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ABSTRACT

Over the last hundred years, not much has changed how organic chemistry is conducted. In
most laboratories, the current state is still trial-and-error experiments guided by human expertise
acquired over decades. What if, given all the knowledge published, we could develop an artifi-
cial intelligence-based assistant to accelerate the discovery of novel molecules? Although many
approaches were recently developed to generate novel molecules in silico, only a few studies com-
plete the full design-make-test cycle, including the synthesis and the experimental assessment. One
reason is that the synthesis part can be tedious, time-consuming, and requires years of experience
to perform successfully. Hence, the synthesis is one of the critical limiting factors in molecular
discovery.

In this thesis, I take advantage of similarities between human language and organic chemistry
to apply linguistic methods to chemical reactions, and develop artificial intelligence-based tools
for accelerating chemical synthesis. First, I investigate reaction prediction models focusing on
small data sets of challenging stereo- and regioselective carbohydrate reactions. Second, I develop
a multi-step synthesis planning tool predicting reactants and suitable reagents (e.g. catalysts and
solvents). Both forward prediction and retrosynthesis approaches use black-box models. Hence,
I then study methods to provide more information about the models’ predictions. I develop a
reaction classification model that labels chemical reaction and facilitates the communication of
reaction concepts. As a side product of the classification models, I obtain reaction fingerprints
that enable efficient similarity searches in chemical reaction space. Moreover, I study approaches
for predicting reaction yields. Lastly, after I approached all chemical reaction tasks with atom-
mapping independent models, I demonstrate the generation of accurate atom-mapping from the
patterns my models have learned while being trained self-supervised on chemical reactions.

My PhD thesis’s leitmotif is the use of the attention-based Transformer architecture to molecules
and reactions represented with a text notation. It s like atoms are my letters, molecules my words,
and reactions my sentences. With this analogy, I teach my neural network models the language
of chemical reactions - atom by atom. While exploring the link between organic chemistry and
language, I make an essential step towards the automation of chemical synthesis, which could sig-
nificantly reduce the costs and time required to discover and create new molecules and materials.
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INTRODUCTION

1.1 AIMS AND OBJECTIVES

Molecules and materials are all around us, and discovering new ones is one of the main drivers
of technological progress. Although for discovery, computational studies can simulate molecular
properties in silico, actual experiments have to be performed to synthesise and test the molecules.
Those design-make-test cycles are long and costly. Chemical synthesis is currently a key limiting
factor in the discovery process [1]. This thesis aims to improve artificial intelligence (AI)-assisted
synthesis planning systems and accelerate chemical discovery by investigating the link between hu-
man language and organic chemistry, and modelling chemical reactivity using linguistics-inspired
approaches.

Motivated by recent breakthroughs in natural language processing (NLP) [2, 3], I develop trans-
former-based methods for reaction prediction, multi-step synthesis planning and other related
chemical reaction tasks. Like humans, my models learn by repeatedly seeing examples of successful
reactions and extracting the underlying patterns. One crucial difference is that the models can
learn from large collections of millions of reactions in a few days, while it would take more than
a lifetime to do the same for a human. Given the extracted knowledge, my models can then assist
chemists in deciding what reactions to perform, how to design their synthesis routes, or select
experiments by predicting reaction yields. The objectives of this thesis are the following:

* Develop atom-mapping independent chemical reaction models.

* Collaborate with synthetic chemists and get their feedback on the models.

* Analyse transformer-based reaction prediction models for low-data regime reaction classes.

* Examine transformer-based reaction prediction models for regio- and stereoselective reac-
tions.

¢ Construct a multi-step synthesis planning tool.

* Formulate evaluation metrics for single-step retrosynthesis models that are better suited
than top-N accuracy.

* Develop transformer-based chemical reaction classification models to make the predictions
of other models more explainable.

* Design chemical reaction fingerprints without requiring a reactant-reagent separation and
reaction centre information.

* Investigate physics-agnostic chemical reaction yield prediction models.

* Understand why transformer-based models, like transformers, work well on chemical reac-
tions.

* Develop areaction atom-mapping tool, which is not based on heuristics or trained on atom-
map data generated using heuristics, but guided by a signal learned from unmapped chem-
ical reactions.
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* Keep the models in a reasonable size range so that the results can be reproduced in a few

days on affordable hardware.

1.2 THESIS OUTLINE

The thesis is outlined as follows:

¢ Chapter 2 introduces computer-assisted synthesis planning and discusses the essential ele-
ments to develop data-driven chemical reaction models. First, machine-readable molecular
and reaction representations and their formats are presented. Second, the chemical reac-
tion data sets, particularly the ones available in open-source, are described. Then, the basics
of deep-learning models, including modern language models like Transformers [2, 3], are
introduced and chemical reaction tasks are outlined. Lastly, the analogy between human
language and organic chemistry is illustrated.

* Chapter 3 focuses on chemical reaction prediction for challenging reaction classes. How
small specific and large generic data sets can be leveraged to increase the prediction accu-
racy of reaction prediction models like Molecular Transformers [4] is studied using transfer
learning. The two investigated transfer learning strategies are applied to carbohydrate reac-
tions. Stereochemistry, one of the weaknesses of previous reaction prediction approaches
[4,5, 6], s critical for carbohydrate reactions and governs the reactivity. It is a direct collabo-
ration with synthetic chemists. One of the three test sets, on which the models are evaluated
is a 14-step synthesis of a lipid-linked oligosaccharide performed by Giorgio Pesciullesi.

* Chapter 4 describes the methods behind the IBM RXN for Chemistry multi-step synthesis
planning tool, where two Molecular Transformer [4] models are coupled. One suggests
precursor molecules sets given a product molecule and the other scores chemical reactions
given precursors-product combinations. A hyper-graph beam search is used to find the
most promising routes. The developed retrosynthesis models not only predict reactants
but simultaneously also suitable reagents for the reactions without distinguishing between
them. This reaction representation allows the approach to be atom-mapping independent.
Moreover, metrics to evaluate single-step retrosynthesis models more appropriately than
top-N accuracy are presented. Those metrics also better capture human expert evaluations.

* Chapter S introduces the application of encoder transformer models to chemical reactions.
The models are trained on chemical reaction classifications tasks, where, given the chemical
reaction simplified molecular-input line-entry system (SMILES) as input, the aim is to pre-
dict the corresponding reaction class. Synthetic chemists commonly use reaction classes or
name reactions to communicate complex reactivity concepts in simple terms. Being able to
assign classes to reactions, directly provides additional information for chemists. For exam-
ple, the reactions predicted by the models in chapter 4 can be classified and therefore, better
be understood by chemists. Moreover, chapter 5 describes the usage of the outputs of the
reaction encoder as reaction fingerprint. The reaction fingerprints can be used to perform
efficient similarity searches and create chemical reaction maps. Those fingerprints provide
a link from predicted reactions to similar reactions in reaction data sets. For example in
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training sets of reaction prediction models, the retrieved reactions can then be analysed to
understand why the models made their predictions and increase model explainability.

* Chapter 6 uses the work reaction encoder transformer models presented in chapter 5 and
describes how they can be fine-tuned on chemical reaction yield prediction, a regression
task. First, the predictions on two small high-throughput experiment data sets contain-
ing Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions are analysed. Then,
the extracted yield information from the open-source United States Patent and Trademark
Office (USPTO) data set is studied. As expected, the models work better on the high-
throughput experiment data than on the noisy patent data stemming from multiple sources.

* Chapter 7 extends chapter 6 and explores data augmentation strategies for chemical reac-
tion yield prediction. Molecule order permutations, SMILES randomisations, and a mix-
ture of both are investigated on the Buchwald-Hartwig high-throughput experiment data
set. The data-augmented reaction transformers perform better than previous approaches,
including physics-based descriptors plus random forest models, even in the low data regime
with less than 100 training points. Morevover, an approach for epistemic uncertainty es-
timation using test-time augmentation is introduced. The uncertainty estimates correlate
with the error of the predictions including the out-of-distribution test sets.

¢ Chapter 8 introduces an unsupervised attention-guided approach to compute atom-map-
ping in chemical reactions. By opening the black-box transformer models presented in
chapter S and visualising their inner workings, attention heads were found that consistently
produce an atom-mapping signal in the attention weights. In those heads, product atoms
attend the corresponding reactant atom and vice versa. This observation means that the
models were able to capture the grammar of chemical reactions without explicitly being
taught. Using the atom-mapping signal, an atom-mapping tool is developed that outper-
forms existing tools.

* Chapter 9 concludes the thesis, summarises the main contributions and provides an out-
look on future challenges and opportunities.

1.3 PUBLICATIONS

The thesis consists of first author and equal contribution publications presented as separate chap-
ters (equal contribution is indicated by °):

¢ Chapter 2: P Schwaller, T Laino. Data-Driven Learning Systems for Chemical Reaction
Prediction: An Analysis of Recent Approaches. in Machine Learning in Chemistry: Data-
Driven Algorithms, Learning Systems, and Predictions. ACS Symp. Ser., 2019, 61-79.

* Chapter 3: G Pesciullesi®, P Schwallere, T Laino, JL Reymond. Transfer learning enables
the molecular transformer to predict regio- and stereoselective reactions on carbohydrates.
Nat. Commun., 2020, 11, 4874.
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Chapter 4: P Schwaller, R Petraglia, V Zullo, V H Nair, R A Haeuselmann, R Pisoni, C
Bekas, A Iuliano, T Laino. Predicting retrosynthetic pathways using a combined linguistic
model and hyper-graph exploration strategy. Chem. Sci., 2020,11, 3316-3325.

Chapter 5: P Schwaller, D Probst, AC Vaucher, VH Nair, D Kreutter, T Laino, JL Rey-
mond. Mapping the Space of Chemical Reactions using Attention-Based Neural Net-
works. Nat. Mach. Intell., 2021, 3, 144-152.

Chapter 6: P Schwaller, AC Vaucher, T Laino, JL Reymond. Prediction of Chemical Re-
action Yields using Deep Learning. Mach. Learn.: Sci. Technol., in press, 2021.

Chapter 7: P Schwaller, AC Vaucher, T Laino, JL Reymond. Data augmentation strate-
gies to improve reaction yield predictions and estimate uncertainty. NexrIPS Workshop on
Machine Learning for Molecules. 2020. DOI:10.26434/chemrxiv.13286741

Chapter 8: P Schwaller, B Hoover, JL Reymond, H Strobelt, T Laino. Extraction of or-
ganic chemistry grammar from unsupervised learning of chemical reactions. Sci. Adv. in
press, 2021.

The following is a list of publications and preprints that were co-authored during but not in-
corporated into the thesis:

AC Vaucher, F Zipoli, ] Geluykens, VH Nair, P Schwaller, T Laino. Automated extraction
of chemical synthesis actions from experimental procedures. Nat. Commun., 2020, 11 (1),
2041-1723

H Oztiirk, A Ozgiir, P Schwaller, T Laino, E Ozkirimli. Exploring chemical space us-
ing natural language processing methodologies for drug discovery. Drug Discovery Today,
2020, 25 (4), 689-705

VH Nair, P Schwaller, T Laino. Data-driven Chemical Reaction Prediction and Retrosyn-
thesis. Chimia, 2020, 73 (12), 997-1000

A Toniato, P Schwaller, A Cardinale, ] Geluykens, T Laino. Unassisted Noise-Reduction
of Chemical Reactions Data Sets. Nat. Mach. Intell., in press, 2021.
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2 RECENT DATA-DRIVEN LEARNING
SYSTEMS FOR CHEMICAL REACTIONS

One of the critical challenges in efficient synthesis route design is the accurate prediction of
chemical reactivity. Unlocking it, could significantly facilitate chemical synthesis and hence, ac-
celerate the discovery of novel molecules and materials. With the current rise of Al algorithms,
access to cheap computing power and the wide availability of chemical data, it became possible
to develop entirely data-driven mathematical models able to predict chemical reactivity. Simi-
lar to how a human chemist would learn chemical reactions, those models learn the underlying
patterns in the data by repeatedly looking at examples. In this chapter, I introduce the state-of-
the-art data-driven learning systems for forward chemical reaction prediction and retrosynthesis,
analyse different reaction representations, the available data sets and the model architectures. I
discuss the advantages and limitations of the different AI models’ strategies. The intention is to
provide a critical assessment of the different data-driven approaches developed in the last years
not only for the cheminformatics community but also for the AI models end-users, the organic

chemists, for early adoption of such technologies.

Parts of this chapter have been published as a book chapter in ACS Symposium Series:

Reprinted with permission from P Schwaller, T Laino. Data-Driven Learning Systems for Chem-
ical Reaction Prediction: An Analysis of Recent Approaches. in Machine Learning in Chem-
istry: Data-Driven Algorithms, Learning Systems, and Predictions. ACS Symp. Ser., 2019. 61-79.
Copyright 2019 American Chemical Society.

2.1 DREAM OF COMPUTER ASSISTED SYNTHESIS PLANNING

Approaching the universe of organic chemistry can be an ordeal for beginner students, who typ-
ically experience difficulty in predicting the products of chemical reactions. It takes a certain
amount of practice and knowledge to make the process more successful and efhicient. Problems
that may appear great challenges for an undergraduate student may be embarrassingly simple for
a synthetic organic chemist with more than 30 years of experience. However, the complexity of
the molecular space is such that the prediction of chemical reaction may become a difficult task
even for expert synthetic organic chemists. Just like humans created computer programs to con-
front expert player at Chess [7], Jeopardy [8] and Go [9, 10] it happened that chemists encoded the
vast collection of instructions for making molecules, available in the rich chemistry literature, into
computer software with the purpose of creating an expert system to assist chemists in designing
efficient routes to target molecules for organic synthesis. At the origin of this revolution was the
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pioneering work of Corey [11,12]. Around 1967 three groups started to address this problem con-
structing computer programs — LHASA by Corey et al. [13], SECS by Wipke and Dyortt [14], and
SYNCHEM by Gelernter et al. [15, 16] — that were searching synthetic strategies in synthesising
known and unknown compounds, using a chemical knowledge base, rather than performing a
reaction retrieval from a database of literature examples.

The idea at the base of the reaction prediction or synthesis planning was that by analysing an
input molecule with a catalogue of retro-reactions (or transforms) encoded in memory, one could
retrieve the descriptions of all the possible changes which will occur in the course of a particular
reaction. It is inherent in such an approach that the planned syntheses will be based only on a
combination of encoded transforms. EROS [17, 18] was the first attempt to use a large chemical
data set to cast the problem of reaction prediction into a mathematical framework. Molecules and
reactions were represented by specific matrices (bond-electron matrix and reaction matrix, respec-
tively [19]) and the synthesis planning was cast as a pure matrix-matrix multiplication problem.
This mathematical model was used as a basis for a variety of deductive computer programs for the
solution of chemical problems, and EROS [17, 18] can be considered the first attempt to use Al
for the reaction prediction problem. Since the mid-nineties, we witnessed an increased interest
in the development of different approaches based on data with CAMEO [20], WODCA [18] and
SOPHIA [21], being the pioneering technologies in this field exploiting advanced mathematical
frameworks. Similar to LHASA [13] and SYNCHEM [15] but with a bigger commitment of re-
sources, Chematica [22] few years later, used human experts to extract chemical reactions from
the literature and to encode them with rules. The project [22] started at the beginning of the year
2000 and went on for more than a decade before it was publicly announced. Albeit the decision to
encode the broad knowledge of organic chemistry with rules was not new [17, 20], Chematica [22,
23] was the first to achieve a high level of accuracy in forward and retrosynthetic reaction predic-
tion. This competitive advantage was explainable with the multi-year efforts to codify the most
extensive set of rules ever, including reaction core, reactivity conflicts, substituents and groups
requiring protection during multi-step synthesis. Despite the recent scientific and business suc-
cesses [22, 24], the approach is not sustainable in the long-term: manually extracting rules from
literature is a tedious work and prone to human error. Rules tend to be very brittle, as for ev-
ery new reaction outside the scope of the current rules a new rule, which does not contradict the
existing 100k thousand rules has to be added. Finally, the involvement of humans in the entire
curation process makes the maintenance and development of the software unscalable due to the
ever-growing amount of data produced and published. For a more extensive review of the history
of computer-assisted synthesis programs I refer the reader to [25, 26, 27, 28].

Starting from 2010 on, thanks to advances in machine learning algorithms, more powerful
computational resources and to the availability of a vast amount of open-source chemical data, we
witnessed the development of a multitude of different types of mathematical models that tried to
offer a valid alternative to the rule-based approaches. The advantage of these mathematical models
is that once trained on a data set, they can infer the patterns hidden in the data in a few hundreds
of milliseconds. Similar to what a human chemist would do, data-driven models learn from exam-
ples, ideally without having humans encoding domain specific knowledge, such as reaction rules
in organic synthetic chemistry. The main difference is that a mathematical model can analyse and
incorporate the whole literature, millions of distinct chemical reactions, in a matter of days, which
would take more than a lifetime for a human.
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Organic chemistry syntheses are still mainly designed by human experts, who relying on their
personal experience, intuition and years of training try to come up with reasonable steps. Along
the way, the route is improved, typically, by trial-and-error. If one step fails, and no alternative
route is found to circumvent the failing step, the whole route is rethought with different initial
steps. The later the failing step, the higher the costs. Data-driven chemical reaction models could
be used to validate individual steps in a multi-step synthesis. One goal is to estimate the risk of a
specific reaction and place the reactions that are more likely to fail at the beginning of the synthe-
sis route. Data-driven chemical models could also be used to predict side products and impurities
and as inexpensive cross-validation of outcomes generated by time-consuming and computation-
intensive simulations. Therefore, it is no surprise that such models are believed to profoundly
change the way chemists will design synthesis in the near future. Similar to what happened after
Deep Blue beat Gary Kasparov with computers assisting human players in chess matches (centaur
chess), we envisage scientific assistants, supporting human chemists by giving them access to the
knowledge hidden in a much wider variety of chemical reactions. While the recent mathematical
approaches [4, 5, 6, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] are based on data, their architecture can be
very different with unique responses to specific data sets. For non-experts, it can be a real hurdle
to rationalise the subtleties of the different implementations and critically assess which models
are more business-ready to use in daily life applications than others. For the rest of this chapter, I
focus on data-driven approaches for the problem of forward reaction prediction and retrosynthe-
sis, describing artificial neural network-based models that myself and others developed in the last
years and that can be trained on previously published experimental data. I also discuss the train-
ing data. While recently large reaction corpora (including Reaxys [39] and SciFinder [40] became
wider available in the last 15 years, their usage in model training is still hindered by their limited
access for data analysis and model training purposes. Innovation in designing new data-driven
models requires unconditional data availability: for organic chemistry reaction prediction, the
experienced acceleration was strongly correlated to the possibility of accessing a large set of chem-
ical reactions consisting of millions of tabulated examples, extracted from the USPTO patents
[41, 42]. Therefore, my discussion about machine learning models will focus more in details on all
those approaches that trained and tested on the USPTO data set, comparing the performance and
analyse the details of the respective implementation. The discussion includes the models, behind
the platform known as IBM RXN for Chemistry, made freely available in 2018 [4, 43, 44], using
an NLP approach for reaction prediction in organic chemistry.

2.2 CHEMICAL REPRESENTATION AND FORMATS

An essential aspect of data-driven models is the representation of the data used during the train-
ing process. To uncover and better understand the highly non-linear patterns in organic chem-
istry and reaction prediction using machine learning, data should be made available in a machine-
readable format and as accurate and clean as possible. Still today, those highly complex chemical
reactions are simplified to quite abstract reaction diagrams, challenging to interpret with the use
of a computer program. Reaction diagrams consist mainly of four main parts: in the centre is the
arrow, which points in the direction the reaction proceeds; to the left are the starting materials;
above and below the arrow the additional reagents, agents and spectator molecules (e.g. catalysts
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and solvents) and finally, the products on the right. As simple as this basic scheme seems, there
are several non-obvious challenges. Firstly, the distinction between what is a starting material and
what an agent is vague. What one chemist would call a reactant, would be a reagent for another,
and the placement in one of the two categories would give more indication on what the chemist,
who draw the diagram in the first instance, focused on his attention, instead of the actual role of
the compound. Hence, having a molecule above or below the arrow does not necessarily mean
that it does not transfer part of its atoms to the final product. Secondly, usually, only the major
target is reported and not the whole product distribution. Trivial products like water or alcohol
are often left out to simplify the diagram representation, which can become even more cryptic
in case there is the need to report enantiomers and racemic mixtures. Lastly, depending on the
reaction conditions, the outcome of a reaction can be different. Ideally, a chemical representation
would contain information on the reaction conditions (e.g. temperature, time, pH), the reaction
yield and the enantiomeric excess. As they are not always added to reaction diagrams, the corre-
sponding text has to be consulted to get a full picture. While a human expert can easily make the
connections between the diagram and additional information found in the supporting text, no
reliable methods exist to date to extract all the information from reaction diagram and combine it
with the textual information to generate a machine-readable representation. Even then, ithappens
that some of the crucial details are not disclosed. An effort was made in the last decades to cre-
ate different standards to codify reaction information into machine-readable format to efhiciently
store, compare and analyse chemical reactions. RXNifiles [45] and RDFiles [45] are quite similar,
with RXNfiles containing the molecular information of a single reaction and RDfiles containing
multiple reactions with additional information on the reaction conditions, atom-mapping and
reaction centre. Reaction SMILES or SMIRKS [46, 47] contain reactants, agents and products,
the last being separated by a ‘>’ symbol. Although the format supports atom-mapping, there are
no extra fields for reaction conditions and reaction centre information. SMILES arbitrary target
specification (SMARTS), describing the molecular pattern, are extended with the >’ symbol to
encode reaction rules, also called reaction templates. Chemical Markup Language (CML) [48,
49] is the equivalent to Extensible Markup Language (XML) for chemical information. As this
format is very flexible, it allows for the most complete description of chemical reactions. How-
ever, no clear standards exist, which makes the data exchange and comparison between research
groups difficult. RInChlI [50, 51], based on the IUPAC International Chemical Identifier [52],
is a line notation describing groups of reactants, agents and products. As the aim of RInChI is
to generate a unique and unambiguous reaction descriptor to link and find chemical reactions,
atom-mapping is not supported [51]. While the RInChI only contains standardised structural
information, R AuxInfo stores the conformation and orientation of the compounds used to gen-
erate the RInChl. Moreover, hashing algorithms allow to generate shorter keys for the reactions,
which facilitate the search of reactions. To store reaction conditions, stoichiometry of reactants
and agents, as well as yields and conversion ratios a RInChI extension called ProcAuxInfo has
been proposed [53]. The information on the individual molecules involved in a chemical reaction
is represented either as fingerprints (e.g. ECFP [54]), line notations (e.g. SMILES and InChl) or
graphs. In contrast to the latter two, fingerprinting methods are non-invertible hashes. In molec-
ular graphs, the nodes usually correspond to the atoms and the edges of the graph to the bonds.
Molecular graphs are often hydrogen depleted. Line notations are text-based representations of
molecular graphs. Recently, two novel line notations have emerged: DeepSMILES [55], an adapta-
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tion of SMILES, and SELF-referencing Embedded Strings (SELFIES) [56]. Both aim to facilitate
the construction of syntactically valid molecular graphs which could improve the performance of
data-driven models. For a more extensive review of molecular descriptors, I point the reader to
the work of Sanchez-Lengeling and Aspuru-Guzik [57] and of David et al. [58].

2.3 CHEMICAL REACTION DATA

The path chemical reaction information has to flow from the laboratory, where the reaction was
conducted, through an article or patent publication and finally, extracted by whatever means to be
stored in a database is extremely lossy and error prone. As suggested before [25, 53], there should
be a standard on how to report chemical data, such that every data point supporting a publica-
tion is submitted in a machine-readable format together with the manuscript. Such a shortcut,
where the reaction information would go from the author, through the use of standardised elec-
tronic lab notebooks (ELN), directly through an open database, would be ideal and allow the
field to advance rapidly. To date, there are few options of reaction data sets collection, but most
of them are commercial, close-access and come with terms and conditions that do not allow train-
ing of open-access Al models. Lowe [41, 42] generated the largest open-access reaction data set.
Originally, the text-mining tool was developed at the University of Cambridge [41], it was later
improved by NextMove Software [59] and takes advantage of the latest improvements and tech-
nologies in Natural Language Understanding and text-mining in the field of chemistry. The data
set is available in two formats: SMILES and CML. The reaction SMILES (‘.rsmi’) file contain not
only the reaction SMILES, but also the patent number, paragraph, year, text-mined and calcu-
lated yield. The CML files are more complete, containing the paragraph, from which the reaction
was extracted, the names of the compounds, which were converted to SMILES and action lists,
describing the steps taken during the procedure (heating, cooling, stirring, ...). Most of the data-
driven models took into account the information in the easily readable “.rsmi’ file. The reactions
in the USPTO data set are atom-mapped using Epam’s Indigo toolkit [60]. However, those atom-
maps are wrong in many cases [42]. Although the most recent atom-mapping approach is based
on heuristics [61], it is simple to draw reactions, where the atom-mapping is ambiguous, as seen
in Figure 2.1. The work of Schneider et al. [62] has shown that between Indigo Toolkit [60] and
NameRXN [63], two tools able to generate atom-mapping, only in 22% of the reactions on 50k
random reactions from the USPTO data set the set of reactants matched. Therefore, because
of the inherent difficulty in determining the precise mapping, all methods, which are based on
atom-mapping, are fundamentally limited by the underlying software, which generates the atom-
mapping. This observation motivated us to develop atom-mapping independent approaches, as
described in chapters 3-7. In chapter 8, I will then introduce an atom-mapping tool that was build
by analysing the inner workings of a neural network trained self-supervised on the USPTO data
set [42].

While it is impressive how much information, could be extracted from the US patents, the
USPTO data set is far from being perfect. It is not free from systematic extraction errors, con-
tains partly incomplete reactions with a preponderant tendency to misinterpret organometallic
compounds. In particular, the incomplete reactions are a severe problem for data-driven reac-
tion prediction methods. Despite the usage of the atom-mapping to check whether all atoms
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Figure 2.1: Example chemical reaction. A Bromo Grignard reaction with non-trivial atom-mapping,
as any phenyl group in the product could correspond to any phenyl in the reactants.
There is more than one correct atom-mapping. The reaction SMILES for this reaction is:
“O=C(cleccecl )elecceel.Br[Mg]cleceeel >>0OC(cleceeel )(cleceecel )eleceeel”.

on the product side were also present on the reactant side, there is no possibility to check if all
the necessary solvents and catalysts were correctly extracted. One reason for these errors is the
incorrect spellings of IUPAC names in patents. As a consequence, models are trained on simi-
lar reactions not always explicitly containing the catalysts and hence, infer that the catalyst is not
important for the reaction to take place. For example, the models trained with such data per-
fectly predict a coupling reaction without seeing the metal catalyst. There is another problem
with organometallic compounds when using SMILES. In fact, SMILES were designed to repre-
sent organic compounds only and there is no obvious way to treat bonds within organometallic
systems in SMILES. Moreover, for data-driven reaction prediction models, it is not clear if the cor-
rect bond representation is crucial in attaining a higher prediction accuracy. Acting as catalysts
their presence or absence is often more important, then the exact bonding description within the
organometallic centre.

Lowe, USPTO dataset, v1
(1976-2013) Schneider 2015,
USPTO_50x1k ;
50 reaction classes Schneider 2016,
USPTO_15K Lowe, USPTO dataset, v2 USPTO_50k, super
15k rxns (1976-2016) class & atom-mapping

480k rxns 1M rxns
USPTO_LEF
350k rxns

Figure 2.2: USPTO data family tree. The USPTO data set family tree with the four versions of the text-
mined data set [41, 42, 62, 64] and the different subsets [5, 35, 36, 65] used to benchmark
data-driven reaction prediction models.
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Since the publication of the USPTO data set [42] an entire family of reaction prediction bench-
mark subsets with different flavours appeared, as shown in Figure 2.2. All these subsets were
made available at publication time, including the correct splitting between the training, valida-
tion and test set. The publicly available data allows not only to reproduce the scientific outcome
reported in a publication but also a direct and statistical meaningful comparison between the dif-
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ferent approaches. The most used benchmark set is the USPTO_MIT set. However, during the
filtering process Jin et al. [S] removed all reactions containing stereochemical information. As
stereochemical information might be crucial for the functionality of molecules, Schwaller et al.
[36] generated another subset of the USPTO data set keeping stereochemistry, therefore referred
to as USPTO_STEREOQ. Bradshaw et al. [37] later removed all reactions without a so-called lin-
ear electron flow topology (excluding e.g. pericyclic reactions), hence, simplifying the data set.
This subset of USPTO_MIT containing only 73% of the reactions is referred to as USPTO_LEF.
Schneider et al. published two independent USPTO subsets with additional reaction meta data.
The first contained 1k reaction example corresponding to 50 reaction classes (e.g. Thioether syn-
thesis 1.8.5) [64]. The second contained reaction superclasses (e.g Heteroatom alkylation and ary-
lation 1) and atom-mapping assigned by NameRXN [62] and was later used by Liu et al. [65] as
single-step retrosynthesis benchmark data set.

2.4 DEEP LEARNING MODELS

Besides data representation and the actual data, the third crucial ingredient for machine learning
for chemical reactions are the models. This thesis focuses on deep learning, which is a subset of
machine learning and artificial intelligence. In deep learning, models automatically extract use-
tul pieces of information from raw data to inform future predictions. One motivation to use
them, compared to traditional machine learning techniques, is that the input features are not
hand-engineered but learned from the data. Hence, the features tend to be less brittle, and the
algorithms scalable to larger data sets.

Deep learning methods are based on artificial neural networks. McCullogh and Pitts [66] intro-
duced the basic concept inspired by biological neurons already in 1943. A single artificial neuron,
also called perceptron by Rosentblatt [67], is mathematically described as follows:

FO(x) =o(w'z +b), (2.1)

where w are learnable weights with which the inputs & are multiplied, b is a learnable bias term
and 0 a non-linear activation function. Real-world data, particularly in chemistry, is often non-
linear. The non-linearities introduced by the activation functions, such as a sigmoid function, a
hyperbolic tangent, or a rectified linear unit (ReLu) [68], make it possible to model such data. By
connecting the inputs & to multiples neurons, a dense layer can be created. Those fully-connected
dense layers consisting of many perceptrons are one of the fundamental building blocks of neural
networks as depicted in Figure 2.3 4. Deep neural networks are made by stacking multiple layers.

In dense layers, the weights are independent and no symmetry can be exploited as inductive
bias as all inputs are connected to all outputs. Other neural network building blocks have stronger
inductive biases [69]. Convolutional layers learn filters that extract local correlations from neigh-
bouring inputs [70], as shown in Figure 2.3 4. The weights of a convolutional layer are shared
across space, which makes them translation invariant. 1D convolutional layers can be applied to
text or time series [71], 2D ones to pixels in images [70], and 3D ones to voxels [72]. Closely related
and often used for molecular inputs are graph convolutional layers [73] depicted in Figure 2.3 ¢.
Instead of computing the output on neighbouring pixels/voxels, graph convolutional layers com-
pute the outputs based on the adjacent nodes in the graph. Other neural network building blocks

11
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Figure 2.3: Neural network building blocks. Fundamental building blocks of neural networks: a) a
fully-connected dense layer, b) a convolutional layer, ¢) a graph convolutional layer and d) a
recurrent layer.

are recurrent layers, as shown in Figure 2.3 4. Recurrent layers often model sequential inputs in,
for example, text or time series. They are similar to dense layers but with a feedback connection.
Therefore, their output not only depends on the current input but also on the previous state of
the layer. Recurrent layer weights are shared in time. Popular variations of recurrent neural net-
works are gated recurrent units (GRU) [74] and Long-Short Term Memory (LSTM) [75]. One
advantage that convolutional and recurrent layers have compared to dense layers is that they do
not require fixed-size inputs.

2.4.1 NEURAL NETWORK MODEL TRAINING

Deep neural network models are made of stacked differentiable layers. Each of the layers contains
weights, which have to be trained before the model can output reasonable predictions. During
training, the weights are updated iteratively to minimise a predefined loss function. Given some
inputs from the training set, the loss function compares the predicted values with the true ex-
pected values. As the neural networks are made of differentiable functions, the gradient of the
loss with respect to the weights can be computed throughout the network using backpropaga-
tion [76]. The weights are then adapted using the gradient [77] to minimise the loss in the next
iteration. This procedure is repeated until convergence or reaching another predefined stopping
criterion, such as the maximum number of steps. How strong the weights are adapted at every
step of the training depends on the learning rate, one of the most important hyperparameters to
tune for a neural network. Models trained with too small learning rates can get stuck in a local
minimum, and those trained with too large ones might diverge. In practice, adaptive learning
rates which increase or decrease depending on the training are commonly used [78]. For detailed
information and recommendations on how to best train neural networks, prevent overfitting and
tune hyperparameters, I refer the reader to the Deep Learning book by Goodfellow et al. [79].
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Deep learning recently became popular not only because of the wide availability of data and
hardware but also because of the software. With frameworks like Tensorflow [80] and PyTorch
[81], the differentiation of the networks and backpropagation are implemented and done auto-
matically. Moreover, it is a common practice in machine learning to share code implementations
with publications [82]. Researchers can focus on solving new tasks using neural network models
instead of reimplementing everything from scratch.

2.4.2 ENCODER-DECODER ARCHITECTURES

Depending on the target task, the neural network building blocks are combined differently. In
NLP, a common task is neural machine translation, in which the goal is to translate sentences
from one language (e.g. English) to another language (e.g. French). It is usually a supervised task
because the training data in one language is annotated with the other language’s corresponding
translations. The sentences can be represented as a series of words, sub-words, or characters [83].
Those sentence sub-parts are called tokens. Hence, the process to separate a sentence into its to-
kens is called tokenisation. To tackle the translation task, the most common model architecture is
an encoder-decoder model. The first encoder-decoder sequence-to-sequence (seq-2-seq) models
were introduced by Sutskever et al. [84] and Cho et al. [74]. Those models consist of an encoder
that reads in the input token sequence in one language and converts the sequence into a context
vector. The context vector is given as input to the decoder. The decoder then sequentially predicts
the output sequences, token by token, based on the context vectors and all previously predicted
tokens. A special END token signals the end of the predicted sequence. To make arbitrary token
vocabulary sizes compatible with the models, tokens are converted to input feature vectors using
trainable word embeddings [85], which after training could capture the meaning of the words
they encoded [86].

In the work of Sutskever et al. [84] and Cho etal. [74] the encoder and decoder were built using
recurrent neural networks. However, the performance of the early seq-2-seq models was limited
by the fixed-sized context vector between encoder and decoder [74, 84]. For long and complex in-
put sequences, the context vector was too small to give the decoder enough information to predict
the target correctly.

To overcome this limitation, Bahdanauetal. [87] and Luongetal. [88] independently suggested
a method called attention:

T

Vi

attention weights

attention(Q, K, V') = softmax( )V (2.2)

where @ the query, K the key and V' the value matrices. dy, is a scaling factor later introduced
by Vaswani et al. [2]. In seq-2-seq models with attention [87, 88], instead of encoding the whole
sequence into a fixed-size context vector, the encoder computes one vector for every input token
resulting in a context matrix. In the attention equation above, the context matrix information
is used for K and V. At every decoding step, the decoder queries the context matrix using Q.
for the most relevant information to predict the next token. The attention function returns the
values weighted by how aligned keys and queries are. The output of the softmax function, the
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so-called attention weights, can be visualised to show what the decoder is focusing on to predict
the output tokens.

2.4.3 TRANSFORMERS

In 2017, in a ground-breaking study called “Attention is all you need”, Vaswani et al. [2], in-
troduced the encoder-decoder Transformer architecture (Figure 2.4 ). In contrast, to previous
seq-2-seq models, the authors did not use recurrent layers in the Transformer but instead built
the architecture on attention layers only. As attention layers have no sequential inductive bias,
the token order information is given to the model through positional encodings. The encoder of
the Transformer consists of stacks of self-attention layers with multiple attention heads. For self-
attention layers, the queries, keys and values are the outputs of the previous attention layer. The
encoder computes representations of every input token given all input tokens. This approach is
useful as the same tokens might have different meanings depending on the sentence. Self-attention
is shown in Figure 2.4 d. Two different attention mechanism are implemented in the decoder. The
first is encoder-decoder attention (Figure 2.4 f), which resembles the attention used in previous
seq-2-seq models [83, 87], where the decoder queries the encoder keys and values. The second is
the masked self-attention (Figure 2.4 ¢), where the queries, keys and values are from the decoder.
In contrast to self-attention, future keys are masked to prevent revealing information to the de-
coder about the tokens it has to predict. Another novelty of the work by Vaswani et al. [2] was the
multi-head attention. Every attention layer in the Transformer has a defined number of attention
heads. Every head can learn an independent function to attend the features and specialise on a
particular pattern in the sequences. For instance, a head could learn to focus on the punctuation
and another on the subject of the phrase. Using this novel architecture, Vaswani et al. [2] set new
records in the English-to-German and English-to-French neural machine translation task.

