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Abstract

This dissertation is composed by two blocks.

The �rst part is concerned with several types of distributional approximations, namely multivariate Poisson,

Poisson process and Gaussian approximation.

Employing the solution of the Stein equation for Poisson distribution, we obtain an explicit bound for the

multivariate Poisson approximation of random vectors in the Wasserstein distance. The bound is then utilized in

the context of point processes, to provide a Poisson process approximation result in terms of a new metric called

dπ, de�ned as the supremum over all Wasserstein distances between random vectors obtained evaluating the

point processes on arbitrary collections of disjoint sets. As applications, the multivariate Poisson approximation

of the sum of m-dependent Bernoulli random vectors, the Poisson process approximation of point processes of

U -statistic structure and the Poisson process approximation of point processes with Papangelou intensity are

considered.

Next, we consider a variant of the classical Johnson�Mehl birth-growth model with random growth speed

and prove Gaussian approximation results. In this model, seeds appear at random times and locations and

start growing instantaneously in all directions with random speeds. The location, birth time and growth speed

of the seeds are given by a Poisson process. Under suitable conditions on the random growth speed and birth

time distribution, we establish quantitative central limit theorems for the sum of given weights at the exposed

points, which are those seeds in the model that are not covered at the time of their birth. Such models have

previously been considered, albeit with deterministic growth speed.

In the second part of the dissertation, we propose general construction of convex closed sets obtained

by applying sublinear expectations to random vectors in Euclidean space. We show that many well-known

transforms in convex geometry (in particular, centroid body, convex �oating body, and Ulam �oating body) are

special instances of our construction. Further, we identify the dual representation of such convex bodies and

identify one map that serves as a building block for all so de�ned convex bodies. Several further properties are

investigated.

1



Acknowledgments

First, thank you Ilya, for your many advises, and your patience.

Thank you Prof. Thäle, for taking time to review this manuscript.

Thank you Johanna and David, for your a�ectionate guidance.

Thank you Lutz, for the Friday runs.

Thank you Andrea, for your welcoming presence in our department.

Thank you Matthias, for nice and fruitful discussions.

Thank you Fede, for accepting I do not love pubs as much as you do.

Thank you Alex, Maria Luisa and Chinmoy, for our true, wonderful friendship.

Thank you Sara, for your huge and sensitive heart.

Thank you Matteo, for I can count on you each and every good weather weekend.

Thank you Basel guys, for your help in making life a joy.

Thank you Marco and Madda, for the way you care about us.

Thank you Franci, Dolbi, Gio, Gec, Leti, Edo, Marta, Madda, Marco, Lando and Don Cesare, for you are

the sign that He is here.

Thank you Maria and Agnese, there are no words to say what a gift you are.

Thank you my family and friends, sorry that I do not cite you personally one by one.

Finally, and most importantly, thank You Father, for gifting me all that is written above and more. You

are and give everything.

2



Contents

Notation 5

1 Introduction 6

I Distributional Approximations 12

2 Preliminaries 13

2.1 Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Point processes on measurable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Point processes on lcscH spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Distances between distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Probability metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Distances between probability distributions of random vectors . . . . . . . . . . . . . . . . 19

2.2.3 Distances between probability distributions of point processes . . . . . . . . . . . . . . . . 19

2.3 Stein's method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Size-bias coupling and the law of small numbers . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Gaussian approximation for sums of region stabilizing scores . . . . . . . . . . . . . . . . . . . . . 24

3 Multivariate Poisson and Poisson Process Approximations 28

3.1 Multivariate Poisson approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Sum of m-dependent Bernoulli random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Poisson process approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



3.4 Point processes with Papangelou intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Point processes of Poisson U -statistic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Gaussian Approximation in a Birth-Growth Model with Random Growth Speed 44

4.1 Model and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Proofs of the results from Section 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Set-valued Sublinear Expectations 69

5 Convex Bodies Generated by Sublinear Expectations of Random Vectors 70

5.1 Sublinear expectations of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 De�nition and dual representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 Average quantiles and the Kusuoka representation . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Examples of sublinear expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4 Maximum extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Set-valued maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Set-valued sublinear expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Less regular maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Convex bodies generated by average quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Metronoids and zonoid-trimmed regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 A representation of general Ee(ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Average quantile sets as integrated depth-trimmed regions . . . . . . . . . . . . . . . . . . 84

5.3.4 A uniqueness result for maximum extensions . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.5 Concentration of empirical average quantile sets . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Floating-like bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Sublinear transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Ulam �oating bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.3 Centroid bodies and the expectile transform . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.4 Open problems related to the sublinear transform . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 104

4



Notation

a.s. almost surely

i.e. that is (`id est')

Z = {0, 1,−1, 2,−2, . . . } set of integers

N = {1, 2, . . . } set of positive integers

N0 = {0, 1, . . . } set of non-negative integers

R = (−∞,∞) real line

R+ = [0,∞) non-negative real half-line

∥x∥ Euclidean norm of x ∈ Rd

∥f∥ = supx∈X |f(x)| for a real valued function f with domain X

µf =
∫
X f(x)µ(dx) for a measure µ on X and an integrable function f

⟨·, ·⟩ Euclidean scalar product on Rd

Br(x) d-dimensional closed Euclidean ball of radius r ≥ 0 centered at x ∈ Rd

1A or 1{A} indicator function over a set A

δx Dirac measure at a point x

a ∨ b, a ∧ b maximum (resp. minimum) of a and b

P(X) the power set of X, that is, the collection of all subsets of X

Cb(X) set of bounded and continuous functions on X

C+
K(X) set of non-negative and continuous functions with compact support

NX set of σ-�nite counting measures on X

ÑX, N̂X set of locally �nite (resp. �nite) counting measures on X

lcscH locally compact second countable Hausdor�

(Ω,F,P) reference probability space

P {A} or P(A) probability of an event A ∈ F

E [X] or E(X) or EX expectation of a random variable X

Var(X) or VarX variance of a random variable X

LX distribution of a random element X : Ω → X over X
d
=, d→ equality (resp. convergence) in distribution
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Chapter 1

Introduction

The content of this thesis has been organized in two blocks. The �rst parts concerns distributional approxi-

mations, while the second one presents a multivariate notion of sublinear expectation and its connections to

convex geometric constructions.

Part I: Distributional approximations

When dealing with distributional approximation, one may be concerned with at least two related aspects. The

�rst, more basic point of interest is that of identifying the limit distribution of a sequence of random elements, in

the weak convergence sense. When the limit distribution is standard normal we talk about Gaussian convergence,

or central limit theorem (CLT), whereas for Poissonian limits, we talk about Poisson convergence. While weak

convergence results like the CLT describe the asymptotic behavior of a sequence of random elements, they do

not provide any information concerning how fast this convergence happens or, equivalently, how close a variable

from the process is to the limit. This is exactly the second, re�ned point of view in the context of distributional

approximation, which studies the approximation error and provides so-called quantitative limit theorems. In

the �rst part of this manuscript we furnish several quantitative limit theorems in the context of multivariate

Poisson, Poisson process and Gaussian approximation.

Multivariate Poisson approximation

We treat Multivariate Poisson approximation in the �rst part of Chapter 3. Our aim is to compare the dis-

tributions of a non-negative integer-valued random vector X and a Poisson random vector P , in terms of the
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Wasserstein distance

dW (X,P) = sup
h∈Lipd(1)

|E [h(X)]− E [h(P)]| ,

where Lipd(1) denotes the set of 1-Lipschitz functions. This problem has been studied by several authors, e.g.

[5, 9, 10, 12, 35, 89, 90], yet mostly in terms of the total variation distance

dTV (X,P) = sup
A∈B(Rd)

|P {X ∈ A} − P {P ∈ A}| .

Note that, for integer-valued random vectors, the Wasserstein distance always dominates the total variation

distance. To date, not many results are known for the multivariate Poisson approximation in Wasserstein

distance.

We provide a general upper bound on the approximation error in Theorem 3.1.1. It is obtained applying

the Chen-Stein method to each component of the random vectors and combining it with a generalization of the

size-bias distribution to the multidimensional framework.

The general result is then applied, in Section 3.2, to Poisson approximate the sum of Bernoulli random

vectors. By a Bernoulli random vector, we mean a random vector with values in the set composed by the

canonical vectors of Rd and the null vector. This problem has been mainly studied in terms of the total

variation distance and under the assumption that the Bernoulli random vectors are independent, see e.g. [88].

We derive an explicit approximation result in the Wasserstein distance for the more general case of m-dependent

Bernoulli random vectors.

Poisson process approximation

Poisson process approximation is the content of the last three sections of Chapter 3. We introduce a new

distance dπ between point processes with �nite intensity measure, de�ned as the supremum over all Wasserstein

distances between random vectors obtained evaluating the point processes on arbitrary collections of disjoint

sets:

dπ(ξ, η) = sup
(A1,...,Ad)∈Xd

q , d∈N
dW
(
(ξ(A1), . . . , ξ(Ad)), (η(A1), . . . , η(Ad))

)
,

where X d
q is the family of d-tuples of disjoint measurable subsets of the underlying space.

For a point processes ξ and a Poisson process η on a measurable space X, our abstract result on multivariate

Poisson approximation, Theorem 3.1.1, provides bounds on the Wasserstein distance

dW ((ξ(A1), . . . , ξ(Ad)), (η(A1), . . . , η(Ad)) ,

7



where A1, . . . , Ad are disjoint measurable subsets of X. In this way, a general bound on the distance dπ between a

point process ξ and a Poisson point process η, is directly obtained from our multivariate Poisson approximation

result.

In Sections 3.4 and 3.5, we apply the Poisson process approximation result, Theorem 3.3.5, to obtain explicit

Poisson process approximation results for point processes with Papangelou intensity and point processes of

Poisson U -statistic structure. The latter are point processes that, once evaluated on a measurable set, become

Poisson U -statistics. Analogous results have been already proven for the Kantorovich-Rubinstein distance in

[31, Theorem 3.7] and [30, Theorem 3.1], under the additional condition that the con�guration space X is lcscH.

Gaussian approximation

In Chapter 4, we establish Gaussian approximation results for functionals de�ned on a generalized version of

the Johnson�Mehl growth model.

In the classical Johnson�Mehl growth model, seeds appear at random times ti, i ∈ N, at random locations

xi, i ∈ N, in Rd, according to a Poisson process (xi, ti)i∈N on Rd×R+. Once a seed is born at time t, it begins to

form a cell by growing radially in all directions at a constant speed v ≥ 0, so that by time t′ it occupies the ball

of radius v(t′ − t). The parts of the space claimed by the seeds form the so-called Johnson�Mehl tessellation,

see [29] and [76].

The study of such birth-growth processes started with the work of Kolmogorov [53] in two dimensions to

model crystal growth. Since then, this model has seen applications in many contexts. For various subsequent

developments and applications, see [27, 29, 76] and references therein.

Variants of the classical spatial birth-growth model can be found, sometimes as a particular case of other

models, in many subsequent papers. Among them, we mention [81] and [14], where the birth-growth model

appears as a particular case of a random sequential packing model, and [94], which studies a variant of the

model with non-uniform deterministic growth patterns. The main tools rely on the concept of stabilization by

considering regions where the appearance of new seeds in�uences the functional of interest.

In our work, we consider a generalization of the Johnson�Mehl model by introducing random growth speed

for the seeds. This gives rise to many interesting features in the model, most importantly, long-range interactions

if the speed can take arbitrarily large values with positive probability. Therefore, the model with random speed

is no longer stabilizing in the classical sense of [58] and [82], since distant points may in�uence the growth

pattern if their speeds are su�ciently high. It should be noted that, even in the constant speed setting, we

substantially improve and extend limit theorems obtained in [27].

8



We consider a birth-growth model, determined by a Poisson process η in X := Rd ×R+ ×R+ with intensity

measure µ := λ⊗ θ ⊗ ν, where λ is the Lebesgue measure on Rd, θ is a non-null locally �nite measure on R+,

and ν is a probability distribution on R+ with ν({0}) < 1. Each point x of this point process η has three

components (x, tx, vx), where vx ∈ R+ denotes the random speed of a seed born at location x ∈ Rd and whose

growth commences at time tx ∈ R+. In a given point con�guration, a point x := (x, tx, vx) is said to be exposed

if there is no other point (y, ty, vy) in the con�guration with ty < tx and ∥x − y∥ ≤ vy(tx − ty), where ∥ · ∥

denotes the Euclidean norm. It should be noted that, because of random speeds, it may happen that the cell

grown from a non-exposed seed shades a subsequent seed which would be exposed otherwise. Also notice that

the event that a point (x, tx, vx) ∈ η is exposed depends only on the point con�guration in the region

Lx,tx :=
{
(y, ty, vy) ∈ X : ∥x− y∥ ≤ vy(tx − ty)

}
.

Namely, x is exposed if and only if η has no points (apart from x) in Lx,tx .

Given a measurable weight function h : Rd × R+ → R+ the main object of interest for us is the sum of h

over the exposed points in η:

F (η) :=
∑
x∈η

h(x, tx)1{x is exposed}

Our aim is to provide su�cient conditions for Gaussian convergence of such sums. A standard approach for

proving Gaussian convergence for such statistics relies on stabilization theory [14, 34, 81, 94]. While in the

stabilization literature, one commonly assumes that the so-called stabilization region is a ball around a given

reference point, the region Lx,tx is unbounded and it seems that it is not expressible as a ball around x in some

di�erent metric. Moreover, our stabilization region is set to be empty if x is not exposed.

The recent work [17] introduced a new notion of region-stabilization which allows for more general regions

than balls. We will utilize the main result from [17], which is reported in Section 2.4, to derive bounds on

the Wasserstein and Kolmogorov distances, between a suitably normalized sum of weights and the standard

Gaussian distribution.

Part II: Set-valued sublinear expectations

A sublinear expectation e is a sublinear (positively homogeneous and convex) map from the space Lp(R) (or

another linear space of random variables) to (−∞,∞], and so may be regarded as a convex function on an

in�nite-dimensional space, see [110] for a thorough account of convex analysis tools in the in�nite-dimensional

setting.
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The concept of sublinear expectation is essential in mathematical �nance, where it is used to quantify

the operational risk, see [33, 39]. The sublinearity property re�ects the �nancial paradigm, saying that the

diversi�cation decreases the risk, and so the risk of a diversi�ed portfolio is dominated by the sum of the risks

of its components. Sublinear expectations are closely related to solutions of backward stochastic di�erential

equations, see [79].

In this work we use a sublinear expectation e to associate with each p-integrable random vector ξ in Rd a

convex closed set Ee(ξ) in Rd. This is done by letting the support function of Ee(ξ) be the sublinear expectation

e applied to the scalar product ⟨ξ, u⟩. For instance, if e is, up to a sign change, the average value at risk, one

obtains convex closed sets called metronoids and studied by Huang and Slomka [48]. Further examples are given

by expected random polytopes, which also form a special case of our construction.

We commence with Section 5.1, giving the de�nition of sublinear expectation of random variables, explain-

ing their dual representation and presenting several examples. We mention the particularly important Kusuoka

representation which expresses any law-determined sublinear expectation in terms of integrated quantiles and

describe a novel construction (called the maximum extension) suitable to produce parametric families of sub-

linear expectations from each given one.

Section 5.2.1 presents our construction of convex closed sets Ee(ξ) generated by a random vector ξ and a

given sublinear expectation e. Section 5.2.2 describes a generalization based on relaxing some properties of the

underlying numerical sublinear expectations, namely, replacing them with gauge functions. This construction

yields centroid bodies [67] and half-space depth-trimmed regions [73], the latter are closely related to convex

�oating bodies introduced in [97] and their weighted variant from [16].

One of the most important sublinear expectations is based on using weighted integrals of the quantile func-

tion. The corresponding convex bodies are studied in Section 5.3, where we show their close connection to

metronoids [48] and zonoid-trimmed regions [56]. The Kusuoka representation of numerical sublinear expecta-

tions yields Theorem 5.3.4, which provides a representation of a general convex set Ee(ξ) (derived from ξ using

a sublinear expectation e) in terms of Aumann integrals of metronoids. We further provide a uniqueness result

for the distribution of ξ on the basis of a family of convex bodies generated by it, and also a concentration result

for random convex sets constructed from the empirical distribution of ξ.

Section 5.4 specialises our general construction to the case when ξ is uniformly distributed on a convex body

K (that is, a compact convex set in Rd with nonempty interior), and so Ee(ξ) yields a transform K 7→ Ee(K) =

Ee(ξ). We derive several properties of this transformation for general e, in particular, establish the continuity

of such maps in the Hausdor� metric.

In special cases, our construction yields Lp-centroid bodies (see [67] and [92, Sec. 10.8]) and Ulam �oating

10



bodies recently introduced in [49]. The latter form a particularly important special setting, which is con�rmed

by showing that all transformationsK 7→ Ee(K) can be expressed in terms of Ulam �oating bodies. For instance,

Corollary 5.4.8 provides a representation of the centroid body of an origin symmetric K as the convex hull of

dilated Ulam �oating bodies of K. In this course, results for sublinear expectations yield a new insight into

the well-known aforementioned constructions of convex bodies, deliver some new relations between them, and

provide a general source of nonlinear transformations of convex bodies. Finally, we formulate several conjectures.
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Part I

Distributional Approximations
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Chapter 2

Preliminaries

This chapter introduces some basic notions and results from the areas that this part of the thesis touches upon.

For each of them, we do not provide a thorough account of the topic, nor a comprehensive literature review,

but simply mention de�nitions and results that prove necessary in an attempt to make this manuscript as

self-contained as possible.

2.1 Point processes

For the proofs of the results mentioned in this section, the interested reader is referred to the books [52] and

[60], where most of the material is taken from.

2.1.1 Point processes on measurable spaces

Intuitively, a point process is a random collection of points in a space. This concept can be formalized by

describing a (random) collection of points by the (random) measure that provides for each set the number of

points in it. Let (X,X ) be a measurable space.

De�nition 2.1.1. A measure M on (X,X ) is called

i) σ-�nite if there exist An ∈ X , n ∈ N such that M(An) <∞ and X =
⋃

n∈NAn ;

ii) counting measure if M(A) ∈ N0 for all A ∈ X .

Let NX be the collection of all σ-�nite counting measures M on (X,X ), and let NX be the smallest σ-alegbra

on NX such that the maps M 7→ M(A) are measurable for all A ∈ X .

13



De�nition 2.1.2. Let (Ω,F ,P) be the reference probability space. A point process ξ on X is a random element

in NX, that is, a measurable map ξ : Ω → NX.

A �st example of point process is the binomial process, which has the form

ξ =

m∑
n=1

δXn (2.1.1)

for some m ∈ N and i.i.d. random elements X1, . . . , Xm ∈ X. Note that, for a measurable set A ∈ X , the

random variable ξ(A) has the binomial distribution with sample size m and success rate LX1(A), where LX1

is the distribution of X1 in X.

De�nition 2.1.3. The intensity measure of a point process ξ on X is the measure µ de�ned by

µ(A) := E [ξ(A)] , A ∈ X .

In the case of the binomial point process de�ned at (2.1.1), the intensity measure is µ = mLX1
.

Proposition 2.1.4. (Campbell's formula) Let ξ be a point process on X with intensity measure µ, and let

h : X → R be a measurable function. Then
∫
X h(x) ξ(dx) is a random variable and

E
[∫

X
h(x) ξ(dx)

]
=

∫
X
h(x)µ(dx) .

The distribution of a point process ξ on X is the probability measure Lξ on (NX,NX) given by

Lξ(B) := P {ξ ∈ B} , B ∈ NX .

We write ξ d
= ζ when Lξ = Lζ . The next proposition gives two equivalent characterizations of equality in

distributions between point processes.

Proposition 2.1.5. Let ξ and ζ be two point processes on X. Then ξ
d
= ζ if and only if one of the following

equivalent conditions holds:

i) (ξ(A1), . . . , ξ(Ad))
d
= (ζ(A1), . . . , ζ(Ad)), for all d ∈ N and pairwise disjoint A1, . . . , Ad ∈ X ;

ii) for every measurable function h : X → R+, the R+-valued random variables
∫
X h(x) ξ(dx) and

∫
X h(x) ζ(dx)

have the same distribution.

As we said at the beginning of this section, a point process can be thought as an at most countable random

collection of points in the space X. This intuition is particularly appropriate for the case of proper point

processes.
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De�nition 2.1.6. A point process ξ on X is called proper if there exist random elements X1, X2, · · · ∈ X and

a random variable κ with values in N0 such that

ξ =

κ∑
n=1

δXn .

Clearly the binomial process from (2.1.1) is an example of proper point process. Although there are examples

of non-proper point processes for pathological choices of the space X, the class of proper point processes is very

large, as we shall see in Section 2.1.3.

2.1.2 Poisson process

Let us now introduce what is arguably the most prominent example of point process. Recall that a random

variable X is Poisson distributed with mean γ ≥ 0, if

P {X = k} =
γk

k!
e−γ , k ∈ N0,

where, for γ = 0, we take P(X = 0) = 00 := 1.

De�nition 2.1.7. Let µ be a σ-�nte measure on (X,X ). A point process η on X is called a Poisson process

with intensity measure µ if

i) for all A ∈ X , the random variable η(A) is Poisson distributed with mean µ(A),

ii) for every m ∈ N and pairwise disjoint sets A1, . . . , Am ∈ X , the random variables η(A1), . . . , η(Am) are

independent.

In view of Proposition 2.1.5, two Poisson processes with the same intensity measure have the same distri-

bution. The following result provides existence of the Poisson process and, at the same time, ensures that for

any Poisson process one can �nd a proper Poisson process with the same distribution.

Proposition 2.1.8. Let µ be a σ-�nte measure on (X,X ). Then there exists a probability space (Ω,F ,P) with

random elements X1, X2, . . . in X and κ ∈ N0 such that

η =

κ∑
n=1

δXn

is a Poisson process with intensity measure µ. In particular, when 0 < µ(X) <∞, κ has the Poisson distribution

with mean µ(X) and X1, X2, . . . are independent of κ and i.i.d. with distribution µ(·)/µ(X).

The next proposition clari�es the relation of the Poisson process to the binomial process.
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Proposition 2.1.9. Let η be a Poisson process on X with intensity measure µ such that 0 < µ(X) <∞. Then,

conditioned on the event η(X) = m, for some m ∈ N, η has the same distribution as a binomial point process of

m independent points with distribution µ(·)/µ(X).

We recall here a characterization of the Poisson distribution.

Proposition 2.1.10. An N0-valued random variable X is Poisson distributed with mean γ if and only if, for

every function f : N0 → R+

E [Xf(X)] = γE [f(X + 1)] .

In the context of point processes, the corresponding characterization of the Poisson process is given by the

so-called Mecke equation.

Proposition 2.1.11. (Mecke equation) Let µ be a σ-�nte measure and let η be a point process on X. Then η

is a Poisson process with intensity measure µ if and only if

E
[∫

X
f(x, η) η(dx)

]
=

∫
X
E [f(x, η + δx)]µ(dx)

for all measurable functions f : X×NX → R+.

Proposition 2.1.11 admits a useful generalization involving multiple integration. To formulate it, we �rst

need to introduce the factorial measure of a counting measure. Suppose M ∈ NX is given by

M =

k∑
n=0

δxn

for some k ∈ N0 and xn ∈ X. Then, for some m ∈ N, on the power space (Xm,Xm) we de�ne the m-th factorial

measure

M(m) :=
∑ ̸=

i1,...,im

δ(xi1
,...,xim ) ∈ NXm ,

where the superscript ̸= indicates that the indexes i1, . . . , im ∈ {1, . . . , k} are pairwise di�erent.

Proposition 2.1.12. (Multivariate Mecke equation) Let η be a Poisson process on X with σ-�nte intensity

measure µ. Then, for any measurable function f : Xm ×NX → R+ with m ∈ N,

E
[∫

Xm

f(x1, . . . , xm, η) η
(m)(d(x1, . . . , xm)

]
=

∫
Xm

E [f(x1, . . . , xm, η + δx1
+ · · ·+ δxm

)]µm(d(x1, . . . , xm)) .
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2.1.3 Point processes on lcscH spaces

Let us now assume that X is a locally compact second countable Hausdor� (later: lcscH) space, that is, X is a

topological space with countable base such that every point in X has an open neighborhood whose topological

closure is compact and such that any two points of X can be separated by two disjoint open neighborhoods.

Such a space is always separable and completely metrizable. In this case, X is the Borel σ-�eld of X. It is

notable that, when X is a lcscH space, every point process is proper, as follows e.g. by [93, Lemma 3.1.3].

We denote by (ÑX, ÑX) the measurable space of locally �nite counting measures on (X,X ), where ÑX is the

trace σ-�eld of NX.

De�nition 2.1.13. Let (Ω,F ,P) be the reference probability space. A locally �nite point process ξ on X is a

random element in ÑX, that is, a measurable map ξ : Ω → ÑX.

Note that any point process ξ on X with locally �nite intensity measure is almost surely locally �nite,

meaning that there exists another process ξ′ almost surely identical to ξ and with realizations in ÑX.

We endow the space ÑX with an appropriate topology in such a way that the σ-�eld ÑX is the Borel σ-�eld

of ÑX. Namely, let us equip the space ÑX with the vague topology, i.e. the topology induced by the mappings

ÑX ∋ M 7→
∫
X
f(x)M(dx), f ∈ C+

K(X) ,

where C+
K(X) is the set of non-negative and continuous functions on X with compact support. Then, ÑX

equipped with the vague topology is a Polish space, and ÑX coincides with the Borel σ-�eld generated by the

vague topology. Now that the space of locally �nite counting measures has a topological structure, we can talk

about convergence in distribution of locally �nite point process on X.

De�nition 2.1.14. Let ξ, ξ1, ξ2, . . . be locally �nite point processes on a lcscH space X. The sequence (ξn)n∈N

converges in distribution to ξ, if

E [F (ξn)] → E [F (ξ)] , for all F ∈ Cb(ÑX) ,

where Cb(ÑX)is the set of bounded and continuous functions on ÑX.

For a point process ξ on a lcscH space X, denote by Xc the class of relatively compact sets A ∈ X , and

by Xc,ξ the family of sets in Xc such that ξ(∂A) = 0 almost surely. The following result characterizes the

convergence in distribution of locally �nite point processes on a lcscH space.

Proposition 2.1.15. Let ξ, ξ1, ξ2, . . . be locally �nite point processes on a lcscH space X. Then, the following

assertions are equivalent:
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i) ξn
d−→ ξ;

ii)
∫
X f(x) ξn(dx)

d−→
∫
X f(x) ξ(dx), for all f ∈ C+

K(X);

iii) (ξn(A1), . . . , ξn(Ak))
d−→ (ξ(A1), . . . , ξ(Ak)) for all A1, . . . , Ak ∈ Xc,ξ, k ∈ N.

2.2 Distances between distributions

At the very base of the approximation concept lies the notion of a metric: Approximating something by

something else means being able to identify an upper bound to the distance between the two objects, and this

obviously depends on the chosen metric. In the following chapters, we approximate the distribution of di�erent

types of random objects, namely, random variables, random vectors and point processes. For each of these

elements, a variety of metrics is available in the literature in order to compare their distributions. We hereafter

recall, for each object category, the de�nitions of distances between probability distributions that are used or

mentioned in the sequel, and some relationships between them.

