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A B S T R A C T

Background: Myocardial strain is an established parameter for the assessment of cardiac function and routinely
derived from speckle tracking echocardiography (STE). Novel post-processing tools allow deformation imaging
also by 4D cardiac computed tomography angiography (CCT). This retrospective study aims to analyze the
reproducibility of CCT strain and compare it to that of STE.
Methods: Left (LV) and right ventricular (RV), and left atrial (LA) ejection fraction (EF), dimensions, global lon-
gitudinal (GLS), circumferential (GCS) and radial strain (GRS) were determined by STE and CCT feature tracking
in consecutive patients with severe aortic stenosis evaluated for transcatheter aortic valve implantation.
Results: 106 patients (mean age 79.9 � 7.8, 44.3% females) underwent CCT at a median of 3 days (IQR 0–28 days)
after STE. In CCT, strain measures showed good to excellent reproducibility (intra- and inter-reader intraclass
correlation coefficient �0.75) consistently in the LV, RV and LA. In STE, only LV GLS and LA GLS yielded good
reproducibility, whereas LV GCS and LV GRS showed moderate, and RV GLS and free wall longitudinal strain
(FWLS) poor reproducibility. Agreement between CCT and STE was strong for LV GLS only, while other strain
features displayed moderate (LV GCS, LA GLS) or weak (LV GRS, RV GLS and FWLS) inter-modality correlation.
Conclusion: LV, RV and LA CCT strain assessments were highly reproducible. While a strong agreement to STE was
found for LV GLS, inter-modality correlation was moderate or weak for LV GCS, LV GRS, and RV and LA longi-
tudinal strain, possibly related to poor reproducibility of STE measurements.
1. Introduction

Endo- and myocardial strain are established determinants in the
evaluation of myocardial contractility,1 describing the degree of defor-
mation of cardiac walls within the cardiac cycle. Deformation of a cardiac
cavity can occur along its long axis (global longitudinal strain – GLS), its
perimeter (global circumferential strain – GCS), or by thickening of its
wall (global radial strain – GRS).2 A large body of evidence supports the
high diagnostic and prognostic value of left ventricular (LV) GLS,3 while
results for LV GCS and GRS are inconclusive.4–6 GLS mainly mirrors the
contractility of subendocardial longitudinal fibers that often display
impaired function in the early phase of myocardial injury, when LV
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ejection fraction (LVEF) can still be maintained.7 LV GLS provides in-
cremental value beyond LVEF in the prediction of adverse events in pa-
tients with chronic heart failure,8,9 ischemic heart disease,10

myocarditis,11 valvular heart disease,12–15 and several other cardiac
diseases.4,16–18

Speckle-tracking echocardiography (STE) uses unique interference
patterns (“speckles”) that are followed across the cardiac cycle to obtain
the degree of deformation and derive strain. Speckles result from the
naturally occurring inhomogeneous reflection of acoustic signals in the
myocardium due to the different orientation of muscle fibers and are
displayed in varying grayscales in B-mode echocardiography. More
recently, the introduction of novel post-processing tools enable feature
tracking (FT) based strain evaluation also by 4D cardiac computed
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Abbreviations

CCT 4-dimensional cardiac computed tomography
CMR cardiac magnet resonance
CV chamber view
EDA/EDV end diastolic area/volume
EF ejection fraction
ESV end systolic volume
FAC fractional area change
FT feature tracking
FWLS free wall longitudinal strain
GCS global circumferential strain
GLS global longitudinal strain
GRS global radial strain
ICC intraclass correlation coefficient
LA left atrium
LV/RV left/right ventricle
SAX short axis
STE speckle tracking echocardiography
TAVI transcatheter aortic valve implantation
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tomography angiography (CCT). FT is an algorithm-based approach,
identifying and tracking characteristic features of endo- and epicardial
borders.19 In addition to image characteristics (brightness, greyscale),
also anatomic landmarks are taken into account to assess strain.20 Broad
evidence that supports the clinical value of this promising tool derived
from CCT in a real-world setting is widely lacking. Although CCT in-
volves ionized radiation, it might be beneficial in selected patients and
can overcome limitations of STE such as poor acoustic window and
foreshortening of the ventricles due to suboptimal probe position
dictated by the patient's anatomy. Moreover, 4D CCT acquisition pro-
tocols are recommended standard in several clinical settings, such as
planning of transcathether aortic valve implantation (TAVI)21 and
extracting all available information from these clinically indicated CCT
examinations is warranted. The present study aims to determine the
reproducibility of CCT strain compared to STE in the left (LV) and right
ventricle (RV), and the left atrium (LA).