The Transformer models presented by Vaswani et al. [2] already had between 65M and 213M
trainable weights. The recent trends in NLP have been to make improvements by training larger
and larger models. However, not all language tasks have enough data to train such large models
efficiently. One approach shown to help achieve better results is pretraining [89, 90, 91]. The main
idea of pretraining is simple: a model is first trained on an auxiliary task for which more data exist
or data can be generated automatically. The pretrained model then starts with more favourable
weights than randomly initialised ones to learn the actual task and achieves better results. This
second stage, where the model is trained on the actual task, is called fine-tuning. Leveraging data
from multiple data sets to achieve better model generalisation is known as transfer learning [92].
It is also possible to perform transfer learning by training on multiple data sets simultaneously
[93], called multi-task learning. Inspired by successes of pretraining and the Transformer archi-
tecture, Radford et al. [94] introduced Generative Pre-trained Transformer (GPT, Figure 2.4 b),
adecoder-only transformer pretrained on a large text corpus. Decoder-only because similar to the
original Transformer decoder it was trained with a masked self-attention by predicting the next
tokens in a sequence from left to right. GPT improved upon previous models on the General
Language Understanding Evaluation (GLUE) benchmark [95]. In the meantime, the same group
in OpenAl developed GPT-2 [94] and GPT-3 [9¢]. The improvements on NLP benchmarks
and more human-like language generation were achieved by increasing the number of trainable
weights from 100M in GPT, to 1.5B in GPT-2 to 175B in GPT-3 and using larger text corpora.
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Figure 2.4: Transformers. a) Encoder-decoder model. b) Decoder-only model. ¢) Encoder-only model.
d) Self-attention, where the inputs to key and query are the same used in Transformer encoders.
On the right, are schematic drawing of the attention to the first and second token. ¢) Masked
self-attention, where key and query are the same. To not give the decoder information about

attention weights

the future it is supposed to predict, the representations of those tokens are masked and not
queried. f) Encoder-decoder attention, attention between encoder keys and decoder queries.

Devlin etal. [3] developed alanguage representation model called Bidirectional Encoder Repre-
sentations from Transformers (BERT, Figure 2.4 ¢). In contrast to the autoregressive decoder-only
approach by Radford et al. [94], BERT is an autoencoding model, which learns the token repre-
sentations by correcting corrupted sequences. Through the unmasked encoder self-attention, the
token representations are computed in the context of all sequence tokens. The two pretraining
tasks that Devlin etal. [3] introduced are Masked Language Modelling (MLM) and next sequence
prediction. Similar to GPT, the BERT models contained between 110M and 340M weights.
Training such only feasible for big corporations with dedicated hardware, the cloud compute costs
to train one GPT-2 model was estimated 43k USD by Strubell et al. [97]. Recently, several studies
focused on achieving similar performance with smaller models. Lan et al. [98] developed a lite
version of BERT (ALBERT), where the number of parameters is reduced by sharing the weights
across the layers. Sanh etal. [99] used distillation techniques [100] to compress the BERT’s knowl-
edge into a smaller model. Other groups modified the attention algorithm to make more efficient,
and hence, better scale to longer sequences [101, 102,103, 104, 105].
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2 Recent Data-Driven Learning Systems for Chemical Reactions

2.5 MACHINE LEARNING FOR CHEMICAL REACTIONS

As seen above, the availability of open-data, software, and more powerful hardware enabled the
development of novel approaches to tackle challenges in NLP that went beyond simple regres-
sion problems. Similarly, organic chemical reactions tasks worth solving to accelerate the organic
synthesis and better understand model predictions can be defined. Those tasks can be supervised,
where the inputs are annotated/labelled and the models are trained to predict the labels. Or un-
supervised, where the models learn data representations from unlabelled input.

Figure 2.5 provides an overview of the different chemical reaction tasks addressed in this the-
sis. Reaction prediction in 2, where products are predicted given precursors, is a task for which
well-defined benchmark data sets exists. Similar benchmarks are less appropriate for single-step
retrosynthesis in &, where precursor sets are predicted given a product, as multiple correct pre-
cursor sets might exist resulting in the same product. Forward reaction prediction and single-
step retrosynthesis can be formulated as generative tasks, where the product is generated atom
by atom given the precursors or vice versa. Multi-step synthesis planning in ¢, where the aim is to
find routes from the desired product to commercially available molecules, is more challenging but
is required for the synthesis of most molecules. Other synthesis relevant chemical reaction tasks
can provide more information about the generative models’ predictions and help to better under-
stand the predictions. Reaction classification models in 4 can be used to label chemical reactions
and communicate their underlying concepts. Chemical reactions are discrete, and it is difficult
to search for similar reactions when the reactants and the reaction centre are not determined. Al-
ternatively, chemical reactions can be encoded and represented in a continuous space as reaction
fingerprints in e. Reaction fingerprints can then be used to query for similar reactions in a data set.
Accurate predictions of reaction yields in f with uncertainty estimation could be used to guide
synthesis planning tools and chemists in their choice of what experiment to perform. Finally,
for atom-mapping independent models, the atom-mapping is not tracked during the prediction.
Atom-mapping tools in ¢ can tag the corresponding atoms on precursor and product sides from
which the reaction centre, the reactant-reagent split and the grammar of chemical reactions can

be derived.

2.5.1 FORWARD REACTION PREDICTION

From the different tasks on chemical reactions that can be approached with machine learning, the
chemical reaction prediction task, where likely products are predicted given precursors, is poten-
tially the most obvious one.

The idea of chemical reaction prediction models is not new. Pioneering examples are EROS
[17], CAMEO [20], WODCA [18] and SOPHIA [21], all of which were built on top of either
a rather small-scale reaction or knowledge database. Satoh and Funatsu [21] presented the first
approach not requiring the reaction type or class as input for the prediction and recognised the
potential of using reaction outcome prediction models for the validation of retrosynthesis steps in
synthesis planning tools. Here, I focus on purely data-driven chemical reaction prediction meth-
ods taking advantage of novel machine-learning techniques based on artificial neural networks.

The recent data-driven approaches can be distinguished by analysing the model, the data, the
input features and the outputs, as shown in Table A.1. There are several types of network archi-
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Figure 2.5: Chemical reaction tasks. A Buchwald-Hartwig amination reaction taken as example for dif-
ferent chemical reaction tasks.

tectures used for reaction prediction. Feed-forward neural networks learn a function, which maps
a fixed-sized vector through the network to another fixed-sized vector. Seq-2-seq and transformer
networks are auto-regressive encoder-decoder architectures and have the advantage that they can
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handle inputs of varying lengths, as well as generate outputs of varying lengths. Graph neural
networks learn a function applied to a node in a graph and its neighbours. Those neural network
architectures have all different inductive biases [69]. Kayala etal. [29] used a neural network to pre-
dict mechanistic steps through the identification and ranking of electron sources and sinks. The
inputs to the network contained a combination of the reaction conditions, hand-crafted molec-
ular features and the local neighbourhood of the individual atoms. As a chemical reaction can
consist of a sequence of mechanistic steps, multiple such predictions would be required to get
the final product of a reaction. Building further on this idea, Kayala and Baldi [30] developed
the ReactionPredictor, which ranked the atomic interactions based on the output of three sepa-
rate feed-forward neural network, the first trained for polar, the second for pericyclic and last for
radical reactions. The main drawback is that data on mechanistic steps is not readily available.
Therefore, Kayala et al. [29] generated their own data using their rule-based expert system [106].
Inamore recent work by Foshee et al. [34], the Baldi group extended their data set from 5.5k to 11k
elementary reactions. Still applying a very similar approach for the prediction of mechanical steps,
they showed that a bi-directional long short-term memory network using solely a SMILES string
as input nearly matches the electron source/sink identification performance of their feed-forward
neural network with more chemical inputs. Wei et al. [31] used feed-forward neural networks to
identify, which SMARTS transformation out of 16 reaction templates to apply to a set of two reac-
tants plus one reagent. Their approach was based on the concatenation of differentiable molecular
fingerprints [73]. Therefore, their network could be trained end-to-end and did not require any
hand-crafted features. In contrast, Segler and Waller [32] modelled the reaction prediction task
with graph-reasoning model to find missing links in a knowledge graph made of binary reactions
from the Reaxys [39] database. In another work, Segler and Waller [33], used a neural network to
rank reaction templates, which were automatically extracted from the Reaxys [39] database. Re-
actions were represented using traditional fingerprints, which construct a fixed-sized vector based
on the presence and absence of individual local motives in the molecules. Segler et al. [107] de-
veloped an in-scope filter to estimate the reaction feasibility based on their fingerprint. As also
pointed out by Coley et al. [108], a reaction template might match different reactive sites in the
reactants and therefore, generate more than one product. Hence, template ranking is not suffi-
cient to predict the most likely product of a reaction. To overcome this problem, Coley et al. [35]
proposed a different approach. Instead of ranking the templates, they applied all the templates
matching the reactants in a first step to generate possible candidate products. The products were
then ranked by a neural network. Recognising the drawbacks of hashing the reactant molecules
to a fixed-sized fingerprint, Coley et al. [35] designed edit-based reaction representation based on
the atoms that had a change in bond type and hydrogen count. The inputs to their model were
augmented with structural information, as well as easily computable geometric and electronic
information. The method was tested on a rather small subset of the USPTO data set [41] con-
taining 20k reactions. In general, template-based methods are fundamentally limited by the set
of templates they are based on and cannot predict anything outside the scope of this set. While
automatically generated template sets scale well, it is still not straightforward to produce a good
set of templates [33, 35, 109]. Usually, the number of neighbouring atoms or the distance around
the reaction centre has to be specified. This leads to a trade-off between a large amount of very
specific templates and a small amount of overly generic templates. Moreover, the local environ-
ment near the reaction centre might not be sufficient to describe the reaction. Another drawback
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2.5 Machine learning for chemical reactions

of automatic template extraction is that the reaction centre is typically identified using the atom-
mapping, which depending on the source might not be correct. All in all, before the end of 2017
most of the data-driven reaction prediction approaches were either rule-based or small-scale. In
the meantime, template-free large-scale approaches emerged, which can be categorised into two
main classes, namely bond change predictions and product molecule generation, an overview is
found in Figure 2.6.

2017 2018

small-scale /
template-based

USPTO_MIT USPTO_LEF bond changes prediction
WLDN ELECTRO GTPN WLDN5
Jin et al. Bradshaw et al. Do et al. Coley et al.
USPTO_STEREO product molecule generation

Molecular
Transformer

Seq2seq

with attention
Schwaller et al.

Schwaller et al.

Figure 2.6: Timeline of reaction prediction models. Timeline of the recent developments of large-scale
data-driven reaction prediction models that can be compared using the different USPTO reac-
tion subsets. There are two main strategies, bond changes predictions and product molecule
generation.

Jin et al. [5] presented the Weisfeiler-Lehman Network/Weisfeiler-Lehman Difference Net-
work approach (WLN/WLDN), which uses a two-step process to predict bond changes within
the reactants. In the first step, a graph-convolutional neural network calculates the pair-wise reac-
tivity between atoms and identifies possible reaction centres. After the reaction centres are filtered,
a Weisfeiler-Lehman Difference network ranks the bonds most likely reacting. The final product
molecule is generated by applying the suggested bond changes to the reactants. Jin et al. [S] made
their data set and training, validation and test split publicly available, from here on referred as
USPTO_MIT. The data set contained no reactions with stereochemical information. Reaction
SMILES containing stereoisomers were previously filtered out, as this would have required a more
sophisticated approach, able to predict not only bond changes but also changes in atomic labels,
for example, specifying 3-dimensional configuration at a tetrahedral carbon. The open-source
USPTO_MIT data set made it possible to compare with alternative methods directly. In the same
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year, Schwaller et al. [36] published a SMILES-2-SMILES approach using a seq-2-seq model with
an attention layer. Seq-2-seq models generate product molecules, SMILES token by SMILES to-
ken, using a recurrent neural network [110]. While the usage of neural machine translation models
for reaction prediction had already been proposed by Nam & Kim [111] and for retrosynthesis by
Liu et al. [65], it was the first large-scale demonstration of a seq-2-seq model. Schwaller et al.
[36] showed that representing reactants and reagents solely with SMILES attention-based seq-2-
seq models, could compete with graph-based models where the node features were composed of
more chemical information. The attention-weights could be visualised and revealed that the de-
coder focuses on one or more relevant atoms in the reactants while predicting each atom of the
product. Compared to the bond change prediction approaches, SMILES-2-SMILES approaches
construct the whole product molecule token by token. To solve the ambiguity of atomic order
in SMILES, Schwaller et al. [36] used the canonical SMILES to specify an order in which the
atoms have to be predicted. Besides predicting accuracies similar to the original work of Jin et al.
[5] on the USPTO_MIT set, Schwaller et al. published the USPTO_STEREO data set to com-
pare models able to predict stereoisomers (to the level they can be described in SMILES). Beyond
the proof of scaling seq-2-seq models with large data sets, Schwaller et al. [36] introduced a new
metric for measuring accuracy, by weakly separating reactants and reagents with a > token and
representing only the most common reagents. This metric was unfortunately endorsed by other
groups [5, 6, 37, 38] creating a measure of comparison that brings the development of such mod-
els in the wrong direction. Separating reactant and reagents leads to simplification of the reaction
prediction problem, as one must already know the reacting molecules to do the separation, as
pointed out by Griffiths et al. [112], The prediction problem is then reduced to the prediction of
the correct reactive sites. This metric has been corrected for reaction prediction [4].

Similar to the Baldi group [106], Bradshaw et al. [37] followed an approach inspired by text-
book organic chemistry and arrow pushing diagrams. They developed a model to predict elec-
tron paths. To do so, they analysed the graph-edits published by Jin et al. [5]. Their method
could only be applied to USPTO_LEF, a subset of USPTO_MIT. In their paper, Bradshaw et al.
[37] claim that they predict not only the product, but also the “mechanism”. While they might
get the mechanism of simple reactions, the underlying mechanistic steps often involve more elec-
tron movements then can be read out by comparing the final product with the starting material.
Predicting the correct product does not mean that the predicted electron path is correct, as graph-
edits cannot be taken as ground truth for mechanistic steps. For instance, a push to a catalyst in
a coupling reaction could not be represented in their method as they add the reagents (solvents,
catalysts) only as global features. The work of Bradshaw et al. [37] is interesting as they tackle
the problem with new machine learning approaches. Similarly, Do [38] suggested a Graph Trans-
formation Policy network, to learn the best policy to predict bond changes. The model did not
have the restriction of only being able to predict the USPTO_LEF but could also be used on the
USPTO_MIT data set, where it after invalid product removal achieved a top-1 accuracy of 83.2%.
Late 2018, Coley et al. [6] improved their previous WLN/WLDN approach presented in Jin et al.
[5] and called it a graph convolutional neural network (GCNN) approach. The main difference
is that they changed the enumeration criterium in the first step. Instead of generating candidates
using the top-6 atom pairs, they allow up to 5 simultaneous bond changes out of the top-16 bond
changes for the enumeration. This change leads to higher coverage of products in the test set
and hence, also an improvement in the overall accuracy, reaching considerable 85.6% top-1 on the
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Figure 2.7: Reactants-reagents separation. Visualisation of the two chemical reaction representation
settings. a) shows the separate reagents setting, where the information of which molecule con-
tributes atoms to the product and which molecule does not is explicitly contained. Unfortu-
nately, this requires knowing the atom-mapping and therefore, also knowing the product before
making the prediction. b) in contrast, shows the mixed setting, where no distinction is made
between reactants and reagents. The model has to figure out itself, which molecules are the
most likely to react together. The mixed setting makes the reaction prediction problem more
realistic, but also more challenging.

USPTO_MIT with separated reagents. The approach is still a two-step process and therefore, not
end-to-end. Parameters like the maximum number of bond changes to take into account have to
be determined empirically over the validation set and might change for another reaction data set.
The coverage of the first step sets the upper bound for the accuracy of the second step. Schwaller et
al. [4] demonstrated for the first time accuracies of over 90% on the USPTO_MIT data set. They
called their model Molecular Transformer, as it was built on top of the Transformer architecture
[2] introduced in Section 2.4.3. To prevent the model to learn only from the canonical repre-
sentation, the training set inputs were augmented with non-canonical versions of the SMILES
[46]. Schwaller et al. [4] not only show significant improvements in terms of top-1 accuracy on
the USPTO_MIT data set but also on the USPTO_STEREO and a time-split Pistachio reaction
test set containing stereochemical information. One major advantage of this approach is that the
Molecular Transformer outperforms all previous approaches even when no distinction is made
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between reactants and reagents in the input. Therefore, the approach is the first, which is com-
pletely template and atom-mapping independent. The difference between a separated reagentand
the so-called mixed reagents reaction representation is visualised in Figure 2.7. Itis also interesting
to note as SMILES-based linguistic approaches have often been discredited because of the possi-
bility to introduce syntactical errors during the SMILES inference process. Syntactical errors are
the norm, and actually, the capacity for an underlying AI model to learn the grammar rules be-
hind SMILES codification is very much depending on the architecture used. For instance, the
work made by Schwaller et al. [4] using the Molecular Transformer clearly shows that less than 1%
of the top-1 prediction is grammatically invalid. Remarkably, the underlying AI model learns not
only the domain knowledge (organic chemistry) but also the SMILES grammar, to a level that can
be considered close to perfection.

In 2020, Qian et al. [113] developed a GCNN and used probabilistic and symbolic inference to
enforce chemical constraints and account for prior chemical knowledge. Similar to other graph
neural networks for reaction prediction [5, 6, 37], the approach is limited to predicting reactions
without stereochemical information. Recently, Tetko et al. [114] demonstrated that using the
Molecular Transformer [4] results can be improved by applying extensive data augmentation and
using computationally more expensive testing protocols. At test time, Tetko et al. [114] gener-
ated for every input reaction up to 100 data-augmented copies. The predicted product was then
determined by taking the most frequent predicted product from the 100 inputs presented to the
model. Using this test-time augmentation (TTA), they were able to achieve an accuracy of 92%
on the standard separated USPTO_MIT data set. One of the advantages seq-2-seq models have
during training compared to GCNN approaches is that the model gets feedback for every token
in the sequence and not only for a few graph edits. Sacha et al. [115] represented the products of a
reaction as a canonical sequence of graph-edits predicted by a GCNN. This idea makes it possible
to train GCNN models similarly to seq-2-seq models.

Table 2.1 reports the top-1, top-2 and top-3 accuracies of the different approaches on the patent
data sets set, where top-N accuracy means that the reported product could be found in the N most
likely predictions of the model.

In Table 2.1, it becomes apparent that even recent work focused on predicting reactions with-
out stereochemical information. However, stereochemistry, the 3-dimensional arrangement of
atoms, affects chemical reactivity. While graph-edit-based approaches are currently unable to han-
dle stereoisomers [5, 6, 113], predicting reactions, where stereochemistry plays a role, is a weakness
of the Molecular Transformer. In Chapter 3, I present an approach to improve the Molecular
Transformer predictions on challenging carbohydrate reactions using a small training data set us-
ing transfer learning [116]. This work also includes the first experimental validation of deep learn-
ing chemical reaction prediction models.

In the work of Coley et al. [6] and Schwaller et al.[4], the attention weights are used to enhance
the explainability of their predictions and make the models more transparent, one of the major
criticisms of those data-driven black-box models. Coley et al. [¢] calculate pair-wise interactions
between reactant and reagents atoms (source) during the first step of their approach. The most re-
active sites can be identified by selecting one atom and highlighting those interactions with all the
other source atoms. In the Molecular Transformer, instead, this would correspond to a visualisa-
tion of the self-attention in the encoder. Using the Molecular Transformer not only the encoder
and decoder self-attentions can be visualised, but more interestingly, also the decoder-encoder
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Table 2.1: Standard benchmark reaction prediction results Top-3 accuracies of the recent data-driven
reaction prediction models on the different USPTO subsets. Currently, only product genera-
tion models are able to take into account stereochemical information and make predictions on
the USPTO_STEREO data set. For all the models, a significant accuracy increase is observed
between Top-1 and Top-2. TTA=Test-time augmentation.

Accuracy Top-1[%] Top-2[%] Top-3 [%]

USPTO_MIT

Separated reagents

Jin etal. [5] 79.6 87.7
Schwaller et al. [36] 80.3 84.7 86.2
Do etal. [38] 83.2 86.0
Coley etal. [6] 85.6 90.5 92.8
Schwaller et al. [4] 90.4 93.7 94.6
Schwaller et al. (ensemble) [4]  91.0 94.2 95.2
Qian etal. [113] 90.4 93.2 94.1
Tetkoetal. (TTA 100x) [114] 92 95.4
Sacha et al. [115] 89.3 92.7 94.4

USPTO_MIT

Mixed reagents
Jinetal. [5] 74.0 86.7
Schwaller et al. [4] 88.6 92.4 93.5
Tetko etal. (TTA 100x) [114]  90.6 94.4
Sachaetal. [115] 86.3 90.3 92.4

USPTO_STEREO
Separated reagents

Schwaller et al. [36] 65.4 71.8 74.1
Schwaller et al. [4] 78.1 84.0 85.8
USPTO STEREO
Mixed reagents
Schwaller et al. [4] 76.2 82.4 84.3

attention. The latter can be interpreted as how important source atoms are to predict a specific
product atom. Empirical evaluations of those attention weight maps show that the model learned
something similar to atom-mapping, as seen for a Bromo Suzuki coupling reaction in Figure 2.8.

As shown above, the two main reaction prediction approaches construct the major products of
areaction using product generation or bond changes prediction methods. While the recent prod-
uct generation methods are completely atom-mapping independent [4], the atom-mapping is re-
quired to generate the ground-truth bond changes for the bond changes prediction methods [6,
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Figure 2.8: Attention weights for a Bromo Suzuki coupling reaction. Product-reactants attention
generated by the Molecular Transformer [4] for a Bromo Suzuki coupling reaction. Attention
weights show how important an input token (horizontal) was for the prediction of an output
token (vertical). It can be seen that the model focused on the corresponding molecule parts in
the reactants, while predicting the product.

113]. As atom-mapping is still typically generated by rule-based approaches, the bond changes pre-
diction methods inherit the limitations of the underlying approach used for the atom-mapping.

2.5.2 SYNTHESIS ROUTE PLANNING TOOLS

Similar approaches to the ones that can be used for forward chemical reaction prediction can be
used for single-step retrosynthetic predictions. “Retro” because the aim is to predict precursor
molecules from a given product molecule. Liu et al. [65] introduced a seq-2-seq approach for
single-step retrosynthesis and evaluated the model with Top-N accuracy. Top-N accuracy means
that the reported precursors are present in the first N predictions by the model. Although top-N
accuracy is simple to compute, it is not well suited for the retrosynthesis task. Numerous precursor
sets could lead to the desired product and not only the reported one.
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Moreover, the single-step retrosynthesis task can be formulated in multiple ways, significantly
impacting its difficulty. Tetko et al. [114], recently suggested that it is enough to predict the largest
fragment of the precursors, as expert chemists can fill in the rest of the information (other reac-
tants and reagents). The task, as originally described by Liu et al. [65], was to predict reactants
without reagents. The difference between reactants and reagents is often subtle and subjective. I
use a more challenging formulation of the task in this thesis predicting all precursor molecules in-
cluding reagents. This formulation allows my approach to be fully atom-mapping independent.
To date, most studies still focus on predicting the reactants only [23, 27, 33, 65, 107, 108, 117, 118,
119,120,121,122,123,124,125] and require atom-mapping to make the reactant-reagent distinction
in the training data.

Saymkué et al., ACIE 2016 Segler & Waller Other proprietary tools
Grzybowski et al., Chem 2018 Nature, 2018
Mikulak-Klucznik et al., Nature, 2020 - Molecule.One - DeepMatter
« Chemical.AI  « SciFinder
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.« “wide & deep” seach - Monte-Carlo tree search « Iktos
- simulations, ML scoring « step-scoring NN
LillyMol ASKCOS AiZynthFinder IBM RXN for Chemistry
Freely Watson et al. Coley et al., Thakkar et al., Chem. Sci., 2020 Schwaller et al.
. J. Cheminf., 2019 Science, 2019 Genheden et al., J. Cheminf., 2020 Chem. Sci. 2020
aCCGSS:Lble « template-based « template-based « template-based « template-free, with reagents
« template-freq score * Monte-Carlo tree search « Monte-Carlo tree search « hypergraph beam search
« step-scoring NN « step-scoring NN « step-scoring NN
« interactive mode + interactive mode
« stereochemistry
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Figure 2.9: Al-driven synthesis planning tools. Overview of the most influential closed [22, 23, 24,
107] and openly accessible synthesis planning tools [43, 109, 118, 125, 126].

The usefulness of single-step retrosynthesis approaches is limited, as most of the synthesis routes
require multiple reaction steps, to resolve the route and reach commercially available molecules.
The real challenge is the multi-step synthesis task. It is unclear how well the metrics like top-N
accuracy that are optimised in most of the single-step retrosynthesis studies translate to the multi-
step task. In a ground-breaking work in 2018, Segler and Waller [107] introduced a template-based
approach combined with a Monte-Carlo tree search (MCTYS) to plan multi-step synthesis routes.
They used a neural network to score individual reactions and prune the tree. As the approach
was template-based, the predicted reaction steps included reactants only. Segler and Waller [107]
performed a chemical Turing test by giving predicted and literature routes for nine molecules to
45 graduate-level organic chemists and letting them evaluate, which ones they like most without
knowing the source. This test showed that on the small sample set of nine routes, the generated
routes were on par with the literature routes. There was no significant preference for one of the
two sources.

Unfortunately, similar to the work by the team behind Chematica, who recently predicted
routes to natural products [24], the work by Segler and Waller [107] is not open-source or acces-
sible through an application programming interface (API). Hence, it is not comparable to other
approaches. Based on the work by Segler and Waller [107], Coley etal [125] and Thakkar etal. [109,
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126] have implemented open-source algorithms for template-based and MCTS-based multi-step
synthesis planning.

In Chapter 4, I will present my multi-step retrosynthesis planning approach [43]. It uses two
Molecular Transformer models, one for precursor set suggestions and one for reaction scoring,
and hypergraph beam-search to find optimal routes.

2.6 LEARNING THE LANGUAGE OF CHEMICAL REACTIONS

Organic chemistry and written language have much in common [127]. Similar to letters and
words, there is a well-defined set of atoms that can be used to construct molecules. Not every com-
bination of letters makes a valid word and not every combination of atoms a stable molecule. If,
in this analogy, atoms are letters and molecules are words, chemical reactions or sets of molecules
can be seen as sentences. With text-based representations like SMILES [46, 47], the molecular
graphs can be linearised using their spanning trees and encoded as a sequence of symbols. Note
that in SMILES bond lengths and angles remain undefined. Hence, the molecules represented
as SMILES do not contain conformer information. Moreover, hydrogen atoms are typically re-
moved from the graphs before generating the SMILES and set to be implicit. Text-based molecular
representations make it possible to apply NLP-inspired approaches, like Transformers [2, 3, 98] to
molecules and chemical reactions.

Compared to graph neural network-based approaches operating on the molecular graphs, trans-
former-based approaches operating on SMILES might not be the immediate first choice. Still,
one of their advantages is that in SMILES stereochemical information can be encoded to a certain
extent. In contrast in graphs, it is harder to incorporate this information as it might depend not
only on the nearest neighbours’ order but also on further not directly connected neighbours [128].
Apart from enforcing a prior on connecting covalently bonded atoms, graph-neural networks are
not that different from the transformer architecture. The Transformer architecture [2] can be seen
as a graph-neural network where input tokens are nodes, and all of them are connected. The con-
nections between the nodes are learned from examples through the attention mechanism. The
attention mechanism is the common feature in all neural networks applied in this thesis. The
initial token feature vectors in the Transformer model are computed with a context-independent
token embedding layer [85], a neural networks layer that maps the token vocabulary to the input
size of attention layers in the model. Those feature vectors might already carry some meaning.
But they only take into account the single tokens and not the rest of the sentence. For instance,
the word “bank” will be represented the same independent of the sequence talking about water or
money. Similarly in chemical reactions, the token embedding layer will produce the same repre-
sentation for any “C” token or “N”. But the functionality and meaning of word and atom tokens
much depend on their context.

A simple reweighing scheme to compute better feature vectors could be based on direct neigh-
bours. However, in language and also chemical sequences, there are often long-range dependen-
cies between tokens that refer to each other, or single tokens that alter the meaning of the whole
sequence. In sentence like “The cat that jumped over the fence is black.”, the token “black” at the
end refers to the token “cat” in second position not to the seemingly closer “fence”. Changing the
sentence to “The cat that jumped over the fence is 7oz black.” by including one additional word
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2.6 Learning the language of chemical reactions

alters the meaning of the sentence. To perform well in language and chemical tasks, models have
to capture long-range dependencies and fine-grained modifications in human language and chem-
ical sequences alike. In chemical reactions, changing an electron-withdrawing functional group
to an electron-donating group may significantly alter the reactivity and lead to a different reaction
outcome. This change does not necessarily need to be close to the reaction centre. Hence, a better
reweighing scheme than proximity to compute context-dependent feature vectors is required.

Self-attention can be seen as a method to reweigh individual inputs, in our case token feature
vectors, based on all inputs. In self-attention, the key, query and value layers get the same feature
vectors as input. First, the outputs matrices of the key and query layers are multiplied, then scaled
and normalised. Those normalised scores, also called attention weights, are then multiplied with
the outputs of the value layer. Figure 2.10 4 visualises such a self-attention block. The key, query
and value layers all contain trainable weights. By modifying those weights, the model learns to
attend contextual information and produce more meaningful token representations. As the di-
mensions of the outputs of attention block are the same as the input dimensions, multiple such
blocks can be stacked one after another.

a) self-attention b) multi-head self-attention

Contextualised
token features
[t 1,t2, ...tn] [t 1‘t2""tn]

Concat & dense
. attention weights
Attention block MatMul of heads Matm

1,2 h

attention weights A {AT A%, L ATY
‘ Normalise scores ‘ Normalise scores
MatMul MatMul
h h
1 1 1
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Input tokens SMILES: BrBr.Br[Fe](Br)Br.Cclccccc1>>Cclccc(Br)ccl
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Figure 2.10: Self-attention block. a) single-head and b) multi-head attention
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Looking at the example sentence and the word “jump”, we could ask what or who jumped?
The cat. And, over what or on what the subject jumped? Over the fence. Depending on the
question, the attention mechanism would need to attend different tokens to generate an adequate
answer. Multi-head attention [2] made it possible for models to attend the context using different
attention functions simultaneously. As shown in Figure 2.10 4, multiple key, query and values
layers are used in parallel instead of a single. In a multi-head attention block, the outputs of the
last matrix multiplication are then concatenated and passed through an additional dense layer in
order to return a feature matrix of the same dimensions as given as input. The parallel layers are
the heads, and for each head an attention matrix is returned. Vig [129] and Hoover etal. [130] used
visual inspection to demonstrate that after training the different heads attended different features
in a sentence.

In a chemical reaction example, the first head could attend neighbouring atoms, the second
atoms within the same molecule, the third important functional groups that might influence the
reactivity. The multiple attention heads allow the model to focus on multiple tokens that are far
apart and, consequently, generate better contextualised token representations.

The same concepts used for self-attention also apply to encoder-decoder attention, where the
queries originate from the decoder part of the models, and masked self-attention, where future
tokens are masked and their attention weights are set to zero.

Throughout this thesis, I will demonstrate how the analogy between human and chemical re-
action language can be exploited to tackle chemical reaction tasks using Transformer models [2,
3, 4, 98].
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3 TRANSFER LEARNING ENABLES THE
MOLECULAR TRANSFORMER TO PREDICT
REGIO- AND STEREOSELECTIVE
REACTIONS ON CARBOHYDRATES

Organic synthesis methodology enables the synthesis of complex molecules and materials used
in all fields of science and technology and represents a vast body of accumulated knowledge opti-
mally suited for deep learning. While most organic reactions involve distinct functional groups
and can readily be learned by deep learning models and chemists alike, regio- and stereoselec-
tive transformations are more challenging because their outcome also depends on functional
group surroundings. Here, we challenge the Molecular Transformer model to predict reactions
on carbohydrates where regio- and stereoselectivity are notoriously difficult to predict. We show
that transfer learning of the general patent reaction model with a small set of carbohydrate reac-
tions produces a specialised model returning predictions for carbohydrate reactions with remark-
able accuracy. We validate these predictions experimentally with the synthesis of a lipid-linked
oligosaccharide involving regioselective protections and stereoselective glycosylations. The trans-

fer learning approach should be applicable to any reaction class of interest.

This chapter has previously appeared as a scientific article in Nature Communications:

G Pesciullesi®, P Schwallere, T Laino, ] Reymond. Transfer learning enables the molecular trans-
former to predict regio- and stereoselective reactions on carbohydrates. Nat. Commaun., 2020, 11,
4874, (CC BY 4.0). The syntheses were performed and analysed by Giorgio Pesciullesi.

3.1 INTRODUCTION

Organic synthesis is a complex problem-solving task in which the vast knowledge accumulated in
the field of organic chemistry is used to create new molecules, starting from simple commercially
available building blocks [131]. Because of its complexity, organic synthesis is believed to be one
of the main bottlenecks in pharmaceutical research and development [132], and having accurate
models to predict reaction outcome could boost chemists” productivity by reducing the number
of experiments to perform.

Machine learning has long been present in the chemical domain, tackling challenges such as
Quantitative Structure-Activity Relationship predictions [133], virtual screening [134] and quan-
tum chemistry [135, 136]. Enabled by algorithmic advances in deep learning [2, 73, 84, 88] and the
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availability of large reaction data sets [41, 42], reaction prediction methods have emerged in recent
years [4, 5, 6, 36, 37, 38, 43, 111, 113, 137]. Those reaction prediction methods can be divided into
two categories [138], bond change prediction methods using graph neural networks [5, 6, 37, 38,
113] and product SMILES generation using sequence-2-sequence models [4, 36].

Reaction prediction tasks are typically evaluated on the USPTO_MIT benchmark [5], which
does not contain molecules with defined stereocentres. Currently, the best prediction algorithm
in terms of performance is the Molecular Transformer [2, 4]. The architecture is based on the
ground-breaking work by Vaswani et al. [2], which revolutionised the field of neural machine
translation, where sentences in one language are translated into another language. In contrast,
for reaction prediction, the model learns to translate the precursors’ Simplified molecular-input
line-entry system (SMILES) [46] representation into the product SMILES.

The Molecular Transformer can be accessed for free through the IBM RXN for Chemistry
platform [44]. Compared to other methods, such as graph neural networks-based ones, the advan-
tages of the Molecular Transformer approaches are that they do not require mapping between the
product and reactant atoms in the training [112] and inputs can contain stereochemistry. In fact,
sequence-2-sequence approaches, like the Molecular Transformer [2, 4], are currently the only
large-scale reaction prediction approaches capable of handling stereochemistry. Stereochemistry
is systematically avoided in graph-based methods, as the connection table and adjacency matrix
of two stereoisomers is identical. Although stereoselectivity can theoretically be predicted by the
Molecular Transformers [4], it is one of their most significant weaknesses because of the lack of
clean training data. To date, their performance on predicting specific stereochemical reactions has
not been investigated.

In this work, we investigate the adaptation of the Molecular Transformer to correctly predict
regio- and stereoselective reactions. As study case we focus on carbohydrates, a class of molecules
for which the stereochemistry and the high degree of functionalisation are key reactivity factors.
Carbohydrate chemistry is essential for accessing complex glycans that are used as tool compounds
to investigate fundamental biological processes such as protein glycosylation[139, 140, 141], as well
as for the preparation of synthetic vaccines [142, 143, 144]. Predicting the outcome of carbohy-
drate transformations, such as regioselective protection/deprotection of multiple hydroxyl groups
or the stereospecificity of glycosylation reactions, is a very difficult task even for experienced car-
bohydrate chemists[145, 146], implying that this field of research might particularly benefit from
computer-assisted reaction prediction tools.

