on the two proposed improvement

matheuristics initialized with the proposed construction matheuristic and two exact so-

lution approaches that are based on the MIQP and the MILP formulation along with a

commercial mixed-integer programming solver. This computational experiment yielded

the following three main findings. 1) An exact solution approach may be appropriate for

the EITP when the MAD is used as the objective function, but may not be appropriate

when the TEV is minimized, which indicates the potential improvements that may be

achieved by applying heuristics to the EITP when the TEV is used as the objective func-

tion. 2) The proposed matheuristics are indeed able to achieve substantial improvements

10



Paper I: Tracking and outperforming large stock-market indices

in terms of the TEV compared to an exact solution approach within a limited computa-

tional time. 3) Minimizing the TEV instead of the MAD leads to superior portfolios in

terms of the out-of-sample tracking error.

The remainder of this paper is organized as follows. In Section 1.2, we review the

existing solution approaches in the literature for problems that are related to the EITP.

In Section 1.3, we present the MIQP and the MILP formulation and provide the arguments

to address gap 1 theoretically. In Section 1.4, we present the construction matheuristic

and the two improvement matheuristics. In Section 1.5, we report the computational

results to address gap 1 experimentally. In Section 1.6, we offer some concluding remarks

and an outlook on future research.

1.2 Related literature

Various papers in the literature have studied problems that are related to the EITP.

Table 1.1 lists, for each of these papers with a 3-symbol, whether it considers the real-

life constraints of the EITP mentioned above and whether the objective is index tracking

(IT) or enhanced index tracking (EIT). We categorize the papers into two groups based on

whether the objective function used is non-linear or linear. In the following, we describe

the proposed solution approaches of both groups.

11



P
ap

er
I:

T
rack

in
g

an
d

ou
tp

erform
in

g
large

sto
ck

-m
arket

in
d
ices

Table 1.1: Problems related to the EITP considered in the literature.

Paper Real-life constraints Objective

Cardinality Min./max. weights Transaction costs Min./max. trades IT EIT

N
o
n

-l
in

ea
r

o
b

je
ct

iv
e

fu
n

ct
io

n

Jorion (2003) 3 3

Roll (1992) 3 3

Rudd (1980) 3 3 3

Konno and Wijayanayake (2001) 3 3

Chiam et al. (2013) 3 3

Gaivoronski et al. (2005) 3 3 3

Takeda et al. (2013) 3 3

Kwiatkowski (1992) 3 3

Maringer and Oyewumi (2007) 3 3

Mutunge and Haugland (2018) 3 3

Sant’Anna et al. (2017a) 3 3 3

Sant’Anna et al. (2017b) 3 3

Andriosopoulos and Nomikos (2014) 3 3 3 3

Jansen and Van Dijk (2002) 3 3 3

Scozzari et al. (2013) 3 3 3

Krink et al. (2009) 3 3 3

Beasley et al. (2003) 3 3 3 3

L
in

ea
r

o
b

je
c-

ti
ve

fu
n
ct

io
n

Rudolf et al. (1999) 3

Bruni et al. (2015) 3 3 3 3

Guastaroba et al. (2016) 3 3 3 3

Guastaroba and Speranza (2012) 3 3 3 3 3

Filippi et al. (2016) 3 3 3 3 3

Strub and Baumann (2018) 3 3 3 3 3

12



Paper I: Tracking and outperforming large stock-market indices

The first group of problems consists of those that involve the optimization of a non-

linear objective function. In some papers, only indices with a small number of constituents

are considered, such that exact approaches are applicable (cf. Gaivoronski et al. 2005;

Jansen and Van Dijk 2002; Rudd 1980). In other papers, the real-life constraints are ne-

glected, which allows closed-form solutions to be devised (cf. Jorion 2003; Roll 1992). In

the remaining papers, metaheuristics such as evolutionary algorithms (cf. Andriosopoulos

and Nomikos 2014; Chiam et al. 2013; Krink et al. 2009; Maringer and Oyewumi 2007;

Sant’Anna et al. 2017a,b; Scozzari et al. 2013) or local-search heuristics (cf. Kwiatkowski

1992; Mutunge and Haugland 2018; Takeda et al. 2013) are proposed. The majority of the

papers in this first group neglect most of the real-life constraints of the EITP. An exception

is the paper by Beasley et al. (2003), in which the goal is to optimize the trade-off between

a non-linear dissimilarity function and the expected excess return subject to a cardinality

constraint, minimum and maximum weights for the stocks included in the portfolio, and

a budget for proportional transaction costs. An evolutionary algorithm is presented that

uses cross-over and mutation operators to combine and modify, respectively, individuals

that represent feasible and infeasible solutions. The presented algorithm includes a cus-

tomized procedure for determining portfolio weights, a repair operator, and a penalty

term in the objective function to handle infeasible solutions.

The second group of problems consists of those that involve the optimization of a lin-

ear objective function. For these problems, exact approaches such as linear programming

and MILP approaches are able to devise good feasible solutions within a reasonable com-

putational time, even when real-life constraints and large indices are considered (cf. Bruni

et al. 2015; Filippi et al. 2016; Guastaroba et al. 2016; Guastaroba and Speranza 2012;

Rudolf et al. 1999; Strub and Baumann 2018). Among all these problems, those studied in

the following papers are most similar to the EITP in terms of the real-life constraints con-

sidered. Strub and Baumann (2018) introduce a MILP formulation for determining the

portfolio for an index-tracking fund in which a linear dissimilarity function is minimized

subject to all real-life constraints of the EITP. Guastaroba and Speranza (2012) minimize

the MAD between the historical values of the portfolio and the index, which is modeled as

a linear dissimilarity function, subject to a budget for fixed and proportional transaction

costs, minimum and maximum portfolio weights, and a cardinality constraint. They also

present a heuristic called Kernel Search, which is a matheuristic that can easily handle

various real-life constraints. In this heuristic, the information from the solution to the

linear programming relaxation is exploited to construct different sub-problems that can

be solved quickly. They also show that their heuristic can be applied for enhanced index

tracking by tracking an artificial index that represents the index return plus the target

13



Paper I: Tracking and outperforming large stock-market indices

excess return. Filippi et al. (2016) aim to maximize a linear excess-return function and

minimize the same linear dissimilarity function subject to the same real-life constraints as

those of Guastaroba and Speranza (2012). They modify the Kernel Search heuristic such

that it can be applied to the considered problem. In the MILP formulation presented

by Strub and Baumann (2018), implicit cash holdings can occur because the budget con-

straint is modeled as an inequality, which is necessary because the total transaction costs

spent for rebalancing plus the value of the portfolio may not exactly match the investment

budget. In the MILP formulations proposed by Guastaroba and Speranza (2012) and Fil-

ippi et al. (2016), implicit cash holdings can occur because the modeled transaction costs

correspond merely to an upper bound on the true transaction costs. A drawback of these

implicit cash holdings is that they are not considered in the calculation of the historical

portfolio values and thus are also ignored in the dissimilarity and excess return functions.

The existing solution approaches presented in the literature may not be appropri-

ate for the EITP when the TEV is used as the objective function. The existing exact

approaches and the Kernel Search heuristic would first require the solution of the con-

tinuous relaxation of the MIQP formulation of the EITP, which is a quadratic program

that becomes computationally very expensive to solve when large indices are considered.

The existing metaheuristics would require adaptation to the real-life constraints of the

EITP, which may reduce their effectiveness because they are tailored for other specific

problems that do not include all of the real-life constraints of the EITP. A further draw-

back of metaheuristics is that they may investigate many infeasible solutions and thus be

ineffective.

1.3 Mixed-integer linear and quadratic programming

formulations

In this section, we present the novel MIQP formulation and the novel MILP formulation of

the EITP. In Subsection 1.3.1, we first present the objective functions and the constraint

on the expected excess return that are used in the two mixed-integer programming (MIP)

formulations. In Subsection 1.3.2, we present new arguments that using the TEV instead

of a dissimilarity function as the objective function may lead to superior portfolios in terms

of the out-of-sample tracking error. In Subsection 1.3.3, we introduce the formulation of

the real-life constraints. In Subsection 1.3.4, we provide insights that allow to remove

redundant variables and constraints from the formulation of the real-life constraints, and

we present the complete MIP formulations without the removed variables and constraints.

Table 1.2 shows the nomenclature used in the MIP formulations. The set of available

14



Paper I: Tracking and outperforming large stock-market indices

assets consists of the set of index constituents U = {1, . . . , n} and an asset n + 1 that

represents the explicitly modeled cash holdings. Note that in Table 1.2, the decision

variables are defined only for a set of considered stocks I, with I being a subset of the set

of index constituents U and a superset of the set Is that contains the stocks that must

always be included in the portfolio after rebalancing, i.e., Is ⊆ I ⊆ U . Thereby, the set Is

must always contain the stocks included in the portfolio before rebalancing that cannot be

sold off completely due to the minimum and maximum trading values. Then, let T be the

point in time at which the EITP must be solved, Pit be the prices of the stocks i ∈ U at

the point in time t ∈ {1, . . . , T}, and Pn+1,t be the values of the asset that represents cash

calculated as Pn+1,t = Pn+1,T exp(−
∑T

s=t+1 is) for t ∈ {1, . . . , T − 1}, with Pn+1,T = 100

and it for t ∈ {2, . . . , T} corresponding to the continuously compounded interest rate on

the cash holdings. Furthermore, let Yi be the number of units of the assets i ∈ U ∪{n+1}
in the portfolio before rebalancing, κ be the net cash flow from deposits and withdrawals,

and C = κ+
∑

i∈U∪{n+1} YiPiT be the investment budget. Then, the stocks that cannot be

sold off completely are those that have a value in the portfolio before rebalancing of PiTYi

that is greater than the maximum trading value of ηiC or greater than zero but smaller

than the minimum trading value of ζiC, i.e., Is ⊇ {i ∈ U : PiTYi > ηiC∨0 < PiTYi < ζiC}.
We define the MIP formulations in this general form based on the sets I and Is because

this simplifies the notation for the MIP formulations without the removed redundant

variables and constraints presented in Subsection 1.3.4 and because we can then use the

MIQP formulation with only minor modifications for the heuristic solution approaches

presented in Section 1.4.

1.3.1 Objective functions and the constraint on the expected

excess return

The two competing objectives in enhanced index tracking are the minimization of the

expected tracking error and the maximization of the expected excess return. In this

subsection, we present the functions used to model these objectives in the proposed MIP

formulations. In the MIQP and the MILP formulation, we use the TEV and the MAD,

respectively, for the expected tracking error. In both formulations, we use the function

presented by Roll (1992) for the expected excess return. We adjust all functions to account

for the set of considered stocks I and the explicitly modeled cash holdings.

We define Xi ≥ 0 to be the main decision variables that correspond to the number

of units of the assets i ∈ I ∪ {n + 1} in the portfolio after rebalancing. Then, the TEV,

which is used in the MIQP formulation, is a function of the covariances σij between the

15



Paper I: Tracking and outperforming large stock-market indices

Table 1.2: Nomenclature for the MIP formulations.

Sets and parameters:

T Point in time at which the EITP must be solved (today)
n Number of stocks in the index
U Set of index constituents (U = {1, . . . , n})
I Set of considered stocks (I ⊆ U)
Is Set of stocks that must be included in the portfolio after rebalancing (Is ⊆ I)
k Maximum portfolio cardinality
κ Net cash flow from deposits and withdrawals
it Continuously compounded interest rate on cash for the period starting at t − 1 and

ending at t, t ∈ {2, . . . , T}
It/Pit Historical value/price of index/asset i ∈ U ∪ {n+ 1} at t ∈ {1, . . . , T}
Yi Number of units of asset i ∈ U ∪ {n+ 1} in the portfolio before rebalancing
C Investment budget
ζi/ηi Minimum/maximum trading value of stock i ∈ U if traded, expressed as a percentage

of C
εi/δi Minimum/maximum weight of stock i ∈ U if included in the portfolio after rebalanc-

ing

cfi Fixed transaction cost for trading stock i ∈ U
cbi/c

s
i Proportional transaction cost for buying/selling stock i ∈ U as a percentage of the

trading value
γ Maximum total transaction costs, expressed as a percentage of C
wIi Weight of asset i ∈ U ∪ {n+ 1} in the index, with wIn+1 = 0
ri Expected return of asset i ∈ U ∪ {n+ 1}
α Prescribed minimum expected excess return
σij Covariance between the discrete returns of asset i ∈ U ∪ {n + 1} and asset j ∈

U ∪ {n+ 1}

Continuous non-negative decision variables:

Xi Number of units of asset i ∈ I ∪ {n+ 1} in the portfolio after rebalancing
Gi Total transaction costs associated with stock i ∈ I
vbi/v

s
i Value bought/sold of stock i ∈ I

ut/dt Absolute upside/downside deviation between the values of the portfolio and the index
at t ∈ {1, . . . , T}

Binary decision variables:

zi = 1, if Xi > 0; = 0, otherwise (i ∈ I)
zbi = 1, if Xi > Yi; = 0, otherwise (i ∈ I)
zsi = 1, if Xi < Yi; = 0, otherwise (i ∈ I)

16



Paper I: Tracking and outperforming large stock-market indices

returns of assets i ∈ U ∪ {n + 1} and j ∈ U ∪ {n + 1}, the weights PiTXi

C
of the assets

i ∈ U ∪ {n+ 1} in the portfolio, and the weights wIi of the assets i ∈ U ∪ {n+ 1} in the

index, with wIn+1 = 0. Any stock that is not included in I will have a portfolio weight of

zero. Thus, the following function represents the TEV:

∑
i,j∈I∪{n+1}

σij

(
PiTXi

C
− wIi

)(
PjTXj

C
− wIj

)
−

2
∑

i∈I∪{n+1}

∑
j∈U\I

σij

(
PiTXi

C
wIj − wIiwIj

)
+
∑

i,j∈U\I

σijw
I
iw

I
j (1.1)

Based on the expected returns ri of the assets i ∈ U ∪ {n + 1}, the expected excess

return is calculated as the difference between the expected return of the portfolio and the

expected return of the index:

∑
i∈I∪{n+1}

PiTXi

C
ri −

∑
i∈U∪{n+1}

wIi ri (1.2)

In the MIQP formulation, we minimize the TEV subject to a constraint that prescribes

a minimum expected excess return of α, as follows:


Min. (1.1)

s.t.
∑

i∈I∪{n+1}

PiTXi

C
ri −

∑
i∈U∪{n+1}

wIi ri ≥ α

(1.3)

(1.4)

In the MILP formulation, the dissimilarity function captures the MAD over all in-

sample time points t ∈ {1, . . . , T} between the values of the index It, scaled to the

investment budget C at time point T , and the values of the portfolio
∑

i∈I∪{n+1} PitXi.

With the introduction of the non-negative decision variables ut and dt for t ∈ {1, . . . , T},
the MAD can be minimized subject to the constraint on the expected excess return as

follows: 

Min.
1

T

∑
t∈{1,...,T}

(ut + dt)

s.t. ut − dt =
∑

i∈I∪{n+1}

PitXi − It
C

IT
(t ∈ {1, . . . , T})

∑
i∈I∪{n+1}

PiTXi

C
ri −

∑
i∈U∪{n+1}

wIi ri ≥ α

(1.5)

(1.6)

(1.4)

17



Paper I: Tracking and outperforming large stock-market indices

1.3.2 TEV: a comparison with dissimilarity functions

In this subsection, we compare the minimization of the TEV with the minimization of

a dissimilarity function such as the MAD in terms of the out-of-sample tracking error.

For this purpose, we consider all index constituents, i.e., I = U , and we consider only

a budget constraint that ensures that the entire investment budget is invested in the

assets. We assume that the number of available assets is much larger than the number

of in-sample time points, i.e., |U ∪ {n+ 1}| � T , and that the matrix consisting of the

in-sample prices of each stock, where each stock corresponds to a column, has full row

rank. Both assumptions are usually satisfied when the index is large. We further assume

that the matrix of the covariances is positive definite. This assumption is satisfied when

an appropriate estimator is used for the covariances, such as that of Ledoit and Wolf

(2004b), but may be violated when the sample covariance is used as an estimator (cf.

Ledoit and Wolf 2004a).

When the TEV is to be minimized with a positive-definite matrix of covariances, the

only solution with zero TEV is the portfolio that has the same composition as the index.

By contrast, when a dissimilarity function is used, i.e., when the known index composition

is ignored, infinitely many different portfolios can exist that achieve a dissimilarity of zero

with respect to the index. To see this, note that finding a portfolio with zero dissimilarity

is equivalent to solving a system of T linear equations with n+1 unknowns, where these T

equations state that the portfolio value at each time point t ∈ {1, . . . , T} must match the

scaled index value at that time point. Note that the equation for time point T also ensures

that the budget constraint is satisfied because of the scaling of the index values. Under

the assumption of a full row rank matrix of stock prices, infinitely many solutions to this

linear system exist, which means that infinitely many portfolios with zero dissimilarity

exist.

Based on the arguments above, one drawback of minimizing a dissimilarity function

is that, in contrast to the case of minimizing the TEV, many different portfolios can exist

that each have an objective function value of zero but a composition that strongly dif-

fers from that of the index. These portfolios may have very high out-of-sample tracking

errors. Hence, for our computational experiment reported in Section 1.5, we expect that

the compositions of the portfolios obtained when minimizing the MAD will differ more

strongly from the composition of the index than the compositions of the portfolios ob-

tained when minimizing the TEV. Consequently, we also expect that, over all considered

problem instances, the average and the worst-case tracking error for the out-of-sample

period will be worse when the MAD is minimized instead of the TEV.

18



Paper I: Tracking and outperforming large stock-market indices

1.3.3 Real-life constraints

Next, we model the real-life constraints. The constraints expressed in (1.7) assign at least

the absolute value bought or sold of each stock i ∈ I to the non-negative decision variable

vbi or vsi , respectively. These decision variables are used to model the transaction costs

and the minimum and maximum trading values.

vbi − vsi = PiT (Xi − Yi) (i ∈ I) (1.7)

The purpose of constraints (1.8) and (1.9) is twofold. First, the binary variables zbi and

zsi are assigned a value of one if the variables vbi and vsi , respectively, take a positive value

and a value of zero otherwise. Second, the constraints prescribe minimum and maximum

values of ζiC and ηiC, respectively, for vbi and vsi .

ζiCz
b
i ≤ vbi ≤ ηiCz

b
i (i ∈ I) (1.8)

ζiCz
s
i ≤ vsi ≤ ηiCz

s
i (i ∈ I) (1.9)

The constraints defined in (1.10) ensure that for each stock i ∈ I, at most one of the

binary variables zbi and zsi can be set to one.

zbi + zsi ≤ 1 (i ∈ I) (1.10)

Together, constraints (1.8), (1.9), and (1.10) ensure that for each stock i ∈ I, either

vbi or vsi must be set to zero. Because it is not possible for both variables vbi and vsi to

take positive values simultaneously for a given stock i ∈ I, the constraints defined in (1.7)

assign the actual values bought or sold of each stock i ∈ I to the variables vbi or vsi ,

respectively. These actual values are necessary to model the minimum and maximum

trading values ζiC and ηiC using constraints (1.8) and (1.9).

Let cfi , c
b
i , and csi be the parameters that determine the fixed transaction costs for

trading the stocks i ∈ U , the proportional transaction costs for buying units of the stocks

i ∈ U , and the proportional transaction costs for selling units of the stocks i ∈ U ,

respectively. Then, based on the variables vbi , v
s
i , z

b
i , and zsi , the transaction costs Gi

for each stock i ∈ I are calculated using the constraints defined in (1.11). Note that the

variables Gi take values equal to the actual transaction costs associated with each stock

i ∈ I, because we ensure that the variables vbi and vsi take the actual values bought and

sold of each stock, and that at most one of the binary variables zbi and zsi can be set to

19



Paper I: Tracking and outperforming large stock-market indices

one if stock i ∈ I is traded, whereas both variables zbi and zsi are set to zero otherwise.

Gi = cbiv
b
i + csiv

s
i + cfi (z

b
i + zsi ) (i ∈ I) (1.11)

The budget constraint (1.12) states that the available investment budget C must be

either held in cash, invested in the stocks that constitute the index, or spent for trans-

action costs. Note the possibility that some stocks were included in the portfolio before

rebalancing but are not included in the set of considered stocks I. Hence, the shares of

these stocks must be sold, incurring total transaction costs of
∑

i∈U\I:Yi>0

(
csiYiPiT + cfi

)
.

Since the variables Gi take values equal to the actual transaction costs associated with

each stock i ∈ I, constraint (1.12) ensures that the variable Xn+1 corresponds exactly to

the part of the investment budget that is not invested in stocks or spent for transaction

costs. Hence, we can explicitly account for these cash holdings when formulating the

TEV, the MAD, and the expected excess return.∑
i∈I∪{n+1}

PiTXi +
∑
i∈I

Gi +
∑

i∈U\I:Yi>0

(
csiYiPiT + cfi

)
= C (1.12)

Constraint (1.13) prescribes a budget of γC for the total transaction costs.∑
i∈I

Gi +
∑

i∈U\I:Yi>0

(
csiYiPiT + cfi

)
≤ γC (1.13)

The constraints (1.14) ensure that each binary variable zi takes a value of one if stock

i ∈ I is included in the portfolio after rebalancing and a value of zero otherwise. Further-

more, these constraints define minimum and maximum values of εi and δi, respectively,

for the weight of each stock i ∈ I in the portfolio.

εizi ≤
PiTXi

C
≤ δizi (i ∈ I) (1.14)

Based on the binary variables zi, the cardinality constraint (1.15) is formulated as

follows. ∑
i∈I

zi ≤ k (1.15)

The domains of the decision variables are specified by (1.16) and (1.17).

Xi ≥ 0 (i ∈ I ∪ {n+ 1}) (1.16)

zbi , z
s
i , zi ∈ {0, 1}; vbi , vsi , Gi ≥ 0 (i ∈ I) (1.17)

20



Paper I: Tracking and outperforming large stock-market indices

1.3.4 Removing redundant variables and constraints from the

mixed-integer programming formulations

From the formulation of the real-life constraints presented in Subsection 1.3.3, we can

remove some redundant variables and constraints based on the following three insights.

First, we note that some stocks that are included in the portfolio before rebalancing

must always be included in the portfolio after rebalancing due to the specified minimum

and maximum trading values. As mentioned above, these stocks are included in the set

Is ⊇ {i ∈ U : PiTYi > ηiC ∨ 0 < PiTYi < ζiC}. Second, Filippi et al. (2016) note that if a

stock is not included in the portfolio before rebalancing and is traded, then this stock will

always be included in the portfolio after rebalancing. Third, Strub and Baumann (2018)

note that stocks that are not included in the portfolio before rebalancing cannot be sold

because short selling is not allowed. We combine all three insights to obtain the following

restrictions on stocks based on their values in the portfolio before rebalancing. For each

stock i that is not included in the portfolio before rebalancing, i.e., Yi = 0, selling stock i

is not possible, and trading stock i means that it will be included in the portfolio after

rebalancing. For each stock i that has a value in the portfolio before rebalancing that is

positive but smaller than the minimum trading value, i.e., 0 < PiTYi < ζiC, selling stock i

is not possible, and thus, stock i must be included in the portfolio after rebalancing. For

each stock i that has a value in the portfolio before rebalancing that is larger than the

maximum trading value, i.e., ηiC < PiTYi, selling all units of stock i is not possible, and

thus, stock i must be included in the portfolio after rebalancing.

Based on the restrictions above, we can eliminate certain variables and constraints.

For each stock i that cannot be sold, the binary variable zsi and the continuous variable vsi

must both be zero and thus can be removed. Additionally, the continuous variable vbi can

be replaced with PiT (Xi − Yi). Furthermore, for each stock i that is not included in the

portfolio before rebalancing, i.e., Yi = 0, we can replace the binary variable zbi with the

binary variable zi because selling is not possible and buying stock i means that it will be

included in the portfolio after rebalancing. For each stock i that must be included in the

portfolio after rebalancing, we can set the binary variable zi equal to one.

The novel MIQP formulation (M-Q) and the novel MILP formulation (M-L) below

include the real-life constraints (without redundant variables and constraints) along with

the constraint on the expected excess return and their corresponding objective functions.

