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Abstract

This thesis deals with directional distributions, hence distributions defined over Rp. We
will consider in details the case of circular distributions, i.e. directional distributions
in R2. We will focus on the study of an extension of the von Mises distribution (vM),
namely the generalized von Mises distribution of order two (GvM2, or simply GvM). This
distribution allows higher flexibility in terms of asymmetry and bimodality than the vM
distribution. Two Bayesian tests are computed on the GvM. The first test concerns the
symmetry of the GvM. Inference on symmetry is made via Bayes factors. A real circular
data case is considered. The second test concerns the bimodality of the GvM. The
problem is reduced to the study of the real roots of a quartic whose coefficients depend on
the parameters of the model. A detailed analysis of the quartic is given and a region W of
parameters that are associated to bimodality is obtained. Then, inference on bimodality
is made via Bayes factors and via highest posterior density (HPD) credible sets. We
use Markov Chain Monte Carlo methods (MCMC) to compute posterior probabilities
of bimodality. Conclusions confirm that, when data are in accordance with the null
hypotheses, Bayes factors are typically large. On the other hand, the HPD credible set
is entirely contained inside W and bimodality is confirmed.

Moreover, in this thesis we consider directional distributions over the unit sphere
Sp−1 of Rp. These are called spherical distributions and here we manly focus on the
generalized von Mises-Fisher (GvMF) distribution. This is an extension of the von Mises-
Fisher distribution (vMF). We will give two methods to generate random variables from
the GvMF using a conditional acceptance-rejection method and the Metropolis Hastings
algorithm.
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Chapter 1

Introduction

In various scientific fields measurements can take the form of directions: the direction
flight of a bird and the direction of earth’s magnetic pole are two examples. These
directions can be in the plane, namely in two dimensions, as in the first example, or
they can be in the space, namely in three dimensions, as in the second example. These
measurements are called directional data and they are of main interest in this thesis.
They appear in various scientific fields: in the analysis of protein structure, cf. e.g. Kim
et al. (2016), in machine learning, cf. e.g. Navarro et al. (2017), in ecology, cf. e.g. S Rao
and Ulric (2006), in ornithology, cf. e.g. Schmidt-Koenig (1963), in oceanography, cf.
e.g. Lin and Dong (2019), in meteorology, c.f. e.g. Zhang et al. (2018), etc. A two-
dimensional direction is a point in R2 without magnitude, e.g. a unit vector. It can
also be represented as a point on the circumference of the unit circle or as an angle,
measured for example in radians, after fixing the null direction and the sense of rotation
(clockwise or counter-clockwise). Because of this circular representation, observations
of two-dimensional directional data are distinctively called circular data. During the
last two or three decades, there has been a rise of interest for statistical methods for
circular (or in general directional) data. Recent applications can be found e.g. in Ley
and Verdebout (2018). Some monographs on this topic are Mardia and Jupp (2000),
Jammalamadaka and SenGupta (2001), Ley and Verdebout (2017) and also Pewsey
et al. (2013). A basic introduction is given in Gatto and Jammalamadaka (2014) and
a recent review can be found in Pewsey and García-Portugués (2021). We refer to
Fisher (1995) for the presentation of circular data from various scientific fields. The
most popular circular distribution is the von Mises (vM), sometimes also called circular
normal distribution. This distribution is circularly symmetric around its unique mode.
Until a couple decades ago, very few asymmetric circular distributions were available,
two of these can be found in Sections 15.6 and 15.7 of Batschelet (1981). In recent
years, various asymmetric and multimodal circular distributions have been introduced,
for example: Umbach and Jammalamadaka (2009), Kato and Jones (2015), Abe et al.
(2013), Gatto and Jammalamadaka (2003) and the generalized von Mises (GvM) of
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Gatto and Jammalamadaka (2007), which is of main interest in this thesis. The GvM
distribution can be symmetric or asymmetric, unimodal or bimodal. It is of scientific
interest to study whenever circular data are symmetric, or they are distributed around
two (or more) modes, rather and an unique one. In this thesis we test these cases via
some inferential approaches. The problem of testing the symmetry and the bimodality
of the GvM is considered in a Bayesian framework. Some other recent applications of
the GvM distributions are: Zhang et al. (2018), in meteorology, Lin and Dong (2019), in
oceanography, Astfalck et al. (2018), in offshore engineering, Christmas (2014), in signal
processing, and Gatto (2022) in time series analysis.

Moreover, in this thesis we study spherical distributions. These are directional dis-
tributions defined on the unit sphere Sp−1 of Rp, p ≥ 3. We focus in particular on
simulation techniques on the unit sphere. This topic has already been widely discussed
in literature. For example, Kurz and Hanebeck (2015) introduce a sampling algorithm
for the vMF distribution based on the inversion method and the results of Wood (1994)
and Ulrich (1984). In Jammalamadaka and Terdik (2022) simulation and visualization
methods in R3 for the generalized Fisher-Bingham distributions are discussed. In Kent
et al. (2018) an acceptance rejection algorithm to simulate from the Bingham distri-
bution is introduced. The angular central Gaussian distribution is chosen as envelope.
This method is then generalized and applied to a wider class of directional distributions.
In Hoff (2009) an acceptance rejection algorithm and the Gibbs sampling are proposed
to generate from the matrix vMF distribution. In this thesis we report and compare two
direct approaches to simulate from the GvMF distribution.

This thesis is organized as follows. In Chapter 2 circular distributions are introduced.
The definitions of the vM and GvM distributions are given and some properties and
optimality results are reported. In Chapter 3 we introduce spherical distributions. In
particular, we focus on the vMF and the GvMF distributions on the unit sphere of
Rp. Some optimality results are reported. Moreover, some simulations results from the
GvMF distribution are given. Chapter 4 deals with Bayesian tests of symmetry for GvM.
Chapter 5 focuses on the study of the bimodality of the GvM distribution. Here the
problem is reduced to the analysis of a quartic. A region W of bimodality is detected and
plotted. The inference on bimodality of the GvM distribution is computed in Chapter
6. Chapter 7 reports two different approaches to simulate from the GvMF distribution.
Some final remarks are given in Chapter 8. Finally, some supplementary information
is reported in two appendices. Appendix A reports the proof of the characterization
of symmetry for the GvM distribution. Appendix B reports the calculations of the
Lagrange method used to compute the maximum of a function on the sphere.

7



Chapter 2

General set ups for circular
distributions

The main interest of this thesis are circular distributions and random variables. Circular
random variables, distribution functions (d.f.) and density functions are introduced.
We mention some basic circular distributions. A special mention is given to the vM
and the GvM. The second part of this chapter introduces some main properties of the
GvM distribution. Here, concepts like the Kullback-Leibler information and entropy are
adapted to the circular case and some optimality results are given.

As mentioned, a circular random variable can be represented as a random angle
θ ∈ [0, 2π), or as the corresponding point P on the unit circle of centre O . Here we
consider the representation with angle θ, that had to be intended as the angle in radiant
that the unit vector OP forms with the x-axis in the positive direction and in the anti
clock sense (see Figure 2.1).

O

P

OP

θ

Figure 2.1: Representation of a circular random variable θ.

Let θ = (θ1, . . . , θn) be a sample of size n. Each angle θi corresponds to a point Pi on
the unit circle of centre O, for i = 1, . . . , n. The mean direction µ of θ is defined as the
direction of the resultant of the unit vectors OP1, . . . ,OPn. In Cartesian coordinates,
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the point Pi, for i = 1, . . . , n are indicated by (cos θi, sin θi), for i = 1, . . . , n. Their
centre of gravity is given by (C̄, S̄) where

C̄ =
1

n

n∑
i=1

cos θi, and S̄ =
1

n

n∑
i=1

sin θi.

The module of the centre of gravity R̄ =
(
C̄2 + S̄2

)1/2 is called the mean resultant length.
The mean direction µ is the solution of the two equations C̄ = R̄ cosµ and S̄ = R̄ sinµ.
Some optimality properties of the mean direction can be found in (Mardia, 1972, p.20).

The circular d.f. F of a random angle θ is defined as

F (x) = P [0 < θ ≤ x] , if x ∈ [0, 2π). (2.1)

To reflect the periodicity of a circular distribution, i.e. that the probability of obtaining a
point on the unit circle within any arc of length 2π is equal to 1, we extend the definition
of the d.f. given in (2.1) to the whole real line as follows: F (x+2π)−F (x) = 1 if x ∈ R.
It follows that

1. F (0) = 0, and F (2π) = 1,

2. P [x1 < θ ≤ x2] = F (x2)− F (x1) =
∫ x2

x1
dF (x), for x1 ≤ x2 ≤ x1 + 2π.

In particular the circular d.f. F is right continuous. In contrast with the d.f. on the real
line, it holds that F (θ) → ±∞, as θ → ±∞. When F is absolutely continuous, there
exists a circular density f such that

F (x2)− F (x1) =

∫ x2

x1

f(x)dx, −∞ < x1 ≤ x2 < +∞.

A function f is a density of an absolutely continuous circular distribution if and only if
the following facts hold:

1. f(θ) ≥ 0 almost everywhere (a.e.), −∞ < θ < +∞;

2. f(θ + 2π) = f(θ) a.e., −∞ < θ < +∞, i.e. f is periodic of period 2π;

3.
∫ 2π

0
f(θ)dθ = 1.

Most of the models on the circle are obtained from transformations of standard
univariate or bivariate models, or are circular analogues of important univariate charac-
terization on the line. These models can be discrete or continuous. Here we introduce
some of the most important continuous circular models. For discrete models we refer to
(Mardia, 1972, p. 48 - 50).

We start by introducing the wrapped distributions on the circle. These are obtained
by “wrapping” distributions on the line around the circumference of unit radius. Let

9



X be a random variable on the line with d.f. F . The random variable Xw of the
corresponding wrapped distribution is given by

Xw = X mod 2π.

The d.f. of Xw is given by

Fw(θ) =
+∞∑

k=−∞

{F (θ + 2πk)− F (2πk)} , θ ∈ [0, 2π)

Some important properties can be found in (Mardia and Jupp, 2000, p.48). We men-
tion here two cases. When X ∼ N (µ, σ2), the corresponding wrapped distribution is
called the wrapped normal distribution (Mardia and Jupp, 2000, p.49). It is denoted by
WN(µ, ρ) and it has density function

ϕw(θ;µ, ρ) =
1

σ
√
2π

+∞∑
k=−∞

exp

{
−1

2

(θ − µ+ 2πk)2

σ2

}
, θ ∈ [0, 2π), where ρ = e−

σ2

2 .

When X follows the Cauchy distribution with density

f(x;µ, a) =
1

π

a

a2 + (x− µ)2
, −∞ < µ < +∞, a > 0,

we obtain the wrapped Cauchy distribution (Mardia and Jupp, 2000, p. 51). This is
denoted by WC(µ, ρ) and it has density

cw(θ;µ, ρ) =
+∞∑

k=−∞

f(θ + 2πk;µ, a) =
1

2π

(
1 + 2

+∞∑
p=1

ρp cos p(θ − µ)

)
, where ρ = e−a.

Another kind of circular distributions are the offset distributions. Here we introduce
the offset normal distribution. Let (X, Y ) be a pair of random variables following the
the bivariate normal distribution with mean vector µ = (µ1, µ2) and covariance matrix
Σ, with density ϕ(x, y;µ,Σ). Moreover, let ρ be the correlations between X and Y and
σ2
1, σ2

2 their respective variances. Let Φ(x) be the d.f. of N (0, 1) and ϕ(x) its density.
The offset normal distribution of the circular random variable θ has density (Mardia,
1972, p. 52)

f(θ;µ1, µ2, σ1, σ2, ρ) =
1

C(θ)
{ϕ(µ1, µ2;0,Σ) + aD(θ)Φ(D(θ))}

· ϕ
[
a
{
C(θ)−

1
2

}
(µ1 sin θ − µ2 cos θ)

]
,

where a =
[
σ1σ2 (1− ρ2)

1/2
]−1

, C(θ) = a2
(
σ2
2 cos

2 θ − ρσ1σ2 sin 2θ + σ2
1 sin

2 θ
)
, and

D(θ) = a2C(θ)−1/2 [µ1σ2 (σ2 cos θ − ρσ1 sin θ) + µ2σ1 (σ1 sin θ − ρσ2 cos θ)] .
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Figure 2.2: Some vM densities: vM(π, 10) with continuous line, vM(π, 5) with dashed
line and vM(π, 2) with dotted line.

2.1 The vM and the GvM distribution

In this thesis we are interested in some particular circular distributions that are not
obtained by transformation of distributions on the real line. We start with the von
Mises (vM) distribution (Mardia, 1972, p.57) The density of the vM distribution is
given by

f(θ|µ, κ) = 1

2πI0(κ)
exp {κ cos (θ − µ)} , ∀θ ∈ [0, 2π), (2.2)

where µ ∈ [0, 2π) is the mean direction, and κ > 0 is the concentration parameter.
The parameter κ indicates the concentration around the mean direction µ. Some
vM densities are displayed in Figure 2.2: we can notice how the plot of vM den-
sity recalls the “bell-shaped” form of the normal density. This is why the vM dis-
tribution is also sometimes called circular normal. The normalizing constant Ir(z) =

(2π)−1
∫ 2π

0
cos rθ exp{z cos θ}dθ, z ∈ C, is the modified Bessel function I of integer order

r (Abramowitz, 1974, p. 376). We denote any circular random variable with this dis-
tribution by vM(µ, κ). The generalized von Mises distribution of order k (indicated by
GvMk) is considered an extension of the vM distribution, and it was firstly introduced
by Maksimov (1967). The density of the GvMk is given by

f(θ|µ1, . . . , µk, κ1, . . . , κk)

=
1

2πG
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

· exp

{
k∑

j=1

κj cos j (θ − µj)

}
,

(2.3)
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Figure 2.3: Some GvM densities: GvM(π, 0, 5, 2) with continuous line,
GvM(π, π/2, 5, 0.6) with dashed line and GvM(π/2, π/2, 0.5, 2) with dotted line.

with κj > 0, and µj ∈ [0, 2π/j), for j = 1, . . . , k. The normalizing constant is defined as

G
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

=
1

2π

∫ 2π

0

exp {κ1 cosω + κ2 cos 2(ω + δ1) + . . .+ κk cos k(ω + δk−1)} dω,

and it is a generalization of the modified Bessel function I0 given above, with δj =

(µ1 − µj+1) mod (2π/(j + 1)), for j = 1, . . . , k − 1. We denote any circular random
variable with this distribution by GvMk(µ1, . . . , µk, κ1, . . . , κk). In particular, in this
thesis we focus on the case when k = 2. The density (2.3) reduces to

f(θ|µ1, µ2, κ1, κ2) =
1

2πG
(2)
0 (δ, κ1, κ2)

exp {κ1 cos(θ − µ1) + κ2 cos 2 (θ − µ2)} , (2.4)

with µ1 ∈ [0, 2π), µ2 ∈ [0, π) and κ1, κ2 > 0. The normalizing constant G(2)
0 is simply

denoted by G0 and it is given by

G0(δ, κ1, κ2) =
1

2π

∫ 2π

0

exp {κ1 cosω + κ2 cos 2 (ω + δ) dω} , (2.5)

with δ = (µ1 − µ2) mod π. We indicate any random random variable with this distribu-
tion by GvM(µ1, µ2, κ1, κ2), omitting the order k = 2. Some GvM densities are displayed
in Figure 2.3.

We cite here the axial von Mises distribution. This distribution is obtained by taking
κ1 = 0 in the exponent of (2.4) and by multiplying the density by 2, yielding

f(θ|µ, κ) = 1

πI0(κ)
exp{κ cos 2(θ − µ)}, ∀θ[0, π). (2.6)
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The GvM is more practical than the general GvMk, and it is used, for example, in
modeling wind directions (see Gatto and Jammalamadaka (2007)).

We mention that the GvM distribution belongs to the exponential family, after ap-
plying a proper re-parametrization. In fact the density (2.4) for a sample θ = (θ1, . . . , θn)

f(θ|µ1, µ2, κ1, κ2) =
1

[2π ·G0(δ, κ1, κ2)]
n exp

{
κ1

n∑
i=1

cos(θi − µ1) + κ2

n∑
i=1

cos 2 (θi − µ2)

}
.

(2.7)
can be written as

f (θ|µ1, µ2, κ1, κ2) = exp

{
λ⊤

n∑
i=1

T (θi)− nK (λ)

}
,

where λ⊤ = (κ1 cosµ1, κ1 sinµ1, κ2 cos 2µ2, κ2 sin 2µ2) ∈ R4, and

T (θi)
⊤ = (cos θi, sin θi, cos 2θi, sin 2θi)

K(λ) = ln(2π) + ln [G0 (δ, κ1, κ2)] = ln(2π) + ln
[
G0

(
δ, ∥λ(1)∥, ∥λ(2)∥

)]
,

with λ⊤ = (λ⊤
(1),λ

⊤
(2)), λ

⊤
(j) = (κj cosµj, κj sinµj) for j = 1, 2, and δ = (arg{λ(1)} −

arg{λ(2)}/2) mod π.
This re-parametrization can be generalized in the case of GvMk. The density (2.3)

for a sample θ of size n

f(θ|µ1, . . . , µk, κ1, . . . , κk)

=
1[

2πG
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

]n · exp

{
k∑

j=1

κj

n∑
i=1

cos j (θi − µj)

}
,

can be re-expressed as an exponential family density as follows:

f (θ|µ1, . . . , µk, κ1, . . . , κk) = exp

{
λ⊤

n∑
i=1

T (θi)− nK (λ)

}

where λ⊤ = (κ1 cosµ1, κ1 sinµ1, . . . , κk cos kµk, κk sin kµk) ∈ R2k, and

T (θi)
⊤ = (cos θi, sin θi, cos 2θi, sin 2θi, . . . , cos kθi, sin kθi) ,

K(λ) = ln (2π) + ln
[
G

(k)
0

(
δ1, . . . , δk−1, ∥λ(1)∥, . . . , ∥λ(k)∥

)]
,

with λ⊤ =
(
λ⊤

(1), . . . ,λ
⊤
(k)

)
, λ⊤

(j) = (κj cos jµj, κj sin jµj), for j = 1, . . . , k, and δj =

(arg{λ(1)}−arg{λ(j+1)}/j+1) mod π for j = 1, . . . , k−1. In this form, the GvMk admits
a minimal sufficient and complete statistic; cf. Section 2.1 of Gatto and Jammalamadaka
(2007).
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2.2 Main results

In this section we introduce some important quantities of information theory adapted
to the circular case. Moreover we report some optimality results for the GvMk.

The first quantity we introduce is due to Kullback and Leibler (1951).

Definition 2.2.1 (Circular Kullback-Leibler information). Let f and g be two circular
densities. The circular Kullback-Leibler (KL) information is given by

I(f |g) =
∫ 2π

0

log
f(θ)

g(θ)
f(θ)dθ. (2.8)

We assume that 0 log 0 = 0 and that the domain of f is contained in the domain of g,
otherwise I(f |g) = ∞.

The KL information is the mean logarithmic likelihood ratio, or mean information
per observation of f for discriminating in favour of f against g. The continuous version
of Gibbs’ inequality, namely∫ 2π

0

log f(θ)f(θ)dθ ≥
∫ 2π

0

log g(θ)f(θ)dθ,

implies that I(f |g) ≥ 0, with equality if and only if f = g (Johnson, 2004, p.4).
Another important quantity we introduce is the circular entropy (Mardia, 1972, p.6).

Definition 2.2.2 (Circular entropy). Let f be a circular density. The circular entropy
of f is defined as

H(f) = −
∫ 2π

0

log f(θ)f(θ)dθ, (2.9)

where we assume again that 0 log 0 = 0.

H(f) measures the uncertainty inherent in f . Equivalently, it measures the expected
amount of information gained on obtaining an observation from f , based on the fact that
rarer events are more informative. Moreover, we can say that the entropy H(f) measures
the closeness of f to the uniform density (Mardia and Jupp, 2000). This follows from
the equality H(f) = log (2π)− I(f |g), where g is the uniform density on [0, 2π].

In addition to the GvMk, finite mixtures of vM distribution have been studied in
literature. McVinish and Mengersen (2008) examines the use of Bayesian mixtures
of triangular distributions in the context of semiparametric analysis of circular data.
Moreover, Spurr and Koutbeiy (1991) proposed flexible models for circular data based on
finite mixtures of vM distributions, for a comparison of different approaches to estimate
such mixtures. The mixture of two vM or other distributions provides an alternative
bimodal or asymmetric model to the GvM. Nevertheless, it lacks of some important
theoretical properties. In fact, the mixture model does not belong to the exponential
class. Moreover, while the likelihood function of GvMk is bounded, the likelihood of a
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mixture is unbounded. This can be shown as follows: Let us consider the mixture of
vM(µ1, κ1) and of vM(µ2, κ2). As κ1 → +∞, the likelihood when µ1 is equal to any one
of the sample values tends to infinity: in fact, I0(κ1) ∼ (2πκ1)

(−1/2) eκ1 , as κ1 → +∞
(see Abramowitz (1974), 9.7.1 at p.377). A bounded likelihood is required in Cox and
Hinkley (1979) in the consistency of the MLE, and Cheng and Traylor (1995) consider
the general problem of dealing with unbounded likelihood.

In what follows, we study some properties that the GvMk posses, but that do not
hold for the mixture model. We report some optimality results with respect to (w.r.t.)
the KL information (2.8) and to the entropy (2.9). Let us firstly introduce a concept
that will be useful in the section.

Definition 2.2.3. Let θ be a circular random variable on [0, 2π). The rth trigonometric
moment condition is given by

TMr :

∫ 2π

0

eirθg(θ)dθ = φr ⇔
∫ 2π

0

cos rθg(θ)dθ + i

∫ 2π

0

sin rθg(θ)dθ = γr + iσr,

for some φr such that |φr| ≤ 1 and for some γr, σr ∈ [−1, 1], r = 1, 2, . . ..

Next theorem is an important result on the KL information, from which we derive
some important results on the optimality of the GvMk distribution.

Theorem 2.2.4.

(a) The circular density f , which satisfies TMr for r = i1, . . . , ik with 1 ≤ i1 < . . . <

ik < +∞, and which minimizes the KL information I(f |f0) for some circular
density f0, is given by the exponential tilt of f0, namely

f(θ) =
[
G

(i1,...,ik)
0 (δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0)

]−1

· exp {κi1 cos i1 (θ − µi1) + . . .+ κik cos ik(θ − µik)} f0(θ),
(2.10)

where the normalizing constant is given by

G
(i1,...,ik)
0 (δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0)

=

∫ 2π

0

exp
{
κi1 cos i1θ + κi2 cos i2

(
θ + δ†1

)
+ . . .+ κik cos ik

(
θ + δ†k−1

)}
f0(θ)dθ,

with δ†j =
(
µi1 − µij+1

)
mod (2π/ij+1), for j = 1, . . . , k − 1, and κi1 , . . . , κik > 0.

(b) For any circular density f satisfying TMr for r = i1, . . . , ik, it holds that

I(f |f0) ≥ − logG
(i1,...,ik)
0 (δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0)

+
k∑

r=1

κir (γir cos irµir + σir sin irµir) ,

with equality if and only if f satisfies (2.10).
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Moreover, let us define:

G(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
=

∫ 2π

0

cos rθ exp
{
κi1 cos i1θ + κi2 cos i2

(
θ + δ†1

)
+ · · ·+ κik cos ik

(
θ + δ†k−1

)}
f0(θ)dθ

H(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
=

∫ 2π

0

sin rθ exp
{
κi1 cos i1θ + κi2 cos i2

(
θ + δ†1

)
+ · · ·+ κik cos ik

(
θ + δ†k−1

)}
f0(θ)dθ,

A(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
=
G

(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
G

(i1,...,ik)
0

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

) ,
and

B(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
=
H

(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
G

(i1,...,ik)
0

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

) ,
for r = i1, . . . , ik, where δ†1, . . . , δ

†
k−1 and κi1 , . . . , κik > 0 as defined in (a). Then

we have that µi1 , µi2 = (µi1 − δ†1) mod (2π/i2), . . . , µik = (µi1 − δ†k−1) mod (2π/ik)

and κi1,. . .,κik are the simultaneous solutions of(
γr

σr

)
= R (rµi1)

 A
(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)
B

(i1,...,ik)
r

(
δ†1, . . . , δ

†
k−1, κi1 , . . . , κik ; f0

)  , (2.11)

where

R(α) =

(
cosα − sinα

sinα cosα

)
, (2.12)

is the rotation matrix of angle α = rµi1 for r = i1, . . . , ik.

Proof. The general idea for the proof is due to Kullback (1954), and it can be found in
Gatto (2009).

Let us assume Theorem 2.2.4 with i1 = 1, . . . , ik = k and f0 = 1/2π. In this case, for
simplicity of notation in what follows the last argument of G(i1,...,ik)

0 , G(i1,...,ik)
r , H(i1,...,ik)

r ,
A

(i1,...,ik)
r and B(i1,...,ik)

r is omitted. Moreover, the upper right sequential index (i1, . . . , ik)

that appears in the constants is simply the upper right index (k). We also have that
δ†j = δj, for j = 1, . . . , k − 1. The following corollary is an important consequence of
Theorem 2.2.4, and it states the optimality of the GvMk w.r.t. the circular entropy
(2.9).

