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Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen
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Introduction

The three chapters of the dissertation cover three distinct topics in monetary macroeconomics and

banking. In chapter 2 I study the welfare implications of money creation by commercial banks

and of proposals to limit or prohibit this ability. chapter 3 is about the optimal long-run inflation

targets of central banks and chapter 4 treats the optimal financing structure of different bank

assets like business loans, mortgages or securities. In the following I briefly outline the motivation

and the content of the three chapters.

Chapter 2, “Should Banks Create Money?” treats the role of commercial banks in the money

supply of an economy.1 Currently central banks issue cash and reserves and commercial banks

issue demand deposits which are claims on central bank money. Typically banks operate under

a fractional reserve banking system: they issue demand deposits in excess of the central bank

money they hold against redemptions. This system has been consistently criticized, especially

after financial crises (1929, 2007/8). Opponents essentially argue that fractional reserve banking

(money creation by commercial banks) makes the economy less stable and has no social benefits.

As a consequence they want to limit or prohibit this ability of banks with so called “Narrow

Banking” proposals. Narrow banks must fully back the money they issue with central bank money

and thus the central bank perfectly controls the money supply. An example for a narrow banking

proposal is the “Vollgeld” initiative in Switzerland rejected by Swiss voters in June 2018.

In chapter 2 I analyze the welfare implications of such proposals. Abstracting from fragility issues

I show that fractional reserve banking (money creation by commercial banks) can be preferable

to narrow banking. Under fractional reserve banking the lending of banks is less constrained than

in a narrow banking system. More loans increase the return on bank assets and competition

forces banks to pass this return to the holders of demand deposits in the form of higher interest

payments. In an environment with inflation this is beneficial because inflation acts like a tax on real

activity. Fractional reserve banking is beneficial compared to narrow banking because it partially

compensates the agents against this “inflation tax” through higher interest payments on demand

deposits.

Chapter 3, “Liquidity, the Mundell-Tobin Effect and the Friedman Rule” (co-authored with Lukas

Altermatt), was motivated by the mismatch between theory and practice when it comes to op-

1Since the late 19th century commercial banks provided the vast majority of the money supply in advanced

economies. For example in Switzerland the share of public money (at this time coins issued by the government)

sharply decreased since 1850 and private money, banknotes (at this time still issued by commercial banks) and

demand deposits increased, see Baltensperger and Kugler [2017].
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timal long-run inflation targets. Most monetary macro models find a long-run inflation rate to

be optimal where the opportunity costs of holding money are zero (the so called “Friedman rule”

after Friedman [1969]) which typically implies a deflationary inflation target. In practice however,

no central bank runs the Friedman rule. Actual long-run inflation targets in advanced economies

are around 2%. In the paper we want to reconcile theory and practice by providing a theoretical

justification for long-run inflation targets above the Friedman rule.

The argument we explore is based on the so called “Mundell-Tobin effect”. Mundell [1963] and

Tobin [1965] argued that money and capital are to some extent substitutes as a store of value and

thus changes in inflation can influence investment. For example if the rate of return of money

goes down (inflation goes up) agents substitute away from money into capital, i.e. they invest

more. Thus at the Friedman rule, where holding money is costless and we have deflation, agents

hold more money and invest less than at higher inflation rates. Could it be that agents hold too

much money and too little capital at the Friedman rule and thus a higher inflation rate would

increase capital investment and welfare? In a model with a fundamental liauidity-return trade-off

between money and capital, i.e. capital has a higher return but money is more liquid, we show

that indeed, the optimal long-run inflation rate and the Mundell-Tobin effect are related: When

there is a Mundell-Tobin effect an inflation rate above the Friedman rule is optimal and without

the Mundell-Tobin effect the Friedman rule is optimal. Thus the Mundell-Tobin effect could be a

justification for optimal long-run inflation targets above the Friedman rule.

Chapter 4, “Optimal Bank Financing with Less Opaque Assets” (co-authored with Kumar Rishabh),

was motivated by the recent shift in bank loan portfolios from business loans towards mortgages in

advanced economies (Jordà et al. [2016]). For example more than 80% of bank loans in Switzerland

currently are mortgages. But mortgages and business loans seem to be quite different assets. One

essential difference seems to be the ease with which these two assets can be valued by the bank

(and by the investors of a bank). The value of a mortgage, which is backed by real estate, mostly

depends on publicly observable factors like interest rates or the location of the building and is

therefore relatively easy to value. The value of a business loans however, which is mostly backed

by the value of a small or medium-sized, unlisted firm, depends more on factors only observable by

the firm like the human capital of the entrepreneurs. This makes them more difficult to value for

outsiders. This difference is e.g. apparent in the fact that for mortgages there is platform lending

and a secondary market while both is not true for business loans. Mortgages are therefore said to

be less “opaque” in the language of banking theory.

In chapter 4 we ask the question whether it is useful to finance less opaque assets like mortgages with

2



demandable liabilities (demand deposits) as banks do. In a theoretical model we show the answer is

probably no. While demandable liabilities are optimal to finance opaque assets like business loans

(in line with the literature on the disciplining role of demandable debt like Calomiris and Kahn

[1991]), less opaque assets like mortgages or securities should be financed with non-demandable

liabilities like long-term debt or equity. In line with this theory we document a weak positive

correlation between opaque assets (business loans) and a suitable measure for demandable liabilities

for small and medium sized banks (up to the 75th percentile) using US bank level balance sheet

data from 1992 to 2018. But we find no correlation for bigger banks. The reason could be that

big banks might enjoy an implicit insurance e.g. in the form of too-big-to-fail guarantees which

distorts the choice of their asset and liability structure.
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Should Banks Create Money?

Contemporary monetary systems are characterized by a mixture of public and private means of

payment. Central banks issue cash and reserves (outside money) and commercial banks issue

demand deposits (inside money). Demand deposits are claims on outside money redeemable on

demand. Typically banks operate under a fractional reserve banking system. They issue inside

money in excess of the outside money they hold against redemptions. This system has been

consistently criticized. Opponents of fractional reserve banking typically argue that it brings

instability and question social benefits. They propose to separate the monetary function of banks

from their other functions. If banks issue inside money they should back it fully with very safe and

liquid assets while other assets should be funded by non-monetary liabilities like long-term debt or

equity. The most prominent example of such a “narrow banking” proposal is the “Chicago plan”

from 1933 which called for a full backing of inside money by outside money (reserves). A similar

plan was advocated by Friedman [1960] and related proposals came up after the recent financial

crisis.1

The paper aims to analyze the long run welfare implications of such proposals. Although interest

in these questions has increased recently, the macroeconomic literature on the topic (where money

is explicitly modelled as a nominal asset) is still surprisingly scant given the long history and the

fundamental nature of the debate.2 The specific focus of the paper are the potential benefits of

fractional reserve banking in an environment where banks have a “monetary” role, i.e. their liabil-

ities circulate as means of payment (inside money).3 An emphasis lies on the concrete definition

of narrow banking. Narrow banking means that banks must back their demandable (monetary)

liabilities fully with very safe and liquid assets but they can acquire other assets if they fund them

with non-monetary liabilities. In many models banks are restricted to issue one type of liabilities

(an example is Chari and Phelan [2014]) which severely limits narrow banking systems. In the

model presented here banks will thus be able to issue other liabilities besides inside money.

I use a basic “New Monetarist” model building on Berentsen et al. [2007]. A preference shock

1In Switzerland there was a vote to introduce a narrow banking system in June 2018. See Pennacchi [2012] for

an overview of the history of narrow banking and related proposals.
2This excludes two- or three-periods real models like Faure and Gersbach [2019], Benigno and Robatto [2019],

Jackson and Pennacchi [2019] and Stein [2012]. Wile often providing useful intuitions, these models lack crucial

aspects of monetary economies like inflation.
3The instability of fractional reserve banking systems has been extensively studied in the literature following

Diamond and Dybvig [1983]. However, these models typically ignore the monetary role of bank liabilities and derive

their demandable nature from liquidity shocks. A more recent example is Andolfatto et al. [2016]
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divides agents into consumers (buyers) and producers (sellers) and buyers acquire money to buy

goods from sellers. There is outside money issued by the central bank and inside money issued by

perfectly competitive commercial banks. Holding money is costly because the inflation rate lies

above the Friedman rule. This “inflation tax” depresses real activity and is the basic inefficiency in

the model. The uncertainty from the preference shock aggravates this basic inefficiency. The risk

of ending up as a seller with costly idle money balances makes acquiring money even less attractive

ex ante.

Banks have two roles in this economy. They issue means of payment (inside money) and they

provide liquidity insurance against the preference shock by reallocating money balances after the

shock hits. Banks acquire outside money and loans and finance them by issuing inside money and

non-monetary debt. Fractional reserve banks partially back their inside money with outside money

while narrow banks fully do it. I also consider a “constrained” fractional reserve banking system

where banks can only issue inside money and no non-monetary debt.4

The analysis shows that fractional reserve banking is beneficial. If banks issue more inside money

with respect to outside money welfare rises. This is interesting because the quantity theory of

money would predict that the quantity of money and its composition (between inside and outside

money) should be irrelevant for the equilibrium real allocation and welfare.

The reason why the quantity theory doesn’t apply here are the interest payments on inside money.

In equilibrium the interest rate on inside money is a weighted average between the loan rate (which

equals the inflation tax by the Fisher equation) and the return on cash (which is one in nominal

terms). If banks issue more inside money, lending increases and the asset mix of banks shifts

towards more loans. Thus the interest rate on inside money rises. Higher interest payments on

inside money induce sellers to produce more for the same price (or to produce the same for a

lower price) and this increases the value of real balances for buyers. This is how interest on inside

money compensates the agents for the inflation tax and reduces the welfare costs of inflation. The

compensation is partial however, because the interest on inside money (the weighted average) is

always below the inflation tax.

The mechanism is equivalent to an economy where the central bank pays interest on outside money

(see Rocheteau and Nosal [2017]). This equivalence confirms the finding by Brunnermeier and

Niepelt [2019] who argue that every fractional reserve banking allocation can be replicated with a

narrow banking system when accompanied with appropriate transfers/open-market operations by

4This restriction could reflect a distortion in the choice of the liability structure of banks. It could be privately

beneficial for banks to choose a higher level of inside money as liabilities than socially optimal (e.g. because of

deposit insurance).
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a fiscal authority and a central bank. The result complements the usual argument of models in

the spirit of Diamond and Dybvig [1983] where fractional reserve banking is beneficial because it

increases high-return long term investment.

The paper also shows that fractional reserve banking dominates narrow banking in terms of welfare.

This is not surprising given the first result. Under fractional reserve banking banks could also

choose to back the inside money they issue fully with outside money, i.e. they could choose to

become narrow banks voluntarily. And under perfect competition private and social interest are

typically aligned. Thus the fact that banks do choose to become fractional and not narrow banks

indicates that welfare is higher under fractional reserve banking. But narrow banking also improves

welfare compared to an economy without banks. Under narrow banking non-monetary debt pays

an interest rate equal to the inflation tax. Since this debt is held by sellers after the preference

shock they are perfectly compensated for the inflation tax. The same is true under fractional

reserve banking, non-monetary debt is also offered at an interest rate equal to the inflation tax.

Thus fractional reserve banking achieves the same insurance against the preference shock and on

top of that also offers a partial compensation for the inflation tax on inside money by offering

a positive interest rate. Narrow banking does not offer this kind of compensation because the

interest rate on inside money is zero. The allocation in the narrow banking economy is the same

as in the basic model of Berentsen et al. [2007]. Thus the paper shows how the Berentsen et al.

[2007] model can be interpreted as a narrow banking economy.

There is a debate on whether it matters if banks are modelled as institutions who influence the

money supply by issuing partially backed inside money“ex nihilo” or as institutions who only

intermediate already existing funds like outside money. This is exactly the difference between

fractional reserve and narrow banks in the model. Fractional reserve banks create inside money

“ex nihilo” and influence the money supply while narrow banks can be seen as pure intermediators

of outside money as in Berentsen et al. [2007]. Thus the paper shows that it can make a difference

how exactly banks are modelled and provides a counterexample to Andolfatto [2018] who finds no

substantial effect in his model.

Finally the paper shows that if fractional reserve banking is constrained i.e. if fractional reserve

banks can only issue inside money but no non-monetary debt, fractional reserve banking only

dominates narrow banking if banks can issue a sufficiently high quantity of inside money. In this

economy fractional reserve banks only issue inside money at an interest rate below the inflation

tax. In this case sellers holding inside money after the preference shock are only imperfectly

compensated for the inflation tax. Thus the insurance against the preference shock is imperfect

7



in contrast to the narrow banking economy where sellers can still use non-monetary debt at an

interest rate equal to the inflation tax. On the other hand fractional reserve banking still has the

advantage of providing a partial compensation against the inflation tax which narrow banking has

not since interest on inside money is zero.

The following figure highlights this difference. In the narrow banking economy we have a full

compensation against the inflation tax on the cash deposited by agents against non-monetary debt

d′ but no compensation on inside money n. In the constrained fractional reserve banking economy

we have a partial compensation of the inflation tax (because 1 + id is below the inflation tax) on

the full stock of inside money n. If fractional reserve banks are sufficiently constrained in issuing

inside money the interest rate on inside money is low and narrow banks can yield higher welfare.

The rest of the paper is organized as follows: Section 2.1 shows the basic environment. Then the

the full model (section 2.2) and the model with constrained fractional reserve banking (section 2.3)

are presented.

2.1 Environment

Basic structure: The environment follows a standard model in the style of Lagos and Wright

[2005] as presented in Berentsen et al. [2007]. Time is discrete and continues forever. Every

period is divided into two sequential competitive markets called first and second market. There

is a perishable consumption good produced and consumed in both markets denoted q in the first

market and x in the second.

Agents: There is a unit mass of infinitely lived agents. They discount future periods with β

and they cannot commit. At the beginning of every period agents face a preference shock which

determines what they can do in the first market. With probability s ∈ (0, 1) an agent is a seller and

can only produce and with the inverse probability 1− s an agent is a buyer and can only consume.

Sellers have a (weakly) convex disutility of production c(q) and buyers utility of consumption

is strictly concave u(q) and satisfies the Inada-conditions. In the second market all agents can

consume and produce and their preferences are represented by a utility function x − h, i.e. they

8



consume(produce) with linear (dis)utility. Denote the efficient quantity of buyer consumption in

the first market with q∗ given by:

u′(q∗)

c′( 1−s
s q∗)

= 1 (2.1)

where q∗ = s
1−sq

∗
s .

Outside money, monetary policy and prices: There is a stock M of outside fiat money called ”cash”

issued by the central bank evolving at rate γ > 0, i.e. M = γM−1. The growth rate of the cash

supply γ is the monetary policy tool of the central bank. She manages the cash supply by lump-

sum cash transfers τ to agents in the second market. Since agents have unit mass the transfer/tax

per agent is τ = M −M−1 = (γ − 1)M−1.

Let p be the price of consumption good q in terms of money in the first market and φ is the value

of fiat money in the second market in terms of consumption goods x (i.e. the inverse of the price

level in the second market). Denote (gross) inflation π as the ratio of the prices between two

consecutive second markets, i.e. π = φ
φ+1

.

Banks, financial contracts and inside money : There is also an infinite amount of perfectly compet-

itive, profit-maximizing firms (banks). In contrast to agents, they can commit and monitor other

agents at no cost. The first property enables them to issue debt and the second property enables

them to make loans.

Banks can issue two types of debt: inside money and non-monetary debt. Inside money is debt

usable as means of payment in the first market. Banks need to back it with a fraction α ∈ (0, 1) in

outside money. This constraint should capture the idea that the transactions with inside money

in the first market generate redemptions from in- and outflows of inside money between banks and

to settle and clear these flows banks need some outside money5 Non-monetary debt is not usable

as means of payment in the first market (suppose e.g. it has a longer maturity). But banks don’t

need to back it with outside money. Both types of debt are nominal, interest bearing claims on

outside money. Also both types of debt are fully redeemed in the following second market after

they are issued. Bank loans are inside money loans, which are also paid back in the next second

market, denominated in outside money.6 Bank contracts are formed in a banking period after the

preference shock.

5In appendix A.4 I present a model where this constraint arises from redemptions from inside to outside money

before the first market.
6With linear utility in the second market there is no gain from spreading the redemption of debt or the repayment

of loans over multiple periods. Thus assuming this kind of contracts is not constraining in this environment.
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Role for money and banks: The role for money in this environment is motivated by limited com-

mitment and anonymity. Since agents cannot commit and are anonymous, buyers cannot issue

debt in the first market and sellers require immediate compensation for the goods they produce.

Buyers must give sellers ”something” if they want to consume in the first market. This why agents

(buyers) hold (inside or outside) money.

Banks have two roles in this environment. They can issue liabilities that circulate as means of

payment in the first market, i.e. they can create money. And they can reallocate money after the

preference shock which is valuable because acquiring money is costly, i.e. banks provide insurance

against liquidity risk.

Equilibrium: I focus on stationary and symmetric equilibria. In a stationary environment the value

of aggregate real balances is constant over time implying φM = φ+1M+1. Since the stock of cash

grows at γ also the price level in the second market must grow at γ or φ/φ+1 = γ in a stationary

equilibrium. By setting γ the central bank can thus also determine long-run inflation and γ can

also be interpreted as the long run inflation target of the central bank.

Throughout the paper I assume holding money is costly, i.e. γ > β and the central bank does not

follow the Friedman rule. The assumption introduces a basic inefficiency into the environment in

the form of an “inflation tax” which banks can potentially alleviate. Agents hold too little money for

first best consumption in the first market, i.e. inflation acts like a tax on consumption/production

in the first market. Since inside money is a claim on outside money the inflation tax also applies

to inside money. The preference shock aggravates this basic inefficiency from the inflation tax.

If acquiring money is costly, the risk to be a seller with (costly) idle money holdings in the first

market makes acquiring money even less attractive ex-ante.

Sequence of events: Figure 2.1 summarizes the sequence of events in this economy: Agents acquire

outside money in the second market. In the banking period after the preference shock, they can

can deposit this outside money in banks and borrow to acquire inside money and non-monetary

debt. In the first market they consume and produce and finally in the second market all inside

money and all non-monetary debt is redeemed and the loans are repaid.

Figure 2.1: sequence of events
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2.2 Unconstrained fractional reserve banking

2.2.1 Banks

Banks issue inside money and non-monetary debt in the banking period. They issue inside money

against cash deposits d and as loans l. They must back this inside money with at least a fraction

α ∈ (0, 1) of outside money. The interest on inside money is id and the interest on loans is i. Banks

can also issue non-monetary debt against cash deposits d′ at interest i′d. A representative bank

maximizes the nominal value of her assets (cash and loans) minus the value of liabilities (inside

money, non-monetary debt) subject to having enough cash to satisfy the reserve constraint. The

problem of a representative bank is:

max
l,d,d′

= d+ d′ + l(1 + i)− (l + d)(1 + id)− d′(1 + i′d) (2.2)

s.t. α(l + d) ≤ d+ d′

If i > id and id, i
′
d > 0 the bank would like to make a loan as big as possible and to have as little cash

deposits as possible. The reserve constraint will bind and the bank will not hold excess-reserves.

Suppose this holds, then we get the following relationship between loans and cash deposits:

l =
d′

α
+

1− α
α

d (2.3)

Note that the loan size increases exponentially as α decreases for a given d or d′ and the increase

is stronger for a marginal increase in d′ than in d. For example if α = 0.5 and the bank takes a

cash deposit against inside money, her lending capacity increases by 1. If the bank instead takes

a cash deposit against non-monetary debt, her lending capacity increases by two. This is because

issuing inside money triggers further cash acquisitions over the reserve constraint who converge to

α
1−α in the end while issuing non-monetary debt does not have this consequence.

Using the binding reserve constraint we can rewrite the objective function as:

max
d,d′

d

α
(α+ (1− α)(1 + i)− (1 + id)) +

d′

α
(α+ (1 + i)− α(1 + i′d)− (1 + id))

Thus if banks use both types of debt and we apply free entry (zero profits) we find that the interest

rate on inside money and the interest rate on non-monetary debt satisfy:
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1 + id = α+ (1− α)(1 + i) (2.4)

1 + i′d = 1 + i (2.5)

Thus the interest rate on inside money id is a weighted average of the return on cash (1 in nominal

terms) and the return on loans (1 + i). As the gross loan rate will be bigger than one, the interest

on inside money must be below the loan rate. This also implies it is below the interest on non-

monetary debt, i′d > id.

Also id increases if α goes down. This is because a lower α shifts the asset mix of the bank from

assets with no return (cash) to assets with return (loans). Consequently, the bank pays an interest

on its liabilities (inside money) closer to the loan rate under zero profits. The spread between loan

rate and interest on inside money decreases. For example if α decreases from 0.5 to 0.25 and the

loan rate stays constant at i = 0.2 the return on inside money increases from id = 0.1 to 0.15. If

α→ 1 the interest on inside money goes to zero. This is the case of narrow banking where issued

inside money must be backed fully with outside money. If α → 0 the interest on inside money

approaches the loan rate. In this case banks don’t need to back inside money with outside money

thus for the bank there is no difference between issuing inside money and non-monetary debt. i′d

does not depend directly on α.

The two types of debt yield the following trade-off for the bank: Non-monetary debt has the

advantage that it increases cash holdings without increasing inside money (which would trigger

further cash holdings). Thus loans can increase by 1/α at the margin with non-monetary debt

while in the case of deposits against inside money they can only increase by (1 − α)/α. The

disadvantage of non-monetary debt are the higher funding costs since i′d > id.

We define a fractional reserve banking system as an economy where banks don’t fully back their

issued inside money with outside money, i.e. α ∈ (0, 1). A narrow banking system is an economy

where bank fully back their issued inside money with outside money, i.e. α = 1. If banks acquire

loans they must fund them with non-monetary debt. The following figure shows the balance sheets

of a fractional reserve and a narrow bank for the same amount of deposits against inside money d

and non-monetary debt d′.
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fractional reserves

d+ d′

d+ lFR

lFR

d′

narrow bank

d+ d′ d+ lNB

lNB d′

In a fractional reserve banking system the issued inside money (d+ lFR) exceeds the outside money

deposited (d+ d′) while under narrow banking they must be equal by definition. This implies that

fractional reserve banks can lend more (lFR > lNB) because they don’t have to back inside money

1 : 1 with outside money. Narrow banks’ lending capacity is constrained by the cash deposits

against non-monetary debt lFR = d′. But fractional reserve banks can lend according to (A.15).

The last difference concerns the interest rate on inside money. Under narrow banking banks only

accept cash deposits for inside money d if they pay zero interest, i.e. if id = 0, see (2.4). Otherwise

they would set d = 0. Thus in a narrow banking system inside money and outside money are

perfect substitutes.

2.2.2 Second market

A representative agent may bring outside money (m) inside money n, non-monetary debt d′ and

some own debt l into the second market. He chooses consumption x, work h and his new holdings

of outside money m+1. V (m+1) denotes the expected value of entering the next period with m+1

units of outside money where V (m+1) = sVs(m+1 + (1 − s)Vb(m+1) i.e. the expected value of

entering next period with m+1 units of money is the value as a buyer/seller times the respective

probabilities.

W (m,n, d′, l) = max
x,h,m+1

x− h+ βV (m+1) (2.6)

s.t. x+ φm+1 = h+ φ(τ +m) + nφ(1 + id) + d′φ(1 + i′d)− lφ(1 + i)

The first order condition for optimal (positive) outside money holdings solve:
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φ = βV ′(m+1) = sV ′s (m+1 + (1− s)V ′b (m+1) (2.7)

(2.7) implies that agents want to choose the same amount of cash to bring into the next period -

independent of m,n, d′ and l. This is a consequence of the linear utility function introduced by

Lagos and Wright [2005]. The envelope conditions to the problem are:

Wm = φ (2.8)

Wn = φ(1 + id)

W ′d = φ(1 + i′d)

Wl = −φ(1 + i)

Finally market clearing for the output good and for money solves:

(1− s)hb + shs = (1− s)xb + sxs (2.9)

m+1 = M (2.10)

2.2.3 Banking period and first market

I focus on the case where agents use only inside money in the first market. In appendix A.3 I

show that buyers will strictly prefer to acquire inside money instead of outside money if interest

on inside money is positive, i.e. if id > 0 and I assume they also acquire inside money if id = 0.

Since after the preference shock all uncertainty is resolved, the problem of the banking period and

the first market for buyers or sellers can be taken together.

buyer problem

A buyer arrives with m units of outside money in the banking period. There he decides how much

of this he should deposit for inside money db and for non-monetary debt d′b and how much he

should borrow lb. Then, in the first market he chooses how much to consume qb given the amount

of inside money n = db + lb he has.

Vb(m) = max
qb,lb,db,d′b

u(qb) +W (m− db − d′b, lb + db − pqb, d′b, lb) (2.11)

s.t. pqb ≤ db + lb

db + d′b ≤ m
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It is clear that the buyer should deposit all his cash be it for inside money or non-monetary debt, i.e.

the second constraint must bind and d′b = m−db. From the envelope conditions (2.8) the marginal

value of inside money and non-monetary debt dominate the marginal value of cash. Second, I focus

on an interior solution for borrowing. A buyer would not borrow if he already brings sufficient

outside money balances m for his unconstrained level of consumption. But this could only happen

if acquiring money is costless, i.e. if the inflation tax is zero or γ = β which is not what we assume.

