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0O INTRODUCTION

It is well known that over any field, in particular over the field of complex numbers, a matrix
in the Special Linear Group SL,(C) is a product of elementary matrices. The proof is usually
an application of a Gauss or a Gauss-Jordan process. The same question for SL,(R) over a
commutative ring R is much more difficult and has been studied a lot. For the ring R = C|z]
of polynomials in one variable, it is true since R is an Euclidean ring. For n = 2 and the ring
R = Clz,w], Cohn [5] found the following counterexample: the matrix

2
(1—15;0 1 —izw) € SLy(R)

does not decompose as a finite product of unipotent matrices. In the 1970s, Suslin [22] gave
a positive answer in the case SL, (Clzy, ..., z)), for n > 3 and m > 1. For the ring R of
complex-valued continuous functions on a normal topological space, Vaserstein [23] showed,
that a matrix in SL,,(R) decomposes into a product of elementary matrices if and only it is
null-homotopic. In Gromov’s seminal paper on the Oka principle, the starting point of modern
Oka theory, he asks this question for the ring of complex-valued holomorphic functions (he calls
it the Vaserstein problem, see [11, p. 886]). Ivarsson and Kutzschebauch [14] were able to give a
positive answer to this problem in full generality.

The same question for the symplectic group Sp,,,(R) hasn’t been studied to the same degree.
Again, there is a positive answer for the ring C|z], since this is an Euclidean ring. For n > 2,
Kopeiko [20] proved it for the polynomial ring R = k[zq, ..., 2,y]; and Grunewald, Mennicke and
Vaserstein [12] for the ring R = Z[z1, ..., 2. In [16], Ivarsson, Kutzschebauch and Lgw prove
it for every commutative ring R with identity and bass stable rank sr(R) = 1. Furthermore,
they show that, for the ring R = C(X) of complex-valued continuous functions on a normal
topological space, a matrix in Sp,, (C'(X)) can be decomposed into a product of elementary
matrices if and only it is null-homotopic; we call this the Continuous Vaserstein problem for
symplectic matrices. The same authors [17] show a similar result in the case of Sp,(O(X)),
where O(X) denotes the ring of holomorphic functions on a reduced Stein space X. In this
thesis, we see a full solution for Sp,,(O(X)) for n > 1, the Holomorphic Vaserstein problem for
symplectic matrices.

We call a (2n x 2n)-matrix M symplectic if it satisfies MTQM = Q with respect to the

skew-symmetric matrix
0 I,
°= (5, ©)

where [, denotes the n x n-identity matrix and 0 the n X n-zero matrix. For symmetric matrices
AecCv je. AT = A, matrices of the form

I, A nd I, 0
are symplectic and we call them elementary symplectic matrices. For simplicity reasons, let’s
n(n+1)

identify the space of symmetric matrices Sym,,(C) = {4 € C" : AT = A} with C™ = .

1



Theorem 0.0.1 (Main theorem). There exists a natural number K = K(n,d) such that given
any finite dimensional reduced Stein space X of dimension d and any null-homotopic holomorphic
mapping f : X — Sp,,(C) there exist a holomorphic mapping

G = (Gl, ,GK> X — (Cn(n;l))K

such that

f(x) = (Gf(}) 10> (IO Giix))“(c;f(i(x) 10) (i) G?@) reX

It is immediate that any product of elementary symplectic matrices is connected by a path
to the constant identity matrix Io,, by multiplying the off-diagonal entries by ¢ € [0, 1], i.e.

I, tA I, O
o 1,) " \wa 1)

Therefore the requirement of null-homotopy of the map f is neccessary. Also, in general, we
cannot expect the mapping to be null-homotopic, as the following example shows.

Example 0.0.2. For X = Sp,(C) the identity map
Sp,(C) — Spy(C)

is not null-homotopic, since Spy(C) is not contractible.

0.1 Strategy of proof

There are basically two main ingredients for the proof. In a first step, one proves a continuous

version of the theorem (we also call this the Continuous Vaserstein problem for symplectic

matrices - see Theorem 2.1.1). Once this is shown, we want to apply an Oka principle,

which allows us, very roughly speaking, to deform the continuous solution into a holomorphic

one. Bl(lt ?ne step at a time. Let’s introduce the elementary symplectic matrix mapping
n(n+1

My :C 2 — Sp,,(C) by

I, 7
" if k=2l
Mi(Z) = 0
k E In 0 ifk=20+1
7 I, N

n(n+1)

and then define the mapping U : (C 2 )% — Sp,,(C) by
‘I/K(Zl, ceey ZK) = Ml(Zl)MQ(ZQ> et MK(ZK)

As already said, Ivarsson, Kutzschebauch and Lgw [16] solved the Continuous Vaserstein problem

for symplectic matrices. In fact, there is a natural number K = K(n,d) such that given any

finite dimensional normal topological space Y of dimension d and any null-homotopic continuous
n(n+1)

mapping f : Y — Sp,,,(C) there exists a continuous mapping ' : Y — (C~ 2 )& such that the
diagram

(€5 K
PR

Y T> SPy,(C)



commutes. Unfortunately, the mapping Vg is not a submersion and, in addition, the fibers are
difficult to analyse. We therefore consider ®x := m, o U, where 7y, denotes the projection of
a (2n x 2n)-matrix to its last row. We obtain the commutative diagram

n(n+1)
(C=)"
F l‘I’K:ﬂgnO\PK

Y —— C*\ {0}.

T2n0f

The mapping ®x is surjective for K > 3 (see Theorem 3.1.2) and it is submersive outside some
set of singularities Sk C (Cn<n2+l>)K (see Theorem 3.1.1). We will find an open submanifold

Ex C ((Cn(n;l) VBN Sk such that ®x|p,. : Ex — C?*\ {0} is a stratified elliptic submersion (see
section 3). Further, the Continuous Vaserstein problem for symplectic matrices allows us, for
a given any null-homotopic continuous mapping f : Y — Sp,, (C), to construct a continuous

section F': Y — Ex such that

Ex
/ [
v e

commutes (see Theorem 2.2.3). Then, an application of the Oka principle allows us, roughly
speaking, to homotopically deform F' into a holomorphic mapping, such that the above diagram
commutes.

0.2 Organisation of the thesis

The organisation of this thesis is as follows. The first chapter contains notations and definitions
of elementary terms. For example, it includes a section on the symplectic group and some
important results for the factorization of a symplectic matrix. In addition, we look at essential
concepts of complex geometry such as Stein spaces, complete holomorphic vector fields and, of
course, the Oka principle.

In the second chapter we prove the Main theorem under the assumption that the Oka
principle can be applied. To do this, we will first state the continuous Vaserstein problem and
see a sketch of the proof. Then we conclude the holomorphic Vaserstein problem by applying
the Oka principle.

The third chapter is dedicated solely to the question of whether the Oka principle can
actually be applied. We will clarify all the necessary details and construct stratified sprays.
The climax is represented by the Spanning theorem. In its proof we carry out a nice induction,
although technically demanding, and successively find a finite set of globally integrable vector
fields which spans the tangent bundle of the fibers ®'(x).

In the fourth chapter we see some interesting applications. The question of the number of
factors is addressed. In general, this turns out to be extremely difficult. We state some known
results from [15] for SL,,(O(X)). In addition, we can specify a result from the mentioned paper
and find an optimal bound (see section 'Continuous vs. holomorphic factorization’). Then we
show that the number of factors decreases monotonically as n increases. This can be done using
Chevalley group theory (see section ’On the number of factors’). Last but not least, we deal
with the question of the density property of the smooth fibers (IDI}l () in section 'Fibers with
density property’.

An appendix follows in which some concrete calculations can be found and are intended to
support the proof of the Spanning theorem.
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1 PRELIMINARIES

In the first section we introduce the symplectic group. We clarify our understanding of an
elementary symplectic matriz and we will see some basic properties.

Then we introduce some basic notions of complex analytic geometry in the sections 1.2 -
1.6, as for instance complexr manifolds, Stein spaces and holomorphic vector fields, following the

book [8].

1.1 The symplectic group

Let R be a commutative ring with 1 and let R* denote the group of units. For a positive
integer n € N ={1,2,3,...}, let R" denote the n-dimensional R-module and M,(R) the ring of
n x n-matrices over the ring R. We let AT denote the transpose of a matrix A. Matrices with
AT = A (resp. AT = —A) are called symmetric (resp. skew-symmetric).

Define the skew-symmetric (2n x 2n)-matrix

0 I,
°- (1, ).
where [,, denotes the n x n-identity matrix and 0 the n x n-zero matrix.

Definition 1.1.1 (Symplectic matrix). A matric M € Ms,(R) over the ring R is symplectic
if it satisfies the symplectic condition

MTQM = Q.
The set of symplectic matrices (over R) is denoted by Spy,(R).
Remark 1.1.2. The symplectic matrices Sp,, (R) equipped with matriz multiplication forms an
algebraic group.
Taking the determinant of the defining equation yields det(M)? = 1, hence
Span(R) C GLayn(R),

where GLa,(R) denotes the general linear group, the set of invertible (2n x 2n)-matrices over R.
Moreover, Sp,, (R) equipped with matrix-multiplication and inversion is an algebraic group.
Sometimes it’s useful to write a symplectic matrix M € Sp,, (R) in block notation

M= <é g) (1.1)

for some n x n matrices A, B,C and D in M,(R). The symplectic conditions are given by the
equations

ATc=cTA (SC.1)
B'D=D"B (SC.2)
ATD - CT'B =1,. (SC.3)

Here is an interesting alternative definition of a symplectic matrix.
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Lemma 1.1.3. A matrix M € My, (R), given in block notation (1.1), is symplectic if and only
if its inverse is given by
_ DT BT

Proof. The symplectic conditions (SC.1) - (SC.3) are satisfied if and only if MM = I,,. O

Lemma 1.1.4. The symplectic group Sp,,(R) is closed under matrixz transposition.

Proof. Let M be a symplectic matrix. Then its inverse M ! is symplectic too, hence
(M—HTam' =qQ.

Next, we compute the inverse of this equation. Observe that Q= = —Q. We get

1

Q= (M YoM ) =— M Ht Q)T = —(uhTaM T
—_—
:M:(MT)T =MT
Therefore, the transpose M7 is symplectic. O

An elementary symplectic matriz is either of the form

(IS i) (E.1)

where B is symmetric (B* = B) or of the form

I, O
(9 -
where C' is symmetric. Products of matrices of the first type (E.1) are additive in B. More
precisely, for any pair of symmetric matrices By and Bs, we have

I, B\ (I, B\ (I, Bi+ B,
0 I, 0 I,) \o0 I, '

Analogously, products of matrices of the second type (E.2) are additive in C'. Special cases are
the matrices E;j(a) when B is the matrix with a in position ij and ji and otherwise zero. For
F;j(a) the roles of B and C' are changed. Clearly any elementary matrix of the first type is a
product of matrices E;;(b;;) for ¢ < j and similarly for the second type.

We also introduce the elementary symplectic matrices K;;(a) defined by B = C' = 0 and
A = I, except in position ij where there is an a. Finally, D = (A”)~!. This equals I,, except in
position ji where there is —a if ¢ # j and @~ ! if ¢ = j (this requires a € R*).

The following lemma shows, that the elementary symplectic matrices of the third type can
be decomposed into a finite product of elementary symplectic matrices of the first two types.

Lemma 1.1.5 (Whitehead’s lemma). We have
KZ((I> = EZ(CL — ].)FZ<].)E1(CL_1 — ].)EZ(—(I), a € R*,
and if i # j, then

Kij(a) = Fj;(—a)E; (1) Fj5(a) Ey(a) By (=1),  a € R.



1.1.1 On the factorization of a symplectic matrix

Let M € Sp,,,_»(R) be a symplectic matrix in block notation 1.1, that is,

A B
(e b)
where A, B,C, D € M,,_1(R) are (n — 1) x (n — 1)-matrices with entries in the ring R. Then
the mapping v : Spy,_(R) — Ma,(R) given by

_ o O O

B
0
D
0

OO = O

A
vy = |
0

defines a natural inclusion Spy,_5(R) — Sps,(R).
Moreover, let p : My, (R) — Ms,_2(R) be the projection obtained by removing columns and

rows n and 2n, i.e.

a1 T a1,n—1 a1,n+1 T a1,2n—-1
11 - Q12n
p | @n—11 - QAp—1n-1 Qpn—1n+1  *°°  Apn—12n-—1
Qp+11  ** Qp4ln—1 Anutintl *°° Ant12n-1
Q2n,1 *° A2p2n
Aopn—-11 *° A2pn—1n—1 A2p—1n+1 " A2pn—12n—1

Observe that p o (M) = M, that is, p projects ¥ (Spy,_»(R)) into Sp,,_o(R). We can
even relax the sufficient conditions on the matrix M € Sp,,(R) such that its projection
p(M) € Sp,,,_,(R) is symplectic.

Lemma 1.1.6. Let M € Sp,,,(R) be a symplectic matriz of the form
v=(5 1)
Then the projection p(M) € Spy,_o(R) is a symplectic matriz.
Proof. By Lemma 1.1.4, the matrix M7 is symplectic and of the form
(- 1)
* 1)
Let e; € R?*" denote the element with a 1 in entry ¢ and zeros elsewhere. Then

en = Qe = MQ MTes, = M Qes,, = Me,,.
——— ~—

=€2n =€n
Hence the matrix M is even of the form
A 0 B b
CLT 1 bg bg
C 0 D dJ|’
0O 0 0 1

where A, B,C,D € M, _1(R) and a,b;,by,d € R"!, as well as b3 € R. A simple calculation

proves that
A B
pon = (5 )

satisfies the symplectic conditions (SC.1)-(SC.3). O

7



Lemma 1.1.7. Let M € Sp,,,(R) be a symplectic matriz of the form

u-(:1)

Then
I, 0 O b
a1 T B
0O 0 O 1

for some a,b € R"! and B € R.
Proof. By the previous lemma, the matrix M is of the form
A 0 B b
CLT 1 bg bg
cC 0D dJ)’
0 0 0 1

for some A, B,C,D € M,_1(R) and a,by,by,d € R"!, as well as b; € R. The projection p(M)
is symplectic and by Lemma 1.2, the inverse of ¢ (p(M)) is given by

DT 0 -BT 0

0 1 0 0

-CcT o0 AT 0

0O 0 O 1

Therefore we obtain
A 0 B b DT 0 —BT 0
T T

1 |a" 1 by b 0 1 0 0
MoleM) ™=\ o p a||-cm 0 a7 o
0 0 0 1 0O 0 0 1

ADT — BCT 0 —ABT + BAT i

DT —BTCT 1 —aTBT £ 4TAT b,
| ¢cDT-DCT 0 —-CBT+DAT d
0 0 0 1

I, 4 0 0 by

| "D =0bICT 1 —a"BT + I AT by
N 0 0 I, d
0 0 0 1

and for the last equation we simply applied the symplectic conditions (SC.1)-(SC.3). Another
application of these conditions yields

a"'D" —bI'CT = —d" and —a’BT +bLAT = 7.

This proves the claim. O
Lemma 1.1.8 (2nd Whitehead lemma). Given a,b € R"' and 8 € R, the matriz
L,y 0 0 b
a1 b B
0 0 I, —a|€Menl)
0O 0 O 1

can be written as a product of four elementary symplectic matrices.

8



Proof. Let A, B,C, D € M,(R) be symmetric matrices. Then
I, 0\ (L. B\ (L. 0\ /(L. D\ I, + BC B+ (I, + BC)D
A I,)\o ,)\C I,)\0 I,)] \A(,+BC)+C AD+ (I,+ AB)(I,+ CD)

: 00 0 a
Choosing B = (0 1) and C' = (aT O)’ we get

(L1 0
nso= (" 0),

This matrix is obviously regular and its inverse is obtained if we replace a’ by —a’.
Then, we request 0 = A(I,, + BC) + C, which is satisfied if and only if

_ 4 (0 —a\[(l,.1 0\ [ad" —a
1=ty = (% 9 (B )= (% )
Finally, we want

b
(bOT 6) — B+ (I, + BC)D

which is the case if and only if

D I,1 O 0 b (0 b
T \=a” 1)\b" p—1) " B—-1-4a"b)"
The last block of equations is automatically satisfied because of the symplectic conditions. This
proves the claim. O

The following corollary is the foundation for induction in the factorization.

Corollary 1.1.9. Let M € Sp,,(R) a symplectic matriz and suppose that there are finitely
many elementary symplectic matrices Ey, ..., Ex, € Sp,y,, (R) such that

A=ME,-- B, = (S ’{)

Then M can be decomposed into a finite product if and only if p(A) can be decomposed into a
finite product.

1.2 Complex manifolds and holomorphic mappings

We let R and C denote the field of real and complex numbers, respectively. The model n-
dimensional complex manifold is the Euclidean space C". Let z = (21, ..., z,) € C" denote the
coordinates on C". Write z; = x; + iy;, where x;,y; € R and i = v/—1. Given a differentiable
complex valued function f: D — C on a domain D C C", the differential df splits as the sum
of the C-linear part Of and the C-antilinear part 0f:

- "0 "0
=1 "I j=1 "I



Here dz; = dz; + idy;, dz; = dz; — idy;, and

of 1 [of Of of 1/0of Of
8Zj N 2 (895] (9y]) ’ 82j N 2 (ax] +28yj> .
The function f is holomorphic on D if df = 0f on D; that is, the differential df, is C-linear at
every point z € D. Equivalently, f is holomorphic if and only if 9f = 0, and this is equivalent
to the n equations

af

0z

A mapping f = (f1, fo, ..., fm) : D — C™ is holomorphic if each component function f; is
such. When m = n, f is biholomorphic onto its image D’ = f(D) C C" if it is bijective and its
inverse f~!: D' — D is holomorphic. An injective holomorphic map of a domain D C C" to
C™ is always biholomorphic onto its image [10, p.19].

A topological manifold of dimension n is a second countable Hausdorff topological space
which is locally Euclidean, in the sense that each point has an open neighborhood homeomorphic
to an open set in R™. Such a space is metrizable, countably compact and paracompact.

Assume now that X is a topological manifold of even dimension 2n. A complex atlas on
X is a collection U = {(Ua,, o) }aca, where {U,}aca is an open cover of X and ¢, is aa
homeomorphism of U, onto an open subset U/ in R?" = C" such that for every pair of indices
a, B € A the transition map

bas = a0 95" $p(Uass) = ba(Uas)

is biholomorphic. Here U, 3 = U, N Ug. An element (U,, ¢,) of a complex atlas is called a
complex chart, or a local holomorphic coordinate system on X. We also say that charts in a
complex atlas are holomorphically compatible. For any three indices «, 5,7 € A we have

¢a,a = Id, ¢a,6 = ¢§,1a, ¢a,,6’ © ¢ﬁ,'y = ¢a,'y

on the respective domains of these maps. Two complex atlases U,V on a topological manifold
X are said to be homotopically compatible if their union & UV is also a complex atlas. This is
an equivalence relation on the set of all complex atlases on X. Each equivalence class contains
a unique maximal complex atlas - the union of all complex atlases in the given class.

A complex manifold of complex dimension n is a topological manifold X of real dimension 2n
equipped with a complex atlas. Two complex atlases determine the same complex structure on
X if and only if they are holomorphically compatible. A complex manifold of dimension n = 1
is called a Riemann surface and a complex surface is a complex manifold of dimension n = 2.

A function f : X — C on a complex manifold is said to be holomorphic if for any chart
(U, ¢) from the maximal atlas on X the function f o ¢! : ¢(U) — C is holomorphic on the
open set ¢(U) C C". We let O(X) denote the Fréchet algebra of all holomorphic functions on
X with the compact-open topology.

Let X and Y be complex manifolds of dimensions n and m, respecively. A continuous map
f: X — Y is said to be holomorphic if for any point € X there are complex charts (U, ¢) on
X and (V) on Y such that p € U, f(U) C V, and the map o fod™': ¢(U) — (V) C C™ is
holomorphic on the open set ¢(U) C C". Since the charts in a complex atlas are holomorphically
compatible, the choice of charts is not important.

Amap f: X — Y is biholomorphic if it is bijective and if both f and its inverse f~!: Y — X
are holomorphic. Note that a bijective holomorphic map between complex manifolds is actually
biholomorphic.

A biholomorphic self-map f : X — X is called a holomorphic automorphism of X; the
collection of all automorphisms is the holomorphic automorphism group Aut(X) = Autpy(X).

0, 5=1,...,n.

10



Let X be a complex manifold of dimension n. A subset M of M is a complex submanifold
of dimension m € {0,...,n} (and codimension d = n — m) if every point p € M admits an
open neighborhood U C X and a holomorphic chart ¢ : U — U’ C C™ such that ¢(U N M) =
U'n(C™x {0o}r—m™).

1.3 Subvarieties and complex spaces

Let X be a complex manifold. We let O, = Ox, denote the ring of germs of holomorphic
functions at a point x € X. A germ [f], € O, is represented by a holomorphic function in
an open neighborhood of x; two such functions determine the same germ at x if and only
if they agree in some neighborhood of z. The ring Oy, is isomorphic to the ring Ocn o via
any holomorphic coordinate map sending = to 0. We can identify Ocn with the ring of
convergent power series in n complex variables (z1, ..., z,). This ring is Noetherian and a unique
factorization domain. Its units are precisely the germs that do not vanish at 0. The disjoint
union Ox = U,exOx, is equipped with the topology whose basis is given by sets {[f]. : € U},
where f : U — C is a holomorphic function on an open set U C X. This makes Ox into a sheaf
of commutative rings, called the sheaf of germs of holomorphic functions.

A subset A of a complex manifold X is a complex (analytic) subvariety of X if for every
point p € A there exists a neighborhood U C X of p and functions fi, ..., fs € O(U) such that

ANU ={ze€U: fi(z) =0,..., fa(x) = 0}.

If such A is topologically closed in X then A is a closed complex subvariety of X. Since the
local ring O, is Noetherian, a subset of X that is locally defined by infinitely many holomorphic
equations is still a subvariety and can be locally defined by finitely many equations.

A point p in a subvariety A is a regular (or smooth) point if A is a complex submanifold
near p; the set of all regular points is denoted A,eg. A point p € A\ Ayeg = Aging 1S a singular
point of A.

A reduced complex space is a pair (X, Ox), where X is a paracompact Hausdorff topological
space and Oy is a sheaf of rings of continuous functions on X (a subsheaf of the sheaf Cx of
germs of continuous functions) such that for every point = € X there is a neighborhood U C X
and a homeomorphism ¢ : U — A C C" onto a locally closed complex subvariety of C™ so that
the homeomorphism ¢* : C4 — Cx, f — f o ¢, induces an isomorphism of O4 onto Oy = Ox|y.
Intuitively speaking, X is obtained by gluing pieces of subvarieties in Euclidean spaces using
biholomorphic transition maps.

Let (X,0Ox) and (Y,0Oy) be complex spaces. A continuous map f : X — Y is said to
be holomorphic if for every z € X the composition Cytu) 2 g + go f € Cx, defines a
homomorphism f; : Oy ¢z) = Ox .

Definition 1.3.1 (Submersion). Let Z and X be reduced complex spaces. A holomorphic
map © : Z — X is a holomorphic submersion if for every point zg € Z there exist an open
neighborhood V- C Z of zy, an open neighborhood U C X of xo = 7(2p), an open set W in CP,
and a biholomorphic map ¢ -V — U X W such that pry o ¢ = w. (Here pry : U X W — U is the
projection on the first factor). Each such local chart ¢ will be called adapted to 7.