21



Paper I: Tracking and outperforming large stock-market indices

(M-Q)



Min. (1.1)

s.t. (1.4), (1.12), (1.13)

vbi − vsi = PiT (Xi − Yi) (i ∈ I : PiTYi ≥ ζiC)

ζiC ≤ XiPiT ≤ ηiC (i ∈ Is : Yi = 0)

ζiCzi ≤ XiPiT ≤ ηiCzi (i ∈ I \ Is : Yi = 0)

ζiCz
b
i ≤ (Xi − Yi)PiT ≤ ηiCz

b
i (i ∈ I : 0 < PiTYi < ζiC)

ζiCz
b
i ≤ vbi ≤ ηiCz

b
i (i ∈ I : PiTYi ≥ ζiC)

ζiCz
s
i ≤ vsi ≤ ηiCz

s
i (i ∈ I : PiTYi ≥ ζiC)

zbi + zsi ≤ 1 (i ∈ I : PiTYi ≥ ζiC)

Gi = cbiPiTXi + cfi (i ∈ Is : Yi = 0)

Gi = cbiPiTXi + cfi zi (i ∈ I \ Is : Yi = 0)

Gi = cbiPiT (Xi − Yi) + cfi z
b
i (i ∈ I : 0 < PiTYi < ζiC)

Gi = cbiv
b
i + csiv

s
i + cfi (z

b
i + zsi ) (i ∈ I : PiTYi ≥ ζiC)

εi ≤
PiTXi

C
≤ δi (i ∈ Is)

εizi ≤
PiTXi

C
≤ δizi (i ∈ I \ Is)∑

i∈I\Is

zi ≤ k − |Is|

Xi ≥ 0 (i ∈ I ∪ {n+ 1})

Gi ≥ 0 (i ∈ I)

zi ∈ {0, 1} (i ∈ I \ Is)

vbi , v
s
i ≥ 0, zsi ∈ {0, 1} (i ∈ I : PiTYi ≥ ζiC)

zbi ∈ {0, 1} (i ∈ I : Yi > 0)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(M-L)



Min. (1.5)

s.t. (1.6), (1.4), (1.12), (1.13), (1.18), (1.19),

(1.20), (1.21), (1.22), (1.23), (1.24), (1.25),

(1.26), (1.27), (1.28), (1.29), (1.30), (1.31),

(1.32), (1.33), (1.34), (1.35), (1.36)

ut, dt ≥ 0 (t ∈ {1, . . . , T}) (1.37)

22



Paper I: Tracking and outperforming large stock-market indices

Table 1.3: Additional nomenclature for the heuristic solution approaches.

Parameters:

q Parameter that defines the number of considered stocks
∆ Number of stocks that can be added and removed
ν Maximum number of iterations without improvement
d Maximum number of stocks to be removed

Continuous non-negative decision variables:

ξi Absolute deviation between the portfolio weight and index weight of asset i ∈ I ∪{n+ 1}

1.4 Heuristic solution approaches

In this section, we present the matheuristics for the EITP when the TEV is used as

the objective function. In Subsection 1.4.1, we present the construction heuristic for

determining an initial feasible portfolio. In Subsections 1.4.2 and 1.4.3, we present the

two improvement heuristics based on local branching and the concept of iterated greedy

heuristics, respectively, for improving a given initial feasible portfolio. Table 1.3 defines

the additional nomenclature used in formulating these matheuristics.

1.4.1 Construction heuristic

Constructing a feasible portfolio is not straightforward. It is possible that no feasible

portfolio exists, e.g., when the prescribed minimum excess return is set too high or when

a current portfolio must be rebalanced so heavily to ensure the prescribed minimum and

maximum weights that the prescribed budget for transaction costs is too low. Even if a

feasible portfolio exists, when selecting the stocks that should be included in the portfolio

by applying, e.g., a random or greedy algorithm, it might not be possible to find weights

for these selected stocks such that the portfolio is feasible with respect to all constraints.

Therefore, we propose a MILP-based construction heuristic that is able to find a

feasible portfolio quickly if one exists, and can also prove the nonexistence of a feasible

portfolio. To simplify the search for a feasible portfolio for the MIQP formulation (M-

Q), we use the identity matrix as a simplified covariance matrix. Thus, the objective

function (1.1) reduces to the following terms:

∑
i∈I∪{n+1}

(
PiTXi

C
− wIi

)2

+
∑
i∈U\I

(wIi )
2 (1.38)

Furthermore, we consider the sum of the absolute deviations (instead of the squared

23



Paper I: Tracking and outperforming large stock-market indices

deviations) between the weights of the assets in the portfolio and the weights of the assets

in the index, and we ignore the second sum because it is constant. The resulting objective

function can be optimized subject to the constraints of the EITP using the following MILP

formulation:

(M-C)



Min.
∑

i∈I∪{n+1}

ξi

s.t. ξi ≥
PiTXi

C
− wIi (i ∈ I ∪ {n+ 1})

ξi ≥ wIi −
PiTXi

C
(i ∈ I ∪ {n+ 1})

(1.4), (1.12), (1.13), (1.18), (1.19), (1.20),

(1.21), (1.22), (1.23), (1.24), (1.25), (1.26),

(1.27), (1.28), (1.29), (1.30), (1.31), (1.32),

(1.33), (1.34), (1.35), (1.36)

ξi ≥ 0 (i ∈ I ∪ {n+ 1})

(1.39)

(1.40)

(1.41)

(1.42)

To further simplify the search for a feasible portfolio, we consider only a limited set of

promising stocks I. If no feasible portfolio can be found based on a given set I, we increase

the cardinality of the set I. This preselection is crucial for finding good feasible portfolios

for the MILP formulation (M-C). In general, the set I should contain the stocks with

the highest weights in the index to allow a small objective function value to be achieved.

Moreover, the set I should contain the stocks that are in the current portfolio, because

not including these stocks in the set I would mean that we were required to sell all units

of these stocks, which would incur high transaction costs.

Algorithm 1.1 describes the construction heuristic. First, we initialize ν, and we

include in the set I all stocks that are held in the portfolio before rebalancing and all

stocks that are in the set Is. Then, we gradually expand the set I by including the k

stocks that have the highest weights in the index and are not yet included in the set I.

Thereafter, based on the expanded set I, the MILP formulation (M-C) is solved. This

process is repeated until a feasible portfolio is found or until I = U . If no feasible portfolio

is found with I = U , this proves that no feasible portfolio exists.

1.4.2 Local branching heuristic

Local branching refers to a local-search framework for MIP formulations that is based on

so-called local-branching cuts. Given a feasible solution, these local-branching cuts itera-

24



Paper I: Tracking and outperforming large stock-market indices

Algorithm 1.1 Construction heuristic

1: procedure ConstructionHeuristic()
2: ν ← 0; I ← {i ∈ U : Yi > 0} ∪ Is;
3: while true do
4: while I 6= U and |I| < |{i ∈ U : Yi > 0} ∪ Is|+ k(1 + ν) do
5: I ← I ∪ {a}, where a ∈ argmaxi∈U\I w

I
i ;

6: end while
7: Solve (M-C);
8: if feasible portfolio found then
9: return set of stocks included in the feasible portfolio;

10: else if I = U then
11: return no feasible portfolio exists;
12: end if
13: ν ← ν + 1;
14: end while
15: end procedure

tively define the neighborhood to be searched by placing an upper bound on the number

of binary variables whose values can be flipped, either from one to zero or from zero to

one. Based on this framework, we extend the MIQP formulation (M-Q) by incorporat-

ing constraints (1.43) and (1.44). Starting from the best feasible portfolio found so far,

which includes the stocks in the set I∗, these constraints restrict the search space to all

feasible portfolios that can be reached by adding at most ∆ stocks to the portfolio and by

removing at most ∆ stocks from the portfolio. When removing stocks, we ensure that no

stocks from the set Is are removed because these stocks must be included in the portfolio

after rebalancing. This results in the MIQP formulation (M-LBH) shown below.

(M-LBH)



Min. (1.1)

s.t. (1.4), (1.12), (1.13), (1.18), (1.19), (1.20),

(1.21), (1.22), (1.23), (1.24), (1.25), (1.26),

(1.27), (1.28), (1.29), (1.30), (1.31), (1.32),

(1.33), (1.34), (1.35), (1.36)∑
i∈I∗\Is

(1− zi) ≤ ∆

∑
i∈I\I∗

zi ≤ ∆

(1.43)

(1.44)

The local branching framework requires the solution of a series of quadratic programs,

25



Paper I: Tracking and outperforming large stock-market indices

which is computationally expensive for large indices when all available stocks are con-

sidered in each iteration, i.e., when I = U , even when the search space is restricted by

local-branching cuts. Therefore, we propose a novel approach in which the search space

is further restricted by considering only a limited set of promising stocks I. To prevent

the exclusion of high-quality solutions from the search space due to a poor preselection of

the stocks to be included in the set I, we use a randomly selected set I in each iteration.

Because we consider stocks with higher index weights to be more promising for obtaining

low objective function values, we define the probability that a stock will be included in

the set I in each iteration to be proportional to its weight in the index.

Algorithm 1.2 describes the local branching heuristic. First, we initialize ν and ∆.

Then, we include in the set I the stocks from the set I∗, which contains the stocks that

are included in the best feasible portfolio found so far. Subsequently, we iteratively expand

the set I until it contains k + q stocks. In a given iteration of this process, each stock

i ∈ U \I has a probability
wI

i∑
j∈U\I w

I
j

of being selected for inclusion in the set I. Thereafter,

the MIQP formulation (M-LBH) is solved. If a better feasible portfolio is found, we update

the set I∗ to contain the selected stocks in this new best feasible portfolio, and we reset

the number of iterations elapsed without finding a better feasible portfolio ν to zero;

otherwise, we increase ν by one. If ν reaches ν, i.e., the maximum number of iterations

without a better feasible portfolio having been found, we increase ∆ by one to enlarge

the search space. As soon as a new best feasible portfolio is found, we reset ∆ to one.

This process is repeated until a given termination criterion is satisfied. Finally, the best

feasible portfolio found so far is returned.

1.4.3 Iterated greedy heuristic

In an iterated greedy heuristic, two phases are performed repeatedly: deconstruction and

reconstruction. During the deconstruction phase, we remove several randomly selected

stocks from the current best feasible portfolio. During the subsequent reconstruction

phase, we add stocks back into the deconstructed portfolio in a greedy manner to obtain

a new feasible portfolio.

In contrast to existing iterated greedy heuristics, we restrict the search space by con-

sidering only a limited set of promising stocks I, as in the local branching heuristic, and

we repeatedly solve an MIQP formulation during the reconstruction phase to add the my-

opic best stock to the deconstructed portfolio, which allows all constraints in the MIQP

formulation (M-Q) to be easily considered. Specifically, we solve the MIQP formulation

(M-IGH) below that corresponds to the MIQP formulation (M-Q) without the cardinality

constraint (1.31), but with the additional constraint (1.45). This additional constraint

26



Paper I: Tracking and outperforming large stock-market indices

Algorithm 1.2 Local branching heuristic

1: procedure LocalBranchingHeuristic(I∗, q, ν)
2: ν ← 0; ∆← 1;
3: while termination criterion not satisfied do
4: I ← I∗;
5: while I 6= U and |I| < k + q do

6: a ← select stock from set U \ I with probability
wI

i∑
j∈U\I w

I
j

of the selection

of stock i ∈ U \ I;
7: I ← I ∪ {a};
8: end while
9: Solve (M-LBH) to obtain a feasible portfolio by adding at most ∆ stocks and

by removing at most ∆ stocks;
10: if new best feasible portfolio found then
11: I∗ ← set of selected stocks in the new best feasible portfolio;
12: ν ← 0; ∆← 1;
13: else
14: ν ← ν + 1;
15: if ν = ν then
16: ν ← 0; ∆← ∆ + 1;
17: end if
18: end if
19: end while
20: return best feasible portfolio found;
21: end procedure

prescribes that at most one stock from the set I that is not included in the set Is can be

added to the portfolio. During the execution of the iterated greedy heuristic, we modify

the set Is such that it contains the stocks that must be included in the reconstructed

portfolio, i.e., the stocks that are included in the current best feasible portfolio and were

not removed during the most recent deconstruction phase.

(M-IGH)



Min. (1.1)

s.t. (1.4), (1.12), (1.13), (1.18), (1.19), (1.20),

(1.21), (1.22), (1.23), (1.24), (1.25), (1.26),

(1.27), (1.28), (1.29), (1.30), (1.32), (1.33),

(1.34), (1.35), (1.36)∑
i∈I\Is

zi ≤ 1 (1.45)

Algorithm 1.3 describes the iterated greedy heuristic. First, we store the stocks that

27



Paper I: Tracking and outperforming large stock-market indices

must be included in the portfolio after rebalancing in the set I ′s because the algorithm

modifies the set Is during its execution. Then, we enter the main loop, which consists of

the deconstruction, reconstruction, and acceptance phases. Before beginning the decon-

struction phase, we include in the set I the stocks that are included in the best feasible

portfolio found so far. Then, during the deconstruction phase, we first remove p ran-

domly selected stocks from the set I. When removing stocks, we must ensure that no

stocks from the set I ′s are removed because these stocks must be included in the portfolio

after rebalancing. After having removed p stocks from the set I, we define the set of stocks

that must be included in the reconstructed portfolio, i.e., the set Is, as the set of stocks

currently in the set I. Then, the reconstruction phase begins. During the reconstruction

phase, we expand the set I by adding stocks based on probabilities that depend on the

weights of the stocks in the index, as is done in the local branching heuristic. As soon

as the set I consists of k + q stocks, we iteratively solve (M-IGH) to add to the portfolio

at most one new stock in each iteration from the set I \ Is. If a feasible portfolio with

one new stock from the set I \ Is can be found, then the newly selected stock is added to

the set Is. This process is repeated until either k stocks are included in the portfolio, no

new stock is added to the portfolio, or it is found that no feasible portfolio for (M-IGH)

exists. After the reconstruction phase, we check whether a new best feasible portfolio has

been found. If this is the case, we update the set I∗ to contain the selected stocks in the

new best feasible portfolio. The deconstruction, reconstruction, and acceptance phases

are repeated until a specified termination criterion is met. Finally, we reset the set Is and

return the best feasible portfolio found so far.

1.5 Computational results

In this section, we address the open question whether it is preferable in terms of the

out-of-sample tracking error to use the TEV or the MAD as the objective function by

providing computational results. For this purpose, we test the performance of two exact

solution approaches and two heuristic solution approaches for three scenarios that differ

in terms of the composition of the portfolio before rebalancing. The two exact solution

approaches are based on the MIQP formulation (M-Q) and the MILP formulation (M-L);

we refer to these MIP approaches as M-Q and M-L, respectively. In these MIP approaches,

we consider the entire set of index constituents, i.e., I = U . For the two heuristic solution

approaches, the construction heuristic (cf. Algorithm 1.1) is used to determine an initial

feasible portfolio, and the two improvement heuristics (cf. Algorithms 1.2 and 1.3) are

used to improve this initial feasible portfolio; we refer to these approaches as LBH and

28



Paper I: Tracking and outperforming large stock-market indices

Algorithm 1.3 Iterated greedy heuristic

1: procedure IteratedGreedyHeuristic(I∗, q, d)
2: I ′s ← Is;
3: while termination criterion not satisfied do
4: I ← I∗;
5: p← random integer from set {1, . . . , d}; . Deconstruction
6: for i← 1 to p do
7: Remove a randomly selected element from I that is not included in I ′s;
8: end for
9: Is ← I;

10: while I 6= U and |I| < k + q do . Reconstruction

11: a ← select stock from set U \ I with probability
wI

i∑
j∈U\I w

I
j

of the selection

of stock i ∈ U \ I;
12: I ← I ∪ {a};
13: end while
14: while |Is| < k do
15: Solve (M-IGH) to add at most one new stock to the portfolio;
16: if a feasible portfolio with one new stock has been found then
17: Is ← set of selected stocks in the feasible portfolio;
18: else
19: break;
20: end if
21: end while
22: if new best feasible portfolio found then . Acceptance
23: I∗ ← set of selected stocks in the new best feasible portfolio;
24: end if
25: end while
26: Is ← I ′s
27: return best feasible portfolio found;
28: end procedure

IGH, respectively.

This section is organized as follows. In Subsections 1.5.1 and 1.5.2, we explain the

design of our experiment and describe the novel problem instances, respectively. In Sub-

section 1.5.3, we investigate the index-tracking capabilities of the portfolios given in the

three scenarios before rebalancing to provide a reference against which to assess the index-

tracking capabilities of the portfolios after rebalancing. In Subsection 1.5.4, we show that

in contrast to M-L, M-Q leads to feasible portfolios within a limited computational time

that may be improved substantially in terms of the objective function value, which in-

dicates the potential of applying LBH and IGH. In Subsection 1.5.5, we show that LBH

and IGH are indeed able to achieve substantial improvements in terms of the objective

29



Paper I: Tracking and outperforming large stock-market indices

function value compared to M-Q. In Subsection 1.5.6, we provide insights that minimizing

the TEV may be superior to minimizing the MAD in terms of the out-of-sample track-

ing error. In Subsection 1.5.7, we offer further insights that this superior out-of-sample

performance may be attributed to the different compositions of the rebalanced portfolios.

1.5.1 Experimental design

We use an experimental design similar to those of Guastaroba and Speranza (2012) and

Filippi et al. (2016). We assume that the manager of an investment fund rebalances a

portfolio at the end of an in-sample period that consists of 104 weeks, i.e., T = 104. The

portfolio is then left unchanged for the entirety of an out-of-sample period that consists

of 52 weeks. We also assume that the fixed transaction cost for trading is 12 for all stocks

(i.e., cfi = 12 for all i ∈ U), that the proportional transaction costs for buying and selling

are each 1% of the trading value for all stocks (i.e., cbi = csi = 0.01 for all i ∈ U), and

that the budget available for transaction costs is 1.5% of the investment budget (i.e.,

γ = 0.015).

Furthermore, we define three scenarios, I, II, and III, which differ in terms of the

composition of the investment fund’s portfolio before rebalancing. In scenarios I and II,

a portfolio of stocks already exists. In scenario III, a new portfolio must be constructed

from cash. In scenarios I and II, the portfolios before rebalancing consist of the k stocks

with the highest and lowest weights in the index, respectively. The weight of each stock

in the portfolio before rebalancing is set such that it is proportional to the weight of that

stock in the index and such that the sum of the weights of all stocks in the portfolio is

equal to one. The portfolio before rebalancing in scenario I is a portfolio with a rather

good index-tracking capability, whereas the portfolio before rebalancing in scenario II is

a portfolio with a rather poor index-tracking capability. This claim is supported by the

results presented in Subsection 1.5.3.

The values of the remaining parameters deviate from the values used by Guastaroba

and Speranza (2012) and Filippi et al. (2016). The reason for these deviations is that

we are considering much larger indices, and thus, we wish to allow the portfolio to have

a larger cardinality. Specifically, we use two different values for the maximum portfolio

cardinality, namely, k = 100 and k = 200. Because of the larger portfolio cardinality,

we must also allow the portfolio weights to take smaller values. For the minimum and

maximum portfolio weights, we adopt values of 0.2% and 20%, respectively, for all stocks

(i.e., εi = 0.002 and δi = 0.2 for all i ∈ U). For the parameters that define the minimum

and maximum trading values, we use the same values as for the parameters εi and δi for

all stocks (i.e., ζi = 0.002 and ηi = 0.2 for all i ∈ U). For scenarios I and II, we assume a

30



Paper I: Tracking and outperforming large stock-market indices

value for each portfolio of 10,000,000 and a net change in cash of κ = 0. For scenario III,

we assume a portfolio value of 0 and a κ of 10,000,000; this is the same as assuming that

the portfolio before rebalancing consists of cash only and that the net change in cash is

zero (i.e., Yn+1 = 10,000,000
Pn+1,T

, Yi = 0 for all i ∈ U , and κ = 0). Hence, in all three scenarios,

the investment budget C is 10,000,000. Since the prescribed minimum expected excess

return α and the interest rate it on cash were not used by Guastaroba and Speranza

(2012) and Filippi et al. (2016), we define new values. Specifically, we use three α values

of 0, 0.0001914, and 0.0005686, which correspond to annualized α values of 0%, 1%, and

2%, respectively, and a value of zero for the interest rate on cash at all time points (i.e.,

it = 0 for all t ∈ {2, . . . , T}). The values of the parameters n, It, Pit, and wIi depend on

the considered index.

We use the estimator of Ledoit and Wolf (2004b) to estimate the covariances σij based

on the discrete in-sample returns of the assets i, j ∈ U ∪ {n + 1}. As Ledoit and Wolf

(2004a) note, using this estimator ensures that the matrix of the covariances is positive

definite, and thus, the TEV is a convex quadratic function of the weights of the stocks

in the portfolio, which allows commercial MIP solvers such as CPLEX and Gurobi to be

applied. The expected returns of the assets i ∈ U ∪ {n + 1} are estimated as follows:

ri = 1
T−1

∑
t∈{2,...,T}

Pit−Pi,t−1

Pi,t−1
.

After preliminary experiments, we adopt the following values for the input parameters

of the heuristic solution approaches for all problem instances. For LBH, we set the number

of stocks considered to k+50 and the maximum number of iterations without improvement

to ten (i.e., q = 50 and ν = 10). For IGH, we adopt the same number of stocks considered

as for LBH and a value of two as the maximum number of stocks to be removed from the

best feasible portfolio found so far (i.e., q = 50 and d = 2).

We evaluate the in-sample performance of the tested solution approaches by using the

following performance measures:

� OFV: objective function value of the best feasible portfolio found within the pre-

scribed computational time limit. Note that the OFV is scaled by a factor of

100,000.

� MIP gap [%]: relative deviation between the OFV and the best lower bound (LB)

provided by the solver within the prescribed computational time limit, calculated

as: (OFV− LB)/OFV.

To evaluate the out-of-sample performance of the tested solution approaches we report

the following performance measures. Thereby, we let T ′ be the end of the out-of-sample

period, i.e., T ′ = 156:

31



Paper I: Tracking and outperforming large stock-market indices

� TETEV [%]: annualized standard deviation of the differences between the portfolio

returns and the index returns during the out-of-sample period, calculated as:√
52

T ′ − T
∑

t∈{T+1,...,T ′}

(
rDt − rD

)2
(1.46)

where rDt =
( ∑

i∈U∪{n+1} PitXi∑
i∈U∪{n+1} Pi,t−1Xi

− 1
)
−
(

It
It−1
− 1
)

for t ∈ {T + 1, . . . , T ′} and rD =
1

T ′−T
∑

t∈{T+1,...,T ′} r
D
t . Note that the TETEV is the out-of-sample tracking-error

measure that corresponds to the TEV that is optimized in-sample by LBH, IGH,

and M-Q.

� TEMAD: annualized average absolute difference between the portfolio values and the

index values during the out-of-sample period, calculated as:

52

T ′ − T
∑

t∈{T+1,...,T ′}

∣∣∣∣∣∣
∑

i∈U∪{n+1}

PitXi − It

∣∣∣∣∣∣ 100

C
(1.47)

Note that the TEMAD is the out-of-sample tracking-error measure that corresponds

to the MAD that is optimized in-sample by M-L. Also note that the TEMAD is scaled

to an investment budget of 100.

� ER [%]: annualized difference between the cumulated portfolio return and the cu-

mulated index return during the out-of-sample period, calculated as:


∑

i∈U∪{n+1}

PiT ′Xi∑
i∈U∪{n+1}

PiTXi


52

T ′−T

−
(
IT ′

IT

) 52
T ′−T

(1.48)

All calculations were performed on an HP Z820 workstation with two 3.1 GHz Intel

Xeon CPUs and 128 GB of RAM. As the termination criterion, we prescribed a compu-

tational time limit of 60 seconds for the heuristic solution approaches and a fairly longer

computational time limit of 300 seconds for the exact solution approaches. We imple-

mented the two exact solution approaches and the two heuristic solution approaches in

C, and we used Gurobi 7.5 as the solver. We used the default solver settings, except for

the MILP formulation (M-C) that is solved in Algorithm 1.1, in which we stopped the

Gurobi solver as soon as the MIP gap reached a value of 10% or lower.

32



Paper I: Tracking and outperforming large stock-market indices

1.5.2 Novel problem instances

To the best of our knowledge, there is no set of instances available in the literature for the

EITP. In the existing sets of problem instances (cf., e.g., Beasley et al. 2003; Canakgoz

and Beasley 2008; Guastaroba et al. 2009; Strub and Baumann 2018), the weights of

the stocks in the index at the time of rebalancing, i.e., at the end of week T , are not

provided. Furthermore, no available set of problem instances contains very large regional

and global stock-market indices. The largest existing problem instance that corresponds

to the Russell 3000 index consists of fewer than 2,500 US stocks. Hence, we here provide

a set of novel instances of the EITP. These instances are based on real-world data from

nine different stock-market indices maintained by Thomson Reuters (TR) for two different

time periods. Table 1.4 lists the names of the indices, the number of stocks n in the

indices, the considered time periods, and the applicable values for k. Combining the

nine different indices, the two periods, the applicable values for k, the three considered

scenarios, and the three consider α values, we obtain a set of 297 instances in total.

