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Glossary

CRF The Celestial Reference Frame (CRF) is a (quasi-)inertial Cartesian coordinate sys-
tem with its origin in the centre of mass of the Earth, where the x-axis is pointing
to the direction of the vernal equinox (the intersection between the equatorial and
ecliptic plane), the z-axis is following the Earth’s rotational axis to the North and
the y-axis being orthogonal to the x- and z-axis forming a right-handed system. 7

DIFF Difference of orbit parameters after a parameter transformation. 41

MJD The Modified Julian Date (MJD) gives the time in days since the epoch 17th of
November 1858, 00:00 Universal Time (UT). 48

RMS The Root Mean Square (RMS) denotes the quadratic mean formed as the square

root of the mean square for a set of {𝑥1, ..., 𝑥𝑁} by 𝑚RMS = √ 1
𝑁

𝑁
∑
𝑛=1

𝑥2
𝑛. 58

RSW R, S and W are defining the axes of a right-handed Cartesian coordinate system
called local orbit frame, where the axes are pointing in radial (R), along-track (S)
and cross-track (W) direction with its origin in the satellite’s centre of mass. 54

SRF Science Reference Frame (SRF) originating in the centre of mass of the satellite with
its axes pointing along the accelerometer measurement axes, where x points to the
K-band horn, z is roughly nadir pointing and the y-axis completing a right-handed
cartesian coordinate system.. 56

SUM Sum of orbit parameters after a parameter transformation. 41

TRF The Terrestrial Reference Frame (TRF) is a Cartesian coordinate system with its
origin in the long-term centre of mass of the Earth, where the x-axis is located in the
equatorial plane pointing towards the prime meridian, the z-axis being defined as the
axis pointing from the South Pole to the North Pole and the y-axis being orthogonal
to the x- and z-axis completing a right-handed system. 7
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Chapter 1

Introduction

A key to understanding the dynamic system Earth in its current state is the continuous
observation of its time-variable gravity field. Mass re-distributions on the Earth’s surface
or interior induced by the continental water cycle or the melting of the ice sheets cause a
change in the potential, which is ultimately reflected in a change of orbital trajectories of
Earth orbiting satellites. Precisely measuring the fingerprints of these variations in satellite
trajectories to recover the underlying gravity field is the task of satellite gravimetry.

With the age of the first satellites the concept of satellite gravimetry became feasible,
significantly improving the knowledge about the Earth’s gravity field [Flechtner et al.,
2021]. Already with the first geodetic satellite launched in 1962 by the US Army, Navy,
National Aeronautics and Space Administration (NASA) and Air Force, ANNA-1B, the
low degree spherical harmonics of the gravity field could be resolved. Since the beginning of
the new millennium several satellite mission dedicated to the observation and continuous
monitoring of the Earth’s gravity field have been launched. Starting with the Challenging
Minisatellite Payload [CHAMP, Reigber et al., 1998] in the year 2000, the Gravity Re-
covery And Climate Experiment (GRACE) satellite mission [Tapley et al., 2004] in 2002,
the Gravity field and steady state Ocean Circulation Explorer [GOCE, Drinkwater et al.,
2006] and the Gravity Recovery And Climate Experiment Follow-On (GRACE Follow-On)
satellite mission [Landerer et al., 2020], there has been an almost uninterrupted monitoring
of the Earth’s gravity field for more than two decades. Additionally, non-dedicated mis-
sions equipped with adequate instruments such as Swarm [Friis-Christensen et al., 2006]
are suited for the determination of the large-scale gravity field variations as well. Among
these missions, GRACE and GRACE Follow-On play an exceptional role because of their
unique measuring concept being particularly sensitive to the time-variable component of
the gravity field. The measurement principle of obtaining distance changes between a pair
of satellites separated by a few hundred kilometres chasing each other along the same or-
bital trajectory was proposed already by Wolff [1969], however, it took three more decades
to be realised by GRACE and continued by GRACE Follow-On.

The observations collected by GRACE and GRACE Follow-On are commonly accumulated
to monthly snapshots of the Earth’s gravity field, providing a resolution of about 300 km
on the Earth’s surface in the sense of a global average. An accurate and comprehensive
description of the different observation characteristics is crucial for the quality, robust-
ness and reliability of thereof derived gravity field solutions. In addition, the recovery of

1



1. Introduction

time-variable gravity field signal implies a sufficient knowledge about the non-gravitational
forces perturbing the satellites orbits and about mass flux which cannot be captured by
the monthly snapshots. Both effects have to be treated either by auxiliary observations,
such as the onboard accelerometer measurements, or by a priori known background models.

In this work an attempt is made to introduce different kinds of stochastic models for
the observation noise and to study their impact on monthly gravity field solutions. The
noise models include a priori observation noise models from pre-launch simulations, mod-
els co-estimated with the gravity field solution and noise models iteratively derived in the
estimation process from the emerging residuals.

The thesis is comprised of the following chapters:

Chapter 2 GRACE Follow-On, which introduces the satellite mission, the goals and ob-
jectives, core principles and measuring concepts.

Chapter 3 Mathematical Fundamentals, gives an overview about the basic mathematical
concepts used for the research in this thesis, the Least-Squares Adjustment,
the method of Variance Component Estimation and fundamental time series
analysis, including essential implications for the orbit and gravity field recovery
process.

Chapter 4 Orbit and Gravity Field Determination, recapitulates the orbit and gravity
field determination process of the Celestial Mechanics Approach in the context
of the GRACE and GRACE Follow-On observables.

Chapter 5 GRACE Follow-On Data Processing, details the steps taken for GRACE Follow-
On gravity field recovery. This chapter shows the operational AIUB GRACE
Follow-On gravity field solutions, the absorption of noise with pseudo-stochastic
parameters, the use of Variance Component Estimation for outlier detection and
weighting, as well as the determination of constraints for the pseudo-stochastic
parameters. Furthermore, the derivation, use and performance of empirical mod-
els based on post-fit residuals is discussed in this chapter for kinematic positions
and K-band range-rate observations.

Chapter 6 Summary, concluding the thesis by summarising the main results and findings.
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Chapter 2

GRACE Follow-On

GRACE Follow-On is a satellite mission dedicated to sensing the time-variable gravity field
of the Earth. It was launched on 22nd of May, 2018, from Vandenberg Air Force Base aboard
a SpaceX Falcon 9 rocket, half a year after its predecessor GRACE was decommissioned
after more than 15 years in orbit. GRACE Follow-On is a joint US–German effort where
NASA’s Jet Propulsion Laboratory (JPL), the Center for Space Research at the Univer-
sity of Texas at Austin (CSR) and the German Research Centre for Geosciences (GFZ)
form the Science Data System (SDS), which is responsible for operating the satellites and
providing science data [Landerer et al., 2020].

GRACE Follow-On consists of a pair of satellites, GRACE Follow-On 1 (GF1) and GRACE
Follow-On 2 (GF2), flying in a polar orbit configuration in an altitude of about 480 km,
with an orbital period of about 94 min. The separation between the two spacecraft is ac-
tively controlled by small orbital manoeuvres and kept between 170–270 km [Landerer
et al., 2020]. The primary science objective is to continue the monitoring of the Earth’s
time variable gravity field inherited from the GRACE satellite mission. This is achieved
by precise measurements of the satellites’ orbits, thus, the spacecrafts themselves may
be be considered as the main scientific instrument. The fundamental measuring concept
of GRACE and GRACE Follow-On is shown in Fig. 2.1. The satellite pair continuously
observes the high-flying satellites of the Global Positioning System (GPS) to obtain the
absolute satellite positions in the High-Low Satellite-to-Satellite Tracking (hl-SST) mode.
This enables the recovery of the long wavelength components of the Earth’s gravity field.
When the spacecraft pass a sufficiently large mass anomaly, the relative distance and ve-
locity between the two satellites changes because the leading satellite first experiences a
stronger attraction. This variation in the distance between the two satellites is the main
observable of the Low-Low Satellite-to-Satellite Tracking (ll-SST) of GRACE Follow-On
and is realised by two measuring systems, the K-band Ranging (KBR) and Laser Ranging
Interferometry (LRI) instruments. It allows a precise deduction of the long to medium
wavelengths of the gravity field. Non-gravitational forces perturbing the satellite orbit are
measured by the onboard Accelerometer (ACC) with its proof mass located in the Centre
of Mass (CoM) of the satellite.

Such a measuring system is capable of sensing the effects of the perturbing accelerations
caused by the Earth’s gravity field, and by providing monthly snapshots the dynamic
system of mass re-distribution on the Earth’s surface and interior is observed. The mea-
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2. GRACE Follow-On

Figure 2.1: Basic measurement principle of GRACE and GRACE Follow-On with hl-SST
to the high flying GPS constellation and ll-SST tracking between the mission’s satellite
pair.

surements, however, cannot distinguish between different sources of mass flux and inter-
pretations of the results rest upon additional, independent observations and models.

The data flow of GRACE Follow-On is realised by the GRACE Follow-On SDS, which
converts the raw data transmitted by the satellites (Level-0) to Level-1 data. These then
consists of time tagged and down-sampled measurements in engineering units [Wen et al.,
2019]. The latter are introduced as observations to the orbit and gravity field recovery
processes to obtain Level-2 gravity field solutions.

2.1 GRACE Follow-On instrumentation
This section gives a brief outline of the most important science instruments of GRACE
Follow-On to measure the Earth’s gravity field. The main instrument for sensing the Earth’s
gravity field is the spacecraft itself, however, several other instruments are needed to col-
lect the necessary science data. These are the Global Navigation Satellite System (GNSS)
receiver for absolute positioning through Precise Orbit Determination (POD), the instru-
ments for measuring the inter-satellite distance changes: The KBR and the LRI systems.
Furthermore, the ACC to measure non-gravitational perturbing forces acting on the satel-
lite, the Star Camera Assembly (SCA) to provide attitude information and a Laser retro-
reflector for Satellite Laser Ranging (SLR). The instrument system design and specifica-
tions may be found in Kornfeld et al. [2019].

GNSS Receiver GRACE Follow-On carries a TriG-RO (GPS, Galileo, GLONASS and
Radio Occultation) receiver built by Moog Broad Reach to provide capabilities for a POD.
The receiver is an offshoot of the BlackJack GPS receiver developed by the JPL, which
was mounted on GRACE [Dunn et al., 2003]. Even though the TriG receiver is capable
of multi-GNSS tracking on all L-band based frequencies, only GPS is currently used for
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POD of GRACE Follow-On. In addition, the GNSS receiver provides the time system for
all other instruments.

Inter-satellite link The inter-satellite link is the key observable for temporal gravity
field recovery with GRACE Follow-On. It is established in two ways: With K-band Ranging
(KBR) and with Laser Ranging Interferometry (LRI). The first employs Dual One-Way
Ranging (DOWR) on K- and Ka-band to measure the inter-satellite distance. Each satel-
lite transmits a carrier signal while the other receives it and obtains the phase shift by
correlating with a generated reference signal. A change in the phase shift is proportional
to a change in distance between the satellites. The measured range between the satellites
refers to the distance between the two KBR antenna horns. As a consequence for processing
these measurements in orbit and gravity field recovery, the phase centre offset to the CoM
of the satellites has to be taken into account. The precision of the KBR is about 1 µm.
The LRI on the other hand uses Nd:YAG non-planar ring oscillators operating at a wave-
length of 1064.5 nm to create a laser beam which makes a round trip between the two
satellites and then interferes with a wave generated by the local oscillator to derive the
range between the satellites. The LRI observations directly refer to the CoM of the satellites
due to the positioning of the mirrors of the triple mirror assembly, which directs the laser
beam through the spacecraft. The LRI is a technology demonstrator instrument, providing
the first optical interferometry between two spacecraft, and does not serve as the main
instrument for the mission’s objectives. However, its performance is outstanding, reaching
a precision of 10 nm at 40 mHz [Abich et al., 2019].

Accelerometer The electrostatic space accelerometer [Christophe et al., 2015] mounted
on GRACE Follow-On is supposed to measure the accelerations caused by non-gravitational
forces which are acting on the satellite when orbiting the Earth. It is an improved accelerom-
eter developed by the Office National d’Études et de Recherches Aérospatiales (ONERA)
compared to the SuperSTAR accelerometer integrated to GRACE. The measurement prin-
ciple is based on precise position and attitude control of a proof mass in the centre of an
electrode cage, which in located in the CoM of the satellite. The latter is realised and
maintained by small but frequent in-orbit manoeuvres. Linear and angular accelerations
along three axes are derived from the voltage needed to keep the proof mass centred. The
precision is about 1 × 10−10 m s−2. However, the accelerometer mounted on GF2 is not
able to reach this level due to bias jumps and highly correlated noise emerging on all ACC
axes. The data has to be blended with measurements from GF1 to provide calibrated ob-
servations which are suited for the orbit and gravity field recovery [Landerer et al., 2020,
Bandikova et al., 2019].

Star Camera Assembly The SCA precisely measures the satellite attitude. It consists
of three star camera heads viewing the sky from each side of the spacecraft. The SCA
technique of GRACE Follow-On stems from CHAMP and GRACE and is used for scientific
purposes and position control. The Attitude (ATT) data derived from the SCA observations
is combined with angular rate measurements from an Inertial Measurement Unit (IMU)
by Kalman filtering [Harvey and Sakumura, 2019].
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2.2 COST-G
The International Combination Service for Time-variable Gravity Fields (COST-G) [Jäggi
et al., 2020] operationally provides consolidated state-of-the-art monthly global gravity
models from GRACE, GRACE Follow-On and Swarm [Meyer et al., 2020a,b, Teixeira En-
carnação et al., 2019]. In addition, a Fitted Signal Model (FSM) [Peter et al., 2022] is
published to enable a few months of prediction of the gravity signal for operational Low
Earth Orbiter (LEO) POD. COST-G is a product centre under the umbrella of the Inter-
national Gravity Field Service (IGFS) of the International Association of Geodesy (IAG).

Following the example of several services, e.g, the International GNSS Service [IGS, John-
ston et al., 2017] and the International Laser Ranging Service [ILRS, Pearlman et al., 2002],
of combining solutions from various institutions, which are computed by different and inde-
pendent software packages, the combination service COST-G continues the works from the
EGSIEM [European Gravity Service for Improved Emergency Management, Jäggi et al.,
2019] project in combining existing gravity field solutions to obtain a product of improved
quality, robustness and reliability. The individual solutions are computed by the COST-G
Analysis Centres (ACs) and additional Partner Analysis Centres (PCs). The combination
process takes place either on solution level or, as envisaged for the future, on Normal Equa-
tion (NEQ) level. The COST-G Analysis Centres (ACs) make use of different gravity field
recovery strategies but apply agreed-upon consistent processing standards [Jäggi et al.,
2020].

The COST-G consortium consists at the time of writing (Spring 2022) of five ACs, which
are the Astronomical Institute of the University of Bern (AIUB), the GFZ, the Groupe de
Recherche de Géodésie Spatiale (GRGS), the Institute of Geodesy of the Leibniz University
Hannover (LUH) and the Institute of Geodesy of Graz University of Technology (TUG).
Furthermore, there are two PCs (CSR, JPL).

2.2.1 Software comparisons
Nowadays various institutions which perform orbit and gravity field determination have
set up their own processing schemes based on their in-house developed software packages.
In order to minimise systematic differences between different software caused by a diverse
handling of e.g., background force models, the effort of comparing software implementa-
tions is conducted regularly. Such an attempt was made for the software packages available
within the COST-G consortium to detect inconsistencies and learn about the level of agree-
ment.

The following results of the software comparisons between the software from the COST-G
ACs are published in Lasser et al. [2020c].

Benchmark data set

The benchmark data set, compiled by TUG, is intended to be used as a reference data
set and provides the opportunity to test the implementation of various background force
models in software packages. It consists of several accelerations a spacecraft experiences,
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which are commonly used in orbit and gravity field determination. The models that de-
scribe the accelerations are evaluated along a one day GRACE orbit arc (integrated for
3rd of July, 2008, using Encke’s method, see Ellmer and Mayer-Gürr [2017] for more in-
formation on the integration) using the Gravity Recovery Object Oriented Programming
System (GROOPS) software [Mayer-Gürr et al., 2021]. The orbit is provided with 30 s
sampling and is given in cartesian coordinates expressed in both the Terrestrial Reference
Frame (TRF) ITRF2014 [Altamimi et al., 2016], and the Celestial Reference Frame (CRF)
ICRF2 [Fey et al., 2009]. The evaluations yield three dimensional accelerations for each
sampling point at the location of the spacecraft. These accelerations are the main product
of the benchmark data set. The underlying models correspond with the models applied in
the GRACE Follow-On processing described in Chapter 5 and are listed in Table 5.2. In
addition, the benchmark data set contains the evaluation of the EOT11a ocean tide model
[Savcenko and Bosch, 2011].

All resulting accelerations are expressed in the CRF, the accelerations caused by the
gravity field are also given in the TRF. In an attempt to also make the handling of the
TRF and the CRF comprehensible, the orbit is also given in both frames. Furthermore,
some auxiliary physical quantities are appended to the data set to enable a better under-
standing of the different models. The complete data set may be found at the ftp server
of TUG1 including a description of the data and how the models are employed (see file
00README_simulation.txt).
Moreover, the data set is formulated as benchmark for new ACs, which are interested to
contribute to the COST-G products.

Application of the benchmark data set

The main goal of the data set is to create a reference for basic software comparisons. It
allows to compare the background force model implementations, and may serve as a refer-
ence for the use of celestial and terrestrial reference frames in scientific software packages.
The most straight forward approach of comparison is to evaluate the force models at the
given orbital positions with a space geodesy software package and to print the resulting ac-
celerations. By subtracting the obtained accelerations from the benchmark data (Eq. 2.1),
differences 𝒅 may be revealed as

⎡
⎢
⎣

𝑑𝑥
𝑑𝑦
𝑑𝑧

⎤
⎥
⎦

= ⎡
⎢
⎣

𝑟𝑥
𝑟𝑦
𝑟𝑧

⎤
⎥
⎦

− ⎡
⎢
⎣

𝑠𝑥
𝑠𝑦
𝑠𝑧

⎤
⎥
⎦

. (2.1)

where 𝒓 denote the reference accelerations and 𝒔 the accelerations resulting from the soft-
ware evaluation. Large differences to the reference accelerations may indicate potential
implementation problems. It is very unlikely to obtain zero differences. Oscillating pat-
terns around zero, however, are to be expected, most commonly manifesting as once- or
twice-per-revolution signals.

1ftp://ftp.tugraz.at/outgoing/ITSG/COST-G/softwareComparison/
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Comparisons within COST-G

The benchmark data set was created, used and examined within the COST-G initiative
to augment the combination effort, and in particular, to rule out large systematic differ-
ences in the implementations of background force models. Each AC tried to reproduce the
reference accelerations as closely as possible when using their own software package and
by introducing the also provided rotation between TRF and CRF. The GROOPS software
suite from TUG serves as a reference as it was used to compute the benchmark data set.
The software packages follow different approaches of modelling gravity fields from satel-
lite data, however, a high level of agreement is expected with the benchmark data for
background model handling. The six software packages examined are:

- The Bernese GNSS Software [BSW, Dach et al., 2009], a scientific software package
featuring space geodetic applications, mainly high-precision multi-GNSS data pro-
cessing for ground networks [e.g., Prange et al., 2017], SLR data processing [e.g.,
Arnold et al., 2019], as well as precise LEO satellite orbit determination and thereof
derived gravity field solutions [e.g., Meyer et al., 2016]. The software is developed,
maintained and distributed by the AIUB. In its core it employs the Celestial Me-
chanics Approach (CMA) of orbit determination Beutler [2005], be it for high or low
flying Earth orbiting satellites or planetary geodetic applications [Arnold et al., 2015,
Bertone et al., 2021]. The software is written in Fortran and used by more than 700
institutions around the world.

- EPOS [Earth Parameter and Orbit System2, Zhu et al., 2004], a software package
designed and applied for operational POD, developed, maintained and used at GFZ.
It is based on the dynamic approach of orbit modelling and consists of tools for
orbit data analysis, orbit integration, orbit improvement, orbit predictions, NEQ
handling and simulation of observations, as well as for gravity field computation. It
served and serves numerous satellite missions and is able process SLR, GPS, Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS), radar altimeter
data or inter-satellite ranging observations. Current applications are for example the
computation of operational monthly GRACE Follow-On gravity field solutions [Dahle
et al., 2019].

- GINS (Géodésie par Intégrations Numériques Simultanées), a software used for oper-
ational processing of all space geodetic observation techniques, capable of processing
data from GNSS, SLR, Very Long Baseline Interferometry (VLBI), DORIS and inter-
satellite ranging. It is developed and maintained by the GRGS.

- GRACE-SIGMA (GRACE-Satellite Orbit Integration and Gravity Field Analysis in
MATLAB), a recent development, specifically designed for the processing of GRACE
and GRACE Follow-On data, developed at the LUH. It is written in MATLAB
and uses heavily vectorised modules for the modelling of perturbing forces, orbit
propagation and orbit improvement. The software is applied for the computation of
monthly GRACE and GRACE Follow-On gravity field solutions [Koch et al., 2020].

- GRASP (Gravity Satellite Processing Engine), a software dedicated to gravity field
recovery from kinematic positions of satellites [Weigelt et al., 2013] using the accel-

2https://www.gfz-potsdam.de/en/section/global-geomonitoring-and-gravity-field/
topics/earth-system-parameters-and-orbit-dynamics/earth-parameter-and-orbit-system-
software-epos/
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Chapter 3

Mathematical Fundamentals

This chapter introduces the mathematical methods on which the investigations in this thesis
rely. Most fundamental is the treatment of an over-determined system of equations with
the Least-Squares (LSQ) method (Sect. 3.2) and its implications. The following sections are
deepening the application of the LSQ method for the specific problems posed in the context
of gravity field determination and observation noise modelling. Comprehensive information
about the essential resources may be taken from Koch [1997] or Niemeier [2008].

3.1 Covariance propagation
Covariance propagation is a method to estimate the uncertainties of a set of variables 𝒍
depending on a set of stochastic variables 𝒙 with known covariance information. Generally,
the covariance matrix (or dispersion matrix) of a set of variables 𝒙 may be written as the
expectation of the outer product of its deviation from the mean

𝐂𝑥𝑥 = 𝔻(𝒙)
= 𝔼 ([𝒙 − 𝜇] ∧ [𝒙 − 𝜇])
= 𝔼 ([𝒙 − 𝜇] [𝒙 − 𝜇]T) ,

(3.1)

with 𝔼 as the expectation operator, 𝔻 being the dispersion operator and 𝜇 denoting the
expected value of 𝒙 by

𝜇 ∶= 𝔼 (𝒙) . (3.2)

The covariance matrix is composed of variances on the main diagonal and covariances
occupying the off-diagonal elements.
Introducing a functional relation given by 𝒇(𝒙) between 𝑁 dependent variables in 𝒍 and
𝑀 variables in 𝒙 reads as

𝒍 = 𝒇(𝒙)
= 𝐀𝒙 ,

(3.3)

where the relation is expressed in a coefficient matrix 𝐀, also called design-matrix or data-
matrix, which forms linear combinations between 𝒙 and 𝒍. Each entry of the design-matrix
is reflecting these linear combination. Inserting Eq. 3.3 into Eq. 3.1 yields the covariance
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matrix for 𝒍

𝐂𝑙𝑙 = 𝔼 ([𝐀𝒙 − 𝔼 (𝐀𝒙]) [𝐀𝒙 − 𝔼 (𝐀𝒙])T)
= 𝔼 ([𝐀𝒙 − 𝐀𝔼 (𝒙)] [𝐀𝒙 − 𝐀𝔼 (𝒙)]T)
= 𝔼 (𝐀 [𝒙 − 𝜇] [𝒙 − 𝜇]T 𝐀T)
= 𝐀𝔼 ([𝒙 − 𝜇] [𝒙 − 𝜇]T) 𝐀T

= 𝐀𝐂𝑥𝑥𝐀T ,

(3.4)

hence, propagating the known covariance matrix 𝐂𝑥𝑥 of the vector 𝒙 to the covariance
matrix 𝐂𝑙𝑙 of the vector 𝒍.

Non-linear relations between 𝒍 and 𝒙 may be taken into account in the covariance propaga-
tion as well. In order to make use of the same approach as for a linear model, the non-linear
function is developed into a Taylor series

𝑇 (𝒇, 𝒙0) =
∞

∑
𝑛=0

𝜕𝒇𝑛(𝒙0)
𝜕𝒙𝑛𝑛!

(𝒙 − 𝒙0)𝑛 . (3.5)

Neglecting all terms higher than 𝑛 = 1 leads to a linear equation which consists of an offset
given by the Taylor development point 𝒙0 and the linear term

𝑇 (𝒇, 𝒙0) = 𝒇(𝒙0) +
𝜕𝒇(𝒙0)

𝜕𝒙
(𝒙 − 𝒙0) . (3.6)

This formulation may then be used to relate the dependent variables in the vector 𝒍 with
the vector 𝒙 by

𝒍 = 𝒇(𝒙0) +
𝜕𝒇(𝒙0)

𝜕𝒙
(𝒙 − 𝒙0)

= 𝒍0 + 𝐀 (𝒙 − 𝒙0) ,
(3.7)

with 𝒍0 denoting the functional relation evaluated at the Taylor point 𝒙0 and the design-
matrix being the Jacobian matrix

𝐀 = 𝜕𝒍
𝜕𝒙

∣
𝒙0

=
𝜕𝒇(𝒙0)

𝜕𝒙
=

⎡
⎢⎢
⎣

𝜕𝑓1(𝒙0)
𝜕𝑥1

… 𝜕𝑓1(𝒙0)
𝜕𝑥𝑀

⋮ ⋱ ⋮
𝜕𝑓𝑁(𝒙0)

𝜕𝑥1
… 𝜕𝑓𝑁(𝒙0)

𝜕𝑥𝑀

⎤
⎥⎥
⎦

. (3.8)

Using the linearised functional model in Eq. 3.7 for the computation of the dependent
variables’ variances and covariances (Eq. 3.1), again yields 𝐂𝑙𝑙 = 𝐀𝐂𝑥𝑥𝐀T (Eq. 3.4),
where the constant dependent variables in 𝒍0 do not influence the uncertainty estimation.

3.2 Least-squares adjustment
The Least-Squares Adjustment (LSQA) is a method of solving a system of equations in
which the number of observations exceeds the number of unknown parameters. It was first
developed by Carl Friedrich Gauß, see Gauß [1809], and first published by Adrien-Marie
Legendre [Legendre, 1805], to fit a Keplerian orbit to observations of the newly discovered
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dwarf planet Ceres.
The idea is to extend a functional model 𝒇(𝒙), which consists of a relationship between
unknown parameters 𝒙 and the observations 𝓵, with an unobserved error term 𝒆

𝓵 = 𝒇(𝒙) + 𝒆
= 𝐀𝒙 + 𝒆

(3.9)

and to compute the unknown parameters 𝒙 such that the sum of the weighted squared
errors 𝒆 becomes minimal

Ω ∶= 𝒆T𝐏𝒆 → min. (3.10)

The metric 𝐏 is a weight matrix, assigning each error a certain weight based on the expected
precision of the respective observation, i.e., based on the a priori stochastic model. It may
be defined by

𝐏 ∶= 𝐐−1
ℓℓ , (3.11)

where 𝐐ℓℓ is the cofactor matrix of the observations, connected to the covariance matrix
of the observations 𝐂ℓℓ by the arbitrarily selectable variance of unit weight 𝜎2

0 with

𝐐ℓℓ ∶= 1
𝜎2

0
𝐂ℓℓ . (3.12)

Hence, the LSQ method is based on a system of linear equations (Eq. 3.3), extended by
errors 𝒆, which link the observations 𝓵, treated as stochastic variables, to the unknown and
sought-after parameters 𝒙. Several types of observations may be processed in one common
LSQA as long as a functional model 𝒇 exists. The design-matrix 𝐀 has a dimension of
𝑁 rows (number of observations) and 𝑀 columns (number of unknown parameters). For
over-determined systems, as they are considered in this work, 𝑁 > 𝑀 holds.