Definition 1.3.2 (Stratification). A stratification of a finite dimensional complex space X is a

finite descending sequence
X=Xy0X;D---D2X,,=0

of closed complex subvarieties such that each connected component S (stratum) of a difference
Xk \ Xgs1 s a complex manifold and S\ S C Xyy1.
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1.4 Tangent bundle and vector fields

We assume that the reader is familiar with the construction of the real tangent bundle 7'X of a
smooth manifold X. A tangent vector V, € T, X is viewed as a derivation C3°* 3 f +— V,(f) € R
on the algebra of germs of smooth functions at x. Sections X — T'X are called vector fields on
X. The complexification CTX =TX ® C of TX is the complexified tangent bundle of X; its
sections are called complexr vector fields on X.

Assume now that X is a complex manifold. There is a unique real linear endomorphism J €
EndgrT X, called the almost complex structure operator, which is given in any local holomorphic
coordinate system z = (21, ..., 2,) on X by

0 0 0 0

T A

The operator J extends to CTX by J(v®a) = J(v)@a forv € TX and o € C. From J? = —Id
we infer that the eigenvalues of J are +¢ and —i. Hence we have a decomposition

CTX =T""°X T X

into the +i eigenspace T1°X and the —i eigenspace T%'X of J. In holomorphic coordinates
z = (21, ..., 2,) on an open subset U C X we have

0 0 0 0
7YX\, = —_— ., — T X |, = _— ., —
‘U Span(c {821’ 9 azn } ) |U Span({: {8217 ) 85n } )

where

o _ (o 90N 9 _ 170 .0
8Zj N 2 ij 8yj ’ an N 2 (%cj 8% '

We have an R-linear isomorphism ® : TX — T%' X given by
1 :
(V) = §(V —iJV).

In local coordinates the isomorphism ® is given by
- 0 0 - 0
O : — +b— | = b)) —.
> (w7 i3 ) > e i)

Definition 1.4.1. A real vector field V on X is said to be holomorphic if (V') =
is a holomorphic section of T*°X.

(V —iJV)

1
2

Definition 1.4.2 (C-complete vector field). Let X be a complez manifold. A holomorphic
vector field V' on X 1is called C-complete if for each x € X, the initial value problem

bo() =, la) = V(o))

can be solved in complex time t € C; the map ¢, : X — X 1is called vector flow of V.

12



1.5 Stein spaces and Stein manifolds

Definition 1.5.1 (Stein manifold). Suppose X is a complex manifold of complex dimension n
and let O(X) denote the ring of holomorphic functions on X. We call X a Stein manifold if
the following conditions hold:

(i) X is holomorphically convex, i.e. for every compact subset K C X, the holomorphically
convex hull

K = {x € X :|f(x)] < sup [f(w)| Vf € O(X>}’

weK

is also a compact subset of X.

(i) X is holomorphically separable, i.e. if x # y are two points in X, then there exists

f € O(X) such that f(x) # f(y).

(i1i) For every point p € X there exist functions fi, ..., f, € O(X), whose differentials df; are
C-linearly independent at p.

Remark 1.5.2. Property (iii) is redundant in the sense that it follows from properties (i) and
(11) because of Cartan’s Theorem A.

Examples:

e C" is Stein.

e Every closed complex submanifold of a Stein manifold is Stein.

e The Cartesian product X x Y of two Stein manifolds X,Y is Stein.

e Stein manifolds are non-compact: holomorphic functions on a compact manifold are
constant by the maximum principle and hence they don’t separate points.

Definition 1.5.3 (Stein space). A second countable complex space X is a Stein space if it
satisfies properties (i), (ii) in Definition 1.5.1 and also

(i1i°) Ewvery local ring Ox ;. is generated by functions in O(X).

Condition (iii’) means that there is a holomorphic map X — CV which embeds a neighbor-
hood of z as a local complex subvariety of CV.

1.6 Elliptic Complex-geometry and Oka principle

The Oka principle is a powerful tool. Roughly speaking, it allows us to homotopically deform a
continuous mapping into a holomorphic one in certain situations. We want to make this more
precise in this section and therefore introduce some definitions and terminologies.

Let’s start with the notion of a stratified elliptic submersion h : Z — X from a complex
space Z onto a complex space X, following [11] and [7].

Let h: Z — X be a holomorphic submersion of a complex manifold Z onto a complex
manifold X. For any € X the fiber over x of this submersion will be denoted by Z,. At each
point z € Z the tangent space T,Z contains the vertical tangent space V'I,Z = ker Dh. For
holomorphic vector bundles p: £ — Z we let 0, denote the zero element in the fiber F.,.

13



Definition 1.6.1. Let h: Z — X be a holomorphic submersion of a complex manifold Z onto
a complex manifold X. A spray on Z associated with h is a triple (E,p,s), where p: E — Z is
a holomorphic vector bundle and s: E — Z is a holomorphic map such that for each z € Z we
have

(i) s(E.) C Zp),
(i1) s(0,) = z, and

(iii) the derivative Ds(0,): To,E — T.Z maps the subspace E, C Ty E surjectively onto the
vertical tangent space V'T,Z.

Remark 1.6.2. We will also say that the submersion admits a spray. A spray associated with
a holomorphic submersion is sometimes called a (fiber) dominating spray.

One way of constructing dominating sprays, as pointed out by GROMOV, is to find finitely
many C-complete vector fields that are tangent to the fibers and span the tangent space of
the fibers at all points in Z. One can then use the flows g0§- of these vector fields V; to define
s: 7 x CN = Z via s(z,t1,...,ty) = @i o--- 0@ (2) which gives a spray.

Definition 1.6.3. We say that a submersion h: Z — X is stratified elliptic if there is a
descending chain of closed complex subspaces X = X,, D --- D Xq such that each stratum
Y = Xy \ Xi—1 is regular and the restricted submersion h: Zly, — Yy, admits a spray over a
small neighborhood of any point x € Y.

Remark 1.6.4. We say that the submersion admits stratified sprays and that the stratification
X =X,, DD Xy 1s associated with the stratified spray.

Let’s consider the following diagram

Pox X L5 F

wa| 27 s

Pxx 1B
Here m : E — B is a holomorphic submersion of a complex space E onto a complex space
B, X is a Stein space, Py C P are compact Hausdorff spaces (the parameter spaces), and
f: P x X — Bis an X-holomorphic map, meaning that f(p,-) : X — B is holomorphic on X
for every fixed p € P. A map F': P x X — E such that mo F' = f is said to be a lifting of f;
such F'is X-holomorphic on Fy if F(p,-) is holomorphic for every p € P.

Definition 1.6.5. A holomorphic map © : E — B between reduced complex spaces enjoys
the Parametric Oka Property (POP) if for any collection (X, X', K, P, Py, f, Fo) where X is a
reduced Stein space, X' is a closed complex subvariety of X, Py C P are compact Hausdorff
spaces, f: P x X — B is an X-holomorphic map, and Fy: P x X — E is a continuous map
such that wo F = f, the map Fy(p,-) is holomorphic on X for all p € Py and is holomorphic on
K UX' for all p € P, there exists a homotopy Fy : P x X — E such that the following hold for
allt € [0,1]:

(i) moky=f,

(ii) Fy = Fy on (Pyx X)U (P x X'),
(iii) Fy is X-holomorphic on K and uniformly close to Fy on P x K, and

(iv) the map Fy : P x X — FE is X-holomorphic.
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The following version of the Oka principle has first been shown for Euclidean compact
parameter spaces P by Forstneric. A proof can be found in [8, Corollary 6.14.4 (i)]. Kusakabe
has shown (see [21, Corollary 5.7]) that it holds even more generally for compact Hausdorff
parameter spaces.

Theorem 1.6.6 (Oka principle). Every stratified elliptic submersion enjoys POP.

1.6.1 Construction of a dominating spray

In the previous section we saw one way to construct a dominating spray associated to a
submersion (see paragraph before Definition 1.6.3). Namely, we define some finite composition
of flow maps of complete fiber-preserving vector fields. It turns out that in practice it can be
difficult to find enough C-complete fiber-preserving vector fields that span the tangent space of
the fibers at all points. In the following section we develop a strategy to solve these difficulties.

Let M be a Stein manifold and let VC, (M) denote the set of C-complete holomorphic
vector fields on M. For a vector field V' € VCju(M) its corresponding flow o), t € C, is a
one-parameter subgroup of Autyy (M), the holomorphic automorphism group on M. For a set
A CVCho(M) of complete holomorphic vector fields on M we define

Sa= J{a) 1t € C} C Autyo(M).
VeA

Let G4 := (S,4) denote the subgroup generated by S4. Furthermore, we let a*f denote the
pull-back of a vector field # by an automorphism «.

Definition 1.6.7. For a set A C VCpo (M) of complete holomorphic vector fields on M, define
IM'A) ={a"X :ae Gy, X € A}

the collection of complete holomorphic vector fields generated by A, and for an open setY C M
define
OA(Y) = {a(y) o€ Ga,y € Y}

the G 4-closure of Y.

Some basic properties follow directly from the definition. Let Y C M be an open set. Then
C4(Y) is the smallest set containing Y, which is invariant under G 4. Moreover, C4(Y") is open in
M, hence, for a fixed collection A C VCpy(M), C4 can be interpreted as a map Cya : Tar — Tar,
where Ty, denotes the natural topology on M. In particular, C4 satisfies the conditions of a
topological closure operator.

The following lemma describes another basic property.

Lemma 1.6.8. Let A, B C VCj, (M) be finite collections of complete holomorphic vector fields
on M with A C B CI'(A). Then Cy(X) = Cp(X) for all open subsets X C M.

Proof. We're going to prove that G4 = Gg. To do this, it suffices to show that Gg C G 4, since
the reverse inclusion trivially holds by assumption A C B.
At first, we consider V' € B. Thereis f € G4 and W € A with V = §*W | since B C T'(A).
The flow of V satisfies
ay:af*wzﬁoaf‘/OB_l € Gy,

since 3, )" € G4.
In a next step, let 8 € G'g be any automorphism. By definition of G, there are vector fields

Vi oy Vi, € B and times ty,...,t,, € C with 8 = az/fl 0---0 a:ﬁlm. From the previous step we
know that each o’ € G4 is an automorphism in G4 and hence so is [, i.e. § € G4 and this
proves the claim. O
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Before clarifying the technical details, let us use a simple example to explain the basic idea
of suitably extending a given collection of vector fields so that the new collection spans the
tangent space of a manifold over a larger set of points.

Consider a Stein manifold M and suppose that there is finite collection A C VCj, (M) which
spans the tangent space T, M for all points z € M \ N outside some analytic subset N' C M.
Let 2o € N be some point and assume that there is a vector field V' € VCj,, (M) whose flow 042/
through z, leaves the set . For some fixed time ¢ € C the map F := ) is an automorphism
of M with F(z¢) € M \ N. Hence the collection A spans the tangent space Tp(;,) M. Now we
pull the vector fields in A back with the automorphism F', add them to the collection A and

obtain a larger collection which spans the tangent space T,, M in zq € N.

So much for the idea. Now we have to make sure that this idea is applicable in a finite process.
The following result represents the main step for this.

Lemma 1.6.9. Let M be a Stein manifold, X C M an open subset and A C VCpo(M) a finite
set of C-complete holomorphic vector fields on M which spans the tangent bundle T X. Then
there is a finite subset A C B C I'(A) which spans the tangent bundle TC»(X).

Proof. For each field V € A let o) ,t € C, be the corresponding vector flow. Let Ny be the
set of points = € C4(X) where the fields of A don’t span the tangent space T, M. This is an
analytic subset Ny C C4(X) \ X. Further, we define

Ny:={r € Ny_1:0a) (z) € Ny_,VV € AVt €C}, k>1.

Let £ > 0 be arbitrary but fixed. Then N, has at most countably many connected components.
Let A¥ i € I, denote those connected components of N, which aren’t entirely contained
in N1 and let a; := max;e;, dim Af be the maximal dimension of them. Choose a point
xf € AN Ny \ Npy1,i € I, of each such component. By definition of the sets N and N1,
there is a field V € A for each point x in the sequence {z%};c;, such that o (x) & N}, for some
t € C. For V € A define

uty = {x € {zF}icr, 1 o) (¥) € Ny, for some t € C}.
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Then this yields
{zf}ieh = U ul\c/

VeA

For each point = € uf, the set {t € C: o (x) € Ni} is discrete and hence

U {teC:a)(x) e Ni}

k
TEUY,

is a meagre set in C. This implies the existence of a time ¢}, € C such that a:g/ (x) & Ny for all

z € ut.. Define )
Ni1:={x € Ny : ozzg/(x) € N, VV € A}

Clearly,
Nit1 C Nig1 C Ny,

holds true. The set NkH has at most countably many connected components. Let ax; denote
the maximal dimension of them. By construction, we have a1 < ap1 < ag. Since M is finite
dimensional, this implies that there is L € N such that N, = () for all &k > L.

Let By be the set of pullbacks (al%)*(W) for VW € A and set

L
B::UAUBk.

k>0

Again by construction, the collection B C I'(A) is a finite set of C-complete holomorphic vector
fields on M that spans the tangent bundle TC'4(X ). Moreover, C'4(X) = Cp(X) by the previous
lemma, which implies that C4(X) is invariant under the flows of B. This finishes the proof. [

In a next step, we want to adapt this argument to our setting so that we can apply it to
every fiber simultaneously, so to speak. Moreover, we are ready to define a dominating spray.

Lemma 1.6.10. Let M be a Stein manifold, w: M — 'Y a holomorphic mapping and X C M
a (connected) open subset such that the restriction w|x : X — Y is a surjective submersion with
connected fibers.

Suppose that there is a finite set A C VCpo (M) of C-complete fiber-preserving holomorphic
vector fields on M which spans the tangent bundle T(M, N X) of each fiber M, := 7 '(y).
Then there is a finite set B C I'(A) of C-complete fiber-preserving holomorphic vector fields
which spans the tangent bundle T(Cs(M, N X)) of each fiber M,. In particular, the surjective
submersion |c,(x) admits a spray.

Proof. We can proceed similarly as in the previous lemma to obtain a finite collection B C I'(A)
which spans the tangent bundle T'(C4(M, N X)) of each fiber M,. This follows from the
assumption that all fields in A are fiber-preserving.

Moreover, the map m|x : X — Y is a surjective submersion, hence 7|¢,(x) : Ca(X) = Y is
also a surjective submersion. Write B = {Wy, ..., W }. Then the map s : C4(X) x CL' — C4(X)
given by

S(Z7t1, ...,tL) = 042/1 0---0 CYFL/L(Z)

is a dominating spray associated to 7|c,(x), since C4(X) is invariant with respect to the flows
of Wy, ..., W, by Lemma 1.6.8. ]

This corollary shows that we can relax the assumptions of the previous lemma and we will
apply it in this form later.
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Corollary 1.6.11. Let M be a Stein manifold, w : M — Y a holomorphic map and X C M
a connected open set such that the restriction w|x is a surjective submersion with connected
fibers. Furthermore, we are given an open subset W C X and a finite collection A C VCpo (M)
of complete fiber-preserving holomorphic vector fields on M which spans the tangent bundle
T (M, " W) of each fiber M,.

Suppose that there is a finite collection B C VCpo(M) of complete fiber-preserving holo-
morphic vector fields on M such that X C Cg(W) and A C B. Then 7|cyw) admits a

spray.
Proof. Since B contains A by assumption, B spans the tangent bundle T'(M, N W) of each fiber,
hence there is a finite collection B C I'(B) which spans the tangent bundle T'(M, N Cp(W)) of

each fiber. Since X C C(W) by assumption, B spans the tangent bundle 7'(M, N X) for each
fiber. Now, we apply Lemma 1.6.10 to finish the proof. O

Remark 1.6.12. Given a finite collection A C VCpo(M) and two open sets X, W C M with
W C X, X CCu(W) is true if and only if X \ W C Ca(W). This follows from the fact that
Cy is extensive, i.e. X C Cu(X) for all open sets X C M.

This lemma will help us decide if we have X C C4(X) for a suitable finite collection A.

Lemma 1.6.13. Let M be a Stein manifold and N C M an analytic subvariety given by
N:={zxeM: f(z)=0}

for some holomorphic mapping f : M — C. Assume that there are complete holomorphic vector
fields Vi, ..., Vi, on M (and we let o, ...,aF denote the respective flows) such that

V;nOOV;I(f(ZC))#O,V:EEN,

for some finite sequence {iy,...,1,} C {1,...,k}. Then there is a composition of the flows

al,...,af which leaves the subvariety N. More precisely,

{Oéfe: o.--oaii(l’) 1, ., t, € C} ¢ N, VxeN.

Proof. Define the subvariety Ny := {z € N : V;,(f(x)) = 0}. The orbit of a}' through points
of N\ N; is leaving N. Next, define the subvariety Ny := {x € Ny : V,,(Vi,(f(x))) = 0}.
Then the orbit of a2 through points of Ny \ N is leaving N;. We proceed inductively and set
Ny={x e N_;:V;,0---0V,(f(x)) =0}. Then the orbit of o' through points of N;,_; \ NV, is
leaving N;_1. This is true for all 1 <[ < n — 1, which implies that an invariant set with respect
to the fields V1, ..., Vj, has to be in the set IV,,. By assumumption, we have V; o---oV (f(x)) # 0.
Hence the set N,, is empty and there is no invariant set in N with respect to the fields Vi, ..., V.
This proves the claim. O
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2 HOLOMORPHIC VASERSTEIN PROBLEM FOR
SYMPLECTIC MATRICES

We are interested in decomposing a symplectic matrix into a finite product of elementary
symplectic matrices. In the simplest case the entries are complex numbers - we call this situation
the factorization over C - for which several proofs are known. The standard strategy in linear
algebra is to use a Gauss-Jordan process. Another strategy is provided by Jin, Lin and Xiao
in [18]. They have shown that every symplectic matrix over C can be written by at most five
elementary symplectic matrices. The third strategy comes from K-theory; in a first step, the
last row is solved correctly and then the factorization can be completed by induction (for more
information, see section 1.1.1). The latter will prove most useful for tackling questions like the
following: What if the entries are not just complex numbers, but depend on parameters in some
way, such as algebraically, continuously, or holomorphically? More precisely, what if the entries
are polynomials, continuous or holomorphic functions? We call the corresponding factorization
problems polynomial, continuous and holomorphic factorization, respectively.

It is known that the polynomial factorization for 2-by-2 symplectic matrices is in general
not true (see Cohn [5]): assume that the entries are polynomials C[z, w] in two variables. Then

the matrix
1—zw —22
w? 14 zw

cannot be decomposed into a finite product of elementary matrices.

However, if we consider sufficiently large matrices, at least 4-by-4 matrices, then polynomial
factorization is possible: Kopeiko [20] proved it for polynomials k[z1, ..., z,,] in several variables
and coefficients in a field k. Grunewald, Mennicke and Vaserstein [12] were even able to prove it
for polynomials Z|z1, ..., z,,] with integer coefficients.

We are primarily interested in holomorphic factorization, that is, we require the entries to
be holomorphic functions on some suitable space X. For the proof we orientate ourselves to the
holomorphic factorization problem for the special linear group SL,,(O(X)) (Gromov [11] called
it the Vaserstein problem). In 2012, Ivarsson and Kutzschebauch [14] solved this problem by
applying an Oka principle, which roughly states that holomorphic factorization is solvable if
continuous factorization is; and the latter was shown by Vaserstein [23] as early as 1988.

In the first section we will discuss continuous factorization. This was solved by Ivarsson,
Kutzschebauch and Lgw [16] in 2020.

In section 2, we will consider important details for the application of the Oka principle and
solve the last row of the matrix M € Sp,,,(O(X)) correctly. In other words, we will prove the
existence of elementary symplectic matrices Fi, ..., Ej, € Sp,,(O(X)) such that

*x K
ME, - By = (o 1).

In the third section, we will prove holomorphic factorization by induction on n.
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2.1 Continuous Vaserstein problem for symplectic ma-
trices

Let’s start with the so-called Continuous Vaserstein problem for symplectic matrices. This has
been proved by Ivarsson, Kutzschebauch and Lgw ([16, Theorem 1.3]) and is one of the key
ingredients.

Theorem 2.1.1 (Continuous Vaserstein problem for symplectic matrices). There exists a
natural number K (n,d) such that given any finite dimensional normal topological space X of
(covering) dimension d and any null-homotopic continuous mapping M : X — Sp,, (C) there
erist K continuous mappings

Gi,...,Gg: X — Crinth)/2
such that
M(z) = M1(G1(2)) ... Mg(Gg(x)).

Sketch of proof. Let P, : X — Sp,, (C) denote the null-homotopy, i.e. P, = M and Py = 1. By
a Gram-Schmidt process for symplectic matrices (see [16, Lemma 6.1]), there are elementary
symplectic matrices Fi, ..., F, such that

Vi=F(P)Fy(P) - FL(P) P
is null-homotopic with values in the compact symplectic group Sp(n) and such that
Vi = F\(M)Fy(M) - - F(M)M.
By a result of Calder and Siegel (see [4]), there is a uniform null-homotopy M; : X — Sp(n)

with

For any integer k > 1, we can write

My, = (MiM ) (Mg ML) - (M2 M7 ) M.

e P P z

Thus M; can be seen as a product of k matrices N; € Sp(n) such that
Mi(x) = Ni(x)- - Nea), w € X.

Moreover, the matrices NV;(x) are near the identity for k large enough. By a Gauss-Jordan
process (see [16, Lemma 4.1]), we find N elementary symplectic matrices F1, ..., Ey such that

Ni(z) = E1(Ni(x)) - - - En(Ni(z))
for all x € X and for all ¢ =1, ..., k. This implies, that

k N

M(z) = Fp(M(x))™" - Py (M() " T[] £5(Nil=)

i=1j=1

is a product of elementary symplectic matrices depending continuously on x € X.

Theorem 1.3 in [16] does not give a uniform bound on the number of factors depending on n
and d. Suppose such a bound would not exist, i.e., for all natural numbers 7 there are normal
topological spaces X; of dimension d and null-homotopic continuous maps f;: X; — Sp,,,(C)
such that f; does not factor over a product of less than i elementary symplectic matrices. Set
X = U2, X, the disjoint union of the spaces X; and F': X — Sp,,(C) the map that is equal
to f; on X;. By Theorem 1.3. in [16] F' factors over a finite number of elementary symplectic
matrices. Consequently all f; factor over the same number of elementary symplectic matrices
which contradicts the assumption on f;. O]
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2.2 Application of the Oka principle

Recall the mapping U : (Cw)[( — Spy,(C) given by Vi (21, ..., Zk) = My(Zy) - - Mg (Zk),
n(n+1)

where My : C™ 2z — Sp,,(C) is defined by

I Z
" if k=21
M(Z) = 0 I,
k R L 0 ifk=20+1
7 1, N ’

Further, recall the map ®x = mg, o U : (C%)K — C*\ {0}, where my, : C**2" — C*

denotes the projection of a 2n x 2n-matrix to its last row.
Define the set

n(n+1)
2

Wy 1= {(Zl, . Zg) € (C ) ¢ Zairen # 0 for some 1 < i < (%1}

and let Sk C (C > )& denote the set of points, where the mapping ®f is not submersive.