2.2.1 Probability metrics

For two real-valued random variables X and Y , we consider probability metrics of the form

dH(X,Y ) = sup
h∈H

|E [h(X)]− E [h(Y )]| , (2.2.1)

where H is some family of test functions. For H = {1{· ≤ a} : a ∈ R}, the expression above corresponds to the

Kolmogorv distance

dK(X,Y ) := sup
a∈R

|P {X ≤ a} − P {Y ≤ a}| , (2.2.2)

by taking H = {1{· ∈ A} : A ∈ B} one obtains the total variation distance

dTV (X,Y ) := sup
A∈B

|P {X ∈ A} − P {Y ∈ A}| ,

while the choice H = Lip(1) := {h : R → R : |h(x)− h(y)| ≤ |x− y|} gives the Wasserstein distance

dW (X,Y ) := sup
h∈Lip(1)

|E [h(X)]− E [h(Y )]| . (2.2.3)

From their de�nitions it is immediately clear that dK ≤ dTV . When either X or Y has Lebesgue density bounded

by a constant C > 0, then it is not hard to see that

dK(X,Y ) ≤
√

2CdW (X,Y ) .

18



The metrics dTV and dW are in general not comparable, apart from when the random variables are integer-

valued. In this case

dTV (X,Y ) =
1

2

∑
k∈Z

|P {X = k} − P {Y = k}| ≤ dW (X,Y ) ,

and it is not hard to �nd sequences of integer-valued random variables that converge in total variation distance

but not in Wasserstein distance.

Notice that a sequence of random variables that converges with respect to any of the metrics de�ned in

this section is also weakly convergent. The same applies for the distances between multivariate distributions

considered in the next section.

2.2.2 Distances between probability distributions of random vectors

For two random vectors X and Y, i.e. random elements with values in Rd for some 2 ≤ d ∈ N, the total

variation distance is de�ned by

dTV (X,Y) := sup
A∈B(Rd)

|P {X ∈ A} − P {Y ∈ A}| ,

and the Wasserstein distance is de�ned by

dW (X,Y) := sup
h∈Lipd(1)

|E [h(X)]− E [h(Y)]| .

Note that, for convenience, we unusually de�ne Lipd(1) to be the collection of 1-Lipschitz functions h : Rd → R

with respect to the metric induced by the 1-norm, that is,

|h(x)− h(y)| ≤ |x− y|1 =

d∑
i=1

|xi − yi|, x,y ∈ Nd
0.

Clearly, this family of functions contains the 1-Lipschitz functions with respect to the Euclidean norm.

As for the case of random variables, for integer-valued random vectors dTV ≤ dW .

2.2.3 Distances between probability distributions of point processes

Let ξ and ζ be two point processes on X with laws Lξ and Lζ , respectively. The total variation distance

between their distributions is de�ned by

dTV (ξ, ζ) := sup
B∈NX

|P {ξ ∈ B} − P {ζ ∈ B}| = sup
B∈NX

|Lξ(B)− Lζ(B)| . (2.2.4)
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Another way to compare the distributions of two point processes is to look at the minimum transportation cost.

When the transportation cost is expressed by the total variation distance between measures,

dTV (M,N) := sup
A∈X

M(A),N(A)<∞

|M(A)− N(A)| , (2.2.5)

one obtains the Kantorovich-Rubinstein distance

dKR(ξ, ζ) := inf
γ∈Γ(Lξ,Lζ)

∫
NX×NX

dTV (M,N) γ (d(M,N)) , (2.2.6)

where Γ(Lξ,Lζ) is the set of couplings of Lξ and Lζ , i.e. the set of probability measures on NX ×NX with

marginals Lξ and Lζ . The Kantorovich-Rubinstein distance is also called Wasserstein distance, Rubinstein dis-

tance or Monge-Kantorovich distance in the literature. The Kantorovich-Rubinstein distance always dominates

the total variation distance because

dTV (ξ, ζ) = sup
B∈NX

∣∣∣∣ inf
γ∈Γ(Lξ,Lζ)

∫
NX×NX

1{M ∈ B} − 1{N ∈ B} γ (d(M,N))
∣∣∣∣

≤ inf
γ∈Γ(Lξ,Lζ)

∫
NX×NX

dTV (M,N) γ (d(M,N)) = dKR(ξ, ζ) .

On the other hand, there are sequences of point processes that converge to a limit point point process in

total variation distance but diverge from the same reference point in Kantorovich-Rubinstein distance: see e.g.

[30, Example 2.2]. The next proposition, which follows from Theorems 4.1 and 5.10 in [105], provides a dual

characterization of the Kantorovich-Rubinstein distance between locally �nite point processes on a lcscH space.

Proposition 2.2.1. Let ξ and ζ be locally �nite point processes on a lcscH space X. Then the in�mum in

(2.2.6) is attained and

dKR(ξ, ζ) = sup
L(ξ,η)

|E[h(ξ)]− E[h(ζ)]| , (2.2.7)

where L(ξ, η) denotes the set of measurable functions h : ÑX → R that are 1-Lipschitz with respect to the total

variation distance between measures de�ned at (2.2.5), and make h(ξ) and h(ζ) integrable.

A novel notion of distance between point process, denoted as dπ, has been recently introduced in [85] and

will be described in Chapter 3, alongside with a short discussion concerning the connections between dTV , dKR

and dπ.

2.3 Stein's method

Stein's method is a technique from probability theory that allows to bound the distance of a probability measure

to a target distribution. The method made its �rst appearance nearly �fty years ago, in the context of Normal
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approximation, in the seminal paper [101] by Charles Stein. Soon thereafter, in [23], Stein's PhD student Louis

H.Y. Chen adapted the method so as to obtain approximation results for the Poisson distribution. Since then,

the main idea and technique has been extended to an great variety of mathematical problems. Below we give

a sketched idea of the method and provide a few notions that are preparatory to the following chapters. For a

general introduction to the topic, the interested reader is referred to [25] and [91] and references therein.

2.3.1 The idea

The starting point of Stein's method is a characterizing equation for the target distribution. For the Gaussian

case, we have the following: A random variable Z has standard normal distribution if and only if

E [f ′(Z)− Zf(Z)] = 0 (2.3.1)

for all absolutely continuous functions f for which the expectation above exists. Roughly speaking, the idea

behind Stein's method is to measure how close a distribution is to the Gaussian by estimating how close to zero

is the expectation appearing in (2.3.1). This rather vague concept can be made precise by recalling that all

probability metrics considered in Section 2.2.1 are of the form (2.2.1), for some suitable set H of test functions.

This suggest to look, for each h ∈ H, at the di�erential equation

f ′h(x)− xfh(x) = h(x)− E [h(Z)] , (2.3.2)

where Z is now assumed to have the standard normal distribution. The above equation is called Stein equation

for the Gaussian distribution and, for every h ∈ H, there exists a unique solution which is given by

fh(x) = ex
2/2

∫ ∞

x

e−t2/2 (E [h(Z)]− h(t)) dt

= −ex
2/2

∫ x

−∞
e−t2/2 (E [h(Z)]− h(t)) dt .

Hence, the Gaussian approximation problem takes the form

dH(X,Z) = sup
h∈H

E |f ′h(X)−Xfh(X)| . (2.3.3)

It is remarkable that, now that the characterization of the Gaussian distribution has been encoded into the

solution of Equation (2.3.2), the right-hand side of (2.3.3) does not involve the variable Z any more. Once

the problem is in the latter form, one needs to �nd suitable techniques to compare E [Xfh(X)] to E [f ′h(X)].

This can be done in many cases by exploiting the structure of X and �nding good properties of the solution

to the Stein equation. The following proposition, taken from [91], handles the latter issue. Recall that, for a

real-valued function f with domain D, we write ∥f∥ = supx∈D |f(x)|.
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Proposition 2.3.1. Let fh be the solution of (2.3.2).

i) If h is bounded, then

∥fh∥ ≤
√
π

2
∥h(·)− E [h(Z)]∥ and ∥f ′h∥ ≤ 2 ∥h(·)− E [h(Z)]∥ .

ii) If h is absolutely continuous, then

∥fh∥ ≤ 2∥h′∥ , ∥f ′h∥ ≤
√
π

2
∥h′∥ and ∥f ′′h ∥ ≤ 2∥h′∥ .

Concerning the techniques used to transform the term E [Xfh(X)] into something comparable to the other

term, in the next subsection we will see the size-bias coupling applied to the context of Poisson approximation.

Let us �rst adapt the steps seen so far to the case of Poisson distribution. As this was �rst done by Louis

H.Y. Chen, this version of the Stein's method is often referred to as Chen-Stein method, see e.g. [5]. Standard

references for the application of Stein's method to the context of Poisson approximation are [12] and [24]. We

have already expressed the characterizing equation for the Poisson distribution in Proposition 2.1.10, and we

recall it here: An N0-valued random variable P has the Poisson distribution with mean µ if and only if

E [µf(P + 1)− Pf(P )] = 0 (2.3.4)

for every non-negative function f . This characterization is re�ected in the corresponding Stein equation for

Poisson distribution

µfh(k + 1)− kfh(k) = h(k)− E [h(P )] , k ∈ N0 , (2.3.5)

where P is assumed to be Poisson distributed with mean µ. Note that the value of the solution fh at zero

can be chosen arbitrarily, and we adopt the convention that fh(0) = fh(1). All other values can be computed

recursively and are explicitly given by

fh(k) =
(k − 1)!

µk

k−1∑
i=0

µi

i!
(h(i)− E [h(P )])

= − (k − 1)!

µk

∞∑
i=k

µi

i!
(h(i)− E [h(P )]) .

Therefore, the Poisson approximation problem can be translated into the task of upper bounding the following

expression:

dH(X,P ) = sup
h∈H

|µE[fh(X + 1)]− E[Xfh(X)]| . (2.3.6)

The next proposition, taken from [13], provides bounds on the solution to the Stein equation for Poisson

distribution.
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Proposition 2.3.2. Let h : N0 → R be a 1-Lipschitz function. Then, the solution fh to Equation (2.3.5)

satis�es

∥fh∥ ≤ 1 and ∥fh(·+ 1)− fh(·)∥ ≤ min

{
1,

8

3
√
2eµ

}
.

2.3.2 Size-bias coupling and the law of small numbers

In this subsection we describe the size-bias coupling technique, that is an e�cient method of rewriting E [Xfh(X)]

so that it can be compared to µE [fh(X + 1)].

De�nition 2.3.3. Let X ≥ 0 be a random variable with E [X] = µ < ∞. We say that a random variable Xs

has the size-bias distribution with respect to X if

E [Xf(X)] = µE [f(Xs)] (2.3.7)

for all f such that E [Xf(X)] <∞.

The size-bias distribution is always well de�ned and it is absolutely continuous with respect to the law of X.

From the characterization of the Poisson distribution (2.3.4) it immediately follows that for any Poisson random

variable P , the variable P + 1 has the size-bias distribution with respect to P . It is also straightforward to see

that, for a generic non-negative integer-valued random variable X with �nite mean µ, the random variable Xs

with the size-bias distribution of X satis�es

P {Xs = k} = µ−1kP {X = k} , k ∈ N0.

The notion of size-bias distribution provides yet another formulation for the Poisson approximation problem

expressed by (2.3.6). Indeed, for a N0-valued random variable X with �nite mean µ and a Poisson random

variable P with same mean, we have

dH(X,P ) = µ sup
h∈H

|Efh(X + 1)− Efh(Xs)| .

Combined with Proposition 2.3.2, the latter equation yields the following upper bound for the Wasserstein

distance:

dW (X,P ) ≤ min

{
µ,

8
√
µ

3
√
2e

}
E |X + 1−Xs| . (2.3.8)

We see through the proof of the next theorem how Equation (2.3.8) proves to be an e�ective formulation

when dealing with the sum of independent random variables.
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Theorem 2.3.4. (Law of small numbers) Let X1, . . . Xn be independent Bernoulli random variables with

P {Xi = 1} = pi for i = 1, . . . , n, let X = X1 + · · · + Xn and let P be a Poisson random variable with mean

µ = E [X] = p1 + · · ·+ pn. Then

dW (X,P ) ≤ min

{
1,

8

3
√
2eµ

} n∑
i=1

p2i .

Proof. Let τ be a random variable independent of X1, . . . Xn and such that P {τ = i} = pi/µ for i = 1, . . . , n.

By independence we have

µE [f(X + 1−Xτ )] = µ
∑
k∈N

f(k)P {X −Xτ = k − 1}

=
∑
k∈N

f(k)

n∑
i=1

µP {τ = i,X −Xi = k − 1}

=
∑
k∈N

f(k)

n∑
i=1

piP {X −Xi = k − 1}

=
∑
k∈N

f(k)

n∑
i=1

P {Xi = 1, X = k}

=
∑
k∈N

f(k)E

[
n∑

i=1

1{Xi = 1}1{X = k}

]

=
∑
k∈N

kf(k)P {X = k}

= E [Xf(X)] .

The above sequence of identities proves that X+1−Xτ has the size-bias distribution with respect to X. Then,

Equation (2.3.8) yields

dW (X,P ) ≤ min

{
µ,

8
√
µ

3
√
2e

}
E |Xτ | = min

{
µ,

8
√
µ

3
√
2e

}
1

µ

n∑
i=1

p2i .

2.4 Gaussian approximation for sums of region stabilizing scores

In this section we report, in our notation and in a form slightly adapted to our purpose, the main result from

[17], Theorem 2.1, which generalizes Theorem 2.1(a) in [58]. The latter result is obtained by incorporating

stabilization methods into the so-called Malliavin�Stein theory. The concept of stabilization and the study of

stabilizing functionals originated from the papers [80, 82], while the so called Malliavin-Stein theory, which
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combines Stein's method and Malliavin calculus, was initiated by Nourdin and Peccati in [74]. We will need

the theorem stated below in Chapter 4, in order to prove our Gaussian approximation bounds.

Let (X,X ) be a Borel space, NX the space of σ-�nite counting measures M on (X,X ), equipped with the

smallest σ-alegbra NX such that the maps M 7→ M(A) are measurable for all A ∈ X . We write x ∈ M if

M({x}) ≥ 1, and denote by MA the restriction of M onto the set A, for A ∈ X . Further, for M1,M2 ∈ NX,

M1 ≤ M2 means M2 −M1 is non-negative.

De�nition 2.4.1. A score function is a Borel measurable map S : X×NX → R .

For a score function, we assume the following condition. If S(x,M1) = S(x,M2) for some M1,M2 ∈ NX with

0 ̸= M1 ≤ M2, then

S(x,M1) = S(x,M′), for all M′ ∈ NX, M1 ≤ M′ ≤ M2 . (2.4.1)

Let η denote a Poisson process on X with intensity measure µ, and recall that, for x ∈ X, δx denotes the Dirac

measure at x. Theorem 2.4.2 below concerns the Gaussian approximation of the (suitably normalized) sum of

score functions

F = F (η) :=
∑
x∈η

S(x, η) . (2.4.2)

We need some assumptions.

(A1) There exists a map R : X×NX → X such that

(1)

{M ∈ NX : y ∈ R(x,M+ δx)} ∈ NX, for all x, y ∈ X,

and

P {y ∈ R(x, η + δx)} and P {{y1, y2} ⊆ R(x, η + δx)}

are measurable functions of (x, y) ∈ X2 and (x, y1, y2) ∈ X3 respectively,

(2) the map R is monotonically decreasing in the second argument, meaning

R(x,M1) ⊇ R(x,M2), M1 ≤ M2, x ∈ M1 ,

(3) for all M ∈ NX and x ∈ M, MR(x,M) ̸= ∅ implies (M+ δy)R(x,M+δy) ̸= ∅ for all y ̸∈ R(x,M),

(4) for all M ∈ NX and x ∈ M,

S(x,M) = S(x,MR(x,M)) ;
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(A2) there exist a p ∈ (0, 1] and a measurable function Mp : X → R such that, for all M ∈ NX with M(X) ≤ 7,

E
[
S(x, η + δx +M)4+p

]
≤Mp(x)

4+p, x ∈ X .

Let r : X× X → [0,∞] be a measurable function such that

P {y ∈ R(x, η + δx)} ≤ e−r(x,y), x, y ∈ X . (2.4.3)

For x, y ∈ X denote

q(x, y) :=

∫
X
P
{
{x, y} ⊆ R

(
z, η + δz

)}
µ(dz) .

Furthermore, for p as in (A.2) and ζ := p/(40 + 10p), de�ne

g(y) :=

∫
X
e−ζr(x,y) µ(dx) ,

G(y) := M̃p(y)
(
1 + g(y)5

)
, y ∈ X ,

where M̃p(y) = max{Mp(y)
2,Mp(y)

4}, y ∈ X. For α > 0, let

fα(y) := f (1)α (y) + f (2)α (y) + f (3)α (y), y ∈ X,

where

f (1)α (y) :=

∫
X
G(x)e−αr(x,y) µ(dx) ,

f (2)α (y) :=

∫
X
G(x)e−αr(y,x) µ(dx) ,

f (3)α (y) :=

∫
X
G(x)q(x, y)α µ(dx) .

Finally, let

κ(x) := P {S(x, η + δx) ̸= 0} , x ∈ X.

For an integrable function f : X → R, denote µf :=
∫
X f(x)µ(dx). Recall the de�nitions of Wasserstein and

Kolmogorov distances given at (2.2.3) and (2.2.2), respectively.

Theorem 2.4.2. Assume that S satis�es conditions (A1), (A2) and let F be as in (2.4.2). Then, for p as in

(A2), with β := p
32+4p ,

dW

(
F − EF√
VarF

,N

)
≤ C

[√
µf2β

VarF
+
µ((κ+ g)2βG)

(VarF )3/2

]
,
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and

dK

(
F − EF√
VarF

,N

)
≤ C

[√
µf2β +

√
µf2β

VarF
+

√
µ((κ+ g)2βG)

VarF

+
µ((κ+ g)2βG)

(VarF )3/2
+

(µ((κ+ g)2βG))5/4 + (µ((κ+ g)2βG))3/2

(VarF )2

]
,

where N is a standard normal random variable and C ∈ (0,∞) is a constant depending only on p.
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Chapter 3

Multivariate Poisson and Poisson Process

Approximations

This chapter is based on the following article:

F. Pianoforte and R. Turin. Multivariate Poisson and Poisson process approximations with applications to

Bernoulli sums and U -statistics. arXiv:2105.01599, 2021.

The layout of the chapter is as follows. In Section 3.1 we adapt the Chen-Stein method described in Section

2.3 to the multivariate setting, hence obtaining a general bound on the Wasserstain distance between an integer-

valued random vector and a Poisson random vector with the same mean. The result from Section 3.1 is then

employed in Section 3.2, where we Poisson approximate the sum of dependent Bernoulli random vectors. In

Section 3.3 we introduce a novel notion of metric between point processes distributions, dπ, heavily relying on the

Wasserstein distance between multivariate distributions. After a small discussion concerning the connections

between dπ and the other metrics de�ned in Chapter 2, we derive a limit theorem for the Poisson process

approximation in terms of the newly de�ned metric. The main theorem from Section 3.3 is then applied

in Sections 3.4 and 3.5 to provide explicit Poisson process approximation results for point processes with

Papangelou intensity and point processes of Poisson U -statistic structure, respectively.

3.1 Multivariate Poisson approximation

Let X = (X1, . . . , Xd) be an integrable random vector taking values in Nd
0, d ∈ N, and let P = (P1, . . . , Pd) be

a Poisson random vector, that is, a random vector with independent and Poisson distributed components. In
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this section, we provide an upper bound on the Wasserstein distance

dW (X,P) = sup
g∈Lipd(1)

∣∣E[g(X)]− E[g(P)]
∣∣ .

between X and P. Recall that, for any x = (x1, . . . , xd) ∈ Rd and indexes 1 ≤ i < j ≤ d, we denote by xi:j the

sub-vector (xi, . . . , xj).

Theorem 3.1.1. Let X = (X1, . . . , Xd) be an integrable random vector with values in Nd
0,

d ∈ N, and let P = (P1, . . . , Pd) be a Poisson random vector with E[P] = (µ1, . . . , µd) ∈ [0,∞)d. For 1 ≤ i ≤ d,

consider any random vector Z(i) = (Z
(i)
1 , . . . , Z

(i)
i ) in Zi de�ned on the same probability space as X, and de�ne

qm1:i
:= miP

(
X1:i = m1:i

)
− µiP

(
X1:i + Z(i) = (m1:i−1,mi − 1)

)
(3.1.1)

for m1:i ∈ Ni
0 with mi ̸= 0. Then,

dW (X,P) ≤
d∑

i=1

µiE
∣∣Z(i)

i

∣∣+ 2µi

i−1∑
j=1

E
∣∣Z(i)

j

∣∣+ ∑
m1:i∈Ni

0
mi ̸=0

|qm1:i
|

 . (3.1.2)

It should be noted that a slightly improved bound than (3.1.2) can be easily obtained, and this is expressed

below in Remark 3.1.3.

In order to give an interpretation of Equation (3.1.1), let us consider the random vectors

Y(i) = (X1:i−1, Xi + 1) + Z(i), i = 1, . . . , d, (3.1.3)

with X and Z(i) de�ned as in Theorem 3.1.1. Under the additional condition P(X1:i+Z(i) ∈ Ni
0) = 1, a sequence

of real numbers qm1:i , m1:i ∈ Ni
0 with mi ̸= 0, satis�es Equation (3.1.1) if and only if

E[Xif(X1:i)] = µiE[f(Y(i))] +
∑

m1:i∈Ni
0,mi ̸=0

qm1:i
f(m1:i) (3.1.4)

for all functions f : Ni
0 → R such that E |Xif(X1:i)| < ∞, where to prove that (3.1.4) implies (3.1.1) it is

enough to consider f to be the function with value 1 at m1:i and 0 elsewhere. When the qm1:i are all zeros and

E[Xi] = µi, the condition P(X1:i + Z(i) ∈ Ni
0) = 1 is satis�ed, as can be seen by taking the sum over m1:i ∈ Ni

0

with mi ̸= 0 in (3.1.1). In this case, (3.1.4) becomes

E[Xif(X1:i)] = E[Xi]E[f(Y(i))]. (3.1.5)

The last equation, for d = 1, corresponds to the equation appearing in De�nition 2.3.3. Therefore, if for some

1 ≤ i ≤ d the qm1:i
are all zeros and E[Xi] = µi, the distribution of the random vector Y(i) can be seen as
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the size bias distribution of the vector X1:i. Following this interpretation, when E[X] = (µ1, . . . , µd) and the

random vectors Z(i) are chosen such that the q(i)m1:i are not zero, we can think of the distribution of Y(i) de�ned

by (3.1.3) as an approximate size bias distribution of X1:i, where instead of assuming that Y(i) satis�es (3.1.5)

exactly, we allow error terms qm1:i
. This is an important advantage of Theorem 3.1.1, since one does not need

to �nd random vectors with an exact size bias distribution (in the sense of (3.1.5)), it only matters that the

error terms q(i)m1:i are su�ciently small and that the random vectors Z(i) are null with high probability.

The proof of Theorem 3.1.1 is based on the Chen-Stein method described in Section 2.3 applied to each

component of the random vectors and combined with the approximate coupling expressed in (3.1.1). Without

loss of generality we may assume that X and P are independent and de�ned on the same reference probability

space (Ω,F,P).

For any �xed h ∈ Lip(1), we now denote by ĥ(µ) (instead of fh) the solution of Stein's equation (2.3.5). In

this way we highlight the dependency on the parameter lambda and also leave the subscript area free for further

notation. By Proposition 2.3.2 we have

sup
i∈N0

∣∣∣ĥ(µ)(i)∣∣∣ ≤ 1 and sup
i∈N0

∣∣∣ĥ(µ)(i+ 1)− ĥ(µ)(i)
∣∣∣ ≤ min

{
1,

8

3
√
2eµ

}
. (3.1.6)

For h ∈ Lipd(1), let ĥ(µ)x1:i−1|xi+1:d
denote the solution to (2.3.5) for the Lipschitz function h(x1:i−1, · , xi+1:d)

with �xed x1:i−1 ∈ Ni−1
0 and xi+1:d ∈ Nd−i

0 . Since ĥ(µ) takes vectors from Nd
0 as input, we do not need to worry

about measurability issues. The following proposition is the �rst building block for the proof of Theorem 3.1.1.

Proposition 3.1.2. For any h ∈ Lipd(1),

E[h(P)− h(X)] =

d∑
i=1

E
[
Xiĥ

(µi)
X1:i−1|Pi+1:d

(Xi)− µiĥ
(µi)
X1:i−1|Pi+1:d

(Xi + 1)
]
.

Proof of Proposition 3.1.2. First, observe that

E [h(P)− h(X)] =

d∑
i=1

E [h(X1:i−1, Pi:d)− h(X1:i, Pi+1:d)] , (3.1.7)

with the conventions (X1:0, P1:d) = P and (X1:d, Pd+1:d) = X. The independence of Pi from Pi+1:d and X1:i

implies

E
[
h(X1:i−1, Pi:d)− h(X1:i, Pi+1:d)

]
= E

[
EPi [h(X1:i−1, Pi:d)]− h(X1:i, Pi+1:d)

]
,

where EPi denotes the expectation with respect to the random variable Pi. From the de�nition of ĥ(µi)
x1:i−1|xi+1:d

with x1:i−1 = Xi:i−1 and xi+1:d = Pi+1:d, it follows

EPi [h(X1:i−1, Pi:d)]− h(X1:i, Pi+1:d) = Xiĥ
(µi)
X1:i−1|Pi+1:d

(Xi)− µiĥ
(µi)
X1:i−1|Pi+1:d

(Xi + 1)

for all i = 1, . . . , d. Together with (3.1.7), this leads to the desired conclusion.
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Proof of Theorem 3.1.1. In view of Proposition 3.1.2, it su�ces to bound∣∣∣E [Xiĥ
(µi)
X1:i−1|Pi+1:d

(Xi)− µiĥ
(µi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ , i = 1, . . . , d .

For the remainder of the proof, the index i is �xed and we omit the superscript (i) in Z(i)
1:i . De�ne the function

h̃ : Ni
0 → R such that

h̃(X1:i) = E
[
ĥ
(µi)
X1:i−1|Pi+1:d

(Xi)
∣∣X1:i

]
,

where E[ · |Y ] denotes the conditional expectation with respect to a random element Y . With the convention

ĥ
(µi)
m1:i−1|mi+1:d

(mi) = 0 if m1:d /∈ Nd
0, it follows from (3.1.1) that

E
[
Xiĥ

(µi)
X1:i−1|Pi+1:d

(Xi)
]
= E[Xih̃(X1:i)] =

∑
m1:i∈Ni

0

mih̃(m1:i)P(X1:i = m1:i)

=
∑

m1:i∈Ni
0

mi ̸=0

h̃(m1:i)qm1:i
+ µi

∑
m1:i∈Ni

0
mi ̸=0

h̃(m1:i)P (X1:i + Z1:i = (m1:i−1,mi − 1))

=
∑

m1:i∈Ni
0

mi ̸=0

h̃(m1:i)qm1:i
+ µiE

[
ĥ
(µi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + Zi + 1)
]
.

