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Abstract

Despite the undoubted success of the Standard Model of particle physics, it fails
to answer many longstanding questions, such as the strong CP problem, the observed
effects of dark matter, and the baryon asymmetry in our universe. Many theoretical
models that try to answer those questions require new particles and gauge bosons which
have to be verified or excluded experimentally.

Here, we present the search for two such candidates. The first candidate is an
ultralight pseudo-scalar particle called axion or axion-like particle (ALP). We searched
for them using a Ramsey-type apparatus for cold neutrons. A hypothetical coupling
of ALPs to gluons would manifest itself in a neutron electric dipole moment signal
oscillating in time. Twenty-four hours of data have been analyzed in a frequency range
from 23 µHz to 1 kHz, and no significant oscillating signal has been found. The usage
of present dark-matter models allows for constraining the coupling of ALPs to gluons in
the mass range from 10−19 to 4 × 10−12 eV. This extends the previously tested range
by over three orders of magnitude. The best limit of CG / fama = 2.7 × 1013 GeV−2

(95% C.L.) is reached in the mass range from 2 × 10−17 to 2 × 10−14 eV. Together
with the results of two other laboratory experiments, a large region of the ALP-gluon
coupling parameter space could be excluded.

The second candidate is an axial-vector gauge boson that could mediate a Yukawa-
like interaction in the millimeter range between Standard Model fermions like protons,
neutrons, and electrons. We built a tabletop experiment that applies Ramsey’s technique
to the proton spins of hydrogen in water. We performed a proof-of-principle search for
this exotic interaction for the first time using protons as probe particles. Even though
we could not yet detect or constrain the existence of such an interaction with statistical
arguments, developments of the apparatus are underway that will allow to do this in the
near future. With the apparatus we additionally investigated radio-frequency effects like
the Bloch-Siegert shift and dressed spin states. This is to our knowledge the first time
that the dressed spin states of protons were measured.
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Zusammenfassung

Trotz des unbestrittenen Erfolgs des Standardmodells der Teilchenphysik scheitert
es seit langem bei der Beantwortung einiger Fragen. Dazu gehören das Problem der feh-
lenden CP-Verletzung in der starken Wechselwirkung (engl.: strong CP problem), eine
fehlende Erklärung für die beobachteten Effekte der Dunklen Materie und die Asymme-
trie zwischen Materie und Antimaterie im Universum. Viele theoretische Modelle, die
versuchen diese Fragen zu beantworten, erfordern neue Teilchen und Wechselwirkungen.
Diese müssen experimentell nachgewiesen oder ausgeschlossen werden.

In dieser Arbeit beschreiben wir die Suche nach zwei möglichen Kandidaten. Der
erste Kandidat ist ein ultraleichtes, pseudoskalares Teilchen, das Axion oder axionähn-
liches Teilchen (engl.: axion-like particle, ALP) genannt wird. Danach suchten wir mit
kalten Neutronen und einer Ramsey-Apparatur. Die hypothetische Wechselwirkung der
ALPs zu den Gluonen würde in einem zeitlich oszillierenden elektrischen Dipolmoment
des Neutrons resultieren. Wir analysierten Daten, die über einen Zeitraum von 24 Stun-
den gemessen wurden. In einem Frequenzbereich zwischen 23 µHz und 1 kHz konnten
wir kein oszillierendes Signal feststellen. Mittels aktueller Modelle der Dunklen Materie
konnten wir jedoch die Wechselwirkung zwischen den ALPs, mit Massen zwischen 10−19

und 4×10−12eV, und den Gluonen einschränken. Dies erweiterte den bisher untersuchten
Massenbereich um über einen Faktor Tausend. Der beste Grenzwert der Wechselwirkung
von CG/fama = 2.7 × 1013GeV−2 (95% KI) konnte für Massen zwischen 2 × 10−17

und 2 × 10−14eV bestimmt werden. Zusammen mit den Resultaten zweier weiterer La-
borexperimente kann die Wechselwirkung der ALPs zu Gluonen somit in einem grossen
Teil des Phasenraums ausgeschlossen werden.

Der zweite Kandidat ist axialvektorielles Eichboson, das eine Yukawa-ähnliche Kraft
zwischen Standardmodell-Fermionen wie Protonen, Neutronen und Elektronen auf der
Längenskala von Millimetern vermitteln könnte. Wir entwickelten und bauten ein Kleinst-
experiment, welches die Ramsey-Methode an den Spins der Wasserstoff-Protonen im
Wasser anwendet. Wir untersuchten die Machbarkeit der Messung dieser exotischen
Wechselwirkung. Zum ersten Mal wurden für eine solche Suche Protonen verwendet.
Obwohl wir die Existenz dieser Kraft nicht nachweisen oder statistisch signifikant ein-
schränken konnten, wird eine Erweiterung des Experiments dies in naher Zukunft ermög-
lichen. Wir untersuchten zudem Hochfrequenz-Effekte wie die Bloch-Siegert Frequenz-
verschiebung und die verkleideten Spin-Zustände (engl.: dressed spin states). Unseres
Wissens wurden letztere zum ersten Mal an Protonen gemessen.
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Axion-Like Dark Matter
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1 Introduction

Despite the undoubted success of the Standard Model of particle physics (SM), it fails to
answer many longstanding questions. They include, the observed effects of dark matter
and the baryon asymmetry in our universe [1]. Many new theoretical models that try to
answer those questions require new particles and forces. Their existence has to be verified or
excluded experimentally. One group of new particles are light spin-0 particles that interact
with the SM particles. They can be CP-even or CP-odd and are then called scalar or pseudo-
scalar, respectively. A subgroup of the latter which are massive but ultra-light is also known
as axions or axion-like particles (ALPs) [2].

In the following part of this thesis we report on the search for ALPs using cold neutrons.
First, we introduce the axion and the more general group of ALPs. We also summarize
experimental searches for ALPs in different mass regions and with various approaches. Addi-
tionally, we explain some constraints from cosmology and astrophysics. In Sec. 2 we elucidate
the Beam EDM apparatus that was used to search for the ALPs with cold neutrons. We
then describe in detail the measurements that we performed to characterize the apparatus
and to deduce its sensitivity to ALPs in Sec. 3. At last in Sec. 4, we show the analysis of
the neutron data, the results of the search, and summarize in Sec. 5.

This search for the axion-like dark matter led to new constraints and many sections
throughout Part I of the thesis can be found in the preprint on arXiv [3]. The manuscript
has been accepted by Physical Review Letters on the 26th of September, 2022.

1.1 The Axion and Axion-Like Particles

The axion was initially suggested to solve the strong CP problem of quantum chromody-
namics (QCD) [4–7]. One part of the QCD Lagrangian is the well-known θ term

Lθ = θ
g2

32π2G
µν
c G̃c

µν , (1)

where θ is the vacuum angle/phase, Gµν
c the gluon field tensor with color index c, G̃c

µν =
1
2εµνρσG

ρσ
c with εµνρσ the rank-4 Levi-Civita symbol, and g the coupling strength of the

quark field to the gluon fields. This Lagrangian is renormalizable and gauge invariant,
but not CP invariant. A problem appears from the measurement of the neutron electric
dipole moment (EDM). It is connected to the θ term via dn = 2.4 × 10−16 θ̄e cm, where
θ̄ = θ+ arg detM includes the weak interaction with M being the quark mass matrix [8, 9].
The latest measurement of |dn| < 1.8 × 10−26 e cm at a confidence level (C.L.) of 90% [10]
implies that

∣∣∣θ̄∣∣∣ . 10−10. Although any value in the range −π < θ̄ < π would be perfectly
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fine, the question of why θ̄ is so small without any known mechanism remains a fine-tuning
problem and is called the strong CP problem.

One solution to the strong CP problem (besides e.g. a zero mass quark and a θ̄ = 0
solution) is an additional chiral U(1)PQ symmetry to the SM [4, 5]. This was suggested
by R. Peccei and H. Quinn and is the most promising solution since over 40 years. The
spontaneous and explicit breaking of this symmetry results in a massive but ultra-light spin-0
pseudo-Nambu-Goldstone boson, the axion. Due to this U(1)PQ symmetry, the QCD La-
grangian gets the new terms

Laxion = −1
2∂µa∂

µa︸ ︷︷ ︸
Lkin

+CG
a

fa

g2

32π2G
µν
c G̃c

µν︸ ︷︷ ︸
−Veff

+Lint

[
∂µa

fa
;ψ
]
, (2)

where a is the axion field, CG a model-dependent parameter, and fa the axion decay constant.
Here, the first part describes the axion kinematics, the second part represents an effective
potential and ensures that the symmetry has the chiral anomaly, and the last term are
further interactions that are model dependent. There exist two well-known axion models
that suggest interactions with other particles such as SM fermions (DFSZ model [11, 12])
or a new exotic heavy quark (KSVZ model [13, 14]).

When calculating the vacuum expectation value from the effective potential of Laxion,
it has a minimum at 〈a〉 = − fa

CG
θ̄ which cancels the θ̄ term in the QCD Lagrangian and,

therefore, solves the strong CP problem [15].
The mass of the axion can be calculated by chiral perturbation theory including quantum

electrodynamics (QED) and next-to-next-to-leading order corrections: [16]

ma = (5.691 ± 0.051)
(

109 GeV
fa

)
meV . (3)

It is clear from Eq. (3) that the relation between the mass and the decay constant is fixed
for the axion. There are a few theories that also allow other masses than Eq. (3) such as
the recently developed ZN model [17–19]. There exists also a more general class of ALPs
where the the mass and decay constant are independent. These particles can not solve the
strong CP problem, but explain other phenomena.a

One of those phenomena is dark matter which makes up roughly 27% of our universe’s

aNote that the terms axion and axion-like particle (ALP) are often used interchangeably. Strictly speaking,
the axion is only the QCD-axion that solves the strong CP problem and all other particles should be referred
to be ALPs.
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total mass-energy content [20].b So far, no dark-matter model has been experimentally
verified, but promising candidates remain the ALPs. Since this pseudo-scalar particle must
satisfy the Klein-Gordon equation, it results in an oscillating field. Because they are ultra-
light, they are stable on cosmological time scales and could therefore explain the dark-matter
content in our universe [21–25].

Besides being a solution to the strong CP problem and an explanation for dark matter,
ALPs could also serve as an explanation for the baryogenesis [26, 27]. This may be called
axiogenesis. The baryogenesis is the hypothetical physical process that led to the matter-
antimatter asymmetry in the early universe. In the higher MeV to GeV mass range, they are
not long-lived enough to be relevant for cosmology but could serve as an explanation for the
muon’s anomalous magnetic moment or as a portal to the dark sector [28, 29].

With the axion model, the strong CP problem is solved dynamically. In other words, the
physically observable parameter θ̄ is converted into the form of an oscillating axion field and
thus leading to an oscillating neutron EDM [30]

da
n(t) ≈ 2.4 × 10−16 e cm · CG

fa
a0 cos (mat) , (4)

where a0 is the axion oscillation amplitude and e the elementary charge. Note that this term
is independent of the value of the constant neutron EDM.

The parameter space of ALPs is defined by their mass and the decay constant CG/fa. It
is restricted by various laboratory searches and astrophysical/cosmological constraints that
are summarized in Sec. 1.2 and Sec. 1.3, respectively.

1.2 Experimental Searches

There are various types of ALP searches. A recent summary can be found in the review of
particle physics [31] and a comparison of published results and projections in the repository
of C. O’Hare [32].

Most experiments make use of the coupling to photons and their constraints and pro-
jections are summarized in Fig. 1. Helioscope experiments like CAST or the planned IAXO
at CERN [33] search for ALPs from the sun in the sub-eV mass range. Haloscope experi-
ments, such as ADMX at the University of Washington [34], use resonant microwave cavities
to search for axion dark matter in the local galactic halo of the Milky Way. Their target

bThe two reported numbers in the Planck 2018 report are the Hubble constant H0 ≡ 100h kms−1Mpc−1 =
67.32 kms−1Mpc−1, where h is a dimensionless cosmological parameter, and the cold-dark-matter density
parameter Ωch2 = 0.12011. Together, this leads to the dark-matter mass-energy content of Ωc = 0.268.
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masses are in the µeV regime. Another type of experiment is the ALPS-I/II at DESY [35].
It is a light-shining-through-wall experiment where ALPs are produced and measured in the
laboratory using high-power laser cavities and strong magnetic fields.

Figure 1: Constraints of the coupling of ALPs to photons. Shown is the coupling as a function
of the mass for various experiments (red), astrophysical (green), and cosmological (blue)
observations. The QCD-axion band is shown in yellow. The light shaded areas correspond
to projections and the opaque areas to experimental constraints. Different assumptions,
uncertainties, and C.L. may have been applied. Picture courtesy of C. O’Hare [32].

There are also collider experiments such as Belle-II at SuperKEKB, searching for the
production of ALPs in the MeV to GeV range in e+e− collisions [36]. In the high-energy
collisions, the ALPs are produced and almost immediately decay into two photons which can
be detected.

Beam dump experiments also cover a mass range in the MeV to GeV regime. In these
experiments, a particle beam, usually protons or electrons, collides with a high-Z target, e.g.,
copper. Due to the interaction of the particles with the target nuclei, new particles can be
created via the Primakoff process [37]. Because of their weak coupling to the SM sector,
they acquire a long enough lifetime to leave the target. On their way to the detector that is
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placed a few meters up to hundreds of meters away, they decay back to SM particles, such
as two photons. These decay particles can be measured and related to the new particle.
An example of such an experiment is the NA62-dump at the Super Proton Synchrotron at
CERN [38]. Another example of a similar search is the FASER detector [39]. It is searching
for new physics behind the neutral particle absorber after the ATLAS interaction point at
the LHC. They are looking for various types of particles, including scalar and pseudo-scalar
particles with photon dominance.c A summary of all beam dump experiments at CERN can
be found in the Physics Beyond Colliders initiative report [40].

Various experiments search for ALPs via their coupling to the EDM of particles. The
CASPEr experiment at the University of Mainz is dedicated to searching for an axion signal
using nuclear magnetic resonance techniques in a solid-state-EDM experiment. The collab-
oration recently published an upper limit in a narrow frequency band around 39 MHz [41,
42]. Two other experiments, nEDM at the Paul Scherrer Institut (PSI) and HfH+-EDM at
the University of Colorado, search for a permanent EDM of the the neutron, using ultra-cold
neutrons in a storage experiment, and the electron, using trapped molecular ions. Both ex-
periments analyzed their data for oscillating signals. However, no significant signal from the
nHz-region up to 0.4 Hz was found [43, 44]. Another proposed experiment is the deuteron
storage ring EDM. They plan to test a frequency range from 10−9 Hz to 108 Hz [45].

Here, we present the results of the Beam EDM experiment, which employs a continuous
cold neutron beam with intrinsic sub-ms time resolution [46, 47]. Thus, the accessible
frequency range is extended to 1 kHz. This allowed us to probe for ALP masses more than
three orders of magnitude heavier than tested by previous EDM laboratory experiments.

It is important to notice that searches for an oscillating EDM are the only experiments that
can find the axion, the pseudo-Nambu-Goldstone boson of the U(1)PQ symmetry breaking.
Furthermore, the amplitude of the oscillating EDM is proportional to the coupling constant
ga � 1. On the other hand, experiments that make use of the coupling to photons have a
conversion probability that is proportional to g2

a. The situation is even worse for the light-
shining-through-wall experiments where the ALPs additionally have to be produced in the
laboratory, resulting in a conversion probability proportional to g4

a.

cThere are many interaction channels for those particles, like fermions, gluons, photons, and others.
Photon dominance assumes that the coupling of the new particle to photons is dominant and other channels
negligible.
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1.3 Cosmological and Astrophysical Constraints

Besides the experimental constraints described in Sec. 1.2, there are various constraints from
cosmology and astrophysical observations. A lower bound on the mass can be set from mea-
surements of galaxy luminosity functions at high red-shifts. The galaxy luminosity function
describes the distribution of stars per luminosity interval in a galaxy. As dark matter influ-
ences the star formation and evolution, these distributions are model-dependent. Comparing
data with high-resolution N-body simulations allowed to constrain ma & 10−22 eV [48]. An-
other way to get a rough estimate of this lower bound comes from the de Broglie wavelength
of the ALP field. As dark matter is located in the halo of a galaxy, the de Broglie wavelength
has to be smaller than the smallest dwarf galaxies. This results in roughly the same lower
bound [49].

An important constraint can be set by Big Bang nucleosynthesis (BBN) models and
measurements of the 4He abundance in the universe. The ALPs would change the chiral La-
grangian and in particular a term that includes the neutron-proton mass splitting. This mass
difference between the neutron and the proton defines their abundance during the BBN and
therefore the ratio n/p which defines the 4He abundance. The measurement of the latter [31]
can be compared to the ALP model and constrains fama & 1.8 × 10−9 GeV2

(
ma

10−16 eV

)3/4

for ma < 10−16 eV. In this mass region, the oscillation of the field is slow compared to
the time scale of the BBN and approximately constant. For masses ma > 10−16 eV, the
oscillation is faster and the mass-splitting has to be averaged which leads to a constrain of
fama & 109 GeV2 [50, 51]. An additional effect is the change of the neutron freeze-out
temperature that is small compared to the above explained effect.

A third constraint originates in the measurement of the neutrino number and arrival time
after the collapse of supernova SN1987A. In such a collapse, about 99% of the gravitational
energy is converted into neutrinos. After the collapse of SN1987A, 25 neutrinos were mea-
sured at three detectors within a time frame of less than 13 seconds [52]. This is in good
agreement with theoretical supernova models [53]. If there was another channel of energy
loss, e.g., axions or ALPs, then the number of detected neutrinos and the burst duration
would be different. Therefore, a rough constraint of fa & 106 GeV for masses lower than a
few meV can be set [54].
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2 Beam EDM Apparatus

We use the Beam EDM apparatus for our ALP search, which is described and character-
ized in more detail in the Ph.D. thesis of E. Chanel [55]. It applies Ramsey’s method of
separated oscillatory fields [56, 57]. This method has been used very successfully in atomic
clocks [58, 59], to measure the Newtonian gravitational constant [60], to search for the
neutron EDM [10, 46, 47], to search for new particles and interactions [61], and many more.

We use this technique applied to neutrons to search for an axion-like dark-matter signal.
The neutrons act as a spin clock at their Larmor precession frequency in the magnetic field
B0, which allows to precisely detect magnetic or pseudo-magnetic field changes. In a first
step, the polarized neutrons are flipped by an oscillating field B1 into the plane orthogonal
to B0. Then, they can precess for a certain time until they are flipped again by a second
oscillating B1 field. Usually the frequency of the oscillating fields is scanned around the
resonance while the phases of the two signals are locked. This results in an interference
pattern with typical Ramsey fringes as shown in Fig. 2a.

(a) (b)

Figure 2: Ramsey-type measurements for a monochromatic beam with a wavelength of 9 Å at
a magnetic field of B0 = 220 µT. (a) Typical interference pattern of the neutron asymmetry
(compare definition in Eq. (6)) as a function of the spin-flip signal frequency. The overall
envelop comes from the single spin-flip resonance. The oscillations in the interference pattern
are also called Ramsey fringes and the central fringe corresponds to the resonance frequency.
The solid lines serve only as a guide for the eyes. (b) Signal of a Ramsey phase scan. It
shows the neutron asymmetry as a function of the phase difference between the two spin-flip
signals. The solid line corresponds to a least-squares fit of a sinusoidal function with a fixed
period of 360°.

8



Another option for a Ramsey-type measurement is to keep the frequencies of both spin-
flip signals fixed on resonance but scan the relative phase between the two oscillating signals.
This has the advantage of always being on resonance and obtaining data in the shape of a
simple sinusoidal curve that can be fitted easily as shown in Fig. 2b. In this case, the quantity
of interest is the phase that a neutron spin acquires due to its coupling to a magnetic field
change ∆B(t) and an electric field E

ϕ =
∫ Tint

0

(
γn∆B(t) + 2dn(t)

~
E

)
dt , (5)

where γn is the gyromagnetic ratio of the neutron, dn(t) its EDM including the constant
and the oscillating term for the ALP search, ~ the reduced Planck constant, and Tint the
interaction time which depends on the neutron velocity. Figure 3 shows a schematic of the
experimental setup installed at the cold neutron beam facility PF1b at the Institut Laue-
Langevin in Grenoble, France [62].

Figure 3: Schematic of the experimental setup where a polarized neutron beam enters from
the left. It shows the 6 m-long mu-metal shield around the interaction region and the two
40 cm-long radio-frequency (RF) spin-flip coils for the π/2-flips in green. The electrodes
and the electric field direction are shown in red and the magnetic field direction is indicated
in blue. The spin analyzer (purple) reflects one spin state and transmits the other. The
neutrons are detected using a 2D pixel detector with a sensitive area of 10 × 10 cm2 with
16 × 16 pixels. The vacuum beam pipe surrounding the electrodes is not shown.

In the following sections we give an overview of the individual elements of the experiment.
First we describe the neutron source and characteristic in Sec. 2.1. We then explain the
magnetic mu-metal shielding and the magnetic field stabilization in Sec. 2.2, as well as the
spin-flip coils in Sec. 2.3. We further describe the vacuum beam pipes with the high-voltage
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electrodes inside in Sec. 2.4. Finally, we describe the spin-analyzer and neutron detector in
Sec. 2.5 and finish with the data acquisition system (DAQ) software in Sec. 2.6.

2.1 Neutron Source

We performed the search for axion-like dark matter at the cold neutron beam facility PF1b.
The neutrons are provided by a nuclear fission source via the cold neutron guide H113 [62].
For all measurements, the new advanced super-mirror solid-state polarizer of the facility
was installed that can achieve a polarization of 99.8% [63]. The neutron rate is about
3×109 n/cm2/s after the polarizer with a mean neutron wavelength of 4.0 Å - 4.5 Å. There
is also an adiabatic fast passage spin-flipper at the facility that allows to flip the spins before
the experimental area with an efficiency of more than 99.5%.

In the casemate before the experimental area we placed the neutron chopper shown in
Fig. 4. The chopper allows to create a pulsed beam from the continuous fission neutron
source. It is a Fermi chopper with a Soller-slit-type collimator [64]. It has a rotating casket
with gadolinium sputtered silicon wafers in a vertical and parallel arrangement. If the wafers
are parallel to the beam the neutrons can pass through. If the casket is rotated by a small
angle, the slits become closed and the neutrons get absorbed in the gadolinium layers. The
number of wafers, and therefore the slit width, defines the duty-cycle of the chopper. In
the configuration we used, the duty-cycle was 2%. The pulse rate was 19 Hz for most
measurements with a pulsed beam.

For all measurements related to the ALP search we had the chopper in the open position
with the wafers parallel to the neutron beam. Nevertheless, to measure the spectrum a
pulsed beam is required. With the distance from the chopper to the detector of 10.41 m
in this measurement, and the detector in a time-of-flight mode, we measured the spectrum
presented in Fig. 5.

The spectrum is in principle not necessary to know for the ALP search. It can be helpful
to understand the neutron characteristics and to optimize the setup. Additionally, it was
used as an input parameter for the simulations presented in Sec. 3.1.4.

2.2 Magnetic Field and Mu-Metal Shield

The magnetic field in the Beam EDM apparatus can be measured with eight SENSYS
FGM3D/250 fluxgate sensors [65]. Four of them are placed above the vacuum beam pipe
and the spin-flip coils and four below. All of them are inside the mu-metal shield. They have
a range of ±250 µT and measure the field in all three spatial directions. At the beamtime
at PF1b in 2020 there were also five Stefan Mayer Instruments FLC3-70 fluxgates [66]
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(a) (b)

Figure 4: Images of the Fermi chopper of the Beam EDM apparatus. (a) Top view into the
chopper with a size of 26 × 26 cm2 and a height of 35.4 cm. The neutron path is vertical
through the center. The rotating casket with the Soller-slit-type collimator is visible as a
box in the center below the red holding structure. It has an inner cross-section of 8 × 8 cm2.
The rotation frequency is measured with a laser and a photo-diode. (b) View through the
casket with the Soller-slit-type collimator in the open position. The gadolinium-coated silicon
wafers are visible as dark vertical lines. The number of wafers can be changed to adapt the
duty-cycle. In this configuration the duty-cycle is 2%.

at different positions outside of the mu-metal for monitoring the external magnetic fields.
All fluxgate channels were sampled at a rate of 10 kHz. The data were averaged over
10000 samples and stored at a rate of 1 Hz.

The magnetic field can be controlled via a 3D-coil system shown in Fig. 6. The coils are
in a rectangular-shaped Helmholtz-type arrangement that can create homogeneous fields in
the region of the neutron beam. The target magnetic field can be set by applying currents
through the corresponding coils in all three spatial directions plus the gradient field in the
vertical direction of the main magnetic field. The main magnetic field was set toB0 = 220 µT
and all other fields were adjusted to zero.

Additionally, there is a magnetic field stabilization in all three spatial directions and the
vertical gradient field direction. The stabilization applies a PID-algorithm using the data from
the four fluxgates around the vacuum beam pipe as an input value. The algorithm calculates
the output value that is first converted into an analog voltage via a 20-bit analog-digital
converter AD5791 [67] and then into a current via a self-made voltage-current converter.
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Figure 5: Observed neutron spectrum of the detector at the PF1b beamline at the Institut
Laue-Langevin (ILL) averaged over 2000 neutron pulses. It shows the neutron counts per
time bin of 10 µs for a single neutron pulse as a function of the de Broglie wavelength of
the neutrons. The distribution is peaking at about 4 Å (1000 m/s).

