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Abstract

Synapses are fascinatingly complex transmission units. One of the fundamental fea-
tures of synaptic transmission is its stochasticity, as neurotransmitter release exhibits
variability and possible failures. It is also quantised: postsynaptic responses to presy-
naptic stimulations are built up of several and similar quanta of current, each of
them arising from the release of one presynaptic vesicle. Moreover, they are dynamic
transmission units, as their activity depends on the history of previous spikes and
stimulations, a phenomenon known as synaptic plasticity. Finally, synapses exhibit
a very broad range of dynamics, features, and connection strengths, depending on
neuromodulators concentration [5], the age of the subject [6], their localization in the
CNS or in the PNS, or the type of neurons [7].

Addressing the complexity of synaptic transmission is a relevant problem for both bi-
ologists and theoretical neuroscientists. From a biological perspective, a finer under-
standing of transmission mechanisms would allow to study possibly synapse-related
diseases, or to determine the locus of plasticity and homeostasis. From a theoreti-
cal perspective, different normative explanations for synaptic stochasticity have been
proposed, including its possible role in uncertainty encoding, energy-efficient compu-
tation, or generalization while learning. A precise description of synaptic transmission
will be critical for the validation of these theories and for understanding the functional
relevance of this probabilistic and dynamical release.

A central issue, which is common to all these areas of research, is the problem of
synaptic characterization. Synaptic characterization (also called synaptic interroga-
tion [8]) refers to a set of methods for exploring synaptic functions, inferring the value
of synaptic parameters, and assessing features such as plasticity and modes of release.
This doctoral work sits at the crossroads of experimental and theoretical neuroscience:
its main aim is to develop statistical tools and methods to improve synaptic charac-
terization, and hence to bring quantitative solutions to biological questions.

In this thesis, we focus on model-based approaches to quantify synaptic transmission,
for which different methods are reviewed in Chapter 3. By fitting a generative model
of postsynaptic currents to experimental data, it is possible to infer the value of
the synapse’s parameters. By performing model selection, we can compare different
modelizations of a synapse and thus quantify its features. The main goal of this thesis
is thus to develop theoretical and statistical tools to improve the efficiency of both
model fitting and model selection.

A first question that often arises when recording synaptic currents is how to precisely
observe and measure a quantal transmission. As mentioned above, synaptic transmis-
sion has been observed to be quantised. Indeed, the opening of a single presynaptic
vesicle (and the release of the neurotransmitters it contains) will create a stereotypi-
cal postsynaptic current q, which is called the quantal amplitude. As the number of
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activated presynaptic vesicles increases, the total postsynaptic current will increase
in step-like increments of amplitude q. Hence, at chemical synapses, the postsynaptic
responses to presynaptic stimulations are built up of k quanta of current, where k is
a random variable corresponding to the number of open vesicles. Excitatory postsy-
naptic current (EPSC) thus follows a multimodal distribution, where each component
has its mean located to a multiple kq with k ∈ N and has a width corresponding to
the recording noise σ. If σ is large with respect to q, these components will fuse into
a unimodal distribution, impeding the possibility to identify quantal transmission
and to compute q. How to characterize the regime of parameters in which quantal
transmission can be identified? This question led us to define a practical identifiabil-
ity criterion for statistical model, which is presented in Chapter 4. In doing so, we
also derive a mean-field approach for fast likelihood computation (Appendix A) and
discuss the possibility to use the Bayesian Information Criterion (a classically used
model selection criterion) with correlated observations (Appendix B).

A second question that is especially relevant for experimentalists is how to optimally
stimulate the presynaptic cell in order to maximize the informativeness of the record-
ings. The parameters of a chemical synapse (namely, the number of presynaptic
vesicles N , their release probability p, the quantal amplitude q, the short-term de-
pression time constant τD, etc.) cannot be measured directly, but can be estimated
from the synapse’s postsynaptic responses to evoked stimuli. However, these estimates
critically depend on the stimulation protocol being used. For instance, if inter-spike
intervals are too large, no short-term plasticity will appear in the recordings; con-
versely, a too high stimulation frequency will lead to a depletion of the presynaptic
vesicles and to a poor informativeness of the postsynaptic currents. How to perform
Optimal Experiment Design (OED) for synaptic characterization? We developed an
Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) framework, which is
efficient enough to be used in real-time biological experiments (Chapter 5), and pro-
pose a link between our proposed definition of practical identifiability and Optimal
Experiment Design for model selection (Chapter 6).

Finally, a third biological question to which we ought to bring a theoretical answer
is how to make sense of the observed organization of synaptic proteins. Microscopy
observations have shown that presynaptic release sites and postsynaptic receptors
are organized in ring-like patterns, which are disrupted upon genetic mutations. In
Chapter 7, we propose a normative approach to this protein organization, and suggest
that it might optimize a certain biological cost function (e.g. the mean current or
SNR after vesicle release).

The different theoretical tools and methods developed in this thesis are general enough
to be applicable not only to synaptic characterization, but also to different experi-
mental settings and systems studied in physiology. Overall, we expect to democratize
and simplify the use of quantitative and normative approaches in biology, thus reduc-
ing the cost of experimentation in physiology, and paving the way to more systematic
and automated experimental designs.
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Chapter 1

Introduction

Figure 1.1: On the importance of using the correct statistical tools1.

1.1 The biological features of synaptic transmission

Synapses are fascinatingly complex transmission units. Across species and parts of
the nervous system, they exhibit a very broad range of dynamics, features, and con-
nection strengths, depending on neuromodulators concentration [5], the age of the

1https://xkcd.com/1132/, use with authorization.
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subject [6], their localization in the CNS or in the PNS, or the type of neurons
[7]. Despite this diversity, all chemical synapses share the same basic principles and
structures, illustrated in Figure 1.2. The presynaptic Active Zone (AZ) and the post-
synaptic density are separated by the narrow synaptic cleft, and are stabilized close
to each other by Synaptic Adhesion Molecules (SAMs). Synaptic vesicles contain
neurotransmitter molecules, such as glutamate (the most common excitatory neu-
rotransmitter in vertebrates), GABA (inhibitory), or ACh (at the Neuro-Muscular
Junction or NMJ). Upon the arrival of an Action Potential (AP) in the presynaptic
terminal, Voltage-Gated Calcium Channels (VGCC) will increase the calcium con-
centration in the presynaptic terminal, leading to the fusion of vesicles (from a pool
of readily-releasable vesicles) with the plasma membrane and to the release of neuro-
transmitters in the cleft. Neurotransmitter molecules will then bind with postsynaptic
receptors, which will either create an immediate flux of ions (for ionotropic receptors)
or initiate an indirect chemical pathway (for metabotropic receptors); in both cases,
it will result in an excitatory or inhibitory postsynaptic current.

At a finer level, the spatial organization of synaptic proteins can be measured using
either confocal or gSTED microscopy (Figure 1.3). At the Drosophila NMJ, Bruch-
pilot (BRP) presynaptic proteins are located close to vesicle release sites, around the
VGCC at the center of the AZ, while postsynaptic GluR (glutamate receptors) are
located at the postsynaptic density.

In most cases, the presynaptic terminal is located on the axon of a neuron, while
the postsynaptic bouton is located on a dendrite or on the soma of another neuron.
However, different arrangements also exist: axon-to-axon, dendrite-to-dendrite, axon-
to-bloodstream, soma-to-dendrite, dendrite-to-soma, or soma-to-soma. Especially, at
the NMJ, chemical signal is passed to a target muscle cell. Finally, one should also
note the existence of electrical synapses, in which the pre- and postsynaptic cells are
directly connected by gap junctions. They allow for a faster and direct transmission
of currents (without intermediary chemical transmitters), but cannot modify the gain
of the signal.

One of the fundamental features of synaptic transmission is its stochasticity, as
neurotransmitter release exhibits variability and possible failures: upon presynaptic
stimulation, only a fraction of the vesicles in the readily-releasable pool will indeed
fuse with the synaptic membrane and release their neurotransmitters. This fraction
is highly variable, both when considering successive stimulations of the same synapse
(trial-to-trial, or within-subject, variability) or when comparing different synapses
(between-subject variability). For a given synapse, the mean fraction averaged over
different trials corresponds to the release probability p. Incidentally, single vesicles
may also randomly release their neurotransmitters even in the absence of presynaptic
spike. This stochastic release of a single vesicle is known as spontaneous release,
as opposed to evoked release where several vesicles fuse simultaneously following a
presynaptic spike.

Synaptic transmission at chemical synapses is also discrete: the spontaneous release
of one vesicle will create a small, although detectable, postsynaptic current, called a
miniature postsynaptic current (mPSC), or ”mini”. It has been observed that,
following evoked release, the postsynaptic current was always a multiple of the mPSC.
Hence, in chemical synapses, the postsynaptic responses to presynaptic stimulations
are built up of several and similar quanta of current, each of them arising from the

2
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release of one presynaptic vesicle2 [9]. The current elicited by the release of one
presynaptic vesicle is called the quantal amplitude q.

Figure 1.2: Diagram of a chemical synaptic connection. This diagram shows
a stereotypical chemical synapse, where a chemical signal is passed from one neuron
(presynaptic terminal) to another (postsynaptic bouton). In most cases, the presy-
naptic terminal is located on the axon of a neuron, while the postsynaptic bouton
is located on a dendrite or on the soma of another neuron: however, different ar-
rangements also exist. Especially, at the NMJ, chemical signal is passed to a target
muscle cell. The presynaptic Active Zone (AZ) and the postsynaptic density are sep-
arated by the narrow synaptic cleft, and are stabilized close to each other by Synaptic
Adhesion Molecules (SAMs). Synaptic vesicles contain neurotransmitter molecules,
such as glutamate (the most common excitatory neurotransmitter in vertebrates),
GABA (inhibitory), or ACh (at the NMJ). Upon the arrival of an action potential
in the presynaptic terminal, Voltage Gated Calcium Channels (VGCC) will increase
the calcium concentration in the presynaptic terminal, leading to the fusion of vesi-
cles with the plasma membrane and to the release of neurotransmitters in the cleft.
Neurotransmitter molecules will then bind with postsynaptic receptors, and trigger
either an excitatory (depolarizing) or inhibitory (hyperpolarizing) postsynaptic cur-
rent. Image from [10] (CC BY-SA 4.0 license).

A classical biophysical model used to describe this stochastic release of neurotrans-
mitter is called the binomial model: upon the arrival of an action potential in the
presynaptic terminal, vesicles are released with a given probability p. The binomial
model [12] assumes that there are N independent release sites and that for each site
the release probability p is identical. Therefore, the number of released vesicles after
spike i, ki, is distributed according to a binomial distribution with parameters N
and p. This model further assumes that each vesicle release gives rise to a quantal
current q, such that the overall Excitatory postsynaptic current (EPSC) is given by
ei = qki + εi, where εi models measurement noise3 typically drawn from a standard
normal distribution with standard deviation σ. The distribution of outputs is given

2The quantal nature of synaptic transmission had been identified in the 1950s by Bernard Katz,
who later received the Nobel Prize in medicine for his research.

3σ accounts for different sources of variability, including the thermal noise of the amplifier used
for the recording, or the natural fluctuations of the membrane cell which are not accounted for in
the model.
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Figure 1.3: Spatial organization of synaptic proteins. At the Drosophila NMJ,
synaptic proteins’ position can be measured using either confocal or gSTED mi-
croscopy. Bruchpilot (BRP) presynaptic proteins are located close to vesicle release
sites, around the VGCC at the center of the AZ. Postsynaptic GluR (glutamate re-
ceptors) are located at the postsynaptic density. Courtesy of Wayan Gauthey and
Martin Müller, University of Zurich [11].

by

p(ei) =

N∑
ki=0

p(ei|ki)p(ki) (1.1)

where [ei|ki] ∼ N (qki, σ
2) and ki ∼ Bin(N, p).

Under this binomial model, a synapse is thus described by a vector Θ of 4 parameters:
the number of vesicles N , the release probability p, the quantal amplitude q [mA],
and the recording noise σ [mA] (Figure 1.4). In most cases, these parameters cannot
be measured directly, but can be inferred using EPSCs4 recorded on the postsynaptic
side and elicited by stimulating the presynaptic cell, a method known as synaptic
characterization. Different methods to infer the values of the parameters of a
synapse will be described in Section 1.5.

It is important to note that the binomial model detailed above and having parameters
Θ = [N, p, q, σ] is not the only one that can be used to fit synaptic data: synaptic
transmission can be explained using a wide range of possible models, of different
complexities and levels of plausibility, modelling different features and having different
parameters. Different models of the synapse will be presented in Section 1.3.

1.2 Computational models of synaptic Short-Term Plas-
ticity

Synapses have been observed to be dynamic transmission units, as their activity
depends on the history of previous spikes and stimulations. In this section, we focus
on a particularly important feature of synaptic transmission, which is called Short-
Term Plasticity (STP), and which is illustrated in Figure 1.5. In the basic binomial

4In practice, the binomial model can be applied to both EPSPs and EPSCs. In any postsynaptic
cell, the current (EPSC) causes a change in membrane voltage (EPSP), which also depends on the
membrane properties (i.e. membrane time constant and resistance). Up to a certain point, these
factors are linear and thus EPSP can be used for quantal analysis as well. One of the major differences
is that postsynaptic currents have faster kinetics than the corresponding voltage changes, which allows
e.g. responses to high-frequency repetitive stimulation to be resolved. In addition, voltage changes
(EPSPs) often do not summate linearly when the voltage changes are large (they can also elicit
spiking of the postsynaptic cell). Clamping voltage and recording the currents circumvents this.
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Figure 1.4: First illustration of the binomial model (without STP). (1): the
presynaptic button is artificially stimulated. Red vertical bars show 5 presynaptic
spikes with a constant interspike interval. (2): these evoked stimuli lead to neuro-
transmitter release. After spike i, ki vesicles (out of the N vesicles) release their
neurotransmitter with a probability p. (3): neurotransmitters bind to receptors and
elicit a postsynaptic current. A single release event triggers a quantal response of
amplitude q. (4): the recorded postsynaptic response after spike i is the sum of the
effects of the ki release events. EPSCs correspond to the amplitude of each peak of
the postsynaptic response to a presynaptic spike.

model, the refilling dynamics of vesicles is neglected, implying that all recordings
(ei)1≤i≤T are mutually independent. However, in practice, synaptic transmission is
dynamic and exhibits plasticity:

• Short-Term Depression (STD) corresponds to a progressive decrease in
the amplitude of successive postsynaptic currents upon repeated activation of
the presynaptic cell [2]. The mechanism mainly responsible for STD is the
depletion of the pool of presynaptic vesicles: after fusing with the cell mem-
brane and releasing their neurotransmitters, these vesicles and their content are
retrieved by endocytosis and recycled to be reused for the next stimulation.
STD depends on the rate at which vesicles refill during Inter-Spike Intervals
(ISI). If the stimulation frequency is higher than the rate of refilling dynamics,
the pool of readily-releasable vesicles will progressively be depleted, leading to
less neurotransmitters being released at each stimulation and hence to smaller
postsynaptic currents (see [13] for a detailed review on synaptic machinery).
Recording from a depressing synapse can be seen in Figure 1.6.

• Inversely, Short-Term Facilitation (STF) corresponds to a progressive in-
crease in the amplitude of successive postsynaptic currents: the more the presy-
naptic cell is stimulated, the higher the postsynaptic current. STF is due to
an increase in calcium concentration in the presynaptic cell after each spike
generation, which is going to increase the vesicles’ release probability.

Different computational models of short-term synaptic plasticity have been proposed,
with different levels of complexity and representing different features of synaptic dy-
namics (see [14] and [15] for a detailed review). The idea that the readily-releasable
vesicles represent a fraction x(t) of the total pool of vesicles, which is depleted upon
presynaptic stimulation and exponentially decays back to 1, was first formulated by
Liley and North [16]. The evolution of the fraction of available vesicles can be repre-

5
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sented by a differential equation:

dx(t)

dt
=

1− x(t)
τD

− p · x(t−) ·
∑
i

δ(t− ti) (1.2)

where x(t) is the fraction of filled vesicles among a total pool of N , and τD is their
replenishment time constant. The first term in the right-hand side corresponds to
the natural replenishment of vesicles with time constant τD, while the second term
corresponds to depletion at each spike time (ti)1≤i≤T . The dynamic quantity x(t) is
evaluated at t−, i.e. immediately before the spike [15]. However, this equation alone
can account for depression, but not for facilitation. A second differential equation
can be added:

dp(t)

dt
=
p0 − p(t)

τF
+ p0 · (1− p(t−)) ·

∑
i

δ(t− ti) (1.3)

where p(t) is the release probability (which is not a constant anymore but evolves
depending on the history of synaptic activity), and p0 its resting value (i.e. the
release probability at the beginning of the stimulation). Once again, the first term in
the right-hand side corresponds to an exponential decrease of the release probability
to its resting value p0, while the second term corresponds to an increase at each
spike.

The Tsodyks-Markram model [17] corresponds to the set of two equations:

dx(t)

dt
=

1− x(t)
τD

− p(t−) · x(t−) ·
∑
i

δ(t− ti)

dp(t)

dt
=
p0 − p(t)

τF
+ p0 · (1− p(t−)) ·

∑
i

δ(t− ti)

A similar system of equations is used in [18] and [19], adding a third differential
equation:

dv(t)

dt
=
v0 − v(t)

τm
+ J · p(t−) · x(t−) ·

∑
i

δ(t− ti)

where v(t) is the postsynaptic membrane potential, v0 its resting value, τm the mem-
brane constant of the postsynaptic cell, and J a scalar synaptic efficacy parame-
ter.

The Tsodyks-Markram model is a non-stochastic, mean-field, approximation of synap-
tic transmission. The mean of the EPSC at time t can be computed as 〈et〉 =
N · q ·p(t) ·x(t). However, such a deterministic approach to short-term plasticity only
allows to model averages, and neglects correlations between successive postsynaptic
responses. In [5] and [20], a discrete-time and stochastic variation of the Tsodyks-
Markram model is used: the synapse is modelled as a Hidden Markov Model (HMM)
with hidden states ni (the number of vesicles in the filled state at the moment of spike
i) and ki (the number of vesicles among the ni which will release the neurotransmitters
following spike i).

6
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Between two successive spikes, the probability that a given vesicle is refilled within
a time ∆ti is Ii(∆ti) = 1 − exp

(
−∆ti

τD

)
, which corresponds to the first term in

the right-hand side of Eq. 1.2. The stochastic release of neurotransmitters (which
corresponds to the second term in the right-hand side of Eq. 1.2) is represented
by the number of open vesicles ki being drawn from a binomial distribution with
parameters ni and pi. Similarly, the release probability pi can be computed recursively
as pi = p0 + pi−1(1− p0) exp

(
−∆ti

τF

)
.

By setting the values of the parameters τD, τF , and p0, the Tsodyks-Markram model
allows to reproduce depressing, facilitating, or stable synapses. However, it cannot ex-
plain more complex dynamics; for instance, it has been observed that vesicles refilling
rate may not be constant, but might increase upon sustained presynaptic stimulation
[15]. Although the exact mechanisms for this enhanced vesicle replenishment are still
unknown, it is hypothesized that vesicle refilling dynamics depend on the intracellular
calcium concentration, which increases upon sustained presynaptic stimulation. Two
different models have been proposed to account for enhanced vesicle replenishment.
In [21], the authors propose that the refilling time constant τD in Eq. 1.2 is actually
time dependent, a phenomenon called Frequency-Dependent Recovery (FDR):

dτD(t)

dt
=
τD0 − τD(t)

τFDR
− aFDR · τD(t−) ·

∑
i

δ(t− ti)

In the absence of stimulation, τD(t) decays back to its resting value τD0 with a time
constant τFDR, while each spike reduces it by aFDR·τD(t−) (with 0 < aFDR < 1).

Furthermore, it has been proposed that the baseline release probability p0 in Equa-
tion 1.3 might itself depend on presynaptic activity, and be governed by a similar
differential equation:

dp0(t)

dt
=
p̃0 − p0(t)

τj
− aj · p0(t−) ·

∑
i

δ(t− ti)

This activity-dependent decrease in release probability, which may contribute to STD,
might be related to VGCC inactivation [15].

Finally, another dynamical feature that is worth mentioning is Short-Term Biphasic
Plasticity (STB). STB is a combination of depression and facilitation, in which the
Paired-pulsed ratio (PPR) first increases and then decreases: it has been observed,
for instance, in some hippocampal interneurons [22]. Dittman et al. [23] proposed
a model in which the replenishment rate is also a function of the residual presynap-
tic calcium, which concentration follows a first order differential equation with an
exponentially decaying term and a jump term depending on the presynaptic spikes
times.

1.3 Different models of the synapse

The standard binomial model introduced in Section 1.1 relies on several assumptions
and simplifications. Firstly, it neglects vesicle refilling and calcium uptake dynamics,
and posits that different postsynaptic currents are independent and do not depend
on the history of previous spikes and activations. Different models of Short-Term

7
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Figure 1.5: Illustration of Short-Term Synaptic Plasticity. (a) Example of
depression of an excitatory synapse, as seen between two layer 5 pyramidal neurons
recorded from a rat somatosensory cortex. (b) Example of facilitation of an excitatory
synapse, as seen between a pyramidal cell and an inhibitory interneuron in layer 2/3
from a rat somatosensory cortex. Examples redrawn from [2]. (c) Example of biphasic
plasticity, as observed in hippocampal interneurons. Example redrawn from [14].

Figure 1.6: Recording of EPSCs from a depressing synapse. Postsynaptic
current recorded from a cerebellar mossy fiber to granule cell synapse. The presynap-
tic cell is stimulated using a repetitive train stimulation protocol consisting of 100
stimuli at 100 Hz followed by 6 recovery pulses at increasing intervals (upper plot).
Recovery from depression can be seen in the recovery pulses as EPSCs amplitudes get
larger with longer ISIs. Conversely, depression can be seen during the high-frequency
tetanic stimulation phase (lower plot) as the vesicles pool gets depleted. Courtesy of
Igor Delvendahl and Martin Müller, University of Zurich.

Plasticity have been described in the previous Section 1.2. Secondly, it assumes
that the quantal amplitudes q are homogeneous and identical for each release site.
It further posits that all release sites are similar and have the same homogeneous
refilling time constant τD. Finally, it assumes that the total postsynaptic current

8
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will be the sum of the effect of independent vesicle releases and neglects non-linear
phenomena such as postsynaptic receptors saturation.

Starting from the classical binomial model with parameters Θ = [N, p, q, σ], one can
thus construct different models of increasing complexities by relaxing some of these
assumptions. Added features to a statistical model can be thought of as added free
parameters.

Short-term Plasticity

A first assumption of the classical binomial model is that it neglects vesicle refilling
and calcium uptake dynamics, and posits that different postsynaptic currents are in-
dependent and do not depend on the history of previous spikes and activations. How-
ever, as described in the previous section, synaptic transmission has been observed
to be dynamic, with short-term depression depending on the refilling of presynap-
tic vesicles between successive presynaptic stimulations, and short-term facilitation
depending on the calcium uptake at each spike.

Depression and facilitation can thus be accounted for, and added as features to the
model, by adding the extra free parameters τD and τF .

Quantal amplitude variability

A second assumption of the classical binomial model is that the quantal amplitudes
q are homogeneous and identical for each release site. However, mEPSC amplitudes
have been observed not to be exactly similar and stereotypical, but rather to follow
a unimodal distribution [1]. The effect of one release event q can thus be thought of
as a random variable instead of a constant.

Assuming that quantal amplitudes are normally distributed, EPSC ei will be com-
puted as

ei =

ki∑
j=1

qj + εi

where εi ∼ N (0, σ2) is the recording noise, ki ∼ Bin(N, p) the number of released
vesicles, and the quantal amplitude qj follows a normal distribution with mean µq
and standard deviation σq.

Another possibility is to represent the radius of presynaptic vesicles as a random vari-
able: assuming that vesicles are approximately spherical [1], the quantal amplitude
can be computed as being proportional to the vesicle’s volume, i.e. qj = αq

4
3πr

3
j with

rj being drawn e.g. from a normal distribution5: rj ∼ N (µV , σ
2
V ).

Vesicles pool heterogeneity

A third assumption of the classical binomial model is that release sites are similar
and have the same homogeneous refilling time constant τD. However, it has been
suggested [24] that presynaptic vesicles actually belong to two different groups: a
readily releasable pool and a reluctantly releasable pool, having different refilling
time scales. Assuming that the fast-refilling pool and the slow-refilling pool have
respective refilling time constants τ (1)D and τ (2)D , and that the fast-refilling pool makes
up a fraction A of the total number of vesicles, then the recovery (i.e. the evolution

5Which std. σV is assumed to be sufficiently small for the radius rj not to be negative.
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of the fraction of available vesicles x(t) after presynaptic depletion) can be fitted with
a biexponential trajectory [25]:

x(t) = A(1− e−t/τ
(1)
D ) + (1−A)(1− e−t/τ

(2)
D )

It is to be observed that this model will also have a higher number of hidden states.
Instead of having two hidden variables ni (corresponding to the number of available
vesicles before spike i) and ki (corresponding to the number of released vesicles),
there will be 4 hidden variables corresponding to each subpool n(1)i , n(2)i and k

(1)
i ,

k
(2)
i .

Postsynaptic saturation

Finally, the classical binomial model posits that the total postsynaptic current will be
the sum of the effects of independent vesicle releases. In practice, neurons often dis-
play non-linear behaviors, such as spike-frequency adaptation [26, 27] or postsynaptic
saturation6 [29].

Saturation of postsynaptic receptors is believed to play a major role at depressing
synapses, and can be modelled as follows [15]: assuming that D(t) is a scalar variable
indicating the fraction of postsynaptic receptors in a non-desensitized state, it will
evolve as

dD(t)

dt
=

1−D(t)

τs
− as · p(t−) · x(t−) ·D(t−) ·

∑
i

δ(t− ti)

where τs is the time constant of recovery from desensitization. The mean of the
EPSC at time t would thus be computed as 〈et〉 = N · q · p(t) · x(t) ·D(t) (see Section
1.2).

This list is not exhaustive, as many models can be proposed. So far, we have seen that
the basic properties of synaptic transmission (that is to say the stochastic and quan-
tised release of neurotransmitters) can be represented by a simple binomial model
having parameters Θ = [N, p, q, σ]; and that the values of these parameters can be
inferred by fitting the model on observed EPSCs. Other features of synaptic trans-
mission (plasticity, quantal variability, vesicles heterogeneity, and postsynaptic satu-
ration) can be modelled by extending the classical binomial model, thus describing
other models with more free parameters. As we will see in the next section, synap-
tic characterization is thus not only about inferring the values of the parameters for
a given model (Section 1.5), but also about finding the right model to fit the data
(Section 1.6).

1.4 What is synaptic characterization about ?
Addressing the complexity of synaptic transmission, i.e. being able to derive an
accurate model of the studied synapse, is a relevant problem for both biologists and
theoretical neuroscientists.

Firstly, from a theoretical point of view, modifications of synaptic transmission prop-
erties are believed to underlie learning, memory and, more generally, neural dynamics:

6Although it has been observed not to be an issue for some synapses, e.g. at the Calyx of Held
[28].
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to better understand how the brain works, it is thus necessary to precisely quantify
how its fundamental brick (i.e. the synapse) is working. Especially, it has been spec-
ulated that synaptic variability and unreliability could be more of a feature than a
bug and could serve a computational purpose. In [30], the authors show that ”un-
reliable synapses serve to increase cortical firing by means of increasing membrane
fluctuations, similar to high conductance states”. Moreover, from a network perspec-
tive, stochastic synaptic transmission could be similar to drop-out in artificial neural
networks: it could be beneficial at the computational level by helping the network
to generalise better and being more energy efficient [31]. Different normative expla-
nations for synaptic stochasticity have been proposed, including its possible role in
uncertainty encoding, energy-efficient computation, or generalization while learning
(Figure 1.7). A precise description of synaptic transmission will be critical for the
validation of these theories and for understanding the functional relevance of this
probabilistic and dynamical release.

Secondly, being able to precisely infer the values of synaptic parameters is critical for
studying synaptic plasticity and homeostasis [32, 33]. For instance, when studying
Spike Timing-Dependent Plasticity (STDP), comparing the values of N , p, and q
before and after the stimulation protocol allows to determine the locus of plasticity
[34, 35, 36].

Finally, from a biological perspective, obtaining reliable estimates of synaptic pa-
rameters, and more generally a finer understanding of transmission mechanisms, is
a required step to study possibly synapse-related diseases, such as schizophrenia,
Parkinson’s Disease (PD), Alzheimer’s Disease (AD), and addiction [37]. Synaptic
density has been shown to be an important correlate of cognitive decline [38]: an
interesting area of research would be to correlate decline with the characteristics of
individual synapses.

A central issue, which is common to all these areas of research, is the problem of
synaptic characterization. Synaptic characterization (also called synaptic interroga-
tion [8]) refers to a set of methods for exploring synaptic functions, inferring the
value of synaptic parameters, and assessing features such as plasticity and modes of
release. Here, we focus on model-based approaches to quantify synaptic transmission,
for which different methods are reviewed in Chapter 3. Synaptic characterization is
thus about:

• Parameters inference: by fitting a generative model of postsynaptic currents
to experimental data, it is possible to infer the value of the synapse’s param-
eters. Different methods for model fitting will be reviewed in Section 1.5 and
in Chapter 3, but existing methods all suffer from different drawbacks: they
might only be applicable to specific synapses, be biased or lead to inaccurate
estimates of the parameters, or require long computation times.

• Model selection: by determining which model (among a set of possible candi-
date models) is the best one to fit experimental data, we can detect and quantify
the features exhibited by a synapse. Although a critical step in statistical anal-
ysis, model selection is rarely performed in synaptic characterization, and the
question of model identifiability (which we discuss in Section 1.7 and Chapter
4) is often disregarded.

Overall, our main goal is to develop theoretical and statistical tools to improve the
efficiency of both model fitting and model selection.
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Figure 1.7: Possible computational roles of synaptic stochasticity. (a) Reliable
synaptic transmission implies a high energetic cost (represented by the red colour
bar). Such biophysical constraints may explain stochasticity at the synapse level, as
limited energy supply may only allow reliable synapses to develop if necessary. (b)
Stochastic synaptic transmission may allow the brain to encode sensory statistics,
and especially perceptual uncertainty. To infer a high-level information (e.g. the
presence of a dalmatian dog), different lower-level contextual information need to be
integrated. The uncertainty of the connections representing different features should
be proportional to how relevant or how certain they are. (c) By adding noise to
the system, stochastic synapses have been suggested to enable neural networks to
generalize better, to avoid overfitting and to escape local optima. Figure from [39],
reproduced with authorisation.

1.5 Methods for synaptic parameter inference

From the simple binomial model explained above, it follows (neglecting STP and
recording noise), that the distribution of EPSCs has a mean µ = Npq and a variance
σ2 = q2Np(1− p). The release probability p directly depends on the calcium concen-
tration of the solution (increasing [Ca2+] leading to a higher p), which can be modified
experimentally. Since the mean µ varies linearly with p, and since σ2 = µq− µ2

N , plot-
ting the variance as a function of the mean will result in a parabolic plot. This plot
can be fitted to observations obtained under various calcium concentrations in order
to infer the values of N and p. This widely used method is called mean-variance
analysis [40, 41, 42, 43]. Its main drawback is that it requires to perform record-
ings under different calcium concentrations, and, for each of these settings, to obtain
enough data points to accurately estimate the mean and the variance.

The cumulative EPSC method [44] consists in using a continuous high-frequency
stimulation of the presynaptic cell, to completely deplete the pool of readily-releasable
vesicles and reach steady state depression. Cumulative EPSC amplitudes are then
plotted as a function of time: fitting the last points of the plot by linear regression
allows to estimate the rate of vesicles replenishment (i.e. the slope of the fitted
line) while back-propagating the fitted line to time 0 gives an estimate of Nq (see
Figure 4(C) in [44]). However, this method is only valid for depressing synapses and
also requires inter-stimulation intervals to be constant. Different methods based on
high-frequency activations are discussed in details in [45].

In the method of moments, the moments of the distribution of EPSCs are expressed
as a function of the synaptic parameters, and are then matched to the observation’s
moments. Besides the aforementioned mean µ = Npq and variance σ2 = q2Np(1−p),
it is also possible to approximate the maximum EPSC as Nq and the failure rate as
(1 − p)N . In [46], the authors further use Fourier analysis to obtain an estimate of

12
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the quantal amplitude q. As in mean-variance analysis, this method requires a very
large number of observations to correctly estimate the variance.

Finally, density estimation methods consist in optimizing the parameters of a prob-
ability distribution so as to match the observed distributions of EPSCs. In [47], the
authors fit the distribution of postsynaptic currents using mixtures of unimodal dis-
tributions. The goodness-of-fit for different numbers of components is assessed using
the Wilks statistic to infer synaptic parameters. In more robust model-based ap-
proaches, the following ingredients are used:

• A generative modelM, with parameters θ.

• A set of T observations D = {ei}1≤i≤T .

• The corresponding ISIs ∆1:T , i.e. the times at which the presynaptic cell has
been stimulated to record D.

Once these elements have been specified, it becomes possible to compute explicitly
the likelihood function L(θ) = p(D|θ,∆1:T ,M), i.e. the likelihood of the observations
given the stimulation times and the parameters.

The likelihood function L can then be used:

• in different optimization techniques, such as the Expectation-Maximization
(EM) algorithm [20] or genetic optimization [48], to obtain a point-based esti-
mate of the parameters θ̂ = argmaxθ L(θ) (Figure D.1);

• in the Metropolis-Hastings (MH) algorithm to compute the full posterior dis-
tribution of parameters p(θ|D,∆1:T ,M) ∝ L(θ)p(θ|M) [5] (Figure D.2), where
p(θ|M) is the prior distribution of the parameters of modelM;

• to update the weights of the particles in particle filtering schemes [49] (Figure
D.3).