The following is another cornerstone in the proof of the main theorem and we will prove it
in the next chapter.

n(n+1)

Theorem 2.2.1. For K > 3, there exists an open submanifold Ex C (C™ 2 )X satisfying

n(n+1)

(’I,) Wi C Eg C (CT)K \ Sk
(ii) the restriction @y |p, : Ex — C*\ {0} is a stratified elliptic submersion.

The Oka principle tells us, that ®x|g, has the Parametric Oka Property, i.e. we get the
following

Corollary 2.2.2 (Application of the Oka principle). Let P be a compact Hausdorff space,
X a finite dimensional reduced Stein space and f : P x X — Sp,,(C) a null-homotopic,
continuous X -holomorphic mapping. Assume there is a natural number K and a continuous
map F: P x X — Ei such that

Ex

s
P x X 22l ¢\ {0}

1s commutative. Then there exists a continuous homotopy Fy, : P x X — Ex with Fy = F,
Ton © [ = @ o Fy and such that Fy : P x X — Ei is X-holomorphic.

In a next step, we prove the existence of a natural number K and a continuous lifting
F: P x X — Ef such that the diagram in the corollary commutes. This is where continuous
factorization comes into play.

Theorem 2.2.3 (Existence of a continuous lifting). There exists a natural number L(n,d) such
that given any compact Hausdorff space P, any finite dimensional reduced Stein space X, such
that P x X has covering dimension d, and any null-homotopic, continuous X -holomorphic
mapping f: P x X — Sp,, (C), there exists a continuous lifting F': P x X — Ep, of my, 0 f. In
particular, there exists a continuous homotopy Fy : P x X — Ey, of liftings of ma, o f, such that
Fy = F and Fy 1s X-holomorphic.
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Proof. The Continuous Vaserstein problem for symplectic matrices provides us with a natural
number K = K(n,d) such that given any normal topological space Y of dimension d and
any null-homotopic continuous mapping f : Y — Sp,,, (C) there exists a continuous lifting

G=(Gy,...Gg): Y — (C%)K with f = Wg o G. For L = K + 2, we define the mapping
n(n+1)

F:Y - (C = )by
F == (In,O,Gl - In,GQ, ...,GK)

where I,, denotes the n x n-identity matrix and 0 the n X n-zero matrix. Observe that

I, 0\ (I, 0\ (L © I, 0
¢ I,) " \1, ,J\o ,J\Gi-1, I,

and therefore F' is a lifting of f, more precisely, f = ¥y o F'. The image of F is contained in
Wy, since I,e, # 0. By Theorem 2.2.1, we have W, C E; which means that F' is a mapping
F:Y — FE; and we obtain a commuting diagram

/ l\h\

y 21, Sp,, (C) 2 C?" \ {0}.

Choose Y = P x X, where P is compact Hausdorff space and X a reduced Stein space such
that Y has dimension d. An application of Corollary 2.2.2 completes the proof. n

2.3 Holomorphic factorization - Proof of the Main theo-
rem

The proof is by induction on n. Note that the theorem is true for n = 1, since Sp,(C) = SLy(C)
(see [14]), that is, the base case is fine.

For the induction step, we first observe that, according to Theorem 2.2.3, there exists a
natural number L(n,d) such that given any compact Hausdorff space P, any finite dimensional
Stein space X, such that P x X has covering dimension d, and any null-homotopic X-holomorphic
mapping f : P x X — Sp,,(C), there exists a continuous homotopy F; : P x X — E, of liftings
of mo, 0 f (i.e. mo,0 f = ®poF, forall 0 < ¢ < 1), such that F; is X-holomorphic. In particular,
this implies that ® o F; doesn’t depend on ¢, hence we get

Al,t(pa 3”) a2,t(p7 1’) Bl,t(p7 95) bQ,t(pa 37)
-1 _ G3,t(pax) a4,t(p,$) b3,t(p;l’) b4,t(p;I)
\I’L(Ft(p,x))f(p,x) N Ol,t(p7$) cgvt(p,x) Dl,t(pux) d1,t(p,$) ’
0 0 0 1

where A, 4(p,x), Bi1+(p,z),Ci+(p,z) and Dy (p,z) are (n — 1) x (n — 1) matrices, and the
remaining mappings are vectors of appropriate dimension. Since ¥ (F;(p,x))f(p,z)"' is a
symplectic matrix for all 0 < ¢ < 1, Lemma 1.1.6 implies as(p,z) = 0,a4¢(p,z) = 1 and

c24(p, ) = 0, so that

Al,t<p7 x) 0 Bl,t(pv »75) b2,t<p7 x)

1 | ase(por) 1 bsi(p,x)  bas(p,x)

\IIL(Ft(p’ x))f(p’ x) N Cl,t<p7 ZE) 0 Dl,t<p7 ZE) dl,t(p7 ZE)
0 0 0 1

and in addition

N ~ (Avi(p,x) Bru(p, x)
fi(p,x) = (C’Lt(p7 x) Diy(p, x))



is symplectic. The fact that W, (Fy(p,z)) = f(p,x) implies fo = Iyp_o and thus the X-
holomorphic map f:= f; : P x X — Spy,_»(C) is null-homotopic. Let ¢ be the standard
inclusion of Sp,,,_, into Sp,,, given by

A0 B O

W A B . 01 0 0

“\C D C 0D O

0 0 0 1

By the induction hypothesis,

D1,1<p7I)T 0 _Bl,l(pax)T 0
5 N 0 1 0 0
w(f(p,l‘) )_ —01,1(]7»517)T 0 Al,l(pvx)T 0
0 0 0 1

is a finite product of holomorphic elementary symplectic matrices. Then the matrix

M(p, ) :== U (Fy(p,2))f(p, x) " (f(p,x)™") is given by

In—l 0 0 b2,1(p, [L’)
—dan(p, )" 1 boa(p, )" baa(p, @)
0 0 In—l del(p, ZL‘)

0 0 0 1

M(p,x) =

according to Lemma 1.1.7. An application of the 2nd Whitehead lemma implies that this matrix
is a product of four elementary symplectic matrices of Sp,, (O(X)). In summary, this proves
that f(p,z) is indeed a finite product of elementary symplectic matrices.

So far, the number of factors depends on the mapping f : P x X — Sp,,(C). Assume
there is no uniform bound K(n,d), that is, for each natural number i, there is a compact
Hausdorff space P; and a reduced Stein space X;, such that Y; = P, x X, has dimension d, and a
null-homotopic X-holomorphic mapping f; : ¥; — Sp,,,(C) which does not factor into less than
i elementary matrix factors. Set Y = (J,Y; and let F' : Y — Sp,,(C) be the null-homotopic
mapping, which equals f; on Y;. We just proved the existence of a constant K which bounds the
number of elementary factors in which I decomposes. But then K is an upper bound for each
fi which contradicts the assumption. Hence there is a uniform bound K(n,d) of factors and
this complectes the proof. Actually, we’ve shown a generalized version of the Main theorem.

Theorem 2.3.1 (Generalized version of main theorem). There is a natural number K = K(n,d)
such that given any compact Hausdorff space P, any finite dimensional reduced Stein space X,
such that P x X has covering dimension d, and any null-homotopic X -holomorphic mapping
f: P xX — Spy,(C) there exist K X-holomorphic mappings

n(n+1)

Gl,...,GKIPXX%(C 2

with
f(pv J}) = Ml(Gl(pw/E))MQ(G?(p) ZL’)) o MK(GK<pa "L‘))
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3 STRATIFIED ELLIPTICITY OF THE MAP-
PING Op

Recall that we identified Sym, (C) = {Z € Cv™ : ZT = Z} with Cc*5 for simplicity.
n(n+1)

Furthermore, the elementary symplectic matriz mapping My : C™ 2z — Sp,,,(C) we defined by

it K=2k+1

o

7
I,
My (Z) =

") it = ok
Iy

N S

n(n+1)

Let’s write Zy == (Zy, ..., Zx) € (C™2 *)X. Then the mapping ®x : (Cw)K — C?"\ {0} is
defined by B
CI)K(ZK) = MK(ZK) cee M1<Zl)€2n-

Remark 3.0.1. The attentive reader may have noticed that we now define @i in a transposed
way compared to the previous sections. This is purely for aesthetic reasons.

The following recursive formula can be derived immediately from the definition.
Corollary 3.0.2 (Recursive formula of ®x). For K > 1, the mapping Pk : (CW)K
C? \ {0} satisfies

O (Zx) = Mg (Zg)Pr—1(Zxc 1), (3.1)
with the convention ®q := eq,.
The main goal of this section is to prove

n(n+1)

Theorem 3.0.3. For K > 3, there is an open submanifold Ex of (C—2 )X such that

Py |p, : Ex — C\ {0}
15 a stratified elliptic submersion.

In subsection 3.1 we will classify the points for which ® is not submersive. We will also
show that @y is surjective.

The subsequent subsections are then devoted to the task of finding stratified sprays. In
subsection 3.2, we stratify C?" \ {0} suitably. In 3.3, we find formulas of holomorphic vector
fields which are fiber-preserving for ®5. Unfortunately, some of those fields aren’t C-complete.
We therefore classify some complete vector fields in subsection 3.4. In subsection 3.5, we analyze
the fibers of @ from a topological point of view. In subsection 3.6 we lay the mathematical
basis for the construction of the sprays. And finally we carry out all the necessary calculations
in 3.7.
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3.1 Notations and basic properties

Let’s start with some notations. Let E;; be the n x n matrix having a 1 at entry (¢,7) and is

zero elsewhere. Then E;; = ﬁ(Eij + Ej;) is an elementary symmetric matriz.
¥}

In the following we will make the identification of Sym,,(C) and ™5™ more precise. The
set {F;; 1 <i<j<mn} forms a basis of Sym,(C). Thesets [ :={i e N:1<i < @}
and J := {(i,j) € N*> : 1 < i < j < n} have the same order. Hence there is a bijection
a : I — J, which induces an isomorphism S : c*s o Sym,,(C) by defining S(e;) = Euq
forall 1 <i< @ By an abuse of notation, Z € (Cn(n;l) denotes both, the vector and the
corresponding symmetric matrix S(Z), depending on the corresponding context, of course.

In this very first subsection, we will compute the set of points where ®x is not submersive.

Also we’ll give a proof for the surjectivity of ®x. But let’s spell that out in more detail first.
We let Sk denote the set of points in ((Cn(nzﬂ) )& where @ is not submersive. We also define

the open set

n(n+1)

Wy 1= {ZK € (C 2 )*: Zy_1e, #0 for some 1 < i < [%1}

. . n(n+1)
and WY, denotes its complement in (C =N K.

Theorem 3.1.1 (Singularity set of k). For K > 2, the set Sk is given by
Sk = {ZK e W5 : rank(Wi (Zg)) < n}

where Wi (Zx) is the augmented matriz (Zs|Zy| - - - | Zoy,) for k = |52,

Proof. The proof of this theorem is subject of subsection “Singularity set of ®x”. [

Theorem 3.1.2. For K > 3, the mapping @ |w, : Wi — C**\ {0} is surjective.

Proof. The proof is given in subsection “Surjectivity of & 7. O
A direct consequence of these two statements is

n(n+1)

Corollary 3.1.3. For K > 3 and for any open submanifold E in (C—2 )X with

n(n+1)
2

Wi C E C (C )5\ Sk,

the mapping ®x|p : E — C*\ {0} is a surjective submersion.

3.1.1 Singularity set of

In order to compute the singularity set Sk, we need to know the Jacobian of &, denoted by
J® . For the computations, we need some auxiliary tools. For a fixed 1 < i < n, let’s define
the mapping F; : C* — C™*" by

Uy
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n n+1)

Furthermore, we define F' : C* — C™* by

13
13

F(U) = [Ea(l)v R Ea(n(n;l))v

Observe that the matrix F;(v) is a submatrix of F'(v), for every 1 < ¢ < n. This implies that
F(v) is surjective if and only if v # 0. And if F'(v) is not surjective, then we even have F'(v) = 0.

Lemma 3.1.4. For u,v € C" such that (Z) € C> \ {0}, the Jacobian of the mapping

c*5 o \ {0}, Z — Mg(Z) (Z) is given by
F
(()”) if K =2k +1
AK(“: U) - 0
if K = 2k
F(u)
n(n+1)

In particular, Mg (Z)Ak(u,v) = Ag(u,v) for all Z € C

(n+1) . =
>~ canbewrittenasasum Z = 3, i, 2 Eij.
Hence %Z = F;;. Further, note
ij

win(()-( 5)()-(5)

and 5
u 0 0\ (u 0
Oz Maul2) (U> B (Ez'j 0) (“) - <Ew“) ’
respectively. From here, the claim follows by definition of the mapping F'. O

We are now ready to compute the Jacobian of ®x. By the recursive formula (3.1), the
product rule and the previous lemma, we obtain

Corollary 3.1.5 (Jacobian of ®g). The Jacobian J®; is given by Ai(es,). For K > 2, the
Jacobian JPg of Dk is given by

JOx(Zx) = (Mg (ZK)J®x 1(Zx 1) | Ax(®x1(Zk1))).

If the Jacobian JCIDK 1 is surjective, then so is J®g, since Mg (Zk) is a regular matrix.
Or, equivalently, if ZK = (ZK 1, ZK) € Sk is a singular point for @, then ZK 1 €ESk_11sa
singular point for ®x_;. This observation suggests that we will compute Sk recursively.

n(n+1)
2

Lemma 3.1.6. Let ZK € (C )K and assume that there is 1 < k < [%] such that
Zoi16n =0 for all1 <i < k. Then ®j(2j) = eg, forall 1 < j < 2k.

Proof. We prove this by induction on j. For the base step, observe that

B1(Z1) = My(Z1)enn — (Zlen)

n

by definition. Since we assume Ze,, = 0, (131(qu) = eg, follows immediately.
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For the induction step, let 1 < 57 < 2k. By the induction hyptothesis, we have ®j_1(§j_1) =
ean. Then we obtain

—

O;(Z;) = My(Z)®;1(Z; 1) = M;(Z;)ean

by the recursive formula (3.1). If j is even, then we’re done, by definition of M;. Let’s assume
that j = 2 — 1 for some integer [. Observe that [ < & is satisfied, hence Ze,, = 0 by assumption.

This implies
= I, Z; 0 Zien
it (5 2)(2)- () -

This completes the proof. O

Lemma 3.1.7. Let K > 2 be a natural number. Then the restriction Pk |w, is a submersion.

Proof. Consider 2K € Wg. There is a smallest index 1 < k < (%w such that Zs,_1e, # 0
and Zy;_1e, =0 for all 1 <14 < k. Setting L := 2k — 1, the Jacobian J®, is of the form

)

s = (Mes(Zuin)JOL A (91) = (* FE) F((l)DfL)>‘

*

and

By definition of F, the Jacobian J®; has full rank, if P*~' # 0 and Pf # 0. By Lemma
3.1.6, we have ®;_; = e,,. Hence

P =(0 L,)®r1=¢, #0.

S

Furthermore,
P = (I, 0)®,= (I, 0)My(Z,)®r 1= (In Z1)eom = Zren #0.

This showes that the Jacobian J®.; has full rank. Note that L + 1 < K by construction. By
the recursive formula of the Jacobian and regularity of M;(Z;), 1 < i < K, we conclude that
J®k has full rank, too. O

Let’s write Cg = (In 0) JPr and Dy = (0 In) JPg.

Lemma 3.1.8. For a point ng+2 = (22k+1,22k+2) € Wi, the following statements are
equivalent.

(i) The Jacobian J®2k+2(22k+2) is surjective in ZQk+2.
(ii) The Jacobian J®2k+1(22k+1) is surjective in ZQk+1.
(7i) rank(Dagg 1) = rank(Doy) = n.

n(n+1)

Proof. Note that W5 C WY._; x C" 2 by definition. Moreover,

Fe,
Aojy1(e2n) Z( (06 )) and  Agjyo(es,) =0,

for Zojys € W10, by Lemma 3.1.6 and by definition of F'. We conclude
T ok r2(Zorsz) = Maowyo(Zonsa) (JPopi1(Zops1) 0)
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and this shows equivalence of (i) and (i), since Mok o(Zog12) is a regular matrix.
To show equivalence of (ii) and (iii) observe that

= Cor + 7 D F(e,
JPopi1(Zok41) —( 2k D;’:“ 2k (O )>

Since F(e,,) is surjective by definition of F, the claim follows immediately. O
In order to prove Theorem 3.1.1, it remains to show the next lemma.

Lemma 3.1.9. The following equation is satisfied for all 22k+2 € Wiiio:
m(Dojy2) = im(Dak| Zo12). (%)
In particular, the singularity set of ®x, K > 2, is given by
Sk = {Zx € W§ : rtank(Wx (Zg)) < n},
where W is an augmented matrix WK(EK) = (Zo| Zy| - - | Zog,), for k = L%J

Proof. By the previous lemma, it is enough to show (x). We have

JDPopro(Zopyo) = ( Coka O> _ ( Cok + Zog1 Doy, F(ey) ())
Aerpl ok Dopy1 + Zog42Cok41 0 Doy + Zog12(Cop + Zog11Da)  ZogsoF(en) 0)°

We get im(Zoy2) = im(Zog12F (€r,)), since F(e,,) is surjective. Thus im(Dagro) = im(Dag| Zogt2).
[l

3.1.2 Surjectivity of oy

The proof of surjectivity is based on the following lemma.

Lemma 3.1.10. For a € C"\ {0} fized, the mapping ¢, : Sym, (C) — C", Z — Za is surjective.

n(n+1)

Proof. Let a # 0 being fixed. Then the linear mapping F'(a) : C 2 — C”" is surjective, by
definition of F'. Therefore it is enough to show that the following diagram

n(n+1)

= o

Sym,,(C) —— C".

is commutative. This is the case if and only if F(a)v = S(v)a for all v € Cc*5™. Write
n(n+1)

v=> 1% wve;. By definition of F' and S, we get

n(n+1) n(n+1) n(n+1)
2 2

F(a)v = Z v;F(a)e; = Z v,-E’a(i)a: Z viEa(i) a=Sv)a.
; i=1 i=1

This completes the proof. O

We are now ready for the
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a
b

My (—=Z) is the inverse of My (Z) for every K and every Z. Then ®3(Z3) = (

Proof of Theorem 3.1.2. In a first step, let K = 3 and consider ( ) € C?"\ {0}. Observe that

a

b) if and only if

My(Zs) My (21 )ean = Ms(—Zs) (Z) .

The left-hand-side is given by

(Z ]0) (ZQ:") - <<In +Z§znzl>en)
600

The symmetric matrix Z3 can be chosen such that a — Z3b # 0. To see this, observe that it is
automatically satisfied if b = 0, since a and b aren’t simultaneously zero. On the other hand, if
b # 0, then an application of Lemma 3.1.10 provides the existence of such Z3.

The vector e, is obviously non-zero, hence another application of Lemma 3.1.10 yields the
existence of a symmetric matrix Z; such that

and the right-hand-side by

Ze, = a — Zsb.

We have Zie,, # 0 by construction, which enables a third application of Lemma 3.1.10 and
proves the existence of a symmetric matrix Z, such that (7, + Z2Z;)e, = b. Thus we’ve found

n(n+1)
03(Zs) = (Z) :

Zs € (C™37)3 such that
Moreover, since Zie, # 0, we even have Zg € Wjs, which completes the _proof for K = 3.

For K > 3 and z € C*"\ {0} we find Z3 € Wj such that ®3(Z3) = x. Now, we set
Zi = (Z5,0,...,0) € ((Cn(n;l))K. Then we have ®x(Zx) = ®3(Z;) = x and, moreover,
Zx € Wy by definition. This completes the proof. O]

3.2 Stratification of C**\ {0}

Consider a fixed point y := (a,b) € C**\ {0} and let Ff := FE, := ®,'(y) denote the fiber of
O over y. By the recursive formula (3.1) of ®x we can write the K-fiber ]:f as a union of
(K — 1)-fibers
K _ K—1
= U Ay

n(n+1)
ZeC™ 2

Equivalently, a given a point T = (ZK_l, Zk) is contained in the fiber f;{ if and only if

Zx_1 € }"5(_1 for § = Mg (—Zk)y. We have the following picture in mind
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n(n+1)
2

(€5

n(n+1)
2

ZK (C

For an “appropriate” stratification of C**\ {0}, we will use the projection 7 : C* x C* — C"
given by

(U 0) = e e 2% + 1.

The following stratification turns out to be a natural one. Let

ng = {y € C"\ {0} : 7 (y) = 0}

denote the non-generic stratum and its complement Y, = (C**\ {0})\ Y,¥ the generic stratum.

{u if K = 2k

Lemma 3.2.1. For a point y € Ynlg in the non-generic stratum, the correspondmg NoN-generic

fiber FX satisfies

Yy
n(n+1)

f;{ = ]-'yK IxCcT2 o,
where FX 1 is a generic (K — 1)-fiber.
Proof. We carry out the proof only for K = 2k+1, since it applies equally to K = 2k for reasons
of symmetry. Let y = (a,b) € Y,5, that is, mx(y) = 0. Observe that y = (mx_1(y), 7k (y)). On

the one hand, this means b = 7mx(y) = 0 and on the other a = mx_1(y) # 0, since y # 0 by
definition. This implies that 7" is a generic (K — 1)-fiber.

The non-generic K-fiber .FyK is given by the defining equations @ K(Z k) = y. By the recursive
formula (3.1) of ®f this system of equations is equivalent to Q)K,l(ZK,l) = Mg(—Zk)y. But

we have
I, —Z a a
wicsan (5 7))~ ()

which means that the defining equations are independent of the matrix Zx € C™ 2
we obtain

n(n+ )

. In fact,

n(n+1)

]-" }"K1><<C
Il

Informally, the next statement tells us that for fibers in the generic stratum we can reduce
the number of defining equations from 2n to n.

First we introduce the following convention. Let 7 : C* — C! be the standard projection
(21, s 215 oy 26) V> (21, ..., 21). For a continuous mapping f : C' — C™ its pullback 7*f is a
mapping 7* f : C¥ — C™ and by an abuse of notation, we just write f instead of 7*f.

Also define PX = =71 0 Pg. Then, PK and 7 (y); denote the j-th component of PE and
i (Y), respectively
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n(n+1)

Lemma 3.2.2. Set X := (C~ 2 )&~ x c™5 and define the variety

Grrty) =12 € X : PXN(Z) = nx(y)}.

Then there are n meromorphic mappings Y : X — X x C", 1 < j < n, such that each generic
fiber ]:;( is biholomorphic to Gy () via 7 for some 1 < j <n.