Using the minimum condition from Eq. 3.10 and solving the extremum problem for the
minimum [see e.g., Koch, 1997] results in the so called Normal Equations (NEQs) as unique
solution for the formulated problem. Using the abbreviations

𝐍 ∶= 𝐀T𝐏𝐀 , 𝒃 ∶= 𝐀T𝐏𝓵 and Λ ∶= 𝓵T𝐏𝓵 , (3.13)

with 𝐍 being the normal equation matrix, 𝒃 the right-hand side, and Λ the sum of the
weighted observations squared, the normal equation system reads as

𝐍𝒙̂ = 𝒃 , (3.14)

and the solution for the unknown parameters may be computed with

𝒙̂ = 𝐍−1𝒃 , (3.15)

under the condition that 𝐍 is nondegenerate, thus no linear dependencies between param-
eters exist. The hat ( ̂⋅) over the solution vector indicates that it is an estimated quantity.

As a consequence of Eq. 3.9, the estimation for 𝒙 does not allow to reproduce every
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single observation, consequently, the residuals ̂𝒆 to the estimated functional model may be
computed as

̂𝒆 = 𝓵 − 𝐀𝒙̂
= 𝓵 − ̂𝓵 ,

(3.16)

with ̂𝓵 being the adjusted observations. Note that the residuals ̂𝒆 are an estimation for the
errors 𝒆 defined with the model in Eq. 3.9.

According to the Gauss-Markov theorem (for a weight matrix 𝐏 = 𝐈, David and Ney-
man, 1938) or the Aitken theorem (for a weight matrix derived from a covariance matrix
of the errors 𝐏 = 1/𝜎2

0𝐂𝑒𝑒, Aitken, 1936) the LSQ method provides for a Best Linear
Unbiased Estimator [BLUE, see Koch, 1997]. This leads to several statistically important
characteristics. First, the expectancy value of 𝒙̂ reads as

𝔼(𝒙̂) = 𝒙 , (3.17)

which means that the expectation of the estimated solution vector 𝒙̂ corresponds with the
true solution vector 𝒙, thus it is unbiased. Additionally, the errors feature a zero mean

𝔼(𝒆|𝒙) = 𝔼( ̂𝒆) = 0 , (3.18)

otherwise the estimator is biased. As a consequence of 𝔼(𝒆|𝒙) = 0, the second-order central
moments (a measure for the dispersion) of the errors correspond with the covariances of
the observations

𝔻(𝒆|𝒙, 𝜎2
0) = 𝔻(𝓵|𝜎2

0) = 𝜎2
0𝐏−1 , (3.19)

thus, observation uncertainties and modelling errors cannot be separated from each other
in the covariance matrix of the errors [Förstner, 1979], it always contain a superposition
of these two sources. In this sense, one may write the weight matrix either as referring to
the observations (as in Eq. 3.11) or to the errors

𝐏 = 𝜎2
0𝐐−1

ℓℓ = 𝜎2
0𝐐−1

𝑒𝑒 . (3.20)

The variance of unit weight may be estimated from the relation between the estimated
value for the minimum criterion (Eq. 3.10) and its expected value [Koch, 1997]. It connects
of the sum the weighted residuals squared with the degree of freedom 𝑁 − 𝑀 by

𝜎̂2
0 = Ω̂

𝑁 − 𝑀 , (3.21)

where the estimated sum of the weighted residuals squared Ω̂ reads as

Ω̂ ∶ = ̂𝒆T𝐏 ̂𝒆
= (𝓵 − 𝐀𝒙̂)T 𝐏 (𝓵 − 𝐀𝒙̂)
= 𝓵T𝐏𝓵⏟

Λ
+𝒙̂T 𝐀T𝐏𝐀𝒙̂⏟

𝐍𝒙̂=𝒃
−2𝒙̂T 𝐀T𝐏𝓵⏟

𝒃

= Λ − 𝒙̂T𝒃 ,

(3.22)
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which is also known as the Residual Sum of Squares (RSS), a criterion to designate varia-
tions between the observations and the model.

The linear LSQA process may also be viewed as linear filter applied to the observations,
where the filter is defined by the functional and stochastic model. The solution 𝒙̂ shall be
expressed by a filter matrix multiplied with the observations. The solution (cf. Eq. 3.15)
may be formulated as

𝒙̂ = 𝐍−1𝐀T𝐏⏟⏟⏟⏟⏟
𝐑

𝓵 , (3.23)

where 𝐑 defines a filter matrix according to the functional and stochastic model introduced
by 𝐀 and 𝐏, hence,

𝒙̂ = 𝐑𝓵 . (3.24)

Using this kind of filter the cofactor matrix of the unknown parameters 𝐐𝑥̂𝑥̂ might be estab-
lished by covariance propagation (Sect. 3.1) from the stochastic model of the observations
(Eq. 3.11) by

𝐐𝑥̂𝑥̂ = 𝐑𝐐ℓℓ𝐑T

= 𝐍−1𝐀T 𝐏𝐐ℓℓ⏟
𝐈

𝐏T𝐀𝐍−1

= 𝐍−1 .

(3.25)

The cofactor matrix of the unknown parameters is related to the covariance matrix 𝐂𝑥̂𝑥̂
by the a priori variance of unit weight with

𝐂𝑥̂𝑥̂ = 𝔻(𝒙̂)
= 𝜎2

0𝐐𝑥̂𝑥̂ ,
(3.26)

or, in case of an estimated a posteriori variance of unit weight 𝜎̂0, by
̂𝐂𝑥̂𝑥̂ = 𝜎̂2

0𝐐𝑥̂𝑥̂ . (3.27)

The cofactor matrix of the unknown parameters can also be taken as a starting point for
another covariance propagation, namely to the adjusted observations ̂𝓵, by applying

𝐐 ̂ℓ ̂ℓ = 1
𝜎2

0
𝔻( ̂𝓵)

= 𝐀 𝐐𝑥̂𝑥̂⏟
𝐍−1

𝐀T

= 𝐀𝐑𝐏−1

= 𝐀𝐑𝐐ℓℓ

= 𝚷A𝐐ℓℓ .

(3.28)

𝚷A denotes the influence matrix or hat matrix and is an idempotent matrix, which de-
scribes the formal relation between the observations and the adjusted observations (thus,
it is a prediction matrix)

̂𝓵 = 𝐀𝒙̂
= 𝐀𝐑𝓵
= 𝚷A𝓵 .

(3.29)

15
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The complementary projection (𝚷C
A), also called residual-maker matrix, may be motivated

from Eq. 3.16 by setting

̂𝒆 = 𝓵 − 𝐀𝒙̂
= 𝓵 − 𝐀𝐑𝓵
= (𝐈 − 𝐀𝐑) 𝓵
= 𝚷C

A𝓵 .

(3.30)

Likewise to the prediction matrix the residual-maker matrix is idempotent. Summing up
the two projections returns the original observations

𝓵 = (𝚷A + 𝚷C
A) 𝓵 . (3.31)

3.2.1 Non-linear least-squares adjustment
The functional model 𝒇 which is used to fit the observations, is generally not linear. How-
ever, the LSQA as formulated in Sect. 3.2 requires a linear relation between the observations
and the parameters. To overcome this problem, a linearisation with a truncated Taylor se-
ries is applied, which was already introduced in Eq. 3.7. Reducing the observations with
the functional model at the Taylor point yields

𝓵 − 𝒇(𝒙0) = 𝐀 (𝒙 − 𝒙0) . (3.32)

The left-hand side now contains the Observed-minus-Computed (𝑂−𝐶) component, which
serves as the ’observations’. 𝒇(𝒙0) is the functional model evaluated at 𝒙0, forming a priori
or approximated observations

𝓵0 ∶= 𝒇(𝒙0). (3.33)

The design-matrix is the Jacobian matrix 𝐀 evaluated at the Taylor point 𝒙0 and the
vector of unknowns is split into the a priori values used for the development of the Taylor
series and an increment, also known as shift vector,

𝓵 − 𝓵0 = 𝐀(𝒙 − 𝒙0)
𝛿𝓵 = 𝐀𝛿𝒙 ,

(3.34)

which may be estimated following Eq. 3.13 and Eq. 3.15 as

𝛿𝒙̂ = (𝐀T𝐏𝐀)−1 𝐀T𝐏𝛿𝓵 . (3.35)

The final solution for the unknown parameters is composed of the a priori values of the
Taylor point and the estimated increment

𝒙̂ = 𝒙0 + 𝛿𝒙̂ . (3.36)

All further computations follow the formalism of the linear LSQA. Neglecting the higher
orders of the Taylor series naturally poses the question about convergence. A first approx-
imation of 𝒙0 has to be introduced into the computation, and the Taylor point has to be
improved with each solution by setting

𝒙0 = 𝒙̂ , (3.37)

and re-iterating the adjustment process.
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3.2 Least-squares adjustment

3.2.2 Parameter constraining
The goal of constraining certain (or all) unknown parameters is to confine the spectrum of
values each parameter can attain by introducing conditions through artificial (also called
fictious) observations of the parameters and the stochastic model. This is a regularisa-
tion of parameters based on a priori information about their systematic and stochastic
behaviour in the posed problem. The method used in this thesis is a branch of the gener-
alised Tikhonov regularisation [Tikhonov, 1963] and closely related to the damping factor
in the Levenberg–Marquardt algorithm [Levenberg, 1944, Marquardt, 1963] or in ridge re-
gression [Hoerl and Kennard, 1970], with the main difference being that the regularisation
is not applied to the full set of parameters but only to a subset. If appropriately applied,
parameter constraining introduces a regularisation which is only acting towards indepen-
dent a priori information, e.g., knowledge about the stochastic behaviour of a parameter.

To apply a constraining, artificial observations 𝒉 are appended to the vector of obser-
vations 𝓵. These artificial observations feature a distinct relation with a (sub)-set of the
sought-after parameters, defined by 𝐇, and a stochastic behaviour 𝐖, which is realised by
the constraints, such that

𝐖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎2
0

𝜎c
1

2
𝜎2

0
𝜎c

21
… 𝜎2

0
𝜎c

𝑃1
𝜎2

0
𝜎c

21

𝜎2
0

𝜎c
2

2 ⋮
⋮ ⋱

𝜎2
0

𝜎c
𝑃1

… 𝜎2
0

𝜎c
𝑃

2

⎤
⎥
⎥
⎥
⎥
⎦

. (3.38)

𝜎c
𝑝

2 denotes the a priori variance called constraint. The vector 𝒉 is of dimension (𝑃 × 1)
and the matrix 𝐇 is (𝑃 × 𝑀). Generally, 𝐖 is a symmetric matrix, containing the full
stochastic model of the artificial observations, i.e., potentially also correlations between
the artificial observations. The formulation of the LSQA when using artificial observations
changes to

[𝓵
𝒉] = [𝐀

𝐇] 𝒙 . (3.39)

Furthermore, the weight matrix is modified to contain 𝐏 and 𝐖. It is composed of three
distinct parts. One assigning weights to the observations trough 𝐏, one denoting weights to
the pseudo-observations (𝐖), which is defined by the adopted constraints, and a matrix 𝐔
which expresses that the observations 𝓵 and pseudo-observations 𝒉 may also be correlated.

𝐏c ∶= [ 𝐏 𝐔
𝐔T 𝐖] . (3.40)

Unless the observations have already been used to determine the pseudo-observations this
block of the weight matrix equals to zero. Following the LSQ method, the normal equations
system expands to

𝐍c = [𝐀 𝐇]T [ 𝐏 𝐔
𝐔T 𝐖] [𝐀

𝐇] = 𝐀T𝐏𝐀 + 𝐀T𝐔𝐇 + 𝐇T𝐔T𝐀 + 𝐇T𝐖𝐇

𝒃c = [𝐀 𝐇]T [ 𝐏 𝐔
𝐔T 𝐖] [𝓵

𝒉] = 𝐀T (𝐏 + 𝐔) 𝓵 + 𝐇T (𝐔T + 𝐖) 𝒉 .
(3.41)
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The subscript c stands for constraining, hence, referring to a solution which is computed
under the condition of constraints.

For the case of 𝐔 = 𝟎 the normal equations read as

𝐍c ∶= 𝐀T𝐏𝐀 + 𝐇T𝐖𝐇 = 𝐍 + 𝐇T𝐖𝐇
𝒃c ∶= 𝐀T𝐏𝓵 + 𝐇T𝐖𝒉 = 𝒃 + 𝐇T𝐖𝒉 ,

(3.42)

and the solution 𝒙̂c may be computed with

𝒙̂c = (𝐍 + 𝐇T𝐖𝐇)−1 (𝒃 + 𝐇T𝐖𝒉)
= 𝐍−1

c 𝒃c .
(3.43)

In analogy to the filter in Sect. 3.2, the constraining may be re-written by inserting Eq. 3.14
in Eq. 3.43

𝒙̂c = (𝐍 + 𝐇T𝐖𝐇)−1 (𝐍𝒙̂ + 𝐇T𝐖𝒉)
= 𝐍−1

c 𝐍𝒙̂ + 𝐍−1
c 𝐇T𝐖𝒉 .

(3.44)

A filter which yields the constrained solution vector 𝒙̂c from the unconstrained solution
vector 𝒙̂ may then be defined by

𝐓 ∶= 𝐍−1
c 𝐍 (3.45)

and the constrained solution may eventually be written as

𝒙̂c = 𝐓𝒙̂ + 𝐓𝐍−1𝐇T𝐖𝒉 . (3.46)

Eq. 3.45 shows that the filter explains a difference between a constrained and an uncon-
strained solution (in the extreme case 𝐇 = 𝟎 or 𝐖 = 𝟎 → 𝐓 = 𝐍−1𝐍 = 𝐈 is computed as
the filter matrix). The constrained solution 𝒙̂c is, however, based and dependent on the a
priori artificial observations 𝒉 due to the term 𝐓𝐍−1𝐇T𝐖𝒉. If 𝒉 = 𝟎, i.e, if a constraining
to zero is performed, no shift caused by the a priori values of the constrained parameters
is introduced through the artificial observations, implying that only stochastic a priori
information is brought into the system, and the constrained (filtered) solution reads as

𝒙̂c = 𝐓𝒙̂ . (3.47)

In an iterative LSQ process, as the non-linear formulation demands, where also the artificial
observations 𝒉 are reduced by the functional model evaluated at the Taylor point 𝒇(𝒙0),
it is pivotal that 𝒉 = 𝟎 is set in every iteration otherwise a bias towards the solution of
the preceding iteration is introduced. This means, that the right-hand side 𝒃 of the normal
equations has to be reduced by the a priori values 𝒙0 of the to-be-constrained parameters
by

𝒃c = 𝒃 − 𝐇T𝐖𝒙0. (3.48)

The bias may be easily seen in Eq. 3.44 where the part 𝐍−1
c 𝐇T𝐖𝒉 shifts the solution,

and consequently, also the residuals which serve as new 𝑂 − 𝐶 in each iteration.

18



3.2 Least-squares adjustment

The process of constraining the solution may be related with the original observations 𝓵
by two consecutive filter

𝒙̂c = 𝐓𝐑𝓵
= 𝐍−1

c 𝐍𝐍−1𝐀T𝐏𝓵
= 𝐍−1

c 𝐀T𝐏𝓵 ,
(3.49)

as it follows from Eq. 3.23 with
𝐑c ∶= 𝐍−1

c 𝐀T𝐏 . (3.50)
Equation 3.49 may again be regarded as filter and the constrained solution is a linear filter
applied on the observations

𝒙̂c = 𝐑c𝓵. (3.51)
In the CMA the constraining of parameters is frequently adopted when extending the
parameter space with so-called pseudo-stochastic parameters to account for a deficient
background force modelling (see Sect. 5.1.6). A subset of the unknown parameters (the
pseudo-stochastic parameters) are constrained by a stochastic model 𝐖 which describes
their a priori known stochastic behaviour. Kvas and Mayer-Gürr [2019] showed that such a
set of constrained parameters may also be incorporated into the a priori covariance matrix
of the observations and consequently into the weight matrix, yielding the same result as
explicitly solving for all parameters. This will be further used in Sect. 3.2.6, Sect. 5.1.6 and
Sect. 5.5.1.

3.2.3 Parameter pre-elimination
The time span in which parameters are valid is distinct for different parameter types.
There are global parameters, which are usually the final outcome of an estimation process,
and also parameters which are only valid for shorter time intervals or even epoch-wise.
These parameters can be removed from the normal equation system without deleting their
contribution. Depending on the formulation of the problem a gain in memory usage and
computation time may be achieved because the final parameter space is reduced, and
consequently, can be solved more efficiently.
Separating between two types of parameters, where 𝒙̂ denotes a global set of parameters
which shall be kept in the system of equations, and the parameters in ̂𝒚, which shall be
pre-eliminated on NEQ level, yields the formulation

[
𝐍𝑥̂𝑥̂ 𝐍𝑥̂ ̂𝑦
𝐍T

𝑥̂ ̂𝑦 𝐍 ̂𝑦 ̂𝑦
] [𝒙̂

̂𝒚] = [𝒃𝑥̂
𝒃 ̂𝑦

] . (3.52)

By extracting the solution for ̂𝒚 and assuming that the normal equation matrix related to
the to-be-eliminated parameters 𝐍 ̂𝑦 ̂𝑦 is nondegenerate, this yields

̂𝒚 = 𝐍−1
̂𝑦 ̂𝑦 (𝒃 ̂𝑦 − 𝐍T

𝑥̂ ̂𝑦𝒙̂) . (3.53)
The normal equations may be re-formulated to a reduced parameter space only containing
the parameters in 𝒙̂ explicitly by

(𝐍𝑥̂𝑥̂ − 𝐍𝑥̂ ̂𝑦𝐍−1
̂𝑦 ̂𝑦 𝐍T

𝑥̂ ̂𝑦) 𝒙̂ = 𝒃𝑥̂ − 𝐍𝑥𝑦𝐍−1
̂𝑦 ̂𝑦 𝒃 ̂𝑦 . (3.54)

Such a process is typically applied to orbit (local) and gravity field (global) parameters to
allow for a pre-elimination of the orbit parameters at the level of each orbital arc.
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3.2.4 Sequential least-squares adjustment
Depending on the number of observations and unknown parameters, explicitly setting up
the complete design-matrix for all observations and computing normal equations for the
LSQA according to Eq. 3.13 might be very costly in terms of memory usage. Under certain
conditions the process of a LSQA may be broken down into smaller segments.
Assuming 𝐏 = 𝐈, the normal equation matrix 𝐍 and the right-hand side 𝒃 can be set
up for each observation separately by summing up each NEQ emerging from one line of
the design-matrix. However, for other than diagonal weight matrices, the elements in 𝐏
correlate observations with each other, and consequently, the NEQs cannot be stacked
for each observation but only for a sequence of blocks with a length depending on the
correlations described by the weight matrix. By forming 𝐾 blocks the structure of the
system of observation equations may be written as

⎡
⎢
⎢
⎣

𝓵1
𝓵2
⋮

𝓵𝐾

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐀1
𝐀2
⋮

𝐀𝐾

⎤
⎥
⎥
⎦

𝒙 with 𝐏 ∶=
⎡
⎢
⎢
⎣

𝐏1 𝟎
𝐏2

⋱
𝟎 𝐏𝐾

⎤
⎥
⎥
⎦

, (3.55)

where the weight matrix 𝐏 is of block diagonal structure. For each block the contribution
to the normal equation system (cf. with Eq. 3.13) is computed according to

𝐍𝑘 ∶= 𝐀T
𝑘 𝐏𝑘𝐀𝑘 , 𝒃𝑘 ∶= 𝐀T

𝑘 𝐏𝑘𝓵𝑘 and Λ𝑘 ∶= 𝓵T
𝑘 𝐏𝑘𝓵𝑘 . (3.56)

Eventually, the full normal equation system may be obtained by

𝐍 =
𝐾

∑
𝑘=1

𝐍𝑘 , 𝒃 =
𝐾

∑
𝑘=1

𝒃𝑘 and Λ =
𝐾

∑
𝑘=1

Λ𝑘 . (3.57)

The solution is computed as described in Sect. 3.2. The choice of the block length, usually a
trade-off between various factors, is a delicate matter and will be addressed in the context
of Variance Component Estimation (VCE) (Sect. 5.3.2) and empirical noise modelling
(Sect. 5.5.1 and 5.5.2).

3.2.5 Series of least-squares adjustments
The idea behind this process is to first apply a LSQA on the original data to determine a
solution for a subset of parameters, and then to take these parameters as intermediate ob-
servations (also pseudo-observations) for a second LSQA to compute solutions for a second
set of unknown parameters. Such a sequence of least-squares adjustments might be moti-
vated by a complicated relation between the original data and the final sought-after param-
eters in the second adjustment. If one is able to find meaningful intermediate observations,
which feature a distinct (and simple) relation to the original data and the final sought-after
parameters, while preserving the information of the original observations, it might make
sense to split into consecutive LSQAs. Furthermore, computation times might decrease and
computational limitations might be by-passed by disregarding certain stochastic properties
of the intermediate observations, especially in case the intermediate parameters are able
to preserve the information of the original observations without a full covariance matrix
associated with them. Additionally, the interpretation of the results could be simplified,

20



3.2 Least-squares adjustment

in particular when the intermediate observations implicate a reasonable physical meaning.
A typical example in our context is the computation of kinematic positions from GNSS
carrier phase observations (see Sect. 4.3) and thereof derived (reduced-)dynamic orbit and
gravity field parameters.

Suppose a set of observations 𝓵𝑥 with an a priori weight defined in 𝐏𝑥
ℓℓ and the sought-after

parameter vector 𝒙 for the first adjustment. This leads to a design-matrix 𝐀

𝐀 = 𝜕𝓵𝑥

𝜕𝒙
, (3.58)

containing the partial derivatives of the observations to the unknown parameters 𝒙. The
solution then follows with Eq. 3.15 as

𝒙̂ = (𝐀T𝐏𝑥
ℓℓ𝐀)−1 𝐀T𝐏𝑥

ℓℓ𝓵𝑥

= 𝐍−1
𝑥̂𝑥̂𝐀T𝐏𝑥

ℓℓ𝓵𝑥 .
(3.59)

The inverse normal equation matrix corresponds to the cofactor matrix of the estimated
parameters (see 3.25)

𝐐𝑥̂𝑥̂ = 𝐍−1
𝑥̂𝑥̂ . (3.60)

With the quantities 𝒙̂ and 𝐐𝑥̂𝑥̂ at hand, the second LSQA may be set up. The observa-
tions 𝓵𝑦 are now taken from the first adjustment, hence, 𝒙̂ serves as the above mentioned
intermediate observations. The second adjustment then only depends indirectly on the
original data but makes use of pseudo-observations 𝓵𝑦 = 𝒙̂. The weight matrix for the
pseudo-observations stems from the first adjustment as well, i.e., 𝐏𝑦

ℓℓ = 𝐐−1
𝑥̂𝑥̂ = 𝐍𝑥̂𝑥̂. The

unknown parameters are denoted by 𝒚 and they have a formal relation with the pseudo-
observations defined with the design-matrix 𝐁

𝐁 = 𝜕𝓵𝑦

𝜕𝒚
= 𝜕𝒙̂

𝜕𝒚
. (3.61)

The solution then reads as

̂𝒚 = (𝐁T𝐏𝑦
ℓℓ𝐁)−1 𝐁T𝐏𝑦

ℓℓ𝓵𝑦

= (𝐁T𝐍𝑥̂𝑥̂𝐁)−1 𝐁T𝐍𝑥̂𝑥̂𝒙̂ .
(3.62)

Inserting the solution of the first LSQA into 𝒙̂ and expanding the first occurrence of 𝐍𝑥̂𝑥̂
gives

̂𝒚 = (𝐁T𝐀T𝐏𝑥
ℓℓ𝐀𝐁)−1 𝐁T 𝐍𝑥̂𝑥̂𝐍−1

𝑥̂𝑥̂⏟
𝐈

𝐀T𝐏𝑥
ℓℓ𝓵𝑥 . (3.63)

Simplifying Eq. 3.63 leads to

̂𝒚 = (𝐁T𝐀T𝐏𝑥
ℓℓ𝐀𝐁)−1 𝐁T𝐀T𝐏𝑥

ℓℓ𝓵𝑥 . (3.64)

It relates the original observations 𝓵𝑥, their a priori weight 𝐏𝑦
ℓℓ with the sought-after

parameters of the second LSQA 𝒚. The new design-matrix defining this relation may be
named

𝐌 ∶= 𝐀𝐁 , (3.65)
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and accordingly, the estimation for ̂𝒚 reads as

̂𝒚 = (𝐌T𝐏𝑥
ℓℓ𝐌)−1𝐌T𝐏𝑥

ℓℓ𝓵𝑥 . (3.66)

The new design-matrix 𝐌 contains the partial derivatives of the original observations with
respect to the unknown parameters of the second LSQA applying the chain rule

𝐌 = 𝐀𝐁

= [
𝜕𝓵𝑥
𝜕𝒙

] [𝜕𝒙̂
𝜕𝒚

] = [
𝜕𝓵𝑥
𝜕𝒙

𝜕𝒙̂
𝜕𝒚

] .
(3.67)

For 𝑈 estimated parameters in 𝒙̂ and 𝑀 sought-after parameters in 𝒚 with 𝑁 original
observations in 𝓵𝑥 the design-matrix 𝐌 reads as

𝐌 =
⎡
⎢
⎢
⎢
⎣

𝑈
∑
𝑢=1

( 𝜕ℓ𝑥
1

𝜕𝑥𝑢

𝜕𝑥̂𝑢
𝜕𝑦1

) …
𝑈
∑
𝑢=1

( 𝜕ℓ𝑥
1

𝜕𝑥𝑢

𝜕𝑥̂𝑢
𝜕𝑦𝑀

)

⋮ ⋱ ⋮
𝑈
∑
𝑢=1

(𝜕ℓ𝑥
𝑁

𝜕𝑥𝑢

𝜕𝑥̂𝑢
𝜕𝑦1

) …
𝑈
∑
𝑢=1

(𝜕ℓ𝑥
𝑁

𝜕𝑥𝑢

𝜕𝑥̂𝑢
𝜕𝑦𝑀

)

⎤
⎥
⎥
⎥
⎦(𝑁×𝑀)

. (3.68)

This formulation will be resumed in Sect. 4.1 and Sect. 4.3. Note that the sum over 𝑈
partial derivatives may be reduced if the the corresponding partials are zero as it is the
case e.g., for kinematic positions.

3.2.6 Introducing observations twice
In orbit and gravity field determination the models typically consist of several kinds of
parameters which are estimated in one common adjustment process. It is tempting to sep-
arate the parameters in groups, e.g., a set of orbit parameters and a set of gravity field
coefficients, where the orbit parameters are estimated first, and subsequently introduced
as known into the adjustment of the gravity field parameters. Such a procedure, however,
may introduce undesirable side effects.