Corollary 2.2.5.
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(a) For all k ∈ {1, 2, . . .}, the circular density maximizing the entropy under TMr,
r = 1, . . . , k, is the GvMk(µ1, . . . , µk, κ1, . . . , κk).

(b) If f is a circular density satisfying TMr, r = 1, . . . , k, then

H(f) ≤ log (2π) + logG
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

−
k∑

r=1

κr (γr cos rµr + σr sin rµr) ,

with equality if and only if f is the GvMk(µ1, . . . , µk, κ1, . . . , κk) density. The
parameters above are the solutions of(

γr

σr

)
= R (rµ1)

(
A

(k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

B
(k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

)
, (2.13)

where R(rµ1) is the rotation matrix defined in (2.12) with α = rµ1, for r = 1, 2, . . ..

Proof.

(a) Let f0(θ) = 1/ (2π). It follows from (2.8) and (2.9) that I (f |f0) = log (2π)−H(f).
Thus, maximizing H(f) under TMr, for r = 1, . . . , k is equivalent to minimizing
I (f |f0) under the same constraint. Applying Theorem 2.2.4 (a), we conclude that
the minimum is obtained when f is the GvMk density.

(b) This follows from Theorem 2.2.4 (b). The values of the parameters that satisfy
(2.13) are given in the proof of Theorem 2.2.4, which can be found in Gatto (2009).

Part (a) of Corollary 2.2.5 is a generalization of the optimality result for the vM distri-
bution given in Mardia (1972, p.65-66). Entropy is a principle for choosing a distribution
on the basis of some partial knowledge that could be based on some prior information.
In our case, the partial prior information is given by the first k trigonometric moments.
Based on this principle, one should always choose distributions associated to maximal
entropy, within the distributions satisfying such partial prior information. Corollary
2.2.5 states that the distribution maximizing the entropy is the GvMk. This is widely
used in Bayesian statistics, when one wants to choose the most noninformative prior
which satisfies some known partial prior information. See Gatto and Jammalamadaka
(2007) and Gatto (2009).

Part (b) of the corollary expresses the entropy of the GvMk(µ1, . . . , µk, κ1, . . . , κk)

distribution in terms of A(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) and B(k)

r (δ1, . . . , δk−1, κ1, . . . , κk) de-
fined in Theorem 2.2.4, with f0(θ) = 1/(2π) and δj = (µ1 − µj+1) mod (2π/(j + 1)), for
j = 1, . . . , k − 1 and r = 1, . . . , k. These quantities can be evaluated by numerical
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integration. With some simplifications and with γr, σr solving (2.13), we get that the
entropy of the GvMk(µ1, . . . , µk, κ1, . . . , κk) distribution is given by (Gatto, 2009):

H(f) = log(2π) + logG
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)− κ1A

(k)
1 (δ1, . . . , δk−1, κ1, . . . , κk)

−
k∑

r=2

κr
[
cos rδr−1A

(k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

+ sin rδr−1B
(k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

]
,

where the summation from 2 to k simply vanishes when k = 1.
We conclude this section with the case when the k-th trigonometric moment restric-

tions are the successive integers after j, and where f0 is a GvMj density. Theorem 2.2.4
with i1 = j + 1, . . . , ik = j + k gives the following corollary.

Corollary 2.2.6.

(a) Let f0 be the GvMj(µ1, . . . , µj, κ1, . . . , κj) density. The closest circular density f
to f0 in the KL sense under the condition TMr, for r = j + 1, . . . , j + k, is the
GvMj+k(µ1, . . . , µj+k, κ1, . . . , κj+k) density.

(b) For any f satisfying TMr, for r = j + 1, . . . , j + k, the KL information satisfies

I (f | f0) ≥− logG
(j+1,...,j+k)
0

(
δ†1, . . . , δ

†
k−1, κj+1, . . . , κj+k; f0

)
+

j+k∑
r=j+1

κr (γr cos rµr + σr sin rµr) ,

where δ†l = (µj+1 − µj+l+1) mod (2π/(j+ l+1)), for l = 1, . . . , k− 1, with equality
if and only if f is the GvMj+k(µ1, . . . , µj+k, κ1, . . . , κj+k) density. The parameters
µj+1, . . . , µj+k and κj+1, . . . , κj+k are determined by TMr for r = j + 1, . . . , j + k,
namely by (2.11) with i1 = j + 1, . . . , ik = j + k.
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Chapter 3

Spherical distributions

So far, we focused on circular data, i.e. directional data in R2. This chapter introduces
directional data on the unit sphere Sp−1 = {x ∈ Rp|⟨x,x⟩ = 1} that are of main interest
in Chapter 7. Some concepts for circular distributions introduced in Chapter 2 can
be extend on Rp. Descriptive measures like the mean direction can be defined in a
similar way. Let x1, . . . ,xn ∈ Sp−1. Their location can be described by the sample mean
(Mardia and Jupp, 2000, p.163),

x̄ =
1

n

n∑
i=1

xi.

The vector x̄ can be expressed as
x̄ = R̄x̄0

where x0 ∈ Sp−1 and R̄ ≥ 0. The value

R̄ = ∥x̄∥,

is called mean resultant length, while

x̄0 =
x̄

∥x̄∥
,

is the mean direction.
A spherical random variable is represented as a point on the unit sphere Sp−1. The

case p = 3 deserves a special mention. Here, the representation can be done using
spherical or Cartesian coordinates. Any unit vector x ∈ S2 expressed in Cartesian
coordinates (x1, x2, x3) can be written in spherical coordinates as x = (1, θ1, θ2). The
angles θ1, θ2 are called polar and azimuth angle, respectively. They are defined as follows. θ1 = arccos(x3) ∈ [0, π],

θ2 = arctan2(x2, x1) ∈ (−π, π],
(3.1)
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where arctan2(x2, x1), called two-argument or quadrant specific arc tangent, is defined
as

θ2 =



arctan
(

x2

x1

)
, if x1 > 0,

arctan
(

x2

x1

)
+ π, if x1 < 0 and x2 ≥ 0,

arctan
(

x2

x1

)
− π, if x1 < 0 and x2 < 0,

+π
2
, if x1 = 0 and x2 > 0,

−π
2
, if x1 = 0 and x2 < 0,

undefined , if x1 = 0 and x2 = 0,

where arctan has range of usual principal value (−π/2, π/2). On the other hand, it is
possible to retrieve the Cartesian coordinates from the spherical coordinates using

x1 = cos θ2 sin θ1,

x2 = sin θ2 sin θ1,

x3 = cos θ1

In this thesis we manly choose the Cartesian representation. An example of repre-
sentation in the Cartesian coordinate system (X1, X2, X3) = (X, Y, Z) can be found in
Figure 3.1.

In this chapter, we introduce two important spherical distributions: the von Mises
Fisher (vMF) and the generalized von Mises Fisher (GvMF). As in Chapter 2, we report
some important optimality and simulation results regarding the GvMF distribution. We
refer to Chapter 9 of Mardia and Jupp (2000) for some other spherical distributions.

3.1 The vMF and the GvMF

In Section 2.1 we introduced the vM and the GvM distribution. In this section we define
the natural extensions of these two distributions on the unit sphere Sp−1 of the generic
space Rp, for p ≥ 3.

The density of the vMF distribution (Mardia and Jupp, 2000) is defined as

g(x|µ, κ) = ap(κ) exp
{
κ
(
µ⊤x

)}
, (3.2)

where µ ∈ Sp−1 and κ > 0, and the normalizing factor ap(κ) w.r.t. the spherical uniform
(or isotropic) distribution U is given by

ap(κ) =
(κ
2

)p/2−1 1

Γ (p/2) Ip/2−1(κ)
, (3.3)

where Iν(z), z ∈ C, is the modified Bessel function I of order ν, such that ℜν > −1/2;
see e.g. 9.6.18 at p. 376 of Abramowitz (1974). (Note that the normalizing factor is
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Figure 3.1: Representation of the spherical random variable X in the unit sphere S2 of
R3 (bold point) in the coordinate system (X, Y, Z).

sometimes given for the spherical Lebesgue measure.) The mean direction of (3.2) is µ
and its concentration is κ. Any random direction with this distribution is denoted by
vMF(µ, κ).

The density of the generalized von Mises Fisher distribution of generic order k (Gatto,
2011) for a vector x ∈ Sp−1 w.r.t the uniform distribution U on Sp−1 is given by

f(x|µ1, . . . ,µk;κ1, . . . , κk; i1, . . . , ik) ∝ exp

{
k∑

i=1

κi
(
µ⊤

i x
)ik} . (3.4)

where µi ∈ Sp−1 and κi > 0 for i = 1, . . . , r, and i1 ≤ . . . ≤ ik ∈ {1, 2, . . .}. More-
over, to avoid over identification, we consider that 1,

(
µ⊤

1 x
)i1 , . . . , (µ⊤

k x
)ik are linearly

independent functions of x. We indicate every random variable with such distribution
by GvMFk(µ1, . . . ,µk;κ1, . . . , κk; i1, . . . , ik). In particular, we notice that for k = 1

and i1 = 1 (3.4) reduce to (3.2). Moreover, for p = 2 the GvMF admits a GvM
reparametrization. In this thesis we focus on the GvMFk with k = 2. We simply denote
this by GvMF.
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3.2 Main Results

In this section we present some important theoretic results for the GvMF w.r.t. to the
directional KL information and the directional entropy. These two were defined on the
circle in (2.8) and in (2.9), respectively. Their versions on Sp−1 are given below.

Definition 3.2.1 (Directional KL information). Let P and Q two probability measures
on Sp−1 w.r.t. the uniform distribution U . Moreover we assume that P is absolutely
continuous w.r.t Q (P ≪ Q). The KL information is given by

I(P |Q) =
∫
Sp−1

log
dP

dQ
dP =

∫
Sp−1

log
f(x)

g(x)
f(x)dU(x), (3.5)

where f and g are the (directional) densities of P and Q respectively w.r.t U . As in the
circular case, we assume that 0 log 0 = 0.

As in Section 2.2, we notice that I(P |Q) ≥ 0 for all P and Q such that P ≪ Q. The
equality holds when P = Q.

In the same way we can extend the definition of the entropy given in Section 2.2 to
the directional case

Definition 3.2.2 (Directional entropy). The entropy of a directional probability mea-
sure P on Sp−1 w.r.t the uniform distribution U is defined as

H(P ) = −
∫
Sp−1

log
dP

dU
dP = −

∫
Sp−1

log f(x)f(x)dU(x), (3.6)

where, again, 0 log 0 = 0.

Now we give some optimality results for directional distributions on Rp w.r.t the
directional version of Kullback-Leibler information given and entropy given in (3.5) and
(3.6) respectively. Analogue to the GvM distribution in Section 2.1 the GvMF or other
directional distributions having a GvMF parts, turns out to be optimal. Moreover, in
Bayesian statistics these kind of distributions are optimal solutions of a constrained prior
selection problem. The proofs of these results can be found in Gatto (2011).

Firstly, we introduce the directional version of the rth trigonometric moment condi-
tion TMr given in Section 2.2.

Definition 3.2.3. We denote by DMr the rth trigonometric moment condition on the
density f as,

DMr :

∫
Sp−1

(
µ⊤

r x
)ir
f(x)dU(x) = αr

where i1 ≤, . . . ≤ ik ∈ {1, 2, . . .}, µr ∈ Sp−1 and αr ∈ R for r = 1, . . . , k.

Now we introduce some important optimality results. In what follows we consider
probability measure on Sp−1 and w.r.t. the uniform distribution U .
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Theorem 3.2.4.

(a) The directional density f which satisfies DMr, for r = 1, . . . , k and which mini-
mizes the KL information I(f |f0) w.r.t. a given directional density f0, is propor-
tional to

exp

{
k∑

r=1

κr
(
µ⊤

r x
)ir}

f0(x), (3.7)

for x ∈ Sp−1. The parameters κ1, . . . , κk are the solutions in ν1, . . . , νk of

∂

∂νr
K (ν1, . . . , νk;µ1, . . . ,µk; i1, . . . , ik; f0) = αr, r = 1, . . . , k,

with K = logM and

M (ν1, . . . , νk;µ1, . . . ,µk; i1, . . . , ik; f0) =

∫
Sp−1

exp

{
k∑

r=1

νr
(
µ⊤

r x
)ir}

f0(x)dU(x).

(b) For any directional density f satisfying DMr, for r = 1, . . . , k we have the following
lower bound on the KL information,

I (f | f0) ≥ −K (κ1, . . . , κk;µ1, . . . ,µk; i1, . . . , ik; f0) +
k∑

j=1

κjαj,

with equality iff (3.7) is proportional to f .

Proof. For the proofs of (a) and (b) we refer to Gatto (2011).

Corollary 3.2.5.

(a) For any k ∈ {1, 2, · · · }, the directional density f that maximizes the entropy H(f)

under DMr for r = 1, . . . , k is the GvMFk(µ1, . . . ,µk;κ1, . . . , κk; i1, . . . , ik) density.
The parameters κ1, . . . , κk are the solutions in ν1, . . . , νk of

∂

∂νr
K (ν1, . . . , νk;µ1, . . . ,µk; i1, . . . , ik; 1) = αr,

for r = 1, . . . , k.

(b) If f is a directional density satisfying DMr, for r = 1, . . . , k, then

H(f) ≤ K (κ1, . . . , κk;µ1, . . . ,µk; i1, . . . , ik; 1)−
k∑

r=1

κrαr,

with equality iff f is the GvMFk(µ1, . . . ,µk;κ1, . . . , κk; i1, . . . , ik) density.

Proof. (a) This is the directional version of the proof (a) of Corollary 2.2.5. The
complete proof can be found in Gatto (2011).
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(b) This follows from Theorem 3.2.4.

We conclude this section with one last property. Again all densities are given w.r.t.
the uniform distribution U on Sp−1. In the next corollary the restriction on the ordering
i1 ≤ . . . ≤ ij ≤ ij+1 ≤ . . . ≤ ij+k is relaxed.

Corollary 3.2.6.

(a) Denote by f0 the GvMFj (µ1, . . . ,µj;κ1, . . . , κj; i1, . . . , ij) density. Then the closest
density f to f0, in the sense of minimizing I (f | f0) which satisfies DMr , r =

j + 1, . . . , j + k, is the GvMFj+k (µ1, . . . ,µj+k;κ1, . . . , κj+k; i1, . . . , ij+k) density.
The parameters κj+1, . . . , κj+k are solutions in νj+1, . . . , νj+k of

∂

∂νr
K (νj+1, . . . , νj+k;µj+1, . . . ,µj+k; ij+1, . . . , ij+k; f0) = αr,

for r = j + 1, . . . , j + k.

(b) For any density f satisfying DMr, for r = 1, . . . , k

I (f | f0) ≥ −K (κj+1, . . . , κj+k;µj+1, . . . ,µj+k; ij+1, . . . , ij+k; f0) +

j+k∑
r=j+1

κrαr,

with equality iff f is the GvMFj+k density given in (a).

3.3 Other properties

In this section we provide some other properties of the GvMFk. Moreover we introduce
some simulations results concerning the GvMFk distribution and its relation with some
other linear or circular distributions.

The first property we mention is that the GvMFk distribution is invariant under
orthogonal transformations: Let X ∼ GvMFk(µ1, . . . ,µk;κ1, . . . , κk; i1, . . . , ik) on Sp−1

and let A be a p× p orthogonal matrix (i.e. A⊤A = Ip). Then we have that Y = AX ∼
GvMFk(Aµ1, . . . , Aµk;κ1, . . . , κk; i1, . . . , ik). This is equivalent to say that the class of
GvMFk distribution, with fixed κ1, . . . , κk and i1, . . . , ik, is invariant under the group of
orthogonal transformations on Rp.

The parameters i1, . . . , ik influence the shape of the GvMFk density as follows. If ir
is even, then the clustering around both directions µr and −µr increases as κr increases,
for r = 1, . . . , k. If i1, . . . , ik are even then (dP ) /(dQ)(x) = (dP )/(dQ)(−x) for all
x ∈ Sp−1. This means that the GvMFk density is invariant under the transformation
x 7→ −x, for x ∈ Sp−1. In general, the larger the values of κ1, . . . , κk, the larger the
clustering around µ1, . . . ,µk. If µ1 = . . . = µk and κ1, . . . , κk > 0, then the density has
the maximum at µ1 and the minimum at −µ1.
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Here we provide some results on the simulation of the GvMFk. In particular, we
cite Result 3.3.1 that relates some GvMFk distributions with the GvM, and Result 3.3.3
which shows that some GvMFk distribution are conditional offset normals.

In what follows we will indicate with c the real positive parameter of the GvMF, to
distinguish it from κ, the parameter of the GvM. The proofs are omitted and can be
found in Gatto (2011).

Result 3.3.1. Let X ∼ GvMF3(µ1,µ2,µ3; c1, c2, c3; i1, i2, i3) on S1 and define θ =

arg {X}. Then θ ∼ GvM3(µ1, µ2, µ3;κ1, κ2, κ3) where for νr = arg {µr}, r = 1, 2, 3

and arctan : R 7→ (−π/2, π/2) we have

µ1 =

(
arctan

4c1 sin ν1 + 3c3 sin ν3
4c1 cos ν1 + 3c3 cos ν3

+ πI {4c1 cos ν1 + 3c3 cos ν3 < 0}
)

mod 2π, (3.8)

with

κ1 =
{
c21 + (9/16)c23 + (3/2)c1c3 cos (ν1 − ν3)

} 1
2 ,

µ2 = ν2, κ2 = c2/2, µ3 = ν3 and κ3 = c3/4.
(3.9)

Definition 3.3.2. A conditional offset distribution is the conditional distribution of a
random vector given that it has norm equal to one.

Result 3.3.3. Let X ∼ N (µ,Σ) in Rp, with Σ positive-definite covariance matrix. If
µ ̸= 0, then X has a GvMFp+1 conditional offset distribution on Sp−1. This means that

X | ∥X∥ = 1 ∼ GvMFp+1 (µ1, . . . ,µp+1; c1, . . . , cp+1; 1, 2, . . . , 2) ,

where, given V = (ν◦1, . . . ,ν◦p) is non-singular such that Σ−1 = V V ⊤, we have that

µ1 =
∥∥Σ−1µ

∥∥−1
Σ−1µ, c1 =

∥∥Σ−1µ
∥∥ ,

µj+1 = ∥ν◦j∥−1 ν◦j, cj+1 = −∥ν◦j∥2 /2, for j = 1, . . . , p.

On the other hand, if µ = 0 then

X | ∥X∥ = 1 ∼ GvMFp (µ2, . . . ,µp+1; c2, . . . , cp+1; 2, . . . , 2) .

Definition 3.3.4. Let Σ be a p × p semi-positive definite matrix with rank r < p.
The generalized inverse of Σ is denote by Σ− and is defined as the matrix that satisfies
ΣΣ−Σ = Σ

Result 3.3.5. Let Σ be a p × p semi-positive definite matrix with rank r < p, and let
λ1, . . . , λr > 0 its non-zero eigenvalues. Let X ∈ Rp have singular normal density at
x ∈ Rp given by

(2π)−
r
2 (λ1 · . . . · λr)−

1
2 exp

{
−1

2
(x− µ)⊤Σ−(x− µ)

}
.

Then, for µ ̸= 0, X | ∥X∥ ∼ GvMFr+1(µ1, . . . ,µr+1; c1, . . . , cr+1; 1, 2, . . . , 2) on Sp−1,
where µj and cj for j = 1, . . . , r + 1 have the same form as in Result 3.3.3, with Σ−

instead of Σ−1. When µ = 0, X | ∥X∥ ∼ GvMFr(µ2, . . . ,µr+1; c2, . . . , cr+1; 2, . . . , 2)

on Sp−1.
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Result 3.3.6. Let X ∈ Rp be a random variable with exponential spherical density
proportional to

exp

{
−1

r

[
(x− λ)⊤W (x− λ)

] r
2

}
, (3.10)

with W = wI for w > 0 and k = r/2 ∈ {1, 2, . . .}. If λ ̸= 0, then

X | ∥X∥ = 1 ∼ GvMFk (µ, . . . ,µ; c1, . . . , ck; 1, . . . , k) ,

where µ = |λ∥−1λ and

cr = (−2)r−1w
k

k

(
k

j

)(
1 + ∥λ∥2

)k−r ∥λ∥r, for r = 1, . . . , k. (3.11)

On the other hand, when λ = 0 then the conditional offset distribution of X is the
uniform distribution on Sp−1.

Result 3.3.7. Let X ∈ R2 with density proportional to (3.10) with W = wI for w > 0

and k = r/2 = 3. Then

arg{X} | ∥X∥ = 1 ∼ GvM3 (µ1, µ2, µ3;κ1, κ2, κ3) ,

with c1, c2, c3 given in (3.11), µ1 given in (3.8), and κ1 in (3.9), where ν1 = ν3 =

arg {λ}, µ2 = µ3 = arg {λ}, κ2 = c2/2 and κ3 = c3/4.
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Chapter 4

Bayesian tests of symmetry for the
generalized von Mises distribution†

This chapter proposes three Bayesian tests on the symmetry of the GvM distribution.
The symmetry of a circular distribution is a fundamental question and this topic has
been studied in recent years. In the context of testing symmetry, one can mention:
Pewsey (2002), who proposes a test of symmetry around an unknown axis based on
the second sine sample moment, and Pewsey (2004), who considers the case where the
symmetry is around the median axis. Both tests are frequentist and no Bayesian test
of symmetry appears available in the literature. In fact, Bayesian analysis for circular
data has remained underdeveloped, partly because of the lack of nice conjugate classes
of distributions. Moreover, Bayesian analysis has focused on the vM model, which is
symmetric. We refer to p. 278-279 of Jammalamadaka and SenGupta (2001) for a review
on Bayesian analysis for circular data.

In this context, this chapter proposes Bayesian tests of symmetry for the GvM model
(2.4). The first test proposed concerns the parameter δ. The null hypothesis is δ = 0,
that is, no shift between cosines of frequency one and two. In this case, the distribution
is symmetric around the axis passing through µ1. It is bimodal with one mode at µ1

and the other one at µ1 + π, whenever κ1 < 4κ2. If κ1 ≥ 4κ2, then it is unimodal with
mode at µ1. We refer to Table 1 of Gatto and Jammalamadaka (2007). The second
test is on the precise characterization of axial symmetry, i.e. on δ = 0 or δ = π/2.
So far κ2 > 0 is considered and the third test is for κ2 = 0, so that the distribution
is no longer GvM but vM, which is is axially symmetric. The Bayesian tests rely on
the method of probability perturbation, where the probability distribution of the null
hypothesis is slightly perturbed, in order to give a positive prior probability to the
null hypothesis, which would be null otherwise. It would be interesting to consider the
above null hypotheses under the frequentist perspective, perhaps with the likelihood
ratio approach. This topic is not studied in this chapter, in order to limit its length.

†Salvador and Gatto (2022b)
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B01 evidence for H0

< 1 negative
1 to 1.5 not worth more than a bare mention
1.5 to 5 positive
5 to 10 substantial
10 to 20 strong
> 20 decisive

Table 4.1: Guidelines for the interpretation of Bayes factors.

The remaining part of this chapter is organized as follows. Section 4.1 gives the
derivation of these Bayesian tests and their Bayes factors. Section 4.1.1 presents the
approach used for these tests: Section 4.1.2 considers the test of no shift between cosines,
Section 4.1.3 considers the test of symmetry and Section 4.1.4 considers the test of vM
axial symmetry. Numerical results are presented in Section 4.2: Section 4.2.1 presents
a Monte Carlo study of the tests of Section 4.1.1 whereas Section 4.2.4 presents the
application to some real data. Final remarks are given in Section 4.3.

4.1 Bayesian tests and perturbation method for the
GvM model

The proposed tests rely on Bayes factors. The Bayes factor B01 indicates the evidence
of the null hypothesis w.r.t. the general alternative. Let us denote by θ = (θ1, . . . , θn)

the sample. Then

B01 =
P [θ|H0]

P [θ|H1]
=
P [H0|θ]
P [H1|θ]

· P [H1]

P [H0]
=
R1

R0

, (4.1)

where
R0 =

P [H0]

P [H1]
=

P [H0]

1− P [H0]
and R1 =

P [H0|θ]
P [H1|θ]

=
P [H0|θ]

1− P [H0|θ]
,

are the prior and the posterior odds, respectively. The case B01 > 1 indicates evidence
for H0. Otherwise, when B01 < 1 the sample supports H1. Interpretations of the values
of the Bayes factor can be found in Jeffreys (1939) and Kass and Raftery (1995). Our
synthesis of these interpretations is given in Table 4.1, which provides a qualitative scale
for the Bayes factor.