Proof. Let y € Y;]K be a point in the generic stratum, i.e. mx(y); # 0 for some 1 < j < n. From
the definition of w5 and PX on the one hand and the recursive formula (3.1) on the other hand,
it follows that the fiber FyK is given by

- n(n+1) PO ~ e o
Fr={Zge(C > )& PR (Zk) = mia(y), PPN (ZK) = ke (y)}
and furthermore

PK = pK=2 4 7, pk-1, (3.2)

Hence JBJ-K # 0 is satisfied on the fiber ]-'f and the latter equation can be rearranged to

1 ~ - L
ZK@j = W (PK _ PK—2 _ Z Pk[(IZKek> )

J k=1,k+#j
We obtain

1 g . L

fi =2k = = (Pf - Py P,flzx,m) 1<i<ni#j (3.3)
Pj k=1,k#j

U (an s 1 O 5K BK-2 N\~ PK-

Tij = 255 = Br (QK—PJ-K — B > b (Plf{—PIf( - Bf 121%1)) :
7 J k=1,k#j I=1,l#j

(3.4)

Set fj == (fij, - fnj) : X = C"and ¢; : X — X x C", U,(z) = («, f;(x)). By construction,
the variety G, () is mapped biholomorphically onto ]-"yK by ;. O]

3.2.1 On the singularities of the fibers

In this short section we will classify the fibers; we distinguish between smooth and singular
fibers. In fact, most of the fibers ]-'f are completely contained in Wy and therefore smooth, by
Lemma 3.1.7.

Lemma 3.2.3. A fiber F* contains singularities if and only if m1(y) = en.

Proof. We start with the case K = 2k. Suppose there is a singularity Zyx € .FyK N Sk. Then
Zai_1en, = 0 for all 1 <i <k, by Lemma 3.1.9. Lemma 3.1.6 implies @K(EK) = ey, and thus

m(y) = (P (ZKk)) = mi(e2n) = en.

Now let K = 2k + 1 and suppose again there is a singularity i € .7-";( N Sk. Again, we
have Zy; _1e, = 0 for all 1 < ¢ < k, by Lemma 3.1.9. From the even case, we know that
CI)K—I(ZK—l) = e9,. The recursive formula (3.1) of ®x implies

y = Pp(Zx) = Mg(Zx)Px1(Zr—1) = (% iK > (O) N (ZKen) ’

€n €n
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and therefore 7 (y) = e,. This completes the proof of necessary condition.

For the proof of the sufficient condition, we consider a fiber FJ with m(y) = e, and
n(n+1)

set k= [E]. Let Zy € FJ and recall that Zx = (Z,Zs,....Zx) € (C™2 )5 The
n(n+1)

matrices Zy, Zy, ..., Loy, € C 2 can take any value, since Zie, = Zze, = ... = Zop_16, = 0
by assumption and therefore ®;(Z;) = ey, for all 1 < i < 2k by Lemma 3.1.6. Hence we set
Zy=Zy=...= Zy = 0 and then Zx € FJ N Sk is a singularity by Lemma 3.1.9. O

3.3 Holomorphic vector fields tangential to the fibers

We will construct stratified sprays using C-complete holomorphic vector fields. The main goal
of this subsection is therefore to find enough vector fields that are holomorphic on (C%)K

complete and, in particular, tangential to the fibers ]—"yK )

’

3.3.1 Fiber-preserving vector fields

Let X be some Stein manifold and f = (f1,..., fn) : X — C" a holomorphic mapping. A
holomorphic vector field V : X — T'X |z — (x,V,) is fiber-preserving for f, if it is tangential to
the fibers of f. This is the case if and only if V' is in the kernel of the tangent map df, that is,
df.(Vy) = 0. This is equivalent to say that the Lie derivative Ly, (f;) = Va(fi) = (dfi)(Vz) =0

vanishes for all 1 <7 <n.

Lemma 3.3.1. For N > n, let P € Clzy, ..., zy]" be a polynomial mapping P : CN — C" and
let © = (Zags s Zan), With 1 < ap < ... < o, < N. Let’s write %P = (%Pl,. 2 p)T. Then

2P,
a LY a
D,(P) := det ( 5 aganp)

8Za0 820477,

is a holomorphic vector field on CN which is fiber-preserving for P.

Proof. The Lie derivative Lp,p)(F;) = D(P)(F;) = 0 vanishes for each 1 <7 < n, since the
first and the (i + 1)-th row of D,(P)(F;) are the same. O

We now introduce a few more notations. For a fixed natural number K, the mapping P¥
(defined before Lemma 3.2.2) is a polynomial mapping in C[z1, ..., 2y, |" with Ng := K@.
Since we’ll only be interested in K > 1, the constraint Ng > n is given.

There are (T]L\:ﬁ) possibilities to choose (n + 1) of the N variables. Let T denote the set of

all such possible choices. Recall that we see CV% as a product of K copies of C™5™ and we

write Zx = (24, ..., Zx) € (Cn(nzH))K. With this convention, the set Tx can be given by

T = {2 = (Zig,jokos > Zinjukn) - L <l < oo <4y < K, 1<, <k, <n,0<r <n}.

The vector fields 0K := D,(P¥),z € T, are fiber-preserving for P¥, by Lemma 3.3.1; or,
equivalently, they're tangential to the variety G, ) by construction (c.f. Lemma 3.2.2).
The following lemma collects some interesting examples of fiber-preserving vector fields for

& . In fact, they’ll play a cruical role in the construction of a dominating spray (see Theorem
3.6.2)
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Lemma 3.3.2. Let 1 < j* <n, x € Ty and u := (95 H(PE=2), . 051 (PX-2))T. Then the
vector field

0 a 0
*—PK126K1 PKl ; PKl PKl
pr] ( ) Z T 8/2[{] *q * lz uj aZK,j*j*
%#J iy

is holomorphic on ((Cn(n;l) )% and fiber-preserving for ®x. Moreover, ¥k .. is complete if and

only if 05~ is complete.
For1<i<j<mn,i#j*j#j*, the vector field
1

~ 0 0 ~ ~ 0 ~ ~ 0
K K—1\2 K-1pK-1 K—-1pK-1 K-1pK-1
"~ = (P + 2P P — — P P, ——m — P Pt —
ij.g ( J ) 0zK7ij 1+ 51] ( 0zK7j*j* ’ J 82K,j*j J J 82’[{7]'*1‘)

15 complete, holomorphic on (CWB+ ))K and fiber-preserving for ®k.

Proof. Observe that PX~1 = (0 on non-generic fibers FX. Hence the above fields are trivial and
there is nothing to show. We therefore consider y € Y% in the generic stratum, i.e. mx(y) # 0.
Without loss of generality assume 7 (y); # 0. Accordmg to Lemma 3.2.2, the mapping ¢ is
defined by Wy (x) = (z, fi(x)) for some meromorphic map fi = (fi1,..., fr1) and it maps G, )
biholomorphically onto the generic fiber F, K.

Consider a vector field V' tangential to g,rK . Then the push-forward W := (¥,).(V) is
given by

W = v+2v fi) ——

aZI( zl

On the one hand W is tangential to the ﬁber ny and on the other hand it is complete if and
only if V' is complete. . . 3
Let’s write W (P") := (W(P),.... W(PI)" and W(Zk) = 3" icj<, W(2k,ij) Eij. By the
recursive formula (3.2) and since W (P*~1) = 0, we get
0=W(PK)=W(PE=2) + W(Zg)PE~t =u+ W(Zg)PEL.
In the special case, where V = 95~ for some x € Tx_;, we have

S, VI(fa)PE
PEV(far)

PlK_l“/(fnl)
PN PEEY (V(fu)

f)lK_l V(fnl)

—A —b
where A is a regular matrix, since le ~1 £ 0. Therefore we obtain b = —A~'u with
PpK-1 _pK-1 _pK-1 ... _pKk-1
pE-1
1
1
Al = —
(P2
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The vector field pf, = (PE=121 is holomorphic on ((Cnm;l) )& and fiber-preserving for ®-.
Moreover, it is complete if and only if W is complete, since PE-1is in the kernel of . This
proves the first part of the lemma.

In the special case, where V' = % 1 <1< j<n, wehave u= W(f’K’2) =0 and

2K ,ij ]
W(Zg) P~ = By PR + (Z V(fil)Eil> PRl = By PR A,
i=1

Therefore

b= —AilEiijil = — A71<p-K71€j + ]%Kflei)

1+ ‘

1 1 PDK—1 pK-1 DK—1pK-1 PK—1pK-1
K 1

As before, we multiply W by (P ~')? to obtain a fiber-preserving vector field 7/, := (P~")*W

n(n+1)

which is holomorphic on (C™ 2 )%, Note that 8;{7” is complete on Gy, () by definition, hence
75 , is complete. This proves the second part of the lemma. O

3.4 Complete holomorphic vector fields tangent to the
fibers

In the previous subsection, we've constructed vector fields tangent to the fibers. Unfortunately,
some of those fields aren’t complete (see Example 3.4.5 below). In addition, it is quite laborious
to decide whether a given field is complete. The goal of this subsection is to build machinery
that will make this decision easier. Furthermore, we will list the most important examples of
complete fields.

For K > L, let fx : (C™ 5K = (C*5 ) (Zy, .., Zie) v (2, ..., Z1) be the standard
projection. Given a vector field V' on (Cn<n2+l) )¥ tangential to the fibers fyL, its pullback f% ,V

n(n+1)

is a vector field on (C™ 2 )& tangential to the fibers ]—";,( , by the recursive formula (3.1). By
an abuse of notation, we just write V' instead of f% ;V. Furthermore, set

TS = {x € Tx : 0F is a complete vector field}.

Definition 3.4.1. For K > 3, define the collection

K n
Vi = U <U {Wﬁ,ﬁxeTLCfl}U{%Ls,j rl<ms Sn})

L=3 \j=1
of principal vector fields for @ .

Remark 3.4.2. We can consider Vi _1 as a subset of Vi using the convention introduces just
before the definition.

We are now working on a machinery that should make it easier for us to decide whether a tuple
x corresponds to a C-complete vector field 9X. Let z = (zy,...,z,,) € C™ and P : C™ — C™!
be a polynomial mapping. We define an equivalence relation on C' in the following way

=~ 0
u,ve@’uwxv <= ui—vieﬂker(a—xk), forall 1 <i¢ <.

k=1

A vector v € C is called constant in x if v ~, 0.
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Lemma 3.4.3. Let v = (zy,....,2,) € C™ and P : C™ — C™ 1, x — P(z) be a polynomial
mapping. Assume there exists v € C™ 1 v ~, 0, and N\jj € C, N\jj ~; 0, for all 1 <i,5 < m,
such that 9 8

92, 02,1 @)

Then V = D,(P) is C-complete.
Proof. We consider the vector field V = D,(P) = 3" V;-2- where Vj is given by

j:l ax]. 9

Vo_aqu (2P 9P 9P 9P
I 8951"”’8xj_1’8xj+1""’8xm )

For 1 < j < m, define f;j(z) = > ;- Apjzg. Then %P(z) ~; fi(z)v by construction, this
means 9

8_90]P(x) =c; + fj(x)v,

for some ¢; € C, ¢; ~, 0. Obviously, fi(z)v and fi(z)v are linearly dependent, therefore

Vi =det (a1 + fiv,...,¢cj-1 + fi—1v, ¢ip1 + [i410, ooy € + frv)

= Slet(cl, ey Cim1,5 Cjt1, ...,cm)/+f1£iet(v,02, ey Cim1, Cjts ...,cm)J—i—

—~ —~

= 0 =1
+ -+ fodet(cr, ..., ¢j1, Gy oony Cmo1,0)
N ~~ >
::ajm

With the convention «;; := 0, we obtain

m m m m m

‘/j = Q5o + E Oéjkfk = Q50 + g (e 717 E )\lk:cl = Qjo + E Z] E )\lkajk .
k=1 =1 k=1

——

k=1 =1

=:aj

Set b := (a0, ..., mo)” . Then we just proved that V(z) = Az + b, where A = (aj;)1<ji1<m 1S a
m X m-matrix with a; ~, 0.
Let v be a flow curve, i.e. a holomorphic map v : C — C™ with £~(¢) = V(y(¢)). This

leads to the system
d

dt
which implies that ~ exists for all time ¢ € C. O

(t) = Ay(t) +b,

n(n+1)

The mapping PX : (C™=2 )% — C" does not a priori fit into the setting of the previous

lemma, but this problem can be solved with a simple trick. By fixing all but (n + 1) of the

2t K¢ variables, we may interpret PX as a polynomial mapping C"*! — C™. More precisely,

2
each (n+ 1)-tupel 2 € Tk corresponds to a natural inclusion map 4, : C"*! — (Cn(n;l) )X, Then

PX o4, is a polynomial mapping C"*! — C".

Proposition 3.4.4. (List of complete vector fields)

(Type 1) For 1 <m <n, = (2Zk_1mm, Zk11s --» Zknn) € TS, K>k
(Type 2) Forl#m, T = (Zk_1mm, 2ki1s - Zkin) € T2, K > k.

(Type 3) For (n+1) distinct pairs of indices (i, Jo)s -+ (iny Jn), T = (Zkigios s Zhinin) € T2 K > k.
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(Type 4) For 1 <i* <n, &= (210, 22,11, s 220n) € T2, K > 2.
Type 5) Let k <1, 1 < 3* <n and let (t1,71), .-, (in, Jn) be n distinct pairs of indices. Then
Y

C
T = (Zhyinjes o> Zhiingns Agjc) € T, K > 1.

(Type 6) For 1 < r < n consider the partition {1,...n} = {i1,....,5 }U{j1, .., jn_r}. Let
i* € {iy,...,ir} and j*, 7 € {j1, .., jn_r}. Then

_ .
T = (Zhe1,j1s s Dk, s> Zhsi®ins s Zhsitips Zhyivy’) € T, K > k.

(Type 7) For 0 < r < n consider the partition {1,...n} = {iy, ..., }U{j1, o, Jn_r}. Let
i* € {i1,...,ir} and 5%, 5" € {j1, ..oy Jn_r}. Then

_ C
T = (Zhjojis s Db hnrs Pkt Litins o Pkt Livipy 2h2,j7j) € T K > k4 2.

(Type 8) For 1 <i<n,i#j, = "21in, 2241, 224n) € T, K > 2.

Proof. For the proof of (Type 1), we consider the mapping P : C"™! — C™ given by

I, 7 I, 0 [c
T = (Zk—1mm» Zk,115 s Zhonn) FF (A B) (0 Ik> (Zkl 1 ) (d> ’

where A and B are arbitrary n x n-matrices, both constant in x; whereas ¢ and d are arbitrary
vectors in C" both constant in x. Observe that

@ (G 5 n)@-e a6 50

Thanks to this symmetry condition, we don’t need to make a case distinction between even and
odd K. In fact, it is enough to prove that D,(P) is a C-complete vector field. At first, note that

2
0 P(z) =0, 0 9

T E— Px)=0, 1<4,5<n.
82,3_1,mm 8Zk,ii sz,jj ( ) =hJ=

Hence most of the N's in Lemma 3.4.3 can be chosen to be zero. It remains to consider
0 0 P(x), 1 <i<n. We get

azk,ii 6zk— 1,mm

02 i azk_lvmmp(x) =(4 B) (0 0) (Emm 0) (d)

= (0 AEjy) (E:mc>

= AEiiEmmC = CmémiAema

for all 1 <7 < n. Since v := Ae,, is independent of 7, the conditions of Lemma 3.4.3 are satisfied.
Therefore D, (P) is a complete field and we conclude that vector fields 9%, K > k, of (Type 1)
are complete.

For the proof of (Type 2) we choose P as before. Again we have BZQB—QP = 0 and
k—1,mm
BZ‘ZM 62’1]_]3 =0, 1 <14,5 <n. Further, we compute

0 4 _ 0 Ey 0 0\ /[c) .=~ = B .
aZk,li aZkfl,mmp(x) B (A B) (0 O ) (Emm 0) (d) B AEllEmmc N CmAEhem.
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Observe that Eje,, = diner, since we assume [ # m. Therefore we obtain

0 0

8Zk,li 8Zk71,mm

P(z) = dimemAey

for all 1 <i < n. This proves that the conditions of Lemma 3.4.3 are satisfied and hence the

field D,(P) is complete. We conclude that the fields 0%, K > k, of (Type 2) are complete.
For the proof of ( Type 3), weset P(z) = (A B) (% ?‘3> (fl) Observe that Bzf —P(z) ~, 0

for all » =0,...,n. Hence the conditions of Lemma 3.4.3 are trivially satisfied and we conclude

that the vector fields 9% of (Type 3) are complete.
For the proof of (Type 4) we set P(z) = (A B) (]” 0) <I" Zl) ean. Note that

Zy I, 0 I,

2 — o 0 - -
52— P =0 and Do 0520 P =0,1<14,57 <n. Furthermore, we compute

1,ni*
9 0 0 0\ /[0 Eu\ [0 .
Plx)=(A B)| = ni = BE;; B e, = 05 Bejs.
023,35 071 i @ = ) (Ej' 0) (0 0 ) (6n) 33 Cmi~ En, = Ojix D€

=e;*

Hence we can apply Lemma 3.4.3 and conclude that vector fields 0%, K > 2, of (Type 4) are
complete.
For the proof of (Type 5) we first consider

P(z)= (A B) (él ]O) (v[[]/ )Vc) <10 ?) (fl)

where U, V,W and X are arbitrary n X n-matrices constant in x. As in the previous cases, we
have P=0and -2 9 _P=0,1<rs<n. Further, let’s compute

2 . .
0z j* gx 827@,17']7' 827@,15]3

1L,j*3
o 0 0 0\ /U V\/[0 E, (c
P =(A B ~ ij

= BEj*j*UEZ‘jd == (G?Uﬁzjd) Bej*.

~z0
I, 0 I, 7\ . ,
If we replace ( Z ]n) by ( 0 ]n) in P, we obtain
0 0

P(z) = AE;« 2w WE;:d = (e WE,;d)Ae-.
D215 Oz (v) 33 J (6] jd) Ae;

In both cases, Lemma 3.4.3 implies that D,(P) is complete and in conclusion, the vector fields
0K K > 1, of (Type 5) are complete.

For the proof of (Type 6), we set P as for (Type 1). Observe that Ei*iEj*j = 0 for
i*yi € {i1,....,i,} and j*, 7 € {j1, ..., Jn—r}. Then we get

0 0 0 FEj 0 0\ [c
Plz)=(A B v ~
azk—l,j*j azk,i*i (x) ( ) (0 0 ) (EJ'*J' 0) (d)
= AEZ‘*Z‘E]‘*J'C = 07

for all i € {iy,...,%.} and j € {j1, ..., Jn_r}. Furthermore,
0 0

P(I) - AEi*j/ j*5C g 0,
Oz—1,j+j O v
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and hence the vector fields 0%, K > k, of (Type 6) are complete, by Lemma 3.4.3.

For the proof of (Type 7) we set P(z) = (A B) (Ig Z;;+2> (ZI” ]O) (]6‘ fk) (Z)
n k+1 n n

By the same argument as in (Type 6) we obtain —2 9 _P(z)=0forallic {i,..i}

azk+2,j/j/ aZk+1’i*i
5 g 828, -P(z) =0 for all i € {iy,...,%,}, j € {j1, -+, Jn—r}. It remains to compute
k+1,i%4 k,j*j

G, ) 0 By L, 0\ /[0 E.;\ (c
P =(A B J'J n J*3
Ozra,j1jr Oz joj (&) = ( ) (0 0 ) (ZkH In) (O 0 ) (d>

= AEyy (Zen 1) (Eﬂajd)

= AE]/J/<Zk+1E]*]d) = (63:Z]€+1E]*jd)146]/

and

Observe that e?ZkH is constant in x, since we assume j' € {ji, ..., jn—r}. Hence the conditions
of Lemma 3.4.3 are satisfied and we conclude that the fields 0%, K > k + 2, of (Type 7) are
complete.

For the proof of (Type 8), let P(z) = (A B) (2" [9) <Zle"). For 1 < r < n, we
2 n n

0 0 00\ (e
021,in aZQ,jTP<5U> = (A B) (Ej O) (0) = 0, Be;.

Hence the conditions of Lemma 3.4.3 are met and the fields 9%, K > 2, of (Type 8) are
complete. [

compute

In the following, we find an example of an incomplete vector field 92. As a direct consequence
of this, we don’t know how large the collection Vi of principal vector fields is. We shall see
later, however, that it is powerful enough to construct stratified sprays.

Example 3.4.5. Consider the tupel x = (2141, s 21.0n, 22.n1) and the mapping P(x) = e, +
ZoZhen. The Jacobian JP s given by (Z2 21 €1 + zl,nlen) and we get the vector field

3/821@1 T 8/321,% a/aZQ,nl
22,11 ce 22,1n Z1,nn
P =det | 22 2 0
Z2.n1 ce 22.nn Z1,n1

Therefore 0%(z2,n1) = tdet(Zs) = £(a125,,; + 2201 + a3) for some ay, az, a3 € CNker(97).
In fact, oy 1s the principal minor of order n — 2 obtained by removing the first and last rows
and columns from Zy. Hence ay Z 0 on (Cn(n2+1))2, which means that the variable 23, occurs

quadratically. We conclude that 8 is incomplete.

3.5 Topological analysis of the fibers

So far we haven’t learned anything about the fibers .7-";( from a topological perspective. In this
subsection we will show that all fibers are connected for K > 3. In fact, all fibers are irreducible,
except the singular fibers F 3 . and ]-"61 . Which consist of two irreducible components, with the
smooth part breaking down in two connected components.

Lemma 3.5.1. The fibers ]-'(ib are connected. The singular fibers, i.e. fjeT consists of two
wrreductble components.
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Proof. We start with the non-generic fibers, i.e. we assume b = 0. In this case, we have
n(n+1)

]-"370 = ]-"3’0 x C 2 with a # 0. The defining equations of F> o are given by

ay In Zg Zlen . Zlen

0 o 0 In €n o (In + ZQZl>€n ’
and therefore F7, = 2 {Z e €5 e, + Za = 0} = C V. In conclusion, the
non-generic fiber .7-"3,0 is biholomorphic to some CV and hence connected.

We continue with the generic fibers F?2 1 1.6. b # 0. In the first step, we consider the smooth
fibers, that is, we assume b # e,, in addition. Due to Lemma 3.2.2, the fiber .7-";:’717 is biholomorphic

n(n 1)
to gm(a b) X C

n(n+1)

, Where

n(n+1)

Grstan) = 122 € (CT2 )2 b= Pi(Zy) = en + ZoZhren}.

Define C; := {Zg € Grs(ap)  21nj 7 0}, 1 < j < n. Similar as in Lemma 3.2.2, we can express
the variables 25 j1, ..., 29 jn, Which proves that C; is biholomorphic to C* x CV for some natural
number N and therefore connected. Since we assume b # e,, Zie, = 0 is not possible in
Grs(ab), Which means that G, 4 is covered by U}‘Zle. It remains to show, that the intersection
N7_,C; # 0 is non-empty. Choose a symmetric matrix Zj with Zfe, = (1,...,1)". By Lemma
3.1.10, there is a symmetric matrix Z with b —e,, = Zy(Zfe,,). This shows that the intersection
is indeed non-empty. In conclusion, G, and F3 , are connected.

Finally, let’s consider the singular fibers F 5’7% By Lemma 3.2.2; such fibers are biholomorphic

t0 Gra(ap) X (C = where

n(n+1)

Grsan) = 122 € (CT2 )22 ZyZye, = O},

Observe that this variety has two irreducible components A; = {Zg € Gry(aer) : Z16n = 0} and
Ay={Z, € Gry(aer) : det(Zy) = 0}. This proves that singular fibers F? ; have two irreducible

components. Since the intersection of these components equals the Slngulanty set S3, ]-"a o 18
connected.

Theorem 3.5.2. The fibers ]-"yK are connected for K > 3. Moreover, the smooth part of the
singular fibers is connected for K > 5.