One may assume a LSQA with one set of observations 𝓵 and two kinds of unknown param-
eters 𝒙 and 𝒚 which compose a physical model, e.g., 𝒙 denoting gravity field coefficients
and 𝒚 containing orbit parameters. The observation equations may be written as

𝓵 = [𝐀 𝐁] [𝒙
𝒚] + 𝒆 , (3.69)

and the corresponding normal equation system expands to

[𝐀T𝐏𝐀 𝐀T𝐏𝐁
𝐁T𝐏𝐀 𝐁T𝐏𝐁] [𝒙̂

̂𝒚] = [𝐀T𝐏𝓵
𝐁T𝐏𝓵

]

[
𝐍𝑥̂𝑥̂ 𝐍𝑥̂ ̂𝑦
𝐍T

𝑥̂ ̂𝑦 𝐍 ̂𝑦 ̂𝑦
] [𝒙̂

̂𝒚] = [𝒃𝑥̂
𝒃 ̂𝑦

] .
(3.70)

If the solution of the parameters in 𝒚 is known a priori from a previous adjustment, which
reads as

𝓵 = 𝐁𝒚 + 𝒆 and ̂𝒚 = (𝐁T𝐏𝐁⏟
𝐍𝑦̂𝑦̂

)−1𝐁T𝐏𝓵 , (3.71)
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the solution ̂𝒚 may be inserted into Eq. 3.70

[ 𝐍𝑥̂𝑥̂ 𝐀T𝐏𝐁
𝐁T𝐏𝐀 𝐍 ̂𝑦 ̂𝑦

] [
𝒙̂

𝐍−1
̂𝑦 ̂𝑦 𝐁T𝐏𝓵] = [𝐀T𝐏𝓵

𝐁T𝐏𝓵
] . (3.72)

Expanding the matrix multiplication gives

[
𝐍𝑥̂𝑥̂𝒙̂ + 𝐀T𝐏𝐁𝐍−1

̂𝑦 ̂𝑦 𝐁T𝐏𝓵
𝐁T𝐏𝐀𝒙̂ + 𝐍 ̂𝑦 ̂𝑦𝐍−1

̂𝑦 ̂𝑦⏟
𝐈

𝐁T𝐏𝓵
] = [𝐀T𝐏𝓵

𝐁T𝐏𝓵
] . (3.73)

The influence matrix 𝚷B (see Eq. 3.28) may be introduced as

𝚷B = 𝐁𝐍−1
̂𝑦 ̂𝑦 𝐁T𝐏 (3.74)

and the system of equations (Eq. 3.73) may be simplified to

[𝐍𝑥̂𝑥̂𝒙̂ + 𝐀T𝐏𝚷B𝓵
𝐁T𝐏𝐀𝒙̂ + 𝐁T𝐏𝓵

] = [𝐀T𝐏𝓵
𝐁T𝐏𝓵

] , (3.75)

and further to

[ 𝐍𝑥̂𝑥̂𝒙̂
𝐁T𝐏𝐀𝒙̂] = [𝐀T𝐏𝓵 − 𝐀T𝐏𝚷B𝓵

𝟎 ] . (3.76)

Solving this equation for 𝒙̂ implicates that the formal relation between 𝐁 and 𝐀 is zero,
thus, 𝐁T𝐏𝐀 = 𝟎. Proceeding with the first line in Eq. 3.76 to solve for the unknown
parameters in 𝒙̂, leads to a solution which consists of the regular solution as in Eq. 3.15
and a correction term which changes the filter according to the formal influence of 𝐁 on
the observations based on the projection with the influence matrix (see Eq. 3.28)

𝒙̂ = 𝐍−1
𝑥̂𝑥̂𝐀T𝐏⏟⏟⏟⏟⏟

𝐑

𝓵 − 𝐍−1
𝑥̂𝑥̂𝐀T𝐏⏟⏟⏟⏟⏟

𝐑

𝚷B𝓵

= 𝐑𝓵 − 𝐑𝚷B𝓵
= (𝐑 − 𝐑𝚷B) 𝓵 .

(3.77)

Or formulated differently, now the observations are not only filtered but also reduced by
the previously adjusted model ( ̂𝓵𝑦 = 𝚷B𝓵, see Eq. 3.29)

𝒙̂ = 𝐑 (𝓵 − 𝚷B𝓵)
= 𝐑 (𝓵 − ̂𝓵𝑦)
= 𝐑 ̂𝒆𝑦 .

(3.78)

Thus, the solution of 𝒙̂ uses the residuals of the preceding LSQA ̂𝒆𝑦 as observations. Based
on the expression in 3.78 one is also able to write the residuals as being dependent from
the influence matrix of ̂𝒚. Computing the residuals from 𝒙̂ (Eq. 3.77 using Eq. 3.28) leads
to

̂𝒆𝑥 = 𝓵 − 𝐀𝒙̂
= 𝓵 − 𝐀(𝐑𝓵 − 𝐑𝚷B𝓵)
= 𝓵 − 𝐀𝐑⏟

𝚷A

𝓵 + 𝐀𝐑⏟
𝚷A

𝚷B𝓵

= (𝐈 − 𝚷A⏟
𝚷C

A

) 𝓵 + (𝚷A𝚷B) 𝓵 ,

(3.79)
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which shows that the residuals of 𝒙̂ are shifted by (𝚷A𝚷B) 𝓵 and do not follow Eq. 3.30
anymore.

A regularisation towards a priori information is introduced whenever the computation
of ̂𝒚 relies on a priori information about the parameters which are to be estimated with
𝒙̂ through the dependency of ̂𝒚 and 𝒙̂ on the same observations. Hence, it is questionable
to change the parameter-space between subsequent adjustments which are based on the
same observations. Such an idea of separating the parameter estimation process into sev-
eral steps, in our context splitting into an orbit computation and a gravity field recovery
thereof (a so-called two-step approach), might also be applied to a subset of parameters,
hence, not introducing the full set of already solved-for orbit parameters into the second
step of gravity field recovery but only a selected set. This has been investigated by Meyer
et al. [2015] for a separation of a (co-)estimated stochastic model using parameter pre-
elimination in contrast to fixing parameters to a priori values, where the regularisation
influence could be traced down into the final gravity field solution. Such (mild) two-step
approaches, where only a (small) subset of parameters is fixed, are applied in gravity field
recovery, e.g., by the CSR to compute their GRACE and GRACE Follow-On gravity field
solutions.

Moreover, a regularisation might not only be introduced by fixing parameters to harm-
ful a priori values through the parameter space, as done in this section or could occur with
the right-had side of the constraints’ normal equations (see Sect. 3.2.2), also the weight
matrix 𝐏 or the matrix with the constraints 𝐖 are capable of transporting a regularisa-
tion towards a priori information into the system. Kvas and Mayer-Gürr [2019] showed that
the extension of the parameter-space by additional quantities and a (constrained towards
zero) co-estimation of them together with all other parameters can also be represented by
covariance propagation onto the cofactor matrix of the observations. Hence, a regularisa-
tion caused by the parameter-space could also be evoked by an unfavourable choice of the
stochastic behaviour of the observations. Introducing a noise model which was determined
by the observations in the least-squares process leads to a shift towards the a priori models
used to derive the noise model. If the process of deriving the noise model contains any
of the final sought-after parameters as an a priori model (e.g., the gravity field), the final
solution has to be considered as regularised. An example for the latter would be to use a
reduced gravity field resolution to deduce an empirical noise modelling of the observations
(see Sect. 5.5.1 and Sect. 5.5.2) and extend the gravity field’s resolution (enhancing the
parameter-space) when introducing the empirical models. Even though such an approach
could significantly decrease the computation time, it results in a regularised estimation of
the gravity field parameters.

3.3 Variance component estimation

Variance Component Estimation (VCE) is a procedure to derive stochastic information
about different observation groups, e.g., in terrestrial geodesy, angles and distances. Sev-
eral methods of VCE have been brought up, such as Helmert types (first proposed by
Helmert [1907], see e.g., Grafarend et al. [1980]), Best Invariant Quadratic Unbiased Esti-

24



3.3 Variance component estimation

mate (BIQUE) methods [e.g., Koch, 1997], Minimum Norm Quadratic Unbiased Estimate
(MINQUE) [Rao, 1973] or Least-Squares VCE [Teunissen and Amiri-Simkooei, 2008] or
the non-negative VCE from Förstner [Förstner, 1979], which is also adopted in this thesis.
More recently, VCE is used in geodetic applications, e.g., by Ellmer [2018] for temporal
GRACE gravity field determination, by Jean et al. [2018] to combine gravity field solutions
computed at different institutions, by Zehentner and Mayer-Gürr [2016] for kinematic point
positioning of LEO satellites or by Koch and Kusche [2002] for combining different obser-
vation techniques of the Earth’s gravity field. VCE follows an iterative procedure where
for each NEQ its contribution to the full solution is computed as a variance component,
which is derived from the sum of the weighted residuals squared of this NEQ and its partial
redundancy. The following reasonings about the VCE, as it is applied within the scope of
this thesis, are based on the works of Förstner [1979], Koch [1997], Koch and Kusche [2002]
and Niemeier [2008].

The method of VCE may be motivated by separating the stochastic model of the ob-
servations into a sum of 𝐾 known individual cofactor matrices 𝐐𝑘

𝐂ℓℓ =
𝐾

∑
𝑘=1

𝜎2
𝑘 𝐐ℓℓ

𝑘 , (3.80)

where only a variance factor 𝜎2
𝑘 for each cofactor matrix is unknown. The goal is to de-

termine this variance factor in the context of the complete formulation of the problem to
appoint a reliably estimated contribution of each observation(-group) to the solution. As
a consequence, one assumes that the groups do not share the same 𝜎2

0. For an identity
matrix as weight matrix 𝐏 and two groups, this may be sketched in the computation of
the variance of unit weight by

𝜎̂2
0 = ̂𝒆T𝐏 ̂𝒆

𝑁 − 𝑀 = ̂𝒆T ̂𝒆
𝑁 − 𝑀 =

̂𝑒2
1 + ̂𝑒2

2 + … + ̂𝑒2
𝑁1

+ ̂𝑒2
𝑁1+1 + ̂𝑒2

𝑁1+2 + … + ̂𝑒2
𝑁1+𝑁2

𝑟1 + 𝑟2 + … + 𝑟𝑁1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘=1→ 𝜎2

1

+ 𝑟𝑁1+1 + 𝑟𝑁1+2 + … + 𝑟𝑁1+𝑁2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘=2→ 𝜎2

2

, (3.81)

with 𝑁1 observations in the first block, 𝑁2 observations in the second, generally contain-
ing an arbitrary number of observations per group, however, sufficient to ensure a well-
determined system of equations. Note that all correlations between the individual blocks
are neglected. 𝑟 indicates the partial redundancies [see Niemeier, 2008] for each observa-
tion, which sum up to the degree of freedom.
The variance components may be derived from the estimated minimum criterion (RSS)
given in Eq. 3.22 and its expected value 𝔼 (Ω̂), see Kendrick [2002, p. 170 et seq.], Koch
[1997, p. 145] and Förstner [1979], which reads as

𝜎̂2
0 = Ω̂

𝔼 (Ω̂)
= Ω̂

𝑁 − 𝑀 = Ω̂
tr (𝚷C

A)
= Ω̂

tr (𝐈 − 𝚷A)
= Ω̂

𝑁 − tr (𝚷A)
. (3.82)

Following Förstner [1979], the numerator and the denominator in Eq. 3.82 may be computed
separately for different groups of observations with the stochastic model 𝐐ℓℓ

𝑘 if they are
independent from each other. The RSS (see Eq. 3.22) of each group Ω̂𝑘 may then be written
as

Ω̂𝑘 = Λ𝑘 + 𝒙̂T𝐍𝑘𝒙̂ − 2𝒙̂T𝒃𝑘 with Λ𝑘 = 𝓵T
𝑘 𝐏𝑘𝓵𝑘 , (3.83)
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and the denominator follows with

𝑟𝑘 ∶= 𝑁𝑘 − tr (𝚷A,𝑘) , (3.84)

where 𝑁𝑘 denotes the number of observations in the 𝑘th group. Exploiting that the trace
is invariant to cyclic permutation the partial redundancies may be computed by

𝑟𝑘 = 𝑁𝑘 − tr (𝐍𝑘𝐍−1) . (3.85)

Thereof, a variance component 𝜎̂2
𝑘 may be estimated for each subset of observations as

introduced in Eq. 3.80 and outlined in Eq. 3.81 with

𝜎̂2
𝑘 ∶=

Ω̂𝑘
𝑟𝑘

=
̂𝒆T
𝑘 𝐏𝑘 ̂𝒆𝑘

𝑁𝑘 − tr (𝐍𝑘𝐍−1)
. (3.86)

As it can be easily seen, the VCE requires an iterative procedure because the full solution
𝒙̂ and the inverse normal equation matrix 𝐍−1 is needed to compute Ω̂𝑘 and 𝑟𝑘. Hence,
for the 𝑗th iteration one may use

𝜎̂2
𝑘,𝑗 =

Ω̂𝑘
𝑟𝑘

with 𝑟𝑘 = 𝑁𝑘 −
𝜎2

0

𝜎̂2
𝑘,𝑗−1

tr (𝐍𝑘𝐍−1) . (3.87)

The initial stochastic model (Eq. 3.80) requires a priori information about the variance
component 𝜎̂2

𝑘. In this work, the variance components are set to 𝜎̂2
𝑘 = 𝜎2

0 for the first iter-
ation 𝑗 = 1.

After computing the variance components, the normal equations are weighted with

𝐍𝑘 =
𝜎2

0

𝜎̂2
𝑘

𝐍𝑘 , 𝒃𝑘 =
𝜎2

0

𝜎̂2
𝑘

𝒃𝑘 and Λ𝑘 =
𝜎2

0

𝜎̂2
𝑘

Λ𝑘 . (3.88)

The solution for each iteration may be computed by using the weighted NEQs, following
the sequential LSQA given by Eq. 3.56 and Eq. 3.57.

In this straight forward approach, which is used in this thesis, the computation of the
matrix product 𝐍𝑘𝐍−1 inside the trace operator is most costly. However, exploiting the
structure of the normal equation systems and that only diagonal elements contribute to the
trace, it can be re-arranged into a dot product of two vectors with the dimension 𝑀 × 1
which has to be carried out 𝑀 times. Faster methods utilise a stochastic trace estima-
tion, for example Koch and Kusche [2002] designed a stochastic trace estimator based on
Monte-Carlo experiments.

3.4 Fourier transform and analysis
This section introduces time series representation and analysis using Fourier series. Detailed
derivations about the conclusions may be found in e.g., Buttkus [1991].
A signal 𝑥(𝑡) with a fundamental period of 𝑇 may be written as a Fourier series in a sum
of sinoids with respect to 𝑇 as

𝑥 (𝑡) =
𝑎0
2 +

𝐼=∞

∑
𝑖=1

(𝑎𝑖 cos(𝑖𝜔𝑡) + 𝑏𝑖 sin(𝑖𝜔𝑡)) with 𝜔 = 2𝜋
𝑇 . (3.89)
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Computing the coefficients 𝑎𝑖 and 𝑏𝑖 from Eq. 3.89 based on a discrete realisation of 𝑥(𝑡)
in 𝑥 [𝑡] is called Discrete Fourier Transform (DFT). Taking a signal of length 𝑇, which also
defines the fundamental period, the maximum degree of development is given by

𝐼 = {
𝑇
2 , if 𝑇 even
𝑇 −1

2 , if 𝑇 odd
. (3.90)

As a consequence of the Nyquist–Shannon sampling theorem [Shannon, 1948] the highest
frequency 𝑓𝑁 that can be resolved by the Fourier transform reads as

𝑓𝑁 = 𝐼𝜔
2𝜋 . (3.91)

Efficient methods to solve for 𝑎𝑖 and 𝑏𝑖 exist for evenly spaced data, like the Fast Fourier
Transform (FFT), which is well suited for computers due to Cooley and Tukey [1965]. In
case of non-equidistant time series methods like the LSQA (see Sect. 3.2) or least-squares
spectral analysis methods like the Lomb-Scargle periodogram (or Gauss-Vaníček spectral
analysis, cf. Lomb, 1976) may be utilised.
The DFT brings the signal 𝑥 [𝑡] into the frequency domain 𝑋 [𝜔] by applying the Fourier
transform operator ℱ(⋅) onto the signal

𝑋 [𝜔] = ℱ (𝑥 [𝑡]) . (3.92)

The DFT consists of a transformation pair, and consequently, compiling the series from
given Fourier coefficients is done by applying the inverse discrete Fourier transform

𝑥 [𝑡] = ℱ−1 (𝑋 [𝜔]) . (3.93)

Computing the squared sum of the estimated Fourier coefficients and referencing them to
the sampling frequency 𝑓𝑆 of the signal by forming

𝑃 PSD
𝑖 = 1

𝑓𝑆
(𝑎2

𝑖 + 𝑏2
𝑖 ) and (3.94a)

𝐴ASD
𝑖 = √𝑃 PSD

𝑖 (3.94b)

results in the discrete Power Spectral Density (PSD) and Amplitude Spectral Density
(ASD), respectively, which describes how the power of the signal is distributed in the
frequency domain. The representation in ASDs retains the units of the signal per square
root of the frequency, e.g., for a signal in metre, the ASD reads with m/

√
Hz.

3.4.1 Auto- and cross-covariance
The auto-covariance 𝑐𝑥𝑥 (𝑡0, 𝑡1) characterises the covariance between two elements at time
𝑡0 and 𝑡1 of a stochastic process. It may be defined by Eq. 3.1 where 𝒙 is the realisation of a
stochastic process. For a discrete signal of finite length following a stationary process, i.e.,
the central moments do not depend on the time [Etten, 2005], and a mean of 𝜇𝑥 = μ(𝒙) = 0,
the auto-covariance only depends on the time lag Δ𝑡 and can be described by a single
function, which may be estimated as

̂𝐶𝑥𝑥(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

𝑥𝑛+𝑘𝑥𝑛 with 𝑘 ∈ {0, ..., 𝑀} ≤ 𝑁 − 1 , (3.95)
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where Δ𝑡𝑘 denotes the 𝑘th lag or shift of the signal with respect to its original appearance
and 𝑀 is the maximum shift. It is an even function which exists for a finite length 𝑁.
The scaling 1/𝑁 gives a biased estimate of the auto-covariance of 𝑥, whereas 1/(𝑁 − 𝑘)
is unbiased [Percival, 1993]. The latter is dependent on the ratio of the length of the data
𝑁 and the number of lags 𝑀, which means for large 𝑀 the auto-correlation results in
large values because the denominator converges towards 𝑁 − 𝑀 → 1. For 𝑁 → ∞ the
covariances of both estimates converge towards zero. The shift of Δ𝑡 = 0 reduces Eq. 3.95
to the estimated variance of 𝒙

̂𝐶𝑥𝑥(0) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

𝑥2
𝑛 = 𝜎̂2

𝑥 . (3.96)

The estimated normalised auto-covariance function of 𝒙

𝑅̂𝑥𝑥(Δ𝑡𝑘) =
̂𝐶𝑥𝑥(Δ𝑡𝑘)

𝜎̂2
𝑥

, (3.97)

shows the correlation of the signal with itself, i.e., the correlation of each variable in 𝒙 with
the variable Δ𝑡 lags apart. If no auto-correlation exist in 𝒙 only 𝑅̂𝑥𝑥(0) ≠ 0.

The cross-covariance between two signals 𝒙 and 𝒚 may be computed by

𝐂𝑥𝑦 = 𝔼 ([𝒙 − 𝜇𝑥] [𝒚 − 𝜇𝑦]T) . (3.98)

As it can be seen, the auto-covariance is a special case of the cross-covariance for 𝒚 = 𝒙.
For a stationary process, the dependency on 𝑡0 and 𝑡1 vanishes for the lag Δ𝑡𝑘 = 𝑡1−𝑡0 and
the cross-covariance may then be estimated for each lag in negative and positive direction
with

̂𝐶𝑥𝑦(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

𝑥𝑛+𝑘𝑦𝑛 with 𝑘 ∈ {0, ..., 𝑀} ≤ 𝑁 − 1 and

̂𝐶𝑥𝑦(Δ𝑡−𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

𝑥𝑛𝑦𝑛+𝑘 with 𝑘 ∈ {0, ..., 𝑀} ≤ 𝑁 − 1 ,
(3.99)

where

̂𝐶𝑥𝑦(Δ𝑡𝑘) = ̂𝐶𝑦𝑥(Δ𝑡−𝑘) . (3.100)

The factor 1/𝑁 again yields a biased estimate, whereas 1/(𝑁 − 𝑘) is unbiased. In analogy
to Eq. 3.97, the cross-covariance may be normalised to 𝑅̂𝑥𝑦, which is a measure for the
similarity between 𝒙 and 𝒚, showing at which lag the signals resemble each other best,
being the same with 𝑅̂𝑥𝑦(Δ𝑡𝑘) = 1, not correlated with 𝑅̂𝑥𝑦(Δ𝑡𝑘) = 0 and anti-correlated
with 𝑅̂𝑥𝑦(Δ𝑡𝑘) = −1.

3.4.2 Relation between PSD and auto-covariance
The PSD and the auto-covariance function with a mean of 𝜇(𝒙) = 0 of a stationary process
are related by the Wiener–Khinchin theorem [Wiener, 1930, Khinchin, 1934], which states
that the PSD of a function is the Fourier transform of the function’s auto-covariance for
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the lag Δ𝑡. This process may be reversed because the PSD and the auto-covariance form
a transformation pair, so the auto-covariance may be derived from a given PSD. Using the
inverse Fourier transform operator (Eq. 3.93) the relation may be written as

𝑅𝑥𝑥[Δ𝑡] = ℱ−1 (𝑃𝑥𝑥 [𝜔]) . (3.101)

3.5 Spherical harmonics
Spherical harmonics are a set of functions formed by harmonic and homogeneous polyno-
mials defined on the surface of a sphere. The spherical harmonics are derived by solving
Laplace’ equation in spherical coordinates [see e.g., Heiskanen and Moritz, 1967]

Δ𝑓 (𝑟, 𝜆, 𝜗) = ∇2𝑓 = div (grad (𝑓 )) = 0 , (3.102)

with 𝑟 denoting the radial distance, 𝜆 the longitude and 𝜗 the co-latitude The solution for
the spherical harmonics reads as

𝐶𝑛𝑚(𝜆, 𝜗) = 𝑃𝑛𝑚(cos 𝜗) cos(𝑚𝜆) and 𝑆𝑛𝑚(𝜆, 𝜗) = 𝑃𝑛𝑚(cos 𝜗) sin(𝑚𝜆) , (3.103)

with 𝑃𝑛𝑚 denoting the (normalised) associated Legendre functions of degree 𝑛 and order
𝑚. A function 𝑓 which is harmonic outside a sphere [Heiskanen and Moritz, 1967] may be
expanded into a converging series of spherical harmonics by

𝑓 (𝑟, 𝜆, 𝜗) =
∞

∑
𝑛=0

1
𝑟𝑛+1

𝑛

∑
𝑚=0

(𝑐𝑛𝑚𝐶𝑛𝑚 + 𝑠𝑛𝑚𝑆𝑛𝑚) . (3.104)

This is used in the representation of the Earth’s gravity field as observed from satellites (see
Sect. 4.6.1). The spherical harmonic coefficients 𝑐𝑛𝑚 and 𝑠𝑛𝑚 fully describe the function 𝑓
in spectral domain. Three important sets of spherical harmonics coefficients arise, namely

- the zonal spherical harmonic coefficients with 𝑚 = 0,
- the sectorial coefficients with 𝑛 = 𝑚, and
- the tesseral harmonics for all other degrees and orders.

For a given degree 𝑛, there are in total (𝑛+1)2 spherical harmonic coefficients, 𝑛+1 zonals,
2𝑛 sectorials, and 𝑛2 − 𝑛 tesseral harmonics.

3.5.1 Figurative representation of spherical harmonic coefficients
Synthesis on a regular grid

At a regular grid of longitudes and co-latitudes the spherical harmonic series can be ef-
ficiently evaluated for a given set of spherical harmonic coefficients 𝑐𝑛𝑚 and 𝑠𝑛𝑚 by ex-
ploiting efficient computation of sine and cosine values. Still, the full series up to the given
truncation has to be synthesised for each grid point, thus, depending on the degree of the
evaluation and the resolution of the grid, this might be a rather costly operation.
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Chapter 4

Orbit and Gravity Field
Determination

This chapter outlines the concepts how the different measurements collected by the satel-
lites (Chapter 2) and the provided mathematical tools (Chapter 3) are connected to com-
pute orbit and gravity field models. It starts with the physical background of orbital motion
and its representation, continues with the mathematical description of the satellite observa-
tions and concludes with the a priori information incorporated into the estimation process.
The elementary ideas of this chapter are discussed in detail by Beutler [2005] and Beutler
et al. [2010b].

4.1 Modelling satellite motion
The motion of the Centre of Mass (CoM) of a satellite around the Earth is the result of
the sum of all forces 𝑭 acting on the satellite. According to Newton’s second law of motion
the total force acting on a satellite with mass 𝑚 results in an acceleration ̈𝒓, pointing in
the same direction as the resulting force vector

∑
𝑖

𝑭𝑖 = 𝑚 ̈𝒓 . (4.1)

The motion follows a trajectory which is called satellite orbit. First and foremost, the orbit
follows Newton’s law of gravity and may be described in good approximation by Kepler’s
laws of planetary motion for the two bodies assuming point masses.

The equation of motion is a second-order differential equation

̈𝒓(𝑡) = 𝒇(𝑡, 𝒓, ̇𝒓) (4.2)

relating the acceleration ̈𝒓 of an object at time 𝑡 with its position 𝒓 and velocity ̇𝒓, where
the acceleration may be described by the function 𝒇. Using Newton’s law of gravity and
Newton’s second law of motion to solve this equation yields for the two-body problem a
set of six distinct initial elements to fully describe the orbit on as conic section with the
Earth in the focus at any time 𝑡

𝒓(𝑡0) = 𝒓(𝑡0|𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0) and
̇𝒓(𝑡0) = ̇𝒓(𝑡0|𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0) ,

(4.3)
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4. Orbit and Gravity Field Determination

with the equation of motion being

̈𝒓(𝑡) = −𝐺𝑀𝒓
𝑟3 , (4.4)

where 𝐺𝑀 denotes the gravity constant times the mass of the Earth and 𝒓 is the geocentric
position of the satellite in (quasi-)inertial system. The equation of motion of the two-body
problem (Eq. 4.4) is a function of solely the position vector 𝒓. The initial elements of
the orbit may be an initial position 𝒓(𝑡0) and velocity ̇𝒓(𝑡0) or Keplerian orbital elements
(Fig. 4.1), e.g., for an elliptical motion:

- The semi-major axis 𝑎, characterising the size of the orbit’s ellipse,
- the numerical eccentricity 𝑒, characterising the shape of the ellipse,
- the inclination 𝑖 as the angle between the intersection of the orbital plane and the

equatorial plane, the first parameter providing the orientation of the orbital plane in
space,

- the right-ascension of the ascending node Ω as the angle between the direction to the
vernal equinox (x-axis) and the ascending node, thus, orienting of the orbital plane
in space,

- the argument of perigee 𝜔, which is the angle between the ascending node and the
point closest to the Earth (perigee Π), thus orienting the ellipse in the orbital plane,
and

- the argument of latitude 𝑢0 which locates the satellite on the ellipse at time 𝑡0.