Since |h̃(X1:i)| ≤ 1 by (3.1.6), the triangle inequality establishes∣∣∣E [Xiĥ
(µi)
X1:i−1|Pi+1:d

(Xi)− µiĥ
(µi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ ≤ ∑

m1:i∈Ni
0

mi ̸=0

|qm1:i
|+ µi(H1 +H2), (3.1.8)

with

H1 =
∣∣∣E [ĥ(µi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + Zi + 1)− ĥ

(µi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣

and

H2 =
∣∣∣E [ĥ(µi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + 1)− ĥ

(µi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ .

The inequalities in (3.1.6) guarantee

H1 ≤ E|Zi| and H2 ≤ 2P(Z1:i−1 ̸= 0) ≤
i−1∑
j=1

2P(Zj ̸= 0) ≤ 2

i−1∑
j=1

E|Zj |.

Combining (3.1.8) with the bounds for H1 and H2, and summing over i = 1, . . . , d concludes the proof.

Remark 3.1.3. It follows directly from the previous proof that the term
∑i−1

j=1 E|Zj | in (3.1.2) could be replaced

by P(Z1:i−1 ̸= 0). Moreover, applying the more re�ned bound from (3.1.6) yields

H1 ≤ min

{
1,

8

3
√
2eµi

}
E|Zi| .
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These two observations together lead to the improved bound for Theorem 3.1.1:

dW (X,P) ≤
d∑

i=1

min

{
µi,

8
√
µi

3
√
2e

}
E
∣∣Z(i)

i

∣∣+ 2µiP
(
Z

(i)
1:i−1 ̸= 0

)
+

∑
m1:i∈Ni

0
mi ̸=0

|qm1:i |

 .

3.2 Sum of m-dependent Bernoulli random vectors

In this section, we consider a �nite family of Bernoulli random vectors Y(1), . . . ,Y(n) and investigate the

multivariate Poisson approximation of X =
∑n

r=1 Y
(r) in the Wasserstein distance. The distributions of

Y(1), . . . ,Y(n) are given by

P(Y(r) = ej) = pr,j ∈ [0, 1], r = 1, . . . , n , j = 1, . . . , d,

P(Y(r) = 0) = 1−
d∑

j=1

pr,j ∈ [0, 1], r = 1, . . . , n,
(3.2.1)

where ej denotes the vector with entry 1 at position j and entry 0 otherwise. If the Bernoulli random vectors are

i.i.d., X has the so called multinomial distribution. The multivariate Poisson approximation of the multinomial

distribution, and more generally of the sum of independent Bernoulli random vectors, has already been tackled

by many authors in terms of the total variation distance. Among others, we refer the reader to [10, 32, 88, 90]

and the survey [75]. Unlike the mentioned papers, we assume that Y(1), . . . ,Y(n) are m-dependent. Note

that the case of sums of 1-dependent random vectors has recently been treated in [35] using metrics that are

weaker than the total variation distance. To the best of our knowledge, this is the �rst time that the Poisson

approximation of the sum of m-dependent Bernoulli random vectors is investigated in terms of the Wasserstein

distance.

More precisely, for n ∈ N, let Y(1), . . . ,Y(n) be Bernoulli random vectors with distributions given by

(3.2.1), and assume that for a given �xed m ∈ N0 and any two subsets S and T of {1, . . . , n} such that

min(S) − max(T ) > m, the collections (Y(s))s∈S and (Y(t))t∈T are independent. De�ne the random vector

X = (X1, . . . , Xd) as

X =

n∑
r=1

Y(r). (3.2.2)

Note that if Y(r), r = 1, . . . , n, are i.i.d., then m = 0 and X has the multinomial distribution. The mean vector

of X is E[X] = (µ1, . . . , µd) with

µj =

n∑
r=1

pr,j , j = 1, . . . , d. (3.2.3)
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For k = 1, . . . , n and m ≥ 1 let Q(k) be the quantity given by

Q(k) = max
r∈{1,...,n} : 1≤|k−r|≤m

i,j=1,...,d

E
[
1{Y(k) = ei}1{Y(r) = ej}

]
.

We now state the main result of this subsection.

Theorem 3.2.1. Let X be as in (3.2.2), and let P = (P1, . . . , Pd) be a Poisson random vector with mean

E[P] = (µ1, . . . , µd) given by (3.2.3). Then,

dW (X,P) ≤
n∑

k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2

i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d+ 1)m

n∑
k=1

Q(k).

The proof of Theorem 3.2.1 is obtained by applying Theorem 3.1.1. When d = 1, Equation (3.1.1) corre-

sponds to the condition required in [84, Theorem 1.2], which establishes sharper Poisson approximation results

than the one obtained in the univariate case from Theorem 3.1.1. Therefore, for the sum of dependent Bernoulli

random variables, a sharper bound for the Wasserstein distance can be derived from [84, Theorem 1.2], while for

the total variation distance a bound may be deduced from [5, Theorem 1], [84, Theorem 1.2] or [100, Theorem

1].

As a consequence of Theorem 3.2.1, we obtain the following result for the sum of independent Bernoulli

random vectors.

Corollary 3.2.2. For n ∈ N, let Y(1), . . . ,Y(n) be independent Bernoulli random vectors with distribution

given by (3.2.1), and let X be the random vector de�ned by (3.2.2). Let P = (P1, . . . , Pd) be a Poisson random

vector with mean E[P] = (µ1, . . . , µd) given by (3.2.3). Then

dW (X,P) ≤
n∑

k=1

[ d∑
i=1

pk,i

]2
.

In [88, Theorem 1], a sharper bound for the total variation distance than the one obtained by Corollary 3.2.2

is proven. When the vectors are identically distributed and
∑d

j=1 p1,j ≤ α/n for some constant α > 0, our

bound for the Wasserstein distance and the one in [88, Theorem 1] for the total variation distance only di�er

by a constant that does not depend on n, d and the probabilities pi,j .

Proof of Theorem 3.2.1. Without loss of generality we may assume that µ1, . . . , µd > 0. De�ne the random

vectors

W(k) =
(
W

(k)
1 , . . . ,W

(k)
d

)
=

∑
r=1,...,n,

1≤|r−k|≤m

Y(r),

X(k) =
(
X

(k)
1 , . . . , X

(k)
d

)
= X−Y(k) −W(k),
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for k = 1, . . . , n. Let us �x 1 ≤ i ≤ d and ℓ1:i ∈ Ni
0 with ℓi ̸= 0. From straightforward calculations it follows

that

ℓiP(X1:i = ℓ1:i) = E
n∑

k=1

1{Y(k) = ei}1{X1:i = ℓ1:i} (3.2.4)

= E
n∑

k=1

1{Y(k) = ei}1
{
X

(k)
1:i +W

(k)
1:i = (ℓ1:i−1, ℓi − 1)

}
.

Let Hℓ1:i and qℓ1:i be the quantities given by

Hℓ1:i := E
n∑

k=1

1{Y(k) = ei}1
{
X

(k)
1:i = (ℓ1:i−1, ℓi − 1)

}
,

qℓ1:i := ℓiP(X1:i = ℓ1:i)−Hℓ1:i .

For i = 1, . . . , d, let τi be a random variable independent of (Y(r))nr=1 with distribution

P(τi = k) = pk,i/µi, k = 1, . . . , n .

SinceY(r), r = 1, . . . , n, arem-dependent, the random vectorsY(k) = (Y
(k)
1 , . . . , Y

(k)
d ) andX(k) are independent

for all k = 1, . . . , n. Therefore

Hℓ1:i =

n∑
k=1

pk,iP
(
X

(k)
1:i = (ℓ1:i−1, ℓi − 1)

)
=

n∑
k=1

pk,iP
(
X1:i −W

(k)
1:i − Y

(k)
1:i = (ℓ1:i−1, ℓi − 1)

)
= µiP

(
X1:i −W

(τi)
1:i − Y

(τi)
1:i = (ℓ1:i−1, ℓi − 1)

)
.

Then, by Theorem 3.1.1 we obtain

dW (X,P) ≤
d∑

i=1

(
µiE

[
W

(τi)
i + Y

(τi)
i

]
+ 2µi

i−1∑
j=1

E
[
W

(τi)
j + Y

(τi)
j

]
+

∑
ℓ1:i∈Nd0
ℓi ̸=0

∣∣qℓ1:i∣∣). (3.2.5)

From (3.2.4) and the de�nition of qℓ1:i it follows that

|qℓ1:i | ≤ E
n∑

k=1

1{Y(k) = ei}
∣∣∣1{X(k)

1:i +W
(k)
1:i = (ℓ1:i−1, ℓi − 1)

}
− 1
{
X

(k)
1:i = (ℓ1:i−1, ℓi − 1)

}∣∣∣
≤ E

n∑
k=1

1{Y(k) = ei}1{W (k)
1:i ̸= 0}1

{
X

(k)
1:i +W

(k)
1:i = (ℓ1:i−1, ℓi − 1)

}
+ E

n∑
k=1

1{Y(k) = ei}1{W (k)
1:i ̸= 0}1

{
X

(k)
1:i = (ℓ1:i−1, ℓi − 1)

}
.
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Thus, by the inequality 1{W (k)
1:i ̸= 0} ≤

∑i
j=1W

(k)
j we obtain

∑
ℓ1:i∈Ni0
ℓi ̸=0

∣∣qℓ1:i∣∣ ≤ 2E
n∑

k=1

1{Y(k) = ei}1{W (k)
1:i ̸= 0}

≤ 2E
n∑

k=1

i∑
j=1

1{Y(k) = ei}W (k)
j ≤ 4mi

n∑
k=1

Q(k).

(3.2.6)

Moreover, for any i, j = 1, . . . , d we have

µiE
[
W

(τi)
j + Y

(τi)
j

]
= µiE

∑
r=1,...,n,
|r−τi|≤m

1{Y(r) = ej}

=

n∑
k=1

pk,i E
∑

r=1,...,n,
|r−k|≤m

1{Y(r) = ej} =
∑

k,r=1,...,n,
|r−k|≤m

pk,ipr,j .

Together with (3.2.5) and (3.2.6), this leads to

dW (X,P) ≤
d∑

i=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,i + 2

d∑
i=1

i−1∑
j=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,j + 2d(d+ 1)m

n∑
k=1

Q(k)

=

n∑
k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2

i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d+ 1)m

n∑
k=1

Q(k),

which completes the proof.

3.3 Poisson process approximation

The Poisson process approximation has mostly been studied in terms of the total variation distance (see Equation

(2.2.4)) in the literature; see e.g. [6, 9, 11, 21, 26, 95, 96] and references therein. In contrast, [30, 31] deal with

Poisson process approximation using the Kantorovich�Rubinstein distance (see Equation (2.2.6)). In [85], the

authors introduce a novel de�nition of distributional metric for the class of point processes with �nite intensity

measure. The idea is that of evaluating the Wasserstein distance between the �nite dimensional distributions

of the point processes indexed by arbitrary collections of disjoint measurable sets.

De�nition 3.3.1. Let (X,X ) be a measurable space, and let ξ and ζ be point processes on X with �nite

intensity measure. The distance dπ between the distributions of ξ and ζ is de�ned as

dπ(ξ, ζ) := sup
(A1,...,Ad)∈Xd

q , d∈N
dW
(
(ξ(A1), . . . , ξ(Ad)), (ζ(A1), . . . , ζ(Ad))

)
,
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where

X d
q = {(A1, . . . , Ad) ∈ X d : Ai ∩Aj = ∅, i ̸= j}.

The function dπ is a well de�ned distance between the distributions of point processes with �nite intensity

measure, as it immediately follows by Proposition 2.1.5. To the best of the author's knowledge, this is the �rst

time the distance dπ is de�ned and employed in Poisson process approximation. We believe that it is possible

to extend dπ to larger classes of point processes by restricting X d
q to suitable families of sets. For example,

for locally �nite point processes on a locally compact second countable Hausdor� space (lcscH), we may de�ne

the distance dπ by replacing X d
q with the family of d-tuples of disjoint and relatively compact Borel sets. An

interesting property of dπ, is that it dominates the total variation distance de�ned at (2.2.4), and it is actually

stronger than the latter.

Proposition 3.3.2. Let ξ and ζ be two point processes on X with �nite intensity measure. Then,

dTV (ξ, ζ) ≤ dπ(ξ, ζ).

Moreover, there are sequences of point processes with �nite intensity measure that converge in total variation

distance, but are not Cauchy sequences with respect to dπ.

The result is obtained by a monotone class Theorem, [64, Theorem 1.3], which is stated hereafter as a

Lemma. Recall that a monotone class A is a collection of sets closed under monotone limits, that is, for any

A1, A2, . . . ∈ A with An ↑ A or An ↓ A, then A ∈ A.

Lemma 3.3.3. Let U be a set and let U be an algebra of subsets of U . Then, the monotone class generated by

U coincides with the σ-�eld generated by U .

Proof of Proposition 3.3.2. Let us �rst introduce the set of �nite counting measures

N̂X = {M ∈ NX : M(X) <∞}, (3.3.1)

with the trace σ-�eld

N̂X = {B ∩ N̂X : B ∈ NX}. (3.3.2)

As we are dealing with �nite point processes, the total variation distance is equivalently obtained if NX is

replaced by N̂X in (2.2.4):

dTV (ξ, ζ) = sup
B∈N̂X

|P(ξ ∈ B)− P(ζ ∈ B)|.
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Let P(Nd
0) denote the power set of Nd

0, that is, the collection of all subsets of Nd
0. For any d ∈ N andM ∈ P(Nd

0)

note that 1M (·) ∈ Lipd(1), therefore

dπ(ξ, ζ) ≥ sup
U∈U

|P(ξ ∈ U)− P(ζ ∈ U)| , (3.3.3)

with

U =
{{

M ∈ N̂X : (M(A1), . . . ,M(Ad)) ∈M
}
: d ∈ N, (A1, . . . , Ad) ∈ X d

q , M ∈ P(Nd
0)
}
.

It can be easily veri�ed that U is an algebra, U ⊆ N̂X and σ(U) = N̂X. Moreover, by (3.3.3), U is a subset of

the monotone class {
U ∈ N̂X : |P(ξ ∈ U)− P(ζ ∈ U)| ≤ dπ(ξ, ζ)

}
.

Lemma 3.3.3 concludes the �rst part of the proof.

The second part of the statement can be seen by the following simple example: Let Y1, Y2, . . . be independent

Bernulli random variables, with P {Yn = 1} = 1/n, and let ξn := n21{Yn = 1}δx, for n ∈ N and some �xed

x ∈ X. Denote by ∅ the null-measure on X. Then P {ξn = ∅} = 1/n implies dTV (ξn,∅) ≤ 1/n → 0, while

dπ(ξn,∅) ≥ |E[ξn(X)]| = n→ ∞.

A second interesting relation between the above de�ned metrics is that, when X is lcscH, dπ is dominated

by 2dKR. It remains an open problem whether the two distances are equivalent or not.

Proposition 3.3.4. Let ξ and ζ be two point processes with �nite intensity measure on a lcscH space X. Then

dπ(ξ, ζ) ≤ 2dKR(ξ, ζ) .

Proof. Take g ∈ Lipd(1) and disjoint setsA1, . . . , Ad ∈ X , d ∈ N, de�ne h : N̂X → R by h(M) = g(M(A1), . . . ,M(Ad)),

with N̂X de�ned at (3.3.1). For �nite point con�gurations M1 and M2, we obtain

|h(M1)− h(M2)| = |g(M1(A1), . . . ,M1(Ad))− g(M2(A1), . . . ,M2(Ad))|

≤
d∑

i=1

|M1(Ai)−M2(Ai)| ≤ 2dTV (M1,M2).

By [68, Theorem 1], there exists a function h̃ on ÑX that coincides with h on N̂X, and such that h̃/2 ∈ L(ξ, η).

Together with (2.2.7), this implies |E[h̃(ξ)]− E[h̃(ζ)]| ≤ 2dKR(ξ, ζ) and concludes the proof.

Finally, it is worth noticing that, when considering locally �nite point processes on a lcscH space, all the

above de�ned metrics imply convergence in distribution. For dπ it directly follows by Proposition 2.1.5 (iii), for
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dTV it descends from the structure of the vague topology on ÑX and Proposition 2.1.5 (ii), whence the property

holds for dKR as it dominates the total variation distance.

We now use the main result from Section 3.1 to derive a limit theorem for the Poisson process approxima-

tion. For a point processes ξ and a Poisson process η on a measurable space X with �nite intensity measure,

Theorem 3.1.1 provides bounds on the Wasserstein distance

dW ((ξ(A1), . . . , ξ(Ad)), (η(A1), . . . , η(Ad)) ,

where A1, . . . , Ad are measurable subsets of X. This allows for a way to compare the distributions of ξ and η in

terms of the distance dπ.

Theorem 3.3.5. Let ξ be a point process on X with �nite intensity measure, and let η be a Poisson process

on X with �nite intensity measure µ. For any i-tuple (A1, . . . , Ai) ∈ X i
q with i ∈ N, consider a random vector

ZA1:i = (ZA1:i
1 , . . . , ZA1:i

i ) de�ned on the same probability space as ξ with values in Zi, and de�ne

qA1:i
m1:i

= miP
(
(ξ(A1), . . . , ξ(Ai)) = m1:i

)
− µ(Ai)P

(
(ξ(A1), . . . , ξ(Ai)) + ZA1:i = (m1:i−1,mi − 1)

) (3.3.4)

for m1:i ∈ Ni
0 with mi ̸= 0. Then,

dπ(ξ, η) ≤ sup
(A1,...,Ad)∈Xd

q ,d∈N

d∑
i=1

 ∑
m1:i∈Ni

0
mi ̸=0

∣∣qA1:i
m1:i

∣∣+ 2µ(Ai)

i∑
j=1

E
∣∣ZA1:i

j

∣∣
 . (3.3.5)

Note that a slightly sharper bound than (3.3.5) can be derived, as expressed in below Remark 3.3.6. We

now prove Theorem 3.3.5 by mimicking the approach used in [5] to prove Theorem 2, as we derive the process

bound as a consequence of the d-dimensional bound.

Proof of Theorem 3.3.5. Let d ∈ N and A = (A1, . . . , Ad) ∈ X d
q . De�ne

XA = (ξ(A1), . . . , ξ(Ad)) and PA = (η(A1), . . . , η(Ad)),

where PA is a Poisson random vector with mean E[PA] = (µ(A1), . . . , µ(Ad)). By Theorem 3.1.1 with Z(i) =

ZA1:i , we obtain

dW (XA,PA) ≤
d∑

i=1

 ∑
m1:i∈Ni

0
mi ̸=0

∣∣qA1:i
m1:i

∣∣+ 2µ(Ai)

i∑
j=1

E|ZA1:i
j |

 .

Taking the supremum over all d-tuples of disjoint measurable sets concludes the proof.
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Remark 3.3.6. By taking into account Remark 3.1.3, one immediately obtains

dπ(ξ, η) ≤ sup
(A1,...,Ad)∈Xd

q ,d∈N

d∑
i=1

(
min

{
µ(Ai),

8
√
µ(Ai)

3
√
2e

}
E
∣∣ZA1:i

i

∣∣
+ 2µ(Ai)P

(
ZA1:i
1:i−1 ̸= 0

)
+

∑
m1:i∈Ni

0
mi ̸=0

∣∣qA1:i
m1:i

∣∣).
In Sections 3.4 and 3.5, we apply Theorem 3.3.5 to obtain explicit Poisson process approximation results for

point processes with Papangelou intensity and point processes of Poisson U -statistic structure. The latter are

point processes that, once evaluated on a measurable set, become Poisson U -statistics. Analogous results were

already proven for the Kantorovich-Rubinstein distance in [31, Theorem 3.7] and [30, Theorem 3.1], under the

additional condition that the con�guration space X is lcscH. It is interesting to note that the proof of our result

for point processes with Papangelou intensity employs Theorem 3.3.5 with ZA1:i set to zero for all i, while for

point processes of U -statistic structure, we �nd ZA1:i such that Equation (3.3.4) in Theorem 3.3.5 is satis�ed

with qA1:i
m1:i

≡ 0 for all collections of disjoint sets.

3.4 Point processes with Papangelou intensity

Let ξ be a proper point process on a measurable space (X,X ), that is, a point process that can be written as

ξ = δX1
+ · · · + δXτ

, for some random elements X1, X2, . . . in X and a random variable τ ∈ N0 ∪ {∞}. Note

that any Poisson process can be seen as a proper point process, and that all locally �nite point processes are

proper if (X,X ) is a Borel space; see e.g. [61, Corollaries 3.7 and 6.5]. The so-called reduced Campbell measure

C of ξ is de�ned on the product space (X×NX,X ⊗NX) by

C(A) = E
∫
X
1A(x, ξ \ x) ξ(dx), A ∈ X ⊗NX,

where ξ \x denotes the point process ξ− δx if x ∈ ξ, and ξ otherwise. Let ν be a σ-�nite measure on (X,X ) and

let Pξ be the distribution of ξ on (NX,NX). If C is absolutely continuous with respect to ν ⊗ Pξ, any density

c of C with respect to ν ⊗ Pξ is called (a version of) the Papangelou intensity of ξ. This notion was originally

introduced by Papangelou in [78]. In other words, c is a Papangelou intensity of ξ relative to the measure ν if

the Georgii�Nguyen�Zessin equation

E
∫
X
u(x, ξ \ x) ξ(dx) =

∫
X
E[c(x, ξ)u(x, ξ)]ν(dx), (3.4.1)

is satis�ed for all measurable functions u : X×NX → [0,∞). Intuitively c(x, ξ) is a random variable that measures

the interaction between x and ξ; as a reinforcement of this exposition, it is well-known that if c is deterministic,
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that is, c(x, ξ) = f(x) for some positive and measurable function f , then ξ is a Poisson process with intensity

measure µ(A) =
∫
A
f(x)ν(dx), A ∈ X ; see e.g. [61, Theorem 4.1]. For more details on this interpretation we

refer the reader to [31, Section 4]; see also [59] and [96] for connections between the Papangelou intensity and

Gibbs point processes.

In the next theorem we prove a bound for the dπ distance between a point process ξ that admits Papangelou

intensity relative to a measure ν, and a Poisson process η with intensity measure µ absolutely continuous with

respect to ν. For a locally compact metric space, Theorem 3.4.1 yields the same bound as [31, Theorem 3.7],

but for the metric dπ instead of the Kantorovich-Rubinstein distance.

Theorem 3.4.1. Let ξ be a proper point process on X that admits Papangelou intensity c with respect to a

σ-�nite measure ν such that
∫
X E|c(x, ξ)|ν(dx) < ∞. Let η be a Poisson process on X with �nite intensity

measure µ having density f with respect to ν. Then

dπ(ξ, η) ≤
∫
X
E |c(x, ξ)− f(x)| ν(dx).

Proof of Theorem 3.4.1. The condition
∫
X E|c(x, ξ)|ν(dx) < ∞ and Equation (3.4.1) ensure that ξ has �nite

intensity measure. Consider i ∈ N and (A1, . . . , Ai) ∈ X i
q . Hereafter, ξ(A1:i) is shorthand notation for

(ξ(A1), . . . , ξ(Ai)). The idea of the proof is to apply Theorem 3.3.5 with the random vectors ZA1:i assumed to

be 0. In this case,

qA1:i
m1:i

= miP
(
ξ(A1:i) = m1:i

)
− µ(Ai)P

(
ξ(A1:i) = (m1:i−1,mi − 1)

)
= miP

(
ξ(A1:i) = m1:i

)
−
∫
X
E
[
f(x)1Ai

(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}
]
ν(dx)

for m1:i ∈ Ni
0 with mi ̸= 0, i = 1, . . . , d. It follows from (3.4.1) that

miP
(
ξ(A1:i) = m1:i

)
= E

∫
X
1Ai

(x)1{ξ \ x(A1:i) = (m1:i−1,mi − 1)} ξ(dx)

=

∫
X
E
[
c(x, ξ)1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
ν(dx),

hence

qA1:i
m1:i

=

∫
X
E
[
(c(x, ξ)− f(x))1Ai(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}

]
ν(dx).

Theorem 3.3.5 yields

dπ(ξ, η) ≤ sup
(A1,...,Ad)∈Xd

q ,d∈N

d∑
i=1

∑
m1:i∈Ni

0
mi ̸=0

∣∣qA1:i
m1:i

∣∣ .
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The inequalities∑
m1:i∈Ni0
mi ̸=0

∣∣qA1:i
m1:i

∣∣ ≤ ∑
m1:i∈Ni0,

mi ̸=0

∫
X
E
[
|c(x, ξ)− f(x)|1Ai

(x)1{ξ(A1:i) = (m1:i−1,mi − 1)}
]
ν(dx)

≤
∫
X
E
[
|c(x, ξ)− f(x)|1Ai

(x)
∑

m1:i∈Ni0
mi ̸=0

1{ξ(A1:i) = (m1:i−1,mi − 1)}
]
ν(dx)

≤
∫
X
E
[
|c(x, ξ)− f(x)|1Ai

(x)
]
ν(dx)

imply that
d∑

i=1

∑
m1:i∈Ni0
mi ̸=0

∣∣qA1:i
m1:i

∣∣ ≤ ∫
X
E |c(x, ξ)− f(x)| ν(dx)

for any A1:d ∈ X d
q with d ∈ N. Thus, we obtain the assertion.

3.5 Point processes of Poisson U-statistic structure

Let (X,X ) and (Y,Y) be measurable spaces. For k ∈ N and a symmetric domain D ∈ X k, let g : D → Y be a

symmetric measurable function, i.e., for any (x1, . . . , xk) ∈ D and any index permutation σ, (xσ(1), . . . , xσ(k)) ∈

D and g(x1, . . . , xk) = g(xσ(1), . . . , xσ(k)). Let η be a Poisson process on X with �nite intensity measure ν. We

are interested in the point process on Y given by

ξ =
1

k!

∑
(x1,...,xk)∈ηk

̸=∩D

δg(x1,...,xk), (3.5.1)

where ηk̸= denotes the collection of all k-tuples (x1, . . . , xk) of points from η with pairwise distinct indexes.

The point process ξ has a Poisson U -statistic structure in the sense that, for any B ∈ Y, ξ(B) is a Poisson

U -statistic of order k. We refer to the monographs [55, 62] for more details on U -statistics and their applications

to statistics. Hereafter we discuss the Poisson process approximation in the metric dπ for the point process ξ.

We prove the exact analogue of [30, Theorem 3.1], with the Kantorovich�Rubinstein distance replaced by dπ.

Several applications of this result are presented in [30], alongside with the case of underlying binomial point

processes. It is worth mentioning that [30] relies on a slightly less general setup: X is assumed to be a locally

compact second countable Hausdor� space, while in the present work any measurable space is allowed.

Let µ denote the intensity measure of ξ, and note that, since ν is a �nite measure on X, the multivariate

Mecke equation (Proposition 2.1.12) implies µ(Y) <∞. De�ne

R = max
1≤i≤k−1

∫
Xi

(∫
Xk−i

1{(x1, . . . , xk) ∈ D} νk−i(d(xi+1, . . . , xk))

)2

νi(d(x1, . . . , xi))
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for k ≥ 2, and put R = 0 for k = 1.

Theorem 3.5.1. Let ξ, µ and R be as above, and let γ be a Poisson process on Y with intensity measure µ.