This current is applied through dedicated windings via 20 Ω resistors. For the stabilization,
the magnetic field data were only averaged over 1000 samples such that the field can be
stabilized at a rate of 10 Hz to the sub-nT level.

The interaction region of the experiment is inside a 6 m-long passive magnetic mu-metal
shield. The shield is built from panels of size 1 × 1 m2 with two layers of mu-metal. It is
open at the two sides along the beam axis. Additionally, there are access tubes on the sides
for the high-voltage feed-through and vacuum components.

The magnetic field and the mu-metal shield were thoroughly simulated and characterized
in the master’s theses of A. Gsponer [68] and A. Gottstein [69]. The field was determined
at 47 positions over a distance of 5.3 m along the neutron beam path with five FLC3-70
fluxgates mounted in a cross-shaped arrangement on a magnetic field mapper. The magnetic
field was recorded with a sampling rate of 10 kHz for two seconds at each position. A photo
of the mapper in the experimental apparatus is presented in Fig. 7.

With the mapper, we measured the main magnetic field B0 as a function of the lon-
gitudinal position in the experiment as shown in Fig. 8. Since the FLC3-70 fluxgates can
only measure up to 200 µT, we performed the measurement at much lower field values and
normalized the data to have a mean value of B0 = 220 µT in the electric field region. The
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Figure 6: Photo of the Beam EDM apparatus with the 3D-coil system to set and stabilize
the magnetic field. The coils are mounted to the aluminum frame of the experiment. The
mu-metal panels on top and below the experiment, as well as the one on the backside, are
mounted. One of the two spin-flip coils is visible in green on the left side.

field was averaged over all five fluxgates. It has a relative homogeneity of 4.6 × 10−4 in the
interaction region.

We also measured the shielding factor by applying various external fields with and without
the mu-metal shield mounted. The ratio of the two measurements gives the shielding factor
presented in Fig. 9. We performed the measurement for various frequencies as a function of
the longitudinal position in the experiment. The mu-metal has the highest shielding factor
at 20 Hz.

2.3 Spin-Flip Coils

The Beam EDM apparatus has two spin-flip coils to manipulate the neutron spins. One
of them is visible in Fig. 6. The wire is wound around a polyoxymethylene (POM) tube
with a length of 400 mm and a diameter of 250 mm. It that can be evacuated to reduce
the neutron scattering in air. The oscillating signals are generated by Keysight waveform
generators [70] that are synchronized with a GPS atomic clock [71]. The signals are amplified
with a 1 kW audio amplifier STA-1000 [72]. The magnetic field of B0 = 220 µT corresponds
to a resonance frequency of approximately 6.4 kHz. We applied a spin-flip signal at 6379 Hz
in the Ramsey-phase-scan mode. The signal amplitude was optimized to flip the spins by
π/2 in Ramsey-type measurements.
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Figure 7: Photo of the magnetic field mapper (indicated by the green line) within the
Beam EDM apparatus in the laboratory in Bern. The five fluxgate sensors in a cross-shape
arrangement measure the magnetic field approximately at the neutron beam cross-section.
A laser distance meter measures the position of the mapper along the beam axis.

We used the spin-flippers in two different modes. In the first mode we applied a con-
tinuous sinusoidal signal. This was mostly used when measuring with continuous neutron
beam and, therefore, during all measurements related to the ALP search. The spin-flip field
in sinusoidal mode can actually achieve a perfect π/2-flip only for one specific wavelength.
The second mode was used when the chopper was running and the neutron beam was pulsed.
Then, we also applied a sinusoidal signal but additionally modulated the signal amplitude.
The modulation was triggered by the chopper and synchronized with the neutron pulse. With
the proper modulation function, a π/2-flip can achieved for almost all neutron wavelengths.

The spin-flip signal frequency was chosen at 6379 Hz because this is a prime number.
The pulse frequency of the chopper is 19 Hz and, therefore, a prime number as well. This
way it is assured that the phase of the sinusoidal signal is not in sync with the neutron
pulse. Indeed, simulations of a pre-study have shown that a randomized phase is required
to perform our measurements. Otherwise, the shape of the Rabi and Ramsey measurements
becomes systematically distorted.
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Figure 8: Measurement of the main magnetic field B0 in the vertical direction as a function
of the longitudinal position in the experiment. The measured data (blue) is averaged over all
five fluxgates. The two vertical dashed lines indicate the beginning and end of the electric
field region. The vertical gray bars indicate the position of the spin-flip coils.

2.4 Vacuum Beam Pipes and High-Voltage Electrodes

The region were the neutrons can interact with the electric field has a length of 3 m and is
inside a vacuum beam pipe between the spin-flip coils. There are three sets of one-meter-long
electrode stacks with a high-voltage electrode in the center and two ground electrodes on
top and bottom. The electrode separation is 1 cm. This setup allows for two neutron beams
passing between the electrodes, simultaneously sensing the electric field direction parallel and
anti-parallel to the magnetic field. This double beam arrangement provides the possibility to
compensate for global field drifts and common-mode noise.

The high-voltage potential of ±35 kV was provided by an FUG HCP [73] during all
ALPs measurements.d This resulted in an electric field of 35 kV/cm. A measurement of the
electric field using the relativistic ~v × ~E-effect can be found in Sec. 3.3. The potential was
applied to the central electrode via a custom-made non-magnetic feed-through.

To have a good high-voltage performance and to reduce the neutron scattering in air, the

dA more powerful power supply was used for all other measurements but was not made available to us for
the ALP search.
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Figure 9: Shielding factor of the mu-metal in the vertical direction as a function of the
longitudinal position in the center of the experiment. The factor was measured for multiple
frequencies between DC and 1 kHz. Only the ones at 0.5 Hz (blue), 10 Hz (orange), 20 Hz
(green), and 100 Hz (red) are shown. The two vertical dashed lines indicate the beginning
and end of the electric field region. The vertical gray bars indicate the position of the spin-flip
coils.

vacuum beam pipes were evacuated to a pressure of roughly 6 × 10−5 mbar. The pressure
was monitored with multiple vacuum pressure gauges.

2.5 Spin Analyzer and Neutron Detector

For the analysis of the neutron spin we make use of Fe/Si polarizing supermirrors with an
m-value of m = 5. These are silicon wafers with many alternating layers of iron and silicon
that are placed in a magnetic field of a few mT. In such a setup, they have the property to
have a spin-dependent neutron reflectivity. With a properly chosen angle of incidence, they
reflect one spin state and transmit the other. Therefore, the neutrons of each spin state are
spatially separated and can be counted with a 2D detector. We optimized the alignment
of the analyzer mirrors for highest separation power and lowest cross-talk between the two
spin states and two beams. A qualitative 2D-image of the detector that shows the four
beamspots is shown in Fig. 11. The inner and outer two spots correspond to the transmitted
and reflected spin states, respectively. The presented data are the sum of two measurements
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Figure 10: Photo with the view into to vacuum beam pipe. The electrodes are held by a
holding-ring structure. The high-voltage electrode is in the center and the ground electrodes
are on top and bottom. The electrode separation is 1 cm.

with 2000 neutron pulses for each spin polarization state of the neutron beam.
For each beam the property of interest is the neutron asymmetry, defined as

A = N↑ −N↓
N↑ +N↓

, (6)

where N↑ and N↓ are the neutron counts in the spin up and down state, respectively. To be
most sensitive to changes in the asymmetry, the frequency and relative phase of the RF spin-
flip signals are adjusted such that for each beam A ≈ 0, i.e., N↑ ≈ N↓. This corresponds to
the point of steepest slope in a Ramsey resonance pattern.

We use a custom made CASCADE detector by CDT GmbH for the neutron detection [74].
The detector is based on the gas electron multiplier (GEM) technology and has a detection
efficiency of roughly 35% at a neutron wavelength of 5 Å. It has a 2D-pixel array of size
10 × 10 cm2 with 16 × 16 = 256 pixels and allows to measure with various time bin sizes in
steps of 100 ns. It has an internal memory of 32 MB which allows to save 222 data points.
This includes the spatial position of the neutron hits and the time bin. When the memory is
full it has to be read out before new data can be stored. For the purpose of the ALP search
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Figure 11: Qualitative 2D image of the four beamspots. The inner two spots correspond
to the transmitted spin states whereas the outer two spots correspond to the reflected spin
states.

we reduced the transversal resolution from 16 pixels to 1 pixel to be able to save more time
bins and use it only as a stripe detector.

For the ALP measurement we set a time bin size of 250 µs which corresponds to a
sampling rate of 4 kHz. We used a Keysight waveform generator [70] to trigger the start
and the stop of a measurement precisely. The waveform generator was synchronized with a
GPS atomic clock [71]. The start pulse was triggered at a rate of 16 mHz that corresponds
to 62.5 s and the stop pulse was triggered 57.5 s after. This allowed the DAQ to read out
the detector and save the data in the 5 s between the stop pulse and the next start pulse.

According to the datasheet of the detector it can handle an overall neutron rate of up
to 2 × 107 s−1 and up to 107 s−1 for a single pixel. This is defined by the shortest time
bin size of 100 ns. In reality, a neutron hit creates a shower length of roughly 300 ns which
can create signal pile-up at high neutron rates. This results in a deviation of the count error
from the statistically expected Poisson error.

We investigated this behaviour in a dedicated beamtime at the BOA beamline at the PSI
in July 2021. The detector was placed close to the neutron guide exit of the beamline such
that the neutron beam covered the full pixel array. Paper was used to attenuate the beam to
characterize the detector at different neutron rates. For each rate we counted the neutrons
for various settings of the time bin size and at least 5000 time bins. We then calculated the
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relative difference between the theoretical Poisson error and the measured error of the total
counts over all pixels with √

N − σN√
N

, (7)

where
√
N is the mean Poisson error and σN the standard deviation of all time bins.

With 50 sheets of paper the neutron rate was attenuated to roughly 8.8 × 106 s−1.
Figure 12 shows the theoretical Poisson and measured error of the neutron counts as a
function of the time bin size. For time bin sizes below 500 ns, the data should not be
considered for an analysis since this is on the same order as the neutron shower length.
For time bin sizes between 1 µs and 20 µs, the Poisson error is overestimating the neutron
count error due to the above described signal pile-up. At even higher time bin sizes the
measured neutron count error increases due to beam fluctuations. This is a characteristic of
the spallation neutron source at the PSI and may be different at the fission source at the
ILL.

Figure 12: Theoretical Poisson error (orange) and measured error (blue) of the neutron
counts as a function of the time bin size.

For each neutron rate we calculated the average deviation for time bin sizes between
1 µs and 20 µs. In this range the relative deviation is constant and no other effects than
the event pile-up are present. Figure 13 shows the relative difference between the Poisson
and measured neutron count error for various neutron rates over the sensitive area of the
detector. The difference follows an exponential function with a time constant of (64±10) ns.
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Figure 13: Relative difference between the Poisson and measured error of the neutron counts
as a function of the neutron rate. The Poisson error is overestimating the neutron count
error by this percentage. The data are fitted with an exponential function that revealed a
time constant of (64 ± 10) ns.

In reality, the deviation from the Poisson error is dependent on the rate per pixel rather
than the total rate. For the measurement with a neutron rate of 12.5 × 106 s−1 and a time
bin size of 5 µs, we performed a single pixel analysis. The data are presented in Fig. 14
and show a linear behaviour in the analyzed range. The least-squares fit revealed a slope of
(3.66 ± 0.05) × 10−7 s. In other words, the deviation from a Poisson error is less than 1% if
the rate per pixel is below 27.3 × 103 s−1.

Additionally, we created a simple Monte-Carlo event pile-up simulation for comparison.
The simulation creates random events at a defined rate. It then merges neutron showers
of consecutive events if the hit from the second neutron is within the shower time of the
neutron before. If this merged shower length exceeds a threshold, the event is labeled invalid,
otherwise it is labeled valid. For the simulation we used the shower length of 300 ns and a
threshold of 500 ns as it was the setting of the detector. The relative number of the invalid
events of the simulation is shown in Fig. 14. It is on the same order as the relative deviation
of the detector count error which is an indication that the error deviation does indeed come
from event pile-up.

The deviation from the Poisson error should be characterized for each setting of the
experiment. The neutron rate integrated over the entire sensitive area of the detector during
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Figure 14: Relative difference between the Poisson and measured count error for the 256
individual pixels as a function of the neutron rate. The data are shown in blue and a linear fit
(solid line) revealed a slope of (3.66 ± 0.05) × 10−7 s. The results of a simple event pile-up
simulation is shown in orange.

the ALP search was roughly 107 s−1 and constant over the coarse of the data taking. We
characterized the relative difference of the error for each beamspot using the data of the
measurement itself. An example of such an analysis is presented in the histogram of Fig. 15.
For each run of in the measurement sequence we calculated the relative difference using
Eq. (7) as explained before. For the full measurement sequence we calculated the mean
relative deviation for each beamspot. These values are then used to correct the Poisson error
of the individual measured neutron count value (for each beamspot and time bin).

2.6 MIDAS Data Acquisition System

We use the MIDAS data acquisition system for our experiment [75]. MIDAS is very flexible,
can be controlled via command line or a web interface, and is accessible and controllable via
SSH. The system was chosen because it has the capabilities to

• control equipment
• read-out devices
• automate sequences of measurements
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Figure 15: Histogram of the relative deviation of the neutron count error from the Poisson
error for the setup of the ALP measurement. Each entry corresponds to the mean deviation
of a run of 57.5 seconds. The total number of runs or entries is 1275. The deviations for
the top beam are (13.1 ± 0.2)% and (9.5 ± 0.1)% for the reflected (label TR, blue) and
transmitted (label TT, orange) beamspot, respectively. The deviations for the bottom beam
are (11.5 ± 0.2)% and (9.7 ± 0.1)% for the reflected (label BR, red) and transmitted (label
BT, green) beamspot, respectively.

• trigger warnings and alarms
• process data
• integrate the ROOT framework for data analysis [76]
• display data in real time

The measurements are organized in runs. Before each run, every device is initialized with
the new settings from the database if they have changed. For example, the new frequency,
amplitude, and phase of the spin-flip signal is sent to the waveform generator. When all
devices are ready, the measurement is started. The measurement time is usually defined by
the neutron detector settings. If the data acquisition of the detector is finished, it sends a
signal to MIDAS that stops the measurement of all devices. The data of interest is then
stored in a binary MIDAS data file. At the same time, MIDAS triggers the analyzer software
that runs as a back-end program. The analyzer can pre-process the data and convert them
into the ROOT format.

Most sensors like magnetic fluxgates, vacuum pressure gauges, and temperature sensors
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are read out continuously every second, independently on the MIDAS runs. This is the slow-
control system. The measured values are displayed live in the web interface. Most sensors
have a defined threshold for triggering a warning or an alarm. They can help to make the
user aware that something is not working as expected.

An important part of the MIDAS system is the sequencer. It allows to automate mea-
surement sequences instead of changing settings manually between each run. We used the
sequencer for all type of measurement, e.g., when performing a Rabi frequency scan it au-
tomatically changes the frequency of the spin-flip signal. This makes the measurements less
prone to user errors and allows to let an elaborate measurement running over night.

We programmed all the drivers for the individual devices, the front-ends programs to
integrate the drivers into the structure of MIDAS, the analyzer software, and the scripts for
the sequencer. The slow-control system was made multi-threaded to minimize the dead time
between measurements.
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3 Characterization Measurements

To characterize the experimental setup regarding the search for ALPs, we performed several
auxiliary measurements. In Sec. 3.1, we explain the measurements where we created artificial
ALP signals via oscillating magnetic fields. Since these artificial signals showed an unexpected
behaviour, we performed additional measurements and simulations to investigate the origin.
One of the reasons is an effect we call resonant cancellation. It was investigated in a dedicated
beamtime at the Narziss beamline at the PSI and is explained in detail in Sec. 3.2. We further
explain the ~v × ~E-measurement and the analysis that we performed to deduce the electric
field in Sec. 3.3.

3.1 Artificial ALP Measurement

To connect the signal amplitude of the neutron asymmetry of Eq. (6) to the ALP-gluon cou-
pling in Eq. (4) multiple calibration measurements were conducted. In these measurements,
we created artificial signals by applying homogeneous sinusoidally oscillating magnetic fields
of various frequencies and amplitudes Ba in the vertical direction parallel to B0 through the
entire setup. The oscillating current was applied via a 1 kΩ resistor to the magnetic field
stabilization coil. We did not apply any other fields than Ba during these measurements.
Note, such a field can be interpreted as a corresponding false EDM signal using Eq. (5)

dn = ~γnBa

2E . (8)

3.1.1 Magnetic Field Coefficient

We conducted a calibration measurement in the laboratory in Bern where we correlated the
magnetic field amplitude Ba to the applied oscillating electric current in the auxiliary coil.
As in the measurement of the magnetic field B0 and the shielding factor of the mu-metal
described in Sec. 2.2, the field was determined at 47 positions over a distance of 5.3 m
along the neutron beam path with five fluxgates mounted in a cross-shaped arrangement on
a magnetic field mapper.

The magnetic field was recorded with a sampling rate of 10 kHz for two seconds at each
position and for each axis of the five fluxgates. A sinusoidal function was fitted to the data.
The results of such a scan is shown in Fig. 16. Each point corresponds to an amplitude of
the sinusoidal fit. In this measurement, the applied signal was oscillating at 250 mHz and
had an oscillating current amplitude of 2.5 mA.
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Figure 16: Magnetic field data of the central fluxgate sensor with an artificial signal at
a frequency of 250 mHz and an oscillating current amplitude of 2.5 mA. The signal was
applied in the vertical direction which is parallel to B0 (green). The signals amplitudes of the
transversal direction (orange) and longitudinal direction (blue) are also shown. Their values
are slightly above zero due to a misalignment of the fluxgate. The two vertical dashed lines
indicate the beginning and end of the interaction region and the vertical gray bars indicate
the position of the spin-flip coils.

We repeated this measurement for various combinations of frequency and amplitude
settings of the oscillating current. The amplitude of the oscillating magnetic field was
averaged over the interaction region and all five fluxgates. We did additional measurements
where we applied DC currents of both polarities and same amplitudes as for the AC case. The
measurements of the two polarities were subtracted to be comparable with the oscillating
current measurements. The results of all those measurements is shown in Fig. 17.

For each set of amplitudes corresponding to the same frequency we performed a linear fit
to get the magnetic field coefficient. Three examples at DC, 40 Hz, and 100 Hz are shown
in Fig. 18. This coefficients (fitted slope as shown in Fig. 18) for each frequency are shown
in Fig. 19.

The magnetic field coefficient is constant for frequencies up to 5 Hz. At higher frequen-
cies the coefficient decreases due to the shielding of the aluminum parts from the construction
frame that is visible in Fig. 7. Since this effect does not apply in the case of ALPs, we do not
take these values into account and calculate the calibration parameter from the measured
data up to 5 Hz as to SB = (12.13 ± 0.02) µT A−1.
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Figure 17: Measurement of the magnetic field with artificial signals at various frequencies
and amplitudes. The signal was only applied and analyzed in the vertical direction. The
magnetic field amplitude for the applied oscillating current amplitudes of 1 mA (blue),
2.5 mA (orange), 5 mA (green), 7.5 mA (red), and 10 mA (purple) are shown. The dashed
lines serve only as a guide for the eyes.

Figure 18: Examples of the magnetic field amplitude as a function of the oscillating current
amplitude for DC (blue N), 40 Hz (yellow, I), and 100 Hz (red H). The data are fitted
with the linear functions without an offset (solid lines).
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Figure 19: Magnetic field coefficient for various frequencies between DC and 200 Hz. The
full data set is shown in black where the solid line corresponds to a least-squares fit of
Eq. (9). The red points were taken into account to determine the calibration parameter
SB = (12.13 ± 0.02) µT A−1.

The data are fitted with a Butterworth filter [77] that is defined as a function of the fre-
quency f :

Adc√
1 + (f/fc)2n

, (9)

where Adc is the DC amplitude, fc the cut-off frequency (approximately the −3 dB fre-
quency), and n the filter order. The fit of the data presented in Fig. 19 revealed Adc =
(12.153 ± 0.008) µT A−1 which is in agreement with the calibration parameter SB, fc =
(356 ± 11) Hz, and n = (0.55 ± 0.01).

3.1.2 Neutron Asymmetry Coefficient

A second calibration measurement was performed with neutrons to correlate the amplitude
of the oscillating neutron asymmetry in Eq. (6) to the same coil currents applied in the first
calibration measurement of Sec. 3.1.1. The main magnetic field was set to B0 = 220 µT.
All other fields were set to zero and the magnetic field stabilization was turned off. We
acquired the neutron asymmetry for 60 seconds at a sampling rate of 4 kHz and performed
again a sinusoidal fit to the data. Four examples of such signals for the upper beam are
shown in Fig. 20.
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Figure 20: Measurements of the neutron asymmetry of the upper beam for artificial signals
at 100 mHz (left) and 500 mHz (right) with oscillating electric current amplitudes of 5 mA
(top) and 10 mA (bottom). The sampling rate was 4 kHz but only subsets of 10 s with
every 100th data point (sampling rate of 40 Hz) are shown in black. The solid red lines
are least-squares fits of a sinusoidal function. The fit parameter of interest is the amplitude
which is given in the legend of each subplot.

As in Sec. 3.1.1, these measurements were performed at various frequencies and ampli-
tudes. The sinusoidal signals of the neutron asymmetry of the two beam have the same
phase, whereas in the case of a real ALP signal they were phase shifted by π. As all fur-
ther analysis of the ALPs is done for the difference of the two beams, we added the fitted
amplitudes of the artificial signals of the two beams. This gives the same result as in the
case of the difference of the two beams with a signal that is phase shifted by π. For each
set of amplitudes corresponding to one frequency we again performed a linear fit to get the
neutron asymmetry coefficient. Those coefficients are presented in Fig. 21.

The neutron asymmetry coefficient is also constant up to about 5 Hz as the magnetic
field coefficient. The fit of the data with Eq. (9) revealed Adc = (11.664±0.002) A−1 which
is in agreement with the mean calibration parameter SA = (11.5 ± 0.5) A−1 for frequencies
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Figure 21: Measurement of the neutron asymmetry coefficient for various frequencies between
DC and 800 Hz. The full data set is shown in black where the solid red line corresponds to
a least-squares fit of Eq. (9). The mean calibration parameter of SA = (11.5 ± 0.5) A−1

was determined for frequencies below 5 Hz.

below 5 Hz, fc = (9.143 ± 0.006) Hz, and n = (1.1922 ± 0.0008). The primary reason for
its subsequent decrease is the frequency-dependent RF shielding of the aluminum parts of
the setup, i.e., the construction frame, vacuum beam pipe, and electrodes. A measurement
of the aluminum shielding is presented in Sec. 3.1.3.

Another reason is an effect that depends on the neutron velocity: as shown in Eq. (5),
the acquired neutron spin phase has to be integrated over the interaction time. In the case
of an oscillating field, this integral becomes zero if the period of the oscillation matches the
interaction time. This effect is suppressed for a beam with a broad velocity distribution but
still results in a decrease in sensitivity at higher frequencies. We call this effect resonant
cancellation. A simulation is presented in Sec. 3.1.4 and a dedicated measurement at the
monochromatic Narziss beamline to investigate this behaviour is presented in Sec. 3.2.

Besides calculating the neutron asymmetry coefficient, the fitted amplitudes Â of the
signals from the top beam (subscript t), the bottom beam (subscript b), and the difference
of the signals of the two beams signals (subscript d), can be used to calculate a suppression
factor of the two beam method using

Ât + Âb

2Âd

. (10)
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The results for two applied current amplitudes in the frequency range between 50 mHz and
100 Hz is shown in Fig. 22. The average suppression factor in this range is 23.6 ± 0.3. This
means that a signal which is present in both beams with the same amplitude and phase can
be suppressed by a factor of 23.6. This applies, for example, to global drifts of the magnetic
field or the eminent 50 Hz signal coming from the power line frequency.

Figure 22: Suppression factor of the two beam method as a function of the frequency in the
range from 50 mHz to 100 Hz. The suppression factor was calculated using Eq. (10) for
the oscillating currents with amplitudes of 7.5 mA (blue) and 10 mA (orange). The average
suppression factor of 23.6 ± 0.3 is indicated by the black line.

3.1.3 Aluminum Shielding

To investigate the RF-shielding effect of the aluminum parts we performed a measurement
in a simplified setup. The setup consisted of a FLC3-70 fluxgate sensor [66], placed in the
center of the Beam EDM apparatus. Additionally, we placed two electrode dummies above
and below the sensor, as well as a 1 m-long section of the vacuum beam pipe centered
around. A schematic of the setup is shown in Fig. 23.

We applied an oscillating current via a Helmholtz-type coil at the same position as the
magnetic field stabilization coil of the other calibration measurements but with only one
winding. For various frequencies we measured the magnetic field amplitude once with only
the fluxgate and then with the electrodes, the vacuum pipe, or both. Taking the ratio of the
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Figure 23: Schematic of the setup that we used to measure the RF shielding of the aluminum
parts. A fluxgate (purple) was placed in the center of a Helmholtz-type coil (not drawn)
that was used to create the oscillating magnetic field (blue). To measure a shielding factor
the vacuum beam pipe (orange), the electrode dummies (green), or both were added. All
the labels are dimensions in millimeter.

former with the rest gives the shielding presented in Fig. 24.
The data are fitted with Eq. (9) and the results are summarized in Tab. 1. The fitted

parameters of the setup with the vacuum beam pipe and the one with the vacuum beam
pipe + electrodes are used in the simulation of the resonant cancellation effect in Sec. 3.1.4.

