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0 Introduction

It is well known that over any field, in particular over the field of complex numbers, a matrix
in the Special Linear Group SLn(C) is a product of elementary matrices. The proof is usually
an application of a Gauss or a Gauss-Jordan process. The same question for SLn(R) over a
commutative ring R is much more difficult and has been studied a lot. For the ring R = C[z]
of polynomials in one variable, it is true since R is an Euclidean ring. For n = 2 and the ring
R = C[z, w], Cohn [5] found the following counterexample: the matrix(

1− zw z2

−w2 1 + zw

)
∈ SL2(R)

does not decompose as a finite product of unipotent matrices. In the 1970s, Suslin [22] gave
a positive answer in the case SLn(C[z1, ..., zm]), for n ≥ 3 and m ≥ 1. For the ring R of
complex-valued continuous functions on a normal topological space, Vaserstein [23] showed,
that a matrix in SLn(R) decomposes into a product of elementary matrices if and only it is
null-homotopic. In Gromov’s seminal paper on the Oka principle, the starting point of modern
Oka theory, he asks this question for the ring of complex-valued holomorphic functions (he calls
it the Vaserstein problem, see [11, p. 886]). Ivarsson and Kutzschebauch [14] were able to give a
positive answer to this problem in full generality.

The same question for the symplectic group Sp2n(R) hasn’t been studied to the same degree.
Again, there is a positive answer for the ring C[z], since this is an Euclidean ring. For n ≥ 2,
Kopeiko [20] proved it for the polynomial ring R = k[z1, ..., zm]; and Grunewald, Mennicke and
Vaserstein [12] for the ring R = Z[z1, ..., zm]. In [16], Ivarsson, Kutzschebauch and Løw prove
it for every commutative ring R with identity and bass stable rank sr(R) = 1. Furthermore,
they show that, for the ring R = C(X) of complex-valued continuous functions on a normal
topological space, a matrix in Sp2n(C(X)) can be decomposed into a product of elementary
matrices if and only it is null-homotopic; we call this the Continuous Vaserstein problem for
symplectic matrices. The same authors [17] show a similar result in the case of Sp4(O(X)),
where O(X) denotes the ring of holomorphic functions on a reduced Stein space X. In this
thesis, we see a full solution for Sp2n(O(X)) for n ≥ 1, the Holomorphic Vaserstein problem for
symplectic matrices.

We call a (2n × 2n)-matrix M symplectic if it satisfies MTΩM = Ω with respect to the
skew-symmetric matrix

Ω =

(
0 In
−In 0

)
,

where In denotes the n×n-identity matrix and 0 the n×n-zero matrix. For symmetric matrices
A ∈ Cn×n, i.e. AT = A, matrices of the form(

In A
0 In

)
and

(
In 0
A In

)
are symplectic and we call them elementary symplectic matrices. For simplicity reasons, let’s

identify the space of symmetric matrices Symn(C) = {A ∈ Cn×n : AT = A} with C
n(n+1)

2 .

1



Theorem 0.0.1 (Main theorem). There exists a natural number K = K(n, d) such that given
any finite dimensional reduced Stein space X of dimension d and any null-homotopic holomorphic
mapping f : X → Sp2n(C) there exist a holomorphic mapping

G = (G1, ..., GK) : X → (C
n(n+1)

2 )K

such that

f(x) =

(
In 0

G1(x) In

)(
In G2(x)
0 In

)
· · ·
(

In 0
GK−1(x) In

)(
In GK(x)
0 In

)
, x ∈ X.

It is immediate that any product of elementary symplectic matrices is connected by a path
to the constant identity matrix I2n, by multiplying the off-diagonal entries by t ∈ [0, 1], i.e.(

In tA
0 In

)
or

(
In 0
tA In

)
.

Therefore the requirement of null-homotopy of the map f is neccessary. Also, in general, we
cannot expect the mapping to be null-homotopic, as the following example shows.

Example 0.0.2. For X = Sp2(C) the identity map

Sp2(C)→ Sp2(C)

is not null-homotopic, since Sp2(C) is not contractible.

0.1 Strategy of proof

There are basically two main ingredients for the proof. In a first step, one proves a continuous
version of the theorem (we also call this the Continuous Vaserstein problem for symplectic
matrices - see Theorem 2.1.1). Once this is shown, we want to apply an Oka principle,
which allows us, very roughly speaking, to deform the continuous solution into a holomorphic
one. But one step at a time. Let’s introduce the elementary symplectic matrix mapping

Mk : C
n(n+1)

2 → Sp2n(C) by

Mk(Z) =



(
In Z

0 In

)
if k = 2l(

In 0

Z In

)
if k = 2l + 1

and then define the mapping ΨK : (C
n(n+1)

2 )K → Sp2n(C) by

ΨK(Z1, ..., ZK) = M1(Z1)M2(Z2) · · ·MK(ZK).

As already said, Ivarsson, Kutzschebauch and Løw [16] solved the Continuous Vaserstein problem
for symplectic matrices. In fact, there is a natural number K = K(n, d) such that given any
finite dimensional normal topological space Y of dimension d and any null-homotopic continuous

mapping f : Y → Sp2n(C) there exists a continuous mapping F : Y → (C
n(n+1)

2 )K such that the
diagram

(C
n(n+1)

2 )K

Y Sp2n(C)

ΨKF

f

2



commutes. Unfortunately, the mapping ΨK is not a submersion and, in addition, the fibers are
difficult to analyse. We therefore consider ΦK := π2n ◦ΨK , where π2n denotes the projection of
a (2n× 2n)-matrix to its last row. We obtain the commutative diagram

(C
n(n+1)

2 )K

Y C2n \ {0}.

ΦK=π2n◦ΨKF

π2n◦f

The mapping ΦK is surjective for K ≥ 3 (see Theorem 3.1.2) and it is submersive outside some

set of singularities SK ⊂ (C
n(n+1)

2 )K (see Theorem 3.1.1). We will find an open submanifold

EK ⊂ (C
n(n+1)

2 )K \ SK such that ΦK |EK : EK → C2n \ {0} is a stratified elliptic submersion (see
section 3). Further, the Continuous Vaserstein problem for symplectic matrices allows us, for
a given any null-homotopic continuous mapping f : Y → Sp2n(C), to construct a continuous
section F : Y → EK such that

EK

Y C2n \ {0}

ΦK
F

π2n◦f

commutes (see Theorem 2.2.3). Then, an application of the Oka principle allows us, roughly
speaking, to homotopically deform F into a holomorphic mapping, such that the above diagram
commutes.

0.2 Organisation of the thesis

The organisation of this thesis is as follows. The first chapter contains notations and definitions
of elementary terms. For example, it includes a section on the symplectic group and some
important results for the factorization of a symplectic matrix. In addition, we look at essential
concepts of complex geometry such as Stein spaces, complete holomorphic vector fields and, of
course, the Oka principle.

In the second chapter we prove the Main theorem under the assumption that the Oka
principle can be applied. To do this, we will first state the continuous Vaserstein problem and
see a sketch of the proof. Then we conclude the holomorphic Vaserstein problem by applying
the Oka principle.

The third chapter is dedicated solely to the question of whether the Oka principle can
actually be applied. We will clarify all the necessary details and construct stratified sprays.
The climax is represented by the Spanning theorem. In its proof we carry out a nice induction,
although technically demanding, and successively find a finite set of globally integrable vector
fields which spans the tangent bundle of the fibers Φ−1

K (x).
In the fourth chapter we see some interesting applications. The question of the number of

factors is addressed. In general, this turns out to be extremely difficult. We state some known
results from [15] for SLn(O(X)). In addition, we can specify a result from the mentioned paper
and find an optimal bound (see section ’Continuous vs. holomorphic factorization’). Then we
show that the number of factors decreases monotonically as n increases. This can be done using
Chevalley group theory (see section ’On the number of factors’). Last but not least, we deal
with the question of the density property of the smooth fibers Φ−1

K (x) in section ’Fibers with
density property’.

An appendix follows in which some concrete calculations can be found and are intended to
support the proof of the Spanning theorem.
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1 Preliminaries

In the first section we introduce the symplectic group. We clarify our understanding of an
elementary symplectic matrix and we will see some basic properties.

Then we introduce some basic notions of complex analytic geometry in the sections 1.2 -
1.6, as for instance complex manifolds, Stein spaces and holomorphic vector fields, following the
book [8].

1.1 The symplectic group

Let R be a commutative ring with 1 and let R∗ denote the group of units. For a positive
integer n ∈ N = {1, 2, 3, ...}, let Rn denote the n-dimensional R-module and Mn(R) the ring of
n× n-matrices over the ring R. We let AT denote the transpose of a matrix A. Matrices with
AT = A (resp. AT = −A) are called symmetric (resp. skew-symmetric).

Define the skew-symmetric (2n× 2n)-matrix

Ω =

(
0 In
−In 0

)
,

where In denotes the n× n-identity matrix and 0 the n× n-zero matrix.

Definition 1.1.1 (Symplectic matrix). A matrix M ∈M2n(R) over the ring R is symplectic
if it satisfies the symplectic condition

MTΩM = Ω.

The set of symplectic matrices (over R) is denoted by Sp2n(R).

Remark 1.1.2. The symplectic matrices Sp2n(R) equipped with matrix multiplication forms an
algebraic group.

Taking the determinant of the defining equation yields det(M)2 = 1, hence

Sp2n(R) ⊂ GL2n(R),

where GL2n(R) denotes the general linear group, the set of invertible (2n× 2n)-matrices over R.
Moreover, Sp2n(R) equipped with matrix-multiplication and inversion is an algebraic group.

Sometimes it’s useful to write a symplectic matrix M ∈ Sp2n(R) in block notation

M =

(
A B
C D

)
(1.1)

for some n× n matrices A,B,C and D in Mn(R). The symplectic conditions are given by the
equations

ATC = CTA (SC.1)

BTD = DTB (SC.2)

ATD − CTB = In. (SC.3)

Here is an interesting alternative definition of a symplectic matrix.

5



Lemma 1.1.3. A matrix M ∈M2n(R), given in block notation (1.1), is symplectic if and only
if its inverse is given by

M−1 =

(
DT −BT

−CT AT

)
. (1.2)

Proof. The symplectic conditions (SC.1) - (SC.3) are satisfied if and only if M−1M = I2n.

Lemma 1.1.4. The symplectic group Sp2n(R) is closed under matrix transposition.

Proof. Let M be a symplectic matrix. Then its inverse M−1 is symplectic too, hence

(M−1)TΩM−1 = Ω.

Next, we compute the inverse of this equation. Observe that Ω−1 = −Ω. We get

−Ω =
(
(M−1)TΩM−1

)−1
= − (M−1)−1︸ ︷︷ ︸

=M=(MT )T

Ω ((M−1)T )−1︸ ︷︷ ︸
=MT

= −(MT )TΩMT .

Therefore, the transpose MT is symplectic.

An elementary symplectic matrix is either of the form(
In B
0 In

)
(E.1)

where B is symmetric (BT = B) or of the form(
In 0
C In

)
(E.2)

where C is symmetric. Products of matrices of the first type (E.1) are additive in B. More
precisely, for any pair of symmetric matrices B1 and B2, we have(

In B1

0 In

)(
In B2

0 In

)
=

(
In B1 +B2

0 In

)
.

Analogously, products of matrices of the second type (E.2) are additive in C. Special cases are
the matrices Eij(a) when B is the matrix with a in position ij and ji and otherwise zero. For
Fij(a) the roles of B and C are changed. Clearly any elementary matrix of the first type is a
product of matrices Eij(bij) for i ≤ j and similarly for the second type.

We also introduce the elementary symplectic matrices Kij(a) defined by B = C = 0 and
A = In except in position ij where there is an a. Finally, D = (AT )−1. This equals In except in
position ji where there is −a if i 6= j and a−1 if i = j (this requires a ∈ R∗).

The following lemma shows, that the elementary symplectic matrices of the third type can
be decomposed into a finite product of elementary symplectic matrices of the first two types.

Lemma 1.1.5 (Whitehead’s lemma). We have

Kii(a) = Eii(a− 1)Fii(1)Eii(a
−1 − 1)Fii(−a), a ∈ R∗,

and if i 6= j, then

Kij(a) = Fjj(−a)Eij(1)Fjj(a)Eii(a)Eij(−1), a ∈ R.

6



1.1.1 On the factorization of a symplectic matrix

Let M ∈ Sp2n−2(R) be a symplectic matrix in block notation 1.1, that is,

M =

(
A B
C D

)
where A,B,C,D ∈ Mn−1(R) are (n− 1)× (n− 1)-matrices with entries in the ring R. Then
the mapping ψ : Sp2n−2(R)→M2n(R) given by

ψ(M) =


A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

 ∈ Sp2n(R)

defines a natural inclusion Sp2n−2(R)→ Sp2n(R).
Moreover, let ρ : M2n(R)→M2n−2(R) be the projection obtained by removing columns and

rows n and 2n, i.e.

ρ

 a11 · · · a1,2n

...
...

a2n,1 · · · a2n,2n

 =



a11 · · · a1,n−1 a1,n+1 · · · a1,2n−1

...
...

...
...

an−1,1 · · · an−1,n−1 an−1,n+1 · · · an−1,2n−1

an+1,1 · · · an+1,n−1 an+1,n+1 · · · an+1,2n−1

...
...

...
...

a2n−1,1 · · · a2n−1,n−1 a2n−1,n+1 · · · a2n−1,2n−1


.

Observe that ρ ◦ ψ(M) = M , that is, ρ projects ψ(Sp2n−2(R)) into Sp2n−2(R). We can
even relax the sufficient conditions on the matrix M ∈ Sp2n(R) such that its projection
ρ(M) ∈ Sp2n−2(R) is symplectic.

Lemma 1.1.6. Let M ∈ Sp2n(R) be a symplectic matrix of the form

M =

(
? ?
0 1

)
.

Then the projection ρ(M) ∈ Sp2n−2(R) is a symplectic matrix.

Proof. By Lemma 1.1.4, the matrix MT is symplectic and of the form(
? 0
? 1

)
.

Let ei ∈ R2n denote the element with a 1 in entry i and zeros elsewhere. Then

en = Ωe2n = MΩMT e2n︸ ︷︷ ︸
=e2n

= M Ωe2n︸︷︷︸
=en

= Men.

Hence the matrix M is even of the form
A 0 B b1

aT 1 bT2 b3

C 0 D d
0 0 0 1

 ,

where A,B,C,D ∈ Mn−1(R) and a, b1, b2, d ∈ Rn−1, as well as b3 ∈ R. A simple calculation
proves that

ρ(M) =

(
A B
C D

)
satisfies the symplectic conditions (SC.1)-(SC.3).
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Lemma 1.1.7. Let M ∈ Sp2n(R) be a symplectic matrix of the form

M =

(
? ?
0 1

)
.

Then

M =


In−1 0 0 b
aT 1 bT β
0 0 In−1 −a
0 0 0 1

ψ(ρ(M))

for some a, b ∈ Rn−1 and β ∈ R.

Proof. By the previous lemma, the matrix M is of the form
A 0 B b1

aT 1 bT2 b3

C 0 D d
0 0 0 1

 ,

for some A,B,C,D ∈Mn−1(R) and a, b1, b2, d ∈ Rn−1, as well as b3 ∈ R. The projection ρ(M)
is symplectic and by Lemma 1.2, the inverse of ψ(ρ(M)) is given by

DT 0 −BT 0
0 1 0 0
−CT 0 AT 0

0 0 0 1

 .

Therefore we obtain

Mψ(ρ(M))−1 =


A 0 B b1

aT 1 bT2 b3

C 0 D d
0 0 0 1



DT 0 −BT 0
0 1 0 0
−CT 0 AT 0

0 0 0 1



=


ADT −BCT 0 −ABT +BAT b1

aTDT − bT2CT 1 −aTBT + bT2A
T b3

CDT −DCT 0 −CBT +DAT d
0 0 0 1



=


In−1 0 0 b1

aTDT − bT2CT 1 −aTBT + bT2A
T b3

0 0 In−1 d
0 0 0 1


and for the last equation we simply applied the symplectic conditions (SC.1)-(SC.3). Another
application of these conditions yields

aTDT − bT2CT = −dT and − aTBT + bT2A
T = bT1 .

This proves the claim.

Lemma 1.1.8 (2nd Whitehead lemma). Given a, b ∈ Rn−1 and β ∈ R, the matrix
In−1 0 0 b
aT 1 bT β
0 0 In−1 −a
0 0 0 1

 ∈M2n(R)

can be written as a product of four elementary symplectic matrices.
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Proof. Let A,B,C,D ∈Mn(R) be symmetric matrices. Then(
In 0
A In

)(
In B
0 In

)(
In 0
C In

)(
In D
0 In

)
=

(
In +BC B + (In +BC)D

A(In +BC) + C AD + (In + AB)(In + CD)

)

Choosing B =

(
0 0
0 1

)
and C =

(
0 a
aT 0

)
, we get

In +BC =

(
In−1 0
aT 1

)
.

This matrix is obviously regular and its inverse is obtained if we replace aT by −aT .
Then, we request 0 = A(In +BC) + C, which is satisfied if and only if

A = −C(In +BC)−1 =

(
0 −a
−aT 0

)(
In−1 0
−aT 1

)
=

(
aaT −a
−aT 0

)
.

Finally, we want (
0 b
bT β

)
= B + (In +BC)D

which is the case if and only if

D =

(
In−1 0
−aT 1

)(
0 b
bT β − 1

)
=

(
0 b
bT β − 1− aT b

)
.

The last block of equations is automatically satisfied because of the symplectic conditions. This
proves the claim.

The following corollary is the foundation for induction in the factorization.

Corollary 1.1.9. Let M ∈ Sp2n(R) a symplectic matrix and suppose that there are finitely
many elementary symplectic matrices E1, ..., Ek ∈ Sp2n(R) such that

A := ME1 · · ·Ek =

(
? ?
0 1

)
.

Then M can be decomposed into a finite product if and only if ρ(A) can be decomposed into a
finite product.

1.2 Complex manifolds and holomorphic mappings

We let R and C denote the field of real and complex numbers, respectively. The model n-
dimensional complex manifold is the Euclidean space Cn. Let z = (z1, ..., zn) ∈ Cn denote the
coordinates on Cn. Write zj = xj + iyj, where xj, yj ∈ R and i =

√
−1. Given a differentiable

complex valued function f : D → C on a domain D ⊂ Cn, the differential df splits as the sum
of the C-linear part ∂f and the C-antilinear part ∂̄f :

df = ∂f + ∂̄f =
n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z̄j
dz̄j.

9



Here dzj = dxj + idyj, dz̄j = dxj − idyj, and

∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
,

∂f

∂z̄j
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
.

The function f is holomorphic on D if df = ∂f on D; that is, the differential dfz is C-linear at
every point z ∈ D. Equivalently, f is holomorphic if and only if ∂̄f = 0, and this is equivalent
to the n equations

∂f

∂z̄j
= 0, j = 1, ..., n.

A mapping f = (f1, f2, ..., fm) : D → Cm is holomorphic if each component function fj is
such. When m = n, f is biholomorphic onto its image D′ = f(D) ⊂ Cn if it is bijective and its
inverse f−1 : D′ → D is holomorphic. An injective holomorphic map of a domain D ⊂ Cn to
Cn is always biholomorphic onto its image [10, p.19].

A topological manifold of dimension n is a second countable Hausdorff topological space
which is locally Euclidean, in the sense that each point has an open neighborhood homeomorphic
to an open set in Rn. Such a space is metrizable, countably compact and paracompact.

Assume now that X is a topological manifold of even dimension 2n. A complex atlas on
X is a collection U = {(Uα, φα)}α∈A, where {Uα}α∈A is an open cover of X and φα is aa
homeomorphism of Uα onto an open subset U ′α in R2n = Cn such that for every pair of indices
α, β ∈ A the transition map

φα,β = φα ◦ φ−1
β : φβ(Uα,β)→ φα(Uα,β)

is biholomorphic. Here Uα,β = Uα ∩ Uβ. An element (Uα, φα) of a complex atlas is called a
complex chart, or a local holomorphic coordinate system on X. We also say that charts in a
complex atlas are holomorphically compatible. For any three indices α, β, γ ∈ A we have

φα,α = Id, φα,β = φ−1
β,α, φα,β ◦ φβ,γ = φα,γ

on the respective domains of these maps. Two complex atlases U ,V on a topological manifold
X are said to be homotopically compatible if their union U ∪ V is also a complex atlas. This is
an equivalence relation on the set of all complex atlases on X. Each equivalence class contains
a unique maximal complex atlas - the union of all complex atlases in the given class.

A complex manifold of complex dimension n is a topological manifold X of real dimension 2n
equipped with a complex atlas. Two complex atlases determine the same complex structure on
X if and only if they are holomorphically compatible. A complex manifold of dimension n = 1
is called a Riemann surface and a complex surface is a complex manifold of dimension n = 2.

A function f : X → C on a complex manifold is said to be holomorphic if for any chart
(U, φ) from the maximal atlas on X the function f ◦ φ−1 : φ(U) → C is holomorphic on the
open set φ(U) ⊂ Cn. We let O(X) denote the Fréchet algebra of all holomorphic functions on
X with the compact-open topology.

Let X and Y be complex manifolds of dimensions n and m, respecively. A continuous map
f : X → Y is said to be holomorphic if for any point x ∈ X there are complex charts (U, φ) on
X and (V, ψ) on Y such that p ∈ U , f(U) ⊂ V , and the map ψ ◦f ◦φ−1 : φ(U)→ ψ(V ) ⊂ Cm is
holomorphic on the open set φ(U) ⊂ Cn. Since the charts in a complex atlas are holomorphically
compatible, the choice of charts is not important.

A map f : X → Y is biholomorphic if it is bijective and if both f and its inverse f−1 : Y → X
are holomorphic. Note that a bijective holomorphic map between complex manifolds is actually
biholomorphic.

A biholomorphic self-map f : X → X is called a holomorphic automorphism of X; the
collection of all automorphisms is the holomorphic automorphism group Aut(X) = Authol(X).

10



Let X be a complex manifold of dimension n. A subset M of M is a complex submanifold
of dimension m ∈ {0, ..., n} (and codimension d = n − m) if every point p ∈ M admits an
open neighborhood U ⊂ X and a holomorphic chart φ : U → U ′ ⊂ Cn such that φ(U ∩M) =
U ′ ∩ (Cm × {0}n−m).

1.3 Subvarieties and complex spaces

Let X be a complex manifold. We let Ox = OX,x denote the ring of germs of holomorphic
functions at a point x ∈ X. A germ [f ]x ∈ Ox is represented by a holomorphic function in
an open neighborhood of x; two such functions determine the same germ at x if and only
if they agree in some neighborhood of x. The ring OX,x is isomorphic to the ring OCn,0 via
any holomorphic coordinate map sending x to 0. We can identify OCn,0 with the ring of
convergent power series in n complex variables (z1, ..., zn). This ring is Noetherian and a unique
factorization domain. Its units are precisely the germs that do not vanish at 0. The disjoint
union OX = ∪x∈XOX,x is equipped with the topology whose basis is given by sets {[f ]x : x ∈ U},
where f : U → C is a holomorphic function on an open set U ⊂ X. This makes OX into a sheaf
of commutative rings, called the sheaf of germs of holomorphic functions.

A subset A of a complex manifold X is a complex (analytic) subvariety of X if for every
point p ∈ A there exists a neighborhood U ⊂ X of p and functions f1, ..., fd ∈ O(U) such that

A ∩ U = {x ∈ U : f1(x) = 0, ..., fd(x) = 0}.

If such A is topologically closed in X then A is a closed complex subvariety of X. Since the
local ring Ox is Noetherian, a subset of X that is locally defined by infinitely many holomorphic
equations is still a subvariety and can be locally defined by finitely many equations.

A point p in a subvariety A is a regular (or smooth) point if A is a complex submanifold
near p; the set of all regular points is denoted Areg. A point p ∈ A \ Areg = Asing is a singular
point of A.

A reduced complex space is a pair (X,OX), where X is a paracompact Hausdorff topological
space and OX is a sheaf of rings of continuous functions on X (a subsheaf of the sheaf CX of
germs of continuous functions) such that for every point x ∈ X there is a neighborhood U ⊂ X
and a homeomorphism φ : U → A ⊂ Cn onto a locally closed complex subvariety of Cn so that
the homeomorphism φ∗ : CA → CX , f 7→ f ◦ φ, induces an isomorphism of OA onto OU = OX |U .
Intuitively speaking, X is obtained by gluing pieces of subvarieties in Euclidean spaces using
biholomorphic transition maps.

Let (X,OX) and (Y,OY ) be complex spaces. A continuous map f : X → Y is said to
be holomorphic if for every x ∈ X the composition CY,f(x) 3 g 7→ g ◦ f ∈ CX,x defines a
homomorphism f ∗x : OY,f(x) → OX,x.

Definition 1.3.1 (Submersion). Let Z and X be reduced complex spaces. A holomorphic
map π : Z → X is a holomorphic submersion if for every point z0 ∈ Z there exist an open
neighborhood V ⊂ Z of z0, an open neighborhood U ⊂ X of x0 = π(z0), an open set W in Cp,
and a biholomorphic map φ : V → U ×W such that pr1 ◦ φ = π. (Here pr1 : U ×W → U is the
projection on the first factor). Each such local chart φ will be called adapted to π.

Definition 1.3.2 (Stratification). A stratification of a finite dimensional complex space X is a
finite descending sequence

X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅

of closed complex subvarieties such that each connected component S (stratum) of a difference
Xk \Xk+1 is a complex manifold and S̄ \ S ⊂ Xk+1.

11



1.4 Tangent bundle and vector fields

We assume that the reader is familiar with the construction of the real tangent bundle TX of a
smooth manifold X. A tangent vector Vx ∈ TxX is viewed as a derivation C∞x 3 f 7→ Vx(f) ∈ R
on the algebra of germs of smooth functions at x. Sections X → TX are called vector fields on
X. The complexification CTX = TX ⊗ C of TX is the complexified tangent bundle of X; its
sections are called complex vector fields on X.

Assume now that X is a complex manifold. There is a unique real linear endomorphism J ∈
EndRTX, called the almost complex structure operator, which is given in any local holomorphic
coordinate system z = (z1, ..., zn) on X by

J
∂

∂xj
=

∂

∂yj
, J

∂

∂yj
= − ∂

∂xj
.

The operator J extends to CTX by J(v⊗α) = J(v)⊗α for v ∈ TX and α ∈ C. From J2 = −Id
we infer that the eigenvalues of J are +i and −i. Hence we have a decomposition

CTX = T 1,0X ⊕ T 0,1X

into the +i eigenspace T 1,0X and the −i eigenspace T 0,1X of J . In holomorphic coordinates
z = (z1, ..., zn) on an open subset U ⊂ X we have

T 1,0X|U = SpanC

{
∂

∂z1

, ...,
∂

∂zn

}
, T 0,1X|U = SpanC

{
∂

∂z̄1

, ...,
∂

∂z̄n

}
,

where

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

We have an R-linear isomorphism Φ : TX → T 0,1X given by

Φ(V ) =
1

2
(V − iJV ).