First, we investigate transfer learning with a specialised subset of reactions as a means to adapt
the Molecular Transformer to achieve high performance on carbohydrate reactions. Transfer learn-
ing, where a model is trained on a task with abundant data and either simultaneously trained or
subsequently fine-tuned on another task with less data available [93], has recently let to significant
advancements in Natural Language Processing [3, 91,147,148]. For instance, ithas been used to im-
prove translation performance in low-resource languages [147]. More recently, unsupervised pre-
training transfer learning strategies have successfully been applied to sequence-2-sequence mod-
els [148, 149]. In the chemical domain, transfer learning has enabled the development of accurate
neural network potential for quantum mechanical calculations [150] and shows great potential
to solve other challenges [151]. For transfer learning we use a set of 20k carbohydrate reactions
from the literature, comprising protection/deprotection and glycosylation sequences. We explore
multi-task learning, as well as sequential transfer learning, and show that the adapted model, called
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the Carbohydrate Transformer, performs significantly better than the general model on carbohy-
drate transformations and a model trained on carbohydrate reactions only.

Second, we perform a detailed experimental assessment of the deep learning reaction prediction
model and test the Carbohydrate Transformer on unpublished reactions. Our assessment consists
of a14 step total synthesis of a modified substrate of a eukaryotic oligosaccharil transferase (OST).
We also challenge our Carbohydrate Transformer to predict the reactions from the recently pub-
lished total syntheses of the trisaccharide of Pseudomonas aeruginosa and Staphylococcus aureus
[152] as a further assessment on more complex carbohydrate reactions. Those reactions would be
considered challenging to predict, even for carbohydrate experts.

Overall, we observe a consistent top-1 prediction accuracy above 70%, which roughly means
a 30% increase compared to the original Molecular Transformer baseline. We find that the con-
fidence score is a good predictor of prediction reliability and that many wrong predictions have
chemical reasons such as the lack of reagent stoichiometry in the training data. The approach we
used to learn carbohydrate reactions could be applied to any reaction class. Hence, it is expected
to have a significant impact on the field of organic synthesis, as models like the Molecular Trans-
former [4] can easily be specialised for the reaction sub-spaces that individual chemists are most
interest in.

3.2 REsuULTS

3.2.1 DATA AVAILABILITY SCENARIOS

Besides the additional complexity, the main challenges for learning to predict stereochemical re-
actions is the data. In the largest open-source reaction data set by Lowe [41, 42], which fueled the
recent advancements in machine learning for chemical reaction prediction, stereochemistry and
specifically reactions involving carbohydrates are underrepresented and of poor quality. Hence,
those reactions are problematic to learn.

In this work, we explore two real world scenarios, where there exist a large data set of generic
chemical reactions and a small data set of complex and specific reactions. In our case, we use a
data set derived from the US patent reactions by Lowe [42] as the large data set containing 1.1M
reactions. We call this data set USPTO. For the specific reaction, we chose carbohydrates reac-
tions, but the methods described could be applied to any reaction class of interest. We manually
extracted reactions from the Reaxys [39] database, selected from papers of 26 authors in the field
of carbohydrate chemistry. The small data set of 25k reactions will be referred to as CARBO for
the remainder of the publication. We split the USPTO and the CARBO data set into train, val-
idation and test sets. The reaction data was canonicalised using RDKit [153]. A more detailed
description of the data is found in Supplementary Note 1.

If the access to the large and small sets is given, the two data sets can be used simultaneously
for training. We call this first scenario multi-task. However, depending on the situation, direct
access to the data of the generic data set may not be possible. For example, a company A may have
proprietary reaction data precluded from external sharings. Company A could still train a model
using their own data and share their model without revealing the exact data points. The trained
model extracts some general chemical reactivity knowledge and could be shared without exposing
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Figure 3.1: Molecular Transformer model and data scenarios. Sequence-2-sequence prediction of car-
bohydrate reactions and the two transfer learning scenarios, namely, multi-task and sequential
training.

company proprietary information. This pre-trained model could then serve as a starting point to
further train the model on another source of reactions. We call this scenario fine-tuning.
A visualisation of the model and the two scenarios can be found in Figure 3.1.
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Figure 3.2: Multi-task scenario results. a) Top-1 accuracy of models trained with different weights on
the USPTO and CARBO data set (the first number corresponds to the weight on the USPTO
data set and the second to the weight on the CARBO data set). b) Top-1 accuracy for a model
trained in the weight 9 weight 1 setting, where the number of reactions in the CARBO data set
was reduced. Source data are provided as a Source Data file.

In the multi-task scenario, we investigated different reaction weighting schemes between the
two sets. A comparison of the top-1 accuracies on the USPTO train, USPTO test, CARBO train
and CARBO test sets for models trained with different weights for the USPTO train and CARBO
train sets are shown in Figure 3.2 a). The weights describe in what proportion reactions from
the two sets are shown per training batch. For example, weigtht 1 on USPTO and weight 1 on
CARBO means that for one USPTO reaction one CARBO reaction is shown. As can be seen
in the Figure, the highest accuracy on the CARBO test set (71.2 %) is obtained with weight 9
on the USPTO set and weight 1 on the CARBO set (w9w1). As expected, training only with
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the CARBO train set leads to a poor CARBO test set accuracy (30.4 %). As 20k reactions are
not enough for the model to learn predict organic chemistry. The accuracy reached by the model
trained purely on the USPTO data reaches 43.3 %. It therefore performs better than the model
trained purely on the CARBO reactions. In Figure 3.2 b), we assess the eftect of the size of the
CARBO train set. The accuracy continuously increases from 43.3 to 71.2 % with an increasing
number of reactions in the train set.

a) CARBO test b) CARBO test (time-split)

CARBO only USPTO only
USPTO only
USPTO_MIT only
USPTO w9 CARBO w1 USPTO only + 5k fine-tuning

USPTO only + 1k fine-tuning

USPTO only + 20k fine-tuning USPTO only + 10k fine-tuning
USPTO_MIT + 20k fine-tuning
USPTO w9 CARBO 1k w1

USPTO only + 1k fine-tuning USPTO only + 20k fine-tuning

USPTO only + 15k fine-tuning

o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Top-1 Accuracy [%] Top-1 Accuracy [%]

Figure 3.3: Fine-tuning scenario results. a) CARBO random split test set performance for different
training strategies. In green are the top-1 accuracies of the models that were fine-tuned on either
1k or 20k CARBO reactions shown. For comparison, we included in purple the top-1 accura-
cies of the models trained on the single data sets (CARBO, USPTO and USPTO_MIT). Blue
are the performances of models trained in the multi-task scenario. b) CARBO time split test set
performance for different fine-tuning set sizes. Source data are provided as a Source Data file.

For the fine-tuning scenario, where access to the large generic data set is not given but a model,
pre-trained on the large data set, is available instead, the results on the CARBO and USPTO test
sets are shown in Figure 3.3 a). After training the model on the CARBO train set, the top-1 ac-
curacy reaches a 70.3%, similar to the model that was trained on the two data sets simultaneously.
The observed behavior is the same when less CARBO reactions are available. Also for 1k CARBO
reactions, the fine-tuning model matched the accuracy of the corresponding multi-task model.

For this scenario, we analysed the effect of the train, validation and test split in more detail. We
compared the random split described above to a time split, where we included CARBO reactions
first published before 2016 into the train and validation sets and the reactions published from
2016 into the test set (2831 reactions). We investigated different fine-tune set sizes (1k, Sk, 10k,
15k and 20k). As seen in Figure 3.3 b), compared to the random split the top-1 accuracy with
the 20k fine-tuning dropped slightly to 66% but it is still substantially larger than the accuracy
that could be obtained with the generic USPTO training set only. Already with Sk CARBO
reactions, an accuracy above 60% was reached. The larger the CARBO fine-tuning set, the better
the performance of the fine-tuned model.

Besides the fact that the reactions in the large data set do not need to be revealed, another ad-
vantage is the short fine tuning training time. The fine tuning requires only Sk steps compared to
250k steps in the multi-task scenario. However, if time and access to both data sets are given, it
is better to train simultaneously on all data for a longer time as the performance on the large data
set does not decrease, as it does in the fine-tuning scenario. If the interest is only in a specific reac-
tion class, short adaptation times or if generic data is not available, then fine-tuning a pre-trained
model is better.
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To further demonstrate the effectiveness of the fine-tuning approach, we performed an exper-
iment where we pre-trained a model on a data set without stereochemical information. To do so,
we used the USPTO_MIT data set by Jin et al. [S]. As seen in Figure 3.3 a), although the pre-
trained model does not manage to predict any CARBO test set reactions, after fine-tuning for
6k steps the model reaches an accuracy of 63.3 %. The accuracy was not as high as with USPTO
pre-training but a significant improvement over the 0.0 % correctly predicted reactions by the
pre-trained model. The low accuracy after pre-training was expected as none of the chiral centre
tokens (e.g. “[C@H]”, “[C@@H]”) were present in the training set. The fine-tuning result shows
that the Molecular Transformer model is able to learn new concepts within a few thousands train-
ing steps on 20k data points.

In the next sections, we will compare the model trained only on the USPTO data, which was
also used as pre-trained model (USPTO model) with the model that was then fine-tuned on the
20k CARBO reactions (CARBO model).

3.2.2 EXPERIMENTAL ASSESSMENT

Although the accuracy of the transformer has been widely assessed [4], an experimental validation
is still missing. Here, we decided to validate both the transformer and the augmented precision
of the CARBO model on a recently realised synthetic sequence from our own laboratory, absent
from the training data. This sequence is a 14 step synthesis of lipid linked oligosaccharide (LLO)
15 to be used as a substrate to study oligosaccharyl transferases (OST) [154, 155] (Figure 3.4). The
sequence contains typical carbohydrate chemistry: protecting group manipulations (steps: b, h, i,
I n, p), functional group manipulations (step c, d), regioselective protections (step ¢), a B-selective
glycosylation (step g) and an a-selective phosphorylation (step m). The latter regio- and stereos-
elective transformations are of particular interest because their selectivity is generally difficult to
control and to predict, even for experienced synthetic chemists.

We used both the general USPTO model and the fine-tuned CARBO model to predict 13 of
the 14 steps in the sequence (step b was removed since it appeared in the training set). The USPTO
only made four correct predictions (31%), which were either standard protecting group manip-
ulations (step a, g, n) or functional group exchanges (step c¢). The CARBO model also correctly
predicted these four simple reactions, but additionally, made another 6 correct predictions, in-
cluding the regioselective benzoylation (5 to 6, step ) and the S-selective phosphorylation (11
to 12, step m), corresponding to a 77 % success rate and a 46 % improvement over the USPTO
model, in line with the overall statistics presented above.

In detail, the CARBO model only made three mistakes. The first one concerns the reduction
of the primary iodide 4 to a methyl group in 5 by hydrogenation, which is mistakenly predicted to
also reduce the benzyl glycoside. The USPTO model makes the same mistake. Both models have
not learned that carrying out the reaction in the presence of ammonia reduces the catalyst activity
and avoids debenzylation, as no such reaction was present in the training sets. The second mistake
concerns a similar reduction of the benzyl glycoside in 10 (step 1), which is predicted to yield
the B-lactol while the product 11 is in fact formed as an anomeric mixture. Again, the USPTO
model makes the same mistake. Both models ignore that the intially formed S-lactol equilibrates
spontaneously to the anomeric mixture via ring opening. Finally, the CARBO model predicts a
shortened prenyl chain in the phosphate coupling reaction forming the protected LLO 14 (step
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o), which does not make chemical sense. In this case it should be noted that the CARBO training
set does not contain a single LLO molecule, and that the USPTO model performs worse since it
returns an invalid SMILES for this reaction.

Experimental observation CARBO USPTO
OAc X
0 ! Q
AcO a R 0/&/ Correct, 1.00 Correct, 0.38
Ac&/mc ., "Ro Oen rrect, 6
NHAc NHAC
1 b E 2Ry = Ac, X = OAc Correct’, 1.00 Correct’, 0.79
3Ry =H,X=0H
¢ E 4R=H, X =1 Correct, 0.92 Correct, 0.97
|
O d o]
HO HO o} (o)
H&/OB" _— Ho/m/osn Hﬂo/m/o” Hao’ ﬁ \__oH
NHAC NHAc
. s NHAC NHAC
095 0.85
o H Q B O,
Ho? omn _° Bcio/m/osn Gorrect, 0.70 0 o8n
NHAc NHAC NHAc
6 072
/k[ OAc OAc OAc
Q 0
Ao~ ACO&/ 0 B2O 0
B0 NHAC AcO Bommn Correct, 1.00 B2/ g’z&/mn
TmcHN ool TrocHN NHAG TrooHN NHAC
8 0.26
OAc NH OR;
Aco/é&/o 2 9 R?o S Oﬂ, Correct, 0.96 Correct, 0.74
AcO 0OBn 2 0Bn orrect, orrect, 0.
TrocHN A0 — N RO
8 9 Ry, Ry = Ac, Rg = Bz Correct, 1.00
mi
! 10 Ry, Ro, Ry = Ac Correct, 0.99 incomplete acetylation, 0.57
OAc OAc
ACO/&/ ACO/&/ lactol in b lactol in b
AcO AcO AcO configuration configuration
NHAC AcHN "OH 0.74 0.98
OAc OAc OAc
AcO AcO Correct, 0.52 AcO AcO JP//O
NHAC AcHN] AchN NHAC™ 1
P 0Bn OBn
0.19
OAc
OR|
AcO
AcO R'O Shorter prenyl Invalid SMILES
R0 unit,n =1
AcHN | d
P OFM AcHN F‘//O NH 0.72
EWFM Bn 0 Eun 2,Ry=Ac 0~p\
n 7
13R; =H 15n=2 R =H NHe -0 OR Correct, 0.53 Correct, 0.98
Correct, 0.96 incomplete ester deprotection, 0.32

o

Figure 3.4: Synthesis of lipid linked oligosaccharide (LLO). Reaction conditions :

a) BnOH,

Yb(OTTf);, DCE, 90° C, 2h, 78%. b) MeONa, MeOH, sonication, 30 min. c) PPhg, I3, imida-
zole, THEF, 1h, reflux, 88% over two steps. d) Pd/C, NH4OH, Hy, THF/H>O, 30 min, 77%.

e) BzCl, pyr, -35°, 70%. f) BF3Et,0O, 4 A MS, DCM, 26 h, 73%.
50°, 3h, 96% h) MeONa, MeOH/DMF, 4 days.

g) Zn, Ac2O, AcOH, DCE

i) AcpO, 4-(Dimethylamino)pyridine, pyr,

76% over three steps. 1) Ha, THF/H30, 10 bar, 16h m) LIHMDS, tetrabenzylpyrophosphate,

53%.

NH,OH, 16h, qte. (*): reaction present in the training set.

n) Hy, THF/MeOH, 1h. o) farnesylnerol, CDI, DMF, then 11, 5 days, 18%. p) MeOH,

We obtained similar prediction performances from both models when analysing a recently pub-
lished total syntheses of the trisaccharide repeating unit of Pseudomonas aeruginosa and Staphylo-
coccus aureus [152]. Those synthetic sequences comprises four difficult regio- and stereoselective
glycosylation steps and five regioselective protection steps that are of particular interest. Out of
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the 38 reactions that are absent from the training set in this sequence (Supplementary Figures 2-
7), the USPTO model predicts only 15 reactions (39 %) correctly, and none of the difficult steps
mentioned above. The CARBO model performs much better and correctly predicts 26 of the
38 reactions, corresponding to a 68% overall accuracy and a 29% gain over the USPTO model.
In particular, the CARBO model correctly predicts the regioselectivity of the dimethyltinchlo-
ride mediated benzoylation of L-Rhamnopyranoside 16 (step no. 10, 3.5), the difficult regio- and
stereoselective glycosylation at position 3 of the terminal fucosyl in disaccharide 18 (step no. 24)
as well as the regioselective protection of the same disaccharide at position 3 (step no. 29), all of
which are non-obvious even for synthetic chemists. Interestingly, the CARBO model predicts a
double substitution of bis-triflate 19 instead of the correct single substitution at position 2, which
the USPTO model correctly predicts. In this case it should be noted that the outcome of the reac-
tion is dictated by stoichiometry (only one equivalent of the azide nucleophile), an information
which is absent from the training data. In contrast to the USPTO training set, that contains only
single azide substitutions, the CARBO training set contains single, as well as double substitu-
tions. An analysis of the stereo centres in both data sets can be sound in Supplementary Table 1
and Supplementary Figure 1.
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Figure 3.5: Reactions predicted from recent literature. (a) and (b): Reactions correctly predicted. (c)
wrongly predicted reaction (red structure) due to missing reagent stoichiometry in the model:
only one equivalent of NaNj3 was used resulting in single substitution, while the model predicts
double substitution.

Every predicted reaction is associated with a confidence score [4], which is calculated from the
product of the probabilities of the predicted product tokens. Interestingly, the confidence score
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Figure 3.6: Analysis of prediction confidence scores. Predictions (ordered by confidence score) for the
experimental assessment. Source data are provided as a Source Data file.

correlates with the correctness of the prediction (figure 3.6). For both models most of the correct
predictions have a score higher than 0.8.

To have a closer look at the capabilities of the model to self-estimate it’s own uncertainty, we
analysed every reaction in detail. In some cases we observe epimerisation or rearrangments that
have little chemical significance and are associated with low score values. This even occurs in more
trivial transformations, such as amine acetylation of the trisaccharide in reaction 27 (scheme S3).
Although the model is not able to predict the correct product, its low score seems to indicate that
the model senses its own mistake. The second class are arguably wrong predictions that have high
confidence for chemical reasons. Such an example is the previously discussed reaction 12 (Scheme
2, entry c¢) whose outcome is influenced by stoichiometry that together with other reaction con-
ditions, is excluded from the training data, making this reactions extremely difficult to predict.

Similar to previous work [4], one of the limitations of current SMILES-2-SMILES models is
that environmental reaction conditions like temperature and pressure are not taken into account.
Those conditions are often missing in the data sets, and even if present, it would not be straightfor-
ward to codify temperature profiles applied during chemical reactions. Another limitation is the
data coverage and quality. As pointed out above, most of the wrong predictions can be explained
with the data that the models have seen during training.

The availability of large high-quality open-source reaction data set containing information de-
tailed on amounts, stoichiometry and reaction conditions could substantially improve reaction
prediction models.

3.3 DiscussioN
In this work, we demonstrated that transfer learning can be successfully applied to a generally
trained transformer model using as few as 20k data points to derive a specific model that predicts

reactions from a specific class with significantly improved performance. Transfer learning of the
general molecular transformer model, trained on the USPTO data set to a specific set of reac-
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tions, to obtain a high performance specialised model as demonstrated here should be generally
applicable towards any subclass of specific reactions of interest.

Here we used transfer learning to improve predictions of regio- and stereoselectivity, a central
aspect of synthetic chemistry that has not been systematically evaluated previously by reaction pre-
diction models, in part due to the fact that the Molecular Transformer is currently the only model
able to handle stereochemistry. As a test case we examined carbohydrates, a well-defined class of
molecules for which reactions are difficult to predict even for experienced chemists, and subjected
our model to experimental validation. We anticipate that the Carbohydrate Transformer will serve
the practical purpose of improving the efficiency of complex carbohydrate syntheses. The model
can guide chemists by predicting and scoring potential carbohydrates reactions before performing
them experimentally. The fact that the confidence score correlates with prediction accuracy offers
asimple metric to judge the quality of predictions. The shortcomings noted should be addressable
by extending the training set with reactions that are not predicted well.

3.4 METHODS

3.4.1 REACTION PREDICTION MODEL

All the experiments in this work were run with the Molecular Transformer model [4], which is il-
lustrated in Figure 3.1. For details on the architecture we refer the reader to [2, 4]. We used Pytorch
[81] and the OpenNMT [156] framework to build, train and test our models. Hyperparameters
and a detailed description of the data sets can be found in the supplementary information. The
investigated task is reaction prediction, where the aim is to predict the exact structural formula, in-
cluding stereochemistry, of the products that are formed from a given a set of precursors as input.
In the inputs, no difference is made between reactant and reagent molecules [4]. Following previ-
ous work [4, 36, 111], we use accuracy as the evaluation metric. The reported accuracies describe
the percentage of correct reactions. A reaction is counted as correct only if the predicted products
exactly matches the products reported in the literature after canonicalisation using RDXKit [153].
The canonicalisation is required as multiple SMILES can represent the same molecule.

3.4.2 CHEMICAL SYNTHESIS

All reagents were purchased from commercial sources and used without further purifications un-
less otherwise stated. All reactions were carried out in flame-dried round-bottomed-flask under
an argon atmosphere, except if specified. Room temperature (rt) refers to ambient temperature.
Temperatures of 0°C were maintained using an ice-water, -78°C with acetone/dry ice bath and
the other temperatures using a cryostat. Dry solvents were obtained by passing commercially
available pre-dried, oxygen-free formulations through activated alumina columns. Hydrogena-
tion was performed at room pressure using Hj filled balloon. Chromatographic purifications
were performed with silica gel pore size 60 A, 230-400 mesh particle size (sigma-aldrich). Thin
layer chromatography (TLC) was performed using ALUGRAM Xtra Sil G/UV on pre-coated
aluminium sheets, using UV light as a visualising, and an basic aqueous potassium permanganate
solution and ceric ammonium molybdate (CAM) as developing agents. NMR spectra for 'H,
3C, DEPT, 3'P, COSY, HSQC, HMBC and NOE were recorded at room temperature with a

38



3.4 Methods

Bruker AV (400 MHz 'H). Spectra were and processed using TopSpin 3.6.1 software. Chemical
shifts are reported in § (ppm) relative units to residual solvent peaks CDCl3 (7.26 ppm for 'H and
77.2 ppm for *C) and MeOD (3.31 ppm for 'H and 49.00 ppm for 3C). Splitting patterns are as-
signed as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), multiplet (m), dd (doublet
of doublets), and td (triplet of doublets). High resolution mass spectra (HRMS) was provided by
the “Service of Mass Spectrometry” at the Department of Chemistry and Biochemistry in Bern
and were obtained by electron spray ionisation (ESI) in positive or negative mode recorded on a
Thermo Scientific LTQ OrbitrapXL. For the experimental procedures, NMR spectra and physi-
cal data of compounds 2-15, see Supplementary Note 3 of [116].

DATA & CODE AVAILABILITY

The USPTO data set derived from Lowe [42] that we used for training and evaluation, our car-
bohydrate reactions, as well as the ones from the work of Behera et al. [152] are available from
(https: //github.com/rxn4chemistry/OpenNMT-py/tree/carbohyd rate_transformer). Source data
are provided with this paper.

The code and trained models are available from (https ://github.com/rxn4chemistry/OpenNMT-py/
tree/carbohydrate_transforme r). The models are compatible with OpenNMT—py [156,157], which
was used for training and evaluation. The SMILES tokenisation function for preprocessing the
inputs is found on the Molecular Transformer repository [4, 158]. The setup and hyperparameters
can also be found in Supplementary Note 2.
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4 PREDICTING RETROSYNTHETIC
PATHWAYS USING TRANSFORMER-BASED
MODELS AND A HYPER-GRAPH
EXPLORATION STRATEGY

We present an extension of our Molecular Transformer model combined with a hyper-graph
exploration strategy for automatic retrosynthesis route planning without human intervention.
The single-step retrosynthetic model sets a new state of the art for predicting reactants as well as
reagents, solvents and catalysts for each retrosynthetic step. We introduce four metrics (coverage,
class diversity, round-trip accuracy and Jensen-Shannon divergence) to evaluate the single-step
retrosynthetic models, using the forward prediction and a reaction classification model always
based on the transformer architecture. The hyper-graph is constructed on the fly, and the nodes
are filtered and further expanded based on a Bayesian-like probability. We critically assessed the
end-to-end framework with several retrosynthesis examples from literature and academic exams.
Overall, the frameworks have an excellent performance with few weaknesses related to the train-
ing data. The use of the introduced metrics opens up the possibility to optimise entire retrosyn-

thetic frameworks by focusing on the performance of the single-step model only.

This chapter has been published as a scientific article in Chemical Science:

P Schwaller, R Petraglia, V Zullo, V H Nair, R A Haeuselmann, R Pisoni, C Bekas, A Iuliano,
T Laino. Predicting retrosynthetic pathways using a combined linguistic model and hyper-graph
exploration strategy. Chem. Sci., 2020, 11, 3316-3325 (CC BY-NC 3.0). Published by The Royal
Society of Chemistry. The hyper-graph beam search was developed and implemented by Riccardo
Petraglia. The predicted routes were analysed by Valerio Zullo and Anna Iuliano.

4.1 INTRODUCTION

The field of organic chemistry has been continuously evolving, moving its attention from the
synthesis of complex natural products to the understanding of molecular functions and activi-
ties [159,160, 161]. These advancements were made possible thanks to the vast chemical knowledge
and intuition of human experts, acquired over several decades of practice. Among the different
tasks involved, the design of efficient synthetic routes for a given target (retrosynthesis) is arguably
one of the most complex problems. Key reasons include the need to identify a cascade of discon-
nections schemes, suitable building blocks and functional group protection strategies. Therefore,
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it is not surprising that computers have been employed since the 1960s [131], giving rise to several
computer-aided retrosynthetic tools.

Rule-based or similarity-based methods have been the most successful approach implemented
in computer programs for many years. While they suggest very eftective [23, 162] pathways to
molecules of interest, these methods do not strictly learn chemistry from data but rather encode
synthon generation rules. The main drawback of rule-based systems is the need for labourious
manual encoding, which prevents scaling with increasing data set sizes. Moreover, the complex-
ity in assessing the logical consistency among all existing rules and the new ones increases with
the number of codified rules and may sooner or later reach a level where the problem becomes
intractable.

4.1.1 THE DAWN OF AI-DRIVEN CHEMISTRY.

While human chemical knowledge will keep fueling the organic chemistry research in the years
to come, a careful analysis of current trends [23, 27, 33, 65, 107, 108, 117, 118, 119, 120, 121, 122,
123,124, 125] and the application of basic extrapolation principles undeniably shows that there
are growing expectations on the use of Artificial Intelligence (AI) architectures to mimic human
chemical intuition and to provide research assistant services to all bench chemists worldwide.

Concurrently to rule-based systems, a wide range of Al approaches have been reported for ret-
rosynthetic analysis [107, 108], prediction of reaction outcomes [4, 6, 30, 32, 35, 36] and optimi-
sation of reaction conditions [163]. All these AI models superseded rule-based methods in their
potential of mimicking the human brain by learning chemistry from large data sets without hu-
man intervention.

This extensive production of Al models for Organic chemistry was made possible by the avail-
ability of public data [41, 42]. However, the noise contained in this data generated by the text-
mining extraction process heavily holds back their potential. In fact, while rule-based systems [164]
demonstrated, through wet-lab experiments, the capability to design target molecules with less
purification steps and hence, leading to savings in time and cost [165], the Al approaches 65,107,
108,109,162, 166,167,168, 169,170, 171] still have a long way to go.

Among the different Al approaches [172] those treating chemical reaction prediction as natural
language processing (NLP) problems [127] are becoming increasingly popular. They are currently
state of the art in the forward reaction prediction realm, scoring an undefeated accuracy of more
than 90% [4]. In the NLP framework, chemical reactions are encoded as sentences using reaction
SMILES [46] and the forward- or retro- reaction prediction is cast as a translation problem, using
different types of neural machine translation architectures. One of the most significant advantages
of representing synthetic chemistry as a language is the inherent scalability for larger data sets,
as it avoids important caveats such as the need for humans to assign reaction centres [162, 164].
The Molecular Transformer architecture [158] is currently the most popular approach to treat
chemistry as a language. Its trained models fuel the cloud-based IBM RXN [44] for Chemistry
platform.

4.1.2 TRANSFORMER-BASED RETROSYNTHESIS: CURRENT STATUS.

Inspired by the success of the Molecular Transformer [4, 44, 158] for forward reaction prediction,
a few retrosynthetic models based on the same architecture were reported shortly after [166, 167,
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169,170, 171]. Zheng et al. [166] proposed a template-free self-corrected retrosynthesis predictor
built on the Transformer architecture. The model achieves 43.7% top-1 accuracy on a small stan-
dardised (50k reactions) data set [173]. They were able to reduce the initial number of invalid
candidate precursors from 12.1% to 0.7% using a coupled neural network-based syntax checker.
Previous work reported less than 0.5% of invalid candidates in forward reaction prediction [4],
without the need of any additional syntax checker. Karpov et al. [167] described a Transformer
model for retrosynthetic reaction predictions trained on the same data set [173]. They were able
to successfully predict the reactants with a top-1 accuracy of 42.7%. Lin et al. [169] combined a
Monte-Carlo tree search, previously introduced for retrosynthesis in the ground-breaking work
by Segler et al. [107], with a single retrosynthetic step Transformer architecture for predicting
multi-step reactions. In a single-step setting, the model described by Lin et al. [169] achieved a
top-1 prediction accuracy of over 43.1% and 54.1% when trained on the same small data set [173]
and a ten times larger collection, respectively. Duan et al. [171] increased the batch size and the
training time for their Transformer model and were able to achieve a top-1 accuracy of 54.1% on
the 50k USPTO data set [173]. Later on, the same architecture was reported to have a top-1 accu-
racy of 43.8% [170], in line with the three previous transformer-based approaches [166, 167, 169]
butsignificantly lower than the accuracy previously reported by Duan et al [171]. Interestingly, the
transformer model was also trained on a proprietary data set [170], including only reactions with
two reactants with a Tanimoto similarity distribution peaked at 0.75, characteristic of an excessive
degree of similarity (roughly two times higher than the USPTO). Despite the high reported top-1
accuracy using the proprietary training and testing set, it is questionable how a model that overfits
a particular ensemble of identical chemical transformations could be used in practice. Recently,
a graph enhanced transformer model [174] and a mixture model [175] were proposed, achieving a
top-1 accuracy of 44.9% and more diverse reactant suggestions, respectively, with no substantial
improvements over previous works.

Except for the work of Lin et al. [169], all transformer-based retrosynthetic approaches were
limited to a single step only. None of the previously reported works attempts the concurrent
predictions of reagents, catalysts and solvent conditions but only reactants.

In this work, we present an extension of our Molecular Transformer architecture combined
with a hyper-graph exploration strategy to design retrosynthetic pathways without human inter-
vention. Compared to all other existing works using Al we predict reactants as well as reagents for
each retrosynthetic step, which significantly increases the difficulty of prediction[112]. Through-
out the article, we will refer to reactants and reagents (e.g. solvents and catalysts) as precursors (see
Figure 4.1). We criticise the use of the confidence level intrinsic to the retrosynthetic model (top-
N accuracy) and introduce new metrics (coverage, class diversity, round-trip accuracy and Jensen-
Shannon divergence) to evaluate the single-step retrosynthetic model, using the corresponding
forward prediction and a reaction classification model. This provides a general assessment of each
retrosynthetic step capturing the essential aspects a model should have to perform similarly to
human experts in retrosynthetic analysis.

The optimal synthetic pathway is found through a beam search on the hyper-graph of the pos-
sible disconnection strategies. The hyper-graph is constructed on the fly, and the nodes are filtered
and subject to further expansion based on a Bayesian-like probability that makes use of the for-
ward prediction likelihood and the SCScore [176] to prioritise synthetic steps. This strategy allows
circumventing potential selectivity traps, penalising non-selective reactions and precursors with
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Figure 4.1: Example precursor set suggestions.  Retrosynthesis step suggestion for 13-(1,10-
phenanthrolin-2-yl)-10-(9-phenyl-9H-carbazol-3-yl)-10H-phenanthro[9,10-b] carbazole
using a Chloro-Suzuki coupling reaction. In a) only the reactants are predicted. In b) all the
precursors are predicted, which increases the overall difficulty of the single-step prediction task.
While for a) two molecules consisting of a total of 68 atoms are predicted, the target of b) are
six molecules consisting of 157 atoms.

higher complexity than the targets and leads to termination when commercially available building
blocks are identified. We relate the quality of the retrosynthetic tree to the likelihood distributions
of the forward prediction model and suggest the use of the Jensen-Shannon divergence to char-
acterise the similarity of the distributions. This holistic analysis provides first the time a way to
improve the quality of multi-step retrosynthetic tools systematically.

Finally, we critically assessed the entire Al framework by reviewing several retrosynthetic prob-
lems, some of them from literature data and others from academic exams. We show that reaching
high performance on a subset of metrics for single-step retrosynthetic prediction is not beneficial
in a multi-step framework. We also demonstrate that the use of all newly defined metrics provides
an evaluation of end-to-end solutions, thereby focusing only on the quality of the single-step pre-
diction model. The trained models and the entire architecture is freely available online [44]. The
potential of the presented technology is high, augmenting the skills of less experienced chemists
but also enabling chemists to design and protect the intellectual property of non-obvious syn-
thetic routes for given targets.
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4.2 METHODS

4.2.1 EVALUATION METRICS FOR SINGLE-STEP RETROSYNTHETIC MODELS

The evaluation of retrosynthetic routes is a task for human experts. Unfortunately, every evalua-
tion is tedious and difficult to scale to a large number of examples. Therefore, it is challenging to
generate statistically relevant results for more than a few different model settings. By using an anal-
ogy with human experts, we propose to use a forward prediction model [21, 107] and a reaction
classification model to assess the quality [177] of the retrosynthetic predictions. The forward pre-
diction model estimates the likelihood of the forward reaction of a single-step retrosynthesis and
the classification model provides its corresponding class. Model scores have already been used as
an alternative to human annotators to evaluate generative adversarial networks [178]. In our con-
text, we define a retrosynthetic prediction as valid if the suggested set of precursors leads to the
original product when processed by the forward chemical reaction prediction model (see Figure
4.2). More detail about the forward prediction and the reaction classification model can be found
in the Supporting Information. Here we introduce four new metrics (round-trip accuracy, cov-
erage, class diversity and the Jensen-Shannon divergence) to thoroughly evaluate retrosynthetic
models.
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round-trip accuracy

% of predicted product == desired product

f

Model to evaluate retro accuracy comparing with ground

candidate precursors 1 >
Retro candidate precursors 2 truth precursors

desired product Model

coverage
at least 1 predicted product == desired product

!

fast, but sub-optimal

candidate precursors N
many sets of precursors lead to same product

class diversity <
diversity of suggested reaction classes
predicted product 1 candidate precursors 1 ! Human expert
Jensen-Shannon divergence < predicted product 2 Forward candidate precursors 2 validation Experiments comparing with
similarity of class probability distributions predicted product N Model Candidate precursors N === »  |e---- P> experimental
scalable single-step retrosynthesis Fixed scoring model : . products
evaluation metrics this work ideal, but not scalable

Figure 4.2: Overview of single-step retrosynthesis evaluation metrics.

The round-trip accuracy quantifies what percentage of the retrosynthetic suggestions is valid.
This metric is an crucial evaluation as it is desirable to have as many valid suggestions as possible.
This metric is highly dependent on the number of beams, as generating more outcomes through
the use of a beam search mightlead to a smaller percentage of valid suggestions due to lower quality
suggestions in case of a higher number of beams.

The coverage quantifies the number of target molecules that produce at least one valid dis-
connection. With this metric, one wants to prevent rewarding models that produce many valid
disconnections for only a few reactions, which would result in a small coverage. A retrosynthetic
model should be able to produce valid suggestions for a wide variety of target molecules.

The class diversity is complementary to the coverage, as instead of relating to targets it counts
the number of diverse reaction superclasses predicted by the retrosynthetic model, upon classifi-
cation. A single-step retrosynthetic model should predict a wide diversity of disconnection strate-
gies, which means generating precursors leading to the same product, with the corresponding
reactions belonging to different reaction classes. Allowing a multitude of different disconnection
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strategies is beneficial for an optimal route search and essential, precisely when the target molecule
contains multiple functional groups.

Finally, the Jensen-Shannon divergence, which is used to compare the likelihood distributions
of the suggested reactions belonging to different classes above a threshold of 0.5, is calculated as

follows:
11 1 1 11
JSD(Py, P, ..., P11) :H<Z; 123—) — H;H(Pi), (4.1)

where P; denote the probability distributions and H (P) the Shannon entropy for the distribu-
tion P.

