
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
2
9
4
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
4
.
7
.
2
0
2
5

Regional Climate Modelling over Europe

at Glacial Times

Inauguraldissertation

der Philosophisch–naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Patricio Andrés Velásquez Álvarez
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Thesis summary

The climate on Earth has continuously fluctuated throughout the world’s history under

the influence of internal and external forcing factors. A key challenge for climate science is the

understanding of the different drivers and mechanisms that define the climate of the past

and its fluctuations. Glacial climate states are of great interest in climate research as their

conditions are highly different compared to today’s climate. Climate modelling functions as a

complementary tool to further investigate the role of forcing factors such as surface conditions

in glacial climates. Global climate models are used to describe the Earth’s system; however,

they show wide disagreement when simulating the climate of the past over the continents. This

disagreement may be related to a variety of factors, including the coarse model resolution and

an incomplete representation of Earth system processes. The application of regional climate

models improves the representation of these processes due to their higher spatial resolution.

Still, the accuracy of the simulated regional climate strongly depends on the representation of

the surface conditions in the models. Even though the surface conditions become more realistic,

deviations can still be evident in the simulations, especially in precipitation. These biases may

impact the results obtained through hydrological and glacier modelling that follows next in the

modelling chain. Accordingly, the central goal of this thesis is to investigate the role of the

glacial surface conditions in the European glacial climate using the regional climate model

WRF. Two studies are carried out to achieve this central goal. An additional study presents a

method to adjust deviations in simulated precipitation at glacial times, e.g., the simulated

precipitation of the previous two studies.

The first study assesses the importance of resolution and land–atmosphere feedbacks on

the climate of Europe. To that end, a more accurate glacial land cover is generated using an

asynchronous coupled land–atmosphere modelling experiment that combines a global climate

model, a regional climate model, and a dynamic vegetation model. The regional climate and

land cover models are run at high (18 km) resolution. The asynchronous coupling shows that

the land–atmosphere coupling achieves quasi-equilibrium after four iterations. Simulated

climate and land cover agree reasonably well with independent reconstructions based on

paleoenvironmental proxies. This study determines the importance of land cover on the climate

of Europe at the Last Glacial Maximum (LGM) using a sensitivity simulation with an LGM

climate but present-day land cover. Results show that the LGM land cover leads to colder

and drier summer conditions around the Alps and warmer and drier climate in southeastern

Europe. This finding does not only demonstrate that LGM land cover plays an important role
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in regulating the regional climate, but it also indicates the need of using realistic glacial land

cover estimates to accurately simulate the regional glacial climate.

The second study investigates the sensitivity of the glacial Alpine hydro-climate to

northern hemispheric and local ice-sheet changes. Therefore, sensitivity simulations are carried

out with a 2 km horizontal resolution over the Alps for the LGM and the Marine Isotope Stage

4 (MIS4). During winter, the findings show wetter conditions in the southern part of the

Alps under LGM conditions compared to present day. This wetting can be traced back to

dynamical processes, i.e., changes in the wind speed and direction. In summer, drier conditions

are found in most of the Alpine region during LGM. These drier conditions can be attributed

to thermodynamic processes, i.e., lower temperatures. The MIS4 climate shows enhanced

winter precipitation compared to the LGM, which is explained by its warmer climate compared

to the LGM, i.e., by thermodynamics. An increase of the northern hemispheric ice-sheet

thickness leads to a significant intensification of glacial Alpine hydro-climate conditions, which

is mainly explained by dynamical processes. Changing only the Fennoscandian ice sheet is less

influential on the Alpine precipitation, whereas modifications in the local Alpine ice-sheet

topography significantly alter the Alpine precipitation. These findings demonstrate that the

northern hemispheric and local ice-sheet topography are of great importance at regulating the

Alpine hydro-climate.

The third study presents a new correction method for precipitation over complex terrain

that explicitly considers orographic characteristics. This method offers a good alternative to

the standard empirical quantile mapping (EQM) method during colder climate states, in

which the orography strongly deviates from the present-day state, e.g., at the LGM. The

new method and its performance are presented for Switzerland using regional climate model

simulations at 2 km resolution for present day and LGM conditions. In present-day conditions,

the comparison between simulations and observations shows a strong seasonality and, especially

during colder months, a height dependence of the bias in precipitation. The new method is

able to fully correct the seasonal precipitation bias induced by the global climate model. A

rigorous temporal and spatial cross-validation with independent data exhibits robust results.

The application of the new bias-correction method to the LGM demonstrates that it is a

more appropriate correction compared to the standard EQM under highly different climate

conditions as the latter imprints present-day orographic features into the LGM climate.

The last chapter of this thesis is dedicated to highlight some key results of the studies of

this thesis and to outline possible follow-up studies and potential benefits for other studies and

the scientific community.
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Chapter 1

Introduction

Changes in the climate become an interesting topic for the scientific community as they

influence the human behaviour, e.g., they force humans to adapt. Climate sciences aim at

understanding the different drivers and mechanisms that define the climate and its fluctuations

under past, present and future conditions. In climate sciences, the climate of the past plays a

key role as it provides information about the climate response to particular forcing factors.

This serves as a basis for the analysis of changes in the present day and future climate. Climate

scientists have demonstrated that the Earth’s climate has experienced a large range of climate

changes on different temporal and spatial scales throughout the world’s history. Cold and

warm periods are prominent indicators of these changes. For example in the Common Era, the

last important warm and cold periods were the Medieval Warm Period (900–1300 AD) and the

Little Ice Age (1400–1800 AD), respectively. Further back in time, there are even stronger

changes in the climate. For instance, a warm period is the Holocene Thermal Maximum

(9 to 5 ka, Wanner et al., 2008; Renssen et al., 2009) and a cold period is the Last Glacial

Maximum (LGM, 21 ka; Clark et al., 2009). Focusing on the cold periods, the Little Ice Age

was produced by a decreased solar incoming radiation and a high volcanic activity and it

affected the Northern Hemisphere continents more strongly compared to the rest of the world

(Mann et al., 2009). The LGM had a different setting of the Earth’s orbital parameters and

atmospheric composition. These orbital changes resulted in very cold conditions and thus led

to the growth of extensive continental ice sheets, especially in the Northern Hemisphere. This

produced the global sea-level drop of about 120 m compared to present day (Clark et al., 2009).

In this thesis, a regional climate model is used to increase the understanding of the

European climate at glacial times. Particularly, this thesis investigates the role of the surface

conditions in the climate response during the LGM and the Marine Isotope Stage 4 (MIS4,

65 ka). This thesis also presents a technique that adjusts deviations and thus makes the

climate information more reliable in climate states when the topography strongly changed

compared to today. Hence, this chapter provides a general introduction to the climate system,

its modes of variability, the land-atmosphere interaction, the hydrological cycle and the forcing

factors. Also, this chapter presents an overview of the different techniques to reconstruct the
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climate of the past and the major features that define the LGM and MIS4. The research

questions and the outline of this thesis are presented at the end of this chapter.

1.1 Climate System

Climate is usually defined as the average weather or the statistical description of important

quantities in terms of the mean and its variability over a certain period and a particular area.

In a broader sense, climate can also refer to the state of the entire climate system (IPCC, 2007,

2013a). The Earth’s climate system consists of five major components: the atmosphere, the

hydrosphere, the cryosphere, the land surface, and the biosphere. These components constantly

interact with each other interchanging energy, mass and momentum (IPCC, 2001, 2007, 2013a).

Hence, they build a complex coupled system, where a change in one component directly results

in adjustments of the other components. The climate system’s components are outlined in the

following subsections and summarised in Fig. 1.1.

Figure 1.1: Schematic view of the components of the climate system, their processes and interactions. Source:
FAQ 1.2, Fig. 1 from IPCC (2007).

The single major energy source of the Earth’s climate system is the incoming short-wave

radiation from the Sun. In the present-day climate system, the incoming solar radiation is

approximately 340 Wm−2, from which only 100 Wm−2 is reflected back to the space (Hartmann

et al., 2013; Wild et al., 2013). The rest of this incoming radiation is absorbed and distributed

across the globe. Around 239 Wm−2 from the incoming radiation is compensated by long-wave

(infrared) outgoing radiation (Wild et al., 2013), which gives only 0.6 Wm−2 for the Earth’s

energy budget (Fig. 1.2; Loeb et al., 2009; Hansen et al., 2011). Note that the Earth’s energy
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budget is referred to the balance between the energy that Earth receives from the Sun and

radiates back into outer space after having been distributed throughout the components of the

climate system. An equilibrium in the energy balance is never reached as various types of

variability shape and modify the radiation balance (the so-called forcing). The amount of

incoming solar radiation can change through variations in the Earth’s orbit or in solar activity.

The amount of radiation that is reflected back to the space can be also modified by changes

in clouds, atmospheric particles, ice coverage, land use and vegetation (Fig. 1.2). Outgoing,

i.e., towards the space, infrared radiation can be influenced by changes in the atmospheric

composition, i.e., different concentration of disposing and absorbing species (IPCC, 2013b).

Radiative balance over oceans can be modified by natural internal variability, i.e., alterations

in the uptake or release of heat by the ocean. Remarkable examples of climate forcing are not

only natural phenomena such as changes in the orbital parameters and volcanic eruptions,

but also anthropogenic phenomena such as the human-induced changes in the atmospheric

composition in the recent past (IPCC, 2013b; Nisbet et al., 2019).

1.1.1 Atmosphere

The atmosphere is a thin gaseous layer surrounding the Earth that mainly consists of

diatomic nitrogen (N2) with a volume mixing ratio of 78.08 %, oxygen (O2) with a volume

mixing ratio of 20.95 %, argon (Ar) with a volume mixing ratio of 0.93 %, and many other

trace gases and small particles (Wallace and Hobbs, 2006). The atmosphere is the least stable

component of the climate system; also, it experiences the most rapidly changes compared to the

other components (IPCC, 2001, 2007). The most variable element of the atmosphere is water

(H2O) in its various phases such as vapour, cloud droplets, and ice crystals. The transition

between these phases is a key role in the climate system and its variability as this transition

absorbs and releases much energy influencing air temperature and motion. A considerable

amount of water vapour exists in the atmosphere (1–4 % volume mixing ratio), which together

with some trace gases such as ozone (O3) play a crucial role in the Earth’s life as they absorb

solar radiation in several wavelengths. Especially, ozone absorbes solar radiation in wavelengths

that can be lethal for the terrestrial biosphere (less than 290 nm; fifth chapter of Wallace and

Hobbs (2006), and second chapter of Rowland (2009)). Additionally, water vapour, carbon

dioxide (CO2), methane (CH4), nitrous oxide (N2O), O3 and chlorofluorocarbons are very

important in the global energy balance as they can absorb and scatter radiation (Wallace and

Hobbs, 2006; IPCC, 2013b). In particular, water vapour and these trace gases are known as

greenhouse gases (GHGs), since they are highly effective in trapping the infrared radiation.

This trapped radiation is the result of the difference between the energy emitted back to the

space and the emitted energy by the surface (Raval and Ramanathan, 1989). The trapped

radiation results in an atmospheric temperature increase of around 33 K (Mitchell, 1989),

which is one important basement for the development of life on Earth.

Besides the gaseous elements, the atmosphere also contains small particles that are

suspended in the air, the so-called aerosols. They influence the global energy balance, since they
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can considerably absorb and scatter radiation. Aerosols from volcanic eruptions such as sulphur

dioxide (SO2) and volcanic dust reflect some of the incoming solar radiation and, thus resulting

in a negative forcing, i.e., in a decrease of the atmospheric temperature (IPCC, 2013b; Tomasi

et al., 2017). Some species such as black carbon and dust are highly effective in absorbing

radiation in different wavelengths, which is then emitted back as infrared radiation increasing

the atmospheric temperature (Tomasi et al., 2017). Dust, marine and human-produced aerosols

influence clouds properties and their formation mechanisms. This does not only affect the

precipitation processes and the hydrological cycle (e.g., Casazza et al., 2018; Dave et al.,

2019; Zhao et al., 2019), but also their capacity of absorbing and reflecting radiation (e.g.,

Rosenfeld et al., 2019; Christensen et al., 2020; Zhang et al., 2020). Consequently, any change

in the atmospheric concentration of the such as GHGs or aerosols, e.g., through natural or

anthropogenic sources, directly impacts the global radiation balance and thus alters the Earth’s

energy budget.

Figure 1.2: Schematic view of the global mean energy budget under present-day climate conditions. Numbers
state magnitudes of the individual energy fluxes in Wm−2, adjusted within their uncertainty ranges to close the
energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with
observational constraints (Adapted from Wild et al., 2013). Source: Figure 2.11 from IPCC (2013b).

1.1.2 Hydrosphere

The hydrosphere comprises the total amount of liquid surface and subterranean water

and both fresh and saline water. The fresh water includes rivers, lakes and aquifers, and the

saline water oceans and seas (IPCC, 2001, 2007). Most of the water is stored in the oceans

(∼97 %) which cover around 70 % of the Earth’s surface. The oceans also store a large amount

of energy that is redistributed across the global ocean basins through its circulation. This
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circulation is rather slow, compared to the one of the atmosphere, and commonly consists of

two parts: a wind-driven circulation that governs the uppermost layer (topmost few hundred

meters), and a density-driven circulation that dominates below (the so-called thermohaline

circulation). The latter is due to density differences that are produced by thermal and salinity

gradients within the ocean (Wyrtki, 1961; Toggweiler and Key, 2001).

The oceans play an important role in regulating the atmospheric concentration of CO2 as

they are able to take up CO2 from the atmosphere, redistribute it and; inversely, they can also

release it back to the atmosphere (IPCC, 2019b). The oceans also function as regulator of the

global air temperature as they can damp strong temperature changes due to their large heat

capacity (Wallace and Hobbs, 2006) and their large overturning times (from several hundred to

thousand years; Primeau, 2005). This consequently acts as a climate regulator and as a source

of natural climate variability (IPCC, 2001).

1.1.3 Cryosphere

The cryosphere includes the frozen water part of the Earth system at and below the land

and ocean surface. This includes snow cover, glaciers, ice sheets, ice shelves, icebergs, sea

ice, lake ice, river ice, permafrost and frozen ground (IPCC, 2007, 2019b). Some parts of

the cryosphere such as snow and ice on lakes exist only during colder months, especially in

mid-latitude locations. Other parts of the cryosphere such as glaciers and ice sheets stay frozen

much longer, not only throughout the year, but also from thousands to even hundreds of

thousands of years. The largest parts of the cryosphere are the ice sheets covering around 10 %

of Earth’s land surface (e.g., the Greenland and Antarctic ice sheets).

The cryosphere influences the climate system through a variety of effects. Cryosphere’s

surface importantly contributes to the reflectivity of solar radiation (albedo effect; IPCC, 2001,

2019b). This capacity of reflecting can be modified by the deposition of some absorbing natural

and human-produced aerosols such as dust and black carbon, respectively. The cryosphere

also influences the global sea level as its large content of frozen water can melt and thus be

discharged into the oceans (IPCC, 2001; Church et al., 2013). This particularly happens in

warmer conditions as the melting becomes more important than the formation of frozen water.

Variations in the global sea level directly impact the global capacity of reflecting solar radiation.

The reason is that these changes modify the amount of global land surface coverage which has

a different albedo compared to the oceans. Thus, the global radiation balance can be affected

by a higher amount of deposited absorbing species on the cryosphere and by a global sea level

rise, which can directly alter the Earth’s energy budget (IPCC, 2019b). Additionally, the

cryosphere inhibits ocean-atmosphere exchange of heat (low thermal conductivity; Wallace and

Hobbs, 2006), momentum (large inertia) and gases (including CO2) when it covers large water

bodies such as oceans. The global ocean circulation that is mainly driven by density gradients

can be also influenced by the cryosphere, since melting and formation of frozen water can

modify these gradients. Compared to the surrounding water, melting at the border of the ice
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sheets forms fresh water that is less dense and the formation of sea ice crystals produces salty

water that is more dense (Wyrtki, 1961; Clark et al., 2002; IPCC, 2019b).

1.1.4 Land Surface

The Earth’s land surface is an active and complex place at the interface of the lithosphere,

the hydrosphere, the atmosphere, and the biosphere (Phillips, 1999). It covers about 29 %

of the Earth’s surface and its processes refer to various biogeophysical and biogeochemical

processes that also interact with atmospheric processes (Niu and Zeng, 2012). The land surface

is often considered as a static component as it changes very slowly compared to the other

components of the climate system (Gettelman and Rood, 2016).

The land surface plays a central role in controlling the amount of solar radiation that is

returned back to the atmosphere (IPCC, 2001). Part of this incoming radiation is directly

reflected back (albedo-effect), which strongly depends on the vegetation cover at the surface

and on seasonal factor such as snow or ice during wintertime (IPCC, 2019a). For instance,

desert areas reflect more radiation than forests; however, the albedo of the latter can be

increased even more than desert areas when it is covered by snow during wintertime. Some of

this solar radiation is also sent back as infrared radiation which heats the atmosphere. In

addition, the shape and the roughness of the land surface can influence the ocean and the

atmosphere, respectively. The shape determines the geometry of the oceans affecting the

patterns of their circulation (Gettelman and Rood, 2016). Roughness influences the atmosphere

dynamically as winds blow over it. This cannot only blow dust from the surface into the air, i.e.,

dust aerosols, modifying the atmospheric capacity of reflecting and dispersing radiation (IPCC,

2019a), but also influence the atmospheric circulation and thus the precipitation patterns. For

instance, an air parcel would rise when facing a orographical barrier and its water content

could condense forming clouds and producing rainfalls (orographic precipitation). The same air

parcel becomes dry when flowing down the opposite flunk resulting in dissipation of cloud or

low-precipitation (the so-called rain-shadow effect).

1.1.5 Biosphere

The biosphere is defined as the part of the Earth’s system that comprises all ecosystems

and living organisms in the atmosphere, on land (terrestrial biosphere) or in the oceans

(marine biosphere). This also includes derived dead organic matter, such as litter, soil organic

matter and oceanic detritus (Hutchinson, 1970; Gettelman and Rood, 2016; IPCC, 2007).

The biosphere influences fluxes of energy, water and aerosols between the Earth surface and

atmosphere. It is also central to the biogeochemistry of our planet (Overpeck et al., 2003).

The biosphere has a major impact on the atmosphere’s composition. It regulates the

water in the soil through uptake into plant structures and release water into the atmosphere

(e.g., through evapotranspiration). This has an effect on the atmospheric water content, which

does not only influences precipitation processes, but also the atmospheric capacity of reflecting



1.2. PRESENT CLIMATE 7

and dispersing radiation (as explained in Sect. 1.1.1). The biosphere influences the uptake and

release of greenhouse gases and also plays a central role in the carbon cycle, as well as in

the budgets of many other gases such as methane and nitrous oxide (Overpeck et al., 2003).

Marine and terrestrial plants, especially forests, store significant amounts of carbon from

carbon dioxide through the photosynthetic process (Overpeck et al., 2003). This effect (carbon

storage) is particularly important as the influence of climate on the biosphere is preserved as

fossils, tree rings, pollen and other records, so that much of what is known of past climates

comes from such biotic indicators (IPCC, 2001; Wallace and Hobbs, 2006). The biosphere also

influences the surface radiation balance as its capacity of absorbing and reflecting radiation

depends on changes in vegetation cover fraction (IPCC, 2001). Consequently, any change

in the biosphere, e.g., through natural or anthropogenic causes, directly impacts the global

radiation balance and thus alters the Earth’s energy budget.

1.2 Present Climate

1.2.1 Planetary Atmospheric Circulation

The planetary atmospheric circulations describes the air movement on the Earth. The

description assumes the air to behave as a fluid. Thus, the air movement can be described

using the thermodynamical and hydrodynamical laws of fluids, i.e, the laws of conversation of

momentum, energy and mass. The atmospheric motion is triggered by the following forces:

gravity, pressure gradient, surface friction, Coriolis and centrifugal. The latter two are known

as pseudo forces as they emerge from the rotation of the Earth. Therefore, considering these

forces and other assumptions, the atmospheric motion can be formulated as follows (Holton

and Hakim, 2013):

d~v

dt
= −1

ρ
~∇p + ~g − 2~Ω× ~v + ~FR , (1.1)

A B C D E

where the left-side term A denotes the temporal change of the velocity (momentum per

mass unit) and right-side terms B, C, D and E represent the forces acting per unit mass

(i.e., accelerations). The term B describes the force driven by pressure gradients, the term

C the gravitational force, the term D the Coriolis force and the term E the force due to

friction. Note that this formulation cannot be solved analytically; thus, numerical methods are

used to calculate approximate solutions. Moreover, additional information is required to fully

describe the fluid features of the atmosphere, which encompasses the laws of mass and energy

conservation and the equation of state. In the following, the description focuses on the lower

part of the atmosphere, the so-called troposphere.
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The radiation distribution over the Earth’s surface is the first major driver of the global

atmospheric circulation. The equatorial region receives much more solar radiation compared to

the polar areas and constantly absorbs more energy than the emitted to the space throughout

the year, i.e, positive net radiation. Thus, the equatorial region presents a warming in contrast

to the high altitudes which show a cooling due to the emission of more energy to the space than

the one absorbed, i.e., negative net radiation. According to the second law of thermodynamics

(thermodynamic equilibrium), the resulting meridional gradient leads to a poleward energy

(heat) transport (Trenberth and Caron, 2001), which substantially maintains the planetary

wind fields. Air parcels rise over the tropics due to the differential heating and flow poleward

aloft due to the mass conservation. On a non-rotating Earth-like, the aloft poleward flow would

reach the Poles to sink to the Earth’s surface, where it eventually flows back to the equator

forming the structure of a single convection cell in each hemisphere (Fig. 1.3a). However, the

Earth’s rotation is the other major driver of the global atmospheric circulation determining its

shape (Lockwood, 1987). Thus, any meridional motion will end up generating a latitudinal flow

due to the influence of the Coriolis effect, which is accelerated poleward due to the conservation

of angular momentum. This results in breaking up the single convective cell into a structure of

three cells in each hemisphere: the Hadley cell, the Ferrel cell and the Polar cell (Fig. 1.3b).

a) b)

Figure 1.3: Illustration of the global atmospheric circulation. (a) represents a simple and single cell atmospheric
convection in a non-rotating Earth. ”Single cell” being either a single cell north or south of the equator. (b)
shows and idealized three cell atmospheric convection in a rotating Earth. ”Three cell” being either three cells
north or south of the equator. The deflections of the winds within each cell is caused by the Coriolis Force.
Source: Figure 7.5 in Lutgens and Tarbuck (2001).

The Hadley cell consists of the circulation that takes places from the equator to the

subtropics (∼30◦ latitude) (Hadley, 1735). This circulation is directly driven by the radiative

heating in the tropics, which produces warm air parcels that release latent heat when arising

and condensing. This produces a decrease of the surface pressure, the so-called Equatorial

Low, and eventually forms significantly thunderstorms afterwards. These air parcels then

flow poleward aloft and sink at the subtropics that are colder than the tropics, the so-called

subsidence (Fig. 1.3b). The poleward flow is deflected to the right in the North Hemisphere

(NH) and to the left in the South Hemisphere (SH), which triggers the westerly winds aloft, the

so-called westerlies (Fig. 1.3b). Note that the Hadley circulation is also referred to a thermally

direct circulation as the air parcels arise from a warm place and sink over a cold location.
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The subsidence does not only dry out the subtropical troposphere and causes the stationary

subtropical high pressure systems, but also produces the major deserts of the world at this

latitude. The air parcels return from the subtropical surface to the equator. This flow to the

equator, as the aloft flow, is deflected by Coriolis, which produces the easterly winds that

converge forming the Inter Tropical Convergence Zone (ITCZ), the so-called trade winds (Fig.

1.3b).

The Ferrel cell covers from ∼30◦ to ∼60◦ latitude (also called mid-latitude region) and is

referred to a thermally indirect circulation as air parcels arise over a relatively cold region and

thereafter sink over warmer areas. This cell is therefore considered to be driven by dynamical

processes rather than by thermal processes, whose more important drivers are the large-scale

eddies, i.e., mid-latitude cyclones and anticyclones. They are responsible for the transport of

heat, mass and momentum in the mid-latitude circulation (Schneider, 2006). The Ferrell cell

has its sinking branch at the same latitude as the Hadley cell (∼30◦), from where the air

parcels flow poleward at the surface with an eastward deflection due to Coriolis (i.e., westerly

winds; Fig. 1.3b). The air parcels then rise in higher latitudes (approximately near 60◦) and

flow to the equator at upper levels with a westward deflection (i.e., easterly winds Ferrel, 1856)

converging with the upper-level poleward branch of the Hadley cell (Fig. 1.3b). Still, the Ferrel

cell moderately represents the reality as it needs that the upper-level winds flow westward (i.e.,

easterly winds) and the reality shows relatively strong eastward winds (i.e., westerly winds

Harman, 1987) that are importantly connected to the eastward-flowing surface winds.

The Polar cell describes the circulation that takes place from ∼60◦ to the poles and

is mainly driven by convection (Fig. 1.3b). Although the air parcels at about 60◦ are cool

and dry compared to the ones in the tropics, they are still sufficiently warm and moist to

undergo convection and drive a thermally direct circulation. The air parcels rise at ∼60◦ and

flow poleward aloft with an eastward reflection. When the air parcels reach the polar areas,

they are cooled through emission of radiation to space and is considerably denser than the

underlying air; thus, they descend to the surface. This subsidence, as in the Hadley cell, dries

out the polar troposphere and causes the cold stationary polar high pressure system. Then,

the air parcels return from the polar surface to the ∼ 60 ◦ with a westward deflection, the

so-called polar easterlies, where they converge with the surface poleward branch of the Ferrel

cell (Fig. 1.3b). The cold polar air is mixed with the relatively warmer air at about 60◦, which

triggers the so-called sub-polar low and its underlying upward motion. Extratropical cyclones

develop along this mixing boundary, the so-called polar front, and become the primary source

of high precipitation amounts in the mid-latitudes.

The middle-to-upper troposphere usually have regions with maximum wind speeds

(westerly winds) inside the Hadley and Ferrel cells. These stronger winds are known as jet

streams and can be classified in two types: the subtropical thermally-driven jet stream and the

mid-latitude eddy-driven jet stream (also called polar jets). Subtropical jet streams are often

located at about 30◦ near to the sinking branch of the Hadley cell. They are mainly the result

of thermal winds and the conservation of angular momentum. Thus, the Hadley cell does not
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only show an increasing strength of the westerly winds with altitude (i.e., maximum speed

in the upper troposphere), but also drives a source and sink of westerly momentum from

the equator up to the subtropics contributing to the sharpness of the jet stream (Schneider,

2006). The mid-latitude jet streams are linked to frontogenesis and their maximum speed is

observed in low-middle troposphere. They occur in areas of high baroclinicity, i.e., areas of

substantial temperature gradients, where the transient eddies are produced (for more details

about baroclinicity see: Holton and Hakim, 2013). These eddies propagate both poleward and

to the equator and become the key of the meridional convergence of momentum that causes

the acceleration of the westerly mean flow and thus the formation of the jet stream (Hoskins

et al., 1983).

Consequently, the three-cell model explains reasonably well the surface wind distribution

in the atmosphere and is therefore considered as the mean state of the atmospheric dynamics.

However, this model can break down, especially in the lower troposphere. One reason is the

interaction with the land surface and ocean. Another reason is that the atmosphere experiences

fast changes and is influenced by many other perturbations in different spatial scales. The

focus of this thesis is mostly on mid-latitudes, which is dominated by the westerlies and, in the

zonal view, by the Ferrel cell. These phenomena control the European climate.

1.2.2 Modes of Variability

In the reality, the atmospheric circulation is influenced by the non-uniform landmass

distribution and its underlying elevation, i.e., the topography. This significantly alters the

schematic view of the general circulation (three-cell model) as it creates several land-sea

contrasts and thus a deformation of the schematic zonal mean flow. Furthermore, the climate

system presents phenomena that fluctuate on a broad variety of spatial scales. These fluctuations

are known as modes of variability and have an oscillation without an exact periodicity (also

called internal variability). Climate indexes are used to assess these modes (Viron et al.,

2013). For instance, important modes of variability are, among others, the El Niño–Southern

Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and

the Madden–Julian Oscillation (MJO). The modes of variability, on the global-to-synoptic

scale, are the principal source of variability in climate elements on a regional-to-local scale (e.g.,

Keeley et al., 2008; Ault et al., 2011). Focusing on Europe, there are many studies about

climate indexes which attempt at explaining the climate elements of Europe (e.g., Bartolini

et al., 2009; Kalimeris et al., 2017; O’Reilly et al., 2017; Steirou et al., 2017; Kundzewicz et al.,

2019; Piper et al., 2019; Hernández et al., 2020). Even though there are several modes of

variability that are important to understand the European climate, I briefly describe in this

section only two well-known global-to-synoptic modes of variability, i.e., ENSO and NAO.

The reason for the selection is that ENSO and NAO represent a global and regional mode of

variability, respectively.

The El Niño-Southern Oscillation (ENSO) phenomenon is the strongest natural fluctuation

of climate on interannual time scales and is generated by ocean-atmosphere interactions over
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the tropical Pacific (IPCC, 2001; Lin and Qian, 2019). In the long-term climatology, the sea

level pressure is higher on the eastern side than on the western side of the tropical Pacific

(pressure gradient), which is accompanied by the trade winds along the equator (Philander,

1989; Wallace and Hobbs, 2006). The atmospheric trade winds transport the warm tropical

water to the west producing a “warm pool” in the tropical western Pacific and an upward

slope of sea level along the equator of about 60 cm from east to west. According to the mass

conservation, the ocean counteracts the loss of mass in the tropical eastern pacific by vertical

and horizontal transport of water from colder oceanic regions, which produces a cold tongue

along the equator that is most pronounced about October and weakest in March (Philander,

1989; IPCC, 2001). The climatological features of the tropical Pacific usually fluctuate between

two phases that consist of an eastward (El Niño) and westward (La Niña) shift of the warm

pool. This movement is mainly caused by a weakness (El Niño) or an intensification (La Niña)

of the trade winds, which simultaneously moves the associated convective cell and influences

the oceanic thermocline depth (Fig. 1.4). This directly has a strong impact on several regions

of the globe such as changes of the precipitation patterns of Southeast Asia, Australia, North

and South America. This phenomenon also affects other parts of the world that are not directly

connected to the Pacific such as the North Atlantic Ocean and the Mediterranean region

(Kalimeris et al., 2017; Lin and Qian, 2019). ENSO produces a NAO-like pattern (for details

about NAO see following paragraph), thus affecting European region. This NAO-like pattern is

mainly driven by large-scale dynamical mechanisms in the upper troposphere (Bell et al., 2009;

Domeisen et al., 2015; Mezzina et al., 2020). Many studies found that ENSO can influence the

temperature and precipitation patterns over Europe, especially from late autumn till late

spring and sometimes delayed with respect to the Pacific anomalies (e.g., Fraedrich, 1994;

Brönnimann et al., 2007; López-Parages et al., 2016; Herceg-Bulić et al., 2017; Ivasić et al.,

2021). For instance, the El Niño (positive phase of ENSO) can produce negative and positive

temperature anomalies in northeastern Europe and Turkey, respectively, and positive and

negative precipitation anomalies around the European 45◦ N, in Norway and the southeastern

Mediterranean area, respectively (Brönnimann et al., 2007; Lin and Qian, 2019). Moreover,

ENSO influences the frequency and intensity of extreme rainfall events over Europe. This

influence is much smaller than North Atlantic Oscillation but still significant in some areas

such as southern and eastern Europe (Nobre et al., 2017).

The North Atlantic Oscillation (NAO) is an atmospheric phenomenon on monthly to

decadal time scales over the North Atlantic Ocean (IPCC, 2001; Hurrell et al., 2003; Woollings,

2010; Pinto and Raible, 2012). Although NAO is present throughout the year, the description of

NAO is here focused on wintertime as NAO has its more important manifestation during boreal

winter and it explains most of the European variability in wintertime (around 40 %, Brandimarte

et al., 2011; Pinto and Raible, 2012; Raible et al., 2014; Kalimeris et al., 2017; Steirou et al.,

2017). In the longterm, the high-pressure system over the Azores (Azores High) and the

low-pressure system over Iceland (Icelandic Low) mostly determine the atmospheric circulation

of North Atlantic region, especially the lower-to-mid tropospheric winds and their underlying

water transport towards Europe. NAO is generally represented by a north-south dipole of sea
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Figure 1.4: Schematic description of large-scale ocean-atmosphere interactions during the development of
ENSO extremes. A represents El Niño and B La Niña according to the Bjerkness feedback. Source: Fig. 3 from
Latif and Keenlyside (2009).

level surface pressure anomalies. NAO is also known as the index of the mid-latitude wind

strength into Europe and fluctuates between a positive and negative phase. The positive

(negative) NAO phase consists of an intensification (weakening) of the Azores High and the

Iceland Low (Fig. 1.5). This results in a stronger (weaker) meridional pressure gradient over

North Atlantic, which produces a stronger (weaker) zonal flow regime, especially over the

mid-latitude eastern North Atlantic (van Loon and Rogers, 1978; Marshall et al., 2001; Wanner

et al., 2001; Hurrell et al., 2003; Marshall et al., 2001; Hurrell and Deser, 2010; Woollings, 2010;

Pinto and Raible, 2012; Kalimeris et al., 2017). These fluctuations affect the entire Atlantic

Ocean and the surrounding continents. NAO does not only influence the air-sea interaction,

but it is also connected to the overturning circulation in the North Atlantic Ocean (Marshall

et al., 2001). Also, NAO regulates the intensity and the path of the mid-latitude cyclones and

their underlying extreme-weather conditions shaping the European climate (Rogers, 1990;

Steirou et al., 2017).

1.2.3 European Climate

Europe is a continent from the North Hemisphere whose area is bordered by the Atlantic

Ocean to the west, the Mediterranean Sea to the south, Asia to the east, and the Arctic Ocean

to the north. In general, the present-day European climate is determined by the predominant

west-to-east atmospheric flow and the relatively warm surface water of the North Atlantic

Ocean (Seager et al., 2002; Palter, 2015) and Mediterranean Sea (Lionello et al., 2006; Volosciuk

et al., 2016; O’Reilly et al., 2017).

Focusing on the atmospheric flow, Europe is characterised by several key dynamical

features such as the Northern Atlantic jet stream, the North Atlantic storm track and the

stationary waves (Woollings, 2010). As mentioned in Sect. 1.2.1, two jet streams affect the

extratropical regions, i.e., the subtropical and the eddy-driven jet stream (Held and Hou,

1980; Hoskins et al., 1983; Panetta and Held, 1988). Although these jet streams differ in their

formation mechanisms, they are often indistinctly separated from each other in the North
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Figure 1.5: Schematic view of the North Atlantic Oscillation (NAO) in wintertime. The typical path of the
polar-front jet stream (yellow) during negative (upper left) and positive modes (bottom right) of the North
Atlantic Oscillation. Areas in blue (red) represent cold (warmer) conditions, L and H low- and high-pressure
systems. Source: Rafferty (2019).

Hemisphere. For instance, this separation rarely happens over the North Atlantic towards

Europe, particularly during winter, when only the eddy-driven jet stream is clearly distinguished

(Boucher, 1987; Eichelberger and Hartmann, 2007; Woollings, 2010; Woollings et al., 2010; Li

and Wettstein, 2012; Harnik et al., 2014). The eddy-driven jet stream controls the genesis

of mid-latitude cyclones and anticyclones which travel preferentially over certain regions,

the so-called storm track (Schultz et al., 2019). The storm track is also a common measure

for the intensity of the cyclonic activity in the mid latitudes (Blackmon, 1976; Sickmöller

et al., 2000). The North Atlantic storm track influences the European climate by not only

shaping the precipitation and temperature pattern, but also the frequency and intensity

of weather and climate extremes (Woollings, 2010; Dee et al., 2011; Hawcroft et al., 2012;

Wernli and Schwierz, 2006; Ludwig et al., 2016; Schultz et al., 2019). This is particularly

important in winter because over-land convective processes become more important during

summer. Both eddy-driven jet stream and storm track are tilted poleward as a result of the

strong Northern Hemisphere stationary wave pattern (Woollings et al., 2010). This zonal

asymmetry is known as a stationary wave that is subset of the atmospheric Rossby waves. This

can be interpreted as response to the asymmetry in the surface forcing such as orography

and relatively warm surface water from the North Atlantic Ocean. This stationary wave

causes two important tilts that influences the European climate. The atmospheric circulation
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exhibits a southwest-northeast flow across the North Atlantic Ocean towards Europe, which

advects relatively warm maritime air to western Europe. Also, it shows north-westerlies that

advect relatively cold air to continental Europe (central-to-eastern part, Smagorinsky, 1953;

Held et al., 2002; Nigam and DeWeaver, 2003; Brayshaw et al., 2009; Kaspi and Schneider,

2013; Van Niekerk, 2017). During summer, the jet-stream and storm track are weaker and

shifted northward, which leads to drier and warmer conditions in central to southern Europe.