In local coordinates the isomorphism Φ is given by

Φ :
n∑
j=1

(
aj

∂

∂xj
+ bj

∂

∂yj

)
7→

n∑
j=1

(aj + ibj)
∂

∂zj
.

Definition 1.4.1. A real vector field V on X is said to be holomorphic if Φ(V ) = 1
2
(V − iJV )

is a holomorphic section of T 1,0X.

Definition 1.4.2 (C-complete vector field). Let X be a complex manifold. A holomorphic
vector field V on X is called C-complete if for each x ∈ X, the initial value problem

φ0(x) = x,
d

dt
φt(x) = V (φt(x))

can be solved in complex time t ∈ C; the map φt : X → X is called vector flow of V .
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1.5 Stein spaces and Stein manifolds

Definition 1.5.1 (Stein manifold). Suppose X is a complex manifold of complex dimension n
and let O(X) denote the ring of holomorphic functions on X. We call X a Stein manifold if
the following conditions hold:

(i) X is holomorphically convex, i.e. for every compact subset K ⊂ X, the holomorphically
convex hull

K̂ =

{
x ∈ X : |f(x)| ≤ sup

w∈K
|f(w)| ∀f ∈ O(X)

}
,

is also a compact subset of X.

(ii) X is holomorphically separable, i.e. if x 6= y are two points in X, then there exists
f ∈ O(X) such that f(x) 6= f(y).

(iii) For every point p ∈ X there exist functions f1, ..., fn ∈ O(X), whose differentials dfj are
C-linearly independent at p.

Remark 1.5.2. Property (iii) is redundant in the sense that it follows from properties (i) and
(ii) because of Cartan’s Theorem A.

Examples:

• Cn is Stein.

• Every closed complex submanifold of a Stein manifold is Stein.

• The Cartesian product X × Y of two Stein manifolds X, Y is Stein.

• Stein manifolds are non-compact: holomorphic functions on a compact manifold are
constant by the maximum principle and hence they don’t separate points.

Definition 1.5.3 (Stein space). A second countable complex space X is a Stein space if it
satisfies properties (i), (ii) in Definition 1.5.1 and also

(iii’) Every local ring OX,x is generated by functions in O(X).

Condition (iii’) means that there is a holomorphic map X → CN which embeds a neighbor-
hood of x as a local complex subvariety of CN .

1.6 Elliptic Complex-geometry and Oka principle

The Oka principle is a powerful tool. Roughly speaking, it allows us to homotopically deform a
continuous mapping into a holomorphic one in certain situations. We want to make this more
precise in this section and therefore introduce some definitions and terminologies.

Let’s start with the notion of a stratified elliptic submersion h : Z → X from a complex
space Z onto a complex space X, following [11] and [7].

Let h : Z → X be a holomorphic submersion of a complex manifold Z onto a complex
manifold X. For any x ∈ X the fiber over x of this submersion will be denoted by Zx. At each
point z ∈ Z the tangent space TzZ contains the vertical tangent space V TzZ = kerDh. For
holomorphic vector bundles p : E → Z we let 0z denote the zero element in the fiber Ez.
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Definition 1.6.1. Let h : Z → X be a holomorphic submersion of a complex manifold Z onto
a complex manifold X. A spray on Z associated with h is a triple (E, p, s), where p : E → Z is
a holomorphic vector bundle and s : E → Z is a holomorphic map such that for each z ∈ Z we
have

(i) s(Ez) ⊂ Zh(z),

(ii) s(0z) = z, and

(iii) the derivative Ds(0z) : T0zE → TzZ maps the subspace Ez ⊂ T0zE surjectively onto the
vertical tangent space V TzZ.

Remark 1.6.2. We will also say that the submersion admits a spray. A spray associated with
a holomorphic submersion is sometimes called a (fiber) dominating spray.

One way of constructing dominating sprays, as pointed out by Gromov, is to find finitely
many C-complete vector fields that are tangent to the fibers and span the tangent space of
the fibers at all points in Z. One can then use the flows ϕtj of these vector fields Vj to define

s : Z × CN → Z via s(z, t1, . . . , tN) = ϕt11 ◦ · · · ◦ ϕ
tN
N (z) which gives a spray.

Definition 1.6.3. We say that a submersion h : Z → X is stratified elliptic if there is a
descending chain of closed complex subspaces X = Xm ⊃ · · · ⊃ X0 such that each stratum
Yk = Xk \Xk−1 is regular and the restricted submersion h : Z|Yk → Yk admits a spray over a
small neighborhood of any point x ∈ Yk.

Remark 1.6.4. We say that the submersion admits stratified sprays and that the stratification
X = Xm ⊃ · · · ⊃ X0 is associated with the stratified spray.

Let’s consider the following diagram

P0 ×X E

P ×X B

incl

F

π
F

f

Here π : E → B is a holomorphic submersion of a complex space E onto a complex space
B, X is a Stein space, P0 ⊂ P are compact Hausdorff spaces (the parameter spaces), and
f : P ×X → B is an X-holomorphic map, meaning that f(p, ·) : X → B is holomorphic on X
for every fixed p ∈ P . A map F : P ×X → E such that π ◦ F = f is said to be a lifting of f ;
such F is X-holomorphic on P0 if F (p, ·) is holomorphic for every p ∈ P0.

Definition 1.6.5. A holomorphic map π : E → B between reduced complex spaces enjoys
the Parametric Oka Property (POP) if for any collection (X,X ′, K, P, P0, f, F0) where X is a
reduced Stein space, X ′ is a closed complex subvariety of X, P0 ⊂ P are compact Hausdorff
spaces, f : P ×X → B is an X-holomorphic map, and F0 : P ×X → E is a continuous map
such that π ◦ F = f , the map F0(p, ·) is holomorphic on X for all p ∈ P0 and is holomorphic on
K ∪X ′ for all p ∈ P , there exists a homotopy Ft : P ×X → E such that the following hold for
all t ∈ [0, 1]:

(i) π ◦ Ft = f ,

(ii) Ft = F0 on (P0 ×X) ∪ (P ×X ′),

(iii) Ft is X-holomorphic on K and uniformly close to F0 on P ×K, and

(iv) the map F1 : P ×X → E is X-holomorphic.
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The following version of the Oka principle has first been shown for Euclidean compact
parameter spaces P by Forstneric. A proof can be found in [8, Corollary 6.14.4 (i)]. Kusakabe
has shown (see [21, Corollary 5.7]) that it holds even more generally for compact Hausdorff
parameter spaces.

Theorem 1.6.6 (Oka principle). Every stratified elliptic submersion enjoys POP.

1.6.1 Construction of a dominating spray

In the previous section we saw one way to construct a dominating spray associated to a
submersion (see paragraph before Definition 1.6.3). Namely, we define some finite composition
of flow maps of complete fiber-preserving vector fields. It turns out that in practice it can be
difficult to find enough C-complete fiber-preserving vector fields that span the tangent space of
the fibers at all points. In the following section we develop a strategy to solve these difficulties.

Let M be a Stein manifold and let VChol(M) denote the set of C-complete holomorphic
vector fields on M . For a vector field V ∈ VChol(M) its corresponding flow αVt , t ∈ C, is a
one-parameter subgroup of Authol(M), the holomorphic automorphism group on M . For a set
A ⊂ VChol(M) of complete holomorphic vector fields on M we define

SA :=
⋃
V ∈A

{αVt : t ∈ C} ⊂ Authol(M).

Let GA := 〈SA〉 denote the subgroup generated by SA. Furthermore, we let α∗θ denote the
pull-back of a vector field θ by an automorphism α.

Definition 1.6.7. For a set A ⊂ VChol(M) of complete holomorphic vector fields on M , define

Γ(A) := {α∗X : α ∈ GA, X ∈ A}

the collection of complete holomorphic vector fields generated by A, and for an open set Y ⊂M
define

CA(Y ) := {α(y) : α ∈ GA, y ∈ Y }
the GA-closure of Y .

Some basic properties follow directly from the definition. Let Y ⊂M be an open set. Then
CA(Y ) is the smallest set containing Y , which is invariant under GA. Moreover, CA(Y ) is open in
M , hence, for a fixed collection A ⊂ VChol(M), CA can be interpreted as a map CA : TM → TM ,
where TM denotes the natural topology on M . In particular, CA satisfies the conditions of a
topological closure operator.

The following lemma describes another basic property.

Lemma 1.6.8. Let A,B ⊂ VChol(M) be finite collections of complete holomorphic vector fields
on M with A ⊂ B ⊂ Γ(A). Then CA(X) = CB(X) for all open subsets X ⊂M .

Proof. We’re going to prove that GA = GB. To do this, it suffices to show that GB ⊂ GA, since
the reverse inclusion trivially holds by assumption A ⊂ B.

At first, we consider V ∈ B. There is β ∈ GA and W ∈ A with V = β∗W , since B ⊂ Γ(A).
The flow of V satisfies

αVt = αβ
∗W
t = β ◦ αWt ◦ β−1 ∈ GA,

since β, αWt ∈ GA.
In a next step, let β ∈ GB be any automorphism. By definition of GB, there are vector fields

Vi1 , ..., Vim ∈ B and times t1, ..., tm ∈ C with β = α
Vi1
t1 ◦ · · · ◦ α

Vim
tm . From the previous step we

know that each α
Vij
tj ∈ GA is an automorphism in GA and hence so is β, i.e. β ∈ GA and this

proves the claim.
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Before clarifying the technical details, let us use a simple example to explain the basic idea
of suitably extending a given collection of vector fields so that the new collection spans the
tangent space of a manifold over a larger set of points.

Consider a Stein manifold M and suppose that there is finite collection A ⊂ VChol(M) which
spans the tangent space TxM for all points x ∈M \ N outside some analytic subset N ⊂M .
Let x0 ∈ N be some point and assume that there is a vector field V ∈ VChol(M) whose flow αVt
through x0 leaves the set N . For some fixed time t ∈ C the map F := αVt is an automorphism
of M with F (x0) ∈M \ N . Hence the collection A spans the tangent space TF (x0)M . Now we
pull the vector fields in A back with the automorphism F , add them to the collection A and
obtain a larger collection which spans the tangent space Tx0M in x0 ∈ N .

A
F ∗A

N

M

x0

F (x0)

V

αVt

So much for the idea. Now we have to make sure that this idea is applicable in a finite process.
The following result represents the main step for this.

Lemma 1.6.9. Let M be a Stein manifold, X ⊂M an open subset and A ⊂ VChol(M) a finite
set of C-complete holomorphic vector fields on M which spans the tangent bundle TX. Then
there is a finite subset A ⊂ B ⊂ Γ(A) which spans the tangent bundle TCA(X).

Proof. For each field V ∈ A let αVt , t ∈ C, be the corresponding vector flow. Let N0 be the
set of points x ∈ CA(X) where the fields of A don’t span the tangent space TxM . This is an
analytic subset N0 ⊂ CA(X) \X. Further, we define

Nk := {x ∈ Nk−1 : αVt (x) ∈ Nk−1,∀V ∈ A,∀t ∈ C}, k ≥ 1.

Let k ≥ 0 be arbitrary but fixed. Then Nk has at most countably many connected components.
Let Aki , i ∈ Ik, denote those connected components of Nk which aren’t entirely contained
in Nk+1 and let ak := maxi∈Ik dimAki be the maximal dimension of them. Choose a point
xki ∈ Aki ∩ Nk \ Nk+1, i ∈ Ik, of each such component. By definition of the sets Nk and Nk+1,
there is a field V ∈ A for each point x in the sequence {xki }i∈I , such that αVt (x) 6∈ Nk for some
t ∈ C. For V ∈ A define

ukV := {x ∈ {xki }i∈Ik : αVt (x) 6∈ Nk, for some t ∈ C}.
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Then this yields

{xki }i∈Ik =
⋃
V ∈A

ukV .

For each point x ∈ ukV the set {t ∈ C : αVt (x) ∈ Nk} is discrete and hence⋃
x∈ukV

{t ∈ C : αVt (x) ∈ Nk}

is a meagre set in C. This implies the existence of a time tkV ∈ C such that αV
tkV

(x) 6∈ Nk for all

x ∈ ukV . Define
Ñk+1 := {x ∈ Nk : αVtkV

(x) ∈ Nk,∀V ∈ A}.

Clearly,
Nk+1 ⊂ Ñk+1 ⊂ Nk

holds true. The set Ñk+1 has at most countably many connected components. Let ãk+1 denote
the maximal dimension of them. By construction, we have ak+1 ≤ ãk+1 < ak. Since M is finite
dimensional, this implies that there is L ∈ N such that Nk = ∅ for all k > L.

Let Bk be the set of pullbacks (αV
tkV

)∗(W ) for V,W ∈ A and set

B :=
L⋃
k≥0

A ∪Bk.

Again by construction, the collection B ⊂ Γ(A) is a finite set of C-complete holomorphic vector
fields on M that spans the tangent bundle TCA(X). Moreover, CA(X) = CB(X) by the previous
lemma, which implies that CA(X) is invariant under the flows of B. This finishes the proof.

In a next step, we want to adapt this argument to our setting so that we can apply it to
every fiber simultaneously, so to speak. Moreover, we are ready to define a dominating spray.

Lemma 1.6.10. Let M be a Stein manifold, π : M → Y a holomorphic mapping and X ⊂M
a (connected) open subset such that the restriction π|X : X → Y is a surjective submersion with
connected fibers.

Suppose that there is a finite set A ⊂ VChol(M) of C-complete fiber-preserving holomorphic
vector fields on M which spans the tangent bundle T (My ∩ X) of each fiber My := π−1(y).
Then there is a finite set B ⊂ Γ(A) of C-complete fiber-preserving holomorphic vector fields
which spans the tangent bundle T (CA(My ∩X)) of each fiber My. In particular, the surjective
submersion π|CA(X) admits a spray.

Proof. We can proceed similarly as in the previous lemma to obtain a finite collection B ⊂ Γ(A)
which spans the tangent bundle T (CA(My ∩ X)) of each fiber My. This follows from the
assumption that all fields in A are fiber-preserving.

Moreover, the map π|X : X → Y is a surjective submersion, hence π|CA(X) : CA(X)→ Y is
also a surjective submersion. Write B = {W1, ...,WL}. Then the map s : CA(X)×CL → CA(X)
given by

s(z, t1, ..., tL) = αW1
t1 ◦ · · · ◦ α

WL
tL

(z)

is a dominating spray associated to π|CA(X), since CA(X) is invariant with respect to the flows
of W1, ...,WL by Lemma 1.6.8.

This corollary shows that we can relax the assumptions of the previous lemma and we will
apply it in this form later.
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Corollary 1.6.11. Let M be a Stein manifold, π : M → Y a holomorphic map and X ⊂ M
a connected open set such that the restriction π|X is a surjective submersion with connected
fibers. Furthermore, we are given an open subset W ⊂ X and a finite collection A ⊂ VChol(M)
of complete fiber-preserving holomorphic vector fields on M which spans the tangent bundle
T (My ∩W ) of each fiber My.

Suppose that there is a finite collection B ⊂ VChol(M) of complete fiber-preserving holo-
morphic vector fields on M such that X ⊂ CB(W ) and A ⊂ B. Then π|CB(W ) admits a
spray.

Proof. Since B contains A by assumption, B spans the tangent bundle T (My ∩W ) of each fiber,
hence there is a finite collection B̃ ⊂ Γ(B) which spans the tangent bundle T (My ∩ CB(W )) of
each fiber. Since X ⊂ CB(W ) by assumption, B̃ spans the tangent bundle T (My ∩X) for each
fiber. Now, we apply Lemma 1.6.10 to finish the proof.

Remark 1.6.12. Given a finite collection A ⊂ VChol(M) and two open sets X,W ⊂ M with
W ⊂ X, X ⊂ CA(W ) is true if and only if X \W ⊂ CA(W ). This follows from the fact that
CA is extensive, i.e. X ⊂ CA(X) for all open sets X ⊂M .

This lemma will help us decide if we have X ⊂ CA(X) for a suitable finite collection A.

Lemma 1.6.13. Let M be a Stein manifold and N ⊂M an analytic subvariety given by

N := {x ∈M : f(x) = 0}

for some holomorphic mapping f : M → C. Assume that there are complete holomorphic vector
fields V1, ..., Vk on M (and we let α1

t , ..., α
k
t denote the respective flows) such that

Vin ◦ · · · ◦ Vi1(f(x)) 6= 0,∀x ∈ N,

for some finite sequence {i1, ..., in} ⊂ {1, ..., k}. Then there is a composition of the flows
α1
t , ..., α

k
t which leaves the subvariety N . More precisely,

{αintn ◦ · · · ◦ α
i1
t1(x) : t1, ..., tn ∈ C} 6⊂ N, ∀x ∈ N.

Proof. Define the subvariety N1 := {x ∈ N : Vi1(f(x)) = 0}. The orbit of αi1t through points
of N \ N1 is leaving N . Next, define the subvariety N2 := {x ∈ N1 : Vi2(Vi1(f(x))) = 0}.
Then the orbit of αi2t through points of N1 \N2 is leaving N1. We proceed inductively and set
Nl := {x ∈ Nl−1 : Vil ◦ · · · ◦ Vi1(f(x)) = 0}. Then the orbit of αilt through points of Nl−1 \Nl is
leaving Nl−1. This is true for all 1 ≤ l ≤ n− 1, which implies that an invariant set with respect
to the fields V1, ..., Vk has to be in the set Nn. By assumumption, we have Vin ◦· · ·◦Vi1(f(x)) 6= 0.
Hence the set Nn is empty and there is no invariant set in N with respect to the fields V1, ..., Vk.
This proves the claim.
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2 Holomorphic Vaserstein problem for
symplectic matrices

We are interested in decomposing a symplectic matrix into a finite product of elementary
symplectic matrices. In the simplest case the entries are complex numbers - we call this situation
the factorization over C - for which several proofs are known. The standard strategy in linear
algebra is to use a Gauss-Jordan process. Another strategy is provided by Jin, Lin and Xiao
in [18]. They have shown that every symplectic matrix over C can be written by at most five
elementary symplectic matrices. The third strategy comes from K-theory; in a first step, the
last row is solved correctly and then the factorization can be completed by induction (for more
information, see section 1.1.1). The latter will prove most useful for tackling questions like the
following: What if the entries are not just complex numbers, but depend on parameters in some
way, such as algebraically, continuously, or holomorphically? More precisely, what if the entries
are polynomials, continuous or holomorphic functions? We call the corresponding factorization
problems polynomial, continuous and holomorphic factorization, respectively.

It is known that the polynomial factorization for 2-by-2 symplectic matrices is in general
not true (see Cohn [5]): assume that the entries are polynomials C[z, w] in two variables. Then
the matrix (

1− zw −z2

w2 1 + zw

)
cannot be decomposed into a finite product of elementary matrices.

However, if we consider sufficiently large matrices, at least 4-by-4 matrices, then polynomial
factorization is possible: Kopeiko [20] proved it for polynomials k[z1, ..., zm] in several variables
and coefficients in a field k. Grunewald, Mennicke and Vaserstein [12] were even able to prove it
for polynomials Z[z1, ..., zm] with integer coefficients.

We are primarily interested in holomorphic factorization, that is, we require the entries to
be holomorphic functions on some suitable space X. For the proof we orientate ourselves to the
holomorphic factorization problem for the special linear group SLm(O(X)) (Gromov [11] called
it the Vaserstein problem). In 2012, Ivarsson and Kutzschebauch [14] solved this problem by
applying an Oka principle, which roughly states that holomorphic factorization is solvable if
continuous factorization is; and the latter was shown by Vaserstein [23] as early as 1988.

In the first section we will discuss continuous factorization. This was solved by Ivarsson,
Kutzschebauch and Løw [16] in 2020.

In section 2, we will consider important details for the application of the Oka principle and
solve the last row of the matrix M ∈ Sp2n(O(X)) correctly. In other words, we will prove the
existence of elementary symplectic matrices E1, ..., Ek ∈ Sp2n(O(X)) such that

ME1 · · ·Ek =

(
? ?
0 1

)
.

In the third section, we will prove holomorphic factorization by induction on n.
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2.1 Continuous Vaserstein problem for symplectic ma-

trices

Let’s start with the so-called Continuous Vaserstein problem for symplectic matrices. This has
been proved by Ivarsson, Kutzschebauch and Løw ([16, Theorem 1.3]) and is one of the key
ingredients.

Theorem 2.1.1 (Continuous Vaserstein problem for symplectic matrices). There exists a
natural number K(n, d) such that given any finite dimensional normal topological space X of
(covering) dimension d and any null-homotopic continuous mapping M : X → Sp2n(C) there
exist K continuous mappings

G1, . . . , GK : X → Cn(n+1)/2

such that
M(x) = M1(G1(x)) . . .MK(GK(x)).

Sketch of proof. Let Pt : X → Sp2n(C) denote the null-homotopy, i.e. P1 = M and P0 = I. By
a Gram-Schmidt process for symplectic matrices (see [16, Lemma 6.1]), there are elementary
symplectic matrices F1, ..., FL such that

Vt = F1(Pt)F2(Pt) · · ·FL(Pt)Pt

is null-homotopic with values in the compact symplectic group Sp(n) and such that

V1 = F1(M)F2(M) · · ·FL(M)M.

By a result of Calder and Siegel (see [4]), there is a uniform null-homotopy Mt : X → Sp(n)
with

M1 = F1(M) · · ·FL(M)M.

For any integer k ≥ 1, we can write

M1 = (M1M
−1
k−1
k

)(M k−1
k
M−1

k−2
k

) · · · (M 2
k
M−1

1
k

)M 1
k
.

Thus M1 can be seen as a product of k matrices Ni ∈ Sp(n) such that

M1(x) = N1(x) · · ·Nk(x), x ∈ X.

Moreover, the matrices Ni(x) are near the identity for k large enough. By a Gauss-Jordan
process (see [16, Lemma 4.1]), we find N elementary symplectic matrices E1, ..., EN such that

Ni(x) = E1(Ni(x)) · · ·EN(Ni(x))

for all x ∈ X and for all i = 1, ..., k. This implies, that

M(x) = FL(M(x))−1 · · ·F1(M(x))−1

k∏
i=1

N∏
j=1

Ej(Ni(x))

is a product of elementary symplectic matrices depending continuously on x ∈ X.
Theorem 1.3 in [16] does not give a uniform bound on the number of factors depending on n

and d. Suppose such a bound would not exist, i.e., for all natural numbers i there are normal
topological spaces Xi of dimension d and null-homotopic continuous maps fi : Xi → Sp2n(C)
such that fi does not factor over a product of less than i elementary symplectic matrices. Set
X = ∪∞i=1Xi the disjoint union of the spaces Xi and F : X → Sp2n(C) the map that is equal
to fi on Xi. By Theorem 1.3. in [16] F factors over a finite number of elementary symplectic
matrices. Consequently all fi factor over the same number of elementary symplectic matrices
which contradicts the assumption on fi.
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2.2 Application of the Oka principle

Recall the mapping ΨK : (C
n(n+1)

2 )K → Sp2n(C) given by ΨK(Z1, ..., ZK) = M1(Z1) · · ·MK(ZK),

where Mk : C
n(n+1)

2 → Sp2n(C) is defined by

Mk(Z) =



(
In Z

0 In

)
if k = 2l(

In 0

Z In

)
if k = 2l + 1.

Further, recall the map ΦK = π2n ◦ ΨK : (C
n(n+1)

2 )K → C2n \ {0}, where π2n : C2n×2n → C2n

denotes the projection of a 2n× 2n-matrix to its last row.
Define the set

WK :=
{

(Z1, ..., ZK) ∈ (C
n(n+1)

2 )K : Z2i−1en 6= 0 for some 1 ≤ i ≤ dK−1
2
e
}

and let SK ⊂ (C
n(n+1)

2 )K denote the set of points, where the mapping ΦK is not submersive.
The following is another cornerstone in the proof of the main theorem and we will prove it

in the next chapter.

Theorem 2.2.1. For K ≥ 3, there exists an open submanifold EK ⊂ (C
n(n+1)

2 )K satisfying

(i) WK ⊂ EK ⊂ (C
n(n+1)

2 )K \ SK

(ii) the restriction ΦK |EK : EK → C2n \ {0} is a stratified elliptic submersion.

The Oka principle tells us, that ΦK |EK has the Parametric Oka Property, i.e. we get the
following

Corollary 2.2.2 (Application of the Oka principle). Let P be a compact Hausdorff space,
X a finite dimensional reduced Stein space and f : P × X → Sp2n(C) a null-homotopic,
continuous X-holomorphic mapping. Assume there is a natural number K and a continuous
map F : P ×X → EK such that

EK

P ×X C2n \ {0}

ΦK
F

π2n◦f

is commutative. Then there exists a continuous homotopy Ft : P × X → EK with F0 = F ,
π2n ◦ f = ΦK ◦ Ft and such that F1 : P ×X → EK is X-holomorphic.

In a next step, we prove the existence of a natural number K and a continuous lifting
F : P ×X → EK such that the diagram in the corollary commutes. This is where continuous
factorization comes into play.

Theorem 2.2.3 (Existence of a continuous lifting). There exists a natural number L(n, d) such
that given any compact Hausdorff space P , any finite dimensional reduced Stein space X, such
that P × X has covering dimension d, and any null-homotopic, continuous X-holomorphic
mapping f : P ×X → Sp2n(C), there exists a continuous lifting F : P ×X → EL of π2n ◦ f . In
particular, there exists a continuous homotopy Ft : P ×X → EL of liftings of π2n ◦ f , such that
F0 = F and F1 is X-holomorphic.
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Proof. The Continuous Vaserstein problem for symplectic matrices provides us with a natural
number K = K(n, d) such that given any normal topological space Y of dimension d and
any null-homotopic continuous mapping f : Y → Sp2n(C) there exists a continuous lifting

G = (G1, ..., GK) : Y → (C
n(n+1)

2 )K with f = ΨK ◦G. For L = K + 2, we define the mapping

F : Y → (C
n(n+1)

2 )L by
F = (In, 0, G1 − In, G2, ..., GK)

where In denotes the n× n-identity matrix and 0 the n× n-zero matrix. Observe that(
In 0
G1 In

)
=

(
In 0
In In

)(
In 0
0 In

)(
In 0

G1 − In In

)
and therefore F is a lifting of f , more precisely, f = ΨL ◦ F . The image of F is contained in
WL, since Inen 6= 0. By Theorem 2.2.1, we have WL ⊂ EL which means that F is a mapping
F : Y → EL and we obtain a commuting diagram

EL

Y Sp2n(C) C2n \ {0}.

ΨL
ΦLF

f π2n

Choose Y = P ×X, where P is compact Hausdorff space and X a reduced Stein space such
that Y has dimension d. An application of Corollary 2.2.2 completes the proof.

2.3 Holomorphic factorization - Proof of the Main theo-

rem

The proof is by induction on n. Note that the theorem is true for n = 1, since Sp2(C) = SL2(C)
(see [14]), that is, the base case is fine.