Proof. We prove this theorem by induction on K. Note that we’ve shown the base case K =3
in the previous lemma. Let K > 4 and assume that the (K — 1) fibers F/*~! are connected.
Recall that
K _ K—1
= U Fiilow (3.6)
n(n2+1)

zeC

We will now introduce the following auxiliary function. Let p : .7-"yK
restriction of the projection (ZK,l, Zk) — Zk to the fiber .7-"yK. We’ll show some useful facts.

(i) p is surjective: Observe that Zx € FJ if and only if Zy 1 € ]:]\I/([ ! ~2 by (3.6). Hence
the p-fibers are given by p~1(Z%) = .7:M (—Z5)y The (K —1)-fibers .7: Mye(2)y &T€ non-empty

for all Z € C™2, by Theorem 3.1.2.
(ii) p is submersive in T if Zxy & Sk_1: Observe that T (.FK N S%) = ker J@K(ZK).

n n+1)

By assumption, the Jacobian J®x _ 1(ZK 1) is surjective. Given Wg € C , we find
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n(n+1)
2

WK—l S (C )K_l such that Jq)K—l(ZK—l)WK—l = _MK(_ZK)AK((I)K—l(ZK—l))WK-
By the recursive formula of the Jacobian (see Corollary 3.1.5), we get

Wk

TP (Zx) ( Wi

) = MK(ZK)Jq)K—l(ZK—l)WK—l + AK(q)K—l(ZK—l))WK =0

and deK (WK—la WK) = WK.

(iii) Bach connected component A C F, is p-saturated, that is, A = p~"(p(A)): It is enough
to show “D”, by definition of the preimage. Each p-fiber is connected and therefore we
have either p='(b) C A or p~1(b) N A = ().

(iv) p(A) is open for each connected component A C FJ*: Given a point b € p(A) we find a
regular point a € p~*(b). To see this, notice that in every (K —1) fiber we find points with
Z1e, # 0, by the previous lemma and by (3.6). Submersivity is a local property, hence
there exists an open neighborhood U C A of a in which p is submersive. Furthermore, U
is mapped openly, that is, p(U) is an open neighborhood of b in p(A).

We can write F* as a disjoint union of connected components | J;;A;. Then

n(n+1) ’
™5 = p(FF) = A,
= o7 = U e

can be written as the disjoint union of open sets. Since c™5 s connected, we conclude that
FJ has to be connected too.

It remains to show, that the smooth part of the fibers ]-"fb is connected for K > 5. Let’s
start with the case K = 2k + 1. Then the singular fibers are }"fe%, by Lemma 3.2.3. If we

f2k+1

wel has

now also note (3.6), then the singularities are all in the subfiber F2%,. Since ]-"g’;

2k+1

codimension n, the complement U := F=" ]—"g’zT is connected. If we consider a smooth point

a,en
€ FglzT, then each open neighborhood of p intersects with U. Hence p has to be in the same
connected component as U. This proves that the smooth part FX , \ Sing(FX ;) is connected.

In the case K = 2k, observe that ]-'SIZT is the only singular fiber. Furthermore,

n(n+1)

ke \ Sing(Fhy) = (F2\ Sing(F21)) x €5
and this is connected by the induction hypothesis. This completes the proof of the theorem. [J
Theorem 3.5.3. The fibers of the submersion @ : Wy — C?" \ {0} are connected for K > 3.

Proof. We want to show that the intersection F,* N Wy is connected. Smooth fibers FJ* are
contained in Wy, hence we only need to consider the case when ]-";( is a singular fiber. For
K = 3 we can apply the strategy from Lemma 3.5.1 for smooth fibers and cover F 5”65 N Ws by
n intersection connected charts.

Next, assume the claim to be true for K — 1 = 2k — 1. For

n(n+1)
2

R = {ZQk—l € (C )2k_1 : Zlen = ... = ng_gen = O, Z%_len 7é 0}7

we can rewrite
n(n+1)

W2k—W2k1XC URxC =

Observe that ]-"Qle N R = 0, by definition. Therefore, the non-generic singular fiber ]:(?IZT

satisfies
n n+1)

F2 O W (]—" LA W 1) x C™5
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which is connected by the induction hypothesis.
Finally, we assume the claim to be true for K — 1 = 2k. Let p: ]-"feT NWg — C*%™ be
the restriction of the projection (ZK_l, Zk) — Zg to ffeT NWr. The fiber p~1(Z) is given

by fﬁ;(l_ZK)y N Wk_1. From here we can argue as in the proof of Theorem 3.5.2. [

Lemma 3.5.4. Fach generic fiber .7-"5’ containes points Zs with Q}(Zg) = 211 Ziam # 0.

Moreover, each generic fiber }"yK containes points Zx with

Q?_Z(ZK)QE_Q(ZK) = Pl (Zx_s) Pf_z(ZK—Q)Pﬁlz(ZK—2) - PE72(Zg ) # 0.

Proof. Let’s start with the case K = 3. We consider a generic fiber 72 ,, b # 0. Recall that
Zs € F2y if and only if Zy € F2 47,5 by the recursive formula (3.1). Since we assume b # 0,

n(n+1)

there is a symmetric matrix Zs € C~ 2 = with a — Z3b = (1, ..., 1), by Lemma 3.1.10. The fiber
.7-"(21’.“’1)7,J # 0 is non-empty by Theorem 3.1.2. Furthermore, P} = P}, by the recursive formula

(3.1). This implies Q7 = 1 on the fiber 77, ), C ., and we're done with the case K = 3.

777777

3.1.2, and clearly fo 2QK=2 =1 on the whole fiber. Therefore it is enough to show, that this
fiber sits inside each generic K-fiber, that is, ]_—(11( j.21) 1,1y C .7:;( . We prove this claim only for

K = 2k + 1, since the proof is symmetric for K = 2k. In this case, a point y = (a,b) € YgK in
the generic stratum satisfies b # 0. Let’s write v := (1, ...,1)". Then the fiber FX 2 sits inside

]-"fb if and only if we find symmetric matrices Zx_1, Zx € Cn(n;l) with

()= (6 ) 2) 6)
() (i)

We can split up this system of equations into two independent systems a — Zxb = v and
b= Zk_1v+v. An application of Lemma 3.1.10 to both systems yields the existence of such
matrices Zx_ 1 and Zg, since b # 0 and v # 0. This completes the proof. m

or equivalently,

3.6 Construction of stratified sprays

The most convenient way to construct a dominating spray associated to a submersion is to
define some finite composition of flow maps of complete fiber-preserving vector fields. The
collection of complete vector fields in Proposition 3.4.4 does not span the tangent space of the
fibers .7-—;{ in every point. This is the reason why these are a priori not sufficient to define a
dominating spray. However, we can enlarge this collection until it spans the tangent space in a
sufficiently large set of points. In the following section we discuss the meaning of "sufficiently

large’” and the mathematical details for the enlargement.

3.6.1 Construction of a spray over the generic stratum

We begin this subsection with a definition. Recall the collection Vi of C-complete fiber-
preserving holomorphic vector fields from Definition 3.4.1. These collections are defined for
K > 3. According to Lemma 3.2.2, there are n meromorphic mappings 1, ..., %, such that
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cach generic fiber F? is biholomorphic to Gr,(,) = C""~V via ¢; for some 1 < j < n. Let 8‘%,
1 <i < n(n—1) denote the standard vector fields on C*~1. Then

o U () 1<)

j=1
is the collection obtained by pushing forward the standard vector fields via )1, ..., ¥,.

Definition 3.6.1. For K > 2, we define Qk := I'(Vk) the collection of C-complete ]-'yK—ﬁber—
preserving holomorphic vector fields generated by Vi .

Recall the set Wy which is given by

n(n+1)

Wy = {ZK € (C )K  Zgi1e, # 0, for some 1 < i < (%w },
where [z] is the ceiling function, which maps x to the least integer greater than or equal to x.
The set Wk is open and connected.

The following result, from now on we will call it Spanning theorem, is cruical for the
construction of a spray over the generic stratum.

Theorem 3.6.2 (Spanning theorem). Let K > 2. Then there is a finite set Ax C Qg of

C-complete fiber-preserving holomorphic vector fields on ((Cn(n;d) V& spanning the tangent bundle

T(]—"yK NWk) of every generic fiber .7-"yK. In particular, Ax C Axy1, when considering Ag as a
subset of Qp 1.

Let K > 3. Then the mapping ®|w, : Wx — C?*\ {0} is a surjective submersion with
connected fibers .7-";( (see Theorem 3.1.2 and Theorem 3.5.3). By the Spanning theorem, the
conditions of Lemma 1.6.10 are satisfied. Hence the submersion

Dy - CAK(WK)‘ng — YgK

over the generic stratum Y,* € C*" \ {0} admits a spray.

Remark 3.6.3 (Application of the Spanning theorem). Recall that, by Lemma 3.2.3, a fiber
.FyK contains singularities if and only if y = (Y1, ..., Yn, 0, ..., 0, 1) for y1,...,y, € C. In particular,
the intersection of singular fibers and Wy, the complement of Wy, is non-empty. We do not
know, whether the collection Ak from the Spanning theorem can be supplemented by finitely
many fields in Qg so that Ak spans the tangent space Ty }"K for smooth points Zx in Wi .
To be precise, it was proved for n =2 in [17], but for n > 2 it 1s an open question. In contrast,
the collection Ak spans the tangent bundle T]-"K of each smooth generic fiber .7:K, since smooth
fibers ]:K are completely contained in Wy .

3.6.2 Construction of a spray over the non-generic stratum

In this subsection, we show that the submersion
(I)K : CAK(WKNYnIg — Yn[;

over the non-generic stratum Y, € C** \ {0} admits a spray.
We need the following result.
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Lemma 3.6.4. Let K > 3 and let A C Qk be a finite collection of complete holomorphic fiber
preserving vector fields. Then

n(n+1)
2

CA(WK ﬂ./ryK) = CA(WK_l N ./—";(_1) x C
for each non-generic fiber .7-";{.

Proof. In a first step, we prove that

n(n+1)

Wk NFE =Wk anNFr ) xC = (3.7)

for each non-generic fiber .7-"yK and K > 3. From the definition of the set Wy we directly

n(n+1) . . . _ n(n+1)
conclude W1 = Wa, x C™ 2. Since each non-generic fiber satisfies ) = Ff~! x C™ 2

by Lemma 3.2.1, equation (3.7) follows for K = 2k + 1.

Consider now K = 2k even and a non-generic fiber ny , that is, y = (0,b)T for some non-zero
n(n+1)

b € C". Further, observe that Wy, = Wh,_1 x C™ 2~ UR, where

(n41)

R = {ng S ((Cn 2 )2k : 7Tn(Z2i_1) =0,1<i<k-— 1,7Tn(Z2k_1) 7& 0}

It suffices to show that ]—"yK NR =, in order to prove (3.7). Assume for contradiction there is

ng S ff NR. Lemma 3.1.6 implies (I)Qk_2<Z2k_2) = €9p and q)Qk_l(ng_l) = (O b)T follows
by Lemma 3.2.1. According to the recursive formula (3.1), we obtain

()= (5 o= (2

contradicting assumption 7, (Za,_1) # 0. This proves equation (3.7).

In a second step, we show that, over the non-generic stratum, none of the vector fields
V € Qg flows in a new direction. It suffices to prove the claim for the generating set Vi . Note
that there is nothing to show for vector fields in Vi _;. And fields in Vi \ Vi _1 vanish over the
non-generic stratum, by Lemma 3.3.2. This proves the claim. In particular, the vector flow o}
of V € Qg fixes the new directions, i.e. af(gK_l, Zk) = (f(ZK_l, Zx), Zr) for some suitable
holomorphic function f.

In the last step, we apply equation (3.7) and step two. We get

n(n+1)

CalWr N ) = CaWiea N FJTH X C57) = CaWiea n FTH x €

n(n+1)
2

This finishes the proof. O

Lemma 3.6.5. Let K > 3 and Ax C Qg be the finite collection provided by the Spanning
theoremsuch that the tangent bundle T(}"f NWk) of every generic fiber ]—"yK is spanned by A .
Then the restricted submersion

O : Cae Wiy = Yo

over the non-generic stratum Ynlg C C*\ {0} admits a spray.

Proof. Let Ag_1 and Ak be the collections from the Spanning theorem and let ]-"f be a

non-generic fiber. We have 7 = F =1 x C"%™ by Lemma 3.2.1, where F s a generic

(K — 1)-fiber. According to Lemma 3.2.1, the vector fields from Ag \ Ax_; vanish over FJ* and
we get

n(n+1)
2

Cae Wk NFS) = Cape Wk NFy ) x C
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Collection Ak spans the tangent bundle T'(Wgk_1 N ]-"f ~1) for every generic fiber ]-"yK ~1 by
the Spanning theorem. By Theorem 1.6.10, there is a finite collection B C I'(Ax_1) spanning
the tangent bundle T'(Ca,_, (Wg_1 N F, ")) for every generic fiber FJ*~'. We add the vector

( )

which span ™5™ to the collection B. This new collection, let’s call it B, spans the tangent
bundle T'(Ca,, (WK N FJ)) for every non-generic fiber ¢, Similar as in Theorem 1.6.10, we can

use the vector flows o), V € B, to construct a dominating spray associated to the submersion
Dy CAK(WK)|Y7{§ — Ynlg. ]

3.7 The Spanning theorem

In this subsection we prove the Spanning theorem, which we will do by induction on the number
of factors K. As it turns out, for various reasons, it requires several base steps before we get to
the actual induction step. It makes sense to explain the proof strategy continuously. So let’s
first introduce or recall some notations and then we start with the first base step, K = 2.

We write ®x = (P, ..., PE)T as well as PK (P1K,.. PEXYT and PX = (PK,, ..., PX)T.
Similarly, we write Qf = P --- PX and QF = Pl --- Pj,. Fory € C*" \ {0} we sometimes
write y = (a,b) with a = (ay, ...,an) and b = (b, ...,bn).

Lemma 3.7.1 (Spanning theorem for K = 2). Let F; be a generic fiber, i.e. m(y);- = P # 0
for some 1 < 5% < n. Then the collection

0

821 Jij

Az:{(Pl)

1§z§j<n}U{v§m:1§z‘§j§n,z‘#j*,j#y‘*}

consist of complete holomorphic vector fields which are fiber-preserving for ®,. Moreover, Ay
spans the tangent bundle T]-";.

Proof. According to Lemma 3.2.2, we are able to express the variables 23 1j-, ..., 225+ This
gives us a meromorphic mapping ¥~ which maps Qm(y =~ C""=1) biholomorphic to Fy 2 In
particular, the vector fields T I1<i<j<nand 57—, 1<i<j<ni#7J" j#] are
complete holomorphic and tangentlal to Gry(y)- Moreover, they span the tangent bundle TG, ().
The collection A, is obtained by computing the push-forwards with respect to the mapping

wj* . D
3.7.1 Preparation and explanation of the induction step
Recall that each K-fiber ¢ can be written as a union of (K — 1)-fibers, that is,

]:Z/K - U FJ\I/(IKIZ)ZJ

n(n+1)
ZeC™ 2

Equivalently, T = (EK_l, Zk) € ]:f if and only if = }"75(_1 with § = Mg (—Zk)y. The

( l<7 )
) <Z<] <n

are somehow transversal to the ’fibration” and we use to speak of the new directions. The basic
idea of the induction is the following. Assume there is a finite collection A C Qx_1 of complete
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fiber-preserving vector fields which spans the tangent space TZK]-";( ~!. Then we are looking for

a finite collection B C Qk which spans the new directions in 4 . Since the new directions are
complementary, the union A U B spans the tangent space TZK.FyI( . The following picture, while
mathematically inaccurate, can illustrate the idea fairly well.

FE

n(n+1)
2

ZK C

The following statement is very useful for the induction step.

Lemma 3.7.2. For K = 3, there are finitely many vector fields from Vs spanning the new
directions in a generic fiber F> in points with

Yy
Q) #0.

For K > 4, there are finitely many vector fields from Vi spanning the new directions in a

. K . . .
generic fiber F,* in points with

ch{*z £0 and QX 2#0.
Before we prove this lemma, let’s apply it. We therefore define the sets
Z/{g = {Zg € Wg . Q}(Zg) % 0}
and for K > 4, . . .
Uk = {ZK € Wk : Q?_z(ZK)Q§_2(ZK) 7é 0}

What now follows is one argument of the induction step.

Lemma 3.7.3. Let K > 3 and suppose that the Spanning theorem is true for K — 1. Then
there is a finite collection A C Qg spanning the tangent bundle T(]-";{ NUK) for every generic
fiber ]:;{ .

Proof. In a first step, assume K = 3 and consider a point Zg € Us such that y := ®3(23) € Yg3

is in the generic stratum, i.e. b= P3(Z;) # 0. By definition of the set U3, we have Q}(Zg) # 0.
According to Lemma 3.7.2, there is a finite collection A C Q3 which spans the new directions in
points with Q} # 0. Hence Z3 is a point, where the new directions are spanned.

By the recursive formula (3.1), we have ®,(Z,) = Ms(—Zs3)y. Moreover,
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implies that Zg € ]-"]%43(7 Zs)y is contained a generic 2-fiber, since qu, = (ZQ, Z3) € Us. Therefore
the tangent space TZg'FI%43(—Z3)y C TZ~3]:§’ is spanned by A C Q, according to Lemma 3.7.1.
Since the new directions are complementary, the collection A U A, spans the tangent space
TZ3.75. This is true for every generic fiber .7-"5’, hence there is a finite collection in Q3 which
spans the tangent bundle T'(F; NUs) for every generic fiber.

In the case K > 4 we’ll argue similarly. Let Zx € U be a point such that y := @K(ZK) € YgK
is in the generic stratum, i.e. mx(y) # 0. Write T = (ZK,l, Zk) and Ti 1 = (ZK,Q, ZK_1).
Note that

@K—1(ZK—1) = My(=Zg)y  and  ®x_1(Zx_1) = Mg_1(Zx1)®x_o(Zx_s)

by the recursive formula (3.1). By defintion of mx and My, we have mx o M = mg, hence

T—10Pr_1 = Tg_1 0 Pr_s. Moreover, by definition of Uy, we have fo’%)f”(Z}g) # 0,
which implies 75 _1 0 @5_1(ZK_1) # 0, that is, ZK—l is contained in the generic fiber ]—“ﬁ;(l_ZK)y.
In addition, we have Zx_1 € Wk _1, since otherwise this would contradict Q? QK2 £ 0 by

Lemma 3.1.6. Therefore the tangent space Tz~ F, ﬁ;(lf 7y is spanned by the finite collection

in Qg 1 provided from the Spanning theorem for K — 1. Similarly as in the previous case, Zx
is a point where the new directions are spanned, according to Lemma 3.7.2. Again, the new
directions are complementary and we’ve shown that there is a finite collection in Qf spanning
the tangent space T sz;( for each generic fiber. And this proves the lemma. O]

Remark 3.7.4. An application of Corollary 1.6.11 and the former lemma leads us to the
following observation. To complete the induction step, it suffices to find a finite collection
A C Qg satisfying

FrEN Wik C Ca(F) NUk),  for each generic fiber F,*. (3.8)
The idea of the proof is to stratify Wy suitably, i.e. find a finite descending chain of subspaces
WK:IXND...DXOZ@,

where the spaces X, ..., Xn_1 are closed. In a first step, we’ll find a finite collection Ay C Qk
such that the stratum Sy = Xy \ Xn_1 satisfies

]—“;( NSy C CAN(}"yK NUK)

for each generic fiber }"Zf{. Then, we find a finite collection A, C Qg, for each stratum
Sk = Xp \ Xi—1, 1 <k <N —1, such that

.F;{ N Sk - CAk(fyI( N Sk+1)
for each generic fiber .7-"yK. Define the finite collection A := Ugil Ay C Q. Then we get
./—‘;f( NS, C CA<./—"yK ﬂSg) c---C CA(JT';( ﬁSN) C CA(JT"yK QUK)

for each generic fiber ny. As it turns out, the stratification of Wi in the cases K =3, K =4
and K > 5 differ in some elementary ways.

Proof of Lemma 3.7.2. Let ]:f be a generic fiber, that is, pff # 0 for some 1 < j* < n.
Recall that this fiber is biholomorphic to Gy, () X C™5 with the biholomorphism obtained by

expressing the n variables 2k j«1, ..., 2k j*» in terms of the remaining variables (zKyij)1<i<j<n'i P
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n(n—1
2

Clearly, the fields <L ' and moreover, they

are tangential to G x C
Ozxii ) 1<i<j<nsi " & miev)

n(n—1) el

span {0} x C >
p { } 02K i 1<i<j<n;i,j#5*
in F;{. It remains to find n vector fields 8;5*1, - 895;1 tangent to Gr,. () X {0} such that the

. to the new directions ( 3 0 )
J ZK,j*j ].S]Sn

linearly independent. Let o« 1, ..., @+, denote the component vectors of such projections in the

frame (a 9 ) . We need to show that the matrix A := (a1
P33/ 1<j<n ’

Uy, 1= (6;5;1(151}(_2), o 83551(]55*2))7“ and recall from the proof of Lemma 3.3.2, that there
is a regular matrix B := Fj*(PK)_l with aj«,,, = Bu,,. Therefore A is regular if and only if
U := (u1]---|uy,) is regular.

In a first step, we assume K > 4 and consider the tupels of (Type 1)

. Hence the corresponding lifts span the new directions <

projection of the corresponding lifts ¢% ..., ¥ are

-+ |aj« ) is regular. Set

Ty = (ZK—Q,mrm ZK—1,115 -+ ZK—I,nn>71 <m<n.

Without loss of generality, let K = 2k + 1. The entries of U are given by wu;; := 02F(P?*). Let’s
compute the following derivatives

o i 2k—2
P = (Zka L) (O E“) (Pf ) = Pl Zxaes,

aZK_Q,n’ 0 0 PSQk_Q
and 5 -
- P
P = (Bpm 0) ( i1 ) = Paf em.
aZK—l,mm y ( o ) P.S;Qk_l " "
Furthermore, we have ﬁPf’“ =0 and
a PQk o E PQk—l _ PQk—l
We obtain
5. p2k—1 0 0
o an P2k — d t 174 n4q _ 5"P2kf1 2k—1
Uyj ;i ( j ) € Psizlzl{flei P12k_1€1 L ng—len ijd p4q Qf )
and hence the matrix St o1
Pn+1 f
U =

2k—1 "2k—1
P2n Qf

is regular, provided Q?k_lQik’l #£ 0.
In a second step, let K = 3 and consider the tupels of (Type 4)

xj = (Z1nj, 22,115 -or 22 ), 1 < J < n.

