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Thesis overview and summary

Anthropogenic CO2 emissions not only cause global warming, but also ocean acidification, i.e., a
shift towards higher [H+] and lower pH with the accumulation of anthropogenic carbon in
seawater. Ocean acidification is a potential threat for many marine species, in particular for
calcifying marine invertebrates like mollusks or echinoderms, which are important components of
the marine food web. Seasonal variations in [H+] and oceanic carbonate system variables, such as
the aragonite saturation state (ΩA) or the partial pressure of CO2 (pCO2), have been identified
as important modes of variability along with the long-term changes under ocean acidification.
These variations are also known to change in amplitude under ocean acidification and may hence
become more important in the future. In contrast to these annually occurring variations, relatively
little is known about the occurrence of rare and extreme departures from normal conditions in
[H+] and carbonate system variables. Such extreme events may add substantially to the stress
experienced by organisms from the long-term changes under ocean acidification. The global
ocean is not only getting more acidic, but it is also gets warmer due to the ocean heat uptake
under global warming. These co-occurring changes are of particular concern, since interactions
between the environmental stressors potentially aggravate the stress for marine organisms. In
consequence, also co-occurring extremes (so-called compound extreme events) in temperature
and [H+] may pose a higher risk to vulnerable species than extremes in temperature or [H+] alone.

In this thesis, a global overview on the occurrence and characteristics of extreme events in
[H+] and aragonite saturation state (ΩA) is given. We quantify changes in these extreme events
under climate change based on large ensemble simulations of the fully-coupled Earth system model
GFDL ESM2M. The drivers of the extremes are assessed and the causes of changes in their char-
acteristics are analyzed. Furthermore, we quantify the frequency of compound extreme events in
[H+] and temperature and how their frequency may change under ocean warming and acidification.

The introduction (Chapter 1) provides an overview of the global carbon cycle and its
perturbation under anthropogenic CO2 emissions. The properties of oceanic carbonate chemistry
and acid-base state are presented, and their biogeochemical control processes discussed. Ocean
acidification, the shift towards more acidic conditions due to the oceanic uptake of anthropogenic
carbon, and its biological implications are also discussed. Finally, extreme events in ocean acid-
ity are introduced and their role as a potential additional stressor for marine organisms is discussed.

Chapter 2 introduces the GFDL ESM2M Earth system model and describes how the
large ensemble simulations that are analyzed in this thesis were conducted. It describes
how extreme events are defined in this thesis and compares different approaches for defining
these events. Furthermore, the metrics that are used to characterize the extreme events are defined.

Chapter 3, which is published in Biogeosciences, analyzes the changes in high-[H+] and
low-ΩA extremes under climate change. To do so, we define the extremes relative to fixed
preindustrial baselines and relative to shifting-mean baselines. Relative to fixed preindustrial
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baselines, the mean changes in [H+] and ΩA due to ocean acidification cause both variables
to transition to a near-permanent extreme state in the 21th century, at the surface and also
at 200 m depth. Relative to shifting-mean baselines, increases in [H+] variability cause [H+]
extremes to become more frequent, intense, long-lasting, and spatially extended. The increases in
[H+] variability are primarily caused by increases in mean inorganic carbon concentrations (CT)
that make [H+] more sensitive to variations in its drivers. In contrast, extremes in ΩA are shown
to become less frequent when defined relative to shifting-mean baselines, reflecting that ΩA

becomes less variable as it declines with ocean acidification.

The frequency of compound extreme events in temperature and [H+] in the surface ocean
is assessed in Chapter 4. Based on observation-derived data, we show that these compound
events occur frequently in the subtropical oceans, while they are much rarer in the equatorial
Pacific and the mid-to-high latitudes. This spatial pattern emerges from the regionally varying
importance of temperature and carbon for variations in [H+]. The compound events occur
frequently where [H+] variations are primarily driven by temperature, and they are relatively
rare where [H+] variations are mainly driven by CT. Based on large ensemble simulations that
were conducted with the GFDL-ESM2M model, we show that ocean acidification and ocean
warming cause large increases in the frequency of these compound events under fixed baselines.
Smaller increases are projected relative to shifting-mean baselines, which primarily arise due to
the increases in [H+] variability that are discussed in Chapter 3. Finally, we isolate the effect
of changes in the statistical dependence between temperature and [H+] on compound event
occurrence, finding that an overall reduction in dependence dampens the increases in event
frequency, in particular when defined relative to shifting-mean baselines.

The drivers of surface [H+] extreme events within the GFDL ESM2M model are investigated
in Chapter 5. In the subtropics, we find that the buildup of [H+] extreme events is mainly
caused by positive anomalies in air-sea heat fluxes, which increase temperature and thus
[H+]. These temperature increases are dampened by reductions in convective mixing from the
nonlocal KPP parameterization, which normally offsets the air-sea heat loss in the subtropics.
In the mid-to-high latitudes, we find positive anomalies in the vertical mixing and diffusion
of temperature to be the main driver of the buildup of [H+] extremes, either due to reduced
heat loss to the subsurface or due to increased upward heat transport from the subsurface. In
the equatorial Pacific, event buildup is mainly driven by advection of CT. The decay of [H+]
extreme events is predominantly caused by reductions in CT due to outgassing of carbon to
the atmosphere. Furthermore, increased heat losses to the atmosphere in the subtropics and
enhanced biological production in the tropics contribute substantially to [H+] extreme event decay.

The main results of Chapters 3 - 5 are summarized and discussed in Chapter 6. Caveats of
the analyses are listed and an outlook on potential future projects is given.
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Chapter 1

Introduction

In this thesis, extreme events in ocean acidity (quantified by [H+] or pH) and related oceanic
carbonate system variables are analyzed. In addition, compound extreme events in ocean
acidity and temperature are investigated. The changes in these extremes under anthropogenic
climate change and co-occurring ocean acidification are discussed. Chapter 1 provides the basic
knowledge that is necessary for the remainder of this thesis.
Sect. 1.1 introduces the global carbon cycle and its role in the climate system. The chemical
properties of inorganic carbon in the ocean and the biogeochemical processes that drive variations
in inorganic carbon are discussed in detail in Sect. 1.2, as these are of fundamental importance for
the oceanic acid-base state. Ocean acidification, the shift towards more acidic ocean conditions
due to the oceanic uptake of anthropogenic CO2 emissions, and its biological implications are
discussed in Sect. 1.3. Finally, extreme events in ocean acidity and related carbonate chemistry
variables are introduced and the current state of the research on these events is resumed in
Sect. 1.4.

1.1 The global carbon cycle and its role in the climate system

Carbon is exchanged in large quantities between the ocean, atmosphere, and land (Fig. 1.1). By
far the most carbon (38 000 GtC (gigatons or billion tons of carbon); Ciais et al., 2013) is stored
in inorganic molecules in the ocean, mainly in bicarbonate and carbonate ions (Sect. 1.2.1).
Substantial, although much smaller amounts of carbon are also stored as dissolved organic carbon
in the ocean (700 GtC; Ciais et al., 2013). Carbon in the ocean is predominantly located in the
intermediate and deep ocean (about 97 % of total oceanic carbon; Siegenthaler & Sarmiento,
1993). Compared to the large reservoir size, the exchange of oceanic carbon with the atmosphere
by air-sea gas exchange is relatively small, making the ocean a long-term storage that adjusts to
changes in atmospheric carbon only on timescales of centuries and millennia (Joos et al., 2013).

In the atmosphere, carbon is mainly stored as carbon dioxide (CO2), while other forms such
as methane (CH4) or carbon monoxide (CO) account for less than one percent of atmospheric
carbon (Ciais et al., 2013). At preindustrial times (around year 1750), about 589 GtC were stored
in the atmosphere (Ciais et al., 2013). The atmospheric carbon reservoir is thus much smaller
than the oceanic carbon reservoir (1.5 % of the oceanic reservoir at preindustrial times). Gross
fluxes between atmosphere and land (soils and vegetation) are similarly large than those between
atmosphere and ocean (120 GtC per year and 90 GtC, respectively (Fig. 1.1); Ciais et al., 2013).
Atmosphere-land exchange fluxes are caused by photosynthetic uptake of CO2 in plants and
by release of carbon from autotrophic respiration in plants and heterotrophic respiration in
soils. A smaller amount of carbon is also exchanged between land and ocean through river
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runoff. On timescales of several millennia to hundreds of thousands of years, carbon variations
due to other processes like sedimentation on the ocean floor and rock weathering also become
important (Jeltsch-Thömmes & Joos, 2020).

Figure 1.1: A scheme of the reservoirs of carbon in the global carbon cycle (circles; numbers in GtC, gigatons of
carbon) and the fluxes between these reservoirs (arrows; in GtC per year). Thin arrows indicate gross fluxes
between the reservoirs and thick arrows indicate net changes in the reservoirs due to anthropogenic perturbation.
The figure is taken from Friedlingstein et al. (2020). The atmospheric carbon reservoir is given for present-day
conditions and thus differs from that reported in the text for preindustrial times.

The natural carbon cycle has been substantially perturbed since the industrialization. Since
1850, the atmospheric concentration of CO2 has risen by about 45 % (Friedlingstein et al., 2020)
from around 285 parts per million volume (volumetric mixing ratio, ppmv) to 412 ppmv in year
2020 (Friedlingstein et al., 2020). This increase in atmospheric CO2 is caused by CO2 emissions
from fossil fuel combustion (68 % of total emissions) and land use change, which is mainly due to
deforestation (32 % of total emissions; Friedlingstein et al., 2020). At present-day, emissions
from land use changes are less important compared to fossil fuel emissions. For example for
the year 2019, the contribution from land use change emissions to total emissions was only
16 % (Friedlingstein et al., 2020).
This increase in atmospheric CO2 has also caused an imbalance in the naturally occurring
exchange fluxes between the carbon reservoirs (thin arrows in Fig. 1.1), resulting in net
carbon fluxes from the atmosphere into the ocean (around 2.5 PgC per year in the last decade;
Friedlingstein et al., 2020) and land (3.4 PgC per year; thick arrows in Fig. 1.1). About 41 % of
the anthropogenic carbon emissions since 1850 have stayed in the atmosphere. Around 32 % of
the carbon emissions have been taken up by the land vegetation and soils, and around 25 % have
been dissolved in the oceans (Friedlingstein et al., 2020). During the 21st century, atmospheric
CO2 concentrations are expected to further increase1. Under the ’middle of the road’ shared
socio-economic pathway SSP2-4.5, atmospheric CO2 increases to 603 ppmv by 2100 (Meinshausen
et al., 2020). However, atmospheric CO2 may also be much higher at that time, such as 867 ppmv

1Only under the low-end greenhouse gas emission scenario SSP1-1.9, the atmospheric CO2 concentration is lower
in year 2100 than it is today (Meinshausen et al., 2020).
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under the medium-to-high emission scenario SSP3-7.0 (Meinshausen et al., 2020). Land and
ocean are also projected to take up more carbon under scenarios with higher emissions, although
the fraction of carbon that remains in the atmosphere is projected to be higher under scenarios
with higher emissions (Masson-Delmotte et al., 2021). The concentration of the greenhouse gas
CO2 is of immediate importance for global warming.

The greenhouse effect is based on a partial absorption of the thermal radiation that is
emitted by the Earth’s surface by gases in the atmosphere. A part of the absorbed radiation
is emitted back to the surface, resulting in higher surface temperatures. Most of the natural
greenhouse effect is caused by water vapor. Yet, the greenhouse effect from increasing concen-
trations in CO2 is the main driver of anthropogenic climate change (Masson-Delmotte et al., 2021).

The increase in atmospheric CO2 concentration ([CO2]) causes a radiative imbalance between
incoming shortwave (mainly visible and ultraviolet) solar radiation and the outgoing longwave
(mainly infrared) radiation. This radiative imbalance, referred to as radiative forcing, causes an
increase in atmospheric temperatures until a new equilibrium between incoming and outgoing
radiation is reached. The radiative forcing of CO2 was approximated by Myhre et al. (1998) as

RF (CO2) ' 5.35W m−2 ln
[CO2]

[CO2]0
, (1.1)

growing logarithmically with the ratio between atmospheric CO2 concentration and a preindustrial
reference concentration [CO2]0. The logarithmic growth reflects that less additional longwave
radiation is absorbed by a CO2 molecule if [CO2] is already high. The radiative forcing from a
doubling of [CO2] is 3.7 W m−2.

Treating the Earth as a black body that emits longwave radiation at an effective radiation
temperature T , the difference between incoming and outgoing radiation per unit area (h) is zero
in equilibrium,

0 = h =
S0

4
(1− α)− σT 4, (1.2)

with the planetary albedo α that specifies the proportion of reflected incoming shortwave
radiation, for example due to polar ice caps, the solar constant S0 = 1367 W m−2, and the
Stefan Boltzmann constant σ = 5.67 · 10−8W m−2 K−4. Adding the radiative forcing to the
energy balance, T must increase to some extent (the temperature change is denoted by ∆T) to
compensate the radiative forcing by increased outgoing longwave radiation. Under the new
equilibrium, it is

0 = ∆h+RF ' ∂h

∂T︸︷︷︸
λ

∆T +RF, (1.3)

with the climate feedback parameter λ = ∂h
∂T . Assuming a constant albedo α = 0.3 and using

Eq. (1.2), it is λ = 3.8 W m−2K−1 and the increase in temperature (Eq. 1.3) is here thus 1 °C.
However, positive feedback factors in λ, such as from a decrease in albedo α with temperature or
the water vapor feedback, have been neglected here. The current best estimate for the equilibrium
temperature change due to a doubling in atmospheric [CO2] is 3 °C with a likely range of 2.5 °C
to 4 °C (Masson-Delmotte et al., 2021).
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1.2 The ocean’s carbonate chemistry and biogeochemistry

1.2.1 Oceanic carbonate chemistry

When seawater is in equilibrium with the atmosphere that contains CO2, there will be an
equilibrium between CO2 in the gas phase and aqueous CO2 in the solution. Aqueous CO2

reacts with H2O to form carbonic acid H2CO3. Since the two species are hard to separate
experimentally, they are usually combined, here denoted by H2CO∗3 (Sarmiento & Gruber, 2006).
The concentration of aqueous CO2 and H2CO3 ([H2CO∗3], concentrations in mole per kg solution
are denoted by square brackets) at a given partial pressure of CO2 in the atmosphere, pCO2, is
given by

[H2CO∗3] = K0 · pCO2, (1.4)

with K0 the solubility of CO2 that follows Henry’s law (Henry & Banks, 1803). The solubility of
CO2 (Eq. 1.4) decreases with temperature (Fig. 1.2a) and to a lesser extent also with salinity
(Fig. 1.2b).

Carbonic acid, a weak acid, dissociates to some extent into its conjugate bases, bicarbonate
ions HCO−3 and carbonate ions CO2−

3 , thereby increasing the hydrogen ion concentration2 [H+]
and hence the acidity of seawater. These reactions are given by

H2CO∗3 −−⇀↽−− HCO−3 + H+

HCO−3 −−⇀↽−− CO2−
3 + H+.

(1.5)

The dissociation constants for these reactions, which result from the law of mass action, are

K1 =
[HCO−3 ][H+]

[H2CO∗3]

K2 =
[CO2−

3 ][H+]

[HCO−3 ]
.

(1.6)
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Figure 1.2: a) The temperature dependence of CO2 solubility (following Weiss (1974); left axis in blue) and the
dissociation constants of carbonic acid (following Lueker et al. (2000); right axis in red) at salinity S=35 PSU. K2

is smaller than K1 by a factor 1000. b) The salinity dependence of CO2 solubility (left axis in blue) and the
dissociation constants of carbonic acid (right axis in red) at T=15 °C.

The dissociation constants of carbonic acid (Eq. 1.6) increase with temperature and to a
lesser extent with salinity (Fig. 1.2). The reason for the salinity dependence is that we here
use concentrations instead of ion activities to describe the chemical equilibria. The difference

2The hydrogen ion H+ is equivalent to a free proton. In this thesis, the term hydrogen ion is used.
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between concentration and activity increases with the amount of ions in the solution, resulting
in a salinity dependence of the dissociation constants (Zeebe & Wolf-Gladrow, 2001). The
dissociation constants also depend on pressure (Millero, 1979, 1995). However, the effect of
pressure variations is relatively small in the surface ocean (Zeebe & Wolf-Gladrow, 2001).

Dissolved inorganic carbon, CT, the total concentration of carbonic species, is given by

CT = [H2CO∗3] + [HCO−3 ] + [CO2−
3 ]. (1.7)

At fixed temperature and salinity, the contributions of the carbonic species H2CO∗3, HCO−3 ,
and CO2−

3 to CT depend on [H+], or equivalently pH, which is defined as pH= − log[H+]. The
relative contributions of H2CO∗3, HCO−3 , and CO2−

3 to CT over the pH range observed in the
open surface ocean are shown in Fig. 1.3. The relative contribution of carbonate ions (CO2−

3 ) to
CT decreases strongly with decreasing pH (increasing [H+]), while the relative contributions of
H2CO∗3 and HCO−3 increase with decreasing pH.

Relative contributions to CT
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Figure 1.3: The relative contributions of carbonic acid and aqueous CO2 ([H2CO∗3]), bicarbonate ions ([HCO−3 ]),
and carbonate ions ([CO2−

3 ]) to dissolved inorganic carbon (CT) as a function of seawater pH for fixed temperature
T=15 °C and salinity S=35. The result was calculated from Eq. 1.6 using the dissociation constants K1 and K2

from Lueker et al. (2000). [HCO−3 ] (blue) is displayed relative to the left axis and [H2CO∗3] and [CO2−
3 ] (red) use

the right axis. Furthermore, the present-day global average surface ocean pH (around 8.06; Jiang et al., 2019;
Rhein et al., 2013) as well as preindustrial surface ocean pH (around 8.17; Rhein et al., 2013) are indicated.

The hydrogen ion concentration [H+] increases with temperature and salinity due to the
temperature and salinity dependence of the dissociation constants (Fig. 1.2). It also depends on
the amount of dissolved inorganic carbon (CT). However, the effect on [H+] from a change in CT

depends on which of the three carbonate species changes. An increase in [H2CO∗3], for example,
leads to an increase in [H+] due to the dissociation of H2CO∗3 (Eq. 1.5). In contrast, an increase
in [CO2−

3 ] results in the reverse reaction where H+ is bound by CO2−
3 . Thus, [H+] also depends

on the concentration of bases such as CO2−
3 that may bind H+ ions and thereby reduce [H+].

The excess of bases over acids, which may release H+ in a solution, is quantified by total alkalinity
AT (Dickson & Goyet, 1994). Within the carbonate system, alkalinity results from CO2−

3 that
may bind two H+ ions and HCO−3 that may bind one H+ ion. Hence, carbonate alkalinity is

Acarb = [HCO−3 ] + 2 [CO2−
3 ]. (1.8)
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Carbonate alkalinity Acarb is responsible for about 95 % of AT (Sarmiento & Gruber, 2006).
Other contributions are due to the self-dissociation of water, the dissociation of boric, silicic,
phosphoric, and hydrofluoric acids, as well as due to ammonia and hydrosulfide ions (Dickson &
Goyet, 1994)

AT =[HCO−3 ] + 2 [CO2−
3 ] + [B(OH)−4 ] + [OH−] + [HPO2−

4 ] + 2 [PO3−
4 ]

+ [SiO(OH)−3 ] + [NH3] + [HS−]− [H+]− [HF]− [H3PO4].
(1.9)

Total alkalinity and dissolved inorganic carbon themselves are conservative quantities that
are independent of changes in salinity or temperature. They are thus well suited to characterize
the state of the carbonate system along with temperature and salinity. An increase in CT under
constant AT, such as when CO2 dissolves in seawater (Eq. 1.4), results in an increase in [H+].
However, [H+] can also be reduced when CT changes co-occur with AT changes, for example
when calcium carbonate minerals dissolve and release CO2−

3 , increasing AT twice as much as CT.

A simple analytical approximation of [H+] can be given when approximating AT by Acarb

and when assuming [H2CO∗3], which globally contributes less than 1 % to surface ocean CT under
present-day conditions (Fig. 1.3), to be zero (Sarmiento & Gruber, 2006). Based on Eqs. 1.6-1.8,
one obtains

[H+] ' K2(T, S) · 2 CT/AT − 1

1− CT/AT
. (1.10)

Under this approximation, [H+] is proportional to K2, which is increasing more than linearly
with temperature (Fig. 1.2a). Furthermore, it is a function of the ratio between CT and AT. It
increases when a relative change in CT is larger than a co-occurring relative change in AT and
else decreases. This approximation is not suited for cases in which the contribution of [H2CO∗3]
to CT is not negligible (assumed to be zero in Eq. (1.10)). In that case, CT approaches Acarb.
The balance between AT and CT is then also more sensitive to the other contributors to AT that
were omitted in Eq. (1.10).

[H+] and pH are defined with respect to different scales. In this thesis, [H+] and pH are
defined with respect to the total scale (Dickson, 1984), where [H+] consists of free hydrogen ions
(that bond to water molecules to form H3O+ and H9O+

4 (Dickson, 1984)) and hydrogen sulfate ions.

The cycling of calcium carbonate in the ocean is an important contributor to variations in
oceanic carbonate chemistry and plays a major role for calcifying organisms that build shell
structures from calcium carbonate. Calcium carbonate minerals such as aragonite or calcite in
the ocean are formed from calcium ions (Ca2+) and carbonate ions (CO2−

3 ). In the reversed
process, when CaCO3 minerals dissolve in seawater, calcium and carbonate ions are released.
The calcium carbonate saturation state Ω quantifies whether mineral formation or mineral
dissolution is favored. It is defined as the product of [Ca2+] and [CO2−

3 ] divided by the solubility
product Ksp = [Ca2+]sat · [CO2−

3 ]sat, i.e. the product of the two concentrations in equilibrium
with mineral CaCO3:

Ω =
[Ca2+] · [CO2−

3 ]

[Ca2+]sat · [CO2−
3 ]sat

. (1.11)

CaCO3 mineral formation is favored when Ω > 1 (supersaturated waters) and CaCO3 mineral
dissolution is favored when Ω < 1 (undersaturated waters). [Ca2+] is abundant in the open ocean
and spatial changes in [Ca2+] are on the order of one or two percent (Broecker & Peng, 1982).
As a result, Ω can be approximated by the carbonate ion concentration relative to the saturation
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concentration [CO2−
3 ]sat (when mineral formation and dissolution are in equilibrium). The

saturation concentration [CO2−
3 ]sat decreases with temperature and it increases with pressure

(mainly determined by depth) and salinity. The solubility of CaCO3 minerals and hence the
saturation concentration for CO2−

3 depends on the mineral type, most often aragonite or calcite.
In this thesis, the saturation state for the less-stable aragonite minerals is analyzed,

ΩA '
[CO2−

3 ]

[CO2−
3 ]sat,A

. (1.12)

In the surface ocean, ΩA mostly depends on the carbonate ion concentration [CO2−
3 ]. Again

assuming [H2CO∗3] to be negligible (such as under a preindustrial climate in the surface ocean)
and assuming AT to equal Acarb (Eq. 1.8), one obtains

[CO2−
3 ] ' AT − CT. (1.13)

1.2.2 Ocean biogeochemistry

In the previous section, dissolved inorganic carbon (CT), total alkalinity (AT), temperature (T),
and to a lesser extent salinity (S) have been shown to drive variations in carbonate chemistry
variables and ocean acidity. This section discusses the regional differences and vertical gradients
in these driving variables and how these cause regional differences and vertical gradients in
carbonate chemistry variables like [H+] and ΩA.

Dissolved inorganic carbon is generally increased in high latitude regions relative to the low
latitudes (Fig. 1.4a). The main reason is that the solubility of CO2 in seawater increases with
decreasing temperature (Fig. 1.2a) and is thus highest in the high latitudes where surface ocean
temperatures are close to or below 0 °C (Fig. 1.4c). For example, a low-latitude water parcel
with a temperature of 25 °C, alkalinity of 2325µmol kg−1, and salinity of 35 PSU in equilibrium
with the atmosphere with 360µatm CO2 partial pressure has a dissolved inorganic carbon
concentration of around 2000µmol kg−1. Dissolved inorganic carbon concentration is increased
by more than 150µmol kg−1 when the same water parcel is moved to a high-latitude region with
5 °C water temperature3. Observed gradients between low and high latitude regions are often
smaller because seawater and the atmosphere are usually not in equilibrium. Equilibration time
is long for CO2 compared to other gases, because the inorganic carbonate system acts as a buffer
for changes in [CO2]: most of the CO2 that enters the ocean dissociates into bicarbonate and
carbonate ions, prolonging the time until [CO2] reaches an equilibrium concentration (Orr, 2011).
Equilibrium CT also varies with alkalinity (Fig. 1.2b). A decrease in AT by 50µmol kg−1 in the
aforementioned high-latitude water parcel results in a decrease in equilibrium CT by more than
40µmol kg−1. Salinity and alkalinity (which closely resembles the pattern of surface salinity
(Figs. 1.4b vs. 1.4d)) tend to be lower in high latitude regions compared to subtropical regions,
because precipitation is dominant in high latitudes while evaporation is stronger in subtropical
regions.

A clear latitudinal gradient is also apparent in the ratio of CT to AT and likewise in the
difference between AT and CT (Figs. 1.4g, h). [H+] and ΩA are sensitive to the proportions of
CT and AT, for example to the ratio of CT to AT (approximated [H+]; Eq. 1.10) or to the
difference between AT and CT (approximated [CO2−

3 ]; Eq. 1.13). The aragonite saturation state
ΩA (Eq. 1.12) in the surface ocean is mostly determined by CT and AT. It is decreased in

3calculated with the mocsy 2.0 carbonate chemistry package (Orr & Epitalon, 2015). Total silicate concentration
was set to 7.35µmol kg−1 and total phosphate concentration was chosen as 0.63µmol kg−1.
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Figure 1.4: Spatial maps for surface a) dissolved inorganic carbon CT, b) total alkalinity AT, c) temperature, d)
salinity, e) hydrogen ion concentration [H+], f) aragonite saturation state ΩA, g) the ratio of CT to AT, and h) the
difference between AT and CT. The spatial maps show surface data from the Global Ocean Data Analysis Project,
Version 2 (GLODAPv2 ; Key et al., 2015).

regions where the difference between AT and CT is small like in the high latitudes (compare
Figs. 1.4f and h). [H+], in contrast, is also sensitive to differences in temperature. The latitudinal
gradients in CT to AT ratio and in temperature (Figs. 1.4c, g) oppose each other. As a result,
smaller latitudinal differences are observed for [H+] (Figs. 1.4e).

The driving variables not only vary between regions but also within the water column. Large
vertical gradients in CT, AT, T, S are observed. Temperature decreases with depth (Fig. 1.5c),
because seawater density is in most ocean regions controlled by temperature. Warmer and lighter
water floats on top of colder and heavier water.

Dissolved inorganic carbon (CT) and to a lesser extent total alkalinity (AT) increase with
depth because of three mechanisms, the soft tissue pump, the carbonate pump, and the gas
exchange pump, which only acts on CT (Sarmiento & Gruber, 2006). When organic ’soft-tissue’
matter is formed through photosynthesis in the photic zone of the ocean, carbon dioxide and
organic nutrients such as nitrate and ammonium are consumed (Sarmiento & Gruber, 2006).
As a result, CT is reduced in the surface ocean. Furthermore, alkalinity is increased under
nitrate-based production and decreased under ammonium-based production (Brewer & Goldman,
1976). When dead organic material sinks in the water column, it is remineralized. Therefore,
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Figure 1.5: Globally averaged depth profiles for a) dissolved inorganic carbon (CT), b) total alkalinity (AT), c)
temperature, d) salinity, e) hydrogen ion concentration ([H+]), and f) aragonite saturation state (ΩA). The vertical
profiles show data from the Global Ocean Data Analysis Project, Version 2 (GLODAPv2 ; Key et al., 2015).

CT and AT undergo the opposite changes as during organic matter production, resulting in
increasing CT at subsurface (Fig. 1.5a). Remineralization of organic matter occurs mainly in the
main thermocline above 1000 m depth (Sarmiento & Gruber, 2006).

Due to biogenic calcification, i.e., the biological formation of CaCO3 minerals, AT and CT are
decreased in the ratio 2:1. When organic material that is ballasted with biogenic CaCO3 sinks
below the calcium carbonate saturation horizon (gray dashed line in Fig. 1.5f), dissolution of bio-
genic CaCO3 results in an increase in AT and CT in the ratio 2:1, i.e. driving larger increases in AT

than in CT (compare Figs. 1.5a, b). These increases in AT due to the carbonate pump occur mainly
below 1000 m depth where waters are undersaturated with respect to calcium carbonate (Fig. 1.5f).

The gas exchange pump influences CT but not AT. It arises because deep and bottom water
formation occurs in high-latitude oceans. In these cold waters, the solubility of CO2 is larger
than in low-latitude regions (Fig. 1.2a), resulting in larger CT concentrations (Fig. 1.4d) that are
transported to the subsurface by deep and bottom water formation.

Freshwater fluxes, such as due to evaporation and precipitation, cause changes in salinity
as well as in AT and CT. A comparison of Figs. 1.5a, b and Fig. 1.5d shows that the verti-
cal profile of AT is generally more similar to that of salinity compared to the vertical profile of CT.

Hydrogen ion concentration ([H+]) increases with depth until a depth of about 1000 m
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(Fig. 1.5e). There, the ratio between CT and AT starts to decrease again with depth, causing
also a decrease in [H+] (see simplified expression in Eq. (1.10)). The aragonite saturation state
monotonically decreases with depth despite the larger increases in AT below 1000 m depth,
because the saturation concentration for [CO2−

3 ] increases with pressure and thus with depth (see
Eq. (1.12)).

1.3 Ocean acidification

1.3.1 Changes in oceanic carbonate chemistry with the uptake of anthro-
pogenic CO2

In addition to driving global warming, anthropogenic CO2 also causes ocean acidification, often
called the other CO2 problem (Doney et al., 2009). Since 1850, about 165 billion tons of carbon
(25 % of anthropogenic carbon emissions since then; Sect. 1.1) have entered the ocean. Despite
the large natural inorganic carbon pool, this invasion of anthropogenic carbon has substantially
altered the dissolved inorganic carbon concentrations in the ocean. If the perturbation of these
165 GtC were homogeneously distributed over the mass of ocean water (about 1.4·1021 kg; Clark,
1982), dissolved inorganic carbon would increase everywhere by about 10µmol kg−1. However,
this is not the case. While the surface ocean closely follows the atmospheric perturbation in CO2,
the transport of anthropogenic carbon to the deep ocean takes long times.

Figure 1.6: Zonal-mean vertical sections for the change in anthropogenic carbon between 1994 and 2007 in the
Atlantic, the Pacific, and the Indian Ocean. The figure is taken from Gruber et al. (2019).

In the previous section, it has been discussed that water formation from surface waters in
high latitude regions is an important mechanism for sustaining the natural vertical gradient in
CT. Water formation is also important for transporting anthropogenic carbon to the interior
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ocean. The age of water masses, i.e., the time span since a water mass was formed at the
surface4, varies between decades and centuries for mode and intermediate waters (Talley et al.,
2011; Gruber et al., 2019) and multiple centuries to millennia for deep waters in the North
Pacific (Matsumoto, 2007). In consequence, it takes a long time until anthropogenic carbon is
transported to the deep ocean, and only comparably little anthropogenic carbon has invaded
the deep ocean yet. Based on global estimates from the Global Ocean Data Analysis Project,
Version 2 (GLODAPv2 ; Key et al., 2015), anthropogenic carbon has globally increased surface
ocean CT by 56µmol kg−1. The increase in CT due to anthropogenic carbon becomes smaller
with depth, being 40µmol kg−1 at 200 m, 10µmol kg−1 at 1000 m, and 4µmol kg−1 at 2000 m
depth. Vertical sections of the changes in anthropogenic carbon between 1994 and 2007 in
the Atlantic, Pacific, and Indian Ocean are depicted in Fig. 1.6, showing large increases in
anthropogenic carbon in subtropical mode waters and also a substantial anthropogenic signal in
the comparably young North Atlantic Deep Water.

The uptake of anthropogenic carbon dioxide by the ocean increases dissolved inorganic
carbon concentrations in the ocean while not directly altering alkalinity (compare definitions of
CT and AT; Eqs. 1.7 and 1.9). As a result, it substantially alters the relative proportions of CT

and AT (Fig. 1.4) and strongly influences oceanic carbonate chemistry and acidity. Hydrogen ion
concentration [H+] is increased, because most of the invading anthropogenic CO2, which increases
CT, forms carbonic acid and dissociates into bicarbonate ions (HCO−3 ) and H+, increasing both
[HCO−3 ] and [H+]. A large part of the [H+] increase is buffered by the reaction of CO2−

3 with H+

to HCO−3 (Orr, 2011). The H+ ions that are not neutralized by the reaction with CO2−
3 increase

[H+] and lower pH (pH= −log[H+]). It is estimated that surface ocean pH has globally dropped
by about 0.11 units between 1770 and 2000 (Jiang et al., 2019, indicated in Fig. 1.3). The decrease
in pH by 0.11 from a preindustrial level of around 8.17 corresponds to a 29 % increase in [H+]5.
The decrease in [H+] is larger in high-latitude waters. For example, the decrease in pH between
year 1770 and year 2000 in the Arctic Ocean is estimated to be about 0.16 (Jiang et al., 2019).
This is because changes in [H+] are more buffered by the reaction with CO2−

3 when [CO2−
3 ] is high.

Carbonate ion concentration is well approximated by the difference between AT and CT (Eq. 1.13),
which is much lower in high-latitude regions compared to low-latitude regions (Fig. 1.4h). The
increase in [H+] and the decrease in pH due to an increase in CT is thus larger in the high latitudes.

The neutralization of H+ by CO2−
3 also decreases [CO2−

3 ] and hence reduces ΩA (Eq. 1.12).
Since preindustrial times, surface ocean [CO2−

3 ] has decreased globally by more than 10 % (Orr
et al., 2005). The decrease in [CO2−

3 ] and ΩA is larger in low latitude regions compared to high
latitude regions (Orr et al., 2005), consistent with the stronger buffering of [H+] changes by
CO2−

3 there. However, ΩA is naturally much lower in high-latitude oceans (Fig. 1.4f). These
are thus most prone to transition from supersaturated conditions (ΩA> 1) to undersaturated
conditions (ΩA< 1) due to the decline in [CO2−

3 ] with ocean acidification, impacting calcifying
organisms that rely on aragonite shells.

1.3.2 Impacts of ocean acidification on marine organisms

The knowledge on the biological implications of ocean acidification has much expanded in recent
years (Doney et al., 2020). Vulnerabilities vary between species, life stages, and in some cases
also populations, complicating a general assessment of impacts from ocean acidification on

4Ocean age can be determined, for example, from the concentration of radiocarbon (14C), which is mainly
produced in the atmosphere and decays with a half-life of around 5700 y.

5Ocean acidification characterizes the shift towards more acidic conditions in the ocean, but the ocean remains
slightly basic in the foreseeable future, despite the substantial decreases in basicity with ocean acidification.
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marine organisms (Doney et al., 2020). However, calcifying invertebrates are overall found to be
most vulnerable (Doney et al., 2020).

In general, marine organisms critically depend on a stable pH within their cells and also
in extracellular fluids. To ensure a stable acid-base state, organisms regulate their internal
pH through a variety of mechanisms (Claiborne et al., 2002), such as through respiratory
compensation, where excretion of CO2 is stimulated through increased respiration, or through
ion transport, for example by Na+/H+ exchange (Perry & Gilmour, 2006). When the capacity
to sustain internal pH under low environmental pH through acid-base regulation is exceeded,
organism suffer from acidosis, impairing physiological processes such as enzyme activity and
protein synthesis. It is expected that marine invertebrates are most sensitive to ocean acidification
because of their limited capacity for acid-base regulation (Pörtner, 2008), including mollusks like
pteropods (Bednaršek et al., 2012), echinoderms (Miles et al., 2007), bryozoa, and cnidaria (Knoll
et al., 2007; Pörtner, 2008). These hypometabolic organisms may not be able to afford the
energetic costs of acid-base regulation due to insufficient energy budgets (Bednaršek et al.,
2018), in particular when food supply is limited. Insufficient energetic supply under ocean
acidification may also trigger metabolic suppression, with negative impacts on growth and
reproduction (Seibel et al., 2012).

Furthermore, these species are calcifiers that build calcium carbonate shells. Biogenic
calcification is limited by the availability of carbonate ions, which is reduced under ocean
acidification. In consequence, a reduction in calcification is expected. Furthermore, waters with
Ω < 1 are corrosive for calcium carbonate shells, such as those of pteropods (Bednaršek et al.,
2012). Consequently, shells that are in contact with the surrounding seawater are damaged by
shell dissolution6. Organisms have been shown to repair shell structures that are damaged by
dissolution (Peck et al., 2018). However, such repair calcification is energetically demanding and
may thus not be possible (Lischka & Riebesell, 2017). Decreases in ΩA have also been shown to
threaten coral reefs by dissolution of the underlying reef sediments already at a relatively high
value of ΩA of 2.92± 0.16 (Eyre et al., 2018).

Marine fish may be less affected by ocean acidification due to a higher capacity for acid base
regulation compared to many invertebrates (Pörtner et al., 2011; Heuer & Grosell, 2014). However,
studies suggest potential behavioral (Munday et al., 2014) and olfactory (Nilsson et al., 2012)
impairments in fish under ocean acidification, possibly because neurotransmitter functionality is
affected by changes in [Cl−] and [HCO−3 ] as a result of acid base regulation (Chivers et al., 2014).
Yet, these results are currently debated (Clark et al., 2020; Munday et al., 2020). Other currently
investigated impacts on fish concern, for example, otolith growth (a CaCO3 structure in the ear
necessary for balance), mitochondrial metabolism, and aerobic scope (Heuer & Grosell, 2014;
Doney et al., 2020).

Ocean acidification can be beneficial to phytoplankton, because the efficiency of photosynthesis
depends on the availability of CO2 in seawater. Consequently, ocean acidification can stimulate
phytoplankton growth (Tortell et al., 2008).

The impacts of ocean acidification on organisms generally depend on an organisms life stage,
often with increased sensitivity in early life stages such as for larvae and juveniles (Kroeker et al.,

6Depending on the calcifying species, shells consist of the calcium carbonate mineral calcite or aragonite, which differ
in their solubility. Aragonite shells dissolve already under less acidic conditions compared to calcite shells (Orr
et al., 2005). However, the link between species survival and mineral solubility has been questioned (Busch &
McElhany, 2017).
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2013; Bednaršek et al., 2019). Also, food web interactions between species can cause cascading
effects in ecosystems under ocean acidification (Spisla et al., 2021). The impacts of ocean
acidification may be reinforced by co-occurring changes in other environmental stressors. For
example, ocean warming may impair organismal performance under ocean acidification (Bednaršek
et al., 2018), in particular under limited food availability (Lischka & Riebesell, 2017).

1.4 Extreme events in ocean acidity

The study of ocean acidification is a relatively new field of science (Gattuso & Hansson, 2011).
Nonetheless, the long-term changes in carbonate chemistry variables like [H+] and Ω under
climate change are relatively well understood (Orr et al., 2005; Steinacher et al., 2009). Much less
is known about the temporal variability in these variables, including the occurrence of extreme
departures from normal conditions and potential future changes in such extreme variations.

Seasonal variations in carbonate chemistry variables have been shown to contribute signifi-
cantly to the occurrence of the detrimental conditions for marine organisms that were discussed
in Sect. 1.3.2. For example, surface waters in the Southern Ocean are expected to become
undersaturated with respect to aragonite and calcite during wintertime [CO2−

3 ] minima already
decades before annual mean conditions will become corrosive to these minerals (McNeil & Matear,
2008). Similarly, hypercapnia (when seawater pCO2 exceeds 1000µatm) is projected to occur
much earlier in the 21th century during seasonal variations than in the annual mean (McNeil &
Sasse, 2016). Seasonal variations in [H+], pCO2, and ΩA will change significantly with the oceanic
uptake of anthropogenic carbon as a result of the nonlinearity of oceanic carbonate chemistry
(Sect. 1.2.1). The higher background CT concentration causes an amplification of seasonal
variations in [H+] (Kwiatkowski & Orr, 2018; Fassbender et al., 2018) and in pCO2 (McNeil &
Sasse, 2016; Landschützer et al., 2018), while seasonal variations in ΩA decrease (Kwiatkowski &
Orr, 2018).

Also, discrete events during which [H+] or pCO2 is much higher or ΩA is much lower than
usual may add to the stress experienced by marine organisms from ocean acidification. In general,
extremes are understood as events during which a variable is above (or below) a threshold value
near the upper (or lower) end of the range of observed values of the variable (Pörtner et al.,
2019). Such events are here referred to as ocean acidity extreme events or OAX events. It has
been shown that already several days of aragonite undersaturation can cause substantial shell
dissolution in pteropods (Bednaršek et al., 2014), corroborating the potential importance of
ocean acidity extremes for marine ecosystems. However, OAX events have barely been observed
in the ocean (Bednaršek et al., 2018), because direct measurements for [H+] or other carbonate
system variables are not available at the global scale and at high temporal resolution, as it is the
case for sea surface temperature based on satellite remote sensing (Reynolds et al., 2007). As a
result, very little is currently known about the magnitude, spatial extent, and duration of OAX
events in the global ocean. Furthermore, the driving mechanisms of these events have not yet
been assessed in most ocean regions.

Their counterparts for ocean temperature, so-called marine heatwaves or MHWs, have been
extensively studied in recent years (Hobday et al., 2016; Frölicher et al., 2018; Laufkötter et al.,
2020; Oliver et al., 2021) and are recognized as a major threat for marine ecosystems (Smale et al.,
2019; Hughes et al., 2017). Extreme events in multiple ecosystem stressors, like temperature and
[H+], may also occur at the same time and location. Such compound extreme events are of
particular concern because the impacts on organisms may be non-additive and larger than
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anticipated (Boyd & Brown, 2015; Gruber et al., 2021).

In this thesis, extremes in ocean acidity are analyzed for the first time at the global scale. In
Chapter 2, it is described how extremes are defined in this thesis and the extreme event metrics
used to characterize the events are introduced. High-[H+] extreme events and low-ΩA extremes
and their changes with ocean acidification and global warming are characterized in Chapter 3.
Compound extremes in temperature and [H+], here referred to as MHW-OAX events, and
changes in their occurrence with ocean acidification and warming are analyzed in Chapter 4.
The driving processes of [H+] extreme events are discussed in Chapter 5.
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Pörtner, H., 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view,
Marine Ecology Progress Series, 373, 203–217.
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Chapter 2

Methods

2.1 GFDL ESM2M Earth system model

The simulations used in this thesis were run with the fully coupled Earth system model GFDL
ESM2M (Dunne et al., 2012), which was released in 2012. The model was developed at the
Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton as the successor of the GFDL
CM2.1 global circulation model (Delworth et al., 2006). While simulating similar climate
characteristics as CM2.1 (Dunne et al., 2012), ESM2M also explicitly simulates the cycling
of carbon in the Earth system (Dunne et al., 2013), which makes it one of the first publicly
available Earth system models developed at GFDL1.
The GFDL ESM2M model consists of model components for the ocean, sea ice, atmosphere, and
land. The ocean component also includes ocean biogeochemistry. The coupler program handles
fluxes between these components. Fluxes are interpolated between the grids of the components
so that energy, mass, and tracer mass is conserved while cycling between the components. The
ocean component was run with a time step of two hours. Also fluxes between the ocean and
sea ice components were exchanged using a two-hour time step. Fluxes between ocean and
atmosphere and fluxes from the land to the ocean are handled on the same two-hour time
step, because these fluxes are passed through the ice model. Atmosphere, land, and sea ice
components used a faster 30-minute time step. A scheme summarizing the model components is
shown in Fig. 2.1.