These model-based methods are reviewed in Chapter 3. A major step, which is com-
mon to all model-based approaches (whether their aim is to obtain a simple point-
based estimate of the parameters or their complete posterior distribution), is the com-
putation of the likelihood function L(θ). For models in which observations in D are In-
dependent and Identically Distributed (i.i.d.), e.g. the binomial model without short-
term plasticity, the likelihood can be easily computed7 as p(D|θ,M) =

∏
i pθ(ei),

where the computation time of pθ(ei) scales linearly with N (see Eq. 1.1).

However, many models of synaptic transmission (especially models of STP) assume
that successive observations are correlated. In the general case, the likelihood is
computed as

p(D|θ,∆1:T ,M) = p(e1)

T∏
i=2

pθ(ei|e1:i−1)

More specifically, depressing and facilitating synapses can be modelled as a Hidden
Markov Model, with hidden states ni (the number of vesicles in the filled state at the
moment of spike i) and ki (the number of vesicles among the ni which will release

7For simplicity, we will drop non-ambiguous notations and denote pθ(·) = p(·|θ,∆1:T ,M).
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the neurotransmitters following spike i) and observation ei. The state transition
probability is defined as

pθ(ni, ki|ni−1, ki−1) = pθ(ki|ni)pθ(ni|ni−1, ki−1)

where pθ(ki|ni) ∼ Bin(ni, pi) and the refilling probability pθ(ni|ni−1, ki−1) depends on
∆ti and τD; and the emission probability is pθ(ei|ni, ki) = pθ(ei|ki) ∼ N (qki, σ

2).

The joint distribution of the observations D and hidden states n = n1:T and k = k1:T
is thus computed as

pθ(D,n,k) = pθ(e1|k1)pθ(k1|n1)pθ(n1)
T∏
i=2

pθ(ei|ki)pθ(ki|ni)pθ(ni|ni−1, ki−1)

The Baum-Welch algorithm is an exact forward-backward procedure which can be
used to compute the likelihood L(θ) =

∑
n,k pθ(D,n,k). However, its algorithmic

complexity will scale with N4, making it unpractical for studying synapses with a
large number of vesicles or for on-the-loop applications. This is a serious impedi-
ment to synaptic characterization, since likelihood computation is at the basis of all
model-based approaches. In Chapter 5, we derive a particle filtering scheme, which
highly parallelizable structure enables fast computations for online applications. Be-
sides, in Appendix A we derive mean-field approximations to reduce the algorithmic
complexity of likelihood computation to N2.

1.6 Theory of model selection

In the previous section (1.5), we presented different methods allowing, for a given
model M and a set of observations D, to infer the values of the parameters of M.
However, synaptic characterization is not only about estimating the parameters of a
model, but also about finding out which model should be fitted on the observations
in the first place: how to pick the right M to fit and describe the studied synapse?
Model selection is the process by which a model is chosen out of a pre-defined set
of possible candidates (see [50] for a detailed review).

Models are compared based on their ability to explain and fit the data, while being
penalized for their complexity (usually, for their number of free parameters) to avoid
overfitting (Figure 1.8). The latter objective corresponds to regularization: its goal
is to prune the model, and to penalize the likelihood to prevent overfitting. Finding
the correct model (or, at least, the one amidst the family of models we have at hand
that is the best suited to fit our data; as George Box said, ”all models are wrong,
but some are useful” 8 [52]) is thus a complex9 and crucial first step in accurately
inferring synaptic parameters.

Different model selection criteria have been defined:
8As stated by William Bialek in [51], referring to another famous paper: ”The American philoso-

pher Lawrence Peter (Yogi) Berra is reported to have quipped about a restaurant that ‘nobody goes there
anymore, it is too crowded’. Perhaps some papers are so famous that nobody reads them anymore.”

9Which is nicely illustrated by Norbert Wiener’s aphorism: ”[T]he best material model of a cat is
another, or preferably the same cat.”[53]
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• The model evidence for a modelM given data D is simply defined as

p(D|M) =

∫
dθp(D|θ,M)p(θ|M)

where p(θ|M) is the prior distribution of parameters θ for model M. Two
competing modelsM andM′ can be compared using the Bayes Factor (BF):

p(D|M)

p(D|M′)
=

∫
dθp(D|θ,M)p(θ|M)∫
dθp(D|θ,M′)p(θ|M′)

Depending on the value of this ratio, one can determine if the evidence forM
compared to M′ is negative, not significant, or decisive, and thus conclude as
to which model is the best one to fit the data D. An interesting reference on
how it differs from frequentist hypothesis testing is [54]. However, in practice
the evidence p(D|M) is often intractable for complex models, as it requires to
integrate marginals for each parameter.

• An interesting approximation of the model evidence is given by the Bayesian
Information Criterion (BIC) [55]:

BICM(D) := −2 log p(D|θ̂,M) + kM log(T) ≈ −2 log p(D|M)

where θ̂ = argmaxθ p(D|θ,M) is the Maximum Likelihood Estimator (MLE)
of θ, kM = dim(Θ) is the number of independent parameters of M, and T is
the number of data points in D. In the limit of large T , the BIC provides a
reliable approximation of the model evidence (see Section 4.6.1 for a detailed
derivation): the lower the BIC of model M, the better its score. The BIC
is the sum of two terms: a likelihood term −2 log p(D|θ̂,M) which represents
the ability of the modelM to explain D, and a penalty term kM log(T ) which
favors simpler models and prevents overfitting, as explained in Section 4.3.5.

• Another widely used selection criterion is the Akaike Information Criterion
(AIC) [56]:

AICM(D) := −2 log p(D|θ̂,M) + 2kM ≈ −2ED′(log p(D′|θ̂(D),M))

Compared to the BIC, the AIC penalizes the number of free parameters in the
models differently. It is derived as an unbiased estimator of the Kullback-Leibler
divergence between the respective distributions of observations according to the
ground-truth model and to M (see [50] for a detailed computation). In [57],
the authors discuss cases in which the AIC is more suited than the BIC to
compare models, i.e. is more likely to correctly select the ground-truth model:
in the tapering-effects context (i.e. when the family of competing models shows
a continuous increase of complexity, as illustrated in Fig. 1 in [57]), the AIC will
perform better than the BIC (as the BIC-selected model is likely to underfit,
especially at low T ). But when candidate models only have a few important
features (Fig. 2 in [57]), the BIC should be favored, while the AIC-selected
model is likely to overfit10.

It is important to note that both the BIC and AIC were originally derived
assuming that elements in D are i.i.d., i.e. that p(D) = p(e1:T ) =

∏
i p(ei).

10See also https://stats.stackexchange.com/a/493214/271601
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This is a very restrictive assumption, as many models of synaptic transmission
(especially models of STP) assume that successive observations are correlated,
i.e. that p(ei, ei+1) = p(ei+1|ei)p(ei) 6= p(ei+1)p(ei). The implications of this
assumption, and the possibility to use model selection criteria for correlated
data, are discussed in Chapter 4 and in Appendix B.

• Other model selection criteria, having different theoretical justifications, include
the Widely Applicable Information Criterion (WAIC) [58], the Widely Appli-
cable Bayesian Information Criterion (WBIC) [58], the Focused Information
Criterion (FIC) [59], or the Hannan-Quinn Information criterion (HQC) [60].

• Cross-validation [61] is mostly reserved to situations in which the number of
data points T is sufficiently large to be split into a training and a test set without
impairing training (e.g. in machine learning training). In experimental settings,
where the number of available observations can be small, overfitting is avoided
by penalizing the likelihood of the model with an ad hoc regularization term
(which is generally dependent on the number of free parameters in the model,
see above). Interestingly, cross-validation has been shown to be equivalent to
the AIC in the limit of large T [62, 59], while leave-v-out cross validation is
equivalent to the BIC for v = T (1− 1

logT−1) [63].

Bayesian model selection is widely used for performing model comparison and hy-
pothesis testing, and has been applied to a broad range of domains: to study the
volume of synaptic vesicles [1], group studies [64], astronomy [65], and exoplanets
[66], to name a few. Other fields related to Bayesian model selection are Bayesian
Model Averaging [67] (in which the prediction is the weighted sum of the predictions
of the models, weighted by their respective evidences), or Optimal Experiment Design
(see Chapter 5).

Although a critical first step prior to parameter inference, model selection is often
disregarded in synaptic characterization studies [20, 5]. Moreover, while performing
model selection, two main pitfalls need to be avoided:

• Overfitting, i.e. choosing a generative model M that is more complicated
than the ground-truth studied synapse, which would lead to poor generalization
and prediction, and inaccurate parameters inference. Model selection criteria
precisely penalize model complexity to prevent overfitting.

• Underfitting, i.e. choosing a generative model M that is simpler than the
ground-truth studied synapse. Indeed, some features of the studied synapse
(e.g. quantal release or short-term plasticity) may not be experimentally ob-
servable, depending on the experimental protocol being used. Large recording
noise, or poorly chosen stimulation protocols, could make interesting features
of the studied system undetectable and may not allow to draw conclusions on
the nature of the synapse. For instance, when observing that a Gaussian distri-
bution provides a better fit to the observations than a binomial release model,
one might be tempted to conclude that the synapse indeed releases only one
quantum at a time (“uni quantal hypothesis”). However, it is also possible that
the synapse is actually binomial (“multi quantal hypothesis”), but that quantal
peaks on the histogram of recorded EPSCs are hidden due to noisy or scarce
data points. Similarly, when no Short-Term Plasticity appears in postsynap-
tic currents, this can be due either to the synapse being intrinsically static, or
to plasticity being hidden due poorly chosen stimulations times. When a sim-
pler model provides a better fit (in the sense of model selection) than a more
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(a) (b)

Figure 1.8: Model Comparison and Occam’s Razor. (a) How many boxes are
located behind the tree: 1 (modelM1) or 2 (modelM2)? Both models explain the
observation equally well. However,M1 is simpler, andM2 should be discarded un-
der Occam’s Razor. Indeed, it has more free parameters, and implies that two boxes
having exactly the same height and color are behind the tree. (b) Why Bayesian
inference encompasses Occam’s razor, and why complex models should be discarded
if a simpler one explains the same data. The x-axis represents all the possible data
observations D. The predictions of a modelM are quantified by a probability distri-
bution p(D|M), which is normalized over D:

∫
dDp(D|M) = 1. Models differ in the

range of D they can explain: a model with more free parameters will explain a larger
range of observations. If data can be well explained by the simpler model M1, its
evidence will be larger than that of M2 due to the normalization. Figures redrawn
from [68].

complicated hypothetical release model, it is impossible to conclude whether it
is due to the intrinsic nature of the synapse or to data not being sufficiently
informative, an issue linked to the question of identifiability.

1.7 Identifiability
A question that may arise when recording synaptic currents is how to precisely observe
and measure a quantal transmission. As mentioned above, synaptic transmission
has been observed to be quantised. Indeed, the opening of a single presynaptic
vesicle (and the release of the neurotransmitters it contains) will create a stereotypical
postsynaptic current q, which is called the quantal amplitude. As the number of
activated presynaptic vesicles increases, the total postsynaptic current will increase
in step-like increments of amplitude q. Hence, in chemical synapses, the postsynaptic
responses to presynaptic stimulations are built up of k quanta of current, where k is a
random variable corresponding to the number of open vesicles. EPSCs thus follow a
multimodal distribution, where each component has its mean located to a multiple kq
with k ∈ N and has a width corresponding to the recording noise σ (Figure 1.9, A). If
σ is large with respect to q, these components will fuse into a unimodal distribution,
impeding the possibility to identify quantal transmission and to compute q (Figure
1.9, B).

A similar question may arise when studying synaptic short-term plasticity. Indeed,
if the release probability p is low, or if inter-spike intervals are large compared to
plasticity time constants τD and τF , then no sign of short-term plasticity will appear
in postsynaptic recordings (Figure 1.10). In both cases, due to the intrinsic values of
the ground-truth parameters and of the chosen inputs to the system, results of model
selection would be inconsistent with the ground-truth model. In the first case, the
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Figure 1.9: Quantal and stochastic transmitter release. (A) Blue: histogram of
2,000 simulated EPSCs generated from the binomial model with parameters N = 5,
p = 0.5, q = 1, σ = 0.2. Orange: theoretical distribution of EPSCs from Eq. 1.1.
Due to step-like quantal fluctuations in EPSC amplitude [69], the distribution appears
multimodal and can be described by a mixture of Gaussian functions. The width of
each mode corresponds to the recording noise σ, while the height of the k-th mode
corresponds to p(k). (B) Illustration of practical non-identifiability. Blue: histogram
of 100 simulated EPSCs with N = 5, p = 0.5, q = 1, σ = 0.4 (i.e. same parameters
as in A, but with a smaller number of observations and higher σ). Due to the small
number of data points and high recording noise σ, the binomial parameters can only
be loosely estimated, which is characterized by the fact that a Gaussian distribution
(green) will provide a better fit to the data than a binomial distribution (orange).

Figure 1.10: Non-identifiability of Short-Term Depression. In these surro-
gate data, an artificial depressing synapse is being studied. The presynaptic axon is
stimulated using evoked action potentials with constant ISIs (upper plots), while the
amplitudes of postsynaptic responses (lower plots) are being recorded. On the left,
the ISIs between successive presynaptic spikes are sufficiently short (i.e. shorter than
the depression time constant τD), and STD can be seen in the decreasing current am-
plitudes upon successive stimulations (lower left). On the right, for the same synapse,
choosing ISIs that are longer than τD makes STD undetectable (lower right).

ground truth model is a binomial model with a multimodal distribution of EPSCs,
but due to the high σ model selection would favor a simpler unimodal distribution. In
the second case, the ground truth model is a model with short-term depression, but
due to the chosen stimulation protocol model selection would favor a simpler static
model.

Synaptic characterization, and more generally parameter inference in any field, require
that the modelM used is identifiable. Two notions need to be defined: structural
identifiability and practical identifiability.
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1.7.1 Structural identifiability

Structural (i.e. model-based) identifiability is a property of the model, regardless
of experimental results. In a structurally identifiable system, the dimension of the
output is sufficiently high with respect to the dimension of the parameters vector to
uniquely define it: the parameters can be non-ambiguously inferred if the complete
distribution of the output is known. Structural identifiability has been widely studied
in many fields of physics and biology [70, 71, 72, 73, 74], and different criteria exist
to assess the structural identifiability of a model [75].

When applied to our system, the structural identifiability of the binomial model is
equivalent to the distribution of outputs pθ(D) being uniquely defined by θ. Consis-
tently with [70, 75], we can define the structural identifiability domain ΘS of a model
M with parameter space Θ as:

ΘS = {θ ∈ Θ | (∀θ′ ∈ Θ) θ 6= θ′ ⇐⇒ p(D|θ,M) 6= p(D|θ′,M)} (1.4)

Similarly, M is said to be structurally identifiable if Θ = ΘS. Intuitively, if θ is
in the structural identifiability domain of M, it can be uniquely identified from
p(D|θ,M).

1.7.2 Practical identifiability

Structural identifiability is a theoretical property and is not equivalent to practical
(i.e. experiment-based) identifiability, which is a property of both the model and the
experimental protocol: a model which is structurally identifiable might lead to a poor
practical identifiability of parameters if data points are noisy or scarce. The accu-
racy of model-based methods for inferring the values of parameters depends on the
experimental protocol used to record the data, as observations need to be sufficiently
informative to allow a correct estimation of the parameters. Contrary to structural
identifiability (see criterion 1.4), a quantitative criterion is lacking for practical iden-
tifiability, which is usually only qualitatively assessed. Non-practical identifiability
refers to regimes in which parameters can only be loosely estimated; but one would
need to define what does ”loose” mean.

A definition for the practical identifiability of a parameter has previously been pro-
posed in [70], along with an approach for detecting practical non-identifiabilities based
on the profile likelihood [76, 77]. The authors first define the likelihood-based confi-
dence intervals for the estimator θ̂i of the i-th parameter of a modelM:

Ci,∆ = {θi | L(θ̂i|D)− L(θi|D) < ∆}

where

L(θi|D) = max
θj 6=i

L(θ|D)

for a given threshold ∆. Then, they propose the following definition: A parameter
estimate θ̂i is practically non-identifiable, if the likelihood-based confidence region
is infinitely extended in increasing and/or decreasing direction of θi, although the
likelihood has a unique minimum for this parameter, meaning that the decrease in
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likelihood compared to the optimal parameters estimate stays below the threshold ∆
in direction of θi.

A first limitation of this definition is to be data-dependent: it only holds for a specific
set of recorded data D. Indeed, likelihood-based confidence intervals, and hence
practical identifiability, are defined with respect to a certain data set D, and may thus
vary for different realizations of the experiment. A second limitation is that it requires
an arbitrary criterion ∆ on the possible precision of parameters estimate.

Other statistical tools can also be used to assess identifiability. For θ = [θ1, θ2, . . . , θM ],
the Fisher Information Matrix (FIM) is a M ×M matrix defined as follows:

[I(θ)]i,j = Epθ(D)

(
(
∂

∂θi
log pθ(D)) · (

∂

∂θj
log pθ(D))

)
where Epθ(D)(·) denote the expectation over the responses sequences D.

The FIM can be used to evaluate the identifiability of a system [71]. A set of parame-
ters θ is said to be locally identifiable if no other set of parameters in its neighborhood
can generate the same distribution pθ(D). This is equivalent to I(θ) being invert-
ible: the number of identifiable parameters is thus equal to the number of non-zero
eigenvalues of I(θ).

For a finite number of data points T , a lower bound on the normalized standard
deviation of the estimate of the parameter θi can be obtained a priori using the
Cramer-Rao bound:

ε(θi) ≥

√
[I(θ)]−1

ii√
Tθi

(1.5)

where I(θ) is the Fisher Information Matrix of the distribution pθ [2]. A criterion for
practical identifiability could be based on the expected variance of the estimator, but
would once again require to set an arbitrary criterion on the said variance.

In Chapter 4, we propose a non-arbitrary definition of practical identifiability, by
transforming a model identifiability problem into a model selection problem: a model
is said to be practically identifiable when its parameters can be correctly inferred
given a certain experimental protocol. But, as explained previously, different possible
models can be fitted on a data set. Recorded data need to be sufficiently informative
not only to give a correct estimate of the parameters of a model, but also to select the
correct model (i.e. the model from which they have been generated). We argue that
a model is practically identifiable if and only if it is also correctly identified as the
model providing the best fit to the data. For a given experimental protocol, we define
the practical identifiability domain of a statistical model as the set of parameters for
which the model is correctly identified as the ground truth compared to a simpler
alternative submodel.

1.8 Optimal Experiment Design
Optimizing the parameters of an experiment is a critical problem in general physi-
ology. Experimental design usually involves setting a plethora of parameters: which
stimulations or perturbations to perform, which dosage or concentrations to use, how
to determine sample size or measurement time points, etc. These parameters will
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Figure 1.11: Optimal infomax design of experiment using Bayesian Active
Learning. At each time step t, the response of the synapse (system) to an artificial
stimulation is recorded. This observation et is used by the filter to compute the
posterior distribution of parameters p(θ|e1:t,∆1:t). The controller then computes
the next stimulation time ∆∗

t+1 to maximize the expected gain of information. In
classical experiment design, the stimulation times ∆1:T are defined and fixed prior to
the recordings.

be critical to the output of an experiment. However, most physiology experiments
still rely on arbitrary and non-adaptive designs, which may not yield sufficient in-
formation about the studied system. Consequently, experiments often require more
observations or repetitions to reach a certain result, which increases their cost, time,
and need for subjects.

A relevant application for synaptic characterization is to determine when to opti-
mally stimulate the presynaptic cell in order to maximize the informativeness of the
recordings. As explained earlier, the parameters of a chemical synapse (namely, the
number of presynaptic vesicles N , their release probability p, the quantal amplitude
q, the short-term depression time constant τD, etc.) cannot be measured directly,
but can be estimated from the synapse’s postsynaptic responses to evoked stimuli.
However, these estimates critically depend on the stimulation protocol being used.
For instance, if inter-spike intervals are too large (i.e. longer than the plasticity time
constants τD and τF ), no short-term plasticity will appear in the recordings; con-
versely, a too high stimulation frequency will lead to a depletion of the presynaptic
vesicles and to a poor informativeness of the postsynaptic currents.

An efficient theoretical framework to alleviate this issue is called Optimal Experiment
Design (OED). OED selects experimental parameters to optimize a given output (for
instance, to reduce the uncertainty of inferred parameters, or to increase the infor-
mation gained per observation). It can thus be used to determine how to stimulate
the presynaptic cell (i.e. to compute the ISIs ∆1:T ). We will distinguish two kinds of
Optimal Experiment Designs:

• Optimal experiment design for parameters inference (Section 1.8.1): for
a given model M, its goal is to optimize the accuracy of the estimates of the
parameters θ of M, i.e. to minimize the entropy of the posterior distribution
p(θ|D,M).

• Optimal experiment design for model selection (Section 1.8.2): its goal
is to maximize the discriminability between competing candidate models, i.e.
to minimize the entropy of p(M|D).

21



CHAPTER 1. INTRODUCTION 1.8. OPTIMAL EXPERIMENT DESIGN

1.8.1 Optimal experiment design for parameter inference

In this setting, the objective of experiment design optimization is to minimize the
variance of the estimates while reducing the cost of experimentation. Within OED,
an interesting framework is Bayesian Active Learning (BAL). For a fixed modelM,
the goal is to optimize the accuracy of the estimates of the parameters θ of M, i.e.
to minimize the entropy of the posterior distribution p(θ|D,M). Since the model is
fixed, we will drop the dependency on M in the notations. The utility U(D,Ψ) of
a given experimental protocol Ψ and of a data set D can be either defined as the
gain in Shannon information between the prior and the posterior distribution of the
parameters θ, as suggested in [78]:

U(D,Ψ) =

∫
dθ log p(θ|D,Ψ)p(θ|D,Ψ)−

∫
dθ log p(θ)p(θ) (1.6)

U(D,Ψ) can also be defined as the Kullback-Leibler divergence between the prior and
the posterior:

U(D,Ψ) = DKL(p(θ|D,Ψ)||p(θ)) (1.7)

The expected utility U(Ψ) of a protocol Ψ is finally the expected value of U(D,Ψ)
under p(D|Ψ), which yields the same result under (1.6) and (1.7):

U(Ψ) =

∫ ∫
dθdD log p(θ|D,Ψ)p(θ,D|Ψ)−

∫
dθ log p(θ)p(θ) (1.8)

which, by noting that p(θ|D,Ψ) = p(D|θ,Ψ)p(θ)
p(D|Ψ) , is equivalent to

U(Ψ) =

∫ ∫
dθdD log p(D|θ,Ψ)p(θ,D|Ψ)−

∫
dD log p(D|Ψ)p(D|Ψ) (1.9)

It is worth noting that U(Ψ) is actually the mutual information between D and θ.
Indeed, (1.8) is equivalent to

U(Ψ) =

∫
θ

∫
D
log p(θ|D,Ψ)p(θ,D|Ψ) +H(θ) = H(D|Ψ) +H(θ)−H(D, θ|Ψ)

which yields U(Ψ) = I(D; θ|Ψ), i.e. the mutual information between D and θ for a
given Ψ. Different Markov Chain Monte Carlo (MCMC) methods to compute U(Ψ)
are described in [79]. Combining (1.8) and (1.9) yields

−ED(H(θ|D,Ψ)) +H(θ) =

∫ ∫
dθdD log p(D|θ,Ψ)p(θ,D|Ψ) +H(D|Ψ)

which finally gives

H(θ,D|Ψ) = H(D|Ψ) + ED(H(θ|D,Ψ)) (1.10)

The goal of optimal experiment design is to minimize the overall expected risk
ED(H(θ|D,Ψ)) (see Equation 1.8). If the left-hand side of 1.10 does not depend on Ψ
(e.g. in normal linear regression), this is equivalent to maximizing the entropy of the
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data H(D|Ψ), which is the Maximum Entropy Sampling (MES) principle described
in [80].

In synaptic characterization, D corresponds to a set of t recordings e1:t, Ψ corresponds
to the associated stimulation times ∆1:t, and θ are the parameters of the chosen model
M. After having recorded t observations, BAL can be used to compute the optimal
next stimulation time ∆∗

t+1, as illustrated in Figure 1.11. Once a new observation
et has been obtained, the posterior distribution of parameters p(θ|e1:t,∆1:t) can be
computed. Based on this current estimation of the distribution of θ, Equation 1.8
can be used to compute ∆∗

t+1.

However, the applicability of this optimization scheme to real experiments is limited
by two main drawbacks. Firstly, it requires performing high-dimensional integrations
and optimizations in real time. Different methods have been proposed to compute
Eq. 1.8: Monte Carlo (MC) methods [79] or a variational approach [81] can be
employed, but they usually require long computation times that can be impractical
if the time between successive experiments is short. Closed-form solutions only exist
for some special cases, such as linear models or GLM [29]. Current methods are
thus either too time consuming, or only applicable to specific models. Secondly,
it only optimizes for the next stimulus input (an approach referred to as a myopic
design), disregarding all future observations in the experiment. To address these
issues, we propose in Chapter 5 an Efficient Sampling-Based Bayesian Active Learning
(ESB-BAL) framework, which is efficient enough to be used in real-time biological
experiments and to go beyond myopic approaches.

1.8.2 Optimal experiment design for model selection

Assuming M competing models {Mi}1≤i≤M , there are 3 ways to define an optimal
experiment design for optimal model selection:

• Computation of one design Ψ∗ to optimize the discriminability of theM models.
It can be designed using the Jensen-Shannon divergence between the densities
of the competing models, as suggested in [82]:

Ψ∗ = argmax
Ψ

M∑
i=1

p(Mi)DKL

(
p(D|Mi,Ψ)||

M∑
i=1

p(Mi)p(D|Mi,Ψ)

)
(1.11)

• Computation of M designs (Ψ∗
i )1≤i≤M optimizing the discriminability of model

Mi against theM−1 competing models. It can be done using a one-sided form
of the Kullback-Leibler divergence, as suggested in [83]:

Ψ∗
i = argmax

Ψ

∫
dDp(D|Mi,Ψ) log

(
(1− p(Mi))p(D|Mi,Ψ)∑
j 6=i p(Mj)p(D|Mj ,Ψ)

)
(1.12)

• Computation of M(M − 1) designs (Ψ∗
i,j) aiming at maximizing the discrim-

inability ofMi againstMj :

Ψ∗
i,j = argmax

Ψ
(DKL (p(D|Mi,Ψ)||p(D|Mj ,Ψ))) (1.13)

None of these schemes has ever been used for synaptic characterization: in
Chapter 6, we draw a link between our proposed definition of practical identi-
fiability and Optimal Experiment Design for model selection.
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Chapter 2

Aims of the thesis

The first aim is to perform a systematic review of existing methods for model fitting.
An important aspect of synaptic characterization is the inference of the parameters
characterizing a synapse (namely the number of presynaptic vesicles N , their release
probability p, the quantal component q, the time constants for depression and facili-
tation τD and τF , etc). This can be done by fitting a generative model of postsynaptic
currents on experimentally recorded EPSCs. Different model-based approaches are
discussed in Chapter 3.

The second aim is to see how different statistical models can be fitted on experimental
data. In model selection, different generative models of different complexities and
having different features can be proposed. However, the possibility to detect the
right model among a set of competing candidates will depend on the ground truth
parameters of the synapse and on the experimental conditions: there will be regimes
in which some features cannot be detected. We propose a new statistical tool for
assessing the identifiability domain of a model in Chapter 4. Besides, classical model
selection criteria are derived assuming that observations are independent, impeding
their applicability to models with correlated data. We discuss the possibility to apply
these criteria to a broader range of models in Appendix B.

The third aim is to study how model fitting can be improved by optimizing the
inputs to the system so as to maximize the accuracy of the inferred parameters.
Bayesian Active Learning (BAL) is an efficient framework for learning the parameters
of a model, in which input stimuli are selected to maximize the mutual information
between the observations and the unknown parameters. However, its applicability
to real experiments is limited by its computational complexity. In Chapter 5, we
introduce a new framework for efficient BAL, and apply it to synaptic parameters
inference. We also explain how our proposed definition of practical identifiability can
be linked to Optimal Experiment Design for model selection in Chapter 6.

Finally, the fourth aim is to make sense of the observed organization of synaptic
proteins from a theoretical point of view. Microscopy observations have shown that
presynaptic release sites and postsynaptic receptors are organized in ring-like pat-
terns, which are disrupted upon genetic mutations. In Chapter 7, we propose a
normative approach to this protein organization, and suggest that it might opti-
mize a certain biological cost function (e.g. the mean current or SNR after vesicle
release).
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Chapter 3

Model-based inference of
synaptic transmission

Figure 3.1: On thoughtful data fitting 1.

1https://xkcd.com/2048/, use with authorization.
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This chapter includes the paper Model-based inference of synaptic transmission [3],
published in Frontiers in Synaptic Neuroscience. The format was adapted to fit that
of the thesis and the references have been included in the main bibliography.
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3.1 Abstract

Synaptic computation is believed to underlie many forms of animal behavior. A
correct identification of synaptic transmission properties is thus crucial for a better
understanding of how the brain processes information, stores memories and learns.
Recently, a number of new statistical methods for inferring synaptic transmission
parameters have been introduced. Here we review and contrast these developments,
with a focus on methods aimed at inferring both synaptic release statistics and synap-
tic dynamics. Furthermore, based on recent proposals we discuss how such methods
can be applied to data across different levels of investigation: from intracellular paired
experiments to in vivo network-wide recordings. Overall, these developments open
the window to reliably estimating synaptic parameters in behaving animals.

3.2 Introduction

Modifications of synaptic transmission properties are believed to underlie learning,
memory and, more generally, neural dynamics [84, 85, 86, 87, 39]. It is therefore
of great importance to accurately infer synaptic transmission properties. Two key
features that define synaptic communication are: stochastic transmission [88] and
(relatively fast) temporal dynamics [89, 90]. The former is reflected as trial to trial
variability of synaptic transmission as the combined result of pre- and postsynaptic
sources of noise, such as probabilistic vesicle release (presynaptic) or binding of quan-
tal neurotransmitter packets to (postsynaptic) receptors [91, 92]. Whereas temporal
dynamics is reflected in the temporal modulation of synaptic responses, which is me-
diated by the multiple time constants of the synaptic transmission machinery. Such
dynamics give rise to the commonly observed phenomenon of short-term plasticity
(STP) [93, 90]. In this review we summarize, discuss and contrast recent develop-
ments in inference methods that capture either of these two elements (i.e., stochastic
release and STP), or both. In particular our review focus on relatively simple phe-
nomenological and statistical models, which abstract out the underlying biophysics
and do not capture some aspects of synaptic transmission.

We also highlight recent advances toward inferring synaptic properties in vivo. Study-
ing synaptic transmission parameters under naturalistic conditions is not only likely
to give more precise parameters estimates, but also insights into what synaptic trans-
mission properties are relevant in behaving animals [94, 95].

3.3 Inference of Stochastic Transmission

Synaptic transmission is inherently stochastic (see Fig. 3.2 for a schematic). In the
quantal view of synaptic transmission neurotransmitter-containing vesicles (quanta)
are released into the synaptic cleft from N release sites with probability Prel [96,
97, 98] (Fig. 3.2A). Once released, neurotransmitters bind to postsynaptic receptors
triggering a postsynaptic response with mean quantal amplitude q. A binomial model
is often used to describe these three aspects (i.e. number of release sites N , release
probability Prel and the mean quantal amplitude q). In this model the mean peak of
postsynaptic responses is given by µ = qNPrel and their variance σ2 = q2NPrel(1 −
Prel) (Fig. 3.2B) 2. Several methods based on the binomial release model have been

2The binomial release model makes a few assumptions, namely that each site releases vesicles
independently and that Prel is the same across different release sites.
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proposed to infer synaptic transmission parameters. A simple method relies solely
on using the mean and variance to get estimates of both q and Prel by rearranging
the terms as q̂ = σ2

µ + µ
N and P̂rel =

µ
Nq̂ given a number of release sites N [99, 100].

The variance-mean analysis (also known as multiple-probability fluctuation analysis)
is a slightly more advanced technique that relies on recording postsynaptic responses
under different release probability conditions, which are set experimentally by varying
the concentration of extracellular calcium. The relationship between the variance and
the mean (i.e. µ and σ2 as above) under different release probabilities is then fitted
to the parabolic function given by the binomial model (Fig. 3.4A). This method
estimates all three parameters (N , Prel and q; see [98] for a detailed review on the
topic). Because this method depends on having an accurate estimation of mean
and variance of the postsynaptic responses, it requires relatively long and stable
electrophysiological recordings under different conditions.

The mean-variance method described above may suffer from identifiability issues. For
example, in the presence of a high level of noise it may not be possible to reliably
identify the response amplitudes for the multiple peaks. In this case a simple Gaussian
description of the synaptic responses may be preferable (Fig. 3.3A). In addition, these
methods also rely on point estimates which may lead to inaccurate conclusions due
to correlations in the parameters (see Fig. 3.3A for an example of such a case). A
more principled approach to the problem that explicitly represents the uncertainty
in the parameters should offer a better understanding of how well a particular model
explains a given dataset.

[101] introduced a more principled quantal analysis method – Bayesian Quantal Anal-
ysis (BQA). This method applies Bayesian statistics which allows model inference to
combine prior knowledge P (M) over a model M with the data likelihood P (D|M)
following Bayes’ theorem as P (M |D) ∼ P (M)P (D|M). In BQA, the prior is used
to integrate a priori knowledge about the synaptic release statistics (e.g. expected
bounds), which simultaneously models the distributions of postsynaptic responses
recorded under multiple release probabilities (independent of each other). This is in
contrast with standard mean-variance analysis described above, which simply models
the mean responses across different release probabilities. By incorporating prior infor-
mation, this method improves the accuracy of parameter inference and, importantly,
reduces the number of samples needed compared to the mean-variance analysis (from
about 100 samples to about 60 samples). Therefore, this new method may be prefer-
able in experimental conditions where long recordings are particularly challenging
(see a more detailed comparison in Table 1).