For the induction step, we first observe that, according to Theorem 2.2.3, there exists a
natural number L(n, d) such that given any compact Hausdorff space P , any finite dimensional
Stein space X, such that P×X has covering dimension d, and any null-homotopic X-holomorphic
mapping f : P ×X → Sp2n(C), there exists a continuous homotopy Ft : P ×X → EL of liftings
of π2n ◦ f (i.e. π2n ◦ f = ΦL ◦Ft for all 0 ≤ t ≤ 1), such that F1 is X-holomorphic. In particular,
this implies that ΦL ◦ Ft doesn’t depend on t, hence we get

ΨL(Ft(p, x))f(p, x)−1 =


A1,t(p, x) a2,t(p, x) B1,t(p, x) b2,t(p, x)
a3,t(p, x) a4,t(p, x) b3,t(p, x) b4,t(p, x)
C1,t(p, x) c2,t(p, x) D1,t(p, x) d1,t(p, x)

0 0 0 1

 ,

where A1,t(p, x), B1,t(p, x), C1,t(p, x) and D1,t(p, x) are (n − 1) × (n − 1) matrices, and the
remaining mappings are vectors of appropriate dimension. Since ΨL(Ft(p, x))f(p, x)−1 is a
symplectic matrix for all 0 ≤ t ≤ 1, Lemma 1.1.6 implies a2,t(p, x) ≡ 0, a4,t(p, x) ≡ 1 and
c2,t(p, x) ≡ 0, so that

ΨL(Ft(p, x))f(p, x)−1 =


A1,t(p, x) 0 B1,t(p, x) b2,t(p, x)
a3,t(p, x) 1 b3,t(p, x) b4,t(p, x)
C1,t(p, x) 0 D1,t(p, x) d1,t(p, x)

0 0 0 1


and in addition

f̃t(p, x) =

(
A1,t(p, x) B1,t(p, x)
C1,t(p, x) D1,t(p, x)

)
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is symplectic. The fact that ΨL(F0(p, x)) = f(p, x) implies f̃0 = I2n−2 and thus the X-
holomorphic map f̃ := f̃1 : P ×X → Sp2n−2(C) is null-homotopic. Let ψ be the standard
inclusion of Sp2n−2 into Sp2n given by

ψ :

(
A B
C D

)
7→


A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

 .

By the induction hypothesis,

ψ(f̃(p, x)−1) =


D1,1(p, x)T 0 −B1,1(p, x)T 0

0 1 0 0
−C1,1(p, x)T 0 A1,1(p, x)T 0

0 0 0 1


is a finite product of holomorphic elementary symplectic matrices. Then the matrix
M(p, x) := ΨL(F1(p, x))f(p, x)−1ψ(f̃(p, x)−1) is given by

M(p, x) =


In−1 0 0 b2,1(p, x)

−d2,1(p, x)T 1 b2,1(p, x)T b4,1(p, x)
0 0 In−1 d2,1(p, x)
0 0 0 1


according to Lemma 1.1.7. An application of the 2nd Whitehead lemma implies that this matrix
is a product of four elementary symplectic matrices of Sp2n(O(X)). In summary, this proves
that f(p, x) is indeed a finite product of elementary symplectic matrices.

So far, the number of factors depends on the mapping f : P × X → Sp2n(C). Assume
there is no uniform bound K(n, d), that is, for each natural number i, there is a compact
Hausdorff space Pi and a reduced Stein space Xi, such that Yi = Pi×Xi has dimension d, and a
null-homotopic X-holomorphic mapping fi : Yi → Sp2n(C) which does not factor into less than
i elementary matrix factors. Set Y =

⋃
i Yi and let F : Y → Sp2n(C) be the null-homotopic

mapping, which equals fi on Yi. We just proved the existence of a constant K which bounds the
number of elementary factors in which F decomposes. But then K is an upper bound for each
fi which contradicts the assumption. Hence there is a uniform bound K(n, d) of factors and
this complectes the proof. Actually, we’ve shown a generalized version of the Main theorem.

Theorem 2.3.1 (Generalized version of main theorem). There is a natural number K = K(n, d)
such that given any compact Hausdorff space P , any finite dimensional reduced Stein space X,
such that P ×X has covering dimension d, and any null-homotopic X-holomorphic mapping
f : P ×X → Sp2n(C) there exist K X-holomorphic mappings

G1, ..., GK : P ×X → C
n(n+1)

2

with
f(p, x) = M1(G1(p, x))M2(G2(p, x)) · · ·MK(GK(p, x)).
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3 Stratified ellipticity of the map-
ping ΦK

Recall that we identified Symn(C) = {Z ∈ Cn×n : ZT = Z} with C
n(n+1)

2 for simplicity.

Furthermore, the elementary symplectic matrix mapping MK : C
n(n+1)

2 → Sp2n(C) we defined by

MK(Z) =



(
In Z

0 In

)
if K = 2k + 1(

In 0

Z In

)
if K = 2k.

Let’s write ~ZK := (Z1, ..., ZK) ∈ (C
n(n+1)

2 )K . Then the mapping ΦK : (C
n(n+1)

2 )K → C2n \ {0} is
defined by

ΦK(~ZK) := MK(ZK) · · ·M1(Z1)e2n.

Remark 3.0.1. The attentive reader may have noticed that we now define ΦK in a transposed
way compared to the previous sections. This is purely for aesthetic reasons.

The following recursive formula can be derived immediately from the definition.

Corollary 3.0.2 (Recursive formula of ΦK). For K ≥ 1, the mapping ΦK : (C
n(n+1)

2 )K →
C2n \ {0} satisfies

ΦK(~ZK) = MK(ZK)ΦK−1(~ZK−1), (3.1)

with the convention Φ0 := e2n.

The main goal of this section is to prove

Theorem 3.0.3. For K ≥ 3, there is an open submanifold EK of (C
n(n+1)

2 )K such that

ΦK |EK : EK → C2n \ {0}

is a stratified elliptic submersion.

In subsection 3.1 we will classify the points for which ΦK is not submersive. We will also
show that ΦK is surjective.

The subsequent subsections are then devoted to the task of finding stratified sprays. In
subsection 3.2, we stratify C2n \ {0} suitably. In 3.3, we find formulas of holomorphic vector
fields which are fiber-preserving for ΦK . Unfortunately, some of those fields aren’t C-complete.
We therefore classify some complete vector fields in subsection 3.4. In subsection 3.5, we analyze
the fibers of ΦK from a topological point of view. In subsection 3.6 we lay the mathematical
basis for the construction of the sprays. And finally we carry out all the necessary calculations
in 3.7.
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3.1 Notations and basic properties

Let’s start with some notations. Let Eij be the n× n matrix having a 1 at entry (i, j) and is
zero elsewhere. Then Ẽij = 1

1+δij
(Eij + Eji) is an elementary symmetric matrix.

In the following we will make the identification of Symn(C) and C
n(n+1)

2 more precise. The

set {Ẽij : 1 ≤ i ≤ j ≤ n} forms a basis of Symn(C). The sets I := {i ∈ N : 1 ≤ i ≤ n(n+1)
2
}

and J := {(i, j) ∈ N2 : 1 ≤ i ≤ j ≤ n} have the same order. Hence there is a bijection

α : I → J , which induces an isomorphism S : C
n(n+1)

2 → Symn(C) by defining S(ei) = Ẽα(i)

for all 1 ≤ i ≤ n(n+1)
2

. By an abuse of notation, Z ∈ C
n(n+1)

2 denotes both, the vector and the
corresponding symmetric matrix S(Z), depending on the corresponding context, of course.

In this very first subsection, we will compute the set of points where ΦK is not submersive.
Also we’ll give a proof for the surjectivity of ΦK . But let’s spell that out in more detail first.

We let SK denote the set of points in (C
n(n+1)

2 )K where ΦK is not submersive. We also define
the open set

WK :=
{
~ZK ∈ (C

n(n+1)
2 )K : Z2i−1en 6= 0 for some 1 ≤ i ≤ dK−1

2
e
}

and Wc
K denotes its complement in (C

n(n+1)
2 )K .

Theorem 3.1.1 (Singularity set of ΦK). For K ≥ 2, the set SK is given by

SK =
{
~ZK ∈ Wc

K : rank(WK(~ZK)) < n
}

where WK(~ZK) is the augmented matrix (Z2|Z4| · · · |Z2k) for k = bK−1
2
c.

Proof. The proof of this theorem is subject of subsection “Singularity set of ΦK”.

Theorem 3.1.2. For K ≥ 3, the mapping ΦK |WK
:WK → C2n \ {0} is surjective.

Proof. The proof is given in subsection “Surjectivity of ΦK ”.

A direct consequence of these two statements is

Corollary 3.1.3. For K ≥ 3 and for any open submanifold E in (C
n(n+1)

2 )K with

WK ⊂ E ⊂ (C
n(n+1)

2 )K \ SK ,

the mapping ΦK |E : E → C2n \ {0} is a surjective submersion.

3.1.1 Singularity set of ΦK

In order to compute the singularity set SK , we need to know the Jacobian of ΦK , denoted by
JΦK . For the computations, we need some auxiliary tools. For a fixed 1 ≤ i ≤ n, let’s define
the mapping Fi : Cn → Cn×n by

Fi(v) :=
[
Ẽi1v · · · Ẽinv

]
=


vi

. . .

v1 · · · vi · · · vn
. . .

vi

 .
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Furthermore, we define F : Cn → Cn×n(n+1)
2 by

F (v) :=
[
Ẽα(1)v · · · Ẽα(

n(n+1)
2

)
v
]
.

Observe that the matrix Fi(v) is a submatrix of F (v), for every 1 ≤ i ≤ n. This implies that
F (v) is surjective if and only if v 6= 0. And if F (v) is not surjective, then we even have F (v) = 0.

Lemma 3.1.4. For u, v ∈ Cn such that

(
u
v

)
∈ C2n \ {0}, the Jacobian of the mapping

C
n(n+1)

2 → C2n \ {0}, Z 7→MK(Z)

(
u
v

)
is given by

AK(u, v) :=



(
F (v)

0

)
if K = 2k + 1(

0

F (u)

)
if K = 2k.

In particular, MK(Z)AK(u, v) = AK(u, v) for all Z ∈ C
n(n+1)

2 .

Proof. Note that each symmetric matrix Z ∈ C
n(n+1)

2 can be written as a sum Z =
∑

1≤i≤j≤n zijẼij .

Hence ∂
∂zij

Z = Ẽij. Further, note

∂

∂zij
M2k+1(Z)

(
u
v

)
=

(
0 Ẽij
0 0

)(
u
v

)
=

(
Ẽijv

0

)
and

∂

∂zij
M2k(Z)

(
u
v

)
=

(
0 0

Ẽij 0

)(
u
v

)
=

(
0

Ẽiju

)
,

respectively. From here, the claim follows by definition of the mapping F .

We are now ready to compute the Jacobian of ΦK . By the recursive formula (3.1), the
product rule and the previous lemma, we obtain

Corollary 3.1.5 (Jacobian of ΦK). The Jacobian JΦ1 is given by A1(e2n). For K ≥ 2, the
Jacobian JΦK of ΦK is given by

JΦK(~ZK) =
(
MK(ZK)JΦK−1(~ZK−1) | AK(ΦK−1(~ZK−1))

)
.

If the Jacobian JΦK−1 is surjective, then so is JΦK , since MK(ZK) is a regular matrix.

Or, equivalently, if ~ZK = (~ZK−1, ZK) ∈ SK is a singular point for ΦK , then ~ZK−1 ∈ SK−1 is a
singular point for ΦK−1. This observation suggests that we will compute SK recursively.

Lemma 3.1.6. Let ~ZK ∈ (C
n(n+1)

2 )K and assume that there is 1 ≤ k ≤
⌈
K−1

2

⌉
such that

Z2i−1en = 0 for all 1 ≤ i ≤ k. Then Φj(~Zj) = e2n for all 1 ≤ j ≤ 2k.

Proof. We prove this by induction on j. For the base step, observe that

Φ1(~Z1) = M1(Z1)e2n =

(
Z1en
en

)
by definition. Since we assume Z1en = 0, Φ1(~Z1) = e2n follows immediately.
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For the induction step, let 1 < j ≤ 2k. By the induction hyptothesis, we have Φj−1(~Zj−1) =
e2n. Then we obtain

Φj(~Zj) = Mj(Zj)Φj−1(~Zj−1) = Mj(Zj)e2n

by the recursive formula (3.1). If j is even, then we’re done, by definition of Mj. Let’s assume
that j = 2l− 1 for some integer l. Observe that l ≤ k is satisfied, hence Zjen = 0 by assumption.
This implies

Φj(~Zj) =

(
In Zj
0 In

)(
0
en

)
=

(
Zjen
en

)
= e2n.

This completes the proof.

Lemma 3.1.7. Let K ≥ 2 be a natural number. Then the restriction ΦK |WK
is a submersion.

Proof. Consider ~ZK ∈ WK . There is a smallest index 1 ≤ k ≤
⌈
K−1

2

⌉
such that Z2k−1en 6= 0

and Z2i−1en = 0 for all 1 ≤ i < k. Setting L := 2k − 1, the Jacobian JΦL is of the form(
∗ F (PL−1

s )
∗ 0

)
and

JΦL+1 =
(
ML+1(ZL+1)JΦL AL+1(ΦL)

)
=

(
∗ F (PL−1

s ) 0
∗ 0 F (PL

f )

)
.

By definition of F , the Jacobian JΦL+1 has full rank, if PL−1
s 6= 0 and PL

f 6= 0. By Lemma
3.1.6, we have ΦL−1 = e2n. Hence

PL−1
s =

(
0 In

)
ΦL−1 = en 6= 0.

Furthermore,

PL
f =

(
In 0

)
ΦL =

(
In 0

)
ML(ZL)ΦL−1 =

(
In ZL

)
e2n = ZLen 6= 0.

This showes that the Jacobian JΦL+1 has full rank. Note that L+ 1 ≤ K by construction. By
the recursive formula of the Jacobian and regularity of Mi(Zi), 1 ≤ i ≤ K, we conclude that
JΦK has full rank, too.

Let’s write CK :=
(
In 0

)
JΦK and DK :=

(
0 In

)
JΦK .

Lemma 3.1.8. For a point ~Z2k+2 = (~Z2k+1, Z2k+2) ∈ Wc
2k+2 the following statements are

equivalent.

(i) The Jacobian JΦ2k+2(~Z2k+2) is surjective in ~Z2k+2.

(ii) The Jacobian JΦ2k+1(~Z2k+1) is surjective in ~Z2k+1.

(iii) rank(D2k+1) = rank(D2k) = n.

Proof. Note that Wc
K ⊂ Wc

K−1 × C
n(n+1)

2 by definition. Moreover,

A2k+1(e2n) =

(
F (en)

0

)
and A2k+2(e2n) = 0,

for ~Z2k+2 ∈ Wc
2k+2, by Lemma 3.1.6 and by definition of F . We conclude

JΦ2k+2(~Z2k+2) = M2k+2(Z2k+2)
(
JΦ2k+1(~Z2k+1) 0

)
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and this shows equivalence of (i) and (ii), since M2k+2(Z2k+2) is a regular matrix.
To show equivalence of (ii) and (iii) observe that

JΦ2k+1(~Z2k+1) =

(
C2k + Z2k+1D2k F (en)

D2k 0

)
.

Since F (en) is surjective by definition of F , the claim follows immediately.

In order to prove Theorem 3.1.1, it remains to show the next lemma.

Lemma 3.1.9. The following equation is satisfied for all ~Z2k+2 ∈ Wc
2k+2:

im(D2k+2) = im(D2k|Z2k+2). (?)

In particular, the singularity set of ΦK, K ≥ 2, is given by

SK := {~ZK ∈ Wc
K : rank(WK(~ZK)) < n},

where WK is an augmented matrix WK(~ZK) := (Z2|Z4| · · · |Z2k), for k = bK−1
2
c.

Proof. By the previous lemma, it is enough to show (?). We have

JΦ2k+2(~Z2k+2) =

(
C2k+1 0

D2k+1 + Z2k+2C2k+1 0

)
=

(
C2k + Z2k+1D2k F (en) 0

D2k + Z2k+2(C2k + Z2k+1D2k) Z2k+2F (en) 0

)
.

We get im(Z2k+2) = im(Z2k+2F (en)), since F (en) is surjective. Thus im(D2k+2) = im(D2k|Z2k+2).

3.1.2 Surjectivity of ΦK

The proof of surjectivity is based on the following lemma.

Lemma 3.1.10. For a ∈ Cn \{0} fixed, the mapping ϕa : Symn(C)→ Cn, Z 7→ Za is surjective.

Proof. Let a 6= 0 being fixed. Then the linear mapping F (a) : C
n(n+1)

2 → Cn is surjective, by
definition of F . Therefore it is enough to show that the following diagram

C
n(n+1)

2

Symn(C) Cn.

F (a)
S−1

ϕa

is commutative. This is the case if and only if F (a)v = S(v)a for all v ∈ C
n(n+1)

2 . Write

v =
∑n(n+1)

2
i=1 viei. By definition of F and S, we get

F (a)v =

n(n+1)
2∑
i=1

viF (a)ei =

n(n+1)
2∑
i=1

viẼα(i)a =

n(n+1)
2∑
i=1

viẼα(i)

 a = S(v)a.

This completes the proof.

We are now ready for the
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Proof of Theorem 3.1.2. In a first step, let K = 3 and consider

(
a
b

)
∈ C2n \ {0}. Observe that

MK(−Z) is the inverse of MK(Z) for every K and every Z. Then Φ3(~Z3) =

(
a
b

)
if and only if

M2(Z2)M1(Z1)e2n = M3(−Z3)

(
a
b

)
.

The left-hand-side is given by(
In 0
Z2 In

)(
Z1en
en

)
=

(
Z1en

(In + Z2Z1)en

)
and the right-hand-side by (

In −Z3

0 In

)(
a
b

)
=

(
a− Z3b

b

)
.

The symmetric matrix Z3 can be chosen such that a− Z3b 6= 0. To see this, observe that it is
automatically satisfied if b = 0, since a and b aren’t simultaneously zero. On the other hand, if
b 6= 0, then an application of Lemma 3.1.10 provides the existence of such Z3.

The vector en is obviously non-zero, hence another application of Lemma 3.1.10 yields the
existence of a symmetric matrix Z1 such that

Z1en = a− Z3b.

We have Z1en 6= 0 by construction, which enables a third application of Lemma 3.1.10 and
proves the existence of a symmetric matrix Z2 such that (In + Z2Z1)en = b. Thus we’ve found
~Z3 ∈ (C

n(n+1)
2 )3 such that

Φ3(~Z3) =

(
a
b

)
.

Moreover, since Z1en 6= 0, we even have ~Z3 ∈ W3, which completes the proof for K = 3.
For K > 3 and x ∈ C2n \ {0} we find ~Z3 ∈ W3 such that Φ3(~Z3) = x. Now, we set

ZK := (~Z3, 0, ..., 0) ∈ (C
n(n+1)

2 )K . Then we have ΦK(~ZK) = Φ3(~Z3) = x and, moreover,
~ZK ∈ WK by definition. This completes the proof.

3.2 Stratification of C2n \ {0}

Consider a fixed point y := (a, b) ∈ C2n \ {0} and let FKy := FKa,b := Φ−1
K (y) denote the fiber of

ΦK over y. By the recursive formula (3.1) of ΦK we can write the K-fiber FKy as a union of
(K − 1)-fibers

FKy =
⋃

Z∈C
n(n+1)

2

FK−1
MK(Z)y.

Equivalently, a given a point ~ZK = (~ZK−1, ZK) is contained in the fiber FKy if and only if
~ZK−1 ∈ FK−1

ỹ for ỹ = MK(−ZK)y. We have the following picture in mind
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(C
n(n+1)

2 )K−1

C
n(n+1)

2ZK

~ZK−1

FKy

FK−1
ỹ

~ZK

For an “appropriate” stratification of C2n\{0}, we will use the projection πK : Cn×Cn → Cn

given by

πK(u, v) :=

{
u if K = 2k

v if K = 2k + 1.

The following stratification turns out to be a natural one. Let

Y K
ng = {y ∈ C2n \ {0} : πK(y) = 0}

denote the non-generic stratum and its complement Y K
g = (C2n \ {0}) \Y K

ng the generic stratum.

Lemma 3.2.1. For a point y ∈ Y K
ng in the non-generic stratum, the corresponding non-generic

fiber FKy satisfies

FKy = FK−1
y × C

n(n+1)
2 ,

where FK−1
y is a generic (K − 1)-fiber.

Proof. We carry out the proof only for K = 2k+1, since it applies equally to K = 2k for reasons
of symmetry. Let y = (a, b) ∈ Y K

ng , that is, πK(y) = 0. Observe that y = (πK−1(y), πK(y)). On
the one hand, this means b = πK(y) = 0 and on the other a = πK−1(y) 6= 0, since y 6= 0 by
definition. This implies that FK−1

y is a generic (K − 1)-fiber.

The non-generic K-fiber FKy is given by the defining equations ΦK(~ZK) = y. By the recursive

formula (3.1) of ΦK this system of equations is equivalent to ΦK−1(~ZK−1) = MK(−ZK)y. But
we have

MK(−ZK)y =

(
In −ZK
0 In

)(
a
0

)
=

(
a
0

)
= y,

which means that the defining equations are independent of the matrix ZK ∈ C
n(n+1)

2 . In fact,
we obtain

FKy = FK−1
y × C

n(n+1)
2 .

Informally, the next statement tells us that for fibers in the generic stratum we can reduce
the number of defining equations from 2n to n.

First we introduce the following convention. Let π : Ck → Cl be the standard projection
(z1, ..., zl, ..., zk) 7→ (z1, ..., zl). For a continuous mapping f : Cl → Cm its pullback π∗f is a
mapping π∗f : Ck → Cm and by an abuse of notation, we just write f instead of π∗f .

Also define P̃K := πK+1 ◦ ΦK . Then, P̃K
j and πK(y)j denote the j-th component of P̃K and

πK(y), respectively.
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Lemma 3.2.2. Set X := (C
n(n+1)

2 )K−1 × C
n(n−1)

2 and define the variety

GπK(y) := {~Z ∈ X : P̃K−1(~Z) = πK(y)}.

Then there are n meromorphic mappings ψKj : X → X × Cn, 1 ≤ j ≤ n, such that each generic
fiber FKy is biholomorphic to GπK(y) via ψKj for some 1 ≤ j ≤ n.

Proof. Let y ∈ Y K
g be a point in the generic stratum, i.e. πK(y)j 6= 0 for some 1 ≤ j ≤ n. From

the definition of πK and P̃K on the one hand and the recursive formula (3.1) on the other hand,
it follows that the fiber FKy is given by

FKy = {~ZK ∈ (C
n(n+1)

2 )K : P̃K(~ZK) = πK+1(y), P̃K−1(~ZK) = πK(y)}

and furthermore

P̃K = P̃K−2 + ZKP̃
K−1. (3.2)

Hence P̃K
j 6= 0 is satisfied on the fiber FKy and the latter equation can be rearranged to

ZKej =
1

P̃K−1
j

(
P̃K − P̃K−2 −

n∑
k=1,k 6=j

P̃K−1
k ZKek

)
.

We obtain

fij := zK,ij =
1

P̃K−1
j

(
P̃K
i − P̃K−2

i −
n∑

k=1,k 6=j

P̃K−1
k zK,ik

)
1 ≤ i ≤ n, i 6= j, (3.3)

fjj := zK,jj =
1

P̃K−1
j

(
P̃K
j − P̃K−2

j − 1

P̃K−1
j

n∑
k=1,k 6=j

bk

(
P̃K
k − P̃K−2

k −
n∑

l=1,l 6=j

P̃K−1
l zK,kl

))
.

(3.4)

Set fj := (f1j, ..., fnj) : X → Cn and ψj : X → X × Cn, Ψj(x) = (x, fj(x)). By construction,
the variety GπK(y) is mapped biholomorphically onto FKy by ψj.

3.2.1 On the singularities of the fibers

In this short section we will classify the fibers; we distinguish between smooth and singular
fibers. In fact, most of the fibers FKy are completely contained in WK and therefore smooth, by
Lemma 3.1.7.

Lemma 3.2.3. A fiber FKy contains singularities if and only if π1(y) = en.

Proof. We start with the case K = 2k. Suppose there is a singularity ~ZK ∈ FKy ∩ SK . Then

Z2i−1en = 0 for all 1 ≤ i ≤ k, by Lemma 3.1.9. Lemma 3.1.6 implies ΦK(~ZK) = e2n and thus

π1(y) = π1(ΦK(~ZK)) = π1(e2n) = en.

Now let K = 2k + 1 and suppose again there is a singularity ~ZK ∈ FKy ∩ SK . Again, we
have Z2i−1en = 0 for all 1 ≤ i ≤ k, by Lemma 3.1.9. From the even case, we know that
ΦK−1(~ZK−1) = e2n. The recursive formula (3.1) of ΦK implies

y = ΦK(~ZK) = MK(ZK)ΦK−1(~ZK−1) =

(
In ZK
0 In

)(
0
en

)
=

(
ZKen
en

)
,
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and therefore π1(y) = en. This completes the proof of necessary condition.
For the proof of the sufficient condition, we consider a fiber FKy with π1(y) = en and

set k :=
⌈
K−1

2

⌉
. Let ~ZK ∈ FKy and recall that ~ZK = (Z1, Z2, ..., ZK) ∈ (C

n(n+1)
2 )K . The

matrices Z2, Z4, ..., Z2k ∈ C
n(n+1)

2 can take any value, since Z1en = Z3en = ... = Z2k−1en = 0
by assumption and therefore Φi(~Zi) = e2n for all 1 ≤ i ≤ 2k by Lemma 3.1.6. Hence we set

Z2 = Z4 = ... = Z2k = 0 and then ~ZK ∈ FKy ∩ SK is a singularity by Lemma 3.1.9.

3.3 Holomorphic vector fields tangential to the fibers

We will construct stratified sprays using C-complete holomorphic vector fields. The main goal

of this subsection is therefore to find enough vector fields that are holomorphic on (C
n(n+1)

2 )K ,
complete and, in particular, tangential to the fibers FKy .

3.3.1 Fiber-preserving vector fields

Let X be some Stein manifold and f = (f1, ..., fn) : X → Cn a holomorphic mapping. A
holomorphic vector field V : X → TX, x 7→ (x, Vx) is fiber-preserving for f , if it is tangential to
the fibers of f . This is the case if and only if V is in the kernel of the tangent map df , that is,
dfx(Vx) = 0. This is equivalent to say that the Lie derivative LVx(fi) = Vx(fi) = (dfi)x(Vx) = 0
vanishes for all 1 ≤ i ≤ n.

Lemma 3.3.1. For N > n, let P ∈ C[z1, ..., zN ]n be a polynomial mapping P : CN → Cn and
let x = (zα0 , ..., zαn), with 1 ≤ α0 < ... < αn ≤ N . Let’s write ∂

∂z
P := ( ∂

∂z
P1, ...,

∂
∂z
Pn)T . Then

Dx(P ) := det

(
∂

∂zα0
· · · ∂

∂zαn
∂

∂zα0
P · · · ∂

∂zαn
P

)

is a holomorphic vector field on CN which is fiber-preserving for P .

