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1  |  INTRODUC TION

Numerous studies corroborate important functions of sleep for the 
brain, such as synaptic scaling (Tononi & Cirelli, 2014), metabolic 

clearance (Ding et al., 2016), and overall mental health (Baglioni 
et al., 2016). Other studies address the relevance of sleep for pe-
ripheral organs, such as cardiovascular regulation (Kuo, Chen, Hsu, 
& Yang, 2016; Penzel et al., 2016) and diseases (Lane et al., 2019; 
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Summary
Oscillatory activities of the brain and heart show a strong variation across wakefulness 
and sleep. Separate lines of research indicate that non-rapid eye movement (NREM) 
sleep is characterised by electroencephalographic slow oscillations (SO), sleep spin-
dles, and phase–amplitude coupling of these oscillations (SO–spindle coupling), as well 
as an increase in high-frequency heart rate variability (HF-HRV), reflecting enhanced 
parasympathetic activity. The present study aimed to investigate further the potential 
coordination between brain and heart oscillations during NREM sleep. Data were de-
rived from one sleep laboratory night with polysomnographic monitoring in 45 healthy 
participants (22 male, 23 female; mean age 37 years). The associations between the 
strength (modulation index [MI]) and phase direction of SO–spindle coupling (circular 
measure) and HF-HRV during NREM sleep were investigated using linear modelling. 
First, a significant SO–spindle coupling (MI) was observed for all participants during 
NREM sleep, with spindle peaks preferentially occurring during the SO upstate (phase 
direction). Second, linear model analyses of NREM sleep showed a significant rela-
tionship between the MI and HF-HRV (F = 20.1, r2 = 0.30, p < 0.001) and a tentative 
circular-linear correlation between phase direction and HF-HRV (F = 3.07, r2 = 0.12, 
p = 0.056). We demonstrated a co-ordination between SO–spindle phase–amplitude 
coupling and HF-HRV during NREM sleep, presumably related to parallel central nerv-
ous and peripheral vegetative arousal systems regulation. Further investigating the 
fine-graded co-ordination of brain and heart oscillations might improve our under-
standing of the links between sleep and cardiovascular health.
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heart rate variability, phase amplitude coupling, sleep spindles, slow oscillation
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Pawlowski et al., 2017), but the complex interplay of central nervous 
system (CNS) and peripheral functions need to be further specified.

The transition from wake to sleep is characterised by deactiva-
tion of the main arousal system in mammals, the ascending reticular 
arousal system (ARAS), and associated changes in brain oscillatory 
activity. A major characteristic of light non-rapid eye movement 
(NREM) sleep (N2) are thalamo-cortical oscillations in the form of 
sleep spindles (sigma frequency range, 12–16  Hz). During deep 
NREM sleep (slow-wave sleep [SWS], N3), increasing synchronisa-
tion of neural activity is reflected by the occurrence of cortical slow 
oscillations (SO; 0.5–2 Hz) and high amplitude delta frequency waves 
(1–4 Hz; Andrillon et al., 2011; Molle, Marshall, Gais, & Born, 2002). 
SOs have been observed to orchestrate other oscillations, such as 
sleep spindles (Contreras & Steriade, 1995). This co-ordination can 
be quantified by the strength of phase–amplitude coupling (PAC) 
between these oscillations (SO–spindle phase–amplitude coupling). 
More specifically, PAC describes the temporal interaction between 
the phase of a low frequency rhythm (i.e. SOs) and the amplitude 
of a higher frequency component (i.e. sleep spindles; Canolty et al., 
2006; Helfrich, Huang, Wilson, & Knight, 2017; Voytek et al., 2010). 
This means that the power envelope (amplitude) of the spindle’s 
changes with the phase of the SOs.

Recent work suggests that PAC between SOs and sleep 
spindles promotes brain functions, such as attention, decision-
making(Canolty & Knight, 2010) or the consolidation of memory 
traces (Helfrich, Mander, Jagust, Knight, & Walker, 2018; Mikutta 
et al., 2019; Staresina et al., 2015) and underlying neural plasticity 
(Maier et al., 2019). Of note, not only the strength of SO–spindle 
coupling, but also the temporal orchestration (i.e. the position of the 
amplitude during the phase) appears to be critical for information 
processing during sleep (Helfrich et al., 2018, 2019; Winer et al., 
2019). For example, the position of the spindle peak relative to the 
SO phase (i.e. phase direction) determined overnight memory con-
solidation, with individuals showing the spindle peak on the up-state 
of the SO having the best outcome (Helfrich et al., 2018). Moreover, 
the phase direction was altered (spindle peak before SO up-state) 
in individuals with diminished frontal lobe volumes (Helfrich et al., 
2018).