Ω
ωu

i

a,e

r

y

x

z

Π

Figure 4.1: Definition of the osculating or-
bital elements 𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢(𝑡0) and the po-
sition vector 𝒓(𝑡).

Keplerian elements are constant for a two-
body problem (Earth and satellite). The
Keplerian orbit following the two-body
problem when switching off the pertur-
bations in the general problem at time
𝑡 is called osculating orbit with the os-
culating elements at 𝑡0. The coordinate
system is formed by an (quasi-)inertial
system originating in the centre of mass
of the Earth, with the x-axis pointing
to the direction of the vernal equinox
(the intersection between the equatorial
and ecliptic plane), the z-axis is following
the Earth’s rotational axis to the North
and the y-axis completing an orthogonal
right-handed system. One realisation of
this inertial system is the J2000 reference
frame [McCarthy, 1996] as CRF, which is
also adopted in the BSW [Dach et al.,
2009].

Extending the formulation in Eq. 4.4 with additional accelerations acting on the satellite,
e.g., further dynamic parameters describing the orbit or accelerations caused by irregu-
larities in of the Earth’s potential field due to the mass distribution or tidal effects, or
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4.1 Modelling satellite motion

non-conservative forces like air drag perturbing the satellite’s motion, leads to the general
formulation of the primary equations

̈𝒓(𝑡) = −𝐺𝑀𝒓
𝑟3 + 𝒇(𝑡, 𝒓, ̇𝒓, 𝑑1, ..., 𝑑𝐾) = 𝒇total , (4.5)

where 𝒇total is the total acceleration the satellite experiences. {𝑑1, ..., 𝑑𝐾} denote 𝐾 param-
eters describing the additional dynamics acting on the satellite, deviating the orbit from
the Keplerian two-body solution. The full model for the equation of motion then consists of
6+𝐾 = 𝑀 parameters in a vector 𝒑. Integrating the equation of motion for a specific time
interval yields the position 𝒓 and velocity vector ̇𝒓. The CMA uses a collocation method
for efficient numerical integration [Beutler, 2005].

Determining the orbital elements from observations of the satellite’s trajectory is the fun-
damental method for gravity field recovery, where not only the orbit needs to be improved
but also parts of the perturbing forces, i.e., the gravity field. Usually, the perturbing forces
are known to a certain extent by a priori models and only improvements to a subset of the
𝒑 parameters are sought-after, e.g., improvements to an a priori gravity field. Thus, one
may assume that an a priori orbit 𝒓0 is always given from the a priori dynamic models and
a numerical integration of the primary equations (Eq. 4.5), and the improvements refer to
this orbit in the form of a truncated Taylor series (see Eq. 3.7) with

𝒓(𝑡) = 𝒓0(𝑡) +
6+𝐾

∑
𝑖=1

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

(𝑝𝑖 − 𝑝0,𝑖) , (4.6)

where 𝑝𝑖 denotes the parameters, either the orbital elements or the set of perturbing ac-
celerations {𝑑1, ..., 𝑑𝐾}, and 𝑝0,𝑖 are the respective a priori parameters serving as Taylor
point. Setting

𝒛𝑝𝑖
∶=

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

, (4.7)

𝒛𝑝𝑖
is the partial ascribed to the change of the orbit with respect to a change in the

parameter 𝑝𝑖 (𝒛𝑝𝑖
(𝑝𝑖 − 𝑝0,𝑖)). Since the initial orbit is part of the unknown parameters,

an initial value problem may be formulated. Solving the latter is done by integrating the
variational equations, which read for each parameter 𝑝𝑖 as a linear differential equation
system of second order

̈𝒛𝑝𝑖
∶= 𝜕𝒇total

𝜕𝒓0

𝜕𝒓0
𝜕𝑝𝑖

+ 𝜕𝒇total

𝜕 ̇𝒓0

𝜕 ̇𝒓0
𝜕𝑝𝑖

+ 𝜕𝒇
𝜕𝑝𝑖

. (4.8)

In the CMA the solution of the primary equation and the variational equations connected
to the six initial conditions is separated from the variational equations for all other param-
eters, which are solve by numerical quadrature [Beutler et al., 2010b].

The formulation in Eq. 4.6 may be transferred to a LSQA process (Eq. 3.34) by numerical
integration of the primary equations to solve for 𝒓0(𝑡) and of the variational equations to
solve for 𝒛𝑝𝑖

. The link between the observations 𝓵 (e.g., the satellite’s position, code or
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carrier-phase observations, or the inter-satellite range-rates) and the vector 𝒓 may be estab-
lished by a function 𝒈(⋅), which only depends on the position vector 𝒓 for the observations
used in this work, as

𝓵 = 𝒈 (𝒓 (𝑡)) , (4.9)

which leads together with Eq. 4.6 and linearisation to

𝓵 = 𝒈 (𝒓0 (𝑡) +
6+𝐾

∑
𝑖=1

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

(𝑝𝑖 − 𝑝0,𝑖))

= 𝒈 (𝒓0 (𝑡)) +
𝜕𝒈 (𝒓0 (𝑡))

𝜕𝒓0(𝑡)

6+𝐾

∑
𝑖=1

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

(𝑝𝑖 − 𝑝0,𝑖) ,

(4.10)

and simplifies to

𝓵 = 𝓵0 + [ 𝜕𝓵
𝜕𝒓0

] [
𝜕𝒓0
𝜕𝒑

] 𝛿𝒑

𝓵 − 𝓵0⏟
𝛿𝓵

= [ 𝜕𝓵
𝜕𝒓0

𝜕𝒓0
𝜕𝒙

]
⏟⏟⏟⏟⏟

𝐀

𝛿𝒙 .
(4.11)

Expanding the partial derivatives to sums yields the scheme of the design-matrix as

𝐀 =
⎡
⎢
⎢
⎢
⎣

3
∑
𝑢=1

𝜕𝑙1
𝜕𝑟0,𝑢

𝜕𝑟0,𝑢

𝜕𝑝1
…

3
∑
𝑢=1

𝜕𝑙1
𝜕𝑟0,𝑢

𝜕𝑟0,𝑢

𝜕𝑝6+𝐾

⋮ ⋱ ⋮
3

∑
𝑢=1

𝜕𝑙𝑁
𝜕𝑟0,𝑢

𝜕𝑟0,𝑢

𝜕𝑝1
…

3
∑
𝑢=1

𝜕𝑙𝑁
𝜕𝑟0,𝑢

𝜕𝑟0,𝑢

𝜕𝑝6+𝐾

⎤
⎥
⎥
⎥
⎦(𝑁×[6+𝐾])=(𝑁×𝑀)

(4.12)

for 𝑁 observations in 𝓵. Thus, the process might be interpreted as a special case of a series
of LSQAs (see Sect. 3.2.5, Eq. 3.67 and Eq. 3.68), where the first design-matrix is predefined
by the primary equation and variational equations and the intermediate observations are
given by the a priori orbit. Or vice versa, one adjustment relates the observations to the a
priori orbit and the other brings the conditions of the initial value problem of the variational
equations into the system of equations.

4.2 Orbit representations
Three important representations of orbits are used in the context of this thesis, two referring
to the equation of motion and the other one being of a geometric nature. For the sake of
generalisation, the left-hand side of the orbit representations refer to the phase centre
position of a satellite’s antenna as it would be seen by e.g., GPS observations instead of
the satellite’s CoM.

4.2.1 Dynamic orbits
A dynamic orbit is a particular solution of the equation of motion (Eq. 4.5), where the
satellite’s state is fully described by the orbital elements 𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0 at time 𝑡0 and the
full dynamic force modelling 𝒇(𝑑1, ..., 𝑑𝐾)

𝒓ant(𝑡) = 𝒓0(𝑡|𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0, 𝑑1, ..., 𝑑𝐾) + 𝛿𝒓ant(𝑡) . (4.13)
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4.2 Orbit representations

The position of the antenna phase centre 𝛿𝒓ant(𝑡) is usually introduced as known from
external sources. A dynamic orbit is fully dependent on the initial orbital elements and the
underlying force models. Any systematic deficiency directly maps into the orbit with an
error increasing with the arc length as the equation of motion is integrated twice to obtain
the state.

4.2.2 Reduced-dynamic orbits
A special set of additional parameters to form reduced-dynamic orbits in the CMA are
the pseudo-stochastic orbit parameters. The set of additional parameters is extended by 𝐿
further quantities

𝒓ant(𝑡) = 𝒓0(𝑡|𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0, 𝑑1, ..., 𝑑𝐾, 𝑠1, ..., 𝑠𝐿) + 𝛿𝒓ant(𝑡) , (4.14)

where {𝑠1, ..., 𝑠𝐿} may be instantaneous velocity changes (pulses), Piecewise-Constant Ac-
celerations (PCAs) set up for regular intervals or further empirical parameters, which are
co-estimated together with the other parameters describing the orbit [see Jäggi, 2007]. Its
name pseudo-stochastic stems from the application of compensating for deficiencies in the
force field by providing adequate a priori information about the stochastic behaviour using
constraints (see Sect. 3.2.2). Reduced-dynamic orbits follow the observations much closer
than a dynamic orbit at the cost of additional parameters to be adjusted.
The partial derivatives in the variational equations for the pseudo-stochastic parameters
may be set up as linear combinations of the partial derivatives with respect to the ini-
tial osculating elements and, depending on the type of pseudo-stochastic parameters, a
few additional partial derivatives [cf. Jäggi, 2007]. Consequently, the computational effort
for the solution of variational equations including pseudo-stochastic parameters is limited.
However, estimating a full set of pseudo-stochastic parameters together with gravity field
coefficients is a considerable effort.
Reduced-dynamic orbits might be seen as a trade-off between kinematic orbit positions,
where position parameters are assigned to each epoch, and a dynamic orbit entirely fol-
lowing the underlying dynamic model. The use of (constrained) pseudo-stochastic orbit
parameters is typical for the CMA [see e.g., Beutler et al., 2010a, Meyer et al., 2016]. For
GRACE Follow-On orbit and gravity field recovery a sampling of 15 min is adopted in most
cases.

4.2.3 Kinematic positions
Kinematic Positions (KIN) represent a discrete ephemeris of the object’s trajectory. They
may be computed for any moving object, not being restricted by any underlying force
model. For an Earth-orbiting satellite using GNSS hl-SST they are usually given in the
TRF, and therefore, may be written as

𝒓ant(𝑡𝑖) = 𝐑CRF
TRF (𝒓TRF(𝑡𝑖) + 𝛿𝒓ant

TRF(𝑡𝑖)) . (4.15)

The satellite’s state vector 𝒓 at epoch 𝑡𝑖 is composed of a transformation from the TRF to
the inertial reference frame 𝐑CRF

TRF of the Earth-fixed position of the satellite’s CoM 𝒓TRF
and the antenna phase offset 𝒓ant

TRF, also expressed in the TRF. A sufficient collection of
the kinematic positions may be named kinematic orbit.
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4.3 High-low SST: Kinematic point positioning
In the High-Low Satellite-to-Satellite Tracking (hl-SST) mode the low flying satellite is
equipped with a GNSS receiver which records navigation signals form the GNSS. The code
and phase measurements of the code’s carrier on each frequencies are used to perform a
kinematic Precise Point Positioning (PPP) [Zumberge et al., 1997], which is a PPP tech-
nique, a positioning method based on a single moving receiver. The procedure of kinematic
PPP follows Švehla and Rothacher [2005]. The kinematic positions are a discrete represen-
tation of the satellite’s position vector 𝒓 at epoch 𝑡. These three dimensional coordinates
are the main sought-after parameters of the kinematic PPP. Additionally, receiver clock
corrections are estimated and ambiguity parameters need to be adjusted when using carrier
phase measurements.
The carrier phase observation equation for a receiver 𝑖 and a GNSS satellite 𝑘 reads as

𝐿𝑘
𝑖 = 𝜌𝑘

𝑖 − 𝑐Δ𝑡𝑘 + 𝑐Δ𝑡𝑖 − Δ𝜌𝑘
𝑖,iono + 𝜆 (𝜑𝑖 − 𝜑𝑘 + 𝑁𝑘

𝑖 ) + 𝑒𝑘
𝑖 , (4.16)

where 𝐿𝑘
𝑖 is the carrier phase observation, expressed in units of length, hence, depending

on the wavelength 𝜆 of the carrier wave and 𝑐 denotes the speed of light. The formulation
takes into account the offset of the receiver clock with respect to the GNSS’ system time
(receiver clock correction Δ𝑡𝑖), the clock correction Δ𝑡𝑘 of the transmitter with respect
to the GNSS’ system time, and a correction due to phase advance of the electro-magnetic
wave propagating through the ionosphere. The latter may be largely mitigated by forming
the ionosphere-free linear combination when observing the carrier phase on two frequencies.
Furthermore, there is the phase shift between the carrier phase of the transmitted signal
𝜑𝑘 at time 𝑡𝑘 and the reference carrier phase 𝜑𝑖 generated by the receiver at time 𝑡𝑖 and
an integer number of full cycles of the carrier wave between transmitter and receiver 𝑁𝑘

𝑖 .
This observation is linked to the coordinates of the receiver by the slant range 𝜌𝑘

𝑖 between
transmitter and receiver at signal transmission and signal reception time, respectively,
which is the Euclidean distance

𝜌𝑘
𝑖 = |𝒓𝑖(𝑡) − 𝒓𝑘(𝑡 − 𝜏)| , (4.17)

where 𝜏 is the signal’s travel time between the transmitter’s and the receiver’s antenna
phase centre. When observing on two frequencies and using external products to describe
the transmitter clock offset, only the coordinates of the receiver, the receiver clock error
and the phase shift including the integer ambiguities remain as unknown. Directly taking
the carrier phase as observation has the consequence that the elements in 𝜆 (𝜑𝑖 − 𝜑𝑘 + 𝑁𝑘

𝑖 )
cannot be separated and the ambiguities have to be estimated as a float-bias term. Only
when introducing high-quality bias products [e.g., Schaer et al., 2021] the ambiguities may
be resolved to an integer. The ambiguity is constant over time, however, it changes its
value as soon the tracking of the signal is lost (cycle slip) and the tracking of 𝐿𝑘

𝑖 needs to
be resumed. Thus, several ambiguities have to be determined per day. The cartesian coor-
dinates of the receiver are estimated for each observation epoch. Additionally, the receiver
clock offset needs to be adjusted for each epoch as well. In total, there are four unknown
parameters per epoch and ambiguities set up as soon as a cycle slip occurs, hence, the
epochs are not independent from each other but the ambiguities connect several of them.
Even though loosely connected, they are a discrete sampling of the satellites trajectory
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4.3 High-low SST: Kinematic point positioning

expressed in terms of positions, only indirectly dependent on force models through the
GNSS satellite orbits, originating from geometrical relations only. Note that the kinematic
positions as formulated in Eq. 4.15 already refer to the CoM of the satellite.

The application of kinematic positions as orbit representation may be motivated by its
use in the orbit and gravity field determination process. The kinematic positions 𝒙̂KIN may
be derived from the carrier phase observations by

𝒙̂KIN = (𝐀T𝐏ph𝐀)−1𝐀T𝐏ph𝓵ph with 𝐀 ∶=
𝜕𝓵ph

𝜕𝒙KIN

= 𝐍−1
ph 𝐀T𝐏ph𝓵ph .

(4.18)

Following Eq. 3.25 the cofactor matrix of the kinematic positions reads as 𝐐KIN ∶= 𝐍−1
ph .

Note here that 𝐐KIN refers to the variance of unit weight 𝜎2
0 of the original carrier phase ob-

servations. In a second step the kinematic positions are introduced as pseudo-observations
(i.e., intermediate observations, see Sect. 3.2.5) 𝓵KIN ∶= 𝒙̂KIN in another LSQA to estimate
for orbit and gravity field parameters 𝒑

𝒑̂ = (𝐁T𝐐−1
KIN𝐁)−1𝐁T𝐐−1

KIN𝓵KIN with 𝐁 ∶=
𝜕𝓵KIN

𝜕𝒑
= 𝐍−1

p 𝐁T𝐐−1
KIN𝒙̂KIN .

(4.19)

Following the derivation given in Sect. 3.2.5, the solution for the orbit and gravity field
parameters may be expressed as connected to the original carrier phase observations 𝓵ph
by

𝒑̂ = (𝐌T𝐏ph𝐌)−1𝐌T𝐏ph𝓵ph with 𝐌 ∶= 𝐀𝐁 , (4.20)

The new design-matrix 𝐌 contains the partial derivations of the phase observations to the
orbit parameters applying the chain rule

𝐌 = 𝐀𝐁

= [
𝜕𝓵ph

𝜕𝒙KIN
] [

𝜕𝒙KIN
𝜕𝒑

] = [
𝜕𝓵ph

𝜕𝒙KIN

𝜕𝒙KIN
𝜕𝒑

] ,
(4.21)

which gives a similar structure to Eq. 4.11. For 𝑈 estimated kinematic positions and 𝑀
sought-after orbit parameters with 𝑁 original carrier-phase observations 𝐌 reads as

𝐌 =
⎡
⎢
⎢
⎢
⎣

𝑈
∑
𝑢=1

( 𝜕𝑙ph
1

𝜕𝑥KIN
𝑢

𝜕𝑥KIN
𝑢

𝜕𝑝1
) …

𝑈
∑
𝑢=1

( 𝜕𝑙ph
1

𝜕𝑥KIN
𝑢

𝜕𝑥KIN
𝑢

𝜕𝑝M
)

⋮ ⋱ ⋮
𝑈
∑
𝑢=1

( 𝜕𝑙ph
𝑁

𝜕𝑥KIN
𝑢

𝜕𝑥KIN
𝑢

𝜕𝑝1
) …

𝑈
∑
𝑢=1

( 𝜕𝑙ph
𝑁

𝜕𝑥KIN
𝑢

𝜕𝑥KIN
𝑢

𝜕𝑝M
)

⎤
⎥
⎥
⎥
⎦(𝑁×𝑀)

. (4.22)

The derivatives in 𝐀 express the change of the phase observation with respect to a change
in the kinematic positions. This is, however, zero unless the kinematic position and phase
observations refer to the same epoch. Consequently, only three terms in the sums in Eq. 4.22
are unequal to zero for each line in 𝐌. Comparing this result to Eq. 4.12 shows that the
result may be interpreted that for the computation of the orbit and gravity field parameters
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only a different a priori orbit was eventually used, namely the kinematic orbit positions
instead of the numerically integrated a priori orbit 𝒓0.

When using kinematic positions as pseudo-observations for the orbit and gravity field
recovery, the set of unknown parameters is split into two groups, local (orbit) parameters
𝒐 which only refer to one arc of the satellite and global parameters 𝒈 which are valid for
several arcs (e.g., the gravity field coefficients)

𝒙 = [𝒐T 𝒈T]T . (4.23)

The kinematic positions may be directly used as pseudo-observations of the satellite’s
position as described by Eq. 4.6 in the primary equation

𝒓ant(𝑡) − 𝛿𝒓ant(𝑡) = 𝒓0(𝑡) +
6+𝐾

∑
𝑖=1

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

(𝑝𝑖 − 𝑝0,𝑖) + 𝒆 , (4.24)

where 𝑝𝑖 denote the unknown parameters of the dynamic force model, composed of local and
global parameters. Re-formatting to the formulation of non-linear least squares (Eq. 3.34),
Eq. 4.24 reads as

𝒓ant(𝑡) − 𝛿𝒓ant(𝑡) − 𝒓0(𝑡) =
6+𝐾

∑
𝑖=1

𝜕𝒓0(𝑡)
𝜕𝑝𝑖

(𝑝𝑖 − 𝑝0,𝑖) + 𝒆

𝛿𝓵 = [𝐀𝒐 𝐀𝒈] [𝛿𝒐
𝛿𝒈] + 𝒆 .

(4.25)

The satellite’s position vector 𝒓0(𝑡) may be obtained by numerical integration of the initial
value problem of the primary equations, and the partial derivatives with respect to the
unknown parameters to compile 𝐀 may be computed by numerical quadrature of the
initial value problem of the variational equations.

4.4 Low-low SST: Inter-satellite ranging
GRACE and GRACE Follow-On are both equipped with a dual one-way microwave ranging
system to measure the inter-satellite distance 𝑑m. Differential carrier phase observations
on K- and Ka-band are time-tagged to the GPS observations and adjusted for ionospheric
effects in the data pre-processing resulting in biased ranges 𝜌. Since they refer to the
distance between the antenna phase centres of the satellites, they have to be corrected
for the antenna phase centre offset to the CoM of each satellite and also a light-time
correction has to be applied to account for the travel time of the microwaves between the
two spacecraft, so the ranges then refer to the Euclidean distance between the satellites’
centres of mass at the same time [Kim, 2000].
The biased ranges are converted to range-rates ̇𝝆 and range-accelerations ̈𝝆 by numerical
differentiation using a linear filter 𝐅. It filters the data with a window length of 70.7 s
from the original 0.1 s sampling of 𝒅m to a 5 s sampling while also computing the time
derivatives of the biased range as

𝝆 = 𝐅𝒅m , ̇𝝆 = 𝐅̇𝒅m and ̈𝝆 = 𝐅̈𝒅m . (4.26)
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4.4 Low-low SST: Inter-satellite ranging

The definition of the filter coefficients is given by Thomas [1999]. Assuming white noise in
the biased range, the filter process leads to coloured noise in the range-rates and range-
accelerations.

The (pseudo-)observable of the biased range may be linked with the unknown parame-
ters by

𝜌(𝑡) =̂ 𝑑(𝑡) = |Δ𝒓0(𝑡)| = Δ𝒓0𝒆Δ𝒓0
, (4.27)

where 𝑑(𝑡) demotes the Euclidean distance between GF1 and GF2 and Δ𝒓0(𝑡) is the
difference vector of the position vector between the two satellites

Δ𝒓0(𝑡) = 𝒓0,GF2(𝑡) − 𝒓0,GF1(𝑡) . (4.28)

𝒆Δ𝒓0
denotes its unit vector

𝒆Δ𝒓0
=

Δ𝒓0

|Δ𝒓0|
=

Δ𝒓0
𝑑 . (4.29)

For the sake of simplicity the time argument (𝑡) will be dropped in the following.
The observation equations for the inter-satellite range observations may then be written
as

𝛿𝓵 ∶= 𝝆 − 𝒅 = [𝐀𝜌
𝒐,GF1 𝐀𝜌

𝒐,GF2 𝐀𝜌
𝒈] ⎡

⎢
⎣

𝛿𝒐GF1
𝛿𝒐GF2

𝛿𝒈

⎤
⎥
⎦

+ 𝒆 . (4.30)

The notation follows the description of the kinematic PPP (Sect. 4.3), i.e., 𝒐 refers to
local (usually orbit) parameters which are related to one satellite only, and 𝒈 denote global
parameters. The vector of unknowns consists of three components

𝒙 = [𝒐T
GF1 𝒐T

GF2 𝒈T]T , (4.31)

corresponding to the design-matrix

𝐀 = [𝐀𝜌
𝒐,GF1 𝐀𝜌

𝒐,GF2 𝐀𝜌
𝒈] . (4.32)

The elements of each line in the design-matrix then read as

𝒂𝜌
𝒐,GF1 = − 𝒆Δ𝒓0

𝜕𝒓0,GF1

𝜕𝒐GF1
,

𝒂𝜌
𝒐,GF2 = + 𝒆Δ𝒓0

𝜕𝒓0,GF2

𝜕𝒐GF2
and

𝒂𝜌
𝒈 = − 𝒆Δ𝒓0

𝜕𝒓0,GF1

𝜕𝒈
+ 𝒆Δ𝒓0

𝜕𝒓0,GF2

𝜕𝒈
.

(4.33)

Each 𝒂𝜌 forms one row of the respective design-matrix. The elements between GF1 and
GF2 are related by a multiplication of −1 (but evaluated at a different a priori orbit 𝒓0,GF1
and 𝒓0,GF2) and the global parameters contain the influence of both GF1 and GF2 in a
differential way. This symmetry is the result of the one-dimensional inter-satellite mea-
surement which yields that only relative parameters may be reliably determined and the
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4. Orbit and Gravity Field Determination

absolute location needs to be augmented by GPS. Since the observations contain a biased
range, the bias has to be co-estimated as well, being determined by GF1 and GF2 with the
respective partial being 1. All partials in the design-matrix may be easily derived from the
a priori orbit of each satellite 𝒓0,GF1 and 𝒓0,GF2. Note that the velocity ̇𝒓0 does not appear
in the partials for the range observable, but only for range-rates (see below).

The step from ranges to range-rates is done by projecting the differential velocity vec-
tor between the two spacecraft to the Line of Sight (LoS). The magnitude of the relative
velocity vector between the satellites reads as

̇𝑑 = |Δ ̇𝒓0| = | ̇𝝆𝒆Δ𝒓0
| , (4.34)

which is connected to the range-rates by the projection into the LoS with

̇𝜌 =̂ Δ ̇𝒓0𝒆Δ𝒓0

= ̇𝑑 cos 𝜑 ,
(4.35)

where 𝜑 denotes the angle between the velocity vector and the LoS vector. Hence, the
range-rates do not have the same magnitude as the velocity differences. One may note
that an efficient implementation is using the vector operations instead of the trigonometric
function which is stated here for the sake of better readability. The range-rate observation
equations may then be formulated as

𝛿𝓵 ∶= ̇𝝆 − ̇𝒅 cos 𝝋 = [𝐀 ̇𝜌
𝒐,GF1 𝐀 ̇𝜌

𝒐,GF2 𝐀 ̇𝜌
𝒈] ⎡

⎢
⎣

𝛿𝒐GF1
𝛿𝒐GF2

𝛿𝒈

⎤
⎥
⎦

+ 𝒆 , (4.36)

using the same separation between local and global parameters. Each row of the design-
matrices reads as

𝒂 ̇𝜌
𝒐,GF1 = + 1

𝑑 (Δ ̇𝒓0 − 𝒆Δ𝒓0
̇𝑑 cos 𝜑)

𝜕𝒓0,GF1

𝜕𝒐GF1
+ 𝒆Δ𝒓0

𝜕 ̇𝒓0,GF1

𝜕𝒐GF1
,

𝒂 ̇𝜌
𝒐,GF2 = − 1

𝑑 (Δ ̇𝒓0 − 𝒆Δ𝒓0
̇𝑑 cos 𝜑)

𝜕𝒓0,GF2

𝜕𝒐GF2
− 𝒆Δ𝒓0

𝜕 ̇𝒓0,GF2

𝜕𝒐GF2
and

𝒂 ̇𝜌
𝒈 = + 1

𝑑 (Δ ̇𝒓0 − 𝒆Δ𝒓0
̇𝑑 cos 𝜑)

𝜕𝒓0,GF1

𝜕𝒈
− 1

𝑑 (Δ ̇𝒓0 − 𝒆Δ𝒓0
̇𝑑 cos 𝜑)

𝜕𝒓0,GF2

𝜕𝒈

+ 𝒆Δ𝒓0

𝜕 ̇𝒓0,GF1

𝜕𝒈
− 𝒆Δ𝒓0

𝜕 ̇𝒓0,GF2

𝜕𝒈
.

(4.37)

Since range-rates are unbiased, no additional offset parameter has to be estimated within
the global parameters. For a more detailed derivation of the formulations for the KBR
observables see Kim [2000].
The same formulas of processing the inter-satellite link observables may in principle be
transferred to the range measurement provided by the LRI. Only the phase centre offset
correction is not necessary since the LRI observations refer geometrically already to the
satellite’s CoM.