We used DATASTREAM to download 156 weekly values of each index and 156 weekly

closing prices of the constituents of each index during the corresponding time period. We

consider the constituents of the index at the end of the in-sample period, i.e., at the end of

week 104. As done by Beasley et al. (2003), Canakgoz and Beasley (2008), and Strub and

Baumann (2018), we disregard the constituents for which the price data for the considered

156 weeks are incomplete; thus, the number of stocks n in the index can differ between

the two different time periods. We also provide the weight of each constituent in the index

at the end of the in-sample period. For all indices, the sum of the original weights of the

stocks with complete price data is at least 95% for both periods. The weights of these

index constituents are then scaled for each index such that their sum is equal to one.

Figure 1.1 shows the evolution of the value of the TR Global index over the two

overlapping periods from August 2012 to July 2015 (period 1) and from August 2013 to

July 2016 (period 2). In the figure, both periods are split into three equal parts consisting

of 52 weeks each. The first two parts of each period correspond to the in-sample period,

and the third part corresponds to the out-of-sample period. As Figure 1.1 shows, the

Black Monday market crash, a drastic downward revision of the growth expectations

for China’s economy, and the UK referendum regarding the European Union all led to

high market volatility during the time frame marked in red. These events did not affect

the out-of-sample period of period 1, but strongly impacted the out-of-sample period of

period 2. Hence, the differentiation between periods 1 and 2 enables investigation of the

performance of portfolios during out-of-sample periods characterized by both low and

high market volatility.

33



Paper I: Tracking and outperforming large stock-market indices

Table 1.4: Problem instances.

Index n Time period k

P
er

io
d

1

TR Africa 168 08/2012–07/2015 100
TR Latin America 194 08/2012–07/2015 100
TR Europe 1,310 08/2012–07/2015 100, 200
TR United States 1,592 08/2012–07/2015 100, 200
TR North America 1,866 08/2012–07/2015 100, 200
TR Global Emerging Markets 2,912 08/2012–07/2015 100, 200
TR Asia Pacific 5,018 08/2012–07/2015 100, 200
TR Global Developed Markets 5,965 08/2012–07/2015 100, 200
TR Global 8,877 08/2012–07/2015 100, 200

P
er

io
d

2

TR Africa 168 08/2013–07/2016 100
TR Latin America 246 08/2013–07/2016 100, 200
TR Europe 1,504 08/2013–07/2016 100, 200
TR United States 2,222 08/2013–07/2016 100, 200
TR Global Emerging Markets 2,532 08/2013–07/2016 100, 200
TR North America 2,620 08/2013–07/2016 100, 200
TR Asia Pacific 4,663 08/2013–07/2016 100, 200
TR Global Developed Markets 6,896 08/2013–07/2016 100, 200
TR Global 9,427 08/2013–07/2016 100, 200

1.5.3 Portfolios without rebalancing: in-sample and out-of-sample

performance analysis

In this subsection, we investigate the index-tracking capabilities of the portfolios given in

the three scenarios before rebalancing to provide a reference against which to assess the

index-tracking capabilities of the portfolios after rebalancing. For this purpose, we present

in-sample and out-of-sample results for scenarios I, II, and III under the assumption that

the given portfolio is not rebalanced by the investment fund’s manager at the end of the

in-sample period and thus remains unchanged for the out-of-sample period, i.e., Xi = Yi

for all i ∈ U ∪ {n + 1}. For scenario III, this means that the portfolio after rebalancing

still consists of cash only, i.e., Xn+1 = Yn+1 = C
Pn+1,T

and Xi = Yi = 0 for each stock

i ∈ U . Note that these portfolios are not necessarily feasible portfolios; for example, the

constraint regarding the prescribed minimum excess return or the constraints regarding

the minimum and maximum portfolio weights might be violated.

Table 1.5 summarizes the in-sample and out-of-sample results for these portfolios for

period 1 and period 2. Column one indicates the considered scenario and column two

shows the number of considered instances for period 1. Columns three, four, and five show

the average OFV, specifically the TEV according to (1.1), the average TETEV, and the

34



Paper I: Tracking and outperforming large stock-market indices

Figure 1.1: Considered time periods.

08/2012 07/2013 07/2014 07/2015 07/2016

140

160

180

• Black Monday
• China’s economy

• UK referendum

Period 1

Period 2

Time

V
al

u
e

TR Global index

Table 1.5: In-sample and out-of-sample results for portfolios without rebalancing.

Period 1 Period 2

# INST OFV TETEV TEMAD # INST OFV TETEV TEMAD

Scenario I 16 0.71 2.86 37.09 17 0.75 3.39 58.83
Scenario II 16 19.20 13.13 314.42 17 15.61 13.37 245.51
Scenario III 16 124.62 13.37 244.88 17 137.00 19.49 457.20

average TEMAD, respectively, for period 1. Columns six to nine report the corresponding

results for period 2.

From Table 1.5, we can gain the following insights. The portfolios of scenario I clearly

outperform those of scenarios II and III in terms of the objective function value and both

out-of-sample tracking-error measures, regardless of the considered period. Therefore,

portfolios that consist of stocks with high weights in the index tend to have a better

index-tracking capability than portfolios that consist of stocks with low index weights.

1.5.4 MIP gaps: M-Q in comparison with M-L

In this subsection, we show that in contrast to M-L, M-Q leads to feasible portfolios

within a limited computational time that may be improved substantially in terms of the

objective function value. For this purpose, we investigate the in-sample performance in

terms of the MIP gap of the portfolios obtained with M-Q and M-L within the prescribed

35



Paper I: Tracking and outperforming large stock-market indices

Figure 1.2: In-sample results for rebalanced portfolios in terms of the MIP gap.

0 (0,90) [90,∞)

0

20

40

60

80

MIP gap

P
er

ce
n
ta

ge
of

al
l

in
st

an
ce

s
[%

]

M-Q M-L

computational time limit of 300 seconds.

Figure 1.2 shows the distribution of the in-sample results in terms of the MIP gap for

M-Q and M-L. M-L determines provably optimal portfolios for about 20% of all problem

instances, which is twice as much as M-Q does. Furthermore, M-L determines feasible

portfolios with a MIP gap larger than 90% for only about 10% of all problem instances.

In contrast, the MIP gap of the feasible portfolios determined with M-Q are larger than

90% for more than one third of all problem instances. These results suggest that an exact

solution approach may be appropriate to the EITP when the MAD is used as the objective

function, but may not be appropriate when the TEV is minimized. Hence, improvements

in terms of the objective function value might be achieved by applying heuristics to the

EITP when the TEV is used as the objective function, which is supported by the results

provided in the following.

1.5.5 In-sample performance analysis: LBH and IGH in com-

parison with M-Q

In this subsection, we show that LBH and IGH achieve substantial improvements in terms

of the objective function value compared to M-Q within a limited computational time.

For this purpose, we present in-sample results for the portfolios of scenarios I, II, and III

after rebalancing using the three considered solution approaches.

Table 1.6 summarizes the in-sample results in terms of the OFV, i.e., the TEV.

Columns one to four indicate the considered scenario, the maximum portfolio cardinal-

36



Paper I: Tracking and outperforming large stock-market indices

ity k, the annualized prescribed minimum expected excess return α, and the number of

considered instances, respectively. Columns five, seven, and nine show the average OFV

for the solution approaches M-Q, LBH, and IGH, respectively; the best average OFV in

each row is shown in bold. Columns six, eight, and ten show the numbers of instances for

which M-Q, LBH, and IGH, respectively, are not able to find a feasible portfolio within

the prescribed computational time limit. Note that we exclude all instances for which

not all three considered solution approaches devise at least a feasible portfolio from the

calculation of the average OFV.

From Table 1.6, we can gain the following insights:

� Within the prescribed computational time limit of 60 seconds, LBH and IGH are

able to find much better portfolios in terms of the objective function value than

M-Q is within 300 seconds.

� LBH and IGH are able to find feasible portfolios for all considered problem instances

within the prescribed computational time limit, whereas this is not the case for M-Q.

This finding demonstrates that constructing a feasible portfolio for the considered

problem is not straightforward.

� Compared with the portfolios before rebalancing (cf. Table 1.5), the portfolios found

by using LBH and IGH have considerably lower objective function values.

� IGH tends to find better portfolios in terms of the objective function value than

LBH does for scenarios I and II. The opposite is true for scenario III, in which

the investment fund has a portfolio before rebalancing that consists only of cash.

Hence, LBH should be applied to construct a portfolio from cash, and IGH should

be applied to rebalance an existing stock portfolio.

1.5.6 Out-of-sample performance analysis

In this subsection, we provide insights that minimizing the TEV may be superior to

minimizing the MAD in terms of the out-of-sample tracking error. In Subsection 1.5.6.1,

considering only the instances that could be solved to proven optimality by M-Q and

M-L, we show that the portfolios obtained with M-Q are superior to those obtained with

M-L, interestingly in terms of both the TETEV and the TEMAD. In Subsection 1.5.6.2,

we show that the feasible portfolios determined with LBH and IGH are superior to the

feasible portfolios determined with M-L also in terms of both the TETEV and the TEMAD.

37



Paper I: Tracking and outperforming large stock-market indices

Table 1.6: In-sample results for rebalanced portfolios in terms of the OFV.

M-Q (300s) LBH (60s) IGH (60s)

α p.a. # INST OFV # NFP OFV # NFP OFV # NFP

S
ce

n
a
ri

o
I

k
=

10
0 0% 18 13.22 0 0.55 0 0.48 0

1% 18 13.05 0 0.57 0 0.49 0
2% 18 16.33 1 0.57 0 0.49 0

k
=

2
00 0% 15 17.72 0 0.24 0 0.26 0

1% 15 11.01 0 0.25 0 0.26 0
2% 15 16.64 0 0.27 0 0.27 0

S
ce

n
a
ri

o
II

k
=

10
0 0% 18 16.77 0 13.98 0 13.25 0

1% 18 17.33 0 14.12 0 12.71 0
2% 18 18.44 0 12.31 0 12.92 0

k
=

20
0 0% 15 15.77 1 5.10 0 4.98 0

1% 15 17.07 1 4.31 0 4.27 0
2% 15 14.30 1 4.24 0 4.06 0

S
ce

n
ar

io
II

I

k
=

10
0 0% 18 55.73 0 0.42 0 0.43 0

1% 18 55.96 0 0.42 0 0.43 0
2% 18 56.21 0 0.43 0 0.44 0

k
=

20
0 0% 15 66.75 0 0.17 0 0.17 0

1% 15 67.02 0 0.17 0 0.18 0
2% 15 67.31 0 0.17 0 0.18 0

1.5.6.1 M-Q in comparison with M-L

We compare the out-of-sample performance of the portfolios of scenarios I, II, and III

after rebalancing using M-Q and M-L for the instances that could be solved to proven

optimality by both solution approaches within the prescribed computational time limit.

Table 1.7 summarizes the out-of-sample tracking errors for these portfolios. Column

one indicates the considered scenario and column two shows the number of considered

instances for each scenario. Columns three and four show the average TETEV for the

approaches M-Q and M-L, respectively. Columns five and six report the average TEMAD

for the same approaches.

From Table 1.7, we can gain the insight that M-Q leads to lower out-of-sample tracking

errors in terms of the TETEV but also in terms of the TEMAD, even though the portfolios

determined with M-L have the lowest possible in-sample MAD.

Figure 1.3 shows the out-of-sample excess returns against the out-of-sample tracking

errors of the rebalanced portfolios obtained using the solution approaches M-Q and M-L

for the instances that could be solved to proven optimality by both solution approaches

38



Paper I: Tracking and outperforming large stock-market indices

Table 1.7: Out-of-sample tracking errors for instances solved to proven optimality by both
M-Q and M-L.

TETEV TEMAD

# INST M-Q (300s) M-L (300s) M-Q (300s) M-L (300s)

Scenario I 9 3.92 6.54 27.06 71.48
Scenario II 9 4.16 7.99 91.61 105.42
Scenario III 9 4.00 6.50 53.93 65.48

Average 4.03 7.01 57.54 80.80

within the prescribed computational time limit. This figure indicates that M-Q is superior

to M-L with respect to both objectives in enhanced index tracking, i.e., obtaining a low

tracking error and achieving a small target excess return in the out-of-sample period.

These findings suggest that minimizing the TEV leads to better enhanced index-

tracking portfolios than minimizing the MAD.

1.5.6.2 LBH and IGH in comparison with M-L

We compare the out-of-sample tracking errors of the portfolios of scenarios I, II, and

III after rebalancing using LBH, IGH, and M-L. Furthermore, we provide insights on

the impact of the prescribed computational time limit on the out-of-sample tracking

errors of the portfolios obtained with M-L. Finally, we provide out-of-sample risk-return

characteristics of the rebalanced portfolios.

Table 1.8 summarizes the out-of-sample results for periods 1 and 2 individually. Col-

umn one indicates the considered period. The contents of columns two to five are the

same as those of columns one to four of Table 1.6. Columns six to eight show the average

TETEV for the considered instances for the solution approaches M-L, LBH, and IGH, re-

spectively. Columns nine to eleven present the average TEMAD for the same instances and

the same solution approaches. The best average TETEV and the best average TEMAD in

each row are shown in bold. Note that all considered solution approaches found at least

a feasible solution for all instances.

From Table 1.8, we can gain the following insights:

� Regardless of the period considered, the average TETEV for the portfolios obtained

with LBH and IGH within 60 seconds are much lower than those for the portfolios

obtained with M-L within 300 seconds. Interestingly, LBH and IGH also devise

portfolios with a much lower average TEMAD, even though M-L explicitly aims at

minimizing the MAD during the in-sample period.

39



Paper I: Tracking and outperforming large stock-market indices

Figure 1.3: Out-of-sample risk-return characteristics for instances solved to proven opti-
mality by M-Q and M-L.

−8 −6 −4 −2 0 2 4 6 8
0
2
4
6
8

10
12

T
E
T
E
V

−8 −6 −4 −2 0 2 4 6 8

0

50

100

150

200

ER

T
E
M
A
D

M-Q M-L

� LBH and IGH lead to considerably lower worst-case TETEV and TEMAD than M-

L does, regardless of the period considered. These empirical findings support the

arguments presented in Subsection 1.3.2.

� For all considered solution approaches, the average TETEV is higher for period 2 than

for period 1 because the out-of-sample period of period 2 exhibits higher market

volatility than that of period 1.

� For scenario II, in which the index-tracking capability of the portfolio before re-

balancing is rather poor, the average TETEV are higher than those for the other

scenarios. This is consistent with the higher objective function values, i.e., the

higher TEV, for scenario II (cf. Table 1.6).

Figure 1.4 shows the out-of-sample tracking errors of the rebalanced portfolios ob-

tained with the exact solution approach M-L within 60 and 300 seconds. For the portfolios

that are below the red line, the longer computational time limit leads to a performance

improvement in terms of the TETEV or the TEMAD. By contrast, the corresponding out-

of-sample tracking-error measure deteriorates for the portfolios that are above the red

line. Figure 1.4 shows that the out-of-sample tracking errors of the rebalanced portfolios

40



Paper I: Tracking and outperforming large stock-market indices

Table 1.8: Out-of-sample tracking errors for rebalanced portfolios.

TETEV TEMAD

α p.a. # INST M-L (300s) LBH (60s) IGH (60s) M-L (300s) LBH (60s) IGH (60s)

P
er
io
d
1

S
ce
n
a
ri
o
I

k
=

1
0
0 0% 9 3.81 2.89 2.77 74.06 36.99 44.10

1% 9 3.77 2.90 2.79 88.49 38.63 41.50
2% 9 4.10 2.91 2.80 70.49 39.98 49.12

k
=

2
0
0 0% 7 2.40 2.01 2.03 72.63 19.87 21.29

1% 7 2.33 2.07 2.06 75.18 21.75 24.63
2% 7 2.25 2.12 2.02 68.61 19.60 27.54

S
ce
n
a
ri
o
II

k
=

1
0
0 0% 9 6.38 4.44 4.05 195.97 123.75 167.05

1% 9 6.70 4.32 4.12 200.17 109.18 106.90
2% 9 6.75 4.17 4.29 211.49 148.26 128.11

k
=

2
0
0 0% 7 5.94 3.86 3.82 196.66 129.62 126.75

1% 7 5.94 3.79 3.63 164.26 128.18 106.23
2% 7 5.90 3.79 3.77 198.45 137.32 131.99

S
ce
n
a
ri
o
II
I

k
=

1
0
0 0% 9 5.55 2.72 2.75 139.05 61.91 60.22

1% 9 5.63 2.67 2.73 158.43 61.75 54.25
2% 9 5.72 2.76 2.73 150.18 51.97 54.91

k
=

2
0
0 0% 7 4.77 1.93 1.94 153.18 57.14 56.20

1% 7 5.09 1.92 1.92 172.92 45.32 51.31
2% 7 5.17 1.91 1.94 169.58 60.90 58.09

Average 4.96 3.00 2.94 142.33 72.15 73.50
Worst case 10.42 5.80 5.76 360.26 325.82 288.16

P
er
io
d
2

S
ce
n
a
ri
o
I

k
=

1
0
0 0% 9 3.43 3.11 2.81 55.23 47.06 48.91

1% 9 3.49 3.16 2.89 57.81 48.44 61.07
2% 9 3.43 3.15 2.98 84.97 51.51 52.45

k
=

2
0
0 0% 8 3.40 2.30 2.31 51.92 41.71 38.36

1% 8 3.03 2.33 2.27 50.91 43.52 41.97
2% 8 2.91 2.35 2.31 64.69 41.96 40.40

S
ce
n
a
ri
o
II

k
=

1
0
0 0% 9 6.08 5.23 4.69 155.74 90.58 85.23

1% 9 5.83 5.11 5.14 179.66 94.28 80.88
2% 9 6.04 4.85 5.12 187.62 83.59 96.51

k
=

2
0
0 0% 8 7.13 4.14 4.10 219.27 80.06 67.09

1% 8 7.12 4.18 4.23 213.18 77.50 67.84
2% 8 7.21 4.18 4.13 219.26 78.55 77.00

S
ce
n
a
ri
o
II
I

k
=

1
0
0 0% 9 5.63 2.79 2.87 90.81 72.54 64.17

1% 9 5.71 2.84 2.82 115.90 66.57 70.31
2% 9 5.81 2.83 2.87 118.59 66.38 75.49

k
=

2
0
0 0% 8 5.77 2.27 2.21 110.04 69.82 65.64

1% 8 5.67 2.20 2.23 118.48 74.46 73.53
2% 8 5.79 2.25 2.25 127.51 68.33 71.38

Average 5.18 3.31 3.25 123.00 66.64 65.76
Worst case 9.92 7.19 7.78 449.74 168.53 168.45

41



Paper I: Tracking and outperforming large stock-market indices

Figure 1.4: Out-of-sample tracking errors for rebalanced portfolios obtained with M-L
within 60 and 300 seconds.

0 2 4 6 8 10 12

0

2

4

6

8

10

12

TETEV within 60 seconds

T
E
T
E
V

w
it

h
in

30
0

se
co

n
d
s

0 100 200 300 400 500

0

100

200

300

400

500

TEMAD within 60 seconds
T

E
M
A
D

w
it

h
in

30
0

se
co

n
d
s

obtained within 60 seconds are similar to those of the portfolios devised within 300 sec-

onds; for many portfolios obtained within 300 seconds the TETEV and the TEMAD are even

worse. This suggests that the results provided in Table 1.8 for M-L would not change

considerably if a computational time limit of more than 300 seconds was imposed.

Figure 1.5 shows the out-of-sample excess returns against the out-of-sample tracking

errors of the rebalanced portfolios obtained using the solution approaches M-L, LBH, and

IGH. LBH and IGH devise portfolios with a performance that is similar to M-L in terms

of the out-of-sample excess returns. Furthermore, the out-of-sample excess returns of the

portfolios obtained with LBH and IGH are much less volatile. Finally, Figure 1.5 shows

that a portfolio that achieves the prescribed minimum expected excess return during the

in-sample period is not necessarily guaranteed to achieve an excess return during the

out-of-sample period as there are many portfolios with a negative out-of-sample excess

return.

1.5.7 Portfolio compositional characteristics: LBH and IGH in

comparison with M-L

In this subsection, we offer further insights with respect to the compositions of the re-

balanced portfolios. For this purpose, we report various compositional characteristics of

portfolios that have been rebalanced using the solution approaches LBH, IGH, and M-L.

Figure 1.6 shows the following compositional characteristics for the portfolios of sce-

narios I, II, and III after rebalancing: the active share, i.e., the sum of the absolute

differences between the weights of the assets in the portfolio and the weights of the assets

42



Paper I: Tracking and outperforming large stock-market indices

Figure 1.5: Out-of-sample risk-return characteristics for rebalanced portfolios.

−20 −15 −10 −5 0 5 10 15 20
0
2
4
6
8

10
12

T
E
T
E
V

−20 −15 −10 −5 0 5 10 15 20

0

100

200

300

400

500

ER

T
E
M
A
D

M-L LBH IGH

in the index (1
2

∑
i∈U∪{n+1}

∣∣PiTXi

C
− wIi

∣∣); the portfolio cardinality, i.e., the number of dif-

ferent stocks that are selected after rebalancing (|{i ∈ I : Xi > 0}|); the transaction costs,

i.e., the sum of the fixed and proportional transaction costs relative to the transaction

cost budget ( 1
γC

(
∑

i∈I Gi +
∑

i∈U\I:Yi>0(c
s
iYiPiT + cfi ))); and the weight of the cash asset

(
Pn+1,TXn+1

C
). We present the compositional characteristics for all instances with k = 200

and α = 0% sorted in non-decreasing order of n. The compositional characteristics for

the instances with k = 100 and α > 0% are not shown because they are similar to those

presented in Figure 1.6. For reference, we also present the compositional characteristics

in the case that no rebalancing is performed.

From Figure 1.6, we can gain the following insights:

� LBH and IGH lead to portfolios with lower active shares and higher cardinalities

than M-L does, regardless of the considered scenario. Thus, the compositions of the

portfolios that have been rebalanced using LBH and IGH are more similar to the

composition of the index. This finding is consistent with the arguments presented

in Subsection 1.3.2 and offers a possible explanation for the superior performance of

LBH and IGH in terms of both out-of-sample tracking-error measures, the TETEV

and the TEMAD, reported in Table 1.8.

43



Paper I: Tracking and outperforming large stock-market indices

� In scenario I, LBH and IGH incur lower transaction costs than M-L does because

the portfolio before rebalancing is already invested in the k stocks with the highest

index weights. In scenarios II and III, the transaction costs for LBH and IGH are

higher than those for M-L. To rebalance the portfolios with a poor index-tracking

capability of scenario II, LBH and IGH completely exhaust the transaction cost

budget for all problem instances.

� For scenarios I and III, LBH and IGH lead to portfolios in which the weight of the

cash asset is almost zero for all instances. By contrast, M-L leads to portfolios that

hold a substantial amount of cash after rebalancing for scenario III. For scenario

II, in which the index-tracking capacity of the portfolio before rebalancing is rather

poor, LBH and IGH also lead to portfolios that contain a considerable proportion of

cash. This might be because the transaction cost budget is not sufficiently large to

sell all currently held stocks with low index weights and exchange them for stocks

with high index weights. In this case, it is more beneficial in terms of the objective

function value to sell the stocks with low index weights and maintain the revenue

in cash.

From the results provided in this section, the six main findings are as follows. 1) In

contrast to M-L, M-Q leads to feasible portfolios within a limited computational time that

may be improved substantially in terms of the objective function value, which indicates

the possible improvements that might be achieved by applying LBH and IGH. 2) LBH

and IGH are indeed able to determine considerably better feasible portfolios in terms of

the objective function value within 60 seconds than M-Q is within 300 seconds. 3) LBH

should be used to construct a portfolio from cash. 4) IGH should be used to rebalance

an existing stock portfolio. 5) In terms of both out-of-sample tracking-error measures,

the TETEV and the TEMAD, considering only the instances that could be solved to proven

optimality by both M-Q and M-L, the portfolios obtained with M-Q are superior to

those obtained with M-L. 6) In terms of both out-of-sample tracking-error measures, the

TETEV and the TEMAD, the feasible portfolios determined by running LBH and IGH for

60 seconds are superior to the feasible portfolios determined with M-L within 300 seconds.

These findings suggest that minimizing the TEV is superior to minimizing a dissimilarity

function such as the MAD in terms of the out-of-sample tracking error.

44



Paper I: Tracking and outperforming large stock-market indices

Figure 1.6: Compositional characteristics of rebalanced portfolios.