2.1.1 Ocean component

The physical ocean state is simulated by the Modular Ocean Model version 4p1 (MOM4p1;
Griffies, 2009) with a nominal horizontal 1◦ degree resolution. The zonal resolution is increased up
to 1/3◦ near the equator. The horizontal grid is a tripolar grid with two poles north of 65◦ latitude
that are located over North America and Eurasia, respectively (Murray, 1996). The vertical
grid has 50 levels and a resolution of about 10 m in the upper 230 m of the water column. The
resolution decreases below and is about 300 m at 5000 m depth. Unlike for the time-independent
horizontal grid, vertical grid cell spacing is allowed to change with time to represent variations in
sea surface height. Using a rescaled vertical coordinate, sea surface height variations implicitly
adjust the vertical cell spacing throughout the water column (Griffies, 2009; Adcroft & Campin,
2004). MOM4p1 simulates the advection of physical and biogeochemical tracers that results from
the resolved velocity field using the MDPPM numerical scheme (Marshall et al., 1997). MOM4p1
includes parametrizations for unresolved eddy-induced advection on the mesoscale (Griffies, 1998)
and sub-mesoscale (Fox-Kemper et al., 2008). Furthermore, tracer fluxes from isopycnal (neutral)

1together with the very similar GFDL ESM2G model that only differs in the physical ocean component.
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• Growth limited by nutrients 
  (incl. Fe), light, and temperature
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• Mineral-driven sinking of detritus

Ocean biogeochemistry
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Production from ice
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  zation for convective moisture updraft
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  carbonaceous, dust, sea salt) and O3 fields
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• Five vegetation carbon pools (leaves, fine
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• Fire parametrization as function of drought
  index and biomass above ground  
• Prescribed anthropogenic land use changes
  transform fractions of grid cell area to pasture,
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  with different turnover rates

1Winton (2000); 2Anderson et al. (2004); 3Griffies (2009); 4Martin & Adcroft (2010); 5Dunne et al. (2013);
6Shevliakova et al. (2009)

Figure 2.1: Characteristics of the model components of the GFDL ESM2M model. Fluxes between these model
components are handled by the coupler.

and vertical (approximately dianeutral) diffusion are simulated. Vertical diffusion is represented
by a constant background diffusivity, the K-profile parameterization by Large et al. (1994)
representing vertical mixing in the ocean boundary layer, as well as tidal mixing (Lee et al., 2006;
Simmons et al., 2004). In addition, the nonlocal part of the K-profile parameterization for the
ocean boundary layer (Large et al., 1994) implements convective vertical mixing in the boundary
layer, which occurs under buoyancy loss of surface waters. More information on the model
parametrizations for vertical mixing is given in Chapter 5 and Vogt et al. (in preperation).

2.1.2 Ocean biogeochemical component

The ocean biogeochemistry is simulated by Tracers of Ocean Phytoplankton with Allometric
Zooplankton version two (TOPAZv2). It simulates the cycling of 30 biogeochemical tracers such
as carbon, nitrogen, phosphorus, silicon, iron, oxygen, alkalinity, and lithogenic material (see
supplement of Dunne et al., 2013). The uptake of nutrients such as nitrate, ammonium,
phosphate, iron, and silicate is simulated for three phytoplankton groups: small (prokaryotic pico-
and nanoplankton), large (further divided into diatoms other eukaryotes), and diazotrophic
phytoplankton (nitrogen fixing species). The growth of phytoplankton is limited by temperature
(Eppley, 1972), and by the availability of light and the aforementioned nutrients (more details in
the Appendix section of Frölicher et al., 2020). The diazotrophic phytoplankton group also fixes
N2 to form organic nitrogen. Stoichiometric phytoplankton phosphorus to nitrogen ratios are
allowed to vary with the environmental conditions (Klausmeier et al., 2004). Phytoplankton is lost
due to parameterized zooplankton grazing, transforming phytoplankton biomass into detritus and
dissolved organic material. Over time, detritus and dissolved organic material are remineralized,
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transforming the biogeochemical tracers back to their inorganic forms. Furthermore, the sinking
of detritus is simulated, depending on the ballast from biogenic calcium carbonate (calcite and
aragonite) or silica (opal). Finally, the formation of sediments from sinking detritus in the
bottom grid cell is simulated, also allowing for the cycling of surface sediment calcite. The
loss through sediment formation is balanced by an external input from rivers and atmospheric
dust. Alkalinity changes as a result of dissolution and formation of CaCO3 minerals, nitrate-
and ammonium-based biological production and remineralization, as well as nitrification and
denitrification.
Carbonate chemistry, depending on dissolved inorganic carbon, alkalinity, temperature, salinity,
phosphate, silicate, and pressure, and the air-sea CO2 exchange are based on the OCMIP2
recommendations (Najjar & Orr, 1998). The dissociation constants for carbonic acid and
bicarbonate are those from Dickson & Millero (1987), based on Mehrbach et al. (1973). The
solubility of carbon dioxide follows Weiss (1974). Air-sea CO2 exchange is simulated when surface
ocean CO2 concentration differs from a saturation concentration that depends on solubility of
carbon dioxide and fugacity of atmospheric CO2. Gas transfer velocity is determined by wind
speed and Schmidt number (Wanninkhof, 1992).

2.1.3 Other model components

The sea ice component (Winton, 2000) is on the same horizontal grid as the ocean component
and similar to that in CM2.1 (Delworth et al., 2006). Ice thermodynamics is simulated based on
a three-layer model with two ice layers (lower ice and upper ice) and one snow layer. Mass fluxes
between these vertical layers and the resulting layer thickness changes are taken into account.
Sea ice concentration is stored for five ice thickness classes.
The atmosphere component is version 2 of the Atmospheric Model (AM2; Anderson et al.,
2004) that was already used for CM2.1. It is on a grid with 2×2.5◦ horizontal resolution and
24 vertical pressure levels up to a height of about 40 km. The vertical resolution is increased
near the surface and comparably low in the stratosphere, which is only represented by five
pressure levels (Anderson et al., 2004). The radiative effects from H2O, CO2, O3, O2, N2O, CH4,
four chlorofluorocarbon (CFC) species, and different aerosol species (sulfate, hydrophylic and
hydrophobic carbonaceous, dust, sea salt) are considered. The diurnal cycle of solar insolation is
taken into account. Atmospheric physics includes a cumulus parameterization for convective
moisture updraft, liquid and ice clouds, vertical diffusion including a K-profile scheme, and
gravity wave drag. Atmospheric aerosols from non-volcanic and volcanic origin as well as ozone
are prescribed by external monthly-mean three-dimensional input fields. Furthermore, N2O, CH4,
and CFC concentrations are prescribed by global annual-mean time series.
The land component, given by the Land Model version 3.0 (LM3.0; Shevliakova et al., 2009),
simulates the cycling of water, both in liquid and frozen phase, energy, and carbon. It simulates
multi-layer soil dynamics for water and temperature and vegetation dynamics that include five
competing vegetation types: deciduous, coniferous, tropical trees, and warm and cold grasses. Five
vegetation carbon pools (leaves, fine roots, sapwood, heartwood, labile carbon stores) and two
soil carbon pools (with fast and slow exchange rates) are simulated. Vegetation change from fire
is implemented as a function of biomass above ground and a drought indicator. Anthropogenic
land use changes can be prescribed based on external input fields. These land use changes
drive transitions between the fractions of each grid cell that are covered by natural vegetation,
pasture, crop land, and secondary vegetation. River runoff and solid ice runoff to represent
land ice calving are simulated. For the latter, an iceberg model transports excess snow from
the land model as icebergs over the ocean domain. These are treated as Lagrangian particles
whose trajectory is determined from the interaction with the atmosphere, ocean, and sea ice
components (Martin & Adcroft, 2010).
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2.1.4 Model performance

Simulations by the ESM2M model contributed to the fifth phase of the Coupled Model In-
tercomparison Project (CMIP5; Taylor et al., 2012). ESM2M shows a relatively low bias in
simulated present-day global average sea surface temperature (SST) and similar spatial patterns
compared to observation-based data (Bopp et al., 2013). Similar to other CMIP5 generation
models, biases are larger for the spatial patterns in carbonate system variables, in particular
pH (Bopp et al., 2013). Globally, the GFDL-ESM2M model overestimates present-day net
primary productivity (NPP). It was found to simulate the largest NPP among CMIP5 Earth
system models (Bopp et al., 2013; Laufkötter et al., 2015). However, simulated export production
is relatively smaller (Bopp et al., 2013), and the ESM2M model shows comparably small biases
in the strength of the biological carbon pumps (Oka, 2020). ESM2M has also been shown to
simulate a cumulative oceanic uptake of anthropogenic carbon that is close to observational
estimates (Bronselaer et al., 2017) and acidification trends in mode and intermediate waters that
are comparable to those in the CMIP5 multi-model mean (Resplandy et al., 2013).
The equilibrium climate sensitivity, the equilibrium atmospheric near-surface temperature
increase from a doubling of CO2 with respect to preindustrial levels, was identified as as 3.3 K
(Paynter et al., 2018). This values was determined from a 4430 yr simulation with doubled
atmospheric CO2 that followed a ramp up simulation during which CO2 was increased from
the preindustrial concentration. The equilibrium climate sensitivity of the ESM2M model is
in agreement with observational estimates. Based on multiple lines of evidence, Sherwood
et al. (2020) estimate the Earth’s climate sensitivity to be between 2.6 K and 3.9 K with (66 %
confidence interval). Likewise, the sixth assessment report of the IPCC estimates equilibrium
climate sensitivity to be between 2.5 K and 4.0 K (likely range; Masson-Delmotte et al., 2021).
The ESM2M model simulates a comparably low transient climate response (TCR) to increases in
atmospheric CO2. TCR is defined as the increase in near-surface atmospheric temperature
around the time of CO2 doubling in a 1 % CO2-increase-per-year simulation relative preindustrial
conditions. The TCR of 1.4 K for the ESM2M model is lower than the CMIP5 multi-model
mean of 1.8 K and the CMIP6 multi-model mean of 2.0 K (Meehl et al., 2020). Reflecting
the relatively low transient climate response, projected increases in sea surface temperature
during the 21st century are at the low end of CMIP5 model projections (Bopp et al., 2013).
The ESM2M model projects only small changes in NPP (Bopp et al., 2013; Laufkötter et al., 2015).

2.2 Simulation design

For the analyses presented in this thesis, a number of simulations with the ESM2M model were
performed at the Swiss National Supercomputing Centre (CSCS). These model simulations
simulated either the preindustrial state of the climate system or the climate system response
to anthropogenic activities since the beginning of the industrial revolution. A sketch of the
simulations is shown in Fig. 2.2, and a complete list of simulations performed with the ESM2M
model is given in Appendix 6.

To represent the preindustrial climate, the atmospheric concentrations for CO2, CH4, and
N2O were held at the preindustrial volume fractions of 286 parts per million (Fig. 2.2a),
805 parts per billion, and 276 parts per billion, respectively. To allow for short-term variations
in atmospheric CO2 due to interactions with the ocean and land components, atmospheric
CO2 was allowed to vary on sub-annual timescale while it is pushed back to the prescribed
preindustrial value by a restoring CO2 flux. The time scale of this restoring flux was chosen
such that a perturbed atmospheric CO2 concentration returns to the prescribed value within
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Figure 2.2: (a) Prescribed atmospheric CO2 and key characteristics for the spin up, land use spin up, and
control simulations, as well as the historical, RCP2.6, and RCP8.5 ensemble simulations (Appendix Table A.2). (b)
Simulated global average atmospheric surface temperature (temperature at 2 meters above ground) for the same
simulations. For the historical, RCP2.6, and RCP8.5 ensemble simulations, ensemble means are shown as thick
lines and ensemble ranges are shown as shaded areas.

one year. Furthermore, solar forcing as well as aerosol and ozone concentrations were held at
preindustrial levels as represented by the year 1860. No aerosol forcing from volcanic eruptions
was included. The vegetation simulated by the land model was allowed to evolve freely, simulating
potential vegetation without constraints from anthropogenic land use (Shevliakova et al., 2009).
The preindustrial simulations were initialized from a 220 y spin-up simulation that in turn
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was initialized from a quasi-equilibrated 1000 y preindustrial control simulation run at GFDL.
The simulation at GFDL was started from present-day World Ocean Atlas temperature and
salinity fields (Locarnini et al., 2006; Antonov et al., 2006) for the ocean component and from
CM2.1 model output (Delworth et al., 2006) for the atmosphere component. The 220 yr spin-up
simulation at CSCS was necessary to ensure stability of the model under the new computing
infrastructure.

To simulate the climate system response to anthropogenic perturbations during the historical
period (here defined as the period 1861-2005), ensemble simulations with historical forcing
were performed. Historical forcings included prescribed time-dependent atmospheric CO2, CH4,
N2O (Meinshausen et al., 2011), ozone (based on Cionni et al. (2011)), and aerosol concentrations
(provided by J.-F. Lamarque), as well as time-varying solar forcing (Lean, 2009). Atmospheric
aerosol forcing from historical volcanic eruptions was taken into account (Sato et al., 1993;
Stenchikov et al., 1998). Furthermore, anthropogenic land use changes were included. The land
use changes (Hurtt et al., 2006) prescribe time-dependent transitions rates that transform parts
of the grid cell area covered by natural vegetation in LM3.0 to pasture, crop land, and secondary,
regrown vegetation (Shevliakova et al., 2009). Secondary vegetation describes land that was
cut down at least once. The carbon contained in cut vegetation is partially distributed over
three anthropogenic carbon pools, which release carbon back to the atmosphere on different
timescales, and partially transformed into soil carbon. Activating land use changes causes a rapid
initial decline in total land (vegetation and soil) carbon. This is because all land use changes
since year 1500 are applied when land use is activated, resulting in a transition of fully-grown
primary vegetation to secondary vegetation over a large area. Consequently, a large amount of
vegetation carbon is transferred to the anthropogenic carbon pools and to the atmosphere. This
initial shock in total land carbon is followed by a slower increase in land carbon on decadal
timescales that is due to a regrowth of secondary vegetation on the area that was cut down
when activating land use. Eventually, land carbon decreases again due to the anthropogenic land
use changes that transform natural and secondary vegetation to pasture and crop land (Sentman
et al., 2011). To exclude the imprint of the initial shock and the recovery phase on land carbon
from the historical simulations, we first ran a land use only simulation under preindustrial
conditions but with land use changes over the period 1700-1860 following the approach by
Sentman et al. (2011) (called ’land use spin up’ in Fig. 2.2). After this period, the land carbon
cycle and land-atmosphere carbon fluxes are in quasi-equilibrium again.
A 30-member perturbed initial condition ensemble of historical simulations was then initialized
from this land use only simulation by slightly perturbing ocean temperature in one grid cell in
each ensemble member (Wittenberg et al., 2014; Palter et al., 2018; Frölicher et al., 2020). To do
so, different small seawater temperature perturbations on the order of 10−5 ◦C (± 1 · 10−5 K,
± 2 · 10−5 K, ± 3 · 10−5 K, ± 4 · 10−5 K, ± 5 · 10−5 K) were added either to a surface grid cell in
the Weddell sea (70.5 ◦S 51.5 ◦W, ensemble members 2-10), to a surface grid cell in the North
Atlantic (63.5 ◦N 4.5 ◦W, ensemble members 11-20), or to a grid cell at 2000 m depth in the
North Pacific (44.5 ◦N 179.5 ◦W, ensemble members 21-30). Such small perturbation in seawater
temperature propagate through all simulated variables due to the chaotic nature of the climate
system (Lorenz, 1963), eventually resulting in independence of variability between the ensemble
members. Ensemble members can be considered as independent after about three years at
sea surface, while approximate independence of ensemble members is reached later at subsur-
face (Frölicher et al., 2020), for example approximately after eight years at 200 m depth (Chapter 3).

The historical 30-member ensemble simulation over the period 1861-2005 was extended by two
30-member ensemble simulations over the 21st century (period 2006-2100) that represent contrast-
ing scenarios for the 21st century (Fig. 2.2). The first follows the high greenhouse gas emission and
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no mitigation scenario RCP8.5, a representative concentration pathway (RCP) scenario that leads
to 8.5 W/m2 radiative forcing increase with respect to preindustrial conditions by year 2100 (Riahi
et al., 2011). At that time, atmospheric CO2 concentration is assumed to be around 930 parts per
million volume (ppmv). RCP8.5 assumes no climate policy, with sustained fossil-fuel based energy
production and large population increases, resulting in high energy demand and greenhouse gas
emissions that are on the high end of likely scenarios for the 21st century van Vuuren et al. (2011a).
In contrast, the second ensemble simulation follows the low greenhouse gas emission and high
mitigation RCP2.6 scenario (van Vuuren et al., 2011b), under which radiative forcing increases
only by 2.6 W/m2 by 2100. Under RCP2.6, atmospheric CO2 peaks at 440 ppmv in the middle of
the 21st century and stabilizes at around 420 ppmv by year 2100. The scenario assumes effective
climate policy, a shift towards renewable and nuclear energy production, and an effective use of
negative emission technology. Greenhouse gas emissions under RCP2.6 are thus on the low end
of likely scenarios van Vuuren et al. (2011a). An overview over the simulations is shown in Fig. 2.2.

The preindustrial simulation as well as the ensemble simulations for the historical period and
the RCP8.5 and RCP2.6 scenarios store 3D output on daily-mean resolution for physical ocean
variables such as potential temperature, salinity, and potential density and for biogeochemical
variables such as alkalinity, dissolved inorganic carbon, hydrogen ion concentration, and aragonite
and calcite saturation state (complete list of output on daily-mean resolution in Appendix
Table A.1). In addition, 2D output on daily-mean resolution is stored for atmospheric reference
temperature and wind stress, as well as several ocean fields such as surface chlorophyll and pCO2.
In addition, a part of the simulations stored daily-mean data for temperature and dissolved
inorganic carbon tendency terms and the limitation terms of phytoplankton growth. Daily-mean
resolution was chosen to facilitate the analysis of extreme events that last shorter than a month
and that arise partially due to variations on sub-monthly timescales (see Sect. 2.3.1) and to
analyze the processes behind these short-lived extreme events.

2.3 Extreme event definition and metrics

An extreme event is a discrete event in time (with a start and an end) and space (covering a
confined area) during which a variable exceeds predefined thresholds. These extreme event
thresholds are generally defined such that extremes occur rarely and represent unusual conditions
in the variable of interest. Often, these conditions are expected to pose a risk to vulnerable and
exposed natural and human systems.
In Sect. 2.3.1, the definitions for extreme event thresholds used in these thesis are introduced.
Furthermore, the choice of reference period and the influence of the temporal resolution of the
underlying data is discussed. In Sect. 2.3.2, extreme event metrics to characterize extremes are
introduced and linked to the underlying statistical properties of the data.

2.3.1 Definition of extreme event thresholds

Absolute and relative thresholds
Extreme events can be generally defined based on relative and on absolute thresholds. Relative
thresholds are based on the distribution of data. As a result, they are specific to the statistical
properties of the data at each location. In contrast, absolute thresholds are defined based on
criteria that are independent of the observed data distribution. Prominent examples are the
calcium carbonate saturation state threshold of one (Morse & Mackenzie, 1990) that separates
supersaturated from undersaturated waters and the oxygen concentration threshold of 2 mg
O2 liter−1 (60µmol kg−1) (Vaquer-Sunyer & Duarte, 2008) below which waters are considered
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as hypoxic. Waters that are undersaturated with respect to calcium carbonate are corrosive
to calcium carbonate minerals such as those in shells of marine invertebrates (Bednaršek
et al., 2012). Organisms are stressed or may die under hypoxic conditions, in particular higher
animals (Stramma et al., 2008). Such absolute thresholds are often informed by known ecological
limits. Hence, so-defined extreme events likely have relevant ecological impacts. However, such
ecologically informed criteria are often defined independently from the geographical location
and only apply for some certain organisms and ecosystems. This hinders the application of
absolute thresholds for studies on a global scale, since the statistical properties of variables often
drastically change between different regions. As a result, the analyzed variable may be in a
permanent extreme state in one region while never being extreme in another region. Furthermore,
fixed absolute thresholds often don’t take into account that organisms in different ecosystems
are likely to a certain extent adapted to local conditions. A way forward is here to determine
absolute biologically informed thresholds that vary between ecosystems. For example, Clarke
et al. (2021) define an aerobic growth index that contrasts oxygen supply with demand for
different species, also taking into account regional differences in water temperature. However,
defining biologically informed thresholds that vary between ecosystems requires knowledge of the
species and their ecological boundaries in the individual ecosystems. Such data is currently
not available for carbonate system variables such as [H+] or the calcium carbonate saturation state.

The analyses in this thesis rely on relative thresholds calculated as spatially-varying percentile
thresholds determined from the local data distributions. While this definition is not directly
linked to the ecological impacts, it has the advantage that extremes based on spatially-varying
percentile thresholds occur with the same frequency everywhere. This ensures that extremes
represent rare deviations from normal conditions in every region. Furthermore, it is expected
that the variations in relative thresholds, arising from the variations in data distributions, to
some extent mirror variations in the ecological boundaries of the organisms that are adapted to
the location conditions at different geographical locations. As a result, relative thresholds may be
similar in their ecological significance across regions, despite the regional variations in thresholds.

Defining relative thresholds
Relative extreme event thresholds are widely used in the literature (e.g., Hobday et al., 2016;
Frölicher et al., 2018; Oliver et al., 2021). Depending on the research question, different approaches
to define relative thresholds are chosen. These approaches mainly differ in how seasonality in
the time series data is treated. This is important since seasonality is often the main mode of
variability in the data (Chapter 3). For example, for surface [H+] and within daily-mean output
from a preindustrial control simulation (Appendix Table A.1), seasonality is globally responsible
for 81 % of the variance in the data. One approach is to calculate fixed percentile thresholds based
on the full time series at each location (e.g. Frölicher et al., 2018). Extremes then often occur at
the time of year when the seasonal cycle takes its maximum. This definition for extreme event
thresholds is used in Chapter 3 to study changes in extreme events in [H+] and ΩA. Another
approach that removes the imprint from the seasonal cycle on the occurrence of extremes is to
use anomaly thresholds. There, the seasonal cycle is subtracted from the data, and a percentile
threshold is then calculated from the obtained seasonal anomalies (e.g. Zscheischler et al., 2014;
Le Grix et al., 2021). Extremes can then in principle occur throughout the year. However, in
regions where the variability in the data changes strongly between seasons, for example due to
seasonal sea ice cover that isolates the ocean from the atmosphere and solar insulation, extremes
occur mostly in the more variable seasons. A third approach under which extremes are equally
likely throughout the year is to define seasonally varying thresholds (e.g. Hobday et al., 2016).
There, a threshold is defined for each calendar day individually. As a result, the seasonally
varying thresholds vary with the seasonal cycle and with seasonal changes in variability (Fig. 2.3),
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and neither the seasonal cycle nor seasonal changes in variability imprint on the occurrence
probability of extreme events. Observational time series are often too short to calculate a
percentile threshold for each calendar day. This limitation can be bypassed by increasing the
amount of data using a window approach where a certain amount of data before and after
the calendar day of interested is also taken into account to calculate the threshold (Hobday
et al., 2016). Seasonally varying thresholds are used in Chapters 4 and 5. In Chapter 4, where
compound events in temperature and [H+] are assessed, seasonally varying thresholds are chosen
so that the frequency of compound events is not a consequence of the dependence between the
seasonal cycles of the two variables. Likewise in Chapter 5, where the drivers of [H+] events are
analyzed, seasonally varying thresholds are chosen to separate the drivers of extreme events in
[H+] from the drivers of its seasonal cycle. The differences between fixed thresholds, anomaly
thresholds, and seasonally varying thresholds are illustrated in Fig. 2.3. Some studies further
impose an additional duration criterion on ocean extreme events, for example defining the
extremes to last at least for 5 days (Hobday et al., 2016; Oliver et al., 2018). Such a minimum
duration criterion is not used in this thesis. It can result in the exclusion of a significant fraction
of extremes. For example, for preindustrial surface [H+] simulated by the ESM2M model, a
minimum duration criterion of 5 d would globally exclude 43 % of extreme events, when these are
based on fixed 99th percentile thresholds.

Choice of percentile
To define the extreme events, it is further necessary to chose a percentile for the thresholds.
When analyzing extremes in high values, the 90th (e.g. Hobday et al., 2016; Le Grix et al., 2021)
and the 99th percentiles (e.g. Frölicher et al., 2018) are often chosen. The percentile should be
chosen high enough so that extremes represent exceptional states that are relevant to ecosystems
and the dependent human communities. However, the percentiles need to be low enough to
ensure robust percentile definition and sufficient data for statistical analyses2. In Chapter 3, the
99th percentile is chosen. In Chapter 4, the lower 90th percentile is used to obtain a sufficient
amount of compound extremes for analysis in regions where compound events in temperature
and [H+] are rare and to allow for the comparison to short observational time series. Furthermore,
the seasonally varying thresholds that are used in Chapter 4 are more robust when based on
a lower percentile. Therefore, the 90th percentile was also chosen in Chapter 5. Sensitivity
analyses with different percentile choices reveal that the obtained spatial patterns in extreme
and compound event characteristics are relatively insensitive to the percentile choice (Chapters 3
and 4): While the percentile threshold choice directly modulates the likelihood of extreme events
at each location, it often has a much smaller effect on spatial differences in extreme event metrics.
Relative increases in extreme event event likelihood due to anthropogenic perturbations can be
much larger for extremes based on higher percentile thresholds (Chapters 3 and 4).

Reference period and baselines
When analyzing extreme events in a transient or changing climate, a reference period needs to be
defined in which the percentile thresholds are defined. Depending on the analyzed variable, this
choice has a large impact on the frequency of extremes. For example, when defining surface
[H+] extreme events based on fixed 99th percentiles under preindustrial conditions in a model
simulation, the number of extreme event days increases sharply from the initial value of 3.65
days per year under historical forcing, crossing 300 days per year already before year 2000

2In this thesis, the percentiles are directly estimated from the data. This is possible because the analyzed model
simulations provide enough data for robust estimation of the percentiles. An alternative approach that relies on
extreme value theory is to model the exceedances of a relatively low threshold (i.e., the difference between the
data and the threshold where the data exceeds the threshold) by a generalized Pareto distribution. Higher
percentiles can then be determined analytically from that distribution (Coles, 2001). This approach is particularly
useful when the length of a time series is too short to robustly estimate such higher percentiles from the data.
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Figure 2.3: A surface [H+] extreme event in the subpolar North Pacific simulated by the GFDL ESM2M model
in years 564 and 565 of the 1000-yr long preindustrial control simulation. The data was averaged over the subpolar
North Pacific region (45-60 ◦N, 140-200 ◦W) before analysis. The [H+] data is shown in black and its climatological
seasonal cycle is shown in blue. (a) The extreme event when defined relative to seasonally varying 90th percentiles
(red line). Duration (228 d) and maximal intensity (0.30 nmol kg−1) are shown with arrows. For comparison, also
the 90th percentile of seasonal anomalies (with the seasonal cycle added) is shown (magenta line). (b) The extreme
event when defined relative to the fixed 90th percentile threshold (grey dashed line). Here, duration is 136 d and
intensity is 0.35 nmol kg−1. The fixed 99th percentile threshold is shown for comparison (grey dotted line).

(Chapter 3). This is because the trends in [H+] from ocean acidification are large compared to
internal [H+] variability. In the analyses of model data in Chapters 3 to 5, percentile thresholds
were defined under preindustrial conditions. To analyze observation-based data, the observational
period was used as reference period (Chapter 4).

It is debated whether extreme events should be defined relative to fixed reference periods (fixed
baseline), or whether extreme events should instead be defined with respect to a shifting-mean
baseline that accounts for the changes in the mean state of the analyzed variable with climate
change. In the context of marine heatwaves, Jacox (2019) argues that ocean temperatures during
MHWs are much higher than ’normal’ temperatures, which themselves will shift as the ocean
warms with climate change. In other words, the baseline ocean temperature will shift, and future
MHWs should therefore be defined relative to the shifted baseline.’ Oliver et al. (2019) note that
whether a fixed or shifting-mean baseline should be used depends on ecological adaption time
scales: For organisms with little capability for adaption, a fixed baseline is likely more meaningful,
while a shifting-mean baseline may be more meaningful for organisms that are able to adapt to
the transient changes in mean state. In Chapters 3 and 4 where changes in extreme events are
analyzed, we report changes with respect to both, fixed and shifting, baselines. To determine the
shifting-mean baseline that accounts for the transient changes in the mean state, it is necessary
to increase the percentile thresholds determined during the reference period according to the
transient changes in the variables mean state3. A simple approach is to identify the variables’
mean state in a transient time series by fitting a linear or higher-order polynomial model to the
data (Kwiatkowski & Orr, 2018). However, the functional shape of the forced change in mean
state of a variable is generally not known. Fitting a too-low order polynomial function poses the
risk of falsely identifying parts of the forced mean change as multi-year variations around the
assumed forced change. Fitting a too-high order polynomial function, on the other hand, poses
the opposite risk of falsely identifying multi-year variability with forced changes in the variable.

3Identically, one can also subtract these changes in the variables mean state from the data prior to identifying
extreme events.
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An alternative non-parametric approach is possible when a large ensemble of simulations is
available. The forced mean change can then be identified with the change in the ensemble
mean after removing the seasonal variations that are present in all ensemble members from the
ensemble mean. The remaining stochastic variations in the individual ensemble members tend to
average out when calculating the ensemble mean and the mean state that undergoes the forced
changes is exposed. This approach is taken in Chapters 3 and 4.

Temporal resolution
Results for extreme event analyses depend on the temporal resolution of the data for two reasons.
First, higher temporal resolution allows to resolve more variability. Studies that depend on
monthly-mean data miss some of the variability that is resolved in daily-mean data. However,
the difference is often relatively small for carbonate chemistry-related variables. For example, the
variance in surface [H+] in a preindustrial simulation based on monthly-mean data is globally
only 5 % smaller than the variance based on daily-mean data. The difference is relatively small
since seasonality, the most important mode of variability, is represented by daily-mean as well as
by monthly mean-data. However, the model likely does not fully resolve day-to-day variations in
[H+]. As a result, this proportion may be different in reality. The variance of seasonal anomalies
is more sensitive to the temporal resolution. Anomaly variance is globally reduced by 13 % when
based on monthly-mean data instead of daily-mean data, indicating a larger importance of
sub-monthly resolution when analyzing extremes based on anomaly thresholds or seasonally
varying thresholds. The second reason is that the minimum duration of an extreme event is given
by the temporal resolution of the data. As a result, extremes calculated from monthly-mean data
last for at least one month. This is in contrast to the duration of extremes in most surface-ocean
variables when calculated from daily-mean data. For example, extremes based on fixed 99th

percentiles in a preindustrial simulation by the ESM2M model globally last on average only 11 days.

Using sub-daily resolution that resolves the diurnal cycle further increases the variability in
the data (Hofmann et al., 2011), in particular in coastal regions (Torres et al., 2021). While the
ESM2M model incorporates the diurnal cycle in insulation and biological activity, the model
likely doesn’t fully capture diurnal variability. Hence the analyses in this thesis are limited to
data with daily-mean temporal resolution.

2.3.2 Extreme event metrics

Definition of extreme event metrics
Extreme event metrics quantify the properties of extreme events. These metrics generally
either quantify the frequency of events, the intensity of events, the duration of events, or the
area or volume covered by events. Event intensity and duration for a single simulated event
in the North Atlantic is shown in Fig. 2.3 for fixed and for seasonally varying percentile thresholds.

The frequency of events is quantified equivalently either by the number of time steps within
a period (e.g., days per year) during which a variable is under extreme conditions (Chapters 3
and 4), by the probability that a value at a single time step is extreme, often reported relative to
a reference probability as a risk or probability ratio (Frölicher et al., 2018), or by reporting
the return period that quantifies the average time span between two time steps with extreme
conditions (Laufkötter et al., 2020).

Event intensity quantifies the magnitude by which an event deviates from normal conditions.
Mean or maximal intensity is calculated as the mean or maximal difference between the data and



38 2. METHODS

the threshold over the duration of a single event (maximal intensity shown in Fig. 2.3), averaged
over all events that occur during a period at a location (Chapter 3, Oliver et al., 2018; Frölicher
et al., 2018). Maximal intensity is always larger than mean intensity. For example, maximal
intensity of surface [H+] events, based on fixed 99th percentiles in a preindustrial simulation by
the ESM2M model, is globally 73 % larger than mean intensity. In Chapter 3, maximal intensity
is used as a measure for event intensity. Alternative approaches calculate intensity from the differ-
ence between the data and the climatological seasonal cycle over the course of an event (Hobday
et al., 2016) and classify extremes in categories according to how much the variable exceeds
the threshold in units of the difference between threshold and seasonal cycle (Hobday et al., 2018).

Event duration quantifies the length in time between the onset of an event, where the
variable crosses the threshold, and the end of the event, before the variable falls below the
threshold again. In Chapter 3, mean duration is reported, given by the arithmetic average over
the durations of all events that occur during a period at a location. The duration of a single
event is shown in Fig. 2.3. The duration of events depends on the temporal resolution of the
data, with longer event duration observed in data with lower temporal resolution (Sect. 2.3.1).
Longer-lasting events are usually also more intense. For example, when imposing a minimum-
duration criterion of 5 days for fixed 99th percentile extremes in simulated preindustrial surface
[H+], mean event intensity is globally 41 % larger compared to when no minimum-duration
criterion is imposed. In some studies, intensity and duration of events are also combined into
one metric, such as the cumulative mean intensity that is the product of mean intensity and
duration of an event (Frölicher et al., 2018), or similarly degree heating weeks (Hobday et al., 2016).

The area or volume covered by an extreme event in gridded data is calculated as the sum of
the surface areas or volumes of all connected grid cells that form a cluster of cells for which the
variable is above the respective event threshold. The result depends on whether grid cells are
considered as connected only if they share a face, or whether grid cells that share an edge are
also considered as connected. For example, the average volume covered by [H+] extreme events
in the upper 200 m of water column, based on fixed 99th percentiles in a preindustrial simulation
by the ESM2M model, is 41 % larger when cells that share edges are also considered as connected.
Furthermore, results depend on whether clusters are identified in space for each time step
individually (Frölicher et al., 2018), or whether they are tracked also in time (Laufkötter et al.,
2020). To calculate the volume covered by [H+] events in Chapter 3, clusters are identified for
each time step individually and grid cells are only considered as connected when they share a
face.

Underlying statistical properties
Differences in extreme event metrics arise due to differences in the statistical properties of the
underlying time series data. To illustrate this, a stationary time series x can be decomposed into
its mean seasonal cycle xs that repeats each year and the seasonal anomalies xa describing
fluctuations around the seasonal cycle (e.g., Oliver et al., 2021)

x(t) = xs(t) + xa(t). (2.1)

The seasonal anomalies have zero mean since they describe deviations from the mean seasonal
cycle. When extremes are defined with respect to anomaly percentile or seasonally varying
percentile thresholds, intensity and duration of extremes in x are not influenced by the seasonal
component xs. Instead these are solely determined by the seasonal anomalies xa. Event intensity
quantifies by how much an anomaly percentile or a percentile for a calendar day or month
is exceeded during the events. It is driven by the variance in the anomalies σ2

a. Assuming
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a probability density function f for the seasonal anomalies, the average exceedance of the
percentile threshold4 is given by the conditional expectation value for xa given it is larger than
the percentile xp,

1

P (xa ≥ xp)

∫ ∞
xp

dx (xa − xp) f(xa;σ2
a). (2.2)

The larger the anomaly variance σ2
a , the larger is the statistical weight f(xa) of large exceedances

xa − xp and the larger is event intensity.

Event duration depends on the memory within the seasonal anomalies. The stronger the
dependence between subsequent values in the seasonal anomalies, the longer lasts a positive
anomaly and the larger is the event duration. This can be conceptualized by representing the
time series by an autoregressive model (Shumway & Stoffer, 2011; Oliver et al., 2021). For
the autoregressive model with lag one, two subsequent values in the time series are connected
according to

xa(t+ 1) = φ1xa(t) + ε(t), (2.3)

with the parameter φ1 being the lag-one autocorrelation and satisfying |φ1 < 1|, and ε(t)
independent (white) noise. φ1 represents the memory in the climate system. Time series in
climate variables will in most cases exhibit positive autocorrelation, because processes that
change the variables often evolve on timescales that are long compared to the temporal resolution
of the data. The larger the autocorrelation is, the larger is the contribution from variations
on long, for example interannual, time scales compared to shorter, for example sub-seasonal,
timescales, and the longer is the duration of extreme events. Lag-one autocorrelation in a climate
time series, like event duration, also depends on the temporal resolution of the data, with larger
autocorrelation expected in data with higher temporal resolution. For example, the lag-one
autocorrelation coefficient estimated for surface [H+] seasonal anomalies within a preindustrial
simulation by the ESM2M model is globally 0.99 for daily-mean and 0.70 for monthly-mean data.

When defining extremes based on fixed percentile thresholds, also the seasonal component
influences event intensity and duration: Event intensity increases with seasonal variability. Event
duration increases with seasonality where the variations in seasonal anomalies are mainly on
sub-seasonal timescales while it decreases where anomaly variations are mainly on interannual
timescales. The frequency of extreme events is fixed by the choice of percentile threshold during
the reference period where percentiles are defined. However, frequency may change under a
changing climate.

Extreme event metrics in a changing climate
The frequency of extreme events and extreme event characteristics in many oceanographic
variables undergo changes with climate change. Frequency and event characteristics may change
due to trends in the variables’ mean state, changes in seasonal amplitude, and due to changes in
variability of the anomalies. Mean trends influence event occurrence and characteristics when
extremes are referenced to a fixed baseline. In contrast, event occurrence and characteristics
are not altered by mean trends when referenced to a shifting-mean baseline (see Sect. 2.3.1).
Changes in seasonal amplitude and variability of the anomalies are of particular importance
for extremes in carbonate system variables, where such changes are expected due to the
nonlinearity of the oceans’ carbonate chemistry. The nonlinearity of the ocean carbonate system

4Average threshold exceedance is identical to mean intensity when there is no dependence between intensity and
duration of events. Often, longer events tend to be more intense. In this case, average threshold exceedance is
larger than mean intensity that gives more weight to short events by first averaging over each individual event
before averaging over all events.
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is, for example, apparent from changes in Revelle Factor or buffer capacity (Revelle & Suess,
1957). The impact of seasonal and nonseasonal variability changes on extremes in carbonate
chemistry is a particular focus of Chapter 3. Event duration may also change due to a shift
in the relative contributions from low and high frequency variations to the variability in the
seasonal anomalies. Finally, also changes in the higher moments of the anomaly distribution and
changes in the phasing or shape of the seasonal cycle may impose changes in extreme event metrics.

Compound events in two variables
Compound extreme events are extremes where two or more variables are above their respective
thresholds at the same time (Seneviratne et al., 2012; Leonard et al., 2014; Zscheischler et al.,
2018). Such compound extremes are a particular concern because the combined impact from
multiple stressors on ecological and human systems may exceed that of the individual stressors
due to synergistic interactions (Boyd & Brown, 2015). Compound extreme events in sea surface
temperature and [H+] are analyzed in Chapter 4. While the frequency of univariate extremes in
the two variables is fixed by the percentile choice during the reference period, the frequency of
compound events varies due to the varying statistical dependence between the two variables. If
the two variables tend to co-vary with each other, then extremes in both variables also tend
to occur together. In contrast, compound extremes are rare if a positive anomaly in one of
the variables is usually accompanied by a negative anomaly in the other one. The occurrence
probability of compound events is quantified by the likelihood multiplication factor (LMF;
Zscheischler & Seneviratne, 2017). It is the ratio between the observed compound event likelihood
and the one that would be observed if the two variables were independent, given by the product
of the likelihoods of the univariate extremes P (x1 > xp1) · P (x2 > xp2). One measure for the
dependence between two variables is the Pearson correlation coefficient. The LMF for compound
events observed in a data set can be estimated based on the sample Person correlation coefficient
r (Methods section in Chapter 4).

In transient time series, the likelihood of compound events can change because of changes in
the likelihood of univariate extremes in the two variables, arising due to trends in the variables
and changes in variability. Furthermore, compound event occurrence can also change due to
changes in in the dependence between the two variables.
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Abstract. Ocean acidity extreme events are short-term peri-
ods of relatively high [H+] concentrations. The uptake of an-
thropogenic CO2 emissions by the ocean is expected to lead
to more frequent and intense ocean acidity extreme events,
not only due to changes in the long-term mean but also due
to changes in short-term variability. Here, we use daily mean
output from a five-member ensemble simulation of a com-
prehensive Earth system model under low- and high-CO2-
emission scenarios to quantify historical and future changes
in ocean acidity extreme events. When defining extremes rel-
ative to a fixed preindustrial baseline, the projected increase
in mean [H+] causes the entire surface ocean to reach a near-
permanent acidity extreme state by 2030 under both the low-
and high-CO2-emission scenarios. When defining extremes
relative to a shifting baseline (i.e., neglecting the changes in
mean [H+]), ocean acidity extremes are also projected to in-
crease because of the simulated increase in [H+] variability;
e.g., the number of days with extremely high surface [H+]
conditions is projected to increase by a factor of 14 by the
end of the 21st century under the high-CO2-emission sce-
nario relative to preindustrial levels. Furthermore, the dura-
tion of individual extreme events is projected to triple, and
the maximal intensity and the volume extent in the upper
200 m are projected to quintuple. Similar changes are pro-
jected in the thermocline. Under the low-emission scenario,
the increases in ocean acidity extreme-event characteristics
are substantially reduced. At the surface, the increases in
[H+] variability are mainly driven by increases in [H+] sea-
sonality, whereas changes in thermocline [H+] variability are
more influenced by interannual variability. Increases in [H+]
variability arise predominantly from increases in the sensi-

tivity of [H+] to variations in its drivers (i.e., carbon, alkalin-
ity, and temperature) due to the increase in oceanic anthro-
pogenic carbon. The projected increase in [H+] variability
and extremes may enhance the risk of detrimental impacts
on marine organisms, especially for those that are adapted to
a more stable environment.

