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Abstract

This dissertation aims to investigate several aspects of the Poisson convergence: Poisson
approximation, multivariate Poisson approximation, Poisson process approximation and
weak convergence to a Poisson process.

The size-bias coupling is a powerful tool that, when combined with the Chen-Stein
method, leads to many general results on Poisson approximation. We define an approxi-
mate size-bias coupling for integer-valued random variables by introducing error terms,
and we combine it with the Chen-Stein method to compare the distributions of integer-
valued random variables and Poisson random variables. In particular, we provide explicit
bounds on the pointwise difference between the cumulative distribution functions. By
these findings, we show approximation results in the Kolmogorov distance for mini-
mal circumscribed radii and maximal inradii of stationary Poisson-Voronoi tessellations.
Moreover, we compare the distributions of Poisson random variables and U-statistics with
underlying Poisson processes or binomial point processes, which, in particular, allows us
to approximate the rescaled minimum Euclidean distance between pairs of points of a
Poisson process with midpoint in an observation window by an exponentially distributed
random variable using the Kolmogorov distance.

A multivariate version of the size-bias coupling is employed to investigate the Gaus-
sian approximation for random vectors by L. Goldstein and Y. Rinott. We extend the
notion of approximate size-bias coupling for random variables to random vectors, and
we combine it with the Chen-Stein method to investigate the multivariate Poisson ap-
proximation in the Wasserstein distance and the Poisson process approximation in a new
metric defined herein. As an application, we obtain a bound on the Wasserstein distance
between the sum of m-dependent Bernoulli random vectors and a Poisson random vector.
Moreover, we consider point processes of U-statistic structure, that is, point processes
that, once evaluated on a measurable set, become U-statistics. For point processes of
U-statistic structure with an underlying Poisson process, we establish a Poisson pro-
cess approximation result that is the analogue of the one shown by L. Decreusefond, M.
Schulte, and C. Théle with the Kantorovich—-Rubinstein distance replaced by our new
metric.

General criteria for the weak convergence of locally finite point processes to a Poisson
process are derived from the relation between probabilities of two consecutive values of
a Poisson random variable. P. Calka and N. Chenavier studied the limiting behavior of
characteristic radii of homogeneous Poisson-Voronoi tessellations. By our general results,
we extend and improve their findings by showing Poisson process convergence for point
processes constructed using inradii and circumscribed radii of inhomogeneous Poisson-
Voronoi tessellations.
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Chapter 1

Introduction

The study of the asymptotic behavior of random elements and the derivation of approxi-
mation results are of great interest among probabilists and have considerable importance
in all scientific fields, from astrophysics to genetics. Indeed, they permit the study of
complicated distributions using simpler ones and hence they can be used to express non-
trivial problems in a simple way with a certain level of accuracy. The Poisson distribution
is often used to model the occurrences of events, that is, situations involving the sum of
indicator functions. It is well known, for example, that the sum of n independent identi-
cally distributed Bernoulli trials with success probability p = p(n) > 0 such that pn ~ A
can be approximated using a Poisson distribution with mean A\ when n is large. Nowa-
days, Poisson random variables, and more generally multivariate Poisson random vectors
and Poisson processes, are used to model many situations involving a large number of
rare events, not necessarily independent. For instance, they are employed in extreme
values theory, time series analysis, stochastic geometry and theory of summation (see
e.g. [26, [49]).

This thesis investigates the limit behavior of several random elements, mostly taken
from stochastic geometry problems. It establishes both limit theorems and (non-asympto-
tic) approximation results with Poisson random variables, Poisson random vectors and
Poisson processes as limits.

In the first part of this dissertation, we compare the distributions of integer-valued
random variables and Poisson random variables. For A > 0 and a random variable X with
values in Ny = NU {0}, a possible way to study the distance between the distributions
of X and a Poisson random variable P, with mean A is via a sequence of error terms
qr, k € Ny, given by the equation

Gio1 =kP(X =k) - \P(X+Z =k —1), keN, (1.1)

for some random variable Z with values in Z and defined on the same probability space
as X. Intuitively, if |gx|, k € Ny, are small and |Z| is zero with high probability, then X
behaves approximately like Py, while if both are zero, it follows the same distribution as
Py. If P(Z+ X > 0) = 1, one can show that

EX (X)) =AE[f(X + Z+ 1]+ > f(k)gr (1.2)
k=1

for all measurable f such that E[|X f(X)|] < co. Observe that if ¢ = 0 for all £ € Ny
and E[X] = A, the random variable X +Z+1 in the previous equation has the size-biased



distribution of X and the condition P(Z + X > 0) = 1 is always satisfied. In this case
the total variation distance between X and P, is bounded by

dry (X, Py) = sup |P(X € A) —P(P, € A)| < (L ANE[|Z]],
ACNp

where a A b = min{a, b} for a,b € R. This inequality was first proven in [9] for the sum
of Bernoulli random variables and later generalized to all non-negative integer-valued
random variables (see e.g. [60, Theorem 4.13]). On the other hand, if the error terms g
are not zero, by we can interpret the random variable X + Z + 1 as an approximate
size-bias coupling of X. In this case, we prove that

arv(x.P) < ANEIZ+ (1A 7)Y lail
k=0

Observe that, in contrast to the previous classical result, for this bound it is not required
that E[X] = A. The employment of the error terms is sometimes necessary, as it is not
always possible to find an exact size-bias coupling, or equivalently, a Z for which the ¢
defined by with A = E[X] are zero for all k.

By means of the previous results, and more generally using Poisson approximation
results, one can study the weak convergence for minima or maxima of collections of
random variables. This is possible because the tail distribution of an exponential random
variable E; with mean 1 can be expressed using P(Py = 0), A > 0. Hence the difference
between the tail distribution functions of the minimum of a collection of non-negative
random variables Y1,...Y,,n € N, and F; can be bounded using Xy = > 7, 1{Y; < A}
by

‘P(jjrfinnifj > A) ~P(E; > N)| = [P(Xy = 0) — P(Py = 0)] < dpv (X, Pr). (1.3)
Then, by showing that for any fixed A > 0, the total variation distance between X
and Py goes to 0 as n increases to infinity, it is possible to prove that the minimum of
Y1,...,Y, converges weakly to F;. Similar arguments also apply if we replace F; by
e.g. a Weibull random variable and Py by Py for some positive real-valued function f.
However, since the total variation distance between X, and Py usually depends on A, the
previous inequality does not permit the differences on the left-hand side to be bounded
uniformly in A > 0. As a result, the estimates for the total variation distance do not lead
to a bound for the Kolmogorov distance

dK< “min Yj,E1> = sup IP’( ‘min Y; > )\) —P(E; > /\)‘
Jj=1,...,n A>0 j=1,...n

between the minimum of Y7,...,Y, and E;. To overcome this problem, we prove for
A > 0 that the difference of the probabilities at 0 can be bounded by

IP(X),=0)—-P(P,=0)| < %IEHZH + (LANE[|Z|1{X — Z_ = 0}]
1 1) —
+ (1A )|+ (1A= gk,
(13t (1 55) b

where Z_ is the negative part of a random variable Z in Z and the sequence g, k € Ny, is
defined by (|1.1) with X = X, and Z and X as above. As we shall see in many examples,



for large A and a proper choice of Z, this inequality establishes a better bound than the
total variation distance for the left-hand side of , and it permits the approximation
of minima or maxima of collections of random variables by suitable distributions in the
Kolmogorov distance.

In this work, we also estimate the pointwise difference between the cumulative dis-
tribution functions of X, and P). Since the probability that the m-smallest element
of Y7,...,Y, is greater than a given threshold A corresponds to P(X, < m — 1) for
all m = 1,...,n, one can then derive Poisson approximation results for the m-smallest
(largest) element of Yj,...,Y, by our general results and similar arguments to the one

employed to study the distribution of rrllin Y;.
j=1l,...n

For a random vector X = (X1,..., X4) with values in N¢,d € N, and (A1,...,)\) €
[0, 00)%, a multivariate version of (I.1)) is given by the equation

qlsrzl),,kz = kz]P)((le sy X’L) = (kl, cey kl))

14

~AP((X1, o, X))+ ZD = (ko ki, Ky — 1)), (14
for ki,...,k; € Ng with k; # 0, and ¢ = 1,...,d, where Z® is a random vector with
values in Z' defined on the same probability space as X. Intuitively, when the error terms
q,(;l) k, are small in absolute value and Z(® is the null vector with high probability for all i,
(X1,...,X4) behaves like a Poisson random vector P with mean E[P] = (A1,..., Ay), that
is, a random vector in Ng whose components are independent and Poisson distributed
random variables with means A;,¢ = 1,...,d. Let Lipd(l) denote the set of Lipschitz
functions g : Ng — R with Lipschitz constant bounded by 1 with respect to the metric
induced by the 1-norm. In the second part of this dissertation, we derive an explicit
bound on the Wasserstein distance

dw (X, P) = s [Elg(X)] - Elg(P)]|

between X and P that depends on the sum of the absolute values of the error terms and
on the L'-norm of the components of the random vectors Z¥,i = 1,...,d. In [28], the
size-bias coupling for random vectors is defined as a particular case of the more general
definition of size-bias coupling for a collection of non-negative random variables and is
employed in the Gaussian approximation of random vectors. Similarly to what we have
seen for the one-dimensional case, the family of random vectors

YO =20 4 (X, Xi_, Xi+1), i=1,....d,

can be interpreted as an approximate size-bias coupling of X, and in the case when
7@ i =1,...,d, are such that the error terms q,(fl)kl defined by with (A1,...,Ag) =
E[X] are all zeros, they fulfill a slightly different requirement to that in the definition of
size-bias coupling from [28].

In this work, many problems from stochastic geometry are considered. In stochastic
geometry, one is often interested in random geometric structures, such as random tessella-
tions or geometric random graphs. These structures depend on random points in a measu-
rable space, which is often convenient to describe using a point process. Intuitively, a
point process £ on a measurable space (X, X') is a random collection of points in X, and
for any measurable set B € X, the random variable £(B) gives the number of elements
from £ that are in B. When the point process £ is constructed from n independent
identically distributed (i.i.d.) random points, then ¢ is called a binomial point process.



In many situations, the random configurations consists of a random number of points,
which could also be infinite. For these, a better model is given by a Poisson process. A
point process 1 on a measure space (X, X', \) is a Poisson process with intensity measure
A if, for all measurable and disjoint sets B, ..., Bk, n(B1),...,n(By) are independent
and Poisson distributed random variables with means A\(B1), ..., A(Bg).

The distance between the distributions of a point process ¢ and a Poisson process n
on X is usually measured using the total variation distance or the Kantorovich-Rubistein
distance, which are the analogues of the total variation and the Wasserstein distance for
point processes. In this work, we define a new distance between point processes £ and (
on X with finite intensity measure as

dw(ga C) = sup dW((g(Al)v s 7€(Ad))7 (C(A1)7 R C(Ad)))v

(A1,...,Ad)exgisj,deN

where for d € N, X(ﬁsj denotes the set of all d-tuples of disjoint measurable sets in X.
Then, by applying the bound mentioned above for the Wasserstein distance to dy (X, P)
with X = (£(A1),...,&(Aq)) and P = (n(A1),...,n(Ag)), we derive a Poisson process
approximation result for point processes with finite intensity measure.

In a large variety of applications in the literature, the point processes are defined on
a locally compact second countable Hausdorff space S and are considered to be locally
finite, which means that they take finite values on compact sets (almost surely). In
other words, they are random elements in the space of locally finite counting measures
on S. Since this space is Polish, for these point processes it is also possible to derive
asymptotic results using the weak convergence. In the literature, several classical results
are available to establish weak convergence (see e.g. [33]). Following the intuition given
at the beginning of the introduction about , in the last part of this dissertation we
show that a tight sequence of locally finite point processes &,, n € N, on S satisfies

lim KP(E,(B) = k) ~ A(B)B((B) =k —1) =0, keN,

for any B C S in a certain family of sets and some locally finite measure A, if and only
if &, converges in distribution to a Poisson process with intensity measure A. As a con-
sequence of this result, we obtain a general criterion for the weak convergence of locally
finite point processes constructed from Poisson processes and binomial point processes.

The non-asymptotic general results mentioned above are obtained by the Chen-Stein
method. This method is a powerful tool for computing an error bound when approxima-
ting probability distributions by the Poisson distribution. It is worth mentioning that our
multivariate Poisson approximation results are established by applying the Chen-Stein
method to each component of the random vectors.

To demonstrate the versatility of our findings we apply them to several examples.
The applications can be summarized as follows:

e U-statistics: A U-statistic is defined as the sum of a real-valued k-variate symme-
tric function h evaluated over all possible combinations of k distinct points from a
random sample. Bounds for the Poisson approximation of U-statistics constructed
from binomial point processes or Poisson processes with h being either 0 or 1/k!
are obtained in [51] and [66]. Moreover, limit theorems for the extreme values of
U-statistics were considered in [36], though without providing approximation re-
sults with respect to any distance. We derive similar Poisson approximation results
for U-statistics and establish explicit bounds on the pointwise difference between



the cumulative distribution functions of a U-statistic and a Poisson random vari-
able. Our theoretical results permit the approximation of minima or maxima of
U-statistics by suitable distributions in the Kolmogorov distance. As an applica-
tion of our findings, we approximate the minimum inter-point distance between
the points of a Poisson process with midpoint in an observation window by an
exponential distribution.

The accuracy of the Poisson process approximation of point processes of U-statistic
structure, i.e. point processes that, once evaluated on a measurable set, become U-
statistics, is investigated in [22]. For an underlying Poisson process, we establish the
analogue of [22] Theorem 3.1] with the Kantorovich-Rubinstein distance replaced
by the distance d.

Poisson-Voronoi tessellations: Given a cell of a Voronoi tessellation, the cir-
cumscribed radius is the smallest radius for which the ball centered at the nucleus
contains the cell, while the inradius is the largest radius for which the ball centered
at the nucleus is contained in the cell. For a homogeneous Poisson-Voronoi tessel-
lation generated by a stationary Poisson process with intensity ¢ > 0, the limiting
distributions as ¢t — oo of the maximal inradius and the minimal circumscribed
radius of cells with nucleus within an observation window were derived in [15]. In
our work, we extend these findings in two directions. Firstly, we prove Poisson pro-
cess convergence of point processes constructed from inradii (circumscribed radii)
of inhomogeneous Poisson-Voronoi tessellations. This generalizes the mentioned
results from [I5] to inhomogeneous Poisson-Voronoi tessellations and allows us to
deal with the m-th largest (or smallest) value or combinations of several order
statistics. Secondly, we derive approximation results for certain transforms of the
maximal inradius and the minimal circumscribed radius of cells with nucleus in an
observation window for stationary Poisson-Voronoi tessellations.

k-runs: A k-run means at least k successes in a row in a sequence of trials. When
the successes are generated by i.i.d. Bernoulli random variables, it is shown in
[45] that the difference between the probability that there are no more than v non-
overlapping k-runs among n trials, and P(P, < v) for a certain Poisson random vari-
able P,, after taking the supremum over all £k = 1,...,n, behaves asymptotically
like O(logn/n). We improve this result by finding an explicit (non-asymptotic)
bound for the supremum of the difference.

The Poisson approximation of the number of non-overlapping k-runs in a sequence
of n i.i.d. Bernoulli random variables has been investigated by several authors; see
e.g. the survey [46]. It is known that the first arrival time of a k-run in a sequence
of i.i.d. Bernoulli random variables multiplied by the probability of having a k-run
converges weakly to an exponentially distributed random variable as the success
probability converges to zero. We extend this result to the situation when the
Bernoulli random variables are weakly dependent. Moreover, we show that the
rescaled starting points of the k-runs behave like a Poisson process if the success
probabilities converge to zero and if some independence assumptions are satisfied.

Multinomial distribution: The multivariate Poisson approximation of multino-
mial random vectors, and more generally of sums of independent Bernoulli random
vectors, has already been investigated by many authors using the total variation
distance; see e.g. [57] and references therein. In contrast to what is usually done in
the literature, we assume that the Bernoulli random vectors are m-dependent, and



we study the multivariate Poisson approximation of their sum in the Wasserstein
distance.

This thesis is organised in the following way. In Chapter 2, we introduce some
important properties of point processes and present the Chen-Stein method and size-
bias coupling. The remaining chapters are based on the following papers:

e Pianoforte and Schulte 2021: Poisson approximation with applications to stochas-
tic geometry. Preprint.

e Pianoforte and Turin 2021: Multivariate Poisson and Poisson process approxima-
tions with applications to Bernoulli sums and U-statistics. Preprint.

e Pianoforte and Schulte 2021: Criteria for Poisson process convergence with appli-
cations to inhomogeneous Poisson-Voronoi tessellations. Preprint.

In Chapter 3, we compare the distributions of integer-valued random variables and Pois-
son random variables. We consider the total variation and the Wasserstein distance
and provide, in particular, explicit bounds on the pointwise difference between the cu-
mulative distribution functions. In Chapter 4, we investigate the multivariate Poisson
approximation of random vectors in the Wasserstein distance and the Poisson process
approximation of point processes with finite intensity measure in the new metric d.
Finally, in Chapter 5, we study the weak convergence of point processes to a Poisson
process.



Chapter 2

Preliminaries

This chapter is organised as follows. In the first section, we provide some basic notation
that will be used hereafter without necessarily being defined. In the second section, we
introduce point processes and locally finite point processes, following the approaches in
the textbooks [38] and [32], respectively. In the third section, we illustrate the Chen-
Stein method, mirroring what is done in [52]. Finally, the fourth section is devoted to an
introduction to size-bias coupling, which summarizes some results given in the survey [60].

2.1 Notation

Let (X, X) be a measurable space. The integral of a measurable function f : X — R with
respect to a measure p on X is written as

| #@)duta).
X
We say that f belongs to L'(u) i

f
/ F(@)ldu(z) < oo
X

Throughout this work, N is the set of positive integers and Ny = NU {0}. For n € N, we
denote by u™ the n-fold product measure of p on the space X" endowed with the o-field
generated by X". Analogously, given two measures puq and pe defined on measurable
spaces (X1, X1) and (Xo, Xs), respectively, we write 1 X po for the product measure of
11 and po on Xy X X9 endowed with the o-field generated by X} x Xs. A measure p on
(X, X) is said to be o-finite if X can be written as countable union of measurable sets
A;,i € N, such that pu(A;) < oo for all i € N. The Lebesgue measure on (R%, B(R%)),
where B(R?) stands for the Borel o-field, is denoted by Ay, and we use the shorthand
notation dx for the integration with respect to the Lebesgue measure.

For a finite set A, we write |A| for its cardinality. We use the shorthand notations
a A'b = min{a,b} and a Vb = max{a,b} for a,b € R, and we indicate by X and X_
the positive and negative part of a random variable X, respectively. Whenever we write
a > 0, it is understood that « € (0, 00). By &, we denote the convergence in distribution,

and by i, the equality in distribution. Py stands for the probability distribution of a
random element Z in (X, X).

In Chapter [4] since we will focus on the components of vectors, for convenience an
element in RY, d € N, is denoted using the bold notation x = (x1,...,zq).



2.2 Point processes

2.2.1 Point processes on a measurable space

Throughout this subsection, we always assume that X is a measurable space endowed
with a o-field X'. We define Nx as the space of all o-finite counting measures on X. The
set Nx is equipped with the o-field N generated by the collection of all subsets of Nx
of the form

{MENX : /J(B)Zk}, Be X keNg.

This means that N is the smallest o-field on Nx such that p +— pu(B) is measurable for
all B e X.

Definition 2.2.1. A point process on X is a random element in (Nx, Nx).

From now on, we write (2, F,P) for the underlying probability space. If £ is a point
process on X and B € X, we denote by &(B) the mapping w +— &(w)(B). The intensity
measure of a point process £ on X is the measure p defined by u(B) = E[¢(B)],B € X.
A point process € is said to be finite if £(X) < oo almost surely.

In order to study the distribution of a point process it is convenient to consider its
finite dimensional distributions (see [38, Proposition 2.10]).

Proposition 2.2.2. Let £ and  be point processes on X. Then, & 4 C if and only if

(€(B1); - €(Bm)) £ (C(B1),- .., C(Bm))

for all m € N and all pairwise disjoint sets By, ..., B, € X.

In [38, Proposition 2.10] is also established that two point processes have the same
distribution if their Laplace functionals coincide or if, the integrals of any positive mea-
surable function on X with respect to the point processes have the same distribution.

Next, let us introduce binomial point processes and Poisson processes. We denote by
0, the Dirac measure concentrated at z € X.

Definition 2.2.3. Forn € N, let X4,...,X, be i.i.d. random elements in X. Then, we
call the random element .
Bo = dx,
i=1

in Nx a binomial point process.

Note that, if the X; are distributed according to a probability measure Q, then 5,,(A)
follows a binomial distribution with parameters n and Q(A) for any A € X.

Definition 2.2.4. Let A be a o-finite measure on X. A Poisson process with intensity
measure A is a point process on X with the following properties:

(i) n(B) follows a Poisson distribution with mean \(B) for all B € X.
(ii) n(Bi),...,n(By) are independent for disjoint sets Bi,...,B, € X, n € N.

The properties (i) and (i) are not independent of each other. In fact, [38, Theorem
6.10] and [38, Theorem 6.12] show that under certain extra conditions, either of the
defining properties of the Poisson process implies the other.



[38, Theorem 3.6] establishes that for any o-finite measure A\ on X there exists a
Poisson process 7 on X with intensity measure A. Furthermore, [38, Corollary 3.7] proves
that there exists a probability space (€2, F,P) supporting random elements Xi, Xo, ...
in X and a random variable 7 in Ny U {oo} such that

2> 6x,, (2.1)
n=1

with the standard convention n = 0 if 7 = 0. Thus, we can think of 7 as the random
set (Xp)r_q in X, where it is allowed that two different elements in (X,,)7_; are the
same element in X. In the following we always consider Poisson processes represented as
in . More generally, a point process is said to be proper if it can be written as in
. By [38, Corollary 6.5], we obtain that any point process on a Borel space satisfying
some o-finite conditions (e.g. locally finiteness) is proper. Recall that a Borel space is a
measurable space that can be identified to a Borel subset of R by a measurable bijection.
An example of a Borel space is any locally compact second countable Hausdorff space.

For any non-negative measurable function f : X — [0,00) and a proper point process
¢ on X, we indicate the random integral of f with respect to £ by

€)= X f) = [ F@)ie(a),

A3

From [38, Proposition 2.7] it follows that £(f) is a random variable. Since ¢ is proper, for
almost surely every w € Q, we may write £(w) = (z;)ies for some z; = z;(w) € X and with
I = I(w) at most countable. Given a non-negative measurable function g : X¥ — [0, 00)
with X* equipped with the o-field generated by X* k € N, we define

Z g(x1,...,x) = Z 9(xiy,y o, Tiy ),

k 11,.. 0 €L
T1,..,Tk)E Vel
(x15002k)€ES igy Fiy V1l €41, k1 #lg

Thus, fi represents the set of all k-tuples of distinct points from & (where it is possible
that two distinct elements from & are the same element in X). For k = 1, we use the
convention £ = 5;. The random sum Z(rl,...,mk)&; g(x1, ..., x;) corresponds to £F)(g),

where £(F) is the so called k-th factorial measure of ¢ (see [38, Section 4.2]), which is a
proper point process on X* because ¢ is proper. Whence, again by [38, Proposition 2.7],
E(m,m,xk)eﬁi g(x1,...,x)) is a random variable.

A characterization for the distribution of a Poisson process is given by the Mecke
equation (see [38, Theorem 4.1]).

Proposition 2.2.5. Let A be an o-finite measure on X and n be a point process on X.
Then n is a Poisson process with intensity measure X if and only if

B[S sen)] = [ Blf @+ a)lara)

for all non-negative measurable functions f: X x Nx — [0, 00).

Finally, we state the multivariate version of the Mecke formula (see [38, Theorem
4.4]).



Proposition 2.2.6. Let n be a Poisson process on X with o-finite intensity measure .
Then,

k
]E[ Z f(xl,...,xk,n)] :/XE[f(:vl,...,:nk,n—l—Zéxi)]d)\k(xl,...,xk)

(21,2 ENY i=1

for all non-negative measurable functions f : X¥ x Nx — [0,00) and k € N.

2.2.2 Locally finite point processes

Let S be a locally compact second countable Hausdorff space, abbreviated as lcscH space,
equipped with the Borel o-field S. A topological space is second countable if its topology
has a countable basis, and it is locally compact if every point has an open neighborhood
whose topological closure is compact.

We denote by N (S) the space of all locally finite counting measures on S. Recall that
a measure g on S is locally finite if, for any x € S there exists an open set A C S with
x € A such that pu(A) < oco. N(S) is equipped with the corresponding trace o-field of
Ng. The o-field of N(S) coincides with the Borel o-field for the vague topology, which
is generated by the mappings

mp s pl(f) = /S f(@)du(z), e CHS),

where C£(S) denotes the set of non-negative and continuous functions with compact
support (see [32, Theorem A2.3-(iv)]). N(S) endowed with the vague topology is a Polish
space, that is, a separable completely metrizable topological space (see [32, Theorem

A2.3-(1)]).

Definition 2.2.7. A locally finite point process on S is a random element in N(S)
equipped with the trace o-field of Ng.

Note that any point process on S with locally finite intensity measure is locally finite.
We denote by S the family of relatively compact Borel sets from S. For a point process
& on S, we define

§§ ={Bec&:&0B)=0as},

where JB indicates the boundary of B. Observe that, if A denotes the intensity measure
of £, then

S =8, ={BeS : A0B)=0}.
A locally finite point process £ is said to be simple if

P(&({z}) <1forallz € S) = 1.

We say that a measure A on S is non-atomic if A({z}) = 0 for all x € S. It is possible
to verify whether a Poisson process is simple by checking if its intensity measure is
non-atomic (see [38, Proposition 6.9]).

Lemma 2.2.8. Let n be a Poisson process on S with locally finite intensity measure .
Then n is simple if and only if A is non-atomic.

10



Since N(S) is a Polish space, it follows from [32, Theorem 16.3] that a sequence of
locally finite point processes is tight if and only if it is relatively compact in distribution,
i.e., every subsequence has a further subsequence that converges in distribution. [32]
Lemma 16.4] guarantees that continuous mappings preserve tightness, and [32, Lemma
16.15] gives the following tightness criterion.

Lemma 2.2.9. Let &,&,... be locally finite point processes on S. ThenAthe sequence
&n,n €N, is tight if and only if £&,(B),n € N, is tight in R for every B € S.

In the last part of this subsection, we give some general weak convergence criteria for
point processes. The proof of the following result is given in [32] Theorem 16.16].

Proposition 2.2.10. Let £,&1,&2,... be locally finite point processes on S. Then these
conditions are equivalent:

(i) &0 S €.
(i) () S E(f) for all f € CH(S).

(iii) (Ea(B1),. ., En(Br) = (E(B1),....&(By)) for all By,..., By € Se,k € N.

If € is a simple point process, it is also equivalent that
(iv) &n(B) % ¢(B) for all B € 8.

A non-empty class U of subsets of S is called a ring if it is closed under finite unions
and intersections, as well as under proper differences. A ring U is said to be dissecting if
any open set G C S can be written as a countable union of sets in U/, and every relatively
compact set B € S is covered by finitely many sets in U.

When £,&1,&s, ... are locally finite point processes and £ is simple, &, N & follows

already from the one-dimensional convergence &, (U) N ¢(U) with U restricted to a
dissecting ring U C S¢. In fact, this is a consequence of the following result (see [33,
Theorem 4.15]).