Until now, PAC has primarily been related to brain functions. 
Yet, in a broader perspective, enhanced PAC might reflect de-
activation of arousal networks and reduced susceptibility to ex-
ternal stimuli during sleep (Dang-Vu, McKinney, Buxton, Solet, & 
Ellenbogen, 2010). We reasoned that such a deactivation of CNS 
activity might go along with deactivation of peripheral body func-
tions, as indexed by a shift in autonomic nervous system (ANS) 
function from sympathetic towards parasympathetic vagal activity. 
Sympathetic activity relates to the fight-flight or freeze responses. 
Parasympathetic activity, in turn, reflects the component of the 
ANS that promotes rest-related activities, such as “rest and digest” 
or “feed and breed” activities (Wehrwein, Orer, & Barman, 2016). 
Prior work identified heart rate variability (HRV) as a reliable index 
of parasympathetic activity (Jung, Lee, Jeong, & Park, 2017; Camm 
et al., 1996). HRV embraces the concept that the time between 

adjacent heartbeats differs in length. This variability is often 
quantified by computing power in spectral frequency bands. The 
role of the low-frequency HRV (LF-HRV: 0.04–0.15  Hz) remains 
unclear due to the underlying mixed ANS influences (Goldstein, 
Bentho, Park, & Sharabi, 2011; Martelli, Silvani, McAllen, May, & 
Ramchandra, 2014; Rahman, Pechnik, Gross, Sewell, & Goldstein, 
2011). In contrast, the physiological mechanisms underlying rapid 
changes in HRV are well characterised. High-frequency HRV 
(HF-HRV: 0.15–0.40  Hz) reflects cardiac parasympathetic activ-
ity (Chess, Tam, & Calaresu, 1975; Pomeranz et al., 1985; Thayer, 
Hansen, Saus-Rose, & Johnsen, 2009). Along these lines, greater 
parasympathetic activity, indexed by HF-HRV, is observed during 
NREM sleep compared to wakefulness (Carrington et al., 2005; 
Grimaldi et al., 2019; Mendez, Bianchi, & Cerutti, 2004; Nazeran 
et al., 2006).

The present study aimed to assess, to our knowledge for the 
first time, the interaction of brain (PAC) and heart (HRV) oscilla-
tions during sleep. To this end, we conducted novel analyses of 
PAC and its relation to HRV in an existing dataset of sleep labo-
ratory nights in healthy participants. Particularly, we tested the 
hypothesis that brain and heart oscillations during NREM sleep 
would be co-ordinated, operationalised as a positive correlation 
between the strength (modulation index [MI]) of SO–spindle 
PAC (phase: SO, 0.5–2 Hz; amplitude: sigma activity, 12–16 Hz) 
and HF-HRV, and a circular correlation between the phase di-
rection of SO–spindle phase–amplitude coupling and HF-HRV. 
In a post hoc exploratory analysis we estimated the interaction 
between PAC and MI as described above during the first three 
sleep cycles.

2  |  METHODS

2.1  |  Participants

Data from 45 healthy participants (22 males, 23 females, aged 21–
60 years, mean [SD] age 37.2 [12.3] years) were analysed. The num-
ber of participants was based on a power analysis (G*Power) with 
a significance level alpha of 0.05, a power of 0.8 and an effect size 
f2 of 0.3 for linear regression analyses. Participants were consecu-
tively drawn from existing datasets from the sleep laboratory of 
the Department of Psychiatry and Psychotherapy of the Medical 
Center, University of Freiburg, Germany (Feige et al., 2008; Holz 
et al., 2012). None of the participants had a history of sleep, neu-
rological, psychiatric, or other somatic disorders according to a 
clinical interview by an experienced physician. Participants with an 
apnea–hypopnea index of >5 events/hr were excluded. All partici-
pants were right-handed, non-smokers, and free of any medication 
or drug use. All participants provided written informed consent. 
The work was approved by the Ethics Committee of the University 
of Freiburg, Germany, and was carried out in accordance with The 
Code of Ethics of the World Medical Association (Declaration of 
Helsinki).
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2.2  |  Polysomnographic recordings