To calculate the Jensen-Shannon divergence, we split the single-step retrosynthetic reactions
into superclasses and use the likelihoods predicted by the forward model to build a likelihood
distribution within each class. This metric is crucial to assess the quality of a sequence of ret-
rosynthetic steps. Having a model with a dissimilar likelihood distribution would be equivalent
to having a human expert favour a few specific reaction classes over others. This would result in
an introduction of bias favouring those classes with dominant likelihood distributions. While it
is desirable to have a peaked distribution, as this is an evident sign of the model learning from the
data, it is also desirable to have all the likelihood distributions equally peaked, with none of them
exercising more influence than the others during the construction of a large number of retrosyn-
thetic trees. The inverse of the Jensen-Shannon divergence (1/J.5 D) is a measure of the similarity
of the likelihood distributions among the different superclasses and we use this parameter as an
effective metric to guarantee uniform likelihood distributions among all possible predicted reac-
tion classes. Uneven distributions are directly connected to the nature of the training data set.
All these four metrics have been critically designed and assessed with the help of human domain
experts. Their combined use paves the way for a systematic improvement of entire retrosynthetic
frameworks, by adequately tuning data sets that optimise the different single-step performance
indicators in a multi-objective fashion.

Additionally, we use the open-source chemoinformatics software RDXKit [153] to evaluate the
percentage of syntactically valid predicted molecules (grammatically correct SMILES).

4.2.2 HYPER-GRAPH EXPLORATION

A retrosynthetic tree is equivalent to a directed acyclic hyper-graph, a mathematical object com-
posed of hyper-arcs (A) that link nodes (N). The main difference compared to a typical graph is
that a hyper-arc can link multiple nodes, similar to what happens in a retrosynthesis: if a node
represents a target molecule, the hyper-arcs connecting to different nodes represent all possible re-
actions involving those corresponding molecules. Hyper-arcs have an intrinsic direction defining
whether the reaction is forward or retro (see Figure 4.3).

A retrosynthetic route needs to be free of any loops, i.e. acyclic. This requirement renders the
retrosynthetic route a hyper-tree [179], in which the root is the target molecule and the leaves are
the commercially available starting materials (see Figure 4.4).

In cases where the hyper-graph of the entire chemical space is available, an exhaustive search
may reveal all the possible synthetic pathways leading to a target molecule from defined starting
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Figure 4.3: Reaction hyper-graph. A generic reaction (top of the picture) can be represented as a hyper-
graph. Each molecule involved in the reaction becomes a node in the hyper-graph while the
hyper-arc, connecting the reactants and reagents to the product, represents the reaction arrow.

materials. Instead, here we build the hyper-tree on the fly: only the nodes and arcs expanding in
the direction of the most meaningful retrosynthesis are calculated and added to the existing tree.
The retrosynthesis exploration uses a SCScore [176]-based Bayesian-like probability to decide the
direction along which the graph is expanded, driving the tree towards more simple precursors. In
Figure 4.5, we show a schematic representation of the multi-step retrosynthetic workflow. Given a
target molecule, we use a single-step retrosynthetic model to generate a certain number of possible
disconnections (i.e. precursors set). We canonicalise the predicted reaction smiles and determine
their reaction class. We compute the SCScore as well as the reaction likelihood with the forward
prediction model on the corresponding inchified entry. In order to discourage the use of non-
selective reactions, we filter the single-step retrosynthetic predictions by using a threshold on the
reaction likelihood returned by the forward model. The likelihood and SCScore of the filtered
predictions are combined to compute a probability score to rank all the options. In case all the
predicted precursors are commercially available the retrosynthetic analysis provides that option as
apossible solution and the exploration of that tree branch is considered complete. If not, we repeat
the entire cycle using the precursors as initial target molecules until we reach either commercially
available molecules or the maximum number of specified retrosynthesis steps. The single-step
forward and retrosynthetic predictive models, as well as the multi-step framework, do not contain
explicitly encoded chemical knowledge: the only chemical knowledge embedded is the onelearned
from the data during the training processes. The algorithmic details and the path scoring function
are detailed in the supplementary information.

4.3 RESULTS

4.3.1 SINGLE-STEP RETROSYNTHESIS

The Top-N accuracy score is the preferred method to evaluate the quality of single-step predictive
models. While this is entirely justified for the evaluation of forward reaction prediction, its us-
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Figure 4.4: Example of hyper-graph complexity. The Molecule H is the target (purple label). The red
lines represent the synthetic path from commercially available precursors (highlighted in green)
to the target molecule. The yellow line, does not affect the retrosynthesis of H, neither does the
last reaction with black lines.

age in the context of single-step retrosynthetic models is misleading, as recently suggested also by
Thakkar et al. [109]. Top-N accuracy means that the ground truth precursors were found within
the first N suggestions of the retrosynthetic model. In contrast to forward prediction models, a
target molecule rarely originates from one set of precursors only. Often the presence of difter-
ent functional groups allows a multitude of possible disconnection strategies to exist, leading to
different sets of reactants, as well as possible solvents and catalysts.

The analysis of the USPTO stereo data set, derived from the text-mined open-source reaction
data set by Lowe [41, 42], and of the Pistachio data set [180], shows that 6% of the products, and
14% respectively, have at least two different sets of precursors. While these numbers only reflect
the organic chemistry represented in each data set, the total number of possible disconnections
is undoubtedly larger. Considering the limited size of existing data sets, it is evident that, in the
context of retrosynthesis, the top-N accuracy rewards the ability of a model to retrieve expected
answers from a data set more than that to predict chemically meaningful precursors. Therefore,
a top-N comparison with the ground truth is not an adequate metric for assessing retrosynthetic
models.

Here, we dispute the previous use of top-N accuracy in single-step retrosynthetic models [65,
107, 108, 162, 166, 167, 168, 169, 170, 171] and propose four new different metrics (round-trip ac-
curacy, coverage, class diversity and Jensen-Shannon divergence [181], see Section 4.2.1) for their
evaluation.

During the development phase, we trained different retrosynthetic transformer-based models
with two different data sets, one fully based on open-source data (stereo) and one on based com-
mercially available data from Pistachio (pistachio). In some cases, the data set was inchified [52]
(labelled with _7). Table 4.1 shows the results for the retrosynthetic models, evaluated using a fixed
forward prediction model (pistachio_r) on two validation sets (stereo and pistachio). The coverage
represents the percentage of desired products for which at least one valid precursor set was sug-
gested. It was slightly better for stereo but above 90% for all the model combinations, which is
an important requirement to guarantee the possibility to always offer at least one disconnection
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Figure 4.5: Schematic of the multi-step retrosynthetic workflow.

strategy. Likewise, the class diversity, which is an average of how many different reaction classes are
predicted in a single retrosynthetic step, was comparable for both models with slightly better per-
formance for the pistachio model. The round-trip accuracy, which is the percentage of precursor
sets leading to the initial target when evaluated with the forward model, was better for stereo than
for pistachio. Despite the stereo retrosynthetic model performed better than the pistachio model
in terms of round-trip accuracy and coverage, the synthesis routes generated with this model were
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Table 4.1: Evaluation of single-step retrosynthetic models. The test data set consisted of 10K entries.
For every reaction we generated 10 predictions. The number of resulting precursor suggestions
was 100K. Round-trip accuracy (RT), coverage (Cov.), class diversity (CD), the inverse of the
Jensen Shannon divergence of the class likelihood distributions (1/JSD), the percentage of invalid
SMILES (ismi) and the human expert evaluation (hu. ev.) are reported in the table. Models with
the “_i” suffix were trained on an inchified data set. Models starting with “ste” were trained with
the stereo data set and the ones with “pist” with the pistachio data set.

Model Test RT Cov. CD ﬁ ismi  hu.
retro  forw. data  [%]  [%] [%] ev

ste_i pist_i ste 812 951 1.8 165 05 -
ste_i pist i pist 791 93.8 1.8 206 11 -
pist_i  pist_i pist 749 953 21 22.0 0.5 +
pist pist_i pist 711 926 21 272 0.6 ++

of lower quality and often characterised by a sequence of illogical protection/deprotection steps
as determined by the human expert assessment (last column in Table 4.1). This apparent paradox
became clear when we analysed in detail how humans approach the problem of retrosynthesis.
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| N | N o o US20120088764A1
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MeOH
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SNAr ether synthesis (1.7.11) 2-methoxypyridine US20150210671A1

US05922742A

Figure 4.6: Accuracy metric problem. Highlighting a few of the precursors and reactions leading to 5-
Bromo-2-methoxypyridine that are found in the US Patents data set. The molecules were de-
picted with CDK [182].

Solving retrosynthetic problems requires a careful analysis of which ones among multiple pre-
cursors could lead to the desired product more efficiently, as seen in Figure 4.6 for S-Bromo-2-
methoxypyridine. Humans address this issue by mentally listing and analysing all possible discon-
nection sites and retaining only the options, for which the corresponding precursors are thought
to produce the target molecule most selectively.

For an expert, it is not sufficient to always find at least one disconnection site (coverage) and be
sure that the corresponding precursors will selectively lead to the original target (round-trip accu-
racy). Itis necessary to generate a diverse sample of disconnection strategies to cope with compet-
itive functional group reactivity (class diversity). Moreover, most important, every disconnection
class needs to have a similar probability distribution to all the other classes (Jensen-Shannon di-
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vergence, JSD). Continuing the parallelism with human experts, if one was exposed to the same
reaction classes for many years, the use of those familiar schemes in the route planning would ap-
pear more frequently, leading to strongly biased retrosynthesis. Therefore, it is essential to reduce
any bias in single-step retrosynthetic models to a minimum.
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Figure 4.7: Reaction likelihood distributions. The likelihood distributions predicted by a forward
model (pistachio_7) for the reactions suggested by different retro models. We show the likeli-
hood range between 0.5 and 1.0.

To evaluate the bias of single-step models, we use the JSD of the likelihood distributions for
the prediction divided in different reaction superclasses, which we report in Table 4.1 as 1/JSD.
The larger this number, the more similar the likelihood distributions of the reactions belonging to
different classes are and hence, the less dominant (lower bias) individual reaction classes are in the
multi-step synthesis. In Figure 4.7, we show the likelihood distributions for the different models
in Table 4.1. Except for the resolution class, all of the distributions show a peak close to 1.0, which
clearly shows that the model learned how to predict the reaction in those classes. The resolution
class is instead relatively flat as a consequence of the poor data quality/quantity for stereochemi-
cal reactions both in the stereo and pistachio data set. Interestingly, one can see that for the stereo
model the likelihood distributions of the deprotection, reduction and oxidation reactions are dif-
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ferent (and generally more peaked) from all other distributions generated with the same model.
This statistical imbalance favours those reaction classes and explains the occurrence of illogical
loops of protection/deprotection or oxidation/reduction strategies. While peaked distributions
are desirable, as this is a consequence of the model learning to predict disconnection strategies in a
precise class, the dissimilarity (JSD) between the twelve probability distributions reflects an intrin-
sic bias, likely due to unbalanced data sets. Among the few models reported, the pistachio model
was found to have the best similarity (1/JSD) score and is the one analysed in the subsequent part
of the manuscript and made available online.

ground truth

class predictions on gt
suggestions by stereo_inchi
suggestions by pistachio_inchi
25 4 suggestions by pistachio

304

Reactions [%]

Reaction Super Class

Figure 4.8: Distribution of reaction superclasses for the ground truth [63]. the predicted superclasses
for the ground truth reactions and the predicted superclasses for the reactions suggested by the
different retrosynthesis models.

The class diversity and similarity scores require the identification of the reaction class for each
prediction. We used a transformer-based reaction classification model, as described in [177]. In
Figure 4.8, we report the ground truth classified by the NameRXN [63] tool, the class distribu-
tion predicted by our classification model on the ground truth reactions and finally, the class dis-
tributions predicted for the reactions suggested by the retrosynthesis models (see Table 4.1). We
observe that the classifications made by our class prediction model are in agreement with the ones
of NameRXN [63] and match them with an accuracy of 93.8%. The distributions of the single-
step retrosynthetic models resemble the original one with the number of unrecognised reactions
nearly halved. All of the models learned to predict more recognisable reactions, even for products,
for which there was an unrecognised reaction in the ground truth.

4.3.2 A HOLISTIC EVALUATION OF THE PATHWAY PREDICTION

An evaluation of the model was carried out through performing the retrosynthesis of the com-
pounds reported in Figure 4.9. Some of these are known compounds, for which the synthesis is
reported in the literature (1, 2, S, 7, 8), others are unknown structures (3, 4, 6, 9). For the first
group, the evaluation of the model could be made by comparing the proposed retrosynthetic anal-
ysis with the known synthetic pathway. For the second group, a critical evaluation of the proposed
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retrosynthesis, which takes into account the level of chemo-, regio-, and stereoselectivity for every
retrosynthetic step was performed. The parameters used for each retrosynthesis are reported in
the supplementary information. In some cases, the default values were changed to increase the
hyper-graph exploration and yield better results. As an output, the model generates several ret-
rosynthetic sequences for each compound, each one with a different confidence level. Because
the model predicts not only reactants but also reagents, solvents and catalysts, there are several
sequences with similar confidence level and identical disconnection strategies and differing only
by the suggested reaction solvents in a few steps. Therefore, we report only one of the similar
sequences in the supplementary information.
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Figure 4.9: Set of molecules used to assess the quality of retrosynthesis.

All of the retrosynthetic routes generated for compounds 1, 2 and 3 fulfill the criteria of chemos-
electivity. The highest confidence sequence (called “sequence 0”) of 1 corresponds to the reported
synthesis of the product [183] and starts from the commercially available acrylonitrile. The other
two sequences (17 and 22) use synthetic equivalents of acrylonitrile and also show its preparation.
For compound 2, the highest confidence retrosynthetic sequence (sequence 0) does not corre-
spond to the synthetic pathway reported in the literature, where the key step is the opening of an
epoxide ring. Two other sequences (5 and 23) report this step, and one of them (sequence 5) cor-

53



4 Predicting retrosynthetic pathways using transformer-based models and a hyper-graph
exploration strategy

responds to the literature synthesis [184]. The retrosynthetic sequence for compound 3 provides a
Diels-Alder reaction as the first disconnection strategy and proposes a correct retrosynthetic path
for the synthesis of the diene from available precursors. A straightforward retrosynthetic sequence
was also found in the case of compound 4, where the diene moiety was disconnected by two ole-
fination reactions and the sequence uses structurally simple compounds as starting material. It
may be debatable whether the two olefinations through a Horner-Wadsworth-Emmons reaction,
can really be stereoselective towards the E-configurated alkenes or whether the reduction of the
conjugate aldehyde by NaBH4 can be completely chemoselective towards the formation of the
allylic alcohol. Only experimental work can solve this puzzle and give the correct answer.

The retrosynthesis of racemic omeoprazole S returned a sequence consisting of one step only
because the model finds in its library of available compounds the sulfide precursor of the final
sulfoxide. When repeating the retrosynthesis using benzene as starting molecule in conjunction
with a restricted set of available compounds, we obtained a more complete retrosynthetic se-
quence with some steps in common with the reported one [185]. However, although all of the
steps fulfill the chemoselectivity requirement, the sequence is characterised by some avoidable
protection-deprotection steps. This sequence nicely reflects the bias present in the likelihood dis-
tributions of the different superclasses for the chosen model. Although the single-step retrosyn-
thetic model has the best Jensen-Shannon divergence among all of the trained models, there is
still room for improvements that we will explore in the future. A higher similarity across the
likelihood distributions will prevent the occurrence of illogical protection-deprotection, estheri-
fication/saponification steps.

Besides, the reported sequence for 5 lists a compound not present in the restricted set of avail-
able molecules as starting material. A “de novo” retrosynthesis of this compound solved the prob-
lem. The retrosynthetic sequence of the structurally complex compound 6 was possible only with
wider settings allowing a more extensive hyper-graph exploration. The result was a retrosynthetic
route starting from simple precursors: notably, the sequence also showed the synthesis of the tri-
azole ring through a Huisgen cycloaddition. However, we recognised the occurrence of some
chemoselectivity problems in step 6, when the enolate of the ketone is generated in the presence
of an acetate group, used as protection of the alcohol. This problem could be avoided by using
a different protecting group for the alcohol. By contrast, the alkylation of the ketone enolate by
means of a benzyl bromide bearing an enolisable ester group in the structure appears less prob-
lematic, due to the high reactivity of the bromide. The retrosynthesis of the chiral stereodefined
compound indinavir, 7, completed in one step, through finding a very complex precursor in the
set of available molecules. Sequences of lower confidence resulted in more retrosynthetic steps,
disconnecting the molecule as in the reported synthesis [186] but stopped at the stereodefined
epoxide, with no further disconnection paths available. However, when the retrosynthesis was
performed on the same racemic molecule, a chemoselective retrosynthetic pathway was found,
disconnecting the epoxide and starting from simple precursors. Similarly, for the other optically
active compound, propranolol, 8, which was disconnected according to the published synthetic
pathway [187] only when the retrosynthesis was performed on the racemic compound. The prob-
lem experienced with stereodefined molecules reflects the poor likelihood distribution of the reso-
lution superclass in Figure 4.7. Because all current USPTO derived data sets (stereo and pistachio)
have particularly noisy stereochemical data we decided to retain only few entries in order to avoid
jeopardising the overall quality. With a limited number of stereochemical examples available in
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the training set, the model was not able to learn reactions belonging to the resolution class, failing
to provide disconnection options for stereodefined centres.

The retrosynthesis of the last molecule, 9, succeeded only with intensive hyper-graph explo-
ration settings. However, the retrosynthetic sequence is tediously long, with several avoidable
esterification-saponification steps. Similar to 5, the bias in the likelihood distributions is the one
reason for this peculiar behavior. In addition, a non-symmetric allyl bromide was chosen as pre-
cursor of the corresponding tertiary amine: this choice entails a regioselectivity problem, given
that the allyl bromide can undergo nucleophilic displacement not only at the ipso position, giv-
ing rise to the correct product, but also at the allylic position, resulting in the formation of the
regioisomeric amine. Lastly, the model was unable to find a retrosynthetic path for one complex
building block, which was not found in the available molecule set. However, a slight modifica-
tion of the structure of this intermediate enabled a correct retrosynthetic path to be found, which
could also be easily applied to the original problem, starting from 1,3-cycloexanedione instead
of cyclohexanone. We also made a comparison of our retrosynthetic architecture with previous
work [107,162], using the same compounds for the assessments (see SI). The model performed well
on the majority of these compounds, showing problems in the case of stereodefined compounds
asin the previous examples. Retrosynthetic paths were easily obtained only for their racemic struc-
ture. The proposed retrosyntheses in some cases are similar to those reported [162] while, for some
compounds [107] they are different but still chemoselective. Only in a few cases, the model failed
to find a retrosynthesis.

4.4 DISCUSSION

In this work, we presented an extension of our Molecular Transformer architecture combined
with a hyper-graph exploration strategy to design retrosynthesis without human intervention.
We introduce a single-step retrosynthetic model predicting reactants as well as reagents for the
first time. We also introduce four new metrics (coverage, class diversity, round-trip accuracy and
Jensen-Shannon divergence) to provide a thorough evaluation of the single-step retrosynthetic
model. The optimal synthetic pathway is found through a beam search on the hyper-graph of
the possible disconnection strategies and allows to circumvent potential selectivity traps. The
hyper-graph is constructed on the fly, and the nodes are filtered, and further expanded based on
a Bayesian-like probability score until commercially available building blocks are identified. We
assessed the entire framework by reviewing several retrosynthetic problems to highlight strengths
and weaknesses. As confirmed by the statistical analysis, the entire framework performs very well
for a broad class of disconnections. An intrinsic bias towards a few classes (reduction / oxidation /
estherification / saponification) may lead, in some cases, to illogical disconnection strategies that
are a peculiar fingerprint of the current learning process. Also, an insufficient ability to handle
stereochemical reactions is the result of the poor quality training data set that covers only a few
examples in the resolution class. The use of the four new metrics, combined with the critical anal-
ysis of the current model, provides a well defined strategy to optimise the retrosynthetic frame-
work by focusing exclusively on the performance of the single-step retrosynthetic model without
the need to manually review the quality of entire retrosynthetic routes. A key role in this strategy
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will be the construction of statistically relevant training data sets to improve the confidence of the
model in different types of reaction classes and disconnections.
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S MAPPING THE SPACE OF CHEMICAL
REACTIONS USING ATTENTION-BASED
NEURAL NETWORKS

Organic reactions are usually assigned to classes containing reactions with similar reagents and
mechanisms. Reaction classes facilitate the communication of complex concepts and efficient
navigation through chemical reaction space. However, the classification process is a tedious task.
It requires the identification of the corresponding reaction class template via annotation of the
number of molecules in the reactions, the reaction center, and the distinction between reac-
tants and reagents. This work shows that transformer-based models can infer reaction classes
from non-annotated, simple text-based representations of chemical reactions. Our best model
reaches a classification accuracy of 98.2%. We also show that the learned representations can be
used as reaction fingerprints that capture fine-grained differences between reaction classes better
than traditional reaction fingerprints. The insights into chemical reaction space enabled by our
learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and

similarity searching.

This chapter has been published as a scientific article in Nature Machine Intelligence:

P Schwaller, D Probst, AC Vaucher, VH Nair, D Kreutter, T Laino, JL Reymond. Mapping the
Space of Chemical Reactions using Attention-Based Neural Networks. Nat. Mach. Intell., 2021,
3,144-152.

S.1 INTRODUCTION

In the last decade, computer-based systems [44, 162, 164] have become an important asset available
to chemists. Deep learning methods stand out, not only for reaction prediction tasks [4, 35, 36],
but also for synthesis route planning [43, 107, 109] and synthesis procedures to action conversions
[188].

Among the few approaches, natural language processing (NLP) methods [2, 3] applied to Sim-
plified molecular-input line-entry system (SMILES) [46, 47] and other text-based representation
of molecules and reactions are particularly effective in the chemical domain. Recently, Schwaller
et al. [189] demonstrated that neural networks are able to capture the atom rearrangements from
precursors to products in chemical reactions without supervision. Figure 5.1 a) shows examples
of chemical reactions and the corresponding textual representation in b).

The demand for robust algorithms to categorise chemical reactions is high. The knowledge of
the class of a reaction has a great value for expert chemists, for example to assess the quality of the
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Figure 5.1: Data representation and task. Two examples of chemical reactions with associated classifi-
cation labels and reaction templates describing the transformation. The task is to predict the
reaction class or template label from the chemical reaction. The encoded representation of the
reaction can be used as data-driven reaction fingerprint.

reaction prediction [190]. Chemists use reaction classes to navigate large databases of reactions
and retrieve similar members of the same class to analyse and infer optimal reaction conditions.
They also use reaction classes as an efficient way to communicate what a chemical reaction does
and how it works in terms of atomic rearrangements. As seen in Figure 5.1 c), reaction classes can
be named after the reaction type referring to the changing structural features, such as “Nitro to
Amino”. Alternatively, they can be named after the persons who discovered the chemical reaction
or refined an already known transformation, like the second example in Figure 5.1 ¢). Itis a chloro
Suzuki coupling reaction named after Akira Suzuki, who received the Nobel prize in 2010 for
his work on palladium-catalysed cross-coupling reactions [191]. The current state-of-the-art in
reaction classification is are commercially available tools [63, 192], which classify reactions based
on a library of expert-written rules. These tools typically make use of SMIRKS [193], a language
for describing transformations in the SMILES format [46, 47]. On the contrary, classifiers based on
machine learning have the potential to increase the robustness to noise in the reaction equations
and to avoid the need for an the explicit formulation of rules.

Early work in the 90s used self-organising neural networks to map organic reactions and in-
vestigate similarities between them [194, 195, 196]. More recently, Schneider et al.[64] developed a
reaction classifier based on traditional reaction fingerprints. Molecular and reaction fingerprints
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are fixed-size vector encodings of discrete molecular structures and chemical reactions. The cur-
rently best performing fingerprint by Schneider et al.[64] combines a products-reactants differ-
ence fingerprint with molecular features calculated on the reagents and was tested on a limited
set of 50 reaction classes. This difference fingerprint is currently one of the most frequently used
hand-crafted ones. It has been successfully applied to reaction conditions predictions [197], where
the reagents were not taken into account for the reaction description. Ghiandoni et al. [198] in-
troduced an alternative hierarchical classification scheme and random forest classifier for reaction
classification. Their algorithm outputs a confidence score through conformal prediction. The
fingerprints developed by Schneider et al. [64] and Ghiandoni et al. [198] both require a reactants-
reagents role separation [62], which is often ambiguous and thus limits their applicability.

Traditionally, reaction fingerprints were hand-crafted using the reaction centre or a combina-
tion of the reactant, reagent and product fingerprints. ChemAxon [199], for instance, provides
eight types of such reaction fingerprints. Based on the differentiable molecular fingerprint by Du-
venaud et al. [73], the first example of a learned reaction fingerprint was presented by Wei et al.
[31] and used to predict chemical reactions. Unfortunately, their fingerprint was restricted to a
fixed reaction scheme consisting of two reactants and one reagent, and hence, only working for
reactions conform with that scheme. Similarly, the multiple fingerprint features by Sandfort et al.
[200] are made by concatenating multiple fingerprints for a fixed number of molecules.

In the first part of our work, we predict chemical reaction classes using attention-based neu-
ral networks from the family of transformers [2, 3]. Our deep learning models do not rely on
the formulation of specific rules that require every reaction to be properly atom-mapped. In-
stead, they learn the atomic motifs that differentiate reactions from difterentclasses from raw re-
action SMILES without reactant-reagent role annotations (Figure 1d). The transformer-based
sequence-2-sequence (seq-2-seq) model [2] matched the ground-truth classification with an ac-
curacy of 95.2% and the Bidirectional Encoder Representations from Transformers (BERT) clas-
sifier[3] with 98.2%. We analyse the encoder-decoder attention of the seq-2-seq model and the
self-attention of the BERT model. Hereby we observe that atoms involved in the reaction centre,
as well as reagents specific to the reaction class, have larger attention weights.

In the second part, we demonstrate that the representations learned by the BERT models, un-
supervised and supervised, can be used as reaction fingerprints. The reaction fingerprints we in-
troduce are independent of the number of molecules involved in a reaction. The BERT models
trained on chemical reactions can convert any reaction SMILES into a vector without requiring
atom-mapping or a reactant-reagent separation. Therefore our reaction fingerprints are univer-
sally applicable to any reaction database. Based on those reaction fingerprints and TMAP [201], a
method to visualise high-dimensional spaces as tree-like graphs, we were able to map the chemical
reaction space and show in our reaction atlases nearly perfect clustering according to the reaction
classes. Moreover, our fingerprints enable chemists to efficiently search chemical reaction space
and retrieve metadata of similar reactions. The metadata could, for instance, contain typical con-
ditions, synthesis procedures, and reaction yields.

On an imbalanced data set, our fingerprints and classifiers reach an overall classification ac-
curacy of more than 98%, compared to 41 % when using a traditional reaction fingerprint. The
ability to accurately classify chemical reactions and represent them as fingerprints, enhances the
accessibility of reaction by machines and humans alike. Hence, our work has the potential to
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unlock new insights in the field of organic synthesis. In recent studies, our models were used to
predict experimentally measured activation energies [202] and reaction yields [203].

5.2 RESULTS

5.2.1 REACTION CLASSIFICATION
CLASSIFICATION RESULTS

We used a labeled set of chemical reactions as ground truth to train two transformer-based deep
learning models as architecture [2, 3]. The first one is an encoder-decoder transformer as intro-
duced by Vaswani et al. [2] for sequence-to-sequence (seq-2-seq) tasks in neural machine trans-
lation. The second one is an encoder-only transformer called BERT introduced by Devlin et al.
[3]. The latter model with a classification head on top is typically used in NLP for single sentence
classification tasks [204, 205]. A visualisation of such a BERT classifier is shown in Figure 5.5.

The ground truth data is composed of chemical transformations represented in text format as
SMILES. Their labeling (classification) was taken from the strongly imbalanced Pistachio data set
[180], which uses NameR XN for the reaction classification [63]. In an additional experiment, we
use reaction template labels derived from open-source data, which we will refer to as USPTO 1k
TPL. We analysed the classification performance of our models on the test sets, which contained
132k reactions from 792 different classes in Pistachio, and 45k reactions from 1000 template
classes in USPTO 1k TPL. A summary of the results can be found in Table 5.1. On the Pistachio
test set, the transformer encoder-decoder model (enc2-decl) matched the ground truth classifica-
tion with an accuracy of 95.2%. The reaction BERT classifier predicted the correct name reaction
with an accuracy of 98.2%, therefore achieving significantly better results than with the seq-2-seq
approach. As a comparison to previous work [64], we computed the transformation fingerprint
AP3 (folded) + featureFP on the Pistachio data and used a 5-NearestNeighbour (5-NN) classi-
fier [206] to classify the test set reactions. Even though we separated the reactants and reagents
using RDKit [153], the classifier only achieved an overall accuracy of 41.0%. The traditional fin-
gerprint was not able to represent the fine-grained differences between the reaction classes. The
“Unrecognised”, “Carboxylic acid + amine condensation”, “Amide Schotten-Baumann” and “N-
Boc deprotection” classes contained the most false positives.

In contrast, our BERT classifier without reactant-reagent separation was the best performing
model, when looking at the confusion entropy of a confusion matrix (CEN) [207] and overall
Matthews correlation coefficient (MCC) [208, 209].

To show that the inferior performance of the traditional reaction fingerprint did not stem from
the choice of the 5-NN classifier, we took the embeddings of the pretrained (rxnfp (pretrained))
and finetuned BERT (x7/p) as inputs for the 5-NN classifier. We then classified the test set reac-
tions and computed the scores. As expected, the results for 7x7/p, which corresponds to the input
of the classifier layer in the BERT classifier, perfectly matched the scores of the BERT classifier.

The mismatches in the Pistachio test set are mainly related to “Unrecognised” reactions. When
analysing the individual errors, we observed that our models were able to predict the correct re-
action class for reactions that had a slight change in the representation between precursors and
product (e.g. different tautomers). Such examples were not matched by the brittle rules that gen-
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Table 5.1: Classification results. The lower the confusion entropy of a confusion matrix (CEN) and the
higher the Matthews correlation (MCC) coeflicient the better. The traditional fingerprint is an
AP3 256 (folded) + agents features developed by Schneider et al. [64].

Pistachio Accuracy CEN MCC
Traditional fp[64] + 5-NN classifier 0.410 0.365 0.305
Transformer enc2-decl 0.952 0.039 0.946
BERT classifier 0.982 0.014 0.980
ranfp (pretrained) + 5-NN classifier 0.819 0121 0.797
rxnfp + S-NN classifier 0.989 0.010 0.988
USPTO 1k TPL Accuracy CEN MCC
Traditional fp[64] + 5-NN classifier 0.295 0.424 0.292
BERT classifier 0.989 0.006 0.989
ranfp (pretrained) + 5-NN classifier 0.340 0.392  0.337
rxnfp + S-NN classifier 0.989 0.006 0.989

erated the ground-truth classes. Hence, they were labeled as “Unrecognised” reactions. Our mod-
els show very high robustness against errors in the SMILES representation. In the supplementary
information, we report cases where, despite an error in the molecular representation, our model
was able to correctly classify the reaction that was originally described by chemists in the patent
procedure text.

On the USPTO 1k TPL test set, the traditional and pretrained fingerprint performed worse
than on the Pistachio data set. However, the BERT classifier as well as the embeddings of the
BERT classifier with the S-NN classifier matched the performance they had on the Pistachio data
set with an accuracy of 98.9%.

An elaborate description of both types of reaction fingerprints is presented in the section on
data-driven reaction fingerprints below. A comparison of our data-driven approach to traditional
fingerprints on a balanced data set of SOk reactions can be found in the supplementary informa-
tion. Even when using as little as 10k training reactions from 50 different classes the fine-tuned
embeddings are able to outperform traditional fingerprints by increasing precision, recall and F1-
score from 0.97 to 0.99.

VISUALISATION OF ATTENTION WEIGHTS

Figure 5.2 shows the layer-wise [CLS] token attention of the BERT classifier (above the reaction)
and the encoder-decoder attention of the seq-2-seq model (below the reaction) for two difterent
chemical transformations. We observed that the larger weights were associated with the atoms that
are part of the reaction centre or precursors specific to the reaction class. Just like a human expects
to see a certain group of atoms based on the classification, for the seq-2-seq model, the decoder
learned to focus on the atoms involved in the rearrangement to classify reactions. For the BERT
classifier, the initial layers had weak attention on all reaction tokens. The middle layers tended to
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Figure 5.2: Attention weights interpretation. Layer-wise [CLS] token attention for the BERT classi-
fier and encoder-decoder attention for the enc2-decl transformer model. The horizontal axis
contains the SMILES tokens of the input reaction. The darker the token the more attention a
specific token had received in that particular layer or output step. The colouring on the reaction
depictions created with CDK depict [182] shows the mapping from precursors to product in
the ground truth.

attend either the product or the precursors. The last layers focused on the reaction centre and the
precursors that are important for the classification.

5.2.2 MAPPING CHEMICAL REACTION SPACE
DATA—DRIVEN REACTION FINGERPRINTS

Molecular fingerprints are widely used to screen molecules with similar properties or map chem-
ical space [210]. Our reaction BERT models does not only perform best on the classification task
but also allows chemists to generate vectorial representations of chemical reactions. Here we in-
troduce reaction fingerprints based on the embeddings computed by BERT [3] models. They
can be applied to any reaction data set, as they do not require a reactant-reagent split or a fixed
number of precursors. During the pretraining of the BERT model, individual tokens in the re-
action SMILES are masked and then predicted by the model. As the prepended [CLS] token is
never masked, the model is always able to attend the representation of this token to recover the
masked tokens. The intuition is that the model uses the [CLS] token to embed a global descrip-
tion of the reaction. Before the fine-tuning, the [CLS] token embeddings are learned purely by
self-supervision. We refer to this fingerprint as »xnfp (pretrained). For the supervised fine-tuning,
the embeddings of the [CLS] token are then taken as input for a one layer classification head and
further refined. We refer to the fingerprint fine-tuned on the Pistachio training set as 7xz/p. In
our case, the [CLS] token embedding is a vector of size 256, corresponding to the hidden size of
the BERT model. During the supervised classification task, the model has to focus on the reaction
centre and certain precursors that are specific to the individual name reactions. For instance, the
Eschweiler-Clarke methylation (1.2.4) is a methylation reaction that can be distinguished from
other methylation reactions as its precursors contain formaldehyde and formic acid (see Figure
5.2). Another example are Suzuki-type coupling reactions, where the “-type” suffix means that
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the metal catalyst is missing but the described reaction would otherwise correspond to a Suzuki
coupling reaction.

REACTION ATLASES

In Figure 5.3, we show an annotated version of a reaction atlas created by using the embeddings
of a BERT classifier fine-tuned for three epochs. The colours correspond to the 12 superclasses
found in the data set. The individual classes are almost perfectly clustered. It is worth noting
that the sub-trees in the TMAP closely group related reaction classes. For instance, in the upper
left, one sub-tree contains all “Formylation”-related reactions, Weinreb reactions are clustered in
a branch in the lower left and Suzuki-type reactions share the same branch as the corresponding
Suzuki reactions. The unannotated reaction atlas was created using the fingerprints computed
from a pretrained reaction BERT model without classification fine-tuning. Even after applying
a purely unsupervised masked language modeling training, the model was already able to extract
features relevant for reaction classification and some clustering can be observed in the figure.

An interactive reaction TMAP [201], visualising the public Schneider SOk [64] data set by using
the 7xnfp (10k) embeddings and highlighting different precursor and product properties, can be

found on https://rxn4chemistry.github.io/rxnfp/tmaps/tmap_ft_i10k.html.

REACTION SEARCH

One of the primary use cases for reaction fingerprints is the search for similar reactions in a database.
An atom-mapping independent reaction fingerprint is extremely powerful, as it unlocks the pos-

sibility of reaction retrieval without the need of knowing the reaction centre. For instance, when

a black box model like a forward reaction prediction model [4] or a retrosynthesis model [43]

predicts a reaction, the most similar reactions from the training set of those models could be re-

trieved. Such a retrieval of similar reactions could not only increase the explainability of deep

learning models. It would also allow chemists to access the metadata (including yield and reac-

tion conditions) of the closest reactions, if this information is available.