2. Methods

2.1. Study cohort

Between October 2019 and March 2021, consecutive patients with
severe aortic stenosis evaluated for TAVI at Bern University Hospital,
Switzerland were enrolled in an institutional registry, which is part of the
SwissTAVI registry (NCT01368250). Inclusion criteria for the present
study were the conduction of a complete CCT scan (0–100% of RR in-
terval with 5% increments reconstructions and 20 phases) and trans-
thoracic echocardiography at our institution prior TAVI. Patients unable
to provide written consent were excluded. The study was approved by the
local ethics committee and was conducted in accordance with the
Declaration of Helsinki.

2.2. Image acquisition and measurements

Clinically indicated retrospectively ECG-gated CCT imaging was
performed using a dual-source 128-row multisclice CT (Somaton Defi-
nition Flash; Siemens Healthcare, Erlangen, Germany) as previously
described.22 Scan parameters were as following: reference tube voltage
was set to 100–120 kv and reference tube-current-time product 300
mAsref according to the body weight; rotation time 0.28 s; slice colli-
mation 128 � 0.6 mm; pitch value 0.17 for spiral acquisition 0–100% of
the RR interval. Automatic current modulation (CareDose4D) was used
2

for raw data acquisition. Each patient received an intravenous injection
of 40–120 ml of contrast medium at a flow rate of 4–5 ml/s depending on
body-weight. Image acquisition was performed during an inspiratory
breath-hold in a cranio-caudal direction and images were reconstructed
in 1 mm increment using an I30f kernel (SAFIRE, strength 3). CCT
datasets in 5% increments were reconstructed throughout the entire
cardiac cycle, resulting in 20 reconstructions per scan (0–100%). STE was
performed during clinical routine on machines of different vendors by
investigators with varying experience following a standardized proto-
col23 that, among others, included a short axis stack (SAX) of the LV,
overview as well as LV- and RV focused depictions in the apical 4-cham-
ber view (CV), LA-focused apical 2-CV and LV-focused apical 2- and
3-CV.

Both CCT and STE images underwent standardized analysis on
dedicated workstations by investigators blinded to the clinical informa-
tion and findings of the other imaging modality (i.e. authors HG for CCT,
JZ for STE, and BB for reproducibility analysis). Echocardiographic im-
ages were analyzed by speckle-tracking using TOMTEC Arena 2D cardiac
performance analysis, (TOMTEC Imaging Systems GmBH, Unters-
chleissheim, Germany), whereas Medis Suite v.3.0, (Medis Medical Im-
aging, Leiden, The Netherlands) was used for segmentation (Medis Suite
3D Viewer) and strain-analysis (Medis Suite QStrain) of CCT images.
Both applications use semi-automatic tools to trace endo- and epicardial
borders in each view in endsystole and enddiastole. Endo- and epicardial
tracings were manually checked for accuracy in each frame throughout
the entire cardiac cycle and manually revised by the investigator if
required. Prior to analysis, readers rated the quality of the images they
consideredmost suitable for strain analysis on a scale from 1 to 4.1 – poor
(e.g. severe arrhythmia or breathing artefact), 2 – moderate (e.g. chal-
lenging blood pool-endocardium delineation in all frames), 3 – good (e.g.
lack of optimal epicardium soft-tissue delineation in parts in selected
frames), 4 – excellent (no limitations). LV GLS was averaged from apical
2-, 3- and 4-CV after tracing of endocardial borders with exclusion of
papillary muscles (Fig. 1). For CCT images, the reader previously refor-
matted 2-, 3- and 4-CV and a SAX stack. LV GCS and GRSwere assessed in
3 SAX slices (at the height of the mitral valve, the papillary muscles and
the apex). RV and LA strain and dimensions were determined monoplane
in the 4- and 2-CV, respectively. For the LA contours the pulmonary veins
and the left atrial appendage were excluded (Fig. 1). LA GLS (equivalent
to LA reservoir strain) was defined as the peak of the LA strain curve
compared to ventricular enddiastole as baseline. LV dimensions and
LVEF were calculated by Simpson's biplane method in both STE and CCT.