Proof. The Lie derivative LDx(P )(Pi) = Dx(P )(Pi) = 0 vanishes for each 1 ≤ i ≤ n, since the
first and the (i+ 1)-th row of Dx(P )(Pi) are the same.

We now introduce a few more notations. For a fixed natural number K, the mapping P̃K

(defined before Lemma 3.2.2) is a polynomial mapping in C[z1, ..., zNK ]n with NK := K n(n+1)
2

.
Since we’ll only be interested in K > 1, the constraint NK > n is given.

There are
(
NK
n+1

)
possibilities to choose (n+ 1) of the NK variables. Let TK denote the set of

all such possible choices. Recall that we see CNK as a product of K copies of C
n(n+1)

2 and we

write ~ZK = (Z1, ..., ZK) ∈ (C
n(n+1)

2 )K . With this convention, the set TK can be given by

TK := {x = (zi0,j0k0 , ..., zin,jnkn) : 1 ≤ i0 ≤ ... ≤ in ≤ K, 1 ≤ jr ≤ kr ≤ n, 0 ≤ r ≤ n}.

The vector fields ∂Kx := Dx(P̃
K), x ∈ TK , are fiber-preserving for P̃K , by Lemma 3.3.1; or,

equivalently, they’re tangential to the variety GπK+1(y) by construction (c.f. Lemma 3.2.2).
The following lemma collects some interesting examples of fiber-preserving vector fields for

ΦK . In fact, they’ll play a cruical role in the construction of a dominating spray (see Theorem
3.6.2)
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Lemma 3.3.2. Let 1 ≤ j∗ ≤ n, x ∈ TK−1 and u := (∂K−1
x (P̃K−2

1 ), ..., ∂K−1
x (P̃K−2

n ))T . Then the
vector field

ϕKx,j∗ = (P̃K−1
j∗ )2∂K−1

x − P̃K−1
j∗

n∑
i=1
i 6=j∗

ui
∂

∂zK,j∗i
+

 n∑
i=1
i 6=j∗

P̃K−1
i ui − P̃K−1

j∗ uj∗

 ∂

∂zK,j∗j∗

is holomorphic on (C
n(n+1)

2 )K and fiber-preserving for ΦK. Moreover, ϕKx,j∗ is complete if and
only if ∂K−1

x is complete.
For 1 ≤ i ≤ j ≤ n, i 6= j∗, j 6= j∗, the vector field

γKij,j∗ = (P̃K−1
j∗ )2 ∂

∂zK,ij
+

1

1 + δij

(
2P̃K−1

i P̃K−1
j

∂

∂zK,j∗j∗
− P̃K−1

i P̃K−1
j∗

∂

∂zK,j∗j
− P̃K−1

j P̃K−1
j∗

∂

∂zK,j∗i

)
is complete, holomorphic on (C

n(n+1)
2 )K and fiber-preserving for ΦK.

Proof. Observe that P̃K−1 ≡ 0 on non-generic fibers FKy . Hence the above fields are trivial and
there is nothing to show. We therefore consider y ∈ Y K

g in the generic stratum, i.e. πK(y) 6= 0.
Without loss of generality assume πK(y)1 6= 0. According to Lemma 3.2.2, the mapping ψK1 is
defined by Ψ1(x) = (x, f1(x)) for some meromorphic map f1 = (f11, ..., fn1) and it maps GπK(y)

biholomorphically onto the generic fiber FKy .
Consider a vector field V tangential to GπK(y). Then the push-forward W := (Ψ1)∗(V ) is

given by

W = V +
n∑
i=1

V (fi1)
∂

∂zK,i1
.

On the one hand W is tangential to the fiber FKy and on the other hand it is complete if and
only if V is complete.

Let’s write W (P̃K) := (W (P̃K
1 ), ...,W (P̃K

n ))T and W (ZK) :=
∑

1≤i≤j≤nW (zK,ij)Ẽij . By the

recursive formula (3.2) and since W (P̃K−1) = 0, we get

0 = W (P̃K) = W (P̃K−2) +W (ZK)P̃K−1 = u+W (ZK)P̃K−1.

In the special case, where V = ∂K−1
x for some x ∈ TK−1, we have

W (ZK)P̃K−1 =

(
n∑
i=1

V (fi1)Ẽi1

)
P̃K−1 =


∑n

i=1 V (fi1)P̃K−1
i

P̃K−1
1 V (f21)

...

P̃K−1
1 V (fn1)



=

P̃
K−1
1 · · · P̃K−1

n

. . .

P̃K−1
1


︸ ︷︷ ︸

=:A

V (f11)
...

V (fn1)


︸ ︷︷ ︸

=:b

,

where A is a regular matrix, since P̃K−1
1 6= 0. Therefore we obtain b = −A−1u with

A−1 =
1

(P̃K−1
1 )2



P̃K−1
1 −P̃K−1

2 −P̃K−1
3 · · · −P̃K−1

n

P̃K−1
1

. . .
. . .

P̃K−1
1

 .
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The vector field ϕKx,1 := (P̃K−1
1 )2W is holomorphic on (C

n(n+1)
2 )K and fiber-preserving for ΦK .

Moreover, it is complete if and only if W is complete, since P̃K−1 is in the kernel of W . This
proves the first part of the lemma.

In the special case, where V = ∂
∂zK,ij

, 1 < i ≤ j ≤ n, we have u = W (P̃K−2) = 0 and

W (ZK)P̃K−1 = ẼijP̃
K−1 +

(
n∑
i=1

V (fi1)Ẽi1

)
P̃K−1 = ẼijP̃

K−1 + Ab.

Therefore

b = −A−1ẼijP̃
K−1 = − 1

1 + δij
A−1(P̃K−1

i ej + P̃K−1
j ei)

=
1

1 + δij

1

(P̃K−1
1 )2

(
2P̃K−1

i P̃K−1
j e1 − P̃K−1

1 P̃K−1
i ej − P̃K−1

1 P̃K−1
j ei

)
.

As before, we multiply W by (P̃K−1
1 )2 to obtain a fiber-preserving vector field γKij,1 := (P̃K−1

1 )2W

which is holomorphic on (C
n(n+1)

2 )K . Note that ∂
∂zK,ij

is complete on GπK(y) by definition, hence

γKij,1 is complete. This proves the second part of the lemma.

3.4 Complete holomorphic vector fields tangent to the

fibers

In the previous subsection, we’ve constructed vector fields tangent to the fibers. Unfortunately,
some of those fields aren’t complete (see Example 3.4.5 below). In addition, it is quite laborious
to decide whether a given field is complete. The goal of this subsection is to build machinery
that will make this decision easier. Furthermore, we will list the most important examples of
complete fields.

For K > L, let fK,L : (C
n(n+1)

2 )K → (C
n(n+1)

2 )L, (Z1, ..., ZK) 7→ (Z1, ..., ZL) be the standard

projection. Given a vector field V on (C
n(n+1)

2 )L tangential to the fibers FLy , its pullback f ∗K,LV

is a vector field on (C
n(n+1)

2 )K tangential to the fibers FKy′ , by the recursive formula (3.1). By
an abuse of notation, we just write V instead of f ∗K,LV . Furthermore, set

T CK := {x ∈ TK : ∂Kx is a complete vector field}.

Definition 3.4.1. For K ≥ 3, define the collection

VK :=
K⋃
L=3

(
n⋃
j=1

{
ϕLx,j : x ∈ T CL−1

}
∪
{
γLrs,j : 1 ≤ r, s ≤ n

})
of principal vector fields for ΦK.

Remark 3.4.2. We can consider VK−1 as a subset of VK using the convention introduces just
before the definition.

We are now working on a machinery that should make it easier for us to decide whether a tuple
x corresponds to a C-complete vector field ∂Kx . Let x = (x1, ..., xm) ∈ Cm and P : Cm → Cm−1

be a polynomial mapping. We define an equivalence relation on Cl in the following way

u, v ∈ Cl, u ∼x v :⇔ ui − vi ∈
m⋂
k=1

ker

(
∂

∂xk

)
, for all 1 ≤ i ≤ l.

A vector v ∈ Cl is called constant in x if v ∼x 0.
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Lemma 3.4.3. Let x = (x1, ..., xm) ∈ Cm and P : Cm → Cm−1, x 7→ P (x) be a polynomial
mapping. Assume there exists v ∈ Cm−1, v ∼x 0, and λij ∈ C, λij ∼x 0, for all 1 ≤ i, j ≤ m,
such that

∂

∂xi

∂

∂xj
P (x) = λijv. (3.5)

Then V = Dx(P ) is C-complete.

Proof. We consider the vector field V = Dx(P ) =
∑m

j=1 Vj
∂
∂xj

, where Vj is given by

Vj = det

(
∂P

∂x1

, ...,
∂P

∂xj−1

,
∂P

∂xj+1

, ...,
∂P

∂xm

)
.

For 1 ≤ j ≤ m, define fj(x) =
∑m

k=1 λkjxk. Then ∂
∂xj
P (x) ∼x fj(x)v by construction, this

means
∂

∂xj
P (x) = cj + fj(x)v,

for some cj ∈ C, cj ∼x 0. Obviously, fk(x)v and fl(x)v are linearly dependent, therefore

Vj = det (c1 + f1v, ..., cj−1 + fj−1v, cj+1 + fj+1v, ..., cm + fmv)

= det(c1, ..., cj−1, cj+1, ..., cm)︸ ︷︷ ︸
=:αj0

+f1 det(v, c2, ..., cj−1, cj+1, ..., cm)︸ ︷︷ ︸
=:αj1

+

+ · · ·+ fn det(c1, ..., cj−1, cj+1, ..., cm−1, v)︸ ︷︷ ︸
=:αjm

.

With the convention αjj := 0, we obtain

Vj = αj0 +
m∑
k=1

αjkfk = αj0 +
m∑
k=1

αjk

m∑
l=1

λlkxl = αj0 +
m∑
l=1

xl

m∑
k=1

λlkαjk︸ ︷︷ ︸
=:ajl

.

Set b := (α10, ..., αm0)T . Then we just proved that V (x) = Ax+ b, where A = (ajl)1≤j,l≤m is a
m×m-matrix with ajl ∼x 0.

Let γ be a flow curve, i.e. a holomorphic map γ : C → Cm with d
dt
γ(t) = V (γ(t)). This

leads to the system
d

dt
γ(t) = Aγ(t) + b,

which implies that γ exists for all time t ∈ C.

The mapping P̃K : (C
n(n+1)

2 )K → Cn does not a priori fit into the setting of the previous
lemma, but this problem can be solved with a simple trick. By fixing all but (n + 1) of the
n(n+1)

2
K variables, we may interpret P̃K as a polynomial mapping Cn+1 → Cn. More precisely,

each (n+ 1)-tupel x ∈ TK corresponds to a natural inclusion map ix : Cn+1 → (C
n(n+1)

2 )K . Then
P̃K ◦ ix is a polynomial mapping Cn+1 → Cn.

Proposition 3.4.4. (List of complete vector fields)

(Type 1) For 1 ≤ m ≤ n, x = (zk−1,mm, zk,11, ..., zk,nn) ∈ T CK , K ≥ k.

(Type 2) For l 6= m, x = (zk−1,mm, zk,l1, ..., zk,ln) ∈ T CK , K ≥ k.

(Type 3) For (n+1) distinct pairs of indices (i0, j0), ..., (in, jn), x = (zk,i0j0 , ..., zk,injn) ∈ T CK , K ≥ k.
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(Type 4) For 1 ≤ i∗ ≤ n, x = (z1,ni∗ , z2,11, ..., z2,nn) ∈ T CK , K ≥ 2.

(Type 5) Let k < l, 1 ≤ j∗ ≤ n and let (i1, j1), ..., (in, jn) be n distinct pairs of indices. Then

x = (zk,i1j1 , ..., zk,injn , zl,j∗j∗) ∈ T CK , K ≥ l.

(Type 6) For 1 ≤ r ≤ n consider the partition {1, ..., n} = {i1, ..., ir}∪̇{j1, ..., jn−r}. Let
i∗ ∈ {i1, ..., ir} and j∗, j′ ∈ {j1, ..., jn−r}. Then

x = (zk−1,j∗j1 , ..., zk−1,j∗jn−r , zk,i∗i1 , ..., zk,i∗ir , zk,i∗j′) ∈ T CK , K ≥ k.

(Type 7) For 0 ≤ r ≤ n consider the partition {1, ..., n} = {i1, ..., ir}∪̇{j1, ..., jn−r}. Let
i∗ ∈ {i1, ..., ir} and j∗, j′ ∈ {j1, ..., jn−r}. Then

x = (zk,j∗j1 , ..., zk,j∗jn−r , zk+1,i∗i1 , ..., zk+1,i∗ir , zk+2,j′j′) ∈ T CK , K ≥ k + 2.

(Type 8) For 1 ≤ i ≤ n, i 6= j, x = (z1,in, z2,j1, ..., z2,jn) ∈ T CK , K ≥ 2.

Proof. For the proof of (Type 1 ), we consider the mapping P : Cn+1 → Cn given by

x := (zk−1,mm, zk,11, ..., zk,nn) 7→
(
A B

)(In Zk
0 In

)(
In 0
Zk−1 In

)(
c
d

)
,

where A and B are arbitrary n× n-matrices, both constant in x; whereas c and d are arbitrary
vectors in Cn both constant in x. Observe that(

A B
)(In Zk

0 In

)(
In 0
Zk−1 In

)(
c
d

)
=
(
B A

)(In 0
Zk In

)(
In Zk−1

0 In

)(
d
c

)
.

Thanks to this symmetry condition, we don’t need to make a case distinction between even and
odd K. In fact, it is enough to prove that Dx(P ) is a C-complete vector field. At first, note that

∂2

∂z2
k−1,mm

P (x) ≡ 0,
∂

∂zk,ii

∂

∂zk,jj
P (x) ≡ 0, 1 ≤ i, j ≤ n.

Hence most of the λ’s in Lemma 3.4.3 can be chosen to be zero. It remains to consider
∂

∂zk,ii

∂
∂zk−1,mm

P (x), 1 ≤ i ≤ n. We get

∂

∂zk,ii

∂

∂zk−1,mm

P (x) =
(
A B

)(0 Ẽii
0 0

)(
0 0

Ẽmm 0

)(
c
d

)
=
(
0 AẼii

)( 0

Ẽmmc

)
= AẼiiẼmmc = cmδmiAem,

for all 1 ≤ i ≤ n. Since v := Aem is independent of i, the conditions of Lemma 3.4.3 are satisfied.
Therefore Dx(P ) is a complete field and we conclude that vector fields ∂Kx , K ≥ k, of (Type 1 )
are complete.

For the proof of (Type 2 ) we choose P as before. Again we have ∂2

∂z2k−1,mm
P ≡ 0 and

∂
∂zk,li

∂
∂zk,lj

P ≡ 0, 1 ≤ i, j ≤ n. Further, we compute

∂

∂zk,li

∂

∂zk−1,mm

P (x) =
(
A B

)(0 Ẽli
0 0

)(
0 0

Ẽmm 0

)(
c
d

)
= AẼliẼmmc = cmAẼliem.
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Observe that Ẽliem = δimel, since we assume l 6= m. Therefore we obtain

∂

∂zk,li

∂

∂zk−1,mm

P (x) = δimcmAel

for all 1 ≤ i ≤ n. This proves that the conditions of Lemma 3.4.3 are satisfied and hence the
field Dx(P ) is complete. We conclude that the fields ∂Kx , K ≥ k, of (Type 2 ) are complete.

For the proof of (Type 3 ), we set P (x) =
(
A B

)(In Zk
0 In

)(
c
d

)
. Observe that ∂

∂zk,irjr
P (x) ∼x 0

for all r = 0, ..., n. Hence the conditions of Lemma 3.4.3 are trivially satisfied and we conclude
that the vector fields ∂Kx of (Type 3 ) are complete.

For the proof of (Type 4 ) we set P (x) =
(
A B

)(In 0
Z2 In

)(
In Z1

0 In

)
e2n. Note that

∂2

∂z2
1,ni∗

P ≡ 0 and ∂
∂z2,ii

∂
∂z2,jj

P ≡ 0, 1 ≤ i, j ≤ n. Furthermore, we compute

∂

∂z2,jj

∂

∂z1,ni∗
P (x) =

(
A B

)( 0 0

Ẽjj 0

)(
0 Ẽni∗
0 0

)(
0
en

)
= BẼjj Ẽni∗en︸ ︷︷ ︸

=ei∗

= δji∗Bei∗ .

Hence we can apply Lemma 3.4.3 and conclude that vector fields ∂Kx , K ≥ 2, of (Type 4 ) are
complete.

For the proof of (Type 5 ) we first consider

P (x) =
(
A B

)(In 0
Zl In

)(
U V
W X

)(
In Zk
0 In

)(
c
d

)
,

where U, V,W and X are arbitrary n× n-matrices constant in x. As in the previous cases, we
have ∂2

∂z2
l,j∗j∗

P ≡ 0 and ∂
∂zk,irjr

∂
∂zk,isjs

P ≡ 0, 1 ≤ r, s ≤ n. Further, let’s compute

∂

∂zl,j∗j∗

∂

∂zk,ij
P (x) =

(
A B

)( 0 0

Ẽj∗j∗ 0

)(
U V
W X

)(
0 Ẽij
0 0

)(
c
d

)
= BẼj∗j∗UẼijd = (eTj∗UẼijd)︸ ︷︷ ︸

∼x0

Bej∗ .

If we replace

(
In 0
Zl In

)
by

(
In Zl
0 In

)
in P , we obtain

∂

∂zl,j∗j∗

∂

∂zk,ij
P (x) = AẼj∗j∗WẼijd = (eTj∗WẼijd)Aej∗ .

In both cases, Lemma 3.4.3 implies that Dx(P ) is complete and in conclusion, the vector fields
∂Kx , K ≥ l, of (Type 5 ) are complete.

For the proof of (Type 6 ), we set P as for (Type 1 ). Observe that Ẽi∗iẼj∗j = 0 for
i∗, i ∈ {i1, ..., ir} and j∗, j ∈ {j1, ..., jn−r}. Then we get

∂

∂zk−1,j∗j

∂

∂zk,i∗i
P (x) =

(
A B

)(0 Ẽi∗i
0 0

)(
0 0

Ẽj∗j 0

)(
c
d

)
= AẼi∗iẼj∗jc = 0,

for all i ∈ {i1, ..., ir} and j ∈ {j1, ..., jn−r}. Furthermore,

∂

∂zk−1,j∗j

∂

∂zk,i∗j′
P (x) = AẼi∗j′Ẽj∗jc ∼x 0,
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and hence the vector fields ∂Kx , K ≥ k, of (Type 6 ) are complete, by Lemma 3.4.3.

For the proof of (Type 7 ) we set P (x) =
(
A B

)(In Zk+2

0 In

)(
In 0
Zk+1 In

)(
In Zk
0 In

)(
c
d

)
.

By the same argument as in (Type 6 ) we obtain ∂
∂zk+2,j′j′

∂
∂zk+1,i∗i

P (x) = 0 for all i ∈ {i1, ..., ir}
and ∂

∂zk+1,i∗i

∂
∂zk,j∗j

P (x) = 0 for all i ∈ {i1, ..., ir}, j ∈ {j1, ..., jn−r}. It remains to compute

∂

∂zk+2,j′j′

∂

∂zk,j∗j
P (x) =

(
A B

)(0 Ẽj′j′
0 0

)(
In 0
Zk+1 In

)(
0 Ẽj∗j
0 0

)(
c
d

)
= AẼj′j′

(
Zk+1 In

)(Ẽj∗jd
0

)
= AẼj′j′(Zk+1Ẽj∗jd) = (eTj′Zk+1Ẽj∗jd)Aej′ .

Observe that eTj′Zk+1 is constant in x, since we assume j′ ∈ {j1, ..., jn−r}. Hence the conditions

of Lemma 3.4.3 are satisfied and we conclude that the fields ∂Kx , K ≥ k + 2, of (Type 7 ) are
complete.

For the proof of (Type 8 ), let P (x) =
(
A B

)(In 0
Z2 In

)(
Z1en
en

)
. For 1 ≤ r ≤ n, we

compute
∂

∂z1,in

∂

∂z2,jr

P (x) =
(
A B

)( 0 0

Ẽjr 0

)(
ei
0

)
= δirBej.

Hence the conditions of Lemma 3.4.3 are met and the fields ∂Kx , K ≥ 2, of (Type 8 ) are
complete.

In the following, we find an example of an incomplete vector field ∂2
x. As a direct consequence

of this, we don’t know how large the collection VK of principal vector fields is. We shall see
later, however, that it is powerful enough to construct stratified sprays.

Example 3.4.5. Consider the tupel x = (z1,n1, ..., z1,nn, z2,n1) and the mapping P (x) = en +
Z2Z1en. The Jacobian JP is given by

(
Z2 z1,nne1 + z1,n1en

)
and we get the vector field

∂2
x = det


∂/∂z1,n1 · · · ∂/∂z1,nn ∂/∂z2,n1

z2,11 · · · z2,1n z1,nn

z2,21 · · · z2,2n 0
...

...
...

z2,n1 · · · z2,nn z1,n1

 .

Therefore ∂2
x(z2,n1) = ± det(Z2) = ±(α1z

2
2,n1 + α2z2,n1 + α3) for some α1, α2, α3 ∈ C ∩ ker(∂2

x).
In fact, α1 is the principal minor of order n− 2 obtained by removing the first and last rows

and columns from Z2. Hence α1 6≡ 0 on (C
n(n+1)

2 )2, which means that the variable z2,n1 occurs
quadratically. We conclude that ∂2

x is incomplete.

3.5 Topological analysis of the fibers

So far we haven’t learned anything about the fibers FKy from a topological perspective. In this
subsection we will show that all fibers are connected for K ≥ 3. In fact, all fibers are irreducible,
except the singular fibers F3

a,eTn
and F4

0,eTn
which consist of two irreducible components, with the

smooth part breaking down in two connected components.

Lemma 3.5.1. The fibers F3
a,b are connected. The singular fibers, i.e. F3

a,eTn
consists of two

irreducible components.
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Proof. We start with the non-generic fibers, i.e. we assume b = 0. In this case, we have

F3
a,0 = F2

a,0 × C
n(n+1)

2 with a 6= 0. The defining equations of F2
a,0 are given by(

a
0

)
=

(
In Z2

0 In

)(
Z1en
en

)
=

(
Z1en

(In + Z2Z1)en

)
,

and therefore F2
a,0
∼= C

n(n−1)
2 × {Z ∈ C

n(n+1)
2 : en + Za = 0} ∼= Cn(n−1). In conclusion, the

non-generic fiber F3
a,0 is biholomorphic to some CN and hence connected.

We continue with the generic fibers F3
a,b, i.e. b 6= 0. In the first step, we consider the smooth

fibers, that is, we assume b 6= en in addition. Due to Lemma 3.2.2, the fiber F3
a,b is biholomorphic

to Gπ3(a,b) × C
n(n−1)

2 , where

Gπ3(a,b) = {~Z2 ∈ (C
n(n+1)

2 )2 : b = Ps(~Z2) = en + Z2Z1en}.

Define Cj := {~Z2 ∈ Gπ3(a,b) : z1,nj 6= 0}, 1 ≤ j ≤ n. Similar as in Lemma 3.2.2, we can express
the variables z2,j1, ..., z2,jn, which proves that Cj is biholomorphic to C∗ × CN for some natural
number N and therefore connected. Since we assume b 6= en, Z1en = 0 is not possible in
Gπ3(a,b), which means that Gπ3(a,b) is covered by ∪nj=1Cj . It remains to show, that the intersection
∩nj=1Cj 6= ∅ is non-empty. Choose a symmetric matrix Z∗1 with Z∗1en = (1, ..., 1)T . By Lemma
3.1.10, there is a symmetric matrix Z2 with b− en = Z2(Z∗1en). This shows that the intersection
is indeed non-empty. In conclusion, Gπ3(a,b) and F3

a,b are connected.
Finally, let’s consider the singular fibers F3

a,eTn
. By Lemma 3.2.2, such fibers are biholomorphic

to Gπ3(a,b) × C
n(n−1)

2 where

Gπ3(a,b) = {~Z2 ∈ (C
n(n+1)

2 )2 : Z2Z1en = 0}.

Observe that this variety has two irreducible components A1 = {~Z2 ∈ Gπ3(a,eTn ) : Z1en = 0} and

A2 = {~Z2 ∈ Gπ3(a,eTn ) : det(Z2) = 0}. This proves that singular fibers F3
a,eTn

have two irreducible

components. Since the intersection of these components equals the singularity set S3, F3
a,eTn

is
connected.

Theorem 3.5.2. The fibers FKy are connected for K ≥ 3. Moreover, the smooth part of the
singular fibers is connected for K ≥ 5.

Proof. We prove this theorem by induction on K. Note that we’ve shown the base case K = 3
in the previous lemma. Let K ≥ 4 and assume that the (K − 1) fibers FK−1

y are connected.
Recall that

FKy =
⋃

Z∈C
n(n+1)

2

FK−1
MK(Z)y. (3.6)

We will now introduce the following auxiliary function. Let ρ : FKy → C
n(n+1)

2 denote the

restriction of the projection (~ZK−1, ZK) 7→ ZK to the fiber FKy . We’ll show some useful facts.

(i) ρ is surjective: Observe that ~ZK ∈ FKy if and only if ~ZK−1 ∈ FK−1
MK(−ZK)y, by (3.6). Hence

the ρ-fibers are given by ρ−1(Z∗K) = FK−1
MK(−Z∗K)y. The (K−1)-fibers FK−1

MK(Z)y are non-empty

for all Z ∈ C
n(n+1)

2 , by Theorem 3.1.2.

(ii) ρ is submersive in ~ZK if ~ZK−1 6∈ SK−1: Observe that T~ZK (FKy ∩ ScK) = ker JΦK(~ZK).

By assumption, the Jacobian JΦK−1(~ZK−1) is surjective. Given WK ∈ C
n(n+1)

2 , we find
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~WK−1 ∈ (C
n(n+1)

2 )K−1 such that JΦK−1(~ZK−1) ~WK−1 = −MK(−ZK)AK(ΦK−1(~ZK−1))WK .
By the recursive formula of the Jacobian (see Corollary 3.1.5), we get

JΦK(~ZK)

(
~WK−1

WK

)
= MK(ZK)JΦK−1(~ZK−1) ~WK−1 + AK(ΦK−1(~ZK−1))WK = 0

and dρ~ZK ( ~WK−1,WK) = WK .

(iii) Each connected component A ⊂ FKy is ρ-saturated, that is, A = ρ−1(ρ(A)): It is enough
to show “⊃”, by definition of the preimage. Each ρ-fiber is connected and therefore we
have either ρ−1(b) ⊂ A or ρ−1(b) ∩ A = ∅.