Consequently, Europe is usually characterised by a temperate climate. Western Europe has

moderately warm summers and cool winters with frequent overcast skies. Southern Europe

typically presents hot dry summer, mild winters, and frequent sunny skies. Central and eastern

Europe generally features warm-to-hot summers and cold winters (Boucher, 1987).

1.2.4 Alpine Climate

The European Alps are a dominant feature of the European landscape. In general, they

are defined as an arc-shaped mountain range located in the middle of the continent. They are

characterised as a region with a very complex topography: extensive lowlands, deep valleys and

mountain peaks higher than 4000 m. The European Alps influence the regional atmospheric

circulation by deflecting the flow horizontally and vertically, by altering the sensible and latent

heat, and by inducing waves into the free atmosphere on different spatial scales (Schär et al.,

1998).

Four flow conditions mostly modulate the heat and moisture transport toward the

European Alps, thus influencing the Alpine climate. Westerly flow conditions introduce the

relatively mild and moist air of the Atlantic Ocean. Northerly winds transport cold polar

air from northern Europe. Easterly flow conditions provide continental air masses that are

usually cold and dry in winter and hot in summer. Southerly winds transport warm and moist

air from the Mediterranean Sea (Frei and Schär, 1998; Sturman and Wanner, 2001; Aubrey

et al., 2020). The main sources that contributes to the Alpine moisture are the North Atlantic

Ocean (westerly winds, 39.6 %), North Sea and Baltic Sea (northerly winds, 16.6 %), the

Mediterranean Sea (southerly winds, 23.3 %), and the European land surface (transported by

all flow conditions, 20.8 %). Overall, the North Atlantic contribution dominates in winter and

the European land surface in summer (Sodemann and Zubler, 2010). These flow conditions

create particular features over the Alpine region such as preferred spatial-temporal temperature

and precipitation patterns (Schär et al., 1998). These patterns can be influenced by changes in

the stability and in the atmospheric vertical profile which are produced by flow phenomena

associated with gravity waves such as Föhn and valley winds (Frei and Schär, 1998; Schär et al.,

1998).

The valleys and lowlands are overall warmer and drier than the surrounding mountains.

Most of the valleys and lowlands on average reach temperatures below zero degree during

winter and around 25 ◦C in summer. Very stable atmospheric conditions are frequent due to

thermal inversions, especially producing fog in the valleys during autumn and winter. The

moist areas, i.e., Alpine precipitation patterns, are mainly defined by two processes: (i) The
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orographically forced upstream flow is evident throughout the year but especially stronger in

wintertime. (ii) The topographically triggered convection dominates the summer precipitation,

especially over the mountains (Frei and Schär, 1998; Schär et al., 1998; Aubrey et al., 2020).

At high altitudes (above 1500 m), the moisture that precipitates in form of snow during

fall, winter and spring is stored and accumulates. This snow is then gradually converted into

permanent glaciers. Snow and glaciers very slowly melt throughout the year with a relatively

acceleration towards and during summertime, which in turn sustains flow streams. Thus, the

European Alps play an important role in regulating the water supply of the region that is

traversed by streams originated in the Alps such as Rhine and Rhone rivers. These and other

streams does not only serve as water supply for human being, but also for flora and fauna of

the surrounding Alpine region. The hydrological cycle and some of its important components

are in detail explained in the following section (Sect. 1.3).

1.3 Hydrological Cycle

Water is an important ingredient of the Earth’s climatic system. It is constantly changing

states between solid, liquid, and gaseous, whose processes can happen within a millisecond or

over millions of years. These three water phases can be found in all the components of the

climate system in a continuous movement that occurs on, above and below the Earth’s surface.

This is defined as the natural water cycle, also known as the hydrological cycle (Peixóto and

Oort, 1983; Hordon, 1998; IPCC, 2001; Pierrehumbert, 2002; Hack et al., 2006; Narasimhan,

2009).

The water cycle has no starting point (Hordon, 1998). But, to further describe it, I start

in the oceans as they contain the most Earth’s water and can be considered as the place where

the water cycle is mainly driven (Narasimhan, 2009). The solar radiation mainly heats the

superficial water layers of the ocean. These layers are normally in a liquid phase except in very

cold areas where it can be solid (snow or ice). The water molecules evaporate (or sublimate) as

water vapour into the atmosphere storing energy in the form of latent heat. This process

importantly happens in the tropics due to the constantly higher insolation (Hordon, 1998) and

results in relatively warmer and humid air parcels which drive the upward branch of the

atmospheric Hadley cell (Sect. 1.2.1). Water is evaporated (or sublimated) from the soil and

transpired from plants, which is known as evapotranspiration. The transpiration consists of

moving liquid water from the soil through the plants till is release as water vapour into the

atmosphere by their leaves. Additionally, volcanic eruptions also discharge water vapour into

the atmosphere.

The atmospheric water vapour is then vertically and horizontally transported. This

two-dimensional transport releases energy into the atmosphere: The water vapour incorporates

sensible heat when it cools down. Latent heat is also released when the water vapour changes

its phase to form water drops, i.e. condensation, or to form ice crystal, i.e. sublimation or

solidification. The energy release happens during the upwards motion and when the horizontal
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Figure 1.6: Schematic view of the components of the hydrological cycle, their processes and interac-
tions. Source: The water cycle from the USGS Water Science School (https://www.usgs.gov/media/images/
water-cycle-natural-water-cycle).

transport heads towards relatively colder regions. This builds one of the main modes of energy

transport in the atmosphere (Pierrehumbert, 2002; Gettelman and Rood, 2016). Clouds mainly

consist of water drops and ice crystals whose size and distribution contribute to determine

cloud’s properties. Under certain atmospheric conditions, the water drops and ice crystals fall

out and reach the surface (land and ocean surface) as liquid (rain) or solid (snow or hail)

precipitation (Wallace and Hobbs, 2006; Pruppacher and Klett, 2010). The water cycle remains

open unless the precipitation directly occurs over the oceans.

At high altitudes, a small portion of the precipitation is stored as ice (or glacier) which

very slowly melt. The other portion of precipitation with the melting water can then be

intercepted by vegetation canopy before completely reaching the ground. As soon as the

ground is reached, some of this water flows over land as surface water, also known as runoff,

towards oceans or towards sunken areas where it is stored like lakes. The rest of water is

infiltrated into the ground as soil moisture which can be percolated into deeper layers as

groundwater (Narasimhan, 2009; Gettelman and Rood, 2016). In these deep layers, some

of this water stays for hundred to thousand years as groundwater storage (Oki and Kanae,

2006) before continuing its way to the ocean. Another portion directly returns to the ocean as

groundwater flow or comes to the surface to be part of the runoff. Both groundwater and lakes

inside volcanos can return to the atmosphere as water vapour by volcanic eruptions. The water

cycle is closed when the water finally reaches the oceans. The hydrological cycle is summarised

in Fig. 1.6. This thesis focuses on two components of the water cycle, i.e., precipitation and ice

cover, which are outlined in the following sections.

https://www.usgs.gov/media/images/water-cycle-natural-water-cycle
https://www.usgs.gov/media/images/water-cycle-natural-water-cycle
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1.3.1 Precipitation

Precipitation consists of water drops and ice crystals falling out of the atmosphere on

the Earth’s surface (Houze, 2014; American Meteorological Society, 2019). The amount of

precipitation is measured by the depth of liquid water over a horizontal surface, for example:

1 mm corresponds to 1 kg water mass that dropped out on 1 m2. Physical processes that

characterise the formation and fall of these drops and crystals are known as cloud microphysics.

Some of these processes are briefly explained in the following.

Everything starts when the air becomes saturated with water vapour (reaching 100 %

relative humidity). The saturation is caused by increasing the amount of water vapour in the

atmosphere or by changes in air temperature and pressure (Wallace and Hobbs, 2006). The

saturation leads to condensing the atmospheric water vapour into very small water droplets,

the so-called cloud droplets (∼ 0.02 mm in diameter, Fig. 1.7). This usually occurs on the

surface of suspended particles called cloud condensation nuclei (CCN), whose size is much

smaller (∼ 0.2 µm in diameter, Fig.1.7). Cloud droplets are not only subject to gravitational

force that makes them fall, but also by frictional force while falling as the accelerated motion

is increasingly resisted by surrounding air. This makes cloud droplets have barely detectable

fall speeds and they rather remain suspended in the air and form part of all visible clouds

(Wang, 2013; Houze, 2014).

Figure 1.7: Typical diameters of water droplets/drops and aerosol in the atmosphere. Source: Figure 3.1 in
Houze (2014).

From cloud droplets to the the falling particles, there is a mass increase of around million

times. Some of this growth can be achieved in supersaturated environments, where cloud

droplets and aerosols function as CCNs in further condensing water vapour on their surfaces.

This growth process turn out to be neglected as soon as the condensation rate becomes less

important compared to the evaporation rate that also happens on the surface of the CCNs. This

is usually before reaching the size of raindrops and is explained by the fact that a supersaturated

environment lasts for relatively short periods in the reality. Turbulence and gravity are the key



18 1. INTRODUCTION

for the cloud droplets to become falling particles since they dominate the growth compared

to the supersaturated environment. Turbulence and gravity move the atmospheric particles

and make cloud droplets collide. The efficiency of colliding, i.e., coalescence and collisions of

droplets, is determined by many physical properties such as polarisation, velocity and droplet’s

size. High efficiency of colliding then results in an important mass increase of the droplets

and their underlying gravitational acceleration, which produces a raindrop capable of falling.

However, this growth can importantly be diminished by characteristics of the surrounding

air, e.g., relatively drier air, and other droplet-related physical properties that can break the

raindrop into smaller parts. Similar processes are also observed in the formation of ice crystals.

For an in-depth explanation of the growth mechanisms for both raindrops and crystals see

Houghton (1950), Willis and Tattelman (1989), Wallace and Hobbs (2006), Wang (2013) and

Houze (2014).

Raindrops normally loses mass on their falling path below the clouds. One reason is that

the raindrops break up after collisions with other particles or after deformation. For instance,

the bottom of the drop is affected by the air resistance and starts to flatten out with an

inward curvature in the middle while growing. Then, the bottom of the bigger drop greatly

expands to a form similar to a parachute, which leads to the large drop to split into smaller

drops. The other reason is that they can evaporate by the increase of energy due to friction

and to relatively warmer and drier surrounding air. Ice crystals can melt to become raindrops

and then experience the same mass loss (Wallace and Hobbs, 2006; Wang, 2013; Houze, 2014).

1.3.2 Glaciers

A glacier is a large mass of ice that originates on the land surface by the recrystallisation

of snow or other forms of solid precipitation (Meier, 2020). The recrystallisation process is

also known as the accumulation process of falling ice crystals (snow or other forms of solid

precipitation) to become a crystalline solid (glacier). Some other features and formation

processes are briefly explained in the following.

Glaciers cover around 10 % of Earth’s land surface (IPCC, 2019b). They can cover areas

from 0.1 km 2, e.g., the mountain glaciers, to some millions of km2. The latter are called

ice sheets due to their considerably large continent-coverage such as the Greenland and the

Antarctic ice sheet (∼1.8 million km2 and ∼13.5 million km2, respectively; Meier, 2020). For

simplicity, the terms glaciers and ice sheets are considered interchangeable in this thesis.

Usually, glaciers undergo elastic deformation as response to long-term forces such as

gravity (Meier and Ashton, 2020). This results in a constant downhill movement by sliding at

their base with a very low speed (Cuffey and Paterson, 2010) compared to speeds of other

fluids such as atmosphere (Holton and Hakim, 2013). The glacier speed is influenced by friction

forces and ice-related pressure. Friction makes glaciers move more slowly at their borders, i.e.,

at the bottom of the glacier and also at the valley’s sidewalls in Alpine glaciers. However,

the lowermost layer of a glacier is subject of high pressures that can cause ice to melt. This

produces a slippery layer that permits the rest of the ice to slide and to accelerate, the so-called
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basal sliding (Weertman, 1957; Paterson, 1994; Cuffey and Paterson, 2010) (Fig. 1.8). Friction

results in shaping the landscape by creating landforms such as cirques, moraines and fjords

(Bridge and Demicco, 2008). Friction, soil and atmospheric temperatures can lead glaciers to

melt. The melting rate is crucial as it needs to be lower than the recrystallisation process

(accumulation rate) to allow ice crystals to be stored for longer periods compared to the

temporal extent of its associated precipitation. This means that glaciers are located in places

that experience a large amount of snow and their climate is relatively cold most of the time,

e.g., Earth’s polar regions and locations at high altitude.

Figure 1.8: Schematic differences in glacial ice motion with basal sliding (left) and without basal sliding (right).
The dashed red line indicates the upper limit of plastic internal flow. Source: Figure 16.2.9 in Earle (2019).

Glaciers play an important role in the flora and fauna as they are one of the source of

fresh water (IPCC, 2019b). They are also important for human beings as source of energy

supply. For instance, mountain glaciers are key contributors to seasonal river flows. They

function as frozen water reservoirs that supply fresh-water runoff to river flow during warm and

dry periods. A scenario of constant glacier retreats has important consequences for river flows,

which directly impact water supplies, sustainability of aquatic ecosystems and hydropower

generation (e.g., Immerzeel et al., 2010; Kaser et al., 2010; Huss, 2011; IPCC, 2019b).

1.4 Land Cover

Land cover is the physical material Earth’s surface, which includes plants, asphalt, bare

ground, water, etc. This section focuses on briefly explaining vegetation and its interactions

with the atmosphere.

1.4.1 Vegetation

Vegetation is usually defined as the ground cover provided by an assemblage of plant

species, which encompasses the most abundant living element in the biosphere. Plants are

characterised as multicellular eukaryotic organisms made of cells with cellulose. These organisms

are particularly different in terms of nutrition as they use a photosynthetic process. This



20 1. INTRODUCTION

process provides energy from chemical reactions between water, minerals, carbon dioxide,

pigments and solar energy (Dickinson et al., 2020).

Figure 1.9: Examples of vegetation types. (a) represents forest, (b) grassland, (c) desert steppe and (d) desert.
Source: Figure 1 in Dugarsuren and Lin (2016).

Vegetation is also used as the term to describe main features of the plant cover in a

specific area, the so-called vegetation type (some examples in Fig. 1.9). Vegetation types can

for example define an area by using the dominant plant growth like forest vegetation, grassland

vegetation (e.g., Machar et al., 2017; Zheng et al., 2019). A description can also use colloquial

or technical descriptors and particular plant communities such as desert vegetation, arctic

vegetation (e.g., Lu et al., 2019; Bjorkman et al., 2020) and peat bog vegetation (e.g., Segal,

1966; Levy et al., 2019), respectively. Vegetation types can be determined by the interaction

with a variety of environmental factors such as predation, topography, soil characteristics

and climate. Slope orientation and inclination influence the growth of vegetation types by

determining the exposition to solar radiation and the movement of surface and soil water. This

water motion is also an important factor as it can determine the soil moisture and the nutrient

availability.

Vast diversity of animals, including humans and microorganisms, rely on vegetation in the

food chain since vegetation serves as primary energy source and wildlife habitat. Vegetation is

also the key in regulating numerous biogeochemical cycles such as water, carbon and nitrogen.

It also influences soil features, particularly the density and chemistry (e.g., Benninghoff,

1952; Metzger et al., 2017; Veldkamp et al., 2020) as result of the soil-vegetation-atmosphere

interaction (e.g., Jamalinia et al., 2019).
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1.4.2 Atmosphere–Vegetation Interaction

Components of the climate system constantly interact between each other. Vegetation

and atmosphere are strongly connected and they regulate the atmospheric branch of the

hydrological cycle over the land surface. Vegetation for example influences the heat and

moisture fluxes in the near-surface troposphere. Atmosphere in turn influences the plant’s

growth through precipitation (McPherson, 2007) and atmospheric CO2 (e.g. Asshoff et al., 2006;

Moore et al., 2006). The hydrological-related interaction is briefly explained in the following.

Vegetation vertically extends from few centimetres to tens of metres. High vegetation,

e.g., tall trees, modify near-surface flow compared to bare soil, which increases atmospheric

turbulence at low levels. An increase of low-level turbulence is usually associated with an

intensification of convective processes on the local scale and frictional forces on synoptical

scale, which can enhance precipitation processes (McPherson, 2007; Spracklen et al., 2018).

Heat and moisture fluxes can vary from one to another area as a consequence of the different

vegetation types across the land surface. This results in horizontal pressure and temperature

gradients in the low-level troposphere, which can produce vertical and horizontal motions. The

vertical motion influences precipitation processes. The horizontal motion, also called vegetation

breezes, modifies the horizontal distribution of moisture that is used in the precipitation

process. (Letzel and Raasch, 2003; McPherson, 2007; Garcia-Carreras et al., 2011; Kang and

Bryan, 2011). This is particularly important between areas with strongly different vegetations

types as they can cause circulations that increase rainfall over some regions and reduce it

elsewhere (Fig. 1.10, e.g., Yan et al., 2017; Spracklen et al., 2018).

Figure 1.10: Schematic example of the circulation and precipitation effects between two vegetation types:
tropical forest and a deforested area (bare soil). Bare soil illustrates a reduced evapotranspiration and a warmer
land surface. Circulation between the two types cause regions of increased and decreased rainfall. E represents
evapotranspiration, R rainfall. Soil with red rectangles indicates a warmer land surface. Blue and red rectangles
on the top represent an increase of decrease of precipitation, respectively. Source: Figure 3 in Spracklen et al.
(2018).
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Atmosphere influences vegetation in different ways (Marquer et al., 2017). Vegetation

growth is for example associated with temperature (e.g., Messaoud and Chen, 2011; Lloyd and

Bunn, 2007), precipitation (e.g., Cienciala et al., 2018) and atmospheric CO2 (e.g. Lamarche

et al., 1984; Bond et al., 2003; Yang et al., 2019). Changes in either atmospheric temperature

or moisture affect the atmospheric vapour pressure at low levels, i.e. near-surface relative

humidity, which is crucial for photosynthesis processes (Rawson et al., 1977; Fletcher et al.,

2007; Yuan et al., 2019). This is also true for some species in long-term freezing conditions

(Rehm et al., 2021). Extreme atmospheric events such as dryness and extreme precipitation are

associated with mortality of some species. Dryness strongly reduces the soil moisture and

extreme precipitation saturates the soil with humidity, which both can dramatically affect

vegetation survival (e.g., Zeppel et al., 2014; Renne et al., 2019; Li et al., 2019).

1.5 Past Climate

Earth’s climate system has experienced a vast of fluctuations in long-term time scales

throughout the world’s history. These variations are the result of natural and anthropogenic

changes in elements outside and inside the climate system, the so-called external and internal

forcing, respectively (Mitchell, 1976; IPCC, 2013b). Besides the forcing factors, there are many

complex internal mechanisms that influence the variations of the Earth’s climate system, the

so-called feedbacks. They are generally defined as the processes in which a perturbation in one

quantity alters a second quantity that in turn modifies the first one. A positive feedback

amplifies the variation in the first quantity while negative feedback diminish it (IPCC, 2013a,b).

There are many positive and negative feedbacks in the Earth’s climate system. For instance,

water vapour functions as a positive feedback. The first perturbation is the increase of surface

temperature which enhances the amount of atmospheric water vapour through the evaporation

from water bodies such as the sea surface. Since water vapour functions as a GHG, the higher

amount of water vapour in turn enhances the greenhouse effect and thus produces further

warming on the Earth’s surface. Another example is the long-wave radiation (LWR) that is

emitted from the top of the atmosphere. An increase in the atmospheric temperature enhances

the emission of energy through LWR (according to Stefan–Boltzmann law; Liou, 2002). This

increase in amount of outgoing radiation cools down the Earth. Thus, it is described as a

negative feedback as it diminishes the original warming, also called as the Planck feedback

(IPCC, 2013b).

For simplicity, this thesis briefly mentions only natural forcing factors that mostly dominate

the influence on the climate system in millennia time scales. The orbital forcing is the dominant

external forcing factor and consists of three elements: the tilt of the Earth’s axis (also called

obliquity), its precession, and eccentricity of the Earth’s orbit around the Sun. These elements

change with a periodicity of around 100, 41 and 23 thousand years, respectively (Fig. 1.11).

They determine the incoming solar radiation at the top of the atmosphere (Milankovitch, 1941),

which is the main driver of the climate system (Sect. 1.1). Volcanic activity and atmospheric
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Figure 1.11: Illustration of the three elements of the orbital forcing. Upper panel represents the eccentricity,
bottom left obliquity and bottom right precession. Source: Figure 2 in JAMSTEC (2014).

composition are considered the dominant internal forcing factors. They are part of the climate

system and their changes can influence Earth’s radiative balance (IPCC, 2013b).

Elements of the climate system have a different temporal response to changes in the

external and internal forcing. This response ranges from days to millennia. For instance, the

atmospheric response is no longer than a few months and the one of oceans and ice sheets can

last for decades until centuries or millennia. It is important to mention that the interactions

between the elements of the climate system are non-linear. This interaction and the different

responses are together the reason that climate system is never in full equilibrium. Hence, they

lead to additional fluctuations in the elements of the climate system, which is particularly

important when there are no changes in the external and internal forcing. These fluctuations

are known as internal variability, whose important consequence is that a great part of climate

variations can hardly be predicted on relatively short time scales. El Niño Southern Oscillation

(ENSO) is an example of internal variability in present-day climate. ENSO comes from the

atmosphere-ocean interaction in the tropical Pacific (Sect. 1.2.2).

The climate of the past has changed from glacial to interglacial periods several times

in the last 800 thousand years (Sigman and Boyle, 2000; Schilt et al., 2010). This thesis

focuses on the climate state of the two last glacial periods. The following sections briefly
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explain these climate states and the two available techniques to reconstruct them: proxy-based

reconstructions and climate modelling.

1.5.1 Proxies

The present-day climate is characterised by spatial networks of stations that directly

measure the elements of the climate system, e.g., temperature, precipitation and humidity.

This has only been possible in the modern times. To reconstruct the climate conditions

of the past, the scientific community has focussed on indirect measurements, the so-called

natural climate proxy archives and their underlying proxy reconstructions. Proxy archives can

be defined as the elements that preserve characteristics of the past that stand in for direct

measurements (NCEI, 2018). There are several types of proxy archives, e.g., ice cores, lake and

marine sediments, corals, pollen, stalagmites and tree rings (e.g., Li et al., 2010; Emile-Geay

et al., 2017). They are sensitive to climate variables at different time scales as they preserve

the climate information in different ways. One proxy archive may be good at short time scales,

while another better at longer time scales. For instance, tree rings are used to infer the climate

of the last few millennia whereas ice cores beyond tens of millennia. Proxy reconstructions are

the climate information that is defined as the statistical relationships between characteristics

in the proxy archives and climate variables. These relationships are normally based on present

day to infer the climate of the past. Some proxy archives are briefly explained in the following.

Glaciers provide valuable information about the climate of more than tens of millennia

ago. As mentioned in Sect 1.3.2, they are made of accumulated snow. While snow accumulates

on the surface, air bubbles and particles can be captured and stored in glaciers. This process

forms distinct layers as the air composition and particles vary across time. These layers are

collected in deep-ice samples made by drilling the glaciers, the so-called ice cores. Some places

on the Earth can offer ice cores with a very long temporal extension as they have permanently

been frozen for very long periods, e.g. both poles and the tops of mountains (NCEI, 2018;

USGS, 2021). Ice cores can provide information about temperature, precipitation, atmospheric

composition, volcanic activity, and even wind patterns (e.g., Lambert et al., 2012; Adolphi

et al., 2018; Brook and Buizert, 2018; Erhardt et al., 2019; Svensson et al., 2020).

Plants have existed for more than many million of years (Stewart and Rothwell, 2010).

Each flowering plant produces distinctive pollen grains. This means that features of pollen

grains permit to identify the type of plant from which they come. Pollen grains are deposited

on the surface or in water bodies like lakes and oceans. Pollen grains can also be transported

by wind for long distances before deposition. Some pollen grains do not become a plant and

are preserved on the land surface or at the bottom of the water bodies for long periods, the

so-called pollen records. They are part of layers that represent the deposition of other material

as well, also known as sediment layers (NCEI, 2018; USGS, 2021). Pollen records can be used

to infer the climate of an area based on the types of plants found in the layers (e.g., Camuera

et al., 2019; Shi et al., 2020).



1.5. PAST CLIMATE 25

Figure 1.12: Elements of the climate system that are considered as proxy archives. Left panel represents
pollen records, middle ice cores, and right stalagmites. Source: NCEI (2018).

Stalagmites are part of the natural calcium carbonate deposits (speleothems) that form in

a cave environment. They are also considered as a type of rock formation whose shape is

often similar to bamboo shoots. This rock formation arises from the floor of a cave due to the

accumulation of deposited material that comes from drops enriched in Ca+
2 and HCO3 that

fall from the cave ceiling onto the floor. A variety of measurable parameters in stalagmites

are used to infer key aspects of climate variability. Some of them are stable isotope ratios,

growth-rate changes, variations in trace element ratios, organic acid contents and the nature of

trapped pollen grains. Stalagmites are often well preserved and their records can be continuous

with relatively long-time coverage of hundreds to thousands years. Stalagmites can provide

information about mean annual temperature, rainfall variability, atmospheric circulation

changes and vegetation response (Schwarcz, 1986; Gascoyne, 1992; McDermott, 2004; Fairchild

and Treble, 2009; Cheng et al., 2019; Tan et al., 2020).

1.5.2 Climate Models

Climate models have become a unique opportunity to study past, present and future

climate states as they function as a complementary way to further characterise and understand

the climate system. Climate models can be described as mathematical representation of the

climate system. The representation is based on physical, chemical and biological principles that

describe mechanisms of the Earth system, its elements and their interactions. Climate models

are overall unable to analytically solve these mechanisms. They instead provide spatially and

temporally discretised solutions, i.e., the equations are numerically solved. This means that

climate models split the Earth into many boxes called grid cells. The size of these grid cells

is known as spatial resolution and can vary from one to another climate model (e.g., Fig.
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1.13). Climate models also use parametrisations to represent finer processes and to include

approximations of mechanisms that cannot be expressed in a mathematical equation. The

latter are based on empirical evidence.

Figure 1.13: Geographic resolution characteristic of the generations of climate models used in the IPCC
Assessment Reports. First (“FAR”) published in 1990, second (“SAR”) in 1995, third (“TAR”) in 2001 and
fourth (“AR4”) in 2007. Source: adapted from Fig. 1.4 in IPCC (2007).

The choice of the model generally depends on the scientific purpose and on technical

considerations such as available computing power and storage facilities. Studies often use less

complex models when the research question focuses on large number of experiments or it aims

attention at largely temporal and spatial scales. Available climate models are normally classified

according to their complexity. Models range from very simple low-dimensional box models like

one-dimensional energy balance models to very complex models, also called comprehensive

climate models, e.g., Earth System Models (ESMs; examples in Fig. 1.13; Trenberth, 1992;

IPCC, 2007). ESMs usually contain sub-models, e.g., ocean, the atmosphere, the ice, the land

surface, that encompass all interactive three-dimensional processes of the climate system. It

is important to mention that the spatial resolution can vary across these sub-models (e.g.,

Hofer et al., 2012b; Merz et al., 2014; Meehl et al., 2019; Lofverstrom et al., 2020). Two

climate models are used in this thesis: the global climate model Community Climate System

Model version 4 (CCSM4) and the regional climate model Weather Research and Forecasting

(WRF) model. Besides the climate models, the vegetation model Lund-Potsdamn-Jena-LMfire

(LPJ-LMfire) is employed in combination with the two climate models in this thesis. Both

climate models and the vegetation model are in detail described in chapter 2.

1.5.3 Glacial Periods

Glacial climate states are of great interest for a variety of scientists as their climate

conditions are highly different compared to today’s climate. This offers the opportunity to

further understand the Earth’s system under different forcing factors. This thesis focuses on
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two glacial climate states: the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4

(MIS4). Both climate states are briefly introduced in the following.

The Last Glacial Maximum is the most recent glacial period and dates back to around 21

thousand years ago (Yokoyama et al., 2000; Clark et al., 2009; Van Meerbeeck et al., 2009;

Hughes et al., 2013). Compared to present day, the LGM was characterised by large ice sheets

in the Northern Hemisphere (e.g., Fig. 1.14), a global mean temperature roughly 5 to 6.5 ◦C

colder (Otto-Bliesner et al., 2006; Löfverström et al., 2014), a global sea level of 115 to 130 m

lower (Lambeck and Chappell, 2001; Lambeck et al., 2014; Peltier and Fairbanks, 2006), and

the atmospheric greenhouse gases (GHGs) in a lower concentration (Brady et al., 2013; Cao

et al., 2019). The global sea-level lowering led to global changes in the land-sea distribution

and its associated coastlines (e.g., Fig. 1.14). Closure of the Bering Strait is for example one

of the most prominent variations in the northern hemispheric land-sea geography (e.g. Hu

et al., 2007, 2010, 2015). The atmospheric circulation was strongly altered by these global

changes, especially by the large ice sheets (e.g., Lâıné et al., 2009; Löfverström et al., 2014;

Ullman et al., 2014; Beghin et al., 2015; Löfverström et al., 2016) and the different land-sea

distribution (e.g., DiNezio and Tierney, 2013). This accordingly affected precipitation patterns

(e.g. Bartlein et al., 2011; Beghin et al., 2016; Lora, 2018; Lofverstrom, 2020).

Figure 1.14: Schematic land surface and coastlines (topography) over North America at present day and LGM.
Left panel represents the topography from present day and right from LGM. Elevated LGM topography is
results of an increased ice-sheet thickness and the different coastlines is due to the lowered sea level. Source:
http://polarmet.osu.edu/paleonwp/terrain.jpg.

In Europe, proxy reconstructions suggest that the LGM climate was 10 to 14 ◦C colder

and around 200 mm year−1 drier compared to present day (Wu et al., 2007; Bartlein et al.,

2011). These climatic conditions have strong implications not only for nature but also for

humans as they drove the human behaviour during the LGM (Burke et al., 2017; Wren and

Burke, 2019), e.g., the spatial distribution of populations and the influence on the cultural and

biological evolution (Kaplan et al., 2016). For example, small groups of highly mobile Upper

Paleolithic hunter-gatherers persisted in the face of inhospitable climate, while Neanderthals

disappeared (Finlayson, 2004; Finlayson et al., 2006; Finlayson, 2008; Burke et al., 2014; Maier

et al., 2016; Baena Preysler et al., 2019; Klein et al., 2021).

http://polarmet.osu.edu/paleonwp/terrain.jpg
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The Last Glacial Maximum is the most studied glacial period in terms of climate

simulations, e.g., Earth system modelling. The reason is that its very different boundary

conditions are well known (Mix et al., 2001), which makes the LGM be a good testbed of

models’ ability to faithfully reproduce a range of other climate states (e.g., Mix et al., 2001;

Braconnot et al., 2012; Harrison et al., 2014, 2015; Janská et al., 2017; Cleator et al., 2020).

Global climate models (GCMs) are generally consistent with the proxy reconstructions in

simulating an LGM European climate that is largely colder than present day (e.g., Ludwig

et al., 2016; Hofer et al., 2012a). However, GCMs partly disagree in comparison to proxy

reconstructions, particularly concerning the magnitude and spatial patterning of temperature

and precipitation (Harrison et al., 2015). The coarse spatial resolution of the GCMs is one

possible reason for the disagreement. GCMs may not appropriately represent all the processes,

especially the influences of mountains, ice sheets, and water bodies on the regional climate

(Rauscher et al., 2010; Gómez-Navarro et al., 2011, 2012, 2013; Di Luca et al., 2012; Prein

et al., 2013; Demory et al., 2020; Iles et al., 2020).

The application of regional climate models (RCMs) has led to improvements in the

representation of regional and local climate (e.g., Kjellström et al., 2010; Strandberg et al.,

2011; Gómez-Navarro et al., 2012, 2013; Ludwig et al., 2017, 2020). Regional climate models

downscale the information of GCMs, which offers a clear benefit to answer paleoclimate research

questions as it improves the interpretation of climate modelling and proxy reconstructions

during the LGM (Ludwig et al., 2019). Still, studies have demonstrated that RCMs require

appropriate surface boundary conditions to properly represent the lower troposphere as they

play a crucial role in regulating water and energy fluxes between the land surface and the

atmosphere (e.g., Crowley and Baum, 1997; Kjellström et al., 2010; Strandberg et al., 2011,

2014; Gómez-Navarro et al., 2015; Jia et al., 2019; Ludwig et al., 2017, 2019). This becomes

the first focus of this thesis: a more accurate representation of the regional glacial climate. For

the better representation, the regional climate model WRF is used in combination with the

global climate model CCSM4 and the vegetation model LPJ-LMfire. Please see chapter 2 for a

detailed information about WRF, CCSM4 and LPJ-LMfire.

The analysis of this thesis is extended to the glacial period Marine Isotope Stage 4 (MIS4)

which is the predecessor glacial period of LGM and dates back to around 65 thousand years

ago (Boch et al., 2011; Obrochta et al., 2014). Compared to present day, the available proxy

reconstructions suggest that the MIS4 had a minimum summer insolation in the Northern

Hemisphere (Goñi and D’Errico, 2005), a global mean temperature approximately 3 to 4 ◦C

colder (Löfverström et al., 2014), a global sea-level drop of roughly 90 ± 10 m (e.g., Cutler et al.,

2003; Siddall et al., 2008, 2010; De Deckker et al., 2019) and ocean temperatures up to 10 ◦C

lower (Goñi and D’Errico, 2005). Compared to the LGM, proxy reconstructions characterise

the MIS4 to be warmer (e.g., Eggleston et al., 2016; Newnham et al., 2017; De Deckker et al.,

2019) with higher GHGs (e.g. CO2; Eggleston et al., 2016). Note that these relatively warmer

conditions are still enough to define MIS4 as glacial period since they were colder compared to

the previous and after millennia (e.g., De Deckker et al., 2019). Also, these relatively higher

GHGs were still low compared to present day. For humans, these MIS4 climatic conditions
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have strong implications as Homo sapiens started migrating out-of-Africa towards Eurasia

during this period (Tierney et al., 2017). Still, the MIS4 climate is less understood than the

LGM as proxy-based data availability is reduced (López-Garćıa et al., 2018), especially on

regional scales, e.g., over Europe. Moreover, there is very few evidence about the role of the

ice-sheet topography in the regional climate like the Alps during glacial times, which becomes

the second focuses of this thesis. To assess the MIS4 climate and the role of the topography,

the regional climate model WRF is employed to carry out several sensitivity experiments.

Even though regional climate modelling provides a better understanding of the climate

system, biases can still be evident in the simulations, especially in precipitation (e.g., Ban et al.,

2014; Gómez-Navarro et al., 2018). These biases may impact the results obtained through

hydrological and glacier modelling that follows next in the modelling chain (Allen and Ingram,

2002; Seguinot et al., 2014; Felder et al., 2018). The correction of these biases is the third focus

of this thesis. A new correction method is presented for glacial conditions using an empirical

quantile technique.

1.6 Outline

The central goal of this thesis is to investigate the impact of glacial surface conditions

on the European climate using climate model simulations at glacial times. To achieve this,

the thesis focuses on three specific aims. The first specific aim is to estimate the role of

the land surface in the European glacial climate using the regional climate model WRF.

To that end, a more accurate glacial land cover is created using an asynchronous coupled

modelling design that combines the CCSM4, WRF and LPJ-LMfire models. The second

specific aim is to determine the influence of the ice-sheet topography on the Alpine climate

using several sensitive simulations done with the regional climate model WRF. The sensitive

simulations consist of modifying the thickness of northern hemispheric ice sheets: either the

Laurentide, Fennoscandian or Alpine ice sheet. Both specific aims are highly relevant for

the interpretation of proxy records and the further understanding of the regional climate as

they can more accurately represent regional-to-local processes compared to global climate

simulations. The last specific objective is to build a bias-correction method whose application

is more appropriate under highly different climate conditions such as glacial times. Thus, this

thesis presents a new bias-correction method for precipitation based on an empirical quantile

mapping technique and orographic features. This last objective is particularly important for

glaciologists as they use climate information as input for their glacier models. Accordingly, the

following leading research questions are formulated:

• What is the role of the land surface on the European climate at glacial times?