As described in detail previously (Holz et al., 2012), polysomnogra-
phy (PSG) was recorded from 11:00 p.m. to 7:00 a.m. in the sleep 
laboratory of the Department of Psychiatry and Psychotherapy of 
the Medical Center, University of Freiburg, Germany. Data were 
drawn from one baseline night after one adaptation and screening 
night (including respiratory signals and oxygen saturation). Sleep was 
recorded using 24-channel Sagura electroencephalography (EEG)-
PSG systems (Sagura Polysomnograph 2000, Sagura Medizintechnik 
GmbH). All signals were recorded synchronously with the same 
system and stored in a single multi-channel European Data Format 
(EDF) file. Sleep recordings were scored by experienced raters based 
on standard criteria (Rechtschaffen & Kales, 1968.). The setup in-
cluded the EEG electrodes C3–A2 (sampling rate 256 Hz), submen-
tal electromyogram, vertical and horizontal electro-oculogram and 
electrocardiogram (ECG, Lead II Einthoven configuration, sampling 
rate 512 Hz). For details on pre-processing of the EEG data please 
refer to Holz et al. (Holz et al., 2012). All further analysis steps used 
the same artefact-free overlapping segments of EEG and ECG data. 
The following PSG parameters were calculated: sleep latency, total 
sleep time, rapid eye movement (REM) sleep latency, SWS latency, 
and, with regard to sleep architecture, percentages of the different 
sleep stages referred to total sleep time.

2.3  |  Selection criteria for EEG and ECG 
data segments

Each participant had to have >120 min of overall artefact-free EEG 
data during NREM sleep and the equivalent ECG data set of each 
participant had to have <5% artefacts using the automatic artefact 
correction algorithm implemented by Kubios 3.4 (premium version, 
https://www.kubios.com). In order to maximise the quality and 
amount of data included into further analyses, 1-min data segments 
of the ECG and EEG data had to be without sleep stage transitions 
and without artefacts in order to ensure that EEG and HRV analyses 
(see chapter Heart rate variability analysis) could be performed on the 
same segments. The choice of 1-min segments length is a trade-off 
between the two signal components (ECG and EEG).

2.4  |  Phase–amplitude coupling analysis

All analyses were done using Matlab 2019 (https://www.mathw​
orks.com). In a first step, to explore the phase–amplitude coupling 
between low-frequency phases and a high-frequency amplitude 
in our data, the comodulogram averaged across all NREM sleep 
stages and across all participants was calculated. The comodulo-
gram is a data-driven approach indicating the strength of coupling 
between the phase of a low-frequency part of the signal and the 
amplitude of a high-frequency part, with the x-axis representing 
the low and the y-axis the amplitude-modulated high frequency 

(Figure 1d and additional Figure 1b). For the comodulogram the MI 
(Tort, Komorowski, Eichenbaum, & Kopell, 2010) was estimated, as 
described previously, (Maier et al., 2019; Mikutta et al., 2019) on 
1-min data segments. Data segments were chosen from artefact-
free (both EEG and ECG) epochs without sleep stage transition to 
ensure that both EEG and HRV analyses (see chapter Heart rate 
variability analysis) could be performed on the same segments. We 
used finite-duration impulse response filters to band-pass filter the 
data (forward/backward, filtfilt, Matlab, signal processing toolbox, 
https://www.mathw​orks.com/produ​cts/signal.html). Finite impulse 
response (FIR) filters used an order equal to three cycles of the 
lower cut-off frequency. In brief, the MI is defined as an adaptation 
of the Kullback–Leibler distance (a function that is used to infer the 
distance between two distributions) and calculates how much an 
empirical amplitude distribution-like function over phase bins devi-
ates from the uniform distribution. In detail, the MI was computed 
as follows: The phase of the SO was divided into B = 18 bins (each 
covering 20 degrees). The mean power of the spindle frequency os-
cillations envelope within each bin was estimated. By combining the 
individual bins, a phase–amplitude histogram (PAH) was computed. 
We compared the PAH with a uniform distribution (UD) using the 
Kullback-Leibler distance (DKL):

The DKL was normalised to calculate the MI:

For the comodulogram, the MI between low frequencies of 
0.5–6 Hz in 0.5-Hz steps and faster frequencies of 8–35 Hz in 1-Hz 
steps was calculated. As for this exploratory analysis no specific 
events, but frequency ranges were defined, we refer to the standard 
frequency range specifications (that is, SO and sigma activity).

In a second step, the individual strength and phase direction of 
SO–spindle phase–amplitude coupling during NREM sleep of each 
participant was calculated, as described previously (Mikutta et al., 
2019). In detail, for this SO event-locked approach, we detected the 
SO events using the algorithm described in Esser et al. (Esser, Hill, & 
Tononi, 2007) and cut out SO-locked events using 1.5 s before and 
after each SO peak. We z-normalised events per participant prior 
to all analyses. Mean and standard deviations (SDs) were computed 
using the unfiltered event-locked SO in every participant to avoid 
spurious coupling (Cole & Voytek, 2017). Furthermore, we defined 
spindle events by extracting the analytical amplitude after apply-
ing a Hilbert transform. We smoothed the amplitude with a 200 ms 
moving average. Then the amplitude threshold was set at the 75% 
percentile (amplitude criterion) and only events that exceeded the 
threshold for 0.5–3  s (time criterion) were accepted. For further 
analyses, we selected only SO events, with a spindle within a ±1.5 s 