Proposition 2.2.11. Let £,&1,&,... be locally finite point processes on S, where £ is
simple, and fix a dissecting ring U C §5. Then &, N & if and only if

(1) P(6n(U) = 0) = P(§(U) = 0), U € U.
(i) limsupP(&,(U) > 1) <P(EU) > 1), U e U.

n—oo

2.3 The Chen-Stein method

The Stein method is a technique employed to investigate the accuracy of the approxima-
tion to one distribution by another in various metrics. C. Stein in [69)] initially conceived
it to study the approximation to the normal distribution for the sum of dependent ran-
dom variables. L. H. Y. Chen modified the Stein method to obtain approximation results
for the Poisson distribution; for this reason the Stein method applied to the problem of
Poisson approximation is referred to as the Chen-Stein method. For a detailed and more
general introduction into Stein’s method, we refer to [40, 60], and for the Chen-Stein
method for Poisson approximation to [10, 16}, 60].

11



Let Lip(1) denote the set of all Lipschitz functions g : Ng — R with Lipschitz constant
bounded by 1, and let Py be a Poisson random variable with mean A > 0. For any fixed
g € Lip(1), the solution of Stein’s equation for the Poisson approximation is a function
fg : Ng = R with f,(0) = 0 that satisfies

Mgli+1) —ify(i) = g(i) —E[g(Py)], i€ No. (2.2)

The function f, can be obtained by solving recursively (2.2 for i = 0,1,.... An explicit
expression for this solution is given in [5, Lemma 1]. In particular for ¢ = 14 with
A C Ny, one has the following representation for f; (see [60, Lemma 4.2]).

Lemma 2.3.1. For any A > 0 and A C Ny the unique solution fa of
AMali+1)—ifa(i) =1{i € A} —P(P\ € A), i€Np, (2.3)
with fa(0) =0 is given by

)\ .
. eri—1)! ) . .
fA(Z) = T[P(P)\ S Aﬂ{O,l,...,z— 1}) —]P’(P)\ S A)P(P)\ <i— 1)], 1 € N.
From now on, we denote by f4 the solution of the Stein equation (2.2) for g = 14
with A C Ng. Let X be a random variable with values in Ny. The idea of the Chen-
Stein method for the Poisson approximation of X is to plug X in (2.2) and to take the
expectation, which yields

EM (X +1) = X fo(X)] = E[g(X)] — E[g(Py)]-

So we can control the difference between the expectations of g(X) and g(P)) on the right-

hand side by estimating the term on the left-hand side. This requires some bounds on

the solution of . These bounds are also called Stein’s factors or magic factors, where

the latter name derives from the fact that they tend to decrease as the mean A of Py

increases. For a function h : Ng — R we define Ah : Ny — R by Ah(i) = h(i + 1) — h(i).

The solution of the Stein equation has the following bounds (see [I1, Theorem 1.1]).
We use the shorthand notation a A b = min{a, b} for a,b € R.

Lemma 2.3.2. For any A > 0 and g € Lip(1), let f, be the solution of (2.2). Then,

8 1.1437
<1A

3v/2e\ ouu
Since f4(0) = 0, Lemma implies for A > 0 and ¢ € Lip(1) that

N < 1 d Af, ()] <1A
?é%?”g(zﬂ— an I?Z(IEEIL\]X’ fe(@)] <

5

) <1 d Af, ()] <1. 2.4

max |fo(i)] <1 and  max[Afy(D)] < (2.4)

Moreover, the solution of (2.3) for A C Ny has the following magic factors (see [60,
Lemma 4.4]).

Lemma 2.3.3. For fa as in Lemma|2.5.1

1 1
max |fa(i)] S 1A —= and max|Afa(i)| <1A <.
1€Np 1€Np A

VA

In Chapter 3, we are interested, in particular, in the solutions of the Stein equation
fa with A ={0,...,v},v € Ny. For these, in Section we derive similar - potentially
sharper magic factors than those mentioned above.
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2.4 Size-bias coupling

The size-bias coupling first appeared in the context of Stein’s method for Gaussian ap-
proximation in [28]. In this section, we only present the main properties of size-bias
coupling focusing on its application to Poisson approximation; for a more detailed intro-
duction, we refer to [3] 60].

Definition 2.4.1. For a random variable Y > 0 with p = E[Y] > 0, we say that the
random variable Y*® has the size-bias distribution of Y if for all measurable functions
f:R =R such that E[|Y f(Y)]] < 0o, we have

E[Y f(Y)] = pE[f(Y?)].

Moreover, we say that Y?° is a size-bias coupling of Y if it is defined on the same proba-
bility space as'Y .

The size-bias distribution of a random variable Y > 0 with finite mean always exists
(see [60, Proposition 3.18]). In particular, for a non-negative integer-valued random
variable, one obtains the following result (see [60, Corollary 3.19]).

Lemma 2.4.2. If X > 0 is an integer-valued random variable with A = E[X] > 0, then
a random variable X° with the size-bias distribution of X is such that
P(X°=k)= LD(X — k)
A

The first inequality in the next proposition is a classical result (see [60, Theorem
4.13]), whose proof is based on the Chen-Stein method and size-bias coupling, while the
second inequality, which gives a Poisson approximation result in the Wasserstein distance,
can be derived by combining the proof of [60, Theorem 4.13] with [IT, Theorem 1.1].
Given two non-negative integer-valued random variables Y7 and Ys, the total variation
distance between Y7 and Y5 is defined as

drv(Y1,Y2) = sup [P(Y1 € A) —P(Y2 € 4)],
ACNp

and the Wasserstein distance between Y7 and Y3 is given by
dw(Y1,Y2) = sup [E[g(Y1)] — E[g(Y2)]].
g€Lip(1)

Proposition 2.4.3. Let X > 0 be an integer-valued random variable with A\ = E[X] > 0,
and let Py be a Poisson random variable with mean A. If X?® is a size-bias coupling of
X, then

dTv(X, P)\) < (1 VAN )\)EHX +1-— XSH
and
dw (X, Py) < (L.143TVA A NE[| X +1 — X?).

From the previous proposition it follows that the total variation distance between X
and P, is small if the absolute value of the difference between X + 1 and X* has small
expectation. For sums of random variables, standard techniques to construct size-bias
couplings are available. A general result in this direction is [60, Proposition 3.21]. The
following lemma is a corollary of such proposition for the situation when the random
variables take values in {0, 1}, (see [60, Corollary 3.24]).
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Lemma 2.4.4. Let Xy,...,X,, be zero-one random variables and also let p; = P(X; =
1). For eachi =1,...,n, let (X](i))#i have the distribution of (X;);zi conditional on
Xi=1. IfX =" ,X;, \=E[X] >0, and I is chosen independent of all else with
P(I =i) =pi/A, then X* =37, XJ(»I) + 1 has the size-bias distribution of X.

Finally, we introduce the notion of size-bias coupling for random vectors. This defi-
nition was employed in [2§] to study the multivariate Gaussian approximation. For a
random vector Y = (Y1,...,Yy) in R% d € N, we write E[Y] = (E[Y3],...,E[Yy]) for the
mean of Y.

Definition 2.4.5. Let Y = (Y1,...,Yy) be a random vector with values in [0,00)%, d € N,
with mean E[Y] = (u1, ..., puq) € (0,00)%. A family of random vectors Y® i =1,....d,
with values in RY is a size-bias coupling of Y if the random vectors YO are defined on

the same probability space as Y, and, for each i and all measurable functions f : R* — R
such that E[|Y; f(Y)]] < oo, they satisfy

E[Yif(Y)] = wE[f(YD)].
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Chapter 3

Poisson approximation

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Matthias Schulte:

F. Pianoforte and M. Schulte. Poisson approximation with applications to stochastic
geometry. arXiw:2104.02528, 2021.

Abstract. In this chapter, we compare the distributions of integer-valued random vari-
ables and Poisson random variables. We consider the total variation and the Wasserstein
distance and provide, in particular, explicit bounds on the pointwise difference between
the cumulative distribution functions. Special attention is dedicated to estimating the
difference when the cumulative distribution functions are evaluated at 0. This permits
to approximate the minimum (or maximum) of a collection of random variables by a
suitable random variable in the Kolmogorov distance. The main theoretical results are
obtained by combining the Chen-Stein method with size-bias coupling and a generaliza-
tion of size-bias coupling for integer-valued random variables developed herein. A wide
variety of applications are then discussed with a focus on stochastic geometry.

Acknowledgments. This research was supported by the Swiss National Science Foun-
dation (grant number 200021-175584). We would like to thank Fraser Daly for some
valuable comments.

3.1 Introduction and main results

Let X be a random variable taking values in Ny and let Py be a Poisson random variable
with mean A > 0. In this chapter, we employ Stein’s method, size-bias coupling and a
generalization of size-bias coupling for integer-valued random variables developed herein
to compare the distributions of X and Py. We derive upper bounds on the total variation
distance

dry(X,Py) = sup |P(X € A) —P(P, € A)|
ACNp

and the Wasserstein distance

dw (X, Py) = sup |E[g(X)] —E[g(Py)]]
g€Lip(1)
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between X and Py, where Lip(1) denotes the set of all Lipschitz functions g : Ng — R
with Lipschitz constant bounded by 1. In addition, we establish bounds on the pointwise
differences

[P(X < v) —P(Py <),

v € Ny,

between the cumulative distribution functions of X and Py, which are smaller than those
for the total variation distance. Particular attention is paid to the case v = 0. This
permits to approximate the minimum (or maximum) of a collection of random variables
by a suitable random variable in the Kolmogorov distance. For example, let A\; denote
the Lebesgue measure on R?, let kg stand for the volume of the d-dimensional unit ball,
and let 7, be a Poisson process on R¢ with intensity measure tAg, t > 0. From the
aforementioned bounds for v = 0 we deduce that the random variable Y; given by

Y; = min 27 2 kgl — y||%,
(zy)en} ,: T2 el0,1)

which is the rescaled minimum (Euclidean) distance between pairs of points of 7; with
midpoint in [0, 1]%, satisfies

81
0<P(Y;>u)—P(E; >u) < - (3.1)

for u > 0 (see Theorem [3.3.4), where E; denotes an exponentially distributed random
variable with mean 1. This is possible because P(Y; > u) can be written as P(X, = 0)

with ] n
_ rTy d o—1,2 d
Xu=5 > Y e 2 Phale —y|* € [0,u]]
(xvy)enf’#

and P(Ey > u) = P(P, = 0). By estimating |P(X, = 0) — P(P, = 0)| uniformly for all
u > 0, one obtains (3.1)), which provides a bound on the Kolmogorov distance

di (Y, E1) = sup |[P(Y; > u) — P(E; > u)|
u€eR
between Y; and Ej.
Let us now give precise formulations of our main results. We use the shorthand

notation a A b = min{a, b} for a,b € R, and we indicate by W, and W_ the positive and
negative part of a random variable W, respectively.

Theorem 3.1.1. Let X be a random variable taking values in Ny and let Py, be a Poisson
random variable with mean A = E[X] > 0. Assume there exists a random variable Z
defined on the same probability space as X with values in Z such that

iP(X =i) =AP(X +Z=i—1), ieN, (3.2)
1s satisfied. Then,
dry (X, Py) < (LANE[|Z]]  and  dw (X, Py) < (1.1437VA A NE[|Z]]. (3.3)

Furthermore for all m € Ny,

H

m—

k!
IP(X =0) —P(Py\ = )\< E[|Z]] —i—k:O <l<:+1 )E[\Z\I{X—Z_:k}] (3.4)
and for all v € N,
Px <o) —B(P <o) < m iz By - 2o <) (9
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Recall that for a random variable Y > 0 with ¢ = E[Y] > 0, a random variable Y*
on the same probability space as Y is a size-bias coupling of Y if it satisfies

E[Y f(Y)] = nE[f(Y?)] (3.6)

for all measurable f such that E[|Y f(Y)|] < oco. Thus, (3.2) implies that X + Z+ 1 is a
size-bias coupling of X so that we can replace Z by X* — X — 1 with a size-bias coupling
X* of X in Theorem In this form the bounds in (3.3 were already presented in

Proposition [2.4:3
Remark 3.1.2. Let X be as in Theorem and assume that s satisfied.
(i) The last expressions on the right-hand sides of and can be further
bounded using the inequalities
E[|Z|1{X — Z_ =k} <E[Z_]+E[Z;1{X =k}], k€ Ny,
E(|Z|1{X — Z_ <v}] <E[Z_]|+E[Z;1{X <v}], veN.

(ii) From (3.6) with f(z) = x we obtain NE[X®] = E[X?] so that Z = X* — X —1 yields
1
E[7] = £ {Var(X) - \}. (3.7)

The next result constitutes our main achievement and generalizes Theorem [3.1.1
Instead of assuming that Z satisfies (3.2)) exactly, we allow error terms on the right-hand

side of (3.2)).

Theorem 3.1.3. Let X be an integrable random variable with values in Ny and let Py
be a Poisson random variable with mean A > 0. Let Z be a random variable defined on
the same probability space as X with values in Z, and let q;,1 € Ny, be the sequence given

by

g1 =iP(X =)~ AP(X + Z=i—1), ieN. (3.8)
Then,
drv(X.P) < (L ANE(Z] + (18 ) S (g (3.9)
1=0
and
dw (X, P) < XE[Z] 43 o (3.10)
=0

Moreover, if P(X + Z > 0) =1, then
dw (X, Py) < (1.1437VA A NE[ Z]] + Z i, (3.11)
for all m € Ny,

m—1 '
X = 0)— P(P, = 0)| < o 7] 3 (2 A 5 ) Bl - 22 = 1]

# (105 haol+ (1 A)Zq

(3.12)



and for allv € N,

(v+1)2
A

Note that Theorem [3.1.1] is a special case of Theorem Indeed, if ¢; = 0 for all
1 € Np, becomes and the bounds in Theoremsimplify to those in Theorem
In this situation X + Z + 1 is a size-bias coupling of X. Thus, we can think of
X + Z + 1 with Z satisfying as a generalization of size-bias coupling. In order to
have good bounds in Theorem the error terms ¢;, ¢ € Ny, should be small. The
important advantage of Theorem [3.1.3] compared to Theorem is that one only needs
to construct an approximate size-bias coupling instead of an exact size-bias coupling.

For our work the so-called magic factors or Stein’s factors play a crucial role. These
are bounds on the solutions of the Stein equation, which lead to the factors involving A in
our results. Since different classes of test functions have different magic factors, the upper
bounds for the differences between P(X < v) and P(Py < v) for v € Ny in Theorems
B.11land B.1.3are of a better order in A\ than those for the total variation distance or the
Wasserstein distance. This observation is essential for obtaining approximation results in
the Kolmogorov distance as since it allows to bound the right-hand sides of ,
, and uniformly in A. For a different Poisson approximation result
where one has a better order in A for the difference of the probabilities at zero than for
the total variation distance we refer the reader to [I, Theorem 1].

To demonstrate the versatility of our general main results we apply them to sev-
eral examples. In particular, we deduce bounds as , where we compare minima or
maxima of collections of dependent random variables with random variables having an
exponential, Weibull or Gumbel distribution.

We study the Poisson approximation of U-statistics constructed from an underlying
Poisson or binomial point process (see Subsections and . As application of our
main finding on U-statistics with Poisson input, Theorem [3.3.3], we consider the minimum
inter-point distance problem discussed at the beginning of the introduction and establish
the bound for the exponential approximation in Kolmogorov distance.

Our next example is the Poisson approximation of the number of non-overlapping
k-runs in a sequence of n i.i.d. Bernoulli random variables. By a k-run one means at
least k successes in a row. Here, we use Theorem to bound the difference between
the probability that among n trials there are no more than v non-overlapping k-runs and
P(P, < v) for a certain Poisson random variable P,; this bound is remarkable because
it does not depend on k, i.e., the number of required successes in a row.

For stationary Poisson-Voronoi tessellations we consider statistics related to circum-
scribed radii and inradii. We use the inequality in Theorem to compare a
transform of the minimal circumscribed radius of the cells with the nucleus in an observa-
tion window with a Weibull random variable in Kolmogorov distance. For this example
we use the full generality of Theorem [3.1.3| since we construct a coupling that satisfies
, but is not a size-bias coupling. By applying the inequality in Theorem
we approximate a transform of the maximal inradius of the cells with the nucleus in an
observation window by a Gumbel random variable in the Kolmogorov distance.

A crucial contribution of this work to stochastic geometry is that we provide bounds
with respect to the Kolmogorov distance for the distributional approximation of some
minima and maxima. The limiting distributions of the minimal distance between the

IP(X <v) —P(Py <) < E[|Z|] + E[|Z|1{X — Z_ < v}]

(3.13)
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points of a Poisson process and of large inradii and small circumscribed radii of Poisson-
Voronoi tessellations have been studied before in e.g. [I5, 19, 65, [66]. Some of these
works provide quantitative bounds for the difference of the distribution functions at a
fixed u € R, which depend on u. Thanks to our general Poisson approximation results
Theorem and Theorem [3.1.3] we are able to derive uniform bounds for all u € R.
An alternative approach to deducing such results via Poisson approximation is to apply
directly Stein’s method for the exponential, Weibull or Gumbel distribution; see e.g. [60]
for more details on Stein’s method for exponential approximation.

In [51], a general result for the Poisson approximation of statistics of Poisson pro-
cesses is derived by combining the Chen-Stein method and a kind of size-bias coupling
and applied to study some statistics of inhomogeneous random graphs such as isolated
vertices. Requiring some (stochastic) ordering assumptions between a random variable
and its size-bias coupling leads to Poisson approximation results. In a similar spirit to
our work, these ordering conditions were relaxed in [2I]. For some recent Poisson pro-
cess convergence results related to stochastic geometry we refer the reader to [47] and
Chapters [4 and

Other noteworthy general results derived in this chapter are lower and upper bounds
on the probability that X equals 0, which are given in Proposition and Corollary
Informally, they say that P(X = 0) can be bounded from above or below by e~*
for some A > 0 if the random variable Z and the sequence ¢;,i € Ny, in Theorem [3.1.1]
and Theorem [3.1.3] satisfy certain conditions on their signs; for Z as in Theorem [3.1.1
it is understood that ¢; = 0 for all ¢ € Ny. These results sometimes allow us to remove
the absolute values from the left-hand sides of and .

The proof of Theorem is based on the Chen-Stein method and the coupling in
(3.8). Using the solution of the Stein equation for the Poisson distribution, we derive
in Proposition a new expression for the difference |E[g(Py)] — E[g(X)]| for any
g € Lip(1). Taking in Proposition the supremum over all functions in Lip(1) (or
all indicator functions) establishes a different way to represent the Wasserstein distance
(or the total variation distance). Moreover, choosing g = 1{- < v} with v € N gives a
new expression for |[P(X < v) —P(Py < v)|. These identities are then manipulated and
combined with the magic factors and the coupling in to prove Theorem

Before we present our applications in Section we prove our main results in the
next section.

3.2 Proofs of the results of Section [3.1]

This section contains the proofs of Theorem and Theorem [3.1.3] To this end,
we employ the Stein equation for Poisson random variables. Recall that for any fixed
g € Lip(1) and X > 0, the solution of the Stein equation is a function f; : Ng — R with
f4(0) = 0 that satisfies

Afgli+1) —ifg(i) = g(i) —E[g(Py)], i€ No, (3.14)

where P, denotes a Poisson random variable with mean A > 0. We denote by fa the
solution of (3.14)) for ¢ = 14 with A C Ny. That is, for any A > 0 and A C Ny, the
function f4 is the unique solution of

AMa(i+1) —ifa(i) =1{ic A} —P(P\€ A), ie€Ny, (3.15)

such that f4(0) = 0. For any indicator or Lipschitz function g, bounds on the solution of
the Stein equation f, are given in Section We now derive similar - potentially sharper
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- magic factors for the special cases f4 with A = {0,...,v},v € Ny. Similar bounds for
sets A that are singletons were deduced for the translated Poisson approximation in [56,
Lemma 3.7].

Lemma 3.2.1. Let fro be the unique solution of (3.15)) for A ={0}. Then,
{0}

I ifi=1
| < ’ 3.16
rf{0}<z>\_{m£2’ Fiso (3.16)
and for all i € N,
Afroy (i) < 0. (3.17)

Furthermore for all i,n € N with ¢ > n,

1 —1)!
INOIEE S

Let fro,.. vy be the unique solution of (3.15) for A ={0,...,v} withv € N and v < .
Then for all i > v+ 2,

(3.18)

Affo,.wp (1) STA

(3.19)

Proof. Obviously, the upper bound 1 in (3.16)) follows from Lemma Lemma
yields for ¢ € N that

(i —1)! =X

frop (@) = T(l -P(P<i-1)= ( ;il)! Z %e% = ezg G0

(i —1)le .
m=i
(3.20)

This implies (3.16)) for i = 1,2, and yields for ¢ > 3 that

=X AL 20 NFZ G+ 2)! A
fioy (0 ezg o e TN (2l i+ 0) '

Thus, the elementary inequalities

(i — 1)+ 2) (i —1)! S 206-1)
G+O!  (C+3) - (C+d) —

establish (3.16)) for ¢ > 3. From (3.20) we also obtain for n € N,

<1

N e P N -
Af{O}(Z):Z<(z‘+1+€)!“_ (z‘+€)!(z_1)!>e ’

0

~
Il

)\Z
s G R IGE e

M

Iy
o

— X . _
:_g(i+1+£)!(£+l)(l_1)!e '

= A (D40 — 1)
=-2_ nt 0 (i+1+0) e
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which proves (3.17)). For i,n € N with ¢ > n the elementary inequalities

(L+ D+ 0= 1) _ (n+ 0! - 1)!
Gi+1+0) =T+ o)

<(n-1)!
lead to

Now the observations that

A e S RN ST L= A e
—_— d —Z <= <-_N"Z <=

Z(n+€)! = M Z(n+e)! S0 ol Sl 2T S
=0 =0 =0

show (3.18)). Finally assume A > v. By Lemma [2.3.1, we obtain for i > v + 2,

Afpo...wy(i) = P(Py € {0,...,0}) Af10) ().
Then (3.18) with n = v + 2 implies that
W+ DI A (0+ D) A - (v+1)2

=0 £=0

where we used the inequality A*~V/¢! < 1/v! for £ =0,...,v and X\ > v in the last step.

This and Lemma establish (3.19)). O

The next proposition compares the distributions of an integer-valued random variable
and a Poisson distributed random variable.

Proposition 3.2.2. Let X be an integrable random wvariable taking values in Ny, let
A >0, and define
D@l)=iP(X =i) - AP(X =i—1), ieN.

Then, for all g € Lip(1),
E[g(Py)] — ng

where fg is the solution of (3.14)).
Proof. Tt follows from (3.14) and the definition of D(i), i € N, that

Elg(Py)] — Elg(X)] = EIX fy(X) = My(X + D] = 3 BX = i)(if,(6) — My(i +1))
i=0
:ZIF’( =1)ifq(7) ZIP’ =i—1)Afy(3) ng
i=1
which gives the desired result. O

From Proposition we derive the identity
P(Py € A) —P(X € A) ZfA D(i), A C Ny,
where f4 is the solution of (3.15)). We are now in position to show Theorem
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Proof of Theorem [3.1.3, 1t follows from that
Di)=iP(X =) - AP(X =i—1)=AP(X+Z=i—1)-ANP(X =i—1)+qi—1, i€eN
Thus, Proposition yields for g € Lip(1) that

E[g(Py)] - E[g(X)]

=AY fOPX+Z=i-1)-P(X=i-1)+>_ fyli)gi-1 = Hy + Qq.
=1 =1

(3.21)

With f;(0) = 0 and the convention f4(i¢) = 0 for ¢ < 0, we obtain

Hy=x Y Y )X =i-1-jZ=j)-P(X=i-12=})
jEZ\{0} =1

=AY DY SOPX =i-1-5,2=j)-P(X =i—1,Z = j))

JEZ\{0} i€Z

=X DD fli+IPX =i—1,Z=4)— [(()0P(X =i—1,Z =) (3.22)

FEZ\{0} i€Z

=X D0 D (i d) = f())BX =i = 1,2 = j)

JEZ\{0} i€Z

= A Z Z(fg(i"‘j) ~ f)P(X =i—1,Z =),

jEn\{0} i=1

where we used that X takes only values in Ny in the last step. The triangle inequality
implies that

o0
[Hyl < dmax|Afo(@)] > D lIP(X =i—1,2 =)

jez\{0} i=1
= Amax |Afy(i)] D [IP(Z = j) = Amax|Af,(i)[E]| Z]).
i1€Ng ) 1€Ng
jez\{o}
Furthermore, we have
Qg < max|fo(i)] D lail (3:23)

1=0

Then combining ([2.4) in Section [2.3[and the bounds on |H,y| and |Qg| establishes (3.10]).
Moreover, from Lemma and the bounds on |Hy| and |Q4| with g = 14 for A C Ny,

we obtain (3.9)).

Next, we notice that
oo oo
[Hyl <A D 1 foli+5) — fo)IP(X =i — 1,2 = j)
j=1i=1

FAD D Nfoli—5) = [(OIPX =i~ 1,Z = —)).

j=1i=1

(3.24)
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The assumption P(X +Z > 0) = 1 implies that P(X =i—1,Z = —j)=0foralli,j € N
with ¢ < j. Hence, we obtain

ZZ —f()IP(X =i—1,Z = —j)

= Z Z |foi =) = fo()|P(X =i —1,Z = —j) (3.25)
Jj=li=j+1

=AY D U fel0) = foli+ PX =i+ —1,2Z = —j).
j=11i=1

From (3.24)), (3.25)) and the triangle inequality it follows that

[Hyl < Amax |Af, ()] > (Y P(X =i=1,Z=j)+ Y P(X =i+j—1,2=—j))
j=1  i=1 i=1
<amax|Af, ()] Y HIP(Z = §) = Amax|Af,()E] .
JEZ\{0}

Together with (3.21)) and (3.23)), this implies that

[Elg(Py)] =~ Elg(X)]| < Amax|Af, (1) [E[| Z]] + max [ fo (i \Z!qz
1=0

Hence, Lemma establishes (3.11)).
Combining (3.21)), (3.24) and (3.25) with g = 14 for A C Ny yields

P(P\€e A)—P(X € A)=Hs+Qa (3.26)
where Hy = Hy and Q4 = Q4 with g = 14, and
[Hal <A Y [ fali+ ) = fa@P(X =i = 1,2 = )

j—l i=1

IASS Ua) — Fali b B =i+ f 1,2 = ) = B 1 HD.
7j=11i=1

For A = {0}, by (3.18) in Lemma 3.2.1|with n = i for ¢ < m and n = m+1 for i > m+1,

we have

1 oo m . | . ] ‘ 00 00 ml . .
Hig) < ZZ( A )\11 )JP(X:%—LZ=J)+Z > BX =i-1.2=j)
j=11i=1 j=1i=m+1
m—1
A k:'
- ( > [Z:H{X =k} + -E[Z,1{X > m}].
— /<:+1
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Again (3.18)) in Lemma [3.2.1) with n =4 for i < m and n = m + 1 for i > m + 1 leads to
oo m .
(2) A=Y o
HW}SZZ(z'A o JIPX =it - 1,7 =—j)

+Z Z /\mj]P’ —it+j—1,2Z=—j)

j=1li=m+1

_ f: (A N (Z;_?!)E[z_ux L Z—i—1)]+ %E[Z_l{X v Z>m)]

m—1
_ (kil f;) Z X+ Z =k} + CRZ X + Z > m)].
h—

0
From (3.16)) in Lemma it follows that
1 1)
< [1A-= 1N — il
Qo= (1151wl + (18 35) Ll
Combining (|3 and the bounds on \Q{O}] s {0} and HE?))} completes the proof of (3.12)).

For A < v, (3.13) follows directly from (3.9)). By Lemma for i <wv+1 and (3.19)
in Lemma for z' > v+ 2, we obtain

oo v+1
H{%)} AN D X =i=1,7 = X=i—12=7)
j=1i=1 j=1i=v+2
12
= (1LANE[Z41{X < v}]+ (U—; ) E[Z,1{X > v+ 1}]
and
oo v+1
Hig) oy SAANDY Y R =it j—1,2= )
7j=11i=1
= (v 1)2 o .
+Z Z (/\)]]P)(X:Z-i-j—l,Z:_j)
j=11i=v+2

(v+1)?

— (IANE[Z_1{X + Z <v}] + E[Z_1{X + Z > v+ 1}].

