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Abstract

Energetic photons are a short-distance probe to search for new physics and test the stan-
dard model at colliders. In order to di�erentiate photons from di�erent origins at hadron
colliders, it is necessary to impose isolation requirements. These requirements restrict the
hadronic radiation inside a cone around the photon. In this thesis, we present a factor-
ization theorem for the QCD e�ects associated with photon isolation. We show that for
small cone radius R, photon isolation e�ects can be captured by a fragmentation function
describing the decay of a parton into a photon accompanied by hadronic radiation. We
compute this fragmentation function for di�erent isolation criteria. For small isolation en-
ergy, the cone fragmentation function factorizes further into jet and soft functions. Using
renormalization-group methods, we resum the leading logarithms of R and the non-global
logarithms of the ratio εγ of the isolation energy and the photon energy, so that we control
all logarithmically enhanced terms in the cross section. Finally, in the limit of small R
and small εγ , we provide a simple formula to convert NNLO cross-section results from
smooth-cone isolation to �xed-cone isolation.



Chapter 1

Introduction

This thesis sheds light on photon production processes at colliders by performing a care-
ful analysis of enhanced QCD corrections induced by the isolation requirements imposed
experimentally. It consists of �ve chapters and three appendices. Chapters 1, 2, 3 and 4
are introductions. Chapter 2 discusses fundamentals of interest for the rest of this thesis,
in particular photon detection and parton distribution functions. Chapter 3 is devoted to
photon production at colliders, perturbative photon emission, fragmentation and neutral
hadrons decaying into photons are discussed. Chapter 4 is about the most common photon
isolation criteria. Chapter 5 presents the main results of this thesis. We calculated the
resummation of large logarithms of narrow isolation cones with small isolation energy. This
part has been submitted for publication in JHEP. The appendices complement this work
and provide technical details on Mellin moments, techniques to solve the DGLAP equation
and some useful mathematical relations. The last of the appendices provides a detailed
guide on how to use MadGraph and MCFM in order to reproduce results presented in this
thesis.

The production of prompt photons can be used to test the standard model and QCD.
Experimentally, photons are interesting as they are easier to detect precisely than jets.
First, photons will deposit energy only in the electromagnetic (EM) calorimeter, whereas
jets will deposit energy in both the EM calorimeters and the hadron calorimeters. Secondly,
photons will only deposit energy in a small angular region, which is not the case for jets.
Additionally, jet fragmentation and hadronization implies that the measurements of energy
of the particle creating a jet is not directly possible. Photons do not have this problem [1].

The study of photon production is important to achieve precise predictions for collider
physics. For example, photon production at hadron colliders can be used to improve our
knowledge of the gluon parton distribution function (PDF) in the proton due to the leading
order QCD Compton scattering qg → qγ. The constraint on the gluon PDF from photon
production is useful to increase the precision of gluon induced processes at colliders. In
particular, it improves the precision of gluon fusion for single Higgs production, which is
the dominant channel at the LHC [2]. However, studying the non-perturbative fragmenta-
tion of the quark to the photon Dq→γ is necessary in order to reduce uncertainties in the
determination of the gluon PDF [3, 4].
The decay of the Higgs boson into two photons is an additional reason to study photon
production, since it was one of the discovery channels, despite the small branching ratio
of only 0.2% [5]. In 2015, an excess of diphotons at the LHC for an energy of approx-
imatively 750 GeV resulted in a large amount of publications to explain the phenomena
of a hypothetical resonance [6]. Instead of the discovery of a new particle, it turned out
to be a statistical �uctuation [7]. The production of γ+2 jets was used in [8] in order to
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estimate the production of Z+2 jets (where the Z decays then into two neutrinos), which
is a background to certain beyond the standard model processes.

Photons can be produced through various processes and predicting each of them allows
one to subtract the background from the process of interest. For example, the estimation
of the background from π0 and η mesons can be used to subtract this background in order
to get a better determination of the non-perturbative fragmentation functions Di→γ which
are not well known.

It is instructive to study photon isolation, as it is used to distinguish between photons
from di�erent origins. In particular, it helps to suppress photons originating from hadron
decays. Experimentally isolation criteria with small isolation energy ETiso compared to the
photon energy ETγ (so εγ = ETiso/E

T
γ � 1) are used, e.g. at ATLAS [9] where photons were

required to have ETγ ≥ 125 GeV

ETiso = 4.2 · 10−3ETγ + 4.8 GeV ⇒ ETiso
ETγ
≤ 0.0426 if ETγ ≥ 125 GeV . (1.1)

For ETγ ≥ 150 GeV as in [10], the ratio is smaller with ETiso/E
T
γ ≤ 0.0362. The cone

openings R considered are typically R = 0.2 or 0.4.
A problem arising in theoretical computations with photon isolation is the presence

of large logarithms which are spoiling the perturbative expansion. For instance in [11],
when computing the cross section for isolated photons at NLO, it turned out that for small
isolation cones, the cross section becomes larger than the non-isolated one. Being able to
resum the logarithms of R allows us to make reliable predictions that could be used for
future measurements with smaller isolation cones. Performing measurements with narrower
cones would increase the available statistics as less events are discarded. Considering tight
isolation (i.e. small ratio εγ = ETiso/E

T ) also suppresses the non-perturbative fragmentation
which is a source of uncertainty. Therefore, the isolation of interest is a narrow cone with
a small isolation energy.

In the case of a narrow cone R � 1, the leading logarithm resummation of the large
logarithms of the radius was performed in [12]. However, the isolation energy considered
ETiso was not small compared to ETγ . The case of a large cone with small isolation energy
was studied in [13], where the leading logarithms of εγ were resummed using a parton
shower.

In Chapter 5, a factorization theorem for isolated photon production with narrow cone
R� 1 is presented

dσ(E0, R)

dEγ
=

dσdir
γ+X

dEγ

+
∑

i=q,q̄,g

∫
dz

dσi+X
dEi

Fi→γ(z, Eγ , E0, R) +O(R) , (1.2)

where Fi→γ is the cone fragmentation function. It encodes the collinear fragmentation of
a parton i with energy Ei to a photon with energy Eγ = zEi. The hadronic energy in the
cone is constrained to be less than E0. σ

dir
γ+X is the perturbative cross-section for producing

a photon without isolation. The logarithms of the radius R are resummed by solving the
DGLAP evolution of the cone fragmentation function numerically.
Finally, for a narrow cone with a small isolation energy, a second factorization occurs
and Fi→γ can be written as a convolution of jet functions J and coft (collinear and soft)
functions U . The narrow cone with small isolation energy has two types of logarithms, lnR
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and ln εγ , that both need to be resummed. The leading logarithms of εγ are resummed
with the help of a parton shower code, called NGL_Resum [14]. Both resummations can
be combined and they lead to a decrease of the cross-section.

Thanks to the work done in this thesis it is now possible to reliably predict photon
production with tight isolation at NLO. In the future, these predictions should be gener-
alized to NNLO and would complement recent works to compute the photon production
at NNLO with both Frixione and �xed-energy cones with wide cones and small isolation
energy [15, 16].
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Chapter 2

Particle physics at hadron colliders

2.1 A word on experimental physics

In order to test theories and gain a better understanding of the universe, scientists perform
a large variety of experiments. Some of these experiments are not too complex to explain
and to build, an example of which is the pitch drop experiment. It is a slow experiment
and if one wants to perform it, patience is needed. A schema of the experimental setup
can be seen in the Figure 2.1. A very viscous liquid is put in a funnel. The substance
may be for example asphalt. Under the funnel a beaker is put to receive potential drops.
It is necessary to wait for a drop of the substance to fall. The time for a drop to fall is
measured. The glass bell protects the experiment from outside in�uences. However, it
does not protect it from temperature variations. With such experiments, it is possible to
see that a certain substance is liquid even if it looks like a solid. Such an experiment was
started for example in 1927 in the university of Queensland in Australia and so far only 9
drops fell until today (2022). The next drop will probably fall at the end of the decade or
a bit later depending on the temperature in the laboratory [17].

Unlike the pitch drop experiment, some experiments are exorbitant, extremely com-
plex and also very fast. For example the Large Hadron Collider (LHC) at CERN (Conseil
Européen pour la Recherche Nucléaire) which lays approximately 100 m deep under the
canton of Geneva and the Pays de Gex costed a few billions Swiss francs and has a cir-
cumference of 27 km [18]. In this section, we will quickly discuss particle colliders and
detectors. When running the LHC performs a collision every 25 ns which is sensibly faster
than the waiting time between two drops of the experiment discussed previously.

c

a

c

b

f

d

e a The viscuous liquid

b The funnel

c Drop slowly forming

d Arm holding the funnel

e Glass bell

f Beaker

Figure 2.1: Schematic representation of a pitch drop experiment.

4



2.1.1 Particle colliders

In order to study the properties of matter, physicists perform collisions of particles. We
can either collide a beam of particles with a �xed target, or we can collide two beams of
particles. A famous example of a �xed-target experiment is the Rutherford experiment.
In this work we will not discuss �xed-target experiments but only colliders. There are
di�erent types of colliders, they are linear or circular, and can collide di�erent types of
particles. For example at the LHC protons or ions. Before the LHC at LEP (Large
Electron Positron collider) collided electron-positron, at the Tevatron proton-antiproton
and at HERA (Hadron Electron Ring Accelerator) electron-proton. Colliding di�erent
types of particles allows physicists to study various processes.

The idea is to accelerate two beams of particles, make them interact by smashing into
each other and then detecting what comes out of the collision. It may seem simple, but
it is complex, costly and requires the work of a substantial amount of people with diverse
knowledge. However, it allowed physicists to discover a profusion of particles and gain a
better understanding of the universe.

The main collider of interest in this work is the LHC at CERN. We will not discuss
how a stable beam of protons is produced and collided at LHC, but will only brie�y review
the information that is relevant for the rest of this thesis. At the LHC beams of protons
with a kinetic energy of a few TeV are collided. The protons are traveling in collimated
beams in the opposite direction in the ring and are made to interact at predetermined
points. At the end of the Run I (between 2009 and 2013) the protons had an energy up
to 4 TeV. During Run II (from 2015 to 2018), the protons had 6.5 TeV. In April 2022, run
III started with protons having 6.8 TeV. A beam is composed of bunches of approximately
1011 protons and these cross at the interaction points every 25 ns. At every crossing of the
two beams, approximately 20 to 30 collisions happen [19, 20] (at Tevatron it was only 5
[21]). During Run II at CMS, it was observed that certain bunch crossings had up to 50
collisions happening. This number of collisions happening at every bunch crossing depends
on the intensity of the beam. The LHC is also used to collide ions, however this will not
be discussed in this work.

2.1.2 Particle detectors

In order to detect a particle, it is necessary to make this particle interact with a detector.
One particle detector known to the general public is the Geiger counter, used to detect
ionizing radiation. Di�erent types of detectors are used for di�erent particles. Typically,
a particle collider has several detectors; LHC has ALICE, ATLAS, CMS and LHCb. The
Tevatron had CDF and DO. The research on particle detectors is an interesting and broad
topic and the introduction given here is extremely simpli�ed and short. We want here
to brie�y explain the general structure of a particle detector used at a particle collider,
typically ATLAS, CMS or CDF (see for example the following references [22, 23, 24]
respectively), without getting into the technical details of these exquisite machines. The
following explanation does not take into account the complexity of detectors but only their
overall structure. For example, the tracker of the ATLAS detector is made of 3 parts,
however this information is irrelevant for this work.

Figure 2.2 represents a simple schematic representation of a particle detector. It has
similarities with the ATLAS or the CMS detector but is extremely simpli�ed. The detector
has an onion structure and is made of di�erent layers around the interaction point. The
closest detector to the interaction point is the tracker. It is used to get the trajectories
of charged particles. As the inside of the detector is in a magnetic �eld, we also get the
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Tracker EM calo. Hadrons calo. Magnet µ chamber

Figure 2.2: Simpli�ed schematic representation of a particle detector and of the trajectory
of 3 particles. The scales of the detector are not respected.
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Figure 2.3: Event display at CMS, the green tower on the left is a photon candidate, top
right a b jet with in blue the deposits in the hadronic calorimeter, the red line is a muon.
Image source: cds.cern.ch/record/2235235, Copyright CERN.

charge of a particle and its momentum/mass ratio. The second layer is the electromagnetic
calorimeter. This calorimeter stops electrons and photons and measures their energy. Then
the hadron calorimeter stops the hadrons and measures their energy. Muons and neutrinos
are the only stable particles that pass the calorimeters. The muons are detected in the last
layer, which is the muon calorimeter as they interact less with matter than for example
electrons. Neutrinos are not detected.

In the �gure, 3 trajectories are drawn. The straight one is not bent by the magnetic
�eld, therefore the particle is neutral, it does not leave a track and it is stopped in the
electromagnetic calorimeter and is therefore a photon. The second trajectory is bent,
the particle can be tracked using the tracker and it is stopped by the electromagnetic
calorimeter, it is an electron. The last trajectory is a positively charged particle. It is a
hadron as it is stopped in the hadronic calorimeter, it could be a positive pion π+ or a
proton for example. We can only directly detect particles that have a lifetime long enough
and enough energy to reach the detectors.

The parts of the detectors that interest us the most in this work are the electromag-
netic and hadronic calorimeters, as these two parts are used to detect jets and photons.
One limitation of a calorimeter is its resolution. The fact that the hadronic calorimeter
has a �nite resolution makes certain types of isolation requirements on the photons not
usable in practice (see chapter 4). EM calorimeters have better energy resolution than the
hadronic ones which is one more reason to study photons [25]. It is also necessary to know
some characteristics of a detector, as we need to know which phase space region every part
covers. Then it is possible to know for each type of particle what kinematics can be de-
tected. It is necessary to do so to be able to compare theoretical prediction to experimental
measurements. For example the ATLAS electromagnetic calorimeter can detect photons
with pseudo rapidity |ηγ | < 2.37 except a gap region between 1.37 and 1.56.

Figure 2.3 shows an event display at CMS for proton proton collisions during Run II of
the LHC. This event is probably the production of an isolated photon and a b jet. On the
bottom left an energetic particle in green is detected in the electromagnetic calorimeter
and is probably a photon. The innermost part is the tracker and there are a lot of tracks
during this collision. It is isolated as there is only little energy in the same direction in the
hadronic calorimeter (in blue). On the top right we can see a bunch of particles all going
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approximately in the same direction and energy is deposited in both the hadronic and
electromagnetic calorimeters, this is a jet. Finally, a muon (the red line) is detected. The
jet may contain a bottom quark. Many more event displays can be found on the CERN
website for a wide range of processes.

2.2 Strong coupling and parton distribution functions

In this section a quick summary on the running of the strong and electromagnetic couplings,
the hadronic cross-section and the parton distribution functions is given. The vast majority
of this section is textbook material and can be found in the following references [26, 25,
27, 21].

2.2.1 Running of αs and α

The running of αs is governed by the renormalization equation [28]

µ
∂αs
∂µ

= β (αs) = −2αs

(
αs
4π
β0 +

(αs
4π

)2
β1 +O

(
α3
s

))
, (2.1)

where β (αs) is the so-called beta function and it is known up to β3. The �rst two βi are

β0 = 11− 2

3
nf

β1 = 102− 38

3
nf ,

(2.2)

where nf is the number of quark �avors. For nf = 5, the values are β0 = 23/3 and
β1 = 116/3. Solving the evolution equation of αS at the lowest-order (only including the
β0 term) is straightforward

αs(µ
2) =

αs(µ
2
0)

1 + β0
αs(µ20)

4π ln
(
µ2

µ20

) =
1

β0
4π ln

(
µ2

Λ2

) . (2.3)

The previous equation allows us to compute the strength of the coupling at a certain scale
µ if we already know it at the scale µ0, if not stated otherwise in this thesis, we will use the
value αs(MZ) = 0.119. The coupling αs decreases if µ increases as long as β0 is positive.
In the case of αs(µ0 = MZ = 91.187) = 0.119 and 5 quarks, Λ ∼ 300 MeV. If the number
of quark �avors would be nf ≥ 17, the coupling would decrease when µ increases. This is
not what has been observed experimentally. In the case of QED, the coupling α also has
a similar equation:

µ2 ∂α

∂µ2
= 4πβ (α) =

α2

4π
βQED

0 +O
(
α3
)
, (2.4)

with

βQED
0 =

4

3

∑

f

e2
f . (2.5)

The sum
∑

f e
2
f runs over all the fermions and for f = e, µ, τ, d, u, s, c, t, it is 38

9 . The main
di�erence between QED and QCD is that the QED β0 is positive. This implies that when
µ becomes larger, the coupling α(µ) increases. Both renormalization equations for αs and
α are valid only at high enough energy (so larger than a few GeV), such that we do not
have non-perturbative e�ects.
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Finally one may ask, if QED would change the renormalization equation of αs. At
lowest order in QED we would introduce an extra term on the right-hand side of (2.1)
coming from QED correction in the quark loop [29]

αα2
s

8π2

(∑

q

e2
q

)
, (2.6)

with the sum over the quarks, gives a factor 11/9. This term is a lot smaller than the β1

term.

2.2.2 Hadronic cross-section

When leptons are collided, for example an electron and a positron (as it was done at
LEP), it is possible to compute cross-sections using perturbation theory. For example the
cross-section at leading-order in QED for e+e− → γ∗ → µ+µ− is

σ =
4πα2

3s
, (2.7)

where s is the center of mass energy squared,
√
s = 2Ebeam = Q. All the energy of the

electron and of the positron is used to create the virtual photon γ∗. In the rest frame of
the photon we have:

pe+ =

(
Q

2
, 0, 0,

Q

2

)
pe− =

(
Q

2
, 0, 0,−Q

2

)
pγ∗ = (Q, 0, 0, 0) . (2.8)

Then the virtual photon carries all the energy of the colliding leptons.
If composite particles are collided like for example protons, things are more complex.

The two protons will interact through their constituents. We need to know which part of
the protons will interact and with how much of the proton energy. We assume that the

protons have the 4-momentum
(
Q
2 , 0, 0,±

Q
2

)
. Then a the parton (gluon,quark or anti-

quark) from the �rst proton and b the parton from the second proton, where a and b are
the interacting partons, their momentum is

pa =

(
xa
Q

2
, 0, 0, xa

Q

2

)
pb =

(
xb
Q

2
, 0, 0,−xb

Q

2

)
, (2.9)

where the xi are the fractions of energy carried by both partons. Note that xi < 1. If the
two partons are a quark and antiquark, they may annihilate into a virtual photon similar
to the e+e− case. However the momentum of the photon resulting from the annihilation
will be

pa + pb = pγ∗ =

(
xa + xb

2
Q, 0, 0,

xa − xb
2

Q

)
. (2.10)

We have that p2
γ∗ = xaxbQ

2 < Q2. This has a crucial implication. If we want to study
the creation of a pair of particles from a virtual photon with a certain mass M both in
the case of e+e− or pp colliders, the necessary center of mass energy s will be a lot larger
for the proton collider than for the electron positron one. A question we need to answer is
how much energy every constituent of the proton carries and with which probability. To
answer it, it is necessary to introduce the parton distribution functions (PDF) fi/p(z, µ)
with z the fraction of longitudinal momentum carried by the parton i out of its proton and
µ the factorization scale also often denoted by µF . If not stated otherwise, the PDFs are
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the ones of a proton in this work, thus the notation fi(z, µ) will be used. Sometimes, the
PDF fi is even simply written i.

The factorization formula for the cross-section of two protons scattering to produce X,
is

σ (pp→ X) =
∑

a,b=q,q̄,g

∫ 1

0
dxa

∫ 1

0
dxbfa(xa, µ)fb(xb, µ)σab→X (µ, µR) , (2.11)

where µR is the renormalization scale. The quantity σab→X is the partonic cross-section
and is computed using perturbation theory. For example X could be a quark and an
antiquark qq̄. Then we will need to compute following partonic cross-section σq′q̄′→qq̄ and
σgg→qq̄. These LO partonic cross-sections can be found in for example [25]. Unlike the
example of e+e− to µ+µ−, the partonic cross-sections do not depend on s but on ŝ = sxaxb,
where s is the center of mass energy of the two protons squared s = Q2. As stated earlier,
only a fraction of the energy of the protons is used in the reaction ab→ X.

The rest of the colliding protons also interact. This is called "underlying event" (UE)
which constitutes a background of the process studied. The underlying event should not be
confused with pile-up, which is the background originating from collisions of other protons.
Pile-up depends on the accelerator, the more collisions that happen at each bunch crossing
the larger the pile-up is. The underlying-event is present even if we only collide 2 protons
together (if we manage to have only one collision in a bunch crossing). Both UE and
pile-up need to be removed when considering a certain hadronic process.

The particular cases of hadronic cross-section that interest us in this work is pp→ γ+Y
where Y denotes some extra particles (like a quark or a gluon at LO). However in the case of
the photon there is a complication, there is a non-perturbative fragmentation contribution
that we can not compute in perturbation theory. This will be discussed in the next chapter.
Before discussing photon production at colliders, we �rst discuss the parton distribution
functions in greater detail.

2.2.3 Parton distribution functions

A proton consists of two valence up quarks and one valence down quark. In addition, there
are also the sea quarks and gluons. Very naively one may think that each of the valence
quarks carry a third of the momentum of the quark. This is not the case as explained
below. The up and down quarks PDF have two contributions the valence iv and the sea
is quarks

d = dv + ds u = uv + us. (2.12)

The other quark �avors s, c, b,the anti-quarks and the gluon only have a sea contribution,
for example c = cs.

In Figure 2.4, the parton distributions (multiplied by z) of gluon, up, down, anti-up
and anti-down are plotted at the energy of 125 GeV. For large z, all of them go to zero.
For z going to zero, all the PDFs diverge. At small z, the gluon contribution dominates the
quark u and d. At larger z, the PDF of the quarks are larger than the gluon distributions.
The up quark is larger than the down quark which is not surprising knowing that a proton
is made of two ups and one down. As you can see ū and d̄ are very similar and the other
sea quarks that are not shown in the �gure are all smaller than the gluon, up and down
quarks and look like ū and d̄.

Parton distribution functions have a few interesting properties, for example

∑

i=q,q̄,g

∫ 1

0
dzzfi(z, µ) = 1, (2.13)
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Figure 2.4: Parton distribution functions of the proton from the set
NNPDF23_lo_as_0119_qed as a function of z, evaluated at 125 GeV. Note that u = uv +us
and d = dv + ds.

which means that the momentum is conserved over all the partons. The amount of momen-
tum carried by the valence quarks up and down depends on the energy considered. The
rest of the momentum is taken by the gluon and the sea quark. In Figure 2.4, the PDF set
NNPDF23_lo_as_0119_qed (which is the leading order version of the one that we use in our
work, NNPDF23_nlo_as_0119_qed) was used to compute numerically the amount of energy
each parton is carrying in the proton for di�erent energy which is done by performing the
integral of the above equation for each fi separately. The result can be seen in Table 2.1.
As you can see the higher the energy, the more momentum the gluon and the sea quarks
carry and the less the valence quarks carry. For the energies considered, the valence quarks
make less than half of the momentum. It is interesting to notice that gluons carry almost
half of the energy.

One assumption about PDF is their universality. It means that we can measure the
PDF using a certain process and that it is then possible to use the resulting PDF in
order to do prediction for a di�erent process. This follows from the factorization of the
cross-section.

2.2.4 Evolution equation of the parton distribution functions

Even though the parton distribution functions need to be measured and can not be pre-
dicted using perturbative QCD, their evolution in µ is predicted by perturbative QCD.
This allows the PDFs to be measured at a certain scale and be used at another scale. The
PDFs obey the DGLAP (Dokshitzer�Gribov�Lipatov�Altarelli�Parisi) evolution equation,
it is a di�erential system of 2nf + 1 equations, where nf is the number of quark �avors.
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parton at µ = 2 GeV 5 GeV 125 GeV

gluon 0.43 0.45 0.48
up 0.31 0.28 0.21

down 0.16 0.14 0.12
sea quarks 0.10 0.12 0.19

Table 2.1: Approximative fraction of energy carried for the di�erent partons in a proton
at di�erent energy µ obtained with the PDF set NNPDF23_lo_as_0119_qed. Sea quarks is
the sum of s, c, b and the antiquarks ū, d̄, s̄, c̄, b̄, the non-valence parts of the up and down
quark were included in the up and down quark fractions see (2.12). The values at 5 GeV
add up to 0.99 instead of 1.0, this is in parts due to error of the numerical integration and
mostly to the rounding to 2 digits.

The DGLAP equation is

d

d lnµ2

(
fqi(x, µ)
fg(x, µ)

)
=
∑

j

∫ 1

x

dz

z

(
Pqj→qi(xz , µ) Pg→qi(xz , µ)
Pqj→g(xz , µ) Pg→g(xz , µ)

)(
fqj (z, µ)
fg(z, µ)

)
, (2.14)

where sum runs over quarks and antiquarks. The quantities Pi→j are the splitting func-
tions, they depend both on z and µ, however the µ dependence arises only via the coupling.
We expand Pi→j in the strong coupling αs (µ)

Pi→j(z, µ) =

∞∑

n=1

(
αs(µ)

2π

)n
P

(n,0)
i→j (z), (2.15)

where we used the notation of [30]. In this notation Pi→j are expanded in power of α and
αs as

Pi→j(z, µ) =
∞∑

n=0

∞∑

m=0

(
αs(µ)

2π

)n(α(µ)

2π

)m
P

(n,m)
i→j (z), (2.16)

with obviously the term of order α0α0
s vanishing P

(0,0)
i→j (z) = 0. This notation is useful in

the context of photon production.
A more compact formulation of the DGLAP equation is

dfi(z, µ)

d lnµ2
=

∑

j=q,q̄,g

Pj→i ⊗ fj(z, µ), (2.17)

where the convolution ⊗ of two functions is de�ned as

(f ⊗ g)(z) =

∫ 1

0
dx

∫ 1

0
dy δ(z − xy)f(x)g(y) =

∫ 1

z

dy

y
f(y)g

(
z

y

)
. (2.18)

Obviously this convolution is commutative (f ⊗ g) (z) = (g ⊗ f) (z). At the lowest-order
the DGLAP equation is solved with the splitting function only expanded up to order O (αs)
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where q is a quark or an antiquark

P (1,0)
q→q (z) = CF

(
1 + z2

1− z

)

+

,

P (1,0)
q→g (z) = CF

(
1 + (1− z)2

z

)
,

P (1,0)
g→q (z) = TR

(
z2 + (1− z)2

)
,

P (1,0)
g→g (z) = 2CA

(
z

(1− z)+

+
1− z
z

+ z(1− z)
)

+
β0

2
δ(1− z),

(2.19)

with β0 =
11Nc−4nfTR

3 . Other splitting functions are vanishing at this order for example

P
(1,0)
qi→qj vanishes if both quark are not the same and P

(1,0)
q→q̄ = 0. The plus distribution

1
(1−z)+ in P

(1,0)
q→q and P

(1,0)
g→g is de�ned in Section 1. Solving the DGLAP equation with

the splitting functions expanded only at order αs is not so involved as certain parton
distribution functions are not coupled as for example q and q̄. More details on how to
solve the equation can be found in Appendix B. The splitting functions used for the

DGLAP of PDF are avialable up to P
(3,0)
i→j [31, 32]. At order α2

s the DGLAP equation
is more complex as some splitting functions are not vanishing anymore as for example

P
(2,0)
q→q̄ 6= 0.
In the chapters 3 and 5, a di�erent DGLAP like equation will be discussed for the non-

perturbative photon fragmentation function Di→γ and for the cone fragmentation function
Fi→γ . Both functions obey the same equation which shares similarities with the DGLAP
equation of the PDF. Some of the splitting functions will have to be expanded at order
α and ααs. After studying this QED + QCD DGLAP like equation, one may ask himself
what happens to the DGLAP of the PDF if the QED e�ects are added to the evolution
of the PDF. This was studied for example in [33]. In order to do so, it is necessary to
also consider PDFs of the photon and of charged leptons in the proton on top of the usual
quark and gluon PDFs. For a toy model the authors found that corrections due to the
addition of QED can reach 1% for certain values of z. The LO splitting function for pure

QED P
(0,1)
i→j are [30]

P (0,1)
q→q (z) = e2

q

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
,

P (0,1)
γ→q (z) = Nce

2
q

(
z2 + (1− z)2

)
,

P (0,1)
q→γ (z) = e2

q

(
1 + (1− z)2

z

)
,

P (0,1)
γ→γ (z) = −2

3

∑

f

e2
fδ(1− z).

(2.20)

All other splitting function at this order are vanishing, like for example P
(0,1)
qi→qj = 0 if qi 6= qj

or P
(0,1)
g→γ = 0 and so on. When including ααs corrections, some functions are not vanishing

anymore as for example P
(1,1)
g→γ that will be used later in Chapters 3 and 5.

Finally a detail we need to address is a small notation problem with the splitting functions,
in Chapter 5 we use the following for the splitting Pi→γ

Pi→γ =
α

π

(
P

(0)
i→γ +

αs
π
P

(1)
i→γ +O(α2

s)
)
. (2.21)
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This is slightly di�erent to the one introduced (2.16) which would be

Pi→γ =
α

2π

(
P

(0,1)
i→γ +

αs
2π
P

(1,1)
i→γ +O(α2

s)
)
. (2.22)

The factor 1
2 factor arises because we will consider d

d lnµ as d
d lnµ2

= 1
2

d
d lnµ . The second

factor 1
2 missing for the splitting proportional to ααs is absorbed in the de�nition of Pi→γ .

So we have the following relations

P
(0)
i→γ = P

(0,1)
i→γ and P

(1)
i→γ =

1

2
P

(1,1)
i→γ . (2.23)

14



Chapter 3

Photon production

Photons at colliders have two origins. The �rst origin is the decay of hadrons to photons.
The second is the emission by a quark or in the decay of a gluon (or other particles). In
this work we are mainly interested in the emission from quarks. When a photon is emitted
by a quark, it can be emitted perturbatively and it is possible to use perturbative QED
and QCD. It can also be emitted non-perturbatively by a quark or during the decay of a
gluon by a process called fragmentation. This phenomena can not be fully predicted by
perturbative QCD and needs non-perturbative input, the fragmentation functions, which
must be measured experimentally. Quarks are going to contribute more than gluons as the
emission from a gluon occurs at higher order in αs.

One distinguishes two types of photons: Prompt photons are photons that are emit-
ted perturbatively. Direct photons are photons that are emitted before hadronization, so
photons from the decay of hadrons are not direct photons. Prompt photons are also direct
photons. Depending on the measurement, di�erent types of photons are of interest and
isolation criteria can be used to discriminate photons from di�erent origins. We will discuss
this topic in detail in Chapter 4.

This chapter is organized as follows. First, photons originating from hadron decays
will be discussed, then we will discuss prompt photon production at colliders, �rst the
perturbative part with a special emphasis on hadron colliders, then we will discuss the
non-perturbative fragmentation function Di→γ , its DGLAP evolution equation and two of
the existing determinations of these functions.

3.1 Hadron decays

The lightest hadron that decays to photons is the neutral pion π0. It decays into 2 photons.
Table 3.1 shows non-exhaustive list of decays of hadrons to photons or to lighter hadrons.
As discussed in [1, 34, 35, 36], the π0 is the main background source of photons, the η
also contributes, but less. Other hadrons also decay into photons but their contribution is
smaller than the one from π0 and η. Usually photons originating from decays of hadrons are
not isolated from hadronic energy as the decaying hadron will often be created together
with other hadrons. These decays of hadrons are a background to photons from other
sources because direct photon production pp → γ + X has a lot smaller tate than jets
production pp→ jets at colliders and the jets contain mesons that decay to photons.

The branching ratio of π0 → 2γ is 0.988 and the one of η → 2γ is 0.392 and their
respective life times are τπ0 = 8.45 · 10−17 s and τη = 7 · 10−19 s. These particles will
decay very shortly after being created and therefore the photons from their decay can be
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decay Branching Ratio [%]

π0 → 2γ 98.82
η → 2γ 39.41
η → 3π0 32.68

η → π+π−π0 22.92
ω → π0γ 8.28
K0
S → π0π0 30.69

Table 3.1: Light hadrons decaying to photons or to hadrons that may themself decay into
photons with the branching ratio of each decay. The particles have the following masses:
mπ0 = 134.98 MeV, mη = 547.86 MeV, mω = 782.65 MeV and mK0

S
= 497.61 MeV [39].

considered to be emitted where the hadron was created [37]. If we consider a π0 with a
momentum of 50 GeV/c its corresponding Lorentz factor will be approximately γ = 373
and its speed v ' 0.999996c as the neutral pion lifetime is τ = 8.45 · 10−17s we �nd that
the average distance is approximately

d = vγτ ∼ 10−5 m = 10−2mm , (3.1)

and thus it will have decayed before reaching the calorimeters. If the π0 has an energy of 250
GeV, then the γ factor is approximately 1866 and the distance d would be approximately
5 · 10−5m. Consequently, π0 will not be detected but its decay products will. A similar
computation can be done for the η meson with the same conclusion.