The problem yields the following first-order conditions (also using (2.8) and with λ denoting the

multiplier for the constraint):

qb : u′(qb) = p(φ(1 + id) + λ)

lb : λ+ φ(1 + id) = φ(1 + i)

db : λ+ φ(1 + id) ≥ φ(1 + i′d)

The last constraint is formulated with a weak inequality meaning that if the inequality is strict

the buyer wants to choose db = m and d′b = 0. From the banking problem we know that i > id

in equilibrium. Thus the constraint in the first market must bind and the buyer will be liquidity

constrained, λ = φ(i − id). We also know from the banking problem that i = i′d in equilibrium.

This implies the buyer is indifferent between depositing his outside money for inside money or

for non-monetary debt and any combination of db + d′b = m is fine. The third condition holds

at equality. Without loss of generality we will assume that the buyer deposits all his cash for

non-monetary debt. Thus the solution to problem (2.11) is given by:

u′(qb) = pφ(1 + i) (2.12)

lb = pqb (2.13)

db = 0 , d′b = m (2.14)

And the marginal value of outside money for a buyer is:

V ′b (m) = φ(1 + i′d) (2.15)

seller problem

A seller also arrives with m units of outside money in the banking period. He can deposit his

outside money for inside money ds or for non-monetary debt d′s and he can borrow ls. In the first

market he chooses production qs.
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Vs(m) = max
qs,ls,ds,d′s

−c(qs) +W (m− ds − d′s, ds + ls + pqs, d
′
s, ls) (2.16)

s.t. ds + d′s ≤ m

The envelope conditions (2.8) and the relations on interest rates derived in the banking problem

i = i′d > id significantly simplify the analysis. Also sellers will deposit all their cash for inside

money or non-monetary debt. But since inside money has no liquidity value for they they strictly

prefer to deposit for non-monetary debt, i.e. d′s = m and db = 0. Also sellers don’t borrow if

i > id, so ls = 0. Thus the optimality conditions for the sellers are

c′(qs) = pφ(1 + id) (2.17)

ls = 0 (2.18)

ds = 0 , d′s = m (2.19)

and the marginal value of outside money for a seller is:

V ′s (m) = φ(1 + i′d) (2.20)

Finally we have the market clearing conditions in the first market. Denote total bank demand for

deposits against non monetary debt as d′ and total bank demand for deposits against inside money

as d and total bank supply of loans as l. Using the optimality conditions from above we have the

following market clearing conditions in the first market:

d′ = (1− s)d′b + sd′s = m

d = (1− s)db + sds = 0

l = (1− s)lb

(1− s)qb = sqs (2.21)

Combine this with the binding reserve constraint of banks to get:

(1− s)lb =
m

α
(2.22)

16



2.2.4 Equilibrium

We first solve for the equilibrium interest rates. We combine the expressions for the marginal value

of outside money for a buyer (2.15) and for a seller (2.20) with the condition for optimal outside

money holdings (2.7) to get:

φ = βφ+1(1 + id′+1) (2.23)

To get the equilibrium interest rates we apply stationarity (γ = φ/φ+1) to (2.23) and use the

relations on interest rates from the bank problem, (2.4) and (2.5).

1 + i =
γ

β
(2.24)

1 + i′d =
γ

β
(2.25)

1 + id = (1− α)
γ

β
+ α (2.26)

Thus the loan rate and the interest on non-monetary debt must equal the inflation tax and are

independent of α. This can be interpreted as a Fisher equation: the interest rates are the real

interest rate (1/β) times inflation (φ/φ+1 = γ). The interest on inside money is then the weighted

average of the inflation tax and the return on cash and is thus below the inflation tax and decreasing

in α. We get the following picture for the evolution of the interest rates as a function of α:

To get equilibrium consumption in the first market combine optimal consumption (2.12) with

optimal production (2.17) and use the equilibrium expressions for the interest rates and market

clearing (2.21):

17



u′(qb)

c′( 1−s
s qb)

=
1 + i

1 + id
=

γ/β

(1− α)γ/β + α
(2.27)

The following proposition summarizes the most important results:

Proposition 2.1. Suppose holding money is costly (i.e. γ > β) and the reserve constraint is

interior (i.e. α ∈ (0, 1)), then there is a unique stationary equilibrium of an economy with banks,

inside money and non-monetary debt in which:

i) first market consumption solves (2.27)

ii) first market consumption is below first best q∗ and the inefficiency increases in the inflation

tax γ/β and the reserve constraint α but is independent of the preference shock s.

iii) welfare is higher than in an economy without banks (see A.1), i.e. fractional reserve banking

and inside money creation are essential.

iv) as α → 1 (the economy becomes a narrow banking economy) the allocation approaches an

economy without banks and preference shock as in A.2.

v) as α→ 0 the allocation approaches the first best allocation (2.1).

First the proposition shows that inside money is not neutral in this economy (ii)). The more inside

money relative to cash (the lower α) the higher consumption in the first market and the higher

welfare. Thus the quantity theory of money claiming that the quantity and the composition of

inside and outside money are irrelevant does not hold here. This implies that fractional reserve

banks are essential, i.e. they improve the allocation compared to an economy without banks and

inside money creation (iii)).

Why is more inside money (a lower α) beneficial? In section 2.2.1 on banks we saw how a lower α

leads to increases in lending and a shift in the asset-mix of banks from assets with no return (cash)

to return bearing assets (loans) which allows banks to pay higher interest on inside money. This

is beneficial because this interest (partially) compensates the agents for the inflation tax, which is

the basic inefficiency in the economy. Since the equilibrium interest rate on inside money is below

the inflation tax in equilibrium (1+ id < γ/β) this compensation is always partial. The mechanism

is identical to an economy with only outside money where the central bank pays interest on cash

in the second market.7

7The equilibrium allocation of an economy with interest on outside money is given by
u′(q)
c′(q) = γ

β
1

1+im
where

1 + im is the gross interest on cash by the central bank, see Rocheteau and Nosal [2017] p.140. Note that this

18



Second: since welfare decreases in α fractional reserve banking with α ∈ (0, 1) dominates narrow

banking with α = 1 in terms of welfare. This makes intuitive sense. Under fractional reserve

banking banks could always decide to become narrow banks voluntarily, i.e. choose to hold more

outside money than they are obliged to. Since perfect competition aligns private and social interests

the fact that banks don’t do this under fractional reserve banking indicates that fractional reserve

banking is welfare improving.

However, also narrow banking is essential, i.e. welfare under narrow banking is higher than without

banks as in appendix A.1. We saw in the section on banks that narrow banking cannot offer interest

on inside money, id = 0. So narrow banks cannot provide a compensation against the inflation

tax and the welfare costs of inflation. But they are useful because they perfectly insure agents

against the preference shock. The easiest way to see this is by verifying that the allocation of the

narrow banking model is exactly the same as in an economy without preference shock and banks

(iii)), see A.1. The intuition is that since the deposit rate on non-monetary debt exactly equals

the inflation tax (1 + i′d = 1 + i = γ
β ) agents that turn out to be sellers are perfectly compensated

for the inflation tax on the cash they acquired. So the risk of being a seller who cannot use the

cash in the first market disappears and the allocation-worsening role of the preference shock is

eliminated. Narrow banks can be seen as a substitute for a market to borrow/lend cash after the

preference shock.8

The narrow banking is equivalent to an allocation with only outside money and banks reallocating

this outside money after the preference shock. This is the basic version of Berentsen et al. [2007].

Thus the proposition shows how the model of Berentsen et al. [2007] can be interpreted as a narrow

banking economy where banks issue fully backed inside money and non-monetary debt.9

Finally a few comments on the equilibrium if α = 0 (v). In this case banks don’t need outside

money to back the inside money they issue. This means they are only willing to take cash deposits

if the interest rate on inside money (and non-monetary debt) is zero, i.e. id = i′d = 0. Zero profits

then implies that also the loan rate is zero. However, the condition on agents optimal outside

money holdings, (2.23), tells us that if interest rates are zero agents would not be willing to hold

outside money if the inflation tax is positive (γ > β). Thus this cannot be an equilibrium. Now

suppose equilibrium interest rates are i = id > 0 and i′d > 0 At these interest rates bank demand

for cash deposits (either for inside money or non-monetary debt) is zero. They only make loans in

inside money and since i = id they also make zero profits. However, for this equilibrium to exist

expression is exactly identical to equation 2.27.
8See [Rocheteau and Nosal, 2017], chapter 8.5 for this equivalence.
9In footnote 9 of Berentsen et al. [2007] the authors also make the interpretation of their model as a narrow

banking economy.
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also the supply of cash deposits must be zero i.e. agents don’t want to hold cash anymore. This

is satisfied if the marginal costs of holding outside money are higher than the marginal benefits,

i.e. if (2.23) is an inequality. In equilibrium we must thus have that both interest rates on inside

money and on non-monetary debt are positive but below the inflation tax, i.e.

0 < id, i
′
d < γ/β − 1 (2.28)

Any interest rates satisfying (2.28) would be an equilibrium if α = 0. In such an economy outside

money has no function anymore, it is a pure inside money economy.10 Because the loan rate

and the interest on inside money are identical buyers are never liquidity constrained and their

holdings of inside money can be anything from the quantity to consume the first best to infinity,

i.e. lb ∈ (pq∗,∞). The economy achieves the first best allocation equivalent to an economy with

direct credit.

2.2.5 The non-neutrality of inside money

To see the beneficial effects of higher interest on inside money more clearly look at supply and

demand for the consumption good in the first market. Equilibrium supply from the seller side

is implicitly defined by optimal production (2.17), c′(q) = pφ(1 + id), and equilibrium demand is

given by the buyer optimality condition u′(q) = γ/βpφ = (1 + i)pφ. Figure 2.2 shows demand

and supply according to these equations. Specifically it depicts a shift from initial supply S(α1)

to the new supply curve S(α2) for a decrease in α from an arbitrary value α1 to a lower value α2.

Note that supply weakly increases in the interest on inside money from the properties of the utility

functions. Higher interest payments on inside money induce the sellers to produce more for the

same relative price (or to produce the same for a lower price). The figure shows that as a result of

this change equilibrium consumption (and production) will clearly increase and the relative price

pφ decreases.

10Since all prices and contracts were defined in outside money such an economy would have to use another

numeraire.
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Figure 2.2: The equilibrium effects of an increase in interest of

inside money

How can we see the non-neutrality from a quantity theory perspective? Look at the inside money

a buyer brings to the first market. In equilibrium a buyer deposits his outside money for non-

monetary debt and acquires inside money only by borrowing. Thus his inside money holdings are

just lb. Using market clearing in the first and the second market, (2.22) and (2.9), we get that the

inside money holdings of a buyer are lb = M−1

α(1−s) . Equilibrium consumption in the first market can

then be written as:

qb =
n

p
=
M−1/(α(1− s))

p
(2.29)

If the quantity theory would hold with respect to inside money this would imply that the price

level in the first market rises 1 : 1 with the amount of inside money available for the buyer. For

example if α decreases from 0.5 to 0.25 the amount of inside money available for a buyer lb more

than doubles. However, since also interest on inside money goes up (per unit) sellers accept this

amount of inside money at a lower price than a 1 : 1 increase. Thus the denominator of (2.29)

rises less than the denominator of (2.29) and real consumption qb is not constant but rises.

2.3 Constrained fractional reserve banking

In this section, I assume banks are restricted to issue inside money under fractional reserve banking.

But the narrow banking allocation is the same as before. This shows how the fact that banks can

issue different types of liabilities matters for the results. The allocation could be interpreted as a

situation where the private interests of banks and the social interests are not aligned and banks -

for some reason - have a private benefit of issuing more (or only) inside money (e.g. because it’s
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cheaper) than socially optimal i.e. the choice of the liability structure of banks is distorted. The

balance sheet of banks with only inside money as liabilities is:

constrained

fractional reserves

d

d+ lFR

lFR

For banks this means d′ is zero in (2.2) and we only have id and i as interest rates. If i > id > 0

also here the bank wants to make a loan as big as possible and to hold as little outside money as

possible. Thus the reserve constraint will bind and instead of (A.15) we get

l =
1− α
α

. (2.30)

Then, under zero profits (2.4) still holds.

1 + id = α+ (1− α)(1 + i) (2.4)

For buyers and sellers the basic problem is still (2.11) and (2.16). For them the difference is that

they cannot deposits their outside money for non-monetary debt anymore. In this case both will

deposit their outside money for inside money and we have:

db = ds = m (2.31)

The change also affects the marginal value of outside money. For buyers (2.15) becomes now:

V ′b (m) =
u′(m+l

p )

p
= φ(1 + i) (2.32)

and for sellers (2.20) becomes
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V ′s (m) = φ(1 + id) (2.33)

since they now deposit for inside money and not for non-monetary debt. This has implications for

optimal outside money holdings of buyers. Instead of (2.23) (2.7) now yields:

φ = βφ+1[(1− s)(1 + i+1) + s(1 + id+1)]. (2.34)

or under stationarity:

γ

β
= (1− s)(1 + i) + s(1 + id) (2.35)

Combining (2.35) with the relation for interest rates from the bank problem (2.4) yields the fol-

lowing equilibrium interest rates:

1 + id =
(1− α)γ/β + α(1− s)

1− αs
(2.36)

1 + i =
γ/β − αs

1− αs
(2.37)

The big difference to before is that now the loan rate increases with α (before it was independent

of α). This is because before both agents could deposit their outside money at rate i′d which was

equal to i. Thus it was irrelevant whether an agent turned out to be a buyer or a seller and

1 + i′d = 1 + i = γ/β in equilibrium. Now since there is a spread between the loan rate and the

deposit rate i > id the preference shock matters because as a seller an agent gets less. Thus as a

buyer the agent must be compensated with an interest 1+i > γ/β in equilibrium and 1+id < γ/β.

As id is decreasing in α this also implies 1 + i must rise with α otherwise the agent would not

hold outside money in equilibrium. The following figure shows this evolution in equilibrium (the

dashed lines are the interest rates of the economy without preference shock).
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To get equilibrium consumption in the first market we again combine the expressions for equilibrium

interest rates with optimal buyer consumption (2.12) and seller production (2.17).

u′(qb)

c′( 1−s
s qb)

=
1 + i

1 + id
=

γ/β − αs
(1− α)γ/β + α(1− s)

(2.38)

The following proposition summarizes the most important results:

Proposition 2.2. Suppose holding money is costly (i.e. γ > β) and the reserve constraint is

interior (i.e. α ∈ (0, 1)), then there is a unique stationary equilibrium with only inside money in

which:

i) first market consumption solves (2.38)

ii) first market consumption is below first best consumption q∗ and the inefficiency increases in

the inflation tax γ/β, the reserve constraint α and the fraction of sellers in the economy s.

iii) welfare is lower than in the economy with both types of debt from proposition 4.1.

iv) welfare is higher than in an economy without banks as in A.1 and approaches this allocation

as α→ 1.

v) welfare is higher than in the narrow banking economy from proposition 4.1 if α < α̃ and lower

if α > α̃ where α̃ = γ/β
γ/β+s > 0.5.

vi) as α→ 0 the allocation approaches the first best allocation.

The most important result from this proposition is that constrained fractional reserve banking

doesn’t strictly dominate narrow banking in terms of welfare as before. From iv) the allocation

with constrained fractional reserve banking approaches an economy without banks and we still

know from proposition 4.1 that welfare with narrow banking is higher than in an economy without

banks. As welfare increases when α decreases and approaches the first best allocation we have a

threshold result. If banks can issue a sufficiently high quantity of inside money (α < α̃) welfare

under constrained fractional reserve banking is higher while if banks are very constrained in the

issuance of inside money (α > α̃) welfare under (unconstrained) narrow banking is higher.11

Remember that under narrow banking inside money pays zero interest, id = 0 but non-monetary

debt pays an interest equal to the inflation tax 1 + i′d = γ/β. Thus agents who turn out to be

sellers can deposit their outside money after the preference shock at an interest rate which perfectly

11α̃ must be above 0.5 since this is the number reached as γ/β → 1 and s → 1. So for any α < 0.5 fractional

reserves is always better.
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compensates them for the inflation tax. Thus narrow banking achieves perfect insurance against

the preference shock (the basic inefficiency of the inflation tax on inside money however, is not

addressed since inside money pays no interest). Note that now with constrained fractional reserve

banking this is not the case. Agents who turn out to be sellers now deposit their outside money at

1 + id < γ/β since banks can only issue inside money. Thus the insurance against the preference

shock is imperfect under constrained fractional reserve banking and narrow banking has a relative

advantage in this respect. This explains why the threshold α̃ decreases in s. The higher the risk of

becoming a seller the more valuable is the perfect insurance of narrow banking and therefore the

range where narrow banking dominates increases.

On the other hand fractional reserve banking has the advantage of partially compensating agents

against the inflation tax on holding money because it pays interest on inside money id > 0 while

under narrow banking interest on inside money is zero id = 0. This is the relative advantage of

fractional reserve banking. It explains why the threshold α̃ increases in the inflation tax γ/β. If

the inflation tax is high holding money is very costly and thus the advantage of fractional reserve

banking which provides a partial compensation for incurring this tax is very valuable. Thus the

range where fractional reserve banking dominates increases in the inflation tax.

The following figure highlights this difference. In the narrow banking economy we have a full

compensation against the inflation tax on the cash deposited by agents against non-monetary debt

d′ without compensation on inside money n. In the constrained fractional reserve banking economy

we have a partial compensation of the inflation tax (because 1 + id is below the inflation tax) on

the full stock of inside money n.

Figure 2.3: Interest under narrow and fractional reserve banking

In the fractional reserve banking economy from section 2.2 the relative advantage of narrow banking

disappears. Banks now also offer non-monetary debt that perfectly compensates the sellers against

the inflation tax as it also pays 1 + i′d = γ/β. With two types of debt also fractional reserve banks

offer perfect insurance against liquidity risk and the threshold result disappears. Fractional reserve

banking then strictly dominates narrow banking as proposition 4.1 shows.
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2.4 Conclusion

The paper analyzed the welfare implications of narrow banking compared to the current fractional

reserve banking system. Abstracting from fragility issues and focusing on the “monetary” role of

banks where bank liabilities circulate as means of payment (inside money) the analysis showed that

fractional reserve banking is beneficial because of the interest payments on inside money. Since

inside money funds loans, it pays interest, compensating the agents for the inflation tax and thus

reducing the welfare costs of inflation. The paper thus provides a more “monetary” argument

for efficiency gains from fractional reserve banking which complements the classical analysis from

Diamond and Dybvig [1983] where fractional reserve banking mobilizes investment in long-term,

high-return assets. The paper also connects to the literature on the welfare costs of inflation.

As observed by Lucas [2000] the possibility of demand deposits to pay interest should be taken

into account when estimating the welfare costs of inflation using a measure like M1 which is a

sum of non-interest bearing outside money and possibly interest-bearing inside money. The paper

formalized this observation. It also showed that fractional reserve banking generally dominates

narrow banking in terms of welfare because of these interest payments although narrow banking

is modelled more carefully than in other papers. In this respect the paper also demonstrated

how Berentsen et al. [2007] can be interpreted as a narrow banking economy where banks issue

inside money and a non-monetary liability like long-term debt. Finally the paper analysed a

situation where fractional reserve banking is constrained in the issuance of liabilities which could

be interpreted as a distortion in the bank liability choice e.g. because inside money is subsidized

by deposit insurance. The paper shows that only then and if banks are very constrained in their

issuance of inside money narrow banking can yield higher welfare.

The broader message of the paper is that narrow banking systems in the spirit of the Chicago Plan

where banks must back inside money fully with non-interest bearing outside money have efficiency

costs in terms of foregone interest payments. Paying interest on outside money as proposed by

Friedman [1960] would improve welfare but fractional reserve banking would still dominate narrow

banking in such an environment. The interest rate on inside money would also incorporate the

interest on outside money and still lie higher than the interest on outside money.

Various extensions could be addressed in further work. The model presented here is essentially a

model of efficient liquidity provision and allocation. It could be augmented by banks having a role

in capital accumulation and investment. It would also be interesting to quantify the welfare gains

from inside money creation. Some quantitative estimates from New Monetarist models on the

welfare costs of inflation are available. They could be complemented with a quantitative estimate
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of this model to provide a measure for the quantitative importance of these welfare gains which

could then be set into relation to estimated costs of financial fragility. Another direction would

be deviations from perfect competition. For example the discussion of the desirability of private

seignorage by banks is impossible in a model where banks make zero profits. Finally a more

complete analysis of the two banking systems should include financial fragility.
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Appendix A

A.1 Economy with outside money and preference shock

In an economy without banks the value of an additional unit of cash for a buyer in t+ 1 is u′(qb+1)
p+1

and for a seller just φ+1 since he cannot deposit and earn interest. Thus optimal cash holdings

(2.7) for an agent in this economy solve:

φ = β[(1− s)u
′(qb+1)

p+1
+ sφ+1].

Optimal production against cash is given by c′(qs) = pφ. Thus the stationarity equilibrium con-

sumption in the first market without banks qb solves:

u′(qb)

c′( 1−s
s qb)

=
γ/β − s

1− s
. (A.1)

We see the RHS of equation (A.1) is equal to the RHS of A.2 if s = 0 (i.e. there is no preference

shock) and that it is increasing in s. By the same logic as in A.1 we can thus conclude that if s > 0

the allocation is worse than in A.2 and the inefficiency increases in s.

A.2 Economy with outside money and no preference shock

Rocheteau and Nosal [2017] (p.138) show there exists a unique stationary equilibrium where all

buyers and sellers have access to the first market (i.e. σ = 1 in their model) if γ > β which solves:

u′(qb)

c′(qs)
=
γ

β
(A.2)

A.3 Use of inside and outside money in the first market

In this section we want to show that if both inside and outside money are used in the first market

agents (weakly) prefer using inside money if the interest rate is non-negative. To make this point

we will look at the choice of means of payments for buyers and neglect non-monetary debt and

borrowing. Suppose a buyer arrives with m units of outside money. Still we denote the amount of

outside money the buyer deposits in the bank for inside money as db and the amount of outside
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money she keeps as m′. Thus m = db +m′. To simplify we will also slightly change the interpre-

tation of the price p in the first market. Before we assumed that it is expressed in terms of inside

money and we formulated the means-of-payment-constraint as pqb ≤ db + lb. Now we define p in

terms of outside money in the next second market. Thus we can write: pqb ≤ db(1 + id) +m′. We

will also just use outside money in the value function for the next second market. We can rewrite

this modified buyer problem as:

Vb(m) = max
qb,db,m′

u(qb) +W (db(1 + id) +m′ − pqb) (A.3)

s.t. pqb ≤ db(1 + id) +m′

db +m′ = m

Using m′ = m − db in the problem we see that in both the right-hand side of the constraint and

the amount of outside money holdings in the next second market you get the positive term dbid.

Thus the marginal benefits of depositing are positive if id > 0 and a buyer would like to set db as

high as possible, i.e. db = m and m′ = 0. This illustrates that a buyer strictly prefers to use inside

money if the interest on inside money is positive.

A.4 A model with early redemptions

So far the need for banks to hold outside money was motivated by the assumption that clearing and

settling the transactions with inside money in the first market takes a minimal amount of outside

money proportional to the inside money used (α). However, the concrete clearing/settlement pro-

cess was not modelled. Building on Williamson [2012] I now motivate the outside money holdings

of banks differently. Compared to the baseline model I will make some simplifying assumptions.

First I assume there is a unit mass of buyers and sellers each and there is no preference shock. This

limits the role of banks to the provision of liquidity and means only buyers will acquire money. I

will also ignore the possibility that banks issue non-monetary debt and buyers will already acquire

inside money by depositing and borrowing in the second market. Without preference shock this

does not change the problem. Compared to figure 2.1 the sequence of events then simplifies to:
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Following Williamson [2012] I will also depart from perfect competition in the first market and

assume bilateral meetings between buyers and sellers where buyers make take-it-or-leave-it (TIOLI)

offers to sellers. And I will assume linear disutility of working in the first market, c(q) = q, for

sellers and CRRA-utility for buyers with risk aversion below 1, u(q) = q1−σ

1−σ with σ < 1 for buyers.1

The crucial novelty is that now there are two types of meetings in the first market for buyers. With

probability π buyers go to a non-monitored meeting where they can only use outside money. And

with probability 1 − π they go to a monitored meeting where they can use inside money like in

the baseline model (if π = 0 the new model is a simplified version of the baseline model). Buyers

acquire inside money by depositing cash and borrowing in the second market. But since they may

need cash if they go to a non-monitored meeting the bank allows for early redemptions. After

knowing the type of meetings buyers can redeem inside money into outside money at interest rate

id1 before the first market. Inside money which is not redeemed early will be redeemed in the

following second market at the interest rate id2 as in the baseline model. The sequence of events

is then as follows:

Given the simplifications we can focus on the buyers. The buyers acquire inside money by de-

positing outside money, d, and borrowing l. The total amount of inside money a buyer acquires

in a second market is n = l+ d. Let the amount consumed in a non-monitored meeting be qc (for

”cash”) and q in a monitored meeting. Also let nc be the amount of inside money a buyer redeems

before a non-monitored meeting and n′ be the amount of inside money used in a monitored meeting

where nc, n′ ≤ n for feasibility. In a non-monitored meeting the buyer redeems nc units of inside

money for cash at rate 1 + id1. The value of this outside money is φnc(1 + id1) for a seller in

the next second market and since we assume take-it-or-leave-it offers by buyers this is exactly the

amount produced, i.e. qc = φnc(1 + id1). In a monitored meeting the buyer uses n′ units of inside

money to pay the seller where by the same reasoning we must have that q = φn′(1 + id2). The

problem of a representative buyer can then be written as:

1These assumptions do not fundamentally change the results. Assuming bilateral meetings with TIOLI offers

and linear seller utility in the baseline model yields the same allocation u′(q) = 1+i
1+id

as in the competitive model,

see (2.27).
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max
d,l,nc≤n,n′≤n

−φ−1d+ βπ[u(φnc(1 + id1)) + φ(n− nc)(1 + id2)] (A.4)

β(1− π)[u(φn′(1 + id2)) + φ(n− n′)(1 + id2)]

−βφl(1 + i)

We can distinguish four possible cases solving this problem:

a) costless inside money (id1 < id2 = i): In this case inside money is costless to hold and the buyer

holds so much that he is unconstrained in both types of meetings. The unconstrained consumption

levels are:

u′(q̃c) =
1 + id2

1 + id1
, u′(q∗) = 1 (A.5)

i.e. in the non-monitored meeting the buyer wants to consume q̃c and in the monitored meeting he

consumes the first best quantity q∗. The return on inside money equals the inflation tax 1 + id2 =

1 + i = φ
βφ+1

and the buyer doesn’t use all his inside money in both types of meetings (nc, n′ < n).