STE and CCT datasets of 15 randomly selected patients underwent
additional analysis, (including multiplanar reconstruction for CCT) by
the same and an additional reader blinded to previous findings in order to
assess reproducibility.

2.3. Statistical analysis

Statistical analysis was conducted with IBM SPSS Statistics 25 (IBM
Corp., Armon, New York, USA). Results are presented as mean � standard
deviation or as frequencies and percentage if appropriate. Non-normally
distributed variables were provided as median and interquartile range
(IQR). Reproducibility of measures was evaluated by intraclass correlation
coefficient (ICC), determined with a two-way random effects model for
intra- and interreader variability in 15 patients. Intraclass correlation was
interpreted according to Koo et al. (ICC�0.9 – excellent, ICC¼ 0.75–0.89 –
good, ICC¼ 0.5–0.74 –moderate, ICC<0.5 – poor).24 Agreement between
CCT and STE was visualized in Bland-Altman plots with determination of
the mean bias between modalities. Upper and lower limits of agreement
(LOA) were defined as mean bias � 1.96 x standard deviation. Bivariate
Pearson correlation was used to describe correlation between CCT and STE
measurements and interpreted according to Schober et al. (r � 0.9 – very
strong correlation, r¼ 0.7–0.89 – strong, 0.4–0.7 –moderate, r¼ 0.1–0.39 –
weak).25 Mean relative disagreement was calculated as ratio between the
mean of both measurements (CCT and STE) and the differences between



Fig. 1. Global longitudinal strain (GLS) in endsystolic frames of a patient with normal (patient 1) and highly impaired (patient 2) left- and right ventricular and left
atrial function. Positive and negative strain values are denoted in red and blue color, respectively. Dark and bright colors represents a low and a high degree of
deformation, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Patient characteristics.

Total (n ¼ 106)

Age (years) 79.9 � 7.8
Gender (female) 47 (44%)
Body-Surface-Area (m2) 1.87 � 0.25
Body-Mass-index (kg/m2) 27.5 � 5.9
NYHA class II or III 100 (94%)
STS PROM score 4.8 � 4.46
History of CAD 58 (54.7%)
History of prior myocardial infarction 13 (12.3%)
Arterial hypertension 95 (89.6%)
Atrial fibrillation 27 (25.5%)
Diabetes mellitus 24 (22.6%)
Permanent pacemaker 8 (7.5%)
Implantable Cardioverter Defibrillator 4 (3.8%)
LV mass (g) 224.7 � 72
LV mass index (g/m2) 120.5 � 36.8
LVEDV (ml) 114 � 54
LVEF (%) 51.6 � 13.6
SV (ml) 55.1 � 19.2
SV index 29.6 � 9.7
AVA (cm2) 0.87 � 0.3
AV mean gradient (mmHg) 31.7 � 15.7
AV peak gradient (mmHg) 52.3 � 24
LV end-diastolic pressure (mmHg) 14.4 � 12.3
Hemoglobin (g/l) 12.2 � 1.9
Creatinine (μmol/l) 122.8 � 62.2

Abbreviations: AVA – aortic valve area, CAD – coronary artery disease, EF –

ejection fraction, LV – Left ventricular, NYHA – New York Heart Association,
STS PROM-predicted risk of mortality according to the Society of Thoracic
Surgeons Risk Score, SV - stroke volume.
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both measurements. Mean disagreement across groups stratified by image
quality and time delay between STE and CCT were compared by unpaired
t-tests or by Mann-Whitney U test.