3.4 Inference of Short-Term Plasticity

Postsynaptic responses are dynamic – the peak response amplitude depends not only
on the quantal parameters, but also on previous activity. If the presynaptic neuron
fires in quick succession, the released vesicles are not given enough time to be re-
cycled, which leads to less vesicles available for release. As a consequence synaptic
responses become weaker, also known as short-term depression (Fig. 3.2A) and such
recovery rates are often modelled with an exponential with τD. At the same time the
presynaptic calcium levels can increase with every consecutive spike, which may lead
to an increase in the postsynaptic response rather than a decrease – this is known as
short-term facilitation.
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Figure 3.2: Inference of synaptic transmission parameters. (A) Schematic of
synaptic transmission parameters. On the left the different elements of the synaptic
transmission process are represented: first, presynaptic spikes (blue vertical bars) lead
to release of vesicles containing neurotransmitter (R, for presynaptic resources) from
one of N possible release sites with probability Prel; second, released neurotransmit-
ters (quanta) bind to postsynaptic receptors triggering a response with amplitude q ;
third, this process triggers a postsynaptic response with average amplitude NqRPrel,
which takes into account both binomial and short-term synaptic plasticity; fourth,
presynaptic vesicles are recovered with a time constant τD which may lead to short-
term depression of consecutive postsynaptic responses (red trace on the postsynapse)
before the presynaptic resources, R, fully recover; fifth, at the same time presynap-
tic voltage-dependent calcium (Ca2+) channels can lead to calcium build-up on the
presynapse (modelled by a time constant τF ), which may increase release probabil-
ity (Prel) and in turn lead to an increase of consecutive postsynaptic responses, also
known as short-term facilitation (not shown). (B) Postsynaptic responses exhibit
variability (blue circles from (A) overlaid on top of the mean postsynaptic response
in red). Such variability is often described as a simple binomial process , with N re-
lease sites and variance given by Nq2Prel(1−Prel). Plot represents a binomial release
model with N = 5, Prel = 0.5 and some arbitrary q.
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Figure 3.3: Identifiability of synaptic transmission parameters. (A) Identifia-
bility issues of quantal release models. Left upper figure: Histogram of 2000 simulated
postsynaptic responses with N = 5, Prel = 0.5, q = 1, σ = 0.3. In this case it is pos-
sible to fit a binomial model. Left lower figure: same simulation, but for high noise
(σ = 0.7). The quantal peaks (i.e. the parameter q) are not identifiable anymore if
the recording noise is too high, and in this case a Gaussian model provides a better
description of the synaptic responses. Middle panel: Pairwise posterior marginal for
N and Prel for a typical experimental case with 40 observations (simulated postsy-
naptic responses shown in inset) where the true parameters were N = 30, Prel = 0.2
and q = 1 (green cross). The Maximum A Posteriori (MAP) estimates is obtained
for N = 49 and Prel = 0.11 (red cross): as N and p are anticorrelated, the posterior
is roughly the same over a long band were N and p can be substituted, leading to in-
ference error for a small number of observations. Right panel: Marginal posterior for
N and Prel from the previous panel. (B) Identifiability issues of short-term synaptic
plasticity models. Given experimental data it is often of interest to infer the synaptic
parameters. Two main types of inference have been applied: point estimations where
a single scalar is estimated for one or more parameters (red crosses) or full probabilis-
tic inference, where the full probability density over the parameters is obtained (black
line). This particular example was obtained by inferring the Tsodyks-Markram model
with four parameters given short-term plasticity recordings between pyramidal cells
in layer-5 visual cortex (see [102] for more details, only three parameters are shown
for simplicity: τF , τD and Prel; cf. panel A). Point estimates were obtained using a
standard least-square (LSQ) fitting method (simulated annealing). Full probabilistic
inference was done using MCMC sampling following [102] (see main text for more de-
tails). As demonstrated by [102] the uncertainty over the parameters can be greatly
reduced by using more informative protocols that cover a wider frequency range.
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Approach Binomial STP Inference
quality

Experimental
ease

Algorithm
complexity

Mean-variance analysis 1 × ** * (PSR) O(M)

Bayesian quantal analysis 2 × *** ** (PSR) O(MN)

Least-square STP fitting 3 × ** *** (PSR) O(M)

Bayesian Gaussian-STP 4 × **** *** (PSR) O(MS)

Binomial-STP 5 *** *** (PSR) O(MN4)

Bayesian binomial-STP 6 ***** *** (PSR) O(MN4)

Spike-based GLM 7 × * **** (spikes) O(M)

Table 3.1: Comparison of different model-based approaches. Note that the approaches
that consider parameter uncertainty can be readily extended to Bayesian. 1 see [98]
and Fig. 3.4A; 2 see [101] and Fig. 3.4A; 3 see for example [89, 103, 104, 105, 106, 107,
108, 109] and Fig. 3.4B; 4 see [102] and Fig. 3.4C; 5 see [110, 111] and Fig. 3.4C; 6 see
[112] and Fig. 3.4C; 7 see [113] and Fig. 3.4D. In the O algorithm complexity analysis
M refers to the number of data points, N to the number of release sites and S to the
number of samples needed. Point estimate methods that obtain some measures of
uncertainty of the parameters rely on getting multiple point estimates, whereas this
comes naturally in full probabilistic methods (this is here reflected in the inference
quality). The list of methods presented here is grouped into quantal methods (first
two rows) and into STP models (last 5 rows) and then sorted by their publication
date (earlier first). PSR: Postsynaptic responses. We use star-based ranking system
for both inference quality and experimental ease, where one star means worse/harder.

3.4.1 Deterministic Models of Short-Term Plasticity

A number of deterministic short-term plasticity models have been proposed that
characterise the dynamic properties of synaptic transmission (for a review on STP
models see [114]). These models capture STP data relatively well, and thus may
enable us to uncover how STP may be regulated under different conditions.

The parameters of these models are commonly fit using least-squares optimisation
to obtain a single set of parameters (point estimates) where the goal is to find the
best (or at least a good) set of parameters that captures a given experimental dataset
[89, 103, 104, 105, 106, 107, 108, 109] (Fig. 3.4B).

However, estimating parameters of STP models poses a challenge. Similar to the is-
sues highlighted above for binomial models, in most STP models different parameter
sets produce model outputs that follow the observed data equally well (Fig. 3.3B;
[102]). The existence of these multiple plausible solutions opens problems when re-
lying on point estimates to draw conclusions about the underlying biological mech-
anisms. Therefore, it is important to also consider the uncertainty of the parameter
estimation. Unlike single point estimate approaches, full probabilistic inference natu-
rally captures parameter uncertainty. Note that this can also be in principle obtained
using a sensitivity analysis when using standard fitting methods [115, 116], but these
methods are often not principled and may not provide a complete picture of the
parameter landscape. One form of probabilistic inference is full Bayesian inference
where, similar to the BQA approach, we aim to obtain the posterior distribution of
STP parameters given experimentally observed data.

[102] introduced the first Bayesian inference framework of STP models (Bayesian
Gaussian-STP; Fig. 3.4C; Table 1). In this work the authors modelled the mean
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postsynaptic peak responses using the Tsodyks-Markram STP model to account for
the dynamic properties of the synapse [93, 89]. The Tsodyks-Markram STP model is a
commonly used model built around the synaptic dynamics discussed above. In order
to capture the variability of synaptic responses, [102] used a Gaussian approxima-
tion. The posterior distribution P (M |D) was obtained by sampling of the parameter
space using a Monte Carlo Markov Chain (MCMC) algorithm. MCMC methods rely
on constructing a Markov chain 3 that should converge to the desired probability
distribution in the equilibrium (i.e. after long enough observations).

This method was used to study the parameter uncertainty given datasets obtained
with common experimental protocols. The posterior distributions revealed that some
of the parameters from the Tsodyks-Markram STP models were poorly constrained by
such experimental protocols (Fig. 3.3B). This observation led to the proposal of new
experimental protocols that span a broader stimulation frequency range and result in
substantially reduced uncertainty over the parameter values.

Furthermore, obtaining the posterior distribution helps to understand the depen-
dencies between parameters, which is not straightforward using traditional fitting
methods. For example, in [117], the authors used an MCMC method to obtain the
posterior distribution over the parameters (similar to [102]) allowing the authors to
highlight two strongly correlated parameters. Importantly, the identification of this
correlation led to a reparameterization of the model which improved parameter in-
ference. Therefore, obtaining the posterior distribution over the parameters makes it
possible to characterise their uncertainty and explore possible dependencies between
parameters. Such MCMC methods are relatively efficient as long as the model can
be computed efficiently (up to a few seconds) and the number of STP parameters
remains relatively low (less than a few dozens).

3.4.2 Stochastic Short-Term Plasticity Models

There are two important limitations of relying on deterministic STP models. First,
the optimisation depends on an accurate estimation of the mean synaptic responses.
As mentioned above, this requires a high number of trials, which is experimentally
challenging (see Table 1). Second, by only considering averages these methods ig-
nore the correlations between postsynaptic peaks, yet these correlations may provide
valuable information to accurately infer the synaptic properties.

A couple of recent studies introduced methods that incorporate correlations between
postsynaptic responses in the inference of STP parameters. These methods allow the
extraction of both quantal and dynamic parameters of synaptic transmission from
trains of postsynaptic responses without the requirement of averaging over multiple
sweeps [110, 111, 112]. These studies implemented stochastic models (or generative
models) of synaptic transmission by combining phenomenological Tsodyks-Markram
STP models with binomial models of vesicular release and replenishment. The prob-
ability of vesicle release is derived from a Tsodyks-Markram model and the vesicle
replenishment probability is modelled with a Poisson process controlled by a depres-
sion time constant parameter τD. The quantal size of the postsynaptic response
evoked by each vesicle can be approximated by either a gamma distribution in [112],
or an inverse Gaussian distribution in [111], and the total amplitude is modelled as
a linear combination of these distributions. The choice of these distributions is mo-

3A Markov chain represents a probabilistic transition between states, in which a given transition
depends only on the previous state.
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Figure 3.4: Different approaches to model-based inference of synaptic trans-
mission. The different methods are organised based on the type of experimental data
to which they are applied (first column), the model being assumed (second column)
and the method of parameter inference (third column; dashed green and grey boxes in-
dicate point estimate and full probabilistic inference, respectively). (A) Methods that
use the variability of the first postsynaptic responses to infer binomial release statis-
tics. (B) Methods that rely on multiple averaged responses to fit short-term plasticity
(STP) models, which typically discard binomial release statistics. (C) Methods that
directly consider both variability and multiple synaptic responses using probability
theory to infer the synaptic transmission parameters. Here two variants have been ex-
plored: (i) a Bayesian framework where Gaussian noise is used to model the synaptic
response variability [102] and (ii) a framework in which binomial release statistics are
explicitly considered [112, 111]. The later has been explored using two variants: full
inference (using sampling, [112]) and optimisation methods [111]. (D) Methods that
work directly at the level of spike trains and try to infer short-term plasticity param-
eters. [113] introduced a new method based on generalised linear models (GLMs) to
obtain point estimates of short-term plasticity models. Prel: Release probability; q:
mean quantal amplitude; N : number of release sites; τD: depression time constant;
τF : facilitation time constant; f : facilitation rate. Similarly to previous figures the
mean postsynaptic responses are shown in red, spikes in blue (vertical lines) and small
blue circles represent individual samples of postsynaptic responses.
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tivated by the fact that the quantal amplitude distribution is positively skewed, a
feature that can not be captured by a Gaussian distribution.

The full formulation of the stochastic STP model allows to define the likelihood of the
observed data given the model, P (D|M). The stochasticity of the model introduces
correlations between peaks in the train and these correlations pose the main difficulty
in the likelihood calculation. In particular, because the amplitude of the postsynaptic
response is dependent on the number of released vesicles. As discussed in [111], if the
likelihood is to be formulated using the probability distribution of released vesicles,
the number of terms in the calculation would grow exponentially. This becomes a
permutation with repetition problem, in order to account for correlations of released
vesicles the number of terms in the calculation would grow as (N + 1)K with N
being the number of release sites and K corresponding to the number of spikes in the
train. To make the calculation more efficient, in both studies the likelihood function is
formulated in terms of the probability distributions of the release sites before and after
a spike (rather than continuously), which fully capture the state of the system.

These two studies apply different strategies to obtain point estimates from the like-
lihood. [111] uses an expectation-maximisation algorithm (referred to Binomial-STP
in Table 1; see also [110]), while [112] uses MCMC sampling (referred to as Bayesian
binomial-STP in Table 1). While both methods return a point estimate of the pa-
rameter set that maximises the likelihood function, only the sampling approach ap-
proximates the joint posterior distributions of the parameters. As discussed above,
by obtaining the full likelihood, not just a point estimate, [112] explicitly quantifies
the uncertainty over the parameters, and the full likelihood density can be analysed.
Moreover, it also allows for correlations between the distributions over the parameters
to be studied.

The main features of these approaches are (i) accounting for correlations between
subsequent postsynaptic responses and (ii) using individual postsynaptic traces for
fitting the models, which offers theoretical and practical advantages. Interestingly,
both [111] and [112] report that considering correlations during inference yields esti-
mates of synaptic parameters that are more accurate and require less sweeps when
compared to ignoring correlations. This means that the experimental protocols can be
shorter, hence making these inference methods particularly attractive for experiments
in vivo.

3.5 Toward Inference of Synaptic Transmission in vivo
Recent developments have started to raise the possibility of accurately inferring synap-
tic transmission properties in vivo. One way to tackle this problem is to perform
whole-cell recordings in vivo while stimulating the presynaptic neurons (or presenting
a stimuli) [118, 100, 30]. This is a valuable approach that is enabling the community
to confirm previous in vitro results in vivo. For example, [100] applied binomial-based
estimation methods typically used in slices to in vivo data, and obtained results con-
sistent with both modelling predictions and slice data. While [119] and [120] intro-
duced new statistical methods with some success in inferring synaptic conductances
from in vivo intracellular recordings and spike trains, respectively. However, these
methods were not developed to estimate quantal or synaptic dynamics properties. In
order to test how such synaptic features are shaped in more natural conditions across
different brain regions new methods are required that can operate on the growing
imaging-based or spike-based datasets.
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One of the difficulties in inferring synaptic parameters from spikes is that several non-
synaptic variables can have an impact on the spiking statistics. For example, when
a presynaptic neuron fires at high frequencies one would expect a reduction in the
firing rate of the postsynaptic neuron due to short-term depression at their synaptic
connections, but a similar effect can also be mediated by postsynaptic neuron-wide
adaptation mechanisms [121].

A first attempt at tackling this problem has recently been put forward [113]. In this
framework, the authors extended a generalised linear model to infer both neuronal
and STP parameters directly from spike-trains (Fig. 3.4D, referred to as spike-based
GLM in Table 1). Interestingly, using their framework [113] showed that in a reduced
system – a single postsynaptic neuron in slices with simulated inputs – postsynaptic
adaptation can be distinguished from short-term depression as they are predominantly
correlated with pre- and postsynaptic firing rates, respectively. More recently the
same authors [122] went further and used their framework to show that functional
connectivity with STP may explain the diversity of activity patterns observed in vivo
between different brain areas. However, for these approaches to provide accurate
estimates of synaptic transmission properties (Table 1) in vivo many other factors
need to be considered in future work, such as network dynamics, cell-type specificity
and dendritic integration.

3.6 Discussion
In this review we have provided an overview of standard methods and recent de-
velopments of model-based inference of synaptic transmission. From methods that
rely on the binomial statistics of the first postsynaptic response alone to methods
that consider the dynamics of consecutive synaptic responses (short-term plasticity)
but also their statistical properties. Historically, inference methods have mostly fo-
cused on point estimations, which give a biased interpretation of synaptic data [102].
More recent developments have focused on full probabilistic inference, thus providing
a more comprehensive picture on the most likely synaptic transmission parameters
[101, 102, 112].

One research direction that should improve the inference quality of the short-term
plasticity parameters is to optimise the experimental protocol, namely the timings
of the presynaptic action potentials. The stimulation protocol needs to be within
some acceptable range (a too high stimulation frequency would induce long-term
plasticity and thereby violate the stationarity assumption). However, within such a
range, there is a lot of freedom that can be exploited to improve the quality of the
parameter estimates. For example, [102] explored a few different protocols (regular
spike trains, regular spike train + recovery spike(s) or Poisson spike trains). It would
be important to systematically study the space of protocols and determine which ones
are the most informative. Pushing this idea even further, it would be interesting to
design a closed-loop inference scheme such that after each spike and its subsequent
postsynaptic response, the algorithm determines the best interval for the next spike
that it is maximally informative about the synaptic parameters.

In this review, we have not covered some other properties that are of interest. One
that has received attention recently is the inference of the size of the presynaptic
readily-releasable vesicle pool [123, 124]. Additionally, we have focused on the bino-
mial release model, but many synapses require different release probabilities and quan-
tal amplitudes across release sites, which is better captured by multinomial statistics
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[125, 98]. In future work, it would be important to understand how the developments
reviewed here can also consider these finer aspects of synaptic transmission.

There have been remarkable developments in measuring synaptic properties with
high temporal and spatial resolution [126, 127]. Of particular interest are recent
advances in ultrafast optical glutamate sensors, which are enabling measurements of
synaptic release with high accuracy [128]. These developments, when coupled with
the statistical inference frameworks reviewed here ([102, 112, 113], but see also [129]),
raise the possibility of accurate optical estimation of synaptic transmission properties
in awake behaving animals.

Finally, there has been a recent surge in new and exciting large-scale recordings, such
as voltage and calcium imaging [130], but also multi-electrode spike recordings [131].
With such methods at hand now is the right time to start asking questions that bridge
systems neuroscience and synaptic transmission properties. For example, how do the
quantal properties of synapses change over multiple brain areas as animals learn a
particular task.

Taken together these novel inference and experimental methods open the possibility of
testing different theories put forward for the role of synaptic transmission in learning
and memory [132, 100, 85, 39], but also their impact in pathological states [133].
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Chapter 4

Identifiability of a binomial
synapse

Figure 4.1: On correct model selection 1.
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CHAPTER 4. IDENTIFIABILITY OF A BINOMIAL … 4.1. ABSTRACT

4.1 Abstract

Synapses are highly stochastic transmission units. A classical model describing this
stochastic transmission is called the binomial model, and its underlying parameters
can be estimated from postsynaptic responses to evoked stimuli. The accuracy of
parameter estimates obtained via such a model-based approach depends on the iden-
tifiability of the model. A model is said to be structurally identifiable if its parameters
can be uniquely inferred from the distribution of its outputs. However, this theoretical
property does not necessarily imply practical identifiability. For instance, if the num-
ber of observations is low or if the recording noise is high, the model’s parameters can
only be loosely estimated. Structural identifiability, which is an intrinsic property of
a model, has been widely characterized; but practical identifiability, which is a prop-
erty of both the model and the experimental protocol, is usually only qualitatively
assessed. Here, we propose a formal definition for the practical identifiability domain
of a statistical model. For a given experimental protocol, this domain corresponds to
the set of parameters for which the model is correctly identified as the ground truth
compared to a simpler alternative model. Considering a model selection problem
instead of a parameter inference problem allows to derive a non-arbitrary criterion
for practical identifiability. We apply our definition to the study of neurotransmit-
ter release at a chemical synapse. Our final contribution to the analysis of synaptic
stochasticity is three-fold: firstly, we propose a quantitative criterion for the practical
identifiability of a statistical model, and compute the identifiability domains of dif-
ferent variants of the binomial release model (uni or multi-quantal, with or without
short-term plasticity); secondly, we extend the Bayesian Information Criterion (BIC),
a classically used tool for model selection, to models with correlated data (which is
the case for most models of chemical synapses); finally, we show that our approach
allows to perform data free model selection, i.e. to verify if a model used to fit data
was indeed identifiable even without access to the data, but having only access to the
fitted parameters.

4.2 Introduction

Model selection is highly relevant to neuroscience, as neurons, dendrites, and synapses
can be represented by models with different levels of complexity and abstraction.
When it comes to fitting recorded data, predicting the output of a system to a given
stimulus, or making sense of an observed phenomenon, several possible models can
be used: this raises the question of what makes a good model. Finding the correct
model is a crucial issue in studying the brain.

Firstly, a good model needs to be sufficiently complex to account for observed data,
while being simple enough to generalize to future observations. Competing models
are typically compared based on their ability to fit an observed data set, while being
penalized for their complexity (or number of free parameters) to avoid overfitting.
Different model selection tools (Bayesian Information Criterion, Akaike Information
Criterion...) are classically used to determine which model is the best one to fit a
data set [135].

Secondly, models also differ in their nature, and can be classified as phenomenolog-
ical, normative, or biophysical. On the one hand, purely phenomenological models
are useful for relating the output of a system to its input, and can provide a compu-
tationally efficient way to make prediction. However, as they are solely based on the
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empirical relation between the input and the output of the system, and not on its
inner biological principles, they lack interpretability. On the other hand, normative
and biophysical models can be computationally challenging to fit on data, but are
more realistic. In a normative approach, the output of a system is computed from
an objective function which modelizes its high-level functions and principles. As op-
posed to this top-down approach, biophysical models aim at precisely describing the
low-level features and inner biological principles of the system. An interesting prop-
erty of these biophysical models is that their parameters correspond to real physical
quantities: when the parameters of a system cannot be measured directly, they can be
estimated by fitting a corresponding biophysical model on recorded output data of the
system, a procedure known as model-based inference. By computing the likelihood of
the data as a function of the parameters, it is possible to follow a maximum-likelihood
approach to obtain a point estimate of the parameters [20], or to compute the full
posterior distribution over them [5].

Such a parameter inference requires that the model used is identifiable. Structural
(i.e. model-based) identifiability is a property of the model, regardless of experimental
results. In a structurally identifiable system, the dimension of the output is sufficiently
high with respect to the dimension of the parameters vector to uniquely define it: the
parameters can be non-ambiguously inferred if the complete distribution of the output
is known. Structural identifiability has been widely studied in many fields of physics
and biology [70, 71, 72, 73, 74], and different criteria exist to assess the structural
identifiability of a model [75].

This theoretical property is not equivalent to practical (i.e. experiment-based) iden-
tifiability, which is a property of both the model and the experimental protocol: a
model which is structurally identifiable might lead to a poor practical identifiability of
parameters if data points are noisy or scarce. The accuracy of model-based methods
for inferring the values of parameters depends on the experimental protocol used to
record the data, as observations need to be sufficiently informative to allow a correct
estimation of the parameters. Contrary to structural identifiability, a quantitative
criterion is lacking for practical identifiability, which is usually only qualitatively as-
sessed. Non-practical identifiability refers to regimes in which parameters can only
be loosely estimated; but one would need to define what does ”loose” mean. Such
a definition could be intrinsic to the model: a model could be considered as practi-
cally identifiable given a certain experimental protocol if the expected variance of its
parameters’ estimate is below a threshold. But this threshold would need to be arbi-
trarily defined. Here, we propose an extrinsic yet non-arbitrary definition of practical
identifiability, by transforming a model identifiability problem into a model selection
problem.

A model is said to be practically identifiable when its parameters can be correctly
inferred given a certain experimental protocol. But, as explained previously, different
possible models can be fitted on a data set. Recorded data need to be sufficiently
informative not only to give a correct estimate of the parameters of a model, but also
to select the correct model (i.e. the model from which they have been generated).
We argue that a model is practically identifiable if and only if it is also correctly
identified as the model providing the best fit to the data. For a given experimental
protocol, we define the practical identifiability domain of a statistical model as the
set of parameters for which the model is correctly identified as the ground truth
compared to a simpler alternative submodel.

Our proposed definition of practical identifiability can be applied to any setting where
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submodels or a nested family of models can be defined. Here, we apply it to the par-
ticular problem of estimating the parameters of a chemical synapse. A classical bio-
physical model used to describe the stochastic release of neurotransmitter at chemical
synapses is called the binomial model [12], for which different variants of increasing
complexity (in term of the number of free parameters) can be considered.

Different model-based approaches have been proposed [3] for obtaining an accurate
estimate of the parameters describing a synapse (namely, its number of independent
release sites, their release probability upon the arrival of a presynaptic spike, the
quantum of current elicited by one release event, etc.) These parameters cannot be
measured directly, but can be inferred using excitatory postsynaptic currents (EP-
SCs3) recorded on the post-synaptic side and elicited by experimental stimulation of
the presynaptic cell. By measuring their values before and after a stimulation proto-
col, it is possible to study the mechanisms and loci of synaptic plasticity [137, 35, 36]
and homeostasis [32, 33]. On a more theoretical level, a correct inference of synap-
tic parameters is necessary to study the computational role of synaptic stochasticity
[31, 138]. Finally, an accurate inference of synaptic parameters would allow to clarify
the role of synaptic transmission in different diseases [37], such as mental retardation
[139], schizophrenia [140], Parkinson’s disease [141], autism [142], Alzheimer’s disease
[143], compulsive behavior [144], and addiction [145].

Our final contribution to the analysis of synaptic stochasticity is three-fold. Firstly,
we propose a definition for the practical identifiability of a model of synaptic trans-
mission, and compute the identifiability domains of different variants of the binomial
release model. Besides, we observe that model selection criteria are classically de-
rived by assuming that recorded data are not correlated, which does not hold for
most models of chemical synapse. We extend the Bayesian Information Criterion
(BIC), a classically used tool for model selection, to models with correlated data.
Finally, a proper description of the model selection step is often missing in studies
where a model based-approach is used to infer synaptic parameters. We show that
our approach allows to perform data free model selection, i.e. to verify if a model
used to fit data was indeed identifiable even if a proper model selection step had not
been performed.

4.3 Methods

4.3.1 Binomial models of neurotransmitter release

The classical binomial model

The quantal nature of synaptic transmission was first unveiled in [9], in which the
authors observed that the postsynaptic responses to presynaptic stimulations were all
multiples of a small unit of current. They explained how the total response is built
up of several of these units, or quanta, each of them arising from a single presynaptic
release event. Upon the arrival of an action potential in the presynaptic terminal,
vesicles are released with a given probability p. The binomial model [12] assumes that
there are N independent release sites and that for each site the release probability p
is identical. Therefore, the number of released vesicles after spike i, ki, is distributed
according to a binomial distribution. This model further assumes that each vesicle
release gives rise to a quantal current q, such that the overall excitatory postsynaptic

3It is also possible to perform model-based inference of synaptic parameters based on post-synaptic
spike trains instead of EPSCs, as in [26, 136]
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current is given by ei = qki+ ε, where ε models a measurement noise typically drawn
from a normal distribution of variance σ2. Under the binomial model described by
its parameters N , p, q, and σ, the distribution of EPSCs is given by

p(ei) =

N∑
ki=0

p(ei|ki)p(ki)

where ki follows a binomial distribution of parameters N and p, and ei conditioned on
ki follows a normal distribution of mean qki and variance σ2. Postsynaptic responses
are characterized by their mean Npq and their variance q2Np(1 − p) + σ2. A first
feature of synaptic transmission is thus its stochasticity. Due to different sources of
noise, such as probabilistic vesicles release or recording noise, postsynaptic recordings
exhibit trial-to-trial variability.

Full model of synaptic transmission

Although this simple binomial model accounts for synaptic stochasticity, it does not
allow to model its dynamics: postsynaptic responses do not only depend on the
parameters of the synapse, but also on its previous activity. On the one hand, suc-
cessive presynaptic stimulations within a short time interval will lead to a depletion
of the readily-releasable vesicle pool, and hence to reduced successive postsynaptic
responses, a phenomenon known as short-term depression. This can be modeled by
assuming that the number of available vesicles at time i is ni ≤ N (while the simplified
binomial model described above assumes that all vesicles are readily releasable, and
hence ni = N). On the other hand, successive stimulations will gradually increase the
presynaptic calcium concentration, and hence the release probability, which is called
short-term facilitation.

Short-term depression and facilitation can be modeled using the Tsodyks-Markram
model [17, 137]. It consists in two ordinary differential equations, which model the
proportion of available vesicles ri and the release probability ui at time i. ri is reduced
by an amount uiri after each presynaptic spike, and recovers back to 1 with a depres-
sion time constant τD between each spike. Similarly, ui is increased by an amount
p(1−ui), and decays back to p (its baseline value) with a facilitation time constant τF .
Different values of the parameters p, τD, and τF allow to represent different synaptic
dynamics (either depression, facilitation, or no plasticity at all).

However, such a deterministic approach to short-term plasticity only allows to model
averages, and neglects correlations between successive postsynaptic responses. In
recent studies [20, 5], models of synapses incorporating both short-term plasticity and
binomial models of vesicles release and refill have been proposed. In these models,
the release probability ui evolves according to the equation of the Tsodyks-Markram
model, while each vesicle refills with a probability 1 − exp(−∆ti

τD
), where ∆ti is the

time interval between two successive presynaptic stimulations. This approach allows
to represent both the stochasticity and the dynamics of neurotransmitter release, and
to compute the likelihood of a set of recorded data D given the parameters θ and the
presynaptic stimulation protocol Ψ.

We consider a model of chemical synapse which encompasses both short-term depres-
sion (STD) and facilitation (STF) [20, 5]. Its parameters are (Figure 4.2 (A)):
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• N : the number of independent release sites [-]

• p: their initial release probability [-]

• σ: the recording noise. It encompasses both the noise coming from the experi-
mental apparatus (thermal noise of the amplifier, electric line noise, etc.) and
from the recordings per se (such as fluctuations in the membrane potential of
the cell) [A]

• q: the quantum of current elicited by one release event [A]4

• τD: the time constant of vesicles refilling, and hence of short-term depression
[s]

• τF : the time constant of Ca2+ dynamics, and hence of short-term facilitation
[s]

which defines a vector θ = (N, p, q, σ, τD, τF ). A probability conditioned on a parametriza-
tion θ is written pθ.

n = {ni}1≤i≤T , k = {ki}1≤i≤T , and D = {ei}1≤i≤T represent respectively the number
of available vesicles at the moment of spike i, the number of vesicles released after
spike i, and the i-th recorded EPSC (Figure 4.2 (B)). The experimental protocol
Ψ = {t1, t2, . . . , tT } encompasses the times of presynaptic stimulation: the time of
the i-th spike is written ti and ∆ti = ti − ti−1. For simplicity, we will drop the
dependency on Ψ from the notations of probabilities.

The probability of recording D is computed as the marginal of the joint distribution
of the observations D and the hidden variables n and k:

pθ(D,n,k) = pθ(e1|k1)pθ(k1|n1)pθ(n1)
T∏
i=2

pθ(ei|ki)pθ(ki|ni)pθ(ni|ni−1, ki−1) (4.1)

where:

pθ(ei|ki) is the emission probability, i.e. the probability to record ei knowing that
ki vesicles released neurotransmitter and assuming a normally distributed recording
noise5:

pθ(ei|ki) =
1

σ
√
2π

exp
(
−(ei − qki)2

2σ2

)
(4.2)

pθ(ki|ni) is the binomial distribution and represents the probability that, given ni
available vesicles, ki of them will indeed release neurotransmitter:

pθ(ki|ni) =
(
ni
ki

)
ukii (1− ui)

ni−ki (4.3)

where the release probability ui evolves as
4The outputs of a model of chemical synapse can be either electric postsynaptic currents (EPSC)

or potentials (EPSP). In the latter case, σ and q will be expressed in [V] instead of [A].
5Other distributions can also be used for the emission probability. [20] assumed an inverse Gaus-

sian to account for the observed right-skewness of mEPSP [146, 147].
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ui = p+ ui−1(1− p) exp
(
−∆ti
τF

)
(4.4)

with u1 = p;

pθ(ni|ni−1, ki−1) represents the process of vesicles refilling. During the time interval
∆ti, each empty vesicle can refill with a probability Ii:

pθ(ni|ni−1, ki−1) =

(
N − ni−1 + ki−1

ni − ni−1 + ki−1

)
I
ni−ni−1+ki−1

i (1− Ii)N−ni (4.5)

with

Ii = 1− exp
(
−∆ti
τD

)
(4.6)

It is usually assumed that, at the beginning of the experiment, all release sites are
filled, and hence that n1 = N [20, 5].

Figure 4.2: (A) Illustration of the binomial model. (1): the presynaptic button is
artificially stimulated. Red vertical bars show 5 presynaptic spikes with a constant
interspike interval. (2): these evoked stimuli lead to neurotransmitter release. After
spike i, ki vesicles (out of the ni vesicles from the readily-releasable vesicle pool)
release their neurotransmitter with a probability ui. (3): neurotransmitter bind to
receptors and elicit a postsynaptic current. A single release event triggers a quantal
response of amplitude q. (4): the recorded postsynaptic response after spike i is
the sum of the effects of the ki release events. EPSCs correspond to the amplitude
of each peak of the postsynaptic response to a presynaptic spike. (5): out of the N
release sites, only ni are in the readily-releasable vesicle pool at the moment of spike i.
After releasing, vesicles recover with a time constant τD which determines short-term
depression. (6): in the same time, each spike increases the calcium concentration in
the presynaptic button, and hence increases the release probability ui. This short-
term facilitation is characterized by a time constant τF . (B) Generative model for
the dynamical binomial model where ni is the number of ready releasable vesicles and
ki is the number of released vesicles at time i. ei is the EPSC amplitude at time ti.
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4.3.2 Models, submodels, and nested families

Definition 4.3.1. Model. For a given data set D and experimental protocol Ψ, a
model M is defined as a triplet M = {Θ, π,L} where Θ is the space of parameters
θ ∈ Θ, π is the prior for the parameters π(θ) = p(θ|M), and L is the likelihood of
the parameters L(θ|D) = p(D|θ,M,Ψ).

Examples: Different models can be derived from equations (4.1) to (4.6). We con-
sider 4 models of decreasing complexity:

ModelM3 is the full model with both STD and STF. Its 6 parameters areN, p, q, σ, τD,
and τF , and hence Θ3 = N∗ × [0, 1] × (R+)

4. Its likelihood function L3 is obtained
by marginalizing out the hidden variables n and k:

L3(θ|D) =
∑
n,k

pθ(D,n,k) (4.7)

where pθ(D,n,k) is given by Eq. (4.1).