The amount of real inside money holdings φn is undetermined when inside money is costless to

hold. To be unconstrained in the monitored meeting a buyer needs at least q∗/(1 + id2) = n∗ units

of real inside money and to be unconstrained in the non-monitored meeting the buyer needs at

least q̃c/(1 + id1) = ñ units. With σ < 1 we have ñ < n∗. Thus buyers need less real inside money

to be unconstrained in the non-monitored meeting and real inside money holdings φn must lie in

(n∗,∞). Defining r = nc/n as the redemption rate in the first market, i.e. the fraction of inside

money redeemed by buyers in the non-monitored meeting, we must have also have r ∈
(
ñ
n∗ , 0

)
.

b) medium return on inside money (id1 < ĩd2 ≤ id2 < i): In this case inside money is costly to

hold (id2 < i) but the return is still high enough that buyers hold enough real inside money to be

unconstrained in the non-monitored meetings, i.e. qc = q̃c and nc < n, but they are constrained

in the monitored ones (n′ = n) and q = φn(1 + id2). The consumption levels are:

u′(q̃c) =
1 + id2

1 + id1
, u′(q) =

1 + i− π(1 + id2)

(1− π)(1 + id2)
(A.6)

and real inside money holdings solve:

φn =
( (1− π)(1 + id2)

1 + i− π(1 + id2)

)1/σ 1

1 + id2
(A.7)

Note that real inside money holdings increase in the return on inside money id2 for σ < 1. The

lower bound for the return on inside money, ĩd2, is the value for id2 where the buyer holds just
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enough real inside money to be unconstrained in non-monitored meetings, i.e. to consume q̃c.

Thus the threshold solves:

ñ(1 + id1) = q̃ (A.8)

and we can express this solution also in terms of real inside money holdings, φn ∈ [ñ, n∗).

c) low return on inside money (id1 < id2 < ĩd2 < i): In this case the return on inside money is so

low that buyers are constrained in both types of meetings (nc = n′ = n). The consumption levels

and real inside money holdings solve:

πu′(qc)(1 + id1) + (1− π)u′(q)(1 + id2) = 1 + i (A.9)

qc = φn(1 + id1) , q = φn(1 + id2)

and

φn =
(π(1 + id1)1−σ + (1− π)(1 + id2)1−σ

1 + i

)1/σ
(A.10)

This solution occurs if real inside money holdings are below the amount to consume q̃c in non-

monitored meetings, i.e. φn < ñ

d) low return on inside money without spread (id1 = id2 = id < i): In this case inside money is

costly to hold and its return is the same when redeemed early or late.2 This implies buyers are

constrained in both types of meetings and consumption in both meetings is the same solving

u′(q) =
1 + i

1 + id
(A.11)

with real inside money holdings

φn =
(1 + id

1 + i

)1/σ 1

1 + id
(A.12)

In any of these cases the indifference condition between the two ways of acquiring inside money

(borrowing and depositing cash) must hold as in the baseline model (see (2.23):

φ−1

φ

1

β
= 1 + i (A.13)

Also, the following relationship between the interest rates must hold in any equilibrium:

0 ≤ id1 ≤ id2 ≤ i (A.14)

The inequalities ensure that buyers prefer using inside money, that only buyers going to a non-

monitored meeting redeem early3. and that the solution for real inside money holdings is bounded.

2We abstract from the case when id1 = id2 = i which can never be feasible for the bank as we see below.
3We abstract from the possibility of belief-driven redemptions in the spirit of Diamond and Dybvig [1983]
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bank problem: The bank maximizes total cash profits taking the redemption rate r as given. Total

redemptions before the first market are given by πrn(1 + id1)4 and this needs to be smaller or

equal to d, the total amount of cash deposits. This constraint is similar to the reserve constraint

in the model before. I also introduce a quantity constraint. I assume the monitoring/enforcement

technology of banks for loans is imperfect and loans cannot be bigger than a threshold value l̄.5

The problem of the bank is:

max
l,d

= d− πrn(1 + id1) + l(1 + i)− (n− πrn)(1 + id2)

s.t. πrn(1 + id1) ≤ d, l ≤ l̄

We see redemptions modify the bank problem in two ways (compare it with (2.2)). It decreases

outside money holdings and it decreases the outstanding inside money of banks. Thus it decreases

both assets and liabilities. We can reformulate the objective function as follows:

l(i− πrid1 + (1− πr)id2)− d(πrid1 + (1− πr)id2)

Thus if 0 < πrid1 +(1−πr)id2 < i the bank wants to set loans as high as possible and cash deposits

as low as possible. This implies both constraints should bind and we get:

l̄ =
1− πr(1 + id1)

πr(1 + id1)
d (A.15)

and the zero profit condition implies:

1 + id2 =
1− πr(1 + id1)

1− πr
(1 + i) (A.16)

Now consider the case when the first constraint does not bind. In this case the bank holds more

outside money than she needs for redemptions in the non-monitored meetings. We know if πrid1 +

(1 − πr)id2 > 0 the bank wants to set d as low as possible because she makes losses by holding

outside money. Thus the bank will only accept excess reserves if πrid1+(1−πr)id2 = 0, i.e. holding

outside money has no costs. Then, zero profits would require the loan rate to come down to the

same level, i.e. i = 0. But since the indifference condition (A.13) must hold, this can never be an

equilibrium. If the loan rate lies below the inflation tax, agents would not be willing to deposit

4We consider a large bank with lots of buyers where the fraction of buyers going to a non-monitored meeting is

approximately π.
5This is to make the model comparable to Williamson [2012]. In Williamsons model buyers deposit goods in

banks and banks invest them into outside money and nominal government bonds. The government bonds can be

used as means of payment in monitored meetings (they serve a very similar role to inside money in my model). In

his model there is also a quantity constraint which steers the aggregate issuance of government bonds, δ = M
M+B

.
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outside money in the bank, they would only borrow. But if i > 0 and πrid1 +(1−πr)id2 = 0 banks

make positive profits in equilibrium. One can avoid this problem by assuming that depositing

and borrowing are coupled, i.e. buyers always deposit and borrow at the same bank. Then it

makes sense for banks to compete for new depositors/borrowers in a situation where i > 0 and

πrid1 + (1 − πr)id2 = 0 and thus πrid1 + (1 − πr)id2 ultimately increases to a level where banks

again make zero profits. This is achieved when

(i− πrid1 + (1− πr)id2)l̄ = (πrid1 + (1− πr)id2)d (A.17)

Thus the equilibrium conditions for banks with excess reserves are given by l = l̄ (given i >

πrid1 + (1− πr)id2 still holds), (A.17) and d > πrn(1 + id1) which implies

1 + id2 <
1− πr(1 + id1)

1− πr
(1 + i) (A.18)

stationary equilibrium: As usual stationarity implies γ = φ/φ+1 and thus the loan rate must equal

the inflation tax or 1 + i = γ/β from (A.13) as in the baseline model. Also market clearing for

outside money implies d = M−1. Thus the aggregate ratio of outside to inside money under a

binding borrowing constraint is fixed and we can define this ratio as ᾱ6

ᾱ =
M−1

M−1 + l̄

We can rewrite equilibrium interest rates without excess reserves using (A.15) and (A.16) as

1 + id1 =
ᾱ

πr
(A.19)

1 + id2 =
(1− ᾱ)(1 + i)

1− πr

Using the conditions on the interest rates, (A.14), this yields a feasible range for the redemption

rate r ∈ ( ᾱ
π((1−α)γ/β+α) , ᾱ/π)

With excess reserves using (A.17) we get:

πr(1 + id1) + (1− πr)(1 + id2) = ᾱ+ (1− ᾱ)(1 + i) (A.20)

and we need ᾱ > πr(1 + id1).

We can now characterize the four equilibria:

a) equilibrium with costless and plentiful inside money : In this equilibrium inside money is costless

to hold (id2 = i = γ/β − 1). Therefore it must be from (A.19) that r = ᾱ/π and id1 = 0, i.e. the

6Note the inverse relation between borrowing constraints and ᾱ: if the borrowing constraints are tight (l̄ is low)

ᾱ is high and the other way round.
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interest rate for early redemptions is zero. Given these interest rates equilibrium consumption in

both types of meetings solves:

u′(q̃c) = γ/β , u′(q∗) = 1

Since q̃c = φrn with id1 = 0 and r is pinned down, in equilibrium real inside money holdings

must be φn = q̃c/r. We also know real inside money holdings φn must be at least q∗

γ/β . Thus for

existence of this equilibrium ᾱ cannot be higher than some threshold α∗ and the equilibrium exists

for ᾱ ∈ (0, α∗):

α∗ =
πq̃c(γ/β)

q∗
< π (A.21)

In this equilibrium inside money is plentiful. The lending technology of the bank is very good (l̄ is

high and ᾱ is low) so banks can issue a lot of inside money which allows them to pay a return on

inside money which makes it costless to hold. In fact, there are two forces. Banks need to be able

to pay an interest rate on inside money equal to the loan rate (inflation tax). With a zero interest

rate on early redemptions this implies that after the early redemptions the bank has the same

amount of inside money and loans outstanding (and thus under zero profits interest rates on both

sides of the balance sheet are equalized). In an aggregate sense we then need (1−πr)(M−1 + l̄) (the

amount of inside money outstanding after redemptions) equals the amount of loans outstanding l̄.

This is only feasible if r = ᾱ/π. The redemption rate needs to have a certain size and for example

if ᾱ > π it is never feasible for the bank to pay id2 = i. The second condition is that buyers

need to have enough real inside money holdings for unconstrained consumption in the monitored

market. In principle if holding inside money is costless buyers can acquire as much as they want.

However, the higher φn the lower the redemption rate needs to be because consumption in the

non-monitored market solves φnc = φrn = q̃c and at some point r would be below ᾱ/π even if real

inside money holdings are just enough that the buyer is unconstrained in the monitored meeting.

Note that in this equilibrium inside money is neutral. ᾱ has no effect on consumption in the two

types of meetings as long as it satisfies (A.21). So the quantity theory holds. The allocation is not

neutral to changes in the inflation tax however. A higher inflation tax γ/β decreases real outside

money holdings of banks and thus consumption in non-monitored meetings. A higher inflation tax

also decreases α∗ and thus narrows the range of the equilibrium. This equilibrium is equivalent to

the plentiful interest bearing asset case in Williamson [2012].

b) equilibrium with medium return on inside money : In this equilibrium buyers are unconstrained

in the non-monitored meeting because the return on inside money is quite high (̃id2 < id2 < i).

So they prefer keeping some inside money and redeeming it in the second market only. This also
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implies the redemption rate r is below 1. In the monitored meetings buyers are still constrained

because id2 < i and inside money is costly to hold. This equilibrium is pinned down by six

equations in (q, q̃c, id1, id2, r, φn): (A.6), (A.7) and (A.19) and q̃c = φnr(1 + id1).

We know this equilibrium exists if id2 ≥ ĩd2 pinned down by (A.8). We also know at ĩd2 the

redemption rate is 1 and thus the interest rates are fully pinned down by ᾱ and π. We can thus

define a threshold α̃ which solves (A.8) for interest rates satisfying (A.19) with r = 1 and formulate

id2 ≥ ĩd2 equivalently as α ≤ α̃. Rewriting (A.8) we get:

(1 + id2

1 + id1

)1−σ
=

1 + i− π(1 + id2)

(1− π)(1 + id2)
(A.22)

Suppose α̃ is π. From (A.19) we would then get id2 = i and id1 = 0. Clearly this violates (A.22).

We need ĩd2 < i and ergo α̃ > π. Now suppose α̃ = α where

α =
π(γ/β)

1− π + π(γ/β)
(A.23)

is the value where both interest rates are equal (id2 = id1 = id), according to (A.19) with r = 1.

Also then (A.22) is violated and we need α̃ < α or ĩd2 > id. Thus we must have α̃ ∈ (α, π) and

since α∗ < π from (A.21) we must have α̃ < α∗ and the interval (α∗, α̃) is non-empty.

What happens to expected welfare? Denoting the optimal choice of real inside money holdings as

n∗ and the optimal redemption rate as r∗ we can rewrite (A.4):

Ub(n
∗, r∗) = −n∗(1 + i) + πu(n∗r∗(1 + id1)) + πn∗(1− r∗)(1 + id2)

+(1− π)u(n∗(1 + id2))

Using (A.16) to substitute for 1 + id1 and applying the envelope theorem:

dUb(n
∗, r∗)

d(1 + id2)
> 0 if

(1 + i)(1 + id1)

1 + id2
>

1− πr∗

(1 + i)/(1 + id2)− πr∗

which holds for i > id2, id1 > 0. Thus as ᾱ decreases from α̃ to α∗ and id2 increases from ĩd2 to

i expected welfare increases (at id2 = i and id1 = 0 the derivative is zero). Although buyers in

non-monitored meetings loose and buyers in monitored meetings gain both gain in expected terms.

And more inside money (lower ᾱ) is beneficial in this equilibrium.7

c) equilibrium with low return and scarce inside money : In this equilibrium id1 < id2 < ĩd2 < i

and buyers are constrained in both types of meetings. The equilibrium is pinned down by (A.9),

(A.10) and (A.19) with r = 1. The conditions on the interest rates then tell us we need ᾱ < α̃ and

ᾱ > α. Thus it exists in the range ᾱ ∈ (α, α̃).

7This equilibrium does not exist in Williamson [2012] since he does not consider inside money and redemptions

explicitly.
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Using (A.10) one can show that d(φn)
dᾱ < 0 for ᾱ ∈ (α, α̃) and thus dq

dα < 0. Thus if we decrease

ᾱ from α to α̃ real inside money holdings and consumption in the monitored meeting increase.

Although a higher ᾱ increases inside money holdings through id1, this is are overcompensated by

the decrease in id2. The effect on consumption in the non-monitored meeting is not clear and

depends on the level of the inflation tax. If the inflation tax is not too high8 a lower ᾱ decreases

consumption in the non-monitored market. In this case the decreasing effects from the lower

interest rate id1 overcompensate the increasing effects from higher real inside money holdings.

Again denoting optimal real inside money holdings as n∗ indirect buyer utility can be written as:

Uc(n
∗) = −n∗(1 + i) + πu(n∗(1 + id1)) + (1− π)u(n∗(1 + id2))

Using (A.16) to substitute for 1 + id1 and applying the envelope theorem we see that:

dUc(n
∗)

d(1 + id2)
> 0 if

u′(qc)

u′(q)
< 1 + i and

1 + id2

1 + id1
< (1 + i)1/σ

which must hold for id2 < i. As we decrease ᾱ (increase id2) expected welfare increases in this

equilibrium (although also here buyers in the non-monitored meetings might loose). This also

implies that equilibrium b) dominates equilibrium c) in terms of welfare. This equilibrium is

analogue to the equilibrium with scarce interest bearing assets in Williamson [2012].

d) equilibrium with excess reserves: In this equilibrium id1 = id2 = id and buyers are constrained

in both markets. We know interest rates are equal at ᾱ = α. If ᾱ > α and (A.19) holds we would

get id1 > id2 which violates our assumptions on the interest rates. Thus when ᾱ > α banks cannot

pay out all outside money in the non-monitored meeting and we must have excess reserves (the

first constraint of the bank must be slack). Using id1 = id2 = id on (A.20):

1 + id = ᾱ+ (1− ᾱ)(1 + i) (A.24)

Thus this equilibrium solves (A.11) and (A.24) and φn = q/(1+ id) in ᾱ ∈ (α, 1). Note that (A.24)

is exactly the same expression we got in the basic model (2.4). The interest rate on inside money

is a weighted average of the return on outside money and the return on loans. Since consumption

in monitored and non-monitored meetings is also identical to the basic model we get exactly the

same expression as (2.27) (with a linear disutility of working for sellers, i.e. c′(qs) = 1)

u′(q) =
1 + i

1 + id
=

γ/β

(1− α)γ/β + α
(A.25)

The welfare implications are also identical to the basic model. The allocation is non-neutral with

8Concretely if γ/β <
π+(1−π)σ
π(1−σ) .

38



respect to ᾱ. The higher ᾱ (the less inside money) the lower welfare.9 Finally note that a as in the

basic model a narrow banking system would be when ᾱ = 1 or l̄ = 0 i.e. banks can do no lending.

As in the basic model outside and inside money are perfect substitutes and the question whether

buyers will go to a monitored or a non-monitored meeting is irrelevant because both means of

payment are equivalent. The results from the basic models in terms of welfare also apply here.

Fractional reserve banking with ᾱ < 1 dominates narrow banking where consumption in both types

of meetings solves u′(q) = γ/β.

The following figures summarize the four equilibria. The more elaborate model repeats and refines

the basic message from the sections before. As in the basic model in equilibria b), c), d) more inside

money creation (a lower ᾱ) is beneficial because it increases the return on inside money which

compensates agents for the inflation tax. However, and this is the first refinement, in equilibria

b) and c) more inside money creates winners and losers. Although in expected terms buyers are

better of, they may lose in the non-monitored meetings. Marginal utility is higher when interest

payments are concentrated on the monitored meetings and thus id2 increases and interest payments

in the non-monitored meetings (id1) shrinks. The second refinement is that in equilibrium a) when

inside money creation is sufficiently easy (ᾱ < α∗) inside money has no real effects anymore. Thus

we loose the non-neutrality result. The refined model offers also a reinterpretation of the basic

model as a situation where banks are very constrained in their lending and are forced to hold excess

reserves in equilibrium.

9These results are in contrast to Williamson [2012] who gets a ”liquidity trap” equilibrium in the analogue

situation where the rate of return on outside money and bonds are equal. In his model the return on bonds is not

linked to the inflation tax as the loan rate is here over the indifference condition (A.13). Thus if bonds are very

scarce, their return would be below the return on outside money if only bonds were used in the monitored meeting.

Therefore agents want to use outside money in both meetings and the returns of bonds and outside money and the

consumption levels must be equalized. But this implies ᾱ has no real effects in this equilibrium in his model.
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Appendix B

B.1 proof of proposition 4.1

Proof. To derive (2.27) we conjectured that i = i′d > id > 0 in equilibrium. Note that if α ∈ (0, 1)

and γ > β equilibrium interest rates given by (2.24), (2.25) and (2.26) satisfy this. Given that

i > id the buyer will always use all his money in the first market, λ = φ(i− id) > 0. Then (2.11)

and (2.6) are strictly concave in qb, lb,m and the first order conditions are sufficient for a unique

maximum. Market clearing in the first market (2.21) pins down a unique qs even if c(qs) is not

strictly convex (and (2.16) strictly concave). Thus the solution to (2.27) must be unique.

Comparative statics: Differentiate the left-hand side of (2.27), u′(qb)
c′(qs)

, with respect to qb

∂(u
′(qb)
c′(qs)

)

∂qb
=
u′′(qb)c

′(qs)− u′(qb)c′′(qs) 1−s
s

c′(qs)2
< 0 (B.1)

From the strict concavity of u(q), u′′(q) < 0 and therefore (B.1) must decrease in qb. At the first

best allocation q∗ (2.1) u′(q∗)
c′(qs)

= 1 and at any qb solving (2.27) u′(qb)
c′(qs)

= 1+i
1+id

> 1 since i > id for

α ∈ (0, 1) and γ > β. Thus u′(q∗)
c′(qs)

< u′(qb)
c′(qs)

and therefore qb < q∗ from (B.1). Thus we showed that

for any i > id the allocation will be inefficient. By the same argument any change increasing the

right-hand side of (2.27) higher above 1 will decrease qb further from q∗. Since 1+i
1+id

increases in

α we must have ∂qb
∂α < 0 i.e. equilibrium consumption and welfare decreases in α. Also since 1+i

1+id

increases in γ/β we must have ∂qb
∂γ/β < 0 i.e. equilibrium consumption and welfare decreases in the

inflation tax.

iii)tov): The right-hand side of (2.27) γ/β 1
1+id

is strictly below the right-hand side of an economy

without banks (A.1) γ/β−s
1−s . Therefore by the same argument as above qb (and welfare) are higher

under fractional reserve banking than without banks. The results for iv) and v) are simply obtained

by sticking in the limit values of α (0, 1) into the right-hand side of 2.27. At α = 1 the right-hand

sides of (A.2) in appendix A.2 and in (2.27) coincide.

�
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B.2 proof of proposition 4.2

Proof. If α ∈ (0, 1) and γ > β equilibrium interest rates under constrained fractional reserve

banking (2.37) and (2.36) satisfy i > id > 0. Then the same steps as in the first proof apply.

To verify ii) we use the same logic as in the first proof. To show that qb and welfare in (2.38) is

below first best q∗ it is sufficient to show that the right-hand side of (2.38) is above 1. This holds

if α ∈ (0, 1) and γ > β. The comparative statics follow the same logic as above. If the partial

derivative of the right-hand side of (2.38) with respect to the parameters s, α or γ/β increases the

interest rate spread 1+i
1+id

resp. the right-hand side of (2.38), qb and welfare decreases. We have:

∂ 1+i
1+id

∂γ/β
=

α(1− αs)
((1− α)γ/β + α(1− s))2

> 0

∂ 1+i
1+id

∂α
=

(1− s)2α+ γ/β(γ/β − 1))

((1− α)γ/β + α(1− s))2
> 0

∂ 1+i
1+id

∂s
=
γ/β(1− α) + α2(γ/β − 1))

((1− α)γ/β + α(1− s))2
> 0

Thus indeed ∂qb
∂γ/β < 0, ∂qb

∂α < 0 and ∂qb
∂s < 0.

iii): As s goes to zero qb given by (2.38) converges to the allocation without preference shock

(2.27). Since increasing s decreases qb from ii) qb and welfare under unconstrained fractional

reserve banking (2.27) must be higher.

iv): Compare the right-hand side of the no-bank equilibrium (A.1) with the right-hand side of

(2.38) to see that the former is strictly higher for α ∈ (0, 1) and identical for α = 1.

v): Finding α̃ requires equalizing the right-hand sides of the narrow banking equilibrium allocation

(A.2), see proposition 4.1 iv) and the constrained fractional reserve banking equilibrium (2.38):

γ

β
=

γ/β − α̃s
(1− α̃)γ/β + α̃(1− s)

which yields

α̃ =
γ/β

γ/β + s

For vi) use α = 0 in the right-hand side of (2.38) which then yields q∗ from (2.1).

�
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Liquidity, the Mundell-Tobin Effect, and

the Friedman Rule
1

When it comes to optimal monetary policy, there is a stark contrast between central bankers and

monetary theorists. Most central banks in developed economies follow an inflation target of around

2% annually, and there is a general agreement among central bankers that deflation has to be

avoided. Meanwhile, most theoretical models find that the Friedman rule, i.e., setting the inflation

rate such that the opportunity cost of holding money balances is zero, is the optimal monetary

policy. Since zero opportunity costs for holding money implies deflation in standard models, this

prediction clearly differs from what central bankers believe to be optimal. The Friedman rule has

been found to be optimal by Friedman himself in a model with money in the utility [Friedman,

1969], but also in a variety of other monetary models such as cash-in-advance [Grandmont and

Younes, 1973, Lucas and Stokey, 1987], spatial separation [Townsend, 1980], and New Monetarism

[Lagos and Wright, 2005].2 While there have been alterations of these models that render the

Friedman rule suboptimal, these usually rely on additional frictions that do not seem to be major

concerns for central bankers in reality.3

One potential reason to run inflation above the Friedman rule is to stimulate investment. This

mechanism is captured by the Mundell-Tobin effect (Mundell [1963] and Tobin [1965]). The

Mundell-Tobin effect predicts that an increase in the return on nominal assets such as bonds

or fiat money (e.g., a reduction in inflation) crowds out capital investment. However, inflation

above the Friedman rule reduces people’s willingness to hold liquid assets. If certain trades can

only be settled with liquid assets, higher inflation rates thus reduce quantities traded. This implies

that there is a tradeoff between the benefits of a high return on liquid assets and the costs associ-

ated with reduced capital investment due to the Mundell-Tobin effect. We investigate this tradeoff

in a model that combines the overlapping generations (OLG) framework a la Wallace [1980] with

a New Monetarist model a la Lagos and Wright [2005] (LW). This approach allows us to find novel

results regarding both of these literatures, and settle some debates, as we explain in the literature

review below. In particular, we find that the Friedman rule is optimal in our model if and only

if there is no Mundell-Tobin effect. If there is a Mundell-Tobin effect at the Friedman rule, an

increase in inflation leads to a first-order welfare gain from reducing hours worked, and only to a

1Co-authored with Lukas Altermatt, University of Essex, UK.
2See Schmitt-Grohé and Uribe [2010] for an overview.
3E.g. for the New Monetarist literature: theft as in Sanches and Williamson [2010], incomplete tax instruments

as in Aruoba and Chugh [2010], or socially undesirable activities financed by cash as in Williamson [2012].
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second-order welfare loss from reducing consumption in markets where liquidity matters. Further,

we can show that a Mundell-Tobin effect is more likely to occur at the Friedman rule if agents care

less about consumption smoothing, and if capital is relatively liquid.