The fact that detectors have a �nite resolution plays a role in trying to detect the 2
photons originating from the decay of a neutral pion π0. Ideally it is possible to detect
both photons separately and to reconstruct that they originated from a π0. At an energy
of approximately 50 GeV, the two photons from the decay reach the EM calorimeter with
typically a distance of 1 cm [38]. Depending on the speed of the pion and on the resolution
of the electromagnetic calorimeter the two photons may be detected as one photon. At
CDF for example, it was not possible to separate the two photons from π0 if its transverse
momentum was larger than 15 GeV [1]. On top of that the energy of the two γ's from
the decay of a boosted π0 are not the same and even if the two photons are spatially
well separated, the soft one may not be detected [34]. We also need to keep in mind that
the hadrons decaying to photons may be created by another event than the one we are
considering due to pile-up.

In order to reduce the background due to the π0 decays various techniques are used.
We will later discuss isolation cones in order to suppress this contribution, as typically
hadrons like π0 or η will not be produced without other hadrons [35]. It is also common
for experimental physicists to use some Monte-Carlo techniques in order to estimate the
background due to these decays as for example in [40] or [37]. In the case of an e+e−

collider, if the center of mass energy Q2 and Eγ/Q the fraction of energy that the prompt
photon has, are both large, then the background of photons from π0 and η is small compared
to the production of direct photons even without considering any isolation [41]. Photons
from hadron decays are problematic when measuring the non-perturbative fragmentation
function because isolation suppresses both, this is why all the measurements of Di→γ were
done at lepton collider where the environment is cleaner.
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3.2 Prompt photons

In this section, the basics of prompt photon production at colliders are discussed. A more
detailed discussion of the perturbative and of the non-perturbative production can be found
in the later sections. A prompt photon is a photon that is not resulting from an hadronic
decay.

At hadron colliders, photon production with momentum pγ without any isolation [36]
is

Eγ
dσγ

d3pγ
=

∑

a,b=q,q̄,g

∫
dxadxbfa/A(xa, µ

2)fb/B(xb, µ
2)

[
Eγ

dσγab
d3pγ

(
pγ , xa, xb, µ

2
f , µ

2
r , µ

2
a

)
+

∑

f=q,q̄,g

∫ 1

zmin

dz

z
Ef

dσfab
d3kf

(kf , xa, xb, z, µ
2
f , µ

2
r , µ

2
a)Df→γ(z, µ2

a)


 ,

(3.2)
where dσγab is the partonic cross-section for creating a photon plus some other particles

from the partons a, b from hadron A and B respectively. dσfab is the partonic cross-section
to produce a parton f that will fragment to a photon through the fragmentation function
Df→γ . The variable z is the fraction of energy taken by the photon from the fragmenting

particle f : Eγ = zEf . The cross-section dσfab can be computed in perturbative QCD.

The phase space integral of all other particles create in dσfab has been performed execpt
for particle f . The lower bound of the integral over z is zmin = pγmin/pf with pγmin is the

minimum momentum required for the photon. In Chapter 5, pT,γmin = 125 GeV is used. The
scale µa is the fragmentation scale. The cross-section has three arti�cial scales µf , µr and
µa, they are sometimes all set to the same value µ.

In the case of an electron-positron collider, we have to discard the PDFs and the sum
over a, b and replace a = e− and b = e+.

Moreover, the formula (3.2)is consistent with the factorization formula (1.2) with the
cone fragmentation function Fi→γ . From the fact that

d3pγ = dpγp
2
γdΩ = dEγE

2
γdΩ, (3.3)

it follows that

Eγ
dσ

d3pγ
=

1

Eγ

dσ

dEγdΩ
. (3.4)

Then we get from the fragmentation part (3.2) and using the above formula for both Eγ
dσγ

d3pγ

and Ef
dσ

d3pf

dσF

dEγ
=

∑

a,b,f=q,q̄,g

∫
dxadxbfa/A(xa, µ

2)fb/B(xb, µ
2)

∫
dz

dσfab
dEf
Df→γ , (3.5)

where we used the letter F to emphasize that it is the fragmentation part of the cross-
section not the whole cross-section. We see that it is similar to the formula (1.2) with the
cone fragmentation function Ff→γ instead of Df→γ . Note the sum on a and b and the PDF
was here included in σf in the case of Ff→γ . One issue of the two cross-section formulas is
the de�nition of Df→γ , some references use a di�erent convention which is df→γ = zDf→γ .

Compared to other inclusive cross-sections, like (2.11), we have in the case of photon
production also a fragmentation term. This is due to the fact that in photon production,
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γ∗ γ∗

k → 0

γ∗ γ∗

Figure 3.1: Top left, right and bottom left: QCD corrections of e+e− → γ∗ → qq̄. Top
left: loop correction of γ∗ → qq̄, in DR this diagram creates a 1/ε2 singularity. Top right:
emission of a soft gluon from qq̄, it gives a 1/ε. Bottom left: emission of a collinear gluon
to the quark, this implies a 1/ε if the gluon is hard collinear and a singularity 1/ε2 if the
gluon is both soft and collinear. Bottom right: emission of a collinear photon, if the photon
is required to have more than a certain energy, it only contributes a 1/ε singularity.

there is a singularity when a photon is emitted collinearly to a quark, which necessitates
the fragmentation function and introduces an extra scale µa.

In order to understand better why we have this singularity, we can think of a textbook
example of the αs correction to the qq̄ production at e+e− collider. There are two types
of αs corrections for e

+e− → γ∗ → qq̄. They can be seen in Figure 3.1. First, there is the
loop contribution which is singular and has both 1/ε2 and 1/ε singularities in dimensional
regularization (DR). Second, there is the emission of a gluon from one of the quark which
has a singularity of 1/ε2 from the contribution of the gluon being soft and collinear to the
emitting quark and if the gluon is only soft or only collinear 1/ε singularities arise. When
adding both contributions, all singular terms cancel and �nally the O (αs) correction to
the quark antiquark pair production is �nite. Note that the cross-section is inclusive and
that it includes contributions of �nal states that only have the qq̄ and no (detected) gluons
and of the �nal state qq̄g. An in depth discussion of this problem can be found in [27] and
detailed derivations can be found in [42].

If we consider the same corrections in α instead of αs and there would also be a
cancellation of the singularities. However, our process of interest is not the same. We
consider the emission of a photon from the qq̄ pair and the �nal state needs one γ. To
be able to detect the photon, it needs to have an energy larger than detection threshold
of the detector Edetector (which was not the case for the gluon earlier). This implies that
the photon can not be soft. Moreover, in our case, the photon loop should not be taken
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Origin of singularity Final state γ Detected γ D.R.

Soft Eγ → 0 3 7 ε−1

Collinear to e+ or e− 3 7 ε−1

Collinear to q or q̄ 3 3 ε−1

Soft and collinear to e+, e−, q or q̄ 3 7 ε−2

Loops 7 7 ε−1 and ε−2

Table 3.2: List of the singularities in the α correction of e+e− → qq̄. The only singularity
that needs to be taken into account for prompt photon production is the collinear one as
it is the only one with a detected photon.

into account as it obviously does not have a real photon in the �nal state. So of all the
singularities that were encountered in the αs corrections, there is only one type remaining,
the collinear singularities (there is no collinear and soft singularity as the γ can not become
soft, so no 1

ε2
term). Therefore, the only α term that is singular is the case where the photon

is collinear to the emitting parton which can be seen in the bottom right of Figure 3.1. As
there are no other singular contributions to cancel this 1/ε-pole, the whole cross-section is
singular. Note that initial state radiation from the e+ or e− is also possible in this case,
the photon can be emitted collinear to one of the lepton, however the photon would be
in the beam direction and therefore we would not be able to detect it. The singularity
from the emission from the e+e− can be regularized by introducing an electron mass or
with the PDFs electron. A list that summarizes the singularities of the α correction of
e+e− → qq̄ can be seen in Table 3.2. This remaining singularity will be absorbed into the
fragmentation function Dq→γ , which introduces the scale fragmentation scale µa into the
problem. Both the perturbative and the non-perturbative parts of the cross-section depend
on the µa scale. The total cross-section should not depend on µa. The non-perturbative
fragmentation depends on which renormalization scheme is used.

It is interesting in order to understand the cross-section better to see at which order
the di�erent parts of the cross-section start and which types of diagrams play a role.
Schematically, the cross-section (3.2) can be written as

dσ = dσγ + dσf ⊗Df→γ , (3.6)

where the sum over a, b and f were omitted for simplicity. At leading-order, the fragmen-
tation functions Dq→γ and Dg→γ scale after resummation like [36, 43]

Dq→γ ∼
α

αs
,

Dg→γ ∼ α.
(3.7)

This scaling is only valid at larger fragmentation scale µa and Dq→γ in the above equation
are the resummed non-perturbative fragmentation functions. At low scale Df→γ are non-
perturbative objects and like the PDFs, they do not have a αs scaling, but the evolution
kernels can be expanded in αs, leading to fragmentation functions at di�erent orders in RG-
improved perturbation theory. However, in �xed-order computation Df→γ ∼ 1 is typically
used. The gluon fragmentation starts one order higher in αs than the quark fragmentation.
At leading-order the whole cross-section is of order ααs for hadron colliders. The di�erent
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parts of the cross-section are expanded

dσγab = dσγ,LO
ab + dσγ,NLO

ab +O
(
α3
sα
)
,

dσfab = dσf,LO
ab + dσf,NLO

ab +O
(
α4
s

)

Df→γ = DLO
f→γ +DNLO

f→γ +O (αsα) ,

(3.8)

with at leading-order the following

dσγ,LO ∼ ααs dσγ,LO
ab ∼ ααs dσf,LO

ab ∼ α2
s. (3.9)

At LO only the quarks fragment so dσfab must have at least one quark to be fragmented.
At a hadron collider it is typically processes like qg → qg or qq̄ → qq̄. In qg → qg only
the quark fragments at this order. dσγab at a hadron collider at LO will be discussed in the
next section.

At NLO, the cross-section is of order dσγ ∼ αα2
s, therefore dσ

γ
ab ∼ αα2

s. In the

fragmenting part the extra power of αs can appear both in dσfab or in the resummed Df→γ
such that the product of both is of order αα2

s. We have for the fragmentation part the
following scaling

LO : dσf,LO
ab DLO

f→γ ∼ ααs,
NLO : dσf,NLO

ab DLO
f→γ + dσf,LO

ab DNLO
f→γ ∼ αα2

s.
(3.10)

dσf,NLO
ab is of order α3

s and has processes of the form ab → 3 partons, like for example
qg → qgg and it also has loop correction to the leading-order process. At NLO DNLO

g→γ is

not vanishing and therefore it is also necessary to include in dσf,LO
ab processes without any

quarks in the �nal state to be fragmented gg → gg and qq̄ → gg. Obviously, processes at
LO like qg → qg can now fragment both partons q and g.

The type of colliders of interest in this thesis are hadron colliders (in particular the
LHC), however, before discussing the perturbative emission of γ at hadron colliders in the
next section, the case of an e+e− collider should be discussed as it was used to measure the
non-perturbative fragmentation function at LEP. The process of interest was the produc-
tion of a jet containing an energetic photon and an extra jet: e+e− → 1 jet with an energetic
photon in it plus 1 jet. The jet containing an energetic photon has contribution from the
quark fragmenting to a photon. At leading-order the process of interest is e+e− → γ∗ → qq̄
and one of the quarks can emit a photon perturbatively or non-perturbatively.

At order α we have the emission of a photon from the quark or the anti-quark, the
emission can be either perturbative or non-perturbative and Dq→γ needs to be evaluated
only at order α/αs. The two diagrams can be seen in Figure 3.2. On top of that there is
Bremsstrahlung from the initial state, see Figure 3.3. These photons can be emitted by
both leptons and may be emitted in one of the jets. If a photon emitted from the lepton
is emitted in the jet, it will then contribute to the cross-section of 1 jet with an energetic
photon in it plus 1 jet. These photons can be subtracted and are therefore not a problem.
They are mostly emitted along the beam axis [41]. Photons emitted perturbatively from
e+, e−, q or q̄ may also be emitted away from the jets, however such emissions were not
of interest for the determination of Dq→γ . At NLO, there are more diagrams. It is then
necessary to take into account virtual corrections for the orderO (α) diagrams, the emission
of a gluon from q or q̄ and Dq→γ needs to be evaluated at order ααs. These diagrams can
be found in [44].

Prompt photon production at hadron colliders has been computed up to NNLO in QCD
with no isolation, �xed-energy cones, Frixione cones and hybrid cones [15, 16]. These results
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γ∗ γ∗ O (α)

Figure 3.2: Photon production through e+e− → γ∗ → qq̄. Left, the photon is emitted
perturbatively; on the right the photon is emitted through Dq→γ , represented by the blob.
The photon can also be emitted from the anti-quark. Implicitly the non-perturbative
fragmentation is of order O

(
αα−1

s

)

e−

e+ q̄

q

γ∗

Figure 3.3: Photon production at e+e− collider through Bremsstrahlung (initial state
radiation). Both the electron and the positron can emit. The photon can be emitted into
one of the jets and contribute to the 1 jet with an energetic photon in it + 1 jet production.

have been compared to LHC measurements. One of the issues of the �xed-energy cone and
of the non-isolated predictions is their dependence on the fragmentation functions used
Di→γ [45, 16, 15]. For isolated cross-section with �xed-energy and Frixione cones, �xed
order computations are only appropriate for R ∼ 1 and εγ ∼ 1, otherwise large logarithms
appear and spoil perturbation theory. The generalization for narrow cones and/or small
εγ is not trivial. In Chapter 5, this problem is addressed for NLO cross-sections and the
logarithms lnR and ln εγ are resummed.

The dependence of non-isolated and �xed-energy cones on the choice of fragmentation
functions can already be seen at NLO. The case of the NLO non-isolated cross-section is
discussed at the end of this chapter. The in�uence of the isolation is studied in Chapter 4.

3.3 Direct photons

A direct photon is a photon which is real and emitted by a quark or a gluon through
perturbative emission. One could also call direct photons �perturbative photons". Photons
resulting from decays of hadrons or from the non-perturbative fragmentation are not direct.
In this section, direct photon production is discussed , in particular at hadron colliders (pp
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and pp̄). The direct contribution is the �rst part of (3.2),

Eγ
dσγ

d3pγ
=

∑

a,b=q,q̄,g

∫
dxadxbfa/A(xa, µ

2)fb/B(xb, µ
2)

[
Eγ

dσγab
d3pγ

(
pγ , xa, xb, µ

2, µ2
a

)]
.

(3.11)
At leading-order in QCD, there are two types of partonic processes. First there is the
annihilation qq̄ → γg, secondly the Compton e�ect qg → qγ. The leading-order diagrams
are shown in Figure 3.4. Both processes occur at the same order O (ααs).

The LO processes can be computed for both the Compton scattering and the annihila-
tion for a virtual or a real photon in the �nal state. The partonic di�erential cross-section
in term of the Mandelstam variables1 (with the spin and color indices are summed for the
�nal state and average for the initial one) is [25, 46]

dσγqq̄
dt

=
πααs
s

CF e
2
q

(
t2 + u2 + 2s (s+ t+ u)

tu

)
qq̄ → gγ∗,

dσγqg
dt

= −πααs
s

e2
q

Nc

(
s2 + u2 + 2t (s+ t+ u)

su

)
qg → qγ∗.

(3.14)

If the photon is real we have
(s+ t+ u) = 0, (3.15)

since all the particles are massless. All the Mandelstam variables above refer to the partons
and the photon, not to the hadrons.

At a pp collider, there are no valence anti-quarks and the PDF of anti-quarks in protons
are smaller than the one of the gluon. Therefore, Compton scattering should dominate.
At a pp̄ collider, there are as many quarks as anti-quarks, so it would make sense that
annihilation contributes to a larger fraction of the cross-section that with a pp collider. It
would not be surpising than the annihilation process dominates over Compton scattering.
As the PDFs depend on what energy and what momentum fraction they are evaluated at,
it would be possible to try to estimate for asymptotic values which one dominates using
the partonic cross-section. MadGraph can be used to compute the total cross-section
for a wide range pγT,min and to look at the fraction each subprocesses contributes. Note
that we consider the cross-section with a minimum photon transverse momentum and
not a particular bin of pγT . In the following, we study pp and pp̄ collisions at

√
s = 13

TeV and 1.96 TeV. The value 1.96 TeV is chosen as it was the highest center of mass of
energy of the Tevatron. The PDFs set NNPDF23_lo_as_0119_qed and α−1 = 132.5070 are
used. The precise value of α is irrelevant as both processes are proportional to α. The
photon was constrained to have a pseudo-rapidity smaller than |η| < 2.37 and the jet was
not constrained. The fraction that each processes contribute to the whole cross-section

σ
(
pγT,min

)
is considered, where the produced photon satis�es pγT > pγT,min.

1The Mandelstam variable s, t, u are de�ned for a process 1 + 2→ 3 + 4 (see for example [26])

s = (p1 + p2)
2 ,

t = (p1 − p3)2 ,

u = (p3 − p2)2 .

(3.12)

The Mandelstam variables have the property that

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. (3.13)
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Figure 3.4: Leading order process for pp → γ + jet Top: the two diagrams for quark-
antiquark annihilation to a photon and a jet. Bottom: the two diagrams for Compton
process qg → qγ, the same diagrams with an antiquark instead of a quark also contribute.

The results can be seen in Figures 3.5 and 3.6. Similar plots for lower energies can be
found in [47]. In the case of pp collisions, Compton scattering dominates over annihilation
for all values of the photon transverse momentum and for both

√
s. The higher pγT,min

is, the larger the fraction of the quark annihilation gets. However, it increases slowly
and never dominates. In the case of pp̄ collisions, at low pγT,min, Compton scattering also
dominates and contributes more than the annihilation. The main di�erence here is that
the Compton scattering fraction decreases faster than in the pp case and the annihilation
fraction increases faster when pγT,min increases. For a pp̄ collider at

√
s = 13 TeV, the

crossing between the two contributions will happen when pγT,min ≈ 680 GeV, for a total
cross-section of 0.24 pb which is tiny. If the collider has a center of mass energy of 1.96 TeV,
the crossing happens at pγT,min ≈ 114GeV for a total cross-section of 10.4 pb. Alternatively,

it would also be possible to generate events starting a certain pγT and decide for some binning
and to look in every bin how much each sub-process does.

At NLO in QCD, there are many more diagrams and subprocesses, �rst there are virtual
corrections. Then there are new channels like qg → γqg, gg → γqq̄, qq̄ → γgg , qq̄ → γqq̄
and qq′ → qq′γ. Two diagrams can be seen in Figure 3.7.

Finally, it is interesting to compare direct photon production with dijet production.
Photon production occurs atO (ααs) and dijet production atO

(
α2
s

)
. Hence the production

of γ+ jet will occur less often than the production of 2 jets at hadron collider. The process
pp→ jets is a background in the pile-up to pp→ γ+X. For comparable cuts at the LHC,
the LO cross-section for dijets is approximately 103 times larger than the one for γ + jet.
One reason is that the strong coupling is more than 10 times larger than electromagnetic
one. On top of that, dijet productions has more channels than photon production (for
example gg can not produce a photon at LO but can create two jets). In [36], the ratio
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Figure 3.5: Fractions of the LO cross-section of pp or pp̄ to γ + jet with a center of
mass energy of

√
s = 13 TeV for both Compton and annihilation, results obtained using

MadGraph. In the case of the pp̄, the annihilation will dominate for pγT,min > 680 GeV.
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Figure 3.6: Fractions of the LO cross-section of pp or pp̄ to γ + jet with a center of
mass energy of

√
s = 1.96 TeV for both Compton and annihilation, results obtained using

MadGraph.
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Figure 3.7: Left: one of the virtual diagrams contributing pp → jet + γ at NLO. Right:
one of the real diagrams of pp → γ + X at NLO, here X is two jets or one jet composed
of the two gluons.

of γ/jet was found to be of order 10−4. This ratio depends obviously on what kinematics
and cuts are considered.
The non-perturbative part contributes in the case of a non-isolated photon or if it is
isolated with a �xed-energy cone. At hadron colliders there are the two perturbative
contributions (Compton and annihilation) and the non-perturbative one. The fraction
of the three processes depends on the parameters. In [4] with the help of the program
JETPHOX2 the fraction of the cross-section at LO of the 3 contributions for a wide range
of ETγ for both the kinematics of the LHC with

√
s = 14 TeV (and also for the Tevatron)

was computed. They considered the cases of a non-isolated photon and a �xed energy cone
with R = 0.4, ETiso = 4 GeV, using the BFGII set and a dynamic scale µa = µf = µr = ETγ .

At the LHC, the fragmentation fraction for ETγ ∼ 125 GeV is a bit more than 40% of the
cross-section in the non-isolated case. Using the �xed energy cone, the fragmentation at
this energy is only around 15%. Detailed plots can be found in [4].

3.4 Non-perturbative fragmentation

In this section, the non-perturbative fragmentation function is considered, the second term
of (3.2)

∑

f=q,q̄,g

∫ 1

zmin

dz

z2
dσfab(p

γ , xa, xb, z, µ
2, µ2

a)Df→γ(z, µ2
a). (3.16)

The non-perturbative fragmentation function is denoted by Di→γ (z, µ). It depends on
the fraction of momentum taken by the photon from the emitting parton z and on the
factorization scale µ. Graphically it is often denoted by a circle as shown in Figure 3.8.
This diagrammatic representation is a simpli�cation. The emitting parton is not only
turning into a photon. A quark can not turn only into a photon due to baryon number
conservation. We should actually write i→ γ + Y instead of i→ γ.

The non-perturbative fragmentation functions satisfy a DGLAP-like equation

d

d lnµ
Di→γ(z, µ) = Pi→γ(z, µ) +

∑

j=q,q̄,g

Pi→j ⊗Dj→γ(z, µ) . (3.17)

The same equation is ful�lled by the cone fragmentation functions Fi→γ of (1.2). The
Altarelli�Parisi splitting functions Pi→j/γ can be expanded in α and αs. In order to get

2Running JETPHOX is not easy as the program is relatively old and not maintained anymore. It can
compute the NLO cross-section of photon production with �xed-energy cone and Frixione cone.
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Figure 3.8: Diagramatic representation of the splitting function Di→γ of a quark and of a
gluon to a photon.

the LL evolution equations, it is necessary to expand up to the following

Pi→γ(z) =
α

2π
P

(0,1)
i→γ (z) +O (ααs) ,

Pi→j(z) =
αs
2π
P

(1,0)
i→j (z) +O

(
α2
s

)
.

(3.18)

With the coe�cient of (2.19) (2.20). Then the DGLAP equations become (as shown in
[41]), with the same convolution ⊗ as for the DGLAP of PDFs (2.18)

d

d lnµ2
Dq→γ(z, µ) =

αe2
q

2π
P (0,1)
q→γ (z) +

αs
2π

+
(
P (1,0)
q→q ⊗Dq→γ + P (1,0)

q→g ⊗Dg→γ
)
,

d

d lnµ2
Dg→γ(z, µ) =

αs
2π

(∑

p=q,q̄

P (1,0)
g→p ⊗Dp→γ + P (1,0)

g→g ⊗Dg→γ
)
.

(3.19)

In order to obtain the next-to-leading log (NLL) equations, it is necessary to expand all
the splitting functions one order higher in αs, so at order O (ααs) for the inhomogeneous
terms and O

(
α2
s

)
for the homogeneous ones, it is also necessary to consider the running

of αs at two loops. Note that the gluon will have an inhomogeneous term, and as in
the case of DGLAP of the PDFs, there are splitting functions coupling di�erent types of
quark fragmentation functions. Naively, the αs expansion of (2.18) does not seem to be
correct. The reason of this expansion, is that Di→γ is actually proportional to α

αs
this can

be seen while solving the equation in Mellin space. The cone fragmentation function Fi→γ
has exactly the same evolution equation, however the initial conditions are di�erent. The
necessary expansion of the splitting functions for the NLL equations are available and can
be found in the literature.

At the lowest-order which is α (α0
s), it is straightforward to solve the DGLAP equations,

as they simplify to

∂Dq→γ (z, µ)

∂ lnµ2
=

α

2π
P (0,1)
q→γ (z) ,

∂Dg→γ (z, µ)

∂ lnµ2
= 0, (3.20)

assuming we know Di→γ (z, µ0) at a certain scale µ0, it follows that

Dq→γ (z, µ) =
αe2

q

2π
P (0,1)
q→γ (z) ln

µ2

µ2
0

+Di→γ (z, µ0) Dg→γ (z, µ) = constant . (3.21)

This equation is used for the LO GdRG set. Notice the fact that Dq→γ scales like lnµ2

when µ2 is large. If µ is large compared to µ0 and Di→γ (z, µ0) is not so large, it is not
necessary to care about Di→γ (z, µ0). However, we �rst need to know if Di→γ (z, µ0) is
small and can be neglected compared to the other term. Therefore, it is necessary to
measure it.
The fragmentation functions were measured in the 90s. There are a few sets, the GRV
(Gluck, Reya, Vogt) [48], the BFG(Bourhis, Fontannaz, Guillet) [49] and �nally GdRG
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(Gehrmann�De Ridder, Glover) [44, 50] . The GdRG is also called the ALEPH set. Both
the BFG and the GdRG are implemented in MCFM. Both GdRG and BFG sets are
computed using the MS scheme. The GRV functions were computed using the DISγ
scheme; there is no available code for the GRV set. The BFG and GdRG sets will be
discussed more in depth later in this chapter.

The non-perturbative fragmentation function needs to be measured experimentally.
One of the problems to measure it is the background of photons from decay of neutral
hadrons. If one wants to use some isolation criteria to suppress this background ( as
for example a �xed-energy cone), it is then important to keep in mind that the non-
perturbative fragmentation contribution is also suppressed by the isolation cuts. In order
to measure it it is therefore easier to use a lepton collider as less hadrons are produced and
there would be less background. For example LEP was suitable and used to measure it
[51]. The measurement at LEP was performed by studying jets containing a photon that
carries more than 70 percent of the jet energy. This choice is due to the background of
photons from neutral hadrons of jets.

At LHC or Tevatron we have to isolate photons using some isolation cuts because of the
decays of hadrons. This background is important at the energy both colliders operate. The
problem with adding some isolation criteria is that it will suppress not only the photon of
hadronic decays but also part of the photon coming from the fragmentation process. This is
problematic for measuring the fragmentation function. The authors of [52] suggested using
the RHIC collider at

√
s = 200 GeV and for pγT ≤ 16 GeV in order to get more constraints

for small z values that were not accessible in the LEP measurement (so outside of the range
z > 0.7). In [34], it was also argued that by considering pp → (jet γ) + X at RHIC or at
the LHC, where the photon is in a jet (which would be a similar type of measurement as
at LEP), it would be possible to gain better knowledge on the fragmentation function. In
order to do so it is necessary to subtract the background of photons for hadronic decays.
The authors also presented some numerical results. The experimental data was not done
yet.

As shown in (3.7), the non-perturbative fragmentation function scales like α
αs
. A heuris-

tic argument for this scaling is the following. At large µ, the non-perturbative fragmenta-
tion functions satisfy [25]

Di→γ (z, µ) ∼ lnµ2. (3.22)

This will be tested later in the case of both the GdRG and BFG sets, see Figures 3.16
and 3.12. On the other hand, the strong coupling scales like 1

lnµ2
at large µ (2.3), hence

Di→γ ∼ α
αs
. A more rigorous argument can be done by looking at the leading-log evolution

of function Dq→γ that is not coupled to the gluons for simplicity, this will be obvious by
looking at (5.97), with D instead of F , we see that in Mellin space the leading order term
of Dq→γ is proportional to α

αs
.

3.4.1 Di�erences between PDFs and fragmentation function DGLAP
equations

At �rst glance the only di�erence between both DGLAP equations is the inhomogeneous
term, however it is not the case. At leading-order in αs the mixed term of the homogeneous
part is not the same. If we consider PDF with only one quark fi/p (µ, z) the DGLAP
equation is

d

d lnµ2

(
fg/p
fq/p

)
=

(
Pg→g Pq→g
Pg→q Pq→q

)
⊗
(
fg/p
fq/p

)
. (3.23)
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Dq→γPg→qPq→g

fq/p

Figure 3.9: Di�erence of the leading order homogeneous part of the two DGLAP equations.
Left: parton distribution function, the circle represents a proton. Right: non-perturbative
fragmentation function.

In the case of the non-perturbative fragmentation functions Di→γ (and also of the cone
fragmentation functions of Chapter 5), the DGLAP equation is

d

d lnµ2

(
Dg→γ
Dq→γ

)
=

(
Pg→γ
Pq→γ

)
+

(
Pg→g Pg→q
Pq→g Pq→q

)
⊗
(
Dg→γ
Dq→γ

)
. (3.24)

The diagonal splitting functions of the homogeneous part are exchanged. The reason for
this exchange is obvious when considering diagrams. In Figure 3.9, two processes are
represented; on the left there is a diagrammatic representation of a quark originating from
a proton splitting to a gluon which will contribute to the pdf of the gluon in the quark
fg/p. On the right, a diagrammatic representation of a gluon splitting into a quark that
later fragment to a photon contributing to the non perturbative fragmentation of the quark
Dq→γ .

Interestingly, another example of that kind of DGLAP equation is the evolution equa-
tion of parton f into a hadron h: Df→h (z, µ) which looks similar to the one of the photon
non-perturbative fragmentation [25]

d

d lnµ2

(
Dg→h
Dq→h

)
=

(
Pg→g Pg→q
Pq→g Pq→q

)
⊗
(
Dg→h
Dq→h

)
. (3.25)

At leading-order in αs the DGLAP equation of PDF and of the hadron fragmentation have

the same splitting functions P
(1,0)
i→j (z), except that the diagonal terms are exchanged. At

leading order the splitting functions P
(1,0)
i→j (z) in the convolution are the same for these three

DGLAP equations. At next-to-leading order this is not the case, there are spacelike and
timelike splitting functions and it is necessary to use the right one. The two fragmentation
functions Di→γ and Df→h still have the same matrix for the homogeneous term.

An example to illustrate the di�erence between time-like and space-like splitting func-
tions is shown in Figure 3.10. The splitting of a quark to a photon is considered. At order
α, both splitting functions are similar. With the notation of [30], the splitting function of
a quark to a photon in pure QED is

PS,(0,1)
q→γ (z) = P T,(0,1)

q→γ (z) = P (0,1)
q→γ (z) = e2

qP (z) = e2
q

1 + (1− z)2

z
. (3.26)

At higher order, we need to consider the QCD correction P
(1,1)
q→γ (z), in this case the spacelike

and the timelike splitting are not the same. Let us �rst consider a quark produced in a
process N and splitting into a photon and a quark. Both of the two particles are outgoing.
The situation can be seen on the right of Figure 3.10 and the corresponding timelike
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PS
q→γ

M

PT
q→γ

NP

Figure 3.10: Distinction between spacelike and timelike splitting functions with the exam-
ple of a quark splitting to a photon. Left: spacelike splitting of a quark (originating from a
proton in red) to a photon, the photon will interact through amplitudeM. Right: timelike
splitting of a quark (originating from the amplitude N ) into an outgoing photon. Notice
that the kinematics of both situations are di�erent. For the spacelike case the quark is
outgoing and the photon is not, for the timelike case both the quark and the photon are
outgoing. At order α, the two are similar.

splitting function is given in [53]

P T,(1,1)
q→γ (z) = P

T,(1,1)
q̄→γ (z) = CF e

2
q

(
−1

2
+

9

2
z +

(z
2
− 8
)

ln z + 2z ln(1− z) +
(

1− z

2

)
ln2 z

+

[
ln2(1− z) + 4 ln z ln(1− z) + 8Li2(1− z)− 4π2

3

]
P (z)

)
.

(3.27)
In the second case we have an incoming quark (from a proton) that will emit a photon, this
photon will interact in a process M as depicted in the left of Figure 3.10. The emitting
quark is outgoing. The spacelike fragmentation need to be used [30]

PS(1,1)
q→γ (z) = P

S(1,1)
q̄→γ (z) = CF e

2
q

((
− ln2(1− z)− 3 ln(1− z)

)
P (z)− 7z

2

−
(

1− z

2

)
ln2(z) +

(
7z

2
+ 2

)
ln(z)− 2z ln(1− z)− 5

2

)
.