Adc fc n

electrodes 1.07 ± 0.03 (44 ± 7) Hz 0.54 ± 0.05
vacuum pipe 1.000 ± 0.001 (10.95 ± 0.03) Hz 1.012 ± 0.001

vacuum pipe + electrodes 0.96 ± 0.01 (11.4 ± 0.3) Hz 1.24 ± 0.02

Table 1: Fitted parameters of Eq. (9) into the aluminum shielding data presented in Fig. 24.

3.1.4 Resonant Cancellation Simulation

We tried to reproduce the behaviour presented in Fig. 21 with a simulation using the matrix
formalism presented in [78, 79]. In this formalism, a spin vector can be manipulated by the
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Figure 24: Measurement of the RF shielding of 15 mm thick aluminum electrodes and the
vacuum beam pipe. The shielding for various frequencies is shown for the setup with two
15 mm electrode dummies above and below the fluxgate (blue), with the fluxgate inside
the vacuum beam pipe (orange), and both together (green). The data are fitted with
Butterworth-filter functions (solid lines) [77].

application of time-evolution matrices. The spin-flip probability can then be calculated by

Psim =
∣∣∣∣∣
(

0
1

)
MN · MN−1 · ... · M1 ·

(
1
0

)∣∣∣∣∣
2

, (11)

where the Mi are the time-evolution matrices which are dependent on the position/section
of the apparatus.

The simulation was divided into seven sections as schematically shown in Fig. 25. In
each of the sections, various magnetic fields and aluminum shielding are present. The main
magnetic field B0 is present and constant in all sections. The artificial ALP field Ba is also
present in all sections but is shielded in section III by the vacuum beam pipe (orange line
in Fig. 24) and in section IV by the vacuum beam pipe + electrodes (green line in Fig. 24).
At the position of the spin-flip coil in section I is the additional oscillating spin-flip field Brf .
The result of the simulation, together with the data from the measurement of Sec. 3.1.2 are
presented in Fig. 26.
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Figure 25: Schematic of the sections that were used for the simulation of the resonant
cancellation effect.

Figure 26: Simulation of the attenuation of the neutron asymmetry amplitude due to the
resonant cancellation effect and the RF shielding as a function of the frequency of the artificial
signal (orange). The data from Sec. 3.1.2 with their fit are shown for comparison (blue).

Besides dividing the setup into sections of various damping of the artificial ALP field, we
also averaged over the absolute phase of the spin-flip signals and the neutron spectrum of
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Fig. 5. The latter was weighted by the neutron counts for each wavelength.
The simulation is reproducing the general behaviour of the attenuation due to the alu-

minum shielding and the resonant cancellation effect. For low frequencies below roughly 5 Hz
it is constant. For higher frequencies, the attenuation becomes stronger and even shows a
bumpy shape. Nevertheless, the attenuation of the simulation cannot fully reproduce the be-
haviour of the data. The reason is most certainly that the simulation is not detailed enough.
The aluminum shielding was only measured in the center between two dummy electrodes
and with no central electrode. On the other hand, the neutron beam has a width that is only
slightly narrower than the electrode width. At the edges of the electrodes, the aluminum
shielding is less and thus also the attenuation of the artificial signal. Additionally, there
are various other aluminum pieces like the frame of the setup or vacuum and high-voltage
feed-throughs. The effect of the mu-metal shield around the artificial ALP coil was also not
taken into account.

3.1.5 Calibration

Together, the two calibration measurements of Sec. 3.1.1 and Sec. 3.1.2 are used to translate
the amplitude of an oscillating neutron asymmetry into a corresponding (pseudo-)magnetic
field amplitude via

Ba = 4.2
3
SB

SA
A . (12)

The factor of 4.2/3 comes from the fact that the magnetic and the electric interaction length
are different as shown in Fig. 3. The resulting calibration curve as a function of frequency is
presented in Fig. 27.

The simulation described in Sec. 3.1.4 could not reproduce the behaviour of the data
presented in Fig. 21 but suggest that the actual decrease in sensitivity would be smaller for
real ALP signals. However, since these effects cannot be simply decorrelated, we use the
curve shown as the red line in Fig. 27. This results in a conservative upper limit at high
frequencies if no ALP-signal was found.

3.2 Resonant Cancellation Measurement at Narziss

The measurement of the neutron asymmetry coefficient SA described in Sec. 3.1.2 shows a
decrease at frequencies above 5 Hz. This was expected from the frequency-dependent RF
shielding of the aluminum parts of the setup. At a frequency of roughly 200 Hz there is
an additional bump that was not expected. A thorough investigation with calculations and
simulations revealed the effect we call resonant cancellation. For a monochromatic beam
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Figure 27: Calibration factor SB/SA as a function of frequency. The measured data is shown
as dots, whereas the red line corresponds ratio of the fitted functions of SB and SA which
is used for the data analysis. For instance, typical neutron asymmetry signals of the order
10−5 correspond to a pseudo-magnetic field of 14 pT for frequencies smaller than 5 Hz using
Eq. (12).

with only one wavelength it can be simply explained.
The additional phase that the neutron spins acquire when interacting with an oscillating

magnetic field Ba(t) parallel to the main magnetic field B0 is

∆ϕ = γn

∫
Ba cos (2πνat) dt , (13)

where νa is the frequency of the oscillating field. This becomes maximal when the integral
is evaluated symmetrically around zero which leads to a maximum value of the phase

∆ϕmax = γnBa

∫ L/(2v)

−L/(2v)
cos (2πνat) dt = γnBa

πνa
sin
(
πνa

L

v

)
, (14)

where L is the interaction length and v is the neutron velocity. Eq. (14) has the form of
a sinc-function with roots at νa = v/L. The interpretation is, that when the interaction
time of a neutron with the oscillating field is exactly the period of an oscillation, the integral
becomes zero and so does the additional phase or the effect of an oscillating ALP field.

To test this effect we conducted at a dedicated beamtime at the Narziss beamline at
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the PSI. This measurement was performed together with the master’s student I. Calic [80].
The Narziss beamline is usually used for neutron reflectivity measurements. It provides
neutrons with a de Broglie wavelength of 4.94 Å and a spread of 1.5% full width at half
maximum (FWHM). It can therefore be regarded as monochromatic for the purpose of our
measurement. A photo of the beam line with our experimental setup is presented in Fig. 28.

Figure 28: Photo of the experimental setup used to measure the resonant cancellation effect
at the Narziss beamline at the PSI. Neutrons enter the setup from the left (orange arrow).
They first pass the polarizer that transmits only one spin state. The neutrons then enter the
magnetic interaction zone where a constant magnetic field B0 and an oscillating magnetic
field Ba(t) can be applied in the vertical direction. Two 4 cm-long spin-flip coils with a
center-to-center separation of 50 cm allow to flip the spins. After the second spin-flip coil is
the analyzer that again transmits only one spin state. The neutrons are counted with a 3He
detector. Additionally, there are four apertures on the red pillars to define the beam size.

The neutrons from the beam exit in the wall are polarized with a Fe/Si-polarizing super-
mirror that transmits only one spin state. The other spin state is stopped in apertures. To
maintain polarization there is a magnetic guiding field between the polarizer and the first
spin-flip coil. The interaction zone, where the neutrons interact with the magnetic fields, is
in the center of the experiment. The main magnetic field B0 ≈ 3 mT in the vertical direction
is created by an electro-magnet surrounding the back of a c-shaped iron yoke. The yoke
guides the field lines and creates a homogeneous field between its flanks. The magnetic field
Ba(t) is created by a Keysight waveform generator [70] that is connected to an additional
coil between the yoke and the white holding plate of the spin-flip coils via a Kepco bipolar
power amplifier [81]. The two rectangular solenoid-type spin-flip coils have a length of 4 cm
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and a center-to-center separation of 50 cm. Their axis is aligned with the neutron beam
and their cross-section is much bigger than the size of the beam. The spins are analyzed
with another Fe/Si-polarizing supermirror as in the polarizer that let only one spin state
pass. The transmitted neutrons are then counted using a 3He detector. Each neutron hit in
the detector creates an electronic pulse that is processed by a custom-made DAQ using an
Arduino. It saves the neutron counts as a function of the time by increments the number
of counts in the corresponding time bin that was defined before the measurement. There
are four apertures with an opening of 30 × 2 mm2 that define the beam cross-section and
divergence. The first is at the beam exit in the wall, the second before the first spin-flip coil,
the third after the second spin-flip coil, and the fourth just before the detector.

The spin-flip signals were optimized for a Ramsey measurement. We measured a reso-
nance frequency of (91.86 ± 0.04) kHz and (91.42 ± 0.05) kHz for the first and the second
spin-flip coil, respectively. For further measurements we applied a signal at a frequency of
91.7 kHz. The amplitudes of both spin-flip signals were optimized for the highest signal
visibility in a Ramsey measurement, corresponding to a π/2-flip.

To test the functionality of the setup we performed various frequency and phase scans.
Two such measurements are presented in Fig. 29 for illustration. The measurement time for
each data point was roughly 10 seconds.

The Ramsey frequency scan shows the behaviour as expected where the overall envelope
comes from the single spin-flip resonance and the fringes are the interference pattern of the
two spin-flip coils [56, 57]. Figure 29a shows nicely that the neutron beam is monochromatic.
Compared to the Ramsey frequency scan shown in Fig. 66 where there is a quadratic velocity
distribution, all fringes in Fig. 29a reach almost the maximum possible neutron counts of
about 28 × 103. This is only the case if there are not multiple neutron velocities that mix on
the way to the detector. The Ramsey phase scan in Fig. 29b shows a sinusoidal behaviour
whose phase is shifted if an additional offset current is applied. A linear least-squares fit
through all phases revealed (−257.1 ± 0.5) °/A which corresponds to roughly 40 µT/A.
The measurements presented in Fig. 29 show that the apparatus works as expected and that
an offset current through the additional coil indeed changes the precession frequency of the
neutrons.

To measure the resonant cancellation effect we were interested in the amplitude of the
oscillating neutron signal. Therefore, we had to measure the neutron counts continuously.
Because of limitations from the DAQ, we phased/mapped the data into two periods. This
mapping was triggered by the waveform generator that created the signal for the oscillating
magnetic field Ba(t). We chose the time bin size of 20 µs such that for the highest frequency
of 3500 Hz there are still at least ten time bins per oscillation. The relative phase between
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(a) (b)

Figure 29: Measurements for testing the functionality of the setup. (a) Ramsey frequency
scan over the full resonance. The data show the neutron counts as a function of the spin-flip
signal frequency. The dashed lines serve only as a guide for the eyes. (b) Ramsey phase
scan were the neutron counts are shown as a function of the relative phase between the two
spin-flip signals. The frequency was fixed on resonance at 91.7 kHz. Besides the B0 field
that serves as a reference (black), we applied an additional constant offset current via the
ALP coil of −100 mA (blue), +100 mA (orange), +200 mA (green), and +300 mA (red).
The solid lines correspond to least-squares fits of a sinusoidal function.

the spin-flip signals was set to 105° which corresponds to the point of steepest slope in the
reference measurement of the Ramsey phase scan shown in Fig. 29b. At this point, the
measurement is most sensitive to magnetic field changes. Two examples of neutron signals
are shown in Fig. 30 and the results of their sinusoidal fits are presented in Tab. 2.

90 Hz 252 Hz
amplitude 13.9 ± 0.5 37 ± 1

offset 132.1 ± 0.3 368 ± 1
amplitude / offset 0.106 ± 0.004 0.100 ± 0.004

Table 2: Results of the sinusoidal fit of the data presented in Fig. 30a (90 Hz) and Fig. 30b
(252 Hz). The ratio of the amplitude and the offset is the property of the different measure-
ments that has to be compared. The phase of the signal is not relevant for the analysis of
the resonant cancellation effect.

We measured the oscillating neutron amplitude three times for 100 frequencies between
60 Hz and 3500 Hz and averaged over the three iterations. The measurement time for each
data point was roughly 100 seconds. Since the data acquisition was done with the same
time bin size and the same total number of neutrons (measured with an additional monitor
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(a) (b)

Figure 30: Neutron signal for an oscillating magnetic field at 90 Hz (a) and 252 Hz (b). It
shows the neutron counts as a function of the time. The counts are phased/mapped into
two periods of the signal. The data (black) are fitted with a sinusoidal function with a fixed
frequency (red). The fit results are presented in Tab. 2. The measurement time was roughly
100 seconds for each setting.

counter), the number of bins was different for all measured frequencies. The amplitude
and offset of the sinusoidal neutron signal scales with the number of time bins. Therefore,
it had to take the ratio between the amplitude and the offset to make the measurements
comparable. The result of these frequency scans is shown in Fig. 31. We compensated
the frequency dependence of the magnetic field amplitude and normalized the amplitude
to one at DC. The fit of Eq. (14) provided the values of the roots at (1529 ± 7) Hz and
(3057 ± 14) Hz.

Figure 31 shows that the effect of the resonant cancellation behaves as expected for
a monochromatic neutron beam. Assuming a neutron wavelength (velocity) of 4.94 Å
(800 m/s), the fit values of the root leads to an interaction length of 52.4 ± 0.2 cm which
is close to the effective interaction length of 51.1 cm [78].e The measurement confirmed
the expected behaviour of the resonant cancellation effect. In this simple setup with a
monochromatic neutron beam and no shielding of any aluminum parts, the neutron oscilla-
tion amplitude follows Eq. (14). Even though we were not able to fully decorrelate this effect
from the aluminum shielding in the ALP measurement with the Beam EDM apparatus, it
helped in our understanding of the calibration presented in Sec. 3.1.5.

eThe effective interaction length is slightly longer than the center-to-center separation of the spin-flip coils.
The reason is, that the spins start already to precess within the spin-flip coil when partially flipped.
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Figure 31: Measurement of the resonant cancellation effect at the Narziss beamline at the
PSI. The normalized amplitude as a function of the frequency of the oscillating signal is
shown. The data (black) are fitted with Eq. (14) (red).

3.3 ~v × ~E Measurement

Measuring an electric field is in general difficult. Most experiments that apply a high-voltage
potential rely on the power supply to provide the stated set voltage and calculate the field
from the geometry of the electrodes.

We make use of the relativistic ~v× ~E-effect to measure the electric field in our setup. A
particle with velocity ~v in an electric field ~E sees a pseudo-magnetic field according to

~Bv×E ≈ −~v × ~E

c2 .f (15)

In a Ramsey-type setup, this is another contribution to the neutron spin phase according
to Eq. (5). Therefore, the phase shift that the neutrons acquire is a direct measure of the
high-voltage potential

∆U = ∆ϕ c2d

γnL sin(α) , (16)

fIn principle there is an additional Lorentz factor γ = 1/
√

1 − v2/c2 that was omitted to not confuse with
the γ-symbol of the gyromagnetic ratio. Since the mean neutron velocity is roughly 1000 m/s, the Lorentz
factor is about one.
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where d is the electrode separation, L the interaction length with the electric field, and α

the angle between the electric and magnetic field direction.
In the configuration that we usually measure, the electric and magnetic fields are parallel

with respect to each other and orthogonal to the velocity vector of the neutrons. Since
the electric field direction is fixed by the geometry and orientation of the electrodes in the
vacuum beam pipe we changed the magnetic field direction. This was done by adding
a horizontal magnetic field component Bh using the 3D-coil system of the Beam EDM
apparatus. The resulting magnetic field amplitude becomes B0 =

√
B2

h +B2
v and the tilting

angle α = arctan (Bh/Bv). For this measurement we reduced the vertical magnetic field
to Bv = (214 ± 1) µT and added a horizontal field of Bh = ±(53 ± 2) µT.g This gives
B0 ≈ 220 µT as for the standard measurements but tilted by α = ±(13.9 ± 0.5)°.

Figure 32: Schematic of the electric and magnetic field arrangement in the ~v × ~E measure-
ment. The electric field direction (red arrows) is defined by the geometry and orientation
of the electrodes (gray). The magnetic field direction (blue arrow) can be tilted by angle α
using the 3D-coil system of the Beam EDM apparatus.

The electrode separation d is slightly different for both beams. The reason for this
deviation is the vertical displacement of the central high-voltage electrode due to gravity.
After the beamtime we measured a separation of (10.4 ± 0.2) mm and (9.6 ± 0.2) mm for
the top and the bottom beam, respectively.

gThe actual set and measured field in this measurement was Bh = ±50 µT. The reason for this difference
lies in the fact that the fluxgate sensors measure the field outside of the vacuum beam pipe and not the
location of the neutron beams.
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To measure the electric field we performed a sequence of Ramsey phase scans where we
changed the high-voltage like: 0 kV / +35 kV / 0 kV / −35 kV / .... The measured neutron
phase of this sequence for the top beam and Bh = −53 µT is shown in Fig. 33. The 0 kV
measurements serve as a reference and can be used to correct for drifts of the neutron phase
over time. We did this by fitting a cubic polynomial through them and shifting the phase of
the ±35 kV measurements accordingly.

Figure 33: Measurement of the neutron phase for the top beam and Bh = −53 µT. The
applied high-voltage potentials were 0 kV (blue), +35 kV (orange), and −35 kV (green). The
blue dashed line is a least-squares fit of a cubic polynomial through the 0 kV measurements
that serves as a drift correction.

Besides the angle α that is defined by the amplitudes of the vertical and horizontal
magnetic field amplitudes, there can be a misalignment β between the electric field direction
and the vertical magnetic field direction. To find β, we compared the measurements of
the two directions of Bh. If there was no misalignment, the value of ∆U from Eq. (16)
is the same for both directions. This was not the case and we optimized β such that the
value of ∆U becomes the same as shown in Fig. 34. This led to a misalignment angle of
β = 0.87° ± 0.09°.

In total we have four measurements of the electric field. They were measured in two
sequences, one for each direction of Bh. For each sequence the electric field can be deduced
for the top and the bottom beam separately. For each consecutive pair of the high-voltage
potential as shown in Fig. 33 we calculated the phase difference. With the weighted mean
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Figure 34: Optimization of the misalignment angle β. The high-voltage potential was calcu-
lated using Eq. (16) for the two polarities Bh = +53 µT (blue) and Bh = −53 µT (orange).
The misalignment angle was optimized to β = 0.87°±0.09° such that the two measurements
led to the same value of the potential.

of those phase values we calculated the electric field. The resulting values are presented in
Fig. 35.

The four measurements are in good agreement with each other and can be combined
to get the value of U = (36.2 ± 0.9) kV. This value is only 3% higher and 1.3 standard
deviations away from the nominal value of 35 kV. A reasons for this could be that the angle
α or the misalignment β was slightly bigger than calculated.

We performed a second analysis where we compared the measurements of the top and the
bottom beam of each run. This has the advantage that no drift correction is required since
the measurement that are compared were taken at the same time. This analysis provided a
value of U = (36.2 ± 0.5) kV with the same corrections applied. It is in good agreement
with the first method.

It is unlikely that the power supply provides a high-voltage potential that is above the
range and 3% off the set value as the data sheet of the FUG HCP states a relative precision
and accuracy of ±1 × 10−4 [73]. Since we do not have another method to measure the
potential, we decided to use to conservative value of U = 35 kV for the further ALP
analysis.
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Figure 35: Calculated high-voltage potential values using Eq. (16) for the top beam (blue)
and the bottom beam (orange) for both directions of Bh. The four measurements can be
combined and lead to a value of U = (36.2 ± 0.9) kV.

44



4 Axion-Like Dark Matter Analysis

In this section, we describe the analysis of the ALP search. We first describe the chosen
analysis algorithm and the spectral analysis in Sec. 4.1. We then give a short introduction
into the stochastic and deterministic dark-matter model in Sec. 4.2. Finally in Sec. 4.3, we
describe the analysis of the ALP search that led to the published result.

4.1 Spectral Analysis

As described by Eq. (4), the coupling of the ALP field to the neutron results in an oscillating
EDM. To find such a tiny oscillating signal, a spectral analysis of the EDM data has to be
performed.

The presented analysis uses a total of 24 hours of data, taken with a sampling rate of
4 kHz, i.e., we obtained a value for the neutron asymmetry and, hence, the neutron EDM
every 0.25 ms. This corresponds to more than 108 data points. The number of frequencies
that have to be analyzed for the range with five times the spectral resolution is almost 109.
There exist a variety of algorithms to perform a spectral analysis based on different analysis
principles. A comparison of the performance of various period finding algorithms can be
found in [82].

We performed the spectral analysis on the neutron data using an adapted version of the
generalized Lomb-Scargle algorithm [83–86]. We chose this algorithm because it can handle
non-uniform or gaped data, is based on the fast Fourier transform (FFT) with a calculation
time scaling of O(n logn), and returns the amplitude of the best-fit sinusoidal signal and its
uncertainty. The python code for the original algorithm is part of the Astropy package [87–
89].

The basic concept is to perform a χ2 minimization of the fit function

f(t) = a sin(ωt) + b cos(ωt) + c , (17)

where a, b, and c are the parameters to be minimized for each frequency ω. Instead of
minimizing directly, the problem is solved analytically for the three parameters. The result-
ing sums are Fourier series that can be calculated using fast algorithms. The source code
of the algorithm can be found in the Appendix A.1. The neutron asymmetry amplitude
Â =

√
a2 + b2 is Rayleigh distributed assuming only white noise.
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The distribution has the probability density function

p(Â) = Â
s2 e

−Â2/(2s2) , (18)

where s is a scale parameter.
To check the algorithm we measured the calculation time on various data set sizes and

compared it to a simple analytic version of the algorithm that does not make use of the
FFT and to the curve_fit routine, that is an implementation of a least-squares algorithm
in the python-scipy package. The spectra were calculated on a single Intel® Core™ i7-
8650U CPU and the time scaling is presented in Fig. 36. The extrapolation of the fitted
lines to 108 data points led to calculation times of 18 minutes (FFT-based), 6 years (simple
analytic), and 25 years (least-squares). It is evident that only the FFT-based algorithm is
a reasonable option to calculate the spectrum of the neutron data, even if calculated on a
high-performance computing cluster.

Figure 36: Time to calculate the spectrum as a function of the size of the data set. The used
algorithm that makes use of the fast Fourier transform (blue) is compared to the least-squares
curve_fit routine of python (orange) and a simple analytic algorithm that calculates the
amplitude without using the fast Fourier transform (green). The solid lines correspond to
linear least-squares fits in the log-log-plot.

Since we adapted an existing routine to calculate the spectrum, we tested the algorithm
on toy data as well as neutron data from the artificial ALP measurement. We compared
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the results of the spectral analysis of the three algorithms with each other and the relative
differences were below 10−3 over the full frequency range.

Data were taken on September 13 and 14, 2020 and are publicly available [90]. A
5 second-long subset of the data is presented in Fig. 37a. The entire data is split into two
halves of 12 hours each. Limits are based on the first half of the data, but an oscillating
signal would only be considered significant if it appears in the spectral analysis of both sets
with a pull or significance Â / σÂ of more than five.h

We subtracted the asymmetry amplitudes of both neutron beams, i.e., opposite electric
field directions, from each other. Figure 37b shows how this eliminates the eminent 50 Hz
signal coming from the power line frequency. The peak is visible in the spectra of both
beams separately but not in the spectrum of the difference.

(a) (b)

Figure 37: The data for the top beam (blue N), the bottom beam (yellow H), and the
difference between the two beams (red •). Note that only a fraction of the data points is
shown for legibility in both subfigures. (a) Measured neutron asymmetry for a time window
of 5 seconds. (b) Frequency spectrum between 1 Hz and 60 Hz based on the whole 12 hour
data set. The highly significant signal at 50 Hz from the power line frequency is canceled
out by analyzing the beam difference.

The overall spectrum shows three groups of significant signals of different origins that
are not ALPs.The first group appears for frequencies below 10 mHz. They can be explained
by long-term magnetic gradient field drifts due to temperature changes. They happen on

hIf the signal amplitude was Normal distributed, this would be called the 5-sigma level and corresponds
to a probability of 1/1′744′278 that the signal origins from a statistical fluctuation only. It can be calculated
by integrating a Normal distribution with a mean of zero and standard deviation of one in a 5-sigma range.
To have the same probability for a Rayleigh distributed amplitude, a significance of 5.36 would be required.
Since the signal follows a Rayleigh distribution, using the term ”5-sigma level” may be misleading.
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the time scale of hours and result in a rise in signal amplitude.
The second group is located in the frequency range between 10 mHz and 2 Hz. They are

caused by the data structure itself and a sub-range is presented in Fig. 38. Our sequence of
data taking is divided into runs of 62.5 s duration. Each run consists of 57.5 s of measurement
time and 5 s of downtime to save the data. This time structure leads to peaks at the inverse
run time of 16 mHz and higher orders. Additionally, the 5 s gap leads to an envelop hump
structure with a period of 200 mHz. For frequencies higher than 2 Hz, these peaks are too
small to emerge over the background noise level.

To confirm that the peaks actually originate in the data structure, we performed the
spectral analysis on a dummy data set as suggested by [86]. It had the same time structure
but consisted only of ones when data was taken and zeros when not. The resulting spectrum
showed the same peak structure after the normalization of the spectral amplitudes.