(iv) ρ(A) is open for each connected component A ⊂ FKy : Given a point b ∈ ρ(A) we find a
regular point a ∈ ρ−1(b). To see this, notice that in every (K− 1) fiber we find points with
Z1en 6= 0, by the previous lemma and by (3.6). Submersivity is a local property, hence
there exists an open neighborhood U ⊂ A of a in which ρ is submersive. Furthermore, U
is mapped openly, that is, ρ(U) is an open neighborhood of b in ρ(A).

We can write FKy as a disjoint union of connected components
⋃̇
i∈IAi. Then

C
n(n+1)

2 =
(i)
ρ(FKy ) =

(iii)

⋃̇
i∈I
ρ(Ai)

can be written as the disjoint union of open sets. Since C
n(n+1)

2 is connected, we conclude that
FKy has to be connected too.

It remains to show, that the smooth part of the fibers FKa,b is connected for K ≥ 5. Let’s
start with the case K = 2k + 1. Then the singular fibers are FKa,eTn , by Lemma 3.2.3. If we

now also note (3.6), then the singularities are all in the subfiber F2k
0,eTn

. Since F2k
0,eTn
⊂ F2k+1

a,eTn
has

codimension n, the complement U := F2k+1
a,eTn

\ F2k
0,eTn

is connected. If we consider a smooth point

p ∈ F2k
0,eTn

, then each open neighborhood of p intersects with U . Hence p has to be in the same

connected component as U . This proves that the smooth part FKa,eTn \ Sing(FKa,eTn ) is connected.

In the case K = 2k, observe that F2k
0,eTn

is the only singular fiber. Furthermore,

F2k
0,eTn
\ Sing(F2k

0,eTn
) =

(
F2k−1

0,eTn
\ Sing(F2k−1

0,eTn
)
)
× C

n(n+1)
2 ,

and this is connected by the induction hypothesis. This completes the proof of the theorem.

Theorem 3.5.3. The fibers of the submersion ΦK :WK → C2n \ {0} are connected for K ≥ 3.

Proof. We want to show that the intersection FKy ∩WK is connected. Smooth fibers FKy are
contained in WK , hence we only need to consider the case when FKy is a singular fiber. For
K = 3 we can apply the strategy from Lemma 3.5.1 for smooth fibers and cover F3

a,eTn
∩W3 by

n intersection connected charts.
Next, assume the claim to be true for K − 1 = 2k − 1. For

R := {~Z2k−1 ∈ (C
n(n+1)

2 )2k−1 : Z1en = ... = Z2k−3en = 0, Z2k−1en 6= 0},

we can rewrite
W2k =W2k−1 × C

n(n+1)
2 ∪̇R × C

n(n+1)
2 .

Observe that F2k−1
0,eTn

∩ R = ∅, by definition. Therefore, the non-generic singular fiber F2k
0,eTn

satisfies
F2k ∩W2k =

(
F2k−1

0,eTn
∩W2k−1

)
× C

n(n+1)
2 ,
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which is connected by the induction hypothesis.

Finally, we assume the claim to be true for K − 1 = 2k. Let ρ : FKa,eTn ∩WK → C
n(n+1)

2 be

the restriction of the projection (~ZK−1, ZK) 7→ ZK to FKa,eTn ∩WK . The fiber ρ−1(ZK) is given

by FK−1
MK(−ZK)y ∩WK−1. From here we can argue as in the proof of Theorem 3.5.2.

Lemma 3.5.4. Each generic fiber F3
y containes points ~Z3 with Q1

f(
~Z3) = z1,n1 · · · z1,nn 6= 0.

Moreover, each generic fiber FKy containes points ~ZK with

QK−2
f (~ZK)QK−2

s (~ZK) = PK−2
1 (~ZK−2) · · ·PK−2

n (~ZK−2)PK−2
n+1 (~ZK−2) · · ·PK−2

2n (~ZK−2) 6= 0.

Proof. Let’s start with the case K = 3. We consider a generic fiber F3
a,b, b 6= 0. Recall that

~Z3 ∈ F3
a,b if and only if ~Z2 ∈ F2

a−bZ3,b
by the recursive formula (3.1). Since we assume b 6= 0,

there is a symmetric matrix Z3 ∈ C
n(n+1)

2 with a−Z3b = (1, ..., 1)T , by Lemma 3.1.10. The fiber
F2

(1,...,1),b 6= ∅ is non-empty by Theorem 3.1.2. Furthermore, P 2
f ≡ P 1

f , by the recursive formula

(3.1). This implies Q1
f ≡ 1 on the fiber F2

(1,...,1),b ⊂ F3
a,b and we’re done with the case K = 3.

We now consider the case K ≥ 4. The fiber FK−2
(1,...,1),(1,...,1) 6= ∅ is non-empty, by Theorem

3.1.2, and clearly QK−2
f QK−2

s ≡ 1 on the whole fiber. Therefore it is enough to show, that this

fiber sits inside each generic K-fiber, that is, FK−2
(1,...,1),(1,...,1) ⊂ FKy . We prove this claim only for

K = 2k + 1, since the proof is symmetric for K = 2k. In this case, a point y = (a, b) ∈ Y K
g in

the generic stratum satisfies b 6= 0. Let’s write v := (1, ..., 1)T . Then the fiber FK−2
v,v sits inside

FKa,b if and only if we find symmetric matrices ZK−1, ZK ∈ C
n(n+1)

2 with(
a
b

)
=

(
In ZK
0 In

)(
In 0

ZK−1 In

)(
v
v

)
,

or equivalently, (
a− ZKb

b

)
=

(
v

ZK−1v + v

)
.

We can split up this system of equations into two independent systems a − ZKb = v and
b = ZK−1v + v. An application of Lemma 3.1.10 to both systems yields the existence of such
matrices ZK−1 and ZK , since b 6= 0 and v 6= 0. This completes the proof.

3.6 Construction of stratified sprays

The most convenient way to construct a dominating spray associated to a submersion is to
define some finite composition of flow maps of complete fiber-preserving vector fields. The
collection of complete vector fields in Proposition 3.4.4 does not span the tangent space of the
fibers FKy in every point. This is the reason why these are a priori not sufficient to define a
dominating spray. However, we can enlarge this collection until it spans the tangent space in a
sufficiently large set of points. In the following section we discuss the meaning of ’sufficiently
large’ and the mathematical details for the enlargement.

3.6.1 Construction of a spray over the generic stratum

We begin this subsection with a definition. Recall the collection VK of C-complete fiber-
preserving holomorphic vector fields from Definition 3.4.1. These collections are defined for
K ≥ 3. According to Lemma 3.2.2, there are n meromorphic mappings ψ1, ..., ψn such that
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each generic fiber F2
y is biholomorphic to Gπ2(y)

∼= Cn(n−1) via ψj for some 1 ≤ j ≤ n. Let ∂
∂xi

,

1 ≤ i ≤ n(n− 1) denote the standard vector fields on Cn(n−1). Then

V2 =
n⋃
j=1

{
(ψj)∗

(
∂

∂xi

)
: 1 ≤ i ≤ n(n− 1)

}
is the collection obtained by pushing forward the standard vector fields via ψ1, ..., ψn.

Definition 3.6.1. For K ≥ 2, we define QK := Γ(VK) the collection of C-complete FKy -fiber-
preserving holomorphic vector fields generated by VK.

Recall the set WK which is given by

WK :=
{
~ZK ∈ (C

n(n+1)
2 )K : Z2i−1en 6= 0, for some 1 ≤ i ≤

⌈
K−1

2

⌉}
,

where dxe is the ceiling function, which maps x to the least integer greater than or equal to x.
The set WK is open and connected.

The following result, from now on we will call it Spanning theorem, is cruical for the
construction of a spray over the generic stratum.

Theorem 3.6.2 (Spanning theorem). Let K ≥ 2. Then there is a finite set AK ⊂ QK of

C-complete fiber-preserving holomorphic vector fields on (C
n(n+1)

2 )K spanning the tangent bundle
T (FKy ∩WK) of every generic fiber FKy . In particular, AK ⊂ AK+1, when considering AK as a
subset of QK+1.

Let K ≥ 3. Then the mapping ΦK |WK
: WK → C2n \ {0} is a surjective submersion with

connected fibers FKy (see Theorem 3.1.2 and Theorem 3.5.3). By the Spanning theorem, the
conditions of Lemma 1.6.10 are satisfied. Hence the submersion

ΦK : CAK (WK)|Y Kg → Y K
g

over the generic stratum Y K
g ⊂ C2n \ {0} admits a spray.

Remark 3.6.3 (Application of the Spanning theorem). Recall that, by Lemma 3.2.3, a fiber
FKy contains singularities if and only if y = (y1, ..., yn, 0, ..., 0, 1) for y1, ..., yn ∈ C. In particular,
the intersection of singular fibers and Wc

K, the complement of WK, is non-empty. We do not
know, whether the collection AK from the Spanning theorem can be supplemented by finitely
many fields in QK so that AK spans the tangent space T~ZKF

K
y for smooth points ~ZK in Wc

K.
To be precise, it was proved for n = 2 in [17], but for n > 2 it is an open question. In contrast,
the collection AK spans the tangent bundle TFKy of each smooth generic fiber FKy , since smooth
fibers FKy are completely contained in WK.

3.6.2 Construction of a spray over the non-generic stratum

In this subsection, we show that the submersion

ΦK : CAK (WK)|Y Kng → Y K
ng

over the non-generic stratum Y K
ng ⊂ C2n \ {0} admits a spray.

We need the following result.
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Lemma 3.6.4. Let K ≥ 3 and let A ⊂ QK be a finite collection of complete holomorphic fiber
preserving vector fields. Then

CA(WK ∩ FKy ) = CA(WK−1 ∩ FK−1
y )× C

n(n+1)
2

for each non-generic fiber FKy .

Proof. In a first step, we prove that

WK ∩ FKy = (WK−1 ∩ FK−1
y )× C

n(n+1)
2 (3.7)

for each non-generic fiber FKy and K ≥ 3. From the definition of the set WK we directly

conclude W2k+1 =W2k × C
n(n+1)

2 . Since each non-generic fiber satisfies FKy = FK−1
y × C

n(n+1)
2

by Lemma 3.2.1, equation (3.7) follows for K = 2k + 1.
Consider now K = 2k even and a non-generic fiber FKy , that is, y = (0, b)T for some non-zero

b ∈ Cn. Further, observe that W2k =W2k−1 × C
n(n+1)

2 ∪R, where

R := {~Z2k ∈ (C
n(n+1)

2 )2k : πn(Z2i−1) = 0, 1 ≤ i ≤ k − 1, πn(Z2k−1) 6= 0}.

It suffices to show that FKy ∩R = ∅, in order to prove (3.7). Assume for contradiction there is

~Z2k ∈ FKy ∩ R. Lemma 3.1.6 implies Φ2k−2(Z2k−2) = e2n and Φ2k−1(~Z2k−1) =
(
0 b

)T
follows

by Lemma 3.2.1. According to the recursive formula (3.1), we obtain(
0
b

)
=

(
In Z2k−1

0 In

)
e2n =

(
πn(Z2k−1)

en

)
contradicting assumption πn(Z2k−1) 6= 0. This proves equation (3.7).

In a second step, we show that, over the non-generic stratum, none of the vector fields
V ∈ QK flows in a new direction. It suffices to prove the claim for the generating set VK . Note
that there is nothing to show for vector fields in VK−1. And fields in VK \ VK−1 vanish over the
non-generic stratum, by Lemma 3.3.2. This proves the claim. In particular, the vector flow αVt
of V ∈ QK fixes the new directions, i.e. αVt (~ZK−1, ZK) = (f(~ZK−1, ZK), ZK) for some suitable
holomorphic function f .

In the last step, we apply equation (3.7) and step two. We get

CA(WK ∩ FKy ) = CA(WK−1 ∩ FK−1
y × C

n(n+1)
2 ) = CA(WK−1 ∩ FK−1

y )× C
n(n+1)

2 .

This finishes the proof.

Lemma 3.6.5. Let K ≥ 3 and AK ⊂ QK be the finite collection provided by the Spanning
theoremsuch that the tangent bundle T (FKy ∩WK) of every generic fiber FKy is spanned by AK.
Then the restricted submersion

ΦK : CAK (WK)|Y Kng → Y K
ng

over the non-generic stratum Y K
ng ⊂ C2n \ {0} admits a spray.

Proof. Let AK−1 and AK be the collections from the Spanning theorem and let FKy be a

non-generic fiber. We have FKy = FK−1
y × C

n(n+1)
2 by Lemma 3.2.1, where FK−1

y is a generic
(K − 1)-fiber. According to Lemma 3.2.1, the vector fields from AK \AK−1 vanish over FKy and
we get

CAK (WK ∩ FKy ) = CAK−1
(WK−1 ∩ FK−1

y )× C
n(n+1)

2 .
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Collection AK−1 spans the tangent bundle T (WK−1 ∩ FK−1
y ) for every generic fiber FK−1

y , by
the Spanning theorem. By Theorem 1.6.10, there is a finite collection B ⊂ Γ(AK−1) spanning
the tangent bundle T (CAK−1

(WK−1 ∩ FK−1
y )) for every generic fiber FK−1

y . We add the vector
fields (

∂

∂zK,ij

)
1≤i≤j≤n

which span C
n(n+1)

2 to the collection B. This new collection, let’s call it B̃, spans the tangent
bundle T (CAK (WK ∩ FKy )) for every non-generic fiber FKy . Similar as in Theorem 1.6.10, we can

use the vector flows αVt , V ∈ B̃, to construct a dominating spray associated to the submersion
ΦK : CAK (WK)|Y Kng → Y K

ng .

3.7 The Spanning theorem

In this subsection we prove the Spanning theorem, which we will do by induction on the number
of factors K. As it turns out, for various reasons, it requires several base steps before we get to
the actual induction step. It makes sense to explain the proof strategy continuously. So let’s
first introduce or recall some notations and then we start with the first base step, K = 2.

We write ΦK = (PK
1 , ..., P

K
2n)T as well as PK

f = (PK
1 , ..., P

K
n )T and PK

s = (PK
n+1, ..., P

K
2n)T .

Similarly, we write QK
f = PK

1 · · ·PK
n and QK

s = PK
n+1 · · ·PK

2n. For y ∈ C2n \ {0} we sometimes
write y = (a, b) with a = (a1, ..., an) and b = (b1, ..., bn).

Lemma 3.7.1 (Spanning theorem for K = 2). Let F2
y be a generic fiber, i.e. π2(y)j∗ = P 1

j∗ 6= 0
for some 1 ≤ j∗ ≤ n. Then the collection

A2 =

{
(P 1

j∗)
2 ∂

∂z1,ij

: 1 ≤ i ≤ j < n

}
∪
{
γ2
ij,j∗ : 1 ≤ i ≤ j ≤ n, i 6= j∗, j 6= j∗

}
consist of complete holomorphic vector fields which are fiber-preserving for Φ2. Moreover, A2

spans the tangent bundle TF2
y .

Proof. According to Lemma 3.2.2, we are able to express the variables z2,1j∗ , ..., z2,nj∗ . This
gives us a meromorphic mapping ψj∗ which maps Gπ2(y)

∼= Cn(n−1) biholomorphic to F2
y . In

particular, the vector fields ∂
∂z1,ij

, 1 ≤ i ≤ j < n and ∂
∂z2,ij

, 1 ≤ i ≤ j ≤ n, i 6= j∗, j 6= j∗ are

complete holomorphic and tangential to Gπ2(y). Moreover, they span the tangent bundle TGπ2(y).
The collection A2 is obtained by computing the push-forwards with respect to the mapping
ψj∗ .

3.7.1 Preparation and explanation of the induction step

Recall that each K-fiber FKy can be written as a union of (K − 1)-fibers, that is,

FKy =
⋃

Z∈C
n(n+1)

2

FK−1
MK(Z)y.

Equivalently, ~ZK = (~ZK−1, ZK) ∈ FKy if and only if ~ZK−1 ∈ FK−1
ỹ with ỹ = MK(−ZK)y. The

directions (
∂

∂zK,ij

)
1≤i≤j≤n

are somehow transversal to the ’fibration’ and we use to speak of the new directions. The basic
idea of the induction is the following. Assume there is a finite collection A ⊂ QK−1 of complete
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fiber-preserving vector fields which spans the tangent space T~ZKF
K−1
ỹ . Then we are looking for

a finite collection B ⊂ QK which spans the new directions in ~ZK . Since the new directions are
complementary, the union A ∪ B spans the tangent space T~ZKF

K
y . The following picture, while

mathematically inaccurate, can illustrate the idea fairly well.

C
n(n+1)

2ZK

~ZK−1

FKy

FK−1
ỹ

~ZK

A

B

The following statement is very useful for the induction step.

Lemma 3.7.2. For K = 3, there are finitely many vector fields from V3 spanning the new
directions in a generic fiber F3

y in points with

Q1
f 6= 0.

For K ≥ 4, there are finitely many vector fields from VK spanning the new directions in a
generic fiber FKy in points with

QK−2
f 6= 0 and QK−2

s 6= 0.

Before we prove this lemma, let’s apply it. We therefore define the sets

U3 := {~Z3 ∈ W3 : Q1
f (~Z3) 6= 0}

and for K ≥ 4,
UK := {~ZK ∈ WK : QK−2

f (~ZK)QK−2
s (~ZK) 6= 0}.

What now follows is one argument of the induction step.

Lemma 3.7.3. Let K ≥ 3 and suppose that the Spanning theorem is true for K − 1. Then
there is a finite collection A ⊂ QK spanning the tangent bundle T (FKy ∩ UK) for every generic
fiber FKy .

Proof. In a first step, assume K = 3 and consider a point ~Z3 ∈ U3 such that y := Φ3(~Z3) ∈ Y 3
g

is in the generic stratum, i.e. b = P 3
s (~Z3) 6= 0. By definition of the set U3, we have Q1

f (~Z3) 6= 0.
According to Lemma 3.7.2, there is a finite collection A ⊂ Q3 which spans the new directions in
points with Q1

f 6= 0. Hence ~Z3 is a point, where the new directions are spanned.

By the recursive formula (3.1), we have Φ2(~Z2) = M3(−Z3)y. Moreover,

Z1en = π2 ◦ Φ2(~Z2) = π2 ◦M3(−Z3)y = a− Z3b
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implies that ~Z2 ∈ F2
M3(−Z3)y is contained a generic 2-fiber, since ~Z3 = (~Z2, Z3) ∈ U3. Therefore

the tangent space T~Z3
F2
M3(−Z3)y ⊂ T~Z3

F3
y is spanned by A2 ⊂ Q2 according to Lemma 3.7.1.

Since the new directions are complementary, the collection A ∪ A2 spans the tangent space
T~Z3
F3
y . This is true for every generic fiber F3

y , hence there is a finite collection in Q3 which
spans the tangent bundle T (F3

y ∩ U3) for every generic fiber.

In the case K ≥ 4 we’ll argue similarly. Let ~ZK ∈ UK be a point such that y := ΦK(~ZK) ∈ Y K
g

is in the generic stratum, i.e. πK(y) 6= 0. Write ~ZK = (~ZK−1, ZK) and ~ZK−1 = (~ZK−2, ZK−1).
Note that

ΦK−1(~ZK−1) = MK(−ZK)y and ΦK−1(~ZK−1) = MK−1(ZK−1)ΦK−2(~ZK−2)

by the recursive formula (3.1). By defintion of πK and MK , we have πK ◦MK = πK , hence

πK−1 ◦ ΦK−1 = πK−1 ◦ ΦK−2. Moreover, by definition of UK , we have QK−2
f QK−2

s (~ZK) 6= 0,

which implies πK−1 ◦ΦK−1(~ZK−1) 6= 0, that is, ~ZK−1 is contained in the generic fiber FK−1
MK(−ZK)y.

In addition, we have ~ZK−1 ∈ WK−1, since otherwise this would contradict QK−2
f QK−2

s 6= 0 by

Lemma 3.1.6. Therefore the tangent space T~ZK−1
FK−1
MK(−ZK)y is spanned by the finite collection

in QK−1 provided from the Spanning theorem for K − 1. Similarly as in the previous case, ~ZK
is a point where the new directions are spanned, according to Lemma 3.7.2. Again, the new
directions are complementary and we’ve shown that there is a finite collection in QK spanning
the tangent space T~ZKF

K
y for each generic fiber. And this proves the lemma.

Remark 3.7.4. An application of Corollary 1.6.11 and the former lemma leads us to the
following observation. To complete the induction step, it suffices to find a finite collection
A ⊂ QK satisfying

FKy ∩WK ⊂ CA(FKy ∩ UK), for each generic fiber FKy . (3.8)

The idea of the proof is to stratify WK suitably, i.e. find a finite descending chain of subspaces

WK =: XN ⊃ ... ⊃ X0 = ∅,

where the spaces X0, ..., XN−1 are closed. In a first step, we’ll find a finite collection AN ⊂ QK
such that the stratum SN := XN \XN−1 satisfies

FKy ∩ SN ⊂ CAN (FKy ∩ UK)

for each generic fiber FKy . Then, we find a finite collection Ak ⊂ QK, for each stratum
Sk := Xk \Xk−1, 1 ≤ k ≤ N − 1, such that

FKy ∩ Sk ⊂ CAk(FKy ∩ Sk+1)

for each generic fiber FKy . Define the finite collection A :=
⋃N
k=1Ak ⊂ QK . Then we get

FKy ∩ S1 ⊂ CA(FKy ∩ S2) ⊂ · · · ⊂ CA(FKy ∩ SN) ⊂ CA(FKy ∩ UK)

for each generic fiber FKy . As it turns out, the stratification of WK in the cases K = 3, K = 4
and K ≥ 5 differ in some elementary ways.

Proof of Lemma 3.7.2. Let FKy be a generic fiber, that is, P̃K
j∗ 6= 0 for some 1 ≤ j∗ ≤ n.

Recall that this fiber is biholomorphic to GπK(y) ×C
n(n−1)

2 with the biholomorphism obtained by
expressing the n variables zK,j∗1, ..., zK,j∗n in terms of the remaining variables (zK,ij)1≤i≤j≤n;i,j 6=j∗ .
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Clearly, the fields
(

∂
∂zK,ij

)
1≤i≤j≤n;i,j 6=j∗

are tangential to GπK(y) × C
n(n−1)

2 and moreover, they

span {0} × C
n(n−1)

2 . Hence the corresponding lifts span the new directions
(

∂
∂zK,ij

)
1≤i≤j≤n;i,j 6=j∗

in FKy . It remains to find n vector fields ∂K−1
x1

, ..., ∂K−1
xn tangent to GπK(y) × {0} such that the

projection of the corresponding lifts ϕKx1,j∗ , ..., ϕ
K
xn,j∗ to the new directions

(
∂

∂zK,j∗j

)
1≤j≤n

are

linearly independent. Let αj∗,1, ..., αj∗,n denote the component vectors of such projections in the

frame
(

∂
∂zK,j∗j

)
1≤j≤n

. We need to show that the matrix A := (αj∗,1| · · · |αj∗,n) is regular. Set

um := (∂K−1
xm (P̃K−2

1 ), ..., ∂K−1
xm (P̃K−2

n ))T and recall from the proof of Lemma 3.3.2, that there

is a regular matrix B := Fj∗(P̃
K)−1 with αj∗,m = Bum. Therefore A is regular if and only if

U := (u1| · · · |un) is regular.
In a first step, we assume K ≥ 4 and consider the tupels of (Type 1 )

xm := (zK−2,mm, zK−1,11, ..., zK−1,nn), 1 ≤ m ≤ n.

Without loss of generality, let K = 2k + 1. The entries of U are given by uij := ∂2k
xi

(P 2k
j ). Let’s

compute the following derivatives

∂

∂zK−2,ii

P 2k
s =

(
ZK−1 In

)(0 Ẽii
0 0

)(
P 2k−2
f

P 2k−2
s

)
= P 2k−2

n+i ZK−1ei,

and
∂

∂zK−1,mm

P 2k
s =

(
Ẽmm 0

)(P 2k−1
f

P 2k−1
s

)
= P 2k−1

m em.

Furthermore, we have ∂
∂zK−1,mm

P 2k
f ≡ 0 and

∂

∂zK−2,ii

P 2k
f = ẼiiP

2k−1
s = P 2k−1

n+i ei.

We obtain

uij = ∂2k
xi

(P 2k
j ) = det

(
δijP

2k−1
n+i 0 · · · 0

P 2k−1
n+i ZK−1ei P 2k−1

1 e1 · · · P 2k−1
n en

)
= δijP

2k−1
n+i Q

2k−1
f ,

and hence the matrix

U =

P
2k−1
n+1 Q

2k−1
f

. . .

P 2k−1
2n Q2k−1

f


is regular, provided Q2k−1

f Q2k−1
s 6= 0.

In a second step, let K = 3 and consider the tupels of (Type 4 )

xj := (z1,nj, z2,11, ..., z2,nn), 1 ≤ j ≤ n.

We obtain derivatives ∂
∂z1,nj

P 2
s = Z2ej,

∂
∂z2,ii

P 2
s = z1,niei and ∂

∂z1,nj
P 2
f = ej,

∂
∂z2,ii

P 2
f ≡ 0, for

1 ≤ i, j ≤ n. Hence we get

uij = det

(
δij 0 · · · 0
Z2ej z1,n1e1 · · · z1,nnen

)
= δijQ

1
f

and U = Q1
fIn. This completes the proof.
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3.7.2 Spanning theorem for K = 3

We want to find a finite collection A ⊂ Q3 such that (3.8) is fulfilled for K = 3.
Let 1 ≤ i, j ≤ n, i 6= j, and consider the tupels of (Type 8 )

xi,j := (z1,ni, z2,j1, ..., z2,jn).

The corresponding vector fields ∂2
xi,j

are of the form (see (A.1) for more details)

∂2
xi,j

= det



∂/∂z1,ni ∂/∂z2,j1 · · · ∂/∂z2,jj · · · ∂/∂z2,jn

z2,1i z1,nj 0 0
...

. . .

z2,ji z1,n1 · · · z1,nj · · · z1,nn

...
. . .

z2,ni 0 0 z1,nj


and they satisfy

∂2
xi,j

(z1,kn) = δik(z1,nj)
n,

for 1 ≤ i, j, k ≤ n.
By definition, points in N := W3 \ U3 satisfy Q1

f = z1,1n · · · z1,nn = 0 and P 1
f = Z1en 6= 0.

Hence there are indices 1 ≤ i1 < ... < ik ≤ n and 1 ≤ j1 < ... < jn−k ≤ n satisfying

(i) {1, ..., n} = {i1, ..., ik}∪̇{j1, ..., jn−k},

(ii) z1,in = 0, for all i ∈ {i1, ..., ik},

(iii) z1,jn 6= 0, for all j ∈ {j1, ..., jn−k}.

Fix an index j ∈ {j1, ..., jn−k}. Then observe

∂2
xi1,j
◦ · · · ◦ ∂2

xik,j
(z1,i1n · · · z1,ikn) = (z1,jn)n∂2

xi1,j
◦ · · · ◦ ∂2

xik−1,j
(z1,i1n · · · z1,ik−1n),

which inductively implies

∂2
xi1,j
◦ · · · ◦ ∂2

xik,j
(z1,i1n · · · z1,ikn) = (z1,jn)kn 6= 0.