Then,

dπ(ξ, γ) ≤
2k+1

k!
R.

If the intensity measure µ of ξ is the zero measure, then the proof of Theorem 3.5.1 is trivial. From now on,

we assume 0 < µ(Y) <∞. The multivariate Mecke equation yields for every A ∈ Y that

µ(A) = E[ξ(A)] =
1

k!
E
∑

x∈ηk
̸=∩D

1{g(x) ∈ A} =
1

k!

∫
D

1{g(x) ∈ A} νk(dx).

De�ne the random element XA = (XA
1 , . . . , X

A
k ) in Xk independent of η and distributed according to

P
(
XA ∈ B

)
=

1

k!µ(A)

∫
D

1{g(x) ∈ A}1{x ∈ B} νk(dx)

for all B in the product σ-�eld of Xk when µ(A) > 0, and set XA = x0 for some x0 ∈ Xk when µ(A) = 0.

For any vector x = (x1, . . . , xk) ∈ Xk, denote by ∆(x) the sum of k Dirac measures located at the vector

components, that is

∆(x) = ∆(x1, . . . , xk) =

k∑
i=1

δxi
.

In what follows, for any point process ζ on X, ξ(ζ) is the point process de�ned as in (3.5.1) with η replaced by

ζ. Further, like in Section 3.4, ξ(A1:i) denotes the random vector (ξ(A1), . . . , ξ(Ai)), for any A1, . . . , Ai ∈ Y,

i ∈ N.

Proof of Theorem 3.5.1. For k = 1, Theorem 3.5.1 is a direct consequence of [61, Theorem 5.1]. Whence, we

assume k ≥ 2. Let A1, . . . , Ai ∈ Y with i ∈ N be disjoint sets and let m1:i ∈ Ni
0 with mi ̸= 0. Suppose

µ(Ai) > 0. Again Proposition 2.1.12 implies that

miP(ξ(A1:i) = m1:i) =
1

k!
E

∑
x∈ηk

̸=∩D

1{g(x) ∈ Ai}1{ξ(A1:i) = m1:i}

=
1

k!

∫
D

1{g(x) ∈ Ai}P(ξ(η +∆(x))(A1:i) = m1:i) ν
k(dx)

=
1

k!

∫
D

1{g(x) ∈ Ai}P
(
ξ(η +∆(x))(A1:i)− δg(x)(A1:i) = (m1:i−1,mi − 1)

)
νk(dx)

= µ(Ai)P
(
ξ
(
η +∆

(
XAi

))
(A1:i)− δg(XAi)(A1:i) = (m1:i−1,mi − 1)

)
,

(3.5.2)

where the second last equality holds true because δg(x)(A1:i) is the vector (0, . . . , 0, 1) ∈ Ni
0 when g(x) ∈ Ai.

The previous identity is veri�ed also if µ(Ai) = 0. Hence, for

ZA1:i = ξ
(
η +∆

(
XAi

))
(A1:i)− ξ(A1:i)− δg(XAi)(A1:i) ,
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the quantity qA1:i
m1:i

de�ned by Equation (3.3.4) in Theorem 3.3.5 is zero. Note that ZA1:i has non-negative

components. Hence, for any d ∈ N and (A1, . . . , Ad) ∈ X d
q ,

d∑
i=1

µ(Ai)

i∑
j=1

E
∣∣∣ZA1:i

j

∣∣∣ = d∑
i=1

µ(Ai)

i∑
j=1

E
[
ξ
(
η +∆

(
XAi

))
(Aj)− ξ(Aj)− δg(XAi)(Aj)

]

≤
d∑

i=1

µ(Ai)E
[
ξ
(
η +∆

(
XAi

))
(Y)− ξ(Y)− 1

]
=

1

k!

d∑
i=1

∫
D

1{g(x) ∈ Ai}E [ξ(η +∆(x))(Y)− ξ(Y)− 1] νk(dx)

≤ µ(Y)E
[
ξ
(
η +∆

(
XY)) (Y)− ξ(Y)− 1

]
.

Thus, Theorem 3.3.5 gives

dπ(ξ, γ) ≤ 2µ(Y)E
[
ξ
(
η +∆

(
XY)) (Y)− ξ(Y)− 1

]
. (3.5.3)

From (3.5.2) with i = 1 and A1 = Y, it follows that the random variable ξ
(
η +∆

(
XY)) (Y) has the size bias

distribution of ξ(Y). Property (2.3.7) with f being the identity function and simple algebraic computations

yield

E
[
ξ
(
η +∆

(
XY)) (Y)− ξ(Y)− 1

]
= µ(Y)−1

{
E
[
ξ(Y)2

]
− µ(Y)2 − µ(Y)

}
= µ(Y)−1 {Var(ξ(Y))− µ(Y)} .

(3.5.4)

Moreover, [87, Lemma 3.5] gives

Var(ξ(Y))− µ(Y) ≤
k−1∑
i=1

1

k!

(
k

i

)
R ≤ 2k − 1

k!
R .

These inequalities combined with (3.5.3) and (3.5.4) deliver the assertion.
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Chapter 4

Gaussian Approximation in a

Birth-Growth Model with Random

Growth Speed

This chapter is based on the following article:

C. Bhattacharjee, I. Molchanov and R. Turin. Central limit theorem for a birth-growth model with Poisson

arrivals and random growth speed. arXiv:2107.06792, 2021.

4.1 Model and main results

We consider a generalization of the Johnson-Mehl model by introducing random growth speed for the seeds. As

already described in Chapter 1, in the spatial Johnson-Mehl growth model, seeds appear at random times and

locations, according to a Poisson process. Once a seed is born at time t, it begins to form a cell by growing

radially in all directions at a constant speed v ≥ 0, so that by time t′ it occupies the ball of radius v(t′ − t).

Instead of taking v constant, we assume it to be random, sampled from a probability distribution ν on R+.

Therefore, we consider a birth-growth model in which seeds come with their own growth speed attached, hence

forming a marked point process with location, time and speed components.

More precisely, we work in the space X := Rd × R+ × R+, d ∈ N, with the Borel σ-algebra, and let η be a
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Poisson process on X := Rd ×R+ ×R+ with intensity measure µ := λ⊗ θ⊗ ν, where λ is the Lebesgue measure

on Rd, θ is a non-null locally �nite measure on R+, and ν is a probability distribution on R+ with ν({0}) < 1.

The points from X are written as x := (x, tx, vx), so that x designates a seed born in position x at time tx,

which then grows radially in all directions with speed vx. For x ∈ X, the region

Gx = Gx,tx,vx :=
{
(y, ty) ∈ Rd × R+ : ty ≥ tx, ∥y − x∥ ≤ vx(ty − tx)

}
is the growth region of the seed x. Recall that NX is the collection of all σ-�nite counting measures M on

(X,X ), equipped with the smallest σ-algebra NX such that the maps M 7→ M(A) are measurable for all Borel

A. We write x ∈ M if M({x}) ≥ 1. For a given point con�guration M ∈ NX, a point x ∈ M is said to be exposed

in M if it does not belong to the growth region of any other point y ∈ M, y ̸= x. Given a measurable weight

function h : Rd ×R+ → R+ the main object of interest for us is the sum of h over the exposed points (x, tx) in

η. Our aim is to provide su�cient conditions for Gaussian convergence of such sums. It should be noted that

the property of being exposed is not in�uenced by the speed component of x and also that, because of random

speeds, it may happen that the cell grown from a non-exposed seed shades a subsequent seed which would be

exposed otherwise. The event that a point (x, tx, vx) ∈ η is exposed depends only on the point con�guration in

the region

Lx,tx :=
{
(y, ty, vy) ∈ X : ∥x− y∥ ≤ vy(tx − ty)

}
. (4.1.1)

The in�uence set Lx = Lx,tx just de�ned, is exactly the set of points that were born before time tx and which

at time tx occupy a region that covers the location x, thereby shading it. Note that y ∈ Lx if and only if

x ∈ Gy. Clearly, a point x ∈ M is exposed in M if and only if M(Lx \ {x}) = 0. We write (y, ty, vy) ⪯ (x, tx)

or y ⪯ x if y ∈ Lx,tx (recall that the speed component of x is irrelevant in such a relation) and so x is not an

exposed point with respect to δy, where δy denotes the Dirac measure at y.

For M ∈ NX and x ∈ M, denote

Hx(M) ≡ Hx,tx(M) := 1{x is exposed in M} = 1M(Lx,tx\{x})=0.

We consider weight functions h(x) which are products of two measurable functions h1 : Rd → R+ and h2 :

R+ → R+. Let

F (M) :=

∫
X
h1(x)h2(tx)Hx(M)M(dx) =

∑
x∈M

h1(x)h2(tx)Hx(M) (4.1.2)

be the sum of the weights determined by h1(x)h2(tx) at locations and birth times of the exposed points x =

(x, tx, vx) in M. For example, if h1 is the indicator function of a window W ⊆ Rd and h2(t) = 1{t < a} for

some a ∈ (0,∞], then F is the total number of exposed points located in W that were born before time a.
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The functional F (η) is a region-stabilizing functional, in the sense of Section 2.4, and can be represented as

F (η) =
∑

x∈η S(x, η), where the score function S is given by

S(x,M) := h1(x)h2(tx)Hx(M), x ∈ M. (4.1.3)

Theorem 2.4.2 yields ready-to-use bounds on the Wasserstein and Kolmogorov distances between F , suitably

normalized, and a standard Gaussian random variable N upon validating Equation (2.4.1) and conditions (A1)

and (A2) from Section 2.4.

Now we are ready to state our main results. First, we list the necessary assumptions on our model. In the

sequel, we drop λ in Lebesgue integrals and simply write dx instead of λ(dx).

(A) The location-weight function h1 satis�es∫
Rd

max{h1(x), h1(x)8}dx <∞.

(B) For all a > 0, ∫ ∞

0

max{1, h2(t)4} e−aΛ(t) θ(dt) <∞,

where

Λ(t) := ωd

∫ t

0

(t− s)dθ(ds) (4.1.4)

and ωd is the volume of the d-dimensional unit Euclidean ball.

(C) The moment of ν of order 6d is �nite, i.e., ν6d < ∞, where for k ∈ N, we denote by νk the k-th moment

of ν,

νk :=

∫ ∞

0

vkν(dv).

Note that the function Λ(t) given at (4.1.4) is, up to a constant, the measure of the in�uence set of any

point x ∈ X with time component tx = t (the measure of the in�uence set does not depend on the location and

speed components of x). Indeed, the µ-content of Lx,tx is given by

µ(Lx,tx) =

∫ ∞

0

∫ tx

0

∫
Rd

1y∈Bvy(tx−ty)(x) dy θ(dty)ν(dvy)

=

∫ ∞

0

ν(dvy)

∫ tx

0

ωdv
d
y(tx − ty)

dθ(dty) = νdΛ(tx),

where Br(x) denotes the closed d-dimensional Euclidean ball of radius r centered at x ∈ Rd. In particular, if θ

is the Lebesgue measure on R+, then Λ(t) = ωd t
d+1/(d+ 1).
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De�ne

h
(i)
1 :=

∫
Rd

h1(x)
i dx, i ∈ N, (4.1.5)

and

M̃i :=

∫
Rd

M̃(x)i dx, i = 1, 2, where M̃(x) := max{h1(x)2, h1(x)4}.

The following theorem is our �rst main result.

Theorem 4.1.1. Let η be a Poisson process on X with intensity measure µ as above, such that the assumptions

(A)�(C) hold. Then for F := F (η) as in (4.1.2),

dW

(
F − EF√
VarF

,N

)
≤ C

[
M̃

1/2
2

VarF
+

M̃1

(VarF )3/2

]
,

and

dK

(
F − EF√
VarF

,N

)
≤ C

[
M̃

1/2
2 + M̃

1/2
1

VarF
+

M̃1

(VarF )3/2
+
M̃

5/4
1 + M̃

3/2
1

(VarF )2

]
for a constant C > 0 which depends on h2, d, the �rst 6d moments of ν, and θ.

To derive a quantitative central limit theorem from Theorem 4.1.1, a lower bound on the variance is needed.

The following proposition provides general lower and upper bounds on the variance, which are then specialized

for the measure θ on R+ given by the density

θ(dt) := tτdt, τ ∈ (−1,∞). (4.1.6)

In the following, for t1, t2 ∈ R, we write t1 ∧ t2 for min{t1, t2}. For a ∈ (0,∞] and τ > −1, de�ne the function

la,τ (x) := γ

(
τ + 1

d+ τ + 1
, ad+τ+1x

)
x−(τ+1)/(d+τ+1), x > 0, (4.1.7)

where γ(p, z) :=
∫ z

0
tp−1e−tdt is the lower incomplete Gamma function.

Proposition 4.1.2. Let the assumptions (A)�(C) be in force. For a Poisson process η with intensity measure

µ as above and F := F (η) as in (4.1.2),

Var(F )

h
(2)
1

≥

[∫ ∞

0

h2(t)
2w(t)θ(dt)− 2ωdνd

∫ ∞

0

∫ t

0

(t− s)dh2(s)h2(t)w(s)w(t)θ(ds)θ(dt)

]
(4.1.8)

and

Var(F )

h
(2)
1

≤

[
2

∫ ∞

0

h2(t)
2w(t)1/2θ(dt) (4.1.9)

+ ω2
dν2d

∫
R2

+

∫ t1∧t2

0

(t1 − s)d(t2 − s)dh2(t1)h2(t2)w(t1)
1/2w(t2)

1/2θ(ds)θ2(d(t1, t2))

]
,
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where

w(t) := e−νdΛ(t) = E [H0,t(η)] (4.1.10)

and h
(2)
1 is de�ned at (4.1.5). If θ is given by (4.1.6) and h2(t) = 1{t < a} for some a ∈ (0,∞], then

C1(d− 1− τ) < C ′
1 ≤ Var(F )

h
(2)
1 la,τ (νd)

≤ C2(1 + ν2dν
−2
d ) (4.1.11)

for constants C1, C
′
1, C2 depending on the dimension d and τ , and C1, C2 > 0.

We remark here that the lower bound in (4.1.11) is useful only when τ ≤ d − 1. But we believe that a

positive lower bound still exists when τ > d− 1, even though our arguments in general do not apply for such τ .

In the case of a deterministic speed v and for h1 = 1W being the indicator function of an observation window

W ⊆ Rd, Proposition 4.1.2 provides an explicit condition on θ and h2 ensuring that the variance scales like the

volume of the observation window in the classical Johnson�Mehl growth model. The problem of �nding such

a condition, explicitly formulated in [28, page 754], arose in [27], where asymptotic normality for the number

of exposed seeds in a region, as the volume of the region approaches in�nity, is obtained under the assumption

that the variance scales properly. This was by then only shown numerically for the case when θ is the Lebesgue

measure and d = 1, 2, 3, 4. Subsequent papers [81, 94] derived the variance scaling for θ being the Lebesgue

measure and some generalizations of it, but in a slightly di�erent formulation of the model, in which seeds that

do not appear in the observation window are automatically rejected and cannot in�uence the growth pattern

in the region W .

The bounds in Theorem 4.1.1 can be speci�ed under two di�erent scenarios. When considering a sequence

of weight functions, under suitable conditions Theorem 4.1.1 provides a quantitative CLT for the corresponding

functionals (Fn)n∈N. Keeping all other quantities �xed with respect to n, let (h1,n)n∈N be a sequence of non-

negative location-weight functions on Rd such that∫
Rd

max{h1,n(x), h1,n(x)8}dx ≤ Ch
(2)
1,n, (4.1.12)

for some constant C, where h(2)1,n is de�ned at (4.1.5). In view of Proposition 4.1.2, this provides the following

quantitative CLT.

Theorem 4.1.3. For n ∈ N and η as in Theorem 4.1.1, let Fn := Fn(η), where Fn is de�ned as in (4.1.2)

with h2 independent of n and h1 = h1,n for some (h1,n)n∈N, satisfying (4.1.12) and such that h
(2)
1,n ≥ 1 for all

su�ciently large n. Let the assumptions (A)�(C) be in force. If θ, ν and h2 satisfy∫ ∞

0

h2(t)
2w(t)θ(dt)− 2ωdνd

∫ ∞

0

∫ t

0

(t− s)dh2(s)h2(t)w(s)w(t)θ(ds)θ(dt) > 0 , (4.1.13)
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where w(t) is given at (4.1.10), then there exists a constant C > 0 such that

max

{
dW

(
Fn − EFn√

VarFn

, N

)
, dK

(
Fn − EFn√

VarFn

, N

)}
≤ C

(
h
(2)
1,n

)−1/2

,

for all n ∈ N. In particular, condition (4.1.13) is satis�ed for θ given at (4.1.6) with τ ∈ (−1, d − 1] and

h2(t) = 1{t < a} for any a ∈ (0,∞].

Note that the rate of convergence expressed in Theorem 4.1.3 is presumably optimal, as it has the same order

as the inverse of square root of the variance. Let h1,n = 1Wn
, n ∈ N, be indicator functions of a sequence of

windows (Wn)n∈N with λ(Wn) → ∞ as n→ ∞, and h2(t) = 1{t < a} for some a ∈ (0,∞]. In this case (4.1.12)

is trivially satis�ed and, when (4.1.13) is satis�ed, Theorem 4.1.3 yields a CLT for the number of exposed seeds

born before time a ∈ (0,∞], with rate of convergence of order 1/
√
λ(Wn). This extends the CLT for the number

of exposed seeds from [27] in several directions: the model is generalized to random growth speed, there is no

constraint of any kind on the shape of the growing windows, and a logarithmic factor is removed from the rate

of convergence.

In a di�erent scenario, when θ has a power-law density (4.1.6) with τ ∈ (−1, d−1], it is possible to explicitly

specify the dependence of the bound in Theorem 4.1.1 on the moments of ν, as stated in the following result.

Theorem 4.1.4. Let the assumptions (A) and (C) be in force. For θ given at (4.1.6) with τ ∈ (−1, d − 1],

consider F (a) := F (a)(η) where η is as in Theorem 4.1.1 and F (a) is de�ned as in (4.1.2) with h2(t) = 1{t < a}

for some a ∈ (0,∞]. Then, there exists a constant C > 0, depending only on d and τ , such that

dW

(
F (a) − EF (a)

√
VarF (a)

, N

)
≤ Cla,τ (νd)

−1/2

[(
1 + ν6dν

−6
d

)3/2
M̃

1/2
2

h
(2)
1

+

(
1 + ν6dν

−6
d

)
M̃1

(h
(2)
1 )3/2

]
,

and

dK

(
F (a) − EF (a)

√
VarF (a)

, N

)
≤ Cla,τ (νd)

−1/2

[(
1 + ν6dν

−6
d

)3/2
M̃

1/2
2 +

(
1 + ν6dν

−6
d

)1/2
M̃

1/2
1

h
(2)
1

+

(
1 + ν6dν

−6
d

)
M̃1

(h
(2)
1 )3/2

+ la,τ (νd)
−1/4

(
1 + ν6dν

−6
d

)5/4
M̃

5/4
1

(h
(2)
1 )2

+

(
1 + ν6dν

−6
d

)3/2
M̃

3/2
1

(h
(2)
1 )2

]
,

where h
(2)
1 is de�ned at (4.1.5) and la,τ is de�ned at (4.1.7).

As an application of Theorem 4.1.4, we consider the case when the intensity of the underlying point process

grows to in�nity. The quantitative central limit theorem for this case is contained in the following result.

Corollary 4.1.5. Let the assumptions (A) and (C) be in force. For a location-weight function h1 and h2(t) =

1{t < a} for some a ∈ (0,∞], consider F (a)(ηs) de�ned at (4.1.2) evaluated at the Poisson process ηs with
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intensity sλ ⊗ θ ⊗ ν for s > 0 and θ given at (4.1.6) with τ ∈ (−1, d − 1]. Then, there exists a �nite constant

C > 0 depending only on h1, d, a, τ , νd, and ν6d, such that, for all s ≥ 1,

max

{
dW

(
F (a)(ηs)− EF (a)(ηs)√

VarF (a)(ηs)
, N

)
, dK

(
F (a)(ηs)− EF (a)(ηs)√

VarF (a)(ηs)
, N

)}
≤ Cs−

d
2(d+τ+1) .

As in the case of Theorem 4.1.3, the rate obtained in Corollary 4.1.5 is presumably optimal.

Example 4.1.6. Let ηs be the Poisson process with intensity sλ ⊗ θ ⊗ ν for s ≥ 1, and θ given at (4.1.6) with

τ ∈ (−1, d−1]. Let F (W,a)(ηs) be the number of exposed points of ηs that are located in the space-time window

W × [0, a), for some Borel W ⊆ Rd with λ(W ) ≥ 1 and a ∈ (0,+∞]. This corresponds to the functional de�ned

at (4.1.2), evaluated at the Poisson process ηs and with the weight function h(x) = 1W×[0,a)(x, tx). Applying

Theorem 4.1.4 and following the proof of Corollary 4.1.5 (see Section 4.3) yields that

dW

(
F (W,a)(ηs)− EF (W,a)(ηs)√

VarF (W,a)(ηs)
, N

)
≤ Cγ

(
τ + 1

d+ τ + 1
, ad+τ+1sνd

)− 1
2

s−
d

2(d+τ+1)λ(W )−
1
2 ,

and

dK

(
F (W,a)(ηs)− EF (W,a)(ηs)√

VarF (W,a)(ηs)
, N

)

≤ C

[
γ

(
τ + 1

d+ τ + 1
, ad+τ+1sνd

)− 1
2

+ γ

(
τ + 1

d+ τ + 1
, ad+τ+1sνd

)− 3
4

]
s−

d
2(d+τ+1)λ(W )−

1
2 ,

for a constant C that depends only on d, νd, ν6d and τ .

4.2 Variance estimation

In this section, we estimate the mean and variance of the statistic F , thus providing a proof of Proposition 4.1.2.

Recall the weight function h(x) := h1(x)h2(tx) and notice that by the Mecke equation (Proposition 2.1.11), the

mean of F is given by

EF (η) =
∫
X
h(x)EHx(η + δx)µ(dx) =

∫
Rd

h1(x)dx

∫ ∞

0

h2(t)w(t)θ(dt) = h
(1)
1

∫ ∞

0

h2(t)w(t)θ(dt),

where w(t) is de�ned at (4.1.10). In many instances, we will use the simple inequality

2ab ≤ a2 + b2, a, b ≥ 0. (4.2.1)

Also notice that for x ∈ Rd,∫
Rd

λ(Br1(0) ∩Br2(x))dx =

∫
Rd

1y∈Br1
(0)

∫
Rd

1y∈Br2
(x)dxdy = ω2

dr
d
1r

d
2 . (4.2.2)
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The multivariate Mecke equation (Proposition 2.1.12) yields that

Var(F ) =

∫
X
h(x)2EHx(η + δx)µ(dx)−

(∫
X
h(x)EHx(η + δx)µ(dx)

)2
+

∫
D

h(x)h(y)E[Hx(η + δy + δx)Hy(η + δx + δy)]µ
2(d(x,y)),

where the double integration is over the region D ⊆ X where the points x and y are incomparable (x ̸⪯ y and

y ̸⪯ x), i.e.,

D :=
{
(x,y) : ∥x− y∥ > max{vx(ty − tx), vy(tx − ty)}

}
.

It is possible to get rid of one of the Dirac measures in the inner integral, since on D the points are incomparable.

Thus, using the translation invariance of EHx(η), we have

Var(F ) =

∫
Rd

h1(x)
2dx

∫ ∞

0

h2(t)
2w(t)θ(dt)− I0 + I1, (4.2.3)

where

I0 := 2

∫
X2

1y⪯xh1(x)h1(y)h2(tx)h2(ty)w(tx)w(ty)µ
2(d(x,y)),

and

I1 :=

∫
D

h1(x)h1(y)h2(tx)h2(ty)
[
E
[
Hx(η + δx)Hy(η + δy)

]
− w(tx)w(ty)

]
µ2(d(x,y)).

Finally, we will use the following simple inequality for the incomplete gamma function

min{1, bx}γ(x, y) ≤ γ(x, by) ≤ max{1, bx}γ(x, y), (4.2.4)

which holds for all x ≥ 0 and b, y > 0.

Proof of Proposition 4.1.2. First, notice that the term I1 in (4.2.3) is non-negative, since

E[Hx(η)Hy(η)] = e−µ(Lx∪Ly) ≥ e−µ(Lx)e−µ(Ly) = w(tx)w(ty).

Furthermore, (4.2.1) yields that

I0 ≤
∫
X
h1(x)

2h2(tx)w(tx)

[∫
X
1y⪯xh2(ty)w(ty)µ(dy)

]
µ(dx)

+

∫
X
h1(y)

2h2(ty)w(ty)

[∫
X
1y⪯xh2(tx)w(tx)µ(dx)

]
µ(dy).
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Since y ⪯ x is equivalent to ∥y − x∥ ≤ vy(tx − ty), the �rst summand on the right-hand side above can be

simpli�ed as∫
X
h1(x)

2h2(tx)w(tx)

[∫
X
1y⪯xh2(ty)w(ty)µ(dy)

]
µ(dx)

=

∫
Rd

∫ ∞

0

h1(x)
2h2(tx)w(tx)θ(dtx)dx

∫ ∞

0

∫ tx

0

ωdv
d
y(tx − ty)

dh2(ty)w(ty)θ(dty)ν(dvy)

= ωdνd

∫
Rd

h1(x)
2dx

∫ ∞

0

∫ t

0

(t− s)dh2(s)h2(t)w(s)w(t)θ(ds)θ(dt).

The second summand in the bound on I0, upon interchanging integrals for the second step, turns into∫
X
h1(y)

2h2(ty)w(ty)

[∫
X
1y⪯xh2(tx)w(tx)µ(dx)

]
µ(dy)

=

∫
Rd

∫ ∞

0

h1(y)
2h2(ty)w(ty)θ(dty)dy

∫ ∞

0

∫ ∞

ty

ωdv
d
y(tx − ty)

dh2(tx)w(tx)θ(dtx)ν(dvy)

= ωdνd

∫
Rd

h1(y)
2dy

∫ ∞

0

∫ t

0

(t− s)dh2(s)h2(t)w(s)w(t)θ(ds)θ(dt).

Combining, by (4.2.3) we obtain (4.1.8).

To prove (4.1.9), note that by the Poincaré inequality (see [60, Sec. 18.3]),

Var(F ) ≤
∫
X
E (F (η + δx)− F (η))

2
µ(dx).

Observe that η is simple and for x /∈ η

F (η + δx)− F (η) = h(x)Hx(η + δx)−
∑
y∈η

h(y)Hy(η)1y≻x .