DKL (PAH,UD) =

N
∑

j=1

PAH (j) × log

[

PAH (j)

UD (j)

]

MI =
DKL

log (B)

https://www.kubios.com
https://www.mathworks.com
https://www.mathworks.com
https://www.mathworks.com/products/signal.html
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window around the SO peak. Due to this event selection we refer 
to SO and spindle events in this analysis. For estimating the indi-
vidual strength of SO–spindle coupling, the MI for each participant 
and event, data was band-pass filtered within the SO (0.2–5 Hz) and 
spindle (12–16 Hz) frequency bands (Figure 1a,b). For avoiding fil-
ter edge artefacts, we discarded the first and last 0.5 s of each SO 
epoch. Computation of the MI again followed the procedure out-
lined above. The individual MI for each participant is reported as 
average over all trials. For estimating the individual phase direction 
of SO–spindle coupling, the instantaneous phase of the SO band 
(0.5–2 Hz) for all events was extracted. After that, the instantaneous 
amplitude of the same events within the sigma band (12–16 Hz) was 
extracted. Next, we detected the maximal peak of the sigma ampli-
tude and the corresponding phase angle of the SO in every subject 
and epoch. Then, the preferred phase was computed by calculating 
the mean sigma peak relative SO phase angle of all SO epochs within 
each participant using the circ-mean function of the CircStat toolbox 

(15). For linear modelling, we converted this circular data (preferred 
phase) into the cartesian space. In order to keep out the vector 
length (strength of interaction) and solely focus on the phase angle, 
we used one instead of the vector length as multiplicator for getting 
the Real and Imaginary part in the artesian space: Real  =  sin(pre-
ferred phase) *1; Imaginary = cos(preferred phase) *1.

2.5  |  Heart rate variability analysis

All analyses comprising HRV parameters represent novel, previ-
ously unpublished analyses. The ECG data were acquired at a 512-
Hz sampling rate using a Lead II Einthoven configuration. Data were 
down sampled to 500 Hz using Matlab 2019a. Analysis of HRV was 
conducted according to the Task Force of the European Society of 
Cardiology guidelines (Camm et al., 1996). However instead of 5-
min excerpts, we only used 1-min data excerpts as described above. 

F I G U R E  1 (a; top) Representative raw ECG data from one participant. Red asterisks denote the peak of the QRS complex, R wave. The 
raw data show that the R–R interval changes. (bottom) Time between R–R intervals for the ECG shown in A (Top). (b; left, top and bottom) 
Frequency domain analysis: Power spectral density (PSD) of the autoregression analysis of the R–R intervals. The default values for the 
bands are VLF: 0–0.04 Hz (black), LF: 0.04–0.15 Hz (blue), and HF: 0.15–0.4 Hz (red). The example depicts data with high HF frequency 
power. (c; top) An example of the EEG raw signal showing a slow wave event at approximately 2 s. (c; bottom) The same EEG data filtered 
in the SO range (0.5–2 Hz, red) and spindle-range (12–16 Hz, blue). The highest amplitudes of the spindle occur in the up-state of the SO. 
(d) Comodulogram between lower frequency (0.5–6 Hz, 0.5 Hz steps) phases and faster frequency (8–35 Hz, 1-Hz steps) amplitudes during 
NREM sleep. (e) Preferred phase of the 45 participants on a circular plot. 0/pi (0/360°) equals the up-state of the SO wave. The red line 
depicts the mean vector over all participants. ECG, electrocardiogram; EEG, electroencephalography; HF, high frequency; LF, low frequency; 
NREM, non-rapid eye movement; SO, slow oscillation; VLF, very low frequency
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The 1-min windows were chosen in order to maximise the amount 
of artefact-free EEG and ECG data for the analyses. Recent research 
suggests that 1-min time windows are sufficient for providing reli-
able HRV results (Koenig et al., 2017).

The HRV data was characterised by providing absolute measures 
of total power, HF power in ms2 units and the heart rate (HR) in beats 
per min. Furthermore, HF-peak frequency as a surrogate marker for 
the breathing rate is provided. Several studies confirmed the reli-
ability of ultra-short HRV frequency analysis (Lischke et al., 2018; 
Salahuddin, Cho, Jeong, & Kim, 2007; Seps, Beckers, & Aubert, 
2002). Time windows were averaged across all NREM sleep stages, 
which is preferable for ultra-short HRV recordings (Schroeder et al., 
2004). HRV of the R-wave series derived from the ECG were an-
alysed using MATLAB based Kubios HRV Analysis Software 2.0 
(Tarvainen, Niskanen, Lipponen, Ranta-Aho, & Karjalainen, 2014). 
An autoregressive algorithm (smoothing prior Lambda 500, artefact 
correction threshold low) was used to compute the spectral power in 
the HF (0.15–0.40 Hz) band, in ms². All values are reported as means 
over all 1-min artefact-free NREM epochs of each participant (as de-
fined in Selection criteria for EEG and ECG data segments).