Moreover, Lemma yields
oo 1 (o]
< ) < |{1A— il
Qo] < e iy O el < (10 2] Sl

Combining (3:26) with A = {0, ..., v} and the bounds on |Qqo,.. |, H{y) , and H\o)_
establishes ((3.13)). O
Next we derive Theorem [B.1.7] from Theorem [B.1.3

Proof of Theorem [3.1.1. Tt follows from (3.2) that X and Z satisfy (3.8) with A = E[X]
and ¢; = 0 for 7 € Ny and that

:ikP(X:k):i/\IP(XJrZ:k—l):)\IP’(XJrZZO),
k=1

24



whence P(X + Z > 0) = 1. This allows us to apply Theorem which proves (3.3)),
BA) and (B3). O

The next result provides some inequalities for the probability that a non-negative
integer-valued random variable equals zero.

Proposition 3.2.3. Let X be an integrable random variable with values in Ng and A > 0.
Consider a random variable Z defined on the same probability space as X with values in
Z, and let (g;)ien, be the sequence given by

gi-1=1P(X =1) - A\P(X+Z=i—-1), ieN
a) If Z is non-negative and q; < 0 for i € N,
P(X =0)>e
b) If Z is non-positive, P(X +Z > 0) =1 and ¢; > 0 for i € Ny,
P(X =0) <e

Proof. It follows from (3.21)) and (3.22)) for f = 14y as well as P(P) = 0) = e that

e —P(X =0)
=2 3 Y (i +d) — oy O)PX =i =1, Z =)+ fro(@D)ait.
jezZ\{0} i=1 —

By the assumption that Z > 0 (resp. Z < 0 and P(X + Z > 0) = 1) the first sum on the
right-hand side runs only over j > 1 (resp. j < —1 and the inner sum runs over all i € N
with ¢ 4+ j > 1). Together with

froy(i+7) — frop(@) < 0ford,j >1 and fioy(i+j)— froy(é) >0 for j < -1, i+j>1,

which follows from ([3.17)) in Lemma and the assumptions on (g;);en,, this leads to
the desired results. O

Since (3.2)) is a special case of (3.8]) with P(X +Z > 0) =1 (see the proof of Theorem
3.1.1)), the following corollary is a direct consequence of Proposition

Corollary 3.2.4. Let X be a random variable taking values in Ny and let A = E[X] > 0.
Assume there exists a random variable Z such that (3.2) is satisfied.

a) If Z is non-negative,

b) If Z is non-positive,

3.3 Applications

In this section, we discuss several applications of our general main results, Theorem [3.1.1
and Theorem [3.1.3] We consider problems from the following topics: U-statistics, k-
runs, Voronoi tessellations. Throughout this section, by P, we always denote a Poisson
random variable with mean A > 0.
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3.3.1 U-statistics of binomial point processes

Let (X, X') be a measurable space. We consider a binomial point process 8, on X of n € N
independent points in X that are distributed according to a probability measure K. Let
¢ €N and let h: X = {0,1} be a measurable symmetric function. In the following we
study the U-statistic

1
S:E Z h(a}'17...,x£),

(xlz"'7xf)65fh¢

where ,Bé - denotes the set of all f-tuples of distinct points of §,. We refer to the
monographs [34], [39] for more details on U-statistics and their applications in statistics.
A straightforward computation shows that

A :=E[S] = (Z!)Z/XZ h(x1,. .. z)dK (z1, . .., ),

where (n); stands for the ¢-th descending factorial.

In this subsection, we establish bounds on the Poisson approximation of .S in the total
variation and Wasserstein distances. We also provide bounds on the pointwise difference
between the cumulative distribution functions of S and Py. To this end, we define

2
r = max (n)gg_i/ </ h(x1,... x0)dK™ (xl+1,...,mg)> dK' (1, ..., ;)
i Xt—i

1<i<i—1

for £ > 2, and put r = 0 for £ = 1. Moreover for n > 2¢, we define

~ 1
S:E Z h(z1, ..., xp).

(xlw’wxe)eﬁfl_gg’#

Theorem 3.3.1. Let n > 20 and let S, A > 0, r and S be as above. Then,

2by 202 2y 902

drv (S, P\) < (1A )\)<€')\ + i)\> and dw (S, Py) < (1.1437VA A A)(ﬁ'/\ + i/\>

(3.27)
Moreover, for all m € N,

m—1
KU\ oo ml | (2 20°)
P(S = P(S < = = 2
. e LZ:O</<7+1 > (S_k)+Am]<€!A+ n > (3.28)

and for all v € N,

v 2 ~ Ly 2
IP(S < v) —P(Py <v)| < [(ng) +P(S < v)] <2A + %nA> (3.29)

The bound on the Wasserstein distance in slightly improves that in [22, The-
orem 7.1] since it has a better order in A. The bound for the total variation distance
was also derived in [66, Proposition 2] by rewriting [8, Theorem 2]. By means of ,
one can study for some measurable symmetric function g : X* — R the maximum (minu-
mum) of g(p) over all p € 5 > which is called U-max-statistic (U-min-statistic). This
is possible because for any u € R, the probability that max gt g(p) is less than u can

be written as the probability that > s ) 1{g(p) > u} equals 0. Limit theorems for
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U-max-statistics were considered in [36], yet without providing approximation results
with respect to any distance; see also [42]. In contrast to these works, may lead
to approximation results in the Kolmogorov distance; see Theorem in Subsection
[3.3.3] and the discussion below it. To the best of our knowledge, the last two inequalities
presented in Theorem have no analogues in the literature.

From now on assume that n > £. Let x be a point process of ¢ random points
X1,..., X, in X that are independent of £, and distributed such that

P((X],...,X;) € A) = (Zi\g/xe 1{(x1,...,2¢) € AYh(z1, ..., 20)dK (z1,. .., x))

for all A from the product o-field generated by X¢. Now we define

1
S/:—h()(;,...,xg)Jra > h(xy, ..., 2).
(@1,-s20) €(Br—eUX)%

Proposition 3.3.2. For alln > { and k € N,
EP(S =k)=AP(S' =k —1).

Proof. We have that

kP(S = k) = E[k1{S = k}] = %E > h(ar,...z)1{S =k}
C (@rem)€B

Using the fact that for any measurable map ¢ : X* x Nx — [0,00) with u € N,

E Z g(xl,...,mu,ﬁn):(n)u/ E[g(ml,...,xu,,Bn_u—l—Zézi)]dK“(ml,...,xu),

u

(T15wu)EB i=1

we obtain

k;]P’(S:k):Ozsé/xeh(m,...,xg)ﬂ”(;! Z h(yi, ..., ye) = )

(Y1 y0) €(Br—eU{z1 e })
X dKe(th e ,33[)
= AP(S" + h(X],...,X;) =k)=AP(S' =k —1),

where we used h(X7{,..., X)) =1 in the last step. This concludes the proof. O

Proof of Theorem |3.3.1. Suppose n > 2¢. Our goal is to apply Theorem with Z =
S’ — S, which satisfies the assumption (3.2)) by Proposition We define s : Nx — R
by

s(v) = il Z h(z1,...,x0)

(wl,...,xg)EVi
so that S = s(8,) and S" = s(Bn—¢ + x) — h(X],..., X}). By the monotonicity of s, we
have

’Z’ = |Sl - S’ = |S(ﬁn—ﬁ + X) - h(Xiv ce 7Xé) - S(Bn—f) - (S(/Bn) - 8(/8n—£))|

< (8(Bn—e +x) — h(X1, ..., X() — 5(Bn-t)) + 5(Bn) — s(Bn—r). (3.30)
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Together with

5</Bn—£ + X) - h‘(X{7 . ,Xé) - S(ﬂn—f) + S(Bn) - 8(5n—€)

= 5(Bne+3) = BXE o XP) = 5(B) + 2(5(80) = 5(8-0)) = Z + 2(5(82) — 5(5n-0)

(3.31)
this implies
E[|Z]] < E[Z] + 2E[s(8n) — s(Bn-0)].
From in Remark we know that
1

1

E[Z] = 5 (Var(S) = A) = X(IE[SZ] — A2 )\).
Thus, it follows from [22, Lemma 6.1] and the definition of r that
2ty
ElZ] < —.
2] < 14D

A straightforward computation shows that
(n— E)Z))\ _ (n)e—(n —E)g)\ < 2(n — 1)5_1/\ _ 52)\.

(n)e

Combining the previous estimates yields

E[s(8n) — s(Bn-t)] = (1 _

20y 202\

< 4 =7
E[Z)) < o

so that (3.27)) follows from ({3.3)).
Let k € N be fixed. Note that S > s(8,—¢) and S" > s(8,—¢). If Z > 0, this implies

1S — Z_ <k} = 1{S < k} < 1{s(Bur) < k}.
For Z < 0 we obtain
S —Z_ <k}y=1{S+Z <k} =1{S" <k} < 1{s(Bp_s) < k}.
Combing the two cases leads to
S —Z_ =k} <1{S—Z_ <k} <1{s(Bn_v) <k}.

Together with we obtain

E[|Z[1{S - Z_ = k}]

< E[1{s(Bn-r) < k}(s(Bnre+x) = W(X1, ..., X)) = 5(Bnr) + 5(Bn) — 5(Bn—r))]-

(3.32)
Forue {l,...,/—1} and g : X" — [0, 00), we have
E[1{s(Bn_¢) < k} > g(z1, ... 2]
(11,...,Cﬁu)€ﬁx,e’¢
—(n— E)u/ P(s(Bn ot > 0) < K)g(an, -, 2K (a1, ., )
: i=1 (3.33)

< P(5(Bo_20) < K)(n — e)u/ (@1, 2 dK (21, 74)

u

=P(s(Bn-20) SKE Y glzr,..., @),

($11-~-7$u)€ﬂ2_g,¢
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where the inequality follows from the monotonicity of s. Because of

s(Bn_e+x) — hX7,..., X)) — s(Bn_r) Z Z ﬁu(azl,...,aju;x)

u= 1(3717 7-7711)61'3”,4775

and
(/Bn) _S ﬂn Z Z Z Eu(xlauwxu;ﬂn\ﬁn—é)
u= 1 3317 71'u)€ﬂn 0,4
with suitable functions h, and By, u € {1,...,£ — 1}, we can rewrite the second factor

on the right-hand side of (3.32]) as sum of U-statistics with respect to ,_y. Now an
application of (3.33]) and (3.31) yield

E|Z[1{S - Z_ = k}]
P(s(Bn-20) < K)E[s(Bp—r + x) = B(X1, ..., Xp) = 8(Bu—r) + 5(Bn) — 5(Bn—0)]
= P(5(Bu-2e) < K)(E[Z] + 2E[s(Ba) — 5(Bu0))-
Bounding the second factor on the right-hand side as above leads to

Z’I" 2
E[|Z]1{S — Z_ = k}] < P(s(Bn_2) < ) (ZA + 2“)

Thus, ) and - are immediate consequences of . and . O

3.3.2 U-statistics of Poisson processes

n

In this subsection, we study the Poisson approximation of U-statistics, where one sums
over all /-tuples of distinct points of a Poisson process instead of those of a binomial
point process as in the previous subsection. In this case, the summation can run over
infinitely many ¢-tuples. As the results for U-statistics with binomial input in Subsection
the theory developed herein permits to study extreme value problems arising in
stochastic geometry. For example, in the next subsection, we employ our main result
for U-statistics with Poisson input to investigate the limiting behavior of the minimum
inter-point distance between the points of a Poisson process in R%.

Let (X, X) be a measurable space and let n be a Poisson process with a o-finite
intensity measure L on X. For a fixed ¢ € N and a symmetric measurable function
h:X* — {0,1} that is integrable with respect to L we consider the U-statistic

1
S_E' Z h(z1,...,xg),
(931,...,”)67]2#

where ni denotes the set of all /-tuples of distinct points of n. It follows from the
multivariate Mecke formula that

1
A :=E[S] = / h(x1,...,x)dL (21, ..., z0).
E' X¢
We define

2
_ b—ig . ( )
r= 1§r£1§agx_1/i (/Xeih(:cl,...,xg)dL (a:l+1,...,:c(g)> dL'(zq,...,x;)

for £ > 2, and put r = 0 for £ = 1. The expression r is used to quantify the accuracy of
the Poisson approximation for S and it is the analogue of r given in Subsection for
binomial U-statistics.
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Theorem 3.3.3. Let S, A > 0 and r be as above. Then,

1\ 2% 1.1437 2%

PO<(IAN=|— PO)<|(1 —_ .34
dry (S, Py) < < A )\> 7l and dw (S, Py) < ( A e ) 7 (3.34)

Moreover, for all m € N,

B = k! m! | 20r
=0
and for allv € N,
(v+1)2 2by

IP(S <wv)—P(P\, <v)| < B +P(S <) e (3.36)

The result for the total variation distance in was shown in [66, Proposition
1], which improved [65, Proposition 4.1], and in [5I, Section 8]. The bound for the
Wasserstein distance in was also derived in [51], Section 8] and has a slightly better
order in A than that in [22, Theorem 7.1]. To the best of our knowledge, the other
inequalities presented in Theorem have no analogues in the literature.

Proof of Theorem [3.5.3 We follow a similar approach as in the proof of Theorem [3.3.1
For ¢ = 1, Theorem is a direct consequence of [38, Theorem 5.1], whence we assume
¢ > 2 from now on.

Let x be a point process of ¢ random points X1,..., X, that are independent of n
and distributed according to

1
P((Xy,...,X;) € A) = ﬁ!/\/Xe 1{(x1,...,20) € Abh(x1, ..., x0)dL (21, ..., 2)

for A from the product o-field generated by X*. We define

1
§' = —h(X{,.... X))+ 5 > h(z1,. .. ).
(xlv"'azf)e(nux)g&

For k € N the multivariate Mecke formula implies that

kP(S = k) = E[S1{S = k}]
:%E Z h(ml,...,xz)l{;‘ Z h(y1,...,yg):k:}

(@1, €N . (Y190 ENL
1 1 ,
:E Xéh(l'ly..-7$Z)P<€' Z h(y1,,yg)=k‘>dL (331,---,513()

(W) €U 1)
= \P(S" + h(X],..., X)) =k) = AP(S' =k —1),

where we used h(X7,...,X;) = 1 in the last step. Thus, we see that S satisfies the
hypothesis of Theorem with Z =58 —5>0.

Next we compute the expressions on the right-hand sides of the bounds in Theorem
3.1.1, Let k € N be fixed. Define s(v) = %E(m,m,xe)@i h(x1,...,x¢) for v € Nx and

note that S = s(n). Since

s+ x+06;)—s(w+d) >s(v+x)—s(v) and 1{s(v+d,) <k} <1{s(v) <k}
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for all v € Nx and z € X by [38, Theorem 20.4] we obtain
E[Z1{S < k}] <E[Z]P(S < k).
Together with Z > 0, we have
E[|Z|1{S — Z_ = k}] = E[Z1{S = k}] < E[Z1{S < k}] < E[Z]P(S < k). (3.37)

Furthermore, from Remark (17) it follows that

E[Z] = %{Var(S) )= %{E[SQ] SIS (3.38)

Then, from Z > 0 and [22, Lemma 6.1] we deduce
2€

l—1
E[|Z]] =E[Z] <) % <f>r < aT (3.39)
=1

Finally, combining this bound with (3.3) shows (3.34)), while (3.4]) and (3.5]) together with
.37) and (3.39) lead to (3.35), where the first inequality is a consequence of Corollary

3.2.4]a), and (3.36). O

3.3.3 The distances between the points of a Poisson process

We consider random points in R¢ distributed according to a Poisson process. For any
pair of these points with the midpoint in a bounded measurable set W C R?, we take
a transform of the Euclidean distance, and we study the Poisson approximation for
the number of times that these quantities belong to a certain range of values. More
importantly, we consider the exponential approximation for a transform of the minimal
distance between pairs of points with midpoint in W.

Let 7; be a Poisson process on R? with intensity measure t\g, t > 0, where we denote
by Agq the d-dimensional Lebesgue measure. For convenience, we assume Ag(W) = 1;
nonetheless, the following arguments are valid for every W with a positive and finite
volume. Define

1 T+y
& = 5 Z 1{ 5 S W}52*1t2kd||m—y|\d7 t >0,
(zy)en; 4

Y, = min  272kyllz —y|l, ¢ >0,
(z,y)enf#:%ew

where || - || denotes the Euclidean norm.

Theorem 3.3.4. Let & and Y; be as above for t > 0. Let v be a Poisson process on
[0,00) with the restriction of the Lebesgue measure to [0,00) as intensity measure. Then
for all u >0 and all measurable B C [0, u],

drv (&(B).1(B)) < (LA W) (3.40)
and
0<PY;>u)—e “< % (3.41)
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The minimal distance between the points of a Poisson process was also considered
in [I5), 22] 65, [66], sometimes formulated as minimal edge length of the random geo-
metric graph or the minimal inradius of a Poisson-Voronoi tessellation. The important
achievement of Theorem [3.3.4]is that a rate of convergence for the Kolmogorov distance is
provided in . So far it was only possible to prove bounds on the difference between
P(Y; > u) and e~ that depend on u > 0 (see e.g. [65, Theorem 2.4] or [66, Corollary 3]).

In the works mentioned above all pairs of points are considered such that one or both
points belong to W. Our approach, where we only require that the midpoint of the points
is in W, can be extended to this different way of counting, but one might get additional
terms in the bounds since E[£;(]0, u])] is not necessarily u due to boundary effects.

In [65], 66], beside Poisson approximation results for the number of inter-point dis-
tances below a given threshold it was shown that the point process of rescaled inter-point
distances converges weakly to a Poisson process. By and Proposition we
can also deduce that & converges weakly to v as t — oo.

The related problem of small distances between the points of a binomial point process
was first studied in [67]. Because of the similarity to Theorem we believe that by
applying Theorem [3.3.1] it is possible to prove a similar result to Theorem for an
underlying binomial point process.

By using in the proof of Theorem the corresponding bound of Theorem for
the Wasserstein distance, one can obtain the counterpart of for the Wasserstein
distance with a different power in u and the same rate of convergence in t.

Proof of Theorem |3.5.4). First, we show that the intensity measure of the point process

& is the restriction of the Lebesgue measure to [0,00). Let vy = (%)Ud

T4y
2

. The change

of variable z = yields

t? T+
B0 =5 [ [ 1{T5Y e Wil -yl < w} dyds
R? JRA
= 2d_1t2/ / 1{z e W}1{2|z — z|| < v} dzda
Rd JRd
= 2d_1t2/ / 1{2||z — 2| < v} dzxdz = u.
w JRd

For B C [0,u] with u > 0 define

2
re(B) = t/Rd (t /R 1{5" ; Ye W}1{2—1t2kdux —y|| € B} dy) dz.

Again from the change of variable z = LJQF?”, it follows that

r(B) < 1[0, u]) = 2243 /Rd (/W 142l|z — || < vt}dz>2da;

< 22%3/ </ 142])z — 2| < vt}dz/ 142))z — 2| < vt}d,%) do
R4 Rd w
= 2d+1ut/ / 1{2||z — 2| < v} dzdx
Rd JW

d+1 . _ o du?
=29 ut 1{2||z — Z|| < v} dxdz = —.
w JRd t
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Therefore (3.34) in Theorem with h(z,y) = 1{’”—;3’ IS W}1{2_1t2kd\|x —y||* € B}
yields for B C [0, u] that

(@28 < (102 )on(s) < (1 n )Y

From (3.38)) and (3.39)) in the proof of Theorem with S = &([0,u]), = ([0, u])

and h as above, we know that

u2
Var(&([0,u])) < E[&([0,u])] + 2r:([0,u]) = u + 87,

Thus it follows from the Chebyshev inequality that

P60, ) = 0) < P(10,u]) ] > ) < Y20 _ 1, 8

u ot

Together with (3.35) in Theorem with m = 1 and straightforward arguments, this
leads to

1 17]8u?
0 < Pl&(0.u) =0) ¢ = P(¥i >0 - < | TB(e(0.u]) =0) + 5] - (342
J(1, 8, 1\s2_16 6
“\w? ut w?) t ot 12
so that
_ 80
sup [P(Y; > wu) —e™"| < —.
ue(0,t] 13
Thus, we have
80 81
]P>(Yt>t)§7+e—'f§7
and
sup [B(Y; > ) — e~ < max{ sup [B(Y; > u) — ", B(Y; > ).} < =,
u€[0,00) uel0,t] 13
which combined with the left-hand side of (3.42)) completes the proof. O

3.3.4 k-runs in a sequence of i.i.d. Bernoulli random variables

Consider n independent and identically distributed Bernoulli random variables. A k-
head run is defined as an uninterrupted sequence of k successes, where k is a positive
integer. For example, for £ = 1, one simply studies the successes, while for kK = 2, one
considers the occurrence of two consecutive successes in a row. Several authors have
investigated the number of k-head runs in a sequence of Bernoulli random variables;
see e.g. the book [4]. In this subsection, we discuss the Poisson approximation of the
number of non-overlapping k-runs among n i.i.d. Bernoulli random variables, denoted
by Sy, k. In particular, we obtain an explicit bound on the pointwise difference between
the cumulative distribution functions of S, ; and PE[Smk} that is independent from the
number k of required successes in a row.

Let £ € N and X, j € Ng, be a sequence of independent and Bernoulli distributed
random variables with parameter 0 < p < 1/2. We denote by () with ¢ € Ny the random
variable

I =1{X;21=0,X;=1,..., Xiyp1 = 1},
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where X_; = 0. For k < n the number S, ;, of non-overlapping k-runs in Xo,..., X, 1
is given by

n—k
Sk = Z 10, (3.43)
1=0

Theorem 3.3.5. Let Sy, be the random variable given by (3.43)) with k,n € N,k < n.
Then,

dry (Sn,lm PIE[Snk]) < (Qk + 1)(1 A E[Sn’k])pk (3.44)

Moreover, forv € Ng and n > 2,

max IP(Snk <v) —P(Pgs, ) < v)| <40(v + 2)2@.

The bound was shown in [46, Corollary 15] as a consequence of [I, Theorem
1]. The Poisson approximation for S, ; is also investigated in e.g. [2} 10, 27, B5]. The
explicit bound in on the pointwise difference between the cumulative distribution
functions of S, ; and Py, ,) does not depend on the number % of required successes in a
row. Hence, improves [45, Corollary 3.23] and [46], Corollary 16] because we found
an explicit bound. Furthermore, since the proof of Theorem is based on Theorem
by applying the second inequality of in Theorem it is possible to attain
a bound on the Wasserstein distance between S, and PJE[Sn,k}‘

For the proof of Theorem we define

(n=k)A(E+R)
U= Y 19 ¢=0,....n—Fk
=0V (¢—k)

= (3.45)

where a V b = max{a,b} for any a,b € R, and let Y be a random variable independent
from X, j € Np, and with distribution given by
E[ [(f)]
E[S %]’

P(Y =) = =0,...,n—k.

The next proposition is derived by a standard construction of size-bias couplings (see
Lemma, [2.4.4)).

Proposition 3.3.6. Let k,n € N with k < n. For any m € N,
mP(Spx =m) = E[Sy g|P(Snr — Uy =m —1).
Proof. Let £ € {0,...,n —k} and m € N be fixed. Then, we have
E[IO1{S, ), — IV =m —1}] = E[ID1{S,,}, — Uy = m — 1}].

Since I® and Snk — Uy are independent, it follows that

n—k n—k
mP(Spp =m) = > EIO1{S,, =m}] => E[IV1{S,, — I =m - 1}]
£=0 =0

n—k
=Y E[IUP(Spp — Us = m — 1) = E[Sps|P(Spr — Uy =m — 1),
=0
which concludes the proof. ]
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Remark 3.3.7. Since Uy > 0, from Corollary [3.2.4] b) it follows that P(S, = 0) <
e ElSnil . Thus, straightforward calculations imply that

P(Sp =0) < exp(—(n—k+1)pF(1 - p)).

Proof of Theorem[3.3.5 From ({3.3)) in Theorem and Proposition it follows
that

dryv (Su ks Pags,, ) < (LAE[S, k) E[Uy] < (2k + 1)(L AE[S,])p",

where we used E[U] < (2k+1)p* for £ =0,...,n—k in the last step. This proves ([3.44).
Let n > 2 be fixed. Since (2k + 1)p¥, k > 1, is decreasing in k for any p < 1/2, by

(3.44) we deduce for k > 2logn that

4logn+1

[B(Snk < v) = P(Pygs,, ) < )| < 2k + 1pF < (4logn + 127208 < =5

(3.46)

Let k < 2logn. From (3.4) in Theorem with m =1 for v = 0 and (3.5)) in Theorem
for v € N, it follows that

(v + 1)2E[Uy]
E[Sy k]

From 0 < Uy <2 for £ € {0,...,n — k} and the definition of Y it follows that

‘P(Sn’k < U) — ]P)(PE[Sn,k} < v)] < E[Uyl{sn,k —Uy < v}] (3.47)

E[Uyl{smk - Uy < 'I}}] < E[Uyl{snyk <v+ 2}] = E[Ugl{smk <v+ 2}]

n—k (n—k)A(6+k)

]EZ > I91{S, k< v+2}

nk =0 i=0vV({—k)

Thus, by the inequality

n—k (n—k)A(0+k)

n—k
Z Z ai§(2k+1)2am, g, -« ap—p > 0,
m=0

=0 =0V ({—k)

we obtain

(2k + 1)p*
E[Sy k]

)

(2k 4+ 1)p* (v + 2)
E[Sn k] '

E[Uy1{Syr — Uy <v}] < E[SnxH{Snr <v+2} <

Together with and the inequalities
E[Snx] > (n—k+1)pF/2 and E[Uy] < (2k+1)p"
this shows for k < 2logn and n > 4logn that
20+ 122k +1) 2w +2)(2k+1)

‘P(Sn,k S U) - P(PIE[Sn,k] S U)| <

- n—k+1 n—k+1
< 4(v +2)%(4logn + 1) < 40(v + 2)%logn
- n — 2logn - n ’

where we used the inequalities 4logn+1 < 5logn and n—2logn > n/2 for n > 4logn in
the last step. Combining this and establishes for n > 4logn. In conclusion,
note that n > 4logn for n > 10, and for 2 < n < 10, the right-hand side of is
greater than 1. Thus, holds for all n > 2. O
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3.3.5 Minimal circumscribed radii of stationary Poisson-Voronoi tes-
sellations

In this subsection, we consider circumscribed radii of stationary Poisson-Voronoi tessel-
lations. The aim is to continue the work started in [15] by proving that the Kolmogorov
distance between a transform of the minimal circumscribed radius and a Weibull ran-
dom variable converges to 0 at a rate of 1/ t1/(@+1) when the intensity ¢ of the underlying
Poisson process goes to infinity.

For any locally finite counting measure v on R%, we denote by N(x,v) the Voronoi
cell with nucleus = € R? generated by v + §,, that is

N(zv)={yeR: |ly—all < lly -/, z # 2’ € v},

where || - || denotes the Euclidean norm. Voronoi tessellations, i.e., tessellations consisting
of Voronoi cells N(z,v), z € v, arise in different fields such as biology [53], astrophysics
[54] and communication networks [I2]. For more details on Poisson-Voronoi tessellations,
i.e., Voronoi tessellations generated by an underlying Poisson process, we refer the reader
to e.g. [14] [44] 61]. We denote by B(xz,r) the open ball centered at 2 € R? with radius
r > 0. The circumscribed radius of the Voronoi cell N(z,v) is defined as

C(z,v) =inf {R>0: B(z,R) D N(z,v)},

i.e., the circumscribed radius is the smallest radius for which the ball centered at the
nucleus contains the cell.