• How does the ice-sheet topography influence the Alpine climate at glacial times?
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• What method is more appropriate to correct precipitation biases in glacial simulations?

Each research question is responded in an individual chapter. The thesis is structured as

follows:

Chapter 2 describes the main tool of this thesis. It introduces the regional climate

model WRF and briefly describes its components: The model’s dynamical solvers are presented,

which contain most physics packages. A preprocessing system is also explained as it is needed

to prepare the terrestrial and meteorological data, i.e., input and boundary conditions, to run

WRF. This chapter also describes the models used to create the terrestrial and meteorological

data. Finally, the simulations that are analysed in this thesis are described in detail.

Chapter 3 estimates the role of the land surface in the European glacial climate. It

explains the asynchronous coupled modelling design that is used for building the new land

cover of Europe at the LGM. Results of the coupled model experiment are evaluated using

independent reconstructions of land cover and climate. Additionally, sensitivity tests are

performed to better understand the importance of land cover, which is done by forcing the

regional climate model with an alternative set of land-surface boundary conditions. This study

is published in the journal Climate of the Past (Velasquez et al., 2021).

Chapter 4 determines the influence of the ice-sheet topography on the Alpine glacial

climate. It explains the performance of two sets of sensitive tests: changes in the ice-sheet

topography of the North Hemisphere but not Alpine region, and changes only in the Alpine

ice-sheet topography. This chapter investigates the atmospheric branch of the hydrological

cycle over the Alpine region, particularly the changes in the precipitation patterns. To better

understand the driving mechanisms of these changes, this chapter also investigates the changes

in the atmospheric vertical profiles and wind fields over the Alpine region. This study has been

submitted to the journal Climate of the Past and it is under review (preprint, Velasquez et al.,

2021).

Chapter 5 presents a new bias correction that produces more reliable climate information.

It describes the bias-correction method that is based on complex orographic features with

focus on the Alpine region. Method’s performance is evaluated using a present-day climate

simulation and observational gridded data. The application to other climate states is assessed

with a LGM simulation, where the Alpine topography is strongly changed. This study is

published in the journal Geoscientific Model Development (Velasquez et al., 2020).

Chapter 6 provides a short discussion of the major results of this thesis. Additionally,

some shortcomings and possible follow-up studies are mentioned.
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Gómez-Navarro, J. J., Montávez, J. P., Wagner, S., and Zorita, E.: A regional climate palaeosimulation for Europe in

the period 1500-1990 - Part 1: model validation, Climate of the Past, 9, 1667–1682, doi:10.5194/cp-9-1667-2013,

2013.
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López-Parages, J., Rodŕıguez-Fonseca, B., Dommenget, D., and Frauen, C.: ENSO influence on the North

Atlantic European climate: a non-linear and non-stationary approach, Climate Dynamics, 47, 2071–2084,

doi:10.1007/s00382-015-2951-0, 2016.

Lora, J. M.: Components and mechanisms of hydrologic cycle changes over North America at the Last Glacial

Maximum, Journal of Climate, 31, 7035–7051, doi:10.1175/JCLI-D-17-0544.1, 2018.

Lu, K.-Q., Li, M., Wang, G.-H., Xu, L.-S., Ferguson, D. K., Trivedi, A., Xuan, J., Feng, Y., Li, J.-F., Xie,

G., Yao, Y.-F., and Wang, Y.-F.: New pollen classification of Chenopodiaceae for exploring and tracing

desert vegetation evolution in eastern arid central Asia, Journal of Systematics and Evolution, 57, 190–199,

doi:10.1111/jse.12462, 2019.

Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional atmospheric circulation over Europe during

the Last Glacial Maximum and its links to precipitation, Journal of Geophysical Research: Atmospheres, 121,

2130–2145, doi:10.1002/2015JD024444, 2016.

Ludwig, P., Pinto, J. G., Raible, C. C., and Shao, Y.: Impacts of surface boundary conditions on regional

climate model simulations of European climate during the Last Glacial Maximum, Geophysical Research

Letters, 44, 5086–5095, doi:10.1002/2017GL073622, 2017.
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Chapter 2

Regional Climate Modelling

Modelling tools such as global climate models (GCMs) are used to describe the Earth’s

system (Sect. 1.5.2). Still, GCMs poorly represent processes that govern the regional-to-local

scale due to their coarse resolution (e.g., Demory et al., 2020); thus, these processes need to be

parameterised (Leung et al., 2003; Su et al., 2012). Regional climate models (RCMs) are

another modelling tools. A regional climate model (RCM) is generally defined as the technique

to dynamically downscale global climate information over a limited area. The American

Meteorological Society in more detail defines a RCM as “a numerical climate prediction

model forced by specified lateral and ocean conditions from a general circulation model

(GCM) or observation-based dataset (reanalysis) that simulates atmospheric and land surface

processes, while accounting for high-resolution topographical data, land-sea contrasts, surface

characteristics, and other components of the Earth-system” (American Meteorological Society,

2019). RCMs overall improve the representation of the climate simulated by their driver GCMs

(e.g. Armstrong et al., 2019; Solman and Blázquez, 2019). The main reason is that RCMs have

an increased horizontal resolution compared to their driver GCMs and thus better represent

the topography and the interaction with other components of the climate system (Ludwig

et al., 2019). This is particularly important for topography-influenced phenomena such as

Föhn, the orographically forced upstream flow and the triggered summer convection. For

example, Bozkurt et al. (2019) found that RCMs represents temperature and precipitation

fields better than their driving GCMs in areas with complex topography, particularly, the

coastal-valley transitions. Ciarlo‘ et al. (2020) also observed that RCMs have a positive added

value, especially when analysing the tail-end of the precipitation distribution in areas of

complex topography and coast-lines. RCMs are used to directly resolve several processes

(no parameterisation, e.g., convection-permitting, Giorgi et al., 2016; Messmer et al., 2017).

Convection-permitting model resolutions are in general preferred as many recent studies show

a better performance in simulating precipitation (e.g., Ban et al., 2014; Prein et al., 2015;

Kendon et al., 2017; Berthou et al., 2018; Finney et al., 2019). Thus, RCMs improve the

representation of the elements of the Earth’s system that belongs to finer spatial scales (e.g.,

Kjellström et al., 2010; Strandberg et al., 2011; Gómez-Navarro et al., 2012, 2013; Ludwig et al.,

2017, 2020). Still, uncertainties arise in the RCMs when comparing them to observations. Some
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uncertainties are transferred from their driving GCMs in the initial and boundary conditions.

Other ones are originated by shortcomings in the parametrisations and selection of the model

domain (Flato et al., 2013)

This thesis is mainly based on simulations performed with the regional climate model

Weather Research and Forecasting (WRF) model which is a numerical weather prediction and

atmospheric simulation system. WRF model has collaboratively been developed since the

latter 1990’s by the National Center for Atmospheric Research (NCAR), the National Oceanic

and Atmospheric Administration (represented by the National Centers for Environmental

Prediction (NCEP) and the Earth System Research Laboratory), the U.S. Air Force, the Naval

Research Laboratory, the University of Oklahoma, and the Federal Aviation Administration

(FAA) (Skamarock and Klemp, 2008). WRF has been used in many studies across spatial

scales from thousands of kilometres at the relatively high spatial resolutions of some kilometres

(e.g., Zhang et al., 2012; González-Roj́ı et al., 2018; Ludwig et al., 2020) to hundreds of metres

at the exceedingly high horizontal resolutions of 10 to 500 metres (e.g., Wyszogrodzki et al.,

2012; Kochanski et al., 2013; Fiori et al., 2017; Siewert and Kroszczynski, 2020). The following

sections provide a brief description of WRF, its requirements to run and the sets of simulations

that are carried out for this thesis.

2.1 Weather Research and Forecast (WRF) Model

WRF model is a non-hydrostatic mesoscale model with a compressible atmosphere. Its

software infrastructure contains dynamical solvers, physics packages and initialisation programs.

Additionally, it accommodates two optional systems such as WRF-Var and WRF-Chem.

WRF-Var is a data assimilation system that that converts observational data sets in driving

climate information for WRF model. WRF-Chem is the chemistry system that permits the air

chemistry modelling in WRF model (Skamarock et al., 2008). Figure 2.1 depicts the WRF

components.

Dynamical solvers are technically the core of WRF and can either be the Advanced

Research WRF (ARW) solver, also known as Eulerian mass solver, developed primarily at NCAR

or the Non-hydrostatic Mesoscale Model (NMM) solver developed at NCEP. Most physics

packages are shared by both the ARW and NMM solvers; however, some specific compatibility

can vary between the schemes considered (Skamarock et al., 2008). The simulations of this

thesis are carried out using the version 3.8.1 of WRF and its underlying ARW solver. WRF-Var

and WRF-Chem are not implemented in the simulations. The equations are then presented

in the Eulerian flux form using variables with conservative properties. The equations are

formulated using terrain-following vertical coordinates whose uppermost level is on a constant

pressure level of 50 hPa. The terrain-following vertical coordinate (η) is defined as

η =
ph − pht

µ
, where µ = phs − pht , (2.1)
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Figure 2.1: WRF system components. Source: Fig. 1.1 in Skamarock et al. (2008).

where ph is the hydrostatic component of the pressure, and phs and pht are values along the

surface and top boundaries, respectively. The η values vary from 1 at the surface to 0 at the

upper boundary of the model domain. µ(x, y) represents the mass per unit area within the

column in the model domain at the grid point (x, y); thus, the flux form variables employed in

the governing equations are:

(U, V,W ) = V = µv , Ω = µη̇ and Θ = µθ . (2.2)

v = (u, v, w) refers to the covariant velocities in the two horizontal and vertical directions,

respectively. ω = η̇ is the contravariant ‘vertical’ velocity and θ the potential temperature.

There are other non-conserved variables used in the governing equations of the ARW such as

Φ = gz (the geopotential), p (pressure), and α = 1/ρ (the inverse density). Accordingly, the

flux-form Euler equations can be written as follows:

The momentum equation in x-direction is

FU =
∂U

∂t
+ (∇ ·Vu)− ∂(pφη)

∂x
+
∂(pφx)

∂η
. (2.3)

The momentum equation in y-direction is

FV =
∂V

∂t
+ (∇ ·Vv)− ∂(pφη)

∂y
+
∂(pφy)

∂η
. (2.4)

The momentum equation in z-direction is

FW =
∂W

∂t
+ (∇ ·Vω)− g

(
∂p

∂η
− µ

)
. (2.5)
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The thermodynamic energy equation is

FΘ =
∂Ω

∂t
+ (∇ ·Vθ) . (2.6)

The continuity equation is

∂µ

∂t
= −(∇ ·V) . (2.7)

The geopotential height equation is

µ
∂φ

∂t
= −(V · ∇φ) + gW . (2.8)

The equation of state is

p = p0

(
Rdθ

p0α

)γ
. (2.9)

The hydrostatic equation is

∂φ

∂η
= −αµ. (2.10)

Rd is the gas constant for dry air, p0 indicates the reference pressure that is commonly 105

Pascals and γ = cp/cv = 1.4 represents the ratio of the heat capacities for dry air. Additionally,

the following equations are used in the Eq. 2.3 to 2.8:

∇ ·Va =
∂Ua

∂x
+
∂V a

∂y
+
∂Ωa

∂η
(2.11)

and

V · ∇a = U
∂a

∂x
+ V

∂a

∂y
+ Ω

∂a

∂η
, (2.12)

where ”a” represents a generic variable. The left-hand-side terms FU , FV , FW and FΘ

(Eq. 2.3 – 2.6) represent forcing terms that appear from the model physics, turbulent mixing,

spherical projections and the Earth’s rotation. The here-presented equations are definitely not

complete. For simplicity, the terms for moisture, map projection, Coriolis and curvature are

omitted. Further details are presented in Skamarock et al. (2008) and Skamarock and Klemp

(2008).

The ARW solver uses the 3rd-order Runge-Kutta scheme for the time integration and the

second to the sixth order advection schemes for the spatial discretisation. The ARW solver also

uses an Arakawa C-grid staggered for the horizontal and vertical model grid. This means that
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mass and thermodynamic variables are staggered on-half grid from the wind components.

Namely, the mass and thermodynamic variables are located in the centre of the grid cell and

the wind components are at the border of the grid cell (Fig. 2.2).

Figure 2.2: Schematic diagram of the horizontal and vertical grids of the ARW. u and v represent the
horizontal wind components, W the vertical wind component, θ the mass and thermodynamic variable, ∆x, ∆y,
∆η the grid lengths. Source: Fig. 3.2 in Skamarock et al. (2008).

Nesting approach is supported by ARW solver. ARW-nesting permits to only increase

the temporal and horizontal resolution over a specific region. This means that ARW allows

the introduction of additional grids into the simulation. These grids are rectangular and

aligned with the parent grid. Only integer values are allowed to be used for the temporal and

horizontal refinements. A nest ratio of 1:3 is used for the grid refinement in the simulations of

this thesis. The simulations are carried out with a two-way nesting approach. This allows

the interface between the parent and the nested domain. The parent domain in each time

step provides the nested domain with information through lateral boundary conditions. The

nested domain at the same time delivers information back to the parent domain in the way

that the finer grid information replaces the one of the parent domain. There are three of

options of time-step approaches in ARW solver. In this thesis, the simulations are run using an

adaptive time step, i.e., the integration time step can vary from time to time. This time-step

scheme selects a time step based on the temporally-evolving wind fields which are typically

bigger than usual fixed time steps (Skamarock et al., 2008; Skamarock and Klemp, 2008). The

adaptive time step results in a throughput increase on the available computer facilities till

around 50 % (Hutchinson, 2007).

There are many physics options in WRF and they are organised in categories, the

so-called parametrisations, as follows: microphysics, cumulus, planetary boundary layer

(PBL), atmospheric surface layer, land-surface model (LSM), and atmospheric radiation. The

interactions between the parametrisations are depicted in Fig. 2.3. Each category offers several

options that need to be selected before running a simulation. For the simulations of this thesis,

the selection of the parametrisations are mostly based on previous studies that used similar

domains and GCMs and focused their investigation over the same region (e.g., Messmer et al.,
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Figure 2.3: Schematic diagram of interactions between WRF parametrisations (physics components). Source:
Fig. 8.1 in Skamarock et al. (2019).

2017; Gómez-Navarro et al., 2018). The chosen parametrisations are enlisted in Table 2.1. Note

that the cumulus parametrisation can be switched off below a certain grid spacing that is

usually defined between 4 and 6 kilometres (e.g., Prein et al., 2013; Pennelly et al., 2014;

Bonekamp et al., 2018; Gómez-Navarro et al., 2018) and rarely reaches 9 kilometres (e.g.,

Li et al., 2020). This permits the explicit solution of the convection-related equations, the

so-called convection-permitting.

2.2 Initial and Boundary Conditions for WRF

2.2.1 WRF Preprocessing System (WPS)

WRF Processing System (WPS) is the key for running WRF model and very important

in downscaling. WPS is a set of programs that prepare terrestrial and meteorological data for

prognostic calculation and data assimilation, i.e, the initial and boundary conditions to run the

ARW pre-processor program.

Geogrid is the first program that acts. It defines the physical grid which includes the

domains’ location, the projection type, the number of grid points and their in-between distances

(Fig. 2.4). Note that the ARW solver supports four projections to the sphere: the Lambert

conformal, the polar stereographic, the Mercator, and the latitude-longitude (Skamarock et al.,
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Table 2.1: Parameterisations used to run WRF.

Parameterisation Chosen parameterisation

Microphysics WRF single moment 6-class scheme

Cumulus Kain–Fritsch scheme

Planetary boundary layer Yonsei University scheme

Surface layer MM5 similarity

Land/water surface Noah–Multiparameterization LSM

Longwave radiation RRTM scheme

Shortwave radiation Dudhia scheme

2008). This thesis uses the Lambert conformal. Additionally, Geogrid interpolates static fields

to the prescribed domains. These static geographical data contains, among others, information

about the digital terrain model, vegetation indexes, soil type, albedo, terrain coverage, and

land use.

An external analysis is processed by the WPS GriB decoder independently of the domain

configuration, the so-called Ungrib program. This decoder diagnoses required fields which are

also known as the driving information, e.g., a GCM. This driving information is typically in

GRIB format and is converted by Ungrib program into an internal binary format (Fig. 2.4).

Figure 2.4: Scheme of data flow and program components in WPS. Source: Fig. 5.1 in Skamarock et al. (2008).

After Geogrid and Ungrib programs are successfully carried out, Meteogrid program

horizontally interpolates the meteorological data onto the projected domains (Fig. 2.4). The

resulting data is a snapshot of the atmosphere on the selected model grid’s horizontal staggering
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at the selected time slice. Each snapshot contains two- and three-dimensional fields. These

fields are known as initial and boundary conditions for running WRF. Two-dimensional fields

contain the static terrestrial fields already mentioned above. It also includes time-dependent

fields from the external model: surface and sea-level pressure, layers of soil temperature and

moisture, snow depth, skin temperature, sea surface temperature and a sea ice flag (also

known as mask). Three-dimensional fields contain: temperature, relative humidity and the

horizontal wind components already rotated to the model projection.

2.2.2 Community Climate System Model version 4 (CCSM4)

The global climate model (GCM) that drives WRF is the Community Climate System

Model (version 4; CCSM4, Gent et al., 2011). CCSM4 was run by Hofer et al. (2012a,b) and

Merz et al. (2015). Their simulations provide the initial and boundary conditions for WRF.

CCSM4 is the fourth generation of the fully-coupled Community Climate System Model

(CCSM) developed by NCAR. The code of the CCSM models is freely available to the scientific

community. CCSM4 consist of four models that simultaneously simulate elements of the Earth’s

climate system: atmosphere, ocean, land surface and sea ice. There is also a coupler that

exchanges information between these components. CCSM4 replaces its predecessor CCSM3 in

2010 with further developments in all components that improve the representation of the

Earth’s system. For example, there are important improvements in the frequency of ENSO

variability and the SST correlations with the whole Pacific Ocean. The land water storage

is improved together with the heat flux into the atmosphere and the runoff into the ocean.

CCMS4 better represents the frequency distribution of tropical precipitation, MJO variability,

the worldwide heat waves and very heavy rainfall. There is a much better representation of the

sea ice and its underlying albedo. Further improvements are presented in Gent et al. (2011). In

the same line of the GCMs from NCAR, CSSM4 is the predecessor of Community Earth

System Model 1 (CESM1; Hurrell et al., 2013). The main difference between CCSM4 and

CESM1 is the additional biology- and chemistry-related features.

CCSM4’s atmospheric and land component is described by the Community Atmosphere

Model version 4 (CAM4, Neale et al., 2010) and by the Community Land Model version 4

(CLM4, Oleson et al., 2010), respectively. These two components are coupled to so-called data

models for the ocean and sea ice. These surface boundary conditions are obtained from a

fully coupled simulation with CCSM3 at lower resolution (see details in: Hofer et al., 2012a).

CCSM3 provided monthly mean time-varying sea-ice cover and sea-surface temperatures.

Furthermore, the Community Ice Code (version 4, CICE4; Hunke and Lipscomb, 2010) is set to

its thermodynamic-only mode. This means that sea-ice cover is prescribed and surface fluxes

through the ice are computed by considering snow depth, albedo, and surface temperature as

simulated by CAM4 (Merz et al., 2015). The atmosphere-land-only model provides 6-hourly

output at horizontal resolution of 1.25 ◦ × 0.9 ◦ (longitude × latitude), 26 vertical hybrid

sigma-pressure levels. The model is run under perpetual forcing conditions, i.e., it uses fixed

forcing factors, which leads to a climate state that statistically shows no trends. This is also
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known as a climate state in equilibrium. The CCSM4 simulations used to run WRF are further

described in Sect. 2.3.

2.2.3 Vegetation Model Lund-Potsdamn-Jena-LMfire (LPJ-LMfire)

An addition model provides the initial and boundary conditions for WRF (Jed O. Kaplan

pers. comm.; Velasquez et al., 2021). The dynamic global vegetation model LPJ-LMfire

(Pfeiffer et al., 2013) is used to generate the land cover for the present day and LGM climate.

Note that LPJ-LMfire is an evolution of the vegetation model Lund-Potsdamn-Jena (LPJ,

Sitch et al., 2003). At each grid cell, LPJ-LMfire simulates land cover in the form of the

fractional coverage of population of different plant functional types (PFTs). These PFTs are

overall defined to account for the variety of structure and function among plants (Smith et al.,

1993). LPJ-LMfire uses nine plant functional types (PFTs) that include tropical, temperate,

and boreal trees, and tropical and extratropical herbaceous vegetation (Sitch et al., 2003).

LPJ-LMfire is a processed-based, large-scale and explicit representation of the vegetation

structure and dynamics, the competition between PFT populations and the soil biochemistry.

LPJ-LMfire simulates the land cover patterns in response to the climate and soil conditions,

and the atmospheric CO2 concentrations, which includes land-atmosphere water and carbon

exchanges (Prentice et al., 1992; Haxeltine and Prentice, 1996; Haxeltine et al., 1996; Kaplan,

2001; Kaplan et al., 2016). Note that LPJ-LMfire also considers bioclimatic features that

constrain the survival and regeneration of the PFTs.

A typically LPJ-LMfire simulation begins from the ”bare ground” (no plant biomass

present) and spins up many years until approximate equilibrium is reached with respect to

carbon pools and vegetation cover. In this thesis, the LPJ-LMfire simulations are run for 1020

years with the climate state and forcing (greenhouse gases: CO2, N2O and CH4) from the

CCSM4 and WRF, and the present-day soil physical properties extrapolated out on to the

continental shelves (Kaplan et al., 2016). Such a long simulation is not necessary to bring

above-ground vegetation into equilibrium with climate but it allows soil organic matter to

equilibrate. Note that these simulations are performed by J. O. Kaplan.

2.3 Regional Climate Simulations

In this thesis, 438 years are simulated with WRF to build 11 experiments in total. These

experiments consist of several WRF simulations driven by five CCSM4 simulations. Each

CCSM4 simulations covered 33 years with a 3-year spin-up. The spin-up period is not used to

drive any WRF simulation. Two of these CCSM4 simulations are performed under perpetual

conditions of 1990 CE (present day or PD) and the Last Glacial Maximum (LGM), respectively.

Other three of these CCSM4 simulations are run using perpetual conditions of the Marine

Isotope 4 stage (MIS4) period. Each MIS4 simulation is performed with a different northern

hemispheric ice-sheet thickness: 66, 100 and 125 % of the LGM ice-sheet thickness, respectively.

More detailed information on the simulations and their settings are presented in Hofer et al.
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Table 2.2: External forcing used in Hofer et al. (2012a,b) for 1990 CE, LGM and MIS4 conditions.

Parameter name 1990 AD LGM MIS4

TSI (W m−2 ) 1361.77 1360.89 1360.89

Eccentricity (10−2) 1.6708 1.8994 0.020713

Obliquity (◦) 23.441 22.949 22.564

Angular precession (◦) 102.72 114.43 15.22

CO2 (ppm) 353.9 185 205

CH4 (ppb) 1693.6 350 460

N2O (ppb) 310.1 200 210

(2012a,b) and Merz et al. (2013, 2014a,b, 2015). Perpetual conditions, i.e., orbital forcing and

atmospheric composition, are enlisted in Table 2.2. The 11 experiments are split in two groups:

two-domain and four-domain simulations. They are in detail explained in the following.

a) b)

Figure 2.5: WRF domains and topography for the two-domain experiments. (a) illustrates the present-day
topography and the two domains at 54 and 18 km horizontal resolution, (b) as (a) but for the LGM.

2.3.1 Two-domain Experiments

The first group encompasses three experiments that are used to gain insights in the role

of the land cover on the European climate. These experiments consist of WRF simulations

with 40 vertical eta levels and two domains at 54 and 18 km horizontal resolutions, respectively

(domains in Fig. 2.5). Each WRF simulation is run for 30 years and split up into two single

15-year simulations. Each 15-year simulation is performed with a 2-month spin-up to account

for the time required for the land surface to come into equilibrium. Tests show that the
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Table 2.3: Variables passed between GCM/WRF and LPJ-LMfire.

GCM/WRF to LPJ-LMfire

30-year monthly values

mean temperature at 2 m convective available potential energy

daily max. temperature at 2 m horizontal wind velocity at 10 m

daily min. temperature at 2 m precipitation (liquid and solid)

total cloud cover fraction

LPJ-LMfire to WRF

30-year monthly values climatological value

vegetation cover fraction land cover fraction (category)

leaf area index dominant land cover type (category)

soil temperature

WRF land surface scheme reaches a quasi-equilibrium after approximately 15 days. Further

information about these tests is presented in the second paragraph of the next section (Sect.

2.3.2).

The first experiment (two-domain LGMLGM) is driven by the CCSM4 simulation with

LGM perpetual conditions (Hofer et al., 2012a). Reduced sea level and increased ice sheets are

used for LGM conditions as specified in the PMIP3 protocol (for more details see: Hofer et al.,

2012a; Ludwig et al., 2017). The LGM glaciation over the Alpine region is obtained from

Seguinot et al. (2018) and additional LGM glaciated areas (e.g., Pyrenees, Carpathians) are

from Ehlers et al. (2011). The following variables are accordingly modified in WPS: The

present-day topography is subtracted from the PMIP3 topography. This difference is added to

the WRF topography (HGT M). Similarly, the other LGM glaciated areas (e.g., Pyrenees,

Carpathians) are included in the the WRF topography (HGT M). Due to the lowering sea

level, the land surface coverage (LANDMASK) is increased, which leads to missing land

cover information over the new land surface that was covered by water during present day.

Comparing Fig. 2.5a to Fig. 2.5b illustrates the changes in the topography and surface coverage

between present day and LGM conditions. This LGM land cover information is provided

by this experiment (two-domain LGMLGM), particularly by the LPJ-LMfire model. It is

important to highlight that this experiment (two-domain LGMLGM) is the final product of an

iterative asynchronous coupling design that is used to create the best possible estimate of

European land cover for the LGM (chapter 3; Velasquez et al., 2021). The coupling design

combines CCSM4/WRF with LPJ-LMfire model and consists of four steps: (i) CCSM4 provides

atmospheric variables to generate the first approximation of land cover with LPJ-LMfire at

a horizontal resolution of 1.25 ◦ × 0.9 ◦ (longitude × latitude). (ii) WRF is driven by the

CCSM4 with LGM perpetual conditions and the first approximation of land cover created in

step (i) to generate the first downscaled atmospheric variables at 54 and 18 km resolution. (iii)
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LPJ-LMfire is run with the downscaled atmospheric variables (from step ii) to regenerate the

land cover at the WRF resolution. (iv) Same as in (ii) but WRF uses the land surface boundary

conditions simulated at 54 and 18 km. Step (iii) and (iv) are carried out asynchronously over

six iterations to achieve a quasi-equilibrium between the climate and land cover. Parts (i) and

(ii) are considered as the first iteration and the iterations of (iii) and (iv) were considered as the

second-to-seventh iterations. The variables that are passed between the climate and vegetation

models are summarised in Table 2.3. A simple scheme is used to classify the vegetation

cover fraction of LPJ-LMfire PFTs into the land cover categories that are required by WRF

(according to NOAH-MP MODIS; Niu et al., 2011). The code for the classification is presented

in Kaplan et al. (2018).

The second experiment (two-domain PDPD) is a WRF simulation that is driven by the

CCSM4 simulation with 1990 CE perpetual conditions (Hofer et al., 2012a). It uses the

default present-day MODIS-based land cover dataset from WRF as the land surface boundary

condition (Skamarock and Klemp, 2008).

The third experiment (two-domain LGMPD) uses the CCSM4 simulation with LGM

perpetual conditions (Hofer et al., 2012a), but with the default present-day MODIS-based land

cover dataset from WRF as for the land surface.

a) b)

Figure 2.6: WRF domains and topography for the four-domain experiments. (a) illustrates the present-day
topography and the four domains at 54, 18, 6 and 2 km horizontal resolution, (b) as (a) but for the LGM.

Comparing two-domain LGMPD with two-domain PDPD illustrates the atmospheric

response to changes only in the atmospheric forcing, i.e., without changes in land cover. The

comparison of two-domain LGMLGM and the two-domain LGMPD allows to investigate the

influence of land cover on the atmosphere, i.e., without changes in atmospheric boundary

conditions. These three experiments are summarised in Table 2.4. The results of this first

group of experiments are presented in chapter 3 and in (Velasquez et al., 2021).
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2.3.2 Four-domain Experiments

The second group encompassed eight experiments that are used to gain insights into the

influence of the ice-sheet topography on the Alpine climate. These experiments consist of WRF

simulations with 40 vertical eta levels and four domains at 54, 18, 6 and 2 km horizontal

resolutions, respectively (domains in Fig. 2.6). The resolution in the two innermost domains (6

and 2 km) permits the explicit resolution of convective processes. Thus, no parameterisation

for convection is used in these two domains and precipitation is described by microphysical

processes (Table 2.1). Moreover, the innermost domain (2 km) covers the highly complex

terrain of the Alps. Each WRF simulation was split up into single 3-year simulations.

Diff. LGMALPSLESS - LGM

Figure 2.7: Innermost domain used by WRF. It shows the difference between LGMALPSLESS and LGM
topography.

Each 3-year simulation is performed with a spin-up period to account for the time required

for the land surface to come into equilibrium. Many studies suggest different spin-up periods

ranging from days to several months mostly depending on the variables that are analysed

afterwards (e.g., Christensen, 1999; Giorgi and Bi, 2000; Jankov et al., 2007; Jerez et al., 2010,

2012, 2013; Argüeso et al., 2011; Angevine et al., 2014; Montavez et al., 2017; Zheng et al.,

2017; González-Roj́ı et al., 2018; Li et al., 2020). For instance, Bonekamp et al. (2018) found

that precipitation has the best performance with 24 hours of spin-up; however, it does not show

a clear trend with increasing spin-up time over 24 hours. This allows to set a spin-up more

flexible. To determine this spin-up, tests are done with the focus on the 1-year soil response

after initialisation and on the four parameterised soil layers of the WRF land-surface scheme,

i.e., down to 2 m. The climatological annual cycle is first subtracted in each 3-years simulation,

i.e., one obtains daily soil moisture anomalies (Fig. 2.8, grey lines). Note that the climatological

annual cycle is calculated from the ten simulations without the spin-up periods, and that the

anomalies are divided by the climatological annual cycle to be presented in percentages. To

reduce the noise of the internal variability, the anomalies are averaged (Fig. 2.8, dark lines).
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Note that each 3-year simulation represents the present-day climate state. Additionally, we

carry out the Mann-Kendall test (Mann, 1945; Kendall, 1948; Gilbert, 1987) combined with

the Theil-Sen trend estimation method (Theil, 1950; Sen, 1968) to identify any trend and its

probability of occurrence. Figure 2.8 shows no significant trend after 10 days in the four layers,

which initially suggests that the spin-up period could be set at around 15 days. To ensure that

the mode is in quasi-equilibrium, a longer spin-up is defined covering 61 days, i.e., 2 months.

Figure 2.8: Soil moisture over the fourth layers of the WRF soil scheme. (a) represents the first layer with a
thickness of 0.1 m, (b) the second layer with a thickness of 0.3 m, (c) the third layer with a thickness of 0.6
m, and (d) the fourth layer with a thickness of 1.0 m. Grey lines represent non-seasonality anomalies, black
lines the average of the anomalies, blue dashed lines anomaly zero, and red dashed lines the 61-day spin-up.
Trend and probability of occurrence for three periods after applying the Mann-Kendall test combined with the
Theil-Sen trend estimation method: 61 days, 1 year with and without spin-up, separately.

The first (four-domain PDPD) and second experiment (four-domain LGMLGM) are

WRF simulations that run for 30 years using 1990 CE and LGM perpetual conditions,
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Table 2.4: Set of experiments carried out in this study. The first column indicates the name of the experiment
(WRF simulation), the second column the perpetual conditions, the third column the northern hemispheric
ice-sheets (this includes the modifications in the driving global model), the fourth column the FIS, the fifth
column the Alpine glaciers, the sixth column the land cover, and the seventh column the length of the simulation.

Perpetual North Hemis.Fennoscandian Alpine Land Sim.

Name conditions ice sheets ice sheet glaciers cover length

Two-domain experiments at 54 and 18 km horizontal resolution

PDPD 1990 1990 1990 1990 1990 30 yr

LGMPD LGM LGM LGM LGM 1990 30 yr

LGMLGM LGM LGM LGM LGM LGM 30 yr

Four-domain experiments at 54, 18, 6 and 2 km horizontal resolution

PDPD 1990 1990 1990 1990 1990 30 yr

LGMLGM LGM LGM LGM LGM LGM 30 yr

LGMALPSLESS LGM LGM LGM reduced LGM LGM 21 yr

LGMFENNO50 LGM LGM 50 % LGM LGM LGM 12 yr

LGMFENNO150 LGM LGM 150 % LGM LGM LGM 12 yr

MIS4LGM66 MIS4 66 % LGM LGM LGM LGM 21 yr

MIS4LGM MIS4 100 % LGM LGM LGM LGM 21 yr

MIS4LGM125 MIS4 125 % LGM LGM LGM LGM 21 yr

respectively (Table 2.2). Similar to two-domain PDPD, the four-domain PDPD also uses the

default present-day MODIS-based land cover dataset from WRF as the land-surface boundary

conditions (Skamarock and Klemp, 2008). Similar to the two-domain LGMLGM, the surface

conditions also need some further adjustments for the four-domain LGMLGM. These include

the reduced sea level and the Fennoscandian ice sheets as specified in the PMIP3 protocol (Fig.

2.6b; for more details see: Hofer et al., 2012a; Ludwig et al., 2017). The LGM glaciation over

the Alpine region is included in the regional climate model using estimates from Seguinot

et al. (2018) and additional LGM glaciated areas (e.g., Pyrenees, Carpathians) from Ehlers

et al. (2011). Figure 2.6a shows the present-day topography and surface coverage used in the

four-domain PDPD. Figure 2.6b illustrates the LGM topography and surface coverage used

in the four-domain LGMLGM. Additionally, the land cover is altered to comply with LGM

conditions. To that end, the land cover is obtained from two-domain LGMLGM, i.e., from

the final product of an iterative asynchronous coupling design (Sect. 2.3.1; Velasquez et al.,

2021). Results of these two experiments (four-domain PDPD and LGMLGM) are described in

chapter 5, where they are used to develop a new bias correction suitable for climate states with

strongly changed topography.
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The third to fifth experiments (LGMALPSLESS, LGMFENNO50 and LGMFENNO150, respec-

tively) are WRF simulations that are performed similar as the four-domain LGMLGM but

with a shorter temporal extent and a modified European ice-sheet topography. LGMALPSLESS

is run for 21 years and with a reduced Alpine glacier thickness. This reduction becomes

stronger with height; namely, the Alpine ice sheet is strongly reduced over mountain peaks

and slightly over the low lands. Figure 2.7 shows the changes in the Alpine glacier thickness

between four-domain LGMLGM and the LGMALPSLESS. LGMFENNO50 is performed for 12

years with a Fennoscandian glacier thickness reduced by 50 %. LGMFENNO150 is also run for

12 years but the Fennoscandian glacier thickness is increased by 150 %.

The sixth to eighth experiment (MIS4LGM66, MIS4LGM and MIS4LGM125, respectively)

are WRF simulations that are run for 21 years using MIS4 perpetual conditions and using the

LGM land cover from two-domain LGMLGM. Following their driving CCSM4 simulations, each

WRF simulation is performed with a different European ice-sheet thickness: 66, 100 and 125 %

of the LGM ice-sheet thickness, respectively. Note that the Alpine ice sheet is not modified in

these sixth-to-eighth experiments. These eight experiments are summarised in Table 2.4.
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Abstract. Earth system models show wide disagreement
when simulating the climate of the continents at the Last
Glacial Maximum (LGM). This disagreement may be related
to a variety of factors, including model resolution and an in-
complete representation of Earth system processes. To as-
sess the importance of resolution and land–atmosphere feed-
backs on the climate of Europe, we performed an iterative
asynchronously coupled land–atmosphere modelling exper-
iment that combined a global climate model, a regional cli-
mate model, and a dynamic vegetation model. The regional
climate and land cover models were run at high (18 km)
resolution over a domain covering the ice-free regions of
Europe. Asynchronous coupling between the regional cli-
mate model and the vegetation model showed that the land–
atmosphere coupling achieves quasi-equilibrium after four it-
erations. Modelled climate and land cover agree reasonably
well with independent reconstructions based on pollen and
other paleoenvironmental proxies. To assess the importance
of land cover on the LGM climate of Europe, we performed
a sensitivity simulation where we used LGM climate but
present-day (PD) land cover. Using LGM climate and land
cover leads to colder and drier summer conditions around the
Alps and warmer and drier climate in southeastern Europe
compared to LGM climate determined by PD land cover.
This finding demonstrates that LGM land cover plays an im-
portant role in regulating the regional climate. Therefore, re-
alistic glacial land cover estimates are needed to accurately
simulate regional glacial climate states in areas with inter-
plays between complex topography, large ice sheets, and di-
verse land cover, as observed in Europe.

