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Abstract

Since the discovery of the first extrasolar planets over 25 years ago, the field of
exoplanet research has exploded. Today we have over 4000 confirmed exoplanets,
with a wide variety of sizes, orbital separations, and host stars. The characterisa-
tion of this diverse population of objects has led to exciting discoveries about the
conditions of alien worlds. Future technological advances are expected to provide
an abundance of exoplanet spectra with a higher precision and sensitivity than
ever before. This calls for a parallel advancement in the accuracy and speed of
atmospheric models to interpret this influx of data.

In this thesis, my work on atmospheric retrievals is presented. Starting with
traditional techniques, my first thesis paper applies a Bayesian retrieval in combi-
nation with an analytical atmospheric model to the Hubble transmission spectra
of 38 different exoplanets. My second paper considers the theoretical model of the
sodium doublet, and the effect of dropping the assumption of local-thermodynamic
equilibrium. From here, I went on to develop a method that uses supervised ma-
chine learning to improve the speed and efficiency of the retrieval. This method
was explained and tested in a collaborative paper with machine learning experts in
Bern. The machine learning retrieval is then applied in several follow-up studies,
covering a range of different scenarios. One of these was my final thesis paper,
which further extends the new retrieval to high-resolution spectra using the cross-
correlation function.
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Abstract

In addition to my own papers, I have contributed to a number of studies led
by collaborators by running retrievals, assisting other students, and participating
in scientific discussions. I have also worked on several observing proposals, both
for high-resolution ground-based observatories and for the upcoming James Webb
Space Telescope.

I plan to continue my work on exoplanet characterisation and machine learning
in the future, using the technique to combine high- and low-resolution spectra to
gain further insight into the atmospheres of these distant planets. The speed and
efficiency of machine learning will also allow for statistical studies of exoplanets as
the quantity of atmospheric spectra from new and upcoming telescopes escalates.
Not only will these studies teach us about the conditions and potential habitability
of exoplanets, but they will also answer questions about planet formation, diverse
chemical processes, and the uniqueness of our solar system.
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CHAPTER 1

Introduction

Let’s make great discoveries together!

Kevin Heng

1.1 Aim of this Thesis

This thesis covers the work from my PhD over the last four years. The general
focus is on atmospheric retrieval of exoplanets. This involved first understanding
and running traditional retrievals using Bayesian methods, before moving on to
developing a new method of retrievals using machine learning. This led to a series
of papers testing the method and applying it to new situations to gain additional
insights into different aspects of exoplanets. This thesis covers the work in detail,
as well as additional projects I worked on over the last four years.

To put this work into context, Chapter 1 provides an introduction into the field
of exoplanets, covering both detection and characterisation. Details of the differ-
ent components in atmospheric modelling are presented, as well as techniques for
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Chapter 1 Introduction

comparing models to data. It also examines the recent development of machine
learning methods in exoplanet research, and the wider goal of searching for ex-
traterrestrial life. Finally, new and upcoming telescopes and their impact on the
future of exoplanet science are discussed.

In Chapter 2, my first thesis paper is presented and summarised. This paper is a
retrieval analysis of a set of 38 exoplanets with Wide-Field Camera 3 transmission
spectra from the Hubble Space Telescope. The retrieval results are examined to
look for trends between the model parameters, although no evidence for these are
found.

Chapter 3 covers my second thesis paper, which introduces a model for the
sodium doublet that does not obey local-thermodynamic equilibrium. This non-
LTE model is applied to both low- and high-resolution transmission spectra, as
well as simulated spectra.

In Chapter 4, the first paper using the Random Forest machine learning method
to perform atmospheric retrieval is introduced. Although not a first-author paper,
it represents a large part of my thesis work, and I contributed heavily to the study.
The Random Forest is explained and applied to the transmission spectrum of the
hot Jupiter WASP-12 b.

In Chapter 5, my final thesis paper is presented. This work applies the Random
Forest to wideband high-resolution spectra, using the cross-correlation function to
overcome the challenges associated with this data. This method is applied to the
HARPS-N spectrum of the ultra-hot Jupiter KELT-9 b.

Chapter 6 includes two similar proposals for Cycle 1 of the James Webb Space
Telescope, which I either led or contributed to significantly. The two proposals
use a similar science case to observe different systems containing multiple mini-
Neptunes. Unfortunately, the one I led was not successful, but I intend to resubmit
in a future cycle.

In Chapter 7, other studies I supported are presented, with a summary of my
contribution.

Chapter 8 includes a concluding summary of my thesis, as well as a discussion
of my future projects, which I aim to work on during my SNSF Postdoc.Mobility
Fellowship in the coming years.

2



1.2 Introduction to Exoplanets

1.2 Introduction to Exoplanets

The search for life elsewhere in the universe remains one of science’s greatest pur-
suits. The most promising field for this is the detection and characterisation of
extrasolar planets. The detailed study of these exoplanets, including those that
may harbour life, is a core science goal of the next generation of major observa-
tories. Recent advances in technology have led to major increases in the precision
and sensitivity of data, bringing a new era of exoplanet characterisation.

The study of these distant objects has a short but rich history. In 1992, the
first ever exoplanets were discovered, orbiting the pulsar PSR B1257+12 (Wol-
szczan and Frail, 1992). Just three years later, the first exoplanet orbiting a main-
sequence star was detected (Mayor and Queloz, 1995). Since then, more than
4000 exoplanets have been confirmed, and the field of exoplanet characterisation
has blossomed.

1.3 Exoplanet Detections

In the first few years, exoplanets were typically detected using the radial velocity
method, which measures periodic shifts in the stellar spectrum caused by the
gravitational effect of the planet on its host star. A landmark discovery for the
field of exoplanet characterisation was the first detection of a transiting planet
(Charbonneau et al., 2000). By observing small fluctuations in the stellar light
caused by the planet transiting between the star and the observer, the presence
of an exoplanet, and its radius, can be determined. This new technique would
allow astronomers to directly observe the atmosphere of an exoplanet, and the
first instance of this came just two years later (Charbonneau et al., 2002).

These two detection methods are still the most fruitful 20 years on. Figure 1.1
shows the distribution of exoplanets across mass and period, with their detection
technique highlighted. The majority of the first confirmed exoplanets belonged to
a group known as hot Jupiters. These are close-in planets with masses similar or
greater than Jupiter. Their large size and short-period orbit make these objects
ideal for detecting. However, occurrence studies suggest these are in fact the least
common type of exoplanet. The most abundant groups of exoplanets are super-
Earths and mini-Neptunes – rocky planets with a size between that of Earth and

3



Chapter 1 Introduction

Neptune. See Fulton et al. (2017) for an overview of exoplanet occurrence rates
from the Kepler survey.
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Figure 1.1: Mass versus period for 4261 confirmed exoplanets to-date, and their respective de-
tection technique. Plot made using data from the NASA exoplanet archive.

1.3.1 Radial Velocity

Following its early use in exoplanet detection, the radial velocity method remains
one of the most popular techniques. It relies on the Doppler shift of the stellar
spectrum, which occurs as it moves along the observer’s line of sight (Nelson and
Angel, 1998). This movement is caused by the gravitational effect of the planet
on the host star. Although one typically imagines the planet orbiting around the
star, in reality the two objects orbit their common centre of gravity. This small
movement of the star can be detected by high-resolution ground-based spectro-
graphs, down to a precision of 30 cm/s, below which one is limited by the stellar
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1.3 Exoplanet Detections

noise (Petersburg et al., 2020). Figure 1.2 shows a diagram of the radial velocity
technique.

Figure 1.2: The radial velocity technique of detecting exoplanets. Image source:
https://faculty.uca.edu/njaustin/PHYS1401/Laboratory/exoplanet.html

One benefit of using the radial velocity technique is the ability to constrain the
planet’s mass. Using Kepler’s third law, one can relate the velocity of the star to
the period P, stellar mass m∗, and planetary mass mpl, via the equation

K =

(
2πG

P

) 1
3 mpl sin i

m2/3
∗

1√
1− e2

, (1.1)

where K is the radial velocity semi-amplitude of the star, G is the gravitational
constant, i is the inclination of the system with respect to the observer, and e
is the eccentricity of the orbit. The caveat of using this equation is that the
inclination of the system with respect to the observer is unknown. Therefore, one
can only obtain a measurement for mpl sin i, leading to a minimum mass of the
planet. However, this still provides useful constraints on the planet’s density and
potential composition if the radius is known.

5



Chapter 1 Introduction

1.3.2 Transits

The transit technique is currently responsible for the majority of detected exoplan-
ets. When an exoplanet passes in front of its host star in the observer’s line of
sight, a small fraction of the stellar light is obscured, causing a dip in its brightness.
This is known as a transit (Borucki and Summers, 1984). By measuring the depth
of this dip and the periodicity, astronomers can not only detect an exoplanet, but
also determine its radius and orbital separation. A diagram of the transit tech-
nique is shown in Figure 1.3. Using simple geometry, one obtains the equation for
the transit depth as

∆ =
Fout −Fin

Fout
= 1− Fin

Fout
= 1−

[
1− (Rpl/R∗)

2]F∗+Fpl

F∗+Fpl
, (1.2)

where Fin and Fout are the fluxes in and out of transit, Rpl and R∗ are the plane-
tary and stellar radii, and Fpl and F∗ are the planetary and stellar emitted flux.
Assuming Fpl, which originates from the nightside of the planet, is negligible, the
equation simplifies to

∆ =

(
Rpl

R∗

)2

. (1.3)

In addition to being an efficient detection method, the transit technique also
provides direct observations of the exoplanet’s atmosphere. As the planet transits
in front of the star, the stellar light filters through its atmosphere, resulting in a
transmission spectrum (Seager and Sasselov, 2000) (see Section 1.4.2). Later on
in the orbit, the planet’s dayside is visible immediately before it passes behind the
star. This process, known as the secondary eclipse, allows the observer to mea-
sure the planet’s emission spectrum (Charbonneau et al., 2005) (see Section 1.4.3).
As well as these spectroscopy observations, the fluctuation in the planet’s bright-
ness across the entire orbit can be measured, building what’s known as a phase
curve (Harrington et al., 2006). By analysing this, astronomers can determine the
longitudinal temperature structure across the planet’s atmosphere.

6



1.3 Exoplanet Detections

Figure 1.3: A transiting exoplanet and the observed light curve. Image credit: NASA.

1.3.3 Direct Imaging

Although its use is significantly less common that the radial velocity and transit
techniques, direct imaging remains one of the most promising exoplanet detection
methods. By using a coronagraph to block the stellar light, exoplanets can be
resolved from their host star and observed directly (Marois et al., 2010). Figure
1.4 shows an example of directly imaged exoplanets. In order to observe an exo-
planet with direct imaging, the planet needs to be on a wide orbit around its host
star, with a large size and high temperature to provide enough thermal emission
to be detected. This currently limits our ability to directly image most known
exoplanets, but future technological advances hope to alleviate this problem.

A key advantage of direct imaging is the ability to directly observe an exoplanet’s
atmosphere, without the need to separate it from that of the star. This provides
a much clearer spectrum for the planet, improving our capability to accurately
characterise its atmosphere. It’s this advantage that makes direct imaging so
promising for future exoplanet analysis, when higher order effects will need to be
measured to determine a planet’s habitability.

7



Chapter 1 Introduction

Figure 1.4: The directly imaged exoplanet system orbiting HR 8799 (Marois et al., 2010).

1.3.4 Other Methods

Several other methods of exoplanet detection exist, though their use is less fre-
quent. One of the most common of these is microlensing, where astronomers mea-
sure the gravitational effect of the planet on the light of a distant background star
(Udalski et al., 2002). This technique is particularly useful for finding low-mass or
very distant exoplanets, which are challenging for other detection methods. An-
other relatively popular technique is known as transit timing variations (TTVs).
By observing small variations in the transit time of a known exoplanet, additional
planets can be detected in the same system (Ballard et al., 2011). TTVs are an
extremely sensitive method of detecting exoplanets, with the capability of discov-
ering planets as small as Earth. They also provide another method for measuring
exoplanet masses.

1.4 Exoplanet Characterisation: Observations

Since the first successful detection of an exoplanet atmosphere (Charbonneau et al.,
2002), the challenge of characterising these distant objects has become a field of
its own (see Seager (2008) for a review). In this section, I present a summary of
some observing instruments and techniques used for exoplanet characterisation.

8



1.4 Exoplanet Characterisation: Observations

1.4.1 Instruments

Exoplanets are observed with a large number of different instruments, on observa-
tories across the world and in space. Typical observations range from ultraviolet
wavelengths, through the optical, and to the far infrared, with each providing
distinct and important information about the planet. Additional observations of
exoplanets include radio wavelengths, for example using ALMA to observe proto-
planetary discs (ALMA Partnership et al., 2015), or SETI’s telescopes to search
for artificial radio emissions from extraterrestrial life.

Although the first exoplanets were discovered using ground-based spectrographs,
the majority to date have been detected from space. The CoRoT telescope (Baglin
et al., 2002), operating from 2006 to 2013, discovered about 30 new exoplanets.
In 2009, the launch of the Kepler space telescope proved momentous (Borucki
et al., 2009). Using the transit technique, Kepler discovered over 2000 confirmed
exoplanets, exponentially increasing the field of study. Thanks to the currently
operating Transiting Exoplanet Survey Satellite (TESS) (Ricker et al., 2015), we
are constantly discovering new exoplanets, and future missions such as PLATO
(Rauer et al., 2014) will continue this important work.

When it comes to exoplanet characterisation, both space- and ground-based tele-
scopes have a lot to offer. Space telescopes, such as HST, provide low-resolution
spectra with small error bars, allowing for clear molecular features to be stud-
ied. On the ground, spectrographs such as HARPS (Mayor et al., 2003), CRIRES
(Kaeufl et al., 2004), and ESPRESSO (Pepe et al., 2014) obtain very high-resolution
spectra, but with a large level of noise per spectral point. This is useful for de-
tecting certain atoms or molecules in the planet’s atmosphere.

We are currently moving into an exciting era for exoplanet observations. The
launch of the new James Webb Space Telescope (JWST) later this year will lead
to an explosion in precision and sensitivity of our space-based data (Greene et al.,
2016). Furthermore, in approximately 6 years first light is expected from the
HIRES spectrograph on the Extremely Large Telescope (ELT), currently under
development (Zerbi et al., 2014). This will bring a major advancement in the
quality of our ground-based spectra. With these next-generation observatories
just around the corner, the pressure is on for theorists to advance their analysis
techniques and overcome computational limitations.

9



Chapter 1 Introduction

1.4.2 Transmission Spectroscopy

As previously mentioned, during an exoplanet transit the star light passes through
the planet’s terminator on its way to the observer. Here, different wavelengths of
light are absorbed by different molecules in the atmosphere, obscuring more of
the stellar light and causing the planet’s radius to appear larger. This is demon-
strated in Figure 1.5. The ratio of the planet and stellar radii, or the square of
this, is known as the transit depth. By observing this transit depth across mul-
tiple wavelengths, we construct what’s known as a transmission spectrum. These
spectra allow us to characterise the planet’s atmosphere, by searching for distinct
molecular features and comparing with physical models.

Figure 1.5: Schematic of a transiting planet, with the transit depth shown at different wave-
lengths. Credit: NASA’s Goddard Space Flight Center, additional animations cour-
tesy ESA/Hubble.

The strength of the signal in a planet’s transmission spectrum is governed by
the size of its atmosphere. We describe this size using a quantity called the scale
height, given by

H =
kBT
mg

, (1.4)

where kB is the Boltzmann constant, T is the temperature of the atmosphere, m
is the mean molecular weight, and g is the planet’s surface gravity. From this

10



1.4 Exoplanet Characterisation: Observations

quantity, we can infer that exoplanets with higher temperature and lower surface
gravity will have larger atmospheres, and therefore produce clearer transmission
spectra. This indicates that hot Jupiters are the best-suited exoplanet class for
transmission spectroscopy, and they still represent the majority of observed trans-
mission spectra we have today. Some prominent examples of well-characterised
transmission spectra include the detection of water in WASP-12b (Kreidberg et al.,
2015), and sodium in HD 189733 b (Wyttenbach et al., 2015).

1.4.3 Emission Spectroscopy

During a transiting planet’s orbit, two eclipses occur. The first is the transit of
the planet in front of the star, producing a transmission spectrum as previously
discussed. The second is the passing of the planet behind the star, completely
obscuring it from the observer’s view. This is known as the secondary eclipse.
While this event takes place, the flux emitted from the planet is no longer visible.
By comparing the flux received from the system immediately before and after the
secondary eclipse begins, the wavelength-dependent flux from the planet’s dayside
can be isolated. This is known as the exoplanet’s emission spectrum.

For emission spectra, it is not the scale height that controls the size of the spec-
tral features, but instead the atmospheric temperature profile. If the atmosphere
is isothermal then the emission spectrum will be that of a featureless blackbody.
These spectra therefore present an opportunity to determine the vertical temper-
ature structure of the atmosphere, as well as constraining molecular abundances.
Well-known examples of measured emission spectra include the first observation of
a planet’s thermal emission for TrES-1 (Charbonneau et al., 2005), and a potential
water detection in HD 189733 b (Crouzet et al., 2014).

In addition to observing different regions of an exoplanet, transmission and
emission spectra also probe different pressure levels. This makes the study of these
two types of spectra highly complementary, and comparing the analysis from both
can give us a much greater insight into the planet’s atmosphere (e.g. Kreidberg
et al., 2014b).

11



Chapter 1 Introduction

1.4.4 Space-based vs Ground-based Observations

The observation of exoplanets from space, using telescopes such as HST and
Spitzer, allows us to measure low-resolution but information-rich atmospheric spec-
tra. These low-resolution spectra can contain clear spectral features for extremely
important molecules such as water, methane, and ammonia. Figure 1.6 shows
a transmission spectrum of the planet WASP-39 b using a variety of space-based
observations (Wakeford et al., 2018). The water feature at 1.4 µm is very clearly re-
solved by these measurements, allowing the abundance to be precisely constrained.

Figure 1.6: Transmission spectrum of WASP-39 b, using data from HST STIS and WFC3, Spitzer
IRAC, and VLT FORS2 (Wakeford et al., 2018).

As well as determining molecular abundances, low-resolution spectra offer the
opportunity to model the temperature of the atmosphere, and detect the presence
of clouds. See Section 1.5 for an explanation of how this is done.

The key disadvantage of space-based observations is that low-resolution spec-
tra can only measure wide spectral features. By using much larger, ground-based
spectrographs, we are able to resolve individual spectral lines, allowing us to de-
tect atoms and molecules, such as CO, H2O, and HCN (e.g. Brogi et al., 2012;
Birkby et al., 2013, 2017; de Kok et al., 2013), as well as additional new species
like sodium, iron, and other metals (e.g. Wyttenbach et al., 2015, 2017; Hoeij-
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makers et al., 2018a, 2019, 2020b; Seidel et al., 2019), which are challenging for
space-based analysis. Figure 1.7 shows an example of the resolved sodium lines
in the transmission spectrum of WASP-49 b, measured by HARPS (Wyttenbach
et al., 2017). Another advantage of resolving individual spectral lines is the oppor-
tunity to study the dynamics of an exoplanet’s atmosphere. For example, several
recent studies have used doppler shifts and broadening of the spectral lines to infer
potential wind speeds on the planet (e.g. Wyttenbach et al., 2015; Seidel et al.,
2020; Ehrenreich et al., 2020).

Figure 1.7: Transmission spectrum of WASP-49 b, using data from HARPS (Wyttenbach et al.,
2017).

Although ground-based observatories are less restricted than space telescopes in
terms of size and flexibility, their measurements are limited by the Earth’s atmo-
sphere. This obstacle proves challenging for exoplanet spectroscopy, as not only
is it optically thick at multiple wavelengths, but its fluctuations and movement
cause additional noise to the desired signal. To navigate this, ground-based spec-
trographs typically observe shorter wavelengths, such as the optical and UV, and
between water absorption bands in the infrared. They also benefit from being built
at high altitudes and in dry areas (e.g. Mauna Kea in Hawaii and Cerro Paranal
in Chile).
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1.5 Exoplanet Characterisation: Theory and Analysis

When creating a physical model of an atmosphere, several components need to be
taken into consideration. A summary of those will be presented in this section.

1.5.1 Atmospheric Chemistry

One of the primary aspects of an atmospheric model is the inclusion of molecular
and atomic species, and therefore the chemistry governing their abundances. There
are multiple options for the chemical model used by atmospheric theorists, which
vary in complexity. These include free chemistry, equilibrium chemistry, and more
sophisticated disequilibrium effects such as atmospheric mixing and photochem-
istry.

Free chemistry is essentially the absence of any chemical model at all. In this
scenario, chemical abundances are allowed to take any value, giving the model
complete freedom to adjust them with little or no constraints. When fitting a
model to a spectrum, this allows the model to be entirely driven by the data,
without relying on any chemical assumptions. The disadvantage of this is that
unphysical situations commonly arise in the models (Heng and Lyons, 2016), and
any noise or outliers in the data can cause unrealistic values in the abundances.
Free chemistry is most frequently used in a data-driven analysis approach known
as atmospheric retrieval (see Section 1.5.6), which benefits from simplified physics
due to computational restrictions.

Equilibrium chemistry models determine the molecular abundances for a given
temperature and pressure by minimising the Gibbs free energy of the system. Since
they do not require a knowledge of the chemical pathways, these models can con-
tain a large number of species with different phases (Van Zeggeren and Storey,
1970). A typical atmospheric equilibrium chemistry model will use the elemental
abundances to calculate the chemical composition at each level in the atmosphere
(e.g. Stock et al., 2018). Such a model can typically contain hundreds or even
thousands of chemical species. Alternatively, for very simple systems approximate
analytical equations can be used to give sufficiently accurate estimates of the abun-
dances (Heng and Tsai, 2016). Figure 1.8 shows the molecular abundances for a
few species in chemical equilibrium, as a function of the carbon-to-oxygen ratio
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(Madhusudhan, 2012). Equilibrium models are a powerful tool as they can teach
us about the expected composition of hot exoplanets, and importantly, highlight
when surprising abundances are detected. However, they can be highly restric-
tive, and cooler exoplanets, such as warm Neptunes, are unlikely to be in chemical
equilibrium (e.g. Stevenson et al., 2010; Moses et al., 2013).

Figure 1.8: Volume mixing ratios of key carbon- and oxygen-carriers in chemical equilibrium, as
a function of the C/O ratio. This model is calculated at a temperature of 2000 K
and a pressure of 1 bar. Figure taken from Madhusudhan (2012).

Disequilibrium chemistry models can contain a number of different chemical
processes which govern the abundances in different regions of the atmosphere.
The two most important effects are vertical mixing and photo-dissociation. To ac-
count for these, a set of differential equations must be solved to obtain the number
densities of each species. Solving these for a full chemical network is a computa-
tionally intensive task, so these effects are often approximated (e.g. Tsai et al.,
2018). If photochemistry is excluded, timescale arguments can be used to model
the effects of vertical mixing. Even with these approximations, disequilibrium
chemistry is challenging to model efficiently, and is therefore rarely used inside
a full atmospheric model for exoplanets. However, a number of disequilibrium
chemistry models exist (e.g. Moses et al., 2011; Venot et al., 2012; Rimmer and
Helling, 2016; Tsai et al., 2017), and provide extremely useful information about
expected molecular abundances in chemically diverse exoplanet atmospheres.
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1.5.2 Radiative Transfer and Temperature Structure

In order to model a spectrum of an exoplanet, one needs to understand how ra-
diation propagates through the atmosphere. This process is known as radiative
transfer. Based on the radiation fluxes as a result of solving the radiative transfer
equation, we can derive other atmospheric key quantities, such as the temperature-
pressure profile, which dictates the temperature at each vertical level of the atmo-
sphere. As with atmospheric chemistry, there are several options for how to model
radiative transfer, ranging in complexity. This choice is typically governed by the
goal of the model.

If one is aiming to model a theoretical atmosphere of an exoplanet (see Section
1.5.5), with some known or chosen initial conditions, this usually requires a full
radiative transfer calculation. In this situation, one models the propagation of
radiation in the atmosphere. This involves solving a set of differential equations,
with a key variable being τ , the optical depth of the atmosphere. This quantity
loosely describes how far a photon will travel before being absorbed or scattered. If
a medium is optically thin (τ ≪ 1) then interactions with matter are rare, whereas
if a medium is optically thick (τ ≫ 1) then these interactions are frequent, and a
photon is quickly absorbed or scattered. Several approximations can be made to
speed up the computation of a radiative transfer model, such as the two-stream ap-
proximation (Heng et al., 2014). There are a number of radiative transfer models,
or self-consistent atmospheric models containing radiative transfer calculations, in
the community (e.g. Irwin et al., 2008; Tremblin et al., 2015; Malik et al., 2017;
Piskorz et al., 2018).

If instead one is aiming to determine the temperature structure based on the
measure spectrum of an atmosphere, this only requires some parametrisation of the
temperature-pressure profile. Similar to the chemistry models, these parametrisa-
tions suffer from a trade-off between freedom to fit the data and physical plausibil-
ity. One of the first uses of a parametrised T-P profile in exoplanet atmospheres
was Madhusudhan and Seager (2009), which uses three layers, each with an expo-
nential profile, shown in Figure 1.9. This results in a 6-parameter model profile.
Alternative parametrisations have also been used in atmospheric modelling (e.g.
Line et al., 2015; Kitzmann et al., 2020). These parametrised models have the
advantage of being data-driven, but can often lead to inconsistent solutions.
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Figure 1.9: Parametrised temperature-pressure profile from Madhusudhan and Seager (2009).

The full radiative transfer calculation and the parametrised T-P profiles repre-
sent two extremes in atmospheric modelling. Alternatively, there are semi-analytic
formulisms that provide adjustable T-P profiles dictated by the physics (Guillot,
2010; Heng et al., 2012, 2014). Some models take advantage of multiple methods,
such as Waldmann et al. (2015b), which uses an analytical T-P profile to set the
overall shape, and then adjusts the temperature in each layer to fit the data.

The use of a temperature-pressure profile allows one to model the variable tem-
perature through the height of a planet’s atmosphere. One can also assume the
temperature remains constant throughout the atmosphere, using an isothermal
profile. This is, for example, often done when modelling transmission spectra.
However, exoplanets are three-dimensional objects with known temperature varia-
tions across all directions. For example, a tidally locked exoplanet, which has one
side facing the star at all times, will have a very different temperature profile on
its day-side versus its night-side. Recent studies have investigated potential issues
associated with only considering one T-P profile in an atmospheric model (e.g.
Feng et al., 2016; Taylor et al., 2020). Their results show that multiple profiles
will need to be included to fit the precision and sensitivity of the exoplanet spectra
predicted from JWST.
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1.5.3 Opacities

The unique absorption fingerprint associated with each atom and molecule across
different wavelengths is known as its absorption cross-section per unit mass, or
opacity. These opacities make up the fundamental building blocks of any spectral
model. Figure 1.10 shows the opacities of various molecules and their combined
extinction (Malik et al., 2017). The importance of opacities in the accurate char-
acterisation of exoplanet atmospheres is crucial. There are a number of teams
calculating the positions and strengths of molecular and atomic transition lines
(known as line-lists), and their work supports atmospheric modellers all over the
world. The main databases include ExoMol (Tennyson and Yurchenko, 2012; Ten-
nyson et al., 2020), HITRAN (Rothman et al., 2013; Gordon et al., 2017), HITEMP
(Rothman et al., 2010), Kurucz (Kurucz, 2017), and NIST (Kramida et al., 2019),
among others. The line-lists need to be converted into opacities, which requires
a great deal of calculations due to the vast number of transition lines that need
to be processed (up to ∼ 1010 − 1011). This can be done inside an atmospheric
model, or using open-source opacity calculators and databases (e.g. Grimm and
Heng, 2015; Grimm et al., 2021; Chubb et al., 2021).

Figure 1.10: Opacities of various molecules at a temperature of 1500 K and a pressure of 1 bar,
weighted by some mixing ratios (Malik et al., 2017). The combined extinction is
shown in black.
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Opacities are calculated at a very high spectral resolution, which can then be
binned down for data analysis. In the case of low-resolution spectra, the attention
is on the wider, more general shape and height of the spectral features, which can
inform us of the molecular abundances and temperature of the planet’s atmosphere.
This requires the accuracy of the opacities to be focused on the strength of the
spectral lines, rather then their specific locations. In contrast, for high-resolution
data the individual spectral lines can be resolved, meaning their exact location in
wavelength space is the important quantity in the line-lists. Figure 1.11 shows the
high- and low-resolution opacities for H2O, CO2, and CO (Grimm et al., 2021).

Figure 1.11: Opacities of H2O, CO2, and CO, at a temperature of 1500 K and a pressure of
1 mbar (Grimm et al., 2021). The lighter and darker lines show the high- and
low-resolution opacities, respectively.

1.5.4 Clouds and Hazes

Ever since the first detection of an exoplanet around a sun-like star, astronomers
have predicted the existence of condensates or aerosols on these distant worlds
(Guillot et al., 1996; Saumon et al., 1996). The effect of aerosols on an exoplanet’s
spectrum typically presents as a weakening or complete obstruction of absorption
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features. The first measured exoplanet transmission spectrum showed evidence for
aerosols based on the obscured wings of the sodium absorption lines (Charbonneau
et al., 2002; Fortney et al., 2003). It is now accepted that aerosols are common
in the atmospheres of exoplanets, and their inclusion in atmospheric models is
essential.

The classification of clouds versus hazes in the exoplanet community is not well-
defined, with various distinctions based on their formation processes, particle sizes,
or effects on the planet’s spectrum. Figure 1.12 shows an example of an optical
transmission spectrum with evidence of a Rayleigh-scattering haze, i.e. scattering,
sub-micron particles with sizes much smaller than the wavelength (Sing et al.,
2011; Fortney et al., 2010; Marley et al., 2013).

Figure 1.12: Transmission spectrum of HD 189733 b in the optical. The black points show the
observed data (from Sing et al. (2011)). The green line shows a model with gaseous
absorption only (Fortney et al., 2010). The orange line shows a model with a
Rayleigh scattering haze. Figure from Marley et al. (2013).

Again, there are various options for how to model clouds and hazes in exo-
planet spectra. In a fully self-consistent model, complex cloud formation processes
are included, which can depend on the temperature and chemistry of the atmo-
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sphere (e.g. Helling and Woitke, 2006; Helling et al., 2008, 2017). Alternatively,
these processes can be approximated in simpler models (e.g. Ackerman and Mar-
ley, 2001), though their predictive power is limited. In a data-driven approach,
formation modelling is replaced by a parametrisation of the existing cloud. This
can be determined by the opacity of the cloud (e.g. Fisher and Heng, 2018), the
cloud-top pressure (e.g. Tsiaras et al., 2018), the cloud composition (e.g. Kitzmann
et al., 2018), or some combination of these. Comparisons across multiple different
parametrisations can even give deeper insights into the cloud structure on a planet
(Barstow, 2020). Hazes are often included in atmospheric models as a wavelength-
dependent opacity source, leading to slopes in the exoplanet spectra (e.g. Figure
1.12).

1.5.5 Forward Modelling

As previously mentioned, one aspect of analysing exoplanet atmospheres is to use a
physics-driven approach to create a fully self-consistent model. These models only
depend on the fundamental atmospheric parameters, such as the surface gravity,
element abundances, or orbital distance. The atmospheric structure, e.g. the T-P
profile or chemical composition, and the spectrum are then an outcome of the
model. This approach is known as forward modelling. These models typically
contain a radiative transfer model or temperature-pressure profile, a chemistry
model containing equilibrium or disequilibrium processes, and a cloud or haze
model. An advantage of forward modelling is that one can determine the unique
effects of each model parameter on the resulting spectrum. Figure 1.13 shows
an example of several transmission spectrum models with different temperature
values.

Forward models from different groups can be used to create grids of exoplanet
or brown dwarf spectra, which can be used for theoretical analysis or comparison
with data (Allard et al., 2001; Marley et al., 2017; Goyal et al., 2018, 2019, 2020).
Forward models can also be built into retrieval codes (see Section 1.5.6), although
for this the models tend to require a limit on complexity due to computational
restrictions.
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Figure 1.13: Forward models of transmission spectra with varying equilibrium temperature
(Goyal et al., 2019).

1.5.6 Atmospheric Retrieval

In contrast to forward modelling, the data-driven approach to analysing exoplanet
atmospheres is known as atmospheric retrieval. This involves running an atmo-
spheric model multiple times (usually ∼ 104 times), and using a sampling algorithm
to compare the model to the data. The model parameters that produce the spectra
which best fit the data are then combined into a posterior distribution. These dis-
tributions can also highlight any relationships or degeneracies between the model
parameters. The model can either be run in advance, to create a grid of models
for the data comparison, or on-the-fly, using more complex sampling algorithms
to inform the model on which parameter regions to focus on.

The concept of atmospheric retrieval originates from remote sensing of the
Earth’s atmosphere (Rodgers, 2000), and has also been used in Solar System stud-
ies (Irwin et al., 2008). The first study to use atmospheric retrieval for exoplanets
was Madhusudhan and Seager (2009). From here, the field of retrievals blossomed,
and is now a major division of exoplanet analysis (see Madhusudhan (2018) and
Barstow and Heng (2020) for reviews of the field and its challenges).
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As discussed in previous sections, the model used in retrievals is made up of
several key components of atmospheric physics. However, the need to run this
model ∼ 104 times in a single analysis requires that the model is not too compu-
tationally expensive. Therefore, retrieval models typically involve approximations
and parametrisations that speed up the computation. One of the challenges of
atmospheric retrieval is to determine which approximations can be made without
biasing the results. This depends heavily on the resolution and wavelength cover-
age of the data being analysed. Low-resolution transmission spectra from HST, for
example, can be fit with relatively simple models (e.g Heng and Kitzmann, 2017),
while the data we predict from JWST is likely to require more physically accurate
models (Feng et al., 2016; Taylor et al., 2020). Figure 1.14 shows a comparison of
transmission spectra using a full numerical calculation and an analytical approxi-
mation, over both JWST-NIRSpec and HST-WFC3 wavelength ranges (Heng and
Kitzmann, 2017). This demonstrates a good agreement between the models in the
WFC3 range, within the expected error bars for this instrument, but a divergence
between the models at longer wavelengths where James Webb will be sensitive.

Figure 1.14: Comparison of full numerical calculations of the transmission spectrum of an isother-
mal atmosphere to those computed using an isothermal, isobaric analytical formula
(Heng and Kitzmann, 2017). This calculation is for a temperature of 1000 K. The
left- and right-hand panels show JWST-NIRSpec and HST-WFC3 wavelength cov-
erage, respectively.

The other key aspect in a retrieval code is the choice of sampling algorithm.
Over the years this has developed from a simple reduced-χ2 on a grid of models
(e.g. Madhusudhan and Seager, 2009), to optimal estimation (e.g. Lee et al., 2012),
to more advanced Bayesian inference methods such as Markov Chain Monte Carlo
(MCMC) (e.g. Todorov et al., 2016; Wakeford et al., 2017; Evans et al., 2017) and
Nested-Sampling (e.g. Benneke and Seager, 2013; Waldmann et al., 2015a; Lavie
et al., 2017; MacDonald and Madhusudhan, 2017; Fisher and Heng, 2018). The
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latter two use a likelihood function to measure the distance between the model
and the data. Open-source algorithms such as emcee (Foreman-Mackey et al.,
2013) for MCMCs, and MultiNest (Feroz and Hobson, 2008; Feroz et al., 2009)
and PyMultiNest (Buchner et al., 2014) for Nested-Sampling, make it relatively
straight-forward to build a retrieval code once you have a sufficiently fast atmo-
spheric model.

There are a number of traditional exoplanet retrieval codes in the community,
both proprietary and open-source. Examples include NEMESIS (Irwin et al., 2008;
Lee et al., 2012; Barstow et al., 2013), CHIMERA (Line et al., 2013, 2014), τ-Rex
(Waldmann et al., 2015a,b), ATMO (Evans et al., 2017; Wakeford et al., 2017),
Helios-R (Lavie et al., 2017), petitRADTRANS (Mollière et al., 2017), POSEI-
DON (MacDonald and Madhusudhan, 2017), Helios-T (Fisher and Heng, 2018),
and Helios-r2 (Kitzmann et al., 2020). Each code relies on different assumptions
and implementations of the physics, as well as different parameter-sampling tech-
niques. Comparison studies such as Barstow et al. (2020) have investigated these
differences, and the effects on the retrieved posterior distributions.

Over the years, several important discoveries have come from atmospheric re-
trievals. These include the detection of various molecules in hot Jupiters and
Neptunes, such as H2O, CH4, Na, and K (e.g. Fraine et al., 2014; Sing et al., 2016;
Wakeford et al., 2017), the detection of water in the habitable zone sub-Neptune
K2-18 b (Benneke et al., 2019b; Tsiaras et al., 2019), and the prevalence of clouds
on exoplanets (e.g. Deming et al., 2013; Kreidberg et al., 2014a).

Before using an atmospheric retrieval code on real data, a crucial test should
be done to check if known parameter values can be retrieved from a simulated
spectrum. This is known as a mock retrieval. Figure 1.15 shows an example of a
mock retrieval of a brown dwarf spectrum using Helios-r2 (Kitzmann et al., 2020).
By comparing the posterior distributions with the true parameter values, one can
assess the retrieval code’s capabilities for specific types of data.

Another potential insight to be gained from atmospheric retrievals is an inves-
tigation of any parameter trends across multiple exoplanets. In Fisher and Heng
(2018) I searched for trends across 38 planets in the water abundances, temper-
atures, masses, and cloud levels, but found no evidence (see Chapter 2). Other
studies have considered a possible relationship between the mass and metallicity
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Figure 1.15: Mock retrieval of a simulated brown dwarf spectrum using Helios-r2 (Kitzmann
et al., 2020). The true parameter values are shown as solid black lines on the
posterior distributions. The true temperature-pressure profile is shown in blue in
the top right panel.
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of giant exoplanets (e.g. Wakeford et al., 2017; Mansfield et al., 2018; Welbanks
et al., 2019; Blain et al., 2021), but this is still uncertain.

The majority of atmospheric retrievals to-date have been performed on low-
resolution data, from instruments such as HST’s WFC3 and STIS, and Spitzer.
However, these low-resolution retrievals are currently only able to constrain molec-
ular abundances to within 1 or more dex, and they often feature major degeneracies
between parameters. We predict a great leap in constraining power when James
Webb comes online, but in the meantime several studies have looked at perform-
ing atmospheric retrieval on high-resolution ground-based data. The biggest chal-
lenges in this regard are the large number of spectral points and the high level of
noise on each of them. Brogi et al. (2017) and Brogi and Line (2019) were the first
to overcome these challenges. Their technique uses a mapping for the likelihood
that takes advantage of the cross-correlation function (see Section 1.5.7), which
averages information across many spectral points. However, this method is lim-
ited to narrowband spectra. Inspired by their work, I developed my own method
of high-resolution retrievals (see Chapter 5), which extends to wideband spectra
containing ∼ 105 points. Other recent studies have also performed atmospheric
retrievals on high-resolution data (e.g. Gibson et al., 2020; Pino et al., 2020).

1.5.7 Cross-correlation Technique

A major breakthrough in the analysis of high-resolution ground-based exoplanet
spectra came with the introduction of the cross-correlation technique (Snellen
et al., 2008, 2010). This technique uses the cross-correlation function (CCF) to
take an average of all the spectral points, weighted by the strengths of the ab-
sorption lines of a particular molecular or atomic species. This has the effect of
reducing the noise in the spectral lines. The weighting for each species is known
as a template, and this template is shifted to different radial velocities at which
the CCF is calculated. If a peak in the CCF occurs at the known radial velocity of
the exoplanet, this indicates a detection of that species. Slight deviations from the
planet’s radial velocity can also indicate strong day-to-night winds or heat circu-
lation in the planet’s atmosphere (e.g. Snellen et al., 2010; Miller-Ricci Kempton
and Rauscher, 2012; Showman et al., 2013; Brogi et al., 2016; Zhang et al., 2017).
Figure 1.16 shows an example of the CCFs for CO, H2O, CH4, and NH3, for the
emission spectrum of β Pictoris b (Hoeijmakers et al., 2018b). This shows clear
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detections of CO and H2O, and non-detections of CH4 and NH3 in this planet’s
atmosphere.