1 Introduction

Since the beginning of the industrial revolution, the ocean
has absorbed about a quarter of the carbon dioxide (CO2) re-
leased by human activities through burning fossil fuel and
altering land use (Friedlingstein et al., 2019). Oceanic up-
take of anthropogenic CO2 slows global warming by re-
ducing atmospheric CO2 but also leads to major changes
in the chemical composition of seawater through acidifica-
tion (Gattuso and Buddemeier, 2000; Caldeira and Wick-
ett, 2003; Orr et al., 2005; Doney et al., 2009). When CO2
dissolves in seawater, it forms carbonic acid that dissoci-
ates into bicarbonate ([HCO−

3 ]), releasing hydrogen ions
([H+]) and thereby reducing pH (pH = −log([H+])). The
rise in [H+] is partially buffered by the conversion of car-
bonate ions ([CO2−

3 ]) to [HCO−
3 ]. The associated decline in

[CO2−
3 ] reduces the calcium carbonate saturation state � =

[Ca2+] [CO2−
3 ]/

(

[Ca2+] [CO2−
3 ]

)

sat
, i.e., the product of cal-

cium and carbonate ion concentrations relative to the product
at saturation. Undersaturated waters with � < 1 are corro-
sive for calcium carbonate minerals. Each type of calcium
carbonate mineral has its individual saturation state � due
to different solubilities, e.g, �C for calcite and �A for arag-
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onite. Over the last four decades the surface ocean pH has
declined by about 0.02 pH units per decade (Bindoff et al.,
2020). Continued CO2 uptake by the ocean will further ex-
acerbate ocean acidification in the near future (Caldeira and
Wickett, 2003; Orr et al., 2005; Bindoff et al., 2020; Terhaar
et al., 2020), with potentially major consequences for marine
life (Doney et al., 2009) and ocean biogeochemical cycling
(Gehlen et al., 2012).

Superimposed onto the long-term decadal- to centennial-
scale ocean acidification trend are short-term extreme events
on daily to monthly timescales during which ocean pH and
� are much lower than usual (Hofmann et al., 2011; Joint
et al., 2011; Hauri et al., 2013). These events can be driven
by different processes, such as ocean mixing, biological pro-
duction and remineralization, mineral dissolution, temper-
ature and air–sea gas exchange variations, or a combina-
tion thereof (Lauvset et al., 2020). In eastern boundary up-
welling systems, for example, short-term upwelling events
and mesoscale processes can lead to low-surface-pH events
and to short-term shoaling of the saturation horizon (i.e., the
depth between the supersaturated upper ocean and the un-
dersaturated deep ocean; Feely et al., 2008; Leinweber and
Gruber, 2013). Ocean pH can also rapidly change as a con-
sequence of microbial activity (Joint et al., 2011). Phyto-
plankton blooms and accompanying respiration drastically
increase the partial pressure of CO2 (pCO2) and reduce pH
in the thermocline (Sarmiento and Gruber, 2006). Such ex-
treme events may have pH levels that are much lower than the
mean pH conditions projected for the near future (Hofmann
et al., 2011).

Most of the scientific literature on ocean acidification has
focused on gradual changes in the mean state in ocean chem-
istry (Orr et al., 2005; Bopp et al., 2013; Frölicher et al.,
2016; Terhaar et al., 2019b). However, to understand the
full consequences of ocean acidification on marine organ-
isms and ecosystem services, it is also necessary to under-
stand how variability and extremes in ocean acidity change
under increasing atmospheric CO2 (Kroeker et al., 2020).
The ability of marine organisms and ecosystems to adapt
to ocean acidification may depend on whether the species
have evolved in a chemically stable or a highly variable
environment (Rivest et al., 2017; Cornwall et al., 2020).
Furthermore, if the frequency and intensity of short-term
extreme events strongly increase, in addition to the long-
term acidification, some organisms may have difficulties in
adapting, especially if key CO2 system variables cross some
critical thresholds, e.g., from calcium carbonate supersat-
uration to undersaturation. Key plankton species such as
coccolithophores (Riebesell et al., 2000), foraminifera, and
pteropods (Bednaršek et al., 2012) were found to be ad-
versely affected by low carbonate ion concentrations. After
only several days of being exposed to waters which are un-
dersaturated with respect to aragonite, some species such as
pteropods already show reduced calcification, growth, and
survival rates (Kroeker et al., 2013; Bednaršek et al., 2014).

Carbonate system variability also plays a role in shaping
the diversity and biomass of benthic communities (Hall-
Spencer et al., 2008; Kroeker et al., 2011). In laboratory ex-
periments in which deep-water corals are exposed to low-
pH waters for a week, some corals exhibit reduced calci-
fication, while recovery may be possible when the low-pH
condition persists for several months, stressing the impor-
tance of high-frequency variability and short-term acidifica-
tion events (Form and Riebesell, 2012). There is also growing
evidence that the organism response to variability in ocean
acidity could change with ocean acidification (Britton et al.,
2016). Therefore, understanding the temporal variability of
ocean carbonate chemistry and how that will change is im-
portant for understanding the impacts of ocean acidification
on marine organisms and ecosystems (Hofmann et al., 2011).

Changes in extremes can arise from changes in the mean,
variability, or shape of the probability distribution (Coles,
2001). There exists no general accepted definition of an ex-
treme event beyond the common understanding that an ex-
treme is rare (Weyer, 2019). As a result, many different ap-
proaches exist to define extreme events (Smith, 2011). If a
relative threshold (e.g., quantile) is used to define an ex-
treme event, it is important to distinguish between extreme
events that are defined with respect to a fixed reference pe-
riod or baseline, or if the reference period or baseline moves
with time. If the baseline is fixed, the changes in the mean
state as well as changes in variability and higher moments
of the distribution contribute to changes in extreme events
(e.g., Fischer and Knutti, 2015; Frölicher et al., 2018; Oliver
et al., 2018). However, if a shifting baseline is used, changes
in the mean state do not contribute to changes in extreme
events (e.g., Stephenson, 2008; Seneviratne et al., 2012;
Zscheischler and Seneviratne, 2017; Cheung and Frölicher,
2020; Vogel et al., 2020). In this case, changes in extremes
arise solely due to changes in variability and higher moments
of the distribution (Oliver et al., 2019). This latter defini-
tion ensures that values are not considered extreme solely
because the baseline changes under climate change (Jacox,
2019; Oliver et al., 2019). Whether extreme events should be
defined with respect to a fixed baseline or with respect to a
shifting baseline depends on the scientific question. For ex-
ample, the shifting-baseline approach may be more appropri-
ate when the ecosystems under consideration are likely able
to adapt to the mean changes but not to changes in variabil-
ity (Seneviratne et al., 2012; Oliver et al., 2019). Here, we
use both approaches, with a special focus on the analysis of
ocean acidity extremes with respect to shifting baselines.

Under continued long-term ocean acidification (i.e.,
changes in the mean), one can expect that extreme events in
[H+] and �, when defined with respect to a fixed reference
period or baseline, will become more frequent and intense
(Hauri et al., 2013). In addition to the changes in the mean,
recent studies suggest that the seasonal cycles in [H+] and
� are also strongly modulated under elevated atmospheric
CO2. Higher background concentrations of dissolved inor-
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ganic carbon and warmer temperatures produce stronger de-
partures from mean state values for a given change in perti-
nent physical or chemical drivers for [H+] and weaker depar-
tures for � (Kwiatkowski and Orr, 2018; Fassbender et al.,
2018). Other studies have also addressed the changes in the
seasonal cycle of pCO2 (Landschützer et al., 2018; Gallego
et al., 2018; McNeil and Sasse, 2016; Rodgers et al., 2008;
Hauck and Völker, 2015). Over the 21st century and under a
high-greenhouse-gas-emission scenario, Earth system model
simulations project that the seasonal amplitude in surface
[H+] will increase by 81 %, whereas the seasonal amplitude
for aragonite saturation state (�A) is projected to decrease
by 9 % globally on average (Kwiatkowski and Orr, 2018).
Recent observation-based estimates as well as theoretical ar-
guments support these projected increases in seasonality for
[H+] and pCO2 (Landschützer et al., 2018; Fassbender et al.,
2018). Thus, when extremes are defined with respect to a
shifting baseline (i.e., mean state changes are neglected), the
frequency and intensity of extreme [H+] events will likely
increase due to increases in variability.

Unlike for marine heatwaves (Frölicher et al., 2018;
Collins et al., 2020) and extreme sea level events (Oppen-
heimer et al., 2020), little is known about the characteris-
tics and changes of extreme ocean acidity events and, if so,
only on seasonal timescales (Kwiatkowski and Orr, 2018). A
global view of how extreme events in ocean chemistry will
unfold in time and space and a mechanistic understanding
of the relevant processes is missing. This knowledge gap is
of particular concern as it is expected that extreme events in
ocean acidity, defined with respect to both a fixed and a shift-
ing baseline, are likely to become more frequent and intense
under increasing atmospheric CO2. Given the potential for
profound impacts on marine ecosystems, quantifying trends
and patterns of extreme events in ocean acidity is a pressing
issue.

In this study, we use daily mean output of a five-member
ensemble simulation under low- and high-CO2-emission sce-
narios of a comprehensive Earth system model to investi-
gate how the occurrence, intensity, duration, and volume of
[H+] and � extreme events change under rising atmospheric
CO2 levels. Extreme events defined with respect to both a
fixed preindustrial and a shifting baseline are assessed, but
the main focus is on extremes with respect to a shifting base-
line and how these are affected by variability changes.

2 Methods

2.1 Model and experimental design

The simulations used in this study were made with the
fully coupled carbon–climate Earth system model devel-
oped at the NOAA Geophysical Fluid Dynamics Laboratory
(GFDL ESM2M) (Dunne et al., 2012, 2013). The GFDL
ESM2M model consists of ocean, atmosphere, sea-ice, and

land modules and includes land and ocean biogeochemistry.
The ocean component is the Modular Ocean Model version
4p1 (MOM4p1), with a nominal 1◦ horizontal resolution in-
creasing to 1/3◦ meridionally at the Equator, with a tripo-
lar grid north of 65◦ N, and with 50 vertical depth levels.
The MOM4p1 model has a free surface, with the surface
level centered around about 5 m depth, and the spacing be-
tween consecutive levels is about 10 m down to a depth of
about 230 m (Griffies, 2009) with increasing spacing below.
The dynamical sea-ice model uses the same tripolar grid as
MOM4p1 (Winton, 2000). The atmospheric model version 2
(AM2) has a horizontal resolution of 2◦

×2.5◦ with 24 verti-
cal levels (Anderson et al., 2004). The land model version 3
(LM3) simulates the cycling of water, energy, and carbon dy-
namically and uses the same horizontal grid as AM2 (Shevli-
akova et al., 2009).

The ocean biogeochemical and ecological component is
version two of the Tracers of Ocean Phytoplankton with
Allometric Zooplankton (TOPAZv2) module that parame-
terizes the cycling of carbon, nitrogen, phosphorus, sili-
con, iron, oxygen, alkalinity, lithogenic material, and sur-
face sediment calcite (see Supplement in Dunne et al., 2013).
TOPAZv2 includes three explicit phytoplankton groups –
small, large, and diazotrophs – and one implicit zooplank-
ton group. The ocean carbonate chemistry is based on the
OCMIP2 parameterizations (Najjar and Orr, 1998). The dis-
sociation constants for carbonic acid and bicarbonate ions
are from Dickson and Millero (1987), which are based on
Mehrbach et al. (1973), and the carbon dioxide solubility
is calculated according to Weiss (1974). Total alkalinity in
TOPAZv2 includes contributions from phosphoric and silicic
acids and their conjugate bases. TOPAZv2 also simulates di-
urnal variability in ocean physics as well as in phytoplankton
growth. While diurnal variations in open-ocean pH are there-
fore simulated to some extent, we do not expect the model to
fully capture the high diurnal variability in seawater chem-
istry, especially in coastal regions with large biological ac-
tivity (Kwiatkowski et al., 2016; Hofmann et al., 2011), due
to its relatively coarse resolution and simple biogeochemical
model.

We ran a five-member ensemble simulation covering the
historical 1861–2005 period, followed by a high (RCP8.5;
RCP: Representative Concentration Pathway) and a low-
greenhouse-gas-emission scenario (RCP2.6) over the 2006–
2100 period with prescribed atmospheric CO2 concentra-
tions. RCP8.5 is a high-emission scenario without effective
climate policies, leading to continued and sustained growth
in greenhouse gas emissions (Riahi et al., 2011). In the
GFDL ESM2M model, global atmospheric surface temper-
ature in the RCP8.5 ensemble is projected to increase by
3.24 ◦C (ensemble minimum of 3.17 ◦C to ensemble maxi-
mum of 3.28 ◦C) between the preindustrial period and 2081–
2100. The RCP2.6 scenario represents a low-emission, high-
mitigation future (van Vuuren et al., 2011) with a simu-
lated warming in the GFDL ESM2M model of 1.21 (1.18–
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1.26) ◦C. The five ensemble members over the historical pe-
riod were initialized from a multicentury preindustrial con-
trol simulation that was extended with historical land use
over the 1700–1860 period (Sentman et al., 2011). The five
ensemble members were generated by adding different sea
surface temperature (SST) disturbances of the order 10−5 ◦C
to a surface grid cell in the Weddell Sea at 70.5◦ S, 51.5◦ W
on 1 January 1861 (Wittenberg et al., 2014; Palter et al.,
2018). Although the ocean biogeochemistry is not perturbed
directly, [H+] and � differences between the ensemble mem-
bers spread rapidly over the globe. On average, the ensem-
ble members can be regarded as independent climate real-
izations after about 3 years of simulation for surface waters
and after about 8 years at 200 m (Frölicher et al., 2020). Nei-
ther the choice of the perturbation location nor the choice
of the perturbed variable has a discernible effect on the re-
sults presented here (Wittenberg et al., 2014). In addition, an
accompanying 500-year preindustrial control simulation was
performed.

2.2 Analysis

2.2.1 Extreme-event definition and characterization

We analyze daily mean data of [H+] and aragonite saturation
state �A in the upper 200 m of the water column. [H+] is
on the total scale and hence the sum of the concentrations of
free protons and hydrogen sulfate ions. We define an event
as a [H+] extreme event when the daily mean [H+] exceeds
the 99th percentile, i.e., occurring once every 100 d. Simi-
larly, we define a �A extreme event when the daily mean �A
falls below the 1st percentile. The percentiles are calculated
for each grid cell from daily mean data of the 500-year prein-
dustrial control simulation. In contrast to absolute thresholds,
relative thresholds, such as those used here, take into account
regional differences in a variable’s mean state, variance, and
higher moments. Events that are defined based on relative
thresholds have the same probability of occurrence across the
globe in the period in which they are defined (e.g., preindus-
trial period; see also Frölicher et al., 2018).

We assess changes in [H+] and �A extreme events when
they are defined with respect to both a fixed preindustrial
baseline and a shifting baseline. Under the fixed baseline ap-
proach, the secular trends as well as changes in variability
and the higher moments of the distribution impose changes in
extreme events. Under the shifting-baseline approach, which
is the focus of this study, a value is considered extreme when
it is much higher or lower than the baseline that undergoes
changes due to secular trends in the variable. Thus, changes
in the different extreme-event characteristics are only caused
by changes in variability and the higher moments of the dis-
tributions. To define the extreme events with respect to the
shifting baselines, we subtract the secular trends in [H+] and
�A at each grid cell and in each individual ensemble member
prior to the calculation of the different extreme-event charac-

teristics based on the preindustrial percentiles (depicted for
one grid cell in Fig. 1). The secular trend is calculated as the
five-member ensemble mean, which has been additionally
smoothed with a 365 d running mean to keep the seasonal
signal in the data (further information in Appendix A). The
removal of the secular trend ensures that the mean state in
the processed data stays approximately constant while day-
to-day to interannual variability can change over the simula-
tion period (Fig. 1).

We calculate four extreme-event metrics: (a) the yearly ex-
treme days (in days; number of days per year above the 99th
percentile for [H+] and below the 1st percentile for �A),
(b) the annual mean duration (in days; the average number
of days above the 99th percentile for [H+] and below the 1st
percentile for �A of single events within a year), (c) the an-
nual mean maximal intensity (in nmol kg−1 or �A unit; max-
imum [H+] or �A anomalies with respect to the percentile
threshold over the duration of a single extreme event and then
averaged over all events within a year), and (d) the mean vol-
ume covered by individual extreme events in the upper 200 m
(in km3; mean volume of 3D clusters of connected grid cells
that are above the 99th percentile for [H+] or below the 1st
percentile for �A, calculated using the measure.label func-
tion from the scikit-image library for Python for each day;
these daily means are then averaged annually). The yearly
extreme days, duration, and maximal intensity are calculated
for individual grid cells at the surface and at 200 m. While
the truncation of extremes between years alters the results
for duration and maximal intensity, it allows for the calcu-
lation of annual extreme-event characteristics. We focus our
analysis not only on the surface, but also on 200 m to study
changes in extreme events within the seasonal thermocline.
Most organisms susceptible to ocean acidification are found
in the upper 200 m, such as reef-forming corals and calcify-
ing phytoplankton.

2.2.2 Decomposition of [H+] variability into different
variability components

We use three steps to decompose the total temporal variabil-
ity in [H+] into interannual, seasonal, and subannual vari-
ability (Fig. 2). In a first step, we calculate the climatological
seasonal cycle from the daily mean data by averaging each
calendar day over all years in the time period of interest. Sea-
sonal variability is then identified with the time-series vari-
ance of this 365 d long seasonal cycle. The secular trend in
the daily mean data has been removed with the five-member
ensemble mean before doing the analysis. In a second step,
we subtract the seasonal cycle from the data and estimate the
spectral density (Chatfield, 1996) of this residual time series
using the periodogram function from the scipy.signal Python
library. In a third step, we calculate the variance arising from
variations on interannual and subannual timescales from the
spectral density to obtain interannual and subannual variabil-
ity (further information is given in Appendix B). Following
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this methodology, subannual variability comprises all varia-
tions in daily mean data with periodicities of less than a year
that are not part of the seasonal cycle.

2.2.3 Taylor expansion of [H+] and �A variability
changes

To understand the processes behind the simulated changes
in the variabilities of [H+] and �A, we decompose these
changes into contributions from changes in temperature (T ),
salinity (S), total alkalinity (AT), and total dissolved in-
organic carbon (CT). Assuming linearity, the difference of
[H+] from its mean at time step i can be decomposed into
contributions from the drivers by employing a first-order
Taylor expansion,
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, (1)

and analogously for �A. The partial derivatives are evalu-
ated at T , S, CT, and AT, i.e., the temporal mean values of
the drivers in the period of interest. While it is important to
take into account the climatological total phosphate and to-
tal silicate concentrations for calculating the partial deriva-
tives (Orr and Epitalon, 2015), one introduces only small er-
rors by neglecting variations in phosphate and silicate. The
partial derivatives in Eq. (1) are evaluated using mocsy 2.0
(Orr and Epitalon, 2015).

Using the Taylor decomposition (Eq. 1), one can for ex-
ample express the seasonal variation in [H+] as a func-
tion of the drivers’ seasonal variations (Kwiatkowski and
Orr, 2018). In this study, however, we analyze the time-
series variance of [H+] and �A that also includes variabil-
ity on other timescales (see Sect. 2.2.2) and the drivers of
its changes. From the Taylor approximation (Eq. 1) and the
definition of variance (e.g., Coles, 2001), it follows that the
variance of [H+] can be written as a function of the partial
derivatives with respect to the drivers (sensitivities), the stan-
dard deviations of the drivers, and their pairwise correlation
coefficients:
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where the pairwise covariances are functions of the stan-
dard deviations and correlation coefficients according to
cov(x,y) = σxσyρx,y , and the partial derivatives are again
evaluated at the temporal mean values T , S, CT, and AT. This
methodology has also been used to propagate uncertainties in
carbonate system calculations (Dickson and Riley, 1978; Orr
et al., 2018) and to identify drivers of potential predictability
in carbonate system variables (Frölicher et al., 2020). Based
on Eq. (2) and the analogous result for �A, a change in vari-
ance of [H+] and �A can be attributed to changes in the sen-
sitivities that arise from changes in the drivers’ mean states,
to changes in the drivers’ standard deviations, and to changes
in the pairwise correlations between the drivers. We do so by
calculating the Taylor series of Eq. (2) (further information
in Appendix C). We then identify the [H+] variance change
from mean changes in the drivers as the sum of all terms
in the expansion that describe the contributions of sensitivity
changes to the overall change in variance (1sσ

2
H+ ). Likewise,

we identify the contribution from standard deviation changes
in the drivers (1σ σ 2

H+ ). We further group terms in the expan-
sion that stem from simultaneous changes in the sensitivities
and standard deviations (1sσ σ 2

H+ ) and the remaining terms
that arise either from correlation changes alone or mixed
contributions from correlation changes and changes in sensi-
tivities and standard deviations (1ρ+σ 2

H+ ). Since these four
components contain all terms in the Taylor series, they ex-
actly reproduce a change in variance represented by Eq. (2),

1σ 2
H+ = 1sσ

2
H+ + 1σ σ 2

H+ + 1sσ σ 2
H+ + 1ρ+σ 2

H+ . (3)

We also assess the contributions to the four components
from CT alone; from CT and AT; and from CT, AT, and T .
The equivalent procedure is also used to decompose variance
change in �A. Further information on the decomposition is
given in Appendix C.
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Figure 1. Simulated daily mean surface [H+] (a) and �A (c) at 40◦N and 30◦W in the North Atlantic for one ensemble member over the
preindustrial period, the 1861–2005 historical period, and the 2006–2100 period under RCP8.5. The same data as in (a) and (c) but with
subtracted ensemble-mean changes with respect to the average of the 500-year preindustrial control simulation is shown in panels (b) and (d).
For [H+], the preindustrial 99th percentile threshold (horizontal blue line in panels a and b) is increasingly exceeded even when subtracting
the ensemble-mean change, because [H+] variability increases. In contrast, a reduction in �A variability leads to a reduced undershooting
of the preindustrial 1st percentile (d).

Figure 2. The three-step decomposition of [H+] variance into interannual, seasonal, and subannual variance, exemplified for a surface grid
cell at 40◦ N and 30◦ W in the North Atlantic in the preindustrial control simulation. In a first step, the climatological seasonal cycle is
determined (over the whole period, only 5 years are depicted here) and its variance is calculated. Note that the seasonal cycle in this grid cell
has two minima and maxima. In a second step, the spectral density of the anomalies with respect to the seasonal cycle is calculated. In a third
step, interannual and subannual variance is estimated from the spectral density.

2.3 Model evaluation

The focus of our analysis is on changes in variability in [H+]
and �A. As observation-based daily mean data of the in-
organic carbon chemistry at the global scale are not avail-
able, we limit the evaluation of the Earth system model sim-
ulation to the representation of the seasonal cycles of [H+]
and �A, and especially on its changes over the 1982–2015
period. We developed an observation-based dataset for sur-

face monthly [H+] and �A using monthly surface salinity,
temperature, pCO2, and AT fields. Salinity and tempera-
ture data are taken from the Hadley Centre EN.4.2.1 anal-
ysis product (Good et al., 2013). AT is then calculated using
the LIARv2 total alkalinity regression from salinity and tem-
perature (Carter et al., 2018). For pCO2, we use the neural-
network-interpolated monthly data from Landschützer et al.
(2016), which is based on SOCATv4 (Bakker et al., 2016).
Although not fully capturing pCO2 variability in regions
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with only few observations (Landschützer et al., 2016), the
pCO2 dataset appears to be generally well suited for ana-
lyzing pCO2 seasonality and changes therein (Landschützer
et al., 2018). An exception is the Southern Ocean, where
data-based pCO2 products are uncertain due to sparse data in
winter (Gray et al., 2018). [H+] and �A are then calculated
from salinity, temperature, AT, and pCO2 using the CO2SYS
carbonate chemistry package (van Heuven et al., 2011). Un-
certainties in the derived seasonal cycles for [H+] and �A
that arise from uncertainties in the observation-based input
variables are not quantified in this study.

In most regions, the GFDL ESM2M model captures the
observation-based mean seasonal cycle in [H+] and �A quite
well, in particular for �A (the mean values of the seasonal
amplitudes in Fig. 3). However, potential biases in the mean
seasonal amplitudes do not directly have an effect on pro-
jected changes in extreme events, as we base the extreme-
event definition on relative thresholds.

We then compare the simulated ensemble-mean trends
in seasonal amplitude with the observation-based estimates
(Fig. 3; Appendix D). Similar to the mean seasonal cycle
results, the GFDL ESM2M model captures the observed
trends in the seasonal [H+] and �A amplitudes for differ-
ent latitudinal bands over the 1982–2015 period relatively
well. The ensemble-mean trends in the simulated seasonal
[H+] amplitudes are positive for all latitude bands (Fig. 3,
Table 1), consistent with the observation-based estimates.
While the estimates for the simulated trends are signifi-
cantly larger than zero for all latitude bands, this is not
the case for the observation-based trends in the equatorial
region (10◦ S–10◦ N) and the northern low latitudes (10–
40◦ N) (Table 1). The simulated [H+] seasonality trends are
significantly smaller (with 90 % confidence level) than es-
timated from observations in the northern high (40–80◦ N;
orange thick lines in Fig. 3a, b) and southern low latitudes
(40–10◦ S; blue thick lines in Fig. 3a, b), where the trends
from the model ensemble are 0.031 ± 0.012 nmol kg−1 per
decade and 0.035 ± 0.003 nmol kg−1 per decade, compared
to the observation-based trends of 0.106 ± 0.040 nmol kg−1

per decade and 0.055 ± 0.014 nmol kg−1 per decade, respec-
tively. The simulated ensemble-mean trends for the remain-
ing latitude bands are not significantly different from the
observation-based trend estimates.

For the seasonal amplitude of �A, we find a significant
negative trend in the observation-based data in the northern
low latitudes and significant negative trends in the simula-
tions in the northern and southern high latitudes (Table 1).
The negative trends in seasonal amplitude in the simula-
tions are significantly different from the observation-based
trends in the northern high latitudes (−0.015 ± 0.004 vs.
0.002 ± 0.009 �A units per decade) and in the southern high
latitudes (−0.012 ± 0.002 vs. 0.000 ± 0.005 �A units per
decade).

In summary, taking into account previous evaluations of
the mean states of [H+] and �A and the underlying drivers in

the GFDL-ESM2M model (Bopp et al., 2013; Kwiatkowski
and Orr, 2018), the model performs well against a number
of key seasonal performance metrics. However, the model
slightly underestimates past increases in seasonal amplitude
of [H+], especially in the northern and southern high lati-
tudes. In contrast to the observation-based data, the model
also projects negative trends in the �A seasonal ampli-
tude there. Nevertheless, the observation-based trends in the
northern and especially southern high latitudes are uncertain
because wintertime data are sparse there. Even though we
lack the daily mean observation-based data to undertake a
full assessment, it appears that the GFDL ESM2M model is
adequate to assess changes in open-ocean variability of [H+]
and �A and to assess changes in extreme events that arise
thereof.

3 Results

We first briefly discuss the simulated changes in [H+] and
�A extreme events when these events are defined with re-
spect to a fixed preindustrial baseline period (Sect. 3.1). In
Sect. 3.2 and 3.3, these results are contrasted with changes
in extremes that are defined with respect to a shifting base-
line, i.e., where the secular trends do not alter extreme events.
In Sect. 3.4, variability changes are decomposed into sub-
annual, seasonal, and interannual variability contributions.
The processes leading to variability changes are analyzed in
Sect. 3.5.

3.1 Global changes in extremes defined relative to a
fixed preindustrial baseline

When using the fixed preindustrial 99th and 1st percentiles
to define extreme events in [H+] and �A, respectively, large
increases in the number of days with [H+] and �A extremes
are projected over the 1861–2100 period in both low- and
high-CO2-emission scenarios (Figs. 4 and A1). Over the his-
torical period, the GFDL ESM2M model projects an increase
in yearly extreme days for surface [H+] from 3.65 d per year
during the preindustrial period to 299 d per year in 1986–
2005. By year 2030 and under both CO2 emission scenar-
ios, the surface ocean is projected to experience a “near-
permanent acidity extreme state”; i.e., [H+] is above the
preindustrial 99th percentile more than 360 d pear year. Like-
wise, the average duration of events saturates near 365 d,
and the intensity of events increases strongly, mainly reflect-
ing the large increase in mean [H+] (Fig. A1). A similar
but slightly delayed evolution in the number, maximal inten-
sity, and duration of [H+] extremes is simulated at 200 m
(Fig. A1).

Large increases in yearly extreme days are also projected
for �A when using a fixed preindustrial 1st percentile as a
baseline (Fig. 4b). Similar to [H+], the entire surface ocean
is projected to approach a permanent �A extreme state dur-
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Figure 3. Seasonal amplitude of [H+] (calculated as yearly maximum minus the yearly minimum after subtracting a cubic spline from the
data) over the period 1982–2015 averaged over five different latitude bands for the observation-based estimate (a) and the GFDL ESM2M
model historical (1982–2005) and RCP8.5 (2006–2015) ensemble simulations (b), along with the same for data-based �A (c) and simulated
�A (d). Linear trends in all panels are overlaid as thick lines. The linear trend of the simulated changes is calculated as the mean of the five
individual ensemble trends.

Table 1. Linear trends in seasonal amplitude of [H+] (in nmol kg−1 per decade) and �A (in 10−3 per decade) for five latitude bands over
the period 1982–2015. Results are shown for the observation-based data (Obs.) and the five-member ensemble mean of the ESM2M model
simulations (ESM2M) following the RCP8.5 scenario over 2006–2015. The range (±) denotes the 90 % confidence interval.

Latitude Obs. [H+] ESM2M [H+] Obs. �A ESM2M �A

40–80◦ N 0.106 ± 0.040 0.031 ± 0.012 1.9 ± 8.7 −15.1 ± 3.8
10–40◦ N 0.034 ± 0.034 0.047 ± 0.005 −6.7 ± 5.6 −1.8 ± 2.0
10◦ S–10◦ N 0.001 ± 0.016 0.006 ± 0.005 −2.8 ± 10.7 −0.5 ± 5.3
40–10◦ S 0.055 ± 0.014 0.035 ± 0.003 −2.4 ± 5.1 −1.2 ± 1.2
75–40◦ S 0.037 ± 0.028 0.009 ± 0.004 0.1 ± 4.8 −12.2 ± 1.7

ing the 21st century under the RCP8.5 scenario. A near-
permanent extreme state is projected by year 2062. In con-
trast to [H+], a permanent �A extreme state of the global
ocean is avoided under the RCP2.6 scenario.

3.2 Global changes in extremes defined relative to a
shifting baseline

Next, we investigate changes in [H+] and �A extremes when
the extreme events are defined with respect to a shifting
(time-moving) baseline; i.e., changes in extremes arise only
from changes in variability and higher moments of the distri-
butions. The GFDL ESM2M model projects large increases
in the number, intensity, duration, and volume of [H+] ex-

treme events over the 1861–2100 period (Fig. 5). Over the
historical period (from the preindustrial period to 1986–
2005), the model projects that the number of surface [H+]
extreme days increases from 3.65 d per year to 10.0 d per year
(Fig. 5a, ensemble ranges are given in Table 2). The maximal
intensity is projected to increase from 0.08 to 0.12 nmol kg−1

(Fig. 5c, Table 2) and the duration from 11 to 15 d (Fig. 5e).
Compared to preindustrial conditions, these changes corre-
spond to a 173 % increase in the number of days per year, a
44 % increase in the maximal intensity, and a 45 % increase
in the duration of [H+] extreme events. The volume of indi-
vidual events is projected to increase by 20 % over the histor-
ical period, from a typical volume of 2.7×103 km3, which is
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Figure 4. Simulated globally averaged yearly extreme days defined with respect to a fixed baseline for [H+] using the preindustrial 99th
percentile (a) and for �A using the preindustrial 1st percentile (b). Shown are changes at the surface over the 1881–2100 period following
historical (black lines) and future scenarios, RCP8.5 (red) and RCP2.6 (blue). The thick lines display the five-member ensemble means, and
the shaded areas represent the maximum and minimum ranges of the individual ensemble members.

about 0.004 % of the total ocean volume in the upper 200 m
(Fig. 5g), to 3.2 × 103 km3.

Over the 21st century, extreme events in ocean acidity,
defined with respect to a shifting baseline, are projected to
further increase in frequency, intensity, duration, and vol-
ume (Fig. 5). By 2081–2100 under the RCP8.5 scenario,
the number of [H+] extreme days per year at the surface
is projected to increase to 50 d (corresponding to a 1273 %
increase relative to the preindustrial period). The maximal
intensity is projected to increase to 0.38 nmol kg−1 (371 %
increase), the duration to 32 d (199 % increase), and the vol-
ume to 13.9 × 103 km3 (414 % increase).

At 200 m, the [H+] extreme events in preindustrial condi-
tions are in general more intense (0.17 nmol kg−1; Fig. 5d)
and longer lasting (38 d; Fig. 5f) than at the surface. The
stronger extreme events are caused by the overall larger
variability at 200 m than at the surface in the preindus-
trial period. The longer duration is connected to the more
pronounced contribution from interannual variability (see
Sect. 3.4). However, projected relative changes over the his-
torical period and the 21st century are smaller at 200 m than
at the surface and with larger year-to-year variations across
the ensembles. Under recent past conditions (1986–2005),
the number of extreme days per year at 200 m is 4.3 d per year
(corresponding to an 18 % increase since the preindustrial pe-
riod), the maximal intensity 0.20 nmol kg−1 (18 % increase),
and the duration 46 d (21 % increase). By the end of the 21st
century under the RCP8.5 scenario, the number of [H+] ex-
treme days per year is projected to increase to 32 d per year,
the maximal intensity to 0.34 nmol kg−1, and the duration to
99 d. Notably, extreme events in [H+] are projected to be-
come slightly less intense at 200 m than at the surface (0.34
vs. 0.38 nmol kg−1) by the end of the century under RCP8.5,
even though they were more intense in preindustrial times
at depth. In contrast, surface [H+] extreme events remain
shorter in duration at the end of the century than at 200 m.

Under the RCP2.6 scenario, the magnitude of changes in
the different [H+] extreme-event characteristics by the end of

the century is substantially smaller than in the RCP8.5 sce-
nario. This difference is especially pronounced at the surface
(blue lines in Fig. 5). There, the number of extreme days per
year, maximal intensity, and duration under the RCP2.6 are
projected to be 46 % (44–47), 43 % (43–44), and 75 % (73–
77) of that under the RCP8.5 scenario. At depth, the differ-
ences between the RCP2.6 and RCP8.5 scenario are less pro-
nounced and only emerge in the second half of the 21st cen-
tury. As opposed to the surface, the number of [H+] extreme
days per year and the maximal intensity at 200 m as well as
the volume of events are projected to increase significantly
even after the atmospheric CO2 concentration stabilizes in
RCP2.6 around year 2050. This delayed response in the sub-
surface is due to the relatively slow surface-to-subsurface
transport of carbon. However, this is not the case for the du-
ration, which slightly decreases in the second half of the 21st
century at depth (Fig. 5f). This decrease in duration mainly
occurs in the subtropics, where events generally last longer
(Fig. A3b). It is connected to an increase in the contribution
from high-frequency variability to total variability in those
regions over that period.

In contrast to [H+] extreme events, the number of yearly
extreme days in �A is projected to decrease over the histori-
cal period and during the 21st century under both the RCP8.5
and RCP2.6 scenarios (Fig. 6a–b, Appendix Table A1) when
the extreme events are defined with respect to a shifting base-
line. The number of surface �A extreme days per year by
the end of this century is projected to be 63 % smaller under
RCP8.5 and 39 % smaller under RCP2.6 compared to prein-
dustrial conditions (ensemble ranges are given in Table A1).
Projected changes at depth are less pronounced than at the
surface, again with larger decreases under RCP8.5 than under
RCP2.6. Despite this decline in extreme events when defined
with respect to a shifting baseline, the long-term decline in
the mean state of �A still leads to more frequent occurrence
of extreme low �A events when defined with respect to a
fixed baseline (see Sect. 3.1).
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Figure 5. Simulated changes in globally averaged [H+] extreme-event characteristics over the 1881–2100 period following historical (black
lines) and future RCP8.5 (red) and RCP2.6 (blue) scenarios. The extreme events are defined with respect to a shifting baseline. Yearly
extreme days, maximal intensity, and duration are shown for the surface (a, c, e) and for 200 m (b, d, f). Volume is shown in (g). The thick
lines display the five-member ensemble means, and the shaded areas represent the maximum and minimum ranges of the individual ensemble
members.

Table 2. Simulated global ensemble-mean [H+] extreme-event characteristics, when extremes are defined with respect to a shifting baseline.
Values in brackets denote ensemble minima and maxima.

PI 1986–2005 2081–2100 RCP2.6 2081–2100 RCP8.5

Yearly extreme days surface (days per year) 3.65 10.0 (9.5–10.4) 22.9 (21.9–23.5) 50.1 (50.0–50.3)
200 m (days per year) 3.65 4.3 (3.7–5.1) 19.9 (17.0–22.5) 32.1 (30.9–34.8)
Duration surface (days) 10.6 15.4 (15.0–15.7) 23.8 (23.4–24.1) 31.8 (31.2–32.1)
200 m (days) 38.0 46.0 (42.8–50.0) 62.9 (60.5–66.1) 98.7 (95.1–102.0)
Maximal intensity surface (nmol k−1) 0.08 0.12 (0.11–0.12) 0.17 (0.16–0.17) 0.38 (0.37–0.39)
200 m (nmol kg−1) 0.17 0.20 (0.19–0.21) 0.28 (0.25–0.30) 0.34 (0.33–0.34)
Volume (×103 km3) 2.7 3.2 (3.1–3.5) 7.7 (6.9–8.5) 13.9 (13.8–14.1)
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Figure 6. Simulated changes in the yearly number of �A extreme days. The extreme events are defined with respect to a shifting baseline.
Panels (a) and (b) show the globally averaged simulated yearly extreme days in �A from 1881 to 2100 following historical (black lines) and
future RCP2.6 (blue) and RCP8.5 (red) scenarios at the surface (a) and 200 m (b). The thick lines display the five-member ensemble means,
and the shaded areas represent the maximum and minimum range of the individual ensemble members. Panels (c) and (d) show the simulated
regional changes in yearly extreme days in �A from the preindustrial period to 2081–2100 under the RCP8.5 scenario at the surface (c) and
at 200 m (d). Shown are changes averaged over all five ensemble members. The black lines highlight the pattern structure and gray colors
represent regions where no ensemble member simulates extremes during 2081–2100.

3.3 Regional changes in extremes defined relative to a
shifting baseline

Surface [H+] extremes that are defined with respect to a shift-
ing baseline are projected to become more frequent in 87 %
of the surface ocean area by the end of the 21st century un-
der the RCP8.5 scenario. However, the projected changes in
these ocean acidity extremes are not uniform over the globe
(Fig. 7; Appendix Fig. A3). The largest increases in the num-
ber of [H+] extreme days per year are projected in the Arc-
tic Ocean (up to +120 d per year), in the subtropical gyres
(up to +60 d per year), and in parts of the Southern Ocean
and near Antarctica. There are also some regions includ-
ing the eastern equatorial Pacific and parts of the Southern
Ocean where the number of yearly extreme days in surface
[H+] is projected to decrease. These are in general also the
regions where the seasonality in [H+] is projected to de-
crease (see Sect. 3.4 below). The largest absolute changes
in intensity of surface [H+] extremes (Fig. 7c) are projected
for the subtropics, especially in the Northern Hemisphere.
For example, events become up to 1 nmol kg−1 more intense
in the subtropical North Pacific and Atlantic, corresponding
roughly to a 10-fold increase in intensity with respect to the
preindustrial period. The largest relative increases in inten-
sity are projected for the Arctic Ocean, the North Atlantic,
and around Antarctica, where more-than-10-fold increases
with respect to the preindustrial period are projected. Re-

gions with large increases in the number of yearly extreme
days tend to also show large increases in the duration of ex-
treme events (Fig. 7e). The Arctic Ocean is an exception. Al-
though the number of yearly extreme days increases strongly,
the increase in duration is not as pronounced. This discrep-
ancy is because extremes are already long lasting but rare at
preindustrial times (Fig. A3). So even though extreme events
are projected to occur each year by the end of the century
under RCP8.5, the increase in duration is relatively small.

At 200 m, the projected pattern of changes in yearly ex-
treme days generally resembles that at the surface (Fig. 7b).
The largest increases in yearly extreme days are projected for
parts of the subtropics, the Southern Ocean, and the Arctic
Ocean. In contrast to the surface, [H+] extremes at 200 m are
projected to become less frequent in the equatorial Atlantic,
the northern Indian Ocean, the North Pacific, and in large
parts of the Southern Ocean. The regions indicating a decline
in [H+] extremes at depth include also some of the eastern
boundary current systems, such as the Humboldt, California,
and Benguela Current systems. In most of these regions, ex-
treme events are projected to disappear in the RCP8.5 sce-
nario by the end of this century (gray regions in Fig. 7b). The
largest increases in subsurface event intensity are projected
in the subtropics (Fig. 7d), whereas the duration of [H+] ex-
tremes is projected to increase strongly in many regions of
the mid-to-high latitudes of both hemispheres (Fig. 7f). The
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projected increases in duration at 200 m are much larger than
at the surface.

The increase in the number of extreme days per year, the
maximal intensity, and the duration is smaller under RCP2.6
compared to RCP8.5 for most of the ocean (Fig. A2). The
largest increases in occurrence of extremes under RCP2.6 are
simulated for the Arctic Ocean, similar to under RCP8.5, and
for parts of the Southern Ocean. The regions in the Southern
Ocean where the occurrence of extreme events in [H+] is
projected to decrease largely overlap with those for RCP8.5,
at the surface and at depth. On the other hand, unlike un-
der RCP8.5, a decrease in extreme-event occurrence is only
projected for a small fraction of the tropical oceans under
RCP2.6.

While the decline in mean �A generally leads to lower
values in �A and thus extreme events are becoming more
frequent when defined with respect to a fixed preindustrial
baseline (Sect. 3.1), extreme events in �A are projected to
become less frequent throughout most of the ocean when
defined with respect to a shifting baseline (89 % of surface
area under RCP8.5 at the end of the 21st century; Fig. 6c). In
many regions, extreme events in �A are projected to disap-
pear by 2081–2100 under the RCP8.5 scenario (gray regions
in Fig. 6c) when defined with respect to a shifting baseline.
However, the number of yearly extreme days in �A is pro-
jected to increase by 10 or more in the subtropical gyres,
especially in the western parts of the subtropical gyres. At
200 m, no extreme events are projected for most of the ocean
during 2081–2100 under RCP8.5 (Fig. 6d).

3.4 Decomposition of temporal variability in [H+]

The changes in [H+] extreme events defined with respect to
a shifting baseline mainly result from changes in [H+] vari-
ability. These variability changes may arise from changes
in interannual variability, seasonal variability, and subannual
variability. Thus, we decomposed the total variability into
these three components (see Sect. 2.2.2). For the preindus-
trial period, the model simulates generally larger [H+] vari-
ance at depth than at the surface (0.42 vs. 0.15 nmol2 kg−2,
not shown). Seasonality has the largest contribution at the
surface (81 % of total variance). At 200 m, interannual vari-
ability has the largest contribution (63 %), and also subannual
variability is more important compared to the surface (15 %
vs. 8 %).