Model M2 only has short-term depression (and no short-term facilitation). Its 5
parameters are N, p, q, σ, and τD, and hence Θ2 = N∗ × [0, 1] × (R+)

3. Its likelihood
L2 can be derived from (4.7) by further assuming that ui is a constant equal to
p.

ModelM1 shows no short-term plasticity at all, and can be derived from modelM2

by further assuming that Ii (defined in (4.6)) is a constant equal to 1 (and hence
ni = N). Its 4 parameters are N, p, q, and σ, and hence Θ1 = N∗ × [0, 1] × (R+)

2.
In this setting, data points are independent and (4.7) becomes

L1(θ|D) =
T∏
i=1

 N∑
ki=0

pθ(ei|ki)pθ(ki)

 (4.8)

with pθ(ki) =
(
N
ki

)
pki(1− p)N−ki being the binomial distribution;

ModelM0 is a Gaussian model, in which EPSCs are simply generated from a normal
distribution parametrized by its mean and variance. Its 2 parameters are µ and σ2,
and hence Θ0 = R× R+. Its likelihood L0 is simply

L0(θ|D) =
T∏
i=1

pθ(ei) (4.9)

with pθ(ei) = 1
σ
√
2π

exp
(
− (ei−µ)2

2σ2

)
.

To ensure the completeness of the definition of the models, we will assume for each
parameter θ a uniform prior between two values θmin and θmax [5]. Note however
that the approximate identifiability domain defined in (4.17) does not depend on the
prior.
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Definition 4.3.2. Submodels. Although ubiquitous in statistics (as in the likelihood-
ratio test or Pearson’s chi-squared test), the notion of submodels (or nested models) is
rarely formally defined in the literature [148]. It is usually said thatM0 is a submodel
ofM1 (or is nested withinM1) ifM0 can be obtained by constraining the parame-
ters of M1 [149]. We propose the following formal definition, that encompasses the
space of parameters, their priors, and their likelihood.

M0 = {Θ0, π0,L0} is said to be a submodel ofM1 = {Θ1, π1,L1} if

1. Θ0 ⊂ Θ1 (i.e. the parameters ofM0 also appear inM1)

2. π0(θ0) =
∫
Θ1\Θ0

π1(θ0, θ̃)dθ̃ ∀θ0 ∈ Θ0 (i.e. M0 andM1 share the same priors
for the parameters they have in common)

3. ∀θ0 ∈ Θ0 ,∃θ̃ s.t. p(D|θ0,M0) = p(D|(θ0, θ̃),M1) with (θ0, θ̃) ∈ Θ1 (i.e. M0

can be retrieved fromM1 by constraining its parameters).

We use the notationM0 �M1.

Examples: The model M2 with only short-term depression is a submodel of M3

(which accounts for both depression and facilitation). Indeed, they have the parame-
ters N , p, q, σ, and τD in common, andM2 can be retrieved fromM3 by constraining
τF −→ 0. Similarly, the model without STPM1 is a submodel ofM2 where τD −→ 0;
and the uni-quantal modelM0 is a submodel of the multi-quantal modelM1 where
p = 1 and µ = Nq.

We propose the following definitions to characterize the nestedness of a family of
models:

Definition 4.3.3. Nested family. F = {M0,M1, . . . ,Mn} is said to be a nested
family if

Mi �Mj , ∀0 ≤ i ≤ j ≤ n

4.3.3 Structural identifiability

Definition 4.3.4. Structural identifiability domain. Consistently with [70, 75],
let the structural identifiability domain ΘS of a modelM = {Θ, π,L} be defined as:

ΘS = {θ ∈ Θ | (∀θ′ ∈ Θ) θ 6= θ′ ⇐⇒ p(D|θ,M) 6= p(D|θ′,M)} (4.10)

Similarly,M is said to be structurally identifiable if Θ = ΘS.

If θ is in the structural identifiability domain of M, it can be uniquely identified
from p(D|θ,M). For instance, a Gaussian distribution of mean µ and variance σ2 is
uniquely defined by its parameters θ = (µ, σ2). Its structural identifiability domain
is thus ΘS = R × R+. Similarly, if N 6= 0, p 6= 0, p 6= 1, and q 6= 0, the probability
density of EPSCs under the binomial model without short-term plasticity M1 is a
mixture of Gaussian and is, as such, a structurally identifiable model if we restrict
Θ1 to N∗ × ]0, 1[ ×(R∗

+)
2 [150] (Figure 4.3).
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Figure 4.3: (A) Structural identifiability domain of the binomial model M1. This
model, parametrized by θ = (N, p, q, σ), is structurally identifiable if and only if
N 6= 0, p 6= 0, p 6= 1, and q 6= 0. These conditions are represented by the red
hyperplanes in the N × p × q domain. (B) Two different sets of parameters θ0 and
θ′0 may lead to the same distribution of observations if taken out of the structural
identifiability domain. If p = 1, the distribution of EPSCs under model M1 follows
a Gaussian law of variance σ2 and mean Nq: different combinations of N and q can
thus ambiguously describe it. Blue distribution: N = 5, p = 1, q = 1, σ = 0.2.
Orange distribution: N = 10, p = 1, q = 0.5, σ = 0.2. (C) Two different sets
of parameters θ1 and θ2 will lead to different distributions when taken within the
structural identifiability domain of M1: its distribution is uniquely defined by its
parameters. Blue distribution: N = 5, p = 0.5, q = 1, σ = 0.2. Orange distribution:
N = 5, p = 0.4, q = 0.9, σ = 0.15.

4.3.4 Informative domain

In some regimes, parameters may not be precisely inferred from observations, even
though the model is otherwise structurally identifiable. Indeed, in practice we usually
only have access to a finite number of (possibly noisy) observations. Practical identi-
fiability thus differs from the structural identifiability defined in Section 4.3.3.

A definition for the practical identifiability of a parameter has previously been pro-
posed in [70], along with an approach for detecting practical non-identifiabilities based
on the profile likelihood [76, 77]. The authors first define the likelihood-based confi-
dence intervals for the estimator θ̂i of the i-th parameter of a modelM:

Ci,∆ = {θi | L(θ̂i|D)− L(θi|D) < ∆}

where

L(θi|D) = max
θj 6=i

L(θ|D)

for a given threshold ∆. Then, they propose the following definition: A parame-
ter estimate θ̂i is practically non-identifiable, if the likelihood-based confidence region
is infinitely extended in increasing and/or decreasing direction of θi, although the
likelihood has a unique minimum for this parameter, meaning that the decrease in
likelihood compared to the optimal parameters estimate stays below the threshold ∆
in direction of θi. When plotting the likelihood as a function of the parameters, a prac-
tical non-identifiability can be seen as an infinitely extended flat valley, in which the
decrease in likelihood stays below ∆. The authors also describe an algorithm for com-
puting the profile likelihood and hence detecting such practical non-identifiabilities:
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Structural non-identifiable parameters are characterized by a flat profile likelihood.
The profile likelihood of a practically non-identifiable parameter has a minimum, but
is not excessing a threshold ∆ for increasing and/or decreasing values of θi (see Figure
3 in [70]).

A first limitation of this definition is to be data-dependent: it only holds for a specific
set of recorded data D. Indeed, likelihood-based confidence intervals, and hence
practical identifiability, are defined with respect to a certain data set D, and may
thus vary for different realizations of the experiment. However, an identifiability
criterion can be made data-independent by averaging it over all possible realizations
of D, i.e. by computing its expectation with respect to the distribution p(D|θ∗,M,Ψ).
Such an averaged criterion would correspond to the a priori expected identifiability
before a specific D is recorded.

Practical information about θ is a function of the experimental protocol Ψ: for a
given Ψ, the informative domain ΘI(Ψ) of a model M could be defined based on
the variance of the estimator. For instance, in a Bayesian setting, the domain ΘI(Ψ)
could be the set of parameters for which the expected informativeness of the posterior
distribution of the parameters (measured as the Kullback-Leibler divergence between
the posterior and the prior) is above a threshold ∆:

ΘI(Ψ) = {θ∗ ∈ Θ | 〈DKL(p(θ|D,M,Ψ) || p(θ|M))〉p(D|θ∗,M,Ψ) ≥ ∆} (4.11)

Although data-independent, this definition suffers from the same limitation as the
one proposed in [70]: it requires to set a specific threshold ∆. Instead of defining an
arbitrary criterion ∆ on the possible precision of parameters estimate, we will derive
our definition from a model selection argument.

4.3.5 Model selection

In model selection, the plausibility of two competing models M = {Θ, π,L} and
M′ = {Θ′, π′,L′} based on observations D can be assessed using the Bayes Factor
[151]:

BM,M′(D) = p(D|M)

p(D|M′)
=

∫
Θ L(θ|D)π(θ)dθ∫

Θ′ L′(θ|D)π′(θ)dθ
(4.12)

If the Bayes Factor is superior to 1, then the evidence for M is higher than the
evidence for M′. It is worth pointing out that the Bayes Factor will not only favor
models which provide a good fit to the data, but also includes a tendency to favor
simpler models, a natural form of Occam’s Razor [152, 68]. Indeed, a complex model
(i.e. a model with many independent parameters or with a broader prior for its
parameters) will be able to explain a larger set of possible observed data than a
simple model; but this comes at the price of spreading its likelihood over a larger set
of possible outcomes. Hence, if two models fit the observed data equally well, the
simpler one will be favored.

4.3.6 Proposed definition of practical model identifiability

To compute the identifiability domain of any model M compared to another model
M′, we introduce the Average Log Bayes Factor:

49



CHAPTER 4. IDENTIFIABILITY OF A BINOMIAL … 4.3. METHODS

Figure 4.4: (A) Illustration of practical identifiability. Orange: theoretical distribu-
tion for modelM1 parametrized withN = 5, p = 0.5, q = 1, σ = 0.2. Blue: histogram
of 2000 simulated EPSCs generated using the same parameters. Parameters can be
precisely inferred from the observations, which fit their theoretical distribution. (B)
Illustration of practical non-identifiability. Blue: histogram of 100 simulated EPSCs
with N = 5, p = 0.5, q = 1, σ = 0.4. Due to the small number of data points and
high recording noise σ, the binomial parameters can only be loosely estimated, which
is characterized by the fact that a Gaussian distribution (green) will provide a better
fit to the data than a binomial distribution (orange).

BM,M′(θ∗,Ψ) = 〈logBM,M′(D)〉p(D|θ∗,M,Ψ) (4.13)

For a given parameter θ∗ and protocolΨ, modelM is said to be practically identifiable
compared to M′ if BM,M′(θ∗,Ψ) ≥ 0. Intuitively, the identifiability domain of M
compared toM′ corresponds to all the settings (parameters and protocols) for which,
on average, data generated from the ground truthM will be better explained byM
than byM′.

In contrast to the definition in [70], our proposed definition does not require to set
a (possibly arbitrary) threshold ∆. Instead, it is derived from a model selection
criterion. We argue that a necessary and sufficient condition for the parameters of a
model M to be practically identifiable is for M to be itself practically identifiable.
In some settings (as for the nested models of chemical synapse described in Section
4.3.1), a family of submodels might naturally arise, while the choice of a threshold ∆
would be arbitrary.

Another interest of our approach is to be data-independent, while the definition pro-
posed in [70] only holds for a specific set of recorded data D. Indeed, we define
practical identifiability as a data-independent and intrinsic property of the model
M and experimental protocol Ψ. As the log-Bayes Factor in (4.13) is averaged over
all possible realizations of D, it corresponds to the a priori expected identifiability
before D is recorded. Our approach thus allows to define practical identifiability
domains:

Definition 4.3.5. Practical identifiability domain. Consider a model M =
{Θ, π,L} and a submodelM′ = {Θ′, π′,L′} ofM. For a given experimental protocol
Ψ, the practical identifiability domain ΘP(Ψ) of M is the set of parameters θ∗ for
which it is identifiable compared to its submodel:

ΘP(Ψ) = {θ∗ ∈ Θ | BM,M′(θ∗,Ψ) ≥ 0} (4.14)
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Note that in the limit where the priors π and π′ are highly peaked (i.e. π(θ) = δ(θ− θ̄)
and π′(θ) = δ(θ−θ̄′)), the condition BM,M′(θ∗,Ψ) ≥ 0 is always satisfied due to Gibbs’
inequality. In this case we have ΘP(Ψ) = Θ, ∀Ψ. However, generically the condition
BM,M′(θ∗,Ψ) ≥ 0 is not always satisfied since p(D|M) is not equal to p(D|θ∗,M).
The latter is the probability of observing D givenM and a certain parametrization
θ∗, while the former is the marginal likelihood over all parameters (4.12).

Two examples can illustrate this correspondence between model selection and pa-
rameter inference. Consider first the case of data recorded from M1. If the experi-
mental protocol is not sufficiently informative (i.e. if data are scarce or noisy), not
only will the inference of synaptic parameters be poor, but a Gaussian distribution
will also provide a better fit than a binomial release model to the data. Indeed, as
[ei|ki] ∼ N (qki, σ

2), in the absence of recording noise (i.e. if σ = 0), the distribution
of EPSCs is a serie of Dirac delta functions located at each multiple of the quantal
size qk for k ∈ {0, 1, . . . , N}. In this ideal case, q is clearly identifiable (Figure 4.4
(A)). However, upon addition of a recording noise σ, EPSCs are normally distributed
around qk for k ∈ {0, 1, . . . , N}, and the peaks on the histogram corresponding to
each multiple of the quantal size might overlap if σ is sufficiently high with respect
to q (Figure 4.4 (B)).

Similarly, we can consider the example of a synapse which shows short-term depression
(STD) with a time constant τD (modelM2). If the presynaptic cell is stimulated with
an inter-spike intervals longer than τD, no depression will be visible in the recorded
data, and the true model with STD will not be identifiable from a simpler binomial
model without STD. In the same time, it will impossible to correctly infer the value
of τD.

Our proposed definition of practical identifiability and of the identifiability domain of
a model extend the landscaping technique introduced in [153] as well as the framework
for testing identifiability of Bayesian models introduced in [154]. Especially, compar-
ing the expected supports 〈log p(D|M)〉p(D|θ∗,M,Ψ) and 〈log p(D|M′)〉p(D|θ∗,M,Ψ) of
M andM′ (given that values are averaged over 〈·〉p(D|θ∗,M,Ψ)) allows us to define a
quantitative criterion for identifiability.

The model evidence p(D|M) in (4.12) is often intractable in practice for complex
models, as it requires to integrate marginals for each parameter. Different methods
have been proposed to approximate it: MCMC computations [155], Savage-Dickey
method [156], supermodels [157]. A practical and time-efficient approximation of the
model evidence is given by the Bayesian Information Criterion BICM(D) [55]:

BICM(D) !
= −2 log p(D|θ̂,M) + kM log(T) ≈ −2 log p(D|M) (4.15)

where θ̂ = argmaxθ L(θ|D) is the maximum likelihood estimator (MLE) of L(θ|D),
kM = dim() is the number of independent parameters of M, and T = |Ψ| is the
number of data points in D. A detailed derivation is provided in Supplementary
Material. The BIC is the sum of two terms: a likelihood term −2 log p(D|θ̂,M) which
represents the ability of the model M to explain D, and a penalty term kM log(T )
which favors simpler models, as explained in Section 4.3.5.

The BIC is commonly used as an approximation of the model evidence p(D|M) in
model selection: the model with the lowest BIC is preferred over the others. The main
advantage of using the BIC is to transform a complex integration problem (i.e. the
computation of p(D|M)) into a simpler optimization problem (i.e. the computation
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of θ̂). Besides, it allows to perform model selection without the need to specify a
prior for the parameters, and is thus a popular tool for model selection [135].

As stated in Supplementary Material, the approximation BICM(D) ≈ −2 log p(D|M)
is only valid under the hypothesis that data points are independent and identically
distributed (i.i.d.), which is not the case for models with short-term plasticity. If data
are correlated, we are left with the following approximation, which does not simplify
in the general case:

−2 log p(D|M) ≈ −2 log p(D|θ̂,M) + log(|H(θ̂)|) (4.16)

where H(θ̂) is the Hessian matrix of − log p(D|θ,M) in Eq. (4.15).

We emphasize that the classical definition of the BIC (4.15) should not be used if
observations are correlated. Here, for models in which output are not independent,
we use the approximation given by Eq. (4.16), in which the term kM log(T ) in the
BIC is replaced by log(|H(θ̂)|). In some settings, the computation of the Hessian
matrix can be challenging. However, MCMC methods can be used to approximate
H(θ̂), even without an explicit expression for the gradient of the function [158]. In
our case, a numerical method for computing |H(θ̂)| is detailed in the Supplementary
Material.

Using approximation (4.15) in definition (4.14) yields the following approximation for
the practical identifiability domain in case the model evidence p(D|M) in (4.12) is
intractable:

Θ̃P (Ψ) = {θ∗ ∈ Θ | 〈BICM(D)〉p(D|θ∗,M,) ≤ 〈BICM′(D)〉p(D|θ∗,M,)} (4.17)

4.4 Results

4.4.1 Identifiability domain of the binomial model without short-
term plasticity

We study here the conditions under which a binomial model without short-term
plasticity M1 can be correctly identified from a Gaussian model having the same
mean and variance (M0). In order for the binomial model to be identifiable from a
Gaussian quantum-less distribution, the recording noise needs to be sufficiently low
compared to q for the peaks on the histogram of recorded EPSC to be identified. We
will thus plot the identifiability domain as a function of the recording noise σ for a
fixed q. The identifiability domain corresponds to the points θ in the parameters space
Θ1 for which the average BIC of M1 over all possible outputs of M1 parametrized
with θ is lower than the average BIC ofM0.

Per se, the identifiability domain depends on all the parameters of M1, as well as
on the experimental protocol. For simplicity and in order to obtain a plot in 2
dimensions, we will only plot it as a function of p and σ while holding other variables to
a fixed value. For a given experimental setup Ψ (which encompasses only the number
of recorded data points T , the inter-spike intervals playing no role in these models),
the following Markov-Chain-Monte-Carlo (MCMC) procedure is implemented:

1. A set of values p∗ and σ∗ are drawn from the space of possible values for p and
σ;
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2. Using p∗ and σ∗, 400 independent data sets (Di)1≤i≤400 are generated fromM1.
Each data set consists in T EPSCs;

3. For each Di, the BIC of both models are computed; these values are averaged
over i to compute an average BIC and identifiability is assessed if M1 is pre-
ferred overM0, which corresponds to the black dots in Figure 4.5 (A).

The procedure of plotting a complete identifiability domain can be quite time consum-
ing. Indeed, it requires to span the entire space of parameters; for each vector θ∗, to
generate a large number of independent data sets (Di); and for each of these data sets,
to compute the maximum likelihood estimator θ̂ using the Expectation-Maximization
algorithm [20]. Details on the computation of θ̂ are available in Supplementary Ma-
terial.

However, as both models M0 and M1 generate i.i.d. data, and by making the
approximation θ̂ ≈ θ∗ (i.e. by assuming that the maximum likelihood estimator θ̂
will be close to the true value θ∗ from which data were generated), the condition that
modelM1 is identifiable (4.17) can be approximated as follows:

− 2T

∫
p(e|θ∗,M1) log p(e|θ∗,M1)de+ kM1 log(T ) ≤

− 2T

∫
p(e|θ∗,M1) log p(e|θ̂M0 ,M0)de+ kM0 log(T ) (4.18)

where θ̂M0 = (µ, σ2) represents the mean µ ≈ N∗p∗q∗ and the variance σ2 ≈ N∗p∗(1−
p∗)q∗2 + σ∗2 of the data generated fromM1.

The condition specified by inequality (4.18) can be checked for any point θ∗ without
the need to generate a large number of independent data sets nor to compute the
estimator θ̂. Solving (4.18) numerically for σ allows to draw the border of the identi-
fiability domain ofM1, represented as solide lines in Figure 4.5 (A) and (B).

Several points are worth highlighting. Firstly, Figure 4.5 (A) shows a good agreement
between the results of the MCMC simulations (black dots) and those from the semi-
analytical method (4.18) (blue line). Secondly, as expected, Figure 4.5 (A) and (B)
illustrate that the identifiability domain increases with the number of data points T :
intuitively, a larger data set facilitates the correct identification of a complex model.
Besides, irrespective of the values of T and σ, for p = 0 and p = 1 the model M1

is structurally indistinguishable from a Gaussian distribution (see Figure 4.3 (A)).
Finally, the maximum noise σ which makes the binomial modelM1 indistinguishable
from a Gaussian distribution M0 is larger for extreme values of p (close to 0.9 or
0.1) than for p = 0.5. Indeed, in the latter case, the distributions of EPSC will be
symmetric (as in the upper panel of Figure 4.5 (C)), and hence just a little increase
in recording noise will be enough to cover the inter-peak intervals and make the
distribution Gaussian-shaped. In the former case, the distribution will be highly
skewed, and thus difficult to approximate with a normal distribution.

The same approach can then be extended to more complicated models, by defining
their identifiability domains as the part of the parameters plane where their average
BIC will be lower than the BIC of a simpler one.
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Figure 4.5: (A) Identifiability domain of M1 as a function of p and σ. Blue line:
domain of identifiability from Eq. (4.18). On the left part of the blue line, the
recording noise σ is sufficiently low to identify M1. Black dots: values (p∗, σ∗) for
which the average BIC of 400 data sets results in the correct identifiability of M1.
Results obtained for N = 5, q = 1, and T = 100. (B) Identifiability domain of the
binomial modelM1 compared to a Gaussian distributionM0, computed from (4.18),
for different values of T. (C) To visualize the effect of σ on the data, this panel shows
histograms of data generated from σ = 0.2 (1) and σ = 0.4 (2), alongside with their
theoretical distribution from Eq. (4.8) (orange line in the upper panel) or when a
Gaussian distribution is fitted on them (green line in the lower panel). In the iden-
tifiability domain (1), quantal peaks are clearly visible. Outside of the identifiability
domain (2), the binomial distribution becomes Gaussian-shaped. (D) Another visu-
alization of the identifiability domains displayed in (A) and (B). For different values
of p, the maximum recording noise σ (i.e. the boundary of the identifiability domain)
is plotted as a function of the number of data points T . The identifiability domain
increases with T : intuitively, a larger data set facilitates the correct identification of
a complex model.

4.4.2 Identifiability domain of the binomial model with short term
depression

We study here the conditions under which a binomial model with short-term depres-
sionM2 can be correctly identified from a model without short-term plasticity (M1).
In a first example, we assume that the presynaptic cell is stimulated at a constant
inter-spike interval (ISI), which needs to be sufficiently short with respect to the time
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constant τD to make depression visible. We thus plot the identifiability domain as
a function of both p and τD. We use the same method as in 4.4.1: For each set
of parameters p∗ and τ∗D, 400 independent data sets are generated from M2. Both
modelsM2 andM1 are fitted on them, and black dots in Figure 4.6 (A) correspond
to the parameters for which the average BIC ofM2 is lower than the average BIC of
M1.

As expected, we verify that the identifiability ofM2 is only possible when τD is suffi-
ciently long with respect to the inter-spike interval. Besides, if the release probability
p is low, correlations between recordings will be weak and the effect of short-term
depression will not be detectable. A major difference between models M1 and M2

is that, in the latter, observations {ei}1≤i≤T are not i.i.d.. The value of the i-th
recorded EPSC is a function of the number of available and released vesicles ni and
ki, which in turn depend on their previous values and on the ISI ∆ti. This has two
main consequences. Firstly, using the same approximation as in (4.18) would lead to
a biased estimate of the identifiability domain. Secondly, the classical definition of
the BIC (4.15) should not be used since observations are correlated. Rather, we use
Eq. (4.16) to compare the evidence forM1 andM2 for a given data set.

Plotting the identifiability domain of a model also allows to investigate how the
identifiability depends on the experimental protocol. For modelM1, we already saw
that the identifiability domain increases with the number of data points T (see Figure
4.5 (B) and (D)): a larger data set is more informative and allows for more reliable
inference. In this case, T is the only experimental variable, as observations {ei}1≤i≤T
are i.i.d. On the other hand, the identifiability domain of M2 will depend not only
on the number of data points, but also on the stimulation protocol. We compare
the constant stimulation protocol (T data points with a constant inter-spike interval
ISI = 0.05s) of Figure 4.6 (A) with a more realistic stimulation protocol in Figure 4.6
(B). In electrophysiological recordings, synaptic transmission is classically studied by
stimulating the presynaptic cell with short regular train of spikes at a given frequency,
followed by a recovery spike. This protocol is then repeated several times [159, 20, 5].
Such periodic trains are more informative than a constant stimulation protocol, as
they allow to probe a broader range of temporal dynamics.

In Figure 4.6 (B), we use 20 repetitions of a train of 4 spikes at 20Hz (ISI = 0.05s),
followed by a recovery spike 0.5s later. This protocol entails the same number of
data points T = 100 as the constant one, but allows to identify STD for a broader
range of depression time constants (namely, for τD < 0.3s). On the other hand,
since there are fewer successive stimulations within a short time interval than in the
constant protocol, depression can only be identified when the release probability p is
sufficiently high to induce vesicle pool depletion.

4.4.3 Data free model selection

In model-based inference of synaptic parameters, a crucial step related to the esti-
mation of the parameters is model selection, which is usually performed in several
steps:

1. Data D are acquired from a synapse using protocol Ψ;

2. A nested family of n+ 1 possible models F = {M0,M1, ...,Mn} is defined;

3. Each of these models is fitted on D to obtain n+ 1 MLE θ̂0, θ̂1, ..., θ̂n;
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Figure 4.6: Identifiability domain of the binomial model with short-term depression
M2 as a function of p and τD. Black dots correspond to the parameters for which
the average BIC of 400 data sets results in the correct identifiability of the depressed
model. Results obtained for N = 5, q = 1, σ = 0.2, and T = 100. (A) Constant
stimulation protocol with an inter-spike interval ISI = 0.05s (red dotted line). (B)
Stimulation protocol consisting in 20 repetitions of the same spike train: 4 spikes
with an inter-spike interval ISI = 0.05s followed by a recovery spike 0.5s later.

4. A model selection criterion (Bayes Factor, BIC, AIC...) is computed to quantify
and rank the fitness of each model on D;

5. If Mi is the selected model, then its MLE θ̂i is selected as the inference of
synaptic parameters.

However, in many studies [20, 5, 26], such a model selection step is not described. In
this section, we investigate the possibility, having only access to the inferred values
θ̂ of the parameters and to the description of the experimental protocol Ψ, to verify
that the model used to infer θ̂ was indeed practically identifiable (i.e. to verify if a
simpler model would have given a better fit to the data).

We use the notation D for a set of data generated from a model M parametrized
with θ∗, and θ̂ the inferred parameters obtained by fitting the parameters θ of model
M on D. If θ∗ is within the practical identifiability domain of M as we defined it,
it is then possible to correctly infer it from D, and hence θ̂ ≈ θ∗ will also be within
the identifiability domain ofM. Reciprocally, if θ̂ is not in the identifiability domain
of M, then a submodel would have provided a better fit to the data D than M.
Is it thus possible to verify if M overfits the data simply by verifying if θ̂ is in its
identifiability domain, without having access to the data.

This is illustrated in Figure 4.7 (A) and (B), whereM1 is fitted on data generated
from its submodel M0. For six different values of θ∗0 (A), the inferred parameters
are out of the identifiability domain ofM1 (B), showing that data are indeed better
explained byM0 than byM1.

First example: application to the data from Katz et al. (1954)

We first apply our data free model selection method to the seminal 1954 paper from J.
del Castillo and B. Katz [9], in which the quantal nature of neurotransmitter release
is identified for the first time. In order to observe mEPSP, they artificially reduced
the release probability p by lowering the external calcium concentration. Although
the quantal components of postsynaptic potentials are clearly visible and thoroughly
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analyzed, it would be interesting to verify, using our proposed model identifiability
analysis method, that the binomial model (i.e. a multi-quantal distribution) indeed
provides a better fit to the data than a simpler Gaussian model (i.e. a uni-quantal
distribution).

Data [69] consist in 328 EPSPs recorded at the neuro-muscular junction (NMJ) of a
frog muscle. Fitting the binomial model and running the Expectation-Maximization
algorithm on them yields N̂ = 42, p̂ = 0.013, q̂ = 0.875mV , and σ̂ = 0.15mV (and
hence σ̂

q̂ ≈ 17%). For this particular example, we have not only access to the inferred
parameters θ̂, but also to the data: it is thus possible to directly compare the BIC of a
Gaussian (BICM0 = 764.95) and of a binomial (BICM1 = 470.37) distributions, which
indeed confirms that data are better explained by the binomial quantal model.

However, even without the data, we can verify that the point in the parameter-
protocol space specified by θ̂ (the inferred values of the parameters) and Ψ (the
number of data points T = 328) is indeed within the identifiability domain of the
binomial modelM1 compared toM0 (see Figure 4.7 (C)), thus confirming the multi-
quantal nature of the recordings.

Figure 4.7: (A) Data sets were generated from a Gaussian modelM0 (for 6 different
means µ and variances σ2). (B) A binomial model M1 was fitted on them. In
each case, inferred parameters (coloured dots) are out of the identifiability domain of
M1. It is thus possible to verify if a model used to fit data was indeed identifiable,
without having access to the data and only using inferred parameters. (C) Blue line:
identifiability domain of the binomial model compared to a Gaussian distribution,
for N = 42 and T = 328, computed from (4.18). The red cross corresponds to the
parameters inferred from [9], and is indeed within the identifiability domain.

Second example: application to the data from Barri et al. (2016)

We then apply our method to the results presented in the 2016 paper from A. Barri,
Y. Wang, D. Hansel, and G. Mongillo [20], in which the complete binomial model
(with STD and STF) is fitted on recordings from layer 5 pyramidal neurons. They use
a slight variation of the binomial release model with short term plasticity described
by Eq. (4.1) to (4.6), in which the emission probability does not follow a Gaussian,
but an inverse Gaussian distribution:

pθ(ei|ki) =
q3/2ki√
2πσ2e3i

exp
(
−q(ei − qki)

2

2σ2ei

)
(4.19)

To verify that the data would not have been better fitted by a simpler model (and
hence, that the published estimates of synaptic parameters are reliable), 100 synthetic
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data sets were generated from the complete binomial model using the stimulation
protocol and the inferred values of the parameters described in [20]:

• 20 repetitions of the same stimulation protocol consisting in 8 presynaptic spikes
at 20Hz followed by a recovery spike 500ms later;

• N∗ = 17, p∗ = 0.27, q∗ = 0.18mV , σ∗ = 0.06mV , τ∗D = 202ms, and τ∗F =
449ms.

M0, M1, M2, and M3 were then fitted on the generated data. Average values of
their respective BIC are presented in Figure 4.8, and confirm the identifiability of the
model used in the study.

Figure 4.8: Average BIC ofM0,M1,M2, andM3 when fitted on 100 independent
data sets generated fromM3 parametrized with N∗ = 17, p∗ = 0.27, q∗ = 0.18mV ,
σ∗ = 0.06mV , τ∗D = 202ms, and τ∗F = 449ms. M3 has the lowest average BIC
compared to its submodels, showing that the parameters used to generate the data
are indeed within the identifiability domain of M3. As a consequence, we can infer
that M3 indeed provided the best fit to the data compared to its submodels, and
that inferred parameters presented in [20] are reliable. The facilitating nature of the
synapse is illustrated by the fact that M2 (the model with only STD and no STF)
has the highest average BIC.

4.5 Discussion

Obtaining an accurate estimate of the parameters of a system from noisy and scarce
observations is a crucial problem in neuroscience. Especially, different methods have
been proposed for estimating the parameters describing a synapse (namely, its number
of independent release sites, their release probability upon the arrival of a presynaptic
spike, the quantum of current elicited by one release event, the time constants of
depression and facilitation, etc.) Inferring their values allows to analyze the locus
of synaptic plasticity and homeostasis; to study possibly synapse-related diseases;
and more generally to investigate learning, memory, and neural dynamics, which are
underlied by synaptic transmission.

It is usually impossible to measure directly these parameters. However, they can
be estimated by fitting a biophysical model of synapse on currents recorded on the
post-synaptic side and elicited by experimental stimulation of the presynaptic cell.
This approach for estimating the parameters of a system is referred to as model-based
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inference. As different competing models may be used to describe the system and
explain its output, model-based inference of parameters thus raises the question of
what makes a good model.

Prior to any data recording, a required property for competing models is identifi-
ability. Although structural identifiability has been widely studied, no quantitative
criterion exists for practical identifiability, which is usually only qualitatively assessed.
Here, we propose a definition for the practical identifiability of a model, based on its
expected support given the distribution of the data. We define the practical identifi-
ability domain of a statistical model as the set of parameters for which the model is
correctly identified as the ground truth compared to a simpler alternative submodel,
and we study the identifiability domains of different models of synaptic release. In
the process, we propose an extension of the Bayesian Information Criterion (BIC) for
models with correlated data. The BIC is a widely used tool for model selection, but
it is derived by assuming that the outputs of the system are mutually independent,
which is not the case for models of chemical synapse. Finally, we show that our ap-
proach allows to perform data free model selection, i.e. to verify the identifiability of
a model without having access to the data.

The definition of practical identifiability we introduced here differs from the influen-
tial contribution of [70] in two ways. Firstly, our definition is data-independent: it
does not only hold for a specific set of recorded data D. Indeed, we define practical
identifiability as an intrinsic property of the modelM and experimental protocol Ψ.
We actually define the a priori expected identifiability before a specific D is recorded,
which allows to study how identifiability is affected by different experimental proto-
cols. Secondly, since our definition is derived from a model-selection argument, it
does not require to select a possibly arbitrary threshold on the practical identifia-
bility of parameters. Rather, it is defined with respect to a particular submodel.
Although the choice of the submodel might itself be arbitrary, we argue that nested
models and families naturally arise in commonly used statistical techniques, such as
polynomial regression [148], or Generalized Linear Models (GLM) [160]. Especially,
the widespread use of phenomenological models in neuroscience [161, 162, 163, 164]
makes the use of nested families and submodels relevant.

Another limitation of our approach is its practical implementation. As mentioned,
the model evidence p(D|M), on which our definition is based, is often intractable in
practice for complex models, and needs to be estimated. For practical purpose, we
used the Bayesian Information Criterion (BIC) to compute the identifiability domains
of our different models of synapse. However, we acknowledge that the BIC only
provides a valid approximation of the model evidence when the number of samples
is sufficiently large. A future step would be to study the robustness of our approach
to different computations of the model evidence or to other approximations, such as
the Akaike Information Criterion (AIC) [57].