In Figure 5.4 the three approximate nearest neighbours of the BERT classifier fingerprint can
be found for four test set reactions from four distinct reaction classes. The nearest neighbours
searches on the training set containing 2.4M reactions were performed within milliseconds using
unoptimised python code on a MacBook Pro (Processor: 2.7 GHz Intel Core i7, Memory: 16 GB
2133 MHz). They were based on the LSH forest from the TMAP module developed by Probst
and Reymond [201] In all searches, the nearest neighbours corresponded to the same class as the
query reaction. The similarities between the query reaction and the retrieved nearest neighbours
were clearly visible even for non-experts. The reactions share similar, if not the same precursors,
and the products show similar features. One of the great advantages of this reaction search method
is that it only requires a reaction SMILES as input.

To investigate the robustness of our BERT classifier embeddings we removed three classes from
the fine-tuning training set (Number of removed reaction classes: ‘1.6.4 - Chloro N-alkylation’:
24109, 3.9.17 - Weinreb Iodo coupling’: 225, °9.7.73 - Hydroxy to azido’: 1526) and fine-tuned
another BERT classifier. After 5 epochs, we generated the embeddings for the test set reactions
from the three removed classes. For the “Chloro N-alkylation” and the “Hydroxy to azido” class
the most common prediction was “Unrecognised”. All the predictions of the BERT model trained
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Figure 5.3: Reaction atlases. Top: Annotated reaction atlas created from 7xnfp. Bottom: reaction atlas
made from rxnfp (pretrained). The different fingerprints of the test set reactions are visualised
using a TMAP algorithm [201] and the Faerun visualiation library [211]. The fingerprints were
minhashed using a weighted hashing scheme to make them compatible with the LSH forest.

without the removed classes for the “Weinreb Iodo coupling” were “Weinreb bromo coupling”
that differs just by the type of the reacting halogen atom. Another interesting experiment is the
retrieval of nearest neighbours from the original training set for the embeddings generated by the
BERT model trained without the removed classes. For 1078 out of 1370 “Chloro N-alkylation”
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Figure S.4: Nearest-neighbour queries. Four examples of reaction SMILES queries and the three nearest
neighbours retrieved from the LSH forest [201] of the training set containing 2.4M reactions.
All the retrieved reactions belong to the same reaction class as the query reaction and show

similar precursors.

reactions in the test set, the nearest neighbour in the initial training set (including all the reaction
classes) was a “Chloro N-alkylation” reaction. For the 10 “Weinreb Iodo coupling” reactions, the
nearest neighbours in the original training set were four “Weinreb Bromo coupling” and other
four “Bromo Grignard + nitrile ketone synthesis” reactions, which are both closely related reac-
tion types. There was no clearly dominating reaction class in the nearest neighbours with 44 out

of 76 reactions being “Unrecognised”.
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5 Mapping the space of chemical reactions using attention-based neural networks

5.3 DIScUSSION

In this work, we focused on the data-driven classification of chemical reactions with natural lan-
guage processing methods and on the use of their embedded information to design reaction finger-
prints. Our transformer-based models were able to learn the classification schemes using a broad
set of chemical reactions as ground-truth, labeled by a commercially available reaction classifica-
tion tool. With the BERT classifier, we match the rule-based classification with an accuracy of
98.2%, compared to 41% for a traditional fingerprint plus 5-nearest neighbours classifier. Our
models are able to learn the atomic environment characteristics of each class and provide a ratio-
nale that is easily interpretable by chemists. Understanding the reasoning behind each classifica-
tion by using the attention weights may help the end-user chemists with the adoption process
of these technologies. We showed that the representations learned by our BERT models can be
used as reaction fingerprints. Those data-driven reaction fingerprints unlock the possibility of
mapping the reaction space without knowing the reaction centres or the reactant-reagent split.
They also enable efficient nearest neighbour searches on reaction data sets containing millions
of reactions. Moreover, our fingerprints were recently used to estimate experimentally measured
activation energies [202] and fine-tuned to predict chemical reaction yields [203].

5.4 METHODS

5.4.1 DATaA

The data consisted of 2.6M reactions extracted from the Pistachio database [180] (version 191118),
where we removed duplicates and filtered invalid reactions using RDKit [153]. The data set was
split into train, validation and test sets (90% / 5% / 5%), with reactions with identical products
kept in the same set. The reaction data in Pistachio was classified using NameRXN [63], a rule-
based software that classifies roughly 1000 different name reactions. The classification is organised
into superclasses [212], reaction categories and name reactions according to the RXNO ontology
[213]. For more detail on name reactions and their categories, we refer the reader to the work of
Schneider et al.[173]. As common in practice, we represent the chemical reactions with reaction
SMILES [46, 47]. We tokenise the reaction SMILES as in Schwaller et al.[4] without enforcing
any distinction between reactants and reagents. Therefore, our method is universally applicable,
including those reactions where the reactant-reagent distinction is subtle [62]. To compare with
previous work and ensure reproducibility, we used the reaction data set published by Schneider et
al. [64] with 50k reactions belonging to 50 different reaction classes. We also introduced an open-
source reaction classification data set, which we named USPTO 1k TPL, derived from the USPTO
data base by Lowe [42]. It consists of 445k reactions divided into 1000 template labels. The data
set was randomly split into 90% for training and validation and 10% for testing. The labels were
obtained by atom-mapping the USPTO data set with RXNMapper [189]. Subsequently, the tem-
plate extraction workflow by Thakkar et al. [109, 214] was applied and finally, selecting reactions
belonging to the 1000 most frequent template hashes. Those template hashes were used as class
labels. Similarly to the Pistachio data set, USPTO 1k TPL is strongly imbalanced.
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5.4.2 MODELS

We trained two different types of deep learning models inspired by recent progress in Natural
Language Processing. The first model is an autoregressive encoder-decoder transformer model
[2]. We constructed the model with 2 encoder layers and 1 decoder layer. For the prediction target,
we split the class prediction into superclass, category and name reaction prediction. This means,
for example, that the target string for the name reaction “1.2.3” would be “11.2 1.2.3”. As the
source and target are dissimilar, we did not share encoder and decoder embeddings. We used the
same remaining hyperparameter as were used for the training of the Molecular Transformer [4,
156], which is state-of-the-art in chemical reaction prediction.
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Figure 5.5: BERT reaction classification model. The figure illustrates a BERT model with stacks of self-
attention layers. All self-attention layers consist of multiple attention heads. Using a classifier
head the model was applied to a chemical reaction classification task. The encoding of the [CLS]
token can also be used as reaction fingerprint (rxnfp).

One of the major recent advancement in natural language processing is BERT [3], which com-
pared to the seq-2-seq architecture only consists of a transformer encoder with specific heads that
can be fine-tuned for different tasks such as multi-class prediction. The model is visualised in
Figure 5.5. We pretrained a BERT model using masked language modeling loss on the chemical
reactions. The task of the model in masked language modeling consists of predicting individual
tokens of the input sequence that have been masked with a probability of 0.15. Same as in the
BERT training, a special class token [CLS] was prepended to the tokenised reaction SMILES.
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The [CLS] token was never masked during this self-supervised training. In contrast to the origi-
nal BERT pretraining [3], we did not use the next sentence prediction task. We then fine-tuned
the pretrained model with a classifier head on the name reaction classes. The embeddings of the
[CLS] token were taken as input for the classifier head. Compared to the hyperparameters of the
BERT-Base model in Ref. [215], we decreased the hidden size to 256, the intermediate size to 512,
and the number of attention heads to 4. For the pretraining, we set 820k steps with a learning rate
of le-4 and a maximum sequence length of 512, the rest of the parameters were kept as suggested
in Ref. [215]. For the classification fine-tuning, we only changed the learning rate to 2e-5, kept the
maximum sequence length of 512 and fine-tuned for S epochs. After training, we converted the
models to PyTorch [81] models, which matched the Huggingface [216] interface, as it facilitated
further analysis.

5.4.3 K-NEAREST NEIGHBOUR CLASSIFIER

The k-nearest neighbour classifier used to assess the quality of the proposed reaction representa-
tions is based on the Facebook Al Similarity Search (FAISS) framework developed by Facebook
research [206]. As FAISS provides an efficient implementation of brute-force k-nearest neighbour
searches that can be applied on relatively large data sets. Possible biases introduced through ap-
proximation methods were therefore avoided. The number of nearest neighbours £ = 5 and the
Euclidean metric (L2) are chosen for all tests. The predicted class of the query was assumed to be
the one that is represented within most often the result set. Ties were broken using the distance
between the query and one or more neighbours.

5.4.4 TMAP

TMAP [201] is a dimensionality reduction algorithm capable of handling millions of data points.
The advantage of TMAP compared to other dimensionality reduction algorithms is the 2D tree-
like output, which preserves both local and global structures, with a focus of local structure. The
algorithm consists of four steps: 1) LSH Forest-based indexing, 2) k-nearest neighbour graph gen-
eration, 3) minimum spanning tree calculation using Kurskal’s algorithm and 4) creating the tree-
like layout. The resulting layout is then displayed using the interactive data visualisation frame-
work Faerun [211].

TMAP [201] and Faerun [211] were originally developed to visualise large molecular data sets,
but have been shown to be applicable to a wide range of other data. Here, we extended the frame-
work with a customised version of SmilesDrawer [217] that has been extended to allow for the
display of chemical reactions.

5.4.5 EVALUATION METRICS

To compare the results on the imbalanced classification test set, we used the confusion entropy of

the confusion matrix (CEN) [207] calculated as follows,
pi _ Matrix(i, j)
" L(i‘l (Matm'ac(j, k) + Matrix(k,j)) 7
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where Matrix is the confusion matrix, and the overall Matthews Correlation Coefficient (MCC)[208,
209] is,

|C]
cov(X,Y) = Z (Matrix(i,i)Matrix(k,j) — Matriz(j,i)Matriz(i, k))
1,5,k=1
le] te] IC]
cov(X,X) = Z [(ZMatm’x(j,i))( Z Matm'm(l,k))]
i—1 L =1 k=1 ki
te] ted IC]
cov(Y)Y) = Z (Z Matrix(i,j)) ( Z Matriz(k, l))]
i=1 L j=1 kl=1,k+i
MO = cov(X,Y)

Veou(X, X) x cou(Y,Y)

Both are recommended metrics for imbalanced multi-class classification problems. We com-
puted the scores using PyCM [218]. For the comparison on the balanced data set, we used the
average recall, precision and F1 score, as those metrics were used by Schneider et al. [64]. The
recall, precision and F1 score values for the individual classes are shown in the supplementary ma-
terial.

DATA & CODE AVAILABILITY

The Schneider S0k data set is publicly available [64]. We provide a new reaction data set (USPTO
1k TPL), derived from the work of Lowe [42], containing the 1000 most common reaction tem-
plates as classes. It can be accessed through https://rxnachemistry.github.io/rxnfp. The com-
mercial Pistachio (version 191118) data set can be obtained from NextMove Software [180]. Pis-
tachio relies on Leadmine [59] to text-mine patent data. The data set comes with reaction classes
assigned using NameRXN (https 1/ /www.nextmovesoftware.com/namerxn. html). The rxnfp code
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and the experiments on the public data sets, as well as an interative TMAP, can be found on
https://rxn4chemistry.github.io/rxnfp[219].
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6 PREDICTION OF CHEMICAL REACTION
YIELDS USING DEEP LEARNING

Artificial intelligence is driving one of the most important revolutions in organic chemistry.
Multiple platforms, including tools for reaction prediction and synthesis planning based on ma-
chine learning, successfully became part of the organic chemists’ daily laboratory, assisting in
domain-specific synthetic problems. Unlike reaction prediction and retrosynthetic models, the
prediction of reaction yields has received less attention in spite of the enormous potential of ac-
curately predicting reaction conversion rates. Reaction yields models, describing the percentage
of the reactants converted to the desired products, could guide chemists and help them select
high-yielding reactions and score synthesis routes, reducing the number of attempts. So far,
yield predictions have been predominantly performed for high-throughput experiments using a
categorical (one-hot) encoding of reactants, concatenated molecular fingerprints, or computed
chemical descriptors. Here, we extend the application of natural language processing architec-
tures to predict reaction properties given a text-based representation of the reaction, using an
encoder transformer model combined with a regression layer. We demonstrate outstanding pre-
diction performance on two high-throughput experiment reactions sets. An analysis of the yields
reported in the open-source USPTO data set shows that their distribution differs depending on

the mass scale, limiting the dataset applicability in reaction yields predictions.

This chapter has been accepted as a scientific article in Machine Learning: Science and Technol-

0gy:

P Schwaller, AC Vaucher, T Laino, JL Reymond. Prediction of Chemical Reaction Yields using
Deep Learning. Mach. Learn.: Sci. Technol., 2021, 2 015016, DOI: 10.1088/2632-2153/abc81d
(CCBY 4.0).

6.1 INTRODUCTION

Chemical reactions in organic chemistry are described by writing the structural formula of reac-
tants and products separated by an arrow, representing the chemical transformation by specifying
how the atoms rearrange between one or several reactant molecules and one or several product
molecules [189]. Economic, logistic, and energetic considerations drive chemists to prefer chemi-
cal transformations capable of converting all reactant molecules into products with the highest
yield possible. However, side-reactions, degradation of reactants, reagents or products in the
course of the reaction, equilibrium processes with incomplete conversion to a product, or sim-
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ply by productisolation and purification undermine the quantitative conversion of reactants into
products, rarely reaching optimal performance.

Reaction yields are usually reported as a percentage of the theoretical chemical conversion, i.c.,
the percentage of the reactant molecules successfully converted to the desired product compared
to the theoretical value. It is not uncommon for chemists to synthesise a molecule in a dozen
or more reaction steps. Hence, low-yield reactions may have a disastrous effect on the overall
route yield because of the individual steps’ multiplicative effect. Therefore, it is not surprising
that designing new reactions with yields higher than existing ones attracts much effort in organic
chemistry research.

In practice, specific chemical reaction classes are characterised by lower or higher yields, with
the actual value depending on the reaction conditions (temperature, concentrations, etc.) and on
the specific substrates.

Estimating the reaction yield can be a game-changing asset for synthesis planning. It provides
chemists with the ability to evaluate the overall yield of complex reaction paths, addressing pos-
sible shortcomings well ahead of investing hours and materials in wet-lab experiments. Compu-
tational models predicting reaction yields could support synthetic chemists in choosing an ap-
propriate synthesis route among many predicted by data-driven algorithms. Moreover, reaction
yields prediction models could also be employed as scoring functions in computer-assisted ret-
rosynthesis route planning tools [43, 107, 125, 126], to complement forward prediction models [4,
43] and in-scope filters [107].

Most of the existing efforts in constructing models for the prediction of reactivity or of reaction
yields focused on a particular reaction class: oxidative dehydrogenations of ethylbenzene with
tin oxide catalysts [220], reactions of vanadium selenites [221], Buchwald—Hartwig aminations
[200, 222, 223], and Suzuki—Miyaura cross-coupling reactions [224, 225, 226]. To the best of our
knowledge, there was only one attempt to design a general-purpose prediction model for reactivity
and yields, without applicability constraints to a specific reaction class [227]. In this work, the
authors design a model predicting whether the reaction yield is above or below a threshold value
and conclude that the models and descriptors they consider cannot deliver satisfactory results.

Here, we build on our legacy of treating organic chemistry as a language to introduce a new
model that predicts reaction yields starting from reaction SMILES [36]. More specifically, we
fine-tune the rxnfp models by Schwaller et al. [177] based on a BERT-encoder [3] by extending it
with a regression layer to predict reaction yields. BERT encoders belong to the transformer model
family, which has revolutionised natural language processing [2, 3]. These models take sequences
of tokens as input to compute contextualised representations of all the input tokens, and can be
applied to reactions represented in the SMILES [46] format. In this work, we demonstrate for the
first time, that these natural language architectures are very useful not only when working with
language tokens, but also to provide descriptors of high quality to predict reaction properties such
as reaction yields.

Itis possible to train our approach both on data specific to a given reaction class or on data rep-
resenting different reaction types. Thus, we initially trained the model on two high-throughput
experimentation (HTE) data sets. Among the few HTE reaction data sets published in recent
years, we selected the data sets for palladium-catalysed Buchwald—Hartwig reactions provided by
Ahneman et al. [222] and for Suzuki-Miyaura coupling reactions provided by Perera et al. [228].
Finally, we trained our model on patent data available in the USPTO data set [41, 42].
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HTE and Patent data sets are very different in terms of content and quality. HTE data sets typi-
cally cover a very narrow region in the chemical reaction space, with chemical reaction data related
to one or a few reaction templates applied to large combinations of selected precursors (reactants,
solvents, bases, catalysts, etc.). In contrast, patent reactions cover a much wider reaction space. In
terms of quality, HTE data sets report reactions represented uniformly and with yields measured
using the same analytical equipment, thus providing a consistent and high quality collection of
knowledge. In comparison, the yields from patents were measured by different scientists using
different equipments. Incomplete information in the original documents, such as unreported
reagents or reaction conditions, and the extensive limitation in text mining technologies makes
the entire set of patent reactions quite noisy and sparse. An extensive analysis of the USPTO data
set revealed that the experimental conditions and reaction parameters, such as scale of the reaction,
concentrations, temperature, pressure, or reaction duration, may have a significant effect on the
measured reaction yields. The functional dependency of the yields from the reaction conditions
poses additional constraints, as the model presented in this work does not consider those values
explicitly in the reaction descriptor. The basic assumption is that every reaction yield reported in
the data set is optimised for the reaction parameters.

Our best performing model reached an R? score of 0.956 on a random split of the Buchwald-
Hartwig data set while the highest R? score on the smoothed USPTO data was 0.388. These
numbers reflect how the intrinsic data set limitations increase the complexity of training a suffi-
ciently good performing model on the patent data, resulting into a more difficult challenge than
training a model for the HTE data set.

6.2 MODELS AND EXPERIMENTAL PIPELINE

We base our models directly on the reaction fingerprint (rxnfp) models by Schwaller et al. [177].
We use a fixed size encoder model size, tuning only the hyperparameter for dropout rate and learn-
ing rate, thus avoiding often encountered difficulties of neural networks with numerous hyperpa-
rameters. During our experiments, we observed good performances for a wide range of dropout
rates (from 0.1 to 0.8) and conclude that the initial learning rate is the most important hyperpa-
rameter to tune. To facilitate the training, our work uses simpletransformers [229], huggingface
transformer [216] and PyTorch framework [81]. The overall pipeline is shown in Figure 6.1.

To provide an input compatible with the rxnfp model we use the same RDKit [153] reaction
canonicalisation and SMILES tokenization [4] as in the rxnfp work [177].

6.3 REsSULTS

6.3.1 HIGH-THROUGHPUT EXPERIMENT YIELD PREDICTIONS
BucHWALD-HARTWIG REACTIONS

Ahneman etal. [222] performed high-throughput experiments on Pd-catalysed Buchwald—Hartwig
C-N cross coupling reactions, measuring the yields for each reaction. For the experiments, they
used three 1536-well plates spanning a matrix of 15 aryl and heteroaryl halides, 4 Buchwald lig-
ands, 3 bases, and 23 isoxazole additives resulting in 3955 reactions. As inputs for their models,
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Figure 6.1: Training/evaluation pipeline and task description.

Ahneman et al. [222] computed 120 molecular, atomic and vibrational properties with density
functional theory using Spartan for every halide, ligand, base and additive combination. The de-
scriptors included highest occupied molecular orbital (HOMO) and lowest unoccupied molecu-
lar orbital LUMO energy, dipole moment, electronegativity, electrostatic charge and NMR shifts
for atoms shared by the reagents. Compared to reaction SMILES that can vary in length, the input
in the work of Ahneman etal. [222] was a fixed-size vector. They investigated numerous methods,
including linear models, k-Nearest-Neighbours, support vector machines, Bayes generalised lin-
ear models, artificial neural networks and random forests. Eventually, they selected their random
forest model as the best performing. The work of Ahneman etal. [222] was challenged by Chuang
and Keiser [223], who pointed out several issues. First, by replacing the computed chemical fea-
tures with random features of the same length or one-hot encoded vectors Chuang and Keiser got
similar performance than the original paper with the chemical features. Therefore, they weakened
the original claim thatadditive features were the mostimportant for the predictions. However, the
additive features were on average still estimated to be the most important features by the random
forest model when the yields were shuffled [223]. Recently, Sandfort et al. [200] used a concatena-
tion of multiple molecular fingerprints as an alternative reaction representation to demonstrate
superior yield prediction performance compared to one-hot encoding.

Unlike previous work, we directly use the reaction SMILES as input to a BERT-based reac-
tion encoder [177] enriched with a regression layer (Yield-BERT). To investigate the suggested
method, we used the same splits as Sandfort et al. [200]. In contrast, to their work, we used 1/7
of the training set from the first random split as a validation set to select optimal values for the
two hyperparameters, namely, learning rate and dropout probability. Once selected, we kept the
hyperparameters identical for all the subsequent experiments.

The results are shown in Table 6.1. Using solely a reaction SMILES representation, our method
achieves an average R? 0f0.951 on the random splits and outperforms not only the MFF by Sand-
fort et al. [200], but also the chemical descriptors computed with DFT by Ahneman et al. [222].
Moreover, for the out-of-sample tests where the isoxazole additives define the splits our method
performs on average better than MFF and one-hot descriptors and comparable to the chemical
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Table 6.1: Comparing methods on the Buchwald-Hartwig data set. All results shown in this table
used the rxnfp pretrained model as base encoder.

R? | DFT [222]  one-hot [200,223]  MFF [200] | Yield-BERT
rand 70/30 | 0.92 0.89 0.927 £ 0.007 | 0.951 + 0.005
rand 50/50 0.9 0.92 +0.01
rand 30/70 0.85 0.88 £0.01
rand 20/80 | 0.81 0.86 + 0.01
rand 10/90 0.77 0.79 £0.02
rand 5/95 0.68 0.61 £0.04
rand 2.5/97.5 | 0.59 0.45 £ 0.05
test 1 0.8 0.69 0.85 0.84 4+ 0.01
test 2 0.77 0.67 0.71 0.84 4 0.03
test 3 0.64 0.49 0.64 0.75 £ 0.04
test 4 0.54 0.49 0.18 0.49 + 0.05
avg. 1-4 | 0.69 0.59 0.60 | 0.73

descriptors. As in the work of Sandfort et al. [200], the test 3 split resulted in the worst model
performance. For the rest of the out-of-sample, our method performs better than the others. We
also reduced the training set to 5% (197 reactions), 10% (395 reactions) and 20% (791 reactions)
and observed that the model learned to reasonably predict yields despite the significantly smaller
training set.

SUZUKI-MIYAURA REACTIONS

Perera et al. [228] used HTE technologies to the class of the Suzuki-Miyaura reactions. They
considered 15 pairs of electrophiles and nucleophiles, each leading to a different product. For
each pair, they varied the ligands (12 in total), bases (8), and solvents (4), resulting in a total of
5760 measured yields. The same data set was also investigated in the work of Granda et al. [224].

Here, we first trained our yield prediction models with the same hyperparameters as for the
Buchwald—Hartwig reaction experiment above, achieving an R2 score of 0.79+0.01. Second, we
tuned the dropout probability and learning rate, similarly to the previous experiment, using a
split of the training set of the first random split. The resulting hyperparameters were then used
for all the splits. The hyperparameter tuning did not lead to better performance compared to the
parameters used for the Buchwald—Hartwig reactions. This shows that the models have a stable
performance for a wide range of parameters and that they are transferable from one data set to
another related data set.

We also compared two different base encoder models that are available from the rxnfp library
[177], namely the BERT model pretrained with a masked language modelling task, and the BERT
model subsequently fine-tuned on a reaction class prediction task. The results are displayed in
Table 6.2. In contrast to the Buchwald-Hartwig data set, where no difference between the two
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6 Prediction of chemical reaction yields using deep learning

Table 6.2: Summary of the average R? scores on the Suzuki—Miyaura reactions data set. Different
base encoders for the Yield-BERT were compared. We used 10 different random folds (70/30).

Base encoder rxnfp [177] | pretrained | pretrained ft ft
Hyperparameters sameas 3.1 | tuned same as 3.1 tuned
random 70/30 | 0.79£0.01 | 0.79+0.02 | 0.81+0.02 | 0.81+ 0.01

base encoders was observed, the ft model achieves an R? score of 0.81 + 0.01, outperforming the
pretrained base encoder on the Suzuki-Miyaura reactions.

DISCOVERY OF HIGH YIELDING REACTIONS WITH REDUCED TRAINING SETS

Grandaetal. [224] proposed to train on a random (10%) portion of the original data set to evaluate
the rest of the reactions with the purpose of selecting the next reactions to test. Similarly, we
trained our models on different fractions of the training set and used them to evaluate the yields
of the remaining reactions. The aim here is to evaluate how well the models are at selecting high-
yielding reactions after having seen a small fraction of randomly chosen reactions.

As can be seen from Figure 6.2, training on only 5% of the reactions already enables a chemist to
select some of the highest yielding reactions for the next round of the experiments. With a training
set of 10% the yields of the selected reactions are close to the best possible selection marked with
“ideal” in the Figure. For the Buchwald—Hartwig reaction, using a model trained on 10% of the
data set, the 10 reactions from the remaining unseen data set predicted to have the highest yields,
have an average yield of 90 & 6 %, compared to the ideal selection of 98.7 &= 0.9 %. In contrast,
a random selection of 10 reactions would have let to yields of 34 &= 27 %. The selection works
similarly for the Suzuki—Miyaura reactions.

We performed a purely greedy selection, as we aimed to find highest yielding reactions after
one training round. A wider chemical reaction space exploration with a reaction selection using
more elaborate uncertainty estimates and an active learning strategy was investigated by Eyke et
al. [226].

6.3.2 PATENT YIELD PREDICTIONS

In this section, we analyse USPTO data set [41, 42] yields. We started from the same set as in
our previous work [116], keeping only reactions for which yields and product mass were reported.
In contrast to HTE, where reactions are typically performed in sub-gram scale, the patent data
contains reactions spanning a wider range, from grams to sub-grams scales.

GRAM VERSUS SUB-GRAM SCALE

When investigating the yields for different mass scales, we observed that gram and sub-gram scales
had statistically different yield distributions, as shown in Figure 6.3. One reason could be that
the reaction sub-gram scale reactions are generally less optimised than gram-scale. In sub-gram
scale, the primary goal is to show that the desired product is present. To be able to synthesise
a specific compound on a larger scale, reactions are optimised and predominantly high yielding
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Figure 6.2: Discovery of high yielding reaction. Average and standard deviation of the yields for the
10, 50, and 100 reactions predicted to have the highest yields after training on a fraction of the
data set (5%, 10%, 20%). The ideal reaction selection and a random selection are plotted for
comparison.

reactions are employed. Therefore, we split the USPTO reactions into two data sets according to
the product mass. If for the same canonical reaction SMILES multiple yields were reported in the
same mass scale, we took the average of those yields.

We performed various experiments summarised in Table 6.3. The R?2 scores for the randomly
train-test splits with 0.117 for gram scale and 0.195 low. As expected, the tasks become even more
difficult when the time split is used. In our experiment, we took all reactions first published in
2012 and before as training/validation set and the reactions published after 2012 as test set. To
show that the model was still able to learn, we performed a sanity check by randomising the yields
across the training reactions. The resulting performance on the test set was a R? score of 0.

Unfortunately, the yields from the USPTO data set could not be accurately predicted. To bet-
ter understand why, we further inspected the USPTO reaction yields with a visual analysis using
reaction atlases built using TMAP [201], faerun [211] and our reaction fingerprints [177]. Figure
6.4 reveals that globally reaction classes tend to have similar yields. However, if a local neighbour-
hood is analysed the nearest neighbours often have extremely diverse reaction yields. Those diverse
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Figure 6.3: USPTO yields histograms separated in gram and sub-gram scale

yields make it challenging for the model to learn anything but yield averages for similar reactions
and hence, explain the low performance on the patent reactions. This analysis opens up relevant
questions on the quality of the reported information (relative to the mass scale) and its extraction
accuracy from text, which could severely hamper the development of reaction yield predictive
models. The need of cleaned and consistent reaction yields data set is even more important than
for other reaction prediction tasks.

Table 6.3: USPTO yield prediction results. Summary of the R scores on the different USPTO reaction

sets.
scale ‘ gram ‘ sub-gram
random split 0.117 | 0.195
time Split 0.095 | 0.142

random split (smoothed) ‘ 0.277 ‘ 0.388

randomised yields ‘ 0.0 ‘ 0.0

In Table 6.3, the "random split (smoothed)” row shows an experiment inspired from the obser-
vations above. As some of the yields values are probably incorrect in the data set, we smoothed the
yields by computing the average of the three nearest neighbour yields plus twice the own yield of
the reaction. The nearest neighbours were estimated using the 7xzfp f# [177] and faiss [230]. On
the smoothed data sets, the performance of our models more than triples in the gram scale and
doubles on the sub-gram scale, achieving R2 scores of 0.277 and 0.388, respectively. The removal

of noisy reactions [190] or reaction data augmentation techniques [114] could potentially lead to
further improvements.
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Figure 6.4: Reaction Yield Atlases. Top: gram scale. Bottom: sub-gram scale. Left: Reaction superclass
distribution, reactions belonging to the same superclass have the same colour. Right: Corre-
sponding reaction yields.

6.4 DIsSCcUSSION

In this work, we combined a reaction SMILES encoder with a reaction regression task to design
a reaction yield predictive model. We analysed two HTE reaction data sets, showing excellent
results. On the Buchwald—Hartwig reaction data set, our models outperform previous work on
random splits and perform similar to models trained on chemical descriptors computed with DFT
on test sets where specific additives were held out from the training set. Compared to random
forest models, the feature importance can not directly be obtained. Future work could (visually)
investigate the attention weights to find out what tokens and molecules contribute the most to
the predictions [130, 231].

We analysed the yields in the public patent data and show that the distribution of reported
yields strongly difters depending on the reaction scale. Because of the intrinsic lack of consistency
and quality in the patent data, our proposed method fails to predict patent reaction yields accu-
rately. While we cannot rule out the existence of any other architecture potentially performing
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better than the one presented in this manuscript, we raise the need for a more consistent and bet-
ter quality public data set for the development of reaction yields prediction models. The suspect
that the patent data yields are inconsistently reported is substantiated by the large variability of
methods used to purify and report yields by the different reaction mass scales and the different
optimisation in each reported reaction. Our reaction atlases [177, 201, 211] reveal globally higher
yielding reaction classes. However, nearest neighbours often have significantly scattered yields.
We show that better results can be achieved by smoothing the patent data yields using the nearest
neighbours.

Our approach to yield predictions can be extended to any reaction regression task, for example,
for predicting reaction activation energies [202, 232, 233], and is expected to have a broad impact
in the field of organic chemistry.

The code and data are available on https://rxn4chemistry.github.io/rxn_yields/.
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7 DATA AUGMENTATION STRATEGIES TO
IMPROVE REACTION YIELD PREDICTIONS
AND ESTIMATE UNCERTAINTY

Chemical reactions describe how precursor molecules react together and transform into prod-
ucts. The reaction yield describes the percentage of the precursors successfully transformed
into products relative to the theoretical maximum. The prediction of reaction yields can help
chemists navigate reaction space and accelerate the design of more effective routes. Here, we
investigate the best-studied high-throughput experiment data set and show how data augmen-
tation on chemical reactions can improve yield predictions’ accuracy, even when only small
data sets are available. Previous work used molecular fingerprints, physics-based or categori-
cal descriptors of the precursors. In this manuscript, we fine-tune natural language processing-
inspired reaction transformer models on different augmented data sets to predict yields solely
using a text-based representation of chemical reactions. When the random training sets con-
tain 2.5% or more of the data, our models outperform previous models, including those using
physics-based descriptors as inputs. Moreover, we demonstrate the use of test-time augmenta-

tion to generate uncertainty estimates, which correlate with the prediction errors.

This chapter has been presented as a scientific article at the Machine Learning for Molecules
workshop at NeurIPS 2020:

P Schwaller, AC Vaucher, T Laino, JL Reymond. Data augmentation strategies to improve re-
action yield predictions and estimate uncertainty. DOI:10.26434/chemrxiv.13286741 (CC BY-
NC-ND 4.0).

7.1 INTRODUCTION

The synthesis of new chemicals affects numerous aspects of our life, ranging from food and medi-
cine to novel materials for technological applications. The current machine learning revolution
in automated synthesis can significantly accelerate novel materials and molecules’ development.
In the last years, natural language processing methods emerged as robust and effective approaches
in the field of organic chemistry, showing promising results in reaction prediction [4, 36, 111, 116],
retrosynthesis planning [43, 65, 114, 234], data curation [190] and synthesis action generation [188,
235]. In those studies the encoder-decoder transformer models introduced by Vaswani et al. [2]
excel among all other neural network architectures. More recently, the use of encoder-only trans-
formers such as BERT [3, 98] led to advances in reaction classification and fingerprints [177], as
well as in unsupervised reaction atom-to-atom mapping [189] and reaction yield predictions [203].
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Reaction yields describe the percentage of the reactant molecules converted into the desired
product molecule during a chemical reaction. The prediction of reaction yields can guide chemists
in selecting the next experiments to perform, and retrosynthetic planning tools in aiming for
routes that maximise the overall yield, thus minimising waste. Extensive chemical reaction yield
data sets exist for high-throughput experiments (HTE). Examples are the Suzuki—-Miyaura cou-
pling reactions by Perera et al. [228] and the palladium-catalysed Buchwald—Hartwig reactions by
Ahneman etal. [222], to date the best-studied HTE yield data set. In this work, we study reactions
yield prediction using the latter data set [222], containing a total of 3955 Buchwald—Hartwig re-
actions with measured yields. Figure 6.1 a) provides an overview of the data set.

In a recent manuscript, Schwaller et al. [203] introduced a BERT [3] model with a regression
head to predict reactions’ yields given as input a reaction SMILES [46, 47], a text-based molecule
and reaction representation. We show in Figure 6.1 a) and c) the task description, together with an
example of a reaction SMILES. Here, we investigate how different data augmentation techniques
(Figure 6.1 b), molecule permutations and SMILES randomisations [114, 236, 237, 238]) improve
the performance of the yield prediction models. Moreover, we demonstrate the use of test-time
augmentation (Figure 7.1 d)) to provide uncertainty estimates [239] on the reaction yields, that
correlate with the predictions’ errors.

4 Buchwald ligands Total:

X X - 1 Pd catalyst, 3955 reactions
a) Buchwald-Hartwig reaction template N 3 bases, 23 additives -
e 3
‘; + N:4\Cs —_— \‘Tl‘/ Nos
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d) Test time augmentation
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Figure 7.1: Task overview. Training/evaluation pipeline and task description.
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7.2 Results

7.2 RESULTS

Our models were trained using Simpletransformers [229], Huggingface transformers [216], Py-
Torch [81] and scripts adapted from the RXN yields GitHub repository [203, 240]. Canonicalisa-
tions and augmentations were done using RDKit [153]. As described in the work of Schwaller et
al. [203], fine-tuning a pretrained reaction BERT model [177] for a specific task provides the ad-
vantage of having most of the hyperparameters already optimised and fixed. Schwaller et al. [203]
tuned only the dropout probability and the learning rate on the training data of the first random
split, further split into a smaller training and validation set. Here, we initialised the dropout and
learning rate using the values reported in [203] and we determined the optimal numbers of data
augmentations using the same training/validation set. We investigated the two data augmenta-
tion techniques: molecule permutations, where we randomly shuffle the order of the precursors,
SMILES randomisations, where we generated multiple randomised SMILES for a given molecule
[238], and the combination of the two. Examples of augmented reactions and molecules are shown
in Figure 6.1 b).

7.2.1 YIELD PREDICTION

Most of the results in the literature were published on 70%/30% (training/testing) random splits.
In Table 7.1, we compared the results of the canonical order, the permuted precursors, the ran-
domised SMILES and the combination of both permutation plus randomisation to previous
studies [200, 203, 222, 223]. While the use of the canonical order SMILES representation plus
BERT with a regression head [203] already outperforms one-hot encodings [223], physics-based
descriptors [222] and multi-fingerprint features [200] plus a random forest regressor, here we sig-
nificantly improve the R? score using randomisation. The same number of training augmenta-
tions, as stated in Table 7.1, was used throughout this work.