The inequality

−
∑
y∈η

h(x)h(y)Hx(η + δx)Hy(η)1y≻x ≤ 0

in the �rst step and the Mecke equation in the second step yield that∫
X
E |F (η + δx)− F (η)|2 µ(dx)

≤
∫
X
E
[
h(x)2Hx(η + δx)

]
µ(dx) +

∫
X
E
[ ∑
y,z∈η

1y≻x1z≻xh(y)h(z)Hy(η)Hz(η)
]
µ(dx) (4.2.5)

=

∫
X
h(x)2w(tx)µ(dx) +

∫
X2

1y≻xh(y)
2w(ty)µ

2(d(x,y)) +

∫
X

∫
Dx

h(y)h(z)e−µ(Ly∪Lz)µ2(d(y, z))µ(dx) ,

where

Dx := {(y, z) ∈ X2 : y ≻ x, z ≻ x,y ̸≻ z, z ̸≻ y} .
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Using that xe−x/2 ≤ 1 for x ≥ 0, observe that∫
X2

1y≻xh(y)
2w(ty)µ

2(d(x,y)) =

∫
X
h(y)2w(ty)µ(Ly)µ(dy) ≤

∫
X
h(y)2w(ty)

1/2µ(dy). (4.2.6)

Next, using that µ(Ly ∪Lz) ≥ (µ(Ly)+µ(Lz))/2 and that Dx ⊆ {y, z ≻ x} for the �rst inequality, and (4.2.1)

for the second one, we have∫
X

∫
Dx

h(y)h(z)e−µ(Ly∪Lz)µ2(d(y, z))µ(dx)

≤
∫
X

∫
X2

1y,z≻xh(y)h(z)w(ty)
1/2w(tz)

1/2µ2(d(y, z))µ(dx)

≤
∫
R2

+

h2(ty)h2(tz)w(ty)
1/2w(tz)

1/2

∫
R2d

h1(z)
2

(∫
X
1x≺y,zµ(dx)

)
d(y, z)θ2(d(ty, tz)). (4.2.7)

By (4.2.2), ∫
Rd

∫
X
1x≺y,zµ(dx)dy =

∫ ty∧tz

0

∫ ∞

0

ν(dvx)θ(dtx)

∫
Rd

λ(Bvx(ty−tx)(y) ∩Bvx(tz−tx)(z))dy

= ω2
dν2d

∫ ty∧tz

0

(ty − tx)
d(tz − tx)

dθ(dtx).

Plugging in (4.2.7), we obtain∫
X

∫
Dx

h(y)h(z)e−µ(Ly∪Lz)µ2(d(y, z))µ(dx)

≤ ω2
dν2dh

(2)
1

∫
R2

+

∫ t1∧t2

0

(t1 − s)d(t2 − s)dh2(t1)h2(t2)w(t1)
1/2w(t2)

1/2θ(ds)θ2(d(t1, t2)).

This in combination with (4.2.5) and (4.2.6) proves (4.1.9).

Now we move on to prove (4.1.11). We �rst con�rm the lower bound. Fix τ ∈ (−1, d− 1], as otherwise the

bound is trivial, and a ∈ (0,∞]. Then

Λ(t) = ωd

∫ t

0

(t− s)dsτds = ωdt
d+τ+1B(d+ 1, τ + 1) = B ωdt

d+τ+1,

where B := B(d + 1, τ + 1) is a value of the Beta function. Hence, w(t) = exp{−B ωdνdt
d+τ+1}. Plugging in,

we obtain

Var(F )

h
(2)
1

≥
∫ a

0

e−B ωdνdt
d+τ+1

θ(dt)− 2ωdνd

∫ a

0

∫ t

0

(t− s)de−B ωdνd(s
d+τ+1+td+τ+1)θ(ds)θ(dt)

=

(
1

B ωdνd

) τ+1
d+τ+1

[∫ b

0

e−td+τ+1

tτdt− 2

B

∫ b

0

∫ t

0

(t− s)de−(sd+τ+1+td+τ+1)tτsτdsdt

]
, (4.2.8)
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where b := a(B ωdνd)
1/(d+τ+1). Writing s = tu for some u ∈ [0, 1],

2

B

∫ b

0

∫ t

0

(t− s)de−(sd+τ+1+td+τ+1)tτsτdsdt

≤ 2

B

∫ b

0

td+2τ+1

∫ 1

0

(1− u)duτe−td+τ+1(ud+τ+1+1)dudt < 2

∫ b

0

td+2τ+1e−td+τ+1

dt.

By substituting td+τ+1 = z, it is easy to check that for any ρ > −1,∫ b

0

e−td+τ+1

tρdt =
1

d+ τ + 1
γ

(
ρ+ 1

d+ τ + 1
, bd+τ+1

)
,

where γ is the lower incomplete Gamma function. In particular, using that xγ(x, y) > γ(x + 1, y) for x, y > 0

we have∫ b

0

e−td+τ+1

td+2τ+1dt =
1

d+ τ + 1
γ

(
1 +

τ + 1

d+ τ + 1
, bd+τ+1

)
<

τ + 1

(d+ τ + 1)2
γ

(
τ + 1

d+ τ + 1
, bd+τ+1

)
.

Thus, since τ ∈ (−1, d− 1],∫ b

0

e−td+τ+1

tτdt− 2

B

∫ b

0

∫ t

0

(t− s)de−(sd+τ+1+td+τ+1)tτsτdsdt

> γ

(
τ + 1

d+ τ + 1
, bd+τ+1

)
1

d+ τ + 1

[
1− 2(τ + 1)

d+ τ + 1

]
≥ 0.

By (4.2.8) and (4.2.4), we obtain the lower bound in (4.1.11).

For the upper bound in (4.1.11), for θ as in (4.1.6), arguing as above we have∫ a

0

w(t)1/2θ(dt) =

∫ a

0

e−B ωdνdt
d+τ+1/2θ(dt) =

(2/B ωdνd)
τ+1

d+τ+1

d+ τ + 1
γ

(
τ + 1

d+ τ + 1
, bd+τ+1

)
.

Finally, substituting s′ = (B ωdνd)
1

d+τ+1 s and similarly for t1 and t2, it is straightforward to see that

ν2d

∫
[0,a)2

∫ t1∧t1

0

(t1 − s)d(t2 − s)dw(t1)
1/2w(t2)

1/2θ(ds)θ2(d(t1, t2))

≤ Cν2dν
−2
d ν

− τ+1
d+τ+1

d

(∫
R+

td+τe−td+τ+1/4dt

)2 ∫ b

0

s′τe−s′d+τ+1/2ds′

≤ C ′ν2dν
−2
d ν

− τ+1
d+τ+1

d γ

(
τ + 1

d+ τ + 1
,
bd+τ+1

2

)
for some constants C,C ′ depending only on d and τ . The upper bound in (4.1.11) now follows from (4.1.9)

upon using the above computation and (4.2.4).
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4.3 Proofs of the results from Section 4.1

In this section, we derive our main results from Theorem 2.4.2. Recall that for M ∈ NX, the score function

S(x,M) is de�ned at (4.1.3). It is straightforward to check that if S(x,M1) = S(x,M2) for some M1,M2 ∈ NX

with 0 ̸= M1 ≤ M2 (meaning that M2 −M1 is a non-negative measure) and x ∈ M1, then S(x,M1) = S(x,M′)

for all M′ ∈ NX such that M1 ≤ M′ ≤ M2, so that Equation (2.4.1) holds. Next we check assumptions (A1) and

(A2) from Section 2.4.

For M ∈ NX and x ∈ M, de�ne the stabilization region

R(x,M) :=

Lx,tx if x is exposed in M,

∅ otherwise.

Notice that

{M ∈ NX : y ∈ R(x,M+ δx)} ∈ NX for all x,y ∈ X ,

and that

P {y ∈ R(x, η + δx)} = 1y⪯xe
−µ(Lx,tx ) = 1y⪯xw(tx) ,

and

P{{y, z} ⊆ R(x, η + δx)} = 1y⪯x1z⪯xe
−µ(Lx,tx ) = 1y⪯x1z⪯xw(tx)

are measurable functions of (x,y) ∈ X2 and (x,y, z) ∈ X3 respectively, with w(t) de�ned at (4.1.10). It is not

hard to see that R is monotonically decreasing in the second argument, and that for all M ∈ NX and x ∈ M,

M(R(x,M)) ≥ 1 implies that x is exposed, hence (M + δy)(R(x,M + δy)) ≥ 1 for all y ̸∈ R(x,M). Moreover,

the function R satis�es

S
(
x,M

)
= S

(
x,MR(x,M)

)
, M ∈ NX, x ∈ M ,

where MR(x,M) denotes the restriction of the measure M to the region R(x,M). Hence, assumptions (A1.1)�

(A1.4) from Section 2.4 are satis�ed. Further, notice that for any p ∈ (0, 1], for all M ∈ NX with M(X) ≤ 7, we

have

E
[
S(x, η + δx +M)4+p

]
≤ |h1(x)h2(tx)|4+pw(t),

con�rming condition (A2) from Section 2.4 with Mp(x) := |h1(x)h2(tx)|. For de�niteness, we take p = 1, and

de�ne

M̃(x) := max{M1(x)
2,M1(x)

4} ≤ M̃(x)h̃(tx),
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where we recall that M̃(x) := max{h1(x)2, h1(x)4} and let h̃(tx) := max{h2(tx)2, h2(tx)4}. Finally, de�ne

r(x,y) :=

νdΛ(tx), if y ⪯ x,

∞, if y ̸⪯ x,

so that

P {y ∈ R(x, η + δx)} = 1y⪯xw(tx) = e−r(x,y), x,y ∈ X,

which corresponds to Equation (2.4.3) from Section 2.4. Now that we have checked all the necessary conditions,

we can invoke Theorem 2.4.2. Let ζ := p
40+10p = 1/50 and

g(y) :=

∫
X
e−ζr(x,y) µ(dx), (4.3.1)

G(y) := M̃(y)h̃(ty)
(
1 + g(y)5

)
, y ∈ X. (4.3.2)

For x1,x2 ∈ X, denote

q(x,y) :=

∫
X
P
{
{x,y} ⊆ R

(
z, η + δz

)}
µ(dz) =

∫
x⪯z,y⪯z

w(tz)µ(dz). (4.3.3)

For α > 0, let

fα(y) := f (1)α (y) + f (2)α (y) + f (3)α (y), y ∈ X,

where for y ∈ X,

f (1)α (y) :=

∫
X
G(x)e−αr(x,y) µ(dx) =

∫
y⪯x

G(x)w(tx)
αµ(dx),

f (2)α (y) :=

∫
X
G(x)e−αr(y,x) µ(dx) = w(ty)

α

∫
x⪯y

G(x)µ(dx),

f (3)α (y) :=

∫
X
G(x)q(x,y)α µ(dx). (4.3.4)

Finally, let

κ(x) := P {S(x, η + δx) ̸= 0} = 1{h(x)̸=0}w(tx), x ∈ X.

For an integrable function f : X → R, denote µf :=
∫
X f(x)µ(dx). With β := p

32+4p = 1/36, Theorem 2.4.2

yields that F = F (η) as in (4.1.2) satis�es

dW

(
F − EF√
VarF

,N

)
≤ C

[√
µf2β

VarF
+
µ((κ+ g)2βG)

(VarF )3/2

]
, (4.3.5)
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and

dK

(
F − EF√
VarF

,N

)
≤ C

[√
µf2β +

√
µf2β

VarF
+

√
µ((κ+ g)2βG)

VarF

+
µ((κ+ g)2βG)

(VarF )3/2
+

(µ((κ+ g)2βG))5/4 + (µ((κ+ g)2βG))3/2

(VarF )2

]
, (4.3.6)

where N is a standard normal random variable and C ∈ (0,∞) is a constant.

In the rest of this section, we estimate the summands on the right-hand side of the above two bounds. We

start with a simple lemma.

Lemma 4.3.1. For all a ≥ 0, b > 0 and i ∈ {0, 1},

Qi(a, b) :=

∫ ∞

0

ta h̃(t)i e−bΛ(t) θ(dt) <∞. (4.3.7)

Proof. Fix i ∈ {0, 1}. Assume that θ([0, c]) > 0 for some c > 0, since otherwise the result holds trivially. Also,

it su�ces to show the �niteness of the integral over [2c,∞), as∫ 2c

0

ta h̃(t)i e−bΛ(t)θ(dt) ≤ (2c)a
∫ 2c

0

h̃(t)i e−bΛ(t)θ(dt) <∞

by assumption (B). The inequality xa/de−x/2 ≤ C for some �nite constant C > 0 yields that∫ ∞

2c

ta h̃(t)i e−bΛ(t)θ(dt) ≤ C

ba/d

∫ ∞

2c

ta

Λ(t)a/d
h̃(t)i e−bΛ(t)/2θ(dt).

For t ≥ 2c,

Λ(t) =

∫ t

0

(t− s)dθ(ds) ≥
∫ t/2

0

(t− s)dθ(ds) ≥ (t/2)dθ([0, t/2]) ≥ 2−dtdθ([0, c]).

Thus, ∫ ∞

2c

ta h̃(t)i e−bΛ(t)θ(dt) ≤ C2a

(bθ([0, c]))a/d

∫ ∞

2c

h̃(t)i e−bΛ(t)/2θ(dt) <∞

by assumption (B), yielding the result.

To compute the bounds in (4.3.5) and (4.3.6), we need to bound µf2β and µf2β , with β = 1/36. Nonetheless,

we provide bounds on µfα and µf2α for any α > 0. By Jensen's inequality, it su�ces to bound µf (i)α and µ(f (i)α )2

for i = 1, 2, 3. This is the objective of the following three lemmas.

For g de�ned at (4.3.1)

g(y) =

∫
X
1y⪯xw(tx)

ζµ(dx) =

∫ ∞

ty

∫
Rd

1x∈Bvy(tx−ty)(y)w(tx)
ζ dxθ(dtx)

= ωdv
d
y

∫ ∞

ty

(tx − ty)
dw(tx)

ζ θ(dtx) ≤ ωdv
d
y

∫ ∞

0

tdxw(tx)
ζ θ(dtx) = ωdv

d
yQ0(d, ζνd).
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where Q0 is de�ned at (4.3.7). Therefore, the function G de�ned at (4.3.2) is given by

G(y) = M̃(y)h̃(ty)
(
1 + g(y)5

)
≤ ω5

d M̃(y)h̃(ty)(1 +Qv5dy ), (4.3.8)

where

Q ≡ Q(νd) := Q0(d, ζνd)
5.

Lemma 4.3.2. For any α > 0 and f
(1)
α de�ned at (4.3.4),∫

X
f (1)α (y)µ(dy) ≤ C1M̃1 and

∫
X
f (1)α (y)2µ(dy) ≤ C2M̃2,

where

C1 :=
ω5
d

α
Q1(0, ανd/2)(1 +Qν5d) and C2 := ω12

d Q1(d, ανd/2)
2Q0(0, ανd)(1 +Qν5d)

2ν2d.

Proof. Using xe−x/2 ≤ 1 for x ≥ 0, we can write∫
X
f (1)α (y)µ(dy) ≤

∫
X

∫
y⪯x

G(x)w(tx)
αµ(dx)µ(dy)

= ω5
d νd

∫
X
Λ(tx)M̃(x)h̃(tx)

(
1 +Qv5dx

)
w(tx)

αµ(dx)

= ω5
d (1 +Qν5d)M̃1

∫ ∞

0

νdΛ(tx)w(tx)
αh̃(tx)θ(dtx)

≤ ω5
d

α
Q1(0, ανd/2)(1 +Qν5d)M̃1.

For the second assertion, changing the order of the integrals in the second step and using (4.3.8) for the �nal

step, we get ∫
X
f (1)α (y)2µ(dy) =

∫
X

∫
y⪯x1

∫
y⪯x2

G(x1)w(tx1)
αG(x2)w(tx2)

αµ(dx1)µ(dx2)µ(dy)

=

∫
X

∫
X

(∫
y⪯x1,y⪯x2

µ(dy)

)
G(x1)G(x2)(w(tx1)w(tx2))

αµ(dx1)µ(dx2)

=

∫
X

∫
X
µ(Lx1,tx1

∩ Lx2,tx2
)G(x1)G(x2)(w(tx1

)w(tx2
))αµ(dx1)µ(dx2)

≤ ω10
d (1 +Qν5d)

2

∫∫
R2

+×R2d

µ(Lx1,tx1
∩ Lx2,tx2

)M̃(x1)M̃(x2)

× (w(tx1
)w(tx2

))αh̃(tx1
)h̃(tx2

)d(x1, x2)θ
2(d(tx1

, tx2
)). (4.3.9)

By (4.2.2), for any t1, t2 ∈ R+,∫
Rd

µ(L0,t1 ∩ Lx,t2)dx =

∫ t1∧t2

0

θ(ds)

∫ ∞

0

ν(dv)

∫
Rd

λ(Bv(t1−s)(0) ∩Bv(t2−s)(x))dx

= ω2
d

∫ ∞

0

v2dν(dv)

∫ t1∧t2

0

(t1 − s)d(t2 − s)dθ(ds) = ω2
dν2d

∫ t1∧t2

0

(t1 − s)d(t2 − s)dθ(ds).
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From (4.3.9), using (4.2.1) for the �rst inequality and the above equality in the second step, we obtain∫
X
f (1)α (y)2µ(dy)

≤ ω10
d (1 +Qν5d)

2

∫
Rd

M̃(x1)
2dx1

×
∫
R2

+

(∫
Rd

µ(L0,tx1
∩ Lx2−x1,tx2

)dx2

)
(w(tx1)w(tx2))

αh̃(tx1)h̃(tx2)θ
2(d(tx1 , tx2))

= ω12
d (1 +Qν5d)

2ν2dM̃2

×
∫
R2

+

∫ tx1
∧tx2

0

(tx1
− s)d(tx2

− s)d(w(tx1
)w(tx2

))αh̃(tx1
)h̃(tx2

)θ(ds)θ2(d(tx1
, tx2

))

= ω12
d (1 +Qν5d)

2ν2dM̃2

×
∫ ∞

0

∫ ∞

s

∫ ∞

s

(tx1
− s)d(tx2

− s)d(w(tx1
)w(tx2

))αh̃(tx1
)h̃(tx2

)θ(dtx1
)θ(dtx2

)θ(ds)

= ω12
d (1 +Qν5d)

2ν2dM̃2

∫ ∞

0

(∫ ∞

s

(t− s)dw(t)αh̃(t)θ(dt)

)2

θ(ds) (4.3.10)

Hence, ∫
X
f (1)α (y)2µ(dy) ≤ ω12

d (1 +Qν5d)
2ν2dM̃2

∫ ∞

0

(∫ ∞

0

tdw(t)α/2h̃(t)θ(dt)

)2

w(s)αθ(ds)

≤ ω12
d Q1(d, ανd/2)

2Q0(0, ανd)(1 +Qν5d)
2ν2dM̃2,

where we have used the fact that w is a decreasing function.

Lemma 4.3.3. For any α > 0 and f
(2)
α de�ned at (4.3.4),∫

X
f (2)α (y)µ(dy) ≤ C1M̃1 and

∫
X
f (2)α (y)2µ(dy) ≤ C2M̃2

for

C1 := ω6
dQ1(0, ανd/2)Q0(d, ανd/2)(νd +Qν6d) ,

C2 := ω12
d Q1(0, ανd/3)

2Q0(2d, ανd/3)(νd +Qν6d)
2.

Proof. By the de�nition of f (2)α ,∫
X
f (2)α (y)µ(dy) ≤ ω5

d

∫
X

(∫
x⪯y

w(ty)
αµ(dy)

)
M̃(x)h̃(tx)(1 +Qv5dx )µ(dx)

= ω6
dM̃1

∫ ∞

0

∫ ∞

tx

w(ty)
α(ty − tx)

dh̃(tx)θ(dty)θ(dtx)

∫ ∞

0

vdx(1 +Qv5dx )ν(dvx)

≤ ω6
d(νd +Qν6d)M̃1

∫ ∞

0

w(tx)
α/2h̃(tx)θ(dtx)

∫ ∞

0

tdyw(ty)
α/2θ(dty)

≤ ω6
dQ1(0, ανd/2)Q0(d, ανd/2)(νd +Qν6d)M̃1,
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where in the penultimate step, we have used that w is decreasing. This proves the �rst assertion.

For the second assertion, using (4.3.8) in the third step and (4.2.1) in the �nal step, we have∫
X
f (2)α (y)2µ(dy) =

∫
X
w(ty)

2α

(∫
x1⪯y

G(x1)µ(dx1)

∫
x2⪯y

G(x2)µ(dx2)

)
µ(dy)

=

∫
X

∫
X

(∫
x1⪯y,x2⪯y

w(ty)
2αµ(dy)

)
G(x1)G(x2)µ(dx1)µ(dx2)

≤ ω10
d

∫
X

∫
X
(1 +Qv5dx1

)(1 +Qv5dx2
)M̃(x1)M̃(x2)h̃(tx1

)h̃(tx2
)

(∫
x1⪯y,x2⪯y

w(ty)
2αµ(dy)

)
µ(dx1)µ(dx2)

≤ ω10
d

∫
X

∫
X
(1 +Qv5dx1

)(1 +Qv5dx2
)M̃(x1)

2h̃(tx1)h̃(tx2)

(∫
x1⪯y,x2⪯y

w(ty)
2αµ(dy)

)
µ(dx1)µ(dx2) . (4.3.11)

For �xed x1, tx2
and vx2

, we have∫
Rd

∫
x1⪯y,x2⪯y

w(ty)
2αµ(dy)dx2 =

∫ ∞

tx1∨tx2

w(ty)
2α

(∫
Rd

λ(Bvx1
(ty−tx1

)(0) ∩Bvx2
(ty−tx2

)(x))dx

)
θ(dty)

= ω2
dv

d
x1
vdx2

∫ ∞

tx1∨tx2

(ty − tx1
)d(ty − tx2

)dw(ty)
2αθ(dty) .

Noticing that ∫
R2

+

vdx1
vdx2

(1 +Qv5dx1
)(1 +Qv5dx2

) ν2(d(vx1
, vx2

)) = (νd +Qν6d)
2 ,

and, arguing similarly as for µ(f (2)α ) above and using (4.3.11), we obtain∫
X
f (2)α (y)2µ(dy) ≤ ω12

d (νd +Qν6d)
2

∫
Rd

M̃(x1)
2dx1

×
∫
R2

+

h̃(tx1)h̃(tx2
)

(∫ ∞

tx1
∨tx2

(ty − tx1
)d(ty − tx2

)dw(ty)
αθ(dty)

)
θ2(d(tx1

, tx2
))

≤ ω12
d (νd +Qν6d)

2M̃2

∫ ∞

0

w(tx1)
α/3h̃(tx1)θ(dtx1)

∫ ∞

0

w(tx2)
α/3h̃(tx2)θ(dtx2)

∫ ∞

0

t2dy w(ty)
α/3θ(dty)

≤ ω12
d Q1(0, ανd/3)

2Q0(2d, ανd/3)(νd +Qν6d)
2M̃2 ,

yielding the desired conclusion.

Before proceeding to bound the integrals of f (3), notice that, since θ is a non-null measure,

Q′
α = Q′

α(νd) : =

∫ ∞

0

td−1e−
ανd
3 Λ(t)dt =

∫ ∞

0

td−1e−
αωdνd

3

∫ t
0
(t−s)dθ(ds)dt (4.3.12)

≤
∫ ∞

0

td−1e−
αωdνd

3

∫ t/2
0 (t/2)dθ(ds)dt =

∫ ∞

0

td−1e−
αωdνd

3 θ([0,t/2))(t/2)ddt <∞ .
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Lemma 4.3.4. For any α ∈ (0, 1] and f
(3)
α de�ned at (4.3.4),∫

X
f (3)α (y)µ(dy) ≤ C1 M̃1 and

∫
X
f (3)α (y)2µ(dy) ≤ C2M̃2,

where

C1 := C Q0(0, ανd/3)Q1(0, ανd/3)(νd +Qν6d)
[
Q′

α + νdQ0(2d, ανd/3)
]
,

C2 := C Q0(0, ανd/3)Q1(0, ανd/3)
2

[
Q′2

α

[
ν2d(1 +Qν5d)

2 + (νd +Qν6d)
2
]
+Q0(2d, ανd/3)

2ν2d(νd +Qν6d)
2

]
,

and C is a positive constant that depends only on d.

Proof. Note that x,y ⪯ z implies

|x− y| ≤ |x− z|+ |y − z| ≤ tz(vx + vy).

For q de�ned at (4.3.3), we have

q(x,y) ≤ e−νdΛ(r0)

∫ ∞

r0

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y − x))e−νd(Λ(tz)−Λ(r0))θ(dtz) ,

where

r0 = r0(x,y) :=
|x− y|
vx + vy

∨ tx ∨ ty .

Therefore,

q(x,y)α ≤ e−ανdΛ(r0)

(
1 +

∫ ∞

r0

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y − x))e−νd(Λ(tz)−Λ(r0))θ(dtz)

)
≤ e−ανdΛ(r0) +

∫ ∞

r0

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y − x))e−ανdΛ(tz)θ(dtz) . (4.3.13)

Then, with f (3)α de�ned at (4.3.4),∫
X
f (3)α (y)µ(y) ≤

∫
X2

G(x)e−ανdΛ(r0)µ2(d(x,y))

+

∫
X2

G(x)

∫ ∞

r0

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y − x))e−ανdΛ(tz)θ(dtz)µ
2(d(x,y)). (4.3.14)

Since Λ is increasing,

exp{−ανdΛ(r0(x,y))} ≤ exp

{
−ανd

3

[
Λ

(
|x− y|
vx + vy

)
+ Λ(tx) + Λ(ty)

]}
, (4.3.15)

and, by a change of variable and passing to polar coordinates, we obtain∫
Rd

e
−ανd

3 Λ
(

|x|
vx+vy

)
dx ≤ dωd(vx + vy)

d

∫ ∞

0

ρd−1e−
ανd
3 Λ(ρ)dρ = dωd(vx + vy)

dQ′
α . (4.3.16)
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Thus, using (4.3.8), (4.3.15) and (4.3.16), we can bound the �rst summand on the right-hand side of (4.3.14) as∫
X2

G(x)e−ανdΛ(r0)µ2(d(x,y))

≤ ω5
d

∫ ∞

0

w(tx)
α/3h̃(tx)dtx

∫ ∞

0

w(ty)
α/3dty

×
∫
Rd

M̃(x)dx

∫∫
R2

+×Rd

(1 +Qv5dx )w

(
|x− y|
vx + vy

)α/3

dy ν2(d(vx, vy))

≤ dω6
dQ0(0, ανd/3)Q1(0, ανd/3)Q

′
α M̃1

∫
R2

+

(1 +Qv5dx )(vx + vy)
dν2(d(vx, vy))

≤ d2dω6
dQ0(0, ανd/3)Q1(0, ανd/3)Q

′
α(νd +Qν6d) M̃1 ,

where for the �nal step, we have used Jensen's inequality and the fact that νdν5d ≤ ν6d, which is a consequence

of positive association, since vd and v5d are both increasing functions of v. Arguing similarly for the second

summand in (4.3.14), using (4.3.8) in the �rst and (4.2.2) in the second step, we obtain∫
X2

G(x)

∫ ∞

r0

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y − x))e−ανdΛ(tz)θ(dtz)µ
2(d(x,y))

≤ ω5
d

∫
Rd

M̃(x)dx

∫
R2

+

∫
R2

+

(1 +Qv5dx )

∫ ∞

tx∨ty

w(tz)
α

×
(∫

Rd

λ(Bvx(tz−tx)(0) ∩Bvy(tz−ty)(y))dy

)
h̃(tx)θ(dtz)θ

2(d(tx, ty)) ν
2(d(vx, vy))

≤ ω7
d M̃1

∫
R2

+

(1 +Qv5dx )vdxv
d
y ν

2(d(vx, vy))

∫
R3

+

t2dz w(tz)
α/3w(tx)

α/3w(ty)
α/3h̃(tx)θ

3(d(tz, tx, ty))

≤ ω7
dQ0(0, ανd/3)Q1(0, ανd/3)Q0(2d, ανd/3)νd(νd +Qν6d)M̃1.