In our model, each period is divided into two subperiods, called CM and DM. Agents are born at

the beginning of the CM and live until the end of the CM of the following period; i.e., they are

alive for three subperiods. There are two assets in the economy, productive capital and fiat money.

When agents are born, they immediately learn whether they will be a buyer or a seller during the

DM. During the first CM of their lives, all agents can work at linear disutility and accumulate

capital and fiat money. In the DM, sellers can work at linear disutility and produce a DM good.

Buyers cannot work during the DM, but they get concave utility from consuming the DM good.

With some probability, buyers are relocated during the DM. If they are relocated, they can only

use fiat money to settle trades, because we assume that capital is immobile and cannot be moved

to different locations. If buyers are not relocated, they can use money and capital to purchase

goods from sellers. This relocation shock follows Townsend [1987]. Sellers are never relocated.

During the final CM of their lives, buyers return to their original location and have access to all

their remaining assets. Both buyers and sellers receive concave utility from consuming during the

final CM of their lives. Monetary policy is implemented either by paying transfers to / raising

taxes from the young or the old agents. The relocation shock creates a tradeoff between money and

capital. Since capital pays a higher return than money unless the central bank runs the Friedman

rule, capital is better suited as a store of value. However, because buyers can use money in the DM

even if they are relocated, money is more liquid than capital - and the probability of relocation

is a measure of the liquidity of capital, with capital being more liquid if relocation is less likely.

As mentioned above, this setup blends standard OLG and LW frameworks - as in standard LW

models, buyers and sellers trade with each other during the DM, and as in standard OLG models,

young and old agents trade with each other during the CM. Having these two kinds of trades allows

us to separate two properties of assets: Liquidity and store of value. In traditional OLG models

with relocation, these two cannot easily be separated.

We first study a benchmark case where all buyers are relocated, meaning that capital is perfectly

illiquid. In this version of the model, buyers face no tradeoff between money and capital, as capital

can never be used to provide DM consumption, but since it (weakly) dominates in terms of rate of

return, it is more useful to provide CM consumption. We show that in this case, CM consumption

levels are independent of monetary policy and at the first-best level, and running the Friedman

rule allows to implement the first-best consumption levels in the DM, but keeps the level of capital

accumulation strictly below first best. Further, the level of capital accumulation is inversely related
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to aggregate hours worked in the CM, so hours worked in the CM are strictly above first best at

the Friedman rule.

In the model with full relocation, there are two channels through which inflation affects capital ac-

cumulation: on the one hand, capital accumulation increases in inflation, because sellers are aware

that they can sell less goods in the DM at higher inflation rates, so they accumulate more capital

to provide for their CM consumption (seller channel); on the other hand, capital accumulation de-

creases in inflation since buyers hold less capital for CM consumption and tax payments if the real

tax payment gets lower (transfer channel). The transfer channel is only active when old agents are

taxed, so there is always a Mundell-Tobin effect when monetary policy is implemented by taxing

the young agents, and it turns out that a constant money stock is optimal in this case. For any

deflationary policy, the welfare loss from the reduction in capital accumulation (and therefore the

increase in hours worked) is larger than the gains from increasing the consumption levels in the

DM. If old agents are taxed instead, whether or not there is a Mundell-Tobin effect depends on

the relative strength of the two channels, which is determined by the agents’ preferences. If the

elasticity of DM consumption is above one, there is a Mundell-Tobin effect, while if it is below one,

there is actually a reverse Mundell-Tobin effect, meaning that capital accumulation decreases with

inflation. Conversely, inflation reduces (increases) total hours worked in the CM if the elasticity is

above (below) one. From this, it follows that the Friedman rule is optimal if the old are taxed and

the elasticity of DM consumption is below one; if the elasticity is above one, the optimal money

growth rate lies somewhere between the Friedman rule and one, and it is an increasing function of

the elasticity of DM consumption in that interval. We also show that for any deflationary policy,

welfare is higher if monetary policy is implemented over old buyers only. The reason is that under

a deflationary policy, if buyers are taxed when old they can use the return on capital to pay parts

of the tax.

Next, we analyze the full model with partially liquid capital, which means buyers face a tradeoff

between money and capital regarding DM consumption. With money, buyers can always trade

in the DM, but they need to forego some return if money growth is above the Friedman rule.

By running the Friedman rule, the monetary authority is able to perfectly insure agents against

the relocation shock, but then all DM trades are made with money, even though capital would

be accepted in some of them. This adds a third channel through which inflation affects capital

accumulation, which we call the liquidity channel. The higher the liquidity of capital, the more

willingly buyers switch to accumulating capital instead of real balances if the return on money

decreases. Because the liquidity channel strengthens the Mundell-Tobin effect, the Mundell-Tobin

effect is more likely to occur at the Friedman rule for lower π, and in turn this makes it less likely
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that the Friedman rule is the optimal monetary policy, even if the old are taxed. In the limit where

π → 0, the Friedman rule is never optimal.

From the policymaker’s point of view, the fundamental tradeoff is that the Friedman rule delivers

efficiency in the DM, but a constant money stock is optimal regarding the CM. The reason for the

latter point is that there are two ways to provide for (old-age) CM consumption: accumulation of

capital when young, or transfers from young to old agents. The inherent return of such transfers is

one, while the return of capital is larger than one; thus, the planner prefers capital accumulation

whenever possible. If capital is not fully liquid, some DM trades need to be made with money,

which implies that some of the sellers’ CM consumption has to be financed with money. However,

purchasing CM goods with money implies intergenerational transfers, as only young agents want

to acquire money. Thus, setting the return on money equal to one, which can be achieved with

a constant money stock, reflects the social return of using money (and thus intergenerational

transfers) to acquire CM consumption. Running a constant money stock increases the price of

DM consumption relative to the Friedman rule, and this increase in DM prices correctly reflects

the externality of financing some of the sellers’ consumption through intergenerational transfers

- but this increase in the DM price also inefficiently lowers DM consumption. Thus, there is no

single money growth rate that allows for (constrained) efficiency in both markets, and instead the

optimal money growth rate depends on the probability that agents need to use money in the DM,

and how they value DM consumption relative to labor disutility.

Existing literature. Aruoba and Wright [2003] is one of the earliest papers that includes capital

in a LW framework. There, capital accumulation is independent of monetary policy if capital

is fully illiquid. In our model, this is not true: because the OLG framework allows us to drop

quasilinear preferences, capital accumulation is affected by monetary policy even in the version of

our model with fully illiquid capital. Lagos and Rocheteau [2008] show that the Mundell-Tobin

effect exists in LW models when capital is liquid. However, the Friedman rule still delivers the

first-best outcome in their model, i.e., it simultaneously delivers optimal capital investment and

efficient allocations in trades that require liquid assets. In Aruoba et al. [2011], capital reduces

the cost of sellers to produce the DM good. They show that capital accumulation is affected more

strongly by inflation if there is price-taking in the DM. Andolfatto et al. [2016] show that if taxes

cannot be enforced and therefore the Friedman rule is not feasible, the first-best allocation can be

implemented with a cleverly designed mechanism even if the capital stock is too small. In Wright

et al. [2018, 2019], the authors study models where capital is traded in frictional markets, and they

show that if money is needed to purchase capital, a reverse Mundell-Tobin effect can occur. In our

model, a reverse Mundell-Tobin effect can also occur for some parameters, but due to preferences,
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not frictional markets. Gomis-Porqueras et al. [2020] show that there is a hump-shaped relationship

between inflation and aggregate capital, as inflation affects capital accumulation negatively on the

extensive margin by reducing the number of firms, besides the usual positive effect on the intensive

margin.

There have been a few papers that find deviations from the Friedman rule to be optimal due to

the Mundell-Tobin effect - e.g. Venkateswaran and Wright [2013], Geromichalos and Herrenbrueck

[2017], Wright et al. [2018], or Altermatt [2019a]. However, in these papers there is usually an

additional friction that leads to underinvestment at the Friedman rule, e.g., limited pledgeability,

taxes, or wage bargaining. If these frictions are shut down in the papers mentioned, the Mundell-

Tobin effect still exists, but the Friedman rule is optimal. In this paper, the Friedman rule is

optimal if and only if there is no Mundell-Tobin effect.

In the OLG literature following Wallace [1980], the Mundell-Tobin effect has also been studied.

Azariadis and Smith [1996] show that if there is private information about an agent’s type, a

Mundell-Tobin effect exists for low levels of inflation, while a reverse Mundell-Tobin effect exists

for high levels of inflation. In their model, agents are either borrowers or lenders, and higher

inflation makes bank deposits a relatively less attractive means of saving, which increases a savers’

value of misrepresenting his type and defaulting on a loan. To prevent this, banks ration loans,

which depresses the borrowers’ ability to accumulate capital. In models with relocation shocks,

Smith [2002, 2003] and Schreft and Smith [2002] have claimed to show that the Friedman rule is

suboptimal because of the Mundell-Tobin effect.4 However, OLG models typically find deviations

from the Friedman rule to be optimal even without the Mundell-Tobin effect5, as in Weiss [1980],

Abel [1987], or Freeman [1993]. Bhattacharya et al. [2005] and Haslag and Martin [2007] build

on these results to show that the results in Smith [2002] and the other papers mentioned are not

driven by the Mundell-Tobin effect, but by the standard properties of the OLG models. The debate

whether the Mundell-Tobin effect itself can render deviations from the Friedman rule to be optimal

in an OLG environment thus remained unsettled.

Zhu [2008] was the first to combine the OLG and LW structures. In his model, agents do not

know their type during the first CM when they are able to accumulate assets. Therefore, the

Friedman rule can be suboptimal for some parameters, as it makes saving relatively cheap and

4See also Schreft and Smith [1997], which focuses on positive inflation rates, but endogenizes the return on

capital.
5There is a further complication in the welfare analysis of OLG models due to the absence of a representative

agent. Freeman [1993] shows that the Friedman rule is typically Pareto optimal, but not maximizing steady state

utility in OLG models. In this paper, we are going to focus on steady-state optimality when analyzing optimal

policies in OLG models.
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therefore reduces the sellers’ willingness to produce in the DM. In contrast to this, our model

follows Altermatt [2019b] by assuming that each agent knows his type. Hiraguchi [2017] extends

the model of Zhu [2008] by including capital and shows that the Friedman rule remains suboptimal

in this case. In another recent paper that combines OLG and LW, Huber and Kim [2020] show

that the Friedman rule can be suboptimal if old agents face a higher disutility of labor than young

agents.

We think that our paper contributes to the existing literature in a number of important ways. First,

it is able to reconcile Smith [2002] with Bhattacharya et al. [2005] and Haslag and Martin [2007], by

showing that even in a model with an OLG structure, the Friedman rule can be optimal for some

parameters, but that it is never optimal when there is a Mundell-Tobin effect. Second, our paper

shows that in a New Monetarist model without quasilinear preferences, capital accumulation is

affected by monetary policy even if capital is illiquid, and capital accumulation can be inefficiently

low at the Friedman rule due to the Mundell-Tobin effect. Third, we made some advances in

understanding the frictions that arise in a model that combines OLG and LW, most importantly

by showing that the timing of monetary policy implementation matters for welfare in these kind

of models.

Outline. The rest of this paper is organized as follows. In Section 4.1, the environment and

the planner’s solution is explained. In Section 3.2, we present the market outcome for perfectly

liquid capital, and in Section 3.3, we discuss the market outcome for perfectly illiquid capital and

monetary policy implementation. Section 3.4 presents the results of the full model, and finally,

Section 3.5 concludes.

3.1 The model

Our model is a combination of the environment in Lagos and Wright [2005], and the overlapping

generations model (OLG) with relocation shocks from Townsend [1987], as used by Smith [2002].

Time is discrete and continues forever. Each period is divided into two subperiods, called the

decentralized market (DM) and the centralized market (CM). There are two distinct locations,

which we will sometimes call islands. The two locations are completely symmetric, and everything

we describe happens simultaneously on both islands. At the beginning of a period, the CM takes

place, and after it closes, the DM opens and remains open until the period ends. At the beginning

of each period, a new generation of agents is born, consisting of one unit mass per island each of

buyers and sellers. An agent born in period t lives until the end of the CM in period t+ 1. Each

generation is named after the period it is born in. Figure 3.1 gives an overview of the sequence of
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period t− 1 period t period t+ 1

generation t− 1
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generation t+ 1

Figure 3.1: Timeline with lifespans of generations.

subperiods and the lifespans of generations. There is also a a monetary authority.

Both buyers and sellers are able to produce a general good x during the first CM of their life at

linear disutility h, whereas incurring the disutility h yields exactly h units of general goods; buyers

and sellers also both receive utility from consuming the general good during the second CM of

their life. During the DM, sellers are able to produce special goods q at linear disutility; buyers

receive utility from consuming these special goods.

The preferences of buyers are given by

Et{−hbt + u(qbt ) + βU(xbt+1)}. (3.1)

Equation (3.1) states that buyers discount the second period of their life by a factor β ∈ (0, 1),

gain utility u(q) from consuming the special good in the DM and U(x) from consuming the general

good in the CM, with u(0) = 0, u′(q) > 0, u′′(q) < 0, u′(0) =∞, U(0) = 0, U ′(x) > 0, U ′′(x) < 0,

U ′(0) = ∞, and linear disutility h from producing the general good during their first CM.6 The

preferences of the sellers are

− hst − qst + βU(xst+1). (3.2)

Sellers also discount the second period of their life by a factor β, gain utility U(x) from consuming

in the CM and disutility q from producing in the DM, with q̄ = u(q̄) for some q̄ > 0.

During the CM, general goods can be sold or purchased in a centralized market. During the DM,

special goods are sold in a centralized market. A fraction π of buyers are relocated during the

6We also assume strictly convex marginal utility in the CM, i.e. U ′′′(x) > 0. Most commonly used utility

functions satisfy this assumption and it simplifies the proofs for the last section.
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DM, meaning that they are transferred to the other island without the ability to communicate

with their previous location. Sellers are not relocated, and during the CM, no relocation occurs

for both types of agents. Relocated buyers are transferred back to their original location for the

final CM of their life.7 Relocation occurs randomly, so for an individual agent, the probability of

being relocated is π. Buyers learn at the beginning of the DM whether they are relocated or not.

The monetary authority issues fiat money Mt, which it can produce without cost. The monetary

authority always implements its policies at the beginning of the CM. The amount of general goods

that one unit of fiat money can buy in the CM of period t is denoted by φt. The gross inflation

rate is defined as φt/φt+1, and the growth rate of fiat money from period t− 1 to t is Mt

Mt−1
= γt.

Monetary policy is implemented by issuing newly printed fiat money either to young or to old

buyers via lump-sum transfers (or lump-sum taxes in the case of a decreasing money stock).8 We

denote transfers to young buyers as τy, and transfers to old buyers as τo. Furthermore, we will

use an indicator variable I to denote the regime, i.e., which generation is taxed. If I = 1 (I = 0),

young buyers (old buyers) are taxed, which means τy (τo) is set such that the money growth rate

γt chosen by the monetary authority can be implemented, while τo = 0 (τy = 0).

Besides fiat money, there also exists capital k in this economy. During the CM, agents can transform

general goods into capital. One unit of capital delivers R > 1 units of real goods in the CM of

the following period. Capital is immobile, meaning that it is impossible to move capital to other

locations during the DM. It is also impossible to create claims on capital that can be verified by

other agents. We will assume throughout the paper that

Rβ = 1. (3.3)

As we will see in the planner’s problem below, this assumption implies that accumulating capital

is more efficient than intergenerational transfers at financing old-age consumption.9 It also implies

7In Smith [2002], each agent lives only for two periods. Relocation occurs during the last period of an agent’s

life, meaning that all assets that he cannot spend during that period are wasted from his point of view. Our model

crucially differs from Smith [2002] in that regard, as our agents have access to all their assets during the final period

of their life.
8As we will show in this paper, the exact timing of the lump-sum taxes is irrelevant for consumption allocations,

but not for welfare. Assuming that only buyers are taxed is without loss of generality.
9For all our results to go through, R > 1 actually suffices. However, assuming Rβ = 1 has the added benefit that

two common definitions of the Friedman rule coincide, i.e., the Friedman rule is given by γ = β = 1
R

. In LW models,

the Friedman rule is typically defined as setting the money growth rate equal to the discount factor (γ = β), while

in OLG models, the Friedman rule is typically defined as setting the rate of return on money equal to the return

on other assets in the economy ( 1
γ

= R). We think that the second definition is the right one in the context of our

model, as it fits most closely the original definition of setting the opportunity cost of holding money to zero, and
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that capital is a good investment, which introduces a tradeoff between liquid money and non-(or

partially)-liquid capital in terms of return.

A Mundell-Tobin effect means that capital investments are increasing with inflation. Thus we

speak of a Mundell-Tobin effect in the model if ∂K
∂γ > 0, where K = kb + ks are the total capital

investments of buyers and sellers. Conversely, we speak of a reverse Mundell-Tobin Effect if ∂K∂γ < 0

i.e., if total capital decreases in inflation.

3.1.1 Planner’s problem

For the planner’s problem, we focus on maximizing steady-state welfare of a representative gener-

ation, while ignoring the initial old. By doing so, we follow papers like Smith [2002] and Haslag

and Martin [2007], as we want to compare our results to theirs.

The planner maximizes the utility of a representative generation, which is given by

V g = −hb − hs − qs + π (u(qm) + βU(xm)) + (1− π)
(
u(qb) + βU(xb)

)
+ βU(xs)), (3.4)

where a superscript m denotes consumption of relocated buyers (movers). DM-consumption of

buyers must be financed by transfers from sellers, so πqm + (1 − π)qb = qs. To finance CM-

consumption, the planner has two possibilities. Either the young agents work for the old and

CM consumption is financed by transfers, or young agents work in order to invest in capital, and

consume the returns when old. The implied return of an intergenerational transfer is 1, as when

goods are taken from young agents and given to old agents, the additional goods produced by a

young agent of a representative generation equal the additional goods consumed by an old agent

of a representative generation. Since R > 1 from (3.3), it requires strictly less work to provide the

same amount of CM consumption through capital investment instead of intergenerational transfers,

so a planner wants to finance all CM consumption through capital investment. Taking this into

account and using H = hb + hs to denote total labor supply, the planner’s problem is

max
H,K,qb,qm,qs,xb,xm,xs

−H − qs + π (u(qm) + βU(xm)) +(1− π)
(
u(qb) + βU(xb)

)
+ βU(xs))

s.t. πqm + (1− π)qb = qs

since 1
R

shows up in our relevant first-order conditions, not β. But to make it clear that our results don’t depend

on a debatable definition of the Friedman rule, we assume Rβ = 1 throughout the paper.
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H = K

πxm + (1− π)xb + xs = RK.

Thus the first-best levels of DM and CM consumption q∗ and x∗, hours worked H∗ and capital

investment K∗ solve:

qb = qm = qs = q∗ solving u′(q∗) = 1 (3.5)

xb = xm = xs = x∗ solving U ′(x∗) =
1

βR
(3.6)

H∗ = K∗ =
2x∗

R
. (3.7)

We will later use these results as a benchmark to compare market outcomes against.10

3.1.2 Market outcomes

In the DM, special goods are sold in competitive manner.11 Due to anonymity and a lack of

commitment, all trades have to be settled immediately. Therefore, buyers have to transfer assets

to sellers in order to purchase special goods. Because capital cannot be transported to other

locations and claims on capital are not verifiable, relocated buyers can only use fiat money to

settle trades. Nonrelocated buyers can use both fiat money and capital to purchase special goods.

We will use pt to denote the price of special goods in terms of fiat money. All buyers face the same

price, regardless of their means of payment. As sellers are not relocated during the DM, all of

them accept both fiat money and capital of nonrelocated buyers as payment. Because the problem

is symmetric, we will only focus on one location for the remainder of the analysis.

Buyer’s lifetime problem

A buyer’s value function at the beginning of his life is given by

V b = max
ht,qmt ,q

b
t ,x

m
t+1,x

b
t+1

− ht + π
(
u(qmt ) + βU(xmt+1)

)
+ (1− π)

(
u(qbt ) + βU(xbt+1)

)
10With intergenerational transfers, the optimal CM-consumption levels are xb = xm = xs = x1 solving U ′(x1) =

1
β

, with total labor supply given by 2x1. However, if the same amount of CM consumption is financed by capital

total labor supply would be only 2x1
R

. Thus for R > 1 it is more efficient to finance CM consumption with capital.
11Zhu [2008] studies an economy with bilateral meetings and ex-ante uncertainty about an agent’s type in a model

that is otherwise similar to ours, and shows that these frictions can make devations from the Friedman rule optimal

under some conditions. By assuming fixed types and competitive markets, we want to highlight that our results

stem from different frictions than those found by Zhu.
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s.t. ht + Iτyt = φmt + kbt

ptq
m ≤ mt

ptq
b ≤ mt +

Rkb

φt+1

xmt+1 = φt+1mt +Rkbt − φt+1ptq
m
t + (1− I)τot

xbt+1 = φt+1mt +Rkbt − φt+1ptq
b
t + (1− I)τot .

All variables with a superscript m indicate decisions of relocated buyers (movers). Variables with

superscript b indicate decisions of buyers prior to learning about relocation, or those of buyers that

aren’t relocated, depending on the context. The first constraint is the standard budget constraint

for the portfolio choice when young. The second constraint denotes that relocated buyers cannot

spend more than their money holdings during the DM, and the third constraint denotes that

nonrelocated buyers cannot spend more than their total wealth for consumption during the DM.12

The fourth and fifth constraint denote that buyers use all remaining resources for consumption

when old.

We can simplify the problem by substituting some variables. Additionally, we only consider in-

flation rates where capital (weakly) dominates money in terms of return, i.e. φt
φt+1

≥ 1
R . In this

case, the second constraint always holds at equality, as there is no reason for buyers to save money

for the CM if capital pays a higher return. We also know that the third constraint never binds,

because spending all wealth during the DM would imply xt+1 = 0, but this violates the Inada

conditions. After simplification, the buyer’s problem is

V b = max
mt,kbt ,q

b
t

Iτy − φtmt − kbt+π
(
u

(
mt

pt

)
+ βU(Rkbt + (1− I)τo)

)
+(1− π)

(
u(qbt ) + βU(φt+1mt +Rkbt − φt+1ptq

b
t ) + (1− I)τo)

)
.

(3.8)

Seller’s lifetime problem

A seller’s value function at the beginning of his life is given by

V s = max
ht,qst ,x

s
t+1

− hst − qst + βU(xst+1)

12The purchasing power of capital is scaled by R
φt+1

to ensure that buyers give up the same amount of CM

consumption by paying with capital and money.
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s.t. hst = kst

xst+1 = Rkst + φt+1ptq
s
t .

Here, we already assumed that sellers do not accumulate money in the first CM, which is true

in equilibrium for φt/φt+1 ≥ 1
R . Thus, the first constraint denotes that sellers work only to

accumulate capital, and the second constraint denotes that a seller’s CM consumption is equal

to the return on capital plus his revenue from selling the special good in the DM. Again, we can

simplify the problem by substituting in the constraints. After simplification, the seller’s problem

is

V s = max
qst ,k

s
t

−kst − qst + βU(Rkst + φt+1ptq
s
t ). (3.9)

3.2 Equilibrium with perfectly liquid capital

In this section, we solve for the market equilibrium in the special case of π = 0, which means that

no relocation occurs during the DM. This case represents perfectly liquid capital, as all buyers can

use capital during the DM, and abstracts from any uncertainty for all agents in the model. As

money and capital are equally liquid and safe in this case, only the rate of return of the assets

matters, and agents will only hold the asset with the higher rate of return. For φt/φt+1 ≥ 1
R ,

capital is the asset with the (weakly) higher rate of return, and as this is the case we are most

interested in, we abstract from money (and monetary policy) in this section. As we used pt to

denote the price of the DM good in terms of fiat money, we have to alter the problem slightly, as

this price is undefined if money is not held in equilibrium. In this section, we therefore introduce

ρt, which is the price of the DM good in terms of capital.