The null hypotheses are simple, in the sense that they concern only points of the
parametric space. The fact that these points have probability null does not allow for
the computation of Bayes factors. Therefore we use an approach with probability per-
turbation explained in the next section.
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4.1.1 Bayesian tests of simple hypotheses

The practical relevance of a simple null hypothesis, i.e. of the type H0 : ξ = ξ0, has been
widely debated in the statistical literature. According to Berger and Delampady: “it is
rare, and perhaps impossible, to have a null hypothesis that can be exactly modeled as
θ = θ0”. They illustrate their claim by the following example. “More common precise
hypotheses such as H0:Vitamin C has no effect on the common cold are clearly not
meant to be though of as exact point nulls; surely vitamin C has some effects, although
perhaps a very minuscule effect.” A similar example involving forensic science can be
found in Lindley (1977). When the parameter ξ is of continuous nature, it is usually
more realistic to consider null hypotheses of the type H0,ε : |ξ−ξ0| ≤ ε/2, for some small
ε > 0. This solves also the problem of the vanishing prior probability of H0, namely
P [ξ = ξ0] = 0. This problem is sometimes addressed by giving a positive probability to
{ξ = ξ0}. However, Berger and Sellke (1987) explain that the two approaches should
be related. “It is convenient to specify a prior distribution for the testing problem as
follows: let 0 < π0 < 1 denote the prior probability of H0 : θ = θ0 ... One might question
the assignment of a positive probability to H0, because it is rarely the case that it is
thought possible for θ = θ0 to hold exactly ... H0 is to be understood as simply an
approximation to the realistic hypothesis H0 : |θ− θ0| ≤ b and π0 is to be interpreted as
the prior probability that would be assigned to {θ : |θ−θ0| ≤ b}.” Accordingly, we assign
to the original simple hypothesis H0 : ξ = ξ0 the prior probability p0 > 0 of H0,ε : ξ ∈
[ξ0−ε/2, ξ0+ε/2], for some ε > 0. Thus, we replace the prior probability measure P by its
perturbation, obtained by the assignment of the probability p0 > 0 to {ξ0}. We denote
by P0 the probability measure P with the p0-perturbation. To summarize: the point
null hypotheses is made relevant with p0 = P0[ξ = ξ0] = P [δ ∈ [ξ0 − ε/2, ξ0 + ε/2]] > 0.

The length ε of the neighborhood of ξ0, which determines the prior probability p0

of H0 under the perturbed model, should not be too small. A significant value of p0
for the null hypothesis is in fact coherent with the frequentist approach of hypotheses
tests, where computations of rejection regions or P-values are carried over under the null
hypothesis. Berger (1985), p. 149, states that ε has to be chosen such that any ξ in
(ξ0 − ε/2, ξ0 + ε/2) becomes “indistinguishable” from ξ0, while Berger and Sellke state
that ε has to be “small enough” so that H0,ε can be “accurately approximated” by H0.
A related reference is Berger and Delampady (1987), who studied this problem with a
Gaussian model, and Berger (1985), p. 149, who obtains an upper bound for the radius
ε/2 under a simple Gaussian model. Two other references on the practical relevance of
simple null hypotheses are Jeffreys (1939) and Zellner (1984).

We end this section with some comments regarding the choice of the prior distribution
of ξ. This is a generally unsolved problem of Bayesian statistics and widely discussed
in the literature, see e.g. Jeffreys (1939) and Kass and Wasserman (1996). According
to Berger and Delampady (1987), there is “no choice of the prior that can claim to

29



be objective”. In this chapter we follow the directives given in Berger and Delampady
(1987) and Berger and Sellke (1987), where various details on the choice of the prior are
discussed and some classes of priors are analysed. According to Berger and Delampady
(1987), in absence of prior information, the prior should be symmetric about ξ0 and non-
increasing w.r.t. |ξ − ξ0|. Otherwise, one could find some “favoured” alternative values
of ξ; cf. Berger and Sellke (1987). Our choices of priors are presented in Section 4.2: for
each test of the study we compute Bayes factors under priors obtained by varying the
concentration around the generic value ξ0.

4.1.2 Test of no shift between cosines of GvM

Consider the Bayesian test on the GvM model (2.4) of the null the hypothesis

H0 : δ = 0,

where δ = (µ1 − µ2) mod π and where the values of µ1, κ1, κ2 are assumed known and
equal to µ0

1, κ
0
1, κ

0
2, respectively. Under the original probability measure P , the random

parameter δ has an absolutely continuous prior distribution and so P [δ = 0] = 0.
According to Section 4.1.1 we define the perturbation of the probability measure P ,
denoted P0, for which p0 = P0[δ = 0] > 0. This perturbation is the assignment to
{δ = 0} of the probability mass that initially lies close to that P -null set. Let ε > 0 and
consider the set

Aε =
{
δ ∈ [0, π)

∣∣∣δ ∈ [0, ε
2

]
∪
[
π − ε

2
, π
)}

. (4.2)

The complement is

Ac
ε =

{
δ ∈ [0, π)

∣∣∣δ ∈ (ε
2
, π − ε

2

)}
.

Note that (4.2) refers to a neighborhood of the origin of the circle of circumference π.
We thus assign to p0 the value

p0 = P [Aε] , (4.3)

for some suitably small ε > 0. The prior distribution function (d.f.) under the perturbed
probability measure P0 at any δ′ ∈ [0, π) is given by

p0∆(δ′) + (1− p0)G(δ
′). (4.4)

where G denotes the prior d.f. of δ and where ∆ is the Dirac d.f., which assigns mass
one to the origin. Denote by g the density of G. If 0 /∈ (δ′, δ′+dδ′), for some δ′ ∈ (0, π),
where the relations ∈ and /∈ are meant circularly over the circle of circumference π, then
(4.4) implies

P0[δ ∈ (δ′, δ′ + dδ′)] = (1− p0)g(δ
′)dδ′ = (1− p0)P [δ ∈ (δ′, δ′ + dδ′)]. (4.5)
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Let θ1, . . . , θn be independent circular random variables that follow the GvM distri-
bution (2.4). For simplicity, we denote the joint density of θ = (θ1, . . . , θn), with the
fixed values δ′, µ0

1, κ01 and κ02, as

f(θ|δ′) =
{
2πG0(δ

′, κ01, κ
0
2)
}−n

exp

{
κ01

n∑
i=1

cos(θi − µ0
1) + κ02

n∑
i=1

cos 2(θi − µ0
1 + δ′)

}
.

(4.6)

When considered as a function of δ′, (4.6) becomes the likelihood of δ. Then, by (4.5)
the marginal density of θ = (θ1, . . . , θn) under the perturbed probability is given by

m(θ) =

∫
[0,π)

f(θ|δ′)P0[δ ∈ (δ′, δ′ + dδ′)]

=

∫
Aε
f(θ|δ′)P0[δ ∈ (δ′, δ′ + dδ′)] + (1− p0)

∫
Ac
ε

f(θ|δ′)g(δ′)dδ′

= p0f(θ|0) + (1− p0)

∫
Aε
f(θ|δ′)g(δ′)dδ′ + (1− p0)

∫
Ac
ε

f(θ|δ′)g(δ′dδ′

∼ 2p0f(θ|0) + (1− p0)

∫
Ac
ε

f(θ|δ′)g(δ′)dδ′, as ε→ 0.

The above asymptotic equivalence is due to

(1− p0)

∫
Aε
f(θ|δ′)g(δ′)dδ′ = (1− p0)p0

∫
Aε
f(θ|δ′)g(δ

′)

p0
dδ′ ∼ p0f(θ|0), as ε→ 0.

The posterior perturbed probability, namely the conditional perturbed probability
of {δ = 0} given θ, can be approximated as follows,

P0[δ = 0|θ] ∼ p0f(θ|0)
2p0f(θ|0) + (1− p0)

∫
Ac
ε
f(θ|δ′)g(δ′)dδ′

=
1

2

(
1 +

1− p0
p0

∫
Ac
ε
f(θ|δ′)g(δ′)dδ′

2f(θ|0)

)−1

, as ε→ 0.

In order to compute the Bayes factor for this test, we define the prior odds R0 =

p0/(1−p0) and the posterior odds R1 = P0[δ = 0|θ]/(1−P0[δ = 0|θ]). The Bayes factor
is the posterior over the prior odds, namely B01 = R1/R0. Clearly p0 ≤ P0[δ = 0|θ] iff
B01 ≥ 1 and, the larger P0[δ = 0|θ]− p0 becomes, the larger B01 becomes: a large Bayes
factor tells that the data support the null hypothesis. From the approximation

R1 ∼

[
1 +

1− p0
p0

∫
Ac
ε
f(θ|δ′)g(δ′)dδ′

f (θ|0)

]−1

and from some simple algebraic manipulation, we obtain the computable approximation
to the Bayes factor B01 = R1/R0 given by

B01 ∼
f(θ|0)∫

Ac
ε
f(θ|δ′)g(δ′)dδ′

, as ε→ 0. (4.7)
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The representation of the Bayes factor (4.7) is asymptotically correct and we remind
that, in the context where we approximate the null hypothesis with a neighbourhood by
the point null hypothesis, the reasoning is always of asymptotic nature. A reference for
this perturbation technique is Berger (1985), p. 148-150.

Regarding the large sample asymptotics of the proposed test, it is know that, for a
sample of n independent random variables with common distribution with true param-
eter ξ0, the posterior distribution converges to the distribution with total mass over ξ0,
as n → ∞. This means that the posterior mode is a consistent estimator. We deduce
that, under H0,

P0[δ = 0|θ] = P [Aε|θ]
P−→ 1, as n→ ∞.

Consequently, R1 = P0[δ = 0|θ]/(1 − P0[δ = 0|θ]) P−→ ∞ and B01 = R1/R0
P−→ ∞, as

n→ ∞. The Bayesian test of H0 : δ = 0 is consistent in this sense.
We now give some computational remarks that are also valid for the tests of Sec-

tions 4.1.3 and 4.1.4. The integral appearing in the denominator of (4.7) can be easily
evaluated by Monte Carlo integration. For a given large integer s, we generate δ(i), for
i = 1, . . . , s, from the density g and then we compute the approximation∫

Ac
ε

f(θ|δ′)g(δ′)dδ′ =
∫
Ac
ε

f(θ|δ′)P [δ ∈ (δ′, δ′ + dδ′)] ≃ 1

s

s∑
i=1

f(θ|δ(i))I{δ(i) ∈ Ac
ε},

(4.8)

where I{A} denotes the indicator of statement or event A. For the computation nor-
malizing constant of the GvM distribution given in (2.5) one can use the Fourier series

G0(δ, κ1, κ2) = I0(κ1)I0(κ2) + 2
∞∑
j=1

I2j(κ1)Ij(κ2) cos 2jδ, (4.9)

where δ ∈ [0, π) and κ1, κ2 > 0, see e.g. Gatto and Jammalamadaka (2007).

4.1.3 Test of axial symmetry of GvM

In this Section, the symmetry of the GvMF distribution is introduced and its char-
acterization is given. In this section we consider the Bayesian test of axial symmetry
for the GvM model (2.4). A circular density g is symmetric around the angle α/2,
for some α ∈ [0, 2π), if g(θ) = g(α − θ), ∀θ ∈ [0, 2π). In this case we have also
g(θ) = g((α + 2π)− θ), so that symmetry around α/2 + π holds as well: the symmetry
is indeed an axial one.

Proposition 4.1.1 (Characterization of axial symmetry for the GvM distribution).
The GvM distribution (2.4) is axial symmetric iff

δ = 0 or δ =
π

2
.

In both cases, the axis of symmetry has angle µ1.
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The proof of Proposition 4.1.1 is given in Appendix A.
Note that δ is defined modulo π and that for κ2 = 0 or κ1 = 0 the GvM reduces

respectively to the vM or to the axial vM, defined as vM2 and given in (2.6). These two
distributions are clearly symmetric, but Proposition 4.1.1 gives the characterization of
symmetry in terms of δ since we define the GvM distribution in (2.4) with parameters
κ1, κ2 > 0.

As mentioned at the beginning of the section, symmetry of a circular distribution
around an angle is the symmetry around an axis. In particular, for the GvM density,
adding 2π to α would not have any influence. For the GvM density, this is made explicit
in (A.3) of Appendix A, where adding 2π to α would not have any influence. Figure
4.1 provides two numerical illustrations of the axial symmetry of the GvM distribution.
The graph in Figure 4.1a shows the density of the GvM(π, π, 0.1, 5.5) distribution: δ = 0

and the axis of symmetry is at angle µ1 = π. The graph in Figure 4.1b shows the
density of the GvM(π/2, 0, 5.5, 0.1) distribution: δ = π/2 and the axis of symmetry is at
angle µ1 = π/2. Thus, Proposition 4.1.1 allows us to write the null hypothesis of axial
symmetry as

H0 : δ = 0 or δ =
π

2
,

where the values of µ1, κ1, κ2 are assumed known and equal to µ0
1, κ

0
1, κ

0
2, respectively.

The Bayesian test is obtained by perturbation of the probability measure P , which is
denoted P0. The probabilities

p0 = P0[δ = 0] > 0 and pπ
2
= P0

[
δ =

π

2

]
> 0

are the probabilities masses of {δ = 0} and {δ = π
2
} of the perturbed measure, respec-

tively. They are obtained from

p0 = P
[
δ ∈

[
0,
ε

2

]
∪
[
π − ε

2
, π
)]

and pπ
2
= P

[
δ ∈

[π
2
− ε

2
,
π

2
+
ε

2

]]
,

for suitably small ε > 0. As is Section 4.1.2, the prior d.f. of δ under the perturbed
probability P0 at any δ′ ∈ [0, π) is given by

p0∆(δ′) + pπ
2
∆
(
δ′ − π

2

)
+
{
1−

(
p0 + pπ

2

)}
G(δ′), (4.10)

where G is the prior d.f. of δ under P . It follows from (4.10) that for 0, π/2 /∈ (δ′, δ′+dδ′),
for some δ′ ∈ (0, π) \ {π/2},

P0[δ ∈ (δ′, δ′ + dδ′)] =
[
1−

(
p0 + pπ

2

)]
g(δ′)dδ′ =

[
1−

(
p0 + pπ

2

)]
P [δ ∈ (δ′, δ′ + dδ′)],

where g is the density of G.
Let

Bε,0 =
{
δ ∈ [0, π)

∣∣∣δ ∈ [0, ε
2

]
∪
[
π − ε

2
, π
)}

, and Bε,π
2
=
{
δ ∈ [0, π)

∣∣∣δ ∈ [π
2
− ε

2
,
π

2
+
ε

2

]}
.
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(a) GvM(π, 0, 0.1, 5.5) density (δ = 0).
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(b) GvM(π/2, 0, 5.5, 0.1) density (δ = π/2).

Figure 4.1: Two axial symmetric GvM densities over the interval (−2π, 2π) and with
their axis of symmetry at angle µ1 shown by vertical dashed lines.

Define

Bε =
{
δ ∈ [0, π)

∣∣∣δ ∈ [0, ε
2

]
∪
[
π − ε

2
, π
)
∨ δ ∈

[π
2
− ε

2
,
π

2
+
ε

2

]}
= Bε,0 ∪ Bε,π

2
.

Its complement is given by

Bc
ε =

{
δ ∈ [0, π)

∣∣∣δ ∈ (ε
2
,
π

2
− ε

2

)
∪
(π
2
+
ε

2
, π − ε

2

)}
.
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The marginal density of θ = (θ1, . . . , θn) w.r.t. the perturbed probability P0 is given by

m(θ) =

∫
[0,π)

f(θ|δ′)P0[δ ∈ (δ′, δ′ + dδ′)]

=

∫
Bε
f(θ|δ′)P0[δ ∈ (δ′, δ′ + dδ′)] +

[
1−

(
p0 + pπ

2

)] ∫
Bc
ε

f(θ|δ′)g(δ′)dδ′

= p0f(θ|0) + pπ
2
f
(
θ|π

2

)
+
[
1−

(
p0 + pπ

2

)] ∫
Bε
f(θ|δ′)g(δ′)dδ′

+
[
1−

(
p0 + pπ

2

)] ∫
Bc
ε

f(θ|δ′)g(δ′)dδ′

∼ 2p0f(θ|0) + 2pπ
2
f
(
θ
∣∣∣π
2

)
+
[
1−

(
p0 + pπ

2

)] ∫
Bc
ε

f(θ|δ′)g(δ′)dδ′, as ε→ 0.

In the asymptotic equivalence, as in Section 4.1.2, we notice that[
1−

(
p0 + pπ

2

)] ∫
Bε
f(θ|δ′)g(δ′)dδ′

=
[
1−

(
p0 + pπ

2

)] [∫
Bε,0

f(θ|δ′)g(δ′)dδ′ +
∫
Bε, π2

f(θ|δ′)g(δ′)dδ′
]

=
[
1−

(
p0 + pπ

2

)] [
p0

∫
Bε,0

f(θ|δ′)g(δ
′)

p0
dδ′ + pπ

2

∫
Bε, π2

f(θ|δ′)g(δ
′)

pπ
2

dδ′

]
∼ p0f(θ|0) + pπ

2
f
(
θ
∣∣∣π
2

)
, as ε→ 0.

The posterior probability of {δ = 0∨ δ = π/2} under the perturbed probability measure
is given by

P0

[
δ = 0 ∨ δ = π

2

∣∣∣θ] ∼ p0f(θ|0) + pπ
2
f(θ|π

2
)

2p0f(θ|0) + 2pπ
2
f(θ|π

2
) + [1− (p0 + pπ

2
)]I1(θ)

=
1

2

[
1 +

[
1− (p0 + pπ

2
)
]
I1(θ)

2p0f(θ|0) + 2pπ
2
f(θ|π

2
)

]−1

, as ε→ 0,

where
I1(θ) =

∫
Bc
ε

f(θ|δ′)g(δ′)dδ′.

With this we obtain the following approximation to the posterior odds,

R1 =
P0

[
δ = 0 ∨ δ = π

2
|θ
]

1− P0

[
δ = 0 ∨ δ = π

2
|θ
] = [ 1

P0

[
δ = 0 ∨ δ = π

2
|θ
] − 1

]−1

∼

[
1 +

[
1− (p0 + pπ

2
)
]
I1(θ)

p0f(θ|0) + pπ
2
f(θ
∣∣π
2
)

]−1

as ε→ 0. With the prior odds given by

R0 =
p0 + pπ

2

1− (p0 + pπ
2
)

and after algebraic manipulations, we obtain the approximation to the Bayes factor given
by

B01 ∼
p0f(θ|0) + pπ

2
f(θ|π

2
)

(p0 + pπ
2
)I1(θ)

, as ε→ 0.
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4.1.4 Test of vM axial symmetry

We consider the Bayesian test of the null hypothesis that the sample follows a vM
distribution against the alternative that it comes from an arbitrary GvM distribution.
This null hypothesis implies axial symmetry in the class of vM distributions, whereas
the alternative hypothesis includes both symmetric or asymmetric GvM distributions.
Precisely, we have H0 : κ2 = 0, where µ1, µ2 and κ1 are assumed known and equal to
µ0
1, µ

0
2 and κ01 respectively. The GvM with κ2 = 0 reduces to the trivially symmetric

vM distribution. Formally, the GvM is defined for κ2 > 0 only, so that the symmetry
considered here is no longer within the GvM class but it is rather a vM axial symmetry.
This symmetry within the GvM class should be thought as approximate for vanishing
values of κ2.

Symmetry with the GvM formula can also be obtained with κ1 = 0, in which case
the GvM formula reduces to the vM2 given in (2.6) that is trivially symmetric. This
case is not analysed. In what follows we focus on the case of vM axial symmetry.

Because P [κ2 = 0] = 0, we construct the perturbed probability P0 such that p0 =

P0[κ2 = 0] > 0, where p0 = P [κ2 ∈ [0, ε]], for some ε > 0 small. The prior d.f. of κ2
under the probability P is G, and under the perturbed probability P0 it is p0∆(κ′2) +

(1− p0)G(κ
′
2), ∀κ′2 ≥ 0. Assume 0 /∈ (κ′2, κ

′
2 + dκ′2), then

P0 [κ2 ∈ (κ′2, κ
′
2 + dκ′2)] = (1− p0)g(κ

′
2)dκ

′
2 = (1− p0)P [κ2 ∈ (κ′2, κ

′
2 + dκ′2)] ,

where g is the density of G. With algebraic manipulations similar to those of Section
4.1.2, one obtains the approximation of the Bayes factor B01 given by

B01 ∼
f(θ|0)∫

Ccε
f(θ|κ′2)g(κ′2)dκ′2

, as ε→ 0,

where Cε = [0, ε], Cc
ϵ is its complement and where the likelihood of κ2 is

f(θ|κ2) =
{
2πG0

(
δ0, κ01, κ2

)}−n
exp

{
κ01

n∑
i=1

cos(θi − µ0
1) + κ2

n∑
i=1

cos 2(θi − µ0
1 + δ0)

}
,

with δ0 = (µ0
1 − µ0

2) mod π.

4.2 Numerical studies

This section provides some numerical studies for the tests introduced in Section 4.1.
The major part is Section 4.2.1, which gives a simulation or Monte Carlo study of the
performance of these tests. Section 4.2.4 provides an application to real measurements
of wind directions.
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4.2.1 Monte Carlo study

This section presents a Monte Carlo study for the tests introduced in Section 4.1: in
Section 4.2.1.1 for the test of no shift between cosines, in Section 4.2.1.2 for the test of
axial symmetry and in Section 4.2.2 for the test of vM axial symmetry. The results are
summarized in Section 4.2.3. We obtain Bayes factors for each one of these three tests
for r = 104 generations of samples of size n = 50, that are generated from the GvM or
the vM distributions. The Monte Carlo approximation to the integral (4.8), and to the
analogue integrals of the two other tests, is computed with s = 104 generations.
This simulation scheme is repeated three times and the results are compared in order to
verify convergence. Confidence intervals for the Bayes factors based on the aggregation
of the three simulations (with r replications each) are provided.

The vM2 given in (2.6) is used as a prior distribution for the parameter of shift
between cosines δ. According to the remark at the end of Section 4.1.1, we choose
ε = 0.05 for the length of the interval of H0 and the prior densities g as follows. For
the test of no shift between cosines, we choose the vM2(0, τ) distribution for δ, which
is symmetric and unimodal with mode at δ = 0. For the test of axial symmetry, we
choose the mixture of vM2(0, τ) and vM2(π/2, τ) for δ. Finally, for the test of vM axial
symmetry, we choose an uniform distribution for κ2 that is highly concentrated at the
boundary point 0.

4.2.1.1 Test of no shift between cosines of GvM

The null hypothesis considered is H0: δ = 0, with fixed µ1 = µ0
1, κ1 = κ01, κ2 = κ02, where

µ0
1 = π, κ01 = 0.1, κ02 = 5.5. We consider three different cases, called D1, D1’ and D2.

Case D1 For i = 1, . . . , s, we generate δ(i) from the prior of δ, which is vM2(ν, τ) with
values of the hyperparameters ν = 0 and τ = 250. We obtain p0 = 0.570 as prior
probability of the null hypothesis under the perturbed probability measure. We take
the first r of these prior values (that are all the values, since r = s) and then we obtain
µ
(i)
2 = (µ0

1 − δ(i)) mod π and generate the elements of the vector of n sample values θ(i)

independently from GvM(µ0
1, µ

(i)
2 , κ

0
1, κ

0
2), for i = 1, . . . , r. With these simulated data

we compute the Bayes factor B(i)
01 with the approximation formula (4.7). We repeat

this experiment three times. The fact of generating values of δ from its prior distribu-
tion, instead of taking δ = 0 fixed by null hypothesis, is a way of inserting some prior
uncertainty in the generated sample. If the prior is close, in some sense, to the null
hypothesis, then we should obtain the Bayes factor larger than one, but smaller than
the Bayes factor that would be obtained with the fixed value δ = 0.

We obtained three sequences of 104 Bayes factors that can be summarized as follows.
Figure 4.2a displays the three boxplots of the three simulated sequences of Bayes factors:
Denote by B̄

(j)
01 the mean of the Bayes factors of the j-th sequence, for j = 1, 2, 3,
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corresponding to left, central and right boxplot respectively. We obtained:

B̄
(1)
01 = 2.887, B̄

(2)
01 = 3.028 and B̄(3)

01 = 2.955.

Figure 4.2b shows the histogram of the three generated sequences of r Bayes factors. The
distribution is clearly not “bell-shaped” but it is however light-tailed: the Central limit
theorem applies to the mean of the simulated Bayes factors. The asymptotic normal
confidence interval for the mean value of the Bayes factors at level 0.95, and based on
the three generated sequences, is given by

(2.937, 2.976).