There are several ways of constructing the cross-correlation function. A com-
monly used example is a simple template-weighted average,

c(v, t) =
N

∑
i=0

xi(t)Ti(v), (1.5)

where xi are each of the N points in the spectrum obtained at time t, and Ti(v) are
the values of the template that is Doppler shifted to a radial velocity v (Baranne
et al., 1996; Pepe et al., 2002; Allart et al., 2017; Hoeijmakers et al., 2019). Using
this, one can construct a two-dimensional CCF, where different exposures pro-
vide a time-evolution of the spectrum. This is shown in the top row of Figure
1.17, which shows the CCFs for various metals in the atmosphere of the ultra-hot
Jupiter KELT-9 b (Hoeijmakers et al., 2018a). The diagonal white lines, clearest
for Fe+ and Ti+, track the movement of the planet as it passes in front of the
star. The dotted lines therefore indicate the start and end of the transit. These
different exposures can be co-added in the rest frame of the planet, giving the
plots in the middle row of Figure 1.17. Extracting these at the orbital velocity of
the planet (254 km s−1), one can construct the one-dimensional cross-correlation

Figure 1.16: One-dimensional cross-correlation function for 4 different species for the emission
spectrum of the exoplanet β Pictoris b, observed with the SINFONI integral field
spectrograph on the VLT (Hoeijmakers et al., 2018b).
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signal-to-noise ratio, shown in the bottom row of Figure 1.17. These plots indicate
a detection of Fe, Fe+, and Ti+, but a non-detection of neutral Ti.

Figure 1.17: Cross-correlations of Fe, Fe+, Ti, and Ti+ with the transmission spectrum of the
ultra-hot Jupiter KELT-9 b, observed with HARPS-N (Hoeijmakers et al., 2018a).

Since its first use on exoplanet spectra (Snellen et al., 2010), the cross-correlation
technique has been used to detect a vast array of different atoms and molecules.
Key examples of molecules include carbon monoxide in τ Boötis b (Brogi et al.,
2012) and HD 189733 b (de Kok et al., 2013), and water in HD 189733 b (Birkby
et al., 2013) and 51 Peg b (Birkby et al., 2017). More recently, astronomers have
taken advantage of the abundance of metal absorption lines in the optical wave-
length range to increase our variety of detections. This began with the ground-
breaking detection of iron and titanium in KELT-9 b (Hoeijmakers et al., 2018a),
and quickly expanded to include magnesium, cromium, scandium, and yttrium in
this ultra-hot Jupiter (Hoeijmakers et al., 2019). Additional detections of met-
als using CCFs have been found in other planets such as MASCARA-2 b (e.g.
Casasayas-Barris et al., 2018, 2019; Stangret et al., 2020; Nugroho et al., 2020;
Hoeijmakers et al., 2020a), WASP-121 b (Gibson et al., 2020; Hoeijmakers et al.,
2020b; Ben-Yami et al., 2020), and WASP-76 b (Ehrenreich et al., 2020; Tabernero
et al., 2021).

The ability to detect a much wider array of atoms and molecules make CCFs
an extremely valuable tool for analysing exoplanet atmospheres. However, aside
from measuring orbital velocities and revealing the presence of extreme winds,

28



1.5 Exoplanet Characterisation: Theory and Analysis

CCFs have been restricted to detecting species in a binary sense. Recent studies
have started to push the limits of CCFs, trying to gain additional information by
using them in atmospheric retrievals (e.g. Brogi et al., 2017; Brogi and Line, 2019;
Fisher et al., 2020). In my work (see Chapter 5), I use machine learning to find
the connection between the shape or height of the CCF peak and the properties
of the atmosphere, such as the temperature and metallicity.

1.5.8 Machine Learning

In the past few decades, the use of machine learning has exploded in all areas
of scientific research. Its ability to vastly improve the speed of data analysis,
as well as provide additional insights, makes machine learning ideal for a wide
variety of tasks, spanning across all fields. Its use in both exoplanet detection and
characterisation has gained popularity in recent years.

For detections, machine learning is an ideal tool for recognising the characteristic
shape of a planet transit in a dataset. Thanks to the Kepler mission, the number of
planet candidates increased exponentially, motivating a more automated analysis
than human judgement. Several studies turned to machine learning algorithms,
with varying degrees of complexity. McCauliff et al. (2015) used a Random Forest
to classify candidates based on features derived from the Kepler pipeline. Addi-
tional studies have also used Random Forests for exoplanet detection (e.g. Mislis
et al., 2016; Armstrong et al., 2018; Schanche et al., 2019; Caceres et al., 2019).
Thompson et al. (2015) and Armstrong et al. (2017) used unsupervised machine
learning to find clusters of candidates with similar light curves, classifying them
using known planets or false positives. Machine learning has also been used to
identify different signals, such as non-transiting planets (Millholland and Laugh-
lin, 2017). The application of neural networks to planet detections has also become
increasingly popular. Dittmann et al. (2017) used them to identify real transits
in the MEarth dataset, and Pearson et al. (2018) tested them on simulated light
curves. Perhaps one of the most successful applications was by Shallue and Van-
derburg (2018), in a collaboration with Google. They used a deep convolutional
neural network (CNN) to identify a fifth planet around Kepler-80, and an eighth
planet around Kepler-90, making it the largest exoplanet system known to-date.
CNNs have now been used in a number of exoplanet detection studies (e.g. Ansdell
et al., 2018; Dattilo et al., 2019; Chaushev et al., 2019; Yu et al., 2019; Osborn
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et al., 2020). Alternative machine learning algorithms, such as Gaussian Processes,
have also been used in exoplanet detection (e.g. Armstrong et al., 2021) and for
removing stellar activity (e.g. Aigrain et al., 2016).

In contrast, machine learning is still used relatively sparsely in exoplanet char-
acterisation. The first study were Waldmann et al. (2015b) and Waldmann (2016),
which used a deep belief neural network to identify the molecules present in an exo-
planet emission spectrum. These molecules could then be included in a traditional
retrieval to find the abundances, and other atmospheric properties. Following this,
I co-developed the use of Random Forests to perform the retrievals themselves, re-
placing the sampling algorithm (Márquez-Neila et al., 2018) (see Chapter 3). A
Random Forest is a supervised machine learning method, meaning the output la-
bels for the training set are provided and the forest learns a mapping between
the input and output. This is ideal for exoplanet retrievals, where the goal is
to link an observed spectrum to a set of atmospheric parameters. A Random
Forest uses a collection of regression trees trained on randomly drawn subsets of
the training set. After testing other machine learning techniques, such as neural
networks, we settled on the Random Forest due to its transparency, speed, and
ability to produce posterior distributions. This technique has since been applied in
multiple studies by our group (Oreshenko et al., 2020; Fisher et al., 2020; Guzmán-
Mesa et al., 2020) and others (Nixon and Madhusudhan, 2020). Other machine
learning techniques have also since been used in retrievals, such as Zingales and
Waldmann (2018), who used a Generative Adversarial Network (GAN), and Cobb
et al. (2019), who used a Bayesian neural network. In an alternative approach,
Hayes et al. (2020) used Principle Component Analysis to inform the priors of
a traditional retrieval. Additional studies have also used convolutional networks
to predict chemical abundances from reflected light spectra (Soboczenski et al.,
2018), and multilayer perceptrons for quick parameter estimations from geometric
albedo spectra (Johnsen et al., 2020).

The majority of studies using machine learning are motivated by the need for an
increase in the speed and efficiency of data analysis. However, additional insights
into the data or model are often provided by these techniques with little to no extra
effort. For example, all machine learning algorithms are tested on large datasets,
allowing one to analyse the predictability of parameters across a wide range. This
is unfeasible with traditional retrievals, which take the order of a few minutes to
several hours to run a single time. Additionally, one can run these tests on varied
datasets to analyse other aspects of exoplanet spectra. Figure 1.18, from Zingales
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and Waldmann (2018), shows how the accuracy of the parameter predictions from
their GAN vary with the size of the error bars in the data. Specifically for Random
Forests, one obtains a “feature importance”, which quantifies the importance for
each feature (e.g. properties of the light curve, or individual spectral points)
in accurately classifying the data. Figure 1.19 shows an example of the feature
importances for identifying real planet transits in WASP data (Schanche et al.,
2019).

Figure 1.18: Accuracy of the parameter prediction from a GAN, as a function of the spectral
error bars (Zingales and Waldmann, 2018).

1.5.9 Life and Habitability

A leading motivation for the detection and characterisation of exoplanets is the
search for extra-terrestrial life. By determining the habitability of an exoplanet, we
can speculate about its potential to host this alien life. However, that comes with
many challenges, and several aspects of habitability are widely disputed among
the community.

One of the simplest indicators of a planet’s ability to host life is its distance
from the star. If the planet orbits too close to its host star, the temperature will
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Figure 1.19: Ranked list of the relative feature importance from a Random Forest classifier for
identifying real planet transits (Schanche et al., 2019).

increase beyond a level conducive to life. However, a planet orbiting too far out
will also be too cold to be habitable. The sweet spot between these points is
known as the “habitable zone” (Huang, 1959; Hart, 1978; Kasting et al., 1993).
The definition of the habitable zone varies, but is often accepted as the range of
orbital distances at which liquid water can exist for an extended period of time on
the surface of an Earth-like planet. However, even this definition is unclear, as it
contains several Earth-specific assumptions (Ramirez, 2018; Ramirez et al., 2019).
The composition and size of the planet’s atmosphere will have a big effect on its
surface temperature, allowing extensions of the habitable zone in both directions.
Figure 1.20, from Seager (2013), shows the traditional habitable zone for Earth-
like planets, as well as the extensions for dry terrestrial and hydrogen-rich planets.
Other factors can affect the location of the habitable zone, such as the planetary
radius and gravity (Yang et al., 2019a), ocean dynamics (Yang et al., 2019b), and
rotation rates (Ramirez and Levi, 2018). Despite these caveats, the habitable zone
remains a standard factor when considering an exoplanet’s potential to host life.
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Figure 1.20: The habitable zone, from Seager (2013). The pale blue region shows the tradi-
tional habitable zone, for planets with N2-CO2-H2O atmospheres. The yellow region
shows the habitable zone extended inwards for dryer planets. The dark blue region
shows the outer extension of the habitable zone for planets with hydrogen-rich at-
mospheres. The solar system planets are shown with images, and some detected
exoplanets are shown with symbols.

In contrast to studying a planet’s ability to host life, astronomers are also search-
ing for indications that a planet does host some form of life. The study of possible
signals of life on exoplanets is led by the search for “biosignatures”. These are gases
produced by life’s metabolic process that accumulate in the planet’s atmosphere at
high enough levels to be remotely detected. Biosignatures have been discussed for
many years (Lederberg, 1965; Lovelock, 1965), but their detectability remains a
challenge for current technology. Several studies have hypothesised about the po-
tential to detect these with upcoming and future observatories (e.g. Schwieterman
et al., 2018; Krissansen-Totton et al., 2018b; Lopez-Morales et al., 2019). Again,
the definition of a biosignature is somewhat vague as multiple false positives exist,
where a gas could also be explained by geological processes, for example. The most
favourable biosignatures would be gases produced by life in quantities many orders
of magnitude away from chemical equilibrium, with no major abiotic sources. In
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addition, we need these biosignatures to have clear, unique spectroscopic features.
Seager et al. (2016) set the goal of constructing a list of potential biosignatures
for diverse exoplanets, and several studies have looked at individual gases in detail
(e.g. Sousa-Silva et al., 2020; Zhan et al., 2021). On Earth, the key current biosig-
natures would be O2, O3, and N2O. However, it is also important to consider how
the Earth has evolved over time, and which biosignatures would have been dom-
inant in different eras (Krissansen-Totton et al., 2018a). Aside from biosignature
gases, additional detectable signs of life have been hypothesised, such as biologi-
cal fluorescence (O’Malley-James and Kaltenegger, 2018, 2019). Studies have also
considered the possibility of life existing in the atmospheres of planets without a
surface (Seager et al., 2021).

One major issue with the search for life on other planets is that astronomers
tend to approach it from a very Earth-centric direction. We search for Earth-sized
planets around Sun-like stars, focusing on liquid water and biosignatures we expect
from the life we know and understand. However, for many years scientists have
speculated about the possibility of completely alien biochemistries, with different
building blocks and solvents (e.g. Schulze-Makuch and Irwin, 2006). For example,
in contrast to the carbon-based life found on Earth, alternative elements, such
as silicon, have been proposed for the basis of extra-terrestrial life (e.g. Petkowski
et al., 2020). Despite its plausibility, in the case of completely foreign biochemistry
it is unclear which gases would be detectable biosignatures, making this hypothet-
ical life extremely hard to search for. This motivates us to focus on the biology
we are familiar with, even though its prevalence in the universe is unknown.

1.6 Looking Forward

The coming years promise to be an exciting time for exoplanet research, due to
the next generation of space- and ground-based observatories. Figure 1.21 shows
a schematic of the upcoming telescopes relevant for exoplanets.

Firstly, the launch of JWST later this year will be a landmark event. With
instruments spanning from 0.6 to 28 µm at varying resolutions, James Webb will
provide state-of-the-art observations of many types of exoplanet. Due to several
launch delays, the anticipation for JWST has been building for over a decade. An
abundance of studies have analysed its predicted capabilities, and the implications
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Figure 1.21: Schematic of upcoming and future space- and ground-based telescopes relevant for
exoplanet research.

for exoplanet science. For example, Cowan et al. (2015) investigate the possibil-
ity of using James Webb to characterise temperature terrestrial planets. Batalha
et al. (2015) assess James Webb’s potential to characterise the atmospheres of
super-Earths, and find that moderate signal-to-noice can be obtained with ∼ 25
transits. Greene et al. (2016) explore the constraints of bulk atmospheric proper-
ties obtainable from James Webb transmission spectra. Other studies have looked
at how to optimise the usage of JWST depending on specific goals in exoplanet
characterisation (e.g. Beichman et al., 2014; Batalha et al., 2017; Guzmán-Mesa
et al., 2020). However, several papers have discovered issues that could arise when
using James Webb, or when analysing the data using the techniques developed for
lower resolution spectra. For example, Barstow et al. (2015) use mock retrievals
to study the impact of starspots and other systematic errors associated with com-
bining non-simultaneous observations from multiple instruments. Rocchetto et al.
(2016) find that the isothermal approximation is not sufficient for analysing JWST
transmission spectra, and Feng et al. (2016) and Taylor et al. (2020) show that us-
ing a single 1-D thermal profile can bias retrieval results for James Webb emission
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spectra. Despite these challenges, there is no doubt that the launch of JWST will
bring an abundance of exciting new discoveries in the field of exoplanets.

Following James Webb, a number of space-telescopes are planned that will have
important capabilities for exoplanet observations. The Nancy Grace Roman Space
Telescope (formally the Wide-Field Infrared Survey Telescope, or WFIRST) will
help to detect many more exoplanets using microlensing (Miyazaki et al., 2021).
The PLAnetary Transits and Oscillations of stars (PLATO) mission will focus on
detecting and characterising rocky, Earth-sized exoplanets in the habitable zone of
bright Sun-like stars (Rauer et al., 2014; Grenfell et al., 2020). The Atmospheric
Remote-sensing Infrared Exoplanet Large-survey (ARIEL) telescope will observe
transits of over 1000 known exoplanets, with the aim of characterising their chem-
ical composition and thermal structure (Tinetti et al., 2018). In addition to these
scheduled telescopes, several proposed exoplanet telescopes are in the running for
NASA’s future Large Strategic Science Missions. These include the Large Ultra-
violet Optical Infrared Surveyor (LUVOIR) (The LUVOIR Team, 2019), and the
Habitable Exoplanet Imaging Mission (HabEx) (Gaudi et al., 2020), which both
have the key science goal of characterising habitable exoplanets.

For ground-based telescopes, a huge leap in the quality of observations is ex-
pected with the Extremely Large Telescope (ELT), currently under-development.
With an almost 40m aperture, the ELT represents the first in a new era of giant
telescopes. It began construction in May 2017, on the Cerro Armazones mountain
in the Antofagasta Region in Chile. This location is ideal for astronomy as it is
high and dry, with 89% cloudless nights a year. The ELT will have a number of
state-of-the-art instruments, including several suited for exoplanet observations.
In particular, the HIgh REsolution Spectrograph (HIRES) will have the charac-
terisation of exoplanets as one of its main scientific goals (Marconi et al., 2021).
Other instruments with exoplanet capabilities include the High Angular Resolu-
tion Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI)
(Thatte et al., 2021; Houllé et al., 2021), and the Mid-infrared ELT Imager and
Spectrograph (METIS) (Brandl et al., 2021). Closely following the ELT is the con-
struction of the Thirty Meter Telescope (TMT), though its intended construction
on Mauna Kea, a dormant volcano regarded as sacred by indigenous Hawaiians,
is a point of controversy (e.g. Kahanamoku et al., 2020; Prescod-Weinstein et al.,
2020; Witze, 2020). Also under construction is the Giant Magellan Telescope
(GMT) in the Atacama region of Chile, another observatory in the generation of
extremely large telescopes.
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It is worth noting some of the major differences in the development of space- and
ground-based observatories. Firstly, there is a large discrepancy between the cost
of space-based and ground-based telescopes, due to the expensive launch process
and more complex technological challenges. For example, the total cost of JWST
has exceeded 10 billion US dollars, whilst the ELT is projected to cost just over
1 billion euros. Secondly, space-telescopes rely on the technology present at the
time of construction, and typically cannot be adapted or fixed in situ. This means
they must be rigorously tested to check for any issues and ensure they will not be
damaged during the launch. This process can take many years, and has contributed
to the delay of JWST, now almost 10 years overdue.

The differing budgets required for ground- and space-based observatories has led
to a divergence between the two main space agencies, NASA and ESA. The success
of pioneering space telescopes, such as HST, have motivated NASA to invest heav-
ily in these, and JWST is predicted to lead the field in space-based observations
for the next decade. In contrast, ESA’s investment in the ELT will place them at
the forefront of ground-based observations. In terms of exoplanet characterisation,
this corresponds to a focus on low- and high-resolution spectroscopy for NASA and
ESA, respectively. However, studies have shown that the combination of these two
data types is essential for building a complete picture of an exoplanet (e.g. Brogi
and Line, 2019).

As these next-generation telescopes come online, the abundance of exoplanet
spectra ready for characterisation is predicted to increase exponentially. As well
as detailed analyses of individual objects, this motivates more statistical studies of
the overall population of exoplanets in our galaxy. This is already a popular field
of research, with studies using Kepler data to obtain exoplanet occurrence rates
(e.g. Petigura et al., 2013; Batalha, 2014; Foreman-Mackey et al., 2014; Sestovic
and Demory, 2020), or Hubble transmission spectra to search for trends in atmo-
spheric properties (e.g. Barstow et al., 2017; Fu et al., 2017; Fisher and Heng, 2018;
Pinhas et al., 2019). However, the atmospheric studies typically use ∼ 10 planets,
and larger studies are infeasible with traditional retrievals. In this upcoming era,
machine learning retrievals will be imperative for keeping up with the influx of
exoplanet spectra, and allowing us to understand the diversity of planets outside
our solar system.
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CHAPTER 2

Retrieval Analysis of 38 WFC3 Transmission Spectra and
Resolution of the Normalization Degeneracy

You should be proud of your achievements and improvement, and that holds
regardless of how many marks the examiners choose to give you.

Kerry Maunder

2.1 Summary

For my first thesis paper, I performed a retrieval analysis on the Wide-Field Cam-
era 3 (WFC3) transmission spectra of 38 exoplanets, using Bayesian model com-
parison to determine the conclusions that can be drawn from these low-resolution
spectra. 30 of these planets’ spectra were taken from Tsiaras et al. (2018), and an
additional 4 include Trappist-1 d, e, f, and g from de Wit et al. (2018).

The goal of this paper was to test a hierarchy of models on each planet, and
then use a Bayesian comparison to determine the level of model sophistication

39



Chapter 2 Retrieval Analysis of 38 WFC3 Transmission Spectra and
Resolution of the Normalization Degeneracy

that is warranted by the WFC3 data alone. The models range from a flat line,
to test a null hypothesis, up to a non-isothermal transmission model including
H2O, HCN, and NH3, and a non-grey cloud. By using a nested-sampling algo-
rithm to perform the retrievals, I was able to obtain a Bayesian evidence for each
model, which could then be compared across the hierarchy to determine the “best”
model. The Bayesian evidence penalises models with a higher number of parame-
ters, allowing me to implement a form of Occam’s razor. Using the retrieval results
from the preferred models, I studied potential trends in planet mass, temperature,
molecular abundances, and clouds. In addition, I investigated the so-called “nor-
malization degeneracy”, which describes the degenerate relationship between the
relative molecular abundances and the absolute normalisation of the transmission
spectrum.

From my model comparisons, I found that 8 of these planets’ WFC3 spectra
are adequately explained by a flat line, and 35 are well-fitted by an isothermal
model with only water and a grey cloud. I found little to no evidence for any
trends between the retrieved atmospheric parameters of these planets. My results
also showed that the normalization degeneracy may be partially broken using the
WFC3 data alone, and that the expected resolution from the upcoming James
Webb Space Telescope will be sufficient to completely solve the issue. The re-
trievals of the planets for which a non-grey cloud model is preferred showed that
it is not possible to constrain cloud composition using WFC3 data alone.

The intention of this work was to determine what can be learnt from the WFC3
data alone, and therefore the retrieval results may change somewhat significantly
when additional datasets are analysed.

2.2 Publication

This work was published in Monthly Notices of the Royal Astronomical Society in
2018.
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Retrieval analysis of 38 WFC3 transmission spectra and
resolution of the normalisation degeneracy
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ABSTRACT
A comprehensive analysis of 38 previously published Wide Field Camera 3 (WFC3)
transmission spectra is performed using a hierarchy of nested-sampling retrievals: with
versus without clouds, grey versus non-grey clouds, isothermal versus non-isothermal
transit chords and with water, hydrogen cyanide and/or ammonia. We revisit the
“normalisation degeneracy”: the relative abundances of molecules are degenerate at the
order-of-magnitude level with the absolute normalisation of the transmission spectrum.
Using a suite of mock retrievals, we demonstrate that the normalisation degeneracy
may be partially broken using WFC3 data alone, even in the absence of optical/visible
data and without appealing to the presence of patchy clouds, although lower limits to
the mixing ratios may be prior-dominated depending on the measurement uncertain-
ties. With James Webb Space Telescope-like spectral resolutions, the normalisation
degeneracy may be completely broken from infrared spectra alone. We find no trend
in the retrieved water abundances across nearly two orders of magnitude in exoplanet
mass and a factor of 5 in retrieved temperature (about 500–2500 K). We further show
that there is a general lack of strong Bayesian evidence to support interpretations of
non-grey over grey clouds (only for WASP-69b and WASP-76b) and non-isothermal
over isothermal atmospheres (no objects). 35 out of 38 WFC3 transmission spectra are
well-fitted by an isothermal transit chord with grey clouds and water only, while 8 are
adequately explained by flat lines. Generally, the cloud composition is unconstrained.

Key words: planets and satellites: atmospheres

1 INTRODUCTION

At the time of writing, we are in the transitional period be-
tween the Hubble and James Webb Space Telescopes (HST
and JWST). In the foreseeable future, WFC3 transmission
spectra spanning 0.8–1.7 µm will be superceeded by NIR-
Spec data ranging from 0.6–5 µm and at enhanced spectral
resolution. It is therefore timely to perform a uniform the-
oretical analysis of a consolidated dataset of WFC3 trans-
mission spectra, which is the over-arching motivation behind
the current study.

1.1 Observational motivation: a statistical study
of cloudy atmospheres

Following the work of Iyer et al. (2016), Fu et al. (2017)
recently conducted a statistical study of the transmission
spectra of 34 exoplanets (mostly hot Jupiters) measured us-
ing WFC3 onboard HST, which were mostly gathered from

? Email: chloe.fisher@csh.unibe.ch (CF)
† E-mail: kevin.heng@csh.unibe.ch (KH)

Tsiaras et al. (2018). In order to isolate the spectral feature
due to water1, they quantified the strength of absorption
between 1.3–1.65 µm, relative to the continuum, in terms of
the number of pressure scale heights, which they represented
by AH . Based on the finding that both AH and the equilib-
rium temperature (Teq) follow log-normal distributions, Fu
et al. (2017) concluded that their sample of AH is affected
by observational bias. Tsiaras et al. (2018) defined an Atmo-
spheric Detectability Index (ADI) to quantify the strength of
detection of the water feature, but do not explicitly link the
ADI to any trends in cloud properties. They concluded that
all of their WFC3 transmission spectra, except for WASP-
69b, are consistent with the presence of a grey cloud deck.

Our intention is to build upon the Fu et al. (2017) and
Tsiaras et al. (2018) studies by subjecting their WFC3 sam-
ple to a detailed atmospheric retrieval study and elucidating
the presence of assumptions, limitations and trends. It fol-
lows the principle that the same datasets should be analysed
by different groups (using different codes and techniques)

1 Technically, it is due to a collection of unresolved water lines.

c© 2018 The Authors
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Figure 1. Strength of WFC3 water feature, AH , in terms of pres-

sure scale heights as a function of the equilibrium temperature.
Also shown are the theoretical predictions of AH for cloud-free

and cloudy atmospheres. For the latter, the curves correspond to

transit chords probing Pcloud ∼ 1 µbar, ∼ 0.1 mbar and ∼ 10
mbar if the opacity was solely due to grey clouds and the gravity

is ∼ 103 cm s−2. It is apparent that all of the 34 atmospheres are

cloudy if only water is assumed to be present.

within the community, so as to check for the consistency
and robustness of theoretical interpretations (Fortney et al.
2016).

From a theoretical standpoint, AH is an elegant quan-
tity to examine, because the difference in transit radii be-
tween the peak of the water feature and the continuum is
simply

AH = ln

(
κmax

κmin

)
, (1)

where κmax and κmin are the maximum and minimum values
of the water opacity in the WFC3 range of wavelengths.
The preceding equation naturally derives from equation (2),
if the volume mixing ratio of water (XH2O) is assumed to
be uniform across altitude, and is free of the normalisation
degeneracy (see next subsection). Its simplicity allows us to
do a first check on if the 34 objects in the sample gathered
by Fu et al. (2017) have cloudy atmospheres.

In Figure 1, we show curves of AH for completely cloud-
free atmospheres by assuming that the temperature (sam-
pled by the water opacity) is the equilibrium temperature.
Also shown are curves of AH corresponding to cloudy atmo-
spheres with constant opacities. For example, an opacity of
1 cm2 g−1 corresponds to a transit chord probing a pressure
∼ 0.1 mbar if only clouds (and not molecules) are present
in the atmosphere. By comparing these theoretical curves
to the measured data points of Fu et al. (2017), we tenta-
tively conclude that all of the 34 transiting exoplanets in
their sample have cloudy atmospheres. It is one of the goals
of the present study to examine if this conclusion is robust.
Assuming that the temperature is some fraction of the equi-
librium temperature merely translates the theoretical curves
along the horizontal axis (not shown).

There is an additional, supporting argument for the at-
mospheres being cloudy. By visual inspection of measured
WFC3 transmission spectra, we noticed that the continuum
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Figure 2. Opacities of water, hydrogen cyanide and ammonia as
functions of wavelength. The ExoMol spectroscopic line list was

used as input for computing these opacities. For water and hy-

drogen cyanide, we show a sequence of opacities from 900–2100
K. Darker shades of the same colour correspond to higher tem-

peratures. For ammonia, the temperature sequence is terminated

at 1500 K, because ExoMol does not provide any data for higher
temperatures. The spectral resolution is 5 cm−1 and the pressure

is fixed at P = 10 mbar, because these values are what we use in

our retrievals (see text for details).

blue-wards of the 1.4 µm water feature tends to be somewhat
flat, in contrast to the opacity of water which tends to be
rather structured at these wavelengths (Figure 2). This sug-
gests that most, if not all, of the WFC3 transmission spectra
measured so far are probing cloudy atmospheres—at least at
the atmospheric limbs. However, this argument becomes less
clear if ammonia and hydrogen cyanide are present, as they
may mimic these effects on the spectra.

In the current study, one of our goals is to formalise this
finding by performing atmospheric retrieval, within a nested-
sampling framework (e.g., Skilling 2006; Feroz & Hobson
2008; Feroz et al. 2009, 2013; Benneke & Seager 2013; Wald-
mann et al. 2015; Lavie et al. 2017; Tsiaras et al. 2018), on
each of the 34 objects in the Fu et al. (2017) sample. We con-
struct a hierarchy of models with increasing levels of sophis-
tication: cloud-free model (2 parameters), cloudy model with
constant/grey cloud opacity (3 parameters), cloudy model
with non-grey opacity (6 parameters). It is assumed that
the main molecular absorber is water. If hydrogen cyanide
(HCN) and ammonia (NH3) are added to the analysis (Mac-
Donald & Madhusudhan 2017), then it adds two more free
parameters for a maximum of 8 parameters for the isother-
mal model. Our non-isothermal model adds another param-
eter. For comparison, MacDonald & Madhusudhan (2017)
employ a 16-parameter model based partly on the heritage
from Madhusudhan & Seager (2009).

We use the computed Bayesian evidence (Trotta 2008)
from the retrievals to select the best model given the qual-
ity of the data, and hence determine if the atmospheres are
cloudy, if cloud properties may be meaningfully constrained,
and if NH3 and/or HCN are detected in a given WFC3 spec-
trum. Unlike the approach adopted by MacDonald & Mad-
husudhan (2017), we do not test for patchy clouds. Rather,

MNRAS 000, 1–24 (2018)
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we test essentially for whether the cloud particles are small
or large (compared to the wavelengths probed).

1.2 Theoretical motivation: the normalisation
degeneracy

Atmospheric retrievals of transmission spectrum typically
specify a plane-parallel model atmosphere, assume az-
imuthal symmetry and then trace a transit chord through a
set of atmospheric columns (each approximated by a plane-
parallel atmosphere) (Madhusudhan & Seager 2009; Ben-
neke & Seager 2012, 2013; Line et al. 2013; Waldmann et al.
2015). This brute-force procedure for calculating the trans-
mission spectrum was previously described by Brown (2001)
and Hubbard et al. (2001). In the current study, our in-
tention is to build a nested-sampling retrieval framework
around a validated analytical model for computing the trans-
mission spectrum that bypasses the need for a brute-force
calculation. Complementary to previous retrieval studies, we
make a different set of investments, approximations and sim-
plifications.

Building on the work of Lecavelier des Etangs et al.
(2008), de Wit & Seager (2013) and Bétrémieux & Swain
(2017), Heng & Kitzmann (2017) demonstrated that an an-
alytical expression for the isothermal transit chord of an
atmosphere,

R = R0 +H (γ + E1 + ln τ) , (2)

is accurate enough2 to model WFC3 transmission spectra for
atmospheres with temperatures ∼ 1000 K or hotter, where
we have

τ ≡ κP0

g

√
2πR0

H
. (3)

The pressure scale height is given by H, the Euler-
Mascheroni constant by γ ≈ 0.57721 and the surface gravity
by g. The exponential integral of the first order is given
by E1(τ) (Abramowitz & Stegun 1970; Arfken & Weber
1995), which has the argument τ . For a WFC3 spectrum
dominated by water, the opacity is κ ∝ XH2O, where XH2O

is the volume mixing ratio of water. Equation (2) assumes
that R0 < R; if the layer of the atmosphere located at R0 is
opaque in the WFC3 bandpass (τ � 1), then the E1 term
may be dropped.

Equation (2) straightforwardly shows that there exists
a three-way degeneracy between the reference transit radius
(R0), reference pressure (P0) and XH2O, which was first no-
ticed numerically3 by Benneke & Seager (2012) and Griffith
(2014). The values of R0 and P0, as well as the relationship
between them, are a priori unknown, because it is akin to
having prior knowledge of the structure of the exoplanet. It
is apparent that a small change in R0 causes a large varia-
tion in XH2O. Furthermore, it is XH2OP0, and not XH2O

alone, that is being retrieved from the data. It is worth

2 Meaning that the errors incurred are smaller than the noise
floor (about 50 parts per million) of HST and the expected noise

floor of JWST.
3 Our stand is that a numerical demonstration of an effect alone
does not qualify as attaining full understanding of it, until its

theoretical (analytical) formalism has been elucidated.
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Figure 3. Posterior distributions of the water volume mix-

ing ratio (XH2O), temperature (T ), grey/constant cloud opacity
(κcloud) and reference transit radius (R0; uniform prior from 1.7–

1.88 RJ) from a retrieval analysis of the WASP-12b transmission

spectrum. The degeneracies between R0 and the other quantities
is apparent; R0 is bounded from below because XH2O is bounded

from above by unity. In this test, we have set P0 = 10 bar but

in our subsequent retrieval of the WASP-12b WFC3 transmission
spectrum we will fit for P0 (see text and Figure 20). The measured

data and best-fit model are shown in the top-right panel. The
physical units of T and κcloud are K and cm2 g−1, respectively,

while R0 is given in units of Jupiter radii (RJ). This retrieval as-

sumes a constant mean molecular mass and ignores the effect of
collisional induced absorption, which we will explore later in the

current study.

emphasising that these obstacles do not exist in the for-
ward problem, where one makes a specific set of assumptions
(e.g., solar metallicity, chemical equilibrium) and computes
the transmission spectrum, but they are front and center in
the inverse problem. Heng & Kitzmann (2017) pointed out
these issues, but they did not examine them further within a
Bayesian retrieval framework, which partially motivates the
current study.

Figure 3 shows a retrieval calculation performed using a
new code (HELIOS-T) presented as part of the current study,
which we constructed specifically to perform fast retrievals
on transmission spectra at low spectral resolution.4 (A de-
tailed description of methodology will come later in §2.) It
demonstrates that while the temperature may be robustly
retrieved, there are order-of-magnitude degeneracies associ-
ated with the water mixing ratio and cloud opacity that arise
from small variations of R0 (in the third significant figure),
as previously elucidated by Heng & Kitzmann (2017). In the
present study, we wish to examine if R0 or P0 may be used as

4 At high spectral resolution, the fully resolved spectral lines may
span many orders of magnitude in pressure between the line peaks

and wings, thereby violating the isobaric assumption.
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Figure 4. Same as Figure 3, but using spectral resolutions of 1 cm−1 (top left panel), 2 cm−1 (top right panel), 5 cm−1 (bottom left

panel) and 10 cm−1 (bottom right panel) for the ExoMol water opacity.

a fitting parameter to break the normalisation degeneracy.
We further examine if the normalisation degeneracy may be
broken with WFC3 transmission spectra alone, or if JWST-
like spectra is needed.

1.3 Layout of current study

In §2, we describe our theoretical methodology, including
how we compute transit radii and opacities. In §3, we per-
form suites of tests, a detailed analysis of the 38 WFC3
transmission spectra in the Tsiaras et al. (2018) and de Wit
et al. (2018) samples and elucidate trends among the re-
trieved quantities. The implications of our results are dis-
cussed in §4. Table 1 lists our assumptions for the prior dis-

tributions of parameters. Table 2 summarises our retrieval
results. Table 3 summarises some of the input parameters
for the retrievals.

Our new nested-sampling retrieval code for transmis-
sion spectra, HELIOS-T, is part of our open-source suite
of tools for analysing exoplanetary atmospheres known as
the Exoclimes Simulation Platform (www.exoclime.org or
https://github.com/exoclime).
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Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalisation degeneracy 5

Table 1. Assumed prior distributions for retrievals and values of physical constants used

Quantity Symbol Range Assumption Units

Temperature T (100, 2900) Uniform K

Water mixing ratio XH2O

(
10−13, 1

)
Log-uniform –

Hydrogen cyanide mixing ratio XHCN

(
10−13, 1

)
Log-uniform –

Ammonia mixing ratio XNH3

(
10−13, 1

)
Log-uniform –

Grey cloud opacity κcloud

(
10−12, 102

)
Log-uniform cm2 g−1

Opacity normalisation for non-grey cloud model κ0

(
10−10, 10−1

)
Log-uniform cm2 g−1

Composition parameter in non-grey cloud model Q0 (1, 100) Uniform –

Index in non-grey cloud model a (3, 6) Uniform –

Monodisperse, spherical cloud particle radius rc
(
10−7, 10−1

)
Log-uniform cm

Non-isothermal temperature profile parameter b (−30,−1) , (1, 30) Uniform –

Reference transit radius† R0 (1.619, 1.799) Uniform RJ

Reference pressure P0

(
10−1, 103

)
Log-uniform bar

Equatorial radius of Jupiter RJ 7.1492× 109 – cm

Mass of hydrogen atom mH mamu – cm
Atomic mass unit mamu 1.66053904× 10−24 – g

Boltzmann constant kB 1.38064852× 10−16 – erg K−1

†: Only used in the test retrievals of WASP-17b (§3.2.2).

2 METHODOLOGY

2.1 Transmission spectra

As explained in §1, equation (2) describes our forward model
for transforming a given temperature, surface gravity, opac-
ity function, reference transit radius and reference pressure
into a transmission spectrum. The accuracy of equation (2)
has previously been demonstrated by Heng & Kitzmann
(2017) and we will not repeat the analysis and explanation
here. To test for non-isothermality, we use another formula
derived by Heng & Kitzmann (2017),

R = R0 +Hτ1/b (γ + E1 + ln τ) (4)

where the reference optical depth is now given by

τ =
πP0κ

2g

√
2R0 |b|
H

. (5)

We again have E1 = E1(τ). The dimensionless index b is the
ratio of the non-isothermal to the isothermal scale height. If
the values of |b| are much larger than unity, then it means
that the behavior is close to being isothermal. Essentially,
our simplified temperature-pressure profile is described by 2
parameters.

Our approach is complementary to other approaches in
the literature that use more complicated prescriptions for
temperature-pressure profiles. For example, Madhusudhan
& Seager (2009) and MacDonald & Madhusudhan (2017)
use 9- and 7-parameter fitting functions, respectively. Again,
we make a different investment: we choose to simplify the
temperature profile prescription in order to isolate the effects
of the other parameters. It allows us to more cleanly study
degeneracies.

2.2 Opacities

3 Our H2O, HCN and NH3 opacities are taken from the Ex-

oMol spectroscopic database (Barber et al. 2006; Yurchenko
et al. 2011, 2013; Barber et al. 2014; Yurchenko & Tennyson

2014). In a single set of tests (see §3.1.4), we also use the
HITRAN (Rothman et al. 1987, 1992, 1998, 2003, 2005, 2009,
2013) and HITEMP (Rothman et al. 2010) databases for wa-
ter. For a review of the spectroscopic databases, please see
Tennyson & Yurchenko (2017). For the procedure on how
to use the ExoMol inputs to compute opacities, we refer the
reader to Grimm & Heng (2015), Chapter 5 of Heng (2017)
and Yurchenko et al. (2018). Examples of opacities for all
three molecules are given in Figure 2.

The opacity function used in equation (2) is given by

κ =
XH2OmH2OκH2O

m
+
XHCNmHCNκHCN

m

+
XNH3mNH3κNH3

m
+ κcloud,

(6)

where m is the mean molecular mass, mH2O is the mass
of the water molecule, κH2O is the water opacity, XHCN is
the volume mixing ratio of hydrogen cyanide, mHCN is the
mass of the hydrogen cyanide molecule, κHCN is the hydro-
gen cyanide opacity, XNH3 is the volume mixing ratio of
ammonia, mNH3 is the mass of the ammonia molecule, κNH3

is the ammonia opacity and κcloud is the cloud opacity.
Denoting the atomic mass unit by mamu, the mean

molecular weight (µ = m/mamu) is given by

µ = 2.4XH2 +
XH2OmH2O

mamu
+
XHCNmHCN

mamu
+
XNH3mNH3

mamu
. (7)

The mixing ratio of molecular hydrogen is determined by
demanding that all mixing ratios sum to unity,

1.1XH2 +XH2O +XHCN +XNH3 = 1, (8)

where we have assumed that the helium mixing ratio follows
cosmic abundance (XHe = 0.1XH2).