This concludes the proof of the �rst assertion.

Next, we prove the second assertion. For ease of notation, we drop obvious subscripts and write y = (y, s, v),

x1 = (x1, t1, u1) and x2 = (x2, t2, u2). Using (4.3.13), write∫
X
f (3)α (y)2µ(y) =

∫
X3

G(x1)G(x2)q(x1,y)
αq(x2,y)

αµ3(d(x1,x2,y))

≤
∫
X3

G(x1)G(x2)(I1 + 2I2 + I3)µ
3(d(x1,x2,y)) , (4.3.17)
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with

I1 = I1(x1,x2,y) := exp
{
− ανd

[
Λ(r0(x1,y)) + Λ(r0(x2,y))

]}
,

I2 = I2(x1,x2,y) := e−ανdΛ(r0(x1,y))

∫ ∞

s∨t2

λ(Bu2(r−t2)(0) ∩Bv(r−s)(y − x2))e
−ανdΛ(r)θ(dr),

I3 = I3(x1,x2,y) :=

∫ ∞

s∨t2

λ(Bu2(r−t2)(0) ∩Bv(r−s)(y − x2))e
−ανdΛ(r)θ(dr)

×
∫ ∞

s∨t1

λ(Bu1(ρ−t1)(0) ∩Bv(ρ−s)(y − x1))e
−ανdΛ(ρ)θ(dρ) .

By (4.3.16), ∫∫
R2d

exp

{
−ανd

3

[
Λ

(
|y|

u1 + v

)
+ Λ

(
|x− y|
u2 + v

)]}
dxdy

≤
∫
Rd

exp

{
−ανd

3
Λ

(
|y|

u1 + v

)}
dy

∫
Rd

exp

{
−ανd

3
Λ

(
|x|

u2 + v

)}
dx

≤ d2ω2
d(u1 + v)d(u2 + v)dQ′2

α .

Hence, using (4.3.8) and (4.3.15) for the �rst step and the inequality (4.2.1) for the second one, we have∫
X3

G(x1)G(x2)I1 µ
3(d(x1,x2,y))

≤ ω10
d

∫∫
R2d

M̃(x1)M̃(x2)dx1dx2

∫
R3

+

e−
ανd
3 [Λ(t1)+Λ(t2)+2Λ(s)]h̃(t1)h̃(t2)θ

3(d(t1, t2, s))

×
∫∫

R3
+×Rd

(1 +Qu5d1 )(1 +Qu5d2 )e
−ανd

3

[
Λ
(

|x1−y|
u1+v

)
+Λ

(
|x2−y|
u2+v

)]
dy ν3(d(u1, u2, v))

≤ d2ω12
d Q′2

αQ0(0, ανd/3)Q1(0, ανd/3)
2M̃2

×
∫
R3

+

(u1 + v)d(u2 + v)d(1 +Qu5d1 )(1 +Qu5d2 )ν3(d(u1, u2, v))

≤ c1Q
′2
αQ0(0, ανd/3)Q1(0, ανd/3)

2
[
ν2d(1 +Qν5d)

2 + (νd +Qν6d)
2
]
M̃2

for some constant c1 depending only on d, where we have used monotonicity of Q0 with respect to its second

argument in the penultimate step and Jensen's inequality along with positive association for the �nal step.

Next, we bound the second summand in (4.3.17). Using (4.2.2) in the second step, monotonicity of Λ and
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(4.3.15) in the third step and (4.3.16) in the �nal one, we have∫∫
R2d

I2(x1,x2,y)dx2dy

=

∫
Rd

e−ανdΛ(r0(x1,y))dy

∫ ∞

s∨t2

∫
Rd

λ(Bu2(r−t2)(0) ∩Bv(r−s)(y − x2))dx2 e
−ανdΛ(r)θ(dr)

= ω2
du

d
2v

d

∫
Rd

e−ανdΛ(r0(x1,y))dy

∫ ∞

s∨t2

(r − t2)
d(r − s)d e−ανdΛ(r)θ(dr)

≤ ω2
du

d
2v

d exp
{
−ανd

3
[Λ(t1) + Λ(t2) + 2Λ(s)]

}
×
∫ ∞

0

r2d e−ανdΛ(r)/3θ(dr)

∫
Rd

exp

{
−ανd

3
Λ

(
|x1 − y|
u1 + v

)}
dy

= dω3
dQ

′
αQ0(2d, ανd/3)u

d
2v

d(u1 + v)d exp
{
−ανd

3
[Λ(t1) + Λ(t2) + 2Λ(s)]

}
.

Therefore, arguing similarly as before, we obtain∫
X3

G(x1)G(x2)I2(x1,x2,y) µ
3(d(x1,x2,y))

≤ ω10
d

∫
Rd

M̃(x1)
2dx1

∫∫
R6

+

(1 +Qu5d1 )(1 +Qu5d2 )

×
(∫∫

R2d

I2(x1,x2,y)dx2 dy

)
h̃(t1)h̃(t2)θ

3(d(t1, t2, s))ν
3(d(u1, u2, s))

≤ dω13
d Q′

αQ0(2d, ανd/3)M̃2

∫
R3

+

e−
ανd
3 [Λ(t1)+Λ(t2)+2Λ(s)]h̃(t1)h̃(t2)θ

3(d(t1, t2, s))

×
∫
R3

+

vd(u1 + v)d(1 +Qu5d1 )(ud2 +Qu6d2 )ν3(d(u1, u2, v))

≤ c2Q
′
αQ0(2d, ανd/3)Q0(0, ανd/3)Q1(0, ανd/3)

2
[
νd(νd +Qν6d)

2 + ν2d(νd +Qν6d)(1 +Qν5d)
]
M̃2

for some constant c2 depending only on d. Finally, we bound the third summand in (4.3.17). Arguing as above,∫∫
R2d

I3(x1,x2,y) dx2 dy

=

∫ ∞

s∨t1

(∫
Rd

λ(Bu1(ρ−t1)(0) ∩Bv(ρ−s)(y − x1))dy

)
e−ανdΛ(ρ)θ(dρ)

×
∫ ∞

s∨t2

(∫
Rd

λ(Bu2(r−t2)(0) ∩Bv(r−s)(y − x2))dx2

)
e−ανdΛ(r)θ(dr)

= ω4
du

d
1u

d
2v

2d

∫ ∞

s∨t1

(ρ− t1)
d(ρ− s)de−ανdΛ(ρ)θ(dρ)

∫ ∞

s∨t2

(r − t1)
d(r − s)de−ανdΛ(r)θ(dr)

≤ ω4
du

d
1u

d
2v

2d

(∫ ∞

0

r2d e−ανdΛ(r)/3θ(dr)

)2

exp
{
− α

3
νd
[
Λ(t1) + Λ(t2) + 2Λ(s)

]}
≤ ω4

dQ0(2d, ανd/3)
2ud1u

d
2v

2d exp
{
− α

3
νd
[
Λ(t1) + Λ(t2) + 2Λ(s)

]}
.
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Thus, ∫
X3

G(x1)G(x2)I3(x1,x2,y) µ
3(d(x1,x2,y))

≤ ω10
d

∫
Rd

M̃(x1)
2dx1

∫∫
R6

+

(1 +Qu5d1 )(1 +Qu5d2 )

×
(∫∫

R2d

I3(x1,x2,y)dx2 dy

)
h̃(t1)h̃(t2)θ

3(d(t1, t2, s))ν
3(d(u1, u2, v))

≤ ω14
d Q0(2d, ανd/3)

2M̃2

∫
R3

+

(1 +Qu5d1 )(1 +Qu5d2 )ud1u
d
2v

2dν3(d(u1, u2, v))

×
∫
R3

+

e−
ανd
3 [Λ(t1)+Λ(t2)+2Λ(s)]h̃(t1)h̃(t2)θ

3(d(t1, t2, s))

≤ ω14
d Q0(2d, ανd/3)

2Q0(0, ανd/3)Q1(0, ανd/3)
2ν2d(νd +Qν6d)

2M̃2 .

Combining the bound for the summands on the right-hand side of (4.3.17) and noticing that, by (4.2.1),

Q′
αQ0(2d, ανd/3)

[
νd(νd +Qν6d)

2 + ν2d(νd +Qν6d)(1 +Qν5d)
]

≤ Q′
αQ0(2d, ανd/3)

[√
ν2d(νd +Qν6d)

2 + ν2d(νd +Qν6d)(1 +Qν5d)
]

≤ Q′2
α

[
ν2d(1 +Qν5d)

2 + (νd +Qν6d)
2
]
+Q0(2d, ανd/3)

2ν2d(νd +Qν6d)
2

yields the desired conclusion.

To compute the bounds in (4.3.5) and (4.3.6), we now only need to bound µ((κ+ g)2βG).

Lemma 4.3.5. For α ∈ (0, 1],

µ((κ+ g)αG) ≤ ω5+α
d (C1 + C2 + C3)M̃1 ,

where

C1 := Q1(0, ανd)(1 +Qν5d) ,

C2 := ναdQ1(0, αζνd/2)Q0(d, ζνd/2)
α ,

C3 := ν(5+α)dQ1(0, (5 + α)ζνd/2)Q0(d, ζνd/2)
5+α .

Proof. De�ne the function

ψ(t) :=

∫ ∞

t

(s− t)de−ζνdΛ(s)θ(ds) ,

so that g(x) = ωdv
d
xψ(tx) and

G(x) ≤ ω5
dM̃(x)h̃(tx)

(
1 + v5dx ψ(tx)

5
)
.
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By subadditivity, it su�ces to separately bound∫
X
κα(x)G(x)µ(dx) and

∫
X
g(x)αG(x)µ(dx) .

By (4.3.8), ∫
X
κα(x)G(x)µ(dx) ≤ ω5

d

∫
X
M̃(x)(1 +Qv5dx )e−ανdΛ(tx)h̃(tx) dx θ(dtx) ν(dvx)

= ω5
dQ1(0, ανd)(1 +Qν5d)M̃1 = ω5

dC1M̃1 .

For the second integral, write∫
g(x)αG(x)µ(dx) ≤ ω5+α

d

∫
Rd

M̃(x)dx

∫ ∞

0

∫ ∞

0

ψ(tx)
αh̃(tx)v

αd
x (1 + ψ(tx)

5v5dx )ν(dvx)θ(dtx)

= ω5+α
d M̃1

[
ναd

∫ ∞

0

ψ(t)αh̃(t)θ(dt) + ν(5+α)d

∫ ∞

0

ψ(t)5+αh̃(t)θ(dt)

]
.

Note that, for any a > 0,∫ ∞

0

ψ(t)ah̃(t)θ(dt) =

∫ ∞

0

(∫ ∞

t

(s− t)de−ζνdΛ(s)θ(ds)

)a

h̃(t)θ(dt)

≤
∫ ∞

0

e−aζνdΛ(t)/2h̃(t)θ(dt)

(∫ ∞

0

sde−ζνdΛ(s)/2θ(ds)

)a

= Q1(0, aζνd/2)Q0(d, ζνd/2)
a ,

where we have used the monotonicity of Λ in the second step. Hence,∫
g(x)αG(x)µ(dx) ≤ ω5+α

d (C2 + C3)M̃1 .

Combining with the above bound yields the result.

Proofs of Theorems 4.1.1 and 4.1.3: Theorem 4.1.1 follows from (4.3.5) and (4.3.6) upon using Lemmas 4.3.2,

4.3.3, 4.3.4 and 4.3.5 and including the factors involving the moments of the speed into the constants.

The assertion in Theorem 4.1.3 follows by combining Theorem 4.1.1 and Proposition 4.1.2.

Proof of Theorem 4.1.4. Let θ be given at (4.1.6), and as in the proof of Proposition 4.1.2 let Λ(t) = B ωdt
d+τ+1,

where B := B(d+ 1, τ + 1). By (4.3.7), for x ∈ R+ and y > 0,

Q0(x, y) =

∫ ∞

0

tx+τe−yωdB td+τ+1

dt =
(yωdB)−

x+τ+1
d+τ+1

d+ τ + 1
Γ

(
x+ τ + 1

d+ τ + 1

)
= C1(x, τ)y

− x+τ+1
d+τ+1 , (4.3.18)

where

C1(x, τ) :=
(ωdB)−

x+τ+1
d+τ+1

d+ τ + 1
Γ

(
x+ τ + 1

d+ τ + 1

)
.
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Then

Q = Q0(d, ζνd)
5 = C1(d, τ)ζ

−5ν−5
d .

Since h2(t) = 1{t < a}, a change of variables and (4.2.4) yield that

Q1(0, y) =

∫ a

0

tτe−yωdB td+τ+1

dt ≤ C
(yωdB)−

τ+1
d+τ+1

d+ τ + 1
γ

(
τ + 1

d+ τ + 1
, ad+τ+1y

)
≤ C ′la,τ (y) , (4.3.19)

where C and C ′ are constants depending only on d and τ , and la,τ (y) is de�ned at (4.1.7). Similarly, by (4.3.12),

Q′
α :=

1

d+ τ + 1
Γ

(
d

d+ τ + 1

)
(αBωdνd/3)

− d
d+τ+1 = C3(α, τ)ν

− d
d+τ+1

d ,

where

C3(α, τ) :=
1

d+ τ + 1
Γ

(
d

d+ τ + 1

)(
αBωd

3

)− d
d+τ+1

.

By (4.3.18), for b > 0,

Q0(x, by) = b−
x+τ+1
d+τ+1Q0(x, y),

while from (4.3.19) and (4.2.4), we have

Q1(0, by) ≤ max{1, b−
τ+1

d+τ+1 }Q1(0, y) .

Recall the parameters p = 1, β = 1/36 and ζ = 1/50. Lemmas 4.3.2�4.3.4 in combination with the above

estimates along with the inequality νδν6d−δ ≤ ν6d for any 0 < δ < 6d yield that there exists a constant C

depending only on d and τ such that∫
X
f
(1)
2β (y)µ(dy) ≤ Cla,τ (νd)

(
1 + ν5dν

−5
d

)
M̃1 ≤ Cla,τ (νd)

(
1 + ν6dν

−6
d

)
M̃1 ,∫

X
f
(2)
2β (y)µ(dy) ≤ Cla,τ (νd)ν

−1
d (νd + ν6dν

−5
d )M̃1 = la,τ (νd)

(
1 + ν6dν

−6
d

)
M̃1 ,

and ∫
X
f
(3)
2β (y)µ(dy) ≤ Cla,τ (νd)ν

− τ+1
d+τ+1

d ν
− d

d+τ+1

d

(
νd + ν6dν

−5
d

)
M̃1 = Cla,τ (νd)

(
1 + ν6dν

−6
d

)
M̃1 .

Next, referring to (4.3.10) in the proof of Lemma 4.3.2, since h̃(t) ≤ h̃(s) for s ≤ t, we can upper bound∫ ∞

0

(∫ ∞

s

(t− s)dw(t)αh̃(t)θ(dt)

)2

θ(ds) ≤
∫ ∞

0

(∫ ∞

0

tdw(t)α/2θ(dt)

)2

h̃(s)w(s)αθ(ds)

yielding an alternative upper bound ∫
X
f (1)α (y)2µ(dy) ≤ C2M̃2,
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where

C2 := ω12
d Q0(d, ανd/2)

2Q1(0, ανd)(1 +Qν5d)
2ν2d.

Thus, there exists a constant C depending only on d and τ such that∫
X
f
(1)
β (y)2µ(dy) ≤ Cla,τ (νd)ν2dν

−2
d

(
1 + ν5dν

−5
d

)2
M̃2 ≤ Cla,τ (νd)ν6dν

−6
d

(
1 + ν6dν

−6
d

)2
M̃2 ,

Similarly, using that Q1(0, y) ≤ Q0(0, y), Lemmas 4.3.3�4.3.5 yield∫
X
f
(2)
β (y)2µ(dy) ≤ Cla,τ (νd)

(
1 + ν6dν

−6
d

)2
M̃2 ,

∫
X
f
(3)
β (y)2µ(dy) ≤ Cla,τ (νd)ν

− 2(τ+1)
d+τ+1

d M̃2

[
ν
− 2d

d+τ+1

d ν2d(1 + ν6dν
−6
d )2 + ν2dν

2
dν

− 2(2d+τ+1)
d+τ+1

d (1 + ν6dν
−6
d )2

]
≤ Cla,τ (νd)ν6dν

−6
d (1 + ν6dν

−6
d )2M̃2

and

µ((κ+ g)2βG) ≤ Cla,τ (νd)
((

1 + ν5dν
−5
d

)
+ ν2βdν

−2β
d + ν(5+2β)dν

−5−2β
d

)
M̃1

≤ Cla,τ (νd)(1 + ν6dν
−6
d )M̃1 ,

where C is a constant depending only on d and τ that may vary from line to line. Plugging the above estimates

in (4.3.5) and (4.3.6) and using Proposition 4.1.2 to lower bound the variance yield the desired bounds.

Proof of Corollary 4.1.5: De�ne the Poisson process η(s) with intensity measure µ(s) := λ ⊗ θ ⊗ ν(s), where

ν(s)(A) := ν(s−1/dA) for all Borel sets A. It is straightforward to see that the set of locations of exposed points

of ηs has the same distribution as of those of η(s), multiplied by s−1/d, i.e., the set {x : x ∈ ηs is exposed}

coincides in distribution with {s−1/dx : x ∈ η(s) is exposed}. Hence, the functional F (a)(ηs) has the same

distribution as F (a)
s (η(s)), where F (a)

s is de�ned as in (4.1.2) for the weight function

h(x) = h1,s(x)h2(tx) = h1(s
−1/dx)1{tx < a} .

It is easy to check that for k ∈ N, the k-th moment of ν(s) is given by ν(s)k = sk/dνk, the quantities constructed

from h1,s become M̃ (s)
i = sM̃i, i = 1, 2, and h(2)1,s = sh

(2)
1 . Finally noticing that, for s ≥ 1,

la,τ (ν
(s)
d ) = γ

(
τ + 1

d+ τ + 1
, ad+τ+1sνd

)
(sνd)

− τ+1
d+τ+1 ≥ γ

(
τ + 1

d+ τ + 1
, ad+τ+1νd

)
(sνd)

− τ+1
d+τ+1 ,

the result follows directly from Theorem 4.1.4.
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Part II

Set-valued Sublinear Expectations
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Chapter 5

Convex Bodies Generated by Sublinear

Expectations of Random Vectors

This chapter is based on the following article:

I. Molchanov and R. Turin. Convex bodies generated by sublinear expectations of random vectors. Adv. in Appl.

Math., 131:Paper No. 102251, 31, 2021.

5.1 Sublinear expectations of random variables

In this �rst section, we give the de�nition of sublinear expectation of random variables, explaining their dual

representation and presenting several examples. We mention the particularly important Kusuoka representation

which expresses any law-determined sublinear expectation in terms of integrated quantiles and describe a novel

construction (called the maximum extension) suitable to produce parametric families of sublinear expectations

from each given one.

5.1.1 De�nition and dual representation

Let (Ω,F,P) be a nonatomic probability space, and let Lp(Rd) denote the family of all p-integrable random

vectors in Rd, with p ∈ [1,∞]. Endow Lp(Rd) with the σ(Lp, Lq)-topology, which is the weak-star topology

based on the pairing of Lp(Rd) and Lq(Rd) with p−1 + q−1 = 1, see [3, Sec. 5.14]. Denote R+ = [0,∞).
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The following de�nition amends the standard de�nition of sublinear expectations of random variables (see,

e.g., [79]) by including the extra lower semicontinuity property, which is often additionally imposed.

De�nition 5.1.1. A sublinear expectation is a function e : Lp(R) → (−∞,∞] with p ∈ [1,∞], satisfying the

following properties for all β, β′ ∈ Lp(R):

i) monotonicity: e(β) ≤ e(β′) if β ≤ β′ a.s.;

ii) translation equivariance: e(β + a) = e(β) + a for all a ∈ R, and e(0) = 0;

iii) positive homogeneity: e(cβ) = ce(β) for all c > 0;

iv) subadditivity: e(β + β′) ≤ e(β) + e(β′),

v) lower semicontinuity in σ(Lp, Lq), that is,

e(β) ≤ lim inf
n→∞

e(βn)

for each sequence {βn, n ≥ 1} converging to β in the weak-star topology σ(Lp, Lq).

The sublinear expectation e is often referred to as numerical one, in contrast with the set-valued expectation

introduced in Section 5.2.1. The translation equivariance property implies that e(a) = a for each deterministic

a. The sublinear expectation e is said to be �nite if it takes a �nite value on all β ∈ Lp(R).

Example 5.1.2 (Relation to coherent risk measures). For β ∈ Lp(R), de�ne r(β) = e(−β). The obtained

antimonotonic and subadditive function is called a coherent risk measure of β, see [33] and [39, Def. 4.5]. The

negative of the risk is said to be a utility function, see [33].

A random variable β is said to be acceptable if its risk is at most zero. If β is the �nancial position at

the terminal time, its risk r(β) yields the smallest amount a of capital which should be reserved at the initial

time to render β + a acceptable; this amount may be negative if r(β) < 0, and then capital can be released

or invested. The subadditivity property of the risk (equivalently, of e) is the manifestation of the �nancial

principle, saying that diversi�cation decreases the risk. Many results from the theory of risk measures can be

easily reformulated for sublinear expectations. For instance, from the theory of risk measures, it is known that

the lower semicontinuity property always holds if p ∈ [1,∞) and e takes only �nite values, see [50].

While the following result is well known for risk measures [39, Cor. 4.18] and sublinear expectations [79,

Th. 1.2.1], we provide its proof for completeness.
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Theorem 5.1.3. A functional e : Lp(R) → (−∞,∞] is a sublinear expectation if and only if

e(β) = sup
γ∈Me,Eγ=1

E(γβ), (5.1.1)

where Me is a convex σ(Lq, Lp)-closed cone in Lq(R+).

Proof. Su�ciency is easy to con�rm by a direct check of the properties.

Necessity. Let A be the family of β ∈ Lp(R), such that e(β) ≤ 0. The sublinearity property yields that A is

a convex cone. The lower semicontinuity property implies that this cone is weak-star closed. The polar cone to

A is de�ned as

Ao = {γ ∈ Lq(R) : E(γβ) ≤ 0 for all β ∈ A}. (5.1.2)

Since −1A ∈ A for the indicator of any event A, all random variables from Ao are a.s. non-negative. The bipolar

theorem from functional analysis (see, e.g., [3, Th. 5.103]) yields that (Ao)o = A. Hence,

e(β) = inf{a ∈ R : (β − a) ∈ A}

= inf{a ∈ R : E((β − a)γ) ≤ 0 for all γ ∈ Ao}

= inf{a ∈ R : E(γβ) ≤ aE(γ) for all γ ∈ Ao}.

Thus, (5.1.1) holds with Me = Ao.

Representation (5.1.1) is called the dual representation of e. It is easy to see that each γ in (5.1.1) can be

chosen to be a function of β, namely, the conditional expectations E(γ|β).

A sublinear expectation is said to be law-determined (often named law invariant) if it attains the same value

on identically distributed random variables, and this is the case for all examples considered in this work. In

terms of the representation (5.1.1), this means that, for each γ ∈ Me, the set Me contains all random variables

sharing the same distribution with γ.

A sublinear expectation is said to be continuous from below if it is continuous on all almost surely convergent

increasing sequences of random variables in Lp(R). It follows from [50] that each �nite sublinear expectation

on Lp(R) with p ∈ [1,∞) is continuous from below. Every law-determined continuous from below sublinear

expectation on a nonatomic probability space is dilatation monotonic, meaning that

e(E(β|A)) ≤ e(β) (5.1.3)

for each sub-σ-algebra A of F, see [39, Cor. 4.59]. In particular, Eβ ≤ e(β) for all β ∈ Lp(R).
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5.1.2 Average quantiles and the Kusuoka representation

For a �xed value of α ∈ (0, 1] and β ∈ L1(R), de�ne

eα(β) =
1

α

∫ 1

1−α

qt(β)dt, (5.1.4)

where

qt(β) = sup{s ∈ R : P {β ≤ s} < t} = inf{s ∈ R : P {β ≤ s} ≥ t} (5.1.5)

is the t-quantile of β. Because of integration, the choice of a particular quantile in case of multiplicities is

immaterial. This sublinear expectation is subsequently called the average quantile. In particular, e1(β) = Eβ

is the mean. If β has a nonatomic distribution, then eα(β) = E(β|β ≥ q1−α(β)).

The value of r(β) = eα(−β) is obtained by averaging the quantiles of β at levels between 0 and α. This risk

measure is well studied in �nance and widely applied in practice under the name of the average Value-at-Risk

or expected shortfall, see, e.g., [2]. By computing the dual cone at (5.1.2) or rephrasing the representation of

the risk measure eα(−β) from [50, Th. 4.1], one can derive the following dual representation

eα(β) = sup
γ∈L∞([0,α−1]),Eγ=1

E(γβ). (5.1.6)

This immediately yields that the average quantiles satisfy all properties imposed in De�nition 5.1.1.

Average quantiles form a building block for all other law-determined sublinear expectations. The following

result for risk measures is known as the Kusuoka representation: it was �rst obtained by Kusuoka [57] in case

p = ∞ and can also be found in [39, Cor. 4.58] and [33, Th. 32]; the Lp-variant follows from the Orlicz space

version proved in [43]. For its validity, it is essential that the probability space is nonatomic.

Theorem 5.1.4. Each law-determined sublinear expectation on Lp(R) with p ∈ [1,∞] can be represented as

e(β) = sup
ν∈Pe

∫
(0,1]

eα(β)ν(dα), (5.1.7)

where Pe is the family of probability measures ν on (0, 1] such that
∫
(0,1]

eα(β)ν(dα) ≤ 0 whenever e(β) ≤ 0.

It is possible to show that e is �nite on Lp(R) if and only if the function t 7→
∫
(t,1]

s−1ν(ds) is q-integrable

on (0, 1] with respect to the Lebesgue measure for all ν ∈ Pe. If e is �nite and p ∈ [1,∞), one can provide

a constructive representation of Pe in terms of the extremal points of the set M1
e = {γ ∈ Me : Eγ = 1},

where Me is de�ned in (5.1.1). The case p = ∞ requires extra arguments, since a norm bounded set in L1

is not necessarily weakly compact, hence, the supremum in (5.1.1) is not necessarily attained. Since (Ω,F ,P)

is nonatomic, we can assume without loss of generality that Ω is the interval [0, 1] equipped with its Borel
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σ-algebra and the Lebesgue measure P. Let γ : [0, 1) → [0,∞) be a nondecreasing right-continuous function

that is extremal in M1
e . De�ne the probability measure νγ on (0, 1] by letting

νγ((0, α)) =

∫
[1−α,1)

(γ(t)− γ(1− α))dt.

and ν({1}) = γ(0). It is shown in [98] that Pe can be chosen to be the set of νγ for the family of all right-

continuous nondecreasing functions γ which are extremal in M1
e .