The linear filter 𝐅 and 𝐅̇ in Eq. 4.26 could be seen as additional filter before the LSQA,

40



4.5 Joint orbit and gravity field determination

thus, applying two1 consecutive LSQAs (see Sect. 3.2.5). However, when using range-rates
as observations without any dedicated weighting, in fact, introducing them as pseudo- or
intermediate observations, this comes at the cost that the correlations induced by the filter
process are neglected. Thus, the processing of ranges and range-rates cannot be consid-
ered as equivalent anymore. As Beutler et al. [2010a] showed, including the coloured noise
due to the filter process leads to a weighting of the observations which is centred around
the length these correlations are included. Consequently, varying the length of these cor-
relations (e.g., 30 min or 90 min or 1 d) samples a different signal through a subsequent
weighting in a sequential LSQ process (see Sect. 3.2.4), where each block is treated as
being independent.

4.5 Joint orbit and gravity field determination
As already explained, the unknown parameters are separated into local and global param-
eters 𝒙 = [𝒐T

GF1 𝒐T
GF2 𝒈T]T and for each satellite NEQs according to Eq. 3.13 are set up

based on the solution of the ordinary differential equations related to the primary equation
(Eq. 4.5) and the variational equations (Eq. 4.8), resulting in three NEQs

NEQKIN
GF1 → 𝒐GF1 𝒈 , NEQKIN

GF2 → 𝒐GF2 𝒈 and NEQKb → 𝒐GF1 𝒐GF2 𝒈 .

Combining these NEQs to a solution for all local and global parameters poses the question
of the relative weighting between the kinematic positions and the KBR observations. The
latter are more precise by orders of magnitude (see Beutler et al. [2010b] for an outline)
and in this thesis a fixed ratio of 𝜎 ̇𝜌

0 = 3 × 10−7 m s−1 and 𝜎KIN
0 = 10 ⋅ 𝜎ph

0 ≈ 15 mm is
adopted. A short overview about the influence of such weighting schemes on the recovered
gravity field will be given in Sect. 5.1.5.

4.5.1 Orbit parameter transformation
For relative measurements between two satellites which are orbiting the Earth only a few
hundred kilometres separated from each other at the same trajectory, the elements of the
local parameters in the design-matrix (Eq. 4.33 or Eq. 4.37) will be very similar [Beutler
et al., 2010b], i.e.,

𝒂𝒐,GF1 ≈ −𝒂𝒐,GF2 . (4.38)

This implies that the absolute position of each satellite is not well captured by the inter-
satellite observable. The CMA makes use of this structure to perform a transformation of
the orbit parameters to the mean, denoted as Summation (SUM), and difference, labelled
as Difference (DIFF), between the two satellites for all observations (kinematic positions
and inter-satellite measurements), thus, introducing a new set of parameters, which instead
of referring to the individual spacecraft, are linked to a position and velocity in space, see
Fig. 4.2. The transformation is accomplished for each satellite-specific parameter by

𝒐SUM ∶=
𝒐GF1 + 𝒐GF1

2 and 𝒐DIFF ∶=
𝒐GF1 − 𝒐GF1

2 , (4.39)

1Three, in case the orbit and gravity field determination is also seen as series of LSQAs.
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4. Orbit and Gravity Field Determination

or conversely

𝒐GF1 = 𝒐SUM + 𝒐DIFF and 𝒐GF2 = 𝒐SUM − 𝒐DIFF . (4.40)

The SUM-part mainly refers to the absolute parameter value, each of the parameters set up

SUMGF1 GF2

DIFF

Figure 4.2: Illustration of the orbit parameter transformation to SUM- and DIFF-
components.

is averaged: The mean osculating Keplerian elements between the two satellites, the mean
ACC parameters between the two satellites and the the mean pseudo-stochastic parameters
between the two satellites. Thus, the SUM-parameters refer to a mean orbit between the
two spacecraft after the transformation. As the SUM-part belongs to absolute (mean) pa-
rameters, it is considered to be driven by the absolute observations, such as the kinematic
positions. The DIFF-component on the other hand denotes the relative difference between
each parameter, thus, e.g., between each Keplerian element of the two spacecraft or the
variation of the pseudo-stochastic parameters as the two spacecraft experience a slightly
different environment being at the same time over hundred kilometre apart. Consequently,
this set of parameters is considered to be best-determined by the relative measurement
between the two spacecraft, i.e., the inter-satellite link observations. All of that is repre-
sented in the magnitude of the NEQs. The NEQs of the kinematic positions referring to
the SUM-part is several orders of magnitude larger than the DIFF-part of the same NEQ.
Vice versa the range-rate-NEQ has a much higher power in the DIFF-components. For all
subsequent interpretations this transformation is performed and in general it is assumed
that the SUM-part is mostly driven by the kinematic positions and the DIFF components
are associated with the inter-satellite link. This is of particular relevance when considering
the meaning of the pseudo-stochastic parameters.

4.5.2 Residuals in the joint orbit and gravity field recovery
In non-linear LSQ problems it is common to distinguish between pre-fit and post-fit resid-
uals, those being computed from all a priori introduced models including the Taylor point
approximations for the unknown parameters, thus, evaluating the left-hand side of Eq. 3.34.
Post-fit residuals on the other hand refer to the estimated residuals (Eq. 3.16), which may
be derived after a common solution for all sought-after parameters has been obtained. It
is important to note that intermediate adjustments, such as computing an a priori orbit
𝒓0(𝑡) for faster convergence of a following orbit and gravity field recovery process, result
in pre-fit residuals because the finally sought-after gravity field parameters have not been
estimated (yet). Only after a joint orbit and gravity field solution post-fit residuals may be
derived.

The post-fit residuals may be computed in two ways: A first one, named non-linear in
this context, is to calculate the solution for all parameters and to use the estimated gravity
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between monthly gravity field solutions (Fig. 4.3b). This is an improvement of at least one
order of magnitude compared to Jäggi et al. [2012]. As a reference the GRACE Follow-
On monthly gravity field solution computed at CSR [Save, 2019] is taken, which may be
considered as slightly superior to the AIUB solutions. The green line depicts the degree
amplitude differences (see Sect. 3.5.1 between the reference and an AIUB solution to eval-
uate the level of difference that may be expected. Hence, the conclusion is drawn that both
computations methods are suited to compute post-fit residuals and the linearisation error
is sufficiently small. In the processing environment at the AIUB normally linearised post-fit
residuals are computed because the local orbit parameters are usually pre-eliminated on
arc-wise level to allow for a more efficient usage of the computational resources.

4.6 Background force modelling
The formulation of the equation of motion (Eq. 4.5) may contain any kind of known force
models to correctly describe the total acceleration. It is advisable to use all kinds of a
priori known models which are sufficiently well known to reduce the accelerations intro-
duced in the orbit and gravity field determination process to the extent possible. Thus,
all improvements (estimations) are only happening on top of the a priori force field. For
temporal gravity field modelling several a priori forces have to be taken into account, espe-
cially those which model changes in the Earth’s gravity field due to mass re-distributions
which are not sufficiently covered by the satellite’s ground-track [see e.g., Han et al., 2004,
Thompson et al., 2004]. The following description covers the background forces applied
within the scope of temporal gravity field recovery. A summary may be found in Lasser
et al. [2020c]. A description of the important non-tidal effects, i.e., gravitational forces
caused by Earth’s internal processes, including mathematical derivations may be found in
Dobslaw et al. [2014]. Eventually, a sum of such variations (namely those which are not
reduced by the a priori force model) are reflected by the computed monthly gravity fields.
In particular, this is the total mass change induced by the continental water cycle and the
cryosphere.
To illustrate the nature of the accelerations Fig. 4.4 shows the norm of perturbing gravita-
tional accelerations considered for one day of GRACE in June 2008 based on the benchmark
data set used in Lasser et al. [2020c]. The mean orbital altitude is 466 km. The accelerations
are arranged by their magnitude. The Earth’s gravity field in Fig. 4.4 is resolved starting
from d/o = 2.

All formulae given in the following sections correspond to the International Earth Ro-
tation and Reference Systems Service (IERS) 2010 conventions [Petit and Luzum, 2010],
however, they are provided in the way they are implemented in the BSW. All constants can
be found in the IERS 2010 conventions and the corresponding model descriptions. When
referring to the equations from the IERS 2010 conventions, the notation Eq.IERS (n.n) is
used.

4.6.1 Earth’s Gravity field
The most important a priori force field is the accelerations caused by the Earth’s gravity
field. It is by far the largest force, explained to 99.9 % by the Kepler-term (cf. Eq. 4.4). Its
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with ∇ being the gradient operator. The accelerations in cartesian coordinates may be
obtained by a transformation of Earth-fixed (𝑟, 𝜆, 𝜗)-frame to (𝑥, 𝑦, 𝑧)-frame. Note that
the observables of a satellite’s orbit through positions and ranges do not directly observe
the Earth’s potential but only its spatial derivatives. This concept was and is employed in
the missions dedicated to sensing the Earth’s gravity field CHAMP, GRACE, GOCE2 and
GRACE Follow-On.

The a priori gravity field model used in this thesis is AIUB-GRACE03S [Jaeggi et al.,
2011] computed from seven years of GRACE data. It contains a set of dimensionless, fully-
normalised spherical harmonic coefficients representing the static and time-variable part of
the Earth’s gravity field up to d/o = 160. In this work only the static part is considered.

4.6.2 3rd body perturbations

The other celestial bodies in the solar system induce a 𝑛-body problem because not only
Earth and the satellite are interacting with each other but all other massive objects perturb
the satellite’s orbit. The accelerations caused by the attraction of other celestial bodies
(labelled with the subscript cb) than the Earth are computed with positions derived from
the JPL DE421 [Folkner et al., 2009] ephemeris. The Moon and the Sun have the largest
impact, all other planets play a minor role. All bodies are treated as point masses, thus,

𝒂cb = −𝐺𝑀cb (
𝒓 − 𝒓cb

|𝒓 − 𝒓cb|3
+

𝒓cb

𝑟3
cb

) (4.45)

expresses the accelerations caused by a celestial body. 𝒓 and 𝒓cb denote the geocentric
position vector of the satellite and the celestial body in the quasi inertial frame. The
constants of 𝐺𝑀cb are given by the ephemerides. All planets including the dwarf planet
Pluto are taken into account. The positions of Sun and Moon, which are derived from the
ephemerides, are also used for the computation of the solid Earth tides and the relativistic
corrections.

4.6.3 Solid Earth tides

Solid Earth tides are computed according to the IERS 2010 conventions using the anelastic
model. They account for the deformation of the solid Earth due to Sun and Moon. They
affect the spherical harmonic spectrum up to degree 4 and make use of the Love numbers to
describe the rigidity of the Earth as elastic deformation when exposed to a tidal potential.
The computation is split into two steps. Step 1 computes the coefficients due to the tide
generating potential for degree 2 and 3, as well as the effect of degree 2 on degree 4
coefficients. Step 1 is frequency independent, whereas step 2 states frequency dependent
corrections for degree two.

2Together with satellite gravity gradiometry.
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Step 1 - corresponds with Eq.IERS (6.6) and Eq.IERS (6.7):

𝑐2𝑚 = ((𝑘ℜ
2𝑚 cos(𝑚𝜆M) + 𝑘ℑ

2𝑚 sin(𝑚𝜆M)) 𝑃2𝑚(cos 𝜗M)
𝐺𝑀M
5𝐺𝑀E

(
𝑎E
𝑟M

)
3
) +

((𝑘ℜ
2𝑚 cos(𝑚𝜆S) + 𝑘ℑ

2𝑚 sin(𝑚𝜆S)) 𝑃2𝑚(cos 𝜗S)
𝐺𝑀S

5𝐺𝑀E
(

𝑎E
𝑟S

)
3
) ,

𝑠2𝑚 = ((𝑘ℜ
2𝑚 sin(𝑚𝜆M) − 𝑘ℑ

2𝑚 cos(𝑚𝜆M)) 𝑃2𝑚(cos 𝜗M)
𝐺𝑀M
5𝐺𝑀E

(
𝑎E
𝑟M

)
3
) +

((𝑘ℜ
2𝑚 sin(𝑚𝜆S) − 𝑘ℑ

2𝑚 cos(𝑚𝜆S)) 𝑃2𝑚(cos 𝜗S)
𝐺𝑀S

5𝐺𝑀E
(

𝑎E
𝑟S

)
3
) ,

𝑚 ∈ {0, 1, 2}

(4.46)

𝑐4𝑚 = ((𝑘(+)
2𝑚 cos(𝑚𝜆M)) 𝑃2𝑚(cos 𝜗M)

𝐺𝑀M
5𝐺𝑀E

(
𝑎E
𝑟M

)
3
) +

((𝑘(+)
2𝑚 cos(𝑚𝜆S)) 𝑃2𝑚(cos 𝜗S)

𝐺𝑀S
5𝐺𝑀E

(
𝑎E
𝑟S

)
3
) ,

𝑠4𝑚 = ((𝑘(+)
2𝑚 sin(𝑚𝜆M)) 𝑃2𝑚(cos 𝜗M)

𝐺𝑀M
5𝐺𝑀E

(
𝑎E
𝑟M

)
3
) +

((𝑘(+)
2𝑚 sin(𝑚𝜆S)) 𝑃2𝑚(cos 𝜗S)

𝐺𝑀S
5𝐺𝑀E

(
𝑎E
𝑟S

)
3
) ,

𝑚 ∈ {0, 1, 2}

(4.47)

𝑐3𝑚 = ((𝑘ℜ
3𝑚 cos(𝑚𝜆M) + 𝑘ℑ

3𝑚 sin(𝑚𝜆M)) 𝑃3𝑚(cos 𝜗M)
𝐺𝑀M
7𝐺𝑀E

(
𝑎E
𝑟M

)
4
) +

((𝑘ℜ
3𝑚 cos(𝑚𝜆S) + 𝑘ℑ

3𝑚 sin(𝑚𝜆S)) 𝑃3𝑚(cos 𝜗S)
𝐺𝑀S

7𝐺𝑀E
(

𝑎E
𝑟S

)
4
) ,

𝑠3𝑚 = ((𝑘ℜ
3𝑚 sin(𝑚𝜆M) − 𝑘ℑ

3𝑚 cos(𝑚𝜆M)) 𝑃3𝑚(cos 𝜗M)
𝐺𝑀M
7𝐺𝑀E

(
𝑎E
𝑟M

)
4
) +

((𝑘ℜ
3𝑚 sin(𝑚𝜆S) − 𝑘ℑ

3𝑚 cos(𝑚𝜆S)) 𝑃3𝑚(cos 𝜗S)
𝐺𝑀S

7𝐺𝑀E
(

𝑎E
𝑟S

)
4
) .

𝑚 ∈ {0, 1, 2, 3}

(4.48)

𝑘ℜ
𝑛𝑚, 𝑘ℑ

𝑛𝑚, 𝑘(+)
𝑛𝑚 are the Love numbers (TableIERS 6.3), 𝑟S and 𝑟M is the norm of the geo-

centric vector to Sun and Moon. The Legendre functions 𝑃𝑛𝑚 were already introduced in
Sect. 3.5. They depend on the co-latitude 𝜗S,M of Sun and Moon in the TRF. 𝜆S,M is the
geographical longitude of Sun and Moon in the Earth-fixed frame.

Step 2:
Corrections on 𝑐20 - correspond to Eq.IERS (6.8a) and uses TableIERS 6.5b:

Δ𝑐corr
20 = ∑

𝑓long periodic

(𝐴ip
𝑓 cos 𝜃 − 𝐴op

𝑓 sin 𝜃) . (4.49)
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Corrections on 𝑐21, 𝑐22, 𝑠21 and 𝑠22 - correspond to Eq.IERS (6.8b) and uses TableIERS 6.5a
and TableIERS 6.5c:

Δ𝑐corr
21 = ∑

𝑓diurnal

(𝐴ip
𝑓 sin 𝜃 + 𝐴op

𝑓 cos 𝜃) , Δ𝑐corr
22 = ∑

𝑓semi diurnal

+𝐴ip
𝑓 cos 𝜃𝑓 ,

Δ𝑠𝑐𝑜𝑟𝑟
21 = ∑

𝑓diurnal

(𝐴ip
𝑓 cos 𝜃 − 𝐴op

𝑓 sin 𝜃) , Δ𝑠corr
22 = ∑

𝑓semi diurnal

−𝐴ip
𝑓 sin 𝜃𝑓 .

(4.50)

The amplitudes for the frequency dependent corrections for 𝐴ip
𝑓 and 𝐴op

𝑓 are listed in
TableIERS 6.5a, TableIERS 6.5b and TableIERS 6.5c.

The Doodson angle argument reads as

𝜃𝑓 = 𝒏𝑓𝜷 , (4.51)

where 𝜃𝑓 may be derived from the fundamental six Doodson arguments 𝜷 and the re-
spective tidal frequency 𝒏𝑓. The computation of the fundamental Doodson arguments
𝜷 = [𝜏 𝑠 ℎ 𝑝 𝑁 ′ 𝑝s]

T stems from the fundamental arguments of lunisolar nutation
𝑙, 𝑙′, 𝐹 , 𝐷, Ω (Delaunay variables, see Doodson and Lamb [1921], Eq.IERS (5.43)) and reads
as

𝑙 = 134.963 402 51° + 1 717 915 923.2178″𝑡 + 31.8792″𝑡2

+ 0.051 635″𝑡3 − 0.000 244 70″𝑡4 ,
𝑙′ = 357.529 109 18° + 129 596 581.0481″𝑡 − 0.5532″𝑡2

+ 0.000 136″𝑡3 − 0.000 011 49″𝑡4 ,
𝐹 = 93.272 090 62° + 1 739 527 262.8478″𝑡 − 12.7512″𝑡2

− 0.001 037″𝑡3 + 0.000 004 17″𝑡4 ,
𝐷 = 297.850 195 47° + 1 602 961 601.2090″𝑡 − 6.3706″𝑡2

+ 0.006 593″𝑡3 − 0.000 031 69″𝑡4 and
Ω = 125.044 555 01° − 6 962 890.5431″𝑡 + 7.4722″𝑡2

+ 0.007 702″𝑡3 − 0.000 059 39″𝑡4 ,

(4.52)

where 𝑡 is the time interval in Julian centuries between the current epoch and J2000.0,
both expressed in the Modified Julian Date (MJD), i.e.,

𝑡 =
𝑡MJD − 𝑡MJD2000

36 525 with 𝑡MJD2000
= 51 544.5 . (4.53)

Finally, the Doodson arguments read as

𝜷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜏
𝑠
ℎ
𝑝

𝑁 ′

𝑝s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜃g + 𝜋 − 𝑠
𝐹 + Ω
𝑠 − 𝐷
𝑠 − 𝑙
−Ω

𝑠 − 𝐷 − 𝑙′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.54)

where 𝜃g denotes the Greenwich Mean Sidereal Time (GMST). Each digit in the tidal
frequency vector 𝒏𝑓 makes up one element of the multipliers 𝑛𝑓,𝑖. An example for the long
periodic om1-tide with a frequency of 00.010 would be 𝒏𝑜𝑚1 = [0 5 5 5 6 5]. The
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first element of the vector tells the periodicity of the tide, all other elements have to be
computed by adding 5.
The final coefficients 𝑐total

2𝑚 and 𝑠total
2𝑚 are obtained by adding together step 1 and step 2

𝑐total
2𝑚 = 𝑐2𝑚 + Δ𝑐corr

2𝑚 and 𝑠total
2𝑚 = 𝑠2𝑚 + Δ𝑠corr

2𝑚 . (4.55)

The Doodson arguments and fundamental arguments of nutation are also used in the
computation of oceanic tides and atmospheric tides. The accelerations caused by the solid
Earth tides are eventually computed using Eq. 4.43 and Eq. 4.44.

4.6.4 Ocean tides
The ocean tides represent the responses of the ocean to the attraction of Sun and Moon,
which induce a gravitational signal due to the mass re-distribution of water. In this thesis
the model FES2014b [Carrere et al., 2016] is applied, based on the conversion of the cor-
responding grids to dimensionless and fully-normalised prograde {𝑐cos

𝑛𝑚,𝑓, 𝑠cos
𝑛𝑚,𝑓} and retro-

grade {𝑐sin
𝑛𝑚,𝑓, 𝑠sin

𝑛𝑚,𝑓} spherical harmonic coefficients done by TUG. The spherical harmonic
coefficients may be compiled from the given coefficients in a sum over all tidal frequencies
𝑓 by

𝑐𝑛𝑚 = ∑
𝑓

(𝑐cos
𝑛𝑚,𝑓 cos(𝜃𝑓) + 𝑐sin

𝑛𝑚,𝑓 sin(𝜃𝑓)) and

𝑠𝑛𝑚 = ∑
𝑓

(𝑠cos
𝑛𝑚,𝑓 cos(𝜃𝑓) + 𝑠sin

𝑛𝑚,𝑓 sin(𝜃𝑓)) .
(4.56)

In this representation the Doodson-Warburg correction (see TableIERS 6.6) is already ap-
plied. To complete the tidal spectrum, admittances between the major tides may be com-
puted using linear interpolation

𝑐cos
𝑛𝑚,𝑓 = 𝑐cos

𝑛𝑚,1
𝜃2 − 𝑡𝑓

𝜃2 − 𝑡1

𝐻𝑓

𝐻1
+ 𝑐cos

𝑛𝑚,2
𝜃𝑓 − 𝜃1

𝜃2 − 𝜃1

𝐻𝑓

𝐻2
,

𝑠cos
𝑛𝑚,𝑓 = 𝑠cos

𝑛𝑚,1
𝜃2 − 𝜃𝑓

𝜃2 − 𝜃1

𝐻𝑓

𝐻1
+ 𝑠cos

𝑛𝑚,2
𝜃𝑓 − 𝜃1

𝜃2 − 𝜃1

𝐻𝑓

𝐻2
,

𝑐sin
𝑛𝑚,𝑓 = 𝑐sin

𝑛𝑚,1
𝜃2 − 𝑡𝑓

𝜃2 − 𝑡1

𝐻𝑓

𝐻1
+ 𝑐sin

𝑛𝑚,2
𝜃𝑓 − 𝜃1

𝜃2 − 𝜃1

𝐻𝑓

𝐻2
and

𝑠sin
𝑛𝑚,𝑓 = 𝑠sin

𝑛𝑚,1
𝜃2 − 𝜃𝑓

𝜃2 − 𝜃1

𝐻𝑓

𝐻1
+ 𝑠sin

𝑛𝑚,2
𝜃𝑓 − 𝜃1

𝜃2 − 𝜃1

𝐻𝑓

𝐻2
.

(4.57)

The subscripts 1 and 2 denote the main waves, 𝑓 the interpolated wave. 𝐻 is the astronomic
amplitude of the wave. Accelerations resulting from ocean tides are eventually obtained by
Eq. 4.43 and Eq. 4.44.

4.6.5 Relativistic corrections
Because the satellite is orbiting in a low altitude around a massive object (the Earth),
three effects of general relativity have to be taken into account, the Schwarzschild-term,
the geodetic precession due to the curvature of space-time (de Sitter effect), and the
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4. Orbit and Gravity Field Determination

Lense-Thirring effect (frame-dragging) due to the Earth’s rotation. Relativistic correc-
tions are computed according to the IERS 2010 conventions for General Relativity using
Eq.IERS (10.12)

𝒂Schwarzschild =
𝐺𝑀E
𝑐2𝑟3 (4

𝐺𝑀E𝒓
𝑟 − ( ̇𝒓 ̇𝒓)𝒓 + 4 (𝒓 ̇𝒓) ̇𝒓) , (4.58a)

𝒂Lense Thirring = 2
𝐺𝑀E

𝑐2𝑟3
𝑠𝑎𝑡

( 3
𝑟2 (𝒓 × ̇𝒓) (𝒓𝑱) + ( ̇𝒓 × 𝑱)) and (4.58b)

𝒂de Sitter = 3 (− ̇𝒓S ×
𝐺𝑀S𝒓S

𝑐2𝑟3
S

) × ̇𝒓 , (4.58c)

where 𝑐 is the speed of light and 𝑱 is the Earth’s angular momentum per unit mass. It may
be set to [0 0 9.8 × 108]T m s−2 [Petit and Luzum, 2010]. The vectors 𝒓S and ̇𝒓S describe
the geocentric position and velocity of the Sun in the CRF. The relativistic accelerations
in Fig. 4.4 are the sum of the three components

𝒂relativistic = 𝒂Schwarzschild + 𝒂Lense Thirring + 𝒂de Sitter . (4.59)

4.6.6 Short-term mass variations of atmosphere and ocean

The Atmospheric and Oceanic De-aliasing (AOD) is a model of great importance for time-
variable gravity field recovery. The satellite is subject to the gravitational attraction caused
by the full gravity field, however, it is only able to correctly measure gravitational signal
based on the traversed area, thus, only along its ground track. When sufficiently dense
ground tracks are reached a full snapshot of the state of the Earth’s gravity field may
be provided. For GRACE and GRACE Follow-On this is usually each month. Any mass
re-distributions (causing a change in the gravitational potential at this location) occurring
in shorter time intervals lead to an aliasing in the recovered monthly gravity field. The
effect of tides is already treated with the respective models, however, non-tidal short-term
changes have to considered as well. Therefore, the AOD1B RL06 [Dobslaw et al., 2017] is
used as a de-aliasing product. Is contains the sum of atmospheric and oceanic contributions
to short-term mass changes, and is given in spherical harmonic coefficients valid for certain
time spans.
The spherical harmonic synthesis of the de-aliasing model follows Eqs. 4.43 and 4.44. As
the data set is given for time intervals, a linear interpolation between the neighbouring sets
at time 𝑡1 and 𝑡2 is carried out on the level of spherical harmonic coefficients to obtain the
spherical harmonic coefficients at time 𝑡𝑖 (𝑡1 ≤ 𝑡𝑖 ≤ 𝑡2) by

𝑐𝑛𝑚 = 𝑐𝑛𝑚(𝑡1)
𝑡2 − 𝑡𝑖
𝑡2 − 𝑡1

+ 𝑐𝑛𝑚(𝑡2)
𝑡𝑖 − 𝑡1
𝑡2 − 𝑡1

and

𝑠𝑛𝑚 = 𝑠𝑛𝑚(𝑡1)
𝑡2 − 𝑡𝑖
𝑡2 − 𝑡1

+ 𝑠𝑛𝑚(𝑡2)
𝑡𝑖 − 𝑡1
𝑡2 − 𝑡1

.
(4.60)

Accelerations resulting from the de-aliasing model are eventually computed with Eq. 4.43
and Eq. 4.44.
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4.6.7 Pole tide
”The pole tide of the solid Earth is generated by the centrifugal effect of polar motion”
[Petit and Luzum, 2010, ch. 6.4] and affects only the coefficients 𝑐21 and 𝑠21. It is derived
from the polar motion parameters and the mean pole definition via

𝑐21 = −1.333 × 10−9 ((𝑥𝑃 − ̄𝑥𝑃) − 0.0115 (𝑦𝑃 − ̄𝑦𝑃)) and
𝑠21 = +1.333 × 10−9 ((𝑦𝑃 − ̄𝑦𝑃) + 0.0115 (𝑥𝑃 − ̄𝑥𝑃)) .