The molecular opacities are sampled at 1 mbar for the
first suite of tests (§3.1; to ensure continuity with Heng &
Kitzmann 2017) and 10 mbar for our second suite of tests
(§3.2.2) and actual results (see §3.3). The cloud mixing ra-
tio is subsumed into κcloud. The opacity associated with
collision-induced absorption (both H2-H2 and H2-He) are
taken from Rothman et al. (2013).
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An unresolved physics problem inherent in the compu-
tation of opacities concerns the effects of pressure broaden-
ing. The spectral lines of isolated atoms and molecules are
described rather well by a Voigt profile. As a population,
collisions between them become important at high enough
pressures, which modifies the shape of the far line wings
of the profile. It remains unknown exactly what “far” means
and how to compute these modified profiles. In practice, vari-
ous workers in the field have resorted to truncating the Voigt
profiles at some ad hoc distance from line centre (see Grimm
& Heng 2015 and references therein). For this study, we use
a line-wing cutoff of 100 cm−1. Fortunately, since transmis-
sion spectra probe pressures that are tenuous enough such
that pressure broadening has a negligible effect for ∼ 1000
K atmospheres, this is not a limiting issue.

Another limitation is that, at the time of writing, the
NH3 opacities do not exist for temperatures above 1600 K
(Yurchenko et al. 2011). In the absence of these data, we set
the opacity for NH3 to be zero for temperatures above 1600
K.

2.3 Cloud models

We consider both grey and non-grey clouds. For our grey
cloud model, we assume a constant cloud opacity, which is
physically equivalent to assuming that the cloud particles
are much larger than the WFC3 wavelengths being probed.
Our non-grey cloud model uses the opacity of (Kitzmann &
Heng 2018),

κcloud =
κ0

Q0x−a + x0.2
, (9)

where x = 2πrc/λ is the dimensionless size parameter, rc is
the particle radius and λ is the wavelength. In their study of
32 condensate species, Kitzmann & Heng (2018) showed that
Q0 ≈ 0.1–65 is a proxy for cloud composition with larger
values corresponding to more volatile species. For example,
water ice has Q0 = 64.98 and olivine has Q0 ≈ 10. The
index a ranges from 3 to 7; a = 4 corresponds to Rayleigh
scattering. Our non-grey cloud model has 4 free parameters:
κ0, Q0, rc and a. The immediate implication of the preced-
ing equation is that if the cloud is grey (a ≈ 0), then the
composition cannot be decisively constrained.

Conceptually, the treatment of Lee et al. (2013) and
Kitzmann & Heng (2018) are identical in that they both
allow smooth transitions between the Rayleigh and large-
particle regimes. However, Lee et al. (2013) assumed a =
4, whereas Kitzmann & Heng (2018) calibrated Q0 and a
against a larger library of species and composition.

2.4 Data

For 30 out of 38 objects, the WFC3 transmission spectra
were obtained from Tsiaras et al. (2018) and provided in
electronic form by the first author (A. Tsiaras 2018, private
communication). For WASP-17b, WASP-19b, GJ 1214b and
HD97658b, the WFC3 transmission spectra were obtained
from Mandell et al. (2013), Huitson et al. (2013), Kreid-
berg et al. (2014a) and Knutson et al. (2014), respectively.
The WFC3 transmission spectra of TRAPPIST-1d, e, f and
g were taken from de Wit et al. (2018). The stellar radii
and surface gravities for each object are listed in Table 3.
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Figure 5. Same as Figure 3, but for cloud-free models in which we
fix m = 2.4mH (logXH2O posterior bumps up against 0) versus

a variable m (posteriors distributions are in a darker shade) that

takes into account water-rich atmospheres.

Uncertainties in the stellar radii manifest themselves as un-
certainties in the normalisation of the transmission spectra.

3 RESULTS

3.1 Suite of tests on WASP-12b transmission
spectrum

To provide continuity between Heng & Kitzmann (2017) and
the present study, we use the WFC3 transmission spectrum
of WASP-12b (13 data points), measured by Kreidberg et al.
(2015), as our starting point for tests. To cleanly isolate the
effects studied, we begin with using a constant/grey cloud
opacity. Note that for these WASP-12b tests only (Figures 4
to 9), the molecular opacities are sampled at 1 mbar, CIA is
not included and m is fixed at 2.4mH, where mH is the mass
of the hydrogen atom (which we take to be one atomic mass
unit, mamu), unless otherwise stated. In these tests only, we
set R0 = 1.79 RJ and P0 = 10 bar. These restrictions are
lifted for the rest of the study.

3.1.1 Spectral resolution of opacities

In Figure 4, we perform resolution tests associated with
the sampling of the water opacity across wavenumber. We
show retrieval outcomes for spectral resolutions of 1, 2, 5
and 10 cm−1. For all of these values, the posterior distribu-
tions of T , XH2O and κcloud are somewhat similar. Specifi-
cally, the retrieved temperatures are 1218+388

−297 K, 1252+393
−307

K, 1203+468
−323 K and 1363+403

−343 K, respectively. The logarithm
of the retrieved water volume mixing ratios are −3.51+1.66

−1.26,
−3.61+1.68

−1.27, −3.46+1.93
−1.49 and −4.04+1.62

−1.14, respectively. For the
rest of the study, we will adopt a sampling resolution of 5
cm−1.
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Figure 6. Same as Figure 3, but comparing a MCMC (left panel) versus nested-sampling (right panel) retrieval approach.

3.1.2 Cloudy versus cloud-free

Another necessary check is to determine that cloudy models
are necessary in the first place for WASP-12b. In Figure 5,
we subject the WASP-12b WFC3 transmission spectrum to
two cloud-free retrievals: the first has a fixed m = 2.4mH,
while the second has a variable m. For the retrieval with
a fixed m, the outcome is implausible as the water volume
mixing ratio is ∼ 10%–100%. The retrieval with a variable
m produces more plausible posteriors, but even by visual
inspection it is apparent that the cloud-free model struggles
to match the somewhat flat spectral continuum blue-wards
of the 1.4 µm water feature. For the rest of the WFC3 trans-
mission spectra, we will not show the posterior distributions
associated with the cloud-free retrieval (unless it has the
highest Bayesian evidence in the model hierarchy), but we
will still include them in the overall analysis.

3.1.3 MCMC versus nested sampling

The next logical test is to compare cloudy retrievals obtained
using a Markov Chain Monte Carlo (MCMC) versus nested
sampling approach. For the former, we use the open-source
emcee package (Foreman-Mackey et al. 2013). For the lat-
ter, we use the open-source PyMultiNest package (Buchner
et al. 2014). Figure 6 compares the outcome from this pair of
retrievals. It is reassuring that the posterior distributions of
T , XH2O and κcloud are somewhat similar, although we note
that the retrieval performed with MCMC produces higher
values of the water volume mixing ratio in the tail of the
distribution (towards XH2O = 1). The reason to select the
nested-sampling approach over MCMC is because it allows
us to straightforwardly compute the Bayesian evidence asso-
ciated with each model, which in turn allows us to formally
apply Occam’s Razor.

3.1.4 Choice of spectroscopic databases: HITRAN versus
HITEMP versus ExoMol

Perhaps the most surprising outcome of our series of WASP-
12b tests is shown in Figure 7, where we examine the re-
trieval outcomes using the HITRAN, HITEMP and ExoMol spec-
troscopic databases to construct the water opacity. The main
shortcoming with HITRAN is that it omits the weak lines of
water that contribute prominently to the spectral contin-
uum when T ∼ 1000 K or hotter. HITEMP addresses this
issue somewhat, but it is widely accepted by the exoplanet
community that ExoMol addresses this issue most completely
to date (see Tennyson & Yurchenko 2017 for a review). With
an equilibrium temperature in excess of 2500 K, WASP-12b
is an ideal target for testing if discrepancies from retrievals
arise from the use of different line lists. Yet, Figure 7 shows
us that the choice of line list for the water opacity is irrel-
evant at the present spectral resolution and signal-to-noise
attainable of the WFC transmission spectrum of WASP-
12b. It suggests that the retrievals performed on the other
WFC3 transmission spectra are robust to the choice of spec-
troscopic line list. Despite this finding, we persist in using
the ExoMol line list in order to dispel any notion that our
results lack robustness.

3.1.5 Insensitivity to pressure broadening

Pressure broadening is an ill-defined source of uncertainty,
because there is no first-principles theory to describe it (see
discussion in §2.2). Nevertheless, we quantify its effect as
the final test in this WASP-12b suite. Figure 8 shows two
retrievals with P = 1 mbar versus 1 bar, which span the
conceivable range of pressures probed by the WFC3 trans-
mission spectrum. The effects on the posterior distributions
of the temperature, water mixing ratio and grey cloud opac-
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8 Fisher & Heng

ity are minimal, even with a factor of 1000 difference in
pressure between the pair of retrievals.

For the rest of the study, we will fix the pressure associ-
ated with pressure broadening at 10 mbar. The reasoning is
that departures from this value will result in minor errors to
the retrieved posterior distributions, which are subsumed as
errors in the grey cloud opacity. Given that the exact func-
tional form of pressure broadening cannot be specified from
first principles, this is a reasonable approach, because it al-
lows us to include pressure broadening in a more controlled
way.

3.1.6 Comparison of Bayesian evidence

Following these tests, we analyse the WFC3 transmission
spectrum of WASP-12b using a hierarchy of models: with
and without clouds, grey versus non-grey clouds, isothermal
versus non-isothermal and with various permutations of the
three molecules being present. Figure 9 shows the Bayes fac-
tor for each model, which is the logarithm of the ratio of the
Bayesian evidence of a given model compared to the best
model. The value of the Bayes factor may be interpreted as
being weak, moderate or strong evidence for the best model
in favour of a given model (Trotta 2008). It may also be used
to infer that the comparison is inconclusive, i.e., there is no
evidence to favour one model over the other, if the Bayes
factor between them is less than unity.

A few conclusions may be drawn from Figure 9. First,
cloud-free models are disfavoured. Second, there is weak ev-
idence for non-isothermal behaviour, non-grey clouds and
the presence of HCN and/or NH3, but overall the isothermal
model with only water present and grey clouds is sufficient to
fit the WFC3 transmission spectrum. In other words, there
is no evidence for more complicated models to be favoured.

Again, note that the molecular opacities are sampled at
1 mbar, CIA is not included,m is fixed at 2.4mH and we have
fixed R0 = 1.79 RJ and P0 = 10 bar. These assumptions will
be lifted for WASP-12b in Figure 20.

3.2 Breaking the normalisation degeneracy for
cloud-free objects

3.2.1 Deriving R0(P0): case study of WASP-17b

Heng (2016) previously concluded that the atmospheres of
WASP-17b and WASP-31b are cloud-free based on optical
transmission spectra recorded by STIS (Sing et al. 2016).
This conclusion was based on the reasoning that the sodium
and potassium lines may serve as diagnostics for cloudiness.
The peaks of these resonant lines are hardly affected by
clouds, but the line wings are, which makes the distance
between the line peak and wing highly sensitive to the de-
gree of cloudiness. If the optical transit chord is cloud-free,
then we may associate the measured optical spectral slope
with Rayleigh scattering by hydrogen molecules (H2), which
yields a direct measurement of the pressure scale height
(Lecavelier des Etangs et al. 2008; Heng 2016),

H = −1

4

∂R

∂ (lnλ)
, (10)

where λ is the wavelength. Such an approach is possible only
because we have κ = XH2mH2κH2/m, XH2 ≈ 1 and κH2

is known from first principles. If the optical transit chord
is cloudy, then κ = Xcloudmcloudκcloud/m. The cloud vol-
ume mixing ratio (Xcloud), composition of the cloud parti-
cles (and hence their mass, mcloud) and opacity (κcloud) are
now generally unknown and cannot be uniquely retrieved
from either the optical or WFC3 transmission spectra.

We use WASP-17b as a working example, for which
Heng (2016) previously estimated H = 1896 km using two
data points from Sing et al. (2016) and R? = 1.583 R�
(Southworth et al. 2012). In the current study, we fit a line
to the optical spectral slope (comprising 15 data points) and
derive H = 1950 km (not shown).

In a hydrogen-dominated atmosphere, the opacity as-
sociated with Rayleigh scattering alone is κ = σH2/m. The
cross section for Rayleigh scattering by hydrogen molecules
is (Sneep & Ubachs 2005),

σH2 =
24π3

n2
refλ

4

(
n2
r − 1

n2
r + 2

)2

, (11)

where nref = 2.68678 × 1019 cm−3 and the real part of the
index of refraction is (Cox 2000)

nr = 1.358× 10−4

[
1 + 7.52× 10−3

(
λ

1 µm

)−2
]

+ 1. (12)

If the optical spectral slope is associated with H2 Rayleigh
scattering alone, then hydrostatic equilibrium allows us to
derive a unique solution for P0,

P0 =
0.56mg

σH2

√
H

2πR0
exp

(
R−R0

H

)
, (13)

based on equation (2) and assuming that R0 is associated
with the part of the atmosphere that is opaque to both op-
tical and infrared radiation.

For WASP-17b, we take R = 1.890 RJ at λ = 0.405
µm from the measurements of Sing et al. (2016). We then
select a reference radius that is three orders of magnitude in
pressure greater than that probed by WFC3,

R0 = R̄WFC3 − 6.908H, (14)

where R̄WFC3 is the average value of the transit radius in
the measured WFC3 bandpass. The preceding expression
assumes hydrostatic equilibrium. For WASP-17b, we have
R̄WFC3 = 1.897 RJ and R0 = 1.709 RJ. Using the measured
value of R and equation (13), we estimate that P0 = 8 bar.
This means that the pressure probed in the WFC3 bandpass
is, on average, about 8 mbar. We note that the pressure
probed at λ = 0.405 µm is about 10 mbar.

We do the same analysis for WASP-31b. We use R? =
1.252 R� (Anderson et al. 2011) and derived H = 1619
km. Heng (2016) previously derived H = 1390 km based on
using R? = 1.12 R� (Anderson et al. 2011). We estimate
R0 = 1.379 RJ and P0 = 26 bar, based on R = 1.547 RJ at
λ = 0.4032 µm. This means that the WFC3 bandpass and
the optical data point correspond to about 26 mbar and 15
mbar, respectively.

These estimates are broadly consistent with our ap-
proach of assuming 10 mbar for the molecular opacities.
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Figure 7. Same as Figure 3, but comparing the use of HITRAN (top left panel) versus HITEMP (top right panel) versus ExoMol (bottom

left panel) spectroscopic line lists for water. Additionally, the best-fit spectra are compared in the bottom right panel.

3.2.2 Mock retrievals of WASP-17b: breaking the
normalisation degeneracy

Using the derived R0 = 1.709 RJ and P0 = 8 bar, we per-
form suites of mock retrievals to study if the normalisation
degeneracy may be broken. A uniform prior distribution of
1.619 to 1.799 RJ is set for R0, while a log-uniform prior
distribution of 0.1 to 1000 bar is set for P0.

First, we create high-resolution mock transmission spec-
tra with 100 data points that are representative of what will
be possible with JWST. The uncertainty on each data point
is assumed to be 10 parts per million (ppm). We explore
pairs of retrievals in which R0 is held fixed and P0 is a fitting

parameter, and vice versa. Second, we create a hierarchy of
mock spectra to gain understanding into the retrieval out-
comes: three molecules with grey clouds, water only with
grey clouds and water only (cloud-free). All volume mix-
ing ratios are set to 10−3 for illustration, with a grey-cloud
opacity of 10−2cm2g−1.

Figure 10 shows the outcomes of 6 retrievals on high-
resolution mock spectra. Unexpectedly, the peaks of the nar-
row posterior distributions of all 6 parameters, including R0

or P0, land exactly on the true values. The pair of cloud-free
retrievals with water only also manages to locate the cor-
rect solution. In fact, the posterior distribution on the tem-
perature is essentially a narrow spike with no width. This
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is straightforward to understand, because the temperature
controls the “stretch factor” in the spectrum and a unique
solution is obtained by correctly fitting for the difference be-
tween the peaks and troughs of the spectrum. By contrast,
R0 or P0 serves as a “translation factor”, which shifts the
spectrum up or down in transit radius or depth without al-
tering its shape. Further insight is obtained by examining
a pair of retrievals with water only but with grey clouds
present. The presence of grey clouds provides an extra de-
gree of freedom in the system in the form of a constant spec-
tral continuum. Grey clouds mute spectral features, which

may be compensated by an increase in the volume mixing
ratio of water, which is clearly seen in Figure 10. Note that
the normalisation degeneracy is simultaneously present, as
increases in XH2O and κcloud are negated by decreases in P0

or R0. The lower bound on the water mixing ratio in this
pair of retrievals is artificial and is set by the chosen upper
limit of our prior on R0 or P0. This pair of cloudy retrievals
with water only allows us to understand that the degeneracy
may be broken, even in the presence of clouds, if multiple
molecules are present to provide additional information on
the shape of the spectrum.

Figure 11 shows the same suite of retrievals but for a
low-resolution, WFC3-like spectrum with 20 data points.
The uncertainty on each data point is assumed to be 50
ppm. For each of the 6 retrievals, we perform an additional
retrieval in which R0 or P0 is held fixed at its true value
(1.709 RJ or 8 bar). The lessons learnt and insights gleaned
from the high-resolution retrievals carry over to the low-
resolution ones. Tight constraints are obtained on the tem-
perature. For the volume mixing ratios of the molecules,
constraints are obtained at the order-of-magnitude level that
encompass the true values, but it is important to note that
the lower bounds are artefacts of assuming an upper limit for
the prior of R0 or P0. Unlike in the high-resolution regime,
the low-resolution retrievals do not provide tight constraints
on either R0 or P0.

The key lesson learnt is that, for meaningful retrieval
outcomes to be obtained, we have to assume a reasonable
range of prior values for R0 or P0. Since we find it easier to
have an intuition about P0, we will set the range of 0.1–1000
bar as the prior on P0. It then becomes important to set a
value of R0 that corresponds to this range of P0 values (see
§3.2.3).

To illustrate this point, we perform an additional mock
retrieval in which the value of R0 is reduced and the cor-
responding P0 value falls outside of the 0.1–1000 bar range.
Figure 12 shows that the posterior distribution for P0 bumps
up against the upper boundary of the prior distribution,
which results in errors in the retrieved values of tempera-
ture and water mixing ratio.

3.2.3 Catalogue of R0 values for other objects

For the other 36 objects in our sample, we first assume the
WFC3 bandpass to probe a pressure of 10 mbar. We then use
equation (14) to estimate the value of R0 that corresponds to
10 bar (Table 3). The pressure scale height is estimated using
H = kBTeq/mg, where kB is the Boltzmann constant and Teq

is the equilibrium temperature (as was done by Heng 2016).
These R0 values are then used as input in our retrievals.

We emphasize that while the value of R0 is fixed to
the tabulated value for each object, our retrievals ultimately
use P0 as a fitting parameter as justified by our tests in
§3.2.2. The reason to use these values is to have R0 be in
approximately the range of values corresponding to 0.1–1000
bar, such that the retrieval will converge meaningfully.

3.2.4 Collision-induced absorption

As a final test on mock WASP-17b spectra, we consider
an isothermal model atmosphere with all three molecules
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Figure 10. High-resolution (JWST-like) mock retrievals for WASP-17b using R0 = 1.709 RJ and P0 = 8 bar. The left column of
retrievals hold P0 fixed at 8 bar and fit for R0, while the right column holds R0 fixed at 1.709 RJ and fit for P0. The top, middle and

bottom rows are for three molecules with grey clouds, water only (cloud-free) and water only with grey clouds, respectively. All mock
retrievals assume isothermal atmospheres and uncertainties of 10 ppm. Vertical lines indicate the true (input) values of the parameters.
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Figure 11. Same as Figure 10, but for low-resolution (WFC3-like) spectra. Additionally, the darker posterior distribution in each panel
corresponds to an additional retrieval in which R0 (left column) or P0 (right column) is held fixed at its true value (1.709 RJ or 8 bar).

The uncertainties on each mock data point is assumed to be 50 ppm.
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Figure 12. Low-resolution (WFC3-like) mock retrieval of WASP-

17b for an isothermal, cloud-free atmosphere with water only.
The mock spectrum is created using R0 = 1.709 RJ and P0 = 8

bar. The retrieval is performed with a fixed value of R0 that is

reduced by 10% to 1.5381 RJ. The corresponding value of P0

now lies outside of its assumed prior range (0.1–1000 bar). It

is an illustration of how a bad assumption on R0 can lead to an

erroneous retrieval outcome. We emphasise that there is no unique
value of R0 one can assume, but it is related to P0 via hydrostatic

equilibrium. Retrievals with different R0-P0 pairs should yield the

same outcome as long as the prior range of values of P0 is set
correctly.

present, grey clouds and CIA. We set the pressure associ-
ated with CIA at 0.1 bar, but allow the retrieval to treat this
pressure as a fitting parameter (PCIA). Figure 13 shows that
the retrieval outcome is insensitive to the retrieved value of
PCIA. Similar to our treatment of pressure broadening, we
set the pressure associated with CIA to be 0.1 bar for the rest
of the study with the reasoning that any deviations from this
value may be visualised as errors that are subsumed into the
grey cloud opacity. Figure 10 of Tsiaras et al. (2018) shows
that CIA contributes a roughly flat continuum to the WFC3
spectrum.

3.2.5 Retrieval analysis of WASP-17b WFC3
transmission spectrum

Following our suite of tests, we now perform a full retrieval
analysis on the WFC3 transmission spectrum of WASP-17b
using a hierarchy of models. Additionally, we attempt to fit
the spectrum with a flat line (one parameter only) and com-
pute its corresponding Bayesian evidence. We see that there
is weak evidence against the flat-line fit, but several mod-
els are consistent with the data (Figure 14). The isothermal
model atmosphere with water only and grey clouds has the
highest Bayesian evidence, which motivates us to display
the posterior distributions of parameters associated with it
in Figure 14. Alongside this retrieval, we perform a second
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Figure 13. Low-resolution (WFC3-like) mock retrieval of WASP-
17b for an isothermal atmosphere with grey clouds and all three

molecules present. The pressure associated with CIA is a fitting

parameter of the retrieval; its true value is PCIA = 0.1 bar. The
darker posterior distribution in each panel corresponds to an ad-

ditional retrieval in which PCIA is held fixed at its true value.
Vertical lines indicate the true (input) values of the parameters.

retrieval where R0 = 1.709 RJ and P0 = 8 bar as derived
using the optical spectral slope. The posterior distribution
for P0 is only loosely constrained. The median value of P0 is
a factor of about 6 larger than its true value (8 bar); its best-
fit value hits the upper boundary of the prior distribution
at 1000 bar.

Yet, despite this inaccuracy in retrieving P0, the pos-
terior distributions of the pair of retrievals agree well. This
is somewhat surprising, because in our mock, low-resolution
retrievals of WASP-17b we discovered that the volume mix-
ing ratio of water is prior-dominated on its lower bound
(and corresponds to the upper limit set on the prior of P0).
To investigate this issue further, we ran an additional mock
retrieval where the uncertainty on each data point is 200
ppm, instead of 50 ppm. Figure 15 shows that the pair of
retrievals now have posterior distributions that are more
similar to each other, which implies that the retrieval with
variable P0 is no longer as prior-dominated because there
is now a larger parameter space of possibilities available to
fit the mock spectrum. However, the retrieval outcomes are
still better (the posterior distributions are narrower) when
the uncertainties are smaller. The lesson learnt is that the
lower bounds to volume mixing ratios retrieved from WFC3
transmission spectra may (or may not) be prior-dominated,
depending on the measurement uncertainties.

3.2.6 Retrieval analysis of WASP-31b WFC3
transmission spectrum

Since WASP-31b is the other object in our sample where
we can robustly derive R0 and P0 from the optical spectral
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Figure 14. Full atmospheric retrieval analysis of WASP-17b. Top
panel: Posterior distributions of parameters for the isothermal

model with water only and grey clouds, which has the highest

Bayes factor among the model hierarchy. The vertical solid line
is the median value of each posterior, while the vertical dotted

lines are the 1-σ uncertainties. The vertical dashed line is the

best-fit value of each posterior. Also shown is a second retrieval
where the R0-P0 relationship is determined by the values derived

using optical data (see text). Bottom panel: Logarithm of the

Bayesian evidence and corresponding Bayes factor between each
model compared to the best model.

slope, we subject it to the same retrieval analysis we per-
formed for WASP-17b. In Figure 16, we again subject the
WFC3 transmission spectrum to a hierarchy of retrievals.
Again, the isothermal model with water only and grey clouds
has the highest Bayesian evidence. Two key differences are
that the flat-line fit is not ruled out and that there is mod-
erate evidence against cloud-free models. As before, we per-
form a second retrieval with R0 = 1.379 RJ and P0 = 26
bar. The median value of P0 is about 16 bar and the best-fit
value of P0 almost hits the prior boundary at 594 bar, but
despite these outcomes the posterior distributions of param-
eters from the pair of retrievals agree surprisingly well.

Our general conclusions from studying WASP-17b and
WASP-31b are that P0 can be robustly used as a fitting
parameter as long as one’s guess for R0 corresponds to the
range of prior values set on P0. Even if P0 is not tightly
constrained, the posterior distributions of the other param-
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Figure 15. Additional low-resolution (WFC3-like) mock retrieval

analysis of WASP-17b, but with larger uncertainties on each data
point (200 ppm instead of 50 ppm). The darker posterior distri-

bution in each panel corresponds to a second retrieval in which

R0 is held fixed at its true value (1.709 RJ). This pair of retrievals
should be compared to the lower right panel of Figure 11.

eters are, despite the low spectral resolution of the WFC3
transmission spectra.

3.3 Comparison of retrieval models for the other
36 WFC3 transmission spectra

Following our suites of tests in §3.1 and §3.2.2, as well as
our retrieval analyses of WASP-17b (§3.2.5) and WASP-31b
(§3.2.6), we now apply our retrieval technique to the other 36
WFC3 transmission spectra in our sample. For each object,
we use the value of R0 listed in Table 3 and allow P0 to be a
fitting parameter (with a log-uniform prior between 0.1 and
1000 bar).

The results are shown in Table 2, where the parame-
ter values shown are the median and 1σ uncertainties from
the best model (highest Bayesian evidence). Additionally,
we ask several questions of the outcome. An atmosphere
is deemed to be cloudy if all of the cloud-free models have
Bayes factors of unity or more. Cloud-free atmospheres have
only cloud-free models with Bayes factors of less than unity.
If the models with Bayes factors of less than unity are a
mixture of cloudy and cloud-free, then we tag the object
with “Maybe”. For non-grey clouds, our criterion is stricter:
it refers only to objects where only non-grey cloud models
have Bayes factors of less than unity.

If the flat-line fit has a Bayes factor of less than unity,
then we deem the retrieval to be inconclusive. In these cases,
we do not report any retrieved properties of the WFC3 tran-
sit chord.
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Figure 16. Same as Figure 14, but for WASP-31b.

3.3.1 Ammonia may mimic cloudiness

By visual inspection of the atmospheric opacities (Figure 2),
we had suspected that it would be possible for ammonia to
mimic the flattening of the spectral continuum blue-wards of
the 1.4 µm water feature. Note that the one-parameter flat-
line fits are disfavoured. Figure 17 shows 4 examples of ob-
jects (HAT-P-1b, HAT-P-3b, HAT-P-41b and XO-1b) where
the Bayes factor between the model with grey clouds and wa-
ter only versus the cloud-free model with water and ammo-
nia is below unity, indicating that there is a lack of Bayesian
evidence to favour one model over the other (Trotta 2008).
This interpretation holds also for WASP-17b (Figure 14),
WASP-19b (Figure 20), HAT-P-38b and HD149026b (Fig-
ure 23) and HAT-P-11b (Figure 25).

With WFC3 transmission spectra, the cautionary tale
is that cloudiness may be mimicked by the presence of am-
monia and this occurs for 9 out of 38 objects in our sample.

3.3.2 Prototypical hot Jupiters

HD 189733b and HD 209458b are among the most studied
hot Jupiters so far. In Figure 18, we see that the WFC3
data definitively rules out cloud-free WFC3 transit chords
for HD 209458b, and weakly rules them out for HD 189733b.
The simplest cloudy model, which is that of an isothermal

atmosphere with grey clouds and water only, explains the
WFC3 data well for both prototypical hot Jupiters. For HD
209458b, our retrieved temperature of ≈ 800 K is roughly
consistent with MacDonald & Madhusudhan (2017), but our
retrieved water abundance of log(XH2O) = −2.65+0.81

−1.24 is
more than two orders of magnitude higher than their re-
trieved value of −5.24+0.36

−0.27. It is unclear how to compare
these values, because it is unclear how MacDonald & Mad-
husudhan (2017) have broken the normalisation degeneracy.
Unlike MacDonald & Madhusudhan (2017), we find a lack
of evidence for the detection of either NH3 or HCN. For
example, the isothermal model with grey clouds and water
only versus that with all three molecules have a Bayes fac-
tor of 0.5, indicating that one cannot favour one model over
the other (Trotta 2008). For HD 189733b, we compare our
results with those of Madhusudhan et al. (2014) in §4.5.

3.3.3 Early Release Science (ERS) objects

WASP-39b and WASP-43b are among the ERS objects pro-
posed for JWST (Batalha et al. 2017). WASP-63b is an ERS
object for HST (Kilpatrick et al. 2017). Additionally, WASP-
43b is one of the few hot Jupiters to have multi-wavelength
phase curves from HST, due to its sub-day orbit that cir-
cumvents the thermal breathing obstacle with HST (Steven-
son et al. 2014). None of the three objects are cloud-free in
the WFC3 bandpass, and the simplest cloudy model fits the
WFC3 data well. There is no definitive evidence for the de-
tection of either HCN or NH3. For WASP-63b, this is consis-
tent with the analysis of Kilpatrick et al. (2017). For WASP-
43b, our retrieved log(XH2O) = −2.89+1.13

−3.07 is broadly con-
sistent with the −3.6+0.8

−0.9 value reported by Kreidberg et
al. (2014b), although it should be noted that Kreidberg et
al. (2014b) included carbon dioxide, carbon monoxide and
methane in their analysis, while we excluded these molecules
and included ammonia and hydrogen cyanide instead. Inter-
estingly, Kreidberg et al. (2014b) reported a logarithm of
the “reference pressure” of −2.4+0.6

−0.4 (pressure in bar), which
is broadly consistent with the pressure of 10 mbar that we
assume the WFC3 bandpass to probe. It is unclear how to
compare the reference pressures between the two studies.

3.3.4 Very hot Jupiters

In our sample, 4 objects have equilibrium temperatures ex-
ceeding 2000 K: WASP-12b, WASP-19b, WASP-76b and
WASP-121b. For WASP-12b, the WFC3 transmission spec-
trum may be explained by models with HCN and NH3

and also models with only water (i.e., these models all
fall within Bayes factors of less than unity), which implies
that we are unable to offer any estimate on the carbon-
to-oxygen ratio, unlike in Kreidberg et al. (2015). Our re-
trieved log(XH2O) = −3.02+1.09

−1.36 is broadly consistent with
the ∼ 10−4–10−2 value reported by Kreidberg et al. (2015).
In the case of WASP-19b, a cloud-free model with water only
is a viable explanation—a rare occurrence in our sample.
WASP-76b is an interesting object in that several scenarios
are strongly ruled out: cloud-free with either water only or
water and ammonia, the simplest cloudy model, etc. In fact,
it seems to show strong evidence for any model featuring a
non-grey cloud.
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3.3.5 Other hot Jupiters

Figures 21 and 22 show the retrieval outcomes for 7 other hot
Jupiters. In all cases, cloud-free models are either unlikely
or ruled out. All of these 7 objects have WFC3 transmission
spectra that may be explained by model atmospheres with
grey clouds, meaning that non-grey clouds are not necessary
to explain the data. WASP-101b is the only object where
HCN is detected at significant levels, while only upper limits
are obtained on the abundances of H2O and NH3.

3.3.6 Saturns

Figures 23 and 24 show the retrieval outcomes for 6 Saturn-
mass (0.2–0.4MJ) exoplanets. WASP-39b, an ERS object,
also belongs to this category. With the exception of WASP-
69b, the WFC3 transmission spectra are explained by the
simplest cloudy model. WASP-69b requires non-grey clouds
along its transit chord to explain the WFC3 data. For HAT-
P-18b, HAT-P-38b and HD 149026b, the isothermal cloud-
free model with water only provides a viable explanation for
the data; several other models also have Bayes factor of less
than unity.

3.3.7 Neptunes

There is strong evidence against a cloud-free interpretation
of the somewhat flat WFC3 transmission spectra of the exo-
Neptunes GJ 436b and GJ 3470b (Figure 25). For GJ 436b,
this is consistent with the findings of Knutson et al. (2014b).
In fact, the WFC3 transmission spectrum of GJ 436b can
simply be fit by a one-parameter flat line, rendering it im-
possible to report atmospheric properties in a meaningful
sense. HAT-P-26b does not have a flat transmission spec-
trum and cloud-free interpretations are strongly ruled out
(Bayes factor exceeding 5.0). Wakeford et al. (2017) pre-
viously analysed the transmission spectrum of HAT-P-26b,
which includes STIS, WFC3 and Spitzer data spanning 0.5–
5 µm, using a suite of models incorporating carbon monox-
ide, carbon dioxide, methane and water. Using the Bayesian
information criterion, they disfavoured cloud-free models.
Our WFC3-only analysis is consistent with the conclusion
of Wakeford et al. (2017). The best model, in terms of the
Bayesian evidence, is the simplest cloudy one: an isothermal
atmosphere with grey clouds and water only, but a variety
of cloud models have Bayes factors below unity compared to
this best model.

3.3.8 Super Earths

Besides being a super Earth, GJ 1214b is the prototypi-
cal example of a flat transmission spectrum (Kreidberg et
al. 2014a). The retrieval outcome in Figure 26 corroborates
this view and it is unsurprisingly that a one-parameter flat-
line fit suffices. In our analysis, HD 97658b is inconclusively
favoured by a cloud-free model with water and NH3, though
the quantities of ammonia required to match the data may
be implausibly high. More data is needed to corroborate or
refute this finding.

3.3.9 TRAPPIST-1 exoplanets

de Wit et al. (2018) previously measured somewhat flat
WFC3 transmission spectra for TRAPPIST-1d, e, f and
g. We note an ongoing debate concerning the robustness
of these measured WFC3 transmission spectra, as it has
been argued that the shapes of the spectral bandheads
may have been contaminated by starspots and faculae from
TRAPPIST-1 (Ducrot et al. 2018; Morris et al. 2018; Rack-
ham et al. 2018). Nevertheless, we will analyze these spec-
tra as given. de Wit et al. (2018) ruled out cloud-free, H2-
dominated atmospheres for TRAPPIST-1d, e and f, but not
for g. We wish to corroborate or refute this conclusion and
also to go slightly further, by considering both Earth-like
(m = 29 mH) or H2-dominated (variable m as defined in
equation [7]) atmospheres in two separate suites of retrievals.

For Earth-like atmospheres, the WFC3 spectra are ex-
plained by the majority of the models in our hierarchy.
With the exception of TRAPPIST-1d, there is weak ev-
idence against the WFC3 transmission spectra being ex-
plained by a flat line. This is unsurprising (compared to
the retrievals with H2-dominated atmospheres), because for
a nitrogen-dominated atmosphere the scale height is an or-
der of magnitude smaller than for the H2-dominated atmo-
sphere, which implies that even small departures from a flat
line require spectral features spanning several scale heights
to explain the data. Overall, when Earth-like atmospheres
are assumed, the retrieval analyses are inconclusive.

When H2-dominated atmospheres are assumed, we rule
out cloud-free atmospheres with water only for TRAPPIST-
1d, e and f. For all four exoplanets, the WFC3 transmission
spectrum is adequately explained by a one-parameter flat-
line fit, which implies that atmospheric properties cannot be
meaningfully retrieved.

We do not consider arguments based on the evolution of
the exoplanet or atmospheric escape, as they are out of the
scope of the present study. Our inclusion of the TRAPPIST-
1 exoplanets is for completeness and they will not be in-
cluded in our analysis of the trends associated with the water
volume mixing ratios in §3.4. However, when compiling pop-
ulation statistics, we will include the outcomes only from the
retrievals of the TRAPPIST-1 exoplanets assuming Earth-
like atmospheres.

3.4 Trends

All of the techniques developed and tests performed in this
study culminate in a singular result: to examine if there are
trends in the retrieved atmospheric properties. In particular,
we wish to examine if XH2O correlates with the equilibrium
temperature (Teq), retrieved temperature (T ) or mass of
the exoplanet (M). The equilibrium temperature is a proxy
for the strength of insolation or stellar irradiation. Previous
studies have plotted the “metallicity” versus the exoplanet
mass and claimed a correlation between the two quantities
(Kreidberg et al. 2014b; Wakeford et al. 2017, 2018; Arcan-
geli et al. 2018; Mansfield et al. 2018; Nikolov et al. 2018).

In Figure 29, we find little to no evidence for a corre-
lation between XH2O and M , Teq or T . If the abundance
of water is assumed to be a direct proxy for the elemen-
tal abundance of oxygen (see §4.6), then this outcome runs
contrary to previous claims. There is a lack of correlation
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between κcloud and Teq, which has two implications. First,
it suggests that our inferred XH2O values are not biased by
the degree of cloudiness (or haziness) in these atmospheres.
Second, the majority of atmospheric transit chords probed
by WFC3 appear to have κcloud ∼ 10−2 cm2 g−1 (corre-
sponding to ∼ 10 mbar), regardless of the surface gravity
or strength of insolation. The lack of evidence for non-grey
clouds implies that the particle radii are rc & 0.1 µm. Over-
all, these outcomes may be interpreted as the transit chords
being affected by haze.5 The ratio of the retrieved to the
equilibrium temperatures (T/Teq) appears to have a lower
limit of about 0.5.

It is unclear how to relate our results to claimed corre-
lations between the bulk metallicity of exoplanets and their
masses based on the analysis of mass-radius relations (Miller
& Fortney 2011; Thorngren et al. 2016).

4 DISCUSSION

4.1 Comparison to a previous retrieval study

It is natural to compare our study to Tsiaras et al. (2018),
since the WFC3 transmission spectra of 30 objects from our
sample are taken from it. Furthermore, some of the mod-
elling choices made by Tsiaras et al. (2018) are the same as
ours: isothermal transit chord, nested sampling. Our cloud
models differ, because Tsiaras et al. (2018) use the formula-
tion of Lee et al. (2013), which also allows for a smooth tran-
sition between the Rayleigh and large-particle regimes but
predates Kitzmann & Heng (2018), and also assume a cloud-
top boundary (which we do not). Furthermore, Tsiaras et
al. (2018) include methane, carbon monoxide, carbon diox-
ide, titanium oxide (TiO) and vanadium oxide (VO) in their
retrievals in addition to water and ammonia; they do not
include hydrogen cyanide. By contrast, we only include wa-
ter, ammonia and hydrogen cyanide in our model hierarchy.
Inevitably, these choices lead to differences in some of the
retrieval outcomes.

Table 3 of Tsiaras et al. (2018) lists their retrieved
water volume mixing ratios. For GJ 436b, HAT-P-12b,
WASP-29b, WASP-31b, WASP-67b and WASP-80b, we
do not report any retrieved atmospheric properties, un-
like for Tsiaras et al. (2018), as the one-parameter flat-line
fit is among the models with Bayes factors of less than
unity. For GJ 3470b, HAT-P-1b, HAT-P-3b, HAT-P-11b,
HAT-P-17b, HAT-P-18b, HAT-P-26b, HAT-P-32b, HAT-P-
38b, HD 149026b, HD 189733b, HD 209458b, WASP-12b,
HAT-P-41b, WASP-43b, WASP-52b, WASP-63b, WASP-
69b, WASP-74b, WASP-101b, WASP-121b and XO-1b, our
retrieved water mixing ratios are broadly consistent with
those of Tsiaras et al. (2018). For WASP-39b and WASP-
76b, our retrieved water mixing ratios differ at the order-of-
magnitude level compared to Tsiaras et al. (2018). Interest-
ingly, these two objects also have the highest values of the
Atmospheric Detectability Index (ADI) in the Tsiaras et al.
(2018) sample of 30 objects.