We obtain derivatives 5-2—P? = Zye;, 72— P? = 2| p¢; and -2 _Pf2 = ej,%P]? = 0, for
’ 1,nj 22,00

82177”' s 8227“' s 0z
1 <1,7 < n. Hence we get
5i 0 e 0
- — det i = §5..01L
i ¢ (Z2€j Z1n1€1 Z1,nn€n) ”Qf
and U = Q}Jn This completes the proof. O

48



3.7.2 Spanning theorem for K = 3

We want to find a finite collection A C Qg such that (3.8) is fulfilled for K = 3.
Let 1 <14,j <n,i# j, and consider the tupels of (Type 8)

Tij = (21,m‘, 22,41, -”722,jn)'

The corresponding vector fields éﬁm_ are of the form (see (A.1) for more details)

0/0z1mi 0/0zp51 -+ 0[Oz --- 0/0z;n
2914 Z1,nj 0 0
92 = det
“J 224 Z1,nl s Z1,nj s Z1.nn
29 ni 0 0 21,nj

and they satisfy
0., (216n) = 0ir(21,)"
for 1 <i,5,k <n.
By definition, points in N := W5 \ U3 satisfy Q} = Z1,in " Z1an = 0 and P} = Z1e, # 0.
Hence there are indices 1 < i1 < ... < i <nand 1 < j; < ... < jo_r < n satisfying

(1) {1,...;n} = {ir, oo, JU{1, ooy Tk }s
(11) Rlin = O, for all 7 € {il, ...,ik},
(ili) 214 # 0, for all j € {j1, ..., Jn—k}-

Fix an index j € {j1, ..., jn—k}. Then observe

2

2
Tiq,j 1

0---0 a‘ik’j(zl’im e 21m) = (2150)" 0%, PERERES aﬁik,l,j(zlyim 214 ),
which inductively implies
éﬁiw_ 0---0 85%7]_(21’1-1” e Zln) = (zljjn)k" £ 0.
Let 23 € N be a point over the generic stratum, that is, ®3(Zg) € Yg3. According to Lemma
1.6.13, we find finitely many of the above fields Gﬁm such that a suitable finite composition of

the respective flows moves Zs away from N More precisely, we have a finite collection A C Oz
and an automorphism « € G4 such that a(Z3) € Cy(Us). That’s exactly what we need to get
(3.8).

3.7.3 Spanning theorem for K =4

As in the previous step, we want to find a suitable finite collection A such that (3.8) is satisfied.
In order to do this, we’ll do a divide and conquer with the set Ny := W, \ U,.

Lemma 3.7.5. Define the set
Ny = A{Zs € Wi : Q3(Z1)Q(Zs) = 0, PX(Zy) # 0},
Then there is a finite collection A C Q4 such that
Fy NNy C Ca(F, NUy)

for each generic fiber ]-";.
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Proof. In a first step, recall that Pf = P} by the recursive formula (3.1). Consider a point 7,
in the set

X, ={Zi e N\ : Q} #0}.

By definition of this set, we find indices 1 < i*,i < n with Pn+z*(Z4) # 0 and Pn+z(Z4) = 0.
Pick the vector field 8;31_ corresponding to the tupel x; = (22,00, 23,01, ---» 23.+n) Of (Type 2). It is
of the form (cf. (A.2))
0 u 0
+ P2 n__~
( n+i* ) 8227“' + .t 67) (923,1*1

for some suitable holomorphic functions aq, ..., a,. We show that the function P?,; is not
contained in the kernel of 83 Note that Pﬁ ; does not depend on the variables z3,,,1 <7 < s < n.
Therefore

0
aZ2 K1)

0

aZ2 K1)
= (P2 )" el By Zyey,

83(P13+1) = :i:(Perz )n (P3+z)

= (P2 ) (810 + € ZoZ1e,)

=el

= izl,in( n+i* ) 7£ 0

and this applies for every 1 < i < n with P? (Z4) = 0. Hence there is a finite collection A C Q4

n+1
such that
f; NX; C CA(.F; ﬂL{4)

for each generic fiber .7-";1.
In a second step, let’s consider a point 24 = (Zg, Z,) in the set

Xo={Z;:Q}=0,P} #£0,P? £ 0} C \..

Observe that the projection of Z, to the first component Zs is contained in a generic 3-fiber .7:5
and in Wj3. From the case K = 3, we know the existence of a finite collection B C Q3 such that
qu, € CB(}"S NUs). Put the corresponding pullbacks into the collection A C Q4. Then we've
found a finite collection A such that

F,NXo CCa(F, NX1) CCa(F, NUy)

for each generic fiber F,,.
In a third step, let’s consider a point Z, in the set

Xy={Zy: P} =0} C M,

that is, Z1e, = 0. The vector field 92 corresponding to the tupel z = (21,1n5 -5 Z1.nms Z3.0n) Of
(Type 7), satisfies

82(21’71”) = det (61 + 232261, N S | + Z3ZQ€n_1, en)
in Z4. Hence there is a finite collection A C Q4 such that

T m\{Z4 : P}(Zy) = 0,0%(21,m) # 0} C Ca(FiN{Zy: P} #0,P2 #0})

=N
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for each generic fiber F,,.
Next, we consider the vector fields 821_ and 8;, t=1,...,n— 1, corresponding to the tupels
Ti = (22,iis 23,105 -+ 23,nn) AN Yi = (2334, 23,105 -+, Znn) O (Type 2) and (Type 3) respectively By

Lemma A.1.1 and Lemma A.1.2, they are of the form 05, = 5.°— and J;, = 52— on N*(P7).
The formula |

d

7 det(Ai (1), Zdet (Ay(t), ..., AY(t), ..., An(2)) (3.9)

is sort of a product rule, where A;(t), ..., A, (t) denote columns of a n x n-matrix A(t) depending
on t. In our case, we consider a matrix A, where the first (n — 1) columns are given by

n
Ai=e;+ Zzzquez, 1<i<n-—1,
=1

and the n-th column A,, = e,,. Observe that
0 0
0224 4= 0204 i (e + ; 2 1j23€1) = 045 Z3€;.
Hence

a .« .. a

det(A) = det(Zseq, ..., Zzep_1,€p).
32’2,11 aZz,(n—l)(n—l) ( ) ( o ’ ! )

Furthermore, we obtain

0 0

Ozz11 023,(n—1)(n—1)

det(del, ceey denfl, €n> = det(el, ey en) =1.

By Lemma 1.6.13 and the previous step, we conclude the existence of a finite collection A C Q4
such that . . B
FyN{Zs e Ni: Pi(Zy) = 0,8,(210n) = 0} C Ca(F, N N)

and
f;mv C OA(f;m{Z4 : Q} #0,P2+#0})

for each generic fiber .7-";1. In particular, this implies
F, N X3 C Ca(F, NXy) CCa(F, NU)

for each generic fiber F,,.
For the final step, observe that N; = X; U X, U X3. We put all of the involved vector fields
above together and obtain a finite collection A C Q, satisfying

Fy NNy C Ca(F, NUy)
for each generic fiber .7-";1. This finishes the proof. ]
Lemma 3.7.6. Define the set

N = {Z, : P2(Zy) = 0}.
Then there is a finite collection A C Q4 such that

F, NNy C Ca(F,) NUy)

for each generic fiber ]-";.
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In order to prove this lemma, the symplectic nature of the elementary matrices M;(Z) comes
into play. The following result, also called complementary bases theorem, is proved by Dopico
and Johnson [6].

Theorem 3.7.7 (Complementary bases theorem). Let

M= <é‘ g) € $p,. (C)

be a symplectic 2nx2n-matriz in block notation (1.1) and let k := rank(B), i.e. there are k indices

J1s -, Jk Such that the vectors Be;,, ..., Bej, form a basis of the image Im(B). Let iy, ..., 10—

denote the complementary indices in {1,...,n}, that is, {1,...,n} = {i1, ..., in_t JU{J1, ..., & }-
Then the n X n matrix

X = (Aeil cee Aein_k Bejl cee Bejk)
18 reqular.

This theorem proves an important property of symmetric matrices.

n(n+1)

Corollary 3.7.8 (Application of the Complementary bases theorem). Let Z € C™ 2z be a
symmetric matriz of rank k := rank(Z) with 1 < k <n. Then Z has a non-vanishing principal
minor of order k. More precisely, there is a regular k x k-matriz (Z);,.. .. ., obtained by
removing columns and rows iy, ..., t,_ from Z for some suitable indices 1 <11 < ... < tp_p < N.

Proof. Consider the elementary symplectic matrix

I, 7
0 IL,)°

By assumption, there are indices 1 < j; < ... < ji < n such that the vectors Ze;,, ..., Ze;, span
the k-dimensional image of Z. Let iy, ..., i, denote the complementary indices in {1,...,n},
that is, {i1, ..., in—x }U{j1, ., Jx}- Then the Complementary bases theorem implies that the
matrix

X=(en o iy Zejy - Zey,)

is regular. An application of some Gauss-elimination process yields the desired result. O]

Proof of Lemma 3.7.6. Let’s stratify A5 in the following way. For 0 < k < n, define
A = {24 € N, : rank(Z3) < k}

and as a convention let A_; := (). Then each stratum
B = A\ A1, 0<k<mn,

consists of those points Z; € Ny with rank(Zs) = k.

Now we want to proceed as in Remark 3.7.4. We start by assuming A to be the finite
collection of Lemma 3.7.5, and then successively add matching fields to A.

For each point in N3, there is an index 1 < ix < n with 21+, # 0, since P} = Zie, and
P? = 0 don’t vanish simultaneously by the recursive formula (3.1). So this is especially true
for points in the stratum B,,. The tupel © = (21, 22,i*1, ---, 22%n), J 7 1%, is of (Type 8) and by
Lemma A.1.3, the corresponding vector field 92 satisfies

3§(2Lnj) = (Zl’m*)n det(Z3) 7é 0.
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Moreover, observe that 92(z3,;) = 0 and 92(P?) = 0 for all 1 <7 < j < n, by construction. The
recursive formula (3.1) implies

]32_3 = Z1ni + Z Z37ilp73+l'
=1
Hence
0= ai;(PZS) = 53(21,7“') + Z Zg,ila;:’(Perl), 1 < 7 <n.
=1

Suppose that §2(P2,,) =0, for all 1 <! < n. Then we obtain a contradiction
0= 0;(F}) = 0(21,5) # 0.

Therefore, the flow of 92 through points of B, leaves N. We add 92 (actually its n push-forwards
with respect to the biholomorphisms from Lemma 3.2.2) to the collection A and by Lemma
3.7.5, we get

./T"; NB, C CA(I; ﬂ/\/]) C CA(f; QZ/{4).

In a next step, we assume 1 < k£ < n — 1 and we divide the stratum B into two more strata.
Define

Cr = {Zﬂ4€Bk:dei7é0:sz:0,‘v’1S@'Sn}

and consider a point Z, € By \ Cx. By definition, there is an index 1 < j* < n such that
Zse;» # 0 and 2y j+, # 0. Furthermore, again by definition, we assume that the matrix
Z3 has rank k. By the complementary bases theorem, we can choose complementary in-
dices {i1, ..., in— }U{j1, .-, Ju} = {1, ...,n} such that j* € {ji, ..., jr} and such that the vectors
Zsej,, ..., Zsej, form a basis of the image Im(Z3). Choose i € {iy,...,i,—1}, then the tupel

_ ; ; ) 3 _ . p2
T = (Z1iyny ey Z1in_pns 22,7415 - 22,5455 234i) 18 of (Type 7). Since azg,“-Pf = E;P? = 0 on N,

the vector field 92 is given by + det(B )% on N, for some matrix B. Using the notation from
Corollary 3.7.8, Lemma A.1.4 yields 7

det(B) = (21,5)" det((Za)is,..i, ) # 0.

Next consider the (k+ 1) x (k + 1) submatrix of Z3

S A3iji T F3iigy

2341 A3 T A3k
Z = ) i . ,

3kt A3gki1 T R3kdk

for i € {i1,...,0n—x}. Its determinant det(Z), written as a function in z3;, is given by
det(Z) = det((Z3)i,....i,_i ) 73,0 +

where o € C is constant in z3 ;. We have det(Z) = 0 on By, since the rank of Z3 is k on this
stratum. Apply the vector field 92 to the equation det(Z) = 0. This gives us

03(det(Z)) = det(B)

det(Z) = det(B) det((Z3)iy.....i,,_,.) # 0.
82’3,1’1’
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Hence the flow of 92 through the given point 24 € By \ Cr leaves the set A and intersects
the stratum By,,. Hence there exists a finite collection A C Q4 of complete fiber-preserving
holomorphic vector fields such that

F; N By, \Ck C CA(.F; N Bk+1)
for each generic fiber .7-";1 )
Now, consider a point 74 € Ci,. Choose again a complementary set of indices
{in, coosin—g }U{J1, s i} = {1,...,n} such that the vectors Zsej,, ..., Zse;, form a basis of the
image Im(Z3). By definition of Cj, we have 2 j,,, = ... = 21 j,» = 0. Recall that by definition of
Ny, there is an index 1 < ¢* < n with 2+, # 0. In particular, Zze;» = 0, again by definition of
Cr. The vector fields ’yjzﬂ*, Jj € {j1, - jr}, from Lemma 3.3.1 are given by

%2']',1'* = (Zl,i*n)2—> J€ {1, Ik}

0225

in the given point 7, € Cp.. Consider the tupel @ = (2101, -+, Z1.0m, 23,4+i+) Of (Type 5). TIts
corresponding vector field 92 is of the form =+ det(7, + 2322)823% in Z,. Apply a suitable
composition to the equation zg;+«+ = 0, namely ,

ngkjk,i* 0---0 7321j1,i* © 82(23,1*1'*) = i%ijk,i* 0---0 7321j1,i* (det (I, + Z3Z3))

0 0
= +(215m)F=——0---0 (det(I, + Z3725)).
07,5 0z2,5j
Note that %ﬁ([n + Z37,) = Z3E’jj which means that the j-th column (7, + Z3Z5)e; is the

only column in 1, + Z37s depending on the variable 2, ;;. In particular, the product formula for
determinants (3.9) and a suitable rearrangement of the columns yields

0 0

O--:0
022 i 022,41,

(det(]n—i-Zng)) =+ det(([n+Zng)e,»1, ceey (In‘i_ZgZQ)einik, Z3ej17 ceey dejk).

Another application of the complementary bases theorem implies

Viguis O 0 Virjnie © Oa(23,0n0) # 0.
By Lemma 1.6.13, we have found a suitable finite collection A C Q4 such that
FiNCy € Ca(Fy N B\ Cr)

for all generic fibers F,,.
In summary, we have found a finite collection A C Q4 satisfying

F, N B C Ca(F, N Bys1),
for each 1 < k <n — 1 and each generic fiber ]-";.

In a last step, consider a point Z, € By. Then the field 93, corresponding to the tupel

Tr = (Zl,m, <oy Z1mn Z3,nn> of (Type 7), is given by
0 0
0 =+ det(I, + Z3Z S ,
x € ( + Z3 2)623771” 823,nn

Therefore, there is a finite A C Q4 with F; N By C Ca(F, N By) for each generic fiber.
It remains to put everything together and apply the properties of the closure operator C4.
More precisely, we have found a finite A C Q4 such that

CA(]:;L N Bk) C CA(.F; N Bk—f—l)
for each 0 < k < n —1 and each generic fiber. And since we already know
F, N B, C Ca(F, NUy)

for each generic fiber, the proof is complete. O
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3.7.4 Spanning theorem for K > 5

The strategy for K > 5 is very similar to that for K = 4. Let’s write the function fo k-2
in terms of the notation PX (see Lemma 3.2.2). Recall

PE if K =2k

i {P;f if K =2k +1
and the recursive formula (3.2)
PK — pK-2 4 7, pK-1

Then we get, B . B B
Qf” K-2 _ pK-2... pK-2pk-3, . pKk-3
for all K > 5.

Lemma 3.7.9. Let K > 5 and define
Ny = {Zy € Wy : B2 PK2BK-8.pK—s o pK=2 2 ).
Then there is a finite collection A C Qk such that
FENN C Ca(F) NUk)
for each generic fibers FyK.
Proof. In a first step, consider a point Zx in the set
X, ={Zx e N, : PE=3...pK=3 L 0},

By definition of this set, we find indices 1 < 4,i* < n with PX2(Zx) = 0 and PEX2(Zx) # 0.
Pick the vector field 035*1 corresponding to the tupel z; = (2x_24i, 21,1, ---» ZK—1,+n) Of (Type
2). It is of the form

8 n
+(PE-2y T N -
82K72,ii =1 82K71,i*l

for some suitable holomorphic functions aq, ..., a,. By the recursive formula (3.2), we get

PR=2 _ Pty (T 7,

(2

and therefore ) . )
OKTU(PI) = +(PK-" P 20,

This applies for every 1 <1 < n with ]%K =2 = (0. Hence there is a finite collection A C Qk such
that

JT';JK NX; C CA(.F;( ﬂZ/lK)
for each generic fiber f;{ .

In a second step, consider a point A (ZK—17 Zk) in the set
Xo={Zx € Ny : P73 . PK=3 = 0, PK=3 £ 0},

Observe that the projection of Zx to the first component Z x4 is contained in a generic (K —1)-
fiber ]—";{ 1 and in Wgk_;. By the induction hypothesis, there is a finite collection B C Qx_;
such that

Zw-1 € Cp(FE N {Zg_y: PE3 PE £ 0},
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Put the corresponding pullbacks into the collection A. This gives us a finite collection A C Q
such that
.7:yK NXy C CA(F;( ﬂXl) C CA(.F;( ﬂUK)
for each generic fiber FJ*.
In a third step, consider a point Zx = (Zx_1, Zk) in the set

Xy = {Zx e Ny : PK3 =0}

Define the subset . . .
Xy ={(Zx-1,ZK) € X3: Zx_1 € Wg_1}.

By Lemma 3.7.6, we can apply the induction hypothesis, to obtain a finite collection A C Qk
such that )
FrNXy COa(FSNXy)

n(n+1)

for each generic fiber ff . Observe that Whg11 = Wa X C 2, hence the two sets X3 and )~(3

coincide for K = 2k + 1. Now, let us assume K = 2k and consider a point Zyx € X3\ X5. This
implies Ze,, = Zze, = ... = Zy,_3e, = 0. Pick the vector field 85*1 corresponding to the tupel
T = (ZK—31n; -+ ZK—3.nn, Zk—1,nn) Of (Type 5). It satisfies

55_1(21(—3,%) =det(er + Zx_1Zk—2€1, ..., en—1 + Zx_1ZK_2€n_1,€yp)

in Zg (cf. (A.10)). Also consider the fields 95X~ and X', i=1,..,n—1, corresponding to the
tupels z; = (2 —2,i, ZK—1,1ns s ZK—1,nn) A0 Yi = (2K 100y 2K 1,105 -+ ZK—1,0n) Of (Type 2) and

(Type 3), respectively. By Lemma A.1.5 and Lemma A.1.6, they are of the form 9%~ = 8z£2 -
and 8;5*1 = 82;971 — on X3\ X5. With the very same reasoning as in the third step of Lemma

3.7.5, we obtain a finite collection A C Qg such that
FEAX3\ X3 C Ca(FE N Xy)
for each generic fiber .7-"yK . In summary, we obtain a finite collection A C Qg such that
./r;{ NX;C CA(J_";{ ﬂXQ) C CA(./—';{ ﬂUK)

for each generic fiber .7-"yK and for each K > 5.
In a last step, observe that A7 = X; U X, U X3. We put all the involved vector fields above
together and obtain a finite collection A C Qp satisfying

FF NN C Ca(Ff Nldk)
for each generic fiber .FyK . This finishes the proof. O

Lemma 3.7.10. Let K > 5 and define
Ny = {Zx € W : PK2 =0},
Then there is a finite collection A C Qg such that
FENNy C Ca(FF NUk)

for each generic fibers .7-"yK.
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Proof. The proof of this lemma follows more or less the strategy of Lemma 3.7.6. We stratify
N5 in the following way. For 0 < k < n, define

= {Zx € Ny : rank(Zx_y) < k}
and as a convention let A_; := (). Then each stratum
B = A\ Ay, 0< k<,

consists of those points Zx € Ny with rank(Zx_1) = k.

In a first step, we prove the following claim: for T = (ZK,Q, Zx 1, Zx) € Na, the projection
to the first component Z_ is contained in a generic (K — 2)-fiber and in Wi _,. The first part
of the claim follows directly from the fact that PX~3 and P*~2 don’t vanish simultaneously, by
the recursive formula (3.1). For the second part of the claim, recall that Zx € Wy by definition
of Ny. Assume that Zx_, ¢ Wiy _o and observe

Kos) k-1 if K=2k+1
2 k—1 if K = 2k.

Then Zye, = Zsze, = ... = Za—3e, = 0 and by Lemma 3.1.6, we conclude ®o_5 = €3,. In the
case K = 2k, this contradicts 0 = PEX=2 = P?*=2 = ¢ . And in the case K = 2k + 1, this leads
to

0=PK2= P?k_l = Zok—16n,

which contradicts Zx € Wy. This proves the claim. We are now able to apply the induction
hypothesis (the Spanning theorem for K — 2) to Z w5 and assume without loss of generality
that PEK=4... pK=4 £,

For the second step, observe that for each point in N>, there is an index 1 < j < n with
ij —3 £ 0, since PE=3 and PX-2 don’t vanish simultaneously. So this is especially true for
points Zk in the stratum B,. Consider the tupel © = (2x_3,ii, ZK—2,41s -, ZK—2,4n), & # J, of
(Type 2). The corresponding vector field 95~ is of the form

0 Z g9 0

aZK—&u aZK 2,9r

for some suitable holomorphic functions a, By, ..., B,. By construction we have X ~1(PK-1) = 0.
Furthermore, PX~1 = PX=3 1 7, | PX=2 by the recursive formula (3.2). Hence

0= H(PX1) = 05 M (PR72) + Zie 1051 (PR,

which implies that if PE-2 is in the kernel of 9", then PE=3 is in that kernel too.
Observe that PX=* and PX~5 are in the kernel of X~  since they don’t depend on the
matrices Zx_3 and Zx_o. Therefore

OK=L(PK=3) = 9K=1(Zy_4)PK~4 = aE; PK~4 = o PK*,

and by the previous paragraph, we may assume ]51-1{ ~4 £ 0. Tt remains to compute o First, let’s
compute the derivatives

0 = J 5 FB
PR =z PK? =7y E,PKT 1<r<n.
02K _2jr 02K _2jr

o7



This gives us

a = det(ZK_1E~'j1]5K_3, ceey ZK_lEjn]BK—?))
= det(ZKfl) det(EjlpKig, vy ENIJnPKig)

DK—3
P
— det(Zgy)det | PR3 ... pES L pred
ﬁ)K—?)

— (P38 det(Z 1) # 0.