0

0.5

1

A
ct

iv
e

sh
ar

e

Scenario I

0

0.5

1

Scenario II

0

0.5

1

Scenario III

0

100

200

P
or

tf
ol

io
ca

rd
in

al
it

y

0

100

200

0

100

200

0

0.5

1

T
ra

n
sa

ct
io

n
co

st
s

0

0.5

1

0

0.5

1

0

0.5

1

Instance

W
ei

gh
t

of
ca

sh
as

se
t

0

0.5

1

Instance

0

0.5

1

Instance

M-L LBH IGH no rebalancing

45



Paper I: Tracking and outperforming large stock-market indices

1.6 Conclusions

In this paper, we consider the problem of determining the portfolio for an enhanced index-

tracking fund. For this problem, we propose novel mixed-integer linear and quadratic

programming formulations and novel matheuristics to minimize the tracking error variance

or the mean-absolute deviation between the historical values of the portfolio and the

index. The results of a computational experiment using the proposed matheuristics and

exact solution approaches based on the mixed-integer linear and quadratic programming

formulations suggest that it is superior in terms of the out-of-sample tracking error to

minimize the tracking error variance instead of the mean-absolute deviation.

In future research, it would be interesting to investigate whether the out-of-sample

tracking error achieved here could be further improved by using more sophisticated es-

timators for the covariance matrix. Periodic portfolio rebalancing could be applied to

further improve the out-of-sample performance of the presented solution approaches, es-

pecially in market environments with high volatility. Moreover, a promising direction for

future research is to combine the proposed matheuristics based on the findings regarding

their individual strengths to further improve the out-of-sample tracking error.

46



Bibliography

Andriosopoulos, K., Nomikos, N., 2014. Performance replication of the Spot Energy In-

dex with optimal equity portfolio selection: Evidence from the UK, US and Brazilian

markets. European Journal of Operational Research 234 (2), 571–582.

Beasley, J. E., Meade, N., Chang, T.-J., 2003. An evolutionary heuristic for the index

tracking problem. European Journal of Operational Research 148 (3), 621–643.

Bertsimas, D., Shioda, R., 2009. Algorithm for cardinality-constrained quadratic opti-

mization. Computational Optimization and Applications 43 (1), 1–22.

Bruni, R., Cesarone, F., Scozzari, A., Tardella, F., 2015. A linear risk-return model for

enhanced indexation in portfolio optimization. OR Spectrum 37 (3), 735–759.

Canakgoz, N. A., Beasley, J. E., 2008. Mixed-integer programming approaches for index

tracking and enhanced indexation. European Journal of Operational Research 196 (1),

384–399.

Chiam, S. C., Tan, K. C., Al Mamun, A., 2013. Dynamic index tracking via multi-objective

evolutionary algorithm. Applied Soft Computing 13 (7), 3392–3408.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., Semet, F., 2002. A guide to

vehicle routing heuristics. Journal of the Operational Research society 53 (5), 512–522.

Filippi, C., Guastaroba, G., Speranza, M., 2016. A heuristic framework for the bi-objective

enhanced index tracking problem. Omega 65, 122–137.

Fischetti, M., Lodi, A., 2003. Local branching. Mathematical Programming 98 (1–3),

23–47.

Gaivoronski, A. A., Krylov, S., Van der Wijst, N., 2005. Optimal portfolio selection and

dynamic benchmark tracking. European Journal of Operational Research 163 (1), 115–

131.

47



Paper I: Tracking and outperforming large stock-market indices

Guastaroba, G., Mansini, R., Ogryczak, W., Speranza, M. G., 2016. Linear programming

models based on Omega ratio for the enhanced index tracking problem. European

Journal of Operational Research 251 (3), 938–956.

Guastaroba, G., Mansini, R., Speranza, M. G., 2009. On the effectiveness of scenario

generation techniques in single-period portfolio optimization. European Journal of Op-

erational Research 192 (2), 500–511.

Guastaroba, G., Speranza, M. G., 2012. Kernel Search: An application to the index

tracking problem. European Journal of Operational Research 217 (1), 54–68.

Jansen, R., Van Dijk, R., 2002. Optimal benchmark tracking with small portfolios. The

Journal of Portfolio Management 28 (2), 33–39.

Jorion, P., 2003. Portfolio optimization with tracking-error constraints. Financial Analysts

Journal 59 (5), 70–82.

Konno, H., Wijayanayake, A., 2001. Minimal cost index tracking under nonlinear transac-

tion costs and minimal transaction unit constraints. International Journal of Theoretical

and Applied Finance 4 (6), 939–957.

Krink, T., Mittnik, S., Paterlini, S., 2009. Differential evolution and combinatorial search

for constrained index-tracking. Annals of Operations Research 172 (1), 153–176.

Kwiatkowski, J. W., 1992. Algorithms for index tracking. IMA Journal of Management

Mathematics 4 (3), 279–299.

Ledoit, O., Wolf, M., 2004a. Honey, I shrunk the sample covariance matrix. The Journal

of Portfolio Management 30 (4), 110–119.

Ledoit, O., Wolf, M., 2004b. A well-conditioned estimator for large-dimensional covariance

matrices. Journal of Multivariate Analysis 88 (2), 365–411.

Maringer, D., Oyewumi, O., 2007. Index tracking with constrained portfolios. Intelligent

Systems in Accounting, Finance and Management 15 (1-2), 57–71.

Mutunge, P., Haugland, D., 2018. Minimizing the tracking error of cardinality constrained

portfolios. Computers & Operations Research 90, 33–41.

Roll, R., 1992. A mean/variance analysis of tracking error. The Journal of Portfolio Man-

agement 18 (4), 13–22.

48



Paper I: Tracking and outperforming large stock-market indices

Rudd, A., 1980. Optimal selection of passive portfolios. Financial Management, 57–66.

Rudolf, M., Wolter, H.-J., Zimmermann, H., 1999. A linear model for tracking error

minimization. Journal of Banking & Finance 23 (1), 85–103.

Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem. European Journal of Operational Research

177, 2033–2049.

Sant’Anna, L. R., Filomena, T. P., Caldeira, J. F., 2017a. Index tracking and enhanced

indexing using cointegration and correlation with endogenous portfolio selection. The

Quarterly Review of Economics and Finance 65, 146–157.

Sant’Anna, L. R., Filomena, T. P., Guedes, P. C., Borenstein, D., 2017b. Index tracking

with controlled number of assets using a hybrid heuristic combining genetic algorithm

and non-linear programming. Annals of Operations Research 258 (2), 849–867.

Scozzari, A., Tardella, F., Paterlini, S., Krink, T., 2013. Exact and heuristic approaches

for the index tracking problem with UCITS constraints. Annals of Operations Research

205 (1), 235–250.

Strub, O., Baumann, P., 2018. Optimal construction and rebalancing of index-tracking

portfolios. European Journal of Operational Research 264 (1), 370–387.

Strub, O., Trautmann, N., 2016. An iterated greedy heuristic for the 1/N portfolio tracking

problem. In: Vitoriano, B., Parlier, G., de Werra, D. (Eds.), Proceedings of the 5th

International Conference on Operations Research and Enterprise Systems. Rome, pp.

424–431.

Takeda, A., Niranjan, M., Gotoh, J., Kawahara, Y., 2013. Simultaneous pursuit of out-

of-sample performance and sparsity in index tracking portfolios. Computational Man-

agement Science 10 (1), 21–49.

Wu, D., Kwon, R. H., Costa, G., 2017. A constrained cluster-based approach for tracking

the S&P 500 index. International Journal of Production Economics 193, 222–243.

49



Paper II

Two continuous-time assignment-based models for

the multi-mode resource-constrained project

scheduling problem 2

Mario Gnägi Tom Rihm Adrian Zimmermann Norbert Trautmann

Department of Business Administration
University of Bern

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Planning problem . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.1 Multi-mode resource-constrained project scheduling problem . 53

2.2.2 Illustration of the planning problem . . . . . . . . . . . . . . . 55

2.3 MILP models from the literature . . . . . . . . . . . . . . . . . 55

2.4 Novel MILP models for the MRCPSP . . . . . . . . . . . . . . 57

2.4.1 Continuous-time assignment-based model without auxiliary vari-
ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2 Model with auxiliary resource-overlap variables . . . . . . . . . 59

2.4.3 Model supplements . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.1 Test design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2Published in Computers & Industrial Engineering 129, 346–353 (DOI:10.1016/j.cie.2019.01.033)

50



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Abstract

In the multi-mode resource-constrained project scheduling problem,

a set of precedence-related project activities and, for each activity, a set

of alternative execution modes are given. Each activity requires some

time and some scarce resources during execution; these requirements

depend on the selected execution mode. Sought is a project schedule,

i.e, a start time and an execution mode for each activity, such that the

project makespan is minimized. In the literature, beside a large variety

of specific solution approaches, several Mixed-Integer Linear Program-

ming (MILP) models have been proposed for this problem. We present

two novel MILP models that are based on mode-selection, resource-

assignment and sequencing variables; we enhance the performance of

the models by eliminating some symmetric solutions from the search

space and by adding some redundant sequencing constraints for pairs

and for triples of activities that cannot be processed in parallel. In a

comparison with reference models from the literature, it turned out that

the advantages of the novel models are a simple structure, an enhanced

flexibility, and a superior performance when the range of the activities’

durations is relatively large.

2.1 Introduction

A project consists of a set of activities that are interrelated by precedence relationships and

require time and scarce resources for their execution (cf., e.g., Brucker et al. 1999). Often

there is a trade-off between the duration and the resource requirements of the project

activities; this trade-off can be represented by alternative execution modes. Determining

the start times and execution modes for the activities and allocating the scarce resources

over time to the execution of the activities such that the project makespan is minimized

represents a challenging combinatorial optimization problem.

We consider the multi-mode resource-constrained project scheduling problem (MR-

CPSP), which can be described as follows (cf., e.g., Mika et al. 2015). Given are a set

of project activities that require time and scarce resources for their execution, and a set

of completion-start precedence relationships among the project activities. Three differ-

ent types of resources are distinguished (cf. S lowiński 1980): renewable, non-renewable

and doubly constrained resources. Renewable resources, e.g., manpower, are limited over

each time period and are renewed from one time period to the next. For non-renewable

51



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

resources, e.g., raw materials, the total usage over the entire project duration is limited.

Doubly constrained resources represent a combination of a renewable and a non-renewable

resource (cf. Talbot 1982). Furthermore, for each activity, a set of alternative execution

modes is given, which differ in the duration and the resource requirements of the activity.

Sought is a project schedule, i.e., a start time and an execution mode for each activity,

such that all precedence relationships are respected, the total required quantity of each

renewable and each non-renewable resource does not exceed its prescribed capacity at any

point in time, and the project makespan is minimized. The MRCPSP is a generalization of

the widely studied single-mode resource-constrained project scheduling problem (RCPSP)

and has been applied to the scheduling of, e.g., table-tennis leagues (cf. Knust 2010), con-

struction projects (cf. Xu and Zeng 2015), and automotive R&D projects (cf. Bartels and

Zimmermann 2015).

In the literature, in addition to many problem-specific heuristic and exact solution

approaches, several Mixed-Integer Linear Programming (MILP) models have been pro-

posed for the MRCPSP (cf., e.g., Mika et al. 2015 for an overview). The models can

be classified into discrete-time (DT) models and continuous-time (CT) models. In DT

models, the planning horizon is divided into a set of equal-length time intervals, and the

activities can start only at the beginning of each of these intervals. In general, DT mod-

els involve time-indexed binary variables (cf., e.g., Talbot 1982; Maniezzo and Mingozzi

1999; Zhu et al. 2006); hence, the number of binary variables increases with the num-

ber of time intervals considered, which constitutes a potential drawback for projects that

consist of activities with long durations, i.e., projects with a long planning horizon. By

contrast, in CT models (cf., e.g., Kyriakidis et al. 2012), activities can start at any point

in time over the planning horizon. In the known models, however, the formulation of

the resource-capacity constraints requires a computation of the resource utilization based

on the activities’ start times, which is rather cumbersome. Further MILP models have

been proposed for problems that extend the MRCPSP by, e.g., mode dependent time lags

(cf. Sabzehparvar and Seyed-Hosseini 2008), multi-project scheduling (cf. Zapata et al.

2008) or non-preemptive activity splitting (cf. Cheng et al. 2015). In general, two ma-

jor advantages of MILP models are their flexibility with respect to modifications of the

planning situation and the possibility to apply standard solver software such as Gurobi

or CPLEX (cf. Vielma 2015). The performance of an MILP-based solution approach for

a specific planning problem, however, depends on the MILP model used and should be

evaluated in an experimental analysis; for other scheduling problems, such analyzes have

been performed by, e.g., Keha et al. (2009), Baker and Keller (2010) or Unlu and Mason

(2010).

52



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

In this paper, we present two novel CT models for the MRCPSP. In both models,

similar to the approach proposed in Trautmann et al. (2018) for the single-mode RCPSP,

we use two types of binary variables to formulate the resource-capacity constraints: as-

signment variables specify which individual renewable-resource units are used for the

execution of each activity, and sequencing variables specify the order in which pairs of

activities that are assigned to the same renewable-resource unit are processed. In the sec-

ond model, similar to the idea presented in Gnägi et al. (2018b), we use some additional

auxiliary resource-overlap variables to identify these pairs of activities. To enhance the

performance of the two novel models, we eliminate some symmetric solutions from the

search space and add some redundant constraints for pairs and for triples of activities that

cannot be processed in parallel due to the resource capacities. In a comparative analysis,

we have applied the novel models and three reference models from the literature to two

standard test sets and two novel test sets. Our computational results indicate a superior

performance of the novel models when the range of the activities’ durations is relatively

large.

The remainder of this paper is structured as follows. In Section 2.2, we describe the

MRCPSP in detail. In Section 2.3, we give an overview of the DT and CT models that

we use as reference models. In Section 2.4, we present the novel MILP models for the

MRCPSP. In Section 2.5, we report the computational results. In Section 2.6, we provide

some concluding remarks and an outlook on future research.

2.2 Planning problem

In this section, we describe the MRCPSP in detail (cf. Subsection 2.2.1), and we illustrate

the planning problem by means of an illustrative example (cf. Subsection 2.2.2). In the

remainder of this paper, we use the sets and parameters listed in Table 2.1.

2.2.1 Multi-mode resource-constrained project scheduling prob-

lem

We assume that the project consists of a set V of activities. For each activity i ∈ V , a set

Mi of alternative execution modes is given. The duration of activity i ∈ V when executed

in mode m ∈Mi is denoted as pim. Furthermore, a set R of renewable resources and a set

N of non-renewable resources are given. For the renewable resources k ∈ R, the resource

capacities are denoted as Rk, and for the non-renewable resources k ∈ N , the resource

capacities are denoted as Wk. Furthermore, we denote the resource requirements for the

53



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Table 2.1: Sets and parameters.

Set Description

V Set of all activities (V = {0, 1, . . . , n, n+ 1})
Mi Set of all execution modes of activity i ∈ V
R Set of all renewable resources
N Set of all non-renewable resources
E Set of all completion-start precedence relationships
G Activity-on-node graph
TE Set of all pairs of activities that cannot be executed in parallel

due to their precedence relationships

Parameter Description

pim Duration of activity i ∈ V when executed in mode m ∈Mi

Rk Capacity of renewable resource k ∈ R
Wk Capacity of non-renewable resource k ∈ N
rikm Requirement of activity i ∈ V of renewable resource k ∈ R

per period when executed in mode m ∈Mi

wikm Requirement of activity i ∈ V of non-renewable resource
k ∈ N when executed in mode m ∈Mi

pmaxi Maximum duration of activity i ∈ V
T Planning horizon
ESi Earliest start time of activity i ∈ V
LSi Latest start time of activity i ∈ V

activities i ∈ V when executed in mode m ∈Mi for the renewable resources k ∈ R as rikm

and for the non-renewable resources k ∈ N as wikm. The set V of activities contains n real

activities and two dummy activities 0 and n+1 representing the start and the completion

of the project, respectively; both have a single execution mode with duration zero and

no resource requirements. Furthermore, some completion-start precedence relationships

are given among some pairs of activities (i, j) ∈ V × V ; these pairs of activities form

the set E. The activity-on-node graph G depicts the activities i ∈ V as the set of nodes

and the completion-start precedence relationships (i, j) ∈ E as the set of directed arcs

between the nodes. The set TE consists of all pairs of activities (i, j) ∈ V × V for which

the graph G contains a path from i to j or from j to i.

The planning horizon T is calculated as the sum of the maximum durations of all

activities, i.e., T =
∑

i∈V p
max
i , where pmaxi denotes the maximum duration of activity

i ∈ V , i.e., pmaxi = maxm∈Mi
{pim}. The earliest start time ESi and the latest start time

LSi of the activities i ∈ V are determined by forward and backward pass calculations

(cf. Demeulemeester and Herroelen 2002), respectively; for each activity, the mode with

the shortest duration is used for both passes (cf. Talbot 1982).

54



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Figure 2.1: Illustrative example: completion-start precedence relationships, durations and
resource requirements.

0

1

2

3

4 5

i j

(0,0,0)

(4,1,1)
(2,2,2)

(3,1,3)

(4,1,2)
(2,2,1)

(3,2,2) (0,0,0)

(pi1,ri11,wi11)
(pi2,ri12,wi12)

(pj1,rj11,wj11)
(pj2,rj12,wj12)

Table 2.2: Illustrative example: earliest and latest start times.

Activity i 0 1 2 3 4 5

Earliest start time ESi 0 0 0 0 3 6
Latest start time LSi 8 12 8 9 11 14

2.2.2 Illustration of the planning problem

We illustrate the MRCPSP by means of an illustrative example. Given are four real

activities, i.e., V = {0, 1, . . . , 4, 5}; two execution modes are given for the activities i ∈
{1, 3}, and one execution mode is given for the activities i ∈ {0, 2, 4, 5}. The activities

require one renewable resource with a capacity of two units, i.e., R = {1} and R1 = 2,

and one non-renewable resource with a capacity of eight units, i.e., N = {1} and W1 = 8,

for their execution. Figure 2.1 shows the activity-on-node graph G that depicts the

completion-start precedence relationships among the activities and, below each node, the

mode-dependent durations and resource requirements for each activity. The earliest and

the latest start times are shown in Table 2.2; they are calculated based on the given

precedence relationships and the planning horizon T = 14. In Figure 2.2, an optimal

project schedule is shown; the usage for the renewable resource r1(t) is depicted as a

function of the time t, and the selected execution modes are indicated in brackets. The

minimal project makespan is nine time periods.

2.3 MILP models from the literature

In this section, we describe the types of variables used in the DT and CT models that

we use as reference models. We selected the model of Talbot (1982), because it is the

55



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Figure 2.2: Illustrative example: optimal project schedule.

0 1 2 3 4 5 6 7 8 9
0

1

2

1(1)

2

3(2) 4

t

r1(t)

most commonly used DT model (cf., e.g., Mika et al. 2015), and the two CT models of

Kyriakidis et al. (2012), because they are, to the best of our knowledge, the only known

CT models for the MRCPSP.

The DT model introduced by Talbot (1982) is an extension of the well-known model

proposed by Pritsker et al. (1969) for the single-mode RCPSP. The planning horizon is

divided into a set of equal-length time intervals. The model employs some time-indexed

variables that indicate whether an activity starts at the beginning of a specific time

interval. Furthermore, each of these variables has an additional index that indicates the

selected execution mode for the activity. In the following, we will refer to the model of

Talbot (1982) as Tal82.

In the two CT models presented by Kyriakidis et al. (2012), the planning horizon is

divided into a set of time intervals with variable length. The first model (referred to as

MMRTN1) involves two types of binary variables that are used to indicate whether an

activity starts at the beginning of a specific time interval and whether an activity spans

over multiple consecutive time intervals. Furthermore, three types of continuous variables

are used to model the variable length of the planning horizon, the variable length of the

time intervals and the resource availability at the beginning of each time interval. The

second model (referred to as MMRTN2) employs similar types of variables as the first

model; furthermore, two additional types of variables are introduced to indicate for each

activity the resource usage at the beginning and the completion of the activity and to

express the selected execution mode for each activity. In the following, we will refer

to the first and the second model of Kyriakidis et al. (2012) as KyrKopGeo12-1 and

KyrKopGeo12-2, respectively.

56



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Table 2.3: Variables used in the MCTAB model.

Variable Description

Si Start time of activity i

yij

{
= 1, if activity i must be completed before the start of activity j
= 0, otherwise

rlik

{
= 1, if activity i is assigned to unit l of renewable resource k
= 0, otherwise

xim

{
= 1, if activity i is executed in mode m
= 0, otherwise

2.4 Novel MILP models for the MRCPSP

In this section, we present the two novel continuous-time assignment-based models for the

MRCPSP. In Subsection 2.4.1, we present the model without auxiliary resource-overlap

variables and in Subsection 2.4.2 the model with auxiliary resource-overlap variables. In

Subsection 2.4.3, we present some supplements for the two models which shall improve

their performance.

2.4.1 Continuous-time assignment-based model without auxil-

iary variables

The continuous-time assignment-based model, hereafter referred to as the MCTAB model,

is based on the four types of variables listed in Table 2.3; a preliminary version of this

model has been presented in Gnägi et al. (2018a). The model employs the start-time

variables Si (i ∈ V ) and the sequencing variables yij (i, j ∈ V : i 6= j, (i, j) 6∈ TE);

similar variables have been used in the model proposed by Artigues et al. (2003) for the

single-mode RCPSP. The sequencing variables yij are only defined for all pairs of activities

(i, j) with i 6= j which can be executed simultaneously with respect to the precedence

relationships, i.e., (i, j) 6∈ TE. Furthermore, the model includes the resource-assignment

variables rlik (i ∈ V ; k ∈ R; l = 1, . . . , Rk) that explicitly assign activities to individual

renewable-resource units. Similar variables are used in Correia et al. (2012) to model the

multi-skill project scheduling problem and in Rihm et al. (2018) to model an assessment

center planning problem; both of these problems are extensions of the single-mode RCPSP.

Finally, the binary mode-selection variables xim (i ∈ V ; m ∈Mi) are used to indicate the

selected execution mode for each activity. We illustrate the types of variables used in the

MCTAB model in Figure 2.3 by means of our illustrative example.

The objective is to minimize the project makespan, i.e. the start time of the dummy

57



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Figure 2.3: Types of variables used in the MCTAB model.

0 1 2 3 4 5 6 7 8 9
0

1

2

1(1)

2

3(2) 4

y13 = 1

y31 = 0

y14 = 1

y41 = 0

y23 = 1

y32 = 0y21 = 0

y12 = 0

S0 = 0
r101 = 0

r201 = 0

S1 = 0
r111 = 1

r211 = 0

S2 = 0
r121 = 0

r221 = 1

S3 = 4
r131 = 1

r231 = 1

S4 = 6
r141 = 1

r241 = 1

S5 = 9
r151 = 0

r251 = 0

t

r1(t)

activity n+ 1:

Min. Sn+1

Constraints (2.1) link the resource-assignment variables to the sequencing variables.

If two activities i and j are assigned to the same resource unit, these activities must be

scheduled sequentially, i.e, either yij = 1 or yji = 1.

rlik + rljk ≤ 1 + yij + yji (i, j ∈ V ; k ∈ R; l = 1, . . . , Rk : i < j, (i, j) 6∈ TE) (2.1)

Constraints (2.2) indicate that for each activity the number of assigned renewable-

resource units is equal to the number required by the activity in its selected mode.

Rk∑
l=1

rlik =
∑
m∈Mi

rikmxim (i ∈ V ; k ∈ R) (2.2)

Constraints (2.3) ensure that the capacities of the non-renewable resources are not

exceeded. ∑
i∈V

∑
m∈Mi

wikmxim ≤ Wk (k ∈ N) (2.3)

Constraints (2.4) represent the precedence relationships among the activities.

Si +
∑
m∈Mi

pimxim ≤ Sj ((i, j) ∈ E) (2.4)

Constraints (2.5) link the sequencing variables and the start-time variables. If two

activities i and j are assigned to the same resource unit and are therefore forced to be

58



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

scheduled sequentially by the constraints (2.1), then either activity i must be completed

before the start of activity j, i.e, yij = 1, or activity j must be completed before the start

of activity i, i.e, yji = 1.

Si +
∑
m∈Mi

pimxim ≤ Sj + (LSi + pmaxi − ESj)(1− yij)

(i, j ∈ V : i 6= j, (i, j) /∈ TE) (2.5)

Constraints (2.6) assure that each activity is executed in exactly one mode.∑
m∈Mi

xim = 1 (i ∈ V ) (2.6)

The model reads as follows.