(3.28)

Obviously, the two splitting functions P
(1,1)
q→γ are di�erent. A similar distinction is needed

for P
(1,1)
g→γ . Di�erences also arise for the homogeneous part of both DGLAP equations for

example P
(2,0)
q→q (z). The parton distribution functions need the spacelike splitting function

for their DGLAP equation. The photon non-perturbative fragmentation functions Di→γ
(and also the quark to hadron fragmentations Df→h ) have timelike splitting functions.

The pure QCD P
(3,0)
i→j (z) are known and can be found in [54, 31, 32] for the spacelike

and [55, 56] for the timelike case. When solving the LL DGLAP equation of Di→γ the

distinction is irrelevant as only P
(1,0)
i→j (z) and P

(0,1)
i→γ (z) are necessary. The distinction is

then important at NLL and beyond.

3.4.2 The GdRG (Gehrmann-de Ridder, Glover) fragmentation func-
tions

The GdRG set has a few simpli�cations compared to the two other sets. These simpli�ca-
tions make the set easier to implement than the BFG sets. First of all, it does not include
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gluons
DGdRG
g→γ (z, µ) = 0. (3.29)

The argument of setting it to zero is that in the BFG sets (which are older) the frag-
mentation of gluons to photons is small compared to the one of the quarks so we can as
an approximation not include gluons. This simpli�cation also greatly a�ects the DGLAP
equations, as then each quark is not coupled to anything else. It would be natural to take
the initial condition at µ0 (which is small) of the form

Dq→γ(z, µ0) =
αe2

q

2π
f(z), Dg→γ(z, µ0) = 0, (3.30)

where f(z) is a function of z which is �tted on some data and then to evolve it up using
the evolution equation to a higher scale µ and then having the gluon fragmentation to
not vanish anymore. This makes little sense as when µ increases αs decreases and then
the gluon coupling to the photon decreases. As you can see in the initial condition, the
fragmentation function only depends on the charge of the quarks, but it neglects the mass
of the quarks in the initial condition, as the evolution is not mixing quarks, it remains the
case at all energies. This is not the case for the two BFG sets.

As the evolution equation is simple at LO, solving the equations is easy as the gluon
fragmentation is absent

∂Dq→γ (z, µ)

∂ lnµ2
=
αe2

q

2π
P (0,1)
q→γ +

αe2
q

2π

αs
2π
P (1,1)
q→γ +

αs
2π
P (1,0)
q→q ⊗Dq→γ(z, µ). (3.31)

The convention of P
(1,1)
q→γ used in this equation is the one from [30] and it is not the exactly

same than the one used in Chapter 5 (factor two in the αs expansion). The splitting

function P
(1,1)
q→γ can be found in [53] (it is not the same as the space-like function given

in [30]). The authors choose to include P
(1,1)
q→γ but not P

(2,0)
q→q , as it would be necessary in

order to be consistent while counting the power of αs. It is possible that the inclusion of

P
(2,0)
q→q has a smaller e�ect than P

(1,1)
q→γ . A perturbative solution of the equation given by

the authors of the set is

Dq→γ (z, µ) = DNP
q→γ (z, µ0) +

αe2
q

2π
ln

(
µ2

µ2
0

)
P (0,1)
q→γ (z) +

αe2
q

2π

αs
2π

ln

(
µ2

µ2
0

)
P (1,1)
q→γ (z)

+
1

2

αe2
q

2π

αs
2π

ln2

(
µ2

µ2
0

)
P (1,0)
q→q ⊗ P (0,1)

q→γ +
αs
2π

ln

(
µ2

µ2
0

)
P (1,0)
q→q ⊗DNP

q→γ (z, µ0) .

(3.32)

As you can see this equation does not take into account the running of αs. Therefore
using it with µ and µ0 too di�erent may be problematic. The fragmentation function is
measured at the scale µ0.

The data used for measuring the fragmentation function are data from LEP. It is �tted
only for the range where z > 0.7 where z is the amount of energy the photon is taking from
the emitting quark; the types of jets that are considered contain a photon that carries a
large fraction of the energy of the "photon-jet". The �tted fragmentation function at LO
has two parameters µ0 and a

DNP,LO
q→γ (µ0, z) =

αe2
q

2π

(
−P (z) ln

(
(1− z)2

)
− a
)
. (3.33)

The �tted values are µ0 = 0.14 GeV and a = 13.6. At NLO, the �t has three parameters
µ0, the b and the c

DNP,NLO
q→γ (µ0, z) =

αe2
q

2π

(
−P (z) ln

(
(1− z)2

)
+ b(1− z)− c

)
, (3.34)
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Figure 3.11: Splitting function Dq→γ of the GdRG set at LO, NLO and LL at the scale
µ = 125 GeV.

with µ0 = 0.64 GeV, b = 20.8 and c = 11.07.

Finally, while turning o� the inhomogeneous term ααsP
(1,1)
q→γ , we solved the DGLAP equa-

tion numerically from µ0 = 0.64 up to µF = 125 GeV in order to get the leading-log result.
We used the NLO running of αs (Mz) = 0.119 and α−1 = 132.5070. eq = 1 was chosen for
simplicity. The leading-log result is compared to the LO result which is simply

DLO
q→γ (z, µ) = DNP,LO

q→γ (z, µ0) +
αe2

q

2π
ln

(
µ2

µ2
0

)
P (0,1)
q→γ (z), (3.35)

and the NLO is (3.32) without P
(1,1)
q→γ . The results of the LL, LO and NLO fragmentation

can be seen in Figure 3.11. As you can see the NLO and LL splitting functions are quite
similar and the NLO solution is a reasonably good approximation. It is an interesting
approximate solution because of its simplicity. The LO fragmentation has a di�erent
behavior for z → 1 than the NLO and LL. In Figure 3.12, the dependence of the LL GdRG
as a function of lnµ2 is shown for an arbitrary value of z, as predicted earlier the LL result
is linear.

The leading-order version of the GdRG set is implemented in MCFM, the NLO are
not.

3.4.3 BFG (Bourhis, Fontannaz, Guillet) I and II fragmentation func-
tions

The BFG sets [49] have fewer simpli�cations than the GdRG ones. The BFG sets do not
neglect gluons. However, the fragmentation function of gluons is smaller than the one of
quarks. Unlike the GdRG set, the quarks of di�erent masses have di�erent fragmenta-
tion functions. The underlying idea is to approximate the non-perturbative part of the
fragmentation function using a so called vector dominance model (VDM). The photon
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Figure 3.12: Dependence on the fragmentation scale µ of the leading log fragmentation of
the GdRG set for both types of quarks for an arbitrary value of z. Both quarks are linear.

fragmentation is approximated by linear combination of parton to meson fragmentation
functions. This means that the sets were not �tted on data from photon production but
on meson production. More precisely, the experimental data used to perform the �t of
the non-perturbative part are not measurements of photons but of the ρ meson. The
two sets are interpolated on the same data however di�erent parameters in the interpola-
tions are taken as constant. The two sets when compared to the data of the cross-section
e−e+ → ρ+X are giving results in agreement with each other (within uncertainties). The
evolution in the BFG sets is done at NLL accuracy.

In all following plots the charges of quarks e2
q and the factor 2

∑
f e

2
i are both included

3.
There is no publicly available code to call the BFG fragmentation function. However
Fortran routines can be found in the code of JETPHOX and MCFM. In both programs,
you can �nd the same data for a grid of 45 points in z space from 0.04627 to 0.99 and in
the µ space there are 30 points with µ2 = 2, 2.8, ..., 984800.0 GeV2. It is then possible to
interpolate for intermediate values. It would also be possible to evolve the fragmentation
function by solving the DGLAP equations. Interpolation outside the z range may be
problematic and should be avoided. This is particularly a problem for z > 0.99. The
bottom quark is not included until we reach an energy of 4.5 GeV.

In Figures 3.13 and 3.14, the fragmentation functions of the set I are plotted as a
function of z for two di�erent scales. The gluon fragmentation is always smaller than the
one of the quarks which was one of the arguments used in the GdRG set not to include
gluons. At both low and high energies, the up-type quarks have larger fragmentation than
the down-type quarks. At low energy, fragmentation functions of quarks of the same type
are more di�erent than at higher energies. The e�ect of the mass of the quark decreases and
at µ = 125 GeV their values get closer for most of the z range. The fragmentation functions
decrease when z increases. The fragmentation of the gluons is decreasing drastically for
z → 1. Both sets look qualitatively similar. The gluon fragmentation Dg→γ is the one that

3In [49], the authors factorized these factors out of the de�nition of Di→γ .

32



▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼▼▼▼▼▼▼▼▼▼

■■■■■■■■■■■■■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■■■■■■■■■

▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆◆◆

◆

◀◀◀◀◀◀◀◀◀◀◀◀◀
◀
◀
◀

◀
◀

◀
◀

◀
◀

◀
◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀◀◀◀◀◀◀◀

◀
◀

●●●●●●●●●●●●●●●● ●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●
●
●

●

▼

■

▲

◆

◀

●

0.0 0.2 0.4 0.6 0.8 1.0
10-6

10-5

10-4

0.001

0.010

0.100

Figure 3.13: Non-perturbative fragmentation functions of the BFG I set at µ = 10 GeV as
a function of z.

di�ers the most between the two sets as you can see in Figure 3.15. The curves do not
match at both 10 and 125 GeV. However, the qualitative behavior is similar.
We can also look at the dependency of Di→γ on lnµ2. The results for z = 0.85 are shown
for a wide range of energy in Figure 3.16. The light quarks are linear in lnµ2 on the
whole range of energy. The strange and down quarks are very close. The bottom quark
fragmentation is also linear but at higher energy, it is obviously zero at scales lower than
its mass. The quarks in the BFG II set have a similar dependence, therefore we did not
plot them. The gluons of the two sets are di�erent at low energy. The gluon fragmentation
in the set I is linear in lnµ2 for all the considered range. The gluon of the set II is not
linear at low energy scale and will be linear for energies larger than approximately 10 GeV.
At high energies, both gluon fragmentation functions agree. One has to keep in mind that
these two plots were done for the arbitrary value of z = 0.85.

In order to see in a more quantitative way where the two sets di�er, the following
quantity Ri can be considered

Ri (z, µ) =

∣∣∣∣∣
DIi→γ −DIIi→γ
DIi→γ +DIIi→γ

∣∣∣∣∣ , (3.36)

with i = g, u, d, ..., b and the variable z in the range of the set, so it is not necessary to
interpolate outside. µ was chosen to be from lnµ2 = 1.5 to lnµ2 = 11 which correspond
to µ = 2.11 GeV and 244.5 GeV respectively. For the bottom quark it obviously does not
make sense to consider µ < mb so we took lnµ2 = 3.009 4 as the lower boundary of the
range.

Figure 3.17 shows Ri (z, µ) of the gluon and of the down quark. The strange and
bottom quarks have very similar Ri behavior to the down quark. The up and charm are

4lnµ2 = 3.009 is slightly larger than lnm2
b/GeV2.
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Figure 3.14: Non-perturbative fragmentation functions of the BFG I set at µ = 125 GeV
as a function of z.
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Figure 3.15: Non-perturbative fragmentation functions of the gluons of the two BFG sets
at 2 di�erent energy scales as a function of z.

slightly di�erent, there is a region at low lnµ2 and small z where Ri can reach 0.1. The
only particle where the ratio Ri is large is the gluon. The quarks Ri are smaller. Indeed,
the two sets are more similar for the quarks than for the gluon fragmentation.

It is instructive to �nd the maximum value of Ri for all the quarks and the gluon.
You can see the approximate value of Ri with the corresponding parameters in Table 3.3.
For the quarks up, down and strange the maximal value is pretty small and the two sets
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Figure 3.16: Left: Dependence of the fragmentation function of the set I of the quarks on
the scale at an arbitrary value of z. Note that lnm2

b/GeV2 ∼ 3. Right: Dependence of the
gluon fragmentation functions of both sets at an arbitrary value of z.

particle Rmaxi z µ [GeV]

gluon 0.825 0.51 2.12
up 0.040 0.057 2.12

down 0.133 0.05 48.9
strange 0.144 0.05 40.49
charm 0.829 0.781 2.14

Table 3.3: Maximum value of the ratio Ri (z, µ) and the approximate parameters at which
the maximum occurs.

hence agree with each other. As you can see the gluon and the charm reach a large value.
the maximums occur at small z except for the charm and the bottom. The value of the
Rb is not shown on purpose. Because the closer the scale µ goes to mb the larger the
maximum Rb is and for those values Db→γ is anyways tiny. If energies high enough (
lnµ2 > 5) are considered, Rb is similar to Rd. For the two charm quark, the discrepancy
also happens at small energies, however Rc decrease signi�cantly when the scale is larger.
So for both charm and bottom, the values of DIi→γ at which these maximums occur are
extremely small, so this is not relevant. Both sets are quite similar at high energy for all
the particles. The di�erences occur at small energy for the gluon and for the two heavy
quarks. The light quarks are quite similar at low energy. Except for the behavior of the
two heaviest quark at low energy there is a tendency for Ri to be large at small z value
and to be small at larger z. If the fragmentation functions of the BFG sets are used for
large z and large fragmentation scale µ, the choice between BFGI or BFGII is irrelevant.

The BFG sets are implemented in the programs MCFM and JETPHOX. They were
also used recently in [16] to predict the NNLO photon production at hadron colliders with
a �xed-energy cone.

3.4.4 Non-isolated cross-section

Finally, let us look at the prediction of the non-isolated cross-section of the photon pro-
duction at NLO with MCFM (the NNLO non-isolated cross-section can be found in [16]).
Both the non-perturbative fragmentation and the perturbative production will contribute.
The cross-section will be dependent on the choice of fragmentation function. The parame-
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Figure 3.17: Left Rg (z, µ) and right Rd (z, µ) for the range z ∈ [0.05, 0.99] and µ ∈
[2.11, 244.5] GeV. Note that the scales Ri of two plots are di�erent.

√
s = 13 TeV EγT > Emin

T = 125 GeV |ηγ | < 2.37

NNPDF23_nlo_as_0119_qed_mc αs(MZ) = 0.119 αEM = 1/132.5070

µr = µf = µa No isolation

Table 3.4: Parameters for the cross-section without isolation, both a �xed scale µi = 125
GeV and a dynamic scale µi = pγT were considered. The jets are unconstrained.

set µi = 125 GeV µi = pγT
GdRG 495.51± 0.35 473.92± 0.34
BFGI 460.14± 0.33 437.08± 0.33
BFGII 461.51± 0.33 437.68± 0.32

Table 3.5: Total cross-sections σNLO [pb] for photon production without any isolation
obtained with MCFM for the 3 implemented fragmentation sets. Note that µi = µr =
µf = µa. The uncertainties are Monte Carlo uncertainties and not scale variation.

ters are given in Table 3.4 and the results for both �xed scale and dynamic scale are given
in Table 3.5. The cross-sections are smaller for the dynamic scale than for the �xed-scale
as αs decreases when µ increases. The two parametrizations of the BFG set give similar
results which is in agreement with the previous discussion as the fragmentation scale is
large. Applying a �xed-energy cone reduces the contribution of the non-perturbative frag-
mentation in the cross-section and the predictions done by two di�erent sets will be closer.
We see that the prediction of the BFG sets and the one of the GdRG are quite di�erent
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Chapter 4

Isolation criteria for photons

This chapter provides an introduction on photon isolation. We discuss four types of isola-
tions: the �xed-energy cone, the Frixione cone [57] (also called smooth cone), the hybrid
cone and the discretized Frixione cone. The �rst prescription that had a NNLO result
done for single photon production was the Frixione cone, even though it is not realizable
experimentally. The hybrid cone used in [15] is a Frixione cone up to a certain radius
combined with a �xed-energy cone. The goal was to have a more experimentally realistic
isolation than the Frixione cone while avoiding some of the issues of the �xed-energy cone.
The recent NNLO calculation for the photon production with a �xed-energy cone [16],
made the hybrid cone less relevant. The discretized Frixione (or stairs) was created in
order to get an approximation of the Frixone cone that could be used experimentally. It
was introduced in [58]. Isolation criteria not based on cones also exist but the focus of this
work is on isolation criteria based on cones. The advantages and disadvantages of each
type of cone are discussed in the following.

4.1 Goal of isolation

As discussed in Chapter 3, photons have di�erent origins at colliders: the �rst one being
perturbative emission, the second one non-perturbative fragmentation and �nally decays of
neutral hadrons. In order to enhance photons from a certain origin, it is necessary to de�ne
an isolation criterion. For example, one may want to suppress the non perturbative frag-
mentation function as it induces uncertainties on the cross-section prediction. Moreover,
we may not be interested in photons from neutral hadron decays, and therefore we want to
suppress them. In Chapter 5, the photons of interest are photons emitted perturbatively
and we considered the �xed-energy cone and the Frixione cone.

The choice of the isolation criteria depends on what we want to study. For example
one should not use the same isolation criteria in order to determine experimentally the
non-perturbative fragmentation function or in order to test perturbative QCD predictions.
Photons originating from neutral hadrons can be modeled using techniques that are not
photon isolation.

Common to all isolation prescriptions is that the hadronic energy is constrained inside
the cone, which is centered around the considered photon. It is important to keep in
mind that hadronic energy in the cone may come from a source that is unrelated to the
process that produced the photon under consideration. It may originate from pile-up
or underlying event. This deposit of hadronic energy in the calorimeter is approximately
uniform. Because of this background, the condition for a photon to be isolated is sometimes
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Figure 4.1: Left: photon isolation cone. Here the inside of the cone is the region where
there is a restriction on the hadronic energy. Right: cone jets of Sterman and Weinberg.
Here the energy is constrained outside of the cones.

loosened and a larger amount of hadronic energy is allowed in the cone [58]. In order to
subtract the background, an estimation of the amount of hadronic energy produced by
both pile-up and the underlying events has been done for example in [59]. One needs to
keep in mind that this is a di�erent problem than trying to exclude photons originating
from the decays of hadrons like π0 or η.

Cone isolation criteria share similarities with jet algorithms. Similar to jet algorithms,
a good isolation criteria must be IR safe. The de�nition of jets by Stermann and Weinberg
[60], shares similarities with the �xed-energy cone. The jet de�nition in [60] is the following:
the energy outside two cones of half-angle δ is less than a fraction ε of the total energy.
The cross section for the process e+e− → 2 jets at NLO has logarithms of the parameters
δ and ε

σ = σ0

[
1− CF

αs
π

(
3 ln δ + 4 ln δ ln (2ε) +

π2

3
− 5

2

)]
. (4.1)

In the case of a narrow cone δ � 1, or a small isolation energy ε � 1, the logarithms
become large and may spoil the suppression by αs. To improve the convergence of the
perturbative expansion we count these large logarithms as order 1

αs
and sum them to all

orders. We call this procedure resummation.
A similar situation occurs in the case of a �xed energy cone with the di�erence that

the energy is constrained inside the cone around the photon instead of outside. Also for
photon isolation, large logarithms of the cone opening angle δ and of the fraction of allowed
energy ε appear. The resummation of these logarithms in the case of photon isolation is
performed in Chapter 5. A pictorial representation of a photon isolation cone and of the
Stermann-Weinberg dijet can be seen in Figure 4.1.

4.2 Computations with di�erent isolation cones

The cross-section of pp → γ + X was computed at (N)NLO in QCD for various types
of isolation prescriptions [11, 12, 61, 62, 15, 16, 58]. At NLO, the publicly available
codes MadGraph, MCFM1 and JETPHOX are able to compute the cross-section for a
non-isolated photon, a �xed-energy cone, a Frixione cone, an hybrid cone and the dis-
cretized Frixione cone. Theses codes do not perform any resummation, their prediction
with extreme parameters may thus be unphysical. At NNLO the cross-section was com-
puted for non-isolated photon and for the Frixione cone, �xed-energy cone and hybrid cone
[61, 62, 15, 16].

1Details on how to run MadGraph and MCFM for photon production are given in Appendix C.
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√
s = 13 TeV EγT > Emin

T = 125 GeV |ηγ | < 2.37

NNPDF23_nlo_as_0119_qed_mc αs(MZ) = 0.119 αEM = 1/132.5070

(µa =)µr = µf = 125 GeV γ isolation No jet cuts

Table 4.1: Parameters for the NLO cross-section of the �xed-energy, Frixione and hybrid
cones in Figures 4.2 to 4.4, 4.6 to 4.8 and 4.10 and in Tables 4.2 and 4.3. The partons are
unconstrained. The fragmentation scale µa is used for the �xed-cone only and a fragmen-
tation function set has to be speci�ed.

Narrow �xed-energy cone at NLO with a resummation of large lnR was computed in
[12]. Without resummation in [11], the authors encounter unphysical cross-sections for
small radii. The case of narrow Frixione cones is studied in Chapter 5.

4.3 Kinematics

First of all, it is necessary to discuss kinematics in order to determine if a particle is inside
or outside a cone. The cone is centered around the photon. In the case of multiple photons
(like in diphoton production), one considers a cone for each of them. At an e+e− collider,
particles are inside the cone of a photon, if the angle between the ith particle and the
photon, θiγ

θiγ < α, (4.2)

is smaller than the half opening angle2 α of the cone. For hadron colliders we de�ne the
distance

Riγ =
√

(ηi − ηγ)2 + (φi − φγ)2 , ηi =
1

2
log

( |~p|+ pz
|~p| − pz

)
, (4.3)

with ηi the pseudo rapidity of the ith particle. The ith particle is inside the cone if

Riγ < R, (4.4)

where R is the radius of the cone.
For the cones that are discussed later on, the hadronic energy in the cone is bounded

from above. For hadron colliders the transverse energy is constrained instead of the energy.
There is no constraint outside of the cone.

We need to introduce some SCET notations, for a complete introduction to soft-
collinear e�ective theory see [63]. Two light-cone vectors are introduced

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (4.5)

where nµ is a reference vector along the direction of the fragmenting parton. We can write
the momentum p as

pµ = n̄ · pn
µ

2
+ n · pn̄

µ

2
+ pµ⊥ (4.6)

Collinear particles have the following scaling

(n · p, n̄ · p, p⊥) ∼ Eγ(R2, 1, R) , (4.7)

2Sometimes in the literature α is the opening angle of the cone and sometimes it is the half opening
angle.
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and the larger momenta is p− = n̄ · p.
For lepton colliders and for a small cone, the constraint θiγ < α, if both the parton i

and the photon are approximately collinear. The condition of the ith particle being in the
cone can be written as

p · q = EpEq (1− cos(θiγ)) ' p−q−
2

(1− cos(θiγ))

2
=
p−q−

2
sin2

(
θiγ
2

)
, (4.8)

⇒ 2p · q
p−q−

= sin2

(
θiγ
2

)
, (4.9)

where p and q are the momenta of the photon and of the quark respectively. The above
relation is valid in the limit of a narrow cone. Analogously, the condition for the quark to
be outside of the cone is

θiγ > α. (4.10)

This translates into

sin2

(
θqγ
2

)
− sin2

(α
2

)
=

2p · q
p−q−

− sin2
(α

2

)
> 0. (4.11)

⇒ 2p · q
p−q−

> sin2
(α

2

)
' tan2

(α
2

)
= δ2. (4.12)

In the case of hadron colliders, we get an extra factor. First, we parameterize the normal-
ized momenta of the quark and of the photon (p = p0np)

nq = (1, cosφi sin θi, sinφi sin θi, cos θi) ,

np = (1, cosφγ sin θγ , sinφγ sin θγ cos θγ) ,
(4.13)

where θγ is the polar angle to the beam direction and φγ is the photon azimuthal angle. If
we assume that the parton and the photon are nearly collinear to each other we can write

ηi = ηγ + λ∆η ,

φi = φγ + λ∆φ ,
(4.14)

with λ� 1. We perform the scalar product of both momenta and expand it for small λ

np · nq =
1

2

(
∆φ2 + ∆η2

) 1

cosh ηi2
λ2 +O

(
λ3
)

= R2
iγ

1

2

1

cosh ηi2
+O

(
λ3
)
, (4.15)

with ∆φ = φi − φγ and ∆η = ηi − ηγ . On the other hand we have

np · nq = (1− cos θiγ) = 2 sin2

(
θiγ
2

)
'
θ2
iγ

2
. (4.16)

Therefore Riγ < R implies

θiγ <
R

cosh ηi
, (4.17)

The same relation can be found in [64].
At the partonic level, photon isolation starts to have an e�ect only at NLO. For example

in the process qg → qγ, the outgoing quark is outside the cone, because the quark and the
photon are back to back in the center of mass frame. However at NLO one parton may be
inside of the cone.

As a side remark, let us point out that the isolation implemented at the parton level
is not the same as at the hadronic level. Imagine a quark close to the side of the isolation
cone. At the parton level it is outside the cone. After hadronization, part of its energy
may actually be in the cone. The opposite may also happen, if a quark is inside of the
cone (but not in the middle), after hadronization part of its energy may be outside of the
cone.

40



4.4 Fixed energy cone

Fixed energy cones are the simplest type of isolation criteria. The total hadronic energy
in a cone of radius R around the photon Ehad is constrained by an upper bound Eiso. This
value may depend on the energy of the photon,

Ehad < Eiso = εγEγ + Ethreshold for r ≤ R (4.18)

with typically Eiso � Eγ . In the literature, one of the two parameters εγ and Ethreshold

is sometimes set to 0. It is possible to implement �xed-energy cones experimentally. The
choice of the radius R is limited by the resolution of the calorimeters. The main downside
is that photons originating from non-perturbative fragmentation are still present in the
�xed-energy cone. However this contribution is partially suppressed compared to a non-
isolated photon [65], in particular it is still present for large z, the fraction of the energy
taken by the photon from the fragmenting parton i, Eγ = zEi. For Ethreshold = 0, the
fragmentation contribution is not suppressed for z > (1 + εγ)−1. This comes from the fact
that after the fragmentation into a γ the left-over hadronic energy is

Ehad =
1− z
z

Eγ < Eiso = εγEγ . (4.19)

The smaller the isolation energy is, the smaller is the contribution from Di→γ . The partial
suppression of the non-perturbative fragmentation implies that the �xed-energy cone is
not suitable to measure these functions [51]. While performing a �xed order computation,
the uncertainty on the non-perturbative fragmentation contributes to the uncertainties of
the prediction, at NLO and at NNLO in [16, 45]. Fixed-energy cones suppress photons
originating from decays of neutral hadrons [35].

In order to be physical, it is necessary for the cross section to satisfy the following
condition [66]

σ(R,Eiso)
∣∣
R=constant

↘ if Eiso ↘ ,

σ(R,Eiso)
∣∣
Eiso=constant

↗ if R ↘ .
(4.20)

When the radius R is kept constant, the cross-section has to decrease for decreasing Eiso.
When Eiso is kept constant, the cross-section has to increase for decreasing radius R. The
stricter the isolation is, the smaller the cross-section is. And of course, the cross section
without isolation is larger than the one with isolation. If the radius R is small for a �xed
order computation, large lnR appear and need to be resummed. In [11], the di�erential
cross-section with a cone of R = 0.1 and εγ = 2

15 was larger than the non-isolated cross-
section. This is unphysical. This issue was addressed in [12] and the leading logarithms
of the radii were resummed, however the case of a narrow cone with a small εγ was not
addressed.

In Figures 4.2 to 4.4, the dependence of the NLO cross-section on its parameters R and
εγ are shown for the three sets implemented in MCFM. The non-isolated cross-section is
also shown (red line). For both the εγ and the R dependencies, BFGI and BFGII are very
similar, in contrast the behavior of the GdRG fragmentation is qualitatively di�erent at
small εγ .

The R dependence of the three sets is well behaved for the considered values of εγ ,
the isolated cross-sections are always smaller than the isolated cross-section. The second
relation of (4.20) is also respected. Moreover, the cross-section increases linearly in ln 1/R.
The slope is larger for smaller εγ . This is not surprising, as when a cone gets smaller the
portion of phase space constrained gets smaller, the increase of the cross-section coming
from decreasing the size of the cone is larger if εγ was small as the isolation was stricter.
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Figure 4.2: Fixed-energy cone NLO cross-section for the GdRG obtained with MCFM.
Left: εγ dependence. Right: R dependence
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Figure 4.3: Fixed-energy cone NLO cross-section as a function of εγ for the BFG sets
obtained with MCFM.

The dependence on εγ is more interesting. In the case of the GdRG set, we see that
for R = 0.3, 0.4, the cross-section decreases with decreasing εγ . For R = 0.2, 0.1, when
εγ is small, it is not the case and (4.20) is violated. For the BFG sets, the cross-section
�rst decreases with εγ decreasing and when εγ is small the tendency is reversed. The
approximate value of εγ when the behavior changes depends on the value of the radius R.
The smaller R is the earlier it happens. In the case of R = 0.1 the isolated cross-section
for εγ = 0.03, 0.02, 0.01 is larger than the non-isolated cross-section, as seen in Figure 4.3.

Finally, some values of the cross-section for R = 0.2, 0.4 are shown in Tables 4.2 and 4.3,
in order to see the dependence on the choice of fragmentation function. In particular the
ratio between the GdRG and the BFGI sets is shown. For large εγ , we see that the
isolation is only slightly decreasing the dependence on the choice of set. For εγ = 0.05,
the ratio between the cross-sections of GdRG and BFGI are smaller, the reduction of the
dependence on the choice of fragmentation function is slightly larger for a smaller radius
R. These results need to be considered with caution as the �rst equation of (4.20) is not
satis�ed. In Chapter 5, we will perform the resummation of the log of R and εγ .
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Figure 4.4: Fixed-energy cone NLO cross-section as a function of R for the BFG sets
obtained with MCFM.

εγ σGdRG σBFGI σBFGII GdRG/BFGI

no Iso 495.51± 0.35 460.14± 0.33 461.51± 0.33 1.077

1.0 476.77± 0.18 443.04± 0.16 443.23± 0.16 1.076
0.5 454.39± 0.08 421.99± 0.16 421.32± 0.87 1.077
0.2 429.26± 0.17 400.36± 0.09 400.28± 0.18 1.072
0.05 417.02± 0.18 397.96± 0.19 397.63± 0.19 1.048

Table 4.2: Total cross-sections σNLO [pb] for photon production with a �x-energy cone
with R = 0.4 obtained with MCFM for the three implemented fragmentation sets with
parameters of Table 4.1. Uncertainties are from numerical integration of MCFM.

εγ σGdRG σBFGI σBFGII GdRG/BFGI

no Iso 495.51± 0.35 460.14± 0.33 461.51± 0.33 1.077

1.0 479.78± 0.18 445.97± 0.17 446.585± 0.17 1.076
0.5 462.56± 0.18 430.65± 0.18 430.89± 0.18 1.074
0.2 448.33± 0.23 418.77± 0.21 419.34± 0.21 1.071
0.05 447.61± 0.25 428.26± 0.27 428.09± 0.26 1.045

Table 4.3: Total cross-sections σNLO [pb] for photon production with a �x-energy cone
with R = 0.2 obtained with MCFM for the three implemented fragmentation sets with
parameters of Table 4.1.
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Figure 4.5: Frixione isolation with R = 0.4, εγ = 1.0 for three di�erent values of n.

4.5 Frixione cone and smooth cone

In [57], Frixione introduced a new type of photon isolation, which is called smooth cone
or Frixione cone isolation. The idea is to constrain the hadronic energy Ehad(r) inside all
the possible cones of di�erent radii r ≤ R, by a function f(r)

Ehad (r) ≤ Eiso (r) = f(r) r ≤ R . (4.21)

A photon is said to be isolated if the relation holds for every r. In other words, the
isolation energy Eiso (r) is now a function of the distance from the photon in the cone of
radius R. In the case of �xed energy cones the function was independent of r. In order
to suppress the collinear e�ects, the isolation energy needs to vanish when r → 0. The
typical parameterization is

Ehad (r) ≤ Eiso (r) = Eγεγ

(
1− cos r

1− cosR

)n
= Eγχ(r; εγ , n,R) r ≤ R , n ∈ R+ . (4.22)

Equation (4.22) tells us that, the closer the hadrons are to the photon, the less of their
energy is allowed. In the collinear limit r → 0, Eiso = 0 and no hadronic energy is allowed.
Figure 4.5 shows three di�erent pro�les of χ. The parameter n must be positive, otherwise
the isolation energy would diverge for small r.