2.6  |  Sleep cycle analysis of SO-spindle 
coupling and HF-HRV

As both variables, that is SO–spindle coupling and HF-HRV, are 
linked to time windows, we wanted to assure that the observed ef-
fects were stable across different time scales by using the different 
sleep cycles as a confounding factor within linear modelling. We ex-
plored changes of HF-HRV, MI and the relationship thereof during 
the night, we separately analysed NREM sleep data of the first three 
sleep cycles. Participants included in the sleep cycle analyses had to 
have >20 min of artefact-free data in each sleep cycle.

2.7  |  Statistical analysis

Descriptive values for the PSG are provided as means (SDs). 
Furthermore, we provide descriptive values for the comodulogram, 
individual MI and HF-HRV as means and SDs, if not stated otherwise. 
For testing the individual strength (MI) of SO–spindle coupling for 
significance, we performed a surrogate control analysis by shuffling 
the spindle amplitudes and SO phases over trials and thereby creat-
ing 200 surrogate MI values for estimating a significance threshold 
(p < 0.05) for each participant. Before we computed the preferred 
phase, we controlled for a non-uniform distribution of phase di-
rections of SO–spindle coupling within each participant, using a 
Rayleigh test for non-uniformity of circular data. To test the primary 
hypothesis of a linear relationship between the strength of SO–
spindle coupling and HF-HRV during NREM sleep, we fitted a linear 
model with MI as predictor and HF-HRV as outcome parameter. An 
F test of overall significance (comparison to an intercept only model) 
was conducted and the explained variance (R2) and the B value (beta; 

i.e. coefficients or differences between factor levels) of the fitted 
model are provided. To test the second primary hypothesis, we used 
circular-linear correlation to estimate the correlation between HF-
HRV (linear) and the preferred phase (circular). The r value and cor-
responding p value is reported.

To control for the stability of our results for different time win-
dows, we computed individual MI, phase direction and HF-HRV 
values for each of the first three sleep cycles and compared those 
using one-factorial analyses of variance (ANOVAs) with the within-
subject factor Sleep cycle for MI and the cartesian co-ordinates (real 
and imaginary part) and HRV-HF. For testing for differences in the 
preferred phase, we used a Watson–Williams multi-sample test for 
equal means. For post hoc comparisons, paired Student’s t tests 
were conducted. The p values of the paired Student’s t tests were 
corrected for multiple testing using false discovery rate (FDR) cor-
rection (Benjamini and Hochberg method). To test for the impact of 
the factor sleep cycle, we fitted a repeated measure linear model 
using the individual MI value of each of the three sleep cycles (three 
values per participant) as input parameters and the HF-HRV values 
with cycle as confounding variable. We report the results as F test 
of overall significance. For univariate effect, we report F and p val-
ues, the explained variance (r2) of the predictor variables as well as B 
values (betas) of the linear model, i.e. coefficients or differences be-
tween factor levels. The p values of within-subject parameters were 
Greenhouse–Geisser corrected. Furthermore, we fitted a repeated 
measure linear model using the individual real and imaginary part 
cartesian co-ordinate values of each of the three sleep cycles (three 
values per participant) as input parameters and the HF-HRV values 
with cycle as confounding variable. We report the results as outlined 
above. In order to control for alternative explanations, we tested for 
confounding factors (duration of NREM overall, SWS, number of 
SO events, EEG delta power, EEG sigma power, age) and concerning 
HRV (HF peak frequency [as a proxy for breathing frequency], SD 
of the starting times of 1-min segments over the night [as proxy for 
the overnight distribution of the segments], number of R-peaks) by 
increasing the linear models with these confounding parameters as 
predictors.

3  |  RESULTS

3.1  |  Polysomnography

For the primary analyses of NREM sleep of the entire night, we 
included all 45 participants. For the exploratory sleep cycle analy-
ses, we included 36 participants meeting the inclusion criteria 
(>20 min of artefact-free ECG and EEG data in each sleep cycle). In 
brief, PSG recordings demonstrated a mean (SD) sleep latency of 
31.3 (20.1) min, total sleep time of 470.6 (23.3) min, NREM sleep 
of 271.4  (65.4)  min, SWS of 36.2  (26.7)  min, REM sleep latency 
of 91.1 (25.7) min, REM sleep of 85.1 (28.5) min and, with regard 
to sleep architecture, 67% of NREM sleep (9% of SWS) and 18% 
of REM sleep referred to the total sleep time. For the current 
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analyses, a mean (SD) 188.0  (53.9)  min of NREM sleep including 
28.3  (22.4) min of SWS were used. Data for single sleep cycle is 
provided in Table S1.