Hence 95X~1(PX-3) # 0 and therefore also X ~1(P¥~2) # 0. We conclude that there is a finite
A C Qg such that
Fr B, C Ca(FF NN C Ca(F)S NUk)

for each generic fiber FJ<.
In a third step, let’s assume 1 < k < n — 1 and we divide the stratum Bj into two more

strata. Define . .
Co :={Zx € By: Zg_1e; # 0= P =0,v1 <i<n}

and consider a point A Kk € By \ Cx. By definition, there is an index 1 < j* < n such that
Zk_1ej+ # 0 and ]5]K ~% 2 0. Moreover, also by definition of the stratum By, we assume that
the matrix Zx_ 1 has rank k. By the complementary bases theorem, we can choose complemen-
tary indices {iy, ..., in_r JU{J1, ..., Ju} = {1,...,n} such that j* € {ji,...,jx} and such that the
vectors Zx_1€j,, ..., Zx_1€;, form a basis of the image Im(Zx_1). Choose i,7* € {i1, ..., in—k},
then the tupel @ = (2x_g,i%iy, s ZK—3,i%i, s ZK—2j%j1s s ZK—2.4%j» 2K —14i) 1S of (Type 7). Since

0 _pK-1 — [, PX=2 = () on N, the vector field 95~ is given + det(B)-—2— on N5, where

0zK —1,ii 0zK —1,ii

B— ( ) pE-1 ... d pE-1 o) pPE-1 ... ) ]SK—1>

BzK_&i*il 82K_37i*in7k 82:}(_2’]'*]-1 8ZK_2’j*jk

By Lemma A.1.8,
det(B) = (PE)" (P det((Zk-1)is,in 1) # 0

in the given point Zx. The same argument as in Lemma 3.7.6 implies that the flow of 9K
through Zk leaves the set A and intersects the stratum Bg,;. Hence there exists a finite
collection A C Qg such that

./Tyl{ﬂBk\Ck C CA(F;{ﬂBk+1)

for each generic fiber .7-"yK )

Next, consider a point Zx € Cp,. Choose again a complementary set of indices
{i1, ccosin—g }U{J1, s Ju} = {1, ...,n} such that the vectors Zx_ye;,, ..., Zx_1e;, form a basis of
the image Im(Zx_1). By definition of Cg, ﬁ’ff’?’ = .= pf:’“q’ = (. Recall that there is an index
1 < i* < n with JSZK =3 £ 0, since PX3 and PEX~2 don’t vanish simultaneously. The vector fields
ﬁ;}z,j € {j1, .., Jr}, from Lemma 3.3.1, are given by

K-2 DK —3\2 . . .
Saoax P% ~ € PIEEED) 5
Py]j,z ( i ) aZKfQ,jj J {jl ]k}
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in Zr. Now consider the tupel © = (2x—3.n1, s ZK—3.nn> 2K 14+ ) Of (Type 5). Its corresponding
vector field 951 is of the form +(PEX=")"det(l, + Zx_1ZK_»)
3.7.6, we have

5, —— in Zg. As in Lemma
K —1,i%i*

K—2 K—2 K—1
Vingra= © 0 Vipjrie © Op (2K —1,0) # 0.

This implies the existence of a finite collection A C Qy such that
FrnCe c Ca(FS N B\ Cr)
for each generic fiber ]-"yK . In summary, this leads to
ff N Bk C CA(.F;( N Bk+1>

for each generic fiber 7 and 1 <k <n —1.

It remains to consider a point Zx in the stratum By, that is, we assume Zx_; = 0. Choose
again the vector field 85*1 corresponding to the tupel * = (2x_3n1, ..., ZK—3.nn, ZK—1,i+i+) Of
(Type 5). Then

OF 2k 1000) = £(PFN)" det(L + Zi 1 Zxc ) # 0,

~~
=1

and therefore there is a finite collection A C Qf such that
]—"f NBy C C’A(]-"yK N By)

for each generic fiber .7-"yK )
For the final step, we only need to put everything together. We have

Ca(F) N By) C Ca(F) NBy) C -+ C Cu(FLNB,) C CualFy NU)
for each generic fiber 7, and since N = (J;_, By, we obtain
./T"yK ﬂNQ C CA(.F;( ﬂUK)

for each generic fiber .7-"yK . This finishes the proof. O
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4 APPLICATIONS

In the following we present some applications of the Main theorem as we can find them in [13].
In addition, we devote a section to the density property. This is not directly an application of
the Main theorem, but from its proof.

4.1 Preliminaries

In this section we introduce some notions which are important for this chapter. Let R be
a commutative ring with 1. An element (as,...,a,) € R" is called unimodular if there exist
bi,...,b, € R such that

a1b1+“'+anbn: L.

Let U,(R) denote the set of unimodular elements in R™. A unimodular element (ay, ..., a,41) €
Unt1(R) is called stable, if there exist 7, ...,7, € R such that
(@1 + T10n41y ooy G+ Tpang1) € Un(R)

is unimodular. Let sr(R) denote the least natural number such that each unimodular element
in Ug(ry(R) is stable. This number is called Bass stable rank of R. For the ring O(X) we have

st(O(X)) = L%J +1 (4.1)

as for instance (see [2]).

4.2 On the number of factors

The previous choice of elementary symplectic matrices turns out to be suboptimal if we want
to estimate the number of factors. We will consider unitriangular symplectic matrices instead.
Here, a unitriangular matrix is an upper (resp. lower) triangular matrix having only ones on
the diagonal. However, this does not give us an advantage a priori. We need an alternative
definition of a symplectic matrix. Essentially, we just want to do a suitable basis transformation
such that we also have unitriangular elementary matrices of the form

(0 ) )

where A, B are unitriangular matrices. Let L be the n x n-matrix with ones on the skew-diagonal
and zeros elsewhere, i.e.
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Then we define the basis transformation matrix
I, 0
B - (0 L)

~ 0 L
0= (U, 1)
Then a matrix M is symplectic with respect to (2 if and only if BM B is symplectic with respect
to 2. The elementary Q-symplectic matrices of (E.1) and (E.2) are still unitriangular, since
L? = I,,. The Q-symplectic matrix in (%) reads as

A 0
0 LDL

in the new basis and in particular, it is unitriangular, if A is unitriangular. So the choice of
unitriangular matrices, together with the change of bases, actually extends the set of elementary
symplectic matrices.

We will use the Tavgen reduction to find an estimate for the number of factors. For this we
make a short disgression in the setting of elementary Chevalley groups. Let ® be a reduced
irreducible root system of rank [ > 2 and let R be a commutative ring with 1. We choose an
order on ® and a system of fundamental roots 1T = {«q, ...,y }. Each root « € ® is an integral
sum of the fundamental roots

and

l

o= Z ki(a) o,

i=1
where the integer coefficients k;(«) are either all non-negative or all non-positive. For r = 1,1,
we define the following subsets of ®

A ={aed:k(a)=0}, X, ={ac®:k(a)>0}, X ={acd:k(a) <0}

A, is itself a root system of rank [ — 1. On the level of Dynkin diagram, we obtain A, from &
by taking away the first (r = 1) or the last (r = 1) fundamental root. The elementary Chevalley
group E(®, R) of type ® over R is generated by root subgroups z,,a € ®

E(®,R) ={xa(r) : a € ,7 € R}.
The positive unipotent subgroup U(®, R) is generated by the root subgroups of positive roots
U@, R) = {x.(r):a € ®" r e R}.

Similarly, U= (®, R) = {z4(r) | « € 7,7 € R}. The following theorem was originally proved by
Oleg Tavgen and adapted in [25] , where the number of factors is even. For our estimates, we
need the same result allowing odd number of factors. We remark that the shape of the starting
factor, upper or lower, is also immaterial. The above mentioned article, as well as [24], are
recommended for more information.

Theorem 4.2.1 (Tavgen’s reduction). Let ® be a reduced irreducible root system of rank [ > 2
and let R be a commutative ring with 1. Suppose that for subsystems A = Ay, A; of rank [ — 1
the elementary Chevalley group E(A, R) admits the unitriangular factorization with L factors

E(AR)=U (A, R)U(AR)---U*(A,R).

Then the elementary Chevalley group E(®, R) admits the unitriangular factorization with the
same number of factors

E(® R) =U (®,R)U(P,R)---U*(D,R).
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Proof. We take
Y =U(®,R)U(®,R)---U(®,R).

Y is a nonempty subset of E(®, R), in particular it contains 1. Since the group E(®, R) is
generated by the following root elements X = {z,(r) | a € £II,r € R} C E(®, R). Notice that
the generating set X is symmetric, i.e. X! = X. We claim that z,(r)Y C Y for a € +II:
Since [ > 2, « lies in at least one of the subsystems Ay, A;. Suppose that « belongs to A = A,.,
then we consider the Levi decomposition

U(® R)=U(A R x E(X,R), U (®,R)=U(A,R)x E(X,R),

where ¥ = %, and E(X, R) = (z4(r) | @ € ¥,7 € R). Since U*(A, R) normalizes E£(X, R) , we

can rewrite Y as

U (®,R)U(®,R)---U(®,R)
= U (A R)E(X",R)U(A,R)E(Z,R) --- UX(A,R)E(X* R)

(U (A, RU(AR)---U*(A,R)) E(X",R)E(S,R) - - E(X*, R)
= FE(AR)E(X",R)E(X,R)--- E(X*, R),

where the last step follows from the assumption. For a € A, z,(r) is an element in F(A, R),
hence z,(r)Y C Y. This proves XY C Y. But this implies Y = E(®,R): choose any
g € E(®, R) and choose some y € Y. Since X is a generating set of E(®, R) and X is symmetric,
there are xq, ...,z € X such that gy=' = 1 - - 2. In particular, this proves

g=gy ly=x1-- 141 13y €Y.
Y
c

———
ey

This finishes the proof. 0

Corollary 4.2.2. Let X be a reduced Stein space of dimension d and let n > 2. Then there
exists an upper bound t = t(n,d) for the number of unitriangular factors of any null-homotopic
holomorphic mapping f : X — Sp,,,(C). In particular, the bound t(n,d) smaller than or equal
to t(1,d) the corresponding bound for SLs(O(X)), i.e.

t(n,d) < t(1,d).

Proof. The main theorem guarantees the existence of a natural number ¢(n, d) such that any
holomorphic, null-homotopic mapping f : X — Sp,,(C) can be written as a product of ¢
unitriangular matrices. The group Ep,,(O(X)) generated by unipotent symplectic matrices
coincides with the elementary Chevalley group E(C,,, O(X)). According to the main theorem in
[14], there exists a natural number ¢(1, d) such that any holomorphic, null-homotopic mapping
f X — SLy(C) can be written by ¢(1, d) unitriangular matrices. By Tavgen’s reduction, we
conclude t(n,d) < t(1,d). O

Question 4.2.3. On the one hand, we wish to find a (sharp) upper bound for t(1,d) and on
the other, there exist natural numbers m and N such that

t(n,d) =

for all n > N. What numbers are m and N ?
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We have a full answer for Stein spaces of dimension one and a partial answer for Stein spaces
of dimension 2. The following result was proved by Vavilov, Smolensky and Sury in [25]

Theorem 4.2.4. Let ® be a reduced irreducible root system and R be a commutative ring with
stable rank sr(R) = 1. Then the elementary Chevalley group E(®, R) admits unitriangular
factorization

E(®,R)=U(®,R)U(®,R)U(P, R) U (P, R)

of length 4.

The stable rank of the ring O(X) is given by

(see (4.1)). This leads to the following

Corollary 4.2.5. Let X be a reduced Stein space of dimension dim X = 1. Then every null-
homotopic f € Sp,,(O(X))o can be written as a product of t(n,1) = 4 unitriangular matrices.

Ivarsson and Kutzschebauch proved the following for dimension 2 Stein spaces in [15]

Theorem 4.2.6. Let X be a reduced Stein space of dimension dim X = 2. Then every
f € SLy(O(X)) can be written as a product of t(1,2) = 5 unitriangular matrices.

Corollary 4.2.7. Let X be a reduced Stein space of dimension dim X = 2. Then every
[ € Spy,(O(X)) can be written as a product of t(n,2) < 5 unitriangular matrices.

4.3 Product of exponentials

The exponential of a n x n-matrix A is given by the exponential series

exp A = Zi—f

Exp,,(O(X)) denotes the subgroup of GL,(O(X)) generated by exponentials and e(n, O(X))
the minimal number such that any matrix in Exp,, (O(X)) factorizes as a product of e(n, O(X))
exponentials. Let ¢(n, O(X)) be the minimal number such that any element in the elementary
Chevalley group E(®,O(X)) C GL,(O(X)) factorizes as a product of ¢(n, O(X)) unitriangular
matrices. When no such number exists, set ¢(n, O(X)) = oo.

Observe that for a nilpotent matrix NV,

log(I,, + N) = Z%Nk

k>1

is a finite sum. Thus every unipotent matrix A (i.e. A — I, is nilpotent) can be written as
the exponential of log A. Also under conjugation an exponential remains an exponential, since
BAB™' =exp(B- A- B™!) for any regular n x n-matrix B.

An alternating product U;Us - - - Uy of unitriangular matrices is a product, where the odd
factors Uy, Us, ..., are lower unitriangular and the even Us, Uy, ... are upper unitriangular, or vice
versa.

Lemma 4.3.1. An alternating product of k unitriangular matrices UyUs - - - Uy, can be written
as a product of |£] + 1 exponentials.
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Proof. The proof is by induction on the number of factors. It is enough to prove the claim
for products of odd length, for if we consider a product of even length, we simply add one
exponential. More precisely, assume the claim is true for an odd number of factors and consider
an alternating product U;Us - - - Us,_1Us,. Then U; - - - Us,_1 can be written as a product of
L2]€2—_1j + 1 exponentials and we obtain

([ + D +1=[3]+1,

which proves the claim for alternating products of even length.
The base case is fine, since the claim is trivially true for £ = 1. For the induction step, we
consider an alternating product U U, - - - Ugy 1 and we want to write it as a product of

|2 +1=k+1
exponentials. We apply the following trick presented in [3, Lemma 2.1]. Write

U Uz - Ugp—1 U Uspy = UrUs - - - Ugg—z - U1 Uspe '(Ug_lirlUQkU%H),
N———

=:U2k,1 unitr.

and note that the product U;U; - - - ng_gﬁgk_l is alternating and of length 2k — 1. Hence it can
be written as a product of k£ exponentials by the induction hypothesis. Since Uy, conjugated by
Usk.1 is an exponential, this gives us k + 1 exponential factors. This finishes the proof. O]

An application of this lemma and the main theorem yields

Corollary 4.3.2 (Product of exponentials). Let X be a reduced Stein space of dimension d and
let f: X — Sp,,(C) be a null-homotopic, holomorphic mapping with n > 2. Further, let t(n,d)
denote the number of unitriangular factors of f. Then there exist a natural number e = e(n, d)
and holomorphic mappings Ay, ..., Ae : X — 8p,,,(C) such that

f(x) = exp(Ay () - - - exp(Ae()).
Moreover,

e(n,d) < 122 4 1.

Another application of the above lemma, together with Corollary 4.2.5 and Corollary 4.2.7,
yields

Corollary 4.3.3. Let X be a Stein space of dimension dim X € {1,2}. Then
e(n,O(X)) < 3.

Definition 4.3.4. Let esp(n, O(X)) denote the minimal number such that any matriz in
SL,(O(X))NExp,, (O(X)) factorizes as a product of esy,(n, O(X)) exponentials, with holomorphic
mappings X — sl,(C) as exponents. Similarly, es,(n, O(X)) is the minimal number such that
any matriz in Spy, (O(X)) N Exp, (O(X)) factorizes as a product of esy(n, O(X)) exponentials,
with holomorphic mappings X — sp,,,(C) as exponents.

Lemma 4.3.5. Let n be a natural number. Then

e(n,0(X)) < esp(n, O(X)).

65



Proof. Let f € GL,(O(X)) be null-homotopic. Then the composition with the determinant
detof : X — C* is also null-homotopic. Thus there exists a holomorphic function g : X — C
such that expog = det of. Observe that exp(—21,) - f € SL,(O(X)), since by Jacobi’s formula

det(exp(—%fn)) = exp(trace(—%]n)) = exp(—g).
Hence there exist e = egp,(n, O(X)) holomorphic mappings S, ..., Se : X — s[,(C) such that
exp(~L1,) - f = exp($1) - exp(SL).
This implies
f = exp(* 1) exp(S1) exp(Sa) -~ exp(Si)
= exp(%fn + 51) exp(Ss) - - - exp(Se)
which proves the claim. O

The proof of the following proposition is essentially the same as in [3, Theorem 1.1 (4)].

Proposition 4.3.6. Let X be a Stein space with dim X > 0 and let n > 2 be a natural number.
Then e(n,O(X)) > 2.

Proof. Without loss of generality, we assume that X is irreducible. Then there exist two distinct
points x1, 25 € X and a holomorphic function h € O(X) such that h(z;) = 0, h(z2) = 2mi. Set

g =exph and let
_ (91
T—(O 1).

Suppose for contradiction there is a logarithm, i.e. T'= exp M for some M € M,(O(X)). Then
the matrix S = exp(; M) € GL,(O(X)) satisfies S? = T. Let’s write

(l)

g 1 g a’?+bc bla+d)

0 1) = 7 " \ela+d) d*+bc )’
Equations b(a + d) = 1 and c¢(a + d) = 0 imply a + d # 0 and ¢ = 0. Moreover, d*> = 1 and
d € O(X) implies d = 1 or d = —1. On the other hand, a® = exp h implies a = exp(£) or
a = — exp(}—g). However, both points, —1 and 1, are in the image of exp(%) by construction.

This contradicts a +d # 0 for d = £1. Therefore e(2,0(X)) > 2.
Forn > 2, fix M € C\ {0,1} and set

(M1, 0
T, - ( ' T) .
Suppose that T}, had a logarithm, then there would exist

S, = (ﬁ; éi) € M,(O(X))

with the same block partition as T}, and such that S? = T;,. Then we have S, T,, = T,,S,,, which
implies that

Then we obtain

Ly(T — ML) =0 and (T — MI)Ls=0.

On X'\ (exph)~Y(M), T — M1, is invertible, so Ly, = L3 = 0. By the identity theorem, L, and
L3 vanish on X’. But this would imply that L2 = T', a contradiction. Hence e(n, O(X)) > 2 for
all n > 2. O

66



4.4 Continuous vs. holomorphic factorization

Since the solution to the Gromov-Vasterstein problem involves the Oka principle, it is natural to
compare the K-theoretic questions for the ring O(X) with the corresponding questions for the
ring C(X) of continuous complex-valued functions on the Stein space X. Let t(n,d,C, O) and
t(n,d, O) (see [15]) be the respective minimal numbers such that all null-homotopic holomorphic
mappings X — SL,(C) from a d-dimensional Stein space X into the special linear group
factorize as a product of t(n,d,C,O) continuous and t(n,d, Q) holomorphic unipotent matrices
(starting with a lower unitriangular one), respectively. Clearly,

t(n,d,C,0) < t(n,d,O)
and by Tavgen’s reduction theorem

t(n,d,0) <t(n—1,d,0)
for all n > 2. We have a lower bound.

Lemma 4.4.1. Let n > 2 be a natural number. Then
4 <t(n,d,C,0) <t(n,d,0) <t(2,d,0).

Proof. Consider the matrix

P = € SL,(0(X)).

This matrix cannot be written as a product of one or two unitriangular matrices, because of the
2 in the upper left corner. Moreover, it cannot be written as a product of three unitriangular
matrices. Suppose for contradiction it would be possible with the unitriangular matrices
X1, Xy, X3, where X, X3 are lower unitriangular. Then X !'is also lower unitriangular and we
get

PX;'=|x %

On the other hand,

—
>
*

X1X2 =

* %
*
* %

which is a contradiction. O

Obviously we have
t(2,d,0) =4 = t(n,d,C,0)=1t(n,d,0O)=4, Vn>2.

This is the case for instance if the dimension of the Stein space X is dim X =1 (see Corollary
4.2.5), or more generally, for a commutative ring R with 1 such that the bass stable rank is
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sr(R) = 1. However, we don’t know, whether this is also a necessary condition. Consider for
instance a unimodular row (a,b) € R? for some commutative ring R with 1. Then there are
¢,d € R such that ad — bc = 1, i.e. the matrix

<CCL Z) € SLy(R).

This leads to the following question.

Question 4.4.2. Suppose we can write each matriz in SLy(R) as a product of four unitriangular
matrices. Does this imply that the bass stable rank sr(R) = 17

In [15] they prove the following.

Theorem 4.4.3. Let X be a Stein space of dimension d = 2. Then
4<1(2,d,C,0) < t(2,d,0) <5.

Moreover, Ivarsson and Kutzschebauch show in the formentioned paper that Cohn’s famous
counterexample (see [5])
1—z2w —22
w? 14w

factorizes as a product of four continuous unitriangular matrices, but not less than five holomor-
phic unitriangular matrices. In other words, we have

£(2,2,0) = 5.

So the question remained, whether we have ¢(2,2,C,0) =4 or t(2,2,C,O) = 5. We have now
an answer.

Theorem 4.4.4. Let X be a Stein space of dimension d = 2. Then
t(2,2,C,0) =1(2,2,0) = 5.

Proof. We construct an example of a matrix in SLo(O(X)) which does not factorise as a product
of four continuous unitriangular matrices. First we study what it means to be a product of four
unitriangular matrices. Let M € SLy(O(X)) be given by

a b
M = <c d),ad—bc-l.

Assume there are four holomorphic functions g1, go, g3, g4 : X — C such that

=) (DG ) ) @

Bringing the first and the fourth matrix to the left-hand-side, we obtain

1+ g293 92 _ a b—ag,
g3 1 c—agr —gslc—ag))+d—Dbg
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In case a # 0, the first three equations read

a =1+ g2g3
1
= Z(b—
g4 a< 92)
1
g1 = 5(0—93)7

and the fourth equation follows from the other three. If moreover a # 1, any choice of
g3 : {z € Xla(x) € {0,1}} — C* gives a factorization in this part of X. The fiber of the
fibration f*®, (see [15]) over {z € X|a(z) &€ {0,1}} is C*, where

1 1 1 1
o, : C*— SLy(C), (21, 22, 23, 24) — (21 1) ( 212> (23 1) ( 214)'

When a = 0, then
1+g293=0, g2=0b, gs=c, 1= —cgs+d—bg.

Note that go and g3 are prescribed as b and ¢, respectively, and the fiber of f*®, here is C. For
a = 1, the fiber is the cross of axis.
Consider the following holomorphic mapping f : C? — SLy(C)

2w —1)(zw—2) (2w — 1)z + (2w — 2)2>

fz,w) = (( ha(z,w) ha(z, w) ) ’

where the functions in the second row are chosen such that f(z,w) has determinant 1. The
existence of such polynomials follows from Hilbert’s Nullstellensatz, or if one is looking for
holomorphic functions from a standard application of Theorem B. For this obeserve that the
functions in the first row have no common zeros.

Suppose that there were continuous gy, ..., g4 : C*> — C such that f factorizes as in (4.2).
Then g2(z,w) = —2% on {(z,w) : zw = 1} and go(z,w) = 2z on {(z,w) : zw = 2}. Let 1,72
denote the roots of (z — 1)(x — 2) = 1, and choose a continuous curve v : [0,1] — C\ {n1, 2}
such that v(0) = 1 and (2). Then g, induces a family of continuous self-maps of C*

F:[0,1] x C* — C*, (t,0) — g5(0, %v(t))

connecting between F(0,0) = —6% and F(1,60) = 6. But since these two self maps of C* have
different degrees, we find a contradiction. m

Remark 4.4.5. The example given in the proof above can be used to show that
t(2,d,0) >5

for all Stein spaces X with d = dim X > 2. Hence we have a positive answer of Question 4.4.2
in the special case R = O(X).

4.5 Fibers with density property

In the early 90s, Andersén and Lempert [1] established remarkable properties of the automorphism
group Aut(C"),n > 2. While Aut(C) is fairly easy to calculate, it is already hopeless for Aut(C?),

69



let alone for manifolds. They prove that the subgroup of Aut(C) generated by so-called over-
shears is dense. A mapping C" — C™ is an overshear, if it is of the form (up to permutations of
the coordinates z1, ..., z,)

(2100 20) = (21 oo 2ty F (21, o0 2n1) B2, o Z01)20),

with f, h holomorphic functions on C*~!, h # 0. They also prove, that the subgroup generated
by overshears is not all of Aut(C"). Since then, Andersén-Lempert theory has evolved and this
is where the density property comes into play. A property that gives us an insight into the size
of the automorphism group. Kaliman and Kutzschebauch [19] found a wonderful criteria for the
density property of complex manifolds. Actually, it can be formulated in a even more general
setting. We follow the article [9] which is dedicated to L&zl6 Lempert in honour of his 70th
birthday:.