Of particular interest is WASP-76b, which is one of two

5 We adopt the planetary science definition of “cloud” versus
“haze”: the former is formed thermochemically, while the latter

is formed photochemically.

objects in our sample that requires a non-grey cloud to fit
the data. Tsiaras et al. (2018) reported that their retrieval
favours a cloudfree interpretation, because the non-flat spec-
tral continuum blueward of the 1.4-µm water feature may be
fitted by the spectral features of TiO and VO. Tsiaras et al.
(2018) remark that their retrieved logXTiO ∼ −2.5 is “likely
unphysical”. Our retrieval yields logXH2O = −5.3 ± 0.61,
which is inconsistent with the logXH2O = −2.7 ± 1.07 re-
ported by Tsiaras et al. (2018). The WFC3 transmission
spectrum of WASP-76b demonstrates that a wider wave-
length range is required to resolve the degeneracy associ-
ated with these modelling choices, which will be provided
by JWST spectra.

It is unclear why our retrieval outcome for WASP-39b
differs from that of Tsiaras et al. (2018), because they did
not publish the full set of posterior distributions for this
object, unlike for WASP-76b in their Figure 11. For example,
it is unclear if the high value of the ADI for WASP-39b
translates into a cloud-free interpretation (which is the case
for WASP-76b).

4.2 Is there evidence for non-grey clouds? Is
cloud composition constrained?

Cloud models of varying sophistication have been employed
in retrieval models. Our approach is somewhat different in
that we include in our hierarchy of retrievals both grey and
non-grey cloud models, as well as a one-parameter flat line.
For 8 out of 38 objects, the WFC3 transmission spectrum is
explained by a flat line. For 35 out of 38 objects, an isother-
mal grey cloud model with water only is sufficient to ex-
plain the data. Only WASP-69b and WASP-76b have WFC3
transmission spectra that require an explanation by model
atmospheres with non-grey clouds along the transit chord.
Otherwise, there is generally no evidence for non-grey clouds
being present in the sample of 38 objects.

Since the cloud composition may only be inferred for
non-grey clouds, this implies that the composition is gener-
ally unconstrained, which is consistent with the conclusion
drawn by Tsiaras et al. (2018). Even for WASP-69b and
WASP-76b, the parameter Q0 is largely unconstrained be-
cause it spans the entire range of values set by the prior.

Given the retrieval outcomes, our approach to not con-
sider patchy clouds (Line & Parmentier 2016) is justified. We
have also shown that the normalisation degeneracy may be
broken without appealing to the more complicated patchy
cloud model, which was invoked by MacDonald & Mad-
husudhan (2017) to break the degeneracy.

4.3 Is there evidence for non-isothermal transit
chords?

For all 38 objects in our sample, we find a lack of strong
Bayesian evidence to support non-isothermal transit chords
probed by WFC3.

4.4 How prevalent is HCN or NH3?

Based on the best model selected by the Bayesian evidence,
we find that only 6 objects have tentative evidence for the
detection of ammonia: HAT-P-1b, HAT-P-17b, HAT-P-38b,
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HAT-P-41b, WASP-101b and HD 97658b. However, the re-
trieved value for HD 97658b is log(XNH3) = −0.48+0.19

−0.23,
which may be unphysically high. This is unsurprising as our
model contains no chemistry, so there is nothing to prevent
unphysical values being retrieved. HAT-P-17b and WASP-
101b also have tentative detections of hydrogen cyanide.

4.5 Subsolar water abundances in hot Jupiters?

Madhusudhan et al. (2014) previously analysed the WFC3
transmission spectra of HD 189733b, HD 209458b and
WASP-12b using cloud-free retrieval models and found
log(XH2O) = −5.20+1.68

−0.18, −5.27+0.65
−0.16 and −5.35+1.85

−1.99, re-
spectively. They concluded that the water abundances from
these hot Jupiters are subsolar by about 1–2 orders of
magnitude. By contrast, our retrievals find log(XH2O) val-
ues that are several orders of magnitude higher: −2.3+0.87

−1.26,
−2.65+0.81

−1.24 and −3.02+1.09
−1.36, respectively. We estimate that

log(XH2O) ≈ −3.2 assuming chemical equilibrium, solar
abundance and a pressure of 10 mbar, which suggests that
our retrieved water abundances are super- rather than sub-
solar as claimed by Madhusudhan et al. (2014). The dis-
crepancy arises from the retrievals of Madhusudhan et al.
(2014) being cloud-free, while we have included a cloud
model that smoothly transitions between the Rayleigh and
large-particle regimes. It is consistent with the fact that
cloud opacity diminishes the strength of the water feature,
which may be negated by increasing XH2O.

4.6 What does the “metallicity” mean when
interpreting spectra of exoplanetary
atmospheres?

Several published studies have plotted the “metallicity” (in
“solar” units) versus the mass of the exoplanet with entries
from the Solar System gas and ice giants overplotted (Krei-
dberg et al. 2014b; Wakeford et al. 2017, 2018; Arcangeli
et al. 2018; Mansfield et al. 2018; Nikolov et al. 2018). As
already elucidated by Heng (2018), there are several caveats
to these plots. First, the “metallicity” is predominantly O/H
in these studies. Second, the “mixing ratio of water at solar
abundance” is a temperature- and pressure-dependent state-
ment. Given a fixed value of O/H, the mixing ratio of water
still depends on temperature and pressure. In other words,
it is a function and not a number. Third, the conversion fac-
tor between the water mixing ratio and O/H is not always
unity and depends on the elemental abundances (O/H, C/H,
etc), carbon-to-oxygen ratio, temperature, pressure, photo-
chemistry, atmospheric mixing, condensation, etc. For all of
these reasons, we have chosen to present our retrieved water
abundances as they are in Figure 29, rather than convert
them to O/H.
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Anglada-Escudé, G., Rojas-Ayala, B., Boss, A.P., Weinberger,
A.J., & Lloyd, J.P. 2013, A&A, 551, A48

Arcangeli, J., Désert, J.-M., Line, M.R., et al. 2018, ApJL, 855,
L30

Arfken, G.B., & Weber, H.J. 1995, Mathematical Methods for

Physicists, fourth edition (San Diego: Academic Press)

Barber, R.J., Tennyson, J., Harris, G.J., & Tolchenov, R.N. 2006,

MNRAS, 368, 1087

Barber, R.J., Strange, J.K., Hill, C., et al. 2014, MNRAS, 437,

1828

Bakos, G.A., Torres, G., Pál, A., et al. 2010, ApJ, 710, 1724

Batalha, N., Bean, J., Stevenson, K., et al. 2017, JWST Proposal

ID 1366, Cycle 0 Early Release Science

Benneke, B., & Seager, S. 2012, ApJ, 753, 100

Benneke, B., & Seager, S. 2013, ApJ, 778, 153
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Figure 18. Same as Figure 17, but for the prototypical hot Jupiters HD 189733b and HD 209458b.
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Figure 19. Same as Figure 17, but for Early Release Science (ERS) objects: WASP-39b and WASP-43b (for JWST) and WASP-63b
(for HST).
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Figure 20. Same as Figure 17, but for very hot Jupiters (Teq > 2000 K): WASP-12b, WASP-19b, WASP-76b and WASP-121b. WASP-19b

is one of two objects with the highest Bayesian evidence for the cloudfree, isothermal model with water only (excluding the TRAPPIST-1

exoplanets). WASP-76b is one of two objects where non-grey clouds are needed to fit the data.
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Figure 21. Same as Figure 17, but for the rest of the hot Jupiters: HAT-P-17b, HAT-P-32b, WASP-52b and WASP-67b.

MNRAS 000, 1–24 (2018)



24 Fisher & Heng

−10

−5

0

lo
g
(X

H
2
O
)

−10

−5

0

lo
g
(κ

c
lo

u
d
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

−10 −5 0

log(κcloud)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65

wavelength ( µm)

0.900

0.915

0.930

0.945

0.960

(R
/
R

⋆
)2

(%
)

Circles: WASP-74b data

Squares: Model (binned)

gre
ycl
ou
d

no
n-i
so_

gre
y

gre
ycl
ou
d_N

H3
_H
CN

no
n-g

rey
clo
ud

no
n-i
so_

gre
y_N

H3
_H
CN

fla
t_li
ne

no
n-g

rey
_N
H3
_H
CN

no
n-i
so_

no
n-g

rey
_N
H3
_H
CN

clo
ud
fre
e

clo
ud
fre
e_N

H3

23

24

25

26

Lo
g 
Ba

ye
sia

n 
Ev

id
en

ce

0.0
0.3

0.4
0.7 0.8

1.0
1.3 1.4

3.0

3.8

WASP-74b
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

−10

−5

0

lo
g
(X

H
2
O
)

−10

−5

0

lo
g
(κ

c
lo

u
d
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

−10 −5 0

log(κcloud)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65

wavelength ( µm)

2.92

2.94

2.96

2.98

(R
/
R

⋆
)2

(%
)

Circles: WASP-80b data

Squares: Model (binned)

gre
ycl
ou
d

no
n-i
so_

gre
y

gre
ycl
ou
d_N

H3
_H
CN

no
n-g

rey
clo
ud

no
n-i
so_

gre
y_N

H3
_H
CN

fla
t_li
ne

no
n-i
so_

no
n-g

rey
_N
H3
_H
CN

no
n-g

rey
_N
H3
_H
CN

clo
ud
fre
e

clo
ud
fre
e_N

H3

16

18

20

22

24

Lo
g 
Ba

ye
sia

n 
Ev

id
en

ce

0.0 0.3
0.7 0.7 0.9 0.9

1.2 1.4

9.1 9.2

WASP-80b
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

−10

−5

0

lo
g
(X

H
2
O
)

−10

−5

0

lo
g
(X

H
C

N
)

−10

−5

0

lo
g
(X

N
H

3
)

−10

−5

0

lo
g
(κ

c
lo

u
d
)

−20

0

20

b

10
00

20
00

30
00

T0

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

−10 −5 0

log(XHCN)

−10 −5 0

log(XNH3
)

−10 −5 0

log(κcloud)

−20 0 20

b

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65

wavelength ( µm)

1.150

1.175

1.200

1.225

(R
/
R

⋆
)2

(%
)

Circles: WASP-101b data

Squares: Model (binned)

no
n-i
so_
gre
y_N

H3
_H
CN

no
n-i
so_
no
n-g
rey
_N
H3
_H
CN

no
n-g
rey
clo
ud

gre
ycl
ou
d

no
n-i
so_
gre
y

no
n-g
rey
_N
H3
_H
CN

gre
ycl
ou
d_N

H3
_H
CN

fla
t_li
ne

clo
ud
fre
e

clo
ud
fre
e_N

H3

10

12

14

16

18

20

22

24

Lo
g 
Ba

ye
sia

n 
Ev
id
en
ce

0.0 0.3 0.5 0.8 1.0 1.1 1.4 1.5

13.9 14.0

WASP-101b
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

Figure 22. Continuation of Figure 21 for the rest of the hot Jupiters: WASP-74b, WASP-80b and WASP-101b. WASP-101b stands out

as the only object for which HCN is significantly detected over water and ammonia.
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Figure 23. Same as Figure 17, but for exo-Saturns (0.2–0.4MJ): HAT-P-12b, HAT-P-18b, HAT-P-38b and HD 149026b.
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Figure 24. Continuation of Figure 23 for exo-Saturns (0.2–0.4MJ): WASP-29b and WASP-69b. Additionally, WASP-69b is one of two
objects where non-grey clouds are needed to fit the data.
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Figure 25. Same as Figure 17, but for exo-Neptunes: GJ 436b, GJ 3470b, HAT-P-11b and HAT-P-26b.
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Figure 26. Same as Figure 17, but for super Earths: GJ 1214b and HD 97658b. HD 97658b stands out as an object where ammonia is
significantly detected but the abundance of water is essentially unconstrained.

MNRAS 000, 1–24 (2018)



Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalisation degeneracy 29

−10

−5

0

lo
g
(X

H
2
O
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65
wavelength ( µm)

0.36

0.40

0.44

0.48

0.52

(R
/
R

⋆
)2

(%
)

Circles: TRAPPIST-1d data

Squares: Model (binned)

clo
ud
fre
e

gre
ycl
ou
d

clo
ud
fre
e_N

H3

no
n-i
so_
gre
y

no
n-g
rey
clo
ud

gre
ycl
ou
d_N

H3
_H
CN

no
n-i
so_
gre
y_N

H3
_H
CN

fla
t_li
ne

no
n-g
rey
_N
H3
_H
CN

no
n-i
so_
no
n-g
rey
_N
H3
_H
CN

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

Lo
g 
Ba

ye
sia

n 
Ev
id
en

ce

0.0

0.1
0.2

0.2

0.4

0.7

0.9 0.9

1.1

1.3

TRAPPIST-1d
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

−10

−5

0

lo
g
(X

H
2
O
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65
wavelength ( µm)

0.44

0.48

0.52

0.56

(R
/
R

⋆
)2

(%
)

Circles: TRAPPIST-1e data

Squares: Model (binned)

clo
ud
fre
e

clo
ud
fre
e_N

H3

gre
ycl
ou
d

no
n-i
so_
gre
y

no
n-g
rey
clo
ud

gre
ycl
ou
d_N

H3
_H
CN

no
n-i
so_
gre
y_N

H3
_H
CN

no
n-g
rey
_N
H3
_H
CN

no
n-i
so_
no
n-g
rey
_N
H3
_H
CN

fla
t_li
ne

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

Lo
g 
Ba

ye
sia

n 
Ev
id
en

ce

0.0
0.1

0.2

0.3
0.3

0.6
0.7

0.9
1.0

1.2

TRAPPIST-1e
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

−10

−5

0

lo
g
(X

H
2
O
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65
wavelength ( µm)

0.60

0.66

0.72

0.78

(R
/
R

⋆
)2

(%
)

Circles: TRAPPIST-1f data

Squares: Model (binned)

clo
ud
fre
e

clo
ud
fre
e_N

H3

gre
ycl
ou
d

no
n-g
rey
clo
ud

no
n-i
so_
gre
y

gre
ycl
ou
d_N

H3
_H
CN

no
n-i
so_
gre
y_N

H3
_H
CN

no
n-g
rey
_N
H3
_H
CN

no
n-i
so_
no
n-g
rey
_N
H3
_H
CN

fla
t_li
ne

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

Lo
g 
Ba

ye
sia

n 
Ev
id
en

ce

0.0

0.2

0.3
0.4 0.5

0.8
0.9 1.0

1.3

1.6

TRAPPIST-1f
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

−10

−5

0

lo
g
(X

H
2
O
)

10
00

20
00

30
00

T

0.
0

1.
5

3.
0

lo
g
(P

0
)

−10 −5 0

log(XH2O)

0.
0

1.
5

3.
0

log(P0)

1.20 1.35 1.50 1.65
wavelength ( µm)

0.75

0.80

0.85

0.90

(R
/
R

⋆
)2

(%
)

Circles: TRAPPIST-1g data

Squares: Model (binned)

clo
ud
fre
e

clo
ud
fre
e_N

H3

gre
ycl
ou
d

no
n-g

rey
clo
ud

no
n-i
so_

gre
y

gre
ycl
ou
d_N

H3
_H
CN

no
n-i
so_

gre
y_N

H3
_H
CN

no
n-g

rey
_N
H3
_H
CN

no
n-i
so_

no
n-g

rey
_N
H3
_H
CN

fla
t_li
ne

7.75

8.00

8.25

8.50

8.75

9.00

9.25

9.50

Lo
g 
Ba

ye
sia

n 
Ev

id
en

ce

0.0

0.2
0.3

0.4 0.5

0.9

1.1
1.2

1.5 1.5

TRAPPIST-1g
Strong (> 5.0)
Moderate (2.5 - 4.9)
Weak (1.0 - 2.4)
Inconclusive (< 1.0)

Figure 27. Same as Figure 17, but for the TRAPPIST-1 exoplanets assuming Earth-like atmospheres (m = 29 mH).
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Figure 28. Same as Figure 27, but assuming atmospheres dominated by molecular hydrogen (variable m), where the pressure scale

height is larger by about an order of magnitude.
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Figure 29. A search for trends between the retrieved atmospheric properties based on the best model (highest Bayesian evidence) of each
object. We have excluded 7 objects that can be adequately fitted by a one-parameter flat line. We have also excluded the 4 TRAPPIST-1

exoplanets. The family of lines in each panel shows the Monte Carlo fits of a two-parameter straight line (slope and constant offset).
Top row: Water volume mixing ratio versus exoplanet mass (top left panel; slope of 0.94± 1.11) and equilibrium temperature (top right

panel; slope of −0.00245± 0.00054 K−1). Middle left panel: Water volume mixing ratio versus retrieved atmospheric temperature; slope

of −0.00134 ± 0.00078 K−1. Middle right panel: Ammonia and hydrogen cyanide volume mixing ratios versus exoplanet mass; slope of
−4.81 ± 0.46. Bottom left panel: Grey cloud opacity versus equilibrium temperature; slope of 0.000517 ± 0.000135 K−1. Bottom right

panel: Ratio of retrieved to equilibrium temperatures versus equilibrium temperature; slope of 0.000103± 0.000038 K−1.
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Table 2. Summary of retrieval outcomes (38 objects, 42 sets of retrievals)

Name Teq (K) T (K) log(XH2O) log(XHCN) log(XNH3
) Cloudy? Non-grey clouds? log(κcloud) (cm2 g−1)

GJ436b 633 † † † † † † †
GJ3470b 692 629+911

−239 −4.75+2.47
−2.93 − − Yes No −2.17+2.67

−1.29

HAT-P-1b 1320 1223+435
−492 −0.75+0.23

−1.0 − −4.44+1.59
−5.65 Maybe − −

HAT-P-3b 1127 1145+1011
−604 −7.88+5.99

−3.47 − − Maybe − −2.42+2.63
−2.35

HAT-P-11b 856 1002+524
−255 −2.56+2.13

−2.2 − − Maybe − −2.52+1.45
−1.68

HAT-P-12b 958 † † † † † † †
HAT-P-17b 780 1114+984

−1255 −8.25+3.4
−2.91 −4.37+2.08

−5.17 −7.39+4.02
−3.58 Yes No −4.82+3.74

−4.56

HAT-P-18b 843 347+146
−137 −1.83+0.8

−1.48 − − Maybe − −7.25+2.57
−3.07

HAT-P-26b 980 647+118
−82 −2.37+0.86

−1.24 − − Yes No −2.66+0.65
−0.94

HAT-P-32b 1784 1109+251
−190 −2.39+1.09

−1.57 − − Yes No −1.9+0.88
−1.22

HAT-P-38b 1080 1876+637
−1074 −0.41+0.22

−1.8 − −5.25+2.92
−5.31 Maybe − −

HAT-P-41b 1937 1561+624
−507 −0.9+0.28

−1.2 − −5.32+2.27
−4.94 Maybe − −

HD149026b 1627 1672+679
−687 −4.69+4.11

−5.02 − − Maybe − −2.33+2.14
−2.61

HD189733b 1201 782+172
−107 −2.3+0.87

−1.26 − − Yes No −2.62+0.84
−0.86

HD209458b 1449 777+193
−95 −2.65+0.81

−1.24 − − Yes No −1.75+0.69
−0.94

WASP-29b 963 † † † † † † †
WASP-31b 1576 † † † † † † †
WASP-39b 1119 600+86

−72 −2.3+0.4
−0.67 − − Yes No −5.69+1.94

−4.54

WASP-43b 1374 835+340
−121 −2.89+1.13

−3.07 − − Yes No −2.03+1.04
−1.01

WASP-52b 1300 776+278
−149 −2.65+0.84

−1.03 − − Yes No −2.48+0.74
−0.83

WASP-63b 1508 1068+700
−352 −5.83+2.9

−4.23 − − Yes No −2.02+2.03
−1.56

WASP-67b 1026 † † † † † † †
WASP-69b 964 658+148

−107 −4.24+1.03
−1.09 − − Yes Yes −2.44+0.81

−0.89

WASP-74b 1915 1152+798
−354 −7.94+3.72

−3.64 − − Yes No −1.23+1.9
−1.64

WASP-76b 2206 1647+185
−178 −5.3+0.61

−0.61 − − Yes Yes −1.78+0.47
−0.65

WASP-80b 824 † † † † † † †
WASP-101b 1552 1616+256

−288 −9.03+3.13
−2.63 −2.56+0.5

−0.62 −8.3+3.84
−3.06 Yes No −6.79+3.45

−3.37

WASP-121b 2358 1523+468
−290 −3.09+1.01

−1.26 − − Yes No −2.32+0.86
−1.05

XO-1b 1196 977+254
−174 −1.06+0.29

−0.47 − − Maybe − −
GJ1214b 573 † † † † † † †
HD97658b 753 1323+224

−286 −7.48+4.88
−3.7 − −0.48+0.19

−0.23 Maybe − −
WASP-17b 1632 1678+610

−448 −0.98+0.46
−4.94 − − Maybe − −3.61+2.4

−4.31

WASP-19b 2037 2039+381
−338 −2.86+1.2

−1.49 − − Maybe − −
WASP-12b 2580 1540+358

−242 −3.02+1.09
−1.36 − − Yes No −1.9+0.97

−1.11

TRAPPIST-1d 288 † † † † † † †
†♣ †♣ †♣ †♣ †♣ †♣ †♣

TRAPPIST-1e 251 † † † † † † †
1173+1108

−729
♣ −10.02+2.02

−2.02
♣ − − Maybe♣ − −

TRAPPIST-1f 219 † † † † † † †
1214+1089

−815
♣ −10.09+1.98

−1.94
♣ − − Maybe♣ − −

TRAPPIST-1g 199 † † † † † † †
896+1238
−590

♣ −9.61+2.5
−2.24

♣ − − Maybe♣ − −

For “Cloudy?”: “Yes” refers to cases where all of the cloud-free models have Bayes factors of unity or more. “No” means only

cloud-free models have Bayes factor of less than unity. “Maybe” means a mixture of cloud-free and cloudy models have Bayes factor of
less than unity. For “Non-grey clouds?”: “Yes” refers to cases where only non-grey-cloud models have Bayes factors of less than

unity. “No” means a mixture of non-grey-cloud and grey-cloud models have Bayes factors of less than unity.

♣: For the TRAPPIST-1 exoplanets, we also examine Earth-like atmospheres (m = 29mH).
†: Flat-line fit has Bayes factor of less than unity and no atmospheric properties may be retrieved.
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Table 3. Summary of input parameters (38 objects, 42 sets of retrievals)

Name R?(R�) M (MJ) R0(RJ) g (cm s−2) References R̄WFC3(RJ)

GJ436b 0.455 0.078+0.007
−0.008 0.3532 1318 von Braun et al. (2012) 0.3693

GJ3470b 0.48 0.043± 0.005 0.3287 676 Biddle et al. (2014) 0.3630

HAT-P-1b 1.115 0.524± 0.031 1.213 750 Johnson et al. (2008); Sing et al. (2016) 1.272
HAT-P-3b 0.799 0.591± 0.018 0.8383 2138 Chan et al. (2011) 0.8559

HAT-P-11b 0.75 0.081± 0.009 0.4077 1122 Bakos et al. (2010) 0.4332

HAT-P-12b 0.701 0.211± 0.012 0.8770 562 Hartman et al. (2009) 0.9341
HAT-P-17b 0.838 0.534± 0.018 0.9677 1288 Howard et al. (2012) 0.9880

HAT-P-18b 0.717 0.196± 0.008 0.9349 542 Esposito et al. (2014) 0.9552

HAT-P-26b 0.788 0.059± 0.007 0.4741 447 Hartman et al. (2011a) 0.5475
HAT-P-32b 1.219 0.860± 0.164 1.714 661 Hartman et al. (2011b) 1.804

HAT-P-38b 0.923 0.267± 0.020 0.8010 977 Sato et al. (2012) 0.8380

HAT-P-41b 1.683 0.800± 0.102 1.568 692 Hartman et al. (2012) 1.662

HD149026b 1.368 0.359+0.022
−0.021 0.6536 2291 Torres et al. (2008) 0.6774

HD189733b 0.805 1.162± 0.058 1.200 1950 Boyajian et al. (2015) 1.221
HD209458b 1.203 0.64± 0.09 1.350 759 Boyajian et al. (2015) 1.414

WASP-29b 0.808 0.244± 0.020 0.7330 891 Hellier et al. (2010) 0.7692

WASP-31b 1.252 0.478± 0.029 1.379 456 Anderson et al. (2011) 1.535
WASP-39b 0.918 0.283± 0.041 1.207 414 Maciejewski et al. (2016) 1.297

WASP-43b 0.67 1.78± 0.10 1.029 4699 Hellier et al. (2011) 1.039

WASP-52b 0.79 0.46± 0.02 1.199 646 Hébrard et al. (2013) 1.266
WASP-63b 1.88 0.38± 0.03 1.316 417 Hellier et al. (2012) 1.437

WASP-67b 0.87 0.42± 0.04 1.314 501 Hellier et al. (2012) 1.383
WASP-69b 0.813 0.260± 0.017 0.9563 532 Anderson et al. (2014) 1.017

WASP-74b 1.64 0.95± 0.06 1.456 891 Hellier et al. (2015) 1.528

WASP-76b 1.73 0.92± 0.03 1.635 631 West et al. (2016) 1.752

WASP-80b 0.586 0.538+0.035
−0.036 0.9562 1396 Triaud et al. (2015) 0.9760

WASP-101b 1.29 0.50± 0.04 1.274 575 Hellier et al. (2014) 1.364

WASP-121b 1.458 1.183+0.064
−0.062 1.633 940 Delrez et al. (2016) 1.717

XO-1b 0.934 0.918+0.081
−0.078 1.172 1626 Torres et al. (2008) 1.197

GJ1214b 0.211 0.019± 0.003 0.2135 768 Anglada-Escudé et al. (2013) 0.2385

HD97658b 0.741 0.024+0.003
−0.002 0.2036 1466 van Grootel et al. (2014) 0.2208

WASP-17b 1.583 0.477± 0.033 1.709 316 Southworth et al. (2012) 1.897

WASP-19b 1.004 1.114± 0.036 1.311 1419 Tregloan-Reed et al. (2013) 1.378

WASP-12b 1.57 1.41± 0.10 1.748 977 Hebb et al. (2009); Kreidberg et al. (2015) 1.836

TRAPPIST-1d 0.121 9.34+1.10
−1.23 × 10−4 0.05402 474 Grimm et al. (2018); van Grootel et al. (2018) 0.07436

0.07268♣

TRAPPIST-1e 0.121 2.43+0.24
−0.25 × 10−3 0.07329 912 Grimm et al. (2018); van Grootel et al. (2018) 0.08250

0.08174♣

TRAPPIST-1f 0.121 2.94± 0.25× 10−3 0.08490 837 Grimm et al. (2018); van Grootel et al. (2018) 0.09366

0.09294♣

TRAPPIST-1g 0.121 3.61+0.30
−0.31 × 10−3 0.09580 854 Grimm et al. (2018); van Grootel et al. (2018) 0.1036

0.1030♣

♣: For the TRAPPIST-1 exoplanets, we also examine Earth-like atmospheres (m = 29mH).
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CHAPTER 3

How Much Information Does the Sodium Doublet Encode?
Retrieval Analysis of Non-LTE Sodium Lines at Low and High

Spectral Resolutions

Pause, take a breath and say, ‘Okay, is that the answer then?’

Imre Leader

3.1 Summary

After my work on retrievals, I went on to study the theory of atmospheric spec-
tra in more detail. In my second paper, I investigated the effect of dropping the
assumption of local thermodynamic equilibrium (LTE) on sodium lines. In partic-
ular, I considered non-Boltzmann distributions for the excited and ground states
of the sodium atom, corresponding to the situation where collisions become inef-
ficient higher up in the atmosphere. This is motivated by the extended depth of
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Retrieval Analysis of Non-LTE Sodium Lines at Low and High Spectral
Resolutions

the sodium lines, which span about 9 orders of magnitude in pressure between the
line wing and peak.

I studied the sodium doublet at high resolution for the exoplanet WASP-49 b,
using HARPS data from Wyttenbach et al. (2017). I also studied the sodium
doublet at low resolution for 6 exoplanets, using HST STIS data from Sing et al.
(2016). For both resolutions I ran nested-sampling retrievals assuming LTE and
non-LTE, and then compared the results using the Bayesian evidence.

Using a suite of mock retrievals, I showed that even at high resolution one
is unable to distinguish between LTE and non-LTE scenarios using the Bayesian
evidence. I also found that the retrievals using LTE tend to obtain a lower temper-
ature value, especially for the high resolution case. The high-resolution retrievals
also demonstrated that the sodium lines do not encode enough information to in-
fer the pressures being probed. In addition, my low resolution analysis found no
trends between the retrieved parameters for these planets.

3.2 Publication

This work was published in The Astrophysical Journal in 2019.
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Abstract

Motivated by both ground- and space-based detections of the sodium doublet in the transmission spectra of
exoplanetary atmospheres, we revisit the theory and interpretation of sodium lines in non-local thermodynamic
equilibrium (NLTE), where collisions are not efficient enough to maintain a Boltzmann distribution for the excited
and ground states of the sodium atom. We consider non-Boltzmann distributions that account for the
ineffectiveness of collisions. We analyze the sodium doublet in transmission spectra measured at low (HAT-P-1b,
HAT-P-12b, HD 189733b, WASP-6b, WASP-17b, and WASP-39b) and high (WASP-49b) spectral resolutions.
Nested-sampling retrievals performed on low-resolution optical/visible transmission spectra are unable to break
the normalization degeneracy if the spectral continuum is associated with Rayleigh scattering by small cloud
particles. Using mock retrievals, we demonstrate that unnormalized ground-based, high-resolution spectra centered
on the sodium doublet alone are unable to precisely inform us about the pressure levels probed by the transit chord
and hence to identify the region (i.e., thermosphere, exosphere) of the atmosphere being probed. Retrievals
performed on the HARPS transmission spectrum of WASP-49b support this conclusion. Generally, we are unable
to distinguish between LTE versus NLTE interpretations of the sodium doublet based on the computed Bayesian
evidence with the implication that LTE interpretations tend to underestimate the temperature probed by the transit
chord. With the current low-resolution data, the sodium line shapes are consistent with Voigt profiles without the
need for sub-Lorentzian wings. The retrieved sodium abundances are consistent with being subsolar to solar.

Key words: planets and satellites: atmospheres

1. Introduction

The use of the resonant lines of the sodium atom to probe the
atmospheres of exoplanets has a rich history. The detectability
of the resonant doublets of sodium and potassium in
transmission spectra was first predicted by Seager & Sasselov
(2000). In a contemporaneous study, Sudarsky et al. (2000)
reached the same conclusion. Later, sodium was detected for
the first time in an exoplanet by Charbonneau et al. (2002) for
the hot Jupiter HD 209458b. Since the predictions and
discovery, the detection of sodium has become routine from
space at low spectral resolution (e.g., Sing et al. 2016) and from
the ground both at low (e.g., Nikolov et al. 2018) and high
spectral resolution (e.g., Redfield et al. 2008; Snellen et al.
2008; Jensen et al. 2012; Wyttenbach et al. 2015, 2017;
Khalafinejad et al. 2017; Casasayas-Barris et al. 2018). (But see
Gibson et al. 2019 for a retraction of the detection of
potassium.) These detections motivate a series of theoretical
and phenomenological questions concerning the sodium lines,
which we address in the current study.

1.1. Are Sodium Lines in Non-local Thermodynamic
Equilibrium?

Local thermodynamic equilibrium (LTE) involves a set of
four assumptions: the radiation field is described by a Planck or
blackbody function, the velocity field follows a Maxwellian
distribution, the distribution of neutrals versus electrons and
ions is a solution of the Saha equation, and the energy levels
of the ground versus excited states of the atom follow a
Boltzmann distribution. One of the few studies to examine

non-LTE (NLTE) effects associated with the sodium lines in
exoplanetary atmospheres is Fortney et al. (2003), who
considered non-Saha distributions of the electron density
caused by photoionization (see also Lavvas et al. 2014).
Here, we take a different approach: we study the NLTE

effect associated with non-Boltzmann distributions of the
ground and excited states of the sodium atom. Physically, this
departure from LTE arises from the diminished role of
collisions. To maintain a Boltzmann distribution, collisions
between the sodium atoms and the atoms or molecules of the
bulk gas they are embedded in (e.g., atomic or molecular
hydrogen) need to be efficient. There are two aspects to this
NLTE effect. The first is that the sodium doublet, also known
as the Fraunhofer D1 and D2 lines, is a pair of resonant lines,
where the difference in transit radii between line center and
wing spans about 20 scale heights (e.g., Heng 2016),
corresponding to about 9 orders of magnitude in pressure. It
implies that the importance of collisions varies between the
peak and wings of each sodium line—they are more important
in the line wings, which probe deeper into the atmosphere, and
less influential at the line peak.
Figure 1 shows that the ratio of number densities of the first

excited state of the sodium atom to its ground state may depart
from the LTE value at the order-of-magnitude level, depending
on the temperature and pressure. The departure from LTE is
nonnegligible for pressures of 1 μbar and 1 mbar. The LTE and
NLTE ratios of number densities agree only at a pressure of
1 bar, as shown in the top panel of Figure 1. Since transmission
spectra are expected to probe pressures much less than 1 bar,
this NLTE effect is worthy of investigation. The departure from
LTE produces a correction factor, which reduces to unity in the
limit of LTE, to the integrated strength of the sodium lines (as
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we will elucidate in Section 2). When the sodium lines are in
NLTE, the correction factor exceeds unity and produces weaker
opacities. Figure 2 shows that the LTE model tends to
overestimate the overall strength of the sodium doublet in the
transmission spectrum, regardless of whether clouds are
present.

When applied to low-resolution Hubble Space Telescope
(HST) transmission spectra (Sing et al. 2016), we find this
NLTE effect produces minor corrections to the retrieved
atmospheric properties, except for HD 189733b. However,
the interpretation of a high-resolution HARPS transmission
spectrum of the hot Jupiter WASP-49b (Lendl et al. 2012,
Wyttenbach et al. 2017) is biased toward lower temperatures if
LTE is assumed, as we will demonstrate in Section 3.

1.2. Are sub-Lorentzian Line Wings of Sodium Needed to
Interpret Spectra?

A classical approach to modeling the spectral lines of atoms
or molecules is to assume that the shapes of these lines are

described by the Voigt profile, which is a mathematical
convolution of the Lorentz and Doppler profiles (e.g., Chapter
6.5 of Draine 2011, Chapter 5.2 of Heng 2017). For the sodium
line observed at ∼1000 K, the damping parameter is low
enough (∼10−3) that the Voigt profile consists of a Doppler
core and Lorentzian wings, if pressure broadening is ignored
(Heng et al. 2015). However, the studies of Burrows et al.
(2000) and Allard et al. (2012) suggest that a more realistic
description of the sodium line shape consists of sub-Lorentzian
wings, even though these studies do not agree on the
quantitative details of how to compute these line wings.
From a phenomenological viewpoint, we wish to ask if sub-

Lorentzian wings are a necessary ingredient for fitting
transmission spectra of sodium lines, both at low and high
resolutions. In the current study, we adopt an agnostic and data-
driven approach, which is to describe the line wings of sodium
by a dimensionless broadening parameter ( fbroad). A classical
Voigt profile with no pressure broadening present has
fbroad=1. If pressure broadening is present, we have
fbroad>1. In high-resolution transmission spectra, a resolved
sodium line with fbroad>1 may also encode information
associated with the Rossiter–McLaughlin effect and large-scale
atmospheric winds (e.g., Louden & Wheatley 2015). Any value
of fbroad<1 may be interpreted as the presence of sub-
Lorentzian wings. Figure 2 shows that as the broadening
parameter increases, the sodium lines become stronger in the
wings (while the line-center strengths remain invariant). One
expects a degeneracy between the broadening parameter and
the mixing ratio of sodium, because the strength of the line
wings may be negated by assuming lower abundances of
sodium (Figure 2).
From performing retrievals on low-resolution transmission

spectra, we find that sub-Lorentzian wings are not necessary to
explain the current state of the data (Section 3). This is a
phenomenological, rather than theoretical, statement.

1.3. What Are the Limitations of Interpreting Low- versus
High-resolution Spectra?

There is a debate in the exoplanet literature concerning how
to leverage the value of low- versus high-resolution data off
each other to maximize the outcome of retrievals. For example,
Brogi et al. (2017) studied a joint emission spectrum of HD
209458b with data from the HST Wide Field Camera 3
(WFC3), the Spitzer Space Telescope Infrared Array Camera,
and the VLT CRIRES spectrograph. These authors demon-
strated that the posterior distributions of molecular abundances
become narrower at the order-of-magnitude level when the
high-resolution data are considered in the retrieval analysis of
the low-resolution spectrum. However, as the computations
were expensive they were unable to explore the entire
parameter space and instead used low-resolution retrievals to
guide the exploration. The conclusions of Brogi et al. (2017) on
whether the dayside of HD 209458b is isothermal, as well as
the retrieved range of metallicity values for the atmosphere,
appear to be dependent on their choice of parameterization of
the temperature–pressure profile.
As another example, Pino et al. (2018) combined low-

resolution data from several HST instruments with high-
resolution transmission spectra from HARPS to study the hot
Jupiter HD 189733b, which includes the detection of the
sodium doublet by Wyttenbach et al. (2015). Instead of
performing a retrieval, they fixed the temperature–pressure

Figure 1. Ratio of number densities of first excited level to ground state (top
panel) and photon occupation number (Nγ; bottom panel) associated with the
sodium lines. As the Einstein A-coefficients and energy levels of the sodium
doublet are very similar (see Table 1), we take their average for illustration.
Also for illustration, we set = -X 10Na

6 (roughly the solar value) and chose
three values of the pressure: 1 μbar, 1 mbar, and 1 bar. Only for a pressure of
1 bar is the ratio of number densities described by the LTE limit. Since gN 1,
we can ignore both photoabsorption and stimulated emission (see the text).
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profile to that reported by Wyttenbach et al. (2015), which was
itself derived from an isothermal treatment. By paying attention
to the line spread function of the different instruments, Pino
et al. (2018) were able to fit the combined low- and high-
resolution spectrum with a solar-composition model, i.e., the
water, sodium, and potassium abundances were held fixed.
Pino et al. (2018) explicitly acknowledged that they did not
explore the normalization degeneracy (Benneke & Seager 2012;
Griffith 2014; Heng & Kitzmann 2017).