Over the 1861–2100 period under the historical-RCP8.5
forcing, changes in seasonality clearly dominate the overall
change in variability at the surface with 87 % contribution
to the overall variance change in the global mean (Fig. 8b,
d). Changes in interannual variability (3 % contribution to
overall variance change; Fig. 8a, d) and subannual variability
(10 %; Fig. 8c, d) play a minor role. The largest increases in
variability for all three variability types are projected for the
northern high latitudes. Around Antarctica and the southern
end of South America, large increases in seasonal variabil-

ity are projected (Fig. 8b). In the tropical Pacific and parts
of the Southern Ocean, decreases in interannual and seasonal
variability are projected (Fig. 8a, b).

In contrast to the surface, changes in interannual and to
a lesser extent subannual variability at 200 m are also im-
portant for explaining the overall changes in [H+] variability
(Fig. 8e, g, h). Changes in interannual variability contribute
most to overall variance change at the global scale (with
42 % contribution). Seasonal variability changes are almost
equally important (37 %), and changes in subannual variabil-
ity also contribute substantially to changes in total variabil-
ity (20 %). The patterns of variability changes are very sim-
ilar across the three temporal components of variability. The
largest increases in [H+] variability are simulated north and
south of the Equator. These regions tend to be already more
variable during the preindustrial period (see Fig. A3a). How-
ever, the model also projects an increase in variability for
regions that are less variable during the preindustrial period,
such as northern high latitudes. All three temporal compo-
nents of variability are projected to decrease in the tropics
and parts of the Southern Ocean. The variability decrease in
those regions is most pronounced for interannual variability
(Fig. 8e).

3.5 Drivers of [H+] and �A variability changes

In this section, we investigate the changes in the drivers that
cause the variability changes in [H+] and �A. Drivers are
carbon (CT), alkalinity (AT), temperature, and salinity. To
do so, we attribute changes in [H+] and �A variability to
four factors (see Sect. 2.2.3 for further details): (i) changes
in the mean states of the drivers that control the sensitivi-
ties (1sσ

2
H+ ), (ii) changes in the variabilities of the drivers

(1σ σ 2
H+ ), (iii) simultaneous changes in the mean states and

variabilities of the drivers (1sσ σ 2
H+ ; this contribution arises

because both mean states and variabilities change and can-
not be attributed to either (i) or (ii) alone), and (iv) changes
in the correlations between the drivers, also including mixed
contributions from correlation changes together with mean
state and variability changes (1ρ+σ 2

H+ ). In other words, (iv)
describes the change in variability that arises because the cor-
relations between the drivers also change, and not only their
mean states and variabilities.

The drivers’ mean changes between the preindustrial
period and 2081–2100 under RCP8.5 cause a strong in-
crease in surface [H+] variability, which is most pronounced
in the high latitudes (1sσ

2
H+ ; red line in Fig. 9a, black

dashed line in Fig. 9b). On a global average, these variance
changes due to the mean changes in the drivers (1sσ

2
H+ =

1.3 nmol2 kg−2) are much larger than the total simulated
variance change in [H+] (1σ 2

H+ = 0.5 nmol2 kg−2, dashed
gray or solid black line in Fig. 9a). In general, an increase in
mean CT, temperature, and salinity would lead to an increase
in 1sσ

2
H+ , whereas an increase in mean AT would lead to a
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Figure 7. Simulated regional changes in [H+] extreme-event characteristics from the preindustrial period to the 2081–2100 period under the
RCP8.5 scenario at the surface and at depth for the yearly extreme days (a, b), the maximal intensity of events (c, d), and the duration of
events (e, f). The extreme events are defined with respect to a shifting baseline. Shown are changes averaged over all five ensemble members.
Gray colors represent areas where no extremes occur during 2081–2100, and the black lines highlight pattern structures.

Figure 8. Contribution to projected changes in [H+] variance from interannual variability (a, e), seasonal variability (b, f), and subannual
variability (c, g) between the preindustrial period and the 2081–2100 period under the RCP8.5 forcing at the surface (a–d) and at 200 m (e–h).
Shown are the ensemble-mean changes. The black lines highlight the pattern structure. Zonal mean contributions are shown for the surface
(d) and for 200 m (h). The sum of the three components (black lines) accurately reproduces the simulated variance change (gray dashed
lines).

decrease. The GFDL ESM2M model projects an increase in
mean CT over the entire surface ocean (Fig. A5a) due to the
uptake of anthropogenic CO2 from the atmosphere and there-
fore an increase in 1sσ

2
H+ (light blue line in Fig. 9b). In the

high latitudes, a relatively small increase in mean CT leads to

a large increase in 1sσ
2
H+ , because [H+] is more sensitive to

changes in CT due to the low buffer capacity there. Decreases
in mean AT further contribute to the increase in 1sσ

2
H+ in the

high latitudes (green line in Fig. 9b). In the low-to-mid lat-
itudes and in particular in the Atlantic Ocean, mean surface
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Figure 9. Decomposition of surface [H+] variability changes into different drivers (CT, AT, temperature, and salinity). Shown are changes
from the preindustrial period to 2081–2100 following the RCP8.5 scenario. The simulated change in [H+] variance (1σ 2

H+ ) is decomposed
into the contribution from changes in the sensitivities that arise from changes in the drivers’ mean values (1sσ

2
H+ ), the contribution from

changes in the drivers’ standard deviations (1σ σ 2
H+ ), the contribution from simultaneous changes in the sensitivities and the drivers’ standard

deviations (1sσ σ 2
H+ ), and the contribution from correlation changes alone together with simultaneous changes in correlations and sensitiv-

ities and standard deviations (1ρ+σ 2
H+ ) (a). The small mismatch between the sum of the components (black line) and simulated variance

change (gray dashed line) arises because the decomposition is based on Eq. (2), which is an approximation to simulated [H+] variance. The
contributions to these components from changes in CT alone (light blue lines); from changes in CT and AT (green lines); and from CT, AT,
and temperature (gold lines) are shown in panels (b)–(e). The dashed black lines in panels (b)–(e) show the total components that contain
contributions from all four drivers.

AT is projected to increase (Fig. A5) and therefore dampens
the overall increase in 1sσ

2
H+ (green line in Fig. 9b). The

changes in AT are largely due to changes in freshwater cy-
cling that also manifest in salinity changes (Fig. A5, Carter
et al., 2016). Increases in temperature additionally increase
1sσ

2
H+ , mainly in the northern mid-to-high latitudes (gold

line in Fig. 9b), but the overall impact of mean changes in
temperature, and especially salinity, is small.

Why is the increase in 1σ 2
H+ (gray dashed or black

solid line in Fig. 9a) smaller than the increase from the
mean changes (i.e., 1sσ

2
H+ ; red line in Fig. 9a)? In the

high latitudes, the projected change in the variability of the
drivers (Fig. A6) contributes negatively to the [H+] variabil-
ity change and counteracts to some degree the increase in
1sσ

2
H+ . These variability changes alone have a small im-

print on 1σ σ 2
H+ (blue line in Fig. 9a; black dashed line in

Fig. 9c), but the variability changes dampen the increases
from the mean changes (1sσ σ 2

H+ , magenta line in Fig. 9a,
black dashed line in Fig. 9d). The latter contribution is large
in the high latitudes, where mean changes alone would lead
to a strong increase. In the high latitudes, decreases in CT
variability (Fig. A6a) together with increases in mean CT
(Fig. A5a) can explain much of the negative contribution
from 1sσ σ 2

H+ (light blue line in Fig. 9d). In the northern high
latitudes, mean and variability changes in AT are also impor-

tant for 1sσ σ 2
H+ (green line in Fig. 9d). The additional con-

tribution from changes in the correlations between the drivers
(1ρ+σ 2

H+ ; cyan line in Fig. 9a) also tends to contribute neg-
atively to [H+] variability changes, especially in the North
Atlantic, and changes in correlations with temperature play
an important role (gold line in Fig. 9e). In summary, the in-
crease in [H+] variability at the surface is mainly caused by
increases in mean CT attenuated by decreases in CT variabil-
ity in the high latitudes. Mean changes in AT reinforce the
increase in [H+] variability in the northern high latitudes but
dampen the increase in the low latitudes.

At 200 m, the projected increase in 1σ 2
H+ (gray dashed or

black solid line in Fig. 10a) is also a result of the large in-
crease due to the mean changes in the drivers (1sσ

2
H+ ; red

line in Fig. 10a; dashed black line in Fig. 10b) and the de-
crease due to the interplay between mean changes and de-
creases in the variability (1sσ σ 2

H+ ; magenta line in Fig. 10a,
black dashed line in Fig. 10d). Similar to the surface, the
changes in mean and variability of CT are the most impor-
tant drivers of changes (light blue lines in Fig. 10b, d). In-
creases in mean AT partially compensate for the increase
in [H+] variability due to the increase in mean CT (green
lines in Fig. 10b, d). Changes in [H+] variability due to
changes in temperature and salinity are small. In contrast
to the surface, the individual compensating contributions to
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[H+] variability change from mean changes and simultane-
ous mean and variability changes in the drivers, in particu-
lar those in CT, are much larger at 200 m. The global aver-
age variance change due to the mean changes in the drivers
(1sσ

2
H+ = 3.7 nmol2 kg−2) is much larger than the overall

simulated variance change (1σ 2
H+ = 0.1 nmol2 kg−2). The

contribution from changes in the correlations between the
drivers is overall small (cyan line in Fig. 10a) and stems
mainly from changes in the correlation between CT and AT
(Fig. 10e). Taken together, the increase in [H+] variability at
200 m mainly arises from the balance between increases in
mean CT and decreases in CT variability. Increases in mean
AT dampen these changes.

Unlike for [H+], both mean changes (1sσ
2
�; red lines in

Fig. 11) and variability changes in the drivers (1σ σ 2
�: blue

lines in Fig. 11) lead to a decrease in �A variability (1σ 2
�;

black dashed lines in Fig. 11). At 200 m, variability changes
are even the dominant driver for reductions in �A variability.
Simultaneous changes in means and variabilities (1sσ σ 2

�;
purple lines in Fig. 11) contribute positively and dampen
the reduction in �A variability from mean and variability
changes alone. Mean and variability changes in CT are the
main drivers for changes in �A variability as indicated by the
tight relation between the dashed and solid red, blue, and pur-
ple lines in Fig. 11, in particular at 200 m. An exception is the
northern high latitudes, where AT changes also play a sub-
stantial role at the surface (not shown). Correlation changes
in the drivers (1ρ+σ 2

�; cyan lines in Fig. 11) are of secondary
importance and have the largest imprint in the northern mid-
to-high latitudes at the surface.

4 Discussion and conclusions

We provide a first quantification of the historical and future
changes in extreme events in ocean acidity by analyzing daily
mean three-dimensional output from a five-member ensem-
ble simulation of a comprehensive Earth system model. In
our analysis, we focus on changes in high-[H+] and low-
�A extreme events that are defined with respect to a shift-
ing baseline, where changes in extremes arise from changes
in daily to interannual variability. Secular trends in the mean
state were removed from the model output before analyzing
extremes under this approach. We show that such extreme
events in [H+] are projected to become more frequent, longer
lasting, more intense, and spatially more extensive under in-
creasing atmospheric CO2 concentration, both at the surface
and also within the thermocline. Under RCP2.6, the increase
in these extreme-event characteristics is substantially smaller
than under RCP8.5. The increase in [H+] variability is a con-
sequence of increased sensitivity of [H+] to variations in its
drivers. It is mainly driven by the projected increase in mean
CT and additionally altered by changes in CT variability and
AT mean and variability as well as changes in the correla-
tions between the drivers. In contrast to [H+], variability of

�A is projected to decline in the future. Therefore, extreme
events in �A are projected to become less frequent in the
future when defined with respect to a shifting baseline. The
reason for the decline in variability is that �A, unlike [H+],
becomes less sensitive to variations in the drivers with the
mean increase in CT. Furthermore, the projected reductions
in the drivers’ variabilities, mainly in CT, further reduce �A
variability.

The analysis of extreme events defined with respect to
fixed preindustrial percentiles reveals that the secular trends
in [H+] and �A are so large that they lead to year-round or
almost-year-round extreme events in the upper 200 m over
the entire globe by the end of the 21st century, even under the
low-emission scenario RCP2.6. Extreme events are no longer
temporally and spatially bounded events that arise due to the
chaotic nature of the climate system but describe a perma-
nent new state. Under the fixed baseline approach, the rela-
tive contribution of changes in variability or higher moments
of the distribution to the changes in the number of extremes
is small. For example, the number of yearly extreme days for
surface [H+] over the 1986–2005 period under the shifting-
baseline approach is only 3.8 % of that when defining the
extreme events with respect to a fixed preindustrial baseline.
This fraction differs regionally, reaching more than 10 % in
the North Pacific, the North Atlantic, and the Arctic Ocean.
However, we recall here that the changes in the number of
[H+] extremes when defined with respect to a shifting base-
line are large. These changes in variability may need to be
taken into account when assessing the impacts of ocean acid-
ity changes on marine organisms, especially when organisms
are likely to adapt to the long-term mean changes but not to
changes in variability.

We use the 99th percentile of the distribution from a prein-
dustrial simulation for the definition of the extreme [H+]
events (i.e., a one-in-a-hundred-days event at preindustrial
levels), but the results may depend on the choice of this
threshold. We tested the sensitivity of our results under the
shifting-baseline approach by using also the 99.99th per-
centile threshold (i.e., a one-day-in-27.4-years event at prein-
dustrial levels). The relative increase in the numbers of ex-
treme [H+] days per year is larger for these rare extremes
(Fig. 12). For example, nearly every second day with [H+]
exceeding the 99th percentile (red solid lines in Fig. 12) is
also a day with [H+] exceeding the 99.99th percentile (red
dotted lines in Fig. 12) by the end of the 21st century under
RCP8.5, both at the surface and at depth. As a result of this
large relative increase in rare extremes, the model projects
as many days with [H+] exceeding the 99.99th percentile
by the end of the century under RCP8.5 (red dotted lines in
Fig. 12) as it projects days exceeding the 99th percentile un-
der RCP2.6 (blue solid lines in Fig. 12).

The projected increase in [H+] variability and decrease
in �A variability also alters the occurrence of extreme
events based on absolute thresholds. An often used thresh-
old is �A = 1, below which seawater is corrosive with re-
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Figure 10. Decomposition of [H+] variability changes at 200 m into different drivers (CT, AT, temperature, and salinity). Shown are changes
from the preindustrial period to 2081–2100 following the RCP8.5 scenario. The simulated change in [H+] variance (1σ 2

H+ ) is decomposed
into the contribution from changes in the sensitivities that arise from changes in the drivers’ mean values (1sσ

2
H+ ), the contribution from

changes in the drivers’ standard deviations (1σ σ 2
H+ ), the contribution from simultaneous changes in the sensitivities and the drivers’ standard

deviations (1sσ σ 2
H+ ), and the contribution from correlation changes alone together with simultaneous changes in correlations and sensitivi-

ties and standard deviations (1ρ+σ 2
H+ ) (a). The contributions to these components from changes in CT alone (light blue lines); from changes

in CT and AT (green lines); and from CT, AT, and temperature (gold lines) are shown in panels (b)–(e). The dashed black lines in panels
(b)–(e) show the total components that contain contributions from all four drivers.

Figure 11. Decomposition of �A variability changes into different drivers. The simulated zonal mean contribution to variance changes in �A
(black dashed lines, 1σ 2

�
) from the preindustrial period to 2081–2100 (RCP8.5) at the surface (a) and at 200 m (b). Shown is the contribution

from sensitivity changes (due to mean changes in the drivers) (red lines, 1sσ
2
�

), standard deviation changes in the drivers (blue lines, 1σ σ 2
�

),
simultaneous changes in sensitivities and standard deviations (purple lines, 1sσ σ 2

�
), and all contributions that involve changes in the drivers’

correlations (cyan lines, 1ρ+σ 2
�

). Furthermore, contributions from mean changes, standard deviation changes, and simultaneous mean and
standard deviation changes in CT alone are shown (dashed red, blue, and purple lines, respectively).

spect to the calcium carbonate mineral aragonite (Morse and
Mackenzie, 1990). We assess the influence of the general de-
cline in �A variability at the time where a grid cell falls be-
low �A = 1 for the first time. To do so, we compare these
times within the historical and RCP8.5 ensemble to those
for the hypothetical case where �A variability stays at the
preindustrial level but mean �A undergoes the ensemble-
mean evolution. We find that the decline in �A variability,
which is observed in the historical and RCP8.5 ensemble,

leads to an average delay of the first occurrence of undersat-
uration by about 11 years at the surface and about 16 years at
200 m. At the surface, these delays of undersaturation occur
throughout the high latitudes (Fig. 13a). At depth, the delays
are most pronounced in the tropics (Fig. 13b), but delays also
occur in the high latitudes. Assuming unchanged seasonality,
McNeil and Matear (2008) found that seasonal aragonite un-
dersaturation of surface waters in the Southern Ocean may
occur 30 years earlier than annual mean aragonite undersat-

Biogeosciences, 17, 4633–4662, 2020 https://doi.org/10.5194/bg-17-4633-2020



64 3. INCREASE IN OCEAN ACIDITY VARIABILITY AND EXTREMES

F. A. Burger et al.: Increase in ocean acidity variability and extremes 4649

Figure 12. Globally averaged number of yearly extreme days for [H+] over the historical (black lines), RCP2.6 (blue), and RCP8.5 (red)
simulations for the preindustrial 99th (solid lines) and 99.99th percentile (dotted lines) at the surface (a) and 200 m (b). The extreme events
are defined with respect to shifting baselines.

uration. However, our simulation shows that the reduction in
�A variability delays the onset of undersaturation by about
10 to 15 years in the Southern Ocean relative to a hypotheti-
cal simulation where variability does not change. Therefore,
changes in variability need to be taken into account when
projecting the onset of seasonal undersaturation, especially
in the high latitudes and in the thermocline of the tropics.

Previous studies have shown that the seasonal cycle of sur-
face ocean pCO2 will be strongly amplified under increasing
atmospheric CO2 (Gallego et al., 2018; Landschützer et al.,
2018; McNeil and Sasse, 2016) and that a similar amplifi-
cation is expected for surface [H+] (Kwiatkowski and Orr,
2018). Here we show that the changes in the seasonal cy-
cle of [H+] translate into large increases in short-term ex-
treme acidity events at the surface as well as at 200 m, when
these events are defined with respect to a shifting baseline.
In addition to earlier studies, we also show that changes in
subannual variability, which are only partially resolved by
monthly mean data, contribute to changes in extreme events
in [H+] under increasing atmospheric CO2. Furthermore, we
show that the average duration of extreme events at the sur-
face and in recent past conditions (1986–2005) is about 15 d.
To resolve such events that last for days to weeks, it is nec-
essary to use daily mean output. Currently, ocean carbon-
ate system variables from models that participate in the sixth
phase of the Coupled Model Intercomparison Project are rou-
tinely stored with a monthly frequency on the Earth system
grid (Jones et al., 2016). We therefore recommend storing
and using high-frequency output to study extreme events in
the ocean carbonate systems.

Even though we consider our results as robust, a num-
ber of potential caveats remain. First, the horizontal reso-
lution of the ocean model in the GFDL ESM2M model is
rather coarse and cannot represent critical scales of small-
scale circulation structures (e.g., Turi et al., 2018). In ad-
dition, the biogeochemical processes included in the GFDL
ESM2M model are designed for the open ocean but do not
capture the highly variable coastal processes (Hofmann et al.,
2011). High-resolution ocean models with improved pro-

cess representations are therefore needed to explore variabil-
ity in ocean carbonate chemistry, especially in coastal re-
gions and smaller ocean basins, such as the Arctic (Terhaar
et al., 2019a, b). Observation-based carbonate system data
with daily mean resolution would also be necessary to thor-
oughly evaluate the models’ capability to represent day-to-
day variations in carbonate chemistry. Secondly, our results,
in particular at the local scale, might depend on the model
formulation. As the mean increases in CT mainly drive the in-
creases in [H+] variability (see Fig. 9b), we expect that mod-
els with larger oceanic uptake of anthropogenic carbon show
larger increases in [H+] variability than models with lower
anthropogenic carbon uptake. The GFDL ESM2M model
matches observation-based estimates of historical global an-
thropogenic CO2 uptake relatively well but still has difficul-
ties in representing the regional patterns in storage (Frölicher
et al., 2015). Therefore, the exact regional patterns of CT
changes may differ from model to model. Further studies fo-
cusing on the physical processes that lead to the regional CT
changes may help to better constrain the regional patterns
in variability changes. In addition, it is currently rather un-
certain how [H+] and �A variability changes as a result of
changes in the drivers’ variabilities. We have demonstrated
that this factor is particularly important for �A and for [H+]
at depth. It is well known that current Earth system mod-
els have imperfect or uncertain representations of ocean vari-
ability over a range of timescales (Keller et al., 2014; Resp-
landy et al., 2015; Frölicher et al., 2016). A possible way for-
ward would be to assess variability changes and changes in
ocean acidity extreme events within a multimodel ensemble,
which would likely provide upper and lower bounds. Finally,
it is assumed that physical and biogeochemical changes in
the ocean will also increase diurnal variability. In particu-
lar in coastal areas, such diurnal variations can have ampli-
tudes that are much larger than the projected changes over
the 21st century (Hofmann et al., 2011). However, the GFDL
ESM2M model does not fully resolve the diurnal variability.
Future studies with Earth system models that resolve diur-
nal processes are needed to quantify changes in diurnal vari-
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Figure 13. The difference in years between the first occurrence of aragonite undersaturation in the historical and RCP8.5 ensemble and a
hypothetical simulation where variability does not change over the 1861–2100 period, but only the mean changes. Positive values (yellow
and red) indicate a delayed onset of undersaturation resulting from declines in �A variability.

ability and the impacts of these changes on extreme acidity
events.

Our results may also have important consequences for our
understanding of the impacts of ocean acidification on ma-
rine organisms and ecosystems. The projected increase in the
frequency and the duration of ocean acidity extremes implies
that marine organisms will have less time to recover from
high-[H+] events in the future. Organisms that cannot adapt
to the large long-term changes in mean [H+] will likely be
the most impacted. However, even if organisms may be able
to adapt to the long-term increase in [H+], the large pro-
jected increase in [H+] extreme events due to changes in
variability may push organisms and ecosystems to the limits
of their resilience, especially those organisms that are com-
monly accustomed to a more steady environment. The risks
for substantial ecosystem impacts are aggravated by the fact
that the frequency and intensity of marine heatwaves are also
projected to substantially increase (Frölicher et al., 2018),
which also negatively impact marine ecosystems (Wernberg
et al., 2016; Smale et al., 2019). The interactions of inten-
sified multiple stressors have the potential to influence ma-
rine ecosystems and the ocean’s biogeochemical cycles in
an unprecedented manner (Gruber, 2011). However, further
research is needed to understand the combined impacts of
short-term ocean acidity extremes and marine heatwaves on
marine ecosystems.

In conclusion, our analysis shows that [H+] and �A in the
upper 200 m are projected to be almost permanently under
extreme conditions by the end of the 21st century when ex-
tremes are defined relative to preindustrial baselines. Even
when accounting for the changes in the long-term mean,
short-term extreme events in [H+] are projected to become
more frequent, to last longer, to be more intense, and to cover
larger volumes of seawater due to increases in [H+] variabil-
ity, potentially adding to the stress on organisms and ecosys-
tems from the long-term increase in ocean acidity.
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Appendix A: Identifying and removing the secular
trend in the model data

In Sect. 3.2 and 3.3, we analyze the changes in extreme
events in [H+] and �A that arise from day-to-day to inter-
annual variability changes in these variables. We therefore
need to remove the secular trends from the data prior to anal-
ysis. We estimate the secular trend in a simulation from the
five-member ensemble mean, assuming that subannual and
interannual to decadal variations in the individual ensemble
members are phased randomly and do not imprint on the
ensemble mean because they average out. A larger ensem-
ble size would be necessary for this assumption to perfectly
hold. However, this potential source of error does not quali-
tatively alter our results. We remove the seasonal cycle, here
defined as the 365 d long mean evolution over the course of
a year, from the ensemble mean by smoothing the ensemble
mean with a 365 d running mean filter, i.e., by calculating the
convolution of the time series with a rectangular window of
length 365 and height 1/365. This filter also removes vari-
ability on subannual and interannual timescales and thereby
also reduces the error we make due to the small ensemble
size that is discussed above. We then subtract the running-
mean-filtered ensemble mean from the five ensemble mem-
bers to remove the secular trend in the individual ensemble
members.

Table A1. Simulated global ensemble-mean �A extreme-event characteristics, when extremes are defined with respect to a shifting baseline.
Values in brackets denote ensemble minima and maxima.

PI 1986–2005 2081–2100 RCP2.6 2081–2100 RCP8.5

Yearly extreme days surface (days per year) 3.65 1.8 (1.5–2.2) 2.2 (1.9–2.9) 1.4 (1.1–1.7)
200 m (days per year) 3.65 2.0 (1.5–2.8) 3.0 (2.3–3.7) 1.7 (1.4–2.0)
Duration surface (days) 19.7 17.8 (16.8–18.9) 19.4 (18.1–21.1) 29.3 (27.4–32.6)
200 m (days) 38.6 66.1 (59.7–84.4) 98.7 (89.0–109.0) 111.6 (106.6–122.7)
Maximal intensity surface (×10−3) 2.9 3.4 (3.3–3.6) 3.2 (3.1–3.5) 1.5 (1.4–1.6)
200 m (×10−3) 3.3 5.0 (3.9–6.7) 7.9 (6.1–11.1) 6.0 (2.9–9.1)
Volume (×103 km3) 3.6 3.2 (2.9–3.5) 3.7 (3.0–4.2) 3.4 (3.1–3.7)
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Figure A1. Simulated globally averaged changes in [H+] extreme events defined with respect to the fixed preindustrial baseline. Shown
are changes over the 1861–2100 period following historical (black lines) and future RCP8.5 (red) and RCP2.6 (blue) scenarios for maximal
intensity at the surface (a) and at 200 m (b), duration at the surface (c) and at 200 m (d), yearly extreme days at 200 m (e), and volume in
the upper 200 m (f). The thick lines display the five-member ensemble means, and the shaded areas represent the maximum and minimum
ranges of the individual ensemble members.

Figure A2. Simulated regional changes in [H+] extreme-event characteristics between the preindustrial period and 2081–2100 following the
RCP2.6 scenario. The extreme events are defined with respect to shifting baselines. Shown are the changes in yearly extreme days (a, b),
maximal intensity (c, d), and duration (e, f). Left panels show changes for the surface, whereas right panels show changes for 200 m. Shown
are changes averaged over all five ensemble members. The black contours highlight the pattern structures. Gray areas represent areas with
no extremes during 2081–2100.
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Figure A3. Simulated characteristics of surface [H+] extreme events for the preindustrial period (a, b), 1986–2005 ensemble mean (c–e),
RCP8.5 2081–2100 ensemble mean (f–h), and RCP2.6 2081–2100 ensemble mean (i–k). The extreme events are defined with respect to
shifting baselines. Gray colors represent regions where no ensemble member simulates extremes. The black contours highlight the pattern
structures.

Figure A4. Simulated characteristics of [H+] extreme events at 200 m for the preindustrial period (a, b), 1986–2005 ensemble mean (c–e),
RCP8.5 2081–2100 ensemble mean (f–h), and RCP2.6 2081–2100 ensemble mean (i–k). The extreme events are defined with respect to
shifting baselines. Gray colors represent regions where no ensemble member simulates extremes. The black contours highlight the pattern
structures.
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Figure A5. Simulated ensemble-mean changes in mean CT (a, e), AT (b, f), T (c, g), and S (d, h) from the preindustrial period to 2081–
2100 following the RCP8.5 scenario. Shown are changes for (a–d) the surface and (e–h) at 200 m. The black contours highlight the pattern
structures.

Figure A6. Simulated ensemble-mean changes in the variances of CT (a, e), AT (b, f) T (c, g), and S (d, h) from the preindustrial period to
2081–2100 under the RCP8.5 scenario. Shown are changes for (a–d) the surface and (e–h) at 200 m. The black contours highlight the pattern
structures.
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Appendix B: Identifying interannual and subannual
variability

The spectral density describes how the variance in a time se-
ries is distributed over different frequencies νj . It is propor-
tional to the absolute value squared of the discrete Fourier
transformation (DFT) of the time series. Defining the spec-
tral density only for positive frequencies, it is given by

f (νj ) = 2
1t2

T

∣

∣

∣

∣

∣

N
∑

k=1
xk · exp

(

−i2πνj · 1t k
)

∣

∣

∣

∣

∣

2

, (B1)

with N the number of time steps, xk the values of the time
series at each time step, 1t the time interval between two
time steps, T = N · 1t , and the frequencies νj = j/T . The
autocovariance is the inverse Fourier transform of the spec-
tral density (Wiener–Khintchine theorem, Chatfield, 1996).
In the continuous case, the theorem states

γ (τ) =

∞
∫

−∞

f̃ (ν)exp(i2πντ)dν, (B2)

with the autocovariance function γ (τ) and the spectral den-
sity f̃ defined for positive and negative frequencies. Since
the two-sided spectral density, f̃ , is a real and even function,
one can also use

γ (τ) =

∞
∫

0

f (ν)cos(2πντ)dν (B3)

with the one-sided spectral density f = 2 · f̃ that is used in
this text. As a consequence, the variance within the time se-
ries, given by the autocovariance at lag zero, is obtained by
integrating the spectral density over all positive frequencies,
σ 2 =

∫ ∞

0 f (ν)dν. For a discrete time series, where the max-
imal resolved frequency is given by νmax = 1/21t , the iden-
tity reads

σ 2
=

N/2
∑

j=0
f (νj )

1
N1t

. (B4)

Based on this equation, one can separate the contributions to
variance from low-frequency and high-frequency variations.
In this study, we determine interannual variability and suban-
nual variability. Interannual variability is calculated by sum-
ming over the contributions to variance from all frequencies
up to a cycle of once per year, i.e., by evaluating the sum up
to icut for which νcut = 1/365 d−1. Accordingly, subannual
variability is obtained by evaluating the sum from icut + 1 to
N/2. Prior to this separation, the seasonal variability is re-
moved from the data by subtracting the 365 d climatology.

Appendix C: Decomposition of [H+] variance change

Following Eq. (2) in the main text, the variance in [H+] (or
�A) can be approximated as a function of the four sensitivi-
ties

s =

(

∂H+

∂AT
,
∂H+

∂CT
,
∂H+

∂S
,
∂H+

∂T

)⊺
(C1)

that in turn depend on the mean values of the drivers, the four
standard deviations of the drivers

σ =
(

σAT ,σCT ,σS,σT
)⊺

, (C2)

and the six pairwise correlation coefficients, in matrix nota-
tion given by

ρ =









1 ρAC ρAS ρAT

ρAC 1 ρCS ρCT

ρAS ρCS 1 ρST

ρAT ρCT ρST 1









. (C3)

Based on this notation, we can rewrite Eq. (2) of the main
text as

σ 2
H+ =

4
∑

i=1

4
∑

j=1
sisjσiσjρij . (C4)

We use Eq. (C4) and decompose the variability change be-
tween the preindustrial period and 2081–2100 into the contri-
butions from changes in s, σ , and ρ based on a Taylor expan-
sion. Since [H+] variance represented by Eq. (C4) is a poly-
nomial of fifth order in these variables, its Taylor series has
five nonvanishing orders. We use the drivers’ standard devi-
ations instead of their variances for the decomposition. With
the latter, the Taylor expansion would have infinite terms and
could not be decomposed exactly as it is done in the follow-
ing. However, it would asymptotically lead to the same de-
composition of [H+] variance change into 1sσ

2
H+ , 1σ σ 2

H+ ,
1sσ σ 2

H+ , and 1ρ+σ 2
H+ that is presented below. Furthermore,

it should be noted that the resulting decomposition of [H+]
variance change only approximates the simulated variance
change because it is based on Eq. (C4), which itself is based
on a first-order Taylor expansion of [H+] with respect to the
drivers.

In the following, all terms of the Taylor series are given.
We denote the sum of first-order terms that contain changes
in the four sensitivities 1s1,...4 by 1

(1)
s σ 2

H+ , the sum of
second-order terms that contain changes in the sensitivities
and standard deviations by 1

(2)
sσ σ 2

H+ , and so on.
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The first order is given by 1(1)σ 2
H+ = 1

(1)
s σ 2

H+ +

1
(1)
σ σ 2

H+ + 1
(1)
ρ σ 2

H+ with

1(1)
s σ 2

H+ =2
4∑

k=1

4∑

j=1
sjσkσjρkj1sk,

1(1)
σ σ 2

H+ =2
4∑

k=1

4∑

j=1
sksjσjρkj1σk,

1(1)
ρ σ 2

H+ =

4∑

k=1

4∑

l=1
skslσkσl1ρkl . (C5)

The second order contains

1(2)
ss σ 2

H+ =

4∑

k=1

4∑

l=1
σkσlρkl1sk1sl,

1(2)
σσ σ 2

H+ =

4∑

k=1

4∑

l=1
skslρkl1σk1σl,

1(2)
sσ σ 2

H+ =2
4∑

k=1

4∑

l=1

(slσlρkl1sk1σk + slσkρkl1sk1σl) ,

1(2)
sρ σ 2

H+ =2
4∑

k=1

4∑

l=1
slσkσl1sk1ρkl,

1(2)
σρσ 2

H+ =2
4∑

k=1

4∑

l=1
skslσl1σk1ρkl . (C6)

The third-order terms read

1(3)
ssσ σ 2

H+ =2
4∑

k=1

4∑

l=1
σlρkl1sk1sl1σk,

1(3)
sσσ σ 2

H+ =2
4∑

k=1

4∑

l=1
slρkl1sk1σk1σl,

1(3)
ssρσ 2

H+ =

4∑

k=1

4∑

l=1
σkσl1sk1sl1ρkl,

1(3)
σσρσ 2

H+ =

4∑

k=1

4∑

l=1
sksl1σk1σl1ρkl,

1(3)
sσρσ 2

H+ =2
4∑

k=1

4∑

l=1

(slσk1sk1σl1ρkl + slσl1sk1σk1ρkl) . (C7)

The fourth order reads

1(4)
ssσσ σ 2

H+ =

4∑

k=1

4∑

l=1
ρkl1sk1sl1σk1σl,

1(4)
ssσρσ 2

H+ =2
4∑

k=1

4∑

l=1
σl1sk1sl1σk1ρkl,

1(4)
sσσρσ 2

H+ =2
4∑

k=1

4∑

l=1
sl1sk1σk1σl1ρkl . (C8)

And the fifth order is given by

1(5)
ssσσρσ 2

H+ =

4∑

k=1

4∑

l=1
1sk1sl1σk1σl1ρkl . (C9)

We identify the variance change from changes in the sensi-
tivities as

1sσ
2
H+ = 1(1)

s σ 2
H+ + 1(2)

ss σ 2
H+ , (C10)

the change from standard deviation changes as

1σ σ 2
H+ = 1(1)

σ σ 2
H+ + 1(2)

σσ σ 2
H+ , (C11)

the change from simultaneous changes in sensitivities and
standard deviations as

1sσ σ 2
H+ =1(2)

sσ σ 2
H+ + 1(3)

ssσ σ 2
H+

+1(3)
sσσ σ 2

H+ + 1(4)
ssσσ σ 2

H+ , (C12)

and that from correlation changes and mixed contributions
that include correlation changes as

1ρ+σ 2
H+ =1(1)

ρ σ 2
H+ + 1(2)

sρ σ 2
H+ + 1(2)

σρσ 2
H+

+1(3)
ssρσ 2

H+ + 1(3)
σσρσ 2

H+ + 1(3)
sσρσ 2

H+

+1(4)
ssσρσ 2

H+ + 1(4)
sσσρσ 2

H+ + 1(5)
ssσσρσ 2

H+ . (C13)

Finally, we calculate the analogs of Eqs. (C10)–(C13) that
only take into account changes in CT; changes in CT and AT;
and changes in CT, AT, and T . This is done by calculating
1s1,...4 only based on mean changes in the considered vari-
ables and by setting the standard deviation changes in vari-
ables and correlation changes in pairs of variables that are
not considered to zero.
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Appendix D: Comparison of simulated ensemble-mean
trends in seasonal amplitude to observation-based trends

We construct confidence intervals for the observation-based
slope estimates following Hartmann et al. (2013). For the
simulations, we use the arithmetic average of the five
ensemble-member slope estimates, b̂k , as the estimator,

ˆb =
1
5

5
∑

k=1
b̂k, (D1)

with estimated variance

σ̂ 2
b

=
1
52

5
∑

k=1
σ̂ 2

bk
. (D2)

We then construct the confidence interval for ˆb as

(ˆb − q · σ̂b,
ˆb + q · σ̂b), (D3)

with q the (1 + p)/2 quantile (we use p = 0.9) of the t dis-
tribution with 5 · (N − 2) degrees of freedom. We correct the
sample size N (34, the number of years we use for the fits)
to a reduced sample size Nr when we find positive lag-one
autocorrelation in the residuals of the fits (data – linear re-
gression model). Lag-one autocorrelation is estimated as the
average of the five ensemble-member lag-one autocorrelation
estimates,

ρ̂ =
1
5

5
∑

k=1
ρ̂k, (D4)

and we obtain Nr = N · (ρ̂ − 1)/(ρ̂ + 1). Positive ρ̂ is only
found in the northern high latitudes. This is in contrast to
the observation-based case, where we find large positive ρ̂o
(up to 0.7) in the residuals of all latitude bands besides the
tropical region.

For testing the significance of a difference between the
simulation slope estimate ˆb and the observation-based esti-
mate b̂o, we use Welch’s test, which assumes different vari-
ances for the two estimates (Andrade and Estévez-Pérez,
2014). The variance of the simulation slope estimate is cal-
culated by dividing the ensemble-averaged slope variance by
the ensemble size (Eq. D2) and is hence smaller than the
observation-based slope variance. If the absolute value of the
test statistic

ˆb − b̂o
√

σ̂ 2
b

+ σ̂o

(D5)

is larger than the (1 + p)/2 quantile of the t distribution
with (Andrade and Estévez-Pérez, 2014)

(

σ̂ 2
b

+ σ̂ 2
bo

)2

σ̂ 4
b
/(5 · (Nr − 2)) + σ̂ 4

bo
/(Nr,o − 2)

(D6)

degrees of freedom, we consider the observation-based and
simulation slope to be different from each other with a confi-
dence level of p = 0.9.
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Co-occurring marine heatwaves (MHWs) and ocean acidity extreme (OAX) events,
i.e., ocean compound MHW-OAX events, can have much larger impacts on ma-
rine ecosystems than the individual extreme events. Yet, the location and like-
lihood of these compound MHW-OAX events, their underlying processes, and
their evolution under climate change are currently unknown. Here, we combine
observations with a large ensemble simulation of an Earth system model to show
that globally 1.8 in 100 months (or one out of five present-day MHWs) are com-
pound MHW-OAX events, almost twice as many as expected for 90th percentile
extreme event exceedances if MHWs and OAX events were statistically indepen-
dent. Compound MHW-OAX events are most likely in the subtropics (2.7 in
100 months; 10 ° - 40 ° latitude) and less likely in the equatorial Pacific and the
mid-to-high latitudes (0.7 in 100 months; > 40 ° latitude). The compound event
likelihood results from opposing effects of temperature and dissolved inorganic
carbon on [H+]. More compound events occur where the positive effect on [H+]
from increased temperatures during MHWs is larger than the negative effect on
[H+] from co-occurring decreases in dissolved inorganic carbon. Under climate
change, the likelihood of MHW-OAX events changes due to the mean warming
and acidification, due to changes in variability of temperature and [H+], and due
to changes in their interdependence. Among these changes, it is the mean warm-
ing and acidification that has the largest effect on MHW-OAX event frequency,
increasing it from 12 days per year under preindustrial conditions to 265 days per
year at 2 °C global warming. Even when mean trends are removed, an increase in
[H+] variability leads to a 60 % increase in the number of compound MHW-OAX
days under 2 °C global warming. This projected increase in the occurrence of
compound MHW-OAX events may cause severe impacts on marine ecosystems.
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4.1 Introduction

Anthropogenic climate change has led to an increase in frequency and intensity of ocean extreme
events, such as marine heatwaves (Hobday et al., 2016; Oliver et al., 2018; Frölicher et al., 2018;
Collins et al., 2019; Holbrook et al., 2019; Laufkötter et al., 2020; Oliver et al., 2021) and ocean
acidity extremes (Chapter 3; Burger et al., 2020; Hauri et al., 2013), a trend that is projected to
continue over the 21st century (Frölicher et al., 2018; Burger et al., 2020). The predominantly
harmful impacts of such individual extreme events on marine ecosystems (Smale et al., 2019;
Hughes et al., 2017; Bednaršek et al., 2014) may become more severe when two extreme events oc-
cur together (Bednaršek et al., 2018; Lischka & Riebesell, 2012; Engström-Öst et al., 2019). These
so-called compound events (Leonard et al., 2014; Zscheischler et al., 2018) have been vastly studied
on land (Ridder et al., 2020; Zscheischler et al., 2020), whereas marine compound events, such as
compound MHW-OAX events (events of unusually high temperature and hydrogen ion concen-
tration, [H+]), are just starting to receive more attention (Le Grix et al., 2021; Gruber et al., 2021).

The impact of compound MHW-OAX events on marine biota may exceed the impact
from individual MHW or OAX events, since co-occurring extremes can interact synergisti-
cally (Boyd & Brown, 2015). For example, the combination of high temperature and acidity
conditions negatively impacted pteropods across cellular, physiological and population levels in
the California Current System in 2016 (Bednaršek et al., 2018; Engström-Öst et al., 2019),
and some of the devastating impacts of the Northeast Pacific 2013 to 2015 MHW (Cavole
et al., 2016) may have been amplified by the co-occurring extreme OA conditions (Gruber
et al., 2021). Such rare observations and modeling studies of MHW-OAX events in the ocean
are further corroborated by laboratory experiments showing synergistic negative effects on
calcification, reproduction and survival (Harvey et al., 2013), and trends towards lower survival,
growth, and development (Kroeker et al., 2013) for many species under compound MHW-OAX
conditions compared to single extreme conditions, and by mesocosm experiments showing shifts
in community structure (Goldenberg et al., 2017; Nagelkerken et al., 2020).

The likelihood of compound MHW-OAX events is influenced by a complex interplay of
direct and indirect effects of high temperatures on [H+] during MHWs. While hot temperatures
directly lead to increases in [H+] via changes in the carbonate chemistry equilibrium (Zeebe &
Wolf-Gladrow, 2001), they can also modulate [H+] indirectly via changes in dissolved inorganic
carbon (CT) (Gruber et al., 2021). These indirect changes of [H+] during MHWs include a
reduction of the CO2 solubility in surface waters (Weiss, 1974) and an associated net release
of oceanic CO2 to the atmosphere that reduces CT and [H+] (Takahashi et al., 2002), an
increase in upper ocean thermal stratification (Holbrook et al., 2019) resulting in suppressed
mixing of surface waters with carbon-rich subsurface waters and hence a reduction in surface
ocean CT and [H+] (Doney et al., 2009), as well as changes in organic matter production that
reduce CT and [H+] if production increases (Doney et al., 2009). The knowledge on compound
MHW-OAX events and their drivers is currently very limited due to a lack of direct observations.
However, novel observational-based data products (Landschützer et al., 2016; Burger et al., 2020;
Good et al., 2013) and large ensemble simulations of comprehensive Earth System Models
(ESMs) (Rodgers et al., 2015; Deser et al., 2020) permit us now to study compound MHW-OAX
events globally.