This isolation suppresses both contributions of the photons from hadronic decays and
the ones from non-perturbative fragmentation, as long as the pair of parameters (n, εγ) is
suitable. For example it has been shown in [58], that (n, εγ) = (0.2, 1) is not a suitable
choice to suppress the fragmentation function. The fact that particle detectors have a �nite
resolution makes it impossible to measure Eiso(r) and thus also the use of the Frixione
isolation cone. However, a discretized version of the Frixione cone exists and is discussed
in Section 4.7. A summary of the di�erences between �xed cone and Frixione cone isolation
can be found in Table 4.4.

Figures 4.6, 4.7 and 4.8 show the NLO cross-section for various isolation parameters,
obtained with MCFM. It would be possible to get the same data with the help of Mad-
Graph. A few tendencies can be seen. First, the cross-section increases with increasing εγ
while it decreases with decreasing n and R. The dependence of σNLO on εγ looks logarith-
mic. As discussed in Chapter 5, this is not the case. The cross-section depends linearly on
1/n and on ln (1/R). It is important to note that these plots show only the perturbative

44



Fixed Energy Frixione

γ from hadronic decays suppressed 3 3

non-perturbative Di→γ suppressed 7 3

NNLO computations available 3 3

Experimentally realizable 3 7

Ehad < Eiso = εγEγ + Ethreshold εγEγ

(
1−cos r
1−cosR

)

Table 4.4: Summary of the two main types of isolation cones used in this work.
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Figure 4.6: εγ dependence of the NLO cross-section obtained from MCFM for Frixione
isolation with di�erent n and R values.

part of the cross-section. The non-perturbative emission is suppressed, and MCFM does
not include it while computing the cross-section. A study of how the Frixione parameters
in�uence the non-perturbative part of the cross section has been carried out in [58], with
the help of the program JETPHOX. The authors found that, for suitable parameters of the
Frixione cone, the non-perturbative fragmentation functions are suppressed. In particular,
the choice n = 0.2 is problematic and did not suppress the non-perturbative contribution,
whereas choices of n ≥ 0.5 suppressed it.

Similarly to the �xed-energy cone, there are some requirements on the dependence of
the cross-section on its parameters [66]

σ(R,n, εγ)
∣∣
(R,n)=constant

↘ if εγ ↘ ,

σ(R,n, εγ)
∣∣
(n,εγ)=constant

↗ if R ↘ ,

σ(R,n, εγ)
∣∣
(R,εγ)=constant

↘ if n ↗ .

(4.23)

Additionally, comparing a Frixione cone to a �xed-energy cone with Ethreshold = 0 of the
same radius R and εγ , we �nd

σFrixione(R,n, εγ) < σFixed−energy(R, εγ) ∀n . (4.24)

This relation is due to the fact that the Frixione cone is more restrictive than the �xed-
energy cone (if R and εγ are the same). In order to test (4.24), it could be advantageous
to include the suppressed fragmentation contribution also in the case of the Frixione cone
cross-section. Unfortunatly MadGraph and MCFM are not designed for such an imple-
mentation. Some NLO di�erential cross sections with the non-perturbative contribution
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Figure 4.7: n dependence of the NLO cross-section obtained from MCFM for Frixione
isolation with di�erent εγ and R values.
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Figure 4.8: R dependence of the NLO cross-section obtained from MCFM for Frixione
isolation with di�erent n and εγ values.
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Figure 4.9: Hybrid cone isolation χ for an outside radius of R = 0.4 and the inside one of
Rd = 0.1.

were computed in [58], with the help of JETPHOX. The relation (4.24) was found to be
violated in the case of diphoton production for n = 0.1 for certain kinematic parameters in
[66]. However it was still satis�ed e.g. for n = 0.5 or n = 1.0. In addition, the dependance
of the cross-section on the parameter n is larger at small n. Therefore in Chapter 5, we
always use n ≥ 0.5.

4.6 Hybrid cone

The idea of the hybrid cone is to combine a Frixione cone and a �xed energy cone together.
NNLO predictions were computed in [15] and a detailed explanation of the hybrid cone can
be found in [67]. The goal was to have predictions closer to the experimental isolations and
to avoid the non-perturbative fragmentation functions. An hybrid cone has the following
isolation energy

Eiso (r) = Eγχ (r; εγ , n,R,Rd) = Eγεγ





(
1− cos r

1− cosRd

)n
0 ≤ r < Rd

1 Rd < r < R

. (4.25)

where Rd is the radius of the inner cone. The isolation for r between 0 to Rd is a Frixione
cone and from Rd to R a �xed-energy cone. An example of isolation is shown in Figure
4.9. Because the inside cone is a Frixione cone and Eiso (r = 0)→ 0, the non-perturbative
fragmentation is suppressed. The photons originating from decays of neutral hadrons are
also suppressed. The �rst disadvantage of the hybrid cone is that a new parameter is
introduced Rd and the cross-section will depend on it [15]. Like the Frixione cone, it is not
possible to implement it experimentally. If the inner radius Rd is taken too small, large
logarithms also appear and need to be resummed.

In Figure 4.10, the NLO cross-section as a function of the inner radius Rd is shown with
the parameters of Table 4.1. The smaller the inner radius Rd is, the larger the cross-section
becomes. The logarithms of the inner radius should be resummed. Interestingly, the e�ect
of large logs is smaller when εγ is small. Unlike the Frixione cone the dependence on
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Figure 4.10: NLO cross-section for the hybrid cone as a function of Rd, the data were
computed with MCFM 10.2.1. The numerical uncertainties are smaller than the dots. The
largest cross-section is obtained for (Rd = 0.025, R = 0.2, εγ = 1.0, n = 1.0) with 578.4 ±
0.6 pb.

Eiso(r) = Eγχ(r) γγ in [69] γ in [58]

Ri = 0.1,0.2,0.3,0.4 0.1,0.16,0.22,0.28,0.34,0.4

χ (r) r ∈ [Ri−1, Ri] εγ

(
1−cos( 1

2
(Ri−1+Ri))

1−cosR

)n
εγ

(
1−cosRi
1−cosR

)n

Table 4.5: Summary of the stairs isolations formula of [58] and [69], note that R0 = 0.0.

Rd is only approximately logarithmic. For relatively large Rd the cross-section has values
comparable to ones from the Frixione cone isolation.

4.7 Stairs approximation of Frixione cone isolation

Experimentally it is not possible to use the Frixione cone isolation due to the �niteness of
the resolution of the detector. However it is possible to implement a discretized version
and this was done in the study of the production of isolated photon [58] and diphoton
[68, 69]. The idea is the hadronic energy inside the cone of radius R is constrained as

Ehad (r) ≤ Eiso (r) = Eγχ(r) r ≤ R, (4.26)

where χ (r) is a step function built in order to approximate the Frixione cone; it is made
out of a few nested �xed energy cones with di�erent isolation energies. In the innermost
cone, the isolation energy is small so that it suppresses the non-perturbative fragmentation
function. Di�erent parameterizations of the stairs isolation exist and two examples can
be seen in Figure 4.11 with their associated formulas for the radii and the function χ are
summarized in Table 4.5. The choice of the intervals of order 0.1 is due to the resolution
of the calorimeters.

In the case of only one isolated photon, the comparison between the Frixione cone and
its discretized version was done in [58] with six concentric cones. A modi�ed version of
the program JETPHOX3 to compute the cross section with both the direct and the non-
perturbative contribution at NLO was used. One of their results is shown in Figure 4.12:

3It is probably possible to modify MCFM to implement the discretized isolation.
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Figure 4.11: The stair isolation compared to Frixione with R = 0.4, εγ = 0.5 and n = 1.0.
Left: Isolation of [69] for diphoton production The Frixione χ cuts every stair in the middle.
Right: Isolation of [58] for single photon production, the Frixione χ cuts every step at its
right end. The formulas of both isolation can be seen in Table 4.5.

Figure 4.12: Fixed-order NLO di�erential cross-section with respect to the photon trans-
verse energy EγT done with JETPHOX. The cone parameters are R = 0.4, n = 1, εγ = 1.0.
The solid triangles are the Frixione isolation and the open ones with the stairs approx-
imation. Both isolation include the contribution of the non-perturbative fragmentation.
Figure taken from [58]. The fragmentation functions set (probably BFG I or II) was not
speci�ed.

the agreement between the two cones is good, except at high EγT , probably due to lower
statistics in the Monte Carlo.

In [69], diphoton was studied with both a Frixione cone with parameters n = 1, R =
0.4, εγ = 0.5 and the stairs of the left of Figure 4.11. Beyond using the isolation energy
approximate Frixione εiγEγ , they also introduce a minimum energy Emin

i for each step. The
isolation energy at one step was taken to be the maximum of these two values. The list of
Emin
i can be seen in Table 4.6. They compared the cross-section obtained with the help of

the Frixone cone and of this staircase isolation and they observed a good agreement of the
two isolation at high energy. For the smaller values of the transverse mass of the diphoton,
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r < Ri εiγ Eminmum
i

0.1 0.01 5 GeV
0.2 0.07 10 GeV
0.3 0.20 23 GeV
0.4 0.38 40 GeV

Table 4.6: Value of εiγ and Eminimum
i for the four nested cones used in [69].

the di�erence was of the order of magnitude of a few percent.
At high energy the stairs result approximates well the Frixione cone. However, this

isolation introduces extra parameters in the isolation and in this case the innermost cone
is small, so that it is likely that large logarithms appear.

4.8 Isolation used experimentally

Experimentally �xed-energy cones with some extra cuts are used. For example at ATLAS
[9], they required ETγ > 125 GeV with the isolation

� Region ∆η×∆φ = 0.125× 0.175 around the photon with ETiso = 0

� Fixed energy cone of R = 0.4 with ETiso = 4.2 · 10−3ETγ + 4.8 GeV.

The pseudo rapidity of the photon is

|ηγ | ∈ [0.0, 1.37] and |ηγ | ∈ [1.56, 2.37] (4.27)

A cut in ηγ between 1.37 and 1.56 is due to the geometry of the detector.
One example of the isolation used at CDF was [70]:

� Fixed energy cone of R = 0.4 with ETiso = 2 GeV.

In addition the photon was required to have ETγ > 30 GeV and |ηγ | < 1.0
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Chapter 5

QCD anatomy of photon isolation

This chapter is a copy of a preprint version of [71] published in Journal of High Energy
Physics (JHEP01(2023)005).

Abstract

To separate the energetic photons produced in hard scattering processes from those from
other sources, measurements impose isolation requirements which restrict the hadronic
radiation inside a cone around the photon. In this paper, we perform a detailed factor-
ization analysis of the QCD e�ects associated with photon isolation. We show that for
small cone radius R, photon isolation e�ects can be captured by a fragmentation function
describing the decay of a parton into a photon accompanied by hadronic radiation. We
compute this fragmentation function for di�erent isolation criteria and solve the associated
renormalization group equations to resum logarithms of R. For small isolation energy, the
cone fragmentation function factorizes further, into collinear functions describing energetic
quarks and gluons near the cone boundary and functions encoding their soft radiation
emitted into the cone. Based on this factorization we also resum the non-global logarithms
of the ratio of the photon energy and the isolation energy, so that we control all logarith-
mically enhanced terms in the cross section. In this limit, we provide a simple formula to
convert NNLO cross section results from smooth-cone isolation to �xed-cone isolation.

5.1 Introduction

An important category of physics probes at high-energy colliders are processes with elec-
troweak bosons in the �nal state. Among these, photons present special challenges: since
they are massless, they are abundant and are produced not only during the hard inter-
action, but can also arise as secondary emissions during jet fragmentation, hadronization
and hadron decay. The fragmentation process involves non-perturbative physics encoded
in photon fragmentation functions, originating from partons becoming collinear to the
photon.

To reduce the contribution from secondary emissions, experiments impose isolation
requirements. To isolate a hard photon they put a cone of angular size R around it and
restrict the hadronic energy inside the cone to be lower than a certain cuto� E0. How
this cuto� is imposed depends on the isolation criterion. The simplest way is to impose a
constraint on the total hadronic energy Etot(R) inside the cone. At an e+e− collider one
requires

�xed-cone isolation: Econe
tot (R) < E0 = εγEγ (5.1)
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and the quantity R corresponds to the opening half-angle of the cone, i.e. a particle is inside
the cone if θ < R, where θ is the angle between the particle and the photon. At hadron
colliders, one instead imposes the constraint on the total transverse energy ET inside the
cone and de�nes E0 = εγE

γ
T .

1 In the following, we will use the term energy to refer to either
the conventional or the transverse energy, depending on the collider under consideration.
At a hadron collider a particle is inside the cone if r < R with r =

√
(∆η)2 + (∆φ)2.

Here, ∆η and ∆φ are the pseudorapidity and azimuthal angle di�erences between the
photon and the particle. Fixed-cone isolation is used in all experimental measurements by
ATLAS [72, 9, 10] and CMS [73, 74, 75], but with this isolation criterion the cross section
computations need to include the non-perturbative photon fragmentation functions to be
collinear �nite. The photon fragmentation functions are poorly known and the presence of
�nal-state collinear divergences complicates the perturbative calculations.

Frixione [57] has introduced an alternative isolation criterion designed to eliminate
radiation collinear to the photon. Rather than restricting the radiation inside a �xed cone
of radius R, it imposes

smooth-cone isolation: Econe
tot (r) < E0(r) = εγEγ

(
1− cos r

1− cosR

)n
(5.2)

for all r < R where the parameter n must be chosen to be n ≥ 1
2 . As is obvious from

this de�nition, the isolation becomes stricter as particles get more collinear to the photon
and together with collinear radiation, the smooth-cone isolation also eliminates the non-
perturbative fragmentation function. Having infrared �nite cross sections without the need
to subtract collinear �nal state singularities is a signi�cant technical simpli�cation and in
the past all next-to-next-to-leading order (NNLO) computations of photon production were
carried out imposing smooth-cone isolation. Such computations are by now available not
only for inclusive-photon [61, 15], photon-plus-jet [62, 15] di-photon [76, 77, 66, 78, 79, 80]
and even tri-photon production [81, 82]. However, the �nite granularity of the detectors
makes it impossible to directly implement the criterion (5.2) experimentally. While a
discretized version was studied for the LHC [58] and, following earlier work on democratic
clustering [51], new isolation criteria based on jet substructure [83] were proposed, all LHC
measurements currently impose �xed-cone isolation.

To compare to the experimental results, the above theoretical papers choose parameters
n and εγ of the smooth-cone isolation to mimic the �xed-cone isolation applied in the
measurement. In the literature, a variety of parameter choices is found, typically motivated
by next-to-leading order (NLO) computations, which are available both with �xed cone
and smooth-cone isolation [11]. Given that the two isolation criteria are qualitatively
di�erent, the situation is unsatisfactory, especially since the experimental measurements
now reach few per-cent accuracy. The paper [78] has shown that photon isolation is a
substantial source of uncertainty in precision calculations and has advocated the use of a
hybrid isolation scheme, in which a small smooth cone is placed into the center of a �xed
cone, to mitigate this problem [84, 78]. Very recently the antenna subtraction method
[85, 86, 87] has been extended to �nal state singularities [88] and by now the �rst NNLO
�xed-cone result is available [16], eliminating the mismatch between the prediction and the
experimental measurements.

By construction, the isolation requirement introduces low scales into the cross section,
which leads to logarithmically enhanced higher-order terms which can spoil perturbative

1The transverse energy of a particle is de�ned as ET = E sin θb, where θb is its angle with respect to
the beam axis.
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predictions. The paper [11] has computed the photon cross section at NLO and has shown
that for small radius the prediction for the isolated cross section becomes larger than the
inclusive cross section, clearly indicating a breakdown of �xed-order perturbation theory.
The leading ln(R) terms were then resummed in [12] curing this pathology. The resum-
mation can be obtained by evolving the fragmentation contribution from the hard scale
µh ∼ Eγ to the scale µj ∼ REγ associated with the invariant mass of the radiation in
and around the cone. In our paper we perform a detailed factorization analysis of the
QCD e�ects arising due to photon isolation in the framework of Soft-Collinear E�ective
Theory (SCET) [89, 90, 91]. In addition to the logarithms of the isolation-cone radius R,
we will also resum logarithms of εγ = E0/Eγ . These involve the scale µ0 ∼ RE0, which is
typically quite low for experimentally imposed isolation criteria.

The factorization of the photon cross section involves two steps. First, we show that
for small isolation cone size R, the isolation e�ects can be captured by an isolation frag-
mentation function, i.e. a fragmentation function which describes the fragmentation of a
parton into a photon plus the accompanying collinear radiation constrained by the isola-
tion criterion. The fragmentation function factorization makes it easy to study the e�ect
of di�erent isolation criteria and the dependence on isolation parameters. It also makes
it possible to convert results obtained in one isolation scheme to another, since the cross
section di�erence is driven by the di�erence in the associated fragmentation functions.
Generalized fragmentation functions similar to the one we introduce have been used in a
variety of other contexts starting with [92], who considered hadron fragmentation inside a
jet. The fragmentation function approach can be used to resum logarithms of the isolation-
cone radius R by solving evolution equations to evolve from the hard scale µh ∼ Eγ down
to the typical scale of the fragmentation function µj ∼ EγR. The same technique has been
used earlier for inclusive jet production, where one can consider fragmentation into a jet
to resum logarithms of R, as was done in SCET in [93, 64, 94], following analogous com-
putations in QCD factorization [95, 96]. The resummation of ln(R) terms has also been
studied for exclusive jet production [97, 98, 99] and inclusive jet production near threshold
[100, 101], where the R dependence is captured by jet functions instead of fragmentation
functions.

In addition to the collinear scale µj ∼ EγR, the fragmentation function involves the
scale µ0 ∼ E0R associated with radiation inside the isolation cone. We will show that
in the limit of small E0, the cone fragmentation function itself factorizes. This second
factorization step then allows us to also resum the logarithms of εγ , as shown in [13]. The
isolation cone is obviously a non-global observable [102] and we use the RG approach of
[98, 99] implemented in the code NGLresum [14] to resum them. In this way we control
all large logarithms associated with photon isolation.

Our paper is organized as follows. We �rst present factorization a theorem for photon
production with a small isolation cone in Section 5.2. The leading-order fragmentation
functions which encode the isolation are computed in Section 5.3. Using these, we can
study the di�erences among isolation criteria and their parameter dependence. We can
also resum contributions enhanced by logarithms of the cone radius R by solving the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation for the fragmen-
tation functions as explained in Section 5.4. We then discuss the factorization of the
fragmentation function in the limit of small isolation energy in Section 5.5. The leading
jet function arising in this factorization theorem is computed in Section 5.6, together with
the function describing the soft radiation into the cone. These results are then used to
derive a formula to convert smooth-cone cross section results to �xed-cone isolation in the
limit of small εγ . In Section 5.7 we then perform the resummation of logarithms of εγ . We
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Figure 5.1: Pictorial representation of the factorization theorems (5.3) and (5.49). The gray
blob represents the hard function, which describes the production of an energetic parton,
which then fragments into a photon plus additional radiation (blue region), as encoded by
the cone fragmentation function Fi→γ in (5.3). For small isolation energy, this function
factorizes further. The energetic partons (blue lines) produced in the fragmentation are
part of the jet function Ji→γ+l and must lie outside the isolation cone. These partons can
then radiate soft partons (red) into the isolation cone (green). This radiation is encoded
in the functions U l, which depend on the directions and color charges of the energetic
partons.

summarize our results and conclude in Section 5.8.

5.2 Factorization for isolated photon production at small cone

radius R

For small isolation cone radius R a factorization theorem for isolated photon production
was presented in [13]. It reads

dσ(E0, R)

dEγ
=

dσdir
γ+X

dEγ

+
∑

i=q,q̄,g

∫
dz

dσi+X
dEi

Fi→γ(z, Eγ , E0, R) +O(R) , (5.3)

where the isolation-cone fragmentation function Fi→γ describes the fragmentation of the
hard parton with energy Ei into a photon with energy Eγ = zEi plus accompanying
hadronic radiation which is restricted to have energy smaller than E0 inside the cone, see
Figure 5.1. The precise de�nition of this function is given below. The quantity σdir

γ+X is
the perturbative cross section for producing a photon without imposing any isolation. The
direct part is not collinear safe by itself, but its divergences cancel against the fragmentation
part of the cross section. A more compact (and slightly more general) way of writing
formula (5.3) is

dσ(εγ , R)

dEγ
=

∑

i=γ,q,q̄,g

∫
dz

dσi+X
dEi

Fi→γ(z, Eγ , E0, R) . (5.4)

Note that in this second form the sum over partons includes the photon. Throughout our
paper, we work at leading order in the electromagnetic coupling α and neglect its running
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µ

dσab→i+X

Ii→j

Dj→γ

Fi→γ

Eγ ∼ ŝ

EγR ∼ E0R

ΛQCD

DGLAP

DGLAP

µ

dσab→i+X

Ji→l+γ

Ul

Fi→γ

Eγ ∼ ŝ

EγR

E0R

DGLAP

NGL

Figure 5.2: The scales arising in the factorization theorems (5.3) and (5.49), together with
the type of RG evolution needed to resum the associated logarithms. On the left we show
the factorization when R is small and the isolation energy E0 is parametrically of the same
size as the photon energy Eγ . On the right we show the factorization for R � 1 and
εγ = E0/Eγ � 1. In this limit non-perturbative fragmentation e�ects are suppressed by
εγ .

so that we have
Fγ→γ = δ(1− z) , (5.5)

which leads back to the original form (5.3) of the equation.
The fact that the photon cross section involves a fragmentation function which describes

the conversion of a parton into a photon plus collinear partons is well known [41, 103, 46],
see [104] for a recent review. What is di�erent in our case is the de�nition and role of the
fragmentation function. The standard fragmentation functions encode non-perturbative
e�ects in photon production, while our function includes all physics associated with photon-
isolation and therefore also has a perturbative component. The function Fi→γ in (5.4)
describes the fragmentation of the energetic parton i into a photon in the presence of
the isolation cone, up to corrections suppressed by powers of R. Since we expand in
small R, the isolation cone radius is set to zero when the partonic cross section dσi+X is
computed, which leads to infrared (IR) divergences which match the UV divergences of
the fragmentation function.

In SCET, the fragmentation function is obtained as a matrix element of collinear �elds,
whose light-cone momentum components scale as

(n · p, n̄ · p, p⊥) ∼ Eγ(R2, 1, R) , (5.6)

where nµ is a reference vector along the direction of the fragmenting parton. The ⊥-
directions are perpendicular to the fragmenting parton, not the beam. In this section, we
do not consider the hierarchy between Eγ and E0, i.e. we treat Eγ ∼ E0, corresponding to
the situation shown on the left-hand side of Figure 5.2. The limit of small E0 will be con-
sidered later in Section 5.5 and will lead to an additional factorization of the fragmentation
functions.
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The de�nition of the fragmentation functions for quarks and gluons reads

n/αβ
2
δabFq→γ(z, Eγ , E0, R, µ)

=
∑∫

γ+X

〈0|χaqα(0)|γ+X〉〈γ+X| χ̄bqβ(0) |0〉 θ(2E0 − n̄ · pin
X) δ

(
z − n̄ · pγ

Q

)

(2π)d−1δ(Q− n̄ · (pγ + pX)) δ(d−2)(p⊥γ + p⊥X) , (5.7)

−g⊥αβ g2
sδ
abFg→γ(z, Eγ , E0, R, µ)

=
∑∫

γ+X

〈0|A⊥aα (0)|γ+X〉〈γ+X| A⊥bβ (0) |0〉 θ(2E0 − n̄ · pin
X) δ

(
z − n̄ · pγ

Q

)

(2π)d−1Qδ(Q− n̄ · (pγ + pX)) δ(d−2)(p⊥γ + p⊥X) , (5.8)

where we sum over states X containing collinear QCD partons and integrate over the phase
space of the partons inX and the photon. The �elds χq = W †cψc,q andA⊥aα ta = W †c iD⊥c,αWc

are the collinear quark and gluon �elds in SCET times their associated collinear Wilson
lines Wc. The indices a, b and α, β are associated with color and spin, respectively. The
coupling gs is the bare strong coupling constant. The Wilson lines Wc make the �elds
χq and A⊥µ invariant under collinear gauge transformations and are a product of a QED
and a QCD Wilson line. The total momentum of the partons inside the cone of radius
R is denoted by pin

X and its large component, not the energy, is bounded by the isolation
criterion. Up to power corrections in R the large component n̄ · p is equal to twice the
energy. The large light-cone component of the momentum of the incoming parton is Q
and is given in terms of photon energy as Q = 2Eγ/z. We have written the constraint for
�xed-cone isolation (5.1), but it can easily be adapted for smooth-cone case (5.2).

In general, the fragmentation functions (5.7) and (5.8) also contain a non-perturbative
component from partons whose momentum scales as

(n · p, n̄ · p, p⊥) ∼ Eγ(λ2, 1, λ) , (5.9)

with λ ∼ ΛQCD/Eγ . These energetic partons are highly collinear to the photon. They are
therefore always inside the isolation cone and their energy is constrained. After integrating
out the perturbative modes (5.6), one ends up with a low-energy e�ective theory containing
only the modes (5.9) and the fragmentation function becomes of convolution of perturbative
coe�cients Ii→j times non-perturbative fragmentation functions Dj→γ . The associated
two-step fragmentation process is depicted in Figure 5.3. For �xed-cone isolation, the
associated factorization formula reads

Fi→γ(z, Eγ , E0, R, µ) =
∑

j=γ,q,q̄,g

∫ 1

z

dzh
zh

∫
dEin θ

(
E0 − Ein −

1− zh
zh

Eγ

)

Ii→j(z/zh, Eγ , Ein, R, µ)Dj→γ(zh, µ) . (5.10)

The θ-function is due to photon isolation and constrains the energy inside the cone, which
gets contributions from perturbative partons in Ii→j as well as the non-perturbative par-
tons in Dj→γ , which carry the hadronic energy

Eh = (1− zh)Ej = (1− zh) · zp · Ei =
1− zh
zh

Eγ , (5.11)
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Ei Ej = zpEi

Eh

Ein + Eout

Ii→j Dj→γ

Eγ = zhEj = zEi

Figure 5.3: Kinematics of the factorization (5.10) of the cone fragmentation function Fi→γ
into a perturbative and non-perturbative part. The radiated partons in the perturbative
part Ii→j can be inside or outside the isolation cone, while the non-perturbative radiation
in Dj→γ is always inside. The perturbative momentum fraction is zp = z/zh.

where we used that zp = z/zh, see Figure 5.3. While the non-perturbative partons are
always inside the cone, the perturbative ones scaling as (5.6) can be inside or outside. The
constraint only acts on the inside part Ein of their energy. The constraint on the energy
inside the cone implies that zh > 1/(1 + εγ). In the limit εγ → 0, the zh integration in
(5.10) no longer has any support. In this situation, the only contribution arises from j = γ

Dγ→γ(zh, µ) = δ(1− zh) , (5.12)

rendering the fragmentation purely perturbative up to power corrections in εγ . The limit
of small isolation energy will be considered in detail below.

The scaling (5.9) and the structure of (5.10) make it clear why there is no non-
perturbative contribution for smooth-cone isolation (5.2). Since the non-perturbative par-
tons (5.9) are very close to the center of the isolation cone, they are not allowed to carry
any energy since E0(r) → 0 for r → 0. This enforces zh → 1 and the integral over zh has
no support and the only contribution arises again from Dγ→γ in (5.12). The smooth-cone
fragmentation function is purely perturbative up to corrections suppressed by ΛQCD/Eγ .

The factorization formula (5.3) is only valid up to corrections suppressed by the cone
radius R, but has the advantage that it captures all dependence on photon isolation. As
such it is well suited to analyze the dependence of cross sections on isolation parameters
and can also be used to convert a result from one isolation criterion to another. We
may, for example, convert a result computed using Frixione isolation to a result in �xed-
cone isolation by evaluating the di�erence of the relevant fragmentation functions. A
second advantage of the factorization (5.3) is that it separates the hard scale Eγ ∼

√
ŝ

from the collinear scale EγR associated with the fragmentation. This enables us to use
renormalization-group (RG) evolution to resum logarithms of R, the ratio of the two scales,
as discussed in detail in the next sections.

5.3 Isolation fragmentation functions

We will now analyze the factorization discussed in Section 5.2 in more detail. Let us
start by evaluating the isolation fragmentation functions at O(αs). At this order, the only
nontrivial fragmentation process is q → γ(k) + q(p) and the matrix element in (5.7) is the
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usual splitting function in d = 4− 2ε dimensions

〈0|χbβ(0)|γ+q〉〈γ+q|χ̄aα(0)|0〉 = δab
(
n/

2

)

αβ

e2Q2
q

(
(d− 2)(n̄ · k)2 + 4 n̄ · k n̄ · p+ 4(n̄ · p)2

)

2p · k n̄ · k ,

= δab
(
n/

2

)

αβ

e2Q2
q Q

k · p

[
1 + (1− z)2

z
− ε z

]
, (5.13)

where we have denoted the photon momentum by k and the quark momentum by p and
the charge Qq is +2/3 for up-type and −1/3 for down-type quarks. In the second line
the large light-cone components were written as k · n̄ = z Q and p · n̄ = (1 − z)Q. The
expression in square brackets is the spin averaged splitting kernel in d dimensions. To
obtain the fragmentation function, we need to integrate the matrix element (5.13) over
the phase space of the photon and quark in the presence of the kinematic constraints in
(5.7). Expanding away components which are power suppressed according to (5.6) , the
cone constraint is formulated in terms of the angular quantity

δ2
γq =

2p · k
n̄ · p n̄ · k , (5.14)

which scales as O(R2). Up to higher order terms, we can approximate

δγq ≈ tan
(θγq

2

)
≈ θγq

2
. (5.15)

For the fragmentation process q → γ(k) + q(p), the isolation cone constraint in (5.7) takes
the explicit form

θ(2E0 − n̄ · pin
X) = θ(δ2 − δ2

γq) θ(2E0 − n̄ · p) + θ(δ2
γq − δ2) . (5.16)

The �rst term on the right-hand side imposes an energy constraint if the quark is inside
the cone. The relation of δ to the cone size R depends on the collider. In the limit of small
R we have

e+e− collider: δ = R ,

proton collider: δ = R sin θγ = R/ cosh(ηγ) .
(5.17)

The hadron-collider result follows from analyzing r < R with r2 = (∆η)2 + (∆φ)2 near
the limit where the quark is collinear to the photon. To present results independent of the
collider, we will express them in terms of the quantities δ and Q. For the product of the
two at a hadron collider, we have

Qδ =
2ETγ
z sin θγ

R sin θγ =
2ETγ
z

R , (5.18)

while we get Qδ = 2EγR/z at a lepton collider.
Due to (5.16) the leading-order fragmentation function can naturally be split into two

terms, depending on whether the quark in the �nal state is inside or outside the isolation
cone

Fq→γ(z, Eγ , E0, R, µ) = F in
q→γ(z, Eγ , E0, R, µ) + Fout

q→γ(z,REγ , µ) , (5.19)

where the outside part is independent of the isolation. The bare result for the outside part
reads

Fout
q→γ(z,REγ) =

αEMQ2
q

2π

{
P (z)

[
1

ε
− ln

(
δ2Q2

µ2
(1− z)2z2

)]
− z
}
, (5.20)
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√
s = 13 TeV EγT > Emin

T = 125 GeV |ηγ | < 2.37

NNPDF23_nlo_as_0119_qed_mc PDFs [105] αs(MZ) = 0.119 αEM = 1/132.507

Table 5.1: Kinematics and input parameters used for the cross section computations in
this paper. For our �xed-order computations in Section 5.3 we use the default scales
µa = µf = µr = 125 GeV, where µr and µf are the renormalization and factorization
scales, respectively, and µa is the scale associated with the non-perturbative fragmentation
function. For the resummed results, we use µh = µf = µr = EγT , µj = REγT and µ0 = RE0

as the default.

with the d = 4 splitting kernel

P (z) =
1 + (1− z)2

z
(5.21)

and after expressing the bare electromagnetic coupling α0 through the MS result via α0 =
ZααEM(µ2 eγE/(4π))ε, where γE is the Euler-Mascheroni constant. The renormalized result
is then obtained by subtracting the divergence in (5.20). The inside part for smooth-cone
isolation (5.2) is given by

F in
q→γ(z, Eγ , E0, R, µ) =

αEMQ
2
q

2π
P (z)

1

n
ln

(
z εγ

1− z

)
θ

(
z − 1

1 + εγ

)
, (5.22)

where n is the exponent parameter of the smooth-cone isolation condition (5.2). The
function F in

q→γ is �nite and independent of of the cone radius, while the outside part has
logarithmic R dependence tied to its divergence. As it should be, the total fragmentation
function has a divergence proportional to the splitting kernel. Due to the constraint on
the inside energy, the inside fragmentation function has only support for large enough z
and vanishes in the limit εγ → 0. Expanding around this limit, we �nd

F in
q→γ(z, Eγ , E0, R, µ) =

αEMQ
2
q

2π

1

n
εγ δ(1− z) +O(ε2γ) . (5.23)

The εγ suppression is expected since the collinear quark becomes soft and soft quarks are
power suppressed.