According to Table 4.1 this interval indicates positive evidence for the null hypothesis:
the data have indeed increased the evidence of the null hypothesis that δ = 0, however
to a marginal extent only. This situation can be explained by the fact that the prior
density g is (highly) concentrated around 0, circularly. This can be seen in the graph of
the prior density (Figure 4.2c), where the histogram of 104 generated values of δ is shown
together with the prior density. Moreover, the variability originating from the fact the
data are simulated under different values of δ leads to weaker values of the Bayes factor.
Case D1’ In this other case we consider prior values of δ less concentrated around
0, by choosing ν = 0 and τ = 50. The resulting prior probability of H0 is given by
p0 = 0.276. For i = 1, . . . , r, we generate the elements of the vector of n sample values θ(i)

independently from GvM(µ0
1, µ

0
2, κ

0
1, κ

0
2), with δ = 0, thus with µ0

2 = (µ0
1− δ) mod π = 0.

With these simulated data, we compute the Bayes factor B(i)
01 with the approximation

formula (4.7).
We obtained three sequences of r = 104 Bayes factors with means:

B̄
(1)
01 = 3.922, B̄

(2)
01 = 3.924 and B̄(3)

01 = 3.921.

The boxplots of the three respective generated sequences are shown in Figure 4.3a. The
asymptotic normal confidence interval for the mean value of the Bayes factors, at level
0.95 and based on the three generated sequences, is

(3.901, 3.945).

As expected, the generated Bayes factors are larger than in case D1. The samples
generated with δ = 0 fixed have less uncertainty. We computed the posterior density of
δ based on one generated sample. In Figure 4.3b we can see the graph of that posterior
density, in continuous line, together with the graph of the prior density, in dashed line.
The posterior is indeed more concentrated around 0, circularly.
Case D2 We now further decrease the concentration of the prior of δ. The values of
the hyperparameters are ν = 0 and τ = 20. We computed the prior probability of
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(a) 3 Boxplots of the 3 sets of 104 simulated
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(b) Histogram of the sample of 3 · r Bayes fac-
tors and graph of its estimated density (solid
line).
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(c) Prior density of δ with histogram of 104

generated values.

Figure 4.2: Results of Case D1.

the null hypothesis under perturbation p0 = 0.176. We generated the samples θ(i), for
i = 1, . . . , r, with fixed value µ0

2 = 0.
We obtained three sequences of r = 104 Bayes factors with means

B̄
(1)
01 = 5.477, B̄

(2)
01 = 5.539 and B̄(3)

01 = 5.511.

The boxplots of the three respective generated sequences are shown in Figure 4.4a. The
asymptotic normal confidence interval for the mean value of the Bayes factors, at level
0.95 and based on the three generated sequences, is

(5.477, 5.541).

The Bayes factors are larger than they are in Cases D1 and D1’. Here they show
substantial evidence for the null hypothesis. The prior distribution δ is less favourable
to the null hypothesis and so the sample brings more additional evidence for the null
hypothesis. Figure 4.4b shows the graph of the prior density, as dashed line, together
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(b) Prior density (dashed line) and posterior density
(continuous line) of δ. The posterior is based on one
generated sample.

Figure 4.3: Results of Case D1’.

with the graph of a posterior density, as continuous line, for δ. The graph of the posterior
density is based on one generated sample.

4.2.1.2 Test of axial symmetry of GvM

In this section we consider the null hypothesis of axial symmetry, viz. H0: δ = 0 or
δ = π/2, and the other parameters being fixed as follows, µ1 = µ0

1, κ1 = κ01 and κ2 = κ02.
We choose as before µ0

1 = π, κ01 = 0.1 and κ02 = 5.5. We generate δ from the prior given by
the mixture of vM2 distributions ξ vM2(ν1, τ)+ (1− ξ) vM2(ν2, τ), with ν1 = 0, ν2 = π/2

and ξ = 0.5. We consider three different cases, called Cases S1, S2 and S3.
Case S1 We generated δ from the prior mixture with concentration parameter τ = 250.

40



1 2 3

0
2

4
6

8

(a) 3 Boxplots of the 3 sets of 104 simulated Bayes
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(b) Prior density (dashed line) and posterior density
(continuous line) of δ. The posterior is based on one
generated sample.

Figure 4.4: Results of Case D2.

This prior distribution is close to the null distribution and Figure 4.5b displays its
density, together with the histogram of 104 generations from it. We computed the prior
probabilities of the null hypothesis under the perturbed probability measure p0 = pπ/2 =

0.285. We follow the principle of Case D1, where prior uncertainty is transmitted to the
sample by considering generated values δ(i), for i = 1, . . . , s, from a prior of δ close to the
null hypothesis, instead of considering the fixed values of the null hypothesis, namely
δ = 0 or π/2. We take the first r of these prior values and we use µ(i)

2 = (µ0
1−δ(i)) mod π

for generating θ(i), for i = 1, . . . , r. Repeating this three times, we obtained the three
means of the three sequences of r = 104 Bayes factors

B̄
(1)
01 = 3.044, B̄

(2)
01 = 2.986 and B̄(3)

01 = 2.950.
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In Figure 4.5a we can find the boxplots of the three respective generated sequences. The
asymptotic normal confidence interval for the mean value of the Bayes factors, at level
0.95 and based on the three generated sequences, is

(2.974, 3.013).

The conclusion is that the sample provides positive evidence of axial symmetry, even
though to some smaller extent only. The same was found in Case D1.
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(a) 3 Boxplots of the 3 sets of 104 simulated Bayes
factors.
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(b) Prior density of δ with histogram of 104 generated
values.

Figure 4.5: Results of Case S1.

Case S2 We generated prior values of δ from the same mixture, however with smaller
concentration hyperparameter τ = 20. We found p0 = pπ/2 = 0.088. We generated the
elements of the sample vector θ(i) with fixed value µ0

2 = 0, thus from GvM(µ0
1, µ

0
2, κ

0
1, κ

0
2),

with µ0
1 = π, µ0

2 = 0, κ01 = 0.1, κ02 = 5.5, for i = 1, . . . , r. We repeated this experiment
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(a) 3 Boxplots of the 3 sets of 104 simulated Bayes
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(b) Prior density (dashed line) and posterior density
(continuous line) of δ. The posterior is based on one
generated sample.

Figure 4.6: Results of Case S2.

three times and obtained three sequences of Bayes factors, with respective mean values

B̄
(1)
01 = 5.322, B̄

(2)
01 = 5.439 and B̄(3)

01 = 5.282.

The boxplots of the three sequences of Bayes factors can be found in Figure 4.6a. After
aggregating the three sequences, we obtained the asymptotic normal confidence interval
at level 0.95 for the mean value of the Bayes factors given by

(5.317, 5.378).

The Bayes factor is thus larger than it was in Case S1, so that the sample has brought
substantial evidence of axial symmetry. Figure (4.6b) shows the prior density of δ
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(a) 3 Boxplots of the 3 sets of 104 simulated Bayes
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(b) Prior density (dashed line) and posterior density
(continuous line) of δ. The posterior is based on one
generated sample.

Figure 4.7: Results of Case S3.

(dashed line) and a posterior density of δ (continuous line) that is based on one of
the previously generated samples. The posterior is highly concentrated around 0 and
provides a stronger belief about symmetry than the prior.
Case S3 We retain the prior of δ of Case S2 but we generate samples θ(i), for i = 1, . . . , r,
with µ0

1 = π, µ0
2 = π/2, κ01 = 0.1, and κ02 = 5.5, thus from another symmetric GvM

distribution. The computed values p0 = pπ/2 = 0.088 are the same of Case S2. We
generated three sequences of r = 104 Bayes factors. The three respective boxplots of the
three sequences can be found in Figure 4.7a. The three respective means of these three
sequences are

B̄
(1)
01 = 5.267, B̄

(2)
01 = 5.553 and B̄(3)

01 = 5.395.
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By aggregating the three sequences, we obtained the asymptotic normal confidence in-
terval at level 0.95 for the mean of the Bayes factors given by

(5.374, 5.436).

We find substantial evidence of axial symmetry. Figure 4.7b displays the prior density
of δ (dashed line) and a posterior density of δ (continuous line) that is based on one of
the previously generated samples. The posterior is highly concentrated around π/2 and
possesses less uncertainty about symmetry than the prior.

4.2.2 Test of vM axial symmetry of GvM

Now we have H0 : κ2 = 0, with fixed µ0
1 = π, µ0

2 = π/2 and κ01 = 0.1. The prior
distribution of κ2 is uniform over [0, 1/2] and the sample θ = (θ1, . . . , θn) is generated
from the vM(µ0

1, κ
0
1) distribution. The prior probability of H0 under the perturbation

is p0 = 0.1. We generated three sequences of r = 104 Bayes factors: their boxplots are
shown in Figure 4.8. In these boxplots we removed a very small number of large values,
in order to improve the readability. The three means of the three generated sequences
are

B
(1)
01 = 3.284, B

(2)
01 = 3.380 and B(3)

01 = 3.241,

where the very large values that were eliminated from the boxplots have been considered
in the calculations of these means. After aggregating these three sequences, we obtained
the following asymptotic normal confidence interval for the mean value of the Bayes
factors at level 0.95,

(3.268, 3.335).

There is a positive evidence of symmetry although rather limited. The amount of evi-
dence is similar to the cases D1 and S1: in all these studies, the prior is much concen-
trated around the null hypothesis (here κ2 = 0), so that the data have increased the
evidence of the null hypothesis only to some limited extend.

4.2.3 Summary

Table 4.2 summarizes the simulation results that we obtained for the three tests and for
the various cases.

4.2.4 Application to real data

The proposed Bayesian tests have been so far applied to simulated data. This section
provides the application of the test of no shift between cosines of Section 4.1.2 and of axial
symmetry of Section 4.1.3 to real data obtained from the study “ArticRIMS” (A Regional,
Integrated Hydrological Monitoring System for the Pan Arctic Land Mass) available
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Figure 4.8: 3 boxplots of the 3 sets of 104 simulated Bayes factors.

H0 case confidence interval for B01 evidence for H0

no shift between cosines
D1 (2.937, 2.976) positive
D1’ (3.901, 3.945) positive
D2 (5.477, 5.541) substantial

axial symmetry
S1 (2.974, 3.013) positive
S2 (5.317, 5.378) substantial
S3 (5.374, 5.436) substantial

vM axial symmetry – (3.268, 3.335) positive

Table 4.2: Summary of the simulation study.

at http://rims.unh.edu. The Arctic climate, its vulnerability, its relation with the
terrestrial biosphere and with the recent global climate change are the subjects under
investigation. For this purpose, various meteorological variables such as temperature,
precipitation, humidity, radiation, vapour pressure, speed and directions of winds are
measured at four different sites.

We consider wind directions measured at the site “Europe basin” and from January to
December 2005. After removal of few influential measurements, the following maximum
likelihood estimators are obtained: µ̂1 = 4.095, µ̂2 = 0.869, κ̂1 = 0.304, κ̂2 = 1.910

and thus δ̂ = (µ̂1 − µ̂2) mod π = 0.084. The histogram of the sample together with the
GvM density with theses values of the parameters are given in Figure 4.9.

For the test of no shift between cosines, the Monte Carlo integral (4.8) is computed
with s = 106 values of δ generated from the prior vM2(ν, τ), with ν = 0 and τ = 300.
We consider ε = 0.18: as mentioned in Section 4.1.1, a substantial value is desirable in
the practice. We obtain the Bayes factor B01 = 2.550; cf. Table 4.3.

For the test of symmetry, the prior of δ is the mixture of two vM of order two, i.e.
ξ vM2(ν1, τ) + (1 − ξ) vM2(ν2, τ), with ν1 = 0, ν2 = π/2, τ = 300 and ξ = 0.5. Monte
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Carlo integration is done with s = 106 generations from this prior. We consider ε = 0.18

and obtain the Bayes factor B01 = 2.252; cf. Table 4.3.
The values of the two Bayes factors of Table 4.3 show positive evidence for the

respective null hypotheses.

H0 B01 evidence for H0

no shift between cosines 2.550 positive
axial symmetry 2.252 positive

Table 4.3: Bayes factors for wind directions data.
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Figure 4.9: Histogram of wind directions data together with GvM(µ̂1, µ̂2, κ̂1, κ̂2) density.

4.3 Conclusion

This chapter introduces three Bayesian tests relating to the symmetry of the GvM
model. The first test is about the significance of the shift parameter between the cosines
of frequency one and two (H0 : δ = 0). The second test is about axial symmetry
(H0 : δ = 0 or δ = π/2). The third test is about vM symmetry (H0 : κ2 = 0). These
tests are obtained by the technique of probability perturbation. Simulation studies show
the effectiveness of these three tests, in the sense that when the sample is coherent with
the null hypothesis, then the Bayes factors are typically large. Applications to real data
are also shown.

Due to computational limitations, we consider null hypotheses of symmetry that con-
cern one parameter only. The null hypotheses considered are about one or two distinct
values of the parameter of interest, with all remaining parameters fixed. Composite null
hypotheses that allow for unknown nuisance parameters, would require one additional
dimension of Monte Carlo integration for each unknown parameter, in the computation
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of the marginal distribution. The computational burden would rise substantially and the
Monte Carlo study, with two levels of nested generations, would become very difficult.
But the essentially simple null hypotheses considered are relevant in the practice. It
can happen that nuisance parameters have been accurately estimated and the question
of interest is really about the the parameter δ and axial symmetry. In the example of
Section 4.2.4, we want to know if wind direction is axially symmetric within the GvM
model. The values of the concentrations and of the axial direction are of secondary
importance.

One could derive other Bayesian tests for the GvM model: a Bayesian test of bi-
modality can be found in Chapter 5. We can also note that Navarro et al. (2017)
introduced an useful multivariate GvM distribution for which similar Bayesian tests
could be investigated.
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Chapter 5

An algebraic analysis of the bimodality
of the generalized von Mises
distribution†

The GvM circular distribution (of order 2) can be either unimodal or bimodal. This
chapter provides an algebraic analysis of the uni- and bimodality of the GvM distribu-
tion. It completes the analyses initiated by Gatto and Jammalamadaka (2007), Gatto
(2008) and Pfyffer and Gatto (2013). The bimodality of the GvM is formulated in terms
of the number of real roots of a quartic polynomial. A detailed analysis of this quar-
tic is presented in this chapter, in particular regarding the nature of its roots (real, in
[−1, 1], complex or with multiplicity). For the study of the bimodality, it is sufficient to
reparametrize the GvM density in terms of δ and ρ = κ1/4κ2 alone. The main result
of this chapter is the determination of the partition of the parametric set of (ρ, δ) in
terms of the subset giving bimodality, denoted by W , and its complement Wc, giving
unimodality. This partition is shown is Figure 5.4a and Figure 5.5. These results are
used in Chapter 6 for Bayesian inference on the bimodality of the GvM distribution.

This chapter is organized as follows. Section 5.1 reformulates the problem of bimodal-
ity in terms of the roots of a quartic. The nature of its roots are analysed in Section 5.2.
In particular, Section 5.2.1 studies the discriminant of the quartic. The algebraic results
of Section 5.2.2 allows to determine the number of extrema of the GvM density. Section
5.3 summarizes the results and provides a practical graph of the parametric subset of
the GvM distribution that gives bimodality. Various numerical illustrations, obtained
with the software R, are presented.

A scheme of the structure of this chapter is given in Figure 5.1.
†Salvador and Gatto (2022a)
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Section 5.1: Reformulation in terms
of the roots of a quartic

Section 5.2: Nature of the
roots of the quartic

Section 5.2.1: Analysis of the
sign of the discriminant ∆

(Propositions 5.2.1 and 5.2.2)

Section 5.2.2: Analysis of
the quantity(

1− 2 sin2 δ
)
sinω cosω

Section 5.3: Conclusions and
final plots

Figure 5.1: Float chart of the scheme of Chapter 5.

5.1 Reformulation in terms of roots of a quartic

Pfyffer and Gatto (2013) suggest the following approach to the study of the extrema of
the GvM density. Let ω = θ − µ1 and δ = (µ1 − µ2) mod π. The extrema points of the
GvM density (2.4) are roots of df (ω|0, δ, κ1, κ2) /dω . The exponent of the GvM can be
re-expressed as

g(ω) = κ1 cosω + κ2 cos 2 (ω + δ) .

The points of extrema satisfy dg(ω)/dω = 0, viz.

−κ1 sinω − 2κ2 sin 2 (ω + δ) = 0. (5.1)

By expanding cosine and sines, (5.1) can be re-expressed as(
1− 2 sin2 δ

)
sinω cosω − 2 sin δ cos δ sin2 ω + ρ sinω + sin δ cos δ = 0. (5.2)

With the change of variable x = sinω, (5.2) can be re-expressed as

±
(
1− 2 sin2 δ

)
x
√
1− x2 = 2 sin δ cos δx2 − ρx− sin δ cos δ, (5.3)

where ρ = κ1/(4κ2) > 0. By taking the square on both sides of (5.3), we obtain that
the values of x that solve (5.3) are precisely the roots of the quartic

qρ,δ(x) = x4 + b3x
3 + b2x

2 + b1x+ b0, (5.4)

where

b3 = −4ρ sin δ cos δ, b2 = ρ2 − 1, b1 = 2ρ sin δ cos δ, and b0 = sin2 δ cos2 δ.
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If x̄ is a root of qρ,δ(x), then it can be transformed back to angular variable through

ω1 = (arcsin x̄) mod 2π and ω2 = (π − arcsin x̄) mod 2π. (5.5)

In general, only one of these two values is a solution of (5.2). The cases where both of
these angular roots are admissible are studied in detail in Section 5.2.2. Finally, going
back into the original abscissa, we obtain the extrema points of the GvM given by

θj = (ωj + µ1) mod 2π, for j = 1, 2.

Bimodality happens if and only if the density of the GvM (2.4) has four distinct extrema
points and this holds when the quartic (5.4) has four real roots. Other particular cases
can happen and they are analysed in this chapter. Because of the change of variable
x = sinω, we are interested in the roots in the interval [−1, 1]. We analyse the cases
where the roots of qρ,δ(x) are multiple, complex and real but not in the interval [−1, 1].
In order to determine the nature of the roots, we summarize the results of Rees (1922)
in the following theorem.

Theorem 5.1.1 (Nature of roots of quartic). Let qρ,δ(x) = x4 + b3x
3 + b2x

2 + b1x+ b0,
where b0, b1, b2, b3 ∈ R. Define

∆ = 256b30 − 192b3b1b
2
0 − 128b22b

2
0 + 144b2b

2
1b0 − 27b41 + 144b23b2b

2
0 − 6b23b

2
1b0

− 80b3b
2
2b1b0 + 18b3b2b

3
1 + 16b42b0 − 4b32b

2
1 − 27b43b

2
0

+ 18b33b2b1b0 − 4b33b
3
1 − 4b23b

3
2b0 + b23b

2
2b

2
1,

and

P = 8b2 − 3b23,

R = b33 − 4b3b2 + 8b1,

∆0 = b22 − 3b3b1 + 12b0,

D = 64b0 − 16b22 + 16b23b2 − 16b3b1 − 3b43.

(5.6)

Then the roots of qρ,δ(x) have the following nature.

1. ∆ < 0 ⇔ two simple real roots and two complex conjugate roots.

2. ∆ > 0:

(a) P < 0 ∧D < 0 ⇔ four simple real roots;

(b) P > 0 ∨D > 0 ⇔ two pairs of complex conjugate roots.

3. ∆ = 0:

(a) P < 0 ∧D < 0 ∧∆0 ̸= 0 ⇔ one double real root and two simple real roots;
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(b) D > 0∨
(
P > 0∧ (D ̸= 0∨R ̸= 0)

)
⇔ one double real root and two complex

conjugate roots;

(c) ∆0 = 0 ∧D ̸= 0 ⇔ a triple real root and a simple real root;

(d) D = 0:

i. P < 0 ⇔ two double real roots;

ii. P > 0 ∧R ̸= 0 ⇔ two double complex conjugate roots;

iii. ∆0 = 0 ⇔ quadruple real root equals to − b3
4
.

These are all the possible cases.

Similar considerations on the nature of the roots of a quartic can be found in Dickson
(1917, p. 45), Garver (1933) and Lazard (1988).

Theorem 5.1.2 (Roots of quartic). The roots of qρ,δ(x) can be obtained using the method
of Ferrari as follows:

x̄1,2 = −b3
4
− S ± 1

2

√
−4S2 − 2p+

t

S
and

x̄3,4 = −b3
4
+ S ± 1

2

√
−4S2 − 2p− t

S
,

(5.7)

where

p =
8b2 − 3b23

8
, t =

b33 − 4b3b2 + 8b1
8

,

S =
1

2

√
−2

3
p+

1

3

(
Q+

∆0

Q

)
and Q =

3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (5.8)

with

∆1 = 2b32 − 9b3b2b1 + 27b23b0 + 27b21 − 72b2b0

and ∆0 given by (5.6).

Alternative formulae for roots of the quartic polynomial can be found in Carpenter
(1966) and Yacoub and Fraidenraich (2012).

Remark 5.1.3. We can re-express the terms appearing in Theorem 5.1.1 directly as
functions of δ and ρ as follows,

∆ = −256 cos2 δ sin2 δ
(
cos2 δ − 1/2

)4 (
27ρ4 cos2 δ

(
1− cos2 δ

)
+ (ρ− 1)3 (ρ+ 1)3

)
,

P = 48ρ2 cos2 δ
(
cos2 δ − 1

)
+ 8(ρ2 − 1), (5.9)

R = 64ρ3 cos δ sin δ
(
cos2 δ − 1/2

)2
,

∆0 = 12
(
2ρ2 + 1

)
cos2 δ

(
1− cos2 δ

)
+
(
ρ2 − 1

)2 and (5.10)

D = −16
(
2 cos2 δ − 1

)2 (
12ρ4 cos2 δ

(
cos2 δ − 1

)
+
(
ρ2 − 1

)2)
. (5.11)
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Remark 5.1.4. When ∆ > 0, Theorem 5.1.1, part 2, tells that qρ,δ(x) has either non-
real roots or four simple real roots, depending on the signs of P and D. Consider the
case of four simple real roots. It follows from

∆2
1 − 4∆3

0 = −27∆ < 0

that
√

∆2
1 − 4∆3

0 is purely imaginary. With this, (5.8) tells that Q, and therefore S, are
non-real complex numbers. Hence the roots in (5.7) are indeed real, although they are
expressed in terms of complex numbers.† However S can be re-expressed in a purely real
way as

S =
1

2

√
−2

3
p+

2

3

√
∆0 cos

ψ

3
, where ψ = arccos

∆1

2
√

∆3
0

. (5.12)

In order to show (5.12), we first note that (5.8) tells that z = Q3can be written as
z = a+ ib, where

a =
∆1

2
and b =

√
4∆3

0 −∆2
1

2
.

The modulus of z is

r =
√
a2 + b2 =

√
∆2

1

4
+

4∆3
0 −∆2

1

4
=
√

∆3
0

and the argument of z is

ψ = arccos
a

r
= arccos

∆1

2
√
∆3

0

,

given that z belongs to the upper complex half plane. Thus,

Q =
3
√
a+ ib = 3

√
r

(
cos

ψ

3
+ i sin

ψ

3

)
=
√

∆0e
iψ
3

and
|Q| =

√
∆0.

We justify (5.12) by

Q+
∆0

Q
=
√

∆0e
iψ
3 +

∆0√
∆0e

iψ
3

= 2
√

∆0 cos
ψ

3
.

5.2 The nature of the roots of the quartic

After reformulating the problem of bimodality in terms of roots of a quartic, we now
study the nature of these roots. The first important quantity is the discriminant ∆ and
Section 5.2.1 analyses sgn∆, according to ρ ∈ (0, 1/2], ρ ∈ (1/2, 1], and ρ ∈ (1,+∞). The
second important quantity is

(
1− 2 sin2 δ

)
sinω cosω, appearing in (5.2), and Section

5.2.2 analyses the roots of this quantity.
†When solving equations of degree three or higher, it can happen that the roots are expressed in

terms of complex numbers, although these roots are only real. This situation is referred within algebra
to as “casus irriducibilis” and it was first presented in 1572 by Bombelli; cf. e.g. p. 17 of Cox (2012).
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5.2.1 Analysis of ∆

Theorem 5.1.1 tells that ∆ plays a major role in the study of the nature of the roots
of the quartic qρ,δ(x). This section presents a study of the sign of ∆, with particular
attention to the number of solutions of ∆ = 0.

Remark 5.1.3 allows us to rewrite ∆ as

∆ = 27ρ4
[
16 cos δ sin δ

(
cos2 δ − 1/2

)2]2 · Λ
where

Λ = cos4 δ − cos2 δ − (ρ2 − 1)
3

27ρ4
. (5.13)

In particular, 27ρ4
[
16 cos δ sin δ (cos2 δ − 1/2)

2
]2

≥ 0, with equality iff δ = 0, π/4, π/2, 3π/4.
We now focus on the study of Λ. Using the change of variable t = cos2 δ, (5.13)

becomes
Λ∗ = t2 − t− (ρ2 − 1)3

27ρ4
, (5.14)

which is a quadratic polynomial w.r.t. t. The discriminant of (5.14) is given by

∆̃ = 1 +
4

27ρ4
(
ρ2 − 1

)3
=

27ρ4 + 4ρ6 − 12ρ4 + 12ρ2 − 4

27ρ4

=
4ρ6 + 15ρ4 + 12ρ2 − 4

27ρ4

= (ρ− 1/2) ·
(
4ρ5 + 2ρ4 + 16ρ3 + 8ρ2 + 16ρ+ 8

27ρ4

)
︸ ︷︷ ︸

>0

.