Given these alterations of the model, the buyer’s problem from equation (3.8) becomes

V b = max
kbt ,q

b
t

−kbt + u(qbt ) + βU((kbt − ρtqbt )R),

and yields the following first-order conditions:

qb : u′(qb) = ρtβRU
′((kbt − ρtqbt )R) (3.10)
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kb : 1 = βRU ′((kbt − ρtqbt )R). (3.11)

The seller’s problem is only affected by the change in notation. Solving equation (3.9) yields

qs : 1 = βRρtU
′((kst + ρtq

s
t )R) (3.12)

ks : 1 = βRU ′((kst + ρtq
s
t )R). (3.13)

We already see from equations (3.11) and (3.13) that CM consumption is equal to the first-best

level in this equilibrium i.e. xb = xs = x∗. Next we show that also DM consumption is at the

first best level, i.e. qb = qs = q∗. Combining equations (3.12) and (3.13) gives ρt = 1 assuming

optimal capital holdings of sellers are interior,13 which means that DM prices are such that the

seller is indifferent between working in the CM or the DM. Then, combining this with equations

(3.10) and (3.11) yields

u′(qb) = 1.

Furthermore, it is easily confirmed that labor supply and total capital investments are also at their

first-best levels: hs + hb = ks + kb = 2x∗

R = H∗ = K∗. Thus, we can conclude that perfectly liquid

capital allows to implement the planner’s solution.

3.3 Equilibrium with perfectly illiquid capital

Having shown that there are no inefficiencies with perfectly liquid capital, we now want to inves-

tigate the other extreme case, which is perfectly illiquid capital. In the model, this is captured

by π = 1, which means that all buyers are relocated during the DM. In this case, fiat money

is the only way to acquire consumption during the DM. Thus, for φt/φt+1 ≥ 1
R , buyers face no

tradeoff between holding fiat money and capital, as only fiat money allows them to acquire DM

consumption, while capital (weakly) dominates in terms of providing CM consumption.

13To implement the planner’s solution with perfectly liquid capital, utility functions have to be such that sellers

want to consume at least as much in the CM as they receive from selling the efficient amount of special goods at

ρ = 1 in the DM while holding no capital. Thus we need xs = x∗ > q∗R or U ′(q∗R) ≥ 1
βR

. We are assuming that

this holds for the remainder of the paper. An alternative assumption we could make to prevent this issue is that the

measure of sellers is sufficiently larger than the measure of buyers, such that individual sellers don’t sell too many

special goods in the DM. This friction might be interesting to study in other contexts, but it is not relevant for the

points we want to make in this paper.
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With π = 1, the buyer’s lifetime value function (3.8) simplifies to

V b = max
mt,kbt

Iτy − φtmt − kbt + u

(
mt

pt

)
+ βU(Rkbt + (1− I)τo).

Solving this problem yields two first-order conditions:

mt : ptφt = u′
(
mt

pt

)
(3.14)

kt :
1

βR
= U ′(Rkbt + (1− I)τo), (3.15)

while solving the seller’s problem yields the following first-order conditions:

qs : 1 = φt+1ptβtU
′(Rkst + ptq

s
tφt+1) (3.16)

kb : 1 = βRU ′(Rkst + ptq
s
tφt+1). (3.17)

Combining equations (3.16) and (3.17) yields pt = R
φt+1

. Plugging this into equation (3.14) gives

u′(qmt ) =
φt
φt+1

R. (3.18)

Equations (3.15) and (3.17) demonstrate that the CM consumption is always at the first-best level,

independent of monetary policy xb = xs = x∗.

Given the first-order conditions, we first derive the stationary equilibrium when monetary policy is

implemented over young buyers (I = 1). In a stationary equilibrium we must have: qm = qs (DM

market clearing), m = M (money market clearing) and φ/φ+1 = γ i.e. the inflation rate must

equal the growth rate of the money supply since the real value of money is constant over time,

implying φM = φ+1M+1. Furthermore the real value of taxes/transfers paid/received by young

buyers is given by: τy = φ(M −M−1) = γ−1
γ φM . Using this and the definitions and first-order

conditions derived above for π = 1, we can then define a stationary equilibrium with perfectly

illiquid capital as a list of eight variables {hb, hs, kb, ks, φ+1M, qm, xb, xs} solving:

u′(qm) = γR (3.19)

xb = xs = x∗ (3.20)
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φ+1M = qmR (3.21)

kb,I=1 =
x∗

R
(3.22)

hb,I=1 = qmR+
x∗

R
(3.23)

ks =
x∗

R
− qm (3.24)

hs = ks. (3.25)

Equation (3.20) shows that xb is independent of the inflation rate and thus inflation does not affect

the buyer’s capital accumulation. However, equation (3.24) shows that total capital accumulation

is still indirectly affected by inflation. Sellers accumulate less capital if they expect to sell more

goods in the DM - and DM consumption and thus also real balances are decreasing in the inflation

rate, as we know from equation (3.19). Differentiating both sides of (3.19) with respect to γ yields:

∂qm

∂γ
=

R

u′′(qm)
< 0, (3.26)

which is negative from the strict concavity of u(q). In turn, this implies from equation (3.24)

that seller’s capital accumulation is increasing in inflation. This is the first channel through which

capital accumulation is affected by the inflation rate, and it is active independent of the tax regime.

Since it affects the sellers’ capital accumulation, we call it the seller channel.

Total capital investment and labor supply are given by:

KI=1 = kb,I=1 + ks =
2x∗

R
− qm (3.27)

HI=1 = hb,I=1 + hs =
2x∗

R
+ qm(R− 1) = KI=1 + qmR. (3.28)

Next, we derive the stationary equilibrium when monetary policy is implemented over old buyers

(I = 0). The real value of taxes/transfers paid/received by old buyers is given by: τo = φ+1(M+1−

M) = φ+1M(γ− 1). Thus under stationarity τy = τo = τ for a given γ. Equilibrium consumption

levels are unaffected by the different monetary policy regimes. The only changes in the equilibrium

allocation affect the labor supply (equation (3.23)) and capital accumulation of buyers (equation

(3.22)). These now read:

hb,I=0 = γqmR+
x∗

R
− qm(γ − 1) (3.29)

kb,I=0 =
x∗

R
− qm(γ − 1), (3.30)
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and aggregate capital and labor supply:

KI=0 =
2x∗

R
− γqm (3.31)

HI=0 =
2x∗

R
− γqm + γRqm = KI=0 + γRqm. (3.32)

Compare this with the equations (3.23) and (3.22) resp. (3.27) and (3.28) for the model with

monetary policy implemented over young buyers. If there is inflation (γ > 1), KI=0 < KI=1 and

HI=0 > HI=1, i.e. capital accumulation is lower when the old buyers are receiving the transfers,

while the hours worked when young are higher. If there is deflation (γ < 1), KI=0 > KI=1 and

HI=0 < HI=1, i.e., capital accumulation is higher when the old pay the taxes (a deflationary policy

means τ < 0), while the hours worked when young are lower. For γ = 1, the two equilibria coincide.

To put this in other words, if monetary policy consists of making transfers to buyers (γ > 1), total

work can be kept lower if monetary policy is implemented over young buyers, whereas the opposite

is true if the monetary authority wants to implement a deflationary policy and thus raises taxes.

The reason for this is that capital has a return R > 1; thus, if agents receive a transfer, it is better

to receive it when young and invest it in capital, whereas if agents have to pay a tax, it is better to

use the return on capital to pay it when old instead of paying it directly from labor income when

young.

This also shows that with I = 0, there is a second channel through which inflation affects capital

accumulation: Equation (3.30) shows that the buyers’ capital accumulation is a function of qm,

which is decreasing in inflation, and of the inflation rate itself. Since from equation (3.22) we know

that capital accumulation of buyers is independent of inflation for I = 1 , we can conclude that

this channel arises due to the monetary policy regime. We call this the transfer channel.

Before we characterize welfare for general inflation rates, we want to analyze what happens at the

Friedman rule.

Proposition 3.1. For π = 1, both DM and CM consumption are at the first best level at the

Friedman rule (γ = 1/R), i.e. qm = q∗ and xs = xb = x∗. Total hours worked are strictly above

the first-best level, and strictly higher if the Friedman rule is implemented over taxes on the young

buyers, compared to implementation through taxes on the old buyers; i.e., HI=1|FR > HI=0|FR >

H∗.

It can easily be seen from equation (3.19) that DM consumption is at the first-best level for

γ = 1/R, and equation (3.20) shows that CM consumption is always at the first best level. Thus,

consumption is efficient at the Friedman rule. Total capital and total hours worked however are
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not efficient. From (3.27) we see that KI=1|FR = 2x∗/R − q∗ and KI=0|FR = 2x∗/R − q∗/R

from (3.31). Thus capital investment is too low in both monetary policy regimes compared to

the first-best level. This is not surprising, as sellers can only be compensated with money, which

implies that their CM consumption will be partially financed through transfers from young to old

agents - old sellers enter the CM with money and use it to purchase consumption goods from

young buyers. At the first best, all CM consumption is financed with capital investment, so these

intergenerational transfers imply an inefficiency. The inefficiency shows up in the aggregate labor

supply, which is too high compared to the first best:

HI=1|FR = 2x∗/R+ q∗(R− 1) > HI=0|FR = 2x∗/R+ q∗(R− 1)/R > H∗.

Since R > 1, it can easily be seen that implementing the Friedman rule by taxing old buyers is

more efficient - it allows to achieve the same consumption levels at strictly lower hours worked.14

Proposition 3.1 shows that even though consumption is at the first-best level at the Friedman rule,

there is still a welfare loss from hours worked, so it is not obvious that running the Friedman

rule is welfare-maximizing - and as we will show, it turns out that the Friedman rule is only the

welfare-maximizing policy under some conditions in this economy.

Next, we investigate the effects of inflation on total labor supply H = hb + hs and total capital

accumulation K = kb + ks for both policy implementation schemes. As we will show, these effects

depend on the absolute value of the elasticity of DM consumption, which we denote as |εqm |, and

on the coefficient of relative risk aversion, which we denote as η(q) = − qu
′′(q)

u′(q) .

Proposition 3.2. With I = 0 inflation affects total labor supply and total capital accumulation

in the following way:

1. If |εqm | < 1: ∂HI=0

∂γ > 0 and ∂KI=0

∂γ < 0: Reverse Mundell-Tobin effect.

2. If |εqm | > 1: ∂HI=0

∂γ < 0 and ∂KI=0

∂γ > 0: Mundell-Tobin effect.

3. If |εqm | = 1: ∂HI=0

∂γ = 0 and ∂KI=0

∂γ = 0: No Mundell-Tobin effect.

14We are assuming in this Friedman rule equilibrium that agents finance their CM consumption with capital, even

though they are indifferent between money and capital on an individual level. For the economy as a whole, financing

CM consumption with money would be much more inefficient. In the extreme case where all CM-consumption is

financed with money, we have a pure monetary economy where agents don’t invest into capital. In this case

consumption in the DM and the CM would still be efficient at the Friedman rule. But total work would be excessive

since buyers would have to provide the total real return on money of 1/γ = R by working.

59



where |εqm | = 1
η(qm) . With I = 1, ∂HI=0

∂γ < 0 and ∂KI=0

∂γ > 0 and thus the Mundell-Tobin effect

holds for all values of |εqm |.

The proof to this Proposition can be found in the appendix. As we have pointed out above,

there are two channels through which capital accumulation is affected by the inflation rate when

π = 1. Through the seller channel, inflation has a positive effect on capital accumulation. Sellers

understand that buyers want to consume less DM goods at higher inflation rates, so they finance

a larger share of their CM consumption through capital investment. Since their CM consumption

is constant at x∗, financing a larger share of it through capital investment implies higher capital

investment. The seller channel is independent of the monetary policy regime.

The transfer channel is only active for I = 0. With fully illiquid capital, buyers accumulate capital

only for CM consumption and expenditures when old. Since CM consumption is constant at x∗, the

buyers’ capital accumulation is independent of inflation if they don’t pay taxes / receive transfers

when old, which is the case when I = 1. With I = 0 however, the real value of the tax to be

paid or transfers received when old varies with the inflation rate, and thereby affects the buyers’

capital accumulation. For γ < 1 (deflation), buyers have to pay a tax when old, so they need to

accumulate more capital in order to provide for x∗ and the tax payment. If inflation is positive

instead, buyers receive a transfer when old, so they can partly finance x∗ through the transfer

and need to accumulate less capital. The effect of inflation on capital accumulation through the

transfer channel has two components: On the one hand, higher inflation (less deflation) increases

the nominal value of the transfer (decreases the nominal value of the tax), but on the other hand,

higher inflation (less deflation) decreases the value of money. For γ < 1, less deflation decreases

the nominal value of the tax and also the real value of money. Thus the real tax payment decreases

and buyers hold less capital. For positive inflation rates, either effect can dominate, depending on

the elasticity of DM consumption.15

Proposition 3.2 describes the effect on aggregate capital accumulation, which is given by the net

effect of the two channels. Since the transfer channel is shut down for I = 1, capital accumulation

is always increasing in inflation when taxes are paid by the young, so there is a Mundell-Tobin

effect. For I = 0, the aggregate effect depends on the elasticity of DM consumption |εqm |, as this

governs both the sign of the transfer channel at higher inflation rates, and the relative strength

of the two channels. With π = 1, the elasticity of DM consumption is fully determined by the

coefficient of relative risk aversion η(qm). If |εqm | = 1, the increase in capital accumulation with

inflation through the seller channel is exactly offset by a decrease in capital accumulation coming

15Specifically, if |εqm | > γ
γ−1

, the effect through the transfer channel of inflation on capital accumulation is

positive, so a positive correlation is more likely for high DM elasticity and higher inflation rates.
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from the transfer channel, and the aggregate capital investment remains constant. Thus, there is

no Mundell-Tobin effect in this case. With |εqm | > 1, the effect through the seller channel is strong,

while there is only a weak negative effect on capital accumulation from the transfer channel at low

inflation rates, so there is a Mundell-Tobin effect on aggregate. The reason that this happens

for high values of elasticity is that in this case, buyers reduce their DM consumption by a lot if

inflation increases, so in turn the sellers’ capital accumulation is reacting strongly to changes in

inflation. Strong changes in DM consumption also imply that the real value of the tax/transfer

decreases rapidly as inflation increases, which weakens the negative effect on capital accumulation

from the transfer channel. The contrary is true for |εqm | < 1: DM consumption changes very

little as inflation varies, implying that sellers’ capital accumulation also varies very little with

inflation. On the other hand, higher inflation rates leave the value of money almost unchanged,

so the transfer channel has a strong negative effect on capital accumulation. On aggregate, the

negative effect from the transfer channel dominates, such that there is a reverse Mundell-Tobin

effect for aggregate capital accumulation.

Proposition 3.2 also shows that a Mundell-Tobin effect is correlated with a negative effect on

aggregate labor supply. This may seem counterintuitive, as from equations (3.28) and (3.32)

capital seems to increase total labor in the CM. To understand the connection look at market

clearing in the CM in the model with I = 1 (without loss of generality). The total amount of

goods consumed in the CM is 2x∗. Out of these, KI=1R are produced from capital investments

in the previous period, and φM + τ = φ+1M come from intergenerational transfers - the amount

which equals the money holdings of young buyers. To sum up:

2x∗ = KI=1R+ φ+1M. (3.33)

Now suppose capital increases because inflation increases and there is a Mundell-Tobin effect. By

(3.33), this decreases real money holdings, as φ+1M = 2x∗ − RKI=1 and x∗ is unaffected by

inflation. By (3.28), the effect on total labor supply is then:

HI=1 = KI=1 + φ+1M = KI=1 + 2x∗ −KI=1R = 2x∗ −KI=1(R− 1).

Thus if capital increases, this decreases total labor because real money holdings decrease more

than capital increases. The intuition is again that financing CM-consumption with capital instead

of transfers is more efficient in this economy because R > 1, and therefore a shift in financing CM

consumption from intergenerational transfers to capital accumulation decreases total labor - with

more capital, the same amount of CM consumption can be achieved with less labor.

After having established the effects of inflation on capital and labor supply, we can derive the

61



optimal monetary policy.

Proposition 3.3. With π = 1, the optimal money growth rate under I = 0 is γ∗ = 1/R for

|εqm | ≤ 1, and γ∗ =
|εqm |

|εqm |+R−1 ∈ (1/R, 1) for |εqm | > 1; γ∗ = 1 is optimal under I = 1. The

optimal monetary policy regime is I∗ = 0, and the first-best allocation is not achievable with π = 1.

The proof to this Proposition can be found in the appendix. The intuition behind the proof

is as follows: We know from proposition 3.1 that the Friedman rule allows to achieve the first-

best consumption level in the DM. Thus if aggregate labor supply is increasing in inflation or is

independent from it (∂H∂γ ≥ 0, cases 1 and 3 from proposition 3.2) the Friedman rule must be the

optimal monetary policy. Higher inflation would decrease consumption in the DM while increasing

(or having no effect on) labor supply. If aggregate labor supply decreases in inflation (∂H∂γ < 0),

there is a policy tradeoff: Increasing the inflation rate reduces utility from DM consumption, but

simultaneously reduces disutility from CM labor. This implies that the optimal inflation rate

must lie above the Friedman rule. At the Friedman rule, the marginal costs of decreasing DM

consumption are zero, but the benefits of decreasing the aggregate labor supply H are positive.

Thus it is optimal to increase inflation above the Friedman rule. This is what happens in case 2

and in the model with I = 1. By how much inflation can be increased above the Friedman rule to

further increase welfare then depends on the elasticity of DM consumption and on the tax regime.

With I = 0, implementing deflation and thus higher DM consumption is relatively cheaper, so γ∗

is increasing in the elasticity of DM consumption and approaching 1 as DM consumption becomes

infinitely elastic. With I = 1 however, running any deflationary policy in order to increase DM

consumption is too costly, so γ∗ = 1 in this case.

The welfare results also imply an ordering of the two monetary policy regimes. We know that

for γ = 1, both regimes are equivalent in terms of allocation and we also know that if monetary

policy is implemented over young buyers, γ∗ = 1 is the optimal inflation rate. But this allocation

is always feasible, but not optimal, if monetary policy is implemented over old buyers. Thus, we

can conclude that the optimal monetary policy is to always set I∗ = 0, and to set γ∗ = 1/R for

|εqm | ≤ 1 and to set γ∗ =∈ (1/R, 1) for |εqm | > 1.

Note that γ = 1 means that the return on money equals the return on intergenerational transfers

which the social planner faces; note also that financing old-age CM consumption with fiat money

implies intergenerational transfers, as only young agents are willing to sell goods against money.

With π = 1, buyers are only able to compensate sellers with money for DM production, so unless
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the DM is completely shut down, sellers inevitably end up with money when they enter the second

CM of their life. Setting γ = 1 leads to the correct prices for the two ways of generating CM

consumption, i.e., intergenerational transfers and capital accumulation. On the other hand, setting

γ = 1
R is the only way to reach the first-best consumption level in the DM. This analysis points

out the fundamental policy tradeoff in our model: Efficiency in the DM requires a different money

growth rate than efficiency in the CM, and the optimal policy choice depends on how much buyers

value DM consumption, or more precisely, how elastic DM consumption is.

Haslag and Martin [2007] have shown that a constant money stock is typically optimal in an

OLG model, independent of the Mundell-Tobin effect. We can confirm that γ = 1 is the optimal

monetary policy for I = 1, independent of all other parameters. However, we have also shown that

a Mundell-Tobin effect still exists in this case, but it is running through the seller channel only.

More generally, we can show that implementing monetary policy in a less costly way, namely by

taxing agents only once they are old, allows to shut down the Mundell-Tobin effect completely for

certain parameters, and that in these cases, the Friedman rule is the optimal monetary policy.16

The analysis so far shows that the first-best allocation is achieved automatically if capital is per-

fectly liquid, while the first-best consumption levels can be implemented at the Friedman rule

in the case of perfectly illiquid capital, but at the cost of having agents work more in the first

CM of their lives. Whether agents prefer this allocation over higher money growth rates in the

case of perfectly illiquid capital depends on the way the Friedman rule is implemented and on the

preferences of agents. But even if the Friedman rule is welfare maximizing in the case of perfectly

illiquid capital, welfare is still strictly lower than in the case of perfectly liquid capital, i.e. below

first best.

3.4 Equilibrium with partially liquid capital

We now turn to the case of partial relocation, which implies partially liquid capital. Uncertainty

about relocation introduces a clear tradeoff between acquiring money or capital: Money provides

insurance against the relocation shock, while capital offers a higher rate of return for φt/φt+1 >
1
R .

At low inflation rates, acquiring money for insurance means only a small loss of return, thus

making money relatively more attractive and depressing capital accumulation. At high inflation

16While this works nicely in our model, it would not do the trick in pure OLG models. The difference is that

relocation occurs during the final stage of an agent’s life in models such as Smith [2002] or Haslag and Martin [2007].

The reason that taxing the old is strictly cheaper in our model is that all agents know they have access to their

capital when they have to pay the tax, and can thus fully pay the tax via capital investment. In pure OLG models,

only non-relocated agents have access to their capital during the final stage of their life.
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rates, acquiring money for insurance is really costly in terms of rate of return foregone, and thus

capital accumulation becomes relatively more attractive. As we will see, this tradeoff adds a third

channel through which capital accumulation is affected by the inflation rate. Since this channel

only occurs when capital is partially liquid, we call it the liquidity channel.

For sellers, there is no uncertainty even with partially liquid capital. Thus, the results we found in

equations (3.16) and (3.17) still hold. This implies two things: First, the seller’s CM consumption

is still unaffected by monetary policy and always at the first-best level; second, pt = R
φt+1

still

holds.

Solving the buyers’ lifetime problem (3.8) while making use of this result yields the following

first-order conditions:

mt :
φt
φt+1

= π
1

R
u′

(
φt+1mt

R

)
+ (1− π)βU ′(φt+1mt +R(kbt − qbt ) + (1− I)τo) (3.34)

kbt :
1

βR
= πU ′(Rkbt ) + (1− π)U ′(φt+1mt +R(kbt − qbt ) + (1− I)τo) (3.35)

qbt : u′(qbt ) = βRU ′(φt+1mt +R(kbt − qbt ) + (1− I)τo). (3.36)

We are now ready to define an equilibrium in the full model. Again we first derive the equilibrium

when monetary policy is implemented over young buyers (I = 1). Money market clearing m = M

and stationarity φ/φ+1 = γ are identical to before but market clearing in the DM is now:

πqm + (1− π)qb = qs. (3.37)

With (3.37), (3.21), (3.24) and (3.25) and the definitions and first-order conditions derived above

we can define a stationary equilibrium with partially liquid capital as a list of eleven variables {qm,

qb, qs, xb, xm, xs, φ+1M , kb, hb, ks, hs} solving:

πu′(qm) + (1− π)u′(qb) = γR (3.38)

πU ′(xm) + (1− π)U ′(xb) =
1

βR
(3.39)

u′(qb) = βRU ′(xb) (3.40)

xm = xb +R(qb − qm) (3.41)

xs = x∗ (3.42)

kb,I=1 =
xm

R
(3.43)

hb,I=1 = φ+1M + kb. (3.44)
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(3.45)

Aggregate labor supply and capital investments are given by:

KI=1 =
xm

R
+
x∗

R
− qs (3.46)

HI=1 =
xm

R
+ qmR+

x∗

R
− qs. (3.47)

With monetary policy implemented over old buyers (I = 0) the only changes are in the labor

supply and the capital investments of buyers and thus also in aggregate capital and labor supply.

hb,I=0 = γφ+1M + kb (3.48)

kb,I=0 =
xm

R
− qm(γ − 1) (3.49)

KI=0 =
xm

R
− qm(γ − 1) +

x∗

R
− qs (3.50)

HI=0 =
xm

R
+ γqmR− (γ − 1)qm +

x∗

R
− qs (3.51)

Next, we are interpreting the equilibrium with a number of propositions. The proofs to all of them

can be found in the appendix.

Proposition 3.4. At the Friedman rule (γ = 1
R ), all DM trades are conducted with money, and

the allocation is identical to an economy with π = 1. DM consumption is perfectly smoothed for

relocated and non-relocated buyers and equal to the first-best level, i.e. qm = qb = qs = q∗. CM

consumption is also perfectly smoothed for relocated and non-relocated buyers and equal to first best

xm = xb = xs = x∗.

The allocation under the Friedman rule achieves perfect insurance against the relocation shock and

first best consumption in all markets. However, as we know from the last section, aggregate labor

supply is above the first best in this equilibrium. All trades in the DM are made using money

although capital would be accepted in some of them.

Proposition 3.5. With inflation rates above the Friedman rule (γ > 1
R ), DM consumption is

higher for non-relocated buyers and both consumption levels are below the first-best consumption

level, i.e. qm < qs < qb < q∗. CM consumption is higher for relocated buyers and above first-best

consumption, while CM consumption for non-relocated buyers is below first best, i.e. xm > x∗ > xb.