(MCTAB)



Min. Sn+1

s.t. (2.1) – (2.6)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i 6= j, (i, j) /∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

2.4.2 Model with auxiliary resource-overlap variables

The model with auxiliary resource-overlap variables, hereafter referred to as the MCTABO

model, is based on the five types of variables listed in Table 2.4. The start-time variables,

the resource-assignment variables and the mode-selection variables are used analogously

to the MCTAB model. In contrast, the sequencing variables yij are used such that yij = 1

if activity i starts before or at the same time as activity j and yij = 0 if activity j starts

before or at the same time as activity i. Furthermore, the auxiliary resource-overlap

variables zij (i, j ∈ V : i < j, (i, j) 6∈ TE) are used to indicate a possible overlap between

the activities i and j with regard to at least one renewable resource. The sequencing

variables yij and the auxiliary resource-overlap variables zij are only defined for all pairs

of activities (i, j) with i < j which can be executed simultaneously with respect to the

precedence relationships, i.e., (i, j) 6∈ TE. We illustrate the types of variables used in the

MCTABO model in Figure 2.4 by means of our illustrative example.

With regard to the constraints, the differences between the MCTAB model and the

MCTABO model are as follows. Constraints (2.1) are replaced by constraints (2.7).

59



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Table 2.4: Variables used in the MCTABO model.

Variable Description

Si Start time of activity i

yij

{
= 1, if activity i starts before or at the same time as activity j
= 0, if activity j starts before or at the same time as activity i

rlik

{
= 1, if activity i is assigned to unit l of renewable resource k
= 0, otherwise

zij

{
= 1, if activities i and j use the same renewable-resource unit
= 0, otherwise

xim

{
= 1, if activity i is executed in mode m
= 0, otherwise

Figure 2.4: Types of variables used in the MCTABO model.

0 1 2 3 4 5 6 7 8 9
0

1

2

1(1)

2

3(2) 4

z13 = 1

y13 = 1

z14 = 1

y14 = 1

z23 = 1

y23 = 1z12 = 0

y12 = 0/1

S0 = 0
r101 = 0

r201 = 0

S1 = 0
r111 = 1

r211 = 0

S2 = 0
r121 = 0

r221 = 1

S3 = 4
r131 = 1

r231 = 1

S4 = 6
r141 = 1

r241 = 1

S5 = 9
r151 = 0

r251 = 0

t

r1(t)

These constraints link the resource-assignment variables to the auxiliary resource-overlap

variables. If two activities i and j are assigned to the same resource unit, then the

corresponding auxiliary resource-overlap variable is forced to be one, i.e., zij = 1.

rlik + rljk ≤ 1 + zij (i, j ∈ V ; k ∈ R; l = 1, . . . , Rk : i < j, (i, j) 6∈ TE) (2.7)

Constraints (2.5) are replaced by constraints (2.8) and (2.9). These constraints link the

start-time variables, the sequencing variables and the auxiliary resource-overlap variables.

If two activities i and j are assigned to the same resource unit, i.e., zij = 1, then these

activities must be scheduled sequentially; then, either activity i must be completed before

the start of activity j, i.e, yij = 1, or activity j must be completed before the start of

activity i, i.e, yij = 0. If there is no resource overlap between the activities i and j, i.e.,

zij = 0, then either activity i must start before or at the same time as activity j, i.e,

60



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

yij = 1, or activity j must start before or at the same time as activity i, i.e, yij = 0.

Si +
∑
m∈Mi

pimxim − pmaxi (1− zij) ≤ Sj + (LSi + pmaxi − ESj)(1− yij)

(i, j ∈ V : i < j, (i, j) 6∈ TE) (2.8)

Sj +
∑
m∈Mj

pjmxjm − pmaxj (1− zij) ≤ Si + (LSj + pmaxj − ESi)yij

(i, j ∈ V : i < j, (i, j) 6∈ TE) (2.9)

The model reads as follows.

(MCTABO)



Min. Sn+1

s.t. (2.2) – (2.4), (2.6) – (2.9)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

zij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

2.4.3 Model supplements

In this subsection, we present various supplements for the models MCTAB and MCTABO.

These supplements shall improve the performance of the models by eliminating some

symmetric solutions from the search space and by adding some redundant constraints that

explicitly enforce the sequential scheduling of pairs or triples of activities that cannot be

processed in parallel due to the resource capacities.

First, to eliminate some symmetric solutions from the search space w.l.o.g., we can

assign ex ante some units of each renewable resource to an arbitrary activity, because all

individual units of a renewable resource are identical. For each renewable resource k ∈ R,

we select an activity i∗k with the largest minimum requirement rminik = minm∈Mi
{rikm} for

this resource, and we add the constraints (2.10) to both models MCTAB and MCTABO;

for each renewable resource k ∈ R, these constraints assign the first rmini∗k,k
renewable-

resource units to the execution of activity i∗k.

rli∗k,k = 1 (k ∈ R, l ∈ {1, . . . , rmini∗k,k
}) (2.10)

61



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Figure 2.5: Elimination of some symmetric resource-unit assignments.

0 1 2 3 4 5
0

1

2

3

i∗k

j

t

rk(t)

0 1 2 3 4 5
0

1

2

3

i∗k

j

t

rk(t)

0 1 2 3 4 5
0

1

2

3

i∗k

i∗k

j

t

rk(t)

Figure 2.5 illustrates the constraints (2.10); by explicitly assigning the first and the second

renewable-resource unit to activity i∗k, the two symmetric resource-unit assignments in the

middle and on the right-hand side are eliminated from the search space.

Second, we analyze all pairs of activity-mode combinations ((i,mi), (j,mj)) with i, j ∈
V , mi ∈Mi and mj ∈Mj for which the requirement for some renewable resource exceeds

the resource capacity, i.e., rikmi
+ rjkmj

> Rk for some renewable resource k ∈ R; let

the set V 2 contain all these pairs of activity-mode combinations with i < j, excluding

all pairs of activity-mode combinations that contain pairs of activities that are in TE.

For all pairs of activity-mode combinations ((i,mi), (j,mj)) ∈ V 2, if activities i and j are

executed in modes mi and mj, respectively, in each feasible solution, at least one unit of

resource k will be assigned to both activities i and j. Thus, the activities i and j must

be scheduled sequentially; therefore, we add the (redundant) constraints

yij + yji ≥ ximi
+ xjmj

− 1 (((i,mi), (j,mj)) ∈ V 2) (2.11)

to the MCTAB model and the (redundant) constraints

zij ≥ ximi
+ xjmj

− 1 (((i,mi), (j,mj)) ∈ V 2) (2.12)

to the MCTABO model. Analogously, we analyze all triples of activity-mode combinations

((i,mi), (j,mj), (h,mh)), where i, j, h ∈ V , mi ∈ Mi, mj ∈ Mj and mh ∈ Mh, with

rikmi
+ rjkmj

+ rhkmh
> Rk for some renewable resource k ∈ R; let the set V 3 contain

all these triples of activity-mode combinations with i < j < h, excluding all triples of

activity-mode combinations that contain pairs of activities that are in TE or pairs of

activity-mode combinations that are in V 2. For all triples of activity-mode combinations

((i,mi), (j,mj), (h,mh)) ∈ V 3, we add the (redundant) constraints (2.13) and (2.14) to

62



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

the models MCTAB and MCTABO, respectively.

yij + yji + yih + yhi + yjh + yhj ≥ ximi
+ xjmj

+ xhmh
− 2

(((i,mi), (j,mj), (h,mh)) ∈ V 3) (2.13)

zij + zih + zjh ≥ ximi
+ xjmj

+ xhmh
− 2

(((i,mi), (j,mj), (h,mh)) ∈ V 3) (2.14)

The extended models read as follows.

(MCTAB extended)



Min. Sn+1

s.t. (2.1) – (2.6), (2.10) – (2.11), (2.13)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i 6= j, (i, j) /∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

(MCTABO extended)



Min. Sn+1

s.t. (2.2) – (2.4), (2.6) – (2.10), (2.12), (2.14)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

zij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

2.5 Computational results

In this section, we present the design (cf. Subsection 2.5.1) and the numerical results (cf.

Subsection 2.5.2) of the experimental performance analysis.

2.5.1 Test design

We compare the performance of the novel MILP models with the performance of the

DT model of Talbot (1982) and the two CT models of Kyriakidis et al. (2012). We

63



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

implemented these models in AMPL, and we used the Gurobi Optimizer 8.1 with the

default solver settings. All computations were performed on a workstation with two 8-

core Intel Xeon E5-2687W CPUs (3.1 GHz) and 128 GB RAM. We set a time limit of

300 seconds per instance, and we limited the number of threads to four.

For the comparative analysis, we used the test sets J20 and J30 from the PSPLIB (cf.

Kolisch and Sprecher 1996). Each of these test sets contains 640 instances that consist

of 20 and 30 real activities, respectively, with three alternative execution modes each.

Furthermore, the activities require two renewable and two non-renewable resources for

their execution. For 86 instances of the set J20 and for 88 instances of the set J30,

no feasible solution exists; we excluded these instances from our comparative analysis.

The instances of the sets J20 and J30 consist of activities with relatively short durations

ranging from one to ten time units; this could be an advantage for time-indexed models

such as the model of Talbot (1982). Therefore, to broaden our comparative analysis, we

generated two novel test sets that are based on the instances of the sets J20 and J30, but

consist of instances with a relatively large range of the activities’ durations. We generated

these instances by adopting the procedure that has been proposed by Koné et al. (2011)

for single-mode RCPSP instances. For each of the sets J20 and J30, we randomly selected

α real activities. For these activities, we multiplied the duration for each mode by β + ε

with ε being a uniformly distributed random number between zero and one and rounded

the resulting duration to the nearest integer. Analogously to Koné et al. (2011), we set

α = n/2, i.e., α = 10 for set J20 and α = 15 for set J30, and we set β = 25 resulting in

two novel sets of instances consisting of activities with durations ranging from one to up

to 260 time units. In the following, we will refer to these novel test sets as D20 and D30.

2.5.2 Numerical results

We use the following metrics to evaluate the performance of the tested models:

� Feas (%): Fraction of instances for which a feasible schedule has been found within

the prescribed time limit.

� Opt (%): Fraction of instances for which a feasible schedule has been found and

proven to be optimal within the prescribed time limit.

� Best (%): Fraction of instances for which, within the prescribed time limit, the best

schedule among those found with all tested models has been found.

� GapLB (%): Average relative deviation between the objective function value of the

best schedule returned by the solver (OFV ) and the best lower bound returned by

64



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

the solver (LB), calculated as (OFV − LB)/LB.

� GapCP (%): Average relative deviation between OFV and the critical-path based

lower bound (CP ), calculated as (OFV − CP )/CP .

� GapBEST (%): Average relative deviation between OFV and the objective function

value of the best schedule (BEST ) found among those found with all tested models,

calculated as (OFV −BEST )/BEST .

� # Cons: Average number of constraints.

� # Vars: Average number of variables.

The results of the comparative analysis are summarized in Tables 2.5 and 2.6; bold

values indicate the best results among all tested models.

For the sets J20 and J30, all tested models except the two models proposed by Kyr-

iakidis et al. (2012) obtain at least a feasible schedule for all considered instances. The

model of Talbot (1982) performs best in terms of the number of instances that are proven

to be solved to optimality and of the average deviation from the best lower bound re-

turned by the solver; this may be attributed to the relatively strong linear programming

relaxations of models with time-indexed binary variables (cf. Artigues et al. 2015). The

novel models, and especially those including the proposed supplements, perform second

best for the sets J20 and J30; they even achieve a matchable performance in terms of the

average deviation from the critical-path based lower bound.

For the sets D20 and D30, the novel models clearly outperform the other tested models

regarding all reported metrics; this might be attributed to the strong increase of the

average number of variables used for the DT model of Talbot (1982). In contrast, the

average number of variables used for the presented novel CT models is relatively small

and remains constant also for the sets D20 and D30. For the CT models proposed by

Kyriakidis et al. (2012), the average number of variables used is also constant but very

large; both models are clearly outperformed by the other tested models. In Table 2.7,

we provide the results of the comparative analysis for all considered instances of the sets

D20 and D30 for which both the model of Talbot (1982) and the novel models yield at

least a feasible solution; the results for the models of Kyriakidis et al. (2012) are omitted

because they do not obtain a feasible solution for many instances, especially for the set

D30. Also with respect to these results, the novel models outperform the model of Talbot

(1982).

Without the model supplements, both models MCTAB and MCTABO

achieve a comparable performance for all test sets. For both models, the proposed sup-

65



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Table 2.5: Computational results: all considered instances of the sets J20 and J30.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

J20 Tal82 100.00 97.47 99.10 0.22 17.13 0.05 382 8,676

KyrKopGeo12-1 96.75 0.00 8.84 607.97 45.55 24.19 6,159 3,513

KyrKopGeo12-2 99.64 5.96 43.68 118.48 25.19 6.31 22,229 18,623

MCTAB 100.00 81.41 88.27 3.05 17.90 0.59 4,310 1,223

MCTAB extended 100.00 88.99 96.21 1.71 17.30 0.17 4,841 1,223

MCTABO 100.00 80.69 89.35 3.20 17.91 0.59 4,310 1,223

MCTABO extended 100.00 85.74 92.06 2.47 17.53 0.33 4,841 1,223

J30 Tal82 100.00 88.41 97.64 2.50 15.35 0.81 570 19,859

KyrKopGeo12-1 9.24 0.00 0.00 1,558.85 110.03 81.19 13,993 7,881

KyrKopGeo12-2 47.28 0.00 5.62 383.02 34.23 27.98 64,939 57,229

MCTAB 100.00 74.09 77.54 8.06 15.95 1.79 13,495 2,328

MCTAB extended 100.00 76.09 79.89 7.85 15.77 1.71 15,306 2,328

MCTABO 100.00 73.55 78.26 8.15 15.93 1.80 13,495 2,328

MCTABO extended 100.00 75.54 78.99 7.87 15.75 1.67 15,306 2,328

plements result in a considerable performance improvement with regard to all reported

metrics. The supplements proposed for the MCTAB model, however, tend to be more

effective and thus lead to slightly larger improvements.

In Table 2.8, the results for further supplements of the novel models are summa-

rized, representatively for the set J30. We tested the performance of the models MCTAB

extended and MCTABO extended considering pairs of activity-mode combinations that

cannot be process in parallel due their resource requirements only, i.e., without the con-

straints (2.13) and (2.14), respectively. Furthermore, we also tested the performance of the

models MCTAB extended and MCTABO extended with analogous additional constraints

for quadruples of activity-mode combinations that cannot be process in parallel due their

resource requirements. The models MCTAB extended and MCTABO extended perform

best among all tested models; this may be attributed to the relatively small number of

redundant constraints when considering pairs of activity-mode combinations only, while

the large number of redundant constraints for the models also considering quadruples of

activity-mode combinations seems to slow down the solution process.

66



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Table 2.6: Computational results: all considered instances of the sets D20 and D30.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

D20 Tal82 87.36 73.83 74.19 34.64 42.34 28.30 4,282 113,440

KyrKopGeo12-1 73.10 0.00 9.57 580.52 38.66 25.51 6,159 3,513

KyrKopGeo12-2 100.00 2.71 65.34 71.54 12.99 2.02 22,229 18,623

MCTAB 100.00 95.49 99.46 0.16 10.37 0.01 4,310 1,223

MCTAB extended 100.00 99.82 100.00 0.01 10.36 0.00 4,841 1,223

MCTABO 100.00 93.50 98.01 0.32 10.38 0.02 4,310 1,223

MCTABO extended 100.00 99.28 99.82 0.10 10.36 0.00 4,841 1,223

D30 Tal82 71.92 63.04 63.04 45.03 47.06 39.40 6,434 260,446

KyrKopGeo12-1 3.99 0.00 0.00 857.53 43.33 41.67 13,993 7,881

KyrKopGeo12-2 23.91 0.00 4.17 209.71 19.76 17.88 64,939 57,229

MCTAB 100.00 84.06 87.86 3.48 8.38 0.48 13,495 2,328

MCTAB extended 100.00 87.14 93.30 2.69 7.96 0.16 15,306 2,328

MCTABO 100.00 84.42 89.13 3.51 8.21 0.34 13,495 2,328

MCTABO extended 100.00 86.96 92.75 2.81 8.00 0.19 15,306 2,328

Table 2.7: Computational results: instances of the sets D20 and D30 with at least a
feasible solution obtained by all considered models (Tal82 and novel models).

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

D20 Tal82 100.00 84.50 84.92 34.64 42.34 28.30 4,280 113,377

MCTAB 100.00 96.49 99.59 0.12 6.26 0.01 4,460 1,257

MCTAB extended 100.00 100.00 100.00 0.00 6.25 0.00 4,889 1,257

MCTABO 100.00 96.28 99.17 0.24 6.27 0.01 4,460 1,257

MCTABO extended 100.00 99.79 99.79 0.05 6.25 0.00 4,889 1,257

D30 Tal82 100.00 87.66 87.66 45.03 47.06 39.40 6,426 259,873

MCTAB 100.00 94.96 95.97 0.89 1.93 0.16 14,263 2,426

MCTAB extended 100.00 96.22 97.23 0.63 1.80 0.05 15,084 2,426

MCTABO 100.00 94.96 97.23 0.84 1.82 0.08 14,263 2,426

MCTABO extended 100.00 95.97 98.24 0.66 1.80 0.05 15,084 2,426

Table 2.8: Computational results: models MCTAB and MCTABO with further model
supplements.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

J30 MCTAB 100.00 74.09 82.79 8.06 15.95 0.94 13,495 2,328

MCTAB (pairs) 100.00 74.64 84.60 7.58 15.69 0.80 13,554 2,328

MCTAB extended 100.00 76.09 84.24 7.85 15.77 0.85 15,306 2,328

MCTAB (quadruples) 100.00 75.54 80.62 9.81 17.62 1.97 24,559 2,328

MCTABO 100.00 73.55 83.51 8.15 15.93 0.95 13,495 2,328

MCTABO (pairs) 100.00 73.73 83.70 7.75 15.78 0.87 13,554 2,328

MCTABO extended 100.00 75.54 84.42 7.87 15.75 0.81 15,306 2,328

MCTABO (quadruples) 99.82 75.18 82.61 8.23 16.06 1.16 24,559 2,328

67



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

2.6 Conclusions

In this paper, we have proposed two novel continuous-time MILP models for the multi-

mode resource-constrained project scheduling problem MRCPSP. The models are based

on continuous variables that represent the start times of the activities and binary variables

that represent the assignment of the project activities to the individual resource units,

the sequential relationships between activities that are assigned to at least one identical

resource unit, and the selection of an execution mode for each activity. Compared to the

continuous-time models known from the literature, the novel models have a simpler struc-

ture. Our computational results indicate that the novel models outperform all reference

models when the range of the activities’ durations is relatively high.

In future research, the efficient elimination of additional symmetric solutions from the

search space should be investigated. Furthermore, analogous models for related project

scheduling problems such as, e.g., the resource-constrained project scheduling problem

with minimum and maximum time lags, should be analyzed.

68



Bibliography

Artigues, C., Koné, O., Lopez, P., Mongeau, M., 2015. Mixed-integer linear program-

ming formulations, in: Schwindt, C., Zimmermann, J. (Eds.), Handbook on Project

Management and Scheduling Vol. 1. Springer, Cham, pp. 17–41.

Artigues, C., Michelon, P., Reusser, S., 2003. Insertion techniques for static and dynamic

resource-constrained project scheduling. European Journal of Operational Research

149, 249–267.

Baker, K.R., Keller, B., 2010. Solving the single-machine sequencing problem using integer

programming. Computers & Industrial Engineering 59, 730–735.

Bartels, J.H., Zimmermann, J., 2015. Scheduling tests in automotive R&D projects using

a genetic algorithm, in: Schwindt, C., Zimmermann, J. (Eds.), Handbook on Project

Management and Scheduling Vol. 2. Springer, Cham, pp. 1157–1185.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E., 1999. Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal

of Operational Research 112, 3–41.

Cheng, J., Fowler, J., Kempf, K., Mason, S., 2015. Multi-mode resource-constrained

project scheduling problems with non-preemptive activity splitting. Computers & Op-

erations Research 53, 275–287.

Correia, I., Lourenço, L.L., Saldanha-da Gama, F., 2012. Project scheduling with flexible

resources: formulation and inequalities. OR Spectrum 34, 635–663.

Demeulemeester, E.L., Herroelen, W., 2002. Project Scheduling: a research handbook.

Kluwer Academic Publishers, Boston.

Gnägi, M., Rihm, T., Trautmann, N., 2018a. A continuous-time MILP model for the

multi-mode resource-constrained project scheduling problem, in: 2018 IEEE Interna-

tional Conference on Industrial Engineering and Engineering Management (IEEM),

Bangkok. To appear.

69



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

Gnägi, M., Zimmermann, A., Trautmann, N., 2018b. A novel assignment-based

continuous-time MILP model for the resource-constrained project scheduling problem,

in: 2018 IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM), Bangkok. To appear.

Keha, A.B., Khowala, K., Fowler, J.W., 2009. Mixed integer programming formulations

for single machine scheduling problems. Computers & Industrial Engineering 56, 357–

367.

Knust, S., 2010. Scheduling non-professional table-tennis leagues. European Journal of

Operational Research 200, 358–367.

Kolisch, R., Sprecher, A., 1996. PSPLIB—a project scheduling problem library. European

Journal of Operational Research 96, 205–216.

Koné, O., Artigues, C., Lopez, P., Mongeau, M., 2011. Event-based MILP models for

resource-constrained project scheduling problems. Computers & Operations Research

38, 3–13.

Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. MILP formulations for single-

and multi-mode resource-constrained project scheduling problems. Computers & Chem-

ical Engineering 36, 369–385.

Maniezzo, V., Mingozzi, A., 1999. A heuristic procedure for the multi-mode project

scheduling problem based on benders’ decomposition, in: Wȩglarz, J. (Ed.), Project

Scheduling: Recent Models, Algorithms and Applications. Springer, Boston, pp. 179–

196.

Mika, M., Waligóra, G., Wȩglarz, J., 2015. Overview and state of the art, in: Schwindt,

C., Zimmermann, J. (Eds.), Handbook on Project Management and Scheduling Vol. 1.

Springer, Cham, pp. 445–490.

Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M., 1969. Multiproject scheduling with limited

resources: a zero-one programming approach. Management Science 16, 93–108.

Rihm, T., Trautmann, N., Zimmermann, A., 2018. MIP formulations for an application

of project scheduling in human resource management. Flexible Services and Manufac-

turing Journal 30, 609–639.

Sabzehparvar, M., Seyed-Hosseini, S.M., 2008. A mathematical model for the multi-mode

resource-constrained project scheduling problem with mode dependent time lags. The

Journal of Supercomputing 44, 257–273.

70



Paper II: Two continuous-time assignment-based models for the multi-mode
resource-constrained project scheduling problem

S lowiński, R., 1980. Two approaches to problems of resource allocation among project

activities – a comparative study. Journal of the Operational Research Society 31, 711–

723.

Talbot, F.B., 1982. Resource-constrained project scheduling with time-resource tradeoffs:

the nonpreemptive case. Management Science 28, 1197–1210.

Trautmann, N., Rihm, T., Saner, N.J., Zimmermann, A., 2018. A continuous-time

assignment-based MILP formulation for the resource-constrained project scheduling

problem, in: Caramia, M., Bianco, L., Giordani, S. (Eds.), Proceedings of the 16th

International Conference on Project Management and Scheduling, Rome. pp. 242–245.

Unlu, Y., Mason, S.J., 2010. Evaluation of mixed integer programming formulations

for non-preemptive parallel machine scheduling problems. Computers & Industrial

Engineering 58, 785–800.

Vielma, J.P., 2015. Mixed integer linear programming formulation techniques. SIAM

Review 57, 3–57.

Xu, J., Zeng, Z., 2015. Multi-criteria multi-modal fuzzy project scheduling in construction

industry, in: Schwindt, C., Zimmermann, J. (Eds.), Handbook on Project Management

and Scheduling Vol. 2. Springer, Cham, pp. 1307–1335.

Zapata, J.C., Hodge, B.M., Reklaitis, G.V., 2008. The multimode resource constrained

multiproject scheduling problem: alternative formulations. AIChE Journal 54, 2101–

2119.

Zhu, G., Bard, J.F., Yu, G., 2006. A branch-and-cut procedure for the multimode

resource-constrained project-scheduling problem. INFORMS Journal on Computing

18, 377–390.