Throughout this subsection we consider the stationary Poisson-Voronoi tessellation
generated by a Poisson process 7; on R? with intensity measure tAg, t > 0, where \g is
the d-dimensional Lebesgue measure. Let W C R be a measurable set with \g(W) = 1.
For any Voronoi cell N(z,n;) with = € n: N W, we take the circumscribed radius of the
cell, and we define the point process & on the positive half line as

& = Z 5a2kdt(d+2)/(d+1)C(I,m)d- (3,48)
zenNW

Here k; denotes the volume of the d-dimensional unit ball, and the constant ag > 0 is

given by
od(d+1) 1/(d+1)
Qo = <(d+ 1),pd+1> (3.49)
with
d+1
Payr = IP’(N (0, 3 5yj> C B(0, 1)), (3.50)
j=1
where Y7, ..., Y. are independent and uniformly distributed random points in B(0, 2).

We denote by T; the first arrival time of &, i.e.,

Ty = min  aokgt T2/ D0 (2 1), (3.51)
zen:NW
which is - up to a rescaling - the d-th power of the minimal circumscribed radius of the
cells with nucleus in W. Recall that a random variable Y has a Weibull distribution if
its cumulative distribution function is given by P(Y < u) =1 — e~/ 9" for u > 0, and 0
otherwise; k > 0 is the shape parameter and s > 0 is the scale parameter.
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Theorem 3.3.8. Suppose t > 1. Let & and T} be the point process and the random
variable given by and , respectively. Let Y be a Weibull distributed random
variable with shape parameter d + 1 and scale parameter 1. Then, there exist constants
Crv,Cg > 0 only depending on d such that

ud+2

dTV (gt([07u])7pud+1) < CTth/(Tl) (352)
foru >0, and
A (T y) < - CK
K( ts )_ tl/(Tl) (353)

Note that explicit formulas for the constants Cty and Ck are given in the proof
of Theorem In [I5, Theorem 1, Equation (2d)], the weak convergence of T} to
Y as t — oo is shown. For an underlying inhomogeneous Poisson process, the weak
convergence of & to a Poisson process and the weak convergence of T} to Y are proven
in Subsection Although we only consider stationary Poisson processes, we believe
that the arguments employed in this subsection may also establish similar results on the
minimal circumscribed radius for more general Poisson processes with a different rate
of convergence in ¢t under some constraints on the density (e.g. Holder continuity). To
the best of our knowledge, the present work is the first time the rates of convergence for
the Poisson approximation of & ([0,u]) and the Weibull approximation of 7; have been
addressed.

The proof of Theorem [3.3.8| requires several preparations. We set

St = g kdt(d+2)/(d+1) .

Let M; denote the intensity measure of &, and let the quantities ]\Z and 6; on [0, 00) be
defined by

—

M ([0,u]) = t/w E[l{stC(x,m + 5x)d < u}l{nt(B(m,él(u/st)l/d)) =d+ 1}]dm,

0.([0,u]) = t/W E[1{s:C(z,n + 6.)4 < u}l{nt(B(ac,él(u/st)l/d)) >d+1}]de

for u > 0. For x € W and u > 0 we have
n(B(z,2(u/s:)" %) > d+1 whenever s,C(z,1n; + 6,)% < u. (3.54)

This is the case since s;C(x,1; + 6,)¢ < u implies that the nuclei of the neighboring cells
of z are in B(z,2(u/s;)"/?) and each Voronoi cell has at least d 4 1 neighboring cells.
From the Mecke formula and (3.54]) it follows that

My([0,u]) = My([0,u]) + 0,([0,u)), u>0.
Lemma 3.3.9. For allu >0 andt >0,

474,

od(d+3) ,d+2 y+1
)7 Qt([o,u]) <
g /@D oapasy /@D

and M([0,u]) <

Mi([0,u]) = u* exp (- .
Pd+1

Proof. First we compute J\//E([O, u]). From (3.54)) and the definition of pg11 in (3.50) we
derive

M, d dle tu st d+1
M([0,4]) = ¢ /W 2 katufs: %
< B (B (o A/ 1) /) \ Bz, 2(u/) 1)) = 0)da.

Pd+1
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Substituting s; = askgt(@t2/(d+1) and ay = (%pd+l)l/ @+1) into the previous equa-
tion implies that the right-hand side equals

dy
s /W exp ( _ o@j/(dﬂ) —tAq(B (:c,4(u/st)1/d) \ B(z, 2(U/St)1/d))>da:

24y, 24y, 49,
_ o d+l . _ d _ A+l _
=u exp < a2t1/(d+1) agtl/(d“) (2 1)> u exp < aQtl/(dJrl) )’

which completes the first part of the proof.
For u > 0, we have

k
0:([0,u]) < / E[1{n,(B(z, 4(u/s1)"/?)) > d + 1}]dz =t Z e

k!
k=d+2

with g8 = 4dkdtu/ s¢. Elementary calculations imply that

[eS) ,8 k—d—2 ﬁf
t Z —Bt t tﬁf“ Z e B tk t,Bf“Ze*ﬂt t

!
k=d+2 k=d+2 (t+d+2)!
tpA+2 B t(4dkdtu/st)d+2
~(d+2)! (d+2)!

Substituting s; = azkdt(d+2)/(d+1) and ay = (%pdﬂ)l/(dﬂ) into the latter term
yields

9d(d+3)  ,,d+2

0:([0,u]) < copary (/@D

which is the desired result.
From the Mecke formula, (3.54) and the same arguments as above, we obtain

= (2%%qt K
Mt([O,u]) < t/ P(nt(B(x, 2(u/st)1/d)) > d+ 1)d$ =1 Z Me—Qdkdtu/St
w k!
k=d+1
t(2dk:dtu/st)d“ 2d(d+1)kd+1td+2ud+1 wdtl
= | = 5d(d+1) = )
(d+1)! kd+1 (d—&-lZ;d-H (d+ 1)ltd+2  Pd+1
which concludes the proof. O

We now provide a statement that will be employed in the proof of the subsequent
proposition. This result is a direct consequence of Lemma in Subsection [5.3.3

Lemma 3.3.10. Let zq,...,24.1 € R? be in general position (i.e., no k-dimensional
affine subspace of R with k € {0,...,d— 1} contains more than k + 1 of the points) and
assume that N(J:O,Z?Z(l) 0z;) ts bounded. Then N(a:i,z;lié dz;) is unbounded for any
ie{l,...,d+1}.

Next we construct a random variable that satisfies (3.8]) for &([0, u]) with remainder

terms ¢;,7 € Np, which vanish as t — co. By B¢ we denote the complement of B C R?
and by 7¢|p the restriction of n; to B.
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Proposition 3.3.11. Let X be uniformly distributed in W and independent of ny. Then
for u >0,

kP(ﬁt([O, u]) = k) = ]\Z([O,u])P(ft([O,u]) + Zt,u =k— 1) + Qk—l(t>u)’ k€ N7

with
Ziw =& (77t|B(X74(u/st)1/d)c)([07 u]) - ft([07 U])
and
qi(t,u) = t/WIE{l{stC(:L‘,m +3,)% < u}l{nt(B(x,él(u/st)l/d)) >d+1}
X 1{ S sCly,m+6,)? <u} = z'de
yentNW
for i € Np.

Proof. The Mecke equation implies for k € N that
KP(&([0, u]) = k) = t/ E[1{:C(@,m + 6.)% < u}1{€(ne + 6,)([0,u]) = k}]de
w

_t/WE[l{stC(x,m—i—&m)dSu}l{ Z l{stC(y,nt+5x)d§u}:k—l}}dx.

yenNW

Now we divide the integral in

A + qr—1(t,u) == t/

WE[l{StC(%Wt +0,)% < u}1{n (B(m,4(u/st)1/d)) =d+1}

<1f > 1{sClym+6,)! <ub =k —1}]de

yentNW

+ t/ E[1{s0.m +8,)" < ul1 {n(B(z. 4(u/s)"")) > d + 1}
w

><1{ Z 1{StC(y,m—|—(5x)d§u}:k—l}]d:z.

yentNW

Then, it is enough to show that Ay, = M;([0,u])P(&(]0,4]) + Ziyw =k —1). In order to
simplify the notation throughout this proof, we write

Bs(z) = B(:L',2(u/st)1/d) and By(z):= B(x,4(u/st)1/d), z € RY.

In case there are only d-+1 points of n; in B4(x), we have by (3.54)) that s;C(z, n;+0,)? < u
only if the d + 1 elements of 7; belong to Ba(x). Therefore we obtain

A = t/w E[l{stC(m,nt + 6z)d < u}l{nt(B4(x) \ Ba(z)) = 0,n:(Ba(x)) =d + 1}
X 1{ Z 1{s:C(y,m + (535)‘1 < u} =k— IHdac.

yenNW
(3.55)

The observation that

s:C(y,me + 5z)d <wu if and only if stC(y, (ne + 5x)|B2(y))d <u (3.56)
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for y € n; establishes that
A = t/ E[l{stC(aﬁ,m + 5x)d < u}l{nt(B4(az) \ Ba(z)) = 0,n:(Ba(x)) =d + 1}
w
X 1{£t(77t‘B4(x)c)([07u]) + Z 1{stC(y, e+ 5x)d < u} =k— 1}}(1:0.
yen:NBa(z)NW

Suppose that s;C(x,n; + 6;)? < u and that there are exactly d + 1 points y1, ..., yas1 of
ne in Bo(z) and 9 "By (z) NBa(z)¢ = 0. From Lemma [3.3.10|it follows that the Voronoi
cells N(yi, mt|By(z) +0z),4=1,...,d + 1, are unbounded. In particular, we have

Clyi, e + 02) > (u/st)l/d, i=1,...,d+ 1.

Together with the same arguments used to show (3.55) and independence, this implies
that

A=t [ B[+ 0" < WL n(Ba() \ Ba(o) = 0.m(Bale)) = d + 1)
X & (e[, ()e) ([0, u]) = k — 1}]da
_ t/ E[1{s:C(x,m + 6,)% < u}1{m(Ba(x)) = d + 1}]
w
X P(ft(ﬁt\B4(x)C)([0= ul) =k — 1)d33'

Then, because the expectation in the latter equation does not depend on the choice of
r € W, we have that

Ay = My([0, u]) /WP(ft(nt|B4(x)c)([07u]) =k—1)dx
= My([0, u])P(& ([0, u]) + Zyu = K~ 1)

with

Ziw = & (mlBy(x)e) ([0, u]) — & ([0, ul).
This and B4(X) = B(X, 4(u/st)1/d) give the desired conclusion. O
Lemma 3.3.12. Foru >0, t >0 and Z;, as in Proposition|3.5.11

6d ud—l—?

Proof. For x € W it follows from the observation in (3.56|) that

0 < &([0,u]) = & (Ml Ba,auysnraye) ([0,u]) < > 1{s:C(y, m)"* < u}.
yEMNWNB(z,6(u/s¢)1/ )

E[|Zul] <

By the Mecke formula and the stationarity of n;, we obtain

E > HsiCly,m)® < u} < tAg(W N B(x, 6(u/s0)"/")P(s:C(0,m + 60) < w)
yENNWNB(x,6(u/s¢)1/d)
6%u

d
< Lyr@ar EEC 0, m + 00)" < ).

From Lemma [3.3.9 we deduce
d+1

tP(5,C (0,1 + 60)? < u) = My([0,u]) < ,
Dd+1

which proves the assertion. ]

40



Lemma 3.3.13. Foru >0 andt >0,
P(T; > u) = P(&([0,u]) = 0) < e~ Mell0:u),

Proof. The first identity is obvious. Let Z;, be the random variable defined in Proposi-
tion [3.3.11] Since Z;,, <0, P(&([0,u]) + Z¢ > 0) =1 and ¢;(t,u) > 0 for all i € Ny, the
inequality follows from Proposition b). O

In the next lemma, we combine the results obtained above and Theorem [3.1.3 to
derive intermediate bounds on the quantities considered in Theorem |3.3.8

Lemma 3.3.14. Foru >0 and t > 0,

64 ez
dry (610 w)). Prg, o) < o ammyyarny + 00 u) (3.57)
and
M, d d+2
0O 00> (14 ) e D * T
My([0,u]) /) @2paer HTHDED 0, ([0, u))?
(3.58)

Proof. From Proposition [3.3.11] it follows that the assumptions of Theorem [3.1.3] are

satisfied. Then, (3.9) in Theorem yields
drv (&([0,u)), P@([O,u])) < (A M ([0, u))E[| Z¢u] + (1 A Mt([O,u])_l/Q)Gt([O,u])

so that (3.57) follows from Lemma |3.3.12

Let us now prove (3.58]). From Lemma [3.3.13] (3.12) in Theorem withm =1
and > 22, gi(t,u) < 6([0,u]) we obtain

E||Ztu t, 6,(]0,

ElZull | gy o) 60

M ([0, u]) My([0,u]) — Mi([0,u])?

The first two terms on the right-hand side can be bounded by Lemma [3.3.12] Recall that

0< e—]\/Zt([07u]) —P(T; > u) <

qo(t,u) = t/WE{l{stC(x,m +6,)% < u}l{nt(B(x,4(u/st)1/d)) >d+1}
X 1{ Z 1{s5:C(y, 1 + 6,)% < u} = 0}] dx.
yemNW

Since the product of the first two indicator functions is increasing with respect to addi-
tional points, while the third indicator function is decreasing, it follows from [38, Theorem
20.4] that

qo(t,u) < t/

E[l{stC(x,m + 5m)d < u}l{nt (B(:L‘,4(u/st)1/d)) >d+ 1}}
W

X IP’( Z 1{s:C(y,m + 62)% < u} = 0>d:c.
yemnw

Now Lemma and the elementary inequality ve ¥ < 1 for v > 0 lead to
T 0
alt. ) < 0,0, u)B(E(0. ) = 0) < By([0,u])e= 00 < PO
My([0, u])
which concludes the proof. ]
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Proof of Theorem[3.3.8 Let u > 0 be fixed. From (3.57) in Lemma[3.3.14] Lemma[3.3.9]
and t > 1 it follows that
6d ud+2 6d 4 2d(d+3) ud+2

drv (& (10,1, P go.) < o sawayyary + 004 < — - —
(3.59)

Using a well-known bound for the total variation distance between two Poisson dis-
tributed random variables, Lemma and the inequality 1 — e™? < v for v > 0, we
obtain

d+1_ 77 d+1 4% A%y
dTV(PudH:PZ/\/I\t([O,u])) < u =M([0,u]) = u (1—exp <_052t1/(d+1)> ) < ot /@)

Now the triangle inequality yields

3.9d(d+3) ,,d+2

drv (&([0,u]), Pyas) < Capart B

which proves ([3.52)).
Let us now show (3.53). From (3.59) and Lemma [3.3.13| we have that, for u € [0, 1],

2d(d+3)+1 1

< _]/\Zt([oﬂt]) —_ < .
O<e P(Tt - U) T 09Pd+1 $1/(d+1)

In the following we consider the case 1 < u < t1/(2d+2) 1 with 7 = s/ 4%, From Lemma
and t > 1 we obtain

- ui+1
ut > M([0,u]) > - (3.60)
Together with Lemma 3.3.13} (3.58]) in Lemma |3.3.14] Lemma and u > 1 we obtain
T 1 6 utt? 20,([0, u
0 < e M0u) (T}, > ) < <1 T > (d+2)/(d+1) ’\t([ ])2
My([0,u]) / @2Pd+1t My ([0, u])
64 udt2 ) 1 2d(d+3) udt2
< .
<(L+e) appg1 td+2)/(d+1) 2 w2 qagpg g t1/(dHD)

Using 1 < ut? < (42)/(2d+2) 42 /4d(d+2) "+ > 1 and the definition of oy in (3:49), we

deduce

(1+ e)6d agﬂ 1 g2 1 d(d+3) ,d+2
w22 agpgy g t1/ (D)

~My([0u)) _
0<e P(T; > u) < 44(d+2) pyy $1/(d+1)

1 9d(d+3)+4 1
<
— $1/(d+1) - a2Pd 11 $1/(d+1)

so that

i (0. 9d(d+3)+4 1
sup e  MBY) _P(T, > u <[1+ } .
ue[o,tl/(2d+2)T]| < ) aopgyq | ti/(d+1)

Moreover, by Lemma (3.60) and elementary arguments we obtain for 0 < u <
1/ 24421 that

0 < e Mi(l0a) _ p—uttt o {ud—i-l _ J\A@([O,UD] o~ Mi([0,u])

d+2
4ilq 2 _pdtlg—1 4ledar 92d+3

<
= gt/ © = gt /@) = ol /(dtn)
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where we used the inequalities 1 — e™™ < z and e~ vt pd+2 <1 for x > 0. This implies

that

oyt 2d(d+3) +4 92d+3 1

sup le

—Mﬂ>un§P+
ue0,t1/(2d+2)7]

Q2Pd+1 g | t1/(@+1)"

On the other hand, e <1 for z > 0 leads to

1 164 1
(1/(2d42) _\d+1 S e L
eXp( (t 7) ) < (11/Cd2) 7 )2 < a2 $1/(@)

Combining the two previous inequalities gives a bound for P (Tt > tl/ (2d+2)7') and it
implies

_ud+1

sup |e —P(T} > u)]

u€[0,00)

< max{ sup ’e—u‘“l _ P(Tt > u)” P (Tt > tl/(2d+2)7-> , exp <_(t1/(2d+2)7-)d+1>}
u€[0,t1/(2d+2) 7]

9d(d+3)+4 N 92d+3 16d:| 1

1+ $1/(d+1) "

a2Pd+1 a2 Oé%

Now the identity P(7; > 0) = 1 concludes the proof. O

3.3.6 Maximal inradii of stationary Poisson-Voronoi tessellations

In this subsection, we consider the inradii of stationary Poisson-Voronoi tessellations.
Recall that the inradius of a cell is the largest radius for which the ball centered at the
nucleus is contained in the cell. The aim is to continue the work started in [15] by proving
that the Kolmogorov distance between a transform of the largest inradius and a Gumbel
random variable converges to 0 at a rate of log(t)/+/t as the intensity ¢ of the underlying
Poisson process goes to infinity. More details on Poisson-Voronoi tessellations are given
in Subsection [3.3.5

Let W C R? be a measurable set with Lebesgue measure \g(W) = 1. Let n; be
a Poisson process on R? with intensity measure tAg,t > 0. Consider the measurable
function hy : W x N(RY) — R defined as

hi(z,p) = min thgllz — y||* — log(¢),
yep\{z}

where p \ {z} denotes u — 0, if z € p, and p otherwise, ky is the volume of the d-
dimensional unit ball, and || - || denotes the Euclidean norm. Note that for any = € n,
min{|jz —y|| : y € n \ {z}} is twice the inradius of the Voronoi cell with nucleus x
generated by 7;. Then, the random variable

T, = xé%;amxw hi(z,me) (3.61)

is a transform of the maximal inradius over the cells with nucleus in W. We define the
point process & as

G=&M) = D Onwm): (3.62)

zemNW

Recall that a random variable Y has a standard Gumbel distribution if its cumulative
distribution function is given by P(Y < wu) =e~¢ " for u € R.
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Theorem 3.3.15. Suppose t > e2. Let Ty and & be the random variable and the point
process given by (3.61) and (3.62), respectively. Let Y be a random variable with a
standard Gumbel distribution. Then,

qu+log(t)  w+log(t)
e“/Q\/E evt

drv (&((u,00)), Poeu) < 2 (3.63)

for uw > —log(t), and

log(t)
i

The main achievement of Theorem is the rate of convergence for the Kol-
mogorov distance in . In [I5, Theorem 1, Equation (2a)], the weak convergence
of T; to a Gumbel random variable is proven. For d = 2 one obtains from the proof
of [I9] Proposition 8] that for any fixed v € R the difference between P(7; < u) and
P(Y < u) behaves like O(log(t)/v/t), where the constant hidden in the big-O-notation
depends on u. However this result does not permit the difference between P(7; < u) and
P(Y < u) to be bounded uniformly in v € R, whence it does not lead to a bound for
the Kolmogorov distance. Note that [I9, Proposition 8] concerns the maximal inradii of
planar Gauss-Voronoi tessellations, which are generated by a Poisson cluster process and
include planar Poisson-Voronoi tessellations as a special case. For this model it is shown
that for any fixed u € R, [P(T; < u) — P(Y < u)| behaves like O(log(t)~'/?), where the
big-O-term depends on u.

For an underlying inhomogeneous Poisson process, the weak convergence of & to a
Poisson process and the weak convergence of T; to Y are established in Subsection [5.3.2
and for an underlying inhomogeneous binomial point process, the weak convergence of
T; to Y is studied in [31, Theorem 1]. As for the results stated in Subsection [3.3.5]
about the minimal circumscribed radius, we believe that similar arguments as in this
subsection could lead to comparable results with a different rate of convergence in t for
the maximal inradius of a Voronoi tessellation generated by an inhomogeneous Poisson
processes under some constraints on the density.

Counting cells whose inradius is larger than a given value is equivalent to counting
isolated vertices in random geometric graphs. The related problem of finding the longest
edge of a k-nearest neighbor graph or a minimal spanning tree is studied, for example, in
[49, Chapter 8] or [50] for underlying finite Poisson processes or binomial point processes,
where one needs to take care of boundary effects.

Since the proof of Theorem [3.3.15]is based on Theorem [3.1.1] together with the second
inequality of in Theorem the same arguments used to show may also
lead to a bound on the Wasserstein distance between & ((u,00)) and P,—u.

For the proof of Theorem [3.3.15| we introduce some notation. By M; we denote the
intensity measure of §. For u > —log(t), set

u + log(t) 1/d
tkq '

d (Ty,Y) < 2924 4 22 4 2) + 1] (3.64)

v = vp(u) = < (3.65)

Then, for u > —log(t) we have
M;i((u,00)) = t/WE[l{ht(:c,nt +0z) > u}] dr = t/WIP’(nt(B(x,vt)) = )dm

_ t/ e—tvgk:ddx _ te—u—log(t) —
w
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Let X be a uniformly distributed random vector in W independent of 7;. In the next
proposition we show that for each u > —log(t), and for an opportune choice of a random
ball B centered at X, the random variable & (n:|Be)((u,00)) — & ((u,0)) satisfies (3.2))
for &((u,00)), where n|ge denotes the restriction of 7, to the complement of B.

Proposition 3.3.16. For any t > e and u > —log(t),
kP(&:((u, 00)) = k) = Mi((u, 00))P(&:((u, 00)) + Zi(u) =k —1), k€N,
where the random variable Z;(u) is defined as
Z(u) = & el B(x 00 ) (1, 00)) — & ((u, 00))

with vy = ve(u) given by (3.65)).
Proof. Let B = (u,00) with u > —log(t). The Mecke equation yields for k£ € N that

KP(€/(B) = k) = ¢ /WE[l{ht@c, M+ 80) > uyL{E(n + 6,)(B) = kY] de.

Since hy(x,n: 4+ d,) > w if and only if n,(B(z,v¢)) = 0, the right-hand side equals
[ BB ) = 0{& ) (B) = k= 1}]da

—¢ / P(n(B(z, ) = 0)E[L{& (nlpnony)(B) = k — 1}]da
%%

= €_u/ P(& (Nt B(aywy)e)(B) = k — 1)da.
w
Hence, elementary arguments lead to
kP(gt(B) = k) = Mt(B)P(ft(Ut‘B(vat)c)(B) =k-— 1)
= My(B)P(&(B) + Zy(u) = k — 1),

which is the desired conclusion. O

Proof of Theorem[3.3.15. Suppose u > —log(t) and let Z;(u) be as in Proposition|3.3.16

We can rewrite Z;(u) as
Zy(u) = & (el Bxw)e) (4, 00)) = &i((u, 00))

= Z 1{ht(27nt’B(X,vt)C) > U} — 1{ht(2, T]t) > U}
z€nNWNB(X,2v: )NB(X,v¢ )¢
- Z 1{ht(27 77t) > ’U,}
ZEntﬂB(X,vt)ﬂW
= Zé,x(u) - ZZX(U)v
where Z{ y(u) and Z{'y (u) are non-negative. For a fixed 2 € W, the Mecke formula and
short computations yield

E[Zé,X(u)] < ]E[ Z l{ht(za nt|B(x,vt)C) > U}]
z€n:NB(z,2v¢ )NB(x,v¢)¢

t/ P(nt(B(z,vt) NB(z,v)°) = O)dz
B(z,2v: )NB(z,v¢)°¢

B 2du + log(t)

(3.66)

IN

t/ e—tvfkd/QdZ < Qd(u 4 log(t>)€_(u+10g(t))/2
B(z,2v: )NB(z,v¢)°¢
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and, similarly,

E[Z; x (u)] < E[ S 1fhlzm) > u}] = t/ P(n:(B(z,v1)) = 0)dz
z€n:NB(z,vt) Bl (3.67)

< t/ eftvf,lkddz < (u 4 log(t))efuflog(t) _ #Og(t)
B(z,vt) evt

It follows from the triangle inequality that

u+log(t) u+log(t)
B( Z(w)]) < 2280 4 L0

Then, by the first inequality of (3.3)) in Theorem we obtain (3.63)).
Let us now show (3.64). We consider the cases u > 0, u € [—log(log(t)),0) and

u < —log(log(n)) separately. Because of ue™® < 1 and ue %2 < 1 for v > 0 and
log(t) > 1, by (3.63)) we have

drv (&((u,00)), Pems) < (2941 4 2)103%’5)

for u > 0, which proves (3.64) for v > 0.
In the following let u € [—log(log(t)),0) be fixed. Since Zy(u) = Zj y(u) — Z;'x (u)
and the terms on the right-hand side are both non-negative, we obtain that
Zi(u)y < Zy x(u) and  Zi(u ) P (u).

Combining these inequalities and (3.4) in Theorem with m = 1 establishes

[P(T; < u) = P(Pe—u = 0)| = [P(§((u, 00)) = 0) = P(Pe—u = 0]

< e"E[| Zi(w)[] + E[| Z;(w)[1{& (4, 00)) = Zi(u) - = 0}]

< B[ Zu(w) ] + E[Z) x (w)1{€((u, 00)) = 0}] + E[Z]'x ()]

Moreover, by (3.66|) and (3.67)) we have

E[Z] x(u)] < 2d“; /1;?/() < delfi(\t/)g

and
1 1 2 log(t
B2 () < THOR() _ (08 _ log(t)
: eut t NG
Thus the identity Z;(u) = Z; x(u) — Z}'x (u) with Zj y(u), Z}’y(u) > 0 implies that

log(t)
\[

BTy < u) — B(Pyw = 0)] < (27 4+ 2) 2 1 E[Z x () 1{&((1,00)) = 0}].  (3.68)

For x € W we define

§t.e((u, 00)) = > {he(z,me) > uj

zen:NWNB(z,4v¢)°¢

Since, for any z € W, 1{§((u,00)) = 0} < 1{&.((u,00)) = 0} and Z; ,(u) and
1{&: »((u,00)) = 0} are independent, we have

BLZ (01 {&(100)) = O} < | BIZ4 )16 (0. 0) = O} |
/ (3.69

P(&t 2 ((u,00)) = 0)dz.
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For z € W, the Markov and the triangle inequalities, (3.63) and e*/2y/t > 1 imply that

P(Ea((0,00)) = 0) S P(&((m,00) =0) +B( 30 1{hu(zm) > u} > 0)

z€n:NB(z,4v¢)

. IR

z€n:NB(z,4v¢)

log(t)  log(t
o og(t) N og(1)
eu/2\/{f evt

d log(t) —e ¥
= (2 + 1)€u/2\/i e +E[z€ntﬁ§(z4vt)1{ht(z’nt) i u}]

Similar arguments as used in (3.67) and e*/2y/t > 1 lead to

49(u 4 log(t)) < 4900g(t)
elt - eu/Q\/{f '

IE[ Z l{ht(z,nt) > u}} <

zenNB(z,4v¢)

Since log(t)e* > 1 and % < 4 for t > €%, we obtain

2 u 2
1Og(t) < IOg(t) € < IOg(t) eu/2 < 4eu/2‘
eu/Q\/i eu/2\/i \/i

Together with exp(—e™" — u/2) < 1, which follows from u < 0, we have shown

P(&.0((u,00)) = 0) < 4(4% + 22+ 1)e? 4 /2 < (4(4% + 27 4+ 1) + 1)e/?
so that, by (8.66) and (3.69),

/ d, od uy2 2 log(t)
E[Z; x (u)1{&((u, 00)) = 0} < (4(47 + 27+ 1) 4 D)7 — 2=
) eu/Z\/i
log(#)
— 2d+24d+2d+1 _|_2d )
(27( ) +29) i
Combining this with (3.68]) leads to
—u log (¢
’IP’(Tt <u)—e© ’ < (24240 4 27 4 1) + 29 4 29 1 9) Ofg/(%)
log(t) (3.70)
< 2H2(47 4 9t 4 9) 2B
< 297( ) i
which establishes (3.64) for u € [—log(log(t)), 0).
Finally for u < —log(log(t)) we have
P(Ti < u) < P(T; < —log(log(t))),
which by (3.70) and the triangle inequality is bounded by
log(t) 1
9d+2(4d | od | o 4
( L
Therefore elementary arguments lead to
—u log(¢
sup BT <) — | < 20024 120 4 9) 4 1180
u<—~ log(log(t)) Vit
which concludes the proof of (3.64]). O
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Remark 3.3.17. Note that the integral in the middle of (3.66|) cannot be bounded with
a better exponent for t. Indeed, using substitution, we can rewrite the integral as

Ag(B(y,1)NB(0,1)€)

u + log(t) 2 dy.

kq /B(O,Q)mB(o,l)c

For any sufficiently small € > 0 there ezists a set A C B(0,2) N B(0,1)¢ with A\g(A) >0
such that the ratio in the exponent is at least (1 +€)/2 for all y € A. This provides a
lower bound of the order log(t)t—(1+)/2,

o~ (utlos(®)
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Chapter 4

Multivariate Poisson and Poisson
process approximations

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Riccardo Turin:

F. Pianoforte and R. Turin. Multivariate Poisson and Poisson process approzimations
with applications to Bernoulli sums and U-statistics. arXiv:2105.01599, 2021.