3.2  |  Strength of phase-amplitude coupling

For the calculated comodulogram of the whole night’s NREM sleep 
episodes, the highest strength of coupling was found between the 
standard SO phase (0.5–2 Hz) and the sigma (12–16 Hz) amplitude 
(Figure 1d), as previously reported in our own work (Mikutta et al., 
2019) and that of other groups (Helfrich et al., 2018).

Second, in order to estimate the individual strength of the 
coupling between SO and spindle activity in each participant, 
we identified a mean (SD) of 1837 (725) SO events with a sleep 
spindle in ±1-s time-window around the peak during NREM 
overall sleep. Replicating prior observations (Helfrich et al., 
2018; Klimesch, 2013), a strong coupling for the standard SO 
phase (0.5–2  Hz) and spindle frequency range amplitude (12–
16 Hz) was observed (NREM sleep: mean [SD] MI across all par-
ticipants 0.0119  [  0.0059]). Individual values are presented in 
Figure 2 and additional Figure 2. For all participants individual 
MI values for this SO phase and spindle frequency range were 
calculated using the surrogate MI values and yielded to be sig-
nificantly higher (p  <  0.05) than the threshold based on com-
pared surrogate data, indicating a significant phase–amplitude 

coupling between the SO and spindle frequency range in each 
participant.

3.3  |  Phase direction of phase–amplitude coupling

Next, in order to explore the specific temporal organisation between 
SO and spindle events, we identified the mean coupling direction, 
that is the SO phase-angle position of the maximal spindle amplitude 
within each participant. The Rayleigh test showed a significant non-
uniform circular distribution in every participant (p  <  0.01, for all 
participants). We found 64% of the participants (29/45 participants) 
having the preferred phase on the up-state (window ±30° window). 
Particularly, the highest peaks of the spindle amplitude were located 
on average at a mean (SD) of −0.010  (0.62)  radians during NREM 
overall sleep, that is during the up-states.

3.4  |  Heart rate variability

The mean (SD) heart rate during NREM sleep was 50.3 (15) beats/
min. The mean (SD) total power was 4921  (1295)  ms2 and the 
HF-HRV was 2728.3  (698.1)  ms2. The mean (SD) HF-peak fre-
quency was 0.16 (0.08) Hz. Analyses were based on a mean (SD) of 
10911 (8263) beats during NREM sleep. Individual HF-HRV can be 
derived from Figure 2 and additional Figure 2.

F I G U R E  2 (a) HF-HRV (ms2) as a function of MI. We found a significant correlation (r = 0.56, p = 0.001), indicating that a stronger 
interaction between spindle and SO goes along with a higher parasympathetic activity. HF-HRV (ms2) as a circular-linear function of the 
mean phase direction during NREM sleep. (b) The tendency towards a significant circular-linear correlation between HRV-HF and the phase 
direction (r = 0.35, p = 0.056) indicates that a precise orchestration of spindle peaks and SO up-states coincides with a higher HF-HRV 
values indicating increased parasympathetic activity. The black line indicates a quadratic fit for visualising the circular-linear correlation. (c) 
Linear model (adjusted values) between HF-HRV and MI. The model reveals a significant interaction between HF-HRV and MI (F[1,42] = 20.1, 
r2 = 0.30, B-value = 5.62, p < 0.001). HF-HRV, high-frequency heart rate variability; MI, modulation index; NREM, non-rapid eye movement; 
SO, slow oscillation
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3.5  |  Linear relationship between strength of SO-
coupling and HF-HRV

The linear regression model between the MI and HF-HRV during 
NREM sleep was significant (F[1,42] = 20.1, r2 = 0.30, B-value = 5.62, 
p < 0.001; Figure 2c), indicating a significant linear relationship be-
tween SO-coupling and HF-HRV (Figure 2a and c).

3.6  |  Circular-linear relationship between phase 
direction of SO-coupling and HF-HRV

The circular-linear between preferred phase and HF-HRV demon-
strated a tendency towards significance without attaining statistical 
significance (r = 0.34, p = 0.056).