Let us now consider the inside fragmentation for �xed-cone isolation (5.1). This case
is more complicated because the isolation fragmentation also involves non-perturbative
fragmentation, see (5.10). At zeroth order in αs, there are two contributions. We can
either have a trivial perturbative part

Ii→j(z,R,Eγ , Ein, µ) = δij δ(1− z) +O(αs) (5.24)

together with a non-perturbative fragmentation contribution, or we have photon produc-
tion from a quark or anti-quark in the perturbative part Ii→γ followed by the trivial
photon-to-photon fragmentation Dγ→γ = δ(1 − z). Up to corrections of order αs, we can
thus write the inside part for �xed-cone isolation as

F in
i→γ(z,R,Eγ , E0, µ) =


Di→γ(z, µ) +

∑

k=q,q̄

δik I in
k→γ(z,R,Eγ , µ)


 θ
(
z − 1

1 + εγ

)

(5.25)
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Figure 5.4: Dependence of ∆σ on the cone radius R for smooth-cone isolation (5.2). The
lines labeled ∆σNLO are the di�erence of the full NLO cross sections. For the lines labeled
∆σg/ in the right plot gluons inside the isolation cones were vetoed. The dots represent
∆σ = σi ⊗∆Fi→γ computed with the fragmentation function according to (5.28), which
is independent of εγ for εγ = εref

γ .

and for the perturbative part, we �nd

I in
q→γ(z,R,Eγ , µ) =

αEMQ2
q

2π

{
P (z)

[
−1

ε
+ ln

(
δ2Q2

µ2
(1− z)2z2

)]
+ z

}
. (5.26)

Note that this is the opposite of Fout
q→γ in (5.20). In the absence of the isolation energy

constraint in (5.25), the two contributions would exactly cancel since the perturbative
part of the fragmentation function becomes scaleless. This is sensible: without the energy
constraint, the isolation becomes trivial and the entire fragmentation reduces to the non-
perturbative fragmentation function Di→γ . We also note that the anomalous dimension of
the fragmentation function is the same for smooth-cone and �xed-cone isolation. Since the
same anomalous dimension also drives the evolution of the hard part given by the partonic
amplitudes dσi+X in (5.3) it cannot depend on the isolation requirement.

The fragmentation function factorization is valid up to power corrections in R and
with the functions at hand, it is interesting to check numerically whether (5.3) describes
the isolation e�ects in the NLO photon production cross section at the experimentally
used value R = 0.4. To this end, we consider proton proton collisions at

√
s = 13 TeV

and compute the cross section for isolated photons with EγT > Emin
T = 125 GeV. For our

numerical studies of photon isolation e�ects, we will use the kinematic setup and input
parameters listed in Table 5.1 throughout the paper. Our formalism can also be used
to study di�erential distributions, but the focus of our paper is on the e�ects of photon
isolation and these are not strongly dependent on the photon kinematics.

To study the dependence on isolation parameters, we consider smooth-cone isolation
(5.2) and compute the di�erence to a reference cross section

∆σ = σ (εγ , n,R)− σ(εrefγ , n
ref, Rref) . (5.27)

In the di�erence ∆σ the direct photon part in (5.3) drops out so that it is given by a
convolution of the partonic cross section with the fragmentation function. At this order,
the fragmenting parton is either a quark or anti-quark so that we have

∆σ =
∑

i=q,q̄

∫ ∞

Emin
T

dEi

∫ 1

zmin

dz
dσi+X
dEi

∆Fi→γ , (5.28)
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Figure 5.5: Dependence of ∆σ on the value of the parameter n of the smooth-cone isolation
(5.2). The lines labeled ∆σNLO are the di�erence of the full NLO cross sections. For the
lines labeled ∆σg/ in the right plot gluons inside the isolation cones were vetoed. The dots
represent ∆σ = σi⊗∆Fi→γ computed with the fragmentation function according to (5.28)
and is independent of R for R = Rref .

where
∆Fi→γ = Fi→γ (z,R, εγ , n)−Fi→γ

(
z,Rref, εrefγ , n

ref
)

(5.29)

and zmin = Emin
T /Ei.

To be able to convert the values for ∆σ into results for the full cross section, we
computed some reference cross section values with MCFM [106] for the kinematics listed
in Table 5.1. The LO cross section is of course independent of the isolation requirement
and corresponds to

σLO = 229−20
+22 pb , (5.30)

where the upper and lower values correspond to the change in cross section after increasing
and lowering µf = µr from the default value by a factor 2, respectively. The NLO cross
section values depend on isolation and we obtain

σNLO
∣∣∣
no isolation

= 495−51
+68 pb ,

σNLO
∣∣∣
�xed cone,R=0.4,εγ=0.02

= 413−35
+46 pb , (5.31)

The cross section predictions in (5.31) depend on the non-perturbative fragmentation func-
tions Di→γ and we used the GdRG [53, 50] set as implemented in MCFM. The code o�ers
a second choice, the BFGS sets [49], which would lead to a value of the cross section
without isolation which is about 35 pb lower. With �xed-cone isolation, the BFGS cross
section would be 11 pb lower than the value in (5.31). These fragmentation function sets
were determined about 25 years ago based on LEP data [40, 107] and models of the non-
perturbative physics. For smooth-cone isolation, we obtain the reference values

σNLO
∣∣∣
R=0.4, n=1, εγ=1.0

= 459−43
+56 pb ,

σNLO
∣∣∣
R=0.4, n=1, εγ=0.5

= 445−40
+53 pb , (5.32)

σNLO
∣∣∣
R=0.4, n=1, εγ=0.02

= 414−35
+46 pb .
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As a consistency check, we have computed cross sections with several available NLO codes
and for convenience we provide precise reference values in Appendix 5.D. We have also
extracted the direct cross section in (5.3) by computing the cross section at di�erent R
values, subtracting the fragmentation contribution and extrapolating to R → 0. For the
default scales in Table 5.1, we �nd σNLO

dir ≈ 308 pb, with some uncertainty due to the
extrapolation since we cannot run the �xed order codes at too small R due to numerical
instabilities.

From our results for the fragmentation function in (5.22) and (5.20), we can immediately
read o� the parameter dependence for a number of special cases, for example

∆σ ∝ ln

(
Rref

R

)
for n = nref and εγ = εrefγ ,

∆σ ∝
(

1

n
− 1

nref

)
for R = Rref and εγ = εrefγ . (5.33)

In addition to the n and R dependence, we can also analyze the εγ dependence, but this
case is more complicated because the di�erence of fragmentation functions has nontrivial
dependence on the parameter εγ even for R = Rref and n = nref:

∆Fi→γ =
αEMQ

2
i

2π
P (z)

1

n

[
θ

(
z − 1

1 + εγ

)
ln

(
1− z
z εγ

)
− θ
(
z − 1

1 + εrefγ

)
ln

(
1− z
z εrefγ

)]
.

(5.34)
Of course, as is the case for the factorization formula (5.28), these results only hold

up to terms which are power suppressed by the cone radius R and it is interesting to
check how big the power corrections are numerically by comparing to �xed-order results
for ∆σ. To this end, we plot the cross section as a function the isolation parameters R, n
and εγ in Figures 5.4, 5.5 and 5.6. The dots in these �gures correspond to fragmentation
function results obtained using (5.28), while the lines are the NLO �xed-order result for
∆σ computed usingMadGraph5_aMC@NLO [108]. The �xed-order photon production
cross section only becomes sensitive to isolation at NLO and the cross section di�erence
is insensitive to virtual corrections. We can thus extract the di�erence directly from a
LO computation of the process pp → γjj, where one of the �jets� is recoiling against the
photon, while the second one is inside the isolation cone. The details of this �xed-order
computation are described in Appendix 5.C.

The di�erences between the full �xed-order results (lines in the plots) and the fragmen-
tation result (dots) are due to power suppressed contributions such as initial state radiation
into the cone. Figures 5.5 and 5.6 show that even for R = 0.4, the power corrections are
numerically quite small and the factorization theorem (5.3) accurately describes the pho-
ton isolation e�ects. In Figure 5.4 the di�erence is zero by construction at the reference
point R = Rref = 0.4. Since the power corrections vanish for R→ 0, the di�erence in this
region arises from power corrections to the reference cross section with Rref = 0.4. Since
the fragmentation contribution can only have (anti-)quarks inside the cone at this order,
contributions with gluons inside the cone are suppressed by R. In the right-hand plots
in Figures 5.4, 5.5 and 5.6, we have removed the contributions of gluons inside the cone.
The close agreement of the fragmentation result with the full �xed-order result shows that
gluon radiation into the cone is the main source of power corrections. Indeed, since the
power corrections are so small, once gluons are excluded from the isolation cone, the three
lines in each plot overlap almost completely.

In Figures 5.4, 5.5 and 5.6 we considered the parameter dependence of cross sections
with smooth-cone isolation. It is now interesting to compare to the case of �xed-cone
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Figure 5.6: Dependence of the cross section on εγ for smooth-cone isolation (5.2). The
lines labeled ∆σNLO show the di�erence of the full NLO cross sections. The dots represent
∆σ = σi ⊗∆Fi→γ computed with the fragmentation function according to (5.28) and are
independent of R for R = Rref . For the lines labeled ∆σg/ in the right plot gluons inside
the isolation cones were vetoed.
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Figure 5.7: Radius dependence for �xed-cone isolation for di�erent εγ with Rref = 0.4.
The lines show the full NLO cross sections, the dots correspond the the result obtained
using the cone fragmentation functions. In contrast to the smooth-cone result shown in
Figure 5.4, the result depends on εγ .

isolation. Since the outside part is obviously the same, di�erent behavior is related to the
inside part F in

q→γ given in (5.22) and (5.25), respectively. In addition to the contribution
from the non-perturbative fragmentation, a key di�erence between the two functions is
that for �xed-cone isolation, the inside part of the function depends on the cone radius.
Setting εγ = εref

γ and computing the di�erence between the cross section at a given R to a

reference value Rref , the non-perturbative part drops out and we obtain

∆Fi→γ =
Q2
iαEM

π
P (z) ln

(
Rref

R

)
θ

(
1

1 + εγ
− z
)
. (5.35)

We see that due to the presence of the θ-function the coe�cient of the logarithm of R
now depends on εγ , in contrast to smooth-cone result shown in Figure 5.4. The smaller
the value of εγ , the bigger the range over which the z-integral has support, resulting in
a larger coe�cient of the ln(R) term. This is indeed what we observe in Figure 5.7. In
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σ [pb] �xed cone n = 1 n = 2

εγ = 0.02 414.56± 0.34 413.31± 0.36 410.41± 0.37
εγ = 0.1 420.58± 0.38 422.05± 0.40 416.57± 0.39
εγ = 0.2 429.35± 0.32 429.10± 0.41 421.71± 0.40

Table 5.2: Cross-section at R = 0.4 for di�erent photon isolation criteria computed using
MCFM [106]. The cross section values correspond to the kinematics and input speci�ed
in Table 5.1 with µf = µr = 125 GeV. For this scale choice, the direct part of the cross
section is σdir ≈ 308 pb.

the limit εγ → 0, the θ-function becomes trivial and we recover the smooth-cone result for
the R dependence of the cross section. This observation is surprising at �rst sight, but
the underlying physics is easy to understand. For small εγ , the R dependence is driven by
energetic partons outside the cone that are close to its boundary. These are independent
of the isolation criterion so that the ln(R) dependence becomes universal. More generally,
since the inside part F in

i→γ involves a soft quark, its contribution is power suppressed for
εγ → 0 and R → 0. In this limit, a dependence on the isolation criterion �rst arises
in the NNLO cross section and will be computed below. To illustrate that the di�erent
isolation criteria lead to the similar NLO cross section for εγ → 0, we have tabulated cross
sections values for di�erent isolation criteria in Table 5.2. We observe that the cross section
di�erences indeed decrease for small εγ . Interestingly, the n = 1 cross section is fairly close
to the �xed-cone cross section over a fairly wide range of εγ values.

Having illustrated the parameter dependence of the isolation cross section in di�erent
examples and demonstrated that power suppressed e�ects in R are small, we now turn to
the all-order resummation of ln(R) terms.

5.4 Resummation of ln(R) terms

Working with the form (5.4) of the factorization theorem, the renormalized fragmentation
functions ful�lls the usual DGLAP evolution equation

d

d lnµ
Fi→γ(z, µ) =

∑

j=γ,q,q̄,g

Pi→j ⊗Fj→γ

≡
∑

j=γ,q,q̄,g

∫ 1

z

dz′

z′
Pi→j

( z
z′

)
Fj→γ(z′, µ) , (5.36)

where we suppress the dependence on the fragmentation function on the additional argu-
ments Eγ , E0, R and further parameters such as n. As is conventional, we use here the
symbol ⊗ to denote the Mellin convolution

(f ⊗ g)(z) =

∫ 1

0
dx

∫ 1

0
dy δ(z − xy)f(x)f(y) =

∫ 1

z

dz′

z′
f
( z
z′

)
g(z′) . (5.37)

Separating out the trivial Fγ→γ contribution as in (5.5), we can write the DGLAP
evolution equation purely in terms of QCD partons

d

d lnµ
Fi→γ(z, µ) = Pi→γ(z) +

∑

j=q,q̄,g

Pi→j ⊗Fj→γ , (5.38)
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with i = q, q̄, g. In this form, the equation involves an inhomogeneous term. To resum
the logarithms of R we will solve (5.38) numerically and evolve the functions Fi→γ from
their characteristic scale µc ∼ REγ to the hard scale µh ∼ Eγ . The initial condition
Fq→γ(z, Eγ , E0, R, µ) for µ = µc was computed in the previous section both for �xed-cone
and smooth-cone isolation.

An important simpli�cation for the case of smooth-cone isolation is that the fragmen-
tation function is purely perturbative. The same is true in the limit of small E0 consid-
ered in the next section, since the non-perturbative part involves a soft quark inside the
fragmentation cone, which is power suppressed in the limit E0 → 0. In the absence of non-
perturbative e�ects, and since we do not include the top quark and set the masses of the
other quarks to zero, our fragmentation functions have a �avor symmetry: all down-type
quarks and anti-quarks have the same fragmentation function, and similarly all up-type
quarks and anti-quarks. Instead of evolving the individual �avors, we thus only need the
combinations

Σ =

nf∑

i=1

(Fqi→γ + Fq̄i→γ) ,

∆ = Fd→γ −Fu→γ , (5.39)

G = Fg→γ ,

where d and u denote the down- and up-type quarks respectively. The function ∆ is de-
coupled from the gluon fragmentation function, and satis�es the simple evolution equation

d

d lnµ
∆ = (Pd→γ(z)− Pu→γ(z)) + Pq→q ⊗∆ . (5.40)

The other two functions Σ and g ful�ll the coupled equations

d

d lnµ

(
Σ
G

)
=

(∑nf
i=1(Pqi→γ + Pq̄i→γ)

Pg→γ

)
+

(
Pq→q 2nfPq→g
Pg→q Pg→g

)
⊗
(

Σ
G

)
. (5.41)

The parton-to-parton splitting kernels relevant for the homogenous part take the form

Pi→j(z) =
αs
π
P

(1)
i→j +O(α2

s) , (5.42)

and the parton-to-photon splitting kernels which constitute the inhomogeneous part of the
equation are expanded as

Pi→γ =
α

π

(
P

(0)
i→γ +

αs
π
P

(1)
i→γ +O(α2

s)
)
. (5.43)

We solve this equation at leading order in RG-improved QCD perturbation theory and
therefore need to include the order αs corrections to the evolution kernels, including the
ones to Pi→γ . These can be found in [30] and are listed in Appendix 5.A. In traditional
terminology, this amounts to next-to-leading logarithmic (NLL) accuracy.

There are two commonly used techniques to solve evolution equations such as (5.38).
One possibility is to solve the equations directly in momentum space by interpolating
the fragmentation functions over a grid of z values. In this approach computes the µ-
dependence step by step and interpolates the result in z at each step. Alternatively, one
can solve the equations in Mellin moment space

f(N) =

∫ 1

0
dzzN−1f(z) , (5.44)
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Figure 5.8: E�ect of RG-evolution on the cone fragmentation functions Fi→γ . The gray
lines shows the initial condition given by the LO �xed-order result at µ = 10 GeV and
correspond to smooth-cone isolation with R = 0.4 with εγ = 1 and n = 1. The derivative
of the initial condition is discontinuous at z = (1 + εγ)−1 = 0.5 due to the contribution
(5.22). The gluon fragmentation function vanishes at this order. The other lines are the
results after evolution to µ = 200 GeV by solving the RG equations either in moment space
(red lines) or in momentum space (dashed lines).

which converts Mellin convolutions (5.37) into products

(f ⊗ g)(N) = f(N) · g(N) . (5.45)

In moment space (5.38) turns into a set of coupled di�erential equations for the moments.
One can view the �avor indices as matrix indices so that the solution boils down to the
solution of a matrix equation. The the inhomogeneous equation (5.38) takes the form

d

d lnµ
Fi→γ(N,µ) = Pi→γ(N) +

∑

j=q,q̄,g

Pi→j(N)Fj→γ(N,µ) . (5.46)

Introducing the �avor combinations in (5.39), we get a di�erential equation for ∆ and a
matrix di�erential equation for Σ and G, see (5.41). After diagonalizing this two-by-two
matrix, one can solve the equations analytically and obtain the exact µ-dependence of the
moments. The evaluation then reduces to computing the inverse Mellin transformation
numerically. The moment-space solution is detailed in Appendix 5.B. The discussion in
this appendix shows that for full NLL accuracy, one will need to include the two-loop
correction to the parton-to-parton splitting kernels in (5.42) since Fi→γ formally counts as
O(1/αs). If the jet scale is not much lower than the hard scale, these corrections will be
small and we omit them for simplicity.

Both methods to solve the evolution equations are commonly used. The solution in
moment space is, for example, the basis of the PEGASUS code [109], while the APFEL
code solves the RGs in z-space [110, 111]. As a cross check, we have implemented both
approaches. In Figure 5.8, we compare results for some benchmark values of the scales and
�nd that they are compatible with each other. The moment space method becomes delicate
for z → 1 because the Mellin inversion integral su�ers from slow numerical convergence.
To improve the convergence, we use the same integration contour as the PEGASUS code.
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The momentum space method, on the other hand, requires a careful choice of the z grid
and interpolation and larger numerical resources to calculate the µ-dependence since it
needs to proceed in small steps, but yields similarly precise results for all z-values. In our
event-based resummation framework, we prefer to work with the moment-space approach,
since a single numerical integral immediately yields the result for any desired µ value.
Of course, one could interpolate the results for the fragmentation functions as is done
for PDFs, but one would need di�erent grids for di�erent initial conditions, i.e. di�erent
isolation parameter choices.

To compute the cross section resummed at NLL, we �rst evaluate the NLO photon-
production cross section with MadGraph5_aMC@NLO [108]. Then we evaluate

dσNLO+NLL

dEγ
=
dσNLO

γ+X

dEγ
+
∑

i=q,q̄,g

∫
dz
dσi+X
dEi

∆Fi→γ , (5.47)

where
∆Fi→γ = Fi→γ(z, Eγ , E0, R, µj)−Fi→γ(z, Eγ , E0, R, µh) . (5.48)

Here µh ∼ Eγ is the scale at which the �xed-order computation was performed. The second
term in ∆Fi→γ in (5.47) subtracts the �xed-order result of the fragmentation contribution
and adds the RG-improved result obtained from solving the evolution equation (5.38) to
evolve from the hard scale µh at which σi+X is computed to the collinear scale µj ∼ EγR.
The RG evolution resums the logarithms of R and the subtraction is necessary to avoid a
double counting of the fragmentation contribution which is contained in the NLO result.

To compute the fragmentation contribution in (5.47), we useMadGraph5_aMC@NLO
as an event generator to produce the leading-order cross section dσi+X/dEi for di�erent
QCD partons i. We then perform the integral over z in (5.3) by randomly choosing a value
of z for each event and evaluating the fragmentation function for this value. Since the
scales depend on the photon energy Eγ = zEi, we have a di�erent µ-values for each event
and the moment-space technique to solve DGLAP is very e�cient since we control the µ
dependence analytically and only need a numerical integration to obtain the fragmenta-
tion function at the desired z value. To have a fast way of computing the fragmentation
function we have written a small C++ code.

The e�ect of the resummation of the logarithms of the radius R is shown in Figure 5.9.
To show the dependence on R, we again compute the di�erence to a reference cross section
at R = 0.4. Before discussing the resummed result, let us compare the full NLO prediction
(solid black line) of MadGraph5_aMC@NLO to the result obtained using the fragmen-
tation formalism without resummation (dashed line). They must agree up to small power
corrections and we observe that the di�erence is indeed quite small. Since we subtract the
reference cross section, the di�erence is zero by construction at the reference point R = 0.4.
The small deviation at small R is due to the di�erence of the reference cross sections as
in Figures 5.4 and 5.7. The red curve shows the di�erence of the resummed result to the
reference cross section without resummation. As expected, resummation lowers the cross
section since it dampens the logarithmic growth of the NLO result. We also show the
di�erence between the inclusive photon cross section and the reference cross section ob-
tained from (5.32) as an orange, dash-dotted line in the �gure. To be physical, the isolated
cross section has to be smaller than the inclusive cross section. The fact that the isolated
NLO cross section overshoots the inclusive result for R < 0.2 shows that the �xed-order
expansion breaks down for small R, as was observed earlier in [11]. Resummation cures
this problem. Of course, this unitarity bound has to be taken with a grain of salt, since
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Figure 5.9: E�ect of ln(R) resummation, plotted as the di�erence to the �xed-order cross
section at Rref = 0.4. Shown are the resummed result (red) and its �xed-order expansion
(dashed) obtained by setting µj = µh. We also show the full �xed-order result (black)
evaluated with µr = µf = µh, which also includes terms which are power suppressed in R.
Above the orange dot-dashed line, the cross section with isolation becomes larger than the
inclusive cross section, which is unphysical.

the inclusive cross section depends on the non-perturbative fragmentation functions, which
are poorly known.

5.5 Factorization for small isolation energy E0

If the isolation energy E0 is much smaller than the photon energy Eγ , a scale hierarchy
arises in the fragmentation function Fi→γ . In the limit of small εγ = E0/Eγ , energetic
partons can no longer enter the isolation cone, however, energetic partons outside the cone
can radiate back into the cone. This structure is at the heart of a second factorization,
which is depicted in Figure 5.1,

Fi→γ(z,REγ , RE0, µ) =
∞∑

l=1

〈Ji→γ+l({n}, REγ , z, µ)⊗ U l ({n}, RE0, µ)〉 , (5.49)

and is valid in the limit of small εγ . The fragmentation function factorizes into jet functions
Ji→γ+l describing the energetic partons accompanying the photon and functions U l de-
scribing the low-energy radiation into the cone. This radiation is sensitive to the directions
{n} = {n1, . . . , nl} and color charges of the l energetic partons. The symbol ⊗ denotes
the integral over the directions of the hard partons and the photon. The same symbol was
used in Section 5.4 to denote the Mellin convolution; the context makes it clear what the
symbol indicates. The notation 〈. . . 〉 indicates the color sum, which can be taken after
computing the emissions. In addition to directions of the l energetic partons, the functions
also depend on the vectors n and n̄ introduced in de�ning Fi→γ and on the direction of the
photon nγ . More precisely, the functions will depend on scalar products of the di�erent
vectors, as we will detail below.
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The fragmentation of parton i into a photon of momentum k is encapsulated by the
jet functions

Ji→γ+l({n}, REγ , z, µ) =
∑

spins

l∏

j=1

∫
dEj E

d−3
j

(2π)d−2

∫
dEk E

d−3
k

(2π)d−2
Θcone

({
p
})

|Ml(pi; {k, p})〉〈Ml(pi; {k, p})|2 (2π)d−1 δ(n̄ · pi − n̄ · k − n̄ · pXc) δ(d−2)(k⊥ + p⊥Xc) ,

(5.50)

where the constraint Θcone

({
p
})

enforces that the energetic partons must lie outside the
isolation cone. The amplitudes in this formula are the splitting functions for the incoming
parton with momentum pi along the direction n to fragment into the photon and additional
l energetic partons {p} = {p1, . . . , pl},

|Ml(pi; {p})〉 = 〈k, p|Φαa
c (0) |0〉 , (5.51)

where pi = k + pXc = k +
∑l

j=1 pj and Φαa
c is a collinear �eld with the quantum numbers

of the incoming parton, i.e. Φαa
c = χαac for an incoming quark and Φαa

c = A⊥,αac for an
incoming gluon, with spin and color indices α and a. The de�nition of the jet function
includes a sum over spins of the outgoing partons, which for the quark-case produces the
structure

Jq→γ+l({n}, REγ , z, µ) =

(
n/

2

)

αβ

δabJq→γ+l({n}, REγ , z, µ) , (5.52)

with a scalar jet function Ji→γ+l, and where α and β are the Dirac indices of the collinear
�elds in the amplitude and the conjugate amplitude. For an incoming gluon, we instead
get

n̄ · pi Jg→γ+l({n}, REγ , z, µ) = −g⊥αβ g2
sδ
abJg→γ+l({n}, REγ , z, µ) . (5.53)

The extra factor of n̄ · pi on the left hand side arises because the gluon �eld has mass
dimension 1, while the quark �eld has dimension 3

2 . While we integrate over the full phase
space of the photon with momentum k, the directions of the energetic partons are �xed.
Note that the collinear �elds in the jet functions scale as (5.6). The integrals in (5.50) are
integrals over the large light-cone components Ej ≡ n̄ · pj/2.

The energetic partons in the jet functions source soft radiation which can enter the
isolation cone. The momenta of this radiation scale as

(n · pt, n̄ · pt, p⊥t ) ∼ E0(R2, 1, R) . (5.54)

It has small energy E ∼ εγEγ and is collinear to the photon. Since it is both collinear
and soft it was called coft in [98] and denoted with a subscript t. The coft radiation
can be obtained by taking matrix elements of Wilson line operators along the directions
n1, . . . , nl of the outgoing collinear partons and an additional one along the direction n̄,
which captures the radiation of all other partons not collinear to the photon. A detailed
derivation of the Wilson line structure can be found in [99]. The operator de�nition for
the coft functions reads

U l({n}, E0R)

=

∫

Xt

∑
〈0|U †0 (n̄)U †1 (n1) . . .U †l (nl) |Xt〉〈Xt|U0(n̄) . . .Ul(nl) |0〉 θ(2E0 − n̄ · pcone

Xt ) . (5.55)
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In the limit under consideration, the energy measurement translates into a measurement of
the large component of the radiation. Note that the coft radiation can be inside or outside
the cone, but only the energy of the partons inside the cone is bounded by E0.

In the following, we will resum the leading logarithms associated with the scale ratios
shown on the right-hand side of Figure 5.2. The resummation of logarithms of the cone
radius R, the ratio of the collinear scale REγ to hard scale Eγ is carried out as before
by numerically solving the DGLAP evolution equation. However, for small εγ = E0/Eγ ,
a second evolution step is required to evolve from the collinear scale µj ∼ REγ to the
low-energy scale µ0 ∼ RE0 to resum the logarithms of εγ . These are non-global logarithms
and we resum them using a parton-shower algorithm [13, 14] analogous the one originally
proposed by Dasgupta and Salam [102].

5.6 Computation of the jet and coft function

As a starting point of the second evolution, we need to compute the jet functions at a
scale µ = µj ∼ REγ . There are no large logarithms for this scale choice and all higher-
multiplicity jet functions are suppressed by powers of αs. We thus only need the case l = 1,
corresponding to the fragmentation process q → γ + q.

The jet functions depends on the light-cone reference vector nµ along the direction of
the parton that fragments into the jet, as well as a conjugate reference vector n̄µ with
n · n̄ = 2. In addition, the jet functions will depend on the light-cone reference vectors of
the collinear partons produced in the fragmentation. For the lowest-order fragmentation
process q → γ + q we need a reference vector nq for the �nal-state quark and a vector nγ
for the photon. The scalar jet functions Jq→l+γ de�ned in (5.52) will depend on scalar
products of these reference vectors and to compute them, we introduce angular variables
that are suited to the limit under consideration. A set of variables which scales as O(1) is
[99]

Θi =
1

δ

√
n · ni
n̄ · ni

, (5.56)

Φij =
2

δ2

ni · nj
n̄ · ni n̄ · nj

. (5.57)

The �rst set of variables measures the angle with respect to the axis n, the second one the
angle between i and j. In four dimensions, we have

Θi =
1

δ
tan

(
θi
2

)
, (5.58)

Φij = Θ2
i + Θ2

i − 2ΘiΘj cos(∆φij) . (5.59)

For the leading order fragmentation process q → γ+q these variables are not independent.
Momentum conservation enforces ∆φqγ = π and we therefore have Φqγ = (Θq + Θγ)2.
Transverse momentum conservation also relates the ratio of the two angles to the momen-
tum fraction z of the photon

Θγ

Θq
=

z

1− z +O(δ2). (5.60)

This implies that there is only single independent angular variable and for convenience we
choose it as

Θ̃ =
1√
Φqγ

= δ cot
θqγ
2

+O(δ2) . (5.61)
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Up to power corrections, we have Θ̃ ∈ [0, 1]. The limit Θ̃ = 1 corresponds to the quark
touching the cone, while Θ̃ = 0 corresponds to the con�guration where the photon and the
quark are back to back. To rewrite the angular convolution integral in this variable, we
insert

1 =

∫ 1

0
dΘ̃

2

Θ̃3
δ

(
Θ̃−2 − 2

δ2

nq · nγ
n̄ · nq n̄ · nγ

)
, (5.62)

into the original angular convolution, perform the angular integrals and write the result in
the form

Jq→γ+q({nq, nγ}, REγ , z, µ)⊗ Uq ({nq, nγ}, RE0, µ)

=

∫ 1

0
dΘ̃Jq→γ+q

(
Θ̃, REγ , z, µ

)
Uq
(

Θ̃, RE0, µ
)
. (5.63)

To compute the jet function for the process q → γ(k)+q(p), we split the momenta into
their light-cone components and write

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ (5.64)

and analogously for the photon momentum k. We note that

2p · k
n̄ · p n̄ · k =

2nq · nγ
n̄ · nq n̄ · nγ

=
δ2

Θ̃2
. (5.65)

According to the de�nition (5.50), the jet function only involves the energy integrals instead
of full phase-space integrations, but in (5.63) we carry out the angular integrals after
inserting the δ-function (5.62). Doing so, we recover full phase-space integrals for k and
p together with the δ-function constraint (5.62) which keeps the angle between the quark
and the photon �xed. This gives

Jq→γ+q

(
Θ̃, REγ , z, µ

)
δab
(
n/

2

)

αβ

=

∫
[dp][dk]〈0|χbβ(0)|γ+q〉〈γ+q|χaα(0)|0〉

(2π)d−1δ(d−2)(~p⊥ + ~k⊥)δ(n̄(p+ k)− Q̃)δ
(
z − n̄k

Q̃

) 2

Θ̃3
δ

(
2p · k

δ2n̄ · p n̄ · k −
1

Θ̃2

)

(5.66)

where Q̃ = 2Eγ/z is the large light-cone component of the quark before fragmentation.
The matrix element is the same we encountered in the computation of the fragmentation
function and was given in (5.13). The only di�erence to the earlier computation of the
fragmentation function is the angular constraint. For the fragmentation function, the quark
could be either inside or outside the cone according to (5.16) and we integrated over its
direction. The particles inside the jet function, on the other hand, are energetic and cannot
be inside the isolation cone. Furthermore we need the result di�erential in the direction Θ̃
of the quark, because the soft radiation depends on it. After inserting (5.13) into (5.66),
we can immediately carry out the integrations which leads to the result

Jq→γ+q

(
Θ̃, REγ , z, µ

)
=

µ2eγE

Γ(1− ε)
Q2
iαEM

π

2− 2z + (1− ε)z2

z

(
δ2Q2(z−1)2z2

Θ̃2

)−ε

Θ̃

=
Q2
iαEM

2π

[
P (z)

(
δ(Θ̃)

ε
− δ(Θ̃) ln

(
δ2Q2

µ2
(z − 1)2z2

)
+ 2

[
1

Θ̃

]

+

)
− zδ(Θ̃)

]
.