71



Paper III

A matheuristic for large-scale capacitated clustering3

Mario Gnägi Philipp Baumann

Department of Business Administration
University of Bern

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Capacitated p-median problem . . . . . . . . . . . . . . . . . . 76

3.2.1 Description of the problem . . . . . . . . . . . . . . . . . . . . 76

3.2.2 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.2 Classic heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.3 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.4 Matheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Proposed matheuristic . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Global optimization phase . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Local optimization phase . . . . . . . . . . . . . . . . . . . . . 86

3.4.3 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Computational experiment . . . . . . . . . . . . . . . . . . . . . 91

3.5.1 Test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Capacitated centered clustering problem . . . . . . . . . . . . 102

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3Paper under review, submitted to Computers & Operations Research

72



Paper III: A matheuristic for large-scale capacitated clustering

Abstract

Clustering addresses the problem of grouping similar objects into

clusters. Since the size of the clusters is often constrained in practical

clustering applications, various capacitated clustering problems have re-

ceived increasing attention. We consider here the capacitated p-median

problem (CPMP) in which p objects are selected as cluster centers (me-

dians) such that the total distance from these medians to their assigned

objects is minimized. Each object is associated with a weight, and the

total weight in each cluster must not exceed a given capacity. Var-

ious exact and heuristic solution approaches have been proposed for

the CPMP. The state-of-the-art approach performs well for instances

with up to 5,000 objects but becomes computationally expensive for in-

stances with a much larger number of objects. Since clustering prob-

lems typically comprise a very large number of objects, we propose a

matheuristic that can deal with instances comprising up to 500,000 ob-

jects because it employs new problem decomposition strategies. In a

computational experiment, the proposed matheuristic consistently out-

performed the state-of-the-art approach on medium- and large-scale in-

stances while matching the performance for small-scale instances. As

an extension, we show that our matheuristic can be applied to related

capacitated clustering problems, such as the capacitated centered clus-

tering problem (CCCP). For several test instances of the CCCP, our

matheuristic found new best-known solutions.

3.1 Introduction

Clustering is the task of assigning similar objects to groups (clusters), where the simi-

larity between a pair of objects is determined by a distance measure based on features

of the objects. Since clustering is used in many different domains for a broad range of

applications, numerous different clustering problems have been discussed in the literature.

The widely studied p-median problem is an example of such a clustering problem. This

problem consists of selecting a given number of p objects as cluster centers (medians) such

that the total distance between the objects and their nearest median is minimized. The

p-median problem has been studied mainly in the context of facility location but also in

other contexts, such as large-scale data mining (cf., e.g., Avella et al. 2012). In practical

clustering applications, the size of the clusters is often constrained. For example, when

73



Paper III: A matheuristic for large-scale capacitated clustering

grouping customers to form sales force territories, the workload of an individual sales-

person must be restricted to guarantee adequate service quality (cf. Mulvey and Beck

1984). This gives rise to an extension of the p-median problem, namely, the capacitated

p-median problem (CPMP).

The CPMP can be stated as follows (cf., e.g., Lorena and Senne 2004). Given a set

of n weighted objects that are described by d features, the goal is to form a prescribed

number of p clusters by selecting p objects as medians and by assigning the objects to

these medians such that the total distance (e.g., Euclidean distance) between the objects

and their medians is minimized. Furthermore, for each median, the sum of the weights

of the objects assigned to it must not exceed a given capacity limit. As an extension of

the uncapacitated p-median problem, which is known to be NP-hard, the CPMP is also

NP-hard (cf. Osman and Ahmadi 2007), and the problem of finding a feasible solution

to an instance of the CPMP is NP-complete (cf. Ceselli and Righini 2005). The largest

publicly available test instances for the CPMP that have been tested in the literature thus

far comprise up to 5,000 objects. In contrast, existing test instances for the uncapacitated

p-median problem comprise up to 100,000 objects (cf., e.g., Hansen et al. 2009). Since

the CPMP is an extension of the uncapacitated p-median problem, this motivates our

interest in addressing large-scale instances of the CPMP.

Several exact solution approaches (cf., e.g., Ceselli and Righini 2005; Boccia et al. 2008)

and numerous heuristic solution approaches (cf., e.g., Mulvey and Beck 1984; Scheuerer

and Wendolsky 2006; Stefanello et al. 2015) have been proposed for the CPMP. Exist-

ing exact approaches can solve instances with up to 1,000 objects within a reasonable

running time. For instances that involve more than 1,000 objects, the iterated reduction

matheuristic algorithm (IRMA) proposed by Stefanello et al. (2015) is considered the

state-of-the-art approach (cf. also Jánoš́ıková et al. 2017). The approach of Stefanello

et al. (2015) iteratively constructs an initial solution with a randomized procedure and

improves this initial solution by first solving a mathematical model for the entire problem

and then iteratively for subproblems. Reduction heuristics are applied to eliminate vari-

ables from the models. In a comprehensive computational experiment based on instances

with up to 5,000 objects, Stefanello et al. (2015) demonstrated the superior performance

of their approach in comparison to recent benchmark approaches from the literature.

For instances that comprise many more than 5,000 objects, however, the approach of

Stefanello et al. (2015) becomes computationally expensive for three reasons. First, the

randomized procedure requires many iterations to construct a good initial solution, es-

pecially when the capacity limit is tight. Second, solving the mathematical model for

the entire problem becomes intractable for large-scale instances, despite the reduction

74



Paper III: A matheuristic for large-scale capacitated clustering

heuristics. Third, the subproblem selection procedure does not prioritize subproblems

with great potential for improving the objective function value. Another challenge that

was not specifically discussed by Stefanello et al. (2015) is that the number of distances

between objects and potential medians grows quadratically with an increasing number

of objects. For instances with much more than 5,000 objects, the computation of all

these distances becomes prohibitively time consuming and exceeds the available memory

of most standard workstations.

In this paper, we propose a matheuristic with new problem decomposition strategies

that are specifically designed for large-scale instances. These strategies a) focus on sub-

problems with the potential for substantially improving the objective function value, b)

exploit the power of binary linear programming to ensure the capacity constraints during

the entire solution process, and c) apply efficient data structures (kd-trees; cf. Bentley

1975) to avoid computing a large number of pairwise distances. The proposed matheuris-

tic comprises two phases: a global optimization phase in which the subproblems involve

all objects and a local optimization phase in which the subproblems involve only a subset

of objects. In the global optimization phase, we decompose the CPMP into a series of

generalized assignment problems, which are formulated as binary linear programs and

solved using a mathematical programming solver. In each of these subproblems, objects

are optimally assigned to fixed medians subject to the capacity constraints. The fixed

medians are updated between the solutions of two consecutive subproblems. By fixing the

medians and allowing objects to be assigned only to one of their g-nearest fixed medians,

the number of required distance computations is reduced from n(n−1)
2

to ng per subprob-

lem, where parameter g can be controlled by the user. To efficiently identify the g-nearest

fixed medians of each object and to compute the corresponding distances, we use kd-trees.

In the local optimization phase, we decompose the entire problem into subproblems that

comprise groups of clusters only. A binary linear programming formulation of the CPMP

is then solved for these groups of clusters individually using a mathematical programming

solver. The proposed subproblem selection procedure focuses on groups of clusters with

spare capacity and thus prioritizes subproblems with the potential for substantially im-

proving the objective function value. We also use kd-trees in the local optimization phase

to substantially reduce the number of required distance computations.

In a computational experiment, we compare the performance of the proposed matheuris-

tic to the performance of the state-of-the-art approach proposed by Stefanello et al. (2015).

Furthermore, we provide the results of an exact approach based on the binary linear pro-

gram presented by Lorena and Senne (2004) and a mathematical programming solver. We

apply all three approaches to a set of standard test instances from the literature, including

75



Paper III: A matheuristic for large-scale capacitated clustering

the largest existing instances. In comparison to instances for the uncapacitated p-median

problem, these largest existing instances for the CPMP are considered small-scale (cf.,

e.g., Avella et al. 2012). To assess the performance of the three approaches on instances

that are comparable in size to large instances of the uncapacitated p-median problem,

we additionally generate some medium-scale instances with up to approximately 50,000

objects and some large-scale instances with up to approximately 500,000 objects. It turns

out that, for small-scale instances, the proposed matheuristic matches the performance

of the state-of-the-art approach, and for medium- and large-scale instances, the proposed

matheuristic consistently delivers superior results. For the largest instances, only the pro-

posed matheuristic identifies feasible solutions within a limited running time of one hour.

Furthermore, we generated some high-dimensional instances with up to approximately

800 features. The proposed matheuristic performs best among the tested approaches also

for these high-dimensional instances.

As an extension, we show that the proposed matheuristic can easily be applied to

other capacitated clustering problems, such as the capacitated centered clustering problem

(CCCP) (cf. Negreiros and Palhano 2006). In the CCCP, the cluster centers are computed

as the geometric mean of the assigned objects and are not selected among the set of

objects. For the largest problem instances of the CCCP tested in this paper, we were able

to find new best-known solutions.

The remainder of this paper is organized as follows. In Section 3.2, we describe the

CPMP in more detail. In Section 3.3, we review the related literature. In Section 3.4,

we describe the proposed matheuristic. In Section 3.5, we report the computational

results. Finally, in Section 3.6, we apply the proposed matheuristic to the CCCP, and in

Section 3.7, we provide some conclusions and give an outlook on future research.

3.2 Capacitated p-median problem

In this section, we describe the CPMP in more detail (cf. Subsection 3.2.1) and provide

a small illustrative example (cf. Subsection 3.2.2).

3.2.1 Description of the problem

The CPMP can be stated as follows (cf., e.g., Lorena and Senne 2004). Given a set of

n objects, denoted as I = {1, . . . , n}, each object i ∈ I is associated with a given weight qi

and is described by d features. Based on these features, a distance dij (e.g., Euclidean

distance) can be computed for each pair of objects i, j ∈ I. The goal is to partition the

objects into a prescribed number of p clusters by selecting p objects as cluster centers

76



Paper III: A matheuristic for large-scale capacitated clustering

Table 3.1: Notation used for the binary linear program (M-CPMP)

Parameters and sets

n Number of objects
I Set of objects (I = {1, . . . , n})
p Number of clusters
dij Distance between objects i, j ∈ I
qi Weight of object i ∈ I
Q Capacity limit

Decision variables

∗ xij

{
= 1, if object i is assigned to median j
= 0, otherwise

(i, j ∈ I)

(medians) and by assigning the objects to these medians such that the total distance

between the medians and their assigned objects is minimized. In doing so, the total

weight in each cluster must not exceed a given capacity limit Q.

The CPMP can be formulated as a binary linear program (cf. Lorena and Senne 2004);

the notation used is summarized in Table 3.1. Note that an object j ∈ I is selected as a

median if it is assigned to itself, i.e., xjj = 1.

(M-CPMP)



Min.
∑
i∈I

∑
j∈I

dijxij

s.t.
∑
j∈I

xjj = p∑
j∈I

xij = 1 (i ∈ I)∑
i∈I

qixij ≤ Qxjj (j ∈ I)

xij ∈ {0, 1} (i, j ∈ I)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

The objective function given in (3.1) captures the total distance between the medians

and their assigned objects. Constraint (3.2) ensures that exactly p objects are selected

as medians. Constraints (3.3) assure that each object is assigned to exactly one selected

median. Constraints (3.4) impose the capacity limit for each object that is selected as a

median. Finally, the domains of the decision variables are defined in (3.5).

The CPMP has various real-world applications that have been discussed in the liter-

ature. Many of these real-world applications arise in facility location (cf., e.g., Medaglia

et al. 2009; Jánoš́ıková et al. 2017). Other exemplary applications are the consolidation of

77



Paper III: A matheuristic for large-scale capacitated clustering

customer orders into truckload shipments (cf. Koskosidis and Powell 1992) and the struc-

turing of multiprotocol-label switching networks (cf. El-Alfy 2007). For a broad overview

of real-world applications of the CPMP, we refer to Ahmadi and Osman (2005).

3.2.2 Illustrative example

We present a small example to illustrate the description of the CPMP provided above.

Furthermore, we use this example to illustrate the proposed matheuristic in Subsec-

tion 3.4.3.

We consider a coffeehouse chain that wants to group its stores into a given number of

clusters such that stores in the same cluster are close to each other. A manager is then

put in charge of each resulting cluster. The selected median of a cluster represents the

store at which the office of the assigned manager should be located. To ensure that the

stores within a given cluster can be managed adequately, capacity constraints are required

that limit the total number of employees within a cluster.

The coffeehouse chain has n = 15 stores that must be grouped into p = 4 clusters. The

coordinates (feature values) and the number of employees (weights) of the stores are given

in Table 3.2. The total number of employees within a cluster is limited to Q = 8. The

pairwise distances between the stores are calculated as Euclidean distances. In Figure 3.1,

an optimal solution for the illustrative example is depicted; the objective function value

(OFV) of the depicted solution is provided in the bottom-right corner. The size of a point

in the figure represents the number of employees of the corresponding store. Stores that

are selected as medians are indicated with a red circle, and the assignments of the stores

to the medians are indicated with green lines.

3.3 Literature review

In this section, we provide an overview of existing solution approaches for the CPMP. We

categorize and discuss the papers according to the types of proposed solution approaches.

In Subsections 3.3.1 to 3.3.4, we review exact approaches, classic heuristics, metaheuris-

tics, and matheuristics. Table 3.3 gives an overview of the discussed approaches and lists

the number of objects of the largest instance that was used to test the corresponding

approach.

78



Paper III: A matheuristic for large-scale capacitated clustering

Table 3.2: Coordinates and number of employees of stores in the illustrative example

Store (i) x-coordinate y-coordinate Number of employees (qi)

1 12 31 1
2 10 91 1
3 61 50 2
4 26 50 2
5 94 34 1
6 39 12 2
7 58 13 2
8 78 72 2
9 5 78 3

10 35 64 3
11 27 82 1
12 79 42 4
13 50 21 3
14 41 89 2
15 51 78 1

3.3.1 Exact approaches

Almost all papers listed in Table 3.3 provide a formulation of the CPMP as a binary linear

program. These formulations can be used to solve small-scale instances to optimality by

applying a mathematical programming solver such as Gurobi or CPLEX. In addition,

a few problem-specific exact approaches have been proposed. Pirkul (1987) proposed a

branch-and-bound algorithm for the capacitated concentrator location problem that can

be adapted to the CPMP. Baldacci et al. (2002) presented an exact approach based on

a set partitioning formulation of the CPMP, and Ceselli and Righini (2005) proposed

a branch-and-price algorithm with different branching strategies and pricing methods.

Finally, Boccia et al. (2008) developed a cutting plane algorithm based on Fenchel cuts.

These exact approaches have been used to devise provably optimal solutions for small-

scale instances with up to approximately 1,000 objects (cf. Table 3.3). For instances

that comprise many more than 1,000 objects, the required running time of these exact

approaches becomes prohibitively large since the number of distinct clusterings grows

drastically with the increasing number of objects.

3.3.2 Classic heuristics

The category of classic heuristics comprises problem-specific heuristics that are not based

on metaheuristic concepts. Mulvey and Beck (1984) proposed a classic heuristic based on

alternately applying an object-assignment step and a median-update step. The objects are

assigned in a greedy manner to their nearest median that has sufficient unused capacity.

79



Paper III: A matheuristic for large-scale capacitated clustering

Table 3.3: Solution approaches for the CPMP

Paper Exact
approach

Classic
heuristic

Meta-
heuristic

Math-
heuristic

Largest
instance (n)

Mulvey and Beck (1984) X 100

Pirkul (1987) X 100

Koskosidis and Powell (1992) X 100

Osman and Christofides (1994) X 100

Maniezzo et al. (1998) X 100

Baldacci et al. (2002) X 200

Lorena and Senne (2003) X 402

Ahmadi and Osman (2004) X 150

Ahmadi and Osman (2005) X 150

Ceselli and Righini (2005) X 900

Dı́az and Fernandez (2006) X 737

Scheuerer and Wendolsky (2006) X 402

Chaves et al. (2007) X 402

Osman and Ahmadi (2007) X 150

Boccia et al. (2008) X 402

Fleszar and Hindi (2008) X 402

Landa-Torres et al. (2012) X 500

Yaghini et al. (2013) X 200

Stefanello et al. (2015) X 4,461

Jánoš́ıková et al. (2017) X 3,038

Proposed approach X 498,378

80



Paper III: A matheuristic for large-scale capacitated clustering

Figure 3.1: Optimal solution of the illustrative example

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90
y
-c

o
or

d
in

at
e

1

2

34

5

6 7

8

9

10

11

12

13

14

15

OFV = 229.3668

Store i

Medians

Assignments

i

The order in which the objects are assigned is determined based on a regret value that is

computed for each object. The regret value is defined as the absolute value of the difference

in distance between an object’s first and its second nearest fixed median. Furthermore, an

improvement heuristic based on local switches of objects between clusters was proposed.

The approach of Mulvey and Beck (1984) was extended in Koskosidis and Powell (1992)

by new initialization methods for the initial set of fixed medians and a new definition

of the regret value. Lorena and Senne (2003) presented a local search heuristic based

on Lagrangian/surrogate relaxation techniques introduced by Senne and Lorena (2000)

for the uncapacitated p-median problem. The best upper bounds obtained by the local

search heuristic of Lorena and Senne (2003) were compared in Lorena and Senne (2004)

with lower bounds devised by a column generation approach based on a set partitioning

formulation of the CPMP.

These classic heuristics are based on the idea of performing many iterations, where

each iteration slightly improves the solution quality. For instances that comprise up to ap-

proximately 5,000 objects (cf. Table 3.3), good-quality solutions can be devised since each

iteration can be performed extremely fast. For instances that comprise much more than

5,000 objects, however, each iteration becomes expensive in terms of the required running

time. Moreover, for large-scale instances with tight capacities, the classic heuristics that

81



Paper III: A matheuristic for large-scale capacitated clustering

are based on a greedy assignment strategy often need many time-consuming attempts to

even generate a first feasible solution. Because of these limitations, individual objects

are often aggregated to reduce the problem size. Lorena and Senne (2003), for example,

reduced the problem size by aggregating houses (apartments) to blocks. This aggregation,

however, leads to a loss of information and aggregation errors in the solutions (cf., e.g.,

Erkut and Bozkaya 1999).

3.3.3 Metaheuristics

In addition to classic heuristics, many metaheuristics have been proposed, such as the

bionomic algorithm presented by Maniezzo et al. (1998), the problem-space search algo-

rithm developed by Ahmadi and Osman (2004), the scatter search heuristics proposed

by Scheuerer and Wendolsky (2006), the guided construction search heuristics introduced

by Osman and Ahmadi (2007), and the grouping evolutionary algorithms developed by

Landa-Torres et al. (2012). In addition, various approaches have been proposed that

combine multiple metaheuristic concepts. Osman and Christofides (1994) combined the

concepts simulated annealing and tabu search, Ahmadi and Osman (2005) merged a

greedy random adaptive search procedure and adaptive memory programming, Dı́az and

Fernandez (2006) proposed an approach that combines scatter search and path relinking,

and Chaves et al. (2007) linked the concepts clustering search and simulated annealing.

Like the classic heuristics, these metaheuristics also require many iterations to sub-

stantially improve the solution quality, which becomes costly in terms of the required

running time for large-scale instances. In addition, they either apply manual checks while

generating new solutions to guarantee that the capacity constraints are satisfied, or they

apply repair operators to fix newly generated infeasible solutions. Both tasks are time

consuming as well for large-scale instances.

3.3.4 Matheuristics

Recently, matheuristics have received increasing attention. Matheuristics, in general, are a

powerful tool because they combine heuristic approaches with the continuously improved

performance of mathematical programming solvers (cf., e.g., Carrizosa et al. 2018; Gnägi

and Strub 2020). Fleszar and Hindi (2008) presented a variable neighborhood search

matheuristic. Neighbors are found by randomly switching some selected medians of the

current best solution to objects that are currently not selected as medians. To quickly

assess the quality of the neighbors, approximation methods are used, such as assigning

the objects to their nearest selected median without considering the capacity constraints.

82



Paper III: A matheuristic for large-scale capacitated clustering

For the most promising neighbors, feasible solutions to the CPMP are devised by solving

a general assignment problem formulated as a binary linear program. Stefanello et al.

(2015) proposed their iterated reduction matheuristic algorithm (IRMA) that comprises

three phases. First, a simplified version of the greedy construction heuristic of Mulvey

and Beck (1984) is applied. In contrast to the approach of Mulvey and Beck (1984), the

order in which the objects are assigned to the fixed medians is drawn randomly and is not

determined based on a regret value. Second, a mathematical programming solver is used

to solve a binary linear programming formulation of the CPMP until an optimal solution

is found or a time limit is reached. Third, if the optimality has not been proven in the

second phase, a local search heuristic is applied that iteratively solves a binary linear

programming formulation of the CPMP for subsets of clusters only. In the second and

third phases, two heuristics (referred to as reduction heuristics) are applied to eliminate

variables that are unlikely to be nonzero in an optimal solution. Finally, Jánoš́ıková et al.

(2017) presented two combinations of a genetic algorithm with binary linear programming.

Binary linear programming is either used to generate elite individuals during the solution

process of the genetic algorithm or as a postprocessing technique to improve the best

solution returned by the genetic algorithm.

These matheuristics overcome some of the abovementioned limits of classic heuristics

and metaheuristics by applying binary linear programming to efficiently handle the ca-

pacity constraints. However, they are either combined with a greedy assignment heuristic

and/or need to compute and store large distance matrices at some point, which is chal-

lenging in terms of the required running time and prohibitive in terms of the required

storage space.

3.4 Proposed matheuristic

In this section, we present the global optimization phase (cf. Subsection 3.4.1) and the

local optimization phase (cf. Subsection 3.4.2) of our proposed matheuristic in detail.

Moreover, we illustrate the proposed matheuristic by means of the illustrative example

provided in Subsection 3.2.2. For the total running time of the proposed matheuristic, we

prescribe a maximum time limit denoted as τ total.

3.4.1 Global optimization phase

In the global optimization phase, we aim to devise a good-quality feasible solution by

performing only a few iterations of the procedure described below; this phase builds on

the approach of Baumann (2019) that was proposed for the CCCP. First, we identify and

83



Paper III: A matheuristic for large-scale capacitated clustering

fix a set of promising medians, denoted as Jf with |Jf | = p, by applying the k-means++

algorithm proposed by Arthur and Vassilvitskii (2007). Second, we assign the remaining

objects to the fixed medians by using the binary linear program (M-G) provided below.

By fixing the medians, we avoid computing all n(n−1)
2

pairwise distances such that only

np distances between objects and fixed medians must be computed. To further reduce

the number of required distance computations, we exploit the idea that objects are rarely

assigned to medians that are far away and thus only allow objects to be assigned to

their g-nearest medians. The g-nearest medians of each object and the corresponding

distances can be determined efficiently without computing all pairwise distances using

kd-trees when the number of features is much smaller than the number of objects (cf.

Bentley 1975). Consequently, only ng distances between objects and fixed medians must

be computed. We denote the set that comprises the g-nearest medians of object i ∈ I \Jf

as Jfi with Jfi ⊆ Jf . Accordingly, we denote the set consisting of all objects that are not

selected as fixed medians and that have the fixed median j ∈ Jf among their g-nearest

medians as Ij with Ij ⊆ I \ Jf . The binary linear program that we use to assign the

objects to the fixed medians, referred to as (M-G), reads as follows:

(M-G)



Min.
∑
i∈I\Jf

∑
j∈Jf

i

dijxij

s.t.
∑
j∈Jf

i

xij = 1 (i ∈ I \ Jf )

∑
i∈Ij

qixij ≤ Q− qj (j ∈ Jf )

xij ∈ {0, 1} (i ∈ I \ Jf ; j ∈ Jfi )

(3.6)

(3.7)

(3.8)

(3.9)

The objective function given in (3.6) captures the total distance between the fixed

medians and their assigned objects. Constraints (3.7) ensure that each object is assigned

to exactly one fixed median. Constraints (3.8) impose the capacity limit for each of

the fixed medians; the capacity limit for each fixed median j ∈ Jf is Q − qj because it

is assigned to itself a priori and thus must accommodate its own weight. Finally, the

domains of the decision variables are defined in (3.9). The binary linear program (M-G)

represents a special case of the generalized assignment problem in which the weight of

an object is independent of the cluster to which the object is assigned. We continue by

alternating between a median-update step and an object-assignment step with the goal

of improving the solution quality of the initial solution. In the object-assignment step,

84



Paper III: A matheuristic for large-scale capacitated clustering

we again use the binary linear program (M-G) as described above to assign the objects

to the currently fixed medians. In the median-update step, we update the currently fixed

medians based on the new assignments obtained in the previous object-assignment step.