(4.61)

𝑥𝑃, 𝑦𝑃, ̄𝑥𝑃 and ̄𝑦𝑃 form the wobble parameters (Eq.IERS (7.24)) via

𝑚1 = (𝑥𝑃 − ̄𝑥𝑃) and 𝑚2 = −(𝑦𝑃 − ̄𝑦𝑃) . (4.62)

The pole tide and ocean pole tide make use of the most recent secular pole model [IERS,
2018] with

̄𝑥𝑃 = 55.0×10−3 +1.677×10−3 𝑡 and ̄𝑦𝑃 = 320.5×10−3 +3.460×10−3 𝑡 , (4.63)

in units of arc seconds and arc seconds per year, respectively, with 𝑡 denoting the time
interval between the current epoch and J2000.0 in Julian years, thus,

𝑡 =
𝑡MJD − 𝑡MJD2000

365.25 with 𝑡MJD2000
= 51 544.5 . (4.64)

Accelerations resulting from the pole tide model are again derived with Eq. 4.43 and
Eq. 4.44.

4.6.8 Atmospheric tides
Atmospheric tides are modelled using the AOD1B RL06 product and contain all twelve
tidal constituents. The evaluation of the atmospheric tides reads as

𝑐𝑛𝑚 = ∑
𝑓

(𝑐cos
𝑛𝑚,𝑓 cos(𝜃𝑓 + 𝜒𝑓) + 𝑐sin

𝑛𝑚,𝑓 sin(𝜃𝑓 + 𝜒𝑓)) and

𝑠𝑛𝑚 = ∑
𝑓

(𝑠cos
𝑛𝑚,𝑓 cos(𝜃𝑓 + 𝜒𝑓) + 𝑠sin

𝑛𝑚,𝑓 sin(𝜃𝑓 + 𝜒𝑓)) ,
(4.65)

where the coefficients 𝑐cos
𝑛𝑚,𝑓, 𝑐sin

𝑛𝑚,𝑓, 𝑠cos
𝑛𝑚,𝑓, 𝑠sin

𝑛𝑚,𝑓 are given by the model for each tidal
frequency 𝑓. The angle argument 𝜃𝑓 may be obtained from Eq. 4.51 and the Doodson-
Warburg phase correction 𝜒𝑓 may be looked up for each tidal frequency. To compute
the accelerations, the spherical harmonic coefficients may be evaluated with Eq. 4.43 and
Eq. 4.44.

4.6.9 Ocean pole tide
Similar to the solid Earth pole tide, the ocean pole tide is a result of the centrifugal effect
of polar motion on the oceans. The implementation follows the IERS 2010 conventions,
using the Desai model [Desai, 2002], which is given in spherical harmonic coefficients,
representing a self-consistent equilibrium model. The formulae follow Eq.IERS (6.23a) and
Eq.IERS (6.23b).

𝑐𝑛𝑚 = 𝑅𝑛 (𝐴ℜ
𝑛𝑚 (𝑚1𝛾ℜ

2 + 𝑚2𝛾ℑ
2 ) + 𝐴ℑ

𝑛𝑚 (𝑚2𝛾ℜ
2 − 𝑚1𝛾ℑ

2 )) and
𝑠𝑛𝑚 = 𝑅𝑛 (𝐵ℜ

𝑛𝑚 (𝑚1𝛾ℜ
2 + 𝑚2𝛾ℑ

2 ) + 𝐵ℑ
𝑛𝑚 (𝑚2𝛾ℜ

2 − 𝑚1𝛾ℑ
2 )) ,

(4.66)
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where 𝐴ℜ
𝑛𝑚, 𝐴ℑ

𝑛𝑚, 𝐵ℜ
𝑛𝑚,𝐵ℑ

𝑛𝑚 are the coefficients from the model, 𝑚1 and 𝑚2 are the wobble
parameters (Eq. 4.62), 𝛾ℜ

2 = 0.6870, 𝛾ℑ
2 = 0.0036 and the factor 𝑅𝑛 is given by

𝑅𝑛 =
𝜔2

E𝑎4
E4𝜋𝐺𝜌

𝐺𝑀E𝑔eq
(

1 + 𝑘′
𝑛

2𝑛 + 1) , (4.67)

with 𝜔E being the nominal mean Earth’s rotation velocity, 𝐺 the gravitational constant,
𝜌 the density of sea water, 𝑔eq the gravity at the equator and 𝑘′

𝑛 the Love numbers.
Accelerations resulting from the ocean pole tide model are again computed by Eq. 4.43
and Eq. 4.44.
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Chapter 5

GRACE Follow-On Data Processing

This chapter details the processing of GRACE Follow-On Level 1B data as it is realised
at the time of writing (Spring 2022) at the AIUB. The basic processing scheme follows
the implementations made by Beutler et al. [2010a,b], Jäggi et al. [2009a, 2011a,b, 2012]
and Meyer et al. [2012a,b, 2015, 2016], where they rigorously applied the CMA not only
to process kinematic positions but added KBR observables from GRACE to enable high
accuracy in temporal gravity field determination.
Based on this processing, several developments concerning a more accurate description of
the observation noise have been accomplished in this thesis, namely the use of empirically
derived covariances characterising the observation noise [Lasser et al., 2020a], the incor-
poration of theoretical (pre-launch) noise models, and the application of VCE in different
processing steps to either detect and down-weight outliers, or to improve the co-estimated
pseudo-stochastic model.

5.1 Operational GRACE Follow-On processing
Monthly GRACE Follow-On gravity fields are operationally computed at the AIUB and
released to the public [Lasser et al., 2020b] at the International Centre for Global Earth
Models1[ICGEM, Ince et al., 2019]. The operational routines make use of the processing of
GRACE data as it is done a the AIUB since 2009 [Jäggi et al., 2010]. These solutions follow
the CMA as adopted by Meyer et al. [2016] with minor updates regarding the background
force modelling. They will serve as a reference for the developments made within this thesis
and will be denoted subsequently with classical approach or the identifier op.

The computation scheme for GRACE Follow-On makes use of Level-1B data published
by the JPL [Wen et al., 2019]. These are K-band Range-Rate (KBRR), linear accelerations
collected by the ACC and attitude information mainly composed of SCA observations,
together with in-house computed kinematic positions [Arnold and Jäggi, 2022]. The latter
are obtained from the dual-frequency GPS carrier phase observations using the BSW. The
procedure of kinematic point positioning is outlined in Sect. 4.3 and follows Švehla and
Rothacher [2005] using GPS satellite orbits and clock corrections generated at the Center
for Orbit Determination Europe [CODE, Dach et al., 2009, Bock et al., 2009].

1http://icgem.gfz-potsdam.de/
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5. GRACE Follow-On Data Processing

5.1.1 Parametrisation
The parametrisation for the operational GRACE Follow-On processing essentially contin-
ues to adopt the settings from GRACE [Meyer et al., 2016]. The orbit is split into daily
arcs in which all orbit parameters are estimated. Only the gravity field coefficients are
adjusted on a monthly basis. The orbit is parametrised for each arc and satellite with six
initial osculating Keplerian elements (initial conditions), and additionally, by parameters
characterising the ACC (see Sect. 5.1.3), which are a bias set up in a Local Orbit Frame
(RSW), being composed of radial (R), along-track (S) and cross-track (W) directions and a
scaling factor for each of the axes. To compensate for shortcomings in the background force
field, be it either noise stemming from the ACCs or the adopted background force models,
PCAs are set up in a regular interval of 15 min in R, S and W directions. These empirical
accelerations extend the parameter space (significantly) and allow to absorb force model
deficiencies to a certain extent, which is driven by the PCA sampling rate and the adopted
constraints. PCAs are always constrained to zero, not introducing any regularisation and
not provoking singularities due to the co-estimated bias of the ACC. Table 5.1 lists the
complete set of orbit parameters for the operational processing of one daily arc.

Table 5.1: Orbit parametrisation for the operational gravity field solutions for each arc
(24 h) and satellite.

parameter # of parameters remark
osculating elements 6 𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑢0
ACC parameters 6 bias and scale in RSW
PCAs 288 every 15 min in RSW

in total 300 per satellite

600 per 24 h arc for
both spacecraft

5.1.2 A priori force field
Temporal gravity field determination from satellite orbit data, where the satellite orbits
serve as the primary observations, is governed by the fact that not only non-conservative
forces (e.g., atmospheric drag) and conservative forces (e.g., the sought after gravity field)
act on the satellite, but also the conservative forces that may not be resolved by the
satellites’ observation sampling in space and time. Thus, such forces have to be considered
beforehand in the orbit integration as known, stemming from various models. Table 5.2
lists the background models used in the operational processing together with orders of
magnitude of the modelled accelerations. The resulting accelerations for a GRACE-like
orbit are illustrated in Fig. 4.4, where the individual contributions are discussed in more
detail.
A special case of background model in the CMA are the linear accelerations measured by the
onboard ACCs on each satellite. They are a crucial component of the gravity field recovery
process because they provide precise information about the non-conservative forces acting
on the satellite due to the space environment along the orbit [Touboul et al., 1999]. This is
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Table 5.2: Background models used in the operational GRACE Follow-On data processing.
The list is ordered according to the magnitude of the accelerations.

force model remark magnitude
Earth’s gravity field AIUB-GRACE03S static2 d/o = 2..160 ∼1 × 10−2 m s−2

3rd body attractions DE4213 Sun, Moon ∼1 × 10−6 m s−2

Planets
solid Earth tides IERS 2010 conventions4 elastic ∼1 × 10−7 m s−2

ocean tides FES2014b5 with linearly d/o = 2..100 ∼1 × 10−7 m s−2

interpolated admittances
relativistic corrections IERS 2010 conventions ∼1 × 10−8 m s−2

dealiasing AOD1B RL066 d/o = 2..100 ∼1 × 10−8 m s−2

pole tide IERS 2010 conventions ∼1 × 10−8 m s−2

atmospheric tides AOD1B RL06 d/o = 2..100 ∼1 × 10−9 m s−2

ocean pole tide IERS 2010 conventions7 d/o = 2..100 ∼1 × 10−9 m s−2

required to separate the non-gravitational accelerations from the gravitational signal, which
is ultimately sought-after. Even though the ACC measurements are not models, they are
introduced as part of the force model in the orbit and gravity field recovery process, which
means there is no way of directly considering their stochastic behaviour in a weight matrix
connected to the ACC measurements. The following section gives an overview about the
modelling of systematic components of the ACC data with a bias and scale.

5.1.3 Modelling accelerometer data
The ACC data is applied on the right-hand side of the equation of motion (Eq. 4.5) as
part of the complete a priori force model, and not on the observation side of the system of
equations. ACC data are thus assumed to be free of errors. Still, systematic and stochastic
deficiencies of the measuring system need to be compensated. Therefore, in a first step the
ACC observations are centred by removing the mean for each axis 𝑖

𝒂̃𝑖 ∶= 𝒂org
𝑖 − mean(𝒂org

𝑖 ) . (5.1)

The measured accelerations are much higher sampled (1 Hz) than the kinematic positions
(0.1 Hz) or inter-satellite range-rates (0.2 Hz for the KBR, 0.5 Hz for the LRI). In the data
processing always the nearest neighbouring acceleration is taken into account.
The vector of unknown parameters 𝒙 is extended by satellite-specific parameters charac-
terising the low-frequency ACC behaviour. In the CMA the ACC parameters are estimated
in RSW frame. The formulation for the accelerations 𝒂RSW(𝑡) in RSW frame reads as

𝒂RSW(𝑡) = 𝒃 + 𝐒 𝐑RSW
SRF (𝑡) 𝒂̃(𝑡) , (5.2)

2Jaeggi et al. [2011]
3Folkner et al. [2009]
4Petit and Luzum [2010]
5Carrere et al. [2016]
6Dobslaw et al. [2017]
7Desai [2002]
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where the bias 𝒃 is an unknown constant shift in the measurements (e.g., due to temperature
variations) and 𝐑RSW

SRF is the transformation matrix from the Science Reference Frame
(SRF) into the RSW, which is realised by the satellite’s position and velocity vectors (𝒓, ̇𝒓)
and the ATT measurements with the SCA. 𝐒 denotes the scaling matrix of the accelerations

𝐒 = ⎡
⎢
⎣

𝑠R 𝛼 + 𝜁 𝛽 − 𝜀
𝛼 − 𝜁 𝑠S 𝛾 + 𝛿
𝛽 + 𝜀 𝛾 − 𝛿 𝑠W

⎤
⎥
⎦

. (5.3)

Ideally, 𝐒 is an identity matrix, but at least the magnitude of the accelerations needs to
be scaled by the diagonal elements of the scale matrix in the analysis of the ACC data.
Additionally, the off-diagonal elements, represented as infinitesimal rotations, may be ad-
justed, where the symmetric components {𝛼, 𝛽, 𝛾} describe a shear of the ACC axes, thus,
that they do not form a strictly orthogonal coordinate system, and the skew-symmetric
components {𝜁, 𝜀, 𝛿} define a mis-alignment between the ACC axes and the reference frame
of the satellite which should be perfectly parallel [Kim, 2000]. As Klinger and Mayer-Gürr
[2016] showed, the co-estimation of a full scale matrix for the ACC significantly improves
the low degree spherical harmonics, especially the 𝑐20 coefficient.

In the CMA the ACC parameters are estimated on arc-wise level. This seems to be a
reasonable choice for the bias, however, the scaling should be more stable. Nevertheless,
best results are achieved with a arc-wise scaling, even though the estimates are strongly
fluctuating (see Fig. 5.2, Fig. 5.3 and Fig. 5.4).
For GRACE Follow-On the challenge arises to correctly deal with the degraded ACC
data due to the instruments under-performance on GF2 [Bandikova et al., 2019, Landerer
et al., 2020]. This motivated the generation of a so-called Accelerometer Transplant (ACT)
product released by the JPL (named JPL-ACT) to ’transplant’ the accelerations captured
by GF1 in space and time to GF2 to have a best-possible characterisation of the non-
conservative forces on GF2. The approach is only data driven and explained in detail in
Bandikova et al. [2019]. The second ACT product available at the time of writing (Spring
2022), named TUG-ACT, uses a remove-restore approach based on a priori force models
to first remove all known signal from the accelerations and applying the transplant from
GF1 and GF2 in space and time only to the residual signal, see Behzadpour et al. [2021].
When co-estimating the bias and scale factors with the CMA, significant differences arise
when adopting the two different ACT products in the data processing. Three scenarios
are discussed here. The first one is to use the remove-restore transplant data (TUG-ACT),
which is also used in the the operational processing, and estimate only a diagonal scale ma-
trix. In the second and third scenario the JPL-ACT accelerations are introduced for GF2,
either estimating only a diagonal scale matrix or a full scale matrix. The fourth option of
estimating a full scale matrix when using the TUG-ACT product is not shown because it
does not improve the solution any further. It is in fact a good indicator of quality for the
TUG-ACT product that no additional shear and mis-alignment parameters are required.
All figures showing the estimated ACC parameters contain the estimates for GF2. The
estimates for GF1 look alike because due to the orbit parameter transformation (see
Sect. 4.5.1), which includes the ACC parameters, the mean and difference between the
two spacecraft of each parameter is determined and the solutions of the parameters for the
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5. GRACE Follow-On Data Processing

servations in a 10 s sampling to fit an a priori reduced-dynamic orbit for each spacecraft.
The background force models applied are listed in Table. 5.2 and include ACC and ATT
observations. The parametrisation of the reduced-dynamic orbit may be found in Table 5.1.
To guarantee an invertible normal equation matrix, loose constraints are applied on the
pseudo-stochastic parameters (see Sect. 3.2.2, the numbers are given in Table 5.3). The
magnitudes of the constraints are deliberately chosen to characterise a loose constraining
in order to also enable the use of a priori gravity field models from the pre-CHAMP era,
e.g., the Earth Gravitational Model from 1996 [EGM96, Lemoine et al., 1998].

Table 5.3: Constraints applied for the operational solution for each pseudo-stochastic pa-
rameter when using kinematic positions as observations.

satellite direction constraint [m s−2] satellite direction constraint [m s−2]
R 1 × 10−8 R 1 × 10−8

GF1 S 1 × 10−8 GF2 S 1 × 10−8

W 1 × 10−8 W 1 × 10−8

The next programme called is named ORBDIFF (first grey square in the upper row of
Fig. 5.6). It deals with two separate tasks. The first one is to set up NEQs along the a
priori orbits from the previous GRAVDET2 run by applying Eq. 4.36 and Eq. 4.37 based
on the KBRR. The parametrisation is taken over from the a priori orbits. If biased ranges
are processed instead of KBRR, the K-band bias parameters are set up as well. Secondly,
ORBIDIFF performs the orbit transformation of all orbit parameters to the SUM between
the two satellites and the DIFF, which is explained in Sect. 4.5.1. This is done on normal
equation level for the NEQs based on kinematic positions and for the NEQs based on the
inter-satellite ranging data.

The last programme of the processing chain, ADDNEQ2, covers normal equation han-
dling [Brockmann, 1996]. It allows for an efficient manipulation of NEQs. In the context
of its call in the first row of the flowchart (upper right grey square) it is used to accu-
mulate NEQs for each arc, thus combining the NEQ based on the kinematic positions
and the NEQ based on the KBRR. After combining the two NEQs, constraints for the
pseudo-stochastic parameters are applied (see Table 5.4, second row) and the solution for
the reduced-dynamic a priori orbit (now based on kinematic positions and KBRR observa-
tions) is computed. The constraints are tightened compared to the GRAVDET2 solution,
as now the KBRR play a major role in determining the solution.

Table 5.4: Constraints applied for the operational solution for each pseudo-stochastic pa-
rameter when using kinematic positions and KBRR observations.

type direction constraint [m s−2] type direction constraint [m s−2]
R 3 × 10−9 R 3 × 10−11

SUM S 3 × 10−9 DIFF S 3 × 10−11

W 3 × 10−9 W 3 × 10−11

The NEQ based on the kinematic positions - mainly influencing the SUM component of
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parameters because of the sensitivity of kinematic positions to absolute parameters - is
down-weighted by a factor of 100 as described in Sect. 5.1.5. This implies that the pseudo-
stochastic SUM parameters are in fact constrained by

𝜎SUM
R = 𝜎SUM

S = 𝜎SUM
W = 1√

100
⋅ 3 × 10−9 = 3 × 10−10 m s−2 , (5.4)

a number roughly characterising the ACC noise (see Sect. 5.5.2).
With this, the a priori orbits for each arc and satellite based on kinematic positions and
KBRR are established.

The second row in the flow chart (Fig. 5.6) now refers to the gravity-step, where the
previously determined a priori orbits are used to call the same sequence of programmes
not only to set up the orbit-related parameters 𝒐, but to extend the parameter space with
the gravity field coefficients 𝒈. In accordance with the SDS [e.g., Save, 2019] the spherical
harmonic expansion of the unknown gravity field coefficients is truncated at d/o = 96 for
a monthly solution.
In contrast to the generation of the a priori orbit, ADDNEQ2 additionally pre-eliminates
(see Sect 3.2.3) the orbit parameters on the level of each arc after having combined the
daily NEQs based on kinematic positions and KBRR data to allow for an efficient solution
of the monthly gravity field. This reduces the dimensions of the NEQ to be solved drasti-
cally. Before the pre-elimination the constraints on the pseudo-stochastic parameters have
to be applied. It is important to note that they are constrained to zero and not to the a
priori values from the a priori orbit. Otherwise, a regularisation towards the underlying
a priori orbit (and consequently, the a priori force field - including the a priori gravity
field) would be introduced into the solution. The arc-wise ADDNEQ2 (second row) does
not compute a solution of the normal equation system because the arc-wise gravity field
coefficients are neither of interest nor is the corresponding normal equation matrix regular
due to the insufficient ground-track coverage.

Eventually, the programme ADDNEQ2 is called again after the arcs are processed to ac-
cumulate all (daily) NEQs together to compute a monthly gravity field solution.

It is important to emphasise that this sort of a two-step approach, where the a priori
orbit generation is separated from the NEQ setup of the joint orbit and gravity field so-
lution, does not introduce any bias since all parameters are jointly estimated eventually
in one common adjustment where all constrained parameters are constrained to zero. In
principle the first and second step (orbit-step and gravity-step) could be executed in one
common process. It turned out, however, that the a separation into an a priori orbit, which
serves as a Taylor point, and a gravity field step is more efficient [see e.g., Prange, 2010,
Beutler et al., 2010b].

After having computed a monthly gravity field solution, iterations may be applied by
using the just-estimated gravity field as the new a priori gravity field in the background
force field to repeat the orbit- and gravity-step in order to compute a new solution (indi-
cated by the red arrow in the flowchart). Such an iterative procedure is necessary if certain
quantities shall be derived in the estimation process without introducing a regularisation
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towards the a priori gravity field as the latter then already stems from an independent
solution. The iterative procedure is applied for the block-wise VCE (Sect. 5.3.2) and the
derivation of empirical covariances (Sect. 5.5.1 and Sect. 5.5.2).

5.1.5 Relative weighting between observation types
Even though both observation types (KIN and KBRR) are supposed to contribute with
their own precision to the overall gravity field solution, it turns out that assigning a weight
to the kinematic positions based on a rough estimate of the original carrier phase obser-
vations is detrimental [see e.g., Meyer et al., 2016]. This has been suggested already in
Sect. 4.5. Thus, by empirical fine tuning, the contribution of the kinematic positions is
down-weighted with a 𝜎e = 10 by

𝐍dwn
KIN = 1

𝜎2
e

𝐍KIN = 1
100𝐍KIN . (5.5)

The a priori variance of the kinematic positions is taken from the daily a posteriori es-
timation of the variance of unit weight 𝜎̂2

0,KIN of the kinematic point positioning (see
Sect. 4.3), where the a priori variance of the L1 and L2 carrier phase observations was cho-
sen to be 𝜎2

0,ph = 1 mm. The KBRR observation are assumed to have a fixed precision of
𝜎0,KBRR = 3 × 10−7 m s−1. The relative weighting between kinematic positions and KBRR
is applied when the corresponding NEQs are accumulated (cf. Fig. 5.6 upper right grey
square) by

𝐍full =
𝜎2

0

𝜎̂2
0,KIN

1
𝜎2

e
𝐍KIN +

𝜎2
0

𝜎0,KBRR
𝐍KBRR , (5.6)

where 𝜎2
0 may be arbitrarily chosen, e.g., set to the a priori variance of the KBRR obser-

vations. Such a down-weighting also affects the effect of the adopted constraints since the
latter act relative to the magnitude of the normal equation matrix (Eq. 3.43). Another way
of down-weighting the contribution of the kinematic positions is to use them at a reduced
sampling, e.g., instead of 10 s only every 5 min as it was done e.g., by Mayer-Gürr et al.
[2018]. This, however, might be problematic for the estimation of the PCAs with 15 min
spacing.

A negative impact of GPS information is visible in the post-fit residuals. Figure 5.7a-e
shows ASDs (see Sect. 3.4) of KBRR post-fit residuals for January 2019 where no down-
weighting is adopted and the gravity field is estimated up to d/o ∈ {30, 60, 70, 96, 120}.
A clear jump appears at the frequency corresponding to the maximum degree of the esti-
mated gravity field for d/o > 60, which one may assign to the insufficient contribution of
the kinematic positions to the high degrees of the gravity field. Figure 5.7f is the reference
case where a down-weighting is performed according to Eq. 5.5. Estimating gravity fields
up do d/o = 96 for different weighting ratios, shows the best agreement with the monthly
CSR solution for 𝜎𝑒 = 10 (Fig. 5.8a). Note that adapting the pseudo-stochastic model
using VCE (see Sect. 5.3.3) allows for an adequate estimation of the gravity field in all
but one cases where no down-weighting of the kinematic positions is applied. Between an
empirical variance of 𝜎𝑒 = 1 and 𝜎𝑒 = 5 the detrimental contribution of the kinematic
positions cannot be suppressed by the pseudo-stochastic parameters anymore.
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5.2 Computational efficiency

Note that due to internal storage structures of the software the characteristic of certain
matrices of being triangular or sparse is not yet fully taken into account and no BLAS
routine for triangular matrices is applied (e.g., DTRMM9 and DTRMV10).
Afterwards, the full normal equation matrix 𝐍 = 𝐀T ⋅𝐏𝐀 is calculated by general matrix-
matrix multiplication with the BLAS Level-3 DGEMM11-subroutine. This part takes most
of the computational resources as it demands 𝒪(𝑁 ⋅ 𝑀2) floating point operations with 𝑁
being the number of observations and 𝑀 the number of unknown parameters.
The right-hand side of the normal equations 𝒃 is calculated by matrix-vector multiplication,
first applying the BLAS Level-2 routine DGEMV12 to

𝒃 = 𝐀T𝐏𝓵 = (𝐏𝐀)T ⋅ 𝓵 , (5.9)

where the product 𝐏𝐀 is already known from the computation of the normal equation
matrix 𝐍 and needs only to be used in its transposed form in DGEMV.
The sum of the squared and weighted observations Λ is calculated by matrix-vector mul-
tiplication, first applying the BLAS Level-2 routine DSYMV13 to

𝐏𝓵 = 𝐏 ⋅ 𝓵 . (5.10)

If 𝐏 = 𝐈, 𝐏𝓵 = 𝓵 holds, and in case of 𝐏 being a diagonal matrix 𝐏𝓵 is computed as the
Schur product (element-wise product) between the two vectors

𝐏𝐥 = diag(𝐏) ∘ 𝓵 . (5.11)

Finally applying the inner product using BLAS’s Level-1 DDOT14 routine

Λ = 𝓵T𝐏𝓵 = ⟨𝓵, 𝐏𝓵⟩ (5.12)

the weighted sum of the observations squared is efficiently computed.

The possibility of directly using the BLAS routines (DGEMM and DGEMV) for an ef-
ficient stacking of the NEQs (𝐍 and 𝒃) as explained in Sect. 3.2.4 is not utilised as it
would interfere with a VCE on block-wise observation level (see Sect. 5.3.2).

Solving large normal equation systems, which (temporal) gravity field solutions usually
are, with the number of parameters easily ranging from 10’000 (only gravity field coef-
ficients) up to 70’000 (including orbit and pseudo-stochastic parameters), is very time
consuming. The general inversion (Gauss-Jordan elimination) requires 𝒪(𝑀3) operations,
with 𝑀 denoting the rank of the normal equation matrix. Exploiting that 𝐍 is a symmetric,
positive-definite matrix a Cholesky decomposition may be applied, i.e.,

𝐍 = 𝐋𝐋T (5.13)
9Double precision TRiangular Matrix-Matrix multiplication

10Double precision TRiangular Matrix-Vector multiplication
11Double precision GEneral Matrix-Matrix multiplication
12Double precision GEneral Matrix-Vector multiplication
13Double precision SYmmetrical Matrix-Vector multiplication
14Double DOT product
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holds, where 𝐋 is a lower triangular matrix. The solution may then be computed by forward
and backward substitution (as in a Gaussian elimination) with

𝐋𝐲 = 𝒃 and 𝐋T𝒙 = 𝒚 , (5.14)

where 𝒚 is an intermediate solution and 𝒙 is the final solution. These steps are efficiently
computed with the LAPACK subroutines DPOTRF15 (Cholesky factorisation in Eq. 5.13),
DPOTRS16 (forward and backward substitution in Eq. 5.14).

For several applications, such as VCE or the estimation of the formal errors of the grav-
ity field coefficients, 𝐍−1 has to be known explicitly. Therefore, the LAPACK routine
DPOTRI17 is utilised to calculate the corresponding inverse from the Cholesky-factorised
lower triangular matrix 𝐋.

The optimisation of computing the inverse via LAPACK’s DPOTRF and DPOTRI is
also utilised in the computation of the weight matrix 𝐏 from a cofactor matrix 𝐐, derived
either from theoretical values, covariance propagation, or empirical modelling.