Our identifiability domains are similar to the approach adopted in [73], in which the
authors study under which regime of rate fluctuation are the temporal variations of
a neuron firing rate correctly identified. Spike trains are generated from a model of
spiking neuron with a fluctuating firing rate (complex model); but under a certain
value of rate fluctuation, this model becomes indistinguishable from a model of spik-
ing neuron with a constant rate (simple model). Plotting the identifiability of the
fluctuating-rate model as a function of the amplitude of rate fluctuation allows them
to identify which distribution of inter-spike intervals has the broader identifiability
domain (and thus maximizes the efficiency of rate fluctuation transmission).
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In model-based inference and parameter estimation, one is often interested in obtain-
ing theoretical bounds on the achievable error performance. Such theoretical bounds
allow to assess a priori the possibility to correctly infer the parameters. A well-known
theoretical result is the Cramér-Rao bound [165, 166], which provides a lower bound
on the variance of the parameter estimator. This bound, which depends on the model,
its parameters, and the experimental protocol, may actually be too loose in practice,
and does not account for the threshold effect described in [167]. In many cases, as
the number of data points increases, the estimate error displays a threshold-like tran-
sition, from a region of low performance to a region of high performance where the
Cramér-Rao bound is attained. Our definition of practical identifiability also discrim-
inates between regions of low information (for small signal-to-noise ratios and sample
size) and high accuracy, provides a quantitative criterion to discriminate them, and
can be extended to the case of non-i.i.d. data. An interesting future step would be to
verify how the boundaries of our proposed identifiability domains compare with the
transition threshold described in [167].

An interesting topic would be to study the practical identifiability domain as the
number of observations T goes to infinity. In this asymptotic case, practical non-
identifiability means that the model cannot be identified, even with an infinite amount
of data. We can conjecture that practical identifiability is equivalent to structural
identifiability in this asymptotic case, as hinted by Figure 4.5: the identifiability do-
main increases with T . A future step would be to verify if the practical identifiability
domain of a model is included in its structural identifiability domain, and how it
behaves when the number of observations T goes to infinity.

We applied our analysis to 4 variants of the binomial model, of increasing complexity:
a Gaussian model (i.e. a uni-quantal distribution); a binomial model without short-
term plasticity; a binomial model with only short-term depression; and a binomial
model with both short-term depression and facilitation. A future step would be
to extend our analysis to further generalisations of the binomial model, in order to
account for parameters heterogeneity. Especially, the binomial model assumes that
the release probability and the quantal amplitude are identical for each release site. It
is however possible to hypothesize that there are several pools of vesicles, each having
different parameters (for instance a fast depleting pool and a slow depleting pool).
There will be regimes in which those sub-pools can be detected and other in which
the noise is too high or the experimental protocol not informative enough to identify
them, which can be quantified using our definition of identifiability. Another possible
generalization of the binomial model is to assume that the postsynaptic response to
one vesicle release is not fixed, but follows for instance a Gamma distribution [168]
to account for variability in vesicles size and neurotransmitter content.

Model selection is not only a first step in model-based inference of synaptic param-
eters (as it is necessary to have a reliable estimates of the parameters), but also
a tool to study the mechanisms of neurotransmitter release at a chemical synapse.
An alternative hypothesis (e.g. ”this synapse shows short-term plasticity”) can be
compared to a null hypothesis (”this synapse does not show short-term plasticity”)
by computing how well the complex model (i.e. with short-term plasticity) explains
the behavior of the synapse compared to the simple model (i.e. without short-term
plasticity). Testing models of growing complexity allows to study the nature of the
synapse and to identify mechanisms of neurotransmitter release. But the possibility
to correctly select the model that corresponds to the true behavior of the synapse
will depend on its parameters and on the experimental protocol used to record data:
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there are regimes in which the specific features of a model do not appear in the data.
Such regimes correspond to the identifiability domain of the model, and studying
them allows to draw conclusions on the nature of the synapse.

As stated previously, the problem of inferring parameters from noisy and scarce obser-
vations is not restricted to synaptic parameters estimation, but is a crucial question
in neuroscience. Our proposed methodology could also be applied to the modelization
of single neurons [169, 170, 171, 172], of dynamics of neural populations [173], or of
calcium-driven vesicles fusion [174, 175, 176].

On a broader scale, instead of seeing parametric non-identifiability as a statistical
problem, we could consider it as a biophysical feature. The total synaptic strength
between two cells is a function of both presynaptic (N, p) and postsynaptic (q) pa-
rameters. Different combinations of these parameters could lead to the same average
postsynaptic response: a presynaptic modification of the number of release sites N
can be compensated by an inverse modification of the postsynaptic number of recep-
tors affecting q. This combined effect of presynaptic and postsynaptic plasticity has
been shown to enable reliable and flexible learning [137] and homeostatic modulation
[32]. More generally, the question of degeneracy, defined as the ability of different
elements to perform the same function, could be addressed within the framework of
identifiability analysis [177, 178].

Finally, our proposed definition of model identifiability is paving the way towards Op-
timal Experiment Design (OED) for model selection and parameter inference. The
information conveyed by the data about the ground truth model and its parameters
depends on the experimental protocol: number of recorded data points, stimulation
frequency, etc. The goal of OED is to optimize the experimental protocol in order
to maximize the possibility to discriminate between competing models [82, 83] and
the precision of the inference of their parameters. An OED for inferring the param-
eters of a given model maximizes the mutual information between the data and the
parameters I(D, θ) [79]. This quantity turns out to be equal to the expected gain
in information about θ (defined as the Kullback-Leibler divergence between its prior
and its posterior), on which our proposed definition of the informative domain (4.11)
is based. Similarly, maximizing the Average Log Bayes Factor (4.13) is equivalent
to maximizing the discriminability between the two models M and M′, and hence
finding an OED for model selection. As a thorough theoretical preliminary analysis
of the properties of the competing models is a first step prior to model selection and
parameter inference [179], we believe that our theoretical contribution to model anal-
ysis will contribute to the development of OED techniques for synaptic transmission
study.

4.6 Supplementary material

We use the following notations:

• n = {ni}1≤i≤T , k = {ki}1≤i≤T , and D = {ei}1≤i≤T represent respectively the
number of available vesicles at the moment of spike i, the number of vesicles
released after spike i (hidden states), and the i-th recorded EPSC (observations);

• θl and θm are the l-th and m-th elements of the vector θ;

• For simplicity, we use the shorthand pθ(D) = p(D|θ,M).
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4.6.1 Derivation of the BIC

We define Q(θ) = log p(D|θ,M), which can be approximated using a second-order
Taylor series around the MLE θ̂:

Q(θ) ≈ Q(θ̂) +
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂) (4.20)

where H(θ̂) is the Hessian matrix of Q expressed at θ̂. Using (4.20) in p(D|M) =∫
θ p(D|θ,M)π(θ)dθ, and assuming a flat prior for θ givenM yields

p(D|M) ≈ exp(Q(θ̂))π(θ̂)

∫
θ
exp

(
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂)

)
dθ

Since H(θ̂) is symmetric and negative-definite, the integral can be computed using
Laplace’s method:

log p(D|M) ≈ log p(D|θ̂,M) + logπ(θ̂) + kM
2

log(2π)− 1

2
log(| −H(θ̂)|) (4.21)

Assuming that the number T of data points is sufficiently large, and that data in D
are i.i.d., the following simplification can be made:

[H(θ̂)]l,m =
∂2

∂θl∂θm
log p(D|θ,M)

∣∣∣∣
θ̂

=
∂2

∂θl∂θm

T∑
i=1

log p(ei|θ,M)

∣∣∣∣
θ̂

= T
1

T

T∑
i=1

∂2

∂θl∂θm
log p(ei|θ,M)

∣∣∣∣
θ̂

(4.22)

=⇒ [H(θ̂)]l,m ≈ −TI(θ̂)

where I(θ̂) is the Fisher Information Matrix for a single observation expressed at θ̂.
(4.21) thus becomes

log p(D|M) ≈ log p(D|θ̂,M) + logπ(θ̂) + kM
2

log(2π)− kM
2

log(T )− 1

2
log(|I(θ̂)|)

Finally, ignoring the terms that do not depend on T (for T sufficiently large) and mul-
tiplying both sides of the equality by −2 leads to BICM(D) ≈ −2 log p(D|M).

4.6.2 Inferring the values of synaptic parameters using the Expectation-
Maximization algorithm

We define the quantity Q as

Q(θ|θt) = 〈log pθ(D,n,k)〉pθt (n,k|D)
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that is to say the expected value of the log likelihood function of θ log pθ(D,n,k)
with respect to the conditional distribution of the hidden variables n and k given the
observations D and the current estimates of the parameters θt. The M-step of the
algorithm corresponds to the maximization of this quantity with respect to θ:

θt+1 = argmax
θ

Q(θ|θt)

which can be realized by computing the null-point of its gradient with respect to
θ:

〈∇θ log pθ(D,n,k)〉pθt (n,k|D)

∣∣∣∣
θt+1

= 0 (4.23)

The derivative of the joint probability with respect to each of the parameters can be
analytically computed and then introduced into (4.23). Whenever possible, we use
an analytical solution for θt+1, in order to accelerate each iteration of the algorithm.
For any quantity f(ni, ki), the average is classically computed as

〈f(ni, ki)〉pΘt (n,k|D) =
∑
n,k

f(ni, ki)pΘt(n,k|D)

which can be more conveniently computed by using the marginal distributions of
vectors n and k that share the same values at time i ni and ki:

〈f(ni, ki)〉pΘt (n,k|D) =
∑
ni,ki

f(ni, ki)pΘt(ni, ki|D)

Similarly, marginal distributions can be computed for any temporal indexes. For
instance:

〈ni − ni−1 + ki−1〉pΘt (n,k|D) =
∑

ni,ni−1,ki−1

(ni − ni−1 + ki−1)pΘt(ni, ni−1, ki−1|D)

The probability pΘt(ni, ki|D) can then be computed using the Baum-Welch algo-
rithm. As (ln(u))′ = u′

u , we obtain the following equations for M1, M2, and M3

respectively:

Binomial model without STP

qt+1 =

∑T
i=1〈eiki〉∑T
i=1〈k2i 〉

σt+1 =

√∑T
i=1〈(ei − qki)2〉

T

pt+1 =

∑T
i=1〈ki〉
NT
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Binomial model with STD

qt+1 =

∑T
i=1〈eiki〉∑T
i=1〈k2i 〉

σt+1 =

√∑T
i=1〈(ei − qki)2〉

T

dQ(Θ|Θt)

dτD
= 0 =⇒

T∑
i=2

∂Ii
∂τD

〈
ni − ni−1 + ki−1

Ii
− N − ni

1− Ii

〉
= 0

(the sum starts at i = 2 since τD does not appear in the probability of the first EPSC)
with Ii = 1− exp

(
−∆ti

τD

)

pt+1 =

∑T
i=1〈ki〉∑T
i=1〈ni〉

Binomial model with STD and STF

qt+1 =

∑T
i=1〈eiki〉∑T
i=1〈k2i 〉

σt+1 =

√∑T
i=1〈(ei − qki)2〉

T

dQ(Θ|Θt)

dp
= 0 =⇒

T∑
i=1

〈
∂ui
∂p

(
ki
ui
− ni − ki

1− ui

)〉
= 0

with
∂ui
∂p

= 1 +
∂ui−1

∂p
(1− p) exp

(
−∆ti
τF

)
− ui−1 exp

(
−∆ti
τF

)

and ∂u1
∂p = 1

dQ(Θ|Θt)

dτF
= 0 =⇒

T∑
i=1

〈
∂ui
∂τF

(
ki
ui
− ni − ki

1− ui

)〉
= 0

with

∂ui
∂τF

= (1− p)
(
∂ui−1

∂τF
exp

(
−∆ti
τF

)
+ ui−1 exp

(
−∆ti
τF

)
∆ti
τ2F

)

and ∂u1
∂τF

= 0

dQ(Θ|Θt)

dτD
= 0 =⇒

T∑
i=2

∂Ii
∂τD

〈
ni − ni−1 + ki−1

Ii
− N − ni

1− Ii

〉
= 0
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The EM algorithm is run for different possible values of N ; for each of these varying
values, a MLE θ̂N is computed for the continuous parameters. The value of θ̂N
yielding the highest likelihood is the global MLE. To minimize the vulnerability to
local minima, each run of the EM algorithm needs to be repeated with different
initial values θ0 for the continuous parameters. However, to minimize computation
time while plotting the identifiability domain of M2, the algorithm was only run
once with the parameters (including N) initiated at their ground-truth values (i.e.
θ0 = θ∗).

4.6.3 Baum-Welch algorithm and computation of the Hessian ma-
trix

The elements of the Hessian matrix H(θ) are the second derivatives of the log-
likelihood

[H(θ)]l,m =
∂2

∂θl∂θm
log pθ(D)

We define the following elements:

• The transition matrix A:

A(n′, k′, n, k, i) = pθ(ni = n, ki = k|ni−1 = n′, ki−1 = k′)

• The initial state distribution:

πn,k = pθ(n1 = n, k1 = k)

• The observation matrix:

bn,k(i) = pθ(ei|ni = n, ki = k)

• The forward probability αn,k(i) = pθ(e1, . . . , ei, ni = n, ki = k) which is defined
recursively:

1. αn,k(1) = πn,kbn,k(1)

2. αn,k(i+ 1) = bn,k(i+ 1)
∑

n′,k′ αn′,k′(i)A(n
′, k′, n, k, i+ 1)

Finally:
pθ(D) =

∑
n,k

αn,k(T )

[H(θ)]l,m is computed as follows:

∂2

∂θlθm
log pθ(D) = −

1

pθ(D)2
∂pθ(D)
∂θl

∂pθ(D)
∂θm

+
1

pθ(D)
∑
n,k

∂2

∂θlθm
αn,k(T )

with

∂pθ(D)
∂θl

=
∑
n,k

∂αn,k(T )

∂θl
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and where the derivatives of the α parameters from the Baum-Welch algorithm are
computed recursively:

∂αn,k(i+ 1)

∂θl
=
∂bn,k(i+ 1)

∂θl

∑
n′,k′

αn′,k′(i)A(n
′, k′, n, k, i+ 1)

+bn,k(i+ 1)
∑
n′,k′

(
∂αn′,k′(i)

∂θl
A(n′, k′, n, k, i+ 1) + αn′,k′(i)

∂A(n′, k′, n, k, i+ 1)

∂θl

)

and

∂2

∂θlθm
αn,k(i+ 1) =

∂2

∂θlθm
bn,k(i+ 1)

∑
n′,k′

αn′,k′(i)A(n
′, k′, n, k, i+ 1)

+
∂bn,k(i+ 1)

∂θl

∑
n′,k′

[
∂αn′,k′(i)

θm
A(n′, k′, n, k, i+ 1) + αn′,k′(i)

∂A(n′, k′, n, k, i+ 1)

θm

]

+
∂bn,k(i+ 1)

∂θm

∑
n′,k′

[
∂αn′,k′(i)

θl
A(n′, k′, n, k, i+ 1) + αn′,k′(i)

∂A(n′, k′, n, k, i+ 1)

θl

]

+bn,k(i+ 1)
∑
n′,k′

[
∂2αn′,k′(i)

∂θl∂θm
A(n′, k′, n, k, i+ 1) +

∂αn′,k′(i)

∂θl

∂A(n′, k′, n, k, i+ 1)

∂θm

+
∂αn′,k′(i)

∂θm

∂A(n′, k′, n, k, i+ 1)

∂θl
+ αn′,k′(i)

∂2

∂θk∂θm
A(n′, k′, n, k, i+ 1)

]

In order to compute the derivative of these quantities with respect to N , which is a
discrete parameter, binomial distributions were approximated by a normal distribu-
tion having the same mean and variance.
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Efficient Sampling-Based
Bayesian Active Learning

Figure 5.1: On fair sampling 1.
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CHAPTER 5. EFFICIENT SAMPLING-BASED BAYE- … 5.1. ABSTRACT

5.1 Abstract

Bayesian Active Learning (BAL) is an efficient framework for learning the parameters
of a model, in which input stimuli are selected to maximize the mutual information
between the observations and the unknown parameters. However, its applicability to
real experiments is limited by two main drawbacks. Firstly, it requires performing
high-dimensional integrations and optimizations in real time: current methods are
either too time consuming, or only applicable to specific models. Secondly, it only
optimizes for the next stimulus input (an approach referred to as a myopic design),
disregarding all future observations in the experiment. To address these issues, we
propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL) frame-
work, which is efficient enough to be used in real-time biological experiments and
to go beyond myopic approaches. We apply our method to the problem of estimat-
ing the parameters of a chemical synapse from its postsynaptic responses evoked by
presynaptic action potentials. Synaptic parameter inference is a challenging applica-
tion of BAL, as computation needs to be faster than the smallest inter-stimulation
interval, which can be on the order of a few milliseconds. Using synthetic data and
synaptic whole-cell patch clamp recordings in cerebellar brain slices, we show that our
method has the potential to significantly improve the precision of model-based infer-
ences, thereby paving the way towards more systematic and automated experimental
designs.

5.2 Introduction

In machine learning, a central problem is that of inferring the parameters θ of a model
M. For instance, in supervised learning, one may want to learn the parameters of
a Deep Neural Network (DNN) so as to minimize the difference between its output
and training labels; in biology, the parameters of a system can be studied by fitting a
biophysical model to recorded observations. In most cases, these parameters can be
neither directly measured nor analytically computed, but can be inferred using the
recorded outputs of the system x as a response to input stimuli Ψ. By computing
the likelihood of the outputs given the inputs and the parameters p(x|Ψ, θ), it is
possible to obtain either a point-based estimate of the parameters argmaxθ p(x|Ψ, θ)
[20], or to use the Metropolis-Hastings (MH) algorithm to compute their full posterior
distribution p(θ|x,Ψ) ∝ p(x|Ψ, θ) [5].

However, the accuracy of these estimates critically depends on the pair (Ψ, x), and
especially on how the input stimuli are chosen. For instance, training a DNN on
non-i.i.d. training examples (i.e. blocked training) will lead to catastrophic forget-
ting [181]. In biology, most experiments still rely on pre-defined and non-adaptive
protocols Ψ, which may not yield sufficient information about the true parameters of
the studied system. As a consequence, those experiments require more observations,
which increases their cost, time, and need for subjects. An efficient framework to
alleviate this issue is called Bayesian Active Learning (BAL). Knowing the current
estimate of the parameters, the experimental protocol (i.e. the next input) can be
optimized on the fly so as to maximize the mutual information between the record-
ings and the parameters (Figure 5.2 (a)). BAL is a branch of Optimal Experiment
Design (OED) theory [182, 80, 183]. It has already been used in neuroscience to infer
the parameters of a Generalized Linear Model (GLM) [29], the receptive field of a
neuron [184], or the nonlinearity in a linear-nonlinear-Poisson (LNP) encoding model
[185]. Implementing BAL for biological settings can be challenging, especially for
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real-time applications: it requires computing an update of the posterior distribution
of parameters after each time step, and using it to compute the expected information
gain from future experiments, which involves solving an optimization problem over a
possibly high-dimensional stimulus space.

Our main contribution is to provide a general framework for online active learning,
called Efficient Sampling-Based Bayesian Active Learning (ESB-BAL). Our novelty
is to use particle filtering, which is a highly versatile filtering method [186], for poste-
rior computation; and to propose a parallel computing implementation [187, 188] for
efficient posterior update and information computation. While previous implementa-
tions of active learning either relied on time consuming Monte Carlo (MC) methods
[79, 81] or were only applicable to special cases, such as linear models or GLM [29],
our proposed solution is fast enough to be used in real-time biological experiments
and can be applied to any state-space model.

To illustrate our method, we apply it to the problem of inferring the parameters of
a chemical synapse with Short-Term Depression (STD) [9]. The accuracy of these
estimates critically depends on the presynaptic stimulation times: if Inter-Stimulation
Intervals (ISIs) are longer than the depression time constant, STD will not be precisely
quantified. But if the stimulation frequency is too high, the pool of presynaptic
vesicles will be depleted, leading to poor parameter estimates [134, 189]. Synaptic
characterization is thus a relevant example application for ESB-BAL, but it is also a
challenging one: computation needs to be faster than the typical ISI, which can be
shorter than a few milliseconds. Using synthetic data, we show that our method allows
to significantly reduce the uncertainty of the estimate in comparison to classically used
non-adaptive stimulation protocols. We also show that the rate of information gain
(in bit/s) of the whole experiment can be optimized by adding a penalty term for
longer ISIs. Lastly, we extend active learning to non-myopic designs. Using recordings
from acute brain slices from mice, we show that our framework is sufficiently efficient
for optimizing not only the immediate next stimulus, but rather the future stimuli in
the experiment.

5.3 Bayesian active learning
When using active learning in sequential experiments, three key elements need to be
defined (Figure 5.2): (1) The system to be studied: its parameters θ can be inferred
from its observed responses to a set of input stimuli Ψ. Given the stochastic nature
of most systems studied in biology, the random variable X1:t corresponding to the
observations can take various values x1:t according to a distribution p(x1:t|Ψ, θ) (see
Section 5.6); (2) A filter that computes the posterior distribution of the parameters
given the previous inputs and observations p(θ|x1:t,Ψ): it is updated after each new
observation (see Section 5.4); (3) A controller that computes the next input stimuli
so as to maximize a certain utility function (see Section 5.5). The three following
sections will describe each of these elements in detail.

In general, the utility of a given protocolΨ can be expressed as the mutual information
between the parameter random variable Θ and the response random variable X1:t,
i.e. IΨ(Θ;X1:t) (see [79, 78] for a detailed discussion). For instance, in synaptic
characterization, Ψ corresponds to a set of T stimulation times ψ1:T and observations
correspond to recorded excitatory postsynaptic currents (EPSCs) x1:T . In case of
successive experiments [184], the mutual information between the parameters and
the next observation xt+1 conditioned on the experiment history ht = (x1:t, ψ1:t)
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(a) (b)

Figure 5.2: (a) Bayesian active learning applied to synaptic characterization. At each
time step, the response of the synapse (system) to artificial stimulation is recorded.
This observation xt is used by the filter to compute the posterior distribution of
parameters p(θ|x1:t, ψ1:t). The controller then computes the next stimulation time
ψ∗
t+1 to maximize the expected gain of information. (b) Model of binomial synapse

with STD. (1): the presynaptic axon is stimulated. (2): After spike t, kt vesicles
(out of the nt available ones) release their neurotransmitter with a probability p.
(3): A single release event triggers a quantal response q. (4): the total recorded
postsynaptic response xt is the sum of the effects of the kt release events. (5): After
releasing, vesicles are replenished with a time constant τD, which determines short-
term depression.

is:

I
ψt+1

ht
(Θ;Xt+1) = Hht(Θ)−Hψt+1

ht
(Θ|Xt+1) (5.1)

where Hht(Θ) is the entropy of the distribution of Θ at time t; and

H
ψt+1

ht
(Θ|Xt+1) =

∫
dxt+1p(xt+1|ht, ψt+1)H

ψt+1

ht
(Θ|Xt+1 = xt+1)

is the conditional entropy of the distribution of Θ at time t+ 1. The latter depends
on the future observation xt+1, which is unknown. We thus take its average over
xt+1; as the predictive distribution depends on the unknown parameters, we also
have to take an average over θ, using the current posterior distribution p(θ|ht) at
time t: p(xt+1|ht, ψt+1) =

∫
dθp(xt+1|ht, ψt+1, θ)p(θ|ht) [29]. The goal of Bayesian

active learning is to select the next stimulation to maximize the mutual information
between the parameters and all future observations:

ψ∗
t+1 = argmax

ψt+1∈St+1

max
n

max
ψt+1:t+n

I
ψt+1:t+n

ht
(Θ;Xt+1:t+n) (5.2)

with ψt+1:t+n ∈ St+1:t+n where St+1:t+n is the set of possible protocols for the next
stimulations. Optimizing all future inputs is an intractable problem (especially for
online applications), since the algorithmic complexity scales exponentially with the
number of observations. For this reason, BAL only optimizes for the next stimulus
(an approach referred to as a myopic design) (see Figure 5.2):

ψ∗
t+1 = argmax

ψt+1∈St+1

I
ψt+1

ht
(Θ;Xt+1) (5.3)
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Different methods have been proposed to compute Eq. 5.3. Monte Carlo (MC) meth-
ods [79] or a variational approach [81] can be employed, but they usually require long
computation times that can be impractical if the time between successive experiments
is short. Closed-form solutions can be computed for some special cases, such as linear
models of GLM [29].

5.4 The filter: online computation of the posterior dis-
tributions of parameters

To be applicable for online experiments, the filtering block (which will compute the
posterior distribution of parameters p(θ|ht)) needs to satisfy two requirements: (1)
It must be sufficiently versatile to be applied to different systems and models; (2) It
must be online (i.e. its algorithmic complexity should not increase with the number
of observations) [3]. A promising solution is particle filtering [49], and especially the
Nested Particle Filter (NPF) [186]. This algorithm is asymptotically exact and purely
recursive, and thus allows to directly estimate the parameters as recordings are ac-
quired. The NPF relies on two nested layers of particles to approximate the posterior
distributions of both the static parameters of the model and of its hidden states. A
first outer filter with Mout particles is used to compute the posterior distribution of
parameters p(θ|ht), and for each of these particles, an inner filter with Min particles
is used to estimate the corresponding hidden states zt (so that the total number of
particles in the system is Mout ×Min). After each new observation, these particles
are resampled based on their respective likelihoods (Figure 5.6).

The NPF was originally proposed for standard HMMs. Here, we extend it to the more
general class of Input-Output Hidden Markov Models (IO-HMMs, also called GLM-
HMMs in neuroscience [190]), in which state transition probability at time t depends
on an external input ψt. For instance, state transition in our model of synapse is
not stationary, but depends on the ISI ψt (see Section 5.6). The filter (Algorithm
2, Section 5.9.1) relies on the following approximation to recursively compute the
likelihood of each particle. Once the observation xt has been recorded, the likelihood
of particle θit (with i in 1 . . .Mout) depends on

p(θit|x1:t) ∝ p(xt|x1:t−1, θ
i
t, ψt)p(θ

i
t|x1:t−1) (5.4)

with

p(xt|x1:t−1, θ
i
t, ψt) =

∑
zt−1:t

p(xt|zt, θit)p(zt|zt−1, θ
i
t, ψt) p(zt−1|x1:t−1, θ

i
t) (5.5)

If the variance of the jittering kernel κ (which mutates the samples to avoid parti-
cles degeneracy and local solutions, see Section 3.2 in [186] for a detailed discussion)
is sufficiently small, and hence if θit ≈ θit−1, the approximation p(zt−1|x1:t−1, θ

i
t) ≈

p(zt−1|x1:t−1, θ
i
t−1) allows to recursively compute Eq. 5.4. In practice, the differ-

ent terms in Eq. 5.5 are computed as such: p(xt|zt, θit) corresponds to the Likeli-
hood step of Algorithm 2; p(zt|zt−1, θ

i
t, ψt) corresponds to the Propagation step; and

p(zt−1|x1:t−1, θ
i
t) corresponds to the distribution of hidden states at time t − 1 (see

Section 3.4 in [186] for a detailed explanation).

Contrary to previous methods for fast posterior computation that were only applicable
to specific models [29], our filter can be applied to a broad range of state-space
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dynamical systems, including non-stationary and input-dependent ones. Moreover,
it does not require to approximate the posterior as a Gaussian nor require a time
consuming (and possibly unstable) numerical optimization step, while being highly
parallelizable and efficient [187, 188].

5.5 The controller: computation of the optimal next stim-
ulation time

The objective of experiment design optimization is to minimize the uncertainty of the
estimates (classically quantified using the entropy) while reducing the cost of experi-
mentation (defined as the number of required trials, samples, or observations). The
optimal next stimulus ψ∗

t+1 that will maximize the mutual information (i.e. minimize
the uncertainty about θ as measured by the entropy) can be written from Eq. 5.1
and 5.3 as

ψ∗
t+1 = argmin

ψt+1∈St+1

∫
dθp(θ|ht)

∫
dxt+1p(xt+1|ht, ψt+1, θ)H

ψt+1

ht
(Θ|Xt+1 = xt+1) (5.6)

Eq. 5.6 requires to compute two (possibly high-dimensional) integrals over θ and xt+1,
for which closed-form expressions only exist for specific models. To avoid long MC
simulations, we propose to use mean-field computations and to replace integrals by
point-based approximations. Firstly, instead of computing the full expectation over
p(θ|ht), we set θ to its maximum a posteriori (MAP) value θ̂t = argmaxθ p(θ|ht). Eq.
5.6 thus becomes

ψ∗
t+1 ≈ argmin

ψt+1∈St+1

∫
dxt+1 p(xt+1|ht, ψt+1, θ̂t)H

ψt+1

ht
(Θ|Xt+1 = xt+1)

Depending on the nature of the studied system and on the time constraints of the
experiment, different estimators can also be used, such as e.g. θ̂t = 1

Mout

∑Mout
i=1 θit.

Secondly, instead of computing the full expectation over the future observation, we
set xt+1 to its expected value; Eq. 5.6 thus becomes

ψ∗
t+1 ≈ argmin

ψt+1∈St+1

H
ψt+1

ht
(Θ|Xt+1 = E(Xt+1|ht, ψt+1, θ̂t))

In the general case, E(Xt+1|ht, ψt+1, θ̂t) can be computed using Bayesian Quadrature
[191]. More specifically, for our model of a chemical synapse, an analytical formulation
for the expected value E(Xt+1|ψ1:t+1, θ̂t) can be efficiently derived using mean-field
approximations (see Section 5.9.2). For each candidate ψt+1 in a given finite set St+1,
the entropy Hψt+1

ht
(Θ|Xt+1 = E(Xt+1|ht, ψt+1, θ̂t)) can be computed using Algorithm

2. Similarly as in [190], the entropy of the posterior distribution of Θ is approximated
as 1

2 log |2πeΣt|, where Σt is the covariance matrix of the particles {θit}1≤i≤Mout .

5.6 The system: a binomial model of neurotransmitter
release

A classically used model to describe the release of neurotransmitters at chemical
synapses is called the binomial model [12, 20, 5, 134, 47, 42, 17]. Under this model, a
synapse is described as a Input-Output Hidden Markov Model (IO-HMM) with the
following parameters (units are given in square brackets, see also Figure 5.2 (b)): N
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Algorithm 1: Computation of the optimal next stimulation time for synaptic
characterization
set θ̂t = argmaxθ p(θ|ht) (MAP values from the current posterior estimation);
Input: St+1 (set of candidates ψt+1);
for ψt+1 in St+1 do

Compute E(Xt+1|ψ1:t+1, θ̂t) using Eq. 5.10;
Compute Hψt+1

ht
(Θ|Xt+1 = E(Xt+1|ψ1:t+1, θ̂t)) using Algorithm 2;

end
ψ∗
t+1 = argminψt+1∈St+1

H
ψt+1

ht
(Θ|Xt+1 = E(Xt+1|ψ1:t+1, θ̂t))

(the number of independent release sites [-]); p (their release probability [-]); σ (the
recording noise [A]); q (the quantum of current elicited by one release event [A]); τD
(the time constant of synaptic vesicle replenishment [s]). The variables nt, kt, and xt
represent, respectively, the number of available vesicles at the moment of spike t, the
number of vesicles released after spike t, and the t-th recorded EPSC. For simplicity,
we use the notation pθ(·) = p(·|θ) with θ = [N, p, q, σ, τD]. The probability of record-
ing x1:T is computed as the marginal of the joint distribution of the observations x1:T
and the hidden variables n1:T and k1:T :

pθ(x1:T , n1:T , k1:T ) = pθ(x1|k1)pθ(k1|n1)pθ(n1)
T∏
t=2

pθ(xt|kt)pθ(kt|nt)pθ(nt|nt−1, kt−1, ψt)

(5.7)
where pθ(xt|kt) = N (xt; qkt, σ

2) is the emission probability, i.e. the probability to
record xt knowing that kt vesicles released neurotransmitter; pθ(kt|nt) is the binomial
distribution and represents the probability that, given nt available vesicles, kt of

them will indeed release neurotransmitter: pθ(kt|nt) =

(
nt
kt

)
pkt(1 − p)nt−kt ; and

pθ(nt|nt−1, kt−1, ψt) represents the process of vesicle replenishment. During the time
interval ψt, each empty vesicle can refill with a probability It(ψt) = 1 − exp

(
− ψt

τD

)
such that the transition probability pθ(nt|nt−1, kt−1, ψt) is given by:

pθ(nt|nt−1, kt−1, ψt) =

(
N − nt−1 + kt−1

nt − nt−1 + kt−1

)
It(ψt)

nt−nt−1+kt−1(1− It(ψt))N−nt

(5.8)

Eqs. 5.7 to 5.8 define the observation model of the studied system (see Figure 5.2),
i.e. the probability of an observation xt given a vector of stimuli ψ1:t and a vector of
parameters θ.

5.7 Results

5.7.1 First setting: reducing the uncertainty of estimates for a given
number of observations

To illustrate our ESB-BAL framework, we apply it to the problem of estimating the
parameters of a chemical synapse (Algorithm 1). From the experimentalist point of
view, a highly relevant question is how to optimize the stimulation protocol such
that the measured EPSCs are most informative about synaptic parameters. Previous
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studies showed that some stimulation protocols are more informative than others, but
ignored the temporal correlations of the number of readily-releasable vesicles [159] or
did not compute which protocol would be most informative [20].