(5.67)
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The splitting kernel P (z) was given in (5.21). The renormalized jet function is obtained
by dropping the divergent term in the second line.

With the jet function at hand, we can now obtain Fi→γ at leading order from (5.49)
by convoluting with the trivial lowest-order coft function Uq = 1:

∫ 1

0
dΘ̃Jq→γ+q

(
Θ̃, REγ , z, µ

)
=
Q2
iαEM

2π

[
P (z)

(
1

ε
− ln

(
δ2Q2

µ2
(z − 1)2z2

))
− z
]
.

(5.68)

This result indeed agrees with Fout
q→γ(z,REγ) given in (5.20). In the limit of small εγ the

inside part is power suppressed, since soft quarks are power suppressed compared to soft
gluons.

To resum the leading non-global logarithms, it is su�cient to use the trivial LO coft
function since the function evaluated at µ = µ0 is free of large logarithms. It is nevertheless

useful to calculate the NLO function U (1)
q , relevant for the process q → γ + q so that we

have an analytic result for the one-loop logarithm and and an idea of the size of the non-
logarithmic O(αs) corrections. The perturbative expansion of the coft functions takes the
form

U l({n}, RE0, µ) = 1 +
αs
4π
U (1)
l ({n}, RE0, µ) +O

(
α2
s

)
(5.69)

and the NLO correction to the coft function for q → γ + q is obtained by computing the
emission of a coft gluon into the isolation cone

αs
4π
U (1)
q

(
Θ̃, RE0, µ

)
= 2g2

sCF1

∫
[dk]

n̄ · nq
n̄ · k nq · k

θ

(
δ2 − 2nγ · k

n̄ · nγn̄ · k

)
θ(Q0 − n̄ · k) .

(5.70)
The �rst θ-function forces the emission to lie inside the cone, the second one restricts the
energy, or more precisely the large component of the coft momentum. The expression
(5.70) is relevant for �xed-cone isolation. For smooth-cone isolation in the limit of small δ
one replaces

θ(Q0 − n̄ · k)→ θ

(
Q0

(
2nγ · k

δ2n̄ · nγn̄ · k

)n
− n̄ · k

)
(5.71)

and identi�es Q0 = 2εγEγ . Note that the one recovers the �xed-cone isolation for n = 0.
If the coft gluon is outside the cone its energy is unrestricted leading to a scaleless integral.
The squared amplitude is from the emissions from the Wilson line along the direction nq of
the outgoing quark and the Wilson line along the n̄ direction which represents the emission
from the remaining hard partons in the event. Performing the integrations for smooth-
cone isolation, expressing the bare coupling gs through the MS coupling, and de�ning

U (1)
q = U (1)

q 1 , we obtain

U (1)
q =

2CF
ε

ln
(

1− Θ̃2
)
−2CF

[
ln
(

1− Θ̃2
)

2 ln

(
Q0δ

µ

)
+ ln2

(
1− Θ̃2

)
+ (1 + 2n)Li2

(
Θ̃2
)]

.

(5.72)
The renormalized one-loop function is obtained by dropping the divergent part of this
result. For µ ∼ Qδ, the result contains a large logarithm ln(Q0/Q) = ln(εγ). The rest of
the terms enter at NLL.

Given the simple form of the coft function (5.72), we can analytically evaluate the

convolution with the leading jet function in (5.67). Note that U (1)
q vanishes for Θ̃ = 0. For

this reason, only the plus-distribution part in (5.67) contributes. Evaluating the angular
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integral, we obtain

〈
Jq→γ+q ⊗ U (1)

q

〉
=
Q2
qαEM

π
CFP (z)

[
−π

2

6ε
+
π2

3
ln
Q0δ

µ
− (2n+ 3) ζ3

]
. (5.73)

This convolution of the jet and coft function corresponds exactly to the situation depicted
in Figure 5.1.

The result (5.73) has a very important application. Consider two cross sections com-
puted at small εγ but with the same cone radius R. The di�erence (5.28) is proportional to
the di�erence of fragmentation functions. Since the fragmentation contribution as a whole
is suppressed by O(αs), we only need the fragmentation function di�erence to O(αs) to
evaluate ∆σ. In the limit of small εγ the fragmentation functions factorize into jet and
coft functions and only the coft functions are sensitive to the isolation requirements. Since
the jet functions are independent of the isolation criterion, the only contribution to the
di�erence of cross sections

∆σ = σfixedcone(R, εγ)− σsmoothcone(R, ε
ref
γ , n) , (5.74)

arises from (5.73) and takes the extremely simple form

∆σ =
∑

i=q,q̄

∫ ∞

Emin
T

dEi

∫ 1

zmin

dz
dσi+X
dEi

Q2
qαEM

π

CFαs
4π

P (z)

[
π2

3
ln

εγ
εref
γ

+ 2n ζ3

]
. (5.75)

This formula holds at NNLO up to corrections suppressed by powers of R or εγ . As we have
shown in the earlier sections, even at R = 0.4, power suppressed e�ects are numerically
small and experimental measurements use small values of εγ . For reference, Figure 5.7
shows the size of the power suppressed e�ects at NLO. For εγ = 0.02, the R dependence
at NLO is indeed very close to the one for smooth-cone isolation. We also provided NLO
cross section values in Table 5.2 to indicate the size of the remaining di�erences. Of
course, to make optimal use of the formula (5.75), one would only use it to convert the
NNLO corrections and separately compute the NLO �xed-cone results so that the power
suppressed corrections to the formula are also suppressed by α2

s. Numerically, the value of
∆σ obtained from (5.75) is quite small. Computing it for our standard setup detailed in
Table 5.1 for n = 1 and εγ = εref

γ , we obtain

∆σ = −1.3 pb . (5.76)

5.7 Resummation of ln(εγ) terms

To resum the leading logarithms of εγ we solve the RG equations and run the jet function
from the jet scale µj ∼ QR down to the scale µ0 ∼ Q0R = QεγR, where we combine it
with the coft functions. To perform the resummation we will use the parton-shower code
NGL_resum [14]. This code was developed to numerically perform the RG evolution
and the angular integrals over the directions of the additional partons that are emitted
during the evolution. It is not possible to apply the code directly to our problem, since we
work in the limit R → 0, where the size of the isolation region goes to zero and the MC
integration over the angles would become highly ine�cient, as additional emissions would
be enhanced by logarithms of δ. To use the code, we use the fact that the coft function
is not depending on δ and Q0 individually, but only on the product. This is explicit in
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inout

nq

n̄

Θ̃

Figure 5.10: Kinematics and example diagrams arising in the the parton shower compu-
tation of ULL

q (Θ̃, t). We use the rescaling invariance (5.77) and Lorentz invariance of the
shower to evaluate the function in a frame where n̄ and nγ are back-to-back and the iso-
lation cone covers the entire right hemisphere. The left diagram shows an example of a
two-loop global contribution, the right one a non-global one.

the one-loop result (5.72), but can be proven formally by noting that the coft function is
invariant under the rescaling

δ → δ

λ
, Q0 → λQ0 , n̄→ λ n̄ , nγ →

nγ
λ
, ni →

ni
λ
. (5.77)

To see this, note that the Wilson lines in (5.55) are invariant under rescalings of the light-
cone vectors and the rescaling also leaves the constraints on the energy and the angular
variables (5.56) and (5.57) invariant. Setting λ = δ, the invariance implies that we can run
the shower for δ = 1, where the opening angle is π/2 after rescaling the energy to Q0δ.
The shower computes the leading-logarithmic (LL) evolution

ULL
q

(
Θ̃, RE0, µ0

)
=
∞∑

m=2

〈
U2m({n̄, nq, n}, µj , µ0) ⊗̂1

〉
, (5.78)

where the evolution matrix

U({n̄, nq, n}, µj , µ0) = P exp

[∫ µj

µ0

dµ

µ
ΓH({n}, µ)

]
, (5.79)

produces additional partons along the directions {n} and the symbol ⊗̂ indicates the
integral over their directions. For LL resummation the exponent of the evolution matrix
reduces to

∫ µj

µ0

dµ

µ
ΓH =

∫ αs(µj)

αs(µ0)

dα

β(α)

α

4π
Γ(1) =

1

2β0
ln
αs(µ0)

αs(µj)
Γ(1) ≡ tΓ(1) . (5.80)

The �evolution time� t measures the separation of the scales µj and µ0. The relevant one-
loop anomalous dimension Γ(1) can be found in [99] (by now also the two-loop result is
known [112]) and the solution of the evolution equation is detailed in [13, 14]. The shower
starts with a quark along the direction n̄ which fragments into a photon and a quark along
the nq direction with angular separation Θ̃q. We use that the shower is Lorentz invariant
to choose a frame where

nµγ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , nµq = (1, sin θγq, 0, cos θγq) , (5.81)

so that Θ̃ = cot(θγq/2) for our choice δ = 1. The shower then generates successive emissions
outside the isolation cone (or hemisphere for δ = 1) , until one emission is inside the cone
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Figure 5.11: The left plot shows the coft function ULL
q (Θ̃, t). The right plot shows the

convolution of the jet and coft function, more precisely the convolution with the plus
distribution shown in (5.83). The orange dots correspond to the results of the parton
shower; the dotted line is the fourth-order polynomial in t �tted to these results.

after which it terminates. The resulting function ULL
q (Θ̃, t) is plotted on the left hand side

of Figure 5.11. One thing that is obvious in the one-loop result (5.72) and in the plot is that
the function is trivial for Θ̃ = 0, where ULL

q (Θ̃, t) = 1 independently of t. For Θ̃ = 0, the
outgoing quark lies along the direction n̄ of the fragmenting quark. In this con�guration,
the radiation of the two exactly cancels. One can view the fragmenting quark in the initial
state as an anti-quark in the �nal state to make the cancellation manifest. The most
radiation arises for Θ̃ = 1, which corresponds to a con�guration where the quark is at the
edge of the isolation cone.

One can interpolate the function ULL
q (Θ̃, t) and then evaluate the angular convolution

with the jet function (5.63), but it is more e�cient to also Monte-Carlo integrate over Θ̃
and directly compute the convolution (5.63) inside the parton shower code. To do so, we
we �rst use ULL

q (0, t) = 1 to compute the δ-function terms and obtain

∫ 1

0
dΘ̃

〈
Jq→γ+q

(
Θ̃, REγ , z, µj

)
ULL
q (Θ̃, t)

〉

=
Q2
iαEM

2π

[
− P (z) ln

(
δ2Q2

µ2
j

(z − 1)2z2

)
− z + 2P (z)

∫ 1

0
dΘ̃

[
1

Θ̃

]

+

ULL
q (Θ̃, t)

]
. (5.82)

The variable t ≡ t(µj , µ0) encodes the dependence on the low scale. Since ULL
q (0, t) = 1,

we can drop the plus-prescription and evaluate

∫ 1

0

dΘ̃

Θ̃
ULL
q (Θ̃, t) ≈ −π

2

2
t− 31.5t2 + 105. t3 − 535. t4 . (5.83)

where the result on the right-hand side was obtained by �tting a fourth order polynomial
to the numerical parton shower results, obtained by sampling the Θ̃ integral with 25× 105

values and running 500 showers at each value. The results of the parton shower are
compared to the �t results in the right panel of Figure 5.11 and agree quite well up to
values of t relevant for phenomenological applications. Up to running e�ects, the di�erent
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powers of t correspond to the successive terms in the expansion in αs since

t =
αs
4π

ln
µj
µ0

+O(α2
s). (5.84)

The leading term in the expansion in t can be obtained analytically by integrating the
logarithmic term in our result (5.72). In addition to performing the resummation, our
parton shower also computes this term and the numerical value agrees with the analytic
result to an accuracy better than a permille. The term linear in t is captured by NNLO
�xed-order computations of photon production. NNLO is necessary since σi+X , the cross
section to produce the fragmenting parton, is αs suppressed. Our parton shower also
computes the coe�cient of the t2 term, with an accuracy of order of a few per cent.
The remaining two terms were determined by �tting to the shower results. Taking the
exponential of the one-loop contribution yields the �global� logarithms. Adopting this
terminology, the two-loop term is split into

−31.5 = −43.7 (�non-global�) + 12.2 (�global�) (5.85)

where we approximated π4/8 ≈ 12.2. The non-global part is thus signi�cantly larger
than the global part and the same remains true at higher orders. Diagrams for the two
contributions are shown in Figure 5.10. The global contribution arises from emissions
from the quark before or after the fragmentation as indicated on the left diagram in Figure
5.10. The non-global terms arise from sequential emissions o� gluons emitted outside the
isolation cone, see the right diagram. In the shower, we include a collinear cuto� ηcut = 6
(see [13, 14]) as well as a technical cuto� Θ̃ > κcut ≈ 10−3 in the angular integral. We have
checked that for t < 0.2 our results are insensitive to these cuto�s. The fact that we are
able to �t the shower results with a polynomial in t implies that the �xed-order expansion
of the logarithmic terms is well-behaved in the region we perform our computation.

Let us now look at the e�ect of the resummation on the cross section. For illustration,
we will again consider proton proton collisions at

√
s = 13 TeV and compute the cross

section for isolated photons with EγT > Emin
T = 125 GeV and |ηγ | < 2.37 following ATLAS

[113]. The result shown in Figure 5.12 includes both the resummation of ln(R) and ln(εγ)
terms. The resummation is achieved by �rst evolving from the hard scale µh ∼ Eγ to
the jet scale µj ∼ REγ by solving the DGLAP equation as discussed in Section (5.4) and
then evolving to the coft scale µ0 ∼ εγ REγ using the parton shower framework. We can
distinguish the e�ect of the two resummations by choosing di�erent scales. Setting µj = µh
switches o� the ln(R) resummation, while the choice µj = µ0 eliminates the higher-order
ln(εγ) terms. The e�ect of these choices is shown in Figure 5.12. Since we work at �xed
R = 0.2, the ln(R) resummation amounts to an overall reduction of the cross section. The
ln(εγ) become important for εγ . 0.1. The plot shows �xed-order results for smooth-cone
isolation with n = 1, but our leading-logarithmic (LL) resummation of NGLs is insensitive
to the isolation prescription since it only depends on the isolation via the associated scale
µ0. The isolation requirement changes the one-loop term (5.72), but this is a NLL e�ect.

ATLAS imposes E0 = εETγ + ETth with ETth = 4.8 GeV and ε = 0.0042, which which

corresponds to a value εγ = E0/E
T
γ ≈ 0.04 for ETγ = 125 GeV. The threshold term ETth is

added by ATLAS to avoid that E0 reaches non-perturbative values, but our analysis makes
it clear that the lowest scale in the problem is RE0 which is close to 1 GeV for R = 0.2
and ETγ = 125 GeV. This corresponds to a value t ≈ 0.066. (The value of t very slowly

increases for larger ETγ and reaches t ≈ 0.07 for ETγ = 1 TeV.) Figure 5.12 shows that for
R = 0.2 the resummation lowers the cross section by about 39 pb, about half of which is
due to ln(R) resummation, while the other half is due to ln(εγ) terms. For R = 0.4, the
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Figure 5.12: E�ect of the resummation of ln(R) and ln(εγ) terms for R = 0.2 (upper plot)
and R = 0.4 (lower plot). The solid black curve shows the result without resummation,
the dashed curve includes the resummation of ln(R) terms. The red curve resums both
types of logarithms. Only the fragmentation contribution is shown, to obtain the full cross
section the direct photon production contribution with σdir ≈ 290 pb has to be added.
(The direct cross section is somewhat lower than the one given in Section 5.3 because we
use dynamic scales rather than �xed ones, see Table 5.1.)

ln(R) resummation e�ects are about half as large, while the size ln(εγ) remains about the
same.

5.8 Summary and conclusion

In this paper, we have studied in detail the structure of QCD e�ects associated with
isolation requirements imposed in experimental measurements of photon production at
high-energy colliders. We have have shown that for small cone radius R, the isolation
e�ects can be described by cone fragmentation functions Fi→γ describing the transition of
an energetic quark or gluon into a photon plus accompanying QCD radiation. For small
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isolation energy E0 = εγEγ , these fragmentation function factorize further into jet functions
Ji→γ+l describing the l energetic partons outside the isolation cone boundary, and Wilson
line matrix elements U l encoding the soft radiation emitted from these partons into the
cone. Our factorization theorem separates the di�erent scales present in the cross section:
the hard scale µh ∼ Eγ , the jet scale µj ∼ REγ and the isolation energy scale µ0 ∼ RE0.
Using RG methods, we have resummed the leading logarithms of R and the non-global
logarithms of εγ . The renormalization group also lets us evaluate each contribution at its
natural scale.

To avoid low scales in the relevant perturbative computations current experimental
measurements impose E0 & 5 GeV, but our analysis demonstrates that for low jet radii
one still reaches the dangerously low scale µ0 ∼ RE0. Values around R = 0.2 are commonly
used in diphoton measurements, for example in [73, 114]. The presence of the low scale µ0

is problematic for precision computations of photon production and higher-order problems
might not immediately be visible since the isolation is a NLO e�ect which only a�ects a
certain region of phase space. Even if the perturbative expansion fails for the isolation
e�ects this might not yet be visible at NNLO, since there are other higher-order e�ects
which are of the same size. Indeed, the NNLO cross sections are higher than the NLO
results while the resummation e�ects we computed reduce the cross section.

Another simple but important result of our analysis is that the e�ect of non-perturbative
fragmentation is suppressed by εγ . For small isolation energy this e�ect can thus be ne-
glected, which is good news since the non-perturbative fragmentation functions are quite
poorly known.

Our formalism cannot only be used to perform resummation, but also to convert results
from one isolation prescription to another. Indeed, in our paper we have often discussed the
di�erence between cross sections since it is directly proportional to the cone fragmentation
functions. An interesting application of our fragmentation framework is to convert NNLO
results computed with smooth-cone isolation to results in the �xed-cone scheme. We have
presented a simple formula, which achieves this conversion in the limit of small εγ , which
should be su�cient for most applications. Interestingly, the cross section di�erence is
proportional to n ζ3, where n is the parameter of smooth-cone isolation. One could extend
this result to arbitrary εγ by computing Fi→γ at NLO.

Our computations were carried out in RG-improved perturbation theory at NLO. Since
the fragmentation contribution only arises at O(αs), this corresponds to NLL resumma-
tion of the ln(R) terms and LL resummation of the ln(εγ) contributions. To match the
accuracy of �xed-order NNLO computations, we should extend the resummation to sub-
leading logarithms of R and εγ . For the ln(R) resummation, the α2

s corrections to Pq→γ(z)
and Pg→γ(z) are as of yet unknown and would need to be computed. For the resumma-
tion of ln(εγ) the most important ingredient, namely the two-loop evolution, is available
[115, 116, 112]. Only the one-loop boundary conditions, in particular the jet function with
an additional parton, will need to be determined and implemented. We look forward to
doing so in the future.
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5.A Splitting functions

The expansion coe�cients of the splitting functions were de�ned in (5.42) and (5.43). The
well-known leading-order QCD splitting functions are

P (1)
q→q(z) = P

(1)
q̄→q̄(z) = CF

((
1 + z2

) [ 1

1− z

]

+

+
3

2
δ(1− z)

)
,

P (1)
g→g(z) = CA

(
z

[
1

1− z

]

+

+
1− z
z

+ z(1− z)
)

+
β0

2
δ(1− z) ,

P (1)
g→q(z) = P

(1)
g→q̄(z) = TF

(
z2 + (1− z)2

)
,

P (1)
q→g(z) = P

(1)
q̄→g(z) = CF P (z) = CF

1 + (1− z)2

z
, (5.86)

with β0 = 11
3 Nc− 4

3nfTF . The coe�cients of the parton-to-photon splitting kernels can be
found in [53] and are given by

P (0)
g→γ(z) = 0 ,

P (0)
q→γ(z) = P

(0)
q̄→γ(z) = Q2

q P (z) ,

P (1)
q→γ(z) = P

(1)
q̄→γ(z) =

CFQ
2
q

2

(
−1

2
+

9

2
z +

(z
2
− 8
)

ln z + 2z ln(1− z) +
(

1− z

2

)
ln2 z

+

[
ln2(1− z) + 4 ln z ln(1− z) + 8 Li2(1− z)− 4π2

3

]
P (z)

)

P (1)
g→γ(z) =

TF
∑nf

q=1Q
2
q

2

(
−2 + 6z − 82

9
z2 +

46

9z
+

(
5 + 7z +

8

3
z2 +

8

3z

)
ln z + (1 + z) ln2 z

)
.

(5.87)
The factor

∑nf
q=1Q

2
q is due to a quark loop and is 11/9 for nf = 5 quark �avors. We note

that the kernels P
(1)
q→γ(z) and P

(1)
g→γ(z) di�er from the ones relevant for the space-like case,

which are given in [30]. Note that compared to the expressions in [53, 30] we have an

additional factor 1
2 in P

(1)
q→γ and P

(1)
g→γ due di�erent conventions: these references expand

in αs
2π instead of αsπ and writes the evolution equations in the variable µ2 instead of µ.

5.B Solution of the RG equations of the fragmentation func-

tions

In order to solve (5.46), we perform a transformation of the fragmentation function such
that the di�erential equations are decoupled from each other, i.e. one performs a basis
change

F̂i→γ(N,µ) = Uij(N)Fj→γ(N,µ) (5.88)

and chooses the matrix Uij(N) in such a way that the splitting kernel becomes diagonal

Uij(N)Pj→k(N,µ)U−1
kl (N) = P̂i→i(N,µ)δil . (5.89)
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This diagonalization step is only necessary for Σ and G in (5.41) since ∆ is already decou-
pled from the other two quantities. The diagonalized evolution equation (5.46) takes the
form

d

d lnµ
F̂i→γ(N,µ) = P̂i→γ(N,µ) + P̂i→i(N,µ)F̂i→γ(N,µ) . (5.90)

The solution of this di�erential equation is

F̂i→γ(N,µ) = exp

[∫ µ

µ0

d lnµ′ P̂i→i(N,µ′)
]

{
F̂i→γ(N,µ0) +

∫ µ

µ0

d lnµ′′ exp

[
−
∫ µ′′

µ0

d lnµ′ P̂i→i(N,µ′)
]
P̂i→γ(N,µ′′)

}
.

(5.91)

Because P̂i→i(N,µ) only depends on µ via the strong coupling,

P̂i→i(N,µ) =
αs(µ)

π
P̂

(1)
i→i(N) +

(
αs(µ)

π

)2

P̂
(2)
i→i(N) + . . . , (5.92)

we can rewrite the exponential as

K(αs(µ0),αs(µ)) = exp

[∫ µ

µ0

d lnµ′P̂i→i(N,µ′)
]

= exp

[∫ αs(µ)

αs(µ0)

dα

β(α)
P̂i→i(N,µ′)

]

=

(
αs(µ0)

αs(µ)

) 2P̂
(1)
i→i(N)

β0

[
1 +

αs(µ)− αs(µ0)

4π

2

β0

(
β1

β0
P̂

(1)
i→i(N)− 4P̂

(2)
i→i(N)

)]

(5.93)

in which we have expanded

β(α) = −2αs

(
β0

αs
4π

+ β1

(αs
4π

)2
+ . . .

)
(5.94)

and dropped higher-order terms. The solution can thus be rewritten as

F̂i→γ(N,µ) = K(αs(µ0), αs(µ))

[
F̂i→γ(N,µ0) +

∫ αs(µ)

αs(µ0)

dα

β(α)
K(α, αs(µ0))P̂i→γ(α)

]
,

(5.95)

where we suppressed the argument N of the splitting function on the right-hand side of
the equation. Expanding also the inhomogeneous P̂i→γ(N,µ) as

P̂i→γ(N,µ) =
αEM

π

(
P̂

(0)
i→γ(N) +

αs
π
P̂

(1)
i→γ(N)

)
, (5.96)

the �nal form of the solution reads

F̂i→γ(N,µ) =
2αEM P̂

(0)
i→γ

αs(µ)(β0 − 2P̂
(1)
i→i)

(
1− αs(µ)

αs(µ0)
K(αs(µ0), αs(µ))

)

− αEM

π


 P̂

(1)
i→γ

P̂
(1)
i→i

− β1

4β0

P̂
(0)
i→γ

P̂
(1)
i→i

−
β1P̂

(0)
i→γ

2β0

(
β0 − 2P̂

(1)
i→i

)


 (1−K(αs(µ0), αs(µ)))

+K(αs(µ0), αs(µ))F̂i→γ(N,µ0) , (5.97)
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The �rst term in this solution corresponds to LL resummation and is proportional 1/αs,
the remaining two terms are the NLL corrections. In these two terms one can omit the
O(αs) corrections to K in (5.93). In our numerical evaluation, we do not include β1 terms

and the corrections from P̂
(2)
i→i(N) in the �rst line of (5.97) for simplicity, even though they

would formally be needed for NLL accuracy and are available [48]. We veri�ed that the β1

terms are numerically very small.
After solving for F̂i→γ(N,µ) we �rst undo the decoupling change of variables (5.88)

and go back to the original functions Fj→γ(z, µ). We then use the same Mellin inversion
contour as in [117] to transform the F̂i→γ(N,µ) back to z space:

Fj→γ(z, µ) =
1

π

∫ ∞

0
dr Im

[
eiφz−c−re

iφF̂j→γ
(
N = c+ reiφ, µ

)]
, (5.98)

where φ and c are parameters chosen as φ = 3π
4 and c = 1.8 in our numerical evolution

code.

5.C Computation of ∆σ

To study the dependence on the parameters (εγ , n,R) of the smooth-cone isolation (5.2)
we compute the di�erence to a reference cross section,

∆σ = σ (εγ , n,R)− σ(εrefγ , n
ref, Rref) .

In order for the di�erence to be be positive we require that the reference isolation
(
εrefγ , n

ref, Rref
)

is the more restrictive one and we impose

εγ ≥ εrefγ , n ≤ nref , R ≤ Rref . (5.99)

In this appendix, we provide details on the �xed-order determination of ∆σ and the com-
putation of the di�erence based on cone fragmentation functions using (5.28).

5.C.1 Event-based �xed-order computation

Rather than computing the di�erence of NLO photon production cross sections, it is much
more e�cient to directly extract the cross section di�erence from the process p p → γ j j
at LO by imposing suitable cuts on the partons. Working in this way, we can compute
the di�erence from event �les generated with MadGraph5_aMC@NLO [108] instead of
needing individual NLO runs for all parameter values.

In order to get a contribution to ∆σ we need that at least one of the partons in the
p p → γ j j event to be inside the larger cone with radius Rref. The second parton will
be outside the cone, since it is recoiling against the energetic photon. For an event to
contribute to ∆σ it should respect the constraint imposed by isolation (εγ , n,R) but fail
the one with the reference values

(
εrefγ , n

ref, Rref
)
. To formulate the resulting constraints

on the transverse momenta pTi of the two �nal-state QCD partons i ∈ {1, 2} in the event
explicitly, we distinguish three angular regions indicated in Figure C.2:

(I) ri > Rref: at most one parton, no constraint on pTi ,

(II) R < ri < Rref: εrefγ

(
1−cos ri

1−cosRref

)nref
≤ pTi

pTγ
,

(III) ri < R: εrefγ

(
1−cos ri

1−cosRref

)nref
≤ pTi

pTγ
≤ εγ

(
1−cos ri
1−cosR

)n
,
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I
II

III

R

Rref

Figure 5.13: Isolation cones of radius R and Rref and associated angular regions. The
di�erence ∆σ is obtained from partonic con�gurations which ful�ll the isolation criterion
for cone radius R, but fail it for Rref.

where ri is the angular distance of the parton to the photon. The implementation of these
non-standard cuts inMadGraph5_aMC@NLO is achieved by modifying the �le cuts.f.

5.C.2 Fragmentation contribution

The �xed-order results are then compared with (5.28) based on the factorization theorem
(5.3). According to (5.28) the leading contribution to the di�erence of cross sections is given
by the partonic cross section dσi+X/dEi convoluted with the di�erence of fragmentation
functions

∆Fi→γ = Fi→γ (z,R, εγ , n)−Fi→γ
(
z,Rref, εrefγ , n

ref
)
. (5.100)

We obtain the partonic cross section by using MadGraph5_aMC@NLO to generate
event �les for the process p p→ j j at leading order. These have two QCD partons in the
�nal state, each one of which can then fragment into a photon.

In the main text, we computed and plotted ∆σ for three di�erent cases and we now
list the relevant ∆Fi→γ . To study the n-dependence of ∆σ, we set R = Rref and εγ = εrefγ
which yields

∆Fi→γ =
αEMQ

2
i

2π
P (z) θ

(
z − 1

1 + εγ

)
ln

(
1− z
zεγ

)(
1

n
− 1

nref

)
. (5.101)

To study the R dependence, we set εγ = εrefγ and n = nref which leads to

∆Fi→γ =
αEMQ

2
i

π
P (z) ln

(
Rref

R

)
. (5.102)

The most complicated case is the εγ-dependence for which the relevant ∆Fi→γ for R = Rref

and n = nref was given in the main text in (5.34).

5.D Reference cross section values

In the main text we usedMadGraph5_aMC@NLO [108] andMCFM [106] for our com-
putations. The authors of [16] have compared their NNLOjet �xed-energy cone results
at NLO to the JetPhoX code [11] and have provided reference cross section numbers for
�xed-cone isolation in their paper. We have veri�ed that MCFM reproduces the refer-
ence cross section in [16] within numerical uncertainties. The authors of [16] were kind
enough to also provide us with reference cross section numbers for smooth-cone isolation

82



with R = 0.4, n = 1.0 and εγ = 0.0042 and we have veri�ed that all the above codes
produce compatible results within numerical uncertainties. These reference cross sections
were computed for αEM = 1/137 and NNPDF31_nnlo_as_0118_mc PDFs, after impos-
ing ETγ ≥ 125 GeV, |ηγ | ≤ 2.37 and setting µF = µR = pTγ . For the leading order cross
section and the NLO correction, they obtain

σLO = (192.524± 0.015) pb , ∆σNLO = (163.44± 0.11) pb . (5.103)

After requiring at least one jet with pTjet ≥ 100 GeV and |ηjet| ≤ 2.37 de�ned using the kT
algorithm with Rjet = 0.4, the NLO correction reduces to

∆σNLO = (121.441± 0.065) pb . (5.104)
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Chapter 6

Outlook

In this thesis, a factorization theorem for narrow isolation cones is presented, where the cone
fragmentation function Fi→γ is describing the e�ect of the isolation for both Frixione and
�xed-energy cones. We are able to separate the scales of the problem with our formalism.
With the help of renormalization group methods, we are able to resum the logarithm of R
and of εγ at NLL and LL respectively.

In the future, several extensions of this work would be of interest. First of all, our
formalism could easily be extended to hybrid cone isolation, resumming the logarithms of
the inner radius Rd and εγ would be instructive. To do so, the relevant fragmentation
function needs to be computed. The NLO cross-section in other isolation prescriptions
such as the hybrid cone at small Rd would be reduced by resummation and the prediction
would become more reliable.

Moreover, performing both resummations at LL for the �xed-energy cone with the
GdRG set and the BFG sets would allow us to get realistic and physical cross-sections
with small εγ . Resummation will be physical, resummation would cure the unphysical
behavior observed at NLO.

Computing the fragmentation function Fi→γ at order ααs would be an obvious next
step. This includes computing the αs correction of the quark cone fragmentation function
and computing the gluon cone fragmentation function. As a result, performing the lnR
resummations at subleading logarithmic accuracy would be possible. This should not be
too complicated, the lnR resummation at NNLL only requires the implementation of the
splitting function Pi→j at order α2

s. Concerning the NLL resummation of the log εγ terms,
the resummation is performed with the help of the two-loop evolution [112, 115, 116].
The implementation is underway. These two subleading resummations and the NLO cone
splitting functions would allow us to make interesting comparisons with the NNLO cross-
sections of [15, 16]. It would also be good to combine the resummation with NNLO �xed-
order result. This will result in NNLO predictions in RG-improved perturbation theory,
i.e NNLO predictions without large logarithms of isolation parameters. The formula of
(5.75) allows us to convert NNLO cross-sections from a Frixione cone to a �xed-energy
cone, putting it to test would be instructive and could be done using NNLOJET.