Processing one iteration of a monthly gravity field solution (thus, a classical solution)
with all these changes in the handling of the NEQs, the computation time for all param-
eters is reduced by about 90 % from more than five hours to about 40 min on the current
aiub-nodes at the UBELIX18 cluster, a partition with seven nodes and 20 sCPUs (cores)
each, providing 823 GB of memory19. The largest gain in run time stems from GRAVDET2
and ORBDIFF (from the processes of setting up the corresponding NEQs) and the more
efficient way of computing the solution in ADDNEQ2. Table 5.5 gives a comparison of the
run time and peak memory usage between two processing settings of a 30-day classical
gravity field solution, either by pre-eliminating the local orbit-related parameters on arc-
wise level (denoted as case a.), or keeping all parameters explicitly in the NEQs (case b.),
when running with and without BLAS and LAPACK optimisations. The two computation
methods yield the numerically same results, however, the computation times for the final
solution differ. The drawback of using the BLAS and LAPACK routines as implemented
in the development version of the BSW lies in the memory handling as for almost every
step in the computation the peak memory usage doubles due to the additional memory
required to store interim results.
A further point of optimisation in the processing scheme may be added here as well.
BLAS and LAPACK routines are best performing for large matrices. For small arrays, the
straightforward implementation using loops (and/or Fortran’s intrinsic procedures) may
be even faster. Thus, by e.g., reducing the block length in the sequential least squares (see
Sect. 3.2.4) a high computational efficiency may be achieved. This comes with the drawback
that only correlations between observations within one block may be taken into account in
the weight matrix 𝐏. Naturally, smaller blocks in the LSQA are less demanding in terms of
memory consumption. Fortunately, the current CPUs mounted in the aiub-nodes provide

15Double precision PO→symmetric matrix TRiangular Factorisation
16Double precision PO→symmetric matrix in TRiangular structure to Solve
17Double precision PO→symmetric matrix in factorised TRiangular structure to compute its Inverse
18University of Bern Linux Cluster http://www.id.unibe.ch/hpc
19AMD EPYC microprocessors
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Table 5.5: Comparison of memory consumption (peak memory usage) and run time for a
30-day classical monthly gravity field solution with and without making use of BLAS and
LAPACK.

#- peak memory [MB] run time [hh:mm:ss]
parameters w/o BLAS w/ BLAS w/o BLAS w/ BLAS

case a.
a priori orbit 300 134 137 00:08:30 00:06:30
NEQ setup (KIN) 9705 768 1520 00:44:30 00:11:00
NEQ setup (KBRR) 10005 718 1500 00:16:40 00:04:10
solution 9405 1326 1687 00:14:30 00:05:40

∑ 01:14:10 ∑ 00:27:20

case b.
a priori orbit ⋅ ⋅ ⋅ ⋅ ⋅
NEQ setup (KIN) ⋅ ⋅ see case a. ⋅ ⋅
NEQ setup (KBRR) ⋅ ⋅ ⋅ ⋅ ⋅
solution 27405 4012 9243 04:02:00 00:17:20

∑ 05:14:10 ∑ 00:39:00

enough capacity that memory consumption is not hindering the computation with large
blocks. Typically, at maximum up to 16 GB of RAM per arc may be occupied.

The processing itself is executed arc-wise for each month. All arcs are computed in par-
allel and when finished the final script accumulates the arc-wise NEQs to allow for the
calculation of a monthly gravity field solution. With the current settings of the aiub-queue
maximum 64 jobs per user may be processed at the same time, hence, for a month with
31 days (arcs) and the two GRACE Follow-On satellites this limit is just about enough
for a perfect parallelisation on arc-wise level. Using the BLAS/LAPACK routines the pro-
cessing time for each arc with the classical parametrisation and gravity field coefficients
up to d/o = 96 scatters around 20 min (including waiting time), thus, any non-parallel arc
increases the overall run time by this number.

5.3 Variance component estimation in GRACE Follow-
On data processing

The method of Variance Component Estimation (VCE) may be applied for different tasks
in the process of gravity field recovery. Its ability to derive information about the unknown
stochastic behaviour of observables, which are interacting with each other, makes it a
valuable tool for automated processing of large data sets. The mathematical background
for the application of VCE in the LSQA is described in Sect. 3.3. Different groups of
observations (represented by corresponding NEQs) may be treated with VCE as long as the
prerequisite of independence is assumed and a common (sub)-set of unknown parameters is
addressed. The following sections present three practical applications of VCE in the gravity
field processing scheme incorporated to the CMA, namely the adoption on arc-wise level,
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ori gravity field), the a posteriori orbit fit is done with a corresponding estimated monthly
gravity field. The latter is very similar to the variance components because both relate to
the improved gravity field. Thus, the VCE may be seen as being capable of incorporating
the estimated variance of unit weight 𝜎̂0 of the a posteriori orbit fits as a quality indication
into in the full orbit and gravity field recovery process.

As the CMA relies on the use of additional pseudo-stochastic parameters, which are co-
estimated to compensate for a deficient force field (and which are absorbing observation
noise as well), some additional remarks have to be made. With Eq. 3.88 the NEQs are
weighted by the estimated variance components (the implicit 𝜎2

0 in each NEQ is deter-
mined). However, the pseudo-stochastic parameters are characterised by a priori stochastic
information in the form of a priori standard deviations. One has to keep in mind that the
impact of the adopted constraints depends on the relative magnitude between constraint
and NEQ (cf. Eq. 3.42 where the matrix containing the constraints is accumulated with
the normal equation matrix). The question arises, whether the variance component shall
refer to

𝐍𝑘 =
𝜎2

0

𝜎̂2
𝑘

𝐍𝑘 + 𝐖 , (5.15)

where 𝐖 defines the constraints (see Eq. 3.38 et seq.), or if it shall refer to

𝐍𝑘 =
𝜎2

0

𝜎̂2
𝑘

(𝐍𝑘 + 𝐖) . (5.16)

If the latter case is realised, e.g., by pre-eliminating all constrained parameters before the
VCE is applied, no further thoughts have to be made. However, the case of Eq. 5.15 needs
some additional consideration, as it may occur when the to-be-constrained parameters
cannot be pre-eliminated before the VCE is applied (e.g., because they belong to the
global parameters). Down-weighting the NEQ’s contribution due to a high 𝜎̂2

𝑘 from the
VCE leads to a higher relative magnitude between constraint 𝐖 and 𝐍𝑘, i.e., in fact a
tighter constraint (this also happens to the constraints referring to the NEQ based on the
kinematic positions, see Sect. 5.1.5). To overcome this change in the stochastic model of
the pseudo-stochastic parameters, the constraints have to be adjusted according to the
variance components as well. Four options of correcting the constraints are presented here:

a. Choosing an appropriate a priori 𝜎2
0.

b. Correcting the constraint based on the estimated variance component 𝜎̂2
𝑘.

c. Taking the median of the estimated variance components.
d. Apply VCE for the constraints as well.

A fifth option would be to apply the constraint directly after setting up and before storing
the NEQ, which, however, would violate the principle of the BSW of only storing un-
constrained NEQs. Moreover, it not possible to use this strategy for global parameters.
The idea of scaling the constraint is sketched in Fig. 5.15. It shall indicate that the con-
straints depend on the 𝜎2

0 of the observations (to be seen in the definition of 𝐖 in Eq. 3.38
as well). If 𝜎2

0 changes due to the VCE also the effect of the stochastic model applied
through the constraints will alter, and an appropriate method of taking this implication
into account has to be chosen.
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magnitude of the constraints

constraints scaled by each
variance component

median-scaled constraints

NEQ magnitude (σ₀)

NEQs scaled by VCE

²

Figure 5.15: Illustration of the constraints acting relative to 𝜎2
0. The blue lines show the

change of the constraint magnitudes relative to the weighted NEQs based on the adopted
correcting scheme.

Case a. This option is only possible when computing the variance components relative
to an a priori 𝜎2

0 as in Eq. 3.87 and Eq. 3.88. In principle this violates the assumption
that the groups of observations for which the variance components are sought-after do not
share a common 𝜎2

0, however, one is free to factor out an arbitrary number to scale the
complete stochastic model. This may be done to ensure a correct contribution of the a priori
stochastic model due to the constraints since they are defined relative to 𝜎2

0 (Eq. 3.38).

Case b. The second idea of correcting the magnitude of each constraint based on the
estimated variance component 𝜎̂2

𝑘 valid in the interval, in which the constrained parameter
is valid, demands a more complex implementation. It allows, however, for a fully comparable
application of the constraints as without using VCE. All constraints in each group are scaled
based on the respective group’s variance component 𝜎̂2

𝑘. Consequently, the stochastic model
of the constrained parameters reads as

𝐖 =

⎡
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⎢
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⎢
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block 𝑘 = 1

⎫}
⎬}⎭

block 𝑘 = 2

⋮

} block 𝑘 = 𝐾

(5.17)

for 𝐾 variance components and 𝑃 constrained parameters. This is only possible for local
parameters.

Case c. It represents a trade-off between the first two. It takes into account that the
NEQs are scaled, however, referencing them to the median. The median shall take into
account that gross outliers do not deteriorate the variance components due to unnoticed
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data problems (which may easily occur as they indicate a bad arc). Consequently, they do
not degrade the model applied with the constraints on the good arcs. For arcs contaminated
with outliers, however, 𝐍𝑘 gets down-weighted, whereas 𝐖 keeps its magnitude relative
to the good arcs, i.e., the constraints get tighter and in case of the pseudo-stochastic PCAs
they are allowed to follow the observations to a lesser extent, implying the orbit gets more
dynamic.

Case d. A further option of taking into account the constraints as additional NEQs

𝐍 =
𝐾

∑
𝑘

𝜎2
0

𝜎̂2
𝑘

𝐍𝑘 +
𝜎2

0

𝜎̂2
c

𝐖 , (5.18)

and deriving a corresponding variance component 𝜎̂2
c as well, which will be explained in

more detail in Sect. 5.3.3.

The operational processing of GRACE Follow-On data makes use of the VCE on arc-wise
level to realise a data weighting (kinematic positions and KBRR) in the first iteration. The
VCE is applied for each arc-wise NEQ when the accumulation of the daily arcs to a monthly
solution is perfomred. It avoids the aforementioned scaling problems by pre-eliminating all
pseudo-stochastic parameters on the level of each arc before the VCE. The constraining is
applied before the pre-elimination, hence, simply a fixed a priori stochastic model for the
pseudo-stochastic parameters is applied.

5.3.2 Block-wise level
Adopting the NEQ to daily arcs is a very coarse approach to detect and down-weight out-
liers. As one daily arc consists of about 50’000 observations of kinematic positions and in
addition more than 17’000 KBRR observations, assigning only one variance component will
usually not reflect the complete behaviour of the observations (in fact, of the combination
of kinematic positions and KBRR observations) and one single outlier may dominate the
respective variance component, which is not a favourable behaviour for outlier screening.
To assign variance components more precisely, shorter time spans of the NEQs may be
taken into account. When setting up the NEQs, each arc is already divided into several in-
dependent blocks which are building up the entire normal equation system (see Sect. 3.2.4).
For each such block, which again forms a complete NEQ (𝐍𝑘, 𝒃𝑘, Λ𝑘) VCE may be applied,
which leads to a large number of NEQs contributing to a monthly solution. For a month
with 30 d and blocks of 3 h this sums up to 240 variance components that may be estimated.
Pre-elimination is not easily possible on the level of each block individually because the lo-
cal parameters refer to one daily arc. As a consequence, the computation of a full orbit and
gravity field solution with several iterations of VCE is becoming very time consuming. To
overcome this issue, the VCE is only applied to the orbit parameters in a back-substitution
process, as applied in the determination of the linearised residuals (Sect. 4.5.2). In a first
iteration a gravity field solution is estimated and introduced as part of the new a priori
force field. Based on this force field the NEQs for the new a priori orbit are set up for
each arc, which is split into several blocks of NEQs. VCE is then applied on these blocks
of NEQs, i.e., only on arc-wise orbit parameters which implicitly refer to the full monthly
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gravity field solution through the underlying force model. Obviously, introducing an a pri-
ori gravity field instead of computing an independent monthly solution as first step leads
to a regularisation towards the a priori gravity field because the blocks are weighted ac-
cording to their observation’s contribution to the dynamic parameters in the full force field.

Using this formulation, the VCE has been broken down to the level of each arc where
for blocks of 3 h only 8 variance components need to be adjusted. This procedure may be
applied to estimate separate variance components for the kinematic positions and the KBR
observable without estimating a relative weight between the two observation types, which
is kept fixed to 𝜎KIN ≈ 1 cm and 𝜎KBRR = 3 × 10−7 m s−1 (see Sect. 5.1.5). When applying
the parameter-transformation (Sect. 4.5.1), even a constrained KBRR-only solution may
be used for the VCE by constraining the SUM-parameters tightly to the a priori orbit
(based on the kinematic positions and the new force field from the previous iteration).
Otherwise, the arc-wise NEQs consisting of the SUM and DIFF contributions of the kine-
matic positions and KBRR have to be taken into account. The latter, however, is more
complicated to be incorporated in the programme flow of GRAVDET2, ORBDIFF and
ADDNEQ2 since a loop between ORBDIFF to set up the blocks of NEQs and performing
the VCE for each block and ADDNEQ2 to combine and solve the corresponding NEQs
would have to be established. The procedure of restricting the block-wise VCE to the level
of each arc and not storing each block and running the VCE on all blocks of a month
provides a fast and efficient way of computing, even though an iteration with the gravity
field solution has to be introduced.

As expounded in Sect. 5.3.1, the scaling of blocks of observations in the normal equa-
tion matrix leads to a wrong magnitude between the a priori constraints and the normal
equation matrix. Since it is not possible to pre-eliminate parameters on block-wise level
within one arc for only one type of observations, the magnitude of the constraints has to
be scaled relative to the variance component (see Figure 5.16). The scaling may be applied

N1

31 2

nearest neighbour

median(σ1,...,σN)

VCE components

VCE components

PCA1

PCA1 PCA2 PCA3

PCAN

² ²

Figure 5.16: Illustration of the scaling of the constraints based on block-wise variance
components.
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parameters, so the full normal equation matrix may be accumulated by 𝐾 NEQs containing
the relation with the observations and 𝐼 NEQs taking into account the stochastic model
for 𝐼 different to-be-constrained parameters

𝐍 =
𝐾

∑
𝑘=1

𝐍𝑘 +
𝐼

∑
𝑖=1

𝐖𝑖 . (5.21)

As a consequence of this formulation, one might understand 𝐖𝑖 as a further observation
group (where the observations are zero) with an unknown variance factor (𝜎c

𝑘)2 such that
VCE may be applied. This idea was used by Koch and Kusche [2002] for the determina-
tion of regularisation quantities of static gravity field solutions stemming from multiple
observation types and satellite missions and terrestrial data. Transferring the procedure
to PCAs allows for an estimation of the constraints of the co-estimated pseudo-stochastic
model together with the gravity field. As a matter of fact, the cumbersome process of man-
ually tuning the magnitude of the constraints is avoided. The basic idea of treating the
artificial observations, which are introduced with the constraints, as further observation
group with an unknown 𝜎2

0 (thus, the basic assumption of VCE) stands insofar to reason
as the artificial observations are actually of a completely different nature, i.e., PCAs, than
the observations which are kinematic positions and KBRR.

The constraining matrix 𝐖𝑖 is of diagonal structure if for each to-be-constrained param-
eter no correlations are mapped into the a priori stochastic model. As a consequence, the
variance component 𝜎̂2

𝑖,c applied to 𝐖𝑖

𝐍 =
𝐾

∑
𝑘=1

𝜎2
0

𝜎̂2
𝑘

𝐍𝑘 +
𝐼

∑
𝑖=1

𝜎2
0

𝜎̂2
𝑖,c

𝐖𝑖 (5.22)

directly steers the magnitude of each co-estimated pseudo-stochastic parameter. Even
though VCE is applied to the constraints 𝐖𝑖 and the NEQs of the observations 𝐍𝑘,
it is important that the relative magnitude is not changed during the estimation process.
The constraints - also when determined by VCE - refer in their magnitude to the full nor-
mal equation system 𝐍, which is eventually inverted to compute the redundancy factors
𝑟𝑘,𝑖 (Eq. 3.85). Thus, scaling the normal equation matrix 𝐍𝑘,𝑗 in iteration 𝑗 by 𝜎2

0/𝜎̂2
𝑘,𝑗

must be compensated in the constraints because they refer to 𝐍𝑗−1, which is constituted
of 𝜎2

0/𝜎̂2
𝑘,𝑗−1. This can be achieved by either setting the weight of the first normal equation

matrix 𝐍1 to one or by e.g., taking the median of the variance components 𝜎̂2
𝑘,𝑗 to scale 𝐍𝑘

accordingly. When applying the VCE as defined in Eq. 3.87 and Eq. 3.88, the a posteriori
variance of unit weight 𝜎̂2

0 will converge towards the a priori variance of unit weight 𝜎2
0

which was factorised from the weight matrix in the NEQs. This means that the denomina-
tor in Eq. 3.86, the group-wise redundancy 𝑟𝑘 (Eq. 3.85), represents the formal contribution
of the formulated problem to the estimated variance component and the numerator Ω̂𝑘 the
residual-contribution, i.e., the influence of the interplay between observations and (to-be-)
estimated model. In other words, the VCE considers the residual-contribution together with
the formal contribution by adapting the stochastic model accordingly. By compensating
the scaling of the normal equation matrix 𝐍𝑘, the residual-contribution is harmonised with
the a priori stochastic model (or referred to it) and the VCE process converges in the con-
text of the implicit 𝜎2

0 of the combined NEQs, thus, around the first iteration’s a posteriori
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variance of unit weight 𝜎̂2
0,𝑗=1. As a consequence, each normal equation matrix 𝐍𝑘 receives

a proper weight according to the contribution to the full solution and the stochastic model
of the pseudo-stochastic parameters 𝐖𝑖 is allowed to leverage in the correct magnitude.
One may also say, such an approach accounts for the (median) residual-contribution of the
actual observations in the magnitude of the constraints, thus, propagating observation in-
formation due to an insufficient knowledge of their 𝜎2

0 to the constraints. To put it in other
words, the matrix with the constraints 𝐖 depends on 𝜎2

0. In the VCE 𝜎2
0 is iteratively

improved (and changed), therefore, this has to be taken into account when defining 𝐖 in
each iteration step of the VCE.

Experiments with VCE on constraints

Three main experiments on the application of VCE are conducted to determine adequate
constraints:

a. Estimating two variance components, one for the SUM21-PCAs and one for the
DIFF-PCAs.

b. Estimating six variance components by setting up a constraining NEQ for each di-
rection (R, S, W) and parameter-relation (SUM, DIFF).

c. Estimating six variance components as in b. but instead of a monthly estimation
setting up constraining NEQs for each daily arc.

The PCAs are set up in analogy to the operational solution for intervals of 15 min.

Case a. The most simple case to use VCE for the PCAs corresponds to the two parameter-
relations SUM and DIFF. As stated in Sect. 5.1.4, the empirically determined constraints
are not the same for SUM and DIFF, the PCAs corresponding to the latter are tightened
by a factor of 100 (see Table 5.4). The NEQs used in this scenario are listed in Table 5.6.
A variance component for the pseudo-stochastic parameters for each parameter-relation is
estimated, as well as one for NEQ-1.

NEQ-# type contains
1 actual observations &

all parameters

2 SUM constraints for PCAs
3 DIFF constraints for PCAs

Table 5.6: NEQs set up for the VCE
applied to determine the constraints of
SUM- and DIFF-PCAs.

All estimations take place on monthly level. Consequently, a monthly mean model is com-
puted using the constraints. Starting from a loose a priori constraint of 1 × 10−8 m s−2, the
VCE considerably tightens the range for the PCAs by about two orders of magnitude (see
Table 5.7).

The results may be compared with the empirically determined constraints of the oper-
ational solution (Table 5.4 and Eq. 5.4), which are of a similar order of magnitude for
both the SUM and DIFF-PCAs. The differences to the operational gravity field solution

21see Sect. 4.5.1
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Table 5.7: Constraints applied when using VCE for the pseudo-stochastic parameters set
up as SUM and DIFF parameters for January 2019.

a priori VCE
type constraint [m s−2] constraint [m s−2]
SUM 1 × 10−8 → 5.7 × 10−9

DIFF 1 × 10−8 → 5.2 × 10−11

are negligible. However, it may be emphasised that in contrast to the operational solution
the a priori constraint was very loose.

The VCE to determine only the magnitude of constraints based on a diagonal constraining
matrix 𝐖𝑖 and the observation information being comprised in one NEQ may be set up
efficiently by computing the numerator of Eq. 3.86 as

Ω̂𝑖 = ̂𝒆T
𝑖 𝐖𝑖 ̂𝒆𝑖

= (−𝒙̂T
𝑖 )𝐖𝑖(−𝒙̂𝑖)

=
𝑀𝑖

∑
𝑚=1

𝑤𝑚𝑚 ̂𝑥2
𝑚 ,

(5.23)

where ̂𝒆𝑖 = −𝒙̂𝑖 because 𝒉 = 𝟎 and 𝑀𝑖 are the number of parameters corresponding to
𝐖𝑖. The trace in the denominator 𝑡 = tr (𝐖𝑖𝐍−1) may be computed as a dot product of

𝑡 = diag (𝐖𝑖) ⋅ diag (𝐍−1) . (5.24)

In this case it is not necessary to compute the full inverse normal equation matrix 𝐍−1 but
only its diagonal elements. Thus, when applying a Cholesky decomposition (see Eq. 5.13),
the back-substitution process may be stopped at the diagonal elements of 𝐍−1 when com-
puting the inverse normal equation matrix from 𝐋. Finally, fixing the weight of NEQ-1 to
1, enables to disregard the residual-contribution of NEQ-1.

Case b. For the following results 37 NEQs are set up (see Table 5.8), the NEQs from
31 daily arcs of January 2019 and six NEQs for the SUM- and DIFF-PCAs in each axes.
This case takes into account that not every direction of a set of PCAs will have to absorb
the same magnitude of noise and mis-modelled signal.
The a priori constraints are set to 1 × 10−8 m s−2 for all six groups of PCAs and are tight-
ened due to the VCE (see Table 5.9), in particular in along-track for DIFF where the
KBRR observations have their highest contribution, compare with Table 5.4 and Eq. 5.4
The VCE is iteratively applied and after five iterations convergence is reached, which is
shown in Fig. 5.19 for a loose a priori constraint of 1 × 10−8 m s−2 (a) and a tight a priori
constraints of 1 × 10−12 m s−2.
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Table 5.8: NEQs set up for the VCE with constraints in each axis and parameter type.

NEQ-# type direction contains
1,..., 31 actual observations &

all parameters

32 R constraints for PCAs
33 SUM S constraints for PCAs
34 W constraints for PCAs

35 R constraints for PCAs
36 DIFF S constraints for PCAs
37 W constraints for PCAs

Table 5.9: Constraints applied when using VCE for the pseudo-stochastic parameters trans-
formed to SUM and DIFF in each axis for January 2019.

a priori VCE
type direction constraint [m s−2] constraint [m s−2]

R 1 × 10−8 | 1 × 10−12 → 1.5 × 10−9

SUM S 1 × 10−8 | 1 × 10−12 → 2.6 × 10−10

W 1 × 10−8 | 1 × 10−12 → 6.2 × 10−9

R 1 × 10−8 | 1 × 10−12 → 3.3 × 10−11

DIFF S 1 × 10−8 | 1 × 10−12 → 9.7 × 10−12

W 1 × 10−8 | 1 × 10−12 → 1.7 × 10−10

A comparison of the spectra of the co-estimated pseudo-stochastic model (Fig. 5.21a-f)
reveals that not every axis is affected in the same manner. SUM-cross-track, which is
mostly defined by the kinematic positions is rather accurately described by the loose a
priori constraint, whereas the PCAs of all other axes require a tighter constraint. The dif-
ference between the loose a priori constraints is also clearly visible in the KBRR post-fit
residuals (Fig. 5.22a) and the degree amplitudes of the corresponding gravity field solu-
tion (Fig. 5.22b). The KBRR post-fit residuals derived from a solution with VCE on the
constraints get flattened in the spectrum for periods >30 min, which is the Nyquist fre-
quency for a 15 min sampling of PCAs. Especially, the peak at 90 min is suppressed. For
periods <30 min the spectrum is dominated by a 1/𝑓2-noise and then changing to 𝑓2-noise
in both the solutions, which is in line with simple theoretical assumptions about the noise
behaviour in post-fit residuals (see Sect. 5.5.2). As it can be seen in the difference degree
amplitudes, the PCAs with loose constraints absorb signal from the gravity field, however,
the VCE is able to correctly scale the constraints to retain the signal in the gravity field.

Comparing solutions with VCE on constraints on a larger scale for two years of GRACE
Follow-On by the means of a RMS over the oceans (Fig. 5.23) with the classical oper-
ational GRACE Follow-On model with fixed constraints shows that the VCE is able to
deliver slightly better results in half of the inspected months. In months with challenging
data, e.g., January 2020, where a lot of data is missing it exhibits its drawback of being de-
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(depending on the length of each block 𝑘). Such a weight usually corresponds to the middle
day of each month (end of the 14th, the 15th or beginning of the 16th day), with very little
deviations. Only months with exceptional time spans due to missing data in 2018 may have
a epoch which does not correspond to mid-month.
One may note that only the main observable of GRACE Follow-On contributes to the
definition in Eq. 5.26. Other components, such as other observations (e.g., kinematic po-
sitions) or background force model data are neglected in this epoch definition. Thus, it is
a somewhat arbitrarily chosen definition declaring the main observable to be the pivotal
element. When trying to restore the full observed monthly gravity signal by adding back all
applied background forces this definition might not suffice and additional products about
the applied background forces in respective month might be necessary. Such products are
already available for e.g., the operational GRACE Follow-On solution from TUG [Kvas
et al., 2019].

5.5 Stochastic modelling for GRACE Follow-On ob-
servables

The stochastic noise modelling of kinematic positions and KBR measurements is a crucial
part in high-precision gravity field recovery. The noise treatment of the observations influ-
ences the quality of the result (e.g., in terms of formal errors) significantly, and it will also
affect the solution itself. The correct characterisation of noise in the data helps to retain
the full signal content and separates signal from noise through a modelling of the latter -
provided that the signal component is also adequately modelled.

The main findings about the stochastic modelling of kinematic positions in following section
may be found in Lasser et al. [2020a].

5.5.1 Stochastic modelling of kinematic positions
In case of kinematic positions, which are introduced as pseudo-observations in the CMA,
the process of computing the kinematic positions may be incorporated into the stochastic
modelling. The original observations are the GPS dual-frequency carrier phases and the
kinematic positions of the LEO satellite are determined by a PPP (see Sect. 4.3). GPS
satellite orbits and clocks are introduced as error-free, i.e., correlations due to the GPS
satellite orbits, clocks and underlying GPS tracking network errors are neglected. Only the
carrier phase ambiguities correlate the kinematic positions in time, ”implying that degraded
estimates of carrier phase ambiguities may affect the estimation of the kinematic positions
for more than one hour.” [Jäggi et al., 2011b]. Consequently, the positions referring to
different epochs are no longer uncorrelated. The correlation depends on the constellation
of the GPS satellites and the number of carrier phase ambiguities.
The investigations to this subject were mainly performed before GRACE Follow-On data
was released. Hence, they rely on GRACE, in particular the data from April 2007. The ideas
presented here may be transferred to GRACE Follow-On without any loss of generality.
For all experiments two orbit parametrisation scenarios are included, the first only using a
dynamic orbit including ACC data and the estimation of respective bias and scale factor.
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The second scenario follows the classical CMA approach by additionally estimating for
constrained PCAs in a 15 min sampling (see table 5.1) to form reduced-dynamic orbits.
The constraints are set to 1 × 10−8 m s−2 (Table 5.3). A static a priori gravity field is
introduced up to d/o = 160, and the gravity field solutions are estimated up to d/o = 70.