3. Results

Among 310 consecutive patients with severe aortic stenosis referred for
the evaluation of TAVI, 106 patients were included in the present study
(Fig. 2) of whom 91 (86%) underwent TAVI after CCT and STE imaging.
Another n ¼ 7 patients were referred to surgical aortic valve replacement
and n ¼ 8 patients were not deemed eligible for TAVI. Mean age was 79.9
� 7.8 years and 59 (56%)weremale (Table 1).Median time delay between
CCT and STE was þ3 days (IQR 0–28 days). For the complete CCT
including CT angiography of the thorax and potential TAVI vascular access
sites, patients received 85.5 � 14.3 ml (median 90 ml) contrast agent and
the median total dose-length product was 957 (IQR 680 to 1179) mGycm.
Image quality (IQ) was rated as excellent in 66 (62.3%) of patients (34%
good, 2.8% moderate and 0.9% poor) in CCT and in 10 (9.4%) patients
(38.7% good, 36.8%moderate, 15.1% poor) in STE. STE apical views were
available in 104 (98%), SAX in 88 (83%), RV in 94 (88%) and LA in 104
(98%) of patients. STE loops were assessed with 51.3 � 7.9 frames per
second and a mean heart rate of 73.2� 13.4 bpm. Mean heart rate in CCT
was 69.8 � 13.7 bpm, resulting in a mean temporal resolution of 23.6 �
4.9 frames per second. No patient was excluded due to poor image quality.

3.1. Reproducibility

In CCT, all measurements showed good (ICC >0.75–0.9) to excellent
(ICC >0.9) intra- and interreader variability (Table 2 and Graphic Ab-
stract). All CCT derived LV apical measurements (LV EDV, LV EF, LV
GLS), and LA EDV as well as LA EF showed both excellent intra- and
interreader variability. In STE, only LA ESV yielded excellent reproduc-
ibility, while LV apical measurements (LV EDV, LV EF, LV GLS) and LA
GLS were still well reproducible. However, short axis (LV GCS and LV
GRS) and RV measurements were of moderate or poor robustness. RV
GLS and RV free wall longitudinal strain (FWLS) were not significantly
correlated across readers in STE.

3.2. Agreement of CCT and STE

We observed relevant discrepancies between most CCT and STE
measurements (for absolute values see Supplemental Table S1). Only LV
Fig. 2. Study consort flow chart. Abbreviations: CCT – 4D cardiac com
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apical measurements (LV EDV, LV EF, and LV GLS) showed good
agreement and strong correlation, but also considerable limits of agree-
ment (LOA) (Fig. 3). Mean LV GLS was �13.2 � 5.3% in CCT and �16.0
� 5.4% in STE, resulting in a mean inter-modality bias of 2.79% (LOA 9.1
to�3.6%). LVEF was 48.8� 17% in CCT and 51.6� 13.6% in STE (mean
bias �2.88%; LOA -25.2 to 19.5%). CCT slightly underestimated both
variables (less negative values for LV GLS, lower values for LVEF), while
LV EDV was consistently overestimated (mean biasþ 68.7 ml (LOA -11.5
to 149.9 ml) in CCT compared to STE. SAX measurements (LV GRS and
LV GCS) showed wide LOAs and moderate (GCS) or poor (GRS) corre-
lation between both modalities. Consistent with the poor reproducibility
in STE, STE RV measurements did not correlate to them of CCT, except
for moderate correlation of RV EDA (Fig. 4). LA GLS, as well as LA ESV
puted tomography, TAVI – transcatheter aortic valve implantation.



Table 2
Reproducibility (intraclass correlation coefficient (ICC) and 95% CI) of CCT and STE measurements.

Intraclass correlation coefficients were interpreted according to Koo et al.24

Abbreviations: CCT – Cardiac computed tomography, EDV/A – end diastolic volume/area, EF – ejection fraction, ESV/A – end systolic volume/area, FAC – fractional
area change, FWLS – free wall longitudinal strain, GCS – global circumferential strain, GLS – global longitudinal strain, GRS – global radial strain, ICC – intraclass
correlation coefficients, STE – speckle tracking echocardiography.
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and LA EF moderately correlated between modalities but exhibited wide
LOAs (Fig. 5).

3.3. Impact of image quality

To investigate whether poor agreement was related to image quality
(IQ), we determined the mean relative deviation (“mean relative error”)
from the average value of both modalities to allow for a comparison of
measurements with different units (Fig. 6). Lowest mean relative devia-
tion was found for LV EF (20.5%) and LV GLS (27.1%) and highest for LV
GRS (84.8%) and RV GLS (71.2%). Excluding patients with moderate or
poor image quality in STE was associated with a significant reduction in
the mean relative deviation of LV GLS (p¼ 0.003), LV GRS (p¼ 0.01), RV
EDA (p < 0.001), RV FWLS (p ¼ 0.026), LA ESV (p ¼ 0.001), and LA EF
(p ¼ 0.008) (Supplemental Table S1). No improvement was seen after
exclusion of patients with poor or moderate IQ (n ¼ 4) in CCT and a time
delay between STE and CCT >1 day (n ¼ 70).