1 Introduction

The Last Glacial Maximum (LGM, 21 ka; Yokoyama et al.,
2000; Clark et al., 2009; Van Meerbeeck et al., 2009) is a
period of focus for Earth system modelling because it repre-
sents a time when boundary conditions were very different
from the present and is therefore a good test bed of mod-
els’ ability to faithfully reproduce a range of climate states
(e.g. Mix et al., 2001; Janská et al., 2017; Cleator et al.,
2020). In Europe, the LGM is also an interesting period in
human history because small groups of highly mobile Up-
per Paleolithic hunter-gatherers persisted in the face of inhos-
pitable climate, while Neanderthals disappeared (Finlayson,
2004; Finlayson et al., 2006; Finlayson, 2008; Burke et al.,
2014; Maier et al., 2016; Baena Preysler et al., 2019; Klein
et al., 2021). However, despite more than 3 decades of re-
search, the LGM climate of the continents is only poorly un-
derstood. Global climate models (GCMs) show little agree-
ment in LGM simulations for Europe (Braconnot et al., 2012;
Kageyama et al., 2017; Ludwig et al., 2019; Kageyama et al.,
2021). It has been suggested that a reason for the large uncer-
tainty could be related to the spatial resolution in the climate
models (Walsh et al., 2008; Jia et al., 2019b; Ludwig et al.,
2019; Raible et al., 2020). Advances in regional climate mod-
els have led to the application of such models to the glacial
climate of Europe on a high spatial resolution (e.g. Kjell-
ström et al., 2010; Strandberg et al., 2011; Gómez-Navarro
et al., 2012, 2013; Ludwig et al., 2017, 2020). Here, we fur-
ther investigate the importance of land cover for climate dur-
ing this period.
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Paleoclimate reconstructions suggest that the climate of
Europe was 10 to 14 ◦C colder and around 200 mm yr−1 drier
during the LGM compared to the present day (PD; Wu et al.,
2007; Bartlein et al., 2011). However, uncertainties in the pa-
leoclimate reconstructions are large, the few sites with sam-
ples dating to the LGM are not uniformly distributed in space
(e.g. Wu et al., 2007), and in some regions, reconstructions
are contradictory (e.g. de Vernal et al., 2006). For example,
some LGM climate reconstructions suggest that the Iberian
Peninsula was dry (Bartlein et al., 2011; Cleator et al., 2020),
while others suggest wetter conditions were prevalent (Vegas
et al., 2010; Moreno et al., 2012). Some of these discrepan-
cies may result from the fact that many paleoclimate archives
record a certain season, while the signal is frequently inter-
preted as an annual value (Beghin et al., 2016), or from the
fact that even sites that are close together record strong cli-
matic gradients. Whatever the case, generation of a spatially
continuous map of climate and environmental conditions in
the LGM Europe is currently not possible using a strictly
proxy-driven approach. As an alternative, it should be pos-
sible to generate continuous maps using climate models.

GCM simulations are overall consistent with reconstruc-
tions in simulating an LGM climate that is largely colder and
drier than PD (e.g. Ludwig et al., 2016; Hofer et al., 2012a).
At the regional scale, however, GCMs show broad inter-
model variety and partly disagree in comparison to proxy
reconstructions, particularly concerning the magnitude and
spatial patterning of temperature and precipitation (Harrison
et al., 2015). For example, GCMs show a broad disagreement
in the simulation of precipitation over the Iberian Peninsula,
with some models suggesting it was wetter while in oth-
ers the simulated climate is drier compared to PD (Beghin
et al., 2016). One possible explanation for the disagreement
is the coarse spatial resolution of the GCMs; at the conti-
nental scale, mountains, ice sheets, and water bodies have
an important influence on regional circulation and climate
that may not be represented appropriately at a typical GCM
grid spacing of ca. 100 km (Rauscher et al., 2010; Gómez-
Navarro et al., 2011, 2012, 2013; Di Luca et al., 2012; Prein
et al., 2013; Demory et al., 2020; Iles et al., 2020).

To improve the representation of local and regional cli-
mate, GCMs can be dynamically downscaled using regional
climate models (RCMs). Ludwig et al. (2019) found that
downscaling using an RCM offers a clear benefit to answer
paleoclimate research questions and to improve interpreta-
tion of climate modelling and proxy reconstructions. They
also found that the regional climate models require appro-
priate surface boundary conditions to properly represent the
lower troposphere. Studies have demonstrated that a realistic
representation of surface conditions is essential for the ac-
curacy of the simulated regional climate as they play a cru-
cial role in regulating water and energy fluxes between the
land surface and the atmosphere (e.g. Crowley and Baum,
1997; Kjellström et al., 2010; Strandberg et al., 2011, 2014;

Gómez-Navarro et al., 2015; Jia et al., 2019a; Ludwig et al.,
2017).

As noted above, the sparse distribution of paleoecological
samples in Europe that are securely dated to the LGM pre-
cludes the development of a continuous map of land cover
that can be used as a boundary condition for climate mod-
elling and other purposes, e.g. archaeological and botanical
research. Since climate affects land cover and land cover in
turn affects climate, it is not sufficient to simply use climate
model output to generate a vegetation map. To overcome this
dichotomy, one may adopt a coupled modelling approach,
where a climate model simulation is initialised with an es-
timate of land cover and the resulting climate output fields
are used to simulate land cover. This process, which is called
asynchronous coupling, is repeated between the climate and
land cover models until the land–atmosphere system is in
quasi-equilibrium. Asynchronous coupling is computation-
ally inexpensive and has been successfully employed in sev-
eral modelling studies to investigate problems in paleocli-
mate science (e.g. Texier et al., 1997; Noblet et al., 1996).
For example, Kjellström et al. (2010) uses an iterative cou-
pling of an RCM and a land cover model and found that asyn-
chronous coupling produces a vegetation cover that is close
to paleo-reconstructions. Also, Strandberg et al. (2011) and
Ludwig et al. (2017) showed that fine-scale land cover is im-
portant for representing the climate and needs to be included
in regional climate simulations.

Here, we perform an asynchronously coupled modelling
study to simulate the climate and land cover of Europe
at the LGM. The asynchronously coupled modelling starts
with a GCM (Community Climate System Model version 4,
CCSM4; Gent et al., 2011) which serves as input to drive
a dynamic vegetation model (LPJ-LMfire; Pfeiffer et al.,
2013). In a next step, the atmospheric boundary conditions
from the GCM and the output of LPJ-LMfire are passed to
an RCM (WRF; Skamarock and Klemp, 2008). The resulting
RCM output is in turn used to drive LPJ-LMfire which again
returns land cover to the RCM. The RCM simulation is then
repeated with the new land cover as a boundary condition.
We evaluate the results of our coupled model experiment us-
ing independent reconstructions of land cover and climate,
and we perform a sensitivity test to better understand the im-
portance of land cover for LGM climate in Europe by forc-
ing the RCM with an alternative set of land-surface boundary
conditions.

2 Models and methods

2.1 General circulation model: CCSM4

In this study, we dynamically downscaled one global cli-
mate simulation for PD conditions (1990 CE conditions) and
another one for LGM. These global simulations were per-
formed with the atmospheric and land component of CCSM
(version 4; Gent et al., 2011). A horizontal grid spacing of
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1.25◦× 0.9◦ (longitude × latitude) was used in both com-
ponents. The vertical dimension is discretised in 26 verti-
cal hybrid sigma-pressure levels in the atmospheric com-
ponent (CAM4; Neale et al., 2010) and 15 soil layers in
the land component (CLM4; Oleson et al., 2010). CCSM4
was coupled to so-called data models for the ocean and sea
ice. These surface boundary conditions were obtained from
a fully coupled simulation with CCSM3 at lower resolution
(see details in Hofer et al., 2012a). CCSM3 provided monthly
mean time-varying sea-ice cover and sea-surface tempera-
tures (SSTs). Furthermore, the Community Ice Code (ver-
sion 4, CICE4; Hunke and Lipscomb, 2010) was set to its
thermodynamic-only mode. This means that sea-ice cover
was prescribed and surface fluxes through the ice were com-
puted by considering snow depth, albedo, and surface tem-
perature as simulated by CAM4 (Merz et al., 2015). Further
details of the global model setting were presented in Hofer
et al. (2012a, b) and Merz et al. (2015).

Each CCSM4 simulation was run for 33 years, from which
only the last 30 years and 2 months were used in this study.
PD boundary conditions were set to 1990 CE values, whereas
LGM boundary conditions were modified as follows:
lower concentrations of greenhouse gases (CO2= 185 ppm,
N2O= 200 ppb, and CH4= 350 ppb), change in Earth’s or-
bital parameters (Berger, 1978), addition of major conti-
nental ice sheets (Peltier, 2004), and associated sea-level
changes (120 m lower than today; Clark et al., 2009). Note
that land cover was set to pre-industrial conditions in the
LGM simulation. Additional land cells of the LGM simu-
lation are filled with vegetation and soil types of the mean
values of nearby cells, and in the ice-covered regions the
model’s standard values are used for such conditions. The
simulations further provided 6-hourly data, which is neces-
sary to drive regional climate models.

These PD and LGM CCSM4 simulations have been anal-
ysed in a variety of studies, including additional simulations
for other glacial and interglacial states (e.g. Hofer et al.,
2012a, b; Merz et al., 2013, 2014a, b, 2015, 2016; Landais
et al., 2016). The focus of these studies was in particular
on the model’s ability to simulate LGM climate and atmo-
spheric circulation changes during glacial times. Hofer et al.
(2012a) showed that the model performs reasonably well un-
der PD conditions, showing a cold bias in the global mean
temperature of 0.3 ◦C. The reason for this bias is the rather
coarse resolution of the ocean, which led to an underesti-
mation of the northward heat transport in the North Atlantic
and an overestimation in the horizontal extension of sea-ice
cover (Hofer et al., 2012a). The LGM CCSM4 simulation
agrees with models used in the second phase of the Paleocli-
mate Modelling Intercomparison Project (PMIP2; Braconnot
et al., 2007) showing a global mean temperature response be-
tween LGM and pre-industrial conditions of −5.6 ◦C. How-
ever, the temperature response over Europe shows a better
agreement with proxy data (Wu et al., 2007) than the multi-
model mean response in Braconnot et al. (2007). The global

mean precipitation response of the LGM simulation used in
this study is similar to the multi-model mean response of
Braconnot et al. (2007), although the regional pattern and
seasonal behaviour show some deviations from proxy data
over Europe (Wu et al., 2007; Hofer et al., 2012a). The LGM
simulation further reveals a clear southward shift and a more
zonal orientation of the storm track over the North Atlantic
compared to PD conditions (Hofer et al., 2012a). This shift
and substantial changes in the weather patterns (Hofer et al.,
2012b) are able to explain precipitation anomalies over the
Iberian Peninsula and the western part of the Mediterranean
Sea. Sensitivity simulations in Merz et al. (2015) suggested
that the shift can be traced back to the height of the Lauren-
tide ice sheet and the effect of it on stationary and transient
waves and the eddy-driven jet over the North Atlantic. Such
a shift is also reported in several other modelling studies (see
review of Raible et al., 2020). Overall, CCSM4 simulations
of LGM climate were state of the art in 2012, and they still
are today as their horizontal resolution is similar to models
used in phase 4 of the Paleoclimate Model Intercomparison
Project (PMIP4; Kageyama et al., 2017, 2021).

2.2 Regional climate model: WRF

To investigate the importance of model resolution and land
cover on the climate of LGM Europe, we dynamically down-
scaled the global CCSM4 simulations using the Weather Re-
search and Forecasting (WRF) model (version 3.8.1, Ska-
marock et al., 2008). This regional climate model was set up
with two domains that are two-way nested. These domains
have 40 vertical eta levels and a horizontal grid spacing of
54 and 18 km. The inner domain is centred on the Alpine re-
gion, and the outer domain includes an extended westward
and northward area to capture the influence of the North At-
lantic Ocean and the Fennoscandian ice sheet on the Euro-
pean climate (Fig. 1). The relevant parameterisation schemes
chosen to run WRF are described in Velasquez et al. (2020).

The initial and boundary conditions for the WRF model
were provided by CCSM4 simulations, including the
Fennoscandian ice sheet and reduced sea levels during the
LGM. Other external forcing functions followed the PMIP3
protocol (for more details, see Hofer et al., 2012a; Ludwig
et al., 2017). Furthermore, no nudging was applied in the
RCM simulations. LGM glaciation over the Alpine region
was included in the regional climate model using estimates
from Seguinot et al. (2018) and additional LGM glaciated
areas (e.g. Pyrenees, Carpathians) from Ehlers et al. (2011).
The LGM land cover is described in Sect. 2.4. These settings
are used to produce the main simulation (LGMLGM) which at
the same time is the final product of the asynchronous cou-
pling design (described in Sect. 2.4).

To perform the regional simulations in this study, we used
the so-called adaptive time-step method as described in Ska-
marock et al. (2008); i.e. the integration time step can vary
from time to time. For example, the model is stable with a
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Figure 1. Topography and the two domains for the WRF LGM sim-
ulations.

time step of 160 s during most integration steps, but it might
need a reduction to 60 s during convective situations to main-
tain stability. With a fixed time step, the entire simulation
must be run with 60 s to overcome these convective situa-
tions, while the adaptive time-step method is able to make
use of the larger time step 160 s during most of the sim-
ulation. The advantage of this approach is to substantially
save computer resources. Furthermore, each simulation was
driven by the 30 years of the corresponding GCM simula-
tion (excluding the 3-year spin-up of the GCM simulation).
These 30 years were split up into two single 15-year periods
which are both preceded by a 2-month spin-up to account for
the time required for land surface to come into quasi equilib-
rium. We used the last 2 months of the 3-year spin-up of the
GCM simulation for the first 15 years. A spin-up of 2 months
in the regional model is sufficient as soil moisture reaches a
quasi equilibrium, i.e. no significant trend after 15 d in the
four layers of the WRF land-surface scheme, i.e. down to
2 m.

We also carried out a control simulation under PD condi-
tions (PDPD) to assess the simulated LGM climate and land
cover response compared to proxy data. PDPD was driven by
the GCM simulation with 1990 CE conditions (Hofer et al.,
2012a) and used the default PD MODIS-based land cover
dataset from WRF (Skamarock and Klemp, 2008).

Finally, we conducted a sensitivity simulation to quantify
the importance of land cover for the LGM climate in Europe
(LGMPD). This simulation used the GCM simulation with

LGM conditions (Hofer et al., 2012a) but with the default
PD MODIS-based land cover dataset from WRF for the land
surface (Skamarock and Klemp, 2008).

Comparing LGMPD with PDPD illustrates the atmospheric
response to changes only in the atmospheric forcing, i.e.
without changes in land cover. The comparison of LGMLGM
and the LGMPD allows us to extract the influence of land
cover on the atmosphere, i.e. without changes in atmospheric
boundary conditions. These simulations are summarised in
Table 1.

To assess the statistical significance of the responses, we
use a bootstrapping technique (Wilks, 2011). This technique
consists of randomly selecting elements from the original
sample to generate a new sample. This is also called resam-
pling whereby the number of elements remains unchanged.
This procedure is repeated 1000 times. A new mean value is
calculated from each resampling obtaining 1000 mean val-
ues that are used to build a probabilistic distribution function
(PDF). We assess the significance of the mean value using
a significance level of 0.01 for each PDF’s tail. The boot-
strapping technique is applied to the spatially averaged val-
ues using as elements the climatological mean values across
Europe. We use one experiment to build the PDF on which
we allocate the spatially averaged value of another experi-
ment to assess the significance. Also, the bootstrapping tech-
nique is applied at each grid point using as elements the 30
yearly mean values. At each grid point, we obtain the PDF
from one experiment on which we allocate the climatologi-
cal mean value of another experiment to estimate the signifi-
cance.

2.3 Dynamic global vegetation model: LPJ-LMfire

Land cover for the LGM is simulated by the LPJ-LMfire dy-
namic global vegetation model (Pfeiffer et al., 2013), which
is an evolution of LPJ (Sitch et al., 2003). LPJ-LMfire is a
processed-based, large-scale representation of vegetation dy-
namics and land–atmosphere water and carbon exchanges
that simulates land cover patterns in response to climate,
soils, and atmospheric CO2 concentrations (Prentice et al.,
1992; Haxeltine and Prentice, 1996; Haxeltine et al., 1996;
Kaplan, 2001; Kaplan et al., 2016). LPJ-LMfire simulates
land cover in the form of the fractional coverage of nine plant
functional types (PFTs), including tropical, temperate, and
boreal trees and tropical and extratropical herbaceous vege-
tation (Sitch et al., 2003).

In each of our simulations, we drove LPJ-LMfire for
1020 years with the climate and forcing (greenhouse gases:
CO2, N2O, and CH4) from the GCM and PD soil physical
properties extrapolated out onto the continental shelves (Ka-
plan et al., 2016). Such a long simulation is not necessary to
bring above-ground vegetation into quasi-equilibrium with
climate, but it allows soil organic matter to equilibrate. Since
the vegetation model is computationally inexpensive, we per-
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Table 1. Set of simulations used in the asynchronous coupling and sensitivity experiments. First column indicates the name of the simulation,
second and third columns the forcing used in the global and regional climate models, and fourth column the purpose of the comparison.

Name GCM simulations RCM simulations Aim

Hofer et al. topography and land insights into the responses
2012a other forcing cover to changes in the

PDPD 1990s 1990s 1990s
forcing

LGMPD LGM LGM 1990s
land cover

LGMLGM LGM LGM LGM

formed these millennium-long simulations so that they could
be analysed for other purposes in the future.

2.4 Iterative asynchronous coupling design

To create the best possible estimate of European land cover
for the LGM, we used an iterative asynchronous coupling
design that combines CCSM4/WRF with the LPJ-LMfire
model (resulting in the LGMLGM climate simulation). This
coupling design consists of four steps: (i) the fully coupled
CCSM4 provides atmospheric variables for the LGM to gen-
erate the first approximation of LGM land cover with LPJ-
LMfire at a horizontal grid spacing of 1.25◦× 0.9◦ (lon-
gitude× latitude); (ii) WRF is driven by the CCSM4 with
LGM conditions and the first approximation of LGM land
cover created in step (i) to generate the first downscaled at-
mospheric variables for the LGM at 54 and 18 km grid spac-
ing; (iii) LPJ-LMfire is run with the downscaled LGM at-
mospheric variables (from step ii) to regenerate the LGM
land cover at the RCM resolutions; and (iv) same as (ii) but
WRF uses the land-surface boundary conditions simulated
at 54 and 18 km. Steps (iii) and (iv) are carried out asyn-
chronously over five additional iterations to achieve a quasi-
equilibrium between the climate and land cover. Parts (i) and
(ii) are regarded as the first iteration, and the iterations of (iii)
and (iv) are regarded as the second to seventh iterations. The
variables that are passed between the climate and vegetation
models are summarised in Table 2. Vegetation cover fraction
is defined as the fraction of ground covered by vegetation at
each grid point, with values between 0 % and 100 %. Also,
to classify vegetation cover fraction into the land cover cate-
gories required by WRF (according to NOAH-MP MODIS;
Niu et al., 2011), we used a simple scheme based only on the
cover fraction of the LPJ-LMfire PFTs. Note that we identi-
fied a problem with the land–sea mask and around glaciated
areas which was fixed between the third and fourth iteration.
To test whether the asynchronous coupling has reached a
quasi-equilibrium state, we assess the statistical significance
with a bootstrapping technique that is introduced at the end
of Sect. 2.2.

Table 2. Variables passed between CCSM4/WRF and LPJ-LMfire.

CCSM4/WRF to LPJ-LMfire

30-year monthly values

Mean temperature at 2 m Convective available potential energy
Daily max. temperature at 2 m Horizontal wind velocity at 10 m
Daily min. temperature at 2 m Precipitation (liquid and solid)
Total cloud cover fraction

LPJ-LMfire to WRF

30-year monthly values Climatological value

Vegetation cover fraction Land cover fraction (category)
Leaf area index Dominant land cover type (category)

Deep-soil temperature

3 Results of the iterative asynchronous coupling

The offline coupling design (Sect. 2.4) aims at generating a
simulation of the LGM climate and land cover that is as real-
istic as possible. Thereby, it is important that the land cover
and the climate is in quasi-equilibrium (Strandberg et al.,
2011) in order to discard the source of uncertainty related
to an unbalanced climate system. In this study, we determine
the quasi-equilibrium in the land cover and the climate, first,
through empirical observation and second, through a statisti-
cal test applied to a set of variables (see Sect. 2.4). To illus-
trate the differences between the iterations, we concentrate
on climate and land cover changes over the ice-free land ar-
eas of Europe at LGM (in domain 2) using the following vari-
ables: the spatial climatology of total precipitation, tempera-
ture at 2 m, albedo, deep-soil temperature, cloud cover, leaf
area index and vegetation cover fraction, and the number of
grid points dominated by the following land cover categories:
sparsely vegetated, tundra, forest, and shrublands (NOAH-
MP MODIS categories, Niu et al., 2011). Land cover cate-
gories that are functionally similar are grouped together, e.g.
wooded tundra, mixed tundra, and barren tundra are all com-
bined into the category tundra. Some land cover categories
are not considered in our analysis as they are poorly repre-
sented in both periods, e.g. savanna, grassland, and wetland,
or are not relevant for the LGM, e.g. cropland and urban
(Fig. 2a–b).
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Figure 2. Land cover used by WRF. Panel (a) represents the dominant land cover category during PD. Panel (b) is the same as (a) but during
the LGM. Panels (c) and (d) are the same as (a) and (b) but for vegetation cover fraction. Circles in (b) represent proxy evidence from Wu
et al. (2007).

Results show that the most notable and statistically sig-
nificant changes, from one iteration to the next, in the vari-
ables exchanged between land cover and atmosphere occur
within the first four iterations (Fig. 3). Only albedo and leaf
area index show significant changes also in the fifth itera-
tion. The significance of the differences is assessed using a
two-tailed bootstrapping technique with a significance level
of 2 % (Sect. 2.2) and is marked in each panel of Fig. 3.
Note that the significance for the land cover categories is
not shown. The reason is that this significance can be sum-
marised using the significance of the vegetation cover frac-
tion. The variables level off from the fifth to the seventh it-
eration. In particular, we observe two sharp changes in all
variables within the first five iterations. The first important
change is found between the first and second iteration and

is present in the atmospheric and land-surface variables. The
reasoning is twofold: (i) there are significant changes in the
land cover classes, e.g. forest fraction is reduced from 35 %
to 2 %; (ii) the horizontal resolution of the land cover is in-
creased from approximately 100 to 18 km (horizontal grid
spacing of GCM and RCM, respectively). The higher spa-
tial resolution of the RCM results in a better representation
of the regional-to-local-scale processes and interactions with
other components of the climate system compared to a GCM
(Ludwig et al., 2019). The second change happens between
the third and fourth iteration in precipitation and cloud cover
(Fig. 3a and d) and between the fourth and fifth in albedo
and leaf area index (Fig. 3c and d). Note that the improve-
ments in the land–sea mask and around glaciated areas be-
tween the third and fourth iteration can partially explain the
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Figure 3. Thirty-year spatial climatology of annual mean values throughout the iterations. Panel (a) represents total precipitation (blue line)
and temperature at 2 m (red line) and (b) the percentage spatial fraction of bare (orange), tundra (pink), shrubland (sky blue), forest (light
green), others (grey), and the spatial mean value of vegetation cover fraction (dark green line); (c) is the same as (a) but for albedo and
deep-soil temperature, and (d) is the same as (a) but for cloud cover and leaf area index. The grey dotted lines in (a), (c), and (d) represent
the first, fourth, and seventh iterations. Blue, red, and green boxes represent statistically significant differences between iterations at a 2 %
significance level (using a two-tailed bootstrapping technique).

significantly sharp change in precipitation and cloud cover
between the third and fourth iteration. We consider the signif-
icant changes from the fourth to the fifth iteration in albedo
and leaf area index as a delayed effect of the variation in
cloud cover and precipitation and thus an effect of the im-
provement.

Spatially averaged total precipitation significantly de-
creases in the second iteration (drop of 15 mm) and signif-
icantly increases in the fourth iteration (increase of 9 mm)
with small and no significant changes thereafter (blue line in
Fig. 3a). A significant decrease in the spatially averaged tem-
perature at 2 m is observed in the second iteration (cooling of
around 0.5 ◦C), which turns into small and insignificant fluc-
tuations in the range of a 10th of a degree afterwards (red line
in Fig. 3a). Albedo significantly decreases until the third it-
eration (change of around 1.3 %) and significantly increases
in the fifth iteration with small and insignificant changes af-
terwards (blue line Fig. 3c). A significant cooling is also ob-
served in the spatially averaged deep-soil temperature from
the first to the third iteration (red line in Fig. 3c). Deep-soil
temperature stabilises from the fourth to the seventh iteration.
Similar to total precipitation, we observe that the spatially
averaged cloud cover fraction significantly decreases in the
second iteration (change of 0.009) and significantly increases

in the fourth iteration (change of 0.003) with very small and
insignificant variations afterwards (blue line in Fig. 3d). Leaf
area index significantly fluctuates till the fifth iteration (max-
imum change of 0.5) with minimal and insignificant changes
thereafter (red line Fig. 3d). Additionally, changes in vege-
tation cover fraction are observed in the first four iterations
(32 %, 18 %, 16 %, and 15 %). In the following iterations, the
changes remain rather small and insignificant (Fig. 3b). The
land cover categories change mostly between the first and
second iteration. The category sparsely vegetated is strongly
increased in the second iteration and at the same time for-
est is strongly reduced (Fig. 3b). Thus, the quasi-equilibrium
state is achieved after the fourth to fifth iteration.

In the following, we analyse the spatial patterns of cli-
mate and land cover between the iterations that represent the
transient progression towards quasi-equilibrium (fourth mi-
nus first iteration) and the quasi-equilibrium state (seventh
minus fourth iteration). We consider temperature at 2 m, to-
tal precipitation, and vegetation cover fraction as variables
that summarise the coupled land–atmosphere response. Note
that temperature, precipitation, and vegetation cover fraction
are displayed using absolute differences (Fig. 4a–f).

During the transient state (Fig. 4a, c, and e), the southwest-
ern part of the Iberian Peninsula and some areas in Italy and
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Figure 4. Differences in 30-year mean values. Panel (a) represents
the difference in temperature at 2 m between the first and fourth
iteration (transient); (b) is the same as (a) but between the fourth and
seventh iteration (quasi-equilibrium). Panels (c)–(d) and (e)–(f) are
the same as (a)–(b) but for total precipitation and vegetation cover
fraction, respectively. Masked out areas are in white. Crosshatched
areas indicate statistically significant differences using a two-tailed
bootstrapping technique with a 2 % significance level.

Greece warm, but the rest of Europe experiences a cooling.
In addition, precipitation reveals a wetting over the Iberian
Peninsula, in parts of France, and in the Balkan Peninsula
and a drying over eastern Europe, the north of the Alps, and
some regions of France (Fig. 4c). The vegetation cover frac-
tion shows a strong decrease during the transient state, par-
ticularly in the flat lands of eastern Europe (over 50 % re-
duction) and the Italian Peninsula, and an increase over the
Iberian Peninsula (around 20 %) and northwest of the Alps
(around 40 %; Fig. 4e). The vegetation response is related

to changes in temperature and precipitation: many regions
that experience a cooling are related to a reduction in veg-
etation. Drying and wetting are overall related to a reduc-
tion and an increase in vegetation cover, respectively. This
is true except for a few areas in the north of the Alps and
along the Mediterranean coast such as the eastern region of
the Iberian Peninsula, southern Greece, and southern Italy.
North of the Alps, the poor relation between precipitation
and vegetation cover fraction could be explained by a lesser
pronounced cooling. In the eastern part of the Iberian Penin-
sula and southern Greece, the reduction in vegetation seems
to be related to an increase in temperature.

The changes between the seventh and fourth iterations,
which illustrate the quasi-equilibrium state, are minimal for
the three variables (Fig. 4b, d, and f). The remaining small
differences are interpreted as a part of the internal climate
variability and uncertainties predominantly caused by pa-
rameterisations in the models, e.g. cloud formation and mi-
crophysical processes (Casanueva et al., 2016; Rajczak and
Schär, 2017; Shrestha et al., 2017; Knist et al., 2018; Yang
et al., 2019).

4 Comparison and discussion of the modelled and
reconstructed climate

To evaluate the LGMLGM climate simulation, we compared
temperature and precipitation to pollen-based reconstruc-
tions. Wu et al. (2007) provided reconstructions of temper-
ature and precipitation for the coldest and warmest months
of the LGM at 14 sites in Europe. Thus, we considered 56
samples (14 sites× 2 variables× 2 months) in this compar-
ison. For the model–proxy comparison, we use the nearest
model grid point to the pollen site and consider the model
and proxy reconstruction to agree when the model-based
anomaly is within the 90 % confidence interval of the pollen-
based anomaly (more details about the proxies in Wu et al.,
2007). Note that the simulated temperature and precipitation
are anomalies with respect to PDPD and that January and July
values are selected to mimic the coldest and warmest months.

In general, cooler and drier anomalies are observed in the
LGMLGM with especially pronounced cooling in January and
drying in July (Fig. 5). This resembles the proxy evidence
given by the pollen-based reconstruction of Wu et al. (2007).
In January, we observe a positive precipitation anomaly of
up to 7 mm d−1 over the Iberian Peninsula, northern Italy,
and the Dinaric Alps (Fig. 5c). Overall, the LGMLGM climate
agrees with the pollen-based paleoclimate reconstructions at
three-quarters of the 56 samples.

Still, some samples, e.g. over the Iberian Peninsula,
show considerable differences between the pollen-based and
model-based climate anomalies, in line with similar findings
mentioned in earlier studies (e.g. Beghin et al., 2016; Ludwig
et al., 2016; Cleator et al., 2020). These differences can be
associated with shortcomings within the GCM–RCM mod-
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Figure 5. Changes in temperature and precipitation patterns.
Panel (a) represents the differences in 30-year mean temperature
between LGM and PD (LGMLGM – PDPD) for January. Panel (b)
is the same as (a) but for July. Panels (c) and (d) are the same as
(a) and (b) but for precipitation differences. Circles represent proxy
evidence: a red (green) border indicates that the simulated value is
significantly above (below) the proxy value at the closest grid cell
of the model (outside the 90 % confidence interval, Wu et al., 2007).
The solid line represents the LGM coastline, the dashed line the PD
coastline, and dots the area covered by glaciers.

elling chain and/or uncertainties in the proxy reconstructions
(Bartlein et al., 2011; Ludwig et al., 2019; Cleator et al.,
2020). Kageyama et al. (2006) suggested that terrestrial pa-
leoclimate proxies may be more sensitive to climatic ex-
tremes than to the climatological mean state, which could
partly explain the discrepancies between pollen-based recon-
structions and the model simulations. One important model–
proxy disagreement is the precipitation anomaly over the
Iberian Peninsula in January. Based on evidence for the pres-
ence of certain tree species in the northwestern part of the
Iberian Peninsula, Roucoux et al. (2005) suggested that the
LGM was not necessarily the period of the most severe, i.e.
cold and dry, climatic conditions everywhere. Roucoux et al.
(2005) and Ludwig et al. (2018) also suggested that this re-
gion during LGM sensu stricto was warmer and wetter than
the end of Marine Isotope Stage 3 (MIS3, ca. 23 ka; Voelker
et al., 1997; Kreveld et al., 2000) and the start of the Heinrich
event 1 (H1, ca. 19 ka; Sanchez Goñi and Harrison, 2010;
Álvarez-Solas et al., 2011; Stanford et al., 2011). This could
be an indication that model–proxy comparison fails because

the proxies refer to 21± 2 ka (Wu et al., 2007), i.e. either
the end of MIS3 or the beginning of H1. Compared to the
pre-industrial period, Beghin et al. (2016) found evidence
in a model–proxy comparison that the interior and north-
western Iberian Peninsula experiences wetter conditions dur-
ing the LGM. These wetter conditions can be explained by
a southward shift in the North Atlantic storm track during
the LGM compared to PD as suggested by many studies
(e.g. Hofer et al., 2012a; Luetscher et al., 2015; Merz et al.,
2015; Ludwig et al., 2016; Wang et al., 2018; Raible et al.,
2020; Lofverstrom, 2020). Note further that we had only two
pollen-based quantitative climate reconstructions from Iberia
for the LGM; we therefore regard the model–proxy intercom-
parison in this region as equivocal.

5 Comparison and discussion of the modelled and
reconstructed land cover

To evaluate the LGMLGM and land cover simulation, we
compare the simulated tree cover with pollen-based biome
reconstructions from the BIOME6000 data product (Prentice
and Jolly, 2000; Wu et al., 2007) and with a newer synthesis
by Kaplan et al. (2016). For the purposes of this compari-
son, we define tree cover as the fraction of ground covered
by trees at each grid point excluding herbaceous and grass,
whose value varies between 0 % and 100 %.

The LGMLGM simulation generally shows low values for
vegetation cover fraction (Fig. 2d), which reflects lower
temperatures, reduced precipitation, and lower global atmo-
spheric CO2 concentrations that were present at the LGM
compared to the Holocene (Gerhart and Ward, 2010; Woillez
et al., 2011; Chen et al., 2019; Lu et al., 2019). Our simulated
LGMLGM land cover is generally in good agreement with the
pollen-based biome reconstructions (Fig. 2b). We interpret
the pollen reconstructions of steppe vegetation as sparsely
vegetated in the WRF land cover categories (Niu et al., 2011).
Using the nine nearest 18 km grid points surrounding each
pollen site to compare the model results with pollen-based
reconstructions of the land cover categories, we define good
model–proxy agreement when at least one of the grid points
matches the proxy reconstruction. For example, the domi-
nant land cover category northwest of the Alps (47.73◦ N,
6.5◦ E) reconstructed from pollen (steppe) agrees with the
surrounding simulated land cover (sparse vegetation). For
the Carpathian Basin, an area with few proxy reconstruc-
tions, the modelled LGM land cover categories are tundra
and grassland, which is in agreement with results found by
Magyari et al. (2014a, b). Additionally, we simulate an ex-
tended area of tundra categories (i.e. wooded and mixed tun-
dra) between the Alps and the Fennoscandian ice sheet which
can be regarded as the northernmost ice-free area of Europe.
Similarly, Kjellström et al. (2010) simulated an extended area
of tundra-like vegetation in the northernmost ice-free areas of
Europe for MIS3.

https://doi.org/10.5194/cp-17-1161-2021 Clim. Past, 17, 1161–1180, 2021

82 3. ROLE OF LAND COVER IN THE CLIMATE OF GLACIAL EUROPE



1170 P. Velasquez et al.: The role of land cover in the climate of glacial Europe

Figure 6. Comparison between modelled and reconstructed tree cover. Panel (a) shows the LPJ-LMfire-simulated tree cover fraction from
LGMLGM. Circles represent the 71 pollen samples securely dated to LGM from Kaplan et al. (2016). Panel (b) shows a scatter plot of
reconstructed vs. modelled LGM tree cover.

We further compared tree cover fraction simulated by LPJ-
LMfire with a reconstruction of relative landscape openness
from 71 pollen sites across Europe containing samples se-
curely dated to the LGM based on a compilation by Davis
et al. (2015) and Kaplan et al. (2016). This compilation rep-
resents a substantial improvement in spatial coverage and
dating precision compared to the 14 sites of BIOME6000
used by Wu et al. (2007). Comparison between modelled
tree cover and relative landscape openness is shown in Fig. 6.
Generally, LPJ-LMfire moderately underestimates tree cover
compared with the pollen-based openness reconstructions.
Modelled tree cover has a maximum value of about 60 %,
while there are eight sites where the relative tree cover re-
construction is > 60 % and two samples with 100 % arbo-
real pollen percentage. As noted by Kaplan et al. (2016),
these sites with very high reconstructed tree cover fraction
should be treated with caution because they may represent
locations with very little vegetation, e.g. at the edge of the
Alpine ice sheet or at high-altitude in the Carpathian Moun-
tains. In high mountain areas where we expect local vegeta-
tion to be very sparse if present at all, the pollen signal in
sedimentary bodies may be dominated by the long-distance
transport of tree pollen; this phenomenon is also observed in
the analysis of pollen trapped in glacier ice (Brugger et al.,
2019). At the bulk of the sites, LPJ-LMfire simulates 10 %–
20 % lower tree cover than the relative tree cover inferred by
the pollen. While this discrepancy is well within the uncer-
tainty of both datasets and could be related to the calibration
of arboreal pollen percentage with tree cover (Kaplan et al.,
2016), it could also suggest that the modelled climate is too
cold and/or too dry or that the LPJ-LMfire model is too sen-
sitive to lower atmospheric CO2 concentrations.