Let ~Z3 ∈ N be a point over the generic stratum, that is, Φ3(~Z3) ∈ Y 3
g . According to Lemma

1.6.13, we find finitely many of the above fields ∂2
xi,j

such that a suitable finite composition of

the respective flows moves ~Z3 away from N . More precisely, we have a finite collection A ⊂ Q3

and an automorphism α ∈ GA such that α(~Z3) ∈ CA(U3). That’s exactly what we need to get
(3.8).

3.7.3 Spanning theorem for K = 4

As in the previous step, we want to find a suitable finite collection A such that (3.8) is satisfied.
In order to do this, we’ll do a divide and conquer with the set N4 :=W4 \ U4.

Lemma 3.7.5. Define the set

N1 := {~Z4 ∈ W4 : Q2
f (~Z4)Q2

s(~Z4) = 0, P 2
s (~Z4) 6= 0}.

Then there is a finite collection A ⊂ Q4 such that

F4
y ∩N1 ⊂ CA(F4

y ∩ U4)

for each generic fiber F4
y .
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Proof. In a first step, recall that P 2
f = P 1

f by the recursive formula (3.1). Consider a point ~Z4

in the set
X1 = {~Z4 ∈ N1 : Q1

f 6= 0}.

By definition of this set, we find indices 1 ≤ i∗, i ≤ n with P 2
n+i∗(~Z4) 6= 0 and P 2

n+i(~Z4) = 0.
Pick the vector field ∂3

xi
corresponding to the tupel xi = (z2,ii, z3,i∗1, ..., z3,i∗n) of (Type 2 ). It is

of the form (cf. (A.2))

±(P 2
n+i∗)

n ∂

∂z2,ii

+
n∑
l=1

αl
∂

∂z3,i∗l

for some suitable holomorphic functions α1, ..., αn. We show that the function P 2
n+i is not

contained in the kernel of ∂3
x. Note that P 2

n+i does not depend on the variables z3,rs, 1 ≤ r ≤ s ≤ n.
Therefore

∂3
x(P

2
n+i) = ±(P 2

n+i∗)
n ∂

∂z2,ii

(P 2
n+i)

= ±(P 2
n+i∗)

n ∂

∂z2,ii

(δin + eTi Z2Z1en)

= ±(P 2
n+i∗)

n eTi Ẽii︸ ︷︷ ︸
=eTi

Z1en

= ±z1,in(P 2
n+i∗)

n 6= 0

and this applies for every 1 ≤ i ≤ n with P 2
n+i(~Z4) = 0. Hence there is a finite collection A ⊂ Q4

such that
F4
y ∩X1 ⊂ CA(F4

y ∩ U4)

for each generic fiber F4
y .

In a second step, let’s consider a point ~Z4 = (~Z3, Z4) in the set

X2 = {~Z4 : Q1
f = 0, P 1

f 6= 0, P 2
s 6= 0} ⊂ N1.

Observe that the projection of ~Z4 to the first component ~Z3 is contained in a generic 3-fiber F3
ỹ

and in W3. From the case K = 3, we know the existence of a finite collection B ⊂ Q3 such that
~Z3 ∈ CB(F3

ỹ ∩ U3). Put the corresponding pullbacks into the collection A ⊂ Q4. Then we’ve
found a finite collection A such that

F4
y ∩X2 ⊂ CA(F4

y ∩X1) ⊂ CA(F4
y ∩ U4)

for each generic fiber F4
y .

In a third step, let’s consider a point ~Z4 in the set

X3 = {~Z4 : P 1
f = 0} ⊂ N1,

that is, Z1en = 0. The vector field ∂3
x corresponding to the tupel x = (z1,1n, ..., z1,nn, z3,nn) of

(Type 7 ), satisfies

∂3
x(z1,nn) = det (e1 + Z3Z2e1, ..., en−1 + Z3Z2en−1, en)

in ~Z4. Hence there is a finite collection A ⊂ Q4 such that

F4
y ∩ {~Z4 : P 1

f (~Z4) = 0, ∂3
x(z1,nn) 6= 0}︸ ︷︷ ︸

=:Ñ

⊂ CA(F4
y ∩ {~Z4 : P 1

f 6= 0, P 2
s 6= 0})
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for each generic fiber F4
y .

Next, we consider the vector fields ∂3
xi

and ∂3
yi

, i = 1, ..., n− 1, corresponding to the tupels
xi = (z2,ii, z3,1n, ..., z3,nn) and yi = (z3,ii, z3,1n, ..., znn) of (Type 2 ) and (Type 3 ), respectively. By
Lemma A.1.1 and Lemma A.1.2, they are of the form ∂3

xi
= ∂

∂z2,ii
and ∂3

yi
= ∂

∂z3,ii
on N 4(P 2

f ).

The formula

d

dt
det(A1(t), ..., An(t)) =

n∑
l=1

det(A1(t), ..., A′l(t), ..., An(t)) (3.9)

is sort of a product rule, where A1(t), ..., An(t) denote columns of a n×n-matrix A(t) depending
on t. In our case, we consider a matrix A, where the first (n− 1) columns are given by

Ai = ei +
n∑
l=1

z2,liZ3el, 1 ≤ i ≤ n− 1,

and the n-th column An = en. Observe that

∂

∂z2,ii

Aj =
∂

∂z2,ii

(ej +
n∑
l=1

z2,ljZ3el) = δijZ3ei.

Hence
∂

∂z2,11

· · · ∂

∂z2,(n−1)(n−1)

det(A) = det(Z3e1, ..., Z3en−1, en).

Furthermore, we obtain

∂

∂z3,11

· · · ∂

∂z3,(n−1)(n−1)

det(Z3e1, ..., Z3en−1, en) = det(e1, ..., en) = 1.

By Lemma 1.6.13 and the previous step, we conclude the existence of a finite collection A ⊂ Q4

such that
F4
y ∩ {~Z4 ∈ N1 : P 1

f (~Z4) = 0, ∂3
x(z1,nn) = 0} ⊂ CA(F4

y ∩ Ñ)

and
F4
y ∩ Ñ ⊂ CA(F4

y ∩ {~Z4 : Q1
f 6= 0, P 2

s 6= 0})
for each generic fiber F4

y . In particular, this implies

F4
y ∩X3 ⊂ CA(F4

y ∩X2) ⊂ CA(F4
y ∩ U4)

for each generic fiber F4
y .

For the final step, observe that N1 = X1 ∪X2 ∪X3. We put all of the involved vector fields
above together and obtain a finite collection A ⊂ Q4 satisfying

F4
y ∩N1 ⊂ CA(F4

y ∩ U4)

for each generic fiber F4
y . This finishes the proof.

Lemma 3.7.6. Define the set

N2 := {~Z4 : P 2
s (~Z4) = 0}.

Then there is a finite collection A ⊂ Q4 such that

F4
y ∩N2 ⊂ CA(F4

y ∩ U4)

for each generic fiber F4
y .
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In order to prove this lemma, the symplectic nature of the elementary matrices Mi(Z) comes
into play. The following result, also called complementary bases theorem, is proved by Dopico
and Johnson [6].

Theorem 3.7.7 (Complementary bases theorem). Let

M =

(
A B
C D

)
∈ Sp2n(C)

be a symplectic 2n×2n-matrix in block notation (1.1) and let k := rank(B), i.e. there are k indices
j1, ..., jk such that the vectors Bej1 , ..., Bejk form a basis of the image Im(B). Let i1, ..., in−k
denote the complementary indices in {1, ..., n}, that is, {1, ..., n} = {i1, ..., in−k}∪̇{j1, ..., jk}.

Then the n× n matrix

X =
(
Aei1 · · · Aein−k Bej1 · · · Bejk

)
is regular.

This theorem proves an important property of symmetric matrices.

Corollary 3.7.8 (Application of the Complementary bases theorem). Let Z ∈ C
n(n+1)

2 be a
symmetric matrix of rank k := rank(Z) with 1 ≤ k ≤ n. Then Z has a non-vanishing principal
minor of order k. More precisely, there is a regular k × k-matrix (Z)i1,...,in−k , obtained by
removing columns and rows i1, ..., in−k from Z for some suitable indices 1 ≤ i1 < ... < in−k ≤ n.

Proof. Consider the elementary symplectic matrix(
In Z
0 In

)
.

By assumption, there are indices 1 ≤ j1 < ... < jk ≤ n such that the vectors Zej1 , ..., Zejk span
the k-dimensional image of Z. Let i1, ..., in−k denote the complementary indices in {1, ..., n},
that is, {i1, ..., in−k}∪̇{j1, ..., jk}. Then the Complementary bases theorem implies that the
matrix

X =
(
ei1 · · · ein−k Zej1 · · · Zejk

)
is regular. An application of some Gauss-elimination process yields the desired result.

Proof of Lemma 3.7.6. Let’s stratify N2 in the following way. For 0 ≤ k ≤ n, define

Ak := {~Z4 ∈ N2 : rank(Z3) ≤ k}

and as a convention let A−1 := ∅. Then each stratum

Bk := Ak \ Ak−1, 0 ≤ k ≤ n,

consists of those points ~Z4 ∈ N2 with rank(Z3) = k.
Now we want to proceed as in Remark 3.7.4. We start by assuming A to be the finite

collection of Lemma 3.7.5, and then successively add matching fields to A.
For each point in N2, there is an index 1 ≤ i∗ ≤ n with z1,i∗n 6= 0, since P 1

f = Z1en and
P 2
s = 0 don’t vanish simultaneously by the recursive formula (3.1). So this is especially true

for points in the stratum Bn. The tupel x = (z1,nj, z2,i∗1, ..., z2,i∗n), j 6= i∗, is of (Type 8 ) and by
Lemma A.1.3, the corresponding vector field ∂3

x satisfies

∂3
x(z1,nj) = (z1,ni∗)

n det(Z3) 6= 0.
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Moreover, observe that ∂3
x(z3,ij) = 0 and ∂3

x(P 3
i ) = 0 for all 1 ≤ i ≤ j ≤ n, by construction. The

recursive formula (3.1) implies

P 3
i = z1,ni +

n∑
l=1

z3,ilP
2
n+l.

Hence

0 = ∂3
x(P

3
i ) = ∂3

x(z1,ni) +
n∑
l=1

z3,il∂
3
x(P

2
n+l), 1 ≤ i ≤ n.

Suppose that ∂3
x(P

2
n+l) = 0, for all 1 ≤ l ≤ n. Then we obtain a contradiction

0 = ∂3
x(P

3
j ) = ∂3

x(z1,nj) 6= 0.

Therefore, the flow of ∂3
x through points of Bn leaves N2. We add ∂3

x (actually its n push-forwards
with respect to the biholomorphisms from Lemma 3.2.2) to the collection A and by Lemma
3.7.5, we get

F4
y ∩ Bn ⊂ CA(F4

y ∩N1) ⊂ CA(F4
y ∩ U4).

In a next step, we assume 1 ≤ k ≤ n− 1 and we divide the stratum Bk into two more strata.
Define

Ck := {~Z4 ∈ Bk : Z3ei 6= 0⇒ z1,ni = 0,∀1 ≤ i ≤ n}

and consider a point ~Z4 ∈ Bk \ Ck. By definition, there is an index 1 ≤ j∗ ≤ n such that
Z3ej∗ 6= 0 and z1,j∗n 6= 0. Furthermore, again by definition, we assume that the matrix
Z3 has rank k. By the complementary bases theorem, we can choose complementary in-
dices {i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n} such that j∗ ∈ {j1, ..., jk} and such that the vectors
Z3ej1 , ..., Z3ejk form a basis of the image Im(Z3). Choose i ∈ {i1, ..., in−k}, then the tupel
x = (z1,i1n, ..., z1,in−kn, z2,j∗j1 , ..., z2,j∗jk , z3,ii) is of (Type 7 ). Since ∂

∂z3,ii
P 3
f = ẼiiP

2
s = 0 on N2,

the vector field ∂3
x is given by ± det(B) ∂

∂z3,ii
on N2 for some matrix B. Using the notation from

Corollary 3.7.8, Lemma A.1.4 yields

det(B) = (z1,j∗n)k det((Z3)i1,...,in−k) 6= 0.

Next consider the (k + 1)× (k + 1) submatrix of Z3

Z :=


z3,ii z3,ij1 · · · z3,ijk

z3,j1i z3,j1j1 · · · z3,j1jk
...

...
. . .

...
z3,jki z3,jkj1 · · · z3,jkjk

 ,

for i ∈ {i1, ..., in−k}. Its determinant det(Z), written as a function in z3,ii, is given by

det(Z) = det((Z3)i1,...,in−k)z3,ii + α,

where α ∈ C is constant in z3,ii. We have det(Z) = 0 on Bk, since the rank of Z3 is k on this
stratum. Apply the vector field ∂3

x to the equation det(Z) = 0. This gives us

∂3
x(det(Z)) = det(B)

∂

∂z3,ii

det(Z) = det(B) det((Z3)i1,...,in−k) 6= 0.
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Hence the flow of ∂3
x through the given point ~Z4 ∈ Bk \ Ck leaves the set Ak and intersects

the stratum Bk+1. Hence there exists a finite collection A ⊂ Q4 of complete fiber-preserving
holomorphic vector fields such that

F4
y ∩ Bk \ Ck ⊂ CA(F4

y ∩ Bk+1)

for each generic fiber F4
y .

Now, consider a point ~Z4 ∈ Ck. Choose again a complementary set of indices
{i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n} such that the vectors Z3ej1 , ..., Z3ejk form a basis of the
image Im(Z3). By definition of Ck, we have z1,j1n = ... = z1,jkn = 0. Recall that by definition of
N2, there is an index 1 ≤ i∗ ≤ n with z1,i∗n 6= 0. In particular, Z3ei∗ = 0, again by definition of
Ck. The vector fields γ2

jj,i∗ , j ∈ {j1, ..., jk}, from Lemma 3.3.1 are given by

γ2
jj,i∗ = (z1,i∗n)2 ∂

∂z2,jj

, j ∈ {j1, ..., jk},

in the given point ~Z4 ∈ Ck. Consider the tupel x = (z1,n1, ..., z1,nn, z3,i∗i∗) of (Type 5 ). Its

corresponding vector field ∂3
x is of the form ± det(In + Z3Z2)

∂
∂z3,i∗i∗

in ~Z4. Apply a suitable

composition to the equation z3,i∗i∗ = 0, namely

γ2
jkjk,i∗

◦ · · · ◦ γ2
j1j1,i∗ ◦ ∂

3
x(z3,i∗i∗) = ±γ2

jkjk,i∗
◦ · · · ◦ γ2

j1j1,i∗(det(In + Z3Z2))

= ±(z1,i∗n)2k ∂

∂z2,jkjk

◦ · · · ◦ ∂

∂z2,j1j1

(det(In + Z3Z2)).

Note that ∂
∂z2,jj

(In + Z3Z2) = Z3Ẽjj which means that the j-th column (In + Z3Z2)ej is the

only column in In +Z3Z2 depending on the variable z2,jj. In particular, the product formula for
determinants (3.9) and a suitable rearrangement of the columns yields

∂

∂z2,jkjk

◦· · ·◦ ∂

∂z2,j1j1

(det(In+Z3Z2)) = ± det((In+Z3Z2)ei1 , ..., (In+Z3Z2)ein−k , Z3ej1 , ..., Z3ejk).

Another application of the complementary bases theorem implies

γ2
jkjk,i∗

◦ · · · ◦ γ2
j1j1,i∗ ◦ ∂

3
x(z3,i∗i∗) 6= 0.

By Lemma 1.6.13, we have found a suitable finite collection A ⊂ Q4 such that

F4
y ∩ Ck ⊂ CA(F4

y ∩ Bk \ Ck)
for all generic fibers F4

y .
In summary, we have found a finite collection A ⊂ Q4 satisfying

F4
y ∩ Bk ⊂ CA(F4

y ∩ Bk+1),

for each 1 ≤ k ≤ n− 1 and each generic fiber F4
y .

In a last step, consider a point ~Z4 ∈ B0. Then the field ∂3
x, corresponding to the tupel

x = (z1,1n, ..., z1,nn, z3,nn) of (Type 7 ), is given by

∂3
x = ± det(In + Z3Z2)

∂

∂z3,nn

= ± ∂

∂z3,nn

.

Therefore, there is a finite A ⊂ Q4 with F4
y ∩ B0 ⊂ CA(F4

y ∩ B1) for each generic fiber.
It remains to put everything together and apply the properties of the closure operator CA.

More precisely, we have found a finite A ⊂ Q4 such that

CA(F4
y ∩ Bk) ⊂ CA(F4

y ∩ Bk+1)

for each 0 ≤ k ≤ n− 1 and each generic fiber. And since we already know

F4
y ∩ Bn ⊂ CA(F4

y ∩ U4)

for each generic fiber, the proof is complete.
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3.7.4 Spanning theorem for K ≥ 5

The strategy for K ≥ 5 is very similar to that for K = 4. Let’s write the function QK−2
f QK−2

s

in terms of the notation P̃K (see Lemma 3.2.2). Recall

P̃K =

{
PK
f if K = 2k + 1

PK
s if K = 2k

and the recursive formula (3.2)

P̃K = P̃K−2 + ZKP̃
K−1.

Then we get,
QK−2
f QK−2

s = P̃K−2
1 · · · P̃K−2

n P̃K−3
1 · · · P̃K−3

n

for all K ≥ 5.

Lemma 3.7.9. Let K ≥ 5 and define

N1 := {~ZK ∈ WK : P̃K−2
1 · · · P̃K−2

n P̃K−3
1 · · · P̃K−3

n = 0, P̃K−2 6= 0}.

Then there is a finite collection A ⊂ QK such that

FKy ∩N1 ⊂ CA(FKy ∩ UK)

for each generic fibers FKy .

Proof. In a first step, consider a point ~ZK in the set

X1 = {~ZK ∈ N1 : P̃K−3
1 · · · P̃K−3

n 6= 0}.

By definition of this set, we find indices 1 ≤ i, i∗ ≤ n with P̃K−2
i (~ZK) = 0 and P̃K−2

i∗ (~ZK) 6= 0.
Pick the vector field ∂K−1

xi
corresponding to the tupel xi = (zK−2,ii, zK−1,i∗1, ..., zK−1,i∗n) of (Type

2 ). It is of the form

±(P̃K−2
i∗ )n

∂

∂zK−2,ii

+
n∑
l=1

αl
∂

∂zK−1,i∗l

for some suitable holomorphic functions α1, ..., αn. By the recursive formula (3.2), we get

P̃K−2
i = P̃K−4

i + eTi ZK−2P̃
K−3

and therefore
∂K−1
xi

(P̃K−2
i ) = ±(P̃K−2

i∗ )nP̃K−3
i 6= 0.

This applies for every 1 ≤ i ≤ n with P̃K−2
i = 0. Hence there is a finite collection A ⊂ QK such

that
FKy ∩X1 ⊂ CA(FKy ∩ UK)

for each generic fiber FKy .

In a second step, consider a point ~ZK = (~ZK−1, ZK) in the set

X2 = {~ZK ∈ N1 : P̃K−3
1 · · · P̃K−3

n = 0, P̃K−3 6= 0}.

Observe that the projection of ~ZK to the first component ~ZK−1 is contained in a generic (K−1)-
fiber FK−1

ỹ and in WK−1. By the induction hypothesis, there is a finite collection B ⊂ QK−1

such that
~ZK−1 ∈ CB(FK−1

ỹ ∩ {~ZK−1 : P̃K−3
1 · · · P̃K−3

n 6= 0}).
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Put the corresponding pullbacks into the collection A. This gives us a finite collection A ⊂ QK
such that

FKy ∩X2 ⊂ CA(FKy ∩X1) ⊂ CA(FKy ∩ UK)

for each generic fiber FKy .

In a third step, consider a point ~ZK = (~ZK−1, ZK) in the set

X3 = {~ZK ∈ N1 : P̃K−3 = 0}.

Define the subset
X̃3 = {(~ZK−1, ZK) ∈ X3 : ~ZK−1 ∈ WK−1}.

By Lemma 3.7.6, we can apply the induction hypothesis, to obtain a finite collection A ⊂ QK
such that

FKy ∩ X̃3 ⊂ CA(FKy ∩X2)

for each generic fiber FKy . Observe that W2k+1 =W2k × C
n(n+1)

2 , hence the two sets X3 and X̃3

coincide for K = 2k + 1. Now, let us assume K = 2k and consider a point ~ZK ∈ X3 \ X̃3. This
implies Z1en = Z3en = ... = Z2k−3en = 0. Pick the vector field ∂K−1

x corresponding to the tupel
x = (zK−3,1n, ..., zK−3,nn, zK−1,nn) of (Type 5 ). It satisfies

∂K−1
x (zK−3,nn) = det(e1 + ZK−1ZK−2e1, ..., en−1 + ZK−1ZK−2en−1, en)

in ~ZK (cf. (A.10)). Also consider the fields ∂K−1
xi

and ∂K−1
yi

, i = 1, ..., n− 1, corresponding to the
tupels xi = (zK−2,ii, zK−1,1n, ..., zK−1,nn) and yi = (zK−1,ii, zK−1,1n, ..., zK−1,nn) of (Type 2 ) and
(Type 3 ), respectively. By Lemma A.1.5 and Lemma A.1.6, they are of the form ∂K−1

xi
= ∂

∂zK−2,ii

and ∂K−1
yi

= ∂
∂zK−1,ii

on X3 \ X̃3. With the very same reasoning as in the third step of Lemma

3.7.5, we obtain a finite collection A ⊂ QK such that

FKy ∩X3 \ X̃3 ⊂ CA(FKy ∩X2)

for each generic fiber FKy . In summary, we obtain a finite collection A ⊂ QK such that

FKy ∩X3 ⊂ CA(FKy ∩X2) ⊂ CA(FKy ∩ UK)

for each generic fiber FKy and for each K ≥ 5.
In a last step, observe that N1 = X1 ∪X2 ∪X3. We put all the involved vector fields above

together and obtain a finite collection A ⊂ QK satisfying

FKy ∩N1 ⊂ CA(FKy ∩ UK)

for each generic fiber FKy . This finishes the proof.

Lemma 3.7.10. Let K ≥ 5 and define

N2 := {~ZK ∈ WK : P̃K−2 = 0}.

Then there is a finite collection A ⊂ QK such that

FKy ∩N2 ⊂ CA(FKy ∩ UK)

for each generic fibers FKy .
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Proof. The proof of this lemma follows more or less the strategy of Lemma 3.7.6. We stratify
N2 in the following way. For 0 ≤ k ≤ n, define

Ak = {~ZK ∈ N2 : rank(ZK−1) ≤ k}

and as a convention let A−1 := ∅. Then each stratum

Bk := Ak \ Ak−1, 0 ≤ k ≤ n,

consists of those points ~ZK ∈ N2 with rank(ZK−1) = k.

In a first step, we prove the following claim: for ~ZK = (~ZK−2, ZK−1, ZK) ∈ N2, the projection

to the first component ~ZK−2 is contained in a generic (K − 2)-fiber and in WK−2. The first part
of the claim follows directly from the fact that P̃K−3 and P̃K−2 don’t vanish simultaneously, by
the recursive formula (3.1). For the second part of the claim, recall that ~ZK ∈ WK by definition

of N2. Assume that ~ZK−2 6∈ WK−2 and observe

dK−3
2
e =

{
k − 1 if K = 2k + 1

k − 1 if K = 2k.

Then Z1en = Z3en = ... = Z2k−3en = 0 and by Lemma 3.1.6, we conclude Φ2k−2 = e2n. In the
case K = 2k, this contradicts 0 = P̃K−2 = P 2k−2

s = en. And in the case K = 2k + 1, this leads
to

0 = P̃K−2 = P 2k−1
f = Z2k−1en,

which contradicts ~ZK ∈ WK . This proves the claim. We are now able to apply the induction
hypothesis (the Spanning theorem for K − 2) to ~ZK−2 and assume without loss of generality
that P̃K−4

1 · · · P̃K−4
n 6= 0.

For the second step, observe that for each point in N2, there is an index 1 ≤ j ≤ n with
P̃K−3
j 6= 0, since P̃K−3 and P̃K−2 don’t vanish simultaneously. So this is especially true for

points ~ZK in the stratum Bn. Consider the tupel x = (zK−3,ii, zK−2,j1, ..., zK−2,jn), i 6= j, of
(Type 2 ). The corresponding vector field ∂K−1

x is of the form

α
∂

∂zK−3,ii

+
n∑
r=1

βr
∂

∂zK−2,jr

for some suitable holomorphic functions α, β1, ..., βn. By construction we have ∂K−1
x (P̃K−1) = 0.

Furthermore, P̃K−1 = P̃K−3 + ZK−1P̃
K−2 by the recursive formula (3.2). Hence

0 = ∂K−1
x (P̃K−1) = ∂K−1

x (P̃K−3) + ZK−1∂
K−1
x (P̃K−2),

which implies that if P̃K−2 is in the kernel of ∂K−1
x , then P̃K−3 is in that kernel too.

Observe that P̃K−4 and P̃K−5 are in the kernel of ∂K−1
x , since they don’t depend on the

matrices ZK−3 and ZK−2. Therefore

∂K−1
x (P̃K−3) = ∂K−1

x (ZK−3)P̃K−4 = αẼiiP̃
K−4 = αP̃K−4

i ,

and by the previous paragraph, we may assume P̃K−4
i 6= 0. It remains to compute α. First, let’s

compute the derivatives

∂

∂zK−2,jr

P̃K−1 = ZK−1
∂

∂zK−2,jr

P̃K−2 = ZK−1ẼjrP̃
K−3, 1 ≤ r ≤ n.
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This gives us

α = det(ZK−1Ẽj1P̃
K−3, ..., ZK−1ẼjnP̃

K−3)

= det(ZK−1) det(Ẽj1P̃
K−3, ..., ẼjnP̃

K−3)

= det(ZK−1) det



P̃K−3
j

. . .

P̃K−3
1 · · · P̃K−3

j · · · P̃K−3
n

. . .

P̃K−3
j


= (P̃K−3

j )n det(ZK−1) 6= 0.