Table 7.1: Random splits 70/30. The results were averaged over 10 splits.

R? # samples/augmentations per rxn ~ mean std
canonical 1 0951 0.005
permuted 5 0.964 0.003
randomised 15 0.970 0.003
permuted & randomised (p&r) 15 0.970 0.003
MEF + RF [200] 0.927  0.007
DFT + RF [222] 0.92

one-hot + RF [223] 0.89

Moreover, we investigated the prediction performance on reduced training sets (Table 7.2), an
experiment also performed by Ahneman et al. [222]. We observed that using SMILES randomisa-
tion, we outperformed all other approaches, using only 2.5% (or 98 data points). Although deep
learning models are typically criticised as being data-hungry, our combination of a pretrained base-
encoder [177] and data augmentation leads to accurate predictions in the small data regime.
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7 Data augmentation strategies to improve reaction yield predictions and estimate uncertainty

Table 7.2: Results in low-data regime. Reduced training sets, averaged over 10 splits. Compared to the
DFT-descriptor plus a RF model by Ahneman et al. [222].

R? ‘ canonical permuted randomised perm & rand ‘ DFT [222]

2.5% train | 0.45+0.05 0.47+£0.13 0.61+0.04 0.57+0.08 0.59
5% train | 0.61£0.04 0.70+0.06 0.74+0.03 0.71+0.04 0.68
10% train | 0.79£0.02 0.81+0.02 0.81£0.02 0.81+0.02 0.77
20% train | 0.86£0.01 0.87+0.02 0.89+0.01 0.89+0.01 0.81
30% train | 0.88£0.01 0.90£0.01 0.92+0.01 0.91+£0.01 0.85
50% train | 0.92+0.01 0.94=£0.01 0.95+£0.01 0.95+0.01 0.9

The data set of Ahneman et al. [222] also contains four out-of-sample splits, for which certain
additives are only present in the test set. The results in Table 7.3 show that the models trained on
canonical reaction SMILES without data augmentation perform best. For Test 4, the additives of
the training set are the least representative of the ones in the test data. Therefore, the model trained
on randomised SMILES, which better captures the patterns in the training data, unsurprisingly
performs worse on that set.

Table 7.3: Results on out-of-sample test splits. Our results were averaged over 5 random seeds.
R? Test1 Test 2 Test 3 Test 4 Avg.

canonical 0.84 £0.01 0.84+0.03 0.75 £ 0.04 0.49+0.05 | 0.73 £0.15
permuted 0.82£0.01 0.90 £0.01 0.63+£0.05 0.43£0.07 | 0.69£0.19
randomised 0.80 £0.01  0.88 £ 0.02 0.56£0.08 0.07+£0.04 | 0.58£0.33
perm&rand  0.79 £ 0.09 0.90 =0.01 0554+£0.05 027=*£0.14 | 0.63£0.26

MFF [200]  0.85 0.71 0.64 0.18 0.60
DFT [222] 0.8 0.77 0.64 0.54 0.69
OH[223]  0.69 0.67 0.49 0.49 0.59

7.2.2 UNCERTAINTY ESTIMATION

We introduce test-time augmentation to provide an uncertainty estimation on our yield predic-
tions. We input several data augmented versions of the same reaction and output the predicted
yield as the average of the predicted yields using their standard deviation as the uncertainty esti-
mate. Doing so does not significantly change the R? score. We measure the quality of the uncer-
tainty estimates by computing the spearman’s rank correlation coefhicient (p) between absolute
error and standard deviation of predicted yields, similar to the work by Hirschfeld et al. [241] on
uncertainty quantification for molecular property predictions. The coefficient ranges between -1
and 1 and measures the monotonic relation between errors and uncertainty estimates. Figure 7.2)
shows that p increases for all augmentation methods with the number of test-time augmenta-
tions and converges to values above 0.4. For the example plots in Figure 7.3 a) and Figure 7.3 b),
we used the models trained on randomised SMILES and applied 10 test-time augmentations. In
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Figure 7.2: Test-time augmentations for uncertainty estimation. Spearman’s rank correlation coefhi-
cient with increasing number of test-time augmentations.

Figure 7.3 a), we show how the predicted values get more certain and precise when increasing
the data set from 2.5% to 70%. The out-of-sample test set plots in Figure 7.3 b) show that the
uncertainty estimate correlates well with the error. Points with a larger error are generally more
uncertain. Moreover, the models consistently predict a high yield for the reaction with the highest
experimental yield independently of the split.

7.3 DiscussioN

In this manuscript, we presented augmentation strategies to increase reaction yield prediction us-
ing as input solely a text-based representation of chemical reactions. Even in a small data regime, a
reaction BERT with regression head fine-tuned on randomised molecule representations was able
to outperform physics-based descriptors plus random forest [222]. Although data augmentations
result in worse performance for strongly dissimilar out-of-sample test reactions, we show that test-
time data augmentations can provide uncertainty estimates without the need of model retraining.
The uncertainty estimates correlate with the error of the predictions and could be used to guide
the chemical space exploration [226, 242, 243, 244]. The code and 400 trained models to produce
the results described in this work are available for download (https://github.com/rxnachemistry/
rxn_yi elds).
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Figure 7.3: Uncertainty estimation correlation examples. a) Predictions and uncertainty on random
split 01 with 2.5% and 70% training data using a fixed molecule order and 10 SMILES randomi-
sations (randomised). b) Out-of-sample test set predictions using a fixed molecule order and 10
SMILES randomisations (randomised). Uncertainty scale was kept the same for all plots and
capped at 4.0. MAE = mean average error, RMSE = root mean squared error, UQ = spearman’s
coefficient p.
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8 EXTRACTION OF ORGANIC CHEMISTRY
GRAMMAR FROM UNSUPERVISED
LEARNING OF CHEMICAL REACTIONS

Humans use different domain languages to represent, explore, and communicate scientific con-
cepts. During the last few hundred years, chemists compiled the language of chemical synthesis
inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical trans-
formation, a process called atom-mapping. Atom-mapping is a laborious experimental task and,
when tackled with computational methods, requires continuous annotation of chemical reac-
tions and the extension of logically consistent directives. Here, we demonstrate that Transformer
Neural Networks learn atom-mapping information between products and reactants without
supervision or human labelling. Using the Transformer attention weights, we build a chemi-
cally agnostic, attention-guided reaction mapper, and extract coherent chemical grammar from
unannotated sets of reactions. Our method shows remarkable performance in terms of accu-
racy and speed, even for strongly imbalanced and chemically complex reactions with non-trivial
atom-mapping. It provides the missing link between data-driven and rule-based approaches for

numerous chemical reaction tasks.

This chapter has been presented as a scientific article at the ML Interpretability for Scientific Dis-
covery workshop at ICML 2020 and was accepted in Science Advances:

P Schwaller, B Hoover, JL Reymond, H Strobelt, T Laino. Extraction of organic chemistry gram-
mar from unsupervised learning of chemical reactions. Scz. Adv., 2021,7, 15, eabe4166 (CC BY-
NC). The visualisation tools were developed by Benjamin Hoover and Hendrik Strobelt.

8.1 INTRODUCTION

Humans leverage domain-specific languages to communicate and record a variety of concepts.
Every language contains structural patterns that can be formalised as a grammar, i.e., a set of rules
that describe how words can be combined to form sentences. Through the use of these rules, it
is possible to create an infinite number of comprehensible clauses (knowledge) using a set of do-
main characteristic elements (words) obeying domain-specific rules (grammar and syntax). When
applied to scientific and technical domains, a language is often more a method of computation
than a method of communication.

Organic chemistry rules, for instance, have been developed over two centuries, in which experi-
mental observations were translated into a specific language where molecular structures are words
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8 Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

and reaction templates the grammar. These grammar rules illustrate the outcome of chemical
reactions and are routinely taught using specific diagrammatic representation (Markush repre-
sentations). More convenient representations like reaction simplified molecular-input line-entry
system (SMILES) [46] also exist for information technologies applied to synthesis planning and re-
action prediction. In both Markush and SMILES representations, the grammar rules are present
as latent knowledge in the historical corpus of raw reaction data.

A Dataset of reaction SMILES Unsupervised training on data set (without labels)
| | | |

BrC(Br)(Br)Br.CC...>>...
CO.Nclcccc([N+]...>>...

CC(=0)O[BH-]...>>... —_—)

(0C(C)=0)0C(C)=0..>>...

Transformer
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without atom-mapping
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Figure 8.1: Atom-mapping Overview. (A) Process that led to the discovery of the atom-mapping signal
and ultimately to the development of RXNMapper. (B) Directly affected chemical reaction
prediction tasks. (C) Importance of atom-mapping in affected downstream applications.
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8.1 Introduction

The digitisation of these rules proved to be a successful approach to design modern computer
programs[165] aiding chemists in synthetic laboratory tasks. Compiling reaction rules from do-
main data is tedious, requiring decades of labour hours and challenging to scale. The availability
of an automatic and reliable method for annotating how atoms rearrange in chemical reactions, a
process known as atom-mapping, could change profoundly the way organic chemistry is currently
digitised. However, the process of atom-mapping is an NP-hard problem, dealt with computa-
tional technologies since 1970s [245, 246]. Most atom-mapping solutions are either structure-
based [247, 248, 249, 250, 251, 252] or optimisation-based [253, 254, 255, 256, 257]. Most atom-
mapping solutions are either structure-based or optimisation-based [245, 246]. The current state-
of-the-art is a combination of heuristics, a set of expert-curated rules that precompute candidates
for complex reactions, and a graph-theoretical algorithm to generate the final mapping as devel-
oped by Jaworski et al. [61]. Nonetheless, brittle preprocessing steps, closed-source code, com-
putationally intensive strategies (more than 100 seconds for some reactions), and the need for
expert-curated rules hinder its wider adoption. Most public reaction data comes with rule-based
Indigo atom-maps [60], which are taken as ground-truth for subsequent work[s, ¢, 35, 37, 113,
258], irrespective of the explicit warnings about atom-maps quality issues[42].

Natural language processing (NLP) models [151] are among the few neural network architec-
tures showing a significant impact on synthetic chemistry [172] and not relying on atom-mapping
algorithms. Their ability to encode latent knowledge from a training set of molecules and reac-
tions represented as text (SMILES[46]) avoids the need to codify the chemical reaction grammar.
Molecular Transformer models, a recent addition to the NLP family, are the state-of-the-art for
forward reaction prediction tasks, achieving an accuracy higher than 90% [2, 4, 114, 116, 138]. Un-
derstanding the reasons for this performance requires the analysis of the neural network’s hidden
weights, which introduces the inherent complexity of interpreting neural networks.

Here, we report for the first time the evidence that Transformer encoder models [3, 98] learn
atom-mapping as a key signal when trained on unmapped reactions on the self-supervised task of
predicting the randomly masked parts in a reaction sequence, a process depicted in Figure 8.1 A.
Transformer architectures can learn the underlying atom-mapping of chemical reactions, without
any human labelling or supervision, solely from a large training set of reaction SMILES tokenised
by atoms[4, 43]. After establishing an attention-guided atom-mapper and introducing a neigh-
bour attention multiplier, we were able to achieve 99.4% correct full atom-mappings on a test set
of 49k strongly unbalanced patent reactions [62] with high-quality atom-maps [63].

The advantage of this approach is its unsupervised nature. In contrast to supervised approaches,
here the atom-mapping signal is learned during training as a consistent pattern hidden in the re-
action data sets, without ever seeing any example of atom-mapped reactions. As a consequence,
the quality of this approach is not limited by the quality of labeled data generated by an existing
annotation tool. Moreover, the unsupervised nature allows to scale the extraction of chemical
reaction grammar without the need of increasing human resources.

Numerous deep-learning methods developed for organic chemistry, like forward and back-
ward reaction prediction, will benefit from better atom-mapping (8.1 B). From template-based
approaches that use atom-mapping to automatically extract the templates from chemical reac-
tion data sets [35, 107, 109, 214], to graph-based approaches, predicting bond changes or graph
edits, that require atom-mapped reactions to extract the labels used for training the models [5,
6,113, 258]. Even the predictions of atom-mapping independent and template-free SMILES-2-
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8 Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

SMILES approaches [4, 43, 116] may benefit from better atom-mapping, thus becoming more
transparent and interpretable. In SMILES-2-SMILES approaches, the model generates the prod-
uct structures sequentially atom-by-atom given the precursors or vice versa, generate the precur-
sors given the product, without any support from atom-mapping information. After adding the
atom-mapping in a post-processing step, predictions can be linked back to training reactions with
the same reaction template. The atom-maps also enable the use of quantum mechanical simula-
tions to compute reaction energies and the mechanism without human intervention by providing
the corresponding atom pairs between precursors and products.

Moreover, our contributions will lead to improvements in the downstream applications that
depend on better atom-mapping and chemical reaction rules (Figure 8.1 C): retrosynthesis plan-
ning methods [107, 109, 259], chemical reactivity predictions using graph neural network algo-
rithms [6], reactant-reagent role assignments [62], interpretation of predictions [4], and knowl-
edge extraction from reaction databases [260].

The attention-guided reaction mapper (henceforth referred to as RXNMapper) can handle
stereochemistry and unbalanced reactions and is in terms of speed and accuracy the state-of-the-
art open-source tool for atom-mapping, providing an effective alternative to the time-intensive
human extraction of chemical reaction rules. We release RXNMapper together with the atom-
mapped public reaction data set of Lowe [42] and a set of retrosynthetic rules[35, 107, 109, 214]
extracted from it. The observed atom-mapping performance indicates that a consistent set of
atom-mapping grammar rules exists as latent information in large data sets of chemical reactions,
providing the link between data-driven/template-free and rule-based systems.

8.2 REsSULTS

Self-attention is the major component of algorithms called Transformers that are setting new
records on NLP benchmarks, e.g., BERT [3] and ALBERT [98], and even creating breakthroughs
in the chemical domain [4, 43, 177]. Transformers use several self-attention modules, called heads,
across multiple layers to learn how to represent each token in an input - e.g., each atom and
bond in a reaction SMILES - given the tokens around it. Each head learns to attend to the in-
puts independently. When applied to chemical reactions, Transformers use attention to focus on
atoms relevant to understand important molecular structures, describe the chemical transforma-
tion, and detect useful latent information. Fortunately, the internal attention mechanisms are
intuitive to visualise and interpret using interactive tools [129, 130, 261]. Through visual analysis,
we observed that some Transformer heads learn distinct chemical features. Most strikingly, spe-
cific heads learned how to connect product atoms to reactant atoms, the process defined above as
atom-mapping. We call these Transformer heads atom-mapping heads.

Throughout this work, our Transformer architecture of choice is ALBERT [98]. ALBERTs
primary advantage over its predecessor BERT [3] is that it shares network weights across layers
during training. This both makes the model smaller and keeps the functionality learned by a
head the same across layers and consistent across inputs. Learned functions such as forward and
backward scanning of the sequence, focusing on non-atomic tokens (ring openings/closures), and
atom-mapping all perform similarly, irrespective of the input.
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8.2 Results

8.2.1 FROM RAW ATTENTION TO ATOM-MAPPING

To quantify our observations, we developed an attention-guided algorithm that converts the bidi-
rectional attention signal of an atom-mapping head into a products-to-reactants atom-mapping.
This specific mapping order ensures that each atom in the products corresponds to an atom in
the reactants, which is important given that the most sizable open-source reaction data sets[41,
42] report only major products and show reactions that have fewer product atoms than reactant
atoms.

The product atoms are mapped to reactant atoms one at a time, starting with product atoms
that have the largest attention to an identical atom in the reactants. At each step, we introduce
a neighbour attention multiplier that increases the attention connection from adjacent atoms of
the newly mapped product atom to adjacent atoms of the newly mapped reactant atom, boosting
the likelihood of an atom having the same adjacent atoms in reactants and products. This process
continues until all product atoms are mapped to corresponding reactant atoms. Interestingly, the
constraint of mapping only to equivalent atoms led to negligible improvements in terms of atom-
mapping correctness, indicating that the model had already learned this rule in its atom-mapping
function.

We selected the best performing model/layer/head combination after evaluation on a curated
set of 1k patent reactions by Schneider etal. [62] originally mapped with the rule-based NameRXN
tool [63]. We used the remaining 49k reactions as a test set. We consider the atom maps in
NameRXN [63] to be of high quality because they are a side product of successfully matched
reaction rules humanly designed. We used our best ALBERT model (total 12 layers, 8 heads)
configuration (at layer 11, head 6, and multiplier 90) for RXNMapper.

8.2.2 ATOM-MAPPING EVALUATION

The predominant use case for atom-mapping algorithms is to map heavily imbalanced reactions,
such as those in patent reaction data sets[41, 42], or those predicted by data-driven reaction pre-
diction models[4]. After training RXNMapper on unmapped reactions [42], we investigated the
chemical knowledge our model had extracted by comparing our predicted atom maps to a set
of 49k test reactions [62]. The majority (96.8%) of the atom-mappings matched the reference,
including methylene transfers, epoxidations, and Diels-Alder reactions (Figure 8.2). We manu-
ally annotated the remaining discrepancies to discover edge cases where RXNMapper seemingly
failed. A more careful analysis showed that out of the 1551 non-matching reactions, only 284 pre-
dictions were incorrect. In 415 reactions, RXNmapper gave atom-maps equivalent to the original
(e.g, tautomers), and in 436, the atom-maps were better than the reference. In 369 cases, the origi-
nal reaction was questionable and likely wrongly extracted from patents. For 47 reactions, the key
reagents to determine the reaction mechanisms were missing. After removing questionable reac-
tions from the statistics and counting the equivalent mappings as correct, the overall correctness
increased to 99.4%.

Among the most frequent failures of RXNMapper, we find examples of wrong atom ordering
in rings and azide compounds (Figure 8.2, (d)). In others, the model assigns wrong mappings to a
single oxygen atom, like in reductions (Figure 8.2, (e)), or in Mitsunobu reactions (Figure 8.2, (f)),
where the phenolic oxygen should become part of the product, but the model maps the primary
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Figure 8.2: Atom-mapping predictions. (A) Visualising the results on the whole 49k Schneider test set
with a focus on the mismatched atom-mappings (together with 1.5k matches for context) us-
ing reaction TMAPs [177, 201]. (B) Examples of atom-mappings generated by RXNMapper.
Reactants and reagents were not separated in the inputs.

or secondary alcohol instead. We also observed counterexamples of Mitsunobu reactions (Fig-
ure 8.2, (c)) for which our model correctly mapped the reacting oxygen while the rule-based ref-
erence contained the wrong mapping as a result of the reaction not matching the Mitsunobu
reaction rule. Although the overall quality of the reference atom-maps in the 49k test set [64]
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is high, we were able to identify few important advantages of using RXNMapper instead of the
rule-based mapped data set. RXNMapper correctly assigns the oxygen of the primary alcohols to
be part of the major product for esterification reactions (Figure 8.2, (a)) like Fischer-Speier and
Steglich esterifications as opposed to the annotated ground truth. It also correctly recognises an-
hydrides (Figure 8.2, (b)) and peroxides as reactants in acylation and oxidation reactions where
the ground truth favored formic acid and water.

RXNMapper not only excels on patent reactions but performs remarkably well on reactions
involving rearrangements of the carbon skeleton where humans require an understanding of the
reaction mechanism to correctly atom-map. Striking examples include an intramolecular Claisen
rearrangement used to construct fused 7-8 membered ring in the synthesis of the natural prod-
uct micrandilactone A (Figure 8.3 a)[262, 263]), and the tandem Palladium-catalyzed semipinacol
rearrangement / direct arylation used for a stereoselective synthesis of benzodiquinanes from cy-
clobutanols (Figure 8.3 b)[264]). In both cases, RXNMapper completes the correct atom map-
ping despite the entirely rearranged carbon skeletons resulting in different ring sizes and connec-
tions. ReactionMap, Marvin, ChemDraw and Indigo, failed at this atom-mapping task. RXN-
Mapper also succeeds in atom mapping the ring rearrangement metathesis of a norbornene to
form a bicyclic enone under catalysis by Grubbs-(I) catalyst (Figure 8.3 ¢)[265]). In this case,
ChemDraw successfully completes the mapping, while the other tools failed. Furthermore, RXN-
Mapper performs well with multicomponent reactions such as the Ugi 4-component condensa-
tion of isonitriles, aldehydes, amines and carboxylic acids to form acylated aminoacid amides (Fig-
ure 8.3 d), [266]). Here, RXNmapper maps all atoms correctly except for the carbonyl oxygen
atom of the isonitrile derived carboxamide. RXNMapper assigns this oxygen atom to the oxygen
atom of the carbonyl group of the aldehyde reagent, though this atom actually comes from the
hydroxyl group of the carboxylic acid reagent. All other tools failed this atom-mapping task except
for Mappet.

Similar to Jaworski et al. [61], we analyzed the atom-mapping in USPTO patent reactions ac-
cording to the number of bond changes. RXNMapper performs better than Mappet [61] on all
reactions except for those involving only one bond change. With an average time to solution of
7.7 ms/reaction on GPU accelerators and 36.4 ms/reaction on CPU, RXNMapper’s speed is sim-
ilar to the Indigo toolkit [60] on balanced reactions and far exceeds Indigo on unbalanced ones.
As a comparison, Mappet [61] takes more than 10 seconds per reaction for 3.2% of their balanced
test set reactions and for few of the reactions even more than 100 seconds per reaction. Addition-
ally, RXNMapper outputs a confidence score for the generated atom-maps. An analysis of the
confidence scores and more detailed comparisons are available in the supplementary materials.

The advantages of RXNMapper compared to the open-source Indigo [60] and the closed-
source Mappet [61] are summarised in Table 8.1. RXNMapper is noticeably faster than other
tools, handles strongly unbalanced reactions, performs well even on complex reactions and is
open-source. It can also be used for compiling retrosynthetic rules, which are of crucial impor-
tance for several reaction and retrosynthesis prediction schemes like Chematica [165], in which a
multitude of Ph.D. students and Postdocs across 15 years of continuous worked to extract reac-
tions from literature and convert them into retrosynthetic rules. With unsupervised schemes such
as RXNMapper, the extraction of retrosynthetic rules can be completed in a matter of weeks, with
little human intervention. We demonstrate that by atom-mapping the entire USPTO data sets
and by extracting the retrosynthetic rules using the approach described by Thakkar et al. [109].
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Figure 8.3: Atom-mapping examples. Examples and results for commercially available tools from the
complex reactions data set by Jaworski et al. [61]. (A) Bu3Al-promoted Claisen rearrangement
[262, 263] (B) Palladium-Catalyzed Semipinacol Rearrangement and Direct Arylation [264].
(C) Grubbs-catalyzed ring rearrangement metathesis reaction [265] (D) Ugi reaction [266]

We make available the corresponding atom-mappings of the USPTO data set and the 21k most
frequently extracted retrosynthetic rules along with the most commonly used reagents, the cor-
responding patent numbers, and the first year of appearance. The application of unsupervised
schemes demonstrates the feasibility of running a completely unassisted construction of retrosyn-
thetic rules in just a few days — three orders of magnitude faster than previous human curation
protocols. The use of unsupervised schemes will facilitate the compilation of new retrosynthetic
rules in existing rule-bases systems.

8.3 Di1scussioON

We have shown that the application of unsupervised, attention-based language models to a corpus
of organic chemistry reactions provides a way to extract the organic chemistry grammar without
human intervention. We unboxed the neural network architecture to extract the rules govern-
ing atom rearrangements between products and reactants/reagents. Using this information, we
developed an attention-guided reaction mapper that exhibits remarkable performance in both
speed and accuracy across many different reaction classes. We showed how to create a state-of-the-
art atom-mapping tool within two days of training without the need for tedious and potentially
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Figure 8.4: Comparison with other tools. (A) Comparison of RXNMapper, Mappet [61], and the orig-
inal Indigo mapping from the USPTO data set (281 reactions). The error bars show the Wilson
confidence interval [267]. (B) Mapping speed comparison between RXNMapper and Indigo
[60], which is orders of magnitude faster than Mappet [61]. For Indigo 500ms, we set a timeout
of 500 ms, after which the tool would return an incomplete mapping. We averaged the timing
on the imbalanced reactions for Indigo without timeout on 20k reactions.

‘ RXNMapper  Indigo [60] Mappet [61]
Avg time (short) 6.4 ms 17.0 ms  Slower than Indigo
Avg time (strongly unbalanced) 7.7 ms 2400 ms Not handled
Quality on High Low High
complex reactions
Quality on strongly High Low -
unbalanced reactions
Open Source code? Yes Yes No

Table 8.1: Comparison of different atom-mapping tools.

biased human encoding or curation. Because the entire approach is completely unsupervised,
the use of specific reaction datasets can improve the atom-mapping performance on corner cases.
The resulting atom-mapping tool is significantly faster and more effective than existing tools, espe-
cially for strongly imbalanced reactions. Finally, our work provides the first evidence that unanno-
tated collections of chemical reactions contain all the relevant information necessary to construct
a coherent set of atom-mapping rules. Numerous applications built on atom-mapping will im-
mediately benefit from our findings [6, 107, 109, 113], and others will become more interpretable
exploiting the potential of unsupervised atom-mappings [4, 43].

The use of symbolic representations and the means to learn autonomously from rich chemi-
cal data led to the design of valuable assistants in chemical synthesis[172]. A strengthened trust
between human and interpretable data-driven assistants will spark the next revolutions in chem-
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istry, where domain patterns and knowledge can be easily extracted and explained from the inner
architectures of trained models.

8.4 METHODS

TRANSFORMERS

Transformers are a class of deep neural network architectures that relies on multiple and sequen-
tial applications of self-attention layers [2]. These layers are composed of one or more heads, each

of which learns a square attention matrix A € RV*N

of weights that connect each token’s em-
bedding Y; in an input sequence Y of length IV to every other token’s embedding Y. Thus, each
element A;; is the attention weight connecting Y; to Y. This formulation makes the attention
weights in the Transformer architecture amenable to visualizations as the curves connecting an
input sequence to itself, where a thicker, darker line indicates a higher attention value.

The calculation of the attention matrix of each head can be easily interpreted as a probabilistic
hashmap or lookup table over all other elements Y;. Each head in a self-attention layer will first
convert the vector representation of every token Y; into a key, query, and value vector using the

following operations:

K; = W.Y; Qi = WY, Vi =W,Y; (8.1)

where W), € Rk *de W, € R *de and W, € R%*de re |earnable parameters. A;, or the
vector of attention out of token Y}, is then a discrete probability distribution over the other input
tokens, and it is calculated by taking a dot product over that token’s query vector and every other
token’s key vector followed by a softmax to convert the information into probabilities:

Qi(WkYT))' (8.2)

Vi
Note that one can define input sequence Y as an N X d, matrix and matrix Wy, as a dj, X d.

matrix, where d, is the embedding dimension of each token and dj, is the embedding dimension

shared by the query and the key.

A = softmax(

Each head must learn a unique function to accomplish the masked language modelling task,
and some of these functions are inherently interpretable to the domain of the data. For example,
in Natural Language Processing (NLP), it has been shown that certain heads learn dependency
and part of speech relationships between words [231, 268]. Using visual tools can make exploring
these learned functions easier [130].

MODEL DETAILS

For our experiments, we used PyTorch (v1.3.1) [81] and huggingface transformers (v2.5.0) [216].
The ALBERT model was trained for 48 hours on a single Nvidia P100 GPU with the hyperpa-
rameters stated in the supplementary information. Schwaller et al. [4] developed the tokenisation
regex used to tokenise the SMILES. We expect further performance improvements when using
more extensive data sets (e.g., commercially available ones). The RXNMapper model uses 12 lay-
ers, 8 heads, a hidden size of 256, an embedding size of 128, and an intermediate size of 512. In
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contrast to ALBERT base [98] with 12M parameters, our model is small and contains only 770k
trainable parameters.

Data

The work by Lowe [42] provides the data sets used for training, composed of chemical reactions
extracted from both grants and patent applications. We removed the original atom-mapping from
this dataset, canonicalised the reactions with RDKit [153], and removed any duplicate reactions.
The data set includes reactions with fragment information twice, once with and once without
fragment bonds, as defined in the work of Schwaller et al. [43]. The final training set for the
masked language modelling task contained a total of 2.8M reactions. For the evaluation and the
model selection, we sampled 996 random reactions from the Schneider et al. [62] data set.

To test our models, we first used the remaining 49k reactions from the Schneider50k patents
data set [62]. We do not distinguish between reactants and reagents in the inputs of our models.
We also used the human-curated test sets that were introduced by Jaworski et al. [61] to compare
our approach to previous methods. Table 8.2 shows an overview of the test sets. Note that patent
reactions differ from the reactions in Jaworski et al. [61] because the latter removes most reactants
and reagents in an attempt to balance the reactions.

Number of  Avg. number of  Avg. number of
reactions  reactantatoms  product atoms

Test set

Simple reactions [61] 100 27.1 27.1
Typical reactions [61] 100 19.9 19.6
Complex reactions [61] 201 25.7 24.8
USPTO bond changes [61] 281 26.0 23.7
SchneiderS0k test [62] 49000 43.3 26.1

Table 8.2: Data sets used for testing

ATTENTION-GUIDED ATOM-MAPPING ALGORITHM

The attention-guided algorithm relies on the construction of the attention matrix for a selected
layer and head, where we sum the product-to-reactant and the corresponding reactant-to-product
atom attentions. Algorithm 1 provides the exact atom-mapping algorithm. By default, after
matching a product-reactant pair, the attentions to those atoms are zeroed. Optionally, atoms
in product and reactants can have multiple corresponding atoms. We always mask out attention
to atoms of different types.

ATOM-MAPPING CURATION

Chemically equivalent atoms exist in many chemical reactions. Most of the chemically equivalent
atoms could be matched after canonicalising the atom-mapped reaction using RDKit [153, 269].
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8 Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

Algorithm 1: Attention-guided atom-mapping algorithm

Data: Reaction SMILES S, multiplier W, model M
Result: Product — reactant atom-mapping P
begin

A— M(S) // compute attention matrix

fori € range(len(P)) // iterate through product atoms
do

Mask invalid atoms (not same type; optionally, already mapped)

Select 4, j pair with highest attention A;;

ifz4w-7é()then

f% é‘**j// Map product atom ¢ to reactant atom j

multiply attention of adjacent atoms of 7 to adjacent atoms of j by W
// Increase neighbour attentions

else

B <— —1// No corresponding reactant atom
L break

Exceptions were atoms of the same type connected to another atom with different bond types,
which would form a resonance structure with delocalised electrons. We manually curated these
exceptions and added them as alternative maps in the USPTO bond changes test set [61].

DATA AND CODE AVAILABILITY

All our generated atom-mappings, including those for the largest open-source patent data set [42],
the unmapped training, validation, and test set reactions, can be found in the following reposi-
tory https: //github.com/rxn4chemistry/rxnmapper. The code is available at https://github.com/
rxn4chemistry/rxnmapper and a demo at http://rxnmapper.ai.
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9 CONCLUSION AND OUTLOOK

This chapter first summarises the main contributions of the thesis and then provides an outlook
of the remaining challenges and opportunities.

9.1 SUMMARY OF THE CONTRIBUTIONS

In this thesis, I made use of the similarities between written human language and organic chem-
istry to build linguistics-inspired tools that help chemists to accelerate chemical synthesis. More
specifically, I developed transformer-based models for different chemical reaction tasks. With
encoder-decoder transformers [2, 4] I approached forward reaction prediction and multi-step syn-
thesis planning and with encoder-only transformers [3, 98] reaction classification, fingerprints,
yield prediction and atom-mapping.

In chapter 3, I focused on the limitations of previous reaction prediction models and I inves-
tigated stereo- and regioselective reaction in a small carbohydrate reaction data set. I showed that
using transfer learning, I could overcome some of the weaknesses of previous models. By specialis-
ing a Molecular Transformer model on carbohydrate reactions using either multi-task and sequen-
tial transfer learning, the model could learn to predict transformations challenging for chemists
and models alike. Not only did the transfer learning approach improve on the in distribution
test set from 43.3% with the baseline model to 71.2%, also on smaller out-of-distribution similar
improvements were observed. One of those test sets consisted of an unpublished synthesis of a
lipid-linked oligosaccharide. My results show that the open-source reaction data is enough to be
leveraged to train models that perform well on more specific and challenging reaction subspaces,
where less data is available.

In chapter 4, I discussed the approach behind the multi-step retrosynthesis tool in the IBM
RXN for Chemistry platform [44], which uses two Molecular Transformers. The first is trained
on forward reaction prediction and used to score suggestions by the second model, which sug-
gest different reactant and reagent combination that might lead to the target product or a non-
commercially available molecule required for the synthesis. I reported the ineffectiveness of using
atop-N accuracy to optimise single-step retrosynthesis models in the multi-step setting, which led
to the introduction of four newly designed metrics: coverage, class diversity, round-trip accuracy,
and Jensen-Shannon divergence metrics. The newly defined metrics improved the comparison
with the observations of my experimental collaborators and made it possible an effective optimi-
sation of single-step retrosynthesis models for a multi-step setting. The Jensen-Shannon diver-
gence metric was recently revised making it cumulative and non-parametric [190]. Unlike other
multi-step retrosynthesis tools, my approach not only predicts the largest fragments, synthons or
reactants, but also reagents simultaneously. To date, it is still the only data-driven atom-mapping
independent retrosynthesis approach. My models are freely accessible through the IBM RXN
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for Chemistry platform in a fully automated mode and in a interactive mode. In the interactive
mode, human chemists get suggestions by the AI models and then, select the most suitable given
their expertise. Hence, the design of synthesis routes becomes like a human-Al interaction game.
Such collaborative procedures could facilitate the adoption of machine learning tools by synthetic
chemists [270].

After introducing approaches for forward reaction prediction in the low-data regime and a
multi-step synthesis planning using black-box models, in chapter 5, I made the predictions of
those models more explainable by developing a reaction classification model. Synthetic chemists
commonly use reaction classes to communicate reaction characteristics efficiently. My transformer-
based models were trained on predicting reaction classes from reaction SMILES without reactant-
reagent separation and can directly be applied to the outputs of the models in chapter 3 and 4. On
atest set from the Pistachio [180] data set originally classified with rule-based NameRXN tool [¢3],
the best classifier achieved an accuracy of 98.9%. My models reached the same performance on the
USPTO 1k TPL classification data set, which I derived from the open-source USPTO data [41, 42,
59]. The classification models are used in the IBM RXN for Chemistry [44] to group similar re-
actions in the individual steps of predicted synthesis routes. Based on encoder-only transformer
classifiers, I introduced atom-mapping independent reaction fingerprints. My reaction finger-
prints are available in open-source and enable efficient similarity searches and reaction clustering.

Economic, logistic and energetic considerations motivate chemists to optimise reactions to con-
vert most of the reactants into the desired product. In chapters 6 and 7, I investigated reaction
yield prediction models. I used the yields of two high-throughput experiment data sets[222, 228]
and the yields data extracted from USPTO [41, 42, 59] to develop models that predict yields using
canonical reaction SMILES as input in chapter 6. While my approach worked well on reaction
data originating from the same source, as in the high-throughput experiment, the USPTO yield
data turned out to be too noisy for accurate predictions. In chapter 7, I focused on the best-studied
high-throughput experiment data set containing Buchwald—Hartwig reactions [222]. Using data
augmentation techniques, I showed that the linguistics-inspired models could consistently out-
perform methods using physics-based descriptors, even in the low-data regime. Moreover, I pro-
posed a novel way of estimating epistemic uncertainty through test-time augmentation.