6 Influence of external forcing and land cover on
climate

We assess the atmospheric response to changes in the entire
climate system, in external forcing, and in land cover, sep-
arately, to better understand the importance of the land sur-
face for the LGM climate in Europe. LGMLGM is compared
to PDPD to determine the atmospheric response to complete
LGM conditions. Then, we investigate the atmospheric re-
sponse to changes in orbital forcing by comparing LGMPD
with PDPD. Finally, the differences between LGMLGM and
LGMPD determine the atmospheric response to changes in
land cover. Our assessment considers the land areas without
snow/ice that are shared by both LGM and PD climate, i.e.
we discard glaciated areas and land areas on the continen-
tal shelves that were exposed at the LGM. Temperature and
precipitation are selected as the main indicators of the atmo-
spheric response, and latent and sensible heat fluxes as sec-
ondary indicators. Note that we use a two-tailed bootstrap-
ping technique with a significance level of 2 % to assess the
significance of the differences (Sect. 2.2), which is illustrated
by bold numbers in Table 3.

Comparing LGMLGM to PDPD shows a statistically sig-
nificant cooling of −11.99 ◦C in the annual value (Ta-
ble 3). This cooling is significantly enhanced to −15.34 ◦C
in DJF (December–January–February), remains similar to
the annual mean in MAM and SON (March–April–May and
September–October–November), and significantly weakens
to−7.24 ◦C in JJA (June–July–August; Table 3). This clearly
illustrates a seasonality in the temperature response to com-
plete LGM conditions (LGMLGM minus PDPD). Broccoli and
Manabe (1987) mentioned that one reason for the seasonal-
ity in the temperature response can be the fluctuations in the
horizontal thermal advection from glaciers and ice sheets to
ice-free regions, predominantly in winter. Additionally, we

Clim. Past, 17, 1161–1180, 2021 https://doi.org/10.5194/cp-17-1161-2021

83



P. Velasquez et al.: The role of land cover in the climate of glacial Europe 1171

Table 3. Assessment of the atmospheric response using 30 years of
simulated precipitation and temperature data. First column indicates
the simulations, second column the annual response, and the other
columns the response in each season. Numbers in bold represent
statistically significant differences using a two-tailed bootstrapping
and a significance level of 2 %. Note that the assessment considers
land areas without snow/ice that are shared by both LGM and PD
climate and discards the continental shelves exposed at the LGM.

Annual DJF MAM JJA SON

Temperature response (◦C)

LGMLGM – PDPD –11.99 –15.34 –13.85 –7.24 –11.53
LGMPD – PDPD –12.06 –15.44 –13.19 –8.09 –11.52
LGMLGM – LGMPD 0.07 0.10 –0.66 0.85 −0.01

Precipitation response (mm d−1)

LGMLGM – PDPD –0.67 0.09 –0.86 –1.55 –0.37
LGMPD – PDPD –0.53 0.16 –0.77 –1.15 –0.37
LGMLGM – LGMPD −0.14 −0.07 –0.09 −0.40 0

Latent heat response (W m−2)

LGMLGM – PDPD –25.63 –6.09 –32.44 –52.47 –11.51
LGMPD – PDPD –17.57 –5.34 –27.23 –28.14 –9.57
LGMLGM – LGMPD –8.06 –0.75 –5.21 –24.33 –1.94

Sensible heat response (W m−2)

LGMLGM – PDPD 7.48 –4.30 –2.44 33.97 2.69
LGMPD – PDPD 7.59 0.10 5.75 19.02 5.48
LGMLGM – LGMPD –0.11 –4.40 –8.19 14.95 –2.79

find a statistically significant dryness in the annual value of
around −0.67 mm d−1 when comparing LGMLGM to PDPD.
A significant drying is evident in most months, in partic-
ular in summer months, where precipitation is reduced by
−1.55 mm d−1. Only in the winter months do we observe a
marginal increase in precipitation (Table 3). Cao et al. (2019)
on the one hand attributed the overall decrease in precipita-
tion to the strong anticyclonic circulations over the ice sheets
during LGM compared to PD, especially to the low-level
divergent cold air (Schaffernicht et al., 2020). On the other
hand, Luetscher et al. (2015) and Lofverstrom (2020) found
wetter conditions in southern parts of Europe in LGM win-
tertime, and they attributed them to atmospheric rivers and
Rossby-wave breaking, respectively. This together with the
LGM southward shift of the storm track (found by Hofer
et al., 2012a; Luetscher et al., 2015; Ludwig et al., 2016;
Wang et al., 2018; Raible et al., 2020) could then compen-
sate for an expected dryness in wintertime (i.e. LGMLGM
minus PDPD), which would not only affect the statistical sig-
nificance in wintertime, but also lead to the seasonality in
the precipitation response to complete LGM conditions. The
comparison (LGMLGM minus PDPD) also shows a statisti-
cally significant decrease in latent heat flux in the annual
value (−25.63 W m−2), which is true for most months and
particularly strong for JJA (−52.47 W m−2). Moreover, we
observe a statistically significant increase in sensible heat

flux of 7.48 W m−2 (Table 3). This increase is strongest in
JJA when it reaches an addition of 33.97 W m−2 and weak-
est in SON as we find a small but still significant increase
of 2.69 W m−2. A statistically significant decrease in sensi-
ble heat flux of−4.30 and−2.44 W m−2 is simulated in DJF
and MAM, respectively.

To further understand the atmospheric response, we inves-
tigate the role of the forcing (i.e. LGMPD – PDPD) and the
land cover (i.e. LGMLGM – LGMPD), separately. The temper-
ature response is clearly dominated by changes in the forc-
ing. Changes in land cover can only slightly influence tem-
perature by an additional cooling of 0.66 ◦C in MAM and a
warming of 0.85 ◦C in JJA, both statistically significant (Ta-
ble 3). Similarly, Jahn et al. (2005) found that the LGM-like
vegetation cover produces colder temperatures (ca. −0.6 ◦C
globally), especially in areas with the greatest decrease in
tree cover. The precipitation anomalies are also dominated
by changes in the forcing, whose values are statistically sig-
nificant except in DJF, but changes in the land cover also
contribute to a reduction in precipitation, especially in MAM
(significant reduction of 0.09 mm d−1) and JJA (reduction of
0.40 mm d−1). The response of the latent heat flux is also
dominated by changes in the forcing with statistically signif-
icant values. Changes in the land cover moderately influence
the latent heat flux by an additional reduction of 8.06 W m−2

in the annual mean, while changes in land cover account for
almost half of the reduction in the latent heat flux in JJA
(−24.33 W m−2). Moreover, the response of the sensible heat
flux is dominated by changes in the orbital forcing in the an-
nual mean, JJA, and SON. Modifications in land cover only
dominate DJF and MAM by an additional significant reduc-
tion of 4.40 and 8.19 W m−2, respectively. Still, changes in
the land cover influence summer sensible heat by an addi-
tional increase of 14.95 W m−2.

The analysis so far demonstrates that the seasonality of
the atmospheric response is overall driven by changes in the
forcing but its intensity can be modulated by changes in the
land cover, in particular in the latent heat flux in JJA and
sensible heat flux in DJF, MAM, and JJA. A possible rea-
son for the modulated intensity in the response may be a
modification of the stability in the lowest levels of the at-
mosphere that is produced by the changes in the land cover.
A cooling (warming) in the lower layer may lead to an inver-
sion (unstable) zone that therefore weakens (enhances) pre-
cipitation processes. Another reason is that the differences in
land cover lead to modifications in available moisture com-
ing from the surface, i.e. evapotranspiration or latent heat. A
reduction in latent heat is interpreted as reduced availability
of surface moisture, which leads to a reduction in precipita-
tion. Ludwig et al. (2017) suggested that including LGM-like
vegetation in regional climate models causes changes in heat
fluxes that lead to impacts on temperature and precipitation.
Based on a similar coupling design, Strandberg et al. (2011)
found that the impact of a different land cover on LGM cli-
mate simulations is small compared to the uncertainties in
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the proxy reconstructions. Even though this is also true in
our study, our results and discussion suggest that modifica-
tions in land cover like deforestation could play an important
role when other forcing agents marginally change, as is ob-
served in some climate change scenarios such as RCP 2.6 and
4.5 (Strandberg and Kjellström, 2019; Davin et al., 2020; Jia
et al., 2020).

To obtain a more detailed understanding of the atmo-
spheric response to changes in land cover (LGMLGM –
LGMPD), we further analyse the differences in the spatial
patterns in January and July to be consistent with the eval-
uation done in Sect. 5. We focus on temperature at 2 m, pre-
cipitation and latent and sensible heat fluxes. We use a two-
tailed bootstrapping technique with a significance level of
2 % to assess the significance of the differences at each grid
point (Sect. 2.2), which is illustrated by crosshatched areas
in Figs. 7 and 8.

The annual mean temperature shows a statistically sig-
nificant cooling of around 2 ◦C in the vicinity of glaciers
and in high-altitude regions; while a statistically significant
warming is visible in lower-elevation areas including the
southwestern part of the Iberian Peninsula, France, and the
Carpathian Basin (Fig. 7a). A similar spatial pattern is ob-
served for January and July temperatures: a significantly
stronger warming is evident for the northern part of Italy
in January (Fig. 7b), whereas the rest of the continent does
not show significant changes. In July, the amplitude of the
temperature anomaly becomes significantly stronger, espe-
cially where the positive temperature anomaly covers a large
area, e.g. over eastern Europe (Fig. 7c). The precipitation re-
sponse is moderate in the annual mean. A general and statisti-
cally significant decrease is observed over the rest of Europe.
Changes in January precipitation are overall insignificant, ex-
cept for some areas in eastern Europe where a significant dry-
ness is observed. LGM land cover leads to a negative and
statistically significant precipitation anomaly in July, which
is especially strong around the Alps and in eastern Europe.
The response of the latent heat flux is also moderate in the
annual mean (Fig. 8a). We observe a general and statistically
significant reduction, especially in eastern Europe. A simi-
larly significant but weakened pattern is observed in January,
which even shows a few small areas with an increase in latent
heat flux (Fig. 8b). In July, a stronger reduction in the latent
heat flux is observed with the largest reductions around the
Alps and over eastern Europe (Fig. 8c). Note that some areas
with strong increases in the latent heat flux (reddish) are asso-
ciated with large PD urban areas. Moreover, the annual mean
sensible heat flux shows a statistically significant reduction
of about 30 W m−2 around mountainous areas, i.e. the Pyre-
nees, Alps, and Carpathian Mountains (Fig. 8d), while a sta-
tistically significant increase in sensible heat is visible in
lower-elevation areas, especially over France and some ar-
eas in eastern Europe (Fig. 8d). In January, the pattern of
the sensible heat flux is overall moderately reduced (still sta-
tistically significant, Fig. 8e). In July, we find an enhanced

amplitude of the sensible heat flux with small changes in the
spatial pattern with respect to the annual one: there is an ad-
ditional statistically significant decrease in sensible heat flux
of around 60 W m−2 around mountainous areas except for
most of the Carpathian Mountains (Fig. 8f). A statistically
significant increase in sensible heat flux dominates the rest
of Europe, with values of up to 40 W m−2 in some areas over
central and eastern Europe.

Even though changes in land cover have a small-to-
moderate effect on the response of temperature, precipita-
tion, and the latent and sensible heat fluxes (Table 3), their
spatial pattern changes strongly across Europe (Figs. 7, 8).
Important spatial changes are statistically significant over
eastern Europe in July. Strandberg et al. (2011) and Kjell-
ström et al. (2010), in similar coupling designs, compared
glacial simulations using two land cover settings and found
that the simulated regional climate patterns in parts of Eu-
rope are sensitive to feedbacks from large differences in
vegetation. Particularly, Kjellström et al. (2010) found that
glacial-like vegetation leads to warmer conditions over east-
ern Europe compared to modern vegetation. Strandberg et al.
(2014) showed in their RCM experiments for the Holocene
that summer temperature and precipitation are sensitive to
changes in land cover in eastern Europe due to evapotranspi-
ration (in our results as latent heat) feedbacks (see Fig. 8 in
Strandberg et al., 2014). They found that a reduction in tree
cover leads to warmer and drier summers in eastern Europe,
which is similar to our finding as we observe that a reduction
in vegetation cover fraction is associated with a warmer and
drier July in the same region. This suggests that the land–
atmosphere coupling strength may be stronger in eastern Eu-
rope compared to other parts of Europe, especially during
summer.

7 Conclusions

In this study, we investigated the importance of land–
atmosphere feedbacks for the climate of Europe during the
Last Glacial Maximum. To this end, we performed a se-
ries of high-resolution asynchronously coupled atmosphere–
vegetation model simulations. We simulated the European
climate and vegetation using the WRF regional climate
model and LPJ-LMfire vegetation model with a 54 and an
18 km horizontal grid spacing.

Results of the asynchronous coupling show that quasi-
equilibrium between climate and land cover is reached after
the fourth to fifth iteration. Between the first and fourth it-
erations, the climate becomes progressively wetter in south-
ern Europe, while it becomes drier in eastern Europe. Once
the coupled model system reaches quasi-equilibrium (from
fourth to seventh iterations), we identified only marginal spa-
tial differences that can be attributed to internal variability
in the climate and vegetation models. The final iteration of
the asynchronous coupling represents our best estimate of
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Figure 7. Atmospheric response to changes in the land cover. Panel (a) shows differences in the annual mean temperature between LGMLGM
– LGMPD. Panels (b) and (c) are the same as (a) but for January and July, respectively. Panels (d), (e), and (f) are the same as (a), (b), and (c)
but for precipitation. The solid line represents the coastline during the LGM, stippled areas are covered by glaciers, and crosshatched areas
indicate statistically significant differences using a two-tailed bootstrapping technique with a 2 % significance level.

the atmospheric and land-surface conditions in Europe at the
LGM. Consistent with many previous studies (e.g. Wu et al.,
2007; Bartlein et al., 2011; Újvári et al., 2017; Cleator et al.,
2020), we observe that the LGM climate of Europe was gen-
erally much colder and drier compared to PD. The LGMLGM
land cover was characterised by tundra and sparse vegetation,
although open forest parkland (transition from grass to for-
est during the LGM) may have been common in many parts
of central Europe, which is supported by comparisons with
pollen-based vegetation reconstructions.

Using two additional sensitivity simulations – PDPD and
LGMPD – we quantified the direct effects of external forcing
and land cover on the LGM climate. Comparing LGMLGM,
i.e. the complete LGM conditions, to PDPD shows not only a
general cooling and drying but also a seasonality in the atmo-
spheric response. Comparing LGMPD to PDPD illustrates that
the seasonality is mainly driven by changes in forcing. The
comparison between LGMLGM to LGMPD shows that, even
in Europe where we would generally expect a weak land–
atmosphere coupling compared, e.g. to the monsoon trop-
ics, the atmosphere is sensitive to changes in land cover. The
land–atmosphere response also has a seasonality which dif-
fers across Europe with a stronger coupling strength in east-
ern Europe. These features can be partially explained by the

variable spatial and temporal influence of vegetation cover
(albedo) and heat fluxes (sensible and latent heat fluxes) to
the lower troposphere. Our results show that dry conditions
in the LGM are partially attributed to LGM land cover as a
reduction in vegetation overall led to stronger dryness com-
pared to PD land cover. This is particularly true for central
and eastern Europe during summer.

An evaluation of the modelled LGMLGM climate should
be performed with independent paleoclimate reconstructions
from more sites than the 14 published points that are in
the spatial domain of this study. Since the publication of
Wu et al. (2007) and Bartlein et al. (2011), more than 70
well-dated pollen records from Europe that cover the LGM
have become available (Kaplan et al., 2016). However, these
data have not been transformed into paleoclimate reconstruc-
tions to date and such an effort would be beyond the scope
of the current study. Additionally, as more paleoenviron-
mental reconstructions become available in the future, these
simulations will be worthy of further evaluation and more
detailed examination of specific areas. For instance, future
work that improves pollen-based land cover reconstructions,
e.g. using multi-proxy approaches that combine pollen data
with presence–absence information from DNA (e.g. Alsos
et al., 2020), will be very valuable for quantitative evaluation
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Figure 8. Atmospheric response to changes in the land cover. Panel (a) represents differences in the annual mean latent heat flux between
LGMLGM – LGMPD. Panels (b) and (c) are the same as (a) but for January and July, respectively. Panels (d), (e), and (f) are the same as
(a), (b), and (c) but for sensible heat flux. The solid line represents the coastline during the LGM, stippled areas are covered by glaciers, and
crosshatched areas indicate statistically significant differences using a two-tailed bootstrappping technique with a 2 % significance level.

of model results using paleoenvironmental data. Although
18 km is a relatively high grid spacing for regional climate
models, future studies will benefit from even more detailed
climate simulations, particularly to better understand precip-
itation patterns in complex terrain such as Iberia, across the
Mediterranean, and in the Carpathians. This is also true for
studies on the local and regional paleobotany and archaeol-
ogy of this important period in Europe’s history.

Code and data availability. WRF is a community model that
can be downloaded from its web page (http://www2.mmm.ucar.
edu/wrf/users/code_admin.php, Skamarock and Klemp, 2008).
The source code of LPJ-LMfire can be downloaded from Github
(https://github.com/ARVE-Research/LPJ-LMfire/tree/v1.3, last ac-
cess: 4 November 2020; https://doi.org/10.5281/zenodo.1184589,
Kaplan et al., 2018). The climate simulations (global:
CCSM4 and regional: WRF) and land cover simulations
(LPJ-LMfire) occupy several terabytes and thus are not
freely available. Nevertheless, they can be accessed upon re-
quest to the contributing authors. Simple calculations carried
out at a grid point level are performed with Climate Data
Operator (CDO; https://doi.org/10.5281/zenodo.2558193,
Schulzweida, 2019) and NCAR Command Lan-
guage (NCL; https://doi.org/10.5065/D6WD3XH5,

UCAR/NCAR/CISL/TDD, 2019). The figures are per-
formed with NCL (UCAR/NCAR/CISL/TDD, 2019). The
source code of the program to classify vegetation cover
fraction into the WRF land cover categories is archived
on Github (https://github.com/ARVE-Research/lpj2wrf;
https://doi.org/10.5281/zenodo.4922199, Kaplan, 2021).
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Abstract

In this study, we investigate the sensitivity of the glacial Alpine hydro-climate to northern

hemispheric and local ice-sheet changes. Bridging the scale gap by using a chain of global

and regional climate models, we perform sensitivity simulations of up to 2 km horizontal

resolution over the Alps for the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4

(MIS4). In winter, we find wetter conditions in the southern part of the Alps during LGM

compared to present day, to which dynamical processes, i.e., changes in the wind speed and

direction, substantially contribute. During summer, we find the expected drier conditions in

most of the Alpine region during LGM, as thermodynamics suggests drier conditions under

lower temperatures. The MIS4 climate shows enhanced winter precipitation compared to

the LGM, which is explain by its warmer climate compared to the LGM — thus, again

explained by thermodynamics. The sensitivity simulations of the northern hemispheric ice-sheet

changes show that an increase of the ice-sheet thickness leads to a significant intensification of

glacial Alpine hydro-climate conditions, which is mainly explained by dynamical processes.

Changing only the Fennoscandian ice sheet is less influential on the Alpine precipitation,

whereas modifications in the local Alpine ice-sheet topography significantly alter the Alpine

precipitation, in particular we find a reduction of summer precipitation at the southern face of

the Alps when lowering the Alpine ice sheet. The findings demonstrate that the northern

hemispheric and local ice-sheet topography play an important role in regulating the Alpine

hydro-climate and thus permits a better understanding of the precipitation patterns in the

complex Alpine terrain at glacial times.

4.1 Introduction

Glacial times are characterised by very different boundary conditions than today, leading

to cold conditions, substantial sea-level drops and a strong increase in land ice sheets (Mix

et al., 2001). This different climate behaviour of glacial times have attracted the scientific

community, since they are an ideal test bed to challenge state-of-the-art climate models in

their ability to simulate changes in climate (e.g. Kageyama et al., 2021). Further, glacial times

are also suitable to identify relevant mechanisms such as feedback processes in the climate

system (e.g. Stocker and Johnsen, 2003) and to investigate response behaviour to external

forcing (e.g. Ganopolski and Calov, 2011). Thereby, the hydrological cycle is an important

ingredient in the Earth’s climate system due to its transport and redistribution of mass and

energy (e.g. Mayewski et al., 2004). To understand the climate during glacial times and to

validate climate models proxy data are a prerequisite. Besides proxy data for atmospheric

characteristics, also the extent and height of the ice sheet must be known, since these have an

influence on the atmospheric circulation (Monegato et al., 2017). Still, large uncertainties

remain, in particular in land ice-sheet extent and height reconstructions prior to the Last

Glacial Maximum (LGM, 21 ka; e.g. Peltier, 1994, 1998; Angelis and Kleman, 2005; Ehlers

et al., 2011; Tarasov et al., 2012; Ullman et al., 2014; Batchelor et al., 2019; Gowan et al.,



4.1. INTRODUCTION 97

2021), but also the ice-sheet height during the LGM is still debated in literature (e.g. Peltier,

2004; Peltier et al., 2015; Ganopolski and Brovkin, 2017; Batchelor et al., 2019).

Thus, the purpose of this study is to investigate the role of the global and local ice-sheet

topography in the regional hydro-climate over the European Alps with a focus on two glacial

states, the LGM and the Marine Isotope Stage 4 (MIS4, 65 ka). In this study, we investigate

to which extent changes in the dynamics are responsible for precipitation changes over the

European Alps, based on eight high-resolution regional climate model (RCM) simulations.

So far, many proxy and global modelling studies have focused on the LGM (e.g. Yokoyama

et al., 2000; Clark et al., 2009; Van Meerbeeck et al., 2009; Hughes et al., 2013) as LGM is also

a focal period of the Paleoclimate Modelling Intercomparsion Projects (PMIP) (Abe-Ouchi

et al., 2015; Kageyama et al., 2017). Globally, the reconstructed temperature at LGM is

reduced by 5 to 6.5 ◦C compared to present day (PD; Otto-Bliesner et al., 2006). This led to

the building up of large ice sheets, in particular over the Northern Hemisphere (Peltier et al.,

2015), a strong reduction in the sea level by approximately 115 to 130 m (Lambeck et al.,

2014) and changes in vegetation and land surfaces (e.g. Annan and Hargreaves, 2013; Bartlein

et al., 2011; Cleator et al., 2020), inducing higher atmospheric dust loadings during the LGM

(Lambert et al., 2008). Paleoclimate reconstructions of Europe based on pollen data show,

depending on the region, a temperature decrease of 10 to 14 ◦C (Wu et al., 2007; Bartlein et al.,

2011). The same data is also used to reconstruct the hydro-climatic response over Europe at

LGM showing mainly drier conditions (reduction in precipitation of around 200 mm year−1)

compared to PD (Wu et al., 2007; Bartlein et al., 2011). Other climate reconstructions suggest

also circulation-induced changes in the moisture transport (Florineth and Schlüchter, 2000).

In this case, the atmospheric circulation is changed so that the Alpine area receives more

moisture from the south which results in wet conditions in the southern part of the Alps and

dry conditions north of the Alps. This is confirmed by reconstructions based on speleothems in

the Alpine region (Luetscher et al., 2015). Still, the interpretation of sparse paleo-proxy data

remains a challenge due to the inherent uncertainties of proxy reconstructions, spatial coverage,

uncertain seasonality of the proxy sensitivity, and contradicting signals recorded by different

proxy archives (e.g. Wu et al., 2007; de Vernal et al., 2006; Beghin et al., 2016). MIS4 climate

is less understood compared to LGM as proxy data availability is further reduced. Available

paleoclimate reconstructions characterise MIS4 to be warmer than the LGM (e.g. Eggleston

et al., 2016; Newnham et al., 2017; De Deckker et al., 2019) with a global sea level drop of

roughly 80 m compared to PD (e.g. Cutler et al., 2003; Siddall et al., 2008, 2010; De Deckker

et al., 2019).

Global climate model (GCM) simulations offer an alternative view on glacial climate

conditions. With respect to the global mean climate response under LGM conditions, they

are overall consistent with reconstructions (e.g. Braconnot et al., 2012; Hofer et al., 2012a;

Kageyama et al., 2021). On the regional scale, GCM results show stronger deviations to

reconstructions, e.g. they tend to underestimate the amplitude of European temperature

between LGM and PD or partly disagree in the European precipitation pattern (Braconnot



98 4. ROLE OF ICE SHEETS IN THE GLACIAL ALPINE HYDRO-CLIMATE

et al., 2012; Kageyama et al., 2017, 2021; Harrison et al., 2015). Besides, GCM simulations

are used to deduce relevant processes and assess sensitivity of uncertain components, like

the reconstruction of major ice-sheets (e.g. Angelis and Kleman, 2005; Tarasov et al., 2012;

Ullman et al., 2014; Peltier et al., 2015; Batchelor et al., 2019). Several studies demonstrated a

strong sensitivity of glacial climate to the extent and height of ice sheets (e.g. Kageyama and

Valdes, 2000; Rivière et al., 2010; Hofer et al., 2012a,a; Merz et al., 2015). This is particularly

true for the Laurentide ice sheet (LIS) as it drives major changes in the glacial atmospheric

circulation and its variability compared to PD (Kageyama and Valdes, 2000; Rivière et al.,

2010; Pausata et al., 2011; Hofer et al., 2012a; Merz et al., 2015; Harrison et al., 2016). For

example, Hofer et al. (2012a) and Merz et al. (2015) found that an increase in the elevation of

the LIS causes an enhancement and a southward displacement of the jet stream and the storm

track over the North Atlantic. This has a strong impact on the precipitation pattern over

Europe, in particular during winter. Still, GCMs operate on relatively coarse resolutions and

thus poorly represent the effect of the topography at finer scales such as the complex Alpine

terrain. Additionally, GCMs use parameterisations for processes that govern regional-to-local

scale precipitation (Leung et al., 2003; Su et al., 2012).

Regional downscaling provides a way to overcome some of the shortcomings of GCM

simulations. Latombe et al. (2018) proposed a statistical downscaling method to increase the

spatial resolution of LGM simulations in a computationally efficient way. Another approach is

dynamical downscaling by employing an RCM (e.g. Strandberg et al., 2011; Rummukainen,

2016; Ludwig et al., 2019). Among others, Ludwig et al. (2016) showed that the application of

RCMs substantially improves the simulated LGM climate over Europe compared to the driving

GCM, although biases from the GCM simulation may still impact the regional output. For

instance, Ludwig et al. (2017) found that RCMs are sensitive to boundary conditions provided

by GCM such as sea surface temperature. Thus, regional climate modelling is beneficial for

answering paleoclimate research questions (Ludwig et al., 2019). Pinto and Ludwig (2020)

and Raible et al. (2020) showed that extratropical cyclones are characterised by enhanced

wind speeds over Europe during the LGM compared to PD, which helps to understand the

reallocation and build-up of thick loess deposits in Europe (e.g. Römer et al., 2016; Krauß et al.,

2016). Recently, the horizontal resolution of RCMs in the paleoclimate context is increased to

a level that convection is explicitly resolved (e.g. Velasquez et al., 2020). This study shows the

benefit of higher spatial resolution in particular over areas with complex terrain such as the

Alps. An accompanying study shows that also land surface conditions play an important role

and need to be considered to realistically simulate the LGM climate state (Velasquez et al.,

2021), which is similar to earlier findings obtained with coarser resolved RCM simulations

for LGM and MIS3 (Kjellström et al., 2010; Strandberg et al., 2011; Ludwig et al., 2017).

Nevertheless, a detailed analysis of the sensitivity of the global and local ice-sheet topography

on the regional hydro-climate over the European Alps — the purpose of this study — is

missing. Hence, we employ eight high-resolution RCM simulations with the Weather Research

and Forecasting (WRF) model (Skamarock and Klemp, 2008) driven by simulations under

constant climate conditions using the Community Climate System Model version 4 (CCSM4,
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Table 4.1: External forcing used in Hofer et al. (2012a,b) for 1990 CE, LGM and MIS4 conditions.

Parameter name 1990 CE LGM MIS4

TSI (W m−2 ) 1361.77 1360.89 1360.89

Eccentricity (10−2) 1.6708 1.8994 2.0713

Obliquity (◦) 23.441 22.949 22.564

Angular precession (◦) 102.72 114.43 15.22

CO2 (ppm) 353.9 185 205

CH4 (ppb) 1693.6 350 460

N2O (ppb) 310.1 200 210

Gent et al., 2011). Thereby, we modify either the height of the northern hemispheric ice sheets,

i.e. LIS, the Fennoscandian and Greenland ice-sheet in both CCSM4 and WRF, or the height

of the Fennoscandian ice sheets (FIS) in the regional model or solely the height of the Alpine

ice sheet in the regional model.

The study is structured as follows. Section 4.2 describes the models and experiments

carried out in this study. Section 4.3 introduces methods used for analysing the role of the

ice-sheet topography on the Alpine hydro-climate. In Sect. 4.4, we first characterise the two

glacial states LGM and MIS4. Secondly, we investigate how the Alpine hydro-climate reacts to

changes in the northern hemispheric and the FIS, separately. In a third step, we assess the

sensitivity of the Alpine hydro-climate to local (Alpine) ice-sheet changes. Finally, a discussion

and conclusive remarks are given in Sect. 4.5.

4.2 Models and experiments

The study is based on eight experiments using PD and glacial climate conditions to assess

the role of the large-scale (LIS and FIS) and local (Alpine) ice-sheet topography on the Alpine

climate. The focus on the European Alps necessitates to employ a model chain that consists of

a GCM and RCM. Thereby, the GCM provides the initial and boundary conditions for the

RCM. The models’ configuration and the experiments are explained in the following.

The Community Climate System Model is used as GCM in the model chain (version 4,

CCSM4; Gent et al., 2011). We use the atmosphere-land-only setting of CCSM4, i.e., the

components of the atmosphere (CAM4, Neale et al., 2010) and land (CLM4, Oleson et al., 2010)

are dynamical models whereas the ocean and sea ice components are so-called data models

obtained from a coarsely resolved fully coupled simulation performed with CCSM3 (Hofer

et al., 2012a). Thus, the two data models force the atmospheric component by time-varying

sea-surface temperatures and sea-ice cover. The atmosphere-land-only model is run for 33

years with 6-hourly output, a horizontal resolution of 1.25◦ × 0.9◦ (longitude × latitude) and

26 vertical hybrid sigma-pressure levels in the atmosphere and 15 layers in the land component.
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In this study, we use the first 21 or 12 years of the GCM simulation that follow after the first 3

years of spin-up.

a) b)a) b)

Figure 4.1: Domains and topography used by WRF. (a) represents the four domains at 54, 18, 6 and 2 km
horizontal resolution and the shading indicates present-day topography, (b) as (a) but for the LGM topography,
crosshatched areas are covered by glaciers.

Five global climate simulations provide the RCM with initial and boundary conditions.

Two of these CCSM4 simulations are performed under PD 1990 CE conditions and LGM

conditions, respectively. The other three simulations are performed under MIS4 conditions.

The orbital forcing and atmospheric composition are adjusted to the respective period (Table

4.1). The MIS4 simulations differ in their northern hemispheric ice-sheet elevation: 66, 100 and

125 % of the LGM ice-sheet elevation, respectively. Note that glaciers and small ice caps

such as the ones over the Alps and Pyrenees are not included in these simulations due to the

coarse resolution of approximately 100 km in the GCM. More detailed information on these

simulations and their settings are presented in Hofer et al. (2012a,b) and Merz et al. (2013,

2014a,b, 2015).

The global CCSM4 simulations are dynamically downscaled with the RCM Weather

Research and Forecasting (WRF) model (version 3.8.1, Skamarock et al., 2008). This RCM

solves the basic non-hydrostatic equations with an Eulerian mass-coordinate solver and employs

a terrain-following eta-coordinate system in the vertical. We use an adaptive time-step, 40

vertical eta levels and four domains that are two-way nested. The horizontal resolution of these

four domains is 54, 18, 6 and 2 km, respectively. The domains focus on the Alpine region; the

outermost domain includes Europe and part of the North Atlantic to capture the influence of

the North Atlantic Ocean and the FIS on the European climate (Fig. 4.1). Furthermore, we

use the same setting as in Velasquez et al. (2020), thus we refer to this publication on the

details of the relevant parameterisation schemes used. Still, we highlight that the horizontal
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a) PD b) LGM

B

A A
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c) Diff. LGMALPSLESS - LGM

Figure 4.2: Innermost domain and topography used by WRF. (a) represents the domain at 2 km horizontal
resolution and the shading indicates PD topography, (b) as (a) but for the LGM topography, crosshatched areas
are covered by glaciers. (c) shows the difference between LGMALPSLESS and LGM topography. The boxes in (a)
and (b) are the two regions used for the Skew–T diagrams: Site A represents the north-western and site B the
central-southern region.

resolutions in the two innermost domains (6 and 2 km) are convection permitting, i.e., we omit

the use of parameterisation for convection in these two domains. WRF uses 21 or 12 years

(compare Table 4.2 for more details) of the corresponding GCM simulation as initial and

boundary conditions, but WRF is not nudged to the GCM output. These 21 and 12 years are

further split up into 7 and 4 individual 3-year simulation segments, respectively, to efficiently

use the available computer facilities. For each segment, a 2-month spin-up is needed in order to

allow the land surface to come into quasi-equilibrium. Tests suggest that a 2-month spin-up is

sufficient to obtain a quasi-equilibrium of the upper meter of the land surface (Velasquez et al.,

2020, 2021).

The first experiment (PDPD) is a reference simulation under PD conditions (1990 CE

conditions). We run WRF for 21 years using 1990 CE conditions and initial and boundary

conditions of the corresponding CCSM4 simulation (Table 4.1). PDPD uses the default PD

MODIS-based land cover dataset from WRF as land surface boundary conditions (Skamarock

et al., 2008).

The second experiment (LGMLGM) uses the external forcing of the LGM (Table 4.1),

except for eccentricity and precession. The reason is that in the radiative routine of WRF

only the obliquity parameter is processed. We realised this problem after the simulations

have been performed. We expect that this problem is of minor importance as the driving

CCSM4 uses all orbital parameters and thus the orbital signal is at least partly included in the

simulations. Some preliminary results with a model version, which fixes this bug, shows no

strong dependence on this error under LGM conditions (Emmanuele Russo pers. comm.).

Additionally, the LGMLGM surface conditions need some further adjustments. These include

the lowering of the sea level and ice sheets as specified in the PMIP3 protocol (Fig. 4.1b; for

more details see: Ludwig et al., 2017). The glaciation over the Alpine region (obtained from

Seguinot et al., 2018) and other glaciated areas (e.g. Pyrenees, from Ehlers et al., 2011) are

modified according to LGM conditions (Fig. 4.1b). Additionally, the land cover is altered to

comply with LGM conditions, as described in Velasquez et al. (2021). Comparing LGMLGM

with PDPD illustrates the entire effect of changes in the external forcing and in the surface
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Table 4.2: Set of experiments carried out in this study. The first column indicates the name of the WRF
simulation, the second column the perpetual conditions, the third column the northern hemispheric ice sheets
(this includes the modifications in the driving global model), the fourth column the FIS, the fifth column the
Alpine glaciers, the sixth column the land cover, and the seventh column the length of the simulation.

Perpetual North Hemis. Fennoscandian Alpine Land Sim.