Hence ∂K−1
x (P̃K−3) 6= 0 and therefore also ∂K−1

x (P̃K−2) 6= 0. We conclude that there is a finite
A ⊂ QK such that

FKy ∩ Bn ⊂ CA(FKy ∩N1) ⊂ CA(FKy ∩ UK)

for each generic fiber FKy .
In a third step, let’s assume 1 ≤ k ≤ n − 1 and we divide the stratum Bk into two more

strata. Define
Ck := {~ZK ∈ Bk : ZK−1ei 6= 0⇒ P̃K−3

i = 0,∀1 ≤ i ≤ n}

and consider a point ~ZK ∈ Bk \ Ck. By definition, there is an index 1 ≤ j∗ ≤ n such that
ZK−1ej∗ 6= 0 and P̃K−3

j∗ 6= 0. Moreover, also by definition of the stratum Bk, we assume that
the matrix ZK−1 has rank k. By the complementary bases theorem, we can choose complemen-
tary indices {i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n} such that j∗ ∈ {j1, ..., jk} and such that the
vectors ZK−1ej1 , ..., ZK−1ejk form a basis of the image Im(ZK−1). Choose i, i∗ ∈ {i1, ..., in−k},
then the tupel x = (zK−3,i∗i1 , ..., zK−3,i∗in−k , zK−2,j∗j1 , ..., zK−2,j∗jk , zK−1,ii) is of (Type 7 ). Since

∂
∂zK−1,ii

P̃K−1 = ẼiiP̃
K−2 = 0 on N2, the vector field ∂K−1

x is given ± det(B) ∂
∂zK−1,ii

on N2, where

B =
(

∂
∂zK−3,i∗i1

P̃K−1 · · · ∂
∂zK−3,i∗in−k

P̃K−1 ∂
∂zK−2,j∗j1

P̃K−1 · · · ∂
∂zK−2,j∗jk

P̃K−1
)

By Lemma A.1.8,

det(B) = (P̃K−4
i∗ )n−k(P̃K−3

j )k det((ZK−1)i1,...,in−k) 6= 0

in the given point ~ZK . The same argument as in Lemma 3.7.6 implies that the flow of ∂K−1
x

through ~ZK leaves the set Ak and intersects the stratum Bk+1. Hence there exists a finite
collection A ⊂ QK such that

FKy ∩ Bk \ Ck ⊂ CA(FKy ∩ Bk+1)

for each generic fiber FKy .

Next, consider a point ~ZK ∈ Ck. Choose again a complementary set of indices
{i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n} such that the vectors ZK−1ej1 , ..., ZK−1ejk form a basis of
the image Im(ZK−1). By definition of Ck, P̃K−3

j1
= ... = P̃K−3

jk
= 0. Recall that there is an index

1 ≤ i∗ ≤ n with P̃K−3
i∗ 6= 0, since P̃K−3 and P̃K−2 don’t vanish simultaneously. The vector fields

γK−2
jj,i∗ , j ∈ {j1, ..., jk}, from Lemma 3.3.1, are given by

γK−2
jj,i∗ = (P̃K−3

i∗ )2 ∂

∂zK−2,jj

, j ∈ {j1, ..., jk},
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in ~ZK . Now consider the tupel x = (zK−3,n1, ..., zK−3,nn, zK−1,i∗i∗) of (Type 5 ). Its corresponding

vector field ∂K−1
x is of the form ±(P̃K−4

n )n det(In + ZK−1ZK−2)
∂

∂zK−1,i∗i∗
in ~ZK . As in Lemma

3.7.6, we have
γK−2
jkjk,i∗

◦ · · · ◦ γK−2
j1j1,i∗

◦ ∂K−1
x (zK−1,i∗i∗) 6= 0.

This implies the existence of a finite collection A ⊂ QK such that

FKy ∩ Ck ⊂ CA(FKy ∩ Bk \ Ck)

for each generic fiber FKy . In summary, this leads to

FKy ∩ Bk ⊂ CA(FKy ∩ Bk+1)

for each generic fiber FKy and 1 ≤ k ≤ n− 1.

It remains to consider a point ~ZK in the stratum B0, that is, we assume ZK−1 = 0. Choose
again the vector field ∂K−1

x corresponding to the tupel x = (zK−3,n1, ..., zK−3,nn, zK−1,i∗i∗) of
(Type 5 ). Then

∂K−1
x (zK−1,i∗i∗) = ±(P̃K−4

n )n det(In + ZK−1ZK−2)︸ ︷︷ ︸
=1

6= 0,

and therefore there is a finite collection A ⊂ QK such that

FKy ∩ B0 ⊂ CA(FKy ∩ B1)

for each generic fiber FKy .
For the final step, we only need to put everything together. We have

CA(FKy ∩ B0) ⊂ CA(FKy ∩ B1) ⊂ · · · ⊂ CA(FKy ∩ Bn) ⊂ CA(FKy ∩ UK)

for each generic fiber FKy , and since N2 =
⋃n
k=0 Bk, we obtain

FKy ∩N2 ⊂ CA(FKy ∩ UK)

for each generic fiber FKy . This finishes the proof.
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4 Applications

In the following we present some applications of the Main theorem as we can find them in [13].
In addition, we devote a section to the density property. This is not directly an application of
the Main theorem, but from its proof.

4.1 Preliminaries

In this section we introduce some notions which are important for this chapter. Let R be
a commutative ring with 1. An element (a1, ..., an) ∈ Rn is called unimodular if there exist
b1, ..., bn ∈ R such that

a1b1 + · · ·+ anbn = 1.

Let Un(R) denote the set of unimodular elements in Rn. A unimodular element (a1, ..., an+1) ∈
Un+1(R) is called stable, if there exist r1, ..., rn ∈ R such that

(a1 + r1an+1, ..., an + rnan+1) ∈ Un(R)

is unimodular. Let sr(R) denote the least natural number such that each unimodular element
in Usr(R)(R) is stable. This number is called Bass stable rank of R. For the ring O(X) we have

sr(O(X)) = bdimX
2
c+ 1 (4.1)

as for instance (see [2]).

4.2 On the number of factors

The previous choice of elementary symplectic matrices turns out to be suboptimal if we want
to estimate the number of factors. We will consider unitriangular symplectic matrices instead.
Here, a unitriangular matrix is an upper (resp. lower) triangular matrix having only ones on
the diagonal. However, this does not give us an advantage a priori. We need an alternative
definition of a symplectic matrix. Essentially, we just want to do a suitable basis transformation
such that we also have unitriangular elementary matrices of the form(

A 0
0 D

)
, (?)

where A,B are unitriangular matrices. Let L be the n×n-matrix with ones on the skew-diagonal
and zeros elsewhere, i.e.

L =

 1

. .
.

1

 .
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Then we define the basis transformation matrix

B :=

(
In 0
0 L

)
and

Ω̃ = BΩB =

(
0 L
−L 0

)
.

Then a matrix M is symplectic with respect to Ω if and only if BMB is symplectic with respect
to Ω̃. The elementary Ω-symplectic matrices of (E.1) and (E.2) are still unitriangular, since
L2 = In. The Ω-symplectic matrix in (?) reads as(

A 0
0 LDL

)
in the new basis and in particular, it is unitriangular, if A is unitriangular. So the choice of
unitriangular matrices, together with the change of bases, actually extends the set of elementary
symplectic matrices.

We will use the Tavgen reduction to find an estimate for the number of factors. For this we
make a short disgression in the setting of elementary Chevalley groups. Let Φ be a reduced
irreducible root system of rank l ≥ 2 and let R be a commutative ring with 1. We choose an
order on Φ and a system of fundamental roots Π = {α1, ..., αl}. Each root α ∈ Φ is an integral
sum of the fundamental roots

α =
l∑

i=1

ki(α)αi,

where the integer coefficients ki(α) are either all non-negative or all non-positive. For r = 1, l,
we define the following subsets of Φ

∆r = {α ∈ Φ : kr(α) = 0}, Σr = {α ∈ Φ : kr(α) > 0}, Σ−r = {α ∈ Φ : kr(α) < 0}.

∆r is itself a root system of rank l − 1. On the level of Dynkin diagram, we obtain ∆r from Φ
by taking away the first (r = 1) or the last (r = l) fundamental root. The elementary Chevalley
group E(Φ, R) of type Φ over R is generated by root subgroups xα, α ∈ Φ

E(Φ, R) = {xα(r) : α ∈ Φ, r ∈ R}.

The positive unipotent subgroup U(Φ, R) is generated by the root subgroups of positive roots

U(Φ, R) = {xα(r) : α ∈ Φ+, r ∈ R}.

Similarly, U−(Φ, R) = {xα(r) | α ∈ Φ−, r ∈ R}. The following theorem was originally proved by
Oleg Tavgen and adapted in [25] , where the number of factors is even. For our estimates, we
need the same result allowing odd number of factors. We remark that the shape of the starting
factor, upper or lower, is also immaterial. The above mentioned article, as well as [24], are
recommended for more information.

Theorem 4.2.1 (Tavgen’s reduction). Let Φ be a reduced irreducible root system of rank l ≥ 2
and let R be a commutative ring with 1. Suppose that for subsystems ∆ = ∆1,∆l of rank l − 1
the elementary Chevalley group E(∆, R) admits the unitriangular factorization with L factors

E(∆, R) = U−(∆, R)U(∆, R) · · ·U±(∆, R).

Then the elementary Chevalley group E(Φ, R) admits the unitriangular factorization with the
same number of factors

E(Φ, R) = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R).
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Proof. We take

Y = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R).

Y is a nonempty subset of E(Φ, R), in particular it contains 1. Since the group E(Φ, R) is
generated by the following root elements X = {xα(r) | α ∈ ±Π, r ∈ R} ⊂ E(Φ, R). Notice that
the generating set X is symmetric, i.e. X−1 = X. We claim that xα(r)Y ⊂ Y for α ∈ ±Π:
Since l ≥ 2, α lies in at least one of the subsystems ∆1,∆l. Suppose that α belongs to ∆ = ∆r,
then we consider the Levi decomposition

U(Φ, R) = U(∆, R) n E(Σ, R), U−(Φ, R) = U−(∆, R) n E(Σ−, R),

where Σ = Σr and E(Σ, R) = 〈xα(r) | α ∈ Σ, r ∈ R〉. Since U±(∆, R) normalizes E±(Σ, R) , we
can rewrite Y as

Y = U−(Φ, R)U(Φ, R) · · ·U±(Φ, R)

= U−(∆, R)E(Σ−, R)U(∆, R)E(Σ, R) · · · U±(∆, R)E(Σ±, R)

=
(
U−(∆, R)U(∆, R) · · ·U±(∆, R)

)
E(Σ−, R)E(Σ, R) · · ·E(Σ±, R)

= E(∆, R)E(Σ−, R)E(Σ, R) · · ·E(Σ±, R),

where the last step follows from the assumption. For α ∈ ∆, xα(r) is an element in E(∆, R),
hence xα(r)Y ⊂ Y . This proves XY ⊂ Y . But this implies Y = E(Φ, R): choose any
g ∈ E(Φ, R) and choose some y ∈ Y . Since X is a generating set of E(Φ, R) and X is symmetric,
there are x1, ..., xk ∈ X such that gy−1 = x1 · · ·xk. In particular, this proves

g = gy−1y = x1 · · ·xk−1 xky︸︷︷︸
∈Y︸ ︷︷ ︸

∈Y

∈ Y.

This finishes the proof.

Corollary 4.2.2. Let X be a reduced Stein space of dimension d and let n ≥ 2. Then there
exists an upper bound t = t(n, d) for the number of unitriangular factors of any null-homotopic
holomorphic mapping f : X → Sp2n(C). In particular, the bound t(n, d) smaller than or equal
to t(1, d) the corresponding bound for SL2(O(X)), i.e.

t(n, d) ≤ t(1, d).

Proof. The main theorem guarantees the existence of a natural number t(n, d) such that any
holomorphic, null-homotopic mapping f : X → Sp2n(C) can be written as a product of t
unitriangular matrices. The group Ep2n(O(X)) generated by unipotent symplectic matrices
coincides with the elementary Chevalley group E(Cn,O(X)). According to the main theorem in
[14], there exists a natural number t(1, d) such that any holomorphic, null-homotopic mapping
f : X → SL2(C) can be written by t(1, d) unitriangular matrices. By Tavgen’s reduction, we
conclude t(n, d) ≤ t(1, d).

Question 4.2.3. On the one hand, we wish to find a (sharp) upper bound for t(1, d) and on
the other, there exist natural numbers m and N such that

t(n, d) = m

for all n ≥ N . What numbers are m and N?
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We have a full answer for Stein spaces of dimension one and a partial answer for Stein spaces
of dimension 2. The following result was proved by Vavilov, Smolensky and Sury in [25]

Theorem 4.2.4. Let Φ be a reduced irreducible root system and R be a commutative ring with
stable rank sr(R) = 1. Then the elementary Chevalley group E(Φ, R) admits unitriangular
factorization

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)

of length 4.

The stable rank of the ring O(X) is given by

sr(O(X)) = bdimX
2
c+ 1

(see (4.1)). This leads to the following

Corollary 4.2.5. Let X be a reduced Stein space of dimension dimX = 1. Then every null-
homotopic f ∈ Sp2n(O(X))0 can be written as a product of t(n, 1) = 4 unitriangular matrices.

Ivarsson and Kutzschebauch proved the following for dimension 2 Stein spaces in [15]

Theorem 4.2.6. Let X be a reduced Stein space of dimension dimX = 2. Then every
f ∈ SL2(O(X)) can be written as a product of t(1, 2) = 5 unitriangular matrices.

Corollary 4.2.7. Let X be a reduced Stein space of dimension dimX = 2. Then every
f ∈ Sp2n(O(X)) can be written as a product of t(n, 2) ≤ 5 unitriangular matrices.

4.3 Product of exponentials

The exponential of a n× n-matrix A is given by the exponential series

expA =
∑
k≥0

Ak

k!
.

Expn(O(X)) denotes the subgroup of GLn(O(X)) generated by exponentials and e(n,O(X))
the minimal number such that any matrix in Expn(O(X)) factorizes as a product of e(n,O(X))
exponentials. Let t(n,O(X)) be the minimal number such that any element in the elementary
Chevalley group E(Φ,O(X)) ⊂ GLn(O(X)) factorizes as a product of t(n,O(X)) unitriangular
matrices. When no such number exists, set t(n,O(X)) =∞.

Observe that for a nilpotent matrix N ,

log(In +N) =
∑
k≥1

(−1)k

k
Nk

is a finite sum. Thus every unipotent matrix A (i.e. A − In is nilpotent) can be written as
the exponential of logA. Also under conjugation an exponential remains an exponential, since
BAB−1 = exp(B · A ·B−1) for any regular n× n-matrix B.

An alternating product U1U2 · · ·Uk of unitriangular matrices is a product, where the odd
factors U1, U3, ..., are lower unitriangular and the even U2, U4, ... are upper unitriangular, or vice
versa.

Lemma 4.3.1. An alternating product of k unitriangular matrices U1U2 · · ·Uk can be written
as a product of bk

2
c+ 1 exponentials.
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Proof. The proof is by induction on the number of factors. It is enough to prove the claim
for products of odd length, for if we consider a product of even length, we simply add one
exponential. More precisely, assume the claim is true for an odd number of factors and consider
an alternating product U1U2 · · ·U2k−1U2k. Then U1 · · ·U2k−1 can be written as a product of
b2k−1

2
c+ 1 exponentials and we obtain

(b2k−1
2
c+ 1) + 1 = b2k

2
c+ 1,

which proves the claim for alternating products of even length.
The base case is fine, since the claim is trivially true for k = 1. For the induction step, we

consider an alternating product U1U2 · · ·U2k+1 and we want to write it as a product of

b2k+1
2
c+ 1 = k + 1

exponentials. We apply the following trick presented in [3, Lemma 2.1]. Write

U1U2 · · ·U2k−1U2kU2k+1 = U1U2 · · ·U2k−2 · U2k−1U2k+1︸ ︷︷ ︸
=:Ũ2k−1 unitr.

·(U−1
2k+1U2kU2k+1),

and note that the product U1U2 · · ·U2k−2Ũ2k−1 is alternating and of length 2k − 1. Hence it can
be written as a product of k exponentials by the induction hypothesis. Since U2k conjugated by
U2k+1 is an exponential, this gives us k + 1 exponential factors. This finishes the proof.

An application of this lemma and the main theorem yields

Corollary 4.3.2 (Product of exponentials). Let X be a reduced Stein space of dimension d and
let f : X → Sp2n(C) be a null-homotopic, holomorphic mapping with n ≥ 2. Further, let t(n, d)
denote the number of unitriangular factors of f . Then there exist a natural number e = e(n, d)
and holomorphic mappings A1, ..., Ae : X → sp2n(C) such that

f(x) = exp(A1(x)) · · · exp(Ae(x)).

Moreover,

e(n, d) ≤ b t(n,d)
2
c+ 1.

Another application of the above lemma, together with Corollary 4.2.5 and Corollary 4.2.7,
yields

Corollary 4.3.3. Let X be a Stein space of dimension dimX ∈ {1, 2}. Then

e(n,O(X)) ≤ 3.

Definition 4.3.4. Let eSL(n,O(X)) denote the minimal number such that any matrix in
SLn(O(X))∩Expn(O(X)) factorizes as a product of eSL(n,O(X)) exponentials, with holomorphic
mappings X → sln(C) as exponents. Similarly, eSp(n,O(X)) is the minimal number such that
any matrix in Sp2n(O(X)) ∩ Expn(O(X)) factorizes as a product of eSp(n,O(X)) exponentials,
with holomorphic mappings X → sp2n(C) as exponents.

Lemma 4.3.5. Let n be a natural number. Then

e(n,O(X)) ≤ eSL(n,O(X)).
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Proof. Let f ∈ GLn(O(X)) be null-homotopic. Then the composition with the determinant
det ◦f : X → C∗ is also null-homotopic. Thus there exists a holomorphic function g : X → C
such that exp ◦g = det ◦f . Observe that exp(− g

n
In) · f ∈ SLn(O(X)), since by Jacobi’s formula

det(exp(−g
n
In)) = exp(trace(−g

n
In)) = exp(−g).

Hence there exist e = eSL(n,O(X)) holomorphic mappings S1, ..., Se : X → sln(C) such that

exp(−g
n
In) · f = exp(S1) · · · exp(Se).

This implies

f = exp(
g

n
In) exp(S1) exp(S2) · · · exp(Se)

= exp(
g

n
In + S1) exp(S2) · · · exp(Se)

which proves the claim.

The proof of the following proposition is essentially the same as in [3, Theorem 1.1 (4)].

Proposition 4.3.6. Let X be a Stein space with dimX > 0 and let n ≥ 2 be a natural number.
Then e(n,O(X)) ≥ 2.

Proof. Without loss of generality, we assume that X is irreducible. Then there exist two distinct
points x1, x2 ∈ X and a holomorphic function h ∈ O(X) such that h(x1) = 0, h(x2) = 2πi. Set
g = exph and let

T =

(
g 1
0 1

)
.

Suppose for contradiction there is a logarithm, i.e. T = expM for some M ∈Mn(O(X)). Then
the matrix S = exp(1

2
M) ∈ GLn(O(X)) satisfies S2 = T . Let’s write

S =

(
a b
c d

)
.

Then we obtain (
g 1
0 1

)
= T = S2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
.

Equations b(a + d) = 1 and c(a + d) = 0 imply a + d 6= 0 and c = 0. Moreover, d2 = 1 and
d ∈ O(X) implies d ≡ 1 or d ≡ −1. On the other hand, a2 = exph implies a = exp(h

2
) or

a = − exp(h
2
). However, both points, −1 and 1, are in the image of exp(h

2
) by construction.

This contradicts a+ d 6= 0 for d = ±1. Therefore e(2,O(X)) ≥ 2.
For n > 2, fix M ∈ C \ {0, 1} and set

Tn =

(
MIn−2 0

0 T

)
.

Suppose that Tn had a logarithm, then there would exist

Sn =

(
L1 L2

L3 L4

)
∈Mn(O(X))

with the same block partition as Tn and such that S2
n = Tn. Then we have SnTn = TnSn, which

implies that

L2(T −MI2) = 0 and (T −MI2)L3 = 0.

On X ′ \ (exph)−1(M), T −MI2 is invertible, so L2 = L3 = 0. By the identity theorem, L2 and
L3 vanish on X ′. But this would imply that L2

4 = T , a contradiction. Hence e(n,O(X)) ≥ 2 for
all n ≥ 2.
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4.4 Continuous vs. holomorphic factorization

Since the solution to the Gromov-Vasterstein problem involves the Oka principle, it is natural to
compare the K-theoretic questions for the ring O(X) with the corresponding questions for the
ring C(X) of continuous complex-valued functions on the Stein space X. Let t(n, d, C,O) and
t(n, d,O) (see [15]) be the respective minimal numbers such that all null-homotopic holomorphic
mappings X → SLn(C) from a d-dimensional Stein space X into the special linear group
factorize as a product of t(n, d, C,O) continuous and t(n, d,O) holomorphic unipotent matrices
(starting with a lower unitriangular one), respectively. Clearly,

t(n, d, C,O) ≤ t(n, d,O)

and by Tavgen’s reduction theorem

t(n, d,O) ≤ t(n− 1, d,O)

for all n > 2. We have a lower bound.

Lemma 4.4.1. Let n ≥ 2 be a natural number. Then

4 ≤ t(n, d, C,O) ≤ t(n, d,O) ≤ t(2, d,O).

Proof. Consider the matrix

P =


2

1
. . .

1
1
2

 ∈ SLn(O(X)).

This matrix cannot be written as a product of one or two unitriangular matrices, because of the
2 in the upper left corner. Moreover, it cannot be written as a product of three unitriangular
matrices. Suppose for contradiction it would be possible with the unitriangular matrices
X1, X2, X3, where X1, X3 are lower unitriangular. Then X−1

3 is also lower unitriangular and we
get

PX−1
3 =

2
? ?
? ? ?

 .

On the other hand,

X1X2 =

1 ? ?
? ? ?
? ? ?

 ,

which is a contradiction.

Obviously we have

t(2, d,O) = 4 =⇒ t(n, d, C,O) = t(n, d,O) = 4, ∀n ≥ 2.

This is the case for instance if the dimension of the Stein space X is dimX = 1 (see Corollary
4.2.5), or more generally, for a commutative ring R with 1 such that the bass stable rank is
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sr(R) = 1. However, we don’t know, whether this is also a necessary condition. Consider for
instance a unimodular row (a, b) ∈ R2 for some commutative ring R with 1. Then there are
c, d ∈ R such that ad− bc = 1, i.e. the matrix(

a b
c d

)
∈ SL2(R).

This leads to the following question.

Question 4.4.2. Suppose we can write each matrix in SL2(R) as a product of four unitriangular
matrices. Does this imply that the bass stable rank sr(R) = 1?

In [15] they prove the following.

Theorem 4.4.3. Let X be a Stein space of dimension d = 2. Then

4 ≤ t(2, d, C,O) ≤ t(2, d,O) ≤ 5.

Moreover, Ivarsson and Kutzschebauch show in the formentioned paper that Cohn’s famous
counterexample (see [5]) (

1− zw −z2

w2 1 + zw

)
factorizes as a product of four continuous unitriangular matrices, but not less than five holomor-
phic unitriangular matrices. In other words, we have

t(2, 2,O) = 5.

So the question remained, whether we have t(2, 2, C,O) = 4 or t(2, 2, C,O) = 5. We have now
an answer.

Theorem 4.4.4. Let X be a Stein space of dimension d = 2. Then

t(2, 2, C,O) = t(2, 2,O) = 5.

Proof. We construct an example of a matrix in SL2(O(X)) which does not factorise as a product
of four continuous unitriangular matrices. First we study what it means to be a product of four
unitriangular matrices. Let M ∈ SL2(O(X)) be given by

M =

(
a b
c d

)
, ad− bc = 1.

Assume there are four holomorphic functions g1, g2, g3, g4 : X → C such that

M =

(
1
g1 1

)(
1 g2

1

)(
1
g3 1

)(
1 g4

1

)
. (4.2)

Bringing the first and the fourth matrix to the left-hand-side, we obtain(
1 + g2g3 g2

g3 1

)
=

(
a b− ag4

c− ag1 −g4(c− ag1) + d− bg1

)

68



In case a 6= 0, the first three equations read

a = 1 + g2g3

g4 =
1

a
(b− g2)

g1 =
1

a
(c− g3),

and the fourth equation follows from the other three. If moreover a 6= 1, any choice of
g3 : {x ∈ X|a(x) 6∈ {0, 1}} → C∗ gives a factorization in this part of X. The fiber of the
fibration f ∗Φ4 (see [15]) over {x ∈ X|a(x) 6∈ {0, 1}} is C∗, where

Φ4 : C4 → SL2(C), (z1, z2, z3, z4) 7→
(

1
z1 1

)(
1 z2

1

)(
1
z3 1

)(
1 z4

1

)
.

When a = 0, then

1 + g2g3 = 0, g2 = b, g3 = c, 1 = −cg4 + d− bg1.

Note that g2 and g3 are prescribed as b and c, respectively, and the fiber of f ∗Φ4 here is C. For
a = 1, the fiber is the cross of axis.

Consider the following holomorphic mapping f : C2 → SL2(C)

f(z, w) =

(
(zw − 1)(zw − 2) (zw − 1)z + (zw − 2)z2

h1(z, w) h2(z, w)

)
,

where the functions in the second row are chosen such that f(z, w) has determinant 1. The
existence of such polynomials follows from Hilbert’s Nullstellensatz, or if one is looking for
holomorphic functions from a standard application of Theorem B. For this obeserve that the
functions in the first row have no common zeros.

Suppose that there were continuous g1, ..., g4 : C2 → C such that f factorizes as in (4.2).
Then g2(z, w) = −z2 on {(z, w) : zw = 1} and g2(z, w) = z on {(z, w) : zw = 2}. Let η1, η2

denote the roots of (x− 1)(x− 2) = 1, and choose a continuous curve γ : [0, 1]→ C \ {η1, η2}
such that γ(0) = 1 and γ(2). Then g2 induces a family of continuous self-maps of C∗

F : [0, 1]× C∗ → C∗, (t, θ) 7→ g2(θ,
1

θ
γ(t))

connecting between F (0, θ) = −θ2 and F (1, θ) = θ. But since these two self maps of C∗ have
different degrees, we find a contradiction.

Remark 4.4.5. The example given in the proof above can be used to show that

t(2, d,O) ≥ 5

for all Stein spaces X with d = dimX ≥ 2. Hence we have a positive answer of Question 4.4.2
in the special case R = O(X).

4.5 Fibers with density property

In the early 90s, Andersén and Lempert [1] established remarkable properties of the automorphism
group Aut(Cn), n ≥ 2. While Aut(C) is fairly easy to calculate, it is already hopeless for Aut(C2),
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let alone for manifolds. They prove that the subgroup of Aut(C) generated by so-called over-
shears is dense. A mapping Cn → Cn is an overshear, if it is of the form (up to permutations of
the coordinates z1, ..., zn)

(z1, ..., zn) 7→ (z1, ..., zn−1, f(z1, ..., zn−1) + h(z1, ..., zn−1)zn),

with f, h holomorphic functions on Cn−1, h 6= 0. They also prove, that the subgroup generated
by overshears is not all of Aut(Cn). Since then, Andersén-Lempert theory has evolved and this
is where the density property comes into play. A property that gives us an insight into the size
of the automorphism group. Kaliman and Kutzschebauch [19] found a wonderful criteria for the
density property of complex manifolds. Actually, it can be formulated in a even more general
setting. We follow the article [9] which is dedicated to Lázló Lempert in honour of his 70th
birthday.

Definition 4.5.1 (Density property). A complex manifold X has the density property if in the
compact-open topology the Lie algebra Liehol(X) generated by completely integrable holomorphic
vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic vector fields on X.