Abstract. In this chapter, we derive quantitative limit theorems for multivariate Pois-
son and Poisson process approximations. Employing the solution of Stein’s equation for
Poisson random variables, we obtain an explicit bound for the multivariate Poisson ap-
proximation of random vectors in the Wasserstein distance. The bound is then utilized in
the context of point processes to provide a Poisson process approximation result in terms
of a new metric called d, defined herein, which is the supremum over all Wasserstein dis-
tances between random vectors obtained by evaluating the point processes on arbitrary
collections of disjoint sets. As applications, the multivariate Poisson approximation of
the sum of m-dependent Bernoulli random vectors, the Poisson process approximation of
point processes of U-statistic structure and the Poisson process approximation of point
processes with Papangelou intensity are considered. Our bounds in d, are as good as
those already available in the literature.

Acknowledgments. This research was supported by Swiss National Science Foundation
(grant number 200021-175584). The authors would like to thank Chinmoy Bhattacharjee,
Ilya Molchanov and Matthias Schulte for valuable comments.

4.1 Introduction and main results

Let X = (Xj,..., Xy) be an integrable random vector taking values in Ng, d € N, and let
P = (Py,..., P;) be a Poisson random vector, that is, a random vector with independent
and Poisson distributed components. The first result of this chapter is an upper bound
on the Wasserstein distance
dw(X,P) = sup [E[g(X)] - E[g(P)]]
g€Lip?(1)

between X and P, where Lip?(1) denotes the set of Lipschitz functions g : Nd - R
with Lipschitz constant bounded by 1 with respect to the metric induced by the 1-norm,
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Ix|1 = Z;.i:l |lz;| for x = (21,...,24) € R

The accuracy of the multivariate Poisson approximation has mostly been studied in
terms of the total variation distance; among others we mention [T}, [5] [6] [0} 25], 58, 59]. In
contrast, we consider the Wasserstein distance. Note that, since the indicator functions
defined on Ng are Lipschitz continuous, for random vectors in Ng the Wasserstein distance
dominates the total variation distance, and it is not hard to find sequences that converge
in total variation distance but not in Wasserstein distance. Our goal is to extend the
approach developed in Chapter [3| for the Poisson approximation of random variables to
the multivariate case.

Throughout this chapter, for any x = (z1,...,24) € R? and index 1 < j < d,
we denote by x1.; and x4 the subvectors (z1,...,x;) and (zj,...,24), respectively.
Moreover, to simplify the notation, we use the convention E|Y'| = E[|Y] for any random
variable Y.

Theorem 4.1.1. Let X = (X1, ..., Xy) be an integrable random vector with values in Ng,
deN, and let P = (Py,...,Py) be a Poisson random vector with E[P] = (A1,...,\q) €

[0,00)%. For 1 < i <d, consider any random vector Z() = (Z{i), e ZZ-(Z)) in 7 defined
on the same probability space as X, and define

0 =mP(X1i = miq) — NP(X1: + Z0 = (may_1,m; — 1)) (4.1)

qml:z

formy,; € Nf) with m; # 0. Then,

d i—1
aw(X,P) <3 [ NE[Z0 420 Y B2+ Y [ald, (4.2)
j=1

i=1 mHENé
m;#0

For a random variable X, Equation corresponds to the condition required in
Theorem[3.1.3] There, sharper bounds on the Wasserstein distance for the case of random
variables are shown. However, Theorem tackles the case of random vectors instead
of just considering random variables.

In order to give an interpretation of the hypothesis in Theorem for a random
vector X = (X1,...,Xy) in Ng, d € N, let us consider the family of random vectors

Y(Z) = (Xl:iflaXi"{'l) +Z(Z)7 @ = 1""7da (43)

where Z() i =1,...,d, are defined as in Theorem [4.1.1} Under the additional condition

IP’(XLH—Z(“ S Né) = 1, a sequence of real numbers qfﬁ)l:i,mlzi S Ng with m; # 0, satisfies

Equation (4.1)) if and only if

E[X; f(X14)] = ME[f(YD)] + Z qy(f‘z)lzif(ml:i) (4.4)

m1.; €N, m;#0

for all functions f : N§ — R such that E|X;f(X1.)| < co. When the elements q%)l:i are
all zeros and E[X;] = \;, (4.4) becomes

E[X;f(X14)] = E[X]E[f(Y?)]. (4.5)

In this case, by taking the sum over all my.; € Ng with m; # 0 in (4.1), we obtain that the
condition P(X;,; + Z ¢ N{) = 1 is always satisfied. Recall that, for a random variable
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X > 0 with E[X] > 0, a random variable X* defined on the same probability space as X
is a size bias coupling of X if it satisfies

E[X f(X)] = E[X]E[f(X*)] (4.6)

for all measurable f : R — R such that E|X f(X)| < co. Therefore, if the q#b)m. are all
zeros for any i = 1,...,d and E[X] = (A1,...,\g), the random vectors YD i=1,....d,
can be seen as a size bias coupling of X, as they are defined on the same probability
space as X and satisfy , which corresponds to in the one-dimensional case.
Note that this suggests a definition of size bias coupling of random vectors that is slightly
different from the one introduced by Definition [2.4.5] Following this interpretation, when
E[X] = (A1,...,\q) and the random vectors Z(®) are chosen such that the qu)u are not
zero, we can think of the random vectors Y@ defined by as an approximate size
bias coupling of X, where instead of assuming that Y satisfies exactly, we allow

error terms q,(ﬁ)lti and obtain (4.4). This is an important advantage of Theorem
since one does not need to find an exact size bias coupling (in the sense of ), it only
matters that the error terms %(riz)l;i are sufficiently small and that the random vectors Z ()
are the null vector with high probability.

The second main contribution of this chapter concerns Poisson process approximation
of point processes with finite intensity measure. Let (X, X’) be a measurable space and
consider a point process £ and a Poisson process  on X with finite intensity measure.
For any choice of subsets Aj,..., Ay € X, the random vectors ({(A1),...,&(Aq)) and
(n(A1),...,m(Aq)) take values in N¢ (almost surely). Thus, Theorem provides
bounds on the Wasserstein distance

dw ((§(A1), - ., &(Aq)), (n(A1), ..., 1(Aa)))

for all Ay,..., A3 € X and d € N. Then, by taking the supremum of over all arbi-
trary collections (A, ..., Ag) of disjoint sets, these bounds permit the comparison of the
distributions of £ and 7.

Definition 4.1.2. Let & and ( be point processes on X with finite intensity measure. The
distance d, between & and ( is defined as

dﬂ'(&’C) = sup dW((g(Al)a7£(Ad))7(C(A1)aaC(Ad)))a

(A1,...,Aq)EXS ., dEN

isj?

where
Xéiisj ={(A1,...,Ag) € X4 . AN A; =0,i # j}.

That d, is a probability distance between the distributions of point processes with
finite intensity measure follows immediately from its definition and Proposition [2.2.2

To the best of our knowledge, this is the first time the distance d, is defined and
employed in Poisson process approximation. We believe that it is possible to extend
d. to larger classes of point processes by restricting leisj to suitable families of sets.
For example, for locally finite point processes on a locally compact second countable
Hausdorff space, we may define the distance d; by replacing Xglisj with the family of
d-tuples of disjoint and relatively compact Borel sets. However, this falls out of the
scope of this chapter. Let us now state our main theoretical result on Poisson process

approximation.
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Theorem 4.1.3. Let & be a point process on X with finite intensity measure, and letn be a
Poisson process on X with finite intensity measure X. For any i-tuple (Ai,...,A;) € Xiis;

with i € N, consider a random vector Z41i = (Zfl“'7 .. .,ZiA“) defined on the same
probability space as & with values in 7', and define

gt = miP((E(A1), ..., &(A)) = muy)

4.7
— MADP((E(A1), -, E(A) + Zh = (maoa,my — 1)) 4D

for my.; € Ni with m; # 0. Then,

d

dr(&,m) < sup S DD gy

d . i
(Alr--vAd)eXdisj’deN =1 ml:i€N6
m;#0

+20(4;) ) E|zhe
j=1

The Poisson process approximation has mostly been studied in terms of the to-
tal variation distance in the literature; see e.g. [2, Bl [7, 13 17, 63, [64] and references
therein. In contrast, [22), 23] deal with Poisson process approximation using the Kan-
torovich—Rubinstein distance. In Proposition we establish that the total variation
distance

drv (€, ¢) = sup |P(§ € B) —P(C € B)|
BeNx

between two point processes € and ¢ on X with finite intensity measure is bounded from
above by dr(§, (). Moreover, since d.(§,() > |E[E(X)] — E[((X)]|, Example 2.2 in [22]
provides a sequence of point processes ((,)nen that converges in total variation distance
to a point process ¢ even though d((n, () — oo as n goes to infinity. This shows that
dr is stronger than dry in the sense that convergence in d, implies convergence in total
variation distance, but not vice versa. The Kantorovich-Rubinstein distance between
two point processes & and ( is defined as the optimal transportation cost between their
distributions, when the cost function is the total variation distance between measures;
see [22, Equation 2.5]. When the configuration space X is a locally compact second
countable Hausdorff space (lcscH), which is indeed the case considered in [22] and [23],
the Kantorovich duality theorem (|70, Theorem 5.10]) yields an equivalent definition for
this metric:

dxr(§,¢) = sup [E[A(E)] — E[R(C)]]

where the supremum runs over all measurable functions h : Nx — R that are 1-Lipschitz
with respect to the total variation distance between measures and make h(£) and h(Q)
integrable. For a lescH space X, we prove in Lemma [4.2.6] that dr < 2dx . The constant
2 in this inequality cannot be improved, as shown by the following simple example: let
X = {a,b} with X = {0,{a}, {b}, X}, and let d, and d, be deterministic point processes
corresponding to the Dirac measures centered at a and b, respectively. Since the function
g : (z1,22) — x1 — x2 is 1-Lipschitz, it follows

dx(0a;00) = | 9(0a({a}), 0a({0})) — g(dp({a}), 0p({b})) | = 2.

On the other hand, dxpr is bounded by the expected total variation distance between
the two counting measures, thus dgpr(dq,d) < 1. Hence, in this case d(d4,0,) =
QdKR((sa, (Sb)

It remains an open problem whether the distances d, and dx g are equivalent or
not. It is worth mentioning that our general result, Theorem 4.1.3] permits to study the
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Poisson process approximation in the metric d, of point processes on any measurable
space. Then, Theorem [4.1.3| can be used to obtain approximation results for point
processes also when the notion of weak convergence is not defined.

To demonstrate the versatility of our general main results, we apply them to several
examples. In Subsection we approximate the sum of Bernoulli random vectors
by a Poisson random vector. This problem has mainly been studied in terms of the
total variation distance and under the assumption that the Bernoulli random vectors are
independent (see e.g. [57]). We derive an explicit approximation result in the Wasserstein
distance for the more general case of m-dependent Bernoulli random vectors.

In Subsections and [£.3.3] we apply Theorem to obtain explicit Poisson pro-
cess approximation results for point processes with Papangelou intensity and point pro-
cesses of Poisson U-statistic structure. The latter are point processes that, once evalua-
ted on a measurable set, become Poisson U-statistics. Analogous results were already
proven for the Kantorovich-Rubinstein distance in [23, Theorem 3.7] and [22, Theorem
3.1], under the additional condition that the configuration space X is lescH. It is inter-
esting to note that the proof of our result for point processes with Papangelou intensity
employs Theorem with Z41 set to zero for all 4, while for point processes of U-
statistic structure, we find Z41 such that Equation in Theorem is satisfied
with q;?lllrfi = 0 for all collections of disjoint sets.

The proof of Theorem is based on the Chen-Stein method applied to each com-
ponent of the random vectors and the coupling in . For the proof of Theorem
we mimic the approach used to prove [I, Theorem 2], as we derive the process bound as
a consequence of the d-dimensional bound.

Before we discuss the applications in Section [£.3] we prove our main results in the
next section.

4.2 Proofs of the results of Section 4.1]

Throughout this section, X = (X1,...,Xy) is an integrable random vector with values
in N¢ and P = (Py,..., Py) is a Poisson random vector with mean E[P] = (A1,...,)\y) €
[0, 00)%. Without loss of generality we assume that X and P are independent and defined
on the same probability space. We denote by Lipd( 1) the collection of Lipschitz functions
qg: Ng — R with respect to the metric induced by the 1-norm and Lipschitz constant
bounded by 1, that is

d

9x) —g(y)| < x—yh =D |z —wl, xyeN.
=1

Clearly, this family of functions contains the 1-Lipschitz functions with respect to the
metric induced by the Euclidean norm. For d = 1, we use the convention Lip(1) =

Lip!(1).
From now on, for any g € Lip(1), we denote by " the solution of the Stein equation

AGV (i + 1) — igM (i) = g(i) — E[g(Py)], i € No, (4.8)

such that gM(0) = 0, where Py is a Poisson random variable with mean X\ > 0. From
the inequalities (2.4]) in Section we obtain the following result for the Stein factors
(Note that the case A = 0 is trivial).
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Lemma 4.2.1. For any X\ > 0 and g € Lip(1), let V) be the solution of the Stein
equation ([@.8) with initial condition G (0) = 0. Then,

sup [gW (z)‘ <1 and sup [gNGE+1)—gV3i)| <1. (4.9)

1€Ng 1€Np
Recall that, for any x = (z1,...,24) € R? and index 1 < j < d, we write x1.,; and
zj.q for the subvectors (x1,...,x;) and (z;,...,z4), respectively. For g € Lip?(1), we
denote by §£’}?_71|x_+1'd the solution of (4.8 for the Lipschitz function g(x1.i-1, ,Tit1.q)

with fixed 21,1 € Né_l and z;11.4 € Ng_i. Since /g\()‘) takes vectors from Ng as input, we
do not need to worry about measurability issues. The following proposition is the first
building block for the proof of Theorem

Proposition 4.2.2. For any g € Lip(1),

X1:i-1|Pit1:d

d
E[g(P) - 9(X)] = Y_E [ X5 (X:) = AR p (Xt D).
i=1
Proof of Proposition[{.2.3. First, observe that

d
Efg(P) —g(X)] = ZE [9(X1:i-1, Pia) — 9(X1:4, Piy1:a)] - (4.10)
=1

The independence of P; from P;;1.q and X5.; implies
E[g(X1i-1, Pra) — 9(X 14, Pir1:a)] = E[EP[9(X 151, Pra)] — 9(X 14, Pit1:a)]

where EF% denotes the expectation with respect to the random variable P;. From the
definition of /g\(m

11 Eis with 1,1 = X;;—1 and z;41.g = Pj11.4, it follows

) ~(N; ~(Ai
E l9(Xvi-1, Pia)] = 9(Xii, Pivria) = Xig—(Xlz)i—l‘Pi+1:d (i) — )\ig—(Xlz)i—l‘Pi+1:d (Xi +1)

for all i =1,...,d. Together with (4.10]), this leads to the desired conclusion. O
Proof of Theorem[{.1.1. In view of Proposition [£.2.2] it suffices to bound

E [ x50 (X)) — Mgy (Xi +1)

; ; =1,....,d.
ngl:i71|Pi+1:d ngl:i71|Pi+l:d vt ’ d

For the remaining of the proof, the index i is fixed and we omit the superscript (7) in

Zg and q,(f;)lti. Define the function

—_m |5
h(XM) =E [ Xl:i71|Pi+1:d(Xi) ‘ Xl:i] )
where E[ - | Y] denotes the conditional expectation with respect to a random element Y.
With the convention §()‘i) (mi) = 0 if my.q ¢ N& or m; = 0, it follows from (4.1

M1g—1|Mit1:d

that
(g
E [Xi9;1:171|pi+1:d(Xi)} =E[Xih(X1)] = > mih(mia)P(X1s = m)
ml;iEN’é
= Z h(ma:i)Gmy.; + Ai Z h(m:)P (X1 + Z1: = (Masi—1,m; — 1))
mq,; EN} mq.,;ENY
m,-;éo mﬁéO
(A
= Z h(ml:i)le:i + AE [gg(l:)ifl"!‘zlzifl'Pi-H:d (XZ +Zi+ 1) ’
M. ENG
m;#0
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Since |h(X7.;)] <1 by (4.9), the triangle inequality establishes

~(A) ~(Ai)
)E [ i9X 11| Py d(Xi) - )\igXlzi71|Pi+1:d(Xi * 1)} ‘ = Z |Gmas| + Ai(H1 + Ha),

my. NG
m;#0
(4.11)
with
(i) , , ~(Ai) .
Hy = ’E [gX1 i—1+Z1:i—1|Piy1: d(XZ +Zi+ 1) gXl i—1+Z1:i—1|Pit1: d(XZ + 1)] ‘
and (M) (M)
’E [ IX 114+ Z1:-1|Pigra (X +1) ~ gXll:i71|Pi+1:d(Xi T 1)} ‘ )
The inequalities in (4.9) guarantee
i—1 i—1
Hy <E|Z| and Hy <2P(Z1; 1 #0) <Y 2P(Z; #0) <2) E|Z.
j=1 j=1
Combining (4.11)) with the bounds for H; and Hjy, and summing over i = 1,...,d con-
cludes the proof. O

Remark 4.2.3. It follows directly from the previous proof that the bound (4.2)) in The-
orem can be improved in the following way:

d
<D [ MEIZO nB(ZE L A0+ Y [,
i=1 mi. IENZ
m;#0
Next, we derive Theorem from Theorem |4.1.1

Proof of Theorem[{.1.5 Let d € Nand A = (A4,...,A4) € Define

dlSJ

XA = ((A1),...,&(Ag)) and PA = (n(A1),...,n(Aq),

where PA is a Poisson random vector with mean E[PA] = (M(A1),...,A(4y)). By
Theorem 1| with Z(® = ZA41 we obtain

+2A(4) Y E[Z

d
dy (XA, PA) SZ > gy

i=1 \ m;,EN}

Taking the supremum over all d-tuples of disjoint measurable sets concludes the proof. [

Let us now prove that the total variation distance is dominated by d,. Recall that
the total variation distance between two point processes £ and ¢ on X is defined as

dry(§,¢) = sup |P(¢ € B) —P(¢ € B)|. (4.12)

BeNk

The result is obtained by a monotone class Theorem, [41, Theorem 1.3], which is stated
hereafter as a lemma. A monotone class A is a collection of sets closed under monotone
limits, that is, for any Ay, As,... € A with A, T Aor A, | A, then A € A.
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Lemma 4.2.4. Let U be a set and let U be an algebra of subsets of U. Then, the
monotone class generated by U coincides with the o-field generated by U.

Proposition 4.2.5. Let & and ¢ be two point processes on X with finite intensity measure.
Then,

dTV(gv C) < dﬂ'(fv C)

Proof. Let us first introduce the set of finite counting measures
N> = {v € Nx : v(X) < oo},
with the trace o-field
Ng® = {BNNg>: B € Nx}.

As we are dealing with finite point processes, the total variation distance is equivalently
obtained if N is replaced by N in (4.12):

drv(¢,¢) = sup [P(§ € B)-P(Ce B)|.
BeNT>

Let P(Ng) denote the power set of Ng, that is, the collection of all subsets of Ng. For
any d € N and M € P(Ng) note that 157(-) € Lip?(1), therefore

dr(§,¢) =z sup [P(§ € U) —P(C € U)][, (4.13)
Ueld
with
U= {{u ENF®: (W(A1),...,v(A) e M} :deN, Ae Xk, M e P(Ng)} C NE™®.

It can be casily verified that U/ is an algebra and o(U) = Ng*°. Moreover, by (4.13)), U
is a subset of the monotone class

{UeNg=:|PEeU) P eU)| <dx(&Q)} -
Lemma [4.2.4] concludes the proof. O

In the last part of this section, we show that the distance d, is dominated by 2dxr
when the underlying space is locally compact second countable Hausdorff (lescH). Recall
that, a topological space is second countable if its topology has a countable basis, and
it is locally compact if every point has an open neighborhood whose topological closure
is compact. Suppose that X is lescH with Borel o-field X'. Recall that the Kantorovich-
Rubinstein distance between two point processes £ and ¢ on X with finite intensity
measure is given by

drr(&,¢) = sup [E[A(£)] — E[R(Q)]],
heL(1)

where £(1) is the set of all measurable functions h : Nx — R that are Lipschitz continuous
with respect to the total variation distance between measures

dTV,Nx(/Lv V) = :u)lz ‘:U*(A) - V(A)‘7 u, v € Nx,
€A,
p(A),v(A)<oco

and with Lipschitz constant bounded by 1. Since £ and ¢ take values in N§<§°°, we can
consider h to be defined on N§* by [43, Theorem 1].
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Lemma 4.2.6. Let £ and ( be two point processes with finite intensity measure on a
lescH space X with Borel o-field X. Then,

d7‘(‘(£7 C) < 2dKR(§7 C)

Proof. For g € Lip%(1) and disjoint sets Ay,...,Ag € X,d € N, define h : Ny — R by
h(v) = g(v(A1),...,v(Ag)). For finite point configurations v; and ve, we obtain

[h(v1) = ()| < lg(vi (A1), ..., 11(Aq)) — g(va(Ar), ..., va(Aa))|

d
< Z |v1(A;) — vo(Ay)| < 2drvNg (v, v2).
i=1
This implies h/2 € £(1). Hence |E[h(£)] — E[h({)]| < 2dkr(&, (). d

4.3 Applications

In this section, we discuss some applications of Theorem and Theorem We
study the multivariate Poisson approximation of the sum of m-dependent Bernoulli ran-
dom vectors, and we prove the analogues of [23, Theorem 3.7] and [22, Theorem 3.1] for
the metric d, in a slightly more general set up.

4.3.1 Sum of m-dependent Bernoulli random vectors

In this subsection, we consider a finite family of Bernoulli random vectors Y, ..., Y

and investigate the multivariate Poisson approximation of X = %", Y () in the Wasser-
stein distance. If the Bernoulli random vectors are i.i.d., then X has the so called multi-
nomial distribution. The multivariate Poisson approximation of the multinomial distri-
bution, and more generally of the sum of independent Bernoulli random vectors, has
already been tackled by many authors in terms of the total variation distance. Among
others, we refer the reader to [0, 24, 57, [59] and the survey [46]. Unlike the mentioned
papers, we assume that Y, ..., Y™ are m-dependent. Note that the case of sums
of 1-dependent random vectors has recently been treated in [25] using metrics that are
weaker than the total variation distance. To the best of our knowledge, this is the first
time the Poisson approximation of the sum of m-dependent Bernoulli random vectors is
investigated using the Wasserstein distance.

More precisely, for n € N, let YU ..., Y be Bernoulli random vectors with distri-
butions given by

]P’(Y(T):ej):pr,je[()alL r=1,...,n, j=1,...,d,

d
4.14
P(YD =0)=1-> p;€[01], r=1,...,n, -
j=1

where e; denotes the vector with entry 1 at position j and entry 0 otherwise. Assume
that Y, ..., Y™ are m-dependent for a given fixed m € Ny. This means that for
any two subsets S and T of {1,...,n} such that min(S) — max(7") > m, the collections
(Y®)),es and (Y®),er are independent. Define the random vector X = (X1,..., Xy)
as

X=> Y (4.15)
r=1
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Note that if Y(7")7 r=1,...,n, are i.i.d., then m = 0 and X has the multinomial distri-
bution. The mean vector of X is E[X]| = (A1,...,\q) with

n
N=Dprj j=1....d (4.16)
r=1

For k=1,...,n, let Q(k) be the quantity given by
Q(k) = E[1{Y® = e;}1{Y") = ¢;}].

max

re{l,...,n}: 1<|k—r|<m
ij=1,..,d

We now state the main result of this subsection.

Theorem 4.3.1. Let X be as in (4.15)), and let P = (P, ..., P;) be a Poisson random
vector with mean E[P] = (A1,...,\q) given by (4.16). Then,

n d i—1 n
dw (X, P) < ZZ [ Z Pri +22 Z Pr,j]pk,i + 2d(d + 1)mZQ(k)-
k=1

k=11i=1 “r=1,...,n, j=1r=1,...n,
[r—k|<m |r—k|<m

The proof of Theorem is obtained by applying Theorem In the one-
dimensional case, Equation corresponds to the condition required in Theorem
which establishes better Poisson approximation results than Theorem Then, for
the sum of dependent Bernoulli random variables, a sharper bound for the Wasserstein
distance than one in Theorem can be derived from the inequality in Theorem
3.1.3] while for the total variation distance, a better bound can be deduced from the
inequality in Theorem [3.1.3] [I, Theorem 1] and [68, Theorem 1]. As a consequence
of Theorem [4.3.1] we obtain the following result for the sum of independent Bernoulli
random vectors.

Corollary 4.3.2. Forn € N, let YO, Y™ be independent Bernoulli random vectors
with distribution given by , and let X be the random vector defined by . Let
P = (P1,...,P;) be a Poisson random vector with mean E[P] = (A1,...,Aq) given by
(4.16). Then,

n d 2
dw (X, P) < |:Zpkz:| :
k=1 - i=1
A sharper bound for the total variation distance than the one obtained by Corol-
lary is established in e.g. [57, Theorem 1].

Proof of Theorem[{.3.1. Without loss of generality we may assume that Ay,...,A\g > 0.
Define the random vectors

wh = wiy = Y YO,

r=1,...,n,
1<|r—k[<m

x® — (x® L xPy = x - y® —w),

fork=1,...,n. Letusfixi=1,...,d and ¢1; € Nf) with ¢; # 0. From straightforward
calculations it follows that

n
LP( Xy = liy) = EZ H{YW = e;}1{X1; = 1.5} (4.17)
k=1

=EY H{Y® =ep1{x{¥ + W = (01,6 - 1)},
k=1

58



Let H éi)z and qg?z be the quantities given by

qéi) = (P(X1 = b)) — Hy

L1
so that 4 '
GP(Xyi = 1) = HY +qi1.
Fori=1,...,d, let 7; be a random variable independent of (Y(’"))ﬁzl with distribution

Plri=k) =28 k=1 n.