(5.15)

Hence, we have the three following cases:

(a) For ρ < 1/2, ∆̃ < 0: Λ∗ does not have any real roots;

(b) For ρ = 1/2, ∆̃ = 0: Λ∗ has one double real root;

(c) For ρ > 1/2, ∆̃ > 0: Λ∗ has two simple real roots.

Because of the change of variable t = cos2 δ ≥ 0, we are only interested in the cases (b)
and (c) where Λ∗ has non-negative real roots.

Let us consider case (c) of two real roots t1 and t2. From (5.14), we have

t1 + t2 = 1 and t1 · t2 = −(ρ2 − 1)3

27ρ4
.

The first equation tells us that the two roots cannot be both negative. We distinguish
three situations.

54



(c.i) When ρ2 − 1 < 0, thus here 1/2 < ρ < 1, the second equation tells t1 · t2 > 0

and thus both roots are indeed positive. We can now obtain the roots of (5.13) as
follows,

cos2 δ = t1 ⇒ δ1,2 = arccos(±
√
t1) and cos2 δ = t2 ⇒ δ3,4 = arccos(±

√
t2).

In particular, since t1+ t2 = 1 and t1, t2 > 0, the four roots δ1,2 and δ3,4 are defined
over [0, π), as required. One can indeed show that the constant term of (5.13),
i.e. − (ρ2 − 1)

3
/(27ρ4), is strictly decreasing in (1/2, 1) so that δ1, δ2, δ3, δ4 cannot

take the values 0, π/4, π/2, 3π/4, that are obtained with ρ = 1/2 and ρ = 1 (see
cases (b) and (c.iii) respectively, below). Thus ∆ has eight simple roots.

(c.ii) When ρ > 1 the product of the roots of Λ∗ is negative hence one and only one of
t1 or t2 is negative. Let t2 be the negative root, without loss of generality. This
means that t1 = 1 − t2 > 1 and we cannot solve δ = arccos(±

√
t1) since the

function arccos is not well defined for argument grater than 1: In this case, the
factor Λ is irreducible.

(c.iii) For ρ = 1, (5.14) reduces to t2 − t = t(t− 1) = 0 with roots t1 = 1, t2 = 0. So we
obtain

cos2 δ = 1 ⇒ cos δ = ±1 ⇒ δ = 0, π,

cos2 δ = 0 ⇒ cos δ = 0 ⇒ δ = π/2.

But δ = π is not admissible and so the roots are δ = 0, π/2.

Now we analyse case (b) of one double real root. We simplify (5.14) to

t2 − t+ 1/4 = (t− 1/2)2 = 0

hence t = 1/2 is the (double) real root of (5.14) and by the change of variables we obtain

cos2 δ = 1/2 ⇒ cos δ = ±
√
2/2,

and to conclude that δ = π/4, 3π/4 are roots of Λ = 0.
We have thus shown Proposition 5.2.1.

Proposition 5.2.1 (Roots of ∆). The roots of the discriminant ∆ are the following.

1. For ρ ≤ 1/2 ∨ ρ ≥ 1, ∆ has four simple roots, namely δ = 0, π/4, π/2, 3π/4.

2. For 1/2 < ρ < 1, ∆ has four other simple roots in addition to δ = 0, π/4, π/2, 3π/4,
that are

δ1 = arccos(
√
t1) and δ2 = arccos(−

√
t1) = π − δ1,

δ3 = arccos(
√
t2) and δ4 = arccos(−

√
t2) = π − δ3,
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with

t1,2 =
1±

√
∆̃

2
and ∆̃ = (ρ− 1/2) ·

(
4ρ5 + 2ρ4 + 16ρ3 + 8ρ2 + 16ρ+ 8

27ρ4

)
.

Moreover we have 0 < δ1 <
π
4
< δ3 <

π
2
< δ4 <

3π
4
< δ2 < π.

We can now show the following results regarding the sign of ∆.

Proposition 5.2.2 (Sign of ∆). We can distinguish the following cases for the sign of
∆.

(1) For ρ ≤ 1/2, ∆ ≥ 0 for all δ ∈ [0, π).

(2) For ρ ≥ 1, ∆ ≤ 0 for all δ ∈ [0, π).

(3) For 1/2 < ρ < 1, ∆ ≥ 0 for all δ ∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π).

Proof of Proposition 5.2.2.

(1) For ρ = 1/2, we have Λ = (cos2 δ − 1/2)
2 ≥ 0, for all δ ∈ [0, π). On the other hand

for ρ < 1/2, ∆̃ < 0 and Λ is irreducible. Hence it has constant sign for all values
of δ. In particular for δ = 0 we have Λ = − (ρ2 − 1)

3
/(27ρ4) > 0. We conclude

that Λ > 0 for all δ ∈ [0, π), thus ∆ ≥ 0 for all δ ∈ [0, π).

(2) For ρ = 1 we have Λ = cos2 δ(cos2 δ− 1) ≤ 0 while for ρ > 1, we have seen in (c.ii)
that Λ is irreducible, hence it has constant sign. For δ = 0, Λ < 0 which means
that Λ < 0 for all δ ∈ [0, π). Hence we conclude that ∆ ≤ 0 for all δ ∈ [0, π).

(3) We get from (c.i) that Λ∗ ≥ 0 iff t ≤ t2 ∨ t ≥ t1. With the change of variables
t = cos2 δ and with the fact that arccos is strictly decreasing, we get that Λ ≥ 0

for all δ ∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π). Hence we conclude ∆ ≥ 0 for all δ ∈ [0, δ1] ∪
[δ3, δ4] ∪ [δ2, π).

Analysis of ∆ ̸= 0

We can now analyse the case ∆ ̸= 0. We have δ ̸= 0, π/4, π/2, 3π/4 and depending of
the values on ρ, δ ̸= δ1, δ2, δ3, δ4.

(i) For ρ ≤ 1/2, we have from Proposition 5.2.2 that ∆ > 0. It follows from (5.9), using
cos2 δ < 1 and ρ2 − 1 < 0 for all ρ ≤ 1/2, that P < 0. Moreover, we have that D < 0

for all ρ ≤ 1/2.
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This can be proved as follows. Let us re-write (5.11) as D = −16 (2 cos2 δ − 1)
2 ·Λ′

with Λ′ = 12ρ4 cos2 δ (cos2 δ − 1) + (ρ2 − 1)
2. Now let us study the sign of Λ′ for

ρ ≤ 1/2: cos2 δ (cos2 δ − 1) has a minimum at cos2 δ = 1/2 hence when δ = π/4, 3π/4,
where it assumes value −1/4. Hence we can say that

Λ′ > −12

4
ρ4 +

(
ρ2 − 1

)2
= −2ρ2

(
ρ2 + 1

)
+ 1. (5.16)

The inequality in (5.16) is strict because we are under the hypothesis ∆ ̸= 0, thus
δ ̸= π/4, 3π/4. The right hand side of (5.16) is a decreasing function and hence we
have that

−2ρ2
(
ρ2 + 1

)
+ 1 ≥ −2

(
1

2

)2
[(

1

2

)2

+ 1

]
+ 1 =

3

8
,∀ρ ≤ 1/2.

In conclusion, Λ′ > 0, ∀ρ ≤ 1/2 and thus D < 0, ∀ρ ≤ 1/2.

Hence from Theorem 5.1.1 we know what qρ,δ(x) has four real distinct roots. In
order to check that all these roots are in [−1, 1], we apply Sturm’s theorem (due to
Jacques Charles François Sturm in 1829). This theorem expresses the number of real
roots of a polynomial q located in an interval, in terms of the sign changes that the
Sturm’s sequence of q assumes at the upper and lower bounds of the interval. A
Sturm’s sequence of a polynomial q is a sequence of polynomials associated to q and
its first derivative q′, by a variant of the Euclid’s algorithm for polynomials (see Basu
et al., p. 14). A reference on Sturm’s theorem and sequence is Basu et al., p. 52.
With the help of a computer program based on Sturm’s theorem, one checks that the
four real roots are in [−1, 1] and that these are all cases of bimodality.

(ii) For ρ ≥ 1, we have from Proposition 5.2.2 that ∆ < 0 and from Theorem 5.1.1
we know that qρ,δ(x) has two simple real roots. Each of these roots is transformed
through (5.5) into one acceptable angular value. This is explained in detail in Section
5.2.2. Hence the GvM has two extrema points, and we conclude that these cases give
unimodality.

(iii) For 1/2 < ρ < 1, we have from Proposition 5.2.2 that ∆ > 0 for all δ ∈ (0, δ1) ∪
(δ3, δ4) ∪ (δ2, π), given that δ ̸= π/2 in our initial assumptions. By using (5.9) it is
not hard to check that P < 0 for all values of δ. The sign of D in this case follows
from the following general proposition.

Proposition 5.2.3. It holds that D < 0 for all ρ ∈ (1/2, 1) and for all δ ∈ [0, δ1] ∪
[δ3, δ4] ∪ [δ2, π).

Proof of Proposition 5.2.3. We can re-write D as in (5.11) as follows:

D = −16
(
12ρ4

) (
2 cos2 δ − 1

)2 · Λ1,
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with

Λ1 = cos4 δ − cos2 δ +
(ρ2 − 1)

2

12ρ4
.

In particular −16 (12ρ4) (2 cos2 δ − 1)
2
< 0 for all δ ∈ [0, π) with equality for δ =

π/4, 3π/4. Using the change of variable cos2 δ = t (as in Proposition 5.2.1) we obtain

Λ∗
1 = t2 − t+

(ρ2 − 1)
2

12ρ4
. (5.17)

Let us study the sign of (5.17). The discriminant of (5.17) is

∆̃′ = 1− 4
(ρ2 − 1)2

12ρ4
=

2ρ4 + 2ρ2 − 1

3ρ4
.

With the change of variable y = ρ2 > 0 we find that ∆̃′ > 0 for all ρ ∈ (ρ∗, 1) where
ρ∗ =

((
−1 +

√
3
)
/2
)1/2 ≃ 0.6. So we can say that

1. For ρ ∈ (1/2, ρ∗), ∆̃′ < 0 and thus Λ1 > 0,∀δ ∈ [0, π). In conclusion, D ≤ 0,∀δ ∈
[0, π).

2. For ρ = ρ∗, ∆̃′ = 0 and Λ∗
1 = (t − t′1)

2 where t′1 = 1/2. Thus we can say that
Λ1 ≥ 0 for all δ ∈ [0, π). Hence D ≤ 0 for all δ ∈ [0, π).

3. For ρ ∈ (ρ∗, 1), ∆̃′ > 0 and the roots of (5.17) are t′1,2 =
(
1±

√
∆̃′
)
/2. In

particular, from (5.17) we notice that the product of these roots is (strictly)
positive and their sum is one. Hence they are both acceptable. With similar
considerations made in Proposition 5.2.2 we have Λ1 ≥ 0 for all ρ ∈ (ρ∗, 1) and
for all δ ∈ [0, δ′1] ∪ [δ′3, δ

′
4] ∪ [δ′2, π], where

δ′1 = arccos(
√
t′1) and δ′2 = arccos(−

√
t′1) = π − δ′1,

δ′3 = arccos(
√
t′2) and δ′4 = arccos(−

√
t′2) = π − δ′3,

with

t′1,2 =
1±

√
∆̃′

2
and ∆̃′ =

2ρ4 + 2ρ2 − 1

3ρ4
.

In particular with similar considerations made in (c.i) of Section 5.2.1 we can say
that δ′i ̸= π/4, 3π/4 for i = 1, 2, 3, 4.

Consider now δi for i = 1, 2, 3, 4 introduced in Proposition 5.2.1. In cases 1. and
2. above, the equality D = 0 holds for δ = π/4, 3π/4. Now again from Proposition
5.2.1 we have π/4, 3π/4 /∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π). Hence we conclude D < 0 for all
ρ ∈ (1/2, ρ∗] and for all δ ∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π).

Consider case 3, hence ρ ∈ (ρ∗, 1). From what written above, we have D ≤ 0, for
all δ ∈ [0, δ′1] ∪ [δ′3, δ

′
4] ∪ [δ′2, π) ∪ {π/4, 3π/4}. We want to compare the values δ′i with
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δi for i = 1, 2, 3, 4. It is not hard to check that ∆̃ > ∆̃′, where ∆̃ is given in (5.15). In
fact

(ρ− 1/2) ·
(
4ρ5 + 2ρ4 + 16ρ3 + 8ρ2 + 16ρ+ 8

27ρ4

)
>

2ρ4 + 2ρ2 − 1

3ρ4

⇐⇒ h(ρ) = 4ρ6 − 3ρ4 − 6ρ2 + 5 > 0.

The function h(ρ) is strictly positive. In fact limρ→0+ h(ρ) = 5 and limρ→+∞ h(ρ) =

+∞. Moreover, a study of the sign of the first derivative tells us that there exist only
one minimum ρmin =

((
1 +

√
3
)
/4
)1/2

, such that h(ρmin) > 0. From the fact that
∆̃ > ∆̃′ we can say that t1 > t′1 and t2 < t′2, where t1, t2 are given in Propositions
5.2.1. Now, since arccos is decreasing, we have that

δ1 = arccos
√
t1 < arccos

√
t′1 = δ′1, and δ2 = π − δ1 > π − δ′2 = δ′2

δ3 = arccos
√
t2 > arccos

√
t′2 = δ′3, and δ4 = π − δ3 < π − δ′3 = δ′4.

(5.18)

From (5.18) and from the fact that δ1 < δ3 < δ4 < δ4 and in the same way that
δ′1 < δ′3 < δ′4 < δ′4, we can say that [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π) is a proper subset of
[0, δ′1] ∪ [δ′3, δ

′
4] ∪ [δ′2, π). This is visually confirmed in Figure 5.2. Moreover from

Proposition 5.2.1 we can say π/4, 3π/4 /∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π). Thus D ≤ 0 for all
ρ ∈ (ρ∗, 1) and for all δ ∈ [0, δ′1]∪ [δ′3, δ

′
4]∪ [δ′2, π]∪ {π/4, 3π/4} implies that D < 0 for

all ρ ∈ (ρ∗, 1) and for all δ ∈ [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π).

We conclude that D < 0 for all ρ ∈ (1/2, 1) and for all δ ∈ [0, δ1]∪ [δ3, δ4]∪ [δ2, π).

0 δ1
' δ3

' δ4
' δ2

'
π

0 δ1 π 4 δ3 δ4 3π 4 δ2 π

Figure 5.2: In bold line the set [0, δ1] ∪ [δ3, δ4] ∪ [δ2, π] (lower panel); in thicker line the
set [0, δ′1] ∪ [δ′3, δ

′
4] ∪ [δ′2, π] (upper panel).

In particular, given that we are in the case ∆ ̸= 0, it follows that D < 0 for all
ρ ∈ (1/2, 1) and for all δ ∈ (0, δ1) ∪ (δ3, δ4) ∪ (δ2, π).

Since P,D < 0 and Theorem 5.1.1, we know that qρ,δ(x) has four real distinct
roots. Again upon applying Sturm’s theorem, one can check numerically that these
four roots are in [−1, 1]. Hence we have cases of bimodality.
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(iv) From Proposition 5.2.2 we obtain ∆ < 0, for ρ ∈ (1/2, 1) and δ ∈ (δ1, δ3) ∪ (δ4, δ2),
namely from δ in the complementary set given under (iii), given that δ ̸= π/4, 3π/4

in our initial hypothesis. With similar considerations as in (ii), we have cases of
unimodality.

The cases when ∆ = 0 deserve a special mention and they are analysed in what follows.
As seen in Section 5.1, the number of solutions of (5.2) is important in the study of

bimodality of the GvM. In the next section we analyse in detail the cases where both
angular values obtain in (5.5) are or are not admissible solutions of (5.2).

5.2.2 Analysis of the term (1 − 2 sin2 δ) sinω cosω

Let us return to the original problem: Bimodality of f(·|µ1, µ2, κ1, κ2) means four ex-
trema points, that, in turn, means that (5.2) has four simple solutions. These extrema
are analysed through the roots x̄ of qρ,δ(x) and the transformation (5.5) tells us that we
are only interested in real roots and within [−1, 1].

In particular, the number of acceptable angular values given by (5.5) is crucial. The
term (1 − 2 sin2 δ) sinω cosω in (5.2) plays an important role in the analysis of the
bimodality: in general, if this term is different than zero, then it follows from cosω1 =

− cosω2 that only one of the angular values ω1 and ω2 can be solution of (5.2). Hence,
only one of the two angular values can be an extremum of the GvM density. Thus it
is useful to analyse in detail the term (1 − 2 sin2 δ) sinω cosω and the cases where it
vanishes.

The equation (1− 2 sin2 δ) sinω cosω = 0 holds in the following situations.

(i) 1− 2 sin2 δ = 0, hence δ = π/4, 3π/4.

(ii) sinω = 0, hence ω = 0, π. From (5.5) this happens when x̄ = 0 is one of the roots
of qρ,δ(x), which means sin δ cos δ = 0 and hence δ = 0, π/2.

(iii) cosω = 0, hence ω = π/2, 3π/2.
Let us analyse case (iii). From (5.5) the case ω = π/2 happens when x̄1 = 1 is one
of the roots of qρ,δ(x). On the other hand, ω = 3π/2 holds when one of the roots
is x̄ = −1. If x̄ = 1 is one of the roots of qρ,δ(x), then

1 + b3 + b2 + b1 + b0 = 0,

which leads to
ρ2 − 2ρ sin δ cos δ + sin2 δ cos2 δ = 0,

which gives ρ = sin δ cos δ. Because ρ > 0, we restrict δ to the interval (0, π/2).
One can easily verify that the function h1(δ) = sin δ cos δ has a maximum at
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δ = π/4 and at this point it assumes value 0.5. Hence ρ = sin δ cos δ ≤ 0.5, ∀δ ∈
(0, π/2). On the other hand, if x̄ = −1 is one of the roots of qρ,δ(x) then

1− b3 + b2 − b1 + b0 = 0,

hence
ρ2 + 2ρ sin δ cos δ + sin2 δ cos2 δ = 0,

which leads to ρ = − sin δ cos δ and ρ > 0 implies δ ∈ (π/2, π). With similar
considerations as above, but this time for the function h2(δ) = − sin δ cos δ, we
can say that ρ = − sin δ cos δ ≤ 0.5. Case (i) of Section 5.2.1 tells us these are all
cases of bimodality.

As mentioned, case (iii) will always give bimodality. On the other hand, it is inter-
esting to study in detail the cases (i) and (ii). In fact, when δ = 0, π/4, π/2, 3π/4 it
holds that ∆ = 0 for all values of ρ > 0, as seen in Section 5.2.1. Moreover, Theorem
5.1.1 tells us that ∆ = 0 deserves a particular mention. In this case qρ,δ(x) can have
multiple real roots, and this might influence the number of angular values ω, hence the
number of extrema of the GvM density. We now analyse in detail cases (i) and (ii).

(i) Let us study the case δ = π/4. The study of δ = 3π/4 is analogous and it is
omitted. When δ = π/4, we have that b0 = 1/4, b1 = ρ, b2 = ρ2 − 1, b3 = −2ρ and
so the quartic reduces to

qρ,π/4(x) = x4 − 2ρx3 + (ρ2 − 1)x2 + ρx+
1

4
.

Following the analysis of ∆ in Section 5.2.1, we know that ∆ = 0 ∀ρ > 0, and
using D and P as in Remark 5.1.3 we can easily obtain

D = 0 and P = −4ρ2 − 8 < 0,∀ρ > 0.

Thus according to Theorem 5.1.1 this is the only case where qρ,δ(x) has two double
real roots x̄1 and x̄2. According to (5.7), they are

x̄1 = −b3
4
− S =

ρ

2
− S, and x̄2 = −b3

4
+ S =

ρ

2
+ S, (5.19)

with Q that reduces to

Q =
3

√
∆1

2
,

since ∆ = 0. In this case we have that

p = −ρ
2 + 2

2
, ∆1 = 2

(
ρ2 + 2

)3
,

Q =
(
ρ2 + 2

)
, ∆0 =

(
ρ2 + 2

)2
.
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Thus

S =
1

2

√
−2

3
+

1

3

(
Q+

∆0

Q

)
=

1

2

√
−2

3

[
−ρ

2 + 2

2
+

1

3
(2 (ρ2 + 2))

]
=

1

2

√
1

3
(3 (ρ2 + 2)) =

1

2

√
ρ2 + 2.

We can re-write (5.19) as

x̄1 =
ρ

2
− 1

2

√
ρ2 + 2, and x̄2 =

ρ

2
+

1

2

√
ρ2 + 2.

We have that x̄1 ∈ [−1, 1], ∀ρ > 0, while x̄2 ∈ [−1, 1], ∀ρ ∈ (0, 1/2]. When
x̄1, x̄2 ∈ [−1, 1], transforming in angular values leads to

ω1 = (arcsin x̄1) mod 2π, ω2 = (π − arcsin x̄1) mod 2π,

ω3 = (arcsin x̄2) mod 2π, ω4 = (π − arcsin x̄2) mod 2π,
(5.20)

and since the term (1−2 sin2 δ) sinω cosω in (5.2) is equal to zero, all four angular
values in (5.20) are distinct solutions of (5.2): we are in a case of bimodality. But
for δ = π/4 we have cases of unimodality as well. In fact, in Figure 5.3 the two
roots x̄1 and x̄2 used in (5.20) are displayed: for ρ > 1/2, x̄2 is not in the interval
[−1, 1], thus only x̄1 can be transformed in two angular roots, and in this case we
only have two extrema points for the GvM. This is a case of unimodality.

0.5 1.0 1.5 2.0

−
2

−
1

0
1

2

ρ

Figure 5.3: Plot of the two roots of qρ,δ(x), x̄1 (solid line) and x̄2 (dashed line), for δ = π
4
:

for ρ > 1/2, x̄2 /∈ [−1, 1].

(ii) Now we study the case δ = π/2, while δ = 0 is analogue and omitted. In this case,
b0 = b1 = b3 = 0, b2 = ρ2 − 1 and the quartic reduces to

qρ,π/2(x) = x4 + (ρ2 − 1)x2,

which has a double real root x̄1 = 0, for all ρ > 0. Factoring out x2 in qρ,π/2(x),
we get the following three possible cases:
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1. For ρ > 1, qρ,π/2(x) has two complex conjugate roots, plus the real double
root x̄1 = 0,

2. For ρ < 1, qρ,π/2(x) has two simple real roots x̄2 =
√

1− ρ2 and x̄3 =

−
√

1− ρ2 in [−1, 1], plus the real double root x̄1 = 0,

3. For ρ = 1, qρ,π/2(x) has the unique root x̄1 = 0, with multiplicity four.

In case 1 the only real root x̄1 is transformed in angular roots

ω1,1 = arcsin(x̄1) mod 2π = 0,

ω1,2 = π − arcsin(x̄1) mod 2π = π.
(5.21)

Since the term (1 − 2 sin2 δ) sinω cosω in (5.2) vanishes, both ω1,1 and ω1,2 are
acceptable, thus the GvM has only two extrema points and this is counted as a
case of unimodality. In case 2 the roots x̄2 and x̄3 can be transformed to four
angular roots according to (5.5), but only two are acceptable. Hence the GvM has
in total four extrema points and this is a case of bimodality. In case 3, qρ,π/2(x)
has only one root x̄1 = 0, which is transformed in two angular roots as in (5.21)
of case 1. Thus it is a case of unimodality.

We conclude this analysis with the study of the roots of qρ,δ(x) for 1/2 < ρ < 1 and
δ = δ1, δ2, δ3, δ4. We remind that, from the considerations made in (c.i) of Section 5.2.1,
δi ̸= 0, π/4, π/2, 3π/4, for i = 1, 2, 3, 4. From (5.9) it is simple to check that P < 0. From
Proposition 5.2.3 follows that D < 0. Moreover, ∆0 as in 5.10 is sum of two strictly
positive terms. Thus ∆0 ̸= 0. Hence we are in case (3a) of Theorem 5.1.1: qρ,δ(x)

has three real roots counted with multiplicity, namely x̄1, x̄2 (single real roots) and x̄3

(double real root). Each root is transformed into two angular values through (5.5) but,
since the term (1 − 2 sin2 δ) cosω sinω is not zero, only one is accepted. Thus there
are three critical points, namely ω1, ω2 and ω3. Since the GvM is a differential periodic
function, it must have the same number of maxima and minima, or in other words an
even number of extrema. This means that a case with two maxima and one minimum, or
with two minima and one maximum cannot happen. Hence, we deduce that one of the
three critical points is a turning point, precisely a stationary inflection point. We verified
numerically our claim for δ = δ1 and for values of ρ uniformly generated in (0.5, 1). Let
ω3 be the angular value associated to the double root x̄3. The second derivative of the
exponent of the GvM divided by 4κ2, namely

1

4κ2
· d

2g(ω)

dω2
= −ρ cosω − cos 2(ω + δ),

vanishes at ω3. We conclude that the extrema of the GvM associated to ω3 is indeed a
stationary inflection point. Thus the GvM density has only two extrema and this is a
case of unimodality.
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Remark 5.2.4. In the light of Section 5.2.2, it is simple to check that for ρ ∈ (1/2, 1)

and δ = δ1, δ2, δ3, δ4, we have (1− 2 sin2 δ) cosω sinω ̸= 0. In fact, δ ̸= 0, π/4, π/2, 3π/4

and it is easy to check that ρ = sin δ cos δ has no solutions for ρ ∈ (1/2, 1). We analyse,
without loss of generality, the case δ = δ1. We get ρ2 = cos2 δ (1− cos2 δ) = t1(1 − t1)

that leads to t21 − t1 + ρ2 = 0 and that has no real roots for ρ > 1/2. In the same way
ρ = − sin δ cos δ has no solutions for ρ ∈ (1/2, 1).