Also, CM consumption for non-relocated buyers and DM consumption for all buyers decrease in

inflation while CM consumption for relocated buyers increases in inflation, i.e. ∂qm

∂γ ,
∂qb

∂γ ,
∂qs

∂γ ,
∂xb

∂γ <

0 and ∂xm

∂γ > 0. Total CM consumption X = x∗ + πxm + (1− π)xb increases in inflation.
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The proposition shows that deviations from the Friedman rule introduce consumption risk for the

agents and that their consumption deviates from first best in all markets. For relocated buyers,

DM consumption is lower than for nonrelocated buyers, as they can only use money to purchase

special goods. Therefore, their CM consumption has to be higher, as they still have the capital they

accumulated during the DM. Nonrelocated buyers smooth their consumption more. They consume

less than first-best in both markets because the low return on money (which they accumulate due

to the ex-ante uncertainty about relocation) makes them unwilling to accumulate enough assets to

purchase first-best consumption levels. In contrast to the model with full relocation, where buyer

consumption in the CM was x∗ and independent of inflation, inflation now affects CM consumption

of relocated buyers (and total CM-consumption) positively.

The following two propositions describe the effects of inflation on total capital and the labor supply,

in the two monetary policy regimes and at or above the Friedman rule, respectively.

Proposition 3.6. With I = 1, there is a Mundell-Tobin effect (∂K
I=1

∂γ > 0) for all parameters.

At the Friedman rule, an increase in inflation reduces aggregate labor supply (∂H
I=1

∂γ < 0), but for

sufficiently high inflation or liquidity of capital, a further increase in inflation increases aggregate

labor supply.

As in the model with fully illiquid capital, inflation always increases capital accumulation if mon-

etary policy is implemented over young buyers. The effect is even stronger now, as the liquidity

channel also makes buyers accumulate more capital instead of real balances if inflation increases

in addition to the seller channel, which is still active. To see why the Mundell-Tobin effect and

the effect on total labor supply don’t always go in opposite directions anymore, we again look at

market clearing in the CM in the model with taxes/transfers to young buyers (without loss of

generality). Total CM-consumption is

X = x∗ + πxm + (1− π)xb = KI=1R+ φ+1M. (3.52)

x∗ is the sellers’ CM consumption, and πxm+(1−π)xb is the buyers’ CM consumption. Total CM

consumption is provided by capital investments KI=1R and transfers φ+1M . Following the same

steps as in the model with fully illiquid capital, total labor supply is HI=1 = X −KI=1(R − 1).

However, X is not independent of inflation anymore and thus the logic from before that an increase

in inflation would always lead to a decrease in total labor is not valid anymore. From proposition

3.5 we know that X increases in inflation. Thus total labor supply still decreases over the Mundell-

Tobin effect but increases over the effect of inflation on X. This is why there is no full correlation

between the Mundell-Tobin effect and a negative effect of inflation on the labor supply anymore.
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In a way, total labor supply now has an intensive (inflation shifts the financing mix of CM con-

sumption from on the spot production to capital) and an extensive margin (inflation increases total

consumption). One can show that the positive effect of inflation on CM consumption is zero at

the Friedman rule. This is why at the Friedman rule, the connection between the Mundell-Tobin

effect and a negative effect of inflation on total labor still holds.

Proposition 3.7. With I = 0, inflation affects labor supply and capital investment at the Friedman

rule in the following way:

1. If |εqm |FR < 1: ∂HI=0

∂γ > 0 and ∂KI=0

∂γ < 0: Reverse Mundell-Tobin effect.

2. If |εqm |FR > 1: ∂HI=0

∂γ < 0 and ∂KI=0

∂γ > 0: Mundell-Tobin effect.

3. If |εqm |FR = 1: ∂HI=0

∂γ = 0 and ∂KI=0

∂γ = 0: No Mundell-Tobin effect.

where |εqm |FR = 1
η(q∗)ξ and ξ ∈ (1,∞) with ξ = 1 if π = 1, ξ →∞ as π → 0, and ξ monotonically

decreasing in π at the Friedman rule. This implies that with a decrease in π, it is more likely that

a Mundell-Tobin effect occurs at the Friedman rule, and if there is already a Mundell-Tobin effect,

it becomes more pronounced.

Away from the Friedman rule, the conditions for a Mundell-Tobin effect and a negative effect on

aggregate labor supply are not identical. ∂KI=0

∂γ > 0 if |εqm | > ε̂ and ∂HI=0

∂γ < 0 if |εqm | > ε̃ where

ε̂ < 1 < ε̃.

At the Friedman rule, the conditions for a Mundell-Tobin effect look identical to what we described

in proposition 3.2 for π = 1 - there is a Mundell-Tobin effect for DM elasticity above 1, and a

reverse Mundell-Tobin effect for DM elasticity below 1. However, note that the DM elasticity is

now given by 1
η(q∗)ξ at the Friedman rule. Since ξ = 1 for π = 1 and ξ is decreasing in π, the

proposition shows that with lower π, there are more values of η(q∗) for which a Mundell-Tobin

effect occurs at the Friedman rule; i.e., there are values for η(q∗) for which a reverse Mundell-Tobin

effect occurs for high values of π, but a Mundell-Tobin effect occurs for low values of π. If π → 0,

there is always a Mundell-Tobin effect at the Friedman rule. Further, if there is a Mundell-Tobin

effect at the Friedman rule, the effect becomes stronger for lower π. The reason is the liquidity

channel. At the Friedman rule, all DM trades are made using money and DM consumption is

q∗. But if capital is relatively liquid (π is low) a lot of trades could be done using capital. The

likelihood that buyers can use capital to pay in the DM is high. Thus if inflation is marginally

above the Friedman rule and thus capital dominates money in terms of return, there is a strong

incentive for buyers to substitute money for capital and massively increase capital holdings (and
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decrease labor as explained above). The lower π, the bigger this incentive, and the more likely

that it dominates the agents’ desire to smooth DM consumption which is captured by the risk-

aversion coefficient. On the other hand if π is high, the incentive to increase capital is low at the

Friedman rule if inflation marginally increases, because anyway most of the DM-trades are made

using money, and the probability that buyers will be able to use capital to purchase goods in the

DM is low.

Away from the Friedman rule, things are more complicated with partially liquid capital. In gen-

eral, the Mundell-Tobin effect occurs when DM elasticity is above some threshold ε̂ < 1, but there

is no simple representation of DM elasticity as a function of the coefficient of relative risk aversion

in this case, so it is difficult to make general statements. Importantly, the threshold for whether

inflation has a positive or a negative effect on aggregate labor supply is given by ε̃ > 1, so away

from the Friedman rule inflation does not generally have opposite effects on aggregate labor supply

and aggregate capital accumulation. For ε̂ < |εqm | < ε̃, a Mundell-Tobin effect coincides with a

positive effect of inflation on aggregate labor supply.

Proposition 3.8. For I = 1, γ∗ = 1 is the optimal money growth rate, independent of all other

parameters. Furthermore, the Friedman rule is relatively more costly in this regime for low π.

When monetary policy is implemented over young buyers, a constant money stock is optimal. This

is not surprising, as we have shown in proposition 3.3 that a constant money stock is optimal in

this monetary policy regime even if there is no uncertainty about relocation. With partially liquid

capital, the Mundell-Tobin effect is generally stronger due to the liquidity channel, so there was no

reason to expect a lower money growth rate to be optimal. Positive inflation rates are not optimal

either, as for γ > 1, the additional distortions in consumption of relocated buyers are larger than

benefits from increased capital accumulation. Further, the proposition also shows that running the

Friedman rule is especially costly for low values of π. In fact, welfare at the Friedman rule is always

the same independent of π, while welfare at γ = 1 is decreasing in π. The reason is that at the

Friedman rule, all DM trades are made with money, which implies that a large share of the sellers’

CM consumption is financed through intergenerational transfers, while at the first-best allocation,

all CM consumption is financed by capital investment. Since for low levels of π, a large share of

DM trades could be made using capital instead of money, the loss from running the Friedman rule

is larger. For π → 0, welfare at γ = 1 approaches the first-best.

Proposition 3.9. For I = 0 and |εqm |FR ≤ 1, the optimal inflation rate is the Friedman rule,
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i.e. γ∗ = 1/R. For |εqm |FR > 1, the optimal inflation rate is above the Friedman rule γ∗ =

|εqm |
|εqm |+R−1 ∈ (1/R, 1). In other words, for a given π, there is a threshold on risk aversion ξ, with

the Friedman rule being the optimal monetary policy if and only if η(q∗) > ξ, and ξ is decreasing

in π. When the optimal money growth rate is chosen, welfare is strictly higher with I = 0.

This proposition shows that higher liquidity of capital makes it less likely that the Friedman rule

is the optimal monetary policy. In fact, when π → 0, the Friedman rule is not optimal for any

η(q∗). This result directly follows from proposition 3.7. Due to the envelope theorem, an increase

in inflation is welfare-increasing at the Friedman rule if it leads to a decrease in labor supply:

such a decrease has a first-order effect on welfare, while the welfare losses from consumption in

the DM and CM are only second order. Since a Mundell-Tobin effect coincides with a negative

effect of inflation on labor supply at the Friedman rule, an increase in inflation is welfare-increasing

if there is a Mundell-Tobin effect at the Friedman rule, which is the case for |εqm |FR > 1, with

|εqm |FR = 1
η(q∗)ξ. This shows that the liquidity channel makes it less likely that the Friedman rule

is the optimal monetary policy. If the optimal monetary policy is not given by the Friedman rule, it

is a function of the elasticity of DM consumption of relocated buyers, and it lies somewhere between

the Friedman rule and a constant money stock. The result that monetary policy implementation

over old buyers is better for welfare follows again from the fact that allocations coincide for γ = 1,

so the optimal allocation for I = 1 is always feasible with I = 0, but generally not optimal.

As in the model with π = 1, the fundamental policy tradeoff is that setting γ = 1
R allows for

efficiency in the DM, but misrepresents the cost of using money, and thus intergenerational trans-

fers, to provide for CM consumption. While this is a relatively small issue if capital is illiquid and

money is the only way to provide for DM consumption, the welfare loss from running the Friedman

rule increases with the liquidity of capital, as most DM trades could be made with capital if it is

relatively liquid.

Before we conclude, we want to note that proposition 3.9 shows that the premise behind Smith

[2002] was correct: the Mundell-Tobin effect is enough to make deviations from the Friedman rule

optimal. In our model, the Friedman rule is optimal if and only if there is no Mundell-Tobin effect

at the Friedman rule, with higher liquidity of capital (i.e., a lower π) and lower risk aversion of

buyers making it more likely that there is a Mundell-Tobin effect at the Friedman rule.

3.5 Conclusion

We have added a market which requires liquid assets to trade to an OLG model with relocation

shocks, in order to study whether the Mundell-Tobin effect can make deviations from the Friedman
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rule optimal. We have shown that the Friedman rule is optimal if and only if there is no Mundell-

Tobin effect at the Friedman rule, and that a Mundell-Tobin effect is more likely to occur if capital

is relatively liquid, risk aversion of buyers is low, and if monetary policy is implemented by taxing

the young. If the Friedman rule is not optimal, the optimal money growth rate lies somewhere

between the Friedman rule and a constant money stock. While the Friedman rule allows for first-

best consumption levels in the DM, it misrepresents the cost of using intergenerational transfers to

provide for CM consumption during old age. These costs are correctly represented by a constant

money stock. We have also shown that for any deflationary policy, taxing old agents is strictly

better than taxing young agents when there is a productive investment opportunity in the economy.
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Appendix C

C.1 Proof of Proposition 3.2

Proof. We begin with the Mundell-Tobin effect in both models. When monetary policy is imple-

mented over young buyers (I = 0) total capital investment is given by:

KI=1 =
2x∗

R
− qm (3.27)

DM-consumption shows up because it indirectly affects the sellers’ capital accumlation. Since qm is

decreasing in inflation, we always get a Mundell-Tobin effect when monetary policy is implemented

over young buyers:

∂KI=1

∂γ
= −∂q

m

∂γ
> 0 (C.1)

When monetary policy is implemented over old buyers (I = 0) total capital investment is:

KI=0 =
2x∗

R
− qm(γ − 1)− qm =

2x∗

R
− qmγ (3.31)

with the first derivative:

∂KI=0

∂γ
= −(γ

∂qm

∂γ
+ qm) =

u′(qm)

−u′′(qm)
− qm = qm

( 1

η(qm)
− 1

)
. (C.2)

Furthermore, 1
η(qm) = |εqm |, since

|εqm | = −
dqm/qm

dγ/γ
= − γ

qm
∂qm

∂γ
= − u′(qm)

qmu′′(qm)
. (C.3)

Thus ∂KI=0

∂γ > 0 (we have a Mundell-Tobin effect) if |εqm | = 1
η(qm) > 1.

Next we turn to the effects on total labor supply. In both monetary policy regimes, total labor

supply is the sum of capital investments K and the work of buyers to acquire real balances. If

monetary policy is instead implemented over the young buyers (I = 1), total labor supply is:

HI=1 = γqmR+
x∗

R
− qmR(γ − 1) +

x∗

R
− qm =

2x∗

R
+ qm(R− 1) (3.28)
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Buyers acquire real balances φM = γqmR and get a transfer (if γ > 1) of τ = qmR(γ − 1)). So in

this case the wealth effects of inflation on the holdings of real balances are canceled out and the

effect of inflation on total labor supply must be negative:

∂HI=1

∂γ
=
∂qm

∂γ
(R− 1) < 0 (C.4)

With monetary policy implemented over old buyers (I = 0) total labor supply in the CM is in

equilibrium:

HI=0 = γqmR+
x∗

R
− qm(γ − 1) +

x∗

R
− qm = KI=0 + γqmR =

2x∗

R
+ (R− 1)γqm (3.32)

Total labor supply is the sum of buyer real balances γqmR and total capital investments. The

effects of real balances on KI=0 and the real balance holdings γqmR simplify to (R−1)γqm. Thus

the sign of the derivative of γqm, which is determined by η(qm), will also determine the sign of the

derivative of total labor supply:

∂HI=0

∂γ
= (R− 1)(

∂q

∂γ
γ + qm) = qm(R− 1)

(
1− 1

η(qm)

)
(C.5)

Thus we must have ∂KI=0

∂γ > 0, ∂H
I=0

∂γ < 0 for |εqm | = 1
η(qm) > 1, and ∂KI=0

∂γ < 0, ∂H
I=0

∂γ > 0 for

|εqm | = 1
η(qm) < 1.

�

C.2 Proof of Proposition 3.3

Proof. Welfare of a representative generation with fully illiquid capital can be written as

V g = −H + u(qm)− qm + 2βU(x∗) (C.6)

Because CM consumption is independent of inflation for π = 1, inflation affects welfare through

DM consumption and aggregate labor supply:

∂V g

∂γ
= −∂H

∂γ
+
∂qm

∂γ
(u′(qm)− 1) (C.7)
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In cases 1 and 3 from proposition 3.2, the aggregate labor supply rises in inflation or is independent

from it (∂H∂γ ≥ 0). Thus, the Friedman rule must be the optimal monetary policy since this

maximizes welfare in the DM (qm = q∗) from (3.19). Higher inflation would decrease consumption

in the DM while weakly increasing labor supply.1

In case 2 and with I = 1, aggregate labor supply decreases in inflation (∂H∂γ < 0). Thus, the

optimal inflation rate must lie above the Friedman rule due to the envelope theorem.

In case 2 under I = 0, ∂H∂γ given by (C.5) and optimal inflation rate γ∗ < 1 solves

−qm(R− 1)− ∂qm

∂γ
γ∗(R−1) +

∂qm

∂γ
(γ∗R− 1) = 0

↔

−∂q
m

∂γ

γ∗

qm
=|εqm | =

(R− 1)γ∗

1− γ∗
(C.8)

The interior solution solves

γ∗ =
|εqm |

|εqm |+R− 1
∈ (1/R, 1) (C.9)

If monetary policy is implemented over young buyers (I = 1), ∂H
∂γ is given by (C.4) and optimal

inflation rate γ∗ solves

− ∂q

∂γ
(R− 1) +

∂q

∂γ
(γ∗R− 1) = 0 (C.10)

Thus γ∗ = 1.

�

C.3 Proof of Proposition 3.4

Proof. We proof this by contradiction using the first four optimality conditions (3.38) to (3.41)

which we repeat for convenience.

πu′(qm) + (1− π)u′(qb) = γR (3.38)

1For inflation rates below the Friedman rule, our derivation of results is incorrect, because we assumed γ ≥ 1
R

.

It looks like further decreasing inflation is welfare-increasing if |εqm | < 1, but this is incorrect, as inflation below the

Friedman rule leads to a regime switch where nobody accumulates capital. This clearly reduces aggregate welfare.

Thus, γ = 1
R

is a corner solution for |εqm | < 1.
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πU ′(xm) + (1− π)U ′(xb) =
1

βR
(3.39)

u′(qb) = βRU ′(xb) (3.40)

xm = xb +R(qb − qm) (3.41)

At the Friedman rule (3.38) becomes:

πu′(qm) + (1− π)u′(qb) = 1

Suppose qb > qm. From (3.41) this implies xm > xb. From the decreasing marginal utility of

the utility functions and the weighted average formulation of the first and the second condition

we must have u′(qm) > 1 and u′(qb) < 1 and U ′(xm) > 1
βR and U ′(xb) < 1

βR . But this violates

(3.40), the left-hand side would be < 1 and the right-hand side > 1. The opposite contradiction

follows for assuming qb < qm. Thus we must have qb = qm and xm = xb and then qb = qm = q∗

and xm = xb = x∗ follow from (3.38) and (3.39). From qb = qs, it follows that all DM trades are

made with money, and from that it follows that the allocation must be identical to an economy

with π = 1. �

C.4 Proof of Proposition 3.5

Proof. We first show that for γ > 1/R we must have q∗ > qb > qm and xm > x∗ > xb. The steps

are the same as in the previous proof. Suppose that qb = qm and xm = xb from (3.41). This

implies u′(q) > 1 from (3.38) and βRU ′(x) = 1. Thus it violates (3.40). Similarly qb < qm and

xm < xb imply u′(qb) > γR > 1 and U ′(xb) < 1
βR which also violates (3.40). Thus only qb > qm

and xm > xb is possible, implying u′(qb) < γR and U ′(xb) > 1
βR . In this case (3.40) can hold if

u′(qb) ∈ (1, γR) which also implies qb < q∗. Since qm < qb, qm must also be below q∗ and xm > x∗

and xb < x∗ follows from U ′(xb) > 1
βR and U ′(xm) < 1

βR .

To find the effects of inflation on the consumption levels we differentiate (3.38) to (3.41) with

respect to γ.

πu′′(qm)
∂qm

∂γ
+ (1− π)u′′(qb)

∂qb

∂γ
= R

πU ′′(xm)
∂xm

∂γ
+ (1− π)U ′′(xb)

∂xb

∂γ
= 0

u′′(qb)
∂qb

∂γ
= βRU ′′(xb)

∂xb

∂γ

∂xm

∂γ
=
∂xb

∂γ
+R(

∂qb

∂γ
− ∂qm

∂γ
) (C.11)
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Solving this for the partial effects yields

∂qb

∂γ
= A

∂xb

∂γ
< 0 (C.12)

∂xm

∂γ
= −B∂x

b

∂γ
> 0 (C.13)

∂qm

∂γ
=

(RA+ 1 +B)

R

∂xb

∂γ
< 0 (C.14)

∂xb

∂γ
=
R

C
< 0, (C.15)

where A = βRU ′′(xb)
u′′(qb)

and B = (1−π)U ′′(xb)
πU ′′(xm) are positive and C = πu′′(qm)RA+1+B

R + (1−π)u′′(qb)A

is negative because u(·) and U(·) are strictly concave. The effect on seller DM consumption qs must

also be negative because it is a weighted average of consumption of relocated and non-relocated

buyers from (3.37).

The partial effect of inflation on aggregate CM-consumption X = x∗ + πxm + (1− π)xb is:

∂X

∂γ
= π

∂xm

∂γ
+ (1− π)

∂xb

∂γ
= −(π(1 +B)− 1)

∂xb

∂γ
(C.16)

which is positive since ∂xb

∂γ < 0 and π(1 +B) > 1 for inflation rates above the Friedman rule as we

show in the proof of proposition 3.6. �

C.5 Proof of Proposition 3.6

Proof. With I = 1, aggregate capital investment and labor supply are in equilibrium:

KI=1 =
xm

R
+
x∗

R
− qs (3.46)

HI=1 =
xm

R
+ qmR+

x∗

R
− qs = KI=1 + qmR (3.47)

Deriving KI=1 with respect to inflation γ yields

∂KI=1

∂γ
= −∂q

m

∂γ
X1 > 0, (C.17)

with X1 = B+RA+π(1+B)
B+RA+1 .

Already a visual inspection of (3.46) tells us that there must be a Mundell-Tobin effect. From the

proof of proposition 3.5, xm increases with inflation and qm and qb and thus also qs = πqm+(1−π)qb

decrease with inflation. The derivative confirms this, as all terms in X1 are positive.
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From (3.47), the effect of inflation on aggregate labor supply in the first CM is the sum of a positive

Mundell-Tobin effect and a negative effect over the real money holdings of buyers qmR. This can

be written as:

∂HI=1

∂γ
= −∂q

m

∂γ
X1 +R

∂qm

∂γ
=
∂qm

∂γ

(
R−X1

)
, (C.18)

so the effect of an increase in inflation on aggregate labor supply depends on R ≶ X1.

From the definition of B in the proof to proposition 3.5, we know

π(1 +B) = π + (1− π)
U ′′(xb)

U ′′(xm)
≥ 1,

since xm ≥ xb and U ′′′(x) > 0.2 This implies X1 ≥ 1. X1 = 1 if either π = 1 (capital is fully

illiquid) or if xm = xb = x∗ (at the Friedman rule), and strictly larger otherwise. From the

partial derivatives, increasing inflation from the Friedman rule increases the spread between DM-

consumption xm/xb. Therefore π(1 + B) and X1 must rise with γ, while they are decreasing in

π. Thus, the effect of inflation on aggregate labor is always negative at the Friedman rule. Away

from the Friedman rule, higher inflation and higher liquidity of capital make it more likely that

there is a positive effect of inflation on aggregate labor supply.

�

C.6 Proof of Proposition 3.7

Proof. With I = 0, aggregate capital investment and labor supply are in equilibrium:

KI=0 =
xm

R
+
x∗

R
− qs − qm(γ − 1) (3.50)

HI=0 =
xm

R
+ γqmR− (γ − 1)qm +

x∗

R
− qs = KI=0 + γqmR (3.51)

Differentiating aggregate capital investment with respect to inflation yields:

∂KI=0

∂γ
= −

(∂qm
∂γ

γX0 + qm
)
, (C.19)

with X0 = π(1+B)−1
γ(RA+1+B) + 1. X0 = 1 for π = 1 (since B = 0 for π = 1) and at the Friedman rule

(since B = 1−π
π at the FR). The condition for a Mundell-Tobin effect is

−∂q
m

∂γ
>

qm

γX0
(C.20)

2U ′′(xb) < U ′′(xm), but since both second derivatives are negative (U ′′(xb), U ′′(xm) < 0), U ′′(xb)/U ′′(xm) > 1.
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|εqm | >
1

X0
= ε̂ (C.21)

using the definition of the elasticity of DM-consumption with respect to inflation: |εqm | = − γ
qm

∂qm

∂γ .

At the Friedman rule X0 = 1, so there is a Mundell-Tobin effect if |εqm |FR > 1. Using (C.14) and

(C.15) with qm = qb = q∗ and xm = xb = x∗, the derivative of qm with respect to inflation and

the elasticity are:

−∂q
m

∂γ
|FR =

1

u′′(q∗)

R(πRA+ 1)

π(1 +RA)
(C.22)

|εqm |FR = − u′(q∗)

q∗u′′(q∗)
ξ, (C.23)

with ξ = 1+πRA
π(1+RA) . Thus, there is a Mundell-Tobin effect at the Friedman rule if:

− u′(q∗)

q∗u′′(q∗)
ξ > 1

⇒ − u′(q∗)

q∗u′′(q∗)
>

1

ξ
. (C.24)

ξ → 1 for π → 1, and ξ → ∞ for π → 0, and it can easily be shown that ξ is monotonically

decreasing in π at the Friedman rule. This implies that for a given risk aversion, a Mundell-Tobin

effect is more likely to occur at the Friedman rule for lower π.

Combining (3.51) and (C.2) the derivative of the aggregate labor supply with respect to inflation

is:

∂HI=0

∂γ
= (R− 1)(

∂qm

∂γ
γ + qm)− ∂qm

∂γ
(X0 − 1). (C.25)

This is negative if

−∂q
m

∂γ
>

qm(R− 1)

γ(R− 1)− (X0 − 1)
(C.26)

|εqm | >
γ(R− 1)

γ(R− 1)− (X0 − 1)
= ε̃, (C.27)

so there is a negative effect of inflation on aggregate labor supply for γ(R−1) > X0−1. Since X0 = 1

at the Friedman rule, ε̂|FR = ε̃|FR = 1, so the conditions coincide, and a Mundell-Tobin effect

(reverse Mundell-Tobin effect) always implies a negative (positive) effect of inflation on aggregate

labor supply. Away from the Friedman rule, X0 > 1, so ε̂ < 1 while ε̃ > 1, and thus there is a

range of values for |εqm | for which a Mundell-Tobin effect comes along with a positive effect of

inflation on aggregate labor supply.