We determine for each cluster the object that minimizes the total distance to all other

objects assigned to this cluster. These objects are then used as the new fixed medians in

the next object-assignment step. We perform these two steps iteratively until the current

solution can no longer be improved.

Algorithm 3.1 describes the global optimization phase in detail. We start by initializing

the parameter g, which defines the number of nearest medians to which an object can be

assigned. Moreover, we initialize the set of fixed medians Jf by applying the k-means++

algorithm. Then, to set up the binary linear program (M-G), we determine the sets Jfi for

the objects i ∈ I \Jf and Ij for the fixed medians j ∈ Jf based on the current value of g,

and we calculate the distances dij between the objects i ∈ I \Jf and the medians j ∈ Jfi .

Thereafter, we attempt to solve the binary linear program (M-G) using a mathematical

programming solver. We stop the solver as soon as the MIP gap reaches a value of 1%

or lower. This setup exploits our observation that optimal or near-optimal solutions are

often found quickly, while a rather long additional running time is spent on proving the

optimality of these solutions. If it is found that no feasible solution exists, we double the

value of g, set up the binary linear program (M-G) based on the increased value of g,

and try to solve the binary linear program (M-G) again. This process is repeated until

a feasible solution, denoted as S, has been found. Then, we update each median of the

solution S by determining the objects assigned to the median, calculating the pairwise

distances between these assigned objects, and determining the object that minimizes the

total distances to all other assigned objects. For instances with n
p
> 10,000, we propose

applying an approximate median-update step to further reduce the number of distance

computations. In this case, we update each median by selecting the object that is nearest

to the center of gravity of the assigned objects. After all medians have been updated, we

evaluate whether a new best solution, denoted as S∗, has been found. If this is the case,

we reset the value of g to ginitial, we update the set of fixed medians Jf to comprise the

updated medians in the new best solution S∗, and we start the next iteration if the time

limit τ total has not been reached. Otherwise, we stop the algorithm and return the best

solution found.

Note that we determine the initial medians using the k-means++ algorithm, which is

a randomized procedure. We generate multiple different solutions by running the global

optimization phase multiple times, each time with a different random seed. We then

return the best solution found over all runs. We denote the number of runs of the global

85



Paper III: A matheuristic for large-scale capacitated clustering

Algorithm 3.1 Global optimization phase

1: procedure GlobalOptimization(ginitial, τ total)
2: g ← ginitial;
3: Jf ← set of initial medians with |Jf | = p using k-means++;
4: while time limit τ total has not been reached do
5: Determine sets Jf

i for objects i ∈ I \ Jf and sets Ij for medians j ∈ Jf ;

6: Calculate distances dij between objects i ∈ I and medians j ∈ Jf
i ;

7: Solve (M-G) until MIP Gap ≤ 1%;
8: if no feasible solution exists then
9: g ← g × 2;

10: else
11: S ← new feasible solution found;
12: for medians j ∈ Jf do
13: Aj ← set of objects assigned to median j in solution S;
14: Calculate distances dii′ between objects i, i′ ∈ Aj ;
15: j′ ← new median j′ ∈ argmini′∈Aj

∑
i∈Aj

dii′ ;

16: Update median j to j′ in solution S;
17: end for
18: if solution S is new best solution then
19: g ← ginitial;
20: S∗ ← S;
21: Jf ← set of medians in solution S∗;
22: else
23: break;
24: end if
25: end if
26: end while
27: return best solution S∗;
28: end procedure

optimization phase as νstart.

3.4.2 Local optimization phase

In the local optimization phase, we iteratively apply the following procedure to further

improve the best solution obtained from the global optimization phase. First, we select

a subset of w clusters from the set of clusters in the current best solution. Second, we

identify the set of objects that belong to the selected clusters. We denote this set of

objects as Is with Is ⊆ I. Third, we solve the binary linear program (M-L) given below

for this subset of objects only. To speed up the solution process of the binary linear

program, we consider as potential new medians only the medians of the selected subset of

clusters and their l-nearest objects. This procedure is similar to the neighborhood median

size-reduction heuristic proposed by Stefanello et al. (2015). The l-nearest objects of each

median and the corresponding distances can again be determined efficiently using kd-

trees. We denote the set of potential new medians as Js with Js ⊆ Is. Starting with a

86



Paper III: A matheuristic for large-scale capacitated clustering

small subset of clusters, we enlarge the size of the subset after several iterations without

improvement. Furthermore, we introduce the set L that tracks the clusters (represented

by their medians) of the current best solution for which no further local improvement has

been found. The binary linear program that we use during the local optimization phase,

referred to as (M-L), reads as follows:

(M-L)



Min.
∑
i∈Is

∑
j∈Js

dijxij

s.t.
∑
j∈Js

xjj = w∑
j∈Js

xij = 1 (i ∈ Is)∑
i∈Is

qixij ≤ Qxjj (j ∈ Js)

xij ≤ xjj (i ∈ Is; j ∈ Js)

xij ∈ {0, 1} (i ∈ Is; j ∈ Js)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The objective function given in (3.10) captures the total distance between the medians

and their assigned objects in the selected subset of clusters. Constraint (3.11) ensures that

exactly w objects are selected as medians. Constraints (3.12) ensure that each object is

assigned to a median, and constraints (3.13) impose the capacity limits. Constraints (3.14)

are valid inequalities that substantially speed up the solution process since they tighten

the linear relaxation of the binary linear program (cf., e.g., Ceselli and Righini 2005;

Deng and Bard 2011; Kramer et al. 2019). Finally, the domains of the decision variables

are defined in (3.15).

Algorithm 3.2 describes the local optimization phase in detail. We start by initializ-

ing the best solution found so far, denoted as S∗, with the initial solution Sinitial, which

represents the best solution obtained at the end of the global optimization phase. We

additionally initialize the parameter w based on the input parameter ntarget, which rep-

resents a target number of objects in the initial subset of objects Is. A suitable value

for ntarget should be chosen such that a mathematical programming solver can solve the

resulting binary linear program (M-L) within a reasonable running time. Moreover, we

introduce the empty set L, which is used throughout the local optimization phase to track

the medians for which no further local improvement has been found. To set up the binary

linear program (M-L), we perform the following steps. First, we set up the set of potential

new medians Js by gradually including the median of the current best solution S∗ that

87



Paper III: A matheuristic for large-scale capacitated clustering

is nearest to the previously added median until |Js| = w. We start with the median j′

that has the largest amount of unused capacity in the current best solution S∗ and that

has not been marked as a median that has been optimized in previous iterations without

finding any local improvement. At this point, we copy set Js and denote the copy as Jw.

We then further enlarge set Js by including the l-nearest objects of each median j ∈ Jw.

Second, we set up the set Is by including all objects assigned to the medians j ∈ Jw in the

current best solution S∗. Third, we calculate the distances dij between the objects i ∈ Is

and the medians j ∈ Js. Thereafter, we try to improve the current best solution using

the binary linear program (M-L) and a mathematical programming solver. To avoid very

long running times for single iterations, we stop the solver after a time limit of τ local has

been reached, or as soon as the MIP gap reaches a value of 1% or lower. Furthermore,

we set up a warm start based on the current best solution S∗ to speed up the solution

process. If the current best solution improved, we update set L by excluding all medians

j ∈ Jw such that these medians can be selected again in subsequent iterations; otherwise,

we include all medians j ∈ Jw in set L. This process of setting up the binary linear

program (M-L), trying to solve the binary linear program (M-L), and updating set L is

performed iteratively until the time limit τ total is reached, or all medians selected in the

current best solution are also in set L. In the latter case, we double the value of w and

empty set L. As soon as the binary linear program (M-L) has been optimized with the

number of medians to be selected w being equal to the total number of clusters p, we stop

the algorithm and return the best solution found.

A key methodological novelty of the local improvement phase that distinguishes the

proposed approach from other local search matheuristics is the cluster selection procedure.

The procedure starts with an initial cluster and then iteratively adds the cluster that is

closest to the previously added cluster. This strategy ensures that the resulting group of

clusters forms a connected region in the feature space but does not impose any restriction

on the shape of that region. As shown in Figure 3.2, it is thus possible to have clusters that

are far away from each other (measured as the distance between the medians) in the same

subproblem, even though the subproblem is still of manageable size. To ensure that large

improvements are achieved early, the procedure selects the cluster that has the largest

amount of unused capacity as the initial cluster. Such subproblems are not generated,

for example, with the local search matheuristic of Stefanello et al. (2015), which does not

prioritize subproblems with great potential for improving the objective function value and

restricts the shape of the selected clusters to be ball-shaped.

88



Paper III: A matheuristic for large-scale capacitated clustering

Algorithm 3.2 Local optimization phase

1: procedure LocalOptimization(Sinitial, ntarget, l, τ local, τ total)
2: S∗ ← Sinitial;

3: w ← max{dn
target×p

n e, 2};
4: L← {};
5: while time limit τ total has not been reached do
6: J∗ ← set of medians in solution S∗;
7: j′ ← median j′ ∈ J∗ \ L with largest amount of unused capacity in solution S∗;
8: Js ← {j′};
9: while |Js| < w do

10: j
′′ ← j

′
;

11: j
′ ← nearest median j′ ∈ J∗ \ Js to median j′′;

12: Js ← Js ∪ {j′};
13: end while
14: Jw ← copy set Js;
15: for medians j ∈ Jw do
16: Js ← Js ∪ set of l-nearest objects i ∈ Is of median j;
17: end for
18: Is ← set of objects assigned to medians j ∈ Jw in solution S∗;
19: Calculate distances dij between objects i ∈ Is and medians j ∈ Js;
20: Solve (M-L) with warm start based on solution S∗ until MIP Gap ≤ 1% or time limit τ local is

reached;
21: S ← update solution S∗ according to the solution found to (M-L);
22: if w = p then
23: S∗ ← new solution S;
24: break;
25: end if
26: if solution S is new best solution then
27: S∗ ← new best solution S;
28: J∗ ← set of medians in solution S;
29: L← L \ Jw;
30: else
31: L← L ∪ Jw;
32: if J∗ = L then
33: w ← min{w × 2, p};
34: L← {};
35: end if
36: end if
37: end while
38: return best solution S∗;
39: end procedure

89



Paper III: A matheuristic for large-scale capacitated clustering

Figure 3.2: Illustration of the cluster selection procedure

Feature 1

F
ea

tu
re

2
Objects

Medians

Assignments

3.4.3 Illustrative example

Figure 3.3 illustrates the solution process of the proposed matheuristic for the illustrative

example from Subsection 3.2.2. Stores that are selected as medians are indicated with a

red circle, and the assignments of the stores to the medians are indicated with green lines.

The first column of Figure 3.3 depicts the solution process of the global optimiza-

tion phase. The objective function value (OFV) after each iteration is provided in the

bottom-right corner of the corresponding subfigures. Starting with an initial set of me-

dians determined by the k-means++ algorithm, three iterations (denoted as G1 to G3)

are performed. In the first iteration, a first feasible solution is found. In the second it-

eration, the current solution is improved. A third iteration is performed, which does not

improve the current solution and therefore is not depicted in Figure 3.3. Thus, the global

optimization phase terminates with the solution depicted in the subfigure at the bottom

of the first column of Figure 3.3.

The second column of Figure 3.3 depicts the solution process of the local optimization

phase. We provide the objective function value (OFV) after each iteration in the bottom-

right corner of the corresponding subfigures. Starting with the solution returned at the

end of the global optimization phase, four iterations (denoted as L1 to L4) are performed.

90



Paper III: A matheuristic for large-scale capacitated clustering

We start with a subset consisting of w = 2 clusters, which includes the cluster with the

largest amount of unused capacity. In the first iteration, a new best feasible solution

is found by solving the binary linear program (M-L) for the two selected clusters only.

In the second and third iterations, two subsets of clusters are considered for which no

improvement is found. At this point, we double the number of clusters to be selected to

w = 4 because all clusters in the current best solution have been examined once without

achieving any improvements. Hence, in the fourth iteration, all p = 4 clusters are selected,

and thus, all stores are considered. At the end of the fourth iteration, after finding again

a new best feasible solution, we terminate the local optimization phase since all stores

have been considered. Note that the best solution found at the end of the fourth iteration

corresponds to an optimal solution. However, there is no guarantee of finding an optimal

solution as long as the parameter value l is chosen such that l < n.

3.5 Computational experiment

In this section, we present the test set (cf. Subsection 3.5.1), the experimental design

(cf. Subsection 3.5.2), and the main results of our computational experiment (cf. Subsec-

tion 3.5.3).

3.5.1 Test set

The complete test set comprises the 31 instances described in Table 3.4. The first 16 in-

stances are well-known test instances from the literature. These include the six instances

from the group SJC that were introduced by Lorena and Senne (2003) and the ten in-

stances from the groups p3038 and fnl4461 that were generated by Lorena and Senne

(2004) and Stefanello et al. (2015), respectively. The instances from the group SJC com-

prise real-world data of the central area of the Brazilian city São José dos Campos. The

objects of these instances correspond to blocks, and the weights represent the number of

houses belonging to each block. The authors did not provide any additional information

regarding the interpretation of the clusters or the capacity limit. The ten instances from

groups p3038 and fnl4461 are generic instances that are based on two TSP instances from

the TSPLIB (cf. Reinelt 1991) with 3038 and 4461 nodes, respectively. To the best of our

knowledge, the instances of group fnl4461 are the largest publicly available test instances

that have been tested in the literature so far. Since large-scale instances for the uncapac-

itated p-median problem comprise up to 100,000 objects (cf., e.g., Hansen et al. 2009),

these largest existing instances for the CPMP are considered small-scale. Therefore, we

generated a set of medium- and large-scale instances based on four TSP instances from the

91



Paper III: A matheuristic for large-scale capacitated clustering

Figure 3.3: Solution process of the proposed matheuristic for the illustrative example

Global optimization phase

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

Iteration G1 (object-assignment step)

Stores

Medians

Assignments

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 274.7279

Iteration G1 (median-update step)

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

Iteration G2 (object-assignment step)

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 266.3283

Iteration G2 (median-update step)

Local optimization phase

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 240.7310

Iteration L1

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 240.7310

Iteration L2

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 240.7310

Iteration L3

10 20 30 40 50 60 70 80 90
x-coordinate

10

20

30

40

50

60

70

80

90

y
-c

o
or

d
in

at
e

OFV = 229.3668

Iteration L4

92



Paper III: A matheuristic for large-scale capacitated clustering

VLSI collection (cf. Rohe 2013) ranging from approximately 10,000 up to approximately

500,000 nodes. Following the procedure proposed by Stefanello et al. (2015), we took the

coordinates of the nodes of the TSP instances as features for the objects of our CPMP

instances. Furthermore, for each object i ∈ I, we determined a weight qi by drawing a

random integer from the set {1, 2, . . . , 100}. Finally, for each of the four TSP instances,

we generated a group of three CPMP instances that differ with respect to the number

of clusters to be found. Based on the number of clusters to be found, we determined

the capacity Q by using Equation (3.16), where r was randomly drawn from the range

[0.8, 0.9].

Q =

⌈∑
i∈I

qi
p× r

⌉
(3.16)

Note that instances seven to 28 are not based on real-world data. These generic

instances were generated with the aim of testing the performance of different solution

approaches when the number of objects to be clustered increases.

Additionally, we generated three high-dimensional instances with up to approximately

800 features. Since the clustering of images is an important task in data mining (cf., e.g.,

Ushakov and Vasilyev 2019), the objects of the first two instances represent images, and we

took the grayscale level of the pixels as features for the objects. The instance cancer5000 -

10 784 is based on the images from the collection of textures in colorectal cancer histology

(cf. Kather et al. 2016). The instance digits60000 100 784 is based on the images from the

MNIST database of handwritten digits (cf. LeCun et al. 1998). The number of features

for both instances corresponds to the resolution (28x28 pixels) of the images. The third

instance KDD145751 100 74 is based on the KDD protein homology dataset (cf. KDD

2004), which is a popular dataset for testing clustering methods (cf., e.g., Bachem et al.

2016). The objects of this instance correspond to protein sequences that are described

by 74 different features. For each of these high-dimensional instances, we determined

weights and capacities following the procedure described above. The number of clusters

to be found was selected arbitrarily to be p = 10 for the small-scale instance cancer5000 -

10 784 and p = 100 for the medium- and large-scale instances digits60000 100 784 and

KDD145751 100 74. We generated these instances with the aim of assessing whether the

proposed matheuristic can also deal with instances that comprise more than two features.

Note that the instances from the literature and the instances generated here comprise

a given capacity that is the same for all objects. However, Mulvey and Beck (1984), for

example, considered the more general case in which each object has an individual capacity,

i.e., Qi 6= Qi′ with i, i′ ∈ I. The proposed matheuristic is implemented such that it can

93



Paper III: A matheuristic for large-scale capacitated clustering

Table 3.4: Overview of instances

ID Name n p d Source

S
m

al
l-

sc
a
le

1 SJC1 100 10 2 Lorena and Senne (2003)
2 SJC2 200 15 2 Lorena and Senne (2003)
3 SJC3a 300 25 2 Lorena and Senne (2003)
4 SJC3b 300 30 2 Lorena and Senne (2003)
5 SJC4a 402 30 2 Lorena and Senne (2003)
6 SJC4b 402 40 2 Lorena and Senne (2003)
7 p3038 600 3,038 600 2 Lorena and Senne (2004)
8 p3038 700 3,038 700 2 Lorena and Senne (2004)
9 p3038 800 3,038 800 2 Lorena and Senne (2004)

10 p3038 900 3,038 900 2 Lorena and Senne (2004)
11 p3038 1000 3,038 1,000 2 Lorena and Senne (2004)
12 fnl4461 0020 4,461 20 2 Stefanello et al. (2015)
13 fnl4461 0100 4,461 100 2 Stefanello et al. (2015)
14 fnl4461 0250 4,461 250 2 Stefanello et al. (2015)
15 fnl4461 0500 4,461 500 2 Stefanello et al. (2015)
16 fnl4461 1000 4,461 1,000 2 Stefanello et al. (2015)

M
ed

iu
m

-s
ca

le 17 XMC10150 100 10,150 100 2 This paper
18 XMC10150 500 10,150 500 2 This paper
19 XMC10150 1000 10,150 1,000 2 This paper
20 FNA52057 100 52,057 100 2 This paper
21 FNA52057 500 52,057 500 2 This paper
22 FNA52057 1000 52,057 1,000 2 This paper

L
ar

g
e-

sc
al

e

23 SRA104814 100 104,814 100 2 This paper
24 SRA104814 500 104,814 500 2 This paper
25 SRA104814 1000 104,814 1,000 2 This paper
26 LRA498378 100 498,378 100 2 This paper
27 LRA498378 500 498,378 500 2 This paper
28 LRA498378 1000 498,378 1,000 2 This paper

H
ig

h
-

d
im

en
-

si
on

al 29 cancer5000 10 784 5,000 10 784 This paper
30 digits60000 100 784 60,000 100 784 This paper
31 KDD145751 100 74 145,751 100 74 This paper

also deal with this more general case.

The generated medium- and large-scale instances, as well as the generated high-

dimensional instances, can be downloaded from https://github.com/mgnaegi/cpmp_

instances.

3.5.2 Experimental design

We compare the performance of the proposed matheuristic with the performance of the

state-of-the-art approach for the CPMP presented by Stefanello et al. (2015). Since the

implementation of this approach is not publicly available, we reimplemented it according

94

https://github.com/mgnaegi/cpmp_instances
https://github.com/mgnaegi/cpmp_instances
https://github.com/mgnaegi/cpmp_instances
https://github.com/mgnaegi/cpmp_instances


Paper III: A matheuristic for large-scale capacitated clustering

Table 3.5: Parameter values used for the proposed matheuristic

Parameter Phase Description Value

νstart Global Number of runs of global optimization phase 3
ginitial Global Initial number of nearest medians to which an 10

object can be assigned

τ local Local Time limit for solving formulation (M-L) 300
ntarget Local Target number of objects in initial subset 200
l Local Number of nearest objects of each median to be 50 (n < 5,000)

considered as potential new medians 10 (n ≥ 5,000)

τ total Both Time limit on total running time [in seconds] 3,600

to the description given in the paper. We also report results for an exact approach based

on the binary linear program formulation presented by Lorena and Senne (2004) and a

mathematical programming solver. We implemented all three approaches in Python 3.7,

and we used the Gurobi Optimizer 8.1 as a mathematical programming solver with the

default settings if not stated otherwise. Our computations were performed on an HP

workstation with an Intel(R) Xeon(R) Silver 4114 CPU (2.20 GHz) with ten cores and

128 GB of RAM. For the proposed matheuristic, we used the parameter values that are

listed in Table 3.5. For the matheuristic of Stefanello et al. (2015), we used the default

parameter values proposed in their paper. For each tested instance, we imposed a running

time limit of 3,600 seconds. Note that our results differ slightly from the results reported

by Stefanello et al. (2015) for their approach since we performed our computations on

different hardware and used a different mathematical programming solver. Furthermore,

in contrast to Stefanello et al. (2015), we ran each approach for each tested instance only

once to limit the required computation time for the entire experiment.

3.5.3 Numerical results

First, we compared the three approaches in terms of solution quality and their suitability

for different problem sizes. These results are summarized in Table 3.6 for the small-scale

instances and in Table 3.7 for the medium-scale, the large-scale, and the high-dimensional

instances. We refer to the proposed matheuristic as GB20MH, to the matheuristic proposed

by Stefanello et al. (2015) as SAM15MHand to the exact approach based on the binary

linear program formulation presented by Lorena and Senne (2004) as LS04BLP. Bold

values indicate the best results among all tested approaches. In the first five columns, we

list the characteristics of the instances. In the sixth column (OFVBEST), we report the

objective function value of the best feasible solution found among all tested approaches

95



Paper III: A matheuristic for large-scale capacitated clustering

within the prescribed time limit. In the next column (OFVLB), we report the best lower

bound on the objective function value obtained with the exact approach based on the

binary linear program formulation. Finally, in the last six columns, we report for each

tested approach the relative gap between the objective function value of the best feasible

solution found and the reported value for OFVBEST, as well as the total required running

time.

In contrast to the two tested approaches from the literature, the proposed matheuristic

found feasible solutions for all instances within the prescribed time limit. For the small-

scale instances, the new matheuristic matched the performance of the other approaches,

and for the medium- and large-scale instances, the new matheuristic consistently delivered

the best feasible solutions. Additionally, for the high-dimensional instances, the proposed

matheuristic performed best among all tested approaches.