Finally, in chapter 8, I investigated what encoder-only transformer models learn while being
trained on chemical reaction data with a self-supervised mask language modelling task. Based
on a visual inspection of the attention weights and an analysis of the functionalities that differ-
ent heads had learned, I discovered an atom-mapping pattern consistently present in at least one
head in all trained models. My models managed to capture the hidden grammar of chemical reac-
tions without explicitly being told to do so. Based on the attention weights of the atom-mapping
head, I developed an atom-mapping tool called RXNMapper. RXNMapper efficiently produces
high-quality atom-maps even on strongly imbalanced reaction equations and chemically complex
reactions. Using the atom-mapping generated with RXNMapper, I extracted consistent reaction
rules from unlabelled chemical reaction data sets. The open-source RXNMapper was recently
selected as the best atom-mapping tool in a benchmarking study conducted by an independent
group [271] - even better than commercially available tools. This result is remarkable as the mod-
els learned underlying atom-mapping signal without supervision or human labelling. Moreover,
RXNMapper was used to improve the reactant-reagent split in the open-source USPTO reaction
data [272] show-casing its immediate impact on the community.
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The challenges I addressed, including prediction of carbohydrate reactions, multi-step synthe-
sis planning, and atom-mapping, went beyond simple regression tasks. I showed that natural
language processing models could learn chemical knowledge from text-based representations of
molecules and chemical reactions. Hence, predicting chemical reactivity, which long was reck-
oned to be an art only human experts could predict, has become within reach of data-driven
learning systems. Starting from my pretrained models and recipes, presented in chapter 3, the
fine-tuning of a specific Molecular Transformer can be done in a few hours on any reaction sub-
space of interest. Similarly, new single-step retrosynthesis models from 4 could be trained using
transfer learning and integrated multi-step synthesis planning tools to extend their applicability
domain. The individual predictions can not only be classified into reaction classes with the mod-
els introduced in 5, they can easily be linked back to the most similar reactions in the training data
using my reaction fingerprint. This procedure can give chemist direct access to additional meta-
data like the patent numbers, reaction procedures, and conditions of similar reactions and explain
the predictions. Further information, such as reaction centres, reaction rules and molecules’ roles
(reactant/reagent), can be obtained by analysing the atom-maps generated by RXNMapper de-
veloped in 8. Hence, I overcame some of the major limitations of entirely data-driven reaction
prediction and retrosynthesis approaches. Through my efforts in explainability, the IBM RXN
platform and the RXNMapper (http://rxnmapper.ai), chemical reaction language models be-
came increasingly approachable for chemists.

9.2 OUTLOOK

The demonstrated advances in machine learning for organic synthesis were made possible through
powerful hardware, new machine learning algorithms and frameworks, and open data availabil-
ity. The last part of the conclusion is dedicated to open challenges and opportunities in machine
learning for chemical reactions. I will briefly discuss data quality, chemical representations, the
broader adoption of machine learning models in chemistry and synthesis automation.

9.2.1 DATA QUALITY

Although our transformer-based models have shown to cope relatively well with noisy chemical
data, improvements can be expected once better quality data becomes available. As pointed outin
chapter 2, there are numerous steps from the bench chemists performing the reaction and report-
ingitin an ELN to the reaction ending up in a reaction database. An inaccurate description of the
procedure, typos in an IUPAC name or an erroneous text-mining and conversion can introduce
noise or completely invalidate a reaction. Even partly human-curated databases like Reaxys [39]
have quality issues. Due to their reaction format, where only reactants and products are described
in SMILES, extensive preprocessing is required to make their data valuable. If at all, reaction con-
ditions and yields are recorded in non-standardised formats.

An example of the impact of the knowledge represented in the training data comes from the
work of Kovacs et al. [273], who observed that Friedel-Crafts reactions, reported in the open-
source USPTO data, predominantly result in a substitution of the hydrogen in the para position.
As a consequence, data-driven models trained on that data will favour this substitution over the
substitution in the meta position, independent of the functional groups, and hence, can easily be
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fooled with underrepresented meta-directing groups. Another weakness of data-driven models
originates from incomplete reactions. The palladium catalysts are missing in some of the Suzuki-
coupling reactions in the data set, but present in others. Therefore, the models will learn that the
catalysts are not important for the reaction to occur and ignore them.

Recently, myself and coworkers [190] suggested an approach how to automatically clean reac-
tion data without human intervention using forgetting events. In another work, I took an orthog-
onal approach [274], where a model automatically completes information missing from corrupted
reaction equations. While those approaches can improve the quality of existing data set to a cer-
tain extend, there is the urgent need for a better chemical data publication pipeline. Many of the
error-prone steps could be circumvented if the data would be recorded in ELNs from the start and
submitted in a standardised format as part of a scientific publication. However, the definition and
wide adoption of standards are challenging. Currently, the Open Reaction Database [275] is being
developed, which could be a key step forward towards better reaction data and standardisation.
Moreover, the publication of low-yielding and failed reactions would enable the development of
models that would learn from negative examples. To date, reaction data sets are heavily biased
towards frequently used and successful reactions. An effort, similar to the one in the computa-
tional material science community with projects like Materials Cloud [276], NOMAD [277] and
the Materials Genome Initiative [278], is required to develop distributed solutions, to agree on
chemical reaction representation standards, and make data accessible and reusable [279]. Open-
access publications in organic chemistry accompanied by machine-readable experimental data, in-
cluding information on failed experiments, would enable the development of better performing
data-driven models.

9.2.2 BETTER MOLECULAR AND REACTION REPRESENTATIONS

The approaches presented in this thesis were based on a text-based molecule, and reaction repre-
sentations called SMILES [46, 47]. However, sterics and the 3-dimensional shape of molecules,
which may play a crucial role in chemical reactivity are poorly captured by the SMILES repre-
sentation. Similarly, molecular graph representations, which have a more substantial inductive
bias on covalent bonds, fail to correctly represent the 3D information, as long as bond angles and
lengths, are not determined. Future studies should focus on better molecular representations.
An interesting approach could be the usage 3D-roto equivariant neural networks [280], which,
for example, lead to ground-breaking results in protein structure prediction [281]. Besides more
accurate predictions, 3D-roto equivariant neural networks could potentially lead to improved re-
action fingerprints when applied to the individual molecules in a reaction. However, Cartesian
coordinates introduce other challenges, for example, the one of correctly determining the right
conformers [282]. Another representation challenge is that current cheminformatics tools, like
RDKit [153], have only limited support for non-covalent bonds in molecules. Those bonds are
particularly important for organometallic complexes, which are often used as catalysts in organic
synthesis. Already a standardised canonical representation of organometallic compounds could
help. At the moment, the same metal catalysts often exist in multiple variants in the same databases
making it more difficult for data-driven models to learn their effects.

For chemical reactions, I made a first step towards enabling efficient quantum simulations for
holistic transition state and energy barrier calculations with RXNMapper [189]. Knowing the
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atom-mapping and therefore, the bond changes occurring during a reaction could significantly
reduce the number of possible transition states that have to be considered. Frameworks like Re-
actionPredictor [30], Reaction Mechanism Generator [283, 284], global route reaction mapping
[285, 286], autodE [287] could be coupled with machine learning-based synthesis planning tools,
automatically calculate reaction profiles and guide the selection process towards more favourable
routes [202, 288]. In this regard, it would be practical to predict balanced reaction equations with
full product information and not only the major product.

9.2.3 EDUCATION AND COLLABORATIVE APPROACHES

Eventually, machine learning tools have to be applied in practice. Performing in silico experiments
on overly simplified and unrealistic data sets, as it is often done to compare machine learning
approaches is only of limited interest. Methods should either be validated experimentally or made
easily accessible to the researchers that can best benefit from them. To date, only a few research
groups have both a strong synthesis and machine learning expertise. For synthetic chemists, even
when open-sourced, downloading code from GitHub and spending time to make the programs
work on their chemical subspace of interest is seldom an option. Platforms such as IBM RXN for
Chemistry [44], and ASKCOS [125] are good examples of how a wider adoption can be facilitated.
On those platforms, chemists can use familiar tools to draw molecules as inputs to fully trained
machine learning models and get back predictions. They can then assess the predictions to get
a feeling of how useful the implemented machine learning models could be for them. Examples
shown in scientific papers can be exciting but are frequently cherry-picked and not statistically
relevant.

Machine learning researchers should communicate with synthetic chemists and learn how to
make their approaches more relevant for solving real-world problems. Too often, machine learn-
ing researchers are only interested in the beauty of the algorithm and simplify the task at hand to
make it work with their algorithm, ignoring the practical end-use completely. Researchers under-
standing the challenges in chemistry and machine learning will make the most significant contri-
butions to the field. Along the same lines, it would be great if the next generation of synthetic
chemists and material scientists were educated in programming and machine learning. Hence,
they could better understand the advantages and limitations of different machine learning ap-
proaches, integrate them into their workflow, and tap the machine learning tools’ full poten-
tial. As Derek Lowe [289] once said “It is not that machines are going to replace chemists. It’s
that the chemists who use machines will replace those that don’t.” Ground-breaking work could
originate from close collaborations between synthetic chemists and machine learning researchers.
Generic machine learning models that can easily be adapted to specific chemists needs, for exam-
ple, through few-shot learning [96] could be particularly useful to achieve this goal.

9.2.4 AUTOMATED SYNTHESIS

The rise in automation and robotic platforms for synthesis that we are currently witnessing is
expected to impact the quality of the produced data profoundly [224, 290, 291, 292]. Automation
comes with the advantages of being more efficient, less error-prone than human labour, and more
reproducible. Moreover, all reaction conditions and parameters, such as temperature or pressure,
can be recorded and ideally made available in a machine-readable format.
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Most automation studies, such as, for example, the work from which I obtained the data for the
yield prediction models [222, 228], were restricted to a well-defined chemical subspace. Ahneman
etal. [222], and Perera et al. [228] restricted it to a reaction type described with one reaction tem-
plate and a fixed number of precursors. The less constrained the search space and more flexible the
automation platform, the more extensive the possibility for discoveries. Recently, more modular
discovery-oriented platforms were studied. For instance, Coley et al. [125] developed reconfig-
urable flow apparatus. Although it was connected to a retrosynthesis prediction algorithm, it still
required human input to determine reagents and amounts. Steiner etal. [293] designed a language
to describe modular synthesis operations and automate bench chemistry. Another modular linear
approach was investigated by Bédard et al. [294]. Chatterjee et al.[295], instead, favoured a more
versatile radial synthesis approach, where the modules were placed around a central switching sta-
tion.

Going towards autonomous systems, myself and coworkers [235] recently introduced models
that could infer all actions required for a robot (or human alike) to run a reaction only from its
chemical equation. Paired with the retrosynthesis approach presented in chapter 4, the models
lead to successful automatic syntheses on the IBM RoboRXN platform [296]. This development
was made possible by previous work, where synthesis procedures were converted into structured
synthesis actions [188]. Similarly, Mehr et al. [297], presented an approach for converting reaction
procedures into synthesis actions. Although they validated some converted procedures by exe-
cuting the reactions on a robotic platform, the predicted procedures still required human-made
modifications before the execution. Unlike previous approaches, Burger et al. [298] developed
a platform-independent mobile robotic system. Focusing on a narrow chemical space, the so-
called robotic chemist autonomously performed 688 experiments over eight days searching for
photocatalyst mixtures. When such systems become more affordable, scalable and reliable, the
productivity and discovery in synthetic chemistry could tremendously increase [299].

With improving automation and data collection, one challenge we will face will be the combi-
nation of data from different sources with varying noise levels to best guide exploration of chemi-
cal space. Nevertheless, the potential of a feedback loop between automation platforms or mobile
robotic chemists and data-driven models is enormous and will likely revolutionise the way chem-
istry is done today.
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A APPENDIX: RECENT DATA-DRIVEN
LEARNING SYSTEMS FOR CHEMICAL
REACTIONS

Different neural network-based chemical reaction prediction approaches up to 2019 are shown in

Table A.1.
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Table A.1: Different chemical reaction prediction approaches. Comparison of the input, output, data
and model architecture of the data-driven reaction prediction approaches analysed in this work.

Input Output Data Model
Kayalaetal,, Atomic and Electron Generated using Feed-forward
Fooshee et al. [29, molecular features, sources/sinks, rules neural network
30, 34] reaction conditions mechanistic
steps
Wei et al. [31] Neural fingerprint Template Generated using Feed-forward
of 2 reactants + 1 ranking (16 rules neural network
reagent rules)
Segler and Waller Extended- Links in Binary reactions Graph
[32] connectivity knowledge from Reaxys reasoning
fingerprints graph
Segler and Waller Extended- Template Extracted from Feed-forward
[33] connectivity ranking (8820 Reaxys neural network
fingerprints rules)
Coley et al. [35] Edit-based, applying ~ Product ranking ~ USPTO-15k (15k Feed-forward
templates random reactions) neural network
Jinetal. [5] Molecular graph Bond changes USPTO_MIT data Graph
set (480k reactions) Convolutional
Neural Network
Schwaller etal. [36] ~ SMILES, separated Product USPTO_MIT, Seq2Seq model
reagents molecule USPTO_STEREO with attention
generation (IM reactions)
Bradshaw etal. [37]  Molecular graph, Bond changes USPTO_LEF (350k  Gated Graph
separated reagents reactions) Neural
Networks
Do etal. [38] Molecular graph, Bond changes USPTO-15k, Graph
separated reagents USPTO_MIT Transformation
Policy Network
Coley et al. [6] Molecular graph Bond changes USPTO_MIT Graph
Convolutional
Neural Network
Schwaller et al. [4] SMILES Product USPTO_MIT, Transformer
molecule USPTO_LEF, network
generation USPTO_STEREO
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B APPENDIX: TRANSFER LEARNING
ENABLES THE MOLECULAR
TRANSFORMER TO PREDICT REGIO- AND
STEREOSELECTIVE REACTIONS ON
CARBOHYDRATES

B.1 Data

Recent advancement in machine learning for reaction prediction were made possible thanks to
the vast availability of chemical reaction data. The largest open-source reaction data set was con-
structed by Lowe [42] and subsequently filtered and cleaned by different groups [5, 36, 37]. A gen-
eral overview of the different reaction data sets can be found in [138]. To have a large set covering
a broad range of chemical reaction classes, we started from the raw data of Lowe and constructed
the reaction smiles from the extracted components. We filtered out all reactions for which we
cannot match all the components to a SMILES structure. For instance, if the metal catalyst in a
Suzuki coupling reaction could not be mapped to a structure because of a wrong IUPAC name in
the patent, the reaction was tagged as incomplete and removed. After canonicalising the reactions
using RDKit [153] and removing duplicates the generic data set (USPTO) yielded 1.2M reaction
smiles. We split the data into training, validation and test sets (1.09M / 0.6M /0.6M), making sure
that same products remained in the same set. Trained models and our reaction data can be found
on https://github.com/rxn4chemistry/OpenNMT-py/tree/carbohydrate_transformer.

The second data set we use in this work is specific to carbohydrates chemistry. We manually
extracted reactions from papers of 26 authors in the field of carbohydrate chemistry using Reaxys
[39]. We considered full reactions with preparation and filtered out multi-step and enzymatic reac-
tions. Reagents, solvents and catalysts, for which in the Reaxys database only the chemical names
are available, were converted to SMILES structures and added to the precursors in the reaction
SMILES. We only kept reactions, for which we could convert all relevant names to SMILES. We
removed reactions with multiple products, the reactions without stereocentre in the product and
those with just a single precursor. After the removal of duplicate reactions, the carbohydrate re-
actions data set (CARBO) yielded 25k reaction smiles. Similar as for the USPTO data set, we
split the data into training, validation and test sets (19.7k / 2.4k / 2.5k). We also make sure that
all reactions resulting in the same product molecule are in the same set. On average the products
contained 6.4 stereo centres.

The following is the list of the 50 most commonly appearing authors in our Carbo data set (or-
dered alphabetically, the ones used for the query are highlighted with a star): Ando, Hiromune*;
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Bandiera, Tiziano; Beau, Jean-Marie*; Bernet, Bruno; Bertozzi, Carolyn R.*; Bertozzi, Fabio; Bols,
Mikael*; Boons, Geert-Jan*; Cheng, Ting-Jen R.; Crich, David*; Davis, Benjamin G.*; Dem-
chenko, Alexei V.*; Ernst, Beat*; Fang, Jim-Min; Fujimoto, Yukari; Fukase, Koichi*; Hasegawa,
Akira; Hotha, Srinivas*; Hui, Yongzheng; Hung, Shang-Cheng; Imamura, Akihiro; Ishida, Hide-
haru*; Jung, Karl-Heinz; Kajihara, Yasuhiro*; Kajimoto, Tetsuya; Kiso, Makoto; Kulkarni*, Su-
varn S.%; Kusumoto, Shoichi; Li, Qin; Lin, Chun-Cheng; Oscarson, Stefan*; Pedersen, Christian
Marcus; Pornsuriyasak, Papapida; Schmidt, Richard R*.; Schwardt, Oliver; Seeberger, Peter H.*;
Shie, Jiun-Jie; Stuetz, Arnold E.; Suda, Yasuo; Sun, Jiansong; Urban, Dominique; Vasella, Andrea;
Vincent, Stephane P.*; Withers, Stephen G.*; Wong, Chi-Huey*; Xiong, De-Cai; Yang, Jin-Song*;
Ye, Xin-Shan*; Yu, Biao*; Zhang, Li-He.

B.2 HYPERPARAMETERS AND TRAINING DETAILS

The training and evaluation was performed using OpenNM T-py[156, 157].

ANACONDA ENVIRONMENT

To reproduce our results and run our models create the following conda environment:

conda create -n carbo python=3.6 -y

conda activate carbo

conda 1install -c rdkit rdkit=2019.03.2 -y
conda install -c pytorch pytorch=1.2.0 -y
pip install OpenNMT-py==1.0.0.rc2

B.2.1 PREPROCESSING OF REACTIONS

Prepare the OpenNMT input files running:

onmt_preprocess -train_src $DATADIR/src-train.txt \
—train_tgt $DATADIR/tgt-train.txt \
-valid_src S$DATADIR/src-valid.txt \
-valid_tgt $DATADIR/tgt-valid.txt \
-save_data $DATADIR/preprocessed_onmt36 -share_vocab \
-src_seq_length 3000 -tgt_seq_length 3000 \

-src_vocab_size 3000 -tgt_vocab_size 3000

The tokenisation function, which is used to split the reaction Smiles into tokenised reactions,
is available from [4, 158].

B.2.2 TRAINING

We used OpenNMT-py and trained the multi-task and single data set models with the following
hyperparameters.
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onmt_train -data $DATADIR/preprocessed_onmt36 \
-save_model uspto_MT384 \
-seed $SEED -gpu_ranks 0 \
-train_steps 250000 -param_init 0 \
-param_init_glorot -max_generator_batches 32 \
-batch_size 6144 -batch_type tokens \

-normalization tokens -max_grad_norm @ -accum_count 4 \
-optim adam -adam_betal 0.9 -adam_beta2 0.998 -decay_method noam \
-warmup_steps 8000 -learning_rate 2 -label_smoothing 0.0 \
-layers 4 -rnn_size 384 -word_vec_size 384 \

-encoder_type transformer -decoder_type transformer \
-dropout 0.1 -position_encoding -share_embeddings \
-global_attention general -global_attention_function softmax \

-self_attn_type scaled-dot -heads 8 -transformer_ff 2048
The weights for the data sets can be set using the arguments,
-data_ids uspto carbo --data_weights $wi $w2

the weights in what proportion examples from the two data sets are shown within a batch.
For the fine-tuning phase we started from the last checkpoint of the training on the USPTO
data set and trained for 6k steps on the CARBO dataset:

-train_from /path/to/checkpoint

PREDICTING REACTION OUTCOMES

We test our models and predict reactions with a beam size of 5 and a max_length of 300 tokens
using the onmt_translate script from OpenNMT-py [156].

onmt_translate -model uspto_model_pretrained.pt \
-src SDATADIR/src-test.txt -output predictions.txt \
-n_best 1 -beam_size 5 -max_length 300 \
-batch_size 64

B.3 SUPPLEMENTARY TABLES
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stereoselective reactions on carbobydrates

USPTO CARBO (before 2016) CARBO (2016 and after)

mean 0.36 6.43 6.24
std 1.01 5.06 5.00
min 0 1 1
25% 0 4 4
50% 0 5 5
75% 0 8 6
max 4 S0 39

Table B.1: Product stereo centres per reaction statistics in USPTO and CARBO data sets. Statistics
on the number of stereo centres in the products of the different reaction data sets. While the
USPTO dataset has 0.36 stereo centres in the product on average, there are over 6 in the CARBO
data set.
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C APPENDIX: PREDICTING
RETROSYNTHETIC PATHWAYS USING
TRANSFORMER-BASED MODELS AND A
HYPER-GRAPH EXPLORATION STRATEGY

C.1 HYPER-GRAPH EXPLORATION

Algorithm 2 provides an overview of the hyper-graph expansion strategy, where given a starting
node (NN), the graph is expanded by predicting the reactions and precursors (R;) leading to the
molecule V. The single-step retrosynthetic model uses a beam-search to explore the possible dis-
connections and we retain the top-15 predicted sets of precursors (thus, i = {1,2,...,15}). The
SMILES corresponding to these predictions are canonicalised and duplicate entries removed. Any
SMILES that fails in the canonicalisation step or contains the target molecule is also removed.
The remaining sets of precursors are further filtered by using the forward model to assess reaction
viability and selectivity. Regarding viability, we retain only those precursors ([2;) whose top-1
forward model predictions match the molecule V. This guarantees that, in the presence of mul-
tiple functional groups, the recommended disconnection leads to the desired targets. While this
is a necessary condition, it is not a sufficient one as competitive reactions (top-2 and following)
may lead to a mixture of molecules different from the desired target. In order to enforce chemo-
selectivity, we use the likelihood of the top-1 forward prediction model and select only top-1 pre-
dictions with a likelihood larger than the subsequent top-2 by at least 0.2. As the sum of like-
lihoods for the predictions of different sets of precursors (R;) leading to a target IV is one, any
prediction likelihood higher than 0.6 automatically satisfies the requirements above and passes
our filter. This filtering protocol increases the occurrence of chemo-selective reactions along the
retrosynthetic path, penalising disconnections that are highly competitive.

Moreover, precursor sets are clustered together to identify similar disconnection strategies and
reduce tree complexity. Within the same cluster, the precursors related to the highest forward pre-
diction likelihood are used as starting nodes for further tree expansion. Every precursor molecule,
unless already present in the graph, will generate a new node, and every reaction will connect each
of the reactants to the target molecule by means of a new hyper-arc.

Every hyper-arc in the tree is scored with a so-called optimisation score, which is used to define
the "best" retrosynthetic route. The total score of a retrosynthetic pathway is calculated by mul-
tiplying the scores of all the arcs contained in the path. The definition of the score for a single arc
is:

S(C:A+B)_P(A+B—>C)W (C.1)
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Algorithm 2: Hyper-graph expansion algorithm

Data: Existing Node IV, Beam Size B, retrosynthesis model, forward model

Result: New Nodes connected to N

begin

R = {R;|i = 1..B} <— Predict possible retrosynthesis steps (top-B) // R; are
represented as SMILES

fbr‘fb € f{// select precursor sets for expansion
do
R; <— Try to canonicalise RR;, discard if not canonicalizable
Discard R;, if N is a precursor in I;
Lpg,—sn <— Compute likelihood of reaction R; — N
if LRZ'%N > 0.6 then
Attach R; to N with a hyper-arc
else
Fiop—1, Fyop—2 <— Predict top-2 forward reactions from R;
if Product of Fyop—1 is N and
Likelihood(Fyop—1) > 0.2 + Likelihood(Fy,—2) then
‘ Attach R; to N with a hyper-arc
else
L discard R;
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C.1 Hyper-graph exploration

where S(C = A + B) denotes the score for a single retrosynthetic step: the higher the score the
higher the preference towards that step. P(A+B — C) is the likelihood of the forward chemical
reaction computed by the forward prediction model. s(X)|X € {A, B, C} is the simplicity score
of molecule X:

SC(X) — 1
1

where SC(X) is the SCScore [176] of molecule X. The SCScore of a molecule increases from1to S
with an increasing complexity of the synthetic route. In this framework, the SCScore constitutes

s(X)=1- (C.2)

the driving force that pulls a retrosynthetic pathway towards simpler molecules.

Equation C.1 closely resembles the definition of the Bayesian probability. In fact, assuming
access to the set of all possible reactions, the likelihood of a retrosynthetic step would be defined
as the conditional probability of observing the product when given the reactants, weighted by the
ratio between the occurrence of the reagents and the occurrence of the product.

Even with a multi-million entry database, the evaluation of the individual components would
still be quite inaccurate. In fact, any molecule unreported in this database will contribute a value
of zero to the evaluation of the Bayesian probability, with important drawbacks for the hyper-tree
exploration. Therefore, the definition of the score for a single retrosynthetic step was only in-
spired by the Bayesian probability. We replaced the conditional probability with the likelihood of
the forward prediction model and the probability of observing either reactants or products with
a simplicity score. Similar to the Bayesian probability, the use of this heuristic favours those reac-
tion that give more simple products (compared to reactants) under the same forward prediction
likelihood.

The search for the optimal retrosynthetic route starts with the definition of a target molecule
and uses a beam-search approach. The beam-search method is a greedy version of the best-first
search: while best-first explores the entire graph and sorts all the possible paths according to some
heuristic score, the beam search limits the exploration to a defined number of paths, thus limiting
the computational cost without offering any guarantee of identifying the globally optimal path.
The beam-search, as implemented in our software, relies on the following steps:

1. Expand the graph at every node contained in one of the possible pathways discovered up
to this point and not yet expanded.

2. Create a new pathway for each of the arcs created by the last expansion.
3. Repeat steps 1 and 2 for a given number of times.

4. Assign a score to every pathway and discard the ones with the lowest score until the total
number of "un-terminated” pathways correspond to the number of beams imposed by the
user.

5. Restart from point 1 until all of the pathways meet one of the terminating conditions.

Each pathway of the beam-search may end because all the molecules needed to start the synthe-
sis are found in a database of commercially available chemicals; or because the number of synthetic
steps (which corresponds to the number of "expansion phases") exceeds the number of maximum
steps defined by the user; or finally because there is no possibility to further expand the needed
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nodes. The last condition may result from none of the set of precursors ([2;) surviving the fil-
tering or from all the hyper-arcs generated by the expansion forming a cycle in the tree. From a
chemical point of view, this means that one of the precursors of the product requires the product
to synthesise itself.

Every time a pathway enters a cycle, the pathway itself is considered terminated. The tree ex-
ploration returns all the possible paths leading to a successful retrosynthesis, sorted by the opti-
misation score.

C.2 MOLECULE REPRESENTATION

Similar to our previous works we use SMILES to represent molecules, taking more advantage of
the auxiliary fragment information in which the grouped fragment indices are written after the
label ’f2’. The different groups are separated by a’, and the connected fragments within a group
are separated by ’.’. An example would be’|f:1.2,4.5|". , where the fragments 1 and 2 as well as 4 and
S belong together. There is nothing that enforces closeness of fragments in the SMILES string,
hence different fragments belonging to the same compound could end up at opposite ends of
the string. Typical examples are metallorganic compounds. Here, we relate the fragments within
a group with a ‘~* character instead of a “.". Consequently, the fragmented molecules are kept
together in the reaction string.

Atom-mapping as well as reactant-reagent roles, are a rich source of information generated by
highly complicated tasks [62], the assignment often being subjectively made by humans. Schwaller
etal. [4] recently proposed to ignore reactant and reagent roles for the reaction prediction task. In
contrast to previous works [166, 167,169, 170], the single-step retrosynthetic model presented here
predicts reactants and reagents. In an effort to simplify the prediction task, the most common pre-
cursors with a length of more than 50 tokens were replaced by molecule tokens. Those molecules
were turned back into the usual tokenisation before calculating the likelihood with the forward
model. Moreover, to ensure a basic tautomer standardisation we inchified our molecules, as de-
scribed in [300], to improve the quality of the forward prediction model. In contrast to previous
work [65], we never use a reaction class token as input for the retrosynthesis model.

The data sets used to train the different models in this work are derived from the open source
USPTO reaction database by Lowe [41, 42] and the Pistachio database by NextMove Software [180].
We preprocessed both data sets to filter out incomplete reactions and keep 1M and 2M entries,
respectively. As done previously in [4, 111], we added 800k textbook reactions to the training of
specific forward and retrosynthetic models.

C.3 MoDELS

C.3.1 FORWARD REACTION PREDICTION MODEL

The forward prediction model was trained with the same hyperparameters as the original Molec-
ular Transformer [4], apart from the number of the attention layers, which was increased from
256 to 384. Thanks to the increase in capacity, a higher validation accuracy could be reached. For
the final model we used a data set derived from Pistachio3.0 [180] where all the molecules were
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inchified. As described in the work of Schwaller et al. [4] we augmented the training data with the
addition of random SMILES and textbook reactions to the training set.

The forward prediction model can be used in two modes. First, when given a precursor set, the
most likely products can be predicted. Second, when given a precursor set and a target product,
the likelihood of this specific reaction can be estimated. In this work, we set the beam size of the
forward model to 3.

As described previously, we use the forward chemical prediction model as a digital domain ex-
pert for evaluating the correctness of the predictions generated by the retrosynthetic model. As
recently published [4], the accuracy of this model is higher than 90% when compared with a pub-
lic data set. In order to calibrate the forward prediction model within the entire retrosynthetic
framework, 50 random forward reaction predictions were analyzed by human experts. The as-
sessment gave an accuracy of 78% which should be compared to an accuracy of 80% given by the
trained model. Although the data set is too limited to claim any statistical relevance, this assess-
ment offers strong evidence in favour of using the forward prediction model as a digital twin of
human chemists.

C.3.2 REACTION CLASSIFICATION MODEL

To classify reactions, we used a data-driven reaction classification model [177] that was trained
similarly to the Molecular Transformer forward and retrosynthetic model. It is characterised by
four encoder layers and one decoder layer and trained using the same hyperparameters. The main
difference is that the inputs were made up of the complete reaction string (precursors—products)
and the outputs of the split reaction class identifier from NameRXN, consisting of three num-
bers corresponding to superclass, classes/categories and named reaction. More details on reaction
classes can be found in [173]. The classification model used in this work matches the same class as

the NameRXN tool [63] for 93.8% of the reactions.

C.3.3 EXPERIMENTS ON SINGLE-STEP RETROSYNTHESIS MODELS

In Table C.1 we show how different metrics develop during the training of the stereo retro model.
After 100k time steps the round-trip accuracy and the coverage plateau and only a slight improve-
ment of the invalid SMILES percentage can be observed, when training for longer.

Table C.2 shows a comparison of models trained on different data sets and evaluated with the
beam sizes 5, 10 and 20. The beam size defines how many precursor set suggestions output. The
more data is used in the training set the less invalid SMILES the models tend to generate. As
expected the coverage increases with larger beam sizes, while the round-trip accuracy and the per-
centage of invalid SMILES worsen only slightly. stereo only means that the model was trained
purely on the IM reactions derived from the open USPTO dataset [41, 42]. The stereo model was
trained on the USPTO dataset and 800K textbook reactions from Nam & Kim [111]. For the
angmented model we performed a SMILES data augmentation for the source molecules by using
non canonical SMILES [236]. The target always consisted of canonical SMILES. In contrast to
reaction prediction [4], the augmentation seemed not to be beneficial in our retrosynthesis model
training experiments.
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Table C.1: Model performance during training.Development of the round-trip accuracy, coverage and
percentage of invalid SMILES during training of the retrosynthesis model, evaluated with a for-
ward model trained on stereo only.

Model Beam Total Round-trip Coverage Invalid

rxns accuracy SMILES
stereo only 10k 10 100k 56.9% 87.4% 4.03%
stereo only 20k 10 100k 73.8% 93.8% 172 %
stereo only 50k 10 100k 78.7% 95.0% 0.81%
stereo only 100k 10 100k 81.6% 95.8%  0.65%
stereo only 150k 10 100k 81.3% 95.8%  0.62%
stereo only 200k 10 100k 81.0% 95.8% 0.59%
stereo only 250k 10 100k 81.5% 95.9%  0.58%

Table C.2: Model performance varying the beam size. Evaluation of retrosynthesis models with differ-
ent training data, evaluated on the same validation set with different beam sizes.

Model Beam Total Round-trip Coverage  Invalid

accuracy SMILES
stereo only S S0k 82.4% 93.5%  0.57%
stereo S 50k 83.6% 94.2%  0.52%
augmented 5 50k 81.8% 94.0%  0.43%
stereo only 10 100k 81.5% 95.9%  0.59%
stereo 10 100k 82.4% 96.4%  0.49%
augmented 10 100k 80.7% 96.2%  0.42%
stereo only 20 200k 79.8% 97.1%  0.65%
stereo 20 200k 80.8% 97.5%  0.87%
augmented 20 200k 78.9% 97.5%  0.49%

C.4 SYNTHESIS ROUTES

On the subsequent pages, the synthesis routes discussed in the main text are presented. The routes
were predicted by the model, which is openly available on the IBM RXN for Chemistry platform
[44]. Figure C.1 shows a screenshot of the results page for an example retrosynthesis route predic-
tion.

C.4.1 INDEX OF GENERATED RETROSYNTHETIC ROUTES

The targets from Coley et al. [125] are extracted from: http://ibm.biz/Coley-Test, where corre-
sponding retrosynthesis are also made available.

Both Segler Test-1 and Test-2 are instead from the supporting information [107]: http://ibm.biz/
Segler-Test1-2 , with fully reported synthesis.
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181 RXN fo Chemistry

IBMRXN  Projects < test < Retrosynthesis outcome & Back to workspace

test Sequence O Confidence: 0.899 Optimization score: 0.923  High confidence e o 100% - Add Sequence to collection
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Sequence 2
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Figure C.1: IBM RXN for Chemistry platform. Retrosynthesis route prediction results view.

The generated by IBM RXN for Chemistry can be found in the supplementary information
of [43].
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D APPENDIX: MAPPING THE SPACE OF
CHEMICAL REACTIONS USING
ATTENTION-BASED NEURAL NETWORKS

D.1 REACTION PROPERTIES ATLASES

Supplementary Figure D.1 shows the chemical reaction found in the S0k set by Schneider et al.
[64] visualised with TMAP [201] using the rxnfp (10k). The BERT model, which generated this
reaction fingerprint was trained on the 10k training reactions. The reaction maps are made of the
10k training reactions plus 40k unseen reactions. The reactions corresponding to same reaction
classes are well clustered together. We highlight reactions that contain specific elements in the
precursors and observe that they found in the same branches of the map. Moreover, we visualise
product properties and also observe defined clustering.

Elements in precursors

Superclasses Transition metals - periods Li Al
4+5
5
7
6.2
4
5 x
o 4
7 457445
9
H-donors H-acceptors Ring count TPSA
High
[ |

Product properties

Figure D.1: Reaction properties TMAP [201] of the Schneider SOk set using the 7xnfp (10k) embeddings.
The superclasses, as well as specific metallic elements in the precursors and product properties
are highlighted in the different maps. An interactive version of this map is also available as a
separate file.
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D.2 ANALYSIS OF PISTACHIO PREDICTIONS

We analysed the BERT classifier in more detail and compared it to the seq-2-seq transformer
model. First, we identified different types of incorrect predictions by the transformer BERT clas-
sifier model, which are summarised in Table D.1. Most errors are related to the “Unrecognised”
class of the RXNO ontology. The most frequent error type is the prediction of a reaction class for
a reaction classified as “Unrecognised” (47.9% of all incorrect predictions), and the second most
frequent error type is predicting “Unrecognised” when a class should be predicted (22.8%). The
third most frequent error is predicting the incorrect name reaction (third number of the class
string, 17.5%). The remaining errors are predicting an incorrect superclass (first number of the
class string, 8.3%) and predicting an incorrect category (second number of the class string, 3.5%).

Table D.1: Incorrect predictions. Types of incorrect predictions of the BERT model on the test set con-
sisting of a total of 132213 reactions.

Count  Percentage

Correctly predicted 129892 98.24%
Model predicts name reaction instead of “Unrecognised” 1111 0.84%
Model predicts “Unrecognised” instead of name reaction 529 0.40%
Incorrect name rxn 407 0.31%
Incorrect superclass 193 0.15%
Incorrect category 81 0.06%

In Table D.2, we show the reaction classes for which our model makes incorrect predictions
most frequently. Due to statistical sampling, we restricted this analysis to reactions with at least
20 occurrences in the test set. For 12 out of 15 of these reaction classes, the most common error
source is the failure to assign a reaction class, thus predicting “Unrecognised”. Among the other
most common failures, there is the “Bouveault-Blanc reduction”, where an ester is reduced to
a primary alcohol. Hence, it is very similar to the Ester to alcohol reduction class, with which
it is most mistaken. The difference lies in the specific precursors used in the “Bouveault-Blanc
reduction”, such as sodium and ethanol or methanol. The “1,3-Dioxane synthesis” reaction class
has an overall accuracy of 88.9%. However, there are some reactions mistaken for “Dioxolane
synthesis”, for which the newly formed heterocycle in the product has an additional carbon atom.