5.1.3 Examples of sublinear expectations

A simple example of a sublinear expectation is provided by the essential supremum

e(β) = ess supβ,

which is �nite for all β ∈ L∞(R). If α ↓ 0, then the average quantile eα(β) increases to the (possibly, in�nite)

value e0(β), which is equal to the essential supremum of β. Next, we discuss more involved constructions of

sublinear expectations.

Example 5.1.5 (Spectral sublinear expectation). Let φ : (0, 1] → R+ be a nonincreasing function such that∫ 1

0
φ(t)dt = 1, φ is called a spectral function. Then

e∫φ(β) =
∫
(0,1]

q1−t(β)φ(t)dt (5.1.8)

is called a spectral sublinear expectation, see [1] for the closely related de�nition of the spectral risk measure.

By Fubini's theorem, e∫φ admits the following equivalent representation

e∫φ(β) =
∫
(0,1]

eα(β)ν(dα), (5.1.9)

where eα is given by (5.1.4) and ν is the probability measure on (0, 1] with

φ(t) =

∫
(t,1]

s−1ν(ds), t ∈ (0, 1]. (5.1.10)

Conversely, for any probability measure ν on (0, 1], (5.1.9) yields a spectral sublinear expectation. The set Pe in

the Kusuoka representation of e∫φ(β) consists of the single probability measure ν, so the right-hand side (5.1.7)

is the supremum over a family of spectral sublinear expectations.

Example 5.1.6 (One-sided moments). The Lp-norm ∥β∥p satis�es all properties of a sublinear expectation but

the monotonicity and translation equivariance. It is possible to come up with a norm-based sublinear expectation

on Lp(R) with p ∈ [1,∞) by letting

ep,a(β) = Eβ + a
(
E(β −Eβ)p+

)1/p
(5.1.11)
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with a ∈ [0, 1], where x+ = max(x, 0) denotes the positive part of x ∈ R. The corresponding risk measure

was introduced in [36]. Note that ep,a(β) = a
2∥β∥p if β is symmetric. Translation equivariance and positive

homogeneity of ep,a are obvious. The subadditivity of the second term follows from (t+s)+ ≤ (t)++(s)+ and the

subadditivity of the Lp-norm. To prove the monotonicity, we �rst observe that since ep,a is subadditive, we only

need to show that ep,a(γ) ≤ 0 for any almost surely negative integrable γ. Indeed, substituting (γ−Eγ)+ ≤ −Eγ

in (5.1.11) implies that ep,a(γ) ≤ Eγ − aEγ ≤ 0.

The sublinear expectation given by (5.1.11) admits the dual representation (5.1.1) with the cone Me gen-

erated by the family of random variables γ = 1 + a(ζ − Eζ) for all ζ ∈ Lq(R+) with ∥ζ∥q ≤ 1, see [33, p. 46].

The family Pe from (5.1.7) is explicitly known only for p = 1; it consists of probability measures obtained as

(1− at)δ1 + atδt, which is the weighted sum of the Dirac measures at 1 and t for t ∈ [0, 1]. Then

e1,a(β) = sup
t∈[0,1]

[
(1− at)Eβ + atet(β)

]
= Eβ + a sup

t∈[0,1]

tet(β −Eβ). (5.1.12)

Recall in this relation that

tet(β) =

∫ 1

1−t

qs(β)ds,

so that the supremum on the right-hand side of (5.1.12) is indeed the expectation of (β −Eβ)+.

Example 5.1.7 (Expectile). Following [15], de�ne the expectile e[τ ](β) of a random variable β ∈ L1(R) at level

τ ∈ (0, 1) as the (necessarily, unique) solution x ∈ R of

τE(β − x)+ = (1− τ)E(x− β)+.

If τ ∈ [1/2, 1), then the expectile is a sublinear expectation, see [15]. For τ = 1/2, we obtain the mean of β. For

τ ∈ [1/2, 1), the dual representation holds with Me being the set of γ ∈ L∞(R+) such that the ratio between

the essential supremum and the essential in�mum of γ is at most τ/(1− τ). The Kusuoka representation holds

with

e[τ ](β) = sup
t∈[0,2−1/τ ]

[
(1− t)Eβ + te (1−τ)t

(2τ−1)(1−t)

(β)
]
.

5.1.4 Maximum extension

Let e be a law-determined sublinear expectation on Lp(R) with p ∈ [1,∞]. The following construction suggests

a way of extending e to a monotone parametric family of sublinear expectations. For a �xed m ≥ 1, de�ne

e∨m(β) = e(max(β1, . . . , βm)), (5.1.13)
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where β1, . . . , βm are independent copies of β ∈ Lp(R). All properties in De�nition 5.1.1 are straightforward

and we refer to this sublinear expectation as the maximum extension of e. Let us stress that this extension

applies only to law-determined sublinear expectations.

It is possible to obtain a family of such expectations e∨(λ) continuously parametrised by λ ∈ (0, 1]. For this,m

is replaced by a geometrically distributed random variableN with parameter λ, that is, P {N = k} = (1−λ)k−1λ,

k ≥ 1. De�ne

e∨(λ) = e(max(β1, . . . , βN )), λ ∈ (0, 1].

This family of sublinear expectations interpolates between e∨(1)(β) = e(β) and e∨(0)(β) which is set to be

ess supβ.

Example 5.1.8. The maximum extension can be applied to the average quantile risk measure eα; the result is

denoted by e∨m
α . For α = 1, we obtain the expected maximum

e∨m
1 (β) = Emax(β1, . . . , βm). (5.1.14)

Note that

e∨m
1 (β) =

∫ 1

0

qt(max{β1, . . . , βm})dt =
∫ 1

0

q
t

1
m
(β)dt = m

∫ 1

0

tm−1qt(β)dt .

For m ≥ 2, e∨m
1 is the spectral sublinear expectation given at (5.1.8) with φ(t) = m(1 − t)m−1, equivalently,

(5.1.9) with ν(dt) = m(m− 1)t(1− t)m−2dt. Similar calculations yield that

e∨m
α (β) = eα(max(β1, . . . , βm)) =

m(m− 1)

α

∫ 1−(1−α)1/m

0

t(1− t)m−2et(β)dt

+
m

α
(1− α)(m−1)/m(1− (1− α)1/m)e1−(1−α)1/m(β) . (5.1.15)

5.2 Set-valued maps

The present section presents our construction of convex closed sets Ee(ξ) generated by a random vector ξ and

a given sublinear expectation e. Subsection 5.2.2 describes a generalisation based on relaxing some properties

of the underlying numerical sublinear expectations, namely, replacing them with gauge functions. This con-

struction yields centroid bodies [67] and half-space depth-trimmed regions [73], the latter are closely related to

convex �oating bodies introduced in [97] and their weighted variant from [16].
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5.2.1 Set-valued sublinear expectations

Fix a law-determined sublinear expectation e on Lp(R), p ∈ [1,∞]. For a p-integrable probability measure µ on

Rd, equivalently, for a random vector ξ ∈ Lp(Rd) with distribution µ, de�ne

h(u) = e(⟨ξ, u⟩), u ∈ Rd, (5.2.1)

where ⟨ξ, u⟩ denotes the scalar product in Rd. The function h is subadditive

h(u+ u′) = e(⟨ξ, u+ u′⟩) ≤ e(⟨ξ, u⟩) + e(⟨ξ, u′⟩) = h(u) + h(u′),

and homogeneous

h(cu) = e(⟨ξ, cu⟩) = ce(⟨ξ, u⟩) = ch(u), c ≥ 0.

Furthermore, h is lower semicontinuous, since ⟨ξ, un⟩ → ⟨ξ, u⟩ in σ(Lp, Lq) if un → u as n→ ∞ and e is assumed

to be lower semicontinuous. These three properties identify support functions of convex closed sets, see [92,

Th. 1.7.1]. Therefore, there exists a (possibly, unbounded) convex closed set F such that its support function

h(F, u) = sup{⟨x, u⟩ : x ∈ F}

is given by (5.2.1). This set is denoted by Ee(ξ) or Ee(µ). The construction can be summarised by the equality

h(Ee(ξ), u) = e(⟨ξ, u⟩), u ∈ Rd. (5.2.2)

The following result shows that Ee(ξ) is a set-valued sublinear function of ξ, called a set-valued sublinear

expectation generated by e. In other instances, we pass to Ee the sub- and superscripts of e, e.g., E[τ ] is obtained

by choosing e to be the expectile e[τ ].

For convex closed sets F, F ′, their (closed) Minkowski sum F +F ′ is the closure of {x+x′ : x ∈ F, x′ ∈ F ′},

and the dilation of F by c > 0 is cF = {cx : x ∈ F}.

Theorem 5.2.1. Fix p ∈ [1,∞] and a law-determined sublinear expectation e de�ned on Lp(R). The corre-

sponding map Ee (given at (5.2.2)) from Lp(Rd) to the family of convex closed sets in Rd satis�es the following

properties:

i) monotonicity: if ξ ∈ F a.s. for a convex closed F , then Ee(ξ) ⊆ F ;

ii) singleton preserving: Ee(a) = {a} for all deterministic a;

iii) a�ne equivariance Ee(Aξ + a) = AEe(ξ) + a for all matrices A and a ∈ Rd;
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iv) subadditivity: Ee(ξ + η) ⊆ Ee(ξ) + Ee(η);

v) lower semicontinuity of support functions, that is, h(Ee(ξ), u) ≤ lim infn→∞ h(Ee(ξn), u) for all u ∈ Rd if

ξn → ξ in σ(Lp, Lq);

vi) if e(β) is �nite for all β ∈ Lp(R), then the map ξ 7→ Ee(ξ) is continuous in the Hausdor� metric (see, [92,

Sec, 1.8]) with respect to the norm on Lp;

vii) if e is continuous from below, then Ee(ξ) contains the expectation Eξ.

Proof. Property (i) holds since ⟨ξ, u⟩ ≤ h(F, u) and in view of the monotonicity property of e. Property (ii)

directly follows from the construction, and, for the a�ne equivariance, note that

h(Ee(Aξ + a), u) = e(⟨ξ, A⊤u⟩) + ⟨a, u⟩ = h(Ee(ξ), A
⊤u) + ⟨a, u⟩ = h(AEe(ξ) + a, u).

The subadditivity follows from

h(Ee(ξ + η), u) = e(⟨ξ + η, u⟩) ≤ e(⟨ξ, u⟩) + e(⟨η, u⟩) = h(Ee(ξ), u) + h(Ee(η), u).

If ξn → ξ in σ(Lp(Rd), Lq(Rd)), then ⟨ξn, u⟩ → ⟨ξ, u⟩ in σ(Lp(R), Lq(R)). By the lower semicontinuity of e,

e(⟨ξ, u⟩) ≤ lim inf
n→∞

e(⟨ξn, u⟩).

This implies the lower semicontinuity of the support functions.

Property (vi) follows from the Extended Namioka Theorem, which says that every �nite sublinear expectation

is continuous with respect to the norm topology, see [18]. Recall that sublinear expectations on L∞ is also

Lipschitz. Hence, e(⟨ξn, u⟩) → e(⟨ξ, u⟩) if ξn → ξ in Lp. The convergence of support functions implies the

convergence of the corresponding sets in the Hausdor� metric, see [92, Th. 1.8.15].

Finally, (vii) is a consequence of the dilatation monotonicity property (5.1.3).

Example 5.2.2. If e is the essential supremum, then Ee(ξ) equals the closed convex hull of the support of ξ.

If p = ∞, then an easy argument shows that the map ξ 7→ Ee(ξ) between L∞(Rd) and the family of convex

compact sets in Rd is 1-Lipschitz, that is, the Hausdor� distance between Ee(ξ) and Ee(η) is at most ∥ξ − η∥∞
for all ξ, η ∈ L∞(Rd). Indeed,

h(Ee(ξ), u)− h(Ee(η), u) = e(⟨ξ, u⟩)− e(⟨η, u⟩) ≤ e(⟨η, u⟩+ ∥ξ − η∥∞)− e(⟨η, u⟩) = ∥ξ − η∥∞

for all unit u ∈ Rd.
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If ξ, η ∈ Lp(Rd) and E(η|ξ) = 0 a.s., then the dilatation monotonicity property (5.1.3) implies that

Ee(ξ + η) ⊇ Ee(E(ξ + η|ξ)) = Ee(ξ).

Hence, if ξ1, ξ2, . . . is a sequence of i.i.d. centred p-integrable random vectors, then Ee(ξ1 + · · ·+ ξn), n ≥ 1, is a

growing sequence of nested convex sets in Rd.

Remark 5.2.3. If ξ is dominated by η in the convex order, meaning that Ef(ξ) ≤ Ef(η) for all convex functions

f , then Ee(ξ) ⊆ Ee(η), see [39, Cor. 4.59]. In particular, the sequence Ee(ξn), n ≥ 1, grows if (ξn)n≥0 is a

martingale.

Example 5.2.4. Let ⟨ξ, u⟩ be distributed as ζ∥u∥L, where ζ is a random variable and ∥ · ∥L is a certain norm on

Rd with L being the unit ball; then ξ is called pseudo-isotropic, see, e.g., [44]. In this case, Ee(ξ) = cLo, where

Lo = {u : h(L, u) ≤ 1} (5.2.3)

is the polar set to L and c = e(ζ) = e(⟨ξ, u⟩) for any given u ∈ ∂L. For instance, this is the case if ξ is symmetric

α-stable with α ∈ (1, 2]; then Ee(ξ) is expressed in terms of the associated convex body of ξ, see [70]. If ξ is

Gaussian, then Lo is the ellipsoid determined by the covariance matrix of ξ and translated by the mean of ξ.

The dual representation of e given by Theorem 5.1.3 immediately implies the following result.

Corollary 5.2.5. The set-valued sublinear expectation generated by e can be represented as

Ee(ξ) = cl{E(ξγ) : γ ∈ Me,Eγ = 1}, (5.2.4)

where cl denotes the topological closure in Rd and Me is the family of probability measures from (5.1.1).

The convexity of Me implies that the set on the right-hand side of (5.2.4) is convex. This set can be written

as the intersection of the cone {(Eγ,E(ξγ)) : γ ∈ Me} with the set {1} × Rd and then projected on its last

d-components.

Remark 5.2.6. It is possible to construct a variant of the set Ee(ξ) by applying the underlying sublinear expec-

tation e to the positive part (⟨ξ, u⟩)+ of the scalar product of ξ and u. The obtained function is the support

function of a convex closed set, which may be considered a sublinear expectation of the segment [0, ξ], see [72]

for a study of sublinear expectations with set-valued arguments.

5.2.2 Less regular maps

One might also consider a variant of the sublinear expectation which is a positive homogeneous, subadditive

and lower semicontinuous function g : Lp(R) → (−∞,∞] and so is not necessarily monotone or translation
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equivariant. We refer to this function as a convex gauge. The most important example is the Lp-norm, so that

g(β) = ∥β∥p, which is convex but not translation equivariant.

For a lower semicontinuous convex gauge g, we de�ne G(ξ) as the convex closed set such that

h(G(ξ), u) = g(⟨ξ, u⟩), u ∈ Rd.

It is easily seen that g(⟨ξ, u⟩) is indeed a support function.

Example 5.2.7. Let g(β) = ∥β∥p. For ξ ∈ Lp(Rd), the convex body G(ξ) is the Lp-centroid of ξ (or of its

distribution µ). These convex bodies have been introduced in [83] for p = 1 and in [67] for a general p, and

further thoroughly studied, see, e.g., [37, 46, 77].

In some cases, g fails to be convex. For instance, this is the case for Lp-norm with p ∈ (0, 1). Another

important case arises when g(β) is the quantile function qt(β) given by (5.1.5) for a �xed t ∈ (0, 1), which is

known to be not necessarily subadditive in β. In the absence of subadditivity, it is natural to consider the

largest convex set whose support function is dominated by the quantile function of ⟨x, u⟩, namely, let

Dδ(ξ) =
⋂

u∈Rd

{
x ∈ Rd : ⟨x, u⟩ ≤ q1−δ(⟨ξ, u⟩)

}
. (5.2.5)

The set Dδ(ξ) is called the depth-trimmed region of ξ. The support function of Dδ(ξ) may be strictly less than

q1−δ(⟨ξ, u⟩), for example, if ξ is uniformly distributed on a triangle on the plane, see [63]. The set Dδ(ξ) is

necessarily empty if ξ is nonatomic and δ ∈ (1/2, 1].

The set Dδ(ξ) is related to the Tukey (or half-space) depth (see [103]), which associates to a point x the

smallest µ-content of a half-space containing x, where µ is the distribution of ξ. The depth-trimmed region of

ξ is the excursion set of the Tukey depth, so that

Dδ(ξ) =
⋂

µ(H)>1−δ

H , (5.2.6)

where H runs through the collection of all closed half-spaces. If ξ has contiguous support (that is, the support

of ⟨ξ, u⟩ is connected for every u), then (5.2.5) holds with q being any other quantile function in case of

multiplicities, and the intersection in (5.2.6) can be taken over half-spaces H with µ(H) ≥ 1− δ, see [22, 54].

Example 5.2.8. Let ξ be uniformly distributed on a convex body K. Then Dδ(ξ) is the convex �oating body of

K, see [97] and [108]. A variant of this concept for nonuniform distributions on K has been studied in [16].

Recall that a random vector ξ with distribution µ is said to have k-concave distribution, with k ∈ [−∞,∞],
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if

µ(θA+ (1− θ)B) ≥


min{µ(A), µ(B)} if k = −∞,

µ(A)θµ(B)(1−θ) if k = 0,

(θµ(A)k + (1− θ)µ(B)k)1/k otherwise,

for all Borel sets A and B and θ ∈ [0, 1]. In case of k = 0, the measure µ is called log-concave. The next

theorem establishes some conditions under which qδ(⟨ξ, u⟩) is a support function; it is a direct consequence of

[19, Th. 6.1].

Theorem 5.2.9. Let ξ be a symmetric k-concave random vector with k ≥ −1 and such that the support of ξ is

full-dimensional. Then

h(Dδ(ξ), u) = q1−δ(⟨ξ, u⟩), u ∈ Rd,

for all δ ∈ (0, 1/2).

5.3 Convex bodies generated by average quantiles

One of the most important sublinear expectations is based on using weighted integrals of the quantile function.

The corresponding convex bodies are studied in this section, where we show their close connection to metronoids

[48] and zonoid-trimmed regions [56]. The Kusuoka representation of numerical sublinear expectations yields

Theorem 5.3.4, which provides a representation of a general convex set Ee(ξ) (derived from ξ using a sublinear

expectation e) in terms of Aumann integrals of metronoids. We further provide a uniqueness result for the

distribution of ξ on the basis of a family of convex bodies generated by it, and also a concentration result for

random convex sets constructed from the empirical distribution of ξ.

5.3.1 Metronoids and zonoid-trimmed regions

For ξ ∈ L1(Rd) and α ∈ (0, 1], denote by Eα(ξ) the convex set generated by the average quantile sublinear

expectation eα given by (5.1.4). Such convex sets are hereafter called average quantile sets. In particular,

E1(ξ) = Eξ. Since eα is �nite on L1(R), the set Eα(ξ) is compact. Noticing that qt(−β) = −q1−t(β), it is easy

to see that Eα(ξ) has nonempty interior for all α ∈ (0, 1), hence, is a convex body. The set Eα(ξ) increases as

α decreases to zero with limit E0(ξ), being the convex hull of the support of ξ.

The following result relates average quantile sets and the zonoid-trimmed regions introduced in [56] as

Zα(ξ) =
{
E(ξf(ξ)) : f : Rd → [0, α−1]measurable andEf(ξ) = 1

}
.
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Proposition 5.3.1. For all α ∈ (0, 1], Eα(ξ) = Zα(ξ).

Proof. Representation (5.1.6) yields that

h(Eα(ξ), u) = eα(⟨ξ, u⟩) = sup
γ∈L∞([0,α−1]),Eγ=1

⟨E(γξ), u⟩ .

Noticing that any γ in the last expression can be replaced with E(γ|ξ) yields that

sup
γ∈L∞([0,α−1])

Eγ=1

⟨E(γξ), u⟩ = sup
f : Rd→[0,α−1]

Ef(ξ)=1

⟨E(ξf(ξ)), u⟩.

Let µ be a locally �nite Borel measure on Rd. Denote by L1
µ([0, 1]) the family of functions f : Rd → [0, 1]

such that
∫
xf(x)µ(dx) exists. The set

M(µ) =

{∫
Rd

xf(x)µ(dx) : f ∈ L1
µ([0, 1]),

∫
Rd

fdµ = 1

}
has the support function

h(M(µ), u) = sup
f∈L1

µ([0,1]),
∫
fdµ=1

∫
⟨x, u⟩f(x)µ(dx), u ∈ Rd.

The set M(µ) was introduced in [48] and called the metronoid of µ. This de�nition applies also for possibly

in�nite measures µ, e.g., if µ is the Lebesgue measure, then M(µ) = Rd, since each point x ∈ Rd can be

obtained by letting f be the indicator of the unit ball centred at x normalised by the volume of the unit ball.

Furthermore, M(µ) is empty if the total mass of µ is less than one, and M(µ) is the singleton
∫
xµ(dx) if µ is

an integrable probability measure. The following result establishes a relation between metronoids and average

quantile sets.

Proposition 5.3.2. Let µ be an integrable probability measure on Rd. Then M(α−1µ) = Eα(µ) for any α ∈

(0, 1].

Proof. Consider a random vector ξ with distribution µ. By (5.1.6), for every u ∈ Rd the support function of

M(α−1µ) is

h(M(α−1µ), u) = sup
0≤f≤1,

∫
fdµ=α

∫
⟨x, u⟩f(x)α−1µ(dx)

= sup
0≤f≤α−1, Ef(ξ)=1

E
(
⟨ξ, u⟩f(ξ)

)
= sup

γ∈L∞([0,α−1]),Eγ=1

E (⟨ξ, u⟩γ)

= eα(⟨ξ, u⟩) = h(Eα(ξ), u) ,

where in the second equality fα−1 was replaced by f and later f(ξ) by γ.
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Example 5.3.3. Let ξ have a discrete distribution with atoms at x1, . . . , xn of probabilities p1, . . . , pn. Then

Eα(ξ) is the polytope

Eα(ξ) =

{
n∑

i=1

λipixi : λ1, . . . , λn ∈ [0, α−1],

n∑
i=1

λipi = 1

}
,

see [48, Prop. 2.3], where this is proved for metronoids.

5.3.2 A representation of general Ee(ξ)

Fix ξ ∈ L1(Rd) and consider the average quantile sets Eα(ξ) as a set-valued function of α ∈ (0, 1]. Let ν be a

probability measure on (0, 1], which appears in the spectral sublinear expectation (5.1.9) from Example 5.1.5.

The closed Aumann integral (see [7]) of the set-valued function α 7→ Eα(ξ) is the convex closed set E∫
φ(ξ),

whose support function at any direction u equals the integral of the support function, so that

h(E∫
φ(ξ), u) =

∫
(0,1]

h(Eα(ξ), u)ν(dα), u ∈ Rd. (5.3.1)

Recognising the right-hand side as e∫φ(⟨ξ, u⟩), it is immediately seen that E∫
φ(ξ) is the set-valued sublinear

expectation generated by the spectral numerical one from Example 5.1.5. Equivalently, E∫
φ(ξ) equals the

closure of the set of integrals of all measurable integrable functions f(α), α ∈ (0, 1], such that f(α) ∈ Eα(ξ) for

all α, see [7] and [71, Sec. 2.1.2]. This is re�ected by writing

E∫
φ(ξ) = cl

∫
(0,1]

Eα(ξ)ν(dα). (5.3.2)

Since Eα(ξ) increases to the closed convex hull of the support of ξ as α ↓ 0, the set E∫
φ(ξ) is not necessarily

bounded.

The following result provides a representation of the set Ee(ξ) constructed using a general law-determined

sublinear expectation e. It con�rms that the average quantile sets (equivalently, metronoids) are building blocks

for a general Ee(ξ). Denote by convA the closed convex hull of a set A in Rd.

Theorem 5.3.4. For each ξ ∈ Lp(Rd) and a set-valued sublinear expectation Ee(ξ) generated by a law-

determined sublinear expectation e, we have

Ee(ξ) = conv
⋃

ν∈Pe

∫
(0,1]

Eα(ξ)ν(dα),

where Pe is the family probability measures ν on (0, 1] from the Kusuoka representation of e, see (5.1.7).
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Proof. By Theorem 5.1.4,

e(⟨ξ, u⟩) = sup
ν∈Pe

∫
(0,1]

eα(⟨ξ, u⟩)ν(dα) = sup
ν∈Pe

∫
(0,1]

h(Eα(ξ), u)ν(dα).

The proof is completed by noticing (5.3.1), using the notation (5.3.2) and the fact that the supremum of support

functions is the support function of the closed convex hull of the involved sets.

5.3.3 Average quantile sets as integrated depth-trimmed regions

Under the symmetry and log-concavity assumptions on ξ, the average quantile sets Eα(ξ) can be characterised

as set-valued integrals of the depth-trimmed regions (equivalently, weighted �oating bodies) Dδ(ξ) introduced

in (5.2.5). Similarly to (5.3.1), the closed Aumann integral of the function t 7→ Dt(ξ) with respect to a measure

ν on [0, 1] is de�ned as the convex set whose support function equals the integral of the support functions of

Dt(ξ), that is,

h
(∫ 1

0

Dt(ξ)ν(dt), u
)
=

∫ 1

0

h(Dt(ξ), u)ν(dt), u ∈ Rd.

If the measure ν attaches positive mass to the set of t ∈ [0, 1] where Dt(ξ) is empty, the integral is set to be the

empty set.

The following result establishes relationships between average quantile sets (or metronoids) and depth-

trimmed regions. Its second part generalises [49, Th. 1.1], which concerns the case of ξ supported by a convex

body.

Theorem 5.3.5. Let ξ ∈ L1(Rd). Then

Dα(ξ) ⊆
1

α

∫ α

0

Dt(ξ)dt ⊆ Eα(ξ). (5.3.3)

If ξ has a log-concave distribution, then

D e−1
e α(ξ) ⊆ Eα(ξ) ⊆ Dα

e
(ξ) (5.3.4)

for every α ∈ (0, 1].

Proof. By de�nition of the average quantile set,

h(Eα(ξ), u) =
1

α

∫ 1

1−α

qt(⟨ξ, u⟩)dt ≥
1

α

∫ 1

1−α

h(D1−t(ξ), u)dt =
1

α

∫ α

0

h(Dt(ξ), u)dt,

where the inequality follows from (5.2.5). Finally, (5.3.3) follows from the monotonicity of Dt(ξ).
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Fix u ∈ Rd. Consider β = ⟨ξ, u⟩ and note that the distribution ν of β is log-concave by the invariance of the

log-concavity property under projection. For (5.3.4), it su�ces to show that

q(1− e−1
e α)(β) ≤ eα(β) ≤ q(1− 1

eα)
(β). (5.3.5)

Being the projection of a log-concave vector, β is either deterministic or absolutely continuous with connected

support. In the �rst case (5.3.5) becomes trivial, thus we can assume that β is absolutely continuous with

connected support. In particular, q in (5.3.5) can be equivalently chosen to be the left- or the right-quantile

function. Observe that, for measurable sets A and B, convex C and θ ∈ [0, 1],

ν (A ∩ C)θ ν (B ∩ C)1−θ ≤ ν (θ (A ∩ C) + (1− θ) (B ∩ C))

= ν ((θA ∩ θC) + ((1− θ)B ∩ (1− θ)C))

≤ ν ((θA+ (1− θ)B) ∩ (θC + (1− θ)C))

= ν ((θA+ (1− θ)B) ∩ C) .