Results for a simulated experiment with ground-truth parameters N∗ = 7, p∗ = 0.6,
q∗ = 1 pA, σ∗ = 0.2 pA, and τ∗D = 0.25s (i.e. the same set of parameters θ∗ used in
[5]) are displayed in Figure 5.3 (a). Here, we compare ESB-BAL to 3 deterministic
protocols: in the Constant protocol, the synapse is probed at a constant frequency,
i.e. ∆t = cst; in the Uniform protocol, ISIs are uniformly drawn from a set S of can-
didates ψt consisting of equidistantly separated values ranging from ∆min

t = 0.005s
(i.e. one order of magnitude shorter than the shortest ISI used in [20]) to ∆max

t ,
i.e. ψt ∼ U([0.005,∆max

t ]); finally, in the Exponential protocol, ISIs are drawn from
an exponential distribution with mean τ . The efficiency of these deterministic pro-
tocols will depend on their respective parametrizations. To conservatively assess
ESB-BAL, we optimize the values of ∆t, ∆max

t , and τ so that the Constant, Uniform,
and Exponential protocols have the best possible performance for the used ground-
truth parameters θ∗. Figure 5.7 shows the average final entropy decrease (i.e. the
information gain) after 200 observations using the Constant (top), Uniform (mid-
dle), or Exponential (bottom) protocol, for different values of their hyperparameters.
These deterministic protocols (with their optimal respective parametrizations) are
then compared to ESB-BAL.

For the different protocols, the average (over 100 independent repetitions) joint dif-
ferential entropy of the posterior distribution of parameters is plotted as a function of
the number of observations. ESB-BAL allows to significantly reduce the uncertainty
(as measured by the entropy) of the parameter estimates for a given number of ob-
servations. It should be noted that it is compared to deterministic protocols whose
respective hyperparameters have been optimized offline, knowing the value of θ∗. In
real physiology experiments, classical protocols are non-adaptative and are defined
using (possibly sub-optimal) default parameters. In contrast, in active learning the
protocol is optimized on the fly as data are recorded, and its performance will not
depend on a prior parametrization. ESB-BAL thus outperforms the best possible
Constant, Uniform, and Exponential protocols.

We also verify that ESB-BAL does not lead to biased estimates of θ, as its aver-
age Root-Mean-Square Error (RMSE) outperforms that of other protocols (Figure
5.3 (b)); and that it is sufficiently fast for online applications, as computation time
exceeds the ISI in only a small proportion of cases (Figure 5.3 (c)). Similar results
can be observed for different sets of ground-truth parameters θ∗ (Figure 5.8) or when
only optimizing for the entropy of a specific parameter (Figure 5.9). Finally, in Fig-
ure 5.10, ESB-BAL (black dashed line) is compared to exact active learning (gray
dashed line), in which Eq. 5.6 is computed exactly using MC samples. Samples to
compute the expectation over θ are drawn from p(θ|ht), whereas samples used to
compute the expectation over xt+1 are drawn from a normal distribution with mean
E(Xt+1) (Eq. 5.10) and variance Var(Xt+1) (Eq. 5.11). This shows that the approx-
imations used in Algorithm 1 to make active learning online have only a small effect
on performance.
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(a)

(b)

(c)

Figure 5.3: First setting: reducing the uncertainty of estimates for a given
number of observations. (a) Entropy of the posterior distribution of θ vs. number
of observations for different stimulation protocols. Synthetic data were generated
from a model of synapse with ground truth parameters N∗ = 7, p∗ = 0.6, q∗ = 1 A,
σ∗ = 0.2 A, and τ∗D = 0.25s [5]. Traces show average over 100 independent repetitions.
Shaded area: standard error of the mean. (b) RMSE for the same simulations. (c)
Histogram of the differences between the ISI and the corresponding computation time
for the ESB-BAL simulations.

5.7.2 Second setting: reducing the uncertainty of estimates for a
given experiment time

Active learning allows, for a given number of observations, to improve the reliability
of the estimated parameters. However, in its classical implementation, only the next
stimulus input is optimized, disregarding all future observations in the experiment.
This myopic approach is thus sub-optimal. Moreover, neurophysiology experiments
are not only constrained by the number of observations, but also by the total time
of the experiment. Since cell viability and recording stability may become limiting
during an experiment, the total time of an experimental protocol

∑T
t=1 ψt also needs

to be accounted for. Here, to account for the total time of the experiment, and to
globally optimize the information gain per unit of time, we propose to modify the
classical formulation of active learning (Eq. 5.6) by adding a penalty term for longer
ISIs:

ψ
∗(η)
t+1 = argmin

ψt+1

{
ηψt+1 +

∫
dθp(θ|ht)

∫
dxt+1p(xt+1|ψ1:t+1, θ)H

ψt+1

ht
(Θ|xt+1)

}
(5.9)

The effect of the penalty weight η on the entropy of the posterior distribution of τD
is displayed in Figure 5.4 (a). As expected, adding a penalty term to Eq. 5.6 reduces
the precision of the inferred parameter. The loss of information gain increases with
the penalty weight η. However, increasing η also increases the speed of information
gain, as seen in Figure 5.4 (b). Depending on the available time for the experiment, it
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(a) (b)

Figure 5.4: Second setting: reducing the uncertainty of estimates for a given
experiment time (effect of penalizing long ISIs on parameter estimates uncertainty
and rate of information gain). (a) Entropy of the posterior distribution of τD vs.
number of observations for different values of η in Eq. 5.9. Same settings as in Figure
5.8. (b) Same results, but displayed as a function of time. Inset: slope of the entropy
vs. time curves (i.e. information rate) vs. η after 10 seconds.

is thus possible to tune η so as to find a trade-off between long-term precision (Figure
5.4 (a)) and information rate (Figure 5.4 (b)).

5.7.3 Third setting: batch optimization and application to neural
recordings

To reduce computational complexity, classical implementations of sequential experi-
ment design usually only optimize for the immediate next observation. However, it
might be critical for some systems to optimize not only the next stimulus, but rather
the next n stimuli of the experiment altogether (see Eq. 5.2) [183, 192]. Synaptic
characterization is a telling example: indeed, STD can only be observed for specif-
ically organized batches of stimulation times. When probing the presynaptic cell,
neuroscientists usually use repetitions of a spike train (Figure 5.5 (b)) consisting of a
tetanic stimulation phase (sustained high-frequency stimulation used to deplete the
presynaptic vesicles, between 0.1s and 0.3s in Figure 5.5 (b)) followed by recovery
spikes at increasing ISIs to probe the STD time constant [193]. These spike trains are
usually not optimized, and are held constant throughout an entire experiment.

Here, we show that ESB-BAL can be used to extend active learning to non-myopic
designs, and to optimize the n next input stimuli. Algorithm 3 (Section 5.9.4), which
is a generalization of Algorithm 1, is used to select the next batch of n stimuli ψ∗

t+1:t+n

in a set of candidate batches St+1:t+n. Every n observations, Hψt+1:t+n

ht
(Θ|Xt+1:t+n) is

computed using n iterations of the filter (i.e. Algorithm 2), so as to pick the optimal
next batch ψ∗

t+1:t+n that minimizes this quantity:

ψ∗
t+1:t+n = argmin

ψt+1:t+n∈St+1:t+n

H
ψt+1:t+n

ht
(Θ|Xt+1:t+n)

where the next stimulation times in St+1:t+n are parametrized with a low-dimensional
parametrization so as to span different durations and frequencies for the tetanic phase,
and different ISIs between the recovery spikes (see Figure 5.11).
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(a)

(b)

(c)

Figure 5.5: Third setting: batch optimization and application to neural
recordings. (a) Marginal posterior distributions obtained after 200 stimulations of
the same synapse using either the deterministic protocol (blue) or ESB-BAL (black).
Posteriors were computed using the Metropolis-Hastings algorithm (50.000 samples).
The bar plot indicates the mean differential entropy after 200 observations for 5
recording sessions using the deterministic protocol and 3 recording sessions using ESB-
BAL on different synapses. Error bars show the standard error of the mean. Data
from cerebellar mossy fiber to granule cell synapses. (b) Example of a postsynaptic
current trace recorded using a tetanic stimulation phase followed by 6 recovery spikes.
(c) Simulated experiment with ground-truth parameters N∗ = 55, p∗ = 0.174, q∗ =
4.86 pA, σ∗ = 1.67 pA, and τ∗D = 0.0828s (i.e. the MAP values from recordings shown
in (a)).

We validate our method by applying it to EPSC recordings from acute mouse cere-
bellar slices. Figure 5.5 (a) shows the marginal posterior distributions for parameters
of a cerebellar mossy fiber to granule cell synapse, obtained using either ESB-BAL
or a deterministic protocol (consisting of repetitions of the same train of 100 stimuli
at 100Hz followed by 6 recovery spikes). In Figure 5.5 (c), using simulated experi-
ments, we also compare ESB-BAL to an Exponential stimulation protocol (in which
ISIs are drawn from an exponential distribution, whose time constant is optimized
as in Section 5.7.1), which has been proposed to provide better estimates of synaptic
parameters as it spans a broader frequency space [159]. Our results show that batch
optimization via ESB-BAL clearly outperforms deterministic stimulation.

5.8 Discussion

When designing an experiment in physiology, or when training a model on data in
machine learning, it is common to choose a priori a fixed set of inputs to the studied
system. The use of such non-adaptive, non-optimized protocols often leads to a large
variance of the estimated parameters, even when using a large number of trials or data
points. Bayesian active learning is an efficient method for optimizing these inputs,
but exact solutions are often intractable and not applicable to online experiments.
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Here, we introduce ESB-BAL, a novel framework combining particle filtering, parallel
computing, and mean-field theory. ESB-BAL is general and sufficiently efficient to
be applied to a wide range of settings. We use it to infer the parameters of a model of
synapse: for this specific example, computation time is a critical constraint, since the
typical ISI is shorter than 1s, and because several future inputs need to be optimized
together. Using synthetic data and neural recordings, we show that our method
has the potential to significantly improve the precision and speed of model-based
inferences.

We expect active learning to be particularly beneficial to neurophysiology experiments
involving live cells or subjects. By reducing the number of samples required to obtain
a certain result, or by improving the efficiency of information gain, we can reduce
the cost of the experiment and the need for animal subjects. A possible negative
impact would be that improving the relative efficiency of neurophysiology experiments
may lead to a larger field of applications and therefore a larger demand for animal
experiments, analogously to Jevons Paradox [194].

Our approach has some room for improvements. An evident drawback of using parti-
cle filtering is that it requires a very large number of particles to provide low variance
estimates, as the approximation error only decreases with the square root of the num-
ber of particles. Moreover, future experimental work should focus on implementing
ESB-BAL for different and more complicated models of a chemical synapse, includ-
ing for instance short-term facilitation [20, 5, 134, 159] or vesicle content variability
[168, 1]. Finally, future theoretical work should focus on obtaining results on the
convergence of the estimators when using active learning. When observations are
independent and identically distributed (i.i.d.), active learning will give an unbiased
estimate of the parameters, whose variance will decrease with the number of observa-
tions [195]. Such theoretical results lack for systems with correlated outputs (such as
the EPSCs in the studied synapse model), possibly leading to information saturation
[196] or biased estimates.

Overall, we expect our proposed solution to pave the way towards better estimates
of stochastic models in neuroscience, more efficient training in machine learning,
and more systematic and automated experimental designs. Especially, applying it
to synaptic characterization would allow to better understand the role of synaptic
transmission in learning and memory [197], to study the role of synaptic stochas-
ticity [31, 138], and lead to an improved understanding of spike timing-dependent
plasticity [198], synaptic homeostasis [32, 33], plasticity [34, 35, 36], and connectivity
[199].
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5.9 Supplementary material

5.9.1 Particle Filtering for synaptic characterization

Algorithm 2: Particle filtering [186] for computing one step update of the pos-
terior distribution of parameters
Input: {θit−1}1≤i≤Mout , {n

i,j
t−1, k

i,j
t−1}1≤j≤Min , xt, ψt ;

for i in 1 . . .Mout do
Jittering: update the outer particles θit = κ(θit−1);
for j in 1 . . .Min do

Propagation: Draw ni,jt ∼ p(n
i,j
t |n

i,j
t−1, k

i,j
t−1, θ

i
t, ψt) and

ki,jt ∼ p(k
i,j
t |n

i,j
t , θ

i
t);

Likelihood: compute w̃i,jt = p(xt|ni,jt , k
i,j
t , θ

i
t) ;

end
Normalization: w̃i,jt ← w̃i,jt /

∑
j w̃

i,j
t ;

Inner particles resampling: resample {ni,jt , k
i,j
t }1≤j≤Min based on

{w̃i,jt }1≤j≤Min ;
end
Compute wit = 1

Min

∑
j
w̃i,jt ;

Normalization: wit ← wit/
∑

iw
i
t;

Outer particles resampling: resample {θit}1≤i≤Mout and {ni,jt , k
i,j
t }1≤j≤Min

based on {wit}1≤i≤Mout ;
Output: {θit}1≤i≤Mout , {n

i,j
t , k

i,j
t }1≤j≤Min

Computing the posterior distribution of θ also implies to specify a prior p(θ) from
which the initial particles {θi0}1≤i≤Mout will be drawn. For simplicity, we consider here
uniform priors (as in [5, 134]), although the algorithm readily extends to different
choices of prior.

Figure 5.6: Examples of posteriors obtained using the filter (Algorithm 2). Upper
left panel: train of synthetic EPSCs generated from the model described in Section
5.6. Other panels: posterior distributions of the parameters after 230 stimulations.
Ground-truth values used to generate the EPSCs are displayed as red vertical lines.
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5.9.2 Mean-field approximation of vesicle dynamics

Our synapse model, as defined by Eq. 5.7 to 5.8, is a Hidden Markov Model with ob-
servations xt and hidden states nt and kt. The predictive distribution p(xt+1|x1:t, ψ1:t+1, θ)
used in Eq. 5.1 can be computed using the Baum-Welch algorithm: however, the algo-
rithmic complexity of this forward-backward procedure, which scales with N4, makes
it impractical for closed-loop applications. Here, we suggest that computation can
be massively simplified by using a mean-field approximation of vesicle dynamics: the
analytical mean and variance of hidden and observed variables can be computed using
recursive formulæ.

Let rt ∈ [0, 1] denote the average fraction of release-competent vesicles at the moment
of spike t. Its values, given θ = [N, p, q, σ, τD] and ψ1:t, can be iteratively computed
(see [20], Eq. (7)) from the equations of the Tsodyks-Markram model [17]: rt =

1− (1− (1− p)rt−1) exp
(
− ψt

τD

)
with r1 = 1. It follows that the expected value of the

EPSC after spike t is
E(Xt|ψ1:t, θ) = rtNpq (5.10)

Similarly, the variance of the number of available vesicles Var(nt) can be computed us-
ing the law of total variance: Var(nt) = E(Var(nt|nt−1, kt−1))+Var(E(nt|nt−1, kt−1)).
Since nt = nt−1 − kt−1 + vt with vt ∼ Bin(N − nt−1 + kt−1, It), it follows that
Var(nt) = It(1− It)N(1− rt−1 + prt−1) + (1− It)2Var(nt−1 − kt−1) .

Finally, by noting that (nt − kt)|nt ∼ Bin(nt, 1− p) and using again the law of total
variance to compute Var(nt−1 − kt−1) = E(Var(nt−1 − kt−1|nt−1)) + Var(E(nt−1 −
kt−1|nt−1)), we obtain

Var(Xt|ψ1:t, θ) = σ2 + q2(Nrtp(1− p) +Var(nt)p2) (5.11)
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5.9.3 First setting: reducing the uncertainty of estimates for a given
number of observations

Figure 5.7: Average final entropy decrease (i.e. information gain) after 200 observa-
tions using the Constant (top), Uniform (middle), or Exponential (bottom) protocol,
for different values of their hyperparameters. Ground truth parameters used are
N∗ = 7, p∗ = 0.6, q∗ = 1 A, σ∗ = 0.2 A, and τ∗D = 0.25s [5]. Vertical red lines
indicate the ground truth value τ∗D = 0.25s used for simulations. Optimal values for
∆t, ∆max

t , and τ are used in Figure 5.3.
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(a)

(b)

(c)

Figure 5.8: Same setting as in Figure 5.3 but for ground truth parameters N∗ = 10,
p∗ = 0.85, q∗ = 1 A, σ∗ = 0.2 A, and τ∗D = 0.2s.

(a)

(b)

(c)

Figure 5.9: Same setting as in Figure 5.3 but when optimizing solely for the marginal
posterior distribution of τD.
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Figure 5.10: Same setting as in Figure 5.3, but with exact active learning (gray dashed
line), in which Eq. 5.6 is computed exactly using MC samples.
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5.9.4 Third setting: batch optimization and application to neural
recordings

Algorithm 3: Computation of the optimal next batch of ISIs
set θ̂t = argmaxθ p(θ|ht) (MAP values from the current posterior estimation);
Input: St+1:t+n (set of candidates ψt+1:t+n);
for ψt+1:t+n in St+1:t+n do

Compute Hψt+1:t+n

ht
(Θ|Xt+1:t+n) using Algorithm 2;

end
ψ∗
t+1:t+n = argminψt+1:t+n∈St+1:t+n

H
ψt+1:t+n

ht
(Θ|Xt+1:t+n)

Figure 5.11: Schematic of how elements in St+1:t+n in Algorithm 3 are defined. As-
suming that each element in St+1:t+n contains n ISIs, they are chosen so as to span
3 parameters: the number n1 < n of spikes in the tetanic stimulation phase, the
frequency f of spikes in the tetanic stimulation phase, and the duration of the final
recovery ISI ∆max

t . The remaining n1 − 2 spikes are then distributed geometrically
between the end of the tetanic phase and the enultimate spike.
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Chapter 6

Optimal experiment design as
identifiability domain
enhancement

Figure 6.1: On thoughtful model selection 1.

6.1 Introduction

In the previous Chapter (Chapter 5), we introduced a method called Efficient Sampling-
Based Bayesian Active Learning (ESB-BAL), which can be used for optimizing se-
quential experiments. Using particle filtering, ESB-BAL selects the next experimental
design to maximize the statistical mutual information between the output of the ex-
periment and the constants of the studied system. To validate it, we applied ESB-BAL

1https://xkcd.com/2311/, use with authorization.
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to the problem of estimating the constants of a chemical synapse from its postsynaptic
currents evoked by presynaptic stimulations. After each new observation, the optimal
next stimulation time can be computed using ESB-BAL. Using synthetic data and
synaptic whole-cell patch-clamp recordings in cerebellar brain slices, we show that
our method is efficient enough to be used in real-time biological experiments and can
significantly reduce the uncertainty of inferred parameters.

However, ESB-BAL aims at answering a specific question: given a certain model
M, how to select the experimental design Ψ that will minimize the entropy of the
posterior distribution of the parameters p(θ|D,M)? The main assumption is that
M is known: ESB-BAL thus solves Optimal experiment design for parameters
inference, but not Optimal experiment design for model selection (see Section
1.8). Indeed, in practice a model selection step is often required prior to parameter
inference to discriminate among a set of candidate models and to find which M to
fit on the data. OED can also be used for optimal model selection: how to select the
experimental design Ψ that will minimize the entropy of the posterior distribution
over the models p(M|D)?

In the following sections, we will describe classical methods for performing OED for
model selection, and propose an alternative approach, which aim is to maximize the
identifiability (in the sense of Chapter 4) of an alternative model M1 compared to
a null model M0. Classical methods for optimal model selection, which are agnos-
tic to the complexity of the competing models, suffer from several pitfalls, including
large algorithmic complexity, difficulty to design the set of competing models, and
sensitivity to local optima. In contrast, our proposed approach, which we call Identi-
fiability Domain Enhancement (IDE), does not aim at minimizing the entropy of the
distribution over the models. Rather, its aim is to maximize the informativeness of
an experiment and the identifiability of a studied model: this allows experimentalists
to draw more robust conclusions from their experiments, by increasing the discrim-
inability between two competing candidate models and improving the accuracy of
their estimated parameters.

6.2 Classical OED for model selection
As mentioned previously, two different setups for Optimal Experiment Design need
to be distinguished. Firstly, OED for parameter inference, in which the cost
function (that needs to be minimized by picking the optimal design Ψ∗

param) is usually
defined as the entropy of the posterior distribution of the parameters for a given model
M:

Ψ∗
param = argmin

Ψ
H(θ|D,M,Ψ) (6.1)

Secondly, OED can also be used for model selection. In this case, the cost
function is classically defined as the entropy of the distribution over the models [200,
201, 202]:

Ψ∗
model = argmin

Ψ
H(M|D,Ψ) (6.2)

Other formulations of OED for model selection have also been proposed. In [82], the
authors propose to use the Jensen-Shannon divergence between the densities of the
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M competing models to optimize their discriminability:

Ψ∗
model = argmax

Ψ

M∑
i=1

p(Mi)DKL

(
p(D|Mi,Ψ)||

M∑
i=1

p(Mi)p(D|Mi,Ψ)

)
(6.3)

In [83], the authors used a one-sided form of the Kullback-Leibler divergence, hence
computingM designs (Ψ∗

i )1≤i≤M optimizing the discriminability of modelMi against
the M − 1 competing models:

Ψ∗
i = argmax

Ψ

∫
dDp(D|Mi,Ψ) log

(
(1− p(Mi))p(D|Mi,Ψ)∑
j 6=i p(Mj)p(D|Mj ,Ψ)

)
(6.4)

Other utility functions, such as the Zero–One utility, Ds-optimality [200], or estimat-
ing the expected loss via a supervised classification procedure [201] have also been
proposed.

Interestingly, no formal link between OED for model selection and OED for parameter
inference exists. Since the cost functions in Eq. 6.1 and 6.2 are different, Ψ∗

param and
Ψ∗

model are not necessarily equal, i.e. a design that will be optimal for model selection
will not be optimal for parameter inference. One can remark that the joint entropy
of the model random variable M and of the parameters random variable θ can be
expressed as

H(M, θ|D,Ψ) = H(M|D,Ψ) +H(θ|M,D,Ψ)

where the first term on the right-hand side corresponds to the entropy to be minimized
in model selection, and the second term corresponds to the entropy to be minimized
in parameter inference. It is thus possible to optimize either this total entropy, or
a weighted sum of the terms on the right-hand side [203, 204, 202]. However, both
approaches are often considered to be separated problems [82, 83, 201, 200].

These classical formulations of OED for model selection have several important draw-
backs:

• Computing the cost function for selection of the optimal design Ψ∗
model can be

computationally challenging and lead to important run times, as illustrated in
[200];

• In OED for parameter inference, specifying a range or a prior distribution for
the candidate parameters θ is usually fairly simple. However, defining a discrete
family of candidate models is not always straightforward2, as it is not always
possible to define a similarity or distance metric between different models or to
define a space of all possible models;

• If the state of possible experimental parameters is ill-defined, OED for model
selection can lead to an experimental design which successfully minimizes the
cost function (e.g. the entropy of p(M|D,Ψ)) but selects the wrong model (as
illustrated in Figure 6.2).

2See for instance https://stats.stackexchange.com/a/494919/271601
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We here consider a different approach: instead of minimizing the entropy (or a related
metric) of the posterior distribution over a set of candidate models, our aim is to
maximize the identifiability (in the sense of Chapter 4) of an alternative modelM1

compared to a null hypothesisM0.

Figure 6.2: Local optimum in classical OED for model selection. Data are
generated from a ground truth modelM1 where the (scalar) input x and output y are
linked as y = αx2+βx+ ε, with ε ∼ N (0, σ2). Two competing models are compared:
a constant modelM0 according to which y = γ (one free parameter) and the ground
truth modelM1 (two free parameters). Surrogate data are generated fromM1 using
a vector of values for x containing 50 equally separated values between −a and a. The
goodness of fit ofM0 andM1 for these data is compared for different values of a. The
left panel shows the average entropy of the distribution p(M|D) for 5000 independent
realizations of x with σ = 0.1. For a ≈ 0, both models have approximately the same
likelihood (since they have similar outputs for x ≈ 0), but M1 is penalized for its
complexity (upper right panel). As a increases, so does p(M1|D), and the ground
truth model is correctly selected (lower right panel). If the parameter space is poorly
chosen (e.g. if a is constrained within [0; 0.25]), minimizing the entropy of p(M|D)
would yield a locally optimal experimental design (a ≈ 0) which would favor the
wrong model.

6.3 Identifiability Domain Enhancement
Statistical hypothesis testing, i.e. comparing the null hypothesis H0 and the alterna-
tive hypothesis H1 based on observations D, can be reformulated as a model selection
problem, i.e. computing whether the null model M0 or the alternative model M1

is a better fit to the data D. M0 is often assumed to be a submodel of M1. This
approach allows to draw conclusions on the nature of the studied synapse, e.g.:

• If a binomial modelM1 provides a better fit to the data than a Gaussian model
M0, this indicates that synaptic transmission is likely to be quantised;

• If a model with STPM1 provides a better fit to the data than a static model
M0, this indicates that synaptic transmission is likely to be dynamic.

In this context, Optimal Experiment Design becomes critical to avoid identifiabil-
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ity issues. Indeed, some features of the studied synapse (e.g. the above-mentioned
quantal release or short-term plasticity) may not be experimentally observable, de-
pending on the experimental protocol being used. Large recording noise, or poorly
chosen stimulation protocols, could make interesting features of the studied system
non-observable and may not allow to draw conclusions on the nature of the synapse.
When a simpler model provides a better fit (in the sense of model selection) than a
more complicated alternative release model, it is impossible to conclude whether it is
due to the intrinsic nature of the synapse or to non-observability.

An intuitive solution to prevent this pitfall is to design the experimental protocol Ψ
in order to maximize the identifiability (in the sense of Chapter 4) of the alternative
hypothesisM1 compared to submodelM0. In Section 4.3.6, we proposed a definition
for the practical identifiability of a statistical model: for a given parametrization θ
and a given set of stimulations Ψ (i.e. the experimental design), the modelM1 is said
to be practically identifiable with respect to submodelM0 if the following condition
is met:

〈log p(D|M1,Ψ)〉p(D|θ,M1,Ψ) ≥ 〈log p(D|M0,Ψ)〉p(D|θ,M1,Ψ) (6.5)

The identifiability domain of M1 corresponds to all the settings (parameters and
protocols) for which, on average, data generated from the ground truth M1 will
be better explained by M1 than by its submodel. Inequality 6.5 depends on θ,
i.e. represents the identifiability ofM1 compared toM0 for a specific value θ of the
random variable Θ. For instance, Figure 4.5 (panels A and B) shows the identifiability
domain of a binomial model compared to a unimodal model for different values of p
and σ. Similarly, Figure 4.6 shows the identifiability domain of a model with STD
compared to a static model for different values of p and τD.

By averaging 6.5 over p(θ|M1) (i.e. the prior distribution of θ)3 we define a global
identifiability level f(Ψ,M1,M0) forM1 compared toM0:

f(Ψ,M1,M0) =

∫
dDp(D|M1,Ψ) log p(D|M1,Ψ)−∫

dDp(D|M1,Ψ) log p(D|M0,Ψ) (6.6)

which corresponds to the Kullback-Leibler divergence between the competing model
evidences p(D|M1,Ψ) and p(D|M0,Ψ), and is thus always positive:

f(Ψ,M1,M0) = DKL(p(D|M1,Ψ)||p(D|M0,Ψ)) ≥ 0 (6.7)

Intuitively, picking the experimental design Ψ which will maximize the value of
f(Ψ,M1,M0) can be thought of as maximizing the identifiability domain (as de-
fined in Chapter 4) ofM1, and hence reducing identifiability issues when performing
model selection. In the following sections, we apply this Identifiability Domain En-
hancement approach to different synaptic models, and empirically assess its effect on
parameter inference.

3Note that the prior distribution over the parameters does not depend on the experimental design
Ψ.
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6.4 Application to quantal release

Our first example of application is to compare the identifiability of the classical bino-
mial model with parameters [N, p, q, σ] (denoted here asM1) and of a simple Gaussian
distribution with parameters [µ, σ] (denoted here as M0), as in Figure 4.5. In this
example, none of the studied models account for short-term plasticity: inter-spike
intervals are thus irrelevant for these models, and the only experimental variable at
hand in the protocol Ψ is the number of observations T .

It can be seen from the identifiability domain plots that, for a given number of
observations T ,M1 is only identifiable if the recording noise is sufficiently low with
respect to the quantal amplitude q for subpeaks in the distributions of EPSCs to
be observable. Similarly, for a given recording noise, the identifiability of M1 will
increase with T . This can be understood intuitively: as the number of independent
observations increases, so will the possibility to accurately infer the ground truth
model and its parameters. The best experimental design Ψ∗ that will maximize
the identifiability level of M1 (Eq. 6.7) is thus the one in which T is as high as
possible.

Besides, increasing T is also optimal for parameter inference, i.e. for minimizing
the entropy of the posterior distribution of the parameters. As explained in [195], if
M is a model which outputs are i.i.d., the posterior distribution p(θ|D,M) will be
asymptotically normal, with a mean converging to the ground truth value of θ (i.e.
the solution will be unbiased) and a variance decreasing as 1

T as more data points are
acquired.

Although intuitive, this result can also be derived from a Bayesian Active Learning
argument. The classical chain rule for entropy yields

H(θ,D|Ψ) = H(D|Ψ) +H(θ|D,Ψ) (6.8)

If observations in D = {ei}1≤i≤T are i.i.d., that is to say if all ei are independent
realizations of the same random variable e, then

H(D|Ψ) = T ·H(e) (6.9)

i.e. the entropy H(D|Ψ) increases linearly with the number of observations with a
factor H(e). Similarly,

H(D, θ|Ψ) = H(θ) + T ·H(e|θ) (6.10)

Since H(X|Y ) ≤ H(X) for any random variables X and Y , Equations 6.9 and 6.10
yield

Eθ(H(e|θ)) ≤ H(e) (6.11)

Combining Equations 6.8 and 6.11 shows that increasing T minimizes the last term
in the right-hand side of Eq. 6.8, i.e. minimizes the expected entropy of the posterior
distribution of θ. In conclusion, for model where observations are i.i.d. and where
the number of observations T is the only experimental parameter in Ψ, increasing T
is optimal both for the identifiability level ofM1 and for parameter inference.
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6.5 Application to Short-Term Depression
Our second example of application is to compare the identifiability of the binomial
model with short-term depression (i.e. with parameters [N, p, q, σ, τD]), denoted here
asM2, and of the binomial model without STDM1 (i.e. with parameters [N, p, q, σ]).
An interesting parameter that can be tuned by the experimentalist is the calcium
concentration [Ca2+] in the experimental solution, which will affect the synapse’s
release probability p. Indeed, a higher calcium concentration will increase the vesicles’
probability to fuse with the plasma membrane, while a low [Ca2+] increases the
probability of synaptic failures [9, 205]. In this section, we will discuss how [Ca2+]
can be tuned for optimizing the experimental design.

Figure 4.6 shows the identifiability domain ofM2 as a function of p and τD for a given
stimulation protocol. One can remark that STD is more easily observed for higher
values of p. This can be intuitively understood: depression can only be observed when
the release probability is sufficiently high to induce vesicle pool depletion. For p ≈ 1,
stochasticity at the level of vesicles release disappears (since ∀i ki = ni), thus allowing
to more accurately estimate the binomial parameters and the refilling dynamics time
constant.

Besides, increasing the external calcium concentration, and hence the release prob-
ability p, is also beneficial for parameter inference, i.e. for minimizing the entropy
of p(θ|D,M2). Figure 6.3 shows the average posterior entropy of the parameters
(averaged over 100 independent repetitions and computed using the NPF described
in Chapter 5) for different values of the ground-truth parameter p. As expected,
increased [Ca2+] leads to more accurate parameter inference for M2. The reduced
posterior entropy for higher [Ca2+] can also be visually assessed when using the
Metropolis-Hastings algorithm to compute the marginal posterior distributions of N ,
p, q, σ, and τD for different ground-truth values of p (Figure 6.4).

Tuning the value of the experimental parameter [Ca2+] thus allows to optimize the
identifiability ofM2 and the inference of its parameters.

6.6 Application to variable quantal amplitudes
An important assumption of the classical binomial model M1 is that the quantal
amplitudes q are homogeneous and identical for each release site. The probability
distribution of EPSCs is thus defined by Eq. 1.1: it is a mixture of Gaussian (Figure
1.9, A) where each component:

• has its mean located to a multiple kiq with ki in {0, ..., N};

• has a width corresponding to the recording noise σ;

• has its height determined by the latent variable probability p(ki) = Bin(ki;N, p).

However, mEPSC amplitudes have been observed not to be exactly similar and stereo-
typical, but rather to follow a unimodal distribution [1]. The effect of one release event
q can thus be thought of as a random variable instead of a constant. Following [168]
and [1], we can assume that q follows a gamma distribution with shape parameter
α and scale parameter4 β, i.e. q ∼ Γ(α, β). In fine, we can define an alternative
binomial modelM′

1 where each EPSC ei is defined as ei = γi + εi, with:
4An alternative parametrization of the gamma distribution is also possible, with a shape parameter

α and an inverse scale (or rate) parameter 1/β.
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Figure 6.3: Increased [Ca2+] leads to more accurate parameter inference for
M2 (NPF). The entropy of the posterior distribution p(θ|D,M2) is lower for higher
values of [Ca2+] (i.e. higher values of p). Surrogate data were generated from M2

with parameters N = 5, q = 1, σ = 0.2, τD = 0.25, and a stimulation protocol
consisting in repetitions of the same spike train (4 spikes with an inter-spike interval
ISI = 0.05s followed by a recovery spike 0.5s later), i.e. the same setting as in Figure
4.6 (B). Solid lines show, for different values of the ground-truth parameter p, the
entropy of p(θ|D,M2) averaged over 100 independent repetitions and computed using
the NPF (see Chapter 5).

ki ∼ Bin(N, p) (6.12)

γi|ki ∼ Γ(kiα, β) (6.13)

εi ∼ N (0, σ2) (6.14)

(i.e. ei|γi ∼ N (γi, σ
2)). The probability of a given observation ei can thus be com-

puted as

p(ei) =
∑
ki

∫
dγip(ei|γi)p(γi|ki)p(ki) (6.15)

In [168], the authors state that for ki ≥ 1 the variability due to the recording noise
will be negligible compared to the variability due to the quantal components, and can
thus be ignored. They simplify the computation of Eq. 6.15 into

p(ei) = Bin(0;N, p)N (ei; 0, σ
2) +

N∑
ki=1

Bin(ki;N, p)Γ(ei; kiα, β) (6.16)

This approximation is used in Figure 6.5, hence explaining the small discrepancy
between the theoretical distribution (orange plot) and the observed empirical distri-
bution (histogram of samples).
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(a)

(b)

(c)

Figure 6.4: Increased [Ca2+] leads to more accurate parameter inference
for M2 (MH). Three independent sets of 100 EPSCs were generated fromM2 for
different ground-truth values of p (p = 0.2 in (a), p = 0.5 in (b), p = 0.85 in (c)). The
marginal posterior distributions of their parameters was then computed using the
Metropolis-Hastings algorithm. A higher variability (especially for the distributions
of N and τD) can be visually verified for lower values of p. Surrogate data were
generated from M2 with parameters N = 5, q = 1, σ = 0.2, τD = 0.25, and a
stimulation protocol consisting in repetitions of the same spike train (4 spikes with
an inter-spike interval ISI = 0.05s followed by a recovery spike 0.5s later), i.e. the
same setting as in Figure 4.6 (B).
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(a) (b)

Figure 6.5: Theoretical and empirical distributions of EPSCs under M′
1. (a)

Blue: histogram of 10000 surrogate EPSCs generated from M′
1 (Equations 6.12 to

6.14) with ground-truth parameters N = 5, p = 0.35, α = 11.11, β = 0.11, and
σ = 25 (i.e. same values as in [168]). Orange: theoretical probability distribution
of EPSCs (Eq. 6.16). The distribution is a mixture of Gamma components, which
width increases linearly with the number of released vesicles ki. (b) Same setting,
but for p = 0.7. Components have fused into a unimodal distribution, impeding the
possibility to identify quantal transmission.