Name conditions ice sheets ice sheet glaciers cover length

PDPD 1990 1990 1990 1990 1990 21 years

LGMLGM LGM LGM LGM LGM LGM 21 years

MIS4LGM66 MIS4 66 % LGM 66 % LGM LGM LGM 21 years

MIS4LGM MIS4 100 % LGM 100 % LGM LGM LGM 21 years

MIS4LGM125 MIS4 125 % LGM 125 % LGM LGM LGM 21 years

LGMFIS50 LGM LGM 50 % LGM LGM LGM 12 years

LGMFIS150 LGM LGM 150 % LGM LGM LGM 12 years

LGMALPSLESS LGM LGM LGM reduced LGM LGM 21 years

conditions (sea level drop, land cover and northern hemispheric ice sheets). Note that the

LGMLGM simulation is evaluated against proxy evidence (Prentice and Jolly, 2000; Wu et al.,

2007; Kaplan et al., 2016) showing an improved LGM climate state in the WRF simulation

(Velasquez et al., 2020, 2021) compared to the driving CCSM4 simulations (Hofer et al., 2012a).

The third to seventh experiments assess the sensitivity of the Alpine climate to changes in

the northern hemispheric ice-sheet configuration. Thereby, the MIS4 simulations of CCSM4

are dynamically downscaled with WRF resulting in MIS4LGM66, MIS4LGM and MIS4LGM125.

These three WRF simulations are run for 21 years using MIS4 conditions and using the

LGMLGM land cover (described in Velasquez et al., 2021). Note further that the Alpine ice

sheet is always set to LGM conditions (Fig. 4.2b). Following their driving CCSM4 simulations,

we perform each WRF simulation with a different Fennoscandian ice-sheet thickness: 66, 100

and 125 % of the LGM ice-sheet thickness, respectively. MIS4LGM serves as reference for

MIS4LGM66 and MIS4LGM125.

To investigate the effect of the FIS on the Alpine climate, we perform two additional

sensitivity simulations: LGMFIS50 and LGMFIS150. For both simulations, the initial and

boundary conditions are from the LGM CCSM4 simulation. Note that this CCSM4 simulation

uses 100 % LGM ice-sheet configurations. To assess the influence of the FIS, we reduce or

increase FIS thickness to 50 % and 150 %, but only in the WRF model. Both simulations are

run for 12 years.

With the eighth experiment, we investigate the influence of local modifications of the

Alpine ice sheet on the Alpine climate. One sensitivity simulation is performed: LGMALPSLESS.

This simulation is based on the LGMLGM (which serves as reference) but with a modified

Alpine topography (Fig. 4.2c). LGMALPSLESS is run for 21 years and with a reduced Alpine
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glacier thickness. This reduction becomes stronger with height; namely, the Alpine ice sheet is

strongly reduced over mountain peaks and slightly over the low lands. All eight experiments

are summarised in Table 4.2.

4.3 Methods

The analysis of the past hydro-climate and its response to different forcing factors is

based on climatological means of precipitation, their differences between the experiments

and some of the driving factors for these differences, e.g. changes in humidity or wind. We

assess the statistical significance with a bootstrapping technique (Wilks, 2011). This technique

randomly selects elements from the original sample to generate a new sample, also called

resampling, whereby the number of elements remains unchanged. This procedure is repeated

1000 times. A new mean value is calculated from each resampling leading to 1000 mean values

that are used to build a probabilistic distribution function (PDF). We assess the significance of

the mean value using a significance level of 0.05 (0.025 for each PDF’s tail). The bootstrapping

technique is applied at each grid point using as elements the 30 annual mean values.

Additionally, we analyse vertical atmospheric profiles using the SkewT–Log P diagram

(AWC, 1969, 1990; NOAA, 2021) to gain insights into the atmospheric drivers of precipitation

changes. The SkewT–LogP or Skew–T diagram is a thermodynamic diagram that is widely

used in atmospheric science, particularly by meteorologists for weather forecasts (e.g. Duarte

and Gomes, 2017; Morsy et al., 2017; da Silva et al., 2019; Chen et al., 2020). It illustrates the

vertical atmospheric state by several meteorological variables such as air temperature, humidity,

wind speed and wind direction. The x-axis indicates temperature and the y-axis pressure

levels in a logarithmic scale (thus the name LogP). There are usually five isolines on the

diagram: isotherms, isohumes (or mixing ratio lines), dry adiabatic lines (or lines of equal

potential temperature θ), isobars, and moist adiabatic lines. In this study, we use a simplified

diagram that only contains the first three variables for the analysis as we focus on changes in

temperature, humidity and wind. For instance, an unsaturated air panel follows a dry adiabatic

line when ascending without changes of state, i.e., there is no loss or gain of latent heat. These

lines are used in this study to qualitatively estimate the stability of the atmosphere. A stable

atmosphere is characterised by an increase of potential temperature with height.

Two vertical profiles are included in the Skew–T diagram: temperature (solid lines) and

dew-point temperatures (dashed lines). The latter simply indicate temperatures at which the

air becomes saturated and is used to deduce the mixing ratio with height, i.e., the amount of

water vapour in the air where the dew point temperature line crosses the mixing ratio line.

Both temperatures are used to investigate the relative humidity, i.e., the level of saturation at

a certain pressure and temperature. This is done by qualitatively estimating the distance

between both temperatures. A short distance indicates a high relative humidity and, inversely,

a large distance a low relative humidity. Wind speed and direction are illustrated by wind bars

in km h−1.
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The Skew–T diagram is built with climatological means of the atmospheric variables

above surface at the following pressure levels: 1000, 925, 900, 850, 800, 750, 700, 600, 500, 400,

300, 250, 200 and 100 hPa. We consider the lowest pressure level above surface as the best

representation of the near-surface atmosphere. Two additional vertically integrated quantities

are given at the top of the diagram: precipitable water (PW) and convective available potential

energy (CAPE). CAPE quantitatively represents the energy available for convective processes,

the higher it is the stronger these processes could be (for more information see chapter 8 of

Wallace and Hobbs, 2006). In this study, we use the climatological mean values to calculate the

PW and CAPE values; the later are only shown at the top of the diagram when it is different

from zero.

4.4 Results

In the following, the glacial Alpine hydro-climate is characterised for two glacial states

the LGM and MIS4. Then, we investigate the sensitivity of the hydro-climate to northern

hemispheric ice-sheet changes for MIS4 and the sensitivity to the FIS for LGM. We assess the

Alpine hydro-climate response to changes in the Alpine ice sheet by one simulation using LGM

conditions. For the analysis, we select winter (DJF, December-January-February) and summer

(JJA, June-July-August) as these two seasons summarise the changes in spatial precipitation

patterns over the Alpine region. The other two transition seasons (MAM, March-April-May and

SON, September-October-November) show either similarities to winter (for MAM) or summer

(for SON). The analysis is based on the innermost domain of the WRF simulations (Fig. 4.2).

D
JF

JJ
A

PDPD LGMLGM

b)

f)

[mm  day-1]

a)

e)

Diff. LGMLGM - PDPD Diff. MIS4LGM - LGMLGM
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[mm  day-1]

c)
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Figure 4.3: Climatological mean values of daily precipitation intensity over the Alps for (a, b, c and d) winter
(DJF) and (e, f, g, and h) summer (JJA): (a, e) the mean PD precipitation, (b, f) the mean LGM precipitation,
(c, g) the difference between LGM and PD and (d, h) the difference between MIS4 and LGM. Crosshatched areas
represent statistically significant differences with a significance level of 0.05 (using a two-tailed bootstrapping
technique).
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4.4.1 Characterisation of the glacial hydro-climate of the Alps

Present-day hydro-climate over the Alpine area is characterised by the large scale

atmospheric circulation with its dominant westerlies, influences from the Mediterranean

(Messmer et al., 2015, 2017, 2020) and convective processes (Ban et al., 2014; Gómez-Navarro

et al., 2018). In winter, the westerlies are enhanced, so that we observe high precipitation

amounts in the north-western area of the domain and at the northern face of the Alps, whereas

the southern and the eastern parts receive less precipitation (Fig. 4.3a). Due to the orographic

barrier of the Alps the flow is uplifted leading to a higher precipitation intensity over mountain

tops and lower intensity in valleys. In summer, the precipitation pattern is more uniform over

the Alps, showing high intensities also on the southern face of the Alps and in the east (Fig.

4.3e). This suggests that the topographically triggered convection is an important process in

summer under PD climate.

The LGM shows a completely different precipitation behaviour over the Alps (Fig. 4.3).

In winter, precipitation is mostly concentrated on the south-western Alps (Fig. 4.3b and c)

with a statistically significant increase of more than 8 mm day−1 compared to PD (Fig. 4.3c).

The southern face of the Alps generally shows a statistically significant increase of winter

precipitation of about 3 mm day−1 during LGM compared to PD, whereas the northern face

experiences a statistically significant decrease of more than 6 mm day−1 (Fig. 4.3c). During

summer, precipitation is significantly reduced at LGM compared to PD (Fig. 4.3e, f and g),

which suggests that convective processes, typically observed in PD summer, are less active

during the LGM. Still, few areas show wetter conditions during the LGM compared to PD,

particularly over mountains peaks in the western Alps (Fig. 4.3g). The increase in precipitation

observed over mountain peaks indicates precipitation induced by orographic lifting. As the

surroundings are drier it is assumed that the higher elevation of the Alps during LGM triggers

precipitation only at the highest points.

To further understand the precipitation changes between LGM and PD, we use the

Skew–T diagram, as introduced in Sect. 4.3. The vertical profiles are estimated for two

sites: upstream to the Alpine region (site A, north-western region) and downstream (site B,

central-southern region) according to the general westerlies of the mid latitudes (Fig. 4.2).

Note that these two sites are over rather flat terrain and therefore experience less influence

from local orographic-induced atmospheric dynamics such as the mountain-valley breeze.

Starting with the Skew–T diagrams in winter (Fig. 4.4a and c), we find the expected

strong reduction of LGM temperatures compared to PD at both sites. The mixing ratios are

also reduced in the LGM compared to PD resulting in less precipitable water under LGM

conditions at both sites. Interestingly, the relative humidity, measured by the distance between

dew-point temperature and temperature remains unchanged when comparing LGM and PD.

However, we find a clear structural change in the vertical profiles of the temperatures, as

illustrated by the different slopes between LGM and PD. Both sites show that potential

temperature values (comparing the temperature profile with the dashed brown lines) overall

increase with height indicating a stable atmosphere. This increase is stronger in the LGM
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indicating a more stable atmosphere at both sites compared to PD. Particularly, the stability

is higher in site A (north-western part) than in site B (central-southern region) in winter,

which is a first hint that both regions show different behaviours in their winter precipitation.

Another hint is given by the wind speed and direction, since we find an increase in wind speed

Figure 4.4: Skew–T diagram for site A (north-western region; a and b) and site B (central-southern region; c
and d). Sites’ locations are shown in Fig. 4.2. (a and c) represent climatological vertical profiles for DJF and (b
and d) for JJA. PD climate is illustrated by black, LGM climate by blue and MIS4LGM climate by purple lines.
Skewed straight dashed green lines represent isohumes labelled on the bottom of the diagram. The mixing ratio
increases to the right at a constant pressure level. Solid brown lines are isotherms. Dry adiabatic lines (lines of
equal potential temperature θ) are slightly curved dashed brown lines. In the wind bars, the triangle, line and
half-size line represent 50, 10, 5 km h−1, respectively. Furthermore vertically integrated precipitable water (PW)
and CAPE are given at the top of each panel. Note that CAPE is only displayed if it is different from zero.
Please see Sect. 4.3 for a in-detail description of the Skew–T diagram.

and an anticlockwise rotation of the LGM compared to PD. This is evident at both sites but

the rotation is more pronounced in the central-southern region. The boundary layer is thicker

in the LGM than in PD, in particular for the central-southern region. Both sites show the

expected lowering of the tropopause during the LGM due to colder conditions compared to PD.
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Summer shows a rather similar behaviour as winter, but with a few exceptions related

with the season (Fig. 4.4b and d). CAPE is only observed during PD summer at both sites.

Additionally, we find a development of a small boundary layer under LGM conditions, which is

not present under PD conditions. Furthermore, the wind is rotated slightly clockwise at site A

(north-western region), whereas site B (central-southern region) shows an anticlockwise rotation.

Again, at both sites, the wind speed is increased in the LGM, but not as clearly as in winter.

Figure 4.5: Climatological mean wind vectors over the Alps for (a and b) DJF and (c and d) JJA: (a and c)
black and green wind vectors correspond to PD and LGM, respectively, (b and d) black and green wind vectors
correspond to LGM and MIS4, respectively. Red shading illustrates statistically significant differences in zonal
(U) and meridional (V) wind components with a significance level of 0.05 (two-tailed bootstrapping technique),
blue and grey shading indicate significance either in the U or V wind component, respectively. Please note that
the reference wind vectors differ for DJF and JJA.

To gain further insights in the advection of moisture, we exhibit the wind vectors at

700 hPa. This level summarises winds in the low-to-mid troposphere. Note that this pressure

level could also represent near-surface winds over mountain peaks in certain regions. Compared

to PD wind vectors, LGM winds are significantly stronger and rotated anticlockwise during

winter (Fig. 4.5a), confirming the finding of the Skew–T diagrams (Fig. 4.4 a and c). Almost

the entire domain shows significant changes in both wind components (red shading in Fig.

4.5a). Stronger winds are also observed during summer but with slightly different rotation

patterns across the domain (Fig. 4.5c). These winds are generally rotated anticlockwise except

for the southwestern region of the domain where it is clockwise. The increase in speed covers

approximately half of the domain, which is attributed to either significant changes in the zonal

component (U) only or both wind components (i.e., blue or red shading, respectively; Fig. 4.5c).

Similarly, the wind rotation also covers about half of the domain, which is associated to either

significant changes in the meridional component (V) only or both wind components (i.e., areas

in grey or red, respectively; Fig. 4.5c).
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MIS4 is the second glacial state considered here. Figure 4.3d shows that winter precipitation

intensities of MIS4LGM are higher than LGM ones, especially over some areas such as the

western area of the domain with a significant increase of about 3 mm day−1. This is expected

as MIS4LGM climate is warmer than LGM, thus the ability of the atmosphere to hold more

moisture is increased due to the Clausius–Clapeyron equation (e.g. third chapter of Wallace

and Hobbs, 2006). In summer, the precipitation difference between MIS4 and LGM shows a

significant north-south dipole pattern (Fig. 4.3h). There are slightly wetter conditions of

about 1.5 mm day−1 on the northern face of the Alps during MIS4LGM compared to LGM. On

the southern face of the Alps precipitation is reduced by around 2 mm day−1.

To understand these differences, we again investigate the atmospheric vertical profiles

at both sites. Overall, the MIS4 profiles look very similar to LGM ones during winter. The

expected shift towards warmer conditions under MIS4 conditions is visible at both sites (Fig.

4.4a and c), in particular in the lower part of the troposphere (mainly in the boundary layer),

leading to higher mixing ratios in MIS4 compared to LGM. The comparison of MIS4 and LGM

further shows that the stability is slightly reduced under MIS4 conditions in the lower part of

the troposphere (up to 600 hPa; Fig. 4.4a). This reduction is more evident in the north-western

region (site A), whereas the stability in the central-southern region (site B) is slightly reduced

in the mid layer of the troposphere (between 800 and 400 hPa; Fig. 4.4c). The wind directions

seem to be unchanged with slightly lower wind speeds under MIS4 than LGM conditions.

Thus, thermodynamic changes are the major processes in explaining the increased winter

precipitation during MIS4 (Fig. 4.3d). In summer, the temperature profiles agree between the

two glacial states at both sites, except for a shift towards higher temperatures leading again to

higher mixing ratios. The only deviation is that the boundary layer shows a slightly stronger

inversion during MIS4 than LGM at both sites. The shift to warmer temperature and higher

mixing ratios suggest a general moistening under MIS4 compared to LGM conditions, which

can explain the increase in summer precipitation in the northern part but not the decrease in

the southern part of the domain.

Therefore, we assess the wind fields in more detail. Figure 4.5b shows that MIS4 winds

become weaker during winter compared to LGM, but a rotation is almost absent. During

summer, MIS4 winds become stronger with a slight clockwise rotation compared to LGM (Fig.

4.5d). Both, the increase in speed and the rotation, enhances the wind shear in the low-to-mid

troposphere (Fig. 4.4) resulting in more convective-related precipitation in the northern part of

the Alps, whereas the clockwise rotation over the southern face of the Alps in MIS4 leads to

reduced moisture availability as the flow dries out when crossing the Alps and reaching the Po

valley (Foehn process).

In summary, we find that both thermodynamic and dynamical changes are responsible

to generate precipitation changes in winter and summer when comparing LGM and PD

conditions and MIS4 and LGM, respectively. Interestingly, the changes in winter precipitation

between LGM and PD is explained by a combination of thermodynamic and dynamic processes,

whereas the summer reduction is mainly explained by thermodynamics and reduced convection.
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The comparison of MIS4 and LGM shows that the winter changes are mainly driven by

thermodynamics, whereas in summer also dynamical changes are important.

4.4.2 Sensitivity of the Alpine hydro-climate to northern hemispheric

ice-sheet changes

Here, we investigate the role of the northern hemispheric ice-sheet topography in the

Alpine climate. Two sets of sensitivity simulations are used. The uncertainty in the thickness

of the northern hemispheric ice sheets is assessed by comparing two simulations with 66 and

125 % to the one with 100 % LGM ice-sheet thickness under MIS4 conditions. The second set

of simulations uses the LGM climate state as a reference and only the FIS thickness is changed

by 50 and 150 %.
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Figure 4.6: Climatological mean values of daily precipitation intensity over the Alps. (a) represents MIS4LGM

precipitation for DJF, (b) the differences between MIS4LGM66 and MIS4LGM, (c) as (b) but between MIS4LGM125

and MIS4LGM. (d), (e) and (f) as (a), (b) and (c) but for JJA. Crosshatched areas indicate statistically significant
differences at a significance level of 0.05 (using a two-tailed bootstrapping technique).

We first focus on the precipitation response to these changes in ice-sheet thickness. The

comparison of MIS4LGM66 with MIS4LGM shows that lowering the northern hemispheric ice

sheets by 66 % significantly increases the winter precipitation by about 3 mm day−1 on

the northern face of the Alps and leads to significantly drier conditions in the rest of the

domain (Fig. 4.6b). In particular, winter precipitation is reduced by up to 8 mm day−1 in the

south-western Alps (Fig. 4.6b). Comparing these patterns to the difference between PD and

LGM, we find a north-south winter pattern inversely to the one of PD and LGM. This suggests

that decreasing ice-sheet thickness (i.e., MIS4LGM66) leads to more PD-like conditions during

glacial climates. Summer precipitation differences between the two experiments resembles

the winter pattern, but the amplitudes are reduced, i.e., precipitation is increased by about

2 mm day−1 on the northern face of the Alps and reduced by about 1 mm day−1 in the

western part of the domain (Fig. 4.6e). The southern part shows no significant changes. This

pattern of precipitation is only partly similar to the difference pattern of the LGM and PD.
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An increased ice-sheet thickness as in MIS4LGM125 shows a different influence on

precipitation patterns (Fig. 4.6c and f). In winter, the difference pattern in precipitation

between MIS4LGM125 and MIS4LGM is similar to the one found between LGM and MIS4LGM

with overall wetter conditions. Especially, we find significantly high precipitation intensities up

to 3 mm day−1 on the north western and southern regions of the domain (Fig. 4.6c). The

northern face of the Alps shows a decrease in the precipitation intensities. Thus, we interpret

that the response of winter precipitation is linear with respect to the northern hemispheric

ice-sheet thickness changes. In summer, we generally find drier conditions in the MIS4LGM125

than in MIS4LGM, in particular significantly lower precipitation of up to -3 mm day−1 on the

central to southern part of the domain (Fig. 4.6f). This indicates that increasing northern

hemispheric ice-sheet thickness (such as in MIS4LGM125) enhances glacial climate conditions.
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Figure 4.7: Differences in climatological mean values of daily precipitation intensity over the Alps for (a and b)
winter (DJF) and (c and d) summer (JJA): (a and c) LGMFIS50 minus LGMLGM and (b and d) LGMFIS150

minus LGMLGM. Crosshatched areas indicate statistically significant differences at a significance level of 0.05
(using a two-tailed bootstrapping technique).

Secondly, we focus on the other set of sensitivity simulations under LGM conditions,

where only the FIS thickness is varied. These simulations show a rather weak response of

the precipitation within the domain (Fig. 4.7). In winter, increasing or decreasing the FIS

thickness does not lead to significant changes in precipitation (Fig. 4.7a and b). In summer, we

find an increase in the southern part of the domain for both sensitivity simulations (Fig. 4.7c

and d) and a small but significant increase in the northeast of the domain in the LGMFIS150

simulation.

Again, the Skew–T diagram is used to understand the role of the vertical behaviour of the

atmosphere on precipitation changes at the two sites (Fig. 4.2). The sensitivity simulations of

the northern hemispheric ice-sheet height shows that at both sites the wind speed in winter is

enhanced and anticlockwise rotated with increasing ice-sheet thickness (Fig. 4.8a and c). While

decreasing northern hemispheric ice-sheet thickness leads to slightly weaker and clockwise

rotated winds and a slightly warmer atmosphere. The latter results in a small increase of
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moisture availability (dashed green lines), especially in the central-southern region (site B)

where there is more precipitable water (Fig. 4.8a and c). In summer, only small wind changes

are found at both sites (Fig. 4.8b and d) and changes in the other variables of the Skew–T

diagram are mainly restricted to the lower troposphere and the boundary layer (Fig. 4.8b

and d). We find a reduced relative humidity at site A (north-western region), measured by

the distance between the dew-point temperature and temperature, and lower mixing ratios

(dashed green lines) at site B (central-southern region) with increasing ice-sheet thickness. This

Figure 4.8: As Fig. 4.4, but for MIS4LGM100 (black), MIS4LGM66 (blue), and MIS4LGM125 (purple).

suggests dryer conditions at both sites in the case of MIS4LGM125. The Skew–T diagrams

for the sensitivity of the FIS do not show strong differences (therefore not shown). Thus,

the Skew–T analysis confirms that an increase in northern hemispheric ice-sheet thickness

enhances glacial climate conditions. It further suggests that similar processes as discussed in

the comparison between LGM and PD are responsible for precipitation changes, whereas only

changing the FIS does not seem to have strong implications.
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The Skew–T diagrams already give some hints to wind alterations with respect to changes

in the northern hemispheric ice-sheet topography. Thus, we further assess the role of the

northern hemispheric ice-sheet topography on the Alpine winds by showing the 700 hPa wind

fields. In general, we observe that wind speed is weaker with decreasing ice-sheet thickness. In

winter, we find a clockwise rotation of the wind vectors over the entire domain with decreasing

northern hemispheric ice-sheet thickness (Fig. 4.9a and b). These modifications are generally

associated with either significant changes in the meridional component (V) only or both wind

components (i.e., grey or red shading, respectively; Fig. 4.9a and b). In summer, we find that

winds rotate clockwise with decreasing ice-sheet height (Fig. 4.9c and d). The alterations in

summer are related to either significant changes in the zonal and meridional component (U

and V) only or both wind components (i.e., blue, grey or red shading, respectively; Fig. 4.9c

and d). Thus, the winter and summer wind fields react similar to the comparison between

LGM and PD suggesting that northern hemispheric ice-sheet thickness is an important driver

of the advection processes over the Alps. Again, the sensitivity simulations with changed FIS

thickness do not show significant changes in the wind field (therefore not shown), which again

confirms the findings that the thickness of the FIS seems to have limited influence on Alpine

precipitation.

Figure 4.9: Climatological mean wind vectors over the Alps. (a) represents wind vectors for DJF, black and
green vectors correspond to MIS4LGM and MIS4LGM66, respectively, (b) as (a) but green vectors to MIS4LGM125.
(c) and (d) as (a) and (b) but for JJA. Red shading indicates statistically significant differences in zonal (U) and
meridional (V) wind components at a significance level of 0.05 (two-tailed bootstrapping technique), blue and
grey shading as the red one but only in U and V wind components, respectively. Please note that the reference
wind vectors differ for DJF and JJA.

In summary, the analysis shows that winter and summer seasons react differently to

northern hemispheric ice-sheet thickness changes, but resemble the processes already found in

the comparison between LGM and PD: Increasing northern hemispheric ice-sheet thickness
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generally leads to enhanced glacial conditions, i.e., a moistening during winter due to dynamic

processes and a drying in summer mainly explained by thermodynamics. The sensitivity of

precipitation to the FIS thickness is rather weak and the simulations suggest that its thickness

has only a negligible influence on the Alpine precipitation.

4.4.3 Sensitivity of the Alpine hydro-climate to Alpine ice-sheet changes

Besides changes in the northern hemispheric ice sheet, modifications in the Alpine ice

sheet might also influence Alpine precipitation. Therefore, we investigate the precipitation

pattern of the sensitivity simulation LGMALPSLESS in comparison to LGMLGM. Then, we

assess the processes explaining these changes using again the Skew–T diagram and the wind

field at 700 hPa.

In winter, the LGMALPSLESS experiment shows some areas with significantly drier

conditions over the Alps compared to LGMLGM (Fig. 4.10a), especially in the western Alps

with some significant precipitation reductions of up to 6 mm day−1. This dryness generally

coincides with the reduced Alpine ice-sheet thickness (Fig. 4.2c). Interestingly, the reduction in

precipitation is higher in the western part than in the central to eastern part of the Alps,

although the Alpine ice-sheet thickness is reduced more strongly in the east than in the west

(Fig. 4.2c). In summer, changes of the Alpine ice sheet go along with a significant north-south

precipitation pattern (Fig. 4.10b). Most of the significant precipitation changes are found

in the central to eastern Alps, whereas only a small reduction in precipitation is evident in

the western part. Thus, this modification in summer follows the west east gradient of the

Alpine ice-sheet thickness reduction (Fig. 4.2c). Overall, both seasons demonstrate that locally

heterogeneous changes in the topography significantly influence local precipitation patterns

over the Alps.
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Figure 4.10: Differences in climatological mean values of daily precipitation intensity over the Alps between
LGMALPSLESS and LGMLGM for (a) winter (DJF) and (b) summer (JJA). Crosshatched areas indicate
statistically significant differences at a significance level of 0.05 (using a two-tailed bootstrapping technique).
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To further understand these precipitation changes, we investigate the vertical profiles at

the two sites (Fig. 4.2) and the wind field at 700 hPa. The Skew–T diagrams of both sites and

both seasons show no structural change in the temperature, moisture, and thus the stability of

the atmosphere when comparing the LGMALPSLESS with the LGMLGM simulation (therefore

not shown). This is somehow expected, since the two sites are located in areas where the

Alpine ice sheet is not present. Nevertheless, we interpret this result that precipitation changes

are restricted to the area where the ice sheet is changed, i.e., no downstream effects are found

in the temperature and moisture profiles and thus in the stability. This is in contrast to wind,

where some changes are evident at both sites. These changes are better illustrated in the wind

field at 700 hPa (Fig. 4.11). In winter, the wind field of the LGMALPSLESS experiment only

changes significantly over the central to western Alps and in some areas south of the Alps (Fig.

4.11a). The LGMALPSLESS winds are stronger and rotate clockwise compared to LGMLGM.

The rotation is associated with significant changes in V at the northern face of the Alps, in

both wind components over the Alpine axis and in U in the south of the Alps (Fig. 4.11a).

During summer, we overall observe a similar behaviour as in winter but with an eastward

extension of the changes.

Figure 4.11: Climatological mean wind vectors over the Alps. (a) represents wind vectors for DJF, black
and green vectors correspond to LGMLGM and LGMALPSLESS, (b) as (a) but for JJA. Red shading indicates
statistically significant differences in zonal (U) and meridional (V) wind components at a significance level of
0.05 (two-tailed bootstrapping technique), blue and grey shading as the red one but only in U and V wind
components, respectively. Please note that the reference wind vectors differ for DJF and JJA.

In summary, precipitation changes in both seasons are associated with the fact that the

wind field faces a lower orographic barrier due to a reduction of the Alpine ice sheet. This

effect results in reduced (increased) precipitation at the northern face of the Alps in winter
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(summer). Additionally, this leads to drying the south-western Alps in winter and the southern

face of the Alps in summer.

4.5 Discussion and conclusions

In this study, we investigate the sensitivity of the glacial Alpine hydro-climate to northern

hemispheric and local ice-sheet changes. To that end, we employ a GCM-RCM model chain

to perform sensitivity simulations for two glacial periods, the LGM and MIS4. The LGM

is compared to the PD and MIS4 climate simulation in order to characterise these glacial

states. Then, we assess the impact of northern hemispheric ice-sheet thickness on the Alpine

hydro-climate under MIS4 and LGM conditions. The second sensitivity test uses LGM

conditions as base line and assesses the hydro-climatic response to changes in the Alpine ice

sheet.

The LGM is known to be a period of generally drier and colder conditions than today

(Otto-Bliesner et al., 2006). Earlier studies using the same LGM WRF simulation (e.g. Velasquez

et al., 2020, 2021) showed that an application of the GCM-RCM model chain is beneficial with

respect to temperature and precipitation over Europe compared to the driving GCM (Hofer

et al., 2012a,b; Merz et al., 2013, 2014a,b, 2015, 2016) and other global model simulations (e.g.

Kageyama et al., 2017, 2021), since the last ones underestimate the temperature amplitude

between PD and LGM.

Here, we focus the analysis on the hydro-climate over the Alps. In winter, we find wetter

conditions in the southern part of the Alps during LGM compared to PD (Frei and Schär,

1998; Schwarb et al., 2001). The northern part, however, is dryer under LGM conditions, which

is expected due to the general colder conditions of the LGM (as the Clausius–Clapeyron

equation suggests). This enhanced north-south precipitation gradient resembles finding of

Becker et al. (2016) showing that such a gradient is a prerequisite to explain the extent of the

Alpine glacier during the LGM. Even though LGM climate was colder with lower mixing ratios,

our analysis shows that changes in the wind speed and direction substantially contribute to the

north-south precipitation pattern. Winds are significantly stronger and anticlockwise rotated

over the Alpine region during LGM suggesting an increase of intensity or frequency of the

moisture advection from the south to the Alps. This is in line with proxy evidence (Florineth

and Schlüchter, 2000; Luetscher et al., 2015). These authors similarly found a circulation

change from dominant westerlies during PD to a more southern atmospheric circulation during

the LGM. To explain these changes, global modelling studies suggested a southward shift of

the North Atlantic storm track during the LGM compared to PD (e.g. Hofer et al., 2012a;

Luetscher et al., 2015; Merz et al., 2015; Raible et al., 2020) and a change in the weather

patterns (e.g. Hofer et al., 2012b; Ludwig et al., 2016; Wang et al., 2018). Thus, our analysis

shows that changes in the atmospheric dynamics on the regional to local scale are also relevant

to explain precipitation changes, in particular the moistening of the southern face of the Alps.

During summer, we find drier conditions in most of the Alpine domain. This is expected, as
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the LGM is generally colder than PD (Clausius–Clapeyron equation). Additionally, we find a

strong reduction in convective activity, which can be traced back to a colder atmospheric state

and an increase in stability during the LGM compared to PD.

The MIS4 climate shows enhanced winter precipitation compared to the LGM. The

reason is that the MIS4 climate state is warmer (Hofer et al., 2012a,b; Merz et al., 2013,

2014a,b, 2015, 2016) and thus more moisture is available. Wind changes do not contribute to

these wetter conditions as they become weaker and therefore reduce the moisture transport

and orographically forced uplifts. Thus, we interpret the winter changes between MIS4 and

LGM to be purely thermodynamically driven (Clausius–Clapeyron equation). In summer,

MIS4LGM shows slightly wetter conditions at the northern face and drier conditions at the

southern side of the Alps during MIS4LGM. The wetter conditions are induced by an increase

in the tropospheric vertical wind shear enhancing convection processes. The drier conditions

at the southern face of the Alps are explained by slightly clockwise rotated winds, which

enhance the Foehn effect. Thus, for summer also dynamical processes are relevant to explain

the precipitation changes between MIS4 and LGM.

The northern hemispheric ice-sheet topography strongly influences the precipitation over

the Alpine region. In both seasons, the precipitation patterns and the related thermodynamic

and dynamic processes are similar to the ones found in the comparison between the LGM and

PD. Namely, an increase of the northern hemispheric ice sheet leads to an intensification of

glacial conditions over the Alps. Changes in the FIS do only weakly alter the precipitation

patterns over the Alpine region. One potential reason of this weak precipitation response may

also be the design of the Fennoscandian sensitivity experiment as the driving GCM has not

experienced the changes of the FIS. However, we introduced rather strong changes in the

RCM; thus, we expect only a minor impact of the experimental design on the conclusion

that the FIS is less influential on the Alpine precipitation. We further conclude that changes

in the Laurentide ice sheet needs to be considered in the estimation of Alpine precipitation.

Moreover, the analysis shows that the northern hemispheric ice-sheet thickness is mainly

responsible for the dynamical processes explaining the precipitation changes. This is suggested

by the similarity of the processes found in the sensitivity experiments of northern hemispheric

ice-sheet thickness and in the comparison between the LGM and PD.

In the assessment of the role of the Alpine ice-sheet topography, we found significant

changes mainly over the area where the ice sheet was altered and south to this area, e.g.

south to the Alps during summer. These changes are not as strong as the ones identified for

changes in the northern hemispheric ice sheet or between LGM and PD. Nevertheless, they are

responsible for a redistribution of precipitation over the Alps, e.g. a stronger reduction in the

western part than in the central and eastern part during winter. These changes are relevant for

glacier modelling (e.g. Jouvet et al., 2017; Seguinot et al., 2018). Thus, the analysis presented

here suggests that future modelling efforts should ideally involve coupled glacier regional

climate models. At the moment, this is not possible due to the long calculation time needed for

glacier models and the high computational cost of RCMs. An intermediate step is to use the
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output of different sensitivity simulations, as presented here, in ice-sheet modelling studies (e.g.

Jouvet et al., 2017; Seguinot et al., 2018).

Moreover, future studies will benefit from even more detailed climate simulations over the

Alpine region, particularly to better understand precipitation patterns in complex terrain.

Both, the climate variables but also a better understanding of the ice-sheet dynamics would be

beneficial for studies on the local and regional paleobotany (Kaplan et al., 2016), archaeology

(Burke et al., 2017; Wren and Burke, 2019) and anthropology (e.g. Finlayson, 2004; Finlayson

et al., 2006; Finlayson, 2008; Burke et al., 2014; Maier et al., 2016; Baena Preysler et al., 2019).
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Finlayson, G., Allue, E., Baena Preysler, J., Cáceres, I., Carrión, J. S., Fernández Jalvo, Y., Gleed-Owen,
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A new region-aware bias-correction method for simulated precipitation in areas of complex orography,

Geoscientific Model Development, 11, 2231–2247, doi:10.5194/gmd-11-2231-2018, 2018.

Gowan, E. J., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A. L. C., Gyllencreutz, R., Mangerud, J.,

Svendsen, J.-I., and Lohmann, G.: A new global ice sheet reconstruction for the past 80 000 years, Nature

Communications, 12, 1199, doi:10.1038/s41467-021-21469-w, 2021.

Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., and Kageyama, M.:

Evaluation of CMIP5 palaeo-simulations to improve climate projections, Nature Climate Change, 5, 735–743,

doi:10.1038/nclimate2649, 2015.

Harrison, S. P., Bartlein, P. J., and Prentice, I. C.: What have we learnt from palaeoclimate simulations?,

Journal of Quaternary Science, 31, 363–385, doi:10.1002/jqs.2842, 2016.

Hofer, D., Raible, C. C., Dehnert, A., and Kuhlemann, J.: The impact of different glacial boundary conditions

on atmospheric dynamics and precipitation in the North Atlantic region, Climate of the Past, 8, 935–949,

doi:10.5194/cp-8-935-2012, 2012a.

Hofer, D., Raible, C. C., Merz, N., Dehnert, A., and Kuhlemann, J.: Simulated winter circulation types in

the North Atlantic and European region for preindustrial and glacial conditions: glacial circulation types,

Geophysical Research Letters, 39, L15 805, doi:10.1029/2012GL052296, 2012b.

Hughes, P. D., Gibbard, P. L., and Ehlers, J.: Timing of glaciation during the last glacial cycle: evaluating the

concept of a global ‘Last Glacial Maximum’ (LGM), Earth-Science Reviews, 125, 171–198, doi:10.1016/j.

earscirev.2013.07.003, 2013.

Jouvet, G., Seguinot, J., Ivy-Ochs, S., and Funk, M.: Modelling the diversion of erratic boulders by the Valais

Glacier during the last glacial maximum, Journal of Glaciology, 63, 487–498, doi:10.1017/jog.2017.7, 2017.

Kageyama, M. and Valdes, P. J.: Impact of the North American ice-sheet orography on the Last Glacial

Maximum eddies and snowfall, Geophysical Research Letters, 27, 1515–1518, doi:10.1029/1999GL011274,

2000.

Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti,

O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood,

A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner,

B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann,

G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution

to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial



BIBLIOGRAPHY 121

Maximum experiments and PMIP4 sensitivity experiments, Geoscientific Model Development, 10, 4035–4055,

doi:10.5194/gmd-10-4035-2017, 2017.

Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano,

S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K.,

LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen,

C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4

Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Climate

of the Past, 17, 1065–1089, doi:10.5194/cp-17-1065-2021, publisher: Copernicus GmbH, 2021.

Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large scale anthropogenic reduction of forest

cover in Last Glacial Maximum Europe, PLOS ONE, 11, e0166 726, doi:10.1371/journal.pone.0166726, 2016.
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Abstract. This work presents a new bias-correction method
for precipitation over complex terrain that explicitly con-
siders orographic characteristics. This consideration offers
a good alternative to the standard empirical quantile map-
ping (EQM) method during colder climate states in which the
orography strongly deviates from the present-day state, e.g.
during glacial conditions such as the Last Glacial Maximum
(LGM). Such a method is needed in the event that absolute
precipitation fields are used, e.g. as input for glacier mod-
elling or to assess potential human occupation and according
migration routes in past climate states. The new bias correc-
tion and its performance are presented for Switzerland using
regional climate model simulations at 2 km resolution driven
by global climate model outputs obtained under perpetual
1990 and LGM conditions. Comparing the present-day re-
gional climate model simulation with observations, we find
a strong seasonality and, especially during colder months, a
height dependence of the bias in precipitation. Thus, we sug-
gest a three-step correction method consisting of (i) a sepa-
ration into different orographic characteristics, (ii) correction
of very low intensity precipitation, and (iii) the application of
an EQM, which is applied to each month separately. We find
that separating the orography into 400 m height intervals pro-
vides the overall most reasonable correction of the biases in
precipitation. The new method is able to fully correct the sea-
sonal precipitation bias induced by the global climate model.
At the same time, some regional biases remain, in particular
positive biases over high elevated areas in winter and nega-
tive biases in deep valleys and Ticino in winter and summer.

A rigorous temporal and spatial cross-validation with inde-
pendent data exhibits robust results. The new bias-correction
method certainly leaves some drawbacks under present-day
conditions. However, the application to the LGM demon-
strates that it is a more appropriate correction compared to
the standard EQM under highly different climate conditions
as the latter imprints present-day orographic features into the
LGM climate.

1 Introduction

The hydrological cycle is an important component in the
Earth’s climate system because of its capability to transport
and redistribute mass and energy around the world. Changes
in the hydrological cycle can lead to droughts or floods and
thus impact the ecosystem services. Moreover, it plays an im-
portant role in shaping the Earth’s climate history (Mayewski
et al., 2004). The latter is because the hydrological cycle
shows a strong response to different external forcing func-
tions and to changes in atmospheric compositions (Ganopol-
ski and Calov, 2011; Stocker et al., 2013). Namely, hydrol-
ogy and water resources are strongly influenced by changes
in precipitation patterns (Stocker et al., 2013; Raible et al.,
2016).

Cold periods, i.e. glacial periods, offer a unique testbed
to better understand how the hydrological cycle responds to
climate conditions highly different compared to today’s cli-
mate. The Last Glacial Maximum (LGM) is the most recent
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glacial period and dates back to around 21 ka (Yokoyama
et al., 2000; Clark et al., 2009). The LGM is characterised by
large ice sheets in the Northern Hemisphere, a global mean
temperature roughly 5 to 6.5 ◦C colder than today (Otto-
Bliesner et al., 2006), and a global sea level of 115 to 130 m
below the present-day one (Lambeck et al., 2014; Peltier
and Fairbanks, 2006). Proxy records for Europe show that
the climate was 10 to 14 ◦C colder and around 200 mm yr−1

drier during the LGM compared to recent climate conditions
(Wu et al., 2007; Bartlein et al., 2011). These climatic con-
ditions have strong implications not only for nature but also
for humans. For instance, Burke et al. (2017) and Wren and
Burke (2019) demonstrated the importance of climate condi-
tions and its variability as drivers of human behaviour dur-
ing the LGM, e.g. the spatial distribution of populations and
influence on the cultural and biological evolution (Kaplan
et al., 2016). Important modelling tools, e.g. global atmo-
spheric climate models and hydrological models, have been
used to describe the Earth’s system in the LGM. Compared
to the sparse and local climate information from the prox-
ies, these tools provide physically consistent and spatially
gridded three-dimensional information on various meteoro-
logical variables. Thus, they offer valuable information to
improve the understanding of the responses and feedbacks
to internal and external forcing on timescales longer than
some centuries (e.g. Xu, 2000; Andréasson et al., 2004; Xu
et al., 2005; Fowler et al., 2007a; Yang et al., 2010; Chen
et al., 2012). Global climate models are generally in line with
the proxy evidence and depict a European climate that was
largely colder and drier than today. However, they underes-
timate the amplitudes of the changes compared to proxy ev-
idence and poorly represent areas with complex terrain (e.g.
Hofer et al., 2012a; Ludwig et al., 2016).

The modelling tools also show other uncertainties, in par-
ticular in the hydrological cycle, as not all relevant processes
are explicitly simulated by the models (e.g. Ban et al., 2014;
Giorgi et al., 2016). This is especially true for global models,
which have a comparably coarse spatial resolution. Hence,
most processes governing regional- to local-scale precipita-
tion are not resolved and need to be parameterised (Leung
et al., 2003; Su et al., 2012), resulting in a strong parame-
ter dependence when simulating regional-scale precipitation
(Rougier et al., 2009). To overcome some of the uncertain-
ties, regional climate models (RCMs) are used to dynami-
cally downscale global climate models. Many RCM simula-
tions are carried out within the framework of the Coordinated
Regional Downscaling Experiment (CORDEX), which de-
fines one of the premier goals to better understand relevant
phenomena at finer scales (Moss et al., 2010). Even though
regional climate models can solve atmospheric equations on
a much finer scale than global models, the simulated precipi-
tation patterns still show large biases for present-day climate
when comparing them to observations. This has, for example,
been illustrated by the CORDEX simulations analysed by
Casanueva et al. (2016) and Rajczak and Schär (2017). Not

only are these biases produced by initial and boundary con-
ditions provided by global climate models (GCMs), but they
are also related to regions characterised by complex topogra-
phy and to processes that correspond to a finer scale, such as
cloud microphysical processes. These processes need to be
parameterised as they cannot be explicitly resolved because
of the RCM resolution used in CORDEX (Boer, 1993; Zhang
and McFarlane, 1995; Fu, 1996; Haslinger et al., 2013; Yang
et al., 2013; Warrach-Sagi et al., 2013; Maraun and Wid-
mann, 2015; Hui et al., 2016). To overcome these shortcom-
ings, RCMs need to be run at a resolution where they can ex-
plicitly resolve some of the relevant processes, such as con-
vection (e.g. Giorgi et al., 2016; Messmer et al., 2017). Even
though the convection-resolving RCMs can describe precip-
itation much more precisely, biases are still evident (e.g. Ban
et al., 2014; Gómez-Navarro et al., 2018). These inconsisten-
cies and uncertainties may, for example, impact the results
obtained through hydrological and glacier modelling that fol-
low next in the modelling chain (Allen and Ingram, 2002;
Seguinot et al., 2014; Felder et al., 2018).

Some climate change studies try to correct parts of these
errors in precipitation patterns and intensities by so-called
bias-correction methods (Maraun et al., 2010). These bias-
correction methods are needed in the event that absolute val-
ues matter, e.g. for the forcing of impact models like glaciers
or ice sheets (Jouvet et al., 2017; Jouvet and Huss, 2019),
when temperature thresholds are important as limiting factor,
e.g. for vegetation coverage, freezing of water, snowfall vs.
rainfall, or when precipitation thresholds are essential (Liu
et al., 2006; Zhao et al., 2017; Liu et al., 2018; Chen et al.,
2019; Wang et al., 2020). So far, several correction methods
have been suggested in the literature, e.g. linear scaling, local
intensity scaling, or power transformation (e.g. Berg et al.,
2012; Fang et al., 2015; Lafon et al., 2013). An overview of
different methods and their limitations is given in Maraun
(2016) and Maraun and Widmann (2018b). Another impor-
tant bias-correction method is the empirical quantile map-
ping (EQM), which is known as one of the best techniques
to correct precipitation biases in the present-day climate (e.g.
Lafon et al., 2013; Teutschbein and Seibert, 2012, 2013; Teng
et al., 2015). If the method is applied to a climate state differ-
ent from the present one, all these methods suffer basically
from the assumption of stationarity in the biases, since they
are trained with a climate that does not correspond to the
simulated climate that is afterwards bias corrected. Statisti-
cal relationships between observations and model output are
used to estimate transfer functions in the observed period and
are then applied to different climate states, e.g. past and fu-
ture climate change scenarios. These statistical relationships
and the bias structure can be altered by changes in the precip-
itation processes in the different climate states. Focusing on
the LGM climate, an important process is related to changes
in the albedo due to differences in vegetation and land cover
(Kaplan et al., 2016; Velasquez et al., 2020). Also, changes in
near-surface condensation processes may play an important
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role, i.e. freezing of near-surface moisture over areas cov-
ered by ice. These processes can influence the temperature
and moisture profiles and thus also precipitation processes.
Other important processes are linked to modifications in the
general atmospheric circulation and in the water availability
(Hofer et al., 2012b; Kageyama et al., 2020; Pinto and Lud-
wig, 2020). This can also regulate the water transport and
thus also the precipitation patterns.

Hence, these changes amongst others may violate the sta-
tionarity assumption of bias-correction methods. Besides the
assumption of stationarity of the transfer functions, these cor-
rection methods only implicitly consider orographic features
that strongly affect precipitation and its biases (e.g. Piani
et al., 2010b; Amengual et al., 2011; Berg et al., 2012; Chen
et al., 2013; Cannon et al., 2015; Fang et al., 2015). Note
that this implicit consideration relies on the orography where
the method is trained. Hence, the applicability of bias cor-
rections may not be justified to different climate states where
the topography strongly changes, such as in the LGM.

This calls for a flexible method that can ameliorate the as-
sumption of stationarity in the biases when correcting pre-
cipitation errors. One possibility is to apply a cluster anal-
ysis to precipitation and its biases to identify classes with
similar bias behaviour. An example for Switzerland of such
an approach is presented by Gómez-Navarro et al. (2018).
The drawback of such an approach for our purpose is that
the cluster analysis still relies on the characteristics and cir-
culation of the current climate. To be as independent from
current climates as possible and to provide a correction that
includes important characteristics of the Alpine climate, we
came up with “static” characteristics, i.e. topography height
and slope orientation, and the assumption that relationships
to these static characteristics remain unchanged in different
climate states. Thus, our work aims at presenting a new bias-
correction method that fills this gap by using orographic fea-
tures as variables for the correction. Such a correction avoids
the explicit usage of current atmospheric circulation and pro-
vides a new alternative to the standard EQM for areas with
complex topography during highly different climate states,
i.e. glacial times.

The new method is based on EQM (Lafon et al., 2013;
Teutschbein and Seibert, 2012, 2013; Teng et al., 2015)
explicitly combined with orographic characteristics and at-
tempts to correct wet or dry biases that are introduced by
parameterisations and numerical formulations in global, re-
gional, or a combination of both models. Such biases in-
clude especially those that are associated with orographic ef-
fects, namely, vertical motion leading to precipitation. Ob-
servations or proxy reconstructions are limited over the Alps
during glacial times. Thus, the method is directly evaluated
under present-day climate conditions and its performance
compared to the standard EQM is assessed in an LGM cli-
mate simulation. The data to be corrected stem from cli-
mate simulation performed with the high-resolution Weather
Research and Forecasting (WRF) RCM (Skamarock and

Klemp, 2008) driven by simulations under perpetual climate
conditions using the Community Climate System Model ver-
sion 4 (CCSM4; Gent et al., 2011). To estimate the transfer
functions of the EQM we use two observation data sets sep-
arately: one for Switzerland (MeteoSwiss, 2013) and one for
the Alpine region (Isotta et al., 2014). The focus of the pre-
sented study is on the method itself and its evaluation. The
latter consists of assessing the performance over the Alps,
the temporal and spatial transferability, and the comparison
of the new method and standard EQM method (Lafon et al.,
2013) under LGM conditions.

The paper is structured as follows. Section 2 describes the
models and data sets used to construct the method. Section 3
presents the new bias-correction method. Section 4 evaluates
the new method. Finally, a summary and conclusive remarks
are given in Sect. 5.

2 Models and data

We use a present-day and an LGM simulation to create
and evaluate the new bias correction. Thereby, we employ
a model chain that consists of a global climate model and a
regional climate model, where the global climate model pro-
vides the boundary conditions for the regional climate model.

The global climate model is the Community Climate Sys-
tem Model (version 4; CCSM4; Gent et al., 2011). The
model’s atmospheric component is calculated by the Com-
munity Atmosphere Model version 4 (CAM4; Neale et al.,
2010) and the land component by the Community Land
Model version 4 (CLM4; Oleson et al., 2010). Only two com-
ponents, the so-called data models, are used for the ocean and
sea ice; i.e. the atmospheric component is forced by time-
varying sea surface temperatures and sea ice cover obtained
from a coarser-resolved fully coupled 1990 AD and LGM
simulation with CCSM3, respectively (Hofer et al., 2012a).
The atmosphere land-only model was run with a horizon-
tal resolution of 1.25◦×0.9◦ (longitude × latitude) and with
26 vertical hybrid sigma-pressure levels. Two global climate
simulations are performed each covering 31 years: (i) under
perpetual 1990 AD and (ii) under LGM conditions, respec-
tively. The orbital forcing and atmospheric composition are
adjusted to the respective period (Table 1). The temporal res-
olution of the output is 6-hourly. More detailed information
on these simulations and their settings is presented in Hofer
et al. (2012a, b) and Merz et al. (2013); Merz et al. (2014a,
b); Merz et al. (2015).

To investigate the climate over central Europe and in par-
ticular over Switzerland in more detail, an RCM is used for
the dynamical downscaling. Note that Switzerland is only
covered by 12 grid points and the Alps are represented with a
maximum height of approximately 1400 m a.s.l. in CCSM4.
We use WRF model version 3.8.1 for the dynamical down-
scaling (Skamarock and Klemp, 2008). The model is set up
with four two-way nested domains with a nest ratio of 1 : 3.
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Table 1. External forcing used in Hofer et al. (2012a, b) for
1990 AD and LGM conditions.

Parameter name 1990 AD LGM

TSI (W m−2 ) 1361.77 1360.89
Eccentricity (10−2) 1.6708 1.8994
Obliquity (◦) 23.441 22.949
Angular precession (◦) 102.72 114.43
CO2 (ppm) 353.9 185
CH4 (ppb) 1693.6 350
N2O (ppb) 310.1 200

The domains have horizontal resolutions of 56, 18, 6, and
2 km, respectively, and 40 vertical eta levels. The outermost
domain includes an extended westward and northward area
that takes the Alpine region as the midpoint (Fig. 1). More-
over, the innermost domain focuses on the Alpine region.
The fine resolution of 2 km over this area is important as it
covers a highly complex terrain. The resolution in the two
innermost domains permits the explicit resolution of con-
vective processes. Thus, no parameterisation for convection
is used in these two domains and precipitation is described
by microphysical processes (Table 2). Convection-permitting
model resolutions are in general preferred as many recent
studies show better performance in simulating precipitation
(e.g. Ban et al., 2014; Prein et al., 2015; Kendon et al., 2017;
Berthou et al., 2018; Finney et al., 2019). However, we shall
keep in mind that some biases in temperature and cloud for-
mation may be produced by this setup, which may lead to ad-
ditional biases in precipitation as shown in Ban et al. (2014).
Table 2 lists the relevant parameterisation schemes chosen to
run WRF with.

WRF is driven by, but not nudged to, the corresponding
global simulation and is run for 30 years using perpetual
1990 AD and LGM conditions, respectively (Table 1). For
the LGM simulation, the surface conditions need some fur-
ther adjustments. These include the lowering of the sea level
and extended ice sheets as specified in the PMIP3 proto-
col (Fig. 3; for more details, see Ludwig et al., 2017). The
glaciation over the Alpine region (obtained from Seguinot
et al., 2018) and other glaciated areas (e.g. Pyrenees, from
Ehlers et al., 2011) are modified according to LGM condi-
tions (Fig. 3b). Additionally, the land cover and land use are
altered to comply with LGM conditions, as described in Ve-
lasquez et al. (2020). Each 30-year simulation is split up into
10 individual 3-year simulations and carried out with adap-
tive time step in order to increase the throughput on the avail-
able computer facilities. For each of the 3-year simulations, a
2-month spin-up time is considered to account for the longer
equilibrium times of the land surface scheme of WRF. Tests
show that the WRF land scheme reaches a quasi-equilibrium
after approximately 15 d.

Two gridded observational data sets for daily precipitation
are used: RhiresD (MeteoSwiss, 2013) and the Alpine Pre-
cipitation Grid Dataset (APGD; Isotta et al., 2014). Both data
sets cover more than 35 years. In this study, we use only the
30-year period (1979–2008). Note that we carry out a bilin-
ear interpolation using the Climate Data Operators (CDO;
Schulzweida, 2019) to convert both observational data sets
into the corresponding grid of WRF. The RhiresD has a spa-
tial resolution of approximately 2 × 2 km and covers only
Switzerland (MeteoSwiss, 2013). This data set is based on
rain gauge measurements distributed across Switzerland (for
more details, see Isotta et al., 2014; Güttler et al., 2015).
These point measurements are spatially interpolated to obtain
a gridded data set, which is described in more detail in Frei
and Schär (1998), Shepard (1984) and Schwarb et al. (2001).
The APGD encompasses the entire Alpine region with a spa-
tial resolution of 5× 5 km (Isotta et al., 2014). It was de-
veloped in the framework of EURO4M (European Reanal-
ysis and Observations for Monitoring) by using a distance-
angular weighting scheme that integrates climatological pre-
cipitation using the local orography and the rain gauge mea-
surements (Isotta et al., 2014). For our analysis, the Alpine
areas of Italy and Slovenia are excluded from APGD because
of their poor station density covering the period 1979–2008
compared to RhiresD, especially over complex topography
and at high altitudes. Note that all data sets consider daily
precipitation as total precipitation, i.e. both solid and liquid
precipitation, and convective and non-convective precipita-
tion. Moreover, days without precipitation are treated as cen-
sored values, i.e. not considered in the analysis, when daily
precipitation is equal to 0 mm, although in the case of obser-
vations this is equivalent to 0.1 mm d−1 due to gauge preci-
sion.

The observational gridded data sets provide valuable in-
sights. However, they also contain some discrepancies and
uncertainties due to interpolation and extrapolation methods;
e.g. high precipitation intensities are systematically underes-
timated and low intensities overestimated, especially in ar-
eas where observations are not available, i.e. on high ele-
vated areas, such as mountain peaks. The magnitude of these
errors depends on the season and the altitude. In regions
above 1500 m a.s.l., the error can be higher than 30 % be-
cause of a “gauge undercatch” induced by strong winds and
the applied interpolation method carried out with a distance-
angular weighting scheme (Frei and Schär, 1998; Nešpor and
Sevruk, 1999; Auer et al., 2001; Ungersböck et al., 2001;
Schmidli et al., 2002; Frei et al., 2003; MeteoSwiss, 2013;
Isotta et al., 2014). Note that the limitations of the observa-
tional data sets are not included in the analysis of this study;
i.e. we consider the observational gridded data sets as truth.
Nevertheless, one shall keep the limitations of the observa-
tional data in mind, in particular when discussing the remain-
ing biases in areas and seasons where the observational data
sets also have problems.
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Figure 1. WRF domains and present-day topography. Panel (a) illustrates the present-day topography and the four domains used by WRF.
Panel (b) shows the fourth domain including the area of interest (Switzerland) outlined by a black line.

Table 2. Important parameterisations used to run WRF.

Parameterisation Parameter name Chosen parameterisation Applied to

Microphysics mp_physics WRF single-moment six-class scheme Domains 1–4
Longwave radiation ra_lw_physics RRTM scheme Domains 1–4
Shortwave radiation ra_sw_physics Dudhia scheme Domains 1–4
Surface layer sf_sfclay_physics MM5 similarity Domains 1–4
Land–water surface sf_surface_physics Noah – multi-parameterisation land surface model Domains 1–4
Planetary boundary layer bl_pbl_physics Yonsei University scheme Domains 1–4
Cumulus cu_physics Kain–Fritsch scheme Domains 1–2

No parameterisation Domains 3–4

3 Bias correction

The correction method, developed in this study, consists of
three steps: (i) separation with respect to different orographic
characteristics, (ii) adjustment of daily precipitation with
very low intensity, and (iii) application of the EQM. Each of
these three steps is described in more detail in the following
paragraphs.

In a first step, three orographic characteristics are used
to separate the region of interest into several groups. These
characteristics are height, slope orientations, and a com-
bination of both. The height ranges from approximately
200 m a.s.l. to a maximal value of 3800 m a.s.l. over the area
of interest. Thus, the groups are selected by height inter-
vals, which cover the range from 400 to 3200 m a.s.l. Two
height intervals are tested separately: 100 and 400 m (e.g.
height intervals of 400 m are shown in Fig. 2). The heights
below 400 and above 3200 m a.s.l. are considered as two ad-
ditional height intervals. The second characteristic, used to
group the region of interest, is four slope orientations: north
(315◦ ≤ slope orientation < 45◦), east (45◦ ≤ slope orienta-
tion < 135◦), south (135◦ ≤ slope orientation < 225◦) and

west (225◦ ≤ slope orientations < 315◦). Note that this char-
acteristic is obtained by summing the two slope vectors that
are directly provided by the RCM. Combining both charac-
teristics, the groups are selected by height intervals and then
separated into subgroups by the slope orientations.

In a second step, we correct the daily simulated precipita-
tion with very low intensity in each group (or subgroup) and
each month of the year separately. The reason for this is that
the frequency of precipitation with very low intensity is of-
ten strongly overestimated due to the drizzle effect produced
by the RCM (Murphy, 1999; Fowler et al., 2007b; Maraun
et al., 2010).This overestimation can distort the precipitation
distribution substantially, i.e. shifting the quantiles, produc-
ing inappropriate corrections in the third step when EQM is
applied (Teutschbein and Seibert, 2012; Lafon et al., 2013).

To correct precipitation with very low intensity, simulated
precipitation values are censored by setting them to zero
when they are below a specific threshold. Many studies use
a static threshold for the entire simulated data set which
is between 0.01 and 1 mm d−1 (Piani et al., 2010a; Lafon
et al., 2013; Maraun, 2013). To be consistent with the differ-
ent biases’ treatment across the groups, we calculate a static
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Figure 2. WRF innermost domain indicates the present-day height
classes used for the correction method (400 m interval) for the Int-
TFs at 2 km resolution (Switzerland, black outline) and for the Ext-
TFs at 5 km resolution (other shaded areas). Additionally, some la-
bels are added to identify some specific areas in Switzerland that
are used throughout the paper.

threshold for each group (or subgroup) and each month of
the year. Thus, we carry out the first part of the local inten-
sity scaling method (Schmidli et al., 2006; Teutschbein and
Seibert, 2012) before applying the quantile mapping tech-
nique. This method consists of choosing the threshold in a
way such that the number of days with precipitation in the
simulation coincides with the precipitation-day occurrence
from the observations. In our work, the threshold can vary
from group to group and from month to month between 0.001
and 1 mm d−1.

In a third step, we correct the daily precipitation rate using
an EQM method (Themessl et al., 2011; Lafon et al., 2013;
Fang et al., 2015; Teng et al., 2015). Note that censored val-
ues are excluded from this step. EQM is based on the as-
sumption that all probability distribution functions are un-
known, i.e. non-parametric (Wilks, 2011). The method con-
sists of adjusting the quantile values from a simulation (Qsim)
to those from the observations (Qobs) through a transfer func-
tion (TF; Fig. 4). The method is implemented by splitting
each cumulative distribution function, i.e. observed and mod-
elled, into 100 discrete quantiles. For each quantile value,
the adjustment is carried out with a linear correction (La-
fon et al., 2013), where Qsim is transformed into Qsim

∗ (cor-
rected quantile; Eq. 1).

Qsim
∗
= TF×Qsim, where TF=

Qobs

Qsim
(1)

This linear correction is akin to the factor of change or delta
change used in Hay et al. (2000). For values that are be-
tween quantiles, the same linear correction is used, but the
TF is approximated by using a linear interpolation between
the TFs related to the two nearest quantiles. In cases where
values are below (above) the first (last) quantile, the TF re-
lated to the first (last) quantile is used for the adjustment.

Similar methods were successfully applied to correct biases
in precipitation simulated by RCMs (e.g. Sun et al., 2011;
Themessl et al., 2012; Rajczak et al., 2016; Gómez-Navarro
et al., 2018).

To combine all steps, the first part of the local intensity
scaling method and the EQM are applied to each (sub)group
defined in the first step and to each month of the year, sep-
arately, by pooling all grid points that belong to each group
and handling them as a single distribution of daily precip-
itation. This results in a set of TFs for each (sub)group and
each month of the year. For instance, it results in nine TFs for
each month and in total 108 TFs throughout the year when
the correction is carried out using height classes of 400 m.
Moreover, the correction is afterwards applied to the daily
precipitation at every grid point using the TFs that are com-
mon to all elements within the same group (or subgroup) and
month. Thus, the new correction method guarantees that sea-
sonality and height are taken into account.

To come up with a final method for the Alpine region, we
first evaluate the influence of the different orographic char-
acteristics (step 1). To be consistent with former studies (e.g.
Sun et al., 2011; Themessl et al., 2012; Wilcke et al., 2013;
Rajczak et al., 2016), the evaluation uses the same region
where the TFs are estimated. This means that the Swiss re-
gion in the WRF output (at 2 km resolution) is defined as
the area to be corrected and RhiresD (at 2 km resolution) is
used to obtain the TFs and to evaluate the different correction
methods. These TFs are called internal TFs (Int-TFs) during
the cross-validation process later on.

Once the final method is determined, we apply two cross-
validations to test the method more rigorously, as suggested
by Bennett et al. (2014). First, a temporal cross-validation is
applied. Thereby, the 30-year period is split into a 15-year
training period and an independent 15-year verification pe-
riod. New sets of TFs are calculated from the first and last
15 years of the 30-year period, separately. Each set of TFs
is then applied to the first and last 15 years, which results in
four newly corrected precipitation data sets, namely, two de-
pendent and two independent ones. Second, we apply a spa-
tial cross-validation. Thereby, Switzerland is defined as the
area to be corrected (WRF output at 2 km resolution). For
the spatial cross-validation, an additional set of TFs is then
estimated from the corresponding Alpine region of Germany,
France, and Austria excluding Switzerland (called the exter-
nal TFs; Ext-TFs) using APGD (at 5 km resolution; Fig. 1c).
Ext-TFs are carried out at 5 km horizontal resolution and ap-
plied to Switzerland at 2 km resolution. This guarantees that
no additional uncertainty is introduced by a spatial interpo-
lation when comparing the results of Ext-TF and Int-TF. To
see that the coarser resolution of APGD has no influence on
the result, the performance of the correction method is also
evaluated when using Ext-TFs trained at 5 km and then ap-
plied to the Swiss region at 5 km resolution. Note that these
results only show small differences to the 2 km results and
are therefore not shown. To determine the improvement of
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Figure 3. WRF domains and LGM topography. Panel (a) illustrates the LGM topography, LGM sea level, and the four domains used by
WRF. Panel (b) indicates the height classes for the correction method (400 m interval) using the LGM topography over Switzerland at 2 km
resolution; crosshatched areas are covered by glaciers.

Figure 4. Diagram of the EQM technique. The solid (dashed) line
shows a schematic simulated (observed) cumulative distribution.

the new method, we compare it to a simple method that is
carried out without orographic features using one EQM for
the entire region in each month (12 EQM in total, referred to
as one EQM-TF hereinafter).

4 Validation of the method

4.1 Biases of WRF and their seasonality

To obtain insights into the performance of the RCM over
complex topography, we compare the spatial and temporal

representation of the simulated precipitation (the raw model
output) with RhiresD. Focusing on monthly mean precipi-
tation intensity across Switzerland, the box plots illustrate
biases in the climatological annual mean cycle (Fig. 5a).
The climatological mean values are slightly overestimated
during colder months, i.e. between November and March,
and are underestimated during warmer months, i.e. between
April and October but especially in September. In addition to
the climatological mean values, Fig. 5a also shows the dis-
tributions of monthly mean precipitation intensity and their
interquartile ranges. In colder months, the simulated distri-
butions are wider and shifted to higher values than the ob-
served distributions, whereas a clear shift to less precipita-
tion is found compared to the observed ones during warmer
months. Overall, the interquartile ranges are reasonably sim-
ulated, which means that WRF realistically represents the
variability of monthly mean precipitation intensity. Extreme
precipitation, however, is strongly underestimated.

The annual cycle and the distributions of monthly mean
precipitation intensities are estimated for different height
classes to get additional understanding of the behaviour of
the simulated precipitation and also to explicitly illustrate the
relation of the precipitation biases to the topography. This
is summarised in Fig. 5b and c for the height classes of
400–800 and 2800–3200 m which mostly represent the low
and high altitudes, respectively. The climatological monthly
means of the colder months, i.e. from November to March,
are generally underestimated in the lower height classes but
overestimated at high altitudes. Additionally, we assess the
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Figure 5. Boxplots illustrate the spatial distribution of monthly mean values of precipitation intensity across a specific area within 30 years:
(a) the area covers all grid points over entire Switzerland, (b) the grid points in the height class of 400–800 m, and (c) the grid points in the
height class of 2800–3200 m. Black box plots represent the observations (RhiresD); blue and red ones the raw and corrected simulations,
respectively. Top and bottom ends of the dashed lines represent the maximum and minimum values, respectively. Dots represent the spatial
climatological mean value.

biases at each grid point in a scatter plot. To that end, we
select two months that mainly represent colder and warmer
months, namely, January and July, respectively. We find a
clear positive correlation between the biases and altitudes in
January (Fig. 6a). In warmer months, i.e. April to October,
both height classes (400–800 and 2800–3200 m) reveal an
underestimation in the climatological monthly means com-
pared to the observations. This is again confirmed by scatter
plots between biases at grid points and altitude, where only a
mean shift is found in July (Fig. 6b). Overall, the simulated
annual cycle changes from a weak cycle at low altitudes, in
agreement with the one of the observations, to a strong and
inverse seasonal cycle at high altitudes (Fig. 5b and c). An in-
verse annual cycle is also identified by Gómez-Navarro et al.
(2018), who used a similar model chain compared to the one
in this study. These authors found that the inversed annual
cycle in precipitation is caused by the driving global climate
model. Furthermore, we observe positive biases in the in-
terquartile ranges during colder months and a slight under-
estimation during warmer months (Fig. 5b and c). So far, the
analysis of the biases suggests that including the height de-
pendence can help in improving correction methods.

To better describe the spatial biases related to colder and
warmer months, we select two months that mainly repre-
sent each period, namely, January and July. For these ex-
ample months, we present the spatial patterns of the biases
in the monthly mean precipitation intensity, in the variabil-
ity illustrated by the interquartile range, and in the wet-day
frequency. Note that the observational data sets are generally
considered reliable and represent orographic features well,
although at high altitudes fewer observations are available
(Isotta et al., 2014). Furthermore, these spatial patterns im-
plicitly illustrate the relation between the precipitation bi-
ases and the topography considering an uncertainty of around

30 % acceptable in the simulated precipitation due to the un-
certainty in the observational data sets (Sect. 2).

The biases in the climatological mean precipitation inten-
sity at each grid point (Fig. 7a and d) confirm the height
dependence and seasonality already shown in Fig. 5. The
strongest positive biases are mainly observed over mountains
and during colder months, whereas the Swiss Plateau seems
to be reasonably well simulated (Fig. 7a). Note that also the
observations tend to underestimate precipitation in mountain
regions, so that a part of the strong positive bias is related
to observational uncertainties (Isotta et al., 2014). In warmer
months, the strongest negative biases are found in the north-
western part of Switzerland, Ticino, and in the steep valleys,
where the Rhône Valley is marked by the strongest biases. In
high mountain regions, smaller positive biases are identified
during warmer months than during colder months (Fig. 7d).
The strongest biases over mountains and in steep valleys
seem to be induced by an amplification of different observed
precipitation climatologies that govern those areas; namely,
the mountains are known as wet regions and the steep val-
leys as dry areas (for more details, see Frei and Schär, 1998;
Schwarb et al., 2001). This gives a first hint that different
processes may lead to the biases. The positive precipitation
bias over mountains in colder months may be mainly related
to wet bias of the global simulation and synoptic transport,
which is also overestimated in the global simulation (Hofer
et al., 2012a, b). The resolution of the RCM seems to be im-
portant as this affects the representation of steep valleys, es-
pecially during convective processes in warmer months. The
same is also true for colder months but to a lesser extent, as
convective processes only play a minor role in these months.

The interquartile ranges of the distribution of monthly
mean precipitation intensity at each grid point (Fig. 8a and
d) are strongly overestimated over the Alps during colder
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Figure 6. Biases over Switzerland. Blue (red) indicates the original (corrected) biases. Panel (a) illustrates the bias versus height at each grid
point during January; panel (b) is the same as (a) but for July. Solid lines represent the linear regressions, R the correlation between biases
and height, and vertical dashed grey lines the boundaries of the height classes.

Figure 7. Biases in the climatological mean value of precipitation intensity over Switzerland. Panel (a) represents the original biases in
January, (b) the biases after being corrected using Int-TFs in January, and (c) the biases after being corrected using Ext-TFs in January;
panels (d), (e), and (f) are the same as (a), (b), and (c) but in July, respectively.

months, whereas they are generally smaller compared to the
observations during warmer months. The biases are stronger
than the ones observed in the climatological mean value
(Fig. 7a and d), which means that the variability simulated
by WRF is strongly season-dependent (Fig. 8a and d). The
increase in variability during colder months is a hint that pro-
cesses common during winter, e.g. the synoptic atmospheric
systems, may be too efficient in producing precipitation com-
pared to the observations. The reduced variability in warmer
months hints at remaining problems in convective processes
as these are more relevant during summer. Also, observations
do not perfectly estimate the range due to their uncertainty

that fluctuates from 5 % over the flatland regions to more than
30 % at high altitudes (Isotta et al., 2014).

Another important measure to characterise precipitation is
the occurrence of precipitation at each grid point, defined by
the wet-day frequency (the number of days with precipitation
rate of at least 1 mm d−1). The wet-day frequency is strongly
overestimated during colder months but shows only a slight
overestimation during warmer months (Fig. 9a and d). This
overestimation can be also related to the well-known prob-
lem in regional climate modelling, i.e. the simulation of a
higher frequency in precipitation but at the same time with a
lower intensity than observed (Murphy, 1999; Fowler et al.,
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Figure 8. Biases in the interquartile range of monthly mean precipitation intensity over Switzerland. Panel (a) represents the original biases
in January, (b) the biases after being corrected using Int-TFs in January, and (c) the biases after being corrected using Ext-TFs in January;
panels (d), (e), and (f) are the same as (a), (b), and (c) but in July, respectively.

2007b; Maraun, 2013). The overestimation in wet-day fre-
quency, the so-called drizzle effect, can be mainly related to
the occurrence of synoptic atmospheric systems commonly
observed during colder months and not to local convective
processes that are frequently observed during summer (for
climatology, see Frei and Schär, 1998; Isotta et al., 2014).
Furthermore, the positive bias in the wet-day frequency may
slightly contribute to the underestimation of the extreme pre-
cipitation (Fig. 5) as precipitable water, which is necessary
for extreme precipitation events, is removed via the drizzle
effect. Namely, the precipitable water available for a daily
extreme precipitation event is distributed over several days
due to problems in the parameterisations of the cloud micro-
physical and precipitation processes as found in Knist et al.
(2018).

4.2 Influence of different orographic characteristics on
the performance of the bias-correction method

Different orographic characteristics are suggested to be used
as classification in the new bias-correction method (step 1 in
Sect. 3): the height intervals (100 and 400 m), the slope orien-
tations, and a combination of both using the height interval
of 400 m (combined features). Note that the results are not
affected by interchanges in the order of the orographic char-
acteristics in the combined features (therefore not shown).
We assess, in the following, which of these characteristics
are necessary to improve a simple approach of applying one
EQM-TF to the entire domain, where orographic features are
not considered. An improvement compared to one EQM-TF
for the entire domain would certainly support the height de-
pendence of the biases. Note that we do not compare our
results to the standard EQM as the latter would outperform
the here-described method by definition. Note that the stan-

dard EQM removes the mean bias on a grid-point level as it
is a statistical downscaling at the same time. We use Taylor
diagrams (Fig. 10) for four months, namely, January, April,
July, and September, as the biases show a strong seasonal-
ity (see previous section). The evaluation is carried out with
three statistics: the spatial correlation, the spatial root-mean-
square error, and the spatial standard deviation.