�
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C.7 Proof of Proposition 3.8

Proof. With monetary policy implemented over young buyers expected welfare of a representative

generation is given by:

V I=1 = −HI=1 + π(u(qm) + βU(xm)) + (1− π)(u(qb) + βU(xb))− qs + βU(x∗) (C.28)

= −x
m

R
− qmR− x∗

R
+ π(u(qm) + βU(xm)) + (1− π)(u(qb) + βU(xb)) + βU(x∗)

Differentiating (C.28) with respect to inflation and replacing u′(qm), U ′(xm) and u′(qb) using the

optimality conditions (3.38), (3.39) and (3.41) yields:

∂V I=1

∂γ
= −R∂q

m

∂γ
+ γR

∂qm

∂γ
− (1− π)βRU ′(xb)

(∂qm
∂γ
− ∂qb

∂γ
+

∂xm

∂γ −
∂xb

∂γ

R

)
The last bracket is equal to zero from (C.11), and we obtain the identical expression as in the

model with fully illiquid capital, (C.10):

∂V I=1

∂γ
=
∂qm

∂γ
R(γ − 1) (C.29)

At the Friedman rule this expression must be positive since ∂qm

∂γ < 0 from (C.14) (and from

proposition 3.7 the marginal effect on the labor supply is negative). From there expected welfare

increases in inflation for γ < 1 and decreases for γ > 1. Thus the unique optimum must be γ∗ = 1

independent of π and the other parameters.

To show that the Friedman rule is relatively more costly at lower levels of π, we show that

V I=1(γ∗)−V I=1(γFR), the difference in expected welfare under optimal monetary policy (γ∗ = 1)

and the Friedman rule (γ = 1/R), decreases in π. From proposition 3.4, welfare at the Friedman

rule is given by:

V I=1(γFR) = −2x∗

R
− q∗R+ u(q∗) + 2βU(x∗) (C.30)

which is independent of π. Thus to show that V I=1(γ∗)−V I=1(γFR) decreases in π it is sufficient

to show that expected welfare under optimal monetary policy is decreasing in π. From (C.28)

V I=1(γ∗) is given by:

V I=1(γ∗) = −x
m

R
− qmR− x∗

R
+ π(u(qm) + βU(xm)) + (1− π)(u(qb) + βU(xb)) + βU(x∗) (C.31)

where all optimality conditions (3.38) to (3.41) hold and (3.38) is evaluated at γ∗ = 1. Since (C.31)

is evaluated at the optimum we can ignore the indirect effects of π on the variables and directly

take the partial derivative of (C.31) with respect to π.

∂V I=1(γ∗)

∂π
= u(qm) + βU(xm)− (u(qb) + βU(xb)) < 0. (C.32)
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Changes in expected welfare at γ∗ through π reflect differences in the utility of consumption as

a relocated and a non-relocated buyer. If utility of consumption as a relocated buyer is higher,

expected welfare would rise with π and vice versa. Since qb > qm and xm > xb it is not a priori

clear where utility is higher. However, since for a non-relocated buyer the relocated allocation

{qm, xm} is also feasible but not chosen, it must be that utility of non-relocated buyers is higher

or u(qb) + βU(xb) > u(qm) + βU(xm). Thus ∂V I=1(γ∗)
∂π < 0, implying that expected welfare at the

optimal monetary policy is decreasing in π. In turn, this shows that the welfare loss of running

the Friedman rule is decreasing in π.

�

C.8 Proof of Proposition 3.9

Proof. Expected welfare when monetary policy is implemented over old buyers is given by:

V I=0 = −HI=0 + π(u(qm) + βU(xm)) + (1− π)(u(qb) + βU(xb))− qs + βU(x∗) (C.33)

= −x
m

R
− qmRγ + (γ − 1)qm − x∗

R
+ π(u(qm) + βU(xm)) + (1− π)(u(qb) + βU(xb)) + βU(x∗)

Differentiating (C.33) with respect to inflation and replacing u′(qm), U ′(xm) and u′(qb) using the

optimality conditions (3.38), (3.39) and (3.41) yields:

∂V I=0

∂γ
=
∂qm

∂γ
(γ − 1)− (R− 1)qm − (1− π)βRU ′(xb)

(∂qm
∂γ
− ∂qb

∂γ
+

∂xm

∂γ −
∂xb

∂γ

R

)
The last bracket is zero from (C.11) and we obtain the identical expression as in the model with

fully illiquid capital, (C.8):

∂V I=0

∂γ
=
∂qm

∂γ
(γ − 1)− (R− 1)qm (C.34)

Since ∂qm

∂γ < 0 an increase in inflation can only be welfare improving if there is deflation (γ < 1).

When is a deviation from the Friedman rule welfare improving? Evaluating (C.34) at the Friedman

rule:
∂V I=0

∂γ
|FR = q∗(R− 1)

(
|εqm |FR − 1

)
(C.35)

Thus an inflation rate above the Friedman rule, γ∗ > 1/R is optimal if |εqm |FR− 1 holds, which is

the same condition as for a Mundell-Tobin effect and a negative effect on aggregate labor supply.

If |εqm |FR−1 holds, the optimal inflation rate γ∗ > 1/R is given by (C.34) set to 0 which is exactly

the same expression as for the case of fully illiquid capital (C.8)

(1− γ∗)− ∂qm

∂γ
= (R− 1)qm (C.36)
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↔ (C.37)

−∂q
m

∂γ

γ∗

qm
= |εqm | =

(R− 1)γ∗

1− γ∗
. (C.38)

It can easily be seen that the right-hand-side of this expression equals 1 at the Friedman rule, ∞

for γ = 1, and is strictly increasing in γ ∀γ ∈ { 1
R , 1}. From the proof to proposition 3.7, we know

that |εqm |FR = 1
η(q∗)ξ. Thus, the Friedman rule is optimal if and only if η(q∗) > ξ. Since ξ is

monotonically decreasing in π and ξ →∞ for π → 0, higher liquidity of capital (lower π) makes it

less likely for the FR to be optimal, and the FR is never optimal when capital is perfectly liquid.

With partially liquid capital, the optimal inflation rate γ∗ is still given by (C.9):

γ∗ =
|εqm |

|εqm |+R− 1,
∈ (1/R, 1) (C.9)

but with |εqm | now also being a function of π.

The result that welfare is higher with I = 0, given that γ∗ is chosen, follows once again from the

fact that the optimal allocation under I = 1, which is achieved by setting γ∗ = 1, is feasible with

I = 0, but generally not optimal.

�
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Optimal Bank Financing with Less

Opaque Assets
1

Bank loan portfolios strongly shifted from business loans to mortgages in the last decades. The

figure shows the share of mortgages in aggregated bank loan portfolios of 13 advanced economies.

the share of mortgages roughly doubled from 32% to 62% while the share of business loans decreased

from 65% to 38% since 1970.2

As mortgages seem to be easier to value than business loans, one implication from this shift is

that bank assets became less opaque.3 While real estate values are relatively accessible it is much

harder for a bank to observe the factors which determine the value of a small (and unlisted) firm,

for example the human capital and the effort of an entrepreneur. This relative transparency of

mortgages is e.g. apparent in the fact that for mortgages there is platform lending and a secondary

market (both is not the case for business loans) and mortgage contracts are standardized and short

while business loan contracts are much more detailed and specific. This hints at lower monitoring

costs.4.

Despite this shift towards non-opaque assets the theoretical banking literature mainly builds on the

premise that banks are the providers of finance for opaque (small) businesses and many theoretical

1Co-Authored with Kumar Rishabh, University of Basel.
2Calculations based on data by Jordà et al. [2016]. Loan data of the individual countries were converted into

USD and then aggregated.
3This is even more true if we take into account that the other main categories of bank assets, securities and cash,

can be valued directly by their market price.
4A widely used metric for the opaqueness of loans is the distance between bank and borrower. Recent studies

for the US found the average distance for mortgages to be 2.5 times the average distance for small business loans,

i.e. 90 miles vs. 241.8 miles, see Granja et al. [2018] and Eichholtz et al. [2019]
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results seem to rely on the “opaqueness” of bank loans (or of bank assets more generally). An

example is Calomiris and Kahn [1991] (CK in the following).5 This paper provides an explanation

why banks use demandable liabilities as means of financing. CK argue that demandable liabilities

are useful to finance opaque assets because these contracts have a “disciplining role”. Banks have

the possibility to misuse the funds entrusted to them in their model and demandable liabilities give

the investors the option to withdraw their funds if they fear this might happen. Thus demandable

contracts mitigate the agency problem and allow for socially beneficial investment which would

otherwise be impossible. But using demandable liabilities also has a cost, because it sometimes

involves a liquidation of the bank and the investments.

In our paper we revisit the argument of CK introducing less opaque assets into their environment,

i.e. assets who’s value can be better observed by the investors (in CK the value of the bank assets

is unobservable by the investors, i.e. these assets are fully opaque). As we show demandable

liabilities are not optimal to finance more transparent assets although the agency problem applies

to these assets as well. But if investors are able to better observe the value of the asset they can use

this information to design non-demandable contracts, which allows to mitigate the agency problem

without the costs of liquidation. Thus giving investors the option to withdraw their funds if they

fear the bank will misuse them is not necessary for more transparent assets.

This theory suggests that opaque assets like business loans should be financed with demandable

liabilities (like demand deposits) while less opaque assets like mortgages, securities or cash should

be financed with non-demandable liabilities (like non-demandable debt or equity). In a second step

we thus look at US balance sheet data of individual banks to see whether there is a correlation

between the share of opaque assets, which we quantify as the share of business loans, and the

share of demandable liabilities. As our measure of demandable liabilities we use a variable called

volatile liabilities provided by the FDIC which essentially contains demand deposits not covered

by deposit insurance and other very short-term liabilities.6 We document a small but positive

correlation between opaque assets (business loans) and volatile liabilities for small and medium

sized banks (up to the 75th percentile) but interestingly no correlation for lager banks. This

is consistent with the interpretation that the disciplining role of demandable liabilities is more

important for smaller banks and big banks might enjoy insurance beyond deposit insurance (e.g.

in the form of implicit too-big-to-fail guarantees) which reduce investor incentives to monitor and

5Other examples include Diamond [1984], Holmstrom and Tirole [1997] or Dang et al. [2017]
6The use of total demand deposits is complicated by deposit insurance which largely eliminates the incentives for

investors to monitor the bank and thus also the need for contracts with a disciplining role. However, investors holding

uninsured deposits and other very short term liabilities should have better incentives to monitor and discipline the

issuing bank.
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“discipline” the banks even for deposits not covered by deposit insurance.

The rest of the paper is organized as follows: In section 4.1 we introduce the theoretical model and

derive the optimal contracts for assets with different degrees of opacity. In section 4.2 we relate

our theoretical findings to US data.

4.1 The model

4.1.1 Environment

There is a bank and an investor and three periods (0, 1, 2). Both agents are risk-neutral. The bank

has no endowment but a project which takes 1 good as input in period 0 and returns ỹ in period

2. This return is stochastic and is a weighted average of a publicly observable aggregate factor ỹA

and an idiosyncratic factor ỹI , the realization of which only the bank can observe.

ỹ = αỹA + (1− α)ỹI (4.1)

The parameter α steers the weight of the aggregate factor and will be our measure of the trans-

parency (opaqueness) of the asset. The higher α the more important the aggregate factor for the

return and the more transparent (less opaque) the asset. We interpret opaque assets with low α,

where the idiosyncratic factor is dominant, as business loans and more transparent assets with high

α, where the aggregate factor is dominant, as mortgages or securities. If α is 0 the environment is

identical to the basic model of CK.

The realizations of the two factors are independent from each other and for simplicity we assume

both factors have the same two-point distribution with a high realization yh (with probability q)

and a low realization yl with probability 1 − q. This also implies that all assets have the same

expected return, independent of their opaqueness. This set-up yields four possible states for ỹ

(where ∆y = yh − yl):

y1 = αyh + (1− α)yh = yh with probability q2

y2 = αyl + (1− α)yh = yh − α∆y with probability (1− q)q

y3 = αyh + (1− α)yl = yl + α∆y with probability q(1− q)

y4 = αyl + (1− α)yl = yl with probability (1− q)2

The realizations in states 1 and 4 do not depend on the opaqueness of the asset α since both factors

yield the same high or low outcome (either yl or yh). In state 2 the return decreases with α as
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the aggregate factor is low and the idiosyncratic factor is high and the with α the weight of the

low aggregate factor increases. Thus the return in this state decreases from yh to yl with α. The

opposite is true for state 3 where the return increases with α from yl to yh.

In period 0 the bank promises to pay z goods to the investor in period 2. Since the realization

of the aggregate factor is observable by both agents, z can be made contingent on ỹA, which we

denote as z(ỹA). When α = 0, there is no aggregate factor and thus the payment is just z. As in

CK, we assume there is an agency problem between the bank and the investor in the sense that

the bank has the possibility to misuse the funds entrusted to her. In period 2 after observing the

state of ỹ the bank can also run away (abscond) with the total return ỹ diminished by a proportion

A ∈ (0, 1) instead of repaying z. In this case the investor gets zero. Thus absconding in state

i ∈ {1, 2, 3, 4} implies a welfare loss of Ayi.
7

The investor is endowed with 1 good in period 0 which she can either store or invest in the bank.

Thus the expected payments from the bank need to be at least 1 for the investor to participate.

We will assume investment is beneficial, i.e.

E[ỹ] > 1 (4.2)

A method to prevent absconding is useful in this environment. For this purpose we introduce the

possibility to liquidate the investment in the middle period 1. We assume that if the project (the

bank) is liquidated in period 1 the investor gets a payment r for sure and the bank gets zero. We

will assume

r < min{1, yl} (4.3)

r < 1 implies that liquidation yields a lower return than storage and it is socially not efficient to

always liquidate. r < yl implies that liquidation is wasteful in any state, i.e. even in state 4 where

y4 = yl. Liquidation always yields less than if the investment would have been completed.

To allow for contracts where the investor has the option of demanding liquidation in the middle

period we assume investors get a signal on the realization of the idiosyncratic state in the middle

period 1. The signal is private information for the investor so contracts contingent on the signal are

7With this formulation we do not link absconding to the opaqueness of the asset. We could do this e.g. by

assuming that the bank can only abscond with a fraction 1 − A of the idiosyncratic factor (1 − α)(1 − A)ỹI , and

the investor can always capture the publicly observable aggregate factor αỹA. This would give transparent assets

with higher α a direct advantage against the absconding problem.
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not possible.8 The signal structure is as follows: in period 1 the investor gets the signal “good” with

probability π and the signal “bad” with probability 1 − π. Given the good signal the probability

of the good idiosyncratic state is pg = Pr(ỹI = yh|π) and given the bad signal the probability of

the bad idiosyncratic state is pb = Pr(ỹI = yl|1− π).

Figure 4.1: Signal structure for the idiosyncratic part of the

return

pg and pb can be interpreted as the precision of the signal. To be informative they must be higher

than the ex-ante probabilities q and 1− q. Thus we need pg > q and pb > 1− q. Also the ex-ante

and the ex-post probabilities need to ad up as follows:

q = πpg + (1− π)(1− pb) (4.4)

We can summarize the model as follows: In period 0 the bank offers the investor a payment of

z(ỹA) goods in period 2 and (possibly) the option to withdraw r goods in period 1 but nothing in

period 2. The investor then invests in the bank or stores the good. In period 1 the investor gets a

signal about the idiosyncratic factor of the investment. Based on this signal she decides whether

she should withdraw and get r if the contract allows this. If the investor withdraws the project (and

the bank) is liquidated. If the project is not liquidated, in period 2 the project return ỹ realizes

and the bank decides whether to abscond or pay back the investor. We call contracts without the

option to withdraw in period 1 “non-liquidation contracts” and interpret them as non-demandable

liabilities like long-term debt or equity (or a mixture of the two). We call contracts with the option

to withdraw in period 1 “liquidation contracts” and interpret them as demandable liabilities like

demand deposits.

8In this respect we differ from CK who assume payments can be contingent on the signal although the signal is

private information. CK also assume that the investor has to pay a cost c to get a signal. We abstract from this

and set c = 0. The cost of the signal can also be captured by its precision.
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4.1.2 The case for liquidation contracts with fully opaque assets (α = 0)

In this section we look at fully opaque assets where α = 0, i.e. assets only driven by the idiosyncratic

factor. The goal is to derive conditions when liquidation contracts are optimal for fully opaque

assets.9 We will use these conditions also in the later sections with less opaque assets when α > 0.

Note that when α = 0, the bank just proposes a non-contingent payment z.

First we refine assumption (4.2). We want to assume that investment is beneficial even if the bank

absconds in the bad idiosyncratic state. Thus if non-liquidation contracts are not feasible there

is no investment although it would be efficient and liquidation contracts are potentially welfare

improving. We assume the expected value of the investment minus the expected welfare loss due

to absconding in the bad state must be above the return from storage:

E[ỹ]− (1− q)Ayl > 1 (4.5)

Second we want to assume that absconding is sufficiently attractive for the bank so contracts

without liquidation are not feasible. This implies that 1 − A, the fraction the bank can abscond

with, needs to be sufficiently high or A sufficiently low. Specifically we assume:

Ayl < 1 (4.6)

qAyh < 1 (4.7)

The first assumption rules out a non-liquidation contract where the bank never absconds. For

such a contract bank profits without absconding, ỹ − z, must always exceed the return in case of

absconding, (1 − A)ỹ. This is satisfied in both states if z ≤ Ayl. If the bank never absconds the

payments to the investor are just z. Thus for such a contract to be feasible we need Ayl ≥ 1 which

is ruled out by assumption (4.6). The second assumption rules out a non-liquidation contract where

the bank absconds in the bad state. In this case the bank payment needs to satisfy: Ayl < z ≤ Ayh.

The investor is now only paid in the good state and thus expected payments are qz. This contract

is feasible if qAyh ≥ 1 and thus ruled out by assumption (4.7).

If (4.6) and (4.7) hold, non-liquidation contracts are not feasible. We now turn to liquidation

contracts. Suppose z is like in the second contract, Ayl < z ≤ Ayh, so the bank absconds in the

9We call a contract optimal if it is feasible and the expected welfare (output) under this contract is higher than

that of any other feasible contract.
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bad state but not in the good but now the investor has the option to withdraw r in period 1.10

Suppose the investor demands liquidation after the bad signal. The expected payments to the

investor are:

πpgz + π(1− pg)0 + (1− π)r ≥ 1 (4.8)

With probability π the investor gets the good signal and does not liquidate. Then with probability

pg she actually ends up in the good state and gets payment z. With the inverse probability 1− pg

she ends up in the bad state where the bank absconds and the investor gets zero. With probability

1− π the investor receives the bad signal and liquidates the bank getting r. Since r < 1 we need

pgz > 1 for this contract to be feasible. And since z ≤ Ayh this implies

pgAyh > 1 (4.9)

Condition (4.8) implies this contract is feasible if π is above a certain threshold

π ≥ 1− r
pgAyh − r

(4.10)

Condition (4.10) can be interpreted as a threshold on signal precision pb and on the return in

case of liquidation, r. Since π increases with pb from (4.4) and since pb cannot exceed 1 we can

reformulate (4.10) as two conditions on signal precision and r:

pb ≥
(1− q)(pgAyh − r)− (1− r)(1− pg)

pgAyh − 1
(4.11)

r ≥ pg(1− qAyh)

pg − q
(4.12)

This leads to the following proposition:

Proposition 4.1. Suppose absconding is sufficiently attractive for the bank such that non-liquidation

contracts are not feasible, i.e. (4.6) and (4.7) hold. Also suppose (4.10), (4.11) and (4.12) hold and

the signals are sufficiently precise. Then the optimal contract for fully opaque assets is a liquidation

contract.

10CK also consider a contract where the bank is always liquidated. As we assume r < 1 such a contract can never

be viable and we ignore it here.
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4.1.3 Optimal contracts with less opaque assets (α > 0)

In the last section we showed that it is optimal to finance fully opaque assets with liquidation

contracts if absconding is sufficiently attractive for the bank and the signals are sufficiently precise.

In the following we study how this conclusion changes (under the same assumptions) when we

increase the transparency of assets (α). Since the analysis is a little bit more involved we divide it

into non-liquidation and liquidation contracts.

Non-liquidation contracts

A main difference to the case of fully opaque assets is that with α > 0 banks and investors can sign

contracts contingent on the aggregate state. We will denote the payments given the high (low)

aggregate state as z(yh) (z(yl)). Payment z(yh) applies to states 1 and 3 (which both have a high

realization of the aggregate factor) and payment z(yl) to states 2 and 4 (which both have a low

realization aggregate factor). Similar to before the bank does not abscond in state i if the payment

is below a fraction A of the return in a given state:

z(ỹA) ≤ Ayi = z̄i (4.13)

We denote the maximal feasible payment such that the bank does not abscond in state i as z̄i.

Because any feasible contract must at least yield 1 in expected terms for the investor, it is crucial

how much bank can maximally pay. We will look at the maximal expected payments to the investor

in 4 different situations. They are denoted with Si where i describes the state(s) in which the bank

absconds and i = 0 means the bank never absconds. z̄(Si) is then the maximal expected payment

for the investor in situation Si. We look at the following four situations: S0, where the bank never

absconds, S4, where the bank absconds in state 4, S3, where the bank absconds in state 3 and S3,4

where the bank absconds in states 4 and 3.11

Before considering the feasibility and optimality of non-liquidation contracts we look at expected

welfare in these four situations denoted as W (Si). Without liquidation welfare losses only result

from absconding. Thus in the situation where the bank never absconds (S0) there are no welfare

losses. In the other situations the expected welfare losses are (1 − q)2Ayl in S4, q(1 − q)Ay3 in

situation S3 and (1− q)A
(
(1− q)yl+ qy3

)
in S3,4. It is clear that expected welfare losses are lowest

in S0 and highest in S3,4. But it is not clear whether they are higher in situations S4 or S3. To put

11We don’t need to consider absconding in states 2 and 4 for example. The maximal expected payment of such a

situation would be strictly dominated by S4.
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more structure on the problem we will assume that the welfare losses in situation S4 are strictly

lower than in situation S3, independent of α. This implies the following assumption on q:

q > 0.5 (4.14)

The intuition is that if q > 0.5 the probability of state 4, (1 − q)2, where the bank absconds in

situation S4 is strictly lower than the probability of state 3, (q(1− q)), where the bank absconds in

situation S3. Since the welfare losses in state 4 are lower than in state 3 this implies W (S4) must

be higher than W (S3). We thus arrive at the following ordering of the four situations in terms of

welfare: W (S0) > W (S4) > W (S3) > W (S3,4). We will consider the feasibility of the contracts in

this order.

situation S0: the bank never absconds

In this situation the maximum the bank can pay is z(yl) = z̄4 and z(yh) = z̄3. Thus the maximal

expected payments to the investor are

z̄(S0) = qA(yl + α∆y) + (1− q)Ayl = Ayl + αAq∆y (4.15)

Note that z̄(S0) increases in α. If AE[ỹ] > 1, z̄(S0) ≥ 1 exists for an α ∈ (α(S0), 1) where

α(S0) =
1−Ayl
Aq∆y

(4.16)

situation S4: the bank absconds in state 4

The maximum the bank can pay is z(yl) = z̄2 and z(yh) = z̄3. Thus the maximal expected

payments to the investor are

z̄(S4) = qA(yl + α∆y) + (1− q)qA(yh − α∆y) = A(qyl + q(1− q)yh) + αAq2∆y (4.17)

As in situation S0 maximal expected payments increase with the transparency of the asset. The

equivalent threshold to α(S0) is given by

α(S4) =
1− qA(yl + (1− q)yh)

q2A∆y
(4.18)

Comparing (4.18) with (4.16) we get that α(S0) < α(S4) if qAyh < 1 which holds by condition

(4.5). Thus S0 is feasible where S4 is feasible. But since W (S0) > W (S4) the non-liquidation

contract S4 is never optimal.
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situation S3: the bank absconds in state 3

In this situation the maximum the bank can pay is z(yl) = z̄4 and z(yh) = z̄1. Thus the maximal

expected payments to the investor are

z̄(S3) = q2Ayh + (1− q)Ayl (4.19)

Note that z̄(S3) is independent of α. Also note that z̄(S3) is a weighted average of qAyh and Ayl

which are both below 1 by assumptions (4.6) and (4.7). Thus z̄(S3) will also be below 1 and is

never feasible.

situation S3,4: the bank absconds in states 3 and 4

The maximum the bank can pay is z(yl) = z̄2 and z(yh) = z̄1. Thus the maximal expected

payments to the investor are

z̄(S3) = q2Ayh + (1− q)qA(yh − α∆q) (4.20)

z̄(S3) decreases in α thus it is maximal at α = 0 where z̄(S3)|α=0 = qAyh. This is exactly the

second non-liquidating contract we considered in the last section ruled out by assumption (4.7).

We conclude this discussion with the following proposition:

Proposition 4.2. If AE[ỹ] > 1 there exists a non-liquidation contract S0 for sufficiently trans-

parent assets with α ∈ (α(S0), 1) where the bank never absconds and which implements first best.