3.7  |  Post hoc sleep cycle analyses

In the comodulogram for NREM sleep in each sleep cycle, we ob-
served a decreasing strength of SO–spindle coupling (additional 
Figure 1b, left panel). For estimating the individual strength of 
the coupling between SO and spindle activity in each participant 
for each sleep cycle, we identified a mean (SD) ncycle 1 = 496 (262), 
ncycle 2 = 485 (211), ncycle 3 = 448 (182) SO events with a sleep spin-
dle in ±1-s time-window around the peak. Across sleep cycles, the 
MI decreased significantly in the third sleep cycle (one-factorial 
ANOVA: F[2,105] = 3.78, p = 0.02). For the post hoc Student’s t test 
the p value was adjusted to 0.02 using the FDR (cycle 1 versus cycle 
3: t = 3.60, p = 0.001; cycle 2 versus cycle 3: t = 2.67, p = 0.011; 
Figure 2a, left panel).

During the first three sleep cycles, the mean (SD) phase direc-
tion of SO–spindle coupling was −0.38  (0.14), −0.41  (0.21), and 
−0.21  (0.09)  radians, respectively. There was no significant dif-
ference of phase direction between the three sleep cycles (one-
factorial ANOVA: F-real[2,105] = 0.19, p = 0.82; one-factorial ANOVA: 
F-imagery[2,105] = 0.14, p = 0.86).

The HRV parameters for all three sleep cycles are listed in 
Table 1. There was no significant difference in HF-HRV between the 
three sleep cycles (one-factorial ANOVA: F[2,105] = 0.16, p = 0.85; ad-
ditional Figure s1a, right panel).

The preferred phase did no change significantly between the 
sleep cycles (Watson–Williamson test: F[2,105]  =  0.29, p  =  0.75; 
Figure s1c).

Further, for testing the stability of the observed significant rela-
tionship between MI over the whole night throughout NREM sleep, 
the fitted repeated measures linear model with the predictors MI and 
sleep cycle as within subjects variables and the outcome parame-
ter HF-HRV was significant (F[1,33] = 19.7, r2 = 0.23, B-value = 2.04, 
p < 0.001; Figure s2a and c). Furthermore, the number of the sleep 
cycle was not a significant within subject factor (F[1,68]  =  1,9, pGG 
=0.14; Figure s2c), indicating the stability of the relationship between 
SO–spindle coupling and HF-HRV for the first three sleep cycles.

The repeated measure linear regression model with the outcome 
parameter HF-HRV and the predictors real and imaginary part using 
the variable cycle as within subject parameter did not show a sig-
nificant fit (F[2,31] = 1.08, r2 = 0.06, B-value = −0.18, p = 0.35), real 
part (Freal = 0.78, r2 = 0.04, B-value = −0.02, p = 0.46), and imagi-
nary part (Fimag = 5.3, r2 = 0.25, B-value = 0.03, p = 0.01; Figure s2b 
and d). Cycle was not a significant within subject factor (Freal = 0.9, 
pGG = 0.4; Fimag = 1.04, pGG = 0.364).

3.7.1  |  Control analyses

Results of the control analyses can be found in the Supplementary 
Material.

4  |  DISCUSSION

The present study shows, for the first time, to our knowledge, that 
the strength and precise temporal co-ordination (phase direction) of 
sleep slow oscillatory and spindle activity, quantified as PAC, during 
NREM sleep in the brain goes along with an increased HF-HRV, an 
index of enhanced peripheral parasympathetic activity. This find-
ing contributes to and extends the emerging knowledge on orches-
trated brain and body functions during sleep.

Previously, the concept of PAC was primarily associated with 
cognitive functions, e.g. memory consolidation (Canolty & Knight, 
2010; Helfrich et al., 2018). Our present results are consistent 
with recent findings indicating that peripheral cardiac functions 
(ECG) and EEG patterns show distinct synchronisation patterns 
(Klimesch, 2013). In detail, it was shown that ECG R-peaks coin-
cided with up-states of SO, as well as spindle peaks during SWS 
(Lechinger, Heib, Gruber, Schabus, & Klimesch, 2015). Our present 
work extends prior work by demonstrating that the strength of 
the SO–spindle interaction (MI) correlates with a measure of para-
sympathetic activity. Therefore, our present finding of strength of 
coupling and phase direction correlating with autonomic activity 
might establish a further link between central brain functions and 
HRV, indicating that a precise temporal orchestration of SO and 
spindle events coincides with a higher parasympathetic activity. 
Our present study was not designed to control for directionality 
of this process. However, recent work assumes a bi-directionality 
of communication between neural oscillations and ECG R-peaks 
(Grimaldi et al., 2019).

Although it is too early for mechanistic conclusions, we spec-
ulate that the strength of SO–spindle coupling might reflect an 
increased general synchronisation during sleep, which indicates a 
decreased impact of external stimuli on the brain. This, in turn, 
might cause an increased parasympathetic activity. This view is 
supported by studies that observed cortical and peripheral au-
tonomic activity to be macroscopically associated (Jurysta et al., 
2003). A body of research indicates that the temporal interaction 
of cardiac events and delta and sigma power in the EEG predicts 
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memory performance (Naji, Krishnan, McDevitt, Bazhenov, & 
Mednick, 2019a, 2019b), indicating the general importance of brain 
(EEG) and autonomous (ECG) activity interaction (Whitehurst, 
Chen, Naji, & Mednick, 2020).