Formal covariance propagation

Covariance information about the kinematic positions 𝐂KIN may be derived from a formal
covariance propagation of the stochastic model of the carrier phase measurement to the
kinematic positions according to Eq. 3.25 and Eq. 3.26. White noise is generally assumed
for the stochastic model of the carrier phase measurements.

The correlations derived from 𝐂KIN mainly feature a twice-per-revolution signal (see Fig. 5.24),
which is related to the satellite crossings of the poles and the weaker observation geome-
try in the polar regions since GPS satellite orbits are inclined at 55° with respect to the
Earth’s equator. The better tracking geometry in the equatorial regions generally leads to
a smaller number of interruptions, thus fewer ambiguities, and consequently, to a better
determination of each ambiguity and more correlated kinematic positions [Jäggi et al.,
2011b]. Generally, the correlations are positive and decreasing for a growing distance in
time. However, jumps may occur due to the set up of new ambiguities, which indicates
changes in the observed constellation or data problems, e.g., causing cycle slips.
The GPS carrier phase ambiguities are the only parameters which are connecting kinematic
positions referring to different epochs when using GPS carrier phase data. Consequently,
deficiencies in the modelling of the GPS phase observations may be propagated through
the ambiguities over several epochs. Since the formal covariance matrix of the kinematic
positions 𝐂KIN only depends on the observation scenario, but not on the actual observa-
tions, any degradation of positions due to GPS data quality issues (including issues with
GPS orbits and clocks introduced as known) is not reflected by this type of covariance
information. An outlier in the carrier phase observations, e.g., affects the individual kine-
matic position and through the ambiguities neighbouring positions as well, but not the
formal covariance of the respective positions.
Introducing the kinematic positions as pseudo-observations together with their full covari-
ance matrix 𝐂KIN in the LSQA for the gravity field recovery would be equivalent to starting
directly with carrier phase observations, as it is a series of LSQAs. This was shown, e.g., for
the application of orbit determination from carrier phase observations and from kinematic
positions used as pseudo-observations in Jäggi et al. [2011b]. Facing the large number of
kinematic pseudo-observations, e.g., 3×8640 for one day with a 10 s sampling of GPS data,
this would require a huge computational effort and would demand high storage require-
ments. Two ways how to deal with these issues are presented in the next sub-sections.

Epoch-wise covariance information The epoch-wise covariance information is a sub-
set of the covariance matrix from the formal covariance propagation, which may be eas-
ily derived in the kinematic point positioning process using pre-elimination and back-
substitution techniques. Focusing only on the kinematic positions, the epoch-wise covari-
ances, assembled in Eq. 5.27, consist of six distinct elements, which comprise the variances
of the three coordinates (𝑐𝑥𝑥, 𝑐𝑦𝑦, 𝑐𝑧𝑧 > 0) and the off-diagonal elements 𝑐𝑥𝑦, 𝑐𝑥𝑧, 𝑐𝑦𝑧, which
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dynamic parametrisation is reduced in all axes. Note that the jump at d/o = 70 is only
visible in the range-validation but not in the along-track post-fit residuals of the dynamic
orbit case anymore (compare with Fig. 5.25). The dynamic orbit is still subject to the
deficient a priori force model, however long-periodic variations induced by the observation
geometry and ambiguity setup of the original phase observations are no longer allowed to
be absorbed by orbit parameters. That accounts for both parametrisations and is visible
in particular in the reduced-dynamic orbit residuals, which show a more coloured noise
(pink) than in the case of only using the epoch-wise covariance information. The KBR
range validation for the reduced-dynamic orbit is significantly lower than in the classical
approach of weighting (cf. Table 5.11 and Table 5.10) since long-periodic variations of
the pseudo-observations are no longer (erroneously) fitted by the parameters of the orbit
model but (correctly) interpreted as a consequence of the ambiguity-induced correlations
in time [Jäggi et al., 2011b]. In contrast to the epoch-wise covariance weighting, the KBR
range validation is now at the same level as using directly GPS carrier phase observations
for orbit determination. Experiments substantiating this behaviour are presented in [Jäggi
et al., 2011b]. Weighting the kinematic positions by taking into account 50 min of correla-

parametrisation RMS
reduced-dynamic 0.8 cm
dynamic 0.8 cm

Table 5.11: KBR range validation RMS using co-
variances over 50 min in the orbit reconstruction
for April 2007.

tions leads to more realistic formal errors of the high degrees in the gravity field recovery
process (Fig. 5.26b). The low degrees, however, still reveal deficiencies in the stochastic
modelling. The dynamic solution profits most from taking the formal covariances over sev-
eral epochs into account (compare to Fig. 5.26a), however, it cannot fully compete with
the reduced-dynamic solution in the higher degrees. One may conclude that the perturbing
noise therefore stems from different sources. The original carrier-phase observation uncer-
tainty on one hand, the geometry and tracking scenario of the pseudo-observations on the
other, which could be modelled by the formal covariance information, and a deficient a
priori force modelling used to reduce the full gravitational and non-gravitational signal.

Empirical modelling for kinematic positions

The residuals ̂𝒆 (see Eq. 3.16) of a LSQ fit of kinematic positions are obtained as the
difference between the pseudo-observations 𝓵 and the adjusted observations ̂𝓵, which are
computed from the estimated model parameters 𝒙̂. They reflect functional and stochastic
modelling and data deficiencies of the orbit and gravity field recovery process. Consequently,
deriving covariances from the residuals leads to a description of the physical system, and
respectively, a description of the entire process of the residuals.

When the errors 𝒆 of the LSQ formulation (Eq. 3.9) are disturbed by a process which
is not explained in the stochastic model 𝐏, the estimation of the cofactors of the unknown
parameters 𝐐𝑥̂𝑥̂ is scaled because 𝐐𝑒𝑒𝐏 ≠ 𝐈 (cf. Eq. 3.25). However, the residuals ̂𝒆 of the
adjustment process, which are an estimation for the errors 𝐞, reflect the behaviour of the
errors. Therefore, they may be analysed to derive information about the disturbance. It is
not possible to estimate a fully populated error covariance matrix from the residuals be-
cause the number of elements in the covariance matrix (𝑁 ×𝑁) largely exceeds the number
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of residuals 𝑁. However, assuming that the errors follow a (weak) stationary process [Etten,
2005] with a mean of zero and a variance constant over time, the error covariance matrix
may be described by an estimated covariance function (see Sect. 3.4.1). Such a function,
also named empirical covariance function, describes the stochastic process of the errors in
a single function rather than in a full covariance matrix. The covariance function for a cer-
tain time interval Δ𝑡𝑘, with 𝑘 denoting the sampling interval of the pseudo-observations,
is defined by the auto-covariance (cf. Eq. 3.96) between the respective estimated residuals

̂𝒆 according to

̂𝐶𝑥𝑥(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑥(𝑡𝑛+𝑘) ̂𝑒𝑥(𝑡𝑛) ,

̂𝐶𝑦𝑦(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑦(𝑡𝑛+𝑘) ̂𝑒𝑦(𝑡𝑛) and

̂𝐶𝑧𝑧(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑧(𝑡𝑛+𝑘) ̂𝑒𝑧(𝑡𝑛) .

(5.28)

Observe, that the biased estimate of the auto-covariance function is used here to guarantee
that the estimates converge towards zero for larger lags. The covariances between the axes
are obtained by computing the cross-covariance between the residuals of the respective
axes:

̂𝐶𝑥𝑦(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑦(𝑡𝑛+𝑘) ̂𝑒𝑥(𝑡𝑛) , ̂𝐶𝑥𝑧(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑧(𝑡𝑛+𝑘) ̂𝑒𝑥(𝑡𝑛) ,

̂𝐶𝑦𝑥(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑥(𝑡𝑛+𝑘) ̂𝑒𝑦(𝑡𝑛) , ̂𝐶𝑦𝑧(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑧(𝑡𝑛+𝑘) ̂𝑒𝑦(𝑡𝑛) ,

̂𝐶𝑧𝑥(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑥(𝑡𝑛+𝑘) ̂𝑒𝑧(𝑡𝑛) , ̂𝐶𝑧𝑦(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒𝑦(𝑡𝑛+𝑘) ̂𝑒𝑧(𝑡𝑛) .

(5.29)

Assembling a covariance matrix from the covariance function leads to a (block) Toeplitz
structure, which may be populated by

̂𝐂kin
𝑒𝑒 (Δ𝑡𝑘) = ⎡

⎢
⎣

̂𝐶𝑥𝑥(Δ𝑡𝑘) ̂𝐶𝑥𝑦(Δ𝑡𝑘) ̂𝐶𝑥𝑧(Δ𝑡𝑘)
̂𝐶𝑦𝑥(Δ𝑡𝑘) ̂𝐶𝑦𝑦(Δ𝑡𝑘) ̂𝐶𝑦𝑧(Δ𝑡𝑘)
̂𝐶𝑧𝑥(Δ𝑡𝑘) ̂𝐶𝑧𝑦(Δ𝑡𝑘) ̂𝐶𝑧𝑧(Δ𝑡𝑘)

⎤
⎥
⎦

, (5.30)

and

̂𝐂kin,full
𝑒𝑒 =

⎡
⎢
⎢
⎢
⎣

̂𝐂kin
𝑒𝑒 (Δ𝑡0) ̂𝐂kin

𝑒𝑒 (Δ𝑡1) ̂𝐂kin
𝑒𝑒 (Δ𝑡2)

( ̂𝐂kin
𝑒𝑒 )T (Δ𝑡1) ̂𝐂kin

𝑒𝑒 (Δ𝑡0) ̂𝐂kin
𝑒𝑒 (Δ𝑡1)

( ̂𝐂kin
𝑒𝑒 )T (Δ𝑡2) ( ̂𝐂kin

𝑒𝑒 )T (Δ𝑡1) ̂𝐂kin
𝑒𝑒 (Δ𝑡0)

⋱ ⋱ ⋱

⎤
⎥
⎥
⎥
⎦

. (5.31)

Typically, the auto- and cross-covariance to compute the covariance functions is applied
for a subset of lags until the correlations become negligible (e.g., a few hours) using the
residuals of one month. In case of correlating less than all epochs, the matrix is band
diagonal. Note that only for Δ𝑡0 the symmetry relation for the off-diagonal elements of
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̄𝑐𝑥𝑦 = ̄𝑐𝑦𝑥, ̄𝑐𝑥𝑧 = ̄𝑐𝑧𝑥, ̄𝑐𝑦𝑧 = ̄𝑐𝑧𝑦 holds, in case of Δ𝑡𝑘, 𝑘 ≥ 1 the covariance block ̂𝐂kin
𝑒𝑒 (Δ𝑡𝑘)

is composed of nine different elements.
The estimated covariance matrix ̂𝐂kin,full

𝑒𝑒 may then be inserted into Eq. 3.11 as the new
stochastic model

𝐏 ≙ 𝜎2
0 ( ̂𝐂kin,full

𝑒𝑒 )−1 , (5.32)

and the LSQA computed according to Eq. 3.13 and Eq. 3.15.

Such an approach to empirically derive accurate covariance information is already success-
fully implemented in the gravity field recovery performed at TUG [see e.g., Ellmer, 2018].
The method used in this work is a simplified version suited for the CMA. In contrast to
TUG, the biased estimate for the computation of the covariance function is used, because
it yields a nondegenerate covariance matrix ̂𝐂kin,full

𝑒𝑒 . Furthermore, partial redundancies
referring to the estimation of the auto-covariances are neglected. Both simplification cause
a small bias, however, given the number of observations largely exceeds the number of
unknown parameters and a limited number of lags is sufficient to estimate the covariance
function, this bias will not be visible. In contrast, the approach employed at TUG takes
both sources for a bias into account by estimating an unbiased covariance function and
applying VCE to assign a variance factor to each frequency appearing in the covariance
function.

In practical sense, the residuals depend on the a priori force field. Thus, first a full or-
bit and gravity field solution is estimated and then re-introduced as new a priori gravity
field in an iterative procedure, to become independent from the a priori gravity field when
computing the residuals from which the empirical covariances are derived. Otherwise, infor-
mation about the a priori gravity field is trapped in the empirical covariances. Additionally,
the shape of the residuals is driven by the underlying parametrisation. Consequently, the
time until the correlations become negligible is highly dependent on the a priori force mod-
elling and the parametrisation. Even under the assumption that there are no outliers (a
prerequisite) in the data, the parametrisation of the underlying orbit affects the magnitude
of the empirical models significantly, see Fig. 5.29 for the dynamic and reduced-dynamic
parametrisations adopted there.

The noise modelling technique used in this thesis fully relies on the assumption of a sta-
tionary process. In orbit and gravity field recovery, however, the residuals are composed
of both stationary and non-stationary noise. Thus, the estimated empirical covariance
function is subject to an aliasing from the non-stationary components. In this work, such
non-stationary noise sources are not specifically addressed, the long-periodic part may be
attenuated by the PCAs. Including non-stationary noise into the stochastic model has been
investigated in detail by Ellmer [2018] for SCA uncertainties on GRACE and by Kvas and
Mayer-Gürr [2019] for background model uncertainties in GRACE gravity field recovery.

Impact of empirical covariances on orbit reconstruction and gravity field recov-
ery The first two scenarios investigate the effect of empirical covariances on the gravity
field recovery in the context of a dynamic orbit parametrisation. Introducing white noise
as most simple assumption to weight the kinematic positions in the a priori gravity field
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5. GRACE Follow-On Data Processing

by a multiplication with the vector 𝒛

𝒛 = 2𝜋𝒇 , (5.33)

and by the element-wise product

𝑷 system
rr = 𝒛2 ∘ 𝑷 system

r , (5.34)

where 𝑷 system
r denotes the PSD of the range noise, 𝑷rr the PSD of the range-rate noise

and 𝒇 a frequency vector containing all frequencies of the spectrum 𝑷. This differentiation
leads to coloured noise for the range-rates. The noise contained in the post-fit range-rate
residuals of the operational solution (Fig. 5.31b) is well characterised by the model of the
system noise for periods <2 min, differentiated from white noise in ranges to range-rates.

Noise model for the ACC The ACC noise used in this context is defined by the pre-
launch specifications published for GRACE, see e.g., Kim [2000]. It stems from the ACC
design precision of 0.1 nm s−2 at 10 Hz [Kim et al., 2002]. In contrast to the original attempt
of Kim [2000], which makes use of Hill’s equation to analytically solve for the influence
on range-rates, only a simple integration from accelerations to velocities is adopted at
the level of the PSD by using (𝒛2)−1. As a consequence, the major peak at 1 cycle-per-
revolution as seen in Fig. 5.31a is not reproduced, but the general slope is well preserved.
The noise model is generated for the different axes of the ACC, distinguishing between the
two high-sensitivity axes (x, z, Eq. 5.35a) and the low-sensitivity axis (y, Eq. 5.35b)

𝑷 acc
𝑥,𝑧 = (1 + 0.005

𝒇 ) ⋅ 1 × 10−20 (m s−2
√

Hz)2 and (5.35a)

𝑷 acc
𝑦 = (1 + 0.1

𝒇 ) ⋅ 1 × 10−18 (m s−2
√

Hz)2 . (5.35b)

The noise model is supposed to reflect noise in the range-rate observations, thus, only the
high-sensitivity axis’ model defined in Eq. 5.35a is taken into consideration in the combined
noise model of system and ACC noise. The ACC noise model expressed as ASDs is depicted
in Fig. 5.32a for accelerations and in Fig. 5.32b for range-rates, where the accelerations
are integrated to velocities by inverting Eq. 5.34. The model is in good agreement for
frequencies between 10 min and 1 min when taking the KBRR post-fit residuals of the
operational solution as a reference for the actual noise in the system.

Combining the noise models for the ACC and the KBR The two noise models
are not used separately because each covers only one part of the spectrum. Thus, the sum
of the two is used

𝑷 full
rr = 𝑷 system

rr + 𝑷 acc,x
rr . (5.36)

The full noise model 𝑷 full
rr (depicted in Fig. 5.33a) is converted to a covariance function by

the relation between the PSD and the auto-correlation for stationary signals given with
the Wiener-Khinchin theorem, see Sect. 3.4.2.
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on the a priori force field, first a full orbit and gravity field solution is estimated without
empirical noise modelling and then re-introduced as new a priori gravity field to become
independent from the a priori gravity field when computing the residuals and the empirical
covariances. This procedure may be applied iteratively by taking the solution computed
using empirical covariances as new a priori gravity field. The number of iterations is largely
depending on the quality of the initial stochastic model, see in Fig. 5.37a. It is important
to note that the parameter space is not allowed to be changed within the iterations, e.g.,
deriving the empirical model from a reduced set of parameters. This leads to a bias of the
final solution towards the solution which is computed with the parametrisation used to
obtain the empirical model. In the extreme case of using two completely different sets of
parameters, one to estimate the empirical stochastic model for the observations, the other
to obtain the sought-after solution from the same (now accordingly weighted) observations,
the bias may be expressed as using the residuals of the first adjustment as observation (see
Sect. 3.2.6, Eq. 3.78).

Even though similar to the process of deriving an empirical covariance function for the
kinematic positions, several modifications for range-rates need to be considered. First of all,
the one dimensional nature of the range-rate observations simplifies the estimation of the
empirical covariance function to computing only the auto-covariance. No cross-covariance
functions as in Eq. 5.29 exist. The covariance function for a certain time interval Δ𝑡𝑘 may
be estimated in analogy to Eq. 5.28 as

̂𝐶rr(Δ𝑡𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑛=1

̂𝑒(𝑡𝑛+𝑘) ̂𝑒(𝑡𝑛) with 𝑘 ∈ {0, ..., 𝐾} , (5.39)

where 𝐾 defines the maximum lag. Again, the assumption of a (weak) stationary pro-
cess underlying and characterising the stochastic behaviour of the residuals is made. The
covariance matrix from the covariance function may be set up as

̂𝐂rr
𝑒𝑒 =

⎡
⎢
⎢
⎢
⎢
⎣

̂𝐶rr(Δ𝑡0) ̂𝐶rr(Δ𝑡1) ̂𝐶rr(Δ𝑡2) … ̂𝐶rr(Δ𝑡𝐾)
̂𝐶rr(Δ𝑡1) ̂𝐶rr(Δ𝑡0) ̂𝐶rr(Δ𝑡1) … ̂𝐶rr(Δ𝑡𝐾−1)
̂𝐶rr(Δ𝑡2) ̂𝐶rr(Δ𝑡1) ̂𝐶rr(Δ𝑡0) … ̂𝐶rr(Δ𝑡𝐾−2)

⋮ ⋮ ⋮ ⋱ ⋮
̂𝐶rr(Δ𝑡𝐾) ̂𝐶rr(Δ𝑡𝐾−1) ̂𝐶rr(Δ𝑡𝐾−2) … ̂𝐶rr(Δ𝑡0)

⎤
⎥
⎥
⎥
⎥
⎦

, (5.40)

which again leads to a symmetric matrix in (block) Toeplitz structure. The processing with
daily arcs implies that the covariance matrix is split into blocks with a maximum length
of one day, thus for a 5 s KBRR sampling this is corresponding to 17 280 epochs. The full
covariance matrix for 𝑀 blocks, with 𝑀 ∈ {28, 29, 30, 31} for monthly solutions, reads as

̂𝐂rr,full
𝑒𝑒 =

⎡
⎢⎢⎢
⎣

̂𝐂rr,1
𝑒𝑒 𝟎

̂𝐂rr,2
𝑒𝑒

⋱
𝟎 ̂𝐂rr,M

𝑒𝑒

⎤
⎥⎥⎥
⎦

, (5.41)

with the superscript denoting the block number. However, the processing may be per-
formed sequentially for each block (see Sect. 3.2.4). Shorter block lengths may be chosen,
e.g., in case the block-wise VCE (see in Sect. 5.3.2) is used. Based on the given formulation
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after gravity field signal) leads to a flatter spectrum of the residuals and a smaller amount
of noise to be compensated by the empirically determined covariances which are only ac-
counting for (stationary) stochastic noise on the level of observation weighting. Thus, it is
advisable to treat systematic and non-stationary signal either with co-estimated param-
eters and/or an accurate a priori stochastic model [Ellmer, 2018, Kvas and Mayer-Gürr,
2019].
In contrast to the kinematic positions, the frame of the observations does not need to be
addressed because a scalar, one dimensional differential observable is processed. Likewise,
memory consumption is not a problem for applying empirical covariances since they are
fully described by one function which is valid over one month. The relation between the
covariance matrix set up in Eq. 5.41 and the weight matrix 𝐏 introduced into the LSQA
follows

𝐏 ≙ 𝜎2
0 ( ̂𝐂rr

𝑒𝑒)−1 . (5.42)

For reasons of efficiency, the inverse may be computed for each block of ̂𝐂rr
𝑒𝑒 separately.

The LSQA then continues with Eq. 5.42, and a block-wise treatment to set up the system
of equations as introduced in Sect. 3.2.4 is adopted.
One may note that modelling the noise in the observations by analysing the correlations
of the post-fit residuals over time, thus, treating them as a univariate time series, is only
part of the full information content in the post-fit residuals. This may be suited to cover
instrument errors, which only affect measurements taken within a certain interval, generally
combined with a decreasing influence over time. Geographically distributed errors, e.g.,
induced by a deficient de-aliasing model, which may first be sampled after several ground
track passes, cannot be treated adequately with a univariate view on the post-fit residuals.
Kvas and Mayer-Gürr [2019] provide elaborated methods of including background model
uncertainties of GRACE gravity field recovery into the stochastic model of the observations.

Impact of range-rate empirical covariances The empirical model is reflected in the
post-fit residuals from which it is derived. Figure 5.36a shows the post-fit residuals from
the operational solution and the corresponding empirical model in the spectral domain.
The same empirical model in time domain is depicted in Fig. 5.35. The two main types
of coloured noise i.e., 1/𝑓2-noise and 𝑓2-noise where the latter dominates in periods of
2 min and less, are very well captured by the empirical model, also the prominent peak
at once-per-revolution is reflected. Introducing artefacts into the post-fit residuals by e.g.,
cutting the monthly a priori gravity field solution at d/o = 60 (Fig. 5.36b), which re-
sults in a spike at the corresponding frequency, is also mapped by the empirical covariance
function. Observe that any information (also a bias) transported to the post-fit residuals
will be absorbed in the thereof derived empirical noise model. In case of using constrained
pseudo-stochastic parameters, only one iteration is required because the PCAs absorb a
good portion of the noise in the system. On the contrary, without any additional noise
parameters, up to at least two or three iterations are needed to come up with a reasonable
solution. This solution, however, lacks the modelling of certain deficiencies which are cov-
ered by co-estimated PCAs (see Fig. 5.37a).

An empirical model may be derived for kinematic positions and KBRR observations
(Fig. 5.37b). Separating the influence of these two components (Fig. 5.38) shows that the
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Chapter 6

Summary

This thesis presented the state of modelling the stochastic noise of kinematic positions
and KBRR observations for GRACE Follow-On together with unknown deficiencies in the
background force field in the context of the CMA of orbit and gravity field determination
at the AIUB. Several methods of noise treatment have been investigated:

- The well established pseudo-stochastic parameters in the form of PCAs of the dy-
namic force model. This approach is tailored and restricted to the usage of the equa-
tion of motion, thus, to a physical representation of the satellite’s orbit dynamics.
It has been extended to estimate an optimal constraining for the PCAs with VCE.
This improved constraining enables a co-estimation of PCAs which flatten the spec-
trum of the post-fit residuals to (almost) white noise in the respective frequencies,
which indicates a plausible consideration of the unknown noise propagating to these
frequencies. It is to be further investigated if this method is also suited for other
gravity field recovery satellite missions, or any type of constrained parameter in the
CMA in general.

- Additionally, the method of VCE is introduced as a powerful and efficient tool of
automated data weighting to account for outliers on the level of arc-wise normal
equations as well as on the level of the sequential LSQA. This outlier detection and
weighting yields good results and for the operational GRACE Follow-On processing
no additional data inspection had to be carried out with the data analysed so far.
However, this method strongly depends on the chosen arc length or block length of
the sequential LSQA. This may lead to a (undesired) trade-off between the stochastic
model of the observations and the outlier detection and weighting.

- The noise in the kinematic positions is examined by considering the formal covari-
ance propagation of the a priori noise of the carrier phase observations through the
kinematic PPP. It turned out that covering 50 min of formal correlations between the
kinematic positions improves the estimation of gravity field coefficients, compared to
the common treatment with only epoch-wise covariances. However, this noise may
also be treated with PCAs or an empirical modelling based on post-fit residuals.

- The stochastic model of the observations represented by theoretical noise models
based on a given PSD. This is investigated for the accumulation of two noise sources
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propagated to the stochastic model of the KBRR observations, which are the system
noise of the KBR and noise introduced by the ACC. The theoretical noise models
deliver surprisingly good results while being of a very simple nature and allowing to
completely discard the pseudo-stochastic modelling.

- An empirical modelling derived from post-fit residuals. Such a model is introduced for
the kinematic positions as well as the KBRR observations. It significantly improves
the quality of the estimated gravity field solutions in terms of a lower RMS over
the oceans. Furthermore, the formal errors of the estimated gravity field coefficients
become more realistic when assessed with GRACE Follow-On gravity field solutions
computed by other institutions. Using the empirical modelling of the observations
noise in the AIUB solutions contributing to the COST-G combined product results in
an improved combined solution. The empirical modelling based on post-fit residuals
is universally usable, being applicable to any least-squares problem where post-fit
residuals transport stochastic information about the formulation of the problem.
However, assumptions about underlying processes, e.g., following stationarity, have
to be made.

It has been shown how different noise modelling techniques and orbit and gravity field re-
covery approaches may be prone to estimate a biased solution, where a priori information
about the unknown gravity field is transported through parameters or the stochastic model
to the adjusted gravity field.

In conclusion, all methods of dealing with observation and background model noise are
well suited for GRACE Follow-On gravity field recovery, each providing certain advantages
and restrictions, especially if the computational resources are limited. They perform best in
the interplay with each other, so an empirical modelling based on the post-fit residuals to-
gether with a pseudo-stochastic parametrisation and a VCE to determine their constraints
in the CMA.

Furthermore, the processing schemes of GRACE Follow-On data were expanded to an
efficient normal equation handling with BLAS and LAPACK routines, resulting in a re-
duction of computation time up to 90 %.

The future potential of this study is on one hand to incorporate the empirical modelling of
the GRACE Follow-On observables to the operational processing routines to provide the
improved products to the COST-G and a broad user community, and on the other hand
to extend the analysis of the empirical modelling to other observation types, e.g., carrier
phase observations. Additionally, the statistical methods of the empirical modelling may
be refined in future by extending the treatment of the post-fit residuals from a univariate
to a multivariate consideration.
Furthermore, the VCE to determine the magnitude of constraints in the CMA may be
applied to and investigated with other parameter types, other satellite missions which are
capable of sensing the Earth’s gravity field like Swarm, or even with different observation
concepts such as SLR.
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