5.3 Conclusion

The analysis of the quartic is summarized with a plot that visualizes the incidence of
ρ and δ on bimodality and unimodality. Figure 5.4a shows the decomposition of the
(ρ, δ) - plane in region of bimodality W , in grey, and of unimodality Wc, in white.† In
particular, we fix nine points A-I belonging to W or Wc and we plot the corresponding
GvM densities. The bimodality and unimodality of these points is confirmed by the
densities in Figure 5.4b .

Figure 5.5 illustrates the analysis of Sections 5.2.1 and 5.2.2: A vertical line at ρ
intersects only W , Wc or both W and Wc, as follows:

- For ρ ≤ 1/2, a vertical line at ρ intersects only W ,

- For ρ ≥ 1, a vertical line at ρ intersects only Wc,

- For 1/2 < ρ < 1, a vertical line at ρ intersects both W and Wc.

This confirms the algebraic study of ∆ and of the cases δ = 0, π/4, π/2, 3π/4. For
example, the dashed vertical lines at ρ = 0.25, 0.66 and ρ = 1.5 shown in Figure 5.5 do
follow this rule.

We can finally conclude that:

- For ρ ≤ 1/2 and for all δ ∈ [0, π), we have cases of bimodality,

- For ρ ≥ 1 and for all δ ∈ [0, π), we have cases of unimodality,

- For 1/2 < ρ < 1 and for δ ∈ [0, δ1)∪ (δ3, δ4)∪ (δ2, π), we are in cases of bimodality.

The study of inflection points of the GvM is far from simple because it involves a
polynomial of degree 8. We refer to Pfyffer and Gatto (2013). It is strictly related to
the study of the change of sign of dg(ω)/dω. This is subject of future research.

†Note that Figure 5.4a is a corrected version of Figure 2 of Pfyffer and Gatto (2013).
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(a) Plane (ρ, δ) with region of bimodality W, in grey, and of unimodality
Wc, in white.
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(b) GvM densities corresponding to the points A - I of (a)

Figure 5.4: A point (ρ, δ) in W corresponds to a bimodal GvM; a point (ρ, δ) in Wc,
corresponds to a unimodal GvM.
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Figure 5.5: Region of bimodality W (grey) and of unimodality Wc (white), with focus
on different values of ρ. In dashed lines the value at ρ = 0.66 and corresponding values
δ1, δ2, δ3, δ4. Additional dashed lines at ρ = 0.25 and ρ = 1.5. Thicker dashed lines at
ρ = 0.5 and at ρ = 1.

66



Chapter 6

Bayesian inference on the bimodality
of the generalized von Mises †

This chapter introduces Bayesian inference on the bimodality of the generalized von
Mises distribution for planar directions (Gatto and Jammalamadaka, 2007). As already
mentioned, the GvM distribution is a flexible model that can be axial symmetric or
asymmetric, unimodal or bimodal. The number of modes for a circular distribution
has practical relevance in various fields. It is the case for example in meteorology,
precisely in the context of the analysis of directions of winds, and in biology, precisely
in the study of directions taken by various animals. In this chapter two approaches
of Bayesian inference are considered. The first concerns test of hypotheses, where the
null hypothesis H0 is the bimodality of the GvM and the alternative hypothesis H1

is unimodality. This test was motivated by Basu and Jammalamadaka (2000), who
proposed a similar test for mixtures of vM distributions. The Bayes factor of this test
is obtained. The second approach concerns HPD credible set. Two parameters relevant
for bimodality are obtained and the HPD credible set for those parameters is compared
with the subset of all parameters yielding bimodality.

We can summarize the Bayesian test as follows. Define by Ψ the set of all vectors
of parameters ψ = (κ1, κ2, µ1, µ2) of the GvM distribution with density (2.7) that lead
to bimodality and denote the prior probability of bimodality by p = P [ψ ∈ Ψ]. Since
we assume that the elements of ψ are independent, the computation of p can be done
by simple Monte Carlo. Assume that the components of the sample θ = (θ1, . . . , θn)

are independent and identically distributed (i.i.d.), with GvM distribution (2.7). Let
P [B|θ] be the conditional probability given θ, viz. the sample, for any measurable set
B. The Bayesian test requires the posterior probability of bimodality P [ψ ∈ Ψ|θ].

In the posterior distribution, the components of ψ are generally not independent.
The computation of the posterior probability is done by Markov Chain Monte Carlo
(MCMC). We remind that MCMC is a class of iterative simulation techniques that is

†Gatto and Salvador (2022)
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based on three main algorithms: the Metropolis, due to Metropolis et al. (1953), the
Metropolis-Hastings, due to Hastings (1970) and the Gibbs sampler due to Geman and
Geman (1984). MCMC algorithms allow to generate a Markov chain whose equilibrium
distribution coincides with the posterior distribution. The states of the Markov chain
are recorded only after a certain initial period, usually called burn-in period: after this
period the generated values of the Markov chain become very close to generations from
the posterior distribution.

Precisely, we propose the following nested simulation scheme for the posterior distri-
bution of ψ. The main algorithm is the Gibbs sampler: we generate from the full con-
ditional distributions of each parameter. The full conditional of one element of ψ is the
posterior conditional distribution of that element given all other parameters fixed. The
generation from each one of the full conditionals is done with the Metropolis-Hastings
(MH) algorithm. Here, the sampling or instrumental density is a piecewise function that
interpolates the full conditional.

The simulations from prior and posterior distributions are used to compute prior
and posterior probability of bimodality. These probabilities allow us to infer on the
bimodality by means of Bayes factors and HPD credible sets.

The next sections of the chapter present the following topics. Section 6.1 presents two
Bayesian approaches for the bimodality of the GvM distribution: the testing approach,
with the Bayes factor, and the HPD approach. It shows how to obtain posterior and full
conditional distributions, for some given prior distributions. Then, a nested simulation
algorithm from the posterior distribution is explained. It uses the Gibbs sampler and a
MH algorithm. Section 6.2 presents the results of the simulation study. Bayes factors
for unimodal and bimodal samples are obtained. HPD credible intervals for single pa-
rameters are presented. A bivariate HPD credible set for two parameters that determine
bimodality of the GvM is given. Gelman’s convergence diagnostic is presented. This
method consists in studying the variance between, the variance within and the shrink
factor of m simultaneous chains. We refer to (Gelman et al., 1992) for this. Simulation
results under a more general prior are given at the end of the numerical study. Final
remarks are given in Section 6.3.

6.1 Bayesian inference and MCMC

This section presents the methodology for Bayes inference on bimodality for the GvM,
precisely the derivation of Bayes factors and HPD credible sets and the related MCMC.
Section 6.1.1 provides the derivation of the posterior distribution. Section 6.1.2 concerns
simulation from the posterior distribution. Its multidimensional and complicated form
requires MCMC. We suggest using the Gibbs sampling from the posterior distribution,
in conjunction with the MH algorithm for sampling from the one-dimensional full condi-
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tionals. Inferential aspects related to Bayes factors and HPD credible sets are explained
in Section 6.1.3.

6.1.1 Likelihood, posterior computations and bimodality

This section provides likelihood of the sample θ = (θ1, . . . , θn) of independent angles from
the GvM(µ1, µ2, κ1, κ2) distribution and the posterior distribution of the parameters, for
some given prior distributions.

The prior distribution of κj is the uniform distribution over (0, κ̄j), for some κ̄j > 0,
for j = 1, 2. Note that although the major part of the simulation study that follows
uses these uniform priors, the more general beta prior is also considered at the end of
the simulation study (in Section 6.2.3). The prior distribution of µ1 is the vM(ν1, τ1)

distribution with density given by (2.2). Thus

f(µ1|ν1, τ1) =
1

2πI0(τ1)
exp {τ1 cos (µ1 − ν1)} , ∀µ1 ∈ [0, 2π), (6.1)

where τ1 > 0 and ν1 ∈ [0, 2π). The prior distribution of µ2 is the axial vM with density

f(µ2|ν2, τ2) =
1

πI0(τ2)
exp {τ2 cos 2 (µ2 − ν2)} , ∀µ2 ∈ [0, π), (6.2)

where τ2 > 0 and ν2 ∈ [0, π) and τ2 > 0. We use the notation µ2 ∼ vM2(ν2, τ2).
The likelihood of the sample θ = (θ1, . . . , θn) is given by

l(µ1, µ2, κ1, κ2|θ) ∝ f(θ|µ1, µ2, κ1, κ2)

=
1

[2π ·G0 (δ, κ1, κ2)]
n exp

{
κ1

n∑
i=1

cos (θi − µ1) + κ2

n∑
i=1

cos 2 (θi − µ2)

}
.

(6.3)

The priors (6.1) and (6.2) and the likelihood (6.3), yields the joint posterior density
of (κ1, κ2, µ1, µ2) given by

f(µ1, µ2, κ1, κ2|θ) ∝ f(θ|µ1, µ2, κ1, κ2) · f(µ1|ν1, τ1) · f(µ2|ν2, τ2) · I(0,κ̄1)(κ1)I(0,κ̄2)(κ2),

(6.4)

where I denotes the indicator function. We note in particular that, although (κ1, κ2, µ1, µ2)

are a priori independent, they are a posteriori dependent.
The number of modes of the GvM(µ1, µ2, κ1, κ2) distribution is determined by the

nature of the roots of the quartic

qρ,δ(x) = x4 + b3x
3 + b2x

2 + b1x+ b0, (6.5)

where b3 = −4ρ sin δ cos δ, b2 = ρ2 − 1, b1 = 2ρ sin δ cos δ and b0 = sin2 δ cos2 δ, with
ρ = κ1/(4κ2) and δ = (µ1 − µ2)modπ, cf. Gatto and Jammalamadaka (2007). the
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algebraic analysis that can be found in Chapter 5 shows that the null hypothesis of
bimodality admits the analytical expression

H0 : (ρ, δ) ∈ W ,

where

W = {(ρ, δ) ∈ (0,∞)× [0, π) : qρ,δ possesses four real roots over [−1, 1]} . (6.6)

Note that repeated roots are admissible. Unfortunately, the boundary of W does not
admit a closed form expression. We can however determine it numerically and a graphical
representation of W is given in Figure 6.7a. The alternative hypothesis H1 is the general
one, namely that the roots are of any other possible nature.

6.1.2 Computational aspects

Bayesian inference on the bimodality of the GvM distribution requires simulation from
prior and posterior distributions. Prior simulations are straightforward and posterior
simulations are done by MCMC.

Besides Monte Carlo, we mention that we compute the normalizing constant of the
GvM distribution by (4.9).

6.1.2.1 Prior simulation

It follows from the assumed a priori independence of the parameters, that their simu-
lation is elementary. For the sake of completeness, we describe here their generation.
Simulating the prior probability of bimodality is accomplished with the following simple
Monte Carlo algorithm. Let ψ = (κ1, κ2, µ1, µ2).

Computation of prior probability of bimodality by simulation

1. Generate ψ(t), for t = 1, . . . , T , where each element is generated independently
from its one-dimensional prior distribution.

2. Compute the prior probability of bimodality by

1

T

T∑
t=1

I{ψ(t) ∈ W}.

Simulating κ1 and κ2 is straightforward, as they are assumed uniformly distributed. The
simulation of µ1 can be done with the program rvonmises of the package Directional
in R. Concerning the simulation of µ2, from the axial vM distribution, we note that θ ∼
vM(2ν2, τ2) ⇒ θ/2 ∼ vM2(ν2, τ2). Thus, generations from vM2(ν2, τ2) are the generations
from vM(2ν2, τ2) (with rvonmises) that are then divided by 2.
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6.1.2.2 Posterior simulation via MCMC

The computation of the posterior probability of bimodality is more complicated. We
compute the posterior distribution ψ by MCMC and precisely by Gibbs sampling (cf.
Geman and Geman (1984)). By iterative generations from the full conditionals, we
obtain a Markov chain whose stationary distribution is the posterior (6.4) (cf. e.g.
Robert and Casella (2013), p. 371-424).

The full conditional of κ1, namely the conditional density of κ1 given µ1, µ2, κ2 and
θ, is given by

f1(κ1|µ1, µ2, κ2,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
κ1

n∑
i=1

cos (µ1 − θi)

}
· I(0,κ̄1)(κ1).

The full conditional of κ2 is given by

f2(κ2|µ1, µ2, κ1,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
κ2

n∑
i=1

cos 2 (µ2 − θi)

}
· I(0,κ̄2)(κ2).

The full conditional of µ1 is given by

f3(µ1|µ2, κ1, κ2,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
τ1 cosµ1 cos ν1 + τ1 sinµ1 sin ν1

+ κ1 cosµ1

n∑
i=1

cos θi + κ1 sinµ1

n∑
i=1

sin θi

}

∝ 1

Gn
0 (δ, κ1, κ2)

exp

{
τ1 cos (µ1 − ν1) + κ1

n∑
i=1

cos (µ1 − θi)

}
.

The last full condition is for µ2 and it is given by

f4(µ2|µ1, κ1, κ2,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
τ2 cos 2ν2 cos 2µ2 + τ2 sin 2ν2 sin 2µ2

+ κ2 cos 2µ2

n∑
i=1

cos 2θi + κ2 sin 2µ2

n∑
i=1

sin 2θi

}

∝ 1

Gn
0 (δ, κ1, κ2)

exp

{
τ2 cos 2 (µ2 − ν2) + κ2

n∑
i=1

cos 2 (µ2 − θi)

}
.

Given the above full conditionals, the Gibbs sampling scheme is as follows.

Posterior Gibbs sampling of ψ

1. Select an arbitrary starting value ψ(0) =
(
κ
(0)
1 , κ

(0)
2 , µ

(0)
1 , µ

(0)
2

)
.

2. For t = 0, . . . , ns − 1, generate iteratively:

• κ
(t+1)
1 from f1

(
κ1

∣∣∣µ(t)
1 , µ

(t)
2 , κ

(t)
2 ,θ

)
,
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• κ
(t+1)
2 from f2

(
κ2

∣∣∣µ(t)
1 , µ

(t)
2 , κ

(t+1)
1 ,θ

)
,

• µ
(t+1)
1 from f3

(
µ1

∣∣∣µ(t)
2 , κ

(t+1)
1 , κ

(t+1)
2 ,θ

)
,

• µ
(t+1)
2 from f4

(
µ2

∣∣∣µ(t+1)
1 , κ

(t+1)
1 , κ

(t+1)
2 ,θ

)
.

3. For a selected positive integer nb < ns, called burn-in period length, discard
{ψ(t)}t=0,...,nb . Re-index the T = ns − nb retained simulations from 1 to T .

However, the generation from the full conditionals with one of basic methods for uni-
variate distributions (such as inversion, acceptance-rejection) seems neither simple nor
efficient. The complication arises from the part 1/Gn

0 (δ, κ1, κ2). Either by the expansion
(4.9) or by numerical integration of (2.5), its evaluation is relatively complicated in the
context of simulation and it tends to take very small values when n is large. We apply the
MH algorithm presented in Robert and Casella (2013), p. 276. This algorithm requires
a density that is close to the full conditional of interest and from which the simulation
is simple. We call this surrogate density as instrumental density and we present it just
after the following MH algorithm.

Univariate MH simulation from full conditionals of ψ

Redenote by ψ any one of the parameters κ1, κ2, µ1, µ2. and by f(ψ) its full condi-
tional.

1. Select an arbitrary starting value ψ(0).

2. For t = 0, . . . , ns − 1:

• generate ψ̃t from the instrumental density g,

• set

ψ(t+1) =

ψ̃t, with probability ρ
(
ψ(t), ψ̃t

)
,

ψ(t), with probability 1− ρ
(
ψ(t), ψ̃t

)
,

where

ρ(ψ, ψ̃) = min

{
f(ψ̃)

f(ψ)

g(ψ)

g(ψ̃)
, 1

}
.

3. For a selected burn-in nb < ns, discard {ψ(t)}t=0,...,nb .
Re-index the T = ns − nb retained simulations from 1 to T .

Thus, our posterior simulation algorithm has two levels of MCMC.
The instrumental density g in the above MH algorithm is the normalized piecewise

linear interpolation of the full conditional. When the knots are (ψ0, y0), (ψ1, y1), . . . , (ψk, yk),
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it is given by

g(ψ) ∝



y0 + d0(ψ − ψ0), if ψ ∈ [ψ0, ψ1),

y1 + d1(ψ − ψ1), if ψ ∈ [ψ1, ψ2),
...

...

yi + di(ψ − ψi), if ψ ∈ [ψi, ψi+1),
...

...

yk−1 + dk−1(ψ − ψk−1), if ψ ∈ (ψk−1, ψk],

where di = (yi+1 − yi)/(ψi+1 − ψi), for i = 0, . . . , k − 1.
Let us explain the simulation from the instrumental density of κ1, for example.

The interpolation of the full conditional f1(κ1|µ1, µ2, κ2,θ) is taken with 5 interpolation
points, A-E in Figure 6.1, that are chosen as follows. We fix the first and last point with
abscissae values ε = 0.2 and κ̄1, respectively. The remaining points are generated uni-
formly in the interval (ε, κ̄1). The instrumental density g is the normalized interpolation
function. We generate from g with the inverse transform method. Figure 6.1 shows the
full conditional f1(κ1|µ1, µ2, κ2,θ) and its piecewise interpolation function.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

κ1

A

B

C

D
E

Figure 6.1: Full conditional of κ1 (solid line) and interpolation function (dashed line)
with 5 interpolation points A-E.

6.1.3 Bayes factor, HPrD and HPD credible sets

As mentioned, this chapter concerns inference of bimodality of the GvM distribution.
This is done via Bayes factors introduced in Section 4.1. In our setting, the Bayes factor
B01 in (4.1) is an indicator of the support of the sample for the null hypothesis H0 of
bimodality of the GvM, against the alternative hypothesis H1 of unimodality.

Alternatively to the Bayes factor, Bayesian inference can rely on the HPD credible
set. We firstly introduce a general concept. Let f be a density over R. The highest
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density region (HDR) at level 1− α is the set

R(fα) = {x ∈ R : f(x) ≥ fα} ,

where fα is the largest constant such that P [R (fα)] ≥ 1− α, for some (typically small)
α ∈ (0, 1); cf. e.g. Hyndman (1996). In particular it follows that, amongst all regions
with coverage probability 1 − α, the HDR has the smallest volume. Computational
aspects of HDR are studied in Wright (1986), Hyndman (1990) and Hyndman (1996).

In the Bayesian setting where f is the posterior density, the HDR is called HPD
credible set; cf. e.g. Box and Tiao (1973). When f is the prior density, we call the
HDR as highest prior density (HPrD) credible set. We refer to Chen and Shao (1999)
for computational aspects of HPD credible sets. Bimodality of the GvM is related to the
parameters ρ and δ, as explained in Section 6.1.1. Thus Bayesian inference on bimodality
can rely on bivariate HPD credible sets for (ρ, δ).

6.2 Simulation study

In this section we apply the methods that we proposed for the inference on the bimodality
of the GvM: the MCMC algorithm of Section 6.1.2.2, the convergence diagnostics by
Gelman et al. (1992) and the Bayes factors and HPD of Section 6.1.3.

We use various simulated samples θ = (θ1, . . . , θn). The sample values are generated
independently from the following distributions.

• A sample θ of n = 100 values is generated from the unimodal GvM(π, π/2, 1.2, 0.2)

in Section 6.2.1.1, for the Bayes factor. This sample is also used in Section 6.2.3.1,
for the Bayes factor with an alternative prior.

• A sample θ of n = 100 values is generated from the bimodal GvM(π, π/2, 0.16, 0.2)

in Section 6.2.1.2, for the Bayes factor. This sample is also used in Section 6.2.3.3,
for the Bayes factor with an alternative prior.

• A sample θ of n = 100 values is generated from the bimodal GvM(π, π/2, 1.5, 1.5)

in Section 6.2.2, for the HPD credible set, and also used at the end of Section 6.2.2,
for convergence diagnostic.

• Two samples θ of n = 10 and n = 200 values are additionally generated from the
same bimodal GvM(π, π/2, 1.5, 1.5) in Section 6.2.2, for the study of the influence
of the sample size n on the HPD credible intervals.

• A sample θ of n = 200 values is generated from the unimodal GvM(π, π/2, 1.2, 0.2)

in Section 6.2.3.2, for the Bayes factor with an alternative prior.
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All these generated samples are displayed through their kernel density estimations.
The hyperparameters for the prior specifications are chosen as follows:

κ̄1 = κ̄2 = 3, ν1 = π, τ1 = 10, ν2 =
π

2
, τ2 = 10.

Prior and posterior probabilities of bimodality are obtained by simple Monte Carlo
and Gibbs sampling, respectively, as explained in Section 6.1.2. The number of simu-
lations is T = 4 · 104 for the prior and for the posterior we have ns = 5 · 104 minus
nb = 104 retained simulations, namely total simulation minus the burn-in simulations.
We choose ψ(0) = (κ

(0)
1 , κ

(0)
2 , µ

(0)
1 , µ

(0)
2 ) = (1.5, 1.5, π, π/2) as starting point for all Markov

chain. Our Bayes factors and HPD credible sets are based on one single Markov chain.
However, for the purpose of Gelman’s convergence diagnostic, m = 5 Markov chains are
generated with the same starting point ψ(0).

6.2.1 Bayes factor

This section presents simulation results for the Bayes factor of the test of bimodality of
the GvM. For the given sample θ from a GvM, we compute prior and posterior probabil-
ities of bimodality by simulating {ψ(t)}t=1,...,T from the prior and posterior distributions
respectively, with the algorithms of Section 6.1.2. These prior and posterior simulations
are iterated N = 500 times and the retained Bayes factor is the average of N simulated
Bayes factors. The section is divided in two parts: in part 6.2.1.1 we generate the sample
θ from the unimodal GvM whereas in part 6.2.1.2 we generate the sample θ from the
bimodal GvM.

6.2.1.1 Unimodal GvM sample

We generate the sample θ of size n = 100 from the unimodal GvM(π, π/2, 1.2, 0.2).
Unimodality is formally justified by the fact that the point (ρ, δ) = (1.5, π/2) is really
in the region Wc of unimodality. This region is shown in white in Figure 6.7a only for
values of ρ smaller than 1.25, but for values larger than 1.25 the region does remain
white. The kernel density estimation of this sample is given in Figure 6.2a, which
confirms unimodality.

We compute the representative Bayes factor B̄01 by the mean of the generated Bayes
factors Bi, i = 1, . . . , N . The N = 500 prior probabilities of bimodality are obtained by
simple Monte Carlo; cf. Section 6.1.2.1. The average of these N values is P̄ [H0] = 0.802:
there is a priori support for the null hypothesis of bimodality. The posterior probability
of bimodality P̄ [H0|θ] = 0.150 is also obtained by averaging N values that are simulated
by the MCMC algorithm of Section 6.1.2.2. The Bayes factor obtained with this study
is given by

B̄01 =
P̄ [H0|θ]

1− P̄ [H0|θ]
1− P̄ [H0]

P̄ [H0]
= 0.04381.

75



0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

θ
0 π 2π

(a) Density estimation of unimodal sample
θ = (θ1, . . . , θ100).
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(b) Boxplot of N = 500 simulated Bayes fac-
tors with unimodal sample of size n = 100.

Figure 6.2: Unimodal sample θ.

The aim of the process of averaging N = 500 values is the control of the simulation
variability. The boxplot of the generated N values of B01 can be found in Figure 6.2b.
The asymptotic normal confidence interval at level 0.95 for the Bayes factor is given

by I = B̄01 ± 1.96N−1/2
{
N−1

∑N
i=1(B̄01 − Bi)

2
}1/2

. Obviously, although the N Bayes
factors may not be normally distributed, their mean is asymptotically normal. We thus
obtain the confidence interval

(0.04373, 0.04389).

As the sample θ is generated from a unimodal GvM, our prior evidence of bimodality
is no longer supported by the sample and thus B̄01 does not support bimodality. The
Bayes factor gives negative evidence of bimodality according to Table 4.1. Note that
very few large values have been discarded from Figure 6.2b but they are nevertheless
considered in the computation of the average Bayes factor and of the confidence interval.