Figure 38: Spectrum of the frequency range between 10 mHz and 0.6 Hz from the data of
the difference between the two beams. Discrete peaks appear in the spectrum due to the
data structure. Note that the plot is based on the whole 12 hour data set and that only a
fraction of the data points is shown for legibility.

The third group of significant signals has a statistical origin. Since the asymmetry
amplitudes follow a Rayleigh distribution, the pull/significance is also distributed accordingly.
We found 113±11stat ±9sys and 132±11stat ±13sys events above the significance threshold
of five in the first and second half of the data, respectively. The frequencies of the events
of both sets do not coincide. The systematic error originates from the uncertainty of the
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detector count-error calibration. These values are slightly below the 162 statistically expected
events for a data set with 43.6 million analyzed frequencies. Nevertheless, they agree with
the number of significant events of 118 ± 11stat ± 11sys in a data set with no electric field
present. These data serve as a reference since no ALPs signal can be present as the ALP
field couples to the electric field. Overall, no significant oscillating signal was found at the
same frequency in both partial data sets.

With the use of Eq. (12), the neutron asymmetry amplitude shown in Fig. 37b and
Fig. 38 can be translated into the pseudo-magnetic field amplitude. The full spectrum with
a reduced spectral resolution is shown in Fig. 39. The most sensitive region of a few pT is
in the central flat region.

Figure 39: The neutron asymmetry spectrum translates into a pseudo-magnetic field spec-
trum after applying the calibration as shown in Fig. 27. The error bars were omitted for
reasons of readability but are of order 3 pT in the most sensitive central range. Note that
the plot is based on the whole 12 hour data set and that only a fraction of the data points
is shown for legibility.

4.2 Dark-Matter Model

The oscillation amplitude of the dark matter field relates to its density via a0 =
√

2ρDM/ma,
assuming all dark matter consists of ALPs. Recently, J. W. Foster et al. published the
possible effects of the dark-matter substructure to the upper limits set by axion and ALP
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experiments [91]. Depending on the ratio of the measurement time over the coherence time
of the dark-matter field T/τc, it behaves either deterministic or stochastic. The coherence
time of the dark-matter field is 106 periods of the oscillating signal and our measurement
time 12 hours.i Figure 40 shows a simulation of the dark matter amplitude from [92] that
illustrates the differences.

Figure 40: Simulation of the dark-matter amplitude of a virialized ultralight field as a function
of the time, normalized by the coherence time τc. The amplitude is normalized by the
deterministic dark matter amplitude adet. Picture courtesy of [92].

For T � τc, the field is deterministic and the local dark-matter density averages to
ρDM = 0.2 − 0.7 GeV/cm3 [93]. To be consistent with the measurement of the nEDM
collaboration [43], we chose a value of ρDM = 0.4 GeV/cm3 [94].j In Fig. 40, this corresponds
to taking the time average of the dark-matter amplitude that then becomes adet = a0.
Additionally, since the measurement time is bigger than the coherence time, the measured
line shape of the dark-matter field gets broadened.

On the other hand, if T � τc, the field is stochastic and a measurement samples only
a small subset of the dark-matter amplitude shown in Fig. 40. This amplitude follows a

iThe coherence time of the field can be calculated in the framework of the standard halo model of dark
matter [49]. The viralized velocity of the local dark matter is vvir = 10−3 c. The coherence time, defined as
τc ≡ c2

fcv2
vir

with the Compton frequency fc = mc2

h
, leads to a coherence time of 106 periods of the oscillating

signal [92].
jThis corresponds to a value of ρDM = 3.1 × 10−42 GeV4 in natural units.
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Rayleigh distribution with scale parameter adet/
√

2

p(a0) = 2a0
a2

det
e−a2

0/a2
det , (19)

which implies that about 63% of the time of the measurement, the amplitude will be smaller
than adet. This has to be taken into account when placing a constraint from a measurement
where no signal has been found. If a signal was measured, it is coherent over the course of
the measurement as indicated by the inset in Fig. 40 which results in a narrow line shape.
This means that if a signal was found, the line shape of the signal provides information about
the local dark-matter substructure.

The above described scenarios cover only the extreme cases but not the case where
T ≈ τc. Since our measurement time and frequency range also covers this case we simulated
the dark matter signal, following the approach of [91]. This approach includes models of
the dark-matter amplitude distribution, the dark-matter speed distribution, and the local
axion distribution. Together they define the line shape of a possible dark-matter signal in
our measurement. Figure 41 shows three cases of T/τc = 0.5, T/τc = 1, and T/τc = 2.

Figure 41: Simulation of the dark matter line shape. It shows the spectrum for the three
cases T/τc = 0.5 (left), T/τc = 1 (center), and T/τc = 2 (right). The orange spectrum
corresponds to the optimal case where the field oscillates coherently and is a simple sinusoidal
signal. The blue spectrum corresponds to the case where the dark-matter distribution is taken
into account. The shaded area indicated the uncertainty of the simulation. The x-axis is
normalized to the signal frequency and the y-axis has arbitrary units.

For a measurement where the measurement time is shorter than the coherence time,
the dark-matter signal is similar to the optimal case of a pure sinusoidal signal. As the
measurement time increases, the field becomes incoherent and the dark-matter line shape
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gets broadened and the line shifts to higher values. This is only a qualitative simulation and
a more sophisticated one would be required to explain the transition from deterministic to
stochastic dark matter. Since this was out of the range of this analysis, we calculate and
display both limits in Sec. 4.3.

4.3 ALP-Gluon Coupling

In Sec. 4.1 we described the search for an oscillating signal in the neutron EDM data. Besides
having a significant amplitude over the background noise level, an actual oscillating EDM
signal must disappear if no electric field is applied. This way, noise signals or signals from
external sources can be further excluded. For this, we performed an additional measurement
with no electric field applied. Moreover, the amplitude of a real signal must be identical for
both electric field directions but must exhibit a phase-shift of π.

We did not explicitly have to apply these additional conditions. Nevertheless, some
signals as the eminent signal at 50 Hz from the power line frequency, could be removed by
taking the difference in the signals of the two beams with opposite electric field directions
as visible in Fig. 37b. They cancel because they have the same phase and amplitude in both
beams. Also, the peaks of the data structure have the same phase for any electric field
direction and can be excluded with the same argument.

Since no significant signal was found, an upper limit on the ALP-gluon coupling can be
derived. Using Eqs. (4) and (8) as well as the calibration shown in Fig. 27, the coupling can
be calculated with

CG

fa
= γn~Ba

a0E × 4.8 × 10−16 e cm . (20)

The potential of the central high-voltage electrode was set to +35 kV. Hence, the
electric field used for the evaluation is E = 2 × 35 kV/cm as all the analysis is done for the
difference of the two beams.

The upper limit at a given frequency is calculated by integrating the normalized distribu-
tion of CG/fa up to the C.L. of 95%. Hence, the upper integration constant corresponds to
the upper limit of the ALP-gluon coupling. Figure 42 shows a histogram of the distribution
for the deterministic and stochastic dark matter together with calculated upper integration
constant for the signal at 1 Hz.

In the case of deterministic dark matter, CG/fa follows solely a Rayleigh distribution since
Ba is Rayleigh distributed. However, in the case of stochastic dark matter, it corresponds to
the ratio of two Rayleigh distributions since a0 = astoch is also Rayleigh distributed. In this
case, the overall distribution has a much longer tail, resulting in a higher upper limit. The
upper limit is frequency dependent and has to be calculated for the full spectrum. We did
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Figure 42: Histogram of the normalized distribution from a Monte-Carlo sampling of CG/fa

at 1 Hz for the deterministic dark matter (orange) and the stochastic dark matter (green).
The vertical dashed lines show the upper integration constant when the integral value is 0.95
and thus the upper limit for each distribution at 95% C.L..

this for a reduced number of frequencies, i.e., 7263, with a logarithmic spacing. The results
for both dark matter cases are shown in Fig. 43, were we divided the limit by the mass ma

to determine the scaling factor of the stochastic limit.
Figure 43 shows the must stringent constraint of CG/fama = 2.7 × 1013 GeV−2 and

CG/fama = 8.7 × 1013 GeV−2 at 95% C.L. for deterministic and stochastic dark matter in
the frequency range between 5 mHz and 5 Hz, respectively. This leads to a scaling factor
of the stochastic limit of 3.2 ± 0.3 compared to the deterministic limit, in agreement with
similar calculations by the CASPEr collaboration [95].

Figure 44 shows our exclusion region of the ALP-gluon coupling as a function of mass or
frequency. For frequencies below 5 mHz, the upper limit increases due to magnetic gradient
field drifts. For frequencies above 5 Hz, the upper limit increases due to a decrease in
sensitivity of the apparatus, as shown in Fig. 39. For reasons of legibility, we smoothed the
limits in Fig. 44 with a Savitzky-Golay filter [97]. Therefore, the fine structure, visible in
Fig. 38 and Fig. 39, disappears. The second y-axis on the right side uses the relation [31,
32]

ga = (3.7 ± 1.5) × 10−3
(
CG

fa

) 1
GeV . (21)
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Figure 43: Calculated upper limit of CG/fa divided by the mass ma over the full spectrum
for deterministic dark matter (orange) and stochastic dark matter (green). In the central flat
region between 5 mHz and 5 Hz, the mean was calculated and is indicated by the dashed
lines.

As a calculation example: an oscillating magnetic field amplitude of Ba = 10 pT
which is typical for the central frequency range (see Fig. 39) translates with Eq. (8) and
E = 2 × 35 kV/cm into a neutron EDM amplitude of dn = 8.6 × 10−24 e cm. With the use
of Eq. (20) this can be translated into an ALP-gluon coupling of CG/fa = 1.4×10−11 GeV−1

for an ALP mass of ma = 10−15 eV. It follows CG/fama = 1.4 × 1013 GeV−2.
To provide context, the constraints on 95% C.L. from the other laboratory experiments are

also presented. In addition, astrophysical and cosmological constraints explained in Sec. 1.3
arise from galaxy luminosity functions at high red-shifts, BBN models, and the SN1978A
cooling. The QCD-axion line shows the region where an axion would simultaneously solve
the strong CP problem and explain all dark matter.
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Figure 44: Limits on the ALP-gluon coupling are shown as a function of the mass or fre-
quency. The shaded areas are exclusion regions from cosmology and astrophysical obser-
vations (blue: Galaxies [48], BBN [50, 51], SN1987A [54, 96]) and laboratory experiments
(orange: nEDM [43], HfH [44]). The black outlines with the pink area mark the exclusion
region of this publication (labeled Beam EDM). The solid and dotted lines correspond to
the deterministic and stochastic dark-matter models, respectively. The green line shows the
canonical QCD-axion. The second y-axis on the right side uses the relation of Eq. (21).
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5 Summary

In summary, we gave an overview of the strong CP problem and how a solution of it led to
axions and ALPs. We provided a theoretical background to understand how they couple to the
neutron EDM and what laboratory experiments and astrophysical/cosmological observations
constrain their existence. We further summarized the experimental Beam EDM apparatus
that we used to search for an oscillating signal. We explained in detail the calibration of
the count error of our CASCADE neutron detector. We showed how we characterized the
sensitivity of the apparatus with respect to oscillating (pseudo-)magnetic fields and how
we got aware of the effect we call resonant cancellation. We investigated this effect with
simulations and a dedicated beamtime. We performed a search for ALPs but did not find a
significant oscillating signal. With only 24 hours of data, we could constrain an ALP-gluon
coupling in a mass region covering almost eight orders of magnitude. Together with the
results of two other laboratory experiments, a large region of the ALP-dark-matter parameter
space could be excluded. To increase the sensitivity of the experiment, more neutrons and
higher electric fields are required. Additionally, the interaction length of the experiment
should be increased. This is all possible when the proof-of-principle Beam EDM apparatus
is built full-scale at the European Spallation Source (ESS). To cover a lower mass range,
the total time of data taking has to be increased. However, this range is already covered by
the other laboratory experiments. To cover higher masses, a faster sampling of the detector
is required. This is only helpful if the effect of the resonant cancellation can be minimized
or overcome by working with neutron pulses in a time-of-flight measurement, or by making
the interaction length shorter on the cost of sensitivity. Simulations would be required to
optimize the setup for the higher mass range.
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Part II

Exotic Yukawa-Like Interaction
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6 Introduction

Ramsey’s technique of separated oscillatory fields, described in more detail in Sec. 2, can be
applied to precisely measure magnetic and pseudo-magnetic field changes. It was also used
in the measurement of the neutron magnetic moment [98]. In this experiment, the technique
was applied to compare resonance frequencies of free neutrons and the hydrogen protons in
water using the same geometry. The application of the resonance technique of separated
oscillatory fields on flowing water had been previously demonstrated by Sherman [99].

Here we present the experimental apparatus with a similar concept as the one used for
the neutron magnetic moment measurement. The goal of this Proton NMR setup is to
search for a new exotic Yukawa-like interaction in the millimeter range. Such a long-range
interaction between two fermions could be part of an extension to the Standard Model of
particle physics (SM) [100]. To date, only a few experiments have been conducted that
constrain the existence of such an interaction and none of them used protons as a probe
particle.

This part of the thesis is organized as follows. We first describe the experimental appa-
ratus in detail in Sec. 7. During the course of my Ph.D., the experimental apparatus was
designed and built, then further developed and optimized. In Sec. 8 and Sec. 9 we describe
the characterization measurements performed in Rabi and Ramsey configurations, respec-
tively. Those well-understood measurements can be used to show that the setup works as
expected and to characterize its sensitivity and stability. In Sec. 10 and Sec. 11 we show the
investigation of the two radio-frequency (RF) effects called Bloch-Siegert shift and dressed
spin states, respectively. We then conclude with the theory and the search for the new
Yukawa-like interaction between two fermions in the millimeter range in Sec. 12.
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7 Proton NMR Setup

In this section, the setup of the experimental Proton NMR apparatus is explained. The setup
was developed in collaboration with the master’s student J. Smits [101]. Figure 45 shows
a schematic of the experimental setup and Fig. 46 a photo of the full tabletop experiment.
The total length is about 3 meters.

Figure 45: Schematic of the experimental setup where the H2O is pumped from the water
reservoir of the chiller. They are first polarized in a polarizer (red) and then enter the
interaction region that is surrounded by a double layer mu-metal shield. Two spin-flip coils
are shown in green and the magnetic field direction is indicated in blue. The spin polarization
is analyzed using a nuclear magnetic resonance (NMR) system (purple). The schematic is
not to scale.

The water is pumped through the system using a small gear pump as described in Sec. 7.1.
First, the water passes a polarizer, described in Sec. 7.2, to create a sizable spin polarization
of the protons. It then flows through the interaction zone, explained in Sec. 7.3, that
is magnetically shielded by mu-metal. In that zone, the spins interact with the magnetic
field B0 and can be manipulated with spin-flip coils. There are additional temperature and
magnetic field sensors. Finally, the spin polarization is measured and analyzed by means of
NMR techniques as explained in Sec. 7.4.
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Figure 46: Photo of the experimental setup where the water flows through the shield in a
glass capillary from right to left. The gear pump is mounted on the water chiller. The first
element the water passes is the polarizer. It then enters the interaction region surrounded
by the magnetic mu-metal shield. Finally, it is measured with an NMR system. The NMR
magnet is temperature stabilized and insulated.

7.1 Water Circuit

To manipulate the proton spins of the hydrogen in the water molecules, a water circuit is
required. We use plastic tubes (PU, PVC, and PTFE) of various diameters and a rigid glass
capillary with an inner diameter of d = 4 mm and a length of 1500 mm in the interaction
zone to guide the water through the setup.

The pump has to provide a constant and high enough flow and pressure. We use a gear
pump MGD2000F [102] with flow and pressure ratings of 2.3 l/min and 6 bar, respectively.
This is suitable to transport the water through the setup within a few seconds to maintain
enough polarization and overcome all pressure losses of the system. The speed of the pump
can be controlled with a voltage from 0 − 5 V. The measured flow rate of the pump versus
the applied voltage is shown in Fig. 47. It also shows the average velocity through the glass
capillary in the interaction zone since this is an interesting property for many resonance
measurements. The flow rate (velocity) is linear in the measured range and a linear fit led
to the values of (0.53 ± 0.02) l/min · V−1 ((0.71 ± 0.02) m/s · V−1).

The flow velocity was set to v = 2.35 m/s in all measurements if not stated otherwise.
This velocity was optimized for highest signal visibility while operating the pump and water
tubing within the safety margins of the pressure ratings. This velocity is the mean or group
velocity. In reality, the flow follows a profile in the tube with the highest velocity in the center
and decreasing velocity towards the tube walls due to the viscous resistance. It depends on
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Figure 47: Flow rate of the water through the pump as a function of the applied control
voltage. The vertical axis on the right side shows the average velocity of the water through
the glass capillary in the interaction zone with the inner diameter of 4 mm. The solid line is
a linear fit through the data.

the type of flow that is defined by the Reynolds number Re [103] which in a tube is

Re = ρvd

µ
, (22)

where ρ = 998.2071 kg/m3 is the density and µ = 1.0016 mPa · s the dynamic viscosity
of water at 20 °C [104]. This leads to a Reynolds number of roughly 9400. The transition
from laminar to turbulent flow is dependent on many parameters but usually it occurs at
Reynolds numbers between 2300 and 2600 [105]. For lower numbers the flow is laminar and
for higher numbers the flow is turbulent. The flow through the capillary is, therefore, in the
turbulent regime. The velocity in the tube as a function of the radial position then follows
approximately a power-law velocity profile [106]

v(r)
vm

=
(

1 − r

R

)1/7
(23)

where vm is the maximum flow velocity in the center of the tube, R the tube radius, and
the factor of 1/7 is an empirical value that depends on the Reynolds number. Overall,
this velocity profile is flatter than the quadratic profile of the laminar flow, which has the
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advantage of better signals in the resonance measurements.k However, turbulent flow results
in a much higher pressure in the system due to higher friction [108] which had to be taken
into account when selecting the pump and the water components.

The pump is mounted on a chiller, that is a temperature stabilized bath circulator Thermo
Scientific ARCTIC A10-SC150 [109]. The pump uses the water from the chiller’s reservoir
that is kept at a temperature of 20 °C to minimize systematic effects.

7.2 Polarizer

To perform a spin precession experiment, the particles have to be polarized first. The
polarization of the proton spins in an external magnetic field as a function of the time
follows an exponential law [110]

P (t) = P0 × (1 − e−t/T1) , (24)

where P0 is the maximum value of the relative polarization for protons in water at 20 °C
that depends only on the magnetic field strength of the polarizer. T1 = (2.35±0.02) s is the
longitudinal or spin-lattice relaxation time constant which was measured using an inversion
recovery pulse sequence [111]. The details of the measurement and the results are presented
in Sec. 7.4.4. To achieve a polarization of P (t) > 0.99P0 the water has to spend 5·T1 ≈ 12 s
within the polarizer.

The polarizer we built makes use of strong neodymium permanent magnets. For small
volumes, this approach is much simpler and cheaper than an electromagnet as it does not
require high currents or rely on water cooling. The magnets we used are Q-40-10-05-N
with grade N42 from supermagnete [112]. They have a size of 40 × 10 × 5 mm3 and are
staked on both sides of an aluminum body where the water flows through. To create a
homogeneous magnetic field over the full polarizer volume, steel plates with a thickness of
5 mm cover the body on both sides. The cover plates are also used to hold the body and
all the magnets in place. With this design, the magnetic field in the interior is roughly
190 mT. This was simulated using the Finite Element Method Magnetics software [113]
and measured using a Hall-probe [114]. The result of the simulation is shown in Fig. 48.
Applying Maxwell–Boltzmann statistics with the given temperature and magnetic field leads
to a relative polarization of the proton spins of P0 ≈ 10−6.

The water flows through the aluminum body in a meandering groove. The outer cross-

kFor laminar flow, the velocity profile is v(r)/vm = 1 − (r/R)2 according to the Hagen–Poiseuille equa-
tion [107].
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Figure 48: Result of the simulation of a simplified polarizer model. The model shows
the contour lines of the magnetic field and the colors represent the field strength. Blue
corresponds to a low and pink to a high field strength. The field strength in the interior area
where the water flows is roughly 190 mT in the vertical direction.

section of the body is 30 × 50 mm2 and it has a length of 480 mm. The total water volume
is 420 ml. With this volume, the water spends more than five time constants T1 in the
polarizer, even for the highest flow rates. On both ends of the body are tube connections
for the water inlet and outlet. A CAD model of the polarizer’s interior and a photo of the
actual polarizer are shown in Fig. 49a and Fig. 49b, respectively.

7.3 Interaction Zone

The interaction zone is where the proton spins interact with constant and oscillating magnetic
fields. It is surrounded by a double layer passive magnetic mu-metal shield as shown in
Fig. 50a. The outer layer has an inner diameter of 235 mm and a length of 1200 mm. The
inner layer is centered within the outer layer, has an inner diameter of 195 mm, and a length
of 800 mm. Both layers have a thickness of 2 mm. End caps for the outer layer are available
but usually not used to allow easy access from the outside.l

The main magnetic field B0 is aligned along the vertical y-direction. It can be created

lThe shielding factor of the mu-metal shield was not measured during this project and is unknown.
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(a) (b)

Figure 49: (a) CAD model of the polarizer that shows the meandering groove on the inside
of the aluminum body (red). The steel base plate (green) below the body is also shown. The
permanent magnets on the two sides of the body are not shown. (b) Photo of the polarizer
with the water inlet in front. The two steel plates are mounted together with screws to hold
the magnets left and right of the aluminum body in place.

using a square-shaped Helmholtz-type coil with 20 windings that is visible in Fig. 50a. The
coil has a width and separation of 128 mm and a length of 1200 mm. It is centered with
respect to the mu-metal shield and connected to a Keysight B2962A Low Noise Power
Source [115]. We measured a field constant of the coil of 232 µT/A.

Since the interior of the mu-metal shield is hardly accessible, an aluminum U-profile
with a grid of threads is mounted to non-magnetic telescopic-rails that are fixed to the mu-
metal tube. It can be slid out of the mu-metal to change the arrangement of spin-flip coils,
fluxgates, and temperature sensors.

The standard arrangement we use as shown in Fig. 50b is a Ramsey setup that consists
of two spin-flip coils with a center-to-center separation of 600 mm. The spin-flip coils are
solenoids with 16 windings and their axis is aligned with the water pipe. The coil has a
copper wire diameter of 0.8 mm, an inner diameter of 10 mm, and a length of 15 mm. The
coils are being held by a holder block that allows to mount a trimming coil to adjust the
local magnetic field around each spin-flip coil individually. Photos of a spin-flip coil in the
holder block are presented in Fig. 51. A third spin-flip coil can be mounted in the center to
perform spin-echo measurements [116].

To manipulate the proton spins, the spin-flip coils have to be driven with an oscillating
current close to the Larmor resonance frequency. A connection diagram is shown in Fig. 52.
The oscillating currents are provided by Keysight waveform generators 33622A [70]. For each
spin-flip coil an output channel is connected to a Mini-Circuits power combiner ZFRSC-
2050+ [117]. The second input of the combiner can be used to induce higher frequency
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(a) (b)

Figure 50: (a) Photo of the view into the mu-metal. The inner mu-metal layer is hidden
behind an aluminum ring that holds the telescopic-rails. The water flows through the glass
capillary in the center. The ends of the square-shaped Helmholtz coil are also visible. (b)
Photo of the interaction zone slid out of the mu-metal. Water flows along the z-axis from
right to left. The proton spins can be manipulated with the spin-flip coils SF 1 and SF 2.
A third spin-flip coil can be mounted in the center. A non-magnetic thermocouple type-E
measures the temperature inside and a fluxgate after SF 2 tracks the magnetic field in all
three spatial directions.

(a) (b)

Figure 51: Photos of the spin-flip coil and the holder block. (a) The trimming coil around
the block can be used to locally change the magnetic field around the spin-flip coil to change
the protons’ resonance frequency. (b) The mounted spin-flip coil in the shape of a solenoid.
The block and its parts are also used to keep the glass capillary where the water flows in
place (not shown).
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signals to test effects like the Bloch-Siegert shift and dressed spin states presented in Sec. 10
and Sec. 11, respectively. This second input is terminated with 50 Ω if it is not used. The
output of the combiner is connected to the spin-flip coil via a 20 Ω resistor to reduce the
frequency dependence of the impedance.

Figure 52: Connection diagram of the spin-flip coils. The waveform generator (WFG 1)
generate the oscillating current. These signals can be combined with the oscillating signal of
a second waveform generator (WFG 2) or terminated with a 50 Ω resistor if not used. The
output of the combiner is connected to the spin-flip coil (SF 1 and SF 2) via a 20 Ω resistor.

A non-magnetic thermocouple type-E measures the temperature in the center of the
interaction zone close to the glass capillary. Two other thermocouples of type-K measure
the temperature of the room below the mu-metal and of the NMR magnet. They are read
out with a rate of 2 Hz and a precision better then 0.025 °C using at Picotech data logger
TC-08 [118].