Since Y), = 1,...,n, are m-dependent, the random vectors Y¥) = (Yl(k), . ,Yd(k))
and X*) are independent for all k = 1,...,n. Therefore

Zpkz glz 1a£ _1))

= Zpk,iP(Xl:i — Wl(lz) - Yl(;’;) = (l1:—1,4; — 1))
- AiP(Xlii - Wl(Tz) - Yl(:?) = (lr:i—1,4; — i))-

Then, by Theorem we obtain

i( e[ v s2n SB[ 1] 3 1)

Jj=1 €. ENg
£;#0

From (4.17)) and the definition of qé?l it follows that

lat) |<E21{Y(k’ =ei}

X ® — (0,0 - 1))} —1{x® (511171,&-—1)})
<ES 1YW = o1 (W £ 041 {xE + W = (61, 6i- 1)
+Ezn:1{Y( — e )W 2oy {x® = (01 1,6, — D)}

k=1

Thus, by the inequality I{W #0} < Z] 1 W , we obtain

> Il sy 1yt —engwl? #0)

el:iEN’(L) k=1
£;#0 . (4.19)
<IN 1Y® = e WP < 4mi Y Q(k)
k=1j=1 k=1
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Moreover, for any 7,7 = 1,...,d, we have

MEW 1y = AE DT 1Y) = e}

r=1,...,n,
|r—m;]<m
= meE Z 1{y" =e;j} = Z Dk,iPr,j-
r= 17 U k,T’Il,...JL
[r—k|<m |r—k|<m
Together with (4.18]) and (4.19)), this leads to
d i—1
w (X, P) <Z S ki +2>.0 0 > pripey +2d(d+ 1)m Q(k)
=1 k,r=1,...,n, i=1 j=1k,r=1,...,n, k=1
[r—k|<m |r—k|<m
n d i—1 n
59 S 1D DIFEEE) SID DIE NIRRT TR el
k=11i=1 “r=1,...,n, j=1lr=1,..n, k=1
[r—k|<m Ir—k|<m
which completes the proof. ]

4.3.2 Point processes with Papangelou intensity

Let € be a proper point process on a measurable space (X, X), that is, a point process
that can be written as { = )7, dx,, for some random elements X1, Xo,... in X and a
random variable 7 € Ny U {oco}. Recall that any Poisson process can be seen as a proper
point process, and that, by [38, Corollary 6.5], all locally finite point processes are proper
if (X, X) is a Borel space. The so-called reduced Campbell measure C of £ is defined on
the product space X x Nx by

C(A) =E /X 14, €\ {2}) de ()

for all A from the product o-field generated by X x Nx, where £\ {} denotes the point
process £ — 0, if x € £, and £ otherwise. Let v be a o-finite measure on (X, X) and let P¢
be the distribution of £ on (Nx, Nx). If C is absolutely continuous with respect to v x PP,
any density ¢ of C with respect to v x P¢ is called (a version of) the Papangelou intensity
of £. This notion was originally introduced by Papangelou in [4§]. In other words, ¢
is a Papangelou intensity of £ relative to the measure v if the Georgii-Nguyen—Zessin
equation

E /X u(a, €\ {w}) de(z) = /X Elc(x, )u(z, £)] dv(z) (4.20)

is satisfied for all measurable functions u : X x Nx — [0,00). Intuitively c¢(z,§) is a
random variable that measures the interaction between x and &; as a reinforcement of
this exposition, it is well-known that if ¢ is deterministic, that is, c¢(z,§) = f(x) for some
positive and measurable function f, then £ is a Poisson process with intensity measure

= [, f( , A € X, (see e.g. [38, Theorem 4.1]). For more details on this
1nterpretat10n we refer to [23] Section 4]. See also [37] and [64] for connections between
Papangelou intensity and Gibbs point processes. We show that for any proper point
process ¢ that admits Papangelou intensity c relative to a measure v, the d, distance

60



between £ and a Poisson process with finite intensity measure A, which is absolutely
continuous with respect to v, can be bounded by the distance in L'(v x P¢) between c
and the density of A. For a locally compact metric space, Theorem yields the same
bound as [23, Theorem 3.7], but for the metric d, instead of the Kantorovich-Rubinstein
distance. Observe that the inequality in Theorem follows with an additional factor
2 immediately from [23] Theorem 3.7] and Lemma m when the underlying space is a
locally compact metric space.

Theorem 4.3.3. Let & be a proper point process on X that admits Papangelou intensity
¢ with respect to a o-finite measure v such that [¢ Elc(z,§)|dv(z) < oo. Let n be a
Poisson process on X with finite intensity measure \ having density f with respect to v.
Then,

dn(en) < [ Bleta,§) = f(@)] dvla)
Proof of Theorem [4.3.3. The condition [y E|c(z,§)|dv(z) < oo and (4.20) ensure that
¢ has finite intensity measure. Consider ¢ € N and (Ay,...,4;) € insj. Hereafter,
€(Ay.;) is shorthand notation for (£(A1),...,&(A;)). The idea of the proof is to apply
Theorem with the random vectors Z41 assumed to be 0. In this case,
q;ilffi = miP(§(A1:) = ma) — MADP(E(Arq) = (mazi—1,m; — 1))
= m;P(&(Ar) = muy) — / E[f(2)14,(2)1{&(A1) = (m1:im1, m; — 1)} dv()
X
for my.; € Nj with m; #0,i=1,...,d. It follows from (4.20) that
miP(£(Arq) = may) = E/ 1, (@) H{E\ {z} (A1) = (mai—1,m; — 1)} dé()
X
= / E[c(x,ﬁ)lAi(az)l{f(Alzi) = (Mmyy—1,m; — 1)}] dv(x).
X
Hence
Gt = /XE[(C(%O — f(2))1a;(2)1{E(Ar) = (mazi—1,m; — 1)}]dv ().

By Theorem we obtain

d
dr(&m) < sup T3 e

d : ;
(A1, Ag)EX G dEN =1 my.;€ENg

m;#0

Furthermore, the inequalities

o ot

< Y[ Bl 6) - f@a @A) = (mriea,mi = 1) dv(o)

TS S
< /X Ele(@,€) = f@)[1a@) > H(Aw) = (myio1,mi — D} dv(z)
i

< /X E[le(z,€) — f()[1,(2)]dv(z)
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imply that

d
E A1
Z {qmlzi
=1 my.;eN

0
m;#0

for any A4 € X(fisj with d € N. Thus, we obtain the assertion. ]

< /X E|c(z,€) — f(z)] dv(z)

4.3.3 Point processes of Poisson U-statistic structure

Let (X, X) and (Y,)) be measurable spaces. For £ € N and a symmetric domain D € X,
let g : D — Y be a symmetric measurable function, i.e., for any (z1,...,z¢) € D and any
index permutation o, g(z1,...,2¢) = 9(T(1),--->Ts(e))- Let n be a Poisson process on
X with finite intensity measure L. We are interested in the point process on Y given by

1
E=% D e (4.21)

(xl,...,xg)eniﬂD

where for any ¢ = > ,.; 0., € Nx with I at most countable, Ci denotes the collection
of all ¢-tuples (x1,...,z,) of points from ¢ with pairwise distinct indexes. The point
process & has a Poisson U-statistic structure in the sense that, for any B € Y, £(B) is a
Poisson U-statistic. In Subsections[3.3.1and we studied the Poisson approximation
of U-statistics. Hereafter we discuss the Poisson process approximation in the metric d,
for the point process {. We prove the exact analogue of [22, Theorem 3.1], with the
Kantorovich-Rubinstein distance replaced by d,. Several applications of this result are
presented in [22], alongside with the case of underlying binomial point processes. It
is worth mentioning that [22] relies on a slightly less general setup: X is assumed to
be a locally compact second countable Hausdorff space (lcscH), while in the present
work any measurable space is allowed. Observe that, when X is lcscH, the inequality in
Theorem follows with an additional factor 2 immediately from [22, Theorem 3.1]
and Lemma [4.2.6l

Let A denote the intensity measure of £, and note that, since L is a finite measure on
X, then A(Y) < oo by the multivariate Mecke formula. Define

2

R = max / </ 1{(x1,...,2¢) € D}dL" (2441, ... ,xg)) dL'(z1,. .., 2;)
1<i<l-1 Jxi Xt

for £ > 2, and put R = 0 for £ = 1. The expression R is used to quantify the accuracy

of the Poisson process approximation of £, and corresponds to the quantity r given

in Subsection for h = 1{(z1,...,2¢) € D}, which is used to study the Poisson

approximation of Poisson U-statistics.

Theorem 4.3.4. Let &, A and R be as above, and let v be a Poisson process on Y with

intensity measure \. Then,
{41

2
dw(faV) < TR-

If the intensity measure A of £ is the zero measure, then the proof of Theorem is
trivial. From now on, we assume 0 < A(Y) < co. The multivariate Mecke formula yields
for every A € ) that

AA) =B = 3B Y 1) € 4} = 57 [ 1o € AP )

xEniﬂD
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Define for A(A) > 0 the random element X* = (X{,..., X/) in X’ independent of 7
and distributed according to

P(X* e B) = ml(A) /D 1{g(x) € A}1{x € B} dL (x)

for B from the product o-field generated by X*, and put X4 = zq € X for A(A) = 0. For
any vector X = (x1,...,2¢) € X¢, denote by A(x) the sum of ¢ Dirac measures located
by the vector components, that is

A(x) = Az, zq0) = Zax

In What follows, for any point process ¢ on X, f (C) is the point process defined as in

with 7 replaced by (. As in Section 2, £(A1.;) denotes the random vector
(5( ) . E(Ay)) for all Ay, ... A; Gy,zeN.

Proof of Theorem [{.5.4. For ¢ =1, Theorem is a direct consequence of [38, Theo-
rem 5.1]. Whence, we assume ¢ > 2. Let A;,..., A; € Y with ¢ € N be disjoint sets and
let mq.; € Né with m; # 0. Suppose A(4;) > 0. The multivariate Mecke formula implies
that

miP(§(Ar:) = ma.) = %E > 1{g(x) € A}1{E(Ari) = mu)
xent,ND
1 ’ ‘
= 5 [ 1660 € AJP(El+ AGO)(Ar) = m1) AL (x)

— 1 ]| 1ox) € AP (€01-+ A00) (A1) — Gy () = (mrica, s — 1)) a3

— )\(Az) (f (?7 + A (XAZ)) (Alzi) — 5g(xAi)(A11i) = (ml;i_l,mi — 1)) ,
(4.22)

where the second last inequality holds true because dy(x)(A1:;) is the vector (0,...,0,1) €
Y when g(x) € A;. The previous identity is verified also if A(4;) = 0. Hence, for

ZA = ¢ (n+A (XAZ')) (A1) — £(Ar) — 59(XAi)(A1¢i) ’

the quantity qu i defined by Equation (4.7) in Theorem is zero. Note that ZA1
has non—negatlve components. Therefore for any (Aj,..., Ay) € X(ﬁsj with d € N,

d i
1= M4A)) E {5 (n+ A (X%)) (4)) - &(4)) - 5g(xAi)(Aj)}

i=1 j=1 i=1 j=1

d
< DO MAJE [€ (n+A (X)) (¥) = §(¥) - 1]



Thus, Theorem establishes
de(€,7) < 2AV)E [¢ (n+ 4 (X)) (V) - &(¥) — 1] . (4:23)
From (4.22)) with i = 1 and A; =Y, it follows that the random variable 5(77+A (XY) )(Y)

is the size bias coupling of £(Y). Property (4.6) with f being the identity function and
simple algebraic computations yield

E[¢(n+ A (X¥)) (V) =€) = 1] = M0 H{E[EW)?] = A¥)2 = A(¥)}

(4.24)
= A(Y) ™ {Var(§(Y)) = A(Y)}
Moreover, [55, Lemma 3.5] gives
/-1
1(¢ 26— 1
vare(r) A0 £ 35 (1) rs TR
Combining these inequalities with (4.23]) and (4.24]) concludes the proof. O
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Chapter 5

Criteria for Poisson process
convergence

This chapter is a slightly modified and adjusted version of the following preprint article
jointly written with Matthias Schulte:

F. Pianoforte and M. Schulte. Criteria for Poisson process convergence with applications
to inhomogeneous Poisson-Voronoi tessellations. arXiv:2101.07739, 2021.

Abstract. In this chapter, we employ the relation between probabilities of two consecu-
tive values of a Poisson random variable to derive conditions for the weak convergence
of locally finite point processes to a Poisson process. As applications, we consider the
starting points of k-runs in a sequence of Bernoulli random variables and point processes
constructed using inradii and circumscribed radii of inhomogeneous Poisson-Voronoi tes-
sellations.

Acknowledgments. The research was supported by the Swiss National Science Foun-
dation Grant No. 200021_175584. We would like to thank two anonymous referees for
valuable hints and comments.

5.1 Introduction and main results
Let X be a random variable taking values in Ny and let A > 0. It is well-known that
EP(X =k)=)P(X=k—-1), keN, (5.1)

if and only if X follows a Poisson distribution with parameter A. We use this observation
to establish weak convergence to a Poisson process. Indeed, we will prove that a tight
sequence of locally finite point processes &,, n € N, satisfies

lim kP(&,(B) = k) — A(B)P(&(B) =k—1)=0, keN,

n—oo
for any B in a certain family of sets and some locally finite measure A, if and only if &,
converges in distribution to a Poisson process with intensity measure A. Many different
methods to investigate Poisson process convergence are available in the literature; we refer

to surveys and classical results [33] [45] [46]. Using Stein’s method, one can even derive
quantitative bounds for the Poisson process approximation; see Chapter [4] and e.g. [2, [
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7, 10, 17, [18], 22}, [47), 62} [63], [71] and the references therein. In contrast to these results, the
findings in this chapter are purely qualitative and do not provide rates of convergence,
but they have the advantage that the underlying conditions are easy to verify. This
is demonstrated in Sections [5.3.2] and [5.3.3] where weak convergence of locally point
processes constructed using inradii and circumscribed radii of inhomogeneous Poisson-
Voronoi tessellations is established.

The proof of our abstract criterion for Poisson process convergence relies on characte-
rizations of locally finite point process convergence from Subsection [2.2.2] and the cha-
racterizing equation for the Poisson distribution.

Let us now give a precise formulation of our results. Let S be a locally compact second
countable Hausdorff space (lcscH space) with Borel o-field S. Recall that, a non-empty
class U of subsets of S is called a ring if it is closed under finite unions and intersections,
and under proper differences. Let S denote the class of relatively compact Borel sets of
S. We say that a measure A on S is non-atomic if A({z}) = 0 for all z € S, and we define

Sy={B €S : \OB) =0},

where 0B indicates the boundary of B.
Our first main result provides a characterization of weak convergence to a Poisson
process.

Theorem 5.1.1. Let &,, n € N, be a sequence of locally finite point processes, and let A
be a non-atomic locally finite measure on S. Let U C Sy be a ring containing a countable
topological basis of S. Then the following statements are equivalent:

(i) For all open sets B €U and k € N, £,(B), n € N, is tight and

lim kP(¢y(B) = k) — A(B)P(&.(B) = k — 1) = 0. (5.2)

n—o0

(ii) &n, n € N, converges in distribution to a Poisson process with intensity measure \.

Remark 5.1.2. Note that the sequence &,(B), n € N, in Theorem is tight by the
Markov inequality if E[&,(B)] — \(B).

Remark 5.1.3. For a point process o, the function f: S x N(S) — [0,00) defined as

f(@, ) = 1p(x)1{pu(B) = k} (5.3)
with k € N and B € U satisfies

EY f(r,0) - /S E[f(x, 0+ 6.)]dA(z) = kP(o(B) = k) — A(B)P(o(B) = k — 1). (5.4)

Syl

By the Mecke formula, the left-hand side of equals zero for all integrable functions
f S xN(S) = R, if and only if 0 is a Poisson process with intensity measure \ (see
Proposition m Theorem shows that, if we replace o0 by &,, n € N, satisfying a
tightness assumption, then the left-hand side of vanishes as n — oo for all f of the
form if and only if &,, n € N, converges weakly to a Poisson process with intensity
measure \.

Next we apply Theorem to investigate point processes on S that are constructed
from an underlying Poisson or binomial point process on a measurable space (Y,)). For
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t > 1 let 1, be a Poisson process on Y with a o-finite intensity measure P;, while 3, is a
binomial point process of n € N independent points in Y which are distributed according
to a probability measure ),,. For a family of measurable functions h; : V; x Ny — S
with V; € Y, t > 1, we are interested in the point processes

Z 5ht(.’£,7]t)? t>1, and Z 5hn(x,5n)7 n € N.
zeNNVy z€LRNVy,

In order to deal with both situations simultaneously, we introduce a joint notation. In
the sequel, we study the point processes

& = Z Sgr(wc)r =1, (5.5)

ze(NU

where (¢ = nt, g+ = hy and Uy = V; in the Poisson case, while (¢ = (|4, g+ = h|;) and
Ut = V|4 in the binomial case. We assume

P(&(B) <oo)=1 forall BES

so that & is locally finite. Let M; be the intensity measure of &. By K; we denote the
intensity measure of (;, i.e. Ky = P if ¢, = n; and Ky = [t] Q) if (¢ = B|y). Moreover,
we define C} = 1; in the Poisson case and (} = B|¢)—1 in the binomial case. From Theorem
we derive the following criterion for convergence of &, t > 1, to a Poisson process.

Theorem 5.1.4. Let &,t > 1, be a family of locally finite point processes on S given
by (5.5) and let M be a non-atomic locally finite measure on S. Fix any ring U C Sy
containing a countable topological basis, and assume that

lim M;(B) = M(B) (5.6)

t—o00

for all open sets B € U. Then,

lm /U E[1{gi(, G +0.) € B1{ yegw O wirran(B) = m}| dKi(a) 5.7
— M(B)P(&(B) =m) =0

for all open sets B € U and m € Ny, if and only if &,t > 1, converges weakly to a Poisson
process with intensity measure M.

Remark 5.1.5. One is often interested in Poisson process convergence for S = R?,
d > 1, and for the situation that the intensity measure of the Poisson process is absolutely
continuous (with respect to the Lebesgue measure). In this case, we can apply Theorem
and Theorem in the following way. The family R% of sets in R? that are finite
unions of Cartesian products of bounded intervals is a ring contained in the relatively
compact sets of RY. For any absolutely continuous measure the boundaries of sets from
R? have zero measure. By I% we denote the subset of open sets of R, which contains a
countable topological basis of RY. Note that the sets of I are finite unions of Cartesian
products of bounded open intervals. Thus, we prove weak convergence for sequences of
locally finite point processes on R® to Poisson processes with absolutely continuous locally

finite intensity measures by showing (5.2) or (5.6) and (5.7) for all sets from I¢. For
d =1 we use the convention T = T".
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Theorem says that in order to establish Poisson process convergence for point
processes of the form (/5.5)), one has to deal with the dependence between

1{gi(x,(; +6,) € B} and 1{ Z 1{g:(y,{, +6,) € B} = m}

ye&nNU;

We say that a statistic is locally dependent if its value at a given point depends only on
a local and deterministic neighborhood. That is, for any fixed x € Y and B € U, there
exists a set A;, € YV with x € A, such that

1{gi(z,{ +0,) € B} = l{gt(fﬂa&tMt,w +6,) € B}, (5.8)

where 1|4 denotes the restriction of a measure p to a set A. For further notions of local
dependence in the context of point processes we refer to [7, 17, 18]. Next we describe

heuristically how (5.8) can be applied to show ([5.7)) in Theorem for ¢; = n, if

{ ¥ @ =mi~1{ Y g B =m}  (59)

yenNUy yenNAf ,NU;

for x € Y, where A° denotes the complement of A C Y, and where by &~ we mean that,
as t increases to infinity, the two indicator functions have the same limit behavior. Under
the assumption (5.8]), the integral in (5.7)) coincides with

| B[ttt s +8) € B Y dunron(B) =m}|dKi@). (510)
Ut yen:NUt
By (5.9), the last expression can be approximated by

/UtJE[l{gt(:C,nt|Am+5x)€B}1{ > Gutmla ) (B) = mf|dKi@). (5.11)

IS ﬁA;zﬂUt

Due to the independence of 1|4, , and 7|4 , this can be rewritten as

/ P( Z 59t(y»77t‘A§ )(B) = ’I’)’L)E[]_{gt(l',ntb;t’w =+ 5:v) € B}] th(.ZU) (512)
Ut yentﬂAaxﬂUt *

Using once more (5.8)) and ([5.9)), the previous term can be approximated by

P(¢(B) = m) /U E[1{gs(,m + 6,) € BYdy(x) = P(&(B) = m)M(B),  (5.13)

where the last equality follows from the Mecke formula. Consequently, the expression on
the left-hand side of becomes small if the approximation in is good.

We believe that, under the assumption , condition is similar to the ones
from [62, Theorem 2.1]. For example, suppose S = R,Y = R with d € N, and assume
for any fixed B = (u,v) C R with u < v € R that there exists r(¢) > 0 such that (t) — 0
as t — oo, and

Ay Cx+rt)[-1,1)%, zecU cRL (5.14)
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Then, verifying that the approximation in (5.9)) is good (in the sense that the steps above
are correct) is almost equivalent to consider

N(t)

gt (u,) Z Z 6 :Em)l{gt(x 77t u v }_ Zgl’

=1 IEUtQUZt

where P, = {U},i = 1,...,N(t)} is a partition of U; of d-dimensional cubes of side
length r(t) (here we are not considering technical issues related to the existence of such
partition), and to prove that

N(t)
Hy+ Hy+ Hs:=>» P(&(Uy) >2) +ZZ () = 1)P(E(y) > 1)
i=1 =1 jely
+ZZ (EUy) = 1,6(Uy) > 1)
=1 jel'y

vanishes as ¢ — oo, where for each ¢, I'] consists of the indexes of the sets in P; surround-
ing U!. Indeed, if H; is small,

1{&(B) > 1} = &(B)

for all i = 1,..., N(t), and hence, by the Mecke formula, P(£/(B) > 1, E;(B) > 1) can be
approximated by

/t E[1{g:(z, ] 4., +62) € BYLH{E(ne + 6,)(B) = 1}]d Ky (=)

U;

for ¢ # j, where f;-(m + ) is defined as :f; with n; replaced by n; + d. Now, since for
each x € U!, gi(x,m;) € (u,v) depends only on the points of n; in Uf + r(t)[—1,1]%, &
is independent of all f;- except of the ones corresponding to the sets U! surrounding Uf.
Therefore, we obtain that the difference between ([5.10) and (5.11]) can be estimated by

N(t)

S [ Bl 02 € BRIE G+ 3)(0) > D]akia)
N(t)

+Y Z/ [1{ge(x,mel 4., + 62) € BYL{E (e + 02) (Ur) > 1}]dEy ()
=1 jel}

which corresponds approximately to Hy + H3 By similar arguments, one can use H;
and Hy to estimate the difference between and (| -

The previous quantities, Hy, Hy and Hg, correspond to the first and third sums on
the right-hand side of the inequality in [62, Theorem 2.1]. Since &! is independent of
all &% except of the ones corresponding to the sets U} surrounding U, the third and the
fourth quantities on the right-hand side of the inequality in [62, Theorem 2.1] are zero.
Then, under the assumptions and , one may try to apply [62], Theorem 2.1]
to prove Poisson process convergence of &, which unlike Theorem provides also an
estimate for the accuracy of the approximation. However, the reader should notice that
the discussion below Remark concerning possible situations for which Theorem
can be applied, also holds when the sets A; .,z € X, do not satisfy , while,
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Figure 5.1: Triangles orientation.

=11 0

(—1,0) 0,0) (1,0)

since [62, Theorem 2.1] is based on a discretization argument, it may not be applicable
without this hypothesis. For instance, if &,¢ > 1, is a family of point processes on
S with Papangelou intensity c;(x, &) (see Subsection for the definition), one can
obtain from Theorem and a simple modification of the proof of Theorem [£.3.3] that
& converges weakly to a Poisson process, if ¢;(z,&;) converges in L' to a deterministic
function as ¢ — oo. Hence, Theorem permits the derivation of the qualitative
version of Theorem while showing this result using [62, Theorem 2.1] may not
be possible. Furthermore, Theorem [5.1.4| can also be applied when the point processes
&,t > 1, defined by have an underlying binomial point process, and for these, the
fourth and fifth expressions on the right-hand side of the inequality in [62, Theorem 2.1]
are not zero. Let us now consider an example where Theorem can be easily applied
to prove Poisson convergence, whereas it is unclear how to employ [62, Theorem 2.1] to
establish the same result.

Example 5.1.6. Let D C R? be the open disk centered at (0,0) with radius 1, and let
W = {Dn(0,1)2} U{(-1,0) x (0,1)}. For any fived x € W, let A, be an isosceles
triangle with x as the verter that connects two sides of equal length. We denote by b,
the side of A, that does not have x as vertex. For x € W N (0,1)2, we assume that b,
has length ||z||> and height 72/(2||z||), where || - || denotes the Euclidean norm, and we
consider Ay such that the angle between the vector e; = (1,0) and

w(z) == argmin {||z —y|| : y € by} —x

is equal to the angle between ey and x, which we denote by 0, € (0,7/2). For x = (a,b) €
(—=1,0) x (0,1), we assume that b, has length |a|> and height 4/|a|, and that the angle
between e1 and w(x) is 0. Under the previous assumptions, A, is uniquely determined
for all x € W (see Figure 5.1). Let Ao be the Lebesgue measure on R%. Since \a(A;)
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Figure 5.2: Geometrical interpretation of Example 5.1.6.

(-11) (0,1)

3lal?|

(=1,0) (a,0) (0,0 r,0) (1,0)

equals m2||z||*/4 for x € DN (0,1)%, and 4|a|?® for x = (a,b) € (—1,0) x (0,1), it can be
easily verified that

M({zeW : VX(Ay) €(0,0)}) =a, acl0,1]. (5.15)

Let z € W be fized. For each circle C' centered at the origin with radius r < 1, the set
of all w € CN{W N (0,1)?} with z € A, is an arc of length bounded by s||z||> for some
s > 0 independent of C' (see Figure 5.2). Moreover, for any a € (—1,0), the length of
{be(0,1) : z€ Ay} is bounded by 3lal*. Therefore

hm tho({zeW : /A (0,a/t),z € Ag})
= lim t[)\g({x eWn(0,1)? : 7lz2/2 < a/t,z € A})

+ 2o = (@) € Wn{(=1,0)x (0,1)} : 2la < a/t,z € A} 10

2%/ (nt) 0
< lim t[/ sr6dr+/ 3|a]3da] =0
t—00 0 —a/(2t)

for all @« > 0 and z € W. Let 1y be a Poisson process on R? with intensity measure
tho,t > 0. Define gi(z,m) = V/A2(Az) if ni(Ay) = 0, and 0 otherwise. Consider the
point process on (0,00) given by

D g Litge (@, m) > 0},

zeNNW
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and observe that

Hgi(z,m + 62) € B} = 1{ge(z,nela, + 02) € B} = 1{n:(Az) = 0,t3/X2(A;) € B}
(5.17)

for any B C (0,00) and x € W. In this example it is not possible to define a square
r(t)[-1,1)% for some r(t) > 0,7(t) — 0 as t — oo, such that is satisfied for
all © € W, because the triangles A, become thinner and longer as we approach the
origin, and rotate along the circles for x € D N (0,1)2, while they are horizontal for
x € (—1,0) x (0,1). For this reason, showing that & converges weakly to a Poisson
process as t — 0o by applying [62, Theorem 2.1] may be complicated. On the other hand,
one can derive this result from Theorem in a simple way. Indeed, from the Mecke
formula and the assumptions on A,, we have for all finite unions of open and bounded
intervals B C (0, 00),

Jlim E[&(B)] = lim t/W P(ni(Az) = 0)1{t\/A2(A;) € B}dz

—00
= lim t/ 1{t\/X2(A;) € B}da,
t—o00 w

where we used that Mo(Az) < (sup(B)/t)? for t\/Aa(A,) € B in the last step. From
(5.15)) it follows that the previous limit equals the Lebesgue measure of B. Moreover, the
independence of n¢|a, and ni|ac and (5.17) imply for all m € Ng that

tli)n& t/WE[l{gt(x,m—{—é GB}I{ Z Oge(ymits) (B) = m}]daj
yenNWw
— X(B)P(&(B) = m)

= lim t/ 1{t\/X2(A;) € B}P (77t Z 5gt(y,nt|Ag+5x)(B) :m>d:L"

t—o00
yemﬂWﬂAg

— Xa(B)P(&(B) = m)
= lim t/ 1{t\/A2(Az) € B}P(n:(Az) = 0)

<P Sumiag +(B) = m)dz = Aa(B)P(&(B) = m)

yENNWNAS
= tliglo t/W 1{t\/X2(A;) € B}

. [P( S Gntumlsg e (B) = m) — B(&(B) = mﬂ dr,

yenNWNAS

where we used that M\a(Az) < (sup(B)/t)? for t\/A2(A,) € B in the last step. The
right-hand side is bounded by

Jim t/l{t\/r}[ ) > 0)+B(n({y € W:ty/ha(A,) € B.we 8,))> 0)]a.