On the experimental side, it would be interesting to have a measurement of isolated
photons at the LHC with di�erent cones sizes and isolation energy. This would allow
us to test the predictions of Chapter 5 more extensively. Another important goal must
be a more accurate determination of the non-perturbative fragmentation functions, which
would reduce the uncertainties in the �xed-energy cone computations.
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Appendix A

Mathematical tools

In this Appendix, some mathematical tools needed in this thesis are discussed. In particu-
lar, we review the so-called plus distribution, the Mellin transform/moment, its inversion
and �nally the Mellin moment of the splitting functions. This appendix is aimed at physi-
cists, not mathematicians.

1 The plus distribution

Parts of the content of this section can be found in various books for example [26, 25, 27,
21]. Reference [118] was also used for this section.
The plus distribution arose in two contexts in this work. First it appeared in the compu-
tation of the Jet function in [71]. Second for the DGLAP equation, it can be found in the
splitting functions (as in (2.19) for QCD and (2.20) for QED). In both contexts the plus
distribution appears because of the divergences x−1−ε and (1 − x)−1−ε respectively. The
plus distribution is de�ned, for a test function f(x)

∫ 1

0
dx

(
1

x

)

+

f(x) =

∫ 1

0
dx
f(x)− f(0)

x
,

∫ 1

0
dx

(
1

1− x

)

+

f(x) =

∫ 1

0
dx
f(x)− f(1)

1− x .

(A.1)

First let us discuss the plus distribution found in the jet function. The plus distribution
of the jet function Jq→γ+q of (5.67) will act on the coft function Uq of (5.72) while doing
the integration on the variable Θ̃ as for example in (5.73). The plus distribution appeared
while expanding in ε of dimensional regularization and we have an integral of the form

∫ 1

0
dΘ̃

1

Θ̃1+ε
Uq
(

Θ̃
)
. (A.2)

Let us consider the integral (with ε < 0) where we use x instead of Θ̃

∫ 1

0
dx

1

x1+ε
f(x). (A.3)

We have the relation

1

x1+ε
= −1

ε
δ(x) +

(
1

x

)

+

− ε
(

log x

x

)

+

+O
(
ε2
)
. (A.4)
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The proof of which is straightforward

∫ 1

0
dx

1

x1+ε
f(x) =

∫ 1

0
dx

1

x1+ε
(f(x)− f(0) + f(0)) =

f(0)

∫ 1

0
dx

1

x1+ε
+

∫ 1

0
dx

1

x

(
1− ε log x+O

(
ε2
))

(f(x)− f(0)) =

− 1

ε

∫ 1

0
dxδ(x)f(x) +

∫ 1

0
dx

(
1− ε log x

x

)

+

f(x) +O
(
ε2
)
,

(A.5)

where we used
∫ 1

0 dx 1
x1+ε

= −1
ε .

The other context where the plus distribution appears in this work is the splitting
function while solving the evolution of the fragmentation function. We have an equivalent
relation to (A.6)

1

(1− x)1+ε
= −1

ε
δ(1− x) +

(
1

1− x

)

+

− ε
(

log 1− x
1− x

)

+

+O
(
ε2
)
. (A.6)

A subtlety that arises in this problem but also does in the context of the DGLAP equation
of the PDF is the boundary of the integral in the convolution. Integral of the following
form are found ∫ 1

z
dx

(
1 + x2

1− x

)

+

f(x), (A.7)

however the plus distribution is de�ned for integration from 0 to 1 and not from z to 1.
The solution is to add a Heaviside function

∫ 1

z
dx

(
1 + x2

1− x

)

+

f(x) =

∫ 1

0
dx

(
1 + x2

1− x

)

+

f(x)θ(x− z) =

∫ 1

0
dx

1 + x2

1− x (f(x)θ(x− z)− f(1)θ(1− z)) =

∫ 1

z
dx

1 + x2

1− x (f(x)− f(1))− f(1)

∫ z

0
dx

1 + x2

1− x =

∫ 1

z
dx

1 + x2

1− x (f(x)− f(1)) + f(1)

(
z2

2
+ z + 2 log(1− z)

)
,

(A.8)

and we get an extra term f(1)
(
z2

2 + z + 2 log(1− z)
)
. A similar trick can be used for the

convolution with the splitting function Pg→g(x). The term of interest is

∫ 1

z
dx

x

(1− x)+
f(x) =

∫ 1

z
dx

1

1− z [xf(x)− f(1)]− f(1) ln(1− z). (A.9)

Another interesting feature of the plus distribution can be seen when looking at the de�-

nitions of P
(1,0)
q→q (z). Two di�erent ones are used in the literature and they are equivalent

P (1,0)
q→q (x) = CF

(
1 + x2

(1− x)+

+
3

2
δ(1− x)

)
or P (1,0)

q→q (x) = CF

(
1 + x2

(1− x)

)

+

. (A.10)

More generally we have the relation
(
g(x)

1− x

)

+

=
g(x)

(1− x)+

− Cδ(1− x), (A.11)
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with C =
∫ 1

0 dx
(

1
1−x

)
+
g(x). If the function on the g(x) vanishes at 1, the + on the

right-hand side of the above equation may be omitted. The relation can be proven simply

∫ 1

0
dx

[(
g(x)

1− x

)

+

− g(x)

(1− x)+

]
f(x) =

∫ 1

0
dx

g(x)

1− x (f(x)− f(1))− 1

1− x (g(x)f(x)− g(1)f(1)) =

f(1)

∫ 1

0
dx

1

1− x (g(1)− g(x)) = −f(1)

∫ 1

0
dx

1

(1− x)+
g(x).

(A.12)

In the case of the quark to quark splitting function g(x) = 1+x2 and therefore the constant

is C = −3/2, which proves the equivalence of the two formulas for P
(1,0)
q→q in (A.10). The

plus function can be omitted if not evaluated at the value of the pole

(
f(x)

1− x

)

+

=
f(x)

1− x if x 6= 1. (A.13)

An alternative de�nition of the plus distribution can be found in [26]:

1

(1− z)+

= lim
α→0

[
1

1− z θ (1− z − α)− δ (1− z)
∫ 1−α

0
dy

1

1− y

]
. (A.14)
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2 Mellin transform and Mellin moments

In this thesis, Mellin moments are used in order to solve a DGLAP equation. Mellin
transform and moment have various other applications. In this appendix, we will �rst
de�ne the Mellin moment, show the inverse transformation with a simple example and
give the Mellin moment of the splitting functions of (2.19) and (2.20). The content of this
section can be found in the references [117, 118, 119].
The Mellin transformMT of a function f(z) is de�ned as

MT [f(z)] (N) =

∫ +∞

0
dzzN−1f(z). (A.15)

The Mellin momentM of a function f(z) is de�ned as

M [f(z)] (N) = f̂(N) =

∫ 1

0
dzzN−1f(z). (A.16)

In some references, the Mellin moment is called Mellin transform. The confusion also arises
because performing the inversion of both the Mellin moment and the Mellin transform is
pretty similar. Here, the Mellin moment is the one of interest and we will not discuss Mellin
transform further, as in order to solve the evolution equation of the cone fragmentation
function Fi→γ (5.38), Mellin moments were used.

2.1 Properties of Mellin moments

The main property of the Mellin moment that we will need is

M ((f ⊗ g) (z)) = f̂(N)ĝ(N), (A.17)

where ⊗ indicated the convolution de�ned in(2.18)

(f ⊗ g)(z) =

∫ 1

0
dx

∫ 1

0
dy δ(z − xy)f(x)g(y) =

∫ 1

z

dy

y
f(y) g

(
z

y

)
. (A.18)

The property (A.17) can be proven easily

M(f ⊗ g) =

∫ 1

0
dzzN−1 (f ⊗ g) (z) =

∫ 1

0
dz

∫ 1

0
dx

∫ 1

0
dy zN−1δ(z − xy)f(x)g(y) =

∫ 1

0
dxxN−1f(x)

∫ 1

0
dyyN−1g(y) = f̂(N)ĝ(N).

It is interesting to note that the Mellin moment is related to the Laplace transform L
through

L [f(z)] (N) =

∫ ∞

0
dze−Nzf(z) =

∫ 1

0
yN−1f(− ln y) =M [f(− ln y)] (N), (A.19)

where we used the change of variables z = − ln y.
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2.2 Inversion of Mellin moments

The inversion of the Mellin moment f̂(N) is done using the formula

f(z) =
1

2πi

∫ c+i∞

c−i∞
dNz−N f̂(N), (A.20)

where c is a real number that has to be larger than all the real part of the poles of f̂(N). It
means that f̂(N) has no real poles on the right of the integration contour between c− i∞
and c+ i∞. This is shown on the left side of Figure A.1.
A useful way of performing this integral, can be found in [117], for a function satisfying
f̂(N)∗ = f̂(N∗), by performing the change of variables N → c+ r exp(iφ) the inversion is

f(z) =
1

π

∫ ∞

0
drIm

[
eiφz−c−r exp(iφ)f̂ (N = c+ r exp(iφ))

]
. (A.21)

For the choice φ = π
2 , it follows

f(z) =
1

π

∫ ∞

0
drRe

[
z−c−irf̂ (c+ ir)

]
. (A.22)

2.3 Mellin moments: a simple example

We want to perform explicitly the Mellin moment and the inverse of the following function

f(z) = θ (z − z0) . (A.23)

We compute the Mellin moments

f̂(N) =

∫ 1

0
dzzN−1θ (z − z0) =

1

N
− zN0
N
. (A.24)

Using the inverse formula, it is necessary to perform the following integral

1

2πi

∫ c+i∞

c−i∞
dN

1

N

(
1

zN
− zN0
zN

)
. (A.25)

The following integral for with ξ = 1
z or z0

z

1

2πi

∫ c+i∞

c−i∞
dN

ξ−N

N
=





1 ξ < 1

1

2
ξ = 1

0 ξ > 1

. (A.26)

is needed. In order to compute this integral for ξ = 1, the same change of variables than
in (A.22) N → c+ ri can be used

1

2πi

∫ c+i∞

c−i∞
dN

ξ−N

N
=

1

2π

∫ +∞

−∞
dr

(
ξ−c−ir

1

c+ ir

)
=

1

π

∫ ∞

0
drRe

(
ξ−c−ir

1

c+ ir

)
=

1

π

∫ ∞

0
drξ−c

c cos(r ln ξ)− r sin(r ln ξ)

c2 + r2
,

(A.27)

then with ξ = 1, the integral becomes the well-known integral

1

π

∫ ∞

0
dr

c

c2 + r2
=

1

2
. (A.28)

89



c+ i∞

c− i∞
N = c

poles of f̂(N)

Re[N ]

Im[N ]

if ξ < 1 if ξ > 1

|N |2 →∞

N = c

Re[N ]

Im[N ]

Figure A.1: Left: The line integral used to invert f̂(N) in (A.20). Note that all the real
poles are on the left side of the line. Right: Integral contour used for the integral of (A.26),

with the pole of ξ−N

N at N = 0 and c = 1. If ξ > 1, the contour is closed on the right, if
ξ < 1 it is closed on the left.

For ξ 6= 1, it is possible to compute the integral with the help of some special functions.
However, a simpler way of computing the integral is to use the Cauchy residue formula.
The residue of the pole of ξ−N/N at N = 0 is 1. The contours are shown in Figure A.1.
If ξ > 1, we close the contour on the right and the contour does not have any pole and
therefore the integral vanishes. If ξ < 1, we close the contour to the left, the contour has
the pole and therefore the integral is 1.
We can now perform the inverse transformation and it follows that

1

2πi

∫ c+i∞

c−i∞
dN

(
1

zN
− zN0
zN

)
= θ(1− z)− θ

(
1− z0

z

)
= θ(z − z0) = f(z) : (A.29)

2.4 Mellin moments of the splitting functions

In order to use the Mellin moment to solve the DGLAP equation, the Mellin moments of
the QCD or QED leading order splitting functions need to be computed. This is straight-
forward if the Mellin moments of the following functions are known

M (δ(1− z))) = 1,

M (zα) =
1

N + α
,

M
(

zM

(1− z)+

)
= −

M+N−1∑

i=1

1

i
.

(A.30)

The proof of the two �rst equations is trivial. In order to show the last one, the geometric
sum is used

K−1∑

i=1

zi−1 =
zK−1 − 1

z − 1
, (A.31)

as

M
(

zM

(1− z)+

)
=

∫ 1

0
dz

zM

(1− z)+
zN−1 =

∫ 1

0
dz
zN+M−1 − 1

z − 1
. (A.32)
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Mellin moments of various functions can be found in [120] and [118]. The Mellin moment
of the LO QCD splitting functions (2.19) are

P̂ (1,0)
q→q (N) = CF

(
3

2
− 1

N
− 1

(1 +N)
− 2(γE + ψ(N))

)
,

P̂ (1,0)
g→q (N) =

TR
N

1

2 +N

2 +N +N2

N + 1
,

P̂ (1,0)
q→g (N) = −CF

2 +N +N2

N2 +N
,

P̂ (1,0)
g→g (N) = 2CA

(
2(1 +N +N2)

(N(1 +N)(−2 +N +N2)
− γE − ψ(N + 1))

)
+
β0

2
,

(A.33)

with ψ(N) the digamma function. If N is an integer the following relation holds

γE + ψ(N) =
N−1∑

k=1

1

k
. (A.34)

As one can see, the moment of the splitting functions containing a plus distribution
(

1
1−z

)
+

diverge as N →∞, as predicted by a theorem from [118].

We can easily compute the Mellin moments of the LO QED splitting functions P
(0,1)
i→j (see

(2.20)). They are quite similar to the QCD ones

P̂ (0,1)
q→q (N) = e2

q

(
3

2
− 1

N
− 1

(1 +N)
− 2(γE + ψ(N))

)
,

P̂ (0,1)
γ→q (N) =

Nce
2
q

N

1

2 +N

2 +N +N2

N + 1
,

P̂ (0,1)
q→γ (N) = −e2

q

2 +N +N2

N2 +N
,

P̂ (0,1)
γ→γ (N) = −2

3

∑

f

e2
f .

(A.35)

The last one is the only one that is actually signi�cantly di�erent. It is also possible (but
more tedious) to perform the Mellin moment of the non-homogeneous term of (5.87)

P̂ (1,1)
q→γ (N) = CF e

2
q

[
(ψ(N) + γE)

−6 +N + 17N2 + 2N2 + 3N4 −N5

N2(N2 − 1)2

+
N2
(
35 + 47N + 22N2 + 8N3

)
− 4

4N3(1 +N)3

−
(

3ψ(1)(N) +
7π2

6
+ (ψ(N) + γE)2

)
N2 +N + 2

2N − 2N3

]

P̂ (1,1)
g→γ (N) = TF

∑

q

e2
q

8−N
[
4 +N

(
54 +N(79 + 2N2 + 7N)(7−N +N2))

)]

2N3(1 +N)2(N2 +N − 2)2
.

(A.36)
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Appendix B

More details on the DGLAP

equations

In this appendix, two changes of variables to simplify the DGLAP equation of PDF are
discussed. These two changes of variables are instructive in order to learn how to solve
other DGLAP-like equations like for example the one of Fi→γ . A simple example of a
DGLAP-like equation is considered. This equation is solved both in z space and using the
Mellin moments. This example is relevant for both the DGLAP equations of the PDF and
photon fragmentation (both Di→γ and Fi→γ). This appendix complements Appendix 5.B
and Chapter 2.

1 Change of variable for the DGLAP equation

Recall that the DGLAP equation for PDFs with nf quark �avors is a 2nf + 1 equation
system. If the splitting functions Pi→j are expanded to order αs the DGLAP equation
reads

dfi(z, µ)

d lnµ2
=
αs (µ)

2π

∑

j=q,q̄,g

P
(1,0)
j→i ⊗ fj(z, µ), (B.1)

where some of the P
(1,0)
j→i are vanishing. In the case of two quarks �avors u and d, at �rst

order in QCD the splitting function between di�erent quark �avors vanishes: Pqi→qj =
δqiqjPq→q where qi and qj are quarks or anti quarks. In the following we omit the (1, 0)
superscript for readability. We use the short-hand notation that i is actually fi the PDF
of the parton i. Therefore the DGLAP equation is

d

d lnµ2




g
u
ū
d
d̄



(
z, µ2

)
=
αs(µ

2)

2π




Pg→g Pq→g Pq→g Pq→g Pq→g
Pg→q Pq→q 0 0 0
Pg→q 0 Pq→q 0 0
Pg→q 0 0 Pq→q 0
Pg→q 0 0 0 Pq→q



⊗




g
u
ū
d
d̄



(
z, µ2

)
.

(B.2)
To simplify such an equation a change of basis is performed. Typically a change of variables
like the following is used in the literature, from the PDF of each parton

(
g, u, ū, d, d̄

)
to
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the following combinations




g
Σ
uv
dv
∆c




= M




g
u
ū
d
d̄




=




g
u+ ū+ d+ d̄

u− ū
d− d̄

u+ ū− d− d̄



, M =




1 0 0 0 0
0 1 1 1 1
0 1 −1 0 0
0 0 0 1 −1
0 1 1 −1 −1



.

(B.3)
where M is an invertible matrix. This change of variable is the analogue of the 2 quark
�avors change of variables (B.6). The DGLAP equation then simplify to

d

d lnµ2




g
Σ
uv
dv
∆c



(
µ2, z

)
=
αs(µ

2)

2π




Pg→g Pq→g 0 0 0
4Pg→q Pq→q 0 0 0

0 0 Pq→q 0 0
0 0 0 Pq→q 0
0 0 0 0 Pq→q



⊗




g
Σ
uv
dv
∆c




(z).

(B.4)
Di�erent changes of variables can be used to simplify the resolution of the DGLAP equa-
tions. The goal is to have only a few PDFs coupled in the convolution. In the case of nf
quark �avors the matrix is of dimension (2nf +1). Changes of variable can also be perform
to bring it to a 2x2 matrix and a 2nf − 1 identity matrices




Pg→g Pq→g
2nfPg→q Pq→q

0

0 I2f−1Pq→q


 , (B.5)

or something of a similar form with a maximum of one 2 times 2 matrix where 2 PDFs
are coupled. This system of equations is simpler to solve than the original one. The 2
times 2 system and each 1 times 1 system need to be solved either in z space or using the
Mellin moment. Let us quickly look at two possible changes of variables that can be used.
First in [33] if you do not take into account the QED part of the variable you can �nd the
following change of variables for nf = 5

g,

Σ =
∑

q

(q + q̄) ,

∆1 = u+ ū−
(
d+ d̄

)
,

∆2 = u+ ū+ d+ d̄− 2 (s+ s̄) ,

∆3 = u+ ū+ d+ d̄+ s+ s̄− 3 (c+ c̄) ,

∆4 = u+ ū+ d+ d̄+ s+ s̄+ c+ c̄− 4
(
b+ b̄

)
,

qv = q − q̄ with q = u, d, s, c, b,

(B.6)
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which is the change of basis we used earlier for 2 quark �avors in (B.3). Another slightly
di�erent basis can be found for example in [110] with q1 = u, q2 = d, q3 = ...

g,

Σ =
∑

q

(q + q̄) ,

q+
NS,i = qi + q̄i − (q1 + q̄1) i = 2, ..., 5,

q−NS,i = qi − q̄i − (q1 − q̄1) i = 2, ..., 5,

qVNS =
∑

i

(qi − q̄i) ,

(B.7)

with for example q+
NS,2 = d+ d̄− (u+ ū) and so on. The letters NS stand for non-singlet

and it means that these variables are then uncoupled from the rest. g and Σ are singlet
and are coupled. One can check that both of these changes of variables bring the DGLAP
equation to the form of (B.5).

In the case of the cone fragmentation function Fi→γ the change of variable is given in
(5.39). The change is in this case even more e�cient than in the PDF case because instead
of 2nf − 1 1 times1 equations, we only have 1 of those equations due to the symmetry
of the initial condition. This symmetry does not exist for the PDF and for example the
variable uv = u− ū is not vanishing.

2 Two methods to solve a DGLAP-like equation

In this section, we want to brie�y discuss a few examples of DGLAP-like equations and
how to solve them in both z and Mellin space. The equation of interest in this section is
a DGLAP-like equation of the function F (µ, z) of the following form

dF (µ, z)

d lnµ2
= Pinho(z, µ) + (Pq→q ⊗ F ) (µ, z), (B.8)

with Pinho(z, µ) an inhomogeneous splitting function. The equation shares similarities with
the 1x1 non-singlet part of the cone fragmentation function F∆→γ . In the case of DGLAP
of PDFs the inhomogeneous term is absent, whereas for both the photon non-perturbative
fragmentation Di→γ and the cone fragmentation function Fi→γ there is such a term. For
the sake of simplicity, we will �rst omit it.

Recall that the convolution is de�ned as

(f ⊗ g)(z) =

∫ 1

z

dy

y
f(y)g(z/y). (B.9)

We will discuss both the leading log (LL) solution and the next-to-leading log (NLL) of
(B.8) with Pinho = 0. For the LL equation, the splitting function need to be expanded at
order αs

Pq→q(z, µ) =
αs (µ)

2π
P (1,0)
q→q (z) +O

(
α2
s

)
, (B.10)

and the running of αs will be taken only at one loop (βi = 0, i > 0). For the NLL equation,
the splitting function needs to be expanded at order α2

s

Pq→q(z, µ) =
αs (µ)

2π
P (1,0)
q→q (z) +

(
αs (µ)

2π

)2

P (2,0)
q→q (z) +O

(
α3
s

)
, (B.11)
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and the running of αs at two loops. Recall that the quark to quark splitting function

P
(1,0)
q→q (z) is

P (1,0)
q→q (z) = CF

(
1 + z2

1− z

)

+

. (B.12)

There are two ways of solving the equation which are equivalent. Either directly numer-
ically in z-space i.e. step by step in µ or by using Mellin moments. In the case of the
cone fragmentation function Fi→γ , both techniques were used. The agreement of both
techniques can be seen in Figure 5.8.

If we decide to add an inhomogeneous term Pinho like it is the case for the cone frag-
mentation DGLAP equation the equation becomes at LL

dF (z, µ)

d lnµ2
= Pinho +

αs(µ)

2π
P (1,0)
q→q (z)⊗ F (z, µ) , F (z, µ0) = F0(z), (B.13)

in the case of Fq→γ at leading-order this Pinho would be the QED splitting of a quark to

a photon. In the following the function Pinho(z) = α
2πP

(0,1)
q→γ would be used as an example.

By solving this equation with the correct initial condition we get the LL result of Figure
3.11.

2.1 The z-space solution

We need to use an extra Heaviside function as the plus distribution is de�ned between 0
and 1 and not between z and 1

P (1,0)
q→q (z)⊗ F (z, µ) =

∫ 1

z

dy

y
Pq→q(y)F

(
z

y
, µ

)
=

∫ 1

0
dy CF

(
1 + y2

1− y

)

+

Θ (y − z)
y

F

(
z

y
, µ

)

= CF

∫ 1

z
dy

1 + y2

1− y



F
(
z
y , µ
)

y
− F (z, µ)


− F (z, µ)CF

∫ z

0
dy

1 + y2

1− y .

(B.14)
If the initial condition F (z, µ0) diverges for z → 0, we de�ne G (z, µ) = zF (z, µ) with no
divergence at z = 0. We obtain the following

µ
dG(µ, z)

dµ
=
z

µ

αs(µ)

π
P (1,0)
q→q (z)⊗ F (µ, z) =

αs(µ)

π
CF

(∫ 1

z
dy

1 + y2

1− y

[
G

(
z

y
, µ

)
−G(z, µ)

]
−G (z, µ)

∫ z

0
dy

1 + y2

1− y

)
=

αs(µ)

π
CF

(∫ 1

z
dy

1 + y2

1− y

[
G

(
z

y
, µ

)
−G(z, µ)

]
+G (z, µ)

[
1

2
z(2 + z) + 2 log(1− z)

])
.

(B.15)
Note the presence of an extra term G (z, µ)

(
1
2z(z + 2) + 2 ln(1− z)

)
, see (A.8) and (A.9).

We can now discretize both the z space and the µ space to solve the equation. The
choice of the z grid depends on the problem. A uniform grid is in the case of Fi→γ not
the optimal choice, however it can be used if e�ciency is not important. Choosing a grid
with more points where the function varies is more e�cient. In this example, taking a grid
with more points close to 0 and 1 will give better results in the case we considered in [71].
For example using a 60 points grid with 20 points in each intervals [zmin, za] = [0.01, 0.1],
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[za, zb] = [0.1, 0.9] and [zb, zmax] = [0.9, 0.99] respectively

zi =





z
1/3
min + i/20

(
z1/3
a − z1/3

min

)3

za + i
zb − za

20

z
1/3
b + i/20

(
z1/3
max − z1/3

b

)3

. (B.16)

with i = 0, 1, ..., 19 was obviously more e�cient than taking the same amount of points
uniformly distributed between zmin and zmax.

In order to discretize the µ space it is more e�cient to take a logarithmic discretisation
than a linear one. We choose the µi

(µ0, µ1, ..., µN−1, µN = µf ) = (µ0, µ0 exp(∆L), ..., µ0 exp((N − 1)∆L), µ0 exp(N∆L) = µf ) ,

with ∆L = log
(
µf
µ0

)
/N . The derivative is approximated using the Euler method

dG(zk, µ, )

dµ

∣∣∣
µ=µi+1

' G(zk, µi+1)−G(zk, µi)

µi+1 − µi
=
G(zk, µi+1)−G(zk, µi)

µi(exp(∆L)− 1)
. (B.17)

In this scheme, we �nd that

G(zk, µi+1) = G(zk, µi) + (exp(∆L)− 1)
αs(µi)

π
CF

(∫ 1

zk

dy
1 + y2

1− y

[
G

(
zk
y
, µ

)
−G(zk, µ)

]

+G (zk, µ)

[
1

2
zk(2 + zk) + 2 log(1− zk)

])
.

(B.18)
Then for every zk, it is possible to perform the integral over y numerically, which implies
that for each µi it is necessary to perform a few integrals. The evolution is done step by
step in µ. To solve a 2x2 coupled system of equations like the one for Σ and g (see (B.5))
directly in z space, one uses the same method in a 2-dimension vector space.

In the case of a non-homogeneous term Pinho(z, µ) the equation for G becomes

µ
dG(z, µ)

dµ
= 2z

(
Pinho +

αs(µ)

2π
P (1,0)
q→q (z)⊗ F (z, µ)

)
. (B.19)

We simply need to add on the RHS of (B.18) a term

2zk (exp(∆L)− 1)Pinho (zk, µi) . (B.20)

Also in the case of the NLL equation, it is of course possible to also use the technique
above.

2.2 Mellin space solution

With the help of the property (A.17) of Mellin moment

M ((f ⊗ g)(z)) = f̂(N)ĝ(N), (B.21)

the LL equation in Mellin space is

dF̂ (N,µ)

d lnµ2
=
αs(µ)

2π
P̂ (1,0)
q→q (N)F̂ (N,µ) , (B.22)
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which can be written
dF̂ (N,µ)

dµ
=
αs(µ)

µπ
P̂ (1,0)
q→q (N)F̂ (N,µ) . (B.23)

Solving this equation is straightforward

F̂ (µ,N) = F̂ (N,µ0) exp

(
P̂q→q(N)

∫ µ

µ0

dµ′

µ′
αs (µ′)

π

)
= F̂ (N,µ0)

(
αs(µ0)

αs(µ)

) 2P̂
(1,0)
q→q (N)

β0

.

(B.24)
The last equality comes from the evolution equation of αs at leading-order (2.2.1)

µ2 dαs (µ)

dµ2
= −α

2
s (µ)

4π
β0 ⇒

dµ′

πµ′
= −dαs

2

α2
sβ0

. (B.25)

The µ evolution is done in only one step in Mellin space, this tends to make it faster than
the z space solution for the equation considered in this work. Then the solution is given
by the inverse Mellin moment of F̂ (µ,N). This inversion is performed numerically with
the help of (5.98).

The equation with an inhomogeneous term for example Pinho = α
2πP

(0,1)
q→γ is

dF̂ (N,µ)

d lnµ
=
α

π
P̂ (0,1)
q→γ (N) +

αs(µ)

π
P̂ (1,0)
q→q (N)F̂ (N,µ) . (B.26)

This equation is similar to the equation of ∆ in the case of the cone fragmentation Fi→γ ,
except that the charge of ∆ is not the same than the one of a quark. Therefore there is a
prefactor in the initial condition of F∆→γ and in the inhomogeneous part which is due to
the charge of the quark need to be replace by the charge of ∆. However, these di�erences
are irrelevant for the present discussion. This equation is solved by

F̂ (µ,N) = exp

(
P̂ (1,0)
q→q (N)

∫ µ

µ0

dµ′
αs (µ′)

µ′π

)[
F̂ (µ0, N) +

∫ µ

µ0

dµ′′

µ′′
exp

(
−P̂ (1,0)

q→q (N)

∫ µ′′

µ0

dµ′

µ′
αs (µ′)

π

)
α

π
P̂ (0,1)
q→γ (N)

]

=

(
αs(µ0)

αs(µ)

) 2P̂
(1,0)
q→q (N)

β0


F̂ (µ0, N) +

α

π
P̂ (0,1)
q→γ (N)

∫ µ

µ0

dµ′′

µ′′

(
αs(µ0)

αs(µ′′)

)−2P̂
(1,0)
q→q (N)

β0


 ,

(B.27)
the �rst part of the solution is the homogeneous one and there is an extra term due to the
inhomogeneous splitting function. This solution is a simpli�ed version of (5.91). The µ′′

integral can be computed easily.
Finally, for the NLL, the splitting function is expanded up to α2

s. In Mellin space the
equation is

dF̂ (N,µ)

dµ
=
αs(µ)

µπ

(
P̂ (1,0)
q→q (N) +

αs(µ)

2π
P̂ (2,0)
q→q (N)

)
F̂ (N,µ) , (B.28)

where αs(µ) is computed at two-loop. Then the solution is given by

F̂ (µ,N) = F̂ (µ0, N) exp

(∫ µ

µ0

dµ′
αs (µ′)

µ′π

[
P̂ (1,0)
q→q (N) +

αs (µ′)

2π
P̂ (2,0)
q→q (N)

])
, (B.29)
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where we used
dµ′

πµ′
= −dαs

2

α2
s

1

β0 + αs
β1
4π

. (B.30)

After the change of variables for µ′ to αs(µ
′), it is possible to write the solution as

F̂ (N,µ) = F̂ (N,µ0) exp
(
P̂ (1,0)
q→q (N)I1 + P̂ (2,0)

q→q (N)I2

)
, (B.31)

with the two integrals that need to be computed

I1 = 2

∫ αs(µ0)

αs(µ)
dαs

1

β0 + αs
β1
4π

=
2

β0

(
ln

[
αs(µ0)

1 + β1
4πβ0

αs(µ0)

]
− ln

[
αs(µ)

1 + β1
4πβ0

αs(µ)

])
,

I2 =
1

π

∫ αs(µ0)

αs(µ)
dαs

1

β0 + αs
β1
4π

=
4

β1
ln

(
β0 + β1

4παs(µ0)

β0 + β1
4παs(µ)

)
.

(B.32)
The I1 part of the exponential gives

exp
(
P̂ (1,0)
q→q (N)I1

)
=

(
αs(µ0)

αs(µ)

β0 + β1
4παs(µ)

β0 + β1
4παs(µ0)

)2P̂
(1,0)
q→q (N)/β0

. (B.33)

This recovers the LL results of (B.24), if we set β1 = 0. The second part of the exponential
is

exp
(
P̂ (2,0)
q→q (N)I2

)
=

(
β0 + β1

4παs(µ0)

β0 + β1
4παs(µ)

)4P̂
(2,0)
q→q (N)/β1

. (B.34)

If we expand the whole result (B.31) in αs (µ0) ∼ αs (µ) , we �nd (5.95) (except for a
factor 2 due to the de�nition of the splitting functions). We �nd the solution of (5.97)

F̂ (N,µ) = F̂ (N,µ0)K(αs(µ0), αs(µ)), (B.35)

with all of the inhomogeneous parts of the equation set to 0. Expending K for small αs is
straightforward. The main challenge is to numerically perform the inverse Mellin moment
transformation e�ciently,especially for z → 1. For more details on the Mellin moments
see [109].
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Appendix C

Use of MadGraph and MCFM

In order to write this thesis and [71], it was necessary to use both MadGraph5_aMC@NLO
[108] and MCFM [106, 121]. Both programs were used to compute various cross-sections
and to generate "Les Houches event �les� [122]. In this appendix, details on how to
reproduce the results presented in this work with the help of these programs.