Here, we characterize patterns, identify drivers, and assess future changes of compound
MHW-OAX events using (i) global monthly gridded observation-based sea surface temperature
(SST) (Good et al., 2013) and surface [H+] data (Chapter 3; Burger et al., 2020) from 1982
to 2019, (ii) time series data of temperature and [H+] from fifteen ocean stations with either
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approximately monthly or 3-hourly measurement frequency collected between 1983 and 2020,
and (iii) output from 30 ensemble members of the Earth System Model GFDL ESM2M (Dunne
et al., 2012, 2013) at daily resolution covering the period from 1861 to 2100 (see Methods). The
analysis is restricted to the open ocean, since the high variability and locally important processes,
such as riverine fluxes, in coastal oceans are neither captured by the gridded observation-based
product (Landschützer et al., 2020; Carter et al., 2018) nor by the GFDL ESM2M model (Dunne
et al., 2013). Extreme events in SST and [H+] are defined with respect to seasonally varying
90th percentiles (see Methods). The percentile thresholds are determined from the shortest
available time step, i.e., monthly for observations and daily for the model output. In this study,
compound MHW and OAX events are defined when both extreme hot temperature and high
acidity conditions co-occur in space and time. We refer to them as ‘compound MHW-OAX
events’. Compound MHW-OAX events are characterized by their frequency (MHW-OAX months
per year or MHW-OAX days per year) and the likelihood multiplication factor (LMF). The LMF
quantifies the likelihood of the occurrence of a compound event in each region and is proportional
to the number of months or days with compound event conditions in a given time period. Precisely,
it is defined as the ratio of the actual compound event frequency f(MHW-OAX event) and the
theoretical frequency if the two variables, here SST and [H+], were statistically independent
f(MHW event)× f(OAX event) (Zscheischler & Seneviratne, 2017):

LMF =
f(MHW-OAX event)

f(MHW event)× f(OAX event)
(4.1)

If MHWs and OAX events were statistically independent, the frequency of compound events in
percent of months or days would be given by the product of the univariate frequencies of MHWs
and OAX events. Under our definition of single extreme events (90th percentile thresholds), this
theoretical frequency is 10 % · 10 % = 1 % of all months (0.12 months per year if monthly data is
used) or days (3.65 days per year if daily data is used. An LMF higher than 1 indicates that
compound events occur more often than by chance and that the frequency exceeds 1 % of all
days or months. An LMF lower than one indicates a reduced likelihood of compound events. As
an example, if two out of 100 months were under MHW-OAX conditions, the LMF would be 2
meaning that the likelihood of a compound event would be twice as large as under independence.
However, if only one out of 200 months was under MHW-OAX conditions, the LMF would
be 0.5 meaning that the likelihood of a compound event would be only half as large as under
independence.

4.2 Results

4.2.1 Present-day pattern of compound MHW-OAX event occurrence

The global gridded observation-based data shows that globally 1.8 in 100 months are compound
MHW-OAX events (Fig. 4.1). This is 1.8 time more often (LMF=1.8) than expected if variations
in SST and [H+] anomalies were statistically independent. The LMF is larger than one in 65 %
of the ocean surface area. Compound MHW-OAX extremes are most frequent in the subtropical
regions (2.7 in 100 months or LMF = 2.7 over 40 ° - 10 ° latitude) and least frequent in the
equatorial Pacific (0.8 in 100 months or LMF = 0.8 over 10 °S - 10 °N latitude) and the high
latitudes (0.7 in 100 months or LMF = 0.7 over 40 ° - 80 ° latitude; Fig. 4.1). These regions are
separated by the contour of LMF equal to one (thin grey contour line in Fig. 4.1) that follows
closely the subpolar fronts in both hemispheres and the ENSO region in the central and eastern
tropical Pacific.
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Figure 4.1: The observation-based likelihood multiplication factor of compound MHW-OAX
events over the years 1982 to 2019. Map of the likelihood multiplication factor (LMF) based on the global
monthly gridded observation-based SST and surface [H+] data. Warm colors indicate LMF > 1 and cold colors
indicate LMF < 1. These regions are separated by the thin gray contour line. The color bar also indicates the
respective number of yearly compound event months. The colored dots indicate the location and the estimated
LMFs from 15 observation stations (see Methods). SST and [H+] anomalies and the correlation coefficient (r) from
eight directly measured SST and [H+] time series are shown around the map. All data was linearly detrended prior
to the analysis.

4.2.2 Potential drivers of MHW-OAX events

To better understand the regional differences in the occurrence of MHW-OAX events and
possible future changes, we now quantify the underlying drivers and discuss physical and
biogeochemical processes. Mathematically, the LMF of MHW-OAX events cannot be decomposed
into contributions from its drivers. It is hence approximated by the Pearson correlation coefficient
(in the following simply correlation coefficient) of SST and [H+] anomalies, which can be
mathematically decomposed (Ext. Data Fig. 4.5; see Methods). The contributions to the
correlation coefficient (Fig. 4.2a) include the direct contribution from variations in SST (Fig. 4.2b),
the contribution from variations in salinity-normalized dissolved inorganic carbon (sCT; Fig. 4.2c),
as well as smaller contributions from variations in salinity-normalized alkalinity (sAT) and a
freshwater cycling term (see Methods, Ext. Data Fig. 4.6). The freshwater term quantifies
the direct impact from salinity variations (through changes in precipitation or evaporation, or
changes in ocean circulation) and the changes in sCT and sAT that are proportional to these
salinity variations. Globally, the SST contribution increases the correlation coefficient and LMF
everywhere (Fig. 4.2b), and the sCT contribution reduces the correlation coefficient and LMF
everywhere (Fig. 4.2c).

The pattern of the correlation coefficient and LMF depends mainly on the regional balance
between the SST and sCT contributions. The direct contribution from SST to the correlation
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Figure 4.2: The observation-based correlation coefficient of sea surface temperature and [H+]
anomalies and its drivers from 1982 to 2019. (a) Correlation coefficient of sea surface temperature (SST)
and surface [H+] anomalies. The contributions from (b) variations in SST and (c) variations in salinity-normalized
CT to the correlation coefficient (in correlation coefficient units; see Methods). The data was linearly detrended
prior to the analysis.

coefficient of SST and [H+] is everywhere positive because an increase in temperature directly
causes a rise in [H+] (Zeebe & Wolf-Gladrow, 2001, ; Fig. 4.2b). Thus, positive anomalies
in SST also cause positive anomalies in [H+], thereby increasing the likelihood and LMF of
compound MHW-OAX events. Conversely, the contribution of sCT to the correlation coefficient
is everywhere negative (Fig. 4.2c) because SST and sCT anomalies are everywhere negatively
correlated (Gruber et al., 2002, ; Ext. Data Fig. 4.7f). Negative anomalies of sCT during MHWs
(high SST) thus reduce [H+] and reduce the likelihood and LMF of compound MHW-OAX events.
The regionally varying magnitude of the positive SST and negative sCT contributions (Fig. 4.2b,
c) is mainly determined by the ratios between the variabilities in SST and sCT anomalies and
the variability in [H+] anomalies in the respective region (Methods, Ext. Data Fig. 4.7).

To understand the LMF pattern, it is thus essential to understand the processes that cause
variability in SST and sCT. Here we qualitatively describe the contributions of the different
processes, but a more quantitative understanding is needed in subsequent studies. Variability
in SST and sCT results from changes in circulation, mixing, and air-sea fluxes (Deser et al.,
2010; Sarmiento & Gruber, 2006). Variability in surface sCT is also caused by changes in
biological activity, most importantly net primary production (Sarmiento & Gruber, 2006).
Positive anomalies in SST, such as during MHWs, are often connected to negative anomalies in
sCT as these processes often lead to opposite changes in temperature and sCT. For example,
weaker surface winds and enhanced thermal stratification (Holbrook et al., 2019; Oliver et al.,
2021) during El Niño conditions in the tropical Pacific (Sen Gupta et al., 2020) drive high
sea surface temperatures but at the same time low sCT due to reductions in mixing and
upwelling of colder sCT-rich waters. Likewise, poleward displacement of warm, low CT waters in
the boundary currents (Feng et al., 2013) lead to opposite changes in temperature and sCT.
The sign of the change in net primary production during positive SST anomalies depends
on the regional surface nutrient availability and temperature. In warm, nutrient-poor regions
(40 °S - 40 °N), high temperature anomalies may reduce the nutrient supply from upwelling and
mixing, causing a reduction in chlorophyll (Fig. 4.3a) and possibly net primary production,
and a coincident increase in sCT (Sen Gupta et al., 2020; Hayashida et al., 2020; Le Grix
et al., 2021). In colder high-latitude regions (> 40 ° latitude), however, where nutrients are more
abundant (Moore et al., 2013), increasing temperatures are associated with higher chlorophyll
and primary production (Fig. 4.3a; Hayashida et al., 2020; Le Grix et al., 2021) and reduced sCT

(see contour lines for mean nitrate concentrations in Fig. 4.3a).

The resulting correlation coefficient of SST and [H+] anomalies and hence the LMF (Fig. 4.2a)
depends on the regional balance between these opposing contributions from variations in SST and
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Figure 4.3: The observation-based correlation coefficient of monthly sea surface temperature
anomalies and monthly (a) chlorophyll concentration anomalies and (b) air-sea CO2 flux anoma-
lies (see Methods). The data was linearly detrended prior to the analysis. A negative correlation between SST
and chlorophyll anomalies indicates that chlorophyll, and possibly net primary production, is reduced and hence
CT enhanced during MHWs. A negative correlation between SST and air-sea CO2 flux anomalies indicates
that CT is reduced during MHWs. The contour lines in a) display mean nitrate concentrations from the World
Ocean Atlas 2018 (dotted: 3 mol kg−1, dashed: 10 mol kg−1, solid: 20 mol kg−1). Net primary production is here
approximated by observation-based chlorophyll concentration (Behrenfeld et al., 2006), although chlorophyll is not
always correlated with net primary production, particularly in subtropical regions (Barbieux et al., 2018).

in sCT. In the tropical Pacific, for example, the correlation of SST and [H+] anomalies is negative
(Fig. 4.2a) corresponding to a low likelihood of MHW-OAX events (LMF< 1) (Fig. 4.1), although
the direct effect of temperature (Fig. 4.2b) and the indirect effect of suppressed chlorophyll and
biological production (Fig. 4.3a) increase the likelihood of compound MHW-OAX events in this
region. Thus, it can be concluded that the reduction in sCT and hence [H+] due to suppressed
upwelling and mixing during MHWs in this region must be large enough to overcompensate the
positive temperature and biology contributions to [H+] and ultimately result in an LMF below
1. In the subtropical gyres, however, the correlation of SST and [H+] anomalies is positive,
resulting in a high likelihood of MHW-OAX events (LMF> 1) (Fig. 4.2a). There, the combined
positive effect from enhanced temperature (Fig. 4.2b) and suppressed chlorophyll (Fig. 4.3a)
on [H+] must therefore be larger than the negative effect from circulation and mixing. In the
high latitudes, the correlation coefficient becomes negative again and compound MHW-OAX
events become less likely (Fig. 4.2a). In these colder waters, increases in chlorophyll (Fig. 4.3a)
and changes in circulation and mixing reduce sCT and hence [H+] during MHWs more than
temperature increases it and cause a lower LMF (Fig. 4.2b).
In addition to circulation, mixing, biological activity, and the direct temperature effect on
[H+] that determine the sign of the correlation coefficient of SST and [H+] anomalies, the
magnitude of the correlation and the LMF is further modulated by the changes in air-sea CO2

flux (Fig. 4.3b). Globally, [H+] and pCO2 anomalies are strongly positively correlated (r=0.96).
In regions where [H+] is increased during high temperatures, pCO2 is also increased, resulting in
outgassing of CO2 and a reduction in sCT and [H+]. In contrast, air-sea CO2 flux increases [H+]
in regions where [H+] is decreased during high temperatures (Fig. 4.3b). Consequently, air-sea
CO2 flux reduces correlations between SST and [H+] where they are positive, and it increases
them where they are negative.

4.2.3 Changes in MHW-OAX event occurrence with climate change

Under climate change, the frequency of compound MHW-OAX days is projected to change
(Fig. 4.4). Changes in compound MHW-OAX occurrence arise from an increase in the mean
state of temperature and [H+], from changes in the variability of temperature and [H+], as
well as changes in the bivariate tail dependence of temperature and [H+]. To consider different
adaption capabilities of organisms and ecosystems, we define changes in compound MHW-OAX
frequency with respect to two different baselines (Burger et al., 2020; Oliver et al., 2021; Gruber
et al., 2021): relative to a fixed preindustrial baseline and relative to a shifting-mean baseline
(see Methods). When defined with respect to a fixed preindustrial baseline, the largest changes in
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MHW-OAX frequency by far are expected from long-term ocean warming and acidification
trends (Frölicher et al., 2018; Oliver et al., 2019; Burger et al., 2020). This baseline is chosen to
show the overall changes in MHW-OAX occurrence and because it is most useful for less resilient
and less mobile organisms and ecosystems, such as warm water corals (Hughes et al., 2017;
Prada et al., 2017) or other sessile organisms that cannot adapt fast enough to long-term ocean
warming and acidification or cannot relocate to favorable ocean habitats (Oliver et al., 2021).
Under the shifting-mean baseline, long-term warming and acidification trends are removed. Hence,
extremes are defined as deviations from the normal conditions that themselves change over
time (Jacox, 2019; Burger et al., 2020). Changes in compound MHW-OAX event occurrence are
here mainly caused by changes in temperature and especially [H+] variability (Oliver et al., 2021;
Burger et al., 2020). This definition is chosen to analyze the role of changes in variability and to
quantify increased stress for organisms that may accustom to long-term ocean warming and
acidification (Muñoz et al., 2015) or can shift their distribution (Pinsky et al., 2013; Cheung et al.,
2021), such as fishes or marine mammals. In addition to the two above mentioned definitions, we
also define changes in MHW-OAX frequency relative to a fully adapting baseline, which provides
additional insights about the drivers of changes in compound MHW-OAX days. Under the fully
adapting baseline definition (Vogel et al., 2020), the univariate extreme event likelihood (e.g.,
the likelihood of marine heatwaves or ocean acidity extreme events) does not change. Instead,
changes in compound MHW-OAX frequency only arise from changes in the tail dependence
between temperature and [H+] altering the likelihood that MHWs and OAX events occur
together. This definition is chosen to gain additional insights about the drivers of changes, i.e.,
to identify the impact of dependence changes on changes in MHW-OAX event likelihood.

Relative to a fixed preindustrial baseline (see Methods), the occurrence of MHW-OAX events
is simulated to have increased from 12 days per year on average at preindustrial to 167 days per
year (165-169, 90 % confidence interval) at 1 °C global warming (14-fold increase) (Fig. 4.4a).
Under continued global warming, MHW-OAX occurrence is projected to increase to 265 (263-266;
22-fold increase) days per year for 2 °C warming and to 307 (307-308; 26-fold increase) days per
year for 3 °C. The increase in compound MHW-OAX events is mainly determined by the increase
in MHWs and therefore long-term ocean warming (Oliver et al., 2019; Frölicher et al., 2018), since
[H+] reaches a near-permanent extreme state (more than 360 days per year) already at a global
warming of 0.3 °C (or when atmospheric CO2 exceeds 340 ppm). A permanent [H+] extreme state
causes, by definition, all MHWs to be also MHW-OAX events (Fig. 4.4a). Compound MHW-OAX
event days are projected to increase most in the tropical regions of the Atlantic, the western
Pacific, and the Indian Ocean (Fig. 4.4d). There, increasing temperatures exceed the relatively
small natural variability earlier than in most other places (Frölicher et al., 2016) and thus
lead to relatively larger increases in MHW-OAX events and even near-permanent MHW-OAX
events (hatched area in Fig. 4.4d). These permanent MHW-OAX events are projected to
occur in 42 (42-43) % of the ocean surface area under 3 °C warming but can be largely avoided
under 2 °C warming (10 (9-10) %). In regions, where SST is projected to slightly decrease over
the 21st century, such as in the North Atlantic south of Greenland and parts of the South-
ern Ocean, the frequency of MHWs and hence compound MHW-OAX events decreases (Fig. 4.4d).

When defining extreme events relative to a shifting-mean baseline (see Methods), the
occurrence of compound MHW-OAX events is also projected to increase (Fig. 4.4b, e), from 12
compound event days per year at preindustrial to 19 (19-20) days per year at 2 °C warming
(1.6-fold increase), and to 23 (22-23) days per year under 3 °C warming (1.9-fold increase;
Fig. 4.4b). As opposed to the fixed baseline, the increase in MHW-OAX extreme event occurrence
under the shifting-mean baseline definition is mainly caused by a rising number of OAX events
(Fig. 4.4b) due to enhanced [H+] variability in waters with more CT (Kwiatkowski & Orr, 2018;
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Figure 4.4: Projected changes in compound MHW-OAX events under global warming. (a-c)
Global mean number of yearly extreme event days relative to global warming levels for MHWs (red lines), OAX
events (blue lines), and compound MHW-OAX events (purple lines) for (a) fixed preindustrial baselines, (b)
shifting-mean baselines, and (c) fully adapting baselines. The time series are smoothed with a 21-year running
mean filter. Thick lines display the ensemble means and shaded areas depict the 10th and 90th percentile ranges of
the 30 ensemble member simulations over the 1861-2100 period following the RCP8.5 scenario during the period
2006-2100. The dashed lines in (a-c) show ensemble mean changes relative to warming levels under the RCP2.6
scenario. Differences between the RCP8.5 and RCP2.6 greenhouse gas scenarios are much smaller than the
ensemble spread, indicating that the results are independent of the warming path. (d-f) Regional changes in
compound event days relative to the preindustrial period at 2 °C global warming for (d) fixed preindustrial baselines,
(e) shifting-mean baselines, and (f) fully adapting baselines. Hatching in (d) indicates areas with year-round
compound events (i.e., more than 360 days per year). Only results of the high emissions scenario RCP8.5 scenario
are shown in (d-f), because the changes in globally averaged MHW-OAX occurrence are independent of the
warming path.

Burger et al., 2020). The strongest increase in compound MHW-OAX is projected for the Arctic
Ocean north of 66 °N (Fig. 4.4e), where the reduction of sea ice leads to large increases in
temperature (Frölicher et al., 2018) and [H+] (Kwiatkowski et al., 2020; Burger et al., 2020)
variability. Although the increase in compound MHW-OAX under the shifting-mean baseline is
highest there, the increase at 2 °C warming is still on average only 7 % of the increase under
the fixed baseline. In most other regions, the ratio between increases under the shifting-mean
baseline and the fixed baseline is even smaller. An exception is the western boundary current
region of the North Atlantic, where relatively large shifting-mean baseline changes exceed 10 %
of the fixed baseline changes.

When defining extreme events relative to a fully adapting baseline (see Methods), the
occurrence of MHW-OAX is projected to slightly decrease, from 12 days per year at preindustrial
to 10 (10-11) days per year under 2 °C global warming and to 9 (9-10) days per year under 3 °C
global warming (Fig. 4.4c). The decrease in MHW-OAX event occurrence relative to the fully
adapting baseline is equivalent to a reduction in the numerator of the LMF between the two
periods and indicates that SST and [H+] anomalies become less correlated. The reduction in
correlation may be attributed to the over-proportional increase in the [H+] sensitivity with
respect to CT in warmer, high CT waters (Fassbender et al., 2018). This relative increase in
[H+] sensitivity to CT is globally 75 % larger than the relative increase in [H+] sensitivity to
temperature at 2 °C global warming in the GFDL ESM2M simulation (Ext. Data Fig. 4.9).
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Exceptions to the general decrease in correlation and MHW-OAX events are upwelling regions,
such as the eastern equatorial Pacific and the eastern boundary upwelling systems, where a
reduction in sCT variability is simulated, and the Arctic Ocean, where an increase in SST-sCT

correlation is simulated (Fig. 4.4f). Regionally, the changes in MHW-OAX events relative to a
fully adapting baseline can be of similar magnitude as those relative to a shifting-mean baseline.
For example, in the subtropical North Atlantic (15 °N – 30 °N, 65 °W - 25 °W), the occurrence of
MHW-OAX increases by 10 days per year relative to a shifting-mean baseline, while it decreases
by 5 days relative to a fully adapting baseline under 2 °C global warming. This indicates that
the reductions in the dependence of SST and [H+] that reduce MHW-OAX event occurrence
are overcompensated by an increase in [H+] and SST variability, resulting in a net increase in
MHW-OAX event days relative to a shifting-mean baseline.

4.3 Discussion and conclusions

The robustness of the results presented here depends on the quality of the underlying global
gridded observation-based [H+] product and fidelity of the GFDL ESM2M model. The global
observation-based product was evaluated with in-situ time-series data from 15 ocean stations
(panel and dots in Fig. 4.1; Ext. Data Tables 4.1 and 4.2). The differences between the LMFs
estimated from the gridded observation-based product and the time series are insignificant at 14
of 15 stations (5 % significance level) when accounting for the large statistical uncertainties (see
Methods). Furthermore, the time series estimates show a similar spatial pattern, corroborating
our confidence in the gridded observation-based product (Chapter 3; Burger et al., 2020). Locally,
the observation-based estimates are uncertain in the Southern Ocean, especially during austral
winter, due to a lack of observational pCO2 data (Landschützer et al., 2016; Gray et al., 2018).
Another potential caveat is that we derive [H+], among other variables, from SST, which
might cause an automatic correlation between both variables and hence gives an inaccurate
representation of the LMF. However, multiple lines of evidence suggest that this is not the
case. First, the LMF pattern (Fig. 4.1) and the correlation coefficient of SST and surface [H+]
anomalies based on observations (Fig. 4.2a) looks very similar to the correlation coefficient based
on simulated [H+] and SST (Ext. Data Fig. 4.10b). Second, the simulated pattern does not
change either if AT is derived from simulated SST and salinity, or if directly simulated AT is
used. Third and most important, the LMFs at ocean stations that provide directly measured
[H+] are similar to the LMFs calculated from measured SST, salinity, and pCO2 at these stations.
An additional caveat might be that our analysis of gridded observational data is limited to
monthly resolution, because most data are not available at higher temporal resolution. However,
comparison to high temporal resolution model and buoy-data suggests that the pattern of
compound event occurrence is relatively insensitive to the temporal resolution (Ext. Data
Table 4.1). We conclude that the used global gridded observation-based [H+] product is well
suited to analyze compound MHW-OAX events.

The simulations of the GFDL ESM2M model can be considered robust for two reasons. First,
the simulated correlation of SST and [H+] anomalies at present-day shows good agreement
with the spatial pattern of the gridded observational product, despite with a general positive
bias in the simulated correlation coefficient in the GFDL model, which is also present in other
ESMs from the sixth phase of the Coupled Model Intercomparison Project (CMIP6; Ext. Data
Fig. 4.10). This bias suggests that the ESMs generally overestimate the effect of temperature on
[H+] or underestimate the effect of sCT variations. Second, the future projections based on
fixed and shifting-mean baselines rely mostly on well-understood long-term ocean warming and
acidification trends (Bopp et al., 2013; Kwiatkowski et al., 2020), as well as changes in [H+]
variability with increasing CO2 (Burger et al., 2020; Kwiatkowski & Orr, 2018), although the
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exact numbers of MHW-OAX changes may depend on the model used. Under a fixed baseline,
the projected changes in compound MHW-OAX events are mainly driven by secular trends
in ocean warming and acidification, which are well simulated by the GFDL ESM2M model
over the historical period (Bopp et al., 2013). The fixed-baseline projections are insensitive
to the simulated positive bias in the correlation coefficient of SST and [H+] anomalies after
the onset of near-permanent [H+]extreme events at around 0.3 °C global warming. Under a
shifting-mean baseline, projected changes in MHW-OAX events stem mainly from an increase
in [H+] variability, which is also considered to be qualitatively robust since it is rooted in
the nonlinear response of carbonate chemistry to increasing CT (Kwiatkowski & Orr, 2018;
Burger et al., 2020). However, a slight positive bias in the number of compound event days
may be simulated due to the positive bias in correlation of SST and [H+]. Furthermore, the
projected global decline in MHW-OAX events with respect to a fully adapting baseline is likely
robust, because it is simulated by all CMIP6 models (Ext. Data Fig. 4.11), and because of the
over-proportional increase in CT sensitivity of [H+] compared to the temperature sensitivity
under increasing CO2 that is also expected from carbonate chemistry (Ext. Data Fig. 4.9; Zeebe
& Wolf-Gladrow, 2001). However, there is much less agreement between models on the regional
scale (Ext. Data Fig. 4.11) as these regional trends can be caused by variability changes in SST
or sCT, by correlation changes between SST and sCT, or by a combination of these factors.
Analysis of these changes in each model is beyond the scope of the paper calling for further analysis.

Here we have analyzed compound marine heatwave and high [H+] extreme events, but ocean
acidification can also affect marine organisms via increases in pCO2 or reductions in calcium
carbonate saturation states. Due to the high correlation between [H+] and pCO2 anomalies
(r=0.96 on global average), compound events in [H+] and temperature are often also compound
events in pCO2 and temperature as indicated by a very similar LMF pattern for high SST and
high pCO2 compound events (Ext. Data Fig. 4.14). On global average, 78 % of the months with
SST-[H+] compound events are also identified as months with extremely high pCO2, potentially
causing three-fold stress on ecosystems. Much larger discrepancies are found when analyzing
compound low aragonite saturation state and high temperature events. Due to the generally
positive correlation of saturation state and temperature, the occurrence of such compound
events is very rare (LMF=0.03). This contrasts with the MHW-OAX events analyzed in this
study, where high-[H+] and high-temperature events overlap relatively often due to the positive
temperature dependency of [H+] (Xue et al., 2021). Thus, on global average only 2 % of months
with high SST-[H+] compound events are also months with extremely low aragonite saturation
state. That MHW-OAX events are usually not accompanied by extremely low calcium carbonate
saturation state may prevent calcifying organisms from additional stress due to impacts on
calcification and shell dissolution (Kroeker et al., 2013).

The combination of observations and models allowed to localize MHW-OAX events, estimate
their frequency, better understand their drivers, and to project their development in a changing
climate. Our results indicate that MHWs and OAX events are not independent and often occur
together. This suggests that some of the observed MHWs (Laufkötter et al., 2020) were also
compound MHW-OAX events, in particular in the low-to-mid latitudes where we find that
one out of four MHWs are also compound MHW-OAX events. The reported impacts of some
low-latitude MHWs on marine organisms and ecosystems (Smale et al., 2019) may therefore be
also connected to additional stress from high acidity events (Doney et al., 2020). Furthermore,
also other co-occurring biogeochemical extreme events such as low oxygen events (Gruber et al.,
2021) or low net primary production events (Le Grix et al., 2021) may add to the stress during
MHWs. To shed light on different aspects of changes in compound MHW-OAX occurrence,
changes were assessed with respect to three different baselines. Compound MHW-OAX days are
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projected to become more frequent when considering the trends in SST and [H+] as well as
increases in their variabilities. When defined with respect to a fixed baseline, the occurrence of
MHW-OAX events is projected to strongly increase, with unknown, potentially devastating
effects on marine biota. Even if organisms can acclimate and adapt to long-term ocean warming
and acidification or can relocate to favorable habitats, they may still be impacted by a 60 %
increase in compound MHW-OAX days under 2 °C global warming that emerges mainly from
increasing variability in [H+]. However, we also demonstrate that the decrease in the dependence
of temperature and [H+] anomalies slightly dampens the increase in the co-occurrence of hot
temperature and high acidity extremes, but this effect is small at global scale. The potential
threat from rising numbers of MHW-OAX days highlights the urgent need to better understand
the organism and ecosystem response to such ocean compound events. Future studies on extreme
events should also carefully choose the baseline depending on the impact which they analyze.
Choosing the wrong baseline, shifting-mean for unmovable corals, or fixed for fish that can
migrate, may lead to an overestimation or underestimation of the impact of changes in extreme
events.
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4.4 Methods

4.4.1 Definition of extreme and compound events

Marine heatwaves (i.e., hot temperature extremes) and high acidity events (i.e., high [H+]
extremes) were defined as the exceedance of SST and surface [H+] of their local and seasonally
varying 90th percentile. The seasonally varying 90th percentiles were calculated for each calendar
month (gridded observational data) or calendar day (GFDL ESM2M model data) separately.
Under this definition extreme events have the same occurrence probability throughout the year.
For the time series data, there are often too few measurements for a given calendar month
over the measurement period (sometimes only 10 or less) to calculate statistically meaningful
monthly percentile thresholds (as done for the gridded observation-based data). Therefore, one
annual percentile threshold for monthly anomalies was calculated from all monthly anomalies
instead of 12 thresholds for each month individually. The difference between calculating the LMF
using seasonally varying thresholds compared to annually fixed threshold is generally small. For
example, the global average difference between these methods is 0.14 LMF units when using
the gridded data-based product. Monthly anomalies were calculated by subtracting from each
measurement value the mean of all measurements that were obtained in the same calendar month.
The 90th percentile was chosen to have a sufficiently large sample size of observational data for
statistical assessments. Sensitivity tests with the GFDL ESM2M model ensemble show that
results are qualitatively insensitive to the choice of the percentile (e.g., 90th vs. 95th percentile;
not shown). The usage of a percentile threshold allows the quantification of MHWs, OA extremes
and MHW-OAXs across locations which differ in variability. Absolute thresholds are often
determined from the perspective of local impact, but a globally fixed absolute threshold is only
meaningful in some regions, but not in others.

Compound MHW-OAX events are defined as the days or months when both SST and
surface [H+] are above the 90th percentiles at the same time and location. We do not impose a
criterion on the minimum duration of compound MHW-OAX events, as it is often applied
for MHWs (Hobday et al., 2016). While such a criterion would overall reduce the number of
MHW-OAX event days, it would not considerably change the LMF as can be seen from the
insensitivity of the LMF to the temporal resolution of the data (Ext. Data Fig. 4.13). The data
for the present-day period (gridded observation-based product and time series) were linearly
detrended prior to identifying the extreme events.

Temporal changes in MHWs, OAX events, and MHW-OAX events within the large ensemble
model simulation were defined with respect to (i) fixed preindustrial baselines (called ’fixed
preindustrial baseline’ in Fig. 4.4), (ii) shifting-mean baselines (’shifting-mean baseline’ ), and (iii)
fully adapting baselines (’fully adapting baseline’ ). Under a fixed preindustrial baseline, the
extreme events were defined with respect to preindustrial seasonally varying 90th percentiles.
Under a shifting-mean baseline, these percentile thresholds were shifted according to the
ensemble-mean changes with respect to the preindustrial mean state (Chapter 3; Burger et al.,
2020). The ensemble mean was smoothed with a 365-day running mean filter to remove its
seasonal cycle (Chapter 3; Burger et al., 2020). Under a fully adapting baseline, individual
thresholds for SST and [H+] were calculated for each day of the historical, RCP8.5, and RCP2.6
ensemble simulations. These were determined as the 90th percentiles of the 30-value ensemble
distributions for that day as simulated by the respective 30-member ensemble simulation. As a
result, the probability for univariate SST and [H+] extreme events is constant over time. Changes
in compound events can thus only arise from changes in the dependence between SST and [H+].
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4.4.2 Analysis methods

a. Extraction of global warming levels

We quantify changes in compound events for different levels of global warming (e.g., in Fig. 4.4d-f
for 2 °C global warming). To do so, 20-year periods were identified over which the ensemble-
mean change in globally averaged atmospheric near-surface (2m) temperature with respect to
preindustrial conditions is closest to a specific global warming level. In the GFDL ESM2M
model and under the RCP8.5 scenario, these periods are 2007-2026 (1 °C), 2045-2064 (2 °C), and
2075-2094 (3 °C).

b. Confidence intervals and statistical tests for the LMF estimates

Confidence intervals for the LMF estimates for the time series, gridded data, and GFDL ESM2M
ensemble data at the time series locations (Ext. Data Table 4.1) are derived by identifying the
counted number of MHW-OAX days/months with the outcome of a binomial experiment (Wilks,
2005), where the binomial ‘success’ probability is given by the conditional probability of observing
a MHW-OAX event given a MHW or OAX event. Here, the probability is assumed to be
constant over time. Using the binom package for R, we calculate the Clopper-Pearson confidence
interval (Clopper & Pearson, 1934) for the estimated conditional probability, which is directly
proportional to the LMF since the probability for MHW and OAX events is a constant, here 0.1.
The LMF confidence interval is then obtained by dividing the lower and upper bounds of the
Clopper-Pearson confidence interval by 0.1. P-values for the difference between the conditional
probabilities estimated for the time series and for the gridded data as well as the GFDL ESM2M
model are calculated using the two-sided Fisher’s exact test (Agresti, 2012) (fisher.test function
for R). Fisher’s exact test was chosen due to the often low count of MHW-OAX events in the
time series data (Cochran, 1954).

c. Estimation of the LMF from correlation coefficients

The LMF of MHW-OAX events can be approximated by the Pearson correlation coefficient of
SST and [H+] anomalies. When assuming normally distributed monthly anomalies of SST and

[H+], the estimated LMF (L̂MF) is given by

L̂MF =
1

0.12

∫ ∞
x0.90

dx1

∫ ∞
x0.90

dx2 f(x1, x2; r), (4.2)

with r denoting the correlation coefficient of SST and [H+]anomalies. f denotes the bivariate
probability density function of two standard normal distributed variables

f(x1, x2; r) =
1

2π
√

1− r2
exp

(
−1

2(1− r2)
(x2

1 − 2 r x1 x2 + x2
2)

)
(4.3)

and is the 90th percentile of the standard normal distribution. The integration variables
x1 and x2 represent SST and [H+] anomalies, here assumed to be normally distributed. The

overall small difference between the counted LMF and the L̂MF estimated from the correlation
coefficient (global mean deviation of 0.11) for the observation-based gridded data over the period
1982-2019 (Ext. Data Fig. 4.5) suggests that the observed bivariate probability for exceeding the
90th percentile is similar to that assuming normally distributed temperature and [H+] anomalies
and that the correlation coefficient is a good predictor for MHW-OAX compound events.
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d. Decomposition of the correlation coefficient into its drivers

The observation-based correlation coefficient of SST and [H+] anomalies for a calendar month
was decomposed into the contributions from the direct temperature dependence of [H+] and
contributions from salinity-normalized CT (sCT) and AT (sAT), as well as the remaining
contribution from freshwater variations. For the salinity normalization, CT and AT were divided
by the ratio of salinity (S, in practical salinity units) to temporal mean salinity. Thus, variations
in CT and AT stemming from variations in freshwater (precipitation, evaporation, and sea ice
melt) have no effect on sCT and sAT. As the covariance is linear in its two arguments, covariance
of temperature and [H+] (covar(SST, [H+]) can be expanded by replacing [H+] anomaly (denoted
by [H+] for simplicity here) with a first order Taylor expansion in the anomalies for SST, sCT,
sAT, and S:

[H+] ≈ ∂[H+]

∂SST

∣∣∣
SST,...

· SST +
∂[H+]

∂CT

∣∣∣
SST,...

· CT +
∂[H+]

∂AT

∣∣∣
SST,...

·AT +
∂[H+]

∂S

∣∣∣
SST,...

· S. (4.4)

The partial derivatives ∂/∂x are evaluated at SST, CT, AT, and S, the temporal mean values
of the drivers, using mocsy 2.0 (Orr & Epitalon, 2015). Here, it was assumed that the variations
of the partial derivatives over the calendar months can be ignored. Salinity normalization for CT

and AT is introduced. CT anomaly is replaced by sCT + CT

S
· S, with sCT and S denoting the

anomalies in salinity-normalized CT and salinity, and with CT and S denoting their temporal
mean values, again assuming that monthly mean values for sCT and S can be replaced by the
temporal mean values. The anomaly in AT is replaced analogously. Eq. (4.4) is inserted in
covar(SST, [H+]). By using bilinearity of covariance and that covar(xy) = σxσyrx,y, with σx
denoting the standard deviation and rx,y denoting the Pearson correlation coefficient, one obtains

rSST, [H+] =
∂[H+]

∂SST

σSST

σ[H+]

+
∂[H+]

∂CT

σsCT

σ[H+]

rSST, sCT
+
∂[H+]

∂AT

σsAT

σ[H+]

rSST, sAT

+

(
sCT

S

∂[H+]

∂CT
+

sAT

S

∂[H+]

∂AT
+
∂[H+]

∂S

)
σS

σ[H+]

rSST, S + residual.

(4.5)

The terms on the right-hand side of Eq. (4.5) represent the contributions from SST, sCT,
sAT, and freshwater variations (from left to right). The residual of the decomposition (simulated
correlation coefficient minus sum of decomposition terms) for the gridded data product over the
period 1982-2019 (Fig. 4.2; Ext. Data Fig. 4.6) is smaller than 0.1 correlation coefficient units for
99 % of the ocean surface (Ext. Data Fig. 4.6c). The freshwater term only has a small imprint on
SST-[H+] correlation (Ext. Data Fig. 4.6b) since the direct effect from salinity variations on
[H+] is small and because its effects on CT and AT largely compensate each other. Likewise, the
contribution from sAT is comparably small (Ext. Data Fig. 4.6a). The approximation of the
correlation coefficient by the contribution of SST and sCT is precise to 0.1 units in 60 % of the
ocean surface and to 0.4 in 92 % of the ocean surface. The sign of the approximated correlation
coefficient is correct in 93 % of the ocean surface.

4.4.3 Observation-based data

a. Global sea surface temperature and [H+] data

Global monthly SST data on a grid with 1 ° horizontal spacing from 1982 to 2019 from the
version 4.2.1 (EN4.2.1) data set developed by the Met Office Hadley Centre (Good et al., 2013)
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were used. EN4 is a gridded product that is based on temperature and salinity profiles, with
World Ocean Database (Boyer et al., 2016) being the main source of data. SST is here defined as
mean temperature over the uppermost 10 m. The global gridded observation-based [H+] (total
scale) dataset covering the period from 1982 to 2019 was reconstructed in two steps following the
method outlined by Burger et al. (2020) (Chapter 3). In a first step, the SST and surface salinity
fields from EN4.2.1 were used to derive total surface alkalinity (AT) using the LIARv2 total
alkalinity regression algorithm (Carter et al., 2018). In a second step, a monthly [H+] field at 1 °
horizontal grid resolution was derived using the CO2SYS carbonate chemistry package (van
Heuven et al., 2011) from the monthly, gridded surface salinity, SST, and AT and from the
interpolated global surface pCO2 product MPI-SOMFNN (Landschützer et al., 2016) that covers
the period 1982-2019 with monthly-mean temporal resolution and is based on data from the
Surface Ocean CO2 Atlas version 4 (Bakker et al., 2016).

The accuracy of the LIARv2 algorithm was tested with the GFDL ESM2M model output
by comparing directly simulated AT (Asim

T ) with the AT that was estimated by the LIARv2
algorithm from simulated SST and surface salinity for one ensemble member over the 1982-2019
period (ALIAR

T ). The comparison yields a root-mean-square-error between Asim
T and ALIAR

T of
32 mol kg-1. This difference between the Asim

T and ALIAR
T translates into differences in [H+]

and hence into differences between the correlation coefficient of SST and [H+] anomalies and
between the LMF. These differences between the correlation coefficients when using Asim

T and
ALIAR

T are below 0.1 units in 99.5 % of the surface ocean and the difference in the LMF is below
0.5 in 96.5 % of the surface ocean area (Ext. Data Fig. 4.12), indicating that our estimated
observation-based AT from SST and sea surface salinity is accurate enough to be used in the
calculation of observation-based [H+]. The same comparison was made for ocean stations where
direct AT measurements are available. The LMF using direct AT measurements slightly differ
from the LMF using estimated AT (not shown) but remain within the large uncertainty bounds
that exist at these stations due to the relatively short observational period, indicating that our
LMF results are likely insensitive to the exact choice of estimated AT.

GFDL ESM2M model output suggests that compound MHW-OAX events are often shorter
than one month (Ext. Data Fig. 4.8). Nevertheless, the LMF of present-day compound events
can be approximated based on monthly (observational-based) data. Comparison of the LMF
obtained from monthly-mean model output to that from daily-mean model output for the period
1982-2019 yields a root-mean-square error of 0.2 (Ext. Data Fig. 4.13). This deviation results
mainly from a small bias in the LMF from monthly-mean data compared to daily-mean data
(global mean LMF of 2.7 in monthly-mean data vs. 2.9 in daily-mean data; Ext. Data Fig. 4.13c).
As such, using monthly data may slightly underestimate the occurrence of MHW-OAX events.

b. Time series of in-situ SST and [H+] data

In-situ observations from the KNOT and K2 stations in the north Pacific, the Hawaii Ocean
Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), the European Station for
Time series in the Ocean Canary Islands (ESTOC), the 137 °E transect at 30 °N and at 5 °N, the
Munida time series, the CARIACO time series, and from seven autonomous open-ocean surface
buoys were used in this study (Fig. 4.1; Ext. Data Table 4.2). The KNOT and K2 station data
were combined due to their spatial proximity (44 °N, 155 °E vs 47 °N, 160 °E) resulting in a
total of 15 time series. For the seven autonomous open-ocean surface buoys, monthly means
were calculated from the 3-hourly data to match the approximate measurement frequency of
the remaining stations. For completeness, the buoy data was also aggregated to daily-means
(Ext. Data Table 4.1). Only buoys providing at least 5 years of data were analyzed, being KEO
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(Kuroshio Extension Observatory), Papa (Ocean Station Papa), Stratus, TAO125W, TAO140W,
TAO170W (NDBC Tropical Atmosphere Ocean 0 °N at 125 °W, 140 °W and 170 °W, respectively),
and WHOTS (Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station) (Sutton
et al., 2019).