Figure 10a shows that the correction methods using height
intervals of both 100 and 400 m, and the combined features
have better performance during the colder months than the
other methods, i.e. using just orientation or one TF for the
entire domain: the standard deviation is better adjusted, espe-
cially when using height intervals of 100 m, the root-mean-
square error is reduced by roughly 32 %, and the correla-
tion is slightly increased (Fig. 10b). During the cold-to-warm
transition months (here illustrated by April), the correction
using height intervals of 400 m and the combined features
have better performance than the other settings. This is be-
cause the standard deviation is fully adjusted, the root-mean-
square error is reduced by 17 %, and the correlation is in-
creased to r = 0.75 (Fig. 10b). During the warmer months,
all correction methods except the one using height inter-
vals of 100 m show similar good performance; i.e. the stan-
dard deviation is fully adjusted, the root-mean-square error
is slightly reduced, and the correlation is slightly increased
(Fig. 10c). The similar good correction in the warm months
can be explained by a reduced height dependence of the
biases in these months. During the warm-to-cold transition
months (September; Fig. 10d), all correction methods show
a similar performance increase compared to the observations;
correlation and root-mean-square error are only slightly im-
proved. The method using height intervals of 100 m often
reduces the standard deviation. This can be explained by a

Geosci. Model Dev., 13, 5007–5027, 2020 https://doi.org/10.5194/gmd-13-5007-2020

137



P. Velasquez et al.: New bias-correction method suitable for different climate states 5017

Figure 9. Biases in the wet-day frequency within the 30-year period over Switzerland. Panel (a) represents the original biases in January,
(b) the biases after being corrected using Int-TFs in January, and (c) the biases after being corrected using Ext-TFs in January; panels (d),
(e), and (f) are the same as (a), (b), and (c) but in July, respectively.

reduced data coverage which means less variability within
some height classes as a smaller climatological range is en-
compassed by each height interval.

Even though all the settings mostly show good perfor-
mance, the one using height intervals of 400 m outperforms
in most measures and months. In addition, the correction
method using the height intervals of 400 m needs less com-
putational time compared to the similarly good correction
method using height intervals of 400 m and slope orienta-
tions. Therefore, the method using height intervals of 400 m
seems to be the most appropriate setting and is used in the
following analysis.

4.3 Application of the bias-correction method and
cross-validation under present-day conditions

The bias-correction method using height intervals of 400 m is
now assessed in more detail. First, we focus on results where
the TFs are estimated in the domain of Switzerland using
30 years (Int-TFs). Second, we discuss the results obtained
by a temporal and spatial cross-validation technique, i.e. the
TFs trained on another period and the TFs estimated with
the surrounding Alpine region, excluding Switzerland (Ext-
TFs). As in Sect. 4.2, a comparison to the standard EQM
(Lafon et al., 2013) is not presented, since the standard EQM
outperforms the new method under present-day conditions.
A priori, this comparison is based on different prerequisites,
as the standard EQM corrects at a grid-point level, and thus it
removes the mean biases as in statistical downscaling meth-
ods. Instead, we again compare the new method to a simple
one EQM-TF used for all of Switzerland. A similar approach
is sometimes used in other studies as well to assess the added
value of their proposed methods (e.g. Gómez-Navarro et al.,
2018; Casanueva et al., 2016).

To illustrate the improvement by the correction method us-
ing Int-TFs, we compare the spatial and temporal represen-
tation of the corrected precipitation with RhiresD. Focusing
on the monthly mean precipitation intensity across Switzer-
land, we find that the climatological annual cycle of mean
precipitation intensity fully coincides with the one of the ob-
servations (Fig. 5a). Also, the distributions of monthly mean
precipitation intensity are fully adjusted and the correspond-
ing interquartile ranges mainly correspond to the ones of the
observations when using the new bias-correction method.
Still, the extreme precipitation events are underestimated
with the new method, which is expected as the TF of the
extreme values is poorly constrained in the EQM approach
(e.g. Themessl et al., 2011). The segregation into the height
classes (Fig. 5b and c) shows that the climatological monthly
means and the distributions of monthly mean precipitation
intensity are also well adjusted compared to the observations.
This illustrates that the bias-correction method using height
intervals of 400 m is appropriate.

To further describe the spatial improvements of the new
bias-correction method, we select here, as in Sect. 4.1, two
months that mainly represent the colder and warmer months,
e.g. January and July, respectively. We again focus on biases
in the monthly mean precipitation intensity, in the variabil-
ity illustrated by the interquartile range, and in the wet-day
frequency.

A comparison of Fig. 7a and d with b and e shows that
the biases in the climatological mean precipitation intensity
are substantially reduced, especially the overestimation over
high mountain regions during colder months and the general
underestimation during warmer months. Still, regions with
positive and negative biases remain over the eastern part of
the mountains in colder months and in the steep valleys like
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Figure 10. Performance of bias correction with different settings.
Panel (a) shows a Taylor diagram for January, (b) for April, (c) for
July, and (d) for September. Blue dots represent the raw simula-
tion, red dots the simulation corrected by using height intervals of
400 m, cyan dots the simulation corrected by using height intervals
of 100 m, petrol triangles the simulation corrected by using height
intervals of 400 m and slope orientations, petrol diamonds the sim-
ulation corrected by slope orientations, and cyan squares the sim-
ulation corrected by the simple approach (the entire Swiss region).
Note that in the Taylor diagram the spatial correlation, spatial root-
mean-square error, and spatial standard deviation are shown.

the Rhône Valley in warmer months. Also, the negative bias
in Ticino during colder months remains, albeit it is slightly
ameliorated. The rather moderate performance in these re-
gions can be traced back to the fact that some height classes
sample over regions with different biases. Hence, biases of
one area are diminished by the biases that are shared by the
other areas. For instance, the strong negative biases observed
in the Rhône Valley and Ticino are not fully decreased be-
cause the slight underestimation from the Swiss Plateau dom-
inates this height class (Fig. 7b and e).

To assess the improvements with respect to precipitation
variability, we focus on the interquartile range of the distri-
bution of monthly mean precipitation intensity at each grid
point (Fig. 8b and e compared to a and d). The biases of the
interquartile range improve only moderately; i.e. the strong
overestimation over the mountains is partly corrected during
colder months but not during warmer months. The underesti-
mation over the flatlands and steep valleys is corrected during
warmer months and poorly during colder months.

For the wet-day frequency, we find that the positive biases
are mostly reduced, especially the strong overestimation over
the mountains during colder months (Fig. 9b and e). How-
ever, the regions of the Rhône Valley and Ticino, which show
no biases in the raw model output, are slightly underesti-
mated during colder months. The negative biases observed in
the region of Grisons become stronger during colder months
and in the region of the Rhône Valley during warmer months
(Fig. 9b and e). This effect is again caused by sampling dif-
ferent regions with different biases in the height classes.

Recent studies by Maraun et al. (2017) and Maraun and
Widmann (2018b) showed that the observational and simu-
lated data sets do not have a synchronised internal climate
variability, and thus this may be one of the sources of the
remaining biases in free-running models. To assess these
remaining biases, we perform a temporal cross-validation.
An option could be to carry out a leave-one-out verifica-
tion method to hold back most of the years for calibration;
however, different lengths between calibration and the inde-
pendent verification periods can lead to more uncertainties
(Lafon et al., 2013; Maraun, 2016; Maraun et al., 2017; Ma-
raun and Widmann, 2018b). Therefore, our temporal cross-
validation consists of using different same-length periods for
the calibration and the verification (see Sect. 3). Overall, the
bias-correction method performs similarly in the indepen-
dent 15 years and shows similar remaining biases compared
to using the entire 30 years for training and verification. Still,
some differences between dependent and independent peri-
ods are evident. During January, the method trained on the
first 15 years and verified in the second 15 years shows lower
biases over high altitudes and slightly higher biases in the
flatlands and in Ticino (not shown). Inversely, the method
trained with the second 15 years and verified in the first
15 years shows reduced biases in the flatlands and in Ticino
but not over the mountains (not shown). During July, similar
small differences are identified in the independent verifica-
tion periods (therefore not shown). Thus, there is a potential
that a different internal climate variability affects the bias-
correction method (Maraun et al., 2017; Maraun and Wid-
mann, 2018b). However, these differences can be considered
minimal as the accuracy of bias-correction methods is sensi-
tive to the length of the period the methods are trained on (a
shorter training period results in less accurate performance;
Lafon et al., 2013).

To further check the robustness of the new bias-correction
method, a spatial cross-validation is performed (see Sect. 3).
Thereby, we apply the TFs estimated from an independent
data set of the Alpine region (at 5 km resolution), exclud-
ing Switzerland (Ext-TFs), to the Swiss region (at 2 km res-
olution). To have insights into the effects of the correction
method using Ext-TFs, we compare the spatial and tempo-
ral representation of the corrected precipitation with the re-
sults obtained by the Int-TFs. Note that the RhiresD is al-
ways used as observations for the bias calculation. Again, to
describe the spatial effects, we select here two months that
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mainly represent the colder and warmer months, i.e. January
and July, respectively.

A comparison of Fig. 7b with c shows almost the same
pattern; i.e. the improvement in mean precipitation achieved
by using Ext-TFs is similar to that using the Int-TFs dur-
ing colder months. Still, some positive biases over the moun-
tains seem to be smaller when using Ext-TFs than Int-TFs,
whereas the remaining negative biases are slightly stronger
than the ones after using Int-TFs (Fig. 7b and c). The reason
for the latter could lie in the inclusion of larger regions in
the north and west of the Alps mixing different climate con-
ditions and thus bias behaviours. The slightly better perfor-
mance in the mountain regions is probably related to more
data being available in these height classes, i.e. more grid
points at high altitudes (Fig. 2), and thus it is possible to bet-
ter constrain the TFs. In the warmer months, we find that
the method using Ext-TFs shows slightly more negative bi-
ases than with Int-TFs, in particular over the Swiss Plateau.
Again, we hypothesise that the inclusion of larger regions in
the north and west of the Alps is responsible for this bias
behaviour.

The interquartile ranges of the distribution of monthly
mean precipitation intensity are similar when using either
Ext-TFs or Int-TFs for the colder months (Fig. 8c compared
to b). During warmer months, the negative biases in the west-
ern part of Switzerland are less improved using Ext-TFs than
Int-TFs, which is again a hint that the inclusion of larger re-
gions in the north and west of the Alps in the lower height
classes plays a role in the bias of the interquartile range.

The wet-day frequencies are very similarly corrected as in
the approach using Ext-TFs compared to Int-TFs (Fig. 9c and
f compared to b and e). Thus, the wet-day frequency seems
to be insensitive to the region where the TFs are estimated.

Additionally, to further assess the local improvements of
adding topographic features into the correction, we anal-
yse the remaining biases of the simple method using TFs
deduced for the Swiss region (Int-TFs), as described in
Sect. 4.2, and for the corresponding Alpine region (Ext-
TFs) separately. Overall, the comparison between the simple
method and the new method shows small differences (there-
fore not shown). The new method shows better performance
than the simple method in January but similar performance
in July. Furthermore, the simple method increases the origi-
nal biases over the flatlands, which are reduced by the new
bias correction. This confirms the results of the Taylor dia-
gram illustrated in the Fig. 10, i.e. the better performance of
the method using height intervals of 400 m.

In summary, the new correction method reasonably well
corrects biases in the monthly mean precipitation intensity,
in the variability illustrated by the interquartile range, and in
the wet-day frequency. The two cross-validations show that
the improvements achieved by the new method are almost in-
dependent of the time period and region used to estimate the
TFs. Additionally, the new method outperforms the simple
method (one EQM-TF) in the present-day climate.

4.4 Application of bias-correction methods on the
simulated LGM climate

To further examine the performance and applicability of the
new bias-correction method, we apply it to the simulated
LGM climate. Similarly, the standard EQM (e.g. Lafon et al.,
2013; Teutschbein and Seibert, 2012, 2013; Teng et al., 2015)
is applied and precipitation fields resulting from its correc-
tion are compared to the one of the new method. The rea-
son is that the strength of the standard EQM (correction
at grid-point level) under present-day climate might be a
weakness under highly different climate states, since local-
related biases might not exist. To that end, we again focus on
the monthly mean precipitation intensity over Switzerland in
January and July, i.e. the two months that represent the cold
and warm seasons, respectively.

Focusing on the raw LGM simulation first, we find wetter
conditions in the southern part of the Swiss Alps (Fig. 11a
and d) rather than at the north-facing slopes, as is the case in
present-day conditions (more details about present-day con-
ditions are available in Frei and Schär, 1998; Schwarb et al.,
2001). Becker et al. (2016) indicated a strong precipitation
gradient between the north- and the south-facing slopes in
order to obtain a reasonable extent of the Alpine glacier dur-
ing the LGM. This suggests an increase of intensity or fre-
quency of the southerly moisture advection over the Alps.
Also, Florineth and Schlüchter (2000) and Luetscher et al.
(2015) indicated a circulation change from dominant wester-
lies in the present day to a more southerly atmospheric cir-
culation during the LGM. From this brief qualitative analy-
sis, we can conclude that WRF reasonably simulates the pre-
cipitation patterns during the LGM, even if the total amount
might present some uncertainties.

Before assessing the performance of the two bias-
correction methods, it is worthwhile to shortly focus on the
changes in the topography. The topography is differently
lifted across Switzerland during the LGM (Fig. 3b) compared
to the present-day climate (Fig. 2). While the mountainous
areas become larger, the height of their peaks hardly changes.
The present-day valleys are filled by ice during the LGM,
and thus the deep valleys almost disappear. For instance, the
Rhône Valley exhibits a continuous slope towards its spring
(Fig. 3b), while it is a narrow and deep valley with almost
a constant elevation in the present-day topography (Fig. 2).
Since the Alps were covered by ice, the fine and complex
present-day topography is lacking during the LGM.

We apply the standard EQM and the new method to not
only assess their performance but also to identify the strength
and weakness of each method. Comparing Fig. 11b and e to c
and f illustrates that the corrections do not modify the north–
south precipitation gradient observed in the raw simulation
(Fig. 11a and d). The standard EQM method (Fig. 12b and d)
shows that the shape of the valleys and the mountain peaks
of the present-day topography are imprinted on the raw LGM
climate (Fig. 12a and c). The standard EQM seems to add a
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Figure 11. Monthly climatology of 30-year precipitation over Switzerland during the LGM. Panel (a) represents uncorrected precipitation
intensity in January; panel (b) is the same as (a) but corrected using the standard EQM; panel (c) is the same as (b) but using the new method;
panels (d), (e), and (f) are the same as (a), (b), and (c) but for July, respectively.

fine and complex structure to the precipitation pattern. This
complexity is hardly justified over the Alps during the LGM,
as stated before, which suggests that adding this structure is
unnecessary. The imprint of the present-day topography is
related to the nature of the standard EQM that trains the TFs
point-wise assuming static orographic features. The new cor-
rection method follows by definition the LGM topography
showing a smoother correction for the LGM climate, which
provides precipitation patterns that more appropriately rep-
resent the LGM situation. Proxy records could give an idea
on the LGM precipitation amounts but there is a very lim-
ited number of them in Switzerland; thus, a more rigorous
analysis of the application of the two methods to the LGM
climate is not possible. However, the difference between the
two methods demonstrates that the application of the new
bias correction is better suited than the standard EQM. There-
fore, we consider it as more appropriate for climate states
with strongly altered topography compared to today.

5 Summary and conclusions

In this study, we present a new bias-correction method for
precipitation over complex topography, which takes oro-
graphic characteristics into account. This method is mainly
designed for climate states where the topography is distinc-
tively different to the present-day one, i.e. glacial times. This
is particularly important for studies where absolute values of
precipitation are essential, such as glacier and ice sheet mod-
elling (Seguinot et al., 2014; Jouvet et al., 2017; Jouvet and
Huss, 2019), and the assessment of human behaviour during
glacial times (Burke et al., 2017; Wren and Burke, 2019). To
illustrate the performance of the new method, two regional

climate model simulations are performed with WRF at 2 km
resolution over the Alpine region. We particularly focus on
the performance over Switzerland.

The comparison between the WRF simulation and the ob-
servations over Switzerland shows that the biases are season
dependent and related to the complexity of the topography,
especially in colder months (November to March). These
months exhibit positive biases over mountains and nega-
tive biases in steep valleys, whereas negative biases domi-
nate during the warmer months (April to October), especially
in the Rhône Valley and Ticino. Parts of the biases are in-
troduced by the driving global climate model, in particular
the seasonal biases (Gómez-Navarro et al., 2018). Moreover,
the large-scale atmospheric circulation of the global climate
model is too zonal – a known problem in many models (e.g.
Raible et al., 2005; Raible et al., 2014; Hofer et al., 2012a, b;
Mitchell et al., 2017) – which cannot be fully compensated
for by the RCM. Thus, the wet bias present in the global
simulation (Hofer et al., 2012a, b) may be transported into
the regional model domain, rendering especially the colder
months with more precipitation. Still, observations are also
not perfect and underestimate precipitation in particular at
high altitudes by up to 30 % (Isotta et al., 2014). Other biases
are potentially induced by the RCM; e.g. a WRF simulation
using a similar setting but driven by ERA-Interim (Gómez-
Navarro et al., 2018) shows also a comparable overestimation
of precipitation over mountain regions as the simulation used
in this study. In addition, we find that the extreme precipi-
tation values are underestimated. This is due to the drizzle
effect (Murphy, 1999; Fowler et al., 2007b) that can remove
moisture needed for the extreme precipitation, which mainly
comes from physical parameterisations of the model itself
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Figure 12. Performance of the correction for the monthly climatology of 30-year precipitation over Switzerland during the LGM. Panel (a)
represents the differences in January between corrected precipitation using the standard EQM and uncorrected precipitation; panel (b) is the
same as (a) but using the new method; panels (c) and (d) are the same as (a) and (b) but in July, respectively.

(Solman et al., 2008; Menéndez et al., 2010; Gianotti et al.,
2011; Carril et al., 2012; Jerez et al., 2013). A hint for this is
given by the fact that the wet-day frequency in the simulation
is enhanced compared to the observations.

Numerous approaches to correct biases exist (e.g. Maraun,
2013; Teng et al., 2015; Casanueva et al., 2016; Ivanov et al.,
2018); nevertheless, they assume stationary orographic fea-
tures that are then imprinted onto the other climate state
when applying the correction. Hence, an alternative method
is needed, which reduces this assumption so that it adds value
to especially colder climate states characterised by a strongly
changed topography, such as the LGM. The new method con-
sists of three steps: the orographic characteristics differentia-
tion, the adjustment of very low precipitation intensities, and
the EQM. Different orographic characteristics, i.e. the height
intervals, the slope orientations, and the combination of both,
are tested showing that the method using height intervals of
400 m is generally the most skilful correction compared to
other orographic characteristics and at the same time it is
computationally the most efficient one. In the colder months,
the new method outperforms the simple method of applying
one EQM-TF that is deduced for the entire region of interest
and does not consider any orographic features.

Applying the new bias-correction method to the Swiss re-
gion exclusively shows that the biases are mostly corrected.
In particular, the distribution of the monthly precipitation
across Switzerland is mainly adjusted, the mean precipitation
biases are substantially reduced, and the biases in the wet-day
frequency are mostly reduced. The method better corrects
the positive biases during colder than warmer months, and
conversely, the negative biases during warmer than colder

months. However, some biases are still observed, which is
explained by the fact that some height classes sample over
regions with different biases. Also, the deficient constraint of
the TFs in outermost quantiles poorly corrects extreme val-
ues, i.e. below the first quantile and above the last quantile.
Furthermore, part of the remaining biases may also be inter-
preted as possible error propagation, which initially comes
from the interpolation methods and “gauge undercatch” in
the gridded observational data sets, especially at high al-
titudes where less data are available (for more details, see
Sevruk, 1985; Richter, 1995; Isotta et al., 2014).

The new method is temporally and spatially cross-
validated. The 30-year period is split in a 15-year training
and a 15-year independent temporal verification part. The re-
sults are similar to the case when the TFs are trained on and
applied to the 30-year period. Still, such a cross-validation
might be problematic as the method’s accomplishment relies
on the biases caught during the period the method is trained
on, i.e. the asynchronism in the internal climate variability of
the data sets (Maraun et al., 2017; Maraun and Widmann,
2018a). Maraun and Widmann (2018a) argued that cross-
validation methods shall compare the correction with the ob-
servations on different climate states, i.e. the future or past
climate state; otherwise, they can produce false positive or
true negative results. To overcome some of these possible
limitations, we apply a spatial cross-validation that checks
the transferability of the bias-correction method to a different
climate state. We use an independent data set of the Alpine
region (APGD) excluding Switzerland when estimating the
transfer functions (Ext-TFs). This shows a similar improve-
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ment compared to the correction performed with data over
the Swiss region exclusively (Int-TFs).

The applicability of the new method is further assessed un-
der LGM climate conditions. There is a very limited amount
of proxy evidence in Switzerland for a rigorous evalua-
tion. Thus, we compare the performance of the new bias-
correction method and the standard EQM when they are ap-
plied to LGM climate conditions. The standard EQM adds
features to the precipitation that can hardly be justified in the
LGM, whereas the performance of the new method suits it
better. This indicates that the new method is safer and there-
fore more appropriate than the standard EQM under LGM
climate conditions. In a similar manner, the new method may
also be better suited in some regions for future climate sce-
narios. This is especially true for areas that are currently cov-
ered by ice, such as the Himalayas, since possible melting of
glaciers can change the shape of the already complex terrain
in the future.

Finally, a common drawback of all bias-correction meth-
ods (including the one presented in this study) is that they
ignore a potential modification of the bias structure due to
the handling of rainfall and snowfall in the model’s micro-
physics. This is certainly important when the bias-correction
method shall be used in cold climate states, like the LGM.
Currently, there are no gridded and homogenised observa-
tions available for snowfall, which is needed for a rigorous
analysis of this effect. Still, our seasonally separated and
height-dependent method implicitly includes some aspects
of the handling of rainfall and snowfall, since one can ex-
pect that most of the precipitation is snow at high altitudes
and in colder months. Clearly, future work is needed on this
aspect as soon as reliable observations of snowfall are avail-
able. Additionally, other variables of the Earth’s system need
to be assessed in future studies on bias-correction methods,
especially the response of soil moisture and snow albedo to
the corrected precipitation patterns. In the meantime, glaciol-
ogists can benefit from a better accuracy of precipitation
data obtained by the new method for, e.g. LGM conditions.
Glacier modelling (Seguinot et al., 2014; Jouvet et al., 2017;
Jouvet and Huss, 2019) results may provide an alternative
method for the validation when evaluating the prediction and
proxy data of the glacier extents.

Code and data availability. WRF is a community model
that can be downloaded from its web page (https:
//www2.mmm.ucar.edu/wrf/users/index.html, last access: 12 Octo-
ber 2020) (Skamarock et al., 2005). The two climate simulations
(global: CCSM4 and regional: WRF) occupy several terabytes and
thus are not freely available. Nevertheless, they can be accessed
upon request to the contributing authors. The post-processed
daily precipitation that is used to perform the bias correction is
archived on Zenodo at https://doi.org/10.5281/zenodo.4009101
(Velasquez et al., 2019). The RhiresD and APGD data sets
can be requested from MeteoSwiss. Simple calculations car-
ried out at a grid-point level are performed with Climate Data

Operators (CDO; https://doi.org/10.5281/zenodo.2558193;
Schulzweida, 2019) and NCAR Command Language (NCL;
https://doi.org/10.5065/D6WD3XH5; UCAR/NCAR/CISL/TDD,
2019). The data in the figures are obtained with NCL
(UCAR/NCAR/CISL/TDD, 2019) and RStudio (RStudio
Team, 2015). The codes to perform the bias correction, the
simple calculations, and the figures are archived on Zenodo
(https://doi.org/10.5281/zenodo.4009101; Velasquez et al., 2019).
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Chapter 6

Outlook

The goal of this thesis was to investigate the impact of glacial surface conditions on the

European climate using climate model simulations at glacial times. Two studies conducted in

the framework of this thesis demonstrated that surface conditions play an important role in

regulating the regional glacial climate (Velasquez et al., 2021a,b). A third study (Velasquez

et al., 2020) presented a new bias-correction method for precipitation whose application is

more appropriate under highly different climate conditions such as glacial times than standard

techniques commonly used under present day and future conditions (e.g, Maraun, 2013; Teng

et al., 2015; Casanueva et al., 2016; Ivanov et al., 2018).

The first study (Velasquez et al., 2021a) assessed the role of the glacial land cover in the

European glacial climate. The results show that dry conditions in the Last Glacial Maximum

(LGM) are partially attributed to LGM land cover, i.e., to the reduction in vegetation compared

to present-day land cover. This is particularly true for central and eastern Europe during

summer. From this first study, future studies will benefit from even more detailed climate

simulations, particularly to better understand precipitation patterns in complex terrain such as

Iberia, across the Mediterranean, and in the Carpathians. This is also true for studies on

the local and regional paleobotany and archaeology of this important period in Europe’s

history. Nevertheless, there is room for improvements, especially in a further evaluation of the

modelled climate. An evaluation of the modelled LGM climate should be performed with

independent paleoclimate reconstructions from more sites than the 14 published points that

are in the spatial domain of this study. Since the publication of Wu et al. (2007) and Bartlein

et al. (2011), more than 70 well-dated pollen records have become available for Europe at the

LGM (Kaplan et al., 2016) but not transformed into paleoenvironmental reconstructions

to-date yet. As soon as more paleoenvironmental reconstructions become available, futures

studies will therefore be able to examine specific areas in more detail.

The second study (Velasquez et al., 2021b) determined the influence of the northern-

hemispheric ice-sheet topography on the Alpine climate. Results show that an increase of the

northern hemispheric ice sheet leads to an intensification of glacial conditions over the Alps.

Especially, the Laurentide and Alpine ice-sheet topography strongly influence the climate over
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the Alpine region. In a potential following-up work, only the Fennoscandian ice-sheet needs to

be modified in the driving global climate model keeping the other northern-hemispheric ice

sheet unchanged. This will reduce the uncertainties coming from the boundary conditions in the

Fennoscandian experiment. Also, the current simulation length related to the Fennoscandian

experiment might lead to uncertainties when comparing it with the baseline LGM climate.

Additionally, the analysis presented in this study suggests that future modelling efforts shall

ideally involve coupled glacier models. This is not possible at the moment due to the long

calculation time needed for glacier models and the high computational cost of regional climate

simulations. An intermediate step is to use the output of different sensitivity simulations in

ice-sheet modelling studies (e.g., Jouvet et al., 2017; Seguinot et al., 2018). Also, future work

will profit from even more detailed information about climate variables over the Alpine region,

particularly to better understand precipitation patterns in complex terrain. Studies on the

local and regional paleobotany, archaeology and anthropology will surely benefit from both the

climate variables and the better understanding of the ice-sheet dynamics (e.g., Finlayson, 2004;

Finlayson et al., 2006; Finlayson, 2008; Burke et al., 2014; Kaplan et al., 2016; Maier et al.,

2016; Burke et al., 2017; Baena Preysler et al., 2019; Wren and Burke, 2019).

The third study (Velasquez et al., 2020) presents a new bias-correction method for

precipitation over complex topography, which uses a quantile mapping technique that takes

orographic characteristics into account. This method is mainly designed for climate states

where the topography is distinctively different to the present-day one, i.e. glacial times. The

evaluation of the method’s performance does not only show robust results, but also that the new

method substantially reduces the precipitation bias, especially the seasonal precipitation bias

induced by the global climate model. Comparing the new method to the standard empirical

quantile mapping (EQM) technique indicates that the new method is safer and therefore more

appropriate under LGM climate conditions. However, a drawback is that the method ignores

a potential modification of the bias structure due to the handling of rainfall and snowfall

in the model’s microphysics. Even though the new method includes some aspects of this

handling, a future work is needed as soon as reliable observations of snowfall are available.

A following-up work would be the assessment of other variables of the Earth’s system on

bias-correction methods, i.e., the response of soil-moisture and snow-albedo to the corrected

precipitation patterns. Using this new method, glaciologists can benefit from a better accuracy

of precipitation data that is used as an input for their glacier models.
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Baena Preysler, J., Carrión Santafé, E., Torres Navas, C., and Vaquero Rodŕıguez, M.: Mousterian inside the

upper Paleolithic? The last interval of El Esquilleu (Cantabria, Spain) sequence, Quaternary International,

508, 153–163, doi:10.1016/j.quaint.2018.11.015, 2019.

Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice,

T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson,
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Appendix A

NAMELIST.WPS

This appendix shows the file namelist.wps used in WPS.

&share

wrf core = ’ARW’,

max dom = 4,

start date = ’DATE1’,’DATE1’,’DATE1’,’DATE1’,

end date = ’DATE2’,’DATE2’,’DATE2’,’DATE2’,

interval seconds = 21600,

io form geogrid = 2,

/

&geogrid

parent id = 1, 1, 2, 3,

parent grid ratio = 1, 3, 3, 3,

I parent start = 1, 13, 68, 23,

j parent start = 1, 10, 31, 24,

e we = 84, 169, 196, 472,

e sn = 83, 172, 229, 286,

geog data res = ’modis 30s+modis lakes+5m’,’modis 30s+modis lakes+2m’, ...

...’modis 30s+modis lakes+30s’,’modis 30s+modis lakes+30s’,

dx = 54000,

dy = 54000,

map proj = ’lambert’,

ref lat = 52.848,

ref lon = 7.892,

truelat1 = 52.848,

truelat2 = 52.848,

stand lon = 7.892,
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geog data path = ’geog/’

ref x = 42.0,

ref y = 41.5,

/

&ungrib

out format = ’WPS’,

prefix = ’FILE’,

/

&metgrid

fg name = ’FILE’,

io form metgrid = 2,

/



Appendix B

NAMELIST.INPUT

This appendix shows the file namelist.input used in WRF.

&time control

run days = SIMDAY01,

run hours = 0,

run minutes = 0,

run seconds = 0,

start year = YEAR1, YEAR1, YEAR1, YEAR1,

start month = MONTH1, MONTH1, MONTH1, MONTH1,

start day = DAY1, DAY1, DAY1, DAY1,

start hour = HOUR1, HOUR1, HOUR1, HOUR1,

start minute = 00, 00, 00, 00,

start second = 00, 00, 00, 00,

end year = YEAR2, YEAR2, YEAR2, YEAR2,

end month = MONTH2, MONTH2, MONTH2, MONTH2,

end day = DAY2, DAY2, DAY2, DAY2,

end hour = 18, 18, 18, 18,

end minute = 00, 00, 00, 00,

end second = 00, 00, 00, 00,

interval seconds = 21600,

input from file = .true.,.true.,.true.,.true.,

history interval = 360, 360, 360, 360,

frames per outfile = 1460, 1460, 1460, 1460,

restart = .BOOLEAN.,

restart interval = 1440,
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io form history = 2,

io form restart = 2,

io form input = 2,

io form boundary = 2,

io form auxinput4 = 2,

auxinput4 inname = ”wrflowinp d<domain>”,

auxinput4 interval = 360, 360, 360, 360,

output diagnostics = 1,

io form auxhist3 = 2,

auxhist3 interval = 1440, 1440, 1440, 1440,

debug level = 0,

adjust output times = .true.,

iofields filename = T2 hourly d01.txt, T2 hourly d02.txt, T2 hourly d03.txt, ...

... T2 hourly d04.txt,

ignore iofields warning = .true.,

auxhist7 outname = T2 hourly d<domain> <date>,

auxhist7 interval = 60, 60, 60, 60,

frames per auxhist7 = 1460, 1460, 1460, 1460,

io form auxhist7 = 2

/

&domains

use adaptive time step = .true.,

step to output time = .true.,

adaptation domain = 4,

target cfl = 1.0, 1.0, 1.0, 1.0,

starting time step = 324, 108, 36, 12,

max step increase pct = 5, 51, 51, 51,

max time step = -1, -1, -1, -1,

min time step = 108, 36, 12, 4,

time step = 324,

time step fract num = 0,

time step fract den = 1,

max dom = 4,

s we = 1, 1, 1, 1,

e we = 84, 169, 196, 472,

s sn = 1, 1, 1, 1,

e sn = 83, 172, 229, 286,
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s vert = 1, 1, 1, 1,

e vert = 40, 40, 40, 40,

p top requested = 5000,

num metgrid levels = 15,

num metgrid soil levels = 4,

dx = 54000, 18000, 6000, 2000,

dy = 54000, 18000, 6000, 2000,

grid id = 1, 2, 3, 4,

parent id = 1, 1, 2, 3,

i parent start = 1, 13, 68, 23,

j parent start = 1, 10, 31, 24,

parent grid ratio = 1, 3, 3, 3,

parent time step ratio = 1, 3, 3, 3,

feedback = 1,

smooth option = 0

/

&physics

mp physics = 6, 6, 6, 6,

ra lw physics = 1, 1, 1, 1,

ra sw physics = 1, 1, 1, 1,

radt = 5, 5, 5, 5,

sf sfclay physics = 1, 1, 1, 1,

sf surface physics = 4, 4, 4, 4,

bl pbl physics = 1, 1, 1, 1,

bldt = 0, 0, 0, 0,

cu physics = 1, 1, 0, 0,

cudt = 5, 5, 5, 5,

isfflx = 1,

ifsnow = 0,

icloud = 1,

surface input source = 1,

num soil layers = 4,

sf urban physics = 0, 0, 0, 0,

maxiens = 1,

maxens = 3,

maxens2 = 3,

maxens3 = 16,

ensdim = 144,

sst update = 1,

topo wind = 0, 0, 0, 1,

num land cat = 20

/
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&fdda

/

&dynamics

w damping = 0,

diff opt = 1,

km opt = 4,

diff 6th opt = 0, 0, 0, 0,

diff 6th factor = 0.12, 0.12, 0.12, 0.12,

base temp = 290.,

damp opt = 0,

zdamp = 5000., 5000., 5000., 5000.,

dampcoef = 0.2, 0.2, 0.2, 0.2,

khdif = 0, 0, 0, 0,

kvdif = 0, 0, 0, 0,

non hydrostatic = .true., .true., .true., .true.,

moist adv opt = 1, 1, 1, 1,

scalar adv opt = 1, 1, 1, 1,

/

&bdy control

spec bdy width = 5,

spec zone = 1,

relax zone = 4,

specified = .true., .false.,.false.,.false.,

nested = .false., .true., .true.,.true.,

/

&grib2

/

&namelist quilt

nio tasks per group = 0,

nio groups = 1,

/



Appendix C

GEOGRID.TBL

This appendix shows part of the file Geogrid.tbl in WPS. An extra smoothing is applied

as the domains cover an area of complex topography such as the Alps. This is necessary as the

CFL criterion is violated.

name = HGT M

priority = 1

dest type = continuous

smooth option = 1-2-1; smooth passes=1

fill missing = 0.

interp option = gmted2010 30s:average gcell(4.0)+four pt+average 4pt

interp option = gtopo 30s:average gcell(4.0)+four pt+average 4pt

interp option = gtopo 2m:four pt

interp option = gtopo 5m:four pt

interp option = gtopo 10m:four pt

interp option = default:average gcell(4.0)+four pt+average 4pt

rel path = gmted2010 30s:topo gmted2010 30s/

rel path = gtopo 30s:topo 30s/

rel path = gtopo 2m:topo 2m/

rel path = gtopo 5m:topo 5m/

rel path = gtopo 10m:topo 10m/

rel path = default:topo gmted2010 30s/





Appendix D

METGRID.TBL

This appendix shows part of the file Metgrid.tbl in WPS. This file needs some changes as

different land-sea masks are used for different variables. Ignoring these changes produces

hotspots along the coast. Note the modifications in this file are set to the default options after

the compilation process and they therefore need to be modified afterwards. Accordingly, the

options related to SSTs are modified. The option interp mas is changed to LANDMASK(1)

and the interpolation option (interp option) is modified as shown below.

name = SST

interp option = sixteen pt+four pt+wt average 4pt+wt average 16pt+search

fill missing = 0.

missing value = -1.E30

flag in output = FLAG SST

masked = land

interp mask = LANDMASK(1)
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