In the current study, we ask a different question: what are the
limitations encountered when separately interpreting low-
versus high-resolution transmission spectra of the sodium
doublet? This question is nontrivial, because high-resolution,
ground-based spectroscopy is a “double differential” technique,
where the absolute empirical normalization of the transmission
spectrum is lost during data calibration and reduction
(Wyttenbach et al. 2015, 2017; Pino et al. 2018). In other
words, only the relative, and not the absolute, transit depths are
measured. Quantitatively, it is unclear how the enhanced
spectral resolution (relative to, e.g., HST transmission spectra),

diminished wavelength range and lack of an empirical
normalization play off or negate one another. Space-based
HST transmission spectra cover a wider wavelength range and
do possess an absolute empirical normalization, but may not
encode enough information (due to the low spectral resolution)
to completely break the normalization degeneracy (Fisher &
Heng 2018), which states that the theoretical normalization of
the transmission spectrum is uncertain and leads to order-of-
magnitude uncertainties in the chemical abundances (Benneke
& Seager 2012; Griffith 2014; Heng & Kitzmann 2017).
To this end, we apply our retrieval technique to the HST

Space Telescope Imaging Spectrograph (STIS) transmission
spectra curated by Sing et al. (2016), which includes HAT-P-
1b, HAT-P-12b, HD 189733b, WASP-6b, WASP-17b, and
WASP-39b. The sodium doublet is not resolved in these STIS
spectra, but is rather detected as a single, unresolved spike of
two blended lines in absorption. As a single case study of high-
resolution, ground-based spectra, we analyze the HARPS
transmission spectrum of the hot Jupiter WASP-49b measured
by Wyttenbach et al. (2017). The sodium doublet is resolved in

Figure 2. Models of the transmission spectrum of the sodium doublet, assuming WASP-49b-like parameter values (g=689 cm2 s−1, T=4500 K). For illustration,
we assume R0=1.198RJ and P0=10 bar for the theoretical normalization. The fiducial model assumes XNa=10−5 and fbroad=100. Top left panel: cloudfree
NLTE vs. cloudfree and cloudy (κcloud=100 cm2 g−1) LTE models. Top right panel: varying fbroad from 10−5 to 102 with lighter colors corresponding to lower
values of the broadening parameter. Lower left panel: varying XNa from 10−8 to 10−1 with lighter colors corresponding to lower sodium mixing ratios. When
XNa=10−1 (darkest color), the mean molecular mass increases beyond its hydrogen-dominated value (≈2.4mamu) and the pressure scale height becomes small,
leading to smaller spectral features. Lower right panel: varying temperature from 1000 to 10,000 K, with lighter colors corresponding to lower temperatures. In all of
the panels, the filled circle corresponds to the bandpass-averaged transit radius, except for the filled star, which corresponds to that for the cloudy LTE model.
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this HARPS spectrum. Besides the deep transits associated
with the sodium doublet (about 2% relative to the continuum),
the spectral signature of the Rossiter–McLaughlin effect was
not detected (Wyttenbach et al. 2017), which makes WASP-
49b an ideal high-resolution case study.

Previously, Fisher & Heng (2018) demonstrated that HST
WFC3 near-infrared transmission spectra encode enough
information to partially break the normalization degeneracy.
Specifically, the caveat is that the lower limits to the posterior
distributions correspond to the maximum value assumed for the
prior distribution of the reference pressure. The HST STIS
transmission spectra of Sing et al. (2016) cover the optical/
visible range of wavelengths, where it has previously been
established (e.g., Lecavelier des Etangs et al. 2008; Fisher &
Heng 2018) that if the optical/visible spectral slope may be
uniquely attributed to molecular hydrogen alone then the
normalization degeneracy is completely broken. However, the
expectation is that if the optical/visible spectral slope is due to
clouds or hazes, then the normalizaton degeneracy cannot be
broken (Heng 2016). In the current study, we interpret the STIS
transmission spectra by assuming that absorption by sodium
atoms, Rayleigh scattering associated with small cloud particles
and gray absorption by large cloud particles are present. We
find that the normalization degeneracy cannot be broken in the
context of such a model interpretation using optical/visible
data alone.

For the high-resolution spectra, we find that the theoretical
normalization cannot be uniquely determined, but given the
lack of an empirical normalization this has little to no effect
on the posterior distributions of the retrieved atmospheric
properties.

1.4. Is the Degree of Cloudiness of an Exoplanetary
Atmosphere Correlated with Any Exoplanet Property?

Previously, Stevenson (2016) and Heng (2016) used WFC3
transmission spectra dominated by water and STIS observa-
tions of the sodium doublet, respectively, to study the degree of
cloudiness of exoplanetary atmospheres and if it is correlated
with any exoplanet property. Collectively, these studies find
that hotter objects (Heng 2016; Stevenson 2016) with higher
gravity (Stevenson 2016) are more likely to have cloudfree
atmospheres.

One of the objectives of the present study is to improve upon
and revisit the study of Heng (2016), who designed a
diagnostic to interpret the sodium and potassium lines observed
in transmission spectra at low resolution, building on the theory
developed in Heng et al. (2015). It is based on the reasoning
that, since these are strong resonant lines, the line peaks are
unaffected by the opacities of clouds or hazes, while the line
wings are significantly affected, thus allowing for the peak-to-
wing distance to be used as a diagnostic for the degree of
cloudiness. The diagnostic was constructed to apply at two
points: one at the line peak and one in the line wing. This two-
point approach was previously applied to the high-resolution
HARPS spectrum of WASP-49b (Wyttenbach et al. 2017).

A more accurate approach is to perform a retrieval that fits
for the partially resolved shape of the sodium lines. From the
fit, one can compute the distance between the line peak and
wing, Δ Rfit. One can then remove cloud opacity from the
model and compute the corresponding distance in a cloudfree
atmosphere,DRfit,CF. By taking the ratio of these quantities, we

obtain the cloudiness index (Heng 2016),

( )=
D
D

C
R

R
, 1fit,CF

fit

such that cloudfree and cloudy atmospheres have C=1 and
C>1, respectively. The reason to use the best-fit model, rather
than the actual data points, in the denominator of C is to avoid
situations where an imperfect fit to the measured transmission
spectrum produces a best-fit model line peak that sits below the
data point, which produces spurious values of C<1. We
further investigate if estimates of C are affected by the
assumption of LTE.

1.5. Layout of the Paper

In Section 2, we lay out our methodology, including the
theory behind the two-level atom treatment, the cross section of
the sodium lines, models of the transmission spectrum and
treatments of the high-resolution data format. In Section 3, we
study a suite of mock retrievals and perform retrieval analyses
on the HST STIS and HARPS transmission spectra. In
Section 4, we discuss the implications of our results, including
a scrutiny of the information content of high-resolution spectra
with respect to detecting NLTE effects. Table 1 contains the
physical constants associated with the sodium doublet. Table 2
states the physical units and prior ranges of the retrieved
parameters. Table 3 summarizes the values of the retrieved
atmospheric properties for the sample of seven exoplanets
considered in the current study.

2. Theory and Methodology

2.1. Two-level Sodium Atom

The two-level atom is not a novel concept and has previously
been described in monographs (e.g., Chapter 17.1 of Draine
2011). Here, we recast it in a form that is suitable for computation
and application to sodium atoms.
The two-level atom has a ground state and an excited state.

The number density of atoms in the excited state (n2) is
described by the following evolution equation (e.g., Equation

Table 1
Relevant Physical Properties of Na D Lines

Quantity Value

lD1 (Å) 5895.92424

nD1 (Hz) 5.085×1014

lD2 (Å) 5889.95095

nD2 (Hz) 5.090×1014

AD1 (s
−1) 6.14×107

AD2 (s
−1) 6.16×107

ED1 (erg) 3.369×10−12

ED1 (eV) 2.1

ED2 (erg) 3.373×10−12

ED2 (eV) 2.1

fD1
0.320

fD2
0.641

Note. All data extracted from the NIST database except for oscillator strengths
( fDi

), which are taken from Table 9.3 of Draine (2011). AD1 and AD2 are the A21

values for the D1 and D2 lines, respectively.
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(17.5) of Draine 2011),
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where t denotes the time, n1 is the number density of atoms in
the ground state, ne is the number density of electrons, ntotal is
the total number density (which is the number density of
hydrogen molecules in a hydrogen-dominated atmosphere), A21

is the Einstein A-coefficient (with units of s−1) and Nγ is the
photon occupation number. The statistical weights are =g j2j

2,
where j=1, 2. The rate coefficent for collisional deexcitation
is given by Equation (2.27) of Draine (2011),

( )= ´
W- - -C T
g

8.629 10 cm s , 321
8 3 1

4
1 2 21

2

where T4≡T/104 K and T is the temperature. As explained by
Draine (2011), the collision strength Ω21 is approximately
independent of temperature for T<104 K and typically has
values between 1 and 10. To maximize the NLTE effect, we
approximate Ω21≈1, which produces the highest possible
value of the critical density.

Physically, besides the collisional excitation (ntotal n1C12)
and deexcitation (ntotal n2C21) of the excited level as well as

deexcitation by spontaneous emission (n2A21), there is also
photoabsorption (n1Nγg2A21/g1) and stimulated emission
(n2NγA21), as described in Chapter 17.1 of Draine (2011).
However, we show in the bottom panel of Figure 1 that the
photon occupation number,

( ) ( )= -g
n -N e 1 , 4h k T 1B

with h being Planck’s constant, kB being Boltzmann’s constant,
and ν being the frequency, is much less than unity, implying
that the terms associated with Nγ in Equation (2) may be
dropped. Note that the preceding expression for Nγ assumes a
Planckian radiation field.
Demanding a steady state (∂n2/∂t=0) yields
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where E12 is the energy difference between the ground and
excited levels and fe≡ne/ntotal is the ionization fraction. For
f 1e , we obtain the standard NLTE expression for a two-

level atom,
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Table 2
Retrieved Parameters and Their Prior Ranges

Quantity Symbol Units High-res Range Low-res Range Prior Type

Temperature T K 0–10,000 0–6000 uniform
Sodium volume mixing ratio XNa L 10−13

–1 10−13
–1 log-uniform

Broadening parameter fbroad L 10−1
–104 10−5

–1010 log-uniform
Gray cloud opacity κcloud cm2 g−1 10−4

–105 10−10
–105 log-uniform

Rayleigh scattering scaling parameter (clouds) fcloud L L 1–107 log-uniform
Reference pressure P0 bar 1–100 1–100 log-uniform

Note. 1 bar=106 dyn cm−2 (cgs units)=105 N m−2 (mks units).

Table 3
Summary of Retrieval Outcomes (Both LTE and NLTE Models)

Object Teq (K) T (K) Xlog Na flog broad klog cloud (cm2 g−1) flog cloud C Plog 0 (bar) R0 (RJ)

HAT-P-1ba 1320 -
+351 172

200 −8.11-
+

3.15
4.2

-
+0.26 3.31

4.67 −6.32-
+

2.34
2.75

-
+0.95 0.73

2.67
-
+1.18 0.16

1.67
-
+0.5 0.35

0.75 1.26

NLTE -
+339 152

185 −8.54-
+

2.85
4.03

-
+0.2 3.35

4.89 −6.4-
+

2.35
2.96

-
+1.0 0.76

2.35
-
+1.22 0.2

1.81
-
+0.5 0.35

0.75 1.26

HAT-P-12ba 960 -
+984 302

308 −9.61-
+

2.24
3.59 −0.56-

+
2.9
4.63 −6.57-

+
2.15
2.1

-
+0.85 0.55

1.13
-
+1.18 0.17

1.01
-
+0.57 0.38

0.64 0.9

NLTE -
+1018 283

278 −9.67-
+

2.24
3.57 −0.49-

+
2.84
4.43 −6.74-

+
2.09
2.13

-
+0.72 0.44

0.86
-
+1.24 0.21

0.86
-
+0.57 0.38

0.64 0.9

HD 189733ba 1200 -
+2797 211

208 −5.44-
+

1.79
1.77

-
+2.24 1.86

1.94 −5.37-
+

3.11
3.65

-
+4.78 0.75

0.84
-
+4.78 0.73

0.99
-
+1.04 0.67

0.65 1.12

NLTE -
+4782 472

467 −6.29-
+

2.41
2.36

-
+1.2 2.35

2.51 −5.97-
+

2.67
2.9

-
+2.92 0.58

0.63
-
+5.92 1.03

1.39
-
+1.04 0.67

0.65 1.12

WASP-6ba 1150 -
+880 312

362 −9.01-
+

2.53
3.84

-
+0.07 3.26

5.21 −5.7-
+

2.72
2.97

-
+2.55 1.48

2.22
-
+1.63 0.6

3.64
-
+0.89 0.58

0.68 1.18

NLTE -
+1004 287

272 −8.94-
+

2.48
3.77

-
+0.04 3.21

5.32 −5.89-
+

2.58
2.8

-
+1.95 1.11

2.31
-
+1.91 0.82

4.6
-
+0.89 0.58

0.68 1.18

WASP-17ba 1740 -
+1489 399

336 −9.32-
+

2.37
3.74

-
+0.38 3.51

4.45 −6.91-
+

2.01
2.39

-
+0.75 0.47

0.91
-
+1.2 0.18

0.71
-
+0.58 0.36

0.54 1.73

NLTE -
+1568 329

307 −9.25-
+

2.45
3.77 −0.36-

+
3.04
4.67 −6.78-

+
2.1
2.24

-
+0.58 0.38

0.57
-
+1.2 0.18

0.56
-
+0.58 0.36

0.54 1.73

WASP-39ba 1120 -
+835 132

131 −5.56-
+

2.29
2.3

-
+2.48 2.4

2.14 −6.04-
+

2.71
2.84

-
+2.22 0.89

1.05
-
+1.39 0.08

0.1
-
+1.05 0.68

0.65 1.18

NLTE -
+1057 125

205 −5.52-
+

2.98
2.96

-
+1.6 3.06

2.68 −5.94-
+

2.7
2.31

-
+1.48 0.64

0.7
-
+1.42 0.1

0.12
-
+1.05 0.68

0.65 1.18

WASP-49bb 1400 -
+7209 1892

1763 - -
+5.64 2.90

2.55 - -
+5.70 2.62

3.61 - -
+0.18 2.77

3.14 L -
+1.52 0.37

0.84
-
+1.02 0.69

0.63 1.198

NLTE -
+8415 1526

1020 - -
+4.44 2.51

2.02 - -
+6.56 2.30

2.91 - -
+0.90 2.06

2.82 L -
+1.36 0.24

0.42
-
+1.04 0.68

0.64 1.198

Notes.
a HST STIS data from Sing et al. (2016).
b HARPS data from Wyttenbach et al. (2017).
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To arrive at Equation (6), we invoke the principle of detailed
balance (e.g., Section 3.5 of Draine 2011),

( )= -C

C

g

g
e . 7E k T12

21

2

1

12 B

The critical density is defined as

( )ºn
A

C
. 8crit

21

21

When n ntotal crit (i.e., collisions are important), we recover
the Boltzmann distribution and the states obey LTE. At a
pressure of 1 bar, n2/n1 is well described by its LTE limit for
temperatures between 103 and 104 K (Figure 1). However, for
lower pressures, the departures from LTE may become
significant at higher temperatures.

For completeness, the Appendix describes an analytical
expression for the electron density if all of the electrons are
being sourced by collisional ionization of the sodium atom.

2.2. Cross Section of Sodium Lines

The absorption cross section of the sodium atom is the
product of the integrated line strength (S) and the line shape
(Φ),

( )s = FS . 9Na

There are three different ways to write S, depending on if the
line shape is written in per wavenumber, per frequency, or per
wavelength units. We use per frequency units, such that S has
units of cm2 s−1 and Φ has units of s.

2.2.1. Integrated Line Strength

The integrated line strength is (Penner 1952)

( )n
=


S
n A h

cn
. 102 21

total

Following Appendix 2 of Goody & Yung (1989), a factor of
1/ntotal has been inserted to give S the correct physical units,
such that σNa has units of cm2. The energy density per unit
frequency is given by

( )p
= n B

c

4
, 11

where c is the speed of light and

( ) ( )n
= -n

n -B
h

c
e

2
1 12h k T

3

2
1B

is the Planck function in per frequency units. The Einstein
A-coefficient is related to the oscillator strength, f12, by (e.g.,
Equation (6.20) of Draine 2011)

( )p n
=A

e

m c

g

g
f

8
, 13

e
21

2 2 2

3
1

2
12

where e is the elementary charge and me is the mass of the
electron.

It follows that the integrated line strength becomes

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

p
= - +n-

-

S
e f

m c

n

n
e

n

n
1 1 . 14

e

h k T
2

12 1

total

crit

total

1
B

There are several noteworthy aspects of the preceding
expression. First, since Nγ = 1 and n1≈ntotal, we obtain

( )
⎛
⎝⎜

⎞
⎠⎟

p
= +

-

S
e f

m c

n

n
1 , 15

e

2
12 crit

total

1

which is our final NLTE expression for the two-level atom.
Second, in the LTE limit we obtain S≈π e2f12/me c, which is
the same as Equation (6.25) of Draine (2011). Third, since
Equation (10) is the same starting point for deriving the
standard expression for the line strength in HITRAN/
HITEMP, it implies that Equation (15) is equivalent to
Equation (A5) of Rothman et al. (1998).

2.2.2. Line Shape

The Voigt profile is standard knowledge in monographs
(e.g., Chapter 6.5 of Draine 2011, Chapter 5.2 of Heng 2017).
However, there is more than one way to define the Lorentz and
Doppler widths. Here, we concisely restate the formalism to be
explicit about the conventions adopted in the current study.
The Lorentz profile is

( )
( )p

n n
F =

G
- + G

, 16L
L

0
2

L
2

where ν0 is the frequency at line center and ΓL=fbroad A21/4π
is the half width at half maximum (HWHM) of the Lorentz
profile. This convention differs from, for example, Draine
(2011) who defines it as the full width at half maximum
(FWHM). We use the dimensionless broadening parameter
fbroad, which expresses the strength of the Lorentzian wings in
terms of the natural width, as an agnostic way of including all
sources of broadening. In particular, since the theory of
pressure broadening is incomplete, the use of fbroad>1 allows
us to report retrieved broadening values in terms of the natural
width, which will motivate future studies of the sodium line
shape. It also allows us to isolate the pressure dependence of
the cross section due to the NLTE term associated with the total
density. The use of fbroad<1 allows us to quantify the extent to
which the line wings are sub-Lorentzian. We do not truncate
the sodium line wings.
The Doppler profile is

( )( )
p

F = G n n s- - -e
ln 2

. 17D D
1 0

2
th
2

The thermal speed is =v k T m2th B , while the Doppler
shift associated with the thermal speed is s n= v cth 0 th . G =D

s ln 2th is the HWHM of the Doppler profile.
By convolving the Lorentz and Doppler profiles, the Voigt

profile obtains,

( )
p

F =
G
Hln 2

, 18V

D

where the Voigt H-function is

( )
( )òp

º
- +-¥

+¥ -
H

a e

x y a
dy, 19

y

V
0

2
0
2

2

and x≡(ν−ν0)/σth. The damping parameter is defined as
a0≡ΓL/σth.
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In theory, the Voigt H-function is evaluated using (Roston &
Obaid 2005; Zaghloul 2007)

( ) ( )

[ ( )] ( )

erfc

òp

=

+ -

-

-

H e a a x

e a x y dy

cos 2
2

sin 2 , 20

a x

x
y x

V 0 0

0
0

0
2 2

2 2

where ( )erfc a0 is the complementary error function (e.g.,
Chapter 10 of Arfken & Weber 1995) with a0 as its argument.

In practice, the Voigt profile is evaluated using (Schreier
1992)

[ ( )] ( )R=H w z , 21V

where w(z) is the Faddeeva function (Equation (7.1.3)2 of
Abramowitz & Stegun 1970) evaluated at (Schreier 1992)

( )= +z x ia . 220

This representation of the Voigt function allows for faster and
simpler computation of the line shape.

2.3. Transmission Spectrum

2.3.1. LTE

At a given wavelength or frequency, the expression for the
transit radius corresponding to an isothermal transit chord
(Lecavelier des Etangs et al. 2008; de Wit & Seager 2013;
Bétrémieux & Swain 2017; Heng & Kitzmann 2017; Jordán &
Espinoza 2018) is

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥g

k p
= + +R R H

P

g

R

H
ln

2
, 230

0 0

where H=kB T/m g is the isothermal pressure scale height, m
is the mean molecular mass, g is the gravity, γ=0.57721 is
the Euler–Mascheroni constant, and κ is the opacity (cross
section per unit mass). The reference pressure, P0, corresponds
to a reference transit radius, R0.

For our model atmospheres, the opacity is

( )k
p

k= F +
X e f

mm c
, 24

e

Na
2

12
cloud

where XNa is the volume mixing ratio of sodium and κcloud is a
gray/constant cloud opacity. The assumption is that the
wavelength range probed is narrow enough that it is insensitive
to changes in cloud opacity caused by small particles, or that
the particles are large (compared to the wavelength).

Denoting the atomic mass unit by mamu, the mean molecular
mass is given by

( )= +m X m X m2.4 , 25H amu Na Na2

where mNa=23mamu is the mass of the sodium atom. The
mixing ratio of molecular hydrogen is determined by demand-
ing that all mixing ratios sum to unity,

( )+ =X X1.1 1, 26H Na2

where we have assumed that the helium mixing ratio follows
cosmic abundance ( =X X0.1He H2). When X 1Na , we have

»X 0.91H2 . A continuum of possibilities, from hydrogen-
dominated to sodium-dominated atmospheres, is allowed.

2.3.2. NLTE

The NLTE expression describing the number densities of the
excited and ground states of sodium explicitly contains the
pressure P, because ntotal=P/kB T if we assume the ideal gas
law. This means that we need to explicitly account for the
variation of pressure across the sodium line profile. To keep
the problem tractable, we assume hydrostatic equilibrium,

[( ) ]= -P P R R Hexp0 0 . One of the assumptions involved in
deriving Equation (23) is worth emphasizing. Early in the
derivation, one assumes that, in writing the optical depth as an
integral involving the cross section and number density, one
may bring the cross section out of the integral, i.e., assume that
it is a constant with respect to the integration variable. Since the
integral is carried out over the transit chord, this is equivalent to
assuming that the cross section is constant across the chord at a
given wavelength. It does not preclude the fact that the pressure
probed by the transit chord may be rather different at different
wavelengths. In that sense, Equation (23) is only isobaric at a
given wavelength and may be used to describe spectral lines
where the pressure probed across the line (across different
wavelengths) may vary markedly.
The opacity is given by

( )⎜ ⎟⎛
⎝

⎞
⎠k k= +
-n k T

P
1 , 27LTE

crit B
1

where we have defined

( )k
p

kº F +
X e f

mm c
. 28

e
LTE

Na
2

12
cloud

We assume that the particles associated with the gray cloud
opacity track the behavior of the sodium atoms with regards to
departures from LTE.
Substituting the expression for the opacity into Equation (23)

yields

( )⎜ ⎟⎛
⎝

⎞
⎠= - +R R H

n k T

P
ln 1 , 29LTE

crit B

where we have defined

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥g

k p
º + +R R H

P

g

R

H
ln

2
. 30LTE 0

0 LTE 0

This way of writing Equation (29) means that the two effects of
P0 have been separated: its regular appearance in RLTE versus
its appearance in the NLTE term, which is related to the
varying importance of collisions across the sodium line.
By defining

( )( )º -x e , 31R R H0

Equation (29) may be written as a quadratic equation,

( )+ - =Ax x x 0, 322
0

where A≡ncritkBT/P0 and [( ) ]º -x R R Hexp0 LTE 0 . By
solving this quadratic equation, we obtain a closed-form
solution for the transit radius,

( )
⎛
⎝⎜

⎞
⎠⎟= +

+ -
R R H

Ax

A
ln

1 4 1

2
. 330

0
2 The Faddeeva function appears without being specifically attributed to
Faddeeva in Abramowitz & Stegun (1970).
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It is apparent that the dependence of the transit radius on A, and
hence the P0 term responsible for the varying importance of
collisions across the sodium line, is weak.

2.3.3. Values Used for the Reference Transit Radius and Reference
Pressure

Following Fisher & Heng (2018), we estimate the reference
transit radius using

¯ ( )= -R R H6.908 . 340

In Fisher & Heng (2018), R̄ is the average transit radius in the
WFC3 bandpass. Here, we take R̄ to be the HST white-light
radius as stated in Sing et al. (2016).

Based on WASP-17b, Fisher & Heng (2018) estimated that
the WFC3 and STIS bandpasses probe ∼10 mbar. This implies
that P0∼10 bar. For the low-resolution HST STIS retrievals,
we therefore set a tight, log-uniform prior of  P1 100 bar0 .

For the high-resolution spectrum of WASP-49b, we match the
spectral continuum to the HST white-light radius of 1.198RJ
(Wyttenbach et al. 2017), where RJ is the radius of Jupiter. This
requires setting R0=0.752RJ for P0=10 bar.

2.4. Nested-sampling Retrievals and Bayesian Evidence

Our exploration of the parameter space of models is
performed using a nested-sampling framework (Feroz &
Hobson 2008; Feroz et al. 2009, 2013). We use the open-
source PyMultiNest package (Buchner et al. 2014), which
was previously implemented in Fisher & Heng (2018). Nested-
sampling allows us to compute the Bayesian evidence and
Bayes factor, which allows us to identify the best model given
the quality of the data (Trotta 2008). It also allows us to
identify the family of models consistent with the data (e.g.,
Fisher & Heng 2018).

2.5. Equivalence with Heng (2016)

Let the transit radius at line center and wing be Rc and Rw,
respectively. Let also ΔR≡Rc−Rw. It follows from
Equation (23) that

( )
⎛
⎝⎜

⎞
⎠⎟D =

F
F

R H ln , 35c

w

where Fc and Φw are the Voigt profiles at line center and wing,
respectively. If we approximate the Voigt profile as consisting
of a Doppler core and Lorentzian wings, then we recover
Equation (10) of Heng (2016),

( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

p l l l
l l p

D =
-

R H
c

A Hg
ln

4

2
. 36

2 2
0

2
0

21
2

0
2

Thus, the pointwise approach of Heng (2016), as designed for
analyzing low-resolution spectra, is a limiting case of the
continuous approach given by Equation (23) that we are
applying in the current study to high-resolution spectra.

2.6. Data Format for Unnormalized High-resolution Spectra

Let the transit depth be ( )= D R R 2, where R is the stellar
radius. Ground-based, high-resolution data do not measure the
transit depth, but rather the differential transit depth, which is
usually denoted by R̃ and lacks an absolute empirical

normalization. We wish to understand the relationship between
D and R̃.
Generally, we have D 1. Thus, 1−D is a number that is

almost unity across wavelength. All of the peaks of D are
converted into troughs for 1−D. Let the minimum value of D,
which corresponds to the continuum, be Dmin. The quantity
˜ ( ) ( )R = - -D D1 1 min shifts the minimum value of the
continuum to unity. The quantity that is typically used for
measured spectra is R̃ - 1 (Wyttenbach et al. 2015, 2017),
which shifts the continuum to zero.

3. Results

3.1. Does the Normalization Degeneracy Affect Our
Interpretation of the Sodium Doublet?

Before analyzing measured transmission spectra of the
sodium doublet, we study a suite of mock retrievals to
elucidate the degeneracies between the various model para-
meters. We also wish to understand the effect of the
normalization degeneracy on spectra with a narrow wavelength
range centered on the sodium doublet. To generate mock
spectra, we assume 100 wavelength bins between 5880 and
5905Å. Each data point is assumed to have an uncertainty of
0.005Åon the transit radius. These numbers are guided by the
measured HARPS transmission spectrum of WASP-49b
(Wyttenbach et al. 2017). We use the measured gravity of
WASP-49b of 689 cm2 s−1 (Wyttenbach et al. 2017). For
illustration, we assume =T 4500 K, XNa=10

−5, fbroad=100,
and κcloud=100 cm2 g−1 in our NLTE model of a mock
transmission spectrum.
We study two types of retrievals of mock spectra. Unnorma-

lized spectra are presented in the R̃ - 1 format previously
described in Section 2.6. Normalized spectra are presented in
transit radii (R), where we match the continuum of the mock
spectrum to the measured white-light radius of 1.198RJ for
WASP-49b (Wyttenbach et al. 2017). For the choice of P0=
10 bar, this requires setting R0=0.752 RJ.
The top panel of Figure 3 shows pairs of retrievals where we

fix P0=10 bar and R0=0.752 RJ versus if we fix only
R0=0.752 RJ and allow P0 to be part of the retrieval. Several
striking trends are revealed even by examining the unnorma-
lized spectrum (top left panel). First, the behavior of the
temperature and broadening parameter are distinct enough from
the other parameters that they may be accurately retrieved,
regardless of whether P0 is known. It demonstrates that our
parameterization of line broadening using fbroad effectively
isolates it from other effects, including temperature variations.
Second, there is value added to the retrieval when the

transmission spectrum is normalized (top right panel). The
posterior distribution of sodium abundance spans about 5
orders of magnitude (for the FWHM) for the unnormalized
spectrum, but shrinks to about 2–3 orders of magnitude simply
by matching the spectral continuum to the HST white-light
radius. Our ignorance of P0 for the normalized spectrum results
in the cloud opacity being loosely unconstrained, but this does
not affect our ability to accurately retrieve the temperature and
broadening parameter.
Third, for the normalized spectrum (top right panel of

Figure 3), both the degeneracy with cloudiness (i.e., any
increase in the sodium abundance may be compensated by an
increase in the gray cloud opacity) and the normalization
degeneracy (i.e., any increase in the sodium abundance may be
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compensated by a decrease in P0) are clearly present in
the posterior distributions. These degeneracies clearly drive the
somewhat large widths of the posterior distributions of both the
gray cloud opacity and sodium abundance. When the spectrum
is unnormalized (top left panel of Figure 3), the normalization
degeneracy vanishes. Essentially, over the width of the
posterior distributions of both XNa and κcloud as determined
by the cloudiness degeneracy, the reference pressure is
unconstrained. Figure 4 shows the corresponding posterior
distributions for the cloudiness index, which is robust to
whether P0 is treated as a fitting parameter and whether the
retrieval is performed on unnormalized or normalized spectra.

In a real situation, the value of R0 is unknown. As
demonstrated by Fisher & Heng (2018), it suffices to make a
reasonable guess for R0 and then retrieve for P0. The bottom

panels of Figure 3 elucidates the effect of good (R0=0.85RJ),
not-so-good (R0=0.95RJ), and bad (R0=1.05RJ) guesses.
For the normalized spectrum, a bad guess results in a posterior
for the cloud opacity that bumps up against its prior value.
More insidiously, it also gives a posterior distribution of the
sodium abundance that is narrower than the one for the good
guess. A not-so-good guess also produces misleadingly narrow
posterior distributions of the sodium abundance and cloud
opacity.
The bottom left panel of Figure 3 shows that these concerns

about guessing R0 are mostly irrelevant for the unnormalized
spectrum, because the posterior distributions of parameters are
nearly identical for all quantities. The exception is the temperature,
which is somewhat different for the bad guess. In other words,
the retrieval of unnormalized spectra is unaffected by the

Figure 3. Elucidating the influence of the normalization degeneracy on unnormalized (left column) vs. normalized (right column) spectra, where the spectral
continuum of the latter has been matched to the measured white-light HST radius of WASP-49b (see the text). This matching produces =R R0.7520 J, while we have
arbitrarily chosen P0=10 bar for illustration. We have set T=4500 K, XNa=10−5, fbroad=100, and κcloud=100 cm2 g−1, again for illustration. The top row
shows mock retrievals where the values of R0 and P0 have been fixed to their input values (darker posteriors) vs. those where P0 is allowed to be a fitting parameter but
R0=0.752 RJ (lighter posteriors). The bottom row shows mock retrievals where the value of R0 is varied to mimic the real situation where we have no prior
knowledge of what its value should be. The light (shaded), dark (shaded), and solid-curve posteriors corresponds to good, not-so-good and bad guesses for R0,
respectively (see the text). Wherever relevant, the vertical lines indicate the true input value of a given parameter.
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normalization degeneracy, but at the expense of more uncertain
posterior distributions compared to normalized spectra.

3.2. Can We Distinguish between LTE and NLTE Scenarios?

We now use mock retrievals to study a different question,
which is whether a suite of nested-sampling retrievals are
capable of distinguishing between LTE versus NLTE and
cloudfree versus cloudy models? Using the same cloudy NLTE
mock spectrum, we perform four retrievals using the cloudfree
LTE model, cloudy LTE model, cloudfree NLTE model, and
cloudy NLTE model. Figures 5 and 6 show the outcomes of
these retrievals. The first major outcome is that the shape of the
sodium doublet, in unnormalized transmission spectra, does not
encode enough information to distinguish between cloudfree
and cloudy models based on the Bayesian evidence. It has the
implication that the temperature is underestimated if one uses a
cloudfree model to interpret a cloudy transit chord.

A comparison of the Bayesian evidence also does not allow
us to distinguish between NLTE and LTE models, which in our

formulation have exactly the same number of parameters. A
robust outcome of the retrievals is that the value of the
broadening parameter is accurately retrieved regardless of
whether cloudy NLTE or LTE models are used. However,
when an LTE model is used to perform retrieval on the NLTE
mock spectrum, the retrieved temperature is substantially
underestimated. In the example shown, we retrieve a temper-
ature of about 2600 K compared to the true input value of
4500 K. This suite of mock retrieval suggests that retrievals
performed on unnormalized HARPS transmission spectra of
the sodium doublet are unable to discern between NLTE and
LTE models.
In both the cloudy LTE and NLTE models, the width of the

posterior distribution of the sodium abundance is determined
by the degeneracy between the gray cloud opacity and the
sodium abundance.

3.3. Retrieval Analysis of HARPS Data of WASP-49b

The mock retrievals of Figure 5 assume idealized conditions,
meaning that sources of contamination due to stellar activity,
telluric lines, imperfect coaddition of multiple exposures, etc.,
are not considered. In analyzing the WASP-49b HARPS
transmission spectrum of Wyttenbach et al. (2017), we assume
that these issues have been addressed by the authors.
Wyttenbach et al. (2017) recorded the peak of each sodium

line within a narrow band with a width of 0.4Å(see their
Section 4.2). As discussed in Section 2.6, the reference transit
depth, Dmin, is theoretically taken as the minimum transit
depth across the spectrum. However, due to the fluctuations in
the continuum points in the data, Wyttenbach et al. (2017)
set this reference value to the average measured continuum
within two reference bands: blue (5874.94–5886.94 Å) and red
(5898.94–5910.94 Å). We apply the same procedure to our
models: within the same pair of reference bands, we compute
the average value of the continuum. We then take Dmin as this
value when calculating R̃, before shifting it to R̃ = 1. Our fit
to the data using this procedure is shown in Figure 7.
The top row of Figure 8 shows our retrieval analysis of the

measured high-resolution, unnormalized transmission spectrum
of WASP-49b (Wyttenbach et al. 2017). In our initial retrievals
(not shown), we struggled to fit the deep line peaks with our
model. This motivated us to extend our prior for fbroad to lower
values, compared with those stated in Table 2. For this data, we
use the range [10−10, 104]. As expected, we are unable to
distinguish between the LTE versus NLTE interpretation from
the computed Bayesian evidence (448.8 for LTE versus 448.4
for NLTE). On physical grounds alone, we favor the NLTE
interpretation. The temperature is -

+7209 1892
1763 K for the LTE

interpretation versus -
+8415 1526

1020 K for the NLTE interpretation,
consistent with the lesson learned from our mock retrievals that
the LTE model tends to predict a lower temperature. These
retrieved temperatures are discrepant from the -

+2950 500
400 K

value reported by Wyttenbach et al. (2017), but we note that
Wyttenbach et al. (2017) fitted Gaussians rather than Voigt
profiles to the measured sodium doublets. The use of Gaussians
is equivalent to fitting with a Doppler profile in the absence of
Lorentzian wings. Our retrieved temperatures remain consistent
with the expectation that radiative cooling by collisionally
excited atomic hydrogen thermostats the temperature to ∼104 K
(Murray-Clay et al. 2009). The retrieved sodium volume mixing
ratios are loosely constrained and somewhat insensitive to

Figure 4. Posterior distribution of the cloudiness index associated with the
mock retrieval in Figure 3 for the unnormalized (top panel) and normalized
(bottom panel) transmission spectra. The darker posteriors correspond to mock
retrievals where P0 is treated as a fitting parameter.
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whether the LTE or NLTE interpretation is assumed ( =Xlog Na

- -
+5.64 2.90

2.55 versus- -
+4.44 2.51

2.02), as is the retrieved cloud opacity
( k = - -

+log 0.18cloud 2.77
3.14 versus - -

+0.90 2.06
2.82). The broadening

parameter is essentially unconstrained, but takes on fbroad<1
values as the narrow wavelength range precludes full coverage
of the sodium line wings.

The continuum of the measured transmission spectrum
appears to possess a scatter with a half-width of about 0.005.
To test the robustness of our retrieval results, we artificially
increased the two line peaks by 0.005 each and reran our
retrievals. The retrieval outcomes are shown in the bottom row
of Figure 8. For the LTE retrieval, we obtained a reduced
temperature of = -

+T 6756 2030
2048 K and a similar sodium

abundance ( = - -
+Xlog 6.22Na 2.86

3.03). For the NLTE retrieval, the
temperature becomes = -

+T 7925 1869
1408 K and the sodium

abundance becomes = - -
+Xlog 4.76Na 3.01

2.32. This pair of tests

suggests that the retrieval outcomes are somewhat robust to the
uncertainty in the continuum.

3.4. Retrieval Analysis of Low-resolution Transmission Spectra

We examine a sample of six low-resolution transmission
spectra: HAT-P-1b, HAT-P-12b, HD 189733b, WASP-6b,
WASP-17b, and WASP-39b (Sing et al. 2016). Given the
sparseness of the data, we assume a simple model that includes
the sodium doublet and a spectral continuum sourced by clouds
with both small and large particles of unspecified composition.
Large cloud particles are represented by a constant opacity
(κcloud). Following Sing et al. (2016), small cloud particles are
assumed to contribute Rayleigh scattering that has a behavior,
across wavelength, which is identical to that of molecular
hydrogen, but with a magnitude that is offset by some constant,
dimensionless factor f 1cloud . The cross section for Rayleigh

Figure 5. Suite of retrievals on a mock transmission spectrum, with HARPS-like spectral resolution, constructed using a cloudy NLTE model of the sodium doublet.
Retrievals are performed assuming a cloudfree LTE model (top left panel), a cloudy LTE model (top right panel), a cloudfree NLTE model (bottom left panel), or a
cloudy NLTE model (bottom right panel). The solid and dotted vertical lines show the median and 1σ limits for the posteriors, respectively. The thick dashed lines
show the best-fit values. The solid black lines show the truth values for the mock data.
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scattering by molecular hydrogen is (Sneep & Ubachs 2005),
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where nref=2.68678×1019 cm−3 and the real part of the
index of refraction is (Cox 2000)
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Collectively, the opacity function is
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where =m m2H amu2 is the mass of the hydrogen molecule.
The computed model spectrum is degraded to the measured

one by taking the average value of the transit radius in each
wavelength bin. Figures 9 and 10 show the outcomes of these
12 retrievals. The reference pressure is either unconstrained or
only loosely constrained and its posterior distribution is largely
prior-dominated. This is unsurprising, because the pressure
probed by the transit chord is
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s

~P
mg

f X

H

R
. 40

cloud H H2 2

If the atmosphere is cloudfree ( fcloud=1) and hydrogen-
dominated ( »X 0.91H2 ), then the pressure can be uniquely
determined. The transit-chord pressure and reference pressure
are related by hydrostatic equilibrium. However, if the value of
fcloud is a priori unknown, then P and hence P0 cannot be
uniquely determined.

Figure 6. Logarithm of the Bayesian evidence and corresponding Bayes factor between each model compared to the best model (as indicated by the number on top of
each bar) for the suite of mock retrievals in Figure 5. The entry marked by “0” is the best model, i.e., the model with the highest Bayesian evidence. The legend lists
the correspondence between the Bayes factor and the strength or weakness of the evidence in favor of a given model (compared to the best model).

Figure 7. Illustration of how the averaged continuum is measured in blue and red bands (shaded areas) and used to set the reference transit depth, Dmin. The line peaks are
measured in narrow bands with widths of 0.4 Å. As an illustration, we have used a model with T=7208 K, XNa=10−5.64, κcloud=10−0.18 cm2 g−1, and fbroad=10−5.70.
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At low spectral resolutions, the trend of decreasing fbroad
producing strong lines (relative to the continuum) is negated by
a higher abundance of sodium, and it is this degeneracy that
dominates the width of the posterior distributions of XNa. In
all 12 retrievals, the temperature is tightly constrained as it
functions like an independent “stretch mode” in the retrieval
(Fisher & Heng 2018; see also Figure 2).

HD 189733b is singled out for discussion due to its historical
importance in the literature (Pont et al. 2008, 2013; Sing et al.
2011). It is the only object among the sample of six objects that has
a clearly cloudy STIS transit chord ( f 1cloud ), but it is important
to note that the range of fcloud values retrieved is prior-dominated
by our choice of  P1 100 bar0 . The temperature corresp-
onding to the STIS transit chord is about 2800 K (assuming LTE)
or about 4800 K (for NLTE), but these values are not inconsistent
with those reported by Wyttenbach et al. (2015) and Heng et al.
(2015). In all 12 retrievals, the values of κcloud retrieved are small,
consistent with the continuum being nongray.