4. Discussion

In the present study, we compared myocardial strain in CCT against
STE in patients with severe aortic stenosis. The findings can be summa-
rized as follows: a) 4D CCT provides images of high quality that allow
assessment not only of LV and LA, but also of RV feature tracking strain
with high reproducibility; b) using STE, only LV GLS and LA GLS were
reproducible and c) agreement of CCT to STE was strong for LV GLS only,
but can be increased if STE images of poor quality are excluded.

Lower reproducibility of STE derived LV GCS and GRS in comparison
to GLS was already reported by other studies.26–28 In addition to poor
image quality in the short axis view – particularly in the apical segments,
also lower lateral resolution of echocardiography can contribute to poor
reproducibility.29 2D STE requires the speckles to move in parallel di-
rection to the ultrasound lines on that specific image plane which enables
a better tracking in the apical views compared to the SAX.30 Moreover,
the echocardiographic acquisition of an appropriate SAX and the
post-processing for GCS and GRS assessments requires higher expertise, if
5

compared to GLS derived from the long axis views.27 Nevertheless, other
studies reported higher reproducibility of STE LV strain acquisition
compared to the results in our cohort.26,31,32 In contrast to our analysis,
these studies systematically excluded patients with poor image quality
(7–25% of patients), which might contribute to this inconsistency.

STE RV and LA strain were less reproducible than STE LV strain in our
study. Both, RV and LA strain were derived from a single slice, whereas
LV strains were averaged from 3 SAX (base, papillary muscle, apex) or 3
apical slices (2-, 3- and 4CV), respectively. Hence, RV and LA acquisitions
are more susceptible to foreshortening and imaging artefacts. The
assessment of RV GLS requires complete depiction of the RV from base to
the apex and clear delineation of the endocardium from the blood pool.
Both can be complicated by the limited echocardiographic accessibility
of the RV due to its proximity to the sternum and the complex right
ventricular geometry with thin and trabeculated walls that are difficult to
delineate from soft tissue.33 The significantly lower volume estimates
(RV EDA) in STE compared to CCT also suggest that full visualization of
the RV cavity was not consistently achieved in STE, potentially contrib-
uting to poor reproducibility. None of these limitations exists in CCT and
the present study demonstrated that RV strain can be assessed with high
reproducibility by CCT FT.

Most strain features had a relevant inter-modality bias in our study.
Not surprisingly, agreement between STE and CCT was highest in pa-
rameters with good reproducibility in both modalities (dimensional LV
and LA measurements, LVEF and LV- and LA GLS) and limited for LV
SAX- (LV GCS and GRS) and RV measurements. Correlation between
modalities improved after exclusion of patients with poor or moderate IQ
in STE. Accuracy of STE strain is highly dependent from the acoustic
window and IQ, and similar findings were reported from a study
comparing CMR and STE.32 CCT consistently overestimated volumetric
variables (LV EDV, RV EDA and LA ESV) and underestimated (resulting in
less negative values) LV- and LA GLS compared to STE. Previous studies,
comparing both modalities also reported an underestimation of LV- and
LA GLS in CCT but described a higher agreement between modalities
compared to our findings.28,34–37 However, these studies systematically
excluded a large number of patients with poor IQ in STE (up to about 50%



Fig. 3. Agreement and correlation of CCT and STE measurements in the LV. Correlation coefficients were interpreted according to Schober et al.25 Abbreviations: CCT
– 4D cardiac computed tomography, EDV – end diastolic volume, EF – ejection fraction, GCS – global circumferential strain, GLS – global longitudinal strain, GRS –

global radial strain, LV – left ventricle, SD – standard deviation, STE – speckle tracking echocardiography.
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Fig. 4. Agreement and correlation of CCT and STE measurements in the RV. Correlation coefficients were interpreted according to Schober et al.25 Abbreviations: CCT
– 4D cardiac computed tomography, EDA – end diastolic area, FAC – fractional area change, FWLS – free wall longitudinal strain, GLS – global longitudinal strain, RV –

right ventricle, SD – standard deviation, STE – speckle tracking echocardiography.
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of patients) and, besides Buss et al.,28 increments of every 10% of the
cardiac cycle were rendered, resulting in only 10 reconstructions per
cardiac cycle. We hypothesize that, similar to CMR,38,39 also the lower
7

temporal resolution of CCT compared to STE contributes to
inter-modality bias, since maximal deformation (peak strain) is less likely
to be captured in sequences with a lower number of frames. Also in our