[H+] was calculated from measured pH at in-situ temperature where available. If pH at
in-situ temperature was not available, [H+] was calculated from sea surface temperature, salinity,
AT, phosphate, and silicate and, depending on the time series, from either measured CT or pCO2

(Ext. Data Table 4.2). If calculated pH was not provided by the data set, mocsy 2.0 (Orr &
Epitalon, 2015) was used to calculate [H+] when CT was measured and CO2SYS (van Heuven
et al., 2011) was used when pCO2 was measured. Although mocsy 2.0 became the standard
routine to calculate the marine carbon dioxide system in recent years (Orr et al., 2017), CO2SYS
was used in the latter case because mocsy 2.0 does not allow calculation of [H+] from pCO2.
However, differences between the mocsy 2.0 and CO2SYS for [H+] calculations are small (Orr
et al., 2018). Where not available, mean silicate and phosphate concentrations were taken from
the closest grid cells of World Ocean Atlas 2018 (Garcia et al., 2019). For the seven autonomous
open-ocean surface buoys, AT was estimated from measured sea surface temperature and salinity
using the LIARv2 algorithm (Carter et al., 2018).

c. Chlorophyll concentration, nitrate, and air-sea CO2 flux data

Daily-mean data-assimilated chlorophyll concentration output (Fig. 4.3a) from the NASA Ocean
Biogeochemical Model (version NOBM.R2020.1) (Gregg & Rousseaux, 2017) over the period
1998-2018 was used in this study. The model assimilates satellite chlorophyll data from the
Sea-viewing Wide Field-of-view Sensor, the Moderate Resolution Imaging Spectroradiometer
Aqua and the Visible Infrared Imaging Radiometer Suite and provides daily data within the mixed
layer. Monthly mean values were calculated prior to the analysis. Mean nitrate concentration
data from the World Ocean Atlas 2018 (Garcia et al., 2019) was also used in Fig. 4.3a. The
observation-based monthly air-sea CO2 flux data product over the period 1982-2019 shown in
Fig. 4.3b is based on the interpolated pCO2 product (Landschützer et al., 2016; Landschützer
et al., 2020) that was used to derive the gridded [H+] product.

4.4.4 GFDL ESM2M large ensemble

a. Model setup and simulations

The fully coupled GFDL ESM2M Earth system model (Dunne et al., 2012, 2013), developed at
the NOAA Geophysical Fluid Dynamics Laboratory, was used in this study. The physical ocean
component of the model, the Modular Ocean Model (version 4p1 (Griffies, 2009)), has a nominal
1 ° horizontal resolution with increasing resolution near the equator, and 50 vertical levels with
vertical resolution decreasing from 10 m at the surface to 300 m at 5000 m depth. This physical
ocean model is coupled to the ocean biogeochemistry model TOPAZv2, which simulates 30
tracers and three phytoplankton groups. Zooplankton grazing is implicitly simulated. The ocean
carbonate chemistry routines are based on the OCMIP2 protocol (Najjar & Orr, 1998).

A 30-member ensemble simulation from 1861 to 2100 was performed. The large ensemble size
allows for a robust assessment of changes in compound events (Fig. 4.4a-c) and is necessary to
assess changes in compound events relative to a shifting-mean and fully adapting baseline. The
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1861-2005 period was forced with prescribed historical greenhouse gas and aerosol concentra-
tions (Meinshausen et al., 2011). The period from 2006 to 2100 was simulated with greenhouse
gas and aerosol concentrations from the low-emissions high mitigation concentration pathway
RCP2.6 (van Vuuren et al., 2011) and from the high-emissions no mitigation concentration
pathway RCP8.5 (Riahi et al., 2011). However, the main global mean results shown in Figure 4.4
do not depend on the warming path and are hence independent from the emission scenario.
As a result, Figure 4.4 mainly shows results for the RCP8.5 scenario. However, global-mean
changes for the RCP2.6 scenario are also shown in Fig. 4.4a-c. A 500-year preindustrial control
simulation was also performed to calculate the fixed baseline. The initialization procedure of the
large ensemble simulation is described in Burger et al. (2020) (Chapter 3). Daily mean ocean
temperature and [H+] (on the total scale) output from the surface layer of the ocean model (0-10
m) was analyzed.

b. Model evaluation

The capability of the GFDL ESM2M model to simulate the mean state and long-term changes in
ocean biogeochemistry and in particular OA extremes as well as MHWs has been extensively
evaluated. The model has been shown to capture the mean state in [H+] (Bopp et al., 2013) and
its mean seasonal cycle (Kwiatkowski & Orr, 2018), as well as changes in [H+] seasonality over
the last few decades (Chapter 3; Burger et al., 2020). Furthermore, the model reproduces the
positive long-term trend in global mean SST (Frölicher et al., 2016) and annual number of MHW
days over the satellite period (Frölicher et al., 2018).

In addition, the model’s performance in simulating compound MHW-OAX events was
evaluated here. The LMF of MHW-OAX events estimated from model output agrees with the
estimates from the time series data in 14 of 15 cases (differences are insignificant under a 5 %
significance level; Ext. Data Table 4.1). As for the gridded observation-based data product, we
find a significant difference for the HOT station. However, the agreement with the WHOTS
time series that is measured at the same location indicates that the difference may be due to
the temporal resolution of the data: HOT consists of point measurements while the GFDL
ESM2M model data and gridded data product provide daily and monthly mean values, as for
WHOTS where monthly mean values were calculated from 3-hourly measurements. Moreover, the
simulated LMF patterns for MHW-OAX events from monthly model output are similar to the
patterns estimated from the gridded observation-based, monthly data product (compare Fig. 4.1
and Ext. Data Fig. 4.13b). However, the GFDL ESM2M model overestimates the occurrence
of MHW-OAX events at the global scale (2.7 in the GFDL ESM2M model versus 1.8 in the
observation-based product). Locally, the LMF overestimation is especially pronounced in the
high latitudes such as the Southern Ocean (40 °S - 81 °S; LMF of 1.9 vs 0.7), the North Pacific
(40 °N - 66 °N; 1.9 vs 1.0) and the North Atlantic (40 °N - 66 °N; 1.8 vs 0.8). In the Southern
Ocean, however, the observation-based estimates are also uncertain due to a lack of observational
data, especially during austral winter for pCO2 (Landschützer et al., 2016; Gray et al., 2018).
Similarly, a bias of too large correlation coefficients of SST and [H+] anomalies is evident in all
here analyzed CMIP6 model simulations (Ext. Data Fig. 4.10), suggesting that comprehensive
ESMs systematically overestimate the effect of temperature on [H+] (contributing positively to
correlation) compared to the effect of sCT variations (contributing negatively to correlation).
Projections based on fixed baselines are insensitive to this positive bias in correlation because
MHWs always coincide with OAX events already at 0.3 °C global warming when OAX events
become near-permanent. However, projections relative to shifting-mean baselines may be slightly
positively biased.
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When analyzing the correlation coefficient of SST and [H+] anomalies, the GFDL ESM2M
model performs well compared to most CMIP6 models (Ext. Data Table 4.3), in particular in the
subtropics and tropics (red and grey lines in Ext. Data Fig. 4.10k). At the global scale, the GFDL
ESM2M model outperforms most of the CMIP6 models (red vs. gray stars in Ext. Data Fig. 4.10l).

Overall, the agreement between the simulated present-day compound MHW-OAX event
pattern and the observation-based pattern, in addition to the model’s fidelity in simulating
recent trends in MHW characteristics (Frölicher et al., 2018) and [H+] seasonality (Chapter 3;
Burger et al., 2020), gives high confidence in the use of the GFDL ESM2M model for analyzing
patterns and trends in compound MHW-OAX events at the global scale.
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Reference Lat (°N) Lon (°E) Period Number of
data points

Measured
variables

KNOT Wakita et al.
(2011b)

44.0 155.0 1997-2008 38 SST, S, AT, CT,
phosphate,
silicate

K2 Wakita et al.
(2011a)

47.0 160.0 2001-2008 37 SST, S, AT, CT,
phosphate,
silicate

HOT adapted from
Dore et al. (2009)

22.5 -158.0 1988-2018 299 SST, pH, S, AT,
CT, phosphate,
silicate

BATS Bates & Johnson
(2020)

31.4 -64.1 1983-2019 457 SST, S, AT, CT

ESTOC González Dávila:
pers. comm.

29.2 -15.5 1995-2020 221 SST, S, AT, CT

137 °E 30 °N Sasano: pers.
comm.

30.0 137.0 2000-2020 94 SST, S, AT, CT,
phosphate,
silicate

137 °E 5 °N Sasano: pers.
comm.

5.0 137.0 2000-2020 63 SST, S, AT, CT,
phosphate,
silicate

Munida NZOA-ON data
sourced from
NIWA

-45.7 171.5 1998-2020 126 SST, S, AT,
pCO2

CARIACO Astor et al.
(2013)

10.3 -64.4 1995-2017 188 SST, S, AT, CT

KEO Sutton et al.
(2019)

32.3 144.6 2007-2015 18287 SST, S, pCO2

Papa Sutton et al.
(2019)

50.1 -144.8 2007-2015 18039 SST, S, pCO2

STRATUS Sutton et al.
(2019)

-19.7 -85.6 2006-2015 19200 SST, S, pCO2

TAO125W Sutton et al.
(2019)

0.0 -125.0 2004-2017 15546 SST, S, pCO2

TAO140W Sutton et al.
(2019)

0.0 -140.0 2004-2015 14279 SST, S, pCO2

TAO170W Sutton et al.
(2019)

0.0 -170.0 2005-2012 11686 SST, S, pCO2

WHOTS Sutton et al.
(2019)

22.5 -158.0 2004-2015 23216 SST, S, pCO2

Extended Data Table 4.2: Ocean stations that provide time series data used in this study. The
KNOT and K2 station data were combined due to their spatial proximity. SST was measured at every station.
[H+] was either calculated from measured pH at in-situ temperature (only available for HOT for 204 of 299
measurements), or calculated from measured SST, salinity (S), AT, phosphate, silicate, and either CT or pCO2.
For the autonomous buoy data (stations KEO to WHOTS), the raw number of 3-hourly measurements is given.
Here, either monthly-mean or daily-mean values are calculated from these.
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Model Model paper Data DOI

CanESM5 Swart et al. (2019a) Swart et al. (2019b,c)

CNRM ESM2-1 Séférian et al. (2019) Séférian (2018); Voldoire
(2019)

GFDL CM4 Held et al. (2019) Guo et al. (2018a,b)

GFDL ESM4 Dunne et al. (2020) Krasting et al. (2018);
John et al. (2018)

IPSL CM6A-LR Boucher et al. (2020) Boucher et al. (2018,
2019)

MIROC ES2L Hajima et al. (2020) Hajima et al. (2019);
Tachiiri et al. (2019)

MPI ESM1-2-HR Müller et al. (2018) Jungclaus et al. (2019);
Schupfner et al. (2019)

UKESM1-0-LL Sellar et al. (2019) Tang et al. (2019); Good
et al. (2019)

Extended Data Table 4.3: CMIP6 models that were used in this study. For all models, a historical
simulation over the period 1850-2014 and a simulation following the SSP5-8.5 scenario over the period 2015-2100
was used.

Extended Data Figure 4.5: Comparison of the likelihood multiplication factor with the likelihood
multiplication factor estimated from correlation coefficient. (a) The likelihood multiplication factor
(LMF) for MHW-OAX events for the gridded observation-based data product over the period 1982-2019 (same as
in Fig. 4.1). (b) Estimated LMF from the correlation coefficient of SST and [H+] anomalies for the same data. (c)
The difference between (b) and (a).

Extended Data Figure 4.6: Remaining terms of the correlation coefficient decomposition of SST
and [H+] anomalies. (a) Contribution from salinity-normalized alkalinity (sAT) anomalies and (b) freshwater
anomalies to the correlation coefficient of SST and [H+] anomalies in the gridded observation-based data product
over the period 1982-2019 (in correlation coefficient units; see Methods). The data was linearly detrended before
analysis. (c) The residual of the decomposition, i.e. the sum of the SST, sCT, sAT, and freshwater contributions
minus the observed correlation coefficient.
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Extended Data Figure 4.7: Individual terms underlying the SST and sCT contributions to the
correlation coefficient of SST and [H+] anomalies. (a) The standard deviation of SST anomalies, (b) the
temperature sensitivity of [H+], (c) the standard deviation of [H+] anomalies, (d) the standard deviation of sCT

anomalies, (e) the CT sensitivity of [H+], and (f) the correlation coefficient of SST and sCT anomalies. The data
was linearly detrended before analysis. (a-c) form the SST contribution to the correlation coefficient of SST and
[H+] anomalies, and (c-f) form the sCT contribution (Eq. 4.5).

Extended Data Figure 4.8: Ensemble-mean duration of MHW-OAX events simulated by the
GFDL ESM2M model over the period 1982-2019. (a) The mean duration of MHW-OAX events, and (b)
the globally averaged and ensemble-mean histogram of event durations. The x-axis in (b) was cut for events that
last more than 58 days due to the non-visible probability density. The longest MHW-OAX event lasted 433 d.
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Extended Data Figure 4.9: Change in CT sensitivity and temperature sensitivity of [H+] between
the preindustrial conditions and 2 °C global warming level in the GFDL ESM2M model. (a) The
relative change in CT sensitivity (global average increase by 114 %), (b) the relative change in temperature
sensitivity (global average increase by 65 %), and (c) the relative change in the ratio of CT and temperature
sensitivities (global average increase by 29 %). For the mean sensitivities at 2 °C global warming level, sensitivities
were calculated from the RCP8.5 ensemble mean for each day in the period 2045-2064 and then averaged. The
sensitivities were calculated with mocsy 2.0 (Orr & Epitalon, 2015) by numerical differentiation.

Extended Data Figure 4.10: Correlation coefficient of sea surface temperature and [H+] anoma-
lies within observation-based data product, GFDL ESM2M model and eight CMIP6 models.
(a-j) Spatial patterns of correlation coefficients from gridded observation-based data, GFDL ESM2M and eight
CMIP6 models (Ext. Data Table 4.3). (k) The zonal mean correlations from the observation-based product (black),
the GFDL ESM2M model (red), and the CMIP6 models (gray). The Taylor diagram (l) displays the correlation
with the observation-based pattern and the spatial standard deviation relative to that of the observation-based
pattern for the GFDL ESM2M (red), CMIP6 models (gray), and CMIP6 multi-model mean (blue). The correlation
coefficient was calculated from monthly-mean data over the 1982-2019 period. The data was linearly detrended
prior to analysis.
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Extended Data Figure 4.11: Projected change in correlation coefficient of temperature and [H+]
anomalies between 1982-2019 and 2071-2100. Spatial patterns of correlation coefficient changes for (a)
the GFDL ESM2M model under RCP8.5 and (b-i) eight CMIP6 models under SSP5-8.5 (Ext. Data Table 4.3). (j)
The zonal mean correlation coefficient change in the GFDL ESM2M model (red) and the CMIP6 models (grey).
In the GFDL ESM2M model, the correlation coefficient decreases globally by -0.11 between the preindustrial
period and 2071-2100 under RCP8.5. The CMIP6 models simulate a global decrease of -0.08 to -0.20 between the
preindustrial period and 2071-2100 under SSP5-8.5.

Extended Data Figure 4.12: The correlation coefficient of SST and [H+] within the GFDL
ESM2M model when AT is estimated from temperature and salinity using the LIARv2 algorithm.
(a) The correlation coefficient of SST and [H+] anomalies obtained by calculating AT from simulated SST and
salinity using LIARv2 (ALIAR

T ) and then calculating [H+] from simulated SST, salinity, pCO2, and LIARv2 AT

using CO2SYS. (b) The difference between the correlation coefficient based on ALIAR
T (panel a) and the simulated

correlation coefficient. (c) The LMF with [H+] calculated from ALIAR
T as in panel a), and (d) the difference

between (c) and the simulated LMF. Data is shown for one ensemble member over the period 1982-2019 using
monthly mean data.
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Extended Data Figure 4.13: Simulated ensemble-mean LMF over the period 1982-2019 from
daily-mean and monthly-mean data as simulated by the GFDL ESM2M model. Simulated LMF
from daily-mean data (a), from monthly-mean data (b), and the difference between the LMF from monthly-mean
and daily-mean data (c).

Extended Data Figure 4.14: The observation-based likelihood multiplication factor of compound
MHWs and extremes in pCO2 over the years 1982 to 2019. Map of the likelihood multiplication
factor (LMF) based on the global monthly observation-based SST and surface pCO2 data (MPI-SOMFNN
product (Landschützer et al., 2016)). Warm colors indicate LMF > 1 and cold colors indicate LMF < 1. The data
was linearly detrended prior to analysis.
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Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H.,
Watanabe, M., Yamamoto, A., Yool, A., & Ziehn, T., 2020. Twenty-first century ocean warming, acidification,
deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections,
Biogeosciences, 17(13), 3439–3470.

Landschützer, P., Gruber, N., & Bakker, D. C. E., 2016. Decadal variations and trends of the global ocean carbon
sink, Global Biogeochemical Cycles, 30(10), 1396–1417.

Landschützer, P., Gruber, N., & Bakker, D. C. E., 2020. An observation-based global monthly gridded sea surface
pCO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558).
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Chapter 5

Drivers of ocean acidity extreme events in
an Earth system model

Friedrich A. Burger and Thomas L. Frölicher

Manuscript in preparation.

Oceanic uptake of anthropogenic carbon dioxide increases [H+] concentrations
in seawater and alters the inorganic carbon speciation impacting many ocean
species, especially shell-forming organisms such as plankton, mollusks, echino-
derms and corals. Of particular concern are extreme ocean acidity events (OAX
events), during which the [H+] concentrations may be similarly high as those pro-
jected for the surface ocean by the middle of this century. However, there is only
little knowledge about the driving mechanisms of such OAX events. Here, we use
daily mean output from a fully-coupled Earth system model of all processes that
influence the surface ocean temperature and carbon budgets and ultimately [H+]
anomalies to quantify the driving mechanisms of the buildup and decay of OAX
events. We show that increases in temperature due to enhanced net ocean heat
uptake dominate the buildup of OAX events, especially in the subtropical oceans.
These increases in [H+] during OAX events are often substantially reduced by
co-occurring reductions in surface carbon concentration due to enhanced carbon
loss to the atmosphere. In the high latitudes, decreased downward vertical diffu-
sion and mixing of warm temperature are the main drivers of the buildup of OAX
events, whereas in the tropical Pacific, increases in vertical advection of carbon
drive the buildup of OAX events. Furthermore, we also find a more pronounced
role of increases in carbon for preconditioning OAX events than for driving event
buildup and decay. Our results provide a first global overview of the driving pro-
cesses of OAX events and can be used as a first step towards skillful predictions
of impactful OAX events.
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5.1 Introduction

The ocean has absorbed between 20 and 30% of the anthropogenic carbon dioxide (CO2)
emissions since the beginning of the industrial era (Friedlingstein et al., 2020; Khatiwala et al.,
2013). This uptake of anthropogenic CO2 has led to an observed increase in acidity (hydrogen
ion concentration [H+]) of about 29 %, a decrease in pH of about 0.11 units (Jiang et al., 2019;
Rhein et al., 2013), and a decrease in carbonate ion concentration ([CO2−

3 ]) by more than 10 %
(Orr et al., 2005). These changes are generally referred to as ocean acidification (Caldeira &
Wickett, 2003; Doney et al., 2009a; Bindoff et al., 2019). By the end of this century, surface
ocean pH is projected to decrease by another 0.1 - 0.4 units and [CO2−

3 ] concentration by up to
50 % (Orr et al., 2005; Canadell et al., 2021). Ocean acidification may impact marine organisms
in a variety of ways. Over a broad range of organisms, meta-analyses reveal decreases in survival,
calcification, growth, development, and abundance in response to the increases in [H+] and
from co-occurring changes in calcium carbonate saturation state and other carbonate system
variables (Kroeker et al., 2013; Doney et al., 2020). Research also suggests that changing ocean
chemistry and reduced pH may impact the physiology and population dynamics of many species
(Doney et al. 2009; Gattuso et al. 2015).

In addition to the long-term increase in ocean acidity, variations in [H+] and in other
carbonate system variables also occur on much shorter timescales. The intensity of such extreme
events in ocean acidity (herein referred to OAX events) can be of similar magnitude as the
changes expected from long-term ocean acidification during the 21st century (Hofmann et al.,
2011; Leinweber & Gruber, 2013; Torres et al., 2021). OAX events can amplify the ongoing
impacts on marine organisms and ecosystems due to long-term ocean acidification, because
such extreme events can push these systems and their constituents beyond the limits of their
resilience (e.g., Spisla et al., 2021; Gruber et al., 2021). For example, laboratory and field studies
found that calcifying organisms show signs of shell dissolution already after several days in
waters that are undersaturated with respect to calcium carbonate (Bednaršek et al., 2012, 2014),
highlighting the significance of short-term exposures to acidic waters during OAX events.

Modeling studies suggest that the number of OAX days will strongly increase under climate
change. By year 2030 and under a high-emission no-mitigation scenario, climate model simulations
suggest that more than 360 days per year are under extreme conditions, when OAX events are
defined relative to a preindustrial reference period (Chapter 3; Burger et al., 2020). The long-term
ocean acidification will therefore push the global surface ocean towards a near-permanent
extreme state for acidity conditions (Chapter 3; Burger et al., 2020). Even when defining OAX
events relative to a shifting-mean baseline so that the long-term changes in acidity are neglected,
the global number of OAX days will increase by a factor of 14 (Chapter 3; Burger et al., 2020).
This is because the variability in [H+] increases with ocean acidification and warming (Chapter 3;
Burger et al., 2020), a consequence of the nonlinear nature of oceanic carbon chemistry (Orr
et al., 2018; Fassbender et al., 2018; Burger et al., 2020).

Most of the available studies on drivers of OAX events focused on the long-term changes in
OAX events under climate change (Burger et al., 2020; Hauri et al., 2013) or on drivers of the
mean seasonal cycle (Hagens & Middelburg, 2016; Xue et al., 2021). However, the processes
leading to individual OAX events and especially to variations in [H+] anomalies, i.e. in the
departures of [H+] from the mean seasonal cycle, are currently unknown. Anomalies in [H+]
around the seasonal cycle arise due to departures in the driving variables from their seasonal
cycles, most importantly in temperature and carbon (Deser et al., 2010; Doney et al., 2009b).
Burger et al. (2020) identified the contributions from the driving variables to changes in [H+]
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variability with anthropogenic CO2 emissions. However, the mean-state contributions from the
driving variables to variations in [H+] anomaly have not been analyzed. In addition, the role of
the different physical and biogeochemical processes, underlying the variations in the drivers in
causing extreme variations in [H+] anomaly, such as air-sea heat and CO2 exchange and vertical
mixing of heat and carbon, is currently unknown. Insights in the driving processes of extreme
variations in [H+] would enable more robust predictions of such harmful OAX events at the
regional scale.

In this study, the driving mechanisms of extreme events in [H+] are analyzed in a preindustrial
simulation of the GFDL ESM2M Earth system model. The analysis is based on a suite of model
tendency terms for the carbon and temperature budgets (Gnanadesikan et al., 2012; Palter et al.,
2014; Griffies et al., 2015) that allow to decompose changes in temperature and carbon into the
contributions from the underlying physical and biogeochemical processes. These model tendency
terms are here used for the first time to analyze variations in [H+]. Based on the tendency
contributions, the driving mechanisms of [H+] evolution during OAX events are identified. The
remainder of this article is structured as follows. In Sect. 5.2, the methods used to analyze the
drivers of [H+] extremes are introduced. Sect. 5.3 presents the results and a discussion of the
results is given in Sect. 5.4.

5.2 Methods

5.2.1 Model and experimental design

This study is based on a 500 y preindustrial control simulation conducted with the Earth system
model GFDL ESM2M (Dunne et al., 2012, 2013). The GFDL ESM2M is a fully coupled carbon
cycle-climate model that was developed at NOAA’s Geophysical Fluid Dynamics Laboratory
(GFDL). It consists of an ocean (MOM4p1; Griffies, 2009), atmosphere (AM2; Anderson et al.,
2004), land (LM3; Shevliakova et al., 2009) and sea ice (Winton, 2000) module. The Modular
Ocean Model version 4p1 (MOM4p1) uses a horizontal grid with a nominal 1 ◦ resolution that
increases near the equator to 0.3 ◦ and a time-varying vertical resolution of about 10 m in the
upper ocean. In this study, we analyze data for the uppermost vertical layer that extends from
the surface to about 10 m depth. MOM4p1 is coupled to the ocean biogeochemistry model
Tracers of Ocean Phytoplankton with Allometric Zooplankton version two (TOPAZv2; Dunne
et al., 2013) that simulates the cycling of 30 biogeochemical tracers, three phytoplankton groups,
and zooplankton grazing. Carbonate chemistry follows the OCMIP2 recommendations (Najjar &
Orr, 1998; Burger et al., 2020).

We used output of a preindustrial control simulation that was run under prescribed atmospheric
CO2 levels of 286 ppm. Aerosol and solar forcing were also set to preindustrial 1860 values, and
no anthropogenic land use and volcanic activity was assumed. We analyzed daily-mean output of
[H+] and its drivers, temperature (T), dissolved inorganic carbon (CT), total alkalinity (AT), and
salinity (S), as well as all processes that modulate T and CT (i.e., T and CT tendency terms).

5.2.2 Extreme event definition and identification of buildup and decay pe-
riods

We define OAX events based on seasonally-varying thresholds (Hobday et al., 2016, Chapter 4).
At each location and for each day of the year, an extreme event threshold is determined as the
90th percentile of the 500 anomaly values with respect to the climatological seasonal cycle for
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that day of the year. As a result, the likelihood that [H+] anomaly exceeds the threshold is equal
across locations and across the year. At a specific location, extreme events in [H+] are then
defined as coherent periods over which the [H+] anomaly is above the local seasonally varying
threshold.

At each location and for each OAX event, we identify its buildup and decay period. The
buildup phase is defined as the period between the start of the extreme event, i.e., where the
[H+] anomaly crosses the threshold, and the peak of the extreme event, where the difference
between [H+] anomaly and the seasonally varying threshold is at its maximum. Likewise, the
decay phase is defined as the period between the peak of the extreme event and the time when
[H+] anomaly falls below the extreme event threshold again. In this study, we average the change
in [H+] anomaly and its drivers over these two periods. We assign the day of event peak to the
decay period, as the change in [H+] anomaly on that day characterizes the reduction in [H+]
anomaly between the peak day and the following day. Likewise, the last day of the decay period
is excluded, as the change in [H+] anomaly on that day characterizes the transition from the last
day of the event to the first day after the event. Changes in [H+] anomalies averaged over the
full duration of events, i.e., over the buildup and decay phases of the events, are close to zero
(1·10−4 nmol kg−1d−1 on global average; Table 5.1) indicating that the increase in [H+] anomaly
during event buildup is similar in magnitude to the decrease in [H+] anomaly during the decay
of events.

5.2.3 Decomposition of OAX events into drivers

Changes in [H+] seasonal anomalies (H+ ′) in each grid cell are decomposed into contributions
from T, S, CT and AT (Fig. 5.1). The change in [H+] anomaly between day i and day i+ 1,
denoted by ∆H+ ′(i), is approximated by employing a first order Taylor expansion of [H+] at day
i, and by calculating the seasonal anomalies (denote by primes) of the obtained terms from T,
salinity-normalized CT and AT (sCT and sAT; defined below), and freshwater variations (last
term on right-hand side of Eq. (5.1)):
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(5.1)

∆T(i), ∆sCT(i), ∆sAT(i), and ∆S(i) denote the changes in the respective variables between
day i and day i+ 1. S is a reference salinity (Lovenduski et al., 2007) that is chosen as the
temporal-mean salinity at each grid cell. The definition of salinity-normalized CT and AT

(sCT = S
SCT and sAT = S

SAT) based on the reference salinity S excludes the effects from
variations in salinity on CT and AT. However, since the effects from salinity variations on CT

and AT are similarly large and with opposite effects on [H+], they largely cancel each other out
and the overall effect on [H+] is small. Since the direct effect of salinity variations on [H+] is also
small, the freshwater term (last term in first row in Eq. (5.1)) can be neglected. Likewise, the
contribution from the sAT term (third term in first row in Eq. (5.1)) can be neglected in most
regions, because AT varies mostly with S, and as a result, variations in sAT are comparably
small. Making these assumptions, we here decompose ∆H+ ′(i) into a T term and a sCT term.
Furthermore, it can be shown that the sCT term can be represented by the difference between
the CT term and a CT freshwater term that incorporates variations in CT that are proportional
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to variations in salinity (calculation in Appendix A):
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The partial derivatives with respect to T and CT in Eq. (5.2) for each day are calculated
from daily-mean T, CT, AT, and S, as well as from temporal mean values for total phosphate
and total silicate using mocsy 2.0 (Orr & Epitalon, 2015). While it is important to take into
account the mean contributions to alkalinity from phosphoric and silicic acids, only little
error arises when neglecting variations in total phosphate and total silicate (Orr & Epitalon, 2015).

The approximation of the changes in [H+] seasonal anomalies through the sum of the T
and sCT terms, as described in Eq. (5.2), works well. At the global scale, the average sum of
the T and sCT terms during OAX events differs from the simulated [H+] anomaly change
by −3.1·10−4 nmol kg−1d−1 (-3.5 % relative error) during the buildup phase and by 6.9·10−4

nmol kg−1d−1 (8.3 %) during the decay phase (Appendix Fig. 5.7). The mismatch is due to the
omission of the sAT and freshwater terms and due to the linear approximation for variations
in [H+]. Nevertheless, the small mismatch gives us confidence in using Eq. (5.2) to study the
drivers of OAX events.

5.2.4 Decomposition of T and sCT changes during OAX events into ten-
dency terms

Within the ESM2M model, changes in T and CT in a grid cell between two time steps are
calculated from a number of tendencies that describe the changes in T and CT due to the
individual physical and biogeochemical processes represented by the model. We make use of
these tendency terms for T and CT to further decompose changes in T and CT into individual
physical and biogeochemical drivers. The individual process contributions to the total tendencies
allow then to attribute changes in T and CT to the individual physical and biogeochemical
drivers. Finally, changes in [H+] are then attributed to these physical and biogeochemical drivers
based on Eq. (5.2).

[H+] anomaly change

sCT termT term

Air-sea
flux

Advec-
tion

Vertical
diffusion

Nonlocal
KPP

convective
mixing

Others

Air-sea
flux

Advec-
tion

Vertical
diffusion

Nonlocal
KPP

convective
mixing

Biology Others

CT term

Minus CT freshwater term

Figure 5.1: A scheme depicting the decomposition of [H+] anomaly change (∆H+ ′) in the T and sCT terms
(Eq. 5.2). The sCT term is further decomposed into the difference between the CT term and the CT freshwater
term (Eq. 5.2). Furthermore, the decomposition of the T and CT terms into tendency contributions (Eqs. (5.6)
and (5.4)) is depicted.
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The total temperature tendency (ξT, in K s−1) at the sea surface is calculated as the sum of
the tendency terms that represent air-sea exchange of heat (ξT,air), resolved and parameterized
subgrid-scale advection of heat (ξT,adv), vertical diffusion and mixing of heat (here referred to as
vertical diffusion only; ξT,vdiff), convective vertical mixing of heat in the ocean boundary layer as
represented by the nonlocal KPP (K -profile) parameterization (ξT,kpp), and other smaller terms
such as neutral diffusion and river runoff (ξT,oth; see Appendix B):

ξT = ξT,air + ξT,kpp + ξT,vdiff + ξT,adv + ξT,oth. (5.3)

Likewise, total CT tendency at the surface (ξCT
, in mol kg−1 s−1) is calculated as the sum of the

tendency terms that represent air-sea exchange of CO2 (ξCT,air), resolved and parameterized
subgrid advection of carbon (ξCT,adv), vertical diffusion and mixing of carbon (here referred
to as vertical diffusion only; ξCT,vdiff), nonlocal KPP convective mixing of carbon (ξCT,kpp),
biological carbon uptake and release (ξCT,bio), and various other smaller terms (ξCT,oth):

ξCT
= ξCT,air + ξCT,kpp + ξCT,vdiff + ξCTadv + ξCTbio + ξCToth. (5.4)

More details on the individual tendencies and their underlying parametrizations can be found
in Appendix B. The tendency contributions from the ’other’ processes (ξT,oth and ξCT,oth) are
comparably small (Table 5.1) and thus neglected in the analysis.

The individual tendencies are multiplied by the time span of a day (1 d = 86400 s) to obtain
the change in the respective variable due to a tendency over the course of a day. They are also
averaged over the day of interest and the subsequent day to approximate the change in the
respective variable due to the tendency between the two days. For example, the change in T from
day i to day i+ 1 (∆T(i)) due to the air-sea heat exchange tendency (ξT,air) is calculated as

∆Tξair(i) =
1d

2
(ξTair(i+ 1) + ξTair(i)) . (5.5)

Calculating the change in T and CT from each tendency, we can decompose the T and CT terms
(defined in Eq. (5.2)) into the individual tendency contributions:(
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(5.6)

∆Tξ(i) and ∆CT
ξ(i) (the sums of the changes in T and and CT due to the individual

tendency contributions as defined in Eq. (5.5)) slightly differ from the simulated changes in
T (∆T(i)) and CT (∆CT(i)). This is because the changes in T and CT within the model are
calculated on the two-hour model time step, while the tendencies in the model output are only
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available on daily-mean resolution. Nevertheless, the differences for the analyses presented here
are generally small (Appendix Fig. 5.8c, d and Appendix Fig. 5.9e, f). At the global scale, the
average sum of the tendency contributions to the T term differs from the directly simulated T
term by -4·10−4 nmol kg−1d−1 (-6.0 % relative error) during the buildup phase of events and by
-2·10−5 nmol kg−1d−1 (-0.6 %) during the decay phase (Appendix Fig. 5.8c,d). Likewise, the
average sum of the tendency contributions to the CT term, with the CT freshwater term sub-
tracted (Eq. 5.2), differs from the sCT term by 1·10−4 nmol kg−1d−1 (10.2 %) during the buildup
phase of events and by 2·10−4 nmol kg−1d−1 (4.3 %) during the decay phase (Appendix Fig. 5.9e,f).

5.3 Results

We first analyze the temperature and carbon contribution to the buildup and decay of OAX
extremes in Sect. 5.3.1, and then quantify the individual processes that modulate temperature
(Sect. 5.3.2) and carbon concentrations (Sect. 5.3.3) at the surface ocean. Sect. 5.3.4 summarizes
the contribution of the individual terms to the total changes in [H+] anomalies.

5.3.1 Contributions of temperature and carbon anomalies to the buildup
and decay of OAX events

Fig. 5.2 shows the simulated changes in [H+] anomalies and their drivers over the buildup (left
column) and decay phase (right column) of OAX events. Averaged over the buildup period, the
increase in [H+] anomalies is 0.009 nmol kg−1 d−1 on global average (Fig. 5.2a, Table 5.1). This
increase is mainly due to increases in temperature during the event buildup that contribute
0.007 nmol kg−1 d−1 on global average (Fig. 5.2c). Increases in sCT also contribute to the increase
in [H+], but the contribution of 0.001 nmol kg−1 d−1 is much smaller than the contribution from
increases in temperature at the global scale.

At the regional scale, we find that the increase in temperature is the dominant driver of
[H+] anomalies during the buildup phase in 84 % of the global ocean surface area. A particular
exception is the eastern tropical Pacific, where temperature decreases during the buildup
of OAX events and therefore the contribution from the temperature is negative (Fig. 5.2c).
There, increases in [H+] result from increases in sCT (Fig. 5.2e). In the subtropics, increases
in temperature and associated increases in positive [H+] anomalies are somewhat damped
by decreases in sCT and associated decreases in [H+] anomalies, whereas in the Kuroshio
and Gulf Stream regions, the Arctic Ocean and near the Antarctic ice shelf, increases in
temperature-induced [H+] anomalies are reinforced by increases in sCT-induced [H+] anomalies.

During the decay period of OAX events and at the global scale, simulated decreases in
temperature (Fig. 5.2d) and in sCT (Fig. 5.2f) decrease [H+] to a similar extent (both by about
-0.004 nmol kg−1 d−1). This is in contrast to the buildup period, where the temperature term
dominates at the global scale. At the regional scale, the sCT term decreases almost everywhere
(in 98 % of the ocean surface area), with the largest decreases simulated in the tropical Pacific
and the high latitudes (Fig. 5.2f). Similarly, the temperature term also decreases in most
regions (in 87 % of the surface ocean), with the most pronounced decreases in the subtropics
(Fig. 5.2d), where the temperature term is the main driver of [H+] decay. An exception is again
the equatorial Pacific, where temperature increases during the decay period of OAX events,
thereby counteracting event decay.
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5.3.2 Drivers of temperature variations during OAX events

To understand the processes driving the changes in temperature anomalies during OAX events and
hence the temperature contribution to buildup and decay of OAX events (Fig. 5.2c, d), the change
in temperature anomaly during event buildup and decay is decomposed (see Eq. (5.6)) into the
contributions from air-sea heat exchange (Fig. 5.3b, c), advection (Fig. 5.3e, f), vertical diffusion
(Fig. 5.3h, i), and nonlocal KPP convective mixing (Fig. 5.3k, l). For ease of interpretation of the
anomaly patterns, we also show the climatological means of the tendency contributions to the T
term (Fig. 5.3a,d,g,j). These are determined by calculating the temporal mean values of the
tendency contributions to the T term (Eq. 5.2) instead of calculating their seasonal anomalies.

At the global scale, reduced ocean heat loss (i.e., net ocean heat uptake) contributes most to
the increases in temperature anomalies during the buildup period of OAX events (Fig. 5.3;
Table 5.1). The net ocean heat uptake increases [H+] anomalies by 0.012 nmol kg−1 d−1 (138 %
of [H+] anomaly increase, Fig. 5.3b) at the global scale. In addition, reduced vertical diffusion of
warm waters to the subsurface and associated increases in the temperature anomalies during the
buildup period cause an increase in [H+] anomalies of 0.005 nmol kg−1 d−1 (51 % of [H+] anomaly
increase, Fig. 5.3h). These temperature-induced increases in [H+] anomalies are strongly damped
by reduced nonlocal KPP convective mixing of warm subsurface water to the surface, which
reduces the surface temperature and therefore [H+] anomalies during the buildup (Fig. 5.3k;
−0.009 nmol kg−1 d−1, -103 % of [H+] anomaly increase). In the climatological mean, convective
mixing increases surface temperature by transporting heat to the surface when surface waters
lose buoyancy due to heat loss to the atmosphere (Fig. 5.3j). This mechanism is less active
during positive anomalies in air-sea heat flux.

At the regional scale (Fig. 5.3), the positive contribution from air-sea heat exchange is largest
in the low-to-mid latitudes and in particular in the subtropical oceans (Table 5.1; Fig. 5.3b),
while the contribution is much smaller or negative in the high latitudes. In the subtropics, air-sea
heat exchange often changes the sign from net loss to the atmosphere to net uptake during OAX
event (Fig. 5.3a,b). Vertical diffusion increases temperature anomaly and hence contributes
positively to the T term in all ocean regions, except in the tropical Pacific and Indian Ocean,
where vertical diffusion of heat to the subsurface is increased during OAX events. The vertical
diffusion contribution is most positive in the North Atlantic, North Pacific, and Southern Ocean
(Table 5.1) during the buildup. In parts of these regions, vertical diffusion increases surface
temperatures in the climatological mean (Fig. 5.3g) and enhanced vertical diffusion during OAX
events further increases temperature. Such temperature increases due to enhanced vertical
diffusion occur in 43 % of the high latitudes (above 45 ° latitude). This is in contrast to the
remaining ocean, where vertical diffusion usually reduces surface temperatures and a decrease in
vertical diffusion increases surface temperatures during the buildup of OAX events. Decreases in
nonlocal KPP convective mixing decreases surface temperature and [H+] almost in the entire
global surface ocean, especially in the subtropics (Fig. 5.3k; Table 5.1), where also increases in
temperature anomaly due to air-sea heat exchange are largest (Fig. 5.3b). The contribution from
advective heat transport is generally small (Fig. 5.3e). However, its contribution is substantial in
some regions such as the tropical Pacific (Fig. 5.3e, Table 5.1).

During the decay phase of OAX events, the temperature decrease in the subtropics mainly
results from increased heat losses to the atmosphere (Fig. 5.3c). The smaller temperature
decreases in the Southern Ocean (Fig. 5.2d) arise from negative anomalies in nonlocal KPP
convective mixing and vertical diffusion that are partly compensated by reduced air-sea heat loss
and reduced advective heat loss. In the tropical Pacific, the increases in the temperature term
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Figure 5.2: The [H+] anomaly change during buildup and decay of OAX events and the contri-
butions from the T and sCT terms. (a, b) The simulated change in [H+] anomalies during the buildup and
decay phases of OAX events, (c, d) the contribution from the T term, and (e, f) the contribution of the sCT term
(see Eq. (5.2)). The solid, dashed, and dotted boxes in a) indicate the Tropical Pacific (8 ◦S - 8 ◦N and 190 ◦W -
85 ◦W), the Subtropics (15 ◦N - 30 ◦N and 205 ◦W - 125 ◦W in the North Pacific, 30 ◦S - 15 ◦S and 190 ◦W - 90 ◦W
in the South Pacific, 15 ◦N - 30 ◦N and 65 ◦W - 25 ◦W in the North Atlantic, 30 ◦S - 15 ◦S and 35 ◦W - 5 ◦E in the
South Atlantic, and 30 ◦S - 15 ◦S and 55 ◦E - 105 ◦E in the Indian Ocean), and the Southern Ocean (65 ◦S - 45 ◦S),
respectively. These regions are used in Table 5.1.



5.3. RESULTS 123

Figure 5.3: The decomposition of the T term into tendency contributions. The climatological means
of the tendency contributions to the T term (first column) as well as their contributions to the buildup (second
column) and decay (third column) means of the T term (Fig. 5.2 c, d). The remaining processes and the difference
between the sum of the contributions and the T term during event buildup and decay are shown in Appendix
Fig. 5.8.
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(Fig. 5.2d)) that counteract the [H+] event decay result from enhanced ocean heat uptake during
the decay phase.

5.3.3 Drivers of carbon variations during OAX events

To understand the processes driving the changes in sCT anomaly during OAX events and the
sCT contribution to buildup and decay of OAX events (Fig. 5.2e, f), the sCT term is decomposed
into the CT term and the CT freshwater term (see Eq. (5.2)). The CT freshwater term is
comparably small in most regions (Fig. 5.9c d; Table 5.1) and hence neglected here. The CT

term is decomposed into contributions from air-sea CO2 exchange (Fig. 5.4b, c), advection
(Fig. 5.4e, f), vertical diffusion (Fig. 5.4h, i), nonlocal KPP convective mixing (Fig. 5.4k, l), and
biological activity (Fig. 5.4n, o) (see Eq. (5.6)).

At the global scale, advection is the most important driver of CT increase during OAX event
buildup, increasing [H+] anomaly by 0.005 nmol kg−1 d−1 (56 % of [H+] anomaly increase). Also
reduced nonlocal KPP convective vertical mixing increases [H+] by 0.002 nmol kg−1 d−1 (28 %
of [H+] anomaly increase). These increases are balanced by decreases in CT anomalies from
increased carbon loss to the atmosphere during the buildup of OAX events (-0.005 nmol kg−1 d−1,
-54 % of [H+] anomaly increase). Negative anomalies in air-sea CO2 flux, i.e., increased carbon
loss to the atmosphere or decreased CO2 uptake from the atmosphere (Fig. 5.4a), occur when
partial pressure of CO2 (pCO2) in the surface water is increased. Due to the high correlation
between [H+] and pCO2 anomalies (Pearson correlation coefficient of 0.99 on global average in
the model), negative anomalies in air-sea CO2 flux during high [H+] events are expected. The
contributions from vertical diffusion and biology are small at the global scale.