I used the version 2.9.3 of MadGraph and 9.1 of MCFM. In order to get a prediction for
the hybrid cone, I also used the version 10.2.1 of MCFM. The authors of MadGraph call
their program MadGraph5_aMC@NLO, however for simplicity, I will call it MadGraph or
use the abbreviation MG. In the following I will assume the reader has a basic knowledge
on how to install and use MadGraph and MCFM. The references [123, 124] are helpful
for getting started with MadGraph. MCFM has a manual [121].

Both MadGraph and MCFM are programs using Monte-Carlo methods in order to
compute a vast variety of cross-sections. The two programs are written in Fortran. Both
of these two programs have advantages and disadvantages. It was useful to be able to
use both. For example MadGraph allows us to generate Les Houches event �les, while
MCFM can not do that. MCFM is able to compute cross-section with �xed energy cones,
MadGraph is not. One extra reason to learn how to use both is that other photon codes
such as JETPHOX and DIPHOX are old and not maintained anymore.

This appendix is organized as follows. First as an introduction, an example not directly
related to my work will be discussed. This example is diphoton production at a proton
collider with both MCFM and MadGraph. Doing an example is interesting to learn more
about how to use both programs. It is also useful to test that the results of both programs
are in agreement. Then the process of interest pp → γ + X will be discussed �rst with
MadGraph, where I will discuss the problem of the precision of NLO �xed-order prediction.
In the case of MCFM, I will discuss an issue I encounter: some parameters could not be
passed by the user and some internal �les have to be modi�ed. The �xed energy cone σNLO

will be compared to the predictions of other programs. Finally the procedure to generate
non-isolated photon cross-sections at NLO will be discussed.

Disclaimers: part of my work was modifying some internal �les of both programs, I
am not a Fortran nor a MadGraph or MCFM expert and the following is addressed to
beginners. While using MCFM, I encountered some problems, in particular for certain
parameters of �xed-energy cones that were not particularly small or large, MCFM was not
able to converge. The reason for this problem remains unknown to me as of today. Some
cross-sections were computed with MCFM and checked with values generated with other
programs like MadGraph, NNLOJET, JETPHOX or DIPHOX. All the checked results
were in agreement. I only ran MCFM and MadGraph, the cross-section from the three
other programs are either taken from a reference. The NNLOJET values in Tables C.7
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√
s = 14 TeV 20 ≤ mγγ ≤ 250 GeV µR = µF = amγγ

pγT1 ≥ 25 GeV pγT2 ≥ 40 GeV |ηγ | < 2.5

MSTW2008lo68cl [125] MSTW2008nlo68cl α = 1
137

R = 0.4 εγ = 0.5 n = 1.0

Table C.1: Parameters for the diphoton production used in [77, 76], and here with Mad-
Graph and MCFM to reproduce the results of both references. Note that the parameter
a for scale variation is taken to be 1,2 and 1

2 and Frixione cone was used. The values of
the strong coupling are for MSTW2008lo68cl αs (MZ) = 0.139 and for MSTW2008nlo68cl
αs (MZ) = 0.120.

and C.8 were generously provided by Alexander Huss.

1 Warmup: pp→ γγ using MadGraph and MCFM

In order to test if MadGraph and MCFM predictions are compatible and to learn how to
use both programs, I will reproduce with MadGraph the results for diphoton production at
a pp collider from [77]. These results were obtained with MCFM. These predictions were
also compared to results from [76] obtained with the program DIPHOX. 1

I want to compute the total cross section of pp→ γγ both at leading-order and next-to-
leading order ( pp→ γγ+X) with the parameters of Table C.1. Even though this problem
is not directly linked to the production of a single isolated photon, it is instructive as it is
necessary to modify certain MadGraph �les. It allows us to see di�erences in the use of
both programs. The �rst di�erence between MG and MCFM arises while trying to use 5
massless quark �avors for all the following computations. For MadGraph, we have to tell
it to use the bottom quark by importing an extra model in order to include the (massless)
bottom quark, the instructions to provide to MadGraph are:

import model loop_sm-no_b_mass

generate p p > a a [QCD]

output name_of_output

launch

Recall that in MG, photons are designated by the letter a. The [QCD] is here to say that
we want to have next to leading-order in αs. In MCFM, the bottom quark is included
when we call the process 285. However it is not massless by default and it is required to
change its mass in the input �le.

The parameters used in our computation are in Table C.1. The two photons are isolated
using Frixione cones. The listed parton distribution functions used are MSTW2008lo68cl

for LO and MSTW2008nlo68cl for NLO. Note that using the NLO PDFs set for the leading
order computation increases the cross-section. Ones uses the PDFs and αs to generate part
of the NLO terms. The harder of the 2 photons was required to have more than 40 GeV
of transverse momentum and the softer one more than 25 GeV. Conveniently in MCFM,

1The idea of reproducing these results with both MG and MCFM was suggested by Tobias Neumann.
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most parameters are implemented in the .ini �le. To set the scales, we have to do the
following in input �le:

[scales]

# Renormalization scale

renscale = 1

# Factorization scale

facscale = 1

# Controls use of dynamical scale

# when different from 'none', set renscale and facscale to 1

dynamicscale = m(34)

# perform scale variation

doscalevar = .true.

# can be 2 or 6 for 2-point or 6-point scale-variation

maxscalevar = 2

While for MadGraph, it is more involved, it is required to change the /SubProcesses/

setscales.f. This �le reads:

LOGICAL IS_A_J(NEXTERNAL),IS_A_LP(NEXTERNAL),IS_A_LM(NEXTERNAL)

LOGICAL IS_A_PH(NEXTERNAL)

COMMON /TO_SPECISA/IS_A_J,IS_A_LP,IS_A_LM,IS_A_PH

double precision pgammatot(0:3)

...

...

elseif(dynamical_scale_choice.eq.10) then

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cc USER-DEFINED SCALE: ENTER YOUR CODE HERE cc

tmp = 0d0

do j=0,3

pgammatot(j)=0d0

enddo

do i=3, nexternal

if(is_a_ph(i)) then

do j=0,3

pgammatot(j)=pgammatot(j)+pp(j,i)

enddo

endif

enddo

tmp=dsqrt(pgammatot(0)*pgammatot(0)-pgammatot(1)*pgammatot(1)-

pgammatot(2)*pgammatot(2)-pgammatot(3)*pgammatot(3))

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

endif

scale_global_reference=tmp

We �rst need to make sure that we have access to the function is_a_ph(), which allows
us to say if a particle is a photon. Then we declare an array of four double precision in
order to store pγ1 + pγ2 , the sum of the four-momentum of the two photons . We then loop
over the external particles (so from 3 to nexternal, as 1 and 2 are the incoming partons)
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and if it is a photon, we add its four-momentum to the total four-momentum pgammatot.

Finally the transverse mass mγγ =
√

(p2
xγ + p2

yγ) is computed and stored in the variable

tmp. Moreover we need to set dynamical_scale_choice = 10 in the runcard.dat.
Then we have to require that the invariant mass of the diphoton satis�es 20 GeV ≤

mγγ ≤ 250 GeV. On top of that we require one of the photons to have at least pT = 25
GeV and the second to have 40 GeV. Both are implemented in the .ini �le in MCFM

[masscuts]

# minimum mass of 3-4 system

m34min = 20.0

# optional, maximum mass of 3-4 system, otherwise sqrts

m34max = 250.0

...

[photon]

# include fragmentation

fragmentation = .false.

# fragmentation set

fragmentation_set = GdRG__LO

# fragmentation scale

fragmentation_scale = 1.0

# minimum photon pT; can also have gammptmax

gammptmin = 40.0

# maximum photon rapidity; can also have gammrapmin

gammrapmax = 2.5

# second photon minimum pT

gammpt2 = 25.0

...

In the case of MadGraph a little more e�ort is required, we have to modify the /SubProcesses/
cuts.f. For the transverse momentum, I required �rst both photons to have at least
pT = 25 GeV in the run_card.dat

25.0 = ptgmin ! Min photon transverse momentum

2.5 = etagamma ! Max photon abs(pseudo-rap)

0.4 = R0gamma ! Radius of isolation code

1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442

0.5 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442

True = isoEM ! isolate photons from EM energy (photons and leptons)

and then in the /SubProcesses/cuts.f, it is enforced that one of the two photon has at
least 40 GeV

double precision maa

double precision pgammatot(0:3)

...

...

C***************************************************************
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C***************************************************************

C PUT HERE YOUR USER-DEFINED CUTS

C***************************************************************

C***************************************************************

C

do j=0,3

pgammatot(j)=pgamma(j,1)+pgamma(j,2)

enddo

maa=dsqrt(pgammatot(0)*pgammatot(0)-pgammatot(1)*pgammatot(1)-

pgammatot(2)*pgammatot(2)-pgammatot(3)*pgammatot(3))

if((maa.lt. 20d0) .or. (maa.gt. 250d0))then

passcuts_user=.false.

return

endif

if(( dsqrt(pgamma(1,1)**2+pgamma(2,1)**2) .lt. 40d0) .and.

( dsqrt(pgamma(1,2)**2+pgamma(2,2)**2) .lt. 40d0 )) then

passcuts_user=.false.

return

endif

First, the invariant mass maa is declared (MG calls photons a) and the total photon mo-
mentum pgammatot. While doing the cuts, the momentums of the photons are already
extracted and stored in pgamma(i,j) with i=0,1,2,3 and j=1,...,nph. Here we only
have 2 photons j=1,2. Then in the part of the �le that is planned to add user-de�ned
cuts, I �rst compute the total photon momentum and the invariant mass of the diphoton
system. Then if it is not in the interval 20 to 250, passcuts_user is set to false. After

that I test both transverse momentum pTi =
√
p2
xi + p2

yi and if both are less than 40 GeV,

I also set passcuts_user to false as at least one of the two γ needs to have more than
40 GeV. Finally in both cases, we need to make sure we use the same electromagnetic
coupling α, in the case of MCFM, it is hidden in src/User/mdata.f:

* Calculational scheme for EW couplings *

************************************************************************

c

c ewscheme=-1 : Old MCFM default

c input values = Gf,alpha(m_Z),m_W,m_Z

c output values = sin^2(theta_W),mtop

c

c ewscheme=0 : Old MadEvent default (= AlpGen with iewopt=2)

c input values = sin^2(theta_W),alpha(m_Z),m_Z

c output values = m_W,Gf.

c ....

c

c

include 'ewinput.f'

data ewscheme / 0 / ! Chooses EW scheme

data Gf_inp / 1.16639e-5_dp / ! G_F

103



σ [fb] LO NLO

µF = µR = mγγ/2 5045± 1 26581± 23

µF = µR = mγγ 5712± 2 26402± 25

µF = µR = 2mγγ 6319± 2 26045± 24

Table C.2: Cross-sections of diphoton production obtained using DIPHOX from [76].

σ [fb] LO NLO

µF = µR = mγγ/2 5043± 1 26578± 13

µF = µR = mγγ 5710± 1 26444± 12

µF = µR = 2mγγ 6315± 2 26110± 13

Table C.3: Cross-sections of diphoton production obtained using MCFM from [77]. The
input �le described in this section generates similar values.

data aemmz_inp / 7.29927e-3_dp / ! alpha_EM(m_Z)=1/137

data xw_inp / 0.2223_dp / ! sin^2(theta_W)

data wmass_inp / 80.385_dp / ! W mass

data zmass_inp / 91.1876_dp / ! Z mass

************************************************************************

where I only changed the value of aemmz_inp. For MadGraph it is simply in the param_

card.dat

BLOCK SMINPUTS #

1 1.370000e+02 # aewm1

All other parameters that need to be tuned, are tuned in the .ini �le for MCFM or in the
run_card.dat for MadGraph. Note that every time you modify a �le in the src folder of
MCFM, you have to make the program again.

Using MadGraph we obtain similar results for the total cross-section, see Tables C.2
to C.4. The cross-section computed from MadGraph were obtained by averaging N = 5
runs in order to achieve better precision. The error was computed using the formula

δσ =

√∑N
i=1 δσ

2
i

N2
, (C.1)

where δσi is the error of run number i.

σ [fb] LO NLO

µF = µR = mγγ/2 5046± 1 26592± 5

µF = µR = mγγ 5716± 1 26460± 5

µF = µR = 2mγγ 6322± 1 26115± 4

Table C.4: Cross-sections of diphoton production obtained using MadGraph
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2 MadGraph: single photon production

In this section, the use of MadGraph to compute the production of a photon at NLO
is discussed in detail. The issue of the precision of MadGraph for NLO single photon
production is also discussed. Finally the details on how to compute ∆σ. This complements
the appendix 5.C of [71].

2.1 pp→ γ +X at NLO

In order to use MadGraph at NLO for the process pp→ γ + jet(s), we need:

import model loop_sm-no_b_mass

generate p p > a j [QCD]

output name_of_file

launch

Note that this will generate both pp → γ + 2 partons and the loop corrections of pp →
γ + 1 parton. In the run card we need to change a few things, in the beginning:

10000 = nevents ! Number of unweighted events requested

0.003 = req_acc_FO ! Required accuracy (-1=ignored, and use the !

number of points and iter. below)

If we want to study the dependence of σ on the parameters (εγ , n,R) of the Frixione
isolation. MadGraph is not extremely precise and we need to make multiple runs in order to
see a clear tendency. I ran MadGraph at NLO with the parameters of Table C.5. The exact
value of the parameters is not relevant for the following discussion. In order to use for µF
and µR the dynamic scale pTγ , it is necessary to modify the /SubProcesses/setscales.f,
it has similarities with what was required to do for the diphoton production to set mγγ as
the dynamic scale. The modi�ed �le reads

LOGICAL IS_A_J(NEXTERNAL),IS_A_LP(NEXTERNAL),IS_A_LM(NEXTERNAL)

LOGICAL IS_A_PH(NEXTERNAL)

COMMON /TO_SPECISA/IS_A_J,IS_A_LP,IS_A_LM,IS_A_PH

...

...

elseif(dynamical_scale_choice.eq.10) then

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cc USER-DEFINED SCALE: ENTER YOUR CODE HERE cc

tmp = 0d0

do i=3, nexternal

if(is_a_ph(i)) then

tmp=tmp+et(pp(0,i))

endif

enddo

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

endif

scale_global_reference=tmp
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Where I looped over the nexternal particles and stored the photon transverse energy in
the tmp variable. The results of a few runs can be seen in Figure C.1.

σLO does not depend on the variation of the εγ parameters. The reason is that at
leading order the jet will not be in the cone due to kinematics. At next-to-leading order
we see that the cross-section decreases when εγ decreases. The smaller εγ , the less energy
is allowed in the cone, hence the stricter the constraint is. The following relation should
hold (4.23)

σ(εγ)↘ if εγ ↘ . (C.2)

However the change of the cross-section is small. We see that if we had run the NLO only
once, we may think that the cross-section is even independent of the isolation parameter
or worse we could see the opposite behavior. For example, the 9th run with εγ = 0.9
(∼ 434.5 pb) is larger than the 3rd run with εγ = 1.0 (∼ 433 pb) and the relation of (C.2)
would not be satis�ed. The accuracy of single runs is not su�cient. The averages over
the 10 runs satisfy σNLO(εγ = 1.0) > σNLO(ε = 0.9) and the condition (C.2) is satis�ed.
Moreover the uncertainty of a single run is large compared to the dependence of the cross-
section on εγ .

In conclusion, it is necessary to run MadGraph multiple times with a higher accuracy,
if we want to study the dependence of the cross-section on its parameters. This is time
consuming on a personal computer and we had to resort to using the cluster. In order to
avoid this problem, it is useful to directly compute cross-section di�erences. This will be
discussed in the following section.

2.2 ∆σ of pp→ γ+ jet(s) at NLO

Rather than computing the di�erence of NLO photon production cross sections, it is much
more e�cient to directly extract the cross section di�erence from the process p p → γ j j
at LO by imposing suitable cuts on the partons. Working in this way, we can compute
the di�erence from event �les generated with MadGraph5_aMC@NLO [108] instead of
needing individual NLO runs for all parameter values.

The idea is the following: �rst we compute precisely the cross section for a certain set
of reference parameters, for example

εref
γ = 1.0 nref = 1.0 Rref = 0.4. (C.3)

We then modify some internal �les of MadGraph to compute ∆σ. This is the di�erence of
a cross-section σ (εγ , n,R) with parameters (εγ , n,R) to the reference cross-section σref =
σ
(
εref
γ , nref , Rref

)
.

For an event to contribute to ∆σ it should respect the constraint imposed by isolation
(εγ , n,R) but fail the one with the reference values

(
εrefγ , n

ref, Rref
)
. In other words, the

(εγ , n,R) cone is satis�ed and the reference
(
εref
γ , nref , Rref

)
one should not be. In order to

get a contribution to ∆σ we need that at least one of the partons in the p p→ γ j j event
to be inside the larger cone with radius Rref. The second parton will be outside the cone,
since it is recoiling against the energetic photon. In order for ∆σ to be positive and for the
procedure to be working, it is imperative that the reference cone

(
εref
γ , nref , Rref

)
is more

restrictive than the (εγ , n,R) cone. Recall that in order for this constraint to be respected
we need to impose that

εγ ≥ εrefγ , n ≤ nref , R ≤ Rref . (C.4)

In terms of the transverse momenta pTi of the two �nal-state QCD partons i ∈ {1, 2} in
the event explicitly, we distinguish three angular regions. Regions I) is outside both cones
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Figure C.1: Results of 20 runs of MadGraph for the NLO cross-section of pp→ γ+X with
two di�erent values of εγ and their respective average with averaged errors.

ri > Rref . II) is inside the reference cone and outside the R cone R < ri < Rref and III) is
inside both cones ri < R ≤ Rref . If R = Rref , the region II does not exist. These regions
can be seen in Figure C.2. In more mathematical terms the constraints are

(I) ri > Rref: at most one parton, no constraint on pTi ,

(II) R < ri < Rref: εrefγ

(
1−cos ri

1−cosRref

)nref
≤ pTi

pTγ
,

(III) ri < R: εrefγ

(
1−cos ri

1−cosRref

)nref
≤ pTi

pTγ
≤ εγ

(
1−cos ri
1−cosR

)n
,

where ri is the angular distance of the parton to the photon. The implementation of these
non-standard cuts inMadGraph5_aMC@NLO is achieved by modifying the �le cuts.f
as explained below.

After telling Madgraph how to compute a cross-section with these requirement, the
cross-section for parameters (εγ , n,R) is computed using

σ (εγ , n,R) = ∆σ
(
εγ , n,R; εref

γ , nref , Rref
)

+ σ
(
εref
γ , nref , Rref

)
. (C.5)

Doing so is more e�cient than computing multiple cross-sections individually. For example,
if we are interested in the εγ dependence of the cross-section and we consider two cones
of the same radius R = Rref with n = nref and we vary εγ . Then certain events of
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Figure C.2: Isolation cones of radius R and Rref and associated angular regions. The
di�erence ∆σ is obtained from partonic con�gurations which ful�ll the isolation criterion
for cone radius R, but fail it for Rref.

Figure C.3: Example of two processes of pp → γ + X at NLO that are una�ected by
both cones, the blue cone has parameters (εγ , n,R) and the red one

(
εref
γ , nref , Rref

)
with

R < Rref . The two processes contribute similarly to the cross-sections σ and σref . Left:
One of the loop correction of the pp → γq, the virtual gluon is una�ected by the cones.
The loops are not computed when doing pp → jjγ, they are performed when computing
σref. Right: qq̄ → γqq̄ with both quarks being outside the cones.

pp → jjγ will contribute similarly for both cross section σ(εγ) and σ(εref
γ ). For instance,

if we have two jets outside of the cone, in both cases the jets do not see the cone and
contribute similarly to both cross-sections. It is wasteful to ask MadGraph to compute
this con�guration multiple times. The virtual contributions do not see the isolation cones
and would be also computed every time. Note that these virtual corrections of pp → jγ
are not computed when we call p p→ jjγ.

In order to compute ∆σ for pp → jjγ, we need to modify the cuts.f �le. There are
6 parameters, I arbitrarily decided that (εγ , n,R) will be passed in the run_card.dat and(
εref
γ , nref , Rref

)
will be directly de�ned in the SubProcesses/cuts.f. This is done in the

beginning:

logical alliso

real*8 :: R0gammaREF =0.4

real*8 :: xnREF = 1.0

real*8 :: epsgammaREF = 1.0

we then need to modify the original isolation

do i=1,nQCD

drlist(i)=sngl(iso_getdrv40(pgamma(0,j),pQCD(0,i)))

enddo
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call sortzv(drlist,isorted,nQCD,ismode,isway,izero)

Etsum(0)=0.d0

nin=0

do i=1,nQCD

if(dble(drlist(isorted(i))).le.R0gamma)then

nin=nin+1

Etsum(nin)=Etsum(nin-1)+pt(pQCD(0,isorted(i)))

endif

enddo

do i=1,nin

alliso=alliso .and.

# Etsum(i).le.chi_gamma_iso(dble(drlist(isorted(i))),

# R0gamma,xn,epsgamma,ptg)

enddo

to the following

do i=1,nQCD

drlist (i)=sngl(iso_getdrv40(pgamma(0,j),pQCD(0,i)))

enddo

call sortzv(drlist,isorted,nQCD,ismode,isway,izero)

Etsum(0)=0.d0

nin=0

do i=1,nQCD

if(dble(drlist(isorted(i))).le.dble(R0gammaREF)) then

nin=nin+1

Etsum(nin)=Etsum(nin-1)+pt(pQCD(0,isorted(i)))

endif

enddo

if(nin.eq.0) then

passcuts_user=.false.

return

endif

do i=1,nin

if((dble(drlist(isorted(i))).le.R0gamma)) then

alliso=alliso .and.

# Etsum(i).le.chi_gamma_iso(dble(drlist(isorted(i))),

# R0gamma,xn,epsgamma,ptg).and.

# Etsum(i).ge.chi_gamma_iso(dble(drlist(isorted(i))),

# R0gammaREF,xnREF,epsgammaREF,ptg)

else

alliso= alliso .and.

# Etsum(i).ge.chi_gamma_iso(dble(drlist(isorted(i))),

# R0gammaREF,xnREF,epsgammaREF,ptg)

endif

enddo

It is important to note that alliso is initialized to be true.
We have changed the de�nition of nin, the new de�nition is that nin is true if the par-
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√
s = 13 TeV EγT > Emin

T = 125 GeV |ηγ | < 2.37

NNPDF23_nlo_as_0119_qed_mc αs(MZ) = 0.119 αEM = 1/132.5070

µR = µF = 125 GeV Frixione cone no jet cuts

Table C.5: Parameters for the ∆σ computation.

ticle is inside the reference cone Rref and not the R cone as it used to be. If there is no
particle in the reference cone, we have actually no chances of failing its isolation so we set
passcuts=.false., it would mean that all partons are in region I) . If it is not the case, we
then loop over these partons if (dble(drlist(isorted(i))).le.R0gamma) which means
if the parton is inside both cones, which is region III), we test if it respect the R cone using
Etsum(i).le.chi_gamma_iso(dble(drlist(isorted(i))), R0gamma,xn,epsgamma,ptg)

and fail the Rref cone. If it is the case, we keep alliso to be true. If the parton is not
in the R cone (therefore in the region II), we only test if it does fail the Rref cone. If
yes, alliso is kept to be true, otherwise it is set to false. An event satis�es the cuts if
alliso is true.

This technique works well in order to compute the NLO cross-section e�ciently and
to study the dependence of the cross-section on its parameters. It is easy to test it by
computing the reference cross-section and a cross-section for (εγ , n,R) both precisely and
�nally by running with the modi�ed cuts �le. In the Figure C.4 a few values of the cross-
section were computed using both the trick using (C.5) and directly using MadGraph.
The reference cross-section is taken for the parameters R = Rref = 0.4, n = nref = 1.0
and εref

γ = 0.1. The rest of the parameters can be found in Table C.5. As you can see,
both predictions are close to each other. Similarly, it is also possible to study the n or R
dependence as shown in Figures 5.4 and 5.5. When εγ gets larger the di�erence increases,
this may be due to the fact that the size of the allowed region of phase space for ∆σ is
increasing. In order to get a precise prediction using the ∆σ method, it is crucial to have
a precise reference cross-section σref .

3 MCFM: single photon production

In this section, the use of MCFM to compute the production of a photon at NLO is
discussed in detail. On top of that some details on how to use MCFM to produce cross-
section with a �xed energy cone and without any isolation are also discussed.

3.1 General use for pp→ γ +X

While trying to compare the cross-section generated with MadGraph, NNLOJET and
MCFM, we stumbled upon a problem with MCFM 9.1 that needed to be solved before
running it2. The process for photon production has number 280 (nproc = 280). It is
imperative to implement the following change. In /src/Cuts/setscales.f, you will �nd
the following

elseif (nproc == 280) then

c direct photon production, presence of jet not required

2The authors of MCFM are aware of this issue and it should be solved in a future release.
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Figure C.4: Next-to-leading order cross-section σNLO(εγ) obtained by computing ∆σ trick
and the cross-section σ obtained directly using Madgraph for di�erent values of εγ .

notag=1

The variable notag needs to be changed to 0 notag=0.
In /src/Procdep/chooser.f you will �nd

elseif (nproc == 280) then

ndim=4

kcase=kdirgam

plabel(3)='ga'

plabel(4)='pp'

plabel(5)='pp'

lastphot=3

nqcdjets=1

n3=0

inclusive=.true.

The inclusive=.true. needs to be removed or commented out. This parameter is
normally passed in the input �le and should not have been hard coded in this �le. If
inclusive=.false., then we would have only one jet at NLO and this is not the process
of interest here. At leading-order this does not change the cross-section.
In order to cross check the prediction of MCFM, the cross-section of pp → γ + X with
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√
s = 13 TeV EjetT > 100 GeV |ηjet| < 2.37

µR = µF = pTγ EγT > Emin
T = 125 GeV |ηγ | < 2.37

NNPDF31_nnlo_as_0118_mc αs(MZ) = 0.118 αEM = 1/137

R = 0.4 εγ = 0.0042 n = 1.0

Table C.6: Kinematics and input parameters used for the cross section computations for
comparing MCFM, MadGraph and MCFM with Frixione isolation. The constrained on
the jets were applied once with the jet kT jet algorithm and Rjet = 0.4 we also compute

the cross-section without any constraints on the jets (EjetT > 0 GeV and |ηjet| <∞).

σ [pb] LO NLO

MadGraph 192.348± 0.060 312.363± 0.128
NNLOJET 192.524± 0.015 313.965± 0.067
MCFM 192.532± 0.093 313.833± 0.434

Table C.7: Cross-sections computed with MadGraph, NNLOJET and MCFM with a cut
on the jets.

Frixione cone is computed with MCFM, MadGraph and NNLOJET.3 The parameters are
listed in the Table C.6. The cross-sections were computed both with cuts on the jets
and without. The results can be seen in the Tables C.7 and C.8 (note that as always
NLO = LO + dNLO). As you can see the results agree. Note that I ran every MadGraph
at NLO 40 times to be precise. The error on the cross-sections from MadGraph could be
decreased further by running it a larger number of times.

3.2 Fixed-energy cone

MadGraph can not generate a cross-section or event �le using the �xed energy cone since
non-perturbative fragmentation functions are not implemented. On the other hand MCFM
has three possible choices of fragmentation function; the GdRG LO (see (3.35)) and both
BFG sets. To use a �xed-energy cone, it is required to write fragmentation=.true. in the
input �le and to select the set of fragmentation functions by setting fragmentation_set to
the values GdRG__LO , BFGset_I or BFGsetII. In the manual of MCFM it is recommended

3The cross-sections with NNLOJET of Tables C.7 and C.8 were generously provided by Alexander Huss.

σ [pb] LO NLO

MadGraph 210.263± 0.074 372.307± 0.147
NNLOJET 210.843± 0.0015 374.283± 0.111
MCFM 210.814± 0.093 374.556± 0.432

Table C.8: Cross-sections computed with MadGraph, NNLOJET and MCFM without any
jet cuts.
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to use BFGSet_I and BFGSetII which caused the program to crash. This issue was solved
in the latest version of MCFM.

In MCFM, two types of �xed energy cone are implemented depending on the value of
the parameter epsilon_h

if epsilon_h < 1→ ETiso = epsilon_h pTγ ,

if epsilon_h ≥ 1→ ETiso = epsilon_h.
(C.6)

The variable imode is used to choose the type of �xed cone isolation ETiso = εγp
T
γ or

ETiso = ETthreshold. The variable is determined in src/Cuts/iso.f and depends on the value
of epsilon_h as explained earlier. In the latest version of MCFM 10.2.1, it is now possible
to specify how epsilon_h needs to be used directly in the input �le. However if we want
to use the isolation cone of ATLAS with ETiso = εγE

T
γ + ETthreshold with εγ = 0.0042 and

ETthreshold = 4.8 GeV, we need to modify the internal �le of MCFM as explained below.
It is unfortunate to have to modify three �les as it is not clear which one is used by the
program. In src/Cuts/photo_iso.f we have to change z_c from z_c = one/opepsilon_h

to

opepsilon_h = one+epsilon_h

if (imode == 1) then

!--- isolation using scaling cut

z_c = one/(opepsilon_h+4.8d0/pt(phot_id,p))

It is similar in src/Cuts/photo_iso_phys.f

opeps=one+epsilon_h

if(imode==1) then

!======= this is scaling isolation E_T_max < epsilon_h * pt_gamma

z_c=one/(opeps+4.8d0/pt(phot_id,p))

and in /src/Cuts/photo_iso_z.f

opeps=one+epsilon_h

if(imode==1) then

!======= this is scaling isolation: E_T_max < epsilon_h * pt_gamma

z_c = one/(opeps+4.8d0/pt(phot_id,p))

MCFM predictions for �xed-energy cone are compared with the ones of JETPHOX and
NNLOJET given in [16], the kinematics and parameters are given in the Table C.9 and the
resulting cross-section can be seen in the Table C.10 . The predictions are in agreement.

3.3 Convergence issues with MCFM

One issue we encountered with MCFM 9.1 is that for certain parameters of the cone, the
program does not manage to converge. This happens even after trying to run it multiple
times. For example while studying the εγ dependence of the �xed-energy cone, there were
some couples of (R, εγ) values that would not converge. With the parameters of Table 5.1,
�xed scale µi = 125 GeV (i = a, f, r), the BFGII set and using R = 0.2 and taking the value
of εγ = 0.2, 0.21, 0.22, ..., 0.97, 0.98, 0.99, the two values of εγ = 0.61 and εγ = 0.62 would
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√
s = 13 TeV EjetT > 100 GeV |ηjet| < 2.37

BFGsetII [49] EγT > Emin
T = 125 GeV |ηγ | < 2.37

NNPDF31_nnlo_as_0118_qed_mc [126] αs(MZ) = 0.118 αEM = 1/137.036

R = 0.4 εγ = 0.0042 ETthreshold = 10 GeV

Table C.9: Kinematics and parameters used for the cross-section computations in [16].
The dynamic scale µf = µr = µa = EγT and kT−jet algorithm with a radius of 0.4 were
used. The cuts are similar to the ones of the Table C.6, except that instead of a Frixione
cone, a �xed-energy cone is used and therefore a fragmentation set need to be chosen.

σ [pb] LO NLO

MCFM 192.492± 0.095 305.011± 0.318
NNLOJET 192.487± 0.009 304.645± 0.059
JETPHOX 192.488± 0.003 304.49± 0.14

Table C.10: Cross-sections for photon production with �xed energy cones and the kine-
matics of Table C.9. The values from JETPHOX and NNLOJET are taken from [16].

not converge. The other 78 values of εγ were converging. The value of the cross-sections of
neighbors of these two problematic values were reasonable. A partially satisfactory solution
of this problem is to run MCFM with slightly di�erent parameters around the problematic
one and then to average the values, however this solution does not always work. In this
particular case it did not. The following values εγ = 0.609, 0.611, 0.619, 0.621 also did not
converge. The origin of this problem is unknown to us. Further investigations would be
interesting.

3.4 Cross-section without isolation

Unlike MadGraph, MCFM can be used to compute the cross-section without any photon
isolation. There are three di�erent equivalent ways to compute the cross-section for photon
production without any isolation. We need to set fragmentation =.true. in order to
have a �xed energy cone. The o�cial way, that you can �nd in the �le src/Cuts/iso.f

is to take cone_ang < 10−4 or epsilon_h ≤ 10−4. A more natural way of doing it is to
set epsilon_h to be the center of mass energy of the collision. It also works and gives
the same cross-section. The 3 methods are equivalent. Values of the non-isolated NLO
cross-sections can be seen in Table 3.5 with parameters of Table 3.4. These non-isolated
cross-sections depend on the choice of the non-perturbative fragmentation function Di→γ .
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