The magnetic field is measured using a SENSYS FGM3D/125 fluxgate sensor [65]. It
can measure magnetic fields up to ±125 µT with a precision better than 150 pT in all three
spatial directions. It is read out at a rate of 10 kHz using a NI PXI-6289 analog-digital
converter [119]. The data is averaged over 1000 samples and stored at a rate of 10 Hz. The
fluxgate is located below the water tube just after the interaction zone as shown in Fig. 50.
It cannot be placed between the spin-flip coils since it is slightly magnetic itself and would
destroy the spin coherence. The fluxgate data can be used to track and compensate external
magnetic field changes.
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7.4 NMR System

7.4.1 Setup

We use a commercially available NMR system iSpin-NMR of SpinCore Technologies, Inc. [120]
to measure the spin polarization after the interaction. The system contains a pulse generator,
a pulse amplifier, frequency filters, a preamplifier, and an analog-digital converter. The sys-
tem can be programmed to send arbitrary pulse sequences and measure the signal response
of the NMR sample. It is able to detect voltages on the µV-level. A permanent magnet with
a field strength of 0.5 T comes with the system.

The NMR setup uses the same coil to apply the pulse and to measure the precession
signal of the protons. A duplexer is required to route the signal from the transmitter to
the probe and from the probe to the receiver but protect the receiver from the high-power
transmitter signal. This is done by a passive transmit/receive switch using diodes and a
quarter-wave impedance cable. A schematic of the connection diagram is shown in Fig. 53.

Figure 53: Connection diagram of the NMR system. The resonance circuit of the NMR
detection system has to be matched to 50 Ω and tuned to the proton resonance frequency
with the two capacitors C and Cx. The λ/4-cable and the crossed diodes act as a passive
switch that allows signals going from the RF-out to the resonance circuit and from there to
the RF-in, but not from the RF-out to the RF-in directly.
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To be able to transmit the power into the water sample and to measure the small
precession signal, a RLC resonance circuit is required. The resonance frequency of the
circuit has to be tuned to the proton resonance frequency and the impedance has to match
50 Ω. This can be achieved by an additional shunt-capacitor Cx.

The inductance L is given by the pick-up coil. It is made of a copper wire with a diameter
of 0.25 mm that is insulated by a PTFE tube. The coil has 10 windings over 8 mm and a coil
diameter of 4 mm. It has an inner diameter for the water of 3 mm. The ohmic resistance
RΩ comes from the circuit cables and connections. The capacitance of the two capacitors
can be calculated analytically but a final adjustment has to be done in-situ. We optimized
the capacitors to Cx = 678 pF and C = 251 pF. All parts close to the NMR sample have
to be made of a material that does not contain any hydrogen atoms in their molecules as
for example most plastics do. The proton signal of those hydrogen atoms would falsify the
signal of the protons in the water. We used PTFE/Teflon for all parts close to the sample.
A photo of the NMR pick-up coil and the resonance circuit is presented in Fig. 54.

Figure 54: Photo of the resonance circuit with the NMR pick-up coil. The coil is mechanically
stabilized with a small stainless steel rod when it is not inside the NMR magnet since the
wall thickness is only 0.5 mm. The copper wire of the coil is fixed with PTFE tape to hold
it in position. All parts close to the coil are made of PTFE. The capacitors of the resonance
circuit are visible in yellow and black.

The resonance circuit is mounted between the poles of a neodymium permanent magnet
visible in Fig. 55. The NMR magnet has a field strength of about 0.5 T with a relative
uniformity of 10−4 for a 10 mm sample according to the manufacturer [121]. The poles
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have a separation of 30 mm and a diameter of 140 mm. With a gyromagnetic ratio of
the proton of γp ≈ 2π × 42.58 MHz/T [122] this leads to a proton resonance frequency of
21.68 MHz.m

Daily fluctuations of the room temperature of more than 1 °C lead to a change in the
magnetic flux density of the magnet. Values from manufacturers suggest a change in the
magnetic field, that would lead to a change in resonance frequency of > 19 kHz [123, 124].
Since the linewidth of the proton resonance is only a few kHz, a temperature stabilization
of the magnet is required. This is done via the water cooling of two aluminum plates on
top and below the NMR magnet. The same chiller and water bath described in Sec. 7.1 are
used. With this water cooling, a stability of the resonance frequency better than 1 kHz is
achieved. A photo of the NMR magnet with the cooling plates is presented in Fig. 55.

Figure 55: Photo of the NMR magnet. The two neodymium poles create a magnetic field
of roughly 0.5 T in the vertical direction indicated by the blue arrow. The plates for the
water cooling are pressed on the magnet with brass thread rods. The holding structure for
the resonance circuit and the pick-up coil made of PTFE/Teflon is visible in the center.

We measured the temperature coefficient of the magnetic flux density for the NMR
magnet. For this, we scanned the temperature of the chiller and therefore the NMR magnet.
Between each temperature change the magnet was thermalized for about 90 minutes.

mThe gyromagnetic ratio of the free proton is 42.577 478 518(18) MHz/T. For the proton in H2O it shifts
to 42.576 384 74(46) MHz/T due to the chemical environment.
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We measured a temperature coefficient of (−19.07±0.06) kHz/°C at room temperature.
This corresponds to a relative coefficient of −8.8 × 10−4 /°C which is in agreement with
literature values [123, 124]. Figure 56 shows the measured data with a linear least-squares
fit.

Figure 56: NMR resonance frequency as a function of the temperature of the 0.5 T NMR
magnet. The solid line is a linear least-squares fit that resulted in a temperature coefficient
of (−19.07 ± 0.06) kHz/°C.

A detailed treatment on NMR techniques can be found in [125].

7.4.2 Single Pulse Sequence

Many pulse sequences exist for NMR measurements. The most basic one is a single pulse to
apply a π/2-flip. Additional pulses can be applied to refocus spins (e.g. a Hahn Echo [116],
briefly described in Sec. 7.4.3) or to correct for other dephasing effects. Since we have a
continuous flow of water through the NMR pick-up coil, only a single-pulse sequence as
shown in Fig. 57 can be applied in practice. The water in this coil gets fully replaced within
2.4 ms at a flow velocity of 2.35 m/s. Therefore, there is no time to apply any further pulse
to the same sample and measure the spin precession signal.

The pulse amplifier is only turned on when the deblanking signal has a logical high. The
deblanking delay of 3 ms before the excitation pulse allows the amplifier to warm up. A
pulse of 2.1 µs duration is then fired. The pulse time was optimized for a π/2-flip of the
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Figure 57: Diagram of the NMR data acquisition for the single-pulse sequence. Detailed
description in the text. The timeline is not to scale.

proton spins as this leads to the highest signal amplitude. The amplifier is then blanked
(turned off) and after a short transient delay of 40 µs that allows the system to subside from
any remnant pulse signal, the receiver stage starts measuring the spin-precession signal, also
called the free induction decay (FID), for 1 ms. After the data acquisition, the system waits
for the sample to be polarized again until the sequence is repeated. In a static sample, this
repetition delay is about 5 · T1 ≈ 12 s, i.e., five time constants. In our case of a continuous
water flow, the repetition delay of 2.5 ms was chosen such that all water that received the
NMR pulse is flushed out of the pick-up coil. The total cycle length is approximately 6.5 ms.

To improve the signal-to-noise ratio, the FID signals are averaged over many acquisitions,
usually 1000 signals, before the spectral analysis is performed. Additionally, the phase of the
pulse and the receiver are rotated by 90° for each acquisition. This way, imperfections of the
two-phase detectors of the NMR system cancel out. This measurement sequence is called
CYCLOPS phase cycling [125].

Figure 58 shows a high-statistic FID signal with a typical spectral width of 128 kHz,
resulting in a sampling interval of 7.8125 µs. The signal is oscillating at 12.5 kHz which
represents the difference between the pulse frequency of 21.68 MHz and the precession
frequency of the protons. The reason for this is that the signal from the spin precession is
digitally mixed with the reference signal from the oscillator that generates the pulse. The
mixer produces an output that is the sum and the difference of the two signals. After a low-
pass filter, only the signal of the difference remains. To get the real and imaginary part of
the signal, the NMR system has actually two digital mixers. The precessing signal is fed into
both but the reference signal is phase-shifted by π/2 in one of them. This allows quadrature
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Figure 58: High-statistic NMR signal, averaged over 10000 FID signals with a total measure-
ment time of roughly 65 seconds. Shown is the real (blue) and the imaginary part (orange)
of the signal amplitude as a function of time. The amplitude is normalized to one at t = 0 s.
The exponential decay time of the signal is roughly 179 µs. The solid lines serve only as a
guide for the eyes.

detection to distinguish positive and negative frequencies without actually having two coils.
A schematic of the electronics for the quadrature detection is shown in Fig. 59.

Figure 59: Schematic of the electronics for the quadrature detection. The NMR signal is
digitally mixed with the signal of the oscillator. This creates a signal that is the sum and
the difference of the two. After a low-pass filter only the signal of the difference remains.
To have a quadrature detection without actually having two pick-up coils, the NMR signal
is additionally mixed with a second reference signal that is phase-shifted by π/2.
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The precession signal of the FID is usually analyzed in the frequency domain after per-
forming a fast Fourier transform (FFT) [126]. Standard tools in signal processing are zero-
padding and application of window functions. The former adds zeros at the end of the signal
in the time domain. This results in a higher spectral resolution. It does not add information
but rather interpolates between points that are already there and makes the spectrum look
smoother. The latter damps parts of the signal with a lower signal amplitude. In the case
of an FID, usually an exponential window is applied. We do not use either of them in our
signal processing but fit the spectrum with a Lorentzian function

Sw ×
( 1

1 + (f − f0)2 w2 − i
(f − f0) w

1 + (f − f0)2 w2

)
× e−iφ + o , (25)

where S is the signal amplitude, f0 the resonance frequency, o the offset, and w the scale
parameter that is connected to the observed transversal relaxation time constant T ∗

2 = w/2π.
The real and imaginary part correspond to the absorption mode and the dispersion mode,
respectively. The two can be mixed with the phase φ. Ideally, the phase φ is zero and
the absorption and dispersion modes of the Lorentzian are not mixed. Drifts in the NMR
electronics can lead to a change of φ. This changes the apparent spectral amplitude if only
the absorption mode is considered, which leads to a systematic error. There are various
methods to detect and correct this phase [127–129]. We bypass the problem of the signal
phase correction by including it as a fit parameter. This makes the amplitude independent
of the phase.

The NMR spectrum of the signal of Fig. 58 with a fitted Lorentzian of Eq. (25) is shown
in Fig. 60. The fit revealed S = (24.81±0.07) kHz, f0 = (12501±4) Hz, w = (962±4) µs,
φ = (−4.9 ± 0.2)°, and o = (0.115 ± 0.006). The apparent amplitude in Fig. 60 is Sw =
23.9 ± 0.1.

Depending on the measurement performed in the interaction zone, the spin polarization
and therefore the signal amplitude may be low. To improve the fit of the spectrum we take
a reference measurement before each measurement sequence. This measurement has the
same parameters for the NMR pulse sequence, but all spin-flip signals in the interaction zone
are turned off. This leads to a reference signal with the highest possible amplitude. The
Lorentzian Eq. (25) is then fitted to the reference spectrum and the parameters f0 and φ

are fixed for the subsequent measurements. Additionally, the amplitude of the reference is
used for normalization resulting in the normalized spin polarization.

The uncertainty of the data in the spectrum can be estimated by using the data points
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Figure 60: Spectrum of the NMR signal of Fig. 58 that was calculated using an FFT al-
gorithm. The spectral peak has the shape of a Lorentzian where real part (blue) is the
absorption mode and the imaginary part (orange) the dispersion mode. The solid lines are a
least-squares fit of Eq. (25). The absorption peak has a full width at half maximum (FWHM)
of roughly 2.2 kHz.

in the baseline and calculating their standard deviation around the mean.n This uncertainty
can then be provided to the fitting routine which includes it in the calculation of the errors
of the fit parameters. Another possibility is to scale the fit parameters such that the reduced
chi-squared χ2

r = 1. In Fig. 60 it becomes evident, that Eq. (25) does not take into account
all the characteristics of the NMR signal. This means that the model does not represent the
data perfectly and χ2

r > 1 by definition. The second option should therefore be avoided as
this leads to a wrong estimate of the uncertainty of the fit parameters, so we use the first
option.

7.4.3 Hahn Echo Pulse Sequence

For completeness we show the NMR signal of a Hahn echo sequence in Fig. 61. The scan
parameters for the first pulse were the same as in the single pulse measurement presented in

nThe baseline is the part of the spectrum where no signal is present, e.g., for all negative frequencies in
the real part of the spectrum shown in Fig. 60.
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Fig. 58. The π/2-pulse is followed by a second pulse to flip the spins by π after a time of
2 ms. This leads to a refocusing of the spin polarization and the echo signal appears after
another 2 ms. Since the Hahn echo can only be applied on a static sample, we performed
only 100 scans with a repetition delay of 12 seconds between each scan.

(a) (b)

Figure 61: Measurement of a static water sample with the Hahn Echo pulse sequence.
The signal was averaged over 100 echo signals with a total measurement time of roughly
20 minutes. (a) Real part of the normalized NMR signal. The imaginary part is phase shifted
by π/2 but not shown. The solid lines serve only as a guide for the eyes. (b) Modulus of
the spectrum fitted with a Gaussian of Eq. (26) (solid line). The resonance has a FWHM of
roughly 2.3 kHz.

Since the real and imaginary part of the spectrum do not follow a simple shape as
Eq. (25), it is reasonable to look at the modulus of the spectrum and fit a Gaussian

S × e
−(f−f0)2

2σ2 + o (26)

to the data, where S is the spectral amplitude, f0 the resonance frequency, σ the width, and o
the offset. The fit of the spectrum in Fig. 61b revealed S = 50.4±0.2, f0 = (12852±4) Hz,
σ = (961 ± 4) Hz, and o = 0.50 ± 0.02.

7.4.4 Longitudinal Spin Relaxation

An important property for the experiment is the longitudinal relaxation of the proton spins
with time constant T1, also called spin-lattice relaxation. It is the time that the spins need
to (re-)align with the external magnetic field and the same as discussed in Sec. 7.2. For
a static NMR sample it defines the time between two consecutive measurements as they
require the spins to be fully polarized, i.e., the repetition delay. For our experiment with a
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continuous water flow it defines the maximum time between the polarization of the spins and
the measurement of them. Together with the velocity of the water flow one can calculate
the maximum possible length of the experiment.

T1 can be measured by applying an inversion recovery pulse sequence on a static sam-
ple [111]. First the polarization is inverted by applying a π-pulse. Then the polarization can
recover for a certain time. After this, an analyzing pulse sequence, e.g. single pulse or Hahn
echo, is applied to measure the recovered polarization. The recovery time is scanned and a
recovery function

P = P0 ×
(
1 − 2e−t/T1

)
(27)

fitted, where P0 is the initial polarization.o The data with the least-squares fit of
Eq. (27) of such a measurement is shown in Fig. 62. The fit revealed a time constant
of T1 = (2.35 ± 0.02) s which is in agreement with the value of T1 = (2.33 ± 0.07) s that
was measured by E. L. Hahn [111].

The maximum possible length of the experiment can be estimated for the usual water
flow velocity of 2.35 m/s using v ·T1 ≈ 5.5 m. This is only an order of magnitude estimation
and depends on other parameters such as the initial polarization or the sensitivity of the
NMR detection system. Since T1 is given by the water, the velocity could be increased to
extend the maximum length of the experiment.

7.4.5 Transversal Spin Relaxation

The second important relaxation is the transversal relaxation or spin-spin relaxation with time
constant T2. It originates from the interaction between the spins in the NMR sample. Usually,
the observed decay of the transversal polarization with time T ∗

2 is much faster because of
inhomogeneities of the magnetic field. Nevertheless, with the proper pulse sequence, the
natural T2 can be measured [130]. Those sequences apply a pulse echo which is able to
refocus the spins that are depolarized due to inhomogeneities but not due to the spin-spin
interaction.

The mostly used sequence for the measurement of the spin-spin relaxation time is the
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence [131, 132]. The spins of a static sample
are first flipped into the transverse plane by a π/2-pulse. Then an equitemporal series of
refocusing π-pulses is applied. The time between these pulses has to be short to minimize
diffusion effects. Each of those pulses creates an echo with decreasing amplitude due to the

oThe only difference to Eq. (24) is the factor of two, since here the polarization is fist inversed whereas in
Eq. (24) the polarization was zero in the beginning.
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Figure 62: Measurement of the longitudinal spin-lattice relaxation time T1. Shown is the
normalized spin polarization as a function of the recovery time. The solid line is a least-
squares fit of Eq. (27) that revealed a time constant of T1 = (2.35 ± 0.02) s.

spin-spin relaxation. The echo amplitude as a function of the echo time can be fitted with
an exponential function

P = P0 × 2e−t/T2 +A (28)

that gives the time constant T2. The constant offset A is usually needed if the measurement
is not perfectly on resonance [133]. The normalized measured data of a CPMG sequence
with a fit of Eq. (28) that revealed T2 = (1.67 ± 0.02) s and A = 0.028 ± 0.002 is shown in
Fig. 63.

The transversal relaxation that is observed in a FID signal as in Fig. 58 includes the
contribution from the inhomogeneities of the magnetic field. In the spectrum it defines the
linewidth of the resonance peak. Its time constant is called T ∗

2 and can be determined by
fitting and an exponential function as Eq. (28) into the modulus of the FID. In our case,
this led to an observed relaxation time constant of T ∗

2 = (146 ± 1) µs.
The following formula holds for T ∗

2 , T2, and the magnetic field inhomogeneities ∆BNMR [130]:

1
T ∗

2
= γp∆BNMR

2 + 1
T2

(29)

=⇒ ∆BNMR = 2
γp

( 1
T ∗

2
− 1
T2

)
≈ 2
γpT ∗

2
, (30)
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Figure 63: Measurement of the transversal spin-spin relaxation time T2. Shown is the
normalized spin polarization as a function of the echo time. The solid line is a least-squares
fit of Eq. (28) that resulted in a time constant of T2 = (1.67 ± 0.02) s.

where γp is the gyromagnetic ratio of the proton. We used Eq. (30) to calculate ∆BNMR =
(51.2 ± 0.5) µT that corresponds to a relative uniformity of 10−4 for a field of 0.5 T as
stated by the manufacturer for a 10 mm sample.
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8 Rabi Measurements

The Rabi measurements are performed with a single spin-flip coil in the interaction zone.
An oscillating current is applied to create the B1 field that flips the spins if the frequency is
close to the Larmor resonance frequency of the B0 field. The B1 field is linearly oscillating
and orthogonal to B0, in our case it is aligned with the direction of the water flow along
the z-axis. If on resonance, the effective field that the protons see in their reference frame
is along the B1 axis which lets them precess around it. A more detailed explanation and a
schematic can be found in Sec. 10.2 and Fig. 76, respectively. The amplitude of the signal is
usually optimized such that it creates a π-flip, resulting in the highest resonance amplitude.
We searched for the resonance at various B0 fields and flow velocities. The current through

(a) (b)

Figure 64: (a) Rabi resonances at B0 ≈ 12 µT (500 Hz) for water flow velocities of 1.63 m/s
(blue N), 2.03 m/s (orange I), 2.35 m/s (green H), and 2.65 m/s (red J). The Gaussian fit
of the data (solid lines) lead to a FWHM of (69.3±0.5) Hz, (79.4±0.5) Hz, (91.0±0.6) Hz,
and (101.6±0.6) Hz, respectively. The width scales proportional to the velocity as expected.
(b) Rabi resonances at a water flow velocity of 2.35 m/s for various B0 fields, resulting in
resonance frequencies at 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz. More values of B0 up to
a resonance frequency of 10 kHz were tested but not shown here for reasons of legibility.

the B0-coil for the measurements shown in Fig. 64a was set to 50 mA. This created a
magnetic field of approximately 12 µT that corresponds to a resonance frequency of 500 Hz.
As the resonance width is proportional to the flow velocity, the resonance becomes broader
for faster water flow velocities. Additionally, the amplitude of the resonance increases since
the time for relaxation is shorter. The amplitude of the spin-flip field B1 used for these
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measurements was optimized for each velocity for the highest resonance amplitude.
For the measurements shown in Fig. 64b, the water flow velocity was fixed at 2.35 m/s.

We measured the Rabi resonance for various values of the B0 field resulting in resonance
frequencies between 250 Hz and 10 kHz. Only four of them are shown. The FWHM of
(90.8 ± 0.4) Hz is the same for all resonances within the uncertainty. The measured width
deviates from the theoretical value of 125 Hz when calculating the FWHM using the Rabi
formula [79]. This can be explained by the fringe field of the spin-flip coil and leads to an
effective length of the coil of 20 mm, compared to the geometric length of 15 mm.

To optimize the amplitude of the spin-flip signal for a π-flip, we scanned the amplitude
B1 on resonance. A π-flip is achieved when the polarization is at the first minimum in Fig. 65
at a value of the spin-flip signal amplitude between 300 mVpp and 500 mVpp. Figure 65
also shows that a higher field amplitude is needed to achieve the same flipping angle if the
water flows faster.

Figure 65: Rabi amplitude scan on resonance at B0 ≈ 12 µT (500 Hz) with the same
velocities and colors as in Fig. 64a. The data are fitted with the convolution of a sinusoidal
function with an exponential decay (solid lines). The fitted period of the sinusoidal can be
used to calculate the required amplitude for the desired flipping angle.
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9 Ramsey Interferometry

A typical measurement that can be performed with two spin-flip coils in the interaction zone
is the Ramsey measurement [56, 57]. In this type of measurement, the spins are first flipped
by π/2. Then, they precess freely before they are flipped again by π/2. The two spin-flip
signals are phase-locked and running at the same frequency. If this frequency is scanned over
the resonance, a typical Ramsey pattern as shown in Fig. 66 is obtained. As described in
Sec. 7.3, we placed the two spin-flip coils with a center-to-center separation of 600 mm.

Figure 66: Typical resonance pattern obtained with Ramsey’s method of separated oscil-
latory fields at a magnetic field of B0 ≈ 12 µT. The average velocity of the water was
2.35 m/s. The right figure shows a zoom in the central frequency range. The fringe period
is approximately 4 Hz. The measurement time per point was roughly 18 s and the total
measurement time 1 h 30 min. The solid lines serve only as a guide for the eyes.

The overall envelope arises from the single-spin-flip resonance. The fringes in the central
region are the Ramsey interference pattern of the two spin-flip coils. The fringe period de-
creases with a longer interaction distance between the spin-flip coils, making the experiment
more sensitive. The visibility of the fringes above and below the resonance frequency is
reduced due to mixing of protons with different velocities. In case of all protons having the
same velocity, all fringes would reach the maximum normalized spin polarization of one.

Another option for a Ramsey-type measurement is to keep the frequency of both spin-flip
signals fixed on resonance but scan the relative phase between the two oscillating signals.
This has the advantage of always being on resonance and obtaining data in the shape of a
simple sinusoidal curve that can be fitted easily. The signal of such a phase scan is shown
in Fig. 67.
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Figure 67: Ramsey phase scan on resonance at 500 Hz, corresponding to a magnetic field of
B0 ≈ 12 µT. Shown is the normalized spin polarization as a function of the phase between
the two spin-flip signals. The water flow velocity was 2.35 m/s. To test functionality of
the setup and the method, we performed a reference measurement (blue) and changed the
magnetic field slightly to see the change in phase (orange and green). The data are fitted
with sinusoidal functions with a fixed period of 360° (solid lines). The measurement time
per phase scan is roughly 2 min.

Ramsey’s technique is very sensitive to (pseudo-)magnetic field effects. A tiny change in
the main magnetic field ∆B results in a change of the phase that the protons acquire during
the precession in the interaction region

∆ϕ = γp∆BLeff
v

, (31)

where Leff is the effective interaction length [78] and v is the water flow velocity.p This is
visible in Fig. 67 where we changed the magnetic field by (4.3±0.3) nT and (14.7±0.3) nT.
This values were measured with the fluxgate after the second spin-flip coil. The average field
between the spin-flip coils might be slightly different. These values for the magnetic field
change resulted in a phase shift of 19.5° ± 0.4° and 60.0° ± 0.4°, respectively. This agrees,

pThe effective interaction length is slightly longer than the separation of the spin-flip coils. The reason is,
that the spins start already to precess within the spin-flip coil when partially flipped.
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within the limits of uncertainty, with the theoretical values that can be calculated using
Eq. (31).

To get the phase shift as a function of the magnetic field change we performed
several more measurements. A linear fit through the data resulted in a value of
∆ϕ/∆B = (4.1 ± 0.1) °/nT as presented in Fig. 68.

Figure 68: Measured phase shift ∆ϕ as a function of the magnetic field change ∆B. The
settings were the same as in Fig. 67. The linear fit (solid line) resulted in a value of
∆ϕ/∆B = (4.1 ± 0.1) °/nT.

The sensitivity of the full apparatus is defined by the precision of the phase determination
and the stability of the field. To characterize the stability, we performed phase scans as shown
in Fig. 67 over 60 hours with the end caps of the mu-metal shield opened and closed in two
consecutive measurement sequences. The stability was then analyzed by calculating the
overlapping Allan deviation [134, 135] shown in Fig. 69.