Under M′
1, the distribution of EPSCs is a mixture of Gamma components, which

width increases linearly with ki (Figure 6.5 (A)). If p is large, these components
will fuse into a unimodal distribution, impeding the possibility to identify quantal
transmission and to compute the parameters (Figure 6.5 (B)).

If quantal amplitudes are indeed variable (which is corroborated by experimental
observations [168, 1]), then the quantal release of neurotransmitters can only be ob-
served for low values of the release probability p. As a matter of fact, the seminal
paper by J. Del Castillo and B. Katz [9], in which the quantal nature of neurotrans-
mitters release was first suggested from the multimodal distribution of postsynaptic
potentials, used a lowered external calcium concentration. Similarly, in [205], the
multimodal distribution of postsynaptic currents is only observed at low [Ca2+] (see
Figures 1-C and 5 in [205]). This intuition can be formalized by studying the identifi-
ability domain ofM′

1 compared toM0 and plotted as a function of p and N (Figure
6.6): panel B shows how the identifiability ofM′

1 decreases at larger p.

6.7 Conclusion

To conclude, we have proposed here a different approach to design an experiment
when performing model selection. Contrary to classical methods for OED for model
selection, which aim is to minimize the entropy of the distribution p(M|D,Ψ), our
method, which is called Identifiability Domain Enhancement, uses the notion of iden-
tifiability domain presented in Chapter 4. In this approach, the experimental design
Ψ is chosen so as to maximize a global identifiability level for the tested model which
is compared to a null model.

Generally, the goal of an experiment is to propose a new, alternative, hypothesis H1,
and to compare it to the previous hypothesis H0. This process can be formulated
as a model selection problem: the goal of an experiment is to assess whether the
proposed modelM1 provides a better fit to observations D than the null modelM0.
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(a) (b)

Figure 6.6: Identifiability domains of M1 and M′
1. (a) Identifiability domain

of M1 (compared to M0) plotted as a function of p and N . Results obtained for
T = 500, q = 1, σ = 0.2. Same computation method as in Section 4.4.1. (b)
Identifiability domain of M′

1 (compared to M0) plotted as a function of p and N .
Results obtained for T = 500, α = 11.11, β = 0.11, σ = 25 (i.e. same values as in
[168]).

But doing so requires observations to be sufficiently informative about M1. Our
proposed approach to experimental design aims at making sure the features of M1

are not ”hidden”.

Besides, we have empirically shown for different examples (Section 6.4 for quantal
release, Section 6.5 for STD) that improving this global identifiability metric also
improves parameter inference, i.e. reduces the entropy of the posterior distribution
p(θ|D,M). More generally, identifiability domains can be used as a tool for experi-
mentalists to tune their experimental parameters (e.g. how to set the value for [Ca2+]
as seen in Figure 6.6).
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Chapter 7

A normative approach to
synaptic proteins organization

In this chapter, we present preliminary results on modeling synaptic transmission
based on subsynaptic protein clusters distribution, which were presented at the Cham-
palimaud Research Symposium 20211. In previous chapters, we focused on high-level
models of chemical synapses and on evoked synaptic transmission. Here, we propose
to study chemical synapses at a finer level. Using both microscopy observations and
recordings of spontaneous postsynaptic currents, we derive models of synaptic protein
organization and of postsynaptic receptors sensitivity to neurotransmitter.

An interesting biological question to which we ought to bring a theoretical answer
is how to make sense of the observed organization of synaptic proteins. Synaptic
transmission critically depends on the relative positions of presynaptic neurotrans-
mitter release sites and of postsynaptic receptors. Structural alignments of synaptic
proteins, called transsynaptic nanocolumns [206], had been previously observed using
localization microscopy. More specifically, gSTED microscopy data indicates a ring
arrangement of transsynaptic nanocolumns at the larval Drosophila neuromuscular
junction.

In [207], the authors studied the size of neuronal structures. Using an information
transmission argument, they derived what should the optimal axon diameter be, and
compared this normative prediction to observed neuron sizes. Here, we use a similar
approach: we propose a normative approach to this protein organization, and suggest
that it might optimize a certain biological cost function (e.g. the mean current or
SNR after vesicle release). As in [208], the goal is to use models of the NMJ to
validate experimental hypotheses about synaptic transmission.

7.1 Introduction

There is evidence that synaptic proteins arrange in sub-synaptic clusters that may
organize across the synaptic cleft. Superresolution microscopy allows to observe both
presynaptic BRP clusters, and postsynaptic glutamate receptors (GluR) clusters.
BRP are a presynaptic scaffold, and Unc13 clusters, which may be a proxy for the

1C. Gontier, W. Gauthey, S. Sydlik, M. Müller, and J.-P. Pfister. Modeling synaptic transmission
based on subsynaptic glutamate receptors distribution. Champalimaud Research Symposium 2021,
Lisbon, Portugal.
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position of release sites [209], localize close to their C-termini. Data suggest that
presynaptic nano-clusters and postsynaptic GluRs form structures that arrange in
stereotypical ring patterns at the Drosophila neuromuscular junction (NMJ) [11].
However, this model of transsynaptic rings has not been tested against other models.
Moreover, the relationship between this transsynaptic nanoarchitecture and synaptic
function remains elusive. Here, we employed a theoretical approach to test whether
pre- and postsynaptic nano-clusters indeed arrange in transsynaptic rings, and to
relate this transsynaptic nano-organization to synaptic transmission. Moreover, we
investigate transsynaptic nano-architecture in relation to synaptic transmission after
genetic ablation of Unc13A, a gene encoding a protein suggested to be the biological
correlate of presynaptic release sites. We address the following questions:

1. How are BRP and GluR clusters spatially organized ?

2. Can we define a simple model of GluR sensitivity to glutamate ?

3. Based on the organization of BRP and GluR clusters, and on the sensitivity
of GluR clusters to glutamate, can we explain the distribution of observed
spontaneous excitatory postsynaptic currents (mEPSCs) ?

4. How does the predicted optimal position of BRP clusters compare to observa-
tions ?

7.2 Description of the experimental apparatus

The experimental apparatus is described in Figure 7.1. Observations were obtained
from the Drosophila neuromuscular junction. Details regarding the experimental
model and subjects can be found in [11]. A single NMJ corresponds to one single axon
with several and heterogeneous AZ on it, all linked to a muscle cell at isopotential.
Two kinds of observations are used:

• Microscopy observations obtained using gSTED microscopy [210]. It allows
to determine, for several active zones, the position of presynaptic BRP proteins
(which are used as a proxy for the position of release sites) and of postsynaptic
GluR clusters.

• Electrophysiology observations obtained using voltage-clamp. It allows to
record mEPSCs due to the spontaneous release of vesicles at active zones. The
two-electrode voltage-clamp methodology being used is described in [33].

The average number of AZ per NMJ has been observed to be 128 in WT subjects
and 58 in Unc13A mutants. In Unc13A mutants, 40% of the total number of AZ are
made up of enlarged AZ, the other ones being similar to WT active zones.

7.3 Model comparison supports ring-like structures that
are disrupted in Unc13A mutants

Our first step is to derive a quantitative description of proteins distribution, and
hence to propose a generative model for the joint localization of presynaptic BRP
proteins and postsynaptic GluR proteins. The position of observed BRP and GluR
clusters can be understood as a multitype point-process, where each point is assigned
a position (x1, x2) on the 2-dimensional AZ as well as a type (either BRP or GluR).
We propose different models for this point process, each having different intensity
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Figure 7.1: Description of the experimental apparatus. Observations were ob-
tained from the Drosophila neuromuscular junction (left). Two kinds of observations
are used: firstly, microscopy observations obtained using gSTED microscopy (up-
per right). It allows to determine, for several active zones, the position of presynaptic
BRP proteins (which are used as a proxy for the position of release sites) and of
postsynaptic GluR clusters. Secondly, electrophysiology observations obtained
using voltage-clamp (lower right). It allows to record mEPSCs due to the sponta-
neous release of vesicles at active zones.

functions and pairwise interactions, and perform model selection to compare their
goodness-of-fit. Finding out which model better fits the data allows to draw con-
clusions on how clusters are distributed and interact. Unless specified otherwise,
analyses were performed using the R package spatstat [211, 212].

A point process with specified pairwise interactions is called a Gibbs Point Process
(GPP). The probability distribution for the positions of a set of observations X,Y is
computed as

p(X,Y) ∝

(
n∏
i=1

bX(x(i))

)(
m∏
j=1

bY (y(j))

)(
n∏
i<i′

cX,X(x(i), x(i′))

)
(

m∏
j<j′

cY,Y (y(j), y(j′))

)(
n,m∏
i,j

cX,Y (x(i), y(j))

)
(7.1)

where X = {x(i)}ni=1, x(i) = (xi1, x
i
2) are the 2D coordinates of n BRP clusters and

Y = {y(j)}mj=1, y(j) = (yj1, y
j
2) are the 2D coordinates of m GluR clusters.

First, point processes are characterized by their intensity function bz(u) (i.e. the
density of points), which can be either uniform or be a function of the position
u = (x1, x2) in the 2D plane and of the type z of points, with z ∈ {X,Y }. We
propose 3 different intensity functions:

• Uniform: log bz(x1, x2) = −θz
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Under the uniform hypothesis, the process is said to be homogeneous (i.e. the
point density is the same over the whole surface of the AZ).

• Distance to center: log bz(x1, x2) = −θz
√
x21 + x22

Under this hypothesis, the density of proteins is assumed to be a decreasing
function of the distance to the center of the AZ. Different distance functions,
e.g. a Gaussian kernel exp

(
−x21+x

2
2

2c2

)
, can also be investigated.

• Ring patterns: log bz(x1, x2) = −θz|
√
x21 + x22 − rz|

where rz is the mean distance of proteins of type z to the center of the AZ.
Indeed, BRP and GluR have been observed to be organized as ring-like patterns,
with an inner ring of BRP proteins close to the center of the AZ and an outer ring
of GluR clusters (Figure 7.1, upper right panel). Performing model selection
would precisely allow to verify this hypothesis, by confronting its goodness-of-fit
to that of other models.

The value of the free parameter θz is computed using the Berman-Turner algorithm
[213], as detailed in Section 11.3 in [212].

Second, point processes are characterized by the interpoint interactions, i.e. by pos-
sible dependencies between the points’ positions and types. The functions cz,z′ corre-
spond to pairwise interaction terms, which are symmetric between positions u and v
(i.e. cz,z′(u,v) = cz,z

′
(v,u)). Here, we propose 4 different interaction schemes:

• Poisson point process: cz,z′(u,v) = 1 ∀(z, z′) ∈ {X,Y }

In a Poisson point process, all points are i.i.d., irrespective of their types.

• Hardcore point process: cz,z′(u,v) =
{
1 if ||u− v|| > r

0 if ||u− v|| ≤ r
∀(z, z′) ∈ {X,Y }

A Hardcore process specifies a minimal distance r between two points u and v.

• Strauss point process: cz,z′(u,v) =
{
1 if ||u− v|| > r

γ if ||u− v|| ≤ r
∀(z, z′) ∈ {X,Y }

A Strauss process is a generalization of the previous processes. It reduces to a
Poisson process for γ = 1 and to a Hardcore process for γ = 0.

• Multi-Strauss point process2: cz,z′(u,v) =
{
1 if ||u− v|| > rz,z′

γz,z′ if ||u− v|| ≤ rz,z′
∀(z, z′) ∈

{X,Y }

It further generalizes the Strauss process to be type-dependent: the probability
parameter γ and the interaction radius r will depend on the respective types of
u and v (BRP-to-BRP, BRP-to-GluR, or GluR-to-GluR).

These 3 intensity functions and 4 pairwise interaction functions thus define 12 possible
generative models (Figure 7.2), which are compared based on their respective AIC for
the obtained microscopy observations (Figure 7.3, see Section 1.6 for the derivation
of the AIC). For WT subjects, the model that has the best AIC has an intensity
function structured in ring-like patterns. For mutants, it is a model in which the

2Contrary to a Strauss point process, in a Multi-Strauss, under some conditions the interaction
term γz,z′ can be greater than 1 (see [212], section 25.1.4).
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intensity scales with the distance to the center. We can thus conclude that clusters
are more organized (in ring patterns) in WT than in mutants.

For WT subjects, the best model of interaction is a simple Strauss process (inde-
pendent from the types), while mutants data are better fitted with a Multi-Strauss
process. For this Multi-Strauss process the gamma parameter for the GluR-to-BRP
interaction verifies γBRP,GluR > 1. We can thus conclude that clusters are not Poisson,
and that in mutants GluR and BRP have a tendency to lie close to each other.

Figure 7.2: Illustrations of the 12 different possible models of point patterns.
A model is defined by its intensity function (Uniform, Distance to center, or Ring
patterns), and by its pairwise interaction function (Poisson, Hardcore, Strauss, or
Multi-Strauss).

We thus have obtained generative models (one for WT subjects, and one for Unc13A
mutants) for the position and interaction of synaptic proteins.

7.4 A simple model of GluR activation

A second step is to design a model of glutamate receptor sensitivity, i.e. to compute
the probability that a GluR will be activated as a function of its distance to a neuro-
transmitter release site. The process of mEPSC generation following a spontaneous
presynaptic release involves three main steps:

1. The release of glutamate at the presynaptic side: in spontaneous release,
a presynaptic vesicle fuses with the plasma membrane and releases its content
of neurotransmitter molecules in the synaptic cleft. This release process can be
approximated as being instantaneous, or can be modelled as an exponentially
decaying source of glutamate.

2. The spread of glutamate in the synaptic cleft: this diffusion corresponds
to a random walk of glutamate molecules. Given the small cleft width (com-
pared to the surface of the AZ), it is often approximated as a 2-dimensional
diffusion process, with an experimentally observed diffusion coefficient.

3. The activation of postsynaptic GluR: finally, these glutamate molecules
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Figure 7.3: Results of model fitting. A lower AIC indicates a better fit. For
WT subjects, the model that has the best AIC has an intensity function structured
in ring-like patterns, and the best model of interaction is a simple Strauss process
(independent from the types). For mutants, it is a model in which the intensity
scales with the distance to the center, and where the interaction function is a Multi-
Strauss process where the gamma parameter for the GluR-to-BRP interaction verifies
γBRP,GluR > 1.

will bind to postsynaptic receptors and activate them, thus eliciting a postsy-
naptic current. GluRs are organized in clusters of approximately 20 receptors,
each of them being independent (i.e. a cluster does not activate in an all-or-
nothing fashion). GluRs are complex biophysical structures, which are often
modelled as kinetic state diagrams (e.g. Figure 7.4). For instance, in [214], the
authors explain that ”AMPAR kinetics were modeled using [...] a 7 state model
and published values for kinetics rate constants, adjusted to fit the experimen-
tally recorded mEPSCs in our system. In this scheme, resting AMPARs are in a
C1 state and move to states C2 and C3 upon successive binding of two glutamate
molecules. O4 is the open state, whereas D5, D6, and D7 are desensitized states.
Mono-liganded D7 desensitized AMPARs can move to the biliganded D6 state.”
Such pharmacodynamical models nicely fit recorded mEPSCs [214] but rely on
several kinetics rate constants, which may be hard to accurately estimate from
data and prevent the model from correctly generalizing to future observations.

Different models of glutamate release and GluR activation are summarized in Table
7.1. All models are based on CNS synapses (hippocampal neuron cultures and simu-
lations of CA1 cells in [215], CA1 pyramidal cells in [216], cultured rat hippocampal
neurons in [217], corticogeniculate and retinogeniculate synapses in the dorsallat-
eral geniculate nucleus in [218]). They all assume 2000 molecules of glutamate per
vesicle release (between 2500 and 5000 in [218]), and a cleft width of 15nm. Interest-
ingly, all of them (except for [217]) assume a complete pharmacodynamical model of
postsynaptic receptors (as in [214] and Figure 7.4): for these models, the activation
probability of a receptor as a function of its distance to the glutamate source can
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Paper Uptake Receptor Release Diffusion

[215] ×
Complete

pharmacodynamical
model

Not mentioned Not mentioned

[216]
Complete

pharmacodynamical
model

Pore diffusion
2D diffusion

process
(0.4µm2/ms)

[217] × Simplified model NA NA

[219] ×
Complete

pharmacodynamical
model

Instantaneous (same
model as in

[218])

2D diffusion
process

(0.3µm2/ms)

[218]
Simplified

pharmacodynamical
model (2 states)

Either instantaneous
or exponentially decaying

source of glutamate

2D diffusion
process

(0.3µm2/ms)

Table 7.1: Review of models of glutamate release and GluR activation.
Uptake indicates whether glutamate uptake is modelled. Receptor refers to how
postsynaptic receptors are modelled: either using a complete pharmacodynamical
model as in Figure 7.4, or using a simplified model with less free parameters. Re-
lease refers to how neurotransmitter molecules release at the fusion pore is modelled.
Diffusion refers to how the random walk of glutamate molecules is modelled.

only be computed via lengthy numerical simulations. Our goal here is thus to derive
a simpler model of GluR activation, i.e. to define the probability that a receptor will
be activated as a function of its distance to the release site.

Given that the depth of the synaptic cleft is small compared to the total surface of
the AZ, we use the ”expanding cylinder approximation” to represent the spread of
glutamate: after the fusion of a presynaptic vesicle with the plasma membrane, the
volume occupied by glutamate is assumed to be a cylinder which basis has radius
r and is centered on the release site, and which height corresponds to the depth
of the synaptic cleft. Assuming that a spontaneous release happened at one of the
presynaptic release sites, we use the following notations:

• r is the distance from the release site up to which glutamate has spread [nm];

• z is the depth of the synaptic cleft [nm];

• n is the number of released glutamate molecules [-];

• m is the number of these molecules required to activate one receptor [-];

• ∆V is the volume of a voxel corresponding to the surface of a postsynaptic
receptor and to the depth of the synaptic cleft [nm3];

• L is the number of these voxels into the cylinder of radius r (i.e. covered by
glutamate), i.e. L = πr2z

∆V ;

• ρ is the glutamate density defined as ρ = n
L = n∆V

πr2z

We firstly assume that m = 1 and that, among L voxels, one contains a receptor.
The probability popen(n,L) that this receptor will be activated can be approximated
as the probability that at least one of the n molecules will be in the same voxel as
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the receptor:

popen(n,L) = 1−
(
1− 1

L

)n
(7.2)

Using the current value of the density ρ yields

popen(n,
n

ρ
) = 1−

(
1− ρ

n

)n
(7.3)

Finally, assuming that n and L are large (keeping ρ fixed) yields

lim
n→∞

popen(n,
n

ρ
) ≈ 1− e−ρ = 1− e

−ν20
r2 (7.4)

with ν0 =
√

n∆V
πz .

For m > 1, Eq. 7.2 becomes

popen(n,L) =
n∑

k=m

(
n

k

)(
1

L

)k (
1− 1

L

)n−k
= 1−

m−1∑
k=0

(
n

k

)(
1

L

)k (
1− 1

L

)n−k
(7.5)

which, for large n and L and keeping ρ fixed, becomes

popen(n,L) ≈ 1− e−ρ
m−1∑
k=0

ρk

k!
(7.6)

which is equal to 0 when m converges to infinity. The probability that a postsynaptic
receptor is activated by a glutamate release at a distance r can thus be approximated
by 1 − e−ν20/r2 , where ν0 is a parameter depending on the geometry of the synaptic
cleft.

However, the physical proximity between a glutamate molecule and a postsynaptic
channel does not necessarily imply that the latter will be opened. Their molecular
affinity is not perfect, and a receptor needs to be in a given state to be activated
by a glutamate molecule. Using the random variables X ∈ {0, 1} to represent the
presence of a glutamate molecule at a receptor position, and S ∈ {0, 1} to represent
the state of the said receptor, its activation probability will be p(X = 1)p(S = 1).
Using the notations p(X = 1) = popen(n,

n
ρ ) (Eq. 7.4) and p(S = 1) = 1/ν1 with

1 < ν1, our proposed model of probability of channel opening as a function of the
distance between the vesicle release site and the receptor is finally

p(r) =
1

ν1
(1− e−ν20/r2) (7.7)

where:

• ν0 is a shape parameter defining the slope of the function, i.e. how fast the
activation probability will decrease with the distance r;

• ν1 is a scale parameter defining the affinity between glutamate and postsynaptic
receptors (as a distance r = 0 does not necessarily imply that the postsynaptic
receptor will be in an activated state).

To assess the validity of our model, we need to fit the parameters ν0 and ν1 to experi-
mental data. A pharmacodynamical model of AMPA receptors activation (illustrated
in Figure 7.4), which nicely fits recorded mEPSCs, is used in [214]. Using this model,
the authors compute the number of open receptors in three different scenarii:
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• First scenario: simulation of one GluR cluster and of one release site. The
number of activated receptors is computed as a function of the distance between
the release site and the cluster (Figure 7.5, left).

• Second scenario: simulation of one release site and of two clusters, one being
located underneath the release site and the second one at a varying distance.
The number of activated receptors is computed as a function of this distance
(Figure 7.5, center).

• Third scenario: simulation of one release site flanked by two clusters. The
number of activated receptors is computed as a function of the displacement of
the release site (Figure 7.5, right).

The results of numerical simulations based on the pharmacodynamical model in [214]
are plotted as orange lines on Figure 7.5. Results from our simplified model (Eq. 7.7)
after fitting of ν0 and ν1 on data from [214] are plotted as blue lines. We thus verify
that our function reproduces previous results on GluR sensitivity, without the need
for long simulation of individual receptors dynamics.

Figure 7.4: Classical pharmacodynamical model of GluR activation. Illus-
tration of the model used in [214]: postsynaptic receptors are modelled using ”a 7
state model and published values for kinetics rate constants, adjusted to fit the exper-
imentally recorded mEPSCs in our system. In this scheme, resting AMPARs are in
a C1 state and move to states C2 and C3 upon successive binding of two glutamate
molecules. O4 is the open state, whereas D5, D6, and D7 are desensitized states.
Mono-liganded D7 desensitized AMPARs can move to the biliganded D6 state.”

7.5 Parameter fitting to mEPSC data
The third step is to link our proposed model of GluR sensitivity (Eq. 7.7) to the ob-
served distribution of recorded mEPSCs, which were recorded via voltage-clamp (Fig-
ure 7.1, lower right). We propose the following generative model for mEPSCs:

r
(i,j)
h is the distance between release site x(i)

h and postsynaptic receptor y(j)
h at the

h-th Active Zone of the studied NMJ:

r
(i,j)
h = ||x(i)

h − y(j)
h || (7.8)

k
(i,j)
h is the number of receptors in cluster y(j)

h activated by a release at site x(i)
h :

k
(i,j)
h |r(i,j)h ∼ Bin(p(r(i,j)h ), N) (7.9)
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Figure 7.5: A simple model of GluR activation. Left: 1 BRP, 1 GluR, different
positions of the BRP. Center: 1 BRP, 2 GluR, different positions of one of the GluR.
Right: 1 BRP, 2 GluR, different positions of the BRP. Orange lines: results from
simulations using the complete pharmacodynamical model in [214]. Blue lines: results
computed analytically using our model (Eq. 7.7). Parameter values of the simplified
model after fitting on the data from [214]: ν0 = 177.24 [nm]�, ν1 = 2.47.

where N is the number of GluR per cluster, and p(·) is the sensitivity function defined
by Eq. 7.7; when a spontaneous release event happens at site x(i)

h , mEPSC e
(i)
h is thus

defined as

e
(i)
h = q0

jh∑
j=1

k
(i,j)
h + ε (7.10)

where jh is the number of GluR clusters at AZ number h, ε ∼ N (0, σ2) represents
the recording noise with variance σ2, and q0 is the postsynaptic current elicited by
one receptor activation.

The distribution of e(i)h is then approximated as a normal distribution, i.e. e
(i)
h ∼

N (µ
e
(i)
h

, σ2
e
(i)
h

), with

µ
e
(i)
h

= q0 ·N ·
jh∑
j=1

p(r
(i,j)
h )

and

σ2
e
(i)
h

= σ2 + q20 ·N ·
jh∑
j=1

p(r
(i,j)
h )(1− p(r(i,j)h ))

Using the function generate from the R package spatstat, H = 200 independent
surrogate AZ were generated from the fitted model described in Section 7.3. Assuming
that AZ number h ≤ H has ih release sites and jh postsynaptic receptor clusters, this
allows to obtain empirical samples r(i,j)h (with 1 ≤ h ≤ H, 1 ≤ i ≤ ih, and 1 ≤ j ≤ jh)
for the distances between release sites and receptors (Eq. 7.8). The final probability
density function for mEPSCs is finally computed as

p(e) =
1

H
·
H∑
h=1

1

ih
·
ih∑
i=1

p(e
(i)
h ) (7.11)
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Recording 1 Recording 2 Recording 3
N [-] 20 20 20
ν0 [nm] 142.39 125.84 168.02
1/ν1 [-] 0.11 0.10 0.14
q0 [nA] 0.13 0.163 0.07
σ [nA] 7.52 · 10−5 6.94 · 10−6 5.27 · 10−12

Table 7.2: Results of model fitting on mEPSCs recordings. Based on the spa-
tial distribution of BRP and GluR clusters described in Section 7.3, the values of the
parameters of our generative model of spontaneous mEPSCs (Equations 7.7 to 7.10)
were fitted on 3 different sets of mEPSCs, containing respectively 220 (Recording
1), 266 (Recording 2), and 263 (Recording 3) data points.

This distribution is fitted on the observed empirical distribution of mEPSCs to infer
the values of parameters N , ν0, ν1, q0, and σ (see results in Table 7.2 and Figure
7.6).

Figure 7.6: Results of model fitting on mEPSCs recordings (Recording 1).
Blue: histogram of the recorded mEPSCs in Recording 1 (220 data points). Orange:
probability distribution of mEPSCs (Eq. 7.11) which parameters have been fitted (see
values in Table 7.2) to the observed distributions of mEPSCs. Inset: value of p(r)
(Eq. 7.7) for the fitted values of ν0 and ν1.

7.6 Modeling synaptic transmission predicts that release
sites locate within GluR nano-rings for effective GluR
activation

Our fourth and last step is to derive a normative prediction of the position of release
sites. We propose to compute the optimal position for the release sites from an
information transmission argument, and to assess how it compares to the observed
position of BRP clusters.

It follows from gSTED observations that WT AZ have on average 14 GluR clusters
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on the postsynaptic density, and that their mean distance to the center of the AZ is
225nm. An average WT AZ (i.e. h = 1) is thus created by modeling 14 GluR clusters
on a ring structure with radius 225nm around the center of the AZ (black dots and
red circle in Figure 7.7). We then assess how two metrics (the mean mEPSC µe and
the SNR µe/σe) evolve as a function of the position of a single synthetic release site
(i.e. ih = 1).

The mean mEPSC µe is computed as

µe = q0 ·N ·
14∑
j=1

p(r
(1,j)
1 ) (7.12)

while its variance is equal to

σe
2 = σ2 + q20 ·N ·

14∑
j=1

p(r
(1,j)
1 )(1− p(r(1,j)1 )) (7.13)

which allows to compute the SNR µe/σe. In Equations 7.12 and 7.13, the term r
(1,j)
1

refers to the distance between the position of the considered release site and the j-th
GluR cluster. The value of the parameters N , ν0, ν1, q0, and σ, on which the values
of µe and µe/σe depend, are fitted on experimental data (Table 7.2), as explained in
Section 7.5.

In Figure 7.7 (left panel), the blue color map indicates the mean mEPSC elicited by
releasing glutamate at different points of the AZ and computed from Eq. 7.12. The
dashed yellow line shows its maximum while the solid yellow line corresponds to the
average distance between observed release sites and the center of the AZ. The right
panel shows similar results but for the SNR. In both cases, preliminary results show
that the observed position of BRP proteins is well in line with the position predicted
from a normative argument (Figure 7.8).

It is interesting to see that two regimes appear depending on the value of ν0 (Figure
7.9): at low ν0 (low glutamate spread), it is optimal for the release sites to be close
to the postsynaptic clusters; at high ν0 (high glutamate spread), it is optimal to be
close to the center of the AZ to activate several postsynaptic clusters.

7.7 Conclusion
Our preliminary contribution is three-fold. Firstly, we derived a generative model for
the organization of synaptic proteins, which accounts for both their position on the
AZ and the intercations between presynaptic BRP and postsynaptic GluR. Model
comparison supports ring-like patterns for BRP and GluR clusters at the Drosophila
NMJ, which are disrupted in Unc13A mutants. Secondly, we derived a simpler model
of glutamate spread and GluR activation, which nicely fits previous results without
the need for lengthy numerical simulations or a large number of free parameters.
Finally, modeling synaptic transmission after systematic variation of release site lo-
cation predicts that release sites locate within GluR nano-rings for effective GluR
activation.

These are preliminary results that need to be consolidated:

• More microscopy observations, and observations of different presynaptic pro-
teins, are required, as BRP proteins are only loose proxies for the actual position
of release sites;
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(a) (b)

Figure 7.7: A normative approach to the organization of synaptic proteins
(1). (a) The blue color map indicates the mean mEPSC elicited by releasing gluta-
mate at different points of the AZ for the parameters values for Recording 1 (Table
7.2). Black dots represent GluR clusters. The dashed yellow line shows its maximum
while the solid yellow line corresponds to the average distance between observed re-
lease sites and the center of the AZ. To maximize the mean mEPSC, it is optimal for
the release sites to be located on a ring structure between the VGCC and the GluR
clusters. This theoretical prediction is well in line with microscopy’s observations.
(b) Similar results for the SNR.
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Figure 7.8: A normative approach to the organization of synaptic proteins
(2). Blue histogram: distribution of the observed distances between BRP proteins
and the center of the AZ (the solid yellow line corresponds to its mean). Red line:
mean mESPC µe as a function of the distance between the release site and the center
of the AZ, computed from Eq. 7.12. Black line: SNR µe/σe as a function of the
distance between the release site and the center of the AZ, computed from Eq. 7.13.
The dashed vertical yellow lines correspond to their respective maxima.

• Similarly, results need to be consolidated and tested on more electrophysiology
recordings;

• Most statistical analyses were performed using the R package spatstat, in
which the parameters of several built-in functions (e.g. the correction for bound-
ary effects when plotting Ripley’s K-function, or the method used to generate
samples from a point process model) are not easily modifiable by the user. Re-
peating these analyses using hand-made routines is a work in process, which
would allow to robustify the results.

• Finally, when fitting the value of the parameters of our model on observed mEP-
SCs (in Section 7.5), biological constraints must be defined in order to ensure
that the fitted values of N , ν0, ν1, q0, and σ are within realistic ranges. This is
all the more important as the fitted values of some parameters, and especially
of ν0 and ν1, have been observed to be correlated. Moreover, results in Table
7.2 indicate 6 orders of magnitude between the fitted values of σ in Record-
ing 2 and in Recording 3, while these fitted values have not been compared to
the expected recording noise from the recording apparatus. This inference step
thus needs to be consolidated to ensure the validity of the normative approach
presented in Section 7.6. Especially, it would be interesting to perform a sensi-
tivity analysis, to assess how the results illustrated in Figure 7.7 are robust to
a change in the value of the fitted parameters.

Many recent machine-learning methods consider uncertainty. For example, Bayesian
neural networks rely on the posterior distribution of synaptic weights given all the
observed data. However, it is largely unclear how synapses represent this distribution.
Based on the quantal theory of synaptic transmission, the smallest unit of synaptic
information transfer is the postsynaptic response to the fusion of individual synaptic
vesicles, which is typically assayed by the amplitude of spontaneous miniature exci-
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Figure 7.9: Optimal position for the release sites as a function of the shape
parameter ν0. Upper panel: optimal distance r∗ between the release site and the
center of the AZ to maximize either µe (blue line) or the SNR (orange line). Yellow
dashed lines correspond to the optima displayed in Figure 7.7. The vertical red line
corresponds to the fitted value of ν0 for Recording 1. Two regimes appear: at
low ν0 (low glutamate spread), it is optimal for the release sites to be close to the
postsynaptic clusters; at high ν0 (high glutamate spread), it is optimal to be close
to the center of the AZ to activate several postsynaptic clusters. Lower plot: mean
number of activated receptors as a function of ν0 for a distance r=130nm between
the release site and the center of the AZ.

tatory postsynaptic currents (mEPSCs). To investigate the underlying mechanisms
of mEPSCs variability, we modeled synaptic transmission based on the sub-synaptic
distribution of Glutamate Receptors (GluRs) clusters at the Drosophila NMJ revealed
by Time-Gated Stimulated Emission Depletion (gSTED) microscopy. Our model of
spontaneous synaptic transmission will be critical for the validation of normative
theories of Bayesian synapses, and to reveal how synaptic weight distributions or
uncertainties are represented at the synaptic level.
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Chapter 8

Discussion and perspectives

Figure 8.1: On studying how the brain works1.