Therefore, the probability measure obtained by restricting ν to the interval (q1−α(β),∞) and normalising by

the factor α−1 is log-concave, and we consider a random variable X with such distribution. It follows from the

theory of risk measures (see, e.g., [102, Prop. 2.1]), that for the case of absolutely continuous random variables,

supremum in the characterisation of eα(β) in (5.1.6) is attained at γ = α−11{β>q1−α(β)}, which implies

EX = α−1E
(
β1{β>q1−α(β)}

)
= eα(β) . (5.3.6)

It follows from [19, Eq. (5.7)] that for any log-concave random variable X,

e−1 ≤ P {X > EX} ≤ 1− e−1 . (5.3.7)

Therefore, (5.3.6) and (5.3.7) yield that

e−1 ≤ α−1ν(eα(β),∞) ≤ 1− e−1 .

Hence,

e−1α ≤ P {β > eα(β)} ≤
(
1− e−1

)
α ,

which implies (5.3.5), given that β has connected support.

5.3.4 A uniqueness result for maximum extensions

A single set Ee(ξ) surely does not characterise the distribution of ξ. However, families of such sets can be

su�cient to recover the distribution of ξ.
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Example 5.3.6. Assume that ξ, η ∈ L1(Rd) and consider the average quantile sets Eα(ξ) and Eα(η). If Eα(ξ) =

Eα(η) for all α ∈ (0, 1/2], then ξ and η have the same distribution. This follows from Proposition 5.3.1 and [56,

Th. 5.6].

Since the de�nition of Ee(ξ) is based on the univariate sublinear expectation e applied to the projections of

ξ, the following result is a straightforward application of the Cramér�Wold theorem, see, e.g., [51, Cor. 5.5].

Proposition 5.3.7. A family of sets Ee(ξ), e ∈ E, generated by sublinear expectations e from a certain family E

uniquely identi�es the distribution of ξ ∈ Lp(Rd) if and only if the family of the underlying univariate sublinear

expectations e(β), e ∈ E, uniquely identi�es the distribution of any β ∈ Lp(R).

Natural families of sublinear expectations arise by applying the maximum extension to a given sublinear

expectation.

Example 5.3.8. Consider the expected maximum sublinear expectation e∨m
1 given by (5.1.14). Then the convex

body E∨m
1 (ξ) is the expectation EPm of the random polytope Pm obtained as the convex hull of m independent

copies of ξ, see [71, Sec. 2.1]. It is well known that the sequence e∨m
1 (β), m ≥ 1, uniquely identi�es the

distribution of β ∈ L1(R), see [47] and [42]. As a consequence, the nested sequence EPm, m ≥ 1, of convex

bodies uniquely determines the distribution of ξ, see [106].

Applying the maximum extension (5.1.13) to the spectral sublinear expectation e∫φ(·) yields the sublinear
expectation e∨m∫

φ
(·) and the corresponding sequence of nested convex bodies E∨m∫

φ
(ξ), m ≥ 1.

Theorem 5.3.9. Let ξ, η ∈ L1(Rd). For any constant c ≥ 0, consider the spectral function φ(t) = (c+1)(1−t)c.

If

E∨m∫
φ (ξ) = E∨m∫

φ (η) , m ≥ 1 ,

then ξ and η have the same distribution.

Proof. In view of Proposition 5.3.7, it su�ces to prove this result for two random variables β and γ. For any

integer m ≥ 1, we have∫ 1

0

q1−t (max(β1, . . . , βm))φ(t)dt =

∫ 1

0

q1−t (max(γ1, . . . , γm))φ(t)dt ,

where βi, γi, i = 1, . . . ,m, are independent copies of β, γ, respectively. By a change of variables,∫ 1

0

q1−t (max(β1, . . . , βm))φ(t)dt = (c+ 1)

∫ 1

0

qt (max(β1, . . . , βm)) tcdt

= (c+ 1)

∫ 1

0

q
t

1
m
(β)tcdt

= m(c+ 1)

∫ 1

0

qs(β)s
cm+m−1ds .

86



Therefore, ∫ 1

0

f(s)s(c+1)(m−1)ds = 0 , m ≥ 1 ,

with

f(s) = sc (qs(β)− qs(γ)) ∈ L1([0, 1]) .

The family

A =

{
c0 +

n∑
i=1

cix
(c+1)mi : n,m1, . . . ,mn ∈ N, c0, . . . , cn ∈ R

}
is an algebra of continuous functions separating the points on [0, 1]. By linearity of the Lebesgue integral∫ 1

0

f(s)a(s)ds = 0

for all a ∈ A. The Stone�Weierstrass theorem (see, e.g., [38, Th. 4.45]) yields that∫ 1

0

f(s)g(s)ds = 0

for all continuous functions g on [0, 1]. Therefore, f vanishes almost everywhere, so the proof is complete.

5.3.5 Concentration of empirical average quantile sets

Let ξ ∈ Lp(Rd) with distribution µ. Consider the empirical random measure constructed by n independent

copies ξ1, . . . , ξn of ξ as

µ̂n =
1

n

n∑
i=1

δξi , n ≥ 1 , (5.3.8)

where δx is the one point mass measure at x ∈ Rd. The average quantile convex body Eα(µ̂n) generated by

µ̂n is a random convex set, which approximates the body Eα(µ) as n grows to in�nity. In fact, the sequence

{Eα(µ̂n), n ≥ 1} almost surely converges to Eα(µ) in the Hausdor� metric, as directly follows from [56, Th. 5.2]

and Proposition 5.3.1. The following theorem provides probabilistic bounds for this convergence.

Theorem 5.3.10. Let µ be a probability measure with bounded support of diameter R, and let r be the largest

radius of a centred Euclidean ball contained in the average quantile set Eα(µ) for some α ∈ (0, 1). For all ε > 0

and n ∈ N,

P
{
(1− ε)Eα(µ) ⊆ Eα(µ̂n) ⊆ (1 + ε)Eα(µ)

}
≥ 1− 6d+1(1 + 1/ε)d exp

{
−αε

2r2n

44R2

}
.

We use the following auxiliary result.
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Lemma 5.3.11 (see [41, Lemma 5.2]). Let K be a convex body which contains the origin in its interior. For

each δ ∈ (0, 1/2), there exists a set N ⊆ ∂K with cardinality at most (3/δ)d such that each v ∈ ∂K satis�es

v = w0 +

∞∑
i=1

δiwi

for wi ∈ N , i ≥ 0, and δi ∈ [0, δi], i ≥ 1.

Proof of Theorem 5.3.10. On a (possibly enlarged) probability space Ω × Ω′, let ξ be a µ-distributed random

vector and let ξ̂n take one of the values ξ1, . . . , ξn with equal probabilities. For any �xed u ∈ Rd,

h(Eα(ξ), u) =
1

α

∫ 1

1−α

qt(⟨ξ, u⟩)dt

and

h(Eα(µ̂n), u) =
1

α

∫ 1

1−α

qt(⟨ξ̂n, u⟩)dt .

Clearly, ⟨ξ̂n, u⟩ is distributed according to the empirical distribution function generated by the sample ⟨ξi, u⟩,

i = 1, . . . , n. Thus, the right-hand sides of the two equations are, respectively, the conditional value at risk of

β = ⟨ξ, u⟩ and its sample-based estimator, see [20, 107]. Note that the support of β is a subset of an interval of

length R. By [107, Th. 3.1], for any η > 0,

P {h(Eα(µ̂n), u) ≤ h(Eα(ξ), u)− η} ≤ 3 exp

{
−αη

2n

5R2

}
and

P {h(Eα(µ̂n), u) ≥ h(Eα(ξ), u) + η} ≤ 3 exp

{
−αη

2n

11R2

}
.

Noticing that the second bound is larger than the �rst one and that h(Eα(ξ), u) ≥ r by the imposed condition,

we obtain

P
{
(1 − ε/2)h(Eα(ξ), u) ≤ h(Eα(µ̂n), u) ≤ (1 + ε/2)h(Eα(ξ), u)

}
≥ 1 − 6 exp

{
−αε

2r2n

44R2

}
. (5.3.9)

Let N ⊆ ∂Eα(ξ)
o be a set from Lemma 5.3.11, with δ = ε

2+2ε , where Eα(ξ)
o is the polar set to Eα(ξ), see (5.2.3).

Since h(Eα(ξ), u) = 1 for all u ∈ ∂Eα(ξ)
o, the union bound applied to (5.3.9) yields that

(1− ε/2) ≤ h(Eα(µ̂n), w) ≤ (1 + ε/2) for all w ∈ N (5.3.10)

with probability at least

1− 6

(
6 + 6ε

ε

)d

exp

{
−αε

2r2n

44R2

}
.
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For any v ∈ ∂Eα(ξ)
o and some sequences wi ∈ N and δi ≥ 0, i ≥ 1, the sublinearity of h, Lemma 5.3.11 and

(5.3.10) imply that

h(Eα(µ̂n), v) = h

(
Eα(µ̂n), w0 +

∞∑
i=1

δiwi

)

≤ (1 + ε/2)

∞∑
i=0

(
ε

2 + 2ε

)i

= (1 + ε/2)
1

1−
(

ε
2+2ε

) = (1 + ε)h(Eα(ξ), v)

and

h(Eα(µ̂n), v) = h

(
Eα(µ̂n), w0 +

∞∑
i=1

δiwi

)

≥ (1− ε/2)− (1 + ε/2)

∞∑
i=1

(
ε

2 + 2ε

)i

= (1− ε/2)− (1 + ε/2)

(
ε

2+2ε

)
1−

(
ε

2+2ε

) = (1− ε)h(Eα(ξ), v) ,

which deliver the desired assertion.

5.4 Floating-like bodies

In this section, we specialize our general construction to the case when ξ is uniformly distributed on a convex

body K (that is, a compact convex set in Rd with nonempty interior), and so Ee(ξ) yields a transform K 7→

Ee(K) = Ee(ξ). We derive several properties of this transformation for general e, in particular, establish the

continuity of such maps in the Hausdor� metric.

In special cases, our construction yields Lp-centroid bodies (see [67] and [92, Sec. 10.8]) and Ulam �oating

bodies recently introduced in [49]. The latter form a particularly important special setting, which is con�rmed

by showing that all transformationsK 7→ Ee(K) can be expressed in terms of Ulam �oating bodies. For instance,

Corollary 5.4.8 provides a representation of the centroid body of an origin symmetric K as the convex hull of

dilated Ulam �oating bodies of K. In this course, results for sublinear expectations yield a new insight into

the well-known aforementioned constructions of convex bodies, deliver some new relations between them, and

provide a general source of nonlinear transformations of convex bodies. Finally, we formulate several conjectures.
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5.4.1 Sublinear transform

Consider the set-valued sublinear expectation Ee generated by a law-determined numerical sublinear expectation

e. Let ξ be a random vector uniformly distributed on a convex body K ⊆ Rd. Recall that K is assumed to have

a nonempty interior. In the following, we write Ee(K) instead of Ee(ξ) and refer to K 7→ Ee(K) as a sublinear

transform of K generated by the numerical sublinear expectation e. We also refer to Ee(K) as a �oating-like

body.

Denoting by K the family of convex bodies in Rd, the sublinear transform is a map Ee : K → K. It is easy

to see that Ee(K) ⊆ K for all K. If ξ is uniformly distributed on K and A is a nondegenerate matrix, then Aξ

is uniformly distributed on AK. Thus,

Ee(AK + a) = AEe(K) + a, a ∈ Rd.

The sublinear transform Ee(B) of a centred Euclidean ballB is another centred Euclidean ball, which is contained

in B. Furthermore, the sublinear transform of an ellipsoid is also an ellipsoid.

The sublinear transform is not necessarily monotone for inclusion, see Example 5.4.6. In view of Re-

mark 5.2.3, Ee(K) ⊆ Ee(L) for all sublinear transforms Ee if

1

Vd(K)

∫
K

f(x)dx ≤ 1

Vd(L)

∫
L

f(x)dx

for all convex functions f : Rd → R, where Vd(·) denotes the d-dimensional Lebesgue measure. The latter

condition implies that K and L share the same barycentre.

If Kn → K in the Hausdor� metric as n → ∞ and ξn, ξ are uniformly distributed on Kn,K, respectively,

then ξn → ξ in σ(Lp, Lq) for any p ∈ [1,∞] by the dominated convergence theorem. By Theorem 5.2.1(v),

h(Ee(K), u) ≤ lim inf h(Ee(Kn), u).

The continuity of the sublinear map in the Hausdor� metric follows from the next result, which we �nd

interesting in its own right. Denote by diam(K) the diameter of K and by K△L the symmetric di�erence of

K and L.

Theorem 5.4.1. Assume that p ∈ [1,∞). For any two convex bodies K and L, there exist random vectors ξ

and η uniformly distributed on K and L, respectively, such that

∥ξ − η∥p ≤
(

Vd(K△L)
max(Vd(L), Vd(K))

) 1
p

diam(K ∪ L) . (5.4.1)

Proof. It su�ces to prove the statement for p = 1. Indeed,

∥ξ − η∥p ≤ diam(K ∪ L)(p−1)/p∥ξ − η∥1/p1 .
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Consider Monge's optimal transport problem of �nding

C(µ, ν) = inf
T♯µ=ν

∫
Rd

∥x− T (x)∥dµ(x) , (5.4.2)

where µ and ν are the uniform distributions on K and L, respectively, and T♯µ denotes the push-forward of the

measure µ by T . It is known from the theory of optimal mass transportation (see, e.g., [4] or [104]) that the

in�mum in (5.4.2) is attained on an optimal transport map T . Moreover, under our assumptions, [86, Th. B]

yields the equivalence between Monge's transport problem and its alternative formulation by Kantorovich.

Namely,

C(µ, ν) = min
γ∈Π(µ,ν)

∫∫
Rd×Rd

∥x− y∥dγ(x, y) ,

where Π(µ, ν) denotes the family of probability measures on Rd × Rd with marginals µ and ν. In other words,

C(µ, ν) is the 1-Wasserstein distance between µ and ν. The dual representation of Kantorovich's problem (e.g.

[104, Th. 1.14]) yields that

min
γ∈Π(µ,ν)

∫∫
Rd×Rd

∥x− y∥dγ(x, y) = max
f∈Lip1

{∫
Rd

f(x)dµ(x)−
∫
Rd

f(x)dν(x)

}
, (5.4.3)

where Lip1 is the family of 1-Lipschitz functions on Rd.

By adding a constant to f , one can restrict the maximisation in (5.4.3) to the set of 1-Lipschitz functions

with values in [0,diam(K ∪ L)]. Then∫
Rd

f(x)dµ(x)−
∫
Rd

f(x)dν(x) =
1

Vd(K)

∫
K

f(x)dx− 1

Vd(L)

∫
L

f(x)dx

=
Vd(L)− Vd(K)

Vd(K)Vd(L)

∫
K∩L

f(x)dx+
1

Vd(K)

∫
K\L

f(x)dx− 1

Vd(L)

∫
L\K

f(x)dx

≤
(
Vd(L \K)

Vd(K)

Vd(K ∩ L)
Vd(L)

+
Vd(K \ L)
Vd(K)

)
diam(K ∪ L)

≤
(
Vd(L \K)

Vd(K)
+
Vd(K \ L)
Vd(K)

)
diam(K ∪ L)

=
Vd(K△L)
Vd(K)

diam(K ∪ L) .

Changing the order of summands, one obtains a similar bound with Vd(K) replaced by Vd(L), hence the

result.

Theorem 5.4.2. Let e be a sublinear expectation de�ned on Lp(R) for some p ∈ [1,∞) and having �nite values.

Then the map K 7→ Ee(K) is continuous in the Hausdor� metric.

Proof. Note that the convergence of convex bodies (with nonempty interiors) in the Hausdor� metric is equiva-

lent to their convergence in the symmetric di�erence metric, see [99]. If Kn → K in the Hausdor� metric, then
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∪nKn is bounded and infn Vd(Kn) is strictly positive. By Theorem 5.4.1, it is possible to �nd a sequence of

random vectors {ξn, n ≥ 1} such that ξn is uniformly distributed on Kn and ξn converges in Lp to a random

vector ξ uniformly distributed on K. The result follows from Theorem 5.2.1(vi).

Example 5.4.3. The construction of the sublinear transform can be amended by replacing the underlying sub-

linear expectation e with a (not necessarily convex) gauge function. For example, if the gauge function is a

quantile, one obtains the set Dα(K), which is the convex �oating body of K, see [8] and [97].

5.4.2 Ulam �oating bodies

Consider the sublinear transform K 7→ Eα(K) generated by the average quantile sublinear expectation eα. Note

that E1(K) = {xK} is the barycentre of K (the expectation of ξ uniformly distributed in K), and E0(K) = K.

The metronoid M(µ) of the measure µ with density δ−11K is called the Ulam �oating body of K at level

δ and is denoted by Mδ(K), see [49]. This measure µ is the uniform probability distribution on K scaled by

δ−1Vd(K). Proposition 5.3.2 yields that

Eα(K) = MαVd(K)(K). (5.4.4)

A�ne equivariance of sublinear transforms implies that Mδ(cK) = cMδc−d(K). Since the uniform probability

distribution on K is log-concave, (5.3.4) yields a relationship between convex �oating bodies of K (denoted by

Dα(K)) and Ulam �oating bodies, proved in [49, Th. 1.1].

The following result for α ∈ (0, 1/2) follows from Theorem 5.2.9, see also [69]. Together with (5.4.4), it

implies that Ulam �oating bodies can be obtained as Aumann integrals of convex �oating bodies. The case

α = 1/2 follows by continuity.

Corollary 5.4.4. For each origin symmetric convex body K and α ∈ (0, 1/2], we have

Eα(K) =
1

α

∫ α

0

Dt(K)dt.

Hence, αEα(K) grows in α for α ∈ (0, 1/2], equivalently, the dilated Ulam �oating body tMt(K) grows for

t ∈ (0, Vd(K)/2].

The next result follows from Theorem 5.3.4; it implies that Ulam �oating bodies are building blocks for all

sublinear transforms.

Corollary 5.4.5. For each law-determined sublinear expectation e, the corresponding sublinear transform Ee

can be represented as

Ee(K) = conv
⋃

ν∈Pe

∫
(0,1]

Eα(K)ν(dα), (5.4.5)
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where ν runs through a family Pe of probability measures on (0, 1] that yields the Kusuoka representation of e,

see (5.1.7).

It is possible to replace Eα with MαVd(K) on the right-hand side of (5.4.5). While the integration domain in

(5.4.5) excludes 0, it is always possible to approximate E0(K) = K by a sequence Eαn
(K) as αn ↓ 0. Thus, the

Kusuoka representation can be equivalently written using probability measures on [0, 1].

Example 5.4.6. The map K 7→ Eα(K) is not necessarily monotone. An easy counterexample is provided by two

segments [0, 1] and [0, 2] on the line. However, the monotonicity fails even for origin symmetric convex bodies.

Consider two convex bodies on the plane: L = [−a, a] × [−ε, ε] with a + ε ≤ 1 and the ℓ1-ball K. We show

that for suitable values of a and α, the support function of Eα(L) is not smaller than the support function of

Eα(K) in direction u = (1, 0). Let β = ⟨ξ, u⟩ for ξ uniformly distributed in K. Note that γ = ⟨η, u⟩ is uniformly

distributed on [−a, a] if η is uniform on L. The quantile functions are

qt(β) = 1−
√

2(1− t), qt(γ) = (2t− 1)a, t ∈ [1/2, 1].

For α ∈ [0, 1/2],

eα(β) = 1− 2
√
2α1/2/3

and

eα(γ) = a(1− α).

If α = 1/2, then eα(β) < eα(γ) if 2
3 < a < 1, meaning that Eα(L) is not necessarily a subset of Eα(K).

The monotonicity of Ulam �oating body transform (which easily follows from Proposition 2.1 of [49]) implies

that, after normalising by volume, Eα becomes monotone, namely,

Eα/Vd(K)(K) ⊆ Eα/Vd(L)(L), 0 ≤ α ≤ Vd(K),

if K ⊆ L.

If the family Pe in (5.4.5) consists of a single measure ν, we obtain a convex body E∫
φ(K) generated by the

spectral sublinear expectation e∫φ, where φ is the spectral function related to ν by (5.1.10). Recall that the

maximum extension of the average quantile is a spectral sublinear expectation, see Example 5.1.8.

Example 5.4.7. Consider the sublinear expectation e∨m
1 given by (5.1.14). Note that

max(⟨u, ξ1⟩, . . . , ⟨u, ξm⟩) = h(Pm, u),

where Pm = conv(ξ1, . . . , ξm) is the convex hull of independent copies of ξ. Then Eh(Pm, u) is the support

function of the expectation EPm of the random polytope Pm, see [71, Sec. 2.1]. Therefore, E∨m
1 (K) = EPm.

93



Asymptotic properties of these expected polytopes and their relation to �oating bodies have been studied in

[41], see also [40]. If m = 1, then E1(K) = {xK} is the barycentre of K. The calculation in Example 5.1.8

yields that

EPm = E∨m
1 (K) = m(m− 1)

∫
(0,1]

Eα(K)α(1− α)m−2dα

= m(m− 1)

∫
(0,1]

MαVd(K)(K)α(1− α)m−2dα.

Hence, the expected random polytope equals the weighted integral of Ulam �oating bodies.

More generally, E∨m
α (K) is obtained by applying (5.1.15) as follows

E∨m
α (K) =

m(m− 1)

α

∫ 1−(1−α)1/m

0

t(1− t)m−2Et(K)dt

+
m

α
(1− α)(m−1)/m(1− (1− α)1/m)E1−(1−α)1/m(K).

5.4.3 Centroid bodies and the expectile transform

If ep,a is de�ned by (5.1.11) for p ∈ [1,∞), then the corresponding �oating-like body Ep,a(K) has the support

function

h(Ep,a(K), u) = ⟨xK , u⟩+ a
(
E(⟨ξ − xK , u⟩)p+

)1/p
, (5.4.6)

where ξ is uniformly distributed on K and xK = Eξ is the barycentre of K.

If K is origin-symmetric, then xK = 0 and

Ep,1(K) = cΓpK,

where c > 0 is an explicit constant depending on p and dimension and ΓpK is the Lp-centroid body of K, see

[65] for p = 1 and [67] for general p. For a not necessarily origin symmetric K, this convex body is de�ned as

h(ΓpK,u) =

(
1

cd,pVd(K)

∫
K

|⟨u, y⟩|pdy
)1/p

,

where cd,p is a constant chosen to ensure that this transformation does not change the unit Euclidean ball, see

[92, Eq. (10.72)]. For p = 1, a = 1 and an origin symmetric K,

E1,1(K) =
1

2
ΓK,

where ΓK is the classical centroid body of K, see [92, Eq. (10.67)] and [65]. The dual representation of e1,1 from

Example 5.1.6 yields that

ΓK = 2E1,1(K) = conv{E(γξ) : γ ∈ [0, 2]}.
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The right-hand side is the expectation of the random convex body [0, 2ξ] being the segment in Rd with end-points

at the origin and 2ξ, see [71, Sec. 2.1].

The asymmetric Lp-moment body M+
p K introduced in [46] (see also [92, Eq. (10.76)]) has the support

function proportional to ∫
K

(⟨x, y⟩)p+dy.

Thus,

Ep,a(K) = xK + c1aM
+
p (K − xK)

for a constant c1 depending on p ∈ [1,∞) and dimension.

Corollary 5.2.5 and the dual representation of ep,a from Example 5.1.6 (see also [33, p. 46]) yield that the

asymmetric Lp-moment bodies with p ∈ [1,∞) can be represented in terms of

Ep,a(K) = xK + a cl
{
E((γ −Eγ)ξ) : γ ∈ Lq(R+), ∥γ∥q ≤ 1

}
.

Furthermore, Corollary 5.4.5 shows that each Lp-centroid body of an origin symmetric K equals the convex

hull of a family of integrated Ulam �oating bodies of K. This representation can be made very explicit in case

p = 1; it follows from Theorem 5.1.4 combined with the results presented in Example 5.1.6. Namely,

E1,a(K) = xK + a conv
⋃

t∈[0,1]

tEt(K − xK). (5.4.7)

The following result specialises the above relationship for centroid bodies.

Corollary 5.4.8. If K is an origin symmetric convex body, then its centroid body ΓK satis�es

ΓK =
2

Vd(K)
conv

⋃
t∈[0,Vd(K)]

tMt(K). (5.4.8)

Since K is origin symmetric, tEt(K) =
∫ t

0
Ds(K)ds grows in t ∈ (0, 1/2], see Corollary 5.4.4. Thus, the

union in (5.4.8) can be reduced to t ∈ [Vd(K)/2, 1].

Example 5.4.9. The de�nition of the Orlicz centroid bodies from [66] can be also incorporated in our setting

using the sublinear expectation

e(β) = inf{λ > 0 : Eψ(β/λ) ≤ 1},

where ψ : R → [0,∞) is a convex function with ψ(0) = 0 and such that ψ is strictly increasing on the positive

half-line or strictly decreasing on the negative half-line. This sublinear expectation is the norm of β in the

corresponding Orlicz space.
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Example 5.4.10. Consider the expectile e[τ ] de�ned in Example 5.1.7 with parameter τ ∈ (0, 1/2]. In view of

the results presented in Example 5.1.7, the corresponding �oating-like body E[τ ](K) can be represented as

E[τ ](K) = xK + conv
⋃

t∈[0,Vd(K)]

t(2τ − 1)

t(2τ − 1) + (1− τ)Vd(K)

(
Mt(K)− xK

)
. (5.4.9)

Representations (5.4.8) and (5.4.9) suggest looking at the transform of convex bodies given by

K 7→ xK + conv
⋃

t∈[0,Vd(K)]

ψ(t)
(
Mt(K)− xK

)
for a function ψ : R+ → R+. As demonstrated above, this transform relates the centroid body transform and

the expectile transform to the Ulam �oating body transform.

5.4.4 Open problems related to the sublinear transform

Several calculated examples suggest that Eα(K +L) ⊆ Eα(K) + Eα(L), and we conjecture that this is the case.

It is easy to see that this holds on the line for a general sublinear transform.

It was shown in [45] that the equality of two symmetric p-centroid bodies for p not being an even integer

yields the equality of the corresponding sets. This question is open for Ulam �oating bodies, see [49], not to

say also for general �oating-like bodies.

It is obvious that Ee(K) is a dilate of K if K is an ellipsoid. This question has been explored for convex

�oating bodies, see [109] and references therein. However, the case of Ulam �oating body seems to be open, as

well as the case of general sublinear transform.

There is a substantial theory of conditional (dynamic) sublinear expectations, e.g., constructed using back-

wards stochastic di�erential equations, see [79]. By applying conditional sublinear expectations to ξ uniformly

distributed in K, one comes up with stochastic processes whose values are convex bodies. Further investigation

of such processes is left for future work.
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