Both show a minimum in the Allan standard deviation at about 30 minutes. The open
shield has minimum of 0.43° (105 pT) and the full shield of 0.34° (83 pT). This implies,
that after 30 minutes, a new reference measurement has to be taken. If the setup has to be
changed, e.g. a polarity change in the magnetic field to account for systematic effects, this
should be done within that time frame.
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(a) (b)

Figure 69: Proton phase stability for a setup with the end caps of the mu-metal shield closed
(blue) and opened (orange). (a) Time series of the two consecutive measurements. (b)
Overlapping Allan deviation of the phase as a function of the observation time. The vertical
axis on the right side shows the corresponding magnetic field stability using the conversion
factor of the linear fit in Fig. 68.
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10 Bloch-Siegert Shift

In a Rabi resonance measurement with a single spin-flip coil, an oscillating field at the Larmor
frequency ω0 = −γpB0 is applied to flip the spin of a particle. For technical reasons, the
applied field is usually linearly oscillating and of the form Brf = 2B1 cos(ωrft). The amplitude
of the oscillating flipping field is often represented in the form of ω1 = −γpB1 which is called
the Rabi frequency.

In a mathematical description, this field can be regarded as the sum of two rotating
fields, one of them rotating clockwise and the other anti-clockwise with frequencies ±ωrf .
To calculate the effective field around which the spins are precessing, a transformation in
the local frame of the particle’s spin is performed. After this, one of the fields is rotating
slow with ωrf − ω0 and the other is rotating fast with ωrf + ω0. In the rotating-wave
approximation, the fast rotating field is neglected. An argument for this is that the time
scale of the counter rotating field is to fast for the relevant transitions and averages to zero.
The approximation holds under the assumption of being close to resonance (ωrf ' ω0) and
having a low oscillating field intensity.

In Sec. 10.1 we describe the measurement of the Bloch-Siegert shift in a Rabi-type setup
with a single spin-flip coil. We then show, how the shift can be compensated and enhanced
by inducing a second oscillating signal with the proper choice of frequency and amplitude.
We further explain the Bloch-Siegert shift in a Ramsey-type setup in Sec. 10.2. We show that
the phase pick-up due to a slightly off-resonance flipping field can be used to compensate
the shift in such a setup.

10.1 Bloch-Siegert Shift in a Rabi-type Setup

The Bloch-Siegert shift is a well-known effect of the counter-rotating field [136]. It is a shift
of the resonance frequency, that depends on the amplitude of the oscillating field and in the
first order is

δRabi
BS ≈ 1

4
(γB1)2

γB0
= 1

4
ω2

1
ω0

, (32)

Figure 70 shows the Rabi resonances for various values of the spin-flip signal amplitude.
The amplitude of the resonance depends on the flipping angle that is different for all the signal
amplitudes. For higher signal amplitudes, the resonance is shifted to higher frequencies. The
shift of the resonance frequency for two settings of ω0 is shown in Fig. 71.

The values of the curvature from the quadratic fit are (31 ± 2) Hz/V2
pp and (17.1 ±
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Figure 70: Rabi resonances at ω0 = 2π × 250 Hz for six amplitudes of the oscillating field
B1. Shown is the normalized spin polarization as a function of the oscillation frequency of
the spin-flip signal. The resonance frequency shifts to higher values with increasing field
amplitude as predicted by Eq. 32.

0.8) Hz/V2
pp for the resonance frequencies of (251.8 ± 0.3) Hz and (499.7 ± 0.1) Hz, re-

spectively. The resonance frequencies were determined by the fitted offset of the quadratic
function and are subtracted from the data in Fig. 71 to make the measurements comparable.
The curvatures can not be directly compared with Eq. (32) since the corresponding B1 fields
are unknown but the two values are in agreement with each other since they scale linearly
with ω0.

The Bloch-Siegert shift can lead to a systematic effect in measurements that use a
resonance method like the Rabi or Ramsey method. It was pointed out by G. L. Greene and
N. F. Ramsey [137], that the Bloch-Siegert shift can be eliminated by applying a second
oscillating signal at the right frequency and amplitude. This can be done with the power
combiners explained in Sec. 7.3 and schematically shown in Fig. 52. The Bloch-Siegert shift
after adding this compensation signal has the following form

δRabi
BS = 1

2

(
ω2

1
2ω0

+ (aω1)2

ω0(1 − b) + (aω1)2

ω0(1 + b)

)
(33)

= 1
4
ω2

1
ω0

(
1 − 4a2

b2 − 1

)
. (34)
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Figure 71: Bloch-Siegert shift for the two resonance frequencies at roughly ω0 = 2π×250 Hz
(blue H) and ω0 = 2π×500 Hz (orange N). The shift of the resonance frequency is shown as
a function of the applied spin-flip signal amplitude. The solid lines correspond to a quadratic
fits where the linear term is fixed to zero. The fitted offset corresponds to resonance frequency
without the Bloch-Siegert shift and is subtracted from the data.

The first term in Eq. (33) is the regular Bloch-Siegert shift. The other two terms correspond
to the rotating and counter-rotating field of the compensation signal where a is the fractional
amplitude factor and b the fractional frequency factor. This means that the second oscillating
signal is applied with the amplitude a ·B1 at a frequency of b · ωrf . In the simplified form of
Eq. (34) it becomes evident that the shift is compensated if

4a2

b2 − 1 = 1 . (35)

One example of a choice that fulfills the condition of Eq. (35) is b = 4 and a =
√

15/2. In
principle any combination that fulfills condition Eq. (35) is possible with the constraint that
the compensation frequency has to be far enough off-resonance to not directly flip the spins.

The same argument can also be applied to enhance the shift in the resonance frequency.
With a choice of, e.g., b = 0.5 and a =

√
0.75/2, the shift gets doubled. We measured those

two cases, together with regular Bloch-Siegert shift at ω0 = 2π × 500 Hz.
Figure 72 shows that the enhancement and compensation indeed work. The values of

the curvature from the quadratic fit are (18.6±0.7) Hz/V2
pp (standard), (3.7±0.5) Hz/V2

pp
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Figure 72: Bloch-Siegert shift at ω0 = 2π×500 Hz without compensation (blue •), partially
compensated (orange H), and enhanced (green N). Shown is the shift of the resonance
frequency as a function of the amplitude of the oscillating spin-flip signal. The solid lines
correspond to quadratic least-squares fits where the linear term is fixed to zero.

(compensated), and (35 ± 1) Hz/V2
pp (enhanced). However, the chosen parameters for the

compensation did not fully eliminate the Bloch-Siegert shift. We tested other combinations
of parameters but they did not compensate fully as well.

To find the parameters for a full compensation we fixed a value of a and scanned b around
the theoretical value of the compensation. For each of combination of a and b we measured
the resonance frequency for each spin-flip signal amplitude and fitted a quadratic function.
The curvature of the quadratic fit as function of b for a = 4 is shown in Fig. 73. The root
of the quadratic fit results in a value of b = 7.3 ± 0.2 for a full compensation which is about
10% off from the predicted value, indicated by the orange point in Fig. 73.

To investigate this issue further, we performed the same measurement for various values
of ω0. Figure 74 shows that the deviation from the predicted value increases with higher
resonance frequency ω0. The extrapolation to ω0 = 0 leads to a value of b = 8.0±0.2 which
is in good agreement with the prediction of b =

√
65 ≈ 8.1 from Eq. (35).

Those data suggest, that there is another term that shifts the resonance frequency, which
is proportional to ω0. Yet, we are not sure if this term belongs to the Bloch-Siegert shift itself
or has a different origin. Higher order terms of the Bloch-Siegert shift are not a reasonable
explanation since they are suppressed by ω0. For example, the next-to-leading-order term is
∝ 1/ω3

0.
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Figure 73: Scan of the fractional frequency factor b to compensate for the Bloch-Siegert
shift at ω0 = 2π × 500 Hz. Shown is the curvature of the Bloch-Siegert shift as a function
of b for a fractional amplitude factor of a = 4. The solid line corresponds to a quadratic
fit, the dashed line indicates zero curvature, and the orange point to the theoretical value
according to Eq. (35).

We also searched for the fractional frequency factor b that cancels the Bloch-Siegert shift
at the same resonance frequency ω0 = 2π × 500 Hz for various fractional amplitude factors
a. The data are presented in Fig. 75. To compare the measurement with the model we
also plotted the curve of Eq. (35) in Fig. 75 together with a linear fit through the data. It
shows that the model and the measurement are in better agreement for lower values of a
but diverge for higher ones. Additionally, all the measured value are below the theoretical
curve.
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Figure 74: Optimized fractional frequency factor b that cancels the Bloch-Siegert shift with
a fractional amplitude factor of a = 4 for various values of ω0. The solid line corresponds to
a linear fit.

Figure 75: Optimized fractional frequency factor b at ω0 = 2π×500 Hz for various fractional
amplitude factors a (blue dots). The blue line corresponds to a linear fit through the data
and the orange line to the theoretical curve according to Eq. (35).
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10.2 Bloch-Siegert Shift in a Ramsey-type Setup

The shift of the resonance frequency in a Rabi-type setup with a single spin-flip coil leads to
a shift of the Ramsey pattern of Fig. 66 and Fig. 67. The first-order shift of the resonance
frequency in a Ramsey-type setup [137, 138] takes the form of

δRamsey
BS = lsf

lint

tan (χ)
χ+ 2lsf

lint
tan (χ)

× δRabi
BS , (36)

where
χ = τ

2

√((
ω0 + δRabi

BS
)

− ωrf
)2 + (γB1)2 . (37)

In the above equations lsf is the length of the spin-flip coils, lint the distance between the
spin-flip coils, and τ = lsf/v the interaction time with the spin-flip signal.

We can calculate the Bloch-Siegert shift in a Ramsey-type setup with typical measure-
ment parameters ω0 = ωrf = 2π× 990 Hz, v = 2.35 m/s, lint = 0.58 m, and lsf = 0.02 m.q

We chose the amplitude B1 = γπv
2lsf

such that the spins are flipped by π/2. This results in a
shift of δRamsey

BS ≈ 55 mHz that corresponds to approximately 5° in a Ramsey phase scan.
Compared to a Rabi-type setup, there is the additional free parameter ωrf . Usually, ωrf

is set to the resonance frequency ω0 and the spins are flipped around the axis of the B1 field.
If ωrf 6= ω0, the effective field Beff that the spins see in their laboratory frame is rotated
away from the B1 axis due to the off-resonance field ∆B = (ω0 − ωrf) / γ. This leads to an
additional phase that the spins acquire during their rotation. This behaviour is schematically
presented in Fig. 76.

The phase pick-up due to the off-resonance field can be calculated by applying a rotation
of angle π/2 around the axis of the effective field to a spin vector oriented along z. The
movement or path of the spin for such a rotation is indicated by the dashed lines in Fig. 76b.
A reasonable choice is ω0 −ωrf = 2π×1.4 Hz as this corresponds to half the difference of the
measured resonance frequencies of the first and second spin-flip signals of (991.6 ± 0.2) Hz
and (988.8 ± 0.1) Hz, respectively. A rotation of angle α around an arbitrary unit vector ~̂n
can be described by the rotation matrix[

R
~̂n
(α)
]

ij
=
(
1 − cos (α)

)
njnj + cos(α)δij + sin(α)εijknk , (38)

where δij is the Kronecker delta and εijk is the Levi-Civita symbol. In our case we apply the
rotation R

~̂Beff
(π/2) on the initial spin along the z-axis ~s = (0, 0, 1). The phase with respect

qWe use the effective spin-flip coil length calculated in Sec. 8.
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(a) (b)

Figure 76: (a) Schematic of the effective field axis around which the spins are rotated in
their laboratory frame. ∆B = (ω0 − ωrf) / γ is the off-resonance field. (b) Schematic of
the path (solid black lines) that the spins follow when flipped in their laboratory frame. The
path a corresponds to the on-resonance case where the effective field lies along the dashed
axis A. The other paths b, c, and d correspond to off-resonance fields of various offsets with
effective fields along B, C, and D. The schematics are Figs. 3.10 and 3.25 in the lecture
notes of J. Keeler in 2002 [125].

to the y-axis can then be calculated by

δϕ = arctan(~sx/~sy) , (39)

where ~sx and ~sy are the x and y components of the spin after the rotation, respectively.
This results in δϕ ≈ 2.5°. A more detailed derivation of this off-resonance phase pick-up
can be found in Appendix A.2.

The phase shifts due to the Bloch-Siegert effect and the off-resonance phase pick-up are
on the same order of magnitude. A reasonable measurement of the Bloch-Siegert shift
is therefore only possible, if the off-resonance effect is under control. To achieve this,
the resonance frequencies at both spin-flip coils have to be known, stable, and the same
frequency. This can be achieved by a better magnetic shielding and by adding a trimming
field around the spin-flip coils shown in Fig. 51 to shift the resonances to the same frequencies.

We measured the effect of the off-resonance phase shift. For various ωrf we scanned the
amplitude of the spin-flip signal. For each amplitude we performed a Ramsey phase scan.

92



The data with a fits of the function ax4 + c, where we call a the curvature, are shown in
Fig. 77. Please note that those measurement include the phase shift due to the Bloch-Siegert
and the off-resonance effect.

Figure 77: Measurement of the off-resonance phase shift as a function of the spin-flip signal
amplitude for various ωrf (color labels in legend). The resulting phase shifts also include the
Bloch-Siegert shift. The data are fitted with the function ax4 + c (solid lines), where we call
a the curvature. The fitted offset c is subtracted from the data.

The measurements show that the off-resonance phase shift can cancel the Bloch-Siegert
shift if the spin-flip signal frequency is chosen such that the curvature is zero. Figure 78
shows the curvature a as a function of the spin-flip signal frequency with a linear fit that
provides a root at ωrf = (990.9 ± 0.1) Hz.

Only if the true resonance is known, the Bloch-Siegert shift can be isolated. This could be
done, for example, by inducing the second oscillating signal in each spin-flip coil that cancels
the Bloch-Siegert shift in the Rabi-type setup as explained in Sec. 10.1. It becomes evident
from Eq. (36) that the shift gets cancelled in the Ramsey case if it was cancelled in the Rabi
case. With the cancelled Bloch-Siegert shift, the off-resonance effect could be measured.
Then the frequency where the curvature is zero corresponds to the true resonance. Any
further measurement without the second oscillating signal contains only the isolated Bloch-
Siegert effect. Nevertheless, the magnetic field has to be stable over the full time of this
procedure which is not given by the current setup.

In conclusion, we showed measurements of the Bloch-Siegert shift in a Rabi-type setup
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Figure 78: Curvature a of the measurements shown in Fig. 77 as a function of the applied
spin-flip signal frequency. The data are fitted with a linear function that provides a root at
ωrf = 2π × (990.9 ± 0.1) Hz. The dashed line indicates zero curvature.

with a single spin-flip coil. We further showed how the shift can be compensated or enhanced
by inducing a second oscillating signal with a certain combination of frequency and amplitude.
The calculated values for this compensation signal do not fully cancel the shift but the right
combination can be searched for empirically. We further calculated the Bloch-Siegert shift
in a Ramsey-type setup and compared it to the phase pick-up due to an off-resonance pulse.
We explained why it is not a simple task to isolate the two effects. Nevertheless, we argued
that with a proper choice of the spin-flip signal frequency the two effects cancel each other.
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11 Dressed Spin States

The term dressed states or dressed atoms appeared for the first time in 1969 in a publication
by C. Cohen-Tannoudji [139]. In quantum optics it is better known and described by the
Jaynes-Cummings model [140, 141]. It describes the interaction of an atom with an RF field
where the atom is dressed by the RF photons. In quantum optics, this RF field/photons
originate from an optical cavity. In our setup, it can be created by a high-power oscillating
magnetic field induced via the spin-flip coil. This dressing with a high number of photons
or a high intensity field can lead to a change of the g-factor g of the atom and may even
cancel it. This means that the precession can be altered, stopped, and even inverted.

The dressed spin states and consequent effects have also been measured with neu-
trons [142] and the application for the neutron-antineutron oscillation measurement has
been investigated [143]. They were measured recently with 3He in cell and in a Ramsey-type
beam experiment [144–146].

The application of dressed spin states could be advantageous in various measurements
that are highly sensitive to magnetic field effects. It was suggested to use 3He as a spin
analyzer and co-magnetometer in the measurement of the neutron electric dipole moment
using ultra-cold neutrons. To minimize systematic effects of small changes in the magnetic
field, the change of the g-factor due to dressed states could be applied [144, 145, 147,
148]. At a certain critical dressing field, the resonance frequencies of the two species of
particles becomes the same and some systematic effects cancel. The dressed spin states
could be further applied to optically pumped magnetometers (OPMs) [149–151] to expand
the measurement range on the cost of sensitivity.

Here we present the investigation of the dressed spin states of protons. The dressing
field is applied via the same coil as the spin-flip signal. The connection diagram is the one
presented in Fig. 52 with only one spin-flip coil in use. We show how the dressing field can be
used to reduce and increase the gyromagnetic ratio of a particle in Sec. 11.1 and Sec. 11.2,
respectively. We further test the application of the dressing field to OPMs to in-situ tune
the measurement range and the sensitivity.

11.1 Reducing the Gyromagnetic Ratio

This qualitative derivation follows the one in [147]. It explains the reduction of the gyro-
magnetic ratio γ = gµN/~, where µN is the nuclear magneton, in the presence of an RF
field in a semi-classical framework.
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Let’s start with an initial spin pointing upwards along z. There is the additional dressing
field oriented along x of high enough amplitude Bd, but off-resonance, oscillating with
frequency ωd

Bx(t) = Bd sin(ωdt) . (40)

This field leads to a precession of the spin around the x-axis with

ω(t) ≡ ϑ̇(t) = γBx(t) . (41)

Since the dressing field is oscillating off-resonance and there are no other external fields yet,
the movement of the spin can be described as a jitter/wiggling. Integration leads to a time
dependent angle with respect to the z-axis of

ϑ(t) = −γBd

ωd
cos(ωdt) . (42)

The projection of the spin vector with angle ϑ(t) onto the z-axis can be calculated using
that ϑz(t) = cos(ϑ(t)) and the time average becomes

〈ϑz(t)〉T = 1
T

∫
T

cos
(−γBd

ωd
cos(ωdt)

)
dt ≡ J0

(
γBd

ωd

)
, (43)

where J0(x) is the Bessel function of the first kind with order zero and dressing parameter
x = γBd/ωd, which is shown in Fig. 79.

This means that the average z-component of the magnetic moment ~µ = ~γ~σ of the
spin is reduced. Since this defines the interaction with a magnetic field, it leads to an
effective/observed gyromagnetic ratio in the dressing field altered by the Bessel function

γeff = γ × J0

(
γBd

ωd

)
. (44)

This argument holds under the condition that the oscillation is fast enough such that taking
a time average is reasonable or 2π/ωd � τ , where τ is the interaction time with the spin-flip
signal.

We measured the effective frequency of the dressed protons at B0 ≈ 12 µT that corre-
sponds to a resonance frequency of 500 Hz. For various dressing field frequencies we scanned
the amplitude of the dressing field and measured the Rabi resonance for each setting. The
Rabi-resonance curves for the dressing field frequency ωd = 2π × 2000 Hz and various am-
plitudes are shown in Fig. 80. The determined resonance frequencies with a fit of the Bessel
function ω0/2π × J0(x) are shown in Fig. 81.
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Figure 79: Bessel function of the first kind of order zero J0(x). In the framework of dressed
spin states, the Bessel function describes the modulation of the g-factor and gyromagnetic
ratio in the presence of an off-resonance RF field with the dressing parameter x = γBd/ωd.

The measurement shows that it is possible to reduce and even cancel the gyromagnetic
ratio and, therefore, the resonance frequency. The semi-classical derived model that describes
this effect fits well with the data for various dressing field frequencies. As the value of Bd

can not be measured and is unknown, it was calculated from the fitted value of the dressing
parameter x, using Eq. (44). To put the dressing field amplitude in perspective: the first
point of the dressing field amplitude in Fig. 81 of Bd ≈ 1.8 µT corresponds to roughly the
spin-flip signal amplitude whereas the last point is a factor of twenty higher.

11.2 Increasing the Gyromagnetic Ratio

It was demonstrated that the precession frequency of 3He in a cell can be increased when
applying a dressing field with a frequency lower than the Larmor frequency [145]. This
problem can be qualitatively derived, similarly to the case where the dressing field frequency
is higher than the Larmor frequency.

Lets assume there is the dressing field of Eq. (40) as before but with a frequency much
lower than the Larmor frequency ωd � ω0. This means that in the presence of a constant
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Figure 80: Rabi resonances at ω0 = 2π × 500 Hz for five amplitudes of the dressing field
Bd at a frequency of ωd = 2π × 2000 Hz. Shown is the normalized spin polarization as
a function of the spin-flip signal frequency. The resonance frequency shifts to lower values
with increasing amplitude Bd as predicted by Eq. (44).

vertical magnetic field B0, the magnitude of the magnetic field is

|B| =
√
B2

0 +B2
d sin2(ωdt) ≈ B0 + B2

d sin2(ωdt)
2B0

, (45)

where in the second step we used that Bd � B0.
We can calculate a time average of the field, as long as 2π/ωd � τ , meaning that the

spin interacts with multiple oscillations of the dressing field.

〈|B|〉T = B0 + B2
d

2B0

1
T

∫
T

sin2(ωdt)dt = B0 + B2
d

4B0
= B0

(
1 + B2

d

4B2
0

)
(46)

This time average is the effective field that the spins see while passing the spin-flip coil. It
is still vertically oriented along the z-axis but has a higher magnitude as the last term of
Eq. (46) indicates. Since the effective field increases, so does the effective gyromagnetic
ratio with the same quadratic dependence

γeff = γ ×
(

1 + B2
d

4B2
0

)
. (47)
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Figure 81: Measurement of the dressed proton resonance frequency in a magnetic field of
B0 ≈ 12 µT. We scanned the amplitude of the dressing field Bd at 1000 Hz (blue N),
1500 Hz (orange I), 2000 Hz (green H), and 2500 Hz (red J). The data are fitted with
Bessel functions of the first kind and order zero. Points with an absolute resonance frequency
smaller than 75 Hz were not included in the analysis. The sign of the negative points was
flipped manually since the Rabi method is not able to distinguish between positive and
negative resonance frequencies.

We measured the effective frequency of the dressed protons at B0 ≈ 24 µT that corre-
sponds to a resonance frequency of 1000 Hz. The dressing field frequency was set to 250 Hz
and the amplitude of the dressing field Bd was scanned. The Rabi-resonance curves for
various amplitudes of the dressing field are shown in Fig. 82 and the determined resonance
frequencies with a quadratic fit are shown in Fig. 83.

The data show that the resonance frequency, or equivalent the gyromagnetic ratio, can
be increased by inducing a dressing field with a frequency lower than the Larmor frequency.
Because the qualitative derivation makes the assumption that Bd � B0, we did not include
data points in the fit that do not fulfill this condition. As the value of Bd cannot be measured
and is unknown, we use the same scaling as in Sec. 11.1 where the dressing field amplitude
of the first point is roughly the same as the spin-flip signal amplitude.
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Figure 82: Rabi resonances at ω0 = 2π × 1000 Hz for five amplitudes of the dressing field
Bd at a frequency of ωd = 2π × 250 Hz. Shown is the normalized spin polarization as a
function of the spin-flip signal frequency. The resonance frequency shifts to higher values
with increasing amplitude Bd as predicted by Eq. (47).

11.3 Rubidium Magnetometer Range Tuning

One application of the dressed spin states is in the field of OPMs. The sensor we tested is a
Gen-2 QuSpin zero-field magnetometer [151]. It has a measurement range of about ±3 nT
and field sensitivity of < 15 fT/

√
Hz.

The basic principle of an OPM is as follows. They have a small gas cell, in the case
of our sensor it is a rubidium gas at about 40 °C. A laser is then passed through the gas
and creates a magnetically sensitive state that has a transmission function of the laser light
that depends on the external magnetic field. A photo diode is placed behind the cell that
measures the light transmission. The voltage of the photo diode is linearly proportional to
the magnetic field within the measurement range

V (B) = A0γRbTrB , (48)

where A0 is a proportionality constant, γRb ≈ 7 Hz/nT [152] the gyromagnetic ratio of the
rubidium, and Tr the relaxation time of the sensitive state of the rubidium.

To alter the measurement range and the sensitivity either Tr or γRb can be changed. Tr

is given by the sensor. It depends on the gas volume and density and can only be changed by
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Figure 83: Measurement of the dressed proton resonance frequency in a magnetic field of
B0 ≈ 24 µT. We scanned the amplitude of the dressing field Bd at 250 Hz. The data
are fitted with a quadratic function (solid line). Points with a dressing field amplitude of
Bd > 13 µT (blue crosses) were not included in the quadratic fit as they do not fulfill the
condition Bd � B0.

the manufacturer. On the other hand, with the dressed spin method, a high-frequency field
can be applied via an external coil around the sensor. This would change γRb and, therefore,
also results in an altered measurement range.

To qualitatively test this idea, we created a simple setup with one rubidium sensor sur-
rounded by a coil to apply the dressing field as shown in Fig. 84. The coil is a single loop
of copper wire around the rubidium sensor, orthogonal to the sensitive axis of the sensor.
The sensor and the coil are mounted on a holder that is placed in the center of a four-layer
mu-metal shield Twinleaf MS-2 [153]. The shield itself has internal coils on a Kapton-foil
that can be used to create magnetic field in all three spatial direction.

To measure the response of the OPM, we applied an oscillating voltage in the vertical
direction at a frequency of 500 mHz at various amplitudes. This serves as a reference
measurement and corresponds to the blue data in Fig. 85. We then applied dressing fields
of various amplitudes at ωd = 2π× 2000 Hz. For each dressing field amplitude we repeated
the measurement. The data are presented in Fig. 85.