6.2.1.2 Bimodal GvM sample

We now consider a sample of size n = 100 θ generated from a bimodal GvM, precisely
from GvM(π, π/2, 0.16, 0.2). We compute (ρ, δ) = (0.2, π/2), which belongs to the region
of bimodality W shown is grey in Figure 6.7a. The kernel density estimation of θ shown
in Figure 6.3a is also indicating bimodality. As before, we compute the representative
Bayes factor by the mean of N = 500 values. The prior probability is the same as in
6.2.1.1 and it is P̄ [H0] = 0.802. The posterior probability of bimodality P̄ [H0|θ] = 0.992

and thus we obtain
B̄01 = 34.935.

As in Section 6.2.1.1 we compute the asymptotic normal confidence interval for the Bayes
factor at level 0.95. It is given by

(34.731, 35.139).
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In this case the Bayes factor gives decisive evidence of bimodality. Figure 6.3b shows
the boxplot of the Bayes factors. Here also, very few large values are discarded from the
boxplot but are considered for the average of the Bayes factors and for the confidence
interval.
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(a) Density estimation of bimodal sample θ =

(θ1, . . . , θ100).
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(b) Boxplot of N = 500 simulated Bayes fac-
tors with bimodal sample of size n = 100.

Figure 6.3: Bimodal sample θ.

Remark: Non-GvM sample

In this remark we study the behaviour of this test when the sample does not follow
the assumed GvM distribution and thus when the given likelihood is inappropriate. We
generate a sample of size n = 100 from the mixture of three vM distributions given by

ξ1vM(η1, σ1) + ξ2vM(η2, σ2) + ξ3vM(η3, σ3),

with

η1 =
π

4
, η2 =

7π

8
, η3 =

8π

5
, σ1 = σ2 = 12, σ3 = 1 and ξ1 = ξ2 = ξ3 =

1

3
.

The density estimation of this non-GvM sample is given in Figure 6.4a and we can
observe some clear evidence of trimodality. Figure 6.4b shows the boxplot of N = 200

simulated Bayes factors. Their mean value is

B̄01 = 1.724.

This value lies just within the range of positive evidence of bimodality of Table 4.1.
Thus, two of the three modes have been associated to a single one, but it appears
difficult to tell which ones they are. Perhaps the two modes of similar height (at η1
and η2) have been confounded or perhaps the lower mode (at η3) has been neglected.
Although we cannot provide an unambiguous explanation, we note that the amount of
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(a) Density estimation of the non-GvM sample
θ = (θ1, . . . , θ100).
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(b) Boxplot of N = 200 simulated Bayes fac-
tors with non-GvM sample of size n = 100.

Figure 6.4: Non-GvM sample θ. One outlier value is considered in the calculation of
the representative Bayes factor, but not plotted in the boxplot.

positive evidence for bimodality is minor. The behaviour of the test in this erroneous
situation seems reasonable.

This test of bimodality is indeed constructed around the GvM distribution. The null
hypothesis is characterized by the region of bimodality of the GvM, W given in (6.6),
which is obtained from the nature of the roots of the quartic (6.5). The adequacy of the
sample with the GvM model could be checked with the goodness-of-fit tests of Section
7.2 of Jammalamadaka and SenGupta (2001). Let us remind that various types of tests
are available: Kuiper’s test (the circular version of Kolmogorov-Smirnov test), Watson’s
test (the circular version of Cramer-von Mises test), Ajne’s test (the circular version of
chi-square test) and Rao’s test (based on spacings between sample angles). The GvM
distribution function is required for some of these tests and it can be found in Section
3.3 of Gatto (2022).

6.2.2 HPD and HPrD credible sets

This section provides a simulation of the HPD credible set of (ρ, δ), which allows to
determine the a posteriori evidence of uni- or bimodality. It also provides the simulation
of HPrD and HPD credible intervals for κ1, κ2, µ1, µ2. One sample θ of size n = 100

is considered and it is generated under the bimodal GvM(π, π/2, 1.5, 1.5). Its kernel
density estimation is shown in Figure 6.5b and we can see that bimodality is preserved.

We begin with the presentation of the HPrD and HPD credible intervals. These
intervals are given in Table 6.1. We see that all HPD credible intervals are narrower
than the HPrD credible intervals and that they contain their true value. The level is
0.95. Then we illustrate the effect of the sample size n on the HPD credible interval
by considering two additional samples of sizes n = 10 and 200 that are generated from
the same GvM(π, π/2, 1.5, 1.5). Their density estimation is given in Figures 6.5a and
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6.5c, respectively, and we see that bimodality is preserved. We restrict the analysis
to the parameter µ1. The results given in Table 6.2 shows that, as n increases, the
HPD credible intervals at level 0.95 become narrower around the true value. A graph of
this can be found in Figure 6.6, where the posterior densities, HPrD and HPD credible
intervals are given. The grey regions have area 0.95 and they are based over the HPD
credible intervals. The HPrD credible intervals are displayed with a bold line along the
abscissae. As the sample size n increases, the HPD credible intervals become narrower
around the true value of the parameter. Computations are done using emp.hpd of the
R-package TeachingDemos, with α = 0.05.
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(a) Density estimation of bimodal sample θ =

(θ1, . . . , θ10).
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(b) Density estimation of bimodal sample θ =

(θ1, . . . , θ100).
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(c) Density estimation of bimodal sample θ =

(θ1, . . . , θ200).

Figure 6.5: Density estimations of the three samples used for HPrD and HPD credible
intervals.

As mentioned in Section 6.1.1, the bimodality of the GvM is determined by the
number of real roots in [−1, 1] of the quartic qρ,δ in (6.5). We can infer on the bimodality
of the GvM through the bivariate HPD credible set of (ρ, δ). We use the same sample
θ of size n = 100. The level of the HPD credible set is 0.95 and we compute the HPD
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parameter HPrD credible interval HPD credible interval
κ1 (0.120, 2.969) (0.718, 1.907)
κ2 (0.0007, 2.845) (0.803, 1.671)
µ1 (2.504, 3.782) (3.033, 3.454)
µ2 (1.248, 1.890) (1.403, 1.644)

Table 6.1: HPrD and HPD credible intervals for parameters of GvM, at level 0.95.

with the function HPDregionplot of the R-package emdbook. Figure 6.7a shows that the
HPD credible set obtained from the simulation is completely included in W , the region
of bimodality of the set of the parameters (ρ, δ) given in (6.6). This region of bimodality
is shown in grey. The graph with the region of bimodality is due to Salvador and Gatto
(2022a) and Pfyffer and Gatto (2013). It can also be found in Chapter 5 in Figure 5.4a.
Thus, the HPD credible set gives us a clear confirmation of the bimodality. Figure 6.7b
shows the posterior of (ρ, δ) and indicates that the HPD of Figure 6.7a should maintain
the connected form at different levels.
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Figure 6.6: Comparison between HPrD credible interval (bold line) and HPD credible
interval (base of grey area) for µ1 with n = 10, 100, 200. True value of the parameter µ1

is µ0
1 = π (dashed line).

We now verify the convergence of the simulations. We consider only the sample θ
of size n = 100, which is also used in the first part of this section. In order to apply
Gelman’s diagnostic, we generate m = 5 chains. Let gij = g(ψ

(j)
i ) for i = 1, . . . ,m and

j + 1, . . . , T . In our case the function g extracts the components of ψ. For example, to
check the converge of the first component we set g(ψ(j)

i ) = κ1,ij. The variance between
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sample size n HPD credible interval for µ1

10 (2.869, 3.692)
100 (3.033, 3.454)
200 (2.951, 3.186)

Table 6.2: HPD credible intervals for µ1, for different sample sizes n.

b, the variance within w and the shrink factor r of the chains are given by, respectively,

b =
1

m

m∑
i=1

(ḡi· − ḡ··)2 , w =
1

m

m∑
i

s2i , r :=

√
b+ w

w
,

where

ḡi· =
1

T

T∑
j=1

gij, ḡ·· =
1

m

m∑
i=1

ḡi· and s2i =
1

T

T∑
j=1

(gij − ḡi·)2 .

According to Gelman et al. (1992), convergence is achieved when r is close to 1.
Results in Table 6.3 confirm convergence for each one of the four components of the
chain. Thus, convergence of the whole Markov chain {ψ(t)}t=1,...,T is achieved. A visual

parameter b w r

κ1 9.391 · 10−6 0.0135 1.00034
κ2 1.043 · 10−5 0.0460 1.00011
µ1 8.492 · 10−7 0.0027 1.00015
µ2 7.404 · 10−7 0.0020 1.00018

Table 6.3: Gelman diagnostics for κ1, κ2, µ1, µ2, with m = 5 chains and with T = 4 · 104

retained simulations.

representation of the convergence is done using the command gelman.plot of the pack-
age coda that plots the shrink factor r evaluated at different instant of the simulation.
The Markov chains are divided into bins according to the parameters bin.width and
max.bins, which are the number of simulations per segment and the maximum number
of bins, respectively. The shrink factor is repeatedly calculated. The first shrink fac-
tor is calculated with 50 simulations, the second with 50 + bin.width simulations, the
third with 50 + 2 · bin.width simulations, and so on. In Figure 6.8 we can see how the
shrink factor of each parameter κ1, κ2, µ1, µ2 evolves with respect to the iterations of
the chain: the convergence of the chains associated to κ1 and κ2 appears slower, since
at the beginning the shrink factors fluctuate. But then they stabilize around the value
1. Thus, we can consider the test passed and convergence is achieved.

Visuals results for the convergence of the single parameters can be found in Figure
6.9. The four histograms of the simulations are close to four graphs of the full condi-

81



ρ

δ

0.25 0.50 1.00 1.25

0
π

4
π

2
3π

4
3

ρ

δ

(a) Bivariate posterior HPD credible set at level 0.95 for (ρ, δ),
W region of bimodality of the GvM distribution (grey) and Wc

region of unimodality (white).

G U 

ρ
ẟ

(b) Posterior density of (ρ, δ).

Figure 6.7: (a) Uni- and bimodality regions of GvM together with HPD credible set of
(ρ, δ) at level 0.95. (b) Posterior density of (ρ, δ) corresponding to the HPD credible set
given in (a).

tionals (solid line), indicating that each one of the four components of the Markov chain
converges to the respective full conditional.
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Figure 6.8: Median (solid line) and 97.5%-upper confidence limit (dashed line) of
shrink factors r for κ1, κ2, µ1, µ2 with number of iterations. We kept the default val-
ues bin.width = 10 and max.bins = 50.

6.2.3 More general prior

So far, the prior distribution of κj has been the uniform distribution over (0, κ̄j), for
some κ̄j > 0, for j = 1, 2. This choice may not always be convenient mainly because of
the abrupt jump of the densities at κ̄1 and κ̄2, making the choice of these values rather
consequent. Since we may want a prior that decays slowly on the right tail, we can
consider the two beta priors with densities proportional to (κj/κ̄j)

αj−1 (1− κj/κ̄j)
βj−1,

∀κj ∈ [0, κ̄j], with αj, βj > 0, for j = 1, 2. Thus the uniform priors used so far and given
in Section 6.1.2.1 are retrieved with αj = βj = 1, for j = 1, 2.

In the simulation study, we select αj = βj = 2 and, as before, κ̄j = 3, for j = 1, 2.
The priors for µ1, µ2 are taken as in Section 6.1.2.2. All hyperparameters are as in
Section 6.2.

Thus the full conditional of κ1 is given by

f1(κ1|µ1, µ2, κ2,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
κ1

n∑
i=1

cos (µ1 − θi)

}
·
(
κ1
κ̄1

)(
1− κ1

κ̄1

)
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Figure 6.9: Visual test of convergence of generation by MH from full conditionals with
T = 4 · 104 simulated values.

and the full conditional of κ2 is

f2(κ2|µ1, µ2, κ1,θ) ∝
1

Gn
0 (δ, κ1, κ2)

exp

{
κ2

n∑
i=1

cos 2 (µ2 − θi)

}
·
(
κ2
κ̄2

)(
1− κ2

κ̄2

)
.

The full conditionals of µ1 and µ2 are as in Section 6.1.2.2.
We use the unimodal sample of size n = 100 and the bimodal sample of size n = 100

that are used in Sections 6.2.1.1 and 6.2.1.2, respectively. Moreover we consider a third
additional unimodal sample with larger size n = 200.

6.2.3.1 Unimodal sample of size n = 100

We first consider the same unimodal sample of size n = 100 of Section 6.2.1.1, which
is generated from the GvM(π, π/2, 1.2, 0.2) distribution. The density estimation with
this sample is given in Figure 6.2a. Prior and posterior simulations are iterated N =

500 times. These simulations allow us to compute the prior probability of bimodality
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P̄ [H0] = 0.882 and the posterior analogue P̄ [H0|θ] = 0.784. The mean value of the
N = 500 generated Bayes factors is

B̄01 = 0.487,

and the asymptotic normal confidence interval at level 0.95 for the true Bayes factor is

(0.486, 0.488).

The boxplot of the resulting Bayes factors is given in Figure 6.10a. The posterior
probability of bimodality P̄ [H0|θ] is indeed smaller than its prior P̄ [H0], but not much
smaller. The mean Bayes factor shows negative evidence of bimodality, but its value is
quite larger than the value obtained in Section 6.2.1.1.

6.2.3.2 Unimodal sample of size n = 200

In order to clarify the question of the size of the previous Bayes factor, we increase
the sample size to n = 200. A new sample θ of size n = 200 is generated from
GvM(π, π/2, 1.2, 0.2). Its kernel density estimation is given in Figure 6.10c. The pos-
terior probability is now given by P̄ [H0|θ] = 0.0519. The previous prior probability
P̄ [H0] = 0.882 is considered. The mean of N = 500 simulated Bayes factors is

B̄01 = 0.00732,

and the asymptotic normal confidence interval at level 0.95 is

I = (0.00730, 0.00734).

The Bayes factor gives again negative evidence of bimodality, but it is now more sub-
stantial. The boxplot of the simulated Bayes factors can be found in Figure 6.10c. The
Bayes factor and the posterior probability are significantly lower than with the sam-
ple of size n = 100. This is what we would have expected. The prior probability of
bimodality P̄ [H0] = 0.882 is bigger than the one of Section 6.2.1.1. Thus we need an
unimodal sample of larger size in order to obtain a sufficiently small posterior probability
of bimodality.

6.2.3.3 Bimodal sample of size n = 100

We now consider the bimodal sample used in Section 6.2.1.2, of n = 100 replications
generated from GvM(π, π/2, 0.16, 0.2). The density kernel estimation of the sample can
be found in Figure 6.3a. The prior probability of bimodality does not change: it is given
by P̄ [H0] = 0.882. The posterior probability of bimodality in this obtained by N = 500

simulations is P̄ [H0|θ] = 0.997. This leads to the mean of N = 500 Bayes factors

B̄01 = 66.348
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and to the asymptotic normal confidence interval at level 0.95

I = (65.545, 67.151).

The Bayes factor gives thus decisive evidence of bimodality. The boxplots of the resulting
Bayes factors can be found in Figure 6.10d.
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Figure 6.10: Inference on bimodality via Bayes factors using Beta priors. Some extreme
values are considered in the calculations but omitted in the boxplots.

6.3 Conclusion

This chapter studies Bayesian inference on the bimodality of the GvM distribution:
MCMC algorithms for computing Bayes factors and HPD regions are proposed and
tested by simulation. Thus, it extends the list of available inferential methods for
the GvM model: trigonometric method of moments estimation, cf. Gatto (2008), and
Bayesian test of symmetry (Chapter 4).
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At the beginning of the chapter, various interesting properties of the GvM model
are mentioned together with the importance of bimodality in various applied fields. For
example, data on wind directions and graphs given in Gatto and Jammalamadaka (2007)
show bimodality. Bimodality is indeed more frequent and important with circular than it
is with linear data. In this context, the proposed Bayesian tests are practically relevant.

One may extend this study in two ways. First by proposing a frequentist test of
bimodality. One could write a likelihood ratio test and exploit the partition of the para-
metric set in terms of unimodality and bimodality which is shown in Figure 6.7a. A
second and perhaps more challenging way of extending this study would be by consid-
ering prior distributions with dependent GvM parameters. One would thus generalize
the full conditionals and the MCMC algorithm of Section 6.1.2.2. We would then obtain
circular-circular, circular-linear or other unusual types of joint distributions. A difficulty
would be to obtain specific simulation methods from these joint distributions. Another
difficulty would be the quantification of the dependence of the joint distributions on
these manifolds. We could use or adapt the circular-circular and circular-linear correla-
tion coefficients that are given e.g. in Sections 8.2-8.5 of Jammalamadaka and SenGupta
(2001).
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Chapter 7

Generation of random directions from
the generalized von Mises-Fisher
distribution†

This chapter introduces two generation algorithms for the generalized von Mises-Fisher
(GvMF) distribution: one based on conditional simulation and one based on the MH
algorithm. The GvMF distribution (3.4) is defined over the sphere and it is called direc-
tional distribution, because it provides a probability distributions for spatial directions.
As previously mentioned in Chapter 2 and Chapter 3, data representing directions in
Rp, for p = 2, 3, . . ., can be represented by points on the surface of the unit hypersphere
Sp−1. Most practical situations are with circular data, where p = 2, and with spherical
data, where p = 3. Although some results of this chapter are given for the general
case p ≥ 3, because it is conceptually similar to the case of p = 3, the focus (and the
numerical studies) are for the most practical situation p = 3. Spherical data arise in
various scientific fields: physics, astronomy, earth sciences, biology, etc. The probabil-
ity distribution of a random unit vector in Rp is generally called directional probability
distribution. It is called circular distribution if p = 2 and spherical distribution if p = 3.
This chapter proposes two simulation algorithms for GvMF(µ1,µ2;κ1, κ2; 1, 2) random
directions in Sp−1. The first algorithm is from conditional simulation and the second
one from MCMC. Both algorithms apply the acceptance-rejection algorithm proposed
by Ulrich (1984).

A brief survey of the coming sections is as follows. Section 7.1 introduces a method
of conditional simulation for the GvMF. Section 7.2 provides MCMC algorithm. It is
a MH algorithm for the GvMF distribution, for which the instrumental distribution is
a mixture of vMF. Numerical results are given in Section 7.3 and some comparisons in
Section 7.3.1 show that the two proposed generation algorithms yield similar samples.
Note that although various results of Sections 7.1 and 7.2, are given for Sp−1 with general

†Salvador and Gatto (2022c)
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p ≥ 3, numerical results are presented in S2 which is the case of most practical case.
Some concluding remarks are given in Section 7.4.

7.1 Conditional simulation for GvMF

This section presents an algorithm of conditional simulation for GvMF(µ1,µ2;κ1, κ2; 1, 2)

directions. Because this algorithm requires the normalizing constant of the density (3.4),
Section 7.1.1 proposes a simple Monte Carlo method for obtaining this constant. The
novel conditional simulation algorithm is given in Section 7.1.2.

The algorithm uses the acceptance-rejection algorithm for the vMF distribution of
Ulrich (1984), which generates vMF directions with fixed mean direction µ = ep =

(0, . . . , 0, 1)⊤. This method is based on the following fact: a p-vector X has vMF distri-
bution with mean direction ep = (0, 0, . . . , 1)⊤ if and only if X⊤ = ((1−W 2)

1
2V ⊤,W ),

where V a (p−1)-unit vector which has uniform distribution, and W is a scalar random
variable on [−1, 1] with density

f(w) = c−1
p,κ(1− w2)(p−3)/2 exp{κw}, ∀w ∈ [−1, 1]. (7.1)

where
cp,κ = π

1
2 (κ/2)νIν(κ)Γ{(2ν + 1)/2},

is the normalizing constant, with ν = (p − 2)/2, and Γ is the gamma function. Ulrich
(1984) proposed the following envelope proportional to the density (7.1)

e(x, b) = dp,b(1− x2)(p−3)/2 {(1 + b)− (1− b)x}−(p−1) , ∀x ∈ [−1, 1] (7.2)

with
dp,b = [Γ {(p− 1)/2}]2 b−(p−1)/2 {2Γ(p− 1)}−1 .

It is easy to generate form (7.2) since it is a simple transformation of a symmetric beta
random variable. Ulrich (1984) proposed the value

b =
[
−2κ+

{
4κ2 + (p− 1)2

}1/2]
/(p− 1), (7.3)

in order to maximize the acceptance ratio. However Wood (1994) noted some issues and
proposed the following corrected version.

A1 Acceptance-rejection algorithm for vMF on Sp−1

Choose n large. For j = 1, . . . , n:

1. Calculate b as in (7.3), and set x0 = (1−b)/(1+b) and c = κx0+(p−1) log(1−
x20).

2. Generate Zj ∼ Beta {(p− 1)/2, (p− 1)/2}, Uj from the uniform distribution
on (0, 1), and calculate Wj = {1− (1 + b)Zj} / {1− (1− b)Zj}.
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3. If κWj + (p− 1) log(1− x0Wj)− c < log(Uj), then go to 2.

4. Generate a uniform (p − 1)-dimensional unit vector Vj, and return X⊤
j =

((1−W 2
j )

1/2V ⊤
j ,Wj).

Then X has vMF distribution with mean direction ep and concentration parameter
κ > 0.

The following additional step allows to generate with arbitrary mean direction µ ∈
Sp−1. This consists in finding a rotational matrix R ∈ SO(p) = {A ∈ Rp×p | A⊤A =

Ip ∧ detA = 1} (the group of all rotation matrices of Rp), that rotates ep into µ.
We notice that every orthogonal matrix with determinant equal to 1 and last column

equal to µ can be chosen. We can proceed as follows.

A2 Rotation algorithm on Sp−1

1. Compute iteratively (p− 1) orthonormal vectors u1, . . . ,up−1 that form with
µ an orthonormal basis of Rp, as follows. Let µ = (µ1, . . . , µp)

⊤.

1.a The first orthonormal vector u1 = (x1, . . . , xp)
⊤ is a solution of

∑p
i=1 xiµi =

0.

1.b For j = 2, . . . , p− 1, uj = (x1, . . . , xp)
⊤ is a solution of the system{ ∑p

i=1 xiµi = 0∑p
i=1 xiuj−1,i = 0, for j = 2, . . . , p− 1,

where uj−1 = (uj−1,1, . . . , uj−1,p)
⊤, for j = 2, . . . , p− 1.

2. If the orthogonal matrix (u1, . . . ,up−1,µ) has determinant 1, then set R =

(u1, . . . ,up−1,µ). Otherwise, obtain R by permutating any two columns
among the first (p− 1) columns of (u1, . . . ,up−1,µ).

Thus, with Algorithm A1 for generating X ∼ vMF(ep, κ), we can obtain Y ∼
vMF(µ, κ) by finding the rotational matrix R ∈ SO(p) that rotates ep = (0, . . . , 0, 1)⊤

to µ and then set Y = RX.
Rodrigues (1840) provides a technique for constructing a matrix that rotates any

vector x of S2 into another vector y.

A3 Rodrigues rotation algorithm on S2

Assume that the vector x ∈ S2 is rotated to y ∈ S2. Define v = x × y and
s = ⟨x,y⟩. Then the matrix R ∈ SO(3) that rotates x into y is obtained from

R = I + [v]× + [v]2×
1− s

∥v∥2
,
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where [v]× is the skew-symmetric cross-product matrix of v = (v1, v2, v3) given by

[v]× =

 0 −v3 v2

v3 0 −v1
−v2 v1 0

 .

The matrix R is called Rodrigues rotational matrix. We can apply Algorithm A3 to
x = e3 and µ = y. This construction is restricted to S2, which is however the most
practical case.

7.1.1 Monte Carlo computation of GvMF normalizing constant

No closed-form expression for the normalizing constant of the GvMF density (3.4) is
available, if we exclude the vMF case where k = 1 and i1 = 1. This section presents a
Monte Carlo algorithm for obtaining the normalizing constant of the GvMF(µ1,µ2;κ1, κ2; 1, 2)

distribution over S2. This algorithm is then used in Sections 7.1.2 and 7.2 for generating
random directions from this distribution. Consider this distribution generally over Sp−1,
for p ≥ 3, and define

f̃(x) = exp
{
κ1⟨µ1,x⟩+ κ2⟨µ2,x⟩2

}
, ∀x ∈ Sp−1, (7.4)

which is thus proportional to the density f of the GvMF2(µ1,µ2;κ1, κ2; 1, 2) distribution.
Define the normalizing constant B =

∫
Sp−1 f̃(x)dU(x). Define then

g̃(x) = exp {κ1⟨µ1,x⟩} , ∀x ∈ Sp−1, (7.5)

which is thus proportional to the density g of the vMF(µ1, κ1) distribution given in (3.2).
Denote by A the inverse of the normalizing factor of vMF(µ1, κ1), as given in (3.3) with
κ = κ1. We then have

B =

∫
Sp−1

f̃(x)dU(x),

=

∫
Sp−1

f̃(x)

A−1g̃(x)
A−1g̃(x)dU(x)

= AEg

[
f̃(X)

g̃(X)

]
= AEg

[
exp

{
κ2⟨µ2,X⟩2

}]
.