By applying the Markov inequality and the Mecke formula, and using the bound for Aa(A,)
and , we obtain that the previous limit equals 0. Therefore, from Theorem and
Remark[5.1.7] it follows that & converges weakly to a Poisson process with the restriction
of the Lebesque measure to (0,00) as the intensity measure.
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In Section [5.3] we provide further examples for applying our abstract main results
Theorem and Theorem Our first example in Subsection [5.3.1] are k-runs, i.e.
at least k successes in a row in a sequence of Bernoulli random variables. For the situation
that the success probabilities converge to zero, we show that the rescaled starting points
of the k-runs behave like a Poisson process if some independence assumptions on the
underlying Bernoulli random variables are satisfied.

As the second and third example, we consider statistics related to inradii and cir-
cumscribed radii of inhomogeneous Poisson-Voronoi tessellations. We study the Voronoi
tessellation generated by a Poisson process 7;, t > 0, on R? with intensity measure t,
where p is a locally finite and absolutely continuous measure with density f. In Subsec-
tion for any cell with the nucleus in a compact set, we take the y-measure of the
ball centered at the nucleus and with twice the inradius as the radius. We prove that the
point process formed by these statistics converges in distribution after a transformation
depending on ¢ to a Poisson process as t — oo under some minor assumptions on the
density f. Our transformation allows us to describe the behavior of the balls with large
p-measures. In Subsection [5.3.3] we consider for each cell with the nucleus in a compact
convex set the p-measure of the ball around the nucleus with the circumscribed radius
as radius and establish, after rescaling with a power of ¢, convergence in distribution to
a Poisson process for t — oco. This result requires continuity of f, but under weaker
assumptions on f, we provide lower and upper bounds for the tail distribution of the
minimal pu-measure of these balls having the circumscribed radii as radii.

In [I5], the limiting distributions of the maximal inradius and the minimal circum-
scribed radius of a stationary Poisson-Voronoi tessellation were derived. In our work,
we extend these results in two directions. First, our findings imply Poisson process
convergence of the transformed inradii and circumscribed radii for the stationary case.
This implies the mentioned results from [I5] and allows to deal with the m-th largest
(or smallest) value or combinations of several order statistics. Second, we deal with
inhomogeneous Poisson-Voronoi tessellations. In Subsections and Poisson ap-
proximation results for the minimal circumscribed radius and the maximal inradius for
the stationary case are established, while in [I9] some general results for the extremes of
stationary tessellations were deduced. For stationary Poisson-Voronoi tessellations the
convergence of the nuclei of extreme cells to a compound Poisson process was studied in
[20].

As our Theorem deals with underlying Poisson and binomial point processes,
we expect that one can extend our results on inradii and circumscribed radii of Poisson-
Voronoi tessellations to Voronoi tessellations constructed from an underlying binomial
point process.

Before we discuss our applications in Section [5.3] we prove our main results in the
next section.

5.2 Proofs of the results of Section [5.1]

Let S be a locally compact second countableAHausdorff space, which is abbreviated as
lescH space. Recall that a family of sets C C S is called dissecting if

(i) every open set G C S can be written as a countable union of sets in C,
(ii) every relatively compact set B € S is covered by finitely many sets in C.

Lemma 5.2.1. A countable topological basis T of S is dissecting.
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Proof. By the definition of a countable topological basis 7 has property (i) of a dissecting
family of sets. Since, for any B € S, Ure7T = S O B, the compactness of B implies
that (ii) is satisfied. O

Let us now state a consequence of Proposition [2.2.10| and Proposition [2.2.11] This

result will be used in the proof of Theorem We write % to denote convergence in
distribution.

Lemma 5.2.2. Let &,,n € N, be a sequence of locally finite point processes on S, and
let v be a Poisson process on S with a non-atomic locally finite intensity measure A. Let
Uuc §A be a ring containing a countable topological basis. Then the following statements
are equivalent:

(i) &n 4, -
(ii) &n(B) 4 ~v(B) for all open sets B € U.

Proof. Observe that [38, Theorem 3.6] ensures the existence of a Poisson process v with
intensity measure A. Since A has no atoms, from Lemma it follows that ~ is a
simple point process (i.e. P(y({z}) <1 for all x € §) = 1). Elementary arguments also
yield Sy = {B € 8 : v(0B) = 0 as.} = ‘SA’W, and it follows from Lemma that U is
dissecting.

By Proposition we obtain that (¢) implies (i7).

Conversely, if &, (U) 4 ¢(U) for all U € U, the desired result follows from Proposition
whose conditions are satisfied with U as dissecting ring. Thus, it is enough to
show that (i) implies &,(U) 4 EWU) for all U e U.

For any U € U there exists a sequence of open sets A;,j € N, such that

U C A]', Aj+1 C A]’ and U = ijNAj'

Since U contains a countable topological basis, for any A; one can find a countable family
of open sets B(]),E € N, in U such that UgeNBé]) = A;. In particular, they cover the

Z .
compact set U. So there exists a finite subcover of elements from Béj ),K € N, that covers

U. Since U is a ring, the union of the elements belonging to this subcover of U is in U for
each j € N. Because U is closed under finite intersections, we can make this family of sets
from U that contain U monotonously decreasing in j. Thus, without loss of generality,
we may assume A; € U for all j € N.

Since U is a ring and contains a countable topological basis, for the interior int(U) of
U there exists a sequence of open sets B; € U, j € N, such that

Bj cU, Bj - Bj+1 and int(U) = UjENBj.
For a fixed m € N, we have that

P(&n(Bj) =2 m) <P(§(U) = m) < P(6n(Aj) = m)

for all n € N. By &,(U") 4 ~v(U") for all open sets U" € U, we obtain

P()(B;) > m) < liminf P, (U) > m) < limsup P& (U) > m) < P(1(4;) > m).
(5.18)
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Moreover, from U € Sy, whence A(QU) = 0, it follows that A(Bj) = X(int(U)) = A(U)
and A(A4;) = A({U) = A(U) as j — oo. Thus, letting j — oo in (5.18)) and using that
is a Poisson process lead to

lim P(6,(U) > m) = B((U) = m).

n—00 -

This establishes &, (U) LN ¢(U) and concludes the proof. O
We are now in the position to prove the first main result of Section [5.1

Proof of Theorem[5.1.1] Let us show (i) implies (i7). By Lemma it is enough to

prove that &,(B) LN ~v(B) for all open sets B € U. Since P({,(B) = 0), n € N, is

a bounded sequence in [0, 1], there exists a subsequence such that lim P(§,,(B) = 0)
j—oo

exists; then repeated applications of (5.2)) yield for k € N that

k
lim P(¢,,(B) = k) = AB) i P(¢,, (B) = 0). (5.19)

Jj—o0 k! Jj—o0

Consequently we have for any N € N,

N
> lim P(¢,(B) = k) = lim P(&,(B) € {0,..., N})
kzoj%oo J—00
=1— lim P(&,(B) € {N+1,N+2,...}).
j—00

By tightness of &,,(B), j € N, the right-hand side of the equation converges to 1 as
N — o0 so that

> lim P(&,(B) = k) = 1.
J—00
keNp
Thus, from (5.19) we deduce lim P({,;(B) = 0) = e B) Together with (5.19), this
Jj—o00

proves that
lim P(gnj (B) =k) = )\(B) e MPB)

Jj—o0 k!
for all £ € Ny. In conclusion, since for any subsequence (ny)een there exists a further
subsequence (ng, )ien such that P(&,, (B) = 0), i € N, converges to e MPB) | we obtain

lim P(6,(B) = k) = 2B) 2)

for all k € Ny. The result follows by applying Lemma [5.2.2
Conversely, let us assume &, LN ~ for some Poisson process v with intensity measure

A. It follows from Lemma that, for any open set B € U, &,(B) 4 v(B) so that
&n(B),n € N, is tight and

0= kB(v(B) = k) ~ A(B)B((B) = k — 1)
= lim kP(6(B) = k) — AB)B(x(B) = k — 1)

n—00

for k € N, which shows (7). O

Finally, we derive Theorem from Theorem [5.1.1
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Proof of Theorem [5.1.7) By (5.6) and the Markov inequality we deduce that & (B),t > 1,
is tight for all open B € U. Let f: S x N(S) — [0,00) be the function given by

f(x, 1) = 1p(z)1{u(B) = k}

for k € Nand B € U. Then, by applying the Mecke equation (if ; = 7;) and the identity

E ) u(x,B) —n/yE[u(m,Bn1+6x)}dQn(x)

xeﬁn

for any measurable function u : ¥ x Ny — [0, 00) (if ¢ = 8|;]), we obtain

FP(&(B) = k) =EY_ f(z&) =E > flgi(x, ), &(G))

z€& ze(:NUt
_/ E[l{gt(:r,ft—i—d eBI{ S 6, (B) = k- 1}|dKi(a).
ve yelnUy

Thus, Theorem yields the equivalence between ([5.7)) and the convergence in distri-
bution of &,t > 1, to a Poisson process with intensity measure M. ]

5.3 Applications

All our examples throughout this section concern locally finite point processes on R.
These are constructed from the starting points of the k-runs in a sequence of Bernoulli
random variables, and from circumscribed radii or inradii of an inhomogeneous Poisson-
Voronoi tessellation. We show the Poisson convergence of these point processes using
our general criteria Theorem and Theorem By Remark it is sufficient
for the convergence of such point processes to a Poisson process on R with absolutely
continuous locally finite intensity measure to show or and for all sets
from Z, i.e. for all finite unions of open and bounded intervals.

5.3.1 k-runs in a sequence of Bernoulli random variables

Consider a sequence of Bernoulli random variables. A k-head run is defined as an unin-
terrupted sequence of k successes, where k is a positive integer. In Subsection we
derived Poisson approximation results for the number of k-runs in a sequence of n i.i.d.
Bernoulli random variables. Here, we are interested on the limiting behavior of the point
process constructed from the starting points of the k-runs in a sequence of Bernoulli
random variables. Let the starting point of a k-head run be the index of its first success.
Our goal is to find explicit conditions under which the point process of rescaled starting
points of the k-head runs converges weakly to a Poisson process. Our investigation relies
on two assumptions: the probability of having a k-head run is the same for all k con-
secutive elements of the sequence, and the Bernoulli random variables are independent
if far away. We will see that if these conditions are satisfied and if the probability of
having a k-head run goes to 0 slower than the probability of having a k-head run with
at least another k-head run nearby, then the aforementioned point process converges in
distribution to a Poisson process.

Let us now give a precise formulation of our result. Let X Z-(n), 1,m € N, be an array
of Bernoulli distributed random variables and let k¥ € N. Assume that there exists a
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function f : N — N such that for all ¢,n € N the random variable Xén) is independent
of {Xén) tlg — 4| > f(n), £ € N} and that

o =P(XV =1, XD =1)>0
does not depend on ¢. If Xi("), i € N, are i.i.d. for n € N, then y, = pF with p, :=
P(an) = 1). Define

™ —1{x™ =1, x" =1}, ieN

Let &, be the point process of the k-head runs for Xi(n),i € N, that is

&= 15, (5.20)
=1

For any ig € N, let
(n) _ (n)
VVio - Z Ij ’

JEN:1<|j—io| < f(n)+k—2

We denote by A; the restriction of the Lebesgue measure to [0, 00).

Theorem 5.3.1. Let &,, n € N, be the sequence of point processes given by (5.20)).
Assume that f(n)y, — 0 and that

lim sup y, 'E[1"1{W™ > 0}] = 0. (5.21)

n—oo i€N
Then &, converges weakly to a Poisson process with intensity measure A1.

For underlying independent Bernoulli random variables, the Poisson approximation of
the random variable &,((0,u)), u > 0, is considered in Subsection [3.3.4and [2, 10} 27, 35],
and the Poisson process convergence follows from the results of [2]. Quantitative bounds
for the Poisson process approximation of 2-runs in the i.i.d. case were derived in [63,
Proposition 3.C| and [71, Theorem 6.3]; see also [I7, Subsection 3.5], where the Poisson
process approximation for the more general problem of counting rare words is considered.

As a consequence of Theorem we can study the limiting distribution of

T, =min{i €N : I =1},

which gives the first arrival time of a k-head run for a sequence of Bernoulli random
variables.

Corollary 5.3.2. If the assumptions of Theorem|5.3.1| are satisfied, then y,T;, converges
in distribution to an exponentially distributed random variable with parameter 1.

Clearly, in the case when the Bernoulli random variables (XZ(n))ieN are i.i.d. with
parameter p, > 0, if p, converges to 0, the assumptions of Theorem are fulfilled
with f(n) = 1, and so &, converges in distribution to a Poisson process. Other conditions
for weak convergence are given in the following corollary. This result can also be shown
by applying [62, Theorem 2.1] to the restriction of &, on (0,u) for each u > 0.

7



Corollary 5.3.3. Let &,, n € N, be the sequence of point processes given by (5.20)). Let
us assume that f(n)y, — 0 and

(n) p(n)y _
nlgngofgg y ! Z E[;71;7] = 0.
JEN:1<|i—j|<f(n)+k—2
Then &, converges weakly to a Poisson process with intensity measure .

Let us now prove the main result of this subsection, Theorem [5.3.1

Proof of Theorem [5.3.1 For any bounded interval A C [0, 00), the assumptions on Xi(n),
1 € N, imply that

= Yn Z Oy, (A) = (sup(A)yy, ' + bu)yn — (inf(A)yy, ' + an)yn

for some a,,b, € [—1,1]. By yn — 0, we have E[¢,(A)] — Ai1(A) and, consequently,
E[¢.(B)] — Ai(B) for all B € Z. Moreover, &,(B), n € N, is tight (see Remark [5.1.2)).
Then, we can write &,(B) as
(n)
- Z I

i€An
with A, = {i € N: iy, € B}.
For iy € A,,, we have for any m € N that

B0 - 10 <) (60 W ) <)
< E[ 1{W > 0}].
Together with E[&,(B)] = |Ap|yn, this yields

Hy = | 3 B[ 1{gu(B) ~ 1) = m ~ 1]

€A
= Y B {6(B) - W - 1 = m - 1]
zGAn
< Y E[1w" >0} < (Sgg Y E[IM W™ > 0}])E[§n(B)].
€Ay, ¢

Therefore from (5.21)), we obtain H,, — 0. From the independence of IZ-(:) and &,(B) —
w1 i(gz) for ig € A, it follows that

20

B {6(B) - W)~ 1) =m - 1)) = B[Pl (B) ~ W)~ 1) = m ).

20

Combining the previous arguments implies for m € N that

limsup [mP(6,(B) = m) = M(B)P(&,(B) = m — 1)

— limsup| 3 E[IM1{&.(B) — 1™ = m = 1}] = M(B)P(&(B) = m — 1)‘
n—oo ’LGATL

= timsup | - E[1™M1{&,(B) = W™ — I = m — 1}] — E[¢.(B)|P(&n(B) = m — 1))
e e An

= limsup | 3 EI™P(&(B) - W — I = m — 1) = Y E[IV|P(6u(B) = m—l)’
T e An i Ay,

<limsup Y E[IMP(W™ + I > 0) < Ay (B) limsupsup B((W, + 1 > 0).
n—00 icAn n—oco €N
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Finally, the inequality

PW™ + 1M > 0) < 2k +2f(n) — 3)yn, i€N,

7

and the assumption f(n)y, — 0 lead to

lim |mP(¢,(B) = m) — \(B)B(€.(B) = m — 1)| =0.

n—oo

The result follows by applying Theorem [5.1.1 O
Proof of Corollary[5.3.3 This follows directly from Theorem and

E[L1{W" > 0}] <E[1/"W"] = > E[1 "]
JEN:1<|i—j|<f(n)+k—2

for any 7 € N. O

5.3.2 Inradii of an inhomogeneous Poisson-Voronoi tessellation

In this subsection, we consider the inradii of an inhomogeneous Voronoi tessellation gene-
rated by a Poisson process with a certain intensity measure tu,t > 0; recall that the
inradius of a cell is the largest radius for which the ball centered at the nucleus is
contained in the cell. We study the point process on R constructed by taking for any cell
with the nucleus in a compact set, a transform of the y-measure of the ball centered at the
nucleus and with twice the inradius as the radius. In Subsection[3.3.6] we proved that, for
the stationary case, the Kolmogorov distance between a transform of the largest inradius
and a Gumbel random variable converges to 0 at a rate of log(t)/+/t as the intensity ¢
of the underlying Poisson process goes to infinity. Now, we aim to continue the work in
[15] by extending the result on the largest inradius to inhomogeneous Poisson-Voronoi
tessellations and proving weak convergence of the aforementioned point process to a
Poisson process. More details on Poisson-Voronoi tessellations are given in Subsection
Recall that, for any locally finite counting measure v on R?, we denote by N (z,v)
the Voronoi cell with nucleus z € R? generated by v + 4, that is

N(wv)={yeR: o -yl < lly— o'l 2 £ € v},

where || - || denotes the Euclidean norm. The inradius of the Voronoi cell N (z,v) is given
by
c(x,v) =sup{R >0 :B(z,R) C N(z,v)},

where B(z,r) denotes the open ball centered at x € R? with radius r > 0.

Let 7, t > 0, be a Poisson process on R? with intensity measure tu, where pu is
a locally finite measure on R? with density f : R? — [0,00). Consider a compact set
W c R? with u(W) = 1, and assume that there exists a bounded open set A ¢ R? with
W C A such that fi, = infaca f(z) > 0 and frge = supgeq f(x) < oco. For any
Voronoi cell N(x,n;) with z € n;, we take the y-measure of the ball around x with twice
the inradius as radius, and we define the point process & on R as

=60 = D OuuBle2een)) los(t) (5.22)
zen:NW

Let M be the measure on R given by M ([u,c0)) = e for u € R.
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Theorem 5.3.4. Let &, t > 0, be the family of point processes on R given by (5.22)).
Then & converges in distribution to a Poisson process with intensity measure M.

This result is obtained by applying Theorem We believe that an alternative
proof can be deduced from [62, Theorem 2.1]. The next theorem shows that if the
density function f is Holder continuous, it is possible to take out the factor 2 from
w(B(x,2¢(x,m;))) and to consider 2¢u(B(x, c(x,1;))). Recall that a function h : R? — R
is Holder continuous with exponent b > 0 if there exists a constant C' > 0 such that

|h(x) = h(y)| < Cllz —y]*

for all z,y € R%. We define the point process Et as

E=E) =Y OotiuBleclen) losl)-

zenNW

Theorem 5.3.5. Let f be Hélder continuous. Then é;,t > 0, converges in distribution
to a Poisson process with intensity measure M.

As a corollary of the previous theorems, we have the following generalization to the
inhomogeneous case of the result obtained in [I5, Theorem 1, Equation (2a)] for the
stationary case; see also [19 Section 5] for the maximal inradius of a stationary Poisson-
Voronoi tessellation and of a stationary Gauss-Poisson-Voronoi tessellation.

Corollary 5.3.6. For u € R,

lim P tu(B(z, 2 —log(t) <u) =e ¢ ", 5.23
Jim P(max ¢u(B(z, 2c(z,m:))) — log(t) <u) = e (5.23)

Moreover, if f is Hélder continuous,

lim P 2% (B —log(t) <u)=e“ "
Jim P( max 2%u(B(z, c(z,m))) —log(t) <u) = e

(5.24)

For an underlying binomial point process, was shown under similar assumptions
in [29]. The related problem of maximal weighted r-th nearest neighbor distances for the
points of a binomial point process was studied in [30]; see also [31].

For the proofs of Theorem [5.3.4and Theorem [5.3.5] we will use the quantities vy(z,u)
and q;(z,u), which are introduced in the next lemma.

Lemma 5.3.7. For any u € R there exists tg > 0 such that for all x € W and t > tg the
equations

tu(B(z, 2v¢(z,u))) = u +log(t) and 2%u(B(z,q(z,u))) = u + log(t) (5.25)
have unique solutions vi(x,u) and q(x,u), respectively, which satisfy

u + log(t) ) 1/d’ (5.26)

2dfmin kdt

where kq is the volume of the d-dimensional unit ball.

max{v(z,u), ¢(x,u)} < (

Proof. Let u € R be fixed and set m = inf{||lx —y| : = € IW,y € A} € (0,00). Note
that B(x,m) C A for all x € W. Choose ty > 0 such that

u + log(t)

P < fmm kdmd
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for t > tg. For x € W and t > t( this implies that
2% u(B(z,m)) > tu(B(x,m)) > tfminkam® > u + log(t)

and, obviously, tu(B(x,0)) = 0. Since the function [0,m] 3 a — p(B(z,a)) is continuous
and strictly increasing because of f,;n, > 0, by the intermediate value theorem, the equa-
tions in have unique solutions v;(z, u) and ¢ (x, u). Since max{2v:(z,u), ¢:(z,u)} <
m, we obtain

u+ltog(t) = pu(B(z, 2v¢(z, 1)) > 29 frinkave (2, u)?
and
W = 27u(B(z, gi(w, 1)) > 2 frninkagi(z, u)?,
which prove (5.26)). .

Let M; be the intensity measure of &. Then from the Mecke formula and Lemma
it follows that for any w € R there exists to > 0 such that for ¢ > ¢,

M ([u, 00)) = t/W P(tu(B(z,2¢(z, ne + 05))) > u+ log(t)) f(z)dx

[ Belwm+8.) = e w)f(2)da
w

t/ P(n:(B(z, 2ve(z, w))) = 0) f(z)dx
w

- t/ e~ B 20 (w) £ () dy = o108 (W) = e~ = M ([u, 50)),
W
(5.27)

where we used ((5.25)) and (W) =1 in the last steps. For any y € R and point configu-
ration v on R? with y € v, we denote by h:(y,v) the quantity

hi(y,v) = tu(B(y, 2¢(y, v))) — log(t), (5.28)

where c¢(y,v) is the inradius of the Voronoi cell with nucleus y generated by v. So we

can rewrite & as
Z 5ht($ﬂ7t) '
zen:NW

Proof of Theorem[5.53.4 From Theorem 5.1.4] and (5.27)) it follows that it is enough to
show that

limt/WIE[l{ht(:n,nt+5 eB}l{ 3" nymion)(B) = Hf(:c)dx

e yen W (5.29)

— M(B)P(§:(B) =m) =0

for any m € Ny and B € Z. Let B = U] 1 (u25—1,u95) with u1 < up < -+ < ugp and
¢ € N. By Lemma [5.3.7] “ there is a tg > 0 such that v(z, uy) exists for all k = 1,...,2¢,
x € W and t > tg. Assume t > tg in the following. Elementary arguments imply that

t/WE[l{ht(x,nt +0,) € B}l{ Z Ohe(ymit.)(B) = me(x)da:

yeEmNW

ZZZ:/ E[1{ho(w,m +02) € (uzj1,u) 1] Y Ongmessn (B) = m}| fl@)de.

yeNW
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For each k = 1,...,2(, set wy s, = 2v4(x, ug). Since hy(x,n + 6,) € (ugj—1,us;) if and
only if e(x, n +6,) € (vi(x, ugj—1), ve(x, ugj)), or equivalently, ny(B(x, waj—1,42)) = 0 and
N (B(z,wa4,.)) > 0, we obtain that

Sj:—t/WE[l{ht(x,nt+5x)€(ugj_l,qu)}l{ S Gntmrsn(B) = m}] Fla)d

yenNW

= t/WE[l {n:(B(z, w2j-142)) =0}
X 1{m (B, wzjea)) >0, Y Spuymsin)(B) = mH f(x)dz.

yenNW

For any point configuration v on R% and z € W, let &t2(v) be the counting measure
given by & .(v) = ZyevﬂW Ohy(y,v+6,) SO that

S; = t/WE[l {ne(B(z,wzj-1,4)) =0}

x1 {7715 (B(x7w2j7t,$)) > Oagt,w (nt‘B(I,wwfl,t,z)C)(B) = m} ]f(m)da:

— t/ P (7715 (B(x,'LUQj—l,t@)) = 0)
w
X P(n:(B(z, waj12) \ Bz, waj-12)) > 0,82 (0e|Bowsy—100)) (B) = m) f(x)d.