At the regional scale (Fig. 5.4), the contribution from advection to OAX event buildup
is largest in the tropics (Fig. 5.4e). Smaller positive contributions from advection are also
simulated in high-latitude regions (Fig. 5.4e). However, the advection contribution is slightly
negative in the subtropics (Table 5.1). Advection of CT in the GFDL ESM2M model includes
changes in surface CT from the balance between precipitation and evaporation. Here, the
advection tendency from precipitation and evaporation alone is isolated using an offline estimate
(Appendix C). While the climatological mean of the advection tendency (Fig. 5.4d) is largely due
to mean precipitating and evaporation patterns (Appendix Fig. 5.10a), we find that oceanic
advection, such as due to upwelling, is the main driver of the increases in CT anomaly during
event buildup in the tropics (Appendix Fig. 5.10e). Notably, the contribution from precipitation
and evaporation is large around the maritime continent (Appendix Fig. 5.10b). The negative
anomalies in air-sea CO2 flux are largest in the high latitudes. Similar to temperature, the
anomalies in air-sea CO2 exchange are offset by opposing tendencies from nonlocal KPP
convective mixing of carbon in most regions. The convective mixing from the nonlocal KPP
parameterization increases CT and [H+] everywhere except in the tropical oceans. Vertical
diffusion generally increases surface CT in the climatological mean (Fig. 5.4g). During OAX
event buildup, negative anomalies in vertical diffusion counteract increases in [H+] anomaly in
the subtropics, the mid latitudes, and parts of the tropics (Fig. 5.4h). In contrast, vertical
diffusion increases [H+] anomalies in the high-latitude regions of the the North Pacific, North
Atlantic, and Southern Ocean. Its contribution is often opposite to that of temperature vertical
diffusion due to opposite vertical gradients in temperature and CT. This is not the case in the
high-latitude regions where temperature and CT gradients are often both positive (Figs. 5.3h and
5.4h). The reductions in vertical diffusion of temperature and CT (increasing temperature and
decreasing CT) in the low-to-mid latitudes coincide with negative anomalies in wind stress during
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Figure 5.4: The decomposition of the CT term into tendency contributions. The climatological
means of the tendency contributions to the CT term (first column) as well as their contributions to the buildup
(second column) and decay (third column) means of the CT term (Fig. 5.2 e, f). The remaining processes, the CT

freshwater term that is subtracted to obtain the sCT term from the CT term (Eq. 5.2), as well as the difference
between the sum of the contributions to the sCT term and the sCT term during event buildup and decay are
shown in Appendix Fig. 5.9.
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event buildup (not shown). In the high-latitude regions where positive anomalies in vertical
diffusion of temperature and CT are simulated (Figs. 5.3h and 5.4h), also wind stress is increased
during event buildup. The increased wind stress may be the reason for enhanced vertical mixing
during event buildup in these regions. Biological activity generally reduces CT everywhere,
because biological production outweighs decomposition at the surface (Fig. 5.4m). During OAX
event buildup, increases in biological production significantly decrease [H+] anomaly in the
tropics (Table 5.1), while reductions in biological production increase [H+] anomaly in the
mid-to-high latitudes (Fig. 5.4n). In the tropical regions, increased nutrient concentrations are
simulated during OAX events (not shown), which may cause increased phytoplankton growth there.

During the decay phase of [H+] extremes, sCT anomaly decreases almost in the entire ocean
(Fig. 5.2f). This decrease is mainly due to loss of carbon to the atmosphere (Fig. 5.4c), which
remains as strong during the decay phase as during the buildup phase. In the tropical ocean,
biological production continues to decrease CT anomaly during event decay, and also advection
reduces CT anomaly during event decay. The convective mixing term counteracts [H+] event
decay everywhere in the ocean (Fig. 5.4l), and also vertical diffusion increases [H+] anomaly
during event decay in many regions (Fig. 5.4i).

5.3.4 Summary of global drivers during [H+] extremes events

In the previous two sections the drivers of temperature and carbon variations during OAX
events were discussed separately. Here, we provide a short overview of the combined importance
of the individual processes. Fig. 5.5 summarizes them at the global scale.

We find enhanced net ocean heat uptake to be the dominant driver of OAX event buildup
at the global scale. Also positive anomalies in advection of carbon, such as due to increased
upwelling of carbon-rich subsurface waters, and positive anomalies in vertical diffusion of
temperature, due to reduced vertical mixing with colder subsurface waters and also due to
increased vertical mixing with warmer subsurface waters, contribute substantially to OAX event
buildup. The increases in temperature anomaly due to enhanced net ocean heat uptake are
balanced by reduced warming from nonlocal KPP convective mixing. Positive anomalies in
nonlocal KPP convective mixing also partly balance the decreases in surface CT following from
decreased net air-sea CO2 flux. These decreases in net air-sea CO2 flux substantially counteract
OAX event buildup.

We find decreased net air-sea CO2 flux to be the dominant driver of OAX event decay, offset
by positive anomalies in convective mixing. Also decreased net ocean heat uptake and negative
anomalies in advection of carbon contribute substantially to event decay. Increased vertical
diffusion and mixing drives event decay by reducing surface temperatures, but counteracts event
decay by increasing surface carbon concentrations.

5.4 Discussion and conclusions

Our analysis shows that the buildup of OAX events is mainly driven by enhanced sea surface
temperature and somewhat damped locally by reduced sea surface carbon content, while
variations in alkalinity and freshwater are negligible. Furthermore, we show that increases
in temperature dominate the [H+] buildup in all regions, except in the tropical Pacific. By
analyzing the physical and biogeochemical drivers of temperature and carbon variations dur-
ing the buildup and decay of OAX events, enhanced net ocean heat uptake was identified
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Figure 5.5: The global mean contributions to [H+] anomaly change from T air-sea flux, T advection, T vertical
diffusion, and T nonlocal KPP convective mixing, as well as from CT air-sea flux, CT advection, CT vertical
diffusion, CT nonlocal KPP convective mixing, and CT biology in the buildup and decay phases of [H+] extremes.

as the main driver of the increase in temperature during OAX events, in particular in the
subtropical oceans. Reduction in temperature due to reduced nonlocal KPP convective mix-
ing of heat to the surface partly offset the temperature increase due to ocean heat uptake
(Fig. 5.3; Table 5.1). In the mid-to-high-latitude regions, reduced vertical diffusion of heat
to the subsurface or increased vertical diffusion of heat to the surface are the main cause
of the temperature increases during OAX events. In the tropical regions and in particular
in the tropical Pacific, advection of CT was identified as the main driver of [H+] extremes (Fig. 5.4).

Our main focus in this study was on attributing changes in [H+] anomaly to the driving
processes during the buildup and decay phases of OAX events. However, the processes responsible
for increasing [H+] anomaly before event onset were not investigated so far. We therefore
investigate the contributions from anomalies in T and sCT to the anomaly in [H+] during the
events, which also include the increases in [H+] anomaly before event onset. This is done by
approximating [H+] anomaly during the events by a first-order Taylor expansion in the drivers
about their seasonal cycles. In most of the ocean, the [H+] anomaly during the events results from
both positive anomalies in sCT (91 % of the ocean surface area) and in T (86 %; Fig. 5.6). Over
46 % of the ocean, the positive anomalies in sCT contribute more to the [H+] anomaly during the
extreme events than temperature anomalies, including large parts of the tropics and mid-to-high
latitude regions in the North Pacific, North Atlantic, Southern Ocean, and Arctic Ocean (Fig. 5.6c,
d). In these regions, [H+] anomalies during the events tend to be also larger. As a result, [H+]
anomaly during the events (0.26 nmol kg−1) is globally more strongly driven by positive anomalies
in sCT (60 %; Fig. 5.6b, d) than by positive temperature anomalies (37 %; Fig. 5.6a, c). The re-
maining 3 % arise due to the missing sAT and freshwater terms as well as the linear approximation.

These results show that sCT is a more important driver for the overall [H+] anomaly during
the events than it is for the evolution of [H+] between event onset and peak (Sect. 5.3). This
suggests that OAX events often arise mainly due to positive anomalies in sCT, while the increases
in [H+] after crossing the threshold are mainly driven by increases in temperature. In Sect. 5.3.3,
it has been shown that sCT anomaly during the events is reduced by negative anomalies in
air-sea gas exchange that result from positive anomalies in pCO2 during the events. Before event
onset, when [H+] and pCO2 are lower, sCT is likely less reduced by negative anomalies in air-sea
gas exchange. This may partly explain the more pronounced role of sCT in driving the overall
[H+] anomaly than in driving increases in [H+] after event onset.
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Figure 5.6: Decomposition of [H+] anomaly during OAX events into contributions from T and
sCT. a) Mean T anomaly during OAX events, b) mean sCT anomaly during OAX events, c) [H+] anomaly
resulting from the T anomaly during OAX events, and d) [H+] anomaly resulting from the sCT anomaly during
OAX events.

In regions where temperature is unusually high during OAX events, such as in the subtropical
oceans (Fig. 5.6a), the physical drivers of temperature evolution during these events may be
similar to the physical drivers of temperature evolution during marine heatwaves. In addition, if
temperature is the main driver of [H+] during the events, as it is the case in the subtropical
oceans (Fig. 5.2c, d), then the drivers of [H+] extreme event buildup and decay are likely similar
to those of marine heatwave buildup and decay. In fact, Vogt et al. (in preperation) showed that
surface heat fluxes are the main driver of temperature increases during the buildup of marine
heatwaves, counteracted by temperature decreases from nonlocal KPP convective mixing (Fig. 1
in Vogt et al. (in preperation)). Likewise they identify surface heat flux to be the main driver of
marine heatwave decay, again offset by convective mixing. This is similar to the results in this
study for the subtropical oceans. Here, surface heat flux was identified as the main driver of [H+]
increase during the buildup period of OAX events and also the main driver of [H+] decrease
during event decay (Fig. 5.3b, c; Table 5.1). Likewise, vertical mixing from the nonlocal KPP
parameterization was found to be the main inhibiting factor during the buildup period, and, to a
lesser extent, also an important inhibiting factor for event decay (Fig. 5.3k, l; Table 5.1).

In regions such as the subtropical oceans, where temperature is strongly elevated during the
OAX events (Fig. 5.6a), also temperature may frequently exceed extreme event thresholds
during [H+] extremes. As a result, compound extreme events in temperature and [H+] are more
likely to occur in these regions. This is consistent with the findings in Chapter 4, where it has
been shown in observation-based data that compound extreme events in these two variables
are most likely to occur in the subtropical oceans (Fig. 4.1 in Chapter 4). Recalling from the
present analysis and from Vogt et al. (in preperation) that the simulated drivers of extreme
event buildup and decay are similar for [H+] extremes and marine heatwaves in those regions,
one can expect that also the evolution of temperature and [H+] during the compound events is
governed by air-sea heat fluxes with compensating tendencies from convective vertical mixing.

The present study focused on the analysis of the mean driving processes over the buildup and
decay periods of OAX events. The mean process contributions to [H+] extreme event buildup
and decay therefore characterize an average [H+] extreme event in a region. However, individual
extreme events may be governed by different processes, and the processes may vary during the



5.4. DISCUSSION AND CONCLUSIONS 129

buildup and decay periods of individual events. Different processes may arise for example from
seasonal differences or different types of extremes, as has been shown for marine heatwaves by
Vogt et al. (in preperation). However, t-tests reveal that the mean contributions during event
buildup and decay, as shown in Figs. 5.2-5.6, generally differ significantly from zero, indicating
that the mean process contributions are statistically robust despite variations within individual
events and between events (not shown).

A number of caveats remain. First, the drivers of OAX events were analyzed using data
from an Earth system model only as many processes cannot be validated independently with
observational-based estimates, since the necessary observational data is generally not available.
The robustness of our results depends therefore on the skill of the Earth system model in
simulating the physical and biogeochemical processes leading to [H+] variations and extremes.
More insights into the robustness of our results could be obtained by comparing the identified
drivers to those from other Earth system models that could provide the necessary diagnostic
output. Second, the spatial resolution of the MOM4p1 model is relatively coarse and the model
cannot explicitly simulate small-scale circulation features, such as meso- and submesoscale
dynamics (Griffies et al., 2015). Our analysis may therefore underestimate the impact of these
small-scale circulation features on the buildup and decay of OAX events. The relatively coarse
resolution ocean model also limits our analysis to the open ocean, as a high resolution ocean
model including improved biogeochemistry is needed to accurately represent the bathymetry and
the exchange fluxes within the ocean-land continuum (Turi et al., 2018; Terhaar et al., 2019).
Third, in Chapter 4 it has been shown that the GFDL ESM2M model, similar to other CMIP5
and CMIP6 Earth system models, overestimates the contribution from variations in temperature
on [H+] dynamics, in particular in the high latitudes, while underestimating the effect from
variations in sCT on [H+]. As a result, the contributions from the temperature term to the
buildup and decay of OAX events may be also slightly overestimated in this study. Finally,
this study analyzes the drivers under a preindustrial stationary climate. However, the ongoing
warming and acidification of the upper ocean may modulate the main drivers of [H+] extremes,
as the background ocean carbon and temperature fields on which the drivers act on as well
as the drivers themselves may change with climate change. Our analysis should therefore be
extended to simulations that include the climate change signal.

In summary, the analysis reveals that temperature is an important driver of the buildup and
decay of OAX events, with large contributions from air-sea heat flux that are most pronounced
in the subtropical oceans. Reductions in surface ocean carbon due to loss of carbon to the
atmosphere substantially dampen the [H+] anomalies during the extreme events. An exception is
the tropical Pacific, where enhanced advection of carbon is the main driver of OAX events. The
identification of the main processes leading to OAX events may be a first step towards skillful
predictions of these extremes with potentially detrimental effects on marine ecosystems.
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5.5 Appendix of Chapter 5

Appendix A Decomposition of the sCT term into the CT term and the CT

freshwater term

The CT term minus the CT freshwater term is equivalent to the sCT term:
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Appendix B Detailed description of tendency terms for T and CT

In the following, key characteristics of the individual tendency terms of the ocean temperature
and CT budgets are described. Further information on the temperature tendency terms can be
found in Palter et al. (2014), Griffies (2009), and Vogt et al. (in preperation).

Surface heat flux (ξT,air). Surface heat flux contains contributions from net shortwave and net
longwave radiation fluxes as well as sensible and latent heat fluxes across the ocean-atmosphere
interface. A fraction of the shortwave radiation entering the surface ocean is transmitted to the
levels below the surface to mimic the penetration of shortwave radiation into the water column
(Manizza et al., 2005). The absorption of shortwave radiation from organic matter is taken into
account based on the chlorophyll concentrations that are simulated by the ocean biogeochemistry
component TOPAZv2 (Manizza et al., 2005).

Surface CO2 exchange (ξCT,air). The CT change from CO2 exchange with the atmosphere
follows the OCMIP-2 recommendations (Najjar & Orr, 1998). Gas exchange occurs when
surface ocean CO2 concentration deviates from the saturation concentration where ocean and

Appendix Figure 5.7: The relative difference between the sum of the T and sCT terms and the change in
[H+] anomaly during event buildup (a) and decay (b) of OAX events. Differences arise due to the neglected
contributions from the sAT and freshwater terms as well as due to the linear approximation for variations in [H+]
(Eq. 5.2).
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Appendix Figure 5.8: (a, b) The tendency contribution from the remaining (’other’) processes to the buildup
and decay means of the T term (Fig. 5.2 c, d), and (c, d) the difference between the sum of the contributions
(together with the tendency contributions in Fig. 5.3) and the T term.

Appendix Figure 5.9: (a, b) The tendency contribution from the remaining (’other’) processes to the buildup
and decay means of the CT term (Fig. 5.2 e, f), (c, d) the CT freshwater term that is proportional to salinity
change and subtracted to obtain the sCT term from the CT term (Eq. 5.2), and (e, f) the difference between the
sum of the contributions to the sCT term (together with the tendency contributions in Fig. 5.4) and the sCT term.
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Appendix Figure 5.10: (a, b, c) The climatological mean of the contribution from precipitation minus
evaporation to the CT term from advection and its contribution to event buildup and decay, and (d, e, f) the same
for the residual part of the CT term from advection that is not due to precipitation minus evaporation.

atmosphere are in equilibrium. The saturation concentration depends on the solubility of oceanic
CO2 (Weiss, 1974) and the fugacity of atmospheric CO2. Gas transfer velocity is calculated from
wind speed at 10 m and Schmidt number (Wanninkhof, 1992).

Advection (ξT,adv, ξCT,adv). Ocean advection of temperature and CT from the resolved
velocity field is implemented using the minimally diffusive MDPPM numerical scheme from
Marshall et al. (1997) that is based on the piecewise parabolic method by Colella & Woodward
(1984). Parametrizations for mesoscale advection (Griffies, 2009) and submesoscale advection are
also included (Fox-Kemper et al., 2008).

Vertical diffusion (ξT,vdiff, ξCT,vdiff). Vertical mixing in the ocean boundary layer is pa-
rameterized by the K profile parameterization (Large et al., 1994). It is increased when shear
forces overcome water column stratification, resulting in a deep boundary layer. Tidal mixing is
implemented following the schemes by Simmons et al. (2004) and Lee et al. (2006). In addition, a
constant background vertical diffusivity of 1 · 10−5 m2 s−1 below 35 ◦ latitude and 1.5 · 10−5 m2 s−1

above 35 ◦ latitude is assumed.

Nonlocal K-profile (KPP) parameterization for vertical mixing (ξT,kpp, ξCT,kpp).
The nonlocal part of the K-profile parameterization by Large et al. (1994) represents convective
vertical mixing in the ocean boundary layer, redistributing heat to the surface under negative
surface buoyancy forcing, and hence mainly during heat loss to the atmosphere (see also Palter
et al. (2014)).

Biological carbon uptake simulated by TOPAZv2 (ξCT,bio). Biological uptake of inor-
ganic carbon by phytoplankton and release of inorganic carbon by remineralization of organic
matter is simulated by TOPAZv2 (Dunne et al., 2013). In the surface layers, uptake dominates
over release. Phytoplankton production and hence phytoplankton carbon uptake in TOPAZv2 is
proportional to the phytoplankton biomass and to the growth rate (Frölicher et al., 2020) that is
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limited by temperature (Eppley, 1972), light, and the nutrient availability of nitrate, ammonium,
phosphate, silicate, and iron.

Other terms (ξT,oth, ξCT,oth). The other terms include tendencies for neutral diffusion,
river runoff and ice calving, parametrizations for exchange between closed-off marginal seas
and the open ocean, and a tendency that compensates for a numerical artifact in the model
formulation (Chapter 8.3 in Griffies, 2009). River runoff from the land model is assumed to
transport heat relative to 0 °C and CT in a fixed ratio to AT of 0.5. For temperature, the other
group also contains tendencies for frazil ice formation and the advective heat transport from
precipitation and evaporation.

Appendix C Changes in dissolved inorganic carbon concentration from
precipitation and evaporation

Within the ESM2M model, precipitation does not carry carbon. As a result, precipitation and
evaporation do not transport carbon between atmosphere and ocean. This is in contrast to
heat that is transported across the ocean-atmosphere boundary by precipitation and evapora-
tion. However, while precipitation and evaporation do not change the ocean’s carbon content,
they dilute or concentrate the surface water such that the concentration of tracers like CT

decreases or increases. In the ESM2M model, this is treated as an advective carbon flux
within the ocean model and hence part of the advection tendency. The contribution from
precipitation and evaporation to the CT advection tendency is here estimated from model output
for the mass flux from precipitation and evaporation that causes variations in ocean surface height.

The MOM4p1 ocean model uses a z∗ vertical coordinate (Griffies, 2009), where the vertical
boundaries of the grid cells throughout the water column shift with variations in ocean surface
height. In the open ocean, where the ocean component has up to 50 vertical levels, variations in
height of the surface grid cell are much smaller than the variations in ocean surface height due
to precipitation and evaporation. The mean change in surface grid cell height between two days
is on global average only 7 % of the change in ocean surface height from precipitation and
evaporation, with values smaller than 7 % in the open ocean. Due to the comparably small
variations, the surface grid cell height h1 is assumed to be constant in the following. When the
ocean surface height increases by ∆h due to net precipitation (∆h > 0), the bottom face of the
surface grid cell is shifted upwards approximately by ∆h. Carbon is removed from the surface
grid cell, because it is now contained in the grid cell below. The carbon concentration in the
surface grid cell is reduced by the ratio between the change in ocean surface height and grid cell
height, ∆CT = −∆h/h1·CT. When the ocean surface decreases by ∆h due to net evaporation
(∆h < 0), the bottom face of the surface grid cell is shifted downwards by ∆h, transporting
carbon from the grid cell below to the surface grid cell. Assuming CT to be similar between the
surface grid cell and that below, CT increases by −∆h/h1·CT. In summary, the change in CT

due to precipitation and evaporation is approximated by

∆CT,pme ' −
∆h

h1
CT, (5.8)

with ∆h > 0 if precipitation minus evaporation (pme) is positive and ∆h < 0 if precipitation
minus evaporation is negative. The mean contributions to [H+] extreme event buildup and decay
from pme-driven changes in CT anomaly are shown in Appendix Fig. 5.10b, c.
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Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C.,
Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra,
N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D.,
Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain,
A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton,
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Vogt, L., Burger, F. A., & Frölicher, T. L., in preperation. Marine heatwave drivers in an earth system model,
Geophysical Research Letters.



REFERENCES 137

Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean, Journal of Geophysical
Research: Oceans, 97(C5), 7373–7382.

Weiss, R., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Marine Chemistry , 2(3),
203 – 215.

Winton, M., 2000. A reformulated three-layer sea ice model, Journal of Atmospheric and Oceanic Technology ,
17(4), 525–531.

Xue, L., Cai, W.-J., Jiang, L.-Q., & Wei, Q., 2021. Why are surface ocean pH and CaCO3 saturation state often
out of phase in spatial patterns and seasonal cycles?, Global Biogeochemical Cycles, 35(7), e2021GB006949.





Chapter 6

Discussion and outlook

6.1 Summary and discussion of the main results

In the previous chapters, extreme events in hydrogen ion concentration ([H+]; Chapters 3 to
5) and in aragonite saturation state (ΩA; Chapter 3) have been analyzed for the fist time at
the global scale. These variables are known to be important stressors for marine organisms,
especially for shell-forming organisms such as plankton, mollusks, echinoderms and corals (Orr
et al., 2005; Doney et al., 2009; Kroeker et al., 2013). The analyses focused on preindustrial
characteristics of [H+] and ΩA extremes at surface and subsurface (Chapter 3), their physical
and biogeochemical drivers (Chapter 5), as well as changes in extreme event occurrence and
characteristics due to climate change (Chapter 3). The occurrence likelihood for compound
extreme events in temperature and [H+] was also analyzed and changes in such compound
extreme events under climate change were simulated and quantified (Chapter 4). The main
results of Chapters 3 to 5 are summarized and discussed in the following.

Simulated characteristics of extreme events in [H+] and ΩA

Based on simulations by the GFDL ESM2M model, the preindustrial characteristics of high [H+]
and low ΩA extremes were described in Chapter 3. Globally, simulated preindustrial extremes in
surface [H+] based on fixed local 99th percentiles lasted on average 11 d with an average maximal
intensity of 0.08 nmol kg−1 (Table 2 in Chapter 3). Many of these events lasted only a few days.
For example, 43 % of events lasted less than five days. Longer events tend to be also more intense.
Excluding events with duration of less than five days, the average mean intensity increases by
41 % and the average maximal intensity increases by 46 %. Regionally, high [H+] events were
found to be particularly long-lasting and intense in the tropical Pacific and in the Southern
Ocean and the North Pacific (Chapter 3 Fig. A3). Long-lasting events were also simulated in the
sea ice regions of the Arctic Ocean. Preindustrial extremes in aragonite saturation state lasted
on average 20 d, with an average maximal intensity of 0.003 units (Table A1 in Chapter 3). The
larger duration of aragonite saturation state extremes relative to [H+] extremes is connected to
the more pronounced dependence of ΩA on CT and AT compared to [H+] that is especially
sensitive to temperature variations. This is because simulated variability in CT and AT has
larger contributions from variations on long timescales compared to temperature. For example,
the global simulated preindustrial fraction of interannual-to-decadal variance to total variance is
36 % for CT and 56 % for AT, while it is only 12 % for temperature.

Simulated preindustrial extreme events have also been analyzed at subsurface. The 200 m
depth layer was chosen to exemplify extreme events in the seasonal thermocline. Events in [H+]
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and also in ΩA were found to be more intense and in particular also more long-lasting at 200 m
depth compared to the surface. At depth, events in both variables last almost 40 d on average.
Intensity only slightly increases for ΩA (globally +14 % at 200 m compared to the surface), while
it increases sharply for [H+] (+113 %). This is because larger decreases in variance between the
surface and 200 m depth are simulated for temperature (-86 %) than for CT (-68 %). Due to the
larger decrease in temperature variability, variations in [H+] from variations in CT are less
attenuated by opposing variations in temperature, resulting in larger variability for [H+] and larger
event intensity. Also variations in AT and salinity become less important at depth (90 % decrease
in variance in both cases). The more pronounced role of CT for [H+] at depth compared to at the
surface implies that the drivers of [H+] and ΩA extremes become more similar at depth compared
to the surface. As a result, spatial patterns of intensity and duration of [H+] and ΩA extremes
become more similar at depth. Pattern correlation for mean intensity of [H+] and ΩA extremes
increases from 0.27 at the surface to 0.66 at 200 m depth, and pattern correlation for duration of
[H+] and ΩA extremes increases from 0.60 to 0.89. The similarity of the drivers is also reflected in
the similar average event duration for both variables at depth. Regional differences in variability
and event intensity are much more pronounced at depth compared to at the surface. Sim-
ulated event intensity for [H+] and ΩA at 200 m depth is largest in tropical and subtropical regions.

Driving processes of extreme events in [H+]

In Chapter 5, the driving processes of surface [H+] extreme events (also called OAX events) were
analyzed. [H+] anomalies were decomposed into a temperature and a carbon term, which were
then further decomposed into several temperature and carbon tendency terms. In this chapter,
extremes were defined with respect to seasonally varying thresholds (Chapter 2.3.1) to separate
the processes driving the seasonal cycles in temperature, CT, and [H+] from those driving the
anomalies that result in the occurrence of unusually high [H+]. Under this definition, extremes
arise when [H+] anomalies, driven by anomalies in temperature and CT, cross a seasonally
varying threshold.

During [H+] extreme event buildup (i.e., the period between the onset and peak of an
extreme event), increases in [H+] anomaly result mainly from increases in temperature anomaly.
Regionally, temperature is the most important driver of event buildup in most open-ocean regions
aside from the tropical Pacific and the western boundary current regions of the North Pacific and
North Atlantic. In the low-to-mid latitudes and particularly in the subtropics, these temperature
increases are mainly due to positive anomalies in air-sea heat fluxes (Fig. 5.3b in Chapter 5). In
the subtropics, surface waters usually lose heat to the atmosphere. However, during the [H+]
extremes, surface heat fluxes are close to zero or slightly positive. The reduced heat loss to the
atmosphere may be connected to reduced turbulent heat loss from sensible and latent heat fluxes
or to changes in shortwave and longwave radiative fluxes (Bond et al., 2015). Co-occurring
decreases in wind stress during event buildup in these regions indicate that reductions in turbulent
heat loss play an important role in driving the positive anomalies in air-sea heat fluxes (Bond
et al., 2015). Yet, a co-occurring increase in shortwave radiation may be important, too. In the
high latitudes, increases in temperature anomaly during [H+] event buildup mainly result from
positive anomalies in vertical diffusion and mixing of temperature (Fig. 5.3h in Chapter 5).
In 43 % of the high latitude regions (> 45 ° latitude) of the North Atlantic, North Pacific,
and Southern Ocean, vertical diffusion and mixing transport heat to the surface during event
buildup1. There, enhanced wind stress is likely the cause of the increases in vertical mixing and

1Due to the seasonal variations in vertical temperature gradients and hence the sign of vertical diffusion of
temperature, one can expect seasonal differences in the role of vertical diffusion. Increases in surface temperature
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surface temperature. Reductions in convective vertical mixing limit the increase in temperature
during [H+] event buildup (Fig. 5.3k in Chapter 5), in particular in the subtropical regions
where large positive anomalies in surface heat flux are simulated. Convective vertical mixing
normally balances heat loss to the atmosphere by upwards heat transport. It is thus strongly
reduced when surface heat loss is close to zero, such as during [H+] event buildup in the subtropics.

Variations in CT were found to be less important for event buildup than temperature
variations in 84 % of the ocean. However, CT variations were identified as the main driver in
the tropical Pacific. There, large positive anomalies in the advective flux of CT are simulated
(Fig. 5.4e in Chapter 5). These are likely due to increased upwelling of carbon-rich subsurface
waters, such as during La Niña phases of the El Niño Southern Oscillation (ENSO). In the
subtropics, a decrease in vertical diffusion of CT often reduces surface CT, thereby opposing the
effect of the temperature increases from reduced vertical diffusion of heat. The decrease in
vertical diffusion and mixing may be again connected to the reductions in wind stress during the
event built-up in subtropical regions. In contrast, increases in upward transport of CT by vertical
diffusion and mixing in high-latitude regions increase CT and may be driven by enhanced wind
stress. These CT increases are compensated by large negative anomalies in air-sea gas exchange
that are caused by the positive anomalies in pCO2 during the [H+] extreme events. Negative
anomalies in air-sea gas exchange are simulated almost everywhere in the ocean, with the largest
negative anomalies in high-latitude regions. There, extremes in [H+] are especially intense and
the associated pCO2 anomalies particularly large. Furthermore, simulated mean wind stress is
larger in these high latitude regions compared to the low and mid latitudes. As a result, also gas
transfer velocity, which is proportional to squared wind speed in the model (Wanninkhof, 1992),
is larger in these regions. Biological activity generally decreases surface CT and [H+], because
biological production outweighs microbial decomposition at the surface. During the buildup of
[H+] events, biological activity decreases surface CT in the tropical regions. There, coinciding
increases in surface nitrate indicate a higher primary productivity from increased nutrient
availability. Convective mixing of CT, which normally reduces surface CT in the extratropics, is
less active during [H+] event buildup and thus increasing CT anomaly.

That CT is overall less important for event buildup than temperature is likely connected to the
net loss of carbon by air-sea flux, either by intensified outgassing where oceanic pCO2 is usually
higher than atmospheric pCO2 or by decreased uptake where oceanic pCO2 is usually lower. This
loss of carbon is particularly important in the high latitudes. In the Southern Ocean for example,
it causes a decrease in [H+] that is as large as the overall increase in [H+] during the event buildup.
Air-sea gas exchange is likely to be less important before the onset of [H+] extreme events, because
also pCO2 is lower before event onset. This implies that CT may be more important for increasing
[H+] to the extreme event threshold than it is for increasing [H+] from the threshold to the peak
of the event. In fact, the overall [H+] anomaly during the extremes that also includes [H+]
increases before event onset was found to be globally more driven by increased CT (60 % globally)
than by increased temperature (37 %; Fig. 5.6 in Chapter 5). A future study could extend
the framework from Chapter 5 to look at the driving processes of [H+] increases before event onset.

During [H+] extreme event decay (the period between event peak and the end of the event),
decreases in [H+] anomaly result to a similar extent from decreases in temperature anomaly and
in CT anomaly. Reductions in temperature anomaly tend to be more important in subtropical
regions, while decreases in CT anomaly tend to be more important in the mid-to-high latitudes
and the tropical regions. The decreases in temperature anomaly in the subtropics are mainly
caused by a revitalization of heat losses to the atmosphere. Furthermore, heat losses due to

from vertical diffusion are most likely to occur in winter when positive temperature gradients are prevalent.
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vertical diffusion increase again, which is likely connected to a return of wind stress to the
normal level. Decreases in CT again follow in all oceans from negative anomalies in air-sea gas
exchange due to still elevated pCO2, in particular in the mid-to-high latitudes.

Changes in extreme event characteristics under climate change

The simulated changes in extreme event characteristics for [H+] and ΩA between 1861 and
2100 under two different greenhouse gas emissions scenarios have been analyzed in Chapter 3.
Increases in mean concentrations and changes in variability have been identified as the main
causes for changes in extremes. To analyze the contributions from these two causes, extreme
events in the historical ensemble simulation and the RCP8.5/RCP2.6 ensemble simulations were
defined relative to two baselines: a fixed preindustrial baseline, and a shifting-mean baseline.
The fixed baseline is expected to be most useful for organisms with low capability to adapt
to ocean acidification and that can not migrate to regions with reduced stress from ocean
acidification. The shifting-mean baseline, on the other hand, is expected to be more useful for
mobile organisms and for those that can adapt to the ocean acidification trends.

Under the fixed preindustrial baseline (Chapter 2.3.1), changes in extreme event characteristics
arise mainly due to the secular ocean acidification trends, increasing [H+] and decreasing ΩA.
These trends are mainly due to an increase in upper ocean CT from the oceanic uptake of
anthropogenic carbon. The trends in [H+] and ΩA are large compared to natural variability in the
variables. This has been shown in earlier studies using the time of emergence framework (Keller
et al., 2014; Frölicher et al., 2016; Henson et al., 2016; Schlunegger et al., 2019; Bindoff et al.,
2019). Keller et al. (2014), for example, analyzed the time of emergence for surface pH, defining
it as the point in time when a trend exceeds two times the standard deviation of natural
variability. They found that the trend in pH emerges from the natural variability already after
12 years over most of the ocean in historical simulations. Likewise, Schlunegger et al. (2019)
found that 50 % of ocean grid cells emerged after 16 years for ΩA compared to 8 years for pH.
Hence, time of emergence for ΩA is slightly delayed compared to that for pH. Nonetheless, it is
shorter than that of other biogeochemical or physical ocean variables despite pCO2 (Schlunegger
et al., 2019). The short time of emergence for [H+] and ΩA manifests in rapid increases in
extreme event occurrence over the historical period when extremes are referenced to fixed
preindustrial 99th percentile thresholds. By year 2030 and under the RCP8.5 scenario, the
ESM2M model projects a global near-permanent extreme state for surface [H+] where globally
more than 360 d per year are under extreme conditions. Similarly but with a slight delay, such a
near-permanent extreme state is projected for surface ΩA by year 2062. Near-permanent ex-
treme states are also projected at 200 m depth in years 2049 and 2074 for [H+] and ΩA, respectively.

Pronounced, although smaller changes in extreme event occurrence were also found when
defining extremes relative to a shifting-mean baseline (Chapter 2.3.1). The shifting-mean baseline
adjusts the thresholds for the acidification trends, so that the latter do not alter extreme event
characteristics. Instead, changes in variability are the main cause for changes in extreme events.
Variability in [H+] and ΩA is expected to change with ocean acidification and warming, because
[H+] and ΩA depend non-linearly on the driving variables (e.g., approximated [H+] in Eq. (1.10)).
The sensitivities of [H+] and ΩA to variations in the drivers thus depend on the mean states of
the drivers (e.g., Eq. (6.1)). For [H+], large increases in variability and therefore in the numbers
of extreme event days are simulated by the ESM2M model under climate change at the global
scale. At the surface, the number of extreme event days per year increases from 3.65 d during the
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preindustrial period to about 50 d during the period 2081-2100 under the RCP8.5 scenario, due
to a quadrupling of [H+] variance between the two periods. Most of the variance increase is due
to increases in [H+] seasonality (87 % of the total variance change). The rise in variance is
mainly driven by increases in mean surface CT that make [H+] more sensitive to variations
in its drivers. The sensitivity is further increased by reductions in mean AT due to surface
freshening in the high latitudes (Chapter 3 Fig. 9) and slightly reduced by increases in AT in the
low-to-mid latitudes, in particular in the Atlantic Ocean (Chapter 3 Fig. A5). In particular
in the high latitudes, the increase in [H+] variance is dampened by simulated reductions in
variability of CT (Chapter 3 Fig. A6). Similar, although smaller changes in extremes relative
to a shifting-mean baseline were found at 200 m depth. The number of extreme event days
per year is projected to increase globally from 3.65 d to 32 d by the end of the 21st century
under RCP8.5. This increase is connected to a 36 % rise in [H+] variance that is mostly caused
by increases in interannual and seasonal variability (42 % and 37 % of total variance increase,
respectively). The increase in event duration of 61 d is larger than at the surface (+21 d),
likely reflecting the more pronounced role of increases in interannual variability at depth. The
increases in [H+] variability at depth result from the balance between the amplifying effect
from increases in mean CT and the attenuating effect from co-occuring decreases in CT variability.

Unlike for [H+], a decrease in extreme event occurrence is simulated for ΩA when extremes
are defined relative to a shifting-mean baseline. This decrease in extremes results from a decrease
in ΩA variability. Variability in ΩA decreases for two reasons. First, the sensitivity of ΩA to
variations in temperature, CT, AT, and salinity decreases as ΩA itself decreases with the rise in
anthropogenic carbon in the ocean (Chapter 3 Fig. 11). Second, also the simulated decreases in
CT variability in the mid to high latitudes at the surface and in particular at 200 m depth strongly
reduce ΩA variability. These reductions in CT variability are the major driver of reductions in
ΩA variability at depth (Chapter 3 Fig. 11b). The simulated decreases in variability of CT

are linked to changes in the underlying physical and biogeochemical processes that cause CT

variability (Chapter 5). For example, it has been shown in Chapter 5 that advective CT fluxes,
such as due to upwelling, are the dominating driver of CT increases during [H+] extremes in the
equatorial Pacific. More general, variance in the CT advection tendency in the ESM2M model is
larger than the variances in the other CT tendency terms in this region at preindustrial times. It
is thus expected that the simulated decreases in CT variability in the equatorial Pacific are
connected to decreases in advective CT variability, possibly connected to a decrease in upwelling.

Present day patterns and trends in the occurrence of compound T-[H+]
extremes

In Chapter 4, compound extreme events in sea surface temperature (SST) and sea surface [H+]
were analyzed (referred to as marine heatwave ocean acidity extreme events, in short MHW-OAX
events). Defining high temperature and [H+] extremes relative to seasonally-varying thresholds
(Chapter 2.3.1), MHW-OAX events were identified to occur more frequently than expected from
chance in the subtropical oceans. In contrast, MHW-OAX events were found to occur less often
than expected from chance in the tropical Pacific and in the mid-to-high latitudes. Although
the extremes occur independently from the seasonal cycles in SST and [H+], this pattern is
remarkably similar to the correlation of seasonal variability in SST and [H+]. In the subtropics,
where MHW-OAX events occur frequently, also the seasonal cycles of SST and [H+] are strongly
correlated2. In contrast, the seasonal cycles are negatively correlated in the tropical Pacific and

2As a result, compound MHW-OAX events would also occur most frequently in the subtropics regions when the
extremes were defined with respect to fixed percentile thresholds.
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the mid-to-high latitudes, where also MHW-OAX events occur seldomly. This indicates that the
drivers of seasonal variability in SST and [H+] may also be similar to the drivers of variability in
the seasonal anomalies of SST and [H+]. In the subtropics, where the seasonal cycle of [H+]
mostly follows that of temperature, [H+] anomalies co-vary with temperature anomalies as well.
As a result, large positive departures in temperature and [H+] often fall together and MHW-OAX
events occur frequently. In the equatorial Pacific and the mid-to-high latitudes in contrast, where
the seasonal cycle of [H+] tends to follow that of CT, also [H+] anomalies tend to co-vary with
CT anomalies. Since CT anomalies most often oppose SST anomalies, positive departures in
[H+] and SST only seldomly fall together, resulting in a low likelihood for MHW-OAX events.

Changes in MHW-OAX event occurrence were projected with large-ensemble historical and
RCP simulations conducted with the ESM2M model (Table A.2). These changes were analyzed
with respect to fixed preindustrial baselines, shifting-mean baselines (Chapter 2.3.1), and fully
adapting baselines. The large ensemble simulations with 30 ensemble members allowed to identify
the forced changes in temperature and [H+] to define the shifting-mean baselines. The ensemble
distribution for each day allowed to define percentile thresholds for each day under the fully adapt-
ing baseline. When defining extremes in SST and [H+] relative to fixed preindustrial baselines,
MHW-OAX event occurrence is projected to strongly increase. This is because marine heatwaves
are projected to become more frequent in the future (Frölicher et al., 2018) and because of the
strong increase in [H+] extremes with ocean acidification (Chapter 3). With more frequent MHWs
and OAX events, also the frequency of events where the two fall together increases. The change
in bivariate compound events is generally sensitive to the dependence between the univariate vari-
ables. However, already at about 0.3 ◦C global warming, [H+] extremes globally occur more than
360 d per year due to the large signal-to-noise ratio for [H+]3. After that, almost every MHW is
also an [H+] extreme event and hence a MHW-OAX event. Changes in MHW-OAX occurrence are
thus independent of the dependence between SST and [H+] anomalies after 0.3 °C global warming.

Relative to a shifting-mean baseline, MHW-OAX occurrence is also projected to increase.
The projected changes are relatively small compared to those with respect to fixed preindustrial
baselines. The increases occur mainly due to the increases in [H+] variability that result in more
frequent [H+] extreme events (Chapter 3). Also changes in temperature variability change the
frequency of MHWs. For example, an increase in MHWs is simulated in the North Atlantic, the
Southern Ocean, and the Arctic Ocean. These are also regions where the seasonality of SST is
projected to increase (Alexander et al., 2018). However, the increase in [H+] extremes is much
larger than that in MHWs (globally 58 days per year and 7 days per year at 2 °C global warming,
respectively). The increase in MHW-OAX events that results from the increase in [H+] extremes
varies with the dependence between temperature and [H+] anomalies. For example, if temperature
and [H+] anomalies were independent (likelihood multiplication factor (LMF) of one, defined
in Chapter 4), a doubling in [H+] extremes would result in a doubling of MHW-OAX events,
from 3.65 MHW-OAX days per year to 7.3 MHW-OAX days per year. The relative increase is
smaller when SST and [H+] anomalies are positively correlated. For example, when assuming
SST and [H+] anomalies to be described by a bi-variate normal distribution with correlation
coefficient of 0.5 (resulting in an LMF of 3.2; Eqs. (4.2) and (4.3)), MHW-OAX event frequency
increases by 59 % due to a doubling in [H+] extremes, from 11.8 to 18.8 MHW-OAX days per year.