Definition 4.5.1 (Density property). A complex manifold X has the density property if in the
compact-open topology the Lie algebra Lieny(X) generated by completely integrable holomorphic
vector fields on X is dense in the Lie algebra VF 5 (X) of all holomorphic vector fields on X.

Definition 4.5.2. A pair (01,02) of complete holomorphic vector fields on a Stein manifold X
s a compatible pair if the following conditions hold:

(i) the closure of the linear span of the product of the kernels ker 0 -ker 0y contains a nontrivial
ideal I C O(X), and

(i) there is a function h € O(X) with h € ker 6y and 6,(h) € ker 6, \ {0}.

Theorem 4.5.3. Let X be a Stein manifold on which the group of holomorphic automorphisms
Aut(X) acts transitively. If there are compatible pairs (61 x,624), k =1,...,m, such that there is
a point p € X where the vectors 05 ;(p) form a generating set for T, X, then X has the density

property.

According to the Spanning theorem, the automorphism group acts transitively on smooth
generic fibers. Moreover, every such fiber ny is of the form C™ x @G, since

0

aZl’z‘j

P =0, 1<i<j<n.

We know the existence of a finite collection of complete holomorphic vector fields on .7-"yK which
span the tangent bundle T]:yK . Then it is rather trivial to find compatible pairs.

Corollary 4.5.4. Fvery smooth generic fiber FyK, K > 2, has the density property.

Recall the notation PX (see Lemma 3.2.2):

b JPF K =2k 11,
PK if K = 2k.

S

In the proof of the Spanning theorem, we actually prove that the automorphism group acts
transitively on

n(n+1)
2

G = {(z,W) e C" x (C YE-L PR, W) =b),be C*\ {0,¢e,}.

We exclude b = e,, such that we can omit a case distinction between K odd and even.
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Theorem 4.5.5. Let K > 2 and n > 2. Then the Stein manifold GI, b € C*\ {0,e,}, has the
density property.

Proof. Let’s start with K > 2. According to Lemma 3.2.2, there is a meromorphic mapping 1
which maps G x C™ biholomorphic onto some smooth generic fiber ]—"yK“ for some natural
number m and some y € C* \ {0}. Since this fiber is smooth and generic, there exists a point
ZK+1 S JT'.yKJrl with

Qf=z1an - 21an 70, QFQY#0,2<k<K—1.

Let (20, Wp) denote the corresponding copy in G£. From the Spanning theoremwe know the
existence of a finite collection Ag.1 C Qg1 which spans the tangent bundle T]-"yKJrl which
is actually shown on the level of G that is, we construct a finite collection A of complete
holomorphic vector fields on G which spans TG/*. By construction of this set, each vector field in
A was introduced for some 2 < k < K and thus is tangential to every G, b € C"\{0},k < L < K.
Let A;, C A denote the subset of those vector fields which are introduced for £ with & < L. In
particular every vector field V € A, L < K, has Zi € C™5™ in its kernel, i.e. V(zk,;) = 0 for
all 1 <i < j <n. Consider the complete vector field 9% corresponding to the (Type 3)-tupel

Tr = (ZK,ijszJl)zK,QQ, N zKﬂm)’ i # j.
Then
pE-1
1
35(,2;“]) = det :PlK—l...pf—l 0,
PKfl

n

since PE~1... PE=1(20, W) # 0. Moreover, PK=1... PK-1 ¢ kerd® and each variable
25, 1 <1I< K1 <7r <s<nisin the kernel of 9¥. This implies

ker V - ker 0K = O(G),
hence (V,0X) is a compatible pair for each V' € Ag_;. Choose the n vector fields 95 corre-
sponding to the (Type 1)-tupels
T = (ZK—1,iis ZK 115 -, ZKm), L 1<

from Lemma 3.7.2 which span the new expressed directions in the point (29, Wy). Hence
Tiz0w)Gi* is spanned by Ax_1 U{9%X,i = 1,...,n}. It remains to find compatible pairs for
the fields 9f. Consider the complete vector fields 9}, L < K — 1, corresponding to the (Type
3)-tupels

Y = (ZLjj> ZLAm» ZL2ms s ZLam)s  J, M F . (4.3)

Such vector fields exist in the case where n > 2 and K > 2. Note that (9% ,9]) is a compatible
pair. Therefore gf has the density property by Theorem 4.5.3.
In a next step, let K =2 and choose a point (z, W) in the manifold

n(n+1)
2

Gl={(z,W)eC"xC cen +WZ =0}

satisfying z1 - - - z, # 0. Such a point exists by Lemma 3.5.4. Then the tangent space T(, y)G7 is
spanned by complete vector fields 9% corresponding to the tupels

T = (21,ins 22,41, 22,525 > 22,jn.)5 1<i<n,j#i,
T = (22,7;]'722,117"'a22,nn)a ? 7&]’
T = (21,1m o5 Z1nmy 22,1'1')7 I<i<n.
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of (Type 8), (Type 3) and (Type 5), respectively. For n > 2 we have

n(n+1)
n+1< < 2 )
n+1
Therefore, given one of these vector fields 9%, we find distinct pairs of indices (ig, o), -+, (in, jn)

such that (85, 0?) forms a compatible pair with the vector field 85 corresponding to the (Type
3)-tupel ¥ = (22.i0jos -+ 22.injn ). Hence G2 has the density property by Theorem 4.5.3. O

Corollary 4.5.6. Let n =2 and K > 4. Then the Stein manifold G, b € C*>\ {0, e,} has the
density property.

Proof. We can argue almost similarly as in the previous case. The only difference is that we
need L < K — 1 instead of L < K — 1 for the choice of the fields in (4.3). O

n(n+1) 3
(n n 1) (3) =

which means that we are somehow ‘running out of space’ in this case. It turns out, that the
arguments above no longer apply so easily. In particular, it is significantly more difficult to find
a non-trivial ideal that satisfies property (i) in the definition of a compatible pair. This leads to
the following

For n = 2 we have

Question 4.5.7. Let n =2 and b € C*>\ {0,e2}. Do the Stein manifolds G} and G} have the
density property?
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A APPENDIX

A.1 Calculation and properties of the vector fields o

In this section we calculate some concrete vector fields as a supplement and for a better
understanding of the proof of the Spanning theorem. Consider the tupel z = (zy, ..., z,). By
definition, the vector field ¥ is given by

0 il
9% = dot (gPK BﬁPK) .

o) Tn
We are primarily interested in whether there are some complete fields whose flows don’t remain
in a given subvariety. At first glance this may sound simple. However, the definition with the
determinant suggests that the coefficients are not easy to understand in general, since they are
polynomials in several variables. In addition, the subvariety might be given by some difficult
equations. and some useful properties. Therefore, it makes sense to calculate some derivatives

8(2?- PX in advance. In order to make life easier, we start with K = 2.

A.1.1 Calculation of 9?
We are interested in the tupels of (Type 8)

Tij = (Zimis 22515 s Z2gn), 1< 4,5 <nji# 7. (A1)

Compute

0 0 Zen, €
pP? = (2o I,) ( én ) = (2, I, (0) = Zse;

azl,m‘ 52’17m'

and for 1 <r <mn,

0 0 Ze ~ Ze ~
P2 — 7 [n 1En — ] 1En _ ETZ .
Oz r ° 322,jr( i )< En ) (Eir 0) ( €n > e
1
= 1 —|—5 (Zl,m“ej +z17nje7~) .
Jar

Hence the corresponding vector fields 8;3”_ are of the form

8/8z1,m~ 8/8227j1 e (9/87:2,]7- s 8/8220'”
29,15 21,nj 0 0
07 = det
"I 22.ji Z1,n1 ce 21,nj s Z1,nn
22.mi 0 0 21,nj
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By construction, they satisfy
Or, , (210m) = it (21,09)",

for 1 <i,5,k <n.

A.1.2 Calculation of 9?

Let 1 <i,5 <n and compute the following derivatives.

o 5 0 L 0\ (Zen\ _ L, 0 (e
aZLmPf - 821’7” (In Zg) <Z2 In) ( €n ) n (In Z3) (ZQ In) (0)

= (I, + Z3Z5)e;,

0 3 0 I, O Zién - 0 0 AT
3z2,z‘j Pf B 322,ij (In ZS) (Z2 In) ( €n ) B (In Zg) (E% O) < En >

= 1
frd Z3Ei'Zlen = - (Zl,niZ?)e' + Zl,n'Z«?)ei)
’ 1+ 6, j J
and
P Oy I B < pié) = (0 Ey) ( P:;) = B, P
1+ 0ij (Pryiei + Pryser)

At first, we are interested in the tupels
Ty = (2260, 23,015 s 2357m)5 L < 4,07 <nyi £ 07, (A.2)

of (Type 2). It is of the form

e _9 ... _0_
93 = det | 972 9z Oz %n,
T; 2 2
* Ei*lps s Ei*nPs
2
P,nJr,L*
- ) i 0
_ 2 2 2
=det | By o0 Pl o By, B + R
22,ii —1 23,i*k
2
0 - 0
= (P2 )"—+ )Y «a
n-—+i* k
azz,n‘ 1 823,i*k

for some suitable holomorphic functions asq, ..., a,.
The vector field 92 corresponding to the (Type 5)-tupel

T = (Zl,lna ceey Z1,mm ZS,nn) (A3)
is given by
o) . 0
83 — det azl,ln 8Zl,nn 6Z3,_7}n ,
* (In + Z3Z2)€1 e (In + Z3Z2)6n Pgn(ZQ)en
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having the notation ®, = (P, ..., PZ,) in mind.
The vector fields 8; corresponding to the (Type 2)-tupels

XTi = (ZQ,iiazS,lna"'azB,nn)a 1= 1,...,7L— 17 (A4)
are given by
_9_ ) e 9 9
83 = det ( 022,ii 0z3,1n 023,n—1,n 323,nn)
T; :
Zl,ianﬂei P22nel + P73+1€n e P22n67l—1 + P22n—1€n P22n6n
Lemma A.1.1. The vector fields 8;, corresponding to the tupels in (A.4), are given by 822 —

on the set of points with Z,e, = 0.

n(n+1)

Proof. Let Zs € (C™2 )3 be a point with Zye, = 0. Then the recursive formula (3.1) implies

P3:€n+ZZZ1€n:en-
0

Applying this to the formula of the vector fields yields

_9 _0 . 9 9
33_ L o— det( 022 4 023,1n 023,n—1,n 323,nn>
( “’”)Z3 21.inZ3e; Pier + Pgﬂen o Ple, 1+ P; e, Pie,
e _9 ... ) )
p— det (822,ii a'33,177, 323,7171,77‘ 823,711’1,)
€1 e €n—1 €n
= det(/
( n)azuz’
0
azz,n‘
O]
The vector fields 831, corresponding to the (Type 3)-tupels
Y; = (23712'72371”,...,237””), 9, = 1,...,71,— 1, (A5)
are given by
_90_ _0 . 9 9
83' = det ( 02343 023,1n 023n—1,n 323,nn> )
v P73+i€i P22n61 + Pg—l—le" e P22nen—1 + P22n—16n P22nen
Lemma A.1.2. The vector fields 8;_, corresponding to the tupels in (A.5), are given by azz -

on the set of points with Ze, = 0.

Proof. The proof is analogous to that in the previous lemma. Recall that Pf(Zg) =e, for a
n(n+1)

point 7y € (C™z )3 with Zye, = 0. In particular, P?,, =0fori=1,..,n—1. O

The vector field 92 corresponding to the (Type 8)-tupel

T = (Zl,jm 22,01y e ZQ,m)ai % Js (A-6)
is given by
_o ) . )
9% = det 021 jn 022,i1 022,in )
‘ (I, + ZsZy)ej ZsEaZie, --- ZsEpnZie,

75



Lemma A.1.3. The vector field 32, corresponding to the tupel in (A.6), satisfies
02 (21.4n) = (21.0n)" det(Z3).
Proof. Recall that the matrix (cf. section ...)
Fi(Zvey) := (EpZien, ..., EnZyey)
is given by
Zl,in

-Fi(Zlen): Z11n """ Rlin """ Rlnn

Z1,in
Hence
det(Fl(Zlen)) = (ZLm)n.

Now, observe that

O (21.4n) = det(ZsEnZyey, ..., ZsEiy Zie,)
= det(Zs) det(Eij Zvey, ..., EmZien)
= det(Z3) det(F;(Z1e,))
= (21,n)" det(Z3)

) de
) de

and this completes the proof. O

The vector field 92 corresponding to the (Type 7)-tupel
T = (ZLivns -+os 2L 22505 -+ P2,k F3iii ) (A7)

where {i1, ..., tn 1 JU{J1, o, et = {1, .,n}, i € {iv, ooy in_t} 7 € {J1, -, Ji}, 1S given by

—|— Z3Z2)ei1 s (In + Z322>€in_k ZSEjj1 Zlen e ZgEjijlen P2+i€i

n

_0 . ) _0 ... _9 9
83 = det 0z1,iyn 321,1'”7,“71 ?22,]']'1 ?ZQ,jjk 023,i;
. .
(Ln

Lemma A.1.4. Let 92 be the vector field corresponding to the tupel in (A.7). Assume that
21 jn 7 0 and

span{Zse;, , ..., Zse;, } = Im(Z3) (%)

1s satisfied. Then
P (z3) = £(21,50)" det((Z3)iy,i ) # 0

where (Z3);, ..., denotes the k x k matriz obtained by removing columns and rows iy, ..., %,
from Zs.

Proof. We divide the proof into two parts. In the first part, we show that 93(23,) # 0 under
the given assumptions and in the second part, we explicitly compute 93(z3,;). For simplicity
reasons, let’s substitute A := Z3, B := Z, and v := Zje,.

In a first step, we prove

span{AE;; v, ..., AE;; v} = Im(A)
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if v; # 0. By assumption, j € {j1,...,jx} and without loss of generality, let’s assume j = jp.
This gives us AE;;,v = AEj;v = v;Ae; and moreover, v;Ae; is non-zero, also by assumption.
To prove the claim, we want to add suitable multiples of vector v;Ae; to the other vectors

AEjjl’U, ceey AE]

which is a span-preserving operation. We get

je—1U
span{AE;; v, ..., AE;;, v} = span{v; Ae;, +vj, Ae;, ..., v;Aej, | +vj,_ Aej,vjAe;}
= span{v;Aej,, ...,v;Ae;,_,,vjAe;},
where the second equation is obtained by adding —Zi_lvjAej, l=1,...,k — 1, to the [-th vector.
J

Now, the claim follows by assumption v; # 0 and by ().
In a second step, consider the symplectic matrix

<In + AB A)
B I,
By assumption (x) and the complementary bases theorem, the span
V :=span{(l, + AB)e;,, ..., I, + AB)e;, ,,Aej,, ..., Aej, }
describes an n-dimensional vector space. An application of the first step implies
V =span{(I, + AB)e,,, ..., (I, + AB)e;, ., AE;;v, ..., AE;; v},

which shows that 93(z3,;) # 0.
In the next step we compute 92(z3;;) explicitly. From the first step we get

82(2:371'1') = det(([n + AB)eil, ey (In + AB)ein—IN AEjjlva ceey AE]JkU)
= det((ln + AB)@Z‘“ ey (]n + AB)ein_k, UjAejl, ey UjAejk)
= 'U;? det(([n -+ AB)eil, ceey ([n + AB)Eﬂin_k, Aejl, ceey Aejk),

since adding multiples of columns to other columns has no effect on the determinant. By
assumption (x), we have

ABe; € span{Aej,, ..., Ae; }, L =1, ... ik

This means that we may add suitable linear combinations of the last k columns to the first
n — k columns to get

det((I, + AB)ei,, ..., (I, + AB)e;, ., Aejy, ..., Ae;, ) = det(esy, ..., e, Aejy, ..., Aej, ).
Recall that the indices iy, ...,%,_, and ji, ..., Jx are complementary, i.e.
{1, .0} = {it, ooy i JU{J1, -y i }-
Therefore we obtain
det(ei,, ..., €., Aejy, ..., Aej) = det((A)iy, i)
Putting this together yields
O3 (z3,51) = vl det((A)iy,..oin_y) = (2150)" det((Zs)iy,in_,)

and this completes the proof. n
The vector field 92 corresponding to the tupel
T = (Zl,ln7 <oey Z1mms Z3,ii>) 1 S { S n, (A8)
is of the form
_0 ce 9 9
det ( 021,1n 021 nn 023,44 >
(In + 2322)61 cee (In + ZgZQ)(‘}n Pgﬂ»ei

and it satisfies 82(23710 = (—1)n+1(21’jn>k det<In + ZgZQ).
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A.1.3 Calculation of 0¥ for K >4

We want to compute the vector field

where PX is given by the recursive formula (3.2)

PX(Zy) = PE"2(Zx_5) + Zx PX"(Zk 1)
PYZy) = Zie,, P°(Zg)=e,.

with the convention Zx = (ZK_l, Zk) = <ZK_2, Zr 1,2K) € ((Cn(n;l))K. Compute the deriva-
tives
0 = 0 ~ 0 ~
pPK = pk-=2 Z PR
02K ij aZK,ij( )+8ZK72'J< * )
=0
0 ~ J 5
_ Zi)PE 4 7 pr-t
(aZK i K) * (aZK i )
=0
_ EijPK_l,
8 DK PK_2+ZK< PK—I)
D2k 14 02K 1, ZK—1,ij
=0 =E~'7;]'15K_2
= ZxE;;PK2
and
0 DK _ pK—2+ZK( PK—l)
82’[{_2@']’ azK—Zij 821{—2@]'
:ENZ‘J‘PK_S Zj(,léiij_S

= (I + Zx Zx_1) By PE3,

If we compare the derivatives of the previous subsection with the ones here, it is noticeable that
they are pretty similar. It is thus no surprise that the tupels of interest look familiar.
The vector field 951 corresponding to the (Type 2)-tupel

Tr = (ZK—Q,iia BK—1,i*15 «++» ZK—l,i*n) (A_g)

is of the form

a n

+D
=1

(P

o ——
32K-2,ii aZK—l,i*l

for some suitable holomorphic functions asq, ..., a,.
The vector field 9X corresponding to the (Type 5)-tupel

r = (ZK—Q,lny sy RK—2nn5 ZK,nn) (A]-O)
is given by
9 o 9 _90
aK — det aZK—2,1n~ - azK—Q,nn~ - - 8ZK~,nn .
‘ (]n + ZKZK—I)-Eln-PKi3 e (]n + ZKZK—I)ETmP)Ki3 EnnPKil
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The vector fields 85 corresponding to the (Type 2)-tupels

T = (2K —1,iis 2K ins - ZKm), 4= 1,..,n—1, (A.11)
are given by
X 3 9 BL 3 )
_ 2K —1,i4 ZK,1n ZK,nn
a.ri = det (leQKZ;(lez Eln%}{—l . Enn%K—1> :

Lemma A.1.5. The vector fields 8£,correspondmg to the tupel in (A.11), are of the form

82131 — on the set of points with PX=2 =0 and PX~! =¢,.

Proof. The proof is similiar to the one of Lemma A.1.1. O

The vector fields 8;5 corresponding to the (Type 3)-tupels

Yi = (ZK,ii,ZK,m, ---,ZK,nn), 1=1,...,n—1, (A.12)
are given by
K 9 8,( d Ka ) 0
2K, i1 ZK,1n ZK,nn
ayi = det <P~iK_1€z' E’~1n P K1 . E~nn p~K—1) :

Again we have a similar result.

Lemma A.1.6. The vector fields 855, corresponding to the tupels in (A.12), are of the form

52— on the set of points with PE-2—( gnd PX-1 =e¢,.
2K, ii

The vector field 9% corresponding to the (Type 2)-tupel

T = (ZK—2,is ZK—1,j1, ---s ZK—1,jn): & 7 J, (A.13)
is given by
o f) 0
0y = det (EK_?’(I;Z(_ZQ;ZK—Q& ZKaé};llg;{_z e Z;g;;g;{_z)

The following result can be shown similar as Lemma A.1.3.

Lemma A.1.7. The vector field 0%, corresponding to the tupel in (A.13), satisfies
O (zx—24i) = (P} 7%)" det(Z).
The vector field 32 corresponding to the (Type 7)-tupel
T = (ZR0yi%s ooy K20y _i*s ZK—1 413 vy ZK—1jjns 2K i) (A.14)

where {i1, ..., i1 JU{J1, ooy et = {1, o,n}, 4, 0% € {iy, oosin i}, J € {J1, -, Jr ), 1S given by

el ol ol
85 = det o aZK—Q,ili*~ B o 8{K71,j’zm o ~ Bz’{(ﬂ-i .
s (In + ZKZK_I)Ei”-*PK_S s ZKEjijK_2 s EZ’Z’PK_I

The following lemma is the analog of Lemma A.1.4.
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Lemma A.1.8. Let 0K be the vector field corresponding to the tupel in (A.14). Assume that
PjK_2 #0, PX72 40 and

span{Zkej, , ..., Zre;, } = Im(Zg)
1s satisfied. Then
OX (zx.) = £(PE2)H(PF2)F det((Zk )iynin_)-

Proof. For simplicity reasons, substitute A := Zx, B := Zg_1,u := PX-3 and v := PE-2. As
in Lemma A.1.4, we can conclude that

85(2[(’2‘2') == det(([n + AB)Em-*u, ceey (In + AB)Ezn,kz*uy AEjjlv, ey AEjjk)
=+ det((]n + AB)EZ”*U, PN (In + AB)Ein_ki*u, UjA@jl, cees UjAejk)
= IIZ(UJ)k det(Em*u + ABEN}”-*U, vy Einiki*u + ABEN’Z‘THM'*U, Aejl, ceey Aejk)

= :l:(Uj)k det(Em-*u, ceey Einikl-*u, Aejl, ceey Aejk).

Since we assume i* € {iy,...,7, x} and u; # 0, we can add a suitable multiple of column
U€ix = Fispeu to the remaining columns F; u,r = 1,...,n — k, i, # i*, to conclude that

det(Eili*u, ey Ein_ki*u, Aejl, ey A@jk) = det(ui*eil, vy Ui €4 Aejl, ey A@jk)
= (ug)""det(eiy, ..., e, Aej,, ..., Aej,)
= ()" det((A)iy,in):

In summary, this yields
O (2icis) = £ ()" " (v;)" det((A)iy i)
and this completes the proof. O

The vector field 95 corresponding to the (Type 5)-tupel

T = (ZK—2n1;s s ZK—2nm, ZKii); L <1<, (A.15)
is given by
(o) . o) 2]
9K = det Oz —21n _ 02k —2.nn_ Oz i
’ (In + ZKZKfl)EHnIDK_3 e ([n + ZKZKfl)E’nnPK_3 EiiPK_l

and satisfies

a:ﬁ((ZKn) =det(l, + ZxZx_1) det(Fn(ﬁ’K*Z”))
= (PE=3Y" det(I,, + Zx Zxc1).
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