Specifically, prior work suggested an interaction between the ab-
solute power of most conventional EEG frequency bands and HF-HRV 
as a marker for parasympathetic activity (Otzenberger et al., 1998; 
Otzenberger, Simon, Gronfier, & Brandenberger, 1997). A specific pos-
itive association was found between delta power and HRV-HF.4,49,55 
Further studies indicate a relevance of the phase of EEG delta activ-
ity, as delta phase shifts precede changes in HF-HRV activity (Jurysta 
et al., 2003). Non-linear HRV analyses methods revealed that the oc-
currence of SO/delta oscillations interact with non-linear HRV param-
eters (Yeh et al., 2013). However, it remains to be further clarified how 
the rather phasic measure of MI relates to the rather tonic HF-HRV.

The general physiological bases of PAC are still under debate. It 
was shown that a disturbed structural integrity of the prefrontal cor-
tex due to ageing is associated with a dissociation of SO and spindles 
(Helfrich et al., 2018). The prefrontal cortex was as well identified as 
a key structure for HRV regulation (Thayer et al., 2009). Therefore, 
we speculate that a physiological origin for the correlation between 
PAC and HRV might be located in the prefrontal cortex.

The control analyses confirmed the exclusive relationship between 
HF-HRV and MI, as none of the conventional (absolute and relative) 
frequency bands showed a significant correlation. Further, other HRV 
parameters (SD of normal-to-normal R–R intervals [SDNN], root mean 
square of successive R–R interval differences [RMSSD]) did not show 
a significant correlation with MI or preferred phase. The additional 
analysis of SWS did not show any difference to the analysis of NREM 
sleep and therefore did not change the main outcome.

Although the absolute values of the MI declined during the third 
sleep cycle, the correlation between MI and HF-HRV remained sig-
nificant and was not different to the first and second cycle. We spec-
ulate that the relative changes and not the absolute strength of the 
MI are relevant for the interaction with HF-HRV.

Major limitations of the present study comprise the rather small but 
according to power analysis statistical reasonable number of partici-
pants and the fact that we re-analysed the data from an existing data-
set. The compromises of analysing methods due to the data structure 
(EEG and ECG data) limited on the one hand the possible time resolution 
(low validity of the MI with a low number of trials, 1-min time-window 
for HF-HRV calculation) and on the other hand prerequisites the need 
to discard data in order to get the optimal data quality for EEG and ECG 

data in the respective 1-min epochs. A further limitation is the selection 
of HRV variables. Due to the given requirements of the data, we opted 
for frequency domain HRV analysis. We chose HF ms2 based on the 
recent literature, indicating HF ms2 to be a reliable parameter of para-
sympathic activity (Grimaldi et al., 2019). Although we controlled our 
present results using time-domain variables (RMSSD), there might be a 
restriction of these results due to the short analysis window. Another 
limitation is the analysis of a single electrode. However, recent results 
indicate that left fronto-parietal areas covered by C3 show strong cou-
pling activity during sleep (12). Further frontal cortex areas have often 
been associated with central control of HRV (30).

Further developing the present line of research might have rel-
evant clinical implications. For instance, a lowered HF-HRV is asso-
ciated with an increased risk of cardiovascular incidents (Hillebrand 
et al., 2013). Sleep, and in particular orchestrated brain and heart 
oscillations, might provide a window for new interventions, such as 
through non-invasive brain stimulation techniques, including audi-
tory stimulation (Bonnet & Ardand, 2007; Fehér, 2020; Peppard, 
Young, Palta, & Skatrud, 2000). In particular, the quality and the fine-
graded orchestration of physiological processes during sleep might 
be more important than pure sleep duration.

The results of our present study might have relevant clinical im-
plications. Our present findings support the notion that disturbed 
orchestration of brain oscillations, indicative for enhanced arousal 
during sleep, has a potential link to cardiovascular diseases (Bonnet 
& Ardand, 2007; Peppard et al., 2000).

Together, the present study demonstrates an interaction be-
tween MI, phase direction and an index of HRV, with higher MI val-
ues going along with indices of increased parasympathetic activity. 
Further analyses of the fine-graded orchestration of brain oscilla-
tions during sleep might have the potential to improve our under-
standing of the links between sleep and peripheral functions, such 
as cardiovascular activity and disease. Future studies are needed to 
explore possible therapeutic agents and interventions to alter PAC 
and related functions.
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HF, high frequency.
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