Furthermore, changes in MHW-OAX events relative to a shifting-mean baseline are also
influenced by changes in the statistical dependence between SST and [H+]. When, for example,

3The earlier onset of near-permanent [H+] extremes is earlier than reported in Chapter 3, because the signal-to-noise
ratio is larger when using seasonally-varying thresholds. Seasonal variability is here included in the threshold
definition and does not contribute to extreme event occurrence.
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the correlation coefficient of SST and [H+] anomalies (again assuming a bivariate normal
distribution) decreases from 0.5 to 0.25 while [H+] extremes double (and MHWs stay constant),
MHW-OAX frequency increases only slightly, from 11.8 to 12.4 MHW-OAX days per year.
On the other hand, an increase in correlation coefficient by 0.25 units co-occurring with a
doubling in [H+] extremes would result in an increase in MHW-OAX frequency from 11.8 to 27.0
MHW-OAX days per year. The influence of dependence changes on MHW-OAX occurrence was
isolated by analyzing changes in compound events relative to fully adapting baselines. Under this
definition, the frequency of univariate extremes in temperature and [H+] does not change. The
analysis showed decreases in MHW-OAX occurrence due to the dependence changes in most
regions (Fig. 4.4f). These reductions in dependence between SST and [H+] anomalies, here
quantified by the Pearson correlation coefficient, may be due to the simulated over-proportionally
larger increase in the sensitivity of [H+] to variations in CT compared to the sensitivity to
variations in temperature (Ext. Data Fig. 4.9; see also Fassbender et al. (2018)). The larger
increase in CT sensitivity arises due to the increases in background CT from ocean acidification.
The effect can be understood based on the simple analytical approximation of [H+] given in
Eq. (1.10). Calculating the partial derivative of the so approximated [H+] with respect to CT

and T, one obtains

∂[H+]

∂CT
=
K2(S,T)

AT
· 1

(1− CT/AT)2 ;
∂[H+]

∂T
=
∂K2(S,T)

∂T
· 2 · CT/AT − 1

1− CT/AT
. (6.1)

Ocean acidification, which increases CT and the ratio of CT to AT, has a larger impact on
∂[H+]/CT, which is proportional to (1-CT/AT)−2, than on ∂[H+]/T. Between the preindustrial
period and today, surface CT has globally increased by about 70µmol kg−1, corresponding to an
increase in CT to AT ratio from about 0.86 to 0.89 globally (Gattuso & Hansson, 2011). Based
on the approximation from Eq. (6.1), the partial derivatives of [H+] with respect to CT and T
increase by 62 % and 38 %, respectively4. The stronger increase in sensitivity of [H+] to CT may
strengthen the negative CT contribution to the correlation coefficient of SST and [H+] (Fig. 4.2c
in Chapter 4) and thereby reduce SST-[H+] correlation. Recalling the aforementioned sensitivity
of the results under the shifting-mean baseline to changes in dependence, it is apparent that
increases in MHW-OAX events relative to shifting-mean baselines would be overall considerably
larger without the co-occurring decreases in correlation. However, there are also regions where
the correlation of SST and [H+] anomalies and MHW-OAX occurrence is projected to increase,
such as the equatorial Pacific (Ext. Data Fig. 4.11a and Fig. 4.4f in Chapter 4). There, the
increase in correlation may be connected to simulated decreases in variability of CT (Fig. A6a in
Chapter 3) that attenuate the negative CT contribution to SST-[H+] correlation.

The pattern of compound event occurrence in SST and pCO2 is very similar to that for SST
and pCO2 (Fig. 4.1 and Ext. Data Fig 4.14). The reason is that [H+] and pCO2 are highly
positively correlated. This can be understood from the equilibrium relations of carbonate
chemistry. Combining Eqs. (1.4) and (1.6), one obtains

pCO2 =
[HCO−3 ]

K0K1
· [H+]. (6.2)

Partial pressure of CO2 is almost proportional to [H+] at the surface, because the prefactor
of [H+] in Eq. (6.2) often varies only little (see also Omta et al., 2010; Orr, 2011). This is
because relative changes in [HCO−3 ] are often small in the pH regime of the ocean (Fig. 1.3)5,

4Using mocsy 2.0 to calculate the partial derivatives and taking also into account the ocean warming (Gattuso &
Hansson, 2011), one obtains smaller but qualitatively similar relative changes of 54 % and 33 %, respectively.

5In Fig. 1.3, changes in [HCO−3 ] due to variations in CT and AT are shown. Also relative changes in [HCO−3 ] due
to temperature and salinity variations are small. For example, an increase in temperature from 0 °C to 35 °C
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and because the solubility of CO2, K0, decreases with temperature and salinity, while the first
dissociation constant, K1, increases with temperature and salinity (Fig. 1.2). The product K0K1

is thus less sensitive to variations in temperature and salinity than K0 and K1 themselves.

6.2 Caveats and limitations

A number of caveats and limitations need to be discussed. These are connected to biases in the
ESM2M model simulations, the relatively coarse spatial resolution of the ESM2M model, the
omission of temporal variability on diurnal timescales, and the choice of carbonate system
variables to assess impacts on marine ecosystems.

The robustness of the results in this thesis depends on the skill of the model in representing
variations in [H+] and ΩA. Little directly measured data exist to constrain the model results
for [H+] and ΩA in this thesis. This is in contrast to sea surface temperature, where satellite
measurements of the ocean skin temperature are available on high temporal resolution and
with near-global coverage (Reynolds et al., 2007). Available surface ocean CO2 measurements
from ships, drifters, and moorings are, for example, collected in the Surface Ocean CO2 Atlas

(SOCAT) (Bakker et al., 2016). However, compared to SST, data coverage is comparably sparse.
As a result, more data interpolation is required when mapping the data to global gridded and
time-varying fields (Landschützer et al., 2016; Landschützer et al., 2020; Gregor & Gruber, 2021),
resulting in comparably high uncertainties, in particular in the Southern Ocean (Gray et al.,
2018), and allowing only for monthly-mean temporal resolution.
These data products and additional gridded climatologies, such as from the Global Ocean
Data Analysis Project, Version 2 (GLODAPv2) (Lauvset et al., 2016; Key et al., 2015) or
by Takahashi et al. (2014), were used to constrain simulated characteristics of [H+] and ΩA.
Simulated mean pH and [CO2−

3 ] (similar to ΩA) were compared to such observational data (Bopp
et al., 2013), finding that pattern correlation between simulated pH (ESM2M model) and
observation-based pH is below 0.4, while pattern correlation for [CO2−

3 ] is above 0.95. However,
the spatial correlation between simulated pH for the ESM2M model and the observational data
used in this thesis is larger than that found by Bopp et al. (2013). Simulated mean pH and [H+]
from a historical and RCP8.5 simulation over the period 1982-2019 (Appendix Table A.2) showed
a pattern correlation of 0.76 when compared to the observation-based data set that builds on
MPI-SOMFNN (Chapter 4; Landschützer et al., 2020). Furthermore, the phasing and amplitude
of the seasonal cycles in [H+] and ΩA were compared to observation-based data (Kwiatkowski
& Orr, 2018). Seasonal amplitudes of [H+] and ΩA agree with observational climatologies
within 20 % at the global scale, but larger biases are simulated regionally. Correlation with the
observational climatologies reveals again larger deviations in the phasing of the seasonal cycles
for [H+] (globally r =0.6) compared to ΩA (r =0.8), with strong deviations for [H+] in the
Southern Ocean. In Chapter 3, long-term changes in seasonal amplitude were assessed. While
showing a good agreement in the low-to-mid latitudes, the ESM2M model was found to show a
negative bias in the trends for [H+] and ΩA in the high latitudes.

Simulated variability on timescales of days to weeks can at most places not be constrained
with observational data, because no global observation-based datasets for [H+] or ΩA exist
with higher than monthly temporal resolution. Likewise, the roles of the individual physical
and biogeochemical processes in driving [H+] extremes (Chapter 5) can not be validated with
observation-based data, because observational data is not available for ocean interior processes
such as mixing and advection. In Chapter 4, it has also been shown that the spatial patterns in

under average present-day conditions for the other drivers results in a 1 % decrease in [HCO−3 ].
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correlation of [H+] and temperature are similar to observations in the low-to-mid latitudes, but
with a simulated positive bias in correlation.
In summary, the comparison to observational data, where available, shows that some biases in
ΩA and in particular [H+] are simulated, in particular in high-latitude regions. Nonetheless, the
ESM2M model overall captures large-scale patterns in the mean states, simulates seasonal
cycles in [H+] and ΩA that are roughly similar to observed seasonal variations, and captures
trends in seasonal variability in most regions. It is thus suitable for the global analyses in this thesis.

Biases in [H+] and ΩA are connected to the limitations of the TOPAZv2 model in representing
ocean ecology (Dunne et al., 2013), because biological production and remineralization drive varia-
tions in dissolved inorganic carbon and alkalinity (Sarmiento & Gruber, 2006) and hence [H+] and
ΩA. ESM2M coupled to TOPAZv2 globally simulates a positive bias in net primary productivity
(NPP) (Sect. 2.1.4). In contrast, the regional differences in NPP are relatively well simulated by
ESM2M compared to other CMIP5-era Earth system models (Laufkötter et al., 2015). The global
positive bias in NPP may be connected to positively biased surface ocean nitrate and silicate
concentrations (globally 21 % and 44 % overestimation of observational estimates, respectively;
Laufkötter et al., 2015) that may allow for a too high phytoplankton production. Inaccuracies in
simulated production and remineralization may also arise due to the relatively simple oceanic
food web representation. TOPAZv2 does not explicitly simulate zooplankton or bacteria, but
instead handles zooplankton grazing and bacterial remineralization implicitly. Finally, also the rep-
resentation of riverine fluxes of biogeochemical tracers is idealized. For example, the ratio between
dissolved inorganic carbon and alkalinity in river runoff is assumed to be constant across the globe.

Another potential caveat is the relatively coarse horizontal and vertical resultion of the
ocean model incorporated in GFDL ESM2M. The ocean model of ESM2M has a horizontal grid
resolution of about 1 °. As a result, it does not resolve circulation structures on smaller scales.
To represent tracer advection from mesoscale eddies (on horizontal scales of 10 to 100 km),
the ocean model MOM4p1 relies on the Gent-McWilliams parameterization (Griffies, 1998).
Furthermore, ESM2M uses the parameterization by Fox-Kemper et al. (2008) to represent the
tracer advection from eddies on the sub-mesoscale. While global simulations with models that
resolve sub-mesoscale features are not feasible, mesoscale circulation is explicitly represented by
global models such as the GFDL CM2.6 model with a 0.1 ° horizontal (about 10 km) resolution
for the ocean component. Griffies et al. (2015) found that the mesoscale-eddy-resolving CM2.6
model better matches the satellite-observed sea-level variability that is connected to mesoscale
eddy variability and shows lower biases in sea surface and ocean interior temperature compared
to model version with lower horizontal ocean resolution. Explicit representation of mesoscale
eddies also impacts the transport of biogeochemical tracers (Dufour et al., 2015; Yamamoto
et al., 2018) and thus carbonate system variables such as [H+]. Higher model resolution also
allows to study variations in biogeochemical variables in coastal oceans (Turi et al., 2018), where
an accurate representation of the bathymetry is required. Unfortunately, high-resolution models
like CM2.6 are computationally very expensive and do not allow for long spin-up or ensemble
simulations. In addition to model resolution, biogeochemical processes in coastal oceans are also
highly dependent on riverine fluxes of CT, AT, and nutrients (Terhaar et al., 2019) that are not
sufficiently well represented by the ESM2M model. As a result, the analyses in this thesis are
constrained to the open oceans.

Based on the two-hour time step for the ocean component, the ESM2M model includes the
diurnal cycle in solar insulation and simulates, to some extent, diurnal variations in physical and
biogeochemical ocean variables such as temperature and net primary productivity. However, it
misses important processes such as the diel vertical migration of zooplankton (Longhurst & Glen



148 6. DISCUSSION AND OUTLOOK

Harrison, 1988). Furthermore, also the relatively low spatial resolution of the model may limit
its capability in representing variations on diurnal timescales. Due to these caveats, diurnal
variations in [H+] and ΩA were not analyzed in this thesis. Diurnal variability is an important
contributor to total variability in carbonate system variables like [H+], in particular in coastal
oceans (Hofmann et al., 2011; Torres et al., 2021). However, diurnal variability is generally lower
in the open ocean (Torres et al., 2021). Across the seven open ocean autonomous stations with
3-hourly measurement frequency analyzed in Chapter 4 (Ext. Data Table 4.2), the contribution
from diurnal [H+] variance to total [H+] variance is between 2 % and 12 %.

In Chapters 3 to 5, simulated extreme events in [H+] and ΩA were analyzed. However, the
stress on organisms from ocean acidification, that has been reported extensively, implies shifts in
all carbonate system variables (Hurd et al., 2020). Partial pressure of CO2 (pCO2), [H+] (or pH),
and calcium carbonate saturation state, very often for aragonite minerals, ΩA, are best under-
stood to impact marine organisms. Too high pCO2 is associated with detrimental physiological,
neurological, and behavioral effects for organisms, referred to as hypercapnia (McNeil & Sasse,
2016). Similarly, too high [H+] is connected to physiological impacts such as metabolic depression
and a reduction in protein synthesis (Pörtner, 2008), and energetic costs (Pörtner et al., 2011;
Bednaršek et al., 2018), as well as neurotransmitter functionality (Chivers et al., 2014). Reductions
in ΩA are mainly associated with stress for calcifying organisms due to decreased calcification or
shell dissolution (Bednaršek et al., 2012). However, other carbonate system parameters, such as
the ratio between [HCO−3 ] and [H+], may also determine calcification (Fassbender et al., 2016).
Often, co-variations among these variables lead to elevated pCO2 and [H+] but reduced ΩA at the
same time. This is the case when these changes are caused by either an increase in CT or salinity,
or by a decrease in AT. In contrast, an increase in temperature will increase pCO2 and [H+], but
it will also increase ΩA. As a result, it is important to know which of the variables is most
relevant to ecosystems, in particular in situations where temperature significantly contributes to
changes in these variables. As discussed in Sect. 6.1, variations in pCO2 and [H+] are strongly
linked. Hence, when pCO2 is strongly elevated, the same is likely true for [H+]. However, it has
been shown in Chapter 4 and 5 that extremes in [H+] are often significantly driven by elevated
temperatures and that they often co-occur with high-temperature extremes, in particular in the
subtropical oceans. Due to this pronounced role of temperature for [H+] extremes, these events
are not necessarily connected to extremely low ΩA. Within the observation-based dataset that
was analyzed in Chapter 4, only 27 % of months during which [H+] is extremely high (based on
seasonally-varying thresholds) also show extremely low ΩA on global average. Notably, the
effects from increases in CT due to ocean acidification on extremes in pCO2, [H+], and ΩA are
similar when the extremes are defined with respect to fixed baselines (Chapter 3).
The impacts of the extreme events discussed in this thesis depend, among other factors, on the
amplitudes of the perturbations in [H+] or ΩA. Variations in [H+] and ΩA in the open ocean are
often relatively small (Torres et al., 2021). For example, the average difference between the peak
of simulated [H+] extremes based on fixed 99th percentiles and the annual mean is globally
0.8 nmol kg−1 under preindustrial conditions (Chapter 3). In contrast, laboratory experiments
often use comparably large perturbations to assess impacts on organisms. For example, Kroeker
et al. (2013) included studies with pH perturbations up to 0.5 (' 18 nmol kg−1)6 for their
meta-analysis. As a result, the impacts identified in laboratory experiments may not always be
applicable to extreme events in the open-ocean. Finally, impacts also depend on the duration of
the exposure. As a result, impacts that were identified in long-exposure laboratory experiments
may not be similar during relatively short extreme events. Impacts could potentially be larger
due to higher rates of changes during extremes compared to the long-term changes and due to

6An initial pH of 8.07 was assumed to calculate a corresponding perturbation in [H+]. The change in [H+] for a
given pH change depends on initial pH (Fassbender et al., 2021).
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acclimation or adaption during long exposures (Form & Riebesell, 2012).

6.3 Outlook

There are many possibilities to extent or improve the work that was presented in this thesis.
Possible future analyses could extend the analysis on the drivers of [H+] extremes, could move
from bivariate to trivariate extremes including additional marine ecosystem stressors such
as oxygen or net primary productivity, could use climate models of different complexity and
resolution, or could build bridges to ecosystem impact models.

The analyses on the driving processes of [H+] extremes in the ESM2M model (Chapter 5)
can be extended in various ways. First, one could investigate the driving mechanisms of the [H+]
increases before extreme event onset to understand which processes cause the generally high
anomalies in [H+] during the extremes. Second the analysis could be extended to [H+] extremes
at subsurface, where variations in CT generally become more important (Sect. 6.1) and where the
driving mechanisms of extremes likely differ much due to the absence of air-sea heat and carbon
fluxes and because of changes in the contributions from vertical mixing and advection (Vogt
et al., in preperation). Furthermore, also the role of biological activity at subsurface could be
investigated in more detail, because at subsurface increases in carbon due to remineralization of
organic matter become more important. Third, the analysis could be repeated for ΩA to resolve
the differences in the driving mechanisms of [H+] and ΩA extreme events. For ΩA, variations
in CT are likely the main driver of extremes, because ΩA is considerably less influenced by
temperature variations than [H+]. Finally, changes in the driving processes of [H+] extremes as a
result of ocean acidification and warming could be analyzed. Such changes could, for example,
arise because of changes in vertical mixing, which may be driven by changes in stratification
and winds, and because of changes in air-sea fluxes of heat and carbon. Furthermore, the
contributions from temperature and CT variations to [H+] extremes could change due to the
disparate changes in [H+] sensitivity to temperature and CT variations (discussed in Sect. 6.1).
To project changes in the drivers of [H+] extremes, it is necessary to assess the robustness of the
simulated changes in the processes that drive variations in temperature and CT. Such changes in
the processes also manifest in temperature and CT variability. ESM2M simulates decreases
in CT variability, in particular in the equatorial Pacific and high-latitude regions (Fig. A6 in
Chapter 3). Hence, a potential first step would be to analyze how robust projected CT variability
changes are in the CMIP6 model ensemble.

The analyses on bivariate extremes in temperature and [H+] in Chapter 4 could be extended by
including coinciding stress from other marine ecosystem stressors such as net primary productivity
(NPP) at the ocean surface or oxygen content at subsurface. Compound stress from warming and
acidification is expected to increase energetic demand of organisms (Bednaršek et al., 2018). As a
result, impacts of these compound events could be worsened under co-occurring low extremes in
net primary productivity (Bednaršek et al., 2018). Simply by chance, such trivariate extremes
are relatively unlikely to occur. For example, when defining extremes based on 90th percentile
thresholds, one in one thousand days (around one day in 3 years) would be expected to be under
trivariate extreme conditions. However, the frequency of such trivariate compound events could
be much higher in regions where high temperature, low [H+], and low NPP tend to occur together.
This could be particularly the case in the subtropical regions, where high-temperature-low-[H+]
extremes are frequent (Fig. 4.1) and where also compound high-temperature-low-chlorophyll
extremes often occur (Le Grix et al., 2021). Also trivariate extreme events in temperature, [H+],
and oxygen at subsurface likely impact organisms. Increased temperature elevates organismal
oxygen demand. As a result, thermal tolerance windows are narrowed under low-oxygen
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conditions (Pörtner, 2010). Co-occurring low-pH conditions may further narrow thermal tolerance
windows, for example due to impairment of oxygen uptake in blood with lowered pH (Pörtner et al.,
2011; Gobler & Baumann, 2016), and organismal acid-base regulation may also be hampered
under high-temperature-low-oxygen conditions (Pörtner, 2010; Gobler & Baumann, 2016).
Furthermore, high [H+] and low oxygen conditions at the subsurface are likely to occur at the
same time, because the respiration of organic matter decreases oxygen and increases CO2 and [H+].

The analyses in this thesis did not include coastal regions and did not take into account
variability in acidity on the mesoscale and submesoscale due to oceanic eddies. Both is not
feasible with the ESM2M model due to the relatively coarse model resolution and missing
processes. This could be achieved by using a global high-resolution model that resolves ocean
eddies and has higher skill in coastal regions. One option would be the aforementioned GFDL
CM2.6, when coupled to a complete biogeochemistry component such as COBALT that was used
in Turi et al. (2018). However, the computational burden increases drastically when running a
simulation with such a high-resolution model, since the ocean component has about one hundred
times more grid cells than that of ESM2M. To analyze acidity extremes and compound events in
coastal regions, also a regional ocean model such as the Regional Oceanic Model System (ROMS;
Shchepetkin & McWilliams, 2005) would be a good choice (Hauri et al., 2020). Biases in the
simulations could be reduced by switching from the GFDL ESM2M model to its successor, the
GFDL ESM4.1 model (Dunne et al., 2020). Among other aspects, improvements of ESM4.1
compared to its predecessor concern the Southern Ocean, with a reduction of biases in sea
surface temperature, mixed layer depth, and ventilation. Furthermore, the ocean biogeochemical
component of ESM4.1, COBALTv2, improved the representation of ocean food webs, carbon
sequestration, and nutrient exchanges with the atmosphere and land components relative to
ESM2M (Stock et al., 2020). ESM4.1 was also shown here to have lower biases in the correlation
coefficient of temperature and [H+] in the Southern Ocean and the subpolar North Pacific when
compared to the ESM2M model (Ext. Data Fig. 4.10), indicating a higher skill in simulating
compound temperature-[H+] extremes there. However, the positive bias in simulated correlation
coefficient is larger than that of the ESM2M model in tropical and subtropical regions.

In this thesis, acidity extreme events were based on local percentile thresholds. Under this
approach, there is no direct link between the hazard during an extreme event and the impacts
on vulnerable and exposed species. This gap could be bridged by analyzing the potential stress
on organisms during the extremes based on ecosystem impact models, such as for marine
invertebrates (Tai et al., 2021) or for pteropods (Bednaršek et al., 2021). In principle, another
approach to link hazards and impacts is to define a biology-informed environmental index
that connects environmental stressors to ecological impacts. An example is the aerobic growth
index (Clarke et al., 2021), which connects stress from ocean warming and deoxygenation to
species-dependent impacts on organisms. The 10th percentile of aerobic growth index values in the
global distribution for a species is proposed as an impact-driven extreme-event threshold (Clarke
et al., 2021). ΩA= 1 is a well established threshold for biogenic calcification and more specific
ΩA thresholds have been defined for pteropods (Bednaršek et al., 2019). However, a generally
applicable index for stress from ocean acidification is currently not available.
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Appendix

Modeling activities with the GFDL
ESM2M model at CSCS

During the PhD project, a number of simulations with the GFDL ESM2M Earth system model,
version Siena from August 2013, were performed at the Swiss National Supercomputing Centre
(CSCS). The model code was ported to CSCS by Richard Slater from Princeton University and
Thomas Frölicher. The model was compiled using the Intel Fortran compiler version 17.0.4. Intel
Fortran Compiler version 18, the currently installed compiler version at CSCS, was found not to
be compatible with GFDL ESM2M, because the necessary compiler flag override-limits is no
longer supported under that version. While it is possible to compile the model with Intel Fortran
Compiler version 18 when replacing the override-limits flag by the qoverride-limits flag,
the model crashes at runtime due to a segmentation fault.
The remainder of this chapter is going to introduce in detail how the GFDL ESM2M simulations
were run at CSCS. First, the setup scripts used to prepare the simulations are introduced
(Sect. A.1), which copy necessary model files (Sect. A.2), configuration files (Sect. A.3), restart
files from previous simulations, and the compiled model executable to the working directory.
Sect. A.4 details how the model was run. Finally, Sect. A.5 discusses the data transfer to Bern
and the compression of the data.

A.1 Model setup

Each model simulation was prepared by running a setup script written in bash that copied
the necessary data to run the model to the $SCRATCH directory. Within each script, a working
directory WRKDIR=$SCRATCH/$JOBN is created, with the according simulation name JOBN=...

specified before, and the necessary data is copied to that directory.

mkdir $WRKDIR/INPUT

cp $FORCINGDIR/* $WRKDIR/INPUT/

cp $FILEDIR/* $WRKDIR/INPUT/

cp $RESTARTDIR/* $WRKDIR/INPUT/

cp $CONFIGDIR/{data_table,field_table,input.nml} $WRKDIR/

cp $EXECDIR/executable.x $WRKDIR/

The model forcing files (FORCINGDIR) and other model files (FILEDIR) are listed in Sect A.2.
The model configuration files (CONFIGDIR) are listed in Sect A.3. The setup scripts used for the
simulations performed during this thesis (Table A.2) are available on gitlab
(https://gitlab.climate.unibe.ch/burger/ESM2M setup run scripts).

https://gitlab.climate.unibe.ch/burger/ESM2M_setup_run_scripts
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A.2 Model files

The model forcing files, which were provided by Jasmin John from NOAA/GFDL, include
aerosol forcing in the form of 3D decadal aerosol climatologies for the historical period and under
the RC2.6 and RCP8.5 scenarios (provided by J.-F. Lamarque, adapted by V. Naik)

aerosol.climatology_1855-2015.nc

aerosol.climatology_rcp26_2005-2105.nc

aerosol.climatology_rcp85_2005-2105.nc,

zonally and vertically resolved volcanic aerosol forcing on monthly resolution for the historical
period based on Stenchikov et al. (1998)

asmsw_data.nc

omgsw_data.nc

extlw_data.nc

extsw_data.nc,

3D ozone forcing on monthly resolution for the historical period and under the RCP2.6 and
RCP8.5 scenarios (based on Cionni et al. (2011))

CM3_CMIP5_ACC_SPARC_1850-2009_T3M_O3.nc

CM3_CMIP5_ACC_SPARC_2005-2101_RCP2.6_T3M_O3.nc

CM3_CMIP5_ACC_SPARC_2005-2101_RCP8.5_T3M_O3.nc,

gridded land use forcing files on annual resolution for the historical period and under the RCP2.6
(RCP3.0) and RCP8.5 scenarios (Hurtt et al., 2006)

landuse_1700-2005.nc

lu.1999-2100.image.v1.1_rc3_RCP3.nc

lu.1999-2100.message_RCP85.nc,

solar forcing (Lean, 2009)

CMIP5_1610-2300_monthly_data_b18

esf_sw_input_data_n38b18_2000_version_ckd2.1.lean.nov89.ref.with.ch4.and.n2o,

ocean CFC forcing for the historical period on the ocean model grid on annual resolution

cfc11_cfc12_cfc113_ccl4_atm_om3_bc-1-9999.nc,

and annual global atmospheric greenhouse gas concentrations for the historical period either
extended by RCP8.5 or by RCP2.6 (RCP3.0) from Meinshausen et al. (2011)

CO2_rcp3_gblannualdata_1800-2500

CO2_rcp85_gblannualdata_1800-2500

CH4_rcp3_gblannualdata_1800-2500

CH4_rcp85_gblannualdata_1800-2500

N2O_rcp3_gblannualdata_1800-2500

N2O_rcp85_gblannualdata_1800-2500
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f11_rcp3_gblannualdata_1800-2500

f11_rcp85_gblannualdata_1800-2500

f12_rcp3_gblannualdata_1800-2500

f12_rcp85_gblannualdata_1800-2500

f22_rcp3_gblannualdata_1800-2500

f22_rcp85_gblannualdata_1800-2500

f113_rcp3_gblannualdata_1800-2500

f113_rcp85_gblannualdata_1800-2500.

These forcing files are also available for the RCP4.5 and RCP6.0 scenarios. Gridded CO2 emission
files on monthly resolution for the historical period and the RCP8.5 scenario are available to
force the model with CO2 emissions instead of prescribed concentrations

gridcar_Andres_AR5_1751-2006_monthly.nc

FFwShipsCO2_RCP85_2006-2500_monthly_05_rev2.nc.

Furthermore, non-forcing model files required to run the model (e.g., grid specification data,
topography, bathymetry, geothermal heating, climatologies for oceanic nutrient input from
aerosol deposition and from runoff) were provided by Jasmin John and Richard Slater from
NOAA/GFDL.

A.3 Configuration files

The ESM2M model can be configured after compilation using a set of configuration files, namely
input.nml, data table, field table, and diag table. The configuration files used for the
simulation in Table A.2 were adapted from initial configuration files that were provided by
Richard Slater from NOAA/GFDL.
The input namelist (input.nml) configures the individual modules within MOM4p1, TOPAZv2,
the sea ice model, LM3, and AM2 - allowing to chose between parametrizations and to chose
parameter values. Furthermore, it configures the coupler that couples these model components
(coupler nml). There, also the current date at the beginning of the simulation needs to be set
(e.g., 2006,1,1 for a simulation under a RCP scenario), and the parallelization layout is set (see
Sect. A.4). The input namelist needs to be configured for the individual model simulations. For
example, between a historical and a preindustrial, one needs to switch between time-varying and
constant aerosol, ozone, and solar forcing and greenhouse gas concentrations. Furthermore,
one needs to switch between activated or deactivated volcanic aerosol forcing and land use
changes. As another example, CO2 emission forcing needs to be activated in the input.nml for
emission-driven simulations.
The data table (data table) mainly specifies the name of the CO2 forcing file (either prescribed
concentrations or emissions) or if instead a constant prescribed CO2 concentration should be used
for the simulation. This section was adapted when switching between preindustrial, historical,
and RCP simulations and between concentration-driven and emission-driven simulations. The
field table (field table) defines a number of model properties such as the used advection
schemes and parameter values for the parametrizations for volume and tracer exchange between
the open oceans and marginal seas. The field table was only adapted for the historical and
RCP2.6/RCP8.5 simulations that include CFCs to set an ocean advection scheme for the CFCs
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(the MDPPM scheme that is also used for the other tracers).
The diagnostic table (diag table) specifies which data should be saved as output. Within the
diagnostic table, output files and the temporal resolution on which fields in that output file are
saved are specified similar to

"atmos_scalar", 1, "months", 1, "days", "time",

with atmos scalar being the file name and 1, "months" specifying monthly output resolution.
Then, the output fields are assigned to these files. For example, assigning the CO2 mixing ratio
rrvco2 to the file atmos scalar reads

"radiation", "rrvco2", "rrvco2", "atmos_scalar", "all", .true., "none", 2.

The first column states the module name, the second column gives the variable identifier within
the model, the third row gives the name used in the output file, and the fourth column assigns
the variable to a output file. The sixth row refers to whether temporal mean values (.true.) or
point values should be saved (.false.). The seventh row allows to specify a vertical range over
which the data should be saved (not specified here), and the eighth column gives the number
precision (2 for float, 1 for double).
A particular focus of the PhD project was on simulations with high temporal resolution
output. Hence, a variety of output fields were saved on daily-mean resolution. For most of the
simulations, either of two diagnostic tables were used. One is that of the control simulation
(some of the simulations with this diagnostic table include tendency terms for potential tem-
perature, DIC, and O2 on monthly-mean resolution, but they are all identical in terms of the
output on daily-mean resolution), and the other one is that of the control ext simulation.
The output fields with daily-mean resolution for these two diagnostic tables are listed in Table A.1.

File name
Vertical
level(s)

control control_ext

ocean_daily_200

ocean_daily_600

ocean_daily_1000

0−200 m
600 m
1000 m

temp

salt

pot_rho_0

dht

ocean_daily_100

ocean_daily_200

ocean_daily_1000

0−100 m
200 m
1000 m

pot_rho_0

ocean_daily_2000 0−2000 m
temp

salt

dht

ocean_tendency_daily_100

ocean_tendency_daily_200

ocean_tendency_daily_1000

0−100 m
200 m
1000 m

temp_tendency

temp_advection

neutral_gm_temp

neutral_diffusion_temp

temp_submeso

temp_runoffmix

temp_calvingmix

temp_vdiffuse_impl

temp_nonlocal_KPP

temp_sigma_diff

sw_heat

mixdownslope_temp

temp_xland

temp_xlandinsert

temp_vdiffuse_sbc
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sfc_hflux_pme

frazil_2d

temp_eta_smooth

dic_tendency

dic_advection

neutral_gm_dic

neurtal_diffusion_dic

dic_submeso

dic_runoffmix

dic_calvingmix

dic_vdiffuse_impl

dic_nonlocal_KPP

dic_sigma_diff

mixdownslope_dic

dic_xland

dic_xlandinsert

dic_eta_smooth

dic_stf

dic_btf

jdic

jalk

ocean_topaz_daily 2D data

jprod_ntot_100 jprod_ntot_100

pco2surf pco2surf

dic_stf dic_stf

o2_stf o2_stf

sfc_chl sfc_chl

fndet_100 fndet_100

ocean_topaz_daily_200

ocean_topaz_daily_600

ocean_topaz_daily_1000

0−200 m
600 m
1000 m

no3

o2

dic

co3_ion

co3_sol_arag

co3_sol_calc

htotal

alk

ocean_topaz_daily_100

ocean_topaz_daily_200

ocean_topaz_daily_1000

0−100 m
200 m
1000 m

no3

dic

alk

ocean_topaz_daily_2000 0−2000 m

o2

co3_ion

co3_sol_arag

co3_sol_calc

htotal

ocean_topaz_rates

_daily_100
0−100 m

irr_inst

irr_mem

mu_Sm

mu_Lg

irrlim_Sm

irrlim_Lg

liebig_lim_Sm

liebig_lim_Lg

nh4lim_Sm

nh4lim_Lg

no3lim_Sm

no3lim_Lg

po4lim_Sm

po4lim_Lg

felim_Sm
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felim_Lg

nLg

nsm

ndi

jprod_nLg

jprod_nsm

jprod_ndi

jgraz_n_Sm

jgraz_n_Lg

jgraz_n_Di

chl_Sm

chl_Lg

chl_Di

def_fe_Sm

def_fe_Lg

q_p_2_n_Lg

q_p_2_n_Sm

atmos_daily 2D data

t_ref t_ref

t_surf t_surf

tau_x tau_x

tau_y tau_y

Table A.1: List of daily-mean output fields that are saved in the diagnostic tables of all simulations that share
their diagnostic table with the control simulation and in the simulations that share their diagnostic table with
the control_ext simulation (see Table A.2).

A.4 Running the model

Each model simulation was run by submitting a run script with sbatch to Slurm. The first part
of the run script defines the Slurm settings for the simulation. For the performed simulations,
the configuration was chosen as

#SBATCH --job-name=...

#SBATCH --mail-type=FAIL

#SBATCH --mail-user=...

#SBATCH --time=10:00:00

#SBATCH --ntasks-per-core=1

#SBATCH --ntasks=180

#SBATCH --cpus-per-task=1

#SBATCH --partition=normal

#SBATCH --constraint=mc

#SBATCH --account=...

ntasks-per-core is set to 1 to not use hyper-threading. ntasks is set to 180 to run the model
with 180 tasks (hence with 180 CPU cores, since cpus-per-task=1). Since each node of the
multicore cluster at CSCS (chosen with the option constraint=mc) has 36 cores, this means
that the job allocates 5 nodes. Within the input.nml configuration file under coupler_nml,
these 180 CPU cores are distributed over the ocean and atmosphere grids,

atmos_npes = 0,

ocean_npes = 150,

which sets the number of cores assigned to the ocean grid to 150 and the number of cores
assigned to the atmosphere grid to 30 (atmos_npes = 0 assigns the remaining CPU cores, here
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180− 150 = 30, to the atmosphere grid). These numbers need to be compatible with the grid
resolutions of the ocean and atmosphere grids since the assigned numbers of cores need to be
distributed over equally-sized fractions of the horizontal grids. The atmospheric grid is divided
zonally into 30 sections extending over 3 latitude slices each (layout = 1,30 in the input
namelist), and the ocean grid is separated into 150 boxes that each extend over 24 longitude
slices and 20 latitude slices (layout = 15,10). Other choices for the number of allocated CPU
cores (and hence also nodes) and layouts that assign these cores to the ocean and atmosphere
grids were tested, but the choice reported above was found to be optimal in terms of the runtime
per model year and the node hours needed to simulate a model year. With the chosen layout, it
takes roughly 1.5 hours and 7.5 node hours to simulate one model year. However, the runtime
fluctuates somewhat. Due to that, the allocated time was chosen much longer (time=10:00:00)
to avoid cancellation of jobs.
The model is then run by calling srun $WRKDIR/executable.x. It writes the restart files
needed to run the next model year into the subfolder RESTART. It is necessary to concatenate
the iceberg.res.nc* restart files using ncrcat and to create the ocmip_cfc.res.nc restart
file with numbers set to zero if it is not already existing (e.g., at the beginning of a historical
simulation). The restart files are then copied into INPUT for the next model year, and they are
also saved in a new folder restart.$YEAR, where YEAR is the simulated model year, to be able
to restart the simulation at this stage also at a later point in time.
The diagnostic output is saved in the working directory. The diagnostic output for the atmosphere
is saved as individual files for each latitude slice defined in the parallelization layout and needs
to be combined using mppnccombine. In some simulations, the output files were also compressed
using the nczip script at this stage (Sect. A.5). Finally, the diagnostic output is moved to a new
folder $YEAR and the run script calls itself to simulate the next model year if no errors have
occurred. The run scripts used for the simulations performed during this thesis (Table A.2) are
available on gitlab (https://gitlab.climate.unibe.ch/burger/ESM2M setup run scripts).

A.5 File transfer to Bern and file compression

After the simulations were finished, the diagnostic output had to be copied timely to Bern
since data is deleted on scratch at CSCS after 30 days. This was done using a wrapper around
gridftp (https://gitlab.climate.unibe.ch/burger/gridftp wrapper), that copies the data and
checks the copied files for corruption by comparing the checksums of the files before and after
copying.
To save space, the diagnostic output was then also compressed without loss in number precision to
save storage space. This was done using a wrapper around nczip (https://git.iac.ethz.ch/heimc/package/-
/blob/master/nczip) that itself compresses the data using NCO. The wrapper is available under
https://gitlab.climate.unibe.ch/burger/nczip wrapper.

Simulation name Description Used in

spin_up_final preindustrial conditions, 220 y duration, started
from 1000 y preindustrial simulation conducted
at GFDL

landuse_spin_up preindustrial conditions but with anthropogenic
landuse changes over 1700-1860, started from
spin_up_final

https://gitlab.climate.unibe.ch/burger/ESM2M_setup_run_scripts
https://gitlab.climate.unibe.ch/burger/gridftp_wrapper
https://git.iac.ethz.ch/heimc/package/-/blob/master/nczip
https://git.iac.ethz.ch/heimc/package/-/blob/master/nczip
https://gitlab.climate.unibe.ch/burger/nczip_wrapper
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control preindustrial conditions, 500 y duration, started
from spin_up_final

Chap. 3

control_ext preindustrial conditions, 500 y duration, extends
control with extended diag table

Chap. 4, Chap. 5,
Vogt et al., in prep.,
Legrix et al., in prep.

historical,
historical_ENS2-5,
historical_ENS16-20,
historical_ENS26-30

historical forcing, period 1861-2005, diag table
of control, started from landuse_spin_up

with perturbed initial conditions

Chap. 3, Chap. 4,
Gruber et al. (2021),
Cheung & Frölicher
(2020), Cheung et al.
(2021)

historical_ENS6-15,
historical_ENS21-25

historical forcing, period 1861-2005, diag
table of control_ext, started from
landuse_spin_up with perturbed initial
conditions

Chap. 4, Cheung
& Frölicher (2020),
Cheung et al. (2021)

RCP85,
RCP85_ENS2-5,
RCP85_ENS16-20,
RCP85_ENS26-30

RCP8.5 forcing, period 2006-2100, diag ta-
ble of control, extend ensemble members of
historical ensemble

Chap. 3, Chap. 4,
Gruber et al. (2021),
Cheung & Frölicher
(2020), Cheung et al.
(2021)

RCP85_ENS6-15,
RCP85_ENS21-25

RCP8.5 forcing, period 2006-2100, diag table
of control_ext, extend ensemble members of
historical ensemble

Chap. 4, Cheung
& Frölicher (2020),
Cheung et al. (2021)

RCP26,
RCP26_ENS2-5,
RCP26_ENS11-30

RCP2.6 forcing, period 2006-2100, diag ta-
ble of control, extend ensemble members of
historical ensemble

Chap. 3, Chap. 4

RCP26_ENS6-10 RCP2.6 forcing, period 2006-2100, diag table
of control_ext, extend ensemble members of
historical ensemble

Chap. 4

ZEC-MIP_Bell_750,
ZEC-MIP_Bell_1000,
ZEC-MIP_Bell_2000

750, 1000, and 2000 PgC CO2 cumulative emis-
sions over 100 y, then zero emissions, otherwise
preindustrial conditions, 500 y duration, started
from spin_up_final

Jones et al. (2019),
MacDougall et al.
(2020)

ZEC-MIP_Zero_750,
ZEC-MIP_Zero_1000,
ZEC-MIP_Zero_2000

branched off CDRMIP_1pctCO2_pv after 750,
1000, and 2000 PgC CO2 cumulative emissions
reached, then zero emissions, otherwise prein-
dustrial conditions, 500 y duration

Jones et al. (2019),
MacDougall et al.
(2020)

CDRMIP_1pctCO2_pv,
CDRMIP_1pctCO2-cdr_pv

1 % yearly increase in atm. CO2 over 140 y, 1 %
decrease over 140 y, then constant, otherwise
preindustrial conditions, 500 y duration, started
from spin_up_final

Keller et al., in prep.

CDRMIP_esm-piControl preindustrial conditions, but with freely evolv-
ing instead of prescribed CO2, 600 y duration,
started from control after 250 y

CDRMIP_esm-pi-CO2pulse,
CDRMIP_esm-pi-cdr-pulse

initial 100 PgC emission and removal pulse,
then zero emissions, otherwise preindus-
trial conditions, 500 y duration, started from
CDRMIP_esm-piControl after 100 y
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EmissionHist,
EmissionHist_ENS2-5

historical forcing with CO2 emissions instead
of prescribed CO2, period 1861-2005, diag table
of control, started from landuse_spin_up

with perturbed initial conditions

EmissionRCP85,
EmissionRCP85_ENS2-5

RCP8.5 forcing with CO2 emissions, period
2006-2100, diag table of control, extend en-
semble members of EmissionHist ensemble

NatHistPOT,
NatHistPOT_ENS2-5

natural historical forcing (volcanic, solar), zero
CO2 emissions, no land use, period 1861-
2005, diag table of control, started from
landuse_spin_up with perturbed initial con-
ditions

historical_rad,
historical_res,
historical_res_no_nonco2

historical forcing with CO2 radiatively cou-
pled only (rad), biogeochemically coupled CO2

only (res), with non-CO2 forcing at prein-
dustrial conditions (res_no_nonco2), period
1861-2005, diag table of control, started from
landuse_spin_up

RCP85_rad,
RCP85_res,
RCP85_res_no_nonco2

RCP8.5 forcing with CO2 radiatively coupled
only (rad), CO2 biogeochemically coupled only
(res), with non-CO2 forcing at preindustrial
conditions (res_no_nonco2), period 2006-2100,
diag table of control, extend respective his-
torical simulations

control_diurnal,
historical_diurnal,
RCP85_diurnal

with 2-hourly output for ocean physics and
biogeochemistry, 20 y duration, historical period
1986-2005, RCP8.5 period 2081-2100

70yrs_1pct_decrease 1 % yearly decrease in atm. CO2 over 70 y, then
constant, otherwise preindustrial conditions,
186 y duration, started from spin_up_final

Table A.2: List of simulations performed during the PhD project. The EmissionHist, EmissionRCP85,
and 70yrs_1pct_decrease simulations have been performed together with Mathias Aschwanden. The
historical_ENS11-30 and RCP85_ENS11-30 simulations have been performed together with Natacha Le Grix.
landuse_spin_up was branched from spin_up_final in such a way that all historical and RCP simulations
are synchronous to control (the model years in control correspond to those in historical and RCP). The
ZEC-MIP simulations were performed to participate in the Zero Emissions Commitment Model Intercomparison
Project (Jones et al., 2019). The CDRMIP simulations were submitted to the Carbon Dioxide Model Intercomparison
Project (Keller et al., 2018).
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