For higher dressing field amplitudes, the ratio of the measured field and the applied field
reduces. It is one by definition for the case were no dressing field is applied. For the dressing
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(a) (b)

Figure 84: Photos of the setup used to test the in-situ tuning of the measurement range of
the rubidium magnetometer. (a) The rubidium sensor is placed in a holder such that the
sensitive cell is in the center of the copper-wire loop. (b) The holder with the sensor and the
wire to apply the dressing field is placed in a four-layer mu-metal shield. The orange Kapton
layer inside of the innermost mu-metal layer has printed electronic circuits that can be used
to apply magnetic fields in all spatial directions. The end caps of all four mu-metal layers
were removed for the photo but mounted for the measurement.

field at the applied voltages of 50 mV, 100 mV, and 150 mV the linear fit shown in Fig. 85a
revealed a slope of 0.77 ± 0.03, 0.44 ± 0.01, and 0.262 ± 0.005. This slope is proportional
to the sensitivity and inversely proportional to the measurement range. For a dressing field
with an applied voltage of 150 mV for instance, the sensitivity reduces to 26% and the range
increases by a factor of 3.8.

Figure 85b shows that for the measurements with an applied dressing field, the relation
between the measured and applied field is not linear anymore. The data are fitted with a
quadratic function but it can be seen that it does not fit well. Nevertheless, the data show
that indeed the measurement range could be increased by applying a dressing field.

To confirm or disprove that this change in sensitivity is actually due to the effect of the
dressed spin states, we performed an amplitude scan of the dressing field while keeping the
amplitude of the main field at the same value. According to the theory and the measurements
presented in Sec. 11.1, the measured field amplitude as a function of the dressing field
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(a) (b)

Figure 85: Measured magnetic field amplitude of the rubidium magnetometers as a function
of the applied field amplitude. The measurement without a dressing field (blue N) serves as
a reference. The dressing field at ωd = 2π × 2000 Hz was applied with a voltage of 50 mV
(orange I), 100 mV (green H), and 150 mV (red J). (a) Linear measurement range of the
sensor. The data are fitted with linear functions that go through the origin. The measured
field amplitude of the sensor compared to the applied field amplitude was reduced due to the
dressing field. (b) Full measurement range up to the field where the sensor was saturated.
The dashed lines correspond to quadratic least-squares fits and serve only as a guide for the
eyes.

amplitude should follow a Bessel function. For this measurement we sampled the read-
out of the rubidium sensor with 10 kHz instead of 10 Hz as before. This revealed that the
dressing field signal is also present in the data from the rubidium sensor. In the measurement
before it was just averaged out. To avoid this, we increased the dressing frequency to
ωd = 2π × 10 kHz. We tested this by sampling the OPM read-out much faster than the
dressing frequency. The dressing signal was not present anymore.

Figure 86 presents the data of the dressed field amplitude scan. It does not show the
behaviour of a Bessel function but rather an exponential suppression. The increased mea-
surement range shown in Fig. 85 must either be suppressed at high dressing field amplitudes
or originate from another effect. Yet, it is not clear why the range could be increased. There-
fore, the effect of the dressing field frequency and amplitude on the OPMs must be further
tested.

A possible reason is a saturation effect if the dressing field is also present in the active
axis of the sensor. To avoid this, the alignment of the dressing field coil and the sensor
should be improved. A single loop may not be enough to create a homogeneous field so a
Helmholtz-type coil could help. Additionally, the sensor has actually two sensitive axes and
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Figure 86: Measured field amplitude for an amplitude scan of the dressing field at a fixed
frequency ωd = 2π × 10 kHz. If the dressing field had changed the gyromagnetic ratio of
the rubidium, the data would follow a Bessel function. The data show rather an exponential
suppression.

for the measurement both were active. There could be some crosstalk between the two when
high-frequency fields are applied. The sensor should be used with only one axis active and
the dressing field should be in the direction were the sensor is insensitive.

In conclusion, we investigated for the first time the dressed spin states of protons. Besides
the well-known suppression of the g-factor or the gyromagnetic ratio, we also performed a
measurement where we enhanced them. For the enhancement we developed an intuitive
way, approaching the shift analytically with only basic assumptions. The model seems to be
valid within the applicable range. Additionally, we tried to apply this technique to OPMs
to tune the sensitivity and measurement range in-situ. Even though we were able to tune
the sensitivity, it is unclear if the effect is related to the dressed spin states. Nevertheless,
further investigation is needed to find an explanation for the observed behaviour.
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12 Exotic Interaction

12.1 Theory and Introduction

Extensions of the SM usually predict new particles and gauge bosons. Recently, long-range in-
teractions between macroscopic objects mediated by light bosons have been parametrized [154,
155]. Such an interaction can be represented by the Feynman diagram shown in Fig. 87.

ψ (~p1,~σ)

ψ (~p2,~σ)

Xµ (m0)

ψ ′ (~p ′
1,~σ

′)

ψ ′ (~p ′
2,~σ

′)

Figure 87: Generic elastic interaction between two fermions ψ and ψ′ via the exchange of a
single vector boson Xµ with mass m0. The fermions are characterized by their momentum
~p and spin ~σ.

The parametrization resulted in a complete set of 16 spin- and momentum-dependent
potentials between two fermions assuming only rotational invariance. In the case of the
exchange of a single new light but massive spin-1 vector boson Xµ the low-energy interaction
with a fermion ψ can be described with the Lagrangian

L = ψ
(
gV γ

µ + gAγ
µγ5

)
ψXµ , (49)

where gV is the vector coupling constant, gA the axial-vector coupling constant, and
γ5 = iγ0γ1γ2γ3 the Dirac matrices.r Without loss of generality, it can be assumed that
Xµ is the gauge boson associated with the symmetry breaking of a U(1) symmetry. The
coupling constants are in general different for electrons, protons, and neutrons which is in-
dicated with superscript e, p, and n, respectively. Certain requirements and constraints may
apply. For example, to have a self-consistent theory that includes the new U(1) gauge group
but avoids new fermions charged by it, then gp

V,A + ge
V,A = 0 has to be satisfied [156]. This

rSimilarly, the interaction with the exchange of a spin-0 boson can be parametrized by the scalar and
pseudo-scalar coupling constants gS and gP , respectively.
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would mean that the coupling is only proportional to the number of neutrons.
For a monopole-dipole interaction where the spin of one point-like object is ~σ and the

other object is unpolarized, the corresponding interaction potential gets the form

Vσ(~r,~v) = 1
8πr

(
fv ~σ · ~v +

(
fr ~σ · ~̂r + f⊥ ~σ ·

(
~v × ~̂r

)) 1 + r/λ

mσr

)
e−r/λ , (50)

where ~̂r is the unit vector pointing from the unpolarized object to the polarized one, ~v
the center-of-mass velocity or the relative velocity between the two objects assuming their
particles having the same mass, mσ the mass of the polarized probe particle, and λ = ~/m0c

the interaction range of the exchange boson with mass m0. This potential corresponds to
Eq. (4.3) in [154]. The fv, fr, and f⊥ are dimensionless coefficients of the potentials that
belong to the corresponding configuration of ~̂r, ~v, and ~σ.

The first measurement of a velocity dependent potential was performed using a torsion
pendulum containing polarized electrons. They could constrain the |ge

P g
N
S | and |ge

Ag
N
V | for

interaction length on the order of the mean earth-sun distance λ > 1 AU ≈ 1011 [157]. Many
other searches of these new long-range interactions from subatomic to astronomical distances
have been performed [158–164]. Depending on their experimental configuration they could
constrain couplings between various combinations of fermions (electrons, protons, neutrons),
various combinations of couplings (scalar, pseudo-scalar, vector, axial-vector), and various
types of interactions (monopole-monopole, monopole-dipole, dipole-dipole). Yet, such long-
range interactions have to our knowledge never been measured using polarized protons as
probe particles.

We intend to use protons from hydrogen nuclei in water molecules as probe particles
and a copper block as the source. The source should have a high nucleon number density
and be non-magnetic. The polarized protons pass by the unpolarized copper sample in close
proximity. The geometrical configuration is such that ~σ ⊥ ~v ⊥ ~̂r. Therefore, only the f⊥

term of Eq. (50) remains and the potential becomes

V point
⊥ = f⊥

8πm
e−r/λ

r

(1
r

+ 1
λ

)
~σ · (~v × ~r) , (51)

where the superscript point indicates that it is the potential between two point-like objects.
The full term of f⊥ is given by Eq. (5.28) in [154]

fpN
⊥ =

(1
2 + mp

mN

)
gp

V g
N
V +

m2
p

2m2
N
gp

Ag
N
A + 4

(
1 + mp

mN

)
gN

V

vhmp

M2 Re(Cp) , (52)

where the superscripts p and N indicate the interaction between a proton and a nucleon.
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They can be replaced by whatever particles are involved in the interaction. It can be seen
that in the case of an electron as a probe particle, most of the terms are highly suppressed
by the mass ratios. The first term includes only vector couplings, whereas the second term
only includes axial couplings. The third term corresponds to a higher-dimensional interaction
describing magnetic- and electric-like dipole couplings. It is suppressed by some mass scale
1/M2 that is larger than the vacuum expectation value vh of the symmetry breaking field.
Cp is a dimensionless complex parameter.

The sample geometry is chosen such that it can be regarded semi-finite. Since the
potentials of the individual nucleons add up coherently, the point-like potential of Eq. (51)
can be integrated over the copper volume. Additionally, the interaction potential is linearly
proportional to the proton spins and can be regarded as a pseudo-magnetic field effect
V = −µpB

∗ = −1
2γp~~σ · ~B∗ [165]. Therefore, the pseudo-magnetic field can be calculated

analytically, resulting in
B⊥(∆x) = f⊥

2
N~v
γpmpc

λe−∆x/λ , (53)

where ∆x is the distance from the protons to the copper surface, γp the gyromagnetic ratio
of the proton, N = 5.4 × 1030 m−3 the nucleon number density of copper, and mp the
proton mass. The calculation of the integration over the copper volume and the derivation
of Eq. (53) can be found in Appendix A.3.

The additional phase that the protons acquire in the Ramsey-type setup due to the new
interaction is

∆ϕ = γpB⊥
l

v
= f⊥

2
N~l
mpc

λe−∆x/λ , (54)

where l is the length of the copper sample.

12.2 Add-On of the Setup to Measure Exotic Interactions

An add-on to the interior described in Sec. 7.3 was designed to measure the exotic interaction.
The requirement was to be able to move the copper sample close to the glass capillary
between the spin-flip coils without changing anything on the setup. Most crucial is the mu-
metal, as touching it can easily change the magnetic field in the interior slightly. This could
mimic the effect of an exotic interaction. A second requirement was the repeatability of the
sample position and its separation to the capillary.

The solution is a base plate with notches that guide a sled with pins. The sample can
be put on the sled and be fixed with headless screws. The sled can be pushed in from both
sides and when being close to the center position, the notches guide it to the capillary. Pins
of various diameters can be mounted below the capillary. They define the stop position of
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the sled and the separation to the water. A CAD rendering of the add-on is shown in Fig. 88
and a photo of the view into the mu-metal with the add-on is presented in Fig. 89.

Figure 88: CAD rendering of the add-on for measuring the exotic interaction. It shows the
base plate with the notches (green) that guide the sled (blue) where the copper sample
(orange) can be placed on top. The sled can be placed on both sides of the water pipe and
can be moved by the handle. Two fluxgates (white) measure the magnetic field before and
after the spin-flip coils (black). The two positioning pins at the edge of the copper are also
shown in black.

The holding structure of the spin-flip coils was redesigned. It was necessary to design
them as slim as possible such that the sample can pass by. The coils themselves have the
same dimensions as described in Sec. 7.3 but with one winding more as they were wound
tighter, resulting in 17 windings in total.

To have a more accurate measurement of the magnetic field, a second fluxgate was added
before the first spin-flip coil. Since only one SENSYS FGM3D/125 fluxgate was available, we
switched to two FGM3D/250 fluxgates [65]. They are exactly the same but with a broader
measurement range of ±250 µT and a slightly higher noise level.

12.3 Copper Sample

The copper sample that we use to measure the exotic interaction is made from oxygen-
free copper of quality C11000, also known as electrolytic-tough pitch (ETP). It has a copper
content of > 99.9% [166]. This ultra-pure copper is required to minimize magnetic impurities
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Figure 89: Photo of the view into the mu-metal with the add-on for the exotic interaction
mounted onto the U-profile. The notches of the base plate are visible right of the center.
The sled with a copper sample mounted is visible left of the glass capillary.

that could mimic a false exotic effect. The sensitivity of the measurement is proportional
to the length. We maximized the length of the sample to 500 mm to still be able to fit it
between the two spin-flip coils.

The transversal size of the copper sample was chosen such that it can be assumed to be
infinite from an exotic interaction point of view. If the sample is at the position close to the
capillary, the distance to the center of the water pipe is ∆x = 3.5 mm. The Yukawa-like
potential of the interaction under test Eq. (51) is proportional to e−r, where r is the distance
from the protons in the water to the nucleons of the copper sample. The effect of nucleons
further away than 5 · ∆x = 17.5 mm from the water pipe have an effect of less than 1% and
can be neglected. To fulfill this condition, we chose a transversal size of 28 × 49 mm2. The
flatness of all surfaces facing the water is better than 0.01 mm.

The copper sample is divided into two blocks of length 250 mm. This has the advantage
of easier processing, testing, and handling. The two blocks were manufactured such that
there is no gap and no visible edge when put next to each other. A photo of the sled with
the two copper blocks mounted on top is presented in Fig. 90.

The remanent magnetic fields of the copper blocks were measured at the Physikalisch-
technische Bundesanstalt in Berlin, Germany. They have a magnetically shielded room with a
detector using superconducting quantum interference devices (SQUIDs) to measure relative
magnetic fields changes on the sub-pT level [167]. The distance from the used sensor to
the surface of the copper was 35 mm. The sensor was at a fixed position and a turn-table
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Figure 90: Photo of the sled with the copper sample mounted on top. The lever to push
the sled into the mu-metal is visible in the background. The copper sample is made of two
blocks with a cross-section of 28×49 mm2 and a length of 250 mm each. There is no visible
edge between the two blocks.

with both blocks on opposite sides rotated below it. The magnetic field of the blocks was
measured in two runs, one for each side of the copper facing the SQUID.

It was shown, that the copper samples can be magnetized to over 500 pT from peak to
peak with a strong permanent magnet and/or demagnetized or degaussed with a degaussing
device as the SV91M [168]. The data presented in Fig. 91 indicate that the copper has a
remanent magnetic field of < 20 pT from peak to peak at a distance of 35 mm after the
degaussing. Additionally it became clear during the measurements that also thermal effects
are present that could mimic a magnetic field.

To qualitatively check the data presented in Fig. 91, we measured the remanent magnetic
field of the copper in a non-cryogenig environment in our laboratory in Bern, using a Gen-2
QuSpin zero-field magnetometer [151] with a measurement range of about ±3 nT. Since
the sensor is small, the active cell can measure the magnetic field of the copper at a distance
of only about 9 mm. The sensor was placed in the center of a four-layer mu-metal shield
Twinleaf MS-2 [153] with the endcaps on one side removed. The copper sample was manually
moved over the sensor. We measured the magnetic field after magnetization with a strong
permanent magnet and after degaussing. The former measurement showed that the sample
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(a) (b)

Figure 91: Measurement of the remanent magnetic field of the copper blocks using a SQUID
sensor at a distance of 35 mm. As the table with the samples is rotating below the sensor, the
horizontal axis below is the measurement time of a full rotation. The horizontal axis above
is the corresponding distance along the circumference on which the samples are centered.
Subfigures (a) and (b) show the data of the frontside and the backside, respectively. The blue
line corresponds to the direction of the surface normal and the orange line to the longitudinal
direction. The light colors correspond to the full data and the dark colors to the data after
applying a Savitzky-Golay filter [97]. The gray shaded areas in each subfigure indicate the
position of block 1 (left) and block 2 (right).

can indeed be magnetized as the QuSpin sensor was saturated at 3 nT. After degaussing the
remanent magnetic field was again well within the range of the sensor. To get quantitative
results, a device should be designed to move the sample in a controllable way over the sensor.

Since the copper sample has a remanent magnetic field even after degaussing, we had
to develop a measurement scheme to compensate the magnetic effects. This scheme is
described in Sec. 12.4. There exist also copper of even better quality than the C11000 which
could be used to further reduce the remanent magnetic fields.

12.4 Measurement Scheme

The measurement scheme has to be able to observe the effect of the exotic interaction
but distinguish it from other magnetic effects. This can be done by placing the sample on
both sides of the water pipe such that the same side faces the capillary. This changes the
surface normal ~̂r with respect to the proton velocity ~v and flips the sign of the pseudo-
magnetic field of the exotic interaction B⊥ while keeping the sign of all other magnetic
effects from the external magnetic field B0 and the copper itself Bc. By subtracting the two
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measurements, these systematic effects can in principle be compensated. Additionally, the
magnetic field may slightly changed by δB when moving the sample from one side to the
other. The reason for this is that all the mechanical parts of the experiment are fixed to
the mu-metal shield. Placing the sample in the interaction zone results in mechanical stress
of the mu-metal that changes its magnetization. This can be accounted for by taking a
reference measurement of the proton phase after each changing of the sample side. Table 3
summarizes the measurement scheme to compensate for both systematic effects and Fig. 92
shows a schematic of the four measurement positions. The reference measurement was
performed by moving the sample far away from the water pipe such that the magnetic
effects from the sample are negligible.

label side separation fields
p0 right 3.5 mm +B⊥ +Bc +B0
p1 right 20 mm +B0
p2 left 3.5 mm −B⊥ +Bc +B0 + δB
p3 left 20 mm +B0 + δB

pr = p0 − p1 right +B⊥ +Bc

pl = p2 − p3 left −B⊥ +Bc

pr − pl 2B⊥

Table 3: Positions of the copper sample to measure the exotic interaction and the corre-
sponding fields that interact with the proton spins. The left and right position, indicated
with subscripts l and r, are viewed from upstream to downstream. The exotic interaction B⊥

has a different sign on the left side compared to the right side whereas the other magnetic
field effects from the copper Bc and from the external magnetic field B0 have the same sign.
The δB indicated that there could be a magnetic field change due to the repositioning of
the copper from one side to the other. The exotic field and the magnetic effects from the
copper are assumed to be negligible in the far position.

12.5 Measurement of the Exotic Interaction

We performed several measurements of the exotic interaction. It quickly became clear, that
the measurement could not be performed properly with the current setup as there were
too many systematic effects. The weight of the copper sample and the friction of the sled
on the POM base plate were too high to be able to change the sample position without
changing the magnetic field. We reduced the sample length by half to reduce the weight.
The systematic effects reduced but still a proper exotic measurement was impossible to
perform. Nevertheless, the data and analysis are presented.
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Figure 92: Schematic with the four positions of the copper sample (p0 to p3) to measure
the exotic interaction. The copper sample (red) is placed such that always the same side is
facing the water, indicated by the thick solid edge. The water flows from right to left through
the glass capillary (orange). The two positioning pins (black) between the two spin-flip coils
(green) allow for a precise positioning of the copper in the close position.

The exotic measurement was performed in ten sequences. In each sequence, the copper
sample was placed at the four different positions as summarized in Table 3. At each position,
three consecutive Ramsey phase scans were performed and averaged. This led to a total
measurement time of about 30 minutes for one sequence which is within the time frame of
the phase stability as shown in Fig. 69.

The first indication that systematic effects are dominating the measurement of the exotic
interaction is the magnetic field data that was measured by the two fluxgates. We calculated
the average of the vertical magnetic field component of both fluxgates over the measurement
time of all three phase scans at each position. Figures 93a and 93b show the resulting
magnetic fields and the difference of the magnetic fields between the close and the far
position on each side, respectively.

The fluxgate data show that the external magnetic field B0 was different for each mea-
surement position and so is δB. At least the B0 fields for the two measurements on each
side, i.e., p0/p1 or p2/p3, have to be the same for the measurement scheme to work. This
would be the case if all values in Fig. 93b were in agreement with zero. This is never the
case for the magnetic field values of both sides. Therefore, none of measurement sequences
can be used for a test of the exotic interaction.

The second indication of the large systematic effects of the measurement with the current
setup is visible in the proton phase data presented in Fig. 94. It shows the resulting phase
shift due to ”only” the exotic interaction B⊥, corresponding to the last row in Table 3. It is
evident that the fluctuation of the data is not in agreement with their uncertainty. If there
was no exotic interaction, all values should be statistically distributed around zero. These
shifts can be explained by the magnetic field changes measured by the fluxgates. We tried to
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Figure 93: (a) Magnetic field values for the measurements on the right side (blue) and
the left side (orange) as a function of the sequence number. The close positions with a
separation of 3.5 mm are indicated with H and the far positions with a separation of 20 mm
with N. The vertical magnetic field components of both fluxgates was averaged over the
measurement time of all three phase scans at each position. (b) Difference of the close and
the far of the magnetic field values shown in (a) for each side. The dashed line indicates
zero magnetic field difference.

use the magnetic field data to correct for the phase changes. Since the fluxgates do measure
before and after the interaction region and maybe also due to inhomogeneous field changes,
the correction could not improve the situation.

One solution to this problem would be to implement a second water pipe that can be
used as a reference measurement without a copper sample as it was done for the neutron
measurement of the same interaction at ETHZ [61]. This would sample the external mag-
netic field at the same time as the exotic interaction, making the measurements p1 and p3

unnecessary. It was not implemented in this work due to time constraints.
Since the data cannot be used for an investigation of the exotic interaction, we use a value

of ∆ϕ = 0° ± 1° as an example for an illustrative analysis and to get a projected sensitivity.
The analysis is simple since we only measured at a single separation of ∆x = (3.5±0.1) mm.
We did not take into count the form factor of the water pipe since this will only be a small
effect. In Eq. (54), all the constants can be substituted to simplify the equation to

∆ϕ = ϕ0 × e−∆x/λ , (55)

where ϕ0 is the only free parameter that can be fitted or in our case analytically calculated
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Figure 94: Proton phase shift as a function of the sequence number. In principle the values
should statistically fluctuate around the same value. If no exotic interaction was present they
should fluctuate around zero (dashed line).

for each interaction range λ
ϕ0 = ∆ϕ× e∆x/λ . (56)

Figure 95 illustrates the exponential function through the measured phase shift. As an
example, for λ = 2 mm and λ = 10 mm it results in a value of ϕ0 = 0.0° ± 5.8° and
ϕ0 = 0.0°±1.4°, respectively. These values correspond to the y-intercept of the exponential
curves.

To calculate the upper limit of the coupling coefficient at 95% confidence level (C.L.)
we can use Eqs. (54) and (56) for each λ to get

f⊥ <
1
2

2mpc

Nl~
1
λ

(|ϕ0| + 1.96 · σϕ0) , (57)

where the additional factor of 1/2 is due to the fact that we calculated the phase shift from
the difference of the measurements on both sides and σϕ0 is the uncertainty of ϕ0. This
leads to the projected exclusion sensitivity for a measurement precision of 1.0° presented in
Fig. 96. Sensitivity projections for a phase precision of 0.3° and 0.1° are also shown.

Most experiments actually do not present their measured constraint on f⊥ but on the
coupling constant g2

A. However, this can be misleading since it includes certain assumptions
that are often not stated. As mentioned above, the coupling constants gA,V may be different
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Figure 95: Two examples of the exponential function that goes through the phase shift
∆ϕ = 0° ± 1° (black) for λ = 2 mm (blue) and λ = 10 mm (orange) as as a function of
the interaction distance. The values of ϕ0 correspond to the y-intercept.

for all fermions. Usually it is assumed that the coupling to electrons is zero, i.e., ge
A,V = 0. It

is further assumed that the coupling to protons and neutrons is identical, i.e., gp
A,V = gn

A,V =:
gN

A,V . The same or similar assumptions may apply for experiments measuring the scalar or
pseudo-scalar coupling gS,P . Under these assumptions, only the coupling constant for the
nucleons gN

A,V is left. We therefore omit the superscript N in the rest of the document.
The Seattle torsion pendulum experiment constrained the vector coupling constant to

g2
V < 5 × 10−40 [160]. This value is more then twenty orders of magnitude smaller than our

projected sensitivity of g2
A. The first term of Eq. (52) is, therefore, negligible. Additionally,

the third term of Eq. (52) is suppressed by some mass scale 1/M2 and can therefore be
assumed to be negligible too. Using further that mp/mN ≈ 1, the term for the coupling
coefficient Eq. (52) can be simplified to g2

A = 2f⊥.
The same way as in Eq. (57), the upper limit of the coupling at 95% C.L. can be

calculated for each λ using

g2
a <

1
2

4mpc

Nl~
1
λ

(|ϕ0| + 1.96 · σϕ0) . (58)

This leads to a projected sensitivity that is presented in Fig. 97 together with constraints set
by other experiments.
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Figure 96: Projected sensitivity on the coupling coefficient f⊥ (95% C.L.) as a function of the
interaction range and the mass of a new vector boson for various precisions of the measured
proton phase shift. The precision of 1.0° can be achieved with a single measurement and
the precision of 0.1° in 24 hours of data taking.

The sensitivity projections of this measurement in Figs. 96 and 97 are for the coupling
between the probe protons and a copper sample. We intend to use protons for the first time
in a measurement of the axial-vector coupling constant g2

A. A direct comparison to the other
measurements in Fig. 97 where the probe particles were neutrons can only be done under
the assumption of gp

A,V = gn
A,V .