Similar arguments as used to compute M;([u,o0)) for u € R imply for x € W that
tP (77t (B(w,ng_l,m)) = 0) =e Y-t
and so we deduce that
S;=e "t / P (fm (nt‘B(x,ng_l,t,m)C)(B) = m) f(x)dx
w
_eu2j-1 / ]P’(nt (B(% Wajt.0) \B(l‘,wzj—u,x)) =0, (5.31)
1%
St (Me|B(oway—10.0)e) (B) = m) f(x)da.
Furthermore, we can rewrite the second integral as
/W]P’ (ne(B(z, w25,2) \ B(z,waj—1,42)) =0)P (&,x (1|B(2,ws;.0.0)¢ ) (B) = m) f(z)dx
_ /W e—tu(B(z,ij,t,z))+tu(B(x,w2j71,t,z))[P> (gt,m (/r’t‘B(x7w2j7t,z)c)(B) — m) f(ac)dx
— e U2jtuzj—1 / P (gt,m (77t|B(z,w2j,t,x)C)(B) = m) f(x)d:p
w
Combining this and (5.31]) yields
Sj=e "t / P (gt,x (nt|B($,w2j71,t,z)0) (B) = m) f(z)dz
w
— e U2 / P <§t7$ (nt]B(l,,ijytyz)c)(B) = m) f(z)dz.
1%
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Substituting this into ([5.30]) implies that to prove (5.29) and to complete the proof, it is
enough to show for all x € W and k =1,...,2¢ that

Jim P (€0 (1lB(e.)) (B) = m) = P(&(B) = m) = 0. (5.32)
Let x € W, k€ {1,...,2¢} and € > 0 be fixed. Set
o (u2e +log(t)\1/d
b 2( 24 frinkat ) ‘

From the application of Lemma[5.3.7]at the beginning of the proof it follows that wy s, <
wopty < ap for all y € W and t > to. Without loss of generality we may assume that
2a¢ < min{||z1 — 22| : 21 € OW, 25 € 0A}. Therefore the observation

hi(y,v) € B if and only if  h(y, v[B(ywse,,)) € B

for any point configuration v on R? and y € v N W leads to

P (ft,x (e B(@wn r0)) (B) = m) —P(&(B) = m) | <E[|&x(ntBow,.)) (B) — &(B)]]

< E Z 1{ht(y7nt’B(:p,wk7t,z)C + 596) S B}
yen:NB(z,2a:)NB(x,wp,¢,5) MW

+E Z 1{h(y,n) € B}
yen:NB(z,2a¢)NW

= E Z 1{ht(y7 nt’B(x,wk’tyz)C + 63;) > Ul}
yentnB(I72at)mB(m7wk,t,z)cmW

+E > H{he(y, ne) > wa }-

yeN:NB(z,2a: )NW

Then, the Mecke formula and (j5.28) imply that

‘]P) (ft,a: (nt’B(x,wk’m)C)(B) = m) -P (ft(B) = m) ‘

<t / Py el oo s e + On + 8y) > u1) f()dy
B(x,2a:)NB(z,wg,t,0 ) SNW

ot / P(he(y,mi +6,) > w) f(y)dy
B(z,2a:)nW

= t/ P(tp(B(Y, 2¢(y, 0t B(2un 1.0 ) + O+ 8y))) > w1 +log(t)) f(y)dy
B(z,2a¢)NB (2w, ¢,5) MW

i / P(tu(B(y, 2¢(y, me +6,))) > w1 + log(t)) f(y)dy.
B(z,2a:)NW

Since ¢(y, v+6y+65) > ve(y, u1) only if ¢(y, v+3Jy) > v4(y, ur) for any point configuration
v on R? and z,y € W, it follows for z € W and y € B(x,2a;) N B(z,wg )¢ N W that

P(tpu(B (Y, 2¢(y, 1t |B(2p 1.0 ) + O + 0y))) > u1 + log(t))
(c(ys Ml B(aswp s 0)e + Oz + 8y) > ve(y, u1))

(c(ys Nl B(aswog g 0)e + 0y) > ve(y, ua))
=P(1

|B(:p Wt z) B(y7 2Ut(y7 Ul))) = 0) = eXP(—tﬂ(B(ya 2Ut(y’ ul)) N B(xv wkﬂf,x)c))'

IN
'ﬁ%%
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Let \g denote the Lebesgue measure on R%. For A;, Ay € B(Rd) with A1, A3 C A and
Ad(Az2) > 0 we obtain

w(Ay) > Jmin Aa(A1)
w(A2) ~ fimaz Acl(‘AQ)
With 7 := fmin/fmax € (07 1]7

A =By, 2v(y,u1)) N B(z,wrt2)¢ and Az = B(y, 2v(y, u1)),

this implies for x € W and y € B(z,2a;) N B(x, wg )¢ N W that

T T
tn(B(y, 20(y, u1)) N B(@, wkp)%) 2 GBIy, 20(y, ur))) = 5 (ur + log(t)).
Moreover, we have that

P(tu(B(y, 2¢(y, m: + 8,))) > ur +log(t)) = P(n:(B(y, 20i(y,u1))) = 0) = e~ 171080,

In conclusion, combining the previous bounds leads to

P (& (elo ) (B) = m) = P(&(B) =m)|
< tIT2em T2 (B (7, 2a4)) + € u(B(w, 2a1)) < (2a8) g frnae (8T 2eTT/2 4 e,
where in the last step we used the fact that f is bounded by f,q: in A and, by the choice

of a;, B(z,2a;) C A. Again, from the definition of a; it follows that the right-hand side
converges to 0 as t — oo. This shows ([5.32)) and concludes the proof. ]

Next, we derive Theorem from Theorem [5.3.4

Proof of Theorem [5.5.5, Assume that f is Holder continuous with exponent b > 0. From
Lemma Theorem [5.3.4f and Remark [5.1.5] we obtain that it is enough to show that
E[|&(B) — &(B)|] — 0 as t — oo for all B € Z. By Lemma for any v € R there
exists tg > 0 such that

w(B(x, 2v(z,u))) = 2d,u(B(377 qt(z,u)))
— 21t f (@)ar(o, ) + 21 [ (f(y) - F(x))dy

B(qut (ajvu))

(F(y) — F(x))dy + 27 / (F(y) — f(x))dy

B(z,q:(z,u))

= u(B(z, 2q:(z,u))) —/

B(z,2q¢(z,u))
for all x € W,t > ty, where

u + log(t) ) 1/d
2dfminkdt .

Thus, the Holder continuity of f and elementary arguments establish that

masc{u(z, u). (@, )} < (

1 t 1+b/d
Log()) . zeW,t>ty, (5.33)

[u(B(z, 2v(z,u))) — p(B(x, 2¢:(z,u)))| < C( .

for some C' > 0. In particular, from the definition of v;(x,u) it follows that

p(B(z, 2v(z,u))) = M
u+ li)g(t) u + log(t)\ 1+b/d (5.34)
n(B(z, 2q(z,u))) > e - c( : )
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for t > ty. Next, we write B = U§:1 (ugj—1,ugj) for some £ € N and u; < --- < ug.. The
triangle inequality yields

~

0
E[|&(B) = &(B)]) < > E[€((ugj-1, uz;)) — &((uzj—1, uz;))]]
j=1

¢ (5.35)
< D Ellén((uzj-1,00)) = &((uj1,00)) ] + Ellée([uzj, 00)) — &([ua, o0))]I
j=1
Moreover, the Mecke formula establishes for u € R that
E[|& (1, 00)) — &((u, 00))]
<E Z |1{c(x,n; + 0z) > ve(x,u)} — L{c(z,m + 0z) > @z, u)}]
zen:NW
= t/ P(nt(B(:L“, 2ui(z,u))) = 0,n(B(x, 2qi(z,u))) > O)f(:zz)dx
4%
+ t/ P(n:(B(w, 2v¢(z,w))) > 0,n:(B(w, 2¢¢(x, u))) = 0) f(z)dx
w
< fmazt /W [exp (— tu(B(z, 2v¢(z,1)))) + exp ( — tu(B(z, 2¢:(z, v))))]
x [1—exp (= t|u(B(z, 2q:(z,u))) — p(B(z, 2vi(x,w)))|) | da.
Therefore, from and , it follows that
Jim E[|€((u, 00)) — &((u,0))]] = 0. (5.36)

Together with ([5.35]) and a similar computation for the half-closed intervals on the right-
hand side of (5.35)), this concludes the proof. O

Proof of Corollary[5.5.6. Let u € R be fixed. By Markov’s inequality we have for uy > u
that

P& ((u,up)) > 0) < P(&((u,00)) > 0) = P(xél%%xwtu(B(a:, 2¢(x,mt))) — log(t) > u)

< P(&((u,up)) > 0) + E[&([ug, 00))].

Thus, Theorem [5.3.4{ and ([5.27)) yield

limsup [P( max_tu(B(z,2c(z,m))) — log(t) >u) — 1+ e M(wuo))| < g=uo,
t—o0 zEmNW

Then, letting uy — oo leads to . Since, for u > 0,
[P(&((u,00)) > 0) — P(&((u,00)) > 0)] < E[|&((u,00)) — &((u, 00))]],
(5-23) and (5.36) imply (5.24). O

5.3.3 Circumscribed radii of an inhomogeneous Poisson-Voronoi tes-
sellation

In this last subsection, we consider the circumscribed radii of an inhomogeneous Voronoi
tessellation generated by a Poisson process with a certain intensity measure tu,t > 0;
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recall that the circumscribed radius of a cell is the smallest radius for which the ball
centered at the nucleus contains the cell. We study the point process on the non-negative
real line constructed by taking for any cell with the nucleus in a compact convex set, a
transform of the u-measure of the ball centered at the nucleus and with the circumscribed
radius as the radius. In Subsection [3.3.5) we proved that, for the stationary case, the
Kolmogorov distance between a transform of the minimal circumscribed radius and a
Weibull random variable converges to 0 at a rate of 1/ t1/(d+1) when the intensity ¢ of
the underlying Poisson process goes to infinity. In this subsection, we continue the
work started in [I5] by extending the result on the smallest circumscribed radius to
inhomogeneous Poisson-Voronoi tessellations and by proving weak convergence of the
aforementioned point process to a Poisson process.

More precisely, let u be an absolutely continuous measure on R¢ with continuous
density f:R? — [0,00). Consider a Poisson process 7; with intensity measure tu, ¢ > 0.
The circumscribed radius of the Voronoi cell N(x,n;) with = € n, is given by

C(z,m) =inf{R>0: B(z,R) D N(z,m)},

with the convention inf ) = oco; see Subsection [3.3.5| for more details on Voronoi tessella-
tions.

Let W C R? be a compact convex set with f > 0 on W. We consider the point
process

"gt == Z 6a2t(d+2)/(d+1)M(B($aC(CC,T]t)))' (537)
zen:NW

Here the positive constant as is given by

od(d+1) 1/(d+1)
Q2 = 1 Pd+1

(d+1)
with
d+1
par = P(N(0,3"0y,) € B, 1)),
j=1
where Y7, ..., Y41 are independent and uniformly distributed random points in B(0, 2).

We write M for the measure on [0, 00) satisfying M ([0,u]) = u(W)ud*t! for u > 0.

Theorem 5.3.8. Let &, t > 0, be the family of point processes on [0, 00) given by ((5.37)).
Then & converges in distribution to a Poisson process with intensity measure M.

This result is obtained by applying Theorem We believe that an alternative
proof can be deduced from [62, Theorem 2.1]. An immediate consequence of this theorem
is that a transform of the minimal gy-measure of the balls, having circumscribed radii
and nuclei of the Voronoi cells as radii and centers respectively, converges to a Weibull
distributed random variable. This generalizes [I5, Theorem 1, Equation (2d)]. For the
situation that, in contrast to Theorem the density of the intensity measure of the
underlying Poisson process is not continuous, we can still derive some upper and lower
bounds.

Theorem 5.3.9. Let (; be a Poisson process with intensity measure t9, where t > 0 and
¥ is an absolutely continuous measure on R with density ¢. Let f1, fo : R — [0,00) be
continuous and fi, fo >0 on W.
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(i) If there exists s € (0,1] such that s¢ < fi1 < ¢, then

lim sup[P’(sagt(d+2)/(d+1) min J(B(z,C(z,())) > u) <exp (- sﬂ(W)ud‘H)

t—o00 ze(:NW

foru > 0.

(ii) If there exists v > 1 such that ¢ < fo < r¢, then

imi (d+2)/(d+1) 5 _ d+1
hgégfﬁ”(ragt xenéltlr?Wz?(B(m, C(z,¢))) > u) > exp (— rd(W)u®)

foru > 0.

Let us now prepare the proof of Theorem[5.3.8] We first have to study the distribution
of C(x,n: + 05), which is defined as the circumscribed radius of the Voronoi cell with
nucleus z € R? generated by 7; 4 .. To this end, we define g : W x T — [0, 00) by the
equation

n(B(z, g(z,u))) = u (5.38)

for T':= [0, u(W)]. Since W is compact and convex and f > 0 on W, we have that
admits a unique solution g(z,u) for all (z,u) € W x T. As this is the only place where
we use the convexity of W, we believe that one can omit this assumption. However, we
refrained from doing so in order to not further increase the complexity of the proof. Set

5 = agt(@+D/(@+1),
Thus, we may write
P(siu(B(x, C(z,m + 62))) < u) =P(Clx,n + 02) < g(x,u/st)), u/si€T. (5.39)
Lemma 5.3.10. For any u € T, g(-,u) : W — R is continuous and

lim sup |g(z,u)| = 0.
u—0t zeWw

Proof. First we show that g(-,u) is continuous for any fixed u € T'. For u = 0, we obtain
g(x,u) = 0 for all z € W. Assume u > 0 and let z9p € W and ¢ > 0. Then for all
x € B(zg,&’) with & := min{g(zo, u)/2,e}, we have

B(zo, 9(z0,u)) C B(z,9(z0,u) +¢') and  B(z,g(zo,u) — ') C B(zo, g(z0, ).
Together with , this leads to
uB(x, g(zo,u) +€')) >u  and p(B(z,g(xe,u) — ")) < wu.
Now it follows from the definition of g that
g(z,u) < g(xo,u) +& and g(z,u) > g(xo,u) — €.

This yields
g(x,u) — g(zo,u)| <&’ <e

for all x € B(zg,¢’) so that g is continuous at xg. In conclusion since

lim g(z,u) =0

u—0t

and g(x,u1) < g(x,ug) for all z € W and 0 < uy < wug, Dini’s theorem implies that
sup,ew |9(z,u)| = 0 as u — 0. O
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We define

A = min f(z) > 0.

Lemma 5.3.11. There exists ug € T such that

2u )1/d

Ey (5.40)

g(z,u) < (

for all uw € [0,up] and x € W.

Proof. Since f is continuous and f > 0 on W, it follows that

min __ f(x) > s
€W +B(0,9) 2

for some § > 0. Furthermore, by Lemma [5.3.10| we obtain that there exists ug € T such
that g(z,u) <6 for all u € [0,up] and € W. Then, we obtain

u = u(B(a,gla,0)) = [

B(z,9(z,u))
for all z € W and u € [0, up], which shows (5.40)). O

Fw)dy > 5 hag(e,w)’

For x € W and u > 0, we consider a sequence of independent and identically dis-
tributed random points (X (I’u))ieN in R? with distribution

w(B(z,2u) N E)
W(B(r,2u)

Recall that, for £ > d + 1, N(m, Z?Zl 5X(z,u)) denotes the Voronoi cell with nucleus x
j

i € N, E € B(RY).

P(X" e E) =

generated by X 1(:6’“), X ,gx’u) and z. Then the distribution function of C'(z,n; + ;) is

equal to
(o]

P(C(x,m+02) <u) = Y P(m(B(x,2u)) = k)pp(x, ) (5.41)
k=d+1

for u > 0, with pg(z,u) defined as

pr(z,u) = P(N(x, i 5X](””’“>> C B(x, u))
j=1

Combining (5.39)) and (5.41)) establishes for u/s; € T that
P(sip(B(z, C(2,m + 0z))) < u)

o0

= Z P(ﬁt(B(fﬁa?g(%U/St))) = k)Pk(Jfag(%u/St))'

k=d+1
For k € N with £ > d + 1, we define the probability

pe= (N (0.3 ) € BO.1),
j=1

where Y7, ...,Y) are independent and uniformly distributed random points in B(0,2).
As discussed in [I4, Section 5.2.3] and [15, Section 3], one can reinterpret pj as the
probability to cover the unit sphere with %k independent spherical caps with random
radii. In the next lemma, we prove that pg(z,r) — pr as r — 0 for all x € W and
k > d+ 1, which together with Lemma yields pi(x, g(u/st)) — pr as t — oc.

(5.42)
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Lemma 5.3.12. Forany k> d+1 and x € W,

lim T,T) = Pk
r_>0+pk( ) = Dk

Proof. In this proof, to simplify the notation, for any x € W, k >d+1 and y1,...,y; €
R%, we denote by K ]g:c) (y1,...,yr) the Voronoi cell N (a:, Z?Zl 5yj) with nucleus x gener-
ated by y1,...,yr and x. Thus, we may write

pr(z,7r) = P(K,gx) (Xfx’r), ... 7X,ggc’r)) C B(z, r)),

and so from the independence of X 1(:”), X ng,r) it follows that

k
1 ()
= —_— 1{K CB Ndz . ..d
Pr(@,7) M(B($,2T))k /B(:r,Qr)k { k (=1, k) € (z,r)}}_[lf(z) = “k
2r)kd z

= M/]B(O " l{K,i )(az+27’zl,...,x+27’zk) C B(z,7)}

k

X Hf(a: +2rz;)dz .. .dz.
i=1

Furthermore, by the definition of K ,(f) we deduce that

VK (@422, w4 2r) CB(z,r)} = 1{K" (221,...,22) C B(0,1)}

for all z1,..., 2, € B(0,1), whence

pe(z,7) = Wkdk/ 1{K"(22,...,22) CB(0,1)}
n(B(z,2r))* Jp(o,1)x
k
X H flx+2rz)dz ...dz.
-1

Using the dominated convergence theorem for the integral, the continuity of f and

lim (2T)kd = :
ot p(B(w,2r))F Kk f(z)*

we obtain

1
lim pg(x,r) = kk/B(o o 1{K,5,0)(221, ..,22,) C©B(0,1)} dzy ... dz
d

r—0+

1
~ (29ka)" /B(O - K (21,00, 2) B0, 1)} dz . dzg = pi,

which concludes the proof. O

Let M; be the intensity measure of & and let

W(0.u) =t [ B[t B, O+ 60) € 0.1}
X 1{nt<B($’4(/B§Z€d)l/d>) =d+ 1}]f(x)dx
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and

0,([0,u]) = t/W E[l{stu(B(x, Clz,m + 05))) € [0,4]}

X 1{nt<B(m,4(5§3€d)l/d>) >d+ 1}]f(a:)da;

for u > 0. Observe that
M([0,u]) = M, ([0,u]) + 6,((0,u]), > 0. (5.43)
Lemma 5.3.13. For any u > 0,

Y _ d+1
Jim M, ((0, u]) = p(W)u

and
0:([0,u]) < t/ P(nt<B(:1:,4<622; )1/d>> >d+ 1)f(a:)da: —0 as t— o0,
w StRd
Proof. Let u > 0 be fixed and w; := u/s;. Without loss of generality we may assume

ug € T. For x € W we deduce from (j5.38)), g(x,u;) — 0 as t — oo and the continuity of
f that

po BB 2 w) | p(B2g(w) g u)! @),

t—00 U tooo  20kug(z,ug)?  pu(B(x, gz, ur))) f(z)

Together with u; = u/s; and sy = agt(d+2)/(d+1), this leads to

lim t42(B(z, 29(x, ur))) T = 2%/ az)* 1. (5.44)

t—o00

Similarly, we obtain from Lemma [5.3.11] that for ¢ sufficiently large,

d+1
sup 14720 (B(x, 2g(2,up))) T <t /B sup sup fy)T
zeW €W yeB(z,2g(z,ut))

< (@"u/(aaB)* sup  fly)t
yeW+B(0,1)

(5.45)

Let us now compute the limit of J@([QM) By Lemma [5.3.11 we obtain for ¢; :=
4(2—}?)1/(1 that there exists g > 0 such that 2g(z,u;) < ¢ for all t > ¢y and x € W.

d

From ([5.42)) we deduce for x € W that syu(B(z, C(z,m: + d;))) € [0,u] only if there are
at least d + 1 points of 7; in B(w, 29(x,ut)). Then for t > ty, we have

o~

M ([0,u]) = t/WIP’(m(B(x, 29(x,up))) =d+ 1)pd+1(x,g(m,ut))
X P(n (B(z, ) \ B(z,2g(x,u4))) = 0) f(z)da

d+1
:/ 2 (B(z, 29(z, ur))) o ti(B(z6r)
w (d+1)!

pa+1(2, 9(z, ) f(z)dz.

Elementary arguments imply that

tlgélo tu(B(z, ) = 0.
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Therefore combining (5.44)) and Lemma [5.3.12] yields

d+2 d+1

)L“;t M(B(féigfffut))) e HBEpy (2, g, up)) f(2)
24u\d+1 p

= (072) d fi)!f(:r) = u® f(x),

where we used as = (%pdﬂ)l/(dﬂ) in the last step. Thus, by (5.45) and the

dominated convergence theorem we obtain
hm Mt( [0, ul) d“/ f(x)dz = p(W)ut.

Finally, let us compute the limit of 6,(]0,u]). For a Poisson distributed random variable
Z with parameter v > 0 we have

- Uk —v d+2 — Uk —v d+2
P(Z>d+2)= ) ¢ S Zye =
k=d+2 " k=0

This implies that

0,([0,u]) <t /W]I”(nt (B(az,4<;Z;) 1/d)> >d+ 1>f(a:)d:c
<o [ ({2 ) o
< sup ) / f(a:)dw&fwtd P
e .
92d*+5d+2 1 g
= sup FrW) g gt T1u™

1/d le—‘rQ d+2
2uy
sewrsn(aa(2) ")

Qg
Here, the supremum converges to a constant as ¢ — oo so that the second inequality in
the assertion is proven. O

In the next lemma, we show a technical result, which will be needed in the proof of
Theorem For A C RY, let conv(A) denote the convex hull of A.

Lemma 5.3.14. Let xg,...,2411 € R? be in general position (i.e. no k-dimensional
affine subspace of R with k € {0,...,d—1} contains more than k+ 1 of the points) and
assume that N (xg, Zji(l) dz;) is bounded. Then,

a) xo € int(conv({z1,...,24+1}));
b) N(x;, Z;lié dz;) is unbounded for any i € {1,...,d+ 1}.

Proof. Assume that g ¢ int(conv({z1,...,z41})). By the hyperplane separation the-
orem for convex sets there exists a hyperplane through zy with a normal vector u € R?
such that (u, z;) < (u,xo) foralli € {1,...,d+1}, where (-, -) denotes the standard scalar
product on R?. Define the set R = {z¢+ru : r € [0,00)}. For any y € R, g is the closest
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point to y out of {xg,...,x4+1}, whence R C N(ﬂfo,zgié dz;) and N (zo, Z;lié dz;) is
unbounded. This gives us a contradiction and, thus, proves part a).

Let i € {1,...,d+ 1} and assume that N(z;, Zjli(l) dz;) is bounded. It follows from
part a) that z; € int(conv({zo,...,®i—1,Zit1,...,Z4+1})). On the other hand, again by
part a), we have that xg € int(conv({x1,...,2441})). This implies that

conv({xo, ..., Tim1, Tit1, ..., Tgr1}) = conv({zg,...,xq11}) = conv({z1,...,2441}),

and, thus, either x;, 29 € conv({z1,...,zi—1,Tit1,...,Tq4+1}) or x; = xo. This gives us a
contradiction and concludes the proof of part b). O

Finally, we are in position to prove the main result of this subsection.

Proof of Theorem [5.3.8, From Lemmal5.3.13and (5.43) we deduce that M, (B) — M (B)
as t — oo for all B € Z. Then, by Theorem [5.1.4] it is sufficient to show

lim t/WIE[l{st,u(B(x,C(x,m +9,))) € B}

t—o0
<1 > Saumcwnts (B) = m}| f(@)de — M(B)PE(B) = m) =0
yentNW
)1/d

for m € Ny and B € Z. Put w = sup(B) and let ¢, = 4(633[1 . We write

! /WE[l{stMBmC(x,m+6x>>>eB}l{ > SanBucwnian (B) =m}|f(@)dz

yen:NW

= t/ E[l{st,u(B(x, C(z,m +63))) € B}1{m(B(z,4;)) =d + 1}
w

x 1{ Y SenBuCwmton) (B) = mH f(z)dz
yenNW
T t/WE[l{Stu(B(rc,C(x,m +3,))) € BY1{m(B(z,4,)) > d+1}
x 1{ Y San®BuCwmton) (B) = mH f(z)dz

yemNW
== At + Rt.

By Lemma [5.3.13] we obtain Ry — 0 as t — oco. Let us study A;. From Lemma [5.3.11] it
follows that there exists ¢y > 0 such that u/s; € T and ¢; > 4g(y,u/s;) for all y € W and
t > tg. Assume t > to. In case there are only d + 1 points of 7 in B(x,{;), we deduce
that s;u(B(x,C(x,n; + 05))) € B only if the d + 1 points belong to B(z,2¢g(x,u/s;)).
Then, by ¢; > 4g(x,u/s;) we obtain
Ay = t/ E[l{stu(B(x,C’(x,nt +4z))) € B}
w
% (B, £)\ B(z,6,/2) = 0,m(B(x, £/2) =d + 1} (5.46)

<1 Y e cm s (B) = m}| f(@)da.
yenNW

Furthermore, since ¢; > 4¢(y,u/s;) for all y € W, we have that

B(y,29(y,u/s1)) N\ B(z,£¢/2) =0, y € B(z, &) NW.
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Now the observation that

stp(B(y, Cy, e +0,))) € B if and only if  siu(B(y, C(y, (1t + 02)|By,20(53/51))))) € B

for y € n; establishes that

At:t/ [{stu (x,C(x,n + 0) )EB}
x L{m(B(x, &) \ B(x,£/2)) = 0,m(B(x, £4/2)) = d + 1}

< Hemlsen ) B+ Y SuuBcwman(B) = m}| fz)d.
yemﬂB(x,Zt/2)ﬂW

Suppose that s;u(B(xz,C(x,n; + 6;))) € B and that there are exactly d + 1 points
Y1, ... Yar1 of n in B(z, £¢/2) and ne N B(z, 4;) N B(x,£4/2)¢ = (. From Lemma [5.3.14]
it follows that = € int(conv({y1,...,ya+1})) and that the Voronoi cells N (i, nt|B(x,e,) +
dz),i=1,...,d+ 1, are unbounded. In particular, we have

C(yi,me + 0z) > /4> g(yi,ufse), i=1,...,d+1.

Together with the same arguments used to show (5.46)), this implies that

At:t/ ]E[l{st,u (B(z,C(z,m¢ + 62)) EB}
1%

x 1{m(B(z, ) \ B(»’U 0e/2)) = 0,m(B(z, £:/2)) = d + 1}
X L{& (el B2, 00)e = m}]f(x)dﬂﬁ

- t/W E[1{siu(B(z, C(z,m + b)) € BY1{m(B(x.6)) = d +1}]
X P(& (| B(2,00)e) (B) = m)f(l‘)dfﬁ-
Furthermore, we obtain
P (& (M| B(w0)e ) (B) = m) —P(&(B) = m)| < P(ne(B(x, £)) > 0) < tu(B(z, )

for any «x € W, where we used the Markov inequality in the last step. Combining the
previous formulas leads to

|A; — M(B)P(&(B) = m)|
< |My(B) — M(B)|

+ t/W [1{s:u(B(z, C(z,mt + 62))) € B}1{m(B(z,4;)) > d + 1}] f(z)dz
—I—t/w [1{su(B(z,C(z,m + 05))) € B}1{n:(B(z,4;)) = d + 1}]
X |P(& (Ml B(wyer)e) (B) = m) — P(&(B) = m)| f(x)da

< IM(B) = M(B)| +t | P(n(Ba. ) > d-+ 1) f(a)do -+ 3E(0,1) sup tp(Bz, 1)
w TE

It follows from Lemma |5.3.13| that, as ¢t — oo, ]\Z([O,ﬂ]) — M([0,a]), M(B) - M(B)

and the integral on the right-hand side vanishes. Without loss of generality we may
assume ¢; < 1, and thus the continuity of f on W + B(0, 1) implies that

tu(B(x, b)) < kg max__ f(2)tl]
z€EW+B(0,1)
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for all z € W. Now ¢, = 4(-2% Y4 and s¢ = aot\@2)/(@+1) vield that the right-hand
Bstkq

side vanishes as t — oco. Thus, we obtain

lim A, — M(B)P(&(B) =m) =0,

t—o00

which together with R, — 0 as ¢ — oo concludes the proof. O

Proof of Theorem[5.5.9. Let v be a Poisson process on RY x [0, 00) with the restriction
of the Lebesgue measure as intensity measure. Let p; and us denote the absolutely
continuous measures with densities f1 and fa, respectively. Then, [38, Corollary 5.9 and
Proposition 6.16] imply that

o= ST 1y <th@s, o = Y Uy < th(x)}d

(zy)ey (zy)ey

and

or =Y Wy <tp(z)}d,

(zy)ey

are Poisson processes on R? with intensity measures tu, tis and t9, respectively. They
satisfy

o(A) < o(A) < oP(A) as. and g 2¢,  ACRYL >0
Therefore for any v > 0, we obtain

P( min u(B(z,C(z,¢))) >v) <P( min  m(B(z,C(xz, o) >v)  (5.47)
2€GNW veonw

and similarly

P( min pe(B(z,C(z,¢))) >v) 2 P( min MQ(B(I‘,C(.Z‘,QEQ)») > v). (5.48)
2ECAW el W

From Theoremm it follows for j = 1,2 and v(t) = u(agt( @2/ (@)=L with 4 > 0,
that
lim P( min p;(B(a, C(x, o)) > w(t)) = e s

t=o0 " peoPnw

If s¢ < f1 < ¢ for some s € (0,1], combining (5.47)), the previous limit with j = 1, and
the inequality

P(a:e%ir?w s¥(B(x,C(z,¢))) > V(t)) < P(xerlé_}fiélwul(B(x,C(x,Ct))) > I/(t))

implies that

li P( min sd9(B(z, C(x, > p(t)) < et (Wuttt,
im sup (xe%lrngS( (z,C(x,¢))) > v(t) <e

Then, s¥(W) < 1 (W) concludes the proof of (i). Analogously, if ¢ < fo < r¢ for some
r > 1, combining ([5.48)), the limit above with j = 2, the inequality

P(ze%i%lwrﬂ(B(x’ Cz,G))) > v(t) > P(me%igwlw po(B(z,C(z, ) > v(t))

and po (W) < rd(W) for u > 0 shows (i7). O
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