Figure 11 shows the empirical trends (or lack thereof)
between the various retrieved quantities. For the purpose of
computing cloudiness index, the cloudfree scenario is obtained
by setting fcloud=1 and κcloud=0. No clear trend between the
cloudiness index (C) and the equilibrium temperature, which is
a proxy for the insolation or stellar irradiation, is seen, contrary
to the tentative trend reported by Heng (2016). The retrieved C
values range from being consistent with unity to larger than
unity, in broad agreement with the study of Barstow et al.
(2017). NLTE interpretations yield a higher degree of
cloudiness, because of the diminished strength of the sodium
lines relative to LTE.
The uncertainties on the retrieved sodium abundances are

large, but the general trend is that XNa is consistent with being
solar (∼10−6) or subsolar. The uncertainties on the retrieved
broadening parameters are also large, but the retrieved
fbroad values are broadly consistent with unity, suggesting
that sub-Lorentzian wings are not needed to fit the data.

Figure 8. Retrievals on the real HARPS data set for WASP-49b using the LTE (left column) and non-LTE (right column) models. The top row shows the retrievals
performed on the original data. For the bottom row, we have artificially increased the two data points corresponding to the line peaks by 0.005 in order to test the
sensitivity of the retrieval outcomes to fluctuations in the spectral continuum.

13

The Astrophysical Journal, 881:25 (18pp), 2019 August 10 Fisher & Heng



Figure 9. Retrieval analysis of low-resolution transmission spectra. The left and right columns are for the LTE and NLTE interpretations, respectively. The top,
middle, and bottom rows are for HAT-P-1b, HAT-P-12b, and HD 189733b, respectively.
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Figure 10. Same as Figure 9, but for WASP-6b (top row), WASP-17b (middle row), and WASP-39b (bottom row).
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Generally, T/Teq∼1, where T is the retrieved temperature of
the transit chord, with the exception of HD 189733b where
T/Teq>2.

4. Discussion

Our retrieval outcomes in Figure 8 clearly demonstrate that
ground-based, high-resolution spectra of the sodium doublet alone

Figure 11. Retrieved properties of the six exoplanets based on the retrieval analysis of their low-resolution transmission spectra. Shown are the cloudiness index vs.
equilibrium temperature (top left panel), cloudiness index vs. retrieved temperature (top right panel), sodium abundance vs. temperature (middle left panel),
broadening parameter vs. temperature (middle right panel), cloud factor vs. temperature (bottom left panel), and ratio of retrieved to equilibrium temperature vs.
equilibrium temperature (bottom right panel). The LTE models are labeled by circles, while the NLTE models are labeled by triangles.
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do not encode enough information to infer the pressure level being
probed by the lines—not even at the order-of-magnitude level.
This finding is consistent with the lessons learned from our mock
retrievals in Figure 3, where we demonstrated that the normal-
ization degeneracy and the lack of an empirical normalization
prevents P0 from being meaningfully constrained. The finding
that ground-based high-resolution spectroscopy is incapable of
accurately retrieving the pressures probed appears to contradict the
work of Pino et al. (2018) for HD 189733b, but we note that this
work did not address the normalization degeneracy and instead
assumed a fixed value for R0 that corresponds to =P 10 bar0 .
It is this assumption of fixing the reference radius that allows
pressure levels to be inferred. The broader implication of this
finding is that one cannot easily infer which part of the
atmosphere one is probing (i.e., thermosphere, exosphere) if the
sodium lines are analyzed in isolation. Future work should
elucidate if ground-based, high-resolution spectra alone (with their
lack of an empirical normalization), even across an extended
wavelength range, encode enough information (e.g., in the sodium
line wings) to provide precise information on the pressures probed
by the transit chord.

In the current study, we have chosen to focus only on the
optical part of the spectrum that contains the sodium lines in
order to elucidate the limitations associated with such a
restricted analysis. Future work should combine spectra from
the optical and infrared, and elucidate if the near-infrared water
lines probed by WFC3 also require an NLTE treatment as has
been presented in the current study.

While the retrieved outcomes in the current study are
consistent with Voigt profiles for the sodium line shapes, future
work should elucidate a theory of fbroad=fbroad(P) that
reconciles and unifies the work of Burrows et al. (2000) and
Allard et al. (2012).

We are grateful to Chris Hirata for guidance on the solution
to the Saha equation for the sodium atom and to Jens
Hoeijmakers and David Ehrenreich for useful discussions on
the relative transit depth. We acknowledge financial support
from the Swiss National Science Foundation, the European
Research Council (via a Consolidator Grant to K.H.; grant
No. 771620), the PlanetS National Center of Competence in
Research (NCCR), the Center for Space and Habitability
(CSH), the Swiss-based MERAC Foundation and the Uni-
versity of Bern International 2021 PhD Fellowship.

Appendix
Electron Density via Solution of the Saha Equation

For completeness, we provide the expression for ne if the
electrons were entirely sourced by the collisional ionization of
the sodium atom,

⟷ ( )++ -eNa Na . 41

To render the problem tractable, we retain the assumption that
ne is a solution of the Saha equation, i.e., the ionization states
are in LTE, which reads (e.g., Section 3.4 of Draine 2011)
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where Eion is the ionization energy. +gNa and gNa are the
quantum degeneracies associated with Na+ and Na, respec-
tively. If we assume that the electrons are solely provided by

the ionization of the sodium atom, then we have = +n ne Na and
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where XNa≡nNa/ntotal is the volume mixing ratio of sodium.
Previously, the preceding expression was used to describe the
number density of electrons in protoplanetary disks for the
purpose of studying the magnetorotational instability, where
it was assumed that all of the electrons were sourced
by potassium, which has an ionization energy of Eion=
4.3407 eV (Balbus & Hawley 2000). It was also used to study
ohmic dissipation in hot Jupiters (Perna et al. 2010). In
the current situation, we assume that the electrons are sourced
only by sodium, which has Eion=5.1391 eV. We have

=+g g 1 2Na Na because the singly charged ion possesses a
closed shell of electrons, but the neutral atom has a single
valence electron in the 3s orbital.
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CHAPTER 4

Supervised machine learning for analysing spectra of
exoplanetary atmospheres

Being a scientist is like being an explorer. You have this immense curiosity,
this stubbornness, this resolute will that you will go forward no matter what
other people say.

Sara Seager

4.1 Summary

In parallel to my work on traditional Bayesian retrievals, I began developing a
new method of retrieval using machine learning. This work is part of a close
collaboration I have built with two computer scientists, P. Márquez-Neila and
R. Sznitman, based at the ARTORG Center for Biomedical Engineering at the
University of Bern. Their expertise in machine learning allowed for the fast de-
velopment of this new retrieval technique, leading to this initial proof-of-concept
paper less than a year after our collaboration began.

95



Chapter 4 Supervised machine learning for analysing spectra of exoplanetary
atmospheres

This work was motivated by several issues that arise from traditional Bayesian
retrievals. Firstly, in a single retrieval ∼10,000 atmospheric models are computed
on-the-fly, with each one compared to the data to check the goodness of fit. These
models are typically discarded after the retrieval, thus resulting in repeated com-
putations across multiple retrievals. A single retrieval can range anywhere from a
matter of minutes up to several days or even longer, depending on the complexity
and efficiency of the model. With the increasing number of exoplanet spectra, it
is imperative that a faster and more efficient retrieval method be employed. Sec-
ondly, the development of next-generation observatories, such as JWST and the
ELT, will lead to an explosion in the sensitivity and precision of exoplanet spectra.
The computational restrictions of traditional retrievals limit their use of complex
three-dimensional physical models. Several studies have shown that the typical
1-D models used in most retrievals will be insufficient for modelling this new era
of data (e.g. Feng et al., 2016; Taylor et al., 2020). The advantage of a machine
learning retrieval is that the training set of models are pre-computed, shifting the
computational burden offline, and thus allowing for more sophisticated models to
be applied.

In this paper, our machine learning retrieval technique is introduced, which uses
a Random Forest trained on a large set of simulated spectra. The forest was then
applied to the HST WFC3 transmission spectrum of WASP-12 b (Kreidberg et al.,
2015) to obtain posteriors for the parameters, and these results were then com-
pared to the traditional nested-sampling retrieval, finding a good agreement. Two
additional analyses are also presented that come free with the Random Forest,
namely the predicted vs real plots and the information content analysis. The pre-
dicted vs real plots show the relationship between the forest’s predictions and the
true values of the test spectra’s parameters. This is the equivalent of performing
thousands of mock retrievals, and it allows the user to determine the predictabil-
ity of each parameter across its range of values. The information content analysis,
known as the “feature importance”, quantifies the importance of each spectral
point in the retrieval of each individual parameter. This information is extremely
useful in telescope proposals, and could even be used to inform future instrument
design.

Although this paper was led by P. Márquez-Neila, who wrote the Random For-
est algorithm, I contributed significantly to the study, working in parallel with
Márquez-Neila to test the forest and compare it to the traditional retrieval. I also
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4.2 Publication

computed the training set for the forest. This work now represents one of only a
handful of papers using machine learning in exoplanet retrievals.

4.2 Publication

This work was published in Nature Astronomy Letters in 2018.
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The use of machine learning is becoming ubiquitous in astron-
omy1–3, but remains rare in the study of the atmospheres of 
exoplanets. Given the spectrum of an exoplanetary atmo-
sphere, a multi-parameter space is swept through in real time 
to find the best-fit model4–6. Known as atmospheric retrieval, 
this technique originates in the Earth and planetary sciences7. 
Such methods are very time-consuming, and by necessity there 
is a compromise between physical and chemical realism and 
computational feasibility. Machine learning has previously 
been used to determine which molecules to include in the 
model, but the retrieval itself was still performed using stan-
dard methods8. Here, we report an adaptation of the ‘random 
forest’ method of supervised machine learning9,10, trained on a 
precomputed grid of atmospheric models, which retrieves full 
posterior distributions of the abundances of molecules and the 
cloud opacity. The use of a precomputed grid allows a large part 
of the computational burden to be shifted offline. We demon-
strate our technique on a transmission spectrum of the hot 
gas-giant exoplanet WASP-12b using a five-parameter model 
(temperature, a constant cloud opacity and the volume mixing 
ratios or relative abundances of molecules of water, ammonia 
and hydrogen cyanide)11. We obtain results consistent with the 
standard nested-sampling retrieval method. We also estimate 
the sensitivity of the measured spectrum to the model parame-
ters, and we are able to quantify the information content of the 
spectrum. Our method can be straightforwardly applied using 
more sophisticated atmospheric models to interpret an ensem-
ble of spectra without having to retrain the random forest.

We use the previously analysed Hubble Space Telescope Wide 
Field Camera 3 (WFC3) transmission spectrum of the hot gas-
giant WASP-12b, where the volume mixing ratio of water was 
inferred to be ~10−4 to ~10−2 and the temperature ~1000 K (ref. 12). 
Transmission spectra measure the wavelength-dependent obscu-
ration of starlight by a transiting exoplanet, which encodes signa-
tures of absorption by molecules and clouds in the exoplanetary 
atmosphere. The choice of this spectrum was to ensure continuity 
between previous studies11,12 and because we expect WFC3 to be the 
workhorse for measuring exo-atmospheric spectra for the immedi-
ate future. We implement the random forest method9,10, which is a 
supervised form of machine learning. It combines the use of a deci-
sion tree13 and bootstrapping with replacement, and may be used 
on both discrete and continuous training sets. A decision tree is a 
way of splitting a training set into subsets on the basis of the com-
mon characteristics of its members14. The splitting is performed to 
maximize the gain in information entropy14. Since decision trees are 
sensitive to slight changes in the training set, they are suitable for 
use with the bootstrapping method, which constructs the decision 
tree by randomly drawing from the training set14.

The training set consists of 80,000 synthetic WFC3 transmission 
spectra, each described by five parameters: temperature (T), the 
volume mixing ratios (relative abundances of molecules) of water 
(XH O2

), ammonia (XNH3
) and hydrogen cyanide (XHCN) and a con-

stant cloud opacity (κ0). Given that these five parameters represent 
continuous data, we make use of ‘regression trees’ rather than deci-
sion trees (which are used for discrete data) in our random forest14. 
For each spectrum, the values of the five parameters are randomly 
generated either from a log-uniform (volume mixing ratios and 
cloud opacities) or uniform (temperature) distribution. In addition 
to adopting the same wavelength range and 13 bins of the measured 
WASP-12b WFC spectrum12, we assume a noise floor of 50 ppm on 
the transit depth.

In a general machine-learning situation, each member of a train-
ing set is associated with a number of characteristics known as 
features (in the jargon of machine learning), for example, colour, 
height, type of terrain. For a spectrum, the features are the number 
of data points it contains. Here, the WFC3 spectrum has 13 features 
or binned data points. Within the training set, each synthetic spec-
trum is identified by its values of the five parameters. The training 
set of 80,000 synthetic spectra resides in a 13-dimensional space, 
where each dimension corresponds to a wavelength bin. Along the 
axis of each dimension is a continuous range of values of the transit 
radii. The goal is to relate an entry (a synthetic spectrum) in this 
13-dimensional space with the range of values of each of the five 
parameters. We accomplish this by subdividing the 13-dimensional 
space into patches or islands, which is handled using a regression 
tree. Each patch encompasses some subset of the training set, from 
which the variance in the transit radii may be computed. The subdi-
vision of the 13-dimensional space is done to minimize the sum of 
the variances of all of these patches. This is conceptually equivalent 
to maximizing the gain in information entropy for discrete data14.

On setting up the regression tree, we use it in tandem with a 
bootstrapping method. To train each regression tree, we randomly 
draw from the 80,000 synthetic spectra in the training set. On each 
draw, the drawn synthetic spectrum is placed back into the train-
ing set, allowing it to be drawn more than once. Each regression 
tree may be visualized as being a predictive ‘voter’, who returns the 
ranges of parameter values given the 13 data points of the measured 
WFC3 transmission spectrum. While a single regression tree pro-
duces predictions with large uncertainties, random forests mitigate 
this pitfall by combining the responses of multiple trees. We per-
formed tests that indicate a convergence of these predictions using 
1,000 regression trees (see Methods). Using 1,000 regression trees to 
form a random forest, we are able to compute the posterior distribu-
tions of the parameters15.

Figure 1 shows the posterior distributions of the tempera-
ture, cloud opacity and volume mixing ratios of water, ammonia 
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and hydrogen cyanide. The retrieved water volume mixing ratio 
( = − . − .

+ .Xlog 2 8H O 3 6
1 4

2
) and temperature ( = −

+T 952 K151
412 ) values are 

broadly consistent with the previous analysis12. A non-zero cloud 
opacity ( κ = − . − .

+ .log 2 30 1 6
1 1) is necessary to flatten the spectral con-

tinuum blueward of the 1.4 μ m water feature. The degeneracies 
between the temperature, molecular abundances and cloud opac-
ity are consistent with physical expectations. As the temperature 
increases linearly, the molecular opacities increase exponentially, 
a property that may be compensated by an order of magnitude 
decrease in the volume mixing ratio. An increasing temperature 
also reduces the differences in opacity between the water feature 
and the spectral continuum blueward of it, a property that may be 
mimicked to some extent by the cloud opacity. Clouds blunt the 
strength of molecular features, which may be compensated by order 
of magnitude increases in the abundances.

The retrieved volume mixing ratios of ammonia and hydrogen 
cyanide are several orders of magnitude lower than that of water: 

= − . − .
+ .Xlog 7 6HCN 3 0

3 3, = − . − .
+ .Xlog 9 2NH 2 9

4 2
3

. Running a pair of nested-
sampling retrievals shows that the Bayes factor16 between a model 
with only water versus one with all three molecules is 0.6 (with the 
former having the higher Bayesian evidence), implying that there is 
a lack of evidence for strongly favouring one model over the other. 
Essentially, there is no evidence for claiming the detection of either 
hydrogen cyanide or ammonia.

As a consistency check, Fig. 2 shows the posterior distribu-
tions of parameters from our nested-sampling retrieval17,18. The 
retrieved parameter values from the nested-sampling retrieval 
are = −

+T 1, 105 K287
545 , = − . − .

+ .Xlog 3 0H O 1 9
2 0

2
, = − . − .

+ .Xlog 8 5HCN 2 9
3 8, 

= − . − .
+ .Xlog 8 4NH 2 9

3 1
3

, log κ0 =  − 2.8 ±  0.9. It is worth noting that the 
interpretation of transmission spectra suffers from a ‘normalization 
degeneracy’5,11. Breaking this normalization degeneracy requires 
a unique relationship between a reference transit radius (R0) and 
reference pressure (P0) to be specified, which cannot be directly 
inferred from the WFC3 data alone. In practice, this means that 
instead of the volume mixing ratio of molecules (Xi), the quan-
tity XiP0 is retrieved. In the results shown, we have set R0 =  1.79 RJ 
(where RJ is the radius of Jupiter) and P0 =  10 bar to facilitate com-
parison with a previous study12.

Having demonstrated that we can use supervised machine 
learning to perform atmospheric retrieval, we now push beyond 
the standard analysis. First, we would like to check the values of 
the five parameters predicted by the random forest method versus 
‘ground truth’ values. For the latter, we generate another 20,000 
WFC3 synthetic transmission spectra. We then apply our random 
forest method, previously trained on the 80,000 synthetic spectra, to 
predict the parameter values of these 20,000 new synthetic spectra. 
Figure 3 shows that there is a one-to-one correspondence between 
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the predicted and real values, albeit with some scatter. To verify that 
the scatter is due to intrinsic model degeneracies (physics) and not 
due to our implementation of the random forest method itself, we 
performed other suites of calculations with different numbers of 
regression trees and noise floors (see Methods).

This comparison between the predicted versus real parameter 
values provides a rough estimate of the minimum values of the 
parameters to which the retrieval is sensitive, given the noise model 
assumed (a constant 50 ppm in our case). For example, the linear 
trend between the predicted versus real values of the volume mix-
ing ratios of water, hydrogen cyanide and ammonia starts to flatten 
below ~10−6, suggesting that volume mixing ratios below 1 ppm are 
undetectable given the WFC3 transmission spectrum of WASP-12b.

Second, we can use our approach to analyse the information con-
tent of the measured WFC3 transmission spectrum. While informa-
tion content analysis has been previously considered6,19,20, we offer a 
complementary analysis and show that this is a natural outcome of 
the random forest method, called the feature importance analysis. 
Figure 4 shows the relative weight of each of the 13 data points in 
the WFC3 transmission spectrum towards determining the value 
of each parameter. Physical intuition tells us that the data points at 
around 1.4 μ m are the most constraining for the water abundance. 
The feature importance analysis shows that the two data points near 

1.4 μ m contain about 30% of the information that goes towards 
constraining the volume mixing ratio of water. The two bluest data 
points contain more than 40% of the information needed to con-
strain the cloud opacity, because they quantify the flatness of the 
spectral continuum. The two reddest data points are most con-
straining for hydrogen cyanide.

There are straightforward extensions of random forest retrieval 
for which no conceptual obstacles exist. We have demonstrated the 
method on a spectrum with 13 data points, but the random for-
est method has been shown to work well even for 1,000–10,000 
data points21–25. This property implies that random forest retrieval 
is applicable to future James Webb Space Telescope (JWST) spec-
tra spanning a broader range of wavelengths with ~100–1,000 data 
points26. The information content analysis may be used to influence 
observational campaigns and the design of spectrographs, depend-
ing on the intended scientific goal.

Another straightforward extension is to train a random forest 
once and apply it to an ensemble of spectra. In the current study, we 
picked a specific object (WASP-12b) to demonstrate our method. 
There is no conceptual obstacle to making model grids where the 
surface gravity is allowed to vary. The random forest is trained on 
this larger grid, but the value of the surface gravity may be fixed to 
the measured value of a specific object during analysis with no need 
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for retraining. In the study of stars and brown dwarfs, model grids 
spanning different ages, luminosities, radii, gravities and cloud con-
figurations have traditionally been used to analyse ensembles of 
objects27–29. It is conceivable that model grids produced by different 
research groups could be used to perform retrievals even if the com-
puter codes used to generate these grids are proprietary.

For the current study, we have shown that more sophisticated 
models are not necessary to analyse the WFC3 spectrum of WASP-
12b. However, there is nothing to prevent more sophisticated models 
being considered. For example, using the non-isothermal model of 
ref. 11 in tandem with the non-grey cloud model of ref. 30 would add 
four more parameters to the retrieval. A long-standing shortcoming 
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of atmospheric retrieval, which is the non-self-consistency of the 
physics and chemistry in the models, may now be obviated using 
random forest retrieval.

Methods
For the physics input, we choose to use a previously validated analytical formula 
to convert the temperatures, molecular opacities and relative abundances of 
molecules into transit radii11. The simplicity of this forward model allows us 
to straightforwardly diagnose coding problems and understand trends in the 
posterior distributions. We use the simplest incarnation of this formula, which 
assumes that the atmosphere is isothermal, is isobaric and hosts a grey cloud. 
Using the nested sampling method17,18,31,32, we performed regular retrievals, which 
indicate that non-isothermal behaviour and non-grey clouds are not necessary to 
explain the data, given their current level of quality and sophistication. We include 
the opacities of water (H2O), hydrogen cyanide (HCN) and ammonia (NH3), 
computed using the ExoMol spectroscopic line lists33–37 as input and in the standard 
way, meaning that the opacities are products of the integrated line strength and line 
shape, and the line shapes are assumed to be truncated Voigt profiles38,39.

For each model, we randomly pick values of the parameters over the following 
ranges: T =  500–2,900 K, = −X 10H O

13
2

–1, XHCN =  10−13–1, = −X 10NH
13

3
–1, 

κ0 =  10−13–102 cm2 g−1. The surface gravity of WASP-12b is taken to be 977 cm s−2 
(ref. 40). The spectroscopic database used to construct the NH3 opacities does not 
exist for temperatures above 1,600 K (ref. 35). For computational reasons, we set 
the NH3 opacity to be zero and the volume mixing ratio to be small (10−13) if the 
temperature exceeds this threshold. Fortunately, ammonia is expected to be a 
minor species at high temperatures, where the dominant nitrogen carrier is instead 
expected to be molecular nitrogen41,42.

The features are the 13 values of the transit radius, across wavelength, 
associated with each transmission spectrum. Thirteen columns may be visualized, 
each with 80,000 values of the transit radius. A 13-dimensional space can then 
be visualized, where each dimension is marked by a set of numerical thresholds. 
Boundaries in this 13-dimensional space are drawn on the basis of splitting the 
training set to minimize the total variance. Each time a boundary is drawn, the 
regression tree is split. Once the reduction in the variance of the tree node is 
negligibly small (0.01 in our case), we stop splitting the training set. Tree pruning 
methods are not used. Each time the tree is split, only a random subset (4, which 
is about 13) of the 13 spectral bins is used. In other words, both the members of 
the 80,000 training set as well as the subset of spectral bins associated with each 
member are randomly drawn to decrease the correlations between predictions 
from different trees. For a pedagogical summary of the random forest method, see 
an earlier study14. The implementations of the random forest method and R2 metric 
(the coefficient of determination) are from the open-source scikit-learn library in 
the Python programming language.

It has been shown previously that the random forest method is capable of 
handling systems with 1,000–10,000 features and tree depths of several tens to 
hundreds21–25. Our current problem has 13 features, and the regression trees have 
on average about 19,000 nodes and depths of 14.

To check the robustness of our results with respect to our implementation of 
the random forest method, we examine retrieval outcomes with different numbers 
of regression trees. As before, we train the random forest on 80,000 synthetic 
spectra and then use it to analyse 20,000 more synthetic spectra. Supplementary 
Fig. 1 shows that the outcomes of these mock retrievals converge when the number 
of trees used exceeds about 100. In the same figure, we also checked the retrieval 
outcomes with different levels of assumed noise floors. For each of the 13 data 
points in the synthetic WFC3 spectra, we assume a Gaussian uncertainty on the 
transit depths with full-widths at half-maximum of 10 ppm, 50 ppm and 100 ppm, 
which represent ideal, typical and easily attainable conditions, respectively. As 
expected, the variance associated with the true versus predicted values of the 
five parameters decreases (that is, the R2 metric increases) when the assumed 
noise floor is lower. As a further check, we first train a random forest on a model 
grid with an assumed noise floor of 50 ppm and use it to analyse mock data with 
assumed noise floors of 10 ppm, 50 ppm and 100 ppm. The resulting R2 values are 
0.676, 0.651 and 0.586, respectively, for the joint predictions.

We also ran the same mock retrievals for a model grid where the atmosphere 
contains only H2O versus one that contains HCN and NH3 (without H2O), 
as shown in Supplementary Fig. 2. In the former case, the retrievals return 

≈ −X 10HCN
8 and ≈ −X 10NH

10
3

 even when neither molecule is present in the mock 
spectra, which is consistent with our finding in Fig. 2 that volume mixing ratios 
below ~10−6 indicate non-detections of these molecules. In the latter case, we 
obtain ≈ −X 10H O

8
2

, which is consistent with the non-detection of water.
As a final test and precursor for future studies, we generated mock JWST-like 

data in the Near-Infrared Spectrograph range of wavelengths (0.8 μ m to 5.0 μ m) 
at a resolution of 100 (not shown). Despite the increase in the number of features 
(data points) from 13 to 181, the time needed to train the random forest on 80,000 
mock spectra increased by a factor of only 4 (without any attempt to parallelize 
the computation). The time needed for interpreting the additional 20,000 mock 
spectra (termed ‘testing’) is virtually the same in both cases. Furthermore, we note 
that both the training and testing steps are highly parallelizable.

To determine the spectral resolution used for our opacities, we ran retrievals 
with resolutions of 1 cm−1, 2 cm−1, 5 cm−1 and 10 cm−1, assuming an isothermal 
atmosphere containing grey clouds and all three molecules. Retrieval practitioners 
typically use a spectral resolution of 1 cm−1 for their opacities43–45, although it is not 
uncommon for workers to not state the spectral resolution used. For these four 
resolutions, the retrievals are shown in Supplementary Fig. 3. The corresponding 
retrieved parameter values are tabulated. On the basis of this resolution test, we 
adopt 5 cm−1 as our spectral resolution for the opacities.

We assume pressure broadening to be negligible. Since the inferred atmospheric 
temperature does not fall well below 1,000 K and the volume mixing ratios are 
typically much smaller than unity, this is not an unreasonable assumption11. 
Operationally, to implement this assumption, we assume a pressure of 1 mbar when 
computing the opacities. As is accepted practice46, the lack of data on the physics of 
pressure broadening forces us to truncate the Voigt profile at some distance from line 
centre. We have made an ad hoc choice of 100 cm−1, but since pressure broadening is 
assumed to be negligible, this has little to no effect on the outcome.

To check our assumption of a constant/grey cloud opacity, we ran another 
retrieval calculation with the non-grey cloud model of ref. 30. The Bayes factor 
for the pair of models with grey versus non-grey clouds is 0.6 (with the former 
having a higher Bayesian evidence), which implies there is no evidence for the data 
favouring the non-grey over the grey cloud model16. In fact, we note that the model 
with non-grey clouds and only water has the same Bayesian evidence as the one 
with grey clouds and all three molecules. Similarly, the Bayes factor for a pair of 
models with isothermal versus non-isothermal atmospheres (both with only water) 
is 0.7, implying a lack of evidence for non-isothermal behaviour. The latter has 
lower Bayesian evidence and was computed using the non-isothermal analytical 
formula derived by ref. 11.

Code availability. The code used to generate all random forest retrievals can be 
accessed at https://github.com/exoclime.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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CHAPTER 5

Interpreting High-resolution Spectroscopy of Exoplanets using
Cross-correlations and Supervised Machine Learning

My methods are really methods of working and thinking; this is why they
have crept in everywhere anonymously.

Emmy Noether

5.1 Summary

Following on from the initial work on Random Forest retrievals, I decided to turn
the focus to high-resolution spectra. Ground-based observatories are able to pro-
vide exoplanet spectra with resolutions of ∼10,000-100,000, allowing one to resolve
individual spectral lines. However, the noise level and quantity of points in the
data pose a challenge for traditional retrievals.

In this paper, I developed a method of retrieval on high-resolution HARPS-N
data using the Random Forest. I initially tested direct retrievals on the spec-
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tra with the forest, but this proved unsuccessful due to the large error bars on
each spectral point. Inspired by the work of Brogi and Line (2019), I created a
mapping of the spectra to a lower dimensional space using the well-established
cross-correlation function (CCF). These CCFs are able to beat down the noise in
the spectra by averaging across a large number of points. I applied the Random
Forest to the CCFs and was able to retrieve our test parameters successfully. I
then used the forest to retrieve on the HARPS-N spectrum of KELT-9 b. My
results showed that the abundance of ionised iron in this planet is far above the
quantities that can be achieved in the atmospheric model, indicative of missing
physics.

In addition, I discussed the degeneracy in metallicity at high values, arising
from the increase in mean molecular weight of the atmosphere, which reduces the
spectral features. I also showed that the likelihood-free aspect of the Random For-
est can be an advantage, when compared to traditional retrievals, if the assumed
error distribution is incorrect. Furthermore, I tested an alternative machine learn-
ing technique, known as a Bayesian neural network, and found it was unable to
reproduce complex posteriors. Finally, I addressed the claim in Cobb et al. (2019)
that the Random Forest can be overconfident but incorrect. This turned out to be
an artifact of the model used in the training set, which leads to the same results
in a nested-sampling retrieval.

This work is the first study able to perform atmospheric retrieval on wideband
high-resolution exoplanet spectra. With the development of larger, more advanced
ground-based observatories, and an increasing abundance of exoplanet spectra, this
method will be essential for optimising our analysis of these objects.

5.2 Publication

This work was published in The Astronomical Journal in 2020.
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Abstract

We present a new method for performing atmospheric retrieval on ground-based, high-resolution data of exoplanets.
Our method combines cross-correlation functions with a random forest, a supervised machine-learning technique, to
overcome challenges associated with high-resolution data. A series of cross-correlation functions are concatenated to
give a “CCF-sequence” for each model atmosphere, which reduces the dimensionality by a factor of ∼100. The
random forest, trained on our grid of ∼65,000 models, provides a likelihood-free method of retrieval. The
precomputed grid spans 31 values of both temperature and metallicity, and incorporates a realistic noise model. We
apply our method to HARPS-N observations of the ultra-hot Jupiter KELT-9b and obtain a metallicity consistent with
solar (logM=− 0.2± 0.2). Our retrieved transit chord temperature ( = -

+T 6000 200
0 K) is unreliable as strong ion lines

lie outside of the extent of the training set, which we interpret as being indicative of missing physics in our
atmospheric model. We compare our method to traditional nested sampling, as well as other machine-learning
techniques, such as Bayesian neural networks. We demonstrate that the likelihood-free aspect of the random forest
makes it more robust than nested sampling to different error distributions, and that the Bayesian neural network we
tested is unable to reproduce complex posteriors. We also address the claim in Cobb et al. 2019 that our random
forest retrieval technique can be overconfident but incorrect. We show that this is an artifact of the training set, rather
than of the machine-learning method, and that the posteriors agree with those obtained using nested sampling.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487)

1. Introduction

1.1. Observational Motivation I: The Rise of Ground-based
High-resolution Spectra

The observational characterization of exoplanetary atmo-
spheres via the measurement of transmission and emission
spectra is occurring on two fronts: low-resolution, space-based
spectroscopy (mainly with the Hubble Space Telescope and the
Spitzer Space Telescope), and high-resolution spectroscopy
using a wide variety of ground-based spectrographs (Table 1).
Spectra measured from space have the advantage that the
spectral continuum, which encodes information on chemistry
and clouds/hazes, may be measured in an absolute sense.
Ground-based spectra lose the spectral continuum—and effec-
tively measure relative transit depths or fluxes—due to having to
correct for the presence of the Earth’s atmosphere, but offer the
key advantage that individual spectral lines may be resolved with
spectral resolution ∼105. A plausible approach is to combine the
advantages each has to offer and jointly analyze space- and
ground-based spectra (e.g., Brogi et al. 2017).

Following the pioneering work of Snellen et al. (2008, 2010);
(see also Wiedemann et al. 2001; Brown et al. 2002; Deming
et al. 2005), the use of high-resolution, ground-based spectrosc-
opy to identify the presence of atoms and molecules has become
routine (Redfield et al. 2008; Brogi et al. 2012; Birkby et al.

2013, 2017; Brogi et al. 2013, 2014, 2018; de Kok et al. 2013;
Lockwood et al. 2014; Wyttenbach et al. 2015, 2017; Piskorz
et al. 2016, 2017, 2018; Khalafinejad et al. 2017, 2018;
Nugroho et al. 2017; Hoeijmakers et al. 2018, 2019; Cauley
et al. 2019; Guilluy et al. 2019; Seidel et al. 2019). These
identifications are essentially model independent, relying only on
knowledge of the cross sections or opacities of these atoms and
molecules as determined by quantum physics (e.g., Rothman et al.
1998; Heng 2017). Line transition databases contain the positions
and relative strengths of individual lines, either from experimental
measurement or derived from first principles, which are then
cross-correlated against the lines detected in the high-resolution
spectrum. By matching dozens to hundreds of lines using cross-
correlation, robust identifications of atoms and molecules may be
obtained (but see Hoeijmakers et al. 2015; Brogi & Line 2019 for
examples of detections being dependent on the accuracy of the
line database used to compute these opacities). In contrast, the
claimed detections of molecules other than water in the Wide
Field Camera 3 (WFC3) spectra of exoplanetary atmospheres
remains model dependent and an active topic of debate (e.g.,
Fisher & Heng 2018), because at these resolutions (∼10) only the
shapes of the overall opacities, consisting of a large collection of
lines averaged together, are measured.
Interpreting ground-based, high-resolution spectra using the

cross-correlation technique has one major shortcoming: cross-
correlation is mainly capable of answering the binary question
of whether an atom or molecule is absent or present, either in
emission or absorption. It does not yield the abundance of that
atom or molecule, nor the atmospheric temperature and
pressure of the environment in which it lies. It similarly does
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not yield cloud or haze properties of the atmosphere. The first
study to decisively address this shortcoming was Brogi & Line
(2019), who re-analyzed CRIRES observations and derived an
analytical expression that maps the cross-correlation function to
the likelihood function. The ability to compute the likelihood
function implies that Bayes’s Theorem may subsequently be
invoked to compute posterior distributions of chemical
abundances, temperature, etc.

CRIRES was an infrared echelle spectrograph mounted on
UT1 of ESO’s VLT (Kaeufl et al. 2004). Although the
spectrograph achieved high spectral resolution of ∼100,000, the
instantaneous wavelength coverage was small because the
spectrograph was not cross-dispersed. Consequently, the spectra
analyzed by Brogi & Line (2019) contain only 4096 data points
(1.9626–2.0045μm, 2.2875–2.3454 μm in two different modes).
As every model being computed in the atmospheric retrieval
needs to be cross-correlated against the spectrum, it becomes
computationally prohibitive to scale this method up to spectra of
cross-dispersed echelle spectrographs that contain ∼105–106 data
points, because this increases the computational time by a factor
∼102–103. However, elucidating such a scalable method is crucial
in the era of high-resolution spectrographs with wide instanta-
neous wavelength coverage, an overview of which we list in
Table 1. Gibson et al. (2020) also recently performed retrieval on
high-resolution data from the blue arm of UVES with ∼103 data
points using a Markov Chain Monte Carlo (MCMC) method.

A novel method to analyze ground-based, high-resolution
spectra with ∼105–106 data points is therefore needed that will
allow the computational effort to be reduced at the order-of-
magnitude level and allow for the computation of posterior
distributions of parameters.

1.2. Observational Motivation II: Failure of Direct Retrievals
on Noisy Spectra

Another major limitation of ground-based, high-resolution
spectra is the observational uncertainty. The level of noise on
each individual spectral data point is typically much greater
than the signal itself, which causes the direct retrieval to fail
(see Section 3.1). While each individual spectral point contains
little information, the entire spectrum does encode valuable
information on the atmospheric abundances and properties.
Any successful interpretation method needs to leverage the

information content of the entire spectrum against the high
level of noise present.
This is the rationale behind the cross-correlation technique,

which has been adopted by many workers (e.g., Snellen et al.
2010; Brogi et al. 2012; Birkby et al. 2013; de Kok et al. 2013;
Lockwood et al. 2014; Wyttenbach et al. 2015; Piskorz et al.
2016; Nugroho et al. 2017; Hoeijmakers et al. 2018; Guilluy
et al. 2019; Seidel et al. 2019), including Brogi & Line (2019).
In the current study, we will incorporate the cross-correlation

technique into a novel method for performing retrievals on
noisy, high-resolution spectra, but in a way that is distinct from
Brogi & Line (2019).

1.3. Theoretical Motivation I: Likelihood-free Inference
Methods using Machine Learning

In the published exoplanet literature, atmospheric retrievals
typically assume the likelihood function to be a Gaussian when
implementing the Markov Chain Monte Carlo (MCMC) or
nested-sampling routines (e.g., Benneke & Seager 2012; Line
et al. 2013; Waldmann et al. 2015; Lavie et al. 2017;
MacDonald & Madhusudhan 2017; Fisher & Heng 2018;
Brogi & Line 2019),
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where the transmission spectrum has n measurements of transit
radii (Ri,obs) that are compared to the theoretical values of the
transit radii (Ri) computed using a model. The standard
deviation of the uncertainty on each data point, assumed to
follow a Gaussian distribution, is σi. It is further assumed that
the uncertainties are uncorrelated with one another.
One of the motivations of the current study is to provide an

alternative inference approach that is likelihood free, meaning
that one does not have to explicitly assume the functional form
of the likelihood function. In practice, these likelihood-free
inference approaches belong to the class of Approximate
Bayesian Computation (ABC) methods (Sisson et al. 2019).
Specifically, we use the supervised machine-learning method of
the random forest (Ho 1998; Breiman 2001), which was
previously adapted by Márquez-Neila et al. (2018) to interpret
low-resolution Hubble-WFC3 transmission spectra. The

Table 1
High-resolution Cross-dispersed Echelle (grating) Spectrographs with Wide Instantaneous Wavelength Coverage

Name Telescope Resolving power Wavelength Range (nm) Status Reference(s)

HARPS ESO 3.6 m 120,000 378–691 Active Mayor et al. (2003)
HARPS-N TNG 120,000 378–691 Active Cosentino et al. (2012)
ESPRESSO VLT 70,000–190,000 378–691 Active Pepe et al. (2014)
CARMENES CAHA 3.5 80,000–100,000 520–1710 Active Quirrenbach et al. (2010)
GIANO TNG 50,000 950–2450 Active Origlia et al. (2014)
CRIRES+ VLT 50,000–100,000 Y, J, H, K, L, M bands Under development Follert et al. (2014)
UVES VLT 40,000–110,000 300–1100 Active Dekker et al. (2000)
NIRSPEC Keck 25,000 960–5500 Active McLean et al. (1998)
PEPSI LBT 43,000–270,000 383–912 Active Strassmeier et al. (2015)
HDS Subaru 90,000–165,000 298–1016 Active Noguchi et al. (2002)
EXPRES DCT 150,000 380–844 Active Fischer et al. (in prep)
HIRES ELT 100,000 397–2500 Under development Zerbi et al. (2014)
NIRPS ESO 3.6 m 80,000 974–1809 Under development Wildi et al. (2017)
SPIRou CFHT 70,000 980–2440 Active Donati et al. (2018)
iShell IRTF 75,000 J, H, K, L, M bands Active Rayner et al. (2016)
IGRINS HJS 40,000 1450–2450 Active Park et al. (2014)
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method relies on using a grid of precomputed atmospheric
models combined with an arbitrary noise model as a training set
for the random forest. The uncertainties on each data point in
the measured spectrum are incorporated into the noise-free
model grid to generate a training set of noisy models. This
approach is not unlike that of standard retrieval techniques,
which typically compute a grid of atmospheric models on
the fly.