Why are non-liquidation contracts without absconding feasible for sufficiently transparent assets

but not for opaque ones? Consider an example: Suppose yh = 2, yl = 1, q = 0.6 and A =

0.8. Now suppose we have an opaque asset where α = 0.1. The states this asset can take are:

y1 = 2, y2 = 1.9, y3 = 1.1, y4 = 1. Since the idiosyncratic factor is dominant for this asset the

states where the idiosyncratic factor has high realization (i.e. corresponding to y1 and y2) and

the states where the realization is low (corresponding to y3 and y4) are closely together. This

also means payments contingent on the aggregate factor are not very useful. With α = 0.1 the

maximal payments such that the bank does not abscond are z(yl) = z̄4 = 0.8 for states 4 and 2

and z(yh) = z̄3 = 0.88 for states 3 and 1. Thus z̄(S0) = 0.848 which is below 1 and there is no

investment. Now consider a very transparent asset where α = 0.9. The states this asset can take

are: y1 = 2, y2 = 1.1, y3 = 1.9, y4 = 1. Now the states where the aggregate factor is the same

(y1, y3 and y2, y4) are close together and payments contingent on the aggregate state are much
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more effective: while the payment contingent on the low realization of the aggregate factor is still

z(yl) = z̄4 = 0.8, the payment contingent on the high aggregate factor is z(yh) = z̄3 = 1.52. Thus

maximal expected payments to the investor increase to 1.232 and investment would be feasible.

The general message is that while payments contingent on the aggregate factor are possible with

very opaque and transparent assets, they are much more useful in the latter case. For very opaque

assets it would be much more effective to tie the payments to the realization of the idiosyncratic

factor. But this is not possible because it is only privately observable. The better observability of

the returns for very transparent assets allows to mitigate the absconding problem by better using

the flexibility of contingent contracts.

Liquidation contracts

We consider contracts with liquidation in the middle period after the bad signal for the same 4

situation as in the section before. We denote the situations as Si,L where “L” stands for “liqui-

dation”. Liquidation decreases the expected welfare losses due to absconding (because it prevents

them sometimes) but it also introduces additional welfare losses. The expected liquidation costs

are the difference of the expected return without liquidation and r. In the case where the investor

liquidates after the bad signal (which happens with probability 1− π) they are given by:

(1− π) [(1− pb)(qyh + (1− q)y2) + pb(qy3 + (1− q)yl)− r] (4.21)

With probability 1− pb states 1 or 2 occur and the expected losses are qyh + (1− q)y2 − r. With

probability pb states 3 or 4 occur and expected losses are qy3 + (1 − q)yl − r. Note that the

liquidation costs do not depend on the situations (Si). This implies the ordering of the contracts

in terms of expected welfare from the last section is preserved with liquidation contracts: W (S0) >

W (S0,L) > W (S4,L) > W (S3,L) > W (S3,4,L). The non-liquidation contract S0 dominates all

liquidation contracts and these are ordered according to the welfare losses from absconding. In

the following we consider the liquidation contracts in this order and compare them with the non-

liquidation contract S0.

situation S0,L: the bank never absconds

The bank behaves as in the non-liquidation contract S0. She pays z(yl) = z̄4 and z(yh) = z̄3 and

thus never absconds. But the investor still liquidates the bank after the bad signal. If r > Ayl

(which is feasible from our assumptions on r) liquidation can still increase expected payments at

least in state 4. Maximal expected payments are given by:
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z̄(S0,L) = π
(
pg(qz̄3 + (1− q)z̄4)) + (1− pg)(qz̄3 + (1− q)z̄4))

)
+ (1− π)r (4.22)

(4.22) can be written as a weighted average between the maximal exp. payments without liquida-

tion and r: z̄(S0,L) = πz̄(S0) + (1−π)r. Both z̄(S0) and z̄(S0,L) are below 1 at α = 0 and increase

in α. From the weighted average formulation of z̄(S0,L) however, we can conclude that the slope

of z̄(S0,L) must be lower and therefore α(S0,L) > α(S0). Ergo the non-liquidation contract S0 is

always feasible where the liquidation contract S0,L is feasible and since S0 has no welfare losses

the contract S0,L is never optimal.

situation S4,L: the bank absconds in state 4

In this contract the bank can maximally pay z(yl) = z̄2 and z(yh) = z̄3. Thus maximal payments

are:

z̄(S4,L) = πpg
(
qz̄3 + (1− q)z̄2 + (1− pg)qz̄3

)
+ (1− π)r (4.23)

= π
(
qAyl + pg(1− q)Ayh + αA∆y(q − pg(1− q))

)
+ (1− π)r

From assumption (4.14) z̄(S4,L) increases in α. As shown in the appendix the feasibility of this

contract depends on two thresholds on π, π̄(S4,L) > π(S4,L) in the following way.12

• If π > π̄(S4,L) contract S4,L is feasible for any α

• If π(S4,L) < π < π̄(S4,L) contract S4,L is feasible for α ≥ α(S4,L) where

α(S4,L) =
1− (1− π)r − πA(qyl + (1− q)pgyh)

π∆yA(q − pg(1− q))
(4.24)

• If π < π(S4,L) contract S4,L is never feasible

We know expected welfare of S4,L is higher than the other liquidation contracts (ignoring S0,L).

Thus it is clear that in the first region S4,L is the optimal contract for α ∈ (0, α(S0)) where the

non-liquidation contract S0 is not feasible. In the middle region S4,L is only optimal if it is feasible

where S0 is not feasible, i.e. if α(S4,L) < α(S0). It can be demonstrated that this is satisfied if

π > π∗(S4,L) where π(S4,L) < π∗(S4,L) < π̄(S4,L). Thus the liquidation contract S4,L is optimal

in the middle region for α ∈ (α(S4,L), α(S0)) as long as π ≥ π∗(S4,L).

12As shown in the section on liquidation contracts with fully opaque assets we can interpret the conditions on π

as conditions on signal precision and on the liquidation value of the investment r, see (4.11) and (4.12). If π needs

to have a certain value this means signal precision and the liquidation value need to be sufficiently high.
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situation S3,L: the bank absconds in state 3

In this situation the maximum the bank can pay is z(yl) = z̄4 and z(yh) = z̄1 after the good signal

and it gets liquidated after the bad signal.

z̄(S3,L) = π
(
pg(qz̄1 + (1− q)z̄4) + (1− pg)(1− q)z̄4

)
+ (1− π)r (4.25)

= π
(
(1− q)Ayl + qpgAyh

)
+ (1− π)r

As the non-liquidation contract S3 the liquidation contract is independent of α. It is feasible if

π ≥ π(S3,L) where

π(S3,L) =
1− r

A((1− q)yl + pgqyh)− r
(4.26)

situation S3,4,L: the bank absconds in states 3 and 4

The maximum the bank can pay is z(yl) = z̄2 and z(yh) = z̄1. Thus maximal payments are:

z̄(S3,4,L) = πpg(qz̄1 + (1− q)z̄2) + (1− π)r (4.27)

= πpgA(yh − α∆y(1− q)) + (1− π)r

As with the non-liquidation contract S3,4 maximal expected payments z̄(S3,4,L) decrease in α.

Thus they are maximal at α = 0 and the contract is feasible at α = 0 if conditions (4.10), (4.11)

and (4.12) hold, in other words if π ≥ π(S3,4,L) where π(S3,4,L) is given by the right-hand side of

(4.10).

π(S3,4,L) =
1− r

pgAyh − r
(4.28)

The contract is then feasible as long as α ∈ (0, α(S3,4,L)) where

α(S3,4,L) =
πpgAyh + (1− π)r − 1

πpg(1− q)A∆y
(4.29)

The following lemma summarizes the relationships between the thresholds on π of the liquidation

contracts (ignoring S0,L):
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Lemma 1. π̄(S4,L) > π(S3,L) > π(S4,L) and π(S3,L) > π(S3,4,L) and π∗(S4,L) > π(S3,L) given

pg > p∗g where

p∗g =
1− 2(1− q)Ayl

(1− q)(1−Ayl) + qAyh(2q − 1)
q (4.30)

Combining lemma 1 with the previous propositions 4.1 and 4.2 we can characterize the optimal

contracts for the full model:

Proposition 4.3. Suppose the assumptions from proposition 4.1 and 4.2 hold so the optimal

contract for fully opaque assets is a liquidation contract and for fully transparent assets it is a

non-liquidation contract. Also suppose the precision of the good signal is sufficiently high such that

pg > p∗g. Then for sufficiently transparent assets with α ∈ (α(S0), 1) the non-liquidation contract

S0 is optimal and the optimal liquidation contracts depend on signal precision and r according to

the following four cases:

1. If the signal precision and r are high (π > π̄(S4,L)) the liquidation contract S4,L is optimal

for α ∈ (0, α(S0)).

2. If the signal precision and r are in a medium range (π∗(S4,L) ≤ π < π̄(S4,L)) liquidation

contract S3,L is optimal for α ∈ (0, α(S4,L)) and liquidation contract S4,L is optimal for

α ∈ (α(S4,L), α(S0)).

3. If the signal precision and r are low (π(S3,L) ≤ π < π∗(S4,L))) the liquidation contract S3,L

is optimal for α ∈ (0, α(S0))).

4. If the signal precision and r are are very low (π < π(S3,L)) the liquidation contract S3,4,L is

optimal for α ∈ (0, α(S3,4,L)) if α(S3,4,L) < α(S0) and for α ∈ (0, α(S0)) if α(S3,4,L) > α(S0).

We illustrate proposition (4.3) with an example. Suppose yh = 2, yl = 1, q = 0.6, A = 0.8 and

r = 0.9. Note that these values satisfy assumptions (4.5), (4.6), (4.7) and (4.14) and α(S0) = 0.416.

According to proposition 4.3 for assets with a “transparency” of α > 0.416 the optimal contract

will always be the non-liquidation contract S0. Now we look at the liquidation contracts. We will

assume pg is fixed (this will pin down all the thresholds for π) and then explore the four cases

by gradually decreasing pb. We will assume the precision after the good signal is high, pg = 0.95

(this is necessary to explore all the cases in proposition 4.3). The thresholds are: π̄(S4,L) = 0.532,

π∗(S4,L) = 0.383, π(S3,L) = 0.301 and π(S3,4,L) = 0.161. We first choose pb = 0.95 which

implies π = 0.611 > π̄(S4,L). The following figure shows the optimal contracts for case 1 with

maximal expected payments of the optimal contracts z̄(Si) as a function of α. The green line shows

the maximal expected payments of the non-liquidation contract z̄(S0) and the blue line depicts
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the maximal expected payments of the liquidation contract z̄(S4,L). If the lines are above 1 the

contracts are feasible. The liquidation contract S4,L is optimal until α(S0) = 0.416.

Figure 4.2: Case 1: high signal precision and r

Now we decrease pb until we are in the second case and π is ∈ (0.383, 0.52). We choose pb = 0.7

which implies π = 0.461. These values yield α(S4,L) = 0.163. So the liquidation contract S4,L is

now optimal for α ∈ (0.163, 0.416) and the liquidation contract S3,L is optimal for α ∈ (0, 0.163).

As we know z̄(S3,L) which is shown as a red line is independent of α.

Figure 4.3: Case 2: medium signal precision and r

Finally, the following pictures show the situation for pb = 0.6 which implies π = 0.364 (left side)

97



and pb = 0.5 which implies π = 0.222 (right side). On the left side the optimal liquidation contract

is S3,L for α ∈ (0, α(S0)). In this case liquidation contract S4,L (not shown) is not feasible anymore.

On the right side precision is so low that liquidation contracts S4,L and S3,L (both not shown) are

not feasible anymore. Only contract S3,4,L is feasible and thus optimal for α ∈ (0, α(S0)). The

black line shows the maximal expected payments of liquidation contract S3,4,L, z̄(S3,4,L which we

know decreases in α.

Figure 4.4: Cases 3 (left) and 4 (right)

What is the basic take-away of proposition 4.3 and this example? For opaque assets it is optimal

to use a liquidation contract and for transparent assets it is optimal to use a non-liquidation

contract. While the non-liquidation contract (S0) dominates all liquidation contracts in terms

of welfare it is not feasible for opaque assets. The reason is that the return of opaque assets

is largely determined by the unobservable idiosyncratic factor and payments which can use the

information of the aggregate factor are not very useful. For such assets only liquidation contracts

can partially prevent absconding and are thus useful. For transparent assets, where the asset

return is largely determined by the publicly observable aggregate factor, payments which can use

this information can also prevent absconding. Since they do this without the liquidation costs of

liquidation contracts (and in case of contract S0 even without absconding costs) they are preferable

for transparent assets.
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4.2 Empirical analysis

In this section we try to link our theoretical considerations to the data. The theoretical model

suggests that banks should finance opaque assets like business loans with demandable liabilities

and less opaque assets like mortgages or securities with non-demandable liablities (which we could

interpret as long-term debt or equity). However, the model we used was extremely stylized. It

ignores other factors why banks might hold demandable liabilities (which could also be linked to

the asset side) and it takes the asset side as given. In a more complete approach the bank would

choose the asset side as part of a portfolio choice problem. Thus the conclusions we can draw

from empirical correlations between opaque assets (business loans) and demandable liabilities are

limited. Specifically we cannot interpret them as a test on the “disciplining theory” of demandable

debt in the sense that if we don’t observe a strong, or even one-to-one correlation between these

variables the theory must be rejected. However, we still believe that if the disciplining role of

demandable liabilities is economically important we should somehow see that banks with more

opaque assets also issue more demandable liabilities.

We use yearly US bank (holding company) and savings and thrift institutions data from 1992

to 2018 provided by the call reports from the FDIC.13 As our variable for opaque assets we use

commercial and industrial (C&I) loans. As a measure of demandable liabilities we would ideally

use uninsured deposits, i.e. demand deposits not covered by deposit insurance. The reason is

that deposit insurance reduces (or even eliminates) the incentives for investors to monitor banks

[Calomiris and Jaremski, 2019, Demirgüç-Kunt and Huizinga, 2004] and also makes deposits a

cheaper source of funding [Admati and Hellwig, 2014]. Therefore, if there is a link between business

loans and demand deposits because demand deposits have a disciplining role this link is most likely

distorted by deposit insurance.14 To address this we will use what the FDIC calls volatile liabilities

as our measure of demandable liabilities. Volatile liabilities are essentially non-insured demand

deposits plus some other very short-term liabilities (also see the appendix for a more detailed

explanation). We first look at some aggregate statistics for the two variables. The following

graphs show the evolution of business loans and volatile liabilities to total assets in the aggregate

and for four bank sizes: small banks (below the 25th percentile), medium sized banks (between

the 25th and the 75th percentile), big banks (between the 75th and the 99th percentile) and very

13In the appendix we provide a more comprehensive description of the data.
14CK also stress this point and emphasize that their model should capture a historical, pre-deposit-insurance

economy. The current levels of bank deposits and business loans holdings make a link in terms of levels very

implausible. The average share of deposits to total assets in the sample is roughly ten times the average share of

business loans (84.2% vs. 8.9%).
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big banks (above the 99th percentile). We use the last category because the US banking system

has a highly skewed size distribution. For instance, community banks, that are defined as banks

with assets less than USD 10 Billion,15 account for about 97.5% of all the banks but only about

15% total banking sector assets. The top four banks – viz. JPMorgan Chase, Bank of America,

Citigroup and Wells Fargo & Co.) account for about 44% of banking sector assets with an average

asset of about USD 1.8 Trillion each.

Figure 4.5: Aggregate evolution of the share of volatile liabilities

and business loans to total assets

Over most of the sample period volatile liabilities are more than twice as high as business loans

but after 2010 they decrease massively. This is most likely due to a change in the cap of deposit

insurance which went up from 100′000 USD to 250′000 USD. This suddenly and strongly reduced

the amount of uninsured deposits which are the essential part of volatile liabilities. In terms of

variation there seems to be quite a close co-movement between volatile liabilities and business loans

until 2010 after which the correlation is reversed (volatile liabilities go down and business loans go

up).

15https://www.federalreserve.gov/supervisionreg/community-and-regional-financial-institutions.htm (accessed on

June 18, 2020)

100



Figure 4.6: Evolution share of volatile liabilities (blue) and busi-

ness loans (red): Size classes

For the four size groups the big drop of volatile liabilities in 2010 is apparent in all four graphs.

The reversed correlation after 2010 seems to be especially pronounced for the very big banks but

less so for the other three size groups. In terms of levels the divergence between volatile liabilities

and business loans before 2010 seems to increase with size (note the different scale of the y-axis in

the graphs). For small banks the two levels are much closer together than for the very big banks.

Now we look at the correlations between opaque assets and volatile liabilities more closely. To do

this we regress the ratio of volatile liabilities to total assets on the ratio of business loans to total

assets. With this specification a coefficient of one would correspond to a one-to-one relationship

between the two variables. If also the intercept of this relationship is zero then even in levels

business loans and volatile liabilities move together (i.e. the fitted values would lie on a 45-degree

line going through the origin). We run this regression for the cross-section of banks in each year

between 1992 and 2018. This should capture the strong drop in volatile liabilities in 2010. We first

plot the estimated coefficient on the share of business loans in total assets and the intercept first

without making any distinction across sizes (the dashed lines show the 95%-confidence bands).
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Figure 4.7: Regression coefficients: whole sample

We see the coefficient on business loans is positive for all years but quite small and certainly less

than one. Between 1992 and 2008 it trends down from 0.18 to 0.10 and in 2010 the coefficient

sharply drops to 0.035 so it seems the change in the cap of deposit insurance significantly lowered

the correlation. The average coefficient on business loans before 2010 is 0.12 and after 2010 it

is 0.05. On the other hand the intercept trends upwards from 0.08 in 1992 to 0.19 in 2009 (the

average before 2010 is 0.14) and then sharply falls to a lower level of 0.07 in 2010 (the average after

2010 is 0.06). The intercept is close (but statistically different) from 0. What do these numbers tell

us? Suppose we have two groups of banks, one group with a share of business loans of 0.1 and the

other with 0.2 of total assets. What shares of volatile liabilities do the coefficients predict for these

groups before and after 2010 on average? Before 2010 we take the average intercept (0.14) and

ad the average coefficient on business loans (0.12) times the share of business loans. On average

we would expect the banks with a share of 0.1 to have a ratio of volatile liabilities of 0.152 and

the banks with a share of 0.2 to have a ratio of 0.164. As the coefficient on business loans is close

to zero, these estimates are still close to the intercept of 0.14 although the difference in the share

of business loans between the two groups is sizeable. But since the coefficient is so low, sizeable

variation in terms of opaque assets does not translate into sizeable variation in terms of volatile

liabilities. After 2010 the predicted shares of volatile liabilities are even closer to the intercept

because the average coefficient on business loans (0.05) is very close to zero. We get a predicted

share of volatile liabilities of 0.065 (0.07) for the banks with a share of 0.1 (0.2).
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Now we plot the estimated coefficient on the share of business loans to total assets and the intercept

for the different size classes. We restrict attention to the small and the big banks though. The

results for the medium sized banks are very similar to the small banks and the aggregate estimates

and the results for the very big banks are similar to the results of the big banks. Also, the estimates

for the very big banks are not very precise because we don’t have so many observations. We put

those estimates in the appendix.

Figure 4.8: Regression coefficients: small banks

Figure 4.9: Regression coefficients: big banks
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For the small (and the medium sized) banks the general pictureis quite similar to the aggregate

estimates. The average coefficient on business loans is small but positive and higher before 2010

(0.17 on average) than after 2010 (0.06 on average). The constant trends upwards from 0.06 in

1992to 0.15 in 2009 and then drops to under 0.05 in 2010, where the confidence band includes zero

for most of the years after 2010. For the big banks however, the picture is different. Except in 1992

the coefficient on business loans is not significantly different from zero anymore (the coefficient of

the constant is similar to the other estimates). This is also true for the very big banks. Thus for

big banks variations in business loan ratios are unconnected to variations in volatile liabilities.

So we find a small but positive correlation between opaque assets (business loans) and our measure

of (uninsured) demandable liabilities for small and medium sized banks up to the 75th percentile

but no correlation for the 25% biggest banks. From the perspective of our model it seems that

the disciplining role of demandable liabilities is more important for smaller banks although the

magnitude is small. The missing link for larger banks could be interpreted in the sense that

these banks might enjoy insurance beyond deposit insurance in the form of implicit too-big-to-fail

guarantees. Investors will take this into account and this reduces - similar to deposit insurance -

their incentives to monitor and “discipline” the banks.
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Appendix D

D.1 Thresholds for S4,L

Proof. S4,L is feasible for any α if it is feasible at α = 0. This implies threshold π̄(S4,L) solves

z̄(S4,L)|α=0 = π̄(S4,L)A(qyl + pg(1− q)yh) + (1− π̄(S4,L))r = 1

↔

π̄(S4,L) =
1− r

A(qyl + pg(1− q)yh)− r
(D.1)

S4,L is never feasible if it is infeasible at α = 1. This implies threshold π(S4,L) solves

z̄(S4,L)|α=1 = π(S4,L)A(qyl + pg(1− q)yh) + (1− π(S4,L))r = 1

↔

π(S4,L) =
1− r

A(qyh + pg(1− q)yl)− r
(D.2)

Since q > 0.5 from assumption (4.14) the denominator of (D.2) must be higher than the denom-

inator of (D.1). This implies π̄(S4,L) > π(S4,L). The conditions on pb and r which accompany

(D.1) and (D.2) would be obtained by using π = pb+q−1
pb+pg−1 from (4.4) in (D.1) and (D.2) and then

solving for pb which needs to be below 1.

The threshold π∗(S4,L) solves α(S0) = α(S4,L) from (4.16) and (4.24):

1−Ayl
Aq∆y

=
1− r − π∗(S4,L)

(
qAyl + (1− q)Apgyh − r

)
π∗(S4,L)∆yA(q − pg(1− q))

↔

π∗(S4,L) =
q(1− r)

(1− q)A
(
pgqyh + yl(pg − q)

)
+ (q − (1− q)pg)− qr

(D.3)

Comparing (D.1) and (D.3) yields π∗(S4,L) < π̄(S4,L) by assumptions (4.6) and (4.14). Comparing

(D.1) and (D.3) yields π∗(S4,L) > π(S4,L) by assumptions (4.7) and (4.14).

�
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D.2 Proof of Lemma 1

Proof. We need to show:

π̄(S4,L) =
1− r

A(qyl + pg(1− q)yh)− r
>

1− r
A((1− q)yl + pgqyh)− r

= π(S3,L) (D.4)

π(S3,L) =
1− r

A((1− q)yl + pgqyh)− r
>

1− r
A(qyh + pg(1− q)yl)− r

= π(S4,L) (D.5)

π(S3,L) =
1− r

A((1− q)yl + pgqyh)− r
>

1− r
pgAyh − r

= π(S3,4,L) (D.6)

We only look at the denominators. The first inequality holds if qyl+pg(1−q)yh < (1−q)yl+pgqyh.

This holds because q > 0.5, Ayl < 1 and pgAyh > 1 . The second inequality holds if (1 − q)yl +

pgqyh < qyh + pg(1− q)yl which must also hold since q > 0.5 and yh > yl. The last equality holds

if (1− q)yl + pgqyh < pgyh which also holds from Ayl < 1 and pgAyh > 1.

Finally we need to show that π∗(S4,L) > π(S3,L) if pg > p∗g, i.e.

q(1− r)
(1− q)A

(
pgqyh + yl(pg − q)

)
+ (q − (1− q)pg)− qr

>
1− r

A((1− q)yl + pgqyh)− r
(D.7)

Multiplying this out and collecting terms for pg yields

pg
(
(1− q)(1−Ayl) + qAyh(2q − 1)

)
> q(1− 2(1− q)Ayl) (D.8)

where the bracket after pg must be positive from Ayl < 1 and q > 0.5. Also the bracket on the

right-hand side must be positive from q > 0.5. (D.8) then yields

pg >
q(1− 2(1− q)Ayl)

(1− q)(1−Ayl) + qAyh(2q − 1)
= p∗g (D.9)

�

D.3 Data sources and description

We obtain bank level data from the US Federal Deposit Insurance Corporation (FDIC). FDIC

provides comprehensive quarterly bank level data collected through the call reports. Since we

are interested in mainly stock variables, we work with the fourth quarter data for each of these

years from 1992 through 2018. As the data is provided at the bank, we aggregate the data at the
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bank holding company (BHC) level for each year using the FRB ID Number for the Band Holding

Companies (‘rssdhcr’). The idea behind aggregation is that the decision on assets and liabilities

structure are made at the BHC level rather than at the bank level. In the following we will refer to

BHCs also as banks. We cleaned the data dropping bank-year pairs if the share of loan ratios are

above 90% or below 0.1%. The idea is to drop banks that specialize to the extreme as most likely

these would be banks created for special purposes by local of federal governments. After cleaning

the data, we are left with a total of about 186,600 bank-year observations.

Volatile liabilities, according to the FDIC, include:

1. Time deposits that are uninsured and foreign office deposits

2. Federal funds purchased and repo borrowings

3. Demand notes issued to the US Treasury and other borrowed money with remaining maturity

of 1 year or less, including Federal Home Loan Bank (FHLB) advances

4. Trading liabilities less trading liabilities revaluation losses on interest rate, foreign exchange

rate, and other commodity and equity contracts.

The definition of volatile liabilities changed with effect from March 2010 as deposit insurance was

expanded to cover deposits upto USD 250, 000 from USD 100, 000. Thus, uninsured deposits were

redefined to all time deposits above USD 250, 000.
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D.4 Estimates for other size classes

Figure D.1: Regression coefficients: medium sized banks

Figure D.2: Regression coefficients: very big banks
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