Fig. 5. Agreement and correlation of CCT and STE measurements in the LA. Correlation coefficients were interpreted according to Schober et al.25 Abbreviations: CCT
– 4D cardiac computed tomography, EDV – end diastolic volume, EF – ejection fraction, GLS – global longitudinal strain, LA – left atrium, SD – standard deviation, STE
– speckle tracking echocardiography.
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study, the number of frames varied between CCT (20 reconstructions
(5%) in each RR-interval) and STE (mean 43.4 � 9.8 frames in each
RR-interval).

These results demonstrate that strain values derived from STE and CCT
are not interchangeable and separate cut-off values have to be considered
to implement CCT strain to clinical practice. Despite a systematic under-
estimation, clinical interpretation (but not cut-off values) might be similar
for CCT longitudinal strain and two studies demonstrated the value of CCT
LV GLS in the prediction of mortality in patients undergoing TAVI.40,41

Another study comparing LV strain assessed by CCT, CMR tagging and STE
reported higher correlations of CMR to CCT versus CMR to STE, pointing to
a high validity of CCT strain.42 However, despite its limitations, STE will
remain the standard modality to determine strain, but CCT can be a
valuable adjunct in patients with clinically indicated CCT or impaired
acoustic window in STE. Whereas this study could proof the reproduc-
ibility of CCT strain acquisition in the LV, the LA, and for the first time also
in the RV, the diagnostic accuracy of RV strain has to be validated against
8

CMR strain imaging in future trials. In addition to LV strain, the assessment
of RV and LA might offer the potential to more adequately predict out-
comes and tailor management in patients that undergo interventions in
which these variablesmight be interest, such as transcatheter interventions
on the mitral- and tricuspid valve.

5. Limitations

Limitations are based on the nature of this retrospective observational
study. STE and CCT were not consistently performed at the same day,
which might contribute to an underestimation of the correlation of strain
measures between modalities. However, in comparison to other cardiac
disease like acute myocardial infarction, myocarditis, or takotsubo car-
diomyopathy, severe aortic stenosis can be considered to be a mostly
stable disease with slow progression and changes in cardiac contractility
over time. Changes in ventricular loading conditions over time can also
impact strain values,43 but in our analysis we found no difference



Fig. 6. Spiderplotted relative mean deviation between CCT and STE measurements in different subgroups. Abbreviations: CCT – 4D cardiac computed tomography,
EDV/A – end diastolic volume/area, EF – ejection fraction, ESV/A – end systolic volume/area, FAC – fractional area change, FWLS – free wall longitudinal strain, GCS –

global circumferential strain, GLS – global longitudinal strain, GRS – global radial strain.
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depending on the time delay between CCT and STE. A relevant number of
patients was excluded from analysis due to lacking or incomplete CCT or
STE, which might result in selection bias. Calculation methods, work-
stations and vendors for imaging- and strain-acquisition varied between
modalities. CCT strain was determined by feature tracking while echo-
cardiography was analyzed by speckle tracking and we cannot exclude a
systematic bias resulting from varying algorithm results specific for the
used applications. Neither CCT-, nor STE image acquisition were dedi-
catedly performed for strain analysis but in clinical routine following
standardized protocols. Instructed investigators and experts in echocar-
diography might provide images of better quality that are more feasible
for strain analysis. Hence, this study might underestimate reproducibility
of both modalities and particularly of echocardiographic assessments.

6. Conclusion

4D CCT feature tracking represents a reproducible method to assess
left- and right ventricular and left atrial myocardial strain. Whereas
agreement between modalities was strong for left ventricular global
longitudinal strain, only moderate to poor correlation was depicted in
right ventricular and left atrial strain, the latter possibly related to limited
reproducibility in echocardiography.
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