Definition 4.5.2. A pair (θ1, θ2) of complete holomorphic vector fields on a Stein manifold X
is a compatible pair if the following conditions hold:

(i) the closure of the linear span of the product of the kernels ker θ1 ·ker θ2 contains a nontrivial
ideal I ⊂ O(X), and

(ii) there is a function h ∈ O(X) with h ∈ ker θ2 and θ1(h) ∈ ker θ1 \ {0}.

Theorem 4.5.3. Let X be a Stein manifold on which the group of holomorphic automorphisms
Aut(X) acts transitively. If there are compatible pairs (θ1,k, θ2,k), k = 1, ...,m, such that there is
a point p ∈ X where the vectors θ2,k(p) form a generating set for TpX, then X has the density
property.

According to the Spanning theorem, the automorphism group acts transitively on smooth
generic fibers. Moreover, every such fiber FKy is of the form Cm ×G, since

∂

∂z1,ij

ΦK ≡ 0, 1 ≤ i ≤ j < n.

We know the existence of a finite collection of complete holomorphic vector fields on FKy which
span the tangent bundle TFKy . Then it is rather trivial to find compatible pairs.

Corollary 4.5.4. Every smooth generic fiber FKy , K ≥ 2, has the density property.

Recall the notation P̃K (see Lemma 3.2.2):

P̃K =

{
PK
f if K = 2k + 1,

PK
s if K = 2k.

In the proof of the Spanning theorem, we actually prove that the automorphism group acts
transitively on

GKb := {(z,W ) ∈ Cn × (C
n(n+1)

2 )K−1 : P̃K(z,W ) = b}, b ∈ Cn \ {0, en}.

We exclude b = en such that we can omit a case distinction between K odd and even.
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Theorem 4.5.5. Let K ≥ 2 and n > 2. Then the Stein manifold GKb , b ∈ Cn \ {0, en}, has the
density property.

Proof. Let’s start with K > 2. According to Lemma 3.2.2, there is a meromorphic mapping ψ
which maps GKb × Cm biholomorphic onto some smooth generic fiber FK+1

y for some natural
number m and some y ∈ C2n \ {0}. Since this fiber is smooth and generic, there exists a point
~ZK+1 ∈ FK+1

y with

Q1
f = z1,1n · · · z1,nn 6= 0, Qk

fQ
k
s 6= 0, 2 ≤ k ≤ K − 1.

Let (z0,W0) denote the corresponding copy in GKb . From the Spanning theoremwe know the
existence of a finite collection AK+1 ⊂ QK+1 which spans the tangent bundle TFK+1

y which
is actually shown on the level of GKb , that is, we construct a finite collection A of complete
holomorphic vector fields on GKb which spans TGKb . By construction of this set, each vector field in
A was introduced for some 2 ≤ k ≤ K and thus is tangential to every GLb , b ∈ Cn\{0}, k ≤ L ≤ K.
Let AL ⊂ A denote the subset of those vector fields which are introduced for k with k ≤ L. In

particular every vector field V ∈ AL, L < K, has ZK ∈ C
n(n+1)

2 in its kernel, i.e. V (zK,ij) = 0 for
all 1 ≤ i ≤ j ≤ n. Consider the complete vector field ∂Kx corresponding to the (Type 3 )-tupel

x = (zK,ij, zK,11, zK,22, ..., zK,nn), i 6= j.

Then

∂Kx (zK,ij) = det

P̃
K−1
1

. . .

P̃K−1
n

 = P̃K−1
1 · · · P̃K−1

n 6≡ 0,

since P̃K−1
1 · · · P̃K−1

n (z0,W0) 6= 0. Moreover, P̃K−1
1 · · · P̃K−1

n ∈ ker ∂Kx and each variable
zl,rs, 1 ≤ l < K, 1 ≤ r ≤ s ≤ n is in the kernel of ∂Kx . This implies

kerV · ker ∂Kx = O(GKb ),

hence (V, ∂Kx ) is a compatible pair for each V ∈ AK−1. Choose the n vector fields ∂Kxi corre-
sponding to the (Type 1 )-tupels

x = (zK−1,ii, zK,11, ..., zK,nn), 1 ≤ i ≤ n

from Lemma 3.7.2 which span the new expressed directions in the point (z0,W0). Hence
T(z0,W0)GKb is spanned by AK−1 ∪ {∂Kxi , i = 1, ..., n}. It remains to find compatible pairs for
the fields ∂Kxi . Consider the complete vector fields ∂Ly , L ≤ K − 1, corresponding to the (Type
3 )-tupels

y = (zL,jj, zL,1m, zL,2m, ..., zL,nm), j,m 6= i. (4.3)

Such vector fields exist in the case where n > 2 and K > 2. Note that (∂Kxi , ∂
L
y ) is a compatible

pair. Therefore GKy has the density property by Theorem 4.5.3.
In a next step, let K = 2 and choose a point (z,W ) in the manifold

G2
b = {(z,W ) ∈ Cn × C

n(n+1)
2 : en +WZ = b}

satisfying z1 · · · zn 6= 0. Such a point exists by Lemma 3.5.4. Then the tangent space T(z,W )G2
b is

spanned by complete vector fields ∂2
x corresponding to the tupels

x = (z1,in, z2,j1, z2,j2, ..., z2,jn), 1 ≤ i ≤ n, j 6= i,

x = (z2,ij, z2,11, ..., z2,nn), i 6= j,

x = (z1,1n, ..., z1,nn, z2,ii), 1 ≤ i ≤ n.
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of (Type 8 ), (Type 3 ) and (Type 5 ), respectively. For n > 2 we have

n+ 1 <

(n(n+1)
2

n+ 1

)
.

Therefore, given one of these vector fields ∂2
x, we find distinct pairs of indices (i0, j0), ..., (in, jn)

such that (∂2
y , ∂

2
x) forms a compatible pair with the vector field ∂2

y corresponding to the (Type
3 )-tupel y = (z2,i0j0 , ..., z2,injn). Hence G2

b has the density property by Theorem 4.5.3.

Corollary 4.5.6. Let n = 2 and K ≥ 4. Then the Stein manifold GKb , b ∈ C2 \ {0, en} has the
density property.

Proof. We can argue almost similarly as in the previous case. The only difference is that we
need L < K − 1 instead of L ≤ K − 1 for the choice of the fields in (4.3).

For n = 2 we have (n(n+1)
2

n+ 1

)
=

(
3

3

)
= 1 < 2 = n,

which means that we are somehow ‘running out of space’ in this case. It turns out, that the
arguments above no longer apply so easily. In particular, it is significantly more difficult to find
a non-trivial ideal that satisfies property (i) in the definition of a compatible pair. This leads to
the following

Question 4.5.7. Let n = 2 and b ∈ C2 \ {0, e2}. Do the Stein manifolds G2
b and G3

b have the
density property?
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A Appendix

A.1 Calculation and properties of the vector fields ∂Kx

In this section we calculate some concrete vector fields as a supplement and for a better
understanding of the proof of the Spanning theorem. Consider the tupel x = (x0, ..., xn). By
definition, the vector field ∂Kx is given by

∂Kx = det

( ∂
∂x0

· · · ∂
∂xn

∂
∂x0
P̃K · · · ∂

∂xn
P̃K

)
.

We are primarily interested in whether there are some complete fields whose flows don’t remain
in a given subvariety. At first glance this may sound simple. However, the definition with the
determinant suggests that the coefficients are not easy to understand in general, since they are
polynomials in several variables. In addition, the subvariety might be given by some difficult
equations. and some useful properties. Therefore, it makes sense to calculate some derivatives
∂
∂xi
P̃K in advance. In order to make life easier, we start with K = 2.

A.1.1 Calculation of ∂2x

We are interested in the tupels of (Type 8 )

xi,j := (z1,ni, z2,j1, ..., z2,jn), 1 ≤ i, j ≤ n, i 6= j. (A.1)

Compute

∂

∂z1,ni

P 2
s =

∂

∂z1,ni

(
Z2 In

)(Z1en
en

)
=
(
Z2 In

)(ei
0

)
= Z2ei

and for 1 ≤ r ≤ n,

∂

∂z2,jr

P 2
s =

∂

∂z2,jr

(
Z2 In

)(Z1en
en

)
=
(
Ẽjr 0

)(Z1en
en

)
= ẼjrZ1en

=
1

1 + δjr
(z1,nrej + z1,njer) .

Hence the corresponding vector fields ∂2
xi,j

are of the form

∂2
xi,j

= det



∂/∂z1,ni ∂/∂z2,j1 · · · ∂/∂z2,jj · · · ∂/∂z2,jn

z2,1i z1,nj 0 0
...

. . .

z2,ji z1,n1 · · · z1,nj · · · z1,nn

...
. . .

z2,ni 0 0 z1,nj


.
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By construction, they satisfy
∂2
xi,j

(z1,kn) = δik(z1,nj)
n,

for 1 ≤ i, j, k ≤ n.

A.1.2 Calculation of ∂3x

Let 1 ≤ i, j ≤ n and compute the following derivatives.

∂

∂z1,ni

P 3
f =

∂

∂z1,ni

(
In Z3

)(In 0
Z2 In

)(
Z1en
en

)
=
(
In Z3

)(In 0
Z2 In

)(
ei
0

)
= (In + Z3Z2)ei,

∂

∂z2,ij

P 3
f =

∂

∂z2,ij

(
In Z3

)(In 0
Z2 In

)(
Z1en
en

)
=
(
In Z3

)( 0 0

Ẽij 0

)(
Z1en
en

)
= Z3ẼijZ1en =

1

1 + δij
(z1,niZ3ej + z1,njZ3ei)

and

∂

∂z3,ij

P 3
f =

∂

∂z3,ij

(
In Z3

)(P 2
f

P 2
s

)
=
(
0 Ẽij

)(P 2
f

P 2
s

)
= ẼijP

2
s

=
1

1 + δij

(
P 2
n+iej + P 2

n+jei
)
.

At first, we are interested in the tupels

xi = (z2,ii, z3,i∗1, ..., z3,i∗n), 1 ≤ i, i∗ ≤ n, i 6= i∗, (A.2)

of (Type 2 ). It is of the form

∂3
xi

= det

(
∂

∂z2,ii

∂
∂z3,i∗1

· · · ∂
∂z3,i∗n

? Ẽi∗1P
2
s · · · Ẽi∗nP

2
s

)

= det


P 2
n+i∗

. . .

P 2
n+1 · · · P 2

n+i∗ · · · P 2
2n

. . .

P 2
n+i∗


∂

∂z2,ii

+
n∑
k=1

αk
∂

∂z3,i∗k

= (P 2
n+i∗)

n ∂

∂z2,ii

+
n∑
k=1

αk
∂

∂z3,i∗k

for some suitable holomorphic functions α1, ..., αn.
The vector field ∂3

x corresponding to the (Type 5 )-tupel

x = (z1,1n, ..., z1,nn, z3,nn) (A.3)

is given by

∂3
x = det

(
∂

∂z1,1n
· · · ∂

∂z1,nn
∂

∂z3,nn

(In + Z3Z2)e1 · · · (In + Z3Z2)en P 2
2n(~Z2)en

)
,
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having the notation Φ2 = (P 2
1 , ..., P

2
2n) in mind.

The vector fields ∂3
xi

corresponding to the (Type 2 )-tupels

xi = (z2,ii, z3,1n, ..., z3,nn), i = 1, ..., n− 1, (A.4)

are given by

∂3
xi

= det

( ∂
∂z2,ii

∂
∂z3,1n

· · · ∂
∂z3,n−1,n

∂
∂z3,nn

z1,inZ3ei P 2
2ne1 + P 2

n+1en · · · P 2
2nen−1 + P 2

2n−1en P 2
2nen

)
.

Lemma A.1.1. The vector fields ∂3
xi

, corresponding to the tupels in (A.4), are given by ∂
∂z2,ii

on the set of points with Z1en = 0.

Proof. Let ~Z3 ∈ (C
n(n+1)

2 )3 be a point with Z1en = 0. Then the recursive formula (3.1) implies

P 2
s = en + Z2 Z1en︸︷︷︸

=0

= en.

Applying this to the formula of the vector fields yields

(∂3
xi

)~Z3
= det

( ∂
∂z2,ii

∂
∂z3,1n

· · · ∂
∂z3,n−1,n

∂
∂z3,nn

z1,inZ3ei P 2
2ne1 + P 2

n+1en · · · P 2
2nen−1 + P 2

2n−1en P 2
2nen

)
= det

( ∂
∂z2,ii

∂
∂z3,1n

· · · ∂
∂z3,n−1,n

∂
∂z3,nn

0 e1 · · · en−1 en

)
= det(In)

∂

∂z2,ii

=
∂

∂z2,ii

The vector fields ∂3
yi

corresponding to the (Type 3 )-tupels

yi = (z3,ii, z3,1n, ..., z3,nn), i = 1, ..., n− 1, (A.5)

are given by

∂3
yi

= det

( ∂
∂z3,ii

∂
∂z3,1n

· · · ∂
∂z3,n−1,n

∂
∂z3,nn

P 2
n+iei P 2

2ne1 + P 2
n+1en · · · P 2

2nen−1 + P 2
2n−1en P 2

2nen

)
.

Lemma A.1.2. The vector fields ∂3
yi

, corresponding to the tupels in (A.5), are given by ∂
∂z3,ii

on the set of points with Z1en = 0.

Proof. The proof is analogous to that in the previous lemma. Recall that P 2
s (~Z3) = en for a

point ~Z3 ∈ (C
n(n+1)

2 )3 with Z1en = 0. In particular, P 2
n+i = 0 for i = 1, ..., n− 1.

The vector field ∂3
x corresponding to the (Type 8 )-tupel

x = (z1,jn, z2,i1, ..., z2,in), i 6= j, (A.6)

is given by

∂3
x = det

(
∂

∂z1,jn

∂
∂z2,i1

· · · ∂
∂z2,in

(In + Z3Z2)ej Z3Ẽi1Z1en · · · Z3ẼinZ1en

)
.
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Lemma A.1.3. The vector field ∂3
x, corresponding to the tupel in (A.6), satisfies

∂3
x(z1,jn) = (z1,in)n det(Z3).

Proof. Recall that the matrix (cf. section ...)

Fi(Z1en) := (Ẽi1Z1en, ..., ẼinZ1en)

is given by

Fi(Z1en) =


z1,in

. . .

z1,1n · · · z1,in · · · z1,nn

. . .

z1,in

 .

Hence
det(Fi(Z1en)) = (z1,in)n.

Now, observe that

∂3
x(z1,jn) = det(Z3Ẽi1Z1en, ..., Z3ẼinZ1en)

= det(Z3) det(Ẽi1Z1en, ..., ẼinZ1en)

= det(Z3) det(Fi(Z1en))

= (z1,in)n det(Z3)

and this completes the proof.

The vector field ∂3
x corresponding to the (Type 7 )-tupel

x = (z1,i1n, ..., z1,in−kn, z2,jj1 , ..., z2,jjk , z3,ii), (A.7)

where {i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n}, i ∈ {i1, ..., in−k}, j ∈ {j1, ..., jk}, is given by

∂3
x = det

(
∂

∂z1,i1n
· · · ∂

∂z1,in−kn
∂

∂z2,jj1
· · · ∂

∂z2,jjk

∂
∂z3,ii

(In + Z3Z2)ei1 · · · (In + Z3Z2)ein−k Z3Ẽjj1Z1en · · · Z3ẼjjkZ1en P 2
n+iei

)
.

Lemma A.1.4. Let ∂3
x be the vector field corresponding to the tupel in (A.7). Assume that

z1,jn 6= 0 and

span{Z3ej1 , ..., Z3ejk} = Im(Z3) (?)

is satisfied. Then
∂3
x(z3,ii) = ±(z1,jn)k det((Z3)i1,...,in−k) 6= 0

where (Z3)i1,...,in−k denotes the k × k matrix obtained by removing columns and rows i1, ..., in−k
from Z3.

Proof. We divide the proof into two parts. In the first part, we show that ∂3
x(z3,ii) 6= 0 under

the given assumptions and in the second part, we explicitly compute ∂3
x(z3,ii). For simplicity

reasons, let’s substitute A := Z3, B := Z2 and v := Z1en.
In a first step, we prove

span{AẼjj1v, ..., AẼjjkv} = Im(A)
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if vj 6= 0. By assumption, j ∈ {j1, ..., jk} and without loss of generality, let’s assume j = jk.
This gives us AẼjjkv = AẼjjv = vjAej and moreover, vjAej is non-zero, also by assumption.
To prove the claim, we want to add suitable multiples of vector vjAej to the other vectors

AẼjj1v, ..., AẼjjk−1
v

which is a span-preserving operation. We get

span{AẼjj1v, ..., AẼjjkv} = span{vjAej1 + vj1Aej, ..., vjAejk−1
+ vjk−1

Aej, vjAej}
= span{vjAej1 , ..., vjAejk−1

, vjAej},

where the second equation is obtained by adding −vjl
vj
vjAej, l = 1, ..., k − 1, to the l-th vector.

Now, the claim follows by assumption vj 6= 0 and by (?).
In a second step, consider the symplectic matrix(

In + AB A
B In

)
.

By assumption (?) and the complementary bases theorem, the span

V := span{(In + AB)ei1 , ..., (In + AB)ein−k , Aej1 , ..., Aejk}
describes an n-dimensional vector space. An application of the first step implies

V = span{(In + AB)ei1 , ..., (In + AB)ein−k , AẼjj1v, ..., AẼjjkv},
which shows that ∂3

x(z3,ii) 6= 0.
In the next step we compute ∂3

x(z3,ii) explicitly. From the first step we get

∂3
x(z3,ii) = det((In + AB)ei1 , ..., (In + AB)ein−k , AẼjj1v, ..., AẼjjkv)

= det((In + AB)ei1 , ..., (In + AB)ein−k , vjAej1 , ..., vjAejk)

= vkj det((In + AB)ei1 , ..., (In + AB)ein−k , Aej1 , ..., Aejk),

since adding multiples of columns to other columns has no effect on the determinant. By
assumption (?), we have

ABel ∈ span{Aej1 , ..., Aejk}, l = i1, ..., in−k.

This means that we may add suitable linear combinations of the last k columns to the first
n− k columns to get

det((In + AB)ei1 , ..., (In + AB)ein−k , Aej1 , ..., Aejk) = det(ei1 , ..., ein−k , Aej1 , ..., Aejk).

Recall that the indices i1, ..., in−k and j1, ..., jk are complementary, i.e.

{1, ..., n} = {i1, ..., in−k}∪̇{j1, ..., jk}.
Therefore we obtain

det(ei1 , ..., ein−k , Aej1 , ..., Aejk) = det((A)i1,...,in−k).

Putting this together yields

∂3
x(z3,ii) = vkj det((A)i1,...,in−k) = (z1,jn)k det((Z3)i1,...,in−k)

and this completes the proof.

The vector field ∂3
x corresponding to the tupel

x = (z1,1n, ..., z1,nn, z3,ii), 1 ≤ i ≤ n, (A.8)

is of the form

det

( ∂
∂z1,1n

· · · ∂
∂z1,nn

∂
∂z3,ii

(In + Z3Z2)e1 · · · (In + Z3Z2)en P 2
n+iei

)
and it satisfies ∂3

x(z3,ii) = (−1)n+1(z1,jn)k det(In + Z3Z2).
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A.1.3 Calculation of ∂Kx for K ≥ 4

We want to compute the vector field

∂Kx = Dx(P̃
K),

where P̃K is given by the recursive formula (3.2){
P̃K(~ZK) = P̃K−2(~ZK−2) + ZKP̃

K−1(~ZK−1)

P̃ 1(~ZK) = Z1en, P̃ 0(~ZK) = en.

with the convention ~ZK = (~ZK−1, ZK) = (~ZK−2, ZK−1, ZK) ∈ (C
n(n+1)

2 )K . Compute the deriva-
tives

∂

∂zK,ij
P̃K =

∂

∂ZK,ij
(P̃K−2)︸ ︷︷ ︸

=0

+
∂

∂ZK,ij
(ZKP̃

K−1)

= (
∂

∂zK,ij
ZK)P̃K−1 + ZK(

∂

∂zK,ij
P̃K−1︸ ︷︷ ︸

=0

)

= ẼijP̃
K−1,

∂

∂zK−1,ij

P̃K =
∂

∂zK−1,ij

P̃K−2︸ ︷︷ ︸
=0

+ZK(
∂

∂zK−1,ij

P̃K−1︸ ︷︷ ︸
=Ẽij P̃K−2

)

= ZKẼijP̃
K−2

and

∂

∂zK−2,ij

P̃K =
∂

∂zK−2,ij

P̃K−2︸ ︷︷ ︸
=Ẽij P̃K−3

+ZK(
∂

∂zK−2,ij

P̃K−1︸ ︷︷ ︸
ZK−1Ẽij P̃K−3

)

= (In + ZKZK−1)ẼijP̃
K−3.

If we compare the derivatives of the previous subsection with the ones here, it is noticeable that
they are pretty similar. It is thus no surprise that the tupels of interest look familiar.

The vector field ∂K−1
x corresponding to the (Type 2 )-tupel

x = (zK−2,ii, zK−1,i∗1, ..., zK−1,i∗n) (A.9)

is of the form

±(P̃K−2
i∗ )n

∂

∂zK−2,ii

+
n∑
l=1

αl
∂

∂zK−1,i∗l

for some suitable holomorphic functions α1, ..., αn.
The vector field ∂Kx corresponding to the (Type 5 )-tupel

x = (zK−2,1n, ..., zK−2,nn, zK,nn) (A.10)

is given by

∂Kx = det

(
∂

∂zK−2,1n
· · · ∂

∂zK−2,nn

∂
∂zK,nn

(In + ZKZK−1)Ẽ1nP̃
K−3 · · · (In + ZKZK−1)ẼnnP̃

K−3 ẼnnP̃
K−1

)
.
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The vector fields ∂Kxi corresponding to the (Type 2 )-tupels

xi = (zK−1,ii, zK,1n, ..., zK,nn), i = 1, ..., n− 1, (A.11)

are given by

∂Kxi = det

(
∂

∂zK−1,ii

∂
∂zK,1n

· · · ∂
∂zK,nn

P̃K−2
i ZK−1ei Ẽ1nP̃

K−1 · · · ẼnnP̃
K−1

)
.

Lemma A.1.5. The vector fields ∂Kxi ,corresponding to the tupel in (A.11), are of the form
∂

∂zK−1,ii
on the set of points with P̃K−2 = 0 and P̃K−1 = en.

Proof. The proof is similiar to the one of Lemma A.1.1.

The vector fields ∂Kyi corresponding to the (Type 3 )-tupels

yi = (zK,ii, zK,1n, ..., zK,nn), i = 1, ..., n− 1, (A.12)

are given by

∂Kyi = det

(
∂

∂zK,ii

∂
∂zK,1n

· · · ∂
∂zK,nn

P̃K−1
i ei Ẽ1nP̃

K−1 · · · ẼnnP̃
K−1

)
.

Again we have a similar result.

Lemma A.1.6. The vector fields ∂Kyi , corresponding to the tupels in (A.12), are of the form
∂

∂zK,ii
on the set of points with P̃K−2 = 0 and P̃K−1 = en.

The vector field ∂Kx corresponding to the (Type 2 )-tupel

x = (zK−2,ii, zK−1,j1, ..., zK−1,jn), i 6= j, (A.13)

is given by

∂Kx = det

(
∂

∂zK−2,ii

∂
∂zK−1,j1

· · · ∂
∂zK−1,jn

P̃K−3
i (In + ZKZK−1)ei ZKẼj1P̃

K−2 · · · ZKẼjnP̃
K−2

)

The following result can be shown similar as Lemma A.1.3.

Lemma A.1.7. The vector field ∂Kx , corresponding to the tupel in (A.13), satisfies

∂Kx (zK−2,ii) = (P̃K−2
j )n det(ZK).

The vector field ∂3
x corresponding to the (Type 7 )-tupel

x = (zK−2,i1i∗ , ..., zK−2,in−ki∗ , zK−1,jj1 , ..., zK−1,jjk , zK,ii), (A.14)

where {i1, ..., in−k}∪̇{j1, ..., jk} = {1, ..., n}, i, i∗ ∈ {i1, ..., in−k}, j ∈ {j1, ..., jk}, is given by

∂Kx = det

(
· · · ∂

∂zK−2,ili
∗

· · · ∂
∂zK−1,jjm

· · · ∂
∂zK,ii

· · · (In + ZKZK−1)Ẽili∗P̃
K−3 · · · ZKẼjjmP̃

K−2 · · · ẼiiP̃
K−1

)
.

The following lemma is the analog of Lemma A.1.4.
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Lemma A.1.8. Let ∂Kx be the vector field corresponding to the tupel in (A.14). Assume that
P̃K−2
j 6= 0, P̃K−3

i∗ 6= 0 and

span{ZKej1 , ..., ZKejk} = Im(ZK)

is satisfied. Then

∂Kx (zK,ii) = ±(P̃K−3
i∗ )n−k(P̃K−2

j )k det((ZK)i1,...,in−k).

Proof. For simplicity reasons, substitute A := ZK , B := ZK−1, u := P̃K−3 and v := P̃K−2. As
in Lemma A.1.4, we can conclude that

∂Kx (zK,ii) = ± det((In + AB)Ẽi1i∗u, ..., (In + AB)Ẽin−ki∗u,AẼjj1v, ..., AẼjjk)

= ± det((In + AB)Ẽi1i∗u, ..., (In + AB)Ẽin−ki∗u, vjAej1 , ..., vjAejk)

= ±(vj)
k det(Ẽi1i∗u+ ABẼi1i∗u, ..., Ẽin−ki∗u+ ABẼin−ki∗u,Aej1 , ..., Aejk)

= ±(vj)
k det(Ẽi1i∗u, ..., Ẽin−ki∗u,Aej1 , ..., Aejk).

Since we assume i∗ ∈ {i1, ..., in−k} and ui∗ 6= 0, we can add a suitable multiple of column
ui∗ei∗ = Ẽi∗i∗u to the remaining columns Ẽiri∗u, r = 1, ..., n− k, ir 6= i∗, to conclude that

det(Ẽi1i∗u, ..., Ẽin−ki∗u,Aej1 , ..., Aejk) = det(ui∗ei1 , ..., ui∗ein−k , Aej1 , ..., Aejk)

= (ui∗)
n−k det(ei1 , ..., ein−k , Aej1 , ..., Aejk)

= (ui∗)
n−k det((A)i1,...,in−k).

In summary, this yields

∂Kx (zK,ii) = ±(ui∗)
n−k(vj)

k det((A)i1,...,in−k)

and this completes the proof.

The vector field ∂Kx corresponding to the (Type 5 )-tupel

x = (zK−2,n1, ..., zK−2,nn, zK,ii), 1 ≤ i ≤ n, (A.15)

is given by

∂Kx = det

(
∂

∂zK−2,1n
· · · ∂

∂zK−2,nn

∂
∂zK,ii

(In + ZKZK−1)Ẽ1nP̃
K−3 · · · (In + ZKZK−1)ẼnnP̃

K−3 ẼiiP̃
K−1

)

and satisfies

∂Kx (zK,ii) = det(In + ZKZK−1) det(Fn(P̃K−3))

= (P̃K−3
n )n det(In + ZKZK−1).
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