8.1 Summary of results

Synaptic characterization, i.e. the methods used to describe a synapse, to derive a
generative model of it, and to infer its parameters, is a field of crucial importance
for both experimental and theoretical neuroscientists. However, current experimental
techniques and analysis tools suffer from several drawbacks: the goal of this doctoral
thesis was to propose solutions to address them.

Firstly, methods that are still commonly used by experimentalists to infer the pa-
rameters of a synaptic connection, such as mean-variance analysis, or cumulative
EPSC methods, have important pitfalls. For instance, mean-variance analysis re-
quires to perform recordings under different calcium concentrations, and, for each of
these settings, to obtain enough data points to accurately estimate the mean and
the variance: obtained estimates are thus often highly unreliable. Similarly, cumula-
tive EPSC methods are only applicable to depressing synapses and cannot be used
with arbitrary patterns of activation. In Chapter 3, we reviewed more promising
model-based approaches, which can be applied with any stimulation protocols, and
can be used to infer both synaptic release statistics and synaptic dynamics. We ex-
pect these probabilistic inference methods to help experimentalists to obtain more
accurate estimates of synaptic transmission parameters.

Although promising, these model-based approaches require to posit a generative
model M, which needs to have basic statistical properties. An important property
of a model is called identifiability: a model is said to be structurally identifiable if

1https://xkcd.com/1163/, use with authorization.
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its parameters can be uniquely inferred from the distribution of its outputs. This
theoretical property has been thoroughly defined and characterized, but practical
identifiability, which is a property of both the model and the experimental proto-
col, is usually only qualitatively assessed. In Chapter 4, we proposed a statistical
criterion for practical identifiability, which allows experimentalists to answer crucial
questions about their experiments: for instance, whether the recording noise is suffi-
ciently low to ensure peaks and dips in the distribution of observations are visible, or
if presynaptic stimulation times are sufficiently informative.

Moreover, using a model-based approach with a certain generative model M yields
two important issues. Firstly, it requires the inputs to the model (i.e. the timings of
the presynaptic action potentials) to be sufficiently informative about the parameters,
and to be adequately designed. Secondly, the computation of the likelihood function
(which is used either to obtain a point-based estimate of the parameters, to compute
their posterior distribution, or to update the samples in a particle filtering scheme)
can be challenging. For instance, when representing a synapse with a state-space
model, the computation time scales polynomially with the number of vesicles. We
address both issues in Chapter 5: we proposed an online and parallel particle filtering
scheme for efficient computation of the posterior distribution of the parameters, and
design a closed-loop inference scheme to compute the next stimulation time which
is maximally informative about the hidden parameters. Besides, in Appendix A, we
derive a mean-field approach to simplify the computation of the likelihood.

An issue that is too often disregarded by experimentalists is the question of model
comparison and selection. To ensure that synaptic parameters are precisely esti-
mated, the generative model M needs to be an accurate description of the studied
synapse, and to avoid both under- and overfitting. In Chapter 6, we suggest to use
our proposed definition of practical identifiability to perform a form of Optimal Ex-
periment Design, and to optimally compare an alternative modelM1 to a null model
M0. Besides, in Appendix B, we discuss the possibility to use the BIC (a classically
used model selection criterion) to models with correlated data. This is especially use-
ful for synaptic characterization, as synapses are commonly described using Markov
processes, in which observations are not i.i.d. Overall, we expect these results to
generalize the use of model selection tools in synaptic characterization.

Finally, we apply the different theoretical tools used in the previous chapters (model
selection, model fitting, and mean-field approach) to study synapses at a different
scale and to make sense of the observed organization of synaptic proteins at individual
active zones. In Chapter 7, we firstly use model selection to derive a generative model
of the organization of presynaptic BRP proteins and postsynaptic GluR clusters: this
illustrate that model selection can be used as a form of hypothesis testing. Then,
using a mean-field approach, we derive a model of GluR sensitivity to glutamate
release, which allows to model postsynaptic currents more efficiently than previously
used pharmacodynamical models. The free parameters of this model are inferred
using model fitting on recorded mEPSCs; finally, we propose a normative approach
to the structure of active zones, and compare our theoretical predictions to empirical
results.

Overall, we expect the results presented in this doctoral work to improve the way
synaptic characterization is being performed.
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8.2 Related work

The different techniques and tools that we proposed in this thesis are building up
on previous work, and aimed at improving existing methods. For instance, our pro-
posed definition of practical identifiability (Chapter 4) is an alternative to previous
definitions (see for instance [70, 72, 189]), which are simple and intuitive but are
data-dependent instead of defining an intrinsic property of a model. The identifiabil-
ity domains we plot correspond to an extension of the landscaping technique described
in [153], in which the possibility to discriminate two competing models is assessed by
measuring their respective evidences on a large number of surrogate data sets. We
extend this technique by averaging the model evidences over the distribution of data
sets. We also extend the expected support of a model introduced in [154] to several
models, comparing their respective supports to define a criterion for identifiability.
Our theoretical considerations on model identifiability (described in Appendix C) can
also be seen as a more general version of a result presented in the following paper
using less stringent approximations [65].

Parameter estimates from model-based approaches are often associated with high un-
certainty (see for instance [20] or [26]). To correct this pitfall, previous studies had
already pointed out the need to optimize the presynaptic stimulation protocol to max-
imize its informativeness. Previous work showed that some stimulation protocols are
more informative than others, but ignored the temporal correlations of the number
of readily-releasable vesicles [159] or did not compute which protocol would be most
informative [20]. The idea of a closed-loop optimization scheme to compute the next
stimulation time was originally proposed in our review on model-based approaches
(see [3] and Chapter 3): ”Pushing this idea even further, it would be interesting to
design a closed-loop inference scheme such that after each spike and its subsequent
postsynaptic response, the algorithm determines the best interval for the next spike
that is maximally informative about the synaptic parameters”. Our proposed solu-
tion, the ESB-BAL method described in Chapter 5, builds on previous applications
of OED to neuroscience [29, 185, 184, 190] while being more general (it can be applied
to any state-space model, even input-dependent ones) and time-efficient. Especially,
variational approach [81] could be employed, but they usually require long compu-
tation times that can be impractical if the time between successive experiments is
short. Closed-form solutions can only be computed for some special cases, such as
linear models of GLM [29]. In particular, the particle filtering scheme that we use
is an extension of the seminal Nested Particle Filter ([186]), which we extended to
input-dependent state-space models.

Finally, in Chapter 4 and in [134], we discussed the possibility to extend the use
of the BIC to correlated data sets. Indeed, the classical definition of the BIC is
derived under the hypothesis that observations are i.i.d., which does not hold for
general HMMs. To circumvent this pitfall, our approach in [134] was to analytically
compute the Hessian matrix, but such a computation can be cumbersome. Posterior
to our publication on practical identifiability, a very insightful paper, written by
Shouto Yonekura, Alexandros Beskosa, and Sumeetpal S. Singh, was published in
Stochastic Processes and their Applications. In this paper [220], the authors also
address the validity of classically used Model Selection Criteria (including the BIC) for
general Hidden Markov Models. Their main result is that, under regularity conditions
(namely, that the observation generating process is strongly stationary and ergodic),
the BIC remains strongly consistent for HMMs. In Appendix B, we build on this
result and provide empirical evidence that it still holds for input-dependent HMMs,
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given that the distribution of inputs is itself stationary. Providing a theoretical proof
to this intuition is a work in progress.

8.3 Limitations

Our work has several limitations. Regarding our proposed definition of practical
identifiability (Chapter 4), an obvious drawback compared to other definitions is
that it requires to posit a nested null model M0. However, we argue that nested
models and families naturally arise in commonly used statistical techniques, such as
polynomial regression [148], or Generalized Linear Models (GLM) [160]. Especially,
the widespread use of phenomenological models in neuroscience [161, 162, 163, 164]
makes the use of nested families and submodels relevant.

Regarding our ESB-BAL framework, an important limitation is its variability over
several repetitions, both in the estimates of parameters and in the computed optimal
next input: indeed, it requires a very large number of particles to provide low variance
estimates, as the approximation error only decreases with the square root of the
number of particles. Also, we applied our method to a simplified example, where
both the dimensions of the parameter space and of the possible experimental designs
is relatively low (especially compared to experiments commonly performed in biology
or in chemical engineering, for instance).

More generally, an obvious limitation of the statistical approaches to synaptic char-
acterization that we proposed in this thesis is that they are applied to simplified
models of synaptic transmission. Most of our application examples using surrogate
data imply a simple binomial model of neurotransmitter release which does not ac-
count for important features, such as Short-Term Facilitation, variability in quantal
amplitudes, existence of different pools of presynaptic vesicles, or postsynaptic recep-
tors saturation and desensitization. This discrepancy between real synapses and our
generative models might explain the results in Figure 5.5: theoretical results with
simulated data show that using ESB-BAL significantly improves the accuracy of in-
ferred parameters as compared to using a non-adaptative protocol, but results are less
telling when applied to real synapses. This difference is likely due to the generative
model being too simple and not a faithful representation of the synapse. Future work
should thus focus on assessing whether our proposed approaches can scale to more
complicated and realistic models.

8.4 Extensions and future work

In this concluding chapter, we highlight several possible applications for synaptic
characterization, and discuss relevant future work.

8.4.1 Longitudinal study of synaptic transmission

A first application of our tools for synaptic characterization would be to infer synaptic
parameters from a large number of synapses under various experimental conditions,
and especially as a function of development stage. The output of this longitudinal
study of synaptic transmission would be an open-access database containing both the
electrophysiological recordings from several labs as well as the fitted model parameters
obtained and compared via different methods (see Chapter 3). This database would
be useful for both experimentalists and theoretical neuroscientists.
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From the experimental point of view, applying different inference techniques on the
same synapse may lead to variable results. This is all the more critical as synaptic
parameters span a very broad range of different values, depending on the age of the
subject (depressing synapses being more common in in young subjects, and facilitating
ones being more common in adults [6]), on the concentrations of neurotransmitters
(e.g. adenosine [221]), their localization in the CNS or in the PNS, or the type of
neurons [7]. Having standardized inference techniques and reliable baseline estimates
would be greatly beneficial to the field of synaptic characterization.

From the theoretical point of view, having access to parameters values from a large
number of different synapse types would allow to derive and validate several predic-
tions and normative theories concerning synaptic transmission. For instance, a burn-
ing question is to identify the computational relevant of stochasticity in transmission.
A recent study, focused on geniculocortical neurons, shows that ”this variability and
reliability actually enhance cortical firing via an increase in cortical membrane poten-
tial fluctuations, i.e., cortical firing rate is driven by fluctuations of Vm rather than
mean Vm, similar to high conductance states” [30]. Such claims could be compared to
other recordings at different synapses showing a much higher reliability with almost
no synaptic failures, and can be compared to different theories on the computational
role of variability [39].

8.4.2 Different applications of ESB-BAL

In Chapter 5 we discussed how to use ESB-BAL for inferring the parameters of a
model of chemical synapse. These parameters encompass both the binomial param-
eters (i.e. the number of vesicles N , their release probability p, and their quantal
amplitude q), as well as the time constant τD characterizing STD. Here, we describe
how to use ESB-BAL to specifically study the dynamics of vesicle refilling, and es-
pecially to study more complicated models of STD (instead of a complete model of
neurotransmitter release).

As mentioned in the introduction, an important assumption of the classical binomial
model is that release sites are similar and have the same homogeneous refilling time
constant τD. However, it has been suggested [24] that presynaptic vesicles actually
belong to two different groups: a readily releasable pool and a reluctantly releasable
pool, having different refilling time scales. Assuming that the fast-refilling pool and
the slow-refilling pool have respective refilling time constants τ (1)D and τ (2)D , and that
the fast-refilling pool makes up a fraction A1 of the total number of vesicles, then the
recovery (i.e. the evolution of the fraction of available vesicles x(t) after presynaptic
depletion) can be fitted with a biexponential trajectory [25]:

x(t) = A1(1− e−t/τ
(1)
D ) + (1−A1)(1− e−t/τ

(2)
D ) (8.1)

A classical way to assess the values of τ (1)D and τ
(2)
D is to first deplete the presy-

naptic pool of vesicles via sustained high-frequency stimulation, and then to probe
the synapse after a chosen time interval ∆t (recovery spike). The observed EPSC,
expressed as a fraction of the first EPSC obtained before depletion, indicates the
fraction of refilled vesicles after a time ∆t.

In practice, after inducing depression via sustained high-frequency stimulation, only
one recovery spike should be used to assess vesicles refill. Indeed, each presynaptic
stimulation will induce a (possibly stochastic and ill-modelled) release of vesicles
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which will perturb the refilling process. Using several recovery spikes would thus
lead to a biased estimate of the refilling time constants. Given the limited time
during which cells in acute brain slices can be recorded from, the number of possible
observations (i.e. repetitions of the cycle sustained high-frequency stimulation +
one recovery spike) is limited. ESB-BAL can thus be used to determine at which
∆t the synapse should be probed to minimize the variance of the estimate of the
refilling time constants, and to maximize the gain in information for a given number
of observations.

Simulations in Figure 8.2 have been realized with the OptimalVesicleSampling pack-
age2.

Figure 8.2: ESB-BAL for optimal vesicle sampling. ESB-BAL is being applied
to a synthetic presynaptic terminal with ground-truth parameters τ (1)D

∗
= 64ms,

τ
(2)
D

∗
= 2.1s, and A1

∗ = 0.6 (i.e. same values as in [25]). Left panel: the orange
curve corresponds to the ground-truth proportion of refilled vesicles as a function of
time after presynaptic depletion x(t). Parameters τ (1)D , τ (2)D , and A1 can be estimated
by fitting Eq. 8.1 on EPSCs obtained at different time intervals ∆t (blue dots).
Right panels: marginal posterior distribution of the parameters after 10 observations
obtained via ESB-BAL. Distributions are updated after each new observation using
the filter described in Section 5.4. Orange dashed lines: ground-truth values. Green
dashed lines: MAP estimates. The green curve in the left panel corresponds to the
estimate of x(t) computed using the MAP estimates of τ (1)D , τ (2)D , and A1.

8.4.3 Extensions to different experimental settings

In Chapter 5, we used Optimal Experiment Design to optimize the informativeness
of presynaptic stimulation times. Our main assumption was that evoked spike times
were the only experimental variables that could be modified by the experimental-
ists. Future work should consider the possibility to expand the space of modifiable
experimental parameters, and to include not only the stimulation times, but also
pharmacological means. For instance, in Chapter 6, we propose to also optimize the
external calcium concentration of the experimental solution (which modifies the re-
lease probability of vesicles) to optimally observe either STD or quantal release.

2https://github.com/camillegontier/OptimalVesicleSampling.jl
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Another experimental setting to which OED could be applied is Long-Term Potentia-
tion. Especially, our proposed framework could be used to optimize the experimental
design (namely the number of repetitions, the frequency of pre- and postsynaptic
stimulations, or the time intervals ∆t) to study STDP. Studying long-term synap-
tic plasticity involves comparing several candidate models (pair of spikes, triplet, or
quadruplet rules; All-to-all or Nearest-Neighbor interactions; possible dependence of
the weight change amplitude on the current weights; etc [198]) and to infer several
parameters defining the shape of the STDP windows. This inference process could
be optimized using OED.

8.4.4 Extensions to different fields

The overall goal of this doctoral thesis was to propose statistical tools and approaches
to answer practical questions about synaptic characterization, i.e. how to quantify the
discriminability between competing models (Chapter 4), how to compute the optimal
presynaptic stimulation times (Chapter 5), how to pick the best experimental design
for model selection (Chapter 6), and how to explain the organization of synaptic
proteins from a normative perspective (Chapter 7). However, we argue that the
solutions and approaches we proposed (e.g. criterion for identifiability, model fitting
and parameter inference methods, OED method for model selection, etc.) are actually
general and multi-purposed statistical tools, and could be well applied to different
fields. For instance, our publication on practical identifiability has been mentioned
in a recent study on synaptic parameters inference [222], but also in a paper studying
models of how fake news propagate on social networks [223]. Similarly, the issue of
model overfitting (and of the associated low accuracy of estimated parameters) has
been mentioned in a recent paper on synaptic Short-Term Plasticity [224], but could
be well applied to any other field using statistical modelling.
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Figure 8.3: On correct bibliography management3.

3https://xkcd.com/285/, use with authorization.
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Appendix A

Fast-fitting methods and
mean-field approximations

The following results have been presented during the Bernstein Conference 20201.

We first recall how a synapse with Short-Term Depression can be modeled as a
Hidden-Markov Model (Figure A.1). Upon the arrival of a presynaptic action po-
tential, vesicles from a pool of N independent release sites open with a probability
p, each of these release events giving rise to a quantal current q. A synapse is thus
described by its parameters N , p, and q [12], and the time constant τD governing
short-term depression [17, 134]. The equations of the model are thus derived as
follows:

p(D|θ) =
∑
n,k

p(D,n, k|θ)

with

p(D,n, k|θ) = pθ(e1|k1)pθ(k1|n1)pθ(n1)
T∏
i=2

pθ(ei|ki)pθ(ki|ni)pθ(ni|ni−1, ki−1)

The state transition and emission probabilities of the model are defined as

[ei|ki] ∼ N (qki, σ
2)

[ki|ni] ∼ Bin(ni, p)

and

[ni − ni−1|ni−1, ki−1] ∼ Bin(N − (ni−1 − ki−1), 1− e−∆i/τD)

Our model is a Hidden Markov Process with observations D and hidden variables n
and k. The Baum-Welch algorithm is a forward-backward procedure classically used

1C. Gontier and J.-P. Pfister. Fast and online inference of synaptic parameters. 16th Bernstein
Conference, Berlin, Germany. DOI: https://doi.org/10.12751/nncn.bc2020.0029
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to compute the likelihood of a set of parameters p(D|θ). However, its algorithmic
complexity scales with N4 and makes it unpractical for studying synapses with a
large number of vesicles.

In Chapter 5, we propose the use the Nested Particle Filter [186] for online posterior
computation. This algorithm is asymptotically exact and purely recursive, and thus
allows to directly estimate the parameters as recordings are acquired. However, this
weighted method requires a very large number of particles to provide low variance
estimates, as the approximation error only decreases with the square root of the
number of particles (see Figure D.3).

Here, we derive a mean-field approximation of the likelihood of a set of parameters.
This likelihood computation is at the basis of most parameter inference methods, and
our approximation (in which data are decorrelated) reduces its algorithmic complexity
to N2. Our mean-field approximation relies on two assumptions:

• We assume that data are decorrelated:

p(ni) ≈ p(ni|ni−1, ki−1)

which allows to compute the likelihood of each data point ei independently (see
Figure A.2, left panel):

p(ei|θ) =
∑
ni,ki

p(ei|ki)p(ki|ni)p(ni)

• We assume that ni are generated from a normal distribution: ni ∼ N (µi, σ
2
i )

where µi = E(ni) and σ2i = V ar(ni) are computed analytically using the laws
of total expectation and variance (see Figure A.2, right panel).

We note ni the number of filled vesicles just before spike i, E(ni) its expectation and
V (ni) its variance.

ni = ni−1−ki−1+r with r ∼ Bin (N − ni−1 + ki−1, Ii) and where Ii is defined as

Ii = 1− exp
(
−∆ti
τD

)
According to the law of total variance:

V (ni) = E(V (ni|ni−1, ki−1)) + V (E(ni|ni−1, ki−1))

=⇒ V (ni) = E(Ii(1− Ii)(N − ni−1 + ki−1)) + V (ni−1 − ki−1 + Ii(N − ni−1 + ki−1))

=⇒ V (ni) = Ii(1− Ii)(N − E(ni−1) + pE(ni−1)) + V (IiN + (1− Ii)(ni−1 − ki−1))

=⇒ V (ni) = Ii(1− Ii)(N − E(ni−1) + pE(ni−1)) + (1− Ii)2V (ni−1 + ki−1)

The number of vesicles that do not release at a time i (assuming that ni vesicles are
filled) follows a binomial law as well: ni − ki|ni ∼ Bin (ni, 1− p)

It thus follows from the law of total variance:

V (ni−1 − ki−1) = E(V (ni−1 − ki−1|ni−1)) + V (E(ni−1 − ki−1|ni−1))
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=⇒ V (ni−1 − ki−1) = E(p(1− p)ni−1) + V ((1− p)ni−1)

=⇒ V (ni−1 − ki−1) = p(1− p)E(ni−1) + (1− p)2V (ni−1)

Finally,

V (ni) = Ii(1−Ii)(N−E(ni−1)+pE(ni−1))+(1−Ii)2(p(1−p)E(ni−1)+(1−p)2V (ni−1))

Assuming that hidden states are well described by their first and second order mo-
ments, our mean-field approximation allows to significantly reduce the computation
time of the likelihood function (Figure A.3) while remaining sufficiently exact for
accurate parameters inference (Figure A.4).

Figure A.1: Modelization of a synapse with STD as a Hidden Markov Model.
The synapse is modelled as a Hidden Markov Model (HMM) with hidden states ni
(the number of vesicles in the filled state at the moment of spike i) and ki (the number
of vesicles among the ni which will release the neurotransmitters following spike i).
Between two successive spikes, the probability that a given vesicle is refilled within a
time ∆ti is Ii(∆ti) = 1− exp

(
−∆ti

τD

)
.

Figure A.2: Mean-field approach to likelihood computation: theory. Ana-
lytical mean and variance of hidden and observed variables (solid lines) computed
using the mean-field approximation are compared to empirical values (dashed line
and shaded area) from 1000 synthetic data sets.
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Figure A.3: Mean-field approach to likelihood computation: results (com-
putation time). Mean computation time (averaged over 1000 synthetic data sets)
of the likelihood of a set of 200 data points.

Figure A.4: Mean-field approach to likelihood computation: results (pos-
terior). Posterior distributions of the parameters computed using the Metropolis-
Hastings algorithm. Likelihood computation was performed using the mean-field
approximation. Ground-truth values used to generate the EPSCs are displayed as
red vertical lines.
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Appendix B

Model selection for correlated
data

In this brief chapter we address the question of how to perform model selection (and
especially how to use the BIC) for models with correlated data, i.e. models for which
observations are not i.i.d. As explained in Section 4.3.6, the likelihood of observing
data D given a modelM (i.e. the model evidence) is given by

p(D|M) =

∫
dθp(D|θ,M)π(θ|M)dθ (B.1)

where π(θ|M) is the prior for the parameters of M. As this integral is often in-
tractable, an interesting approximation is called the Bayesian Information Criterion
(BIC) [55]:

BICM(D) = −2 log p(D|θ̂,M) + kM log(T ) ≈ −2 log p(D|M) (B.2)

which derivation is detailed in Section 4.6.1. However, the approximationBICM(D) ≈
−2 log p(D|M) is only valid under the hypothesis that observations are i.i.d., which
does not hold for for HMM1: in the general case, p(yt−1, yt) 6= p(yt−1)p(yt) (Figure
B.1).

Figure B.1: Observations in HMM are not i.i.d. Illustration of a HMM with
hidden state xt, observation yt, state transition g and emission probability f . In the
general case, observations are not independent, i.e. p(yt−1, yt) 6= p(yt−1)p(yt).

If data are correlated, we are left with the following approximation, which does not
simplify in the general case:

1The same i.i.d. requirement also holds for other model selection criteria, such as the AIC.
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−2 log p(D|M) ≈ −2 logπ(θ̂|M)−2 log p(D|θ̂,M)−kM log(2π)+log(|−H(θ̂)|) (B.3)

Different solutions can be proposed to approximate (B.3). Firstly, data can be ”decor-
related”, for instance by approximating the likelihood through a mean-field approach
(i.e. p(yt−1, yt) ≈ p(yt−1)p(yt)), which allows to use the classical definition of the BIC
for i.i.d. data. However, depending on the nature of the studied system, neglecting
correlations in data can be a crude approximation and lead to biased estimates of the
likelihood.

Secondly, a numerical approximation of the Hessian H(θ̂) can be obtained through
MCMC methods, event without an explicit expression for the gradient, see for exam-
ple [158].

Finally, if the likelihood of the model can be computed exactly (using for instance
the Baum-Welch algorithm), the Hessian matrix can be computed analytically (which
is the approach that we used in Section 4.6.3). But computing this matrix can be
cumbersome (for a model with kM free parameters, there are k2M double deriva-
tives to compute). For more complicated models, such a computation can be in-
tractable.

Posterior to our publication on practical identifiability (Chapter 4), a very insightful
paper, written by Shouto Yonekura, Alexandros Beskosa, and Sumeetpal S. Singh,
was published in Stochastic Processes and their Applications2. In this paper [220], the
authors also address the validity of classically used Model Selection Criteria (including
the BIC) for general Hidden Markov Models. Their main result is that, under regular-
ity conditions (namely, that the observation generating process is strongly stationary
and ergodic), the BIC remains strongly consistent for HMMs. More specifically, they
show that the determinant of the Hessian matrix grows linearly with the number of
observations T :

lim
T→+∞

|H(θ̂)− TIθ̂| = 0 (B.4)

where Iθ̂ is a non-singular matrix (see Section 3 in [220] for a detailed discussion).
The same approximation as in Section 4.6.1 in the limit of large T can then be made
in order to obtain BICM(D) ≈ −2 log p(D|M). This result has already been used
for model selection with HMMs3.

This result only applies to strongly stationary and ergodic observation generating
processes, i.e. to HMMs for which the state transition and emission probabilities
(functions f and g in Figure B.1) are constant. It thus does not generalize to the
more general class of Input-Output Hidden Markov Models (IO-HMMs, also called
GLM-HMMs in neuroscience [190]), in which the state transition probability at time
t depends on an external input ψt. For instance, the state transition in our model
of synapse is not stationary, but depends on the ISI ψt (see Section 5.6). If the
input is constant (i.e. when ψt does not depend on t), the model corresponds to a
classical stationary HMM. However, in most physiological experiments, ISIs are not

2Yonekura, S., Beskos, A., and Singh, S. S. (2021). Asymptotic analysis of model selection criteria
for general hidden Markov models. Stochastic Processes and their Applications, 132, 164-191. doi:
https://doi.org/10.1016/j.spa.2020.10.006

3Narula et al. In preparation.
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constant but either drawn from a distribution (e.g. an exponential distribution [159])
or defined in a cyclic pattern [20] consisting of a high-frequency tetanic stimulation
phase followed by recovery spikes.

We argue that, if the model generating ψt is itself stationary, the results proposed in
[220] could still hold. We verify empirically this intuition using numerical simulations
(Figure B.2). Surrogate data are generated from a binomial model with STD and
with ground-truth parameters N = 5, p = 0.7, q = 1, σ = 0.2, and τD = 0.2. Three
different processes for generating the ISIs are proposed:

• Constant protocol: all ISIs are constant and equal to 0.05s;

• Exponential protocol: ISIs are drawn from a (stationary) exponential distri-
bution with mean λ = 0.05s;

• Cyclic protocol: a train of ISIs, consisting of 6 ISIs of 0.05s and 4 recovery
ISIs of 0.075s, 0.1s, 0.5s, and 5s, is repeated.

The second derivative of the likelihood function p(e1:t|τD) is plotted for these 3 sta-
tionary protocols as the number of generated observations t increases: in all cases,
we can see a linear increase with the number of observations. We thus argue that
the result in [220] can be generalized to the broader class of IO-HMM, given that the
process generating the inputs ψt is itself stationary.

Figure B.2: Applicability of the BIC to IO-HMM. Surrogate data are generated
from a binomial model with STD and with ground-truth parameters N = 5, p = 0.7,
q = 1, σ = 0.2, and τD = 0.2 using three different stimulation protocols (Constant,
Exponential, Cyclic). Lines show the second derivative of the likelihood function
p(e1:t|τD), denoted −H(τD). A nearly-linear increase of this quantity with t can be
observed.
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Appendix C

Occam’s razor for nested
models

An interesting result in line with our proposed definition of practical model identifi-
ability (Chapter 4) would be to prove the following inequality:

∀θ0, 〈log p(D|M0)〉p(D|θ0,M0) ≥ 〈log p(D|M1)〉p(D|θ0,M0)

whereM0 andM1 are competing models with the former being nested in the latter.
This intuitively corresponds to an application of Occam’s razor (a simpler and true
model will be favored over a more complicated one), but lacks a formal proof.

Proposition: Let M0 and M1 be two nested models such that M0 � M1. We
denote Θ0 and Θ1 the space of possible parameters forM0 andM1, with Θ0 ⊂ Θ1.
If data generated from M0 and M1 are i.i.d., then the following inequality holds
∀θ∗0 ∈ Θ0:

〈log p(D|M0)〉p(D|θ∗0 ,M0) ≥ 〈log p(D|M1)〉p(D|θ∗0 ,M0) (C.1)

If data are not i.i.d., a sufficient condition for the inequality to hold is

kM0 log(2π)−
kM0∑
i=1

〈log(λ0i )〉p(D|θ∗0 ,M0) ≥ kM1 log(2π)−
kM1∑
i=1

〈log(λ1i )〉p(D|θ∗0 ,M0) (C.2)

where

kM0 and kM1 are the number of independent parameters ofM0 andM1;

H0(θ̂0) and H1(θ̂1) are the Hessian matrices of the log-likelihoods p(D|θ0,M0) and
p(D|θ1,M1) expressed at their respective MLEs;

{λ0i }1≤i≤kM0
and {λ1i }1≤i≤kM1

are the respective eigenvalues of−H0(θ̂0) and−H1(θ̂1).

Reasoning: using the same approximation as in the derivation of the BIC (Section
4.6.1) for p(D|M0) and p(D|M1) yields
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log p(D|M0) = log p(D|θ̂0,M0) + logπ(θ̂0|M0) +
kM0

2
log(2π)− 1

2
log(| −H0(θ̂0)|)

(C.3)

log p(D|M1) = log p(D|θ̂1,M1) + logπ(θ̂1|M1) +
kM1

2
log(2π)− 1

2
log(| −H1(θ̂1)|)

(C.4)

Both quantities then need to be averaged over 〈·〉p(D|θ∗0 ,M0). Assuming

〈log p(D|θ̂0,M0)〉p(D|θ∗0 ,M0) ≈ 〈log p(D|θ
∗
0,M0)〉p(D|θ∗0 ,M0) (C.5)

(i.e. that the maximum likelihood estimator θ̂0 will be close to the true value θ∗0 from
which data were generated) yields

〈log p(D|θ̂0,M0)〉p(D|θ∗0 ,M0) ≥ 〈log p(D|θ̂1,M1)〉p(D|θ∗0 ,M0)

(under Gibbs’s inequality). Furthermore, kM0 ≤ kM1 yields π(θ̂0|M0) ≥ π(θ̂0|M1)
(these quantities do not depend on D). The inequality is thus met for the first two
terms on the right-hand side.

For the last two terms, if data are i.i.d. and if the number of data points T in D
is sufficiently large, the same approximation as in the derivation of the BIC can be
made:

kM
2

log(2π)− 1

2
log(| −H(θ̂)|) ≈ −kM

2
log(T )

Since kM0 ≤ kM1 , the inequality thus holds if data generated fromM0 andM1 are
i.i.d.

If data are correlated, the above approximation does not hold. However, the deter-
minant of the Hessian (which is a symmetric matrix) can be written as the product
of the eigenvalues, which finally leads to the necessary condition. This inequality can
also be seen as a more general version of a result presented in the following paper
using less stringent approximations [65].
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Video examples of different
filtering techniques

Figure D.1: Illustration of Maximum Likelihood Estimation (MLE). In MLE,
the parameters θ of a modelM are fitted to a set of observations D to maximize the
likelihood p(D|θ,M). Computing argmaxθ p(D|θ,M) can be done using different
optimization schemes, e.g. the Expectation-Maximization algorithm [20]. Here, data
were generated from the binomial model with ground-truth parameters θ∗ (N = 7,
p = 0.5, q = 1, σ = 0.2). Their histogram is shown in blue. The theoretical
distribution p(D|θ,M) is shown in orange for different values of θ displayed on top.
The animation shows how the theoretical distributions provides a better fit to the
data as θ gets closer to θ∗. Link to the video: https://youtu.be/43QKYkAVKl4
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Figure D.2: Illustration of the Metropolis-Hastings (MH) algorithm. In
Bayesian inference, the goal is to infer the full posterior distribution of the parameters
p(θ|D,M) ∝ p(D|θ,M) (as opposed to MLE, where only a point-based estimate
θ∗ = argmaxθ p(D|θ,M) is computed). The MH algorithm is a rejection sampling
scheme which allows to compute such posteriors [5]. Here, data were generated from
the binomial model with ground-truth parameters N = 7, p = 0.35, q = 1, and
σ = 0.2 (vertical red dashed lines). As samples (blue histogram) accumulate, they
shape the posterior p(θ|D,M). Link to the video: https://youtu.be/pB0S2pkw-jk

154

https://youtu.be/pB0S2pkw-jk


APPENDIX D. VIDEO EXAMPLES OF DIFFERENT …

Figure D.3: Illustration of the Nested Particle Filter (NPF). The NPF [186]
is a non-linear particle filtering algorithm used to infer parameters of HMMs. It
is asymptotically exact and purely recursive, and thus allows to directly estimate
the distribution of parameters as recordings are acquired. The NPF relies on two
nested layers of particles to approximate the posterior distributions of both the static
parameters of the model and of its hidden states. A first outer filter with Mout
particles is used to compute the posterior distribution of parameters p(θ|D), and
for each of these particles, an inner filter with Min particles is used to estimate the
corresponding hidden states (so that the total number of particles in the system is
Mout×Min). After each new observation, these particles are resampled based on their
respective likelihoods. Its implementation for synaptic characterization is detailed in
Section 5.4. Link to the video: https://youtu.be/OPGEyayhxJI. Upper panel: train
of synthetic EPSCs generated from a model of synapse with short-term depression.
Lower panels: posterior distributions of the parameters computed online using the
nested particle filter. Ground-truth values used to generate the EPSCs are displayed
as red vertical lines.
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