Although the large number of “Unrecognised” reactions in Pistachio makes an extensive analy-
sis difficult, the inspection of a few dozen cases provides interesting insights. Part of the “Unrecog-
nised” reactions should actually belong to a name reaction. The data-driven approach can be more
robust than rule-based models and assign the correct reaction class. For example, in contrast to
rule-based models, data-driven ones are often able to capture the reaction class despite changes in
the tautomeric state between precursors and product. Another part of those “Unrecognised” re-
actions belongs to the category for which multiple transformations occur simultaneously. In this
case, the reaction cannot be classified into a single name reaction, and our model predicts one of
the corresponding reactions. Such examples can be found in deprotection reactions where more
than one distinct functional group is removed. Another interesting aspect comes from molecules
that are incorrectly parsed in Pistachio. If the SMILES string of a molecule involved in the re-
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Table D.2: Detailed failure analysis. Worst-predicted reaction classes with more than 20 occurrences in
the test set for the BERT classifier.

Reaction class Accuracy [%] Most frequent incorrectly predicted class
1.1.2 Menshutkin reaction 62.1 0.0 Unrecognised
3.9.41 Decarboxylative coupling 72.1 0.0 Unrecognised
9.7.140 Defluorination 75.6 0.0 Unrecognised
7.4.2 Bouveault-Blanc reduction 76.4 7.4.1 Ester to alcohol reduction
11.1 Chiral separation 83.6 0.0 Unrecognised
8.8.11 Hydroxylation 83.7 0.0 Unrecognised
4.3.11 Thiazoline synthesis 85.7 0.0 Unrecognised
3.9.12 Olefin metathesis 85.8 0.0 Unrecognised
2.5.5 Nitrile + amine reaction 86.0 0.0 Unrecognised
9.7.42 Chloro to fluoro 86.4 0.0 Unrecognised
10.4.2 Methylation 88.9 0.0 Unrecognised
4.2.39 1,3-Dioxane synthesis 88.9 4.2.20 Dioxolane synthesis
4.1.53 1,2,4-Triazole synthesis 90.0 0.0 Unrecognised
1.1.6 Chloro Menshutkin reaction 90.6 0.0 Unrecognised
5.1.2 N-Cbz protection 90.9 2.1.1 Amide Schotten-Baumann

action was incorrectly derived from the name, rule-based approaches fail to recognise the atomic
rearrangements and thus to classify the reaction. For minor parsing errors, our model shows its
potential, recognising the correct transformation in several instances.

The accuracy of the enc2-decl seq-2-seq model was 3% worse than the one of the BERT classi-
fier. When comparing the predictions of the two models, we observe that most of the differences
are related to the “Unrecognised” class. 3511 out of 5108 reactions that were correctly predicted
by the BERT classifier but not the seq-2-seq model belong to the “Unrecognised” class. Moreover,
the three classes containing the most examples of reaction classes predicted correctly by the BERT
classifier but not by the seq-2-seq model were “Carboxylic acid + amine condensation” (2.1.2),
“Methylation” (10.4.2) and “Williamson ether synthesis” (1.7.9) reactions with 90, 61 and 37 ex-
amples respectively. In contrast, the seq-2-seq model was able to classify 474 reactions as “Un-
recognised”, which were classified as recognised name reactions by the BERT model. Besides the
“Unrecognised” reactions, the three reaction types with the most examples that were correctly pre-
dicted by the seq-2-seq model but not by the BERT classifier were “Bouveault-Blanc reduction”
(7.4.2), “Ester to alcohol reduction” (7.4.1) reactions with 33 and 15 examples respectively. The
seq-2-seq seems to capture the subtle difference between the two distinct “Ester to alcohol” (7.4)
classes better.

D.3 ANALYSIS OF SOK SET PREDICTIONS

Schneider et al. [64] evaluated their reaction fingerprints by analysing how well it could clas-
sify chemical reactions using a logistic regression classifier [301]. For a given reaction input, they
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trained their classifier to predict 1 out of SO named reaction classes using 200 training/validation
and 800 testing examples per class. To be able to directly compare to the results of Ref. [64], we
investigated our learned fingerprints on their data sets, pretrained and fine-tuned on the same 10k
training reactions resulting in 7xnfp (10k). A summary where we report recall, precision and F-
score averaged over the SO classes can be found in Supplementary Table D.3. While the rxn/p
(pretrained) does not suffice to match the performance of the handcrafted fingerprint on this bal-
anced data set, 7vnfp (10k), generated after fine-tuning the model on as little as the 10k reactions,
is able to reach scores of 0.99 compared to 0.97 for the hand-crafted fingerprint.

Table D.3: Comparing fingerprints on the 50k reactions classification benchmark by Schneider et al. [64]
(50 classes, 1000 reactions per class, 200 for training/validation and 800 for testing)

Fingerprint recall  precision  F-score

AP3 256 (folded) [64] 0.97 0.97 0.97 handcrafted,

+ Agent features reactants-reagents separation
rxnfp (pretrained) 0.90 0.90 0.90 after pretraining

rxnfp (10k) 0.99 0.9 0.99 fine-tuning on 10k reactions

training set[64]

Supplementary Table D.4 and Supplementary Figure D.2 show the detailed results for rxnfp
(10k). Supplementary Table D.5 and Supplementary Figure D.3 show the results of for rxnfp
(pretrained) computed by the model never fine-tuned on reaction classification.

For both data-driven fingerprints the methylation class seems to be the hardest to predict cor-
rectly. Using the pretrained fingerprintit is hard to distinguish between reaction classes that differ
only by one atom, like “CO2H-Et deprotection” and “CO2H-Me deprotection”. “Carboxylic
acid + amine condensation” are confused with “Amide Schotten-Baumann” reactions and “Mit-
sunobu aryl ether synthesis” with “Williamson ether synthesis” reactions. It is likely that in future
unsupervised reaction fingerprints will be developed that capture this fine-grained information
better.
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Figure D.2: Confusion matrix for zxnfp (10k) train
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Table D.4: rxnfp (10k) train: 50k reactions classification benchmark by Schneider et al. [64]

recall prec F-score  reaction class
0 0.9988 09901 0.9944  Aldehyde reductive amination 1.2.1
1 0.9712  0.9848 0.9780  Eschweiler-Clarke methylation 1.2.4
2 0.9888  0.9950 0.9918 Ketone reductive amination 1.2.5
3 0.9912  0.9863 0.9888  Bromo N-arylation 1.3.6
4 0.9962 09827 0.9894  Chloro N-arylation 1.3.7
) 0.9975  0.9876  0.9925  Fluoro N—arylation 1.3.8
6 0.9825 0.9788 0.9807  Bromo N-alkylation 1.6.2
7 0.9437 09921 0.9673  Chloro N-alkylation 1.6.4
8 0.9838 0.9825 0.9831 Todo N—alkylatiorl 1.6.8
9 0.9775 09678 0.9726  Hydroxy to methoxy 1.7.4
10 09838 0.9838  0.9838  Methyl esterification 1.7.6
11 09675 0.9639 0.9657  Mitsunobu aryl ether synthesis 1.7.7
1209750 0.9665 0.9708  Williamson ether synthesis 1.7.9
13 09938  0.9938 0.9938  Thioether synthesis 1.85
14 0.9575 0.9935 0.9752  Bromination 10.1.1
15 09313 0.9868 0.9582  Chlorination 10.1.2
16 0.9988 09685 0.9834  Wohl-Ziegler bromination 10.1.5
17 0.9888 0.9987 0.9937  Nitration 10.2.1
18 0.8938 09483  0.9202 Methylation 10.4.2
19 09950 0.9522  0.9731  Amide Schotten-Baumann 2.1.1
20 09788 0.9899 0.9843  Carboxylic acid + amine reaction 2.1.2
21 09838 0.9975 0.9906  N-acetylation 2.1.7
22 09975  0.9975  0.9975  Sulfonamide Schotten-Baumann 2.2.3
23 10000  0.9950 0.9975  Isocyanate + amine reaction 2.3.1
24 09775 0.9726  0.9751  Ester Schotten-Baumann 2.6.1
25 09962  0.9815  0.98838  Fischer-Speier esterification 2.63
26 1.0000 1.0000 1.0000  Sulfonic ester Schotten-Baumann 2.7.2
27 09463  0.9818 0.9637  Bromo Suzuki coupling 3.1.1
28 09800 0.9596 0.9697  Bromo Suzuki-type coupling 3.15
29 10000 0.9950 0.9975  Chloro Suzuki-type coupling 3.1.6
30 09925  0.9937 0.9931  Sonogashira coupling 3.3.1
31 0.9925 0.9778 0.9851 Stille reaction 3.4.1
3209850 0.9975 09912  N-Boc protection 5.1.1
33 10000 0.9780 0.9889  N-Boc deprotection 6.1.1
34 09975 1.0000 0.9987 N-Cbzdeprotection 6.1.3
35 0.9950 0.9925 0.9938 N-Bn deprotection 6.15
36 09888 0.9875 0.9881 CO2H-Et deprotection 6.2.1
37 09825 0.9800 0.9813 CO2H-Me deprotection 6.2.2
38 0.9950 0.9925 0.9938 CO2H-tBu deprotection 6.2.3
39 09950 0.9925 0.9938  O-Bn deprotection 6.3.1
40 0.9888 0.9900 0.9894  Methoxy to hydroxy 6.3.7
41 0.9938 0.9925 0.9931 Nitro to amino 7.1.1
42 09975 0.9803 0.9888  Amide to amine reduction 7.2.1
43 09912 0.9925 0.9919 Nitrile reduction 7.3.1
44 09988 0.9938 0.9963  Carboxylic acid to alcohol reduction ~ 7.9.2
45 10000 0.9963 0.9981  Alcohol to aldehyde oxidation 8.1.4
46 0.9950  0.9987 0.9969  Alcohol to ketone oxidation 8.15
47 09950 0.9962 0.9956  Sulfanyl to sulfinyl 8.21
48 0.9962 0.9614 0.9785 Hydroxy to chloro 9.1.6
49 0.9975 0.9888 0.9932  Carboxylic acid to acid chloride 9.3.1

0.99 0.99 0.99 Average
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Table D.5: rxnfp (pretrained): 50k reactions classification benchmark by Schneider et al. [64]

recall prec F-score  reaction class
0 0.9012  0.8990 0.9001  Aldehyde reductive amination 1.2.1
1 0.8063 0.8323 0.8190  Eschweiler-Clarke methylation 1.2.4
2 0.9213 0.9213 0.9213  Ketone reductive amination 1.2.5
3 0.8600  0.8632  0.8616  Bromo N-arylation 1.3.6
4 0.8712  0.7938  0.8308  Chloro N-arylation 1.3.7
5 0.9225  0.9498 0.9360  Fluoro N-arylation 1.3.8
6 0.8113  0.8353  0.8231  Bromo N-alkylation 1.6.2
7 0.7600 0.7696  0.7648  Chloro N-alkylation 1.6.4
8 0.8125 0.7908  0.8015 Todo N—alkylation 1.6.8
9 0.8500  0.8662 0.8580  Hydroxy to methoxy 1.7.4
10 09200 0.9258 0.9229  Methyl esterification 1.7.6
11 0.8413 0.8519 0.8465 Mitsunobu aryl ether synthesis 1.7.7
12 0.8000 0.7960 0.7980  Williamson ether synthesis 1.7.9
13 09225 0.8902 0.9061  Thioether synthesis 1.8.5
14 0.9437 0.9461 0.9449  Bromination 10.1.1
1S 09463 0.9232 0.9346  Chlorination 10.1.2
16 09838 09633 0.9734  Wohl-Ziegler bromination 10.1.5
17 0.9738 09725 0.9731 Nitration 10.2.1
18  0.6625 07172 0.6888  Methylation 10.4.2
19 08175 0.7861  0.8015  Amide Schotten-Baumann 2.1.1
20 0.8013 0.8250 0.8129  Carboxylic acid + amine reaction 21.2
21 0.9600 0.9588 0.9594  N-acetylation 217
22 0.9450 0.9345  0.9397  Sulfonamide Schotten-Baumann 2.2.3
23 09725  0.9569 0.9647  Isocyanate +amine reaction 2.3.1
24 0.8625 0.8582 0.8603  Ester Schotten-Baumann 2.6.1
25 09525 0.9658 0.9591  Fischer-Speier esterification 2.6.3
26 09700 0.9395 0.9545  Sulfonic ester Schotten-Baumann 2.7.2
27 09437 0.9333 0.9385  Bromo Suzuki coupling 3.1.1
28  0.9113 0.9045  0.9078  Bromo Suzuki-type coupling 3.1.5
29 09550 0.9340 0.9444  Chloro Suzuki-type coupling 3.1.6
30 09625 0.9686  0.9655  Sonogashira coupling 3.3.1
31 0.9150 0.9150 0.9150 Stille reaction 3.4.1
3209613 0.9661  0.9637  N-Boc protection 5.1.1
33 09100 0.9089 0.9094 N-Boc deprotection 6.1.1
34 0.8600 0.9005 0.8798 N-Cbzdeprotection 6.1.3
35 0.9700 0.9293 0.9492 N-Bn deprotection 6.1.5
36 0.7688 0.7437 0.7560  CO2H-Et deprotection 6.2.1
37 07150 0.7259 0.7204 CO2H-Me deprotection 6.2.2
38 09450 0.9486 0.9468 CO2H-tBu deprotection 6.2.3
39 0.8962 0.9459 0.9204 O-Bn deprotection 6.3.1
40 09313 09418 0.9365  Methoxy to hydroxy 6.3.7
41 0.9663 0.9898 0.9779  Nitro to amino 7.1.1
42 09613 0.9470 0.9541 Amide to amine reduction 7.2.1
43 09900 0.9888 0.9894  Nitrile reduction 7.3.1
44 09838 0.9887 0.9862  Carboxylic acid to alcohol reduction ~ 7.9.2
45 09750 0.9750 0.9750  Alcohol to aldehyde oxidation 8.1.4
46 0.9600 0.9540 0.9570  Alcohol to ketone oxidation 8.1.5
47 09700 0.9898 0.9798  Sulfanyl to sulfinyl 8.2.1
48  0.9663 09748  0.9705 Hydroxy to chloro 9.1.6
49 09875 0.9925 0.9900 Carboxylic acid to acid chloride 9.3.1

0.90 0.90 0.90 Average
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Figure D.3: Confusion matrix for rxnfp (pretrained)
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E APPENDIX: PREDICTION OF CHEMICAL
REACTION YIELDS USING DEEP LEARNING

E.1 DETAILED RESULTS ON BUCHWALD-HARTWIG REACTIONS

Figure E.1-E.14 show the correlation between the measured yields and the predicted yields for the
difterent splits published by Sandfortetal. [200]. Moreover, the root mean squared error (RMSE)
and the mean average error (MAE) are shown in the figures.
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E.2 Detailed results on Suzuki-Miyaura reactions

E.2 DETAILED RESULTS ON SUZUKI-MIYAURA REACTIONS

Figure E.15-E.24 show the correlation between the measured yields and the predicted yields for
model with the 7vnfp ft base encoder on the 10 random splits.
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Figure E.20: Measured vs predicted yields [%] - random_split_5
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Figure E.21: Measured vs predicted yields [%] - random_split_6

138



E.2 Detailed results on Suzuki-Miyaura reactions
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Figure E.22: Measured vs predicted yields [%] - random_split_7
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Figure E.23: Measured vs predicted yields [%] - random_split_8
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Figure E.24: Measured vs predicted yields [%] - random_split_9

E.3 DETAILED ANALYSIS OF USPTO YIELDS DATA

Table E.1 show global statistics on the gram scale and sub-gram scale USPTO yields data sets.

Table E.1: USPTO yield statistics

gram scale  subgram scale
count 197619 302040
mean 73.2 56.8
std 20.9 26.6
min 0.0 0.0
25% 60.2 35.5
50% 78.0 58.9
75% 90.3 79.5
max 100.0 100.0

Tables E.2 and E.3 show the yields average in the random split test set for the different reaction

superclasses.

Figure E.25 shows the distributions of the smoothed yields. To smooth the yields of the USPTO
data set [41, 42] we calculated the average of the 3 nearest-neighbours of the reaction, computed
using the 7xnfp ft [177] and faiss [230], and twice the own reaction yield.
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L4 Hyperparameter tuning

Table E.2: Test set sub-gram scale. Average and standard deviation per class.

Class Name Mean [%] Std  Count
0 Unrecognised 52.1 26.8 12359
1 Heteroatom alkylation and arylation 53.3 25.8 12995
2 Acylation and related processes 54.8 25.6 10583
3 C-C bond formation 53.2 25.6 5111
4 Heterocycle formation 48.0 25.1 2043
5 Protections 69.8 223 S27

6 Deprotections 68.7 25.2 8542
7 Reductions 67.5 26.1 3528
8 Oxidations 63.4 25.3 1078
9 Functional group interconversion (FGI)  62.3 25.2 2779
10 Functional group addition (FGA) 56.2 251 863

Table E.3: Test set gram scale. Average and standard deviation per class.

Class Name Mean [%] Std  Count
0 Unrecognised 69.4 22.0 10327
1 Heteroatom alkylation and arylation 71.9 20.9 7912
2 Acylation and related processes 74.5 19.7 4745
3 C-C bond formation 70.7 20.0 2547
4 Heterocycle formation 67.1 22.9 1417

5 Protections 79.9 18.5 1154
6 Deprotections 82.2 16.9 3332
7 Reductions 81.2 18.2 3105
8 Oxidations 76.0 18.8 742

9 Functional group interconversion (FGI)  74.9 20.1 2751
10 Functional group addition (FGA) 71.7 21.7 1491

E.4 HYPERPARAMETER TUNING

The two hyperparameters we tuned were dropout rate (between 0.05 and 0.8) and learning rate
(between le-6 and le-4). For the rxnfp pretrained model on the Buchwald-Hartwig reactions a
learning rate of 9.659¢-05 and dropout probability of 0.7987 led to the highest validation R?
score. We observe high R? scores for a wide range of dropout probabilities. The hyperparameter
tuning was performed on a single Nvidia RTX 2070 super GPU and the optimal hyperparameters
were found in less than 12 hours. A typical training run (10 epochs) on the same hardware takes
4 minutes and 30 seconds. We trained the final models for 15 epochs.

On the Suzuki-Miyaura reactions, we selected a learning rate of 5.812¢-05 and dropout proba-
bility of 0.5848 for the rxnfp pretrained base encoder and a learning rate of 9.116e-05 and dropout
probability 0.7542 for the 7xnfp ft base encoder model.
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E Appendix: Prediction of chemical reaction yields using deep learning

Yield distributions - USPTO smoothed 4NN-2
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Figure E.25: Smoothed USPTO yields. Distribution separated in gram and sub-gram scale

On the USPTO data we performed a hyperparameter search using a reduced training set of 50k
reactions and only 3 epochs. We selected a learning rate of 1.562¢-05 and dropout probability of
0.5237 for the gram scale and 2.958e-05 and 0.5826 respectively, for the sub-gram scale. The final
models were trained for 2 epochs on the complete training data, as an evaluation showed signs of
over-fitting from the third epochs on.

Figure E.26 — E.30 show the hyperparameters with the corresponding R? values on the valida-
tion set. The validation was made on subsplit of the training set of the first random split for all
three data sets. Overall, the learning rate seemed to be more important to tune than the dropout

probability.
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E.4 Hyperparameter tuning

Buchwald-Hartwig hyperparam optimisation (pretrained)

dropout_rate learning_rate r2
0.79959 100p 0.94001
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Figure E.26: Hyperparameter optimisation on Buchwald-Hartwig data set (pretrained base encoder)

Buchwald-Hartwig hyperparam optimisation (class)

dropout_rate learning_rate r2
0.79911 99.87u 0.94395

r2

0.05254 1.67u 0.39626

Figure E.27: Hyperparameter optimisation on Buchwald-Hartwig data set (class base encoder)
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E Appendix: Prediction of chemical reaction yields using deep learning

Suzuki-Miyaura hyperparam optimisation (pretrained)

dropout_rate learning_rate r2
0.79939 99.949 0.82001
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Figure E.28: Hyperparameter optimisation on Suzuki-Miyaura data set (pretrained base encoder)

Suzuki-Miyaura hyperparam optimisation (class)

dropout_rate learning_rate r2
0.7985 99.98u 0.81608

0.0617 1.59u 0.41151

Figure E.29: Hyperparameter optimisation on Suzuki-Miyaura data set (class base encoder)
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USPTO hyperparam optimization
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Figure E.30: Hyperparameter optimisation on USPTO subgram data set (pretrained base encoder)
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F APPENDIX: EXTRACTION OF ORGANIC
CHEMISTRY GRAMMAR FROM
UNSUPERVISED LEARNING OF CHEMICAL
REACTIONS

F.1 DETAILED EVALUATION

49K SCHNEIDER TEST SET

Reaction class Total (curated) Matching [%] Correct [%)]
Heteroatom alkylation and arylation 14836 (14698) 96.8 99.2
Acylation and related processes 11670 (11593) 95.7 99.8
C-C bond formation 5550 (5502) 98.0 99.4
Heterocycle formation 889 (881) 90.6 94.7
Protections 655 (652) 97 4 98.6
Deprotections 8055 (7983) 98.1 99.9
Reductions 4499 (4466) 97.6 99.1
Oxidations 809 (805) 98.0 99.9
Functional group interconversion (FGI) 1809 (1775) 96.2 99.8
Functional group addition (FGA) 228 (228) 89.0 99.1
All 49000 (48583) 96.8 99.4

Table F.1: Results on the 49k patent test set

Table F.1 provides results on the 49k patent test set. Overall, the generated atom-maps exactly
match the original atom-maps in 96.8% of the cases. After removing questionable reactions from
the statistics and counting the equivalent mappings as correct, the overall correctness increased
t0 99.4%. Table F.1 shows the atom-mapping correctness divided into the different superclasses,
where heterocycle formations were the most challenging superclass with 94.7% correctness.

While analyzing the discrepancies in the atom-mapping generated on the 49k patents test set,
we labelled 369 as questionable and 47 as unclear. Questionable reactions typically contain multi-
ple products similar to reactants, as in Figure F.1 a). The reason could be a wrong extraction from
patents. Unclear reactions, on the other hand, have correct reactants but miss reagents, which
are crucial to determine the reaction mechanism. The example shown in Figure F.1 b) looks like
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F Appendix: Extraction of organic chemistry grammar from unsupervised learning of chemical
reactions

a Mitsunobu reaction but the DEAD or DIAD reagents are not present. Despite the missing
reagents, RXNMapper would have correctly mapped the phenolic alcohol.

A - questionable reactions

10 " F 18646
F o
L,
zs‘c ) 3/ 0PN O OH
7 Cl Cl
12534
(o] 8 6 8 6
F N 9 O 9 Os
F Sx Qij\/// * " I |a 2/N1 o e /N1
O~ s ey
B - unclear, missing reagents
Data set 44755

19

Figure F.1: Examples of (A) reactions that were classified as questionable. (B) a reaction for which the cor-
rect atom-mapping is unclear as critical reagents are missing

Figure F.2 shows reactions that were counted as correct even though the atom-mapping was
not identical with the one in the data set. Such reactions typically have two equivalent atoms or
symmetry operations that make the atom maps equivalent. If there was twice the same molecule
on the product side, the atom-mappings in the original data set pointed for both molecules to
the same atoms in the reactants. In contrast, our algorithm in the default configuration mapped
different atoms in the reactants.

COMPARISON WITH ATOM-MAPPING TOOLS

Recently, Jaworski et al. [61] developed an atom-mapper based on graph-theoretical approach aug-
mented with human-expert written rules. They compared their tool called Mappet[61] to other
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Figure F.2: Examples of atom-mappings that differed from the data set but were counted as equally correct.

methods. We performed the same tests using our RXNMapper. Figure F.3 shows the correct-
ness on three different test sets of our attention-based RXNMapper, Mappet [61], Marvin JS (ver-
sion 16.4.18) [302], ReactionMap [34], ChemDraw Prime (version 16.0.0.82), and Indigo (version
1.3.0 beta)[60]. The simple reactions set consists of 100 reactions from total syntheses reported in
Org. Lett,, J. Am. Chem. Soc., and]J. Org. Chem., whereas the typical reactions set consists of 100
almost, but not fully, balanced patent reactions. RXNMapper achieves correctness scores similar

to Mappet on both these sets. On the complex reaction set, which consists of 201 mechanistically

complex reactions from recent literature, we perform slightly worse than Mappet but better than
other reported methods. Still, the results are impressive as RXNMapper was not tuned specifically
for any of these test sets. An overview of the test sets can be found in Table F.2.

Number of  Avg. number of  Avg. number of

reactions  reactantatoms  product atoms
Test set
Simple reactions [61] 100 27.1 27.1
Typical reactions [61] 100 19.9 19.6
Complex reactions [61] 201 25.7 24.8

Table F.2: Data sets for the comparison with other tools.
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F Appendix: Extraction of organic chemistry grammar from unsupervised learning of chemical
reactions

Simple reactions Typical reactions Complex reactions
Test set
Il RXN Mapper

‘ Il Mappet
B MarvindS
[ ReactionMap
ChemDraw
‘ Indigo
(e e i e - T T T T 1 —|—|—I—I|—|—|—

Figure F.3: Tool comparison, test originally published by Jaworski et al. [61]. The error bars show the
Wilson confidence interval [267].

Correctness [%]

COMPUTATIONAL PERFORMANCE

In contrast to previous methods, RXNMapper does not require balanced or almost balanced
reactions. It can compute atom-mapping for both patent reactions and reactions predicted by
template-free reaction prediction models. RXNMapper maps the 682 balanced reactions from
the work of Jaworski et al. [61] at 33.3 reactions per second (30 ms/reaction) on a MacBook
Pro: 2.7 GHz Intel Core i7, 16 GB 2133 MHz LPDD and reaches 156.2 reactions per second
(6.4 ms/reaction), when the attention model inference is accelerated using a GPU (Nvidia RTX
2070 super). The computational performance is nearly the same when mapping reactions from
the 49k patent reaction data set, which are mapped at a speed of 27.5 reactions per second (36.4
ms/reaction) on CPU only and 130 reactions per second (7.7 ms/reaction) using a GPU. In terms
of speed RXNMapper performs similar to Indigo toolkit [60] on the balanced reactions, RXN-
Mapper significantly outperforms Indigo on the patent reactions that contain many more reac-
tants. The computational performance makes it feasible to apply RXNMapper to large reaction
data sets in a reasonable time. We remapped the largest open-source reaction data set [42] at an
average speed of 7.37 ms/reaction and made it available at https://github.com/rxnachemistry/

rxnmapper.

F.2 CONFIDENCE SCORE

The confidence score for atom-mapping is computed by multiplying the selected attention scores
for all the mapped productatoms. Asseen in Figure F.4, correctly generated atom-mappings have,
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F.3 Hyperparameters and model selection

on average, a higher confidence score than those that contain mistakes. Questionable reactions
(e.g., where the reaction was wrongly extracted from patents) contain the lowest confidence scores.

Questionable reactions Mistakes Correct
4.0+
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Figure F.4: Normalized histograms of confidence scores on three categories of atom-mappings: atom-
mappings on questionable reactions, wrongly generated atom-mappings and correct atom

mappings.

F.3 HYPERPARAMETERS AND MODEL SELECTION

HYPERPARAMETERS

We trained the models for 48 hours on a single Nvidia P100 GPU with a masked language masking
probability of 0.15. We used the training scripts from huggingface [216] adapted to work with a
SmilesTokenizer, which we made available. For the ALBERT models, we fixed the number of
layers to 12, the activation function to GELU, the dropout probability for 0.1, the embedding
size to 128, the intermediate size to 512. We varied both the hidden size and the number of heads.
The model with 8 heads uses a hidden size of 256, the model with 10 heads uses a hidden size of
320, and the model with 12 heads uses a hidden size of 384. We experimented with larger models,
but the differences in atom mapping correctness were marginal. Our final model has only 770k
trainable parameters, which is small compared to BERT base [3] with 108M and ALBERT base
[98] with 12M parameters.

MODEL SELECTION

The improvement of the atom-mapping correctness may increase up to 30% when changing the
neighbour attention multiplier from 1 (basic algorithm) to a value of 20. Figure F.5 shows the
atom-mapping correctness on the validation reactions for all the heads and layers of different mod-
els. For the ALBERT pre-trained model, atleast one head learned atom-mapping, and the position
and role of the heads remained constant across all layers. The atom-mapping correctness increased
in the first layers and is more or less constant from layer 7 to 11. In contrast, for the BERT model
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reactions
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Figure F.5: Atom-mapping performance of all layers and heads of one BERT and 3 ALBERT models on
the patent validation set with multipliers of 1, 20 and 90.

does not share weights across layers and only particular heads in particular layers had learned an
atom-mapping signal.

As shown in Figure F.6, the atom-mapping correctness steeply increases in the first 100k train-
ing steps then continues to increase more slowly. We observed this behaviour for all models we
trained. Moreover, models with more heads seemed to learn the atom-mapping signal faster, but
the models with fewer heads quickly beat the performance of the larger models.

The top-20 model combinations are shown in Table F.3. We selected checkpoint 1310k (layer
10, head 5) as the best performing model on the 1k patent validation set. We used this model to
perform all experiments in the main paper.

As shown in Figure F.7, increasing the nearest neighbour multiplier increases the atom-wise
and full reaction atom-mapping correctness.
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F.4 Visualisation of self-attention
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Figure F.6: Evaluation atom-mapping correctness for checkpoints every sk training steps on the validation

set for ALBERT models with 8, 10 and 12 heads. The layer was fixed to 10, the multiplier to 90
and the head with the largest atom-mapping signal was selected.
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Figure F.7: Evaluation atom-mapping correctness per atom (left) and per reaction (right) for different mul-
tiplier.

F.4 VISUALISATION OF SELF-ATTENTION

Visual inspection of the attention weights enabled the initial discovery that molecular Transformer
models learned atom-mapping as a key signal. We release a tool called RXNMapper-Vis that al-
lows others to explore the attentions of the ALBERT model behind RXNMapper interactively
and make new hypotheses. RXNMapper-Vis maps the attentions from the tokenised SMILES
onto a 2D skeletal structure to ease interpretation. The tool has been made available at https:
//rxnmapper.ai.

RXNMapper-Vis was inspired by previous work to visualise the attentions of Transformer
models in the natural language processing (NLP) [129, 130, 261]. These tools can reveal learned
but hidden behaviours of Transformers such as hidden language dependencies and parts of speech
(e.g., attentions linking root Verbs to their Direct Objects), coreference (e.g., “she” attending to
“mother”), entities (e.g., “Elon Musk” or “Iran”), and gender biases associated with particular
roles (e.g., models predicting “he” as the necessary pronoun for “doctor”). Some of these learned
patterns correlate to properties within the chemical domain. For example, coreference correlates
to the learned atom-mapping behaviour discussed in this paper. We hope that others will be able to
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F Appendix: Extraction of organic chemistry grammar from unsupervised learning of chemical
reactions

name checkpoint layer head Atomacc. [%] Correctness [%]
11740 ALBERT 8 heads 1310k 10 5 99.8 99.2
12009 ALBERT 8 heads 1400k 9 5 99.9 99.1
11739 ALBERT 8 heads 1310k 9 5 99.8 99.0
12010 ALBERT 8 heads 1400k 10 5 99.7 98.9
11709 ALBERT 8 heads 1300k 9 5 99.7 98.9
11710 ALBERT 8 heads 1300k 10 5 99.7 98.8
11005 ALBERT 8 heads 1065k 10 5 99.6 98.8
11291  ALBERT 8 heads 1160k 11 5 99.8 98.7
11604 ALBERT 8heads 1265k 9 5 99.8 98.6
11845 ALBERT 8 heads 1345k 10 5 99.8 98.6
11995 ALBERT 8 heads 1395k 10 5 99.7 98.6
11996  ALBERT 8 heads 1395k 1 5 99.7 98.6
11006 ALBERT 8 heads 1065k 1 5 99.7 98.6
11935 ALBERT 8 heads 1375k 10 5 99.6 98.6
11679 ALBERT 8 heads 1290k 9 5 99.6 98.6
11381  ALBERT 8 heads 1190k 11 5 99.5 98.6
11080 ALBERT 8 heads 1090k 10 5 99.4 98.6
11289 ALBERT 8 heads 1160k 9 5 99.8 98.5
11560 ALBERT 8 heads 1250k 10 5 99.7 98.5
11725 ALBERT 8 heads 1305k 10 5 99.7 98.5

Table F.3: Top-20 model/layer/head combinations by correctness on the validation set for a multiplier of
90.

use RXNMapper-Vis to find meaningful patterns in the layers and heads of the molecular Trans-
former model and that these discoveries can enrich our knowledge and improve our tooling for
the chemical domain.
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Figure F.8: An overview of RXNMapper-Vis. Users can insert their reaction SMILES in (a), and the tool
will display the atom-mapped string in (b). A 2D skeletal structure depiction of the SMILES
is shown in (c). Hovering over any atom will show the attention weights out of that atom and
onto all the other atoms. Clicking on an atom will freeze that particular attention view. The
attentions of different heads and layers can be inspected in (d), where darker backgrounds of
each cell indicate a higher performance at atom-mapping. Note that atom labels in (c) only
show for the atom-mapping head. Changing the selected layer/head combination will update
the attentions in (c) and (e). The attention graph in (e) shows the self-attention of the input as
a connected graph, where darker and thicker curves indicate a higher attention weight out of
tokens in the top row into each token in the bottom row. Hovering over any token highlights
the connected attentions in the graph and the corresponding atoms in (c). Here, the Fluorine
in the product is selected, and both the attention graph and the skeletal structure show the
greatest attention to the correct reactant atom. The complete discrete probability distribution
of the attentions is shown as a purple background over the input sequence.
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ABBREVIATIONS

Al
ALBERT
API
BERT
CAMEO
CARBO
CEN
CML
CPU
DFT
DL
ECFP
ELN
EROS
ESI
FAISS
GCNN
GLUE
GPT
GPU
GRU
HOMO
HRMS
HTE
IBM
InChI
IUPAC
JSD
LHASA
LLO
LSH
LSTM
MCC
MCTS
MFF
ML
MLM

Artificial intelligence

A Lite BERT

Application programming interface

Bidirectional Encoder Representations from Transformers
Computer-assisted mechanistic evaluation of organic reactions
Carbohydrate reactions data set

Confusion entropy of confusion matrix

Chemical Markup Language

Central processing unit

Density functional theory

Deep learning

Extended-Connectivity Fingerprint

Electronic lab notebooks

Elaboration of Reactions for Organic Synthesis
Electron spray ionisation

Facebook Al Similarity Search

Graph convolutional neural network

General Language Understanding Evaluation
Generative Pre-trained Transformer

Graphics processing unit

Gated recurrent unit

Highest occupied molecular orbital

High resolution mass spectra

High-throughput experimentation

International Business Machines Corporation
International Chemical Identifier

International Union of Pure and Applied Chemistry
Jensen-Shannon divergence

Logic and Heuristics Applied to Synthetic Analysis
Lipid linked oligosacccharide

Locality-sensitive hashing

Long-Short Term Memory

Matthews correlation coefficient

Monte Carlo tree search

Multiple fingerprint features

Machine learning

Masked Language Modelling
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MT
NLP
NMR
OST
R&D
ReLU
RF
RInChI
RXN
RXNEFP
SCscore
SECS
SELFIES
seq-2-seq
SMARTS
SMILES
SOPHIA
TLC
TMAP
TPL
TTA
USPTO
WLDN
WLN
WODKA
XML

Molecular Transformer

Natural language processing

Nuclear magnetic resonance

Oligosaccharil transferase

Research and development

Rectified linear unit

Random forest

Reaction International Chemical Identifier
Reaction

Reaction fingerprint

Synthetic complexity score

Simulation and Evaluation of Chemical Synthesis
SELF-referencing Embedded Strings
Sequence-to-sequence

SMILES arbitrary target specification

Simplified molecular-input line-entry system
System for organic reaction prediction by heuristic approach
Thin layer chromatography

Tree map

Templates

Test-time augmentation

United States Patent and Trademark Office
Weisfeiler-Lehman difference network
Weisfeiler-Lehman network

Workbench for the Organization of Data for Chemical Applications
Extensible Markup Language
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