For an interaction distance of approximately 10 mm, the sensitivity is on the same order
as the measurement of ETHZ [61]. At shorter distances our constraint is much weaker.
The reason is that in this measurement, the separation between the probe particles and the
sample is 3.5 mm whereas it was only 0.57 mm in the ETHZ measurement. They used free

sThere seems to be a mistake of the limit by a factor of four in the publication. Here we show the corrected
limit.
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Figure 97: Limits on the axial-axial coupling g2
A (95% C.L.) as a function of the interaction

range and the mass of a new vector boson. The solid blue line corresponds to the projected
sensitivity of a single measurement and dotted blue line is the projected sensitivity for 24 hours
of measurement. It is the only measurement where the probe particle is a proton. The other
measurements of Princeton (orange) [161], ETHZ (green) [61], and Los Alamos (red) [164]
all used neutrons as a probe particles.s

neutrons in air and could put the copper sample much closer to the probe beam compared
to the water setup where a glass capillary has to be use to guide the water.

The sensitivity of an exotic measurement can be expected to be better by an order of
magnitude for 24 hours of measurement. We assumed that the uncertainty of the phase of
a single measurement is the same. The systematic effects have to be under control. This
can be achieved with an upgrade to two water pipes to measure the exotic interaction and
the reference at the same time. Additionally, the mechanics should be built such that the
interior is not supported by the mu-metal shield but mechanically isolated.

118



13 Summary

In summary, we described in detail the experimental Proton NMR apparatus that we devel-
oped and build. The setup applies Ramsey’s method to the proton spins of the hydrogen
atoms in the water. We described each element in detail. This includes the polarizer that
creates a sizable polarization of the protons spins, the interaction zone that is magnetically
shielded in mu-metal and where the spins are manipulated by various fields, and the NMR
system that allows to analyze and measure the spin polarization after the interaction. We
used the well-understood resonance measurements of Rabi and Ramsey to characterize the
sensitivity and stability of the setup. A Ramsey-type setup could for example be used as a
magnetometer of the Beam EDM apparatus. In such a scenario, multiple glass capillaries
could sense the average magnetic field through the setup and be part of a magnetic field
stabilization feedback loop. We also investigated the Bloch-Siegert effect which shifts the
resonance frequency at higher amplitudes of the oscillating field. We tested ways to com-
pensate it. Even though the compensation worked, it does not fully agree with the expected
values from theory. Besides, we measured for the first time the dressed spin states of pro-
tons. They can change the gyromagnetic ratio of a particle which can be used to reduce
systematic effects in magnetic field measurements. We developed a qualitative approach in
a semi-classical framework to understand the enhancement of the gyromagnetic ratio. Fi-
nally, we also tried to measure a new Yukawa-like interaction in the millimeter interaction
range. Even though the setup is not yet in a stage to perform a full exotic measurement,
we showed how the procedure works and projected the sensitivity of a single measurement
and 24 hours of data taking. The planned upgrade containing two water pipes through the
setup to simultaneously sense the exotic interaction and the background field will allow to
compensate for magnetic field drifts. The setup could also be placed inside the magnetically
shielded room that is currently being built in our laboratory in Bern. Together with other
improvements, such as a control or stabilization of the room temperature or magnetic field
probes between the spin-flip coils would allow to search for this new Yukawa-like interaction.
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SM Standard Model of particle physics. 2, 3, 5, 6, 58, 105
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A Appendix

A.1 Source Code for Spectral Analysis

1 def a n a l y z e _ f f t ( xData , yData , yErr , FF , f u l l=Fa l s e ) :
2 ”””
3 Analyze an ax ion o f fake ax ion data s e t by c a l c u l a t i n g the ampl i tude o f a

↪→ s i n u s o i d a l model that min imizes the Chi2 .
4 This i s done by a n a l y t i c a l l y s o l v i n g the l i n e a r system of equa t i on s o f

↪→ the Chi2 equa t i on s f o r the ampl i tude .
5 I n t h i s s o l v e r the sums are c a l c u l a t e d us ing FFT, making the a l go r i thm

↪→ f a s t on the co s t o f l o o s i n g some accuracy .
6

7 Parameters
8 −−−−−−−−−−
9 xData : 1d a r r a y

10 i ndependet v a r i a b l e where the data i s measured
11 yData : 1d a r r a y
12 dependent data
13 yEr r : 1d a r r a y
14 e r r o r o f the data ( s tandard d e v i a t i o n )
15 FF : 1d a r r a y
16 f r e q u e n c i e s to ana l y ze
17 f u l l : boo l
18 s e t True to r e t u r n both ampl i tude v a l u e s f o r the s i n e and c o s i n e

↪→ pa r t
19

20 Returns
21 −−−−−−−
22 amp : 1d a r r a y
23 ampl i tude o f the f i t t e d s i n u s o i d a l f o r each f r equency
24 ampErr : 1d a r r a y
25 e r r o r o f the ampl i tude f o r each f r equency
26 ”””
27

28 # get the f r equency parameters from the a r r a y
29 f0 = FF . min ( )
30 df = FF [ 1 ] − FF [ 0 ]
31 Nf = l en (FF)
32

33 trig_sum_kwds = None
34

35 # s e t up arguments to tr ig_sum
36 kwargs = d i c t . copy ( trig_sum_kwds or {})
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37 kwargs . update ( f0=f0 , d f=df , u s e _ f f t=True , N=Nf )
38

39 # c a l c u l a t e the we ights from the e r r o r s
40 weights = yErr ∗∗ −2.0
41 W = weights . sum ( )
42 weights /= W
43

44 # Center the data . Even i f we ’ r e f i t t i n g the o f f s e t ,
45 # t h i s s t ep makes the e x p r e s s i o n s below more s u c c i n c t
46 yData = yData − np . dot ( weights , yData )
47

48 # c a l c u l a t e the t ime s h i f t
49 S , C = trig_sum ( xData , weights , ∗∗ kwargs )
50 Sh , Ch = trig_sum ( xData , we ights ∗yData , ∗∗ kwargs )
51 S2 , C2 = trig_sum ( xData , weights , f r e q _ f a c t o r =2, ∗∗ kwargs )
52

53 tan_2omega_tau = (S2 − 2 ∗ S ∗ C) / (C2 − (C ∗ C − S ∗ S) )
54

55 # compute some parameters with the time−s h i f t
56 S2w = tan_2omega_tau / np . s q r t (1 + tan_2omega_tau ∗ tan_2omega_tau ) #

↪→ s i n (2∗omega∗ tau )
57 C2w = 1 / np . s q r t (1 + tan_2omega_tau ∗ tan_2omega_tau ) #

↪→ cos (2∗omega∗ tau )
58 Sw = np . s q r t ( 0 . 5 ) ∗ np . s i g n (S2w) ∗ np . s q r t (1 − C2w) #

↪→ s i n (omega∗ tau )
59 Cw = np . s q r t ( 0 . 5 ) ∗ np . s q r t (1 + C2w) #

↪→ cos (omega∗ tau )
60

61 # c a l c u l a t e the sums of the a n a l y t i c a l s o l u t i o n f o l l o w i n g Z&K and us ing P
↪→ &R

62 YC = Ch ∗ Cw + Sh ∗ Sw
63 YS = Sh ∗ Cw − Ch ∗ Sw
64

65 CC_hat = 0.5 ∗ (1 + C2 ∗ C2w + S2 ∗ S2w)
66 SS_hat = 0.5 ∗ (1 − C2 ∗ C2w − S2 ∗ S2w)
67 CC = CC_hat − (C ∗ Cw + S ∗ Sw) ∗∗ 2
68 SS = SS_hat − (S ∗ Cw − C ∗ Sw) ∗∗ 2
69

70 # c a l c u l a t e the phase and ampl i tude o f the s i g n a l
71 #D = (SS−S∗S) ∗(CC−C∗C)
72

73 aa = YS / SS
74 bb = YC / CC
75 aaErr = np . s q r t (CC_hat ) / (CC ∗ np . s q r t (W) )
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76 bbErr = np . s q r t ( SS_hat ) / (SS ∗ np . s q r t (W) )
77

78 i f f u l l :
79 return np . a r r a y ( [ aa , aaErr ] ) , np . a r r a y ( [ bb , bbErr ] )
80

81 e l s e :
82 amp = np . s q r t ( aa∗∗2+bb∗∗2)
83 ampErr = np . s q r t ( aaErr ∗∗2∗aa ∗∗2/( aa∗∗2+bb∗∗2) + bbErr ∗∗2∗bb∗∗2/( aa

↪→ ∗∗2+bb∗∗2) )
84 return np . a r r a y ( [ amp , ampErr ] )
85

86

87 def tr ig_sum ( t , h , df , N, f0 =0, f r e q _ f a c t o r =1,
88 ove r samp l ing =5, u s e _ f f t=True , Mfft=4) :
89 ”””
90 Compute ( approx imate ) t r i g o n o m e t r i c sums f o r a number o f f r e q u e n c i e s
91 This r o u t i n e computes weighted s i n e and c o s i n e sums :
92 S_j = sum_i { h_i ∗ s i n (2 p i ∗ f_ j ∗ t_ i ) }
93 C_j = sum_i { h_i ∗ cos (2 p i ∗ f_ j ∗ t_ i ) }
94 Where f_ j = f r e q _ f a c t o r ∗ ( f0 + j ∗ df ) f o r the v a l u e s j i n 1 . . . N.
95 The sums can be computed e i t h e r by a brute f o r c e O[N^2] method , or
96 by an FFT−based O[ Nlog (N) ] method .
97

98 Parameters
99 −−−−−−−−−−

100 t : a r r a y _ l i k e
101 a r r a y o f i npu t t imes
102 h : a r r a y _ l i k e
103 a r r a y we ights f o r the sum
104 df : f l o a t
105 f r equency spac ing
106 N : i n t
107 number o f f r equency b i n s to r e t u r n
108 f0 : f l o a t ( op t i ona l , d e f a u l t =0)
109 The low f r equency to use
110 f r e q _ f a c t o r : f l o a t ( op t i ona l , d e f a u l t =1)
111 Factor which m u l t i p l i e s the f r equency
112 u s e _ f f t : boo l
113 i f True , use the approx imate FFT a lgo r i thm to compute the r e s u l t .
114 This uses the FFT with Pres s & Ryb i ck i ’ s Lagrang ian e x t i r p o l a t i o n .
115 ove r samp l ing : i n t ( d e f a u l t = 5)
116 ove r samp l ing f r e q _ f a c t o r f o r the approx imat ion ; rough l y the number o f
117 t ime samples a c r o s s the h ighes t −f r equency s i n u s o i d . This parameter
118 con ta i n s the trade−o f f between accuracy and speed . Not r e f e r e n c e d
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119 i f u s e _ f f t i s Fa l s e .
120 Mfft : i n t
121 The number o f ad j acen t p o i n t s to use i n the FFT approx imat ion .
122 Not r e f e r e n c e d i f u s e _ f f t i s Fa l s e .
123

124 Returns
125 −−−−−−−
126 S , C : nda r ray s
127 summation a r r a y s f o r f r e q u e n c i e s f = df ∗ np . arange (1 , N + 1)
128 ”””
129

130 df ∗= f r e q _ f a c t o r
131 f0 ∗= f r e q _ f a c t o r
132

133 i f df <= 0:
134 r a i s e Va lueEr ro r ( ” df must be p o s i t i v e ” )
135 t , h = map( np . r a v e l , np . b roadcas t_a r ray s ( t , h ) )
136

137 i f u s e _ f f t :
138 Mfft = i n t ( Mfft )
139 i f Mfft <= 0:
140 r a i s e Va lueEr ro r ( ” Mfft must be p o s i t i v e ” )
141

142 # r e q u i r e d s i z e o f f f t i s the power o f 2 above the ove r samp l ing r a t e
143 Nf f t = b i t c e i l (N ∗ ove r samp l ing )
144 t0 = t . min ( )
145

146 i f f0 > 0 :
147 h = h ∗ np . exp (2 j ∗ np . p i ∗ f0 ∗ ( t − t0 ) )
148

149 tnorm = (( t − t0 ) ∗ Nf f t ∗ df ) % Nf f t
150 g r i d = e x t i r p o l a t e ( tnorm , h , Nff t , Mfft )
151

152 f f t g r i d = np . f f t . i f f t ( g r i d ) [ : N]
153 i f t0 != 0 :
154 f = f0 + df ∗ np . arange (N)
155 f f t g r i d ∗= np . exp (2 j ∗ np . p i ∗ t0 ∗ f )
156

157 C = Nf f t ∗ f f t g r i d . r e a l
158 S = Nf f t ∗ f f t g r i d . imag
159 e l s e :
160 f = f0 + df ∗ np . arange (N)
161 C = np . dot (h , np . cos (2 ∗ np . p i ∗ f ∗ t [ : , np . newax is ] ) )
162 S = np . dot (h , np . s i n (2 ∗ np . p i ∗ f ∗ t [ : , np . newax is ] ) )
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163

164 return S , C
165

166

167 def b i t c e i l (N) :
168 ”””
169 Find the b i t ( i . e . power o f 2) immed iate ly g r e a t e r than or equa l to N
170 Note : t h i s works f o r numbers up to 2 ∗∗ 64 .
171 Roughly e q u i v a l e n t to i n t (2 ∗∗ np . c e i l ( np . log2 (N) ) )
172 ”””
173

174 return 1 << i n t (N − 1) . b i t_ l eng th ( )
175

176

177 def e x t i r p o l a t e ( x , y , N=None , M=4) :
178 ”””
179 E x t i r p o l a t e the v a l u e s ( x , y ) onto an i n t e g e r g r i d range (N) ,
180 us ing l ag range po lynomia l we ights on the M n e a r e s t p o i n t s .
181

182 Parameters
183 −−−−−−−−−−
184 x : a r r a y _ l i k e
185 a r r a y o f a b s c i s s a s
186 y : a r r a y _ l i k e
187 a r r a y o f o r d i n a t e s
188 N : i n t
189 number o f i n t e g e r b i n s to use . For bes t performance , N shou ld be

↪→ l a r g e r
190 than the maximum of x
191 M : i n t
192 number o f a d j o i n i n g p o i n t s on which to e x t i r p o l a t e .
193

194 Returns
195 −−−−−−−
196 yN : ndar ray
197 N e x t i r p o l a t e d v a l u e s a s s o c i a t e d with range (N)
198

199 Example
200 −−−−−−−
201 >>> rng = np . random . RandomState (0)
202 >>> x = 100 ∗ rng . rand (20)
203 >>> y = np . s i n ( x )
204 >>> y_hat = e x t i r p o l a t e ( x , y )
205 >>> x_hat = np . arange ( l e n ( y_hat ) )
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206 >>> f = lambda x : np . s i n ( x / 10)
207 >>> np . a l l c l o s e ( np . sum( y ∗ f ( x ) ) , np . sum( y_hat ∗ f ( x_hat ) ) )
208 True
209

210 Notes
211 −−−−−
212 This code i s based on the C implementat ion o f spread ( ) p r e s en ted i n
213 Numer ica l Rec ipes i n C, Second E d i t i o n ( Pres s e t a l . 1989; p .583) .
214 ”””
215

216 x , y = map( np . r a v e l , np . b roadcas t_a r ray s ( x , y ) )
217

218 i f N i s None :
219 N = i n t ( np .max( x ) + 0.5 ∗ M + 1)
220

221 # Now use l e g end r e po lynomia l we ights to popu la te the r e s u l t s a r r a y ;
222 # This i s an e f f i c i e n t r e c u r s i v e implementat ion ( See Pres s e t a l . 1989)
223 r e s u l t = np . z e r o s (N, dtype=y . dtype )
224

225 # f i r s t take ca re o f the easy ca s e s where x i s an i n t e g e r
226 i n t e g e r s = ( x % 1 == 0)
227 np . add . at ( r e s u l t , x [ i n t e g e r s ] . a s type ( i n t ) , y [ i n t e g e r s ] )
228 x , y = x [~ i n t e g e r s ] , y [~ i n t e g e r s ]
229

230 # For each rema in ing x , f i n d the index d e s c r i b i n g the e x t i r p o l a t i o n range
↪→ .

231 # i . e . i l o [ i ] < x [ i ] < i l o [ i ] + M with x [ i ] i n the cente r ,
232 # ad ju s t ed so that the l i m i t s a re w i t h i n the range 0 . . . N
233 i l o = np . c l i p ( ( x − M // 2) . a s type ( i n t ) , 0 , N − M)
234 numerator = y ∗ np . prod ( x − i l o − np . arange (M) [ : , np . newax is ] , 0)
235 denominator = f a c t o r i a l (M − 1)
236

237 f o r j i n range (M) :
238 i f j > 0 :
239 denominator ∗= j / ( j − M)
240 i nd = i l o + (M − 1 − j )
241 np . add . at ( r e s u l t , ind , numerator / ( denominator ∗ ( x − ind ) ) )
242 return r e s u l t
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A.2 Off-Resonance Phase Pick-Up

In this section we explain in more detail the effect of the off-resonance phase pick-up described
in Sec. 10.2. In a Ramsey-Type setup, the frequency of the spin-flip signal ωrf is a free
parameter. Usually, ωrf is set to the resonance frequency ω0 and the spins are flipped around
the axis of the B1 field. If ωrf 6= ω0, there is an additional off-resonance field

∆B = ∆ω
γ

= ω0 − ωrf
γ

.

This field rotates the effective field that the spins see in their laboratory frame away from
the B1 axis according to

Beff =
√
B2

1 + ∆B2

The spins now rotate around this effective field which leads to the pick-up of a phase. This
behaviour is schematically presented in Fig. 98.

(a) (b)

Figure 98: (a) Schematic of the effective field axis around which the spins are rotated in
their laboratory frame. ∆B = (ω0 − ωrf) / γ is the off-resonance field. (b) Schematic of
the path (solid black lines) that the spins follow when flipped in their laboratory frame. The
path a corresponds to the on-resonance case where the effective field lies along the dashed
axis A. The other paths b, c, and d correspond to off-resonance fields of various offsets with
effective fields along B, C, and D. The schematics are Figs. 3.10 and 3.25 in the lecture
notes of J. Keeler in 2002 [125] and the same as Fig. 76 in Sec. 10.2.
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The angle between the effective field and the axis of the main magnetic field can be
calculated using one of the following relations

sin(ϑ) = B1
Beff

, cos(ϑ) = ∆B
Beff

, tan(ϑ) = B1
∆B .

To calculate the phase that the spins pick-up in a π/2-flip, a spin vector in the z-direction
~s = (0, 0, 1) can be multiplied with a rotation matrix around the effective field direction. A
rotation of angle α around an arbitrary unit vector ~̂n can be described by the 3 × 3-matrix
of Eq. (38) [

R
~̂n
(α)
]

ij
=
(
1 − cos (α)

)
njnj + cos(α)δij + sin(α)εijknk ,

where δij is the Kronecker delta and εijk is the Levi-Civita symbol.

A.2.1 On-Resonance Case

If the spin-flip signal is driven on resonance, this means that ω0 = ωrf and ∆ω = 0.
Therefore, the above equations imply that ∆B = 0 and Beff = B1. This means that the
spin is rotated only around the B1 or the x-axis which simplifies the rotation matrix to

Rx(α) =


1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 .

For a α = π/2-flip as common in a Ramsey measurement the rotation matrix becomes

Rx (π/2) =


1 0 0
0 0 −1
0 1 0

 .

If this rotation is applied to the spin-vector in the z-direction ~s = (0, 0, 1), it is flipped to
the negative y-axis according to

Rx (π/2) ·


0
0
1


T

=


0

−1
0

 .
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A.2.2 Off-Resonance Case

If the spin-flip signal is drive slightly off-resonance resulting in a small Ω and, therefore,
Beff =

√
B2

1 + ∆B2. This means the rotation is around the Beff axis which is in the

direction of the unit vector n̂ = (B1, 0,∆B)/
√
B2

1 + ∆B2. A rotation around an arbitrary
vector with angle α = π/2 is

Rn̂ (π/2) =


B2

1
B2

eff
− ∆B

Beff
B1∆B

B2
eff

∆B
Beff

0 − B1
Beff

B1∆B
Beff

B1
Beff

∆B2

B2
eff

 ,

which applied to the same spin-vector in the z-direction ~s = (0, 0, 1) is

Rn̂ (π/2) ·


0
0
1


T

=


B1∆B/B2

eff
−B1/Beff

∆B2/B2
eff

 .

In this case, the spin acquires a phase that is is

ϕ = arctan
(
sy

sx

)
= arctan

(
−B1/Beff
B1∆B/B2

eff

)
= arctan

(−Beff
∆B

)
.

This phase can again be written in terms of the angular frequencies

ϕ = arctan

−
√
ω2

1 + (ω0 − ωrf)2

ω0 − ωrf

 .

A.2.3 Off-Resonance Example

Let’s look at an example, where the spins are flipped by π/2 but with a slightly off-resonance
field. The amplitude of the spin-flip signal is ω1 = γB1. Therefore, the flipping angle is
α = ω1τ

!= π/2 with τ = lsf/v. With typical values of lsf = 0.02 m and v = 2.35 m/s this
leads to

ω1 = πv

2lsf
≈ 185 rad

s . (59)

Following our measurements we use a resonance frequency of ω0 = 2π × 991.4 Hz and a
spin-flip signal frequency of ωrf = 2π×990 Hz, leading to Ω = 2π×1.4 Hz ≈ 8.8 rad

s . With
the equations of Sec. A.2.2 we can calculate the phase to ϕx = −92.5° and ϕy = 2.5° with
respect to the x-axis and the y-axis, respectively.
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A.3 Integral Calculation of the Copper Potential

In this section, we calculate the integral of the full copper block from the point-like potential
of the individual nucleons. We first recall the point-like potential of Eq. (51) in Sec. 12.

V point
⊥ = f⊥

8πm
e−r/λ

r

(1
r

+ 1
λ

)
~σ · (~v × ~r) , (60)

To get the potential of the copper sample, we have to integrate over its volume.

V⊥ =
(
f2

⊥
8π

(~c)2

mc2 N

)
·
∫

V
~σ ·
(
~v

c
× ~r

r

)( 1
λr

+ 1
r2

)
e−r/λ dV︸ ︷︷ ︸

I

(61)

To simplify this calculation we chose the size of the sample such that it can be regarded as
an infinite plane. We can calculate the integral in cylindrical coordinates we use that the
volume element in these coordinates can be written as

dV = ρ dϕ dz dρ . (62)

A schematic of the used coordinates and variable is shown in Fig. 99.

Figure 99: To perform the integral over the copper volume, cylindrical coordinates are used.
A perspective view is sketched on the left, and a side view on the right side. The coordinates
and some variables are indicated. The variable h ≡ ∆x to be consistent with the naming in
Sec. 12.

The integral can be simplified further by using that

~σ ·
(
~v

c
× ~r

‖~r‖

)
= σ

v

c

z

‖~r‖
= σ

v

c

z√
ρ2 + z2 , (63)
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where we used in the first step that only the z-component of ~r remains since we calculate
~v × ~r and ~v ⊥ ~σ. We further used the definition of the norm ‖~r‖ =

√
ρ2 + z2. With these

transformations the integral becomes

I = σv

c

∫ 2π

0
dϕ︸ ︷︷ ︸

2π

∫ ∞

∆x
dz
∫ ∞

0
dρ ρ z√

ρ2 + z2

(
1/λ√
ρ2 + z2 + 1

ρ2 + z2

)
e−

√
ρ2+z2

λ . (64)

We now perform a variable substitution where we define

u =
√
ρ2 + z2

λ
, du = ρ√

ρ2 + z2
1
λ

dρ, dρ =
√
ρ2 + z2

ρ
λ dρ . (65)

The integral now becomes

I = 2πσv
c

∫ ∞

∆x
dz
∫ ∞

z/λ
du

√
ρ2 + z2

ρ
λρ

z√
ρ2 + z2

( 1
uλ2 + 1

u2
1
λ2

)
e−u (66)

= 2πσv
c

∫ ∞

∆x
dz
∫ ∞

z
du z

λ

(1
u

+ 1
u2︸︷︷︸
↑

)
e−u︸︷︷︸

↓

. (67)

This integral can be calculated by integrating by parts as indicated by the arrows in the
above equation.

I = 2πσv
c

∫ ∞

∆x
dz z

λ

λ

z
e−z/λ = 2πσv

c

∫ ∞

∆x
dz e−z/λ = 2πσv

c

[
−λe−z/λ

]∞
∆x

(68)

= 2πσv
c

λe−∆x/λ (69)

Now we can use the result of the integration to get the full potential of the copper sample

V⊥ (∆x) = f⊥
8π

(~c)2

mc2 N
2πσv
c

λe−∆x/λ (70)

= f⊥
4

~2

mc
Nσvλe−∆x/λ (71)

The interaction potential is linearly proportional to the proton spins and can be regarded
as a pseudo-magnetic field effect

V⊥ = 1
2γp~~σ · ~B⊥ = 1

2γp~σB⊥ , (72)
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where we used in the second step that ~σ is parallel to ~B⊥. This can be solved for B⊥,
resulting in

B⊥ (∆x) = 2V⊥ (∆x)
γp~σ

= 2
γp~σ

f⊥~2

4mc Nσvλe
−∆x/λ (73)

= f⊥
2

N~v
γpmpc

λe−∆x/λ , (74)

which corresponds to Eq. (53) in Sec. 12.1.
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