The random forest consists of a collection of regression trees.
Each regression tree is trained on a subset of the grid of
atmospheric models. By identifying regions of the multi-
dimensional parameter space that predict similar transmission
spectra, each regression tree quantifies the “distance” between
the model and measured transmission spectra. This plays the
role of the Euclidean distance ( -R Ri i,obs) in the Gaussian
likelihood function, except that the likelihood is implicitly
learned from the training set of noisy models. (See
Section 2.6.1 for more information about the random forest.)

Other advantages offered by the random forest retrieval
method include the ability to run large suites of mock retrievals
to both validate the model grid used and quantify its sensitivity
to the parameters, as well as information content analysis to
quantify the relative importance of each data point in the
spectrum toward determining the value of each parameter
(Márquez-Neila et al. 2018).

1.4. Theoretical Motivation II: Feature Engineering

Feature engineering is the process by which the training set
used in a machine-learning method is optimized, e.g., a
reduction in the dimensionality of the problem. Deep learning
methods perform feature engineering in an automated way, but
they are significantly more expensive to implement than the
random forest. One of the novel aspects of the current study is
the use of feature engineering to efficiently interpret noisy,
high-resolution spectra. Instead of using the spectra themselves
as the training set, we demonstrate that it is sufficient to use a
set of cross-correlation functions (CCFs) that sparsely sample
the parameter space. The resulting “cross-correlation sequence”
serves as the training set for the random forest, resulting in a
reduction in the size of the training set by a factor of ∼100.

This feature engineering step allows the random forest retrieval
method to be scaled up to interpret high-resolution spectra with
∼105–106 data points in a computationally feasible way.

1.5. Layout of Study

In Section 2, we describe our methodology, including the
computation of the model grid of transmission spectra
(radiative transfer, opacities, and chemistry), the implementa-
tion of the random forest method, etc. In Section 3, we show
our results from testing the method, and also the retrieval on
HARPS-N observations of KELT-9b. In Section 4, we discuss
the results and compare our method to nested sampling and
other machine-learning techniques. In Section 5, we summarize
our conclusions.

2. Methods

2.1. KELT-9b

As a proof of concept and in order to test the method, we
have focused the retrieval on the ultra-hot Jupiter, KELT-9b.
The brightness of the star combined with the extremely high
temperatures allow for a higher signal-to-noise ratio (SNR)
than for other exoplanets (see Figure 1), making it a good test
subject for a retrieval on ground-based data. Furthermore, this
object has been previously studied with high-resolution data in
Hoeijmakers et al. (2018, 2019). Kitzmann et al. (2018)
demonstrated that chemical equilibrium is a reasonable
assumption, significantly reducing the number of parameters
required in the atmospheric model, and that it is cloud-free with
a continuum dominated by H− (Arcangeli et al. 2018).
However, Hoeijmakers et al. (2019) suggested that there is
most likely missing physics in this model, due to the
discrepancy between the expected cross-correlation function
for Fe+ and the one obtained from the data. We will discuss
this further in Section 3.4.

2.2. Model Grid

To construct the grid of models of KELT-9b, we adopt the
system parameters reported by Gaudi et al. (2017) and
Hoeijmakers et al. (2019). We generate the models using an

Figure 1. The signal-to-noise level of the spectrum of the host star KELT-9 achieved in a 600 s exposure obtained with the HARPS-N instrument. The signal-to-noise
ratio is dominated by the photon (shot) noise, which decreases toward shorter wavelengths due to a reduced efficiency of the instrument, transmission of the Earth’s
atmosphere, and lower intrinsic luminosity of the star. The significant narrowband variation is due to the efficiency of the spectrograph falling off at the edges of
spectral orders, as well as absorption lines in the star and the Earth’s atmosphere.
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observation simulator, Helios-o (Bower et al. 2019), which
follows the method described in Gaidos et al. (2017). This
algorithm has been validated in Heng & Kitzmann (2017),
where it was compared against the models from Fortney et al.
(2010), Deming et al. (2013), and Line et al. (2013).

The model atmosphere is one-dimensional, plane-parallel,
isothermal, in hydrostatic equilibrium, and in chemical
equilibrium. It has 199 layers with 200 pressure levels ranging
from 10−15

–2 bar. Each one-dimensional model atmosphere
may be visualized as an atmospheric column. Ray tracing is
performed through a collection of these atmospheric columns
to construct the transit chord at each wavelength, taking into
account the variation of gravity as different pressure levels are
probed. The variation of the effective transit radius with
wavelength due to the chemical composition of the atmosphere
is the transmission spectrum (Brown 2001).

The volume mixing ratios (relative abundances by number)
of atoms, ions, and molecules are computed using the
FastChem chemical-equilibrium code, which considers gas-
phase chemistry for more than 550 molecular species with
elements more abundant than germanium (Stock et al. 2018).
Additionally, we add most of the first and doubly ionized ions
as well as anions for atoms lighter than neptunium (Hoeij-
makers et al. 2019). Our volume mixing ratios computed using
FastChem are pressure dependent, because of our nonisobaric
treatment of the transit chord. The opacities are computed using
the open-source HELIOS-K opacity calculator (Grimm &
Heng 2015). The inputs for the Fe, Fe+, Ti, and Ti+ opacities
are sourced from the Kurucz database4 (Kurucz 2017). The
hydrogen anion (H−) cross section is taken from John (1988).
For completeness, collision-induced absorption associated with
H–He, H2–H2, and H2–He collisions are included (Richard
et al. 2012). Pressure broadening is neglected as the spectral
continuum in ultra-hot Jupiters is dominated by absorption
associated with the hydrogen anion (H−), which masks the line
wings. The line shape is assumed to be a Voigt profile. The
natural line width and thermal broadening are included
(Kurucz 2017). Opacities are sampled uniformly across
wavenumber with a spectral resolution of 0.01 cm−1, and the
transmission spectra are calculated at a resolution of 0.03 cm−1.

The assumption of chemical equilibrium allows us to greatly
simplify the theoretical analysis because the abundances of
atoms and ions are completely specified by the temperature,
pressure, and elemental abundances. By assuming the ratios of
elemental abundances follow those of the Sun, we reduce the
chemical parameters down to a single number known as the
metallicity. Therefore, we have just two parameters in our
model—temperature and metallicity. The temperature range of
the grid spans from 3000 to 6000 K, in steps of 100 K, and the
metallicity ranges from 0.1 to 100 times solar (−1 to 2 for the
logarithm of the metallicity, logM, in steps of 0.1). This results
in 31 values for each parameter, and thus 961 models in the
grid in total.

2.3. Modeling HARPS-N Observations

We use existing observations of KELT-9b produced by the
HARPS-N spectrograph (Hoeijmakers et al. 2018) to convert
the resulting model grid to models of the observed transmission
spectrum. First, the transmission spectrum is convolved with a
Gaussian with a full-width-at-half-maximum of 2.7 km s−1

(equivalent to the resolving power of the HARPS-N spectro-
graph), as well as a rotation-broadening profile that matches the
rotation period of KELT-9b. It is subsequently interpolated
onto the wavelength grid of the stitched, resampled pipeline-
reduced (s1d) observations from HARPS-N. The continuum of
the transmission spectrum is removed using a high-pass filter,
in the same way as the observations with the HARPS-N
spectrograph are filtered to remove broadband spectral
variations that are due to the instrument and variable observing
conditions (Hoeijmakers et al. 2018).
It would be possible to use this retrieval method for other

instruments, such as those listed in Table 1, however these
would require different training sets to account for other
observational effects. The noise model (see Section 2.5) would
also need to be adjusted for different instruments.

2.4. CCF-sequences

We use the cross-correlation operator defined as
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where F is the transmission spectrum,  is the cross-correlation
template interpolated onto the same wavelength grid as the
spectrum, v is the velocity, and the summation takes place over
the spectral data points. The denominator is a normalization
factor, and thus the fluxes of the templates do not need to be
rescaled when performing the cross-correlation.
Four subsets of cross-correlation templates, consisting of the

spectral lines of neutral iron (Fe), singly ionized iron (Fe+),
neutral titanium (Ti), and singly ionized titanium (Ti+), are
created. Within each subset, there are 16 templates consisting
of 4 values of temperature (3000, 4000, 5000, and 6000 K) and
4 values of metallicity (0.1, 1, 10, and 100×solar). In total,
there are 64 cross-correlation templates. These templates are
generated in the same way as the models (Section 2.2) with all
but the relevant species’ opacities removed from the final
model, leaving only the required species’ spectral lines.
Broadening is not included as we are not aiming to retrieve
dynamic properties. (See Section 4.2 for tests involving
velocity parameters.)
Each synthetic transmission spectrum in the model grid is

cross-correlated with each of the 64 templates to create a set of
64 CCFs. Additionally, each template is shifted in velocity
space from −20 to 20 km s−1 in steps of 1 km s−1, resulting in
40 CCF values per template. These 64 CCFs are concatenated
together to give a single sequence containing 2560 points,
which we term a “CCF-sequence” (Figure 2). Each of the 64
templates probes different components of the information
contained in the spectral lines. In this way, the resulting CCF-
sequence encodes the physical properties of the atmosphere
over multiple axes. This feature engineering step has essentially
reduced the dimensions of the model spectra by a factor
of ∼100.

2.5. Noise Model

Because KELT-9 is a bright star, the noise is dominated by
photon noise, and the SNR mainly varies due to the wavelength-
dependent efficiency of the instrument, the stellar spectrum, and
Earth’s atmospheric transmission function (see Figure 1). The
noise per spectral pixel is empirically measured from the time
series of observations used by Hoeijmakers et al. (2018).4 http://kurucz.harvard.edu/
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For each spectral pixel a value may be drawn randomly from an
assumed Gaussian distribution, creating a model of the noise of
the entire spectrum that can be propagated through the cross-
correlation function.

We assume each point in the spectrum F has a Gaussian
error bar with standard deviation sFi. The noise model for the
CCF then becomes a linear combination of Gaussians,
therefore also a Gaussian, with a variance of
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We can then add the noise to the model grid of CCF-
sequences. Since we require many instances of noise for the
random forest, and the cross-correlation is computationally
quite expensive, this provides a great advantage over applying
the CCF to the noisy spectra.

2.6. Random Forest

2.6.1. Theory

The random forest consists of a collection of regression trees
—decision trees for interpreting continuous data. Each
regression tree is trained on a subset of the grid of atmospheric
models. During training, a tree is constructed by locating
divisions in each wavelength dimension that sort the training
spectra into groups with similar parameter values, known as
leaves. Each leaf then has an assigned set of parameter values
given by the training spectra in its group. When predicting on a
real data set, the spectrum is passed down each tree until it
lands in a leaf, and the predicted parameter values are given by
the corresponding set. The sets for every tree in the forest are
then combined to give a distribution for each parameter.

The random forest falls into a class of inference methods
known as “ABC” (Sisson et al. 2019). ABC methods were
invented to treat problems where it was either infeasible or
impossible to explicitly specify the functional form of the
likelihood (e.g., in the study of human populations). Instead of
seeking the maximum likelihood in a multidimensional
parameter space, ABC methods seek to minimize some abstract
distance (with the Euclidean distance being one specific
example) between a set of simulated models and data to below
some stated tolerance (Chapter 1.3 of Sisson et al. 2019). If the
tolerance is formally zero, then ABC methods become exact
Bayesian methods, which have been shown to produce accurate
posteriors (Chapter 1.6 of Sisson et al. 2019). In practice,

nonzero tolerances generally imply that the computed posterior
distributions are approximate (hence the “A” in “ABC”), where
the degree of accuracy depends on the tolerance specified
(Chapter 1.5 of Sisson et al. 2019). ABC methods often employ
“summary statistics” as a dimensionality reduction step
(Chapter 1.7 of Sisson et al. 2019). In the current study, the
use of the CCF-sequence qualifies as a use of summary
statistics.

2.6.2. Setup

Starting from our grid of CCF-sequences, we divide the
parameter space into training and testing sets, as shown in
Figure 3. This is to ensure the two sets are sufficiently distinct
such that we can accurately test the performance of the forest.
Next, we sample each point of the CCF-sequence within its
respective uncertainty to generate 120 noisy instances of each
CCF-sequence. We do this by drawing from Gaussian
distributions with variance defined by Equation (3). The entire
set therefore amounts to 115,320 noisy CCF-sequences, with
64,920 in training and 50,400 in testing.
Our random forests consists of 1000 trees. Tree splitting is

performed using a threshold variance of 0.01. Each time a tree
is split, a random subset of 50 (approximately the square root)
of the 2560 sequence points is used. Tree pruning methods are
not used (see Breiman et al. 1984; Hastie et al. 2001 for
clarification of the terminology). For the predictions, the data is
passed down through each tree until it reaches an end point,

Figure 2. Example of a CCF-sequence constructed by cross-correlating 64 templates with a model transmission spectrum with T=3500 K and logM=0.8. Each
CCF has 40 points across velocity for a total of 2560 points for the entire CCF-sequence. The insert magnifies one of the CCFs (Fe+, T = 5000 K, and logM = 0.1) for
illustration.

Figure 3. Separation of the 961 members of the model grid into training and
testing sets for the random forest. The edges of this parameter space are
intentionally included in the training set as the forest is unable to extrapolate.
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known as a leaf. The set of all training parameters that lie in this
leaf are then given as the prediction for that tree. We call this the
“full-leaf” prediction. These training parameters come from the
bootstrapped training data set—built using random sampling
with replacement from the original training data set—that was
used to train each tree. The final posterior is constructed by
combining these predictions for all of the 1000 trees. This full-
leaf prediction is an improvement on the previous method in
Márquez-Neila et al. (2018), in which only the mean parameter
values corresponding to the predicted leaf were used, as it gives
a more accurate approximation of the posterior. The implemen-
tation of the random forest method and R2 metric are adopted
from the open-source scikit.learn library (Pedregosa et al.
2011) in the Python programming language.

3. Results

3.1. Failure of Direct Retrieval

Initially we attempted to perform the random forest retrieval
directly on the transmission spectra, set up in the same way as
described in Section 2.6.2 but with the model spectra instead of
the CCF-sequences. Since the random forest method has been
demonstrated to work for a dimensionality of at most ∼104

(Hastie et al. 2001; Sznitman et al. 2013; Zikic et al. 2014;
Rieke et al. 2015; Zhang et al. 2017), we consider only a
section of 104 wavelength points from 400 to 410 nm in each
synthetic spectrum. Other sampling strategies (e.g., selecting
line peaks only) produce similar outcomes5 (not shown).
Figure 4 shows the results of testing this forest, using both the
mean (top panels) and median (bottom panels) predictions. The

coefficient of determination, R2, which measures the degree of
agreement between the real versus predicted parameter values,
is essentially zero for temperature and metallicity for both mean
and median predictions, implying that the random forest has no
predictive power when applied to the synthetic spectra
themselves. Figure 5 includes an example of the posterior
distributions of temperature and metallicity for a mock
retrieval, which are unconstrained and consistent with their
prior distributions. In addition, we tested a traditional retrieval
algorithm using nested sampling (Skilling 2006; Feroz &
Hobson 2008; Feroz et al. 2009, 2019) with the open-source
PyMultinest package (Buchner et al. 2014). Due to the
high number of spectral points and complex forward model, we
are unable to compute models on the fly as in a regular nested-
sampling retrieval (see Section 4.1). Instead, we take the same
grid of models as the forest, but without the added noise, and
interpolate on it to produce forward models. Figure 5 also
shows the results from the nested-sampling mock retrieval.
These posteriors span essentially the whole prior, with peaks
offset from the correct values.
In summary, ground-based high-resolution spectra of

exoplanets reside in a qualitatively different regime than the
same measurements of stars or space-based low- to medium-
resolution spectra of exoplanets. Individual data points hold
little information as they are overwhelmed by noise, but the
entire spectrum does encode useful information. This motivates
our use of the CCFs, which effectively select the most
informative lines in the spectrum.

3.2. Random Forest Mock Retrievals

Figure 6 shows the results of testing the random forest
trained on the CCF-sequences. The predictive power of the

Figure 4. Predicted vs. real values of the logarithm of metallicity (logM) and
temperature (T) for the random forest trained using a section of the high-
resolution spectrum containing 104 points from 400 to 410 nm. The top and
bottom sets of plots correspond to the mean and median predictions,
respectively. The coefficient of determination (R2) varies from −1 to 1, where
values near unity indicate strong anticorrelations or correlations between the
real and predicted values of a given parameter, based on the variance of
outcomes. See Figure 5 for a mock retrieval.

Figure 5. A mock retrieval using a section of the high-resolution spectrum
containing 104 points from 400 to 410 nm, from the test set shown in Figure 4.
The mock spectrum has solar metallicity and a temperature of 4100 K. In the
top left and bottom right panels, the solid posteriors show the results of the
retrieval using the random forest (RF), and the empty line posteriors show the
results from nested sampling (NS). The purple, dashed lines show the true
values. The top right panel shows the data points (lilac) with the error region
(gray), along with the model (dark purple) corresponding to the medians from
the logM and T posteriors.

5 While selecting line peaks is conceptually similar to a cross-correlation, by
not averaging the spectral lines the noise remains high and hence the retrieval
still fails.
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random forest has increased significantly. The difference in the
predictability of the two parameters, metallicity and temper-
ature, follows our intuition. The strength of spectral features are
proportional to the logarithm of the opacity multiplied by the
abundance of an atom. Because opacities have an exponential
dependence on temperature (Rothman et al. 1998; Heng 2017),
the line strengths are highly sensitive to temperature, and the
ability of the random forest to predict temperature is strong.
The ability to predict metallicity is somewhat weaker, because
the metallicity linearly controls the atomic abundances, the
logarithm of which determines the line depths (e.g., Heng &
Kitzmann 2017). At high metallicities, the predictive power of
the random forest tapers off, because the pressure scale height
of the atmosphere decreases and the size of spectral features
starts to decrease (see Section 3.3). The top and bottom panels
of Figure 6 correspond to the mean and median predictions of
the trees, respectively. Traditionally, random forests produce
mean predictions, but given the focus of atmospheric retrieval
on posteriors and confidence intervals, we are more interested
in the medians, which are more robust against asymmetric
posteriors. The increase in R2 scores when using the median
comes particularly from these more complex posteriors.
Figure 7 also shows an example of the posterior distributions
obtained from the hybrid CCF retrieval, which recovers the
injected values of temperature and metallicity accurately.

A useful, natural outcome of the random forest is the
information content analysis known as the “feature impor-
tance.” This determines which data points hold the most
importance for retrieving each parameter. Figure 8 shows the
feature importance when predicting metallicity and temper-
ature. As suggested by the bottom panel of Figure 8, the ion
species control the temperature prediction. Rising temperatures
cause the neutral species to collisionally ionize, initially
increasing the abundances of Fe+ and Ti+ by orders of

magnitude while the corresponding decrease in neutral
abundance is relatively small.
As the metallicity increases, the depths of all metal

absorption lines will tend to increase. However, in Figure 8
there appears to be a greater feature importance for the neutrals
when predicting metallicity. A possible explanation for this is
that as metallicity increases, the atmosphere will be more laden
by free electrons from easily ionized species. Following the
Saha equation (Saha 1920), this will lead to a decrease in
the ionization fraction, partially negating the enhancement to
the ion mixing ratios that stems from the higher metal
abundance. Therefore, the neutral species are expected to be
more sensitive to metallicity.

3.3. Metallicity Degeneracy

From our tests on the random forest in Figure 6, we can see
that some of the high metallicity spectra yield much lower
metallicity predictions. This is demonstrated further in
Figure 9, which shows a retrieval on one of these high
metallicity spectra. The double-peaked posterior leads to a
mean prediction that is heavily offset from the true value. This
multimodal structure is due to a degeneracy between line depth
and metal abundance for high metallicity values. As discussed
in Section 3.2, as the metallicity increases to very high levels,
the atmosphere is no longer hydrogen dominated, causing the
mean molecular weight to increase significantly. This in turn
decreases the scale height and absorption line depths,
reminiscent of lower metallicity values. We tested all the
spectra with the highest metallicity value in the testing set
(logM= 1.9), and plotted the median predictions in Figure 10.
This plot shows that the degeneracy is stronger at lower
temperatures. This follows our physical intuition because at
lower temperatures the pressure scale height is smaller, thus
compressing the features and reducing the spectrum’s

Figure 6. Predicted vs. real values of the logarithm of metallicity (logM) and
temperature (T) for the random forest trained on the CCF-sequences. The top
and bottom panels show the results using the mean and median predictions,
respectively. The coefficient of determination (R2) varies from −1 to 1, where
values near unity indicate strong anticorrelations or correlations between the
real and predicted values of a given parameter, based on the variance of the
outcomes. See Figure 7 for a mock retrieval.

Figure 7. A mock retrieval performed on a model with solar metallicity and
T=4100 K, using the random forest trained on the CCF-sequences (see
Figure 6). The black lines show the median values. The purple, dashed lines
show the true values. The top right panel shows the data points (lilac) with the
error region (gray), along with the model (dark purple) corresponding to the
medians from the logM and T posteriors.
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sensitivity to metallicity. This makes these spectra harder to
distinguish from one another for a given SNR.

This degeneracy is also visible in Figure 11, which shows
noise-free spectra with T=3000 K and varying metallicities,
and a cross-correlation with those spectra. As the metallicity
increases, the troughs in the left-hand plot deepen up to a point,
after which they become shallower again. Similarly, the
height of the CCFs in the right-hand plot increase with
metallicity until logM1.0, after which the peaks decrease
again. While the shape of the high and low metallicity noise-
free spectra do differ slightly from each other, these variations
are within the error bars of the data, making the noisy spectra
indistinguishable.

3.4. KELT-9b Retrieval

Finally, we performed the hybrid CCF retrieval on the real
HARPS-N data set for the ultra-hot Jupiter KELT-9b.
Figure 12 shows our results for several different retrievals.
As described in Hoeijmakers et al. (2019), the ionized iron lines
in the spectrum of KELT-9b appear to be much larger than
predicted, possibly resulting from an outflowing envelope not
present in the model. This leads to a CCF-sequence for the real
KELT-9b data that features significantly higher peaks in the
Fe+ CCFs when compared to the training set, as shown in
Figure 13. With the intent of comparing the effects of the
different species, we performed three independent retrievals on
the KELT-9b data set—one containing the full CCF-sequence,
as described in Section 2.4, a second containing only the
neutral elements, and a third containing only the ions. Each
retrieval uses a separate random forest trained on the
corresponding sections of the model CCF-sequences. The
three retrievals are compared in Figure 12, where the empty

Figure 8. Feature importance plots describing the relative importance of each CCF in the sequence toward constraining metallicity and temperature.

Figure 9. A mock retrieval performed on a model with logM=1.9 and
T=4200 K, using the random forest trained on the CCF-sequences (see
Figure 6). The black lines show the median values. The purple, dashed lines
show the true values. The top right panel shows the data points (lilac) with the
error region (gray), along with the model (dark purple) corresponding to the
medians from the logM and T posteriors.

Figure 10. Median predictions for metallicity vs. the true temperature value for
the test spectra with logM=1.9, from Figure 6. The red, dashed line shows the
true metallicity value, 1.9.
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lined, darker colored, and lighter colored posteriors show
the results from the full, ionized, and neutral retrievals,
respectively.

The metallicity prediction greatly varies between the different
retrievals, which is not unexpected here. The extremely high
temperatures cause most of the neutral species to be ionized,
leading to low abundances for Fe and Ti. Thus, in the neutral
retrieval we predict a low logM value of- -

+0.5 0.4
0.2, while the ion

retrieval predicts 1.0±0.2. The full retrieval lies further toward
the neutral prediction, with logM=−0.2±0.2, which is
unsurprising due to the stronger feature importance in the
neutral CCFs for metallicity.

When the Fe+ CCFs are included, i.e., in the full and ion
retrievals, the temperature prediction is forced to its upper limit
in an attempt to match the strong Fe+ lines ( = -

+T 6000 K200
0

and = -
+T 6000 K100

0 for the full and ion retrievals, respec-
tively). However, in the neutral retrieval we still obtain a very
high temperature value of -

+5600 K600
400 , suggesting it is not only

the excess Fe+ that escalates the temperature prediction.
Figure 14 shows the “predicted versus real” graphs for the
forest trained only on the neutrals. As the temperature
increases, this forest’s predictive ability decreases, as expected
due to ionization. This suggests that the neutral posterior for
temperature in Figure 12 may not be reliable. A positive
conclusion is that this method is able to identify when a model
is flawed.
Using TESS photometry, Wong et al. (2019) constrain the

dayside and nightside temperatures of KELT-9b to be
4570±90 K and 3020±90 K, respectively. However, this
is not inconsistent with a higher retrieved temperature from
transmission spectroscopy. The dayside spectrum traces higher
pressures than the transmission spectrum, which probes
tenuous layers of the upper atmosphere. The present retrieval
would be consistent with the scenario of an inversion layer, as
is predicted in highly irradiated exoplanets (Hubeny et al. 2003;
Fortney et al. 2008).

4. Discussion

4.1. Comparison to Nested Sampling

One of the most common techniques for performing
atmospheric retrieval is nested sampling (Skilling 2006; Feroz
& Hobson 2008; Feroz et al. 2009, 2019). In a traditional
retrieval, a relatively computationally inexpensive forward
model is used to generate spectra on the fly, while the sampling
method searches the parameter space for the optimal solution.
Brogi & Line (2019) demonstrate a method for performing
retrieval on high-resolution data with nested sampling, but are
restricted to ∼4000 spectral data points of the CRIRES
instrument. As the number of spectral points increases, so
does the time required to compute the models, making this
method infeasible for a full HARPS-N spectrum with
∼300,000 points and multiple free parameters.

Figure 11. Noise-free synthetic spectra with T=3100 K and varying metallicity values. The left-hand plot shows a zoomed-in section of the transmission spectra
themselves, while the right-hand plot shows a single cross-correlation with each spectrum and the template for Fe at T=3000 K and logM=−1.0. The darker color
corresponds to higher metallicity values.

Figure 12. Retrieval performed on the CCF-sequence of the transmission
spectrum of KELT-9b measured by the HARPS-N spectrograph. The retrieval
is performed in three different ways: using only neutrals (Fe, Ti); (see
Figure 14), using only ions (Fe+, Ti+) or using all four species (“Full”). The
vertical and horizontal lines indicate the median values of the posterior
distributions corresponding to the neutrals-only retrieval. The top right panel
shows the data points (lilac) with the error region (gray) for the CCF-sequence
produced by the KELT-9b HARPS-N data, along with the model (dark purple)
corresponding to the medians from the logM and T posteriors.

9

The Astronomical Journal, 159:192 (15pp), 2020 May Fisher et al.



Our method of constructing CCF-sequences allows us to
reduce the dimensionality down from ∼300,000 to ∼2500.
However, now the computational time for each model is much
greater as it involves first generating the spectrum and then
cross-correlating 64 times with the different templates. There-
fore, it remains infeasible to use a standard nested-sampling
retrieval for this technique. The random forest requires a grid of
precomputed models to train on, allowing the computational
burden to be shifted offline. An alternative method using nested
sampling could be employed by interpolating on the same grid
of models, but without the added noise. There are a few
disadvantages involved with this when compared with the forest.

First, the prediction time on a single spectrum is still orders
of magnitudes slower than the pretrained forest (∼20 s versus
∼0.05 s). This increased computational speed allows the forest
to produce “predicted versus real” graphs, as shown in Figure 6
for ∼50,000 models. These graphs give crucial information

about the ability to predict each parameter and the performance
of one’s retrieval over a vast range of models. We also gain
additional information from the random forest, such as the
feature importance plots shown in Figure 8. This quantifies the
information content in each spectral point with respect to each
parameter being retrieved and can be used to infer which areas
of the spectrum are most affected by each parameter. It gives us
a deeper insight into how the retrieval works, and even
indicates which spectral regions might be most informative
when considering future observations.
Second, the use of the likelihood function in nested sampling

assumes that the error bars on each spectral point are
independent. While this is usually a good assumption, in the
process of generating the CCF-sequences we repeatedly cross-
correlate a single spectrum with multiple templates and then
concatenate these into a sequence. This implies that the noise
samples corresponding to each individual cross-correlation
cannot be independent as they propagate from the same
spectrum. With this assumption broken, it becomes unclear
how to proceed with a nested-sampling retrieval on the CCF-
sequences.
Third, as discussed in Section 1.3, another assumption one

needs to make with nested sampling is a form for the likelihood
function, and thus the error bars. For example, it is commonly
assumed that the error bars are Gaussians, leading to a
likelihood function as shown in Equation (1). The forest also
requires an assumption of a random distribution when adding
noise to the training set, however it does not depend on a
likelihood function. As a test, we generated a model CCF-
sequence for a mock retrieval, but this time we added noise by
drawing from a Cauchy distribution as opposed to a Gaussian.
The motivation behind using a Cauchy distribution is that it
does not obey the central limit theorem, and thus the likelihood
across many points in a spectrum does not behave as a
Gaussian. This provides a challenging test for retrieval methods
that assume normally distributed error bars. We performed
these retrievals using a forest trained on models with Gaussian
errors and a nested-sampling algorithm assuming a Gaussian
likelihood function, as shown in Equation (1). Note that this
likelihood does not use the cross-correlation function, unlike in
Brogi & Line (2019). The results are shown in Figure 15. We
can see that while the posteriors are wide for the forest, they
still encapsulate the true values, whereas the nested-sampling
retrieval produces tightly constricted, incorrect posteriors. This
suggests that the forest is more robust to differences in error
distributions.

Figure 13. Training vs. measured KELT-9b CCF-sequences. The measured CCF-sequence for Fe+ lies outside of the range of the model CCF-sequences, thus
flagging missing physics in the model grid.

Figure 14. Predicted vs. real values for the forest trained on the CCF-sequences
with only neutral species, Fe and Ti. The top and bottom panels show the
predictions using the means and medians, respectively. The coefficient of
determination (R2) varies from −1 to 1, where values near unity indicate strong
anticorrelations or correlations between the real and predicted values of a given
parameter, based on the variance of the outcomes. The retrieval using this forest
on the KELT-9b data is shown as the lighter colored posteriors in Figure 12.
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4.2. Velocity–Velocity Space Performance

So far we have only explored the effects of temperature and
metallicity and assumed the velocity parameters, Vsys and Kp,
are fixed to previously determined values. It is possible that
neglecting velocities could lead to severe biases in retrievals.
To investigate this, we added the systemic velocity (Vsys) and
the error in the semiamplitude of the planet radial velocity
(ΔKp) to the method. We took Vsys from −10 km s−1 to
+10 km s−1 in steps of 2 km s−1, and ΔKp from 0 km s−1 to
60 km s−1 in steps of 6 km s−1. Figure A1 shows the results of
testing the random forest trained on the CCF-sequences,
including the velocity parameters.

This test shows that the addition of the velocity parameters
does somewhat reduce the predictive ability of the other
parameters, however this reduction is extremely minor for the
temperature and not too problematic for the metallicity. The
method is able to perfectly retrieve the systemic velocity (Vsys),
but struggles with the error in semiamplitude of the planet
radial velocity (ΔKp). An error in the assumed value of Kp

leads to a misalignment of the planet absorption line when
summing in the planet rest frame, effectively resulting in a
broadening of the CCF. This makes it more challenging to
distinguish between sequences of different metallicities. This
explains the greater uncertainty in metallicity that we see in
Figure A1 when compared with the results from the method
without the velocity parameters (Figure 6).

4.3. Comparison to Other Machine-learning Techniques

There are several other machine-learning methods that can
be used to perform atmospheric retrieval (Waldmann 2016;
Zingales & Waldmann 2018; Cobb et al. 2019), each with their

own advantages. We tested the same CCF-sequence retrieval as
before, but now using a standard neural network and a standard
Bayesian neural network (BNN); (Gal 2016). In both cases we
used a standard multilayer perceptron architecture with three
layers. Each layer consists of a linear transformation with bias
followed by a ReLU activation, except the last layer, which
does not apply an activation function. The first layer transforms
spectra from the input space2560 to an intermediate
representation512. Similarly, layer2 maps elements to32,
and layer3 maps elements to the space of parameters2. The
BNN also applies dropout (Srivastava et al. 2014) with
probability0.15 on the output of layers1 and2, as explained
in Gal (2016). We implemented both networks using the
PyTorch library for automatic differentiation (Paszke et al.
2017) and used Adam (Kingma & Ba 2014) as the optimization
method.
The results of the test predictions are shown in Figure A2.

Compared to the random forest, they both perform with slightly
improved R2 scores. However, this is only a measure of the
average prediction. In atmospheric retrieval, we are predomi-
nantly interested in the range of possible parameter values
given by a retrieval, and therefore the posteriors of each
parameter. A traditional neural network does not produce
posteriors, so it cannot be meaningfully applied to this retrieval
problem. The BNN does provide posteriors, so we are able to
compare these to the forest. Figure A3 shows the comparison
for two mock retrievals, one with logM=1.0 and T=5100 K
(top panel), and one with =logM 1.9 and T=4200 K (bottom
panel). For the first retrieval, the forest and the BNN produce
very similar results, with the BNN posteriors slightly tighter
and more centered on the true values. However, in the second
retrieval the BNN does not perform well for the metallicity
prediction. This mock spectrum was selected as one of the
retrievals with a strong metallicity degeneracy, as discussed in
Section 3.3, in order to test how the two methods deal with
these issues. The results for the metallicity prediction are

= -
+logM 0.3 0.7

1.7 for the forest, and = -
+logM 0.7 0.2

0.2 for the
BNN. Both the average predictions are heavily offset from the
correct value, however the posterior from the forest captures
the degenerate behavior in metallicity, and therefore encom-
passess the correct value inside the 1σ interval. In contrast, the
BNN posterior sits in the middle of the degenerate peaks and
remains tightly constrained around the offset value. It is worth
noting that this implementation of the BNN is not equivalent to
the one used in Cobb et al. (2019), as they use a different form
of the likelihood which has not been tested on such high-
resolution data.

4.4. Clarification with Respect to Cobb et al. (2019)

In Cobb et al. (2019), it was suggested that the random
forest in Márquez-Neila et al. (2018) has the potential to
produce overconfident, incorrect posteriors based on a mock
retrieval from a test data set. This forest was trained on WFC3
spectra with 13 data points and predicted 5 parameters—
temperature, free chemical abundances of H2O, HCN, and
NH3, and a gray cloud opacity, κ0. The opacities were
calculated with HELIOS-K (Grimm & Heng 2015), using the
ExoMol6 (Tennyson et al. 2016) spectroscopic linelists for
H2O (Polyansky et al. 2018), HCN (Barber et al. 2014), and
NH3 (Yurchenko et al. 2011).

Figure 15. A mock retrieval performed on a model with logM=0 and
T=4100 K, using the CCF-sequence where the noise has been drawn from a
Cauchy distribution. The solid posteriors show the random forest (RF) retrieval
results, trained on the CCF-sequences with Gaussian noise models (see Figure 6).
The empty line posteriors show the nested-sampling (NS) retrieval results using a
model that interpolates on the grid of noise-free CCF-sequences and has a
Gaussian likelihood. The black lines show the median values of the random
forest. The purple, dashed lines show the true values. The top right panel shows
the data points (lilac) with the error region (gray), along with the model (dark
purple) corresponding to the medians from the logM and T posteriors.

6 http://exomol.com
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The mock spectrum tested on by Cobb et al. (2019) has
T=1479.6 K, = -Xlog 9.79H O2

, = -Xlog 9.04HCN ,
= -Xlog 5.91NH3 , and k =log 1.870 . The retrieved posterior

for NH3 was tightly constrained and offset from the correct
value, which was used to infer that the forest could produce
spurious results. However, we ran the same retrieval with
nested sampling, using the same model with the same
assumptions. Figure A4 shows the results from the random
forest retrieval (left panel) and the nested-sampling retrieval
(right panel). The posteriors appear very comparable, with the
same behavior in the ammonia abundance.

At the time of publishing Márquez-Neila et al. (2018), there
were no opacity linelists available for NH3 for temperatures
above 1500 K. To deal with this, as stated in Márquez-Neila
et al. (2018), the opacity for NH3 was artificially set to zero,
and the abundance to the minimum in the range, 10−13.
Notable in this particular mock spectrum is the high cloud
opacity, equivalent to a cloud top pressure of ∼1 μbar. This
results in an essentially flat spectrum. When retrieving on a flat
line, the only two parameters in this model having an effect are
the temperature and the cloud opacity, which are perfectly
degenerate with each other (i.e., an increase in either results in
an upwards shift of the line, so by decreasing the other, one
obtains the same spectrum). This degeneracy means one can
only obtain lower bounds for the temperature and cloud
opacity, corresponding to the upper bound of the other
parameter’s prior. A consequence of this is a collection of
posterior samples in the region T>1500 K, which, as forced
by the model, have = -Xlog 13NH3 , resulting in the peaked
posterior for NH3. Therefore, this offset posterior is actually an
artifact of the training set rather than of the random forest. This
is shown conclusively in Figure A4, as the forest’s posteriors
agree with the true Bayesian posteriors from nested sampling.

5. Conclusion

This paper presents a new method for performing atmo-
spheric retrieval on ground-based, high-resolution spectro-
scopic observations of exoplanets. By using a combination of
CCFs we are able to reduce the dimensionality of the problem
and decrease the high levels of uncertainty on each spectral
data point. Using our previously demonstrated random forest
retrieval technique (Márquez-Neila et al. 2018), we can execute
the retrieval quickly and run a multitude of tests of the method.
These show that the method performs well on mock
observations, with a high predictive power for metallicity and
temperature (R2= 0.918 and 0.986, respectively). The random
forest also provides feature importance plots, which show that
the neutral cross-correlations are most important for determin-
ing the metallicity, while the temperature prediction relies
predominantly on the ions. Our method also highlights the
metallicity degeneracy in the model, which accounts for the
reduced predictability at high metallicity values.

We performed the retrieval on HARPS-N observations for
the ultra-hot Jupiter KELT-9b. The metallicity appears to be
consistent with solar, with the retrieval seemingly driven by the
neutral species. The prediction for temperature is forced up to
exceptionally high values, due to excess Fe+ absorption that
appears in the high-resolution transmission spectrum, suggest-
ing the need for more complex physics in the model. This can
be seen when comparing the data to the training set, which also
implies that this method is able to recognize when the model is
incomplete.
We also compared the use of our random forest to other

approaches, such as the traditional nested-sampling technique
and other machine-learning methods. We showed that the
forest is more robust to the use of different error distributions
than nested sampling, due to it being likelihood free. When
compared with a BNN, although the BNN obtains marginally
improved R2 scores, only the forest was able to produce
complex posteriors, e.g., in the case of degenerate metallicity
values. We also demonstrated that the claim in Cobb et al.
(2019), that the forest can be overconfident but incorrect, is
actually an outcome of the atmospheric model itself and that
the forest’s posteriors agree with the results from nested
sampling.
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International 2021 PhD Fellowship.
Software:FastChem (Stock et al. 2018), HELIOS-K

(Grimm & Heng 2015), Helios-o (Bower et al. 2019),
scikit.learn (Pedregosa et al. 2011), PyTorch (Paszke
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Appendix
Additional Figures

Figure A1 shows the results for the forest including the
velocity parameters, as discussed in Section 4.2. Figures A2
and A3 show the results for the neural network and Bayesian
neural network trained on the CCF-sequences, as discussed in
Section 4.3. Figure A4 shows the comparison between a
random forest and a nested sampling retrieval for the model and
spectrum considered in Cobb et al. (2019), as discussed in
Section 4.4.
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Figure A1. Predicted vs. real values of the logarithm of metallicity (logM), temperature (T), systemic velocity (Vsys), and error in semiamplitude of the planet radial
velocity (ΔKp) for the random forest trained on the CCF-sequences. The top and bottom rows show the predictions using the means and medians, respectively. The
coefficient of determination (R2) varies from −1 to 1, where values near unity indicate strong anticorrelations or correlations between the real and predicted values of a
given parameter, based on the variance of the outcomes.