(7.6)

This last expression leads directly to a simple Monte Carlo estimator of B. However
we consider a further simplification. Denote by R(x) the matrix of rotation of x to ep.
This is the inverse of the matrix we compute with algorithm A2. We obtain from (7.6)
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and from radial symmetry of the isotropic distribution U † that

B = AA−1

∫
Sp−1

exp
{
κ1⟨µ1,x⟩+ κ2⟨µ2,x⟩2

}
dU(x)

= AA−1

∫
Sp−1

exp
{
κ1⟨ep,R(µ1)x⟩+ κ2⟨R(µ1)µ2,R(µ1)x⟩2

}
dU(x)

= AA−1

∫
Sp−1

exp
{
κ1⟨ep,x⟩+ κ2⟨R(µ1)µ2,x⟩2

}
dU(x)

= AEg1

[
exp

{
κ2⟨R(µ1)µ2,X⟩2

}]
,

(7.7)

where g1 is the vMF(ep, κ1) density.
This leads to the following algorithm.

A4 Monte Carlo algorithm for normalizing constant of GvMF on Sp−1

1. Compute R(µ1), matrix of rotation of µ1 to ep, with Algorithm A2.

2. For n large, generate X1, . . . ,Xn independently from vMF(ep, κ1), with the
acceptance-rejection Algorithm A1.

3. Compute the sample mean estimator of B given by

B̂n =
A

n

n∑
j=1

exp{κ2⟨R(µ1)µ2,Xj⟩2}. (7.8)

Note that the normalizing constant of the GvMF(µ1,µ2;κ1, κ2; 1, i2), for i2 = 1, 3, . . .,
can also be evaluated by Algorithm A4, after replacing 2 by i2 in (7.8).

7.1.2 Algorithm of conditional simulation for GvMF

This section provides an algorithm of conditional simulation for generating directions
from the GvMF(µ1,µ2;κ1, κ2; 1, 2) distribution. It uses acceptance-rejection and there-
fore the numerical efficiency depends on the closeness of the envelope to the target
density, proportional to (7.4). The following developments hold generally on Sp−1.

Precisely, two different envelopes for f̃ are used, according to sign of the scalar
product ⟨µ2,X⟩, where X follows the GvMF(µ1,µ2;κ1, κ2; 1, 2) distribution. Define
the random variable

Y = I {⟨µ2,X⟩ ≥ 0} .

Then the GvMF2(µ1,µ2;κ1, κ2; 1, 2) density f can be decomposed as

f(x) = f(x|0) · P [Y = 0] + f(x|1) · P [Y = 1] , ∀x ∈ Sp−1,

†The random vector X is radially symmetric if X ∼ RX, for any orthogonal matrix R. The
distribution is radially symmetric in this case.
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where f(·|j) denotes the conditional GvMF(µ1,µ2;κ1, κ2; 1, 2) density given Y = j, for
j = 0, 1. Conditional simulation consists in generating first Y and then X from the
conditional distribution given Y .

We note the following inequalities.

• When Y = 1, we obtain the inequality

⟨µ2,X⟩2 ≤ ⟨µ2,X⟩.

It leads to

κ1⟨µ1,X⟩+ κ2⟨µ2,X⟩2 ≤ κ1⟨µ1,X⟩+ κ2⟨µ2,X⟩ = κ1κ2β1⟨ν1,X⟩, (7.9)

where β1 = ∥κ−1
2 µ1 + κ−1

1 µ2∥ and ν1 = (κ−1
2 µ1 + κ−1

1 µ2)/β1 ∈ Sp−1.

We have that
f̃(x) ≤ l̃(x) = exp{κ1κ2β1⟨ν1,x⟩}, (7.10)

for all x ∈ Sp−1 such that ⟨µ2,x⟩ ≥ 0.

Thus, l̃ is an efficient envelope for the function (7.4), to be used in the acceptance-
rejection Algorithm A1. Conditional on Y = 1, we can generate X by acceptance
rejection of generations from vMF(ν1, κ1κ2β1).

• When Y = 0, we obtain
⟨µ2,X⟩2 ≤ −⟨µ2,X⟩.

In this case we have

κ1⟨µ1,X⟩+ κ2⟨µ2,X⟩2 ≤ κ1⟨µ1,X⟩ − κ2⟨µ2,X⟩ = κ1κ2β0⟨ν0,X⟩, (7.11)

where β0 = ∥κ−1
2 µ1 − κ−1

1 µ2∥ and ν0 = (κ−1
2 µ1 − κ−1

1 µ2)/β0 ∈ Sp−1. In this case
an efficient envelope for the function (7.4) is given by

h̃(x) = exp{κ1κ2β0⟨ν0,x⟩}, (7.12)

∀x ∈ Sp−1 such that ⟨µ2,x⟩ < 0, which is proportional to the density of the
vMF(ν0, κ1κ2β0). Conditional on Y = 0, we can generate from this distribution
with the acceptance-rejection Algorithm A1.

The probability P [Y = 1] can be obtained via simple Monte Carlo as follows. As
before, f is the GvMF(µ1,µ2;κ1, κ2; 1, 2) density, B is its normalizing constant, g is the
vMF(µ1, κ1) density, A is its normalizing constant and g1 is the vMF(ep, κ1) density.
The non-normalized GvMF and vM densities f̃ and g̃ are respectively defined in (7.4)
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and (7.5). Then

P [Y = 1] = Ef [I {⟨µ2,X⟩ ≥ 0}]

=

∫
Sp−1

I {⟨µ2,X⟩ ≥ 0} ·B−1f̃(x)dU(x)

=

∫
Sp−1

I {⟨µ2,X⟩ ≥ 0} · B
−1f̃(x)

A−1g̃(x)
· A−1g̃(x)dU(x)

=
A

B

∫
Sp−1

I {⟨µ2,x⟩ ≥ 0} · exp{κ2⟨µ2,x⟩2}g(x)dU(x)

=
A

B
Eg

[
I {⟨µ2,X⟩ ≥ 0} · exp{κ2⟨µ2,X⟩2}

]
=
Eg [I {⟨µ2,X⟩ ≥ 0} · exp{κ2⟨µ2,X⟩2}]

Eg [exp{κ2⟨µ2,X⟩2}]

=
Eg1 [I {⟨R(µ1)µ2,X⟩ ≥ 0} · exp{κ2⟨R(µ1)µ2,X⟩2}]

Eg1 [exp{κ2⟨R(µ1)µ2,X⟩2}]
.

The last two equalities follow from (7.6) and (7.7) respectively . Hence we have the
following algorithm for computing the probability that Y = 1.

A5 Monte Carlo algorithm for P [Y = 1] on Sp−1

1. Compute R(µ1), matrix of rotation of µ1 to ep, with Algorithm A2.

2. For n large, generate X1, . . . ,Xn independently from vMF(ep, κ1), with the
acceptance-rejection Algorithm A1.

3. Estimate the desired probability by

p̂ =

∑n
j=1 I {⟨R(µ1)µ2,Xj⟩ ≥ 0} · exp{κ2⟨R(µ1)µ2,Xj⟩2}∑n

j=1 exp{κ2⟨R(µ1)µ2,Xj⟩2}
.

We are now ready to give the conditional simulation algorithm.

A6 Conditional simulation algorithm for GvMF on Sp−1

1. Estimate P [Y = 1] by Algorithm A5 and denote p̂ the estimation.

2. Compute R(νj), matrix of rotation of νj in (7.9) and (7.11) to ep with Algo-
rithm A2, for j = 0, 1.

3. Choose n large and repeat for j = 1, . . . , n:

3.a generate Yj from the Bernoulli distribution with parameter p̂;

3.b if Yj = 1, then apply acceptance-rejection algorithm to generate from
f(x|1):
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3.b.1 generate Xj from vMF(ep, κ1κ2β1) with the acceptance-rejection Al-
gorithm A1. Generate Uj from Uniform(0, 1), independent from Xj;

3.b.2 if Uj ≤ f̃(R−1(ν1)Xj)/l̃(R
−1(ν1)Xj), with l̃ defined in (7.10), accept

R−1(ν1)Xj;

3.b.3 otherwise reject and return to 3.b.1.

3.c Else if Yj = 0, then apply acceptance-rejection algorithm to generate from
f(x|0):

3.c.1 generate Xj from vMF(ep, κ1κ2β0) with the acceptance-rejection Al-
gorithm A1. Generate Uj from Uniform(0, 1), independent from Xj;

3.c.2 if Uj ≤ f̃(R−1(ν0)Xj)/h̃(R
−1(ν0)Xj), with h̃ defined in (7.12), ac-

cept R−1(ν0)Xj;

3.c.3 otherwise reject and return to 3.c.1.

In Algorithm A6, the acceptance-rejection part when Y = 1 uses the envelope Ml̃ of
f̃ , where M > 0 is a constant such that f̃(x) ≤Ml̃(x), ∀x ∈ Sp−1. A small value of M
leads to a small rejection rate of generations from the density l, which is the vM density
obtained by normalizing l̃. The best admissible value of M is supx∈Sp−1 f̃(x)/l̃(x) and
we now show that it is equal to 1. We thus choose M = 1 in the part conditional on
Y = 1 of Algorithm A6. The same choice is considered in the part conditional on Y = 0

of Algorithm A6.
Let us show the optimality of M = 1 in the part conditional on Y = 1. We have

from (7.9) that

r(x) =
f̃(x)

l̃(x)
=

exp{κ1⟨µ1,x⟩+ κ2⟨µ2,x⟩2}
exp{κ1⟨µ1,x⟩+ κ2⟨µ2,x⟩}

= exp {κ2⟨µ2,x⟩ [⟨µ2,x⟩ − 1]} ≤ 1,

(7.13)

∀x ∈ Sp−1 such that ⟨µ2,x⟩ ≥ 0. We need to maximize the ratio r over the given
domain. According to Lagrange’s multiplier method, we need to solve

∇Λ(x, λ) = 0, (7.14)

where Λ(x, λ) = r(x) − λK(x) is the Lagrangian, K(x) = ||x||2 − 1 is the spherical
constraint, λ ∈ R is Lagrange’s multiplier and ∇ denotes the gradient operator. By
solving (7.14), we obtain that r has two extrema points over Sp−1, namely µ2 and −µ2.
The only acceptable solution under Y = 1 is µ2. The algebraic details can be found in
Appendix B. Thus r(x) ≤ r(µ2) = 1 and we select M = 1.

In the case Y = 0, we have to maximize the ratio

r(x) =
f̃(x)

h̃(x)
= exp {κ2⟨µ2,x⟩ [⟨µ2,x⟩+ 1]} ≤ 1,
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∀x ∈ Sp−1 such that ⟨µ2,x⟩ < 0. Similar considerations as above leads to one maximum,
namely −µ2; cf. details in Appendix B. Thus we find again r(x) ≤ r(−µ2) = 1, for all
x of the considered domain, hence M = 1.

7.2 Metropolis-Hastings generation algorithm for GvMF
distribution

This section proposes an algorithm of sequential generation of GvMF directions over
Sp−1, with i1 = 1 and i2 = 2, as before. It is the MH algorithm of MCMC introduced
by Hastings (1970). In MCMC, a Markov chain with unique stationary distribution is
generated. The stationary distribution is the target GvMF distribution. The generations
are done from the transition distribution, which is a mixture of a Dirac distribution and
a jumping, also called instrumental, distribution. Thus, the MH algorithm accepts
or rejects generations from the instrumental distribution according to an acceptance
probability that depends on the target and on the instrumental distributions. A reference
for MCMC is Chapter XIII of Asmussen and Glynn (2007), for example. Note that the
normalizing constant of the target distribution need not be known. We consider the
independent version of the MH algorithm, see e.g. Robert and Casella (2013, p. 276),
which is described as follows.

A7 MH algorithm for GvMF on Sp−1

1. Let f be the density function of the GvMF(µ1,µ2;κ1, κ2; 1, 2). Define the
instrumental density g as the:

• vMF(µ1, κ1) density, if κ1 ≥ κ2,

• 1/2 · vMF(µ2, κ2) + 1/2 · vMF(−µ2, κ2) mixture density, otherwise.

2. Select an arbitrary starting value over Sp−1, denoted X(0).

3. Repeat for k = 0, . . . , ns − 1:

3.a generate Yk from the density g;

3.b set

X(k+1) =

Yk, with probability ρ
(
X(k),Yk

)
,

X(k), with probability 1− ρ
(
X(k),Yk

)
,

where
ρ(x,y) = min

{
f(y)

f(x)

g(x)

g(y)
, 1

}
.
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Generation from the vMF distribution is done according to Algorithm
A1, along with Algorithm A2.

4. For a selected burn-in length nb < ns, discard {Xk}k=0,...,nb .
Re-index the n = ns − nb retained generations from 1 to n.

The form of the density g given in Algorithm A7 follows from the simple observation
that if κ1 ≥ κ2, then the GvMF(µ1,µ2;κ1, κ2; 1, 2) distribution is mainly concentrated
around the direction of µ1, otherwise if κ2 > κ1, then the concentration is along the
axis of µ2, namely around µ2 and around −µ2. This was mentioned in Section 7.1.2.
Numerical results show that this simple form of g is satisfactory, although an optimal
form might be obtained.

Numerical results and comparisons with Algorithm A6 of conditional simulation are
presented in Section 7.3.

7.3 Numerical Results

In this section we report the results obtained using the acceptance-rejection with con-
ditional approach and the MH algorithms. We consider only the case in S2 which is of
most practical interest. Here the rotational matrices are computed with Algorithm A3.
In order to simplify notation, let us call the conditional acceptance-rejection Algorithm
A6 and the MH Algorithm A7 with κ1 = 8, κ2 = 1, CAR1 and MH1 respectively. In the
same way let us call the acceptance-rejection and the MH with κ1 = 1, κ2 = 8, CAR2
and MH2 respectively.

Numerical results for CAR1 are now presented. The n = 103 simulations from
the GvMF are plotted on the unit sphere S2 in the coordinate system (X1, X2, X3) =

(X, Y, Z). The directions are chosen as follows: let v1 = (3, 12, 9) and v2 = (1, 0, 1).
Then µi = vi/∥vi∥, for i = 1, 2. Figure 7.1 shows the results.

Similar results are obtained using CAR2, with same directions µ1 and µ2 chosen
above. Results are presented in Figure 7.2. In particular the n = 103 points are more
concentrated not only around the direction of µ2 as seen in Figure 7.2a, but also around
−µ2, as shown in Figure 7.2b. This phenomenon depends on the term κ2⟨x,µ2⟩2 of the
GvMF distribution.

We present the results obtained for MH1. The numerical results are given using the
same directions as for the conditional approaches above. We generate n = 103 effective
random variables. These are the result of ns = 1.5 · 103 simulations, and nb = 5 · 102

initial burn in. In Figure 7.3 the 3 dimensional plot of n simulations from the GvMF
distribution with parameters κ1 = 8 and κ2 = 1. The starting value of the chain is µ1.

The results using MH2 are plotted in 3 dimensions in Figure 7.4. Again here we can
notice the points are concentrated around the direction of µ2 in Figure 7.4a, and around
the direction of −µ2 in Figure 7.4b. The starting value of the chain is µ2.
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Figure 7.1: The points are the n = 103 simulations from the GvMF(µ1,µ2;κ1, κ2; 1, 2),
with κ1 = 8 and κ2 = 1. Right bold point is µ1. Left bold point is µ2.

7.3.1 Numerical comparisons: spherical coordinates

In this section we want to compare the conditional approach in Section 7.1.2 and MH
in Section 7.2. To do so we compare the densities of the spherical coordinates that
are given in (3.1) of the simulation results obtained with the two methods, and the
efficiency in terms of the computing time and number of rejections. In order to simplify
the notation, let SC1 and SC2 be the samples of size n = 103 of Section 7.1.2 simulated
from the GvMF with CAR1 and CAR2, respectively. Let SMH1 and SMH2 be the
samples of size n = 103 of Section 7.2 simulated with MH1 and MH2, respectively.
The kernel density estimations (and the smoothing parameter or bandwidth h) of the
resulting θ1 and θ2 are presented in Figure 7.5. The kernel density estimation of θ1 for
SC1 (h = 0.075) and SMH1 (h = 0.077) can be found in Figure 7.5a. Figure 7.5b shows
the kernel density estimation of θ2 for SC1 (h = 0.107) and SMH1 (h = 0.113). Same is
done for SC2 and SMH2. The kernel density estimation of θ1 for SC2 (h = 0.1601) and
SMH2 (h = 0.1612) is shown in Figure 7.5c. Finally, in Figure 7.5d the kernel density
estimation of θ2 for SC2 (h = 0.139) and SMH2 (h = 0.129).
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(a) Points concentrated around the direction of µ2 (left bold
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Figure 7.2: The points are the n = 103 simulations from the GvMF(µ1,µ2, κ1, κ2; 1, 2),
with κ1 = 1 and κ2 = 8.
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Figure 7.3: The points are the n = 1e3 simulations from the GvMF(µ1,µ2;κ1, κ2; 1, 2)

using MH, with κ1 = 8 and κ2 = 1. Right bold point is µ1. Left bold point is µ2.

7.3.2 Numerical comparison: rejection rates

Another comparison can be done considering the rejection rates of the two approaches.
The comparison of the spherical coordinates in Figure 7.5 and of the rejections rates
in Table 7.1, suggests that the two approaches are both valid for the simulation. The
functions to generate from the vMF, and the algorithm using acceptance-rejection with
conditional approach and the MH are written in R.

CAR1 MH1 CAR2 MH2
rejections 15% 15% 45% 40%

Table 7.1: Comparison of the rejections rates of the two methods.
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Figure 7.4: Points are the n = 103 simulations from the GvMF(µ1,µ2;κ1, κ2; 1, 2) using
MH, with κ1 = 1 and κ2 = 8.
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(c) Kernel density estimation of θ1 for SC2
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Figure 7.5: Density kernel estimations (for linear data) of the spherical coordinates of
the simulations generated via acceptance-rejection with conditional approach and MH.

7.4 Conclusion

Two novel algorithms of random direction generation from the GvMF(µ1,µ2;κ1, κ2; 1, 2)

distribution are proposed. This distribution seems the most interesting within the GvMF
class, besides the vMF. As a by-product, we obtain a Monte Carlo estimator of the
normalizing constant of the GvMF(µ1,µ2;κ1, κ2; 1, 2) distribution. By using either con-
ditional simulation or MCMC, it should be possible to obtain generation algorithms for
some other GvMF distributions or for some of the other directional exponential distri-
butions that are given e.g. in Section 9.3.3 of Mardia and Jupp (2000).
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Chapter 8

Final remarks

In this thesis we have discussed directional distributions. In particular, the circular case
in R2 has been analysed. Here the GvM distribution have been widely discussed and
some tests to test its symmetry and bimodality have been proposed. The Bayes factor
and HPD regions have been considered. Results are presented, and they confirm the
nature of the data. Most of the data in this thesis have been generated in R. A real data
case is considered when testing the symmetry. Future work could involve investigating
the bimodality of real data. Moreover, as mentioned, the analysis computed in Chapter
5 could be completed with the study of the inflection points of the GvM distribution.

Moreover, the general case of directional data in the unit sphere of Rp has been
considered in this thesis. Here we computed two methods to simulate from the GvMF
distribution. Plots in 3d have been reported in the most practical case of R3.

In this thesis, the simulations and plots are computed with the software R. In par-
ticular, we mention the use of the main computer cluster UBELIX of the University of
Bern. This was particularly useful for the computations in Chapter 4 and Chapter 6.
All the computer programs of this thesis can be found at http://www.stat.unibe.ch.
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Appendix A

Proof of Proposition 4.1.1

Proof. The definition of axial symmetry given at the beginning of Section 4.1.3 tells that
the GvM distribution is symmetric around α/2 (or α/2 + π), for some α ∈ [0, 2π), iff

f(θ|µ1, µ2, κ1, κ2) = f(α− θ|µ1, µ2, κ1, κ2), ∀θ ∈ [0, 2π).

This means

κ1 cos(θ − µ1) + κ2 cos 2(θ − µ2) = κ1 cos[(α− θ)− µ1] + κ2 cos 2[(α− θ)− µ2]

= κ1 cos[θ − (α− µ1)] + κ2 cos 2[θ − (α− µ2)],
(A.1)

∀θ ∈ [0, 2π). By using the cosine addition formula, (A.1) can be re-expressed as

κ1 cos θ cosµ1 + κ1 sin θ sinµ1 + κ2 cos 2θ cos 2µ2 + κ2 sin 2θ sin 2µ2 =

κ1 cos θ cos(α− µ1) + κ1 sin θ sin(α− µ1) + κ2 cos 2θ cos 2(α− µ2) + κ2 sin 2θ sin 2(α− µ2),

∀θ ∈ [0, 2π). This is equivalent to the equation

κ1[cosµ1 − cos(α− µ1)] cos θ + κ2[cos 2µ2 − cos 2(α− µ2)] cos 2θ

+ κ1[sinµ1 − sin(α− µ1)] sin θ + κ2[sin 2µ2 − sin 2(α− µ2)] sin 2θ = 0,

∀θ ∈ [0, 2π). It is convenient to re-express this last equation in terms of a trigonometric
polynomial of degree N = 2, precisely as

p(θ) =
N∑
j=1

(aj cos jθ + bj sin jθ) = 0, ∀θ ∈ [0, 2π), (A.2)

whose coefficients are given by

aj = κj[cos jµj − cos j(α− µj)] and bj = κj[sin jµj − sin j(α− µj)], for j = 1, 2.

A trigonometric polynomial of degree N has maximum 2N roots in [0, 2π), unless it is
the null polynomial; see e.g. p. 150 of Powell et al. (1981). With this, (A.2) implies
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that p(θ) is the null polynomial, which means that aj = bj = 0, for j = 1, 2. These four
equalities give the system of equations

cosµ1 = cos(α− µ1),

sinµ1 = sin(α− µ1),

cos 2µ2 = cos 2(α− µ2),

sin 2µ2 = sin 2(α− µ2),

which, in terms of δ = (µ1 − µ2) mod π, simplifies toα = 2µ1 + 2kπ,

α = 2
[
(µ1 − δ) mod π

]
+ k1π,

for some k, k1 ∈ Z.

One can eliminate the congruence symbol mod and obtainα = 2µ1 + 2kπ,

α = 2µ1 − 2δ + (k1 + 2k2)π,
for some k, k1, k2 ∈ Z. (A.3)

This system of simultaneous equation admits solutions iff 2δ is a multiple of π, i.e. 2δ =
0 mod π. Since δ ∈ [0, π), we have found the desired symmetry characterization.
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Appendix B

Lagrange multiplier method

We provide the calculations of the Lagrange multiplier method to maximize the ratio
(7.13). Let

r(x) = exp {A(x)} ,

with A(x) = κ2⟨µ2,x⟩ [⟨µ2,x⟩ − 1]. In order to find the extrema points of r with the
Lagrange multiplier method, we need to solve the system of equations{

∂Λ(x)
∂xj

= 0, for j = 1, . . . , p,
∂Λ(x)
∂λ

= 0,
(B.1)

where Λ(x) = r(x) + λK(x) is the Lagrangian, K(x) = (∥x∥2 − 1), λ ̸= 0 and x =

(x1, . . . , xp). With some calculations, from (B.1) we have{
B(x)µ2,j − 2λxj = 0, for j = 1, . . . , p,

x21 + . . .+ x2p − 1 = 0,
(B.2)

where B(x) = exp {A(x)}κ2 [2⟨µ2,x⟩ − 1] and µ2 = (µ2,1, . . . , µ2,p). We notice in
particular that for B(x) = 0, (B.2) has no solutions. From (B.2), for x1 ̸= 0 and
µ2,1 ̸= 0 we get 

2λ = 1
x1
B(x)µ2,1,

xj =
µ2,j

µ2,1
x1, for j = 2, . . . , p,

x21 + . . .+ x2p − 1 = 0.

(B.3)

Solving (B.3) we obtain two extrema points, namely µ2 and −µ2. If x1 = 0 and µ2,1 = 0

similar considerations lead to the same solutions µ2 and −µ2. Since ⟨µ2,±µ2⟩ = ±1,
and that we are considering the case Y = 1 hence ⟨µ2,x⟩ ≥ 0, the only acceptable
solution of (B.1) is x = µ2.

The case Y = 0 is the restriction of Sp−1 to ⟨µ2,x⟩ < 0. We search the extrema
points of r(x) = exp{A(x)} where in this case A(x) = κ2⟨µ2,x⟩ [⟨µ2,x⟩+ 1]. Again
we need to solve (B.1), which leads to (B.2), with B(x) = exp {A(x)}κ2 [2⟨µ2,x⟩+ 1]

in this case. In the same way from (B.3) and with similar consideration as above, we
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obtain two solutions namely µ2 and −µ2. Since in this case we are considering the case
Y = 0 hence ⟨µ2,x⟩ < 0, the only acceptable solution is x = −µ2.
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