96



P
ap

er
III:

A
m

ath
eu

ristic
for

large-scale
cap

acitated
clu

sterin
g

Table 3.6: Best feasible solutions for CPMP instances from the literature

LS04BLP SAM15MH GB20MH

ID Name n p d OFVBEST OFVLB Gap[%] CPU[s] Gap[%] CPU[s] Gap[%] CPU[s]

S
m

a
ll

-s
ca

le

1 SJC1 100 10 2 17,288.99 17,288.99 0.00 22.85 0.15 6.80 0.00 4.29
2 SJC2 200 15 2 33,270.94 33,269.51 0.00 74.26 0.44 9.62 0.00 5.81
3 SJC3a 300 25 2 45,335.16 45,335.16 0.00 174.18 0.55 17.43 0.04 45.48
4 SJC3b 300 30 2 40,635.90 40,635.90 0.00 46.34 0.00 13.45 0.46 29.19
5 SJC4a 402 30 2 61,925.51 61,925.51 0.00 482.06 1.07 31.27 0.41 88.31
6 SJC4b 402 40 2 52,458.02 52,458.02 0.00 154.00 0.12 21.14 0.64 80.57
7 p3038 600 3,038 600 2 122,748.81 121,596.38 0.70 limit 0.00 limit 0.13 limit
8 p3038 700 3,038 700 2 109,706.83 108,679.98 0.90 limit 0.00 limit 0.15 limit
9 p3038 800 3,038 800 2 100,094.76 99,089.87 1.64 limit 0.00 limit 0.37 limit
10 p3038 900 3,038 900 2 92,346.43 91,258.33 0.22 limit 0.00 limit 0.20 limit
11 p3038 1000 3,038 1,000 2 85,895.48 85,102.19 0.10 limit 0.00 1,016.34 0.09 limit
12 fnl4461 0020 4,461 20 2 1,288,143.94 220,323.41 44.93 limit 0.08 1,191.68 0.00 limit
13 fnl4461 0100 4,461 100 2 553,818.42 212,458.56 46.13 limit 1.42 2,693.60 0.00 limit
14 fnl4461 0250 4,461 250 2 340,734.40 197,570.01 52.59 limit 0.00 limit 0.14 limit
15 fnl4461 0500 4,461 500 2 225,285.82 172,895.18 53.15 limit 0.00 limit 0.73 limit
16 fnl4461 1000 4,461 1,000 2 145,898.85 138,569.83 38.47 limit 0.00 limit 0.45 limit

Average 14.93 0.24 0.24

(limit) Time limit of 3,600 seconds reached

97



P
ap

er
III:

A
m

ath
eu

ristic
for

large-scale
cap

acitated
clu

sterin
g

Table 3.7: Best feasible solutions for CPMP instances introduced in this paper

LS04BLP SAM15MH GB20MH

ID Name n p d OFVBEST OFVLB Gap[%] CPU[s] Gap[%] CPU[s] Gap[%] CPU[s]

M
ed

iu
m

-s
ca

le 17 XMC10150 100 10,150 100 2 181,803.84 – – limit 4.71 limit 0.00 limit
18 XMC10150 500 10,150 500 2 72,206.88 – – limit 13.10 limit 0.00 limit
19 XMC10150 1000 10,150 1,000 2 46,805.19 – – limit 13.02 limit 0.00 limit
20 FNA52057 100 52,057 100 2 2,106,162.53 – – limit 2.05 limit 0.00 limit
21 FNA52057 500 52,057 500 2 925,436.91 – – limit 3.88 limit 0.00 limit
22 FNA52057 1000 52,057 1,000 2 632,238.94 – – limit 7.71 limit 0.00 limit

L
a
rg

e-
sc

a
le

23 SRA104814 100 104,814 100 2 4,791,303.49 – – limit 5.18 limit 0.00 limit
24 SRA104814 500 104,814 500 2 2,123,756.22 – – limit 8.70 limit 0.00 limit
25 SRA104814 1000 104,814 1,000 2 1,491,563.04 – – limit 6.67 limit 0.00 limit
26 LRA498378 100 498,378 100 2 104,208,012.52 – – limit – limit 0.00 limit
27 LRA498378 500 498,378 500 2 44,384,702.04 – – limit – limit 0.00 limit
28 LRA498378 1000 498,378 1,000 2 30,836,227.02 – – limit – limit 0.00 limit

H
ig

h
-

d
im

en
-

si
o
n

a
l 29 cancer5000 10 784 5,000 10 784 4,915,501.60 4,745,521.58 5.88 limit 0.60 limit 0.00 1,117.09

30 digits60000 100 784 60,000 100 784 94,867,884.32 – – limit 2.46 limit 0.00 limit
31 KDD145751 100 74 145,751 100 74 149,729,640.61 – – limit 13.72 limit 0.00 limit

Average 5.88 6.82 0.00

(–) No feasible solution/lower bound found within 3,600 seconds; (limit) Time limit of 3,600 seconds reached

98



Paper III: A matheuristic for large-scale capacitated clustering

Next, we compared the two heuristic approaches GB20MH and SAM15MH with respect

to the ability to find good first feasible solutions quickly. These results are summarized in

Table 3.8 for the small-scale instances and in Table 3.9 for the medium-scale, the large-

scale, and the high-dimensional instances. The first five columns provide information

analogously to Tables 3.6 and 3.7. In the sixth column (OFVBEST), we again report the

objective function value of the best feasible solution found among all tested approaches

within the prescribed time limit. In the following four columns, we report the relative gap

between the objective function value of the first feasible solution found and the reported

value for OFVBEST, as well as the required running time to find the first feasible solution.

In the last column, we report the speed-up factor between the proposed matheuristic and

the benchmark approach regarding the required running time to find the first feasible

solution.

With only one exception, the proposed matheuristic devised first feasible solutions with

lower objective function values than the benchmark approach. Furthermore, the proposed

matheuristic required substantially less running time to devise the first feasible solution

for most of the tested instances. For some instances, the proposed matheuristic found the

first feasible solution approximately 31 times faster than the benchmark approach. The

ability of the proposed matheuristic to provide good first feasible solutions quickly might

be valuable, for example, for clustering problems where p is not known in advance. If this

is the case, the proposed matheuristic can be run multiple times, each time with another

value of p, since each run can be performed quickly.

99



P
ap

er
III:

A
m

ath
eu

ristic
for

large-scale
cap

acitated
clu

sterin
g

Table 3.8: First feasible solutions for CPMP instances from the literature

SAM15MH GB20MH

ID Name n p d OFVBEST Gap[%] CPU[s] Gap[%] CPU[s] Speed-up

S
m

a
ll

-s
ca

le

1 SJC1 100 10 2 17,288.99 137.63 0.92 12.55 0.19 4.89
2 SJC2 200 15 2 33,270.94 62.44 0.91 16.84 0.16 5.72
3 SJC3a 300 25 2 45,335.16 43.30 0.80 16.05 0.19 4.22
4 SJC3b 300 30 2 40,635.90 46.76 0.85 15.67 0.19 4.55
5 SJC4a 402 30 2 61,925.51 52.18 0.89 25.53 0.22 4.04
6 SJC4b 402 40 2 52,458.02 35.06 0.83 16.35 0.19 4.32
7 p3038 600 3,038 600 2 122,748.81 74.37 1.09 16.66 4.26 0.26
8 p3038 700 3,038 700 2 109,706.83 78.90 1.09 19.08 6.89 0.16
9 p3038 800 3,038 800 2 100,094.76 84.89 1.19 24.88 37.46 0.03
10 p3038 900 3,038 900 2 92,346.43 85.35 1.20 29.81 26.77 0.04
11 p3038 1000 3,038 1,000 2 85,895.48 89.33 1.10 32.08 10.44 0.11
12 fnl4461 0020 4,461 20 2 1,288,143.94 61.88 1.35 13.12 1.07 1.26
13 fnl4461 0100 4,461 100 2 553,818.42 58.38 1.35 12.09 1.30 1.04
14 fnl4461 0250 4,461 250 2 340,734.40 65.10 1.34 10.10 2.55 0.53
15 fnl4461 0500 4,461 500 2 225,285.82 71.97 1.35 13.83 2.39 0.57
16 fnl4461 1000 4,461 1,000 2 145,898.85 80.22 1.41 16.68 7.91 0.18

Average 70.48 1.10 18.21 6.39

100



P
ap

er
III:

A
m

ath
eu

ristic
for

large-scale
cap

acitated
clu

sterin
g

Table 3.9: First feasible solutions for CPMP instances introduced in this paper

SAM15MH GB20MH

ID Name n p d OFVBEST Gap[%] CPU[s] Gap[%] CPU[s] Speed-up

M
ed

iu
m

-s
ca

le 17 XMC10150 100 10,150 100 2 181,803.84 112.36 3.22 8.78 3.18 1.01
18 XMC10150 500 10,150 500 2 72,206.88 97.55 3.36 16.35 29.38 0.11
19 XMC10150 1000 10,150 1,000 2 46,805.19 95.55 3.54 17.24 23.61 0.15
20 FNA52057 100 52,057 100 2 2,106,162.53 99.62 77.55 10.27 15.26 5.08
21 FNA52057 500 52,057 500 2 925,436.91 79.12 78.17 8.51 28.35 2.76
22 FNA52057 1000 52,057 1,000 2 632,238.94 89.76 80.00 8.91 45.28 1.77

L
a
rg

e-
sc

a
le

23 SRA104814 100 104,814 100 2 4,791,303.49 74.60 337.16 10.43 31.90 10.57
24 SRA104814 500 104,814 500 2 2,123,756.22 85.49 338.87 8.65 59.84 5.66
25 SRA104814 1000 104,814 1,000 2 1,491,563.04 83.52 342.37 8.25 92.97 3.68
26 LRA498378 100 498,378 100 2 104,208,012.52 – – 26.89 237.19 –
27 LRA498378 500 498,378 500 2 44,384,702.04 – – 32.49 388.04 –
28 LRA498378 1000 498,378 1,000 2 30,836,227.02 – – 47.79 876.64 –

H
ig

h
-

d
im

en
-

si
o
n

a
l 29 cancer5000 10 784 5,000 10 784 4,915,501.60 34.94 17.78 19.90 4.08 4.35

30 digits60000 100 784 60,000 100 784 94,867,884.32 17.54 2,182.93 3.94 69.92 31.22
31 KDD145751 100 74 145,751 100 74 149,729,640.61 40.08 1,678.86 65.30 798.92 2.10

Average 75.84 428.65 19.58 180.30

(–) No feasible solution found within 3,600 seconds

101



Paper III: A matheuristic for large-scale capacitated clustering

Finally, we highlight the importance of the two phases of the proposed matheuristic.

Figure 3.4 depicts the improvement of the best feasible solutions in terms of the objective

function value over time. Each subfigure reports the results for one of the following

three exemplary instances: fnl4461 1000 (small-scale), FNA52057 1000 (medium-scale)

and LRA498378 1000 (large-scale). For small-scale instances, the majority of the running

time was spent in the local optimization phase, during which substantial improvements to

the solution quality can be achieved. For medium-scale instances, both phases consume

an equal amount of running time. While the best feasible solution can be improved

quickly at the beginning, no further improvements can be attained after spending some

time in the global optimization phase. At this point, the local optimization phase starts,

during which substantial improvements can be achieved by locally reoptimizing the best

feasible solution obtained at the end of the global optimization phase. For large-scale

instances, the entire running time is spent in the global optimization phase. The first

feasible solution is devised fairly quickly, particularly when considering the large number

of objects to be clustered. Then, the best feasible solution is consecutively improved until

the prescribed maximum running time has elapsed.

3.6 Capacitated centered clustering problem

In this section, we show that the proposed matheuristic can also be applied to other

variants of capacitated clustering problems, such as the capacitated centered clustering

problem (CCCP).

The CCCP differs from the CPMP as follows (cf. Negreiros and Palhano 2006). The

cluster centers must correspond to the geometric center of the objects assigned to the

clusters and are not selected among the objects themselves. Like the CPMP, the CCCP

is NP-hard as well (cf., e.g., Chaves et al. 2018). Compared to the extensive literature

dealing with the CPMP, only a few papers have considered the CCCP. The problem was

first discussed by Negreiros and Palhano (2006), who proposed an approach comprising

two phases that are based on a construction heuristic and variable neighborhood search

heuristic. Most recently, Chaves et al. (2018) proposed an adaptive biased random-key

genetic algorithm with a clustering search, and Baumann (2019) presented a matheuristic

based on the well-known k-means algorithm. These two approaches devised numerous

new best-known solutions for standard test instances from the literature.

The matheuristic proposed in this paper can be applied to the CCCP since a given

feasible solution to an instance of the CPMP can be converted into a feasible solution to

an instance of the CCCP that comprises the same objects and that prescribes the same

102



Paper III: A matheuristic for large-scale capacitated clustering

Figure 3.4: Improvement of the best feasible solution over time

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Elapsed time [in seconds]

150k

155k

160k

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

fnl4461 1000

Global optimization phase

Local optimization phase

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Elapsed time [in seconds]

640k

650k

660k

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

FNA52057 1000

Global optimization phase

Local optimization phase

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Elapsed time [in seconds]

32000k

34000k

36000k

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

LRA498378 1000

Global optimization phase

103



Paper III: A matheuristic for large-scale capacitated clustering

Table 3.10: Best feasible solutions for CCCP instances

GB20MH

ID Name n p OFVBKS OFV Gap[%] CPU[s]

1 SJC1 100 10 17,359.75 17,363.47 0.02 4.29
2 SJC2 200 15 33,181.65 33,425.61 0.74 5.81
3 SJC3a 300 25 45,354.29 45,446.88 0.20 45.48
4 SJC3b 300 30 40,660.55 40,907.16 0.61 29.19
5 SJC4a 402 30 61,931.60 62,030.00 0.16 88.31
6 SJC4b 402 40 52,202.48 52,877.27 1.29 80.57
7 p3038 600 3,038 600 126,172.76 123,692.06 −1.97 limit
8 p3038 700 3,038 700 113,462.26 111,253.80 −1.95 limit
9 p3038 800 3,038 800 105,352.33 102,256.93 −2.94 limit

10 p3038 900 3,038 900 97,319.54 94,342.45 −3.06 limit
11 p3038 1000 3,038 1,000 89,896.55 87,407.06 −2.77 limit
12 fnl4461 0020 4,461 20 1,282,694.80 1,287,391.44 0.37 limit
13 fnl4461 0100 4,461 100 560,148.77 553,236.84 −1.23 limit
14 fnl4461 0250 4,461 250 348,101.42 340,864.91 −2.08 limit
15 fnl4461 0500 4,461 500 237,491.70 227,094.35 −4.38 limit
16 fnl4461 1000 4,461 1,000 159,672.99 149,062.05 −6.65 limit

Average −1.48

(limit) Time limit of 3,600 seconds reached

capacity limit for all clusters. For each cluster of the feasible solution to be converted,

the selected medians must be replaced by the geometric centers of the assigned objects.

The objective function value is then calculated as the total distance between the newly

computed cluster centers and their assigned objects.

The first 16 instances used in our computational experiment for the CPMP are also

often analyzed in literature dealing with the CCCP. For these instances, we converted the

best feasible solutions obtained by using the proposed matheuristic into feasible solutions

of the CCCP by applying the procedure described above. In Table 3.10, in the first four

columns, we list the characteristics of these instances. In the next column (OFVBKS),

we list the objective function values of the best-known solutions reported by Chaves

et al. (2018) and Baumann (2019). Finally, in the last three columns, we report the

objective function value of the best feasible solution found for the CCCP by the proposed

matheuristic (OFV), the relative gap between the reported value for OFV and the reported

value for OFVBKS, as well as the total required running time. For the six smaller instances,

the proposed matheuristic provides solutions with small gaps to the best-known solutions

reported in the literature. For nine of the ten larger instances, we were able to find new

best-known solutions even though the proposed matheuristic was not specifically designed

for the CCCP.

104



Paper III: A matheuristic for large-scale capacitated clustering

3.7 Conclusions

In this paper, we considered the capacitated p-median problem (CPMP). For this problem,

we proposed a matheuristic that is specifically designed for instances with a large number

of objects. In a computational experiment, the proposed matheuristic consistently outper-

formed the state-of-the-art approach for the CPMP on medium- and large-scale instances

while matching the performance for small-scale instances. Furthermore, we showed that

the proposed matheuristic can also be applied to related capacitated clustering problems

such as the capacitated centered clustering problem (CCCP). For the largest problem

instances of the CCCP tested in this paper, the proposed matheuristic was able to find

new best-known solutions.

We suggest the following directions for future research. The proposed matheuristic

can be adapted to problems with additional side constraints, such as a lower bound on

the capacities of the clusters. Since the proposed approach is based on binary linear

programming, such additional side constraints can easily be incorporated. Moreover,

the proposed problem decomposition strategies can be applied to related problems such

as the capacitated p-center problem (CPCP), which differs from the CPMP only with

respect to the objective function (cf., Kramer et al. 2019). Instead of minimizing the

total distance between the objects and their assigned medians, the maximum distance

over all assignments of objects to medians is minimized.

105



Bibliography

Ahmadi, S., Osman, I.H., 2004. Density based problem space search for the capacitated

clustering p-median problem. Annals of Operations Research 131, 21–43.

Ahmadi, S., Osman, I.H., 2005. Greedy random adaptive memory programming search

for the capacitated clustering problem. European Journal of Operational Research 162,

30–44.

Arthur, D., Vassilvitskii, S., 2007. k-means++: The advantages of careful seeding, in:

Gabow, H. (Ed.), Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, Philadelphia, Pennsylvania USA. pp. 1027–1035.

Avella, P., Boccia, M., Salerno, S., Vasilyev, I., 2012. An aggregation heuristic for large

scale p-median problem. Computers & Operations Research 39, 1625–1632.

Bachem, O., Lucic, M., Hassani, S.H., Krause, A., 2016. Approximate k-means++ in

sublinear time, in: Schuurmans, D., Wellman, M. (Eds.), Proceedings of the thirtieth

AAAI Conference on Artificial Intelligence, Phoenix, Arizona USA. pp. 1459–1467.

Baldacci, R., Hadjiconstantinou, E., Maniezzo, V., Mingozzi, A., 2002. A new method for

solving capacitated location problems based on a set partitioning approach. Computers

& Operations Research 29, 365–386.

Baumann, P., 2019. A binary linear programming-based K-means approach for the ca-

pacitated centered clustering problem, in: Wang, M., Li, J., Tsung, F., Yeung, A.

(Eds.), 2019 IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM), Macau. pp. 382–365.

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.

Communications of the ACM 18, 509–517.

Boccia, M., Sforza, A., Sterle, C., Vasilyev, I., 2008. A cut and branch approach for the ca-

pacitated p-median problem based on Fenchel cutting planes. Journal of Mathematical

Modelling and Algorithms 7, 43–58.

106



Paper III: A matheuristic for large-scale capacitated clustering

Carrizosa, E., Guerrero, V., Morales, D.R., 2018. On mathematical optimization for the

visualization of frequencies and adjacencies as rectangular maps. European Journal of

Operational Research 265, 290–302.

Ceselli, A., Righini, G., 2005. A branch-and-price algorithm for the capacitated p-median

problem. Networks: An International Journal 45, 125–142.

Chaves, A.A., de Assis Correa, F., Lorena, L.A.N., 2007. Clustering search heuristic

for the capacitated p-median problem, in: Corchado, E., Corchado, J., Abraham, A.

(Eds.), Innovations in Hybrid Intelligent Systems. Springer, pp. 136–143.

Chaves, A.A., Gonçalves, J.F., Lorena, L.A.N., 2018. Adaptive biased random-key genetic

algorithm with local search for the capacitated centered clustering problem. Computers

& Industrial Engineering 124, 331–346.

Deng, Y., Bard, J.F., 2011. A reactive GRASP with path relinking for capacitated

clustering. Journal of Heuristics 17, 119–152.

Dı́az, J.A., Fernandez, E., 2006. Hybrid scatter search and path relinking for the capaci-

tated p-median problem. European Journal of Operational Research 169, 570–585.

El-Alfy, E.S.M., 2007. Applications of genetic algorithms to optimal multilevel design of

MPLS-based networks. Computer Communications 30, 2010–2020.

Erkut, E., Bozkaya, B., 1999. Analysis of aggregation errors for the p-median problem.

Computers & Operations Research 26, 1075–1096.

Fleszar, K., Hindi, K.S., 2008. An effective VNS for the capacitated p-median problem.

European Journal of Operational Research 191, 612–622.

Gnägi, M., Strub, O., 2020. Tracking and outperforming large stock-market indices.

Omega 90, 101999.

Hansen, P., Brimberg, J., Urošević, D., Mladenović, N., 2009. Solving large p-median

clustering problems by primal–dual variable neighborhood search. Data Mining and

Knowledge Discovery 19, 351–375.

Jánoš́ıková, L., Herda, M., Haviar, M., 2017. Hybrid genetic algorithms with selective

crossover for the capacitated p-median problem. Central European Journal of Opera-

tions Research 25, 651–664.

107



Paper III: A matheuristic for large-scale capacitated clustering

Kather, J.N., Weis, C.A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A.,

Zöllner, F.G., 2016. Multi-class texture analysis in colorectal cancer histology. Scientific

Reports 6, 27988.

KDD, 2004. KDD cup 2004, protein homology dataset. Website. https://www.kdd.org/

kdd-cup/view/kdd-cup-2004/Data. Accessed: 2020-02-27.

Koskosidis, Y.A., Powell, W.B., 1992. Clustering algorithms for consolidation of customer

orders into vehicle shipments. Transportation Research Part B: Methodological 26, 365–

379.

Kramer, R., Iori, M., Vidal, T., 2019. Mathematical models and search algorithms for

the capacitated p-center problem. INFORMS Journal on Computing. To appear.

Landa-Torres, I., Del Ser, J., Salcedo-Sanz, S., Gil-Lopez, S., Portilla-Figueras, J.A.,

Alonso-Garrido, O., 2012. A comparative study of two hybrid grouping evolutionary

techniques for the capacitated p-median problem. Computers & Operations Research

39, 2214–2222.

LeCun, Y., Cortes, C., Burges, C.J.C., 1998. The MNIST database of handwritten digits.

Website. http://yann.lecun.com/exdb/mnist/index.html. Accessed: 2019-12-20.

Lorena, L.A., Senne, E.L., 2004. A column generation approach to capacitated p-median

problems. Computers & Operations Research 31, 863–876.

Lorena, L.A.N., Senne, E.L.F., 2003. Local search heuristics for capacitated p-median

problems. Networks and Spatial Economics 3, 407–419.

Maniezzo, V., Mingozzi, A., Baldacci, R., 1998. A bionomic approach to the capacitated

p-median problem. Journal of Heuristics 4, 263–280.

Medaglia, A.L., Villegas, J.G., Rodŕıguez-Coca, D.M., 2009. Hybrid biobjective evolu-

tionary algorithms for the design of a hospital waste management network. Journal of

Heuristics 15, 153.

Mulvey, J.M., Beck, M.P., 1984. Solving capacitated clustering problems. European

Journal of Operational Research 18, 339–348.

Negreiros, M., Palhano, A., 2006. The capacitated centred clustering problem. Computers

& Operations Research 33, 1639–1663.

108

https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
http://yann.lecun.com/exdb/mnist/index.html


Paper III: A matheuristic for large-scale capacitated clustering

Osman, I.H., Ahmadi, S., 2007. Guided construction search metaheuristics for the ca-

pacitated p-median problem with single source constraint. Journal of the Operational

Research Society 58, 100–114.

Osman, I.H., Christofides, N., 1994. Capacitated clustering problems by hybrid simulated

annealing and tabu search. International Transactions in Operational Research 1, 317–

336.

Pirkul, H., 1987. Efficient algorithms for the capacitated concentrator location problem.

Computers & Operations Research 14, 197–208.

Reinelt, G., 1991. TSPLIB. Website. http://comopt.ifi.uni-heidelberg.de/

software/TSPLIB95/index.html. Accessed: 2019-12-20.

Rohe, A., 2013. VLSI collection. Website. http://www.math.uwaterloo.ca/tsp/vlsi/

index.html. Accessed: 2019-12-20.

Scheuerer, S., Wendolsky, R., 2006. A scatter search heuristic for the capacitated cluster-

ing problem. European Journal of Operational Research 169, 533–547.

Senne, E.L., Lorena, L.A., 2000. Lagrangean/surrogate heuristics for p-median problems,

in: Laguna, M., Gonzalez-Velarde, J. (Eds.), Computing tools for modeling, optimiza-

tion and simulation. Springer, pp. 115–130.

Stefanello, F., de Araújo, O.C., Müller, F.M., 2015. Matheuristics for the capacitated

p-median problem. International Transactions in Operational Research 22, 149–167.

Ushakov, A.V., Vasilyev, I., 2019. A computational comparison of parallel and distributed

k-median clustering algorithms on large-scale image data, in: Bykadorov, I., Strusevich,

V., Tchemisova, T. (Eds.), International Conference on Mathematical Optimization

Theory and Operations Research, Ekaterinburg, Russia. pp. 119–130.

Yaghini, M., Karimi, M., Rahbar, M., 2013. A hybrid metaheuristic approach for the

capacitated p-median problem. Applied Soft Computing 13, 3922–3930.

109

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
http://www.math.uwaterloo.ca/tsp/vlsi/index.html
http://www.math.uwaterloo.ca/tsp/vlsi/index.html

	Bibliography
	
	Introduction
	Related literature
	Mixed-integer linear and quadratic programming formulations
	Objective functions and the constraint on the expected excess return
	TEV: a comparison with dissimilarity functions
	Real-life constraints
	Removing redundant variables and constraints from the mixed-integer programming formulations

	Heuristic solution approaches
	Construction heuristic
	Local branching heuristic
	Iterated greedy heuristic

	Computational results
	Experimental design
	Novel problem instances
	Portfolios without rebalancing: in-sample and out-of-sample performance analysis
	MIP gaps: M-Q in comparison with M-L
	In-sample performance analysis: LBH and IGH in comparison with M-Q
	Out-of-sample performance analysis
	Portfolio compositional characteristics: LBH and IGH in comparison with M-L

	Bibliography

	
	Introduction
	Planning problem
	Multi-mode resource-constrained project scheduling problem
	Illustration of the planning problem

	MILP models from the literature
	Novel MILP models for the MRCPSP
	Continuous-time assignment-based model without auxiliary variables
	Model with auxiliary resource-overlap variables
	Model supplements

	Computational results
	Test design
	Numerical results

	Bibliography

	
	Introduction
	Capacitated p-median problem
	Description of the problem
	Illustrative example

	Literature review
	Exact approaches
	Classic heuristics
	Metaheuristics
	Matheuristics

	Proposed matheuristic
	Global optimization phase
	Local optimization phase
	Illustrative example

	Computational experiment
	Test set
	Experimental design
	Numerical results

	Capacitated centered clustering problem
	Bibliography