Figure A2. Predicted vs. real values for neural networks trained on the CCF-sequences. The left and right pairs show the results for a standard neural network and a
Bayesian neural network (BNN), respectively. The coefficient of determination (R2) varies from −1 to 1, where values near unity indicate strong anticorrelations or
correlations between the real and predicted values of a given parameter, based on the variance of the outcomes. Mock retrievals for the BNN are shown as the empty
line posteriors in Figure A3.
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CHAPTER 6

JWST Cycle 1 Proposals

We are now post lagoon.

Jens Hoeijmakers

6.1 Introduction

In November 2020, the cycle 1 deadline for the upcoming James Webb Space
Telescope took place. In an effort to pool resources and foster collaborations, we set
up a proposal team involving researchers from Bern, Lund, Copenhagen, Dublin,
and the Space Telescope Science Institute in Maryland. In total we submitted
12 proposals, of which 4 were approved. I led one of the unsuccessful proposals,
and supported heavily one of the successful ones. These two proposals were based
on very similar science cases, though the intended objects were different. In this
chapter I will briefly describe these proposals and their objectives.
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6.2 Science Case

6.2.1 Atmospheric Chemistry and Planet Formation

The distance from the star at which a specific volatile compound condenses, such
as H2O, CO or CO2, is known as the snow/ice line. Protoplanetary disk models
are able to predict the evolution of the location of these lines over time, during
which planets can form in the disk. By comparing elemental abundances in an
exoplanetary atmosphere with that of the host star, one can draw conclusions
about the formation and evolution of the system. In particular, the C/O ratio is
considered to be one of the key indicators for this (Öberg et al., 2011; Madhusudhan
et al., 2014; Öberg and Bergin, 2016). Assuming no strong mixing between the
gas and solid components of a planet, a C/O ratio close to that of the host star
suggests in situ formation of the planet, inside the water ice line. In contrast, a
vastly differing C/O ratio implies the planet has likely migrated across the H2O,
CO and CO2 ice lines. The study of these ratios will teach us valuable lessons
about the formation of exoplanetary systems and our own solar system, as well
as providing a powerful empirical test of generalized planet formation/migration
theories.

In practice, there are a number of caveats that make it difficult to definitively
determine the formation-migration history of a planet from its atmospheric abun-
dances alone. Specifically, there are the effects of photoevaporation, late-stage
planetesimal accretion (e.g., from comets), and core-envelope mixing (Madhusud-
han, 2019). Also, the specific properties of the initial protoplanetary disk can vary.
Multi-planet systems are extremely valuable case studies, since the redundancies of
having several planets, as well as the dynamical constraints on possible migration
scenarios, improve one’s ability to develop a self-consistent formation-migration
narrative.

An interesting class of exoplanets for this study are warm Neptunes. Unlike
larger exoplanets, these Neptune-sized objects are predicted to have extremely di-
verse atmospheric compositions, varying significantly with temperature, pressure,
and metallicity (Moses et al., 2013). However, until now the limitations of current
instruments have prohibited the study of atmospheric features in these smaller
planets, with the exception of only a handful – e.g. GJ 3470 b (Benneke et al.,
2019a); K2-18 b (Benneke et al., 2019b; Tsiaras et al., 2019); HAT-P-11 b (Fraine
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et al., 2014). The James Webb Space Telescope will open up this field by providing
the resolution and wavelength coverage required to characterize these planets.

6.2.2 Transmission Spectroscopy with HST and Spitzer

The field of exoplanet atmospheres has flourished in the era of the Hubble Space
Telescope (HST) (Deming and Seager, 2017). By observing the starlight that
passes through a planet’s atmosphere during a transit, observers can obtain a
transmission spectrum. Chemical species in the atmosphere will absorb this light
at different wavelengths, each imprinting its unique set of absorption features in
the spectrum. Current state-of-the-art observing techniques and analysis method-
ologies using HST have yielded detections of a wide variety of molecules, including
H2O, CH4, Na and K (e.g. Sing et al. 2016). However, the spectral coverage and
resolution provided by HST is limited, and therefore so are the analyses of these
spectra.

The highly anticipated James Webb Space Telescope will greatly advance the
field of transmission spectroscopy of exoplanets. The array of different instruments
and observing modes will provide spectra across a wide range of wavelengths at
significantly higher spectral resolutions than HST (e.g. Batalha et al. 2017). In
particular, the ability to measure the > 2µm range at medium resolutions will
allow us to constrain the carbon-bearing molecules better than ever before. This
in turn will provide a vast improvement on our constraints of the C/O ratios of
exoplanet atmospheres.

6.3 TOI-125

The proposal I led aimed to observe one transit of two planets, b and c, in the TOI-
125 system. In this section I will introduce this system and discuss the motivation
for our choice of objects.
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6.3.1 The TOI-125 System

The TOI-125 system is a relatively recent discovery from the TESS mission. It
contains three confirmed sub-Neptune planets on relatively close-in orbits (param-
eters shown in Table 6.1). Due to intensive HARPS radial velocity measurements,
the masses for these planets have been precisely constrained, unlike most planets
of this size. In addition, the majority of warm Neptunes favourable for transmis-
sion spectroscopy are not known to reside in multi-planet systems. These three
planets also have comparable radii and masses, differing only in orbital separa-
tion. TOI-125 therefore provides a rare opportunity to precisely characterize and
compare similar planets in a single system. This system also has the benefit of
being visible by JWST from early May to December every year, providing many
observing opportunities.
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Figure 6.1: Kempton Transmission Spectroscopy Metric (TSM) vs planet radius, for sub-
Neptunes (1.75R⊕ < R< 4.0R⊕). Planets in a multi-planet system and with measured
masses are highlighted.

Planet Radius (R⊕) Period (days) logg Teq (K) Heq (km)
b 2.726±0.075 4.654+0.00033

−0.00031 3.097±0.047 1037±11 ∼ 287
c 2.759±0.1 9.151+0.00070

−0.00082 2.931+0.068
−0.076 828±9 ∼ 336

d 2.93±0.17 19.98+0.0050
−0.0056 3.192±0.064 638±7 ∼ 142

Table 6.1: Planetary parameters for the TOI-125 system (Nielsen et al., 2020).
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The TOI-125 system has several attributes that make it attractive for JWST
transmission spectroscopy. Three sub-Neptune exoplanets with radii of R = 2.7–
2.9R⊕, gravities of logg ≈ 2.9–3.2 and orbital periods of 4.7–20 days orbit a K0
star with Ks = 8.995 (Nielsen et al., 2020). With these radii, it is likely that these
exoplanets have hydrogen-dominated atmospheres (Fulton and Petigura, 2018),
which implies relatively large pressure scale heights (e.g. for planets b and c: H ∼
300 km, H/R ∼ 0.01) that are favorable for transmission spectroscopy. Figure 6.1
shows a plot of a modified Kempton Transmission Spectroscopy Metric (Kempton
et al., 2018) for sub-Neptunes. The highlighted planets are those residing in multi-
planet systems with measured masses. This clearly shows how the TOI-125 system
is one of the best for classification with transmission spectroscopy. Furthermore,
the radii being smaller than 3R⊕ suggest that magma-atmosphere interactions
that occurred during their formation history may be imprinted in the transmission
spectra—in the form of altered water abundances (Kite et al., 2020).

Formation models predict the evolving locations of the snow/ice lines of H2O,
CO, carbon dioxide (CO2) and ammonia (NH3) (Burn et al., 2019) within the
protoplanetary disk of TOI-125 (Figure 6.2). Since all the planets in the TOI-125
system reside at semi-major axes < 0.2 AU from their star, they are all currently
within the water snow/ice line. If these exoplanets formed in-situ, then the forma-
tion models predict that their atmospheres should, under some assumptions, have
carbon-to-oxygen ratios that match that of the star (Öberg et al., 2011). Hence,
a falsifiable hypothesis presents itself, and any outcome that yields C/O mea-
surements for any of these planets will be interesting for constraining formation
models.

6.3.2 Mock Retrievals

A distinct challenge of these proposed observations and subsequent interpretations
is to accurately retrieve molecular abundances in the face of varying temperature,
chemical disequilibrium and clouds. Figures 6.3 and 6.4 show the results from
mock retrievals of one transit of TOI-125 b and c with realistic noise for the NIR-
Spec BOTS mode with the G235M disperser. For this retrieval we assumed an
isothermal, isobaric atmosphere with free chemistry and a non-grey cloud model.
The abundances of the molecules in the synthetic spectrum are given by the blue
lines in Figure 6.3, and the mean molecular weight of the atmosphere was adjusted
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Figure 6.2: Evolution of different ice lines for a disk model of the TOI-125 system (1000g cm−2

at 5 AU) for two typical values of the Shakura-Sunyaev α-disk viscosity (dashed:
α = 10−2; solid: α = 2×10−3).

accordingly. The low temperatures of these planets suggest that chemical equi-
librium is unlikely (Moses et al., 2013), and free chemistry allows us to explore
the parameter space with only the data points to inform us. Including a realistic
chemical model would only tighten our constraints further, so therefore our free
chemistry retrieval provides an upper limit on the ability to infer the chemical
abundances in these atmospheres.

The retrieved posteriors for TOI-125 b in Figure 6.3 shows that key carbon
and oxygen carriers are well-constrained (e.g. H2O, CO2 and CH4), and we can
place useful upper limits on CO. Due to the larger scale height for planet c (see
Table 6.1), the constraints on its atmospheric parameters are even tighter. The
cloud parameters correspond to an abundance (κ0), a cloud particle size (rc), and
a composition (Q0), which denotes the value of the size parameter x = 2πrc/λ at
which the extinction efficiency peaks (Kitzmann et al., 2018). Our synthetic data
contains a cloud with an opacity of 10−3 cm2 g−1, corresponding to a cloud-top
pressure of ∼ 10 mbar. Since transmission spectra are thought to probe roughly
these pressures, this gives a reasonable cloud coverage. Although we cannot con-
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strain the cloud parameters, which is unsurprising due to the wavelength range
considered, this demonstrates that we are able to obtain meaningful results on the
other atmospheric parameters, even in the presence of a realistic cloud.
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Figure 6.3: Mock retrieval of simulated spectra of one transit of TOI-125 b in the G235M mode,
with error bars provided by PandExo. The blue lines in the posteriors show the true
values for the synthetic spectra. The inset shows the data points and the best-fit
model (dark blue) and 2σ uncertainty (light blue).

From these results we could build a posterior for the retrieved C/O ratio, which
is shown in Figure 6.4. This shows an accurate retrieval of our true C/O ratio from
the simulated spectra of TOI-125 b and c, confirming that our observations would
be able to put powerful constraints on planet formation models. We could also
put some constraints on a diagnostic of chemical equilibrium. By comparing the
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Figure 6.4: Retrieved C/O ratio and chemical equilibrium diagnostic posteriors for TOI-125 b
(top) and c (bottom).

inferred value of XCOXH2O/XCO2 (where Xi is the relative abundance of molecule i)
with its equilibrium value, one may empirically determine if the atmosphere is out
of chemical equilibrium (Heng and Tsai, 2016), as demonstrated in Figure 6.4.

6.3.3 Observational Details

We requested to observe one transit each of TOI-125 b and c, using the NIRSpec
BOTS mode. We aimed to use the G235M disperser, which would provide a
wavelength coverage of 1.66-3.07 µm at a resolution of 1000. Although the results
from Guzmán-Mesa et al. (2020) concluded that G395M was optimal for studying
warm Neptunes, the SNR of the TOI-125 planets is significantly lower than GJ436
b, the planet from this study. Our mock retrievals showed that G235M was a
better choice for our system.
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We had originally planned to observe all three TOI-125 planets to enable a
complete comparison of the system. However, our mock retrievals of TOI-125 d
showed significantly less constrained posteriors. This is likely due to both the
planet’s colder temperature and higher surface gravity, leading to a lower scale
height and therefore smaller spectral features.

6.4 TOI-178

This proposal was led by Dr. Matthew Hooten, and involved a collaboration with
the CHEOPS (CHaracterising ExOPlanets Satellite) science team. It aimed to
observe one transit of TOI-178 b, d, and g. I supported this proposal from the
theoretical side, providing mock retrievals and working on the science case, as it
relied on the same reasoning as the TOI-125 proposal.

6.4.1 The TOI-178 System

The TESS mission originally found 3 sub-Neptune planets orbiting a nearby late
K-type star, TOI-178 (Leleu et al., 2019). However, using data from CHEOPS,
transit observations revealed a compact system of at least 6 transiting planets
(Leleu et al., 2020)1. In addition to the transit observations, the ESPRESSO
spectrograph was able to constrain the planetary masses. Table 6.2 shows the
parameters for these planets.

From the predicted densities of these planets, we can deduce that the system
contains two inner rocky planets (b and c), as well as two potential water worlds (e
and f). Planets d and g appear to have maintained significant gaseous envelopes.
The planet density versus equilibrium temperature is shown in Figure 6.5, which
compares the density trends for multi-planet systems. This variation in density
across the TOI-178 system contradicts the primary theories of planet formation
(e.g. Mordasini et al., 2012; Alibert et al., 2013; Emsenhuber et al., 2020), which
predict a decrease in density with orbital separation due to decreased evaporation
of the primordial envelope.

1This paper was not public at the time of the cycle 1 deadline, but the proposal involved the
entire CHEOPS science team (including M. Hooton).
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Planet Radius (R⊕) Period (days) Density [ρ⊕] Teq (K) Heq (km)
b 1.177±0.074 1.914557+0.000016

−0.000018 0.93+0.29
−0.33 952±19 ∼ 308

c 1.710+0.094
−0.082 3.238458+0.000020

−0.000018 0.95+0.18
−0.21 798±16 ∼ 173

d 2.640±0.069 6.557694±0.000013 0.16+0.04
−0.05 631±13 ∼ 536

e 2.169±0.079 9.961872+0.000034
−0.000038 0.39+0.12

−0.10 549±11 ∼ 226
f 2.379±0.086 15.231930+0.00011

−0.000085 0.58+0.13
−0.12 475.8±9.6 ∼ 120

g 2.91±0.11 20.709460+0.000077
−0.000069 0.19+0.05

−0.09 429.4±8.5 ∼ 310

Table 6.2: Planetary parameters for the TOI-178 system (Leleu et al., 2020).
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Figure 6.5: Planet density vs equilibrium temperature for a selection of systems with 4 or more
transiting planets.

TOI-178 has all the advantages of the TOI-125 system, but with the added
benefit of three additional planets. This provided the opportunity to select the
best planets for atmospheric characterisation, whilst still enabling a comparison
within a single system.
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6.4.2 Mock Retrievals

As with TOI-125, we performed mock retrievals on the planets in this system
to determine our ability to characterise their atmospheres. Figures 6.6 and 6.7
show the results from the retrievals of one transit of TOI-178 b, d, and g, with
realistic noise for the NIRSpec BOTS mode with the G395M disperser. We as-
sumed the same model as for TOI-125. Figure 6.6 shows the best fit model and
3σ uncertainty, along with the simulated data points. These fits clearly show the
retrieval’s constraining power, and the significant visible spectral features, espe-
cially for planets d and g. The posteriors from the retrieval of planet b, the least
amenable of the three to transmission spectroscopy, are shown in Figure 6.7. This
demonstrates the ability to accurately measure the chemical abundances in this
planet’s atmosphere, leading to a reasonable constraint on the planet’s C/O ratio.

6.4.3 Observational Details

We requested to observe one transit each of TOI-178 b, d, and g, using the NIR-
Spec BOTS mode with the G395M disperser, which provides a wavelength cov-
erage of 2.87-5.10 µm at a resolution of 1000. Guzmán-Mesa et al. (2020) found
that G395M provided the best constraints on the chemical abundances for warm
Neptunes, and our retrieval results agreed in this case.
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Figure 6.6: Model fits from our mock retrievals of TOI-178 b, d, and g. The black points show
the simulated transmission spectra for the G395M mode. The solid red line shows
the best-fit model and the pale red area shows the 3σ uncertainty.
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6.5 Proposal Assessments

Due to the similarity of these two proposals, it is unsurprising that only one was
selected. The privileged access our proposal team had to the TOI-178 data gave
us the upper hand, and the more optimal targets for transmission spectroscopy
made this proposal the better choice. Although the TOI-125 proposal, led by
myself, was not selected in this cycle, it was graded in the second quintile. I aim
to improve and resubmit this proposal in a future James Webb cycle. I also hope
to be heavily involved in the TOI-178 data analysis, the experience of which will
be invaluable in improving the TOI-125 proposal.
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Supported Research

It has been said that astronomy is a humbling and character-building
experience. There is perhaps no better demonstration of the folly of human
conceits than this distant image of our tiny world. To me, it underscores
our responsibility to deal more kindly with one another, and to preserve and
cherish the pale blue dot, the only home we’ve ever known.

Carl Sagan

As well as working on my own publications, I have supported several other
studies, in collaborations with researchers in Bern and elsewhere. My contribu-
tions include performing retrieval analyses, training and assisting other students
in running code, and general discussions and text editing. Each study, and my
contribution to it, is summarised below.
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7.1 Seidel et al. (2019)

Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)
II. A broadened sodium feature on the ultra-hot giant WASP-76 b

In this study, the ultra-hot Jupiter WASP-76 b was observed using the HARPS
spectrograph at the European Southern Observatory (ESO) 3.6 m telescope. These
observations showed a clear detection of neutral sodium in the planet’s atmosphere.
An interesting finding in these observations was the significant broadening of the
sodium lines, indicative of super-rotation in the upper atmosphere of this planet.
Figure 7.1 shows the comparison between the Gaussian fit for the co-added sodium
lines and the HARPS instrumental line spread function. It also shows that the
FWHM of the Gaussian fit is well below the escape velocity of this planet, sug-
gesting that atmospheric escape of sodium is unlikely.

For this work, I performed a retrieval analysis on the sodium lines, following the
methods from my previous work (Fisher and Heng, 2019). However, the extensive
broadening of the sodium lines caused too much discrepancy between our model
and the data, leading to unreliable posteriors. This retrieval was not included in
the final version of the publication.
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7.1 Seidel et al. (2019)

Figure 7.1: Co-added lines of the HARPS transmission spectrum sodium doublet for WASP-76
b, as a function of velocity. The data are shown in grey, and the binned points in
black. The red line shows the Gaussian fit to the data, with the FWHM shown by
the dashed red lines. The yellow line shows the HARPS instrumental line spread
function, and the escape velocity is shown by the green dotted-dashed lines. Figure
from Seidel et al. (2019).
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7.2 Hoeijmakers et al. (2019)

A spectral survey of an ultra-hot Jupiter
Detection of metals in the transmission spectrum of KELT-9 b

Following the ground-breaking discovery of iron and titanium in the ultra-hot
Jupiter KELT-9 b by Hoeijmakers et al. (2018a), this work performed a detection
analysis for 39 different species in this planet. The results showed confident de-
tections for 8 species, including Na I, Mg I, Cr II, Sc II, and Y II, as well as the
previously detected Fe I, Fe II, and Ti II. Evidence was also found for Ca I, Cr I,
Co I, and Sr II.

During this study, I was collaborating with J. Hoeijmakers on our high-resolution
retrieval paper (Fisher et al., 2020). This involved working closely with Hoeijmak-
ers and learning a great deal from him on the topic of high-resolution spectroscopy
and cross-correlation functions. We also discussed this spectral survey and any im-
plications it might have for our retrieval work.

7.3 Oreshenko et al. (2020)

Supervised Machine Learning for Intercomparison of Model Grids of
Brown Dwarfs:
Application to GJ 570D and the Epsilon Indi B Binary System

After our initial proof-of-concept paper on using the Random Forest for atmo-
spheric retrieval (Márquez-Neila et al., 2018), I supported several projects using
this method, led by other PhD students in our group. The first was this study,
which used the forest to compare brown dwarf model grids from several different
groups across the world.

In the field of brown dwarfs, a number of teams create grids of model spectra
using their own codes, and then share these grids publicly. However, the propri-
etary nature of the models themselves prohibit their use in atmospheric retrievals
by other groups. An advantage of the Random Forest is that the model itself is not
required in this case, as one can build a training set from the model grid directly.
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7.3 Oreshenko et al. (2020)

In this work, three model grids were used to create three different training sets.
These include the Sonora grid (Marley et al., 2017, 2021), the AMES-cond grid
(Allard et al., 2001), and a new grid built using the Helios code (Malik et al.,
2017, 2019). A forest was trained on each of these grids, and then tests were run
by predicting on the other grids, and on real spectra of the brown dwarfs GJ 570D
and Epsilon Indi Ba and Bb.

The results showed that the different implementations of alkali line modelling
leads to discrepancies between the grids, which has a drastic effect on the retrieval
of the surface gravity. If the spectrum below 1.2 µm (where the alkali lines oc-
cur) is removed, the agreement in gravity is significantly improved. The retrieval
of temperature is robust across all three models. Figure 7.2 demonstrates these
findings.

For this study, I assisted M. Oreshenko with her implementation of the Random
Forest. We worked closely with our collaborators at ARTORG on this project,
meeting them on a frequent basis to discuss the results and improve the forest.

Figure 7.2: Testing the retrieval of temperature and gravity for the Random Forest trained on the
Helios grid. The top and bottom rows show the forest tested on the AMES-cond and
Sonora grids, respectively. The left- and right-hand panel pairs show the retrievals
with and without the wavelength range below 1.2 µm, respectively.
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7.4 Guzmán-Mesa et al. (2020)

Information Content of JWST NIRSpec Transmission Spectra of Warm
Neptunes

The second study I supported using the Random Forest was this paper, which
investigated the optimal JWST NIRSpec mode for studying warm Neptunes. Pub-
lished 4 months before the James Webb cycle 1 deadline, this paper provided useful
support for many observing proposals.

Due to the lower temperatures of these objects, warm Neptunes provide an
exciting opportunity to study exoplanet atmospheres that may be in chemical dis-
equilibrium. By training a forest on a set of atmospheric models using free chem-
istry, this study used the predictability and feature importance to determine which
wavelength ranges provide the most information on the chemistry of these planets.
The model included a temperature parameter, the abundances of 7 species (H2O,
HCN, NH3, CO, CO2, CH4, and C2H2), and a non-grey cloud with 3 parameters.

The results showed that the G395M mode, covering 2.87-5.10 µm at low resolu-
tion, offers the best solution for studying warm Neptunes with JWST. This mode
was able to retrieve the CO abundance, in particular, significantly better than the
other modes. There exists a high-resolution version of this mode, although the
results showed this offered diminishing returns. Figure 7.3 shows the R2 score of
each mode, for each parameter in the model.

During this project, I supported A. Guzmán Mesa in her use of the Random
Forest. I taught her initially how to implement it, and then assisted her when
problems arose along the way.
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7.4 Guzmán-Mesa et al. (2020)

Figure 7.3: R2 score of each model parameter, for each of the modes tested. Here “M4” refers to
the G395M mode. H4 refers to the high-resolution version of M4. The performance
of HST’s WFC3 instrument is also included, for comparison.
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7.5 Grimm et al. (2021)

HELIOS-K 2.0 Opacity Calculator and Open-source Opacity Database
for Exoplanetary Atmospheres

This work presented an update to the opacity calculator HELIOS-K, developed
by S. Grimm. As well as reporting on improvements to the code’s efficiency and
implementation, this study introduced a new opacity database (https://dace.
unige.ch/opacityDatabase/?), where users can download and visualise opacities
for a wide variety of atomic and molecular species.

As a frequent user of these opacities, I worked with S. Grimm over several years,
testing and implementing the opacity files. I also contributed directly to editing
the text.
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7.6 Co-I on proposals

7.6 Co-I on proposals

As well as supporting a number of scientific publications, I have also participated
in several successful observing proposals, shown in Table 7.1. More details on the
TOI-178 JWST proposal, led by M. Hooten, can be found in Chapter 6.

Year Facility PI Program/objects
2019 HARPS H. J. Hoeijmakers Iron and titanium in WASP-189 b

2021 ESPRESSO H. J. Hoeijmakers Metals on the day-side of WASP-121
b

2021 JWST M. Hooten TOI-178: the best laboratory for
testing planetary formation theories

2021 JWST A. Rathcke Probing the Terrestrial Planet
TRAPPIST-1 c for the Presence of
an Atmosphere

2021 JWST N. Espinoza The first near-infrared spectroscopic
phase-curve of a super-Earth: K2-
141 b

2021 JWST N. Espinoza Exploring the morning and evening
limbs of a transiting exoplanet:
WASP-63 b

Table 7.1: Table of successful observing proposals on which I am a co-investigator.
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Conclusions and Future Outlook

We are just an advanced breed of monkeys on a minor planet of a very
average star. But we can understand the Universe. That makes us
something very special.

Stephen Hawking

8.1 Conclusions

I have spent four years working on my PhD in the Center for Space and Habit-
ability at the University of Bern. In this time I have trained myself in the field of
exoplanet characterisation and atmospheric retrieval, developed a new method of
performing retrievals using machine learning, and established myself as a member
of the worldwide exoplanet community through international collaborations.

In my first thesis paper (see Chapter 2), I wrote and applied my own atmospheric
retrieval code to a set of 38 different exoplanets with spectra from Hubble’s WFC3
instrument. By using a simplified analytical model for transmission spectra, shown
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to be sufficient for this resolution and wavelength range (Heng and Kitzmann,
2017), I was able to run a suite of retrievals with varied parameters, using nested-
sampling to perform a model comparison. The results showed that the preferred
model for the majority of planets contained only water and a grey cloud, indicating
that a wider wavelength coverage or higher resolutions are required to gain more
information about these atmospheres. The retrieved parameters for the planets
showed no clear evidence for any trends in the values. Since publishing, I have made
the retrieval code open-source1. This paper has now received over 50 citations,
and I have presented the work at a number of international conferences.

In 2019 I published my second thesis paper (see Chapter 3), in which I applied a
non-LTE model of the sodium doublet to several datasets, and tested whether this
effect could be detected through a series of mock retrievals. My results showed
that the Bayesian evidence from the nested-sampling retrievals was unable to dis-
tinguish between LTE and non-LTE scenarios, even at high resolution. They also
showed a bias towards lower temperatures when the LTE model was used. This
work represents one of only a few papers considering non-LTE effects in exoplanet
spectra.

In parallel to this work, I began collaborating with two machine learning experts
at the ARTORG Center for Biomedical Engineering in Bern. Working closely with
them, I helped to develop a new method using Random Forests to perform atmo-
spheric retrieval on transmission spectra. This led to our publication in Nature
Astronomy in 2018 (Márquez-Neila et al., 2018) (see Chapter 4). For this paper I
generated the large training set of model spectra, on which the forest was trained
and tested. I also performed traditional nested-sampling retrievals using the same
atmospheric model for comparison. This paper has received over 30 citations, and
has been influential in the field as one of only a handful of studies using machine
learning for exoplanet analysis. These new techniques are paving the way for the
future of exoplanet characterisation, when we predict to have an abundance of
spectra from next-generation telescopes.

After the success of our Random Forest retrievals on low-resolution spectra, I
decided to test it on the more challenging high-resolution spectra from ground-
based spectrographs. This led to my last thesis paper (see Chapter 5). The initial
tests applying the forest directly to the data proved unsuccessful, and the recent
work on high-resolution retrievals using the cross-correlation function by Brogi

1https://github.com/exoclime/HELIOS-T
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and Line (2019) inspired me to apply the forest to the CCFs instead. This enabled
me to successfully retrieve the temperature and metallicity of wideband HARPS-N
spectra. I then applied this method to the real HARPS-N data for KELT-9 b. The
results showed an overabundance of Fe+ in the planet’s atmosphere that could not
be explained by the model, suggesting more complex physics needs to be included.
I also performed various comparisons between the forest and traditional retrievals,
as well as more advanced machine learning techniques such as neural networks.
With approximately one citation per month since publishing, this paper remains
one of the only studies to perform retrievals on high-resolution data. However, this
field is gaining popularity, with more papers beginning to use these high-resolution
retrievals. With the upcoming opening of the ELT and other next-generation
ground-based observatories, retrieval of high-resolution data will play a key role
in exoplanet characterisation.

In addition to my own papers, I also supported several studies throughout my
PhD led by colleagues at Bern and around the world. In Seidel et al. (2019) I
ran a retrieval on the sodium doublet in the HARPS spectrum of WASP-76 b.
In Hoeijmakers et al. (2019) I supported the work on a spectral survey of KELT-
9 b with discussions with the lead author on high-resolution retrievals and the
implications of this work. In Oreshenko et al. (2020) I assisted the lead author
with her implementation of the forest on several brown dwarf model grids, showing
her how to use it and helping when problems arose. Similarly for Guzmán-Mesa
et al. (2020), I taught the lead author how to run the forest and apply it to
her dataset for an information content analysis of the different modes of JWST
NIRSpec. In Grimm et al. (2021) I tested and implemented the opacities calculated
by the HELIOS-K code, and helped with editing the text of the paper.

As well as working on scientific publications, I led and contributed to several
observing proposals. I was a co-investigator on two successful ground-based pro-
posals. The first used HARPS to observe the planet WASP-189 b. The second
used ESPRESSO to look for metals on the dayside of WASP-121 b. I was also
a co-investigator on four successful James Webb Cycle 1 proposals. For one of
these, which will use JWST to observe several planets in the TOI-178 system,
I contributed heavily, providing simulated spectra and mock retrievals of all the
planets. In parallel, I worked on a similar proposal for which I was the principle
investigator. This intended to observe two planets in the TOI-125 system with
the NIRSpec instrument. Although this proposal was unsuccessful, I intend to
develop it further and resubmit in a future cycle.
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In conclusion, over four years of my PhD I have worked on a variety of different
projects that have led to several publications, observing proposals, and open-source
codes. I have attended a number of international conferences and presented my
work to the community with a positive response. I have received interest in my
work from international researchers, and secured an independent fellowship for the
coming years. But most importantly, I have greatly enjoyed my years as a PhD
student, and I look forward to what’s in store for my time as a postdoc.

8.2 Future Outlook

In February 2021 I successfully applied for the SNSF Postdoc.Mobility Fellowship
to spend two years undertaking independent research, hosted at the University of
Oxford, UK. The research I plan to carry out is a continuation of my PhD work on
using machine learning to analyse exoplanet atmospheres. However, I also intend
to incorporate more advanced modelling techniques such as General Circulation
Models, as well as developing the Random Forest for simultaneous analysis of high-
and low-resolution spectra. A detailed research plan is explained in Section 8.2.1.

After receiving the fellowship acceptance, I postponed the start date by 9
months, to June 2022. This allows me to work on an exciting short-term project
as a postdoc at the University of Bern. The project intends to study cold Haber
worlds, which are hypothetical exoplanets where the Haber process for reacting
hydrogen and nitrogen produces ammonia as a biosignature.

8.2.1 Fellowship Research Plan

The detailed characterisation of exoplanets, including those that may harbour life,
is a core science goal of the next generation of major observatories, such as the
James Webb Space Telescope (JWST) and the Extremely Large Telescope (ELT).
These will lead to an explosion in the sensitivity and precision of exoplanet spec-
tra, allowing us to study exoplanets as the three-dimensional, dynamic systems
that they are. Current techniques comparing observations to models (known as
atmospheric retrievals) rely on simplified 1-D models that will soon become insuf-
ficient. However, due to computational restrictions, traditional retrievals will be
unable to cope with more complex physical models. During my PhD, I developed
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a brand-new machine learning retrieval method, which uses a Random Forest to
drastically speed up the process. I have proven this method to be effective on both
low-resolution, spaced-based data (Márquez-Neila et al., 2018) and high-resolution,
ground-based data (Fisher et al., 2020).

For the SNSF Postdoc.Mobility fellowship, I plan to use the Random Forest to
perform a combined analysis on both high- and low-resolution data simultaneously,
offering new insights that cannot be obtained from either alone. By undertaking
this fellowship at Oxford, I will be able to work with experts on 3-D models of
exoplanets, necessary for correctly interpreting the next generation of datasets. I
will use my machine learning method to incorporate these into retrievals for the
first time ever.

In the short term, my proposed projects will contribute towards improving our
understanding of phenomena such as condensate formation and transport, molec-
ular dissociation, and chemical disequilibrium in a wide range of exoplanets, from
hot Jupiters to mini-Neptunes and super-Earths. In the longer term, this fellow-
ship will help me to establish and disseminate the use of machine learning methods
to interpret exoplanet spectra, and hone them to the point where they – and I –
can play a key role in the search for signs of life beyond the solar system.

Project 1: Combining Ground- and Space-based Data with the Random
Forest

The combination of ground- and space-based data in retrievals has recently been
shown to give tighter constraints on the atmospheric parameters (Brogi et al.,
2017). These precise constraints are important for accurately characterising atmo-
spheres, and will be crucial in the future for determining habitability. However,
due to computation time, current retrievals on high-resolution spectra are lim-
ited to narrow-band data (Brogi and Line, 2019). In my recent study (Fisher
et al., 2020), I developed and tested a method that uses the Random Forest to
perform atmospheric retrieval on wide-band data. I propose to combine high-
and low-resolution retrievals, and quantify the information from each
dataset.

I will use pre-computed, sophisticated models to form a training set. The forest
enables us to also test multiple models from different research groups, and quanti-
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tatively compare the results. The speed and efficiency of the Random Forest will
allow us to easily combine data from various telescopes. By modelling a planet’s
properties, such as the temperature profile and atmospheric composition, we hope
to learn not only the conditions of the planet, but also its potential formation loca-
tion, and the diversity across the range of planets in our universe. High-resolution
data provides us with individually resolved spectral lines, which are unobtainable
from low-resolution spectra. This information helps us to constrain atmospheric
chemistry, learn more about atmospheric dynamics, and even determine the ver-
tical structure of the atmosphere (see Figure 8.1 for an outline of the project). In
addition, I will perform an information content analysis with the Random For-
est. This provides a unique opportunity to analyse which dataset is driving the
retrieval for each parameter, which will be a valuable insight for the community.
The speed of individual retrievals will also allow for statistical studies on certain
types of exoplanets.

This project is incredibly timely with the launch of JWST in the coming year. I
am currently involved in four successful Cycle 1 proposals, and intend to work on
several proposals in Cycle 2, thus I hope to have access to some non-public data.
Alternatively, the uniqueness of my method will enable me to extract information
from public datasets, such as the ERS program, that other techniques cannot. My
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Figure 8.1: Schematic outlining the process of the retrieval on combined datasets using the Ran-
dom Forest.
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combined retrieval would allow for the most detailed analysis of the state-of-the-
art data, and clearly evaluate the importance and limits of JWST. My method
could also support proposals for telescope time, and even inform future telescope
development. I will focus primarily on studying gas giants and mini-Neptunes
with this method, as these provide excellent high-resolution data, and will be well-
observed by JWST. These planets teach us about the diversity of planetary systems
unlike our own, and can give us crucial information about planet formation.

I anticipate that this project will lead to a series of papers, first to demonstrate
the method and subsequently to analyse data for individual objects, both now
with HST data and later with JWST. These papers will focus on advising the
community about how to optimise their observations, which will be imperative
given the high demand for current and future telescope time. I also anticipate
writing papers that perform statistical analyses on large groups of exoplanets,
which will improve our knowledge of the bigger picture of exoplanets, and help
put our solar system into the context of the rest of the universe.

With only a handful of people performing retrievals on high-resolution data,
this work has the potential for a great number of collaborations across the world.
The uniqueness of my technique and its many advantages will help promote me
as an international exoplanet researcher. I am already involved in a collaboration
with researchers at Lund and Geneva, analysing our new high-resolution spectra
of WASP-189 b. Extending beyond the fellowship, this project will clearly position
me as one of the key people in the field for jointly analysing ground- and space-
based telescope data.

Project 2: Using GCM Outputs for Atmospheric Retrieval

With the improving quality of data, we require more detailed physics in the models
used for retrieval. Previous studies have shown that using 1-D models will no longer
be sufficient for analysing JWST data (e.g. Feng et al., 2016; Taylor et al., 2020),
and high-resolution data already suggests the need for higher-dimensional effects
(e.g. Wyttenbach et al., 2015). 3-D effects can be studied using General Circulation
Models (GCMs), which solve for the complex geometry of tidally locked, irradiated
exoplanets. However, their long computation time currently prohibits their direct
use in atmospheric retrieval. I propose to directly use GCM outputs in
atmospheric retrievals for the first time ever, via the Random Forest.
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Since the forest does not require models to be calculated on-the-fly, we are able
to compute these offline, making the use of GCMs feasible. I plan to identify the
key parameters that significantly affect the global temperature structure of the
atmosphere, then vary these parameters to construct a core set of ∼10-100 GCMs.
I will then post-process these GCMs to produce ∼1000 members of the training
set (transmission/emission spectra, phase curves, etc), by varying parameters such
as the chemical abundances.

The use of GCMs in retrieval would allow us to analyse transmission and emis-
sion spectra, and phase curves consistently. These three datasets measure the ter-
minator, dayside, and longitudinal variations of an exoplanet atmosphere. Since 1-
and 2-D models cannot naturally relate these aspects of the atmosphere, additional
parameters must be introduced into the models. GCMs allow us to automatically
account for the complex geometry associated with these different datasets, result-
ing in fewer free parameters overall. By using GCMs to build our training models,
we will no longer suffer from the biases associated with analysing a planet with
a 1-D model. These 3-D retrievals will also give us an entirely new window into
atmospheric circulation, which will complement previous analyses of phase curves.
Again, the feature importance from the Random Forest will be able to highlight
which datasets are most sensitive to the parameters in the model. This will indi-
cate to the community which data to focus on for different cases. Ground-based,
high-resolution data has already been used to detect dynamics on exoplanets (e.g.
Wyttenbach et al., 2015; Seidel et al., 2019; Ehrenreich et al., 2020). Using GCMs
in our retrievals would allow for an exhaustive analysis of these effects. The de-
velopment of these next-generation methods is also an investment for the future,
when data of potentially Earth-like exoplanets become available.

This project has huge potential for collaborations, as many groups across the
world have their own GCMs with different assumptions and approximations. The
Random Forest provides a great way to compare these models in the context of
retrievals. I also anticipate a number of future studies combining well-measured
phase curves with spectra and analysing them consistently, bringing in expertise
from other aspects of exoplanet atmospheric research. In the future, this will lead
to more cooperative projects for studying atmospheres, involving efforts from all
corners of the field.
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8.2 Future Outlook

Schedule and Milestones

See Figure 8.2 for a detailed timeline of the two projects.

Figure 8.2: Timeline for SNF Mobility Fellowship projects.

Output Project 1: 2 papers; Project 2: 1 paper and an open-source set
of model spectra.

Relevance and Impact

I predict that the impact of this work will be extremely significant in the field of
exoplanet science. By allowing us to optimise our observations and extract the
maximum information from our data, these methods will advance our understand-
ing of exoplanetary atmospheres. With the launch of JWST this year, and the
completion of the ELT in 2027, it will become increasingly imperative that this
valuable observing time is used wisely. The studies from my first project will pro-
vide the community with the advice they require, and the necessary methods to
analyse the state-of-the-art data. This work will also allow for the fast analysis
of multiple planets, providing statistical comparisons and leading to the study of
trends in these planets’ properties.
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The 3-D modelling project will provide the community with a more detailed
insight into the structure and dynamics of an exoplanet. By making these models
open-source, this will allow for researchers to improve their analysis of 3-D effects,
essential for the new generation of telescopes. The conditions of these exoplanets
will teach us about the bigger picture of the universe, by answering questions
about planet formation, diverse chemical processes, and the uniqueness of our
solar system (see Figure 8.3). Furthermore, by establishing the use of machine
learning methods in exoplanet analysis, the work from my fellowship will open up
the field to a whole new set of cutting-edge techniques. I will publish results from
both my projects as articles in scientific journals (see schedule for details).

Figure 8.3: Schematic showing the placement of this work in the context of the bigger picture,
and what we hope to learn from our results.

8.3 Epilogue

After an enjoyable and productive four years as a PhD student, I can only hope
my postdoc years will be just as fruitful. I am excited for what the future holds
for exoplanets, with the next-generation of telescopes just around the corner. The
exoplanet community has been welcoming to me, and although the academic sys-
tem has many flaws, I have felt very grateful to be able to work on a topic I have
found so fascinating. Few people have the privilege to study the Universe, and I
am lucky to be one of them.
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